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We establish structure results for Frobenius kernels of automorphism group schemes for surfaces of
general type in positive characteristic. It turns out that there are surprisingly few possibilities. This
relies on properties of the famous Witt algebra, which is a simple Lie algebra without finite-dimensional
counterpart over the complex numbers, together with its twisted forms. The result actually holds true for
arbitrary proper integral schemes under the assumption that the Frobenius kernel has large isotropy group
at the generic point. This property is measured by a new numerical invariant called the foliation rank.
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Introduction

Let k be an algebraically closed ground field of characteristic p ≥ 0 and X be a proper scheme. Then
the automorphism group scheme AutX/k is locally of finite type, and the connected component Aut0X/k

is of finite type. The corresponding Lie algebra h = H 0(X,2X/k) is the space of global vector fields.
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If X is smooth and of general type, then the group Aut(X) is actually finite, according to a general result
of Martin-Deschamps and Lewin-Ménégaux [1978].

Throughout this paper, we are mainly interested in characteristic p> 0. Then the group scheme AutX/k

comes with a relative Frobenius map, and the resulting Frobenius kernel H = AutX/k[F] is a height-one
group scheme. The group of rational points is trivial, but the coordinate ring may contain nilpotent
elements. The Lie algebra h = H 0(X,2X/k) remains the space of global vector fields or, equivalently,
the space of k-linear derivations D : OX → OX . The p-fold composition in the associative ring of k-linear
differential operators endows the Lie algebra with an additional structure, the so-called p-map D 7→ D[p],
which turns h into a restricted Lie algebra. By the Demazure–Gabriel correspondence, height-one group
schemes and restricted Lie algebras determine each other.

Our goal is to uncover the structural properties of the height-one group scheme H = AutX/k[F] or,
equivalently, the restricted Lie algebra h = H 0(X,2X/k), and our initial motivation was to understand
the case of surfaces of general type. Such surfaces with h ̸= 0 were first constructed by Russell [1984]
and Lang [1983]. These constructions rely on Tango curves [1972], and come with a purely inseparable
covering by a ruled surface. By a similar construction with abelian surfaces, Shepherd-Barron [1996,
Theorem 5.3] produced examples in characteristic p = 2 that are non-uniruled. Ekedahl [1987, pp. 145–
146] already had examples with rational double points for arbitrary p > 0; the vector fields, however,
do not extend to a resolution of singularities. Recently, Martin [2022a; 2022b] studied infinitesimal
automorphism group schemes of elliptic and quasielliptic surfaces.

However, almost nothing seems to be known about the general structure of the height-one group
schemes H = AutX/k[F], and one would expect little restrictions in this respect. The main result of this
paper asserts that under certain assumptions, quite the opposite is true:

Theorem 12.1. Let X be a proper integral scheme with foliation rank r ≤ 1. Then the Frobenius kernel
H = AutX/k[F] is isomorphic to the Frobenius kernel of one of the following three basic types of group
schemes:

SL2, G⊕n
a or G⊕n

a ⋊Gm,

for some integer n ≥ 0.

In the latter two cases, the respective Frobenius kernels are α⊕n
p and the semidirect product α⊕n

p ⋊µp.
The foliation rank is a new invariant that can be defined as follows: Forming the quotient Y = X/H by
the Frobenius kernel of the automorphism group scheme, the canonical map X → Y induces a height-one
extension E = k(Y )⊂ k(X)= F of function fields, and the foliation rank r ≥ 0 is given by [F : E] = pr .
Via the Jacobson correspondence, this can also be expressed in terms of the inertia subgroup scheme for
the induced action of the base-change HF on F ⊗E F . This geometric interpretation of the Jacobson
correspondence seems to be of independent interest (see Section 5).

If X is a proper normal surface with h0(ω∨

X )= 0, for example, a surface of general type or a properly
elliptic surface, the foliation rank is automatically r ≤ 1, and the above result applies (see Corollary 12.2).
Indeed, our initial motivation was to find restrictions on the Frobenius kernels for surfaces of general type.
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The key idea in the proof is to relate our geometric problem to algebraic properties of the famous Witt
algebra g0 = DerE(F0), formed with the truncated polynomial ring F0 = E[t]/(t p) over certain function
fields E . This algebra was indeed introduced by Ernst Witt, see the discussion in [Strade 1993]. It is
one of the simple algebras in odd characteristic p > 0 having no finite-dimensional counterpart over
the complex numbers. Note that it has nothing to do with the ring of Witt vectors, or Witt groups for
quadratic forms.

The foliation rank is r = 1 if and only if deg(X/Y )= p. This situation is paradoxical, because it may
hold even with large Frobenius kernels. We now compare H = AutX/k[F] with the generic fiber of the
relative group scheme G = AutX/Y . In other words, we relate the restricted Lie algebra h= H 0(X,2X/k)

over k with the restricted Lie algebra g = DerE(F) over the function field E = k(Y ). The latter is a
twisted form of the Witt algebra g0 = DerE(F0). The classification of its subalgebras due to Premet and
Stewart [2019] is one key ingredient for our proof. Among other surprising features, g0 contains Cartan
algebras of different dimensions. A crucial observations is that the bigger Cartan algebras disappear after
passing to twisted forms like g, leaving few possibilities for subalgebras. This is an algebraic incarnation
for the fact that the reduced part of a group scheme may not be a subgroup scheme, and if it is, it may not
be normal.

The semidirect products α⊕n
p ⋊µp, indeed, occur as Frobenius kernels of automorphism group schemes.

In Section 14, we construct examples of surfaces as coverings X → P2 of degree p or divisors X ⊂ P3 of
degree 2p + 1, such that h = kn ⋊ gl1(k), for certain integers n ≥ 0. So far, we do not know if h = sl2(k)
may also occur. In our examples, the minimal resolutions are surfaces S of general type, and X are their
canonical models.

Such X are also called canonically polarized surface. They come with two Chern numbers c2
1 =

c2
1(L

•

X/k) = K 2
X and c2 = c2(L

•

X/k). This was introduced by Ekedahl, Hyland and Shepherd-Barron
[Ekedahl et al. 2012] for general proper surfaces whose local rings are complete intersections, such that
the cotangent complex is perfect. Using Noether’s inequality and results from Ekedahl [1988], we show
with more classical methods:

Theorem 13.2. Let X be a canonically polarized surface, with Chern numbers c2
1 and c2. Then the Lie

algebra h = H 0(X,2X/k) for the Frobenius kernel H = AutX/k[F] has the property dim(h)≤8(c2
1, c2)

for the polynomial

8(x, y)=

{ 1
144(73x + y)2 − 1, if c2

1 ≥ 2,
1

144(121x + y)2 − 1, if c2
1 = 1.

With Noether’s inequality, this also gives the weaker bound dim(h)≤9(c2
1) with the polynomial

9(x)=

{169
4 x2

+ 39x + 8, if c2
1 ≥ 2,

441
4 x2

+ 63x + 8, if c2
1 = 1.

Note that Xiao [1995] proved | Aut(X)| ≤ 1764c2
1 over the complex numbers.



1640 Stefan Schröer and Nikolaos Tziolas

The paper is organized as follows: Section 1 contains general facts on restricted Lie algebras and
their semidirect products. In Section 2, we examine multiplicative and additive vectors and the toral
rank. In Section 3, we collect general facts on automorphism group schemes for proper schemes and
the quotient by height-one group schemes, and we discuss twisted forms of some relevant restricted Lie
algebras. Section 5 contains a geometric interpretation of the Jacobson correspondence, in terms of inertia
group schemes at generic points. We introduce the foliation rank and establish its basic properties in
Section 6. In Section 7, we analyze the removal of subvector spaces under certain twists. Then we make a
detailed analysis of the automorphism group scheme for radical extensions of prime degree in Section 8,
followed by an examination of the corresponding Witt algebras in Section 9. In Section 10, we show
how structural properties of restricted Lie algebras over different fields are inherited. Our main result on
the structure of the Frobenius kernel for automorphism groups is contained in Section 11. Section 13
contains the bound for surfaces of general type. In the final Section 14, we construct examples.

1. Restricted Lie algebras

In this section, we review some standard results on restricted Lie algebras and height-one group schemes
that are relevant for the applications we have in mind. Let k be a ground field of characteristic p > 0.
For each ring R, not necessarily commutative or associative, the vector space Derk(R) of k-derivations
D : R → R is closed under forming commutators [D, D′

] and p-fold compositions D p in the associative
ring Endk(R). One now views Derk(R) as a Lie algebra, endowed with the map D 7→ D p as an additional
structure.

This leads to the following abstraction: A restricted Lie algebra is a Lie algebra g, together with a
map g → g, x 7→ x [p], called the p-map, subject to the following three axioms:

(R1) We have adx [p] = (adx)
p for all vectors x ∈ g.

(R2) Moreover (λ · x)[p]
= λp

· x [p] for all vectors x ∈ g and scalars λ ∈ k.

(R3) The formula (x + y)[p]
= x [p]

+ y[p]
+

∑p−1
r=1 sr (x, y) holds for all x, y ∈ g.

Here, the summands sr (x, y) are universal expressions defined by

sr (t0, t1)= −
1
r

∑
u

(
adtu(1) ◦ adtu(2) ◦ . . . ◦ adtu(p−1)

)
(t1),

where ada(x)= [a, x] denotes the adjoint representation and the index runs over all maps

u : {1, . . . , p − 1} → {0, 1}

taking the value zero exactly r times. For p = 2, the expression simplifies to s1 = [t0, t1], whereas p = 3
gives s1 = [t1, [t0, t1]] and s2 = [t0, [t0, t1]]. Restricted Lie algebras were introduced and studied by
Jacobson [1937], and also go under the name p-Lie algebras. We refer to the monographs of Demazure
and Gabriel [1970], in particular, Chapter II, §7, or Strade and Farnsteiner [1988] for more details.
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Throughout the paper, terms like homomorphisms, subalgebras, ideals, extensions etc. are understood
in the restricted sense, if not said otherwise. For example, an ideal a ⊂ g is a vector subspace such that
[x, y], x [p]

∈ a whenever x ∈ a and y ∈ g. Note that this holds for the center

C(g)= {a ∈ g | [a, x] = 0 for all x ∈ g},

because [a[p], x] = (ada)
p(x)= (ada)

p−1([a, x])= 0.
For abelian g, the p-map becomes semilinear, which means that it corresponds to a linear map g → g

when the scalar multiplication in the range is redefined via Frobenius. In turn, those g correspond to
modules over the associative polynomial ring k[F], in which the relation Fλ= λp F holds. Every right
ideal is principal; this also holds for left ideals, provided that k is perfect, and then the structure theory
developed by Jacobson [1943, Chapter 3] applies.

In contrast, for nonabelian g, the p-map fails to be additive, and it is challenging to understand its struc-
ture. However, by (R1) it is determined by the bracket up to central elements, because [a[p], x]= (ada)

p(x).
In particular, if the center is trivial, the p-map is unique, once it exists. This also explains the terminology
restricted.

Recall that for each group scheme G, the Lie algebra g= Lie(G) is defined by the short exact sequence

0 → Lie(G)→ G(k[ϵ])→ G(k)→ 0,

where k[ϵ] is the ring of dual numbers, and the map is the restriction with respect to the inclusion k ⊂ k[ϵ].
As explained in [Demazure and Gabriel 1970, Chapter II, §7], it carries the structure of a restricted
Lie algebra, in a functorial way. Also recall that the relative Frobenius morphism F : G → G(p) is a
homomorphism. The resulting Frobenius kernel G[F] is a group scheme whose underlying topological
space is a singleton.

Let us call G of height one if it is of finite type and annihilated by the relative Frobenius map. We then
also say that G is a height-one group scheme. According to [Demazure and Gabriel 1970, Chapter II, §7,
Theorem 3.5], the canonical map

Hom(G, H)→ Hom(Lie(G),Lie(H))

is bijective whenever G has height one. In particular, the functor G 7→ Lie(G) is an equivalence between
the category of height-one group schemes and the category of finite-dimensional restricted Lie algebras.
We call this the Demazure–Gabriel correspondence. The inverse functor sends g to the spectrum of
the dual for the Hopf algebra U [p](g), which is the universal enveloping algebra U (g) modulo the ideal
generated by the elements x p

− x [p], for x ∈ g. From this, one deduces

|G| = h0(OG)= pdim(g) and edim(OG,e)= dim(g).

As customary, we write gln(k) for the restricted Lie algebra of n × n-matrices, where bracket and p-map
are given by commutators and p-powers, and sln(k) for the ideal of trace zero matrices. Furthermore, kn

denotes the standard vector space, endowed with trivial bracket and p-map.
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Let a ⊂ g be an ideal, and consider the vector space Derk(a) of all k-linear derivations. Then
Derk(a) ⊂ gl(a) is a subalgebra. Derivations D : g → g satisfying the additional condition D(a[p]) =

(ada)
p−1(D(a)) for all a ∈ a are called restricted derivations. Write Der′k(a) for the vector space of all

restricted k-derivations. According to [Jacobson 1941, Theorem 4], the inclusion Der′k(a)⊂ Derk(a) is
a subalgebra. By the Jacobi identity and (R1), the adjoint map defines a homomorphism

g → Der′k(a), x 7→ (a 7→ [x, a]). (1)

Given restricted Lie algebras h and a, we are now interested in extensions

0 → a → g → h → 0,

such that a ⊂ g becomes an ideal with quotient g/a = h. The extension splits if the ideal a ⊂ g admits
a complementary subalgebra h′

⊂ g. Composing the inverse for the projection h′
→ h with (1), we obtain

a homomorphism ϕ : h → Der′k(a). Conversely, suppose we have such a homomorphism, written as
h 7−→ (a 7→ ϕh(a)). On the vector space sum a⊕ h, we now define bracket and p-map by

[a + h, a′
+ h′

] = [a, a′
] + [h, h′

] +ϕh(a′)−ϕh′(a),

(a + h)[p]
= a[p]

+ h[p]
+

p−1∑
r=1

sr (a, h).
(2)

Lemma 1.1. The above endows the vector space g = a⊕ h with the structure of a restricted Lie algebra,
such that a and h is an ideal and subalgebra, respectively.

Proof. As explained in [Bourbaki 1989, Chapter I, §1.8], the bracket turns g = a⊕ h into a Lie algebra,
having a as an ideal and h as a subalgebra. Now choose bases ai ∈ a and h j ∈ h, such that ai , h j form a
basis for g. We claim that

(adai )
p
= ad(ai )[p] and (adh j )

p
= ad(h j )[p] (3)

as k-linear endomorphisms of g. Indeed, since a and h are restricted, and by the definition of the bracket
in g, it is enough to verify that (adai )

p(h)=−ϕh((ai )
[p]) for every vector h ∈h and (adh j )

p(a)=ϕ(h j )[p](a)
for every a ∈ a. Since the derivations ϕh are restricted, we have

−ϕh((ai )
[p])= − adp−1

ai
(ϕh(ai ))= − adp−1

ai
([h, ai ])= (adai )

p(h).

The argument for (adh j )
p(a) is similar. Thus, (3) holds. According to [Strade and Farnsteiner 1988,

Theorem 2.3], there is a unique p-map satisfying (3) and the (R1)–(R3). By construction, this p-map
on g coincides with the given p-map on a and h. It thus coincides with (2), in light of (R3). □

In the above situation, the restricted Lie algebras g = a⋊ϕ h are called semidirect products. Obviously,
every split extension of h by a is of this form. Of particular importance for us is the case a = kn and
b = gl1(k), where the homomorphism ϕ : gl1(k)→ gl(kn)= Derk(kn) sends scalars to scalar matrices.
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The resulting restricted Lie algebra is written as kn ⋊ gl1(k). Here, bracket and p-map are given by the
formulas

[v+ λe, v′
+ λ′e] = λv′

− λ′v and (v+ λe)[p]
= λp−1(v+ λe), (4)

where e ∈ gl1(k) is the unit element, v,v′
∈ kn are vectors and λ,λ′

∈ k are scalars.

2. Toral rank and p-closed vectors

Let g be a finite-dimensional restricted Lie algebra over a ground field k of characteristic p > 0 and G be
the corresponding height-one group scheme such that Lie(G)= g. Recall that x ∈ g is called p-closed
if x [p]

∈ kx . Such vectors are called multiplicative if x [p]
̸= 0, and additive if x [p]

= 0. If the vector is
nonzero, h = kx is a one-dimensional subalgebra, hence corresponds to a subgroup scheme H ⊂ G of
order p. For multiplicative vectors, this is a twisted form of the diagonalizable group scheme µp = Gm[F].
In the additive case, it is isomorphic to the unipotent group scheme αp = Ga[F]. This basic fact has many
geometric applications: For results concerning K3 surfaces, Enriques surfaces and Kummer surfaces, see
[Schröer 2007; 2021; Kondō and Schröer 2021].

Proposition 2.1. Every vector in g = kn ⋊ gl1(k) is p-closed. The same holds for g = sl2(k) in character-
istic p ≥ 3.

Proof. The first assertion immediately follows from (4). Recall that sl2(k) is the restricted Lie algebra
comprising the traceless matrices A =

(
a b
c −a

)
∈ Mat2(k). The characteristic polynomial χA(T )= T 2

+ d
depends only on the determinant d = −a2

− bc, so the possible Jordan normal forms over kalg are(√
d 0

0 −
√

d

)
and

(
0 0
1 0

)
.

Computing p-powers via the above normal forms, we see that A[p]
= d(p−1)/2 A. □

The traceless matrices h =
(

1 0
0 −1

)
and x =

(
0 1
0 1

)
and y =

(
0 0
1 0

)
form a basis of sl2(k), and the structural

constants are given by

[h, x] = 2x, [h, y] = 2y, [x, y] = h[p]
= h, x [p]

= y[p]
= 0.

One also says that (h, x, y) is an sl2(k)-triple. For p ≥ 3, it follows that for each nonzero a ∈ sl2(k), the
adjoint map ada is bijective, hence sl2(k) is simple. In contrast, for p = 2 we have a central extension
0 → gl1(k)→ sl2(k)→ k2

→ 0, where the kernel corresponds to scalar matrices. The extension does not
split, because A[2]

̸= 0 for all matrices not contained in the kernel.
If k is algebraically closed, the toral rank for a restricted Lie algebra g is the maximal integer r ≥ 0 for

which there is an embedding gl1(k)⊕r
⊂ g. In terms of vectors, the condition means that there are linearly

independent x1, . . . , xr ∈ g, with [xi , x j ]= 0 and x [p]

i = xi . For general fields k, we define the toral rank as
the toral rank of the base-change g⊗k kalg. Following the notation in [Demazure and Grothendieck 1970,
Exposé XII, Section 2], we denote this integer by ρt(g)≥ 0. By Hilbert’s Nullstellensatz, the toral rank
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does not change under field extensions. According to [Block and Wilson 1988, Lemma 1.7.2], it satisfies
ρt(g) = ρt(n)+ ρt(g/n) for each ideal a ⊂ g. In other words, it is additive in extensions. Obviously,
0 ≤ ρt(g)≤ dim(g).

Proposition 2.2. The following are equivalent:

(i) The restricted Lie algebra g has maximal toral rank ρt(g)= dim(g).

(ii) The group scheme G is a twisted form of some µ⊕r
p .

(iii) The group scheme G is multiplicative.

Proof. It suffices to treat the case that k is algebraically closed. The implications (i) ⇐⇒ (ii) =⇒ (iii) are
obvious. Now suppose that (iii) holds. Since k = kalg, the group scheme G is diagonalizable, whence is
the spectrum of the Hopf algebra k[3] for some finitely generated abelian group 3. We have p3= 0,
because G has height one. Choosing an Fp-basis for 3 gives G = µ⊕r

p , thus (ii) holds. □

The other extreme is somewhat more involved:

Proposition 2.3. The following are equivalent:

(i) The restricted Lie algebra g has minimal toral rank ρt(g)= 0.

(ii) There is some exponent ν ≥ 0 with x [pν ]
= 0 for all vectors x ∈ g.

(iii) There are ideals 0 = a0 ⊂ · · · ⊂ ar = g inside g with quotients ai/ai−1 ≃ k.

(iv) There are normal subgroup schemes 0 = N0 ⊂ · · · ⊂ Nr = G inside G with quotients Ni/Ni−1 ≃ αp.

(v) The group scheme G is unipotent.

Proof. The implications (iv) =⇒ (v) and (iii) =⇒ (ii) and (ii) =⇒ (i) are trivial, whereas (iv) ⇐⇒ (iii) follows
from the Demazure–Gabriel correspondence.

We next verify (v) =⇒ (i). Without loss of generality, we may assume that k is algebraically closed.
Then there is a composition series G j inside G such that G j/G j−1 is isomorphic to a subgroup scheme of
the additive group Ga . This already lies in αp = Ga[F], because G has height one. For the corresponding
subalgebras bj inside g, this means bj/bj−1 ⊂ k. The additivity of toral rank implies ρt(g)= 0.

To see (i) =⇒ (ii), we may assume that k is algebraically closed, and then the implication follows from
[Premet 1989, Corollary 2]. For (ii) =⇒ (iii), we use (ada)

pν
= ada[pν ] = 0, and conclude with Engel’s

theorem [Bourbaki 1989, Chapter I, §4.2], that the underlying Lie algebra g is nilpotent. Now, recall
that the center C(g) is invariant under the p-map. In turn, the upper central series, which is recursively
defined by gi+1/gi = C(g/gi ), yields a sequence of ideals 0 = g0 ⊂ · · · ⊂ gs = g having abelian quotients.
This reduces our problem to the case that g itself is abelian. We proceed by induction on n = dim(g).
The case n = 0 is trivial. Suppose now that n > 0 and that (iii) holds for n − 1. Fix some x ̸= 0, and
consider the largest exponent d ≥ 1 such that x [pd

]
̸= 0. Replacing x with x [pd

], we may assume that
x [p]

= 0. Then a1 = kx is a one-dimensional ideal. The quotient g′
= g/a has dimension n′

= n − 1, and
furthermore ρt(g

′) = 0 by additivity of toral rank. Applying the induction hypothesis to g′
= g/a and

using the isomorphism theorem gives the desired ideals in g. □
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3. Automorphism group schemes

Let k be a ground field. Write (Aff/k) for the category of affine k-schemes, which we usually write as
T = Spec(R). Recall that an algebraic space is a contravariant functor X : (Aff/k)→ (Set) satisfying the
sheaf axiom with respect to the étale topology, such that the diagonal X → X ×X is relatively representable
by schemes, and that there is an étale surjection U → X from some scheme U . According to [Stacks
2005–, Lemma 076M], the sheaf axiom already holds with respect to the fppf topology. Throughout, we
use the fppf topology if not stated otherwise. Algebraic spaces are important generalizations of schemes,
because modifications, quotients, families, or moduli spaces of schemes are frequently algebraic spaces
rather than schemes. We refer to the monographs of Olsson [2016], Laumon and Moret-Bailly [2000],
Artin [1971], Knutson [1971], and to the stacks project [Stacks 2005–, Part 4].

Let X be a scheme, or more generally an algebraic space, that is separated and of finite type. Recall
that the R-valued points of the Hilbert functor HilbX/k are the closed subschemes Z ⊂ X ⊗ R such that
the projection Z → Spec(R) is proper and flat. Regarding automorphisms f : X ⊗ R → X ⊗ R as graphs,
we see that AutX/k is an open subfunctor. According to [Artin 1969, Theorem 6.1], the Hilbert functor is
representable by an algebraic space that is separated and locally of finite type. In turn, the same holds for
AutX/k , which additionally carries a group structure. Using descent and translations, one sees that it must
be schematic. The Lie algebra for the automorphism group scheme is given by

Lie(AutX/k)= H 0(X,2X/k),

where 2X/k = Hom(�1
X/k,OX ) is the coherent sheaf dual to the sheaf of Kähler differentials.

We now assume that X is proper, and that the ground field has characteristic p>0. Then g= H 0(X,2X )

is a restricted Lie algebra of finite dimension, which corresponds to the Frobenius kernel G[F] for the
automorphism group scheme G = AutX/k . Note that G[F] is a height-one group scheme, of order pn ,
where n = h0(2X/k).

Let H be a group scheme that is separated and locally of finite type, f : H → G be a homomorphism
and P be a H-torsor. The latter is an algebraic space, endowed with a free and transitive H -action. The
set of isomorphism classes comprise the nonabelian cohomology H 1(k, H), formed with respect to the
fppf topology. On the product P × X , we get a diagonal action. This action is free, because it is free on
the first factor. It follows that the quotient PX = H\(P × X) exists as an algebraic space (see, for example,
[Laurent and Schröer 2021, Lemma 1.1]). We have PX ≃ X provided that P is trivial, that is, contains
a rational point. In any case, there is an étale surjection U → P from some scheme U . According to
Hilbert’s Nullstellensatz, every closed point a ∈ U defines a finite field extension k ′

= κ(a), and we see
that PX ⊗ k ′

≃ X ⊗ k ′. We, therefore, say that PX is a twisted form of X . Indeed, every algebraic space Y
that becomes isomorphic to X after some field extension is of this form, with H = AutX/k .

Our f : H → G = AutX/k induces a homomorphism c : H → AutG/k , which sends h ∈ H(R) to the
inner automorphism g 7→ f (h)g f (h)−1. This gives a twisted form PG of G, and its Lie algebra Pg is a
twisted form of g. In fact, one may view g as a vector scheme as in Section 7, regard bracket and p-map
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as morphisms of schemes and obtain Pg by taking the rational points on the twisted form of the vector
scheme, formed via the derivative c′

: H → Autg/k .

Lemma 3.1. There is a canonical identification PAutX/k = AutPX/k , where on the left we take the twist
with respect to c : H → AutG/k . The restricted Lie algebra for this group scheme is Pg, where we twist
with respect to c′

: H → Autg/k .

Proof. This follows from very general considerations in [Giraud 1971, Chapter III], which can be made
explicit as follows: Consider the canonical morphism

P × AutX/k −→ AutPX , (p, ψ) 7−→
(
H · (p, x) 7→ H · (p, ψ(x))

)
,

where the description on the right is viewed as a natural transformation for R-valued points. This is well-
defined, because in the presence of p ∈ P(R) the projection {p}× X (R)→ (PX)(R) is bijective. For each
h ∈ H(R), the element (hp, hψh−1) sends the orbit H ·(p, x)= H ·(hp, hx) to the orbit H ·(hp, hψ(x))=
H · (p, ψ(x)). Thus, the above transformation descends to a morphism PAutX/k → AutPX , where H acts
via conjugacy on AutX/k . The same argument applies for the Frobenius kernel, and equivalently to the
restricted Lie algebra. □

We now change notation. Suppose that G = X is a height-one group scheme, and write g = Lie(G).
One easily checks that AutG/k is a closed subgroup scheme of the general linear group GLV/k , where
V = H 0(G,OG). By the Demazure–Gabriel correspondence, used in the relative form, we get an
identification AutG/k = Autg/k . The latter can be constructed directly: Choose a basis e1, . . . , en ∈ g.
Then Autg/k is the closed subgroup scheme inside GLk,n respecting the structural equations

[er , es] =

∑
λr,s,i ei and e[p]

r =

∑
µr, j e j .

For later use, we compute some automorphism group schemes Autg/k :

Proposition 3.2. The following table lists the automorphism group schemes and the resulting cohomology
groups or sets for the restricted Lie algebras k, gl1(k), k ⋊ gl1(k) and sl2(k), where the last column is
only valid for p ≥ 3:

g k gl1(k) k ⋊ gl1(k) sl2(k)

Autg/k Gm µp−1 Ga ⋊Gm PGL2

H 1(k,Autg/k) {1} k×/k×(p−1) singleton subset of Br(k)[2]

Here, Br(k)[2] is the kernel of multiplication by two on the Brauer group.

Proof. For the first case g = k, we immediately get Autg/k = GL1 = Gm , and Hilbert 90 gives
H 1(k,Gm) = {1}, at least for the étale topology. See the discussion at the beginning of Section 7
for the fppf topology.

In the second case, the restricted Lie algebra g = gl1(k) is generated by one element A1, which gives
an embedding Autg/k ⊂ Gm . The structure for g is given by A[p]

1 = A1. For each k-algebra R and each
invertible scalar λ ∈ R×, we have λp A[p]

1 = λA1, and thus λp−1
= 1. Conversely, each such λ gives an

automorphism, hence Autg/k = µp−1. The Kummer sequence yields H 1(k,Autg/k)= k×/k×(p−1).
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The restricted Lie algebra g = k ⋊ gl1(k) is generated inside gl2(k) by the matrices A1 =
(

0 1
0 0

)
and

A2 =
(

1 0
0 0

)
, which gives an embedding Autg/k ⊂ GL2. For each R-valued point ϕ =

(
a b
c d

)
from the

automorphism group scheme, the condition [ϕ(A1), ϕ(A2)] = ϕ(A1) implies c = 0 and a = ad . It follows
that a ∈ R× and d = 1, and we obtain Autg/k ⊂ Ga ⋊Gm . Conversely, one easily sees that each matrix
with c = 0 and d = 1 yields an automorphism of the restricted Lie algebra. Now, let T be a torsor over k
with respect to Ga ⋊Gm . The induced Gm-torsor has a rational point, by Hilbert 90. Its preimage T ′

⊂ T
is a torsor for Ga . Over any affine scheme, the higher cohomology of Ga vanishes, so T ′ also contains a
rational point, and the torsor T is trivial.

We come to the last case g = sl2(k), which is freely generated by the matrices A1 =
(

1 0
0 −1

)
and

A2 =
(

0 1
0 0

)
and A3 =

(
0 0
1 0

)
. This gives an inclusion Autg/k ⊂ GL3. Conjugacy, A 7→ S AS−1, yields

PGL2 ⊂ Autg/k . We already saw in the proof for Proposition 2.1 that A[p]
= det(A)(p−1)/2 A for all

A =
(

a b
c −a

)
. Moreover, det(A) = −a2

− bc defines, up to sign, the standard smooth quadratic form
on sl2(k) viewed as the affine space A3, which gives Autg/k ⊂ O(3). We have PGL2 ⊂ SO(3), because
the former is connected, and this inclusion is an equality because both are smooth and three-dimensional.
This shows SO(3) ⊂ Autg/k ⊂ O(3). From [−A2,−A3] = [A2, A3] = A1 ̸= −A1, we conclude that
A 7→ −A is not an automorphism of g, so PGL2 = SO(3)⊂ Autg/k must be an equality.

Finally, we have a central extension 0 → Gm → GL2 → PGL2 → 1, and get maps in nonabelian
cohomology

H 1(k,GL2)→ H 1(k,PGL2)→ H 2(k,Gm).

The term on the left is a singleton, by Hilbert 90, whereas the term on the right equals the Brauer
group Br(k). It follows that the coboundary map is injective [Giraud 1971, Chapter IV, Proposition 4.2.8],
and its image is contained in the 2-torsion part of the Brauer group [Grothendieck 1968a, Proposition 1.4].
Thus, H 1(k,Autg/k) is a certain subset inside the group Br(k)[2]. □

Note that according to the theorem of Merkurjev [1981], the group Br(k)[2] is generated by classes
from H 1(k,PGL2). This set of generators, however, is not a subgroup in general (see [Gille and Szamuely
2006, Example 1.5.7]).

4. Quotients by height-one group schemes

Let k be a ground field of characteristic p > 0, and G a height-one group scheme, with restricted
Lie algebra g. Suppose X is a scheme endowed with a G-action. Taking derivatives, we obtain a
homomorphism g→ H 0(X,2X/k) of restricted Lie algebras. According to [Demazure and Gabriel 1970,
Chapter II, §7, Proposition 3.10], any such homomorphism comes from a unique G-action. Note that this
does not require any finiteness assumption for the scheme X .

We now show that such actions admit a categorical quotient in the category (Sch/k) [Mumford et al.
1994, Definition 0.5]. To this end we temporarily change notation and write the schemes in question
as pairs, comprising a topological space and a structure sheaf. Our task is to construct the categorical
quotient (Y,OY ) for the action on (X,OX ). First, recall that the image O

p
X of the homomorphism OX →OX ,
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where f 7→ f p, is a quasicoherent OX -algebra, with algebra structure f · g p
= ( f g)p. In turn, the ringed

space (X,O p
X ) is a Fp-scheme. Choose a vector space basis D1, . . . , Dn ∈ g. The canonical inclusion

O
p
X ⊂ OX turns OX into a quasicoherent O

p
X -algebra, and yields the absolute Frobenius morphism

(X,OX )→ (X,O p
X ). The derivations Di : OX → OX are O

p
X -linear, and we write O

g
X =

⋂n
i=1 Ker(Di ) for

the intersection of kernels. This is another quasicoherent O
p
X -algebra. Setting Y = X and OY = O

g
X , we

obtain a scheme (Y,OY ) that is affine over (X,O p
X ). The identity id : X → Y and the canonical inclusion

ι : OY ⊂ OX define a morphism of Fp-schemes

(id, ι) : (X,OX )→ (Y,OY ).

The following should be well known:

Lemma 4.1. The above morphism of schemes is a categorical quotient in (Sch/k). Moreover, the
formation of the quotient is compatible with flat base-change in the scheme (Y,OY ).

Proof. First, note that the inclusion OY ⊂ OX is invariant with respect to multiplication of scalars λ ∈ k,
so the morphism belongs to the category (Sch/k). Furthermore, the formation of kernels and finite
intersections for maps between quasicoherent sheaves on schemes is compatible with flat base-change,
and, in particular, the formation of (Y,OY ) is compatible with flat base-change.

We now verify the universal property. Let (T,OT ) be scheme endowed with the trivial G-action, and
( f, ϕ) : (X,OX )→ (T,OT ) be an equivariant morphism. Obviously, there is a unique continuous map
g : Y → T with f = g ◦ id. The trivial G-action on (T,OT ) corresponds to the zero map g→ H 0(T,OT ),
and equivariance ensures that f −1(OT )→ OX factors over the injection OY ⊂ OX . This gives a unique
morphism (g, ψ) : (Y,OY ) → (T,OT ) of ringed spaces that factors ( f, ϕ). For each point a ∈ X , the
local map OT, f (a) → OX,a factors over OY,a , and it follows that ψ : OT,g(a) → OY,a is local. Thus, (g, ψ)
is a morphism in the category (Sch/k), which shows the universal property. □

We now revert back to the usual notation, and write Y = X/G for the quotient of the action
µ : G × X → X , with quotient map q : X → Y . Clearly, this map is surjective, Y carries the quotient
topology, and the set-theoretical image of µ×pr2 : G × X → X × X equals the fiber product X ×Y X . By
construction, for each open set U ⊂ Y and each local section f ∈ 0(U, q∗(OX )), we have f ∈ 0(U,OY )

if and only if f ◦µ= f ◦ pr2 as morphisms G × q−1(U )→ A1. Summing up, our categorical quotient
is also a uniform geometric quotient, in the sense of [Mumford et al. 1994, Definition 0.7]. The following
observation will be useful:

Proposition 4.2. Suppose that X is integral, with function field F = OX,η. Then OY,a = OX,a ∩ (Fg) for
each point a ∈ X. Moreover, the scheme Y is normal provided this holds for X.
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Proof. Set R = OX,a , such that Rg
= OY,a . Choose a basis D1, . . . , Dn ∈ g, and consider the resulting

commutative diagram with exact rows:

0 −−−→ Rg
−−−→ R −−−→ R⊕ny y y

0 −−−→ Fg
−−−→ F −−−→ F⊕n

where the horizontal maps on the right are given by s 7→ (D1(s), . . . , Dn(s)). The commutativity of the
left square gives Rg

⊂ R ∩ Fg, and the injectivity of the vertical map on the right ensures the reverse
inclusion, by a diagram chase. Now suppose that R is normal and f ∈ Fg satisfies an integral equation
over the subring Rg. This is also an integral equation over R, hence f ∈ R ∩ Fg

= Rg. □

5. Inertia and Jacobson correspondence

The goal of this section is provide a new, more geometric interpretation of the Jacobson correspon-
dence [1937; 1944]. We start by recalling this correspondence, which relates certain subfields and
restricted Lie algebras, in Bourbaki’s formulation [Bourbaki 1990, Chapter V, §13, No. 3, Theorem 3]:

Let F be a field of characteristic p > 0. It comes with a subfield F p and a restricted Lie algebra
g = Der(F) over F p that is also endowed with the structure of an F-vector space. Note that the bracket
is F p-linear, but, in general, not F-bilinear. Rather, we have the formula

[λD, λ′D′
] = λλ′

· [D, D′
] + λD(λ′) · D′

− λ′D′(λ) · D. (5)

Throughout, a subgroup h ⊂ g is called an F p-subalgebra with F-multiplication if it is stable under
bracket, p-map, and multiplication by scalars λ ∈ F . It is thus a restricted Lie algebra over F p, endowed
with the F-multiplication as an additional structure. Consider the ordered sets

8= {E | F p
⊂ E ⊂ F is an intermediate field},

9 = { h | h ⊂ g is an F p-subalgebra with F-multiplication}.

Similar to classical Galois theory for separable algebraic extensions, one has inclusion-reversing maps
8→9 and 9 →8 given by

E 7→ DerE(F) and h 7→ Fh,

respectively. Here, Fh denotes the intersection of the kernels for D : F → F , where D ∈ h runs over
all elements. Then the Jacobson correspondence asserts that the above maps induce a bijection between
the intermediate fields F p

⊂ E ⊂ F having [F : E]<∞ and the F p-subalgebras with F-multiplication
h ⊂ g having dimF (h) <∞. Moreover, under this bijection [F : E] = pdimF (h) holds.

In particular, if F has finite p-degree, which means that F p
⊂ F is finite, we get an unconditional

identification

{intermediate fields E} = {F p-subalgebras h with F-multiplication}.
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Forgetting the F-multiplication, the restricted Lie algebra h = DerE(F) corresponds to a height-one
group scheme H , with h = Lie(H). By construction, this coincides with the Frobenius kernel of the
affine group scheme AutF/E .

We now consider the following set-up geared towards geometric applications: Let k be a ground field
of characteristic p > 0 and F be some extension field; one should think of the function field of some
proper integral scheme. Let H be a height-one group scheme over k, with corresponding restricted Lie
algebra h = Lie(H). Suppose we have a faithful action of the group scheme H on the scheme Spec(F),
in other words, a homomorphism h → Derk(F) that is k-linear and injective. Throughout, we regard this
homomorphisms also as an inclusion.

Let E = Fh, such that h ⊂ DerE(F). Then the field E contains the composite k · F p, and its spectrum
is the categorical quotient Spec(F)/H , according to Lemma 4.1. Moreover, we obtain the subspace
h⊂ h · E ⊂ h · F inside DerE(F). These are subvector spaces over k and E and F , respectively. Obviously,

dimF (h · F)≤ dimE(h · E)≤ dimk(h).

Let us unravel how these various fields and vector spaces are related:

Proposition 5.1. In the above situation, the following holds:

(i) The subspace h ⊂ DerE(F) contains an F-basis, such that h · F = DerE(F).

(ii) The canonical inclusions E = Fh
⊂ Fh·E

⊂ Fh·F are equalities.

(iii) The subspace h · E ⊂ DerE(F) is stable with respect to bracket and p-map.

(iv) The extension E ⊂ F is finite, of degree [F : E] = pdimF (h·F).

Proof. To see (ii), choose a k-generating set D1, . . . , Dn ∈ h. Clearly, Fh coincides with the intersection
of the Ker(Di : F → F). Since D1, . . . , Dn ∈ h · F is an F-generating set as well, this intersection
coincides with Fh·F , and the equalities Fh

= Fh·E
= Fh·F follow.

We next verify that the F-vector subspace h · F ⊂ DerE(F) is stable under bracket and p-map. The
former follows from (5). The latter is then a consequence of the Hochschild formula [1955, Lemma 1]

(vu)p
= v pu p

+ adp−1
vu (v)u,

which holds for any u from an associative Fp-algebra U and v from an adu-stable commutative subalge-
bra V . In turn, h·F ⊂DerE(F) is an F p-subalgebra with F-multiplication, obviously of finite F-dimension.
Now the Jacobson correspondence applied to E = Fh·F shows (iv). Applying the correspondence once
more reveals h · F = DerE(F), and (i) follows. The above reasoning likewise shows that the E-vector
subspace h · E ⊂ DerE(F) is stable under bracket and p-map, which reveals (iii). □

We now seek a more geometric understanding of the above facts. Set hE = h⊗k E , and consider the
E-linearization hE → DerE(F) of our inclusion h ⊂ DerE(F). Write htriv

E ⊂ hE for the kernel. This is an
ideal, giving an inclusion hE/h

triv
E ⊂ DerE(F). Now recall that H denotes the height-one group scheme
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with Lie(H)=h. Write HE = H ⊗k E for its base-change, and H triv
E ⊂ HE for the normal subgroup scheme

corresponding to htriv
E . This acts trivially on Spec(F), whereas the quotient HE/H triv

E acts faithfully.

Proposition 5.2. The action of the group scheme HE on Spec(F) is transitive.

Proof. Recall that for any site C, the action of a group-valued sheaf G on a sheaf Z is called transitive if
the morphism µ× pr2 : G × Z → Z × Z is an epimorphism, where µ : G × Z → Z denotes the action.

In our situation the site is (Aff/E), endowed with the fppf topology. Set G = HE/H triv
E and Z =Spec(F).

We have to check that for any R-valued points a, b ∈ Z(R), there is an fppf extension R ⊂ R′ and some
σ ∈ G(R′) that sends the base-change a ⊗ R′ to b ⊗ R′. Replacing R by R ⊗E F , we may assume that R
is an F-algebra. Choose a p-basis for the extension E ⊂ F , such that

F = E[T1, . . . , Tr ]/(T
p

1 −µ1, . . . , T p
r −µr )

for some scalars µi ∈ E . Then

F ⊗E R = R[s1, . . . , sr ]/(s
p
1 , . . . , s p

r )

for the elements si = Ti ⊗1−1⊗ Ti . The R-valued points of Z thus correspond to si 7→ λi , where λi ∈ R
satisfy λp

i = 0. It suffices to treat the case that a, b ∈ Z(R) is given by si 7→ 0 and si 7→ λi , respectively.
The differentials dTi ∈�1

F/E form an F-basis. The dual basis inside DerE(F)= Hom(�1
F/E , F) are

the partial derivatives ∂/∂Ti . Clearly, we have[
∂

∂Ti
,
∂

∂T j

]
=

(
∂

∂Ti

)[p]

= 0.

Consequently, the linear combination D =
∑
λi∂/∂Ti satisfies D[p]

= 0, thus D is an additive element
inside DerR(F ⊗E R). Note that this would fail with coefficients from F ⊗E R rather than R. By the
Demazure–Gabriel correspondence, it yields a homomorphism of group schemes αp,R → AutF/E ⊗E R.

According to Proposition 5.1 we have DerE(F)=h·F, so there are elements D1, . . . , Dr ∈h·E =hE/h
triv
E

that form an F-basis of DerE(F). In particular, we may write
∑
λi∂/∂Ti =

∑
αi Di for some αi ∈ R. In

turn, we get an additive element D ∈ (hE/h
triv
E )⊗E R, so our homomorphism of group schemes has a

factorization αp,R → G R . For R′
= R[σ ]/(σ p), we get a canonical element σ ∈ αp,R′ , whose image is

likewise denoted by σ ∈ G(R′). By construction, we have

σ ∗(s j )= D(s j )=

∑
i

λi
∂T j

∂Ti
= λ j ,

for all 1 ≤ j ≤ n, and the desired property σ · a = b follows. □

Note that the E-scheme Z = Spec(F) does not contain a rational point, except for h= 0. The existence
of such a point would allow us to form the inertia subgroup scheme and view Z as a homogeneous space.
However, we can achieve this after further base-change:

Regard A = F ⊗E F as an F-algebra via λ 7→ 1 ⊗λ. Then the multiplication map λ⊗µ 7→ λµ yields
a canonical retraction. Indeed, A is a local Artin ring with residue field A/mA = F . In turn, Z F = Z ⊗ F
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has a unique rational point z0 ∈ Z F . Write H inert
F = I (z0) for the resulting inertia subgroup scheme

inside HF = H ⊗k F . By the Demazure–Gabriel correspondence, it is given by a Lie subalgebra hinert
F

inside hF = h⊗k F , which we call the inertia Lie algebra. We now interpret the base change Z F as a
homogeneous space:

Proposition 5.3. The orbit morphism HF ·{z0}→ Z F induces an identification HF/H inert
F =Spec(F⊗E F).

Moreover, the inertia Lie algebra hinert
F is the kernel for the canonical surjection

h⊗k F → h · F = DerE(F).

Finally, the degree of the field extension E ⊂ F can be expressed as [F : E] = pc, where c ≥ 0 is the
codimension of the inertia Lie algebra hinert

F ⊂ hF .

Proof. According to Proposition 5.2, the HF -action on Z F is transitive, and it follows that the or-
bit HF · {z0} → Z F is an epimorphism. By definition of the inertia subgroup scheme, the induced
HF/H inert

F → Z F is a monomorphism. Hence, the latter is an isomorphism. This is a finite scheme, and
the F-dimension for the ring of global sections for the homogeneous space is given by pc. It follows
that [F : E] = pc.

It remains to see that the inertia Lie algebra hinert
F coincides with the kernel K of the canonical surjection

hF → h · F . We saw in Proposition 5.1 and the preceding paragraph that

pdimF (h·F) = [F : E] = h0(OZ ⊗E F)= pdim(hF/h
inert
F ).

It thus suffices to verify that the canonical map hinert
F → DerE(F) is zero. Suppose this is not the case,

and fix some nonzero D ∈ hinert
F with nonzero image. Choose a p-basis for E ⊂ F and write

F = E[T1, . . . , Tr ]/(T
p

1 −µ1, . . . , T p
r −µr )

for some scalars µi ∈ E×. The partial derivatives ∂/∂Ti ∈ DerE(F) form another F-basis, and D =∑
λi∂/∂Ti . Without restriction, we may assume λ1 ̸= 0. Now make a base-change to R = F , such that

A = F ⊗E F = R[s1, . . . , sr ]/(s
p
1 , . . . , s p

r )

as in the proof for Proposition 5.2. Then D(s1)= λ1 ⊗ 1 ̸∈ mA. But this implies that H inert
F does not fix

the closed point z0 ∈ Z F = Spec(A), a contradiction. □

6. Foliation rank

Throughout this section, k is a ground field of characteristic p > 0 and X is a proper scheme. Note
that everything carries over verbatim to proper algebraic spaces. Let H = AutX/k[F] be the resulting
height-one group scheme, whose restricted Lie algebra is h = H 0(X,2X/k). To simplify exposition, we
also assume that X is integral. Let η ∈ X be the generic point and F = k(X) be the function field. The
quotient Y = X/H is integral as well, and we denote its function field by E = k(Y ). This field extension
E ⊂ F is finite and purely inseparable. This yields a numerical invariant:
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Definition 6.1. The foliation rank of the proper integral scheme X is the integer r ≥ 0 defined by the
formula deg(X/Y )= pr .

In other words, we have [F : E] = pr . Since the field extension E ⊂ F has height one, the foliation
rank r ≥ 0 is also given by r =dimF (�

1
F/E), which can also be seen as the rank of the coherent sheaf�1

X/Y .
Dualizing the surjection �1

X/k →�1
X/Y gives an inclusion F =2X/Y ⊂2X/k . The subsheaf F is closed

under Lie brackets and p-maps, hence constitutes a foliation, where the integer rank(F )= rank(�1
X/Y )

coincides with our foliation rank r ≥ 0.
To obtain an interpretation of the foliation rank in terms of group schemes, consider the restricted Lie

algebras
h = Lie(H)= H 0(X,2X/k) and g = DerE(F)=2X/Y,η.

The former is finite-dimensional over the ground field k. The latter is finite-dimensional over the function
field E , and can be seen as the Lie algebra for the automorphism group scheme for Spec(F) viewed as a
finite E-scheme. The localization map h = H 0(X,2X/k)→2X/k,η respects brackets and p-powers, and
factors over the subalgebra g=2X/Y,η. This gives a k-linear map h→ g, together with its E-linearization

h⊗k E −→ g, δ⊗ λ 7−→
(

f 7→ λδη( f )
)
.

The latter is a homomorphism of restricted Lie algebras over E . The map h → g is injective, because the
coherent sheaf 2X/k is torsion free, and we often view it as an inclusion h ⊂ g. Note, however, that its
E-linearization in general is neither injective nor surjective. This is perhaps the main difference to the
classical situation of group actions rather than group scheme actions.

We are now in the situation studied in Section 5. Let hinert
F be the inertia Lie algebra inside the

base-change hF = h⊗k F , corresponding to the inertia group scheme with respect to the F-rational point
in Spec(F ⊗E F). From Proposition 5.3, we obtain:

Proposition 6.2. The foliation rank r ≥ 0 of the scheme X coincides with the codimension of hinert
F ⊂ hF .

In some sense, this measures how free the Frobenius kernel of the automorphism group scheme acts
generically.

Proposition 6.3. The foliation rank of the scheme X satisfies 0 ≤ r ≤ h0(2X/k). We have r = 0 if and
only if the Frobenius kernel H = AutX/k[F] vanishes. The condition r = h0(2X/k) holds if and only if
H acts freely on some dense open set U ⊂ X.

Proof. The inequality r ≤ h0(2X/k) follows from Proposition 6.2. If the group scheme H is trivial
we have h0(2X/k) = 0, and hence r = 0. Conversely, if H is nontrivial there is a nonzero derivation
D : OX → OX . Since the structure sheaf is torsion-free, the derivation remains nonzero at the generic
point, which implies that E = Fh does not coincide with F , and thus r > 0.

If H acts freely on some dense open set, the projection ϵ : X → Y to the quotient Y = X/H is a principal
homogeneous H -space over the dense open set V ⊂ Y corresponding to U . In turn [F : E] = h0(OH ),
and thus r = dim(h)= h0(2X/k).
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Finally, suppose the foliation rank takes the maximal possible value r = h0(2X/k). Then the inertia
Lie algebra hinert

F ⊂ hF has codimension r = dim(hF ), thus is trivial. It follows that the group scheme
HE acts freely on Spec(F) viewed as an E-scheme. Thus, there is an open dense set V ⊂ Y over which
the projection ϵ : X → Y becomes a principal homogeneous H -space, and the H -action on U = ϵ−1(V )
is free. □

We next describe how the foliation rank behaves under birational maps.

Proposition 6.4. Let f : X → X ′ be a birational morphism to another proper integral scheme X ′, with
the property OX ′ = f∗(OX ). Then the respective foliation ranks satisfy r ≤ r ′.

Proof. According to Blanchard’s lemma, there is a unique homomorphism

f∗ : Aut0X/k → Aut0X ′/k

of group schemes making the morphism f : X → X ′ equivariant. Indeed, the original form of the lemma
for complex-analytic spaces [Blanchard 1956, Proposition I.1] was extended to schemes by Brion, Samuel
and Uma [Brion et al. 2013, Proposition 4.2.1].

The homomorphism of group schemes is a monomorphism, because f is birational, and the schemes
in question are integral. In particular, the induced homomorphism on Frobenius kernel gives a closed
embedding H ⊂ H ′, and an injection h ⊂ h′ of restricted Lie algebras. For the common function field
F = k(X)= k(X ′), we get Fh

⊃ Fh′

, and r ≤ r ′ follows. □

The following gives an upper bound on the foliation rank:

Proposition 6.5. Let i ≥ 0 be some integer, and suppose that the coherent sheaf F = Hom(�i
X/k,OX )

satisfies h0(F )= 0. Then X has foliation rank r < i .

Proof. We have to show that the vector space h · F = DerE(F) has dimension at most i − 1. Seeking
a contradiction, we suppose that there are k-derivations D1, . . . , Di : OX → OX that are F-linearly
independent. Then the same holds for the corresponding OX -linear maps s1, . . . , si : OX → 2X/k .
Consequently, their wedge product s1 ∧ · · · ∧ si : OX →3i (2X/k) is generically nonzero. The universal
property of exterior powers gives a canonical map3i (2X/k)→Hom(�i

X/k,OX )=F , which is generically
bijective. Thus s1 ∧ · · · ∧ si yield a nonzero global section of F , a contradiction. □

Recall that our proper integral X comes with a dualizing sheaf ωX and a trace map H n(X, ωX )→ k,
such that the ensuing pairing Hom(F , ωX )× H n(X,F )→ k is nondegenerate. Here, n = dim(X) and
F is coherent.

Corollary 6.6. Let X be a geometrically normal surface with h0(ω∨

X )= 0. Then the foliation rank is r ≤ 1.

Proof. Replacing the ground field k by the field H 0(X,OX ), it suffices to treat the case h0(OX )= 1. By
Serre’s criterion, the scheme X is regular in codimension one, so the locus of nonsmoothness Sing(X/k)
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is finite. Let f : S → X be a resolution of singularities. Suppose for the moment that the regular surface
S is smooth. Then ωS =�2

S/k . Consider the chain of canonical maps

�2
X/k → f∗ f ∗(�2

X/k)→ f∗(�2
S/k)→ f∗(ωS)→ ωX ,

where to the right is the trace map. All these maps are bijective on the complement U = X ∖Sing(X/k),
so the same holds for the dual map

ϕ : ω∨

X → Hom
(
�2

X/k,OX
)
= F .

According to [Hartshorne 1994, Corollary 1.8 and Theorem 1.9], these rank-one sheaves are reflexive and
satisfy the Serre condition (S2). Since ϕ|U is bijective, already ϕ is bijective, by loc. cit. Theorem 1.12.
The assertion thus follows from the theorem.

It remains to treat the case that the ground field k is imperfect. Choose a perfect closure k ′. The base-
change X ′

= X ⊗k k ′ is normal, and the above reasoning applies to any resolution of singularities S′
→ X ′.

It follows that ω∨

X and F become isomorphic after base-changing to k ′. If follows that Hom(ωX ,F ) is
one-dimensional. Choose a nonzero element ϕ : ωX → F . Then ϕ⊗ k ′ must be bijective, and by descent
the same holds for ϕ. □

This applies in particular to smooth surfaces S of Kodaira dimension kod(S) ≥ 1, which comprise
surfaces of general type, and the properly elliptic surfaces, including those with quasielliptic fibration. It
also applies to surfaces S with Kodaira dimension zero, provided that the dualizing sheaf of the minimal
model X is nontrivial.

Let S be a smooth surface of general type, and X be its canonical model. This is the homogeneous
spectrum P(S, ωS) of the graded ring R(S, ωS)= ⊕H 0(S, ω⊗t

S ). Then X is normal, the singularities are
at most rational double points and the dualizing sheaf ωX is ample. We also say that X is a canonically
polarized surfaces. Obviously h0(ω⊗−1

X )= 0, and X has foliation rank r ≤ 1. According to Proposition 6.4,
the same holds for S.

Proposition 6.7. Suppose that X has foliation rank r = 1, and let D ∈ H 0(X,2X/k) be any nonzero
global section. Then for each point x ∈ X , the local ring OY,ϵ(x) is the kernel for the additive map
D : OX,x → OX,x .

Proof. Set y = ϵ(x). The local ring is given by OY,y = O
h
X,x , which is contained in the kernel O D

X,x of
the derivation D. Let f ∈ O D

X,x , and D′
∈ h be another derivation. Then D′

= λD for some element λ
from the function field F = Frac(OX,x), and thus D′( f )= λD( f )= 0 inside F . Since the localization
map OX,x → F is injective, we already have D′( f )= 0 inside OX,x . This shows f ∈ OY,y . In turn, the
inclusion OY,y ⊂ O D

X,x is an equality. □

We will later see that for r = 1, each vector in g is p-closed. Thus the nonzero elements D ∈ h indeed
yield height-one group schemes N ⊂ H of order |N | = p, such that Y = X/N .
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7. Invariant subspaces

Let k be a ground field of characteristic p ≥ 0 and V be a finite-dimensional vector space of dimension
n ≥ 0. Let us write GLV/k for the group-valued functor on the category (Aff/k) of affine k-schemes
T = Spec(R) defined by

GLV/k(R)= AutR(V ⊗k R).

This satisfies the sheaf axiom with respect to the fppf topology. In fact, it is representable by an affine
group scheme, and the choice of a basis e1, . . . , en ∈ V yields GLV/k ≃ GLn,k .

Let us write V for the abelian functor whose group of R-valued points is V (R)= V ⊗k R. As explained
in [Grothendieck 1960, Chapter I, Section 9.6], this is represented by an affine scheme, namely the
spectrum of the symmetric algebra on the dual vector space V ∗. Moreover, the structure morphism
V → Spec(k) carries the structure of a vector bundle of rank n with V (k) = V , and the canonical
homomorphism GLV/k → AutV /k of group schemes is bijective. Combining [Grothendieck 1968b,
Theorem 11.7] with [Artin et al. 1972, Exposé VIII, Corollary 2.3], and [Bourbaki 1990, Chapter V,
§10, No. 5, Proposition 9], one sees that each GLV/k-torsor is trivial, that is, the nonabelian cohomology
set H 1(k,GLV/k) with respect to the fppf topology is a singleton. In other words, all vector bundles
E → Spec(k) of rank n are isomorphic to V .

Now, let H ⊂ GLV/k be a subgroup scheme and T → Spec(k) be a H-torsor. Then the quotient

TV = H\(T × V )= T ∧
H V

with respect to the diagonal action σ · (t, v) = (σ t, σv) is another vector bundle called the T -twist.
Note that under the identification of left and right action, the above action can also be viewed as
σ · (t, v) = (tσ−1, σv), which explains the notation T ∧

H V . We now consider the following general
problem: What subbundles exist in the T -twist whose pull-back to T are contained in the pullback of a
fixed subbundle V ′

⊂ V ? By fppf descent, these pullbacks correspond to subbundles inside the induced
bundle V × T → T whose total space is invariant with respect to the diagonal H -action.

The n-dimensional vector space TV = (TV )(k) of k-rational points is likewise called the T -twist of V .
If H is finite and T = Spec(L) is the spectrum of a field, we are thus looking for k-vector subspaces
U ⊂

TV such that U ⊗k L is contained in the base-change V ′
⊗k L , or equivalently to L-vector subspaces

in V ′
⊗k L that are invariant for the diagonal H -action.

Suppose that p>0, and that H =αp is the infinitesimal group scheme defined by H(R)={α∈ R |α p
=0},

where the group law is given by addition. Recall that the Lie algebra of GLV/k is the vector space
gl(V ) = Endk(V ), where the Lie bracket is given by commutators [ f, g] = f g − g f and the p-map
f [p]

= f p is the p-fold composition. The inclusion homomorphism H → GLV/k corresponds to a vector
f ∈ gl(V ) that is nilpotent, with all Jordan blocks of size ≤ p. On R-valued points, the map becomes

H(R)→ GLV/k(R), α 7→

p−1∑
i=0

(α f )i

i !
.
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Set eα f
=

∑p−1
i=0 (α f )i/ i ! to simplify notation. By naturality, the above maps are determined by the single

matrix et f with entries in the truncated polynomial ring R = k[t]/(t p). The following is well known:

Lemma 7.1. Each torsor T for the infinitesimal group scheme H = αp is isomorphic to the spectrum of
L = k[s]/(s p

−ω) for some ω ∈ k, where the group elements α ∈ H(R) act via s 7→ s +α. The torsor T
is nontrivial if and only if L is a field. Moreover, for each purely inseparable field extension k ⊂ L of
degree p, the spectrum Spec(L) admits the structure of a H-torsor.

Proof. Consider the relative Frobenius map F : Ga → Ga on the additive group, which comes from
the k-linear map k[t] → k[t] given by t 7→ t p. Then H = αp is the kernel. The short exact sequence
0 → H → Ga

F
−→Ga → 0 yields a long exact sequence

k → k → H 1(k, H)→ H 1(k,Ga)→ H 1(k,Ga).

The terms on the right vanish. It follows that each H-torsor T arises as the fiber for F : Ga → Ga over
some rational point ω ∈ Ga(k). Thus T is equivariantly isomorphic to the spectrum of k[s]/(s p

−ω),
where the group elements α ∈ H(R) act via s 7→ s +α. If T is nontrivial, the polynomial s p

−ω ∈ k[s]
has no root in k. We infer that it is irreducible, because the algebra L = k[s]/(s p

−ω) has prime degree p.
Thus L is a field, which is purely inseparable over k. Conversely, if L is a field, then T has no rational
point, and the torsor is nontrivial.

Finally, let k ⊂ L be a purely inseparable extension of degree p. For each element in L not contained
in k, we get an identification L = k[s]/(s p

−ω). Thus, Spec(L) arises as fiber of the relative Frobenius
map, and hence admits the structure of a H-torsor. □

For the applications we have in mind, we now consider the particular situation that V = k[t]/(t p)

is the underlying vector space of dimension n = p coming from the truncated polynomial ring, and
V ′

= tk[t]/(t p) is given by the maximal ideal. Each vector can be uniquely written as a polynomial
f (t)=

∑p−1
i=0 λi t i , with coefficients λi ∈ k. This vector space comes with a canonical action of the additive

group Ga , where the elements α ∈ Ga(R)= R act via f (t) 7→ f (t +α). With respect to the canonical
basis t0, . . . , t p−1

∈ V ⊗k R, this automorphism is given by α 7→ (αi j ), where the matrix entries are
αi j =

( j
j−i

)
α j−i . In turn, we get an induced action of the Frobenius kernel H = αp. Note that V ′

⊂ V is
not H -invariant, because some α0 j = α j are nonzero for α ̸= 0.

Now, let T = Spec(L) be a H-torsor. The resulting twist TV is another vector space of dimension
n = p. Note that both V and TV are isomorphic to k⊕p, but there is no canonical isomorphism. The
following observation will be crucial for later applications:

Proposition 7.2. In the above situation, there is no vector x ̸= 0 inside the twist TV such that the induced
element x ⊗ 1 inside TV ⊗k L = V ⊗k L is contained in the base change V ′

⊗k L.

Proof. Seeking a contradiction, we assume that such an element exists. Its image x ⊗ 1 inside TV ⊗k

L = V ⊗k L takes the form f (t) =
∑p−1

i=1 λi t i , with coefficients λi ∈ L . According to Lemma 7.1,
we have L = k[s]/(s p

− ω) for some ω ∈ k, and the group elements α ∈ H(R) act via s 7→ s + α.
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Write λi =
∑p−1

j=0λi j s j , with coefficients λi j ∈ k. The H -invariance of the vector f (t) ∈ V ⊗k L with
respect to the diagonal H -action means

p−1∑
i=1

p−1∑
j=0

λi j (s +α) j (t +α)i =

p−1∑
i=1

p−1∑
j=0

λi j s j t i (6)

for each α ∈ H(R). Our task is to infer λi j = 0. We now consider the universal situation, where α is the
class of the indeterminate in the truncated polynomial ring R = k[u]/(u p). Then (6) becomes an equation
in the residue class ring k[t, s, u]/(t p, s p

−ω, u p). Writing

(s +α) j (t +α)i = s j t i
+α( js j−1t i

+ is j t i−1)+α2( · · · )

as a polynomial in α and comparing coefficients in (6) at the linear terms, we get

p−1∑
i=1

p−1∑
j=0

λi j ( js j−1t i
+ is j t i−1)= 0. (7)

The following argument, more elegant than our original reasoning, was indicated by the referee: To see
that λi j vanishes, it suffices to check that the polynomial

F =

p−1∑
i=1

p−1∑
j=0

λi j s j t i

is divisible by th for 1 ≤ h ≤ p inside the factorial ring k[s, t]. This is obvious for h = 1. Suppose now
that 2 ≤ h ≤ p, and that F = th−1G for some polynomial G. Then

∂F
∂s

= th−1 ∂G
∂s

and ∂F
∂t

= th−1 ∂G
∂t

+ (h − 1)th−2G.

Equation (7) means that ∂F/∂s + ∂F/∂t = 0. Together with the above computation, this gives t | G, and
hence th

| F . □

8. Automorphisms for prime-degree radical extensions

Let k be a ground field of characteristic p > 0. For each scalar ω ∈ k, write

L = Lω = k[t]/(t p
−ω)

for the resulting finite algebra of rank p. Each element can be uniquely written as
∑p−1

i=0 λi t i , and we
call such expressions truncated polynomials. Write AutL/k for the group-valued functor on the category
(Aff/k) whose R-valued points are the R-linear automorphisms of L ⊗ R. This functor is representable
by an affine group scheme. In this section, we make a detailed study of the opposite group scheme

G = Gω = AutSpec(Lω)/k = (AutLω/k)
op,

which comprises the automorphisms of the affine scheme Spec(L). We shall see that G is nonsmooth, so
understanding the scheme structure is of paramount importance. Note that the Lie algebras g = Lie(G)
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were discovered by Witt, compare the discussions in [Chang 1941, Introduction] and also [Zassenhaus
1939, footnote on p. 3]. These so-called Witt algebras will be studied in the next section.

Any automorphism g : L ⊗k R → L ⊗k R is determined by the image of the generator t , which is some
truncated polynomial ϕg(t)=

∑p−1
i=0 αi t i . The multiplication gh ∈ G(R) of group elements corresponds

to the substitution ϕh(ϕg(t)) of truncated polynomials.
The inverse group element g−1 defines another truncated polynomial ϕg−1 =

∑p−1
i=0 βi t i , such that∑

αi
(∑

β j t j
)i

= t =
∑
βi

(∑
α j t j

)i . Note, however, that the truncated polynomials attached to group
elements are never units in the polynomial ring R[t], unless R = 0. To avoid this ambiguity in notation
we use the additional symbol ϕg(t) to denote the image of the indeterminate under g ∈ G(R).

The coefficients in the truncated polynomials ϕg(t) =
∑p−1

i=0 λi t i for the group elements g ∈ G(R)
define a monomorphism G → Ap.

Proposition 8.1. The monomorphism G → Ap is an embedding, and its image is the intersection of the
closed set defined by the Fermat equation

λ
p
0 + (λ1 − 1)pω+ λ

p
2ω

2
+ . . .+ λ

p
p−1ω

p−1
= 0, (8)

with the open set given by det(αi j ) ̸= 0. Here the matrix entries come from the truncated polynomials(∑
λi t i

) j
=

∑
αi j t i , with 0 ≤ i, j ≤ p − 1.

Proof. For each g ∈ G(R), with truncated polynomial ϕg(t)=
∑
λi t i , the images

(∑
λi t i

) j of the basis
vectors t j form a R-basis of L ⊗ R, thus G → Ap factors over the open set U ⊂ Ap given by det(αi j ) ̸= 0.
Since t p

=ω, we also have
(∑

λi t i
)p

=ω, so the monomorphism also factors over the closed set Z ⊂ Ap

defined by (8). Any tuple (λ0, . . . , λp−1) ∈ Ap(R) lying in U ∩ Z gives, via the truncated polynomial∑
λi t i , some group element g ∈ G(R). It follows that the monomorphism G → Ap is an embedding,

with image U ∩ Z . □

Note that throughout, we regard the coefficients λi either as scalars or as indeterminates, depending on
the context. This abuse of notation simplifies exposition and should not cause confusion.

Proposition 8.2. The neutral element e ∈ G has coordinates (0, 1, 0, . . . , 0) with respect to the embedding
G ⊂ Ap. If the scalar ω ∈ k is not a p-power, then the group of rational points is G(k)= {e}.

Proof. The truncated polynomial of the neutral element is ϕe(t) = t , which gives the coordinates of
e ∈ G. Now suppose that ω ̸∈ k p. By Proposition 8.1, it suffices to verify that the polynomial equation
ω0T p

0 +ω1T p
1 + . . .+ωp−1T p

p−1 = 0 has no nontrivial solution. The latter means that 1, ω, . . . , ωp−1
∈ k

are linearly independent over k p. This indeed holds, because k p
⊂ k is an extension of height ≤ 1, hence

the minimal polynomial of any λ ∈ k not contained in k p is of the form T p
− λp. □

We now consider the Frobenius pullback G(p) and its reduced part G(p)
red = (G(p))red. Note that over

imperfect fields, reduced parts of group schemes may fail to be subgroup schemes, see [Fanelli and
Schröer 2020, Proposition 1.6] for an example. The following shows that even if it is a subgroup scheme,
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it might be nonnormal. Note that this phenomenon seems to be the crucial ingredient for the main results
of this paper.

Proposition 8.3. The reduced part G(p)
red ⊂ G(p) is a nonnormal subgroup scheme. Moreover, G(p)

red ≃

U ⋊Gm , where U has a composition series of length p −2 whose quotients are isomorphic to the additive
group Ga . In particular, G is affine, irreducible, and of dimension p − 1.

Proof. Recall that G(p) is defined as the base-change of G with respect to the absolute Frobenius map
on Spec(k). Clearly, the Frobenius pullback of Lω = k[t]/(t p

−ω) is isomorphic to L0 = k[t]/(t p), and
for our automorphism group schemes this means G(p)

≃ G0. Thus, we may assume ω = 0, and work
with G = G(p).

The embedding G ⊂ Ap in Proposition 8.1 is now given by the conditions λp
0 = 0 and det(αi j ) ̸= 0.

View the entries of the matrix (αi j ) as elements from the ring A = k[λ0, . . . , λp−1]/(λ
p
0 ). Taken modulo

the radical Rad(A)= (λ0), the matrix takes lower triangular form, with diagonal entries 1, λ1, . . . , λ
p−1
1 .

In turn, the embedding G ⊂ Ap is given by λp
0 = 0 and λ1 ̸= 0. Consequently, the reduced part Gred is

defined by λ0 = 0 and λ1 ̸= 0, which is smooth. Moreover, we see that G is affine, irreducible and of
dimension p − 1.

Given two truncated polynomials ϕg =
∑
αi t i and ϕh =

∑
βi t i with constant terms α0 = β0 = 0, the

substitution ϕg(ϕh(t)) also has constant term zero, so the subsets Gred(R)⊂ G(R) are subgroups. Over
R = k[u, v, ϵ]/(uv− 1, ϵ2), the truncated polynomials ϕg = ϵ+ t and ϕh = ut yield

ϕg−1(t)= −ϵ+ t and ϕg−1(ϕh(ϕg(t)))= ϵ(u − 1)+ ut,

so the subgroup Gred(R)⊂ G(R) fails to be normal.
Summing up, Gred ⊂ G is a smooth nonnormal subgroup scheme. The map

∑p−1
i=1 λi t i

7→ λ1 defines a
short exact sequence

0 → U → Gred → Gm → 0.

The inclusion U ⊂ Ap is given by λ0 = 0 and λ1 = 1, hence the underlying scheme of U is a copy of
the affine space Ap−2. By Lazard’s theorem [Demazure and Gabriel 1970, Chapter IV, §4, 4.1], the
group scheme U admits a composition series whose quotients are isomorphic to the additive group Ga .
Moreover, the projection Gred → Gm has a section via λ1 7→ λ1t . This is a homomorphism, hence Gred is
a semidirect product. □

Clearly, the group elements g ∈ G(R) with linear truncated polynomial ϕg = λ0 + λ1t form a closed
subgroup scheme B ⊂ G. It sits in a short exact sequence

0 → αp → B → Gm → 0, (9)

where the map on the left is given by λ0 7→ λ0 + t and the map on the right comes from λ0 + λ1t → λ1.
In particular, B is a connected solvable group scheme. We see later that B is maximal with respect to this
property, so one may regard it as a Borel group. However, we want to stress that this lies in a nonsmooth
group scheme, and B itself is nonreduced. We, therefore, call B ⊂ G a nonreduced Borel group.
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An element λ1 ∈ Gm(R) lies in the image if and only if λ0 = (1 − λ1)ω
1/p exists in R. It follows

that the extension (9) splits if and only if ω ∈ k is a p-power. Moreover, we see that the canonical
map Gm → Autαp/k = Gm is the identity. Note that the group of all such extension of Gm by αp, with
nontrivial Gm-action, is identified with k/k p, according to [Demazure and Gabriel 1970, Chapter III,
§6, Corollary 6.4]. Note that for p = 2, the inclusion B ⊂ G is an equality. In any case, the pullback of
the extension (9) along the inclusion µp ⊂ Gm admits a splitting given by λ1 7→ λ1t , and one sees that
B ×Gm µp = αp ⋊µp.

Write G[F] for the kernel of the relative Frobenius map G → G(p), which is a normal subgroup
scheme of height one. We now consider the resulting G/G[F] ⊂ G(p).

Proposition 8.4. The group scheme G/G[F] is smooth and coincides with the reduced part G(p)
red inside

the Frobenius pullback G(p).

Proof. We may assume that k is algebraically closed. We first verify that G/G[F] is reduced. The
short exact sequence (9) yields an inclusion αp ⊂ G. This is not normal, but contained in the Frobenius
kernel G[F]. The resulting projection G/αp → G/G[F] is faithfully flat, and it suffices to check that
the homogeneous space G/αp is reduced. Since G acts transitively, it is enough to verify that the local
ring at the image in G/αp of the origin e ∈ G is regular. According to [Schröer 2007, Proposition 2.2],
it is enough to check that in the local ring OG,e, the ideal a corresponding to the subgroup scheme
αp ⊂ G has finite projective dimension. But this is clear, because it is given by the complete intersection
λ1 = · · · = λp−1 = 0.

Thus G/G[F] is reduced. The reduced closed subschemes G/G[F] and G(p)
red inside the Frobenius

pullback have the same underlying set, whence G/G[F] = G(p)
red . The latter is smooth by Proposition 8.3,

thus the same holds for the former. □

Now consider the conjugacy map c : G → AutG/k , sending g ∈ G(R) to the automorphism x 7→ gxg−1.
In terms of truncated polynomials, gxg−1 is given by the triple substitution ϕg−1(ϕx(ϕg(t))).

Proposition 8.5. The conjugacy map c : G → AutG/k is an isomorphism.

Proof. For ω = 0, this holds by [Sancho de Salas 2000, Theorem 4.13]. The general case follows by
base-changing to kalg and using descent. □

In other words, the center and the scheme of outer automorphisms are trivial. One also says the group
scheme G is complete. Now recall that G = Gω depends on a scalar ω ∈ k.

Proposition 8.6. For each pair of scalars ω,ω′
∈ k×, the following are equivalent:

(i) The k-algebras Lω and Lω′ are isomorphic.

(ii) The group schemes Gω and Gω′ are isomorphic.

(iii) We have k p(ω)= k p(ω′) as subfields inside k.
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Proof. According to [Giraud 1971, Chapter III, Corollary 2.5.2], the category of twisted forms for Lω and
the category of twisted forms of Gω are both equivalent to the category of Gω-torsors. This implies the
equivalence of (i) and (ii).

It remains to check (i)⇐⇒ (iii). Write Lω = k[t]/(t p
−ω) and Lω′ = k[t ′

]/(t ′p
−ω′). Suppose first

that these algebras are isomorphic. Choose an isomorphism and regard it as an identification Lω = Lω′ .
Then t ′

=
∑p−1

i=0 λi t i , and consequently ω′
=

∑
λ

p
i ω

i . Hence, k p(ω′)⊂ k p(ω). By symmetry, the reverse
implication holds as well.

Conversely, suppose that k p(ω)= k p(ω′). If this subfield coincides with k p, then both ω,ω′
∈ k are

p-powers, hence both algebras Lω, Lω′ are isomorphic to k[t]/(t p). Suppose now that the subfield is
different from k p. Taking p-th roots we get k(ω1/p)= k(ω′1/p) inside some perfect closure kperf. These
fields are isomorphic to Lω and Lω′ , because both scalars ω,ω′

∈ k are not p-powers. □

In particular, each L = Lω is a twisted form of L0, and each G = Gω is a twisted form of G0. Up to
isomorphism, these twisted forms correspond to classes in nonabelian cohomology set H 1(k,G0). We
will use this throughout to gain insight into G, by using facts on G0. For example, from Proposition 8.1,
we see that the locus of nonsmoothness Sing(G0/k), defined as in [Fanelli and Schröer 2020, Section 2],
equals the whole scheme G0. Hence the same holds for G, because it is a twisted form of G0.

We now write Sing(G) for the singular locus of G, which comprise all points a ∈ G where the local
ring OG,a is singular. Note that the formation of such loci commutes with base-changes along separable
extension, but usually not with inseparable extensions.

Proposition 8.7. The local ring at the origin is singular, with embedding dimension edim(OG,e) = p.
Moreover, the inclusion Sing(G)⊂ G is not an equality if and only if ω ∈ k is not a p-power. In this case,
the singular locus has codimension one in G.

Proof. Since e ∈ G is a rational point, the embedding dimension of OG,a does not change under ground
field extensions. If ω ∈ k p, we have G ≃ G0, and thus for every point a ∈ G the local ring OG,a is singular.
Now suppose that ω is not a p-power, and consider the p-Fermat hypersurface X ⊂ Pp−1 defined by the
homogeneous polynomial λ0T p

0 + · · · + λp−1T p
p−1, with coefficient λi = ωi . The field extension k p

⊂ E
generated by λi/λ0 = ωi is nothing but k p(ω). It has degree [E : k] = p, hence its p-degree is d = 1.
According to [Schröer 2010, Theorem 3.3], the singular locus Sing(X)⊂ X has codimension d = 1. It
follows that Sing(G)⊂ G is not an equality.

Seeking a contradiction, we now assume that Z = Sing(G) has codimension ≥ 2. Then the scheme G is
normal, by Serre’s criterion. Choose a normal compactification Y = G. The canonical map k → H 0(Y,OY )

is bijective, because we have the rational point e ∈ G. According to [Schröer 2010, Lemma 1.3], the
base-change Y ⊗k k(ω1/p) remains integral. On the other hand, we just saw that G⊗k(ω1/p) is nonreduced,
a contradiction. □
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9. Witt algebras

We keep the notation from the previous section. Our goal now is to understand the restricted Lie algebra
g = gω, or equivalently, the Frobenius kernel, attached to the automorphism group scheme G = Gω of
the spectrum of the ring L = Lω = k[t]/(t p

−ω).
From G = AutSpec(L)/k , we get an identification g = Derk(L). Any k-derivation δ : L → L can be

seen as an L-linear map �1
L/k → Lω. The module of Kähler differentials is a free L-module of rank

one, generated by dt . Let ∂ ∈ g be the dual basis vector. In turn, we get the canonical k-basis t i∂ , with
0 ≤ i ≤ p − 1, and the Lie bracket is given by

[t i∂, t j∂] = ( j − i)t i+ j−1∂.

Using this relation with i = 0, and also with j = 0, together with [t p−1∂, t∂] = (2 − p)t p−1, one easily
sees that g is simple, provided p ̸= 2.

The p-map ( f ∂)[p]
= ( f ∂)p is the p-fold composition in Endk(L). It can be made explicit as follows:

For each truncated polynomial f =
∑p−1

i=0 λi t i , we write f p−1
=

∑p−1
i=0 Ci t i , where the Ci ∈ k are certain

polynomial expressions in the coefficients λ0, . . . , λp−1 and ω, which also depend on the prime p > 0.
Set C = C p−1. For example, with p = 5, the polynomial C becomes

(λ3
0λ4 + 2λ2

0λ1λ3 + λ2
0λ

2
2 + 2λ0λ

2
1λ2 + λ4

1)+ω(2λ0λ1λ
2
4 + 4λ0λ2λ3λ4 + 4λ0λ

3
3

+ 2λ2
1λ3λ4 + 2λ1λ

2
2λ4 + 2λ1λ2λ

2
3 + 4λ3

2λ3)+ω
2(4λ2λ

3
4 + λ2

3λ
2
4).

Proposition 9.1. We have ( f ∂)[p]
= C · f ∂ for every element f ∂ ∈ g. Moreover, the factor C is

homogeneous of degree p − 1 in the coefficients of f =
∑
λi t i .

Proof. Clearly, we have ∂ p
= 0. According to Hochschild’s formula [1955, Lemma 1], the p-fold

composition of f ∂ is given by

( f ∂)p
= f p∂ p

+ g∂ = g∂,

where g = ( f ∂)p−1( f ). Consider the differential operator D = ∂ f ∂ · · · f ∂ , where the number of ∂-factors
is p − 1, such that g = f D( f ). According to [Evans and Fuchs 2002, Theorem 2], we have D( f ) =

−∂ p−1( f p−1). Note that this result is purely formal and holds in any Fp-algebra with a chosen element f
and some derivation ∂ . Clearly, ∂ p−1(t i ) = 0 for 0 ≤ i ≤ p − 2, whereas ∂ p−1(t p−1) = (p − 1)! = −1.
Summing up, we have D( f )= C , and hence g = f C = C f . Then the statement on the p-map follows.
From

(∑
λi t i

)p−1
=

∑
Ci t i one immediately sees that each Ci = Ci (λ0, . . . , λp−1) is homogeneous of

degree p − 1. □

This has a remarkable consequence:

Corollary 9.2. Every vector in the restricted Lie algebra g is p-closed.

So each nonzero vector f ∂ ∈ g defines a subgroup scheme H ⊂ G of order p. Note that the
additive vectors might be viewed as rational points on the hypersurface of degree p − 1 defined by the
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homogeneous equation C(λ0, . . . , λp−1)= 0. For the primes p = 2 and p = 3, we get C(λ0 + λ1)= λ1

and C(λ0, λ1, λ2)= λ2
1 − λ0λ2, respectively, which then reveals the structure of g.

Corollary 9.3. For p = 2, we have g ≃ k ⋊ gl1(k). For p = 3, we have g ≃ sl2(k).

Proof. In the first case, one easily checks that the linear bijection g→k⋊gl1(k) given by (a+bt)∂ 7→ (a, b)
respects bracket and p-map. In the second case, the linear bijection

g → sl2(k), (a + bt + ct2)∂ 7→

(
b a

−c −b

)
likewise respects bracket and p-map. □

Consider the adjoint representation Ad : G → Autg/k , which sends each g ∈ G(R) to the derivative of
the conjugacy map cg given by x 7→ gxg−1. From [Waterhouse 1971, Theorem in Section 5.2], we get:

Proposition 9.4. For p ≥ 5 the adjoint representation Ad : G → Autg/k is an isomorphism of group
schemes.

So for p ≥ 5 our G can be seen as the automorphism group scheme for the ring L , the group scheme G
and the restricted Lie algebra g. Consequently, the three conditions in Proposition 8.6 are also equivalent to
gω ≃ gω′ . For p = 2, 3, the adjoint representation G → Autg/k is not bijective, according to Proposition 3.2.

We now come to the crucial result of this paper.

Theorem 9.5. Suppose that the scalar ω ∈ k is not a p-power, that k×
= k×(p−1) and that the Brauer

group Br(k) contains no element of order two. Then each subalgebra g′
⊂ g of dimension 1 ≤ n ≤ p − 1

is isomorphic to either k or gl1(k) or k ⋊ gl1(k) or sl2(k).

Proof. In the special case p = 2, the dimension of g′ must be n = 1, and it follows that g′ is a twisted
form of k or gl1(k). According to Proposition 3.2, all such twisted forms are trivial, so our assertion
indeed holds.

From now on, we assume p ≥ 3. Recall that g = Lie(G) is a twisted form of g0 = Lie(G0), where
G0 is the automorphism group scheme for the spectrum of L0 = k[t]/(t p). Let g0,red be the subalgebra
corresponding to the reduced part G0,red. According to Proposition 10.3 below, there is no vector x ̸= 0 in
g such that x ⊗ 1 ∈ g⊗ k(ω1/p) is contained in g0,red ⊗ k(ω1/p). In particular, the latter does not contain
the base-change g′

⊗ k(ω1/p).
It follows that the further base-change g′

⊗ kalg is not contained in g0,red ⊗ kalg. Such subalgebras
were studied by Premet and Stewart [2019, Section 2.2]. They remark on page 971 that a subalgebra
in g0 ⊗ kalg is not contained in g0,red ⊗ kalg if and only if it does not preserve any proper nonzero ideal,
and they call such subalgebras transitive. We, thus, may apply loc. cit. Lemma 2.2 and infer that g′ is a
twisted form of k or gl1(k) or k ⋊ gl1(k) or sl2(k). By assumption, the groups k×/k×(p−1) and Br(k)[2]

vanish. According to Proposition 3.2, the four restricted Lie algebras in question have no twisted forms
over our field k, thus g′ is isomorphic to one of them. □

Consequently, for every g′
⊂ g as above over any ground field k, one finds a finite separable extension,

so that the base-change of g′ belongs to the given list.
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10. Twisting adjoint representations

We keep the assumption of the preceding section and establish the crucial ingredients for the proof of
Theorem 9.5. Recall that we are in characteristic p > 0 and that G = Gω is the automorphism group
scheme of the spectrum of L = Lω = k[t]/(t p

−ω), for some scalar ω ∈ k. The resulting restricted Lie
algebra g = Lie(G) is the p-dimensional vector space Derk(L), which comprises the derivations f (t)∂ ,
where f =

∑p−1
i=0 µi t i is a truncated polynomial. Moreover, the group elements g ∈ G(R) act from the

left on the spectrum of L ⊗k R, and from the right on the coordinate ring L ⊗k R via the substitution
t 7→ ϕg(t), for the corresponding truncated polynomial ϕg(t) =

∑p−1
i=0 λi t i . The coefficients define an

embedding G ⊂ Ap of the underlying scheme. For each g ∈ G(R), write cg for the induced inner
automorphism x 7→ gxg−1. The resulting conjugacy map c : G → AutG/k is given in terms of truncated
polynomials by the formula

ϕgxg−1(t)= ϕg−1
(
ϕx(ϕg(t))

)
.

By functoriality, the elements cg ∈ AutG/k(R) induce an automorphism Adg = Lie(cg) of g⊗k R, which
defines the adjoint representation Ad : G → Autg/k .

Proposition 10.1. Let g ∈ G(R), and write ϕ(t)= ϕg−1(t) for the truncated polynomial of the inverse g−1.
Then the formal derivative ϕ′(t) is a unit in the ring L ⊗k R, and for each f (t)∂ ∈ g⊗k R, we have

Adg( f (t)∂)=
f (ϕ(t))
ϕ′(t)

∂.

Proof. By definition, the element f (t)∂ ∈ g⊗k R ⊂ G(R[ϵ]) acts on the algebra L ⊗ R[ϵ] via

h(t) 7→ h(t)+ ϵ f (t)∂(h)= h(t)+ ϵ f (t)h′(t).

Thus, the adjoint Adg( f (t)∂)= g−1
◦ f (t)∂ ◦ g is given by the following composition:

t 7→ ϕg(t) 7→ ϕg(t)+ ϵ f (t)ϕ′

g(t) 7→ ϕg(ϕg−1(t))+ ϵ f (ϕg−1(t))ϕ′

g(ϕg−1(t)). (10)

For a moment, let us regard the truncated polynomials ϕg(t) and ϕg−1(t) as elements in the polynomial
ring R[t]. Then t = ϕg(ϕg−1(t))+ (t p

−ω)h(t) for some polynomial h(t). Taking formal derivatives and
applying the chain rule, we obtain

1 = ϕ′

g(ϕg−1(t)) ·ϕ′

g−1(t)+ (t p
−ω)h′(t).

This gives 1 = ϕ′
g(ϕg−1(t)) ·ϕ′

g−1(t) in the truncated polynomial ring L ⊗k R = R[t]/(t p). It follows that
ϕ(t)= ϕ′

g−1(t) is a unit, with inverse ϕ′
g(ϕg−1(t)). Substituting for the term on the right in (10) gives the

desired formula for Adg( f (t)∂). □

Now consider the additive vector ∂ ∈ g, which corresponds to an inclusion of the infinitesimal group
scheme H =αp into the group scheme G. The R-valued points h ∈ H(R)={λ∈ R |λp

= 0} correspond to
truncated polynomials ϕh(t)= t +λ. The inverse R-valued point has ϕh−1 = t −λ, with formal derivative
ϕ′

h−1(t)= 1. This immediately gives:
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Corollary 10.2. With the above notation, we have Adh( f (t)∂)= f (t−λ)∂ for every element f (t)∂∈g⊗k R.

Recall that G = Gω depends on some scalar ω ∈ k, and is a twisted form of G0. The latter coincides
with its own Frobenius pullback. By Proposition 8.3, the reduced part G0,red is a nonnormal subgroup
scheme. Recall that the embedding G0 ⊂ Ap is given by λp

0 = 0 and λ1 ̸= 0, such that G0,red is defined
by λ0 = 0 and λ1 ̸= 0. Write g0,red ⊂ g0 for the resulting subalgebra, which comprises the derivations f ∂ ,
where the truncated polynomial f =

∑p−1
i=0 λi t i has λ0 = 0. Write H0 ⊂ G0 for the copy of αp given by

the additive vector ∂ ∈ g0.
Now suppose that our ground field k is imperfect, that our scalar ω ∈ k is not a p-power and consider

the resulting field extension k(ω1/p). In light of Lemma 7.1, we may endow its spectrum T with
the structure of an H0-torsor. Lemma 3.1 gives an identification Tg0 = gω, and thus an identification
g0 ⊗k k(ω1/p)= gω⊗k k(ω1/p). The following fact was a crucial ingredient for the proof of Theorem 9.5:

Proposition 10.3. The twisted form gω contains no vector x ̸= 0 such that the induced vector x ⊗ 1 inside
g0 ⊗k k(ω1/p)= gω ⊗k k(ω1/p) is contained in the base-change g0,red ⊗k k(ω1/p).

Proof. Setting V = g0 and V ′
= g0,red, we see that action of H0 = αp via the adjoint representation

G0 → Autg0/k is exactly as described in Proposition 7.2, and the assertion follows. □

11. Subalgebras

Throughout this section, k is a field of characteristic p > 0 and k ⊂ E is a field extension. Suppose we
have a group scheme H of finite type over k, a group scheme G of finite type over E and a homomorphism
f : H ⊗k E → G. We shall see that in certain circumstances, important structural properties of the
Frobenius kernel G[F] are inherited to H [F].

Consider the finite-dimensional restricted Lie algebra h = Lie(H) over k and g = Lie(G) over E . Our
homomorphism of group schemes induces an E-linear homomorphism

Lie( f ) : h⊗k E → g, x ⊗α 7→ αx,

of restricted Lie algebras which corresponds to a k-linear homomorphism h→ g of restricted Lie algebras.
We are mainly interested in the case that E is the function field of an integral k-scheme X of finite type,
such that g is an infinite-dimensional k-vector space. Set N = Ker( f ), with Lie algebra n = Ker(Lie( f )).

Proposition 11.1. The following are equivalent:

(i) The k-linear homomorphism h → g is injective.

(ii) For every nontrivial subgroup scheme H ′
⊂ H that is minimal with respect to inclusion, the base-

change H ′
⊗k E is not contained in the kernel N ⊂ H ⊗k E.

Proof. We prove the contrapositive: Suppose h→ g is not injective. Inside the kernel, choose a subalgebra
h′

̸= 0 that is minimal with respect to inclusion. Then the induced E-linear map h′
⊗k E → g is zero. By

the Demazure–Gabriel correspondence, the corresponding subgroup scheme H ′
⊂ H of height one is

minimal with respect to inclusion, and H ′
⊗k E ⊂ N . Conversely, suppose H ′

⊗k E ⊂ N for some H ′
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as in (ii). Choose some nonzero vector x from h′
= Lie(H ′). By construction, it lies in the kernel

for h → g. □

We now suppose that the above equivalent conditions hold, and regard the injective map as an inclusion
h⊂ g. To simplify exposition, we also assume that k is algebraically closed and that h contains an E-basis
for g. In other words, the induced linear map h⊗k E → g is surjective. Note that this E-linear map is
usually not injective. However, we shall see that important structural properties of g transfer to h. We
start with a series of three elementary but useful observations.

Lemma 11.2. If every vector in g is p-closed, the same holds for every vector in h.

Proof. Fix some nonzero x ∈ h. By assumption, we have x [p]
= αx for some α ∈ E , and our task is

to verify that this scalar already lies in k. Since the latter is algebraically closed, it is enough to verify
that α is algebraic over k. By induction on i ≥ 0, we get x [pi

]
= αni x for some strictly increasing

sequence 0 = n0 < n1 < · · · of integers. Since dimk(h) <∞, there is a nontrivial relation
∑r

i=0 λi x [pi
]

for some r ≥ 0 and some coefficients λi ∈ k. This gives
∑
λiα

ni x = 0. Since x ̸= 0, we must have∑
λiα

ni = 0, hence α ∈ E is algebraic over k. □

Lemma 11.3. The restricted Lie algebras g and h have the same toral rank, and the kernel n for
h⊗k E → g has toral rank ρt(n)= 0.

Proof. It follows from [Block and Wilson 1988, Lemma 1.7.2] that ρt(h)= ρt(g)+ρt(n), and in particular
ρt(g)≤ ρt(h). For the reverse inequality, suppose there are k-linearly independent vectors x1, . . . , xr ∈ h

with [xi , x j ] = 0 and x [p]

i = xi . We have to check that the vectors are E-linearly independent. Suppose
there is a nontrivial relation. Without loss of generality, we may assume that x1, . . . , xr−1 are E-linearly
independent and that xr =

∑r−1
i=1 λi xi for some coefficients λi ∈ E . From the axioms of the p-map, we get∑

λi xi = xr = x [p]

r =

(∑
λi xi

)[p]

=

∑
λ

p
i x [p]

i =

∑
λ

p
i xi .

Comparing coefficients gives λp
i = λi . Thus, λi lie in the prime field, in particular in k. In turn, the

vectors are k-linearly dependent, contradiction. □

Let us call the restricted Lie algebra h simple if it is nonzero and contains no ideal besides a = 0
and a = h.

Lemma 11.4. Suppose there is a restricted Lie algebra h′ over k such that g is a twisted form of the
base-change h′

⊗k E. If h′ is simple of dimension n′
≥ 2, we must have h ≃ h′ and g ≃ h′

⊗k E.

Proof. Let H and H ′ be the finite group schemes of height one corresponding to the restricted Lie
algebras h and h′, respectively. Consider the Hom scheme X ⊂ HilbH×H ′ of surjective homomorphisms
H → H ′. By assumption, this scheme contains a point with values in the algebraic closure Ealg. By
Hilbert’s Nullstellensatz, there must be a point with values in k, hence there is a surjective homomorphism
H → H ′. It corresponds to a short exact sequence of restricted Lie algebras

0 → a → h → h′
→ 0.
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We claim that the ideal a vanishes. Suppose this is not the case. Clearly, h′ and g have the same toral
rank. By Lemma 11.3, g and h also have the same toral rank. According to [Block and Wilson 1988,
Lemma 1.7.2], we have ρt(a)= 0, so the p-map on a is nilpotent. On the other hand, the p-map on h′ is
not nilpotent, because the Lie algebra is simple of dimension dim(h′)≥ 2. The same holds for g, and we
infer that the induced map a⊗k E → g is not surjective. Its image b⊊ g is nonzero, because h⊂ g. Since
g is simple, there are elements x ∈ b and y ∈ g with [x, y] ̸∈ b. Such vectors may be chosen with x ∈ a

and y ∈ h, because a ⊂ b and h ⊂ g contain E-bases. Consequently, a ⊂ h is not an ideal, contradiction.
This shows that h = h′. In particular, h and g have the same dimension as vector spaces, so our

surjection h⊗k E → g must be bijective. Our assertions follow. □

For each a ∈ h, the Lie bracket ada(x) = [a, x] defines a k-linear endomorphism of h, but also an
E-linear endomorphism of g. Write adh,a and adg,a for the respective maps, and µh,a(t) ∈ k[t] and
µg,a(t) ∈ E[t] for the resulting minimal polynomials.

Lemma 11.5. We have µh,a(t)= µg,a(t). In particular, the endomorphism adg,a is trigonalizable, and its
eigenvalues coincide with those of adh,a . Moreover, the former is diagonalizable if and only if this holds
for the latter.

Proof. The surjection h⊗k E → g already reveals that µg,a(t) divides µh,a(t). The latter decomposes
into linear factors over k, because this field is algebraically closed. We conclude that µg,a(t)=

∑
λi t i

actually lies in k[t], and decomposes into linear factors over k. Moreover, for each vector x from h ⊂ g,
we have

∑
λi adi

h,a(x)= 0, hence µh,a(t) divides µg,a(t). In turn, the two minimal polynomials coincide.
The remaining assertions follow immediately. □

We now consider some special cases for g, and deduce structure results for h. Recall that kn denotes the
n-dimensional restricted Lie algebra over k with trivial bracket and p-map. The following fact is obvious:

Proposition 11.6. If g is isomorphic to Em , then the restricted Lie algebra h is isomorphic to kn for some
integer n ≥ m.

Recall that kn ⋊ϕ gl1(k) denotes the semidirect product formed with respect to the homomorphism
ϕ : gl1(k)→ gl(kn)= Der′k(k

n) that sends scalars to scalar matrices.

Proposition 11.7. If g is isomorphic to Em⋊ gl1(E), then the restricted Lie algebra h is isomorphic to
kn ⋊ gl1(k) for some n ≥ m.

Proof. Without loss of generality, we may assume g = Em ⋊ gl1(E). First, recall that bracket and p-map
are given by the formulas

[v+ λe, v′
+ λ′e] = λv′

− λ′v and (v+ λe)[p]
= λp−1(v+ λe), (11)

where v ∈ En , and e ∈ gl1(E) denotes the unit. In particular, each vector is p-closed. Moreover, a = v+λe
is multiplicative if and only if λ ̸= 0, and a[p]

= a if and only if λ ∈ µp−1(E). For any such vector, we
see that the endomorphism ada(x)= [a, x] is diagonalizable, and En

⊂ g is the eigenspace with respect
to the eigenvalue α = λ, whereas the line Ea ⊂ g is the eigenspace for α = 0.
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From the extension 0 → Em
→ g → gl1(E)→ 0, one sees that g has toral rank one. According to

Lemma 11.3, the same holds for h. Choose some nonzero vector a ∈ h with a[p]
= a. Then a = v+ λe

for some λ ∈ µp−1(E)⊂ k×. Replacing a by λ−1a, we may assume λ= 1. By Lemma 11.5, the adjoint
representation adh,a is diagonalizable, with eigenvalues α = 0 and α = 1. Let h = U0 ⊕ U1 be the
corresponding eigenspace decomposition. Then U0 lies in the corresponding eigenspace for adg,a , which
is En

⊂ g. It follows that U0 has trivial Lie bracket and p-map. The choice of a k-basis gives U0 = kn for
some n ≥ 0. Likewise, U1 is contained in Ea. Thus the bracket vanishes on U1, and the p-map is injective.
Using Lemma 11.3, we infer that U1 = ka. The vector space decomposition h = U0 ⊕U1 thus becomes a
semidirect product h = kn ⋊ gl1(k). We must have m ≥ n, because the map h⊗k E → g is surjective. □

Recall that sl2(E) is simple for p ≥ 3. Using Lemma 11.4, we immediately obtain:

Proposition 11.8. Suppose p ≥ 3. If g is isomorphic to a twisted form of sl2(E), then the restricted Lie
algebra h is isomorphic to sl2(k).

12. Structure results for Frobenius kernels

We now come to our main result. Let k be an algebraically closed field of characteristic p > 0, and
let X be a proper integral scheme or more generally a proper integral algebraic space, H = AutX/k[F]

be the Frobenius kernel for the automorphism group scheme and h = H 0(X,2X/k) the corresponding
restricted Lie algebra over k. Let HF = H ⊗k F be the base-change to the function field F = k(X),
and H inert

F ⊂ HF the inertia subgroup scheme for the rational point in the spectrum of F ⊗E F , with
corresponding restricted Lie algebra hinert

F ⊂ hF . Recall that the foliation rank r ≥ 0 is given by

r = dim
(
hF/h

inert
F

)
= dim

(
�1

F/E
)

and
[
HF : H inert

F
]
= [F : E] = pr ,

where E = Fh is the kernel for all derivations D : F → F from the Lie algebra h. This is nothing but the
function field E = k(Y ) of the quotient Y = X/H .

Theorem 12.1. Suppose that the proper integral scheme X has foliation rank r ≤ 1. Then the Frobenius
kernel H = AutX/k[F] is isomorphic to the Frobenius kernel of one of the following three basic types of
group schemes:

SL2 and G⊕n
a and G⊕n

a ⋊Gm,

for some integer n ≥ 0.

Proof. The case r = 0 is trivial, so we assume r = 1 such that h ̸= 0. By assumption the subfield E = Fh

has [F : E] = p, and we thus have F = E[T ]/(T p
−ω) for some ω ∈ E . Thus, the restricted Lie algebra

g= DerE(F) is a twisted form of the Witt algebra g0 over E . By construction, we have an inclusion h⊂ g.
Suppose first that the induced homomorphism h⊗E → g is surjective, such that the results of Section 11

apply. Suppose first p ≤ 3. Then g is isomorphic to either E ⋊gl1(E) or sl2(E), by Corollary 9.3, and our
assertion follows from Propositions 11.7 and 11.8. The case p ≥ 5 actually does not occur: Then the Witt
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algebra h′
= Derk(k[t]/(t p)) is simple, as remarked at the beginning of Section 9, and g is a twisted form

of h′
⊗k E . It follows from Lemma 11.4 that g ≃ h′

⊗k E . Combining Propositions 9.4 and 8.6, we get

E[T ]/(T p
−ω)≃ E[T ]/(T p),

a contradiction.
It remains to treat the case that h⊗ E → g is not surjective. Then g′

= h · E is a restricted subalgebra
of dimension 1 ≤ n ≤ p − 1. We now replace the field E by some separable closure E sep, and likewise
F by F ⊗E E sep. According to Theorem 9.5, the restricted Lie algebra g′ is isomorphic to either sl2(E)
or E or gl1(E) or E ⋊ gl1(E). By the results in Section 11, this ensures that h is isomorphic to sl2(k)
or kn or kn ⋊ gl1(k) for some n ≥ 0. These are the Frobenius kernels for the group schemes in question,
and our assertion follows. □

In the former case, the Frobenius kernel is sl2(k). This indeed occurs for X = P1. In the latter two
cases, the respective Frobenius kernels are α⊕n

p and α⊕n
p ⋊µp. With Corollary 6.6, we immediately get

the following consequence:

Corollary 12.2. Suppose that X is a proper normal surface with h0(ω∨

X )= 0. Then H = AutX/k[F] is
isomorphic to the Frobenius kernel of one of the three basic types of group schemes in Theorem 12.1.

This applies, in particular, to smooth surfaces S of Kodaira dimension kod(S) ≥ 1, to surfaces of
general type and their minimal models or normal surfaces X with c1 = 0 and ωX ̸= OX having at most
rational double points.

13. Canonically polarized surfaces

Let k be a ground field of characteristic p > 0 and X be a proper normal surface with h0(OX )= 1 whose
complete local rings O∧

X,a are complete intersections. Then the cotangent complex L•

X/k is perfect, and
we obtain two Chern numbers

c2
1 = c2

1(L
•

X/k) and c2 = c2(L
•

X/k),

as explained by Ekedahl, Hyland and Shepherd–Barron [Ekedahl et al. 2012, Section 3]. In some sense,
these integers are the most fundamental numerical invariants of the surface X . Note that c2

1 is nothing but
the self-intersection number K 2

X = (ωX ·ωX ) of the dualizing sheaf. If the singularities are also rational,
hence rational double points, the Chern numbers of X coincide with the Chern numbers of the minimal
resolution of singularities S, according to loc. cit. Proposition 3.12 and Corollary 3.13. For more details
on rational double points, we refer to [Lipman 1969; Artin 1977].

Recall that a canonically polarized surface is the canonical model X of a smooth surface S of general
type. Then ωX is ample, all local rings OX,a are either regular or rational double points, and the above
applies. Let us record the following facts:

Lemma 13.1. Suppose that X is canonically polarized. Then

χ(OX )=
1

12(c
2
1 + c2) and h0(ωX )≤

1
2(c

2
1 + 4) and c2 ≤ 5c2

1 + 36.
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Proof. Let f : S → X be the minimal resolution of singularities. Then S is a smooth minimal surface of
general type, and the first formula holds for S instead of X by Hirzebruch–Riemann–Roch. We already
observed that the surfaces X and S have the same Chern numbers, and the structure sheaves have the
same cohomology. Thus the formula also holds for X . In particular, we have

h0(ωX )= h2(OX )= h2(OS)= h0(ωS),

and Noether’s inequality (for example, [Liedtke 2013a, Section 8.3]) for the minimal surface of general
type S gives the second formula. This ensures

χ(OX )= 1 − h1(ωX )+ h0(ωX )≤ 1 + h0(ωX )= 1 + h0(ωS)≤
c2

1 + 6
2

.

Combining with χ(OX )= (c2
1 + c2)/12 we get the third inequality. □

Theorem 13.2. Let X be canonically polarized surface, with Chern numbers c2
1, c2. Then the Lie algebra

h = H 0(X,2X/k) for the Frobenius kernel H = AutX/k[F] has the property dim(h)≤8(c2
1, c2) for the

polynomial

8(x, y)=

{ 1
144(73x + y)2 − 1, if c2

1 ≥ 2,
1

144(121x + y)2 − 1, if c2
1 = 1.

Moreover, we also have the weaker bound dim(h)≤9(c2
1) with the polynomial

9(x)=

{169
4 x2

+ 39x + 8, if c2
1 ≥ 2,

441
4 x2

+ 63x + 8, if c2
1 = 1.

Proof. Fix some m ≥ 3. Serre Duality gives hi (ω⊗m
X ) = h2−i (ω⊗1−m

X ). This vanishes for i = 2,
because ωX is ample, and also for i = 1 by [Ekedahl 1988, Chapter II, Theorem 1.7]. Thus, we have
h0(ω⊗m

X )= χ(ω⊗m
X ), and Riemann–Roch gives

h0(ω⊗m
X )= χ(OX )+

1
2(m

2
− m)c2

1. (12)

According to [Ekedahl 1988, Chapter III, Theorem 1.20], the invertible sheaf ω⊗m
X is very ample for

c2
1 ≥ 2 and m = 4, or c2

1 = 1 and m = 5. It then defines a closed embedding X ⊂ Pn with ωX = OX (1)
and n + 1 = h0(ω⊗m

X ).
The following argument, which gives a better estimate than our original reasoning, was kindly commu-

nicated by the referee: The canonical linearization of ωX and its power ω⊗m
X yields a homomorphism

AutX/k → AutPn/k = PGLn+1,k such that the inclusion X ⊂ Pn is equivariant with respect to the action of
G = AutX/k . In particular, the homomorphism of group schemes is a closed embedding, and the resulting
inclusion of tangent spaces H 0(X,2X/k)⊂ H 0(Pn,2Pn/k) gives the estimate h0(2X/k)≤ h0(ω⊗m

X )2 −1.
Substituting (12) and using χ(OX )= (c2

1 + c2)/12, we get

h0(2X )≤

(
c2

1 + c2

12
+
(m2

− m)
2

c2
1

)2

− 1 =
1

144
(
(6m2

− 6m + 1)c2
1 + c2

)2
− 1.
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By setting m = 4 and m = 5, we get the desired bound dim(h) ≤ 8(c2
1, c2). Finally, the inequality

c2 ≤ 5c2
1 + 36 from Lemma 13.1 yields the weaker bound dim(h)≤9(c2

1). □

14. Examples

Let k be a ground field of characteristic p > 0. In this section, we give examples of canonically polarized
surfaces X where the Frobenius kernel of the automorphism group scheme is isomorphic to α⊕n

p ⋊µp

and α⊕m
p . Note that we do not have examples where SL2[F] occurs.

To start with, view P2 as the homogeneous spectrum of k[T0, T1, T2]. Fix some d ≥ 1, set L = OP2(d)
and consider the section

s = T0T1T pd−2
2 + T1T2T pd−2

0 + T2T0T pd−2
1 ∈ 0(P2,L ⊗p). (13)

Regarded as L ⊗−p
→ OP2 , this endows the coherent sheaf A =

⊕p−1
i=0 L ⊗−i with the structure of a

Z/pZ-graded OP2-algebra, and we define X = Spec(A ) as the relative spectrum.

Proposition 14.1. In the above setting, suppose p ̸= 3 and d ≥ 4. Then

h = kn ⋊ gl1(k) and AutX/k[F] = α⊕n
p ⋊µp,

where n = (d + 1)(d + 2)/2. Moreover, X is a canonically polarized surface with Chern invariants
c2

1 = p(pd − d − 3)2 and c2 = 3p + dp(p − 1)(pd − 3).

Proof. Being locally a hypersurface in affine three-space, the scheme X is Gorenstein. According to
[Ekedahl 1988, Chapter I, Proposition 1.7], the dualizing sheaf is given by ωX = π∗(ωP2 ⊗L p−1), which
equals the pullback of OP2(pd − d − 3). The statement on c2

1 follows. Using d(p − 1)− 3 ≥ d − 3 ≥ 1,
we see that ωX is ample. Since π : X → P2 is finite, the Euler characteristic χ(OX ) equals

p−1∑
i=0

χ(OP2(−id))=

p−1∑
i=0

(2−id
2

)
=

12p − 9d(p − 1)p + d2(p − 1)p(2p − 1)
12

.

Now suppose for the moment that we already know that X is geometrically normal, with only rational
double points. Then X is a canonically polarized surface, and Lemma 13.1 yields the statement on c2.

We proceed by computing h = H 0(X,2X/k) as a vector space. The grading of the structure sheaf
A =

⊕p−1
i=0 L ⊗−i corresponds to an action of G = µp on the scheme X , with quotient P2. Let

D : OX →2X/k be the corresponding multiplicative vector field, and OX (1)⊂2X/k the saturation of
the image, for some effective Weil divisor 1⊂ X . Lemma 14.5 below gives an exact sequence

0 → OX (1)
D
−→2X/k → ω⊗−1

X (−1).

The term on the right has no nonzero global sections, because ωX is ample, and consequently, we get
H 0(X,OX (1))= H 0(X,2X/k). We have ωX = π∗(ωP2)⊗OX ((p −1)1) by [Rudakov and Shafarevich
1976, Proposition 2 combined with Proposition 3], which gives OX (1)= π∗(L ). Consequently,

H 0(X,OX (1))= H 0(P2,A ⊗ L )= H 0(P2,L )⊕ H 0(P2,OP2)= kn
× k,

with the integer n = (d + 1)(d + 2)/2, as desired.
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It is not difficult to compute bracket and p-map for h = H 0(X,2X/k). The coordinate rings for the
affine open sets Ui = D+(Ti ) of P2 are the homogeneous localizations Ri = k[T0, T1, T2](Ti ), and the
preimages π−1(Ui ) are the spectra of Ai = Ri [ti ]/(t

p
i − si ). Here, si denotes the dehomogenization

of (13) with respect to Ti . We have2Ai/Ri = Ai∂/∂ti , and our multiplicative vector field restricts becomes
D = ti∂/∂ti . For any bi , b′

i ∈ Ri , one immediately calculates[
bi
∂

∂ti
, ti

∂

∂ti

]
= bi

∂

∂ti
,

[
bi
∂

∂ti
, b′

i
∂

∂ti

]
= 0 and

(
bi
∂

∂ti

)[p]

= 0.

Choosing a basis for H 0(P2,L ), we infer that the vector space decomposition h=H 0(P2,L )⊕H 0(P2,OP2)

becomes a semidirect product structure h = kn ⋊ gl1(k) for the restricted Lie algebra.
It remains to check that Sing(X/k) is finite, and that all singularities are rational double points. For

this, we may assume that k is algebraically closed. In light of the symmetry in (13), it suffices to verify
this on the preimage V = π−1(U ) of the open set U = D+(T0). Setting x = T1/T0 and y = T2/T0, we
see that V has coordinate ring A = k[x, y, t]/( f ) with

f = t p
− xy − x pd−2 y − xy pd−2.

The singular locus comprises the common zeros of f and the partial derivatives

∂ f
∂x

= −y + 2x pd−3 y − y pd−2
= 0,

∂ f
∂y

= −x − x pd−2
+ 2xy pd−3

= 0.

Clearly there are only finitely many singularities with x = 0 or y = 0. For the remaining part of Sing(X),
it suffices to examine the system of polynomial equations

−1 + 2x pd−3
− y pd−3

= 0 and − 1 − x pd−3
+ 2y pd−3

= 0. (14)

This is a system of linear equations in the powers x pd−3 and y pd−3, and one solution is x pd−3
= y pd−3

= 1.
Using p ̸= 3 we see that there are no other solutions.

It remains to verify that all singularities are rational double points. It would be tedious and cumbersome
to do this explicitly. We resort to a trick of independent interest, where we actually show that there are
only rational double points of A-type: By Lemma 14.3 and Proposition 14.4, it suffices to verify that no
singular point is a zero for the polynomial(

∂2 f
∂x∂y

)2

−
∂2 f
∂x2 ·

∂2 f
∂y2 ,

which gives the additional equation

1 + 4x2pd−6
+ 4y2pd−6

− 4x pd−3
− 4y pd−3

− 28(xy)pd−3
= 0. (15)

Substituting x pd−3
= y pd−3

= 1, the left side becomes 1 + 4 + 4 − 4 − 4 − 28 = −27, which is indeed
nonzero because p ̸= 3. □
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Note that π : X → P2 is a universal homeomorphism, so the geometric fundamental group of X is
trivial, and b1 = 0 and b2 = 1. Let x1, . . . , xr be the geometric singularities on X . We saw above that they
are rational double points of certain Ani . One referee pointed out that they all have ni = p − 1, which
can be seen by considering the action of the Frobenius on the local class group, which is multiplication
by p on a cyclic of order ni + 1. Since the Frobenius factors over the projective plane, one infers that
ni + 1 | p, hence ni + 1 = p. As discussed in Section 13, the Chern number c2 is the alternating sum of
the Betti numbers on the minimal resolution of X , which yields the formula c2 − 3 = r(p − 1).

One referee also pointed out that the arguments in the proof for Proposition 14.1 hold true for general
polynomials s ∈ 0(P2,L ⊗p) of degree pd , provided that pd − d − 2> 0 and d ≥ 2, by using the result
of Liedtke [Liedtke 2013b, Theorem 3.4], which ensures that all occurring singularities must be rational
double points of type Ap−1.

Let us remark that the surface X ⊂ P3 defined by the homogeneous polynomial

s = T0T1T 2p−1
2 − T0T1T 2p−1

3 + T 2p
0 T2 + T 2p

1 T3 + T 2p+1
2 + T 2p+1

3

is a canonically polarized surface with

c2
1 = (2p − 3)2(2p + 1) and c2 = 8p3

− 4p2
+ 2p + 3,

such that h = H 0(X,2X/k) is isomorphic to gl1(k). We leave the details to the reader.
Next, we construct examples of smooth surfaces of general type X where the restricted Lie algebra

h= H 0(X,2X/k) is isomorphic to km . The possibility of the following construction was suggested by one
of the referees: Let C be a smooth curve with h0(OC)=1, together with an isomorphism ϕ :L ⊗pl

→�1
C/k

that is locally exact, for some invertible sheaf L of degree d ≥ 1, and some integer l ≥ 1 prime to the
characteristic p > 0. This datum is called a generalized Tango curve of index l.

We are mainly interested in the case l ≡ −1 modulo p, and then write l = pn − 1. Lang [1983] used
this situation to construct smooth surfaces X endowed with a fibration f : X → C with OC = f∗(OX ),
where all geometric fibers are singular rational curves with a unique cuspidal singularity. One also says
that (C,L , ϕ) is a generalized Tango curve of type (p, n, d), and X is the resulting generalized Raynaud
surface of type (p, n, d).

Proposition 14.2. In the above setting, suppose that p ≥ 3 and n ≥ 2. Then X is a minimal surface of
general type with

h = km and AutX/k[F] = α⊕m
p ,

with m =h0(L ). Further, the Chern invariants are given by c2
1 =d(p4n2

+4p+2np−n2 p2
−4np2

−2np3)

and c2 = 2pd(1 − np).

Proof. We may assume that k is algebraically closed. Since we assume that our Tango curve has index
l ≡ −1 modulo p, and the characteristic is p ≥ 3, we have m = h0(L ), according to [Takeda 1992,
Theorem 2.1]. Lang computed the Chern invariants, and observed that X is minimal and of general type
[Lang 1983, Theorem 2 and beginning of Section 2].
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Both restricted Lie algebras km ⋊ gl1(k) and sl2(k) contain nonzero multiplicative elements. In light
of Theorem 12.1, our task is to verify that nonzero multiplicative vector fields do not exist on X . Seeking
a contradiction, we suppose that δ ∈ H 0(X,2X/k) is such a vector field. The saturation OY (1) for
the injection δ : OY → 2Y/k defines an effective Cartier divisor 1 ⊂ X . It follows from [Rudakov
and Shafarevich 1976, Theorem 2], that every connected component is smooth. Hence, the irreducible
components are pairwise disjoint, and horizontal for the fibration f : X → C , because all closed fibers
are singular.

To reach a contradiction we examine various curves on X and their intersection numbers. Write F ⊂ X
for a closed fiber, D ⊂ X for reduced support of �1

X/C , and S ⊂ X for the canonical section constructed
in [Lang 1983, Section 2]. Note that D is also called the curve of cusps. According to loc. cit., one has

S2
= d, F2

= 0, (F · S)= 1 and D = −pd F + pS.

Consequently D2
= −p2d. For the curve G = d F + nD, we get G2

= dnp(2 − np) < 0. According to
loc. cit., Theorem 1, there is an exact sequence

0 → OX (G)→2X/k → ω⊗−1
X (−G)→ 0,

giving an identification H 0(X,OX (G)) = H 0(X,2X/k). Our global vector field δ factors over the
inclusion OX (G), which gives an equality OX (1) = OX (G) as subsheaves of 2X/k . In particular, the
curves 1 and G are linearly equivalent. Decompose the smooth curve 1=11 +· · ·+1r into irreducible
components. We already observed that each 1i is horizontal. From 1 · (d F + nD)= G2 < 0, we infer
that D ⊂1. Now consider 1′

=1− D, which contains neither D nor F , and is linearly equivalent to
G ′

= d F + (n − 1)D. Then

pd(n − 1)(2 − (n − 1)p)= (G ′)2 = (d F + (n − 1)D) ·1′
≥ 0.

By our assumptions, we have p ≥ 3 and n ≥ 2, hence the left side is strictly negative, a contradiction. □

There are indeed generalized Tango curves C of type (p, n, d) with nonzero m = h0(L ), for instance
the curve C with affine equation ylp

− y = x lp−1, where we set l = pn − 1, according to [Takeda 1992,
Example 1.2].

It remains to verify some technical results used throughout this section. The following results are well
known over the field of complex numbers (compare, for example, [Kollár and Mori 1998, Section 4.2]
and [Arnold et al. 1985, Part II]). The arguments apparently work in all characteristics except p = 2. For
the convenience of the reader, we give self-contained and characteristic-free proofs.

Let A be a complete local k-algebra that is regular of dimension three, with maximal ideal mA and
residue field k = A/mA. Note that for each choice of regular system of parameters x, y, z ∈ A, one
obtains an identification A = k[[x, y, z]].

Lemma 14.3. Let f ∈ A be an irreducible element such that f ≡ x0 y0 +λz2
0 modulo m3

A for some regular
system of parameters x0, y0, z0 and some λ ∈ k. Then there exists another regular system of parameters
x, y, z such that ( f )= (xy+zn), for some n ≥2. Hence, B = A/( f ) is a rational double point of type An−1.
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Proof. We construct, by induction on n ≥ 0, certain regular system of parameters xn, yn, zn ∈ A such that
xn ≡ xn−1 and yn ≡ yn−1 modulo mn

A, zn = z0 and

f = xn yn + xnφn + ynψn + hn (16)

for some φn, ψn ∈ mn+2
A and hn ∈ z2

nk[[zn]]. For n = 0, we take x0, y0, z0 as in our assumptions. If we
already have defined xn, yn, zn ∈ A, we set

xn+1 = xn +ψn, yn+1 = yn +φn and zn+1 = zn. (17)

Clearly xn+1 ≡ xn and yn+1 ≡ yn modulo mn+1
A , and zn+1 = z0. In particular the above is a regular system

of parameters. Since φnψn ∈ m2n+4
A , we may write

−φnψn = xn+1φn+1 + yn+1ψn+1 + σn,

with φn+1, ψn+1 ∈ m2n+3
A and σn ∈ z2n+4

n+1 k[[zn+1]]. Combining (16) and (17), we get

f = xn+1 yn+1 + xn+1φn+1 + yn+1ψn+1 + hn+1,

where hn+1 = hn + σn belongs to z2
n+1k[[zn+1]]. This completes our inductive definition. Note that

hn+1 ≡ hn modulo m2n+4
A .

By construction, the xn, yn, zn are convergent sequences in A with respect to the mA-adic topology.
The limits x, y, z ∈ A give the desired regular system of parameters: Since the φn, ψn converge to zero, we
have f = xy +h(z), where h is the limit of the hn ∈ k[[z]]. We must have h ̸= 0, because f is irreducible.
Hence, h = uzn with u ∈ k[[z]]× and n ≥ 2. Replacing x by u−1x , we finally get ( f ) = (xy − zn).
Summing up, B = A/( f ) is a rational double point of type An−1. □

The condition in the proposition can be checked with partial derivatives, at least if k is algebraically
closed. This makes the criterion applicable for computations:

Proposition 14.4. Let f ∈ m2
A. Suppose that k is algebraically closed and that(

∂2 f
∂u1∂u2

)2

−

(
∂2 f
∂u2

1

)
·

(
∂2 f
∂u2

2

)
̸∈ mA (18)

for some system of parameters u1, u2, u3 ∈ A. Then there exists another system of parameters x, y, z such
that f ≡ xy + λz2 modulo m3

A, for some λ ∈ k.

Proof. Write f = q +g, where q = q(u1, u2, u3) is a homogeneous polynomial of degree two and g ∈m3
A.

Write q = q1 + u3l, where l = l(u1, u2, u3) is homogeneous of degree one and q1 = q1(u1, u2). If q1 is a
square, a straightforward computation with partial derivatives produces a contradiction to (18). Since k is
algebraically closed, we have a factorization q1 = L1 · L2 where L1 = L1(u1, u2) and L2 = L2(u1, u2)

are independent homogeneous polynomials of degree one. Then w1 = L1, w2 = L2 and w3 form another
regular system of parameters of A, and we have

q = w1w2 +w3l = w1w2 + aw3w1 + bw3w2 + cw2
3,

with a, b, c ∈ k. We finally set x =w1 +bw3, y =w2 +aw3 and z =w3. This is a further regular system
of parameters, with q = xy +λz2, where λ= c−ab. Therefore, f ≡ xy +λz2 modulo m3

A, as claimed. □
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We also used a general fact on coherent sheaves: Let X be a noetherian scheme that is integral and
normal, E be a coherent sheaf of rank two, s : OX → E ∨ is a nonzero global section. The double
dual OX (−1) for the image of the dual map s∨

: E ∨∨
→ OX defines an effective Weil divisor 1 ⊂ X .

By [Hartshorne 1994, Corollary 1.8], the duals of coherent sheaves on X are reflexive. Dualizing
E ∨∨

→ OX (−1)⊂ OX , we see that the homomorphism s factors over an inclusion OX (1)⊂ E ∨. The
latter is called the saturation of the section s ∈ 0(X, E ∨).

Lemma 14.5. In the above setting there is a four-term exact sequence

0 → OX (1)→ E ∨
→ L (−1)→ N → 0,

where L = Hom(32(E ),OX ) and N is a coherent sheaf whose support has codimension at least two.

Proof. According to [Hartshorne 1994, Theorem 1.12], it suffices to construct a short exact sequence
0 → OX (1)→ E ∨

→ L (−1)→ 0 on the complement of some closed set Z ⊂ X of codimension at
least two. Let E0 be the quotient of E by its torsion subsheaf. The surjection E → E0 induces an equality
E ∨

0 = E ∨, so we may assume that E is torsion free. It is then locally free in codimension one, so it suffices
to treat the case that E is locally free. By construction, the cokernel F for OX (1)⊂ E ∨ is torsion-free of
rank one, so we may assume that it is invertible. Taking determinants shows F ≃ L (−1). □
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