ANALYSIS \& PDE

Volume 1

CONSTRUCTION OF ONE-DIMENSIONAL SUBSETS OF THE REALS NOT CONTAINING SIMILAR COPIES OF GIVEN PATTERNS

TAmÁs Keleti

CONSTRUCTION OF ONE-DIMENSIONAL SUBSETS OF THE REALS NOT CONTAINING SIMILAR COPIES OF GIVEN PATTERNS

TamÁs Keleti

For any countable collection of sets of three points we construct a compact subset of the real line with Hausdorff dimension 1 that contains no similar copy of any of the given triplets.

1. Introduction

An old conjecture of Erdős [1974] (also known as the Erdős similarity problem) states that for any infinite set $A \subset \mathbb{R}$ there exists a set $E \subset \mathbb{R}$ of positive Lebesgue measure which does not contain any similar (that is, translated and rescaled) copy of A. It is known that slowly decaying sequences are not counterexamples [Falconer 1984; Bourgain 1987; Kolountzakis 1997] (see for example [Humke and Laczkovich 1998; Komjáth 1983; Svetic 2000] for other related results) but nothing is known about any infinite sequence that converges to zero at least exponentially. On the other hand, it follows easily from Lebesgue's density theorem that any set $E \subset \mathbb{R}$ of positive Lebesgue measure contains similar copies of every finite set.

Bisbas and Kolountzakis [2006] gave an incomplete proof of a related statement: For every infinite set $A \subset \mathbb{R}$ there exists a compact set $E \subset \mathbb{R}$ of Hausdorff dimension 1 such that E contains no similar copy of A. Kolountzakis asked whether the same holds for finite sets as well. Iosevich asked a similar question: if $A \subset \mathbb{R}$ is a finite set and $E \subset[0,1]$ is a set of given Hausdorff dimension, must E contain a similar copy of A ?

In this paper we answer these questions by showing that for any set $A \subset \mathbb{R}$ of at least 3 elements there exists a 1-dimensional set that contains no similar copy of A. In fact, we obtain a bit more by proving the following theorem, which immediately yields the two subsequent corollaries.

Theorem 1.1. For any countable set $A \subset(1, \infty)$ there exists a compact set $E \subset \mathbb{R}$ with Hausdorff dimension 1 such that if $x<y<z$ and $x, y, z \in E$, then

$$
\frac{z-x}{z-y} \notin A .
$$

Corollary 1.2. For any sequence $B_{1}, B_{2}, \ldots \subset \mathbb{R}$ of sets of at least three elements there exists a compact set $E \subset \mathbb{R}$ with Hausdorff dimension 1 that contains no similar copy of any of B_{1}, B_{2}, \ldots

Corollary 1.3. For any countable set $B \subset \mathbb{R}$ there exists a compact set $E \subset \mathbb{R}$ with Hausdorff dimension 1 that intersects any similar copy of B in at most two points.

[^0]The method of the construction is similar to the method used in [Keleti 1998], where a compact set A of Hausdorff dimension 1 is constructed such that A does not contain any set of the form

$$
\{a, a+b, a+c, a+b+c\}
$$

for any $a, b, c \in \mathbb{R}, b, c \neq 0$, so in particular A does not contain any nontrivial 3-term arithmetic progression.

Laba and Pramanik [2007] obtained a positive result by proving that if a compact set $E \subset \mathbb{R}$ has Hausdorff dimension sufficiently close to 1 and E supports a probability measure whose Fourier transform has appropriate decay at infinity then E must contain nontrivial 3-term arithmetic progressions. It would be interesting to know whether similar conditions could guarantee other finite patterns as well.

Perhaps one can even find conditions weaker than having positive measure that implies that a compact subset of \mathbb{R} contains similar copies of all finite subsets. This is not impossible since Erdős and Kakutani [1957] constructed a compact set of measure zero with this property. The Erdős-Kakutani set has Hausdorff dimension 1 but, using the ideas from [Elekes and Steprāns 2004], Máthé [≥ 2008] constructed such a set with Hausdorff dimension 0. However, the packing dimension of such a set must be 1, since the argument of the proof of [Darji and Keleti 2003, Theorem 2] gives that if a compact set $C \subset \mathbb{R}$ contains similar copies of all sets of n points then C has packing dimension at least $\frac{n-2}{n}$.

2. Proof of Theorem 1.1

Fix a sequence $\alpha_{1}, \alpha_{2}, \ldots \subset A$ so that each element of A appears infinitely many times in the sequence $\left(\alpha_{k}\right)$. Let

$$
\begin{equation*}
\beta_{k}=\max \left(6 \alpha_{k}, \frac{6 \alpha_{k}}{\alpha_{k}-1}\right), \quad(k \in \mathbb{N}) \tag{1}
\end{equation*}
$$

Since $A \subset(1, \infty)$, the number β_{k} is defined and $\beta_{k}>6$ for every k. We can clearly choose a sequence $m_{1}, m_{2}, \ldots \subset\{3,4,5, \ldots\}$ so that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\log \left(\beta_{1} \cdots \beta_{k}\right)}{\log \left(m_{1} \cdots m_{k-1}\right)}=0 \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\delta_{k}=\frac{1}{\beta_{1} \cdots \beta_{k} \cdot m_{1} \cdots m_{k}} . \tag{3}
\end{equation*}
$$

By induction we shall define sets

$$
E_{0} \supset E_{1} \supset E_{2} \supset \ldots
$$

such that for each $k \in \mathbb{N}$
$(*) E_{k}$ consists of $m_{1} \cdots m_{k}$ closed intervals of length δ_{k} which are separated by gaps of at least δ_{k} and each interval of E_{k-1} contains m_{k} intervals of E_{k}.

We will denote by

$$
I_{1}^{k}, I_{2}^{k}, \ldots, I_{m_{1} \cdots m_{k}}^{k}
$$

the intervals of E_{k} ordered from left to right, and by

$$
\left(J_{n}, K_{n}, L_{n}\right)_{n \in \mathbb{Z}}
$$

an enumeration of the set

$$
\Gamma=\left\{\left(I_{a}^{k}, I_{b}^{k}, I_{c}^{k}\right): a, b, c, k \in \mathbb{N}, a<b<c \leq m_{1} \cdots m_{k}\right\}
$$

such that if $n>1$ and $\left(J_{n}, K_{n}, L_{n}\right)=\left(I_{a}^{k}, I_{b}^{k}, I_{c}^{k}\right)$ then $n>k$. Since each element of A appears infinitely many times in the sequence $\left(\alpha_{k}\right)$, by repeating each element of Γ infinitely many times we can also guarantee that for all $a \in A$ and for all $(J, K, L) \in \Gamma$, there exists $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\alpha_{n}=a, \quad \text { and } \quad\left(J_{n}, K_{n}, L_{n}\right)=(J, K, L) \tag{4}
\end{equation*}
$$

Let $E_{0}=[0,1]$ and choose E_{1} so that $(*)$ holds for $k=1$. Suppose that $k \geq 2$ and E_{1}, \ldots, E_{k-1} are already defined so that $(*)$ holds for $1, \ldots, k-1$. Then (J_{k}, K_{k}, L_{k}) is already defined and each interval of E_{k-1} is either contained in exactly one of J_{k}, K_{k} and L_{k} or disjoint from them.

We shall define E_{k} so that

$$
x \in E_{k} \cap J_{k}, \quad y \in E_{k} \cap K_{k} \quad \text { and } \quad z \in E_{k} \cap L_{k}
$$

will imply that

$$
\frac{z-x}{z-y} \neq \alpha_{k}
$$

Let I be an interval of E_{k-1} which is contained in J_{k}. Since I has length δ_{k-1} and using (3) and (1) we have

$$
\frac{\delta_{k-1}}{3 \alpha_{k} \delta_{k}}=\frac{m_{k} \beta_{k}}{3 \alpha_{k}} \geq 2 m_{k}>m_{k}+1
$$

and I contains more than m_{k} points of the form $3 \alpha_{k} \delta_{k} i$ for $i \in \mathbb{Z}$. Hence we can choose the m_{k} intervals of E_{k} in I as segments of the form

$$
\delta_{k}\left(3 i \alpha_{k}+[0,1]\right) \quad(i \in \mathbb{Z})
$$

If I is an interval of E_{k-1} which is contained in K_{k}, then similarly, since

$$
\frac{\delta_{k-1}}{3 \delta_{k}}=\frac{m_{k} \beta_{k}}{3} \geq 2 m_{k}>m_{k}+1
$$

we can choose the m_{k} intervals of E_{k} in I as segments of the form

$$
\delta_{k}(3 j+[0,1]) \quad(j \in \mathbb{Z})
$$

If I is an interval of E_{k-1} which is contained in L_{k}, then, since by (3) and (1) we have

$$
\frac{\delta_{k-1}}{\frac{3 \alpha_{k}}{\alpha_{k}-1} \delta_{k}}=\frac{m_{k} \beta_{k}}{\frac{3 \alpha_{k}}{\alpha_{k}-1}} \geq 2 m_{k}>m_{k}+1
$$

we can choose the m_{k} intervals of E_{k} in I as segments of the form

$$
\delta_{k}\left(\frac{3 \alpha_{k}}{\alpha_{k}-1}\left(l+\frac{1}{2}\right)+[0,1]\right) \quad(l \in \mathbb{Z})
$$

In each of the rest of the intervals of E_{k-1} we define the m_{k} intervals of length δ_{k} of E_{k} arbitrarily so that they are separated by gaps of at least length δ_{k}.

This way we defined E_{k} so that $(*)$ holds. Let

$$
E=\bigcap_{k=1}^{\infty} E_{k} .
$$

Then E is clearly a compact subset of \mathbb{R}. Condition (*) implies that the Hausdorff dimension of E is at least

$$
\liminf _{k \rightarrow \infty} \frac{\log \left(m_{1} \cdots m_{k-1}\right)}{-\log \left(m_{k} \delta_{k}\right)}
$$

(see [Falconer 1990, Example 4.6]). On the other hand, using (3) and (2) we get that

$$
\liminf _{k \rightarrow \infty} \frac{\log \left(m_{1} \cdots m_{k-1}\right)}{-\log \left(m_{k} \delta_{k}\right)}=\liminf _{k \rightarrow \infty} \frac{\log \left(m_{1} \cdots m_{k-1}\right)}{\log \left(\beta_{1} \cdots \beta_{k}\right)+\log \left(m_{1} \cdots m_{k-1}\right)}=1
$$

and therefore the Hausdorff dimension of E is 1 .
Finally, to get a contradiction, suppose that

$$
x, y, z \in E, \quad x<y<z, \quad \text { and } \quad \frac{z-x}{z-y} \in A
$$

Since $\delta_{k} \rightarrow 0$, there exists a $k \in \mathbb{N}$ such that x, y and z are in distinct intervals of E_{k}. Then, by (4) there exists an $n \in \mathbb{N}$ so that

$$
x \in J_{n}, \quad y \in K_{n}, \quad z \in L_{n} \quad \text { and } \quad \frac{z-x}{z-y}=\alpha_{n} .
$$

By the construction of E_{n}, there exists $i, j, l \in \mathbb{Z}$ such that

$$
x \in \delta_{n}\left(3 i \alpha_{n}+[0,1]\right), y \in \delta_{n}(3 j+[0,1]), \text { and } z \in \delta_{n}\left(\frac{3 \alpha_{n}}{\alpha_{n}-1}\left(l+\frac{1}{2}\right)+[0,1]\right)
$$

Let

$$
X=3 i \alpha_{n}+[0,1], \quad Y=3 j+[0,1], \quad \text { and } \quad Z=\frac{3 \alpha_{n}}{\alpha_{n}-1}\left(l+\frac{1}{2}\right)+[0,1]
$$

Then $\frac{x}{\delta_{n}} \in X, \frac{y}{\delta_{n}} \in Y$ and $\frac{z}{\delta_{n}} \in Z$. On the other hand, $\frac{z-x}{z-y}=\alpha_{n}$ implies that $\alpha_{n} y=x+\left(\alpha_{n}-1\right) z$, so (by using the notation $A+B=\{a+b: a \in A, b \in B\}$) we must have

$$
\begin{equation*}
\alpha_{n} Y \cap\left(X+\left(\alpha_{n}-1\right) Z\right) \neq \varnothing \tag{5}
\end{equation*}
$$

By definition (and using that $\alpha_{n}>1$),

$$
\begin{equation*}
\alpha_{n} Y=\alpha_{n}(3 j+[0,1]) \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
X+\left(\alpha_{n}-1\right) Z & =3 i \alpha_{n}+[0,1]+3 \alpha_{n}\left(l+\frac{1}{2}\right)+\left(\alpha_{n}-1\right)[0,1] \\
& =3(i+l) \alpha_{n}+\left[\frac{3}{2} \alpha_{n}, \frac{5}{2} \alpha_{n}\right] \\
& =\alpha_{n}\left(3(i+l)+\left[\frac{3}{2}, \frac{5}{2}\right]\right) . \tag{7}
\end{align*}
$$

Since $i, j, l \in \mathbb{Z}$, (6) and (7) contradict (5).

Acknowledgement

The author is grateful to Mihalis Kolountzakis for suggesting this problem and for helpful comments and suggestions.

References

[Bisbas and Kolountzakis 2006] A. Bisbas and M. N. Kolountzakis, "Avoiding affine copies of infinite sequences", unpublished manuscript, 2006.
[Bourgain 1987] J. Bourgain, "Construction of sets of positive measure not containing an affine image of a given infinite structures", Israel J. Math. 60:3 (1987), 333-344. MR 89g:28004 Zbl 0647.28001
[Darji and Keleti 2003] U. B. Darji and T. Keleti, "Covering \mathbb{R} with translates of a compact set", Proc. Amer. Math. Soc. 131:8 (2003), 2593-2596. MR 2004d:03100 Zbl 1017.03023
[Elekes and Steprāns 2004] M. Elekes and J. Steprāns, "Less than 2^{ω} many translates of a compact nullset may cover the real line", Fund. Math. 181:1 (2004), 89-96. MR 2005h:28034 Zbl 1095.28005
[Erdős 1974] P. Erdős, "Remarks on some problems in number theory", Math. Balkanica 4 (1974), 197-202. MR 55 \#2715 Zbl 0313.10045
[Erdős and Kakutani 1957] P. Erdős and S. Kakutani, "On a perfect set", Colloq. Math. 4 (1957), 195-196. MR 19,734e Zbl 0077.27103
[Falconer 1984] K. J. Falconer, "On a problem of Erdős on sequences and measurable sets", Proc. Amer. Math. Soc. 90:1 (1984), 77-78. MR 85e:28008 Zbl 0528.28005
[Falconer 1990] K. Falconer, Fractal geometry, John Wiley \& Sons Ltd., Chichester, 1990. MR 92j:28008 Zbl 0689.28003
[Humke and Laczkovich 1998] P. D. Humke and M. Laczkovich, "A visit to the Erdős problem", Proc. Amer. Math. Soc. 126:3 (1998), 819-822. MR 98e:28003 Zbl 0899.28001
[Keleti 1998] T. Keleti, "A 1-dimensional subset of the reals that intersects each of its translates in at most a single point", Real Anal. Exchange 24:2 (1998), 843-844. MR 1704757 Zbl 0971.28001
[Kolountzakis 1997] M. N. Kolountzakis, "Infinite patterns that can be avoided by measure", Bull. London Math. Soc. 29:4 (1997), 415-424. MR 98i:28003 Zbl 0879.28003
[Komjáth 1983] P. Komjáth, "Large sets not containing images of a given sequence", Canad. Math. Bull. 26:1 (1983), 41-43. MR 85d:28003 Zbl 0464.28001
[Laba and Pramanik 2007] I. Laba and M. Pramanik, "Arithmetic progressions in sets of fractional dimension", preprint, 2007. To appear in Geom. Funct. Anal. arXiv 0712.3882
[Máthé ≥ 2008] A. Máthé, "Covering the real line with translates of a zero-dimensional set", In preparation.
[Svetic 2000] R. E. Svetic, "The Erdős similarity problem: a survey", Real Anal. Exchange 26:2 (2000), 525-539. MR 2002g: 28004 Zbl 1014.28502

Received 25 Jan 2008. Revised 30 Apr 2008. Accepted 30 May 2008.
TAMÁS KELETI: elek@cs.elte.hu
Department of Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
www.cs.elte.hu/analysis/keleti

[^0]: MSC2000: 28A78.
 Keywords: Hausdorff dimension, avoiding pattern, Erdős similarity problem, similar copy, affine copy. Partially supported by OTKA grant 049786.

