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We prove a relative decidability result for perfectoid fields. This applies to show that the fields Qp(p1/p∞)

and Qp(ζp∞) are (existentially) decidable relative to the perfect hull of Fp((t)) and Qab
p is (existentially)

decidable relative to the perfect hull of Fp((t)). We also prove some unconditional decidability results in
mixed characteristic via reduction to characteristic p.
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Introduction

After the decidability of the p-adic numbers Qp was established by Ax and Kochen [1965] and indepen-
dently by Eršov [1965], several decidability questions about local fields and their extensions have been
raised and answered:

• In mixed characteristic, Kochen [1975] showed that Qur
p , the maximal unramified extension of Qp,

is decidable in the language Lval = {0, 1,+, · ,O} (see notation). More generally, by work of Eršov
[1965], Ziegler [1972], Basarab [1978] and Bélair [1999] and more recently by Lee [2020], Lee and
Lee [2021] and Anscombe and Jahnke [2022], we have a good understanding of the model theory of
unramified and finitely ramified mixed characteristic henselian fields.
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• In positive characteristic, our understanding is much more limited. Nevertheless, by work of Denef
and Schoutens [2003], we know that Fp((t)) is existentially decidable in Lval(t)= {0, 1, t,+, · ,O}

(see notation), modulo resolution of singularities.1 In fact, [Denef and Schoutens 2003, Theorem 4.3]
applies to show that (assuming resolution) any finitely ramified extension of Fp((t)) is existentially
decidable relative to its residue field. Anscombe and Fehm [2016] showed unconditionally that
Fp((t)) is existentially decidable but in the language Lval, which does not include a constant symbol
for t .

Our understanding is less clear for infinitely ramified fields and there are many extensions of Qp

(resp. Fp((t))) of great arithmetic interest, whose decidability problem is still open:

• In mixed characteristic, these include Qab
p , the maximal abelian extension of Qp and the totally

ramified extension Qp(ζp∞), obtained by adjoining all pn-th roots of unity. These extensions had
already been discussed in Macintyre’s survey [1986, page 140] and a conjectural axiomatization of
Qab

p was given by Koenigsmann [2018, page 55]. Another interesting extension is Qp(p1/p∞), a
totally ramified extension of Qp obtained by adjoining a compatible system of p-power roots of p.

• In positive characteristic, two very natural infinitely ramified fields are the perfect hulls of Fp((t))
and Fp((t)). Both of these fields have been conjectured to be decidable; see [Kuhlmann and Rzepka
2023, page 4] for the former. The recent work of Kuhlmann and Rzepka [2023] ultimately aims at
extending Kuhlmann’s earlier results for tame fields to cover fields like the ones mentioned above.

The above fields will be the main objects of interest throughout the paper. Their p-adic (resp. t-adic)
completions are typical examples of perfectoid fields in the sense of Scholze [2012] (see Section 3). A
perfectoid field (K , v) is a valued field which is complete with respect to a nondiscrete valuation of rank 1,
with residue characteristic equal to p >0 and such that the Frobenius map 8 :OK /(p)→OK /(p) : x 7→ x p

is surjective. Loosely speaking, the last condition says that one can extract approximate p-power roots of
any element in the field. For any perfectoid field K , one can define its tilt K ♭ (see Section 3.2), which
intuitively is its local function field analogue and serves as a good characteristic p approximation of K .
In practice, this means that one can often reduce arithmetic problems about K to arithmetic problems
about K ♭. This kind of transfer principle, which works for a fixed p, should be contrasted with the
Ax–Kochen/Ershov principle which achieves such a reduction only asymptotically, i.e., with the residue
characteristic p→∞. This is explained in detail in Scholze’s ICM report; see [Scholze 2014, page 2].

Our main goal is to set the stage for incorporating ideas from perfectoid geometry in the model theory of
henselian fields. In the present paper we focus on decidability, although it is conceivable that our methods
can be used in different model-theoretic contexts. We will prove the following relative decidability result
for the fields discussed above:

1 The formalism of [Denef and Schoutens 2003] does not include a unary predicate O for the valuation ring. This does not
make a difference because of the equivalences x ∈ O↔∃y(y2

= 1+ t · x2) (for p > 2; replace squares with cubes for p = 2)
and x /∈ O↔ x−1

∈ t ·O.
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Corollary A. (a) Assume Fp((t))1/p∞ is decidable (resp. ∃-decidable) in Lval(t). Then Qp(p1/p∞) and
Qp(ζp∞) are decidable (resp. ∃-decidable) in Lval.

(b) Assume Fp((t))1/p∞ is decidable (resp. ∃-decidable) in Lval(t). Then Qab
p is decidable (resp. ∃-

decidable) in Lval.

As usual, we write Fp((t))1/p∞ (resp. Fp((t))1/p∞) for the perfect hull of Fp((t)) (resp. Fp((t))), Lval

for the language of valued fields and Lval(t) for the language Lval enriched with a constant symbol for
t (see notation). Corollary A is essentially a special case of a general relative decidability result for
perfectoid fields, which is discussed next. (Strictly speaking, the fields in Corollary A are not perfectoid
but one can still derive Corollary A from Theorem A directly.)

Let F be a perfectoid field of characteristic p (e.g., F = ̂Fp((t))1/p∞). An untilt of F is a mixed
characteristic perfectoid field K together with an isomorphism ι : K ♭ ∼=−→ F . In general, there will be
many nonisomorphic untilts of F . In fact, there will be too many untilts even up to elementary equivalence
(see Proposition 3.6.9(b)), thus shattering the naive guess of K being decidable relative to its tilt K ♭. On
a more elementary level, one needs to assume decidability with parameters on the positive characteristic
side (see Example 4.3.7). Nevertheless, a relative decidability result for perfectoids can be salvaged by
asking that K be an R0-computable untilt of F , a notion which is briefly explained below (see Section 4.2
for details).

Write W (OF ) for the ring of Witt vectors over OF (see Section 3.3). An element ξ ∈W (OF ) is identified
with its associated Witt vector, which is an infinite sequence (ξ0, ξ1, . . . ) with ξn ∈ OF . Whenever there
is a computable subring R0 ⊆ OF such that ξn ∈ R0 and the function N→ R0 : n 7→ ξn is recursive,
we say that ξ is R0-computable. As usual, a computable ring R0 is one whose underlying set is (or
may be identified with) a recursive subset of N, so that the ring operations are (or are identified with)
recursive functions (e.g., Fp[t] is a computable ring). An important result by Fargues and Fontaine gives a
one-to-one correspondence between untilts of F and certain principal ideals of W (OF ) (Theorem 3.5.11).
An untilt K of F is then said to be an R0-computable untilt whenever there exists an R0-computable
generator ξ ∈W (OF ) of the ideal corresponding to K . We then have the following relative decidability
result (the name is due to Scanlon):

Theorem A (perfectoid transfer). Suppose K is an R0-computable untilt of F. If F is decidable in
Lval(R0), then K is decidable in Lval.

Here Lval(R0) is the language Lval enriched with constant symbols for the elements of R0. We also
obtain an existential version of Theorem A in Section 4.3. The condition on K being an R0-computable
untilt of F is true in virtually all cases of interest (although generically false), even for a natural choice
of R0. Corollary A is an immediate consequence of Theorem A, by considering the t-adic completion
of Fp((t))1/p∞ (resp. Fp((t))1/p∞ for part (b)) and R0 = Fp[t]. The two key ingredients in the proof of
Theorem A are:
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(1) An (unpublished) Ax–Kochen/Ershov style result by van den Dries for general mixed characteristic
henselian fields, presented in Section 2.

(2) The Fargues–Fontaine correspondence described above, presented in Section 3.5.

Let us now outline how these two ingredients will be combined towards the proof of Theorem A. The
result by van den Dries will enable us to reduce the decidability of K to the uniform decidability of the
sequence of residue rings (OK /(pn))n∈ω and also the decidability of (0v, vp). The Fargues–Fontaine
correspondence then gives us a way to interpret each individual residue ring OK /(pn) inside the tilt
F (with parameters from R0), via an interpretation En . The assumption on K being R0-computable
will then imply that the sequence of interpretations (En)n∈ω is uniformly recursive (see Section 1.2.12).
Having assumed the decidability of F in Lval(R0), this will then give us that the sequence (OK /(pn))n∈ω

is uniformly decidable. The pointed value group (0v, vp) is easily seen to be interpretable in F (with
parameters from R0) and the decidability of K follows.

It should be mentioned that — prior to this work — Rideau, Scanlon and Simon had made a formative
observation, namely that the Fargues–Fontaine correspondence already provides us with an interpretation
of the valuation ring OK in OF (with parameters) in the sense of continuous logic. This however does not
yield an interpretation in the sense of ordinary first-order logic (see Section 4.1.1). On the other hand,
there do exist honest first-order interpretations of the truncated residue rings OK /(pn) in OF , which is
why it is convenient to work with them instead.

Theorem A allows us to reduce decidability problems from the mixed characteristic to the positive
characteristic world. Although our model-theoretic understanding of the latter is notoriously limited, this
method still yields several applications. In Sections 5 and 6 we obtain new unconditional decidability
results in mixed characteristic via reduction to characteristic p. In Section 5, we prove the following:

Corollary B. The valued field (Qp(p1/p∞), vp) (resp. (Qp(ζp∞), vp)) admits a maximal immediate
extension which is decidable in Lval.

Note that the fields Qp(p1/p∞) and Qp(ζp∞) are not Kaplansky and have many nonisomorphic maximal
immediate extensions, all of which are tame in the sense of Kuhlmann [2016] (see Example 5.1.6).
Although the work of Kuhlmann yields several decidability results for equal characteristic tame fields,
Corollary B is, to my knowledge, the first decidability result for tame fields of mixed character-
istic (see Section 5). The proof uses a recent decidability result of Lisinski [2021] for the Hahn
field Fp((t0)) with 0 = 1

p∞Z in the language Lval(t), strengthening Kuhlmann’s earlier result for
Fp((t0)) in the language Lval; see [Kuhlmann 2016, Theorem 1.6]. Corollary B then follows from
Theorem A and basic properties of the tilting equivalence (see Section 3.5.13). It is worth remark-
ing that most maximal immediate extensions of Qp(p1/p∞) (resp. Qp(ζp∞)) are undecidable (see
Remark 5.2.3).

Without making essential use of the perfectoid machinery but only the philosophy thereof, we show in
Section 6 the following:
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Theorem B. Let K be any of the valued fields Qp(p1/p∞), Qp(ζp∞) or Qab
p . The existential theory of

OK /pOK in the language of rings L rings is decidable.

The proof is again via reduction to characteristic p, using a recent existential decidability result for
equal characteristic henselian valued fields in the language Lval, due to Anscombe and Fehm [2016].
However, as Corollary A suggests, if we aim to understand the theories of Qp(p1/p∞), Qp(ζp∞) and
Qab

p via reduction to positive characteristic, we will need stronger results in the language Lval(t) on the
characteristic p side. This is also supported by Proposition 7.2.3 which shows that the Diophantine
problem for Fp((t))1/p∞ in Lval(t) is Turing reducible to the ∀1

∃-theory of Qp(p1/p∞).
An application of a different flavor, which yields an undecidability result in mixed characteristic via

reduction to characteristic p, was recently found in [Kartas 2023]. Kartas [2023, Theorem A] shows that
the asymptotic theory of {K : [K :Qp]<∞} in the language Lval with a cross-section is undecidable.

Notation

• If (K , v) is a valued field, we denote by Ov the valuation ring. If the valuation is clear from the
context, we shall also write OK . We write 0v for the value group and kv for the residue field. If the
valuation v is clear from the context, we also denote them by 0 and k respectively.

• When (K , v) is of mixed characteristic, we write p for the number char(k). The notation pnOv

stands for the ideal of Ov generated by the element pn . If both the field in question and the valuation
v are clear from the context, we shall write (pn) for pnOv.

• Zur
p : The valuation ring of (Qur

p , vp), the maximal unramified extension of Qp equipped with the
unique extension of the p-adic valuation.

• Zab
p : The valuation ring of (Qab

p , vp), the maximal Galois extension of Qp whose Galois group over
Qp is abelian.

• We write Fp((t))1/p∞ (resp. Fp((t))1/p∞) for the perfect hull of Fp((t)) (resp. Fp((t))).

• For a given language L , we denote by SentL the set of L-sentences and by FormL the set of L-
formulas. If M is an L-structure and A ⊆ M is an arbitrary subset, we write L(A) for the language
L enriched with a constant symbol ca for each element a ∈ A. The L-structure M can be updated
into an L(A)-structure in the obvious way.

• We write L rings = {0, 1,+, · } for the language of rings, Loag = {0,+, <} for the language of ordered
abelian groups, Lval = L rings∪{O} for the language of valued fields (where O is a unary predicate for
the valuation ring), Lval(t)= Lval ∪ {t}, where t is a constant symbol whose intended interpretation
will always be clear from the context. A local ring (R,mR) may be viewed as an L lcr-structure,
where L lcr is the language of local rings consisting of the language of rings L rings together with a
unary predicate m, whose intended interpretation is the maximal ideal mR ⊆ R.
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1. Preliminaries

1.1. Decidability.

1.1.1. Introduction. Fix a countable language L and let SentL be the set of well-formed L-sentences,
identified with N via some Gödel numbering. Let M be an L-structure. Recall that M is decidable if we
have an algorithm to decide whether M |H φ, for any given φ ∈ SentL . More formally, let χM : SentL →

{0, 1} be the characteristic function of Th(M)⊆ SentL . We say that M is decidable if χM is recursive.

1.1.2. Uniform decidability.

Definition 1.1.3. For each n ∈ N, let fn : N→ N be a function. The sequence ( fn)n∈ω is uniformly
recursive if the function N×N→ N : (n, m) 7→ fn(m) is recursive.

This concept is best illustrated with a nonexample:

Example 1.1.4. Let A ⊆ N be nonrecursive. For each n ∈ N, let δn : N→ N : m 7→ δnm , where δnm is
the Kronecker symbol. For each n ∈ N, define fn : N→ N to be (1) δn if n ∈ A and (2) identically 0 if
n /∈ A. One readily verifies that each individual fn is recursive. On the other hand, the sequence ( fn)n∈ω

is not uniformly recursive. Indeed, otherwise we could solve the membership problem for A, using that
n ∈ A⇐⇒ fn(n)= 1.

Using some Gödel numbering, we can also state a version of Definition 1.1.3 for sequences of functions
( fn)n∈ω, where dom( fn) = SentL (or cdm( fn) = SentL ). One can then define a notion of uniform
decidability for sequences of L-structures:

Definition 1.1.5. A sequence (Mn)n∈ω of L-structures is uniformly decidable if the sequence of functions
(χMn )n∈ω is uniformly recursive, i.e., if the function χ :N×SentL→{0, 1} : (n, φ) 7→χMn (φ) is recursive.

Remark 1.1.6. If the sequence χ :N×SentL→{0, 1} : (n, φ) 7→ χMn (φ) is recursive when restricted to
existential sentences, we naturally say that the sequence (Mn)n∈ω is uniformly existentially decidable.
Other syntactic variants may be defined analogously.

1.2. Interpretability. Our formalism follows closely [Hodges 1993, Section 5.3], where details and
proofs may be found.

1.2.1. Interpretations. Given a language L , an unnested atomic L-formula is one of the form x = y or
x = c or F(x̄)= y or R(x̄), where x, y are variables, c is a constant symbol, x̄ is a tuple of variables, F
is a function symbol and R is a relation symbol of the language L .

Definition 1.2.2. An n-dimensional interpretation of an L-structure M in the L ′-structure N is a triple
0 = (∂0, φ 7→ φ0, f0) consisting of

(1) an L ′-formula ∂0(x1, . . . , xn),

(2) a map φ 7→φ0 , that takes an unnested atomic L-formula φ(x1, . . . , xm) and sends it to an L ′-formula
φ0(ȳ1, . . . , ȳm), where each ȳi is an n-tuple of variables,

(3) a surjective map f0 : ∂0(N n) ↠ M ,
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such that for all unnested atomic L-formulas φ(x1, . . . , xm) and all āi ∈ ∂0(N n), we have

M |H φ( f0(ā1), . . . , f0(ām))⇐⇒ N |H φ0(ā1, . . . , ām).

An interpretation of an L-structure M in the L ′-structure N is an n-dimensional interpretation 0, for
some n ∈ N. In that case, we also say that M is interpretable in N . The formulas ∂0 and φ0 (for all
unnested atomic φ) are the defining formulas of 0.

Interpretability is a transitive relation on the class of structures, i.e., if the L-structure M is inter-
pretable in the L ′-structure N and N is interpretable in the L ′′-structure P , then there exists a composite
interpretation of M in P [Hodges 1993, Exercise 2, page 218].

If N is an L ′-structure and ā = (a1, . . . , am) ∈ N m , we write (N , ā) for the expansion of N in the
language L(c̄), which is L together with an m-tuple of constant symbols (c1, . . . , cm) with c(N ,ā)

i = ai . If
M is interpretable in (N , ā), for some ā ∈ N m , we say that M is interpretable in N with parameters.

Proposition 1.2.3 [Hodges 1993, reduction Theorem 5.3.2]. Let 0 be an n-dimensional interpreta-
tion of an L-structure M in the L ′-structure N. There exists a map φ 7→ φ0, extending the map of
Definition 1.2.2(2), such that for every L-formula φ(x1, . . . , xm) and all āi ∈ ∂0(N n), we have that

M |H φ( f0(ā1), . . . , f0(ām))⇐⇒ N |H φ0(ā1, . . . , ām).

Proof. We describe how φ 7→ φ0 is built, for completeness (omitting details). By [Hodges 1993,
Corollary 2.6.2], every L-formula is equivalent to one in which all atomic subformulas are unnested. One
can then construct φ 7→ φ0 by induction on the complexity of formulas. The base case is handled by
Definition 1.2.2(2). This definition extends inductively according to the following rules:

(1) (¬φ)0 =¬(φ)0.

(2)
(∧n

i=1 φi
)
0
=

∧
(φi )0.

(3) (∀φ)0 = ∀x1, . . . , xn(∂0(x1, . . . , xn)→ φ0).

(4) (∃φ)0 = ∃x1, . . . , xn(∂0(x1, . . . , xn)∧φ0).

The resulting map satisfies the desired conditions of Proposition 1.2.3. □

Definition 1.2.4. The map FormL → FormL ′ : φ 7→ φ0 constructed in the proof of Proposition 1.2.3 is
called the reduction map of the interpretation 0.

1.2.5. Complexity of interpretations. The complexity of the defining formulas of an interpretation defines
a measure of complexity of the interpretation itself:

Definition 1.2.6 [Hodges 1993, Section 5.4(a)]. An interpretation 0 of an L-structure M in an L ′-structure
N is quantifier-free if the defining formulas of 0 are quantifier-free. Other syntactic variants are defined
analogously (e.g., existential interpretation).



216 Konstantinos Kartas

Remark 1.2.7. (a) The reduction map of a positive existential interpretation sends positive existential
formulas to positive existential formulas.

(b) The reduction map of an existential interpretation sends positive existential formulas to existential
formulas but does not necessarily send existential formulas to existential formulas.

Lemma 1.2.8. If the L-structure M is ∃+-interpretable in the L ′-structure N and N is ∃+-interpretable
in the L ′′-structure P , then the composite interpretation of M in P is also an ∃+-interpretation.

Proof. Clear. □

1.2.9. Recursive interpretations.

Definition 1.2.10 [Hodges 1993, Remark 4, page 215]. Suppose L is a recursive language. Let 0 be an
interpretation of an L-structure M in the L ′-structure N . We say that the interpretation 0 is recursive if
the map φ 7→ φ0 on unnested atomic formulas is recursive.

Remark 1.2.11 [Hodges 1993, Remark 4, page 215]. If 0 is a recursive interpretation of an L-structure
M in the L ′-structure N , then the reduction map of 0 is also recursive.

1.2.12. Uniformly recursive interpretations.

Definition 1.2.13. Suppose L and L ′ are languages. Let (Mn)n∈ω be a sequence of L-structures and
(Nn)n∈ω be a sequence of L ′-structure. For each n ∈ N, let 0n be an interpretation of Mn in Nn . We say
that the sequence of interpretations (0n)n∈ω is uniformly recursive if the sequence of reduction maps (φ 7→

φ0n )n∈ω on unnested atomic formulas is uniformly recursive, i.e., if the map (n, φ) 7→ φ0n is recursive.

If an L-structure M is interpretable in the L ′-structure N and the latter is decidable, then so is the
former. It is not hard to prove the following uniform version:

Proposition 1.2.14. Suppose L is a recursive language, (Mn)n∈ω a sequence of L-structures and N
is an L ′-structure. Suppose N is decidable, 0n is an interpretation of Mn in N and the sequence of
interpretations (0n)n∈ω is uniformly recursive. Then the sequence (Mn)n∈ω is uniformly decidable.

Proof. Rephrasing Proposition 1.2.3 for sentences, yields χMn (φ) = χN (φ0n ) for every φ ∈ SentL . It
follows that the map (n, φ) 7→ χMn (φ) is equal to the map (n, φ) 7→ φ0n 7→ χN (φ0n ) and the latter is
recursive as a composition of recursive functions. □

If the interpretation of M in N is recursive and so is the interpretation of N in P , then the composite
interpretation of M in P is recursive as well. Indeed, recursive functions are closed under composition.
One also has a uniform version:

Lemma 1.2.15. Let (Mn)n∈ω be a sequence of L-structures, (Nn)n∈ω be a sequence of L ′-structures
and (Pn)n∈ω be a sequence of L ′′-structures. For each n ∈ N, let 0n be an interpretation of Mn in Nn

and 1n be an interpretation of Nn in Pn and suppose that the sequences of interpretations (0n)n∈ω and
(1n)n∈ω are uniformly recursive. Let En be the composite interpretation of Mn in Pn . Then the sequence
of interpretations (Pn)n∈ω is uniformly recursive.

Proof. Clear. □
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2. Ax–Kochen/Ershov in mixed characteristic

2.1. A result by van den Dries.

2.1.1. Introduction. We start with an Ax and Kochen/Ershov style result due to van den Dries (unpub-
lished), which is briefly discussed on page 144 in [van den Dries 2014]. We shall sketch the proof (due to
van den Dries), which does not seem to appear anywhere in the published literature. Some references,
which use a similar coarsening argument, include [van den Dries 1999, page 2], [Anscombe and Jahnke
2022, proof of Corollary 12.3] and [Scanlon 2003, proof of Proposition 9.6]. For background material on
coarsenings of valuations, see [van den Dries 2014, Section 7.4].

2.1.2. Inverse systems. The formalism of multisorted structures, used in this section, is spelled out in
[Scanlon 2003, Section 3]. The proof of van den Dries’ Theorem 2.1.5 requires a technical lemma for
inverse systems, which we now discuss.

Let R= (Rn)n∈ω be a sequence of rings, viewed as a multisorted structure with sorts (Rn)n∈ω, each
equipped with the language of rings L rings, and for each n ∈N we have a map fn : Rn+1→ Rn . Let T be
the theory that requires of R= (Rn)n∈ω that the map fn : Rn+1→ Rn be a surjective ring homomorphism
with Ker( fn)= pn Rn+1, i.e., Rn ∼= Rn+1/pn Rn+1. If R= (Rn)n∈ω and S= (Sn)n∈ω are two models of T ,
they are isomorphic precisely when there is a compatible system (φn)n∈ω of isomorphisms φn : Rn

∼=−→ Sn ,
i.e., such that the diagram commutes

Rn+1 Sn+1

Rn Sn

φn+1

fn gn

φn

for each n ∈ N. Compatibility of the φn is essential as there are examples where Rn ∼= Sn for each n ∈ N

but R ̸∼= S (see e.g., Remark 3.6.10). Somewhat surprisingly, compatibility comes for free in a saturated
setting:

Lemma 2.1.3. Assume CH. Let R= (Rn)n∈ω and S= (Sn)n∈ω be two models of T . Suppose that for each
n ∈ N, we have that Rn ∼= Sn and the rings Rn , Sn are saturated with |Rn| = |Sn| ≤ ℵ1. Then R∼= S.

Proof. Let U be a nonprincipal ultrafilter on N and consider the ultraproducts RU =
∏

n∈ω Rn/U and
SU =

∏
n∈ω Sn/U .

Claim 1. RU ∼= SU .

Proof. Since Rn ≡ Sn for each n ∈ N, we get that RU ≡ SU by Łoś’ s Theorem. For each n ∈ N, let
Fm = {n ∈ N : |Rn| ≥ m}. If there exists m ∈ N with Fm /∈ U , then RU and SU are both finite and thus
RU ∼= SU . If on the other hand Fm ∈U for all m ∈N, then RU and SU are both infinite. Since |Rn| ≤ ℵ1,
we get that |RU | ≤ℵ

ℵ0
1 = 2ℵ

2
0 = 2ℵ0 =ℵ1, using the continuum hypothesis (similarly |SU | ≤ℵ1). Moreover,

the ultraproducts RU and SU are ℵ1-saturated [Marker 2002, Exercise 4.5.37] and thus saturated of size



218 Konstantinos Kartas

ℵ1. Since RU and SU are elementary equivalent and both saturated of size ℵ1, we conclude that RU ∼= SU

[loc. cit., Theorem 4.3.20]. □

Next we prove:

Claim 2. For each n ∈ N, we have RU /pn RU ∼= Rn .

Proof. Fix n ∈N. Since Rm/pn Rm ∼= Rn for m > n, we get that RU /pn RU ≡ Rn in L rings by Łoś Theorem.
If Rn is finite, then RU /pn RU ∼= Rn and we are done. Otherwise, we will have that Rn is saturated of size
ℵ1. The same is true for RU /pn RU , being interpretable in the structure RU , which is saturated of size ℵ1

by CH (see the proof of Claim 1). We conclude that RU /pn RU ∼= Rn [loc. cit., Theorem 4.3.20]. □

Similarly, for each n ∈ N, we have SU /pn SU ∼= Sn . By Claim 1, we obtain φ : RU
∼=−→ SU . Note

that φ(pn RU ) = pn SU , for each n ∈ N. By Claim 2, this gives rise to a compatible system (φn)n∈ω of
isomorphisms φn : Rn

∼=−→ Sn , which yields R ∼=−→ S. □

2.1.4. Statement and proof. The following result will be of fundamental importance for the rest of the
paper:

Theorem 2.1.5 (van den Dries). Let (K , v), (K ′, v′) be two henselian valued fields of mixed characteristic.
Then (K , v)≡ (K ′, v′) in Lval if and only if Ov/pnOv ≡Ov′/pnOv′ in L rings for all n ∈N and (0v, vp)≡

(0v′, v
′ p) in Loag together with a constant for vp.

Proof.⇒: Clear.

⇐: As the statement at hand is absolute, we may assume the continuum hypothesis; see [Scanlon 2003,
Section 8] or [van den Dries 2014, page 122]. We may therefore assume that both (K , v) and (K ′, v′) are
saturated of size ℵ1 [Marker 2002, Corolllary 4.3.13]. By our assumption, we have an isomorphism of
ordered abelian groups (0v, vp) ∼= (0v′, v

′ p) and a ring isomorphism Ov′/pnOv′
∼= Ov/pnOv for each

n ∈ N. We shall argue that (K , v)∼= (K ′, v′).
Consider the finest coarsening w of v for which the associated residue field kw has characteristic 0. The

corresponding valuation ring is Ow =Ov

[ 1
p

]
and the corresponding value group is 0w = 0v/ Conv(Zvp),

where Conv(Zvp) is the convex hull of Zvp in 0v . Let v̄ be the induced valuation from v on the residue
field kw. We then have that Ov̄ = Ov/

⋂
n∈ω pnOv. We also consider the analogous objects for K ′.

Claim 1. We have a ring isomorphism Ov̄
∼= lim
←−−

Ov/pnOv.

Proof. Consider the ring homomorphism f : Ov̄→ lim
←−−

Ov/pnOv : x +
⋂

n∈ω pnOv 7→ (x + pnOv)n∈ω,
which is clearly injective. We shall argue that it is also surjective. For a given (xn + pnOv)n∈ω ∈

lim
←−−

Ov/pnOv , we may find x ∈ Ov with x ≡ xn mod pnOv , using that Ov is ℵ1-saturated. It follows that
f (x)= (xn + pnOv)n∈ω. □

Similarly, one obtains an isomorphism Ov′
∼= lim
←−−

Ov′/pnOv′ .

Claim 2. We have an isomorphism of valued fields φ : (kw, v̄)∼= (kw′, v′).

Proof. Let R = (Ov/pnOv)n∈ω and S = (Ov′/pnOv′)n∈ω. Then R ∼= S by Lemma 2.1.3. This yields
lim
←−−

Ov/pnOv
∼= lim
←−−

Ov′/pnOv′ and thus Ov̄
∼= Ov′ by Claim 1. □
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We also have that 0w
∼= 0w′ , since the isomorphism (0v, vp)∼= (0v′, v

′ p) descends to the quotients
0v/ Conv(Zvp)∼= 0v′/ Conv(Zv′ p). By [van den Dries 2014, Lemma 7.13], the coarsened valued fields
(K , w) and (K ′, w′) are henselian too. By the Ax–Kochen/Ershov principle in pure characteristic 0 (see,
e.g., [van den Dries 2014, Corollary 5.22]), we get that (K , w)≡ (K ′, w′) in Lval.

Passing once again to elementary extensions, in a suitable language that includes unary predicates for
both Ov and Ow, we may even assume that (K , w)∼= (K ′, w′) to begin with. By stable embeddedness of
residue fields for henselian valued fields of pure characteristic 0 (see [van den Dries 2014, Corollary 5.25]),
there is even an isomorphism 8 : (K , w)

∼=−→ (K ′, w′) inducing φ : (kw, v̄)
∼=−→ (kw′, v′).

Claim 3. The map 8 is an isomorphism of the valued fields (K , v) and (K ′, v′).

Proof. Given x ∈ K , we need to show that vx ≥ 0⇐⇒ v′(8(x))≥ 0. If vx ≥ 0, then either (i) wx > 0
or (ii) wx = 0 and v̄ x̄ ≥ 0, where x̄ ∈ kv is the image of x via resw : Ow → kw. In the first case,
we get that w′(8(x)) > 0 as 8 : (K , w)→ (K ′, w′) is a valued field homomorphism and therefore
v′(8(x)) > 0 as mw′ ⊂mv′ . Suppose now that wx = 0 and v̄ x̄ ≥ 0. Then we also get that w′(8(x))= 0
and v′(φ(x̄))≥ 0 as φ : (kw, v̄)→ (kw′, v′) is a valued field homomorphism. Since 8 induces φ, we get
that v′(8(x))= v′(φ(x̄))≥ 0 and conclude that v′(8(x))≥ 0. □

Claim 3 finishes the proof. □

2.2. Existential AKE in mixed characteristic. In this section we prove an existential version of
Theorem 2.1.5. We first review some known AKE results in the equal characteristic setting.

2.2.1. Comparison with the equal characteristic case. For equal characteristic henselian valued fields
one has the following simple Ax–Kochen/Ershov principles due to Anscombe and Fehm:

Theorem 2.2.2 [Anscombe and Fehm 2016, Corollary 1.2]. Let (K , v), (K ′, v′) be two equal charac-
teristic nontrivially valued henselian fields. Then (K , v) ≡∃ (K ′, v′) in Lval if and only if k ≡∃ k ′ in
L rings.

Theorem 2.2.3 [Anscombe and Fehm 2016, Corollary 7.5]. Let (K , v) be an equal characteristic
henselian valued field. Then T h∃(K , v) is decidable in Lval if and only if T h∃(k) is decidable in L rings.

Remark 2.2.4. In residue characteristic 0, Theorems 2.2.2 and 2.2.3 were essentially known by work of
Ax and Kochen/Ershov prior to the work of Anscombe and Fehm [2016, Remark 7.3].

2.2.5. Existential AKE in mixed characteristic. In mixed characteristic, one can easily construct coun-
terexamples of Theorems 2.2.2 and 2.2.3; see [Anscombe and Fehm 2016, Remark 7.6]. It is then
natural to ask what an existential AKE principle in mixed characteristic would look like. This will be
Theorem 2.2.6 below, whose proof follows closely the proof of Theorem 2.1.5.

We write mn for the maximal ideal of Ov/pnOv and (Ov/pnOv,mn) for the local ring, viewed as an
L lcr-structure (see notation).
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Theorem 2.2.6. Let (K , v), (K ′, v′) be two henselian valued fields of mixed characteristic. Then the
following are equivalent:

(1) (K , v)≡∃ (K ′, v′) in Lval.

(2) Ov/pnOv ≡∃ Ov′/pnOv′ in L rings for all n ∈ N.

(3) (Ov/pnOv,mn)≡∃+ (Ov′/pnOv′,m
′
n) in L lcr for all n ∈ N.

Proof. (1)⇒ (2), (3): Clear.

(2)⇒ (1): By symmetry, it will suffice to show that (K , v) |H Th∃(K ′, v′). We may further assume
(K ′, v′) is countable by downward Löwenheim and Skolem and that (K , v) is ℵ1-saturated.

We again consider the valuations w, v̄ (resp. w′, v′) that were introduced in the proof of Theorem 2.1.5.
By our assumption, we have for each n ∈ N an embedding of rings Ov′/pnOv′ ↪→ Ov/pnOv.

Claim. There is an injective ring embedding φ : Ov̄′ ↪→ Ov̄.

Proof. Let us fix an enumeration of Ov′ , say Ov′ = (ai )i∈N. Consider the set of formulas in countably
many variables x = (xn)n∈ω of the form

6(x)= {xi ⋄ x j = xk(pn), xm□xρ(pn) : ai ∈ Ov′, ai ⋄ a j = ak(pn), am□aρ(pn)}

where ⋄ is either + or · and □ is either = or ̸=. Since for each n ∈ N we have an embedding of rings
Ov′/pnOv′ ↪→ Ov/pnOv , we get that 6(x) is finitely satisfiable. The ring Ov is ℵ1-saturated and we thus
have b = (bn)n∈ω with b |H6(x). Using that Ov̄ = Ov/

⋂
n∈ω pnOv (resp. Ov′ = Ov′/

⋂
n∈ω pnOv′), one

readily checks that the map Ov′→ Ov : ai 7→ bi descends to a ring embedding Ov̄′ ↪→ Ov̄. □

The claim provides us with a valued field embedding φ : (kw′, v̄
′) ↪→ (kw, v̄). By the existential

Ax–Kochen/Ershov principle in pure characteristic 0 (see Theorem 2.2.2 and Remark 2.2.4), we get that
(K , w) |H Th∃(K ′, w′). Replacing K with an ℵ1-saturated extension in a suitable language that includes
unary predicates for both Ov and Ow, we will also have an embedding (K ′, w′) ↪→ (K , w).

By the relative embedding property for equal characteristic 0 henselian valued fields (see in [Kuhlmann
2016, Theorem 7.1] for a more general statement), we can even find 8 : (K ′, w′) ↪→ (K , w) that induces
φ : (kw′, v̄

′) ↪→ (kw, v̄). Finally, we get that the map 8 : (K ′, v′) ↪→ (K , v) is an embedding of valued
fields, as in the proof of Claim 3, Theorem 2.1.5.

(3) ⇒ (2): For f (x1, . . . , xm) ∈ Z[x1, . . . , xm] and (a1, . . . , am) ∈ Om
v , note that f (a1, . . . , am) ̸=

0 mod pnOv if and only if there exists y ∈mv such that f (a1, . . . , am) · y = pn mod pn+1Ov (similarly
for Ov′). Consequently, for each n ∈ N, we see that if (Ov/pn+1Ov,mn+1)≡∃+ (Ov′/pn+1Ov′,m

′

n+1) in
L lcr, then Ov/pnOv ≡∃ Ov′/pnOv′ in L rings. □

2.3. Decidability. We now harvest the consequences of Theorems 2.1.5 and 2.2.6 in relation to decidability.
Since the countable union of recursive sets is not guaranteed to be recursive, we need to ask not only that
each individual OK /(pn) be decidable in L rings but also that the sequence (OK /(pn))n∈ω be uniformly
decidable in L rings:
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Corollary 2.3.1. Let (K , v) be a henselian valued field of mixed characteristic. Then the following are
equivalent:

(1) The valued field (K , v) is decidable in Lval.

(2) The sequence (OK /(pn))n∈ω is uniformly decidable in L rings and (0v, vp) is decidable in Loag with
a constant for vp.

Proof. (1)⇒ (2): Clear.

(2)⇒ (1): The identification 0v = K×/O× furnish us with a recursive interpretation E of (0v, vp) in
the valued field (K , v). Let also En be the natural interpretation of OK /(pn) in the Lval-structure (K , v),
for each n ∈ N. If gn : SentL rings → SentLval denotes the reduction map of En , then one can see that the
sequence (gn)n∈ω is uniformly recursive (using that En is uniform in n ∈ N). Let

6 := Hen(0,p) ∪

(⋃
n∈ω

{φEn : OK /(pn) |H φ}

)
∪ {φE : (0v, vp) |H φ}

where Hen(0,p) is a first-order axiom schema capturing Hensel’s lemma (see, e.g., [Kuhlmann 2016,
page 21]), together with a set of sentences capturing that the valued field has mixed characteristic (0, p).

Claim. The axiomatization 6 is r.e.

Proof. The set Hen(0,p) is clearly r.e. The set {φE : (0v, vp) |H φ} ⊆ Lval is r.e., being the image of a
recursive set via the recursive reduction map of E . Since recursively enumerable sets are closed under
finite unions, it remains to show that

⋃
n∈ω{φEn : OK /(pn) |H φ} is r.e.

Let χ : N× SentL rings → N be the recursive function associated to the uniformly decidable sequence
(OK /(pn))n∈ω. We construct the partial recursive function χ ′ :N×SentL rings→N×SentL rings which maps
(n, φ) 7→ (n, φ) if χ(n, φ) = 1 and is undefined if χ(n, φ) = 0. Consider also the recursive function
g : N× SentL rings → SentLval : (n, m) 7→ gn(m) associated to the uniformly recursive sequence (gn)n∈ω.
Observe that

⋃
n∈ω{φEn : OK /(pn) |H φ} = Im(F) where F is the (partial) recursive function F = g ◦χ ′.

It follows that
⋃

n∈ω{φEn : OK /(pn) |H φ} is r.e. □

If (K ′, v′) |H 6, then (K ′, v′) ≡ (K , v) in Lval by Theorem 2.1.5. We therefore get that 6 is a
complete axiomatization of (K , v). We conclude that the Lval-theory of (K , v) admits a r.e. and complete
axiomatization, whence (K , v) is decidable. □

Corollary 2.3.2. Let (K , v) be a henselian valued field of mixed characteristic. Then the following are
equivalent:

(1) The valued field (K , v) is ∃-decidable in Lval.

(2) The sequence (OK /(pn))n∈ω is uniformly ∃-decidable in L rings.

(3) The sequence ((OK /(pn),mn)n∈ω is uniformly ∃+-decidable in L lcr.

Proof. Similar to Corollary 2.3.1, ultimately using Theorem 2.2.6. □
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3. Perfectoid fields

3.1. Introduction.

3.1.1. Motivation. The theory of perfectoid fields (and spaces), introduced by Scholze [2012], was initially
designed as a means of transferring results available in positive characteristic to mixed characteristic; see
[Scholze 2014, Section 1]. It formalizes the earlier Krasner–Kazhdan–Deligne philosophy (due to Krasner
[1957], Kazhdan [1986] and Deligne [1984]), of approximating a highly ramified mixed characteristic field
with a positive characteristic field. Within the framework of perfectoid fields, this kind of approximation
becomes precise and robust with the use of the tilting functor (see Section 3.2).

All this is substantially different from the Ax–Kochen method (see, e.g., [van den Dries 2014, 2.20]),
which achieves a model-theoretic transfer principle asymptotically, i.e., with the residue characteristic
p→∞. The theory of perfectoid fields will allow us to transport decidability information for a fixed
residue characteristic (but with high ramification), setting the stage for a different type of model-theoretic
transfer principle.

3.1.2. Definition.

Definition 3.1.3. A perfectoid field is a complete valued field (K , v) of residue characteristic p > 0 such
that 0v is a dense subgroup of R and the Frobenius map 8 : OK /(p)→ OK /(p) : x 7→ x p is surjective.

Example 3.1.4. (a) The p-adic completions of Qp(p1/p∞), Qp(ζp∞) and Qab
p are mixed characteristic

perfectoid fields.

(b) The t-adic completions of Fp((t))1/p∞ and Fp((t))1/p∞ are perfectoid fields of characteristic p.

Remark 3.1.5. In characteristic p, a perfectoid field is simply a perfect, complete nonarchimedean valued
field of rank 1.

3.2. Tilting.

3.2.1. Introduction. A construction, originally due to Fontaine, provides us with a tilting functor that
takes any perfectoid field K and transforms it into a perfectoid field K ♭ of characteristic p. We shall now
describe this tilting functor. For more details, see [Scholze 2012, Section 3].

3.2.2. Definition. Given a perfectoid field (K , v), we shall now define its tilt (K ♭, v♭). Let lim
←−−x 7→x p K

be the limit of the inverse system

· · ·
x 7→x p
−−→ K x 7→x p

−−→ K x 7→x p
−−→ K

which is identified as lim
←−−x 7→x p K = {(xn)n∈ω : x p

n+1 = xn}, viewed as a multiplicative monoid via
(xn)n∈ω · (yn)n∈ω = (xn · yn)n∈ω. Similarly, one can define the multiplicative monoid lim

←−−x 7→x p OK .
Let ϖ ∈OK be such that 0 < vϖ ≤ vp (e.g., ϖ = p when char(K )= 0 and ϖ = 0 when char(K )= p)

and consider the ring lim
←−−8 OK /(ϖ) which is the limit of the inverse system of rings

· · ·
8
−→ OK /(ϖ)

8
−→ OK /(ϖ)

8
−→ OK /(ϖ)

where 8 : OK /(ϖ)→ OK /(ϖ) : x 7→ x p is the Frobenius homomorphism.
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Lemma 3.2.3 [Scholze 2012, Lemma 3.4(i) and (ii)]. (a) The ring lim
←−−8 OK /(ϖ) is independent of the

choice of ϖ and there is a multiplicative isomorphism lim
←−−x 7→x p OK

∼=−→ lim
←−−8 OK /(ϖ). Moreover,

we get a multiplicative morphism ♯ : lim
←−−8 OK /(ϖ)→ OK : x 7→ x♯ such that if x = (xn + (ϖ))n∈ω,

then x♯
≡ x0 mod (ϖ).

(b) There is an element ϖ ♭
∈ lim
←−−8 OK /(ϖ) with v(ϖ ♭)♯ = vϖ .

The definition of ♯ goes as follows: Let x = (xn)n∈ω ∈ lim
←−−8 OK /(ϖ), i.e., xn ∈OK /(ϖ) and x p

n+1= xn .
Let x̃n ∈ OK be an arbitrary lift of xn ∈ OK /(ϖ). Then the limit limn→∞ x̃ pn

n exists and is independent
of the choice of the x̃n; see [Scholze 2012, Lemma 3.4(i)]. We define x♯

:= limn→∞ x̃ pn

n .
We now introduce K ♭

:= lim
←−−8 OK /(ϖ)[(ϖ ♭)−1

]. A priori this is merely a ring. It is in fact a valued
field according to the following:

Lemma 3.2.4 [Scholze 2012, Lemma 3.4(iii)]. (a) There is a morphism of multiplicative monoids
K ♭
→ K : x 7→ x♯ (extending the one of Lemma 3.2.3(a)), which induces a morphism of multiplicative

monoids K ♭ ∼=−→ lim
←−−x 7→x p K : x 7→ (x♯, (x♯)1/p, . . .). The map v♭

: K ♭
→ 0v ∪ {∞} : x 7→ vx♯ is

a valuation on K ♭, which makes (K ♭, v♭) into a perfectoid field of characteristic p. If OK ♭ is the
valuation ring of K ♭, then we have a ring isomorphism OK ♭

∼= lim
←−−8 OK /(ϖ).

(b) We have an isomorphism of ordered abelian groups (0v, vϖ) ∼= (v♭K ♭, v♭ϖ ♭) and a field isomor-
phism kv

∼= kv♭ . Moreover, we have a ring isomorphism OK /(ϖ)∼= OK ♭/(ϖ ♭).

Remark 3.2.5. Lemma 3.2.4(a) allows us to identify the multiplicative underlying monoid of K ♭ with
lim
←−−x 7→x p K . It is not hard to see that, via this identification, addition is described by (xn)n∈ω+ (yn)n∈ω =

(zn)n∈ω, where zn = limm→∞(xn+m + yn+m)pm
.

Definition 3.2.6. We say that the valued field (K ♭, v♭) constructed in Lemma 3.2.4(a) is the tilt of the
perfectoid field (K , v).

Remark 3.2.7 [Scholze 2012, Lemma 3.4(iv)]. If (K , v) is a perfectoid field of characteristic p, then
(K ♭, v♭)∼= (K , v).

Example 3.2.8 (see Corollary 4.4.3). In the examples below, K̂ stands for the p-adic (resp. t-adic)
completion of the field K depending on whether its characteristic is 0 or p:

(a) ̂Qp(p1/p∞)
♭
∼=

̂Fp((t))1/p∞ and t♯
= p.

(b) Q̂p(ζp∞)
♭
∼=

̂Fp((t))1/p∞ and (t + 1)♯ = ζp.

(c) Q̂ab
p

♭
∼=

̂
Fp((t))1/p∞ and (t + 1)♯ = ζp.

Remark 3.2.9. The tilting construction makes sense for nonperfectoid fields as well. However, in the
absence of infinite wild ramification, it is too lossy for it to be useful (e.g., Q

♭
p = Fp).

3.3. Witt vectors. We review the basics of Witt vectors. Details and proofs can be found in [Serre 1979,
Sections 5 and 6; Kedlaya and Liu 2015, Section 3; van den Dries 2014, Section 6].
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3.3.1. p-rings.

Definition 3.3.2. A ring R of characteristic p is called perfect if the Frobenius homomorphism 8 : R→ R,
x 7→ x p is bijective.

Definition 3.3.3. (a) A p-ring is a commutative ring A provided with a filtration a1 ⊃ a2 ⊃ · · · such
that anam ⊂ an+m and so that A is Hausdorff and complete with respect to the topology induced by
the filtration and A/a1 is a perfect ring of characteristic p.

(b) If in addition an = pn A and p is not a zero-divisor, then we say that A is a strict p-ring.

If A is a p-ring, we call the quotient ring A/p A the residue ring of the p-ring A and write res :
A→ A/p A for the quotient map. A system of multiplicative representatives (or simply a system of
representatives) is a multiplicative homomorphism f A : A/p A→ A such that f A(res(x))= x . A p-ring
A always has a system of representatives f A : A/p A→ A and when A is strict every element a ∈ A can
be written uniquely in the form a =

∑
∞

i=0 f A(αi ) · pi [Serre 1979, page 37].

Theorem 3.3.4 [Serre 1979, Corollary page 39]. For every perfect ring R, there exists a unique strict
p-ring, denoted by W (R), with residue ring W (R)/pW (R)∼= R.

The ring W (R) is said to be the ring of Witt vectors over the ring R. The uniqueness part of
Theorem 3.3.4 follows from the next result, which we record here for later use.

Fact 3.3.5 [Kedlaya and Liu 2015, Lemma 3.3.2]. Let A be a strict p-ring and f A : A/p A→ A be
a system of representatives. Let A′ be a p-adically complete ring and φ : A/p A→ A′/p A′ be a ring
homomorphism. Then there exists a unique ring homomorphism g : A→ A′ making the diagram below
commute:

A A′

A/p A A′/p A′

g

φ

where the vertical arrows are the projections modulo p. More precisely, there exists a unique lift
φ : A/p A → A′/p A′ to a multiplicative map φ̃ : A/p A → A′ and we have g

(∑
∞

i=0 f A(αi ) · pi
)
=∑

∞

i=0 φ̃(αi ) · pi .

3.3.6. Teichmüller representatives. There is a system of Teichmüller representatives of R in W (R). This
is the (unique) multiplicative homomorphism [ ] : R→W (R) with the property that res([x])= x for all
x ∈ R. Explicitly, for x ∈ R and n ∈ N, let xn ∈ R be such that x pn

n = x and x̃n ∈W (R) be an arbitrary
lift of xn . The sequence (x̃ pn

n )n∈ω is a Cauchy sequence, whose limit is independent of the chosen lifts.
We let [x] := limn→∞ x̃ pn

n ; see [Serre 1979, Proposition 8 page 35].
It is easy to see that any element x ∈W (R) can be written uniquely in the form x =

∑
∞

n=0[xn] · pn , for
some xi ∈ R. The vector (x0, x1, . . . ) ∈ Rω is called the Teichmüller vector of x .
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3.3.7. Witt vectors. The advantage of Witt vectors over Teichmüller vectors, comes from the fact that the
ring operations in W (R) have nicer coordinatewise descriptions when using the former (see Section 3.3.8).
Write x ∈ W (R) in the form x =

∑
∞

n=0[x
p−n

n ] · pn , for some xi ∈ R. The vector (x0, x1, . . . ) ∈ Rω is
called the Witt vector of x .

3.3.8. Ring operations. By the discussion above, the ring W (R) can be thought of as the p-adic analogue
of formal power series with coefficients in R. By identifying x with its Witt vector, we see that W (R)

has Rω as its underlying set. By [van den Dries 2014, Lemma 6.5], the ring operations are given by

(a0, a1, . . . )+ (b0, b1, . . . )= (S0(a0, b0), S1(a0, a1, b0, b1), . . . )

and
(a0, a1, . . . ) · (b0, b1, . . . )= (P0(a0, b0), P1(a0, a1, b0, b1), . . . )

for suitable polynomials Si , Pi ∈ Z[x0, . . . , xi , y0, . . . , yi ] which are universal, in the sense that they do
not depend on R.

Observation 3.3.9. The polynomials Si (resp. Pi ) are computable, i.e., the function N→ Z[x0, y0, . . . ],
n 7→ Sn (resp. N→ Z[x0, y0, . . . ], n 7→ Pn) is recursive.

Proof. For n ∈N, we introduce the n-th Witt polynomial Wn(x0, . . . , xn)= x pn

0 + px pn−1

1 +· · ·+ pn
· xn ∈

Z[x0, . . . , xn] [van den Dries 2014, page 135]. The proof of [van den Dries 2014, Lemma 6.5] shows that

S0(x0, y0)= x0+ y0

and

Wn−1(S p
0 , . . . , S p

n−1)+pn
·Sn=Wn−1(S0(x p

0 , y p
0 ), . . . , Sn−1(x p

0 , . . . , x p
n−1, y p

0 , . . . , y p
n−1))+pn(xn+yn),

whence the polynomial Sn may be computed recursively from S0, . . . , Sn−1. The proof is similar for
the Pn . □

3.4. Truncated Witt vectors.

3.4.1. Definition. In this paper, we will mostly be working with truncated Witt vectors. These can be
thought of as p-adic analogues of truncated power series, i.e., elements of the ring R[[t]]/(tn)∼= R[t]/(tn)

(over some base ring R). More formally:

Definition 3.4.2. Let R be a perfect ring. Given n ∈ N, the ring of n-truncated Witt vectors over R is
defined as Wn(R) :=W (R)/pnW (R).

3.4.3. Language. For a perfect ring R, the pair (W (R), R) (resp. (Wn(R), R)) is viewed as a two-sorted
structure with sorts W for the Witt ring W (R) (resp. Wn(R)) and R for the residue ring R. The sort W
is equipped with the language of rings L rings, while the sort R may be equipped with any L ⊇ L rings. We
also have a function symbol for the Teichmüller map [ ] : R→W . For each choice of a language L for
the R-sort, the resulting language will be denoted by ⟨L rings, L⟩.
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3.4.4. Interpretability in R.

Lemma 3.4.5. Let R be a perfect ring, viewed as an L-structure with L ⊇ L rings. For each n ∈N, there
exists a quantifier-free interpretation 0n of the ⟨L rings, L⟩-structure (Wn(R), R) in the L-structure R such
that the sequence of interpretations (0n)n∈ω is uniformly recursive.

Proof. By Section 3.3.8, for n ∈ N the underlying set of Wn(R) can be identified with Rn , so we take
∂0n (x1, . . . , xn) to be

∧n
i=1 xi = xi and the coordinate map f0n : R

n
→Wn(R) as the identity map. The

ring operations of Wn(R) are given by

(a0, . . . , an−1)+ (b0, . . . , bn−1)= (S0(a0, b0), . . . , Sn−1(a0, b0, . . . , an−1, bn−1))

and

(a0, . . . , an−1) · (b0, . . . , bn−1)= (P0(a0, b0), . . . , Pn−1(a0, b0, . . . , an−1, bn−1)),

for certain polynomials Si , Pi ∈ Z[x0, . . . , xi , y0, . . . , yi ], for i = 0, . . . , n− 1. We now need to describe
the map φ 7→ φ0n on unnested atomic L rings-formulas:

(1) If φ(x, y, z) is the formula x + y = z (here x, y, z ∈ W ), we may take φ0n (x̄, ȳ, z̄) to be the
L rings-formula

∧n−1
i=0 zi = Si (x0, y0, . . . , xn−1, yn−1).

(2) If φ(x, y, z) is the formula x · y = z (here x, y, z ∈W ), we may take φ0n (x̄, ȳ, z̄) to be the L rings-
formula

∧n−1
i=0 zi = Pi (x0, y0, . . . , xn−1, yn−1).

(3) If φ(x, y) is the formula [x] = y (here x ∈ R and y ∈W ), we may take φ0n (x, ȳ) to be the formula∧n−1
i=1 yi = 0∧ y0 = x .

(4) If φ(x̄) is an unnested atomic L-formula with variables from the sort R, then we may take φ0n (x̄) :=

φ(x̄) (here xi ∈ R for the latter formula).

The above data define a quantifier-free interpretation 0n of the ⟨L rings, L⟩-structure (Wn(R), R) in the
L-structure R. Moreover, since the polynomials Si , Pi are computable (Observation 3.3.9), the sequence
of interpretations (0n)n∈ω is uniformly recursive. □

3.5. Untilting. Expository notes on the material of this section may be found either in Section 5 of the
Bourbaki seminar given by Morrow [2019] or in the lecture series notes by Lurie [2018, Lectures 2 and 3].

3.5.1. Overview. The functor K 7→ K ♭ is far from being faithful, i.e., there will be several nonisomorphic
mixed characteristic perfectoid fields K that tilt to the same perfectoid field of characteristic p. For
example, the p-adic completions of Qp(p1/p∞) and Qp(ζp∞) both tilt to the t-adic completion of
Fp((t))1/p∞ . For a perfectoid field F of characteristic p, an untilt of F is a pair (K , ι), where (K , v) is a
perfectoid field and ι : (F, w)

∼=−→ (K ♭, v♭) is a valued field isomorphism. Fargues and Fontaine give a
description of all possible untilts of F in an intrinsic fashion, i.e., in a way that uses only arithmetic from
F itself (see Theorem 3.5.11). This result will be of vital importance for Theorem A.
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3.5.2. The ring Ainf. Fix any perfectoid field (F, w) of characteristic p > 0. We introduce Ainf :=W (OF ),
called the infinitesimal period ring, which is the ring of Witt vectors over OF .

Definition 3.5.3. An element ξ ∈ Ainf is said to be distinguished if it is of the form ξ =
∑
∞

n=0[cn]pn ,
with c0 ∈mF and c1 ∈ O

×

F .

In other words, distinguished elements are those of the form ξ = [π ]−up where wπ > 0 and u ∈ Ainf

is a unit.

Remark 3.5.4. Let res : OF → OF/mF be the residue map and W (res) : Ainf → W (OF/mF ) be the
(unique) induced ring homomorphism provided by Fact 3.3.5 that maps

∑
∞

n=0[cn]pn
7→

∑
∞

n=0[res(cn)]·pn .
The element ξ ∈ Ainf is distinguished precisely when W (res)(ξ) is a unit multiple of p in W (OF/mF ).

3.5.5. Distinguished elements and untilts. We outline how one can go from an untilt of F to an ideal
of Ainf generated by a distinguished element and vice versa. Let (K , ι) be an untilt of F , i.e., we
have ι : (F, w)

∼=−→ (K ♭, v♭). By Lemma 3.2.3(a), we have a morphism of multiplicative monoids
♯ : OK ♭ → OK . We also write ♯ : OF → OK for the composite map OF

ι
−→ OK ♭

♯
−→ OK . While

♯ : OF → OK is not a ring homomorphism (unless K has characteristic p), it does induce a ring
homomorphism φ : OF → OK /(p) : x 7→ x♯ mod (p). Moreover, φ is surjective since it descends to an
isomorphism OF/(π)

∼=−→ OK /(p) for any π ∈ OF with wπ = vp. The map θ in the lemma below is
important. We shall sketch the proof of the lemma for the convenience of the reader.

Lemma 3.5.6 [Lurie 2018, Lecture 3, Remarks 11–13]. There exists a ring homomorphism θ : Ainf→OK

inducing φ above. Moreover, θ is surjective and θ−1(O×K )= A×inf.

Proof sketch. Apply Fact 3.3.5 with A= Ainf, A′=OK to get that φ lifts uniquely to the ring homomorphism

θ : Ainf→ OK :

∞∑
n=0

[cn] · pn
7→

∞∑
n=0

c♯
n · p

n.

We claim that θ is surjective. Recall that φ is surjective. Given x ∈ OK , we may thus find c0 ∈ OF such
that x = c♯

0+ x1 · p, for some x1 ∈ OK . Similarly, we may find c1 ∈ OF such that x1 = c♯

1+ x2 · p. We
then get that x = c♯

0+ c♯

1 · p+ x2 · p2. Continuing this way and since OK is p-adically complete, we may
write x =

∑
∞

n=0 c♯
n · pn . To show that θ−1(O×K )= A×inf, observe that
∞∑

n=0

[cn] · pn
∈ A×inf⇐⇒ c0 ∈ O

×

F ⇐⇒ c♯

0 ∈ O
×

K ⇐⇒

∞∑
n=0

c♯
n · p

n
∈ O×K □

Let us examine the kernel of θ . Let π ∈OF be as above (i.e., such that wπ = vp) and write π ♯
= ū · p for

some ū ∈O×K . By Lemma 3.5.6, we may find u ∈ A×inf such that θ(u)= ū. Note that ξ = [π ]−u · p ∈ Ainf

is a distinguished element and that ξ ∈ Ker(θ). In fact, the following is true:

Proposition 3.5.7 [Lurie 2018, Corollary 17]. Let (F, w) be a perfectoid field of characteristic p and
(K , ι) be an untilt. Let θ : Ainf→ OK be as above. Then Ker(θ) is a principal ideal generated by any
distinguished element ξ ∈ Ker(θ).
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Starting with an untilt (K , ι), we have thus produced an ideal (ξK )⊆ Ainf, where ξK is a distinguished
element in Ainf.

Conversely, starting with (ξ)⊆ Ainf, with ξ a distinguished element, we may produce an untilt (K , ι)

of F as follows. Write θ : Ainf→ Ainf/(ξ) for the quotient map. We then have:

Lemma 3.5.8 [Lurie 2018, Lecture 3, page 4, Claim (a)]. For every y ∈ Ainf/(ξ), there exists x ∈ OF

such that (y)= (θ([x])).

Proposition 3.5.9 [Lurie 2018, Proposition 16]. Let (F, w) be a perfectoid field of characteristic p and
ξ ∈ Ainf a distinguished element. Then the quotient ring Ainf/(ξ) is the valuation ring OK of a perfectoid
field (K , v) such that (K ♭, v♭)∼= (F, w). The valuation v is such that if y ∈ Ainf/(ξ), then vy := wx with
x ∈ OF so that (y)= (θ([x])) in Ainf/(ξ).

The isomorphism ι : (F, w)→ (K ♭, v♭) of Proposition 3.5.9 is described as follows. If ξ =[π ]−up, then
OK /(p)∼=W (OF )/(p, [π ] − up)∼= OF/(π). Passing to inverse limits, this induces a ring isomorphism
OK ♭
∼= OF , which in turn yields ι : F ∼=−→ K ♭ by passing to fraction fields. Starting with (ξ)⊆ Ainf, we

have thus produced an untilt (K , ι).

Definition 3.5.10. Two untilts (K , ι) and (K ′, ι′) are isomorphic when there exists a valued field isomor-
phism φ : K ∼=−→ K ′ inducing a commutative diagram

F K ♭

F K ′♭

=

ι

φ♭

ι′

where φ♭
: (x, x1/p, . . . ) 7→ (φ(x), φ(x1/p), . . . ). Let YF denote the set of characteristic 0 untilts of

(F, w), up to isomorphism.

We write 0 for the isomorphism class of the unique characteristic p untilt of (F, ι), represented by F
itself together with the natural isomorphism ι : F ∼=−→ F♭

: x→ (x, x1/p, . . . ), and set Y F = YF ∪{0} for
the set of all untilts of (F, w), up to isomorphism.

Theorem 3.5.11 (Fargues and Fontaine). Let (F, w) be a perfectoid field of characteristic p. The map
(ξ) 7→ Frac(OF/(ξ)) defines a bijective correspondence between the set of ideals (ξ)⊆ Ainf generated by
a distinguished element and the set Y F .

Proof. See [Morrow 2019, Proposition 5.1] or [Lurie 2018, Lecture 2, Corollary 18]. □

Remark 3.5.12. Let (K , ι) be an untilt of (F, w) and (ξ)= ([π ] − up) be its associated ideal. Note that
(p)= (θ([π ])) in Ainf/(ξ) and therefore vp = wπ .

3.5.13. Tilting equivalence. We emphasized in Section 3.5.1 that untilting is ambiguous, in the sense
that there are many ways to untilt a perfectoid field of positive characteristic. However, the ambiguity is
eliminated by fixing a base perfectoid field K and its associated tilt K ♭. This leads to an equivalence of
categories of perfectoid extensions, known as the tilting equivalence:
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Theorem 3.5.14 (tilting equivalence). The categories of perfectoid field extensions of K and perfectoid
field extensions of K ♭ are equivalent.

Proof. See [Scholze 2013, Theorem 2.8]. Theorem 5.2 in [loc. cit.] shows a more general result about
perfectoid algebras; the case of perfectoid fields follows as a special case by [loc. cit., Lemma 5.21]. □

In the discussion after [loc. cit., Theorem 2.8], Scholze explains that there are two proofs of
Theorem 3.5.14:

(1) His original proof in [loc. cit.], using Faltings’ almost mathematics; see [loc. cit., Section 4].

(2) An alternative proof which describes the functor ♯ inverse to ♭ as L 7→ W (OL)⊗W (OK ♭ ) K ; see
[loc. cit., Remark 5.19].

Let us elaborate more on the second approach, which is in the spirit of Section 3.5 and will be more suitable
for us. If (ξ) ⊂ W (OK ♭) is the ideal associated to K , then one computes that W (OL)⊗W (OK ♭ ) OK =

W (OL)⊗W (OK ♭ ) W (OK ♭)/(ξ)=W (OL)/(ξ). In other words, if L is a perfectoid field extending K ♭, then
L♯ is simply the untilt of K whose associated ideal in W (OL) is (ξ).

3.6. Space of untilts. In Section 3.6.3 we exhibit an appealing model-theoretic property of the space YF

of untilts of (F, w). This will not be used in the rest of the paper. We then study in Section 3.6.5 the size
of the space of untilts up to elementary equivalence. We will see that the cardinality is often too big, so
that one cannot possibly expect K to be decidable simply relative to K ♭.

3.6.1. Metric structure on YF . Fargues and Fontaine equip Y F with a metric topology, which allows
us to view the space of untilts geometrically. Suppose x = (Kx , vx) and y = (K y, vy) are two “points”
of Y F , corresponding to the ideals (ξx) and (ξy) respectively, provided by Theorem 3.5.11. We choose
an embedding 0w ↪→ R, which determines embeddings 0vy ↪→ R for all y ∈ YF via the canonical
identification 0vy

∼= 0w. One then defines d(x, y) := |θy(ξx)|y , where θy : Ainf ↠ Ainf/(ξy)= OK y is the
quotient map and as usual |a|y = p−vy(a).

Proposition 3.6.2 [Fargues and Fontaine 2018, Proposition 2.3.2(1)]. Let d : Y F × Y F → R be as above.
The pair (Y F , d) is a complete ultrametric space.

Proof. See [Fargues and Fontaine 2018, Propositions 2.3.2 and 2.3.4] or [Lurie 2018, Lecture 14,
Propositions 6 and 7]. □

Recall that 0∈ Y F is the isomorphism class of the untilt corresponding to (F, w) itself together with the
natural isomorphism ι : F ∼=−→ F♭

: x→ (x, x1/p, . . . ). We can define a radius function r(y) := d(0, y)

for y ∈ Y F , which allows us to think of Y F intuitively as the unit disc with center 0.

3.6.3. A model-theoretic property of YF . We now show that limits in the punctured unit disc YF , with
respect to the Fargues–Fontaine metric, agree with limits in the model-theoretic sense:
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Proposition 3.6.4. Let (xn)n∈ω be a sequence in YF such that xn
d
−→ x and x ̸= 0. Let (Kn, vn) be the

untilt associated to xn and (K , v) the untilt associated to x. We set

(K ∗, v∗) :=
∏
n∈ω

(Kn, vn)/U

for a nonprincipal ultrafilter U on N. Then (K ∗, v∗)≡ (K , v) in Lval.

Proof. Let (ξn)= ([πn]−un p) be the ideal in Ainf corresponding to (Kn, vn) and (ξ)= ([π ]−up) be the
ideal corresponding to (K , v). Note that the set {vn p : n ∈ N} ⊆ 0w is bounded from above; otherwise,
there would be a subsequence (xnk )k∈N with xnk → 0.

Fix m ∈ N and let (ξ n) and (ξ) be the images of the ideals (ξn) and (ξ) in Wm(OF ) via Ainf ↠

Ainf/(pm)=Wm(OF ).

Claim. We have that (ξ n)= (ξ), for sufficiently large n.

Proof. We let θ : Ainf→ Ainf/(ξ)=OK be the quotient map. Since d(xn, x)→0, we get that v(θ(ξn))→∞.
We will thus have that ξn ≡ pm

·αn mod (ξ), for some αn ∈ Ainf and for all n≫ 0. Consequently, one
gets that (ξ n) ⊆ (ξ̄ ) for n≫ 0. Similarly, since vn(θn(ξ))→∞ and {vn p : n ∈ N} is bounded, we get
that vn(θn(ξ))≥ mvn p for n≫ 0. It follows that there exists βn ∈ Ainf such that ξ ≡ pm

·βn mod (ξn),
for n≫ 0. We conclude that (ξ n)= (ξ), for n≫ 0. □

It follows that OKn/(pm) ∼= Wm(OF )/(ξ n) = Wm(OF )/(ξ) ∼= OK /(pm), for sufficiently large n. We
also get that (ξn) and (ξ) have the same image in Ainf/(p) ∼= OF for n ≫ 0 and therefore (πn) = (π)

for n ≫ 0. By Lemma 3.2.4(b), we get that (0vn , vn p) ∼= (0w, wπn) = (0w, wπ) ∼= (0v, vp), for all
sufficiently large n. The conclusion follows from Theorem 2.1.5 and Łoś’s Theorem. □

3.6.5. The space Z F . It is natural to consider the set YF up to elementary equivalence. More precisely:

Definition 3.6.6. Let (F, w) be a perfectoid field of characteristic p. For x = (Kx , ιx), y = (K y, ιy) ∈ YF

define the equivalence relation x ∼ y⇐⇒ (Kx , vx)≡ (K y, vy) in Lval. We define Z F := YF/∼.

Note that the definition of Z F only takes the underlying valued fields (K , v) into account and not the
map ι. We now determine the size of Z F in a few cases in Proposition 3.6.9. For Proposition 3.6.9(a), we
will need the following:

Fact 3.6.7 [Scholze 2012, Proposition 4.3]. Let (K , v) be a perfectoid field with K ♭ algebraically closed.
Then K is also algebraically closed.

For Proposition 3.6.9(b) we need an algebraic fact. A finite extension L/K has the unique subfield
property if for every d | [L : K ], there is a unique subextension F/K such that [F : K ] = d .

Fact 3.6.8 [Acosta de Orozco and Vélez 1982, Theorem 2.1]. Let K be a field, n ∈ N be such that
char(K )∤n, a ∈ K such that Xn

− a ∈ K [X ] is irreducible and set L = K (a1/n). Suppose that for every
odd prime p | n, we have that ζp /∈ L\K and in case 4 | n we have ζ4 /∈ L\K . Then L/K has the unique
subfield property.
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The construction in Proposition 3.6.9(b) is an elaborated version of Scholze’s answer [2021] to a
closely related mathoverflow question asked by the author.

Proposition 3.6.9. (a) Let (F, w)= (F̂p((t)), vt), the t-adic completion of an algebraic closure of Fp((t)).
Then |Z F | = 1.

(b) Set (F, w)= ( ̂Fp((t))1/p∞, vt). Then |Z F | = c.

Proof. (a) First proof. Let (K , v) be a perfectoid field of characteristic 0 such that (K ♭, v♭)∼= (F̂p((t)), vt).
By Fact 3.6.7, we get that K is algebraically closed. By Robinson’s completeness of the theory ACVF(0,p)

of algebraically closed valued fields of mixed characteristic (0, p) (see [van den Dries 2014, Corol-
lary 3.34]), we get that Th(K , v)= ACVF(0,p) and hence |Z F | = 1.

Second proof. Let Cp = Q̂p be the completed algebraic closure of Qp. By [Fargues and Fontaine 2014,
Remark 2.24], we have a ring isomorphism OK /(pn) ∼= OCp/(pn) for each n ∈ N. One also has that
(0v, vp)≡ (0Cp , vp p) in Loag with a constant for vp, by an easy application of quantifier elimination for
the theory ODAG of ordered divisible abelian groups [Marker 2002, Corollary 3.1.17]. We conclude that
(K , v)≡ (Cp, vp) from Theorem 2.1.5.

(b) We assume that p > 2; we indicate the necessary changes for the case p = 2 in the end of the proof.
For each α ∈ 2ω, we define an algebraic extension Kα of Qp as follows. We write α ↾ n for the restriction
of α to n = {0, 1, . . . , n− 1} (set-theoretically α ↾ 0= 0). We now define inductively:

(1) K0 =Qp and π0 = p.

(2) Kα↾n = Kα↾(n−1)(((1+ p)α(n−1)
·πα↾(n−1))

1/p) and πα↾n = ((1+ p)α(n−1)
·πα↾(n−1))

1/p.

Set αn =
∑n−1

k=0 α(k) · pk for n ∈N>0 and α0= 1 by convention. Note that X pn
−(1+ p)αn p ∈Zp[X ] is an

Eisenstein (hence irreducible) polynomial and that Kα↾n=Qp(((1+ p)αn p)1/pn
). We let Kα=

⋃
n∈ω Kα↾n .

Visually, the field Kα is obtained by taking the union of all fields along a certain branch (corresponding
to α) in the binary tree below:

Qp

Qp.p1=p/

Qp.p1=p2

/

:::

Qp...1 C p/pp/1=p2

/

:::

Qp...1 C p/p/1=p)

Qp...1 C p/p/1=p2

/

:::

Qp...1 C p/1Cpp/1=p2

/

:::

Claim 1. For each α ∈ 2ω, we have ζp /∈ Kα and (1+ p)1/p /∈ Kα.

Proof. Note that ζp /∈ Kα since e(Kα↾n/Qp)= pn while e(Qp(ζp)/Qp)= p−1. Suppose that (1+ p)1/p
∈

Kα↾n , for some n ∈ N. By Fact 3.6.8, we would have that Kα↾1 = Qp((1+ p)1/p). If α(0) = 0, this
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would imply that Qp(p1/p) = Qp((1 + p)1/p). If α(0) = 1, this would imply that Qp(((1 + p) ·

p)1/p) = Qp((1+ p)1/p). In either case, we would get that Qp(p1/p) = Qp((1+ p)1/p). However,
one sees that (1+ p)1/p /∈ Qp(p1/p). Indeed, suppose a ∈ Qp(p1/p) is such that a p

= 1+ p. Write
a ≡ c0+ c1 · p1/p mod p2/pZp[p1/p

], for some c0, c1 ∈ {0, . . . , p− 1}. We then compute

a p
≡ cp

0 + cp
1 · p+ cp−1

0 · c1 · p1+1/p
̸≡ 1+ p mod p1+2/p,

for any choice of c0 and c1. We conclude that (1+ p)1/p /∈ Kα. □

Using Claim 1, we show:

Claim 2. If α ̸= β, then K̂α ̸≡∃1 K̂β in L rings.

Proof. Note that Kα ≡∃1 K̂α (resp. Kβ ≡∃1 K̂β) by Theorem 2.2.6. It suffices to show that Kα ̸≡∃1 Kβ

for α ̸= β. Let n ∈ ω be least such that α(n) ̸= β(n) and say α(n) = 1. Now if Kα ≡∃1 Kβ , there
would be a, b ∈ Kα such that a pn

= (1+ p)αn p and bpn
= (1+ p)βn p. Set c := a/b and note that

cpn
= (1+ p)αn p/((1+ p)βn p)= (1+ p)pn−1

. This implies that (cp/(1+ p))pn−1
= 1. We conclude that

either ζp ∈ Kα or cp
= 1+ p, both of which are impossible by Claim 1. □

Next we prove:

Claim 3. For every α ∈ 2ω, we have that K̂α
♭
= ̂Fp((t))1/p∞ .

Proof. For every n ∈ N, we have that Kα↾(n+1)/Kα↾n is totally ramified and OKα↾(n+1)
= OKα↾n [πα↾(n+1)]

[Serre 1979, Corollary page 19]. It follows that OKα
= Zp[{πα↾n : n ∈ N}]. We compute

OKα
/(p)= Zp[x1, x2, . . . ]/(p, x p

1 − (1+ p)α(0) p, x p
2 − (1+ p)α(1)x1, . . . )

∼= Fp[x1, x2, . . . ]/(x p
1 , x p

2 − x1, . . . )

∼= Fp[x
1/p∞

1 ]/(x p
1 )

t=x p
1
= Fp[t1/p∞

]/(t).

We thus get that lim
←−−8 OKα

/(p)∼= ̂Fp[[t]]1/p∞ and the conclusion follows. □

Claims 2,3 show that |Z F | ≥ c. On the other hand, the bound |Z F | ≤ c is automatic, as any first-order
Lval-theory can be identified with a subset of SentLval ≃ N. This finishes the proof in case p > 2. For
p = 2, one first proves a variant of Claim 1, namely that ζ4 /∈ Kα and (±3)1/2 /∈ Kα. For the former,
one can check inductively that ζ4 /∈ Kα↾n using Kummer theory for quadratic extensions. The proof of
Claim 2 then goes through. Finally, the proof of Claim 3 works verbatim for p = 2. □

Remark 3.6.10. Set (F, w)= (F̂p((t)), vt). Fargues and Fontaine [2014, Remark 2.24] ask whether every
untilt (K , v) of (F, w) is isomorphic to (Cp, vp). They note in Remark 2.24 that for any untilt (K , v) of
(F, w) one has OK /(pn) ∼= OCp/(pn) for each n ∈ N. However, these isomorphisms are obtained in a
noncanonical way and do not necessarily yield a valued field isomorphism between K and Cp. In fact, an
example of such a K with K ̸∼= Cp was provided by Kedlaya and Temkin [2018, Theorem 1.3]. This
should be contrasted with Proposition 3.6.9(a), saying that all untilts of (F, w) are elementary equivalent.
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Remark 3.6.11. In [Anscombe and Fehm 2016, Remark 7.6], the authors write:

At present, we do not know of an example of a mixed characteristic henselian valued field (K , v)

for which Th∃(kv) and Th∃(0v, vp) are decidable but Th∃(K , v) is undecidable.

We note that such an example indeed exists. By Proposition 3.6.9(b) and the fact that there are
countably many Turing machines, there must exist an undecidable perfectoid (thus henselian) field (K , v)

with K ♭ ∼=
̂Fp((t))1/p∞ . Moreover, the proof even provides us with a field K whose algebraic part is

undecidable. On the other hand, by Lemma 3.2.4(b), we have that kv
∼= Fp and (0v, vp)∼=

( 1
p∞Z, 1

)
, both

of which are decidable — the latter being an easy application of [Robinson and Zakon 1960]. Finally,
we note that Dittmann [2022] has recently provided an example which is discretely valued and whose
algebraic part is decidable.

Remark 3.6.12. For future use in Proposition 7.1.1, we record here that Claim 3 gives us that t =
(πα↾0+ (p), πα↾1+ (p), . . . ), via the identifications ̂Fp[[t]]1/p∞ ∼= lim

←−−8 OKα
/(p).

Question 3.6.13. Is there a perfectoid field (F, w) of characteristic p with 1 < |Z F |< c?

4. Relative decidability for perfectoid fields

4.1. Introduction. We shall now use the results of Section 3 to prove Theorem A and Corollary A.

4.1.1. Work of Rideau, Scanlon and Simon. It is my understanding that there is ongoing work by Rideau,
Scanlon and Simon, which aims at giving a model-theoretic account of many of the concepts and facts that
were discussed in Section 3, in the context of continuous logic. In particular, they obtain a biinterpretability
result between OK and OK ♭ in the sense of continuous logic. It should be noted that their biinterpretability
result was conceived prior to the present paper and in fact influenced the material that is presented here.

4.1.2. Plan of action. Without any adjustments, the interpretation of Rideau, Scanlon and Simon does
not quite yield an interpretation in the sense of ordinary first-order logic. The problem is that when one
converts statements about OK to statements about OK ♭ via OK ∼=W (OK ♭)/(ξ), one ends up with infinitely
many variables, coming from the Witt vector coordinates. This problem disappears by interpreting one
residue ring OK /(pn) at a time, via OK /(pn)∼=Wn(OK ♭)/(ξ mod (pn)). This approach is facilitated by
Corollary 2.3.1. In Section 2.3, we emphasized that uniform decidability of the residue rings is key. As
we will see, this eventually comes down to the computability of the distinguished element ξ itself.

4.2. Computable untilts.

4.2.1. Computable Witt vectors. In analogy with a computable real number, a computable p-adic integer
is one for which there is an algorithm which outputs the sequence of its p-adic digits. More precisely, a
p-adic integer a ∈Zp of the form a =

∑
∞

n=0[αn] · pn is said to be computable precisely when the function
N→ Z/pZ : n 7→ αn is recursive. The notion of a computable p-adic integer extends naturally to the
more general concept of a computable Witt vector.
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First recall that a computable ring R0 is one whose underlying set is (or is identified with) a recursive
subset of N, via which the operations + : R0×R0→ R0 and · : R0×R0→ R0 are identified with recursive
functions.

Definition 4.2.2. Fix a perfect ring R and let R0 ⊆ R a computable subring. Consider the ring W (R), the
ring of Witt vectors over R. An element ξ ∈W (R) with Witt vector coordinates (ξ0, ξ1, . . . ) ∈ Rω is said
to be R0-computable if:

(1) For each n ∈ N, we have that ξn ∈ R0.

(2) The function N→ R0 : n 7→ ξn is recursive.

Example 4.2.3. (a) Let R0 = R = Fp. Then the computable elements of Zp = W (Fp) are the usual
computable p-adic integers.

(b) A nonexample: Let R be any perfect ring, R0 ⊆ R any computable subring and S ⊆ N be a
nonrecursive set. The element ξ =

∑
n∈S pn

∈W (R) is not computable.

4.2.4. Computable untilts. Let (F, w) be a perfectoid field of characteristic p and Ainf =W (OF ). Let
also R0 ⊆ OF be a computable subring.

Remark 4.2.5. The reader is welcome to assume that F = ̂Fp((t))1/p∞ or ̂
Fp((t))1/p∞ and R0 = Fp[t].

This case is enough for the applications presented here, i.e., Corollaries A and B.

We shall now define what it means for an untilt K of F to be R0-computable:

Definition 4.2.6. Let (K , ι) be an untilt of (F, w) and R0⊆OF a computable subring. We say that (K , v)

is an R0-computable untilt of (F, w) if there is an R0-computable distinguished element ξK ∈ Ainf with
OK ∼= Ainf/(ξK ).

Example 4.2.7. In Corollary 4.4.6 we will see that ̂Qp(p1/p∞) and Q̂p(ζp∞) are Fp[t]-computable untilts
of ̂Fp((t))1/p∞. Also, that Q̂ab

p is an Fp[t]-computable untilt of ̂
Fp((t))1/p∞ .

4.3. Relative decidability. Let (K , v) be an untilt of (F, w) and ξK ∈ Ainf be such that OK = Ainf/(ξK )

(Theorem 3.5.11). We write ξ K ,n for the image of ξK in Wn(OF ) via Ainf ↠ Ainf/(pn)∼=Wn(OF ).

4.3.1. Interpretability. All the necessary background material related to interpretability is presented in
Section 1.2.

Lemma 4.3.2. For each n ∈ N, there is a ∃+-interpretation An of the local ring (OK /(pn),mn) in
the ⟨L rings, L lcr⟩-structure ((Wn(OF ),OF ), ξ K ,n) such that the sequence of interpretations (An)n∈ω is
uniformly recursive.

Proof. Fix n ∈ N. We have that OK /(pn)∼= Ainf/(pn, ξK )∼=Wn(OF )/(ξ K ,n). By Proposition 3.5.9, we
get that mn = ({θn([x]) : x ∈mF }), where θn is the composite map

Ainf
θ
−↠ Ainf/(ξK )

mod pn
−−−↠ Wn(OF )/(ξ K ,n)

∼=−→ OK /(pn).
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We take ∂An (x) to be x ∈W . Let c be a constant symbol with c(Wn(OF ),OF )
= ξ K ,n . The reduction map

FormL lcr → ⟨L rings, L lcr⟩ ∪ {c} : φ 7→ φAn on unnested atomic formulas is described as follows:

(1) If φ(x, y) is x = y, then we take φAn to be the formula x, y ∈W ∧∃z ∈W(x = y+ z · c). As usual,
the conjunct x, y ∈W is an informal way of saying that the variables x, y are taken from the sort W .
The cases of x = 0 and x = 1 are similar.

(2) If φ(x, y, z) is x ⋄ y= z, then we take φAn to be the formula x, y, z ∈W ∧∃w ∈W(x ⋄ y= z+w ·c),
where ⋄ is either · or +.

(3) If φ(x) is x ∈m, then we take φAn (x) to be the formula x ∈W ∧∃z, w ∈W , y ∈ R (y ∈m∧ x =
[y] · z+w · c).

The coordinate map fAn :Wn(OF ) ↠ OK /(pn) is the one induced by the map θn above. The above data
define a recursive ∃+-interpretation An of (OK /(pn),mn) in ((Wn(OF ),OF ), ξ K ,n). The sequence of
interpretations (An)n∈ω is uniform in n and thus also (trivially) uniformly recursive. □

Proposition 4.3.3. Suppose (K , v) is an untilt of (F, w) and that ξK ∈ Ainf is such that OK = Ainf/(ξK ).
Let (ξ0, ξ1, . . .) ∈ O

ω
F be the Witt vector coordinates of ξK . Then:

(a) The value group (0v, vp) is recursively interpretable in the valued field ((F, w), ξ0).

(b) For each n ∈N, there exists a ∃+-interpretation Bn of the local ring (OK /(pn),mn) in the local ring
((OF ,mF ), ξ0, . . . , ξn−1) such that the sequence of interpretations (Bn)n∈ω is uniformly recursive.

Proof. (a) By Lemma 3.2.4(b), we will have that (0v, vp)∼= (0w, wξ0) and the value group (0w, wξ0) is
clearly recursively interpretable in the Lval ∪ {c}-structure (F, w) with c(F,w)

= ξ0.

(b) Lemma 4.3.2 provides us with a ∃+-interpretation An of the local ring (OK /(pn),mn) in the
⟨L rings, L lcr⟩∪{c}-structure ((Wn(OF ),OF ), ξ K ,n) such that the sequence of interpretations (An)n∈ω is uni-
formly recursive. Lemma 3.4.5 provides us with a quantifier-free interpretation 0n of ((Wn(OF ),OF ),ξ K ,n)

in the local ring ((OF ,mF ), ξ0, . . . , ξn−1), such that the sequence of interpretations (0n)n∈ω is uniformly
recursive. Let Bn be the composite interpretation of (OK /(pn),mn) in ((OF ,mF ), ξ0, . . . , ξn−1). This
is also a ∃+-interpretation by Lemma 1.2.8 and the sequence of interpretations (Bn)n∈ω is uniformly
recursive by Lemma 1.2.15. □

4.3.4. Proof of Theorem A. Given a computable subring R0 ⊆ OF , we write Lval(R0) for the language
Lval enriched with a constant ca for each a ∈ R0 (see notation). The valued field (F, w) can then be
updated to an Lval(R0)-structure with c(F,w)

a = a.

Theorem A. Let (F, w) be a perfectoid field of characteristic p. Suppose R0 ⊆ OF is a computable
subring and (K , v) is an R0-computable untilt of (F, w):

(a) If (F, w) is decidable in Lval(R0), then (K , v) is decidable in Lval.

(b) If (F, w) is ∃-decidable in Lval(R0), then (K , v) is ∃-decidable in Lval.
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Proof. (a) By Proposition 4.3.3(a), we get that (0v, vp) is decidable in Loag with a constant for vp. By
Proposition 4.3.3(b), for each n ∈N, there exists an interpretation Bn of the L lcr-structure (OK /(pn),mn)

in the L lcr ∪ {c0, . . . , cn−1}-structure ((OF ,mF ), ξ0, . . . , ξn−1) with c(OF ,mF )
m = ξm for m = 0, . . . , n− 1.

Moreover, the sequence of interpretations (Bn)n∈ω is uniformly recursive.

Claim. There exists an interpretation 1n of the L lcr ∪ {c0, . . . , cn−1}-structure ((OF ,mF ), ξ0, . . . , ξn−1)

in the Lval(R0)-structure (F, w) such that the sequence of interpretations (1n)n∈ω is uniformly recursive.

Proof. Fix n ∈ N. We take ∂1n (x) to be the formula x ∈ O. The reduction map on unnested atomic
formulas is described as follows:

(1) If φ(x) is the formula x = cm , for some m = 0, . . . , n−1, we take φ1n (x) to be the formula x = cξm .
The formulas x = y, x = 0 and x = 1 are interpreted in the obvious way.

(2) If φ(x) is the formula x ∈m, we take φ1n (x) to be the formula ∃y(xy = 1∧ y /∈ O).

(3) If φ(x, y, z) is x ⋄ y = z, then we take φ1n to be the formula x, y, z ∈ O∧ φ(x, y, z), where ⋄ is
either · or +.

The coordinate map f1n : ∂1n (F)→OF is the identity. Since N→ R0 :m 7→ ξm is recursive, the reduction
map N× FormL lcr∪{c0,...,cn−1}→ FormLval(R0) : (n, φ) 7→ φ1n restricted to unnested atomic formulas is
recursive. By definition, this means that the sequence of interpretations (1n)n∈ω is uniformly recursive. □

For each n∈N, let En be the composite interpretation of Bn and 1n . The sequence (En)n∈ω is uniformly
recursive by Lemma 1.2.15. By Proposition 1.2.14, we get that the sequence of rings (OK /(pn))n∈ω is
uniformly decidable in L rings. The conclusion follows from Corollary 2.3.1.

(b) For the existential version, one needs to keep track of the complexity of formulas. Since Bn is a
∃
+-interpretation and 1n is an ∃-interpretation, we see that the reduction map L lcr→ Lval(R0) : φ 7→

φEn sends ∃+-formulas to ∃-formulas (see Remark 1.2.7). It follows that the sequence of local rings
((OK /(pn),mn)n∈ω is uniformly ∃+-decidable in L lcr. We conclude by Corollary 2.3.2. □

The assumption of completeness in Theorem A can be easily relaxed to henselianity:

Corollary 4.3.5. Let (F, w) be a perfect nontrivially valued field with a rank 1 value group and R0 ⊆ OF

be a computable subring. Suppose (K , v) is a mixed characteristic henselian valued field such that (K̂ , v̂)

is an R0-computable untilt of (F̂, ŵ). Then:

(a) If (F, w) is decidable in Lval(R0), then (K , v) is decidable in Lval.

(b) If (F, w) is ∃-decidable in Lval(R0), then (K , v) is ∃-decidable in Lval.

Proof. Suppose ÔK = W (ÔF )/(ξ), where ξ = [π ] − up, with π ∈ mF ∩ R0 and u ∈ W (OF )×. Note
that W (ÔF )/([π ]−up)∼=W (OF )/([π ]−up); indeed, W (OF ) is p-adically complete and [π ] and p are
associates in the quotient W (OF )/([π ] − up). For each n ∈ N, one has that

OK /(pn)∼= ÔK /(pn)∼=Wn(ÔF )/([π ] − up)∼=Wn(OF )/([π ] − up)

We now proceed as in the proof of Theorem A. □
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4.3.6. Remarks on Theorem A. Note that decidability of K in Lval relative to its tilt K ♭ in Lval, i.e.,
without taking parameters into account, is false. Essentially, the point is that p is named in Lval, while t
is not.

Example 4.3.7. Let (0,+, <)⊆ (R,+, <) be any p-divisible ordered abelian group, which is decidable
in Loag but undecidable in Loag ∪ {1}, where 1 a distinguished element of 0. For example, let S ⊊ P be a
nonrecursive set of primes and S′ := P− S be its complement. Denote by 1

S Z the group generated by{1
s : s ∈ S

}
and consider the ordered abelian group

0 =
1

p∞

(
1
S

Z⊕
1
S′

Z
√

2
)

equipped with the order induced from the natural embedding 0 ↪→ R. This is a regularly dense group,
in the sense of Robinson and Zakon [1960], with prime invariants [0 : p0] = 1 and [0 : q0] = q for
q ̸= p. By [loc. cit.], this group is decidable in Loag but is clearly undecidable in Loag ∪ {1}. Since 0

is p-divisible, we may form the tame valued field (F, w)= (Fp((t0)), vt), which is decidable in Lval by
[Kuhlmann 2016, Theorem 1.4]. However, the untilt (K , v), whose associated Witt vector is [t]− p, is
undecidable in Lval. Indeed, even (0v, vp) is undecidable in Loag with a constant for vp.

Remark 4.3.8. Theorem A holds also for untilts K of F , which have an associated distinguished
element ξK satisfying a more relaxed condition than the one of Definition 4.2.2. Namely, suppose that
ξK = (ξ0, ξ1, . . . ) ∈O

ω
F and each ξn is definable in the valued field (F, w) by a formula φn(x) ∈ Lval(R0)

with parameters from R0. Suppose furthermore that the function N → FormLval(R0) : n 7→ φn(x) is
recursive. Then the conclusion of Theorem A is still valid, i.e., (K , v) is decidable in Lval relative to
(F, w) in Lval(R0).

It is clear that when each φn(x) is a quantifier-free formula, the configuration described in Remark 4.3.8
specializes to the notion of a computable untilt. We have no particular application in mind that requires
the level of generality described in Remark 4.3.8, which is one reason we have restricted ourselves to the
quantifier-free case (the other being clarity of exposition).

4.4. Corollary A. In order to prove Corollary A, we need to calculate the tilts of our fields of interest
and compute the associated distinguished elements.

4.4.1. Computing the distinguished elements. All computations below are well-known to experts; see,
e.g., [Fargues and Fontaine 2014, Example 2.22]. For lack of a detailed reference, we shall spell out the
details.

Lemma 4.4.2. There exist ring isomorphisms:

(a) Zp[p1/p∞
]/(p)∼= Fp[t1/p∞

]/(t) mapping p1/pn
+ (p) 7→ t1/pn

+ (t).

(b) Zp[ζp∞]/(p)∼= Fp[t1/p∞
]/(t p−1) mapping ζp + (p) 7→ t + 1+ (t p−1).

(c) Zab
p /(p)∼= Fp[t1/p∞

]/(t p−1) mapping ζp + (p) 7→ t + 1+ (t p−1).
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Proof. (a) For each n ∈ N, the irreducible polynomial of p1/pn+1
over Qp(p1/pn

) is the Eisenstein
polynomial x p

− p1/pn
∈ Zp[p1/pn

][x]. We therefore compute

Zp[p1/p∞
]/(p)∼= Zp[x1, x2, . . . ]/(p, x p

1 − p, x p
2 − x1, . . . )

∼= Fp[x1, x2, . . . ]/(x p
1 , x p

2 − x1, . . . )

xn 7→t1/pn

∼= Fp[t1/p∞
]/(t)

(b) The irreducible polynomial of ζp over Qp is the cyclotomic polynomial 8p(x) = x p−1
+ · · · + 1.

Moreover, given n > 1, the irreducible polynomial of ζpn over Qp(ζpn−1) is x p
− ζpn−1 ∈ Z[ζpn ][x]. We

now proceed as in (a) and compute

Zp[ζp∞]/(p)∼= Zp[x1, x2, . . . ]/(p, 8p(x1), x p
2 − x1, . . . )

xn+1 7→x1/pn

∼= Fp[x1/p∞
]/(8p(x)).

Note that 8p(x)= x p
−1

x−1 =
(x−1)p

x−1 = (x − 1)p−1 and thus

Zp[ζp∞]/(p)∼= Fp[x1/p∞
]/(x − 1)p−1 t=x−1

= Fp[t1/p∞
]/(t p−1).

(c) By local Kronecker–Weber (see Theorem 14.2 in [Washington 1997] and Proposition 17 in [Serre
1979]), we get that Zab

p = Zur
p [ζp∞]. We now proceed as in (b). □

Corollary 4.4.3. (a) ̂Qp(p1/p∞)
♭
∼=

̂Fp((t))1/p∞ and t♯
= p.

(b) Q̂p(ζp∞)
♭
∼=

̂Fp((t))1/p∞ and (t + 1)♯ = ζp.

(c) Q̂ab
p

♭
∼=

̂
Fp((t))1/p∞ and (t + 1)♯ = ζp.

Proof. (a) By Lemma 4.4.2, we have that Zp[p1/p∞
]/(p)∼= Fp[t1/p∞

]/(t) via an isomorphism mapping
p1/pn

+ (p) 7→ t1/pn
+ (t). One can verify directly that ̂Fp[[t]]1/p∞ → lim

←−−8 Fp[t1/p∞
]/(t), where

x 7→ (x mod (t), x1/p mod (t), . . . ), is a ring isomorphism. It follows that ̂Qp(p1/p∞)
♭
∼=

̂Fp((t))1/p∞

and by definition t♯
= limn→∞(p1/pn

)pn
= p.

The proofs of (b) and (c) are similar. □

Proposition 4.4.4 [Fargues and Fontaine 2014, Example 2.22]. We have the following isomorphisms:

(a) ̂Zp[p1/p∞] ∼=W ( ̂Fp[[t]]1/p∞)/([t] − p).

(b) Ẑp[ζp∞] ∼=W ( ̂Fp[[t]]1/p∞)/([t + 1]p−1
+ [t + 1]p−2

+ · · ·+ 1).

(c) Ẑab
p
∼=W ( ̂

Fp[[t]]1/p∞)/([t + 1]p−1
+ [t + 1]p−2

+ · · ·+ 1).

Proof. (a) By Corollary 4.4.3(a), we have that ̂Qp(p1/p∞)
♭
∼=

̂Fp((t))1/p∞ . Consider the ring homomor-
phism θ : Ainf ↠ ̂Zp[p1/p∞] inducing ♯ : ̂Fp[[t]]1/p∞→ ̂Zp[p1/p∞]. Since t♯

= p, we get that θ([t])= p
and therefore [t] − p ∈ Ker(θ). By Proposition 3.5.7, it follows that Ker(θ)= ([t] − p).
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(b) By Corollary 4.4.3(b), we have that Q̂p(ζp∞)
♭
∼=

̂Fp((t))1/p∞ . mapping 1+ t 7→ ζp. Consider the ring
homomorphism θ :Ainf ↠ Ẑp[ζp∞] inducing ♯: ̂Fp[[t]]1/p∞ → Ẑp[ζp∞]. Since (t + 1)♯ = ζp, we get that
θ([t + 1])= ζp and therefore [t + 1]p−1

+ · · ·+ [t + 1] + 1 ∈ Ker(θ). By Proposition 3.5.7, it suffices to
show that ξ = [t + 1]p−1

+ · · ·+ [t + 1] + 1 is a distinguished element of Ainf. Set res : OF ↠ OF/mF

for the residue map and W (res) for the unique induced homomorphism W (res) :W (R)→W (R/mR) of
Fact 3.3.5. We compute that W (res)(ξ)= 1+ 1+ · · ·+ 1= p, whence ξ is a distinguished element of
Ainf (Remark 3.5.4).

(c) Similar to (b). □

4.4.5. Proof of Corollary A.

Corollary 4.4.6. We have the following:

(a) ̂Qp(p1/p∞) and Q̂p(ζp∞) are Fp[t]-computable untilts of ̂Fp((t))1/p∞ .

(b) Q̂ab
p is an Fp[t]-computable untilt of ̂Fp((t))1/p∞ .

Proof. The case of ̂Qp(p1/p∞) is clear. For the other two cases, note that ξ := [t + 1]p−1
+ [t + 1]p−2

+

· · · + 1 is Fp[t]-computable, using the computable polynomials S0, . . . , Sn for Witt vector addition
(Observation 3.3.9). □

Corollary A. (a) Assume Fp((t))1/p∞ is (existentially) decidable in Lval(t). Then Qp(p1/p∞) and
Qp(ζp∞) are (existentially) decidable in Lval.

(b) Assume Fp((t))1/p∞ is (existentially) decidable in Lval(t). Then Qab
p is (existentially) decidable in

Lval.

Proof. (a) By Corollary 4.4.6 and Corollary 4.3.5.

(b) Similar to (a). □

5. Applications: Tame fields of mixed characteristic

5.1. Introduction.

5.1.1. Motivation. We shall prove Corollary B, which to my knowledge is the first decidability result for
tame fields of mixed characteristic.

5.1.2. Preliminaries. The algebra and model theory of tame fields was introduced and studied by
Kuhlmann [2016]. Recall the definition:

Definition 5.1.3. Let (K , v) be a henselian valued field. A finite valued field extension (K ′, v′)/(K , v)

is said to be tame if

(1) ([0′ : 0], p)= 1, where p is the characteristic exponent of k, i.e., p = char(k) if this is positive and
p = 1 if char(k)= 0.

(2) The residue field extension k ′/k is separable.
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(3) The extension (K ′, v′)/(K , v) is defectless, meaning that the fundamental equality [K ′ : K ] =
[0′ : 0] · [k ′ : k] holds.

An algebraic valued field extension is said to be tame if every finite subextension is tame.

Definition 5.1.4. A henselian valued field (K , v) is said to be tame if every finite valued field extension
(K ′, v′)/(K , v) is tame.

In practice, one often needs a more intrinsic description of tame fields. This is provided by the
following:

Proposition 5.1.5 [Kuhlmann 2016, Theorem 3.2]. Let (K , v) be henselian valued field. Then the
following are equivalent:

(1) (K , v) is a tame field.

(2) (K , v) is algebraically maximal, 0 is p-divisible and k is perfect.

Example 5.1.6. Using Proposition 5.1.5, one can verify the following:

(a) Any (algebraically) maximal immediate extension of Qp(p1/p∞) or Qp(ζp∞) is tame.

(b) Any (algebraically) maximal immediate extension of Fp((t))1/p∞ is tame. In particular, the Hahn
field (Fp((t0)), vt) with value group 0 = 1

p∞Z and residue field Fp is tame.

5.1.7. Equal characteristic. Kuhlmann obtained the following Ax–Kochen/Ershov principle for tame
fields of equal characteristic:

Theorem 5.1.8 [Kuhlmann 2016, Theorem 1.4]. Let (K , v) and (K ′, v′) be two equal characteristic tame
fields. Then (K , v)≡ (K ′, v′) in Lval if and only if k ≡ k ′ in L rings and 0 ≡ 0′ in Loag.

Kuhlmann then deduces the following decidability result (among others):

Corollary 5.1.9 [Kuhlmann 2016, Theorem 1.6]. Set 0 = 1
p∞Z, i.e., for the p-divisible hull of Z. The

Hahn field (Fp((t0)), vt) is decidable in Lval.

In recent work, Lisinski combined results of Kuhlmann [2016] with work of Kedlaya [2006] and
obtained the following strengthening of Corollary 5.1.9:

Theorem 5.1.10 [Lisinski 2021, Theorem 1]. Set 0 = 1
p∞Z. The Hahn field (Fp((t0)), vt) is decidable

in L t .

5.1.11. Mixed characteristic. Kuhlmann’s Theorem 5.1.8 fails as such for mixed characteristic tame
fields. A counterexample is given in [Anscombe and Kuhlmann 2016, Theorem 1.5(c)]. The lack of such
a principle has been a fundamental obstacle in obtaining decidability results for such fields.
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5.2. Mixed characteristic tame fields. While we do not know whether Qp(p1/p∞) and Qp(ζp∞) are
(existentially) decidable, we will show that they admit decidable maximal immediate extensions. These
are tame fields by Example 5.1.6(a).

Lemma 5.2.1 [Fargues and Fontaine 2014, Remark 2.23]. Let (K , v) be a perfectoid field. Then (K , v) is
maximal if and only if (K ♭, v♭) is maximal.

Proof. Immediate from the tilting equivalence Theorem 3.5.14 and the fact that tilting preserves value
groups and residue fields; see Lemma 3.2.4(b). □

Corollary B. The valued field (Qp(p1/p∞), vp) (resp. (Qp(ζp∞), vp)) admits a maximal immediate
extension which is decidable in Lval.

Proof. Recall from Corollaries 4.4.3(a) and 4.4.4(a) that

̂Qp(p1/p∞)
♭
∼=

̂Fp((t))1/p∞

and that ξ = [t] − p. Let Fp((t0)) be the Hahn field with value group 0 = 1
p∞Z and residue field Fp.

It is a (nonunique) maximal immediate extension of Fp((t))1/p∞ . By Theorem 3.5.14, we may form
K = Fp((t0))♯ as in the diagram below:

K Fp((t0))

̂Qp(p1/p∞) ̂Fp((t))1/p∞

♯

♭

such that ξK = [t]− p (see Section 3.5.13). By Lemma 5.2.1, we see that (K , v) is a maximal immediate
extension of (Qp(p1/p∞), vp). By Theorem 5.1.10 and Theorem A, we see that (K , v) is decidable in
Lval. The proof for Qp(ζp∞) is similar. □

Remark 5.2.2. It is also true that Qab
p admits a decidable maximal immediate extension (in this case

unique) but this already follows from well-known results in the model theory of algebraically maximal
Kaplansky fields; see [Kuhlmann 2016, page 4, Part (f)].

In spite of Corollary B, the following is worth noting:

Remark 5.2.3. A tree-like construction similar to Proposition 3.6.9(b) shows that there exist uncountably
many pairwise elementary inequivalent maximal immediate extensions of Qp(p1/p∞) (resp. Qp(ζp∞)).
In particular, the valued field Qp(p1/p∞) (resp. Qp(ζp∞)) has uncountably many undecidable maximal
immediate extensions. Note that the tilts of all such fields will be maximal immediate extensions of
Fp((t))1/p∞ and thus will be tame fields. As a consequence of Kuhlmann’s Theorem 5.1.8, all of them
will be decidable in Lval. Nevertheless, they will all be undecidable in Lval(t).
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6. Applications: Congruences modulo p

6.1. Introduction.

6.1.1. Goal. We shall now prove Theorem B, which shows the existence of an algorithm that decides
whether a system of polynomial equations and inequalities, defined over Z, has a solution modulo p over
the valuation rings of our fields of interest.

6.1.2. Strategy. The proof is via a local field approximation argument, using the computations of
Lemma 4.4.2. One eventually encodes the above problem in the existential theory of the tilt in Lval, where
the Anscombe–Fehm Theorem (Theorem 2.2.3) applies. This should be contrasted with Corollary A,
which requires decidability in the language Lval(t) on the characteristic p side.

6.2. From residue rings to valuation rings. The crux of the argument lies in the following:

Proposition 6.2.1. Let fi (x), g j (x) ∈ Fp[x] be multivariable polynomials in x = (x1, . . . , xm) for i, j =
1, . . . , n. Then

Fp[t1/p∞
]/(t) |H ∃x

∧
1≤i, j≤n

( fi (x)= 0∧ g j (x) ̸= 0)⇐⇒ Fp[[t]]1/p∞
|H ∃x

∧
1≤i, j≤n

(v( fi (x)) > v(g j (x))).

Proof. First observe that

Fp[[t]]1/p∞/(t)∼= lim
−−→

Fp[[t1/pn
]]/(t)∼= lim

−−→
Fp[t1/pn

]/(t)∼= Fp[t1/p∞
]/(t). (†)

⇒: Let a ∈ (Fp[t1/p∞
]/(t))m be such that fi (a)= 0∧ g j (a) ̸= 0, for 1≤ i, j ≤ n and let ã be any lift of

a in Fp[[t]]1/p∞ via the isomorphism (†). We see that v( fi (ã))≥ 1 > v(g j (ã)), for all 1≤ i, j ≤ n.

⇐: Let b ∈ (Fp[[t]]1/p∞)m be such that v(g j (b)) < v( fi (b)) for all 1≤ i, j ≤ n. Set γ1 =max{v(g j (b)) :

j = 1, . . . , n} and γ2=min{v( fi (b)) : i = 1, . . . , n} and consider the open interval I = (γ1, γ2)⊆
1

p∞Z≥0.
Since 1

p∞Z is dense in R, we can find q ∈ 1
p∞Z such that 1 ∈ q I .

We now make use of the fact that for each q ∈ 1
p∞Z>0, there is an embedding

ρ : Fp((t))1/p∞
→ Fp((t))1/p∞

which maps t 7→ tq . Indeed, if q ∈ 1
pN Z>0 for some N ∈ N, then there exists an embedding ρ :

Fp((t))1/pN
→ Fp((t))1/pN

mapping t 7→ tq , exactly as in [Anscombe and Fehm 2016, Remark 7.9]. Such
a map can also be extended uniquely to the perfect hull Fp((t))1/p∞ .

Now let ρ : Fp((t))1/p∞
→ Fp((t))1/p∞ be as above. Then, since fi (x), g j (x) ∈ Fp[x], we get

v(g j (ρ(b)))= v(ρ(g j (b)))= qv(g j (b)) < qv( fi (b))= v(ρ( fi (b)))= v( fi (ρ(b)))

for all 1≤ i, j ≤ n. We may thus replace our witness b with a = ρ(b).
Since 1 ∈ q I , we get fi (a)= 0 mod (t)∧ g j (a) ̸= 0 mod (t), for all i, j = 1, . . . , n. The reduction of

a modulo (t), seen as a tuple in Fp[t1/p∞
]/t via (†), is the desired witness. □
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Remark 6.2.2. The same argument used in Proposition 6.2.1 shows that

k[t1/p∞
]/(t p−1) |H ∃x

∧
1≤i, j≤n

( fi (x)= 0∧ g j (x) ̸= 0)⇐⇒ k[[t]]1/p∞
|H ∃x

∧
1≤i, j≤n

(v( fi (x)) > v(g j (x)))

where k = Fp or Fp. The argument of Proposition 6.2.1 needs only a slight modification for the converse
direction; one needs to take q ∈ 1

p∞Z such that (p− 1) ∈ q I instead of 1 ∈ q I and the same proof goes
through.

6.3. Proof of Theorem B. We may now prove the following:

Theorem B. Let K be any of the fields Qp(p1/p∞), Qp(ζp∞) or Qab
p . Then the existential theory of

OK /(p) is decidable in L rings.

Proof. By the Anscombe–Fehm Theorem, Theorem 2.2.3, the valued fields (Fp((t))1/p∞, vt) and
(Fp((t))1/p∞, vt) are ∃-decidable in Lval. For Qp(p1/p∞) the conclusion now follows from Lemma 4.4.2(a)
and Proposition 6.2.1. For the other two fields, one has to use Lemma 4.4.2(b), (c) and Remark 6.2.2. □

Remark 6.3.1. Note that Corollary A requires decidability in the language Lval(t) on the characteristic
p side. However, for the purposes of Theorem B, the Anscombe–Fehm results in Lval turned out to be
sufficient. This became possible because of Proposition 6.2.1, which “eliminates” any reference to t .

7. Final remarks

7.1. An almost decidable field. In Section 2.3, we emphasized that uniform decidability of (OK /(pn))n∈ω

is key for the decidability of (K , v). Indeed, at least by assuming the decidability of ̂Fp((t))1/p∞ in Lval(t),
Proposition 3.6.9(b) allows us to produce undecidable valued fields (K , v) with each individual residue
ring OK /(pn) being decidable.

Proposition 7.1.1. Assume ̂Fp((t))1/p∞ is decidable in Lval(t). Then there exists a mixed characteristic
henselian valued field (K , v) such that:

(1) The valued field (K , v) is undecidable in Lval.

(2) For each n ∈ N, the ring OK /(pn) is decidable in L rings.

(3) The value group (0v, vp) decidable in Loag.

Proof. For the convenience of the reader, we first review the construction from proof of Proposition 3.6.9(b).
Given α ∈ 2ω, define inductively:

(1) K0 =Qp and π0 = p.

(2) Kα↾n = Kα↾(n−1)(((1+ p)α(n−1)
·πα↾(n−1))

1/p) and πα↾n = ((1+ p)α(n−1)
·πα↾(n−1))

1/p.

We let Kα =
⋃

n∈ω Kα↾n . Set αn =
∑n−1

k=0 α(k) · pk . Claim 3 of Proposition 3.6.9 shows that K̂α
♭
=

̂Fp((t))1/p∞ . We shall argue below that any K̂α satisfies conditions (2) and (3). On the other hand, since
K̂α ̸≡ K̂β for α ̸= β (see Claim 2, Proposition 3.6.9(b)), we will have that some K̂α is undecidable in Lval.
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Fix α ∈ 2ω, set ā =
∑

k≥0 α(k) · pk
∈ Zp and αn =

∑n−1
k=0 α(k) · pk

∈ Z for all n ∈ N>0 (α0 = 0
by convention). One sees that (1 + p)pn

≡ 1 mod pn+1Zp, for all n ∈ N. It follows that the limit
limn→∞(1+ p)αn exists in Zp and we denote it by (1+ p)ā . Fix n ∈ N>0 for the rest of the proof.

Claim. We have t♯
= (1+ p)ā

· p and t♯
≡ (1+ p)αn−1 · p mod pnOKα

.

Proof. We have that t = (πα↾0+ (p), πα↾1+ (p), . . . ), via the identification ̂Fp[[t]]1/p∞ ∼= lim
←−−8 OKα

/(p)

(see Remark 3.6.12). Since π
pn

α↾n = (1+ p)αn · p, we compute t♯
= limn→∞ π

pn

α(n)= limn→∞(1+ p)αn · p=
(1+ p)ā

· p. Since (1+ p)pn−1
≡ 1 mod pnOKα

, we also get t♯
≡ (1+ p)αn−1 · p mod pnOKα

. □

As a consequence, we may take ξα = [t]− (1+ p)ā
· p as a generator of the ideal of Ainf associated

to Kα . Consider also the distinguished element ξ ′ := [t] − (1+ p)αn−1 · p ∈ Ainf and the associated untilt
(K ′, v′). We have an equality of ideals (pn, ξα) = (pn, ξ ′) in Ainf and thus an isomorphism of rings
OKα

/(pn)∼= OK ′/(pn).
Having assumed that the valued field ( ̂Fp((t))1/p∞, vt) is decidable in Lval(t) and since ξ ′ is Fp[t]-

computable, we get that the valued field (K ′, v′) is decidable in Lval by Theorem A. In particular, the ring
OKα

/(pn)∼= OK ′/(pn) is decidable in L rings. The value group (0α, vα p)∼=
( 1

p∞Z, 1
)

is also decidable in
Loag with a constant symbol for 1. Since n was arbitrary, this concludes the proof. □

Remark 7.1.2. It seems plausible that a similar construction can be carried out with Fp((t0)) instead of
̂Fp((t))1/p∞ , where 0 = 1

p∞Z, thereby recovering the above result unconditionally. Nevertheless, we do
not have a working example at present.

7.2. Reversing the direction.

7.2.1. Given that our understanding of decidability problems in characteristic p is limited, our philos-
ophy of reducing decidability questions from mixed characteristic to positive characteristic may seem
impractical. Nevertheless, we have already seen two applications in Sections 5 and 6. We also mention
another application in [Kartas 2023], which proves an undecidability result for the asymptotic theory of
{K : [K :Qp]<∞} in the language Lval with a cross-section, again by transposing a result in positive
characteristic.

7.2.2. We shall now demonstrate that the characteristic p difficulties in the language Lval(t) are already
encoded in the mixed characteristic setting, by showing a relative decidability result in the opposite
direction:

Proposition 7.2.3. If Qp(p1/p∞) is ∀1
∃-decidable in Lval, then Fp[[t]]1/p∞ is ∃+-decidable in Lval(t).

Proof. We may focus on L rings(t) sentences since x ∈ O is ∃+-definable in L rings(t) (see note 1). Let
fi (X1, . . . , Xm, T ) ∈ Fp[X1, . . . , Xm, T ] for i = 1, . . . , n. We claim that

Fp[[t]]1/p∞
|H ∃x1, . . . , xm

( ∧
1≤i≤n

fi (x1, . . . , xm, t)= 0
)

⇐⇒ Fp[t1/p∞
]/(t) |H ∀y ∈m∃x1, . . . , xm

( ∧
1≤i≤n

fi (x1, . . . , xm, y)= 0
)

.
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It is enough to prove the claim since Zp[p1/p∞
]/(p) ∼= Fp[t1/p∞

]/(t) by Lemma 4.4.2(a). We leave it
to the reader to write down the ∀1

∃-statement about Qp(p1/p∞) which is equivalent to the one about
Fp[t1/p∞

]/(t) written above;

⇒: Let (α1, . . . , αm) ∈ (Fp[[t]]1/p∞)m be such that

f1(α1, . . . , αm, t)= f2(α1, . . . , αm, t)= · · · = fn(α1, . . . , αm, t)= 0.

Let y ∈m⊂ Fp[[t]]1/p∞ and κ ∈N be such that y pκ

∈ Fp[[t]]. Then there exists a ring endomorphism ρ on
Fp[[t]] mapping t 7→ y pκ

, which extends uniquely to Fp[[t]]1/p∞ . Let βi := ρ(αi ) for i = 1, . . . , m. Since
fi (X1, . . . , Xm, T ) ∈ Fp[X, T ], we get

f1(β1, . . . , βm, y pκ

)= f2(β1, . . . , βm, y pκ

)= · · · = fn(β1, . . . , βm, y pκ

)= 0

and thus

f1(β
1/pκ

1 , . . . , β1/pκ

m , y)= f2(β
1/pκ

1 , . . . , β1/pκ

m , y)= · · · = fn(β
1/pκ

1 , . . . , β1/pκ

m , y)= 0.

In particular, the tuple (x1, . . . , xm) := (β
1/pκ

1 , . . . , β
1/pκ

m ) is a solution modulo (t) to the above system
of equations.

⇐: A generalized version of Greenberg’s Theorem due to Moret-Bailly [2012, Corollary 1.2.2] shows
that

f1(x1, . . . , xm, t)= f2(x1, . . . , xm, t)= · · · = fn(x1, . . . , xm, t)= 0

has a solution in Fp[[t]]1/p∞ if and only if it has a solution modulo (t N ), for all N ∈ N. Equivalently, if
and only if it has a solution modulo (t pN

) for all N ∈ N. Using the N -th iterated Frobenius, we see that
for any N ∈ N we have

Fp[[t]]1/p∞
|H ∃x1, . . . , xm

( ∧
1≤i≤n

fi (x1, . . . , xm, t)= 0 mod t pN
)

⇐⇒ Fp[[t]]1/p∞
|H ∃x1, . . . , xm

( ∧
1≤i≤n

fi (x1, . . . , xm, t1/pN
)= 0 mod t

)
and the latter is true by assumption, for any N ∈ N. □

Remark 7.2.4. By an identical argument, one can prove a similar result for Qp(ζp∞) or Qab
p . In the

case of the latter, one gets that Fp[[t]]1/p∞ is ∃+-decidable in Lval(t), provided that Qab
p is ∀1

∃-decidable
in Lval.

It would be nice to have a version of Proposition 7.2.3 for the full theories. Together with Corollary A,
this would yield a Turing equivalence between the theories of Qp(p1/p∞) and Fp((t))1/p∞ . Nevertheless,
Proposition 7.2.3 still suggests that if we eventually want to understand the theories of Qp(p1/p∞),
Qp(ζp∞) and Qab

p (even modest parts of their theories), we would have to face certain characteristic p
difficulties, posed in Question 7.2.5 below:
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Question 7.2.5. (a) Is Th∃+(Fp[[t]]1/p∞) decidable in Lval(t)?

(b) Is Th∃+(Fp[[t]]1/p∞) decidable in Lval(t)?
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