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Let F be a nonarchimedean local field and G the F-points of a connected simply connected reductive
group over F . We study the unipotent ℓ-blocks of G, for ℓ ̸= p. To that end, we introduce the notion of
(d, 1)-series for finite reductive groups. These series form a partition of the irreducible representations and
are defined using Harish-Chandra theory and d-Harish-Chandra theory. The ℓ-blocks are then constructed
using these (d, 1)-series, with d the order of q modulo ℓ, and consistent systems of idempotents on the
Bruhat–Tits building of G. We also describe the stable ℓ-block decomposition of the depth zero category
of an unramified classical group.

Introduction 1533
1. Notations 1538
2. Bernstein blocks 1538
3. (d, 1)-theory 1541
4. Blocks over Zℓ 1561
5. Some examples 1565
6. Stable ℓ-blocks for classical groups 1569
Acknowledgements 1571
References 1571

Introduction

Let F be a nonarchimedean local field and k its residue field. Let q be the cardinal of k and p its
characteristic. Let G be a connected reductive group over F and denote by G := G(F) the F-points of G.

Let RepC(G) be the category of smooth representations of G with complex coefficients. One way to
study this category is to decompose it in a minimal product of subcategories, called blocks, and describe
them. Bernstein [2] solved this problem by describing the blocks with inertial classes of cuspidal support.

Congruences between automorphic forms were used to solve remarkable problems of arithmetic-
geometry. Hence, it becomes natural to study the smooth representations of p-adic groups with coefficients
in Zℓ, for ℓ a prime number different from p. In the same way, we would like to have a decomposition of
their category Rep

Zℓ
(G) into ℓ-blocks. However, we do not have a result like the Bernstein decomposition,

for the ℓ-blocks. A decomposition of Rep
Fℓ

(GLn(F)) into blocks was proved by Vignéras [28] (see also
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the work of Sécherre and Stevens [27] for inner forms of GLn(F)). After that, Helm [14] reached a decom-
position into ℓ-blocks of Rep

Zℓ
(GLn(F)). He describes these ℓ-blocks with the notion of mod ℓ inertial

supercuspidal support. Apart from GLn and its inner forms, we don’t know much about the ℓ-blocks.

The decomposition of Bernstein and Vignéras–Helm both use the “unicity of the supercuspidal support”,
which is true for GLn and in the complex case, but not in general. Therefore, a new strategy to study the
ℓ-blocks is needed. A new method, using consistent systems of idempotents on the Bruhat–Tits building,
was used in [9] to construct in depth zero the ℓ-blocks for GLn . Then, this was used in [18] and [19] to
obtain decompositions of the depth zero category over Zℓ, for a group which is split over an unramified
extension of F . These decompositions are constructed using Deligne–Lusztig theory. They present a lot
of interesting properties and links with the local Langlands correspondence, but they are not blocks in
general, just unions of blocks.

In this paper, we deal with two problems, the study of the unipotent ℓ-blocks and the stable ℓ-blocks
for unramified classical groups.

Let us start by the unipotent ℓ-blocks. Let Repun
Qℓ

(G) be the subcategory of unipotent representations.
Using [19] (with the system of conjugacy classes composed of the trivial representation for every
polysimplex), we also get a ℓ-unipotent category over Zℓ: Repun

Zℓ
(G). The unipotent ℓ-blocks are the

ℓ-blocks of Repun
Zℓ

(G).

In [19], the idempotents are constructed using Deligne–Lusztig theory. A first difficulty for an ℓ-
block decomposition is that Deligne–Lusztig theory does not produce primitives idempotents. Moreover,
replacing naively Deligne–Lusztig idempotents by primitive central ones won’t produce consistent systems
of idempotents for the p-adic group. This is why we introduce for G, a finite reductive group over k,
the notion of a (d, 1)-series. A (d, 1)-series will be a minimal set of irreducible characters with the
property that it is a union of Harish-Chandra series (in order to get p-adic blocks) and that the idempotent
associated has integer coefficients (to get a decomposition over Zℓ).

Let (G, F) be a connected reductive group over k. The ℓ-blocks of GF are then described using
d-cuspidal pairs; see [4] and [6]. For an integer d , a d-split Levi subgroup is the centralizer of a F stable
torus G, such that the cardinal of TF is a power of 8d(q), where 8d is the d-th cyclotomic polynomial.
The usual Harish-Chandra induction and restriction is then replaced by the Deligne–Lusztig induction
and restriction from these d-split Levi subgroups. An irreducible character χ is said to be d-cuspidal if
and only if ∗RG

L⊆Pχ = 0 for every proper d-split Levi subgroup L and every parabolic P admitting L as
Levi subgroup. Let d be the order of q modulo ℓ. Then we get a bijection (with some restrictions on ℓ)
between conjugacy classes of pairs (M, χ), consisting of a d-split Levi M and a d-cuspidal character
of MF, and ℓ-blocks of GF.

We define a (d, 1)-set to be a subset of Irr(GF) which is both a union of Harish-Chandra series and
of d-series (that is a set of characters having the same d-cuspidal support). A (d, 1)-series is then a
(d, 1)-set with no proper nonempty (d, 1)-subset. In Theorem 3.6.1, we completely compute the unipotent
(d, 1)-series of GF.
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Let BT be the semisimple Bruhat–Tits building associated to G. For σ ∈ BT, we denote by Gσ the
reductive quotient of G at σ , which is a connected reductive group over k. Let T (G) be the set of
G-conjugacy classes of pairs (σ, π), where σ ∈ BT and π is an irreducible cuspidal representation of Gσ .
The work of Morris [26] shows that to an element t ∈ T (G) we can associate Rept

Qℓ
(G), a union of

blocks of depth zero. We define an equivalence relation ∼ on T (G) (see Section 2.2 for more details)
such that Rept

Qℓ
(G) = Rept

′

Qℓ
(G) if and only if t ∼ t′. Denote by [t] the equivalence class of t. Hence,

we get a decomposition of the depth zero category

Rep0
Qℓ

(G) =

∏
[t]∈T (G)/∼

Rep[t]

Qℓ
(G).

Moreover, when G is semisimple and simply connected, the categories Rep[t]

Qℓ
(G) are blocks.

We also denote by T un(G) the subset of T (G) of pairs (σ, π) with π unipotent, and T un
ℓ (G) the subset

of T (G) of pairs (σ, π) with π in a Deligne–Lusztig series associated with a semisimple conjugacy class
in G∗

σ of order a power of ℓ. The equivalence relation ∼ is trivial on T un(G) (see Remark 4.1.1). We have
Repun

Qℓ
(G) =

∏
t∈T un(G) Rep[t]

Qℓ
(G) and Repun

Zℓ
(G)∩Rep

Qℓ
(G) =

∏
[t]∈T un

ℓ (G)/∼ Rep[t]

Qℓ
(G) (see the remark

below for the definition of the intersection).

Remark 0.0.1. Let B be a direct factor subcategory of Rep
Zℓ

(G) and e ∈ ZZℓ
(G) be the corresponding

idempotent in the center of Rep
Zℓ

(G). We then denote by B ∩ Rep
Qℓ

(G) the direct factor of Rep
Qℓ

(G)

cut out by e ∈ ZZℓ
(G) ⊆ ZQℓ

(G).

Now, let us come back to the ℓ-block.

Theorem. Let ℓ be a prime different from p. Assume that G is semisimple and simply connected. Let R
be an ℓ-block of Repun

Zℓ
(G). Then R is characterized by the nonempty intersection R ∩ Repun

Qℓ
(G).

Thus, we need to describe the intersection of the ℓ-blocks and the unipotent category. To achieve that,
we define an equivalence relation on T un(G) in the following way. Let d be the order of q modulo ℓ. Let
t and t′ be two elements of T un(G) and ω ∈ BT. Then we say that t ∼ℓ,ω t′ if and only if t = t′ or there
exist (σ, π) and (τ, π ′) such that t = [σ, π], t′ = [τ, π ′

], ω is a face of σ and τ , and the Harish-Chandra
series in Gω corresponding to the cuspidal pairs (Gσ , π) and (Gτ , π

′) are both contained in the same
(d, 1)-series. Note that by our computation of the (d, 1)-series, for t and ω fixed, we know explicitly the
set of t′ ∈ T un(G) such that t ∼ℓ,ω t′. Now we define ∼ℓ, an equivalence relation on T un(G) by t ∼ℓ t

′ if
and only if there exist ω1, . . . , ωr ∈ BT and t1, . . . , tr−1 ∈ T un(G) such that t∼ℓ,ω1 t1 ∼ℓ,ω2 t2 · · · ∼ℓ,ωr t

′.
We write [t]ℓ for the equivalence class of t.

Theorem. Let ℓ be an odd prime number, different from p, such that ℓ ≥ 5 if a group of exceptional type
(3 D4, G2, F4, E6, 2 E6, E7) is involved in a reductive quotient and ℓ ≥ 7 if E8 is involved in a reductive
quotient. To each equivalence class [t]ℓ ∈ T un(G)/∼ℓ, we can associate Rep[t]ℓ

Zℓ
(G) a Serre subcategory

of Repun
Zℓ

(G), constructed with a consistent system of idempotents such that:
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(1) We have a decomposition

Repun
Zℓ

(G) =

∏
[t]ℓ∈T un(G)/∼ℓ

Rep[t]ℓ
Zℓ

(G).

(2) Rep[t]ℓ
Zℓ

(G) ∩ Repun
Qℓ

(G) =
∏

u∈[t]ℓ
Repu

Qℓ
(G).

(3) We also have a description of Rep[t]ℓ
Zℓ

(G) ∩ Rep
Qℓ

(G). Let (σ, χ) ∈ T un
ℓ (G). Let t be a semisimple

conjugacy class in G∗
σ of order a power of ℓ, such that χ is in the Deligne–Lusztig series associated

to t. Let Gσ (t) be a Levi in Gσ dual to CG∗
σ
(t)◦, the connected centralizer of t , P be a parabolic

subgroup with Levi component Gσ (t), t̂ be a linear character of Gσ (t) associated to t by duality,
and χt be a unipotent character in Gσ (t) such that ⟨χ,RGσ

Gσ (t)⊆P
(t̂χt)⟩ ̸= 0. Let π be an irreducible

component of RGσ

Gσ (t)⊆P
(χt). Let (Gτ , λ) be the cuspidal support of π . Then

Rep(σ,χ)

Qℓ
(G) ⊆ Rep[(τ,λ)]ℓ

Zℓ
(G) ∩ Rep

Qℓ
(G).

(4) When G is semisimple and simply connected, the categories Rep[t]ℓ
Zℓ

(G) are ℓ-blocks.

We also obtain results for the bad prime ℓ = 2 in some special cases (which include classical groups).

Theorem. Let G be a semisimple and simply connected group such that all the reductive quotients only
involve types among A, B, C and D, and p ̸= 2. Then Rep1

Z2
(G) is a 2-block.

As mentioned before, we can compute explicitly the equivalence relation ∼ℓ,ω, so we can also know ∼ℓ.
We work out a few examples here, where we make ∼ℓ explicit, hence also the unipotent ℓ-blocks.

Theorem. Let G be a semisimple and simply connected group:

(1) If ℓ is banal (see Definition 2.2.5), then the unipotent ℓ-blocks are indexed by T un(G).

(2) If ℓ divides q − 1 and satisfies the conditions of the previous theorem, then ∼ℓ is the trivial relation
and the unipotent ℓ-blocks are indexed by T un(G). Moreover, the intersection of an ℓ-block with
Repun

Qℓ
(G) is a Bernstein block.

(3) If G = SLn(F) then Repun
Zℓ

(SLn(F)) is an ℓ-block.

We also work out the case G = Sp2n(F), but to do that we require a few more notations.
Let Sun(G) := {(s, s ′) ∈ N2, s(s + 1)+ s ′(s ′

+ 1) ≤ n}. To (s, s ′) ∈ Sun(G) we can associate t(s, s ′) =

(σ (s, s ′), π(s, s ′)) ∈ T un(G), such that the reductive quotient at σ(s, s ′) is GL1(k)n−s(s+1)+s′(s′
+1)

×

Sp2s(s+1)(k) × Sp2s′(s′+1)(k) and π(s, s ′) is the unique unipotent irreducible cuspidal representation in
this group. The map (s, s ′) 7→ t(s, s ′) gives a bijection between Sun(G) and T un(G). Also denote by Sc

the set

Sc =

{
(s, s ′) ∈ Sun(G),

{
s(s + 1) + s ′(s ′

− 1) > n − d/2
s ′(s ′

+ 1) + s(s − 1) > n − d/2

}}
.

Putting together the previous theorems and making the equivalence relation explicit, we obtain the
following description of the unipotent ℓ-blocks of Sp2n(F).



Unipotent ℓ-blocks for simply connected p-adic groups 1537

Theorem. Let ℓ be prime not dividing q:

(1) If ℓ = 2: Rep1
Z2

(Sp2n(F)) is a 2-block.

(2) If ℓ ̸= 2. Let d be the order of q modulo ℓ:

(a) If d is odd, ∼ℓ is the trivial equivalence relation giving the following decomposition into ℓ-blocks

Repun
Zℓ

(Sp2n(F)) =

∏
t∈T un(G)

Rep[t]ℓ
Zℓ

(Sp2n(F)).

(b) If d is even, the equivalence classes of ∼ℓ are the singletons {t(s, s ′)} for (s, s ′) ∈ Sc and
{t(s, s ′), (s, s ′) ∈ Sun(G) \Sc} thus giving the ℓ-block decomposition

Repun
Zℓ

(Sp2n(F)) = Rep[t(0,0)]ℓ

Zℓ
(Sp2n(F)) ×

∏
(s,s′)∈Sc

Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)).

Remark. (1) In the case d odd, or d even and (s, s ′) ∈ Sc, we see that the intersection of an ℓ-block
with Repun

Qℓ
(G) is a Bernstein block.

(2) If ℓ > n, in the case d even and (s, s ′) ∈ Sc, then Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)) ∩ Rep

Qℓ
(G) is a Bernstein

block.

Let us now turn to the study of the stable ℓ-blocks. Let G be a classical unramified group. In this
case we have the local Langlands correspondence [1; 13; 15; 17; 25]. The block decomposition is not
compatible with the local Langlands correspondence, two irreducible representations may have the same
Langlands parameter but may not be in the same block. However, we can look for the “stable” blocks,
which are the smallest direct factors subcategories stable by the local Langlands correspondence. These
categories correspond to the primitive idempotents in the stable Bernstein center, as defined in [12]. In
[19], the decomposition into stable blocks of the depth zero category is given by

Rep0
Qℓ

(G) =

∏
(φ,σ )∈8̃m(I

Qℓ
F ,L G)

Rep(φ,σ )

Qℓ
(G)

where the set 8̃m(I Qℓ

F , L G) is defined in [19, Definition 4.4.2]. An analogous decomposition is given
over Zℓ and we prove here that this is the stable ℓ-block decomposition.

Theorem. Let G be an unramified classical group and p ̸= 2. Then the decomposition of [19]

Rep0
Zℓ

(G) =

∏
(φ,σ )∈8̃m(I

Zℓ
F ,L G)

Rep(φ,σ )

Zℓ
(G).

is the decomposition of Rep0
Zℓ

(G) into stable ℓ-blocks, that is, these categories correspond to primitive
integral idempotent in the stable Bernstein center.
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1. Notations

Let F be a nonarchimedean local field and k its residue field. Let q be the cardinal of k and p its
characteristic.

We will be interested in reductive groups over F and over k. In order not to confuse the two settings, we
will use the font G for a connected reductive group over F and G for a connected reductive group over k.

Let G be a connected reductive group over F . We denote by G := G(F) the F-points of G. If 3 is a
ring where p is invertible, then we will write Rep3(G) for the abelian category of smooth representations
of G with coefficients in 3. The full subcategory of representations of depth zero will be denoted by
Rep0

3(G) (see Definition 2.1.3).
In the same way, if G is a connected reductive group over k, we denote by G := G(k) the group of its

k-points. This group can be seen as G := G(k̄)F, the group of fixed points of a Frobenius automorphism F.
If P is a parabolic subgroup admitting M a F-stable Levi subgroup, we will write RG

M⊆P for the Deligne–
Lusztig induction from M to G; defined in [10]. It is a map between spaces of virtual representations
RG

M⊆P : Z Irr(M) → Z Irr(G). When P is also F-stable, since the Deligne–Lusztig induction is the same
as the Harish-Chandra induction, we will also use iGM⊆P and rG

M⊆P for the Harish-Chandra induction and
restriction. Let G∗ be in duality with G, a duality defined over k, with Frobenius F on G∗.

In all this paper, ℓ will be a prime number not dividing q. We shall assume that choices have been
made, once and for all, of isomorphisms of k̄∗ with (Q/Z)p′ and of k̄∗ with the group of roots of unity of
order prime to p in Qℓ.

2. Bernstein blocks

Let G be the F-points of a connected reductive group. When the field of coefficients is Qℓ (or C), the
blocks of G are well known thanks to the theory of Bernstein [2]. In this paper, the ℓ-blocks of G will be
constructed using consistent systems of idempotents on the Bruhat–Tits building of G. The purpose of
this section is to explain, in the case where G is semisimple and simply connected, how we can recover
Bernstein blocks using consistent systems of idempotents.

2.1. Consistent systems of idempotents. In this section, we recall the basic definitions and properties of
systems of idempotents.

Let BT be the semisimple Bruhat–Tits building associated to G. This is a polysimplicial complex and
we denote by BT0 the set of vertices, that is of polysimplices of dimension 0. We will usually use Latin
letters x, y, . . . for vertices and Greek letters σ, τ, . . . for polysimplices. We can define an order relation
on BT by σ ≤ τ if σ is a face of τ . Two vertices x and y are adjacent if there exists a polysimplex σ

such that x ≤ σ and y ≤ σ .
Let 3 be a ring where p is invertible. We fix a Haar measure on G and denote by H3(G) the Hecke

algebra with coefficients in 3, that is the algebra of functions from G to 3 locally constant with compact
support.
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Definition 2.1.1 [24, Definition 2.1]. A system of idempotents e = (ex)x∈BT0 of H3(G) is said to be
consistent if the following properties are satisfied:

(1) ex ey = eyex when x and y are adjacent.

(2) ex ezey = ex ey when z is adjacent to x and in the polysimplicial hull of x and y.

(3) egx = gex g−1 for all x ∈ BT0 and g ∈ G.

If e = (ex)x∈BT0 is a consistent system of idempotent, then for σ ∈ BT we can define eσ :=
∏

x ex ,
where the product is taken over the vertices x such that x ≤ σ .

Consistent systems of idempotents are very interesting because we have the following theorem due to
Meyer and Solleveld.

Theorem 2.1.2 [24, Theorem 3.1]. Let e = (ex)x∈BT0 a consistent system of idempotents, then the full
subcategory Repe

3(G) of objects V of Rep3(G) such that V =
∑

x∈BT0
ex V is a Serre subcategory.

It may not be easy to check the conditions of consistency. But, if we are working with the subcategory
of depth zero representations, we can find in [18] the notion of 0-consistent, which implies consistency,
and is easier to check.

Let σ ∈ BT. We denote by G◦
σ the parahoric subgroup at σ and by G+

σ its pro-p-radical. The quotient,
Gσ , is then the group of k-points of a connected reductive group Gσ defined over k.

If σ ∈ BT is a polysimplex, then G+
σ defines an idempotent e+

σ ∈ HZ[1/p](G) by e+
σ = µ(G+

σ )−1χG+
σ

,
where µ is our fixed Haar measure and χG+

σ
is the characteristic function of G+

σ . The system of idempotents
(e+

x )x∈BT0 is consistent and cuts out the category of depth zero.

Definition 2.1.3. An object V of Rep3(G) has depth zero if V =
∑

x∈BT0
e+

x V .

In other words, with the notations of Theorem 2.1.2, the depth zero category is Rep0
3(G) = Repe+

3 (G),
with e+

= (e+
x )x∈BT0 .

Definition 2.1.4 [18, Definition 1.0.5]. We say that a system (eσ )σ∈BT is 0-consistent if:

(1) egx = gex g−1 for all x ∈ BT0 and g ∈ G.

(2) eσ = e+
σ ex = ex e+

σ for x ∈ BT0 and σ ∈ BT such that x ≤ σ .

Proposition 2.1.5 [18, Proposition 1.0.6]. If (eσ )σ∈BT is a 0-consistent system of idempotents, then it is
consistent.

Let us give two examples of systems of idempotents which are 0-consistent. Let σ ∈ BT. Let E(Gσ , 1)

be the Deligne–Lusztig series associated with the trivial conjugacy class, that is the set of unipotent
characters in Gσ . Let e1,Gσ

, be the central idempotent in Qℓ[Gσ ] that cuts out E(Gσ , 1). Thanks to
the isomorphism G◦

σ/G+
σ

∼
−→ Gσ , we can pull back e1,Gσ

to an idempotent e1,σ ∈ HQℓ
(G◦

σ ). The
system e1 = (e1,σ )σ∈BT is then 0-consistent; see [18, Proposition 2.3.2]. Thus it defines Repun

Qℓ
(G) the

full-subcategory of Rep
Qℓ

(G) of unipotent representations.
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In the same way, let Eℓ(Gσ , 1) be the union of the E(Gσ , t), where t is a semisimple conjugacy class in
the dual of Gσ , of order a power of ℓ. By [3] Theorem A’ and Remark 11.3, the idempotent that cuts out
this series is in Zℓ[Gσ ]. We can then pull it back to get eℓ

1,σ ∈ HZℓ
(G◦

σ ). This system eℓ
1 = (eℓ

1,σ )σ∈BT is
also 0-consistent and defines the ℓ-unipotent subcategory Repun

Zℓ
(G).

2.2. Bernstein blocks with system of idempotents. In this section, we want to reinterpret the Bernstein
blocks of depth zero (that is the blocks over Qℓ or C), in terms of consistent systems of idempotents. To
do that, we will construct a 0-consistent system of idempotents from unrefined depth zero types, hence
subcategories of Rep0

Qℓ
(G). When G is semisimple and simply connected, these categories will be blocks.

We define, as in [20], “unrefined depth zero types” to be the pairs (σ, π), where σ ∈ BT and π is
an irreducible cuspidal representation of Gσ . Let T (G) be the set of unrefined depth zero types, up to
G-conjugacy.

If σ, τ ∈ BT are two polysimplices with τ ≤ σ , we can see Gσ as a Levi subgroup of Gτ . Let t and t′

be two elements of T (G) and ω ∈ BT. Then we say that t ∼ω t′ if and only if t = t′ or there exist (σ, π)

and (τ, π ′) such that t = [σ, π], t′ = [τ, π ′
], ω is a face of σ and τ , and the cuspidal pairs (Gσ , π) and

(Gτ , π
′) are conjugated in Gω. Now we define ∼, an equivalence relation on T (G) by t ∼ t′ if and only

if there exist ω1, . . . , ωr ∈ BT and t1, . . . , tr−1 ∈ T (G) such that t ∼ω1 t1 ∼ω2 t2 · · · ∼ωr t
′. We write [t]

for the equivalence class of t.
If G is a connected reductive group over k, then the theory of Harish-Chandra allows us to partition

Irr(G) according to cuspidal support [M, π]:

Irr(G) =

⊔
Irr(M,π)(G).

Now we construct from [t] ∈ T (G)/∼ a system of idempotents e[t] in the following way. Let τ ∈ BT and
define eτ

[t] ∈ Qℓ[Gτ ] the idempotent that cuts out the union of Irr(Gσ ,π)(Gτ ) for every [σ, π] ∈ [t] with
τ ≤ σ . We can then pull pack eτ

[t] to an idempotent e[t],τ ∈ HQℓ
(G◦

τ ) ⊆ HQℓ
(G), giving us e[t] a system

of idempotents.

Lemma 2.2.1. Let x ∈ BT0, σ ∈ BT with x ≤ σ . We have the following properties:

(1) e+
σ =

∑
[t]∈T (G)/∼ e[t],σ .

(2) For all t, t′ ∈ T (G) with [t] ̸= [t′], e[t],x e[t′],σ = 0.

Proof. (1) The partition Irr(Gσ ) =
⊔

Irr(M,π)(Gσ ) and the fact that each Irr(M,π)(Gσ ) can be written as
Irr(M,π)(Gσ ) = Irr(Gτ ,π)(Gσ ) for a polysimplex τ ≥ σ show the wanted equality.

(2) The group Gσ is a Levi quotient of a parabolic Pσ of Gx , and we denote by Uσ the unipotent radical
of Pσ . The idempotent e[t′],σ ∈ HQℓ

(G◦
σ ) ⊆ HQℓ

(G◦
x) gives us in Qℓ[Gx ] the idempotent eUσ

eσ
[t′], where

eUσ
is the idempotent which averages along the group Uσ . We have to prove that ex

[t]eUσ
eσ
[t′] = 0 in

Qℓ[Gx ]. But Qℓ[Gx ]eUσ
eσ
[t′] is the parabolic induction from Gσ to Gx of the module Qℓ[Gσ ]eσ

[t′]. Since
[t] ̸= [t′] no representation in Irr(Gτ ,π)(Gx), with [τ, π] ∈ [t] can be in the induction of a representation in
Irr(Gτ ′ ,π ′)(Gσ ) with [τ ′, π ′

] ∈ [t′]. Hence ex
[t]eUσ

eσ
[t′] = 0. □



Unipotent ℓ-blocks for simply connected p-adic groups 1541

Proposition 2.2.2. The system of idempotents e[t] is 0-consistent.

Proof. An element t ∈ T (G) is defined up to G-conjugacy, hence e[t] is G-equivariant. Let x ∈ BT0

and σ ∈ BT such that x ≤ σ . We have to prove that e[t],σ = e+
σ e[t],x . By 1. in 2.2.1 we have that

e+
σ =

∑
[t′]∈T (G)/∼ e[t′],σ . Hence, e[t],x e+

σ =
∑

[t′]∈T (G)/∼ e[t],x e[t′],σ . Now by 2. in 2.2.1, we have that
if [t] ̸= [t′] then e[t],x e[t′],σ = 0. So e[t],x e+

σ = e[t],x e[t],σ . In the same way, e[t],x e[t],σ = e+
x e[t],σ . So,

e[t],x e+
σ = e[t],x e[t],σ = e+

x e[t],σ = e+
x e+

σ e[t],σ = e+
σ e[t],σ = e[t],σ . □

Let t ∈ T (G). We denote by Rep[t]

Qℓ
(G) the category associated with e[t].

Proposition 2.2.3. We have the decomposition

Rep0
Qℓ

(G) =

∏
[t]∈T (G)/∼

Rep[t]

Qℓ
(G).

Proof. The proof is similar to the proof of [18, Proposition 2.3.5]. Property 2 in Lemma 2.2.1 shows
that these categories are pairwise orthogonal and property 1. in Lemma 2.2.1 shows that the product if
Rep0

Qℓ
(G). □

Theorem 2.2.4. If G is semisimple and simply connected the category Rep[t]

Qℓ
(G) is a block.

Proof. When G is semisimple and simply connected, Theorem 4.9 of [26] shows that we have a
bijection between T (G)/∼ and level zero Bernstein blocks. We then deduce from Proposition 2.2.3 that
Rep0

Qℓ
(G) =

∏
[t]∈T (G)/∼ Rep[t]

Qℓ
(G) is the decomposition of Rep0

Qℓ
(G) into Bernstein blocks. □

We would like to do the same thing to construct ℓ-blocks. The simplest case is when ℓ is banal.

Definition 2.2.5. We say that a prime number ℓ ̸= p is banal when for every vertex x ∈ BT0, ℓ does not
divide the cardinal of Gx .

Therefore, when ℓ is banal each idempotent e[t] is in HZℓ
(G). Thus we have a decomposition

Rep0
Zℓ

(G) =

∏
[t]∈T (G)/∼

Rep[t]

Zℓ
(G)

and the following theorem.

Theorem 2.2.6. If G is semisimple and simply connected, and ℓ is banal, the category Rep[t]

Zℓ
(G) is an

ℓ-block.

In the general case, the idempotents do not have coefficients in Zℓ. The topic of the followings sections
will be to explain how to sum these idempotents to get idempotents with integral coefficients.

3. (d, 1)-theory

We have seen in Section 2.2 how to construct the Bernstein blocks with consistent systems of idempotents
when we have a simply connected group. To construct ℓ-blocks, we need to produce central idempotents
for finite reductive groups with coefficients in Zℓ. In this section, we introduce the notion of a (d, 1)-set.
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This is a subset of Irr(G) which is a union of Harish-Chandra series and gives a central idempotent with
coefficients in Zℓ. These (d, 1)-sets will be used in the next sections to describe the unipotent ℓ-blocks
for simply connected p-adic groups.

This section will only deal with finite reductive groups. Let us take (G, F) a connected reductive group
defined over k, and let G := (G)F. We recall that q = |k|. We will define the (d, 1)-set and (d, 1)-series,
then explain how to compute them, and to finish, we will show that they behave well with respect to
Harish-Chandra induction and Deligne–Lusztig induction from particular Levi subgroups.

3.1. Unipotent ℓ-blocks for finite reductive groups. We recall in this section the theory of ℓ-blocks for
a finite connected reductive group. These blocks will be constructed using a modified Harish-Chandra
induction called d-Harish-Chandra induction, defined using Deligne–Lusztig theory.

For each connected reductive group (G, F) over k, there exists a unique polynomial PG ∈ Z[x] called
the polynomial order of G (see, for example, [4] section 1.A) with the property that there is a ≥ 1 such
that |GFm

| = PG(qm) for all m ≥ 1 such that m ≡ 1 (mod a). The prime factors of PG distinct from x are
cyclotomic polynomials. Let d ≥ 1 be an integer and 8d the corresponding cyclotomic polynomial. We
say that T is a 8d-subgroup if T is a F-stable torus of G whose polynomial order is a power of 8d . A
d-split Levi subgroups of G is the centralizer in G of some 8d -subgroup of G.

Let χ ∈ Irr(G) be an ordinary irreducible character. We say that χ is d-cuspidal if and only if
∗RG

L⊆Pχ = 0 for every proper d-split Levi subgroup L and every parabolic P admitting L as Levi subgroup.
A “unipotent d-pair” is a pair (L, λ) where L is a d-split Levi and λ is a unipotent character of L. Such

a pair is said to be cuspidal if λ is cuspidal. We define an order on unipotent d-pairs by (M, µ) ⪯ (L, λ)

if M is a Levi subgroup of L and there is a parabolic subgroup P of L admitting M as a Levi such that
⟨λ,RL

M⊆P(µ)⟩ ̸= 0. For (L, λ) a unipotent d-cuspidal pair, let us define E(G, (L, λ)) to be the subset of
E(G, 1) of characters χ such that (L, λ) ⪯ (G, χ). We call E(G, (L, λ)) a d-series.

Theorem 3.1.1 [4, Theorem 3.2(1)]. For each d, the sets E(G, (L, λ)) (where (L, λ) runs over a complete
set of representatives of G-conjugacy classes of unipotent d-cuspidal pairs) partition E(G, 1).

An ℓ-block is a primitive idempotent in the center Z(Zℓ[G]) of the group algebra Zℓ[G]. For b an
ℓ-block, we denote by Irr(b) the subset of Irr(G) that is cuts out by the idempotent b. This defines a
partition Irr(G) =

⊔
b Irr(b). The ℓ-unipotent series Eℓ(G, 1), defined as the union of the E(G, t) with t

of order a power of ℓ, defines a central idempotent in Zℓ[G] [3, Theorem A’ and Remark 11.3], hence it
is a union of ℓ-blocks: Eℓ(G, 1) =

⊔
b Irr(b). We will call these blocks the unipotent ℓ-blocks.

Let ℓ be a prime number not diving q . We will say that ℓ satisfies the condition (∗) if

ℓ is odd, ℓ is good for G and ℓ ̸= 3 if 3 D4 is involved in (G, F). (∗)

Let us summarize the condition of being good and (∗) in a table

Types An , 2 An Bn , Cn , Dn , 2 Dn
3 D4 G2, F4, E6, 2 E6, E7 E8

bad ℓ ∅ {2} {2} {2, 3} {2, 3, 5}

(∗) ℓ ≥ 3 ℓ ≥ 3 ℓ ≥ 5 ℓ ≥ 5 ℓ ≥ 7
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Theorem 3.1.2 [5, Theorem 4.4]. We assume that ℓ satisfies (∗) and let d be the order of q modulo ℓ.
Then there is a bijection

(L, λ) 7→ b(L, λ),

between the set of G-conjugacy classes of unipotent d-cuspidal pairs of G and the set of unipotent ℓ-blocks.
Moreover, we have that Irr(b(L, λ))∩ E(G, 1) = {χ, (L, λ) ⪯ (G, χ)}.

If b is a unipotent ℓ-block, then the knowledge of Irr(b)∩E(G, 1) is enough to describe all the characters
in Irr(b). To explain this, we need a few more notations.

Let t ∈ G∗ be a semisimple element of order a power of ℓ. Let ℓ be a good prime for G. Then CG∗(t)◦

is a Levi subgroup; see for example [5, Proposition 2.1]. Let G(t) be a Levi subgroup in G in duality
with CG∗(t)◦ over k and P be a parabolic subgroup with Levi component G(t).

Since t is a central element of (CG∗(t)◦)F, by [11, Proposition 13.30], there exists a linear character
t̂ ∈ Irr(G(t)) such that the tensor product with t̂ defines a bijection from E(G(t), 1) to E(G(t), t). Let
χ ∈ E(G, t). Then, by the Jordan decomposition in the case of nonconnected center (defined in [23])
there exists χt ∈ E(G(t), 1) such that ⟨χ,RG

G(t)⊆P(t̂χt)⟩ ̸= 0.

Theorem 3.1.3 [5, Theorem 4.4]. Let ℓ be a prime good for G. Let χ ∈ E(G, t), for t a semisimple
conjugacy class in G∗ of order a power of ℓ. Let b be the ℓ-block such that χ ∈ Irr(b). Let G(t) be a F-stable
Levi in G dual to CG∗(t)◦, P be a parabolic subgroup with Levi component G(t), and χt ∈ E(G(t), 1) such
that ⟨χ,RG

G(t)⊆P(t̂χt)⟩ ̸= 0. For any such (G(t),P, χt) associated to χ , all the irreducible components of
RG

G(t)⊆P(χt) are in Irr(b) ∩ E(G, 1).

Let (L, λ) be a unipotent d-cuspidal pair. Then we define the ℓ-extension of the d-series E(G, (L, λ)) as
the subset Eℓ(G, (L, λ))⊆Eℓ(G, 1) of characters χ ∈Eℓ(G, 1) such that, with the notation of Theorem 3.1.3,
all the irreducible components of RG

G(t)⊆P(χt) are in E(G, (L, λ)). Hence, if ℓ satisfies (∗), then
Eℓ(G, (L, λ)) = Irr(b(L, λ)).

3.2. (d, 1)-series. We have seen in Section 2.2 that in order to construct Bernstein blocks we needed to
decompose Irr(G) as Harish-Chandra series. But to get ℓ-blocks we need to decompose it as d-series, as
seen in Section 3.1. In this section, we will introduce (d, 1)-series, which will give a partition of Irr(G)

into subsets which are both a union of Harish-Chandra series and a union of d-series.
First, let us remark that 1-series are just Harish-Chandra series, so from now on we will speak of 1-split

Levi, 1-cuspidal pairs and 1-series when we want to talk about “normal” Levi subgroup, cuspidal pairs
and Harish-Chandra series.

Definition 3.2.1. We define a (d, 1)-set to be a subset of Irr(G) which is a union of 1-series and a union
of d-series. A (d, 1)-series is then a (d, 1)-set with no proper nonempty (d, 1)-subset.

A (d, 1)-set, respectively a (d, 1)-series, included in E(G, 1) will be called a unipotent (d, 1)-set,
respectively a unipotent (d, 1)-series.

Remark 3.2.2. (1) By Theorem 3.1.1 E(G, 1) is a (d, 1)-set, so the unipotent (d, 1)-series give a partition
of E(G, 1).
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(2) If 8d does not divide PG, then the only 8d -torus is the trivial one. Hence the (d, 1)-series are just
the 1-series.

Let E be a unipotent (d, 1)-series. Since E can be written as a union of d-series E =
⊔

i Ei , we can
define the ℓ-extension of a (d, 1)-series by

Eℓ :=

⊔
i

Ei,ℓ.

We want to compute the unipotent (d, 1)-series. The first step is to reduce to the case of simple groups.
To every orbit ω of F on the set of connected components of the Dynkin diagram of G there corresponds

a well defined F-stable subgroup G′

ω of [G,G] and a component Gω = Z◦(G)G′

ω of G. The finite group
(Gω/Z(Gω))F is characterized by its simple type {An,

2 An,Bn,Cn,Dn,
2 Dn,

3 D4,G2, F4, E6,
2 E6, E7, E8}

and an extension field Fqm(ω) of Fq of degree m(ω) equal to the length of the orbit of ω. Moreover, when
G = Gad , where Gad denotes the adjoint group of G, then it is a direct product of its components.

Let us begin, by showing how to reduce to G of adjoint type.

Proposition 3.2.3. Let π : G → Gad be the reduction map modulo Z(G). Then π induces a bijection be-
tween E(Gad , 1) and E(G, 1) which commutes with the Deligne–Lusztig induction and preserves unipotent
(d, 1)-series.

Proof. This follows from [4, Proposition 1.36] and [4, Remark 1.25]. □

Let a ∈ N∗. Denote by (G(a), F(a)) the restriction of scalars (or Weil restriction) of (G, F) from Fqa to
Fq . This is a reductive group defined over Fq characterized by the property: for any Fq -algebra A we
have G(a)(A) = G(A ⊗Fq Fqa ). In particular, (G(a))F

(a)

= GFa
(that is G(a)(Fq ) = G(Fqa )). Moreover, the

isomorphism (G(a))F
(a)

≃ GFa
“commutes” with the Deligne–Lusztig induction and map isomorphically

E((G(a))F
(a)

, 1) to E(GFa
, 1). Now a group of adjoint type is a direct product of restriction of scalars of

simple groups. Let us take a look at the behavior of (d, 1)-series with respect to restriction of scalars.

Proposition 3.2.4. Let a ∈ N∗. We have a bijection between the (d, 1)-series in E((G(a))F
(a)

, 1) and the
(d/ gcd(d, a), 1)-series in E(GFa

, 1).

Proof. If p is a prime number, then

8n(x p) =

{
8pn(x) if p | n,

8pn(x)8n(x) otherwise.

From that we can deduce what is 8n(xa). We write a = ana′
n , with a′

n relatively prime with n and all the
prime numbers dividing an also divide n. Then we have

8n(xa) =

∏
k | a′

n

8kann(x).

Let us prove that 8d(x) divides 8n(xa) if and only if n = d/ gcd(d, a).
First assume that n = d/ gcd(d, a). Hence, we want to prove that there exists k | a′

n such that kan =

gcd(d, a). If pe
| an , then p | n =d/ gcd(d, a). So, νp(d)≥νp(a), where νp is the p-adic valuation. Hence,
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νp(gcd(d, a)) = νp(a) = νp(an). Thus an | gcd(d, a). Let k = gcd(d, a)/an . It remains to prove that
k | a′

n . We have that k | a and if p | k, then p ∤ an since it would imply that νp(gcd(d, a)) = νp(a) = νp(an)

and a contradiction. Hence k | a′
n .

Now, let us assume that there exist n and k, such that k | a′
n and kann = d. We want to prove that

n = d/ gcd(d, a). It is enough to prove that kan = gcd(d, a). First k | a′
n and since an and a′

n are relatively
prime, k | a. We also have that kan | d , thus kan | gcd(d, a). Now, if pe

| gcd(d, a), then pe
| a = ana′

n . If
pe

| an , then pe
| kan . If not, pe

| a′
n . Thus p ∤ n. But since pe

| d = kann, we have that pe
| k and pe

| kan .
We conclude that kan = gcd(d, a).

We have just proved that 8d(x) | 8n(xa) if and only if n = d/ gcd(d, a). As a result, if T′ is a
torus in G(a), then T′ is a d-torus in G(a) if and only if it is the maximal d-subtorus of T(a), for T a
d/ gcd(d, a)-torus of G. Thus the d-split Levi subgroup of G(a) are of the form L(a) for L a d/ gcd(d, a)-
split Levi subgroup of G. We then conclude the proof with the following commutative diagram of [4,
Proposition 1.37]:

ZE((G(a))F
(a)

, 1)
∼
// ZE(GFa

, 1)

ZE((L(a))F
(a)

, 1)

RG(a)

L(a)

OO

∼
// ZE(LFa

, 1)

RG
L

OO

□

To compute the (d, 1)-series of E(G, 1), Proposition 3.2.3 allows us to reduce to the case where G is
adjoint. Now, an adjoint group can be written as a product of restriction of scalars of simple groups. The
(d, 1)-series of a direct product is the product of the (d, 1)-series. Hence by Proposition 3.2.4, we can
compute the unipotent (d, 1)-series of G, if we know them for simple groups. This is what we do in the
following sections.

3.3. Computation of (d, 1)-series for type An and 2 An. In this section, we want to compute the unipotent
(d, 1)-series for groups of type An and 2 An .

Let us start by explaining what the d-series are. First, let G be of type An . The unipotent characters
are in bijection with partitions of n + 1. On partitions, there is the well defined notion of d-hook and of
d-core; see for example [16, Chapter 2.7]. The proof of Theorem 3.2 in [4] then shows the following
proposition.

Proposition 3.3.1. The d-cuspidal unipotent characters are precisely those where the partition is itself a
d-core. Moreover, two characters are in the same d-series if and only if they have the same d-core.

In order to get the result for groups of type 2 An , we will use an “Ennola”-duality. We use here the
notation of [4]. Let G = (0, Wφ) be a generic finite reductive group [4, Section 1.A]. We can then define
G− by

G−
:= (0, W (−φ)).

To G we can associate a finite set Uch(G) [4, Theorem 1.26] which is in bijection with the set of unipotent
characters of G = G(q).
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Theorem 3.3.2 [4, Theorem 3.3]. There exists a natural bijective isometry σ G
: Z Uch(G) → Z Uch(G−)

such that whenever L is d-split for some d, the following diagram is commutative:

Z Uch(G)
σ G
// Z Uch(G−)

Z Uch(L)

RG
L

OO

σ L
// Z Uch(L−)

RG−

L−

OO

Note that if G(q) is of rational type (An, q) then G−(q) is of rational type (2 An, q). In particular, we
see that the unipotent characters for 2 An are still parametrized by partitions of n+1. If T is a generic torus
with polynomial order 8d(x), T− has polynomial order 8d(−x). The map L 7→ L− is a bijection between
8d(x)-subgroup of 2 An and 8d(−x)-subgroup of An . Now, for d > 2, we have that 8d(−x) = 82d(x)

if d is odd, 8d(−x) = 8d/2(x) if d is congruent to 2 modulo 4 and 8d(−x) = 8d(x) if d is divisible
by 4. Let d ′ be the integer defined by

d ′
=


2d if d is odd,
d/2 if d ≡ 2 (mod 4),

d if d ≡ 0 (mod 4k).

By Theorem 3.3.2 the d-series of 2 An correspond to d ′-series of An which are given by Proposition 3.3.1.

Remark 3.3.3. If d is the order of q modulo ℓ then d ′ is the order of −q modulo ℓ.

In both cases, it is very important to be able to compute hooks and cores of partitions. In order to
make the computation easier, and also to match with the following Section 3.4, we will use the notion of
a β-set instead of a partition.

A β-set is a subset λ ⊆ N, and we will write λ = (x1 x2 · · · xa) with x1 < x2 < · · · < xa . We define the
rank of a β-set by rank(λ) =

∑a
i=1 xi − a(a − 1)/2. We define an equivalence relation on the β-sets by

(x1 x2 · · · xa) ∼ (0 x1 + 1 x2 + 1 · · · xa + 1). The rank is invariant by this equivalence relation hence can
be extended to equivalence classes. Now, a partition a1 ≤ · · · ≤ ak of n + 1 can be sent to a β-set of rank
n + 1 defined by λ = (a1 a2 + 1 a3 + 2 · · · ak + (k − 1)) and this gives us a bijection between partitions
of n + 1 and equivalence classes of β-set of rank n + 1.

Let λ and λ′ be two β-sets. We say that λ′ is obtained from λ by a d-hook if there exists x ∈ λ such
that x −d /∈ λ and λ′

= λ\ {x}∪ {x −d}. The d-core of λ is then the β-set without d-hook obtained from
λ by repetitively removing d-hooks.

Lemma 3.3.4 [16, Lemma 2.7.13]. Let λ, λ′ be two β-sets and α, α′ be two partitions corresponding
respectively to λ, λ′. Then α′ is obtained from α by a d-hook if and only if λ′ is obtained from λ by a
d-hook.

Now we have everything we need to compute the unipotent (d, 1)-series for type An and 2 An .
For a group G of type An , this is easy because there is no unipotent cuspidal representation. Hence,

there is only one unipotent 1-series E(G, 1) which is thus a (d, 1)-series.
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Proposition 3.3.5. If G is of type An , E(G, 1) is a (d, 1)-series.

Now, we assume that G is of type 2 An . We saw previously that two β-sets are in the same d-series if
and only if they have the same d ′-core and that they are in the same 1-series if and only if they have the
same 2-core.

Remark 3.3.6. As we will see below, there are two different behaviors of the (d, 1)-series depending on
the parity of d ′. When we will apply these results to ℓ-modular representations theory, d will be the order
of q modulo ℓ. The primes ℓ such that d ′ is even are called linear and when d ′ is odd they are called
unitary.

The first case to consider is when d ′ is even (linear prime case). We then have the following result.

Proposition 3.3.7. If d ′ is even (linear prime case) then the unipotent (d, 1)-series for type 2 An are the
unipotent 1-series.

Proof. If d ′ is even, removing a d ′-hook to a β-set can be obtained by removing d ′/2 2-hooks, hence the
unipotent (d, 1)-series are the unipotent 1-series. □

Now, let us assume that d ′ is odd (unitary prime case).
Let λ be a β-set with finite cardinal. Let o be the number of odd numbers in λ and e be the number of

even numbers. We define the defect of λ by defect(λ) = o − e if o ≥ e and e − o − 1 if o < e. The defect
is invariant under the equivalence relation and we extend it to equivalence classes.

The 2-core of a β-set is of the form (1 3 · · · 2k + 1) (possibly ∅) which all have different defect.
Moreover, removing a 2-hook does not change the defect of a β-set, so the defect of a β-set determines its
2-core, hence it characterizes the 1-series. Adding a 2-hook increase the rank of a β-set by 2. Therefore,
we get the following lemma.

Lemma 3.3.8. There exists a β-set of rank m and defect k if and only if m − k(k + 1)/2 is even and
positive.

Let [λ] be an equivalence class of β-sets. We define max([λ]) to be 0 if (0) ∈ [λ] and max([λ]) :=

max(λ′) where λ′ is the unique β-set in [λ] such that 0 /∈ λ′ if (0) /∈ [λ]. Then max([λ]) is the length of
the largest hook in [λ].

Lemma 3.3.9. Let k ≥ 0 and m ≥ 1 such that m − k(k + 1)/2 is even and positive. We have

max{max([λ]), defect(λ) = k, rank(λ) = m} =

{
m − (k2

− 3k + 2)/2 if k ≥ 1,

m if k = 0.

Proof. A β-set of rank m and defect k is obtained by 1/2(m −k(k +1)/2) 2-hooks from (1 3 · · · (2k −1)).
Each 2-hook increase the maximum of the coefficients by at most 2, giving us the result. □

Definition 3.3.10. Let us define for G of type 2 An ,

k(G, d) := max{k ≥ 1, (k2
− 3k + 2)/2 ≤ n + 1 − d}

if it exists and −1 otherwise.
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From Lemma 3.3.9, k(G, d) is the greatest integer k such that there exists λ of defect k and rank n + 1
having a hook of length at least d. In particular, if λ has defect k > k(G, d) and rank n + 1 then it is a
d-core.

Proposition 3.3.11. Assume that d ′ is odd (unitary prime case) and G is of type 2 An . Then, the unipotent
1-series with defect strictly greater than k(G, d ′) are (d, 1)-series, composed uniquely of d-cuspidal
representations, and the union of the unipotent 1-series with defect lower or equal to k(G, d ′) is a
(d, 1)-series.

Proof. The β-sets of rank n + 1 and defect strictly greater than k(G, d ′) are all d ′-core. Therefore the
corresponding unipotent characters are d-cuspidal. Thus the unipotent 1-series with defect strictly greater
than k(G, d ′) are (d, 1)-series.

Since E(G, 1) is a (d, 1)-set, we have that the union of the unipotent 1-series with defect lower or equal to
k(G, d ′) is a (d, 1)-set. It remains to prove that it is a (d, 1)-series. Let k ≤ k(G, d ′). Let us assume that k ≥

3. Let λ := (1 3 · · · (2k−3) (n+1−(k2
−3k+2)/2)) be a β-set of defect k and rank n+1. Let u be an odd

number, 1≤u ≤2k−3 such that u+d ′
̸=n+1−(k2

−3k+2)/2−d ′ (such a u exists since there are more than
two odd numbers between 1 and 2k−3). Let λ′

:= (1 3 · · · u+d ′
· · · (2k−3) (n+1−(k2

−3k+2)/2−d ′))

(with a possible permutation of the coefficients so that they are written in the correct order). The β-set
λ′ is obtain from λ by removing a d ′-hook and then adding a d ′-hook. Hence λ and λ′ are in the same
d-series. Since d ′ is odd, if k ≥ 4 then defect(λ′) = k −4 and if k = 3, defect(λ′) = 0. Hence the unipotent
1-series with defect k ≥ 4 are in the same (d, 1)-series as the unipotent 1-series with defect k − 4. We
have the same result for defects 0 and 3. Thus to prove the result, we are left with the 1-series of defect 1
and 2. By Lemma 3.3.8, depending on the parity of n, we can only have simultaneously β-sets of rank
n + 1 and defects 0, 3 or defects 1, 2. Therefore, we need to prove that, if they exist, the β-sets with
defects 1, 2 are in the same (d, 1)-series.

If there are β-sets of rank n + 1 with defects 1, 2. We start by assuming that n ̸= 4. Either n ̸= 2d ′ or
n ̸= 4 + 2d ′. If n ̸= 2d ′ then we take λ = (1 n + 1) and λ′

= (1 + d ′ n + 1 − d ′), with defect(λ) = 2 and
defect(λ′)= 1. If n ̸= 4+2d ′ then we take λ= (3 n−1) and λ′

= (3+d ′ n−1−d ′), with defect(λ)= 2 and
defect(λ′) = 1 (we can note here that we can well assume that d ′

≤ n − 1 because if not then d ′
≥ (n + 1)

and we can use the previous case since n ̸= 2d ′). So we are left with n = 4. We can then have d ′
= 1, 3

or 5. If d ′
= 1, every β-set has the same 1-core, so the result follows. If d ′

= 3, we take λ = (1 3 4) and
λ′

= (1 2 3 5). Finally, if d ′
= 5 we take λ = (5) and λ′

= (1 5). □

In the case d ′ odd, We will write Ed
1 (G) for the union of the unipotent 1-series of defect lower or

equal to k(G, d ′). Thus, if it is not empty, Ed
1 (G) is the unipotent (d, 1)-series containing the trivial

representation.

3.4. Computation of (d, 1)-series for classical groups. In this section we compute the unipotent (d, 1)-
series for groups of type Bn , Cn , Dn and 2 Dn .
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Just as before, let us start by studying d-series. When G is a classical group we have a classification of
unipotent characters with the notion of symbols that we recall here. Furthermore, with these symbols, we
can describe the decomposition into d-series of Theorem 3.1.1.

A symbol is an unordered set {S, T } of two subsets S, T ⊆ N. We write such a symbol in the following
way

6 =

(
x1 · · · xa

y1 · · · yb

)
with x1 < · · · < xa , y1 < · · · < yb and S = {x1, . . . , xa}, T = {y1, . . . , yb}. Two symbols are said to be
equivalent if they can be transformed into each other by a sequence of steps(

x1 · · · xa

y1 · · · yb

)
∼

(
0 x1 + 1 · · · xa + 1
0 y1 + 1 · · · yb + 1

)
or by interchanging the rows.

We define the defect of 6 by defect(6) = |a − b| and its rank by

rank(6) =

a∑
i=1

xi +

b∑
i=1

yi −

[(
a + b − 1

2

)2]
.

These two notions can be defined on the equivalence classes of symbols.
If G is a group of type Bn , Cn , Dn or 2 Dn , Lusztig has shown that the unipotent characters may be

parametrized by these symbols; see [21]. The unipotent characters of groups of type Bn or Cn are in
bijection with the equivalence classes of symbols of rank n and odd defect. For the groups of type Dn , the
unipotent characters are parametrized by classes of symbols of rank n and defect divisible by 4 (except
that if the two rows are identical, two characters correspond to the same symbol). And the unipotent
characters of groups of type 2 Dn are in bijection with symbols of rank n and defect congruent 2 (mod 4).

Let {S, T } be a symbol and d ≥ 1 an integer. If there exists x ∈ S such that x + d /∈ S, or y ∈ T with
y + d /∈ T , then the symbol {S \ {x} ∪ {x + d}, T } or {S, T \ {y} ∪ {y + d}}, is said to be obtained from
{S, T } by adding a d-hook. We define the d-core of {S, T } as the symbol {U, V } without d-hook obtained
from {S, T } by removing a sequence of d-hooks.

In the same way, if there exists x ∈ S such that x + d /∈ T , or y ∈ T with y + d /∈ S, then the symbol
{S \ {x}, T ∪ {x + d}} or {S ∪ {y + d}, T \ {y}}, is said to be obtained from {S, T } by adding a d-cohook.
And we define like previously the d-cocore of {S, T }.

Proposition 3.4.1. (1) If d is odd, then the d-cuspidal unipotent characters are precisely those where 6

is itself a d-core. Moreover, two characters are in the same d-series if and only if they have the same
d-core.

(2) If d is even, then the d-cuspidal unipotent characters are precisely those where 6 is itself a d/2-cocore.
Moreover, two characters are in the same d-series if and only if they have the same d/2-cocore.

Proof. This is proved in the proof of Theorem 3.2 in [4]. □
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Now let us compute the unipotent (d, 1)-series. The first case is when d is odd (the linear prime case).
To obtain the d-series we need to take the d-core of the symbols by the Proposition 3.4.1. We also obtain
the 1-series by taking the 1-core. But two symbols which have the same d-core have the same 1-core, so
each unipotent 1-series is a (d, 1)-series.

Proposition 3.4.2. If d is odd (linear prime case), the unipotent (d, 1)-series are the unipotent 1-series.

Now, assume that d is even (unitary prime case). This case is a little bit more complicated because we
need to take the d/2-cocore for the d-series and the 1-core for the 1-series. We will do a proof similar to
the case of 2 An done in Section 3.3.

Let 6 be a symbol. We define max(6) to be max(6) := 0 if 6 ∼ {∅,∅}, and otherwise max(6) :=

max(S ∪ T ) where {S, T } is the unique symbol equivalent to 6 with 0 /∈ S ∩ T . Note that max(6) is the
longest length of a hook or cohook in 6.

Lemma 3.4.3. Let k ≥ 0 and n ≥ 1 such that n ≥ (k2
− 1)/4. We have

max{max(6), defect(6) = k, rank(6) = n} =


n − (k2

− 4k + 3)/4 if k is odd,
n − (k2

− 4k + 4)/4 if k is even,k ̸= 0,

n if k = 0.

Proof. Every symbol of defect k is obtained from 6k =
(

0 ··· k−1
)
, for k ≥ 1, and 60 = {∅,∅}, for k = 0,

by adding 1-hooks. Each 1-hook increases the rank of 1. So in order to get a symbol of rank n, we need
to do m := n − rank(6k) 1-hooks. Note that, for k ≥ 1,

rank(6k) =
(k − 1)k

2
−

[(
k − 1

2

)2]
=

{
(k2

− 1)/4 if k is odd,
k2/4 if k is even,

and rank(60) = 0. Remark also, that the hypothesis n ≥ (k2
− 1)/4 is equivalent to m ≥ 0. Each 1-hook

increases the maximum of the coefficients by at most one, so max{max(6), defect(6) = k} = k − 1 + m,
for k ≥ 1, and m for k = 0 (we have equality by adding the 1-hooks on the last coefficient on the top
row). □

Let us define an integer k(G, d) in the following way.

Definition 3.4.4. If G is of type Bn or Cn we define

k(G, d) = max{k ≥ 1, k odd, (k2
− 4k + 3)/4 ≤ n − d/2}

if it exists and k(G, d) = −1 otherwise.
If G is of type Dn or 2 Dn then in the same way

k(G, d) = max{k ≥ 2, k even, (k2
− 4k + 4)/4 ≤ n − d/2}

if it exists and k(G, d) = −1 otherwise.



Unipotent ℓ-blocks for simply connected p-adic groups 1551

As in the case of 2 An , by Lemma 3.4.3 we see that k(G, d) is the greatest integer k such that there
exists 6 of defect k and rank n having a cohook of length at least d . In particular, if defect(6) > k(G, d)

then 6 is a d-cocore.

Remark 3.4.5. Two symbols are in the same 1-series if and only if they have the same 1-core by
Proposition 3.4.1. But removing a 1-hook does not change the defect of a symbol. Hence, every symbol
in a 1-series has the same defect. Moreover, the 1-core of a symbol is of the form

(
0 ··· k−1

)
where k is

the defect of the symbol (or {∅,∅} when the defect is 0). Hence, two symbols are in the same 1-series
if and only if they have the same defect. And the defect associated with a 1-series is the defect of the
cuspidal representation associated to this 1-series.

We have the following partition of E(G, 1) into (d, 1)-series.

Proposition 3.4.6. If d is even (unitary prime case), the unipotent 1-series with defect strictly greater
than k(G, d) are (d, 1)-series, composed uniquely of d-cuspidal representations, and the union of the
unipotent 1-series with defect lower or equal to k(G, d) is a (d, 1)-series.

Proof. Let k > k(G, d) and a unipotent 1-series with defect k. Then by definition of k(G, d) and with
Lemma 3.4.3, d/2 is strictly greater than every coefficient in every symbol in the 1-series chosen. Hence,
this 1-series is composed of d-cuspidal representations, so is a (d, 1)-series.

We also deduce from that, that the union of the unipotent 1-series with defect lower or equal to k(G, d)

is a (d, 1)-set. It remains to prove that this is a (d, 1)-series. Let 3 ≤ k ≤ k(G, d) such that there is a
unipotent 1-series with defect k. We want to prove that the unipotent 1-series with defect k is in the
same (d, 1)-series as a unipotent 1-series with defect strictly less than k, which will finish the proof. Let
6k =

(
0 ··· k−1

)
and m = n − rank(6k) as in the proof of Lemma 3.4.3. Then the symbol

6 =

(
0 · · · k − 2 k − 1 + m

)
has defect k and rank n so is in the 1-series chosen. Now by definition of k(G, d), d/2 ≤ k − 1 + m, we
can then remove a d/2-cohook from 6 to get

6′
=

(
0 · · · k − 2

k − 1 + m − d/2

)
.

Let v ∈ {0, . . . , k − 2} such that v + d/2 ̸= k − 1 + m − d/2. Then we can add a d/2-cohook to 6′ to
obtain

6′′
=

(
0 · · · v − 1 v + 1 · · · k − 2

k − 1 + m − d/2 v + d/2

)
(we possibly have to swap the numbers in the lower row so that they are written in the good order). The
symbol 6′′ is a symbol of defect k − 4 if k > 3 and k − 2 if k = 3, which has the same d/2-cocore as 6.
Hence, 6 and 6 are in the same (d, 1)-series, and defect(6′) < defect(6). □

As before, when d is even, we write Ed
1 (G) for the union of the 1-series of defect lower or equal to

k(G, d), which is, if not empty, the (d, 1)-series containing the trivial representation.
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3.5. Computation of (d, 1)-series for exceptional groups. We have computed the unipotent (d, 1)-series
for groups of type A and for classical groups. We are left with groups of exceptional type, that is of type
3 D4, G2, F4, E6, 2 E6, E7 and E8.

Unfortunately, we do not have a nice classification with partitions or symbols like for groups of types
A, B, C and D. However, since we are working with groups with bounded rank, we can do a case by
case analysis. We will summarize the result in Tables 1 and 2. We need to explain the notations used. To
keep the notation as simple as possible, we are writing the unipotent (d, 1)-series in terms of 1-series. We
will write a 1-series by the corresponding 1-cuspidal representation of the 1-split Levi defining this series.
The notations for the cuspidal representations are the notations of [8, Section 13.9]. So for example for
F4, we have a (2,1)-series

{1, B2, F4[−1], F4[i], F′′

4 [1]}.

This set is composed of the principal series (denoted by 1), the characters coming from the unipotent
cuspidal character of B2 (denoted by B2) and 3 cuspidal representations of F4:

F4[−1], F4[i] and F′′

4 [1].

Thus

{1, B2, F4[−1], F4[i], F′′

4 [1]}

denotes a set composed of 33 unipotent characters.
If a d does not appear in Tables 1 and 2, it means that the unipotent (d, 1)-series are the unipotent

1-series.

Proposition 3.5.1. The unipotent (d, 1)-series for groups of exceptional types are written in the Tables 1
and 2.

Proof. In [8, Section 13.9] we can find tables for the unipotent characters of groups of exceptional types
and the partitions into 1-series. So to compute the unipotent (d, 1)-series, we need to know about the
d-series. In [4], we find in Tables 1 and 2 a list of the d-series E(G, (L, λ)), where (L, λ) is a unipotent
d-cuspidal pair and L is not a torus. So we are missing the cases of L a torus (hence λ is trivial). However,
in the case L = T of a torus, the Deligne–Lusztig induction RG

T is known by the work of Lusztig. Hence
combining all the computations, we prove the results of Tables 1 and 2. □

3.6. Summary for unipotent (d, 1)-series. In this section, we summarize all the computations of the
unipotent (d, 1)-series.

First let us recall some definition. For an integer d we define d ′ by

d ′
=


2d if d is odd,
d/2 if d ≡ 2 (mod 4),

d if d ≡ 0 (mod 4).
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group d unipotent (d, 1)-series

G2 2 {1, G2[1], G2[−1]}, {G2[θ ]}, {G2[θ
2
]}

3 {1, G2[1], G2[θ ], G2[θ
2
]}, {G2[−1]}

6 {1, G2[−1], G2[θ ], G2[θ
2
]}, {G2[1]}

3 D4 2, 6 {1, 3 D4[1], 3 D4[−1]}

3 {1, 3 D4[1]}, {
3 D4[−1]}

12 {1, 3 D4[−1]}, {
3 D4[1]}

F4 2 {1, B2, F4[−1], F4[i], F′′

4 [1]}, {F4[−i]}, {F4[θ ]}, {F4[θ
2
]}, {F′

4[1]}

3 {1, F4[θ ], F4[θ
2
], F′

4[1]}, {B2}, {F4[−i]}, {F4[−1]}, {F4[i]}, {F′′

4 [1]}

4 {1, B2, F4[−i], F4[i], F′

4[1], F′′

4 [1]}, {F4[−1]}, {F4[θ ]}, {F4[θ
2
]}

6 {1, B2, F4[−1], F4[θ ], F4[θ
2
], F′

4[1]}, {F4[−i]}, {F4[i]}, {F′′

4 [1]}

8 {1, F4[−1], F4[−i], F4[i]}, {B2}, {F′

4[1]}, {F4[θ ]}, {F4[θ
2
]}, {F′′

4 [1]}

12 {1, B2, F4[−i], F4[i], F4[θ ], F4[θ
2
]}, {F4[−1]}, {F′

4[1]}, {F′′

4 [1]}

E6 2, 4, 8 {1, D4}, {E6[θ ]}, {E6[θ
2
]}

3, 9 {1, E6[θ ], E6[θ
2
]}, {D4}

5 {1}, {D4}, {E6[θ ]}, {E6[θ
2
]}

6, 12 {1, D4, E6[θ ], E6[θ
2
]}

E7 2, 10, 14 {1, D4, E7[ξ ], E7[−ξ ]}, {E6[θ ]}, {E6[θ
2
]}

3, 9 {1, E6[θ ], E6[θ
2
]}, {D4}, {E7[ξ ]}, {E7[−ξ ]}

4, 8 {1, D4}, {E6[θ ]}, {E6[θ
2
]}, {E7[ξ ]}, {E7[−ξ ]}

5, 7 {1}, {D4}, {E6[θ ]}, {E6[θ
2
]}, {E7[ξ ]}, {E7[−ξ ]}

6, 18 {1, D4, E6[θ ], E6[θ
2
], E7[ξ ], E7[−ξ ]}

12 {1, D4, E6[θ ], E6[θ
2
]}, {E7[ξ ]}, {E7[−ξ ]}

E8 2 {1, D4, E7[ξ ], E7[−ξ ], E8[−1], E′

8[1], E′′

8 [1]}, {E6[θ ], E8[−θ ], E8[θ ]},
{E6[θ

2
], E8[θ

2
], E8[−θ2

]}, {E8[−i]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[i]}

3 {1, E6[θ ], E6[θ
2
], E8[θ

2
], E8[θ ], E′

8[1]}, {D4, E8[−1], E8[−θ2
], E8[−θ ]},

{E7[−ξ ]}, {E7[ξ ]}, {E′′

8 [1]}, {E8[−i]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[i]}

4 {1, D4, E8[−i], E8[i], E′

8[1], E′′

8 [1]}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]}, {E6[θ
2
]}, {E8[ζ

4
]},

{E8[ζ
3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ

2
]}, {E8[−θ2

]}

5 {1, E8[ζ
4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ], E′

8[1]}, {E7[−ξ ]}, {E7[ξ ]}, {D4}, {E6[θ ]}, {E6[θ
2
]},

{E8[−i]}, {E8[i]}, {E′′

8 [1]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

6 {1, E7[−ξ ], E7[ξ ], D4, E6[θ ], E6[θ
2
], E8[−1], E8[−θ2

], E8[−θ ], E8[θ
2
],

E8[θ ], E′

8[1], E′′

8 [1]}, {E8[−i]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[i]}

Table 1. Unipotent (d, 1)-series for groups of exceptional types.

We also have defined k(G, d) by

k(G, d) =


max{k ≥ 1, (k2

− 3k + 2)/2 ≤ n + 1 − d} for type 2 An,

max{k ≥ 1, k odd, (k2
− 4k + 3)/4 ≤ n − d/2} for types Bn, Cn,

max{k ≥ 2, k even, (k2
− 4k + 4)/4 ≤ n − d/2} for types Dn,

2 Dn,

if it exists and −1 otherwise.
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group d unipotent (d, 1)-series

E8 7 {1}, {D4}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]}, {E6[θ
2
]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]},
{E8[ζ

4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ

2
]}, {E8[−θ2

]}

8 {1, D4, E8[−1], E8[−i], E8[i]}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]}, {E6[θ
2
]}, {E8[ζ

4
]},

{E8[ζ
3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E′

8[1]}, {E8[−θ ]}, {E8[θ ]},
{E8[θ

2
]}, {E8[−θ2

]}, {E′′

8 [1]}

9 {1, E6[θ ], E6[θ
2
]}, {D4}, {E7[−ξ ]}, {E7[ξ ]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]},
{E8[ζ

4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]},

{E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

10 {1, E7[−ξ ], E7[ξ ], D4, E8[−1], E8[ζ
4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ], E′′

8 [1]}, {E6[θ ]},
{E6[θ

2
]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

12 {1, D4, E6[θ ], E6[θ
2
], E8[−1], E8[−θ2

], E8[−θ ], E8[−i], E8[θ
2
], E8[θ ], E8[i],

E′′

8 [1]}, {E7[−ξ ]}, {E7[ξ ]}, {E′

8[1]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}

14 {1, E7[−ξ ], E7[ξ ], D4}, {E6[θ ]}, {E6[θ
2
]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]},
{E8[ζ

4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]},

{E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

15 {1, E6[θ ], E6[θ
2
], E8[θ

2
], E8[θ ], E8[ζ

4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ]}, {D4}, {E7[−ξ ]},

{E7[ξ ]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]}, {E8[−1]}, {E8[−θ ]}, {E8[−θ2
]}

18 {1, E7[−ξ ], E7[ξ ], D4, E6[θ ], E6[θ
2
], E8[−θ2

], E8[−θ ], E8[θ
2
], E8[θ ]}, {E8[−i]},

{E8[i]}, {E′

8[1]}, {E′′

8 [1]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}

20 {1, D4, E8[−i], E8[ζ
4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ], E8[i]}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]},

{E6[θ
2
]}, {E′

8[1]}, {E′′

8 [1]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

24 {1, D4, E6[θ ], E6[θ
2
], E8[−θ2

], E8[−θ ], E8[−i], E8[i]}, {E7[−ξ ]}, {E7[ξ ]},
{E′

8[1]}, {E′′

8 [1]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}, {E8[θ ]}, {E8[θ

2
]}

30 {1, E7[−ξ ], E7[ξ ], D4, E6[θ ], E6[θ
2
], E8[−θ2

], E8[−θ ], E8[ζ
4
], E8[ζ

3
],

E8[ζ
2
], E8[ζ ]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]}, {E8[−1]}, {E8[θ ]}, {E8[θ
2
]}

2 E6 2 {1, 2 A5,
2 E6[1]}, {

2 E6[θ ]}, {
2 E6[θ

2
]}

3 {1, 2 E6[1], 2 E6[θ ], 2 E6[θ
2
]}, {

2 A5}

4 {1, 2 E6[1]}, {
2 A5}, {

2 E6[θ ]}, {
2 E6[θ

2
]}

6 {1, 2 A5,
2 E6[1], 2 E6[θ ], 2 E6[θ

2
]}

8 {1}, {
2 A5}, {

2 E6[1]}, {
2 E6[θ ]}, {

2 E6[θ
2
]}

10 {1, 2 A5}, {
2 E6[1]}, {

2 E6[θ ]}, {
2 E6[θ

2
]}

12 {1, 2 E6[θ ], 2 E6[θ
2
]}, {

2 A5}, {
2 E6[1]}

18 {1, 2 A5,
2 E6[θ ], 2 E6[θ

2
]}, {

2 E6[1]}

Table 2. Unipotent (d, 1)-series for groups of exceptional types.

Theorem 3.6.1. The unipotent (d, 1)-series are given by the following cases:

(1) Type An: E(G, 1) is a (d, 1)-series.

(2) Type 2 An:

(a) d ′ even (linear prime case): the unipotent (d, 1)-series are the unipotent 1-series.
(b) d ′ odd (unitary prime case): the (d, 1)-series are,
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• the unipotent 1-series with defect strictly greater than k(G, d ′) (composed uniquely of
d-cuspidal representations);

• Ed
1 (G), the union of the unipotent 1-series with defect lower or equal to k(G, d ′).

(3) Type Bn , Cn , Dn and 2 Dn:

(a) d odd (linear prime case): the unipotent (d, 1)-series are the unipotent 1-series.
(b) d even (unitary prime case): the (d, 1)-series are:

• The unipotent 1-series with defect strictly greater than k(G, d) (composed uniquely of d-
cuspidal representations).

• Ed
1 (G), the union of the unipotent 1-series with defect lower or equal to k(G, d).

(4) Type 3 D4, G2, F4, E6, 2 E6, E7 and E8: the unipotent (d, 1)-series are given by Tables 1 and 2.

3.7. Induction and restriction of (d, 1)-series. Now that we know how to compute the unipotent (d, 1)-
series, we want to prove that they are compatible with Harish-Chandra induction and restriction. In
particular, it will be fundamental in order to construct unipotent ℓ-blocks of p-adic groups, to prove that
Harish-Chandra restriction commutes with taking the ℓ-extension of unipotent (d, 1)-series.

Let M be a F-stable Levi of G and E a subset of Irr(M). We denote by RG
M(E) the set of irreducible

characters π of G such that there exists σ ∈ E satisfying ⟨π,RG
M⊆P(σ )⟩ ̸= 0, for P a parabolic subgroup

admitting M as a Levi subgroup. When M is a 1-split Levi of G, we will simply use the notation iGM(E). In
the same way, for any 1-split Levi M of G and E ′ a subset of Irr(G), rG

M(E ′) denotes the set of characters
σ such that there exists π ∈ E ′ satisfying ⟨σ, rG

M⊆P(π)⟩ ̸= 0.
The (d, 1)-series are a union of 1-series and of d-series. We know that the Harish-Chandra induction

of a 1-series is included in a 1-series. But there is no nice result for the Harish-Chandra induction of
a d-series. The following results have for goal to prove that the (d, 1)-series behave well regarding
Harish-Chandra induction.

Lemma 3.7.1. Let M be a 1-split Levi of G and E ⊆ E(M, 1) a (d, 1)-series. Then iGM(E) is included in a
(d, 1)-series.

Proof. By Propositions 3.2.3 and 3.2.4, we can assume that G is simple:

(1) If G is of type An , then E(G, 1) is a (d, 1)-series so we have the result.

(2) If G is of type Bn , Cn , Dn or 2 Dn . The Levi M has type GLn1 × · · ·×GLnr ×H where H as the same
type as G. We deduce that E ≃ E(GLn1(q), 1)×· · ·×E(GLnr (q), 1)×EH , where EH is a (d, 1)-series of
H. We need to differentiate the case d odd and d even.

If d is odd, then EH is a 1-series by Proposition 3.4.2 and so is E . The set iGM(E) is thus included in a
1-series and so in a (d, 1)-series.

If d is even, then by Proposition 3.4.6, EH is either a 1-series or EH = Ed
1 (H), where Ed

1 (H) is the
union of the 1-series with defect lower or equal to k(H, d). If it is a 1-series, we have the result like
previously. And if EH = Ed

1 (H), since k(H, d) ≤ k(G, d) and the fact that the induction preserves the
defect, iGM(E) ⊆ Ed

1 (G) which is a (d, 1)-series.
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(3) If G is of type 2 An . Using “Ennola”-duality, M corresponds to a 2-split Levi of GLn , and the unipotent
(d, 1)-series correspond to (d ′, 2)-series. The proof is then the same as in (2) regarding that d ′ is odd or
even.

(4) If G is of exceptional type. The proof mainly consists of checking case by case the result using
Tables 1 and 2. We explain here the arguments to do so.

The first case to remark is when all the unipotent (d, 1)-series not containing the trivial representation
are composed uniquely of 1-cuspidal representations. In this case, we have directly the result. This
happens for approximately half the cases by looking at Tables 1 and 2 and deals completely with G2 and
3 D4. Now, when d is odd, and the Levi M has only component of types An , Bn , Cn , Dn or 2 Dn , we
know that the unipotent (d, 1)-series are 1-series. Since the induction of a 1-series from a 1-split Levi
is included in a 1-series, we get the result. This is enough to deal with E6. We also get the odd d for
E7, respectively E8, by checking the compatibility from E6, respectively E7, thanks to Tables 1 and 2.
The same argument works for 2 E6 but when d ′ is even (we recall that d ′ is defined in Section 3.3). To
finish E7 and E8, we need to look when d is even. In all these cases, the 1-series corresponding to the
unipotent cuspidal representation of D4 is inside the (d, 1)-series containing the trivial representation.
So we just have to check with Tables 1 and 2 the compatibility with E6 and E7. We are left with the
last case of F4 and d = 8. But in this case 88 does not appear in any of the polynomial orders of the
1-split-Levi, which concludes the proof. □

Lemma 3.7.2. Let M be a 1-split Levi of G and E ⊆ E(G, 1) a (d, 1)-series. Then rG
M(E) is a (d, 1)-set.

Proof. Let σ ∈ rG
M(E). There exists E ′ a unipotent (d, 1)-series in M such that σ ∈ E ′. We need to prove

that E ′
⊆ rG

M(E).
Since σ ∈ rG

M(E), there exists π ∈ E such that ⟨σ, rG
M(π)⟩ ̸= 0. By Frobenius reciprocity, ⟨iGM(σ ), π⟩ ̸= 0,

thus π ∈ iGM(E ′). By Lemma 3.7.1, iGM(E ′) is included in a (d, 1)-series, hence iGM(E ′) ⊆ E . Again, by
Frobenius reciprocity, we have that E ′

⊆ rG
M(E) and the result follows. □

We have proved that the unipotent (d, 1)-series behave well with 1-induction. One may wonder if they
also behave well with d-induction? This is what we are going to prove next. Actually, we will go further.
We are going to check the compatibility with induction but from a dℓa-split Levi, for certain ℓ.

Lemma 3.7.3. Assume that ℓ satisfies (∗) and let M be a dℓa-split Levi of G for some a ≥ 0. Let
E ⊆ E(M, 1) be a (d, 1)-series. Then RG

M(E) is included in a (d, 1)-series.

Proof. By Propositions 3.2.3 and 3.2.4, we can assume that G is simple (notice that if b is an integer then
dla/ gcd(dla, b) = (d/ gcd(d, b))la′

, for some a′ with 0 ≤ a′
≤ a):

(1) If G is of type An , then E(G, 1) is a (d, 1)-series so we have the result.

(2) If G is of type Bn , Cn , Dn or 2 Dn . Then, as stated is the proof of [4, Theorem 3.2], the Levi M has
type GL(dla)

n1
× · · ·×GL(dla)

nr
×H where H as the same type as G. Since E is a (d, 1)-series of M we know

that E = E(GLn1(q
dla

), 1) × · · · × E(GLnr (q
dla

), 1) × EH , where EH is a (d, 1)-series of H.
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Let us first assume that d is odd. Thus EH is a 1-series in H by Proposition 3.4.2. Let π = π1 ⊗

· · · ⊗ πr ⊗ πH ∈ E . The representation πH corresponds to a symbol of H. Now, RG
M is the functor of

dℓa-induction. Since dℓa is odd, the proof of Theorem 3.2 of [4] shows that the symbols in RG
M(π) are

the symbols obtained from the symbol of πH by adding dℓa-hooks. Thus all these symbols have the same
1-core which is the same as the 1-core of πH . But EH is a 1-series, so all the representations have the
same 1-core, hence this is also true for the representations in RG

M(E). We have proved that RG
M(E) is

included in a 1-series and thus in a (d, 1)-series.
Now, let us prove the case where d is even. If M=G there is nothing to do, so we can assume that M is

proper in G. The group M being a proper dℓa-split Levi of G, none of the representations in RG
M(E) are dℓa-

cuspidal. Since dℓa is even, by Proposition 3.4.6 we have that RG
M(E)⊆Edℓa

1 (G), the dℓa-1-series of G con-
taining the trivial representation. But k(G, dℓa)≤ k(G, d). Hence, Edℓa

1 (G)⊆Ed
1 (G) and we have the result.

(3) If G is of type 2 An , the proof is similar as in (2) using “Ennola”-duality and the parity of d ′ instead
of d (notice that (dℓa)′ = (d ′)ℓa since ℓ is odd).

(4) If G is of exceptional type, we will again use Tables 1 and 2.
Let us start with the case a = 0. So we are inducing (d, 1)-series from d-split Levis. If all the unipotent

(d, 1)-series not containing the trivial representation are composed uniquely of d-cuspidal representations
then we have the result. Tables 1 and 2 is written in terms of 1-series. However, we can look at Tables 1
and 2 from [4] to deduce the d-cuspidality. In these tables, the case where the d-split Levi is a torus
is not written, but all the induced representations from a torus of the trivial representation will be in
the (d, 1)-series containing the trivial. Hence, for a unipotent (d, 1)-series not containing the trivial
representation, it is composed uniquely of d-cuspidal representations if none of the representations appears
in Table 2 of [4]. This case deals with almost everyone except for (E6, d = 3), (E7, d = 2), (E7, d = 3),
(E8, d = 2) and (E8, d = 3). We can then check by hand the remaining case with Tables 1 and 2. Now,
we need to do a > 0. There are only 8 cases which satisfies the hypotheses on ℓ, and such that 8d and
8dℓa divide the order of G. In all these cases, all the unipotent (d, 1)-series not containing the trivial
representation are composed uniquely of dℓa-cuspidal representations, and so we have the result. □

Remark 3.7.4. We need the hypothesis on ℓ. For example, if ℓ = 3, the group is 3 D4, d = 1 and a = 1,
then 3 D4[1] is in the induction of the trivial representation from the maximal 3-torus but is not in the
same (d, 1)-series as the trivial.

We define, as in [6] Eq,ℓ := {e, ℓ | φe(q)} = {d, dℓ, dℓ2, . . . , dℓa, · · · }, where d is the order of q
modulo ℓ. A Eq,ℓ-torus is a F-stable torus of G such that its polynomial order is a product of cyclotomic
polynomials in {φe, e ∈ Eq,ℓ}. A Eq,ℓ-split Levi is then the centralizer of a Eq,ℓ-torus.

For a F-stable Levi subgroup of G, let us denote by Z◦(M) the connected center of M and by Z◦(M)Fℓ
the subgroup of Z◦(M)F of ℓ-elements.

Lemma 3.7.5. Assume that ℓ satisfies (∗). Let M be a Eq,ℓ-split Levi of G such that M = CG((Z◦(M)Fℓ )
◦.

Let E be a unipotent (d, 1)-series in M. Then RG
M(E) is included in a (d, 1)-series.
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Proof. We will prove the result by induction on the semisimple rank of G.
If M = G nothing has to be done. Now, if M is a proper Levi in G, then Z◦(M)Fℓ ̸⊆ Z(G). Thus

there exist some a ≥ 0 such that Z◦(M)φdℓa ̸⊆ Z(G), where Z◦(M)φdℓa is the maximal 8dℓa -subgroup
of Z◦(M). Let us denote by L := CG(Z◦(M)φdℓa ) which is then a proper dℓa-split Levi of G such that
M ⊆ L. By Lemma 3.7.3, we know that RG

L preserves the unipotent (d, 1)-series. By the induction
hypothesis, RL

M preserves the unipotent (d, 1)-series. Hence RG
M = RG

L ◦RL
M preserves the unipotent

(d, 1)-series. □

Remark 3.7.6. Let M be a Eq,ℓ-split Levi of G. If ℓ is good for G and (Z(G)/Z◦(G))F is of order prime
to ℓ, then M = CG((Z◦(M)Fℓ )

◦ by [6, Proposition 3.2].

Let E be a subset of Eℓ(G, 1). We denote by E the smallest (d, 1)-set containing E . Thus Lemma 3.7.1
and 3.7.5 can be restated by RG

M(E) is a (d, 1)-series if M is a 1-split Levi or a Eq,ℓ-split Levi (satisfying
the conditions of Lemma 3.7.5) and E is a unipotent (d, 1)-series of M.

Lemma 3.7.7. Let M,K,L,G be groups such that M is a 1-split Levi of K, L is a 1-split Levi of
G, M is a Eq,ℓ-split Levi of L and K is a Eq,ℓ-split Levi of G. We also assume that ℓ satisfies (∗)
and that the groups M and K satisfy the condition of Lemma 3.7.5. If E is a (d, 1)-series of M then
RG

K(RK
M(E)) = RG

L (RL
M(E)).

Proof. Be Lemma 3.7.5 and Lemma 3.7.1, we know that RG
K(RK

M(E)) is included in a (d, 1)-series and
RG

L (RL
M(E)) is included in a (d, 1)-series. Now, since RG

M =RG
K◦RK

M =RG
L ◦RL

M, these two (d, 1)-series
both contain RG

M(E), hence they are equal. □

Remark 3.7.8. Note that this lemma does not follow directly from the transitivity of the Deligne–Lusztig
induction. Indeed, for a set E , the set RG

L (RL
M(E)) might be larger that RG

M(E).

Lemma 3.7.9. Let ℓ be a good prime. Let L be a Eq,ℓ-split Levi of G such that L = CG((Z◦(L)Fℓ )
◦. Let

L∗ be a Levi in G∗ in duality with L. Then L∗ is a Eq,ℓ-split Levi of G∗ such that L∗
= CG∗((Z◦(L∗)Fℓ )

◦.

Proof. We adapt the proof of [5, Proposition 1.4]. Let L∗ be a Levi in G∗ in duality with L. Let
M∗

:= CG∗((Z◦(L∗)Fℓ )
◦. We have that L∗

⊆ M∗, and since ℓ is good, M∗ is a Levi subgroup by [5,
Proposition 2.1(ii)]. We have that Z◦(L∗)Fℓ = Z◦(M∗)Fℓ .

Let M be a dual Levi such that L ⊆ M ⊆ G. We have that Z◦(M)Fℓ ⊆ Z◦(L)Fℓ . But, by [8,
Proposition 4.4.5], |Z◦(M)F| = |Z◦(M∗)F| and |Z◦(L)F| = |Z◦(L∗)F|, thus Z◦(M)Fℓ = Z◦(L)Fℓ . So,
M ⊆ CG((Z◦(L)Fℓ )

◦
= L and M = L. □

Let ℓ be a good prime for G. Let t ∈ G∗ a semisimple element of order a power of ℓ. Then CG∗(t)◦ is
a Levi subgroup, and denote by G(t) a Levi in G dual to CG∗(t)◦.

Since t is a central element of (CG∗(t)◦)F, by [11, Proposition 13.30], there exist a linear character
t̂ ∈ Irr(G(t)) such that the tensor product with t̂ defines a bijection from E(G(t), 1) to E(G(t), t).
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Let π ∈ E(G, t). By the Jordan decomposition in the case of nonconnected center (defined in [23])
there exists πt ∈ E(G(t), 1) such that

εGεG(t)RG
G(t)(t̂πt) =

∑
π ′∈C ·π

π ′,

where π ′ runs over the orbit of π under the action of C := CG∗(t)F/(CG∗(t)◦)F, and εG and εG(t) are signs
defined in [23, Proposition 5.1].

Remark 3.7.10. Let M be a 1-split Levi of G and t ∈ M∗. Then there exists M(t) a Levi in M dual to
CM∗(t)◦ which is a 1-split Levi of G(t) (the intersection of a 1-split Levi subgroup with a maximal rank
subgroup is a 1-split Levi of the subgroup by [11, Proposition 2.2]).

Lemma 3.7.11. Let M be a 1-split Levi subgroup of G. Let t be a semisimple element of M∗, of order a
power of ℓ, σ ∈ E(M, t), and π ∈ E(G, t) such that ⟨π,RG

M(σ )⟩ ̸= 0.
Let σt ∈ E(M(t), 1) corresponding to σ by the Jordan decomposition. Then, there exists πt ∈ E(G(t), 1),

such that πt corresponds to π by the Jordan decomposition and ⟨πt ,RG(t)
M(t)(σt)⟩ ̸= 0.

Proof. Let us write RG(t)
M(t)(t̂σt) as a sum of irreducible characters RG(t)

M(t)(t̂σt) =
∑

i niπi , with ni ∈ N and
πi irreducible (note that since M(t) is a 1-split Levi subgroup of G(t), RG(t)

M(t) is the usual Harish-Chandra
induction, thus all the ni are positive). Then we have that RG

G(t)(R
G(t)
M(t)(t̂σt)) =

∑
i niRG

G(t)(πi ). By the
“Jordan decomposition”, each RG

G(t)(πi ) is, up to a sign independent of πi , a sum of irreducible characters
of an orbit in E(G, t) under the action of CG∗(t)F/(CG∗(t)◦)F. Hence, up to a sign, RG

G(t)(R
G(t)
M(t)(t̂σt)) is

a sum with positive coefficients of irreducible characters of G.
Now, we have that RG

G(t)(R
G(t)
M(t)(t̂σt)) = RG

M(t)(t̂σt) = RG
M(RM

M(t)(t̂σt)).
We have that εMεM(t)RM

M(t)(t̂σt) =
∑

σ ′∈C ·σ σ ′. Thus εMεM(t)RG
M(RM

M(t)(t̂σt)) =
∑

σ ′∈C ·σ RG
M(σ ′).

Like before, RG
M is the usual Harish-Chandra induction, so it is a positive sum of characters. By hypothesis,

⟨π,RG
M(σ )⟩ ̸= 0, thus ⟨π,RG

M(t)(t̂σt)⟩ ̸= 0.
Hence, there exists i0 such that ni0 ̸= 0 and ⟨π,RG

G(t)(πi0)⟩ ̸= 0. Take πt , such that t̂πt = πi0 . This πt

satisfies the conditions of the lemma. □

We remind the reader that for E a subset of Eℓ(G, 1), the set E denote the smallest (d, 1)-set containing E .

Proposition 3.7.12. We assume that ℓ satisfies (∗). Let M be a 1-split Levi of G and E ⊆ E(M, 1) a
(d, 1)-series. Then iGM(Eℓ) ⊆ iGM(E)ℓ.

Proof. Let π ∈ iGM(Eℓ). By definition, there exists σ ∈ Eℓ such that ⟨π, iGM(σ )⟩ ̸= 0. Let t ∈ M∗ be a
semisimple element of order a power of ℓ, such that σ ∈ E(M, t). We also have, that π ∈ E(G, t).

By Lemma 3.7.11, we can take σt ∈ E(M(t), 1) and πt ∈ E(G(t), 1), such that σt corresponds to σ by
the Jordan decomposition, πt corresponds to π by the Jordan decomposition and ⟨πt ,RG(t)

M(t)(σt)⟩ ̸= 0. Let
σ ′ and π ′ be two irreducible characters in E(M, 1) and E(G, 1) respectively, such that ⟨σ ′,RM

M(t)(σt)⟩ ̸= 0
and ⟨π ′,RG

G(t)(πt)⟩ ̸= 0.
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By Theorem 3.1.3, σ ′ and σ are in the same ℓ-block, and π ′ and π are also in the same ℓ-block. Since,
σ ′ and σ are in the same ℓ-block and σ ∈ Eℓ, we have that σ ′

∈ E . In the same way, since π ′ and π are in
the same ℓ-block, to prove that π ∈ iGM(E)ℓ it is enough to prove that π ′

∈ iGM(E).
Let Et be the (d, 1)-series of M(t) containing σt . The Levi G(t) is the dual of CG∗(t)◦, hence by

Lemma 3.7.9, it is a Eq,ℓ-split Levi of G such that G(t) = CG((Z◦(G(t))Fℓ )
◦. We have the same result for

the Levi M(t) of M. Now M(t) is a 1-split Levi of G(t) by Remark 3.7.10 and M is a 1-split Levi of G.
Let us summarize all the information about the Levis and the representations in a diagram:

G
π ′

∈ RG
G(t)(πt)

M
σ ′

∈ RM
M(t)(σt) ⊆ E

1-Levi
88

G(t)
πt ∈ RG(t)

M(t)(σt)

Eq,ℓ-Levi
ee

M(t)
σt ∈ Et

Eq,ℓ-Levi

ff

1-Levi

99

We can apply Lemma 3.7.7 which says that

RG
G(t)(R

G(t)
M(t)(Et)) = RG

M(RM
M(t)(Et)).

Now, because ⟨πt ,RG(t)
M(t)(σt)⟩ ̸= 0, we have πt ∈ RG(t)

M(t)(Et) and ⟨π ′,RG
G(t)(πt)⟩ ̸= 0, so π ′

∈

RG
G(t)(R

G(t)
M(t)(Et)). Therefore, π ′

∈ RG
M(RM

M(t)(Et)) (note that the use of Lemma 3.7.7 is crucial here, as
π ′ may not lie in RG

M(t)(Et)). Since, ⟨σ ′,RM
M(t)(σt)⟩ ̸= 0, σ ′

∈RM
M(t)(Et), and thus RM

M(t)(Et) = E . Hence,
π ′

∈ iGM(E), and we have the result. □

Proposition 3.7.13. Let M be a 1-split Levi of G and E ⊆ E(G, 1) a (d, 1)-set. Then if ℓ satisfies (∗), we
have rG

M(Eℓ) = rG
M(E)ℓ.

Proof. Let σ ∈ rG
M(Eℓ). There exists π ∈ Eℓ such that ⟨σ, rG

M(π)⟩ ̸= 0. Now, let E ′ be a (d, 1)-series such
that σ ∈ E ′

ℓ. By Frobenius reciprocity, π ∈ iGM(E ′

ℓ). By Proposition 3.7.12, iGM(E ′

ℓ) ⊆ iGM(E ′)ℓ. Now, by
Lemma 3.7.1, iGM(E ′) is a (d, 1)-series, so iGM(E ′) = E . Thus E ′

⊆ rG
M(E) and E ′

ℓ ⊆ rG
M(E)ℓ. We have that

rG
M(Eℓ) ⊆ rG

M(E)ℓ.
Let us prove now the other inclusion. Let σ ∈ rG

M(E)ℓ. There exists E ′ a (d, 1)-series such that
E ′

⊆ rG
M(E) and σ ∈ E ′

ℓ. Now, iGM(E ′) ⊆ E , so iGM(E ′) = E . By Proposition 3.7.12, iGM(E ′

ℓ) ⊆ iGM(E ′)ℓ = Eℓ.
Hence, E ′

ℓ ⊆ rG
M(Eℓ), and we have the result. □
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4. Blocks over Zℓ

Now that we have introduced and studied the (d, 1)-series for finite reductive groups, we can come back
to the study of G a reductive group over F . The purpose of this section is to explain how to find the
unipotent ℓ-blocks of G. To do that, we will combine the results of sections 2 and 3. We will sum the
0-consistent systems of idempotents of Section 2, following what we have learnt from the (d, 1)-theory,
so that the idempotents that we obtain have integer coefficients. This process will end up with ℓ-blocks in
the case of a semisimple and simply connected group.

4.1. Unipotent ℓ-blocks. In Section 2.2, we explain how to get Bernstein blocks from 0-consistent
systems constructed with unrefined depth zero types. In this section, we explain how to group those in
order to get unipotent ℓ-blocks.

Let T un(G) be the subset of T (G) of pairs (σ, π) with π unipotent and T un
ℓ (G) the subset of T (G) of

pairs (σ, π) with π ∈ Eℓ(Gσ , 1). We thus have that

Repun
Qℓ

(G) =

∏
[t]∈T un(G)/∼

Rep[t]

Qℓ
(G) and Repun

Zℓ
(G) ∩ Rep

Qℓ
(G) =

∏
[t]∈T un

ℓ (G)/∼

Rep[t]

Qℓ
(G).

Remark 4.1.1. Let G be a reductive group over a finite field and P be a parabolic subgroup of G with
Levi component L. Then if L admits a unipotent cuspidal representation, then the association class of P is
equal to its conjugation class; see for instance [22, (8.2.1)]. Hence, the equivalence relation ∼ is trivial
on T un(G). In particular, Repun

Qℓ
(G) =

∏
t∈T un(G) Rept

Qℓ
(G).

Let T be a subset of T un
ℓ (G) which is ∼-stable. We can associate to T a system of idempotents eT

by eT :=
∑

[t]∈T/∼ e[t]. We say that T is ℓ-integral if for all σ ∈ BT, eT,σ =
∑

[t]∈T/∼ e[t],σ is in Zℓ[Gσ ].
Thus, if T is ℓ-integral we can form a category RepT

Zℓ
(G).

If [t] ∈ T (G)/∼, we denote by e[t] the idempotent in the center of Rep
Qℓ

(G) associated to the category
Rep[t]

Qℓ
(G). We define also eT by eT

=
∑

[t]∈T/∼ e[t].

Lemma 4.1.2. The idempotent eT is ℓ-integral if and only if T is ℓ-integral.

Proof. It is clear that if T is ℓ-integral then eT is ℓ-integral. Let us assume that eT is ℓ-integral. Every
ℓ-integral element in the center acts on smooth functions on G valued in Zℓ with compact support. In
particular, for every x ∈ BT0, the function eT

∗ e+
x must be ℓ-integral. Let us prove that for [t] ∈ T (G)/∼

we have e[t]
∗ e+

x = e[t],x which will end the proof.
Consider V =C∞

c (G, Qℓ)e+
x . Since e+

x =
∑

[t′]∈T (G)/∼ e[t′],x by Lemma 2.2.1, we have a decomposition
V = ⊕[t′]∈T (G)/∼V[t′] where V[t′] = V e[t′],x . Now, V[t] is an object in Rep[t]

Qℓ
(G) so e[t] acts as the identity

on it, and if [t′] ̸= [t], V[t′] is an object in Rep[t′]

Qℓ
(G) so is canceled by e[t] which finish the proof. □

Proposition 4.1.3. If G is semisimple and simply connected the partition of T un
ℓ (G) into minimal ∼-stable

ℓ-integral subsets gives us the decomposition of Repun
Zℓ

(G) into ℓ-blocks.

Proof. Since G is semisimple and simply connected, Theorem 2.2.4 tells us that the idempotents e[t] are
primitive idempotents in the center on Qℓ. Thus, each ℓ-block of Repun

Zℓ
(G) is associated to a ∼-stable
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subset T ⊆ T un
ℓ (G) such that eT is ℓ-integral. Lemma 4.1.2 tells us that T is ℓ-integral. So the ℓ-block

decomposition of Repun
Zℓ

(G) gives us a partition of T un
ℓ (G) into ∼-stable ℓ-integral subsets. But if T is

∼-stable ℓ-integral, we can construct a category from T , so these subsets must be minimal. □

Definition 4.1.4. Let ℓ be a prime number not dividing q . We will say that ℓ satisfies the condition (∗∗)
if

For all σ ∈ BT, ℓ satisfies (∗) for Gσ . (∗∗)

In other words, ℓ satisfies (∗∗) if ℓ is an odd prime number not dividing q, such that ℓ ≥ 5 if a group
of exceptional type (3 D4, G2, F4, E6, 2 E6, E7) is involved in a reductive quotient and ℓ ≥ 7 if E8 is
involved in a reductive quotient.

Let ℓ be a prime number not dividing q , and d be the order of q mod ℓ. Let t and t′ be two unrefined
unipotent depth zero types.

Let ω ∈ BT. We define ∼ℓ,ω, an equivalence relation on T un(G) by t∼ℓ,ω t′ if and only if t= t′ or there
exist (σ, π) and (τ, π ′) such that t= [σ, π], t′ = [τ, π ′

], ω ≤ σ , ω ≤ τ , and Irr(Gσ ,π)(Gω)∪ Irr(Gτ ,π ′)(Gω)

is contained in a (d, 1)-series.

Remark 4.1.5. (1) If x ≤ ω and t1 ∼ℓ,ω t2, then t1 ∼ℓ,x t2 by Lemma 3.7.1.

(2) If ℓ does not divides |Gω|, then the (d, 1)-series in Gω are just the 1-series, so t ∼ℓ,ω t′ if and only if
t = t′.

(3) For t ∈ T un(G) and ω ∈ BT fixed, the study of the (d, 1)-series summarized in Theorem 3.6.1 tells
us exactly the set of t′ such that t ∼ℓ,ω t′.

Proposition 4.1.6. Assume that ℓ satisfies (∗∗). Let t, t′ ∈ T un(G) and ω ∈ BT such that t ∼ℓ,ω t′. Then t

and t′ are contained in the same minimal ∼-stable ℓ-integral subset of T un
ℓ (G).

Proof. Let T be the minimal ∼-stable ℓ-integral subset of T un
ℓ (G) containing t. We want to show that

t′ ∈ T . Since T is ℓ-integral, eT,ω ∈ Zℓ[Gω] and can be written as a sum of primitive central ℓ-integral
idempotents. Since ℓ satisfies (∗) for Gω, we have a description of them by Theorem 3.1.2. In particular, if
we denote by E the subset of Irr(Gω) cut out by eT,ω, we have that E∩E(Gω, 1) is a d-set. By construction
of eT,ω, E ∩ E(Gω, 1) is also a 1-set so it is a (d, 1)-set. Let (σ, π) and (τ, π ′) such that t = [σ, π],
t′ = [τ, π ′

] and satisfying the conditions of t ∼ℓ,ω t′. Since, t ∈ T , Irr(Gσ ,π)(Gω) ⊆ E ∩ E(Gω, 1). But
Irr(Gσ ,π)(Gω)∪Irr(Gτ ,π ′)(Gω) is contained in a (d, 1)-series so Irr(Gτ ,π ′)(Gω)⊆ E∩E(Gω, 1), and t′ ∈ T . □

For G a finite reductive group, we denote by E(G, ℓ′) the union of the Deligne–Lusztig series E(G, s)
with s of order prime to ℓ. Let T ℓ′

(G) be the subset of T (G) of pairs (π, σ ), such that σ ∈ E(Gσ , ℓ′).

Proposition 4.1.7. If T ⊆ T (G) is ∼-stable ℓ-integral then T ∩ T ℓ′

(G) ̸= ∅.

Proof. Let σ ∈ BT such that eT,σ ̸= 0. Since T is ℓ-integral, eT,σ ∈ Zℓ[Gσ ]. So eT,σ is a sum of primitive
central idempotents in Zℓ[Gσ ]. Let b be one of these primitive central idempotents. By [7, Theorem 9.12]
there exists π ∈ E(Gσ , ℓ′) such that bπ ̸= 0. In particular, eT,σπ ̸= 0. There exist a Levi M of Gσ and a
cuspidal representation π ′ such that π ∈ Irr(M,π ′)(Gσ ) and π ′

∈ E(M, ℓ′). Thus there exists t∈ T ℓ′

(G) such
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that e[t],σπ ̸= 0. Moreover, e[t],σ acts as the identity on π so eT,σ e[t],σ ̸= 0. Now eT,σ =
∑

[t′]∈T/∼ e[t′],σ ,
so eT,σ e[t],σ =

∑
[t′]∈T/∼ e[t′],σ e[t],σ . Lemma 2.2.1 told us that if [t] ̸= [t′] then e[t′],σ e[t],σ = 0, thus

t ∈ T . □

Since we are interested in the unipotent blocks, we get the following corollary.

Corollary 4.1.8. If T ⊆ T un
ℓ (G) is ∼-stable ℓ-integral then T ∩ T un(G) ̸= ∅.

Proof. This is an immediate consequence of Proposition 4.1.7, since T ℓ′

(G) ∩ T un
ℓ (G) = T un(G). □

Expressed in terms of ℓ-blocks of Repun
Zℓ

(G) this gives:

Corollary 4.1.9. Assume that G is semisimple and simply connected. Let R be an ℓ-block of Repun
Zℓ

(G).
Then R is characterized by the nonempty intersection R ∩ Repun

Qℓ
(G).

Proof. Since G is semisimple and simply connected, by Proposition 4.1.3 R is defined by T a minimal
∼-stable ℓ-integral subset of T un

ℓ (G). Now, the minimal ∼-stable ℓ-integral subsets form a partition of
T un

ℓ (G), so T is uniquely determined by any of its elements. Corollary 4.1.8 tells us that T ∩T un(G) ̸=∅,
so T is characterized by T ∩ T un(G). □

4.2. Decomposition of Repun
Zℓ

(G). In this section, using the (d, 1)-theory for the reductive quotient in
the Bruhat–Tits building, we will define an equivalence relation on T un(G). When G is semisimple and
simply connected, an equivalence class will exactly correspond to T ∩ T un(G), for T a minimal ∼-stable
ℓ-integral set, and thus will give us a unipotent ℓ-block of G.

Let ℓ be a prime number which satisfies (∗∗), and d be the order of q modulo ℓ.
We define ∼ℓ, an equivalence relation on T un(G) by t ∼ℓ t

′ if and only if there exist ω1, . . . , ωr ∈ BT
and t1, . . . , tr−1 ∈ T un(G) such that t∼ℓ,ω1 t1 ∼ℓ,ω2 t2 · · · ∼ℓ,ωr t

′. We write [t]ℓ for the equivalence class
of t.

Remark 4.2.1. By Remark 4.1.5 (1), we can take in the definition ωi ∈ BT0.

Let t ∈ T un(G) and ω ∈ BT. We define E[t]ℓ,ω to be the subset of E(Gω, 1) cut out by
∑

u∈[t]ℓ
eu,ω.

Lemma 4.2.2. The set E[t]ℓ,ω is a (d, 1)-set in Gω.

Proof. By definition E[t]ℓ,ω is a 1-set.
Let (σ, λ) ∈ T un(G) such that ω ≤ σ and Irr(Gσ ,λ)(Gω) ⊆ E[t]ℓ,ω. By construction of E[t]ℓ,ω, we have

that (σ, λ) ∈ [t]ℓ.
Let Eσ,λ be the (d, 1)-series containing Irr(Gσ ,λ)(Gω). Let us prove that Eσ,λ ⊆ E[t]ℓ,ω. Let (σ ′, λ′) ∈

T un(G) such that ω ≤ σ ′ and Irr(Gσ ′ ,λ′)(Gω) ⊆ Eσ,λ. Then by definition, (σ, λ) ∼ℓ,ω (σ ′, λ′). Thus,
(σ, λ) ∼ℓ (σ ′, λ′) and (σ ′, λ′) ∈ [t]ℓ. Therefore Irr(Gσ ′ ,λ′)(Gω) ⊆ E[t]ℓ,ω and Eσ,λ ⊆ E[t]ℓ,ω.

Since, this is true for every (σ, λ) ∈ T un(G) such that ω ≤ σ and Irr(Gσ ,λ)(Gω) ⊆ E[t]ℓ,ω, we get that
E[t]ℓ,ω is a (d, 1)-set. □

By Lemma 4.2.2, E[t]ℓ,ω is a (d, 1)-set, so we can form E[t]ℓ,ω,ℓ, the ℓ-extension of E[t]ℓ,ω as in Section 3.2.
Let e[t]ℓ,ω be the idempotent in Gω that cuts out E[t]ℓ,ω,ℓ. Since ℓ satisfies (∗) for Gω, Theorem 3.1.2 tells us
that e[t]ℓ,ω is ℓ-integral. Thus we just have defined e[t]ℓ = (e[t]ℓ,ω)ω∈BT an ℓ-integral system of idempotents.
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Proposition 4.2.3. The ℓ-integral system of idempotent e[t]ℓ is 0-consistent, thus defines Rep[t]ℓ
Zℓ

(G) a
subcategory of Repun

Zℓ
(G).

Proof. Since the t ∈ T un(G) are G-conjugacy classes, e[t]ℓ is G-equivariant.
Let τ, ω ∈ BT such that ω ≤ τ . It remains to prove that e+

τ e[t]ℓ,ω = e[t]ℓ,τ .
The idempotent e[t]ℓ,ω is the idempotent that cuts out E[t]ℓ,ω,ℓ and e+

τ e[t]ℓ,ω is the idempotents that cuts
out rGω

Gτ
(E[t]ℓ,ω,ℓ).

By Proposition 3.7.13, rGω

Gτ
(E[t]ℓ,ω,ℓ) = rGω

Gτ
(E[t]ℓ,ω)ℓ. But we know by definition of E[t]ℓ,ω that

rGω

Gτ
(E[t]ℓ,ω) = E[t]ℓ,τ . Hence, we have rGω

Gτ
(E[t]ℓ,ω,ℓ) = E[t]ℓ,τ,ℓ. □

Remark 4.2.4. By Propositions 3.7.12 and 3.7.13, E[t]ℓ,ω,ℓ is a union of Harish-Chandra series. Hence
there exists a ∼-stable subset T ⊆ T un

ℓ (G) such that e[t]ℓ = eT . Then Theorem 3.1.3 gives us a description
of T in the following way. Let (σ, χ) ∈ T un

ℓ (G). Let t be a semisimple conjugacy class in G∗
σ of order

a power of ℓ, such that χ ∈ E(Gσ , t). Let Gσ (t) a Levi in Gσ dual to CG∗
σ
(t)◦, with P as a parabolic

subgroup, and χt ∈ E(Gσ (t), 1) such that ⟨χ,RGσ

Gσ (t)⊆P
(t̂χt)⟩ ̸= 0. Let π be an irreducible component of

RGσ

Gσ (t)⊆P
(χt). Let (Gτ , λ) be the cuspidal support of π . Then (σ, χ) is in the subset T associated with

[(τ, λ)]ℓ.

Theorem 4.2.5. Let ℓ be a prime number which satisfies (∗∗). Then we have a decomposition

Repun
Zℓ

(G) =

∏
[t]ℓ∈T un(G)/∼ℓ

Rep[t]ℓ
Zℓ

(G).

Proof. Let eℓ
1 = (eℓ

1,σ )σ∈BT be the 0-consistent system of idempotent that cuts out Repun
Zℓ

(G) (we have
recalled the definition of eℓ

1 at the end of Section 2.1). Then the systems of idempotents e[t]ℓ , for
[t]ℓ ∈ T un(G)/∼ℓ satisfy the following properties:

• For all σ ∈ BT, eℓ
1,σ =

∑
[t]ℓ∈T un(G)/∼ℓ

e[t]ℓ,σ .

• If [t]ℓ and [t′]ℓ are two elements of T un(G)/∼ℓ such that [t]ℓ ̸= [t′]ℓ, and if σ ∈ BT, then
e[t]ℓ,σ e[t′]ℓ,σ = 0.

With these properties, the same proof as in [18, Proposition 2.3.5] shows the desired result. □

Remark 4.2.6. (1) From the construction of the system of idempotents e[t]ℓ , we see that

Rep[t]ℓ
Zℓ

(G) ∩ Repun
Qℓ

(G) =

∏
u∈[t]ℓ

Repu
Qℓ

(G).

(2) We also have a description of Rep[t]ℓ
Zℓ

(G) ∩ Rep
Qℓ

(G) by Remark 4.2.4.

Theorem 4.2.7. When G is semisimple and simply connected and ℓ satisfies (∗∗), the decomposition

Repun
Zℓ

(G) =

∏
[t]ℓ∈T un(G)/∼ℓ

Rep[t]ℓ
Zℓ

(G),

is the decomposition of Repun
Zℓ

(G) into ℓ-blocks.
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Proof. Let t ∈ T un(G), we want to prove that Rep[t]ℓ
Zℓ

(G) is an ℓ-block. Let T be the ∼-stable subset of
T un

ℓ (G) which defines Rep[t]ℓ
Zℓ

(G). We need to prove that T is a minimal ℓ-integral set by Proposition 4.1.3.
We know that T is ℓ-integral. By Corollary 4.1.8, it is enough to prove that T ∩ T un(G) is contained

into a minimal ℓ-integral set. By construction, we have that T ∩ T un(G) = {u ∈ T un(G), u ∈ [t]ℓ}.
Now, if u, u′ are two element of T un(G) such that u ∼ℓ,ω u′, then by Proposition 4.1.6, u and u′ are

contained in the same minimal ℓ-integral set. Thus, if u ∼ℓ t, u and t are contained in the same minimal
ℓ-integral set and we have the wanted result. □

4.3. Case ℓ = 2 and groups of types A, B, C, D. In this section, we examine a case of a bad prime
ℓ = 2, but when the group is good, that is all the reductive quotients only involve types among A, B, C
and D. We will prove that the unipotent category is a 2-block.

Theorem 4.3.1. Let G be a semisimple and simply connected group such that all the reductive quotients
only involve types among A, B, C and D, and p ̸= 2. Then Rep1

Z2
(G) is a 2-block.

Proof. By Proposition 4.1.3, we want to prove that T 1
2 (G) is a minimal ∼-stable 2-integral set. Let

T ⊆ T 1
2 (G) be a minimal ∼-stable 2-integral set. Let us prove that T 1

2 (G) ⊆ T .
Let σ ∈ BT such that eT,σ ̸= 0. Since T is 2-integral, eT,σ is a sum of 2-blocks. By [7, Theorem 21.14],

the only unipotent 2-block of Gσ is the idempotent cutting out E2(Gσ , 1). Hence, eT,σ is this idempotent.
Therefore, we get from the definition of eT,σ that for all t= (ω, τ) ∈ T 1

2 (G), such that ω ≤ σ , we have that
t ∈ T . In particular (C, 1) ∈ T , where C is a chamber. So, for all σ ∈ BT, eT,σ ̸= 0 and T 1

2 (G) ⊆ T . □

5. Some examples

Section 4 describes the ℓ-blocks for a semisimple and simply connected group thanks to the equivalence
relation ∼ℓ on T un(G). In this section, we examine some examples and make ∼ℓ explicit.

5.1. ℓ divides q − 1. When ℓ divides q − 1, hence d = 1, the (d, 1)-series are just the 1-series. In this
case, ∼ℓ is trivial on T un(G). Thus Theorem 4.2.7 gives us:

Proposition 5.1.1. When G is semisimple and simply connected, ℓ satisfies (∗∗) and ℓ divides q − 1, we
have a decomposition into ℓ-blocks

Repun
Zℓ

(G) =

∏
t∈T un(G)

Rept
Zℓ

(G),

such that Rept
Zℓ

(G) ∩ Rep
Qℓ

(G) = Rept
Qℓ

(G) is a single Bernstein block.

5.2. Blocks of SLn. Let us make the ℓ-blocks of SLn explicit.

Theorem 5.2.1. Let ℓ be prime not dividing q, then Repun
Zℓ

(SLn(F)) is an ℓ-block.

Proof. If ℓ ̸= 2, then we can apply Theorem 4.2.7. In this case, T un(G) is composed of only one element,
the conjugacy class of (C, 1) where C is a chamber. Hence Repun

Zℓ
(SLn(F)) is an ℓ-block.

If ℓ = 2, we can apply Theorem 4.3.1 and Rep1
Z2

(SLn(F)) is a 2-block. □
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5.3. Blocks of Sp2n. In this section, we have a look at G = Sp2n . We assume in all this section that ℓ

does not divide q .
If ℓ = 2, Theorem 4.3.1 gives us the result. So we can assume that ℓ ̸= 2. Theorem 4.2.7 tells us that

to know the ℓ-blocks of Sp2n we need to understand T un(G)/∼ℓ. Let us start by describing T un(G). The
group Sp2m(k) has a unipotent cuspidal representation if and only if m = s(s + 1) for some integer s, and
this representation is unique up to isomorphism. If σ ∈ BT, then Gσ ≃ H×Sp2i (k)×Sp2 j (k), where H is
a product of GLm(k), and i + j ≤ n. Hence, we have a bijection between T un(G) and the set Sun(G) :=

{(s, s ′) ∈ N2, s(s + 1) + s ′(s ′
+ 1) ≤ n}. For (s, s ′) ∈ Sun(G) we will write t(s, s ′) = (σ (s, s ′), π(s, s ′))

for the corresponding element of T un(G).
Let d be the order of q modulo ℓ. The first case is when d is odd. Then Proposition 3.4.2 tells us

that for σ ∈ BT, the unipotent (d, 1)-series in Gσ are the unipotent 1-series. Hence, ∼ℓ is just the trivial
equivalence relation on T un(G). Thus we get the decomposition of Repun

Zℓ
(Sp2n(F)) into ℓ-blocks

Repun
Zℓ

(Sp2n(F)) =

∏
t∈T un(G)

Rep[t]ℓ
Zℓ

(Sp2n(F)).

Now, we assume that d is even. We want to make the equivalence relation ∼ℓ on T un(G) explicit.
Let us start by finding the t ∈ T un(G) such that [t]ℓ = {t}. Let Sc be the subset of Sun(G) of couples

(s, s ′) such that [t(s, s ′)]ℓ = {t(s, s ′)}. There are n + 1 nonconjugate vertices in BT0 that we denote
x0, . . . , xn , such that Gxi ≃ Sp2i (k)×Sp2(n−i)(k). Let (s, s ′) ∈ Sun(G). We may assume that all the xi and
σ(s, s ′) are in a same chamber. Then xi ≤ σ(s, s ′) if and only if s(s +1) ≤ i and s ′(s ′

+1) ≤ n − i . Hence

{x ∈ BT0, x ≤ σ(s, s ′)} = {xi , s(s + 1) ≤ i ≤ n − s ′(s ′
+ 1)}.

We denote by 6s the symbol corresponding to the unipotent cuspidal representation of Sp2s(s+1). That is

6s =

(
0 1 · · · 2s

)
.

Lemma 5.3.1. We have

Sc =

{
(s, s ′) ∈ Sun(G),

{
s(s + 1) + s ′(s ′

− 1) > n − d/2
s ′(s ′

+ 1) + s(s − 1) > n − d/2

}}
.

Proof. By definition of ∼ℓ, we have that Sc is the subset of Sun(G) of couples (s, s ′) such that for all
xi ≤ σ(s, s ′), either{

ℓ∤|Sp2i (k)|,

ℓ∤|Sp2(n−i)(k)|,
or


ℓ ∤|Sp2i (k)|,

ℓ | |Sp2(n−i)(k)|,

defect(6s′) > k(Sp2(n−i)(k), d),

or


ℓ | |Sp2i (k)|,

defect(6s) > k(Sp2i (k), d),

ℓ ∤|Sp2(n−i)(k)|,

or


ℓ | |Sp2i (k)|,

defect(6s) > k(Sp2i (k), d),

ℓ | |Sp2(n−i)(k)|,

defect(6s′) > k(Sp2(n−i)(k), d).
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We know that |Sp2i (k)| = qn2 ∏i
j=1(q

2 j
− 1) and d is the order of q modulo ℓ (with d even), hence

ℓ | |Sp2i (k)| if and only if d ≤ 2i . In the same way, ℓ | |Sp2(n−i)(k)| if and only if d ≤ 2(n − i).
By definition, k(Sp2i (k), d) = max{k ≥ 0, k odd, (k2

− 4k + 3)/4 ≤ i − d/2}. So defect(6s) >

k(Sp2i (k), d), if and only if 2s+1> k(Sp2i (k), d) if and only if ((2s+1)2
−4(2s+1)+3)/4> i−d/2. But

((2s+1)2
−4(2s+1)+3)/4 = s(s−1). Hence defect(6s)> k(Sp2i (k), d) if and only if s(s−1)> i −d/2

and defect(6s′) > k(Sp2(n−i)(k), d) if and only if s ′(s ′
− 1) > n − i − d/2.

So, Sc is the set of (s, s ′) ∈ Sun(G) such that for all i ∈ {s(s + 1), . . . , n − s ′(s ′
+ 1)} either

{
d > 2i,
d > 2(n − i),

or


d > 2i,
d ≤ 2(n − i),
s ′(s ′

− 1) > n − i − d/2,

or


d ≤ 2i,
s(s − 1) > i − d/2,

d > 2(n − i),
or


d ≤ 2i,
s(s − 1) > i − d/2,

d ≤ 2(n − i),
s ′(s ′

− 1) > n − i − d/2.

To make things clearer, let us rewrite these conditions on conditions on i

{
i < d/2,

i > n − d/2,
or


i < d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1),

or


i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2,

or


i ≥ d/2,

i < s(s − 1) + d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1).

Now, since s ′(s ′
− 1) is positive,the conditions

{
i < d/2,

i > n − d/2,
or


i < d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1),

are equivalent to {
i < d/2,

i > n − d/2 − s ′(s ′
− 1).

We also have that the conditions


i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2,

or


i ≥ d/2,

i < s(s − 1) + d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1),
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are equivalent to 
i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2 − s ′(s ′
− 1).

But now, since s(s − 1) is positive, the conditions{
i < d/2,

i > n − d/2 − s ′(s ′
− 1),

or


i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2 − s ′(s ′
− 1),

are equivalent to {
i < s(s − 1) + d/2,

i > n − d/2 − s ′(s ′
− 1).

Finally, we have that Sc is the set of (s, s ′) ∈ Sun(G) such that for all i ∈ {s(s +1), . . . , n − s ′(s ′
+1)},

i < s(s − 1) + d/2 and i > n − d/2 − s ′(s ′
− 1), that is, it is the set of (s, s ′) such that n − s ′(s ′

+ 1) <

s(s − 1) + d/2 and s(s + 1) > n − d/2 − s ′(s ′
− 1). □

We now want to prove that [t(0, 0)]ℓ = {t(s, s ′), (s, s ′) /∈ Sc}.

Proposition 5.3.2. Let (s, s ′) ∈ Sun(G) \Sc. Then t(s, s ′) ∼ℓ t(0, 0).

Proof. By definition, since (s, s ′) /∈ Sc, there exists i such that{
ℓ | |Sp2i (k)|,

defect(6s) ≤ k(Sp2i (k), d),
or

{
ℓ | |Sp2(n−i)(k)|,

defect(6s′) ≤ k(Sp2(n−i)(k), d).

Let us assume for example that {
ℓ | |Sp2(n−i)(k)|,

defect(6s′) ≤ k(Sp2(n−i)(k), d),

(the other case is similar). Since defect(6s′)≤ k(Sp2(n−i)(k), d) Proposition 3.4.6 tells us that t(s, s ′)∼ℓ,xi

t(s, 0).
Let us have a look at xn . First, since s(s + 1) ≤ i ≤ n then xn ≤ σ(s, 0). Now since ℓ | |Sp2(n−i)(k)|,

i ≤ n − d/2 (like in the proof of Lemma 5.3.1). Hence, d/2 ≤ n and s(s − 1) ≤ s(s + 1) ≤ i ≤ n − d/2.
This can be rewritten (like in the proof of Lemma 5.3.1) as ℓ | |Sp2n(k)| and defect(6s) ≤ k(Sp2n(k), d).
Again, by Proposition 3.4.6, t(s, 0) ∼ℓ,xn t(0, 0).

Finally, t(s, s ′) ∼ℓ,xi t(s, 0) ∼ℓ,xn t(0, 0), so t(s, s ′) ∼ℓ t(0, 0). □

Bringing together everything that has been done so far, we get by Theorems 4.2.7 and 4.3.1.

Theorem 5.3.3. Let ℓ be a prime not dividing q. Then we have the following decomposition of
Repun

Zℓ
(Sp2n(F)) into ℓ-blocks:

(1) If ℓ = 2: Rep1
Z2

(Sp2n(F)) is a 2-block.

(2) If ℓ ̸= 2. Let d the order of q modulo ℓ:
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(a) If d is odd,

Repun
Zℓ

(Sp2n(F)) =

∏
t∈T un(G)

Rep[t]ℓ
Zℓ

(Sp2n(F)).

(b) If d is even,

Repun
Zℓ

(Sp2n(F)) = Rep[t(0,0)]ℓ

Zℓ
(Sp2n(F)) ×

∏
(s,s′)∈Sc

Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)).

Remark. In the case d odd, or d even and (s, s ′) ∈ Sc, we see that the intersection of an ℓ-block with
Repun

Qℓ
(G) is a Bernstein block.

If ℓ > n, in the case d even and (s, s ′) ∈ Sc, we can say a bit more.

Lemma 5.3.4. If ℓ > n, d is even and (s, s ′) ∈ Sc, then Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)) ∩ Rep

Qℓ
(G) is a Bernstein

block.

Proof. First of all we have that [t(s, s ′)]ℓ ={t(s, s ′)}. Let x ∈BT0 such that x ≤σ(s, s ′). From the definition
of Sc and Proposition 3.4.6 we get that Et(s,s′),x is composed uniquely of d-cuspidal representations. We
use Theorem 3.1.3 to describe Et(s,s′),x,ℓ. Let t be a semisimple conjugacy class in G∗

x of order a power of ℓ.
Let Gx(t) a Levi in Gx dual to CG∗

x
(t)◦. The Levi Gx(t) is then a Eq,ℓ-split Levi of Gx . But, if ℓ > n, then

ℓ is large for Gx in the sense of [4, Definition 5.1] and therefore Eq,ℓ = {d} by [4, Proposition 5.2]. Thus
Gx(t) is a d-split Levi. Hence, if an irreducible constituent of RG

G(t)⊆P(χt), for a unipotent character χt , is
in Et(s,s′),x , then Gx(t) = Gx . Moreover, Sp2i (k), doesn’t have any nontrivial character, so Theorem 3.1.3
tells us that Et(s,s′),x,ℓ = Et(s,s′),x . The system of idempotent et(s,s′) is therefore integral, and the proof is
done. □

6. Stable ℓ-blocks for classical groups

In this section, we want to find the stable depth zero ℓ-blocks for classical unramified groups.
When G is a classical unramified group, we have the local Langlands correspondence [1; 13; 15; 17;

25]. The block decomposition is not compatible with the local Langlands correspondence, two irreducible
representations may have the same Langlands parameter but not be in the same block. However, we
can look for the “stable” blocks, which are the smallest direct factors subcategories stable by the local
Langlands correspondence. These categories correspond to the primitive idempotents in the stable
Bernstein center, as defined in [12]. In [19], there is a decomposition of the depth zero category

Rep0
Qℓ

(G) =

∏
(φ,σ )∈8̃m(I

Qℓ
F ,L G)

Rep(φ,σ )

Qℓ
(G)

indexed by the set 8̃m(I Qℓ

F , L G) as defined in [19, Definition 4.4.2]. This decomposition satisfies the
following theorem.



1570 Thomas Lanard

Theorem 6.0.1 [19, Theorem 4.7.5]. Let G be an unramified classical group, 3 = Qℓ and p ̸= 2. Then
the decomposition

Rep0
Qℓ

(G) =

∏
(φ,σ )∈8̃m(IF ,L G)

Rep(φ,σ )

Qℓ
(G)

is the decomposition of Rep0
Qℓ

(G) into stable blocks.

Over Zℓ, an analogous decomposition is defined in [19]:

Rep0
Zℓ

(G) =

∏
(φ,σ )∈8̃m(I

Zℓ
F ,L G)

Rep(φ,σ )

Qℓ
(G).

We would like to prove that for unramified classical groups, this is the decomposition of the depth zero
category into stable ℓ-blocks, that is that these categories correspond to primitive integral idempotents in
the stable Bernstein center.

Let (φ, σ )∈ 8̃m(I Qℓ

F , L G). The category Rep(φ,σ )

Qℓ
(G) is obtained by a consistent system of idempotents

eT(φ,σ )
associated to T(φ,σ ) ⊆ T (G). These subsets T(φ,σ ) form a partition of T (G). A subset T ⊆ T (G)

is said to be stable, if T is a union of T(φ,σ ) for (φ, σ ) ∈ 8̃m(I Qℓ

F , L G).

Lemma 6.0.2. If G is an unramified classical group and p ̸= 2, the stable ℓ-blocks correspond to the
minimal ℓ-integral stable subsets of T (G).

Proof. By Theorem 6.0.1, the primitive idempotents in the stable Bernstein center correspond to the
T(φ,σ ), hence every idempotent in the stable Bernstein center is associated with T a stable subset of T (G).
Lemma 4.1.2 tells us that if the idempotent is integral then so is T . □

Let (φ, σ ) ∈ 8̃m(I Qℓ

F , L G). Then [19, Proposition 4.4.6] defines a bijection

0 : 8̃m(I Qℓ

F , L G) ∼
−→ G∗

ss

where G∗ is the dual of G over k and G∗

ss is the set of semisimple rational conjugacy classes in G∗.

Lemma 6.0.3. Let (φ, σ ) ∈ 8̃m(I Qℓ

F , L G). Then either T(φ,σ ) ⊆ T ℓ′

(G) (if 0(φ, σ ) is of order prime to
ℓ) or T(φ,σ ) ∩ T ℓ′

(G) = ∅.

Proof. To (φ, σ ) ∈ 8̃m(I Qℓ

F , L G) is attached a system of conjugacy classes on the Bruhat–Tits building.
By [19, Section 4.3], if 0(φ, σ ) is of order prime to ℓ, all of these conjugacy classes are of order prime
to ℓ, and if 0(φ, σ ) is not of order prime to ℓ, then none of them are. Thus we get the result. □

Corollary 6.0.4. If T is an ℓ-integral stable set such that T ∩ T ℓ′

(G) is a minimal stable set then T is a
minimal stable ℓ-integral set.

Proof. If T is an ℓ-integral stable set, then by Proposition 4.1.7 T ∩ T ℓ′

(G) ̸= ∅ and by Lemma 6.0.3
T ∩ T ℓ′

(G) is a stable set. Hence T ∩ T ℓ′

(G) is an nonempty stable set, and we get the result. □
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Theorem 6.0.5. Let G be an unramified classical group and p ̸= 2. Then the decomposition

Rep0
Zℓ

(G) =

∏
(φ,σ )∈8̃m(I

Zℓ
F ,L G)

Rep(φ,σ )

Zℓ
(G).

is the decomposition of Rep0
Zℓ

(G) into stable ℓ-blocks.

Proof. Let (φ, σ ) ∈ 8̃m(I Zℓ

F , L G). By construction, the category Rep(φ,σ )

Zℓ
(G) is associated with an

ℓ-integral subset T of T (G). By [19, Proposition 4.5.1], T = ∪(φ′,σ ′)T(φ′,σ ′), where the union is taken
over the (φ′, σ ′) that are sent to (φ, σ ) by the natural map 8̃m(I Qℓ

F , L G) → 8̃m(I Zℓ

F , L G), described
in [19, Section 4.5] (obtained by restriction from I Qℓ

F to I Zℓ

F ). In particular, the set T is stable. So by
Lemma 6.0.2, it remains to prove that T is minimal among the stable ℓ-integral sets.

By [19, Section 4.5], the inverse image of (φ, σ ) by the map 8̃m(I Qℓ

F , L G) → 8̃m(I Zℓ

F , L G) is all the
(φ′, σ ′) such that the ℓ-regular part of 0(φ′, σ ′) is given by 0(φ, σ ).

Hence exactly one (φ′

0, σ
′

0) is such that 0(φ′

0, σ
′

0) is of order prime to ℓ. Hence by Lemma 6.0.3,
T ∩ T ℓ′

(G) = T(φ′

0,σ
′

0)
. Since T is an ℓ-integral stable set such that T ∩ T ℓ′

(G) is a minimal stable set,
Corollary 6.0.4 tells us that T is a minimal stable ℓ-integral set, and that completes the proof. □
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