S=ZZ/11[z_1..z_10] R=S[x_1,x_2,x_3,y_1,y_2,y_3] --the ring of P2 x P2 T=R[e_1,e_2,e_3,f_1,f_2,f_3, SkewCommutative=>true]-- the space wedge3 V E1=(e_1+(x_1*y_1)*f_1+(x_1*y_2)*f_2+(x_1*y_3)*f_3) E2=(e_2+(x_2*y_1)*f_1+(x_2*y_2)*f_2+(x_2*y_3)*f_3) E3=(e_3+(x_3*y_1)*f_1+(x_3*y_2)*f_2+(x_3*y_3)*f_3) --E1*E2*E3 represent the image of the point in the cone over -- P^2 x P^2 with coordinates (1,((x_1,x_2,x_3),(y_1,y_2,y_3))) B0=E1*E2*E3 B1=E1*E2*f_1 B2=E1*E2*f_2 B3=E1*E2*f_3 B4=E1*E3*f_1 B5=E1*E3*f_2 B6=E1*E3*f_3 B7=E2*E3*f_1 B8=E2*E3*f_2 B9=E2*E3*f_3 --Bi span the tangent to the Grassmannian in E1*E2*E3. V1=e_1*e_2*e_3 V2=e_1*e_2*f_1 V3=e_1*e_2*f_2 V4=e_1*e_2*f_3 V5=e_1*e_3*f_1 V6=e_1*e_3*f_2 V7=e_1*e_3*f_3 V8=e_2*e_3*f_1 V9=e_2*e_3*f_2 V10=e_2*e_3*f_3 --Vi span the fixed Lagrangian space being the tangent to the Grassmannian in $e_1*e_2*e_3$. W1=f_1*f_2*f_3 W2=f_1*f_2*e_1 W3=f_1*f_2*e_2 W4=f_1*f_2*e_3 W5=f_1*f_3*e_1 W6=f_1*f_3*e_2 W7=f_1*f_3*e_3 W8=f_2*f_3*e_1 W9=f_2*f_3*e_2 W10=f_2*f_3*e_3 --Wi span the Lagrangian space being the tangent to the Grassmannian in f_1*f_2*f_3, --together Vi and Fi span the whole space wedge^3 V. VV=matrix{{V1,V2,V3,V4,V5,V6,V7,V8,V9,V10}} WW=matrix{{W1,W2,W3,W4,W5,W6,W7,W8,W9,W10}} WV=WW*(sub((transpose (VV))*WW, {e_1=>1, e_2=>1, e_3=>1, f_1=>1, f_2=>1, f_3=>1})) -- this is a sign adjustment making the pairing given by the wedge product a --duality between the two bases of the Lagrangians VV and WW RP=ZZ/11[ed_1..ed_45] L=genericSymmetricMatrix(RP, 9) G=matrix{ {0,0,0,0,0,0,0,0,1}, {0,0,0,0,0,-1,0,0,0}, {0,0,1,0,0,0,0,0,0}, {0,0,0,0,0,0,0,-1,0}, {0,0,0,0,1,0,0,0,0}, {0,-1,0,0,0,0,0,0,0}, {0,0,0,0,0,0,1,0,0}, {0,0,0,-1,0,0,0,0,0}, {1,0,0,0,0,0,0,0,0}} --G represents a symmetry induced on wedge^3 V by the symmetry of -- P^2 x P^2 exchanging x coordinates with y coordinates FG=sub(L,transpose(mingens kernel transpose (coefficients (mingens ideal (L*G-G*L), Monomials=>vars RP))_1 *random(RP^27,RP^1))) MM=(map(T,RP)) FG M0=matrix{{0,0,0,0,0,0,0,0,0}} MMM=(0|M0)||((transpose M0)|MM) -- MMM represents a symmetric linear map between the two Lagrangians with bases given by --VV and WV i.e., a Lagrangian subspace in wedge^3 V passing through e_1*e_2*e_3 -- its relation with G means that it is invariant under the symmetry corresponding --to G WV*MMM KK=VV+WV*MMM --KK is a basis of the Lagrangian space defined as the graph of MMM P=(KK*transpose((map(T,S)) (matrix{{z_1..z_10}})))_0_0 KOP=coefficients(matrix{{P*B0, P*B1, P*B2, P*B3, P*B4, P*B5, P*B6, P*B7, P*B8, P*B9}}, Monomials=>{e_1*e_2*e_3*f_1*f_2*f_3}) -- KOP gives condition on elements of the Lagrangian spanned by KK given by zi in the --basis KK to be elements of the tangent in E1*E2*E3 represented by the span of B --the rank of these conditions will give the codimension of the intersection locus KPP=KOP_1 FRT=diff( (transpose matrix{{z_1..z_10}}), KPP) GFD=minors(9,FRT); --GFD describes the locus of tangents to $E1*E2*E3$ meeting the chosen symmetric --Lagrangian spanned by $KK$ degree GFD D=ZZ/11[x_1,x_2,x_3,y_1,y_2,y_3] GFO=(map(D,T)) GFD; SB=ZZ/11[m,q_1..q_9] fv=map(D,SB,matrix{{1,x_1*y_1,x_1*y_2,x_1*y_3,x_2*y_1,x_2*y_2,x_2*y_3,x_3*y_1,x_3*y_2,x _3*y_3}}) man=preimage(fv, GFO); --we see the EPW quartic GFD in the corresponding affine part of the cone over the Segre --embedding of P^2 x P^2 dim man degree man EPW=ideal (homogenize(gens man, m)) --we take the projective closure and get EPW the EPW quartic in P^9 that is --contained in the cone over --P^2x P^2 and is symmetric with respect to --the chosen involution degree EPW dim EPW SFB=ZZ/11[s_1,s_2,s_3,s_4,s_5,s_6,tdt] EPWsym=preimage(map(SB,SFB,matrix{{q_1,q_2+q_4,q_3+q_7,q_5,q_6+q_8,q_9,m}}), EPW); --EPWsym is the projection from the antiinvariant locus given by the space of --skew-matrices degree EPWsym mingens EPWsym --we get a complete intersection of a cubic and a quartic in P^6 S=singularLocus EPWsym; IS=ideal S; --IS represents the singular locus of EPWsym dim IS degree IS --the singular locus is a surface of degree 52 as expected, here we possibly need to repeat the whole program -- to get a general enough choice that will give the right number R=QQ[x_1..x_4,y_1..y_4] G=QQ[a_1..a_10] F= (transpose matrix{{x_1..x_4}})* matrix{{y_1..y_4}} P=(F+transpose F) W=P^{0}|P^{1}_{1,2,3}|P^{2}_{2,3}|P^{3}_{3} --W represents the map from P^3 x P^3$ to the space of symmetric --matrices which commutes with the exchange of variables. --its image is the symmetric square of P^3 BU=preimage(map(R,G, W), ideal(x_1^2+x_2^2+x_3^2+x_4^2,y_1^2+y_2^2+y_3^2+y_4^2)) --BU is the image of the symmetric square of the Fermat quadric in P^3 in the chosen coordinates dim BU saturate BU GH=QQ[a_1,a_5..a_10] mingens preimage(map(G,GH), BU) --we project the symmetric square of the quadric from the antiinvariant -- locus of a chosen symmetry preserving the quadric