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A weighted one-level density of families of L-functions
Alessandro Fazzari

This paper is devoted to a weighted version of the one-level density of the nontrivial zeros of L-functions,
tilted by a power of the L-function evaluated at the central point. Assuming the Riemann hypothesis
and the ratio conjecture, for some specific families of L-functions, we prove that the same structure
suggested by the density conjecture also holds in this weighted investigation, if the exponent of the weight
is small enough. Moreover, we speculate about the general case, conjecturing explicit formulae for the
weighted kernels.

1. A weighted version of the one-level density

Let us assume the Riemann hypothesis for all the L-functions that arise. The classical one-level density
considers a smooth localization at the central point of the counting function of the nontrivial zeros of
an L-function, averaged over a “natural” family of L-functions in the Selberg class1. More specifically,
given an even and real-valued function f in the Schwartz space2 and an L-function L(s) in a family F ,
we consider the quantity ∑

γL

f (c(L)γL), (1-1)

where γL denotes the imaginary part of a generic nontrivial zero of L and c(L) denotes the log-conductor of
L(s) at the central point. We recall that 1/c(L) is the mean spacing of the nontrivial zeros of L(s) around
s =

1
2 . The one-level density for the family F is the average of the above quantity over the family, i.e.,

lim
X→∞

1∑
L∈FX

1

∑
L∈FX

∑
γL

f (c(L)γL), (1-2)

with
FX := {L ∈ F : c(L) ≤ log X}.

In the literature, this is also referred to as the “low-lying zeros” density, as the sum (1-1) gives information
on the distribution of the zeros of L which are close to the central point. Indeed, if a zero is substantially
more than 1/c(L) away from the central point, then it does not contribute significantly to the sum (see,
e.g., [Iwaniec et al. 2000] for a complete overview).

MSC2020: 11M06, 11M26, 11M41.
Keywords: L-functions, one-level density, low-lying zeros.

1We refer, e.g., to [Kaczorowski and Perelli 1999] for the definitions and the basic properties of the Selberg class.
2In practice we will see that this condition can be weakened and a decay like f (x) ≪ 1/(1 + x2) at infinity will suffice.
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Katz and Sarnak [1999] studied a wide variety of families and attached to each of these families of
L-functions is a symmetry type (i.e., unitary, symplectic, or orthogonal, hereafter identified by a group G),
which should govern the one-level density of the considered family. Namely, the density conjecture
predicts that

lim
X→∞

1∑
L∈FX

1

∑
L∈FX

∑
γL

f (c(L)γL) =

∫
+∞

−∞

f (x)WF (x) dx, (1-3)

where WF equals the one-level density function WG for the (scaled) limit of

G ∈ {U(N ), USp(2N ), O(N ), SO(2N ), SO(2N + 1)}3,

i.e., the kernel appearing in the analogous average in the corresponding random matrix theory setting. In
particular, the kernel WF is predicted to depend on G only. We recall that the function WG is known for
all of the classical compact groups, being

WU(x) = 1,

WUSp(x) = 1 −
sin(2πx)

2πx
,

WO(x) = 1 +
1
2
δ0(x),

WSO+(x) = 1 +
sin(2πx)

2πx
,

WSO−(x) = δ0(x) + 1 −
sin(2πx)

2πx
,

where δ0 is the Dirac δ-function centered at 0. Examples of one-level density theorems which prove (1-3)
in specific cases can be found, e.g., in [Iwaniec et al. 2000; Hughes and Rudnick 2002; 2003; Özlük and
Snyder 1999; Conrey 2005; Conrey and Snaith 2007].

In this paper, we investigate a weighted analogue of the one-level density. In particular, we consider a
tilted average over the family F of the quantity (1-1), multiplied by a power of L evaluated at the central
point. The philosophy of this tilted average is similar to that of Fazzari [2021a; 2021b]; the weight has
the effect of giving more relevance to the L-functions which are large at the central point, near which
zeros are expected to be rarer.

More specifically, given k ∈ N, we are interested in

DF
k ( f ) = DF

k ( f, X) :=
1∑

L∈FX

V (L(1/2))k

∑
L∈FX

∑
γL

f (c(L)γL)V
(
L
( 1

2

))k (1-4)

in the limit X → ∞, where V depends on the symmetry type of the family; in particular, V (z) = |z|2 in
the unitary case and V (z) = z for the symplectic and orthogonal cases. The quantity DF

k ( f ) links the

3Note that the scaled limit of SO(2N ) (respectively, SO(2N + 1)) is commonly denoted by SO+ (respectively, SO−) in the
literature and also in the rest of this paper.
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moments to the one-level density, making the connection between nontrivial zeros and the size of L
( 1

2

)
explicit. Indeed, DF

k ( f ) can be seen as a special case of
1∑

L∈FX

V (L(1/2))k

∑
L∈FX

g(L)V
(
L
( 1

2

))k (1-5)

where g(L) is a function over the L-functions of a given family F . In the unitary case, for example, we
know from Soundararajan’s work [2009] that the dominant contribution to the 2k-th moment comes from
those L-functions such that the size of

∣∣L( 1
2

)∣∣ is about (log X)k+o(1), which form a thin subset of size
about #FX/(log T )k2

+o(1). Thus, if the function g has size 1, then only these L-functions contribute to the
main term of the sum in (1-5). With the choice we made in (1-4), we have g(L) =

∑
γL

f (c(L)γL), which
is not bounded but only ≪ c(L), by the Riemann–von Mangoldt formula. However, the standard n-th
level density [Rudnick and Sarnak 1996] implies that g(L) ≪ c(L)ε for all but #FX/(log X)A L-functions
in the family, for every A > 0. Therefore, also in (1-4), we have that only the L-functions such that∣∣L(1

2

)∣∣ ≍ (log X)k±ε contribute significantly to the main term of the sum. For this reason, for unitary
families, DF

k can be interpreted as a (weighted) one-level density for the thin subset{
L ∈ F : (log X)k−ε

≪
∣∣L( 1

2

)∣∣ ≪ (log X)k+ϵ
}
.

Similarly, in the symplectic and orthogonal cases, DF
k is a weighted one-level density, focused on the

L-functions in the family which are responsible to the k-th moment.
From the computations we perform throughout this paper in some specific cases, we speculate that the

structure suggested by the density conjecture (1-3) holds also in the weighted case. Namely, we expect that

DF
k ( f ) =

∫
+∞

−∞

f (x)W k
G(x) dx + O

( 1
log X

)
, (1-6)

where the weighted one-level density function W k
G only depends on k and on the symmetry type of the

family F . Note that the superscript k is an index, indicating that we are weighting with the k-th power
of V

(
L
(1

2

))
; in particular W k

G is not the k-th power of WG .
This kind of weighting naturally appears also in other contexts, such as Kowalski, Saha and Tsimerman’s

paper [Kowalski et al. 2012]. Given a Siegel modular form F of genus 2, the authors compute the one-level
density of the spinor L-functions of F , with a weight ωF which is essentially the modulus square of the first
Fourier coefficient4 of F . This family is expected to be orthogonal, but with this weight one does not obtain
the usual kernel WO. This discrepancy can be explained by Böcherer’s conjecture [1986] and [Dickson
et al. 2020] (now proved by Furusawa and Morimoto [2021]), which claims that ωF is proportional to the
central value L

( 1
2 , F

)
. To be more precise, it says that ωF

≈ L
(1

2 , F
)
L
( 1

2 , F ×χ4
)
. Since L

( 1
2 , F × χ4

)
is “uncorrelated” with L(s, F) and with its zeros, then the kernel they obtained is indeed W 1

SO+ (see,

e.g., (5-17)5 and note that weighting with L
( 1

2 , F
)k , the odd part of the family does not contribute, if

k > 0). Moreover, they notice that this kernel is the one that arises from symplectic symmetry types.

4I.e., the Fourier coefficient corresponding to the identity matrix.
5In [Kowalski et al. 2012], the kernel is written as 1 − δ0/2, which is equivalent to W 1

SO+ for test functions whose Fourier

transforms are supported in [−1, 1], which is an assumption in [Kowalski et al. 2012].
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Thus, the symmetry of the family jumps from O to USp, after weighting with ωF (see also [Knightly
and Reno 2019; Sugiyama 2021] for other examples where this phenomenon of change of symmetry type
is observed). This transition can be seen as a particular case of (2-4) below, which conjecturally predicts
a relation between the weighted one-level density functions of different symmetry types.

2. Statement of main results

In the following, we focus on three specific families of L-functions, each with a different symmetry type;
first we consider the unitary family ζ :=

{
ζ
( 1

2 + i t
)
: t ∈ R

}
, i.e., the continuous family of the Riemann

zeta function parametrized by a vertical shift. Then we study the symplectic family Lχ of quadratic
Dirichlet L-functions. Finally, we look at the orthogonal family L1,χ of the quadratic twists of the
L-function associated with the discriminant modular form 1. For these families, under the assumption
of the relevant Riemann hypothesis and ratio conjecture, we perform an asymptotic analysis of DF

k ( f ).
Our results confirm our prediction (1-6), for small values of k. We recall that the case k = 0 is already
known in the literature for all of these families, both assuming the ratio conjecture (see [Conrey and
Snaith 2007]) and without (for restricted ranges for f , see, e.g., [Hughes and Rudnick 2002; Conrey
2005; Özlük and Snyder 1999]).

We start with the unitary family. Note that, since this is a continuous family, the average over the
family in the definition of Dζ

k ( f ) is given by an integration over t ∈ [T, 2T ] instead of the sum in (1-4).
In this case, setting

W 0
U(x) := WU(x) = 1,

W 1
U(x) := 1 −

sin2(πx)

(πx)2

W 2
U(x) := 1 −

2 + cos(2πx)

(πx)2 +
3 sin(2πx)

(πx)3 +
3(cos(2πx) − 1)

2(πx)4 ,

we prove the following theorem:

Theorem 2.1. Let us assume the Riemann hypothesis and the ratio conjecture (see Conjecture 3.1). Let
us consider a test function f , which is holomorphic throughout the strip |ℑ(z)| < 2, real on the real line,
even and such that f (x) ≪ 1/(1 + x2) as x → ∞. Then, for k ∈ N and k ≤ 2, we have

Dζ
k( f ) =

∫
+∞

−∞

f (x)W k
U (x) dx + O

( 1
log T

)
.

For this unitary family, in [Bettin and Fazzari 2022] we also develop an alternative method built on
Hughes and Rudnick’s technique [2002], which allows us to show (1-6) unconditionally6. Moreover, the
analogue of Theorem 2.1 can be proved in the random matrix theory setting without any assumptions,
since the formula for the ratios of characteristic polynomials averaged over the unitary group is known

6Neither the Riemann Hypothesis nor the ratio conjecture is required. However, this unconditional strategy works only for
test functions whose Fourier transform’s support is small enough.
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unconditionally (see [Conrey et al. 2008, Theorem 4.1] and also [Conrey et al. 2005b; Huckleberry et al.
2016]). Therefore, denoting

Z = Z(A, θ) = det(I − Aeiθ ) (2-1)

for the characteristic polynomial of N × N matrices A and θ1, . . . , θN for the phases of the eigenvalues
of A, we prove a result that is the random matrix analogy of Theorem 2.1, essentially with the same proof.
When we work on the random matrix theory side, to ensure that the one-level density is well defined, we
need the test function to be 2π -periodic. Hence, given f : R → R an even Schwartz function, we define

FN (x) =

∑
h∈Z

f
( N

2π
(x − 2πh)

)
, (2-2)

and we prove the following:

Theorem 2.2. Let us consider f : R → R an even Schwartz function and FN as in (2-2). Then, for k ∈ N

and k ≤ 2, we have

1∫
U (N )

|Z |2k dHaar

∫
U (N )

N∑
j=1

FN (θ j )|Z |
2k dHaar

N→∞
−−−−→

∫
+∞

−∞

f (x)W k
U(x) dx .

In the symplectic case, we compute the weighted one-level density functions for any nonnegative
integer k ≤ 4. We set

W 0
USp(x) := WUSp(x) = 1 −

sin(2πx)

2πx
,

W 1
USp(x) := 1 +

sin(2πx)

2πx
−

2 sin2(πx)

(πx)2 ,

W 2
USp(x) := 1 −

sin(2πx)

2πx
−

24(1 − sin2(πx))

(2πx)2 +
48 sin(2πx)

(2πx)3 −
96 sin2(πx)

(2πx)4 ,

W 3
USp(x) := 1 +

sin(2πx)

2πx
−

12 sin2(πx)

(πx)2 −
240 sin(2πx)

(2πx)3

−
15(6 − 10 sin2(πx))

(πx)4 +
2880 sin(2πx)

(2πx)5 −
90 sin2(πx)

(πx)6 ,

W 4
USp(x) := 1 −

sin(2πx)

2πx
−

10(1 + cos(2πx))

(πx)2 +
90 sin(2πx)

(πx)3 −
15(3 − 31 cos(2πx))

(πx)4

−
1470 sin(2πx)

(πx)5 −
315(1 + 9 cos(2πx))

(πx)6 +
3150 sin(2πx)

(πx)7 −
1575(1 − cos(2πx))

(πx)8 ,

and we prove the following result:

Theorem 2.3. Let us assume the Riemann hypothesis and the ratio conjecture for the L-functions in the
family Lχ (see Conjecture 4.1). Let us consider a test function f , which is holomorphic throughout the
strip |ℑ(z)| < 2, real on the real line, even and such that f (x) ≪ 1/(1 + x2) as x → ∞. Then, for k ∈ N

and k ≤ 4, we have

DLχ

k ( f ) =

∫
+∞

−∞

f (x)W k
USp(x) dx + O

( 1
log X

)
.
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Also in the symplectic case, with the same proof we also get the corresponding result in the random
matrix theory setting unconditionally, as [Conrey et al. 2008, Theorem 4.2] provides the analogue of
Conjecture 4.1. Note that, in the symplectic (respectively, orthogonal) case, Z defined as in (2-1) is the
characteristic polynomial of 2N × 2N symplectic (respectively, orthogonal) matrices.

Theorem 2.4. Let us consider f : R → R an even Schwartz function and FN as in (2-2). Then, for k ∈ N

and k ≤ 4, we have

1∫
USp(2N )

Z kdHaar

∫
USp(2N )

N∑
j=1

F2N (θ j ) Z k dHaar
N→∞
−−−−→

∫
+∞

−∞

f (x)W k
USp(x) dx .

Finally, for the (even) orthogonal family L1,χ , we let

W 0
SO+(x) := WSO+(x) = 1 +

sin(2πx)

2πx
,

W 1
SO+(x) := 1 −

sin(2πx)

2πx
,

W 2
SO+(x) := 1 +

sin(2πx)

2πx
−

2 sin2(πx)

(πx)2 ,

W 3
SO+(x) := 1 −

sin(2πx)

2πx
−

24(1 − sin2(πx))

(2πx)2 +
48 sin(2πx)

(2πx)3 −
96 sin2(πx)

(2πx)4 ,

W 4
SO+(x) := 1 +

sin(2πx)

2πx
−

12 sin2(πx)

(πx)2 −
240 sin(2πx)

(2πx)3

−
15(6 − 10 sin2(πx))

(πx)4 +
2880 sin(2πx)

(2πx)5 −
90 sin2(πx)

(πx)6 .

Notice that there are strong similarities with the symplectic kernels; we will discuss these analogies below.
With these notations, we prove the following theorem:

Theorem 2.5. Let us assume the Riemann hypothesis and the ratio conjecture for the L-functions in the
family L1,χ (see Conjecture 5.1). Let us consider a test function f , which is holomorphic throughout the
strip |ℑ(z)| < 2, real on the real line, even and such that f (x) ≪ 1/(1 + x2) as x → ∞. Then, for k ∈ N

and k ≤ 4, we have

DL1,χ

k ( f ) =

∫
+∞

−∞

f (x)W k
SO+(x) dx + O

( 1
log X

)
.

Again the analogous result in random matrix theory is instead unconditional (relying on [Conrey et al.
2008, Theorem 4.3] in place of Conjecture 5.1).

Theorem 2.6. Let us consider f : R → R an even Schwartz function and FN as in (2-2). Then, for k ∈ N

and k ≤ 4, we have

1∫
SO(2N )

Z k dHaar

∫
SO(2N )

N∑
j=1

F2N (θ j )Z k dHaar
N→∞
−−−−→

∫
+∞

−∞

f (x)W k
SO+(x) dx .
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Pk
G G = U G = USp G = SO+

k = 0 0 −
1
2

1
2

k = 1 y − 1 2y −
3
2 −

1
2

k = 2 −2y3
+ 4y − 2 −4y3

+ 6y −
5
2 2y −

3
2

k = 3 12y5
− 20y3

+ 12y −
7
2 −4y3

+ 6y −
5
2

k = 4 −40y7
+ 84y5

− 60y3
+ 20y −

9
2 12y5

− 20y3
+ 12y −

7
2

Table 1. Values of Pk
G obtained for k small.

2A. A general conjecture for W k
G . Thanks to the explicit expressions we get for the kernels W k

G in
the range k ≤ 4, we can speculate about what happens for any k ∈ N. First of all, we notice that the
Fourier transform of the kernels W k

G exhibits a structure. From the explicit formulae for W k
G we get in

the range k ≤ 4, Ŵ k
G turns out to be an even function, supported on [−1, 1], uniquely determined by a

polynomial on [0, 1]. More precisely, we conjecture that

Ŵ k
G(y) = δ0(y) + Pk

G(|y|)χ[−1,1](y), (2-3)

where Pk
G is a polynomial depending on k and G only. In particular, in the unitary case and with k ≥ 1,

we expect the degree of Pk
U to be 2k − 1 and Pk

U(0) = −k, Pk
U(1) = 0. For the symplectic family, if k ≥ 1,

we predict Pk
USp with degree 2k − 1 and Pk

USp(0) = −(2k + 1)/2, Pk
USp(1) = (−1)k+1/2. Finally for the

orthogonal symmetry type, we conjecture the degree of Pk
SO+ to be 2k − 3 and Pk

SO+(0) = −(2k − 1)/2,
Pk

SO+(1)= (−1)k/2 for any k ≥ 2
(
the case k = 1 yields Ŵ 1

SO+(y) = δ0(y)−
1
2

)
. We collect in Table 1 all

the values of Pk
G we obtained for k small, which support our speculations. Note that the case k = 0, corre-

sponding to the first row in the table, was already known in the literature, while all other results are new.
Looking at Table 1, we can detect relations between the weighted one-level density functions with

different symmetry types. In particular, from the above discussion, it seems natural to expect that

W k
SO+(x) = W k−1

USp (x) (2-4)

for any k ∈ Z+. Moreover, the Fourier transforms of W k
G suggest that the weighted one-level density func-

tion in the unitary case is the average of the symplectic and orthogonal cases; namely, we conjecture that

W k
U(x) =

W k
USp(x) + W k

SO+(x)

2
. (2-5)

We note that also the leading order moment coefficients fG(k) for the three compact groups U, USp
and SO+ satisfy relations linking them with each other (see [Keating 2005, Equations (6.10) and (6.11)]):

fSO+(k) = 2k fUSp(k − 1) and 2k2
fU (k) = fUSp(k) fSO+(k).

Equations (2-4) and (2-5) can be seen as the analogue of the above formulae, in the context of the weighted
one-level density.
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1

− 1

− 2

− 3

− 4

0 0.2 0.4 0.6 0.8 1.0

k = 4
k = 3
k = 2
k = 1
k = 0

Figure 1. Pk
USp(y), for y ∈ [0, 1].

Finally, we conjecture an explicit formula for the polynomials Pk
G , which together with (2-3) provides

a precise conjecture for the weighted kernels W k
G . In view of (2-4) and (2-5), it suffices to focus on the

symplectic case only. Looking at what happens for k ≤ 4 (see Figure 1), we speculate that for every
positive integer k,

Pk
USp(y) = −

2k+1
2

− k(k + 1)

k∑
j=1

(−1) j c j,k
y2 j−1

2 j − 1
, (2-6)

where the coefficient c j,k is defined by

c j,k =
1
j

(k−1
j −1

)(k+ j
j −1

)
.

We note that the sequence of the c j,k appears in OEIS7, as the number of diagonal dissections of a convex
(k + 2)-gon into j regions. By Fourier inversion, from (2-3) and (2-6), we get an explicit conjectural
formula for W k

USp, namely,

W k
USp(x) = 1 − (2k + 1)

sin(2πx)

2πx
+

k∑
j=1

k(k + 1)

22 j−2π2 j−1

c j,k

2 j − 1
d2 j−1

dx2 j−1

[
1 − cos(2πx)

2πx

]
,

see Figure 2.

7https://oeis.org/A033282.

1.2

1.0

0.8

0.6

0.4

0.2

− 2.8 − 2.6 − 2.4 − 2.2 − 2.0 − 1.8 − 1.6 − 1.4 − 1.2 − 1.0 − 0.8 − 0.6 − 0.4 − 0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

k = 4
k = 3
k = 2
k = 1
k = 0

Figure 2. W k
USp(x) for k = 0, . . . , 4.
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From all these discussions, we can formulate the following conjecture:

Conjecture 2.1. Let us consider a test function f , holomorphic in the strip |ℑ(z)| < 2, even, real on the
real line and such that f (x) ≪ 1/(1 + x2) as x → ∞. For any k ∈ N, given a family F of L-functions
with symmetry type G ∈ {U, USp, SO+

}, we have

DF
k ( f ) =

∫
+∞

−∞

f (x)W k
G(x) dx + O

( 1
log X

)
as X → ∞, where the weighted one-level density function W k

G depends on k and G only. In addition, the
following relations hold:

W k
SO+(x) = W k−1

USp (x) and W k
U(x) =

W k
USp(x) + W k

SO+(x)

2

for any k ∈ Z+ and k ∈ N, respectively. Moreover, for every k ∈ Z+, in the symplectic case (the others
can be recovered by the above relations), we have that

Ŵ k
USp(y) = δ0(y) + Pk

USp(|y|)χ[−1,1](y),

where Pk
USp is a polynomial of degree 2k − 1, given by

Pk
USp(y) = −

2k+1
2

− k(k + 1)

k∑
j=1

(−1) j c j,k
y2 j−1

2 j − 1
,

with

c j,k =
1
j

(k−1
j −1

)(k+ j
j −1

)
.

2B. An expression for W k
G(x) in terms of hypergeometric functions and its vanishing at x = 0. We

now focus on the behavior of the weighted kernels W k
G(x) at x = 0. For all symmetry types, it seems

clear that the order of vanishing of W k
G(x) for x → 0 increases as k grows. This phenomenon reflects the

effect of the weight V
(
L
( 1

2

))k in the average over the family, which gives more and more relevance to
those L-functions that are large at the central point, as k increases. More precisely, for the unitary family
we conjecture that

W k
U (x) ∼

π2k x2k

(2k−1)!!(2k+1)!!
, (2-7)

as x → 0 and k ∈ N. In particular, together with (1-6), this suggests that, on weighted average over the
considered family, the number of normalized zeros which are less than ε away from the central point
is typically ≍k ε2k+1. Analogously, the asymptotic behavior of the symplectic and orthogonal kernels
can be deduced from (2-7) by (2-4) and (2-5). For small values of k, the behavior of W k

G(x) at x = 0 is
outlined in Table 2; the first row was already known in the literature, all the others are new.

In the following conjecture, we condense all the speculations about the behavior of the weighted
kernels W k

G(x) as x → 0:
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W k
G , x → 0 G = U G = USp G = SO+

k = 0 1 2π2x2/3 2
k = 1 π2x2/3 2π4x4/45 2π2x2/3
k = 2 π4x4/45 2π6x6/1575 2π4x4/45
k = 3 2π8x8/99225 2π6x6/1575
k = 4 2π10x10/9823275 2π8x8/99225

Table 2. The behavior of W k
G(x) at x = 0 for small values of k.

Conjecture 2.2. For G ∈ {U, USp, SO+
} and k ∈ N, the weighted kernels W k

G defined in Conjecture 2.1
satisfy the following asymptotic relations as x → 0:

W k
U (x) ∼

π2k x2k

(2k−1)!!(2k+1)!!
, W k

USp(x) ∼
2π2(k+1)x2(k+1)

(2k+1)!!(2k+3)!!
, W k

SO+(x) ∼
2π2k x2k

(2k−1)!!(2k+1)!!
.

Finally, assuming Conjecture 2.1, we obtain the expansion of W k
G(x) at x = 0. In particular, we show

that the asymptotic behavior of W k
G(x) can be deduced from the explicit formulae that we conjectured in

Section 2A. In view of (2-4) and (2-5), it suffices to consider the symplectic case only.

Theorem 2.7. Let us assume Conjecture 2.1. Then for any k ∈ N, we have

W k
USp(x) =

∞∑
m=1

βm,k x2m

with

βm,k = (−1)m+1 (2π)2m

(2m + 1)!

(
(−1)k

+
k(k + 1)

m + 1 3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; 1

])
,

where 3 F2 denotes the generalized hypergeometric function. Moreover, we have

3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; 1

]
=


(m + 1)(−1)k+1

k(k + 1)
, if 1 ≤ m ≤ k,

2(−1)k+1(k − 1)!(k + 2)!

(2k + 2)!

((2k+1
k+1

)
− 1

)
, if m = k + 1.

In particular, Conjecture 2.2 follows.

3. Proof of Theorems 2.1 and 2.2

We first tilt the Lebesgue measure multiplying by
∣∣ζ ( 1

2 + i t
)∣∣2 and denote it by

⟨g⟩|ζ |2 :=
1

T log T

∫ 2T

T
g(t)

∣∣∣ζ(1
2

+ i t
)∣∣∣2

dt. (3-1)

Then we consider f , an even test function, and its Fourier transform

f̂ (y) :=

∫
+∞

−∞

f (x)e−2π i xy dx .
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We recall that Conrey, Farmer and Zirnbauer [Conrey et al. 2008] applied a modification of the recipe for
integral moments to the case of ratios getting the following statement, called the ratio conjecture (here, we
state this conjecture in a slightly weaker form than in [Conrey et al. 2008], as far as the shifts are concerned):

Conjecture 3.1 [Conrey et al. 2008, Conjecture 5.1]. Let us denote by χ(s) the explicit factor in
the functional equation ζ(s) = χ(s)ζ(1 − s). For any positive integers K , L , Q and R and for any
α1, . . . , αK+L , γ1, . . . , γQ, δ1, . . . , δR complex shifts with real part ≍ (log T )−1 and imaginary part
≪ε T 1−ε for every ε > 0, we have

1
T

∫ 2T

T

∏K
k=1 ζ(s + αk)

∏K+L
l=K+1 ζ(1 − s − αl)∏Q

q=1 ζ(s + γq)
∏R

r=1 ζ(1 − s + δr )
dt

=
1
T

∫ 2T

T

∑
σ∈4K ,L

K∏
k=1

χ(s + αk)

χ(s − ασ(k))
YU Aζ ( · · · ) dt + O(T 1/2+ε),

with ( · · · ) = (ασ(1), . . . , ασ(K ); −ασ(K+1), . . . ,−ασ(K+L); γ ; δ), where

YU (α; β; γ ; δ) :=

∏K
k=1

∏L
l=1 ζ(1 + αk + βl)

∏Q
q=1

∏R
r=1 ζ(1 + γq + δr )∏K

k=1
∏R

r=1 ζ(1 + αk + δr )
∏L

l=1
∏Q

q=1 ζ(1 + βl + γq)

and Aζ is an Euler product, absolutely convergent for all of the variables in small disks around 0, which
is given by

Aζ (α; β; γ ; δ) :=

∏
p

∏K
k=1

∏L
l=1(1 − 1/p1+αk+βl )

∏Q
q=1

∏R
r=1(1 − 1/p1+γq+δr )∏K

k=1
∏R

r=1(1 − 1/p1+αk+δr )
∏L

l=1
∏Q

q=1(1 − 1/p1+βl+γq )

×

∑
∑

ak+
∑

cq=
∑

bl+
∑

dr

∏
µ(pcq )

∏
µ(pdr )

p
∑

(1/2+αk)ak+
∑

(1/2+βl )bl+
∑

(1/2+γq )cq+
∑

(1/2+δr )dr
,

while 4K ,L denotes the subset of permutations σ ∈ SK+L of {1, 2, . . . , K + L} for which we have
σ(1) < σ(2) < · · · < σ(K ) and σ(K + 1) < σ(K + 2) < · · · < σ(K + L).

By assuming this conjecture about the moments of zeta and denoting

N f (t) =

∑
γ

f
(

log T
2π

(γ − t)
)

,

we can prove the following result:

Proposition 3.1. Let us assume Conjecture 3.1 and the Riemann hypothesis. We consider a test func-
tion f (z) which is holomorphic throughout the strip |ℑ(z)| < 2, real on the real line, even and such that
f (x) ≪ 1/(1 + x2) as x → ∞. Then

Dζ
1 ( f ) := ⟨N f ⟩|ζ |2 =

∫
+∞

−∞

f (x)W 1
U (x) dx + O

( 1
log T

)
,

with

W 1
U (x) := 1 − sinc2(x) = 1 −

sin2(πx)

(πx)2 .
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In addition, with the same strategy as in the proof of Proposition 3.1 (but much longer computations,
which can be done by using Sage8), we can also study the “fourth moment” case. Namely, we let

⟨g⟩|ζ |4 :=
1

(T (log T )4)/(2π2)

∫ 2T

T
g(t)

∣∣∣ζ(1
2

+ i t
)∣∣∣4

dt, (3-2)

and we prove the following result:

Proposition 3.2. Let us assume Conjecture 3.1 and the Riemann hypothesis. We consider a test func-
tion f (z) which is holomorphic throughout the strip |ℑ(z)| < 2, real on the real line, even and such that
f (x) ≪ 1/(1 + x2) as x → ∞. Then

Dζ
2 ( f ) := ⟨N f ⟩|ζ |4 =

∫
+∞

−∞

f (x)W 2
U (x) dx + O

( 1
log T

)
(3-3)

with

W 2
U (x) := 1 −

2 + cos(2πx)

(πx)2 +
3 sin(2πx)

(πx)3 +
3(cos(2πx) − 1)

2(πx)4 .

3A. Proof of Proposition 3.1. To prove Proposition 3.1, we strongly rely on Conjecture 3.1, which
allows us to perform a similar computation as in [Conrey and Snaith 2007, Section 3]. We introduce two
parameters α, β ∈ R of size ≍ 1/ log T , we let

ζ α,β(t) := ζ
( 1

2 + α + i t
)
ζ
( 1

2 + β − i t
)

(3-4)

and we look at

⟨N f ⟩
α,β

|ζ |2
:=

1
T log T

∫ 2T

T

∑
γ

f
(

log T
2π

(γ − t)
)

ζ α,β(t) dt, (3-5)

with γ ∈ R since we are assuming the Riemann hypothesis (we recall that ρ =
1
2 + iγ are the nontrivial

zeros of ζ ). By the residue theorem, we have that

⟨N f ⟩
α,β

|ζ |2
=

1
T log T

∫ 2T

T

1
2π i

(∫
(c)

−

∫
(1−c)

)
ζ ′

ζ
(s + i t) · f

(
−i log T

2π

(
s −

1
2

))
ds ζ α,β(t) dt, (3-6)

where c ∈
( 1

2 , 1
)

and
∫
(c) denotes the integral over the vertical line of those s such that ℜ(s) = c. We

select c =
1
2 + δ with δ ≍ (log T )−1, and we first consider the integral over the c-line

I :=
1

T log T

∫ 2T

T

1
2π i

∫
(c)

ζ ′

ζ
(s + i t) f

(
−i log T

2π

(
s −

1
2

))
ds ζ α,β(t) dt

=
1

2π

∫
+∞

−∞

f
(

log T
2π

(y − iδ)
)

d
dγ

[
I (α; β; δ + iy + γ ; δ + iy)

T log T

]
γ=0

dy,

where

I (A; B; C; D) :=

∫ 2T

T

ζ(1/2 + A + i t)ζ(1/2 + B − i t)ζ(1/2 + C + i t)
ζ(1/2 + D + i t)

dt. (3-7)

8SageMath, the Sage Mathematics Software System (Version 0.6.3), The Sage Developers, 2021, https://www.sagemath.org.



A weighted one-level density of families of L-functions 99

Moments like (3-7) can be computed thanks to Conjecture 3.1, and it turns out to be

I (A; B; C; D) =

∫ 2T

T

{
ζ(1+ A+B)ζ(1+B+C)

ζ(1+B+D)
+

( t
2π

)−A−B ζ(1− A−B)ζ(1− A+C)

ζ(1− A+D)

+

( t
2π

)−B−C ζ(1+ A−C)ζ(1−B−C)

ζ(1−C+D)

}
dt+O

(
T 1/2+ε

)
(3-8)

for suitable shifts A, B, C and D, i.e., with real part ≍ (log T )−1 and imaginary part ≪ε T 1−ε, for every
ε > 0 (see, e.g., [Conrey and Snaith 2007, Section 2.1]). Notice that the arithmetical factor Aζ (α; β; γ ; δ)

from Conjecture 3.1 equals 1 in our case, with K = 2, L = 1, Q = 1 and R = 0 (this can be easily proven
by direct computation or deduced by [Conrey et al. 2005a, Corollary 2.6.2]). We now want to apply (3-8)
with A = α, B = β, C = δ + iy + γ and D = δ + iy and to do so, we need that the imaginary parts of all
the shifts are ≪ε T 1−ε. A standard technique to avoid this issue is splitting the integral over y in two
pieces; the contribution to I coming from |y| > T 1−ε is ≪ T −1+ε, thanks to the good decaying of f and
to RH, since

1
T log T

∫ 2T

T
|ζ α,β(t)|

∫
|y|>T 1−ε

| f (y log T )|

∣∣∣∣ζ ′

ζ

(1
2

+ δ + iy + i t
)∣∣∣∣ dy dt

≪
T ε/100

T

∫ 2T

T

∫
|y|>T 1−ε

log(|y|t)
|y|2

dy dt ≪ T −1+ε.

Therefore, we can truncate the integral over y at height T 1−ε, apply (3-8) and then re-extend the integration
over y to infinity with a small error term. Thus, differentiating with respect to γ at γ = 0, moving the
path of integration to δ = 0 (we are allowed to since now the integral is regular at δ = 0), we get

I =
1

2π

∫
+∞

−∞

f
(

log T
2π

y
)

1
T log T

∫ 2T

T
gα,β(y; t) dt dy + O(T −1/2+ε), (3-9)

with

gα,β(y; t) :=
ζ(1 + α + β)ζ ′(1 + β + iy)

ζ(1 + β + iy)
+

( t
2π

)−α−β ζ(1 − α − β)ζ ′(1 − α + iy)

ζ(1 − α + iy)

−

( t
2π

)−β−iy
ζ(1 + α − iy)ζ(1 − β − iy).

(3-10)

We notice that, when computing this derivative, it is useful to observe that if f (z) is analytic at z = 0,
then (see [Conrey and Snaith 2007, Equation (2.13)])

d
dγ

[
f (γ )

ζ(1 − γ )

]
γ=0

= − f (0).

Similarly we deal with the integral over the (1 − c)-line in (3-6)

J :=
1

T log T

∫ 2T

T

1
2π i

∫
(1−c)

ζ ′

ζ
(s + i t) f

(
−i log T

2π

(
s −

1
2

))
ds ζ α,β(t) dt

=
1

2π i

∫
(c)

f
(

−i log T
2π

(
s −

1
2

)) 1
T log T

∫ 2T

T

ζ ′

ζ
(1 − s + i t)ζ α,β(t) dt ds.
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Using the functional equation
ζ ′

ζ
(1 − z) =

X ′

X
(z) −

ζ ′

ζ
(z),

where
X ′

X
(z) := log π −

1
2

0′

0

( z
2

)
−

1
2

0′

0

(1−z
2

)
,

we express J as a sum of two terms
J = J1 −J2, (3-11)

with

J1 :=
1

2π i

∫
(c)

f
(

−i log T
2π

(
s −

1
2

))
1

T log T

∫ 2T

T

X ′

X
(s − i t)ζ α,β(t) dt ds

and

J2 :=
1

2π i

∫
(c)

f
(

−i log T
2π

(
s −

1
2

))
1

T log T

∫ 2T

T

ζ ′

ζ
(s − i t)ζ α,β(t) dt ds.

With c =
1
2 + δ, where δ → 0, it is easy to see that

J1 =
1

2π

∫
+∞

−∞

f
(

log T
2π

y
)

1
T log T

∫ 2T

T

X ′

X

(1
2

+ iy − i t
)
ζ α,β(t) dt dy

= −
1

2π

∫
+∞

−∞

f
(

log T
2π

y
)

log T + O(1)

T log T

∫ 2T

T
ζ α,β(t) dt dy, (3-12)

since, using Stirling’s approximation to estimate the gamma-factors, we have (again, we can assume
y ≪ T 1−ε because of the great decaying of f )

X ′

X

(1
2

+ iy − i t
)

= −
1
2

0′

0

(
1
4

+
iy
2

−
i t
2

)
−

1
2

0′

0

(
1
4

−
iy
2

+
i t
2

)
+ O(1)

= −
1
2

log
(
−

i t
2

)
−

1
2

log
( i t

2

)
+ O(1) = − log T + O(1).

Moreover, with the same choice of c as before, if we set α = β, we get

J2 = I. (3-13)

Then (3-6), (3-11) and (3-13) imply that

⟨N f ⟩
α,α

|ζ |2
= I +J = −J1 + 2I (3-14)

and the function J1 = J1(α) is regular at α = 0. We can then take the limit in (3-12), getting

lim
α→0

J1 = −
1

2π

∫
+∞

−∞

f
(

log T
2π

y
)

log T + O(1)

T log T

∫ 2T

T

∣∣∣ζ(1
2

+ i t
)∣∣∣2

dt dy

= −
log T + O(1)

2π

∫
+∞

−∞

f
(

log T
2π

y
)

dy

= −

∫
+∞

−∞

f (x) dx + O
( 1

log T

)
(3-15)
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with the change of variable log T/(2π)y = x . Lastly, we study the remaining term I, from (3-9) and (3-10).
We set α = β = a/ log T , with 0 < a < 1. Then we perform the same change of variable log T/(2π)y = x
as before, and we get

I =

∫
+∞

−∞

f (x)
1

T (log T )2

∫ 2T

T
ga/log T ,a/log T

( 2πx
log T

; t
)

dt dx + O(T 1/2+ε).

Since log(t/(2π)) = log T + O(1) as t ∈ [T, 2T ], we have

I =

(
1

(log T )2 +O
(

1
(log T )3

))∫
+∞

−∞

f (x)

(
ζ
(

1+
2a

log T

)ζ ′

ζ

(
1+

a+2π i x
log T

)
+e−2aζ

(
1−

2a
log T

)ζ ′

ζ

(
1−

a−2π i x
log T

)
−e−a−2π i xζ

(
1+

a−2π i x
log T

)
ζ
(
1−

a+2π i x
log T

))
dx, (3-16)

where the error term is uniform in a. Now, we will prove that the above expression is regular at a = 0,
showing that

lim
a→0

I =

∫
+∞

−∞

f (x)P(x) dx + O
( 1

log T

)
, (3-17)

as T → ∞, where

P(x) :=
−1+2π i x+e−2π i x

4π2x2 .

Intuitively, if we replace each zeta function with its leading term in the expansion at the point 1 given by
ζ(1 + z) ∼ 1/z, we have

I ≈
1

(log T )2

∫
+∞

−∞

f (x)

(
−(log T )2

2a(a + 2π i x)
+ e−2a −(log T )2

2a(a − 2π i x)
+ e−a−2π i x (log T )2

(a − 2π i x)(a + 2π i x)

)
dx

=

∫
+∞

−∞

f (x)

(
−

1
2a(a+2π i x)

−
e−2a

2a(a−2π i x)
+

e−a−2π i x

(a−2π i x)(a+2π i x)

)
dx .

The function inside the parentheses above equals

−a(1 + e−2a) + 2π i x(1 − e−2a) + 2ae−a−2π i x

2a(a2 + 4π2x2)
=

−1 + 2π i x + e−2π i x
+ O(a)

4π2x2 + O(a2)
,

and then tends to P(x) as a → 0.
To show (3-17) rigorously, we split the integral over x into two parts. We start with the case x ≪ log T ;

from Taylor approximation f (1 + s ± y) = f (1 + s) ± y f ′(1 + s) + Os(y2), we get

ζ ′

ζ

(
1 +

2π i x
log T

±
a

log T

)
=

ζ ′

ζ

(
1 +

2π i x
log T

)
±

a
log T

(
ζ ′

ζ

)′(
1 +

2π i x
log T

)
+ OT (a2)

=: c1(x) ±
a

log T
c2(x) + OT (a2)

and

ζ
(
1 −

2π i x
log T

±
a

log T

)
= ζ

(
1 −

2π i x
log T

)
+ OT (a) =: k(x) + OT (a)
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as a → 0, with the notations

c1(x) = c1(x, T ) :=
ζ ′

ζ

(
1 +

2π i x
log T

)
,

c2(x) = c1(x, T ) :=

(
ζ ′

ζ

)′(
1 +

2π i x
log T

)
,

k(x) = k(x, T ) := ζ
(
1 −

2π i x
log T

)
.

Moreover, we use the asymptotic expansion

ζ(1 + z) =
1
z

+ γ + O(z), z → 0, (3-18)

and we get∫
x≪log T

f (x)

(
ζ
(
1+

2a
log T

)ζ ′

ζ

(
1+

a+2π i x
log T

)
+e−2aζ

(
1−

2a
log T

)ζ ′

ζ

(
1−

a−2π i x
log T

)
−e−a−2π i xζ

(
1+

a−2π i x
log T

)
ζ
(
1−

a+2π i x
log T

))
dx

=

∫
x≪log T

f (x)

([
log T

2a
+γ+OT (a)

][
c1(x)+

a
log T

c2(x)+OT (a2)

]
+e−2a

[
− log T

2a
+γ+OT (a)

][
c1(x)−

a
log T

c2(x)+OT (a2)

]
−e−a−2π i x[k(x)+OT (a)

]2
)

dx,

whose limit as a → 0 is∫
x≪log T

f (x)
{
c1(x) log T + c2(x) + 2γ c1(x) − e−2π i x k(x)2} dx .

By definition of c1(x), c2(x) and k(x), the asymptotic expansion (3-18) yields

c1(x) = −
log T
2π i x

+ O(1),

c2(x) =
(log T )2

(2π i x)2 + O(1),

k(x) =
(log T )2

(2π i x)2 −
2γ log T

2π i x
+ O(1),

uniformly for x ≪ log T . Then the above is equal to∫
x≪log T

f (x)

{
−

(log T )2

2π i x
+

(log T )2

(2π i x)2 − e−2π i x (log T )2

(2π i x)2 + O(log T )

}
dx

(note that the sum 2γ c1(x)− e−2π i x k(x)2 gives the third term in the parentheses with an error O(log T ),
a possible pole at x = 0 cancels out), which is

= (log T )2
∫

x≪log T
f (x)

−1+2π i x+e−2π i x

4π2x2 dx + O(log T ).
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Finally, we can re-extend the range of integration with a small error term (being f (x) ≪ 1/(1 + x2) and
P(x) bounded), getting that the contribution of x ≪ log T in the integral over x in (3-16), in the limit
as a → 0, equals

(log T )2
∫

+∞

−∞

f (x)P(x) dx + O(log T ).

To prove (3-17), we finally have to bound the contribution of x ≫ log T in the integral on the right-
hand side of (3-16), as a → 0; to do so, we use the bounds ζ(1 + iy) ≪ log y (see [Titchmarsh 1986,
Theorem 3.5]) and (ζ ′/ζ )(1 + iy) ≪ log y (see [Titchmarsh 1986, Equation (3.11.9)]) for y ≫ 1, thus the
contribution coming from x ≫ log T is equal to

lim
a→0

∫
x≫log T

f (x)

([
log T

2a
+ O(1)

][
ζ ′

ζ

(
1 +

2π i x
log T

)
+ O

( a
log T

)]
+ e−2a

[
−

log T
2a

+ O(1)

][
ζ ′

ζ

(
1 +

2π i x
log T

)
+ O

( a
log T

)]
+ O

(
(log x)2)) dx

=

∫
x≫log T

f (x)

(
log T

ζ ′

ζ

(
1 +

2π i x
log T

)
lim
a→0

[1−e−2a

2a

]
+ O

(
(log x)2)) dx

≪

∫
x≫log T

| f (x)|
(
log T log x + (log x)2) dx ≪ log T

∫
x≫log T

log x
x2 dx,

then (3-17) follows, being
∫

x≫log T (log x/x2) dx ≪1. Finally, if we decompose P(x) in even and odd parts

P(x) = −
1
2

sin2(πx)

(πx)2 −
i
(
sin(2πx) − 2πx

)
4π2x2 , (3-19)

since f is even and P(x) bounded, we have

lim
a→0

I = −
1
2

∫
+∞

−∞

f (x)
sin2(πx)

(πx)2 dy + O
( 1

log T

)
. (3-20)

Putting together (3-14), (3-15) and (3-20), we finally get

⟨N f ⟩|ζ |2 =

∫
+∞

−∞

f (x)

(
1 −

sin2(πx)

(πx)2

)
dx + O

( 1
log T

)
,

as T → ∞, and the theorem has been proved.

3B. Proof of Proposition 3.2. This proof builds on the same ideas as that of Proposition 3.1, even though
we have to handle longer computations; to begin with, we introduce four parameters α, β, ν, η ∈ R of
size 1/ log T , we let

ζ α,β,ν,η(t) := ζ
( 1

2 + α + i t
)
ζ
( 1

2 + β + i t
)
ζ
( 1

2 + ν − i t
)
ζ
( 1

2 + η − i t
)
,

and we look at

⟨N f ⟩
α,β,ν,η

|ζ |4
:=

1
(T (log T )4)/(2π2)

∫ 2T

T

∑
γ

f
(

log T
2π

(γ − t)
)

ζ α,β,ν,η(t) dt, (3-21)
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with γ ∈R since we are assuming the Riemann hypothesis. Analogous to (3-14), the residue theorem yields

⟨N f ⟩
α,β,α,β

|ζ |4
= −J1 + 2I, (3-22)

with

J1 = J1(α, β) = −

∫
+∞

−∞

f (x)
log T + O(1)

(T (log T )5)/(2π2)

∫ 2T

T
ζ α,β,α,β(t) dt dx

α,β→0
−−−−→ −

∫
+∞

−∞

f (x) dx + O
( 1

log T

)
(3-23)

and

I =
1

2π

∫
+∞

−∞

f
(

log T
2π

(y − iδ)
)

d
dγ

[
I (α; β; γ ; δ + iy; α; β)

T (log T )4/(2π2)

]
γ=δ+iy

dy

=

∫
+∞

−∞

f
(

x −
iδ log T

2π

)
×

d
dγ

[
I (a/log T ; b/log T ; γ ; δ + 2π i x/log T ; a/log T ; b/log T )

T (log T )5/(2π2)

]
γ=δ+2π i x/log T

dx,

where a, b ≍ 1, δ ≍ 1/ log T and I (A; B; C; D; F; G) is defined by∫ 2T

T

ζ(1/2 + A + i t)ζ(1/2 + B + i t)ζ(1/2 + C + i t)ζ(1/2 + F − i t)ζ(1/2 + G − i t)
ζ(1/2 + D + i t)

dt.

If the shifts satisfy the conditions prescribed by Conjecture 3.1 then such an integral can be evaluated
by using the ratio conjecture. According to the recipe, up to an error O(T 1/2+ε), the above moment is
a sum of ten pieces, the first being∫ 2T

T

ζ(1+ A+F)ζ(1+ A+G)ζ(1+B+F)ζ(1+B+G)ζ(1+C+F)ζ(1+C+G)

ζ(1+D+F)ζ(1+D+G)
AA,B,C,D,F,G dt,

where

AA,B,C,D,F,G =

∏
p

(
1 −

1
p1+A+F

)(
1 −

1
p1+A+G

)(
1 −

1
p1+B+F

)(
1 −

1
p1+B+G

)
×

(
1 −

1
p1+C+F

)(
1 −

1
p1+C+G

)(
1 −

1
p1+D+F

)−1(
1 −

1
p1+D+G

)−1

×

∑
a+b+c+d= f +g

µ(pd)

p(1/2+A)a+(1/2+B)b+(1/2+C)c+(1/2+D)d+(1/2+F) f +(1/2+G)g .

It will be useful to notice that if all the shifts equal zero, then

A := A0,0,0,0,0,0 =
1

ζ(2)
;

again this can be proven by direct computation or deduced by [Conrey et al. 2005a, Corollary 2.6.2]. All the
other nine terms can be recovered from the first one just by swapping the shifts as prescribed by the recipe;
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doing so yields a formula for I (A; B; C; D; F; G) and differentiating with respect to C at C = D, we get

d
dC

[
I (A; B; C; D; F; G)

]
C=D

=

∫ 2T

T

(
R1+

( t
2π

)−A−F
R2+

( t
2π

)−A−G
R3+

( t
2π

)−B−F
R4+

( t
2π

)−B−G
R5

+

( t
2π

)−D−F
R6+

( t
2π

)−D−G
R7+

( t
2π

)−A−B−F−G
R8

+

( t
2π

)−A−D−F−G
R9+

( t
2π

)−B−D−F−G
R10

)
dt+O

(
T 1/2+ε

)
, (3-24)

with

R1 = R1(A, B, D, F, G)

=
AA,B,D,D,F,G

ζ(1+A+F)ζ(1+A+G)ζ(1+B+F)ζ(1+B+G)ζ(1+D+F)ζ(1+D+G)

×

[
ζ ′

ζ
(1+D+F)+

ζ ′

ζ
(1+D+G)+

A′

A,B,D,D,F,G

AA,B,D,D,F,G

]
,

R2 = R1(−F, B, D, −A, G),

R3 = R1(−G, B, D, F, −A),

R4 = R1(A, −F, D, −B, G),

R5 = R1(A, −G, D, F, −B),

R6 = R6(A, B, D, F, G)

= −
ζ(1+A−D)ζ(1+A+G)ζ(1+B−D)ζ(1+B+G)ζ(1−F−D)ζ(1−F+G)

ζ(1+D+G)
AA,B,D,D,F,G,

R7 = R6(A, B, D, G, F),

R8 = R1(−F, −G, D, −A, −B),

R9 = R6(−F, B, D, G, −A),

R10 = R6(A, −F, D, G, −B).

If the shifts A, B, D, F, G are ≪ 1/ log T , the above formula simplifies a lot, since we have

R1 =
(−2D − F − G)A

(A + F)(A + G)(B + F)(B + G)(D + F)(D + G)
+ O

(
(log T )5

log T

)
and

R6 =
−(D + G)A

(A − D)(A + G)(B − D)(B + G)(−F − D)(−F + G)
+ O

(
(log T )5

log T

)
.

As in the proof of Proposition 3.1, by a truncation of the integral over x and Taylor approximations, we
can use (3-24) to evaluate I; one can use Sage to carry out this massive computation, getting

lim
a→0
b→0

I =

∫
+∞

−∞

f (x)
(log T )5A

(log T )5/(2π2)
h(2π i x) dx + O

( 1
log T

)
(3-25)
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with

h(y) := −
y3

− 2y2
+ 6 − e−y(y2

+ 6y + 6)

6y4 .

Note that, as in the last section, we moved the path of integration over x to δ = 0, being the integral
regular at δ = 0. Therefore, putting together (3-22), (3-23) and (3-25), we get that

⟨N f ⟩|ζ |4 =

∫
+∞

−∞

f (x)
(
1 + 2 2π2

ζ(2)
h(2π i x)

)
dx + O

( 1
log T

)
=

∫
+∞

−∞

f (x)
(
1 + 24h(2π i x)

)
dx + O

( 1
log T

)
=

∫
+∞

−∞

f (x)W 2
U (x) dx + O

( 1
log T

)
,

since f is even.

3C. Proof of Theorem 2.2. As mentioned in the introduction, the analogue of the ratio conjecture is a
theorem in random matrix theory. Therefore, the same machinery described above proves Theorem 2.2,
using [Conrey et al. 2008, Theorem 4.1] in place of Conjecture 3.1.

4. Proof of Theorems 2.3 and 2.4

The family
{

L
( 1

2 , χd
)
: d > 0, d fundamental discriminant

}
is a symplectic family, in the sense that it can

be modeled by characteristic polynomials of symplectic matrices in the group USp(2N ), if we identify
2N ≈ log(d/π). Indeed d/π is the analytic conductor of L(s, χd), thus log(d/π) (i.e., the density of
zeros) plays the role of 2N in the random matrix theory setting9.

We consider the moments of quadratic Dirichlet L-functions at the critical point s =
1
2 , i.e., the

mean value ∑
d≤X

L
( 1

2 , χd
)k (4-1)

in the limit X → ∞, where the summation over d has to be interpreted as the sum over all the positive
fundamental discriminants d below X , here and in the following. Also, we will denote by X∗

∼1/(2ζ(2))X
the number of fundamental discriminants below X . We recall that Jutila [1981] proved asymptotic formulae
for the first moment, showing that ∑

d≤X

L
(1

2
, χd

)
∼

A
2

1
2ζ(2)

X log X, (4-2)

where

A =

∏
p

(
1 −

1
p(p+1)

)
(4-3)

and also for the second moment, proving∑
d≤X

L
(1

2
, χd

)2
∼

B
24

1
2ζ(2)

X (log X)3, (4-4)

9See [Conrey et al. 2005a, Conjecture 1.5.3] and the comments below for some clarification concerning the “conductor”.
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with

B =

∏
p

(
1 −

4p2
− 3p + 1

p3(p + 1)

)
. (4-5)

It is believed that ∑
d≤X

L
( 1

2 , χd
)k

∼ Ck X (log X)k(k+1)/2, (4-6)

and using analogies with random matrix theory, Keating and Snaith [2000] also conjectured a precise
value for the constant Ck . Moreover, the recipe produces a conjectural asymptotic formula with all the
main terms for the moments (4-1) with k integer and also for ratios of products of quadratic Dirichlet
L-functions (see [Conrey et al. 2008]), which is a symplectic analogue of Conjecture 3.1.

Conjecture 4.1 [Conrey et al. 2008, Conjecture 5.2]. Let K , Q be two positive integers, α1, . . . , αK and
γ1, . . . , γQ be complex shifts with real part ≍ (log T )−1 and imaginary part ≪ε T 1−ε for every ε > 0, then

∑
d≤X

∏K
k=1 L(1/2 + αk, χd)∏Q
q=1 L(1/2 + γq , χd)

=

∑
d≤X

∑
ϵ∈{−1,1}K

( d
π

)(1/2)
∑

k(ϵkαk−αk)
K∏

k=1

gS

(
1
2

+
αk − ϵkαk

2

)
YSAS( · · · ) + O(X1/2+ε),

with ( · · · ) = (ϵ1α1, . . . , ϵK αK ; γ ), where

YS(α; γ ) :=

∏
j≤k≤K ζ(1 + α j + αk)

∏
q<r≤Q ζ(1 + γq + γr )∏K

k=1
∏Q

q=1 ζ(1 + αk + γq)

and AS is an Euler product, absolutely convergent for all of the variables in small disks around 0, which
is given by

AS(α; γ ) :=

∏
p

∏
j≤k≤K (1 − 1/p1+α j +αk )

∏
q<r≤Q(1 − 1/p1+γq+γr )∏K

k=1
∏Q

q=1(1 − 1/p1+αk+γq )

×

(
1 + (1 + 1/p)−1

∑
0<

∑
k ak+

∑
q cq is even

∏
q µ(pcq )

p
∑

k ak(1/2+αk)+
∑

q cq (1/2+γq )

)
,

while

gS(z) :=
0((1 − z)/2)

0(z/2)
.

In particular, for our applications to the weighted one-level density, we are interested in the case where
Q = 1 and 2 ≤ K ≤ 5.

4A. Conjecture 4.1 in the case K = 2, Q = 1. We start with∑
d≤X

L(1/2 + A, χd)L(1/2 + C, χd)

L(1/2 + D, χd)
, (4-7)
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with A, C, D shifts which satisfy the hypotheses prescribed by Conjecture 4.1; by the ratio conjecture,
up to a negligible error O(X1/2+ε), this is a sum of four terms and the first is∑

d≤X

ζ(1 + 2A)ζ(1 + 2C)ζ(1 + A + C)

ζ(1 + A + D)ζ(1 + C + D)
A(A, C; D),

where

A(A, C; D) =

∏
p

(
1 −

1
p1+2A

)(
1 −

1
p1+2C

)(
1 −

1
p1+A+C

)(
1 −

1
p1+A+D

)−1(
1 −

1
p1+C+D

)−1

×

(
1 +

p
p + 1

∑
0<a+c+d even

µ(pd)

pa(1/2+A)+c(1/2+C)+d(1/2+D)

)
.

In the following, it will be relevant to notice that for small values of the shifts, then the arithmetical
coefficient A(A, C; D) tends to A, defined in (4-3); this essentially follows from [Conrey et al. 2008,
Corollary 6.4]. All the other terms can be easily recovered from the first one, just by changes of sign
of the shifts, as the recipe suggests. This yields a formula for (4-7), written as a sum of four pieces; by
computing the derivative d

dC [ · · · ]C=D , we get∑
d≤X

L ′

L

(1
2
+D, χd

)
L
(1

2
+A, χd

)
=

∑
d≤X

(
Q1+

( d
π

)−A
gS

(1
2
+A

)
Q2+

( d
π

)−D
gS

(1
2
+D

)
Q3

+

( d
π

)−A−D
gS

(1
2
+A+D

)
Q4

)
+O

(
X1/2+ε

)
, (4-8)

with

Q1 = A(A, D; D)
ζ(1 + 2A)

ζ(1 + A + D)

(
2ζ ′(1 + 2D)ζ(1 + A + D)

ζ(1 + 2D)
+

ζ ′(1 + A + D)ζ(1 + 2D)

ζ(1 + 2D)

−
ζ ′(1 + 2D)ζ(1 + A + D)

ζ(1 + 2D)

)
+A′(A, D; D)ζ(1 + 2A)

=A(A, D; D)
ζ(1 + 2A)

ζ(1 + A + D)

(
ζ ′

ζ
(1+2D)ζ(1+ A+ D)+ζ ′(1+ A+ D)

)
+A′(A, D; D)ζ(1+2A),

Q2 =A(−A, D; D)
ζ(1 − 2A)

ζ(1 − A + D)

(
ζ ′

ζ
(1+2D)ζ(1−A+D)+ζ ′(1−A+D)

)
+A′(−A, D; D)ζ(1−2A),

Q3 = −A(A, −D; D)
ζ(1 + 2A)ζ(1 − 2D)ζ(1 + A − D)

ζ(1 + A + D)
,

Q4 = −A(−A, −D; D)
ζ(1 − 2A)ζ(1 − 2D)ζ(1 − A − D)

ζ(1 − A + D)
.

Moreover, we notice that if the shifts are ≪ (log X)−1, then we can approximate (4-8), getting∑
d≤X

L ′

L

(1
2

+ D, χd

)
L
(1

2
+ A, χd

)
= AX∗

(
−A−3D

(2A)(2D)(A+D)
+ X−A A−3D

(−2A)(2D)(−A+D)

+ X−D A+D
(2A)(2D)(A−D)

+ X−A−D −A+D
(−2A)(2D)(−A−D)

)
+ O(log X), (4-9)

being that A(±A, ±D, D) = A+ O(1/ log X) and ζ(1 + z) = 1/z + O(1) as z → 0.
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4B. Conjecture 4.1 in the case K = 3, Q = 1. Now, we study in detail∑
d≤X

L(1/2 + A, χd)L(1/2 + B, χd)L(1/2 + C, χd)

L(1/2 + D, χd)
, (4-10)

with A, B, C and D as prescribed by Conjecture 4.1. This time, the asymptotic formula suggested by
recipe is a sum of eight terms; the first is∑

d≤X

ζ(1 + 2A)ζ(1 + 2B)ζ(1 + 2C)ζ(1 + A + B)ζ(1 + A + C)ζ(1 + B + C)

ζ(1 + A + D)ζ(1 + B + D)ζ(1 + C + D)
A(A, B, C; D),

where the (rather horrible) arithmetical coefficient is given by

A(A, B, C; D)

=

∏
p

(
1−

1
p1+2A

)(
1−

1
p1+2B

)(
1−

1
p1+2C

)(
1−

1
p1+A+B

)(
1−

1
p1+A+C

)
×

(
1−

1
p1+B+C

)(
1−

1
p1+A+D

)−1(
1−

1
p1+B+D

)−1(
1−

1
p1+C+D

)−1

×

(
1+

p
p+1

[(
1+

1
p1+A+B +

1
p1+A+C +

1
p1+B+C

)(
1−

1
p1+2A

)−1(
1−

1
p1+2B

)−1(
1−

1
p1+2C

)−1

−1−
( 1

p1+A+D +
1

p1+B+D +
1

p1+C+D +
1

p2+A+B+C+D

)(
1− 1

p1+2A

)−1(
1− 1

p1+2B

)−1(
1− 1

p1+2C

)−1
])

.

We notice that, as in the proof of [Conrey et al. 2008, Corollary 6.4], we can prove that the arithmetical
coefficient is convergent if all the variables are in small disk around 0, being A(0) = B, with B defined
in (4-5). As in the previous example, this gives a formula for (4-10) with all the main terms and error
O(X1/2+ε). Differentiating this formula with respect to C at C = D, we get∑
d≤X

L ′

L

(1
2
+D, χd

)
L
(1

2
+A, χd

)
L
(1

2
+B, χd

)
=

∑
d≤X

(
R1+

( d
π

)−A
gS

(1
2
+A

)
R2+

( d
π

)−B
gS

(1
2
+B

)
R3+

( d
π

)−D
gS

(1
2
+D

)
R4

+

( d
π

)−A−B
gS

(1
2
+A+B

)
R5+

( d
π

)−A−D
gS

(1
2
+A+D

)
R6

+

( d
π

)−B−D
gS

(1
2
+B+D

)
R7+

( d
π

)−A−B−D
gS

(1
2
+A+B+D

)
R8

)
+O(X1/2+ε) (4-11)

with

R1 = R1(A, B, D)

= A(A, B, D; D)
ζ(1+2A)ζ(1+2B)ζ(1+A+B)

ζ(1+A+D)ζ(1+B+D)

×

(
2ζ ′(1+2D)ζ(1+A+D)ζ(1+B+D)+ζ(1+2D)ζ ′(1+A+D)ζ(1+B+D)

ζ(1+2D)

+
ζ(1+2D)ζ(1+A+D)ζ ′(1+B+D)−ζ(1+A+D)ζ(1+B+D)ζ ′(1+2D)

ζ(1+2D)

)
+ζ(1+2A)ζ(1+2B)ζ(1+A+B)A′(A, B, D; D),
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and

R2 = R1(−A, B, D),

R3 = R1(A, −B, D),

R4 = R4(A, B, D)

= −
ζ(1+2A)ζ(1+2B)ζ(1+A+B)ζ(1−2D)ζ(1+A−D)ζ(1+B−D)

ζ(1+A+D)ζ(1+B+D)
A(A, B, −D; D),

R5 = R1(−A, −B, D),

R6 = R4(−A, B, D),

R7 = R4(A, −B, D),

R8 = R4(−A, −B, D).

If A, B, D ≪ (log X)−1 the above formula simplifies a lot, since in this case

R1 =
−AB − 3AD − 3B D − 5D2

(2A)(2B)(2D)(A + B)(A + D)(B + D)
B+ O

(
(log X)6

(log X)3

)
=: f (A, B, D)B+ O

(
(log X)3)

and

R4 =
−(A + D)(B + D)

(2A)(2B)(−2D)(A + B)(A − D)(B − D)
B+ O

(
(log X)6

(log X)3

)
=: g(A, B, D)B+ O

(
(log X)3),

giving∑
d≤X

L ′

L

(1
2
+D, χd

)
L
(1

2
+A, χd

)
L
(1

2
+B, χd

)
= BX∗

(
f (A, B, D)+X−A f (−A, B, D)+X−B f (A, −B, D)+X−Dg(A, B, D)

+X−A−B f (−A, −B, D)+X−A−Dg(−A, B, D)

+X−B−Dg(A, −B, D)+X−A−B−Dg(−A, −B, D)
)
+O

(
(log X)3). (4-12)

Analogous (but longer) formulae can be obtained also in the cases K = 4, Q = 1 and K = 5, Q = 1.
With exactly the same ideas (but much longer computations) also the case K > 5, Q = 1 can be dealt.

4C. The weighted one-level density for
{

L
(1

2, χd
)}

d . We recall that the one-level density for the sym-
plectic family of quadratic Dirichlet L-functions has been studied originally by Özlük and Snyder [1999]
and independently by Katz and Sarnak [1999]10, who proved that

lim
X→∞

1
X∗

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
=

∫
+∞

−∞

f (x)

(
1 −

sin(2πx)

2πx

)
dx (4-13)

under GRH, for any f such that supp f̂ ⊂ (−2, 2). Moreover, Conrey and Snaith [2007] showed (4-13)
(also with lower order terms) with no constraint on the support of f̂ , under the assumption of the

10See also “Zeroes of Zeta Functions, their Spaces and their Spectral Nature” by Katz and Sarnak, the 1997 preprint version
of [Katz and Sarnak 1999].
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ratio conjecture; namely, they consider f a test function, holomorphic throughout the strip |ℑ(z)| < 2,
even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, and they study

DLχ

0 ( f ) :=
1

X∗

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
. (4-14)

As X → ∞, they show that the above is asymptotic to the right-hand side of (4-14), which matches
with the one-level density for the eigenvalues of the matrices from the symplectic group USp(2N ). In
particular, we notice that the one-level density function 1 − sin(2πx)/(2πx) vanishes of order 2 at x = 0,
being ∼ (2π2/3)x2 as x → 0.

Similarly to what we did in Section 3, we now want to compute the weighted one-level density in the
symplectic case, tilted by L

(1
2 , χd

)
. We note that, differently from what happens in the Riemann zeta

function case, here we are allowed to consider the first power as well, as L
( 1

2 , χd
)

is real. The analogue
of (3-1) in this context is

DLχ

1 ( f ) :=
1∑

d≤X L(1/2, χd)

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
, χd

)
, (4-15)

and via ratio conjecture in the form of (4-8) this can be studied asymptotically, as shown in the following
result:

Proposition 4.1. Assume GRH and Conjecture 4.1 for K = 2, Q = 1. For any test function f , holomorphic
in the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DLχ

1 ( f ) =

∫
+∞

−∞

f (x)W 1
USp(x) dx + O

( 1
log X

)
as X → ∞, where

W 1
USp(x) := 1 +

sin(2πx)

2πx
−

2 sin2(πx)

(πx)2 .

Proof. We start looking at

1
(A/2)X∗ log X

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
+ α, χd

)
, (4-16)

with α ≍ (log X)−1; note that, as α → 0,
∑

d≤X L
( 1

2 + α, χd
)

tends to 1/(2ζ(2))(A/2)X log X , which
is the normalization (A/2)X∗ log X we have in (4-16). As usual, we use the Cauchy theorem and the
functional equation for (L ′/L)(s, χd) to write

1
(A/2)X∗ log X

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
+ α, χd

)
= −J (α) + 2I(α) + O

( 1
log X

)
(4-17)

where

J (α) :=
2

AX∗ log X
1

2π

∫
+∞

−∞

(− log X) f
(

y log X
2π

) ∑
d≤X

L
(1

2
+ α, χd

)
dy

=
−2

AX∗ log X

∫
+∞

−∞

f (x)
∑
d≤X

(
L
(1

2
, χd

)
+ O

( 1
log X

))
dx = −

∫
+∞

−∞

f (x) dx + O
( 1

log X

)
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and

I(α) :=
2

AX∗(log X)2

∫
+∞

−∞

f (x)
∑
d≤X

L ′

L

(1
2

+ δ +
2π i x
log X

, χd

)
L
(1

2
+ α, χd

)
dx,

with δ ≍ (log X)−1. Now we rely on the assumption of the ratio conjecture (in particular, (4-8) and (4-9))
to compute the sum over d; in particular, in the same way as in the proof of Proposition 3.1, by a truncation
of the integral over x and Taylor approximations, we get

I(α) =
2

(log X)2

∫
+∞

−∞

f (x)gX

(
α, δ +

2π i x
log X

)
dx + O

( 1
log X

)
,

where

gX (α, w) :=
−α−3w

(2α)(2w)(α+w)
+ X−α α−3w

(−2α)(2w)(−α+w)

+ X−w α+w

(2α)(2w)(α−w)
+ X−α−w −α+w

(−2α)(2w)(−α−w)
.

The integral is regular at δ = 0 then, if we denote α = a/log X , we get

I
( a

log X

)
=

2
(log X)2

∫
+∞

−∞

f (x)gX

( a
log X

,
2π i x
log X

)
dx + O

( 1
log X

)
,

which is regular at a = 0; indeed, if we take the limit as a → 0, we get

I(0) = lim
a→0

I
( a

log X

)
= 2

∫
+∞

−∞

f (x)g(2π i x) dx + O
( 1

log X

)
where

g(w) := lim
a→0

(
−a−3w

(2a)(2w)(a+w)
+ e−a a−3w

(−2a)(2w)(−a+w)

+ e−w a+w

(2a)(2w)(a−w)
+ e−a−w −a+w

(−2a)(2w)(−a−w)

)
=

−we−w
−3w−4e−w

+4
4w2 .

Then

DLχ

1 ( f ) = lim
α→0

1
(A/2)X∗ log X

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
+ α, χd

)
= −J (0) + 2I(0) + O

( 1
log X

)
=

∫
+∞

−∞

f (x)
(
1 + 4g(2π i x)

)
dx + O

( 1
log X

)
,

and since f is even, the main term above equals∫
+∞

−∞

f (x)

(
1 +

sin(2πx)

2πx
−

2 sin2(πx)

(πx)2

)
dx . □

Analogously, we can compute the weighted one-level density, tilted by the second power of L
( 1

2 , χd
)
,

i.e.,

DLχ

2 ( f ) :=
1∑

d≤X L(1/2, χd)2

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
, χd

)2
(4-18)

under the assumption of Conjecture 4.1, in the case K = 3, Q = 1.
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Proposition 4.2. Assume GRH and Conjecture 4.1 for K = 3, Q = 1. For any function f holomorphic in
the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DLχ

2 ( f ) =

∫
+∞

−∞

f (x)W 2
USp(x) dx + O

( 1
log X

)
as X → ∞, where

W 2
USp(x) := 1 −

sin(2πx)

2πx
−

24(1 − sin2(πx))

(2πx)2 +
48 sin(2πx)

(2πx)3 −
96 sin2(πx)

(2πx)4 .

Proof. The proof works like that of Proposition 4.1; first, for α = a/log X ≍ (log X)−1 and for
β = b/log X ≍ (log X)−1, we analyze

1
(B/24)X∗(log X)3

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
+ α, χd

)
L
(1

2
+ β, χd

)
, (4-19)

which can be written as
−J (α, β)+ 2I(α, β)+ O

( 1
log X

)
, (4-20)

where

J (α, β) :=
−24 log X

BX∗(log X)3
1

2π

∫
+∞

−∞

f
(

y log X
2π

) ∑
d≤X

L
(1

2
+ α, χd

)
L
(1

2
+ β, χd

)
= −

∫
+∞

−∞

f (x) dx + O
( 1

log X

)
(4-21)

and

I(α, β) :=
24

BX∗(log X)4

∫
+∞

−∞

f (x)
∑
d≤X

L ′

L

(1
2

+ δ +
2π i x
log X

, χd

)
L
(1

2
+ α, χd

)
L
(1

2
+ β, χd

)
dx,

where δ ≍ (log T )−1, as usual. With the usual machinery, the ratio conjecture (see (4-11) and (4-12))
allows us to evaluate the sum over d; the resulting quantity is regular at δ = 0 and at α = a/log X = 0,
β = b/log X = 0, thus taking the limit, we get

I(0, 0) = 24
∫

+∞

−∞

f (x)h(2π i x) dx, (4-22)

with

h(y) :=
y3e−y

− 5y3
+ 12y2e−y

+ 12y2
+ 48ye−y

+ 48e−y
− 48

48y4 .

Putting all together, from (4-19), (4-20), (4-21) and (4-22), we finally get

DLχ

2 = −J (0, 0) + 2I(0, 0) + O
( 1

log X

)
=

∫
+∞

−∞

f (x)
(
1 + 48h(2π i x)

)
dx + O

( 1
log X

)
.

Moreover, since f is even, the main term equals∫
+∞

−∞

f (x)

(
1 −

sin(2πx)

2πx
−

24(1 − sin2(πx))

(2πx)2 +
48 sin(2πx)

(2πx)3 −
96 sin2(πx)

(2πx)4

)
dx . □
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In the same way, we study

DLχ

3 ( f ) :=
1∑

d≤X L(1/2, χd)3

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
, χd

)3
, (4-23)

assuming Conjecture 4.1 in the case K = 4, Q = 1.

Proposition 4.3. Assume GRH and Conjecture 4.1 for K = 4, Q = 1. For any function f holomorphic in
the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DLχ

3 ( f ) =

∫
+∞

−∞

f (x)W 3
USp(x) dx + O

( 1
log X

)
as X → ∞, where

W 3
USp(x) := 1 +

sin(2πx)

2πx
−

12 sin2(πx)

(πx)2 −
240 sin(2πx)

(2πx)3 −
15(6 − 10 sin2(πx))

(πx)4

+
2880 sin(2πx)

(2πx)5 −
90 sin2(πx)

(πx)6 .

Proof. We consider α, β, ν ∈ R of size ≍ 1/ log X . We denote

Lα,β,ν

( 1
2 , χd

)
:= L

( 1
2 + α, χd

)
L
( 1

2 + β, χd
)
L
( 1

2 + ν, χd
)
,

and we look at
1∑

d≤X L(1/2, χd)3

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
Lα,β,ν

(1
2
, χd

)
.

With the usual machinery we get that the above equals∫
+∞

−∞

f (x)

(
1 + 2 1∑

d≤X L(1/2, χd)3

∑
d≤X

L ′

L

(1
2

+ δ +
2π i x
log X

, χd

)
Lα,β,ν

(1
2
, χd

))
dx

up to an error O(1/ log X), with δ ≍ 1/ log X . The remaining sum over d can be evaluated asymptotically
by using the ratio conjecture (i.e., Conjecture 4.1 for K = 4, Q = 1). This can be done by using Sage to
carry out the easy but very long computations. Doing so, letting α, β, ν → 0, we obtain

DLχ

3 ( f ) =

∫
+∞

−∞

f (x)
(
1 + 2 · 2880 · h(2π i x)

)
dx + O

( 1
log X

)
,

with

h(y) :=
−7y5

+ 24y4
− 240y2

+ 2880
5760y6 +

e−y(−y5
− 24y4

− 240y3
− 1200y2

− 2880y − 2880)

5760y6 .

The claim follows, since f is even. □

Finally, we look at

DLχ

4 ( f ) :=
1∑

d≤X L(1/2, χd)4

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
L
(1

2
, χd

)4
(4-24)

assuming Conjecture 4.1, in the case K = 5, Q = 1.
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Proposition 4.4. Assume GRH and Conjecture 4.1 for K = 5, Q = 1. For any function f holomorphic in
the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DLχ

4 ( f ) =

∫
+∞

−∞

f (x)W 4
USp(x) dx + O

( 1
log X

)
as X → ∞, where

W 4
USp(x) := 1 −

sin(2πx)

2πx
−

10(1 + cos(2πx))

(πx)2 +
90 sin(2πx)

(πx)3 −
15(3 − 31 cos(2πx))

(πx)4

−
1470 sin(2πx)

(πx)5 −
315(1 + 9 cos(2πx))

(πx)6 +
3150 sin(2πx)

(πx)7 −
1575(1 − cos(2πx))

(πx)8 .

Proof. The proof works in the same way as the previous ones. We consider α, β, ν, η∈R of size ≍1/ log X ,
we let

Lα,β,ν,η

( 1
2 , χd

)
:= L

( 1
2 + α, χd

)
L
( 1

2 + β, χd
)
L
( 1

2 + ν, χd
)
L
( 1

2 + η, χd
)
,

and we look at
1∑

d≤X L(1/2, χd)4

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
Lα,β,ν,η

(1
2
, χd

)
.

By the usual manipulations, the above equals∫
+∞

−∞

f (x)

(
1 + 2 1∑

d≤X L(1/2, χd)4

∑
d≤X

L ′

L

(1
2

+ δ +
2π i x
log X

, χd

)
Lα,β,ν,η

(1
2
, χd

))
dx,

up to an error O(1/ log X), with δ ≍ 1/ log X . Thanks to Conjecture 4.1 with K = 5, Q = 1, the above
can be computed asymptotically. As α, β, ν, η → 0, with the help of Sage, we then obtain

DLχ

4 ( f ) =

∫
+∞

−∞

f (x)
(
1 + 2 · 4838400 · h(2π i x)

)
dx + O

( 1
log X

)
,

with

h(y) :=
−9y7

+40y6
−720y4

+20160y2
−403200

9676800y8 +
e−y(y7

+40y6
+720y5

+7440y4)

9676800y8

+
e−y(47040y3

+181440y2
+403200y+403200)

9676800y8 .

Again, being f even, the claim follows. □

4D. Proof of Theorem 2.4. The same remark as in Section 3C applies here, relying on [Conrey et al.
2008, Theorem 4.2] instead of Conjecture 4.1.

5. Proof of Theorems 2.5 and 2.6

As a last example, we analyze the orthogonal case of the family of quadratic twists of the L-functions
associated with the discriminant modular form 1. which is the unique normalized cusp form of weight 12.
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Its Fourier coefficients define the Ramanujan tau function τ(n), being

1(z) = q
∏
n≥1

(1 − qn)24
=

∞∑
n=1

τ(n)qn,

with q = e2π i z . Thus, the L-function associated with 1 is defined by

L1(s) :=

∞∑
n=1

τ ∗(n)

ns ,

where τ ∗(n) = τ(n)/n11/2. The family we want to describe is the collection of the quadratic twists of L1,
that are

L1(s, χd) =

∞∑
n=1

χd(n)τ ∗(n)

ns =

∏
p

(
1 −

τ ∗(p)χd(p)

ps +
χd(p2)

p2s

)−1

,

and, for d > 0, they satisfy the functional equation(
d2

4π2

)s/2

0
(
s +

11
2

)
L1(s, χd) =

(
d2

4π2

)(1−s)/2

0
(
1 − s +

11
2

)
L1(1 − s, χd).

Finally, we also record that

1
L1(s, χd)

=

∏
p

(
1 −

τ ∗(p)χd(p)

ps +
χd(p2)

p2s

)
=:

∞∑
n=1

χd(n)µ1(n)

ns ,

where µ1 is the multiplicative function defined by µ1(p)=−τ ∗(p), µ1(p2)=1 and µ1(pα)=0 if α ≥3.
The family {L1(1/2, χd) : d > 0, f.d.} is an even orthogonal family, modeled by the group SO(2N )

with the identification 2N ≈ log(d2/(4π2)).
The moments at the central value of L-functions associated with quadratic twists of a modular form have

been studied extensively in recent years, but only the first moment [Bump et al. 1990; Iwaniec 1990; Murty
and Murty 1991] and partially the second [Soundararajan and Young 2010; Radziwiłł and Soundararajan
2015] have been obtained. It is known that such a family can be either symplectic or orthogonal, depending
on the specific L-function we twist; in particular, if we start with the L-function associated with the
discriminant modular form 1, then we are in the latter case. For an orthogonal family F , ordered by the
conductor C( f ), Conrey and Farmer [2000] and Keating and Snaith [2000] predict that

1
X∗

∑
f ∈F

C( f )≤X

L f

(1
2

)k
∼

fO(k)

2
a(k)(log X A)k(k−1)/2, (5-1)

where the above sum is over the X∗ elements of the family F such that C( f ) ≤ X ; fO(k) is the leading
order coefficient of the moments of characteristic polynomials of matrices in SO(2N ); a(k) is a constant
depending on the particular family involved; A is a constant depending on the functional equation satisfied
by the L-functions in the family, in particular on the degree of the relevant parameter in the functional
equation for L f (s) (see [Conrey and Farmer 2000, Equation (1.3)] for further details and examples).
Moreover, in this case the recipe [Conrey et al. 2005a] provides a precise formula with all the main
terms for any integral moment, extended by [Conrey et al. 2008] to ratios. The ratio conjecture for the
orthogonal family of quadratic twists of the discriminant modular form can be stated as follows:
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Conjecture 5.1 [Conrey et al. 2008, Conjecture 5.3]. Let K , Q be two positive integers, α1, . . . , αK and
γ1, . . . , γQ be complex shifts with real part ≍ (log X)−1 and imaginary part ≪ε X1−ε for every ε > 0, then∑
d≤X

∏K
k=1 L1(1/2 + αk, χd)∏Q
q=1 L1(1/2 + γq , χd)

=

∑
d≤X

∑
ϵ∈{−1,1}K

(
d2

4π2

)(1/2)
∑

k(ϵkαk−αk) K∏
k=1

gO

(
1
2

+
αk − ϵkαk

2

)
YOAO( · · · ) + O(X1/2+ε),

with ( · · · ) = (ϵ1α1, . . . , ϵK αK ; γ ), where

YO(α; γ ) :=

∏
j<k≤K ζ(1 + α j + αk)

∏
q<r≤Q ζ(1 + γq + γr )

∏
q≤Q ζ(1 + 2γq)∏K

k=1
∏Q

q=1 ζ(1 + αk + γq)

and AO is an Euler product, absolutely convergent for all of the variables in small disks around 0, which
is given by

AO(α; γ ) :=

∏
p

∏
j<k≤K (1 − 1/p1+α j +αk )

∏
q<r≤Q(1 − 1/p1+γq+γr )

∏
q≤Q(1 − 1/p1+2γq )∏K

k=1
∏Q

q=1(1 − 1/p1+αk+γq )

×

(
1 +

(
1 +

1
p

)−1 ∑
0<

∑
k ak+

∑
q cq is even

∏
k τ ∗(pak )

∏
q µ1(pcq )

p
∑

k ak(1/2+αk)+
∑

q cq (1/2+γq )

)
while

gO(s) :=
0(1/2 − s + 6)

0(s − 1/2 + 6)
.

In the following, we will analyze the applications of this conjecture to the weighted one-level density,
as we did in Section 4C for a symplectic family. To do so, we first look at what Conjecture 5.1 gives
in a few specific examples.

5A. Conjecture 5.1 in the case K = 1, Q = 0. This is the easiest situation possible, corresponding to
the first moment of L1

( 1
2 , χd

)
; for A a complex number which satisfies the hypotheses prescribed by

Conjecture 5.1, the ratio conjecture yields

1
X∗

∑
d≤X

L1

(1
2

+ A, χd

)
= A(A) +

( d
2π

)−2A 0(6 − A)

0(6 + A)
A(−A) + O(X−1/2+ε),

with

A(A) :=

∏
p

(
1 +

p
p + 1

[
−1 +

∞∑
m=0

τ ∗(p2m)

p(1/2+A)2m

])
.

We note that A(A) is regular at A = 0; indeed the m = 0 and m = 1 terms give 1 and τ ∗(p2)p−1−2A

respectively, therefore an approximation for A(A) would be
∏

p(1 + τ ∗(p2)/p1+2A
+ · · · ). Differently

from the unitary and symplectic cases, where the first term in the corresponding Euler products gives
the polar factor ζ(1 + 2A), here we would have L1(sym2, 1 + 2A) the symmetric square of L1, which
is well known to be regular and nonzero at 1 (see [Iwaniec 1997, Chapter 13] for a complete overview
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about the symmetric square and its properties). However, for the sake of brevity, we prefer not to factor
out L1(sym2, 1+2A), and we leave the contribution of the symmetric square encoded in the arithmetical
factor A(A), which converges in a small disk around 0. Thus, for A = 0, we immediately get

1
X∗

∑
d≤X

L1

(1
2
, χd

)
= 2A+ O(X−1/2+ε), (5-2)

where

A := A(0) =

∏
p

(
1 +

p
p + 1

[
−1 +

∞∑
m=0

τ ∗(p2m)

(
√

p )2m

])
. (5-3)

5B. Conjecture 5.1 in the case K = 2, Q = 1. We consider∑
d≤X

L1(1/2 + A, χd)L1(1/2 + C, χD)

L1(1/2 + D, χd)
, (5-4)

with A, C, D shifts satisfying the usual hypotheses prescribed by the ratio conjecture; by Conjecture 5.1,
up to a negligible error, this is a sum of four terms and the first is∑

d≤X

ζ(1 + A + C)ζ(1 + 2D)

ζ(1 + A + D)ζ(1 + C + D)
A(A, C; D),

where

A
(

A, C; D
)

=

∏
p

(
1 −

1
p1+A+C

)(
1 −

1
p1+2D

)(
1 −

1
p1+A+D

)−1(
1 −

1
p1+C+D

)−1

×

(
1 +

p
p + 1

∑
0<a+c+d even

τ ∗(pa)τ ∗(pc)µ(pd)

pa(1/2+A)+c(1/2+C)+d(1/2+D)

)
.

As usual, we note that A(A, C; D) ∼A(0, 0; 0) =A defined in (5-3) as A, C, D → 0; this can be proved
by a modification of the proof of [Conrey et al. 2008, Corollary 6.4] or by direct computation. All the
other terms can be easily recovered from the first one, then we get a formula for (5-4), written as a sum
of four pieces; by computing the derivative d

dC [ · · · ]C=D , we get∑
d≤X

L ′

1

L1

(1
2
+D, χd

)
L
(1

2
+A, χd

)
=

∑
d≤X

(
Q1+

( d
2π

)−2A
gO

(1
2
+A

)
Q2+

( d
2π

)−2D
gO

(1
2
+D

)
Q3

+

( d
2π

)−2A−2D
gO

(1
2

+ A + D
)

Q4

)
+ O(X1/2+ε), (5-5)

with

Q1 = A(A, D; D)

(
ζ ′

ζ
(1 + A + D) −

ζ ′

ζ
(1 + 2D)

)
+A′(A, D; D),

Q2 = A(−A, D; D)

(
ζ ′

ζ
(1 − A + D) −

ζ ′

ζ
(1 + 2D)

)
+A′(−A, D; D),

Q3 = −A(A, −D; D)
ζ(1 + A − D)ζ(1 + 2D)

ζ(1 + A + D)
,

Q4 = −A(−A, −D; D)
ζ(1 − A − D)ζ(1 + 2D)

ζ(1 − A + D)
.
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Moreover, we notice that if the shifts are of order ≍ (log X)−1, then we can approximate (5-5), getting∑
d≤X

L ′

1

L1

(1
2
+D, χd

)
L
(1

2
+A, χd

)
=AX∗

(
A−D

(A+D)2D
+X−2A −A−D

(−A+D)2D
+X−2D −A−D

(A−D)2D
+X−2A−2D A−D

(−A−D)2D

)
+O(1), (5-6)

since A(±A, ±D, D) = A+ O(1/ log X) and ζ(1 + z) = 1/z + O(1) as z → 0.

5C. Conjecture 5.1 in the case K = 2, Q = 0. We now analyze closely the second moment of L1

( 1
2 , χd

)
;

we take two complex shifts A, B such that A, B ≍ (log X)−1, and we look at

1
X∗

∑
d≤X

L1

(1
2

+ A, χd

)
L1

(1
2

+ B, χd

)
.

By Conjecture 5.1, ignoring the negligible error term O(X1/2+ε), the above is

f (A, B) + X−2A f (−A, B) + X−2B f (A, −B) + X−2A−2B f (−A − B), (5-7)

with

f (A, B) := ζ(1 + A + B)
∏

p

(
1 −

1
p1+A+B

)(
1 +

p
p + 1

∑
m+n>0

even

τ ∗(pm)τ ∗(pn)

p(1/2+A)m+(1/2+B)n

)
.

Since A, B ≍ (log X)−1, we set a = A log X ≍ 1 and b = B log X ≍ 1, so that (5-7) becomes

B log X
(

1
a+b

+
e−2a

−a+b
+

e−2b

a−b
+

e−2a−2b

−a−b

)(
1 + O

( 1
log X

))
, (5-8)

where

B :=

∏
p

(
1 −

1
p

)(
1 +

p
p + 1

∑
m+n>0

even

τ ∗(pm)τ ∗(pn)

p(m+n)/2

)
. (5-9)

The expression in (5-8) is regular at a = 0 and b = 0, since the limit of the first parentheses as a, b → 0
equals 4. Therefore, we finally get

1
X∗

∑
d≤X

L1

(1
2
, χd

)2
∼ 4B log X. (5-10)

5D. Conjecture 5.1 in the case K = 3, Q = 1. Finally, we look at∑
d≤X

L1(1/2 + A, χd)L1(1/2 + B, χd)L1(1/2 + C, χd)

L1(1/2 + D, χd)
, (5-11)

with A, B, C and D as Conjecture 5.1 prescribes. The first of the eight terms given by the recipe is∑
d≤X

ζ(1 + 2D)ζ(1 + A + B)ζ(1 + A + C)ζ(1 + B + C)

ζ(1 + A + D)ζ(1 + B + D)ζ(1 + C + D)
A(A, B, C; D),
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where

A(A, B, C; D) =

∏
p

(1 − 1/p1+2D)(1 − 1/p1+A+B)(1 − 1/p1+A+C)(1 − 1/p1+B+C)

(1 − 1/p1+A+D)(1 − 1/p1+B+D)(1 − 1/p1+C+D)

×

(
1 +

p
p + 1

∑
0<a+b+c+d

even

τ ∗(pa)τ ∗(pb)τ ∗(pc)µ1(pd)

p(1/2+A)a+(1/2+B)b+(1/2+C)c+(1/2+D)d

)
is the arithmetical coefficient, absolutely convergent in small disks around 0, such that A(0, 0, 0; 0) = B.
As in all the previous examples, this gives a formula for (5-11) with all the main terms and error O(X1/2+ε)

and differentiating this formula with respect to C at C = D, we get∑
d≤X

L ′

1

L1

(1
2

+ D, χd

)
L1

(1
2

+ A, χd

)
L1

(1
2

+ B, χd

)
=

∑
d≤X

(
R1 +

( d
2π

)−2A
gO

(1
2

+ A
)

R2 +

( d
2π

)−2B
gO

(1
2

+ B
)

R3

+

( d
2π

)−2D
gO

(1
2

+ D
)

R4 +

( d
2π

)−2A−2B
gO

(1
2

+ A + B
)

R5

+

( d
2π

)−2A−2D
gO

(1
2

+ A + D
)

R6 +

( d
2π

)−2B−2D
gO

(1
2

+ B + D
)

R7

+

( d
2π

)−2A−2B−2D
gO

(1
2

+ A + B + D
)

R8

)
+ O(X1/2+ε), (5-12)

with

R1 = R1(A, B, D)

= A(A, B, D; D)ζ(1+ A+B)

×

(
ζ ′

ζ
(1+ A+D)+

ζ ′

ζ
(1+B+D)−

ζ ′

ζ
(1+2D)

)
+ζ(1+ A+B)A′(A, B, D; D),

R2 = R1(−A, B, D),

R3 = R1(A, −B, D),

R4 = R4(A, B, D) = −
ζ(1+2D)ζ(1+ A+B)ζ(1+ A−D)ζ(1+B−D)

ζ(1+ A+D)ζ(1+B+D)
A(A, B, −D; D),

R5 = R1(−A, −B, D),

R6 = R4(−A, B, D),

R7 = R4(A, −B, D),

R8 = R4(−A, −B, D).

(5-13)

If A, B, D ≍ (log X)−1, the above formula simplifies a lot, since

R1 =
AB− AD−B D−3D2

2D(A+B)(A+D)(B+D)
B+ O

(
(log X)4

(log X)3

)
=: f (A, B, D) + O(log X)

and

R4 =
(A + D)(B + D)

(−2D)(A + B)(A − D)(B − D)
B+

(
(log X)4

(log X)3

)
=: g(A, B, D) + O(log X),
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giving∑
d≤X

L ′

1

L1

(1
2
+D, χd

)
L1

(1
2
+A, χd

)
L1

(1
2
+B, χd

)
= BX∗

(
f (A, B, D)+X−2A f (−A, B, D)+X−2B f (A, −B, D)

+X−2Dg(A, B, D)+X−2A−2B f (−A, −B, D)+X−2A−2Dg(−A, B, D)

+X−2B−2Dg(A, −B, D)+X−2A−2B−2Dg(−A, −B, D)
)
+O(log X). (5-14)

Analogous formulae can be obtained in the cases K = 4, Q = 1 and K = 5, Q = 1. Again, with the
same technique, one can get formulae also in the case K > 5, Q = 1.

5E. The weighted one-level density for
{

L1

(1
2, χd

)}
d . In analogy to what we did in Section 4C, we

now compute the weighted one-level density for the orthogonal family of quadratic twists of L1. We
assume the Riemann hypothesis for the L-functions we are considering, and we denote with γ1,d the
imaginary part of a generic zero of L1(s, χd). In the classical case, assuming the ratio conjecture, Conrey
and Snaith [2007] proved that

lim
X→∞

1
X∗

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
=

∫
+∞

−∞

f (x)

(
1 +

sin(2πx)

2πx

)
dx (5-15)

for any test function f , satisfying the usual properties as in Theorem 2.5. We now use the formulae of
the previous section to derive the weighted one-level density; we let

DL1,χ

1 ( f ) :=
1∑

d≤X L1(1/2, χd)

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
L1

(1
2
, χd

)
, (5-16)

and we prove the following result:

Proposition 5.1. Assume GRH and Conjecture 5.1 for K = 2, Q = 1. For any function f holomorphic
in the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DL1,χ

1 ( f ) =

∫
+∞

−∞

f (x)W 1
SO+(x) dx + O

( 1
log X

)
as X → ∞, where

W 1
SO+(x) := 1 −

sin(2πx)

2πx
. (5-17)

Proof. The strategy of the proof is the same as in the unitary and symplectic cases, thus we will just
sketch how the proof works, highlighting the differences with the other cases. For a ≍ 1/ log X a real
parameter, we consider the quantity

1
2AX∗

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
L1

(
1
2

+
a

log X
, χd

)
,

which can be written as (δ ≍ (log X)−1)

log(X2)

2π

∫
+∞

−∞

f
(

log X
π

y
)

dy+2 1
2π

∫
+∞

−∞

f
(

log X
π

y
)

1
2AX∗

∑
d≤X

L ′

1

L1

(
1
2
+δ+iy

)
L1

(
1
2
+

a
log X

, χd

)
dy,
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with an error O((log X)−1), by using the Cauchy’s theorem and the functional equation

L ′

1

L1

(1 − s, χd) =
Y ′

1

Y1

(s, χd) −
L ′

1

L1

(s, χd),

with (Y ′

1/Y1)(s, χd) = − log d2
+ O(1) (note that the square here is due to the conductor of L1(s, χd),

which is d2/(4π2)). With the change of variable (log X/π)y = x the above equals∫
+∞

−∞

f (x)

(
1 +

1
2AX∗ log X

∑
d≤X

L ′

1

L1

(1
2

+ δ +
π i x

log X

)
L1(1

2 +
a

log X , χd)

)
dx .

Now we use the assumption of the ratio conjecture in the form of (5-5) and (5-6) to evaluate the sum
over d , getting ∫

+∞

−∞

f (x)

(
1 +

1
2 log X

h X

( a
log X

,
π i x

log X

))
dx + O

( 1
log X

)
,

with

h X (α, w) :=
α−w

(α+w)2w
+ X−2α −α−w

(−α+w)2w
+ X−2w −α−w

(α−w)2w
+ X−2α−2w α−w

(−α−w)2w
.

Letting a → 0, and since h X (0, w) = (X−2w
− 1)/w, we get∫

+∞

−∞

f (x)

(
1 +

e−2π i x
−1

2π i x

)
dx + O

( 1
log X

)
.

Putting all together, since f is even, we finally have

DL1,χ

1 ( f ) =

∫
+∞

−∞

f (x)

(
1 −

sin(2πx)

2πx

)
dx + O

( 1
log X

)
. □

Similarly we compute the analogue of (5-15), tilting by the second power of L1

( 1
2 , χd

)
, i.e.,

DL1,χ

2 ( f ) :=
1∑

d≤X L1(1/2, χd)2

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
L1

(1
2
, χd

)2
(5-18)

under the assumption of Conjecture 5.1, in the case K = 3, Q = 1. This is achieved in the following
proposition:

Proposition 5.2. Assume GRH and Conjecture 5.1 for K = 3, Q = 1. For any function f holomorphic
in the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DL1,χ

2 ( f ) =

∫
+∞

−∞

f (x)W 2
SO+(x) dx + O

( 1
log X

)
as X → ∞, where

W 2
SO+(x) := 1 +

sin(2πx)

πx
−

2 sin2(πx)

(πx)2 .

Proof. Again we start with

1
4BX∗ log X

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
L1

(1
2

+
a

log X
, χd

)
L1

(1
2

+
b

log X
, χd

)
,
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and with the usual machinery, we write it as∫
+∞

−∞

f (x)

(
1 +

1
4BX∗(log X)2 I

( a
log X

,
b

log X
, δ +

π i x
log X

))
dx + O

( 1
log X

)
,

with

I(α, β,w) :=

∑
d≤X

L ′

1

L1

(1
2

+ w, χd

)
L1

(1
2

+ α, χd

)
L1

(1
2

+ β, χd

)
.

Thanks to the assumption of the ratio conjecture (see (5-12) and (5-14)) we are able to evaluate asymp-
totically the above sum, which is regular at α, β, δ = 0. More specifically, we have that

lim
a→0
b→0
δ→0

I
( a

log X
,

b
log X

, δ +
y

log X

)
= BX∗(log X)2h(y) + O(log X),

with

h(y) :=
−2ye−2y

− 6y − 4e−2y
+ 4

y2 .

Then we get

DL1,χ

2 ( f ) =

∫
+∞

−∞

f (x)
(
1 +

1
4

h(π i x)
)

dx + O
( 1

log X

)
=

∫
+∞

−∞

f (x)

(
1 +

sin(2πx)

2πx
−

sin2(πx)

(πx)2

)
dx + O

( 1
log X

)
,

since f is even. □

We go on and define

DL1,χ

3 ( f ) :=
1∑

d≤X L1(1/2, χd)3

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
L1

(
1
2
, χd

)3

,

analyzing the third-moment case.

Proposition 5.3. Assume GRH and Conjecture 5.1 for K = 4, Q = 1. For any function f holomorphic
in the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DL1,χ

3 ( f ) =

∫
+∞

−∞

f (x)W 3
SO+(x) dx + O

( 1
log X

)
as X → ∞, where

W 3
SO+(x) := 1 −

sin(2πx)

2πx
−

24(1 − sin2(πx))

(2πx)2 +
48 sin(2πx)

(2πx)3 −
96 sin2(πx)

(2πx)4 .

Proof. We introduce the usual real parameters α, β, ν of size ≍ 1/ log X , we let

Lα,β,ν
1

( 1
2 , χd

)
:= L1

( 1
2 + α, χd

)
L1

( 1
2 + β, χd

)
L1

( 1
2 + ν, χd

)
,

and we consider
1∑

d≤X L1(1/2, χd)3

∑
d≤X

∑
γd

f
(

log X
2π

γd

)
Lα,β,ν

1

(1
2
, χd

)
.
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With the usual strategy we get that the above equals∫
+∞

−∞

f (x)

(
1 +

1∑
d≤X L(1/2, χd)3

∑
d≤X

L ′

1

L1

(1
2

+ δ +
2π i x
log X

, χd

)
Lα,β,ν

1

(
1
2 , χd

))
dx

up to an error O(1/ log X), with δ ≍ 1/ log X . We evaluate asymptotically the remaining sum over d
thanks to Conjecture 5.1 for K = 4, Q = 1), using Sage to carry out the computations. Doing so, letting
α, β, ν → 0, we obtain

DL1,χ

3 ( f ) =

∫
+∞

−∞

f (x)
(
1 +

1
2

h(π i x)
)

dx + O
( 1

log X

)
,

with
h(y) :=

−5y3
+ 6y2

− 6 + e−2y(y3
+ 6y2

+ 12y + 6)

y4 .

The claim follows, since f is even. □

Finally, in the following result, we study the case k = 4, given by

DL1,χ

4 ( f ) :=
1∑

d≤X L1(1/2, χd)4

∑
d≤X

∑
γ1,d

f
(

log X
π

γ1,d

)
L1

(1
2
, χd

)4
:

Proposition 5.4. Assume GRH and Conjecture 5.1 for K = 5, Q = 1. For any function f holomorphic
in the strip ℑ(z) < 2, even, real on the real line and such that f (x) ≪ 1/(1 + x2) as x → ∞, we have

DL1,χ

4 ( f ) =

∫
+∞

−∞

f (x)W 4
SO+(x) dx + O

( 1
log X

)
as X → ∞, where

W 4
SO+(x)

:= 1+
sin(2πx)

2πx
−

12 sin2(πx)

(πx)2 −
240 sin(2πx)

(2πx)3 −
15(6−10 sin2(πx))

(πx)4 +
2880 sin(2πx)

(2πx)5 −
90 sin2(πx)

(πx)6 .

Proof. As usual, if we set

Lα,β,ν,η
1

( 1
2 , χd

)
:= L1

( 1
2 + α, χd

)
L1

( 1
2 + β, χd

)
L1

( 1
2 + ν, χd

)
L1

( 1
2 + η, χd

)
,

then we express DL1,χ

4 ( f ) as the limit for α, β, ν, η → 0 of∫
+∞

−∞

f (x)

(
1 +

1∑
d≤X L(1/2, χd)4

∑
d≤X

L ′

1

L1

(1
2

+ δ +
2π i x
log X

, χd

)
Lα,β,ν,η

1

(1
2
, χd

))
dx

up to an error O(1/ log X), with δ ≍ 1/ log X . The above can be evaluated asymptotically (again Sage
is of help in carrying out the computation), and we get

DL1,χ

4 ( f ) =

∫
+∞

−∞

f (x)
(
1 +

1
2

h(π i x)
)

dx + O
( 1

log X

)
,

with

h(y) :=
−7y5

+ 12y4
− 30y2

+ 90
y6 −

e−2y(y5
+ 12y4

+ 60y3
+ 150y2

+ 180y + 90)

y6 .

Since f is even, the claim follows. □
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Theorem 2.5 follows by Propositions 5.1–5.4.

5F. Proof of Theorem 2.6. Citing [Conrey et al. 2008, Theorem 4.3] instead of assuming Conjecture 5.1,
the same strategy gives an unconditional proof in random matrix theory.

6. Proof of Theorem 2.7

By Fourier inversion, we have that

W k
USp(x) =

∫
+∞

−∞

Ŵ k
USp(y)e2π i xydy

=

∞∑
n=0

(
(2π i)n

n!

∫
+∞

−∞

Ŵ k
USp(y)yn dy

)
xn.

Moreover, since Ŵ k
USp is even, then

∫
+∞

−∞
Ŵ k

USp(y)yn dy = 0 if n is odd. Hence, by definition of Ŵ k
USp,

W k
USp(x) =

∞∑
m=0

βm,k x2m,

with

βm,k =
(2π i)2m

(2m)!

∫
+∞

−∞

(
δ0(y) + χ[−1,1](y)

(
−

2k+1
2

− k(k + 1)

k∑
j=1

(−1) j c j,k
|y|

2 j−1

2 j − 1

))
y2m dy,

where χ[−1,1] denotes the indicator function of the interval [−1, 1]. By computing the integral, being∫ 1
−1 y2m dy = 2/(2m + 1) and

∫ 1
−1 y2m

|y|
2 j−1 dy = 1/(m + j), the above yields

βm,k := δ0(m) −
(2π i)2m

(2m)!

[
2k+1
2m+1

+ k(k + 1)

k∑
j=1

(−1) j

(2 j − 1)( j + m)
c j,k

]
.

Since

c j,k =
1
j

(
k − 1
j − 1

)(
k + j
j − 1

)
=

j
k(k + 1)

(
k + j

j

)(
k
j

)
,

we get

βm,k = δ0(m) −
(2π i)2m

(2m)!

[
2k+1
2m+1

+ Sm(1)

]
, (6-1)

where

Sm,k(x) :=

∞∑
j=1

(−1) j j
(2 j − 1)( j + m)

(k+ j
j

)(k
j

)
x j .

Now we write the factors in the above sum in terms of the Pochhammer symbol, defined as

(a)0 := 1 and (a)n := a(a + 1)(a + 2) · · · (a + n − 1) for n ≥ 1;
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namely, (
k + j

j

)
=

(k + 1) j

j !
,

(−1) j
(

k
j

)
=

(−k) j

(1) j
,

j
(2 j − 1)( j + m)

=
1

2m+1

( 1
2 j −1

+
m

j +m

)
=

1
2m+1

(
−

(−1/2) j

(1/2) j
+

(m) j

(m + 1) j

)
,

so that we have

Sm,k(x) =
1

2m+1

∞∑
j=1

(
−

(−1/2) j

(1/2) j
+

(m) j

(m + 1) j

)
(−k) j (k + 1) j

(1) j

x j

j !
. (6-2)

Reparametrizing the sum and using (a) j+1 = a(a + 1) j , this gives

Sm,k(x) = S1
m,k(x) + S2

m,k(x),

where

S1
m,k(x) :=

−k(k + 1)x
2m + 1

∞∑
j=0

(1/2) j (−k + 1) j (k + 2) j

(3/2) j (2) j

x j

j !
1

j +1

and

S2
m,k(x) :=

−mk(k + 1)x
(2m + 1)(m + 1)

∞∑
j=0

(m + 1) j (−k + 1) j (k + 2) j

(m + 2) j (2) j

x j

j !
1

j +1
.

By writing
1

j +1
= 2

(
1 −

2 j + 1
2 j + 2

)
and

(1/2) j

(3/2) j
=

1
2 j +1

,

we get

S1
m,k(x) = −

2xk(k + 1)

m + 1 3 F2

[
1 − k, k + 2, 1/2

3/2, 2
; x

]
−

2 F1
[

−k, k+1
1 ; x

]
− 1

2m + 1
,

where p Fq denotes the generalized hypergeometric function, defined as

p Fq

[
a1, . . . , ap

b1, . . . , bq
; x

]
:=

∞∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
.

Similarly, since

−
1

j +1
=

1
m

−
j + m + 1
( j + 1)m

,

we have

S2
m,k(x) =

xk(k + 1)

(2m + 1)(m + 1)
3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; x

]
+

2 F1
[

−k, k+1
1 ; x

]
− 1

2m + 1
.

Therefore, substituting in (6-2) yields

Sm,k(x) = −
2xk(k+1)

m+1 3 F2

[
1−k, k+2, 1/2

3/2, 2
; x

]
+

xk(k+1)

(2m+1)(m+1)
3 F2

[
1−k, k+2, m+1

m+2, 2
; x

]
. (6-3)
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Plugging (6-3) into (6-1), we obtain

βm,k = δ0(m) −
(−1)m(2π)2m

(2m + 1)!

(
2k + 1 − 2k(k + 1)3 F2

[
1 − k, k + 2, 1/2

3/2, 2
; 1

]
+

k(k + 1)

(m + 1)
3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; 1

])
. (6-4)

Now we need a few lemmas, in order to be able to compute the remaining hypergeometric functions.

Lemma 6.1. For any k ∈ N, we have

3 F2

[
1 − k, k + 2, 1/2

3/2, 2
; 1

]
=


1

k+1
, if k even,

1
k
, if k odd.

Proof. We recall the reduction formula for the generalized hypergeometric function (see, e.g., [Gottschalk
and Maslen 1988, Equation (17), when n = 1], ), being

A+1 FB+1

[
a1, . . . , aA, c + n

b1, . . . , bB, c
; x

]
=

n∑
j=0

(
n
j

)
1

(c) j

∏A
i=1(ai ) j∏B
i=1(bi ) j

A FB

[
a1 + j, . . . , aA + j
b1 + j, . . . , bB + j

; x
]

for any A, B positive integers, n ∈ N. The left hand side can be then written as

3 F2

[
1 − k, 1/2, k + 2

3/2, 2
; 1

]
=

k∑
j=0

(
k
j

)
1

(2) j

(1 − k) j (1/2) j

(3/2) j
2 F1

[
1 − k + j, 1/2 + j

3/2 + j
; 1

]

=

k−1∑
j=0

(
k
j

)
1

(2) j

(1 − k) j (1/2) j

(3/2) j
2 F1

[
1 − k + j, 1/2 + j

3/2 + j
; 1

]
, (6-5)

as (1− k)k = 0. The remaining hypergeometric function can be computed by applying Gauss’ summation
theorem (see, e.g., [Koepf 2014, Equation (3.1)]), i.e., the formula

2 F1

[
a, b

c
; 1

]
=

0(c)0(c − a − b)

0(c − a)0(c − b)
, ℜ(c) > ℜ(a + b).

We recall that if a = −n, n ∈ N, this is the Chu–Vandermonde identity (see, again, [Koepf 2014,
immediately below Equation (3.1)])

2 F1

[
−n, b

c
; 1

]
=

(c − b)n

(c)n
.

This yields

2 F1

[
1 − k + j, 1/2 + j

3/2 + j
; 1

]
=

(k − j − 1)!( j + 1/2)!

(k − 1/2)!
(6-6)
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for k > j . Plugging (6-6) into (6-5), we get

3 F2

[
1 − k, 1/2, k + 2

3/2, 2
; 1

]
=

(k − 1)!

2(k − 1/2)!

k−1∑
j=0

(k
j

)
(−1) j ( j − 1/2)!

( j + 1)!

=
(k − 1)!

2(k − 1/2)!

k∑
j=0

(k
j

)
(−1) j ( j − 1/2)!

( j + 1)!
−

(−1)k

2k(k + 1)
.

(6-7)

Moreover, since
( 1

2

)
j = (1/

√
π)( j −

1
2)!, (−1) j

(k
j

)
= (−k) j/j ! and (2) j = ( j + 1)!, we have

k∑
j=0

(
k
j

)
(−1) j ( j − 1/2)!

( j + 1)!
=

√
π 2 F1

[
−k, 1/2

2
; 1

]
= 2

(k + 1/2)!

(k + 1)!

by applying the Chu–Vandermonde identity. Putting this into (6-7), we finally get

3 F2

[
1 − k, 1/2, k + 2

3/2, 2
; 1

]
=

k + 1/2
k(k + 1)

−
(−1)k

2k(k + 1)
,

and the claim follows. □

By using Lemma 6.1, (6-4) becomes

βm,k = δ0(m) −
(−1)m(2π)2m

(2m + 1)!

(
(−1)k

+
k(k + 1)

(m + 1)
3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; 1

])
. (6-8)

The coefficient β0,k can be then computed, thanks to the following lemma:

Lemma 6.2. For any k ∈ N we have

3 F2

[
1 − k, k + 2, 1

2, 2
; 1

]
=

{
0, if k even,

2
k(k+1)

, if k odd.

Proof. By definition, we have

3 F2

[
1 − k, k + 2, 1

2, 2
; 1

]
=

∞∑
j=0

(1 − k) j (k + 2) j (1) j

(2) j (2) j

1
j !

= −
1

k(k+1)

∞∑
j=0

(−k) j+1(k + 1) j+1

(1) j+1

1
j !

,

since (1) j/(2) j = 1/( j + 1), (1 − k) j = (−k) j+1/(−k) and (2) j = (1) j+1. Reparametrizing the series
with l = j + 1, the above yields

−
1

k(k+1)

( ∞∑
l=0

(−k)l(k + 1)l

(1)l

1
l!

− 1
)

=

1 − 2 F1

[
−k, k+1

1 ; 1
]

k(k + 1)
.

The claim is then proven, by noticing that 2 F1
[

−k,k+1
1 ; 1

]
= (−1)k , thanks to the Chu–Vandermonde

identity. □
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This implies that β0,k = 0 for any k ∈ N, proving the first part of Theorem 2.7. To complete our proof,
we need to show that

βk+1,k =
2π2(k+1)

(2k+1)!!(2k+1)!!
(6-9)

is the first nonzero coefficient. As a first step, the following lemma shows that βi,k = 0 for all 1 ≤ i ≤ k:

Lemma 6.3. For any k ∈ N and for any 1 ≤ m ≤ k, we have

3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; 1

]
=

(m + 1)(−1)k+1

k(k + 1)
.

Proof. We begin by applying the reduction formula, which yields

3 F2

[
1−k, k+2, m+1

m+2, 2
; 1

]
=

m−1∑
j=0

(
m−1

j

)
1

(2) j

(1−k) j (k+2) j

(m+2) j
2 F1

[
1−k+ j, k+2+ j

m+2+ j
; 1

]
. (6-10)

Moreover, the Chu–Vandermonde identity gives

2 F1

[
1 − k + j, k + 2 + j

m + 2 + j
; 1

]
=

(m − k)k− j−1

(m + j + 2)k− j−1
.

Since (m − k)k− j−1 = 0 for all j < m − 1, only the term j = m − 1 survives in the sum in (6-10). Hence,
we get

3 F2

[
1 − k, k + 2, m + 1

m + 2, 2
; 1

]
=

(1 − k)m−1

(2)m−1

(k + 2)m−1

(m + 2)m−1

(m − k)k−m

(2m + 1)k−m

=
(−1)m−1(k − 1)!

(k − m)! m!

(k + m)!(m + 1)!

(k + 1)!(2m)!

(−1)k−m(k − m)!(2m)!

(m + k)!

=
(−1)k−1(k − 1)!

m!

(m + 1)!

(k + 1)!
=

(−1)k−1(m + 1)

k(k + 1)
, (6-11)

where in the first line we applied the equalities (m+2)m−1 = (2m)!/(m+1)!, (k+2)m−1 = (k+m)!/(k+1)!

and (1 − k)m−1 = (−1)m−1(k − 1)!/(k − m)!. Similarly also (m − k)k−m = (−1)k−m(k − m)! and
(2m + 1)k−m = (k + m)!/(2m)!. □

Finally, with the following lemma, we can also compute βk+1,k :

Lemma 6.4. For any k ∈ N, we have

3 F2

[
1 − k, k + 2, k + 2

k + 3, 2
; 1

]
=

2(−1)k+1(k − 1)!(k + 2)!

(2k + 2)!

((2k+1
k+1

)
− 1

)
.

Proof. The idea of the proof is similar the one of Lemma 6.3. First we apply the reduction formula in
order to write 3 F2

[ 1−k,k+2,k+2
k+3,2 ; 1

]
as a finite sum of terms involving 2 F1, namely,

3 F2

[
1 − k, k + 2, k + 2

k + 3, 2
; 1

]
=

k−1∑
j=0

(k
j

) 1
(2) j

(1 − k) j (k + 2) j

(k + 3) j
2 F1

[
1 − k + j, k + 2 + j

k + 3 + j
; 1

]
. (6-12)
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Note that the term j = k vanishes, as (1 − k)k = 0. Now we use Gauss’ summation theorem and compute
the remaining hypergeometric function, i.e.,

2 F1

[
1 − k + j, k + 2 + j

k + 3 + j
; 1

]
=

(k + j + 2)!

(2k + 1)!
.

Plugging this into (6-12), since (−1) j
(k

j

)
= (−k) j/j ! and (k + 2) j = (k + j + 1)!/(k + 1)!, we have

3 F2

[
1 − k, k + 2, k + 2

k + 3, 2
; 1

]
=

(k − 1)!(k + 2)!

(2k + 1)!

k−1∑
j=0

(−k) j (k + 2) j

(2) j

1
j !

=
(k − 1)!(k + 2)!

(2k + 1)!

(
2 F1

[
−k, k + 2

2
; 1

]
−

(−k)k(k + 2)k

(2)k

1
k!

)
. (6-13)

Therefore, since 2 F1
[

−k,k+2
2 ; 1

]
= (−1)k/(k + 1), we get

3 F2

[
1 − k, k + 2, k + 2

k + 3, 2
; 1

]
=

(k − 1)!(k + 2)!

(2k + 1)!

(
(−1)k

k + 1
−

(−1)k(2k + 1)!

((k + 1)!)2

)
=

2(k − 1)!(k + 2)!(−1)k

(2k + 2)!

(
1 −

(2k + 1)!

(k + 1)! k!

)
,

and the claim follows. □

To conclude the proof of Theorem 2.7, we just combine (6-8) with Lemma 6.4, getting

βk+1,k =
(2π)2k+2

(2k + 3)!

(
1 −

k(k + 1)

k + 2
2(k − 1)!(k + 2)!

(2k + 2)!

((
2k + 1
k + 1

)
− 1

))
=

(2π)2k+2

(2k + 3)!

(
1 −

2[(k + 1)!]2

(2k + 2)!

(
(2k + 1)!

(k + 1)! k!
− 1

))
=

(2π)2k+2

(2k + 3)!

(
1 −

2(k + 1)

2k + 2
+

2[(k + 1)!]2

(2k + 2)!

)
=

(2π)2k+2

(2k + 3)!

(k + 1)! k!

(2k + 1)!
.

Equation (6-9) follows by the identities (2k +1)! = 2kk!(2k +1)!! and (2k +3)! = 2k+1(k +1)!(2k +3)!!.

Acknowledgments

I would like to thank Sandro Bettin for many interesting and helpful discussions, for all his help while
I was working on this paper and for several corrections and improvements that he suggested. I am also
grateful to Joseph Najnudel for inspiring this project. I also wish to thank the referees for a very careful
reading of the paper and for indicating several inaccuracies and mistakes. The author was supported by
the Czech Science Foundation, grant 21-00420M.

References

[Bettin and Fazzari 2022] S. Bettin and A. Fazzari, “A weighted one-level density of the non-trivial zeros of the Riemann
zeta-function”, preprint, 2022. arXiv 2208.08421

http://msp.org/idx/arx/2208.08421


A weighted one-level density of families of L-functions 131

[Böcherer 1986] S. Böcherer, “Bemerkungen über die Dirichletreihen von Koecher und Maaß”, Preprint Math. Gottingensis
Heft 69 (1986), 36. Zbl

[Bump et al. 1990] D. Bump, S. Friedberg, and J. Hoffstein, “Nonvanishing theorems for L-functions of modular forms and
their derivatives”, Invent. Math. 102:3 (1990), 543–618. MR Zbl

[Conrey 2005] B. Conrey, “Families of L-functions and 1-level densities”, pp. 225–249 in Recent perspectives in random matrix
theory and number theory, edited by F. Mezzadri and N. C. Snaith, London Math. Soc. Lecture Note Ser. 322, Cambridge Univ.
Press, 2005. MR Zbl

[Conrey and Farmer 2000] J. B. Conrey and D. W. Farmer, “Mean values of L-functions and symmetry”, Internat. Math. Res.
Notices 17 (2000), 883–908. MR Zbl

[Conrey and Snaith 2007] J. B. Conrey and N. C. Snaith, “Applications of the L-functions ratios conjectures”, Proc. Lond. Math.
Soc. (3) 94:3 (2007), 594–646. MR Zbl

[Conrey et al. 2005a] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, “Integral moments of
L-functions”, Proc. London Math. Soc. (3) 91:1 (2005), 33–104. MR Zbl

[Conrey et al. 2005b] J. B. Conrey, D. W. Farmer, and M. R. Zirnbauer, “Howe pairs, supersymmetry, and ratios of random
characteristic polynomials for the unitary groups U(N)”, preprint, 2005. arXiv math-ph/0511024

[Conrey et al. 2008] B. Conrey, D. W. Farmer, and M. R. Zirnbauer, “Autocorrelation of ratios of L-functions”, Commun.
Number Theory Phys. 2:3 (2008), 593–636. MR Zbl

[Dickson et al. 2020] M. Dickson, A. Pitale, A. Saha, and R. Schmidt, “Explicit refinements of Böcherer’s conjecture for Siegel
modular forms of squarefree level”, J. Math. Soc. Japan 72:1 (2020), 251–301. MR Zbl

[Fazzari 2021a] A. Fazzari, “A weighted central limit theorem for log
∣∣ζ ( 1

2 + i t
)∣∣”, Mathematika 67:2 (2021), 324–341. MR

[Fazzari 2021b] A. Fazzari, “Weighted value distributions of the Riemann zeta function on the critical line”, Forum Math. 33:3
(2021), 579–592. MR Zbl

[Furusawa and Morimoto 2021] M. Furusawa and K. Morimoto, “Refined global Gross–Prasad conjecture on special Bessel
periods and Böcherer’s conjecture”, J. Eur. Math. Soc. (JEMS) 23:4 (2021), 1295–1331. MR Zbl

[Gottschalk and Maslen 1988] J. E. Gottschalk and E. N. Maslen, “Reduction formulae for generalised hypergeometric functions
of one variable”, J. Phys. A 21:9 (1988), 1983–1998. MR Zbl

[Huckleberry et al. 2016] A. Huckleberry, A. Püttmann, and M. R. Zirnbauer, “Haar expectations of ratios of random charac-
teristic polynomials”, Complex Anal. Synerg. 2:1 (2016), art. id. 1. MR Zbl

[Hughes and Rudnick 2002] C. Hughes and Z. Rudnick, “Linear statistics for zeros of Riemann’s zeta function”, C. R. Math.
Acad. Sci. Paris 335:8 (2002), 667–670. MR Zbl

[Hughes and Rudnick 2003] C. P. Hughes and Z. Rudnick, “Linear statistics of low-lying zeros of L-functions”, Q. J. Math.
54:3 (2003), 309–333. MR Zbl

[Iwaniec 1990] H. Iwaniec, “On the order of vanishing of modular L-functions at the critical point”, Sém. Théor. Nombres
Bordeaux (2) 2:2 (1990), 365–376. MR Zbl

[Iwaniec 1997] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics 17, American Math.
Society, Providence, RI, 1997. MR Zbl

[Iwaniec et al. 2000] H. Iwaniec, W. Luo, and P. Sarnak, “Low lying zeros of families of L-functions”, Inst. Hautes Études
Sci. Publ. Math. 91 (2000), 55–131. MR Zbl

[Jutila 1981] M. Jutila, “On the mean value of L
( 1

2 , χ
)

for real characters”, Analysis 1:2 (1981), 149–161. MR Zbl

[Kaczorowski and Perelli 1999] J. Kaczorowski and A. Perelli, “The Selberg class: A survey”, pp. 953–992 in Number theory
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