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aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
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ANALYSIS AND PDE
Vol. 1, No. 1, 2008

LOCAL ESTIMATES AND GLOBAL CONTINUITIES IN LEBESGUE SPACES
FOR BILINEAR OPERATORS

FRÉDÉRIC BERNICOT

In this paper, we first prove some local estimates for bilinear operators (closely related to the bilinear
Hilbert transform and similar singular operators) with truncated symbol. Such estimates, in accordance
with the Heisenberg uncertainty principle correspond to a description of “off-diagonal decay”. In ad-
dition they allow us to prove global continuities in Lebesgue spaces for bilinear operators with spatial
dependent symbol.

1. Introduction

The simplest bilinear operator is the pointwise product 5, defined by

5( f, g)(x) := f (x)g(x),

for all f, g ∈S(R). The Hölder inequalities give us the continuities on Lebesgue spaces for this operator.
So for all exponents p, q, r ∈ (0,∞] such that

1
p
+

1
q
=

1
r
, (1-1)

the operator 5 is continuous from L p(R)× Lq(R) into Lr (R). Also a natural question appears: How
can we modify this bilinear operation and simultaneous keep these continuities?

First let T be a bilinear operator, acting from S(R)×S(R) into S′(R). It is well known that we have
a spatial representation of T with a kernel K ∈ S′(R3) and a frequency representation with a symbol
σ ∈ S′(R3) such that (in distributional sense)

T ( f, g)(x)=
∫

R2
K (x, y, z) f (y)g(z) dy dz

=

∫
R2

ei x(α+β)σ(x, α, β) f̂ (α)ĝ(β) dα dβ, (1-2)

for all f, g ∈ S(R). In the rest of this paper, we denote by Tσ the operator associated to the symbol σ .
The kernel and the symbol are related by the relation

K (x, y, z)=
∫

R2
ei(α(x−y)+β(x−z)) σ(x, α, β) dα dβ.

MSC2000: 42B15, 42A20, 42A99.
Keywords: local estimate, multilinear operator, time-frequency analysis, off-diagonal estimate.
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2 FRÉDÉRIC BERNICOT

For example, the product operator 5 is given by the symbol

σ(x, α, β)= 1.

One of the first classes of bilinear symbols to be studied was the class of symbols satisfying the
bilinear Hörmander condition: For all a, b, c ≥ 0,∣∣∂a

x ∂
b
α∂

c
β σ(x, α, β)

∣∣. (1+ |α| + |β|)−b−c. (1-3)

The corresponding operators Tσ were studied by R. Coifman and Y. Meyer [1978; 1975], C. Kenig and
E. M. Stein [1999] and recently by L. Grafakos and R. Torres [2002]. We know that under (1-3), the
operator Tσ is bounded from L p(R)× Lq(R) into Lr (R) for all exponents p, q , r satisfying (1-1) and
1 < p, q <∞. In fact if the symbol is x-independent, one can just assume an homogeneous decay in
(1-3) (that is with (|α|+|β|)−b−c) and then these operators can be decomposed with paraproducts, which
were first exploited by J. M. Bony [1981] and R. Coifman and Y. Meyer [1978]. The paraproducts are
studied with the linear tools (the Calderón–Zygmund decomposition, the Littlewood–Paley theory and
the concept of Carleson measure). In order to get the continuities for x-dependent symbols, pointwise
estimates of the bilinear kernel are used. Mainly for a symbol σ satisfying (1-3), integrations by parts
allow us to obtain

|K (x, y, z)|. (1+ |x − y| + |x − z|)−M (1-4)

for any large enough integer M . This estimate is very useful and precisely describes the “off-diagonal
decrease” of the operator. Such an information helps us to reduce the study of x-dependent symbols to
the study of x-independent symbols (and so to the study of paraproducts). Through these ideas, this first
class of symbols are well understood nowadays. We note that this reduction (using pointwise estimates
on the kernel) has already been used in the linear case to study the pseudo-differential operators of the
well-known class op(S0

1,0). Thus “off-diagonal estimates” play an important role.
Since the work of A. Calderón [1965; 1977] in the 70’s about the L2 boundedness of commutators

and Cauchy integrals, more singular bilinear operators have appeared. Mainly, he showed that the com-
mutators and Cauchy integrals can be decomposed by using the bilinear Hilbert transforms. The bilinear
Hilbert transform Hλ1,λ2 is defined by

Hλ1,λ2( f, g)(x) := p.v.
∫

R

f (x − λ1 y)g(x − λ2 y)
dy
y
,

for all f, g ∈ S(R). The x-independent symbol is

σ(α, β)= iπ sign(λ1α+ λ2β)

and so is singular on a whole line in the frequency plane. A. Calderón conjectured that these operators
are continuous on Lebesgue spaces. This famous conjecture was first partially solved by M. Lacey and
C. Thiele [1997a; 1997b; 1998; 1999]. Then some uniform (with respect to the parameters λ1 and
λ2) continuities were shown in [Grafakos and Li 2004; Li 2006]. These proofs use a technical time
frequency analysis, which was proven by C. Muscalu, T. Tao and C. Thiele [2002a; 2002b; 2004] and
independently by J. Gilbert and A. Nahmod [2000; 2002]. They also get a very important result in the
study of bilinear operators: continuities in Lebesgue spaces for more singular operators than those of the
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first class. We are interested by these bilinear operators and we will deal with them and some “smooth
spatial perturbations”. So we replace in (1-3) the quantity

|α| + |β| = d((α, β), 0)

by the lower quantity d((α, β),1), where 1 is a line in the frequency plane:

1 := {(α, β) ∈ R2, λ1α+ λ2β = 0}.

We assume that 1 is nondegenerate, that is, λ1 and λ2 are nonvanishing reals and not equal, in order that
1 be a graph over the three variables α, β and α+β. We assume that the symbol σ satisfies∣∣∂a

x ∂
b
α∂

c
β σ(x, α, β)

∣∣. (1+ |λ1α+ λ2β|)
−b−c, (1-5)

for all a, b, c ≥ 0. In the previous mentioned papers, the main result is this: If σ is x-independent and
satisfies (1-5) (or the homogeneous version) then Tσ is continuous from L p(R)× Lq(R) into Lr (R) for
every exponents p, q, r ∈ (0,∞] satisfying

0<
1
r
=

1
p
+

1
q
<

3
2

and 1< p, q ≤∞.

So there is a natural question (asked in [Bényi et al. 2006]): If an x-dependent symbol satisfies (1-5),
is the operator Tσ continuous from L p(R)× Lq(R) into Lr (R) with the same exponents p, q and r?
A. Benyi, C. Demeter, A. Nahmod, R. Torres, C. Thiele and P. Villarroya [2007] proved a general result
for singular integral kernels. As an example, they can apply their result to pseudo-differential operators
associated to symbols

σ(x, α, β)= τ(x, λ1α+ λ2β)

with τ in the class S0
1,0 because of a modulation invariant condition imposed. Here we are able to treat

general symbols satisfying (1-5) and complete the answer to the question in [Bényi et al. 2006]. These op-
erators do not fall under the scope of [Benyi et al. 2007] because they do not have modulation invariance.
On the other hand, the general operators in [Benyi et al. 2007] cannot be realized as pseudo-differential
bilinear operators with symbols satisfying (1-5) because of the minimal regularity assumptions required
in the kernels.

With this aim, we would like to use the same arguments as for the symbols satisfying (1-3), where we
have seen the important role of the “off-diagonal decay” of the bilinear kernel, obtained with integrations
by parts. For our more singular operators, integration by parts does not work: To obtain a description of
“off-diagonal estimates” is the most important difficulty.

We now come to our main result. For notation, we denote the norm in L p(E) for any measurable set
E ⊂ R by

‖ · ‖p,E,dx

(or ‖ · ‖p,E if there is no confusion for the variable). For an interval I , we set

Ck(I ) :=
{

x ∈ R, 2k
≤ 1+

d(x, I )
|I |

< 2k+1
}
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the scaled corona around I . So we have

C0(I )= 2I and Ck(I )⊂ 2k+1 I.

We will first prove:

Theorem 1.1. Let 1 be a nondegenerate line of the frequency plane. Let p, q be exponents such that

1< p, q ≤∞ and 0<
1
r
=

1
q
+

1
p
<

3
2
.

Then for all δ ≥ 1, there is a constant

C = C(p, q, r,1, δ)

such that for all interval I ⊂ R, for all symbol σ ∈ C∞(R3) satisfying for all a, b, c ≥ 0,∣∣∂a
x ∂

b
α∂

c
β σ(x, α, β)

∣∣. (
|I |−1

+ d((α, β),1)
)−b−c

, (1-6)

we have the following local estimate: For all functions f, g ∈ S(R),( 1
|I |

∫
I
|Tσ ( f, g)(x)|r dx

)1/r

≤ C
( ∑

k≥0

2−kδ
( 1
|2k+1 I |

∫
Ck(I )
| f (x)|pdx

)1/p
) (∑

k≥0

2−kδ
( 1
|2k+1 I |

∫
Ck(I )
|g(x)|qdx

)1/q
)
.

In particular, with the Hardy–Littlewood operator MHL , we have( 1
|I |

∫
I
|Tσ ( f, g)(x)|r dx

)1/r
. inf

I
MHL(| f |p)1/p inf

I
MHL(|g|q)1/q . ‖ f ‖∞‖g‖∞.

The weight (
|I |−1

+ d((α, β),1)
)−N

is not integrable over the whole frequency plane (even if N is large enough due to the modulation
invariance) and therefore we cannot have a pointwise estimate of the bilinear kernel (such as (1-4) when
we assume (1-3)). So such a result is interesting because it precisely describes “off-diagonal estimates”
for the bilinear operator:

Corollary 1.2. With the same notations as Theorem 1.1, for all large enough δ, there exists a constant

C = C(p, q, r,1, δ)

such that for any measurable sets E, F ⊂ R we have for all functions f ∈ L p(E) and g ∈ Lq(F):

‖Tσ ( f, g)‖r,I ≤ C
(

1+
d(I, E)
|I |

)−δ(
1+

d(I, F)
|I |

)−δ
‖ f ‖p,E‖g‖q,F .

This corollary is a direct application of Theorem 1.1. So in spite of the fact that the symbol could be
much more singular than those satisfying only (1-3), we almost obtain the pointwise estimate (1-4). Here
we have a description of the same fast decrease for the bilinear kernel, not with a pointwise estimate, but
with local estimates at the scale |I |. These local estimates are less precise than the pointwise estimate
but we will see that they are sufficient and they can play the same role.
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We note that Theorem 1.1 is in accordance with the Heisenberg’s Uncertainty Principle, which tells
us that if we want to localize at the scale |I | in the spatial domain, we cannot localize in the frequency
domain at a lower scale than |I |−1. For example, our Theorem 1.1 applies if the symbol is supported in
the domain {

(α, β), d((α, β),1)≥ |I |−1}
and it is this case that we consider first in the proof. In fact in (1-6), we allow instead a nice behavior
around the line 1. With this point of view, we could call Theorem 1.1 an “high frequency estimate”. In
this expression, the term “frequency” corresponds to the distance between the point (α, β) to the line of
singularity 1. We prefer the expression “local estimates”, because we will use the fast spatial decay in
order to get the following result.

Theorem 1.3. Let1 be a nondegenerate line of the frequency plane. Let p and q be exponents such that

1< p, q ≤∞ and 0<
1
r
=

1
q
+

1
p
<

3
2
.

For all symbol σ ∈ C∞(R3) satisfying for all a, b, c ≥ 0,∣∣∂a
x ∂

b
α∂

c
β σ(x, α, β)

∣∣. (
1+ d((α, β),1)

)−b−c
,

the associated operator Tσ is bounded from L p(R)× Lq(R) into Lr (R).

This result answers a question of [Bényi et al. 2006]. In addition it will allow us to define a bilinear
pseudo-differential calculus, based on these operators: In our next paper [Bernicot 2008], we will define
classes for bilinear pseudo-differential operators of order (m1,m2) and study their action on Sobolev
spaces. In order to carry on the work of [Bényi et al. 2006], we will give rules of symbolic calculus
for the duality and the composition and also complete the construction of a bilinear pseudo-differential
calculus.

Remark 1.4. The proof of Theorem 1.1 is a shake between a localization argument and the “classical”
time-frequency analysis used for these bilinear operators. So it is quite easy to obtain a version of our
Theorems 1.1 and 1.3 for (n−1)-linear operators Tσ with a nondegenerate space 1 of dimension k < n

2 ,
by following the ideas of [Muscalu et al. 2002a]. By using the results of [Terwilleger 2007], we are
able to obtain the same results for a multidimensional problem and by using the uniform estimates of
[Muscalu et al. 2002b], it seems possible to obtain uniform (with respect to the nondegenerate line 1)
local estimates.

The plan of this article is as follows. We first prove Theorem 1.1 in Section 2 for x-independent
symbols. Then in Section 3 we get the same result for maximal bilinear operators and we conclude the
proof of Theorem 1.1 in the general case. Then in Section 4, we use these local estimates to obtain global
continuities for bilinear operators in weighted Lebesgue and Sobolev spaces and in particular we prove
Theorem 1.3.

2. Proof of Theorem 1.1 for x-independent symbol

In this section, we assume that the symbol σ is x-independent and is supported on the domain{
(α, β), d((α, β),1)≥ |I |−1}.



6 FRÉDÉRIC BERNICOT

We divide the proof into two subsections. First, we will quickly recall the decomposition of our bilinear
operator Tσ by combinatorial model sums. So we will reduce the problem to a study of the “restricted
weak type” for some localized trilinear forms. Then we will study them in the proof of Theorem 2.4 (see
page 9).

Reduction to the study of discrete models. First of all, we define and recall the time-frequency tools
(see for example [Muscalu et al. 2004]):

Definition 2.1. A tile is a rectangle (that is, a product of two intervals) I ×ω of area one. A tritile s is
a rectangle s = Is ×ωs of bounded area, which contains three tiles si = Isi ×ωsi (i = 1, 2, 3) such that,
for all i, j ∈ {1, 2, 3},

Isi = Is and i 6= j ⇒ ωsi ∩ ωs j =∅.
A set {I }I∈I of real intervals is called a grid if for all k ∈ Z,∑

I∈I
2k−1
≤|I |≤2k+1

1I . 1R, (2-1)

where the implicit constant is independent of k and of the grid. So a grid has the same structure as the
dyadic grid.

Let Q be a set of tritiles. It is called a collection if

• {Is, s ∈Q} is a grid,

• J := {ωs, s ∈Q} ∪
⋃3

i=1{ωsi , s ∈Q} is a grid, and

• ωsi ($ ∈ J⇒ for all j ∈ {1, 2, 3}, ωs j ⊂$.

Now we can define the wave packet for a tile.

Definition 2.2. Let 8 be a smooth function such that

‖8‖2 = 1 and supp(8̂)⊂ [− 1
2 ,

1
2 ].

For P = I ×ω a tile, we set

8P(x) := |I |−1/28
( x − c(I )
|I |

)
ei xc(ω),

where for U an interval we denote by c(U ) its center. So 8P is normalized in the L2(R) space, concen-
trated in space around I and its spectrum is exactly contained in ω.

Nowadays it is well known (see for example [Bilyk and Grafakos 2006a; 2006b]) that the operator Tσ
of Theorem 1.1 admits a decomposition

Tσ ( f, g)(x) :=
∑

u=(u1,u2,u3)∈Z3

(1+ |u|2)−N
∑
s∈Su

|Is |
−1/2εs(u)

〈
(τu1φ)s1, f

〉 〈
(τu2φ)s2, g

〉
(τu3φ)s3(x),

where Su is a collection of tritiles depending on u, εs(u) are bounded reals for s ∈ Su , and N is an integer
as large as we want. We write τv for the translation operator

τv( f )(x)= f (x − v).
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The coefficients εs(u) are uniformly bounded with respect to the parameter u and the implicit constant
in (2-1) (for the definition of a grid) is bounded by the estimates of the symbol σ .

By using the assumption that σ is supported in

{(α, β), |α−β| ≥ |I |−1
},

we have the very important property
|ωs |& |I |−1, (2-2)

which is equivalent to
|Is |. |I |,

for all u ∈ Z3, and for all s ∈ Su .
So Theorem 1.1 is a consequence of the following theorem.

Theorem 2.3. Let S be a collection of tritiles satisfying the property (2-2), (εs)s∈S bounded reals and
(φi )i=1,2,3 smooth functions whose spectrum is contained in [−1

2 ,
1
2 ]. We denote TS the bilinear operator

defined by
TS( f, g)(x) :=

∑
s∈S

|Is |
−1/2εs〈φ

1
s1
, f 〉〈φ2

s2
, g〉φ3

s3
(x).

Then for the exponents (p, q, r) of Theorem 1.1 and for all δ ≥ 1, we have the local estimate(∫
I
|TS( f, g)|r

)1/r
.

( ∑
k≥0

2−k(1/p+δ)
‖ f ‖p,Ck(I )

)( ∑
k≥0

2−k(1/q+δ)
‖g‖q,Ck(I )

)
.

In addition the implicit constant depends on the functions φi by the parameters

cM(φ
i ) := sup

x∈R

∑
0≤k≤M

(1+ |x |)M
∣∣(φi )k(x)

∣∣
for M = M(p, q, r, δ) a large enough integer.

In order to show this result, we need to decompose the functions f and g around the interval I .
The interval I being fixed, we omit it in the notation for convenience and for i ∈ N, we set the corona
Ci := Ci (I ). With the property (2-2), we have the decomposition

TS( f, g)=
∑

k1,k2≥0

T k1,k2
S,0 ( f, g)+

∑
k1,k2≥0

l≤0

T k1,k2,l
S,1 ( f, g) (2-3)

with
T k1,k2

S,0 ( f, g)(x) :=
∑
s∈S

Is⊂2I

|Is |
−1/2εs〈φ

1
s1
, f 1Ck1

〉〈φ2
s2
, g1Ck2

〉φ3
s3
(x),

T k1,k2,l
S,1 ( f, g)(x) :=

∑
s∈S, Is*2I

2l
|I |≤|Is |<2l+1

|I |

|Is |
−1/2εs〈φ

1
s1
, f 1Ck1

〉〈φ2
s2
, g1Ck2

〉φ3
s3
(x).

Due to the important property (2-2), we only have to consider tiles s with |Is | ≤ |I |. The other terms
(corresponding to l>0) cannot be studied as we are going to do, according to the Heisenberg Uncertainty
Principle.
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Starting on page 9, we shall prove the following theorem.

Theorem 2.4. Let (p, q, r) be exponents as in Theorem 1.1. The operators T j
S,i are continuous from

L p(R)× Lq(R) into Lr (I ). For convenience, we denote

C(T j
S,i ) := ‖T

j
S,i‖L p×Lq→Lr

and we omit the exponents. Then these continuity bounds satisfy

C(T k1,k2
S,0 ). cM(φ

1)cM(φ
2)cM(φ

3) 2−δ
′(k1+k2),

C(T k1,k2,l
S,1 ). cM(φ

1)cM(φ
2)cM(φ

3) 2−δ
′(|l|+k1+k2)

for any large enough real δ′, with an integer M = M(p, q, r, δ′).

We claim that Theorem 2.3 is a consequence of Theorem 2.4.

Proof of Theorem 2.3. By using Theorem 2.4 and the decomposition (2-3), we have that for all functions
f, g ∈ S(R),

(i) if r ≥ 1, then

‖TS( f, g)‖r,I .
∑

k1,k2≥0

C(T k1,k2
S,0 )‖ f 1Ck1

‖p‖g1Ck2
‖q +

∑
k1,k2≥0

l≤0

C(T k1,k2,l
S,1 )‖ f 1Ck1

‖q‖g1Ck2
‖r ;

(ii) if r < 1, then

‖TS( f, g)‖rr,I .
∑

k1,k2≥0

C(T k1,k2
S,0 )r‖ f 1Ck1

‖
r
p‖g1Ck2

‖
r
q +

∑
k1,k2≥0

l≤0

C(T k1,k2,l
S,1 )r‖ f 1Ck1

‖
r
p‖g1Ck2

‖
r
q .

Case (i) (r ≥ 1): With the estimate of C(T k1,k2
S,0 ) and C(T k1,k2,l

S,1 ) given by Theorem 2.4, we obtain

‖TS( f, g)‖r,I .
∑

k1,k2≥0

2−δ
′(k1+k2)‖ f 1Ck1

‖p‖g1Ck2
‖q +

∑
k1,k2≥0

l≤0

2−δ
′(k1+k2+|l|)‖ f 1Ck1

‖p‖g1Ck2
‖q

.
∑

k1,k2≥0

2−δ
′(k1+k2)‖ f 1Ck1

‖p‖g1Ck2
‖q .

Hence by using that δ′ is as large as we want, the conclusion follows for case (i).
Case (ii) (r ≤ 1): We have

‖TS( f, g)‖rr,I .
∑

k1,k2≥0

2−rδ′(k1+k2)‖ f 1Ck1
‖

r
p‖g1Ck2

‖
r
q +

∑
k1,k2≥0

l≤0

2−rδ′(k1+k2+|l|)‖ f 1Ck1
‖

r
p‖g1Ck2

‖
r
q

.
∑

k1,k2≥0

2−rδ′(k1+k2)‖ f 1Ck1
‖

r
p‖g1Ck2

‖
r
q .

By using Hölder’s inequality and ρ > 0 such that

1
p
+ ρ,

1
q
+ ρ < 1,
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we obtain

‖TS( f, g)‖r,I .
( ∑

k1≥0

2−k1 p(δ′−1)(ρ+1/p)
‖ f 1Ck1

‖
p
p

)1/p( ∑
k2≥0

2−k2q(δ′−1)(ρ+1/q)
‖g1Ck2

‖
q
q

)1/q

.

( ∑
k1≥0

2−k1(δ
′
−1)(ρ+1/p)

‖ f 1Ck1
‖p

)( ∑
k2≥0

2−k2(δ
′
−1)(ρ+1/q)

‖g1Ck2
‖q

)
.

This corresponds to the desired result (the real δ′ being as large as we want) for case (ii). �

We have also reduced the proof of Theorem 1.1 (for our particular symbol σ ) to that of Theorem 2.4.

Proof of Theorem 2.4. By using “duality”, to prove Theorem 2.4, we have to estimate the trilinear form
defined on S(R)×S(R)×S(R) by

3
j
i ( f1, f2, f3) :=

〈
T j

S,i ( f1, f2), f31I
〉
=

∑
s∈Q j

i

|Is |
−1/2εs〈φ

1
s1
, f11Ck1

〉〈φ2
s2
, f21Ck2

〉〈φ3
s3
, f31I 〉, (2-4)

where Q j
i is a collection of tritiles, depending on T j

S,i .
We need to define the usual tools of time-frequency analysis.

Definition 2.5. We have already defined the tritiles. For j ∈ {1, 2, 3} an index and t ∈ S a tritile, a
collection T of tritiles is called a j -tree with top t if for all s ∈ T,

Is ⊂ It and ωt j ⊂ ωs j .

Then we set

IT := It ,

the time-interval of the tree T. A collection T of tritiles is called a tree if there exists an index j ∈{1, 2, 3}
such that T is a j-tree. For T a j-tree, we define the size of the function f j over this tree by

size j (T) :=
(

1
|IT|

∑
s∈T

∣∣〈 f j , φ
j
s j
〉
∣∣2

)1/2

.

For Q a collection of tritiles, we define the global size by

size∗j (Q)= sup
{
sizek(T) : T⊂Q, T is a k-tree, k 6= j

}
.

The quantity |IT|
1/2 size j (T) corresponds to the norm of the function f j in the space L2, after being

restricted on the tree T in the time-frequency space.
We recall the (abstract) [Muscalu et al. 2004, Proposition 6.5], where [Muscalu et al. 2004, Lemma 6.7]

is used to estimate the quantities ˜energy j .

Proposition 2.6. Let (θ j )1≤ j≤3 be three exponents of (0, 1) satisfying

θ1+ θ2+ θ3 = 1.
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Then there exists a constant C = C(θi ) such that for all collection Q of tritiles, we have∣∣∣∣∑
s∈Q

|Is |
−1/2

3∏
i=1

〈φi
si
, fi 〉

∣∣∣∣≤ C
3∏

i=1

size∗i (Q)
θi‖ fi‖

1−θi
2 .

This result is the main idea of this time-frequency analysis. To prove it, we use a stopping-time
argument in order to build an “orthogonal” covering of the time-frequency space with trees of Q.

Now we recall the notion of restricted weak type for trilinear forms.

Definition 2.7. For E a Borelian set of R, we write

F(E) := { f ∈ S(R) : for all x ∈ R, | f (x)| ≤ 1E(x)}.

Let 3 be a trilinear form defined on S(R)×S(R)×S(R). Let p1, p2, p3 be exponents of R∗, possibly
negative. We say that 3 is of restricted weak type (p1, p2, p3) if there exists a constant C such that
for all measurable sets E1, E2, E3 of finite measure, we can find a substantial subset E ′β ⊂ Eβ (that is,

|E ′β | ≥
|Eβ |

2 ) for β ∈ {1, 2, 3} such that for all fβ ∈ F(E ′β),

|3( f1, f2, f3)| ≤ C
3∏

β=1

|Eβ |1/pβ (2-5)

and E ′β = Eβ if pβ > 0. The best constant in (2-5) is called the bound of restricted type and will be
denoted by C(3).

By the real interpolation theory for trilinear forms of restricted weak type [Muscalu et al. 2002b,
Lemmas 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11], Theorem 2.4 is a consequence of the following result (which
is a stronger continuity result).

Theorem 2.8. Let p1, p2, p3 be nonvanishing reals such that

1
p1
+

1
p2
+

1
p3
= 1

and there exists a unique index α ∈ {1, 2, 3} with − 1
2 <

1
pα
< 0, and 1

2 <
1
pβ
< 1 for β 6= α. Then the

trilinear forms 3 j
i defined by (2-4) are of restricted weak type (p1, p2, p3). In addition the bounds of

restricted type C(3 j
i ) satisfy

C(3k1,k2
0 ). cM(φ

1)cM(φ
2)cM(φ

3)2−δ
′(k1+k2),

C(3k1,k2,l
1 ). cM(φ

1)cM(φ
2)cM(φ

3)2−δ
′(|l|+k1+k2)

for any real δ′ ≥ 1 with M = M(δ′, pi ) a large enough integer.

Proof. The exponents (pβ)β and the index α ∈ {1, 2, 3} are fixed for the proof. Let E1, E2 and E3 be
measurable sets of finite measure. First we construct the substantial subset E ′α ⊂ Eα. Denote

U :=
3⋃

i=1

{
x ∈ R, MHL(1Ei )(x) > η

|Ei |

|Eα|

}
.
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By using Hardy–Littlewood Theorem, there exists a numerical constant η such that

|U | ≤
|Eα|

2
.

We set also E ′α = Eα \U . It is interesting to note that the set E ′α does not depend on the form 3
j
i . Now

we fix the functions fβ ∈ F(E ′β) for β ∈ {1, 2, 3} and we shall prove the inequality (2-5). The proof is
divided in three parts: In the first step we use general estimates for collections of tritiles, in the second
step we will use specific estimates adapted to the above collections of tritiles and then we will conclude
in the third step.

First step: a general estimate. Let P be an “abstract” collection of tritiles, then for k ≥ 0 we set Pk the
subcollection

Pk :=

{
s ∈ P, 2k

≤ 1+
d(Is,U c)

|Is |
< 2k+1

}
.

These collections form a partition of P:

P=
⊔
k≥0

Pk .

For each k ≥ 0, we can apply Proposition 2.6 to the collection Q = Pk . So for any choice of exponents
0< θ1, θ2, θ3 < 1 with

3∑
β=1

θβ = 1,

we obtain

3(Pk) :=

∣∣∣∣∑
s∈Pk

|Is |
−1/2εs

3∏
β=1

〈 fβ, φβsβ 〉
∣∣∣∣. 3∏

β=1

(size∗β(Pk))
θβ‖ fβ‖

1−θβ
2 .

In order to estimate the quantities size∗β(Pk), we recall [Muscalu et al. 2002b, Lemma 7.8].

Lemma 2.9. For all integer N as large as we want, there exists a constant C = C(N ) such that for all
collection Q of tritiles, for all β ∈ {1, 2, 3}, we have

size∗β(Q)≤ C sup
s∈Q

1
|Is |

∫
R

(
1+

d(x, Is)

|Is |

)−N
| fβ(x)| dx .

Then for Q= Pk , by using the definition of the sets U and E ′α, we have

size∗β(Pk). 2k |Eβ |
|Eα|

, and size∗α(Pk). 2−Nk .

for all β 6= α. As fβ belongs to F(Eβ), we have

‖ fβ‖2 ≤ |Eβ |1/2.
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So for 0< ε < 1 and N an integer as large as we want, we get

3(Pk).
∏
β 6=α

(
2k |Eβ |
|Eα|

)θβ (1−ε)
|Eβ |(1−θβ )/22Nkθα(1−ε)|Eα|(1−θα)/2

3∏
β=1

(size∗β(Pk))
θβε

. 2−k
(∏
β 6=α

|Eβ |(1+θβ )/2−εθβ |Eα|(θα−1)/2+ε(1−θα)
)( 3∏

β=1

(size∗β(Pk))
θβε

)
.

By definition of size∗β , Pk is a subcollection of P so for all β ∈ {1, 2, 3},

size∗β(Pk)≤ size∗β(P).

We can also compute the sum over k ≥ 0 and we obtain

3(P) :=
∣∣∣∣∑

s∈P

|Is |
−1/2εs

3∏
β=1

〈 fβ, φβsβ 〉
∣∣∣∣≤∑

k≥0

Pk

.

(∏
β 6=α

|Eβ |(1+θβ )/2−εθβ |Eα|(θα−1)/2+ε(1−θα)
)( 3∏

β=1

(size∗β(P))
θβε

)
. (2-6)

The first term is “good”, according to the wished global continuity. In the next step, we will use
another estimate of the quantities size∗β , which will be adapted to our specific trilinear forms 3 j

i and
which allow us to obtain the desired decays.

Second step: use of the specific form of our trilinear forms 3 j
i .

First case: the forms 3 j
1.

In this case, we use another decomposition

3
k1,k2,l
1 ( f1, f2, f3)≤

∑
I0*2I

2l−1
|I |≤|I0|≤2l+1

|I |

3
k1,k2,l
1 (I0)( f1, f2, f3),

where I0 is an interval of R and

3
k1,k2,l
1 (I0)( f1, f2, f3) :=

∑
s∈S

Is=I0

|Is |
−1/2εs〈 f11Ck1

, φ1
s1
〉〈 f21Ck2

, φ2
s2
〉〈1I f3, φ

3
s3
〉.

Let I0 be fixed and denote

2l
=
|I0|

|I |
.

The collection of tritiles associated to 3k1,k2,l
1 (I0) is also

P := {s ∈ S, Is = I0}.
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For all s ∈ P, by using f3 ∈ F(E ′3), we have

1
|Is |

∫
I
| f3(x)|

(
1+

d(x, Is)

|Is |

)−N
dx ≤

1
|Is |

∫
I

(
1+

d(x, Is)

|Is |

)−N
dx

≤
|I |
|I0|

(
1+

d(I, I0)

|I0|

)−N
.

Then Lemma 2.9 gives us

size∗3(P). 2−l
(

1+
d(I, I0)

|I0|

)−N
.

By the same reasoning, we obtain for f1 ∈ F(E ′1) and s ∈ P,

1
|Is |

∫
Ck1

| f1(x)|
(

1+
d(x, I0)

|Is |

)−N
dx ≤

1
|I0|

∫
Ck1

(
1+

d(x, I0)

|I0|

)−N
dx ≤ 2k1−l

(
1+

d(Ck1, I0)

|I0|

)−N
.

And so we get

size∗1(P). 2k1−l
(

1+
d(Ck1, I0)

|I0|

)−N
.

Likely, we have

size∗2(P). 2k2−l
(

1+
d(Ck2, I0)

|I0|

)−N
.

With θ1+ θ2+ θ3 = 1 and Lemma 2.9, we can estimate

size∗1(P)
θ1 size∗2(P)

θ2 size∗3(P)
θ3 . 2θ1k1+θ2k2−l A(I0), (2-7)

where A(I0) is the product of three terms

A(I0) :=
(

1+
d(I, I0)

|I0|

)−Nθ3
(

1+
d(Ck1, I0)

|I0|

)−Nθ1
(

1+
d(Ck2, I0)

|I0|

)−Nθ2
.

We are going to get four different estimates for A(I0).
To keep the information about the position of I0, we first have

A(I0)≤
(

1+
d(I, I0)

|I0|

)−Nθ3
. (2-8)

By using
d(I, I0)+ d(Ck1, I0)& d(I,Ck1)& 2k1 |I | ' 2k1−l

|I0|

and the fact that 2l
≤ 1, we obtain

A(I0). (1+ 2k1−l)−N min{θ1,θ3} . 2−k1 N min{θ1,θ3} (2-9)

and likely
A(I0). 2−k2 N min{θ2,θ3}. (2-10)

As I0 * 2I and 2l
≤ 1, d(I0, I )≥ |I | and hence(

1+
d(I, I0)

|I0|

)−N
.

(
|I0|

|I |

)N
.
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So we get

A(I0).
(
|I0|

|I |

)Nθ3
. 2l Nθ3 . (2-11)

Taking the geometric mean of (2-8), (2-9), (2-10) and (2-11) (with another exponent N which is as large
as we want), we obtain

A(I0). 2−(k1+k2+|l|)N
(

1+
d(I, I0)

|I0|

)−N
. (2-12)

With the help of (2-6) and (2-7), we finally estimate∣∣3k1,k2,l
1 ( f1, f2, f3)

∣∣.∑
I0

∣∣3k1,k2,l
1 (I0)( f1, f2, f3)

∣∣
.

∑
I0

(∏
β 6=α

|Eβ |(1+θβ )/2−εθβ |Eα|(θα−1)/2+ε(1−θα)
)

2ε(k1+k2+|l|)A(I0)
ε .

From (2-12), the sum over the interval I0 with |I0| = 2l
|I | is bounded. For N a large enough exponent

(not exactly the same), we have∣∣3k1,k2,l
1 ( f1, f2, f3)

∣∣. (∏
β 6=α

|Eβ |(1+θβ )/2−εθβ |Eα|(θα−1)/2+ε(1−θα)
)

C̃(3k1,k2,l
1 ),

where
C̃(3k1,k2,l

1 ) := 2−Nε(k1+k2+|l|). (2-13)

Second case: the forms 3 j
0.

We use the same principle. We are interested in

3
k1,k2
0 ( f1, f2, f3) :=

∑
s∈S

Is⊂2I

|Is |
−1/2εs〈 f11Ck1

, φ1
s1
〉〈 f21Ck2

, φ2
s2
〉〈 f3, φ

3
s3
〉.

So now we choose the collection
P := {s ∈ S, Is ⊂ 2I }.

For all s ∈ P,
1
|Is |

∫
I

(
1+

d(x, Is)

|Is |

)−N
dx ≤ 1

and so with Lemma 2.9 we have
size∗3(P). 1.

For f1, we use that

1
|Is |

∫
Ck1

(
1+

d(x, Is)

|Is |

)−N
dx .

(
1+

d(Ck1, I )
|I |

)−(N−2)

to conclude
size∗1(P). 2−k1(N−2).

By the same argument for f2, we have

size∗2(P). 2−k2(N−2).
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In this case, we can also estimate (with N another large enough integer)

size∗1(P)
θ1 size∗2(P)

θ2 size∗3(P)
θ3 ≤ 2−(k1+k2)N .

With (2-6), we finally obtain

3
k1,k2
0 ( f1, f2, f3).

( ∏
β 6=α

|Eβ |(1+θβ )/2−εθβ |Eα|(θα−1)/2+ε(1−θα)
)

C̃(3k1,k2
0 ),

where
C̃(3k1,k2

0 ) := 2−N (k1+k2)ε . (2-14)

Third step: end of the proof. For the trilinear form 3
j
i , we have obtain a bound C = C̃(3 j

i ) such
that for all functions fβ ∈ F(E ′β) we have

∣∣3 j
i ( f1, f2, f3)

∣∣. C̃(3 j
i )

(∏
β 6=α

|Eβ |(1+θβ )/2−εθβ |Eα|(θα−1)/2+ε(1−θα)
)
.

Let (pβ)β be the exponents of Theorem 2.8. Then we shall show that we can find θ1, θ2, θ3 ∈ (0, 1) and
ε > 0 such that for all β 6= α,

1+ θβ
2
− εθβ =

1
pβ
, and

θα − 1
2
+ ε(1− θα)=

1
pα
.

Let γ > 0 be a real satisfying ∣∣∣1
2
−

1
pβ

∣∣∣< 1
2+ γ

,

for all β 6= α. This is possible because 1< pβ < 2 for β 6= α. We begin to choose θα ∈ (0, 1) such that

1> θα >max
{
θ0
α :=

pα + (2+ γ )
pα

, 0
}
,

and

min
{
−

1
2+ γ

=
1

pα(1− θ0
α)
,

1
pα

}
>

1
pα(1− θα)

>−
1
2
.

This is possible because pα is negative and satisfies

1
pα
>−

1
2
.

Then we get ε by

ε :=
1
2
+

1
pα(1− θα)

∈ (0, 1
2)⊂ (0, 1).

We now define θβ for β 6= α by

θβ :=

1
pβ
−

1
2

1
2
− ε

.
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We have 1< pβ < 2 and 0< ε < 1
2 , so 0< θβ and

0< θβ =

1
pβ
−

1
2

−1
pα(1−θα)

<

1
2+γ

1
2+γ

= 1.

Consequently, we have solved the system of equations for the exponents. With this choice, we obtain
for all f1 ∈ F(E ′1), f2 ∈ F(E ′2), f3 ∈ F(E ′3),

3
j
i ( f1, f2, f3). C̃(3 j

i )

3∏
β=1

|Ei |
1/pβ ,

where C̃(3 j
i ) are defined in (2-13) and (2-14). So3 j

i is of restricted weak type and we have the following
estimate for C(3 j

i ):

C(3 j
i ). C̃(3 j

i ).

In addition the parameter N in (2-13) and (2-14) is as large as we want, and we have also obtained the
desired estimates on C(3 j

i ). �

By using the concept of “restricted weak type”, we can have a “stronger” result than Theorem 1.1.

Theorem 2.10. Let T and p, q , r be an operator and exponents of Theorem 1.1. Then for all δ≥ 1, there
exists a constant

C = C(p, q, r, δ)

(independent on the interval I ) such that for all sets E3 of finite measure, there exists a substantial subset
E ′3 ⊂ E3 satisfying that for all functions f ∈ S(R), g ∈ S(R) and h ∈ F(E ′3),

|〈T ( f, g), h1I 〉| ≤ C
( ∑

k≥0

2−k(1/p+δ)
‖ f 12k I‖p

)( ∑
k≥0

2−k(1/q+δ)
‖g12k I‖q

)
|E3|

1/r ′ .

When r > 1, this result is stronger than Theorem 1.1 but less practicable. We now prove it because it
will be useful in the sequel.

Proof. The proof is almost the same as the previous one, so we shall only explain the modifications. We
always study the trilinear form

3( f, g, h) := 〈T ( f, g), h1I 〉.

In page 6 we saw that the study of 3 can be reduced to the study of the model sum

3( f, g, h)=
∑
s∈S

|Is |
−1/2εs〈φs1, f 〉〈φs2, g〉〈φs3, h1I 〉,

where S is a general collection of tritiles. Then we have decomposed this sum with (2-3) by

3( f, g, h)=
∑

k1,k2≥0

3
k1,k2
0 ( f, g, h)+

∑
k1,k2≥0

l≤0

3
k1,k2,l
1 ( f, g, h).
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By Theorem 2.4, we have shown that the trilinear forms 3 j
i are of restricted weak type (p, q, r ′) and we

have obtained estimates on their bounds. The construction of the substantial subset E ′α = E ′3 does not
depend on the trilinear form 3

j
i , so we can deduce that our trilinear form 3 is always of restricted weak

type. Also for measurable sets E1, E2, E3 of finite measure, there exists a substantial subset E ′3 ⊂ E3

such that for all functions f ∈ F(E1), g ∈ F(E2) and h ∈ F(E ′3),

|3( f, g, h)|. |E3|
1/r ′

( ∑
k1,k2≥0

2−δ
′(k1+k2)|E1 ∩Ck1 |

1/p
|E2 ∩Ck2 |

1/q
)
.

Here δ′ is an exponent as large as we want. Over each corona, by using the real interpolation on the
exponents p and q (so r is fixed), we obtain also the desired result. �

Having obtained our main result for the x-independent symbols, we will extend our result for maximal
operators and for x-dependent symbols in the next section.

3. More general bilinear operators

Let us name our “off-diagonal estimates” for convenience.

Definition 3.1. Let T be an operator (maybe non-bilinear) acting from S(R)× S(R) into S′(R). For
p, q, r ∈ (0,∞] exponents such that

1
r
=

1
p
+

1
q
,

we say that T satisfies “off-diagonal estimates” at the scale L and at the order δ, in short

T ∈ OL ,δ(L p
× Lq , Lr ),

if there exists a constant C = C(p, q, r, L , δ) such that for all functions f, g ∈ S(R) and all interval I
of length |I | = L , we have

‖T ( f, g)‖r,I ≤ C
(∑

k≥0

2−k(δ+1/p)
‖ f ‖p,2k+1 I

)(∑
k≥0

2−k(δ+1/q)
‖g‖q,2k+1 I

)
.

Remark 3.2. Equivalently, an operator T satisfies “off-diagonal estimates” at the scale L and at the order
δ if there exists a constant C = C(p, q, r, L , δ) such that for all functions f, g ∈ S(R) and all interval I
of length |I | = L , we have

‖T ( f, g)‖r,I ≤ C
( ∑

k≥0

2−k(δ+1/p)
‖ f ‖p,Ck(I )

)( ∑
k≥0

2−k(δ+1/q)
‖g‖q,Ck(I )

)
.

This is a better way to describe the “off-diagonal decay” of an operator T and these properties can be
described as in Corollary 1.2.

First we generalize the previous result for maximal operators.
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“Off-diagonal estimates” for maximal bilinear operators.

Theorem 3.3. Let 1 be a nondegenerate line in the frequency plane. Let p, q ∈ (1,∞] be exponents
such that

0<
1
r
=

1
q
+

1
p
<

3
2
.

For all δ ≥ 1, L > 0, for all symbol σ supported in

{(α, β), d((α, β),1)≥ L−1
}

satisfying for all b, c ≥ 0, ∣∣∂b
α∂

c
β σ(α, β)

∣∣. |d((α, β),1)|−b−c

and for all smooth function φ, which is equal to 1 around 0, the maximal bilinear operator

Tmax( f, g)(x) := sup
r>0

∣∣∣∣∫ ei x(α+β) f̂ (α)ĝ(β) σ (α, β)
(
1−φ(r(α−β))

)
dα dβ

∣∣∣∣
satisfies “off-diagonal estimates” at the scale L and at the order δ:

Tmax ∈ OL ,δ(L p
× Lq , Lr ).

In addition the implicit constant can be uniformly bounded by L > 0.

Theorem 3.4. For the same exponents, we have the same continuities for the maximal bilinear operator
(at the scale L)

M L( f, g)(x) := sup
0<r≤L

1
r

∫
|t |≤r
| f (x − t)g(x + t)| dt.

Theorem 3.5. Let K be a kernel on R satisfying Hörmander’s conditions, then the maximal bilinear
operator

T L
max( f, g)(x) := sup

0<ε<r<L

∣∣∣∫
ε≤|y|≤r

f (x − y)g(x + y)K (y) dy
∣∣∣

satisfies the same local estimates
T L

max ∈ OL ,δ(L p
× Lq , Lr )

for the exponents p, q , r as of Theorem 3.3.

Proof. The proof of these three theorems is a shake between the proof of our Theorem 1.1 and an
additional maximality argument. The maximal truncation in the physical space (Theorems 3.4 and 3.5)
is a little more complex than the maximal truncation in the frequency space (Theorem 3.3). So we deal
with the last two theorems and just explain the modifications to prove them. The maximal version of
the different arguments has been shown first by M. Lacey [2000] and then improved by C. Demeter, T.
Tao and C. Thiele [2005]. In these articles, the authors study the behavior of the maximal averages (like
in Theorem 3.4). [Demeter et al. 2005, Remark 1.6] specifies the similarity between the operators of
Theorems 3.4 and 3.5. So in fact the previous three theorems are an illustration of the same ideas, and
we will not detail them.

The reduction on page 6 is based on the decomposition of the bilinear operator by discrete models.
For our maximal operators, the same reduction is shown in [Demeter et al. 2005, Theorem 4.4] and
the important condition (2-2) for the tiles is always satisfied. Then the maximal version of Proposition
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2.6 is given in [Demeter et al. 2005] too (there is a new factor in the different inequalities but it is not
important). We have exactly the same version of Lemma 2.9 for maximal bilinear operators [Demeter
et al. 2005, Proposition 6.2]. Using these technical modifications, we can prove Theorem 1.1 and obtain
its maximal versions: Theorems 3.3, 3.4 and 3.5. �

Proof of Theorem 1.1 for x-dependent symbols. In this subsection, we prove the “off-diagonal esti-
mates” of Theorem 1.1 in the case where the symbol σ depends on the spatial variable x and also we
complete the proof of our main result.

Theorem 3.6. Let 1 be a nondegenerate line of the frequency space. Let σ ∈ C∞(R3) be a symbol
satisfying for all a, b, c ≥ 0, ∣∣∂a

x ∂
b
α∂

c
β σ(x, α, β)

∣∣. (
1+ d((α, β),1)

)−b−c
.

Then the bilinear operator Tσ (defined on S(R)×S(R) by (1-2)) verifies

Tσ ∈ O1,δ(L p
× Lq , Lr )

for any δ ≥ 0 and any exponents p, q, r such that

0<
1
r
=

1
p
+

1
q
<

3
2

and 1< p, q ≤∞.

Our assumptions for the symbol correspond to the class BS0
1,0;θ of [Bényi et al. 2006], where the angle

θ ∈ (−π2 ,
π
2 ) \ {0,−

π
4 } is given by the line

1 := {(α, β), β = α tan θ}.

For convenience, we will deal in the proof only with the case θ= π
4 . The important fact is that the singular

quantity (β−α tan θ) does not correspond to the quantity α+β, which appears in the exponential term
of (1-2). The limit and particular case θ =−π4 is studied in [Bényi et al. 2006].

Proof. The proof is quite technical. We will also assume that r ≥ 1 (which allows us to simplify a few
arguments). Then we will explain in Remark 3.7 how to modify the proof to obtain the same result when
r < 1.

So we fix an interval I of length |I | = 1. We use a decomposition of the symbol σ . Let8 be a smooth
function on R such that if |x | ≤ 1 then

8(x)= 1 and supp(8)⊂ [−2, 2].

We also have
σ(x, α, β)= σ(x, α, β)(1−8(α−β))+ σ(x, α, β)8(α, β)

:= σ∞(x, α, β)+ σ 0(x, α, β).

(i) The case of the symbol σ∞.
We have an operator associated to this symbol

T∞( f, g)(x) :=
∫

R2
ei x(α+β) f̂ (α)ĝ(β) σ (x, α, β) (1−8(α−β)) dα dβ,
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which can been written as
T∞( f, g)(x)=Ux( f, g)(x),

with U defined by

Uy( f, g)(x) :=
∫

R2
ei x(α+β) f̂ (α)ĝ(β)σ (y, α, β)(1−8(α−β)) dα dβ.

By using the Sobolev embedding
W 1,r (I ) ↪→ L∞(I )

because r ≥ 1, we get

|T∞( f, g)(x)| ≤ ‖Uy( f, g)(x)‖∞,y∈I .
1∑

k=0

‖∂k
yUy( f, g)(x)1I (y)‖r,dy .

for all x ∈ I . Then by integrating for x ∈ I and using Fubini’s Theorem, we obtain

‖T∞( f, g)‖r,I .
1∑

k=0

‖‖∂k
yUy( f, g)‖r,I‖r,I,dy .

We can fix k ∈ {0, 1} and y ∈ I . Then we have

‖∂k
yUy( f, g)‖r,dx . ‖V ( f, g)‖r,I ,

where V is the bilinear operator defined by

V ( f, g)(x) :=
∫

R2
ei x(α+β) f̂ (α)ĝ(β)∂k

yσ(y, α, β)(1−8(α−β)) dα dβ.

So V = Tτ is the bilinear operator associated to the x-independent symbol

τ(α, β) := ∂k
yσ(y, α, β)(1−8(α−β)).

From the assumptions about σ , the symbol τ satisfies
∣∣∂b
α ∂

c
βτ(α, β)

∣∣ . |α− β|−n−p for all b, c ≥ 0. In
addition, τ is supported in the domain {(α, β), |α− β| ≥ 1}. We can also apply Theorem 1.1 proved in
Section 2 for x-independent symbol. For all δ ≥ 1, we have an “off-diagonal estimate” at the scale 1,

‖V ( f, g)‖r,I .
( ∑

k1≥0

2−k1(1/p+δ)
‖ f ‖p,2k1 I

)( ∑
k2≥0

2−k2(1/q+δ)‖g‖q,2k2 I

)
.

All theses estimates are uniform with respect to k ∈ {0, 1} and y ∈ I , so we get

‖T∞( f, g)‖r,I .
( ∑

k1≥0

2−k1(1/p+δ)
‖ f ‖p,2k1 I

)( ∑
k2≥0

2−k2(1/q+δ)‖g‖q,2k2 I

)
. (3-1)

So we have shown the desired estimates for this first term.

(ii) The case of the symbol σ 0. The associated operator is given by

T 0( f, g)(x) :=
∫

R2
ei x(α+β) f̂ (α)ĝ(β)σ (x, α, β)8(α, β) dα dβ.
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We use the same arguments as for the first point. So we have to study the operator V defined by

V ( f, g)(x) :=
∫

R2
ei x(α+β) f̂ (α)ĝ(β)∂k

yσ(y, α, β)8(α−β) dα dβ.

The parameters k ∈ {0, 1} and y ∈ I are fixed. The symbol associated to this operator is supported on

{(α, β), |α−β| ≤ 2}.

That is why we use modulations to move this support:

V ( f, g)(x)=
∫

R2
ei x(α+β) f̂ (α+ 3)ĝ(β − 3)∂k

yσ(y, α+ 3, β − 3)8(α−β + 6) dα dβ

=

∫
R2

ei x(α+β)ê3i. f (α)ê−3i.g(β)∂k
yσ(y, α+ 3, β − 3)8(α−β + 6) dα dβ.

Also V is now the bilinear operator, applied to the modulated functions e3i. f and e−3i.g, whose (x-
independent) symbol

τ(α, β) := ∂k
yσ(y, α+ 3, β − 3)8(α−β + 6)

is supported on

{(α, β), |α−β + 6| ≤ 2} ⊂ {(α, β), 1≤ |α−β| ≤ 8}

and satisfies for all b, c ≥ 0,∣∣∂b
α∂

c
βτ(α, β)

∣∣ . max
0≤ j≤b

max
0≤i≤c

(1+|α−β+6|)−i− j 11≤|α−β|≤8 . 11≤|α−β|≤8 . 11≤|α−β|≤8|α−β|
−b−c.

Also we can use Theorem 1.1 (proved in Section 2 for x-independent symbol) again and we obtain

‖V ( f, g)‖r,I .
( ∑

k1≥0

2−k1(1/p+δ)
‖ f ‖p,I

)( ∑
k2≥0

2−k2(1/q+δ)‖g‖q,I

)
. �

Remark 3.7. We want to explain here how to modify the previous proof when r < 1. When we study
bilinear operators with r < 1, we have to use the associated trilinear form and the concept of “restricted
weak type” (see Definition 2.7). These two arguments allow us to get around the lack of the triangular
inequality in the space Lr . Let

3( f, g, h) := 〈T ( f, g), h〉.

We have

3( f, g, h)=
∫

R

∫
R2

ei x(α+β)σ(x, α, β) f̂ (α)ĝ(β)h(x) dα dβdx .

We use the same decomposition of σ , getting the trilinear forms 3∞ and 30. Let us study first 3∞ and
fix an interval I of length |I | = 1. We take a function h ∈ S(R), which is supported on I . We use again
the Sobolev embedding W 1,1(I ) ↪→ L∞(I ). By writing

|3∞( f, g, h)| ≤
∫

R

‖Uy( f, g)(x)1I (y)‖∞,I,dy|h(x)|1I (x) dx,
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we can also obtain

|3∞( f, g, h)|.
∫

I

∫
I
|Uy( f, g)(x)| |h(x)| dx dy+

∫
I

∫
I
|∂yUy( f, g)(x)| |h(x)| dx dy.

Then when y ∈ I and k ∈ {0, 1} are fixed, we find again the quantities∫
I

∣∣∂k
yUy( f, g)(x)

∣∣ |h(x)| dx .

Now the bilinear operator ∂k
yUy is associated to an x-independent symbol, which verifies the good as-

sumptions. We can also use Theorem 2.10 in order to obtain the wished estimates (3-1) in a “restricted
weak type sense” for the exponent r . We produce the same modifications to study 30. By noticing that
the way to construct the substantial subset (in the definition of restricted weak type) does not depend on
the trilinear form, we can deduce that the trilinear form3 satisfies (3-1) in a “restricted weak type sense”
too. Then we use interpolation on the exponent r , to obtain exactly (3-1), which allows us to conclude.

4. Continuities for bilinear operators satisfying “off-diagonal estimates”

Recall that in the linear case, by using the maximal sharp function, we can prove weighted continuities
for linear operator with the Muckenhoupt weights. In the bilinear case, we do not have a good substitute
to the maximal sharp function. That is why we shall use the previous “off-diagonal estimates” to obtain
weighted global continuities on Lebesgue spaces and in particular to prove Theorem 1.3.

First we want to give an application of these “off-diagonal estimates”. Recall that in the previous
sections, we have proved that our bilinear operators (and maximal bilinear operators) satisfy these “off-
diagonal estimates” at any order. The time-frequency analysis does not work for functions in the L∞

space. So we do not know if our operators T are bounded from L∞× L∞ in BMO. However these local
estimates give a weak result about the behavior of T ( f, g)when the two functions f and g belong to L∞.

Proposition 4.1. Let f , g be two functions of L1(R)∩ L∞(R) and fix r ∈ (1,∞). If there exist L > 0,
δ ≥ 1 and p, q > 1 such that an operator

T ∈ Oδ,L(L p
× Lq , Lr ),

then we have

lim sup
|I |→∞

( 1
|I |

∫
I
|T ( f, g)|r

)1/r
. ‖ f ‖∞‖g‖∞.

Here we take the limit when I is an interval with |I | →∞ and the implicit constant does not depend on
the two functions f and g and on the parameter L.

Proof. We set
Ii := [i L , (i + 1)L[

for all i ∈ Z. Then for I with |I | � L , we get∫
I
|T ( f, g)|r ≤

∑
i∈Z

Ii∩I 6=∅

∫
Ii

|T ( f, g)|r .
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However, the number of indices i which appears in the sum is bounded by |I |/L , so by using the local
estimate we get∫

I
|T ( f, g)|r .

∑
i∈Z

Ii∩I 6=∅

L
|Ii |

∫
Ii

|T ( f, g)|r .
∑
i∈Z

Ii∩I 6=∅

L‖ f ‖r
∞
‖g‖r
∞
. |I |‖ f ‖r

∞
‖g‖r
∞
.

The second inequality is due to the fact that

|Ii |
1/r
‖T ( f, g)‖r,Ii . inf

x∈Ii
MHL( f )(x) inf

x∈Ii
MHL(g)(x). ‖ f ‖∞‖g‖∞.

So we obtain ( 1
|I |

∫
I
|Tmax( f, g)|r

)1/r
. ‖ f ‖∞‖g‖∞

uniformly with L for |I | large enough. �

Let us now define our weights.

Definition 4.2. Let θ > 0 and l > 0 be fixed. We set that a nonnegative function ω belongs to the class
Pθ (l) if there exists a constant C such that for all interval I of length |I | = l and for all integer k ≥ 0,
we have

2−kθ sup
x∈I

ω(x)≤ C inf
2k I
ω(x). (4-1)

We claim that a function ω ∈ Pθ (l) is likely to be a polynomial function whose degree is less than θ
and is almost constant at the scale l. We show in the next example that these classes are not empty.

Example 4.3. For all θ > 0 and α ∈ [0, θ), the functions

x 7→ 1, x 7→ (1+ |x |)α and x 7→ (1+ |x |)−α

belong to the class Pθ (1). The proof is easy and is left to the reader.

Remark 4.4. In fact, it is easy to prove that a weight ω belongs to the class Pθ (l) if and only if there
exists a constant C such that for all x, y ∈ R,

ω(x)≤ C
(

1+
|x − y|

l

)θ
ω(y).

We cannot compare these weights with the Muckenhoupt weights, because for ω ∈Pθ (l) we have infor-
mation only at the scale l.

Theorem 4.5. Let T be a bilinear operator and p, q, r ∈ (0,∞) be exponents satisfying

1
r
=

1
p
+

1
q

and 1≤ p, q.

For δ > 0 and l > 0, if T satisfies “off-diagonal estimates” at the order δ and at the scale l, then for all
ω ∈ Pθ (l) with 0≤ θ < δmax{r, 1}, the operator T is continuous from L p(ω)× Lq(ω) into Lr (ω).
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Proof. To check this, we recall that for all interval I of length |I | = l,(∫
I
|T ( f, g)|r

)1/r
.

(∑
k≥0

2−k(1/p+δ)
‖ f ‖p,2k I

)(∑
k≥0

2−k(1/q+δ)
‖g‖q,2k I

)
. (4-2)

Then we decompose the whole space R with the disjoint intervals Ii defined by

Ii = [il, (i + 1)l]

for i ∈ Z. So we have
‖T ( f, g)‖r,wdx = ‖‖T ( f, g)‖r,wdx,Ii‖r,i∈Z.

Let i ∈ Z be fixed. We use (4-1) and (4-2) to obtain

‖T ( f, g)‖r,wdx,Ii ≤ ‖w‖
1/r
∞,Ii
‖T ( f, g)‖r,Ii

. ‖w‖1/r
∞,Ii

( ∑
k≥0

2−k(1/p+δ)
‖ f ‖p,2k Ii

)( ∑
k≥0

2−k(1/q+δ)
‖g‖q,2k Ii

)
.

We estimate the first sum with

‖w‖
1/p
∞,Ii

( ∑
k≥0

2−k(1/p+δ)
‖ f ‖p,2k Ii

)
.

∑
k≥0

2−k(1/p+δ)
‖w‖

1/p
∞,Ii
‖ f ‖p,2k Ii

.
∑
k≥0

2−k(1/p+δ)2kθ/p inf
2k Ii

ω1/p
‖ f ‖p,2k Ii

.
∑
k≥0

2−k(1/p+δ−θ/p)
‖ f ‖p,wdx,2k Ii .

The second term is studied by the same way. By summing over i ∈ Z, we get

‖T ( f, g)‖r,wdx .

∥∥∥∥( ∑
k≥0

2−k(1/p+δ−θ/p)
‖ f ‖p,wdx,2k Ii

)( ∑
k≥0

2−k(1/q+δ−θ/q)
‖g‖q,wdx,2k Ii

)∥∥∥∥
r,i∈Z

.

With the help of Hölder’s and Minkowski’s inequalities, we obtain

‖T ( f, g)‖r,wdx .

( ∑
k≥0

2−k(1/p+δ−θ/p)
‖‖ f ‖p,wdx,2k Ii‖p,i∈Z

) (∑
k≥0

2−k(1/q+δ−θ/q)
‖‖g‖q,wdx,2k Ii‖q,i∈Z

)
.

However the collection of sets (2k Ii )i is a 2k-covering, so

‖T ( f, g)‖r,wdx .

( ∑
k≥0

2−k(δ−θ/p)
‖ f ‖p,wdx

)( ∑
k≥0

2−k(δ−θ/q)
‖g‖q,wdx

)
.

Then we conclude with the fact that p, q > 1 and hence

max
{
θ

p
,
θ

q

}
≤


θ

r
< δ if r ≥ 1,

θ < δ if r ≤ 1.
�



LOCAL ESTIMATES AND GLOBAL CONTINUITIES IN LEBESGUE SPACES FOR BILINEAR OPERATORS 25

Remark 4.6. Since it is obvious that the weight ω(x) = 1 belongs to the class Pθ (L), we have also
proved that the operators of Theorem 1.1 and the maximal operators of Theorems 3.3, 3.4 and 3.5 are
bounded in classical Lebesgue spaces.

Definition 4.7. Let ω be a weight on R. For all m ≥ 0 and p ∈ (1,∞), we set W m,p(ω) for the Sobolev
space on R with the weight ω, defined as the set of distributions f ∈ S′(R) such that

Jm( f ) ∈ L p(ω),

where Jm := (Id−1)m/2.

We complete this result with a proposition in Sobolev spaces:

Proposition 4.8. Let 1 be a nondegenerate line, ω be a weight in
⋃
θ≥0 Pθ (1) and σ ∈ C∞(R3) be a

symbol satisfying ∣∣∂a
x ∂

b
α∂

c
β σ(x, α, β)

∣∣. (
1+ d((α, β),1)

)−b−c
,

for all a, b, c ≥ 0. Let p, q and r be exponents satisfying

0<
1
r
=

1
p
+

1
q
<

3
2

and 1< p, q <∞.

Then the bilinear operator Tσ (defined on S(R)×S(R) by (1-2)) satisfies

‖D(n)Tσ ( f, g)‖Lr (ω) .
∑

0≤i, j≤n
i+ j≤n

‖D(i) f ‖L p(ω)‖D( j)g‖Lq (ω), (4-3)

for all integer n ≥ 0 and for all functions f, g ∈S(R). Here we write D(i) for the differentiation operator
of order i . Also Tσ is continuous from W m,p(ω)×W m,q(ω) into W m,r (ω) for all real m ≥ 0.

Proof. Let us begin to prove (4-3). The two functions f and g are smooth so we can differentiate the
integral defining Tσ ( f, g). It is also easy to check that

D(1)Tσ ( f, g)= Tσ (D(1) f, g)+ Tσ ( f, D(1)g)+ T∂xσ ( f, g).

Then for higher orders, we get

D(n)Tσ ( f, g)=
∑

0≤i, j,k≤n
i+ j+k=n

T∂k
x σ
(D(i) f, D( j)g).

By using the previous Theorems 1.1 and 4.5, we obtain (4-3). We can also deduce a weaker estimate

‖D(n)Tσ ( f, g)‖r,ω . ‖ f ‖W n,p(ω)‖g‖W n,q (ω),

for all f, g ∈ S(R). By density (see Lemma 4.9), the operator Tσ can be continuously extended from
W n,p(ω)×W n,q(ω) into W n,r (ω). Then we will use interpolation to extend this result when n is not an
integer. The exponents p, q and r are fixed and we study the bilinear operator Tσ . We have shown that
Tσ is continuous from W n,p(ω)×W n,q(ω) into W n,r (ω), for all integer n. By using bilinear interpolation
(with Lemma 4.9) on n, we finish the proof. (The theory of multilinear interpolation is studied in [Lions
and Peetre 1964, Chapter 4] for the real case and in [Bergh and Löfström 1976, Theorem 4.4.1] for the
complex case.) �



26 FRÉDÉRIC BERNICOT

Lemma 4.9. For all weight
ω ∈

⋃
θ≥0

Pθ (1),

all exponent p ∈ (1,∞) and all real s ≥ 0, the space S(R) is a dense subspace in W s,p(ω). In addition,
the collection of Sobolev spaces (W s,p(ω))s≥0 form an interpolation scale.

Proof. Let ω be a fixed weight in
⋃
θ≥0 Pθ (1). We have seen in Remark 4.4 that ω has a polynomial

growth. Since Js(S(R))= S(R), we have the inclusion S(R)⊂W s,p(ω). We recall that

Js := (Id−1)s/2.

In addition, we have that
L p(ω)⊂ S′(R),

so we can compute the operator J−s on the space L p(ω). We finally obtain that Js is an automorphism
from W s,p(ω) to L p(ω) and an isomorphism on S(R). As S(R) is dense in L p(ω), we get the density
of S(R) into the Sobolev space W s,p(ω).

For the interpolation claim, we omit the details. The classical proof for complex interpolation with
ω = 1 can easily be extended to the general case. �

Remark 4.10. From the fact that the weight ω(x) = 1 belongs to the class Pθ (1), we have also proved
that the operators of Theorem 1.3 satisfy an Hölder’s inequality in Sobolev spaces.

Remark 4.11. Also with the notation of [Bényi et al. 2006], we have proved continuities for all operators
associated to symbols σ ∈ BS0

1,0;θ . In addition, we have described the action of these operators on Sobolev
spaces. This is an interesting improvement of the last article and it incites us to obtain new results in
order to continue the construction of a bilinear pseudo-differential calculus. We will do it in a next paper
[Bernicot 2008] by introducing new larger symbolic classes of bilinear symbols of order (m1,m2) and
studying rules of a bilinear symbolic calculus.

About continuities in Lebesgue spaces, a question is still open: What about the classes BS0
ρ,δ;θ (defined

in [Bényi et al. 2006])?
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CONSTRUCTION OF ONE-DIMENSIONAL SUBSETS OF THE REALS
NOT CONTAINING SIMILAR COPIES OF GIVEN PATTERNS

TAMÁS KELETI

For any countable collection of sets of three points we construct a compact subset of the real line with
Hausdorff dimension 1 that contains no similar copy of any of the given triplets.

1. Introduction

An old conjecture of Erdős [1974] (also known as the Erdős similarity problem) states that for any
infinite set A ⊂ R there exists a set E ⊂ R of positive Lebesgue measure which does not contain any
similar (that is, translated and rescaled) copy of A. It is known that slowly decaying sequences are not
counterexamples [Falconer 1984; Bourgain 1987; Kolountzakis 1997] (see for example [Humke and
Laczkovich 1998; Komjáth 1983; Svetic 2000] for other related results) but nothing is known about any
infinite sequence that converges to zero at least exponentially. On the other hand, it follows easily from
Lebesgue’s density theorem that any set E ⊂ R of positive Lebesgue measure contains similar copies of
every finite set.

Bisbas and Kolountzakis [2006] gave an incomplete proof of a related statement: For every infinite
set A ⊂ R there exists a compact set E ⊂ R of Hausdorff dimension 1 such that E contains no similar
copy of A. Kolountzakis asked whether the same holds for finite sets as well. Iosevich asked a similar
question: if A⊂ R is a finite set and E ⊂ [0, 1] is a set of given Hausdorff dimension, must E contain a
similar copy of A?

In this paper we answer these questions by showing that for any set A⊂R of at least 3 elements there
exists a 1-dimensional set that contains no similar copy of A. In fact, we obtain a bit more by proving
the following theorem, which immediately yields the two subsequent corollaries.

Theorem 1.1. For any countable set A ⊂ (1,∞) there exists a compact set E ⊂ R with Hausdorff
dimension 1 such that if x < y < z and x, y, z ∈ E , then

z− x
z− y

6∈ A.

Corollary 1.2. For any sequence B1, B2, . . .⊂R of sets of at least three elements there exists a compact
set E ⊂ R with Hausdorff dimension 1 that contains no similar copy of any of B1, B2, . . . .

Corollary 1.3. For any countable set B ⊂R there exists a compact set E ⊂R with Hausdorff dimension
1 that intersects any similar copy of B in at most two points.
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The method of the construction is similar to the method used in [Keleti 1998], where a compact set
A of Hausdorff dimension 1 is constructed such that A does not contain any set of the form

{a, a+ b, a+ c, a+ b+ c}

for any a, b, c ∈ R, b, c 6= 0, so in particular A does not contain any nontrivial 3-term arithmetic pro-
gression.

Laba and Pramanik [2007] obtained a positive result by proving that if a compact set E ⊂R has Haus-
dorff dimension sufficiently close to 1 and E supports a probability measure whose Fourier transform
has appropriate decay at infinity then E must contain nontrivial 3-term arithmetic progressions. It would
be interesting to know whether similar conditions could guarantee other finite patterns as well.

Perhaps one can even find conditions weaker than having positive measure that implies that a compact
subset of R contains similar copies of all finite subsets. This is not impossible since Erdős and Kakutani
[1957] constructed a compact set of measure zero with this property. The Erdős–Kakutani set has Haus-
dorff dimension 1 but, using the ideas from [Elekes and Steprāns 2004], Máthé [≥ 2008] constructed
such a set with Hausdorff dimension 0. However, the packing dimension of such a set must be 1, since
the argument of the proof of [Darji and Keleti 2003, Theorem 2] gives that if a compact set C ⊂ R

contains similar copies of all sets of n points then C has packing dimension at least n−2
n .

2. Proof of Theorem 1.1

Fix a sequence α1, α2, . . .⊂ A so that each element of A appears infinitely many times in the sequence
(αk). Let

βk =max
(

6αk,
6αk

αk − 1

)
, (k ∈ N). (1)

Since A ⊂ (1,∞), the number βk is defined and βk > 6 for every k. We can clearly choose a sequence
m1,m2, . . .⊂ {3, 4, 5, . . . } so that

lim
k→∞

log(β1 · · ·βk)

log(m1 · · ·mk−1)
= 0. (2)

Let

δk =
1

β1 · · ·βk ·m1 · · ·mk
. (3)

By induction we shall define sets
E0 ⊃ E1 ⊃ E2 ⊃ . . .

such that for each k ∈ N

(∗) Ek consists of m1 · · ·mk closed intervals of length δk which are separated by gaps of at least δk and
each interval of Ek−1 contains mk intervals of Ek .

We will denote by
I k
1 , I k

2 , . . . , I k
m1···mk

the intervals of Ek ordered from left to right, and by

(Jn, Kn, Ln)n∈Z
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an enumeration of the set

0 =
{
(I k

a , I k
b , I k

c ) : a, b, c, k ∈ N, a < b < c ≤ m1 · · ·mk
}

such that if n > 1 and (Jn, Kn, Ln)= (I k
a , I k

b , I k
c ) then n > k. Since each element of A appears infinitely

many times in the sequence (αk), by repeating each element of 0 infinitely many times we can also
guarantee that for all a ∈ A and for all (J, K , L) ∈ 0, there exists n ∈ N such that

αn = a, and (Jn, Kn, Ln)= (J, K , L). (4)

Let E0 = [0, 1] and choose E1 so that (∗) holds for k = 1. Suppose that k ≥ 2 and E1, . . . , Ek−1 are
already defined so that (∗) holds for 1, . . . , k−1. Then (Jk, Kk, Lk) is already defined and each interval
of Ek−1 is either contained in exactly one of Jk , Kk and Lk or disjoint from them.

We shall define Ek so that

x ∈ Ek ∩ Jk, y ∈ Ek ∩ Kk and z ∈ Ek ∩ Lk

will imply that
z− x
z− y

6= αk .

Let I be an interval of Ek−1 which is contained in Jk . Since I has length δk−1 and using (3) and (1)
we have

δk−1

3αkδk
=

mkβk

3αk
≥ 2mk > mk + 1,

and I contains more than mk points of the form 3αkδki for i ∈ Z. Hence we can choose the mk intervals
of Ek in I as segments of the form

δk(3iαk + [0, 1]) (i ∈ Z).

If I is an interval of Ek−1 which is contained in Kk , then similarly, since

δk−1

3δk
=

mkβk

3
≥ 2mk > mk + 1,

we can choose the mk intervals of Ek in I as segments of the form

δk(3 j + [0, 1]) ( j ∈ Z).

If I is an interval of Ek−1 which is contained in Lk , then, since by (3) and (1) we have

δk−1
3αk
αk−1δk

=
mkβk

3αk
αk−1

≥ 2mk > mk + 1,

we can choose the mk intervals of Ek in I as segments of the form

δk

( 3αk

αk − 1
(l + 1

2)+ [0, 1]
)

(l ∈ Z).

In each of the rest of the intervals of Ek−1 we define the mk intervals of length δk of Ek arbitrarily so
that they are separated by gaps of at least length δk .
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This way we defined Ek so that (∗) holds. Let

E =
∞⋂

k=1

Ek .

Then E is clearly a compact subset of R. Condition (∗) implies that the Hausdorff dimension of E is at
least

lim inf
k→∞

log(m1 · · ·mk−1)

− log(mkδk)

(see [Falconer 1990, Example 4.6]). On the other hand, using (3) and (2) we get that

lim inf
k→∞

log(m1 · · ·mk−1)

− log(mkδk)
= lim inf

k→∞

log(m1 · · ·mk−1)

log(β1 · · ·βk)+ log(m1 · · ·mk−1)
= 1,

and therefore the Hausdorff dimension of E is 1.
Finally, to get a contradiction, suppose that

x, y, z ∈ E, x < y < z, and
z− x
z− y

∈ A.

Since δk→ 0, there exists a k ∈N such that x , y and z are in distinct intervals of Ek . Then, by (4) there
exists an n ∈ N so that

x ∈ Jn, y ∈ Kn, z ∈ Ln and
z− x
z− y

= αn.

By the construction of En , there exists i, j, l ∈ Z such that

x ∈ δn(3iαn + [0, 1]), y ∈ δn(3 j + [0, 1]), and z ∈ δn

( 3αn

αn − 1
(l + 1

2)+ [0, 1]
)
.

Let

X = 3iαn + [0, 1], Y = 3 j + [0, 1], and Z = 3αn
αn−1

(l + 1
2)+ [0, 1].

Then x
δn
∈ X , y

δn
∈ Y and z

δn
∈ Z . On the other hand, z−x

z−y = αn implies that αn y = x + (αn − 1)z, so (by
using the notation A+ B = {a+ b : a ∈ A, b ∈ B}) we must have

αnY ∩ (X + (αn − 1)Z) 6=∅. (5)

By definition (and using that αn > 1),

αnY = αn(3 j + [0, 1]) (6)

and
X + (αn − 1)Z = 3iαn + [0, 1] + 3αn(l + 1

2)+ (αn − 1)[0, 1]

= 3(i + l)αn +
[ 3

2αn,
5
2αn

]
= αn(3(i + l)+

[ 3
2 ,

5
2

]
). (7)

Since i, j, l ∈ Z, (6) and (7) contradict (5).



ONE-DIMENSIONAL SUBSETS OF THE REALS NOT CONTAINING SPECIFIED PATTERNS 33

Acknowledgement

The author is grateful to Mihalis Kolountzakis for suggesting this problem and for helpful comments and
suggestions.

References

[Bisbas and Kolountzakis 2006] A. Bisbas and M. N. Kolountzakis, “Avoiding affine copies of infinite sequences”, unpublished
manuscript, 2006.

[Bourgain 1987] J. Bourgain, “Construction of sets of positive measure not containing an affine image of a given infinite
structures”, Israel J. Math. 60:3 (1987), 333–344. MR 89g:28004 Zbl 0647.28001

[Darji and Keleti 2003] U. B. Darji and T. Keleti, “Covering R with translates of a compact set”, Proc. Amer. Math. Soc. 131:8
(2003), 2593–2596. MR 2004d:03100 Zbl 1017.03023
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VANISHING VISCOSITY PLANE PARALLEL CHANNEL FLOW
AND RELATED SINGULAR PERTURBATION PROBLEMS

ANNA MAZZUCATO AND MICHAEL TAYLOR

We study a special class of solutions to the three-dimensional Navier–Stokes equations ∂t uν +∇uνuν +
∇ pν = ν1uν , with no-slip boundary condition, on a domain of the form � = {(x, y, z) : 0 ≤ z ≤ 1},
dealing with velocity fields of the form uν(t, x, y, z)= (vν(t, z), wν(t, x, z), 0), describing plane-parallel
channel flows. We establish results on convergence uν → u0 as ν→ 0, where u0 solves the associated
Euler equations. These results go well beyond previously established L2-norm convergence, and provide
a much more detailed picture of the nature of this convergence. Carrying out this analysis also leads
naturally to consideration of related singular perturbation problems on bounded domains.

1. Introduction

We look at a special class of solutions to the three-dimensional Navier–Stokes equations on a region
�⊂ R3 with boundary:

∂t uν +∇uνuν +∇ pν = ν1uν + F, div uν = 0, (1.0.1)

with no-slip boundary data
uν(t, q)= B(t, q), q ∈ ∂�, (1.0.2)

given B(t, q) a vector field tangent to ∂�. This class consists of what are called plane parallel channel
flows. They involve a domain of the form

�= {(x, y, z) : 0≤ z ≤ 1}, (1.0.3)

velocity fields of the form

uν(t, x, y, z)= (vν(t, z), wν(t, x, z), 0), (1.0.4)

and external forces of the form
F = ( f (t, z), g(t, x, z), 0). (1.0.5)

This class is mentioned by X. Wang [2001] as a class to which his main theorem on L2(�)-convergence
as ν→ 0 (itself a refinement of earlier work of T. Kato [1984]) applies.

There is substantial motivation to obtain a much more detailed picture of the behavior as ν → 0,
including convergence in much stronger topologies, especially away from the boundary, if the initial
data and forces satisfy appropriate smoothness hypotheses, and also an analysis of the boundary layer

MSC2000: 35B25, 35K20, 35Q30.
Keywords: Navier–Stokes equations, viscosity, boundary layer, singular perturbation.
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on which the solution can make an abrupt transition. The goal of this paper is to establish such stronger
results for this class of fluid flows, and to explore some related singular perturbation problems that arise
in the course of the analysis.

To begin the analysis, we note that if uν has the form (1.0.4) then div uν = 0 and

∇uνuν = (0, vν(t, z)∂xw
ν(t, x, z), 0), (1.0.6)

and hence
div∇uνuν = 0. (1.0.7)

Thus we can take pν ≡ 0 in (1.0.1) and rewrite the system (1.0.1) as

∂vν

∂t
= ν

∂2vν

∂z2 + f (t, z),

∂wν

∂t
+ vν

∂wν

∂x
= ν

(∂2wν

∂x2 +
∂2wν

∂z2

)
+ g(t, x, z).

(1.0.8)

(Note: The equations stated on p. 228 of [Wang 2001] have two misprints.) The boundary conditions
take the form

vν(t, z)= a(t, z), z = 0, 1,

wν(t, x, z)= b(t, x, z), z = 0, 1.
(1.0.9)

We take initial data independent of ν:

vν(0, z)= V (z),

wν(0, x, z)=W (x, z).
(1.0.10)

One wants to establish convergence of uν to u0, the solution to the Euler equation

∂t u0
+∇u0u0

+∇ p0
= F, div u0

= 0, (1.0.11)

with boundary condition
u0(t, p) ‖ ∂�, (1.0.12)

for p ∈ ∂�, and initial condition

u0(0, x, y, z)= (V (z),W (x, z), 0). (1.0.13)

We have
u0(t, x, y, z)= (v0(t, z), w0(t, x, z), 0), (1.0.14)

satisfying
∂v0

∂t
= f (t, z),

∂w0

∂t
+ v0 ∂w

0

∂x
= g(t, x, z). (1.0.15)

Initial data are as in (1.0.10).
We begin the analysis of the convergence of vν to v0 and of wν to w0 in Chapter 2. For simplicity we

take vanishing forces and boundary velocity. We also take functions to be periodic in x and work on

O= {(x, z) : x ∈ R/Z, z ∈ [0, 1]}. (1.0.16)
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In Section 2.1 we take the particular case V ≡ 1 in (1.0.10) and in Section 2.2 we consider general initial
velocities of the form (1.0.10). We see that while the convergence of vν to v0 has a simple nature, with
a boundary layer phenomenon easily treatable via the method of images, the nature of the convergence
of wν to w0 is much more subtle. One tool we use to analyze wν is to compare it with the solution
to the analogue of the second equation in (1.0.8) with vν replaced by V (z). To state the strategy more
abstractly, we analyze the solution to

∂wν

∂t
= ν1wν − Xνwν, wν

∣∣
R×∂O
= 0, (1.0.17)

where 1= ∂2
x + ∂

2
z and Xν = vν(t, z)∂x , by considering the solution to

∂wν

∂t
= ν1wν − Xwν + gν, wν

∣∣
R+×∂O

= 0, (1.0.18)

where X = V (z)∂x and gν = (X − Xν)wν . To tackle (1.0.17), we use Duhamel’s formula, which gives

wν(t)= et (ν1−X)W +
∫ t

0
e(t−s)(ν1−X)gν(s) ds. (1.0.19)

This leads to some successful estimates, produced in §Section 2.1–2.2, on the difference Rν(t, x, z) =
wν(t)− et (ν1−X)W . We show that for each p ∈ [1,∞), t ∈ (0, T ],

‖Rν(t, · )‖L p(O) ≤ C pν
1/2pt1+1/2p, (1.0.20)

and that, as ν→ 0,

Rν(t, x, z)→ 0, uniformly for t ∈ [0, T ], (x, z, ν) ∈ Oη, (1.0.21)

where Oη = {(x, z, ν) : dist(x, z), ∂O)≥ η(ν)}, for each η(ν) satisfying η(ν)/ν1/2
→∞ as ν→ 0.

Thus much information about wν is revealed by the behavior of et (ν1−X)W . In case V ≡ 1, the
operators X and 1 commute, and the behavior of et (ν1−X)W = e−t X etν1W is also quite accessible via
the method of images. For general V (z), the behavior of et (ν1−X) requires further study.

Chapter 3 is devoted to the study of et (ν1−X). It is natural to work in a more general setting than in
Chapter 2. In place of (1.0.16), we take O to be a compact Riemannian manifold with smooth boundary,
with Laplace-Beltrami operator 1, and we take a smooth vector field X on O satisfying

X ‖ ∂O, div X = 0. (1.0.22)

We obtain convergence results

et (ν1−X) f → e−t X f (1.0.23)

as ν→ 0, in a number of function spaces, including Lq -Sobolev spaces Hσ,q(O), for q ∈ [2,∞), σ ∈
[0, 1/q), and also spaces

Vk(O)= { f ∈ L2(O) : Y1 · · · Y j f ∈ L2(O), ∀ j ≤ k, Y` ∈ X1
}, (1.0.24)

where X1 consists of smooth vector fields on O that are tangent to ∂O.
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We also produce a layer potential analysis of et (ν1−X) f , which provides a detailed picture of the
boundary layer behavior as ν→ 0. To do this, we find it convenient to work with

vν(t)= et X et (ν1−X) f. (1.0.25)

One of the main results is given in Proposition 3.7.4, that for I = [0, T ], δ > 0,

‖vν − ( f − 2D0
ν f b)‖L∞(I×O) ≤ C(I )ν1/2

‖ f ‖C1,δ(O), (1.0.26)

where f b(t, y)= χR+(t) f (y) and D0
ν is a certain layer potential operator:

D0
ν f b(t, x)= ν

∫ t

0

∫
∂O

f (y)
∂H0

∂ns,y
(ν, s, t, x, y) d Ss(y) ds. (1.0.27)

See Section 3.7 for more details, including the definitions of d Ss(y), ∂/∂ns,y , and the Gaussian-type
integral kernel H0(ν, s, t, x, y).

In Chapter 4 we again consider solutions to (1.0.17). Here we work on a compact Riemannian manifold
with boundary O as in Chapter 3. We take Xν to be a family of time dependent vector fields, suitably
generalizing the class Xν = vν(t, z)∂x that arose in Chapter 2, converging to X in a similar way as
vν(t, z)∂x converges to V (z)∂x . The main results are given in Propositions 4.2.1–4.2.4. We obtain
convergence results

wν(t)→ e−t X f (1.0.28)

as ν→ 0, in Vk(O), and in L p(O), for 1≤ p<∞. Analogues of (1.0.19) play a role in the analysis, and
we make strong use of results of Chapter 3.

In Chapter 5 we return to the specific setting of plane parallel channel flow and draw further conclu-
sions about the convergence of vν to v0 and of wν to w0. We extend the scope of Chapter 2 by allowing
for some nonzero boundary velocity, arising from rigidly translating the flat boundary faces. We take
boundary data B(t, q) of the form

B(t, x, z)= (α j (t), β j (t), 0), z = j ∈ {0, 1}, (1.0.29)

and allow α j (t) and β j (t) to be fairly rough. We start with the special case (α j (t), 0, 0), giving motions
of the boundary parallel to the x-axis.

The spaces Vk(O) in (1.0.24) are special cases of “weighted b-Sobolev spaces,” introduced and studied
in [Melrose 1993]. In Appendix A we discuss this point and use it to establish some complex interpolation
results for these spaces, which are of use in Sections 3.3 and 4.2.

This paper is a companion to [Lopes Filho et al. 2007], whose goal was to give a precise analysis
of the convergence of the solution of the Navier–Stokes equation, as the vorticity tends to zero, to a
steady solution of the Euler equation for 2D circularly symmetric flow in a disk or annulus, sharpening
L2 analyses done in [Matsui 1994], [Bona and Wu 2002], and [Lopes Filho et al. 2008].

2. First results on plane parallel channel flows

Here we start our investigation of the convergence of vν and wν as ν → 0, when these functions are
solutions to (1.0.8) (with f = g = 0 and vanishing boundary condition). The main result of this chapter
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is the estimate (2.2.11) on
wν(t, x, z)− et (ν1−X)W (x, z), (2.0.1)

together with some of its consequences. To carry on, we need to understand the second term in (2.0.1).
This motivates the work of Chapter 3.

2.1. Particular case. Let us take f ≡ g ≡ 0 in (1.0.8) and in (1.0.15), and

V ≡ 1, W =W (x, z) (2.1.1)

in (1.0.10). Consequently we have

v0(t, z)≡ 1, w0(t, x, z)=W (x − t, z) (2.1.2)

as the solution to the Euler equations. Let us also take a ≡ b ≡ 0 in (1.0.9), i.e., boundary conditions

vν(t, z)= wν(t, x, z)= 0, z = 0, 1. (2.1.3)

Consequently, for the solution (vν, wν, 0) to the Navier–Stokes equation, we have first of all that

vν(t, z)= etνAv0(z)= etνA1(z), (2.1.4)

where A is the self-adjoint operator on L2([0, 1]) defined by

D(A)= H 2([0, 1])∩ H 1
0 ([0, 1]), A = ∂2

z on D(A). (2.1.5)

One can analyze (2.1.4) via the method of images to get a good picture of the boundary layer near
z = 0, 1. Then the equation for wν becomes

∂wν

∂t
+ vν

∂wν

∂x
= ν

(∂2wν

∂x2 +
∂2wν

∂z2

)
, (2.1.6)

with initial condition given in (2.1.1) and boundary condition given in (2.1.3).
Let us assume W (x, z) in (2.1.1) is smooth and periodic of period 1 in x , so

W ∈ C∞(O), O= {(x, z) : x ∈ R/Z, z ∈ [0, 1]}. (2.1.7)

Elementary estimates imply

‖wν(t)‖L p(O) ≤ ‖W‖L p(O), 1≤ p ≤∞. (2.1.8)

Note that for k ∈ Z+,
wνk = ∂

k
xw

ν (2.1.9)

satisfies
∂wνk

∂t
+ vν

∂wνk

∂x
= ν1wνk , (2.1.10)

where we have set

1=
∂2

∂x2 +
∂2

∂z2 . (2.1.11)

Also
wνk (t, x, z)= 0, z = 0, 1. (2.1.12)
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Hence, parallel to (2.1.8), we have

‖wνk (t)‖L p(O) ≤ ‖∂
k
x W‖L p(O), 1≤ p ≤∞. (2.1.13)

To obtain a finer analysis of wν(t, x, z), let us rewrite (2.1.6) as

∂wν

∂t
=−∂xw

ν
+ ν1wν + (1− vν)

∂wν

∂x
. (2.1.14)

Then Duhamel’s formula gives

wν(t, x, z)= et (ν1−∂x )W (x, z)+
∫ t

0
e(t−s)(ν1−∂x )

[
(1− vν(s, z))

∂wν

∂x
(s, x, z)

]
ds. (2.1.15)

Here 1 stands for the self adjoint operator given by (2.1.11), with

D(1)= H 2(O)∩ H 1
0 (O). (2.1.16)

Note that etν1 and e−t∂x are commuting semigroups, with e−t∂x f (x, z)= f (x − t, z). Hence we have

wν(t, x, z)= etν1W (x − t, z)+
∫ t

0
e(t−s)ν1[

(1− vν(s, z))wν1(s, x − t + s, z)
]

ds, (2.1.17)

where, as in (2.1.9), we have wν1 = ∂xw
ν . Let us write (2.1.16) as

wν(t, x, z)= etν1W (x − t, z)+ Rν(t, x, z). (2.1.18)

By the method of images (or otherwise) we have a clear picture of the first term on the right side of
(2.1.18). Let us estimate the remainder, Rν(t, x, z). By (2.1.13) and the positivity of e(t−s)ν1, we have

|Rν(t, x, z)| ≤ C
∫ t

0
e(t−s)ν1

|1− vν(s, z)| ds, (2.1.19)

since ∂x W ∈ L∞(O). The analysis of (2.1.4) via the method of images gives

|1− vν(s, z)| ≤ CTϕ
(
(sν)−1/2δ(z)

)
, (2.1.20)

for s ∈ [0, T ], where δ(z) = dist(z, {0, 1}) and ϕ(ζ ) is rapidly decreasing as ζ → ∞. Hence, for
p ∈ [1,∞),

‖Rν(t, · )‖L p(O) ≤ C
∫ t

0

( ∫ 1

0
|1− vν(s, z)|p dz

)1/p

ds ≤ C pν
1/2pt1+1/2p. (2.1.21)

Furthermore we have, as ν→ 0,

Rν(t, x, z)→ 0, uniformly for t ∈ [0, T ], δ(z)≥ δ0, (2.1.22)

given δ0 > 0. Indeed, given η(ν) such that

η(ν)

ν1/2 →∞ as ν→ 0, (2.1.23)

and
Oη = {(x, z, ν) : x ∈ R/Z, δ(z)≥ η(ν)}, (2.1.24)
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we have
Rν(t, x, z)→ 0, uniformly for t ∈ [0, T ], (x, z, ν) ∈ Oη. (2.1.25)

However, (2.1.15)–(2.1.19) do not reveal the fine structure of wν(t, x, z) on the boundary layer. Some
other approach will be required for this.

2.2. More general case. As in Section 2.1, we take f ≡ g ≡ 0 in (1.0.8), but now we extend (2.1.1) to
the more general case

vν(0, z)= V (z) ∈ C∞(I ), wν(0, x, z)=W (x, z) ∈ C∞(O), (2.2.1)

with O as in (2.1.7). Then (2.1.2) is modified to

v0(t, z)= V (z), w0(t, x, z)=W (x − tV (z), z). (2.2.2)

We retain the boundary conditions (2.1.3), i.e.,

vν(t, z)= wν(t, x, z)= 0, z = 0, 1. (2.2.3)

Thus, in place of (2.1.4), we have
vν(t, z)= etνAV (z), (2.2.4)

again with A as in (2.1.5). With these modifications, one still has the Equation (2.1.6) forwν . We continue
to have the estimates (2.1.8) on ‖wν(t)‖L p(O). We also have the estimates (2.1.13) on ‖wνk (t)‖L p , where
wνk = ∂

k
xw

ν .
To obtain a finer analysis of wν(t, x, z), we use the following modification of (2.1.14):

∂wν

∂t
=−V (z)∂xw

ν
+ ν1wν + (V − vν)

∂wν

∂x
. (2.2.5)

Then Duhamel’s formula gives the following variant of (2.1.15):

wν(t, x, z)= et (ν1−V ∂x )W (x, z)+
∫ t

0
e(t−s)(ν1−V ∂x )

[
(V − vν(s))

∂wν

∂x
(s)

]
ds. (2.2.6)

Here ν1− V ∂x generates a contraction semigroup on L2(O) with domain

D(ν1− V ∂x)= H 1
0 (O)∩ H 2(O). (2.2.7)

It also generates a contraction semigroup on L p(O) for 1≤ p ≤∞, strongly continuous for p ∈ [1,∞),
but not for p = ∞. We mention that the Trotter product formula — for which see [Trotter 1959] or
[Taylor 1996, Chapter 11, Appendix A] — holds here. Given p ∈ [1,∞) and f ∈ L p(O), we have

et (ν1−V ∂x ) f = lim
n→∞

(
e(t/n)ν1e−(t/n)V ∂x

)n f, in L p-norm. (2.2.8)

Of course,
e−sV ∂x f (x, z)= f (x − sV (z), z). (2.2.9)

To proceed, we have, parallel to (2.1.18)–(2.1.19),

wν(t, x, z)= et (ν1−V ∂x )W (x, z)+ Rν(t, x, z), (2.2.10)
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with

|Rν(t, x, z)| ≤ C
∫ t

0
e(t−s)(ν1−V ∂x )|V − vν(s)| ds = C

∫ t

0
e(t−s)ν1

|V (z)− vν(s, z)| ds, (2.2.11)

since ∂x W ∈ L∞(O). Again, to get this, one uses the estimate (2.1.13) with k = 1, and the positivity of
e(t−s)(ν1−V ∂x ). For the last identity in (2.2.11), one uses the fact that V (z)− vν(s, z) is independent of
x . Once we have (2.2.11), we can again apply the method of images to estimate

|V (z)− vν(s, z)| ≤ CTϕ
(
(sν)−1/2δ(z)

)
, (2.2.12)

as in (2.1.20), except now we have only ϕ(ζ )≤ C(1+ ζ 2)−1. This is enough for the estimates (2.1.21)–
(2.1.25) on Rν(t, x, z) continue to hold.

In the current setting, the term et (ν1−V ∂x )W requires a more vigorous investigation for general smooth
V (z) on [0, 1] than it did in the case V ≡ 1, considered in Section 2.1. We want to establish results of
the form

et (ν1−X) f → e−t X f, as ν→ 0, (2.2.13)

in L p-norm, for all f ∈ L p(O), where

X = V (z)∂x . (2.2.14)

We also want to investigate such convergence in other function spaces. We will obtain such results, in a
more general context, in the chapters that follow.

3. Analysis of solutions to ut = ν1u − Xu

We examine the solution operator et (ν1−X) f = u(t), given by

∂u
∂t
= ν1u− Xu, u(0)= f, u(t, x)= 0 for x ∈ ∂O. (3.0.1)

We work in a more general context than in Section 2.2. Assume O is a compact Riemannian manifold,
with smooth boundary ∂O, and with Laplace-Beltrami operator 1, and X is a smooth, real vector field
on O, satisfying

X ‖ ∂O, div X = 0. (3.0.2)

Under such hypotheses, for each ν ∈ (0,∞), et (ν1−X) is a strongly continuous contraction semigroup on
L p(O) for each p∈[1,∞). Furthermore, the Trotter product formula holds; given p∈[1,∞), f ∈ L p(O),

et (ν1−X) f = lim
n→∞

(
e(t/n)ν1e−(t/n)X

)n
f, in L p-norm. (3.0.3)

Our goal is to obtain precise results on convergence

et (ν1−X) f → e−t X f, (3.0.4)

as ν ↘ 0. In particular, we establish convergence in a variety of function spaces. In Section 3.1 we
establish such convergence in the Lq -Sobolev space H s,q(O) for q ∈ [2,∞) and s ∈ [0, 1/q). In
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Section 3.2 we study local convergence. For this, it is convenient to work with

vν(t)= et X et (ν1−X) f, (3.0.5)

which solves
∂vν

∂t
= νL(t)vν, vν(0)= f, (3.0.6)

with boundary condition vν = 0 on R+ × ∂O, where L(t) is the smooth family of strongly elliptic
differential operators given by L(t)= et X1e−t X . Given �1 b�0 ⊂⊂ O, we show that if f ∈ L2(O) and
f ∈ H k(�0), then vν(t)→ f in H k(�1). In Section 3.3 we establish convergence in the space

Vk(O)= { f ∈ L2(O) : Y1 · · · Y j f ∈ L2(O), ∀ j ≤ k, Y` ∈ X1
}, (3.0.7)

where X1 consists of all smooth vector fields on O that are tangent to ∂O. In Section 3.4 we show that
the Laplace operator, with Dirichlet boundary condition, generates a holomorphic semigroup on Vk(O).
This result is peripheral to the other results of this chapter, but it will prove useful in Section 4.1.

In Section 3.5 we extend the results of Section 3.1 to convergence in Hσ,q for all q ∈ [2,∞), σ ≥ 0, in
case O is replaced by a compact manifold without boundary, M . These results are relatively easy, since
it is only the presence of a boundary that causes a problem. They are recorded here to lay a foundation
for the work in §Section 3.6–3.7. Section 3.6 is devoted to constructing a parametrix for the solution
of (3.0.6) on R+ × M , valid uniformly for ν ∈ (0, 1], and with increased precision as ν ↘ 0. The
construction here is parallel to, but somewhat more elaborate than the construction of a parametrix for
the heat equation (∂t−1)u= 0 on R+×M , yielding short time asymptotics. The parametrix constructed
in Section 3.6 is used in Section 3.7 to produce a layer potential attack on solutions to (3.0.6) on R+×O,
yielding sharp results on convergence in (3.0.4), including a picture of the boundary layer behavior.

3.1. Lq-Sobolev estimates on et(ν1−X). This section is devoted to Lq -Sobolev estimates. To begin, take
q = 2. We have, for each ν > 0,

D(ν1− X)= { f ∈ H 2(O) : f |∂O = 0}, (3.1.1)

D((ν1− X)2)= { f ∈ H 4(O) : f |∂O = 0, ν1 f − X f |∂O = 0}, (3.1.2)

and, for k ≥ 3,

D((ν1− X)k)= { f ∈ H 2k(O) : f |∂O = 0, (ν1− X) j f |∂O = 0 for j < k}. (3.1.3)

Comparison with analogous formulas for D(1k) yields the following.

Proposition 3.1.1. We have, for each ν > 0,

D((ν1− X)k)= D(1k), for k = 1, 2. (3.1.4)

Proof. The case k = 1 is immediate from (3.1.1). As for k = 2, note that if f ∈ H 4(O) and f |∂O = 0,
then also X f |∂O = 0 (since X ‖ ∂O), and hence 1 f |∂O = 0⇔ (ν1− X) f |∂O = 0. �

As stated in Section 2.2, we want to establish results of the form

et (ν1−X) f → e−t X f, as ν→ 0, in L p-norm, (3.1.5)
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for all f ∈ L p(O), p ∈ [1,∞). Since we know et (ν1−X) is a contraction semigroup on L p(O), if we can
establish (3.1.5) for f in a dense linear subspace V of L p(O), we will have it for all f ∈ L p(O). This is
the approach we will take for p ∈ [1, 2], using

V= D(12)= D((ν1− X)2), given by (3.1.2). (3.1.6)

Given such f, u(t)= et (ν1−X) f satisfies

∂u
∂t
=−Xu+ ν1u, u(0)= f, (3.1.7)

and belongs to C([0,∞),D(12))∩C1([0,∞),D(1)). Duhamel’s formula yields

u(t)= e−t X f + ν
∫ t

0
e−(t−s)X1u(s) ds. (3.1.8)

Thus

‖et (ν1−X) f − e−t X f ‖L p ≤ ν

∫ t

0
‖1u(s)‖L p ds, (3.1.9)

so we have (3.1.5) whenever we can obtain a favorable estimate on the right side of (3.1.9). The following
lemma provides a key, first for p = 2.

Lemma 3.1.2. Take f ∈ V, given by (3.1.6), and set u(t) = et (ν1−X) f , with ν > 0. Then there exists
K ∈ (0,∞), independent of ν, such that

‖1u(t)‖2L2 ≤ e2K t
‖1 f ‖2L2 . (3.1.10)

Proof. We have
d
dt
‖1u(t)‖2L2 = 2 Re (1∂t u,1u)L2 = 2 Re (ν12u,1u)L2 − 2 Re (1Xu,1u)L2

≤−2 Re (1Xu,1u)L2 =−2 Re (X1u,1u)L2 − 2 Re ([1, X ]u,1u)L2

≤ 2K‖1u‖2L2, (3.1.11)

with K independent of ν. The last estimate holds because

g ∈ D(1) H⇒ |(Xg, g)L2 | ≤ K1‖g‖2L2, (3.1.12)

and
u(t) ∈ D(12) ⇒ [1, X ]u(t) ∈ L2(O) and

‖[1, X ]u(t)‖L2 ≤ K̃2‖u(t)‖H2 ≤ K2‖1u(t)‖L2 . (3.1.13)

The asserted estimate (3.1.10) follows. �

Proposition 3.1.3. Given p ∈ [1,∞) and f ∈ L p(O), we have (3.1.5), with convergence in L p-norm.

Proof. For p ∈ [1, 2], this follows from the operator bound ‖et (ν1−X)
‖L(L p) ≤ 1, the denseness of V in

L p(O), and the application of (3.1.10) to (3.1.9), which gives convergence in L2-norm, and a fortiori in
L p-norm, for each f ∈ V.

Suppose now that p ∈ (2,∞), with dual exponent p′ ∈ (1, 2). All considerations above apply with X
replaced by −X , so we have

et (ν1+X)g→ et X g, as ν→ 0, (3.1.14)
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in L p′-norm, for each g ∈ L p′ . This implies that for each f ∈ L p(O), convergence in (3.1.5) holds in the
weak∗ topology of L p(O). Now, since e−t X is an isometry on L p(O), we have

‖e−t X f ‖L p ≥ lim sup
ν→0

‖et (ν1−X) f ‖L p , (3.1.15)

for each f ∈ L p(O). Since L p(O) is a uniformly convex Banach space for such p, this yields L p-norm
convergence in (3.1.5). �

To continue, we have from (3.1.10) the estimate

‖et (ν1−X) f ‖D(1) ≤ eK t
‖ f ‖D(1), (3.1.16)

first for each f ∈ V, hence for each f ∈ D(1). Interpolation with the L2- estimate then yields

‖et (ν1−X) f ‖D((−1)s/2) ≤ eK t
‖ f ‖D((−1)s/2), (3.1.17)

for each s ∈ [0, 2], f ∈ D((−1)s/2). Now

D((−1)s/2)= H s(O), for s ∈
[
0, 1

2

)
, (3.1.18)

so we have
‖et (ν1−X) f ‖H s(O) ≤ CeK t

‖ f ‖H s(O), s ∈
[
0, 1

2

)
, (3.1.19)

where the factor of C might arise due to the choice of H s-norm; the important fact is that C and K are
independent of ν ∈ (0,∞). We can interpolate the estimate (3.1.19) with

‖et (ν1−X) f ‖L p(O) ≤ ‖ f ‖L p(O), 1≤ p <∞. (3.1.20)

Using

[H s(O), L p(O)]θ = H (1−θ)s,q(θ)(O),
1

q(θ)
=

1− θ
2
+
θ

p
, (3.1.21)

we have
‖et (ν1−X) f ‖Hσ,q (O) ≤ Cσ,q eK t

‖ f ‖Hσ,q (O), (3.1.22)

valid for
2≤ q <∞, σq ∈ [0, 1). (3.1.23)

We mention that similar arguments give analogous operator bounds on e−t X , and also on et X .

Remark. In the absence of further compatibility conditions between X and 1, one does not have

e−t X
: D(12)→ D(12). (3.1.24)

Hence, typically, for f ∈ D(12),

sup
ν∈(0,1]

‖et (ν1−X) f ‖D(12) =∞. (3.1.25)

In some cases one does have (3.1.24), for example when X and 1 commute. In such a case, et (ν1−X)
=

eνt1e−t X . It is our goal here to analyze et (ν1−X) when one does not have this extra compatibility.

From (3.1.22), we have the following convergence result.
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Proposition 3.1.4. Let q, σ satisfy (3.1.23). Then, for each t ∈ (0,∞),

f ∈ Hσ,q(O) H⇒ lim
ν→0

et (ν1−X) f = e−t X f, (3.1.26)

in Hσ,q -norm.

Proof. Given f ∈ Hσ,q(O), (3.1.22) implies {et (ν1−X) f : ν ∈ (0, 1]} is bounded in Hσ,q(O), for each
t ∈ (0,∞), so there are weak∗ limit points. But Proposition 3.1.3 yields convergence to e−t X f in Lq -
norm, so e−t X f is the only possible weak∗ limit point. Norm convergence in H τ,q(O), for each τ < σ ,
then follows from the compactness of the inclusion Hσ,q(O) ↪→ H τ,q(O). Now we can pick σ ′ > σ so
that σ ′q < 1, and take fk ∈ Hσ ′,q(O) so that fk → f in Hσ,q -norm. We deduce from the argument just
made that as ν → 0, et (ν1−X) fk → e−t X fk in Hσ,q -norm, for each k. Application of (3.1.22) with f
replaced by f − fk then finishes the proof. �

We move on to some convergence results for classes of data f that vanish on ∂O.

Proposition 3.1.5. For each t ∈ (0,∞),

f ∈ D(1) H⇒ lim
ν→0

et (ν1−X) f = e−t X f (3.1.27)

weak∗ in D(1)= H 2(O)∩ H 1
0 (O), hence in H s-norm for each s < 2.

Proof. Lemma 3.1.2 gives {et (ν1−X) f : ν ∈ (0, 1]} bounded in D(1) for each f ∈ V, hence for each
f ∈D(1), as noted in (3.1.16). Since we have convergence to e−t X f in L2-norm, the weak∗ convergence
in D(1) follows. The norm convergence in H s(O) for each s < 2 then follows from compactness of the
inclusion H 2(O) ↪→ H s(O). �

Proposition 3.1.6. Let Cb(O)= { f ∈ C(O) : f |∂O = 0}. Then for each t ∈ (0,∞),

f ∈ Cb(O) H⇒ lim
ν→0

et (ν1−X) f = e−t X f, (3.1.28)

in the supremum norm, provided dim O≤ 3.

Proof. For dim O≤ 3, D(1)⊂C(O), and it is dense in Cb(O). Since et (ν1−X) is a contraction on Cb(O),
a standard argument yields (3.1.28) from (3.1.27). �

If the hypothesis in (3.1.28) is weakened to f ∈C(O), results obtained above yield convergence, weak∗

in L∞(O), but of course one does not have L∞-norm convergence if f does not vanish on ∂O. In Section
3.2 we will show that convergence does hold uniformly on compact subsets of O.

3.2. Local regularity and convergence results for et(ν1−X). Given a function f on O, consider

v(t)= et X et (ν1−X) f. (3.2.1)

We have
∂v

∂t
= et X

[X + ν1− X ]et (ν1−X) f = νet X1et (ν1−X) f. (3.2.2)

Now
L(t)= et X1e−t X (3.2.3)
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is a one-parameter family of strongly elliptic differential operators on O, depending smoothly on t , and
(3.2.2) yields

∂v

∂t
= νL(t)et X et (ν1−X) f, (3.2.4)

so v(t) is uniquely characterized by

∂v

∂t
= νL(t)v, v(0)= f, v

∣∣
R+×∂O

= 0. (3.2.5)

We now prove the following local regularity result.

Proposition 3.2.1. Let f ∈ L2(O) and assume� j are smoothly bounded domains satisfying�1b�0bO.
Assume k ∈N and f ∈ H k(�0). Then the solution v = vν to (3.2.5) belongs to C([0,∞), H k(�1)), and
for each T ∈ (0,∞) we have

‖vν(t)‖2H k(�1)
+ cT kν

∫ t

0
‖vν(s)‖2H k+1(�1)

ds ≤ CT k
(
‖ f ‖2H k(�0)

+‖ f ‖2L2(O)

)
, 0≤ t ≤ T, (3.2.6)

with cT k, CT k ∈ (0,∞), independent of ν ∈ R+.

Proof. To start, note that

d
dt
‖v‖2L2 = 2ν(L(t)v, v)le−Cν‖∇v‖2L2 +C ′ν‖v‖2L2; (3.2.7)

hence, for 0≤ t ≤ T ,

‖v(t)‖2L2(O)+ cT 0ν

∫ t

0
‖∇v(s)‖2L2(O) ds ≤ CT 0‖ f ‖2L2(O), (3.2.8)

which contains (3.2.6) for k = 0. To proceed, take ϕ ∈ C∞0 (�0) such that ϕ = 1 on a neighborhood of
�1. Then w = ϕvν satisfies

∂tw = νL(t)w+ νY (t)v, w(0)= ϕ f, (3.2.9)
with

Y (t)= [ϕ, L(t)]. (3.2.10)

Note that Y (t) is a smooth family of differential operators of order 1. Now pick m ∈ {1, . . . , k}. We
have, for ‖Dmw‖2L2 =

∑
|α|≤m ‖D

αw‖2L2 ,

d
dt
‖Dmw‖2L2 = 2ν(Dm

[L(t)w+ Y (t)v], Dmw)L2

= 2ν(L(t)Dmw, Dmw)+ 2ν([Dm, L(t)]w, Dmw)+ 2ν(DmY (t)v, Dmw)

≤−C1ν‖Dm+1w‖2L2 +C2ν‖Dmw‖2L2 +C3ν‖Dm−1Y (t)v‖2L2 . (3.2.11)

(To get from the second line to the third, integrate by parts to put the term 2ν(DmY (t)v, Dmw)) in the
form 2ν(Dm−1Y (t)v, Dm+1w).) Hence we obtain, for t ∈ [0, T ],

‖Dmw(t)‖2L2+cT mν

∫ t

0
‖Dm+1w(s)‖2L2 ds≤CT m

[
‖Dmw(0)‖2L2+ν

∫ t

0
‖Dmv(s)‖2L2(�0)

ds
]
, (3.2.12)

from which (3.2.6) follows inductively. �
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We can deduce local convergence results from Proposition 3.2.1. Since

vν(t)− f = ν
∫ t

0
L(s)v(s) ds, (3.2.13)

we see that under the hypotheses of Proposition 3.2.1,

‖vν(t)− f ‖H k−2(�1) ≤ Cν1/2(
‖ f ‖H k(�0)+‖ f ‖L2(O)

)
. (3.2.14)

Interpolation with the bound on ‖vν(t)‖H k(�1) in (3.2.6) then gives

‖vν(t)− f ‖H k−2θ (�1) ≤ Cνθ/2
(
‖ f ‖H k(�0)+‖ f ‖L2(O)

)
, (3.2.15)

for θ ∈ (0, 1]. Now if we take f j ∈ L2(O) such that f j ∈ H k+1(�0) and f j → f in L2(O)-norm and in
H k(�0)-norm, an argument such as used at the end of the proof of Proposition 3.1.4 gives:

Proposition 3.2.2. Under the hypotheses of Proposition 3.2.1, as ν→ 0,

vν(t)→ f in H k(�1), (3.2.16)

for each t ≥ 0.

We can pass from Proposition 3.2.2 to other local convergence results. Here is one.

Proposition 3.2.3. Let f ∈ C(O), and take � j as in Proposition 3.2.1. Then the solution vν to (3.2.5)
satisfies

vν(t)→ f, uniformly on �1, (3.2.17)

as ν→ 0. This holds uniformly in t ∈ [0, T ].

Proof. Take k > n/2 (n = dim O), and take ε > 0. Take gε ∈ H k(O) such that ‖ f − gε‖L∞(O) ≤ ε. Let vνε
satisfy

∂vνε

∂t
= νL(t)vνε , vνε (0)= gε, v

∣∣
R+×∂O

= 0. (3.2.18)

We have, by the maximum principle,

‖vνε (t)− v
ν(t)‖L∞(O) ≤ ‖ f − g‖L∞(O) ≤ ε. (3.2.19)

Meanwhile, Proposition 3.2.2 gives

vνε (t)→ gε in H k(�1)⊂ C(�1), (3.2.20)

as ν→ 0, so (3.2.17) holds. �

3.3. Conormal type estimates on et(ν1−X). Here we aim to show that {et (ν1−X)
: ν ∈ (0, 1]} is a strongly

continuous semigroup, with norm bounds independent of ν ∈ (0, 1], on spaces of the following form:

Vk(O)= {u ∈ L2(O) : Y1 · · · Y j u ∈ L2(O), ∀ j ≤ k, Y` ∈ X1
}, (3.3.1)

for k ∈ Z+ = {0, 1, 2, . . . }, where

X1
= {Y smooth vector field on O : Y ‖ ∂O}. (3.3.2)

See the Remark on page for a discussion of why Vk(O)-norm estimates are called conormal estimates.
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Before starting to produce estimates, we develop some notation and preliminary material.

Lemma 3.3.1. There exists a finite set

{Y j : 1≤ j ≤ M} ⊂ X1 (3.3.3)

with the property that each element of X1 is a linear combination, with coefficients in C∞(O), of these
vector fields Y j .

Proof. Routine. �

From here, take Y j as in (3.3.3), let
J = ( j1, . . . , jk), (3.3.4)

and set
Y J
= Y j1 · · · Y jk , |J | = k. (3.3.5)

Also set
Xk
= Span {Z1 · · · Z j : j ≤ k, Z` ∈ X1

}. (3.3.6)

We have
Xk
= Span over C∞(O) of {Y J

: |J | ≤ k}, (3.3.7)

and
Vk(O)= {u ∈ L2(O) : Y J u ∈ L2(O), ∀ |J | ≤ k}

= {u ∈ L2(O) : Lu ∈ L2(O), ∀ L ∈ Xk
}. (3.3.8)

We have the following square-norm and norm on Vk(O):

N 2
k (u)=

∑
|J |≤k

‖Y J u‖2L2, Nk(u)= N 2
k (u)

1/2. (3.3.9)

Also set
P2

k (u)=
∑
|J |=k

‖Y J u‖2L2 . (3.3.10)

We now estimate the rate of change of P2
k (u(t)) for

u(t)= et (ν1−X) f, f ∈ Vk(O), (3.3.11)

starting with the case k = 0:

d
dt
‖u‖2L2 = 2(ut , u)L2 = 2ν(1u, u)L2 − 2(Xu, u)L2 =−2ν‖∇u‖2L2, (3.3.12)

since, for t > 0, u(t)∈D((ν1− X)m) for all m, and hence u(t)∈ H 2m(O)∩H 1
0 (O). Moving on to k = 1,

we have
d
dt
‖Y j u‖2L2 = 2(Y j ut , Y j u)L2

= 2ν(Y j1u, Y j u)L2 − 2(Y j Xu, Y j u)L2

= 2ν(1Y j u, Y j u)L2 + 2ν([Y j ,1]u, Y j u)L2 − 2(XY j u, Y j u)L2 − 2([Y j , X ]u, Y j u)L2

=−2ν‖∇Y j u‖2L2 + 2ν([Y j ,1]u, Y j u)L2 − 2([Y j , X ]u, Y j u)L2 . (3.3.13)
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Of the three terms in the last line, the first has a clear significance. For the third, we have [Y j , X ] ∈ X1,
and hence

2([Y j , X ]u, Y j u)L2 ≤ C P2
1 (u). (3.3.14)

It remains to estimate the second term. For this, write

[Y,1] =
∑
`

A`B`, (3.3.15)

with A`, B` smooth vector fields on O. We have

2ν([Y j ,1]u, Y j u)L2 = 2ν
∑
`

(B`u, A∗`Y j u)L2 ≤ ν‖∇Y j u‖2L2 + ν‖Y j u‖2L2 + K1ν‖∇u‖2L2 . (3.3.16)

Plugging (3.3.14) and (3.3.16) into (3.3.13) and summing over j gives

d
dt

P2
1 (u)≤−ν

∑
j

‖∇Y j u‖2L2 + (MC + ν)P2
1 (u)+M K1ν‖∇u‖2. (3.3.17)

The term M K1ν‖∇u‖2L2 is tamed by bringing in (3.3.12), to obtain

d
dt

(
P2

1 (u)+
M K1

2
P2

0 (u)
)
≤−ν

∑
j

‖∇Y j u‖2L2 + (MC + ν)P2
1 (u). (3.3.18)

Proceeding to general k, we take |J | = k and look at
d
dt
‖Y J u‖2L2 = 2(Y J ut , Y J u)L2

= 2ν(Y J1u, Y J u)L2 − 2(Y J Xu, Y J u)L2

= 2ν(1Y J u, Y J u)L2 + 2ν([Y J ,1]u, Y J u)L2 − 2(XY J u, Y J u)L2 − 2([Y J , X ]u, Y J u)L2

= − 2ν‖∇Y J u‖2L2 + 2ν([Y J ,1]u, Y J u)L2 − 2([Y J , X ]u, Y J u)L2 . (3.3.19)

As with (3.3.13), of the three terms in the last line of (3.3.19), the first has a clear significance. For the
third, we have

[X, Y J
] = [X, Y j1]Y j2 · · · Y jk + · · ·+ Y j1 · · · Y jk−1[X, Y jk ] ∈ Xk, (3.3.20)

and hence
|([Y J , X ]u, Y J u)L2 | ≤ Ck P2

k (u). (3.3.21)

It remains to estimate the second term in the last line of (3.3.19). For this, write

[1, Y J
] =

k∑
`=1

Y j1 · · · Y j`−1[1, Y j`]Y j`+1 · · · Y jk =

k∑
`=1

Y j1 · · · Y j`−1 L j`Y j`+1 · · · Y jk , (3.3.22)

where L j` = [1, Y j`] is a second order differential operator that annihilates constants. We say a product
of k factors

Y j1 · · · Y j`−1 L j`Y j`+1 · · · Y jk (3.3.23)

is of type (k, `), meaning it is a product of k factors, all being vector fields in X1 except one, in position `,
which is a second order differential operator that annihilates constants. If `≥ 2, we can write (3.3.23) as

Y j1 · · · Y j`−2L j` · · · Y jk + Y j1 · · · Y j`−2[Y j`−1, L j`] · · · Y jk , (3.3.24)
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a sum of terms of type (k, `− 1) and of type (k− 1, `− 1). Repeating this process, we convert (3.3.23)
into a sum of terms of type ( j, 1), for j ≤ k. Hence we have

([Y J ,1]u, Y J u)L2 =

∑
|I |≤k−1

(L I Y I u, Y J u)L2, (3.3.25)

where the L I are differential operators of order 2, annihilating constants; hence

L I =
∑

j

AI j BI j , (3.3.26)

where AI j are first order differential operators and BI j are vector fields. We then have

2ν([Y J ,1]u, Y J u)L2 = 2ν
∑
|I |≤k−1

∑
j

(BI j Y I u, A∗I j Y
J u)L2

≤ C̃ν
∑
|I |≤k−1

‖∇Y I u‖L2 ·
(
‖∇Y J u‖L2 +‖Y J u‖L2

)
≤ ν‖∇Y J u‖2L2 + ν‖Y J u‖2L2 +Ckν

∑
|I |≤k−1

‖∇Y I u‖2L2 . (3.3.27)

Inserting (3.3.21) and (3.3.27) into (3.3.19), we get

d
dt
‖Y J u‖2L2 ≤−ν‖∇Y J u‖2L2 + (Ck + ν)P2

k (u)+Ckν
∑
|I |≤k−1

‖∇Y I u‖2L2, (3.3.28)

hence, for ν ∈ (0, 1], and with Ck + 1 re-notated as Ck ,

d
dt

P2
k (u)≤−ν

∑
|J |=k

‖∇Y J u‖2L2 +MCk P2
k (u)+MCkν

∑
|I |≤k−1

‖∇Y I u‖2L2 . (3.3.29)

It follows that there exist Ak j ∈ (0,∞) and Bk ∈ (0,∞) such that if we set

Ñ 2
k (u)= P2

k (u)+
k−1∑
j=0

Ak j P2
j (u), (3.3.30)

then
d
dt

Ñ 2
k (u)≤−ν

∑
|J |=k

‖∇Y J u‖2L2 + 2Bk Ñ 2
k (u), (3.3.31)

when u = u(t) is given by (3.3.11). In particular, taking

‖u‖2Vk = Ñ 2
k (u), (3.3.32)

we obtain

‖u(t)‖Vk ≤ e(t−s)Bk‖u(s)‖Vk , (3.3.33)

for 0< s < t <∞. The next result will allow us to pass to the limit s↘ 0 for f ∈ Vk .

Lemma 3.3.2. For each k ∈ Z+, C∞0 (O) is dense in Vk(O).
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Proof. Let ψ ∈ C∞(R) satisfy
ψ(s)= 0 for s ≤ 1

2 ,

1 for s ≥ 1,
(3.3.34)

and set
ϕδ(x)(x)= ψ

(
δ−1 dist(x, ∂O)

)
. (3.3.35)

There exists δ0 > 0 such that ϕδ ∈ C∞0 (O) for δ ∈ (0, δ0). Given f ∈ Vk(O) and |J | ≤ k, we have

Y J (ϕδ f )= ϕδY J f +
∑
(I1,I2)

(Y I1ϕδ)(Y I2 f ), (3.3.36)

where (I1, I2) runs over the partitions of the ordered set { j1, . . . jk} into two subsets, such that |I1| ≥ 1
(hence |I2| ≤ k − 1). It is clear from (3.3.35) that ϕδY J f → Y J f in L2-norm as δ ↘ 0. Meanwhile
Y I1ϕδ = 0 on {x ∈ O : dist(x, ∂O)≥ δ}, and

Y j ∈ X1
H⇒ ‖Y I1ϕδ‖L∞ ≤ C I1, independent of δ ∈ (0, δ0/2), (3.3.37)

so the sum over (I1, I2) in (3.3.36) tends to 0 in L2-norm as δ↘ 0. Hence, whenever f ∈ Vk(O),

ϕδ f → f in Vk-norm. (3.3.38)

From here the density of C∞0 (O) in Vk(O) follows by a standard mollifier argument. �

Since C∞0 (O) ⊂ D((ν1− X)m) for all m, we have u ∈ C∞([0,∞)× O) whenever f ∈ C∞0 (O), and
hence (3.3.31) holds for t ≥ 0 and (3.3.33) holds for s = 0. That is to say, we have

‖et (ν1−X) f ‖Vk ≤ et Bk‖ f ‖Vk , (3.3.39)

for all f in the dense linear subspace C∞0 (O) of Vk(O), and hence for all f ∈ Vk . Also this density
implies:

Proposition 3.3.3. For each k ∈ Z+, ν > 0, et (ν1−X) is a strongly continuous semigroup on Vk(O), and
(3.3.39) holds for each f ∈ Vk(O).

We emphasize that (3.3.39) holds with Bk independent of ν ∈ (0, 1]. From here we can obtain con-
vergence results as ν↘ 0.

Proposition 3.3.4. In the setting of Proposition 3.3.3,

f ∈ Vk(O) H⇒ lim
ν↘0

et (ν1−X) f = e−t X f, (3.3.40)

in norm, in Vk(O).

Proof. The estimate (3.3.39) implies {et (ν1−X) f : ν ∈ (0, 1]} has weak∗ limit points as ν ↘ 0. By
Proposition 3.1.3, (with p = 2), e−t X f is the only possible such limit point. This gives convergence in
(3.3.40), weak∗ in Vk(O). We next aim to improve this to norm convergence. In view of the uniform
bounds in (3.3.39), it suffices to establish norm convergence on a dense linear subspace of Vk(O). Take
f ∈ C∞0 (O). We use the complex interpolation identity

Vk(O)= [L2(O),V2k
]1/2. (3.3.41)
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See Proposition A.1.1 in the Appendix for a proof. This implies

‖g‖Vk ≤ ‖g‖1/2L2 ‖g‖
1/2
V2k , (3.3.42)

for g ∈ V2k(O). Hence, for f ∈ V2k(O),∥∥(et (ν1−X)
− e−t X ) f

∥∥
Vk ≤

∥∥(et (ν1−X)
− e−t X ) f

∥∥1/2
L2

∥∥(et (ν1−X)
− e−t X ) f

∥∥1/2
V2k . (3.3.43)

The first factor on the right side tends to zero as ν ↘ 0, by Proposition 3.1.3, and the last factor is
uniformly bounded as ν↘ 0, by (3.3.39), with k replaced by 2k. This completes the proof. �

Remark. The class of differential operators Xk, k ≥ 1, together with multiplications by smooth func-
tions on O, is what is called the algebra of totally characteristic differential operators in [Melrose 1981;
1993]. These works also develop a related class of pseudodifferential operators; see also [Melrose 1996]
and [Hörmander 1985, §18.3]. The spaces Vk(O) are special cases of “weighted b-Sobolev spaces,”
introduced in [Melrose 1993]. This is discussed further in Appendix A.

We briefly comment on why we call Vk(O)-norm estimates “conormal estimates.” The term “conormal
distribution” was introduced in [Hörmander 1971]. In essence, if M is a smooth manifold, 6 a smooth
submanifold and L a given Banach space of distributions on M (such as L2(M)) and if f and X1 · · · Xk f
belong to L for all k and all smooth vector fields X j on M that are tangent to 6, then f is said to be
conormal distribution with respect to 6. See also [Hörmander 1985, §18.2] for a detailed treatment.

3.4. Holomorphy of the semigroup eζ1 on Vk(O). As usual, take D(1) = H 2(O)∩ H 1
0 (O). The semi-

group eζ1 is a holomorphic semigroup on L2(O), for Re ζ > 0. Here we show it has a bound

‖eζ1 f ‖Vk ≤ eB|ζ |
‖ f ‖Vk , (3.4.1)

uniformly for ζ in a wedge
WK = {t + is : t > 0, |s|< K t}, (3.4.2)

with B = B(k, K ). We then derive some useful consequences from this.
To start, take θ ∈ R and set s = θ t and consider

u(t)= et (1+iθ)1 f, (3.4.3)

supressing θ in the notation on the left side of (3.4.3). We have

d
dt
‖u‖2L2 = 2 Re (ut , u)L2 = 2 Re ((1+ iθ)1u, u)L2 =−2‖∇u‖2L2 . (3.4.4)

This is the standard result for V0(O)= L2(O). Moving on to Vk(O) with k = 1, we have

d
dt
‖Y j u‖2L2 = 2 Re (Y j ut , Y j u)L2

= 2 Re (1+ iθ)(Y j1u, Y j u)L2

= 2 Re (1+ iθ)(1Y j u, Y j u)L2 + 2 Re (1+ iθ)([Y j ,1]u, Y j u)L2

≤−2‖∇Y j u‖2L2 + 22|([Y j ,1]u, Y j u)L2 |, (3.4.5)
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where we have set 2=
√

1+ θ2. As in (3.3.15)–(3.3.16), we have

22|([Y j ,1]u, Y j u)L2 | ≤ ‖∇Y j u‖2L2 +‖Y j u‖2L2 + K1‖∇u‖2L2, (3.4.6)

and hence, parallel to (3.3.17),

d
dt

P2
1 (u)=−

∑
j

‖∇Y j u‖2L2 + K2‖∇u‖2L2 . (3.4.7)

Then, parallel to (3.3.18), we have

d
dt

(
P2

1 (u)+ K2 P2
0 (u)

)
≤−

∑
j

‖∇Y j u‖2L2, (3.4.8)

giving (3.4.1) for k = 1, first for f ∈ C∞0 (O), which is dense in V1(O), then for general f ∈ V1(O).
The passage to general k proceeds along the same lines, in parallel with estimates done in (3.3.19)–

(3.3.31), but with the simplification that X is not involved.
We record some standard but significant consequences of the holomorphy of eζ1 and the estimates

(3.4.1). First, ∥∥∥ d
dt

eζ1 f
∥∥∥

Vk
≤ C |ζ |−1eB|ζ |

‖ f ‖Vk , (3.4.9)

for ζ ∈WK/2, as follows from the Cauchy integral formula applied to a circle of radius ∼ c|ζ | centered
about ζ . This estimate implies

‖1et1 f ‖Vk ≤
C
t

eBt
‖ f ‖Vk , (3.4.10)

for t > 0, and hence

‖Y J1et1 f ‖L2 ≤
C
t

eBt
‖ f ‖Vk , |J | = k. (3.4.11)

Using this, we will establish the following.

Proposition 3.4.1. Take T0 ∈ (0,∞). Then, for t ∈ [0, T0], we have

tY J et1
: Vk(O)→ H 2(O) bounded, for |J | = k. (3.4.12)

Proof. We use induction on k. For k = 0, (3.4.12) follows from the k = 0 case of (3.4.10). To establish
(3.4.12) for k ≥ 1, it suffices to show that

t1Y J et1
: Vk(O)→ L2(O) is bounded, for |J | = k. (3.4.13)

Using (3.3.22)–(3.3.25), we have

t1Y J et1
= tY J1et1

+ t
∑
|I |≤k−1

L I Y I et1, (3.4.14)

where each L I is a second order differential operator. The bound on the first term on the right side of
(3.4.14) in L(Vk(O), L2(O)) follows from (3.4.11). The bound on the sum over |I | ≤ k − 1 follows by
the induction hypothesis. This proves (3.4.12). �

We can interpolate the bound
‖Y J et1 f ‖H2(O) ≤

C
t
‖ f ‖Vk (3.4.15)
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with the bound
‖Y J et1 f ‖L2(O) ≤ C‖ f ‖Vk , (3.4.16)

valid for t ∈ [0, T0] by (3.4.1), using

‖F‖H1 ≤ C‖F‖1/2L2 ‖F‖
1/2
H2 , (3.4.17)

to obtain:

Corollary 3.4.2. In the setting of Proposition 3.4.1,

‖Y J et1 f ‖H1(O) ≤
C

t1/2 ‖ f ‖Vk , |J | = k. (3.4.18)

Consequently

‖et1 f ‖Vk+1 ≤
C

t1/2 ‖ f ‖Vk . (3.4.19)

3.5. Estimates on et(ν1−X) in case of empty boundary. Here we consider the family of semigroups
et (ν1−X) acting on functions on M , a compact, n-dimensional, Riemannian manifold without boundary.
Again 1 is the Laplace-Beltrami operator. We assume X is a smooth vector field on M . This time we
will not assume that div X = 0. We will show that in this setting we have much stronger convergence
results than obtained in Section 3.1. Ultimately it will be our goal to use the results obtained here to
strengthen the results of Section 3.1.

To begin, let us note that in the current context, (3.1.4) is strengthened to

D((ν1− X)k)= D(1k)= H 2k(M), ∀ k ∈ N, (3.5.1)

whenever ν > 0. Because of this, we can improve Lemma 3.1.2 to the following.

Lemma 3.5.1. Take f ∈ C∞(M), and set u(t) = et (ν1−X) f , with ν > 0. For each k ∈ Z+, there exists
K = K (k) ∈ (0,∞), independent of ν, such that

‖(1−1)ku(t)‖2L2 ≤ e2K t
‖(1−1)k f ‖2L2 . (3.5.2)

Proof. Straightforward analogue of the proof of Lemma 3.1.2. �

Corollary 3.5.2. We have, for each k ∈ Z+,

‖et (ν1−X) f ‖D(1k) ≤ eK t
‖ f ‖D(1k), (3.5.3)

for each f ∈ C∞(M), hence for each f ∈ D(1k).

Remark. This contrasts with the possibility of (3.1.25), which can occur in case of nonempty boundary.

Note that the maximum principle holds, so, for each ν > 0,

‖et (ν1−X) f ‖L∞ ≤ ‖ f ‖L∞ . (3.5.4)

Interpolation with the case k = 0 of (3.5.3) implies

‖et (ν1−X) f ‖L p ≤ eK t
‖ f ‖L p , (3.5.5)
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for f ∈ L p(M), p ∈ [2,∞). We could also get this for p ∈ [1, 2), but we will not take the space to do
this. We can further apply interpolation to (3.5.5) and the estimates

‖et (ν1−X) f ‖H2k ≤ CeK t
‖ f ‖H2k , k ∈ Z+, (3.5.6)

which follow from (3.5.3) and (3.5.1). First, we have

‖et (ν1−X) f ‖H s ≤ CeK t
‖ f ‖H s , s ∈ R+, (3.5.7)

with C = Cs, K = Ks , independent of ν. Then, in place of (3.1.21), we have

[H s(M), L p(M)]θ = H (1−θ)s,q(θ)(M),
1

q(θ)
=

1− θ
2
+
θ

p
, (3.5.8)

and hence
‖et (ν1−X) f ‖Hσ,q (M) ≤ Cσ,qeK t

‖ f ‖Hσ,q (M), (3.5.9)

valid for q ∈ [2,∞), σ > 0.
We next consider convergence results, as ν → 0. As in (3.1.8), we have for u(t) = et (ν1−X) f the

identity

u(t)= e−t X f + ν
∫ t

0
e(t−s)X1u(s) ds, (3.5.10)

hence

‖u(t)− e−t X f ‖D(1k) ≤ ν

∫ t

0
‖e(t−s)X1u(s)‖D(1k) ds. (3.5.11)

We use (3.5.3) plus the analogous estimate on e−t X to deduce that

‖et (ν1−X) f − e−t X f ‖D(1k) ≤ Cν‖ f ‖D(1k+1), (3.5.12)

for f ∈ C∞(M). We hence have
et (ν1−X) f → e−t X f (3.5.13)

in D(1k)-norm (hence in H 2k-norm), for each f ∈ C∞(M), hence, via (3.5.3), for each f ∈ D(1k).
Then, using (3.5.9) and (3.5.4), and standard density arguments, we have:

Proposition 3.5.3. Given f ∈Hσ,q(M), σ ≥0, q ∈[2,∞), convergence in (3.5.13) holds in Hσ,q -norm,
as ν→ 0. Given f ∈ C(M), convergence in (3.5.13) holds uniformly, as ν→ 0.

3.6. Parametrix for ∂t − νL(t) on R+ × M. As in Section 3.5, let M be a compact, n-dimensional,
Riemannian manifold without boundary, with Laplace-Beltrami operator1, and let X be a smooth vector
field on M . As in Section 3.2, let L(t)= et X1e−t X , so, for f ∈ D′(M),

v(t)= et X et (ν1−X) f (3.6.1)
solves

∂v

∂t
= νL(t)v, v(0)= f. (3.6.2)

We denote the solution operator by St
ν :

St
ν = et X et (ν1−X). (3.6.3)
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Parallel to results of Section 3.5, we have

‖St
ν f ‖H s,p ≤ CeK t

‖ f ‖H s,p , (3.6.4)

for f ∈ H s,p(M), with C = Cs,p, K = Ks,p independent of ν > 0, given p ≥ 2, s ≥ 0. (With a little
more work, we could take any p ∈ (1,∞), s ∈ R.) Our goal here is to construct a parametrix, revealing
the fine structure of St

ν as ν→ 0.
Preparatory to beginning this parametrix construction, it is also useful to note that Proposition 3.2.1

continues to hold in the current setting. In particular, given �1 b�0 ⊂ M, k ∈ N,

‖St
ν f ‖2H k(�1)

≤ CT k
(
‖ f ‖2H k(�0)

+‖ f ‖2L2(M)

)
, 0≤ t ≤ T, (3.6.5)

with CT k independent of ν > 0. Applying this and a partition of unity argument, we see it suffices to
construct a parametrix for St

ν f when f is supported on a coordinate patch � ⊂ M , and it suffices to
analyze this approximation to St

ν f (x) for (t, x) ∈ [0, T ]×�, uniformly in ν ∈ (0, 1].
On a coordinate patch �, we have

L(t)u =
∑

1≤|α|≤2

Lα(t, x)∂αx . (3.6.6)

(Note that L(t)1= 0.) Let us set

Lk(t, x, ξ)=
∑
|α|=k

Lα(t, x)(iξ)α, k = 1, 2. (3.6.7)

Note that
L2(t, x, ξ)=−G(t, x, ξ)=−

∑
i j

gi j (t, x)ξiξ j , (3.6.8)

where (gi j (t, x))= (gi j (t, x))−1 is the metric tensor on M , pulled back via the flow generated by X .
We write our approximate solution to (3.6.2) on R+×� as

St
ν f (x)= (2π)−n/2

∫
a(ν, t, x, ξ)ei x ·ξ f̂ (ξ) dξ, (3.6.9)

where f̂ (ξ) is the Fourier transform of f , given by

f̂ (ξ)= (2π)−n/2
∫

f (x)e−i x ·ξ dx,

and the amplitude a(ν, t, x, ξ) will take the form of an asymptotic series

a(ν, t, x, ξ)∼
∑
j≥0

a j (ν, t, x, ξ), (3.6.10)

whose terms a j will be constructed below. In outline this construction is similar to that done in [Tay-
lor 1996, Chapter 7, §13], constructing a parametrix for et1 for small t , but here the set-up is more
complicated.

We start with the following consequence of the Leibniz identity:

νL(t)(aei x ·ξ )=
[
νL2(t, x, ξ)a(ν, t, x, ξ)+ ν

2∑
`=1

B2−`(t, x, ξ, Dx)a(ν, t, x, ξ)
]
ei x ·ξ , (3.6.11)
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where B2−`(t, x, ξ, Dx) is a differential operator of order `, whose coefficients are polynomials of degree
2− ` in ξ , and smooth in (t, x). To satisfy (3.6.2) formally, we require

∂a
∂t
∼ νL2(t, x, ξ)a+ ν

2∑
`=1

B2−`(t, x, ξ, Dx)a, a(ν, 0, x, ξ)= 1. (3.6.12)

This tells us how to construct the terms a j . For starters, a0 is defined by

∂a0

∂t
=−νG(t, x, ξ)a0, a0(ν, 0, x, ξ)= 1, (3.6.13)

so

a0(ν, t, x, ξ)= e−νt H(t,x,ξ), H(t, x, ξ)=
1
t

∫ t

0
G(s, x, ξ) ds. (3.6.14)

Note that H(t, x, ξ) is a polynomial in ξ , homogeneous of degree 2, with coefficients smooth in (t, x),
and

H(t, x, ξ)≥ C |ξ |2, (3.6.15)

for some C > 0. For j ≥ 1, a j solves

∂a j

∂t
=−νG(t, x, ξ)a j +� j (ν, t, x, ξ), a j (ν, 0, x, ξ)= 0, (3.6.16)

where

� j (ν, t, x, ξ)= ν
2∑
`=1

B2−`(t, x, ξ, Dx)a j−`(ν, t, x, ξ), (3.6.17)

with the convention (operative for j = 1, `= 2) that a−1 ≡ 0. We hence have

a j (ν, t, x, ξ)= e−νt H(t,x,ξ)
∫ t

0
eνs H(s,x,ξ)� j (ν, s, x, ξ) ds. (3.6.18)

Another way to display these terms in the amplitude is to set

a j (ν, t, x, ξ)= A j (ν, t, x, ξ)e−νt H(t,x,ξ). (3.6.19)

Also set
� j (ν, t, x, ξ)= 0 j (ν, t, x, ξ)e−νt H(t,x,ξ), (3.6.20)

so (3.6.17) becomes

0 j (ν, t, x, ξ)= νeνt H(t,x,ξ)
2∑
`=1

B2−`(t, x, ξ, Dx)
(

A j−`e−νt H(t,x,ξ)), (3.6.21)

and (3.6.18) becomes

A j (ν, t, x, ξ)=
∫ t

0
0 j (ν, s, x, ξ) ds. (3.6.22)

We next take an explicit look at the case j = 1. In that case, (3.6.17) gives

�1 = νB1(t, x, ξ, Dx)e−νt H(t,x,ξ)
=−ν2te−νt H(t,x,ξ)B1(t, x, ξ, Dx)H(t, x, ξ), (3.6.23)
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and recall that B1 is a differential operator of order 1, whose coefficients are polynomials of degree 1 in
ξ . A formula equivalent to (3.6.23) is

01 =−ν
2t B1(t, x, ξ, Dx)H(t, x, ξ)=−ν2t

∑
|α|≤3

Cα
1 (t, x)ξα, (3.6.24)

with Cα
1 (t, x) smooth. Then, by (3.6.22),

A1(ν, t, x, ξ)=−ν2
∑
|α|≤3

(∫ t

0
sCα

1 (s, x) ds
)
ξα =−(νt)2

∑
|α|≤3

Dα
1 (t, x)ξα, (3.6.25)

with Dα
1 (t, x) smooth, and we have

a1(ν, t, x, ξ)=−(νt)2
∑
|α|≤3

Dα
1 (t, x)ξα e−νt H(t,x,ξ). (3.6.26)

Let us now recall the definition of a symbol class, important in the theory of pseudodifferential oper-
ators. Given m ∈ R, we say

p(x, ξ) ∈ Sm
1,0⇐⇒ |D

β
x Dα

ξ p(x, ξ)| ≤ Cαβ(1+ |ξ |)m−|α|, (3.6.27)

and we say a family {p(ν, t, x, ξ) : t ∈ [0, T ], ν ∈ (0, 1]} is bounded in Sm
1,0 provided such estimates

hold with Cαβ independent of ν and t . In follows from (3.6.14) that

{a0(ν, t, x, ξ) : t ∈ [0, T ], ν ∈ (0, 1]} is bounded in S0
1,0, (3.6.28)

or as we say for short, a0(ν, t, x, ξ) is bounded in S0
1,0. Similarly, from (3.6.26) we have

a1(ν, t, x, ξ) bounded in S−1
1,0 and O((νt)1/2) in S0

1,0, (3.6.29)

the latter property meaning that (νt)−1/2a1(ν, t, x, ξ) is bounded in S0
1,0.

To extend (3.6.28)–(3.6.29) to a j for larger j , it is convenient to have another presentation. Set

ζ = (νt)1/2ξ, ω = νtξ. (3.6.30)

Now (3.6.14) and (3.6.26) give

a0(ν, t, x, ξ)= e−H(t,x,ζ ),

a1(ν, t, x, ξ)= νtA1(νt, t, x, ξ, ζ )e−H(t,x,ζ ), (3.6.31)

where A1(τ, t, x, ξ, ζ ) is a polynomial in τ of degree 1, in ξ of degree 1 and in ζ of degree 2, with
coefficients smooth in (t, x). It will be useful to have the following:

Definition. The space Pk is characterized by

F(νt, t, x, ξ, ζ, ω) ∈ Pk⇐⇒ F is a polynomial in νt, ζ, ω, and ξ, even in ζ,

of degree ≤ k in ξ, withcoefficients smooth in (t, x). (3.6.32)

Without loss of generality, we can assume the degree in ω is ≤ 1.
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Then a1 satisfies (3.6.31) with
A1(νt, t, x, ξ, ζ ) ∈ P1. (3.6.33)

(Actually A1 is independent of ω, but other amplitudes will have ω dependence.)

Theorem 3.6.1. For each k = 0, 1, 2, . . . , we have

a2k(ν, t, x, ξ)= (νt)kA2ke−H(t,x,ζ ), A2k ∈ P0,

a2k+1(ν, t, x, ξ)= (νt)k+1A2k+1e−H(t,x,ζ ), A2k+1 ∈ P1. (3.6.34)

Proof. The results in (3.6.31) give (3.6.34) for k = 0. We proceed by induction on k. To set this up, let
us assume

a j = (νt)α j A j e−H(t,x,ζ ), A j ∈ Pβ j , (3.6.35)

for j ≤ 2k+ 1, with indices α j and β j consistent with (3.6.34). Then (3.6.17) gives

� j+1 =�
1
j+1+�

0
j+1 (3.6.36)

with
�1

j+1 = ν(νt)α j B1(t, x, ξ, Dx)
(
A j e−H(t,x,ζ ))

= ν(νt)α j B1
j+1e−H(t,x,ζ ), B1

j+1 ∈ Pβ j+1, (3.6.37)

so 01
j+1 = ν(νt)α j B1

j+1 and

A1
j+1(ν, t, x, ξ)=

∫ t

0
01

j+1(ν, s, x, ξ) ds ∈ (νt)α j+1
·Pβ j+1, (3.6.38)

and furthermore
�0

j+1 = ν(νt)α j−1 B0(t, x, Dx)
(
A j−1e−H(t,x,ζ ))

= ν(νt)α j−1B0
j+1e−H(t,x,ζ ), B0

j+1 ∈ Pβ j−1, (3.6.39)

so 00
j+1 = ν(νt)α j−1B0

j+1 and

A0
j+1(ν, t, x, ξ)=

∫ t

0
00

j+1(ν, s, x, ξ) ds ∈ (νt)α j−1+1
·Pβ j−1 . (3.6.40)

We are now ready to verify the induction step in the proof of Theorem 3.6.1. Suppose (3.6.34) holds
for a given k ∈ Z+, i.e.,

A2k ∈ (νt)k ·P0, A2k+1 ∈ (νt)k+1
·P1. (3.6.41)

(If k ≥ 1, assume also the counterpart of (3.6.41) with k replaced by k − 1.) Then, using the fact that
(3.6.35) implies (3.6.38) and (3.6.40), we obtain

A2k+2 = A1
2k+2+ A0

2k+2 ∈ (νt)k+2
·P2+ (νt)k+1

·P0 ⊂ (νt)k+1
·P0, (3.6.42)

(upon noting that (νt) ·P2 ⊂ P0), and furthermore

A2k+3 = A1
2k+3+ A0

2k+3 ∈ (νt)k+2
·P1. (3.6.43)

This completes the proof. �

We can use Theorem 3.6.1 to extend (3.6.28)–(3.6.29), as follows.
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Corollary 3.6.2. In the setting of Theorem 3.6.1, we have

a2k(ν, t, x, ξ)= O((νt)k) in S0
1,0, bounded in S−2k

1,0 , (3.6.44)
and

a2k+1(ν, t, x, ξ)= O((νt)k+1) in S1
1,0, bounded in S−2k−1

1,0 , (3.6.45)

hence, for j ≥ 0,
a j (ν, t, x, ξ)= O((νt) j/2) in S0

1,0, bounded in S− j
1,0 . (3.6.46)

Proof. The result (3.6.34) directly gives (3.6.44)–(3.6.45), and (3.6.46) follows from this plus the obser-
vation that the condition

p(ν, t, x, ξ)= (νt)Ae−H(t,x,ζ ), A ∈ P1 (3.6.47)

implies p(ν, t, x, ξ)= O((νt)1/2) in S0
1,0. �

Returning to (3.6.9)–(3.6.10), let us fix N ∈ N and set

a(ν, t, x, ξ)=
N∑

j=0

a j (ν, t, x, ξ). (3.6.48)

We use this to define St
ν f in (3.6.9). Then we have

(∂t − νL(t))St
ν f (x)= (2π)−n/2

∫
RN (ν, t, x, ξ)ei x ·ξ f̂ (ξ) dξ, (3.6.49)

with
RN (ν, t, x, ξ)

= νB1(t, x, ξ, Dx)aN (ν, t, x, ξ)+ νB0(t, x, Dx)
[
aN−1(ν, t, x, ξ)+ aN (ν, t, x, ξ)

]
. (3.6.50)

Arguments used in the proof of (3.6.34) and (3.6.45) give

νB1(t, x, ξ, Dx)aN (ν, t, x, ξ)= O(ν(νt)N/2) in S1
1,0,

O(ν(νt)(N−1)/2) in S0
1,0,

O(ν) in S−(N−1)
1,0 , (3.6.51)

and
νB0(t, x, Dx)[aN−1+ aN ] = O(ν(νt)(N−1)/2) in S0

1,0,

O(ν) in S−(N−1)
1,0 . (3.6.52)

In conclusion:

Proposition 3.6.3. If N ∈ N is given, a is defined as in (3.6.48), and St
ν as in (3.6.9), then

uν(t)=St
ν f (3.6.53)

solves
∂uν

∂t
= νL(t)u+ gν, uν(0)= f, (3.6.54)

with
gν(t, x)= (2π)−n/2

∫
RN (ν, t, x, ξ)ei x ·ξ f̂ (ξ) dξ, (3.6.55)
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where
RN (ν, t, x, ξ)= O(ν(νt)(N−1)/2) in S0

1,0,

O(ν) in S−(N−1)
1,0 . (3.6.56)

Using standard pseudodifferential operator estimates, we obtain:

Corollary 3.6.4. In the setting of Proposition 3.6.3, if p ∈ (1,∞), s ∈R, then, for t ∈ [0, T ], ν ∈ (0, 1],

‖gν(t)‖H s,p(M) ≤ CT ν
(N+1)/2

‖ f ‖H s,p(M), (3.6.57)

and
‖gν(t)‖H s+N−1,p(M) ≤ CT ν‖ f ‖H s,p(M), (3.6.58)

with CT independent of ν.

We can compare the approximate solution St
ν f with the exact solution St

ν f to (3.6.2) by applying the
Duhamel formula to (3.6.54), which gives

St
ν f = St

ν f +
∫ t

0
Ss,t
ν gν(s) ds, (3.6.59)

where, for 0≤ s ≤ t , Ss,t
ν is the solution operator to (3.6.2) defined by

v(t)= Ss,t
ν v(s), equivalently, Ss,t

ν = et X e(t−s)(ν1−X)e−s X . (3.6.60)

A straightforward analogue of (3.6.4) is

‖Ss,t
ν f ‖Hσ,p ≤ CeK (t−s)

‖ f ‖Hσ,p , (3.6.61)

valid for p ∈ [2,∞), σ ∈ [0,∞), with C = Cσ,p and K = Kσ,p independent of ν ∈ (0, 1]. This gives:

Corollary 3.6.5. In the setting of Proposition 3.6.3, if p ∈ [2,∞), σ ≥ 0, then for t ∈ [0, T ], ν ∈ (0, 1],

‖St
ν f − St

ν f ‖Hσ,p(M) ≤ CT ν
(N+1)/2

‖ f ‖Hσ,p(M), (3.6.62)

and
‖St

ν f − St
ν f ‖Hσ+N−1,p(M) ≤ CT ν‖ f ‖Hσ,p(M), (3.6.63)

with CT independent of ν.

Remark. Applying Corollary 3.6.5 with N replaced by N + 2 and taking into account the fact that this
just adds aN+1 + aN+2 to the amplitude in the formula for St

ν , we obtain a complement to (3.6.62)–
(3.6.63), namely

‖St
ν f − St

ν f ‖Hσ+N+1,p(M) ≤ CT ‖ f ‖Hσ,p(M). (3.6.64)

The family of operators Ss,t
ν is as important as the family St

ν , and it is also of interest to have a
parametrix for this family. This is obtained by a slight modification of the previous construction. Parallel
to (3.6.9)–(3.6.10), this parametrix has the form

Ss,t
ν f (x)= (2π)−n/2

∫
a(ν, s, t, x, ξ)ei x ·ξ f̂ (ξ) dξ, (3.6.65)
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with

a(ν, s, t, x, ξ)∼
∑
j≥0

a j (ν, s, t, x, ξ), (3.6.66)

given by equations similar to (3.6.12), except that the initial condition is

a(ν, s, s, x, ξ)= 1. (3.6.67)

Thus, in place of (3.6.14) we have

a0(ν, s, t, x, ξ)= e−ν(t−s)H(s,t,x,ξ),

H(s, t, x, ξ)=
1

t − s

∫ t

s
G(σ, x, ξ) dσ,

(3.6.68)

and in place of (3.6.31) we have

a1(ν, s, t, x, ξ)= ν(t − s)A1(ν(t − s), s, t, x, ξ, ζ )e−H(s,t,x,ζ ), (3.6.69)

this time with

ζ = (ν(t − s))1/2ξ, ω = ν(t − s)ξ, A1 ∈ P1, (3.6.70)

where now Pk is defined to consist of functions F(ν(t − s), s, t, x, ξ, ζ, ω), polynomials in ν(t − s), ζ ,
ω, and ξ , even in ζ , of degree ≤ k in ξ and of degree ≤ 1 in ω, with coefficients smooth in (s, t, x), the
obvious variant of (3.6.32). (As in (3.6.31), A1 does not actually depend on ω.) More generally, parallel
to (3.6.34), we have

a2k(ν, s, t, x, ξ)= (ν(t − s))kA2k e−H(s,t,x,ζ ), A2k ∈ P0,

a2k+1(ν, s, t, x, ξ)= (ν(t − s))k+1A2k+1 e−H(s,t,x,ζ ), A2k+1 ∈ P1,
(3.6.71)

except now with ζ = (ν(t− s))1/2ξ (as in (3.6.70)), with A j =A j (ν(t− s), s, t, x, ξ, ζ, ω), and with Pk

as redefined above. In place of (3.6.46), we have

a j (ν, s, t, x, ξ)= O((ν(t − s)) j/2) in S0
1,0, bounded in S− j

1,0 . (3.6.72)

The estimates recorded in Corollary 3.6.5 readily extend, to yield:

Proposition 3.6.6. Given N ∈ N, take

a(ν, s, t, x, ξ)=
N∑

j=0

a j (ν, s, t, x, ξ), (3.6.73)

and define Ss,t
ν f by (3.6.65). Then for p ∈ [2,∞), σ ≥ 0, 0≤ s ≤ t ≤ T , and ν ∈ (0, 1], we have

‖Ss,t
ν f − Ss,t

ν f ‖Hσ,p(M) ≤ CT ν
(N+1)/2

‖ f ‖Hσ,p(M),

‖Ss,t
ν f − Ss,t

ν f ‖Hσ+N+1,p(M) ≤ CT ‖ f ‖Hσ,p(M),
(3.6.74)

with CT independent of ν.
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The formula (3.6.65) represents the parametrix Ss,t
ν in Fourier integral form. We next obtain a more

explicit representation of its integral kernel. We examine the individual terms

Ss,t
ν, j f (x)= (2π)−n/2

∫
a j (ν, s, t, x, ξ)ei x ·ξ f̂ (ξ) dξ =

∫
K j (ν, s, t, x, x − y) f (y) dy, (3.6.75)

where

K j (ν, s, t, x, z)= (2π)−n
∫

a j (ν, s, t, x, ξ)ei z·ξ dξ, z = x − y. (3.6.76)

In case j = 0, let us rewrite a0 as

a0(ν, s, t, x, ξ)= e−ν(t−s)H(s,t,x)ξ ·ξ , (3.6.77)

where H(s, t, x) is a positive-definite n× n matrix. We have a standard Gaussian integral:

K0(ν, s, t, x, z)= (2π)−n
∫

e−ν(t−s)H(s,t,x)ξ ·ξei z·ξ dξ

=
(
4πν(t − s)

)−n/2 det G(s, t, x)1/2 e−G(s,t,x)z·z/4ν(t−s), (3.6.78)

where
G(s, t, x)=H(s, t, x)−1. (3.6.79)

Note from (3.6.8) that
Hi j (s, t, x)=

1
t − s

∫ t

s
gi j (σ, x) dσ, (3.6.80)

where (gi j )= (gi j )
−1, so in particular Hi j (s, s, x)= gi j (s, x) and

Gi j (s, s, x)= gi j (s, x). (3.6.81)

To compute K j more generally, we use (3.6.71), which we restate as follows:

a2k(ν, s, t, x, ξ)= (ν(t−s))k
∑
α even
|β|≤1

Fαβ(ν(t−s), s, t, x)

×
(
(ν(t−s))1/2ξ

)α(
ν(t−s)ξ

)βe−ν(t−s)Hξ ·ξ , (3.6.82)

and

a2k+1(ν, s, t, x, ξ)= (ν(t − s))k+1
∑
α even
|β|≤1,`

Fαβ`(ν(t − s), s, t, x)

× ξ`
(
(ν(t − s))1/2ξ

)α(
ν(t − s)ξ

)βe−ν(t−s)Hξ ·ξ

+ (ν(t − s))k+1
∑
α even
|β|≤1

F0
αβ(ν(t − s), s, t, x)

×
(
(ν(t − s))1/2ξ

)α(
ν(t − s)ξ

)βe−ν(t−s)Hξ ·ξ . (3.6.83)

Here H = H(s, t, x) is as in (3.6.77), and Fαβ, Fαβ`, and F0
αβ are smooth functions of their arguments.

All the sums are finite. To compute the integrals in (3.6.76), we use the following result:

(2π)−n
∫
ξαe−Hξ ·ξei z·ξ dξ =

(
det(4πH)

)−1/2 Dα
z e−Gz·z/4

= pα(H, z)e−Gz·z/4, (3.6.84)



VANISHING VISCOSITY PLANE PARALLEL CHANNEL FLOW 65

where the last identity defines pα(H, z), which is a polynomial of degree |α| whose coefficients depend
smoothly on H, and G=H−1. We note that

pα(H,−z)= (−1)|α| pα(H, z). (3.6.85)

Taking
µ= ν(t − s), (3.6.86)

we go from (3.6.82)–(3.6.83) to formulas for K j (ν, s, t, x, z) via the identities

(2π)−n
∫
(µ1/2ξ)α(µξ)βe−µHξ ·ξei z·ξ dξ = µ(−n+|β|)/2 pα+β(H, µ−1/2z)e−Gz·z/4µ, (3.6.87)

and

(2π)−n
∫
ξ`(µ

1/2ξ)α(µξ)βe−µHξ ·ξei z·ξ dξ = µ(−n+|β|−1)/2 pα+β+ε`(H, µ
−1/2z)e−Gz·z/4µ. (3.6.88)

We obtain

K2k(ν, s, t, x, z)= (ν(t − s))−n/2+k
∑
α even
|β|≤1

(ν(t − s))|β|/2 Fαβ(ν(t − s), s, t, x)

× pα+β(H, (ν(t − s))−1/2z)e−Gz·z/4ν(t−s), (3.6.89)

hence

K2k(ν, s, t, x, z)= (ν(t − s))−n/2+k
1∑

b=0

(ν(t − s))b/282k,b(ν(t − s), s, t, x, (ν(t − s))−1/2z)

× e−G(s,t,x)z·z/4ν(t−s), (3.6.90)

where82k,b is a polynomial in (ν(t−s))−1/2z= Z , with coefficients smooth in ν(t−s), s, t, x , satisfying

82k,b(ν(t − s), s, t, x,−Z)= (−1)b82k,b(ν(t − s), s, t, x, Z). (3.6.91)

Similarly,

K2k+1(ν, s, t, x, z)= (ν(t − s))−n/2+k+1/2
∑
α even
|β|≤1,`

(ν(t − s))|β|/2 Fαβ`(ν(t − s), s, t, x)

× pα+β+ε`(H, (ν(t − s))−1/2z)e−Gz·z/4ν(t−s)

+ (ν(t − s))−n/2+k+1
∑
α even
|β|≤1

(ν(t − s))|β|/2 F0
αβ(ν(t − s), s, t, x)

× pα+β(H, (ν(t − s))−1/2z)e−Gz·z/4ν(t−s), (3.6.92)

hence

K2k+1(ν, s, t, x, z)= (ν(t−s))−n/2+k+1/2
1∑

b=0

(ν(t−s))b/282k+1,b(ν(t−s), s, t, x, (ν(t−s))−1/2z)

× e−G(s,t,x)z·z/4ν(t−s)

+(ν(t−s))−n/2+k+1
1∑

b=0

(ν(t−s))b/280
2k+1,b(ν(t−s), s, t, x, (ν(t−s))−1/2z)

× e−G(s,t,x)z·z/4ν(t−s), (3.6.93)
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where 82k+1,b is a polynomial in (ν(t − s))−1/2z = Z , with coefficients smooth in ν(t − s), s, t, x ,
satisfying

82k+1,b(ν(t − s), s, t, x,−Z)= (−1)b+182k+1,b(ν(t − s), s, t, x, Z), (3.6.94)

and 80
2k+1,b is a polynomial in (ν(t − s))−1/2z with coefficients smooth in ν(t − s), s, t, x , satisfying

80
2k+1,b(ν(t − s), s, t, x,−Z)= (−1)b80

2k+1,b(ν(t − s), s, t, x, Z). (3.6.95)

While the formulas (3.6.89)–(3.6.90) and (3.6.92)–(3.6.93) for the functions K j (ν, s, t, x, z) are rather
lengthy, they are not difficult to comprehend. The basic result to be gleaned from these calculations is
that for j ≥ 1, K j (ν, s, t, x, z) is smaller and smoother than the dominant term K0(ν, s, t, x, z), given
by the comparatively simple formula (3.6.78).

3.7. Boundary layer analysis of et(ν1−X). In this section we examine the fine behavior near ∂O as ν↘0
of et (ν1−X) f , with emphasis on the cases f ∈ C(O) and f ∈ C∞(O). As in Section 3.2, we work with
solutions to

∂vν

∂t
= νL(t)vν, vν

∣∣
R+×∂O

= 0, vν(0)= f, (3.7.1)

where
L(t)= et X1e−t X (3.7.2)

is a smooth family of strongly elliptic operators, as in (3.2.3) and (3.6.6). From this, the behavior of

et (ν1−X) f = e−t Xvν(t) (3.7.3)

is easily deduced.
We assume O is a smoothly bounded open subset of a compact Riemannian manifold M without

boundary. To begin the analysis of (3.7.1), we extend f to f̃ on M , having the same degree of smoothness
as f , e.g.,

f ∈ C(O) ⇒ f̃ ∈ C(M), f ∈ C∞(O) ⇒ f̃ ∈ C∞(M), etc. (3.7.4)

We also extend X to be a smooth vector field on M (we need not assume div X = 0 on M), and define
V ν on R+×M by

∂V ν

∂t
= νL(t)V ν on R+×M, V ν(0, x)= f̃ (x). (3.7.5)

Here L(t) is given by (3.7.2). The solution to (3.7.5) has the form

V ν(t, x)=
∫

M
f̃ (y)H(ν, 0, t, x, y) dV (y), (3.7.6)

where dV is the Riemannian volume element on M . More generally, for 0≤ s < t ,

V ν(t, x)=
∫

M
V ν(s, y)H(ν, s, t, x, y) dVs(y), (3.7.7)

where dVs is the pull-back of dV via the flow generated by X , or equivalently the Riemannian volume
element for gs , the metric tensor g of O pulled back by this flow. In local coordinates, we have

H(ν, s, t, x, y)= g(s, y)−1/2K (ν, s, t, x, x − y), (3.7.8)
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where K (ν, s, t, x, x − y) has the form

K (ν, s, t, x, z)=
N∑

j=0

K j (ν, s, t, x, z)+ RN (ν, s, t, x, z), (3.7.9)

with RN the kernel of an operator satisfying the results given in Proposition 3.6.6, i.e., negligible for N
large. As seen in (3.6.78),

K0(ν, s, t, x, z)= (4πν(t − s))−n/2 det G(s, t, x)1/2e−G(s,t,x)z·z/4ν(t−s), (3.7.10)

and for j ≥ 1, K j (ν, s, t, x, z) are given by (3.6.90) and (3.6.93), as integral kernels that are smaller and
smoother then K0(ν, s, t, x, z). As before, n = dim M = dim O.

Having V ν , we can write the solution to (3.7.1) as

vν(t, x)= V ν(t, x)− uν(t, x), t ≥ 0, x ∈ O, (3.7.11)

where uν(t, x) is defined by
∂uν

∂t
= νL(t)uν on R×O,

uν = gν on R× ∂O,

uν = 0 on (−∞, 0)×O, (3.7.12)

where
gν(t, x)= χR+(t) V ν(t, x), x ∈ ∂O. (3.7.13)

We now describe how to use the method of layer potentials to solve (3.7.12).
We start with the case ν = 1 and then explain the modifications that work for ν ∈ (0, 1]. With H as in

(3.7.7)–(3.7.8), we set

D1h(t, x)=
∫ t

0

∫
∂O

h(s, y)
∂H
∂ns,y

(1, s, t, x, y) d Ss(y) ds, t ≥ 0, x ∈ O. (3.7.14)

Here d Ss is the area element on ∂O induced by the metric tensor gs , described as below (3.7.7), and
∂/∂ns,y is the outward unit normal to ∂O at y ∈ ∂O, determined by this metric tensor. The boundary trace
relation for D1 is

D1h
∣∣
R×∂O
=

(1
2 I + N1

)
h, (3.7.15)

assuming h(s, y)= 0 for s < 0, where

N1h(t, x)=
∫ t

0

∫
∂O

h(s, y)
∂H
∂ns,y

(1, s, t, x, y) d Ss(y) ds, t ≥ 0, x ∈ ∂O. (3.7.16)

The integral formula on the right sides of (3.7.14) and (3.7.16) have an identical appearance, but in the
former case x ∈ O and in the latter case x ∈ ∂O. It follows that we can solve (3.7.12), in the case ν = 1, as

u1
= D1h1, (3.7.17)

provided h1 solves ( 1
2 I + N1

)
h1
= g1. (3.7.18)
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For general ν > 0, we have essentially the same situation, except that νL(t) is the Laplace operator for
the metric tensor ν−1gt . One has the analogue of (3.7.16), with this scaled metric tensor. This rescaling
requires that ∂/∂ns,y be replaced by ν1/2∂/∂ns,y and that d Ss be replaced by ν−(n−1)/2 d Ss . Also dV is
replaced by ν−n/2 dV , so we need to replace H(1, s, t, x, y) by νn/2 H(ν, s, t, x, y). Since

ν1/2ν−(n−1)/2νn/2
= ν, (3.7.19)

we obtain

Dνh(t, x)= ν
∫ t

0

∫
∂O

h(s, y)
∂H
∂ns,y

(ν, s, t, x, y) d Ss(y) ds. (3.7.20)

The boundary trace result (3.7.15) becomes

Dνh
∣∣
R×∂O
=

( 1
2 I + νNν

)
h, (3.7.21)

for supp h ⊂ R+× ∂O, where

Nνh(t, x)=
∫ t

0

∫
∂O

h(s, y)
∂H
∂ns,y

(ν, s, t, x, y) d Ss(y) ds. (3.7.22)

Hence the solution to (3.7.12) has the form

uν(t, x)= Dνhν(t, x), (3.7.23)

provided H ν solves (1
2 I + νNν

)
hν = gν, (3.7.24)

with gν(t, x) given by (3.7.13).
We now tackle the problem of inverting ((1/2)I + νNν) in (3.7.24). The results (3.7.8)–(3.7.10) on

H and related estimates on K j established in Section 3.6 imply∥∥∥ ∂H
∂ns,y

(ν, s, t, x, · )
∥∥∥

L1(∂O)
≤ C(ν(t − s))−1/2, x ∈ ∂O, (3.7.25)

and ∥∥∥ ∂H
∂ns,y

(ν, s, t, x, · )
∥∥∥

L1(∂O)
≤ C(ν(t − s))−1, x ∈ O, (3.7.26)

uniformly for 0≤ s < t ≤ T0. For the present analysis, the focus is on (3.7.25). It implies for I = [0, T0]

‖νNνh‖L∞(I×∂O) ≤ C(T0) ν
1/2. (3.7.27)

Hence, given T0 ∈ (0,∞), as long as ν is so small that C(T0)ν
1/2
≤ 1/2, if gν ∈ L∞(I × ∂O), Equation

(3.7.24) is solved by

hν = 2(I + 2νNν)−1gν = 2(I − 2νNν + 4ν2 N 2
ν − · · · )g

ν . (3.7.28)

Note that
‖hν − 2gν‖L∞(I×∂O) ≤ Cν1/2

‖gν‖L∞(I×∂O). (3.7.29)

We are motivated to estimate Dν(hν − 2gν). The estimate (3.7.26) is not adequate for this; instead we
argue as follows. Denote the solution to (3.7.12) by

uν = PIνgν . (3.7.30)
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The content of (3.7.21) and (3.7.28) is that

PIνgν = Dνhν,
( 1

2 I + νNν
)
hν = gν . (3.7.31)

Hence
Dν(hν − 2gν)= PIν

( 1
2 I + νNν

)
(hν − 2gν). (3.7.32)

Now the maximum principle gives

‖PIνh‖L∞(I×O) ≤ ‖h‖L∞(I×∂O), (3.7.33)

so we have the general estimate

‖Dνh‖L∞(I×O) ≤ C‖h‖L∞(I×∂O), (3.7.34)

with C independent of ν ∈ (0, 1], and in particular

‖Dν(hν − 2gν)‖L∞(I×O) ≤ C‖hν − 2gν‖L∞(I×∂O) ≤ Cν1/2
‖gν‖L∞(I×∂O), (3.7.35)

the last inequality by (3.7.29).

Proposition 3.7.1. The solution uν to (3.7.12) has the property

‖uν − 2Dνgν‖L∞(I×O) ≤ C(I )ν1/2
‖gν‖L∞(I×∂O) ≤ C ′(I )ν1/2

‖ f̃ ‖L∞(M). (3.7.36)

Proof. The first inequality in (3.7.36) follows from (3.7.35) and the fact that uν = Dνhν . The second
follows from the identification of gν in (3.7.13) and the maximum principle, applied to (3.7.5). �

Recalling (3.7.11), we have:

Corollary 3.7.2. The solution vν to (3.7.1) has the property

‖vν − (V ν
− 2Dνgν)‖L∞(I×O) ≤ C(I )ν1/2

‖ f̃ ‖L∞(M). (3.7.37)

We can obtain simpler approximations to uν and vν if we assume more regularity on f . Using (3.5.9),
we have, for q ∈ [2,∞), σ > 0,

‖V ν(t, · )‖Hσ,q (M) ≤ C‖ f̃ ‖Hσ,q (M), 0≤ t ≤ T0, (3.7.38)

with C independent of ν ∈ (0, 1]. Taking σ = 2+ ε and q sufficiently large, we obtain

‖V ν(t, · )‖C2(M) ≤ C‖ f̃ ‖H2+ε,q (M), 0≤ t ≤ T0, (3.7.39)

for each ε > 0, q > n/ε, with C independent of ν. Hence the solution V ν to (3.7.5) satisfies

‖V ν(t)− f̃ ‖L∞(M) ≤ Cν‖ f̃ ‖H2+ε,q (M), 0≤ t ≤ T0. (3.7.40)

Interpolation with
‖V ν(t)− f̃ ‖L∞(M) ≤ 2‖ f̃ ‖L∞(M) ≤ C‖ f̃ ‖H ε,q (M) (3.7.41)

gives
‖V ν(t)− f̃ ‖L∞(M) ≤ Cν1/2

‖ f̃ ‖H1+ε,q (M) ≤ C ′ν1/2
‖ f̃ ‖C1,δ(M), (3.7.42)

the last inequality holding provided δ > ε. We hence have the following.
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Proposition 3.7.3. In the setting of Proposition 3.7.1 and Corollary 3.7.2, we have, for each δ > 0,

‖uν − 2Dν f b
‖L∞(I×O) ≤ C(I )ν1/2

‖ f̃ ‖C1,δ(M) (3.7.43)

and

‖vν − ( f − 2Dν f b)‖L∞(I×O) ≤ C(I )ν1/2
‖ f̃ ‖C1,δ(M), (3.7.44)

where

f b
= χR+(t) f

∣∣
∂O
. (3.7.45)

Proof. From (3.7.42) we have

‖gν − f b
‖L∞(I×∂O) ≤ Cν1/2

‖ f̃ ‖C1,δ(M), (3.7.46)

and then the estimate (3.7.34) applied to h = gν− f b gives (3.7.43) from (3.7.36). The proof of (3.7.44)
is similar. �

For a further simplification, we compare Dν with D0
ν , defined by

D0
νh(t, x)= ν

∫ t

0

∫
∂O

h(s, y)
∂H0

∂ns,y
(ν, s, t, x, y) d Ss(y) ds, (3.7.47)

where, parallel to (3.7.8), we set

H0(ν, s, t, x, y)= g(s, y)−1/2K0(ν, s, t, x, x − y), (3.7.48)

with K0 given by (3.7.10). By (3.7.9) we have

K − K0 =

N∑
j=1

K j + RN . (3.7.49)

Parallel to (3.7.26) we have∥∥∥ ∂K1

∂ns,y
(ν, s, t, x, · )

∥∥∥
L1(∂O)

≤ C(ν(t − s))−1/2, x ∈ O, (3.7.50)

with better estimates on ∂K j/∂ns,y for j ≥ 2 and on ∂RN/∂ns,y . This leads to:

Proposition 3.7.4. With D0
ν defined by (3.7.47)–(3.7.48), we have

‖Dνh−D0
νh‖L∞(I×O) ≤ C(I )ν1/2

‖h‖L∞(I×∂O). (3.7.51)

Hence, in the setting of Proposition 3.7.3, we have, for each δ > 0,

‖uν − 2D0
ν f b
‖L∞(I×O) ≤ C(I )ν1/2

‖ f̃ ‖C1,δ(M) (3.7.52)

and

‖vν − ( f − 2D0
ν f b)‖L∞(I×O) ≤ C(I )ν1/2

‖ f̃ ‖C1,δ(M). (3.7.53)
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4. Analysis of solutions to ut = ν1u − Xνu

In this chapter, we extend some of the results of Chapter 3 from the setting of solutions to ut = ν1u−Xu
to the more subtle setting of solutions to ut = ν1u − Xνu, directly relevant to the equation for wν in
(1.0.8). As in that chapter, we assume O is a compact Riemannian manifold with boundary ∂O, and with
Laplace Beltrami operator 1. We take Xν , for ν ∈ (0, 1], to be a family of (time dependent) vector fields
on O having certain properties that we will specify below, and take u = uν to solve

∂u
∂t
= ν1u− Xνu, u

∣∣
R+×∂O

= 0, u(0)= f. (4.0.1)

In Section 4.1 we estimate uν(t) in the spaces Vk(O), introduced in Section 3.3, given f ∈ Vk(O),
extending the scope of the uniform boundedness results of Section 3.3. In Section 4.2 we establish
convergence of uν(t) to e−t X f in Vk(O), for such f , when ν↘ 0 and Xν→ X in an appropriate sense,
specified there. We also obtain L p-norm convergence results, for p ∈ [1,∞).

4.1. Conormal type estimates. We will find it useful to extend the class of function spaces Vk(O). Given
k ∈ Z+ = {0, 1, 2, . . . }, p ∈ [1,∞], we define

Vk,p(O)= {u ∈ L p(O) : Y1 · · · Y j u ∈ L p(O), ∀ j ≤ k, Y` ∈ X1
}, (4.1.1)

with
X1
= {Y smooth vector field on O : Y ‖ ∂O}. (4.1.2)

Recall that the case p = 2 is defined in (3.3.1). As in (3.3.3), there exists a finite set

{Y j : 1≤ j ≤ M} ⊂ X1 (4.1.3)

with the property that each element of X1 is a linear combination, with coefficients in C∞(O) of these
vector fields Y j . We recall and generalize some further useful notation from Section 3.3. With Y j as in
(4.1.3), let J = ( j1, . . . , jk) and set

Y J
= Y j1 · · · Y jk , |J | = k. (4.1.4)

Also set
Xk
= Span {Z1 · · · Z j : j ≤ k, Z` ∈ X1

}. (4.1.5)

We have
Xk
= Span over C∞(O) of {Y J

: |J | ≤ k}, (4.1.6)

and
Vk,p(O)= {u ∈ L p(O) : Y J u ∈ L p(O), ∀ |J | ≤ k}

= {u ∈ L p(O) : Lu ∈ L p(O) : ∀ L ∈ Xk
}. (4.1.7)

Let us also set
V∞,p(O)=

⋂
k

Vk,p(O). (4.1.8)

We now discuss conditions on Xν . We require

Xν ∈ X̂1, (4.1.9)
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a space of t-dependent vector fields on O, depending on the parameter ν ∈ (0, 1], which we proceed to
define. We want to include the example arising in (2.2.4)–(2.2.5), i.e.,

Xν = vν(t, z)
∂

∂x
, vν(t, z)= eνt AV (z). (4.1.10)

In this case we have O= T× I, T = R/Z, I = [0, 1], and A is given by (2.1.5).

Lemma 4.1.1. Given T0 ∈ (0,∞), we have

vν(t, · ) ∈ V∞,∞(O), (4.1.11)

with bounds independent of t ∈ [0, T0], ν ∈ (0, 1].

Proof. Straightforward from the construction of eνt AV (z) via the method of images. There is no x-
dependence, so the result is actually vν(t, · ) ∈ V∞,∞(I ), with uniform bounds. In this setting, we
mention that X1(I ) consists of smooth vector fields on I that vanish at the endpoints. �

To define X̂1 in general, we first specify that, on any compact � b O, an element Xν(t) has uni-
form bounds in Ck(�) for all k. To complete the definition, we take a collar neighborhood U of ∂O,
diffeomorphic to ∂O× I , take coordinates (x, z) ∈ ∂O× I , and write

Xν = vν(t, x, z)
∂

∂x
+wν(t, x, z)β(x, z)

∂

∂z
. (4.1.12)

Here vν∂/∂x is shorthand for
∑

j v
ν
j ∂/∂x j . We require (with bounds uniform in t ∈ [0, T0], ν ∈ (0, 1]),

vν, wν ∈ V∞,∞(O), β ∈ C∞(O), β
∣∣
∂O
= 0. (4.1.13)

These conditions define X̂1.

Lemma 4.1.2. We have
Xν ∈ X̂1, Y ∈ X1

H⇒ [Xν, Y ] ∈ X̂1. (4.1.14)

Proof. The bounds on [Xν, Y ] on any �b O are clear. Near ∂O, we represent Xν as in (4.1.12) and set

Y = a(x, z)
∂

∂x
+ b(x, z)

∂

∂z
, a, b ∈ C∞(O), b

∣∣
∂O
= 0. (4.1.15)

Then

[Xν, Y ] = ξ ν(t, x, z)
∂

∂x
+ ην(t, x, z)

∂

∂z
, (4.1.16)

with
ξ ν = vν(∂xa)+wνβ(∂za)− a(∂xv

ν)− b(∂zv
ν),

ην = vν(∂x b)+wνβ(∂zb)− a∂x(w
νβ)− b∂z(w

νβ).
(4.1.17)

Comparison with the defining conditions in (4.1.12)–(4.1.13) gives [Xν, Y ] ∈ X̂1. �

Next we define
X̂k
= Span {XνY J

: Xν ∈ X̂1, Y J
∈ Xk−1

}. (4.1.18)
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Lemma 4.1.3. We have
Pν ∈ X̂k, Y ∈ X1

H⇒ Y Pν ∈ X̂k+1
; (4.1.19)

hence
Pν ∈ X̂k, Y I

∈ X` H⇒ Y I Pν ∈ X̂k+`. (4.1.20)

Proof. To prove (4.1.19), note that for Xν ∈ X̂1, Y J
∈ Xk−1,

Y XνY J
= XνY Y J

+ [Y, Xν]Y J , (4.1.21)

and apply Lemma 4.1.2 to the second term on the right side of (4.1.21). The result (4.1.20) follows
directly from (4.1.19). �

Lemma 4.1.3 will prove useful in connection with the following. With Y j as in (4.1.3), let us set

‖u‖Vk,p =

∑
|J |≤k

‖Y J u‖L p . (4.1.22)

From the representation (4.1.12), we have

Xν ∈ X̂1
H⇒ Xν =

∑
a j
ν,t Y j , a j

ν,t ∈ L∞(O), (4.1.23)

with bounds independent of ν ∈ (0, 1], t ∈ [0, T0], hence, given Xν ∈ X̂1,

‖Xνu‖L p ≤ C‖u‖V1,p , (4.1.24)

and, by (4.1.20),
‖Xνu‖Vk,p ≤ C‖u‖Vk+1,p . (4.1.25)

We also set
P2

k (u)=
∑
|J |=k

‖Y J u‖2L2, (4.1.26)

so
‖u‖2Vk,2 ≈

∑
j≤k

P2
j (u). (4.1.27)

We also denote Vk,2 by Vk .
We now estimate the rate of change of P2

k (u(t)) for u(t) satisfying (4.0.1). We assume

Xν ∈ X̂1, div Xν = 0. (4.1.28)

We also assume u is sufficiently smooth on (0,∞)×O for the calculations made below to work. We will
comment on how to verify this assumption later in this section.

We start with the case k = 0:
d
dt
‖u‖2L2 = 2(ut , u)L2 = 2ν(1u, u)L2 − 2(Xνu, u)L2 =−2ν‖∇u‖2L2, (4.1.29)

Moving on to k = 1, we have
d
dt
‖Y j u‖2L2 = 2(Y j ut , Y j u)L2 = 2ν(Y j1u, Y j u)L2−2(Y j Xνu, Y j u)L2

= 2ν(1Y j u, Y j u)L2+2ν([Y j ,1]u, Y j u)L2−2(XνY j u, Y j u)L2−2([Y j , Xν]u, Y j u)L2

= −2ν‖∇Y j u‖2L2+2ν([Y j ,1]u, Y j u)L2−2([Y j , Xν]u, Y j u)L2 . (4.1.30)
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Of the three terms in the last line, the first has a clear significance. For the third, we have [Y j , Xν] ∈ X̂1,
by Lemma 4.1.2, and hence, by (4.1.23),

2([Y j , Xν]u, Y j u)L2 ≤ C P2
1 (u). (4.1.31)

It remains to estimate the second term. For this, write

[Y,1] =
∑
`

A`B`, (4.1.32)

with A`, B` smooth vector fields on O. We have

2ν([Y j ,1]u, Y j u)L2 = 2ν
∑
`

(B`u, A∗`Y j u)L2 ≤ ν‖∇Y j u‖2L2 + ν‖Y j u‖2L2 + K1ν‖∇u‖2L2 . (4.1.33)

Plugging (4.1.31) and (4.1.33) into (4.1.30) and summing over j gives

d
dt

P2
1 (u)≤−ν

∑
j

‖∇Y j u‖2L2 + (MC + ν)P2
1 (u)+M K1ν‖∇u‖2. (4.1.34)

The term M K1ν‖∇u‖2L2 is tamed by bringing in (4.1.29), to obtain

d
dt

(
P2

1 (u)+M K1 P2
0 (u)

)
≤−ν

∑
j

‖∇Y j u‖2L2 + (MC + ν)P2
1 (u). (4.1.35)

Proceeding to general k, we take |J | = k and look at
d
dt
‖Y J u‖2L2 = 2(Y J ut , Y J u)L2 = 2ν(Y J1u, Y J u)L2−2(Y J Xνu, Y J u)L2

= 2ν(1Y J u, Y J u)L2+2ν([Y J ,1]u, Y J u)L2−2(XνY J u, Y J u)L2−2([Y J , Xν]u, Y J u)L2

= −2ν‖∇Y J u‖2L2+2ν([Y J ,1]u, Y J u)L2−2([Y J , Xν]u, Y J u)L2 . (4.1.36)

As with (4.1.30), of the three terms in the last line of (4.1.36), the first has a clear significance. For the
third, we have, by Lemmas 4.1.2–4.1.3,

[Xν, Y J
] = [Xν, Y j1]Y j2 · · · Y jk + · · ·+ Y j1 · · · Y jk−1[Xν, Y jk ] ∈ X̂k, (4.1.37)

and hence, by (4.1.25),
([Y J , Xν]u, Y J u)L2 ≤ Ck‖u‖2Vk . (4.1.38)

It remains to estimate the second term in the last line of (4.1.36). For this, write

[1, Y J
] =

k∑
`=1

Y j1 · · · Y j`−1[1, Y j`]Y j`+1 · · · Y jk =

k∑
`=1

Y j1 · · · Y j`−1 L j`Y j`+1 · · · Y jk , (4.1.39)

where L j` = [1, Y j`] is a second order differential operator that annihilates constants.. We say a product
of k factors

Y j1 · · · Y j`−1 L j`Y j`+1 · · · Y jk (4.1.40)

is of type (k, `), meaning it is a product of k factors, all being vector fields in X1 except one, in position `,
which is a second order differential operator that annihilates constants. If `≥ 2, we can write (4.1.40) as

Y j1 · · · Y j`−2L j` · · · Y jk + Y j1 · · · Y j`−2[Y j`−1, L j`] · · · Y jk , (4.1.41)
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a sum of terms of type (k, `− 1) and of type (k− 1, `− 1). Repeating this process, we convert (4.1.40)
into a sum of terms of type ( j, 1), for j ≤ k. Hence we have

([Y J ,1]u, Y J u)L2 =

∑
|I |≤k−1

(L I Y I u, Y J u)L2, (4.1.42)

where the L I are differential operators of order 2, annihilating constants; hence

L I =
∑

j

AI j BI j , (4.1.43)

where AI j are first order differential operators and BI j are vector fields. We then have

2ν([Y J ,1]u, Y J u)L2 = 2ν
∑
|I |≤k−1

∑
j

(BI j Y I u, A∗I j Y
J u)L2

≤ C̃ν
∑
|I |≤k−1

‖∇Y I u‖L2 ·
(
‖∇Y J u‖L2 +‖Y J u‖L2

)
≤ ν‖∇Y J u‖2L2 + ν‖Y J u‖2L2 +Ckν

∑
|I |≤k−1

‖∇Y I u‖2L2 . (4.1.44)

Inserting (4.1.38) and (4.1.44) into (4.1.36), we get

d
dt
‖Y J u‖2L2 ≤−ν‖∇Y J u‖2L2 + (Ck + ν)‖u‖2Vk +Ckν

∑
|I |≤k−1

‖∇Y I u‖2L2; (4.1.45)

hence, for ν ∈ (0, 1], and with Ck + 1 re-notated as Ck ,

d
dt

P2
k (u)≤−ν

∑
|J |=k

‖∇Y J u‖2L2 +MCk‖u‖2Vk +MCkν
∑
|I |≤k−1

‖∇Y I u‖2L2 . (4.1.46)

It follows that there exist Ak j ∈ (0,∞) and Bk ∈ (0,∞) such that if we set

Ñ 2
k (u)= P2

k (u)+
k−1∑
j=0

Ak j P2
j (u), (4.1.47)

then
d
dt

Ñ 2
k (u)≤−ν

∑
|J |=k

‖∇Y J u‖2L2 + 2Bk Ñ 2
k (u), (4.1.48)

when u = u(t) is given by (4.0.1). In particular, redefining ‖u‖2
Vk as

‖u‖2Vk = Ñ 2
k (u), (4.1.49)

we obtain
‖u(t)‖Vk ≤ e(t−s)Bk‖u(s)‖Vk , (4.1.50)

for 0< s < t <∞.
The estimates (4.1.48)–(4.1.50) have been established under the assumption that u(t) = uν(t) is suf-

ficiently smooth on O for t > 0. For example, if we add the assumption

Xν ∈ C∞((0,∞)×O) (4.1.51)
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for each ν ∈ (0, 1], we have such estimates, since well known parabolic regularity results give u ∈
C∞((0,∞)×O). (We emphasize that we do not assume Xν ∈ C([0,∞)×O).) Let us record this result.

Proposition 4.1.4. Let u = uν solve (4.0.1). Assume Xν satisfies (4.1.9) and (4.1.51). Then the estimate
(4.1.50) holds, for 0< s < t <∞, with Bk and the Vk-norm independent of ν ∈ (0, 1].

Next we want to pass to the limit s = 0 in (4.1.50), obtaining

‖u(t)‖Vk ≤ et Bk‖ f ‖Vk . (4.1.52)

It is clear that we can do this in the context of Proposition 4.1.4 if we also know that

u ∈ C([0,∞),Vk(O)). (4.1.53)

In turn, since the hypotheses of Proposition 4.1.4 already imply the result u ∈C∞((0,∞)×O), it remains
to establish that

f ∈ Vk(O) H⇒ u ∈ C([0, Tν],Vk(O)), (4.1.54)

for some Tν > 0 (possibly depending on ν). We turn to this task.
We set

Z= C([0, Tν],Vk(O)), (4.1.55)

and seek u ∈ Z as a unique solution to

u(t)= etν1 f −
∫ t

0
e(t−s)ν1Xν(s)u(s) ds, (4.1.56)

i.e., as a fixed point of 8 : Z→ Z, defined by

8u(t)= etν1 f −
∫ t

0
e(t−s)ν1Xν(s)u(s) ds. (4.1.57)

This will work if we are able to show 8 : Z→ Z is a contraction map for Tν > 0 sufficiently small. We
have

8u(t)−8v(t)=−
∫ t

0
e(t−s)ν1Xν(x)(u(s)− v(s)) ds. (4.1.58)

Note that, by (4.1.25),

‖Xν(s)(u(s)− v(s))‖Vk−1 ≤ C‖u(s)− v(s)‖Vk . (4.1.59)

Meanwhile, it follows from (3.4.19) that

‖e(t−s)ν1g‖Vk ≤
C

ν1/2(t − s)1/2
‖g‖Vk−1 . (4.1.60)

Hence

‖8u(t)−8v(t)‖Vk ≤ C
t1/2

ν1/2 sup
0≤s≤t

‖u(s)− v(s)‖Vk . (4.1.61)

A similar estimate works on (4.1.57), and we deduce that 8 is a contraction map on Z provided Tν ≤
ν/2C2.
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We summarize what has been accomplished.

Proposition 4.1.5. In the setting of Proposition 4.1.4, given f ∈Vk(O), there is a unique solution u= uν

to (4.0.1), satisfying
u ∈ C([0,∞),Vk(O))∩C∞((0,∞)×O), (4.1.62)

and we have
‖u(t)‖Vk ≤ et Bk‖ f ‖Vk . (4.1.63)

4.2. Vanishing ν limits. As in Section 4.1, we assume u = uν solves

∂uν

∂t
= ν1uν − Xνuν, uν

∣∣
R+×∂O

= 0, u(0)= f, (4.2.1)

with f ∈ Vk(O). We assume, as in (4.1.28), that

Xν ∈ X̂1, div Xν = 0, (4.2.2)

and as in (4.1.51) that
Xν ∈ C∞((0,∞)×O). (4.2.3)

We also assume
X ∈ X1, div X = 0. (4.2.4)

Here is our first convergence result.

Proposition 4.2.1. Under these hypotheses, we have, as ν↘ 0,

uν(t)→ e−t X f, weak∗ in Vk(O), (4.2.5)

provided Xν also satisfies the following: we can write

Xν =
∑

j

aνj (t, x)Y j , X =
∑

j

a j (x)Y j , (4.2.6)

where, as in (4.1.3), the set {Y j : 1 ≤ j ≤ M} ⊂ X1 spans X1 over C∞(O), and we have ‖aνj (t, · )‖L∞(O),
‖a j‖L∞(O) ≤ K , and

lim
ν↘0
[aνj (t, x)− a j (x)] = 0, uniformly on compact subsets of O. (4.2.7)

Remark. Looking at (4.1.10), we see that (4.2.6)–(4.2.7) hold when Xν is the family arising in the
plane-parallel chanel flow problem.

Proof. Rewrite (4.2.1) as
∂uν

∂t
= (ν1− X)uν + (X − Xν)uν, (4.2.8)

so

uν(t)= et (ν1−X) f +
∫ t

0
e(t−s)(ν1−X)(X − Xν(s))uν(s) ds. (4.2.9)

We have
(X − Xν(s))uν(s)=

∑
j

[a j (x)− aνj (s, x)]Y j uν(s), (4.2.10)
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and uν(s) is bounded in Vk(O). As long as k ≥ 1, Y j uν(s) is bounded in L2(O), and the hypotheses on
aνj give

‖(X − Xν(s))uν(s)‖L p(O)→ 0, as ν↘ 0, ∀ p < 2, (4.2.11)

with uniform bounds in L2(O). Now et (ν1−X) is a contraction semigroup on each space L p(O), so from
(4.2.9) we obtain

lim
ν↘0
‖uν(t)− et (ν1−X) f ‖L p = 0, ∀ p < 2. (4.2.12)

This result together with the uniform bounds on uν(t) and on et (ν1−X) in Vk(O), and in concert with the
result that

et (ν1−X) f → e−t X f, weak∗ in Vk(O), (4.2.13)

given in Proposition 3.3.4, yield the asserted convergence (4.2.5), for k ≥ 1. The case k = 0 then follows
since V1(O) is dense in V0(O)= L2(O). �

We will improve weak∗ convergence in (4.2.5) to norm convergence. Here is a first step.

Proposition 4.2.2. In the setting of Proposition 4.2.1,

f ∈ L2(O) H⇒ uν(t)→ e−t X f, in L2-norm, as ν↘ 0. (4.2.14)

Proof. We already have weak∗ convergence in L2(O). Also, results of Section 4.1, involving (4.1.29),
imply

‖uν(t)‖L2(O) ≤ ‖ f ‖L2(O), ∀ ν, t > 0. (4.2.15)

Since for X ∈ X1 such that div X = 0 we have ‖e−t X f ‖L2 = ‖ f ‖L2 , the conclusion in (4.2.14) follows
from the weak∗ convergence. �

An alternative proof of a generalization of Proposition 4.2.2 will be provided in Proposition 4.2.3
below. We begin with the elementary inequality

‖uν(t)‖L p ≤ ‖ f ‖L p , 1≤ p ≤∞, (4.2.16)

for solutions to (4.2.1) with f ∈ L p(O). If also f ∈ Vk(O) with k > n/2, the result that uν(t)→ e−t X f
weak∗ in Vk(O), proven in Proposition 4.2.1, implies

uν(t)→ e−t X f locally uniformly on O. (4.2.17)

In particular,

f ∈ C∞(O) H⇒ uν(t)→ e−t X f, boundedly and locally uniformly. (4.2.18)

Combining (4.2.16) and (4.2.18) and using standard approximation arguments, we have:

Proposition 4.2.3. In the setting of Proposition 4.2.1,

f ∈ C(O) H⇒ uν(t)→ e−t X f, boundedly and locally uniformly on O, (4.2.19)

and, for 1≤ p <∞,
f ∈ L p(O) H⇒ uν(t)→ e−t X f in L p-norm. (4.2.20)

We now sharpen Proposition 4.2.1.
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Proposition 4.2.4. In the setting of Proposition 4.2.1, (4.2.5) can be sharpened to

uν(t)→ e−t X f, in Vk-norm. (4.2.21)

Proof. In view of uniform bounds on ‖uν(t)‖Vk in (4.1.63), it suffices to establish (4.2.21) for f in a
dense subspace of Vk(O), so take f ∈ C∞0 (O). As in the proof of Proposition 3.3.4, we use the complex
interpolation identity

Vk(O)= [L2(O),V2k(O)]1/2, (4.2.22)

established in Proposition A.1.1 of the Appendix, which yields, for f ∈ V2k(O),

‖uν(t)− e−t X f ‖Vk ≤ ‖uν(t)− e−t X f ‖1/2L2 ‖u
ν(t)− e−t X f ‖1/2

V2k . (4.2.23)

The first factor on the right side tends to zero as ν↘ 0, by Proposition 4.2.2 (or Proposition 4.2.3), and
the last factor is uniformly bounded as ν ↘ 0 by (4.1.63) (with k replaced by 2k). This completes the
proof. �

Let us tie these results more closely to estimates obtained in Section 2.2. In such a case we had addi-
tional structure to exploit. Namely, X and Xν were given in (2.2.5) as V (z)∂x and vν(t, z)∂x , respectively,
where vν(t, z) = eνt∂2

z V (z) (see also (4.1.10)). To generalize a bit to our present context, we assume in
addition to (4.2.2)–(4.2.4) that

X = vZ , Xν = vνZ , Z ∈ X1, Z commutes with 1 and with X and Xν . (4.2.24)

The last two conditions are equivalent to

Zv = Zvν = 0. (4.2.25)

In such a case, (4.2.9) becomes

uν(t)= et (ν1−X) f +
∫ t

0
e(t−s)(ν1−X)((v− vν)Zuν(s)

)
ds. (4.2.26)

The commutation properties yield

wν(t)= Zuν(t) H⇒
(
∂tw

ν
= (ν1− Xν)wν, wν

∣∣
R+×∂O

= 0, wν(0)= Z f
)
. (4.2.27)

Then the maximum principle gives

‖Zuν(s)‖L∞ ≤ ‖Z f ‖L∞ . (4.2.28)

Let us assume Z f ∈ L∞(O) and set ‖Z f ‖L∞ = K . Since e(t−s)(ν1−X) is positivity preserving, we have
from (4.2.26) that ∣∣uν(t, x)− et (ν1−X) f (x)

∣∣≤ K
∫ t

0
e(t−s)(ν1−X)

|v− vν(s)| ds. (4.2.29)

Now (4.2.24)–(4.2.25) imply Ze(t−s)(ν1−X)
|v− vν(s)| = 0, and hence

e(t−s)(ν1−X)
|v− vν(s)| = e(t−s)ν1

|v− vν(s)|, (4.2.30)
so we have ∣∣uν(t, x)− et (ν1−X) f (x)

∣∣≤ K
∫ t

0
e(t−s)ν1

|v− vν(s)| ds, (4.2.31)
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which can be compared to (2.2.10)–(2.2.11). To be sure, results of Chapter 3 apply to the right side of
(4.2.29), as we have seen in the analysis of (4.2.9), but the analysis of the right side of (4.2.31) is more
elementary.

5. Further conclusions on plane parallel flows

This chapter contains further results pertaining to plane parallel flows in a channel. In Section 5.1 we
generalize the analysis of the vanishing viscosity limit for plane parallel flows to include flows sheared
by a moving boundary, translated at varying speed parallel to the x-axis. In Section 5.2 we consider more
general boundary motions, parallel to the x-y-plane. We continue to assume (1.0.1)–(1.0.4) and we take
the forcing F = 0.

5.1. Moving boundary, parallel to x-axis. We begin with the case in which both channel walls move
with the same velocity α(t), that is, we take the vector field B in (1.0.2) of the form:

B(t, p)= (α(t), 0, 0), p ∈ ∂O. (5.1.1)

Recall O=R/Z×[0, 1]. Since α is spatially constant, this is consistent with the assumption of periodicity
in x . Later we extend the analysis to independent motion of the walls, in (5.1.47), and then extend it
further in (5.2.1).

The goal is again to study the limit of vanishing viscosity and the corresponding boundary layer,
assuming a rough boundary velocity α. The case of circularly symmetric flows in a rotating circle or
annulus was studied in [Lopes Filho et al. 2007]. We follow the notation used there.

It is convenient to assume α is defined on the whole R but supported in [0,∞). If X is a space of
distributions on R, we indicate with Xb the space of elements of X supported on [0,∞). We then take
α ∈ BVb(R) or even α ∈ L p

b (R). Since C∞b (R) is dense in these spaces (p < ∞), we can first pick
α ∈ C∞b and then use limiting arguments.

In order to highlight the effect of the moving boundary, we again take smooth initial data compatible
with (1.0.4) and independent of ν, that is,

uν(0, x, y, z)= (V (z),W (x, z), 0), (5.1.2)

with V ∈ C∞([0, 1]) and W ∈ C∞(O). Here uν satisfies the system (1.0.8) with f = g = 0, which we
repeat here for convenience:

∂vν

∂t
= ν

∂2vν

∂z2 , (5.1.3)

∂wν

∂t
+ vν

∂wν

∂x
= ν

(∂2wν

∂x2 +
∂2wν

∂z2

)
. (5.1.4)

At the same time, since the inviscid flow does not see the moving boundary due to slip boundary con-
ditions (see below), we do not impose compatibility of the initial data with the motion of the boundary,
(i. e., in this context, we do not assume that V (z) = α(0) for z = 0, 1). Consequently, the viscous flow
has an initial layer at t = 0.

As we will demonstrate, the vanishing viscosity limit in this context takes the form uν→ u0, where

u0(t, x, y, z)= (v0(t, z), w0(t, x, z), 0), (5.1.5)
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is the solution of the Euler equations (1.0.15) again with f = g = 0, that is,

∂v0

∂t
= 0,

∂w0

∂t
+ v0 ∂w

0

∂x
= 0. (5.1.6)

Initial data are as in (5.1.2), so that

u0(0, x, y, z)= (V (z),W (x, z), 0), (5.1.7)

and the boundary conditions (1.0.12) are automatically satisfied in this case. In particular, the Euler flow
is independent of the moving boundary and there is a boundary layer in the limit ν→ 0.

As in [Lopes Filho et al. 2008; 2007], we pass to a frame moving with the boundary. Equivalently,
we set

v̄ν(t, z)= vν(t, z)−α(t), ūν = (v̄ν, wν, 0). (5.1.8)

We still assume α ∈ C∞b (R), in particular α(0)= 0. Then ūν must solve the following problem in O:

∂v̄ν

∂t
= ν

∂2v̄ν

∂z2 −α
′(t), (5.1.9)

∂wν

∂t
+ V

∂wν

∂x
+ (v̄ν +α(t)− V )

∂wν

∂x
= ν

(∂2wν

∂x2 +
∂2wν

∂z2

)
, (5.1.10)

ūν(t, x, z)= 0 on ∂O, (5.1.11)

ūν(0, x, z)= (V (z),W (x, z), 0). (5.1.12)

By Duhamel’s principle, the system above is equivalent to:

v̄ν = eνt AV (z)−
∫ t

0
[eν(t−s) A 1] dα(s), (5.1.13)

wν = et (ν 1−X)W +
∫ t

0
e(t−s)(ν 1−X)

[(V − v̄ν −α(s)) ∂xw
ν
] ds. (5.1.14)

The solution to the Euler system is given by

v0(t, z)= V (z), t > 0, z ∈ [0, 1], (5.1.15)

w0(t, x, z)= e−t X W0(x, z)

=W (x − t V (z), z), t > 0, x ∈ R/Z, z ∈ [0, 1], (5.1.16)

as long as V and W are smooth enough.
We separate the contribution of the boundary conditions by writing (5.1.13) as

vν(t)= v̄ν(t)+α(t)= eνt AV (z)+Sν α(t), where Sν α(t) :=
∫ t

0
[(I − eν (t−s) A) 1] dα(s), (5.1.17)

with the integral defined as a Bochner integral. As long as ν > 0, we have

Sν : C∞b (R)→ C1
b(R,C∞([0, 1])),

and in particular the boundary conditions are satisfied pointwise, since eνs A 1α(s) is continuous in s and
vanishes at z = 0, 1 for s ≥ 0. The trace at the boundary takes value in two copies of C1

b(R).
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To treat less regular α, we observe that for α smooth (5.1.9) is equivalent to (5.1.3), so that Sνα is a
classical solution of (5.1.3) with V ≡ 0. Therefore, the maximum principle for the heat equation gives

Sν : Cb(R)→ Cb
(
R,C([0, 1])

)
⊂ L2

b,loc
(
R,C([0, 1])

)
. (5.1.18)

Next, we observe that if β ∈ C∞b (R) then

α = β ′ H⇒ Sνα = ∂t S
νβ.

so that
Sν∂t = ∂t S

ν
: C∞b (R)→ Cb

(
R,C∞([0, 1])

)
.

From (5.1.18) it follows that

Sν∂t = ∂t S
ν
: Cb(R)→ H−1

b,loc

(
R,C([0, 1])

)
. (5.1.19)

But each α ∈ L p′
b (R), p′ ≥ 1, has the form α = β ′ with β ∈ Cb(R), namely β(t)=

∫ t
−∞

α(s) ds. Hence

Sν : L p′
b (R)→ H−1

b,loc

(
R,C([0, 1])

)
, (5.1.20)

for each p′ ≥ 1. Consequently we have the continuous linear map

Tr ◦Sν : L p′
b (R)→

(
H−1

b,loc(R)⊕ H−1
b,loc(R)

)
, (5.1.21)

By density, then, the boundary condition vν(t)|∂O = α in H−1
b,loc(R) holds for any α ∈ L p′

b (R), p′ ≥ 1 and
also α ∈ BVb(R)⊂ L1

b(R). The vanishing viscosity limit cannot hold in these spaces, which have good
trace properties; in fact, we seek convergence as ν → 0 in Hσ (O), 0 ≤ σ < 1/2, locally uniformly in
t . Note that L2(O) is the energy space for solutions to the Euler system, but convergence in L2-norm is
relatively weak compared to the convergence results we are in a position to establish.

We first consider α ∈ BVb(R). Let X be a Banach space of functions on [0, 1] such that 1 ∈ X and
{et A
: t ≥ 0} is a strongly continuous semigroup on X . For example, X = L p([0, 1]), 1 ≤ p < ∞.

More generally, we could take X = H s,p([0, 1]), with p ∈ (1,∞) and s ∈ [0, 1/p). Recall that Sνα is
given explicitly in (5.1.17) for α smooth. By an approximation argument using mollifiers with support
in (0, 1/k), we can extend the validity of that expression to more singular α’s (for details, we refer to
[Lopes Filho et al. 2007], Proposition 2.1). We observe that the integral in (5.1.17) can be taken over
[0, t) or [0, t], since the integrand vanishes at s = t .

Lemma 5.1.1. If X is a space such as described in the previous paragraph, we have

Sν : BVb(R)→ Cb(R, X),

given by

Sνα(t)=
∫

I (t)

[
(I − eν(t−s)A)1

]
dα(s), I (t)= [0, t], (5.1.22)

where the integral is a Lebesgue-Stieltjes-Bochner integral.

Formula (5.1.22) also implies the estimate

‖Sνα(t)‖X ≤ ‖α‖BV([0,t]) sup
s∈[0,t]

‖eνs A f1− f1‖X , (5.1.23)
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and, if vν(0)= V ∈ X ,

‖vν(t)− V ‖X ≤ ‖eνt AV − V ‖X +‖S
να(t)‖X→0, (5.1.24)

as ν→ 0, which shows the zero-viscosity limit holds in the X -norm, for the v component of the velocity,
in view of (5.1.15).

We next consider some rougher α, namely α∈ L p′ , for a certain range of p′. To begin, take α∈C∞b (R),
in particular α(0)= 0, and integrate by parts in formula (5.1.22):∫ t

0
[eν(t−s) A

· 1] dα(s)= α(t)− eνt A α(0)− lim
ε→0

∫ t−ε

0
ν
(

Aeν(t−s) A 1
)
α(s) ds,

using that eν(t−s) A 1 ∈D(A), whenever s < t . The limit ε→ 0 exists at least in L2([0, 1]) and we write

lim
ε→0

∫ t−ε

0
ν
(

Aeν(t−s) A 1
)
α(s) ds =

∫ t

0
ν(A eν(t−s) A 1) α(s) ds.

Equation (5.1.13) then becomes

v̄ν = eνt AV (z)−α(t)+
∫ t

0
(ν A eν(t−s) A 1) α(s) ds, (5.1.25)

and
vν = eνt AV (z)+

∫ t

0
(ν A eν(t−s) A 1) α(s) ds. (5.1.26)

Consequently, to establish convergence of the v component of the velocity to the corresponding Euler
solution in the limit ν→ 0 it is enough to prove the last integral vanishes in the limit.

We observe that eνt A1 and νA eνt A1 can be explicitly computed using Fourier series. However, it is
preferable to use Green’s function methods as we are interested in the limit νt→ 0. To this end, we bring
in the Sobolev spaces Hσ ([0, 1]) with 0≤ σ < 1/2. We recall the well-known interpolation estimate

[L2(M), H 1
0 (M)]σ =

{
Hσ

0 (M) if 1
2 < σ ≤ 1,

Hσ (M) if 0≤ σ < 1
2 ,

(5.1.27)

where M = [0, 1] or M = O here, which gives

D((−A)σ/2)= Hσ ([0, 1]) for σ ∈
[
0, 1

2

)
. (5.1.28)

Hence, we first have uniformly in t ∈ [0, T ] for any 0< T <∞,

eνt A V→V strongly in Hσ ([0, 1]), as ν→ 0. (5.1.29)

We next observe as in [Lopes Filho et al. 2007, Equations 3.8–3.11] that

‖νAeνs A 1‖Hσ ([0,1]) ≤ C‖ν(−A)1+σ/2eνs A 1‖L2([0,1])

= C‖ν(−A)1−(τ−σ)/2eνs A(−A)τ/2 1‖L2([0,1])

= Cν(τ−σ)/2s(τ−σ)/2−1
‖(−νs A)1−(τ−σ)/2eνs A(−A)τ/2 1‖L2([0,1])

≤ Cν(τ−σ)/2s(τ−σ)/2−1
‖1‖H τ ([0,1]).
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for 0≤ σ < τ < 1/2, so that by Hölder’s inequality we have, with p′ the conjugate exponent to p,∫ t

0
‖νAeν(t−s)A 1α(s)‖Hσ (D) ds ≤ ‖α‖L p′ ([0,t])

( ∫ t

0
‖νAeνs A 1‖p

Hσ (D) ds
)1/p

≤ C pστ ν
(τ−σ)/2 t (τ−σ)/2−1+1/p

‖α‖L p′ ([0,t])‖1‖H τ (D), (5.1.30)

provided 1 ≤ p < 2/(2− (τ − σ)). For example, it is enough to have p′ > 4. The same estimate holds
for α ∈ L p′

b (R) using a smooth approximation by convolutions.
Combining the estimates in (5.1.29) and (5.1.30), we obtain convergence of the v component of the

velocity in the limit ν→ 0 in the Sobolev space Hσ ([0, 1]). We record this result in a proposition.

Proposition 5.1.2. Let 0≤ σ <τ < 1/2 and assume α ∈ L p′
b (R) with p′= p

p−1
and 1≤ p< 2

2−(τ−σ)
.

Then Sνα(t)=
∫ t

0 (ν A eν(t−s) A 1) α(s) ds defines a map

Sν : L p′
b (R)→ Cb(R, Hσ ([0, 1])),

satisfying estimate (5.1.30). Furthermore, uniformly in t ∈ [0, T ] for any 0< T <∞,

vν→v0 strongly in Hσ ([0, 1]), as ν→ 0. (5.1.31)

Having settled the analysis of the first Equation (5.1.3), we now turn to Equation (5.1.4) in its mild
fomulation (5.1.14), which we solve as a fixed-point problem, but first we record some useful a priori
estimates.

We denote again ∂k
xw

ν by wνk , k ∈Z+. Since α depends only on t and v̄ν depend only on t , z, the same
arguments as in (2.1.9) – (2.1.12) gives that wνk also solves (5.1.4). Integrating by parts in that equation,
we obtain

1
2

d
dt
‖wν‖2L2(O)+

∫ 1

0

∫ 2π

0

[
(v̄ν(t, z)+α(t))

∂

∂x
|wν(t, x, z)|2

2

]
dx dz

=
1
2

d
dt
‖wν‖2L2(O)+

∫ 1

0

∫ 2π

0
(v̄ν(t, z)+α(t))

[ |wν(t, x, z)|2

2

]2π
0 dz

=
1
2

d
dt
‖wν‖2L2(O) =−ν‖∇w

ν
‖

2
L2(O) ≤ 0,

using periodicity in x . Therefore

‖wνk (t)‖L2(O) ≤ ‖∂
k
x W‖L2(O). (5.1.32)

On the other hand the maximum principle gives

‖wνk (t)‖L∞(O) ≤ ‖∂
k
x W‖L∞(O). (5.1.33)

These estimates continue to hold for α ∈ BV or L p′ (1 ≤ p′ < +∞) by approximation with smooth
functions.

We write (5.1.14) as wν(t)= et (ν 1−X)W (t)+Fν(wν)(t), where

Fν(t, V, α, v)(w)= Fν(w)(t)=
∫ t

0
e(t−s)(ν 1−X)

[(V − v̄ν −α(s)) ∂xw(s)] ds. (5.1.34)
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To establish the existence of a unique solution to (5.1.14), it is enough to prove that Fν is a contraction
in L∞([0, T ], L2(O)), T small enough, since then continuation of the solution follows from the uniform
estimate (5.1.32).

We observe first that Proposition 5.1.2 and the Sobolev embedding implies that

V − v̄−α ∈ L p′([0, T ], Lq([0, 1]))

for any 1 ≤ q <∞. Furthermore, at fixed viscosity, given that V is smooth and bounded on [0, 1] with
all its derivatives, a scaling argument gives

‖et (ν1−X) f ‖H1(O) ≤ Cν,V t−(1/r−1/2)−1/2
‖ f ‖Lr (O), (5.1.35)

if 1≤ r ≤ 2, 0< t ≤ 1. We apply this estimate below with 1/r = 1/q + 1/2, q large, so that r > 1.
Let |||w||| = ‖w‖L∞([0,T ],L2(O)). Then, from (5.1.35),

|||F(w)−F(w′)||| ≤ Cν,V

∫ T

0
(t − s)−1/r

‖(V − v̄ν(s)−α(s)) (w(s)−w′(s)‖Lr (O) ds

≤ Cν,V

∫ T

0
(t − s)−1/r

‖V − v̄ν(s)−α(s)‖Lq ([0,1])‖w(s)−w′(s)‖L2(O) ds

≤ Cν,V T 1/p−1/r
‖V − v̄−α‖L p′ ([0,T ],Lq ([0,1]) |||w−w

′
|||,

(5.1.36)

using that V − v̄ν −α commutes with ∂x . This estimate holds provided p < r , where p is the conjugate
exponent to p′ and 1/r = 1/q + 1/2. If p′ > 4, we can find such an r > p > 4/3 by choosing q > 4 in
(5.1.35). The estimate above gives that F is a strict contraction on L∞([0, T ], L2(O)) if T is sufficiently
small. We therefore have existence and uniqueness of solutions to (5.1.4) in L∞([0, T ], L2(O)), and
hence in L∞([0,∞), L2(O)) thanks to (5.1.32). Furthermore, since wνk satisfies the same equation for
all k ∈ Z+, wνk is the unique solution to (5.1.14) in L∞([0,∞), L2(O)) and we conclude that wν ∈
L∞([0,∞),Vk(O)) for all k ∈ Z+. Also wν is smooth in x, z for t > 0, and satifies the boundary
condition wν ≡ 0 on ∂O pointwise.

We now turn to the analysis of the vanishing viscosity limit wν → w0 as ν→ 0. For this analysis,
we rely on the results in Section 3.1 on the behavior of the semigroup et (ν1−X) as ν → 0. In view of
(5.1.16), we can write

(wν −w0)(t, x, z)= [et (ν1−X)
− e−t X

]W (x, z)+ Rν(t, x, z),

where

Rν(t, x, z)=
∫ t

0
e(t−s)(ν 1−X)

[(V (z)− v̄ν(s, z)−α(s)) ∂xw
ν(s, x, z)] ds.

We estimate the easier term Rν(t, x, z) first. This can be done exactly as in (2.2.11), using (5.1.33) and
the positivity of the kernel of et (ν1−X):

|Rν(t, x, z)| ≤ C ‖∂x W‖L∞(O)

∫ t

0
e(t−s)(ν1−X)

|V (z)− vν(s, z)−α(s)| ds

= C ‖∂x W‖L∞(O)

∫ t

0
e(t−s)ν1

|V (z)− vν(s, z)| ds,
(5.1.37)
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where the equality follows since V − vν is independent of x . Next, since V − vν → 0 strongly in
Lq([0, 1]), 1≤ q <∞, uniformly in t ∈ [0, T ] from (5.1.30), and eν(t−s)1 is uniformly bounded in t and
ν on Lq(O), we conclude

Rν(x, z, t)→ 0 strongly in Lq(O) uniformly in t ∈ [0, T ], as ν→ 0. (5.1.38)

In fact, when q=2 and V =0, the estimate (5.1.30) gives also an upper bound for the rate of convergence:

sup
0≤t≤T

‖Rν(·, t)‖L2(O) ≤ CV ν
τ/2 T τ/2+2−1/p

‖1‖H τ ([0,1]) ‖α‖L p′ ([0,T ], (5.1.39)

with again p = p′/(p′ − 1), 0 < τ < 1/2. In the case p = ∞, we get a rate consistent with estimate
(2.1.21) for α = 0. We now turn to the more delicate term [et (ν1−X)

− e−t X
]W (x, z) for which we

directly use Proposition 4.3 to conclude:

[et (ν1−X)
− e−t X

]W→0 strongly in Lq(O) uniformly in t ∈ [0, T ], (5.1.40)

as ν→ 0. Putting together (5.1.40) and (5.1.38) we obtain convergence in Lq(O) of the w component
of the velocity in the vanishing viscosity limit, and hence of the Navier–Stokes solution to the Euler
solution.

Proposition 5.1.3. Let α ∈ L p′
b (R), p′> 4. Let uν = (vν, wν) be the solution of the Navier–Stokes system

(5.1.3)–(5.1.4) with initial condition (5.1.2) and boundary conditions (5.1.1). Let u0 be the solution of
the Euler system (5.1.6) with the same initial condition, given by formulas (5.1.15)-(5.1.16). Then, as
ν→ 0,

uν(t)→ u0(t) strongly in Lq(O), ∀ q ∈ [1,∞),

locally uniformly in t ∈ [0,∞).

Exploiting the analysis of Section 3.2 yields convergence in higher norms in the interior. Recall that
vν is given by formula (5.1.25), and wν by formula (5.1.14) respectively. Below, v0 and w0 are the
components of the Euler solution, given respectively by (5.1.15) and (5.1.16). Let the set � j be defined
as in Proposition 3.2.1, i. e., �1 b �0 b O. Projecting along the z-direction we then have two maximal
intervals I1 ⊂⊂ I0 b [0, 1].

Lemma 5.1.4. Let k ∈N and fix 0< T <∞. Then vν defined in (5.1.25) belongs to C∞([0, T ], H k(I1))

and
vν→ V = v0 in L∞([0, T ], H k(I1)), as ν→ 0. (5.1.41)

Proof. The limit et A f → f as t→ 0 in H k(I1)∩ L2([0, 1]) follows easily from the explicit formula for
the Green’s function. Since V ∈C∞(Ō), we immediately have eνt AV → V as ν→ 0 in H k(I1), ∀k ∈N.
We also have eνt A1→ 1 in L∞([0, T ], H k(I1)) as ν→ 0, so that

lim
ν→0

Sν(α)= 0, in L∞([0, T ], H k(I1)),

since Sνα(t)=
∫ t

0
(ν A eν(t−s) A 1) α(s) ds. �

From the Lemma, proceeding as in the proof of Proposition 3.2.3, we obtain

vν→ V = v0 as ν→ 0, uniformly on I1 for t ∈ [0, T ]. (5.1.42)
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The method of images yields more precise estimates. In fact, from (2.1.20), when α ∈ BVb(R)∣∣Sνα(z, t)
∣∣= ∣∣∣∫ t

0
[1− eν(t−s)A 1] dα(s)

∣∣∣≤ CT
‖α‖T V ([0,t]) sup

0≤s≤t
ϕ
(
(νs)−1/2δ(z)

)
, (5.1.43)

for t ∈ [0, T ], where δ(z) = dist(z, {0, 1}) and ϕ(ζ ) is rapidly decreasing as ζ → ∞. Similarly, if
α ∈ L p

b (R), 1≤ p ≤∞,

∣∣Sνα(z, t)
∣∣= ∣∣∣∫ t

0
(ν 1 eν(t−s)A 1)α(s) ds

∣∣∣≤ CT
‖α‖L1(R) sup

0≤s≤t
ψ

(
(sν)−1/2δ(z)

)
, (5.1.44)

where ψ(ζ ) vanishes at 0 and is rapidly decreasing as ζ →∞.
Next, we address convergence of wν .

Lemma 5.1.5. Fix 0< T <∞. Then wν defined in (5.1.14) belongs to C∞([0, T ],C(�1)) and

wν→ w0 as ν→ 0, uniformly on �1 for t ∈ [0, T ]. (5.1.45)

Proof. We first observe that, since eνt 1 is uniformly bounded in L∞(O) (though not strongly continuous),
estimate (5.1.37) together with (5.1.42) implies

Rν(t, x, z)→ 0 as ν→ 0, uniformly on �1 for t ∈ [0, T ]. (5.1.46)

Therefore, it is enough to show that [et (ν1−X)
− e−t X

]W (x, z)→ 0 uniformly as ν→ 0. In fact, it is
equivalent to show

et X et (ν1−X)W (x, z)→W (x, z),

given that et X is an isometry. This result then follows from Proposition 3.2.3 (via (3.2.1)). �

We combine the two lemmas in a proposition (see also Proposition 4.2.3).

Proposition 5.1.6. In the setting of Proposition 5.1.3 , let �1 b�0 b O. Then, as ν→ 0,

uν(t, x, z)→u0(t, x, z) uniformly in (x, z) ∈�1, t ∈ [0, T ].

If α is sufficiently regular, then it follows from (2.1.20) and (5.1.25) that Xν = vν(t, z)∂x ∈ X̂1 and
hence the results in § 3.7 can be applied to wν to obtain a more detailed analysis in the boundary layer.

We now generalize the setting to allow for the two channel walls to move with different velocities,
that is, we replace the boundary condition (5.1.1) with:

(vν(t, j), wν(t, x, j), 0)= (α j (t), 0, 0), x ∈ R/Z, t > 0, j ∈ {0, 1}. (5.1.47)

It is straightforward to extend the results derived above to this case. We begin by replacing (5.1.8) with

v̄ν(t, z)= vν(t, z)−8(t, z), ūν = (v̄ν, wν, 0), (5.1.48)

where 8 is given by

8(t, z)= [α1(t)−α0(t)]z+α0(t). (5.1.49)
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Note that 8 solves
∂2

z 8(t, · )= 0 on [0, 1],

8(t, 0)= α0(t), t > 0,

8(t, 1)= α1(t), t > 0.

Formula (5.1.17) is then replaced by

vν(t)= eνt AV +Sν(α0, α1)(t),

Sν(α0, α1)(t, z)=
∫
[0,t]
[(I − eν(t−s)A)∂s8(s, z)] ds

=

∫
[0,t]
[(I − eν(t−s)A)(1− z)] dα0(s)+

∫
[0,t]
[(I − eν(t−s)A)z] dα1(s).

(5.1.50)

Integrating by parts we can obtain the analog of (5.1.25). Estimates analogous to those done above on
Sνα(t) are readily verified.

5.2. Moving boundary, parallel to the x- y-plane. In this section, we take a look at the following more
general motion of ∂O, namely

B(t, x, z)= (α j (t), β j (t), 0), z = j ∈ {0, 1}. (5.2.1)

Most of the techniques have been developed in Section 5.1, so we will be brief. First note that allowing
β j to be nonzero has no effect on the component vν(t, z), and (5.1.50) continues to hold.

Let us analyze the effect on wν(t, x, z). Take β j ∈ C∞b (R) to start (though later we can extend to
β j ∈ BVb(R)). Set

9(t, z)= [β1(t)−β0(t)]z+β0(t). (5.2.2)

We see that
wν(t, x, z)= wν(t, x, z)−9(t, z) (5.2.3)

vanishes on ∂O and satisfies

∂tw
ν
+ vν∂xw

ν
= ν1wν − ∂t9, wν(0, x, z)=W (x, z). (5.2.4)

Hence, with X = V ∂x ,

wν(t, x, z) = et (ν1−X)W (x, z)+
∫ t

0
e(t−s)(ν1−X)(V − vν(s, z))∂xw

ν(s, x, z) ds

−

∫ t

0
e(t−s)(ν1−X)∂s9(s, z) ds, (5.2.5)

so, making use of the fact that 9(s, z) is independent of x , we obtain

wν(t, x, z) = et (ν1−X)W (x, z)+
∫ t

0
e(t−s)(ν1−X)(V − vν(s, z))∂sw

ν(s, x, z) ds

+

∫ t

0
(I − e(t−s)ν1)∂s9(s, z) ds. (5.2.6)
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One can write the last integral as∫ t

0
(I − e(t−s)ν1)(1− z) dβ0(s)+

∫ t

0
(I − e(t−s)ν1)z dβ1(s). (5.2.7)

Previously developed techniques apply to (5.2.6)–(5.2.7).
Finally, we draw further conclusions when (5.2.1) is specialized to

B(t, x, z)= (0, β j (t), 0), z = j ∈ {0, 1}. (5.2.8)

In such a case, vν(t, z) is as in Chapters 3–4. Consequently, (5.2.4) is

∂tw
ν
= (ν1− Xν)wν − ∂t9, (5.2.9)

with initial data wν(0, x, z) = W (x, z), boundary data 0 on ∂O, and with Xν exactly as in Section 2.2.
Hence the results of Chapter 4 apply. We have

wν(t, x, z)=60,t
ν W (x, z)−

∫ t

0
6s,t
ν ∂s9(s, z) ds, (5.2.10)

where 6s,t
ν is the solution operator to

∂t u = (ν1− Xν)u, u
∣∣
R+×∂O

= 0, (5.2.11)

i.e., u(t)=6s,t
ν u(s) for 0≤ s < t . Hence

wν(t, x, z)=60,t
ν W (x, z)+

∫ t

0
(I −6s,t

ν )∂s9(s, z) ds, (5.2.12)

and we can write the last integral as∫ t

0
(I −6s,t

ν )(1− z) dβ0(s)+
∫ t

0
(I −6s,t

ν )z dβ1(s). (5.2.13)

Results of Chapter 4 then give convergence

wν(t)→ w0(t) (5.2.14)

in various function spaces, including Vk(O).
Obtaining such convergence in the context of (5.2.1) would require some extra hypotheses on α j (t),

which we will not pursue here.

Appendix A. Vk(O) and b-Sobolev spaces

We take O to be a compact Riemannian manifold with smooth boundary. Recall from (3.3.1) the definition

Vk(O)= {u ∈ L2(O) : Y1 · · · Y j u ∈ L2(O), ∀ j ≤ k, Y` ∈ X1
}, (A.0.1)

for k ∈ {0, 1, 2, . . . }, where

X1
= {Y smooth vector field on O : Y ‖ ∂O}. (A.0.2)
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These spaces are special cases of weighted b-Sobolev spaces, introduced and studied in [Melrose 1993]
(see also [Melrose 1996]). Here we discuss this matter and draw some conclusions that are useful in
Sections 3.3 and 4.2.

The manifold O carries a complete Riemannian metric, called a “b-metric,” which on a collar neigh-
borhood of ∂O, identified with [0, 1)× ∂O (with {0}× ∂O identified with ∂O⊂ O) has the form

g =
(dy

y

)2
+ h, (A.0.3)

where h is a smooth metric tensor on ∂O and y the parameter on [0, 1). We use the symbol Õ to denote O

as a Riemannian manifold with such a Riemannian metric. The b-Sobolev spaces H k
b (O) are defined by

H k
b (O)= {u ∈ L2

b(O) : Y1 · · · Y j u ∈ L2
b(O), ∀ j ≤ k, Y` ∈ X1

}, (A.0.4)

where X1 is as in (A.0.2) and
L2

b(O)= L2(̃O). (A.0.5)

Different choices of b-metrics on O give the same spaces, with equivalent norms. To define weighted
b-Sobolev spaces, take a defining function ρ for ∂O, i.e., ρ ∈C∞(O), ρ > 0 on O, ρ= 0 on ∂O, ∇ρ(x) 6=
0, ∀ x ∈ ∂O. Thus, for s ∈ R, set

ρs H k
b (O)= {ρ

su : u ∈ H k
b (O)}. (A.0.6)

An inductive argument shows that

ρs H k
b (O)= {u ∈ ρ

s L2
b(O) : Y1 · · · Y j u ∈ ρs L2

b(O), ∀ j ≤ k, Y` ∈ X1
}. (A.0.7)

We also have
L2(O)= ρ−1/2L2

b(O). (A.0.8)

Hence
Vk(O)= ρ−1/2 H k

b (O). (A.0.9)

Remark. The use of “b” as a subscript in names of function spaces is different in this appendix than it
was in Chapter 5. We trust this warning will forestall confusion.

A.1. Interpolation identities. This identity (A.0.9) is of use in establishing the following result, which
is valuable in §Section 3.3 and 4.2.

Proposition A.1.1. If 0< k < ` and k = `θ , then

[L2(O),V`(O)]θ = Vk(O), (A.1.1)

where the left side is the complex interpolation space.

In light of (A.0.9), this follows straight away from:

Proposition A.1.2. If 0< k < ` and k = `θ , then

[L2
b(O), H `

b (O)]θ = H k
b (O). (A.1.2)
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In turn, Proposition A.1.2 can be proven by identifying H k
b (O) with a regular Sobolev space of func-

tions on the complete Riemannian manifold Õ. (Thanks to R. Mazzeo for pointing this out.) In detail,
we set

H k (̃O)= {u ∈ L2(̃O) : ∇ j u ∈ L2(̃O), ∀ j ≤ k}, (A.1.3)

where a priori ∇ j u is a distributional section of ⊗ j T ∗Õ, whose fiber ⊗ j T ∗x Õ inherits an inner prod-
uct from that of Tx Õ given by the complete Riemannian metric tensor on Õ described above. Since
the Riemannian manifold Õ considered here, arising from O via a b-metric, has special structure as a
Riemannian manifold with bounded geometry, we can give a convenient alternative characterization of
H k (̃O), as follows. There exist K ∈ N and smooth maps from the closed unit ball B1 ⊂ Rn into Õ

(n = dim Õ)
ϕν : B1→ Õ, (A.1.4)

with the following properties:

ϕν is a diffeomorphism of B1 onto its image;

{ϕ∗ν g} is a C∞ bounded family of metric tensors on B1;

{ϕν(B1/2)} covers Õ;

each p ∈ Õ is contained in at most K sets ϕν(B1).

(A.1.5)

Given a function u ∈ L1
loc(̃O), set

uν = ϕ∗νu ∈ L1(B1). (A.1.6)

Then
H k (̃O)=

{
u ∈ L2(̃O) :

∑
ν

∑
|α|≤k

‖Dαuν‖2L2(B1)
<∞

}
. (A.1.7)

Note also that
u ∈ H k (̃O)⇔

∑
ν

∑
|α|≤k

‖Dαuν‖2L2(B1/2)
<∞. (A.1.8)

An examination of the behavior of elements of X1 when pushed forward to B1 via ϕν establishes:

Proposition A.1.3. For k ∈ Z+,
H k

b (O)= H k (̃O). (A.1.9)

Hence (A.1.2) follows from the result that

[L2(̃O), H `(̃O)]θ = H k (̃O). (A.1.10)

To establish this, it is convenient to bring in the Laplace-Beltrami operator of Õ, which we denote L .
This is defined as an unbounded operator on L2(̃O) via the Friedrichs construction:

u ∈ D(L) and Lu = f ⇐⇒ u ∈ H 1(̃O) and (∇u,∇g)L2 (̃O) =−( f, g)L2 (̃O), ∀ g ∈ H 1(̃O). (A.1.11)

The fact that Õ is complete implies L is a negative self adjoint operator and C∞0 (̃O) is dense in the domain
of all powers of L , defined inductively by

u ∈ D(Lk+1) H⇒ u ∈ D(L) and Lu ∈ D(Lk). (A.1.12)
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Compare [Chernoff 1973]. More generally, for each s ∈[0,∞), (−L)s is defined via the spectral theorem
as a positive self adjoint operator, and one has the classical interpolation identity

[L2(̃O),D((−L)s)]θ = D((−L)sθ ). (A.1.13)

Hence the identity (A.1.10) is a consequence of:

Proposition A.1.4. For k ∈ N,
H k (̃O)= D((−L)k/2). (A.1.14)

Proof. That
D((−L)1/2)= H 1(̃O) (A.1.15)

is a fundamental property of the Friedrichs construction. Next, from (A.1.11) we have

D(L)= {u ∈ H 1(̃O) : Lu ∈ L2(̃O)}, (A.1.16)

where Lu is a priori a distribution on Õ. Clearly H 2(̃O)⊂D(L). We can use the interior elliptic estimates∑
|α|≤2

‖Dαu‖2L2(B1/2)
≤ C

(
‖u‖2L2(B1)

+‖Lνu‖2L2(B1)

)
, (A.1.17)

with Lν the image of L on B1 via ϕν . The estimate (A.1.17) holds with C independent of ν. We use this
together with the equivalence of (A.1.7) and (A.1.8), to obtain the reverse inclusion, hence

D(L)= H 2(̃O). (A.1.18)

To continue, we note that (A.1.17) extends to∑
|α|≤2k

‖Dαu‖2L2(B1/2)
≤ Ck

(
‖u‖2L2(B1)

+‖Lk
νu‖

2
L2(B1)

)
, (A.1.19)

again with Ck independent of ν, and this together with (A.1.7)–(A.1.8) gives

{u ∈ H 1(̃O) : Lku ∈ L2(̃O)} ⊂ H 2k (̃O). (A.1.20)

By comparison, the definition (A.1.12) says

D(Lk)= {u ∈ H 1(̃O) : Lu ∈ D(Lk−1)}. (A.1.21)

The right side of (A.1.21) is contained in the left side of (A.1.20). On the other hand, if we know that
D(Lk−1)= H 2k−2(̃O), it readily follows that H 2k (̃O)⊂ D(Lk). Hence it follows inductively that

D(Lk)= H 2k (̃O). (A.1.22)

To complete the proof of (A.1.14), we use

D((−L)k+1/2)= {u ∈ D(Lk) : Lku ∈ D((−L)1/2)} = {u ∈ H 2k (̃O) : Lku ∈ H 1(̃O)}, (A.1.23)

and the interior regularity estimate∑
|α|≤2k+1

‖Dαu‖2L2(B1/2)
≤ Ck

(
‖u‖2L2(B1)

+‖Lk
νu‖

2
H1(B1)

)
. (A.1.24)
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This proves Proposition A.1.4, and hence Propositions A.1.1–A.1.3. �
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NONCOMMUTATIVE VARIATIONS ON LAPLACE’S EQUATION

JONATHAN ROSENBERG

As a first step toward developing a theory of noncommutative nonlinear elliptic partial differential
equations, we analyze noncommutative analogues of Laplace’s equation and its variants (some of them
nonlinear) over noncommutative tori. Along the way we prove noncommutative analogues of many
results in classical analysis, such as Wiener’s Theorem on functions with absolutely convergent Fourier
series, and standard existence and nonexistence theorems on elliptic functions. We show that many
classical methods, including the maximum principle, the direct method of the calculus of variations, and
the use of the Leray–Schauder Theorem, have analogues in the noncommutative setting.

1. Introduction

Gelfand’s Theorem shows that X  C0(X) sets a contravariant equivalence of categories from the cate-
gory of locally compact (Hausdorff) spaces and proper maps to the category of commutative C∗-algebras
and ∗-homomorphisms. This observation is the key to the whole subject of noncommutative geometry,
which is based on the following dictionary:

Classical Noncommutative

locally compact space ←→ C∗-algebra
compact space ←→ unital C∗-algebra
vector bundle ←→ finitely generated projective module

smooth manifold ←→ C∗-algebra with smooth subalgebra
real-valued function ←→ self-adjoint element

partial derivative ←→ unbounded derivation
integral ←→ tracial state

The object of this paper is to begin to use this dictionary to set up a noncommutative theory of elliptic
partial differential equations, both linear and nonlinear, along with corresponding aspects of the calculus
of variations. Since the theory is still in its infancy, we begin with the very simplest case: Laplace’s
equation and PDEs closely connected to it, and concentrate on the simplest nontrivial example of a
noncommutative manifold, the irrational rotation algebra (or noncommutative 2-torus) Aθ , for θ ∈RrQ.

MSC2000: primary 58B34; secondary 58J05, 35J05, 35J20, 30D30, 46L87.
Keywords: noncommutative geometry, irrational rotation algebra, elliptic partial differential equations, maximum principle,

calculus of variations, harmonic maps, Leray–Schauder Theorem, meromorphic functions.
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Rosenberg ≥ 2008]. Some of the results of this paper were presented in the Special Session on E-Theory, Extensions, and
Elliptic Operators at the Joint Mathematics Meetings, San Diego, California, January 9, 2008.
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A definition of elliptic partial differential operators, along with the study of one example associated with
the irrational rotation algebra, was given in Connes’ fundamental paper [1980], but there the emphasis
was on pseudodifferential calculus and index theory. Here we focus on other things: variational methods,
the maximum principle, an analogue of Wiener’s Theorem, tools for treating nonlinear equations, the
beginnings of a theory of harmonic unitaries, and some aspects of noncommutative complex analysis.

What is the motivation for a noncommutative theory of elliptic PDE? For the most part, it comes from
physics. Many of the classical elliptic PDEs arise from variational problems in Riemannian geometry, and
are also the field equations of physical theories. But the uncertainty principle forces quantum observables
to be noncommutative. There is also increasing evidence, as in [Connes and Lott 1990; Chamseddine
and Connes 1997; Connes et al. 1998; Seiberg and Witten 1999; Mathai and Rosenberg 2005; 2006], that
quantum field theories should allow for the possibility of noncommutative space-times. Noncommutative
sigma-models, for which the very earliest and simplest investigations are in [Da̧browski et al. 2000; 2003],
will require the noncommutative harmonic map equation, which generalizes the Laplace equation studied
in this paper.

We use as our starting point the noncommutative differential geometry of Alain Connes [1980]. This
theory only works well with highly symmetric noncommutative spaces, as the smooth elements are taken
to be the C∞ vectors for an action of a Lie group on a C∗-algebra, but this theory is well adapted to the
case of the irrational rotation algebra, which carries an ergodic gauge action of the 2-torus T2.

The outline of this paper is as follows. We begin in Section 2 with the basic properties of the Laplacian
on Aθ . Included are analogues of Wiener’s theorem (Theorem 2.8) and the maximum principle (Propo-
sition 2.9). In Section 3, we take up the basic properties of Sobolev spaces on Aθ , which are needed
for a deeper analysis of some aspects of noncommutative PDEs. We should point out that some of the
material of this section has already appeared in [Polishchuk 2006, §3] and in [Luef 2006]. The heart of
this paper is contained in Sections 4 and 5, which begin to develop a theory of nonlinear elliptic partial
differential equations, using methods analogous to those traditional in the theory of nonlinear elliptic
PDE. Finally, Section 6 deals with noncommutative complex analysis.

We should mention that another example of noncommutative elliptic PDE and an associated varia-
tional problem on noncommutative tori, namely, noncommutative Yang–Mills theory, has already been
studied by Connes and Rieffel [Connes and Rieffel 1987; Rieffel 1990]. Furthermore, Theorem 2.8
was previously proved by Gröchenig and Leinert [Gröchenig and Leinert 2004] by another method, and
variations on the Gröchenig–Leinert work can be found in [Luef 2006]. In their paper, Gröchenig and
Leinert point out some applications to harmonic analysis and wavelet theory, which go off in a somewhat
different direction than the applications to mathematical physics which we envisage, though obviously
there is some overlap between the two.

2. The linear Laplacian

We will be studying the C∗-algebra Aθ generated by two unitaries U , V satisfying

U V = e2π iθV U.

Aθ is simple with unique trace τ if θ ∈ R r Q. (See for example [Rieffel 1981] for a review of the basic
facts about Aθ .) The torus G = T2 acts by
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α(z1,z2)U = z1U, α(z1,z2)V = z2V, |z1| = |z2| = 1.

The space of C∞ vectors for the action α is the smooth irrational rotation algebra

A∞θ =
{∑

m,n

cm,nU m V n
: cm,n rapidly decreasing

}
.

This should be viewed as a noncommutative deformation of the algebra C∞(T2) of smooth functions
on an ordinary 2-torus, and the decomposition of an element of this algebra in terms of multiples of
U m V n should be viewed as a sort of noncommutative Fourier series decomposition, with cm,n as a sort
of Fourier coefficient. For a ∈ Aθ but not necessarily in A∞θ , the Fourier coefficients cm,n are well
defined and satisfy |cm,n| ≤ ‖a‖, since cm,n = τ(V−nU−ma), but the Fourier series expansion of a is
only a formal expansion, and need not converge in the topology of Aθ , just as one has functions in C(T2)

whose Fourier series do not converge absolutely or even pointwise.
We denote by δ1 and δ2 the infinitesimal generators of the actions of the two T factors in T2 under α.

These are unbounded derivations on Aθ , and map A∞θ to itself. They are given by

δ1(U )= 2π iU, δ2(V )= 2π iV, δ2(U )= δ1(V )= 0.

These derivations δ j obviously commute with the adjoint operation ∗, and play the roles of the partial
derivatives ∂/∂x j in classical analysis on the 2-torus. Since the action α of T2 preserves the tracial state
τ , τ ◦ δ j = 0, j = 1, 2. This fact is the basis for the following Lemma, which we will use many times in
the future.

Lemma 2.1 (Integration by parts). If a, b ∈ A∞θ , then τ(δ j (a)b)=−τ(δ j (b)a), j = 1, 2.

Proof. We have 0= τ(δ j (ab))= τ(δ j (a)b)+ τ(aδ j (b)). �

Definition 2.2. In analogy with the usual notation in analysis, we let

1= δ2
1 + δ

2
2 .

This should be viewed as a noncommutative elliptic partial differential operator. (The notion of ellipticity
was defined rigorously in [Connes 1980, p. 602].) Clearly, 1 is a “negative” operator, and its spectrum
consists of the numbers −4π2(m2

+n2), m, n ∈Z, with eigenfunctions U m V n . Via the noncommutative
Fourier expansion discussed earlier, the pair (A∞θ ,1) is isomorphic to C∞(T2) with the usual Laplacian
1, provided one looks just at the linear structure and forgets the noncommutativity of the multiplication.
(This was already observed in [Connes 1980, p. 602].)

Proposition 2.3. For any λ > 0 (or not of the form −4π2n with n ∈ N), the map −1+ λ : A∞θ → A∞θ
is bijective.

Proof. We have

(−1+ λ)

( ∑
m,n

cm,nU m V n
)
=

∑
m,n

(
4π2(m2

+ n2)+ λ
)

cm,nU m V n.
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It is immediate that −1+ λ has no kernel and has an inverse given by the formula∑
m,n

cm,nU m V n
7→

∑
m,n

1
4π2(m2+ n2)+ λ

cm,nU m V n,

since if cm,n is rapidly decreasing, so are the coefficients on the right. �

It is also easy to characterize the image of 1.

Proposition 2.4. The image of 1 : A∞θ → A∞θ is precisely A∞θ ∩ ker τ , the smooth elements with zero
trace.

Proof. We have 1(
∑

m,n cm,nU m V n)=−4π2 ∑
m,n(m

2
+ n2)cm,nU m V n , and the factor (m2

+ n2) kills
the term with m = n = 0. Thus the image of 1 is contained in the kernel of τ . Conversely, suppose
a =

∑
m,n dm,nU m V n is an arbitrary element of A∞θ ∩ ker τ . That means dm,n is rapidly decreasing and

d0,0 = 0. Then dm,n/(m2
+ n2) is also rapidly decreasing, and∑′

m,n

−dm,n

4π2 (m2+ n2)
U m V n,

where the ′ indicates we omit the term with m=n=0, converges to an element b of A∞θ with1b=a. �

The following consequence is an analogue of a well-known fact about subharmonic functions on compact
manifolds.

Corollary 2.5. If a ∈ A∞θ is subharmonic (i.e., if 1a ≥ 0), then a is constant.

Proof. Suppose a ∈ A∞θ and 1a ≥ 0. By Proposition 2.4, τ(1a) = 0. But τ is a faithful trace, which
means that if b ≥ 0 and τ(b) = 0, then b = 0. Apply this with b = 1a and we see that 1a = 0. This
implies a is a scalar multiple of 1. �

For future use, we are also going to want to study other “function spaces” on the noncommutative
torus. For example, we have the analogue of the Fourier algebra of functions with absolutely convergent
Fourier series.

Definition 2.6. Fix θ ∈ R r Q, and let

Bθ =

{∑
m,n

cm,nU m V n
:

∑
m,n

∣∣cm,n
∣∣<∞}

.

This is obviously a Banach subspace of Aθ with norm ‖ · ‖`1 given by the `1 norm of the coefficients
cm,n . We also obviously have ‖a‖`1 ≥ ‖a‖ for a ∈ Bθ . (‖ · ‖ will for us always denote the C∗-algebra
norm.)

The following lemma, related in spirit to the Sobolev Embedding Theorem [Kazdan 1983, Theorem 1.1],
relates the topology of Bθ to the subject of Propositions 2.3 and 2.4. More details of noncommutative
Sobolev space theory will be taken up in Section 3 below.

Lemma 2.7. Let f ∈ A∞θ . Then there is a constant C > 0 such that (in the notation of Definition 2.6)
‖ f ‖`1 ≤C‖(−1+1) f ‖. In particular, the domain of 1, as an unbounded operator on Aθ , is contained
in Bθ .
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Proof. Suppose f =
∑

m,n cm,nU m V n
∈ A∞θ . Then

‖ f ‖`1 =

∑
m,n

|cm,n| =
∑
m,n

(
1+ 4π2(m2

+ n2)
)

cm,n ·
am,n

1+ 4π2(m2+ n2)
,

where |am,n| = 1. View this as an `2 inner product and estimate it by Cauchy–Schwarz. We obtain

‖ f ‖`1 ≤ C‖(−1+1) f ‖`2,

where ‖ · ‖`2 is the `2 norm of the sequence of Fourier coefficients (this can also be defined by ‖c‖`2 =

τ(c∗c)1/2) and where

C =
∥∥∥{(

1+ 4π2(m2
+ n2)

)−1}
m,n

∥∥∥
`2
=

( ∑
m,n

1(
1+ 4π2(m2+ n2)

)2

)1/2

<∞.

Since the `2 norm is bounded by the C∗-algebra norm, as ‖c‖`2 = τ(c∗c)1/2 ≤ ‖c∗c‖1/2 =‖c‖, the result
follows. �

The next result was proved in [Gröchenig and Leinert 2004], using the theory of symmetric L1-algebras
as developed by Leptin, Ludwig, Hulanicki, et al. We include a brief proof for the sake of completeness.

Theorem 2.8 (Wiener’s Theorem). The Banach space Bθ is a Banach ∗-algebra and is closed under the
holomorphic functional calculus of Aθ . Thus if a ∈Bθ and a is invertible in Aθ , a−1

∈Bθ .

Proof. Suppose a =
∑

cm,nU m V n with the sum absolutely convergent. Then

a∗ =
∑
m,n

cm,nV−nU−m
=

∑
m,n

cm,ne−2π imnθU−m V−n

so a∗ ∈ Bθ . Similarly, if also b =
∑

dm,nU m V n (absolutely convergent sum), then ab has Fourier
coefficients given by twisted convolution of the Fourier coefficients of a and b, and since the twisting
only involves scalars of absolute value 1, the Fourier coefficients of ab are absolutely convergent. More
precisely,

ab =
( ∑

m,n

cm,nU m V n
)(∑

k,l

dk,lU k V l
)
=

∑
m,n,k,l

cm,ndk,lU m V nU k V l

=

∑
m,n,k,l

cm,ndk,le−2π iknθU m+k V n+l
=

∑
p,q

f p,qU pV q ,

where

f p,q =
∑
m,n

cm,ndp−m,q−ne−2π i(p−m)nθ , so that | f p,q | ≤
∑
m,n

|cm,n| |dp−m,q−n| ≤ ‖c‖`1‖d‖`1 .

This confirms that Bθ is a Banach ∗-algebra and of course a ∗-subalgebra of Aθ .
To prove the analogue of Wiener’s Theorem, we unfortunately cannot use the cute proof using the

Gelfand transform, since Bθ is not commutative. We also cannot use another very elementary proof
from [Newman 1975] since this also relies on commutativity. However, Newman’s proof is related to
the fact — implicit in [Connes 1980, Lemma 1] — that A∞θ is closed under the holomorphic functional
calculus of Aθ . To prove this one has to show that if b ∈ A∞θ with b invertible in Aθ , then b−1 also lies in
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A∞θ . To prove this fact, iterate the identity δ j (b−1)=−b−1 δ j (b) b−1 to see that b−1 lies in the domain
of all monomials in δ1 and δ2. One might think that since A∞θ is dense in Bθ , this should be enough to
prove Wiener’s Theorem for the latter, but this doesn’t work, since in general the spectrum and spectral
radius functions are only upper semicontinuous, not continuous, on a noncommutative Banach algebra
[Newburgh 1951].

To prove the theorem, we rely on an observation of Hulanicki [1972, Proposition 2.5], based on
[Raikov 1946, Theorem 5]: if a Banach ∗-algebra B (with isometric involution and a faithful ∗-represen-
tation on a Hilbert space) is embedded in its enveloping C∗-algebra A, then the spectra of self-adjoint
elements of B are the same whether computed in B or in A if and only if B is symmetric (i.e., for
x ∈ B, the spectrum in B of x∗x is contained in [0,∞)). We will apply this with B = Bθ and with
A = Aθ . Hulanicki also showed [Hulanicki 1970] that the L1 algebras of discrete nilpotent groups are
symmetric. In particular, the L1 algebra of the discrete Heisenberg group H (with generators a, b, c,
where c is central and aba−1b−1

= c) is symmetric. Thus Bθ , which is the quotient of L1(H) by the
(self-adjoint) ideal generated by c−e2π iθ , is also symmetric. (If B is a symmetric Banach ∗-algebra and
J is a closed self-adjoint ideal, then B/J is also symmetric, since if ẋ ∈ B/J is the image of x ∈ B, then
the spectrum of ẋ∗ ẋ in B/J is contained in the spectrum of x∗x in B, hence is contained in [0,∞).) So
for x = x∗ ∈ Bθ , by Hulanicki’s observation, if x is invertible in Aθ , x−1

∈ Bθ . Suppose a ∈ Bθ and a
is invertible in Aθ . Then a∗ is also invertible in Aθ , so x = a∗a ∈ Bθ and x is invertible in Aθ . Hence
x−1
= a−1a∗−1

∈Bθ and a−1
= x−1a∗ ∈Bθ . �

In the classical theory of the Laplacian, one of the most useful tools is the maximum principle — see,
for example, [Kazdan 1983, p. 20]. The following is a noncommutative analogue.

Proposition 2.9 (Maximum principle). Let h = h∗ ∈ A∞θ , and let [t0, t1] be the smallest closed interval
containing the spectrum σ(h) of h in Aθ , so that t1 =max{t : t ∈ σ(h)} and t0 =min{t : t ∈ σ(h)}. Then
there exists a state ϕ of Aθ with ϕ(h)= t1, and for such a state, ϕ(1h)≤ 0. Similarly, there exists a state
ψ of Aθ with ψ(h)= t0, and for such a state, ψ(1h)≥ 0.

Proof. The commutative C∗-algebra C∗(h) must have pure states ϕ̃ and ψ̃ with ϕ̃(h) = t1, ψ̃(h) = t0,
since t0, t1 ∈ σ(h). Extend these to states ϕ, ψ of the larger C∗-algebra Aθ . Then for s ∈ G = T2, the
functions s 7→ ϕ(αs(h)) and s 7→ ψ(αs(h)) must have a maximum and a minimum, respectively, at the
identity element of T2. (Recall that α is the gauge action by ∗-automorphisms.) Differentiate twice and
the result follows by the second derivative test. �

Just as in the classical setting, Laplace’s equation arises as the Euler–Lagrange equation of a variational
problem.

Definition 2.10. For a ∈ A∞θ , let

E(a)= 1
2τ

(
δ1(a)2+ δ2(a)2

)
.

This is clearly the noncommutative analogue of the classical energy functional

f 7→
1
2

∫
M
‖∇ f ‖2 dvol

on a compact manifold M .
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Proposition 2.11. The Euler–Lagrange equation for critical points of the energy functional E of Defi-
nition 2.10, restricted to self-adjoint elements of A∞θ , is just Laplace’s equation 1a = 0. Thus the only
critical points are the scalar multiples of the identity, which are the points where E(a)= 0 and are strict
minima for E.

Proof. This works very much like the classical case. If a = a∗ and h = h∗, then

d
dt

∣∣∣∣
t=0

E(a+ th)= 1
2τ

(
δ1(a)δ1(h)+ δ1(h)δ1(a)+ δ2(a)δ2(h)+ δ2(h)δ2(a)

)
.

Because of the trace property, we can write this as τ(δ1(a)δ1(h)+δ2(a)δ2(h)). For a to be a critical point
of E , this must vanish for all choices of h. Integrating by parts using Lemma 2.1, we obtain τ(h1(a))=0
for all h, and since the trace pairing is nondegenerate, we get the Euler–Lagrange equation1a= 0. Since
1 has pure point spectrum with eigenvalues −4π2(m2

+n2) and eigenfunctions U m V n , the equation has
the unique solution a = λ1, λ ∈ R. These are also the points where E takes its minimum value of 0. �

3. Sobolev spaces

In the treatment of Laplace’s equation above, we alluded to the theory of Sobolev spaces. One can develop
this theory in the noncommutative setting in complete analogy with the classical case. To simplify the
treatment, we deal here only with the L2 theory, which gives rise to Hilbert spaces. These spaces are
convenient for applications to nonlinear elliptic PDE, as we will see in the next section.

Definition 3.1. For a ∈ Aθ , we define its L2 norm1 by

‖a‖`2 = τ(a∗a)1/2.

We let L2 or H 0 (this is the Sobolev space of “functions” with 0 derivatives in L2) be the completion of
Aθ in this norm. Obviously this is a Hilbert space, with inner product extending

〈a, b〉 = τ(b∗a)

on Aθ . Also note that the norm of L2 is simply the `2 norm for the Fourier coefficients, since if a ∈ A∞θ
has the Fourier expansion

∑
m,n cm,nU m V n , then

‖a‖2
`2= τ(a∗a)= τ

( ∑
k,l,m,n

(
cm,nU m V n)∗ ck,lU k V l

)
= τ

( ∑
k,l,m,n

cm,n ck,l V−nU−mU k V l
)
=

∑
m,n

|cm,n|
2.

Now let n ∈ N. We define the Sobolev space2 H n of “functions” with n derivatives in L2 to be the
completion of A∞θ in the norm

‖a‖2Hn =

∑
0≤|β|≤n

‖δβ(a)‖2`2 .

(These spaces are also defined, with slightly different notation, in [Polishchuk 2006, §3].) Here β =
β1β2 · · ·β|β| runs over sequences with β j = 1 or 2 and δβ means δβ1 · · · δβ|β| , a partial derivative of order

1This is really the norm for the Hilbert space of the II1 factor representation of Aθ determined by the trace τ .
2Usually this would be called Hn,2, but we are trying to simplify notation.
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|β|. For example,
‖a‖2H1 = ‖a‖2`2 +‖δ1(a)‖2`2 +‖δ2(a)‖2`2 .

The Sobolev space H n is clearly a Hilbert space, and we obviously have norm-decreasing inclusions
H n ↪→ H n−1. Furthermore, it is clear that the Sobolev norms are invariant under taking adjoints and can
easily be expressed in terms of the Fourier coefficients; for example, if a ∈ A∞θ has the Fourier expansion∑

m,n cm,nU m V n , then

‖a‖2H1 =

∑
m,n

(
1+ 4π2(m2

+ n2)
)
|cm,n|

2.

The next result is the exact analogue of the classical Sobolev embedding theorem [Kazdan 1983,
Theorem 1.1] for T2.

Theorem 3.2 (Sobolev embedding). The inclusion H n ↪→ H n−1 is compact. The space H 1 is not con-
tained in Aθ , but H 2 has a compact inclusion into Bθ (and thus into Aθ ).

Proof. Since the Sobolev norms just depend on the decay of the Fourier coefficients, this follows imme-
diately from the classical Sobolev Embedding Theorem in dimension 2. The inclusion of H 2 into Bθ

also follows from the estimate
‖ f ‖`1 ≤ C‖(−1+1) f ‖`2,

in the proof of Lemma 2.7, with the compactness coming from the fact that we can approximate by the
finite rank operators that truncate the Fourier series after finitely many terms. �

4. Nonlinear problems involving the Laplacian

Somewhat more interesting, and certainly more difficult to treat than the situation of Proposition 2.11, are
certain nonlinear problems involving the Laplacian, of the general form1u= f (u). Such problems arise
classically from the problem of prescribing the scalar curvature of a metric eug obtained by conformally
deforming the original metric g on a Riemannian manifold M [Kazdan 1983, Chapters 5, 7]. For example,
if g is the usual flat metric on T2, then the scalar curvature h of the pointwise conformal metric eug solves
the equation 1u =−heu . (This equation is studied in detail in [Kazdan and Warner 1974, §5].) Because
of the Gauss–Bonnet theorem on the torus, h must integrate out to 0, so there are no solutions with h a
constant unless h= 0 and u is a constant. This fact has an exact analogue in our noncommutative setting.

Proposition 4.1. If λ ∈ R, the equation 1u =−λeu has no solution u = u∗ ∈ A∞θ unless λ= 0 and u is
a scalar multiple of 1.

Proof. Suppose u = u∗ ∈ A∞θ . Then eu
≥ 0, so if λ 6= 0, either λeu

≥ 0 or −λeu
≥ 0. Thus if 1u =−λeu ,

either u or −u is subharmonic. The result now follows from Corollary 2.5. �

Alternative proof. Use the maximum principle, Proposition 2.9. Let [a, b] be the smallest closed interval
containing the spectrum of u. Then for any state ϕ of Aθ , a≤ϕ(u)≤b and ϕ(eu)≥ ea >0. If1u=−λeu

and λ > 0, then by Proposition 2.9, there is a state ϕ with ϕ(u)= a and ϕ(1u)≥ 0, while ϕ(−λeu) < 0,
a contradiction. Similarly, if λ < 0 and 1u = −λeu , there is a state ϕ with ϕ(u) = b and ϕ(1u) ≤ 0,
while ϕ(−λeu) > 0, a contradiction. �
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Proposition 4.1 suggests that we consider the equation 1u =− 1
2

(
heu
+euh

)
with h = h∗ not a scalar.

(Note that we have symmetrized the right-hand side to make it self-adjoint, since u = u∗ implies 1u is
self-adjoint.) Once again, a slight variation on the argument of Proposition 4.1 shows that there is no
solution if h ≥ 0 or if h ≤ 0; again this is not surprising since one gets the same result in the classical
case as a consequence of Gauss–Bonnet.

Proposition 4.2. If h≥0 or h≤0 in A∞θ , the equation1u=−1
2

(
heu
+euh

)
has no solution u=u∗ ∈ A∞θ

unless h = 0 and u is a scalar multiple of 1.

Proof. This is just like the proof of Proposition 4.1. If h ≥ 0 and 1u =−1
2

(
heu
+ euh

)
, then applying τ

to both sides, we get
0= τ(1u)=−τ(heu)=−τ

(
h1/2euh1/2) . (4-1)

Since
h1/2euh1/2

=
(
eu/2h1/2)∗ (eu/2h1/2)

≥ 0

and τ is faithful, that implies eu/2h1/2
= 0. Since eu/2 is invertible, it follows that h1/2

= 0 and h = 0.
The case where h ≤ 0 is almost identical; just replace h by −h and change the sign of the right-hand
side of (4-1). �

Unfortunately, the rest of the treatment in [Kazdan and Warner 1974, §5] doesn’t extend to our setting,
since from the calculation

τ(h)= 1
2τ

(
e−uheu

+ h
)
=−τ(e−u1u),

it is not clear if τ(h) < 0 follows. (The problem is that we can’t commute the various factors that arise
from expanding δ j (e−u) after integration by parts.) But since the main purpose of this section is just to
test various techniques and see to what extent they apply to nonlinear noncommutative elliptic PDEs, we
will consider instead the following more tractable equation from [Kazdan 1983, Chapter 5]:

1u = µ eu
− λ, λ, µ ∈ R, λ, µ > 0. (4-2)

Theorem 4.3. The equation (4-2) has the unique solution t0 = ln(λ/µ) in
(

A∞θ
)

s.a..

Proof. Let
L(u)= E(u)+ τ(µ eu

− λu).

Note that for t ∈ R, µ et
− λt has an absolute minimum at t = t0, so µ eu

− λu ≥ λ(1− t0) for u = u∗

and so L(u)≥ λ(1− t0) for u = u∗. Furthermore, the Euler–Lagrange equation for a critical point of L

is precisely (4-2), since

d
dt

∣∣∣∣
t=0

L(u+ th)= τ(δ1(u)δ1(h)+ δ2(u)δ2(h)− λh)+
d
dt

∣∣∣∣
t=0

τ
(
µ eu+th),

via the calculation in the proof of Proposition 2.11. Now

d
dt

∣∣∣∣
t=0

τ
(
eu+th)

=
d
dt

∣∣∣∣
t=0

∞∑
n=0

1
n!
τ
(
(u+ th)n

)
=

∞∑
n=0

1
n!
τ
(
un−1h+ un−2hu+ · · ·+ uhun−2

+ hun−1)
=

∞∑
n=0

n
n!
τ
(
hun−1)

= τ(heu)
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by the invariance of the trace under cyclic permutations of the factors. So applying Lemma 2.1, we see
that

d
dt

∣∣∣∣
t=0

L(u+ th)= τ(−h1(u)− λh+µ heu)=−τ
(
h · (1u+ λ−µ eu)

)
.

So nondegeneracy of the trace pairing gives (4-2) as the Euler–Lagrange equation for a critical point
of L. It is also clear that t0 is an absolute minimum for L and a solution of (4-2). It remains to prove
the uniqueness. Suppose u is a solution of (4-2) and write u = t0 + v. Then v satisfies the equation
1v = λ(ev − 1), and we need to show v = 0. Multiply both sides by v and apply τ . We obtain (using
Lemma 2.1)

−2E(v)= τ(v1v)= λτ(v(ev − 1)).

The left-hand side is ≤ 0, while since λ > 0 and t (et
−1)≥ 0 with equality only at t = 0, the right-hand

side is ≥ 0. Thus E(v)= 0, which implies v is a scalar with v(ev − 1)= 0, i.e., v = 0. �

With techniques reminiscent of [Kazdan 1983, Chapter 5] we can study a slightly more complicated
variant of (4-2).

Theorem 4.4. Let a ≥ 0 be invertible in A∞θ . Then the equation

1u = µ eu
− a, µ ∈ R, µ > 0 (4-3)

has a solution u ∈
(

A∞θ
)

s.a..

Without loss of generality (as a result of replacing u by u − lnµ) we can take µ = 1; that simplifies
the calculations and we make this simplification from now on. Some condition on a beyond the fact that
a ≥ 0, for example at least a 6= 0, is necessary because of Proposition 4.1, and we see that any solution
of (4-3) must satisfy τ(eu)= τ(a) > 0.

Proof. Several methods are available for proving existence, but the simplest seems to be to apply the
Leray–Schauder Theorem ([Leray and Schauder 1934], [Kazdan 1983, Theorem 5.5]). Consider the
family of equations

1u = (1− t) u+ t eu
− a, 0≤ t ≤ 1. (4-4)

When t = 0 this reduces to 1u = u − a, or (−1+ 1) u = a, which by Proposition 2.3 has the unique
solution u = (−1 + 1)−1a. When t = 1, (4-4) reduces to (4-3). We begin by using the maximum
principle, Proposition 2.9, which implies an a priori bound on solutions of (4-4). (Compare the argument
in [Kazdan 1983, pp. 56–57].) Indeed, suppose u satisfies (4-4) for some 0≤ t ≤ 1, and let [c, d] be the
smallest closed interval containing σ(u). We may choose a state ϕ of Aθ with ϕ(u) = d, ϕ(eu) = ed ,
and by Proposition 2.9, ϕ(1u)≤ 0. Since

ϕ
(
(1− t) u+ t eu

− a
)
= (1− t) d + t ed

−ϕ(a)≥ (1− t) d + t ed
−‖a‖,

we get a contradiction if (1− t) d+ t ed
−‖a‖> 0, which is the case if d > ‖a‖. So d ≤ ‖a‖. Similarly,

we may choose a state ψ of Aθ with ψ(u)= c, ψ(eu)= ec, and by Proposition 2.9, ψ(1u)≥ 0. Since

ψ
(
(1− t) u+ t eu

− a
)
= (1− t) c+ t ec

−ψ(a)≤ (1− t) c+ t ec
−

1
‖a−1‖

,
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we get a contradiction if ec
−1/‖a−1

‖< 0. Thus ec
−1/‖a−1

‖ ≥ 0 and c ≥−ln ‖a−1
‖. In other words,

any solution of (4-4), for any 0≤ t ≤ 1, satisfies the a priori estimate

− ln ‖a−1
‖ ≤ u ≤ ‖a‖. (4-5)

Now rewrite (4-4) in the form

u = (−1+ 1)−1(a+ t u− t eu).
The right-hand side is well-defined and continuous in the C∗-algebra norm topology for u = (Aθ )s.a.,
since (−1+1)−1 is bounded by Lemma 2.7. In fact, this Lemma also shows (−1+1)−1 is bounded as
a map Aθ→Bθ , so as a map Aθ→ Aθ , it is a limit of operators of finite rank, namely the restrictions of
the operator to the span of {U m V n

: m2
+ n2
≤ N }, as N →∞. Thus (−1+ 1)−1 is not only bounded,

but also compact. Together with the a priori estimate (4-5) and the fact that there is a solution for t = 0,
this shows that (4-4) satisfies the hypotheses of the Leray–Schauder Theorem. Hence (4-4) has a solution
for all t ∈ [0, 1]. Thus (4-3) (which is the special case of (4-4) for t = 1) has a solution in dom1⊆ Aθ ,
and thus in Bθ by Lemma 2.7.

The last step of the proof is elliptic regularity. In other words, we need to show that a solution to (4-3),
so far only known to be in Bθ , lies in A∞θ . Since a ∈ A∞θ and Bθ is closed under holomorphic functional
calculus (by Theorem 2.8), the right-hand side of (4-3) lies in Bθ , i.e., has absolutely summable Fourier
coefficients. Then (4-3) implies that the Fourier coefficients cm,n of u have even faster decay, namely,∑

m,n

(1+m2
+ n2)|cm,n|<∞.

Now one can iterate this argument. This is a bit tricky, as at each step one needs a new Banach
subalgebra of Aθ to replace B (we drop the subscript θ for simplicity of notation), so we indicate how
this works at the next step, and then sketch how to proceed further. For u ∈B with Fourier coefficients
cm,n , let

‖u‖1 =
∑
m,n

(2+m2
+ n2)|cm,n|,

assuming this converges. We have seen that we know ‖u‖1 < ∞. We claim that ‖ · ‖1 is a Banach
∗-algebra norm. This will follow by the argument in the proof of Theorem 2.8 if we can show that∑

p,q

(2+ p2
+ q2)

∑
m,n

|cm,n| |dp−m,q−n| ≤

( ∑
m,n

(2+m2
+ n2)|cm,n|

)( ∑
l,k

(2+ l2
+ k2)|dl,k |

)
.

Comparing the two sides of this inequality, one sees it is equivalent to proving that

(2+ p2
+ q2)≤ (2+m2

+ n2)(2+ (p−m)2+ (q − n)2),

or with −→v = (m, n) and −→w = (p−m, q − n) vectors in Euclidean 2-space, that(
2+‖−→v +−→w ‖2

)
≤

(
2+‖−→v ‖2

)(
2+‖−→w ‖2

)
.

This inequality in turn follows from the standard inequality

‖
−→v +−→w ‖2 ≤ ‖−→v ‖2+‖−→w ‖2+ 2‖−→v ‖ · ‖−→w ‖ ≤ 2

(
‖
−→v ‖2+‖−→w ‖2

)
.
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This shows the completion of A∞θ in the norm ‖ · ‖1 is a Banach ∗-algebra B1. Since u and a are in B1,
so is eu

− a. By (4-3) again, u has still more rapid decay; its Fourier coefficients satisfy∑
m,n

(m2
+ n2)2|cm,n|<∞.

Now we iterate again using still another Banach ∗-algebra B2 with the norm

‖u‖2 =
∑
m,n

(
8+ (m2

+ n2)2
)
|cm,n|.

Again one has to check that this is a Banach algebra norm, which will follow from the inequalities

8+‖−→v +−→w ‖4 = 8+
(
‖
−→v +−→w ‖2

)2

≤ 8+
(
2
(
‖
−→v ‖2+‖−→w ‖2

))2
≤ 8+ 4

(
‖
−→v ‖4+‖−→w ‖4+ 2‖−→v ‖2 · ‖−→v ‖2

)
≤ 8+ 4

(
2
(
‖
−→v ‖4+‖−→w ‖4

))
≤

(
8+‖−→v ‖4

)(
8+‖−→w ‖4

)
.

Thus B2 is a Banach algebra and eu
− a ∈B2, so that 1u ∈B2 and the Fourier coefficients of u decay

faster than (m2
+n2)3, etc. Repeating in this way, we show by induction that cm,n is rapidly decreasing,

and thus that u ∈ A∞θ . �

Sketch of a second proof. One could also approach this problem using “variational methods.” By the
argument at the beginning of the proof of Theorem 4.3, (4-3) is the Euler–Lagrange equation for critical
points of

L(u)= E(u)+ τ(eu
− u a)= E(u)+ τ(eu

− a1/2ua1/2).

This functional is bounded below since E(u)≥ 0 and τ(eu
−a1/2ua1/2) is bounded below (by a constant

depending only on a). Indeed, for t and λ > 0 real, et
− λt has a global minimum at t = ln λ, so

et
− λt ≥ λ(1− ln λ). If we write u = u+− u− with u+u− = u−u+ = 0 and u+, u− ≥ 0, then

−τ(u a)= τ(u−a)− τ(u+a)=−τ
(
u1/2
+ au1/2

+

)
+ τ

(
u1/2
− au1/2

−

)
≥−τ

(
u1/2
+ ‖a‖u

1/2
+

)
+ 0=−‖a‖ τ(u+).

On the other hand,
τ(eu)= τ

(
eu+ + e−u− − 1

)
≥ τ

(
eu+

)
− 1,

and thus

τ(eu
− u a)≥ τ

(
eu+

)
−‖a‖ τ(u+)− 1= τ

(
eu+ −‖a‖ u+

)
− 1≥ ‖a‖

(
1− ln ‖a‖

)
− 1.

So we will show that L must have a minimum point, which will be a solution of (4-3).
Choose un=u∗n ∈ A∞θ with L(un) decreasing to inf

{
L(u) :u∈

(
A∞θ

)
s.a.

}
. Since E and τ(eu

−a1/2ua1/2)

are separately bounded below, E(un)must remain bounded. That means that ‖δ j (un)‖`2 remains bounded
for j = 1, 2.

We can also assume that ‖un‖`2 remains bounded. To see this, it is easiest to use a trick (cf. [Kazdan
1983, pp. 56–57]). Because of the a priori bound on solutions of (4-3) coming from the maximum
principle (see the first proof above), we can modify the function eu on the right-hand side of the equation
and replace it by some C∞ function that grows linearly for u ≥ ‖a‖ + 1 and decays linearly for u ≤
−1− ln ‖a‖. (This does not affect the maximum principle argument, so the solutions of the modified
equation are the same as for the original one.) This has the effect of changing the term τ(eu) in the
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formula for L to something that outside of a finite interval behaves like a constant times τ(u2), which is
‖u‖2

`2 .
Thus we can assume our minimizing sequence un is bounded in the Sobolev space H 1. Since the

unit ball of a Hilbert space is weakly compact, after passing to a subsequence, we can assume that un

converges weakly in the Hilbert space H 1, and by Theorem 3.2, strongly in H 0
= L2, to some u ∈ H 1

which is a minimizer for L. (Compare the argument in [Kazdan 1983, Theorem 5.2].) This u is a “weak
solution” of our equation and we just need to show it is smooth, i.e., corresponds to a genuine element
of A∞θ . This requires an elliptic regularity argument similar to the one in the first proof. �

5. Harmonic unitaries

In this section, we discuss the noncommutative analogue of the classical problem of studying harmonic
maps M → S1, where M is a compact Riemannian manifold and S1 is given its usual metric. This
problem was studied and solved in [Eells and Sampson 1964, pp. 128–129]. The homotopy classes of
maps M → S1 are classified by H 1(M,Z). For each homotopy class in H 1(M,Z), we can think of it
as an integral class in H 1(M,R), and represent it (by the de Rham and Hodge Theorems) by a unique
harmonic 1-form with integral periods. Integrating this 1-form gives a harmonic map M → S1 in the
given homotopy class. This map is not quite unique since we can compose with an isometry (rotation)
of the circle, but except for this we have uniqueness. (This follows from [Eells and Sampson 1964,
Proposition, p. 123].)

If we dualize a map M→ S1, we obtain a unital ∗-homomorphism C(S1)→C(M), which since C(S1)

is the universal C∗-algebra on a single unitary generator, is basically the same as a choice of a unitary
element u ∈ C(M). This analysis suggests that the noncommutative analogue of a harmonic map to S1

should be a “harmonic” unitary in a noncommutative C∗-algebra A. Each unitary in A defines a class in
the topological K -theory group K1(A), and for A a unital C∗-algebra, every K1 class is represented by
a unitary in Mn(A) for some n, so since we can replace A by Mn(A), the natural problem is to search
for a harmonic representative in a given connected component of U (A) (or, passing to the stable limit,
in a given K1 class).

The next level of complexity up from the case where A = C(M) is commutative is the case where
A = C(M,Mn(C)) for some n. In this case, a unitary in U (A) is the same thing as a map M→ U (n),
and a harmonic unitary should be the same thing as a harmonic map M→U (n). For example, suppose
M = S3 and n = 2. Since there are no maps M→ S1 which are not homotopic to a constant, it is natural
to look first at smooth maps f : S3

→ U (2) with det ◦ f : S3
→ T identically equal to 1, i.e., to look

at maps f : S3
→ SU (2) = S3, with both copies of S3 equipped with the standard round metric. This

problem is treated in [Eells and Sampson 1964, Proposition, pp. 129–131]. For example, the identity map
S3
→ S3

= SU (2) ↪→U (2) is a harmonic map representing the generator of K1(A)=K−1(S3). The study
of harmonic maps in other homotopy classes, even just in the simple case of S3

→ S3, is a complicated
issue (see, e.g., [Eells and Sampson 1964, Proposition, pp. 129–131] and [Schoen and Uhlenbeck 1984]);
however, this is quite tangential to the main theme of this article, so we won’t consider it further.

Instead, we consider now the notion of harmonic unitaries in the case of Aθ . Recall first that K1(Aθ )∼=
Z2, with U and V as generators [Pimsner and Voiculescu 1980, Corollary 2.5], and that the canonical
map U (Aθ )/U (Aθ )0→ K1(Aθ ) is an isomorphism [Rieffel 1987].
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Definition 5.1. If u ∈ A∞θ is unitary, we define the energy of u to be

E(u)= 1
2 τ

(
(δ1(u))∗δ1(u)+ (δ2(u))∗δ2(u)

)
.

Obviously this is constructed so as to be ≥ 0. This definition also coincides with the energy defined in
Definition 2.10, provided we insert the appropriate ∗’s in the latter (which we can do without changing
anything since there we were taking u to be self-adjoint). The unitary u is called harmonic if it is a critical
point for E : U (A∞θ )→ [0,∞). By the discussion above, a harmonic unitary is the noncommutative
analogue of a harmonic circle-valued function on a manifold.

Remark 5.2. Note that in Definition 5.1, E(u) is invariant under multiplication of u by a scalar λ ∈ T.
Thus E descends to a functional on the projective unitary group PU (A∞θ ) and any sort of uniqueness
result for harmonic unitaries can only be up to multiplication of u by a scalar λ ∈ T. This is analogous
to what happens in the case of harmonic maps M→ T, where the associated harmonic 1-form is unique
but the map itself is only defined up to a constant of integration.

Theorem 5.3. If u ∈ A∞θ is unitary, then u is harmonic if and only if it satisfies the Euler–Lagrange
equation

u∗(1u)+ (δ1(u))∗ δ1(u)+ (δ2(u))∗ δ2(u)= 0. (5-1)

Note that this equation is elliptic (if we drop lower-order terms, it reduces to Laplace’s equation1u= 0),
but highly nonlinear.

Proof. First note that for u unitary, since u u∗ = u∗u = 1, we have

δ j (u) u∗+ u (δ j (u))∗ = (δ j (u))∗ u+ u∗ δ j (u)= 0,

j = 1, 2. If u is unitary, then any nearby unitary is of the form uei th , h = h∗, and

d
dt

∣∣∣∣
t=0

E(uei th)= 1
2 τ

(
−iδ1(h)u∗δ1(u)+ iδ1(u)∗uδ1(h) + similar expression with δ2

)
.

We can use the trace property to move all the δ j (h)’s to the front. So u is a critical point if and only if
for all h = h∗,

τ
(
δ1(h) Im

(
u∗δ1(u)

)
+ δ2(h) Im

(
u∗δ2(u)

))
= 0. (5-2)

In (5-2), the Im’s can be omitted since we have seen that u unitary⇒ δ j (u)∗u skew-adjoint. Thus u is
harmonic if and only if

τ
(
δ1(h)

(
u∗δ1(u)

)
+ δ2(h)

(
u∗δ2(u)

))
= 0

for all h = h∗ in A∞θ . Now apply integration by parts (Lemma 2.1). We see that u is harmonic if and
only if

τ
(

h δ1
(
u∗δ1(u)

)
+ h δ2

(
u∗δ2(u)

))
= 0

for all h = h∗ in A∞θ . Since the trace pairing is nondegenerate, the Theorem follows. �

It seems natural to make the following conjecture:

Conjecture 5.4. In each connected component of PU (A∞θ ), the functional E has a unique minimum,
given by scalar multiples of U nV m . These are the only harmonic unitaries in this component.
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Unfortunately, because of the complicated nonlinearity in (5-1), plus complications coming from
noncommutativity, we have not been able to prove the Conjecture 5.4. However, we have the following
partial result. In particular, we see that every connected component in U (A∞θ ) contains a harmonic
unitary which is energy-minimizing.

Theorem 5.5. The scalar multiples of U m V n are harmonic and are strict local minima for E. Any
harmonic unitary u depending on U alone is a scalar multiple of a power of U. Similarly, any harmonic
unitary u depending on V alone is a scalar multiple of a power of V .

Proof. First suppose u depends on U alone. Then δ2(u) = 0. So by the proof of Theorem 5.3, if u is
harmonic, then τ

(
δ1(h) · δ1(u)∗u

)
= 0 for all h = h∗. This must also hold for general h (not necessarily

self-adjoint) since we can split h into its self-adjoint and skew-adjoint parts. Since the range of δ1 contains
U m unless m = 0, τ(δ1(u)∗u U m)=0 for m 6= 0, which means (since δ1(u)∗u depends only on U ) that
δ1(u)∗u is a scalar. Thus u is an eigenfunction for δ1 and so u = eiλU m for some m. The case where u
depends on V alone is obviously similar.

Next let’s examine u =U m V n . Since E(U m V n)= 2π2(m2
+ n2) while

(U m V n)∗1(U m V n)=−4π2(m2
+ n2),

u satisfies (5-1) and is therefore harmonic. We show it is a local minimum for E ; in fact, the minimum
is strict once we pass to PU (A∞θ ). We expand δ j (uei th), with h = h∗, out to second order in t . Note
that with δ = δ1 or δ2,

δ(uei th)= δ(u)+ i t
(
δ(u)h+ uδ(h)

)
−

1
2 t2 (

δ(u) h2
+ u δ(h) h+ u h δ(h)

)
+ O(t3).

We substitute this into the formula for E(uei th). The terms linear in t cancel since u is harmonic, and
we find that

E
(
u ei th)

= 2π2(m2
+ n2)

+ t2 τ
((
δ1(u)h+ uδ1(h)

)∗(
δ1(u)h+ uδ1(h)

)
−

1
2δ1(u)∗

(
δ1(u) h2

+ u δ1(h) h+ u h δ1(h)
)

−
1
2(h

2 δ1(u)∗+ h δ1(h) u∗+ δ1(h) h u∗) δ1(u)+ similar expressions with δ2

)
+ O(t3).

This actually simplifies considerably since u is an eigenvector for both δ1 and δ2, so that δ j (u)∗δ j (u),
δ j (u)∗u, and u∗δ j (u) are all scalars. It turns out that almost everything cancels and one gets

E(ueiht)= 2π2(m2
+ n2)+ 1

2 t2τ
(
δ1(h)2+ δ2(h)2

)
+ O(t3)

= 2π2(m2
+ n2)+ t2 E(h)+ O(t3).

By Proposition 2.11, the term in t2 vanishes exactly when h is a constant, and in that case E(ueiht) =

E(u) = 2π2(m2
+ n2) (exactly). Otherwise, the coefficient of t2 is strictly positive and E(ueiht) has a

strict local minimum at t = 0. �

6. The Laplacian and holomorphic geometry

As we have seen, 1 on Aθ behaves very much like the classical Laplacian on T2. But the Laplacian
in (real) dimension 2 is very closely related to holomorphic geometry in complex dimension 1. That
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suggests that the theory we have developed should be closely related to the Cauchy–Riemann operators
∂ and ∂ on noncommutative elliptic curves, as developed in references like [Polishchuk and Schwarz
2003; Polishchuk 2004].

In classical analysis (in one complex variable), one usually sets ∂ = 1
2

(
∂
∂x1
+ i ∂

∂x2

)
, the Cauchy–

Riemann operator, with ∂ its complex conjugate. Then 1= 4 ∂ ∂ . In our situation, the obvious analogue
is to set ∂ = 1

2

(
δ1+ i δ2

)
.3 Comparable to Proposition 2.4 is:

Proposition 6.1. The operator ∂ : A∞θ → A∞θ has kernel given by scalar multiples of the identity, and
restricts to a bijection on ker τ .

Proof. Immediate from the fact that if a =
∑

m,n cm,nU m V n , then

∂a = π i
∑
m,n

(m+ in) cm,nU m V n,

together with the characterization of elements of A∞θ in terms of rapidly decreasing Fourier series. �

Thus the noncommutative torus admits no nontrivial global holomorphic functions. This is not surprising
since a compact complex manifold admits no nonconstant global holomorphic functions. However,
assuming τ( f ) = 0, we can solve the inhomogeneous Cauchy–Riemann equation ∂u = f , which in the
classical case is related to the proof of the Mittag-Leffler Theorem (see, for example, [Hörmander 1990,
Chapter 1]).

In some situations, one is led to the more complicated equation (∂u) u−1
= f , (similar to the one

above but with ∂ replaced by the logarithmic Cauchy–Riemann operator. This equation can be rewritten
as ∂u = f u. Is was already studied (under an alternative convention about whether one should multiply
on the left or the right) in a (different) noncommutative context in [Bost 1990], and then by Polishchuk:

Theorem 6.2 [Polishchuk 2006]. Let f ∈ Aθ . Then the equation ∂u = f u has a nonzero solution if and
only if τ( f ) ∈ π i(Z+ iZ).

(A slightly different convention is used in the given reference, and in [Polishchuk and Schwarz 2003]:
in those works, ∂ is taken as (x + iy)δ1 + δ2, with y < 0. When x = 0 and y = −1, this is what we
have here, up to a constant factor of −2i . This constant explains why the result looks different. With our
convention, u =U m V n solves ∂u = f u with f = π i(m+ in).)

The relevance of Theorem 6.2 concerns the theory of noncommutative meromorphic functions. While
a compact complex manifold admits no nonconstant global holomorphic functions, it can admit non-
constant meromorphic functions, such as (in the case of an elliptic curve) elliptic functions like the
Weierstraß ℘ function. There are two ways we can view meromorphic functions on a Riemann surface
M . On the one hand, they can be considered as ratios of holomorphic sections of holomorphic line
bundles L of M . On the other hand, they can be considered as formal quotients of functions that satisfy
the Cauchy–Riemann equation.

These points of view, applied to a noncommutative torus, are equivalent via the following reasoning.
A holomorphic vector bundle is defined via its module of (smooth) sections, which is a finitely generated

3We could also study different conformal structures on the torus, by changing the i here to another complex number in the
upper half-plane, but for the problems we will study here, this makes no essential difference.
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projective (right) A∞θ -module. This module must be equipped with an operator ∇ satisfying the basic
axiom

∇(s · a)= ∇(s) · a+ s · ∂(a).

If we assume the module is A∞θ itself (i.e., the vector bundle is of dimension 1, i.e., a line bundle), then
this operator is determined by f = ∇(1), in that for any s,

∇(s)= ∇(1 · s)= f · s+ 1 ∂(s)= ∂(s)+ f s.

A holomorphic section of the bundle is then a solution s of ∂(s)+ f s = 0.
On the other hand, the natural definition of meromorphic functions is the following.

Definition 6.3. A meromorphic function on the noncommutative torus Aθ is a formal quotient u−1v, with
u, v ∈ dom(∂)⊂ Aθ , satisfying the Cauchy–Riemann equation (in the sense to be made precise below).
Here we don’t want to require that u be invertible in Aθ (otherwise u−1v would be holomorphic, hence
constant), so we simply want u to be regular (in the sense of not being either a left or right zero divisor),
and the inverse is to be interpreted in a formal sense (or in the maximal ring of quotients [Berberian
1982], the algebra of unbounded operators affiliated to the hyperfinite II1 factor obtained by completing
Aθ in its trace representation). Then the condition that u−1v be meromorphic is that

0= ∂(u−1v)= ∂(u−1)v+ u−1∂v =−u−1∂(u)u−1v+ u−1∂v,

or (via multiplication by u on the left) that

∂v = f v, ∂u = f u, (6-1)

which says precisely that our meromorphic function is a quotient of two holomorphic sections of a
holomorphic line bundle with ∇ = ∂+ f . In the other direction, if u and v satisfy (6-1) and u is regular,
so that the formal expression u−1v makes sense, then we formally have

∂(u−1v)= ∂(u−1)v+ u−1∂v =−u−1∂(u)u−1v+ u−1∂v

=−u−1 f uu−1v+ u−1 f v =−u−1 f v+ u−1 f v = 0,

and u−1v is meromorphic.

In accordance with the classical existence theorem of Weierstraß for elliptic functions, we have:

Proposition 6.4. There exist nonconstant meromorphic functions on the noncommutative torus Aθ , in
the sense of Definition 6.3.

Proof. This follows immediately from the discussion in [Polishchuk 2006, §3], which shows that there
are choices for f for which the holomorphic connection ∇ is reducible, with a space of holomorphic
sections of dimension bigger than 1, and thus there are solutions of (6-1) with u and v not linearly
dependent. Note that if this is the case, u cannot be invertible ([Polishchuk 2006, Lemma 3.14]—we
also know this independently from Proposition 6.1). But we do require u to be regular, so we need to
check that this can be achieved. For example, suppose e is a proper projection in A∞θ (“proper” means
0 < τ(e) < 1) of trace m + nθ with n relatively prime to both m and 1−m. The trivial rank-one right
A∞θ module splits as eA∞θ ⊕ (1− e)A∞θ , and we can arrange to choose a holomorphic connection on
A∞θ that is reducible in a way compatible with this splitting, so that there are 1-dimensional spaces of
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holomorphic sections on each of eA∞θ and (1 − e)A∞θ . By the explicit formulas in [Polishchuk and
Schwarz 2003, Proposition 2.5], these come from real-analytic functions in S(R), and so it’s evident that
the u that results from putting these together is regular, as by [Berberian 1982], it’s enough to observe
that its left and right support projections are equal to 1. �

On the other hand, there is also a nonexistence result for meromorphic functions on the (classical)
torus: no such nonconstant function exists with only a single simple pole [Ahlfors 1978, Corollary to
Theorem 4, p. 271]. We can find an analogue of this in the noncommutative situation also. To explain
it, first note that in the sense of distributions on the complex plane, ∂

( 1
z

)
is not zero (if it were, 1

z
would have a removable singularity, by elliptic regularity), but rather is equal to π δ, where δ is the
Dirac δ-distribution at 0. Suppose there were a meromorphic function f on T2

= C/(Z+ iZ) with at
worst one simple pole and no other poles. Then f would be locally integrable and, after translation
to move the pole to 0, would define a distribution on T2 with ∂( f ) a multiple of δ. Thus the Fourier
series of ∂( f ) would be a multiple of the Fourier series of δ, which is

∑
m,n U m V n . And in fact Fourier

analysis gives another proof of the nonexistence theorem not using residue calculus. Suppose f were
nonconstant. Since a compact complex manifold admits no nonconstant holomorphic functions, f cannot
be holomorphic, which means that ∂ f must be nonzero in the sense of distributions. Since ∂( f ) is a
multiple of

∑
m,n U m V n , the proportionality constant, which is also the (0, 0) Fourier coefficient of ∂ f ,

must be nonzero. But this is impossible since the Fourier series of any distribution in the image on ∂
must have zero constant term. The noncommutative analogue of all this is the following:

Proposition 6.5. Let f be a distribution in the dual of A∞θ . (The distributions consist of formal Fourier
series

∑
m,n cm,n U m V n with {cm,n} of tempered growth.) Suppose ∂ f is a multiple of

∑
m,n U m V n . Then

f is a constant.

Proof. This follows exactly the lines as the argument above for the classical theorem. If ∂ f has formal
Fourier expansion c

∑
m,n U m V n , then the (m, n) coefficient, c, must be divisible by m+in for all (m, n).

Because of the (0, 0) coefficient, this is only possible if c= 0. But if c= 0, then f is in the distributional
kernel of ∂ , which forces all the Fourier coefficients of f to vanish except for the constant term. �

In fact, essentially the same proof proves a slightly more general statement, which in the classical
case is equivalent to [Ahlfors 1978, Theorem 4, p. 271]. For the analysis above shows that the sum of
the residues of a meromorphic function f on T2, when the function is considered as a distribution4, is
precisely the constant term in the Fourier series of ∂ f , up to a factor of π . The analogue of the sum of
the residues theorem in the noncommutative world is this:

Proposition 6.6. Let f be a distribution in the dual of A∞θ . Then the constant term in the (formal)
Fourier series of ∂ f is zero.

Proof. Essentially the same as before. �

The connection with the main subject of this paper is of course that meromorphic functions w as
studied in this section are singular solutions of Laplace’s equation 1w = 0, since 1 = 4 ∂ ∂ . More
precisely, “singular solution” means classically that as a distribution, 1w is not necessarily 0, but has

4This requires a comment. A meromorphic function with simple poles is locally integrable, thus defines a distribution in the
obvious way. A meromorphic function with higher-order poles is not locally integrable, but can be made into a distribution of
principal value integral type. This distribution is not a measure.
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countable support. In the noncommutative setting, we do not have a notion of support for a distribution,
but the same basic idea applies.
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AN INVERSE SOURCE PROBLEM IN OPTICAL MOLECULAR IMAGING

PLAMEN STEFANOV AND GUNTHER UHLMANN

We study the direct and an inverse source problem for the radiative transfer equation arising in optical
molecular imaging. We show that for generic absorption and scattering coefficients, the direct problem
is well-posed and the inverse one is uniquely solvable, with a stability estimate.

1. Introduction

We consider an inverse source problem arising in optical molecular imaging (OMI) which is currently
undergoing a rapid expansion. The design of new biochemical markers that can detect faulty genes and
other molecular processes allows us to detect diseases before macroscopic symptoms appear. This has
been studied extensively in the bioengineering literature. See for instance [Chang et al. 1997; Contag et al.
1998; Jang et al. 2000]. Unlike higher-energetic markers used in classical nuclear imaging techniques
such as single photon emission computed tomography (SPECT), positron emission tomography (PET),
as well as magnetic resonance imaging (MRI), optical markers emit relatively low-frequency photons.
The objective of OMI is to reconstruct the concentration of such markers from their radiations measured
at the boundary of the domain. The radiations in OMI are governed by the equations of radiative transfer
and the inverse problem in OMI is thus an inverse transport source problem, at least once the optical
properties of the underlying medium are known. We now describe more precisely the mathematical
problem.

We assume that � is a bounded domain of Rn with smooth boundary. We will assume also that �
is strictly convex. This is not an essential assumption since for the problem that we study, one can
always push the boundary away and make it strictly convex, without losing generality. In our main result
Theorem 3.1, we assume that the data is given on the boundary of a larger �1 c�. This is not essential
for the uniqueness result but it is essential for the stability estimate (9).

The radiative transport equation is given by

θ · ∇x u(x, θ)+ σ(x, θ)u(x, θ)−
∫

Sn−1
k(x, θ, θ ′)u(x, θ ′) dθ ′ = f (x), u|∂−S� = 0, (1)

where the absorption σ and the collision kernel k are functions with a regularity that will be specified
below. The source term f is assumed to depend on x only.

In Section 2 we study the direct problem. We show that for an open and dense set of absorption and
scattering coefficients the direct problem (1) is well-posed. See Theorem 2.1 for details.

MSC2000: primary 35R30; secondary 35Q60, 35S05.
Keywords: transport equation, optical molecular imaging, inverse problem, tomography.
First author partly supported by an NSF FRG Grant No. 0554065. Second author partly supported by an NSF FRG grant
No. 0554571 and a Walker Family Endowed Professorship.
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The boundary measurements are modeled by

X f (x, θ)= u|∂+S�, (x, θ) ∈ ∂+S�,

where u(x, θ) is a solution of (1), and ∂+S� denotes the points x ∈∂�with direction θ pointing outwards.
In Section 3 we consider the inverse source problem, that consists in determining the source term

f from measuring X f . Notice that in the case σ = k = 0 the linear operator X is the standard X-ray
transform and when k = 0, X is a weighted X-ray transform (see Section 2).

This inverse problem has been considered in several papers in the mathematical and engineering
community [Bal and Tamasan 2007; Larsen 1975; Panchenko 1993; Sharafutdinov 1997; Siewert 1993;
Yi et al. 1992]. In particular in [Bal and Tamasan 2007] it is shown that one can prove uniqueness when
k = k(x, θ ·θ ′), and k is small enough in a suitable norm. We show that for the absorption and scattering
in an dense and open subset we can uniquely determine the source f from the boundary measurements.
We also prove a stability estimate. See Theorem 3.1 for details.

2. The direct problem

Set
T0 = θ · ∇x , T1 = T0+ σ, T = T0+ σ − K ,

where σ is viewed as the operator of multiplication by σ(x, θ), and K is the integral operator in (1).
Let u solve

T u = f, u|∂−S� = 0. (2)

As mentioned in the introduction the operator X is the X-ray transform, if σ = k = 0,

X f (x, θ)= I f (x, θ) :=
∫ 0

τ−(x,θ)
f (x + tθ) dt, (x, θ) ∈ ∂+S�,

where ±τ±(x, θ) ≥ 0 are defined by (x, x + τ±(x, θ)) ∈ ∂±S�. We will always extend f as 0 outside
� so we can assume that we integrate above over R. If k = 0, then X reduces to the following weighted
X-ray transform

X f (x, θ)= Iσ f (x, θ) :=
∫

E(x + tθ, θ) f (x + tθ) dt, (x, θ) ∈ ∂+S�, (3)

where

E(x, θ)= exp
(
−

∫
∞

0
σ(x + sθ, θ) ds

)
.

If σ > 0 depends on x only, this is known as the attenuated X-ray transform, that is injective, and there
is an explicit inversion formula (see [Novikov 2002; Arbuzov et al. 1997]).

We define the adjoint X∗ of X with respect to the measure d6 defined above. We will view X as a
perturbation of Iσ , and our goal is to show that X∗X is a relatively compact perturbation of I ∗σ Iσ .

First we will analyze the direct problem. Some conditions are needed for its well-posedness, that
usually involve smallness of k with respect to σ ; see, for example, [Dautray and Lions 1993; Reed and
Simon 1979] and [Sharafutdinov 1997] for the Riemannian case. In the next theorem, f is allowed to
depend on θ as well and we show that the direct problem is generically solvable.
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Theorem 2.1. There exists an open and dense set of pairs (σ, k)∈C2(�×Sn−1)×C2(�×Sn−1
×Sn−1),

including a neighborhood of (0, 0), so that for each (σ, k) in that set,

(a) the direct problem (2) has a unique solution u ∈ L2(�× Sn−1) for any f ∈ L2(�× Sn−1) depending
both on x and θ ;

(b) X extends to a bounded operator

X : L2(�× Sn−1)→ L2(∂+S�, d6).

Proof. We start with the analysis of the direct problem (2). In what follows, let T0, T1 and T denote the
operators given by (1) in L2(�× Sn−1) with domain

D(T0)= D(T1)= D(T )=
{

f ∈ L2(�× Sn−1); θ · ∇x u ∈ L2(�× Sn−1), u|∂−S� = 0
}
.

We will assume here that f depends both on x and θ . Note first that the solution to the problem (2) with
k = 0 is given by u = T−1

1 f , where

[T−1
1 f ](x, θ)=

∫ 0

−∞

exp
(
−

∫ 0

s
σ(x + τθ, θ) dτ

)
f (x + sθ, θ) ds.

This follows easily from the fact that E is an integrating factor, that is, T0 = E−1T1 E .
Apply T−1

1 to both sides of (2) to get

u = T−1
1 (K u+ f ).

We therefore see that (2) is equivalent to the integral equation

(Id− T−1
1 K )u = T−1

1 f.

Therefore, if (Id− T−1
1 K ) is invertible, (2) is uniquely solvable, and the solution is given by

u = T−1 f = (Id− T−1
1 K )−1T−1

1 f. (4)

When f depends on x only, set
[J f ](x, θ) := f (x).

Then
u = T−1 J f = (Id− T−1

1 K )−1T−1
1 J f.

Lemma 2.2. The operator K T−1
1 J : L2(�)→ L2(�× Sn−1) is compact.

Proof. Let first f depend both on x and θ . Then

[K T−1
1 f ](x, θ)=

∫
Sn−1

k(x, θ, θ ′)
∫ 0

−∞

exp
(
−

∫ 0

s
σ(x + τθ ′, θ ′) dτ

)
f (x + sθ ′, θ ′) ds dθ ′

=

∫
6

(
x, |x − y|, x−y

|x−y|

)
k
(
x, θ, x−y

|x−y|

)
|x − y|n−1 f

(
y,

x − y
|x − y|

)
dy,

(5)

where

6(x, s, θ ′)= exp
(
−

∫ 0

−s
σ(x + τθ ′, θ ′) dτ

)
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(we replaced s by −s and then made the change x − sθ ′ = y).
Assume now that f depends on x only, that is, we have J f above with such an f . Then

[K T−1
1 J ] f (x, θ)=

∫
�

6
(
x, |x − y|, x−y

|x−y|

)
k
(
x, θ, x−y

|x−y|

)
|x − y|n−1 f (y) dy. (6)

The integral above is a typical singular operator with a weakly singular kernel, and an additional pa-
rameter θ ; see [Michlin and Prössdorf 1980; Stein 1970]. Under the smoothness assumptions on σ and
k, it is easy to see that ∂θK T−1

1 and ∂x K T−1
1 are bounded operators; see Proposition 3.4 below. This

completes the proof of the lemma. �

Remark 2.3. The arguments above do not prove that K T−1
1 is compact in L2(�× Sn−1) because there

are no enough integrations in this case to apply the same arguments. Its square however is compact, as the
next lemma shows. On the other hand, under appropriate smoothness assumptions on k, similar to those
in Theorem 3.1 (see (9)), the operator K T−1

1 is compact, indeed. This is a consequence of the velocity
averaging lemma that states that if k = k(θ ′) with k of appropriate regularity, then K T−1 is compact in
L2(�× Sn−1) . The gained regularity then is 1

2 only, not 1. Now, for k = k(x, θ ′, θ) smooth enough,
one can approximate K uniformly with finite sums of operators with kernels κ(x)2′(θ ′)2(θ), each one
of which is compact. For more details, we refer to [Mokhtar-Kharroubi 1997] and the references there.

Lemma 2.4. The operator K T−1
1 K : L2(�× Sn−1)→ L2(�× Sn−1) is compact.

Proof. Replace f
(
y, x−y
|x−y|

)
in (5) by

[K f ]
(

y,
x − y
|x − y|

)
=

∫
Sn−1

k
(

y,
x − y
|x − y|

, θ ′
)

f (y, θ ′) dθ ′.

Then the compactness follows from the same arguments as in Lemma 2.2. Indeed, we have

[K T−1
1 K f ](x, θ)=

∫∫
�×Sn−1

α
(
x, y, |x − y|, x−y

|x−y| , θ, θ
′
)

|x − y|n−1 f (y, θ ′) dy dθ ′,

with an obvious definition of α. In particular, all second order derivatives of α are bounded. Let
g(x, θ, θ ′) be the y-integral above, that is, the right hand side above becomes

∫
g(x, θ, θ ′) dθ ′. Then

by Proposition 3.4 below, ∫
�

|∂x g(x, θ, θ ′)|2 dx ≤ C
∫
�

| f (x, θ ′)|2 dx

for any θ , θ ′. In particular, ∫∫
�×Sn−1

|∂x g(x, θ, θ ′)|2 dx dθ ′ ≤ C‖ f ‖2L2 .

Then

‖∂x K T−1
1 K f ‖2 =

∫∫
�×Sn−1

∣∣∣∣∫
Sn−1

∂x g(x, θ, θ ′) dθ ′
∣∣∣∣2

dx dθ

≤ C
∫∫

�×Sn−1

∫
Sn−1
|∂x g(x, θ, θ ′)|2 dθ ′dx dθ

≤ C ′‖ f ‖2L2 .
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It is easy to see that ∂θK T−1
1 K f ∈ L2 as well. This, and the estimate above, imply the compactness of

K T−1
1 K . �

We proceed with the proof of part (a) of the theorem. We are looking for k so that T−1 exists. Consider

A(λ)=
(
Id− (λK T−1

1 )2
)−1

in L2(�× Sn−1). The operator (K T−1
1 )2 is compact, and for λ = 0, the resolvent above exists. By the

analytic Fredholm theorem [Reed and Simon 1980], A(λ) is a meromorphic family of bounded operators.
In particular, it exists for all but a discrete set of λ’s. Thus for the those λ’s, the resolvent (Id−λK T−1

1 )−1

exists and is given by

(Id− λK T−1
1 )−1

= (Id+ λK T−1
1 )A(λ). (7)

Indeed, it is obvious that the operator on the right hand side above is a right inverse to Id− λK T−1
1 .

For |λ| � 1, one can use Neumann series to show that it is left inverse as well. One can use analytic
continuation around the poles to show that this remains true for all λ that are not poles.

By (4), then T−1 exists for such λ’s and k replaced by λk. In particular, this shows that the set of
such (k, σ ) is dense. Standard perturbation arguments show that the set of k’s for which Id−λK T−1

1 is
invertible, is open in C0 for a fixed σ and the set of pairs (σ, k) ∈ C0

× C0 with the same property is
open, too. Since we just showed that it is dense as well in C0

×C0, this completes the proof of (a).
We proceed with the proof of (b). For X we get (see (4)),

X f = R+T−1 f = R+(Id− T−1
1 K )−1T−1

1 f,

where R+h = h|∂+S�. If f depends on x only, then

X f = R+T−1 J f = R+(Id− T−1
1 K )−1T−1

1 J f. (8)

Notice first that

(Id− T−1
1 K )−1T−1

1 = T−1
1 (Id− K T−1

1 )−1,

and in particular, the resolvent on the left exists if and only if the resolvent in the right hand side does.
We therefore have

X f = R+T−1
1 (Id− K T−1

1 )−1 J f.

To prove (b), it is enough to show that

R+T−1
1 : L

2(�× Sn−1)→ L2(∂+S�, d6)

is bounded. A straightforward computation (see also [Choulli and Stefanov 1999]) shows that∫
∂+S�

∫ 0

τ−(x,θ)
f (x − tθ, θ) dt d6 =

∫
�×Sn−1

f (x, θ) dx dθ
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for any f ∈ L1(�× Sn−1). Therefore,

‖R+T−1
1 f ‖2L2(∂+S�, d6) =

∫
∂+S�
|R+T−1

1 f (x, θ)|2d6 ≤
∫
∂+S�

∣∣∣∣∫ 0

τ−(x,θ)
f (x + tθ, θ) dt

∣∣∣∣2

d6

≤

∫
∂+S�

(
|τ−(x, θ)|

∫ 0

τ−(x,θ)
| f (x + tθ, θ)|2 dt

)
d6

≤ diam(�) ‖ f ‖2L2(�×Sn−1)
. �

3. The inverse source problem

In this section we consider the inverse source problem. The next theorem shows that for generic (σ, k)
there is uniqueness and stability. As mentioned in the introduction a similar result has been proven in
[Bal and Tamasan 2007] in the case where k = k(x, θ · θ ′), and k is small enough in a suitable norm.

Fix another strictly convex bounded domain�1 so that�1c�. Extend (σ, k)with regularity as below
to functions in �1 with the same regularity. We chose and fix that extension as a continuous operator
in those spaces. Define the operator X1 : L2(�1)→ L2(∂+SM1) in the same way as X . We will be
interested in the restriction of X1 to functions f supported in �. We always extend such f as zero to
�1 \�. This corresponds to taking measurements on ∂�1 instead of ∂�.

Theorem 3.1. There exists an open and dense set of pairs

(σ, k) ∈ C2(�× Sn−1)×C2(�× Sn−1
θ ′ ; Cn+1(Sn−1

θ )
)
, (9)

including a neighborhood of (0, 0), so that for each (σ, k) in that set, the conclusions of Theorem 2.1
hold in �1, and

(a) the map X1 is injective on L2(�),

(b) the following stability estimate holds:

‖ f ‖L2(�) ≤ C‖X∗1 X1 f ‖H1(�1), (10)

for all f ∈ L2(�), with a constant C > 0 locally uniform in (σ, k).

Remark 3.2. The smoothness requirement on k can be reduced to k ∈ C2 if k is of a special form, like
k =2(θ)κ(x, θ ′) or a finite sum of such; see (15), (16).

From now on, we will drop the subscript 1, and all operators below are as defined before but in the
domain �1. We assume that (σ, k) are such that T−1 exists. We assume now that X is applied to f that
depends on x only. For now, it is not important that f is supported in �; that will be needed in (20) and
after that; so we apply X to functions in L2(�1). By (8),

X = Iσ + L , L := R+
(
−Id+ (Id− T−1

1 K )−1)T−1
1 J (11)

(see also (3)). Then
X∗X = I ∗σ Iσ +L, L := I ∗σ L + L∗ Iσ + L∗L . (12)

In our analysis, we will apply a parametrix of I ∗σ Iσ to X∗X . That parametrix is a first order operator.
For this reason, we study ∂x I ∗σ L .
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Lemma 3.3. The operators
∂x I ∗σ L , ∂x L∗ Iσ , ∂x L∗L

are compact as operators mapping L2(�1) into L2(�1).

Proof. To analyze I ∗σ L , note that L also admits the following representation

L = R+T−1
1 K T−1

1 (Id− K T−1
1 )−1 J. (13)

We need to study I ∗σ R+T−1
1 K T−1

1 h, where h = h(x, θ). Notice first that

[I ∗σ h](x)=
∫

Sn−1
E(x, θ)h](x, θ) dθ,

where E denotes complex conjugate, and h] is the extension of h ∈ C(∂+S�1) as a constant along the
lines originating from x in the direction −θ ; see, for example, [Frigyik et al. 2008, Section 4]. In other
words,

h](x, θ)= h
(
x + τ+(x, θ), θ

)
.

Next, R+T−1
1 h looks just like Iσ (see (3)) but with f there depending on θ as well. Therefore,

[I ∗σ R+T−1
1 g](x)=

∫
Sn−1

E(x, θ)
[∫ 0

−∞

E(x + tθ, θ)g(x + tθ, θ) dt
]]

dθ.

This yields (see [Frigyik et al. 2008] again):

[I ∗σ R+T−1
1 g](x)=

∫∫
Sn−1

E(x, θ)(Eg)(x + tθ, θ) dθ dt

= 2
∫
�1

[
E

(
x, y−x
|y−x |

)
(Eg)

(
y, y−x
|y−x |

)]
even

|y− x |n−1 dy,

(14)

where Feven(x, θ) is the even part of F as a function of θ . If we set g = K T−1
1 h, that would give us

I ∗σ R+T−1
1 K T−1

1 h.
Instead of assuming (9), we will make the following weaker assumption at this point: k can be written

as the infinite sum

k(x, θ, θ ′)=
∞∑
j=1

2 j (θ)κ j (x, θ ′) (15)

with some functions 2 j and κ j so that
∞∑
j=1

‖2 j‖H1(Sn−1)‖κ j‖L∞(�1×Sn−1) <∞. (16)

One such way to do this is to choose 2 j to be the spherical harmonics Y j ; then κ j are the correspond-
ing Fourier coefficients. Then ‖Y j‖H1(Sn−1) ≤ C(1+ λ j ), where λ2

j are the eigenvalues of the positive
Laplacian on Sn−1. Since λ j = O( j1/(n−1)), for the uniform convergence of (15) it is enough to have
‖κ j‖L∞ ≤C(1+λ j )

−n−ε with ε > 0. This would be guaranteed if k ∈ L∞
(
�1× Sn−1

θ ′ ; Cn+1
θ (Sn−1)

)
by

standard integration by parts arguments. Therefore, the hypothesis (9) of the theorem implies (15) and
(16).
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Under this assumption, for K j T−1
1 h, where K j has kennel 2 jκ j , we have (see (5)):

[K j T−1
1 h](x, θ)=2 j (θ)[B j h](x),

B j h(x) : =
∫
�1

6
(
x, |x − y|, x−y

|x−y|

)
κ j

(
x, x−y
|x−y|

)
|x − y|n−1 h

(
y,

x − y
|x − y|

)
dy.

(17)

We claim now that B j (Id− K T−1
1 )−1 J : L2(�1)→ L2(�1) is compact. We have

(Id− K T−1
1 )−1 J = J + (Id− K T−1

1 )−1K T−1
1 J.

By Lemma 2.2, the second term on the right is compact. Therefore, it remains to show that B j J is
compact. Observe that B j Jh is given by (17) with h = h(x). The compactness then follows from
Proposition 3.4, assuming that κ j ∈ C2. On the other hand, B j J is compact under the assumption that
κ j ∈ L∞ only, by [Michlin and Prössdorf 1980, Theorem VII.3.3]. Moreover, its norm is bounded by
C‖κ j‖L∞ .

We can now write

∂x I ∗σ L = ∂x I ∗σ R+T−1
1 K T−1

1 (Id− K T−1
1 )−1 J

=

∞∑
j=1

(∂x I ∗σ R+T−1
1 2 j J )

(
B j (Id− K T−1

1 )−1 J
)
. (18)

We notice first that ∂x I ∗σ R+T−1
1 2 j J : L2(�1)→ L2(�1) is bounded by Proposition 3.4 (b), compare

to (14), with a norm bounded by C‖σ‖C2‖2 j‖H1 . The operator B j (Id − K T−1
1 )−1 J on the right is

compact, as we have just seen. Therefore, each summand in the right hand side of (18) is a compact
operator with a norm not exceeding C‖2 j‖H1‖κ j‖L∞ , where C depends on σ as well. Then the series
in (18) converges uniformly by (16). Under this condition, ∂x I ∗σ L is compact.

To analyze ∂x L∗L , we will follow the proof above. It is enough to show that ∂x L∗R+T−1
1 2 j J :

L2(�)→ L2(�1) is bounded. We have (see (13)):

∂x L∗R+T−1
1 2 j J = ∂x

(
R+T−1

1 (Id− K T−1
1 )−1K T−1

1 J
)∗R+T−1

1 2 j J

= ∂x(K T−1
1 J )∗

(
R+T−1

1 (Id− K T−1
1 )−1)∗R+T−1

1 2 j J. (19)

Since R+T−1
1 is bounded, it remains to show that the operator ∂x(K T−1

1 J )∗ : L2(�1× Sn−1)→ L2(�)

is bounded, as well. The kernel of the latter is (see (6))

(x, (y, θ)) 7→ ∂x
6

(
y, |y− x |, y−x

|y−x |

)
k
(
y, θ, y−x

|y−x |

)
|y− x |n−1 .

Then the boundedness of ∂x(K T−1
1 J )∗ then follows as in Lemma 2.4.

Finally, the fact that ∂x L∗ Iσ is bounded follows from the proof for ∂x L∗L . Indeed,

∂x L∗ Iσ = ∂x L∗R+T−1
1 J,

compare with (19), where we can set 2 j = 1.
This completes the proof of Lemma 3.3. �
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Proof of Theorem 3.1. We return to the analysis of the operator X∗X ; see (12). We showed in Lemma 3.3
that, up to a relative compact operator, X∗X coincides with I ∗σ Iσ . Assume that σ and k are C∞. Let Q
be a parametrix (of order 1) to the elliptic 9DO I ∗σ Iσ in �1. We restrict the image of Q to L2(�), that
is, we view Q as an operator Q : H 1(�1)→ L2(�). Then for any f supported in �, we have

Q I ∗σ Iσ f = f + K1 f, (20)

where K1 is of order −1 near �. Apply Q to X∗X to get

Q X∗X f = f + K2 f, K2 := K1+ QL. (21)

Then K2 : L2(�) → L2(�) is compact. We get that the problem of inverting X∗X is reduced to a
Fredholm equation. We will show that it is generically solvable, as in the theorem.

We show first that the set of pairs for which X is injective is dense.
By the results of [Frigyik et al. 2008, Theorems 1 and 2], if σ is real analytic in a �1, then Iσ is

injective, and therefore I ∗σ Iσ , is injective as well. Moreover, for a small C2(�), perturbation preserves
that property. Actually, the remark after [Frigyik et al. 2008, Theorem 2] shows that this is true even
for small enough C1 perturbations. Fix σ real analytic in �1. Fix k as well so that (σ, k) belongs to the
generic set in Theorem 2.1, related to�1, and the regularity assumption (9) is satisfied. That can be done
for an open dense set of k’s by the proof of Theorem 2.1. Consider X related to (σ, λk) with λ belonging
to some complex neighborhood C of [0, 1]. The operator K2 in (21) depends meromorphically on λ∈C.
Indeed, K1 is related to (σ, 0) (that is, to λ = 0), and is therefore independent of λ. The parametrix Q
is also independent of λ. The analysis above shows that L is a meromorphic function of λ because L
has that property; see (7) and (11). For λ = 0, we have L = 0, and then K2 = K1. By adding a finite
rank operator to Q, we can arrange that Id+ K1 (see (20)) is injective; see also the proof of [Stefanov
and Uhlmann 2005, Proposition 4]. We can then apply the analytic Fredholm theorem again in C with
the poles of (Id− λK )−1T−1

1 removed. The latter is a connected set, containing λ = 0 and λ = 1. The
analytic Fredholm theorem then implies that Q X∗X is invertible for all λ in that set with the possible
exception of a discrete set. In particular, there are λ’s as close to λ= 1 as needed with that property. For
those λ’s, X∗X and X are injective as well. This shows that there is a dense set of pairs (σ, k) in the
space (9) so that X is injective. Let us call that set U.

We show next that for (σ, k) in some neighborhood of U, X is still injective.
Let (k, σ ) ∈ U. Then X : L2(�)→ L2(∂�1, d6) is injective . Then X∗X : L2(�)→ H 1(�1) is

injective as well, as an integration by parts shows. By adding a finite rank operator to Q, we can arrange
that Id+ K1 (see (20)) is injective, as above. Then Id+ K1 is invertible on L2(�), and we deduce that
(10) holds.

The analysis above implies that the norm ‖X∗X‖L2(�)→H1(�1) depends continuously on (σ, k) as in
(9). Therefore, we can perturb (σ, k), and (10) would remain true because the perturbation of the right
hand side will be absorbed by the left hand side. On the other hand, injectivity of X∗X implies injectivity
of X .

This proves that the set of pairs (σ, k), for which X is injective, is open subset of the (generic) set of
pairs, for which the direct problem is guaranteed to be uniquely solvable by Theorem 2.1. Moreover,
(10) holds with C locally uniform.

This completes the proof of Theorem 3.1. �
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In the proof of the theorem, we used the following proposition about singular operators.

Proposition 3.4. Let A be the operator

[A f ](x)=
∫
α
(
x, y, |x − y|, x−y

|x−y|

)
|x − y|n−1 f (y) dy

with α(x, y, r, θ) compactly supported in x, y. Then

(a) if α ∈ C2, then A : L2
→ H 1 is continuous with a norm not exceeding C‖α‖C2 ;

(b) let α(x, y, r, θ)= α′(x, y, r, θ)φ(θ) then

‖A‖L2→H1 ≤ C‖α′‖C2‖φ‖H1(Sn−1).

Proof. We recall some facts about the Calderón–Zygmund theory of singular operators; see [Michlin
and Prössdorf 1980]. First, if K is an integral operator with singular kernel k(x, y)= φ(x, θ)r−n , where
θ =

x−y
|x−y| , r = |x − y|, and if the “characteristic” φ has a mean value 0 as a function of θ , for any

x , then K is a well-defined operator on test functions, where the integral has to be understood in the
principle value sense. Moreover, K extends to a bounded operator to L2 with a norm not exceeding
C supx ‖φ(x, ·)‖L2(Sn−1); see [Michlin and Prössdorf 1980, Theorem XI.3.1]. The characteristic φ does
not need to have zero mean value in θ but then the integral has to be considered as a convolution in
distribution sense. The latter is well defined because the Fourier transform of the kernel with respect to
the variable z = rθ is homogeneous of order 0, thus bounded.

Also, see [Michlin and Prössdorf 1980, Theorem XI.11.1]; if B is an operator with a weakly singular
kernel ψ(x, θ)r−n+1, then ∂x B is an integral operator with singular kernel ∂x [β(x, θ)r−n+1

]. The latter,
up to a weakly singular operator, has a singular kernel of the type φr−n , and the integration is again
understood in the principle value sense; see the next paragraph. In particular, the zero mean value
condition is automatically satisfied.

In our case, β = α depends on y and r as well. Assume first that it does not, that is, B is as above.
Extend β as a homogeneous function of θ of order 0 near Sn−1. Then

∂xi

β(x, θ)
rn−1 = (1− n)

θi

rn β +
∑

j

∂β

∂θ j

rn−1

∂θ j

∂xi
+
βxi (x, θ)

rn−1

= (1− n)
θi

rn β +
∑

j

∂β

∂θ j

rn (δi j − θiθ j )+
βxi (x, θ)

rn−1

=
(1− n)θiβ +

∂β

∂θi

rn +
βxi (x, θ)

rn−1 . (22)

We used the fact that
∑

j θ j
∂β

∂θ j
= 0 because β is homogeneous of order 0 in θ . It is not hard to show

that the “characteristic”

φ(x, θ)= (1− n)θiβ +
∂β

∂θi

has zero mean over Sn−1
θ ; see [Michlin and Prössdorf 1980, p. 243]. In this particular case where

α(x, y, θ) = β(x, θ), independent of y and r , statement (a) can be proven as follows. Choose a finite
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atlas of charts for Sn−1 so that for each chart, n− 1 of the θ coordinates (that we keep fixed in Rn) can
be chosen as local coordinates. By rearranging the x , and respectively, the θ coordinates, in each fixed
chart, we can assume that they are θ ′ = (θ1, . . . , θn−1). Then ∂β

∂θn
=−

∑n−1
i=1

∂β

∂θi
. Then in (22), we have

derivatives of β with respect to θ ′ (and x) with smooth coefficients. The contribution of the first term
then can be estimated by the Calderón–Zygmund theorem. The second term is a kernel of a weakly
singular operator. The following criterion can be applied to it: If K has an integral kernel k(x, y) with
the property

sup
x

∫
|k(x, y)|dx ≤ M, sup

y

∫
|k(x, y)|dy ≤ M, (23)

then K is bounded in L2 with a norm not exceeding M [Taylor 1996, Proposition A.5.1].
This proves (a) for α = β.
To replace β(x, θ) above by α(x, y, θ), write α(x, y, r, θ)= α(x, x, 0, θ)+ rγ (x, y, r, θ).
To prove (b), write first as above,

α(x, y, r, θ)= β ′(x, θ)φ(θ)+ rγ (x, y, r, θ)φ(θ), β ′(x, θ) := α1(x, x, 0, θ),

where γ ∈ C1. Notice then that in (22), with β = β ′φ, we have

(1− n)θiβ +
∂β

∂θi
= (1− n)θiβ

′φ+φ
∂β ′

∂θi
+β ′

∂φ

∂θi
.

Choosing local coordinates as above, and applying the Calderón–Zygmund theorem again, we get that
the first term above contributes a singular operator with a norm not exceeding ‖α1‖C1‖φ‖H1 . The second
term rγ generates an operator with a kernel γ (x, y, r, θ)φ(θ)r−n+2. Differentiate with respect to x , and
we still get a weakly singular operator whose norm can be estimated as in (23) to give a norm not
exceeding ‖γ1‖C1‖φ‖H1 . �

Remark 3.5. The only second order derivatives of α that were needed in the proof of (a) were ∂(x,θ)∂(t,r)α.
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