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Semisimple algebras and PI-invariants
of finite dimensional algebras

Eli Aljadeff and Yakov Karasik

Let 0 be the T-ideal of identities of an affine PI-algebra over an algebraically closed field F of charac-
teristic zero. Consider the family M0 of finite dimensional algebras 6 with Id(6) = 0. By Kemer’s
theory M0 is not empty. We show there exists A ∈ M0 with Wedderburn–Malcev decomposition
A ∼= Ass ⊕ JA, where JA is the Jacobson’s radical and Ass is a semisimple supplement with the property
that if B ∼= Bss ⊕ JB ∈ M0 then Ass is a direct summand of Bss . In particular Ass is unique minimal,
thus an invariant of 0. More generally, let 0 be the T-ideal of identities of a PI algebra and let MZ2,0

be the family of finite dimensional superalgebras 6 with Id(E(6)) = 0. Here E is the unital infinite
dimensional Grassmann algebra and E(6) is the Grassmann envelope of 6. Again, by Kemer’s theory
MZ2,0 is not empty. We prove there exists a superalgebra A ∼= Ass ⊕ JA ∈ MZ2,0 such that if B ∈ MZ2,0 ,
then Ass is a direct summand of Bss as superalgebras. Finally, we fully extend these results to the
G-graded setting where G is a finite group. In particular we show that if A and B are finite dimensional
G2 := Z2 × G-graded simple algebras then they are G2-graded isomorphic if and only if E(A) and E(B)
are G-graded PI-equivalent.

1. Introduction

Let F be an algebraically closed field of characteristic zero and F⟨X⟩ the free associative algebra over
F on a countable set of variables X . Let 0 be a T-ideal of F⟨X⟩ (i.e., invariant under all algebra
endomorphisms of F⟨X⟩). It is easy to see that 0 is in fact the ideal of polynomial identities of a suitable
associative algebra (e.g., 0 = Id(F⟨X⟩/0)). Kemer’s representability theorem says that if 0 ̸= 0, then
it is the T-ideal of identities of an algebra of the form E(B), the Grassmann envelope of some finite
dimensional Z2-graded algebra B = B0 ⊕ B1 over F . Here E = E0 ⊕ E1 is the infinite dimensional unital
Grassmann algebra over F with the natural Z2-grading and E(B) = E0 ⊗ B0 ⊕ E1 ⊗ B1 viewed as an
ungraded algebra. In case 0 is the T-ideal of identities of an affine PI algebra, or equivalently, in case 0
contains a nontrivial Capelli polynomial, Kemer’s representability theorem says that 0 = Id(A) where
A is a finite dimensional algebra over F . Kemer’s representability theorem is the key step towards the
positive solution of the Specht problem which claims that every T-ideal is finitely based.

The purpose of this paper is to prove, roughly speaking, that if A is a finite dimensional algebra over an
algebraically closed field of characteristic zero F , then the maximal semisimple subalgebra of A, namely
a supplement Ass of the Jacobson’s radical JA in A, is “basically uniquely determined” by Id(A). We
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show also that a similar result holds for the algebra E(B), that is, a Z2-graded semisimple supplement of
JB in a finite dimensional superalgebra B is basically uniquely determined by 0 = Id(E(B)). Finally, we
extend our results to the G-graded setting where G is a finite group. Before we state the results precisely,
we should remark right away that strictly speaking the semisimple part of a finite dimensional algebra
cannot be determined by its T-ideal of identities for the simple reason that e.g., Id(A)= Id(A ⊕ A). So,
by “basically uniquely determined” we mean the following.

Theorem 1.1. Let 0 be a T-ideal of identities and suppose 0 contains a Capelli polynomial cn for some n.
Then there exists a finite dimensional semisimple F-algebra U that satisfies the following conditions:

(1) There exists a finite dimensional algebra A over F with Id(A)= 0 and such that A ∼= U ⊕ JA is its
Wedderburn–Malcev decomposition.

(2) If B is any finite dimensional algebra over F with Id(B) = 0 and Bss is its maximal semisimple
subalgebra, then U is a direct summand of Bss .

Clearly, up to an algebra isomorphism, the semisimple algebra U is unique minimal and hence it is an
invariant of 0.

Let A be a finite dimensional algebra over F and let A ∼= A1 ×· · ·× Aq ⊕ J be its Wedderburn–Malcev
decomposition where Ai is simple, i = 1, . . . , q , and J = JA is the Jacobson radical.

Definition 1.2. We say A is full if up to a permutation of the simple components A1 · J · A2 · · · J · Aq ̸= 0.

The following theorem plays a key role in the proof of Theorem 1.1.

Theorem 1.3. If two full algebras A and B are PI-equivalent then their maximal semisimple subalgebras
are isomorphic. In particular this holds in case A and B are fundamental algebras.

Remark 1.4. Fundamental algebras are special type of full algebras. They are important in Kemer’s
theory but will not play a role in this paper; see [Aljadeff et al. 2020].

Let us show how Theorem 1.3 follows from Theorem 1.1. Let A0 be a finite dimensional algebra
PI equivalent to A and with minimal semisimple subalgebra U . We show U ∼= Ass . Recall that for a
finite dimensional algebra W , exp(W )≤ dimF (Wss) and equality holds if (and only if) W is full. Here
exp(W ) is the exponent of the algebra W , an asymptotic PI invariant attached to the T-ideal Id(W ) and
so exp(A0)= exp(A); see [Giambruno and Zaicev 1998, Corollary 1]. Furthermore, by Theorem 1.1 we
have that U is a direct summand of Ass and the result follows.

For fundamental algebras the result of Theorem 1.3 was proved by Procesi [2016, Corollary 3.15].
Procesi’s result is based on a geometric construction which corresponds to a T-ideal 0 containing a Capelli
polynomial, or equivalently, a T-ideal of identities of a finite dimensional algebra A. Let us comment
briefly on Procesi’s approach. He considers the coordinate ring Tt(Y ) of the variety of the semisimple
representations of the free algebra F⟨X⟩ into the algebra of t × t-matrices over F , where X is a set of
cardinality m and t is the exponent of 0; see [Aljadeff et al. 2020, Chapter 21]. The commutative algebra
Tt(Y ) acts on the T-ideal K generated by Kemer polynomials of 0 via a quotient algebra TD , an algebra
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which is generated by traces. It turns out, and this is a key idea of Kemer [Aljadeff et al. 2016, Section 10],
that replacing suitable variables xi which alternate in a Kemer polynomial f by zxi (z is an auxiliary
variable), it gives rise to the multiplication of f by a trace function. This determines the action of TD

and hence of Tt(Y ) on K . Finally, it is shown that the support variety W for the Tt(Y )-module K carries
the information we need. Indeed, it turns out that if A is any fundamental algebra with Id(A)= 0 and
with semisimple part Ass = A1 ×· · ·× Aq , then the tuple (t1, . . . , tq), where Ai ∼= Mti (F), is an invariant
of W .

Our approach instead is mostly combinatorial. It uses a refined version of the so called “Kemer’s
lemma 1” [Aljadeff et al. 2016, Section 6; Kanel-Belov and Rowen 2005, Proposition 4.44; Kemer
1987, Section 2] which deals with full algebras (an important ingredient in Kemer’s solution of the
Specht problem). We do not use however the more subtle result of Kemer, namely “Kemer’s lemma 2”
[Aljadeff et al. 2016, Section 7; Kanel-Belov and Rowen 2005, Proposition 4.54; Kemer 1987, Section 2]
which concerns with fundamental algebras. The advantage of full algebras comparing to fundamental
algebras (beside being a much larger class) is that they are easier to define and in particular they can be
characterized without using polynomial identities. This allows us to extend Theorem 1.3 to (1) nonaffine
algebras (2) group graded algebras.

Let us turn now to the case where 0 contains no Capelli polynomials. In that case we have the following
result.

Theorem 1.5. Let 0 ≤ F⟨X⟩ be a nonzero T-ideal and suppose cn /∈ 0 for every n. Then there exists a
finite dimensional semisimple superalgebra U over F which satisfies the following conditions:

(1) There exists a finite dimensional superalgebra A over F with Id(E(A))=0 and such that A ∼=U ⊕ JA

is its Wedderburn–Malcev decomposition.

(2) If B is any finite dimensional superalgebra over F with Id(E(B)) = 0 and Bss is its maximal
semisimple subalgebra, then U is a direct summand of Bss as superalgebras.

The proof of Theorem 1.1 is given in the next section (Section 2). In Section 3 we treat the nonaffine
case, Theorem 1.5.

In the last two sections of this article we extend the main results to the setting of G-graded T-ideals and
G-graded algebras where G is a finite group. The main obstacle here is due to the fact that a G-graded
simple algebra A is not determined up to a G-graded isomorphism by the dimensions of the homogeneous
components Ag, g ∈ G. The proof uses the extension of Kemer’s theory to G-graded algebras where G is
a finite group; see [Aljadeff and Kanel-Belov 2010].

Remark 1.6. The extension of the results above to algebras over fields of finite characteristic and in
particular over finite fields does not seem to be straightforward. One of the reasons is that alternation and
symmetrization, operations which appear in the proofs, may result as zero multiplication. We refer to the
work of Belov, Rowen and Vishne on full quivers of representations of algebras over fields of arbitrary
characteristic and more generally over commutative Noetherian domains; see [Belov-Kanel et al. 2010;
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2011; 2012]. The notion of full quiver is useful for studying the interactions between the radical and the
semisimple component of Zariski closed algebras, a notion that appears in Belov’s remarkable solution of
the Specht problem for affine algebras over fields of finite characteristic; see [Belov 2010]. We emphasize
that such interactions for Zariski closed algebras are considerably more subtle than for finite dimensional
algebras over a field of characteristic zero.

2. Preliminaries and proof of the affine case

We start by introducing some combinatorial terminology.
Let α = (a1, . . . , aq) be a q-tuple, q ≥ 0, (or multiset rather, since the order of the ai will not play a

role) of positive integers. For any sub-tuple γ of α we let σ(γ )=
∑

a∈γ a be the weight of γ . We set
σ(γ )= 0 if γ is the empty tuple.

In what follows the tuple α will correspond to the dimensions of the simple components of a finite
dimensional semisimple algebra. More precisely, if A is a finite dimensional algebra over F , we let
A∼= A1×· · ·×Aq⊕JA be its Wedderburn–Malcev decomposition. Then mA = (dimF (A1), . . . , dimF (Aq))

is the tuple corresponding to A. With this notation mA is empty if and only if A is nilpotent.

Definition 2.1. Let α = (a1, . . . , ar ) and β = (b1, . . . , bs) be tuples of positive integers. We say β covers
α if the tuple α may be decomposed into s disjoint, possibly empty, sub-tuples T1, . . . , Ts such that
σ(Ti )≤ bi , i = 1, . . . , s.

Example 2.2. The tuple (16, 12) covers the tuple (10, 9, 3, 3) but it does not cover the tuple (15, 8, 5).

Note 2.3. (1) The covering relation is antisymmetric.

(2) The covering relation is strictly stronger than majorization.

(3) The covering relation is in fact a partial order relation, if one considers multisets rather than tuples.

Next we recall some definitions and a result from Kemer’s theory.
Let A be a finite dimensional algebra over F . Let A ∼= Ass ⊕ JA be its Wedderburn–Malcev decomposi-

tion where JA is the Jacobson radical and Ass is a semisimple subalgebra supplementing JA. The algebra
Ass decomposes uniquely (up to permutation) into a direct product of simple algebras A1 × · · · × Aq ,
where Ai ∼= Mni (F) is the algebra of ni × ni -matrices over F . Furthermore, it is well known that all
semisimple supplements of JA in A are isomorphic.

It is clear that in order to test whether a multilinear polynomial p is an identity of A it is sufficient to
evaluate the polynomial on a basis of A and so we fix from now on a basis B = {ei

k,l, u1, . . . , ud}. Here,
the elements {ei

k,l}, 1 ≤ k, l ≤ ni are the elementary matrices of Mni (F), i = 1, . . . , q , and {u1, . . . , ud}

is a basis of JA.

Definition 2.4. Let p = p(x1, . . . , xn) be a multilinear polynomial. We say an evaluation of p on A is
admissible if the variables of p assume values only from the basis B. We refer to an evaluation of a
variable as semisimple (resp. radical) if the value is an elementary matrix ei

k,l (resp. an element ui ∈ JA).
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For the rest of the paper we will consider only admissible evaluations.

Definition 2.5. Let A be a full algebra (Definition 1.2). We say a multilinear polynomial p(x1, . . . , xn)

is:

(1) A-weakly full (or weakly full of A or weakly full when the algebra in question is clear) if it has a
nonzero admissible evaluation on A where elements from all simple components are represented in
the evaluation.

(2) A-full if every simple component of Ass is represented in every admissible nonzero evaluation on A.
Also here we may use the terminology full of A or just full.

(3) A-strongly full if every basis element of Ass appears in every admissible nonzero evaluation of p.

Remark 2.6. In this paper we make use of polynomials that are weakly full or strongly full. We mention
full polynomials here just for completeness. They appear in Kemer’s theory; see [Aljadeff et al. 2016,
Definition 5.10].

It is clear that if p is A-strongly full then it is full. Also, every full polynomial is weakly full.
We are interested in the opposite direction. We start with:

Lemma 2.7. If A is a full algebra then it admits a weakly full polynomial.

Proof. Let A be as above. Then the multilinear monomial of degree 2q − 1 is weakly full. Indeed, we
get a nonzero evaluation where we put q semisimple (resp. q − 1 radical) values in the odd (resp. even)
positions. □

The following theorem is basically Kemer’s lemma 1; see [Aljadeff et al. 2016].

Theorem 2.8. The following hold:

(1) Every full algebra admits a multilinear strongly full polynomial and therefore admits a full polynomial.

(2) Let A be a full algebra and f0 be a multilinear weakly full polynomial of A. Then there exists a full
polynomial f of A in ⟨ f0⟩T , the T-ideal generated by f0.

(3) Let A be a full algebra and f0 a multilinear weakly full polynomial of A. Then there exists a strongly
full polynomial f ∈ ⟨ f0⟩T of A.

Proof. Clearly, the third statement implies the second and together with Lemma 2.7 it implies the first
statement. Statement (3) follows from the construction in the proof of Kemer’s lemma 1; see [Aljadeff
et al. 2016]. □

As we shall need to refer to the precise construction of strongly full polynomials starting from a weakly
full polynomial f0, let us recall their construction here. It is convenient to illustrate first the construction
on the weakly full polynomial mentioned above.

Let A ∼= A1 × · · · × Aq ⊕ JA, where Ai ∼= Mni (F), i = 1, . . . , q (as above) and suppose that after
reordering the simple components we have A1 J A2 . . . J Aq ̸= 0. Let f0 = X1 ·w1 . . . wq−1 · Xq be a
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monomial of 2q − 1 variables which is clearly weakly full by the obvious evaluation. Let

Zn = Zn(x1, . . . , xn2; y1, . . . , yn2+1)= y1 · x1 · y2 · · · yn2 · xn2 · yn2+1

be a multilinear monomial on 2n2
+1 variables. For i = 1, . . . , q , we consider k monomials Zni in disjoint

variables, denoted by Zni ,l , l = 1, . . . , k, where the integer k is sufficiently large and will be determined
later. We set 1i = Zni ,1 · · · Zni ,k , the product of k copies of the monomial Zni with disjoint sets of
variables. Finally, in view of the inequality A1 J A2 · · · J Aq ̸= 0 we apply the T-operation and replace the
variable X i by X i ·1i in the polynomial f0 (here it is just a monomial) and obtain the monomial

�= X1 ·11 ·w1 · X2 ·12 ·w2 · · ·wq−1 · Xq ·1q .

We refer to the x’s (lower case) in � as designated variables, the y’s as frame variables and w’s as
bridge variables. Now, it is not difficult to see that the monomial � admits a nonzero evaluation where the
x’s from Zni ,l get values consisting of the full basis of the i-th simple component, that is the elementary
matrices {ei

t,s}, the y’s from Zni ,l get values of the form ei
t,t and the w’s get radical values which bridge

the different simple components. Fixing r = 1, . . . , k, we alternate all x’s from the monomials Zni ,r ,
i = 1, . . . , q , so we obtain k alternating sets of cardinality dimF (Ass). We denote the polynomial obtained
by f A. We adopt the terminology used in Kemer’s theory and refer to each alternating set of designated
variables as a small set. Moreover, we shall refer to the set of variables x in a small set together with the
corresponding frames, that is the y variables that border the x variables, as an augmented small set.

Remark 2.9. In Kemer’s theory there is also a notion of a big set. These are sets which, roughly speaking,
involve the alternation of semisimple and bridge variables. We will not make use of big sets here.

Suppose the integer k, namely the number of small sets in f A, exceeds the nilpotency index of A. Let
us show that f A is a strongly full polynomial of A. We will show that if δ is any admissible nonzero
evaluation of f A, then there is at least one small set which assumes precisely a full basis of Ass . Indeed,
by the alternation of designated variables we are forced to evaluate each small set on different basis
elements and if this is not a full basis of Ass , we have that at least one of the designated variables assumes
a radical value. Since k is larger than the nilpotency index of A, we cannot have a radical evaluation in
every small set. This shows f A is strongly full. In fact this proves the last statement of Theorem 2.8 for
the weakly full polynomial f0 = X1 ·w1 · · ·wq−1 · Xq .

Let us proceed now to the general case, namely where f0 is assumed to be an arbitrary multilinear
weakly full polynomial of A. Denote by8 a nonzero evaluation of f0 which visits every simple component
of A. Let us denote the variables of f0 which assume values from the simple components A1, . . . , Aq by
X1, . . . , Xq respectively. Since the evaluation 8( f0) is nonzero, it is nonzero on one of the monomials
of f0 which we fix from now on and denote it by Re. We have then that f0 =

∑
σ∈Sm

λσ Rσ where
λσ ∈ F and λe = 1. Here m is the number of variables in f0. We proceed now as in the previous case,
namely replace the variables X i by X i ·1i and obtain a polynomial which we denote by �. We have
that if f0 = f0(X1, . . . , Xq; M) then �= f0(X111, . . . , Xq1q ,M) ∈ ⟨ f0⟩T where M is a suitable set of



Semisimple algebras and PI-invariants of finite dimensional algebras 139

variables. By an appropriate evaluation of the monomials 1i , i = 1, . . . , q , we see that � is a nonidentity
of A and is clearly weakly full. Finally we alternate the designated variables as above and obtain a
polynomial which we denote by f A. It is not difficult to see that f A satisfies the third condition of
Theorem 2.8 with respect the given weakly full polynomial f0.

Lemma 2.10 (main lemma-affine). Notation as above. Suppose A and B are full algebras. Suppose mB

does not cover mA. Then there exists a strongly full polynomial f A of A which vanishes on B. In fact, if
f0 is any weakly full polynomial of A then there exists a strongly full polynomial f A ∈ ⟨ f0⟩T of A which
vanishes on B.

Proof. Let f A be the strongly full polynomial of A as constructed above in case f0 = X1 ·w1 · · ·wq−1 · Xq .
We take a large number of small sets k, exceeding the nilpotency index of B. We claim f A is an identity
of B. We will show that if this is not the case then necessarily B covers A. Let us fix a nonzero evaluation
8 of f A on B and consider one monomial, which we assume as we may is the monomial � of f A

(see the construction above), whose value is nonzero. Note that by the condition on k, there exists an
augmented small set, say the j-th set where j ∈ {1, . . . , k}, which is free of radical values. It follows
that the 8-values of each segment in {Zn1, j , . . . , Znq , j } consist only of semisimple elements in B, and
moreover semisimple elements from the same simple component. But because the evaluation of 8 on f A

is nonzero and the variables in the j-th small set alternate, the semisimple values of B must be linearly
independent. This implies that B covers A as desired.

In the general case we may argue as follows. Let f0 be an arbitrary weakly full polynomial of A
and let Rσ = Rσ (X1, . . . , Xq; M) be any monomial of f0. Applying the T-operation on Rσ we obtain
�σ = Rσ (X111, . . . , Xq1q ,M) ∈ ⟨Rσ ⟩T . Next we alternate the designated variables as above and
obtain a polynomial which we denote by (Rσ )A. As in the first case considered, that is in case where
f0 = X1 ·w1 · · ·wq−1 · Xq , we see that if (Rσ )A admits a nonzero evaluation on B, then B covers A. It
follows that if f A admits a nonzero evaluation on B, this is true also for the polynomial (Rσ )A, some σ ,
and so B covers A. □

Corollary 2.11. Let A and B full algebras. If they are PI-equivalent, then their semisimple parts, Ass

and Bss are isomorphic.

Proof. Indeed, A and B must cover each other. It follows that the tuple of dimensions of the simple
components of A and B coincide up to a permutation (see Note 2.3) and hence Ass and Bss are isomorphic.

□

In what follows we will need a somewhat stronger statement.

Corollary 2.12. Let A be a full algebra and B1, . . . , Bt be a finite family of full algebras, each not
covering A. If f0 is a weakly full polynomial of A then there is a strongly full polynomial f A ∈ ⟨ f0⟩T of A
that vanishes on Bi , i = 1, . . . , t . In particular if B is a direct sum of full algebras, each not covering A,
then there exists a strongly full polynomial f A ∈ ⟨ f0⟩T of A which vanishes on B.
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Proof. We only need to pay attention to the number of small sets k in f A, namely it should exceed the
nilpotency index of each JBi , i = 1, . . . , t . □

Recall that any affine PI-algebra A and in particular any finite dimensional algebra is PI-equivalent to
a direct sum of full algebras; see for instance [Aljadeff et al. 2016; 2020]. Here we will need a more
precise statement.

Definition 2.13. Let A be finite dimensional algebra. We say

P(A)= T1 ⊕ · · · ⊕ Tn

is a presentation of A by full algebras if the following hold:

(1) Ti is full for i = 1, . . . , n.

(2) P(A) is PI equivalent to A.

Remark 2.14. Note that an algebra may have two different presentations which are isomorphic as algebras
(e.g., a radical direct summand may be attached to different full subalgebras). Thus, when referring to a
presentation P(A), we are fixing the set of full algebras {T1, . . . , Tn} up to permutation. Note that if 0 is
a T-ideal containing Capelli polynomials we may view T1 ⊕ · · ·⊕ Tn as a presentation of 0 so we may
denote it by P(0).

Proposition 2.15. Let A be a finite dimensional algebra. Then there exists a presentation T1 ⊕ · · · ⊕ Tn

of A. Moreover, there exists such presentation where the semisimple subalgebra (Ti )ss of Ti is a direct
summand of Ass , for i = 1, . . . , n.

Proof. In fact the stronger statement follows from the construction in [Aljadeff et al. 2020, Subsec-
tion 17.2.4]. Let A ∼= A1 × · · ·× Aq ⊕ JA be the Wedderburn–Malcev decomposition. Clearly we may
assume A is not full. Consider the subalgebra

Ai = ⟨A1, . . . , Ai−1, Ai+1, . . . , Aq; JA⟩.

We claim A and A1 ⊕ · · ·⊕Aq are PI-equivalent. Clearly Id(A)⊆ Id(A1 ⊕ · · · ⊕Aq). For the converse,
if f is a nonidentity of A, it must be a nonidentity of at least one Ai for otherwise it is a full polynomial
of A which implies A is full, contrary to our assumption. The proposition is then proved by induction. □

For any presentation P(A) of A we let P(A)dim(ss) be the set of tuples consisting of the dimensions of
the simple components that appear in the different full algebras of P(A) and denote by P(A)dim(ss),max

the set of maximal tuples in P(A)dim(ss) with respect to covering.

Corollary 2.16. The set P(A)dim(ss),max depends on A but not on the presentation P(A). Hence we can
denote the set P(A)dim(ss),max by Adim(ss),max.

Proof. Suppose the contrary holds. Let P1 and P2 be presentations of A as above. Then without loss
of generality there exists a full subalgebra M of P1 whose tuple is maximal and does not appear as a
maximal tuple in P2. We may assume M is not covered by tuples of P2 for otherwise M is strictly covered
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by a tuple of P2 and in that case we may exchange the roles of P1 and P2. Now, by the lemma, there
exists a nonidentity polynomial of M which is an identity of every full subalgebra of P2 and the claim is
proved. □

In the next lemma we show we can fuse finite dimensional algebras A and B with isomorphic semisimple
subalgebras. More generally, suppose the semisimple subalgebra of A is a direct summand of Bss , the
semisimple subalgebra of B. We claim A × B is PI-equivalent to an algebra of the form Bss ⊕ Ĵ . Yet
more generally, suppose A and B have a common semisimple component U (up to isomorphism), then
there exists an algebra C , P I equivalent to A × B, in which the semisimple algebra isomorphic to U
appears in C only once. Here is the precise statement.

Lemma 2.17. Let A1 ×· · ·× Aq ⊕ J (A) and B1 ×· · ·× Br ⊕ J (B) be the Wedderburn–Malcev decompo-
sitions of A and B respectively. Suppose A1 ×· · ·× Ak ∼= B1 ×· · ·× Bk ∼= U. Then A× B is PI-equivalent
to C = U × Ak+1 × · · · × Aq × Bk+1 × · · · × Br ⊕ J (A)⊕ J (B).

Proof. We consider the vector space embedding

C = U × Ak+1 × · · · × Aq × Bk+1 × · · · × Br ⊕ J (A)⊕ J (B)

↪→ [U × Ak+1 × · · · × Aq ⊕ J (A)] × [U × Bk+1 × · · · × Br ⊕ J (B)]

where the elements of U are mapped diagonally. It is easy to see that the image is closed under
multiplication, yielding an algebra structure on C . As for the polynomial identities the above embedding
(now, as algebras) yields Id(C)⊇ Id(A × B)= Id(A)∩ Id(B). On the other hand the algebras A and B
are embedded in C and the result follows. □

Definition 2.18. Notation as in the lemma above. We say the algebra C is the fusion of the algebras A
and B along U .

Proposition 2.19. Let P1 = P1(A) and P2 = P2(A) be presentations of A and let T1 ∼= (T1)ss ⊕ JT1 and
T2 ∼= (T2)ss ⊕ JT2 be full subalgebras summands of P1 and P2 respectively. Suppose (T1)ss and (T2)ss ,
the semisimple parts of T1 and T2, are isomorphic and let U ∼= (T1)ss ∼= (T2)ss . Let T ′

1 = U ⊕ JT1 ⊕ JT2 .
Then T ′

1 is full. Furthermore, if we replace T1 ∼= U ⊕ JT1 by T ′

1 = U ⊕ JT1 ⊕ JT2 in the presentation P1 we
obtain a presentation P ′

1 of A.

Proof. From the embedding U ⊕ JT1 ↪→ U ⊕ JT1 ⊕ JT2 we see that every weakly full polynomial of T1 is
weakly full of T ′

1, so T ′

1 is full. Furthermore, because Id(T1), Id(T2)⊇ Id(A) we have that Id(P ′

1)⊇ Id(A).
On the other hand Id(P ′

1)⊆ Id(P1) (= Id(A)) and the result follows. □

Remark 2.20. Note that fusion of fundamental algebras A and B with isomorphic semisimple subalgebras
yields a fundamental algebra; see [Aljadeff et al. 2020] for the definition of fundamental algebras.

Let 0 be the T-ideal of identities of a finite dimensional algebra. Denote by M0 the family of
presentations A = T1 ⊕ · · ·⊕ Tn of 0 (we simplify the notation slightly and write A rather than P(A) for
a presentation of 0).
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In what follows we shall present a procedure in which we iterate 4 steps (numbered 0–3). In each step
we replace an algebra A ∈ M0 by an algebra A′

∈ M0 (in particular PI equivalent to A) that is “better”
behaved. Then, in one final step (step 4), we construct the algebra A of Theorem 1.1.

Step 0 (deletion): Let A ∈ M0. We delete from A full subalgebras that do not alter Id(A). Let Ai be a
full subalgebra of A. Denote by Âi the summand of A consisting the direct sum of full algebra A j , j ̸= i .
Then, we delete Ai from the direct sum if Id(Ai )⊇ Id( Âi )= ∩ j ̸=i Id(A j ). We abuse notation and simply
write the outcome by F0(A), an operation of type 0 on A, although the operation depends on the choice
of the full algebra Ai . Clearly F0(A) and A are PI equivalent. We write A = Ared0 if every operation of
type 0 on A is the identity.

Step 1 (fusion): A ∈ M0 and suppose A = Ared0 . We fuse full subalgebras with isomorphic semisimple
subalgebras. More generally, if Ai and A j i ̸= j , are full subalgebras of A and (Ai )ss is a direct summand
of (A j )ss , then the operation F1 = (F1)Ai ,A j on A is the fusion of Ai and A j . We abuse notation and
simply write the outcome by F1(A), an operation of type 1 on A, although the operation depends on the
choice of the full algebras Ai and A j . Note that by Proposition 2.19 the algebras F1(A) and A are PI
equivalent. We write A = Ared0,1 if every operation of type 0 or 1 on A is the identity.

We come now to a step where we decompose full algebras.

Step 2 (decomposition): Let A ∈ M0 and suppose that A = Ared0,1 . We define an operation of type 2
on A, denoted by F2, as follows. Choose a full algebra Q appearing in the decomposition of A into full
algebras and let Asupp(Q) = (Q̂)1 ⊕ · · ·⊕ (Q̂)n be the supplement of Q in A. Note that since A = Ared0,1

there is no full algebra component of Asupp(Q) with semisimple part ∼= Qss . Suppose there exists a weakly
full polynomial p of Q which vanishes on Asupp(Q). In that case we leave the algebra A unchanged, that
is F2(A)= A. Otherwise we proceed as follows.

Clearly Q is not nilpotent because A is not nilpotent and A = Ared0,1 . Let us treat the case where Qss is
simple separately. If Qss is simple and every weakly full polynomial of Q is a nonidentity of Asupp(Q) we
claim Id(A)= Id(Asupp(Q)⊕ JQ) where JQ is the radical of Q. It is clear that Id(A)⊆ Id(Asupp(Q)⊕ JQ).
Conversely, suppose p is a nonidentity of A. If p is a nonidentity of Asupp(Q) it is also a nonidentity
of Id(Asupp(Q) ⊕ JQ) as needed, so let us assume p is an identity of Asupp(Q). In that case p must
be a nonidentity of Q. However, by assumption, p is not weakly full of Q which means here that
no indeterminate of p gets a semisimple value in any nonzero evaluation of p. It follows that p is
a nonidentity of JQ and we are done. Suppose now q > 1 and let Q ∼= 11 × · · · ×1q ⊕ JQ be the
Wedderburn–Malcev decomposition of Q. We are assuming every weakly full polynomial of Q is a
nonidentity of Asupp(Q). In that case we claim the following.

Claim 2.21. We can replace the full subalgebra Q of A by a direct sum of full subalgebras Q1 ⊕· · ·⊕Qq ,
where for each i = 1, . . . , q, the semisimple algebra (Qi )ss is a proper summand of Qss (in particular
strictly covered by Q) and if A denotes the algebra obtained, we have Id(A)= Id(A)= 0.



Semisimple algebras and PI-invariants of finite dimensional algebras 143

Proof. Consider the algebras Qi , i = 1, . . . , q, obtained from Q by deleting one simple component 1i

and keeping the radical unchanged. We claim A is PI-equivalent to Asupp(Q) ⊕Q1 ⊕ · · · ⊕Qq . Indeed,
it is clear that every identity of the former algebra vanishes on the latter one. Conversely, let p be a
nonidentity of the former one. We show it does not vanish on the latter. Clearly, we may assume p
vanishes on Asupp(Q) and so, by our assumption above, p is not a weakly full polynomial of Q. This
means that p has no nonzero evaluation on Q which visits all simple components of Q and so, being a
nonidentity of Q, it must be a nonidentity of Qi for some i and hence a nonidentity of the latter. □

We write A = Ared0,1,2 if any operation of type 0, 1 or 2 on A is the identity.
Similarly to our notation for the operations F0 and F1 above we abuse notation here and simply write

F2(A)= F2,Q(A). It follows from the claim that F2(A) and A are PI equivalent.

Step 3 (absorption): Fix a presentation A ∈ M0 and suppose A = Ared0,1,2 . Let B ∈ M0. We denote
by Fcond

3 an operation which replaces, roughly speaking, a full subalgebra Q of A with the fusion
of Q with certain full subalgebras of B. More precisely, choose a full subalgebra Q of A and a full
subalgebra V of B such that Vss is a direct summand of (possibly isomorphic to) Qss . Then replace the
full subalgebra Q in A by the fusion of Q and V . We denote the outcome by (Fcond

3 )B,Q,V (A) or simply
by (Fcond

3 )(A). The superscript cond means that this operation is conditional. We define (F3)B,Q,V (A) as
follows. Let Acond

= (Fcond
3 )B,Q,V (A). If Acond

= (Acond)red0,1,2 , we set (F3)B,Q,V (A)= A, otherwise we
set (F3)B,Q,V (A)= Acond. As above we write F3(A)= (F3)B,Q,V (A) and have, by Proposition 2.19, that
the algebras F3(A) and A are PI equivalent.

Remark 2.22. The point for introducing the conditional operation is that we want an operation of type 3
to be nontrivial only if an operation of type 0, 1 or 2 has a real effect on Acond. This is to prevent the
radical from growing indefinitely.

We write A = Ared0,1,2,3 if every operation of type 0, 1, 2 or 3 on A is the identity.
Let us describe now the procedure applied to A ∈ M0:

(1) Apply operations of type 0 on A until any additional operation of type 0 acts as an identity. Denote
the outcome by A′.

(2) If there exists an operation of type 1 with F1(A′) ̸= A′, we apply F1 on A′ and return to step 0 with
A := F1(A′). We continue until we get an algebra A′′ such that Fϵ(A′′)= A′′, ϵ = 0, 1.

(3) If there exists an operation of type 2 with F2(A′′) ̸= A′′, we apply F2 on A′′ and return to step 0. We
continue until we get an algebra A′′′ such that Fϵ(A′′′)= A′′′, ϵ = 0, 1, 2.

(4) If there exists an operation of type 3 with F3(A′′′) ̸= A′′′, we apply F3 on A′′′ and return to step 0.
We continue until we get an algebra A′′′′ such that Fϵ(A′′′′)= A′′′′, ϵ = 0, 1, 2, 3.

Theorem 2.23. For every presentation A ∈ M0 the process above stops. In particular, given a presenta-
tion A, applying operations of type 0 − 3 we obtain a presentation A ∈ M0 such that A = Ared0,1,2,3 .

Before giving the proof let us introduce some notation.
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Definition 2.24. (1) We let Apart be the multiset (i.e., repetitions are allowed) of unordered tuples
whose entries are the dimensions of the simple components of semisimple subalgebras of the full
algebras appearing in the decomposition of A. Alternatively, we may think of Apart as the multiset
of semisimple algebras appearing in the full algebras, summands of A.

(2) Let A ∈ M0. We denote by rA the number of full subalgebras in the presentation of A.

(3) Let A ∈ M0 with Apart as above. If σ = (σ1, . . . , σm) ∈ Apart, i.e., a tuple corresponding to a
full algebra, summand of A, we let nσ = 2m2 ∑

i σi be the weight of σ . Note that the function
f (m)= 2m2

satisfies the condition (m − 1) f (m − 1) < f (m), a condition that will be used later. We
let n A = n Apart =

∑
σ∈Apart

nσ be the weight of A.

Proof. We claim:

(1) Let A ∈ M0 and let A = Fϵ(A), ϵ = 0, 1. If A ̸= A then rA < rA and n A ≤ n A.

(2) Let A ∈ M0 and suppose A = Ared0,1 . Let A = F2(A). If A ̸= A then n A < n A.

The first claim is clear since in these cases we are suppressing a full subalgebra of the presentation of A.
Note that if we are suppressing a nilpotent algebra n A = n A. For the proof of (2) let A = Ared0,1 ∈ M0.
This implies no full subalgebras of A are nilpotent unless A is nilpotent, a case we have already addressed
(see paragraph above Proposition 2.19). Suppose F2(A) ̸= A. This means that one tuple σ = (σ1, . . . , σm),
m ≥ 1 is replaced by m tuples each of which has length m − 1 and is obtained from σ by deleting
σi , i = 1, . . . ,m. It follows that the quantity 2(m

2)
∑

i σi , the contribution of σ to n A, is replaced by
(m − 1)2((m−1)2) ∑

i σi . As (m − 1)2((m−1)2) < 2(m
2), the result follows. This proves the second claim.

Consider the pairs 2A = (n A, rA), A ∈ M0 with the lexicographic order ⪯ (and ≺ if the inequality
is strict). Let A = Fϵ(A), ϵ = 0, 1, 2. It follows that if A ̸= A, invoking the claims above, we have
2A ≺2A. In order to complete the proof of the Theorem we need to treat the operation F3. We note first
that F3 does not change (and in particular does not increase) 2A. Recall that F3 is effective on A, i.e.,
F3(A) ̸= A, only if Fϵ(F3(A)) ̸= F3(A), ϵ = 0, 1, 2, and also that two operations of type 3 are always
separated by an effective operation of type 0, 1, 2. Finally, since the nontrivial operations of type 0, 1, 2
lower 2A the result follows. □

Corollary 2.25. Given a presentation A ∈ M0, the application of steps 0 − 3 to A yields a presentation
A ∈ M0 with the following properties:

(1) If Q is any full subalgebra of A then there exists a full subalgebra V of A such that Qss is a direct
summand of Vss .

(2) If Q is a full subalgebra of A, then there is a strongly full polynomial of Q which vanishes on the
supplement of Q in A.

(3) If Q is a full subalgebra of A, and B ∈ M0, then there is a strongly full polynomial of Q which
vanishes on every full algebra V of B whose semisimple subalgebra Vss strictly covers Qss and
appears as a summand of the semisimple subalgebra of a full subalgebra of A.
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Proof. By Theorem 2.23 we may assume A = Ared0,1,2,3 The operations of type 0 and 1 suppress full
algebras of A whereas in operation 2 we decompose the semisimple part of a full algebra Q into the direct
sum of full algebras whose semisimple part is a direct summand of Qss . This proves the first statement.
Also the second statement follows easily from the construction. Indeed, if this is not the case there is an
operation of type 2 which is not the identity on A contradicting A = Ared0,1,2,3 .

Let us prove the last statement. By the claim we have that if such polynomial does not exist for a
suitable full subalgebras V of an algebra B ∈ M0 , fusion of V with the corresponding full algebras of A
generates a decomposition of Q into full algebras whose semisimple algebra is a strict summand of Qss .
This contradicts A = Ared0,1,2,3 and the result follows. □

Remark 2.26. Note that it is possible that a presentation B ∈ M0 contains a full algebra V whose
semisimple part Vss does not appear as a direct summand of a full algebra of A. This does not contradict
the last statement of Corollary 2.25.

Let A be the algebra obtained from A as in the theorem above and let A = T1 ⊕ · · · ⊕ Tn be its
decomposition into the direct sum of full algebras. Let Apart be the multiset of semsimple algebras
appearing in A, that is Apart = {(Ti )ss}i=1,...,n (see Definition 2.24). Note that here we may replace
“multiset” by “set” since at this stage repetitions do not occur.

Our goal is to show Apart is uniquely determined by 0. More precisely

Theorem 2.27. If A, B ∈ M0 then Apart = Bpart.

Remark 2.28. Note that we know the result for maximal points where A, B ∈ M0 are arbitrary (see
Corollary 2.16).

Proof. Suppose the theorem is false and consider the family � of all full subalgebras of A (resp. B)
whose semisimple part does not appear in B (resp. A). Let Q ∈� be maximal with respect to covering
and assume without loss of generality that Q = Q A is a full subalgebra of A. Now, by the maximality of
Q A the semisimple part of every full subalgebra of B that strictly covers Q A appears in A. It follows,
by Corollary 2.25(3), there exists a full polynomial p which vanishes on every full subalgebra of B that
strictly covers Q A. Furthermore, by our construction of strongly full polynomials there exists such p that
vanishes on every full subalgebra of B that does not cover Q A and so p vanishes on B. This contradicts
A and B are PI equivalent and the theorem is proved. □

Step 4 (merging): In this final step we merge full subalgebras. Let A be an algebra as in the theorem. For
each isomorphism type of a simple algebra Mn(F) we let dn be the maximal appearance of Mn(F) in
a full subalgebra of A. Then we let A0,ss =3n1 ⊕ · · · ⊕3nt where 3ni is the direct sum of dni copies
Mni (F). Finally we let A ∼= A0,ss ⊕ JA, where the direct sum is of vector spaces.

Theorem 2.29. There is exists an algebra structure on A0 so that:

(1) Id(A0)= 0.

(2) If B is finite dimensional and Id(B)= 0 then A0,ss is isomorphic to a direct summand of Bss .
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Proof. For the algebra structure on A we set the product as follows. The product on A0,ss is already
determined. Products of radical elements which belong to different full algebras is set to be zero. Let us
determine the multiplication of semisimple elements with radicals. Using distributivity we let z ∈ JAi

where Ai is a full summand of A. Choose a summand of (Ui )ss of A0,ss isomorphic to (Ai )ss . Let K be
the semisimple supplement of (Ui )ss in A0,ss , that is

(Ui )ss ⊕ K ∼= A0,ss .

Then we set the product of z with semsimple elements of (Ui )ss as in Ai whereas the multiplication of z
with elements of K is set to be zero. Let us show Id(A)= 0. Each Ai is isomorphic to a summand of A
and so Id(A)⊇ Id(A). For the opposite inclusion let p be a multilinear nonidentity of A and fix a nonzero
evaluation on A. Since the multiplication of radical elements of different summands JAi

and JA j
is zero

the evaluation may involve at most radicals from JAi
, for a unique i . For that i , semisimple elements that

appear in the evaluation must belong to the summand (Ui )ss . We see the polynomial p is a nonidentity of
Ai and so a nonidentity of A. For the proof of the second statement, by the construction of A0 from A
we see A0,ss is a direct summand of Ass and hence, by Theorem 2.27, also of Bss . Furthermore, we see
from step 4 that every 3ni is a direct summand of the semisimple part of a full summand of A and hence
of B. We complete the proof of the theorem invoking Corollary 2.25(1). □

3. Nonaffine algebras

In this section we prove Theorem 1.5.
We note that the key point in the construction of strongly full polynomials of a finite dimensional full

algebra A was the fact that in any nonzero evaluation we were forced to evaluate the designated variables
in at least one small set by a complete basis of semisimple elements. Then, for such polynomial we
showed it is an identity of any full algebra B that does not cover A. Now, if A is a finite dimensional
full superalgebra (see [Aljadeff and Kanel-Belov 2010] or Definition 3.3 below), it is not difficult to
construct a super strongly full polynomial with a similar property, that is, a polynomial p that visits a
full basis of the semisimple part of A in every nonzero evaluation. However, this is not what we need.
For the proof, we need an ungraded polynomial fE(A), nonidentity of E(A), which visits the different
supersimple components of A in any nonzero evaluations of the form ϵ⊗u. Here, ϵ = 1 ∈ E or = ϵi ∈ E ,
where ϵi is a generator, and u ∈ A. Furthermore, as in the affine case, we shall need a full basis {u} ⊆ Ass

to appear in every nonzero evaluation of fE(A). In fact, as in the affine case, we will need to construct
such polynomials for E(A) that belong to the T-ideal generated by an arbitrary weakly full polynomial
of E(A).

Once we have constructed such polynomials for E(A) where A is a finite dimensional full superalgebra,
we will be able to show the analogue of the Main Lemma in the nonaffine setting. The proof of Theorem 1.5
will then follow the same lines of the proof of the affine case.

We start by defining a partial ordering on finite dimensional semisimple Z2-graded algebras.
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Let A = A1 ⊕· · ·⊕ Aq and B = B1 ⊕· · ·⊕ Bs be the decompositions of semisimple algebras A and B
into direct sum of finite dimensional Z2-graded simple algebras Ai and B j respectively. Consider the pair
mA = (mA,0,mA,1) where mA,0 = (a0,1, . . . , a0,q) and mA,1 = (a1,1, . . . , a1,q) are q-tuples consisting the
dimensions of the 0-components and the 1-components of the Z2-graded simple summands of A. Similarly
we have the pair mB = (mB,0,mB,1) and t-tuples mB,0 = (b0,1, . . . , b0,t) and mB,1 = (b1,1, . . . , b1,q) for
the algebra B.

Definition 3.1. We say B covers A (or mB covers mA) if there exists a decomposition of the tuple
(1, . . . , q) into t subsets (possibly empty) such that the sum of the elements of mA,0 = (a0,1, . . . , a0,q)

corresponding to the i-th subset is bounded from above by b0,i and the corresponding sum of odd elements
in mA,1 = (a1,1, . . . , a1,q) is bounded from above by b1,i (same i), i = 1, . . . , t .

Example 3.2. Consider the pair of tuples mB = (mB0,mB1) where mB0 = (17, 13) and mB1 = (8, 12). It
covers the pair mA = (mA0,mA1) where mA0 = (16, 10, 2) and mA1 = (0, 4, 2). On the other hand the
pair mB = (mB0,mB1) where mB0 = (17, 13) and mB1 = (8, 12) does not cover the pair mA = (mA0,mA1)

where mA0 = (10, 10, 4) and mA1 = (6, 6, 4). Note, however, that the tuple (17, 13) (resp. (8, 12)) does
cover (10, 10, 4) (resp. (6, 6, 4)).

Let A be a finite dimensional superalgebra over an algebraically closed field F of characteristic zero.
Let A ∼= Ass ⊕ J be the Wedderburn–Malcev decomposition of A. Let Ass ∼= A1 ×· · ·× Aq where Ai are
supersimple algebras.

Definition 3.3. We say A is full if up to ordering of the supersimple components we have A1 · J · A2 · · · J ·

Aq ̸= 0.

Before stating the Main Lemma, let us make precise definitions of admissible evaluations of polynomials
as well as weakly full, full and strongly full polynomials of E(A) where A is a finite dimensional full
superalgebra.

Let U be a finite dimensional Z2-simple algebra. It is well known that U is isomorphic to a superalgebra
of the form (1) Ml, f (F) where the grading is elementary and is determined by an (l + f )-tuple with l
e’s and f σ ’s, where an elementary matrix ei, j has degree e if 1 ≤ i, j ≤ l or l + 1 ≤ i, j ≤ l + f and
degree σ otherwise (2) FC2 ⊗ Mn(F), where FC2 is the group (super)algebra of C2 = {e, σ }, and where
elements of the form ue ⊗ ei, j have degree e and elements of the form uσ ⊗ ei, j have degree σ . Note that
the set {ei, j } (resp. {ug ⊗ ei, j ; g ∈ {e, σ }}) is a basis of Ml, f (F) (resp. of FC2 ⊗ Mn(F)). We denote
by βss a basis of Ass consisting of all elements of that form. Note that the basis elements in βss are
homogeneous. If U is any simple component of Ass , and z denotes a basis element of U as above, we
consider a basis 6ss of E(Ass) consisting of all elements of the form ϵi1 . . . ϵin ⊗ z, n is even and z ∈ βss

has degree e (in case n = 0, we set ϵi1 . . . ϵin = 1) or ϵi1 . . . ϵin ⊗ z, n is odd and z ∈ βss has degree σ . Here
ϵi1, . . . , ϵin are different generators of the Grassmann algebra E . Finally, we choose an homogeneous
basis βJ of the Jacobson radical J of A and consider a basis 6J of E(J ) consisting of all elements of the
form ϵi1 · · · ϵin ⊗w where (as above) n is even and w ∈ βJ is of degree e or n is odd and w ∈ βJ is of
degree σ .
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Definition 3.4. Let p be a multilinear polynomial. We say an evaluation of p on E(A) is admissible if
all values are taken from 6ss or 6J .

Definition 3.5. Let A be a finite dimensional full superalgebra as above:

(1) We say a multilinear polynomial p is weakly full of E(A) if there is an admissible nonzero evaluation
of p on E(A) where among the elements ϵi1 · · · ϵin ⊗ z, z ∈ Ass that appear in the evaluation, we
have at least one elements z from each Z2-simple component of Ass .

(2) We say a multilinear polynomial p is full of E(A) if all Z2-simple subalgebras of Ass are represented
in every nonzero admissible evaluation of p on E(A). That is, given a nonzero evaluation of p, for
every Z2-simple component Ai , i = 1, . . . , q, there is a variable of p whose value is of the form
ϵi1 · · · ϵin ⊗ z for some z ∈ Ai .

(3) We say a multilinear polynomial p is strongly full of E(A) if for every nonzero admissible evaluation
of p on E(A) and every z ∈ Ass , there is variable of p whose value is of the form ϵi1 · · · ϵin ⊗ z.

The following statement is the main lemma in the nonaffine case.

Lemma 3.6 (main lemma-nonaffine). Suppose A and B are finite dimensional Z2-graded full algebras.
Suppose mB does not cover mA. Then there exists a strongly full polynomial fE(A) of E(A) which is an
identity of E(B). Furthermore, if f0 is an arbitrary weakly full polynomial of E(A), then there exists a
strongly full polynomial fE(A) ∈ ⟨ f0⟩T of E(A) which is an identity of E(B).

The proof of the main lemma will be presented in 4 propositions: (1) Construction of a strongly full
polynomial fE(A) of E(A) (Propositions 3.8 and 3.9) (2) Construction of a strongly full polynomial
fE(A) ∈ ⟨ f0⟩T of E(A) where f0 is an arbitrary weakly full polynomial of E(A) (Proposition 3.10) (3)
The polynomial fE(A) is an identity of E(B) (Proposition 3.11).

We start with the construction of a strongly full polynomial of E(A).
Consider the monomial

f0 = X1 ·w1 · · ·wq−1 · Xq

of degree 2q − 1 where the variables are ungraded. Note that f0 is weakly full of E(A) (that is, there is
an admissible nonzero evaluation of f0 which visits every Z2-simple component of A). We proceed with
the construction of a strongly full polynomial fE(A) in ⟨ f0⟩T .

Let d0 (resp. d1) be the dimension of the even (resp. odd) homogeneous component of Ass . We
consider a diagram composed of two strips of semisimple elements, denoted by αi, j and similarly two
strips of variables xi, j , horizontal and vertical, where the horizontal strip has d0 rows and k columns and
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the vertical strip has d1 columns and k rows (k to be determined).

α1,d1+1 α1,d1+2 · · · α1,d1+k

α2,d1+1 α2,d1+2 · · · α2,d1+k
...

...
...

αd0,d1+1 αd0,d1+2 · · · αd0,d1+k

αd0+1,1 · · · αd0+1,d1

αd0+2,1 · · · αd0+2,d1

αd0+3,1 · · · αd0+3,d1
...

...

αd0+k,1 · · · αd0+k,d1

x1,d1+1 x1,d1+2 · · · x1,d1+k

x2,d1+1 x2,d1+2 · · · x2,d1+k
...

...
...

xd0,d1+1 xd0,d1+2 · · · xd0,d1+k

xd0+1,1 · · · xd0+1,d1

xd0+2,1 · · · xd0+2,d1

xd0+3,1 · · · xd0+3,d1
...

...

xd0+k,1 · · · xd0+k,d1

Remark 3.7. The variables xi, j in the last two strips will appear in the polynomial fE(A) we are about to
construct. The role of these strips is to indicate which sets of variables will alternate in fE(A) and which
sets of variables will symmetrize. The elements αi, j appearing in the first two strips are the evaluations
of the variables xi, j .

We construct a long monomial consisting of elements of A as follows.
For each Z2-graded simple component we write a nonzero product of the standard basis, namely

elements of the form ei, j ∈ Ml, f (F) or ug ⊗ ei, j ∈ FC2 ⊗ Mn where g = e, σ . It is known that such a
product exists. We refer to these elements as designated elements. In order to keep a unified notation we
shall replace ei, j ∈ Ml, f (F) by ue ⊗ ei, j . Furthermore, we may assume for simplicity that the nonzero
product starts (resp. ends) with an element of the form ue ⊗ e1,y (resp. ug ⊗ ex,1). Next we border each
basis element ug ⊗ ei, j from left (resp. right) with the element ue ⊗ ei,i (resp. ue ⊗ e j, j ) which we call
frame, so that the product of the monomial remains nonzero. Let us denote the product above, namely
the product corresponding to the Z2-graded simple algebra Ai by Zi . We take now the product of k
copies of this monomial Zi,1 · · · Zi,k . This is clearly nonzero. Next, we bridge the Z2-graded simple
components with appropriate radical values ws,s+1 and get a nonzero product as dictated by the expression
A1 J A2 · · · J Aq ̸= 0.

Finally, we tensor the basis elements with Grassmann elements, where even elements of A are tensored
with 1 and odd elements are tensored with different generators ϵi (odd degree). We shall always view
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these tensors as ungraded elements of E(A) although, abusing language, we will refer to them as even
and odd elements respectively.

We obtained a nonzero expression of the form

Z1,1 · · · Z1,k ·w1,2 · Z2,1 · · · Z2,k ·w2,3 · · ·wq−1,q · Zq,1 · · · Zq,k .

Consider the set Ueven,1 of designated even elements in the tuple

(Z1,1, Z2,1, . . . , Zq,1).

Similarly, we let Ueven,i be the designated even elements in the tuple (Z1,i , Z2,i , . . . , Zq,i ), i = 1, . . . , k.
Observe that the cardinality of Ueven,i is do = dimF Ass,0. We denote the elements of Ueven,i by
α1,d1+i , . . . , αd0,d1+i , that is, as the i-th column of the horizontal strip above. Furthermore, it will
be convenient to denote the designated even elements in (Z1,i , Z2,i , . . . , Zq,i ) in the same order as they
appear in the i-th column.

Similar to the even elements above, Uodd, j consists of all designated odd elements in the tuple

(Z1, j , Z2, j , . . . , Zq, j )

and we denote them by αd0+ j,1, . . . , αd0+ j,d1 , i.e., the elements in the j-th row of the vertical strip.
For each t = 1, . . . , k, we alternate the designated (even) elements

α1,d1+t , . . . , αd0,d1+t

and symmetrize the designated (odd) elements αd0+t,1, . . . , αd0+t,d1 . We claim the expression obtained is
nonzero. Indeed, any nontrivial permutation (independently of its sign) of designated even elements will
be surrounded by frames where not all match and hence vanishes. Similarly with the odd elements of A.
In particular alternating the even elements and symmetrizing the odd elements yields a nonzero value.

We now symmetrize the sets of k elements corresponding to the rows of the horizontal strip and
alternate the sets of k elements corresponding to the columns of the vertical strip. We claim we get a
nonzero value. For the proof we may assume each tuple of k even elements are equal and are of the
form ue ⊗ ei, j whereas for the odd elements we assume as we may, the elements of each k tuple have
the form ϵi, j,g ⊗ ug ⊗ ei, j , g ∈ {e, σ }, ϵi, j,g are generators of the Grassmann algebra and the elements
ug ⊗ ei, j of A are equal. It follows that symmetrization of the rows in the horizontal strip and alternation
of the columns in the vertical strip yield the multiplication of each monomial by a factor of (k!)d0 . In
particular, if the corresponding operation is performed on a vanishing product it remains zero whereas,
since char(F)= 0, it is nonzero if the operation were performed on a nonvanishing product.

We now replace the elements of E(A) appearing in the monomial

Z1,1 · · · Z1,k ·w1,2 · Z2,1 · · · Z2,k ·w2,3 · · ·wq−1,q · Zq,1 · · · Zq,k

by variables which we call designated variables, frames and bridges. Note that the monomial obtained is
in ⟨ f0⟩T where f0 = X1 ·w1 · · ·wq−1 · Xq . It is convenient to arrange the designated variables xr,s in the
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two strips in 1 − 1 correspondence with the designated elements αr,s ∈ E(A). Finally, we perform the
alternations and symmetrizations on these variables and obtain (by construction) a multilinear nonidentity
of E(A) which we denote by fE(A). We summarize the above paragraph in the following proposition.

Proposition 3.8. Let A be a finite dimensional Z2-graded algebra over F. Suppose A is full and let
fE(A) be as above. Then fE(A) is a nonidentity of E(A). Furthermore, fE(A) ∈ ⟨ f0⟩T where f0 =

X1 ·w1 · · ·wq−1 · Xq .

Proposition 3.9. For k large enough, the polynomial fE(A) is strongly full of E(A).

Proof. Suppose this is not the case. We claim that only in a bounded number of columns in the horizontal
strip of the diagram we can put either radical elements or odd semisimple elements. Indeed, it is clear
that the number of radical values is bounded. If we put arbitrary many odd semisimple values, by
the pigeonhole principle, there will be variables in the same row which will get values of the form
ϵi1 · · · ϵin ⊗ a and ϵ j1 · · · ϵ jm ⊗ a, same a, where n and m are odd. Then the symmetrization of the
corresponding variables yields zero. Similarly, in any nonzero evaluation, the number of rows in the
vertical strip of the diagram in which we can put radical or even elements is bounded. It follows then that
for k large enough there exists a column in the horizontal strip, say the i-th column, which assumes only
even elements and there is a j-th row in the vertical strip which assumes only odd elements. But more
than that, taking k large enough we may assume i = j . It follows that by the alternation of the columns
in the horizontal strip (resp. symmetrization of the rows in the vertical strip), in any nonzero evaluation,
we are forced to evaluate these on basis elements of the form ϵi1 · · · ϵin ⊗ a where a runs over a full basis
of Ass,0 (resp. Ass,1). This proves the proposition. □

We extend the proposition, namely starting with an arbitrary weakly full polynomial f0 of E(A).

Proposition 3.10. Let A be a finite dimensional Z2-graded algebra over F. Suppose A is full. Let f0

be a multilinear weakly full polynomial of E(A). Then there exists a polynomial fE(A) ∈ ⟨ f0⟩T which is
strongly full of E(A).

Proof. Let us fix a nonzero admissible evaluation 8 of f0 in E(A) which visits all Z2-graded simple
components of Ass . Denote by X1, . . . , Xq the variables of f0 which assume values from the q different
Z2-graded simple components of A. Applying the T-operation we replace the variables X1, . . . , Xq with
X111, . . . , Xq1q where 1t =Z t,1 · · · Z t,k . Finally we alternate and symmetrize the designated variables
as above. The polynomial obtained fE(A) ∈ ⟨ f0⟩T is strongly full for the algebra E(A). The proof is
similar to the proof above when f0 is a monomial. Details are omitted. □

Proposition 3.11. Let A and B be finite dimensional full superalgebras. Suppose B does not cover A.
Let fE(A) be the polynomial constructed above. Then for k sufficiently large, the polynomial fE(A) is an
identity of E(B). More generally, suppose B is a direct sum of full superalgebras, each not covering A.
Then for k sufficiently large, the polynomial fE(A) is an identity of E(B).

Proof. The proof is similar to the proof in the affine case. In any nonzero evaluation on E(B) we must
have an index i which obtains linearly independent semisimple elements of B. If the evaluation is nonzero,
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we must have a monomial with nonzero value and hence the semisimple elements appearing in each
segment must come from the same Z2-graded simple component of B. We have then that B covers A.
Contradiction. □

Corollary 3.12. Let A and B full superalgebras. If E(A) and E(B) are PI-equivalent then their semisim-
ple parts Ass and Bss are isomorphic.

Proof. Indeed, B and A cover each other. It follows that the tuple of pairs of dimensions of the simple
components of A and B coincide (up to a permutation). Finally we note (see below) that the superstructure
of a supersimple algebra A is determined by the dimensions of A0 and A1 and hence if these coincide,
Ass and Bss must be isomorphic as superalgebras. □

For the rest of the proof we follow the proof in the affine case step by step. Along the proof two basic
propositions are needed.

Proposition 3.13. Let A be a finite dimensional superalgebra over F. Then E(A) is PI-equivalent to the
direct sum of algebras E(Ai ) where Ai is a finite dimensional full superalgebra.

Proof. Recall that a finite dimensional superalgebra A is PI-equivalent to the direct sum of full superalge-
bras A = A1 ⊕ · · · ⊕ An . We claim firstly: E(A) and E(A) are PI-equivalent: Indeed, a superpolynomial
f is an identity of A if and only if the superpolynomial f ∗ is a superidentity of E(A) as a superalgebra

where the 0 component is spanned by elements of the form ϵi1 · · · ϵi2r ⊗a0 and the 1-component is spanned
by elements of the form ϵi1 · · · ϵi2r+1 ⊗ a1; see [Aljadeff et al. 2020, Subsection 19.4.1]. Here ϵ j is a
generator of E , a0 ∈ A0, a1 ∈ A1, the even and odd elements of A respectively. Then, if E(A) and E(A)
are PI-equivalent as superalgebras, they are PI-equivalent as ungraded algebras. Next we argue that
E(A)∼= E(A1)⊕ · · · ⊕ E(An) and the proposition is proved. □

The second statement we need is

Proposition 3.14. Let A and B be finite dimensional supersimple algebras over F. If dimF (A0) =

dimF (B0) and dimF (A1)= dimF (B1) then A and B are Z2-graded isomorphic.

Proof. Recall that a Z2-graded simple algebra over an algebraically closed field F of characteristic 0
is isomorphic to Ml, f (F), where l ≥ 1, f ≥ 0 or FC2 ⊗F Mn(F), n ≥ 1. In the case of Ml, f (F) the
dimension of the 0-component (resp. 1-component) is l2

+ f 2 (resp. 2l f ) and in particular the total
dimension is a square number whereas in the case of FC2 ⊗F Mn(F) the dimensions of the homogeneous
components are each equal to n2 and hence not a square number. This proves the proposition. □

4. G-graded algebras

In this section we extend the main theorem to the setting of affine G-graded algebras where G is a
finite group. The case of nonaffine G-graded algebras is treated in the next section. Here is the precise
statement.
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Theorem 4.1. Let G be a finite group and let 0 be a G-graded T-ideal over F. Suppose 0 contains an
ungraded Capelli polynomial cn , some n. Then there exists a finite dimensional semisimple G-graded
algebra U over F which satisfies the following conditions:

(1) There exists a finite dimensional G-graded algebra A over F with IdG(A) = 0 and such that
A ∼= U ⊕ JA is its Wedderburn–Malcev decomposition as G-graded algebras.

(2) If B is any finite dimensional G-graded algebra over F with IdG(B) = 0 and Bss is its maximal
semisimple G-graded subalgebra, then U is a direct summand of Bss as G-graded algebras.

The proof basically follows the main lines of the proof of the ungraded case yet there is a substantial
obstacle here due to the fact that G-graded simple algebras are not determined up to isomorphism by the
dimensions of the corresponding homogeneous components. In the following examples, as usual, F is an
algebraically closed field of characteristic zero.

Example 4.2. (1) If G is a finite group, FαG and FβG, α, β ∈ H 2(G, F∗), are twisted group algebras,
then they are G-graded isomorphic if and only if α = β. Clearly, the dimensions of the homogeneous
components equal 1 independently of the cohomology class.

(2) Let G = {e, σ, τ, στ } be the Klein 4-group. Consider the crossed product grading on A ∼= M4(F), that
is the elementary grading determined by the tuple (e, σ, τ, στ), and the algebras Bi ∼= Fβi G ⊗ M2(F),
β1, β2 ∈ H 2(G, F∗). Here β1 (resp. β2) is the trivial (resp. nontrivial) cohomology class on G with values
on F∗. The dimension of each homogeneous component is 4. The algebras A and B2 are isomorphic
as ungraded algebras (∼= M4(F)) but not isomorphic to B1 ∼= M2(F)⊕ M2(F)⊕ M2(F)⊕ M2(F). It is
easy to see that A and B2 are nonisomorphic as G-graded algebras; see [Aljadeff and Haile 2014].

Let G be a finite group and let A be a finite dimensional G-graded algebra over F . We decompose A
into Ass ⊕ J where Ass is a maximal G-graded semisimple algebra which supplements J , the Jacobson
radical. The algebra Ass decomposes into a direct product of G-graded simple components A1 ×· · ·× Aq .
As in the ungraded case, the G-graded simple components are uniquely determined up to a G-graded
isomorphism.

We start with the definition of the covering relation.

Definition 4.3. Let Q and V be finite dimensional G-graded semisimple algebras over F . We say V
covers Q if the G-graded simple components of Q can be decomposed into subsets such that the sum
of the dimensions of the corresponding homogeneous components are bounded by the dimensions of
the homogeneous components of V . Explicitly, if Q ∼= Q1 × · · · × Qq and V ∼= V1 × · · · × Vr are
the decompositions of Q and V into their G-graded simple components. Let ui,g = dimF (Qi )g (resp.
v j,g = dimF (V j )g) be the dimension of the g-homogeneous component of Qi (resp. of V j ). Then V
covers Q if and only if the indices 1, . . . , q can be decomposed into r subsets 31, . . . , 3r such that∑

i∈3 j
ui,g ≤ v j,g.
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Definition 4.4. Let A be a finite dimensional G-graded algebra over F . Let A ∼= A1 × · · · × Aq ⊕ JA

be its Wedderburn–Malcev decomposition, where Ai are G-graded simple. We say A is full if up to a
permutation of the indices we have A1 · J · · · J · Aq ̸= 0.

Next, we introduce G-graded weakly full, full and strongly full for a given full G-graded algebra A.

Definition 4.5. Let A be a finite dimensional full G-graded algebra. A G-graded polynomial p, nonidentity
of A, is A-strongly full if it is homogeneous, multilinear and vanishes when evaluated on A unless every
basis element of Ass appears as a value of one of its variables. A G-graded homogeneous polynomial p
is A-weakly full if there exists an admissible nonzero evaluation on A that visits each G-graded simple
subalgebra of Ass . Finally, p is full if this is so for every admissible nonzero evaluation.

Strongly full polynomials were constructed in [Aljadeff and Kanel-Belov 2010]. Nevertheless, we
shall need their precise structure so let us recall here their construction.

For each G-graded simple component Ai of A consider a nonzero product of all basis elements of Ai .
These are elements of the form uh ⊗ er,s , h ∈ H and 1 ≤ r, s ≤ m, whose homogeneous degree is g−1

r hgs .
Here, the G-grading on Ai is determined by a triple (H, α, (g1, . . . , gm)) where H is a subgroup of G, α
is a 2-cocycle representing a class in H 2(H, F∗) and (p1, . . . , pm) ∈ G(m); see [Bakhturin et al. 2008]
and [Aljadeff and Haile 2014, Theorem 1.1]for more on this notation. It is known that such a product
exists; see [Aljadeff and Kanel-Belov 2010]. As above we border from right and left each basis element
with frames of the form ue ⊗ ei,i . We denote such product of basis elements, namely the designated and
frame elements, by Zi . We refer to Zi as the monomial of basis elements of Ai . We may assume the
product starts with an element of the form ue ⊗ e1,1 and ends with an element of the form uh ⊗ er,1 and
so if Zi,l = Zi , l = 1, . . . , k, we have that the product Zi,1 · · · Zi,k is nonzero. Next we bridge products
corresponding to different G-graded simple components by radical (homogeneous) elements wi . We
obtain a nonzero product

Z1,1 · · · Z1,k ·w1 Z2,1 · · · Z2,k ·w2 · · ·wq−1 · Zq,1 · · · Zq,k .

As in the ungraded case we consider the i-th set3i , i = 1, . . . , k consisting of the designated (semisimple)
elements in Z1,i , . . . , Zq,i . We denote by 3i,g, g ∈ G, the subset of 3i consisting of elements of
homogeneous degree g. We claim any nontrivial permutation of designated elements in 3i,g yields a
zero product. Clearly, it suffices to consider transpositions T . The claim is clear if T exchanges basis
elements which belong to G-graded simple components Ai and A j with i ̸= j . Suppose T exchanges
basis elements uh1 ⊗ er1,s1 ̸= uh2 ⊗ er2,s2 of the same G-graded simple component. Since they are of
equal homogeneous degree, we have that g−1

r1
h1gs1 = g−1

r2
h2gs2 and so we must have (r1, s1) ̸= (r2, s2).

This implies that frames bordering different designated elements of the same homogeneous degree are
different and the claim is proved.

We proceed as in the ungraded case where the monomials consisting of elements of A are replaced by
monomials of different graded variables with the corresponding homogeneous degree. The small sets here
are alternating sets of variables of degree g ∈ G of cardinality equal the dimension of the g-homogeneous
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component of Ass . The polynomial obtained is denoted by p. This completes the construction of a
G-graded strongly full polynomial of A. As in previous cases we shall need a more general statement.

Proposition 4.6. Let A be a full G-graded algebra and f0 a G-graded multilinear polynomial which
is weakly full of A. Then there exists a multilinear G-graded strongly full polynomial f A such that
f A ∈ ⟨ f0⟩T .

Proof. The proof is similar to the proof of Theorem 2.8(3). □

Lemma 4.7. Let A be a G-graded full algebra and f A a G-graded strongly full polynomial of A with
sufficiently many small sets. If B does not cover A, then f A is an identity of B.

Proof. The proof is similar to the proof of Lemma 2.10. □

Note that in the ungraded case this was sufficient in order to deduce that the semisimple subalgebras
of A and B are isomorphic.

Theorem 4.8. Let A and B be finite dimensional G-graded full algebras. Suppose they are G-graded
PI-equivalent. Then the maximal semisimple subalgebras Ass and Bss are G-graded isomorphic.

Proof. By the preceding lemma we know that A and B cover each other and hence the tuples of
the dimensions of the homogeneous components of the G-graded simple algebras appearing in the
decomposition of Ass and Bss are equal. Our goal is to show the corresponding G-graded simple
components are G-graded isomorphic.

For the proof we shall need to insert suitable e-central polynomials in the full G-graded polynomial
f A of A constructed above. We recall from [Karasik 2019] that every finite dimensional G-graded simple
admits an e-central multilinear polynomial cA, that is a nonidentity of A, central and G-homogeneous of
degree e. Furthermore, it follows from its construction, that the polynomial cA alternates on certain sets
of variables of equal homogeneous degree of cardinality equal dimF (Ag), for every g ∈ G. For the proof
of Theorem 4.8 we shall need e-central polynomials with some additional properties.

Theorem 4.9. Let Ai , i = 1, . . . , q , be the simple components of Ass . Then there exists a polynomial
mi (XG) with the following properties:

(1) mi (XG) is e-central of Ai .

(2) mi (XG) is an identity of every algebra 6 which satisfies the following conditions:

(a) 6 is finite dimensional G-graded simple.
(b) dimF (6g)= dimF ((Ai )g) for every g ∈ G.
(c) IdG(Ai )⊉ IdG(6).

Proof. By condition (2c) there is a G-graded homogeneous nonidentity fi,6 of Ai , of homogeneous
degree g ∈ G say, which vanishes on 6. Then replacing a variable of degree g in an alternating set of cAi

by fi,6 we obtain a nonidentity e-central polynomial mi,6(XG) of Ai which vanishes on 6. Now recall
from [Aljadeff and Karasik 2022] that the number of G-graded simple algebras 6 satisfying conditions
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(2a) and (2b) above is finite and so, because the nonzero values of mi,6(XG) are invertible in F∗, we
have that mi (XG)=56mi,6(XG) is an e-central polynomial of A with the desired properties. □

Finally we insert in f A polynomials with disjoint sets of variables mi (XG) adjacent to each monomial
Zi,l . This completes the construction of a special strongly full polynomial which we denote by fA.

We can complete now the proof of the Theorem 4.8. We are assuming the algebras A and B are
PI-equivalent and so by Lemma 4.7, the algebras A and B cover each other. It follows that Ass and
Bss have the same number of G-graded simple components. Furthermore, if Ass ∼= A1 × · · · × Aq and
Bss ∼= B1 × · · · × Bq then there is a permutation σ ∈ Sym(q) such that dimF ((Ai )g)= dimF ((Bσ(i))g),
i = 1, . . . , q and every g ∈ G.

We claim there is a permutation of the G-graded simple components of Bss such that in addition
to the condition above we have that IdG(Ai ) ⊇ IdG(Bσ(i)), i = 1, . . . , q. Suppose not. Then for every
permutation σ satisfying the condition above, there is a j = j (σ ) such that IdG(A j )⊉ IdG(Bσ( j)). We
will show that the strongly full polynomial fA is an identity of B, in contradiction to the PI-equivalence
of A and B. Indeed, evaluating fA on B, the value will be zero unless there is a monomial Zi , together
with the inserted central polynomials, whose value is nonzero. This implies there is a permutation σ of
the components of Bss such that the i-th segment of p is evaluated on Bσ(i). This already implies the
condition above on the dimensions. But by assumption there is j such that IdG(A j )⊉ IdG(Bσ( j)) and so
the central polynomial m j (XG) vanishes on Bσ( j).

We conclude there is a permutation σ ∈ Sym(q) of the simple components of Bss such that:

(1) dimF ((Ai )g)= dimF ((Bσ(i))g), i = 1, . . . , q , and every g ∈ G

(2) IdG(Ai )⊇ IdG(Bσ(i)), i = 1, . . . , q .

Our goal is to show that in fact IdG(Ai )= IdG(Bσ(i)), i = 1, . . . , q . Indeed, this would imply what we
need, that is Ai ∼= Bσ(i), i = 1, . . . , q , as G-graded algebras; see [Aljadeff and Haile 2014].

Suppose that G is abelian. In that case let us recall the following general result of O. David [2012].

Theorem 4.10. Let G be a finite abelian group and let A and B finite dimensional G-graded simple
algebras over an algebraically closed field F. Then there is an embedding A ↪→ B as G-graded algebras
if and only if IdG(A)⊇ IdG(B).

Clearly, it follows at once from the theorem that G-graded algebras satisfying conditions (1) and (2)
above must be G-graded isomorphic. David’s result is not known in case G is an arbitrary finite group.

Here, instead, we argue as follows. By symmetry there is a permutation τ ∈ Sym(q) such that:

(1) dimF ((Bi )g)= dimF ((Aτ(i))g), i = 1, . . . , q and every g ∈ G.

(2) IdG(Bi )⊇ IdG(Aτ(i)), i = 1, . . . , q .

Consequently there is a permutation ρ ∈ Sym(q) such that Ai and Aρ(i) have equal dimensions of the
homogeneous components and IdG(Ai )⊇ IdG(Aρ(i)). We need to show equality holds. Indeed, we see
that IdG(Ai )= IdG(A j ) for i and j which belong to the same orbit determined by ρ and so, in particular
IdG(Ai )= IdG(Aρ(i)), i = 1, . . . , q . □
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The remaining steps in the proof of Theorem 4.1 are similar to those in the proof of Theorem 1.1.
Details are omitted.

5. PI-equivalence of Grassmann envelopes of finite dimensional G2-graded algebras

In this section we treat the case where the algebra A is finite dimensional Z2 × G-graded and E(A) is the
Grassmann envelope of A viewed as a G-graded algebra.

The main result in this case is the following.

Theorem 5.1. Let G be a finite group. Let 0 be a G-graded T-ideal. Suppose 0 contains a nonzero
ungraded polynomial but contains no ungraded Capelli cn , any n. Then there exists a finite dimensional
semisimple Z2 × G-graded algebra U over F which satisfies the following conditions:

(1) There exists a finite dimensional Z2 × G-graded algebra A over F with IdG(E(A)) = 0 and such
that A ∼= U ⊕ JA is its Wedderburn–Malcev decomposition as Z2 × G-graded algebras.

(2) If B is any finite dimensional Z2 × G-graded algebra over F with IdG(E(B)) = 0 and Bss is its
maximal semisimple Z2 ×G-graded subalgebra, then U is a direct summand of Bss as Z2 ×G-graded
algebras.

The general approach is based on cases that were treated earlier, namely the cases where (1) 0 is a
T-ideal of identities of a G-graded affine algebra (2) 0 is a T-ideal of identities of an ungraded nonaffine
algebra. It turns out however, that also here there is a substantial difficulty, and this is in the very first
step of the general approach (see Theorem 5.2 below). In fact, nearly the entire section will be devoted to
the proof of Theorem 5.2.

Before we state the theorem let us set some notation.
Let G be a finite group and denote G2 := Z2 × G. We denote Geven := 0 × G; Godd = 1 × G and

similarly for a G2 algebra A we write Aeven = AGeven; Aodd = AGodd .

Theorem 5.2. Suppose that A and B are two finite dimensional G2-graded simple algebras. Then A and
B are G2-graded isomorphic if and only if E(A) and E(B) have the same G-graded identities.

It is worth noting that the Grassmann ∗ operation allows one to pass from a superidentity of A to a
superidentity of E(A) (resp. from a G2-identity of A to a G2-identity of E(A)). The challenge here lies
in transforming a superidentity of A into an ordinary identity of E(A) (resp. from a G2-identity of A into
a G-identity of E(A)). The main part of the proof of the above Theorem is to find such a transformation.

We start with the construction of the transformation and in Proposition 5.5 we show the key property
that makes it work. We emphasize that the construction and also the Theorem are guaranteed to work only
in the case where the algebras in question are finite dimensional G2-graded simple. In general it is not
true that if E(A) and E(B) have the same G-graded identities then A and B have the same G2-graded
identities. An example can be found in [Giambruno and Zaicev 2005, Section 8.2].

The construction we are about to present is a generalization to the G-graded setting of the one in
Section 3. Its main property appears in Proposition 5.5. In fact, the previous construction could be applied
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also here. And if we did, it would enable us to show as above that if E(A) and E(B) have the same
G-graded identities then dim Aḡ = dim Bḡ for all ḡ. However this would not be sufficient here since, as
pointed out in the previous section, for general groups G one can easily find examples of nonisomorphic
G2-graded simple algebras having this property.

Let f = f (X0; Y0) be a multilinear G2-graded polynomial, where

X0 =

∐
ḡ∈G2

T∐
i=1

X ḡ,i

is a union of T small sets of degree ḡ-variables X ḡ,i = {x (1)ḡ,i , . . . , x (dim Aḡ)

ḡ,i } (here ḡ runs over all of
G2), and Y0 =

∐
ḡ∈G2

Yḡ,0 are some additional variables. Assume that f has a G2-graded evaluation
φ : F⟨X0; Y0⟩ → A with the following properties:

(1) For every nontrivial permutation σ ∈
∏

ḡ∈G2

∏T
i=1 SX ḡ,i (here SW is the symmetric group on the set

W ) the value of f (σ (X0); Y0) under the evaluation φ is 0.

(2) For all ḡ ∈ G2 the value φ(x ( j)
ḡ,i ) =: a( j)

ḡ is independent of i = 1, . . . , T . Furthermore, all a( j)
ḡ ,

j = 1, . . . , dim Aḡ, are distinct.

We will see later that in the case which is relevant to the proof of Theorem 5.2 it is indeed possible to
construct such a polynomial.

Let k > 0 be a natural number and consider the polynomial

fk := f (X1; Y1) · · · f (Xk; Yk),

where all X t and Yt are disjoint copies of X0 and Y0 respectively. Notice that

X t =

∐
ḡ∈G2

T∐
i=1

X ḡ,(t−1)T +i .

We extend φ to F⟨X; Y ⟩, where X =
∐k

t=1 X t and Y =
∐k

t=1 Yt , by duplicating the evaluation on X0 and
Y0 to X t and Yt respectively (for all t = 1, . . . , k). As a result, we have in particular for all ḡ, i and j that
φ(x ( j)

ḡ,i )= a( j)
ḡ (we rely here on property (2)).

For a ∈ A we set Xφ(a)⊂ X to be all the variables from X which φ assigns to them the value a. In
other words, Xφ(a)= (φ|X )

−1(a). In particular, Xφ(a
( j)
ḡ )= {x ( j)

ḡ,1, . . . , x ( j)
ḡ,kT }.

Remark 5.3. For every ḡ ∈ G2 we have

kT∐
i=1

X ḡ,i =

dim Aḡ∐
j=1

Xφ(a
( j)
ḡ ).
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One should visualize this equality as “union of columns” (the X ḡ,i ’s) = “union of rows” (the Xφ(a
( j)
ḡ )) in

the matrix 
x (1)ḡ,1 · · · x (1)ḡ,kT

... x ( j)
ḡ,i

...

x (dim Aḡ)

ḡ,1 · · · x (dim Aḡ)

ḡ,kT

 .

Next, we alternate and symmetrize different subsets of X in the following fashion to obtain a new
graded polynomial sk;A. For each even (odd) element ḡ ∈ G2 we apply alternation (symmetrization) on
all variables X ḡ,i ; afterwards we apply symmetrization (alternation) for every set of variables of the form
Xφ(a). All in all, we have

sk;φ;A( f )=

∏
ḡ∈Godd

dim Aḡ∏
j=1

AltXφ(a
( j)
ḡ )

◦

∏
ḡ∈Geven

dim Aḡ∏
j=1

SymXφ(a
( j)
ḡ )

◦

∏
ḡ∈Godd

kT∏
i=1

SymX ḡ,i
◦

∏
ḡ∈Geven

kT∏
i=1

AltX ḡ,i ( fk).

We also consider a “forgetful” operator FG2
G which transforms G2-graded polynomials into G-graded

polynomials by changing the degree of every variable from (ϵ, g) ∈ G2 to g ∈ G. We finally have the
G-graded polynomial

FG2
G (sk;φ;A( f )).

We remark that for g ∈ G the variables FG2
G (x(0,g),t) and FG2

G (x(1,g),t) are two different variables of degree
g ∈ G.

Definition 5.4. Let B be a G2-graded algebra. An evaluation of a G-graded polynomial f on B is called
almost G2 if every variable x of f of degree g is evaluated in some B(ϵ,g).

Furthermore, if B0 is a subset of B, we say that an evaluation ψ of f on B is a B0-evaluation if every
variable of f is evaluated in B0.

Suppose we have a G2-graded polynomial f and consider the G-polynomial FG2
G ( f ). Note that if ψ is

an almost G2-evaluation of FG2
G ( f ), then typically there is no reason that degψ(FG2

G (xḡ))= ḡ (i.e., the
parities might not agree). The next Proposition shows that our construction of FG2

G (sk;φ;A)( f ) will ensure
that “almost always” the above equality occurs given that ψ gives a nonzero value to the polynomial.

Proposition 5.5. Let B be a finite dimensional G2-graded algebra. If

ψ : F⟨X0; Y0⟩ → E(B)

is a nonzero almost G2-evaluation, then for every ḡ ∈ G2 we have

degψ(FG2
G (xḡ,i ))= ḡ,

except possibly for dim A · dim B of the i .
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Furthermore, if there is some ḡ0 = (ϵ0, g0) ∈ G2 such that the dimension of Bḡ0 is strictly smaller than
that of Aḡ0 , then for k > dim A · dim B, the polynomial FG2

G (sk;φ;A( f )) is an identity of E(B).

Proof. We focus on proving the “furthermore” part and along the way we get a proof for the main claim.
In order to show that FG2

G (sk;φ;A( f )) is an identity of E(B), it is enough to show that it is 0 under any
almost G2-evaluation of FG2

G (sk;φ;A( f )), since this polynomial is multilinear. Let ψ : F⟨X0; Y0⟩ → E(B)
be an almost G2-evaluation of FG2

G (sk;φ;A( f )).
Suppose that ψ(FG2

G (sk;φ;A( f ))) ̸= 0. Then, there is some

σ ∈

∏
ḡ∈Godd

kT∏
i=1

SX ḡ,i ·

∏
ḡ∈Geven

kT∏
i=1

SX ḡ,i

such that, under ψ , the polynomial

FG2
G

( ∏
ḡ∈Godd

dim Aḡ∏
j=1

AltXφ(a
( j)
ḡ )

◦

∏
ḡ∈Geven

dim Aḡ∏
j=1

SymXφ(a
( j)
ḡ )
( fk(σ (X)); Y )

)
̸= 0.

Notice that for all i , the set X ḡ,i stays the same even after applying σ .
We claim that all small sets FG2

G (X ḡ0,i ), except possibly dim A · dim B of them, have all of their
variables assigned to elements of degree ḡ0. Indeed, we only need to show that the parity is ϵ0. Assume
that ϵ0 = 0 (the proof for ϵ0 = 1 is similar).

If on the contrary there are more than dim A · dim B small sets FG2
G (X ḡ0,i ) having at least one variable

which has an odd evaluation, as k > dim A · dim B ≥ dim Aḡ0 · dim B(1,g0), and in view of Remark 5.3,
there is some l0 ∈ {1, . . . , dim Aḡ0} such that at least dim B(1,g0) distinct variables from FG2

G (Xφ(a
(l0)
ḡ0
))

are assigned by ψ values from B(1,g0) ⊗ E1. However as we symmetrize that set, we must get 0 — a
contradiction. Notice that we have also proved here the main claim.

Denote by FG2
G (X ḡ0,i0) a small set with the property from the previous paragraph. Since dim Bḡ0 <

dim Aḡ0 , the alternation (symmetrization) of size dim Aḡ0 must nullify the polynomial. □

We are now ready to prove Theorem 5.2:

Proof of Theorem 5.2. By [Aljadeff and Haile 2014], A and B are G2-isomorphic if and only if A and B
share the same G2-identities; see also [Bahturin and Yasumura 2019] for a far reaching generalization
of the statement in [Aljadeff and Haile 2014]. As a result, it is enough to show that if A and B are not
G2-PI-equivalent, then E(A) and E(B) are not G-PI-equivalent.

Assume, without loss of generality, that there is a multilinear G2-polynomial p(xḡ1,1, . . . , xḡn,n) which
is an identity of B but not of A. We consider the G2-graded basis BA ={a( j)

ḡ : ḡ ∈ G2, j =1, . . . , dimF Aḡ}

of A as in [Aljadeff and Haile 2014] Theorem 1.1. Let φ be a nonzero BA-evaluation of p. We may
also assume that φ(p) = δ, where δ is a nonzero idempotent of A. In the next few paragraphs we are
going to construct a G2-graded polynomial f from p on which we will perform the construction from
the beginning of the section to obtain a polynomial FG2

G (sk;φ;A( f )) which will be an identity of E(B)
and a nonidentity of E(A).
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For i = 1, . . . , n let X (i)= {x ( j)
ḡ,i : ḡ ∈ G2, j = 1, . . . , dim Aḡ} be disjoint variables from the ones of

p and set φ(x ( j)
ḡ,i )= a( j)

ḡ . For every i let j (i) be such that φ(xḡi ,i )= a( j (i))
gi

. We identify xḡi ,i with x ( j (i))
ḡi ,i

for every i . We set X0 =
∐n

i=1 X (i).
Similarly to the construction in the proof of Theorem 4.8, one can construct a multilinear G2-monomial

M = M(X0; Y ) with the property that there is an evaluation φY of the Y -variables such that the only
extension of φY to a nonzero BA-evaluation φZ of M(X0; Y ) must satisfy φM |X0 = φ|X0(i.e., φM also
extends φ) and if φM satisfies φM |X0 = φ|X0 then φM(M)= δ. In what follows we shall denote the unique
nonzero evaluation φM of M by φ. Furthermore, one can also arrange that φ(M)= δ.

Clearly, φ(M · p)= δ. However, M · p is not multilinear, and so we make some small changes to solve
this issue. Consider a new set of variables z ḡ1,1, . . . , z ḡn,n and replace in Z (only) the variables z ḡi ,i by
xḡi ,i for every i and let M ′ be the new polynomial. Clearly M ′

· p is multilinear. We extend φ to include
all the z-variables by declaring φ(z ḡi ,i )= φ(xḡi ,i ) so that φ(Mp)= φ(M ′ p)= δ.

Finally let

f = M ′
· p∗,

where ∗ is the Grassmann star operation.
We claim that f satisfies properties (1)–(2): By construction property (2) holds. Hence we are left with

verifying property (1). Indeed, any nontrivial permutation of any of the variables in some X (i) induces a
new evaluation of f , which we call φ′, that differs from φ only on the set X (i). By the construction of
M (and M ′) we get that φ′(M ′)= 0; showing property (1).

We now consider our final polynomial FG2
G (sk;φ;A( f )), where k = n ·dim A ·dim B +1. Notice that it is

a G-polynomial and that the construction also extends φ to an evaluation of all of sk;φ;A( f ) (a G2-graded
evaluation!). We claim that it is an identity of E(B) but not of E(A). It is not an identity of E(A) since
we can consider the following G-evaluation ψ in E(A): for every variable v appearing in sk;φ;A( f ) we
set

ψ(FG2
G (v))= φ(v)⊗wv,

where wv ∈ Edeg v and all the wv are chosen so that the product of all of them is nonzero. By the definition
of ∗, we have that ψ(FG2

G (p∗))= δ⊗
∏
v∈p wv and so ψ(FG2

G ( fk))= δ⊗
∏
v∈ fk

wv . By property (1) of
f we conclude that

ψ

(
FG2

G

( ∏
ḡ∈Godd

kn∏
i=1

SymXg,i
◦

∏
ḡ∈Geven

kn∏
i=1

AltX ḡ,i ( fk)

))
= ψ(FG2

G ( fk))= δ⊗

∏
v∈ fk

wv.

Finally, since φ gives the same value a(i)ḡ for every variable in Xφ(a
(i)
ḡ ), we have that

ψ(FG2
G (sk;φ;A( f )))= C · δ⊗

∏
v∈ fk

wv ̸= 0,

where C =
∏

ḡ∈G2

∏dim Aḡ
i=1 |Xφ(a

(i)
ḡ )|! = ((kn)!)dim A.
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We are left with showing that FG2
G (sk;φ;A( f )) is an identity of E(B). Suppose that FG2

G (sk;φ;A( f )) is a
nonidentity of E(B). Hence there is a nonzero almost G2-evaluationψ on E(B). Asψ(FG2

G (sk;φ;A( f ))) ̸=
0, there are two permutations

σ ∈

∏
ḡ∈G2

dim Aḡ∏
i=1

SXφ(a
(i)
ḡ )
, τ ∈

∏
ḡ∈G2

kn∏
i=1

SX ḡ,i

such that
ψ(FG2

G ( fk(στ(X), Y, Z))) ̸= 0.

Clearly, στ(X i )= σ(X i ) and σ preserves the G2-degree. By Proposition 5.5 and the choice of k, there is
some i0 ∈ {1, . . . , k} such that for every xḡ ∈ σ(X i0) we have that degψ(xḡ)= ḡ. As a result, as p is an
identity of B, we can deduce that ψ(p∗(σ (X i0)))= 0 and so also ψ( f (σ (X i0), Y, Z))= 0. This clearly
forces that ψ(FG2

G ( fk(στ(X), Y, Z)))= 0, hence reaching a contradiction. □

We may extend Theorem 5.2 to full G2 = Z2 × G-graded algebras.

Theorem 5.6. Let A and B be finite dimensional G2-graded algebras over F. Suppose A and B are full.
If E(A) and E(B) are G-graded PI-equivalent then the semisimple parts Ass and Bss are isomorphic as
G2-algebras.

Proof. For the proof we shall combine the constructions in Section 3 and Section 4, that is for nonaffine
ungraded algebras and for affine G-graded algebras, together with the Theorem 5.2. For each G2-graded
simple algebra Ai we let BAi be a basis of Ai whose elements are G2-homogeneous of the form {uh ⊗er,s}.
Let Ki denote a nonzero product of the elements in BAi . We refer to these elements as designated elements.
Each basis element is bordered by basis elements where for convenience we may assume all but possibly
one are of the form 1 ⊗ ei, j . As usual we refer to these as frame elements. We may use one of the frame
elements so the value of the monomial is an idempotent δ of A. We denote this product by Zi . We let
Zi, j , j = 1, . . . , k be a duplicate of the monomial Zi and let Z i,k = Zi,1 · Zi,2 · · · Zi,k . Here, k is a large
integer which needs to be determined. We let 2l = (a, . . . , a) be the k-tuple where a is the l-th element
appearing in the monomial Ki . Since the algebra A is full, we have up to ordering of the G2-graded
simple components of A a nonvanishing product Z1,k ·w1 · Z2,k · · ·wq−1 · Zq,k ̸= 0. For every ḡ ∈ G2

we consider k small sets , each consisting of dimF (Ass)ḡ designated elements where the j-th small set
consists of the designated elements in K1, j , . . . , Kq, j . We have as in previous cases that any nontrivial
permutation on a small set leads to a zero product. Our next step is to tensor even elements with the
identity of E (the Grassmann algebra), and odd elements with different generators of E . Note that the
product remains nonzero. As in previous cases we will view the elements obtained as G-graded elements
but for convenience we will still refer to them using the adjective even or odd. Moreover we shall refer as
small sets, a set of the form (1 ⊗ a1, . . . , 1 ⊗ am) where (a1, . . . , am) is a small set of even homogeneous
elements of degree (0, g), g ∈ G or a set the form (ϵ1 ⊗ b1, . . . , ϵm ⊗ bm) where (b1, . . . , bm) is a small
set of odd homogeneous elements of degree (1, g), g ∈ G. By abuse of notation we keep the notation 2l

after multiplying the basis elements with Grassmann generators.
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Next we alternate and symmetrize small sets of even and odd elements respectively. Then we symmetrize
sets 2l = (a, . . . , a) where a is even and alternate sets 2t = (b, . . . , b) where b is odd. One shows the
product is nonzero.

Next we replace the designated elements by X variables, the frames by Y ’s and the bridges by W ’s
where we forget the Z2-degree, that is X, Y,W are G-graded variables. Clearly by construction we have
a nonidentity f of A. Let us denote the nonzero evaluation above by φ. As in previous cases with such
polynomial one shows that if Bss does not cover Ass as G2-algebras then f is a nonidentity of E(A) and
an identity of E(B) as a G-graded algebras. Thus, since we are assuming E(A) and E(B) are G-graded
PI-equivalent we have that A and B cover each other as G2-graded algebras. We conclude that up to
permutation of the simple components of B we have A ∼= A1 ×· · ·× Aq ⊕ JA and B ∼= B1 ×· · ·× Bq ⊕ JB

where dimF (A j )g = dimF (B j )g, g ∈ G2. We want to prove there is a permutation on the G2-graded
simple components of B such that A j ∼= B j as G2-graded algebras.

Recall from the Theorem 5.2 above that if dimF (A j )g = dimF (B j ′)g, all g ∈ G2, for some j and j ′,
there exists a G-polynomial p j, j ′ which is a G-graded nonidentity of E(A j ) and an identity of E(B j ′)

unless A j and B j ′ are G2-graded isomorphic. Moreover, we may assume the value of the polynomial p j, j ′

is the idempotent δ of A we fixed above. Denote by pi =
∏

j ′ pi, j ′ . We note that pi is a G-polynomial
nonidentity of E(Ai ) and an identity of E(B j ′) for every G2-graded simple algebra whose dimension
of the homogeneous G2-components are equal to the corresponding dimensions of the homogeneous
components of A j but is not isomorphic to A j . Finally, we insert to the right of every monomial Zi,l a
copy of the polynomial pi with disjoint variables. The polynomial obtained m A is a G-graded nonidentity
of E(A). By assumption it is a nonidentity of E(B), which forces the existence of a permutation on
the G2-graded simple components of B such that A j ∼= B j as G2-graded algebras. This completes the
proof. □

We can now complete the proof of Theorem 5.1 as in the proof of Theorem 1.1, that is by performing
Steps 0 − 4 on the set of finite dimensional G2-graded algebras A with IdG(E(A))= 0 (see Section 2).
Details are omitted.
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