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Wide moments of L-functions I: Twists by
class group characters of imaginary quadratic fields

Asbjørn Christian Nordentoft

We calculate certain “wide moments” of central values of Rankin–SelbergL-functionsL
�
�˝�; 1

2

�
where

� is a cuspidal automorphic representation of GL2 over Q and � is a Hecke character (of conductor 1)
of an imaginary quadratic field. This moment calculation is applied to obtain “weak simultaneous”
nonvanishing results, which are nonvanishing results for different Rankin–Selberg L-functions where the
product of the twists is trivial.

The proof relies on relating the wide moments of L-functions to the usual moments of automorphic
forms evaluated at Heegner points using Waldspurger’s formula. To achieve this, a classical version of
Waldspurger’s formula for general weight automorphic forms is derived, which might be of independent
interest. A key input is equidistribution of Heegner points (with explicit error terms), together with
nonvanishing results for certain period integrals. In particular, we develop a soft technique for obtaining
the nonvanishing of triple convolution L-functions.

1. Introduction

Determining the moments of central values of families of automorphic L-functions has a long history
starting with the work of Hardy and Littlewood on the Riemann zeta functionZ T

0

ˇ̌
�
�
1
2
C i t

�ˇ̌2
dt � T logT;

as T !1; see [Titchmarsh 1986, Chapter VII]. By now, there exist precise conjectures for all moments of
families ofL-functions [Conrey et al. 2005] with fascinating connections to random matrix theory [Keating
and Snaith 2000]. These moment conjectures are of deep arithmetic importance through their connections
to the important topics of nonvanishing and subconvexity (see, e.g., [Blomer et al. 2018]), which in turn
are connected to, respectively, rational points on elliptic curves (via the B–S-D conjectures, see [Kolyvagin
1988]) and equidistribution problems (via the Waldspurger formula, see [Michel and Venkatesh 2006]).

In this paper, we will calculate what we call wide moments of central values of Rankin–Selberg
L-functions L

�
� ˝�; 1

2

�
, where � is a cuspidal automorphic representation of GL2 with trivial central

character of even lowest weight k� and � is a Hecke character of an imaginary quadratic field K
with infinity type ˛ 7! .˛=j˛j/k for some even integer k � k� . More precisely, we will study the
“canonical” square roots of the central values via their connections to Heegner periods as in the work of
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Waldspurger [1985]. We will use these moment calculations to obtain a number of new nonvanishing
results of a certain kind that we call weak simultaneous nonvanishing; see Section 1C for the statements. In
view of the Bloch–Kato conjectures, these nonvanishing results imply (in the holomorphic case) vanishing
for certain twisted Selmer groups; see Corollary 7.6 below.

1A. Wide moments of L-functions. This paper is the first in a series of papers concerned with obtaining
asymptotic evaluations of wide moments of automorphic L-function. In all of the cases we will consider,
these wide moments are connected to the usual moments of certain underlying periods of automorphic
forms (in the case of this paper, through the Waldspurger formula), which are much better behaved than
the L-functions themselves. In particular, we can use a variety of more geometrically flavored methods to
study the distributional properties of these periods.

The abstract setup is as follows: Given a finite abelian group G with (unitary) dual OG, we define

Wide. OG; n/ WD f.�1; : : : ; �n/ 2 . OG/n W �1 � � ��n D 1g: (1-1)

Given maps L1; : : : ; Ln WG! C with Fourier transformsbLi W OG! C; � 7!
1

jGj

X
g2G

Li .g/�.g/; for i D 1; : : : ; n;

we define the wide moment of bL1; : : : ; bLn, asX
.�i /1�i�n2Wide. OG;n/

nY
iD1

bLi .�i /: (1-2)

Note that for n D 2 and bL1 D bL2 equivariant with respect to inverses
�
i.e., bL1.��1/ D bL1.�/ �, we

recover the usual second moment. The key point is that (1-2) is equal to

1

jGj

X
g2G

nY
iD1

Li .g/; (1-3)

(for n D 2 this is exactly Plancherel). A nice way to see that (1-2) is equal to (1-3) is to use that the
Fourier transform takes products to convolutions, and (1-2) is exactly the n-fold convolution product
of bL1; : : : ; bLn evaluated at � D 1. In the setting of automorphic L-functions, we can in many cases
calculate the wide moments (1-2) using that the dual moments (1-3) are much better behaved.

The first example in the literature of an asymptotic evaluation of a (higher) wide moment of automorphic
L-functions seems to be the work of Bettin [2019] on Dirichlet L-functions (note that here the terminology
“iterated moments” is used):

1

.p�2/n�1

X�

.�i /2Wide.p;n/

ˇ̌̌
L
�
�1;

1

2

�ˇ̌̌2
� � �

ˇ̌̌
L
�
�n;

1

2

�ˇ̌̌2
D cn;n.logp/nC cn;n�1.logp/n�1C � � �C cn;0CO.p�ı/; (1-4)

as p!1 with p prime, for some ı > 0 and cn;i 2 R. Here, the asterisks on the sum means that the
summation is restricted to primitive Dirichlet characters, and we set Wide.p; n/ WDWide.3.Z=pZ/�; n/.
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This result is a corollary of the moment calculation of the Estermann function (which we think of as the
underlying automorphic periods in this case). Another related result is the calculation of Chinta [2005]
corresponding to a wide moment with nD 3 for quadratic Dirichlet L-functions.

The asymptotic evaluation (1-4) was later generalized (with an extra average over the modulus q) by
the author [Nordentoft 2021, Corollary 1.9] to the wide moments ofbL1.�/D � � � D bLn.�/D L�f ˝�; 12� for � W .Z=qZ/�! C�;

with f a fixed holomorphic newform of even weight. In [Nordentoft 2021], the underlying automorphic
periods are the additive twists of f (which reduces to modular symbols for k D 2). Furthermore, in a
recent joint work between Drappeau and the author, all moments of additive twists of level 1 Maaß forms
are calculated [Drappeau and Nordentoft 2022, Corollary 1.9].

The methods used to calculate the wide moments mentioned above are, respectively, a classical
approximate functional equation approach [Bettin 2019], multiple Dirichlet series [Chinta 2005], spectral
theory [Nordentoft 2021] (see also [Petridis and Risager 2018a]), and dynamical systems [Drappeau and
Nordentoft 2022] (building on [Bettin and Drappeau 2022]).

1B. Main idea. Let us describe the main moment calculation of this paper in the simplest possible setup.
Let f W H! C be a classical Hecke–Maaß eigenform of weight 0 and (for simplicity) level 1 (i.e., a
real-analytic joint eigenfunction for the hyperbolic Laplace operator and the Hecke operators which is
invariant under PSL2.Z/). Let K be an imaginary quadratic field of discriminant DK < �6 with class
group ClK . Given a class group character � 2 bClK , we denote by L.f ˝ �; s/ (the finite part of) the
Rankin–Selberg L-function L.f ˝ ��; s/, where �� is the theta series associated to � of weight 1 and
level jDK j (equivalently, we have L.f ˝�; s/D L.�K ˝��; s/, where �K denotes the base change to
GL2.AK/ of the automorphic representation corresponding to f and �� is the automorphic representation
of GL1.AK/ corresponding to �). A deep formula of Zhang [2001; 2004] gives the relationˇ̌̌̌ X

Œa�2ClK

f .zŒa�/�.Œa�/

ˇ̌̌̌2
D jcf j

2
jDK j

1=2L
�
f ˝�; 1

2

�
; (1-5)

where � 2 bClK is a class group character of K, zŒa� 2 PSL2.Z/nH denotes the Heegner point associated
to Œa� 2ClK , and cf > 0 is a constant depending on f (but independent of �). Using this relation together
with orthogonality of characters and equidistribution of Heegner points, Michel and Venkatesh [2007]
calculated the first moment of L

�
f ˝�; 1

2

�
, which they combined with subconvexity to obtain quantitative

nonvanishing for these central values. This idea has since been generalized in many directions to obtain a
variety of nonvanishing results [Dittmer et al. 2015; Burungale and Hida 2016; Khayutin 2020; Templier
2011a; 2011b].

We observe that (1-5) is exactly saying that the Fourier transform of

ClK 3 Œa� 7! jClK jf .zŒa�/

is given by a map of the formbClK 3 � 7! "f;�cf jDK j
1=4
ˇ̌
L
�
f ˝�; 1

2

�ˇ̌1=2
;
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for some "f;� of norm 1. Thus, by the Fourier equality (1-2)D(1-3) and equidistribution of Heegner points
due to Duke [1988], we conclude that for level 1 Hecke–Maaß eigenforms f1; : : : ; fn, we have

jDK j
n=4

jClK jn
X

.�i /2Wide.K;n/

nY
iD1

"fi ;�i cfi

ˇ̌̌
L
�
fi ˝�i ;

1

2

�ˇ̌̌1=2
D

1

jClK j

X
Œa�2ClK

nY
iD1

fi .zŒa�/

D

� nY
iD1

fi ;
3

�

�
C o.1/; (1-6)

as jDK j !1, where we used the short-hand Wide.K; n/ WDWide.bClK ; n/. This shows immediately
that if

˝Qn
iD1 fi ; 1

˛
¤ 0, then there exists

.�1; : : : ; �n/ 2Wide.K; n/ such that
nY
iD1

L
�
fi ˝�i ;

1
2

�
¤ 0:

We call the above weak simultaneous nonvanishing; see Section 2 for some background on this type of
nonvanishing.

1C. Nonvanishing results. The above proof sketch already gives new results. We will, however, push
these ideas further in several aspects. First of all, we deal with general weight forms (holomorphic
or Maaß), which requires us to develop explicit Waldspurger type formulas in these cases (see Section 4),
which might be of independent interest. In particular, this requires studying Hecke characters which ramify
at1, which leads to some complications. Secondly, we will obtain an explicit error term in (1-6), which
requires bounding certain inner-products involving powers of the Laplace operator; see Section 5. This
allows us to obtain nonvanishing results with some uniformity in the spectral aspect. In particular, in the
case of width nD2, we obtain the following improved version of [Michel and Venkatesh 2006, Theorem 1]
allowing general weights and with a uniform lower bound for DK in terms of the spectral parameter:

Corollary 1.1. Let f be either a Hecke–Maaß cusp form of spectral parameter tf and level 1 or a
cuspidal holomorphic Hecke eigenform of weight kf and level 1. Let k be a positive even integer with
the further requirement that k � kf if f is holomorphic. Put T D jtf j C kC 1 in the Maaß case and
T D kC 1 in the holomorphic case.

Then for any " > 0, there exists a constant c D c."/ > 0 such that for any imaginary quadratic field K
with discriminant jDK j � cT 22C", we have

#
˚
� 2 bClK W L

�
f ˝��K ;

1
2

�
¤ 0

	
�f

�
jDK j

1=1058 if f is holomorphic,
jDK j

1=2648 if f is Maaß,

where �K is a Hecke character of K of conductor 1 and1-type ˛ 7! .˛=j˛j/k .

Remark 1.2. We obtain similar results for general squarefree levels N ; see Corollary 7.1.

The case of width nD 3 is also very appealing, as in this case the triple period hf1f2f3; 1i is related
to triple convolution L-functions via the Ichino–Watson formula [Watson 2002; Ichino 2008]. This leads
to the following nonvanishing result for level 1 Maaß forms:
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Corollary 1.3. Let f1 be a fixed Hecke–Maaß cusp form of level 1. Then for any " > 0, there exists
a constant c D c.f1; "/ > 0 such that for any T � c, we have for all but O".T 2"/ Hecke–Maaß cusp
forms f2 of level 1 with jtf2 �T j � T

" that there exists a Hecke–Maaß cusp form f3 not equal to f2 with
jtf3 � T j � T

" such that the following holds: We have L
�
f1˝ f2˝ f3;

1
2

�
¤ 0 and for any imaginary

quadratic field K with jDK j � cT 35C",

#
˚
�1; �2 2 bClK W L

�
f1˝�1;

1
2

�
L
�
f2˝�2;

1
2

�
L
�
f3˝�1�2;

1
2

�
¤ 0

	
�T jDK j

1=1766:

In the case of holomorphic forms, we can obtain nonvanishing for a general width n (stated here in the
simplest case of level 1, we refer to Corollary 7.5 for a more general statement).

Corollary 1.4. Let n� 1, k1; : : : ; kn 2 2Z>0, and put k D
P
i ki . For i D 1; : : : ; n, let gi 2 Ski .1/ be a

cuspidal holomorphic Hecke eigenform of level 1. Then for each "> 0, there exists a constant cD c."/> 0
such that the following holds: For any imaginary quadratic field K with jDK j � ck45C",

#
˚
.�1; : : : ; �nC1/ 2Wide.K; nC 1/; level 1 Hecke eigenforms g 2 Sk.1/ W

L
�
g1˝�1�i;K ;

1
2

�
� � �L

�
gn˝�n�n;K ;

1
2

�
L
�
g˝�nC1�nC1;K ;

1
2

�
¤ 0

	
�k jDK j

.nC1/=2115;

where �i;K are Hecke characters of K of 1-type x 7! .x=jxj/ki for i D 1; : : : ; n and �nC1;K DQn
iD1�i;K .

Remark 1.5. Note that it follows, in particular, that the respective nonvanishing sets in Corollaries 1.1,
1.3 and 1.4 are nonempty as soon as, respectively, jDK j � cT 22C", jDK j � cT 35C" and jDK j � ck45C".

Remark 1.6. The fact that we can obtain nonvanishing results for general width n in the holomorphic case
relies crucially on the finite dimensionality of the space of holomorphic forms of fixed level and weight.
This clearly fails for nonholomorphic Maaß forms, which is the reason we cannot obtain nonvanishing
results beyond the cases of two and three characters in the Maaß case. Notice that if we apply Corollary 1.4
with nD 2, we obtain an improved version of Corollary 1.3 in the case of holomorphic forms.

1D. Main moment calculation. The above nonvanishing results are all corollaries of our main L-function
calculation. To state this, denote by B�

k
.N / the set of L2-normalized Hecke–Maaß newforms of level N

and even weight k � 0 (i.e., raising operators applied to either classical Hecke–Maaß newforms of
weight 0 and level N or to yk

0=2g with g 2 Sk0.N / a holomorphic cuspidal newform of even weight
k0 � k). Then we have the following moment calculation:

Theorem 1.7. LetN � 1 be a fixed squarefree integer and n� 1. For i D 1; : : : ; n, let �i be a cuspidal au-
tomorphic representation of GL2.A/ of conductor N with trivial central character, spectral parameter t�i
and even lowest weight k�i . Let k1; : : : ; kn 2 2Z be integers such that jki j � k�i and

P
i ki D 0.

Let jDK j !1 transverse a sequence of discriminants of imaginary quadratic fields K such that all
primes dividing N split in K. For each K, pick Hecke characters �i;K with infinite types x 7! .x=jxj/ki

such that
Q
i �i;K is the trivial Hecke character.
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Then we have for fi 2B�
ki
.N / belonging to �i and any " > 0,

X
.�i /1�i�n2Wide.K;n/

nY
iD1

"�i ;fi cfiL
�
�i ˝�i�i;K ;

1
2

�1=2
D
jClK jn

jDK jn=4

�� nY
iD1

fi ; 1

�
CO"

� nY
iD1

fi


2

jDK j
�1=16T 5=2n15=4.T jDK jn/

"

��
; (1-7)

where T DmaxiD1;:::;n jki jC jt�i jC 1, the weights "�;fi are all of norm 1 and cfi are certain constants
depending only on fi .

Remark 1.8. We obtain a slightly more general statement that applies to old-forms as well, meaning
that we allow for the automorphic representations �i to have different conductors. Furthermore, we
obtain an improved error term in the case of holomorphic forms and/or in the case of level 1. We refer to
Theorem 6.3 for details (including the exact values of the constants cf ). As an application, we can also
calculate a related “diagonal wide moment”; see Corollary 6.6.

The plan of the paper is as follows. In Section 2, we will introduce the notion of weak simultaneous
nonvanishing. Section 3 provides the necessary background on imaginary quadratic fields and automorphic
forms. Section 4 proves an explicit and classical Waldspurger type formula for general weight automorphic
forms. In Section 5, we will prove two technical lemmas: one on the norm of powers of the hyperbolic
Laplacian and one on a lower bound for the L2-norm of a product of automorphic forms. In Section 6, we
will prove our main moment calculation. Finally, Section 7 proves the nonvanishing of certain automorphic
periods, which combined with our moment calculation, yields weak simultaneous nonvanishing results.

2. Weak simultaneous nonvanishing

We will call the nonvanishing results proved in the present paper weak simultaneous nonvanishing. This
terminology is referring to the fact that we show nonvanishing of twists of different L-functions with
some “algebraic dependence” on the twists (their product is trivial). Ideally, of course we would like to
show nonvanishing for the same character. Some results in this direction have been obtained by Saha and
Schmidt [2013, Theorem 1] in the case of two holomorphic forms using techniques from Siegel modular
forms. Outside of this case, however, simultaneous nonvanishing seems out of reach with current methods.

Let us start by considering the simplest case, nD 2. This means that we are studying the nonvanishing
of two maps L1; L2 WG! C, where G is a finite abelian group. If both L1 and L2 are nonvanishing for
more than 50% of g 2G, then by the pigeonhole principle there is some g 2G such that L1.g/L2.g/¤ 0.
But clearly we can construct examples where L1; L2 vanish for exactly 50% of g 2 G but there is no
simultaneous nonvanishing.

More generally, consider L1; : : : ; Ln WG!C. Then we say that L1; : : : ; Ln are weakly simultaneously
nonvanishing if ˚

.g1; : : : ; gn/ 2Wide.G; n/ W Li .gi /¤ 0 for i D 1; : : : ; n
	
¤∅:
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Recall that by (1-1) this means that there exist g1; : : : ; gn 2G such that

g1 � � �gn D 1G and L1.g1/ � � �Ln.gn/¤ 0:

We think of this as expressing that we can find nonvanishing for L1; : : : ; Ln with some “algebraic
dependence”. This is interesting since most nonvanishing results for automorphic L-functions are obtained
by using the method of mollification, which gives no information about the algebraic structure of the
nonvanishing set. Of course, if all of the L1; : : : ; Ln vanish on a very large percentage of elements of G,
then one gets a weak simultaneous nonvanishing for purely combinatorial reasons. In most cases, this is
not the case, which we make precise as follows:

Proposition 2.1. Let n� 2 be an integer and 0� c � 1. Then there exists a finite abelian group G and
maps L1; : : : ; Ln WG! C satisfying

#fg 2G W Li .g/¤ 0g � cjGj; where i D 1; : : : ; n;

with no weak simultaneous nonvanishing if and only if c � 1
2

.

Proof. Assume first of all that c > 1
2

. Then if g1; : : : ; gn�2 are such that Li .gi /¤ 0 for i D 1; : : : ; n� 2.
Then, again by the pigeonhole principle, there is at least one g 2 G such that Ln�1.g/ ¤ 0 and
Ln..g1 � � �gn�1g/

�1/¤ 0 (since all of the elements .g1 � � �gn�1g/�1 are different as g 2G varies).
On the other hand if c � 1

2
, then we can consider any finite abelian group G with a subgroup H of

index 2. Now we let Li .g/¤ 0 if and only if g 2H for i D 1; : : : ; n� 1, and let Ln be nonvanishing on
the complement ofH . In this case, it is easy to check that there is no weak simultaneous nonvanishing. �

This shows that we need to know nonvanishing for at least 50% of the maps Li in order to get weak
simultaneous nonvanishing for purely combinatorial reasons. This is very far from being known in the case
of the Rankin–Selberg L-functions studied in this paper, as even a positive proportion of nonvanishing
seems out of reach with current methods; see [Michel and Venkatesh 2007] and [Templier 2011a].

3. Background

3A. Different incarnations of the class group. Let K be an imaginary quadratic field of discrimi-
nant D < �6. Denote by IK the group of integral fractional ideals of K, PK the subgroup of principal
fractional ideals and ClK D IK=PK the class group of K, which we know from Gauß is a finite group.
Furthermore, we have Siegel’s bound

jClK j �" jDK j
1=2�" (3-1)

for any " > 0 where the implied constant is ineffective.
Given a fractional ideal a 2 IK , we denote by Œa� 2 ClK the corresponding ideal class. We denote

by Œ˛1; ˛2� the ideal generated by ˛1; ˛2 2K over Z and by bClK the group of class group characters, i.e.,
group homomorphisms � W ClK ! C�.
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Let A�K , respectively, A�K;fin, denote the idéles, respectively, finite idéles of K, and let bOK� DQp O�p
denote the standard maximal compact subgroup of A�K;fin. Then we have the natural isomorphisms

IK Š A�K;fin=
bOK� and ClK ŠK�nA�K;fin=

bOK�: (3-2)

Given a 2 IK , we denote by Oa 2 A�K;fin any lift of the corresponding element of A�K;fin=
bOK� under the

above isomorphism.

3A1. Heegner forms. We refer to [Darmon 1994] for a concise treatment of the following material.
Let N be a squarefree integer such that all primes dividing N split completely in K. Consider a residue
class r mod 2N such that r2 � D mod 4N . For .a; b; c/ 2 Z3 having greatest common divisor equal
to 1 and satisfying b2� 4ac DD, a� 0 modN , and b � r mod 2N , we denote by Œa; b; c� the integral
binary quadratic form

Q.x; y/D ax2C bxyC cy2: (3-3)

We call such a quadratic form a Heegner form of level N and orientation r and denote by QD.N; r/ the
set of all such forms, which carries an action of the Hecke congruence subgroup �0.N / via coordinate
transformation. It is a well-known fact extending Gauß that the map �0.N /nQD.N; r/! ClK defined by

Œa; b; c� 7!

�
a;
�bC

p
D

2

�
;

is a bijection.
Given a Heegner form QD Œa; b; c� 2 QD.N; r/, we define the associated Heegner point as

zQ WD
�bC

p
D

2a
2 H: (3-4)

This defines a map QD.N; r/!H which is equivariant with respect to the action �0.N / (acting via linear
fractional transformation on H). In particular, we get a map ClK ! �0.N /nH using the above.

3A2. Oriented embeddings. Again let .a; b; c/ 2 Z3 have greatest common divisor equal to 1 and satisfy
b2�4acDD, a� 0 modN , and b� r mod 2N . Associated to the triple .a; b; c/, we define an (algebra)
embedding ‰ WK ,!Mat2�2.Q/ by

‰.
p
D/ WD

�
b 2c

�2a �b

�
: (3-5)

This embedding satisfies

‰.K/\

��
a b

c d

�
2Mat2�2.Z/ WN j c

�
D‰.OK/;

where OK denotes the ring of integers of K. This means that ‰ is an optimal embedding of level N and
orientation r . Conversely, every oriented optimal embedding of levelN arises from such a triple of integers
.a; b; c/ 2 Z3. Denote by ED.N; r/ the set of all such embeddings. The congruence subgroup �0.N /
acts on ED.N; r/ by conjugation, namely,

. �‰/.xC
p
Dy/ WD �1‰.xC

p
Dy/

for  2 �0.N /.
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There is a natural bijection between oriented optimal embeddings ‰ of level N and orientation r , as
in (3-5), and Heegner forms Q D Œa; b; c�, as in (3-3) (since these are both completely determined by
.a; b; c/2Z3), which is equivariant with respect to the action of �0.N /. By the above, we have a bijection

�0.N /nED.N; r/! ClK : (3-6)

Given an optimal embedding ‰ of level N , we can extend it to an (algebra) embedding

‰A W AK !Mat2�2.A/

by tensoring (over Q) by A. The local components of‰A are defined as follows: If p is a prime of Q which
is inert in K with pOK D p, then K˝Qp ŠKp; and thus we get an embedding ‰p WKp!Mat2�2.Qp/
given by

K˝Qp 3 x˝y 7!‰.x/˝y 2Mat2�2.Qp/;

defined up to the choice of isomorphism K˝Qp Š Kp (similarly for the inert infinite place). If p is
ramified with pOK D p2, then K˝Qp ŠKp; and we get a map ‰p WKp!Mat2�2.Qp/ by tensoring
as in the inert case. Finally, if p is split in K with pOK D pp, then we have an algebra isomorphism
K˝Qp ŠKp �Kp given by

K˝Qp 3 j1xC j2y 7! .x; y/ 2Kp �Kp; with x; y 2Qp; (3-7)

where

j1 D
1˝ 1C

p
D˝ .

p
D /�1

2
and j2 D

1˝ 1�
p
D˝ .

p
D /�1

2
:

Here we consider
p
D as an element of Qp and use that Qp ŠKp as p splits in K. By using this, we get

an algebra embedding ‰p WKp �Kp!Mat2�2.Qp/ by tensoring. Again this is well defined up to the
choice of isomorphism Qp ŠKp.

3B. Hecke characters of imaginary quadratic fields. Let K be an imaginary quadratic field of dis-
criminant D < �6. In this paper, we will be working with Hecke characters of K of conductor 1,
which (in the classical picture) are unitary characters � W IK ! C� such that for .˛/ 2 PK , we have
�..˛//D ��11 .˛/ for some character �1 WC�!C�, which we call the1-type of �. By considering the
induced representation, we can see that given �1 such that �1.�1/D 1, we have exactly jClK j Hecke
characters of conductor 1 with1-type �1; if �0 is any such Hecke character with1-type �1, then the
set of all such Hecke characters is given by f�0� W � 2 bClKg. We will only be considering the1-types
˛ 7! .˛=j˛j/k for k 2 2Z.

Given a Hecke character � as above with1-type �1, we get, using the isomorphism (3-2), an (idélic)
Hecke character

� WK�nA�K=O�K ! C�:

The above conditions translates to the fact that � is unramified at all finite places of K and the
1-component �1 is equal to �1.



744 Asbjørn Christian Nordentoft

Associated to a Hecke character � as above with1-type ˛ 7! .˛=j˛j/k , there is a theta series

��.z/ WD
X

a int. ideal of OK

e2�i.Na/z.Na/k=2�.a/ 2MkC1.�0.jDj/; �K/;

which is a modular form of weight kC 1, level jDj, and nebentypus equal to the quadratic character �K
associated to K via class field theory. Furthermore, we know that �� is noncuspidal exactly if k D 0 and
� is a genus character of the class group of K; see [Iwaniec 1997, Theorem 12.5]. Recall that this is an
example of automorphic induction from GL1 =K to GL2 =Q.

3C. Automorphic forms. In this section, we follow [Bump 1997, Chapters 2–3]. Let L2.�0.N /; k/
denote the L2-space of automorphic functions of level N and weight k 2 2Z. That is, measurable maps
f W H! C satisfying:

� The automorphic condition of weight k and level N

f .z/D j .z/
kf .z/;

for all  D
�
a
c
b
d

�
2 �0.N /, where

j .z/ WD
j.; z/

jj.; z/j
; with j.; z/D czC d;

and
�0.N / WD

��
a b

c d

�
2 PSL2.Z/ WN j c

�
:

� The L2-condition

kf k22 WD hf; f i D

Z
�0.N/nH

jf .z/j2 d�.z/ <1;

where d�.z/D y�2dxdy and h � ; � i is the Petersson inner-product. Notice that the above integral is
well defined since jj .z/j D 1.

We have the weight k raising and lowering operators acting on C1.H/, the space of smooth functions
on H, given by

Rk D .z� Nz/
@

@z
C
k

2
and Lk D�.z� Nz/

@

@ Nz
�
k

2
:

They define maps

Rk W L
2.�0.N /; k/\C

1.H/! L2.�0.N /; kC 2/\C
1.H/;

Lk W L
2.�0.N /; k/\C

1.H/! L2.�0.N /; k� 2/\C
1.H/;

which are adjoint in the sense that

hRkf1; f2i D �hf1; LkC2f2i (3-8)

for f1 2 L2.�0.N /; k/ \ C1.H/ and f2 2 L2.�0.N /; k C 2/ \ C1.H/. Furthermore, we have the
product rule

Rk1Ck2.f1f2/D .Rk1f1/f2Cf1.Rk2f2/;

for fi 2 L2.�0.N /; ki /\C1.H/, and similarly for the lowering operator.
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The weight k Laplacian acting on L2.�0.N /; k/\C1.H/ is defined as

�k D�Rk�2LkC�
�
k

2

�
D�LkC2RkC�

�
�
k

2

�
;

where �.s/D s.1� s/. On L2.�0.N /; k/, this defines a symmetric, unbounded operator with a unique
self-adjoint extension which we also denote by �k with some dense domain D.�k/ � L2.�0.N /; k/
(suppressing the level N in the notation).

A Maaß form of weight k and level N is a (necessarily real analytic) eigenfunction of �k . Given a
Maaß form f of eigenvalue � we denote by tf WD

p
�� 1

4
the spectral parameter of f (if � > 1

4
, we

always pick the positive square root).
Denote by Sk.N / the vector space of weight k and level N (classical) holomorphic cusp forms. If

g 2 Sk.N /, then it is easy to see that yk=2g is a Maaß form of weight k and level N of eigenvalue
�.k=2/. In fact, it can be show that any Maaß form of weight k � 0 and level N is of the form

Rk�2 � � �Rk0y
k0=2g; with g 2 Sk0.N / where k0 � k and k0 � k mod 2

or
Rk�2 � � �R0f; with f a Maaß form of weight 0 and level N:

And similarly for k < 0, now with lowering operators and antiholomorphic cusp forms.
Furthermore, we say that a Maaß form of weight k and level N is a Hecke–Maaß eigenform if it is an

eigenfunction for the Hecke operators Tn with .N; n/D 1 (which commute with the action of the raising
and lowering operators), as well as the reflection operator

X W L2.�0.N /; k/! L2.�0.N /; k/; .Xf /.z/ WD f .�Nz/:

Finally, we say that a Hecke–Maaß eigenform is a Hecke–Maaß newform if it is an eigenfunction for all
Hecke operators Tn, with n� 1.

Denote by B�
k;hol.N / the set consisting of f=kf k2, where f D yk=2g with g 2 Sk.N / a (Hecke-

normalized) holomorphic Hecke newform, and by B�.N / the set consisting of f=kf k2, with f a
nonconstant (Hecke-normalized) Hecke–Maaß newform of weight 0 and level N . We will sometimes
refer to these simply as (classical) “Maaß forms”. It follows from Atkin–Lehner theory that for k � 0,
we have the following orthonormal basis consisting of Hecke–Maaß eigenforms for the subspace of
L2.�0.N /; k/ spanned by nonconstant Maaß forms of weight k and level N :

Bk.N / WD
[

dN 0jN

��d;N 0Rk�2 � � �R0B�.N 0/[
[

dN 0jN

[
0<k0�k
k0�k mod 2

��d;N 0Rk�2 � � �Rk0B�k0;hol.N
0/; (3-9)

where ��
d;N 0
W L2.�0.N

0/; k/!L2.�0.N /;k/ are defined by .��
d;N 0

f /.z/ WDf .dz/. If k < 0, we have
a similar basis now with lowering operators and antiholomorphic cusp forms.

Using (3-8), we see that for any f 2Bk.N /, we have the following useful relation:

kRkC2l � � �Rkf k
2
2 D kf k

2
2

lY
jD0

�
kC 2j � 1

2
C i tf

��
kC 2j � 1

2
� i tf

�
: (3-10)
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3C1. Adélization of Maaß forms. Given an element of f 2L2.�0.N /; k/we define a lift Qf WGLC2 .R/!C

as
Qf .g/ WD jg.i/

�kf .gi/;

which satisfies
Qf .gk� /D e

ik� Qf .g/;

for all � 2 Œ0; 2�/, where k� D
� cos �
� sin �

sin �
cos �

�
and g 2 GLC2 .R/.

Now consider the following decomposition of GL2.A/ coming from strong approximation:

GL2.A/D GL2.Q/K0.N /GLC2 .R/; (3-11)

where GL2.Q/ is embedded diagonally and

K0.N / WD

�
k 2 GL2.A/ W k1 D 1; kp D

�
ap bp
cp dp

�
2 GL2.Zp/; cp 2 prZp; p

r
kN

�
:

Now we define the adélization of f as

�f .g/D �f .kg1/ WD Qf .g1/;

which does not depend on the choice of decomposition

g D kg1 2 GL2.Q/K0.N /GLC2 .R/:

Given a Hecke–Maaß newform f , the adélization �f generates a unique cuspidal automorphic rep-
resentation �f D � of GL2.A/. The infinity component of this representation �1 is a discrete series
representation of lowest weight k� D k if f corresponds to a holomorphic Hecke newform of weight k.
On the other hand if f is of weight 0 and nonconstant (i.e., corresponds to a classical Maaß form),
then �1 is a principal series representation of lowest weight k� D 0. We denote by t� the spectral
parameter tf of f .

3C2. Automorphic L-functions. In general, associated to an automorphic representation � of GLn.A/ we
can define the (finite part of the) L-function L.�; s/ as a product over finite primes in terms of the Satake
parameters and a completed version ƒ.�; s/ satisfying a functional equation ƒ.�; s/D "�ƒ. L�; 1� s/,
where "� is of norm 1 (the root number) and L� is the contragredient of � . We refer to [Godement and
Jacquet 1972] for details. Furthermore, given automorphic representations �1; �2; �3 of GLn.A/, we will
be interested in the Rankin–Selberg convolution L-function L.�1˝�2; s/ (see [Jacquet et al. 1983]), the
symmetric square L-function L.sym2 �1; s/ (see [Bump 1997, Chapter 3.8]), and the triple convolution
L-function L.�1˝�2˝�3; s/ (see [Watson 2002]).

4. A classical version of Waldspurger’s formula

In order to make our moment calculations explicit, we will need an explicit version of Waldspurger’s
formula as developed my Martin and Whitehouse [2009] and, furthermore, translate this to a classical
formula. In doing so, we will follow Popa [2006, Chapter 5].
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4A. A formula of Martin and Whitehouse (following Waldspurger). Let � be an automorphic rep-
resentation of GL2.Q/ of squarefree conductor N and even lowest weight k� corresponding to the
classical cuspidal newform f (Maaß or holomorphic also of weight k� ). Let D < �6 be a negative
fundamental discriminant with .D; 2N /D 1 and such that all primes dividing N split in K DQŒ

p
D�.

Let k � k� be even, and let � WK�nA�K ! C� be an idélic Hecke character of conductor 1 and1-type
�1.˛/D .˛=j˛j/

k . Recall from Section 3B that any two such characters differ by a class group character,
and thus there are jClK j such characters.

We will be interested in obtaining an explicit formula in terms of Heegner points of the central value of
the Rankin–Selberg L-function L

�
�˝�; 1

2

�
, by which we mean the Rankin–Selberg convolution of the

base change �K of � to GL2.AK/ and the automorphic representation �� of GL1.AK/ corresponding
to�. We note that the above (Heegner) conditions onD andN imply that the root number of L.�˝�; s/
is equal to C1.

Let ‰A W AK ,! GL2.A/ be an oriented optimal algebra embedding of level N . Then associated to
the triple .�;�;‰A/, Martin and Whitehouse [2009, Theorem 4.1] define a specific test vector �MW 2 �

such that we have the formulaˇ̌R
A�K�nA�K

�MW.‰A.x//�
�1.x/ dx

ˇ̌2R
Z.A/GL2.Q/nGL2.A/

j�MW.g/j2 dg
D
L.� ˝�; 1=2/

L.sym2 �; 1/
c1.�1; k/

2
p
jDj

Y
pjN

�
1�

1

p

��1
; (4-1)

where the measure dg is normalized so that the volume ofZ.A/GL2.Q/nGL2.A/ is .�=3/
Q
pjN .1�p

�2/

(here we are using that the Tamagawa number of GL2 =Q is 2) and dx is normalized so that A�K�nA�K
has volume 2ƒ.�K ; 1/, where �K is the quadratic character associated to K via class field theory and

ƒ.�K ; s/D �
�.sC1/=2�

�
sC1

2

�
L.�K ; s/:

The local constants are given by:

c1.�1; k/D

8<:
.2�/k

Qk=2�1
jD0

�
1
4
C.t�/

2Cj.jC1/
��1 if �1 is a p.s,

.2�/k�k�
�.k�C1/

�
�
1
2
.kC2/

�
B
�
1
2
.kCk�/;

1
2
.k�k�C2/

� if �1 is a d.s,

where “p.s” and “d.s” refer to “principal series” and “discrete series”, respectively, and B.x; y/ denotes
the Beta function.

To make this formula explicit, we need to specify an embedding‰A. To do this, let Œa; b; c� be a Heegner
form of level N and orientation r and consider the associated optimal embedding ‰ WK ,!Mat2�2.Q/
of level N (as in Section 3A2) satisfying

‰.K/\M0.N /D‰.OK/;

where M0.N /D
˚�
a
c
b
d

�
2Mat2�2.Z/ WN j c

	
. As described in Section 3A2, we get by tensoring with A

an associated embedding ‰A W A
�
K ! GL2.A/. We write ‰fin for the finite component and ‰1 for the

infinite component of this embedding.
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Now the recipe described in [Martin and Whitehouse 2009, Chapter 4.2] gives the following characteri-
zation of the test vector �MW: the finite component �MW;p at a finite prime p <1 is uniquely determined
(up to scaling) by the invariance under a certain Eichler order, which in our setting is exactly the order
in GL2.Qp/ of reduced discriminant p�p.N/ (using that ‰ is optimal of level N ). This means that we can
pick �MW;p D �f;p D �fk ;p, where �f (respectively, �fk ) are the lifts to GL2.A/ of the Hecke–Maaß
newform f 2 L2.�0.N /; k�/ corresponding to � (respectively, fk DRk�2 � � �Rk�f ).

At the infinite place the test vector �MW;1 is characterized by being the vector of the minimal K-type
(in the sense of [Popa 2008]) such that

�1.x/�MW;1 D�1.x/�MW;1

for all x 2‰1.S1/\O2.R/, where S1D fz 2C� W jzj D 1g is the maximal compact of C� and O2.R/ is
the maximal compact of GL2.R/. There is a slight complication due to the fact that the embedding ‰1
defined above does not send the maximal compact S1 � C� to SO2.R/. We can, however, easily check
that this is the case after conjugating by

1 D

�p
D �b

0 a

�
: (4-2)

Thus, we conclude that the following vector satisfies the conditions specified by Martin and Whitehouse:

�MW;1 D �.1/�fk ;1;

where �fk ;1DRk�2 � � �Rk��f;1 is a weight k vector in the representation space �1. We conclude that
we can pick the global test vector as

�MW D �.1/�fk ;

where again fk DRk�2 � � �Rk�f and 1 2 GL2.R/� GL2.A/ as in (4-2).
For �MW as above, we have for xfin 2 A�K;fin and x1 2 C� that

�MW
�
‰1.x1/‰fin.xfin/

�
��1

�
.x1; xfin/

�
is independent of x1. In particular, we get a well-defined map

ClK 3 Œa� 7! �MW.‰A.Oa//�
�1.Oa/;

where Oa 2 A�K;fin is any lift of a under the first isomorphism in (3-2). By the second isomorphism in (3-2),
it follows that we have a bijection

K�A�nA�K=
bOK� ��! G

Œa�2ClK

C�=R�; (4-3)

from which we conclude thatZ
A�K�nA�K

�MW.‰A.x//�
�1.x/ dx D

2

jDj1=2

X
Œa�2ClK

�fk.‰fin.Oa/1/�.Oa/: (4-4)

Here we can check the normalization by letting �MW and � being constants and recalling that the total
measure of A�K�nA�K is 2ƒ.�K ; 1/D 2jClK jjDj�1=2 by the class number formula.
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4B. Explicit representatives of the class group. Consider integral prime ideals p1 D .1/; p2; : : : ; ph
which are representatives for the class group ClK dividing the rational primes pi which we assume are
coprime to 2Na (so that hD jClK j and piOK D pipi splits in K for i D 2; : : : ; h). The ideal class Œpi � is
represented by the idéle bpi WD .pi /pi 2 A�K (where the subscript means that the element is concentrated
at the place pi ). Thus we see using the definition (3-7) of ‰A that since

j1 �pi C j2 � 1D 1˝
pi C 1

2
C
p
D˝

pi � 1

2
p
D
2K˝Qpi ;

we have that

‰A..pi /pi /D

0BB@
piC1

2
Cb

pi�1

2
p
D

c
pi�1
p
D

�a
pi�1
p
D

piC1

2
�b

pi�1

2
p
D

1CCA
pi

:

For i D 2; : : : ; h, it is a short computation that for an integer bi with bi � b mod 2a and b2i �D mod pi
(and put also b1 D 1 for completeness), we have

pi D

�
�bi C

p
D

2
; pi

�
: (4-5)

Using the congruences for bi , it follows that there is ki 2K0.N / such that

‰A..pi /pi /D iki .
�1
i /1

with i 2M2.Q/ given by

i D

0@pi bi�b2a

0 1

1A :
Thus we conclude by the definition of adélization that

�fk .‰fin.bpi /1/D j�1
i
1
.i/kfk.

�1
i 1i/D fk

�
�bi C

p
D

2api

�
:

To proceed, we need to understand how the Heegner points .�biC
p
�D/=.2api / behaves as iD 1; : : : ; h

varies. Let I W �0.N /nED.N; r/! ClK be the bijection in (3-6). Then we have the following adaption
of [Popa 2006, Proposition 6.2.2]:

Lemma 4.1. We have

�1i 1i D zQ‰;i 2 H;

where zQ‰;i is the Heegner point of a Heegner form Q‰;i of level N and orientation r (depending on ‰
and i ) belonging to the class I.Œ �/ � Œpi � 2 ClK .

Proof. Consider the binary quadratic form

Q.x; y/D apix
2
C bixyC ciy

2;
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where

ci D
b2i �D

4api

is an integer by the above congruence conditions. This means that Q is a discriminant D Heegner form
of level N and orientation r , with corresponding Heegner point given by

�bi C
p
D

2api
:

Thus the lemma reduces to showing the following identity of ideals (modulo principal ideals):�
api ;
�bi C

p
D

2

�
D

�
�bi C

p
D

2
; pi

�
�

�
�bC

p
D

2
; a

�
: (4-6)

This follows, as in the proof of [Popa 2006, Proposition 6.2.2], since both sides have the same ideal
norm and we can check using the congruence condition on bi that the right-hand side is contained in the
left-hand side. �

This implies that the automorphic period (4-4) depends on the choice of optimal embedding ‰ but
only up to a phase. In particular, the absolute square does not depend on the choice of ‰ as should be the
case by (4-1).

4C. An explicit formula. To simplify matters, we from now on pick our optimal embedding ‰ such that
Œa; b; c� corresponds to the trivial element of ClK and to lighten notation, we write

Qi D apix
2
C bixyC ciy

2; with i D 1; : : : ; h; (4-7)

where pi and bi are as above. Now if Q 2 QD.N; r/ is any quadratic form such that ŒQ�D Œpi �, then it
follows from Lemma 4.1 that there is some Q 2 �0.N / such that zQ D QzQi , which implies that

fk.zQ/D jQ.zQi /
kf .zQi /D�1.˛Q/�fk .‰fin.bpi /1/;

where ˛QD j.Q; zQi /2K
�. Similarly if a2IK is a different representative of the ideal class Œpi �2ClK ,

then we have

��1.Oa/D�1.˛a/�
�1.bpi /

for some ˛a 2K�.
From this we conclude, by combining (4-4) and Lemma 4.1, thatZ

A�K�nA�K

�MW.‰A.x//�
�1.x/ dx D

X
ŒQ�2�0.N/nQD.N;r/

fk.zQ/�.baQ/�1.˛Q;aQ/; (4-8)

where zQ is the Heegner point associated to the Heegner form Q 2 QD.N; r/, ŒaQ� D ŒQ� (under the
bijection �0.N /nQD.N; r/ ��! ClK), and ˛Q;aQ 2K

� is a complex number depending on the choices
of Q and aQ (but not on � , �, nor fk).
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4C1. The case of old forms. We will now explain how to extend the identity (4-8) to the case of old
forms. Let d;N 0 be positive integers such that dN 0 jN , and consider a newform (i.e., new at finite places)
fk 2B�

k
.N 0/ belonging to the automorphic representation � . Then we get an element ��

d;N 0
fk 2Bk.N /

given by z 7! fk.dz/. Recall the representatives p1; : : : ; ph 2 IK of the class group ClK defined in (4-5)
and the associated Heegner forms Qi D Œa; bi ; ci � defined in (4-7). Then we see directly that

dzQi D
�bi C

p
D

2pia=d
D zQ0

i
;

where Q0i D Œpia=d; bi ; cid� 2 QD.N
0; r/ is a Heegner form of level N 0 and orientation r mod .2N 0/.

From this, we see that

fk.dzQi /D �fk .‰
0
fin.bpi / 01/; with i D 1; : : : ; h;

where ‰0 is the optimal embedding of level N 0 corresponding to the triple Œa=d;b;cd � and

 01 D

 p
D �b

0
a

d

!
:

Observe that Œa=d; b; cd � might not correspond to the trivial element of the class group. Thus, using (4-8),X
ŒQ�2�0.N/nQD.N;r/

��d;N 0fk.zQ/�.baQ/�1.˛Q;aQ/D hX
iD1

��d;N 0fk.zQi /�.bpi /
D

Z
A�K�nA�K

�0MW.‰
0
A.x//�

�1.x/ dx; (4-9)

where �0MW is the vector defined by Martin and Whitehouse corresponding to the triple .�;�;‰0A/ and
the numbers ˛Q;aQ are as in (4-8).

Combining (4-9) and (4-1), we arrive at the following result (recalling the definition (3-9) of Bk.N /):

Theorem 4.2. Let N be a squarefree integer and K be an imaginary quadratic field of discriminant D
with .D; 2N / D 1 and such that all primes dividing N splits in K. Let � be a cuspidal automorphic
representation of GL2.AQ/ of conductorN 0 dividingN and even lowest weight k� . Let k� k� be an even
integer and � WK�nA�K=bOK�! C� a Hecke character of K of conductor 1 and1-type ˛ 7! .˛=j˛j/k .

Then for any fk 2Bk.N / belonging to the representation space of � , we haveˇ̌̌̌ X
ŒQ�2�0.N/nQD.N;r/

fk.zQ/�.baQ/�1.˛Q;aQ/ˇ̌̌̌2 D L.� ˝�; 1=2/

L.sym2 �; 1/
jDj1=2

8N 0
c1.�1; k/; (4-10)

where zQ is the Heegner point associated to the Heegner form Q 2 QD.N; r/, aQ 2 IK is such that
ŒQ�D ŒaQ� (under the bijection �0.N /nQD.N; r/ ��!ClK), ˛Q;aQ 2K

� is a complex number depending
on the choices Q and aQ (but not on � , � nor fk), and

c1.�1; k/D

8̂<̂
:
.2�/k

Qk=2�1
jD0

�
1
4
C .t�/

2C j.j C 1/
��1 if �1 is a p.s,

.2�/k�k��1
�.k�/�

�
�
1
2
.k�2/

�
B
�
1
2
.kCk�C1/;

1
2
.k�k�C1/

�� if �1 is a d.s,
(4-11)

where “p.s” (“d.s”) refers to “principal series” (“discrete series”) and B.x; y/ denotes the Beta function.
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Using orthogonality of characters (i.e., Fourier inversion) we conclude the following key identity:

Corollary 4.3. Let �;�; fk be as in Theorem 4.2. Then given an element of the class group Œa� 2 ClK
and a Heegner form Q 2 QD.N; r/ such that ŒQ�D Œa�, we have

fk.zQ/�.xQ/D
cfk jDj

1=4

jClK j

X
�2bClK

"�;fk ;r
ˇ̌
L
�
� ˝��; 1

2

�ˇ̌1=2
�.Œa�/; (4-12)

where xQ 2 A�K is some element depending on the choice of Q (but not on � , �, nor fk), "�;fk ;r are
complex numbers of norm 1, and

cfk D
c1.�1; k/

8N 0L.sym2 �; 1/
; (4-13)

with c1.�1; k/ as in (4-11).

5. Some technical lemmas

In this section, we will prove two key estimates. The first is a bound for the norm of �m, which will be
key in obtaining explicit error terms in our moment calculation. Similar consideration have been made in
a different context in [Petridis and Risager 2018b, Theorem 5.1]. Secondly, we will obtain a lower bound
for the L2-norm of the product of Maaß forms. This is an extremely crude lower bound, which suffices
for our purposes.

5A. A bound for the norm of �m. In the course of proving our bound for the norm of �m applied to
certain vectors, we will need the following convenient L1-bound for f 2 Bk.N / due to Blomer and
Holowinsky [2010]:

kf k1

kf k2
�N�1=32.jtf jC jkjC 1/

A (5-1)

for some unspecified constant A > 0. The focus of [Blomer and Holowinsky 2010] is the level aspect,
which we consider fixed in the present paper. Here the key thing is, however, that we get a polynomial
bound for raised (and lowered) Hecke–Maaß forms with the constant being independent of the weight k
and the spectral parameter tf . The specific value of A is not important for our application.

Lemma 5.1. Let k1; : : : ; kn be even integers such that
Pn
iD1ki D 0. For i D 1; : : : ; n, let fi 2Bki .N /

be a Hecke–Maaß form of weight ki , level N , and spectral parameter tfi . Then we have�m nY
iD1

fi


1

� n2m.mC max
iD1;:::;n

jtfi jC jki j/
nAC2m

nY
iD1

kfik2 (5-2)

for all m 2 Z�0. Here the implied constant is allowed to depend on N .

Proof. Recalling that �D L2R0, we get, using the product rule for the raising and lowering operators,ˇ̌̌̌
�m

nY
iD1

fi .z/

ˇ̌̌̌
D

ˇ̌̌̌
L2R0 � � �L2R0

nY
iD1

fi .z/

ˇ̌̌̌
� n2m max

m1;:::;mn2N W†miD2m
.Ui;j /i;j fifty-fifty raising/lowering operators

where 1�i�n;1�j�mi

nY
iD1

jUi;1 � � �Ui;mi fi .z/j: (5-3)
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Here the maximum is taken over all combinations of 2m operators

Ui;j W 1� i � n; 1� j �mi ;

which are all either a raising or a lowering operator of appropriate weight and such that the total number
of raising and lowering operators are equal. If we have i 2 f1; : : : ; ng and j 2 f1; : : : ; mi � 1g such that
fUi;j ; Ui;jC1g is of the type fraising, loweringg, then we get

Ui;jUi;jC1 D��˙� C�
�
�

2

�
for some weight � with j�j � 2mC jki j (since we can have at most m raising respectively, lowering
operators). Here the sign corresponds to whether Ui;j is a raising or lowering operator. This shows that
we can replace Ui;jUi;jC1 with multiplication by

�
�
�

2

�
��fi D�

�
��1

2
C i tfi

��
��1

2
� i tfi

�
:

Repeating this, we get

jUi;1 � � �Ui;mi fi .z/j D

ˇ̌̌̌
RkC2m0

i
�2 � � �Rk fi .z/

.mi�m
0
i
/=2Y

jD1

�
�j � 1

2
C i tf

��
�j � 1

2
� i tf

�ˇ̌̌̌
for some 0�m0i �mi , where j�j j � 2mCjki j (or a similar expression with lowering instead of raising
operators).

By combining the bound (5-1) and the computation of the L2-norm (3-10), we conclude that for
f 2Bk.N / and l � 0

kRkC2lRkC2l�2 � � �Rkf k1�kf k2
�
jtf jCjkCl jC1

�A lY
jD0

ˇ̌̌̌�
kC2j�1

2
Ci tf

��
kC2j�1

2
�i tf

�ˇ̌̌̌1=2
�kf k2

�
jtf jCjkjClC1

�lCA
;

and similarly in the case of lowering operators. Combining all of the above, we arrive at

jUi;1 � � �Ui;mi fi .z/j � kfik2.jtf jC jki jCmi C 1/
ACmi ;

for any sequence of raising and lowering operators Ui;1; : : : ; Ui;mi as in the maximum in (5-3). Plugging
this into (5-3) gives the wanted. �

5B. A lower bound for weight k automorphic forms. In this subsection, we will prove a lower bound
for the L2-norm of a product of Maaß forms. The idea is to go far up in the cusp so that the first term in
the Fourier expansion is the dominating term.

Let Wk=2;s W R>0 ! C be the Whittaker function of weight k=2 and spectral parameter s, i.e., the
unique solution to

d2W

dy2
C

�
�
1

4
C
k=2

y
C
1=4� s2

y2

�
W D 0;

satisfying
Wk=2;s.y/� y

k=2e�y=2;
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as y!1 (with k; s fixed). Then we define Wk=2;s W CnR! C for k 2 Z as

Wk=2;s.z/ WD

8<:
.�1/k=2Wjkj=2;s.jyj/e

ix=2 sign.k/y > 0;

�..jkjC 1/=2C s/�..jkjC 1/=2� s/

�.1=2C s/�.1=2� s/
W�jkj=2;s.jyj/e

ix=2 sign.k/y < 0;

for z D xC iy 2 CnR. We can check that

W0;s.z/D

�
jyj

�

�1=2
Ks

�
jyj

2

�
eix=2;

where Ks.y/ is the K-Bessel function and

Wk=2;.k�1/=2.z/D .�1/
k=2yk=2eiz=2

for k 2 2Z�0 and y > 0. Furthermore, for k 2 2Z�0, we can check (see, for instance, [Strömberg 2008,
Section 4.4]) that the normalizations match up so that we have

RkWk=2;s DWk=2C1;s; (5-4)

with

Rk D .z� Nz/
@

@z
C
k

2
D iy

@

@x
Cy

@

@y
C
k

2
;

denoting the weight k raising operator (and similarly for k � 0 now with lowering operators). We have the
following asymptotic expansion (see [Gradshteyn and Ryzhik 2000, (9.227)] or [Whittaker and Watson
1962, Chapter 16.3]) valid for y > 1:

Wk=2;s.y/D e
�y=2yk=2

�
1C

X
n�1

�
s2� .k=2� 1=2/2

�
� � �
�
s2� .k=2�nC 1=2/2

�
nŠyn

�
:

In particular, we conclude that

Wk=2;s.z/D e
�y=2yk=2

�
1CO

�X
n�1

�
jsjC jkj=2Cn

�2n
nŠ yn

��
D e�y=2yk=2

�
1CO

�
.jsjC jkjC 1/2

y

��
(5-5)

for y > .jsjC jkjC 1/2.
Now, we let k � 0 and consider an L2-normalized Hecke–Maaß form f 2 Bk.N / of the form

��
d;N 0

Rk�2 � � �Rk0f0, with f0 a Hecke–Maaß newform of weight k0 and level N 0 such that dN 0 j N .
Combining (5-4) and (3-10) with the well-known Fourier expansions of holomorphic and Maaß forms,
we get the following Fourier expansion in the general weight case:

f .z/D
cf

jL.sym2 f; 1/1.f; k/j1=2
X
n¤0

�f0.n/

jnj1=2
Wk=2;itf .4�dnz/; (5-6)
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for some constant cf bounded uniformly from above and away from 0 in terms of the level N . Here
�f0.n/ denotes the Hecke eigenvalues of f (with the convention that �f0.�n/D 0 for �n < 0 if f0 is
holomorphic and �f0.�n/D˙�f0.n/ according to whether f0 is an even or odd Maaß form) and

1.f; k/D

8̂<̂
:
Q
˙ �

�
kC1

2
˙ i tf

�
if f0 is Maaß;

�.k/�
�
k�k0

2
C 1

�
if f0 is holomorphic.

Using this we can prove the following crude lower bound:

Proposition 5.2. For i D 1; : : : ; n, let fi 2 Bki .N / be an L2-normalized weight ki Hecke–Maaß
eigenform of level N . Then we have  nY

iD1

fi


2

�" e
�cnT 2C"

for all " > 0, where T DmaxiD1;:::;njtfi jC jki jC 1 and c D c.N; "/ > 0 is some positive constant.

Proof. Clearly we may assume that k � 0. Given f 2Bk.N /, we write

f D ��d;N 0Rk�2 � � �Rk0f0

for a Hecke–Maaß newform f0 of weight k0 (with k0 � k and k0 � k mod 2) and level N 0 with dN 0 jN .
We have, by a standard bound for the Hecke eigenvalues (see, for instance, [Iwaniec 2002, (8.7)] in the
Maaß case) and by bounding the quotient of �-factors trivially, thatX
n¤0

�f .n/

jnj1=2
Wk=2;itf .4�nz/

D e2�idxWk=2;itf .4�dy/C"f e
�2�idx �

�
.kC1/=2Cs

�
�
�
.kC1/=2�s

�
�.1=2Cs/�.1=2�s/

W�k=2;itf .4�dy/

CO

�
jtf j

1=2
X
n�2

ˇ̌
Wk=2;itf .4�dny/

ˇ̌
C.kCjtf jC1/

k
ˇ̌
W�k=2;itf .4�dny/

ˇ̌�
; (5-7)

where "f D 0 if f0 is holomorphic and if f0 is a Maaß form we have "f D ˙1 where ˙1 is the sign
of f0 under the reflection operator X defined in Section 3C. By the asymptotics (5-5) we see easily thatX

n�2

jWk=2;itf .4�dny/jC .kCjtf jC 1/
k
jW�k=2;itf .4�dny/j � e�3d�y

for y � .jtf jC kC 1/2C". For k D 0 we conclude from the asymptotic (5-5) that (5-7) is equal to

.e2�idxC "f e
�2�idx/e�2�dy CO.y�"e�2�dy/;

for y � .jtf jC kC 1/2C". Similarly, for k > 0, we see that (5-7) is equal to

e2�idx.4�dy/k=2e�2�dy CO..4�dy/k=2�"e�2�dy/
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for y � .jtf jC kC 1/2C", using the bound

�
�
.kC 1/=2C s

�
�
�
.kC 1/=2� s

�
�.1=2C s/�.1=2� s/

W�k=2;itf .4�dy/� .kCjtf jC 1/
k.4�dy/�k=2e�2�dy :

By Stirling’s approximation, we have the crude bound

1.f; k/� eO..jtf jCk/ log.jtf jCk//;

and we also have jtf j�"�" L.sym2 f; 1/�" jtf j
". Thus we conclude from (5-6) that for k D 0,

jf .z/j � e�3�dy (5-8)

for y � .jtf jC kC 1/2C" and x such that e2�idxC "f e�2�idx� 1. Similarly if k > 0, we have

jf .z/j � e�3�dy (5-9)

for y � .jtf jCkC1/2C" (and any x). Now we easily conclude the wanted lower bound for the L2-norm
of the product by computing the contribution from the range x 2 Œ0; 1� and y � .jtf jC kC 1/2C". �

In the holomorphic case, we can do slightly better since the Fourier expansion is better behaved.

Proposition 5.3. For iD1; : : : ; n, let fi 2Bki ;hol.N / be a weight ki holomorphic Hecke–Maaß eigenform
of level N (L2-normalized). Then we have nY

iD1

fi


2

�" e
�cnT 1C"

for all " > 0, where T DmaxiD1;:::;n jki j and c.N; "/D c > 0 is some positive constant.

Proof. Let f 2Bk;hol.N / be of the form ��
d;N 0

yk=2g with g 2 Sk.N
0/ a holomorphic Hecke newform.

By the Fourier expansion (5-6), we have

f .z/D
cf

jL.sym2 f; 1/�.k/j1=2
X
n�1

�g.n/

n1=2
.4�dny/k=2e2�idnz :

By bounding everything trivially, it is easy to see that for y� k1C",X
n�1

�g.n/

n1=2
.4�dny/k=2e2�idnz D .4�dy/k=2e2�idzCO".e

�3�dy/:

Now the lower bound for k
Qn
iD1 fik2 follows as above. �

Remark 5.4. It seems quite hard to obtain strong lower bounds for k
Q
i fik2 as this is related to the

deep problem of nonlocalization of the eigenfunctions fi (such as L1-bounds), see, for instance, [Sarnak
1995]. In particular, it is very hard to rule out that the fi localize in disjoint regions.
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6. Proof of the main theorem

We will now use the results proved in the previous sections to obtain our wide moment calculation. First
of all, we will use the above to obtain a version of equidistribution of Heegner points with explicit error
terms. For this, we will need the following convenient basis for the space spanned by Maaß forms of
squarefree level N (see [Humphries and Khan 2020, Lemma 3.1]):

B0.N / WD
˚
ud 2 C

1.H/\L2.�0.N /nH/ WN
0d jN; u 2B�.N 0/

	
;

(recall that we denote by B�.N 0/ all Hecke–Maaß newforms f of weight 0 and level N 0) where

ud .z/ WD

�
Ld .sym2 u; 1/

'.d/

d�.N=N 0/

�1=2 X
vwDd

�.v/

v

�.w/�u.w/
p
w

u.vz/: (6-1)

Here,

Ld .sym2 u; s/ WD
Y
pjd

1

1��u.p2/p�sC�u.p2/p�2s�p�3s
:

There is a similar basis for the Eisenstein part of the spectrum (see [Humphries and Khan 2020, Sec-
tion 3.2]). Given u 2B0.N /, we put

L.sym2 u; s/ WD L.sym2 u0; s/

and

L.u; s/ WD L.u0; s/;

where uD .u0/d with u0 2B�.N 0/ and dN 0 jN .

Theorem 6.1. Let k1; : : : ; kn 2 2Z be even integers such that
P
ki D 0. For i D 1; : : : ; n, let fi 2Bki .N /

be a Hecke–Maaß eigenform of fixed level N , weight ki , and spectral parameter tfi . Let jDK j ! 1
transverse a sequence of discriminants of imaginary quadratic fields K such that all primes dividing N
split in K. Then we have

1

jClK j

X
ŒQ�2�0.N/nQDK .N;r/

nY
iD1

fi .zQ/

D

� nY
iD1

fi ;
1

vol.�0.N //

�
CO"

� nY
iD1

fi


2

jDK j
�1=16T 5n5.T jDK jn/

"

�
;

where T DmaxiD1;:::;n jtfi jC jki jC 1.
We have the following improvements for the exponents in the error term:8<:

jDK j
�1=16T 5=2n5 if all fi are holomorphic;

jDK j
�1=12T 2n2 if the level is N D 1;

jDK j
�1=12T n2 if all fi are holomorphic of level 1:

(6-2)
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Proof. We put D D jDK j to lighten notation. By the spectral expansion for �0.N /nH, see [Iwaniec 2002,
Theorem 7.3], we haveX
ŒQ�2�0.N/nQ�D.N;r/

nY
iD1

fi .zQ/

D jClK j
� nY
iD1

fi ;
1

vol.�0.N //

�
C

X
u2B0.N/

� nY
iD1

fi ; u

�
Wu;K C .Eisenstein/; (6-3)

where
Wu;K WD

X
ŒQ�2�0.N/nQ�D.N;r/

u.zQ/

is the Weyl sum of level N corresponding to u, and the Eisenstein contribution is given by

.Eisenstein/ WD
X
a

1

4�

Z
R

� nY
iD1

fi ; Ea

�
� ;
1

2
C i t

��
Wa;t;K dt;

where the sum runs over the set of inequivalent cusps of �0.N /, Ea

�
z; 1
2
C i t

�
denotes the Eisenstein

series at the cusp a (see [Iwaniec 2002, (3.11)]), and

Wa;t;K WD

X
ŒQ�2�0.N/nQ�D.N;r/

Ea

�
zQ;

1
2
C i t

�
is the corresponding Weyl sum.

We will now bound the cuspidal contribution in (6-3), and as usual the Eisenstein contribution can be
bounded similarly. By Theorem 4.2, we have

jWu;K j
2
�N

D1=2L.u; 1=2/L.u˝�K ; 1=2/

L.sym2 u; 1/
(6-4)

for u 2B0.N /. Here the case when u is a linear combination of old forms as in (6-1) follows by linearity.
Now we observe that for u 2B�.N /, we have using the self adjointness of �,� nY

iD1

fi ; u

��
t2u C

1
4

�m
D

� nY
iD1

fi ; �
mu

�
D

�
�m

nY
iD1

fi ; u

�
:

Applying the Cauchy–Schwarz inequality and Lemma 5.1, this implies� nY
iD1

fi ; u

�
�

nY
iD1

kfik2
n2m.mCT /nAC2m

.jtuj2C 1/m
(6-5)

for any m� 0, where T DmaxiD1;:::;n jtfi jC jki jC 1. Putting mD .nT 2/1C" in the estimate (6-5), we
see that we can truncate the spectral expansion (6-3) at tu� .T n/2.TDn/" at the cost of an error of size

�" .TDn/
�c.nT 2/1C"

nY
iD1

kfik2;

for some constant c D c.N; "/ > 0. By Proposition 5.2, this error is negligible.
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To estimate the remaining terms, we use the bound (6-4) together with Cauchy–Schwarz and Bessel’s
inequality, nonnegativity, and standard bounds for symmetric square L-functions. This givesX

u2B0.N/
tu�.T n/

2.TDn/"

� nY
iD1

fi ; u

�
Wu;K

�"

 nY
iD1

fi


2

D1=4
� X
N 0jN

X
u2B�.N 0/

tu�.T n/
2.TDn/"

L
�
u; 1
2

�
L
�
u˝�K ;

1
2

��1=2
.TDn/"; (6-6)

where �K is the quadratic character corresponding to K via class field theory (recall that B�.N 0/ denotes
the set of all Hecke–Maaß newforms of weight 0 and level N 0).

From here on, we distinguish between the case of level 1 and higher (square free) level N . In the case
of general level N , we use the GL2 subconvexity bound due to Blomer and Harcos [2008]

L
�
u˝�K ;

1
2

�
� .1Cjtuj/

3C"D3=8C";

which givesX
u2B0.N/

tu�.T n/
2.TDn/"

� nY
iD1

fi ; u

�
Wu;K�

 nY
iD1

fi


2

D1=4C3=16.T n/3.TDn/"
� X
N 0jN

X
u2B�.N 0/

tu�.T n/
2.TDn/"

L
�
u; 1
2

��1=2

�

 nY
iD1

fi


2

D1=2�1=16.T n/5.TDn/";

using a standard first-moment bound for L
�
u; 1
2

�
(for instance, using a spectral large sieve).

If the level is 1, we follow Young [2017] and use Hölder’s inequality together with his Lindelöf strength
third moment bound [Young 2017, Theorem 1.1] to estimate the above by

�"

 nY
iD1

fi


2

D5=12.T n/2.TDn/":

Finally, if all of the fi are holomorphic, then by Proposition 5.3 we can use the estimate (6-5) with
mD nT 1C" instead, which leads to the improved exponents. �

Remark 6.2. Alternatively, we can estimate (6-6) by using the bound�Y
i

fi ; u

�
�" t

5=12C"
u

Y
i

fi


1

;

where k � k1 denotes the L1-norm, using here the L1-bound of Iwaniec and Sarnak [1995]. This leads to
the error term

O"

� nY
iD1

fi


1

jDK j
�1=16T 35=6n35=6.T jDK jn/

"

�
;

which is more convenient in some cases (with similar improvements in the special cases of holomorphic
and / or level 1 as in (6-2)).



760 Asbjørn Christian Nordentoft

6A. A wide moment of L-functions. Combining this with our explicit formula, we arrive at our main
L-function computation. We will use the following shorthand for K an imaginary quadratic field with
class group ClK :

Wide.K; n/ WDWide.bClK ; n/;

with Wide.G; n/ as in (1-1). Note that the following statement is a slight generalization of Theorem 1.7
(allowing for the representations not to have the same conductor):

Theorem 6.3. Let N � 1 be a fixed squarefree integer. For i D 1; : : : ; n, let �i be a cuspidal automorphic
representation of GL2.A/ with trivial central character of conductor Ni jN , spectral parameter t�i , and
even lowest weight k�i . Let k1; : : : ; kn 2 2Z be integers such that jki j � k�i and

P
i ki D 0.

Let jDK j !1 transverse a sequence of discriminants of imaginary quadratic fields K such that all
primes dividing N split in K. For each K, pick Hecke characters �i;K with 1-type x 7! .x=jxj/ki

such that
Q
i �i;K is the trivial Hecke character (notice that this is always possible since, we know thatQ

i �i;K is a class group character).
Then we have for fi 2Bki .N / in the representation space of �i ,X

.�i /2Wide.K;n/

nY
iD1

�
cfi "�i ;fiL

�
�i ˝�i�i;K ;

1
2

�1=2�
D
jClK jn

jDK jn=4

�� nY
iD1

fi ;
1

vol.�0.N //

�
CO"

� nY
iD1

fi


2

jDK j
�1=16T 5n5.T jDK jn/

"

��
; (6-7)

where T DmaxiD1;:::;n jki jC jtfi jC 1, cfi D .8Ni /
�1c1.�i;1; ki / with c1 as in (4-11), and "�;fi are

complex numbers of absolute value 1.
We have the following improvements for the exponents in the error term:8<:

jDK j
�1=16T 5=2n5 if �i are discrete series of weight k�i D ki ;

jDK j
�1=12T 2n2 if the level N D 1 is trivial;

jDK j
�1=12T n2 if N D 1 and �i are discrete series of weight k�i D ki :

(6-8)

Proof. By the fact that
Q
i �i;K is trivial, we see that

nY
iD1

fi .z/D

nY
iD1

�
�i;K.x/fi .z/

�
for any x 2 A�K . In particular, if we fix a quadratic form Q 2 QDK .N; r/ and choose x D xQ 2 A�K as in
Corollary 4.3, then we get
nY
iD1

fi .zQ/D

nY
iD1

�
�i;K.xQ/fi .zQ/

�
D

X
�1;:::;�n2bClK

nY
iD1

�
"�i; icfi

jDK j
1=4

jClK j

ˇ̌̌
L
�
�i˝�i�i;K ;

1

2

�ˇ̌̌1=2
�i .Œa�/

�
:

Summing this identity over a set of representatives for �0.N /nQDK .N; r/Š ClK , applying Theorem 6.1,
and using orthogonality of class group characters (i.e., the Fourier theoretic equality (1-2)D(1-3)), we
arrive at the conclusion. �
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Remark 6.4. The fact that we have k
Q
i fik2 in the error term and not, say, L1-norms, turns out to be

crucial for applications to nonvanishing; see Section 7C.

6B. The diagonal case. In this subsection, we will use Theorem 6.3 to calculate another family of
moments. For this consider the following “nontrivial diagonal”:

Widentd. OG; 2n/ WD

�
.�1;  1; : : : ; �n;  n/ 2 . OG/

2n
W �i ¤  i ;

nY
iD1

�i D

nY
iD1

 i

�
:

The starting point is the following lemma:

Lemma 6.5. Let G be a finite abelian group and L1; : : : ; Ln WG! C maps. Then we haveX
.�i ; i /2Widentd. OG;2n/

nY
iD1

bLi.�i /bLi . i /D 1

jGj

X
M�f1;:::;ng

.�1/jM j
�X
g2G

Y
i…M

jLi.g/j
2

�Y
i2M

�X
g2G

jLi.g/j
2

�
:

Here bL W OG! C denotes the Fourier transform given by � 7! .1=jGj/
P
g2G L.g/�.g/.

Proof. By the principle of inclusion and exclusion, we haveX
.�i ; i /2Widentd. OG;2n/

nY
iD1

bLi .�i /bLi . i /
D

X
M�f1;:::;ng

.�1/jM j
X

.�1; 1;:::;�n; n/2Wide. OG;2n/
�iD i ;i2M

nY
iD1

bLi .�i /bLi . i /; (6-9)

where the sum is over all subsets M of f1; : : : ; ng. Furthermore, we haveX
.�1; 1;:::;�n; n/2Wide. OG;2n/

�iD i ;i2M

nY
iD1

bLi .�i /bLi . i /
D

� X
.�i ; i /i…M2Wide. OG;2.n�jM j//

Y
i…M

bLi .�i /bLi . i /�Y
i2M

�X
�2 OG

jbLi .�/j2�; (6-10)

from which the result follows using the Fourier theoretic equality (1-2)D(1-3). �

From this we get the following corollary:

Corollary 6.6. Let �i ; K; ki be as in Theorem 6.3. For i D 1; : : : ; n, let �i;K be a Hecke character of K
of1-type ˛ 7! .˛=j˛j/ki and fi 2Bki .N / in the representation space of �i . Then we haveX
.�i ; i /2Widentd.K;2n/

nY
iD1

"�i ; i ;fi jcfi j
2L
�
�i˝�i�i;K ;

1
2

�1=2
L
�
�i˝ i�i;K ;

1
2

�1=2
D
jClK j2n

jDK jn=2

� X
M�f1;:::;ng

.�1/jM j
Y
i…M

fi

2�Y
i2M

kfik
2
CO"

� nY
iD1

kfik1jDK j
�1=16T 5n52n.T jDK jn/

"

��
;

as jDK j !1, where cfi D .8Ni /
�1c1.�i;1; ki / with c1.�i;1; ki / as in (4-11) and "�; ;fi complex

numbers of norm 1.
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Proof. The result follows from Lemma 6.5 combined with Theorem 6.3 by bounding the norms in the
error terms by the L1-norms of the fi . �

7. Applications to nonvanishing

Clearly, Theorem 6.3 gives a way to produce weak simultaneous nonvanishing results (in the sense of
Section 2) given that we have � nY

iD1

fi ; 1

�
¤ 0: (7-1)

In this section, we show nonvanishing as in (7-1) in a number of different cases.
The simplest case is nD 2 and f1D f2 (which is the one considered by Michel and Venkatesh [2006])

where the period is the L2-norm and thus automatically nonzero. Using our quantitative moment
calculation in Theorem 6.3, we obtain a uniform version of [Michel and Venkatesh 2006, Theorem 1] in
the general weight case.

The case nD 3 is also very appealing since the corresponding triple periods are connected to triple
convolution L-functions via the Ichino–Watson formula [Ichino 2008; Watson 2002]. There are some prior
work obtaining nonvanishing of triple periods, which immediately give weak simultaneous nonvanishing
using Theorem 6.3. Reznikov [2001] showed using representation theory that for any Maaß form f

of level N , there are infinitely many Maaß forms f1 of level dividing N such that hf 2; f1i ¤ 0 (in
the level 1 case, this was reproved by Li [2009] using more analytic methods). Similarly, the quantum
variance computation of Luo and Sarnak [2004] implies the following: for any Hecke–Maaß eigenform f

with L
�
f; 1
2

�
¤ 0, there are�K many holomorphic newforms g 2 Sk.1/ with K � k � 2K such that

hykjgj2; f i ¤ 0; see also [Sugiyama and Tsuzuki 2022]. We get similar nonvanishing with f a Hecke–
Maaß newform using the corresponding quantum variance computation by Zhao and Sarnak [2019]. Note
that the nonvanishing results for triple periods hf1f2f3; 1i obtained in the above mentioned papers all
have two of the forms equal. In terms of applications to nonvanishing these result are not that interesting.
Motivated by this, we introduce below a method for obtaining nonvanishing for nD 3 where all of the
forms f1; f2; f3 are different.

Finally in the holomorphic case, we can show nonvanishing of periods for general n using a very soft
argument.

7A. The second moment case. In this subsection, we consider the simplest case of n D 2 in which
the nonvanishing of the main term in (6-7) is automatic. In particular, this gives an improved version
of [Michel and Venkatesh 2006, Theorem 1] with uniformity in the spectral aspect and generalizes the
results to general weights.

Corollary 7.1. Let N be a fixed squarefree integer and " > 0. Let � be a cuspidal automorphic
representation of GL2.A/ of level N , spectral parameter t� , and even lowest weight k� . Let k be an even
integer such that jkj � k� , and put T D jt� jC jkjC 1.
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Then there exists a constant c D c.N; "/ > 0 such that for any imaginary quadratic field K such that
all primes dividing N splits in K with discriminant jDK j � cT 160=3C" (respectively, jDK j � cT 22C" if
N D 1), we have

#
˚
� 2 bClK W L

�
� ˝��K ;

1
2

�
¤ 0

	
��

�
jDK j

1=1058 if � is d.s,
jDK j

1=2648 if � is p.s,

where �K is a Hecke character of K of conductor 1 and1-type ˛ 7! .˛=j˛j/k .

Proof. Let � be as in the corollary above. We apply Theorem 6.3 with the error term coming from
Remark 6.2 and with �1 D �2 D � and f1 D f2 belonging to � of weight k � k� . In this special case, it
is clear that we can truncate the spectral expansion (6-3) at tu� T 1C"jDK j

" at a negligible error since
we have

kf1f2k1 D kf1k
2
2 D 1

(for any f1 as above). Thus, both in the (raised) holomorphic and Maaß case, we have the error terms

O"
�
jDK j

�1=16T 20=6.jDK jT /
"
�

for general level N

and

O"
�
jDK j

�1=12T 11=6.jDK jT /
"
�

for level N D 1:

From this, we see that for jDK j � cT 160=3C" (respectively, jDK j � cT 22C"), the RHS of (6-7) is nonzero.
Thus, the LHS (6-7) is also nonzero and satisfies �";k jDK j

1=4�" using Siegel’s lower bound (3-1).
Now the result follows directly using the subconvexity bounds for Rankin–Selberg L-functions due to
Michel [2004] and Harcos and Michel [2006]. �

7B. Triple products of Maaß forms. A very attractive case of Theorem 6.3 is n D 3, where the
nonvanishing of hf1f2f3; 1i is equivalent to the nonvanishing of the triple convolution L-function
L
�
�1˝�2˝�3;

1
2

�
due to the Ichino–Watson formula [Ichino 2008; Watson 2002]. In this section, we

introduce a soft method (relying on results of Lindenstrauss and Jutila–Motohashi) to derive nonvanishing
results in the case where f1; f2; f3 are all Maaß forms of level 1.

By the spectral expansion for L2.SL2.Z/nH/ [Iwaniec 2002, Theorem 7.3], we have

kf1f2k
2
2 D hf1f2; f1f2i D

X
f 2B0.1/

jhf1f2; f ij
2
C

1

4�

Z
R

jhf1f2; Et ij
2 dt; (7-2)

where Et .z/DE
�
z; 1
2
C i t

�
is the nonholomorphic Eisenstein series of level 1. Using the Ichino–Watson

formula [Ichino 2008; Watson 2002] (which in the Eisenstein case reduces to Rankin–Selberg), we have

jhf1f2; f ij
2
D

L.f1˝f2˝f; 1=2/

8L.sym2 f1; 1/L.sym2 f2; 1/L.sym2 f; 1/
h.tf1 ; tf2 ; tf /

and

jhf1f2; Et ij
2
D

jL.f1˝f2; 1=2C i t/j
2

4L.sym2 f1; 1/L.sym2 f2; 1/j�.1C 2it/j2
h.tf1 ; tf2 ; t /;



764 Asbjørn Christian Nordentoft

where

h.t1; t2; t3/D

Q
˙ �.1=4˙ i t1=2˙ i t2=2˙ i t3=2/

j�.1=2C i t1/j2j�.1=2C i t2/j2j�.1=2C i t3/j2
:

Here the product is over all 8 combinations of signs. If we fix t1, then it is standard using Stirling’s
approximation to prove that for t2; t3� 1, we have

h.t1; t2; t3/�t1 e
��jt2�t3j.1Cjt2� t3j/

�1.1C t2C t3/
�1:

This shows that the contribution from respectively, jt � tf2 j � .tf2/
" and jtf � tf2 j � .tf2/

" in (7-2) is
negligible.

We would like to show that actually all of the contribution from the Eisenstein part in (7-2) is negligible.
This is connected to the subconvexity problem for Rankin–Selberg L-functions in a conductor dropping
region, and is thus very difficult. We can however get unconditional results if we keep f1 fixed and
average over f2 using the following result due to Jutila and Motohashi [2005, (3.50)]:

Theorem 7.2 (Jutila–Motohashi). Let f1 2B0.1/ be fixed. Then we haveX
jtf2�T j�T

"

ˇ̌
L
�
f1˝f2;

1
2
C i t

�ˇ̌2
�" T

1C" (7-3)

uniformly for jt �T j � T ".

Strictly speaking [Jutila and Motohashi 2005] only deals with the case where f1 is an Eisenstein series,
but (as remarked in [Blomer and Holowinsky 2010, p. 3]) the same estimate follows in the case of Maaß
forms using the exact same argument relying on the spectral large sieve.

From Theorem 7.2, it follows that for any ı > 0, we have thatZ
jt�tf2 j�.tf2 /

"

ˇ̌
L
�
f1˝f2;

1
2
C i t

�ˇ̌2
dt � T 1�ı (7-4)

for all but at most O".T ıC"/ Maaß forms f2 with jtf2 �T j � T
".

Recalling the estimates t�"
f
�" L.sym2 f; 1/�" t

"
f

, we conclude combining all of the above that for
any f2 satisfying (7-4), we have

kf1f2k
2
2 D

X
jtf �T j�T "

jhf1f2; f ij
2
CO".T

�ıC"/: (7-5)

By QUE for Maaß forms due to Lindenstrauss [2006] (with key input by Soundararajan [2010]), we
know that

kf1f2k2!kf1k2 ¤ 0; and hf1f2; f2i !
D
f1;

3

�

E
D 0;

as tf2!1. Thus we conclude from (7-5) that for T large enough there is some f3¤f2 with jtf3�T j�T
"

such that hf1f2; f3i ¤ 0. Furthermore, we obtain a lower bound for free using Weyl’s law,

#
˚
f 2B0.1/ W jtf �T j � T

"
	
� T 1C":
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From this we obtain the following result:

Proposition 7.3. Let f1 2 B0.1/ be fixed and " > 0. Then for T > 0 large enough (depending on f1
and "), we have that for all but O".T 2"/ of f2 2 B0.1/ satisfying jtf2 � T j � T

", there exists some
f3 2B0.1/ not equal to f2 with jtf3 �T j � T

" such that

jhf1f2; f3ij �" kf1f2k2=T
1=2C":

From this, we deduce the nonvanishing result in Corollary 1.3.

Proof of Corollary 1.3. Let f2; f3 be as in Proposition 7.3. Then we apply Theorem 6.3 (in the level 1 case)
with nD 3, k1 D k2 D k3 D 0, and test vectors f1; f2; f3. We observe that

kf1f2f3k2 jDK j
�1=12T 2.jDK jT /

"
�kf1f2k2 jtf3 j

5=12C"
jDK j

�1=12T 2.jDK jT /
";

by the sup-norm bound due to Iwaniec and Sarnak [1995]. Thus we see that if jDK j �f1;" T
35C", the

error term in the asymptotic (6-7) (with exponents as in (6-8)) is strictly less than hf1f2f3; 3=�i. Thus
we conclude that the LHS of (6-7) is nonvanishing and satisfies�";T jDK j

3=4�" (using Siegel’s lower
bound (3-1) again). Now by the subconvexity estimate for L.fi ˝ ��i ; 1=2/ due to Harcos and Michel
[2006, Theorem 1] (where ��i is the holomorphic theta series associated to the Hecke character �i ), we
get the wanted quantitative nonvanishing result as jDK j !1. �

7C. The holomorphic case. Consider Theorem 6.3 in the case where �1; : : : ; �n are all holomorphic
discrete series representations of GL2 and kiDk�i >0. Furthermore, pick fiDyki=2gi , with gi 2Ski .N /

a holomorphic Hecke newform. Then we know that
nY
iD1

gi 2 Sk.N /;

where k D
P
i ki (which might not be a Hecke–Maaß eigenform(!)). A basis Bk;hol.N / for Sk.N / is

given by ��
d;N 0

yk=2g, where g 2 Sk.N
0/ is a Hecke newform and dN 0 jN . This implies thatyk nY

iD1

gi

2
2

D

X
u1;u22Bk;hol.N/

hu1; u2i

�
yk=2

nY
iD1

gi ; u1

��
yk=2

nY
iD1

gi ; u2

�
:

Since any two u1; u2 2 Bk;hol.N / are orthogonal (with respect to the Petersson inner product) if the
underlying Hecke newforms are different and since the dimension of Sk.N

0/ is�N k, we conclude
the following:

Proposition 7.4. Let N be a fixed positive integer, and let k1; : : : ; kn 2 2Z>0 be even integers. For
i D 1; : : : ; n, let gi 2 Ski .N / be a holomorphic Hecke newform of level N and weight ki . Then there
exists some ��

d;N 0
yk=2g 2Bk;hol.N / with k D k1C � � �C kn such that� nY

iD1

yki=2gi ; �
�
d;N 0y

k=2g

�
�

Qn
iD1 y

ki=2gi

2

k1=2
: (7-6)

Combining this with Theorem 6.3, we obtain the following nonvanishing result:
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Corollary 7.5. Let N be a fixed squarefree integer, and let k1; : : : ; kn 2 2Z>0 be even integers. For i D
1; : : : ; n, let �i be automorphic representations corresponding to holomorphic newforms gi 2Ski .N / and
put k D

P
ki . Then there exists a constant c D c.N; "/ > 0 such that for any imaginary quadratic field K

such that all primes dividing N split in K and the discriminant satisfies jDK j � c.maxi ki /40n80k12C",
we have

#
˚
.�1; : : : ; �nC1/ 2Wide.K; nC 1/; g 2Bk;hol.�0.N // W

L
�
�1˝�1�1;K ;

1
2

�
� � �L

�
�n˝�n�n;K ;

1
2

�
L
�
�g ˝�nC1�nC1;K ;

1
2

�
¤ 0

	
�k jDK j

.nC1/=2115;

where k D
P
i ki and �i;K are Hecke characters of K with 1-types x 7! .x=jxj/ki and �nC1;K DQn

iD1�i;K .

Proof. For iD1; : : : ; n, let fiDyki=2gi , and let f D��
d;N 0

yk=2g2Bk;hol.�0.N // be as in Proposition 7.4.
We have the following sup-norm bound due to Xia [2007] (or more precisely the natural extension to

general level):
kf k1�" k

1=4C":

Thus, we conclude that f nY
iD1

fi


2

�" k
1=4C"

 nY
iD1

fi


2

:

Combining the above with Theorem 6.3 (using the improved error term (6-8)) and the lower bound (7-6),
we conclude that there is some constant depending only on N and " > 0 such that as soon as

jDK j
1=16
�N;"

�
max

iD1;:::;n
ki
�5=2

n5k1=4C1=2C";

then the RHS of (6-7) is nonzero. Thus the LHS (6-7) is also nonzero and is �";k jDK j
n=4�" using

Siegel’s lower bound (3-1).
Finally, since all of the fi are holomorphic we can employ the subconvexity bound for Rankin–Selberg

L-functions L
�
fi ˝ ��i�i;K ;

1
2

�
due to Michel [2004], where ��i�i;K is the holomorphic theta series

associated to the Hecke character �i�i;K defined in Section 3B. Finally, we use that

L
�
f ˝ ���nC1;K ;

1
2

�
D L

�
f ˝ ���nC1;K ;

1
2

�
to get rid of the conjugate in the last Rankin–Selberg L-functions. This gives the wanted qualitative lower
bound for the nonvanishing. �

In the special case of level 1, we can do slightly better.

Proof of Corollary 1.4. Using the improved error term in Theorem 6.3 in the case of level 1 holomorphic
forms, we see that the RHS of (6-7) is nonzero as soon as

jDK j
1=12
�N;" . max

iD1;:::;n
ki /n

2k3=4C":

Using the trivial estimates n� k and maxi ki � k, we conclude Corollary 1.4. �
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7D. Applications to Selmer groups. In this last section, we will give applications of our results in the
holomorphic case to triviality of the ranks of Bloch–Kato Selmer groups. We will restrict to level 1 for
simplicity of exposition.

The setting is as follows: given a holomorphic Hecke eigenform f of weight k and level 1, a Hecke
character � of an imaginary quadratic field K=Q of conductor 1 and infinity type ˛ 7! .˛=j˛j/k , and a
prime number p > 2, we have an associated Bloch–Kato Selmer group

Sel.K; Vf;�=ƒf;�/;

where Vf;� WDVfp jGK˝� denotes the p-adic Galois representation associated to f ˝� andƒf;��Vf;�
is a certain lattice. For details and exact definitions, we refer to [Castella 2020, Definition 5.1]. The
Bloch–Kato conjecture predicts that the rank of Sel.K; Vf;�=ƒf;�/ is zero exactly if L

�
�f ˝�;

1
2

�
¤ 0.

This conjecture has been proved under mild assumptions by Castella [2020, Theorem A]. In order to state
these assumptions, we will need some notation. Given f as above, we denote by Lf the p-adic Hecke
field of f and �f WGQ!AutLf .Vf / the p-adic Galois representation associated to f and �f the mod p
reduction of �f . We denote by ‚ the set of all imaginary quadratic fields K=Q of odd discriminant DK
satisfying the following hypotheses:

(1) The prime p splits in K,

(2) p − hK ,

(3) �f jGK is absolutely irreducible.

Then we can rephrase our results in the following way:

Corollary 7.6. Let f be a holomorphic Hecke eigenform of even weight k and level 1. Let p > 5 be a
prime such that p� 1 j k� 2 and f is p-ordinary.

Then there exists a constant c D c."/ > 0 such that for any imaginary quadratic field K 2 ‚ with
discriminant jDK j � ck22C", we have

#
˚
� 2 bClK W rankZ

�
Sel.K; Vf;��K=ƒf;��K /

�
D 0

	
�f jDK j

1=1058;

where �K is a Hecke character of K of conductor 1 and1-type ˛ 7! .˛=j˛j/k .

Proof. This follows directly from Corollary 7.1 combined with the explicit reciprocity law [Castella 2020,
Theorem A] and the arguments in [Castella 2020, Section 6.3]. �
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