

Semisimple algebras and PI-invariants of finite dimensional algebras

Eli Aljadeff and Yakov Karasik

Semisimple algebras and PI-invariants of finite dimensional algebras

Eli Aljadeff and Yakov Karasik

Let Γ be the T-ideal of identities of an affine PI-algebra over an algebraically closed field F of characteristic zero. Consider the family \mathcal{M}_{Γ} of finite dimensional algebras Σ with $\operatorname{Id}(\Sigma)=\Gamma$. Ву Kemer's theory \mathcal{M}_{Γ} is not empty. We show there exists $A \in \mathcal{M}_{\Gamma}$ with Wedderburn-Malcev decomposition $A \cong A_{s s} \oplus J_{A}$, where J_{A} is the Jacobson's radical and $A_{s s}$ is a semisimple supplement with the property that if $B \cong B_{s s} \oplus J_{B} \in \mathcal{M}_{\Gamma}$ then $A_{s s}$ is a direct summand of $B_{s s}$. In particular $A_{s s}$ is unique minimal, thus an invariant of Γ. More generally, let Γ be the T-ideal of identities of a PI algebra and let $\mathcal{M}_{\mathbb{Z}_{2}, \Gamma}$ be the family of finite dimensional superalgebras Σ with $\operatorname{Id}(E(\Sigma))=\Gamma$. Here E is the unital infinite dimensional Grassmann algebra and $E(\Sigma)$ is the Grassmann envelope of Σ. Again, by Kemer's theory $\mathcal{M}_{\mathbb{Z}_{2}, \Gamma}$ is not empty. We prove there exists a superalgebra $A \cong A_{s s} \oplus J_{A} \in \mathcal{M}_{\mathbb{Z}_{2}, \Gamma}$ such that if $B \in \mathcal{M}_{\mathbb{Z}_{2}, \Gamma}$, then $A_{s s}$ is a direct summand of $B_{s s}$ as superalgebras. Finally, we fully extend these results to the G-graded setting where G is a finite group. In particular we show that if A and B are finite dimensional $G_{2}:=\mathbb{Z}_{2} \times G$-graded simple algebras then they are G_{2}-graded isomorphic if and only if $E(A)$ and $E(B)$ are G-graded PI-equivalent.

1. Introduction

Let F be an algebraically closed field of characteristic zero and $F\langle X\rangle$ the free associative algebra over F on a countable set of variables X. Let Γ be a T-ideal of $F\langle X\rangle$ (i.e., invariant under all algebra endomorphisms of $F\langle X\rangle$). It is easy to see that Γ is in fact the ideal of polynomial identities of a suitable associative algebra (e.g., $\Gamma=\operatorname{Id}(F\langle X\rangle / \Gamma)$). Kemer's representability theorem says that if $\Gamma \neq 0$, then it is the T-ideal of identities of an algebra of the form $E(B)$, the Grassmann envelope of some finite dimensional \mathbb{Z}_{2}-graded algebra $B=B_{0} \oplus B_{1}$ over F. Here $E=E_{0} \oplus E_{1}$ is the infinite dimensional unital Grassmann algebra over F with the natural \mathbb{Z}_{2}-grading and $E(B)=E_{0} \otimes B_{0} \oplus E_{1} \otimes B_{1}$ viewed as an ungraded algebra. In case Γ is the T-ideal of identities of an affine PI algebra, or equivalently, in case Γ contains a nontrivial Capelli polynomial, Kemer's representability theorem says that $\Gamma=\operatorname{Id}(A)$ where A is a finite dimensional algebra over F. Kemer's representability theorem is the key step towards the positive solution of the Specht problem which claims that every T-ideal is finitely based.

The purpose of this paper is to prove, roughly speaking, that if A is a finite dimensional algebra over an algebraically closed field of characteristic zero F, then the maximal semisimple subalgebra of A, namely a supplement $A_{s s}$ of the Jacobson's radical J_{A} in A, is "basically uniquely determined" by $\operatorname{Id}(A)$. We

[^0]© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
show also that a similar result holds for the algebra $E(B)$, that is, a \mathbb{Z}_{2}-graded semisimple supplement of J_{B} in a finite dimensional superalgebra B is basically uniquely determined by $\Gamma=\operatorname{Id}(E(B))$. Finally, we extend our results to the G-graded setting where G is a finite group. Before we state the results precisely, we should remark right away that strictly speaking the semisimple part of a finite dimensional algebra cannot be determined by its T-ideal of identities for the simple reason that e.g., $\operatorname{Id}(A)=\operatorname{Id}(A \oplus A)$. So, by "basically uniquely determined" we mean the following.

Theorem 1.1. Let Γ be a T-ideal of identities and suppose Γ contains a Capelli polynomial c_{n} for some n. Then there exists a finite dimensional semisimple F-algebra U that satisfies the following conditions:
(1) There exists a finite dimensional algebra A over F with $\operatorname{Id}(A)=\Gamma$ and such that $A \cong U \oplus J_{A}$ is its Wedderburn-Malcev decomposition.
(2) If B is any finite dimensional algebra over F with $\operatorname{Id}(B)=\Gamma$ and $B_{s s}$ is its maximal semisimple subalgebra, then U is a direct summand of $B_{s s}$.

Clearly, up to an algebra isomorphism, the semisimple algebra U is unique minimal and hence it is an invariant of Γ.

Let A be a finite dimensional algebra over F and let $A \cong A_{1} \times \cdots \times A_{q} \oplus J$ be its Wedderburn-Malcev decomposition where A_{i} is simple, $i=1, \ldots, q$, and $J=J_{A}$ is the Jacobson radical.

Definition 1.2. We say A is full if up to a permutation of the simple components $A_{1} \cdot J \cdot A_{2} \cdots J \cdot A_{q} \neq 0$.
The following theorem plays a key role in the proof of Theorem 1.1.
Theorem 1.3. If two full algebras A and B are PI-equivalent then their maximal semisimple subalgebras are isomorphic. In particular this holds in case A and B are fundamental algebras.

Remark 1.4. Fundamental algebras are special type of full algebras. They are important in Kemer's theory but will not play a role in this paper; see [Aljadeff et al. 2020].

Let us show how Theorem 1.3 follows from Theorem 1.1. Let A_{0} be a finite dimensional algebra PI equivalent to A and with minimal semisimple subalgebra U. We show $U \cong A_{s s}$. Recall that for a finite dimensional algebra $W, \exp (W) \leq \operatorname{dim}_{F}\left(W_{s s}\right)$ and equality holds if (and only if) W is full. Here $\exp (W)$ is the exponent of the algebra W, an asymptotic PI invariant attached to the T - $\mathrm{ideal} \operatorname{Id}(W)$ and so $\exp \left(A_{0}\right)=\exp (A)$; see [Giambruno and Zaicev 1998, Corollary 1]. Furthermore, by Theorem 1.1 we have that U is a direct summand of $A_{s s}$ and the result follows.

For fundamental algebras the result of Theorem 1.3 was proved by Procesi [2016, Corollary 3.15]. Procesi's result is based on a geometric construction which corresponds to a T-ideal Γ containing a Capelli polynomial, or equivalently, a T-ideal of identities of a finite dimensional algebra A. Let us comment briefly on Procesi's approach. He considers the coordinate ring $\mathcal{T}_{t}(Y)$ of the variety of the semisimple representations of the free algebra $F\langle X\rangle$ into the algebra of $t \times t$-matrices over F, where X is a set of cardinality m and t is the exponent of Γ; see [Aljadeff et al. 2020, Chapter 21]. The commutative algebra $\mathcal{T}_{t}(Y)$ acts on the T-ideal K generated by Kemer polynomials of Γ via a quotient algebra \mathcal{T}_{D}, an algebra
which is generated by traces. It turns out, and this is a key idea of Kemer [Aljadeff et al. 2016, Section 10], that replacing suitable variables x_{i} which alternate in a Kemer polynomial f by $z x_{i}(z$ is an auxiliary variable), it gives rise to the multiplication of f by a trace function. This determines the action of \mathcal{T}_{D} and hence of $\mathcal{T}_{t}(Y)$ on K. Finally, it is shown that the support variety W for the $\mathcal{T}_{t}(Y)$-module K carries the information we need. Indeed, it turns out that if A is any fundamental algebra with $\operatorname{Id}(A)=\Gamma$ and with semisimple part $A_{s s}=A_{1} \times \cdots \times A_{q}$, then the tuple $\left(t_{1}, \ldots, t_{q}\right)$, where $A_{i} \cong M_{t_{i}}(F)$, is an invariant of W.

Our approach instead is mostly combinatorial. It uses a refined version of the so called "Kemer's lemma 1" [Aljadeff et al. 2016, Section 6; Kanel-Belov and Rowen 2005, Proposition 4.44; Kemer 1987, Section 2] which deals with full algebras (an important ingredient in Kemer's solution of the Specht problem). We do not use however the more subtle result of Kemer, namely "Kemer's lemma 2" [Aljadeff et al. 2016, Section 7; Kanel-Belov and Rowen 2005, Proposition 4.54; Kemer 1987, Section 2] which concerns with fundamental algebras. The advantage of full algebras comparing to fundamental algebras (beside being a much larger class) is that they are easier to define and in particular they can be characterized without using polynomial identities. This allows us to extend Theorem 1.3 to (1) nonaffine algebras (2) group graded algebras.

Let us turn now to the case where Γ contains no Capelli polynomials. In that case we have the following result.

Theorem 1.5. Let $\Gamma \leq F\langle X\rangle$ be a nonzero T-ideal and suppose $c_{n} \notin \Gamma$ for every n. Then there exists a finite dimensional semisimple superalgebra U over F which satisfies the following conditions:
(1) There exists a finite dimensional superalgebra A over F with $\operatorname{Id}(E(A))=\Gamma$ and such that $A \cong U \oplus J_{A}$ is its Wedderburn-Malcev decomposition.
(2) If B is any finite dimensional superalgebra over F with $\operatorname{Id}(E(B))=\Gamma$ and $B_{s s}$ is its maximal semisimple subalgebra, then U is a direct summand of $B_{\text {ss }}$ as superalgebras.

The proof of Theorem 1.1 is given in the next section (Section 2). In Section 3 we treat the nonaffine case, Theorem 1.5.

In the last two sections of this article we extend the main results to the setting of G-graded T-ideals and G-graded algebras where G is a finite group. The main obstacle here is due to the fact that a G-graded simple algebra A is not determined up to a G-graded isomorphism by the dimensions of the homogeneous components $A_{g}, g \in G$. The proof uses the extension of Kemer's theory to G-graded algebras where G is a finite group; see [Aljadeff and Kanel-Belov 2010].

Remark 1.6. The extension of the results above to algebras over fields of finite characteristic and in particular over finite fields does not seem to be straightforward. One of the reasons is that alternation and symmetrization, operations which appear in the proofs, may result as zero multiplication. We refer to the work of Belov, Rowen and Vishne on full quivers of representations of algebras over fields of arbitrary characteristic and more generally over commutative Noetherian domains; see [Belov-Kanel et al. 2010;

2011; 2012]. The notion of full quiver is useful for studying the interactions between the radical and the semisimple component of Zariski closed algebras, a notion that appears in Belov's remarkable solution of the Specht problem for affine algebras over fields of finite characteristic; see [Belov 2010]. We emphasize that such interactions for Zariski closed algebras are considerably more subtle than for finite dimensional algebras over a field of characteristic zero.

2. Preliminaries and proof of the affine case

We start by introducing some combinatorial terminology.
Let $\alpha=\left(a_{1}, \ldots, a_{q}\right)$ be a q-tuple, $q \geq 0$, (or multiset rather, since the order of the a_{i} will not play a role) of positive integers. For any sub-tuple γ of α we let $\sigma(\gamma)=\sum_{a \in \gamma} a$ be the weight of γ. We set $\sigma(\gamma)=0$ if γ is the empty tuple.

In what follows the tuple α will correspond to the dimensions of the simple components of a finite dimensional semisimple algebra. More precisely, if A is a finite dimensional algebra over F, we let $A \cong A_{1} \times \cdots \times A_{q} \oplus J_{A}$ be its Wedderburn-Malcev decomposition. Then $\mathfrak{m}_{A}=\left(\operatorname{dim}_{F}\left(A_{1}\right), \ldots, \operatorname{dim}_{F}\left(A_{q}\right)\right)$ is the tuple corresponding to A. With this notation \mathfrak{m}_{A} is empty if and only if A is nilpotent.

Definition 2.1. Let $\alpha=\left(a_{1}, \ldots, a_{r}\right)$ and $\beta=\left(b_{1}, \ldots, b_{s}\right)$ be tuples of positive integers. We say β covers α if the tuple α may be decomposed into s disjoint, possibly empty, sub-tuples T_{1}, \ldots, T_{s} such that $\sigma\left(T_{i}\right) \leq b_{i}, i=1, \ldots, s$.

Example 2.2. The tuple $(16,12)$ covers the tuple $(10,9,3,3)$ but it does not cover the tuple $(15,8,5)$.
Note 2.3. (1) The covering relation is antisymmetric.
(2) The covering relation is strictly stronger than majorization.
(3) The covering relation is in fact a partial order relation, if one considers multisets rather than tuples.

Next we recall some definitions and a result from Kemer's theory.
Let A be a finite dimensional algebra over F. Let $A \cong A_{s s} \oplus J_{A}$ be its Wedderburn-Malcev decomposition where J_{A} is the Jacobson radical and $A_{s s}$ is a semisimple subalgebra supplementing J_{A}. The algebra $A_{s s}$ decomposes uniquely (up to permutation) into a direct product of simple algebras $A_{1} \times \cdots \times A_{q}$, where $A_{i} \cong M_{n_{i}}(F)$ is the algebra of $n_{i} \times n_{i}$-matrices over F. Furthermore, it is well known that all semisimple supplements of J_{A} in A are isomorphic.

It is clear that in order to test whether a multilinear polynomial p is an identity of A it is sufficient to evaluate the polynomial on a basis of A and so we fix from now on a basis $\mathcal{B}=\left\{e_{k, l}^{i}, u_{1}, \ldots, u_{d}\right\}$. Here, the elements $\left\{e_{k, l}^{i}\right\}, 1 \leq k, l \leq n_{i}$ are the elementary matrices of $M_{n_{i}}(F), i=1, \ldots, q$, and $\left\{u_{1}, \ldots, u_{d}\right\}$ is a basis of J_{A}.

Definition 2.4. Let $p=p\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial. We say an evaluation of p on A is admissible if the variables of p assume values only from the basis \mathcal{B}. We refer to an evaluation of a variable as semisimple (resp. radical) if the value is an elementary matrix $e_{k, l}^{i}$ (resp. an element $u_{i} \in J_{A}$).

For the rest of the paper we will consider only admissible evaluations.
Definition 2.5. Let A be a full algebra (Definition 1.2). We say a multilinear polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ is:
(1) A-weakly full (or weakly full of A or weakly full when the algebra in question is clear) if it has a nonzero admissible evaluation on A where elements from all simple components are represented in the evaluation.
(2) A-full if every simple component of $A_{s s}$ is represented in every admissible nonzero evaluation on A. Also here we may use the terminology full of A or just full.
(3) A-strongly full if every basis element of $A_{s s}$ appears in every admissible nonzero evaluation of p.

Remark 2.6. In this paper we make use of polynomials that are weakly full or strongly full. We mention full polynomials here just for completeness. They appear in Kemer's theory; see [Aljadeff et al. 2016, Definition 5.10].

It is clear that if p is A-strongly full then it is full. Also, every full polynomial is weakly full.
We are interested in the opposite direction. We start with:
Lemma 2.7. If A is a full algebra then it admits a weakly full polynomial.
Proof. Let A be as above. Then the multilinear monomial of degree $2 q-1$ is weakly full. Indeed, we get a nonzero evaluation where we put q semisimple (resp. $q-1$ radical) values in the odd (resp. even) positions.

The following theorem is basically Kemer's lemma 1; see [Aljadeff et al. 2016].
Theorem 2.8. The following hold:
(1) Every full algebra admits a multilinear strongly full polynomial and therefore admits a full polynomial.
(2) Let A be a full algebra and f_{0} be a multilinear weakly full polynomial of A. Then there exists a full polynomial f of A in $\left\langle f_{0}\right\rangle_{T}$, the T-ideal generated by f_{0}.
(3) Let A be a full algebra and f_{0} a multilinear weakly full polynomial of A. Then there exists a strongly full polynomial $f \in\left\langle f_{0}\right\rangle_{T}$ of A.

Proof. Clearly, the third statement implies the second and together with Lemma 2.7 it implies the first statement. Statement (3) follows from the construction in the proof of Kemer's lemma 1; see [Aljadeff et al. 2016].

As we shall need to refer to the precise construction of strongly full polynomials starting from a weakly full polynomial f_{0}, let us recall their construction here. It is convenient to illustrate first the construction on the weakly full polynomial mentioned above.

Let $A \cong A_{1} \times \cdots \times A_{q} \oplus J_{A}$, where $A_{i} \cong M_{n_{i}}(F), i=1, \ldots, q$ (as above) and suppose that after reordering the simple components we have $A_{1} J A_{2} \ldots J A_{q} \neq 0$. Let $f_{0}=X_{1} \cdot w_{1} \ldots w_{q-1} \cdot X_{q}$ be a
monomial of $2 q-1$ variables which is clearly weakly full by the obvious evaluation. Let

$$
Z_{n}=Z_{n}\left(x_{1}, \ldots, x_{n^{2}} ; y_{1}, \ldots, y_{n^{2}+1}\right)=y_{1} \cdot x_{1} \cdot y_{2} \cdots y_{n^{2}} \cdot x_{n^{2}} \cdot y_{n^{2}+1}
$$

be a multilinear monomial on $2 n^{2}+1$ variables. For $i=1, \ldots, q$, we consider k monomials $Z_{n_{i}}$ in disjoint variables, denoted by $Z_{n_{i}, l}, l=1, \ldots, k$, where the integer k is sufficiently large and will be determined later. We set $\Delta_{i}=Z_{n_{i}, 1} \cdots Z_{n_{i}, k}$, the product of k copies of the monomial $Z_{n_{i}}$ with disjoint sets of variables. Finally, in view of the inequality $A_{1} J A_{2} \cdots J A_{q} \neq 0$ we apply the T-operation and replace the variable X_{i} by $X_{i} \cdot \Delta_{i}$ in the polynomial f_{0} (here it is just a monomial) and obtain the monomial

$$
\Omega=X_{1} \cdot \Delta_{1} \cdot w_{1} \cdot X_{2} \cdot \Delta_{2} \cdot w_{2} \cdots w_{q-1} \cdot X_{q} \cdot \Delta_{q} .
$$

We refer to the x 's (lower case) in Ω as designated variables, the y 's as frame variables and w 's as bridge variables. Now, it is not difficult to see that the monomial Ω admits a nonzero evaluation where the x 's from $Z_{n_{i}, l}$ get values consisting of the full basis of the i-th simple component, that is the elementary matrices $\left\{e_{t, s}^{i}\right\}$, the y 's from $Z_{n_{i}, l}$ get values of the form $e_{t, t}^{i}$ and the w 's get radical values which bridge the different simple components. Fixing $r=1, \ldots, k$, we alternate all x 's from the monomials $Z_{n_{i}, r}$, $i=1, \ldots, q$, so we obtain k alternating sets of cardinality $\operatorname{dim}_{F}\left(A_{s s}\right)$. We denote the polynomial obtained by f_{A}. We adopt the terminology used in Kemer's theory and refer to each alternating set of designated variables as a small set. Moreover, we shall refer to the set of variables x in a small set together with the corresponding frames, that is the y variables that border the x variables, as an augmented small set.

Remark 2.9. In Kemer's theory there is also a notion of a big set. These are sets which, roughly speaking, involve the alternation of semisimple and bridge variables. We will not make use of big sets here.

Suppose the integer k, namely the number of small sets in f_{A}, exceeds the nilpotency index of A. Let us show that f_{A} is a strongly full polynomial of A. We will show that if δ is any admissible nonzero evaluation of f_{A}, then there is at least one small set which assumes precisely a full basis of $A_{s s}$. Indeed, by the alternation of designated variables we are forced to evaluate each small set on different basis elements and if this is not a full basis of $A_{s s}$, we have that at least one of the designated variables assumes a radical value. Since k is larger than the nilpotency index of A, we cannot have a radical evaluation in every small set. This shows f_{A} is strongly full. In fact this proves the last statement of Theorem 2.8 for the weakly full polynomial $f_{0}=X_{1} \cdot w_{1} \cdots w_{q-1} \cdot X_{q}$.

Let us proceed now to the general case, namely where f_{0} is assumed to be an arbitrary multilinear weakly full polynomial of A. Denote by Φ a nonzero evaluation of f_{0} which visits every simple component of A. Let us denote the variables of f_{0} which assume values from the simple components A_{1}, \ldots, A_{q} by X_{1}, \ldots, X_{q} respectively. Since the evaluation $\Phi\left(f_{0}\right)$ is nonzero, it is nonzero on one of the monomials of f_{0} which we fix from now on and denote it by R_{e}. We have then that $f_{0}=\sum_{\sigma \in S_{m}} \lambda_{\sigma} R_{\sigma}$ where $\lambda_{\sigma} \in F$ and $\lambda_{e}=1$. Here m is the number of variables in f_{0}. We proceed now as in the previous case, namely replace the variables X_{i} by $X_{i} \cdot \Delta_{i}$ and obtain a polynomial which we denote by Ω. We have that if $f_{0}=f_{0}\left(X_{1}, \ldots, X_{q} ; M\right)$ then $\Omega=f_{0}\left(X_{1} \Delta_{1}, \ldots, X_{q} \Delta_{q}, M\right) \in\left\langle f_{0}\right\rangle_{T}$ where M is a suitable set of
variables. By an appropriate evaluation of the monomials $\Delta_{i}, i=1, \ldots, q$, we see that Ω is a nonidentity of A and is clearly weakly full. Finally we alternate the designated variables as above and obtain a polynomial which we denote by f_{A}. It is not difficult to see that f_{A} satisfies the third condition of Theorem 2.8 with respect the given weakly full polynomial f_{0}.

Lemma 2.10 (main lemma-affine). Notation as above. Suppose A and B are full algebras. Suppose \mathfrak{m}_{B} does not cover \mathfrak{m}_{A}. Then there exists a strongly full polynomial f_{A} of A which vanishes on B. In fact, if f_{0} is any weakly full polynomial of A then there exists a strongly full polynomial $f_{A} \in\left\langle f_{0}\right\rangle_{T}$ of A which vanishes on B.

Proof. Let f_{A} be the strongly full polynomial of A as constructed above in case $f_{0}=X_{1} \cdot w_{1} \cdots w_{q-1} \cdot X_{q}$. We take a large number of small sets k, exceeding the nilpotency index of B. We claim f_{A} is an identity of B. We will show that if this is not the case then necessarily B covers A. Let us fix a nonzero evaluation Φ of f_{A} on B and consider one monomial, which we assume as we may is the monomial Ω of f_{A} (see the construction above), whose value is nonzero. Note that by the condition on k, there exists an augmented small set, say the j-th set where $j \in\{1, \ldots, k\}$, which is free of radical values. It follows that the Φ-values of each segment in $\left\{Z_{n_{1}, j}, \ldots, Z_{n_{q}, j}\right\}$ consist only of semisimple elements in B, and moreover semisimple elements from the same simple component. But because the evaluation of Φ on f_{A} is nonzero and the variables in the j-th small set alternate, the semisimple values of B must be linearly independent. This implies that B covers A as desired.

In the general case we may argue as follows. Let f_{0} be an arbitrary weakly full polynomial of A and let $R_{\sigma}=R_{\sigma}\left(X_{1}, \ldots, X_{q} ; M\right)$ be any monomial of f_{0}. Applying the T-operation on R_{σ} we obtain $\Omega_{\sigma}=R_{\sigma}\left(X_{1} \Delta_{1}, \ldots, X_{q} \Delta_{q}, M\right) \in\left\langle R_{\sigma}\right\rangle_{T}$. Next we alternate the designated variables as above and obtain a polynomial which we denote by $\left(R_{\sigma}\right)_{A}$. As in the first case considered, that is in case where $f_{0}=X_{1} \cdot w_{1} \cdots w_{q-1} \cdot X_{q}$, we see that if $\left(R_{\sigma}\right)_{A}$ admits a nonzero evaluation on B, then B covers A. It follows that if f_{A} admits a nonzero evaluation on B, this is true also for the polynomial $\left(R_{\sigma}\right)_{A}$, some σ, and so B covers A.

Corollary 2.11. Let A and B full algebras. If they are PI-equivalent, then their semisimple parts, $A_{\text {ss }}$ and $B_{s s}$ are isomorphic.

Proof. Indeed, A and B must cover each other. It follows that the tuple of dimensions of the simple components of A and B coincide up to a permutation (see Note 2.3) and hence $A_{s s}$ and $B_{s s}$ are isomorphic.

In what follows we will need a somewhat stronger statement.
Corollary 2.12. Let A be a full algebra and B_{1}, \ldots, B_{t} be a finite family of full algebras, each not covering A. If f_{0} is a weakly full polynomial of A then there is a strongly full polynomial $f_{A} \in\left\langle f_{0}\right\rangle_{T}$ of A that vanishes on $B_{i}, i=1, \ldots, t$. In particular if B is a direct sum of full algebras, each not covering A, then there exists a strongly full polynomial $f_{A} \in\left\langle f_{0}\right\rangle_{T}$ of A which vanishes on B.

Proof. We only need to pay attention to the number of small sets k in f_{A}, namely it should exceed the nilpotency index of each $J_{B_{i}}, i=1, \ldots, t$.

Recall that any affine PI-algebra A and in particular any finite dimensional algebra is PI-equivalent to a direct sum of full algebras; see for instance [Aljadeff et al. 2016; 2020]. Here we will need a more precise statement.

Definition 2.13. Let A be finite dimensional algebra. We say

$$
P(A)=T_{1} \oplus \cdots \oplus T_{n}
$$

is a presentation of A by full algebras if the following hold:
(1) T_{i} is full for $i=1, \ldots, n$.
(2) $P(A)$ is PI equivalent to A.

Remark 2.14. Note that an algebra may have two different presentations which are isomorphic as algebras (e.g., a radical direct summand may be attached to different full subalgebras). Thus, when referring to a presentation $P(A)$, we are fixing the set of full algebras $\left\{T_{1}, \ldots, T_{n}\right\}$ up to permutation. Note that if Γ is a T-ideal containing Capelli polynomials we may view $T_{1} \oplus \cdots \oplus T_{n}$ as a presentation of Γ so we may denote it by $P(\Gamma)$.

Proposition 2.15. Let A be a finite dimensional algebra. Then there exists a presentation $T_{1} \oplus \cdots \oplus T_{n}$ of A. Moreover, there exists such presentation where the semisimple subalgebra $\left(T_{i}\right)_{s s}$ of T_{i} is a direct summand of $A_{s s}$, for $i=1, \ldots, n$.

Proof. In fact the stronger statement follows from the construction in [Aljadeff et al. 2020, Subsection 17.2.4]. Let $A \cong A_{1} \times \cdots \times A_{q} \oplus J_{A}$ be the Wedderburn-Malcev decomposition. Clearly we may assume A is not full. Consider the subalgebra

$$
\mathcal{A}_{i}=\left\langle A_{1}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{q} ; J_{A}\right\rangle .
$$

We claim A and $\mathcal{A}_{1} \oplus \cdots \oplus \mathcal{A}_{q}$ are PI-equivalent. Clearly $\operatorname{Id}(A) \subseteq \operatorname{Id}\left(\mathcal{A}_{1} \oplus \cdots \oplus \mathcal{A}_{q}\right)$. For the converse, if f is a nonidentity of A, it must be a nonidentity of at least one \mathcal{A}_{i} for otherwise it is a full polynomial of A which implies A is full, contrary to our assumption. The proposition is then proved by induction.

For any presentation $P(A)$ of A we let $P(A)_{\operatorname{dim}(s s)}$ be the set of tuples consisting of the dimensions of the simple components that appear in the different full algebras of $P(A)$ and denote by $P(A)_{\operatorname{dim}(s s), \max }$ the set of maximal tuples in $P(A)_{\operatorname{dim}(s s)}$ with respect to covering.

Corollary 2.16. The set $P(A)_{\operatorname{dim}(s s), \max }$ depends on A but not on the presentation $P(A)$. Hence we can denote the set $P(A)_{\operatorname{dim}(s s), \max }$ by $\mathcal{A}_{\operatorname{dim}(s s), \max }$.

Proof. Suppose the contrary holds. Let P_{1} and P_{2} be presentations of A as above. Then without loss of generality there exists a full subalgebra M of P_{1} whose tuple is maximal and does not appear as a maximal tuple in P_{2}. We may assume M is not covered by tuples of P_{2} for otherwise M is strictly covered
by a tuple of P_{2} and in that case we may exchange the roles of P_{1} and P_{2}. Now, by the lemma, there exists a nonidentity polynomial of M which is an identity of every full subalgebra of P_{2} and the claim is proved.

In the next lemma we show we can fuse finite dimensional algebras A and B with isomorphic semisimple subalgebras. More generally, suppose the semisimple subalgebra of A is a direct summand of $B_{s s}$, the semisimple subalgebra of B. We claim $A \times B$ is PI-equivalent to an algebra of the form $B_{s s} \oplus \hat{J}$. Yet more generally, suppose A and B have a common semisimple component U (up to isomorphism), then there exists an algebra $C, P I$ equivalent to $A \times B$, in which the semisimple algebra isomorphic to U appears in C only once. Here is the precise statement.

Lemma 2.17. Let $A_{1} \times \cdots \times A_{q} \oplus J(A)$ and $B_{1} \times \cdots \times B_{r} \oplus J(B)$ be the Wedderburn-Malcev decompositions of A and B respectively. Suppose $A_{1} \times \cdots \times A_{k} \cong B_{1} \times \cdots \times B_{k} \cong U$. Then $A \times B$ is PI-equivalent to $C=U \times A_{k+1} \times \cdots \times A_{q} \times B_{k+1} \times \cdots \times B_{r} \oplus J(A) \oplus J(B)$.

Proof. We consider the vector space embedding

$$
\begin{aligned}
C=U \times A_{k+1} \times \cdots \times A_{q} \times B_{k+1} & \times \cdots \times B_{r} \oplus J(A) \oplus J(B) \\
& \hookrightarrow\left[U \times A_{k+1} \times \cdots \times A_{q} \oplus J(A)\right] \times\left[U \times B_{k+1} \times \cdots \times B_{r} \oplus J(B)\right]
\end{aligned}
$$

where the elements of U are mapped diagonally. It is easy to see that the image is closed under multiplication, yielding an algebra structure on C. As for the polynomial identities the above embedding (now, as algebras) yields $\operatorname{Id}(C) \supseteq \operatorname{Id}(A \times B)=\operatorname{Id}(A) \cap \operatorname{Id}(B)$. On the other hand the algebras A and B are embedded in C and the result follows.

Definition 2.18. Notation as in the lemma above. We say the algebra C is the fusion of the algebras A and B along U.

Proposition 2.19. Let $P_{1}=P_{1}(A)$ and $P_{2}=P_{2}(A)$ be presentations of A and let $T_{1} \cong\left(T_{1}\right)_{s s} \oplus J_{T_{1}}$ and $T_{2} \cong\left(T_{2}\right)_{s s} \oplus J_{T_{2}}$ be full subalgebras summands of P_{1} and P_{2} respectively. Suppose $\left(T_{1}\right)_{s s}$ and $\left(T_{2}\right)_{s s}$, the semisimple parts of T_{1} and T_{2}, are isomorphic and let $U \cong\left(T_{1}\right)_{s s} \cong\left(T_{2}\right)_{s s}$. Let $T_{1}^{\prime}=U \oplus J_{T_{1}} \oplus J_{T_{2}}$. Then T_{1}^{\prime} is full. Furthermore, if we replace $T_{1} \cong U \oplus J_{T_{1}}$ by $T_{1}^{\prime}=U \oplus J_{T_{1}} \oplus J_{T_{2}}$ in the presentation P_{1} we obtain a presentation P_{1}^{\prime} of A.

Proof. From the embedding $U \oplus J_{T_{1}} \hookrightarrow U \oplus J_{T_{1}} \oplus J_{T_{2}}$ we see that every weakly full polynomial of T_{1} is weakly full of T_{1}^{\prime}, so T_{1}^{\prime} is full. Furthermore, because $\operatorname{Id}\left(T_{1}\right), \operatorname{Id}\left(T_{2}\right) \supseteq \operatorname{Id}(A)$ we have that $\operatorname{Id}\left(P_{1}^{\prime}\right) \supseteq \operatorname{Id}(A)$. On the other hand $\operatorname{Id}\left(P_{1}^{\prime}\right) \subseteq \operatorname{Id}\left(P_{1}\right)(=\operatorname{Id}(A))$ and the result follows.

Remark 2.20. Note that fusion of fundamental algebras A and B with isomorphic semisimple subalgebras yields a fundamental algebra; see [Aljadeff et al. 2020] for the definition of fundamental algebras.

Let Γ be the T-ideal of identities of a finite dimensional algebra. Denote by \mathcal{M}_{Γ} the family of presentations $A=T_{1} \oplus \cdots \oplus T_{n}$ of Γ (we simplify the notation slightly and write A rather than $P(A)$ for a presentation of Γ).

In what follows we shall present a procedure in which we iterate 4 steps (numbered 0-3). In each step we replace an algebra $A \in \mathcal{M}_{\Gamma}$ by an algebra $A^{\prime} \in \mathcal{M}_{\Gamma}$ (in particular PI equivalent to A) that is "better" behaved. Then, in one final step (step 4), we construct the algebra A of Theorem 1.1.

Step 0 (deletion): Let $A \in \mathcal{M}_{\Gamma}$. We delete from A full subalgebras that do not alter $\operatorname{Id}(A)$. Let A_{i} be a full subalgebra of A. Denote by \widehat{A}_{i} the summand of A consisting the direct sum of full algebra $A_{j}, j \neq i$. Then, we delete A_{i} from the direct sum if $\operatorname{Id}\left(A_{i}\right) \supseteq \operatorname{Id}\left(\widehat{A}_{i}\right)=\cap_{j \neq i} \operatorname{Id}\left(A_{j}\right)$. We abuse notation and simply write the outcome by $F_{0}(A)$, an operation of type 0 on A, although the operation depends on the choice of the full algebra A_{i}. Clearly $F_{0}(A)$ and A are PI equivalent. We write $A=A_{\text {red }_{0}}$ if every operation of type 0 on A is the identity.

Step 1 (fusion): $A \in \mathcal{M}_{\Gamma}$ and suppose $A=A_{\text {red }_{0}}$. We fuse full subalgebras with isomorphic semisimple subalgebras. More generally, if A_{i} and $A_{j} i \neq j$, are full subalgebras of A and $\left(A_{i}\right)_{s s}$ is a direct summand of $\left(A_{j}\right)_{s s}$, then the operation $F_{1}=\left(F_{1}\right)_{A_{i}, A_{j}}$ on A is the fusion of A_{i} and A_{j}. We abuse notation and simply write the outcome by $F_{1}(A)$, an operation of type 1 on A, although the operation depends on the choice of the full algebras A_{i} and A_{j}. Note that by Proposition 2.19 the algebras $F_{1}(A)$ and A are PI equivalent. We write $A=A_{\text {red }_{0,1}}$ if every operation of type 0 or 1 on A is the identity.

We come now to a step where we decompose full algebras.
Step 2 (decomposition): Let $A \in \mathcal{M}_{\Gamma}$ and suppose that $A=A_{\text {red }_{0,1}}$. We define an operation of type 2 on A, denoted by F_{2}, as follows. Choose a full algebra Q appearing in the decomposition of A into full algebras and let $A_{\operatorname{supp}(Q)}=(\hat{Q})_{1} \oplus \cdots \oplus(\hat{Q})_{n}$ be the supplement of Q in A. Note that since $A=A_{\mathrm{red}_{0,1}}$ there is no full algebra component of $A_{\operatorname{supp}(Q)}$ with semisimple part $\cong Q_{s s}$. Suppose there exists a weakly full polynomial p of Q which vanishes on $A_{\operatorname{supp}(Q)}$. In that case we leave the algebra A unchanged, that is $F_{2}(A)=A$. Otherwise we proceed as follows.

Clearly Q is not nilpotent because A is not nilpotent and $A=A_{\text {red }_{0,1}}$. Let us treat the case where $Q_{s s}$ is simple separately. If $Q_{s s}$ is simple and every weakly full polynomial of Q is a nonidentity of $A_{\operatorname{supp}(Q)}$ we claim $\operatorname{Id}(A)=\operatorname{Id}\left(A_{\operatorname{supp}(Q)} \oplus J_{Q}\right)$ where J_{Q} is the radical of Q. It is clear that $\operatorname{Id}(A) \subseteq \operatorname{Id}\left(A_{\operatorname{supp}(Q)} \oplus J_{Q}\right)$. Conversely, suppose p is a nonidentity of A. If p is a nonidentity of $A_{\operatorname{supp}(Q)}$ it is also a nonidentity of $\operatorname{Id}\left(A_{\operatorname{supp}(Q)} \oplus J_{Q}\right)$ as needed, so let us assume p is an identity of $A_{\operatorname{supp}(Q)}$. In that case p must be a nonidentity of Q. However, by assumption, p is not weakly full of Q which means here that no indeterminate of p gets a semisimple value in any nonzero evaluation of p. It follows that p is a nonidentity of J_{Q} and we are done. Suppose now $q>1$ and let $Q \cong \Delta_{1} \times \cdots \times \Delta_{q} \oplus J_{Q}$ be the Wedderburn-Malcev decomposition of Q. We are assuming every weakly full polynomial of Q is a nonidentity of $A_{\operatorname{supp}(Q)}$. In that case we claim the following.

Claim 2.21. We can replace the full subalgebra Q of A by a direct sum of full subalgebras $\mathcal{Q}_{1} \oplus \cdots \oplus \mathcal{Q}_{q}$, where for each $i=1, \ldots, q$, the semisimple algebra $\left(\mathcal{Q}_{i}\right)_{s s}$ is a proper summand of $Q_{\text {ss }}$ (in particular strictly covered by Q) and if \bar{A} denotes the algebra obtained, we have $\operatorname{Id}(\bar{A})=\operatorname{Id}(A)=\Gamma$.

Proof. Consider the algebras $\mathcal{Q}_{i}, i=1, \ldots, q$, obtained from Q by deleting one simple component Δ_{i} and keeping the radical unchanged. We claim A is PI-equivalent to $A_{\text {supp }(Q)} \oplus \mathcal{Q}_{1} \oplus \cdots \oplus \mathcal{Q}_{q}$. Indeed, it is clear that every identity of the former algebra vanishes on the latter one. Conversely, let p be a nonidentity of the former one. We show it does not vanish on the latter. Clearly, we may assume p vanishes on $A_{\operatorname{supp}(Q)}$ and so, by our assumption above, p is not a weakly full polynomial of Q. This means that p has no nonzero evaluation on Q which visits all simple components of Q and so, being a nonidentity of Q, it must be a nonidentity of \mathcal{Q}_{i} for some i and hence a nonidentity of the latter.

We write $A=A_{\text {red }_{0,1,2}}$ if any operation of type 0,1 or 2 on A is the identity.
Similarly to our notation for the operations F_{0} and F_{1} above we abuse notation here and simply write $F_{2}(A)=F_{2, Q}(A)$. It follows from the claim that $F_{2}(A)$ and A are PI equivalent.
Step 3 (absorption): Fix a presentation $A \in \mathcal{M}_{\Gamma}$ and suppose $A=A_{\text {red }_{0,1,2}}$. Let $B \in \mathcal{M}_{\Gamma}$. We denote by $F_{3}^{\text {cond }}$ an operation which replaces, roughly speaking, a full subalgebra Q of A with the fusion of Q with certain full subalgebras of B. More precisely, choose a full subalgebra Q of A and a full subalgebra V of B such that $V_{s s}$ is a direct summand of (possibly isomorphic to) $Q_{s s}$. Then replace the full subalgebra Q in A by the fusion of Q and V. We denote the outcome by $\left(F_{3}^{\text {cond }}\right)_{B, Q, V}(A)$ or simply by $\left(F_{3}^{\text {cond }}\right)(A)$. The superscript cond means that this operation is conditional. We define $\left(F_{3}\right)_{B, Q, V}(A)$ as follows. Let $A^{\text {cond }}=\left(F_{3}^{\text {cond }}\right)_{B, Q, V}(A)$. If $A^{\text {cond }}=\left(A^{\text {cond }}\right)_{\text {red }_{0,1,2}}$, we set $\left(F_{3}\right)_{B, Q, V}(A)=A$, otherwise we set $\left(F_{3}\right)_{B, Q, V}(A)=A^{\text {cond }}$. As above we write $F_{3}(A)=\left(F_{3}\right)_{B, Q, V}(A)$ and have, by Proposition 2.19 , that the algebras $F_{3}(A)$ and A are PI equivalent.

Remark 2.22. The point for introducing the conditional operation is that we want an operation of type 3 to be nontrivial only if an operation of type 0,1 or 2 has a real effect on $A^{\text {cond. }}$. This is to prevent the radical from growing indefinitely.

We write $A=A_{\text {red }_{0,1,2,3}}$ if every operation of type $0,1,2$ or 3 on A is the identity.
Let us describe now the procedure applied to $A \in \mathcal{M}_{\Gamma}$:
(1) Apply operations of type 0 on A until any additional operation of type 0 acts as an identity. Denote the outcome by A^{\prime}.
(2) If there exists an operation of type 1 with $F_{1}\left(A^{\prime}\right) \neq A^{\prime}$, we apply F_{1} on A^{\prime} and return to step 0 with $A:=F_{1}\left(A^{\prime}\right)$. We continue until we get an algebra $A^{\prime \prime}$ such that $F_{\epsilon}\left(A^{\prime \prime}\right)=A^{\prime \prime}, \epsilon=0,1$.
(3) If there exists an operation of type 2 with $F_{2}\left(A^{\prime \prime}\right) \neq A^{\prime \prime}$, we apply F_{2} on $A^{\prime \prime}$ and return to step 0 . We continue until we get an algebra $A^{\prime \prime \prime}$ such that $F_{\epsilon}\left(A^{\prime \prime \prime}\right)=A^{\prime \prime \prime}, \epsilon=0,1,2$.
(4) If there exists an operation of type 3 with $F_{3}\left(A^{\prime \prime \prime}\right) \neq A^{\prime \prime \prime}$, we apply F_{3} on $A^{\prime \prime \prime}$ and return to step 0. We continue until we get an algebra $A^{\prime \prime \prime \prime}$ such that $F_{\epsilon}\left(A^{\prime \prime \prime \prime}\right)=A^{\prime \prime \prime \prime}, \epsilon=0,1,2,3$.
Theorem 2.23. For every presentation $A \in \mathcal{M}_{\Gamma}$ the process above stops. In particular, given a presentation A, applying operations of type $0-3$ we obtain a presentation $\mathcal{A} \in \mathcal{M}_{\Gamma}$ such that $\mathcal{A}=\mathcal{A}_{\text {red }_{0,1,2,3}}$.

Before giving the proof let us introduce some notation.

Definition 2.24. (1) We let $A_{\text {part }}$ be the multiset (i.e., repetitions are allowed) of unordered tuples whose entries are the dimensions of the simple components of semisimple subalgebras of the full algebras appearing in the decomposition of A. Alternatively, we may think of $A_{\text {part }}$ as the multiset of semisimple algebras appearing in the full algebras, summands of A.
(2) Let $A \in \mathcal{M}_{\Gamma}$. We denote by r_{A} the number of full subalgebras in the presentation of A.
(3) Let $A \in \mathcal{M}_{\Gamma}$ with $A_{\text {part }}$ as above. If $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in A_{\text {part }}$, i.e., a tuple corresponding to a full algebra, summand of A, we let $n_{\sigma}=2^{m^{2}} \sum_{i} \sigma_{i}$ be the weight of σ. Note that the function $f(m)=2^{m^{2}}$ satisfies the condition $(m-1) f(m-1)<f(m)$, a condition that will be used later. We let $n_{A}=n_{A_{\text {part }}}=\sum_{\sigma \in A_{\text {part }}} n_{\sigma}$ be the weight of A.
Proof. We claim:
(1) Let $A \in \mathcal{M}_{\Gamma}$ and let $\bar{A}=F_{\epsilon}(A), \epsilon=0$, 1. If $\bar{A} \neq A$ then $r_{\bar{A}}<r_{A}$ and $n_{\bar{A}} \leq n_{A}$.
(2) Let $A \in \mathcal{M}_{\Gamma}$ and suppose $A=A_{\operatorname{red}_{0,1}}$. Let $\bar{A}=F_{2}(A)$. If $\bar{A} \neq A$ then $n_{\bar{A}}<n_{A}$.

The first claim is clear since in these cases we are suppressing a full subalgebra of the presentation of A. Note that if we are suppressing a nilpotent algebra $n_{\bar{A}}=n_{A}$. For the proof of (2) let $A=A_{\text {red }}^{0,1}$ $\in \mathcal{M}_{\Gamma}$. This implies no full subalgebras of A are nilpotent unless A is nilpotent, a case we have already addressed (see paragraph above Proposition 2.19). Suppose $F_{2}(A) \neq A$. This means that one tuple $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$, $m \geq 1$ is replaced by m tuples each of which has length $m-1$ and is obtained from σ by deleting $\sigma_{i}, i=1, \ldots, m$. It follows that the quantity $2^{\left(m^{2}\right)} \sum_{i} \sigma_{i}$, the contribution of σ to n_{A}, is replaced by $(m-1) 2^{\left((m-1)^{2}\right)} \sum_{i} \sigma_{i}$. As $(m-1) 2^{\left((m-1)^{2}\right)}<2^{\left(m^{2}\right)}$, the result follows. This proves the second claim.

Consider the pairs $\Theta_{A}=\left(n_{A}, r_{A}\right), A \in \mathcal{M}_{\Gamma}$ with the lexicographic order \preceq (and \prec if the inequality is strict). Let $\bar{A}=F_{\epsilon}(A), \epsilon=0,1,2$. It follows that if $\bar{A} \neq A$, invoking the claims above, we have $\Theta_{\bar{A}} \prec \Theta_{A}$. In order to complete the proof of the Theorem we need to treat the operation F_{3}. We note first that F_{3} does not change (and in particular does not increase) Θ_{A}. Recall that F_{3} is effective on A, i.e., $F_{3}(A) \neq A$, only if $F_{\epsilon}\left(F_{3}(A)\right) \neq F_{3}(A), \epsilon=0,1,2$, and also that two operations of type 3 are always separated by an effective operation of type $0,1,2$. Finally, since the nontrivial operations of type $0,1,2$ lower Θ_{A} the result follows.

Corollary 2.25. Given a presentation $A \in \mathcal{M}_{\Gamma}$, the application of steps $0-3$ to A yields a presentation $\bar{A} \in \mathcal{M}_{\Gamma}$ with the following properties:
(1) If Q is any full subalgebra of \bar{A} then there exists a full subalgebra V of A such that $Q_{s s}$ is a direct summand of $V_{s s}$.
(2) If Q is a full subalgebra of \bar{A}, then there is a strongly full polynomial of Q which vanishes on the supplement of Q in \bar{A}.
(3) If Q is a full subalgebra of \bar{A}, and $B \in \mathcal{M}_{\Gamma}$, then there is a strongly full polynomial of Q which vanishes on every full algebra V of B whose semisimple subalgebra $V_{s s}$ strictly covers $Q_{s s}$ and appears as a summand of the semisimple subalgebra of a full subalgebra of \bar{A}.

Proof. By Theorem 2.23 we may assume $\bar{A}=\bar{A}_{\text {red }_{0,1,2,3}}$ The operations of type 0 and 1 suppress full algebras of A whereas in operation 2 we decompose the semisimple part of a full algebra Q into the direct sum of full algebras whose semisimple part is a direct summand of $Q_{s s}$. This proves the first statement. Also the second statement follows easily from the construction. Indeed, if this is not the case there is an operation of type 2 which is not the identity on \bar{A} contradicting $\bar{A}=\bar{A}_{\text {red }_{0,1,2,3}}$.

Let us prove the last statement. By the claim we have that if such polynomial does not exist for a suitable full subalgebras V of an algebra $B \in \mathcal{M}_{\Gamma}$, fusion of V with the corresponding full algebras of \bar{A} generates a decomposition of Q into full algebras whose semisimple algebra is a strict summand of $Q_{s s}$. This contradicts $\bar{A}=\bar{A}_{\text {red }_{0,1,2,3}}$ and the result follows.

Remark 2.26. Note that it is possible that a presentation $B \in \mathcal{M}_{\Gamma}$ contains a full algebra V whose semisimple part $V_{s s}$ does not appear as a direct summand of a full algebra of \bar{A}. This does not contradict the last statement of Corollary 2.25 .

Let \bar{A} be the algebra obtained from A as in the theorem above and let $\bar{A}=T_{1} \oplus \cdots \oplus T_{n}$ be its decomposition into the direct sum of full algebras. Let $\bar{A}_{\text {part }}$ be the multiset of semsimple algebras appearing in \bar{A}, that is $\bar{A}_{\text {part }}=\left\{\left(T_{i}\right)_{s s}\right\}_{i=1, \ldots, n}$ (see Definition 2.24). Note that here we may replace "multiset" by "set" since at this stage repetitions do not occur.

Our goal is to show $\bar{A}_{\text {part }}$ is uniquely determined by Γ. More precisely
Theorem 2.27. If $A, B \in \mathcal{M}_{\Gamma}$ then $\bar{A}_{\text {part }}=\bar{B}_{\text {part }}$.
Remark 2.28. Note that we know the result for maximal points where $A, B \in \mathcal{M} \Gamma$ are arbitrary (see Corollary 2.16).

Proof. Suppose the theorem is false and consider the family Ω of all full subalgebras of \bar{A} (resp. \bar{B}) whose semisimple part does not appear in \bar{B} (resp. \bar{A}). Let $Q \in \Omega$ be maximal with respect to covering and assume without loss of generality that $Q=Q_{\bar{A}}$ is a full subalgebra of \bar{A}. Now, by the maximality of $Q_{\bar{A}}$ the semisimple part of every full subalgebra of \bar{B} that strictly covers $Q_{\bar{A}}$ appears in \bar{A}. It follows, by Corollary $2.25(3)$, there exists a full polynomial p which vanishes on every full subalgebra of \bar{B} that strictly covers $Q_{\bar{A}}$. Furthermore, by our construction of strongly full polynomials there exists such p that vanishes on every full subalgebra of \bar{B} that does not cover $Q_{\bar{A}}$ and so p vanishes on \bar{B}. This contradicts \bar{A} and \bar{B} are PI equivalent and the theorem is proved.

Step 4 (merging): In this final step we merge full subalgebras. Let \bar{A} be an algebra as in the theorem. For each isomorphism type of a simple algebra $M_{n}(F)$ we let d_{n} be the maximal appearance of $M_{n}(F)$ in a full subalgebra of \bar{A}. Then we let $\mathcal{A}_{\Gamma, s s}=\Lambda_{n_{1}} \oplus \cdots \oplus \Lambda_{n_{t}}$ where $\Lambda_{n_{i}}$ is the direct sum of $d_{n_{i}}$ copies $M_{n_{i}}(F)$. Finally we let $\mathcal{A} \cong \mathcal{A}_{\Gamma, s s} \oplus J_{A}$, where the direct sum is of vector spaces.

Theorem 2.29. There is exists an algebra structure on \mathcal{A}_{Γ} so that:
(1) $\operatorname{Id}\left(\mathcal{A}_{\Gamma}\right)=\Gamma$.
(2) If B is finite dimensional and $\operatorname{Id}(B)=\Gamma$ then $\mathcal{A}_{\Gamma, s s}$ is isomorphic to a direct summand of $B_{s s}$.

Proof. For the algebra structure on \mathcal{A} we set the product as follows. The product on $\mathcal{A}_{\Gamma, s s}$ is already determined. Products of radical elements which belong to different full algebras is set to be zero. Let us determine the multiplication of semisimple elements with radicals. Using distributivity we let $z \in J_{\bar{A}_{i}}$ where \bar{A}_{i} is a full summand of \bar{A}. Choose a summand of $\left(U_{i}\right)_{s s}$ of $\mathcal{A}_{\Gamma, s s}$ isomorphic to $\left(\bar{A}_{i}\right)_{s s}$. Let K be the semisimple supplement of $\left(U_{i}\right)_{s s}$ in $\mathcal{A}_{\Gamma, s s}$, that is

$$
\left(U_{i}\right)_{s s} \oplus K \cong \mathcal{A}_{\Gamma, s s} .
$$

Then we set the product of z with semsimple elements of $\left(U_{i}\right)_{s s}$ as in \bar{A}_{i} whereas the multiplication of z with elements of K is set to be zero. Let us show $\operatorname{Id}(\mathcal{A})=\Gamma$. Each \bar{A}_{i} is isomorphic to a summand of \mathcal{A} and so $\operatorname{Id}(\bar{A}) \supseteq \operatorname{Id}(\mathcal{A})$. For the opposite inclusion let p be a multilinear nonidentity of \mathcal{A} and fix a nonzero evaluation on \mathcal{A}. Since the multiplication of radical elements of different summands $J_{\bar{A}_{i}}$ and $J_{\bar{A}_{j}}$ is zero the evaluation may involve at most radicals from $J_{\bar{A}_{i}}$, for a unique i. For that i, semisimple elements that appear in the evaluation must belong to the summand $\left(U_{i}\right)_{s s}$. We see the polynomial p is a nonidentity of \bar{A}_{i} and so a nonidentity of \bar{A}. For the proof of the second statement, by the construction of \mathcal{A}_{Γ} from \bar{A} we see $\mathcal{A}_{\Gamma, s s}$ is a direct summand of $\bar{A}_{s s}$ and hence, by Theorem 2.27, also of $\bar{B}_{s s}$. Furthermore, we see from step 4 that every $\Lambda_{n_{i}}$ is a direct summand of the semisimple part of a full summand of \bar{A} and hence of \bar{B}. We complete the proof of the theorem invoking Corollary 2.25(1).

3. Nonaffine algebras

In this section we prove Theorem 1.5.
We note that the key point in the construction of strongly full polynomials of a finite dimensional full algebra A was the fact that in any nonzero evaluation we were forced to evaluate the designated variables in at least one small set by a complete basis of semisimple elements. Then, for such polynomial we showed it is an identity of any full algebra B that does not cover A. Now, if A is a finite dimensional full superalgebra (see [Aljadeff and Kanel-Belov 2010] or Definition 3.3 below), it is not difficult to construct a super strongly full polynomial with a similar property, that is, a polynomial p that visits a full basis of the semisimple part of A in every nonzero evaluation. However, this is not what we need. For the proof, we need an ungraded polynomial $f_{E(A)}$, nonidentity of $E(A)$, which visits the different supersimple components of A in any nonzero evaluations of the form $\epsilon \otimes u$. Here, $\epsilon=1 \in E$ or $=\epsilon_{i} \in E$, where ϵ_{i} is a generator, and $u \in A$. Furthermore, as in the affine case, we shall need a full basis $\{u\} \subseteq A_{s s}$ to appear in every nonzero evaluation of $f_{E(A)}$. In fact, as in the affine case, we will need to construct such polynomials for $E(A)$ that belong to the T-ideal generated by an arbitrary weakly full polynomial of $E(A)$.

Once we have constructed such polynomials for $E(A)$ where A is a finite dimensional full superalgebra, we will be able to show the analogue of the Main Lemma in the nonaffine setting. The proof of Theorem 1.5 will then follow the same lines of the proof of the affine case.

We start by defining a partial ordering on finite dimensional semisimple \mathbb{Z}_{2}-graded algebras.

Let $A=A_{1} \oplus \cdots \oplus A_{q}$ and $B=B_{1} \oplus \cdots \oplus B_{s}$ be the decompositions of semisimple algebras A and B into direct sum of finite dimensional \mathbb{Z}_{2}-graded simple algebras A_{i} and B_{j} respectively. Consider the pair $\mathfrak{m}_{A}=\left(\mathfrak{m}_{A, 0}, \mathfrak{m}_{A, 1}\right)$ where $\mathfrak{m}_{A, 0}=\left(a_{0,1}, \ldots, a_{0, q}\right)$ and $\mathfrak{m}_{A, 1}=\left(a_{1,1}, \ldots, a_{1, q}\right)$ are q-tuples consisting the dimensions of the 0 -components and the 1 -components of the \mathbb{Z}_{2}-graded simple summands of A. Similarly we have the pair $\mathfrak{m}_{B}=\left(\mathfrak{m}_{B, 0}, \mathfrak{m}_{B, 1}\right)$ and t-tuples $\mathfrak{m}_{B, 0}=\left(b_{0,1}, \ldots, b_{0, t}\right)$ and $\mathfrak{m}_{B, 1}=\left(b_{1,1}, \ldots, b_{1, q}\right)$ for the algebra B.
Definition 3.1. We say B covers A (or \mathfrak{m}_{B} covers \mathfrak{m}_{A}) if there exists a decomposition of the tuple $(1, \ldots, q)$ into t subsets (possibly empty) such that the sum of the elements of $\mathfrak{m}_{A, 0}=\left(a_{0,1}, \ldots, a_{0, q}\right)$ corresponding to the i-th subset is bounded from above by $b_{0, i}$ and the corresponding sum of odd elements in $\mathfrak{m}_{A, 1}=\left(a_{1,1}, \ldots, a_{1, q}\right)$ is bounded from above by $b_{1, i}$ (same i), $i=1, \ldots, t$.
Example 3.2. Consider the pair of tuples $\mathfrak{m}_{B}=\left(\mathfrak{m}_{B_{0}}, \mathfrak{m}_{B_{1}}\right)$ where $\mathfrak{m}_{B_{0}}=(17,13)$ and $\mathfrak{m}_{B_{1}}=(8,12)$. It covers the pair $\mathfrak{m}_{A}=\left(\mathfrak{m}_{A_{0}}, \mathfrak{m}_{A_{1}}\right)$ where $\mathfrak{m}_{A_{0}}=(16,10,2)$ and $\mathfrak{m}_{A_{1}}=(0,4,2)$. On the other hand the pair $\mathfrak{m}_{B}=\left(\mathfrak{m}_{B_{0}}, \mathfrak{m}_{B_{1}}\right)$ where $\mathfrak{m}_{B_{0}}=(17,13)$ and $\mathfrak{m}_{B_{1}}=(8,12)$ does not cover the pair $\mathfrak{m}_{A}=\left(\mathfrak{m}_{A_{0}}, \mathfrak{m}_{A_{1}}\right)$ where $\mathfrak{m}_{A_{0}}=(10,10,4)$ and $\mathfrak{m}_{A_{1}}=(6,6,4)$. Note, however, that the tuple $(17,13)$ (resp. $\left.(8,12)\right)$ does cover $(10,10,4)$ (resp. $(6,6,4)$).

Let A be a finite dimensional superalgebra over an algebraically closed field F of characteristic zero. Let $A \cong A_{s s} \oplus J$ be the Wedderburn-Malcev decomposition of A. Let $A_{s s} \cong A_{1} \times \cdots \times A_{q}$ where A_{i} are supersimple algebras.
Definition 3.3. We say A is full if up to ordering of the supersimple components we have $A_{1} \cdot J \cdot A_{2} \cdots J$. $A_{q} \neq 0$.

Before stating the Main Lemma, let us make precise definitions of admissible evaluations of polynomials as well as weakly full, full and strongly full polynomials of $E(A)$ where A is a finite dimensional full superalgebra.

Let U be a finite dimensional \mathbb{Z}_{2}-simple algebra. It is well known that U is isomorphic to a superalgebra of the form (1) $M_{l, f}(F)$ where the grading is elementary and is determined by an $(l+f)$-tuple with l e 's and $f \sigma$'s, where an elementary matrix $e_{i, j}$ has degree e if $1 \leq i, j \leq l$ or $l+1 \leq i, j \leq l+f$ and degree σ otherwise (2) $F C_{2} \otimes M_{n}(F)$, where $F C_{2}$ is the group (super)algebra of $C_{2}=\{e, \sigma\}$, and where elements of the form $u_{e} \otimes e_{i, j}$ have degree e and elements of the form $u_{\sigma} \otimes e_{i, j}$ have degree σ. Note that the set $\left\{e_{i, j}\right\}$ (resp. $\left\{u_{g} \otimes e_{i, j} ; g \in\{e, \sigma\}\right\}$) is a basis of $M_{l, f}(F)$ (resp. of $F C_{2} \otimes M_{n}(F)$). We denote by $\beta_{s s}$ a basis of $A_{s s}$ consisting of all elements of that form. Note that the basis elements in $\beta_{s s}$ are homogeneous. If U is any simple component of $A_{s s}$, and z denotes a basis element of U as above, we consider a basis $\Sigma_{s s}$ of $E\left(A_{s s}\right)$ consisting of all elements of the form $\epsilon_{i_{1}} \ldots \epsilon_{i_{n}} \otimes z, n$ is even and $z \in \beta_{s s}$ has degree e (in case $n=0$, we set $\epsilon_{i_{1}} \ldots \epsilon_{i_{n}}=1$) or $\epsilon_{i_{1}} \ldots \epsilon_{i_{n}} \otimes z, n$ is odd and $z \in \beta_{s s}$ has degree σ. Here $\epsilon_{i_{1}}, \ldots, \epsilon_{i_{n}}$ are different generators of the Grassmann algebra E. Finally, we choose an homogeneous basis β_{J} of the Jacobson radical J of A and consider a basis Σ_{J} of $E(J)$ consisting of all elements of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{n}} \otimes w$ where (as above) n is even and $w \in \beta_{J}$ is of degree e or n is odd and $w \in \beta_{J}$ is of degree σ.

Definition 3.4. Let p be a multilinear polynomial. We say an evaluation of p on $E(A)$ is admissible if all values are taken from $\Sigma_{s s}$ or Σ_{J}.

Definition 3.5. Let A be a finite dimensional full superalgebra as above:
(1) We say a multilinear polynomial p is weakly full of $E(A)$ if there is an admissible nonzero evaluation of p on $E(A)$ where among the elements $\epsilon_{i_{1}} \cdots \epsilon_{i_{n}} \otimes z, z \in A_{s s}$ that appear in the evaluation, we have at least one elements z from each \mathbb{Z}_{2}-simple component of $A_{s s}$.
(2) We say a multilinear polynomial p is full of $E(A)$ if all \mathbb{Z}_{2}-simple subalgebras of $A_{s s}$ are represented in every nonzero admissible evaluation of p on $E(A)$. That is, given a nonzero evaluation of p, for every \mathbb{Z}_{2}-simple component $A_{i}, i=1, \ldots, q$, there is a variable of p whose value is of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{n}} \otimes z$ for some $z \in A_{i}$.
(3) We say a multilinear polynomial p is strongly full of $E(A)$ if for every nonzero admissible evaluation of p on $E(A)$ and every $z \in A_{s s}$, there is variable of p whose value is of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{n}} \otimes z$.

The following statement is the main lemma in the nonaffine case.

Lemma 3.6 (main lemma-nonaffine). Suppose A and B are finite dimensional \mathbb{Z}_{2}-graded full algebras. Suppose \mathfrak{m}_{B} does not cover \mathfrak{m}_{A}. Then there exists a strongly full polynomial $f_{E(A)}$ of $E(A)$ which is an identity of $E(B)$. Furthermore, if f_{0} is an arbitrary weakly full polynomial of $E(A)$, then there exists a strongly full polynomial $f_{E(A)} \in\left\langle f_{0}\right\rangle_{T}$ of $E(A)$ which is an identity of $E(B)$.

The proof of the main lemma will be presented in 4 propositions: (1) Construction of a strongly full polynomial $f_{E(A)}$ of $E(A)$ (Propositions 3.8 and 3.9) (2) Construction of a strongly full polynomial $f_{E(A)} \in\left\langle f_{0}\right\rangle_{T}$ of $E(A)$ where f_{0} is an arbitrary weakly full polynomial of $E(A)$ (Proposition 3.10) (3) The polynomial $f_{E(A)}$ is an identity of $E(B)$ (Proposition 3.11).

We start with the construction of a strongly full polynomial of $E(A)$.
Consider the monomial

$$
f_{0}=X_{1} \cdot w_{1} \cdots w_{q-1} \cdot X_{q}
$$

of degree $2 q-1$ where the variables are ungraded. Note that f_{0} is weakly full of $E(A)$ (that is, there is an admissible nonzero evaluation of f_{0} which visits every \mathbb{Z}_{2}-simple component of A). We proceed with the construction of a strongly full polynomial $f_{E(A)}$ in $\left\langle f_{0}\right\rangle_{T}$.

Let d_{0} (resp. d_{1}) be the dimension of the even (resp. odd) homogeneous component of $A_{s s}$. We consider a diagram composed of two strips of semisimple elements, denoted by $\alpha_{i, j}$ and similarly two strips of variables $x_{i, j}$, horizontal and vertical, where the horizontal strip has d_{0} rows and k columns and
the vertical strip has d_{1} columns and k rows (k to be determined).

Remark 3.7. The variables $x_{i, j}$ in the last two strips will appear in the polynomial $f_{E(A)}$ we are about to construct. The role of these strips is to indicate which sets of variables will alternate in $f_{E(A)}$ and which sets of variables will symmetrize. The elements $\alpha_{i, j}$ appearing in the first two strips are the evaluations of the variables $x_{i, j}$.

We construct a long monomial consisting of elements of A as follows.
For each \mathbb{Z}_{2}-graded simple component we write a nonzero product of the standard basis, namely elements of the form $e_{i, j} \in M_{l, f}(F)$ or $u_{g} \otimes e_{i, j} \in F C_{2} \otimes M_{n}$ where $g=e, \sigma$. It is known that such a product exists. We refer to these elements as designated elements. In order to keep a unified notation we shall replace $e_{i, j} \in M_{l, f}(F)$ by $u_{e} \otimes e_{i, j}$. Furthermore, we may assume for simplicity that the nonzero product starts (resp. ends) with an element of the form $u_{e} \otimes e_{1, y}$ (resp. $u_{g} \otimes e_{x, 1}$). Next we border each basis element $u_{g} \otimes e_{i, j}$ from left (resp. right) with the element $u_{e} \otimes e_{i, i}$ (resp. $u_{e} \otimes e_{j, j}$) which we call frame, so that the product of the monomial remains nonzero. Let us denote the product above, namely the product corresponding to the \mathbb{Z}_{2}-graded simple algebra A_{i} by Z_{i}. We take now the product of k copies of this monomial $Z_{i, 1} \cdots Z_{i, k}$. This is clearly nonzero. Next, we bridge the \mathbb{Z}_{2}-graded simple components with appropriate radical values $w_{s, s+1}$ and get a nonzero product as dictated by the expression $A_{1} J A_{2} \cdots J A_{q} \neq 0$.

Finally, we tensor the basis elements with Grassmann elements, where even elements of A are tensored with 1 and odd elements are tensored with different generators ϵ_{i} (odd degree). We shall always view
these tensors as ungraded elements of $E(A)$ although, abusing language, we will refer to them as even and odd elements respectively.

We obtained a nonzero expression of the form

$$
Z_{1,1} \cdots Z_{1, k} \cdot w_{1,2} \cdot Z_{2,1} \cdots Z_{2, k} \cdot w_{2,3} \cdots w_{q-1, q} \cdot Z_{q, 1} \cdots Z_{q, k} .
$$

Consider the set $U_{\text {even, } 1}$ of designated even elements in the tuple

$$
\left(Z_{1,1}, Z_{2,1}, \ldots, Z_{q, 1}\right)
$$

Similarly, we let $U_{\text {even, } i}$ be the designated even elements in the tuple $\left(Z_{1, i}, Z_{2, i}, \ldots, Z_{q, i}\right), i=1, \ldots, k$. Observe that the cardinality of $U_{\text {even }, i}$ is $d_{o}=\operatorname{dim}_{F} A_{s s, 0}$. We denote the elements of $U_{\text {even }, i}$ by $\alpha_{1, d_{1}+i}, \ldots, \alpha_{d_{0}, d_{1}+i}$, that is, as the i-th column of the horizontal strip above. Furthermore, it will be convenient to denote the designated even elements in $\left(Z_{1, i}, Z_{2, i}, \ldots, Z_{q, i}\right)$ in the same order as they appear in the i-th column.

Similar to the even elements above, $U_{\text {odd }, j}$ consists of all designated odd elements in the tuple

$$
\left(Z_{1, j}, Z_{2, j}, \ldots, Z_{q, j}\right)
$$

and we denote them by $\alpha_{d_{0}+j, 1}, \ldots, \alpha_{d_{0}+j, d_{1}}$, i.e., the elements in the j-th row of the vertical strip.
For each $t=1, \ldots, k$, we alternate the designated (even) elements

$$
\alpha_{1, d_{1}+t}, \ldots, \alpha_{d_{0}, d_{1}+t}
$$

and symmetrize the designated (odd) elements $\alpha_{d_{0}+t, 1}, \ldots, \alpha_{d_{0}+t, d_{1}}$. We claim the expression obtained is nonzero. Indeed, any nontrivial permutation (independently of its sign) of designated even elements will be surrounded by frames where not all match and hence vanishes. Similarly with the odd elements of A. In particular alternating the even elements and symmetrizing the odd elements yields a nonzero value.

We now symmetrize the sets of k elements corresponding to the rows of the horizontal strip and alternate the sets of k elements corresponding to the columns of the vertical strip. We claim we get a nonzero value. For the proof we may assume each tuple of k even elements are equal and are of the form $u_{e} \otimes e_{i, j}$ whereas for the odd elements we assume as we may, the elements of each k tuple have the form $\epsilon_{i, j, g} \otimes u_{g} \otimes e_{i, j}, g \in\{e, \sigma\}, \epsilon_{i, j, g}$ are generators of the Grassmann algebra and the elements $u_{g} \otimes e_{i, j}$ of A are equal. It follows that symmetrization of the rows in the horizontal strip and alternation of the columns in the vertical strip yield the multiplication of each monomial by a factor of $(k!)^{d_{0}}$. In particular, if the corresponding operation is performed on a vanishing product it remains zero whereas, since $\operatorname{char}(F)=0$, it is nonzero if the operation were performed on a nonvanishing product.

We now replace the elements of $E(A)$ appearing in the monomial

$$
Z_{1,1} \cdots Z_{1, k} \cdot w_{1,2} \cdot Z_{2,1} \cdots Z_{2, k} \cdot w_{2,3} \cdots w_{q-1, q} \cdot Z_{q, 1} \cdots Z_{q, k}
$$

by variables which we call designated variables, frames and bridges. Note that the monomial obtained is in $\left\langle f_{0}\right\rangle_{T}$ where $f_{0}=X_{1} \cdot w_{1} \cdots w_{q-1} \cdot X_{q}$. It is convenient to arrange the designated variables $x_{r, s}$ in the
two strips in 1-1 correspondence with the designated elements $\alpha_{r, s} \in E(A)$. Finally, we perform the alternations and symmetrizations on these variables and obtain (by construction) a multilinear nonidentity of $E(A)$ which we denote by $f_{E(A)}$. We summarize the above paragraph in the following proposition.

Proposition 3.8. Let A be a finite dimensional \mathbb{Z}_{2}-graded algebra over F. Suppose A is full and let $f_{E(A)}$ be as above. Then $f_{E(A)}$ is a nonidentity of $E(A)$. Furthermore, $f_{E(A)} \in\left\langle f_{0}\right\rangle_{T}$ where $f_{0}=$ $X_{1} \cdot w_{1} \cdots w_{q-1} \cdot X_{q}$.

Proposition 3.9. For k large enough, the polynomial $f_{E(A)}$ is strongly full of $E(A)$.
Proof. Suppose this is not the case. We claim that only in a bounded number of columns in the horizontal strip of the diagram we can put either radical elements or odd semisimple elements. Indeed, it is clear that the number of radical values is bounded. If we put arbitrary many odd semisimple values, by the pigeonhole principle, there will be variables in the same row which will get values of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{n}} \otimes a$ and $\epsilon_{j_{1}} \cdots \epsilon_{j_{m}} \otimes a$, same a, where n and m are odd. Then the symmetrization of the corresponding variables yields zero. Similarly, in any nonzero evaluation, the number of rows in the vertical strip of the diagram in which we can put radical or even elements is bounded. It follows then that for k large enough there exists a column in the horizontal strip, say the i-th column, which assumes only even elements and there is a j-th row in the vertical strip which assumes only odd elements. But more than that, taking k large enough we may assume $i=j$. It follows that by the alternation of the columns in the horizontal strip (resp. symmetrization of the rows in the vertical strip), in any nonzero evaluation, we are forced to evaluate these on basis elements of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{n}} \otimes a$ where a runs over a full basis of $A_{s s, 0}$ (resp. $A_{s s, 1}$). This proves the proposition.

We extend the proposition, namely starting with an arbitrary weakly full polynomial f_{0} of $E(A)$.
Proposition 3.10. Let A be a finite dimensional \mathbb{Z}_{2}-graded algebra over F. Suppose A is full. Let f_{0} be a multilinear weakly full polynomial of $E(A)$. Then there exists a polynomial $f_{E(A)} \in\left\langle f_{0}\right\rangle_{T}$ which is strongly full of $E(A)$.

Proof. Let us fix a nonzero admissible evaluation Φ of f_{0} in $E(A)$ which visits all \mathbb{Z}_{2}-graded simple components of $A_{s s}$. Denote by X_{1}, \ldots, X_{q} the variables of f_{0} which assume values from the q different \mathbb{Z}_{2}-graded simple components of A. Applying the T-operation we replace the variables X_{1}, \ldots, X_{q} with $X_{1} \Delta_{1}, \ldots, X_{q} \Delta_{q}$ where $\Delta_{t}=Z_{t, 1} \cdots Z_{t, k}$. Finally we alternate and symmetrize the designated variables as above. The polynomial obtained $f_{E(A)} \in\left\langle f_{0}\right\rangle_{T}$ is strongly full for the algebra $E(A)$. The proof is similar to the proof above when f_{0} is a monomial. Details are omitted.

Proposition 3.11. Let A and B be finite dimensional full superalgebras. Suppose B does not cover A. Let $f_{E(A)}$ be the polynomial constructed above. Then for k sufficiently large, the polynomial $f_{E(A)}$ is an identity of $E(B)$. More generally, suppose B is a direct sum of full superalgebras, each not covering A. Then for k sufficiently large, the polynomial $f_{E(A)}$ is an identity of $E(B)$.

Proof. The proof is similar to the proof in the affine case. In any nonzero evaluation on $E(B)$ we must have an index i which obtains linearly independent semisimple elements of B. If the evaluation is nonzero,
we must have a monomial with nonzero value and hence the semisimple elements appearing in each segment must come from the same \mathbb{Z}_{2}-graded simple component of B. We have then that B covers A. Contradiction.

Corollary 3.12. Let A and B full superalgebras. If $E(A)$ and $E(B)$ are PI-equivalent then their semisimple parts $A_{s s}$ and $B_{s s}$ are isomorphic.

Proof. Indeed, B and A cover each other. It follows that the tuple of pairs of dimensions of the simple components of A and B coincide (up to a permutation). Finally we note (see below) that the superstructure of a supersimple algebra A is determined by the dimensions of A_{0} and A_{1} and hence if these coincide, $A_{s s}$ and $B_{s s}$ must be isomorphic as superalgebras.

For the rest of the proof we follow the proof in the affine case step by step. Along the proof two basic propositions are needed.

Proposition 3.13. Let A be a finite dimensional superalgebra over F. Then $E(A)$ is PI-equivalent to the direct sum of algebras $E\left(A_{i}\right)$ where A_{i} is a finite dimensional full superalgebra.

Proof. Recall that a finite dimensional superalgebra A is PI-equivalent to the direct sum of full superalgebras $\mathfrak{A}=A_{1} \oplus \cdots \oplus A_{n}$. We claim firstly: $E(A)$ and $E(\mathfrak{A})$ are PI-equivalent: Indeed, a superpolynomial f is an identity of A if and only if the superpolynomial f^{*} is a superidentity of $E(A)$ as a superalgebra where the 0 component is spanned by elements of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{2 r}} \otimes a_{0}$ and the 1-component is spanned by elements of the form $\epsilon_{i_{1}} \cdots \epsilon_{i_{2 r+1}} \otimes a_{1}$; see [Aljadeff et al. 2020, Subsection 19.4.1]. Here ϵ_{j} is a generator of $E, a_{0} \in A^{0}, a_{1} \in A^{1}$, the even and odd elements of A respectively. Then, if $E(A)$ and $E(\mathfrak{A})$ are PI-equivalent as superalgebras, they are PI-equivalent as ungraded algebras. Next we argue that $E(\mathfrak{A}) \cong E\left(A_{1}\right) \oplus \cdots \oplus E\left(A_{n}\right)$ and the proposition is proved.

The second statement we need is
Proposition 3.14. Let A and B be finite dimensional supersimple algebras over F. If $\operatorname{dim}_{F}\left(A^{0}\right)=$ $\operatorname{dim}_{F}\left(B^{0}\right)$ and $\operatorname{dim}_{F}\left(A^{1}\right)=\operatorname{dim}_{F}\left(B^{1}\right)$ then A and B are \mathbb{Z}_{2}-graded isomorphic.

Proof. Recall that a \mathbb{Z}_{2}-graded simple algebra over an algebraically closed field F of characteristic 0 is isomorphic to $M_{l, f}(F)$, where $l \geq 1, f \geq 0$ or $F C_{2} \otimes_{F} M_{n}(F), n \geq 1$. In the case of $M_{l, f}(F)$ the dimension of the 0 -component (resp. 1-component) is $l^{2}+f^{2}$ (resp. 2lf) and in particular the total dimension is a square number whereas in the case of $F C_{2} \otimes_{F} M_{n}(F)$ the dimensions of the homogeneous components are each equal to n^{2} and hence not a square number. This proves the proposition.

4. G-graded algebras

In this section we extend the main theorem to the setting of affine G-graded algebras where G is a finite group. The case of nonaffine G-graded algebras is treated in the next section. Here is the precise statement.

Theorem 4.1. Let G be a finite group and let Γ be a G-graded T-ideal over F. Suppose Γ contains an ungraded Capelli polynomial c_{n}, some n. Then there exists a finite dimensional semisimple G-graded algebra U over F which satisfies the following conditions:
(1) There exists a finite dimensional G-graded algebra A over F with $\operatorname{Id}_{G}(A)=\Gamma$ and such that $A \cong U \oplus J_{A}$ is its Wedderburn-Malcev decomposition as G-graded algebras.
(2) If B is any finite dimensional G-graded algebra over F with $\operatorname{Id}_{G}(B)=\Gamma$ and $B_{s s}$ is its maximal semisimple G-graded subalgebra, then U is a direct summand of $B_{\text {ss }}$ as G-graded algebras.

The proof basically follows the main lines of the proof of the ungraded case yet there is a substantial obstacle here due to the fact that G-graded simple algebras are not determined up to isomorphism by the dimensions of the corresponding homogeneous components. In the following examples, as usual, F is an algebraically closed field of characteristic zero.

Example 4.2. (1) If G is a finite group, $F^{\alpha} G$ and $F^{\beta} G, \alpha, \beta \in H^{2}\left(G, F^{*}\right)$, are twisted group algebras, then they are G-graded isomorphic if and only if $\alpha=\beta$. Clearly, the dimensions of the homogeneous components equal 1 independently of the cohomology class.
(2) Let $G=\{e, \sigma, \tau, \sigma \tau\}$ be the Klein 4-group. Consider the crossed product grading on $A \cong M_{4}(F)$, that is the elementary grading determined by the tuple ($e, \sigma, \tau, \sigma \tau$), and the algebras $B_{i} \cong F^{\beta_{i}} G \otimes M_{2}(F)$, $\beta_{1}, \beta_{2} \in H^{2}\left(G, F^{*}\right)$. Here β_{1} (resp. β_{2}) is the trivial (resp. nontrivial) cohomology class on G with values on F^{*}. The dimension of each homogeneous component is 4. The algebras A and B_{2} are isomorphic as ungraded algebras ($\cong M_{4}(F)$) but not isomorphic to $B_{1} \cong M_{2}(F) \oplus M_{2}(F) \oplus M_{2}(F) \oplus M_{2}(F)$. It is easy to see that A and B_{2} are nonisomorphic as G-graded algebras; see [Aljadeff and Haile 2014].

Let G be a finite group and let A be a finite dimensional G-graded algebra over F. We decompose A into $A_{s s} \oplus J$ where $A_{s s}$ is a maximal G-graded semisimple algebra which supplements J, the Jacobson radical. The algebra $A_{s s}$ decomposes into a direct product of G-graded simple components $A_{1} \times \cdots \times A_{q}$. As in the ungraded case, the G-graded simple components are uniquely determined up to a G-graded isomorphism.

We start with the definition of the covering relation.
Definition 4.3. Let Q and V be finite dimensional G-graded semisimple algebras over F. We say V covers Q if the G-graded simple components of Q can be decomposed into subsets such that the sum of the dimensions of the corresponding homogeneous components are bounded by the dimensions of the homogeneous components of V. Explicitly, if $Q \cong Q_{1} \times \cdots \times Q_{q}$ and $V \cong V_{1} \times \cdots \times V_{r}$ are the decompositions of Q and V into their G-graded simple components. Let $u_{i, g}=\operatorname{dim}_{F}\left(Q_{i}\right)_{g}$ (resp. $\left.v_{j, g}=\operatorname{dim}_{F}\left(V_{j}\right)_{g}\right)$ be the dimension of the g-homogeneous component of Q_{i} (resp. of V_{j}). Then V covers Q if and only if the indices $1, \ldots, q$ can be decomposed into r subsets $\Lambda_{1}, \ldots, \Lambda_{r}$ such that $\sum_{i \in \Lambda_{j}} u_{i, g} \leq v_{j, g}$.

Definition 4.4. Let A be a finite dimensional G-graded algebra over F. Let $A \cong A_{1} \times \cdots \times A_{q} \oplus J_{A}$ be its Wedderburn-Malcev decomposition, where A_{i} are G-graded simple. We say A is full if up to a permutation of the indices we have $A_{1} \cdot J \cdots J \cdot A_{q} \neq 0$.

Next, we introduce G-graded weakly full, full and strongly full for a given full G-graded algebra A.
Definition 4.5. Let A be a finite dimensional full G-graded algebra. A G-graded polynomial p, nonidentity of A, is A-strongly full if it is homogeneous, multilinear and vanishes when evaluated on A unless every basis element of $A_{s s}$ appears as a value of one of its variables. A G-graded homogeneous polynomial p is A-weakly full if there exists an admissible nonzero evaluation on A that visits each G-graded simple subalgebra of $A_{s s}$. Finally, p is full if this is so for every admissible nonzero evaluation.

Strongly full polynomials were constructed in [Aljadeff and Kanel-Belov 2010]. Nevertheless, we shall need their precise structure so let us recall here their construction.

For each G-graded simple component A_{i} of A consider a nonzero product of all basis elements of A_{i}. These are elements of the form $u_{h} \otimes e_{r, s}, h \in H$ and $1 \leq r, s \leq m$, whose homogeneous degree is $g_{r}^{-1} h g_{s}$. Here, the G-grading on A_{i} is determined by a triple $\left(H, \alpha,\left(g_{1}, \ldots, g_{m}\right)\right)$ where H is a subgroup of G, α is a 2-cocycle representing a class in $H^{2}\left(H, F^{*}\right)$ and $\left(p_{1}, \ldots, p_{m}\right) \in G^{(m)}$; see [Bakhturin et al. 2008] and [Aljadeff and Haile 2014, Theorem 1.1]for more on this notation. It is known that such a product exists; see [Aljadeff and Kanel-Belov 2010]. As above we border from right and left each basis element with frames of the form $u_{e} \otimes e_{i, i}$. We denote such product of basis elements, namely the designated and frame elements, by Z_{i}. We refer to Z_{i} as the monomial of basis elements of A_{i}. We may assume the product starts with an element of the form $u_{e} \otimes e_{1,1}$ and ends with an element of the form $u_{h} \otimes e_{r, 1}$ and so if $Z_{i, l}=Z_{i}, l=1, \ldots, k$, we have that the product $Z_{i, 1} \cdots Z_{i, k}$ is nonzero. Next we bridge products corresponding to different G-graded simple components by radical (homogeneous) elements w_{i}. We obtain a nonzero product

$$
Z_{1,1} \cdots Z_{1, k} \cdot w_{1} Z_{2,1} \cdots Z_{2, k} \cdot w_{2} \cdots w_{q-1} \cdot Z_{q, 1} \cdots Z_{q, k} .
$$

As in the ungraded case we consider the i-th set $\Lambda_{i}, i=1, \ldots, k$ consisting of the designated (semisimple) elements in $Z_{1, i}, \ldots, Z_{q, i}$. We denote by $\Lambda_{i, g}, g \in G$, the subset of Λ_{i} consisting of elements of homogeneous degree g. We claim any nontrivial permutation of designated elements in $\Lambda_{i, g}$ yields a zero product. Clearly, it suffices to consider transpositions T. The claim is clear if T exchanges basis elements which belong to G-graded simple components A_{i} and A_{j} with $i \neq j$. Suppose T exchanges basis elements $u_{h_{1}} \otimes e_{r_{1}, s_{1}} \neq u_{h_{2}} \otimes e_{r_{2}, s_{2}}$ of the same G-graded simple component. Since they are of equal homogeneous degree, we have that $g_{r_{1}}^{-1} h_{1} g_{s_{1}}=g_{r_{2}}^{-1} h_{2} g_{s_{2}}$ and so we must have $\left(r_{1}, s_{1}\right) \neq\left(r_{2}, s_{2}\right)$. This implies that frames bordering different designated elements of the same homogeneous degree are different and the claim is proved.

We proceed as in the ungraded case where the monomials consisting of elements of A are replaced by monomials of different graded variables with the corresponding homogeneous degree. The small sets here are alternating sets of variables of degree $g \in G$ of cardinality equal the dimension of the g-homogeneous
component of $A_{s s}$. The polynomial obtained is denoted by p. This completes the construction of a G-graded strongly full polynomial of A. As in previous cases we shall need a more general statement.

Proposition 4.6. Let A be a full G-graded algebra and f_{0} a G-graded multilinear polynomial which is weakly full of A. Then there exists a multilinear G-graded strongly full polynomial f_{A} such that $f_{A} \in\left\langle f_{0}\right\rangle_{T}$.

Proof. The proof is similar to the proof of Theorem 2.8(3).
Lemma 4.7. Let A be a G-graded full algebra and f_{A} a G-graded strongly full polynomial of A with sufficiently many small sets. If B does not cover A, then f_{A} is an identity of B.

Proof. The proof is similar to the proof of Lemma 2.10.
Note that in the ungraded case this was sufficient in order to deduce that the semisimple subalgebras of A and B are isomorphic.

Theorem 4.8. Let A and B be finite dimensional G-graded full algebras. Suppose they are G-graded PI-equivalent. Then the maximal semisimple subalgebras $A_{s s}$ and $B_{s s}$ are G-graded isomorphic.

Proof. By the preceding lemma we know that A and B cover each other and hence the tuples of the dimensions of the homogeneous components of the G-graded simple algebras appearing in the decomposition of $A_{s s}$ and $B_{s s}$ are equal. Our goal is to show the corresponding G-graded simple components are G-graded isomorphic.

For the proof we shall need to insert suitable e-central polynomials in the full G-graded polynomial f_{A} of A constructed above. We recall from [Karasik 2019] that every finite dimensional G-graded simple admits an e-central multilinear polynomial c_{A}, that is a nonidentity of A, central and G-homogeneous of degree e. Furthermore, it follows from its construction, that the polynomial c_{A} alternates on certain sets of variables of equal homogeneous degree of cardinality equal $\operatorname{dim}_{F}\left(A_{g}\right)$, for every $g \in G$. For the proof of Theorem 4.8 we shall need e-central polynomials with some additional properties.

Theorem 4.9. Let $A_{i}, i=1, \ldots, q$, be the simple components of $A_{\text {ss }}$. Then there exists a polynomial $m_{i}\left(X_{G}\right)$ with the following properties:
(1) $m_{i}\left(X_{G}\right)$ is e-central of A_{i}.
(2) $m_{i}\left(X_{G}\right)$ is an identity of every algebra Σ which satisfies the following conditions:
(a) Σ is finite dimensional G-graded simple.
(b) $\operatorname{dim}_{F}\left(\Sigma_{g}\right)=\operatorname{dim}_{F}\left(\left(A_{i}\right)_{g}\right)$ for every $g \in G$.
(c) $\operatorname{Id}_{G}\left(A_{i}\right) \nsupseteq \operatorname{Id}_{G}(\Sigma)$.

Proof. By condition (2c) there is a G-graded homogeneous nonidentity $f_{i, \Sigma}$ of A_{i}, of homogeneous degree $g \in G$ say, which vanishes on Σ. Then replacing a variable of degree g in an alternating set of $c_{A_{i}}$ by $f_{i, \Sigma}$ we obtain a nonidentity e-central polynomial $m_{i, \Sigma}\left(X_{G}\right)$ of A_{i} which vanishes on Σ. Now recall from [Aljadeff and Karasik 2022] that the number of G-graded simple algebras Σ satisfying conditions
(2a) and (2b) above is finite and so, because the nonzero values of $m_{i, \Sigma}\left(X_{G}\right)$ are invertible in F^{*}, we have that $m_{i}\left(X_{G}\right)=\Pi_{\Sigma} m_{i, \Sigma}\left(X_{G}\right)$ is an e-central polynomial of A with the desired properties.

Finally we insert in f_{A} polynomials with disjoint sets of variables $m_{i}\left(X_{G}\right)$ adjacent to each monomial $Z_{i, l}$. This completes the construction of a special strongly full polynomial which we denote by \mathfrak{f}_{A}.

We can complete now the proof of the Theorem 4.8. We are assuming the algebras A and B are PI-equivalent and so by Lemma 4.7, the algebras A and B cover each other. It follows that $A_{s s}$ and $B_{s s}$ have the same number of G-graded simple components. Furthermore, if $A_{s s} \cong A_{1} \times \cdots \times A_{q}$ and $B_{s s} \cong B_{1} \times \cdots \times B_{q}$ then there is a permutation $\sigma \in \operatorname{Sym}(q)$ such that $\operatorname{dim}_{F}\left(\left(A_{i}\right)_{g}\right)=\operatorname{dim}_{F}\left(\left(B_{\sigma(i)}\right)_{g}\right)$, $i=1, \ldots, q$ and every $g \in G$.

We claim there is a permutation of the G-graded simple components of $B_{s s}$ such that in addition to the condition above we have that $\operatorname{Id}_{G}\left(A_{i}\right) \supseteq \operatorname{Id}_{G}\left(B_{\sigma(i)}\right), i=1, \ldots, q$. Suppose not. Then for every permutation σ satisfying the condition above, there is a $j=j(\sigma)$ such that $\operatorname{Id}_{G}\left(A_{j}\right) \nsupseteq \operatorname{Id}_{G}\left(B_{\sigma(j)}\right)$. We will show that the strongly full polynomial \mathfrak{f}_{A} is an identity of B, in contradiction to the PI-equivalence of A and B. Indeed, evaluating \mathfrak{f}_{A} on B, the value will be zero unless there is a monomial Z_{i}, together with the inserted central polynomials, whose value is nonzero. This implies there is a permutation σ of the components of $B_{s s}$ such that the i-th segment of p is evaluated on $B_{\sigma(i)}$. This already implies the condition above on the dimensions. But by assumption there is j such that $\operatorname{Id}_{G}\left(A_{j}\right) \nsupseteq \operatorname{Id}_{G}\left(B_{\sigma(j)}\right)$ and so the central polynomial $m_{j}\left(X_{G}\right)$ vanishes on $B_{\sigma(j)}$.

We conclude there is a permutation $\sigma \in \operatorname{Sym}(q)$ of the simple components of $B_{s s}$ such that:
(1) $\operatorname{dim}_{F}\left(\left(A_{i}\right)_{g}\right)=\operatorname{dim}_{F}\left(\left(B_{\sigma(i)}\right)_{g}\right), i=1, \ldots, q$, and every $g \in G$
(2) $\operatorname{Id}_{G}\left(A_{i}\right) \supseteq \operatorname{Id}_{G}\left(B_{\sigma(i)}\right), i=1, \ldots, q$.

Our goal is to show that in fact $\operatorname{Id}_{G}\left(A_{i}\right)=\operatorname{Id}_{G}\left(B_{\sigma(i)}\right), i=1, \ldots, q$. Indeed, this would imply what we need, that is $A_{i} \cong B_{\sigma(i)}, i=1, \ldots, q$, as G-graded algebras; see [Aljadeff and Haile 2014].

Suppose that G is abelian. In that case let us recall the following general result of O. David [2012].
Theorem 4.10. Let G be a finite abelian group and let A and B finite dimensional G-graded simple algebras over an algebraically closed field F. Then there is an embedding $A \hookrightarrow B$ as G-graded algebras if and only if $\operatorname{Id}_{G}(A) \supseteq \operatorname{Id}_{G}(B)$.

Clearly, it follows at once from the theorem that G-graded algebras satisfying conditions (1) and (2) above must be G-graded isomorphic. David's result is not known in case G is an arbitrary finite group.

Here, instead, we argue as follows. By symmetry there is a permutation $\tau \in \operatorname{Sym}(q)$ such that:
(1) $\operatorname{dim}_{F}\left(\left(B_{i}\right)_{g}\right)=\operatorname{dim}_{F}\left(\left(A_{\tau(i)}\right)_{g}\right), i=1, \ldots, q$ and every $g \in G$.
(2) $\operatorname{Id}_{G}\left(B_{i}\right) \supseteq \operatorname{Id}_{G}\left(A_{\tau(i)}\right), i=1, \ldots, q$.

Consequently there is a permutation $\rho \in \operatorname{Sym}(q)$ such that A_{i} and $A_{\rho(i)}$ have equal dimensions of the homogeneous components and $\operatorname{Id}_{G}\left(A_{i}\right) \supseteq \operatorname{Id}_{G}\left(A_{\rho(i)}\right)$. We need to show equality holds. Indeed, we see that $\operatorname{Id}_{G}\left(A_{i}\right)=\operatorname{Id}_{G}\left(A_{j}\right)$ for i and j which belong to the same orbit determined by ρ and so, in particular $\operatorname{Id}_{G}\left(A_{i}\right)=\operatorname{Id}_{G}\left(A_{\rho(i)}\right), i=1, \ldots, q$.

The remaining steps in the proof of Theorem 4.1 are similar to those in the proof of Theorem 1.1. Details are omitted.

5. PI-equivalence of Grassmann envelopes of finite dimensional $\boldsymbol{G}_{\mathbf{2}}$-graded algebras

In this section we treat the case where the algebra A is finite dimensional $\mathbb{Z}_{2} \times G$-graded and $E(A)$ is the Grassmann envelope of A viewed as a G-graded algebra.

The main result in this case is the following.
Theorem 5.1. Let G be a finite group. Let Γ be a G-graded T-ideal. Suppose Γ contains a nonzero ungraded polynomial but contains no ungraded Capelli c_{n}, any n. Then there exists a finite dimensional semisimple $\mathbb{Z}_{2} \times G$-graded algebra U over F which satisfies the following conditions:
(1) There exists a finite dimensional $\mathbb{Z}_{2} \times G$-graded algebra A over F with $\operatorname{Id}_{G}(E(A))=\Gamma$ and such that $A \cong U \oplus J_{A}$ is its Wedderburn-Malcev decomposition as $\mathbb{Z}_{2} \times G$-graded algebras.
(2) If B is any finite dimensional $\mathbb{Z}_{2} \times G$-graded algebra over F with $\operatorname{Id}_{G}(E(B))=\Gamma$ and $B_{\text {ss }}$ is its maximal semisimple $\mathbb{Z}_{2} \times G$-graded subalgebra, then U is a direct summand of $B_{s s}$ as $\mathbb{Z}_{2} \times G$-graded algebras.

The general approach is based on cases that were treated earlier, namely the cases where (1) Γ is a T-ideal of identities of a G-graded affine algebra (2) Γ is a T-ideal of identities of an ungraded nonaffine algebra. It turns out however, that also here there is a substantial difficulty, and this is in the very first step of the general approach (see Theorem 5.2 below). In fact, nearly the entire section will be devoted to the proof of Theorem 5.2.

Before we state the theorem let us set some notation.
Let G be a finite group and denote $G_{2}:=\mathbb{Z}_{2} \times G$. We denote $G_{\text {even }}:=0 \times G ; G_{\text {odd }}=1 \times G$ and similarly for a G_{2} algebra A we write $A_{\text {even }}=A_{G_{\text {even }}} ; A_{\text {odd }}=A_{G_{\text {odd }}}$.

Theorem 5.2. Suppose that A and B are two finite dimensional G_{2}-graded simple algebras. Then A and B are G_{2}-graded isomorphic if and only if $E(A)$ and $E(B)$ have the same G-graded identities.

It is worth noting that the Grassmann $*$ operation allows one to pass from a superidentity of A to a superidentity of $E(A)$ (resp. from a G_{2}-identity of A to a G_{2}-identity of $E(A)$). The challenge here lies in transforming a superidentity of A into an ordinary identity of $E(A)$ (resp. from a G_{2}-identity of A into a G-identity of $E(A)$). The main part of the proof of the above Theorem is to find such a transformation.

We start with the construction of the transformation and in Proposition 5.5 we show the key property that makes it work. We emphasize that the construction and also the Theorem are guaranteed to work only in the case where the algebras in question are finite dimensional G_{2}-graded simple. In general it is not true that if $E(A)$ and $E(B)$ have the same G-graded identities then A and B have the same G_{2}-graded identities. An example can be found in [Giambruno and Zaicev 2005, Section 8.2].

The construction we are about to present is a generalization to the G-graded setting of the one in Section 3. Its main property appears in Proposition 5.5. In fact, the previous construction could be applied
also here. And if we did, it would enable us to show as above that if $E(A)$ and $E(B)$ have the same G-graded identities then $\operatorname{dim} A_{\bar{g}}=\operatorname{dim} B_{\bar{g}}$ for all \bar{g}. However this would not be sufficient here since, as pointed out in the previous section, for general groups G one can easily find examples of nonisomorphic G_{2}-graded simple algebras having this property.

Let $f=f\left(X_{0} ; Y_{0}\right)$ be a multilinear G_{2}-graded polynomial, where

$$
X_{0}=\coprod_{\bar{g} \in G_{2}} \coprod_{i=1}^{T} X_{\bar{g}, i}
$$

is a union of T small sets of degree \bar{g}-variables $X_{\bar{g}, i}=\left\{x_{\bar{g}, i}^{(1)}, \ldots, x_{\bar{g}, i}^{\left(\operatorname{dim} A_{\bar{g}}\right)}\right\}$ (here \bar{g} runs over all of G_{2}), and $Y_{0}=\coprod_{\bar{g} \in G_{2}} Y_{\bar{g}, 0}$ are some additional variables. Assume that f has a G_{2}-graded evaluation $\phi: F\left\langle X_{0} ; Y_{0}\right\rangle \rightarrow A$ with the following properties:
(1) For every nontrivial permutation $\sigma \in \prod_{\bar{g} \in G_{2}} \prod_{i=1}^{T} S_{X_{\bar{g}, i}}$ (here S_{W} is the symmetric group on the set $W)$ the value of $f\left(\sigma\left(X_{0}\right) ; Y_{0}\right)$ under the evaluation ϕ is 0.
(2) For all $\bar{g} \in G_{2}$ the value $\phi\left(x_{\bar{g}, i}^{(j)}\right)=: a_{\bar{g}}^{(j)}$ is independent of $i=1, \ldots, T$. Furthermore, all $a_{\bar{g}}^{(j)}$, $j=1, \ldots, \operatorname{dim} A_{\bar{g}}$, are distinct.

We will see later that in the case which is relevant to the proof of Theorem 5.2 it is indeed possible to construct such a polynomial.

Let $k>0$ be a natural number and consider the polynomial

$$
f_{k}:=f\left(X_{1} ; Y_{1}\right) \cdots f\left(X_{k} ; Y_{k}\right)
$$

where all X_{t} and Y_{t} are disjoint copies of X_{0} and Y_{0} respectively. Notice that

$$
X_{t}=\coprod_{\bar{g} \in G_{2}} \coprod_{i=1}^{T} X_{\bar{g},(t-1) T+i}
$$

We extend ϕ to $F\langle X ; Y\rangle$, where $X=\coprod_{t=1}^{k} X_{t}$ and $Y=\coprod_{t=1}^{k} Y_{t}$, by duplicating the evaluation on X_{0} and Y_{0} to X_{t} and Y_{t} respectively (for all $t=1, \ldots, k$). As a result, we have in particular for all \bar{g}, i and j that $\phi\left(x_{\bar{g}, i}^{(j)}\right)=a_{\bar{g}}^{(j)}($ we rely here on property (2)).

For $a \in A$ we set $X_{\phi}(a) \subset X$ to be all the variables from X which ϕ assigns to them the value a. In other words, $X_{\phi}(a)=\left(\left.\phi\right|_{X}\right)^{-1}(a)$. In particular, $X_{\phi}\left(a_{\bar{g}}^{(j)}\right)=\left\{x_{\bar{g}, 1}^{(j)}, \ldots, x_{\bar{g}, k T}^{(j)}\right\}$.

Remark 5.3. For every $\bar{g} \in G_{2}$ we have

$$
\coprod_{i=1}^{k T} X_{\bar{g}, i}=\coprod_{j=1}^{\operatorname{dim} A_{\bar{g}}} X_{\phi}\left(a_{\bar{g}}^{(j)}\right)
$$

One should visualize this equality as "union of columns" (the $X_{\bar{g}, i}$'s) = "union of rows" (the $X_{\phi}\left(a_{\bar{g}}^{(j)}\right)$) in the matrix

$$
\left[\begin{array}{ccc}
x_{\bar{g}, 1}^{(1)} & \cdots & x_{\bar{g}, k T}^{(1)} \\
\vdots & x_{\bar{g}, i}^{(j)} & \vdots \\
x_{\bar{g}, 1}^{\left(\operatorname{dim} A_{\bar{g}}\right)} & \cdots & x_{\bar{g}, k T}^{\left(\operatorname{dim} A_{\bar{g}}\right)}
\end{array}\right]
$$

Next, we alternate and symmetrize different subsets of X in the following fashion to obtain a new graded polynomial $s_{k ; A}$. For each even (odd) element $\bar{g} \in G_{2}$ we apply alternation (symmetrization) on all variables $X_{\bar{g}, i}$; afterwards we apply symmetrization (alternation) for every set of variables of the form $X_{\phi}(a)$. All in all, we have
$s_{k ; \phi ; A}(f)=\prod_{\bar{g} \in G_{\text {odd }}} \prod_{j=1}^{\operatorname{dim} A_{\bar{g}}} \operatorname{Alt}_{X_{\phi}\left(a_{\bar{g}}^{(j)}\right)} \circ \prod_{\bar{g} \in G_{\text {even }}} \prod_{j=1}^{\operatorname{dim} A_{\bar{g}}} \operatorname{Sym}_{X_{\phi}\left(a_{\bar{g}}^{(j)}\right)} \circ \prod_{\bar{g} \in G_{\text {odd }}} \prod_{i=1}^{k T} \operatorname{Sym}_{X_{\bar{g}, i}} \circ \prod_{\bar{g} \in G_{\text {even }}} \prod_{i=1}^{k T} \operatorname{Alt}_{X_{\overline{\bar{g}}, i}}\left(f_{k}\right)$.
We also consider a "forgetful" operator $F_{G}^{G_{2}}$ which transforms G_{2}-graded polynomials into G-graded polynomials by changing the degree of every variable from $(\epsilon, g) \in G_{2}$ to $g \in G$. We finally have the G-graded polynomial

$$
F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right) .
$$

We remark that for $g \in G$ the variables $F_{G}^{G_{2}}\left(x_{(0, g), t}\right)$ and $F_{G}^{G_{2}}\left(x_{(1, g), t}\right)$ are two different variables of degree $g \in G$.

Definition 5.4. Let B be a G_{2}-graded algebra. An evaluation of a G-graded polynomial f on B is called almost G_{2} if every variable x of f of degree g is evaluated in some $B_{(\epsilon, g)}$.

Furthermore, if B_{0} is a subset of B, we say that an evaluation ψ of f on B is a B_{0}-evaluation if every variable of f is evaluated in B_{0}.

Suppose we have a G_{2}-graded polynomial f and consider the G-polynomial $F_{G}^{G_{2}}(f)$. Note that if ψ is an almost G_{2}-evaluation of $F_{G}^{G_{2}}(f)$, then typically there is no reason that $\operatorname{deg} \psi\left(F_{G}^{G_{2}}\left(x_{\bar{g}}\right)\right)=\bar{g}$ (i.e., the parities might not agree). The next Proposition shows that our construction of $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}\right)(f)$ will ensure that "almost always" the above equality occurs given that ψ gives a nonzero value to the polynomial.

Proposition 5.5. Let B be a finite dimensional G_{2}-graded algebra. If

$$
\psi: F\left\langle X_{0} ; Y_{0}\right\rangle \rightarrow E(B)
$$

is a nonzero almost G_{2}-evaluation, then for every $\bar{g} \in G_{2}$ we have

$$
\operatorname{deg} \psi\left(F_{G}^{G_{2}}\left(x_{\bar{g}, i}\right)\right)=\bar{g},
$$

except possibly for $\operatorname{dim} A \cdot \operatorname{dim} B$ of the i.

Furthermore, if there is some $\bar{g}_{0}=\left(\epsilon_{0}, g_{0}\right) \in G_{2}$ such that the dimension of $B_{\bar{g}_{0}}$ is strictly smaller than that of $A_{\bar{g}_{0}}$, then for $k>\operatorname{dim} A \cdot \operatorname{dim} B$, the polynomial $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$ is an identity of $E(B)$.
Proof. We focus on proving the "furthermore" part and along the way we get a proof for the main claim. In order to show that $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$ is an identity of $E(B)$, it is enough to show that it is 0 under any almost G_{2}-evaluation of $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$, since this polynomial is multilinear. Let $\psi: F\left\langle X_{0} ; Y_{0}\right\rangle \rightarrow E(B)$ be an almost G_{2}-evaluation of $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$.

Suppose that $\psi\left(F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)\right) \neq 0$. Then, there is some

$$
\sigma \in \prod_{\bar{g} \in G_{\text {odd }}} \prod_{i=1}^{k T} S_{X_{\bar{g}, i}} \cdot \prod_{\bar{g} \in G_{\text {even }}} \prod_{i=1}^{k T} S_{X_{\bar{g}, i}}
$$

such that, under ψ, the polynomial

$$
F_{G}^{G_{2}}\left(\prod_{\bar{g} \in G_{\text {odd }}} \prod_{j=1}^{\operatorname{dim} A_{\bar{g}}} \operatorname{Alt}_{X_{\phi}\left(a_{\bar{g}}^{(j)}\right)} \circ \prod_{\bar{g} \in G_{\text {even }}} \prod_{j=1}^{\operatorname{dim} A_{\bar{g}}} \operatorname{Sym}_{X_{\phi}\left(a_{\bar{g}}^{(j)}\right)}\left(f_{k}(\sigma(X)) ; Y\right)\right) \neq 0
$$

Notice that for all i, the set $X_{\bar{g}, i}$ stays the same even after applying σ.
We claim that all small sets $F_{G}^{G_{2}}\left(X_{\bar{g}_{0}, i}\right)$, except possibly $\operatorname{dim} A \cdot \operatorname{dim} B$ of them, have all of their variables assigned to elements of degree \bar{g}_{0}. Indeed, we only need to show that the parity is ϵ_{0}. Assume that $\epsilon_{0}=0$ (the proof for $\epsilon_{0}=1$ is similar).

If on the contrary there are more than $\operatorname{dim} A \cdot \operatorname{dim} B$ small sets $F_{G}^{G_{2}}\left(X_{\bar{g}_{0}, i}\right)$ having at least one variable which has an odd evaluation, as $k>\operatorname{dim} A \cdot \operatorname{dim} B \geq \operatorname{dim} A_{\bar{g}_{0}} \cdot \operatorname{dim} B_{\left(1, g_{0}\right)}$, and in view of Remark 5.3, there is some $l_{0} \in\left\{1, \ldots, \operatorname{dim} A_{\bar{g}_{0}}\right\}$ such that at least $\operatorname{dim} B_{\left(1, g_{0}\right)}$ distinct variables from $F_{G}^{G_{2}}\left(X_{\phi}\left(a_{\bar{g}_{0}}^{\left(l_{0}\right)}\right)\right)$ are assigned by ψ values from $B_{\left(1, g_{0}\right)} \otimes E_{1}$. However as we symmetrize that set, we must get $0-\mathrm{a}$ contradiction. Notice that we have also proved here the main claim.

Denote by $F_{G}^{G_{2}}\left(X_{\bar{g}_{0}, i_{0}}\right)$ a small set with the property from the previous paragraph. Since $\operatorname{dim} B_{\bar{g}_{0}}<$ $\operatorname{dim} A_{\bar{g}_{0}}$, the alternation (symmetrization) of size $\operatorname{dim} A_{\bar{g}_{0}}$ must nullify the polynomial.

We are now ready to prove Theorem 5.2:
Proof of Theorem 5.2. By [Aljadeff and Haile 2014], A and B are G_{2}-isomorphic if and only if A and B share the same G_{2}-identities; see also [Bahturin and Yasumura 2019] for a far reaching generalization of the statement in [Aljadeff and Haile 2014]. As a result, it is enough to show that if A and B are not G_{2}-PI-equivalent, then $E(A)$ and $E(B)$ are not G-PI-equivalent.

Assume, without loss of generality, that there is a multilinear G_{2}-polynomial $p\left(x_{\bar{g}_{1}, 1}, \ldots, x_{\bar{g}_{n}, n}\right)$ which is an identity of B but not of A. We consider the G_{2}-graded basis $\mathcal{B}_{A}=\left\{a_{\bar{g}}^{(j)}: \bar{g} \in G_{2}, j=1, \ldots, \operatorname{dim}_{F} A_{\bar{g}}\right\}$ of A as in [Aljadeff and Haile 2014] Theorem 1.1. Let ϕ be a nonzero \mathcal{B}_{A}-evaluation of p. We may also assume that $\phi(p)=\delta$, where δ is a nonzero idempotent of A. In the next few paragraphs we are going to construct a G_{2}-graded polynomial f from p on which we will perform the construction from the beginning of the section to obtain a polynomial $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$ which will be an identity of $E(B)$ and a nonidentity of $E(A)$.

For $i=1, \ldots, n$ let $X(i)=\left\{x_{\bar{g}, i}^{(j)}: \bar{g} \in G_{2}, j=1, \ldots, \operatorname{dim} A_{\bar{g}}\right\}$ be disjoint variables from the ones of p and set $\phi\left(x_{\bar{g}, i}^{(j)}\right)=a_{\bar{g}}^{(j)}$. For every i let $j(i)$ be such that $\phi\left(x_{\bar{g}_{i}, i}\right)=a_{\bar{g}_{i}}^{(j(i))}$. We identify $x_{\bar{g}_{i}, i}$ with $x_{\bar{g}_{\bar{g}}, i}^{(j(i))}$ for every i. We set $X_{0}=\coprod_{i=1}^{n} X(i)$.

Similarly to the construction in the proof of Theorem 4.8, one can construct a multilinear G_{2}-monomial $M=M\left(X_{0} ; Y\right)$ with the property that there is an evaluation ϕ_{Y} of the Y-variables such that the only extension of ϕ_{Y} to a nonzero \mathcal{B}_{A}-evaluation ϕ_{Z} of $M\left(X_{0} ; Y\right)$ must satisfy $\left.\phi_{M}\right|_{X_{0}}=\left.\phi\right|_{X_{0}}\left(\right.$ i.e., ϕ_{M} also extends ϕ) and if ϕ_{M} satisfies $\left.\phi_{M}\right|_{X_{0}}=\left.\phi\right|_{X_{0}}$ then $\phi_{M}(M)=\delta$. In what follows we shall denote the unique nonzero evaluation ϕ_{M} of M by ϕ. Furthermore, one can also arrange that $\phi(M)=\delta$.

Clearly, $\phi(M \cdot p)=\delta$. However, $M \cdot p$ is not multilinear, and so we make some small changes to solve this issue. Consider a new set of variables $z_{\bar{g}_{1}, 1}, \ldots, z_{\bar{g}_{n}, n}$ and replace in Z (only) the variables $z \bar{g}_{i}, i$ by $x_{\bar{g} i, i}$ for every i and let M^{\prime} be the new polynomial. Clearly $M^{\prime} \cdot p$ is multilinear. We extend ϕ to include all the z-variables by declaring $\phi\left(z_{\overline{g_{i}}, i}\right)=\phi\left(x_{\overline{g_{i}}, i}\right)$ so that $\phi(M p)=\phi\left(M^{\prime} p\right)=\delta$.

Finally let

$$
f=M^{\prime} \cdot p^{*}
$$

where $*$ is the Grassmann star operation.
We claim that f satisfies properties (1)-(2): By construction property (2) holds. Hence we are left with verifying property (1). Indeed, any nontrivial permutation of any of the variables in some $X(i)$ induces a new evaluation of f, which we call ϕ^{\prime}, that differs from ϕ only on the set $X(i)$. By the construction of M (and M^{\prime}) we get that $\phi^{\prime}\left(M^{\prime}\right)=0$; showing property (1).

We now consider our final polynomial $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$, where $k=n \cdot \operatorname{dim} A \cdot \operatorname{dim} B+1$. Notice that it is a G-polynomial and that the construction also extends ϕ to an evaluation of all of $s_{k ; \phi ; A}(f)$ (a G_{2}-graded evaluation!). We claim that it is an identity of $E(B)$ but not of $E(A)$. It is not an identity of $E(A)$ since we can consider the following G-evaluation ψ in $E(A)$: for every variable v appearing in $s_{k ; \phi ; A}(f)$ we set

$$
\psi\left(F_{G}^{G_{2}}(v)\right)=\phi(v) \otimes w_{v}
$$

where $w_{v} \in E_{\operatorname{deg} v}$ and all the w_{v} are chosen so that the product of all of them is nonzero. By the definition of $*$, we have that $\psi\left(F_{G}^{G_{2}}\left(p^{*}\right)\right)=\delta \otimes \prod_{v \in p} w_{v}$ and so $\psi\left(F_{G}^{G_{2}}\left(f_{k}\right)\right)=\delta \otimes \prod_{v \in f_{k}} w_{v}$. By property (1) of f we conclude that

$$
\psi\left(F_{G}^{G_{2}}\left(\prod_{\bar{g} \in G_{\text {odd }}} \prod_{i=1}^{k n} \operatorname{Sym}_{X_{g, i}} \circ \prod_{\bar{g} \in G_{\text {even }}} \prod_{i=1}^{k n} \operatorname{Alt}_{\overline{\bar{g}}, i}\left(f_{k}\right)\right)\right)=\psi\left(F_{G}^{G_{2}}\left(f_{k}\right)\right)=\delta \otimes \prod_{v \in f_{k}} w_{v}
$$

Finally, since ϕ gives the same value $a_{\bar{g}}^{(i)}$ for every variable in $X_{\phi}\left(a_{\bar{g}}^{(i)}\right)$, we have that

$$
\psi\left(F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)\right)=C \cdot \delta \otimes \prod_{v \in f_{k}} w_{v} \neq 0,
$$

where $C=\prod_{\bar{g} \in G_{2}} \prod_{i=1}^{\operatorname{dim} A_{\bar{g}}}\left|X_{\phi}\left(a_{\bar{g}}^{(i)}\right)\right|!=((k n)!)^{\operatorname{dim} A}$.

We are left with showing that $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$ is an identity of $E(B)$. Suppose that $F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)$ is a nonidentity of $E(B)$. Hence there is a nonzero almost G_{2}-evaluation ψ on $E(B)$. As $\psi\left(F_{G}^{G_{2}}\left(s_{k ; \phi ; A}(f)\right)\right) \neq$ 0 , there are two permutations

$$
\sigma \in \prod_{\bar{g} \in G_{2}} \prod_{i=1}^{\operatorname{dim} A_{\bar{g}}} S_{X_{\phi}\left(a_{\bar{g}}^{(i)}\right)}, \tau \in \prod_{\bar{g} \in G_{2}} \prod_{i=1}^{k n} S_{X_{\bar{g}, i}}
$$

such that

$$
\psi\left(F_{G}^{G_{2}}\left(f_{k}(\sigma \tau(X), Y, Z)\right)\right) \neq 0
$$

Clearly, $\sigma \tau\left(X_{i}\right)=\sigma\left(X_{i}\right)$ and σ preserves the G_{2}-degree. By Proposition 5.5 and the choice of k, there is some $i_{0} \in\{1, \ldots, k\}$ such that for every $x_{\bar{g}} \in \sigma\left(X_{i_{0}}\right)$ we have that $\operatorname{deg} \psi\left(x_{\bar{g}}\right)=\bar{g}$. As a result, as p is an identity of B, we can deduce that $\psi\left(p^{*}\left(\sigma\left(X_{i_{0}}\right)\right)\right)=0$ and so also $\psi\left(f\left(\sigma\left(X_{i_{0}}\right), Y, Z\right)\right)=0$. This clearly forces that $\psi\left(F_{G}^{G_{2}}\left(f_{k}(\sigma \tau(X), Y, Z)\right)\right)=0$, hence reaching a contradiction.

We may extend Theorem 5.2 to full $G_{2}=\mathbb{Z}_{2} \times G$-graded algebras.
Theorem 5.6. Let A and B be finite dimensional G_{2}-graded algebras over F. Suppose A and B are full. If $E(A)$ and $E(B)$ are G-graded PI-equivalent then the semisimple parts $A_{s s}$ and $B_{s s}$ are isomorphic as G_{2}-algebras.

Proof. For the proof we shall combine the constructions in Section 3 and Section 4, that is for nonaffine ungraded algebras and for affine G-graded algebras, together with the Theorem 5.2. For each G_{2}-graded simple algebra A_{i} we let $\mathcal{B}_{A_{i}}$ be a basis of A_{i} whose elements are G_{2}-homogeneous of the form $\left\{u_{h} \otimes e_{r, s}\right\}$. Let K_{i} denote a nonzero product of the elements in $\mathcal{B}_{A_{i}}$. We refer to these elements as designated elements. Each basis element is bordered by basis elements where for convenience we may assume all but possibly one are of the form $1 \otimes e_{i, j}$. As usual we refer to these as frame elements. We may use one of the frame elements so the value of the monomial is an idempotent δ of A. We denote this product by Z_{i}. We let $Z_{i, j}, j=1, \ldots, k$ be a duplicate of the monomial Z_{i} and let $\bar{Z}_{i, k}=Z_{i, 1} \cdot Z_{i, 2} \cdots Z_{i, k}$. Here, k is a large integer which needs to be determined. We let $\Theta_{l}=(a, \ldots, a)$ be the k-tuple where a is the l-th element appearing in the monomial K_{i}. Since the algebra A is full, we have up to ordering of the G_{2}-graded simple components of A a nonvanishing product $\bar{Z}_{1, k} \cdot w_{1} \cdot \bar{Z}_{2, k} \cdots w_{q-1} \cdot \bar{Z}_{q, k} \neq 0$. For every $\bar{g} \in G_{2}$ we consider k small sets, each consisting of $\operatorname{dim}_{F}\left(A_{s s}\right) \bar{g}$ designated elements where the j-th small set consists of the designated elements in $K_{1, j}, \ldots, K_{q, j}$. We have as in previous cases that any nontrivial permutation on a small set leads to a zero product. Our next step is to tensor even elements with the identity of E (the Grassmann algebra), and odd elements with different generators of E. Note that the product remains nonzero. As in previous cases we will view the elements obtained as G-graded elements but for convenience we will still refer to them using the adjective even or odd. Moreover we shall refer as small sets, a set of the form $\left(1 \otimes a_{1}, \ldots, 1 \otimes a_{m}\right)$ where $\left(a_{1}, \ldots, a_{m}\right)$ is a small set of even homogeneous elements of degree $(0, g), g \in G$ or a set the form $\left(\epsilon_{1} \otimes b_{1}, \ldots, \epsilon_{m} \otimes b_{m}\right)$ where $\left(b_{1}, \ldots, b_{m}\right)$ is a small set of odd homogeneous elements of degree $(1, g), g \in G$. By abuse of notation we keep the notation Θ_{l} after multiplying the basis elements with Grassmann generators.

Next we alternate and symmetrize small sets of even and odd elements respectively. Then we symmetrize sets $\Theta_{l}=(a, \ldots, a)$ where a is even and alternate sets $\Theta_{t}=(b, \ldots, b)$ where b is odd. One shows the product is nonzero.

Next we replace the designated elements by X variables, the frames by Y 's and the bridges by W 's where we forget the \mathbb{Z}_{2}-degree, that is X, Y, W are G-graded variables. Clearly by construction we have a nonidentity f of A. Let us denote the nonzero evaluation above by ϕ. As in previous cases with such polynomial one shows that if $B_{s s}$ does not cover $A_{s s}$ as G_{2}-algebras then f is a nonidentity of $E(A)$ and an identity of $E(B)$ as a G-graded algebras. Thus, since we are assuming $E(A)$ and $E(B)$ are G-graded PI-equivalent we have that A and B cover each other as G_{2}-graded algebras. We conclude that up to permutation of the simple components of B we have $A \cong A_{1} \times \cdots \times A_{q} \oplus J_{A}$ and $B \cong B_{1} \times \cdots \times B_{q} \oplus J_{B}$ where $\operatorname{dim}_{F}\left(A_{j}\right)_{g}=\operatorname{dim}_{F}\left(B_{j}\right)_{g}, g \in G_{2}$. We want to prove there is a permutation on the G_{2}-graded simple components of B such that $A_{j} \cong B_{j}$ as G_{2}-graded algebras.

Recall from the Theorem 5.2 above that if $\operatorname{dim}_{F}\left(A_{j}\right)_{g}=\operatorname{dim}_{F}\left(B_{j^{\prime}}\right)_{g}$, all $g \in G_{2}$, for some j and j^{\prime}, there exists a G-polynomial $p_{j, j^{\prime}}$ which is a G-graded nonidentity of $E\left(A_{j}\right)$ and an identity of $E\left(B_{j^{\prime}}\right)$ unless A_{j} and $B_{j^{\prime}}$ are G_{2}-graded isomorphic. Moreover, we may assume the value of the polynomial $p_{j, j^{\prime}}$ is the idempotent δ of A we fixed above. Denote by $p_{i}=\prod_{j^{\prime}} p_{i, j^{\prime}}$. We note that p_{i} is a G-polynomial nonidentity of $E\left(A_{i}\right)$ and an identity of $E\left(B_{j^{\prime}}\right)$ for every G_{2}-graded simple algebra whose dimension of the homogeneous G_{2}-components are equal to the corresponding dimensions of the homogeneous components of A_{j} but is not isomorphic to A_{j}. Finally, we insert to the right of every monomial $Z_{i, l}$ a copy of the polynomial p_{i} with disjoint variables. The polynomial obtained m_{A} is a G-graded nonidentity of $E(A)$. By assumption it is a nonidentity of $E(B)$, which forces the existence of a permutation on the G_{2}-graded simple components of B such that $A_{j} \cong B_{j}$ as G_{2}-graded algebras. This completes the proof.

We can now complete the proof of Theorem 5.1 as in the proof of Theorem 1.1, that is by performing Steps $0-4$ on the set of finite dimensional G_{2}-graded algebras A with $\operatorname{Id}_{G}(E(A))=\Gamma$ (see Section 2). Details are omitted.

References

[Aljadeff and Haile 2014] E. Aljadeff and D. Haile, "Simple G-graded algebras and their polynomial identities", Trans. Amer. Math. Soc. 366:4 (2014), 1749-1771. MR Zbl
[Aljadeff and Kanel-Belov 2010] E. Aljadeff and A. Kanel-Belov, "Representability and Specht problem for G-graded algebras", Adv. Math. 225:5 (2010), 2391-2428. MR Zbl
[Aljadeff and Karasik 2022] E. Aljadeff and Y. Karasik, "On generic G-graded Azumaya algebras", Adv. Math. 399 (2022), Paper No. 108292, 42. MR Zbl
[Aljadeff et al. 2016] E. Aljadeff, A. Kanel-Belov, and Y. Karasik, "Kemer’s theorem for affine PI algebras over a field of characteristic zero", J. Pure Appl. Algebra 220:8 (2016), 2771-2808. MR Zbl
[Aljadeff et al. 2020] E. Aljadeff, A. Giambruno, C. Procesi, and A. Regev, Rings with polynomial identities and finite dimensional representations of algebras, American Mathematical Society Colloquium Publications 66, American Mathematical Society, Providence, RI, 2020. MR Zbl
[Bahturin and Yasumura 2019] Y. Bahturin and F. Yasumura, "Graded polynomial identities as identities of universal algebras", Linear Algebra Appl. 562 (2019), 1-14. MR Zbl
[Bakhturin et al. 2008] Y. A. Bakhturin, M. V. Zătsev, and S. K. Segal, "Finite-dimensional simple graded algebras", Mat. Sb. 199:7 (2008), 21-40. In Russian; translated in Sb. Math. 199:7-8 (2008), 965-983. MR
[Belov 2010] A. Y. Belov, "Local finite basis property and local representability of varieties of associative rings", Izv. Ross. Akad. Nauk Ser. Mat. 74:1 (2010), 3-134. In Russian; translated in Izv. Math. 74:01 (2010), 1-126. MR Zbl
[Belov-Kanel et al. 2010] A. Belov-Kanel, L. Rowen, and U. Vishne, "Structure of Zariski-closed algebras", Trans. Amer. Math. Soc. 362:9 (2010), 4695-4734. MR Zbl
[Belov-Kanel et al. 2011] A. Belov-Kanel, L. Rowen, and U. Vishne, "Application of full quivers of representations of algebras, to polynomial identities", Comm. Algebra 39:12 (2011), 4536-4551. MR Zbl
[Belov-Kanel et al. 2012] A. Belov-Kanel, L. H. Rowen, and U. Vishne, "Full quivers of representations of algebras", Trans. Amer. Math. Soc. 364:10 (2012), 5525-5569. MR Zbl
[David 2012] O. David, "Graded embeddings of finite dimensional simple graded algebras", J. Algebra 367 (2012), 120-141. MR Zbl
[Giambruno and Zaicev 1998] A. Giambruno and M. Zaicev, "On codimension growth of finitely generated associative algebras", Adv. Math. 140:2 (1998), 145-155. MR Zbl
[Giambruno and Zaicev 2005] A. Giambruno and M. Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs 122, American Mathematical Society, Providence, RI, 2005. MR Zbl
[Kanel-Belov and Rowen 2005] A. Kanel-Belov and L. H. Rowen, Computational aspects of polynomial identities, Research Notes in Mathematics 9, A K Peters, Ltd., Wellesley, MA, 2005. MR Zbl
[Karasik 2019] Y. Karasik, " G-graded central polynomials and G-graded Posner's theorem", Trans. Amer. Math. Soc. 372:8 (2019), 5531-5546. MR Zbl
[Kemer 1987] A. R. Kemer, "Finite basability of identities of associative algebras", Algebra i Logika 26:5 (1987), 597-641, 650. MR Zbl
[Prochezi 2016] K. Prochezi, "The geometry of polynomial identities", Izv. Ross. Akad. Nauk Ser. Mat. 80:5 (2016), 103-152. In Russian; translated in Izv. Math. 80:05 (2016), 910-953. MR

Communicated by Jason P. Bell
Received 2022-02-07 Revised 2022-10-30 Accepted 2022-12-07
aljadeff@technion.ac.il Department of Mathematics, Technion, Haifa, Israel
theyakov@gmail.com Department of Mathematics, Technion, Haifa, Israel

Algebra \& Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR	Editorial Board Chair
Antoine Chambert-Loir	David Eisenbud
Université Paris-Diderot	University of California
France	Berkeley, USA

BoARd of EDITORS

Jason P. Bell	University of Waterloo, Canada	Philippe Michel	École Polytechnique Fédérale de Lausanne
Bhargav Bhatt	University of Michigan, USA	Martin Olsson	University of California, Berkeley, USA
Frank Calegari	University of Chicago, USA	Irena Peeva	Cornell University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Saclay, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	Duke University, USA	Bjorn Poonen	Massachusetts Institute of Technology, USA
Hélène Esnault	Freie Universität Berlin, Germany	Peter Sarnak	Princeton University, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Michael Singer	North Carolina State University, USA
Sergey Fomin	University of Michigan, USA	Shunsuke Takagi	University of Tokyo, Japan
Edward Frenkel	University of California, Berkeley, USA	Pham Huu Tiep	Rutgers University, USA
Wee Teck Gan	National University of Singapore	Ravi Vakil	Stanford University, USA
Andrew Granville	Université de Montréal, Canada	Akshay Venkatesh	Institute for Advanced Study, USA
Ben J. Green	University of Oxford, UK	Melanie Matchett Wood	Harvard University, USA
Christopher Hacon	University of Utah, USA	Shou-Wu Zhang	Princeton University, USA

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2024 is US $\$ 525 /$ year for the electronic version, and $\$ 770 /$ year ($+\$ 65$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW ${ }^{\circledR}$ from MSP.

PUBLISHED BY
■ mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2024 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 18 No. 12024

Degree growth for tame automorphisms of an affine quadric threefold 1
Dang Nguyen-Bac
A weighted one-level density of families of L-functions 87Alessandro Fazzari
Semisimple algebras and PI-invariants of finite dimensional algebras 133
Eli AlJadeff and Yakov Karasik
Projective orbifolds of Nikulin type 165

[^0]: MSC2020: 16R10, 16W50, 16W55.
 Keywords: T-ideal, polynomial identities, semisimple, full algebras, graded algebras.

