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The pseudospectrum (or spectral instability) of non-self-adjoint operators is a topic of current interest in
applied mathematics. In fact, for non-self-adjoint operators the resolvent could be very large outside the
spectrum, making numerical computation of the complex eigenvalues very hard. This has importance,
for example, in quantum mechanics, random matrix theory and fluid dynamics.

The occurrence of false eigenvalues (or pseudospectrum) of non-self-adjoint semiclassical differential
operators is due to the existence of quasimodes, that is, approximate local solutions to the eigenvalue
problem. For scalar operators, the quasimodes appear generically since the bracket condition on the
principal symbol is not satisfied for topological reasons.

In this paper we shall investigate how these results can be generalized to square systems of semiclas-
sical differential operators of principal type. These are the systems whose principal symbol vanishes of
first order on its kernel. We show that the resolvent blows up as in the scalar case, except in a nowhere
dense set of degenerate values. We also define quasisymmetrizable systems and systems of subelliptic
type, for which we prove estimates on the resolvent.

1. Introduction

In this paper we shall study the pseudospectrum or spectral instability of square non-self-adjoint semi-
classical systems of principal type. Spectral instability of non-self-adjoint operators is currently a topic
of interest in applied mathematics; see [Davies 2002] and [Trefethen and Embree 2005]. It arises from
the fact that, for non-self-adjoint operators, the resolvent could be very large in an open set containing the
spectrum. For semiclassical differential operators, this is due to the bracket condition and is connected
to the problem of solvability. In applications where one needs to compute the spectrum, the spectral
instability has the consequence that discretization and round-off errors give false spectral values, so-
called pseudospectra; see [Trefethen and Embree 2005] and references there.

We shall consider bounded systems P(h) of semiclassical operators given by (2.2), and we shall
generalize the results of the scalar case in [Dencker et al. 2004]. Actually, the study of unbounded
operators can in many cases be reduced to the bounded case; see Proposition 2.20 and Remark 2.21.
We shall also study semiclassical operators with analytic symbols in the case when the symbols can be
extended analytically to a tubular neighborhood of the phase space satisfying (2.3). The operators we
study will be of principal type, which means that the principal symbol vanishes of first order on the
kernel; see Definition 3.1.

The definition of semiclassical pseudospectrum in [Dencker et al. 2004] is essentially the bracket
condition, which is suitable for symbols of principal type. By instead using the definition of (injectivity)
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pseudospectrum in [Pravda-Starov 2006a] we obtain a more refined view of the spectral instability; see
Definition 2.27. For example, z is in the pseudospectrum of infinite index for P(h) if for any N the
resolvent norm blows up faster than any power of the semiclassical parameter:

‖(P(h)− z Id)−1
‖ ≥ CN h−N 0< h � 1 (1.1)

In [Dencker et al. 2004] it was proved that (1.1) holds almost everywhere in the semiclassical pseu-
dospectrum. We shall generalize this to systems and prove that for systems of principal type, except
for a nowhere dense set of degenerate values, the resolvent blows up as in the scalar case; see Theorem
3.10. The complication is that the eigenvalues don’t have constant multiplicity in general, only almost
everywhere.

At the boundary of the semiclassical pseudospectrum, we obtained in [Dencker et al. 2004] a bound
on the norm of the semiclassical resolvent, under the additional condition of having no unbounded (or
closed) bicharacteristics. In the systems case, the picture is more complicated and it seems to be difficult
to get an estimate on the norm of the resolvent using only information about the eigenvalues, even in the
principal type case; see Example 4.1. In fact, the norm is essentially preserved under multiplication with
elliptic systems, but the eigenvalues are changed. Also, the multiplicities of the eigenvalues could be
changing at all points on the boundary of the eigenvalues; see Example 3.9. We shall instead introduce
quasisymmetrizable systems, which generalize the normal forms of the scalar symbols at the boundary
of the eigenvalues; see Definition 4.5. Quasisymmetrizable systems are of principal type and we obtain
estimates on the resolvent as in the scalar case; see Theorem 4.15.

For boundary points of finite type, we obtained in [Dencker et al. 2004] subelliptic types of estimates
on the semiclassical resolvent. This is the case when one has nonvanishing higher order brackets. For
systems the situation is less clear; there seems to be no general results on the subellipticity for systems. In
fact, the real and imaginary parts do not commute in general, making the bracket condition meaningless.
Even when they do, Example 5.2 shows that the bracket condition is not sufficient for subelliptic types of
estimates. Instead we shall introduce invariant conditions on the order of vanishing of the symbol along
the bicharacteristics of the eigenvalues. For systems, there could be several (limit) bicharacteristics of the
eigenvalues going through a characteristic point; see Example 5.9. Therefore we introduce the approx-
imation property in Definition 5.10 which gives that the all (limit) bicharacteristics of the eigenvalues
are parallel at the characteristics; see Remark 5.11. The general case presently looks too complicated
to handle. We shall generalize the property of being of finite type to systems, introducing systems of
subelliptic type. These are quasisymmetrizable systems satisfying the approximation property, such that
the imaginary part on the kernel vanishes of finite order along the bicharacteristics of the real part of the
eigenvalues. This definition is invariant under multiplication with invertible systems and taking adjoints,
and for these systems we obtain subelliptic types of estimates on the resolvent; see Theorem 5.20.

As an example, we may look at

P(h)= h21 IdN +i K (x)

where 1 = −
∑n

j=1 ∂
2
x j

is the positive Laplacian, and K (x) ∈ C∞(Rn) is a symmetric N × N system.
If we assume some conditions of ellipticity at infinity for K (x), we may reduce to the case of bounded
symbols by Proposition 2.20 and Remark 2.21; see Example 2.22. Then we obtain that P(h) has discrete
spectrum in the right half plane {z : Re z ≥ 0}, and in the first quadrant if K (x)≥ 0, by Proposition 2.19.
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We obtain from Theorem 3.10 that the L2 operator norm of the resolvent grows faster than any power
of h as h → 0, thus (1.1) holds for almost all values z such that Re z > 0 and Im z is an eigenvalue of K ;
see Example 3.12.

For Re z = 0 and almost all eigenvalues Im z of K , we find from Theorem 5.20 that the norm of the
resolvent is bounded by Ch−2/3; see Example 5.22. In the case K (x) ≥ 0 and K (x) is invertible at
infinity, we find from Theorem 4.15 that the norm of the resolvent is bounded by Ch−1 for Re z > 0 and
Im z = 0 by Example 4.17. The results in this paper are formulated for operators acting on the trivial
bundle over Rn . But since our results are mainly local, they can be applied to operators on sections of
fiber bundles.

2. The definitions

We shall consider N × N systems of semiclassical pseudo-differential operators, and use the Weyl quan-
tization:

Pw(x, h Dx)u =
1

(2π)n

∫∫
T ∗Rn

P
( x + y

2
, hξ

)
ei〈x−y,ξ〉u(y) dy dξ (2.1)

for matrix valued P ∈ C∞(T ∗Rn,L(CN ,CN )). We shall also consider the semiclassical operators

P(h)∼

∞∑
j=0

h j Pwj (x, h D) (2.2)

with Pj ∈ C∞

b (T
∗Rn,L(CN ,CN )). Here C∞

b is the set of C∞ functions having all derivatives in L∞

and P0 = σ(P(h)) is the principal symbol of P(h). The operator is said to be elliptic if the principal
symbol P0 is invertible, and of principal type if P0 vanishes of first order on the kernel; see Definition
3.1. Since the results in the paper only depend on the principal symbol, one could also have used the
Kohn–Nirenberg quantization because the different quantizations only differ in the lower order terms.
We shall also consider operators with analytic symbols; then we shall assume that Pj (w) are bounded
and holomorphic in a tubular neighborhood of T ∗Rn satisfying

‖Pj (z, ζ )‖ ≤ C0C j j j
|Im(z, ζ )| ≤ 1/C ∀ j ≥ 0 (2.3)

which will give exponentially small errors in the calculus, here ‖A‖ is the norm of the matrix A. But the
results hold for more general analytic symbols; see Remarks 3.11 and 4.19. In the following, we shall
use the notation w = (x, ξ) ∈ T ∗Rn .

We shall consider the spectrum Spec P(h) which is the set of values λ such that the resolvent (P(h)−
λ IdN )

−1 is a bounded operator, here IdN is the identity in CN . The spectrum of P(h) is essentially
contained in the spectrum of the principal symbol P(w), which is given by

|P(w)− λ IdN | = 0

where |A| is the determinant of the matrix A. For example, if P(w) = σ(P(h)) is bounded and z1 is
not an eigenvalue of P(w) for any w = (x, ξ) (or a limit eigenvalue at infinity) then P(h)− z1 IdN is
invertible by Proposition 2.19. When P(w) is an unbounded symbol one needs additional conditions;
see for example Proposition 2.20. We shall mostly restrict our study to bounded symbols, but we can
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reduce to this case if P(h)− z1 IdN is invertible, by considering

(P(h)− z1 IdN )
−1(P(h)− z2 IdN ) z2 6= z1

see Remark 2.21. But unless we have conditions on the eigenvalues at infinity, this does not always give
a bounded operator.

Example 2.1. Let

P(ξ)=

(
0 ξ

0 0

)
, ξ ∈ R.

Then 0 is the only eigenvalue of P(ξ) but

(P(ξ)− z IdN )
−1

= −1/z
(

1 ξ/z
0 1

)
and (Pw − z IdN )

−1 Pw = −z−1 Pw is unbounded for any z 6= 0.

Definition 2.2. Let P ∈ C∞(T ∗Rn) be an N × N system. We denote the closure of the set of eigenvalues
of P by

6(P)= {λ ∈ C : ∃w ∈ T ∗Rn, |P(w)− λ IdN | = 0}

and the eigenvalues at infinity:

6∞(P)=
{
λ ∈ C : ∃w j → ∞ ∃ u j ∈ CN

\ 0; |P(w j )u j − λu j |/|u j | → 0, j → ∞
}

which is closed in C.

In fact, that 6∞(P) is closed follows by taking a suitable diagonal sequence. Observe that as in the
scalar case, we could have 6∞(P)=6(P), for example if P(w) is constant in one direction. It follows
from the definition that λ /∈6∞(P) if and only if the resolvent is defined and bounded when |w| is large
enough:

‖(P(w)− λ IdN )
−1

‖ ≤ C |w| � 1 (2.4)

In fact, if (2.4) does not hold there would exist w j → ∞ such that ‖(P(w j )−λ IdN )
−1

‖ → ∞, j → ∞.
Thus, there would exist u j ∈ CN such that |u j | = 1 and P(w j )u j − λu j → 0. On the contrary, if (2.4)
holds then |P(w)u − λu| ≥ |u|/C for any u ∈ CN and |w| � 1.

It is clear from the definition that 6∞(P) contains all finite limits of eigenvalues of P at infinity. In
fact, if P(w j )u j = λ j u j , |u j | = 1, w j → ∞ and λ j → λ then

P(w j )u j − λu j = (λ j − λ)u j → 0.

Example 2.1 shows that in general 6∞(P) could be a larger set.

Example 2.3. Let P(ξ) be given by Example 2.1; then 6(P) = {0} but 6∞(P) = C. In fact, for any
λ ∈ C we find

|P(ξ)uξ − λuξ | = λ2 when uξ =
t(ξ, λ).

We have that |uξ | =
√

|λ|2 + ξ 2 → ∞ so |P(ξ)uξ − λuξ |/|uξ | → 0 when |ξ | → ∞.
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For bounded symbols we get equality according to the following proposition.

Proposition 2.4. If P ∈ C∞

b (T
∗Rn) is an N × N system then 6∞(P) is the set of all limits of the

eigenvalues of P at infinity.

Proof. Since 6∞(P) contains all limits of eigenvalues of P at infinity, we only have to prove the
opposite inclusion. Let λ ∈ 6∞(P) then by the definition there exist w j → ∞ and u j ∈ CN such that
|u j | = 1 and |P(w j )u j − λu j | = ε j → 0. Then we may choose N × N matrix A j such that ‖A j‖ = ε j

and P(w j )u j = λu j + A j u j thus λ is an eigenvalue of P(w j ) − A j . Now if A and B are N × N
matrices and d(Eig(A),Eig(B)) is the minimal distance between the sets of eigenvalues of A and B
under permutations, then we have that d(Eig(A),Eig(B))→ 0 when ‖A − B‖ → 0. In fact, a theorem
of Elsner [1985] gives

d(Eig(A),Eig(B))≤ N (2 max(‖A‖, ‖B‖))1−1/N
‖A − B‖

1/N .

Since the matrices P(w j ) are uniformly bounded we find that they have an eigenvalue µ j such that
|µ j −λ| ≤ CNε

1/N
j → 0 as j → ∞, thus λ= lim j→∞ µ j is a limit of eigenvalues of P(w) at infinity. �

One problem with studying systems P(w), is that the eigenvalues are not very regular in the parame-
ter w, generally they depend only continuously (and eigenvectors measurably) on w.

Definition 2.5. For an N × N system P ∈ C∞(T ∗Rn) we define

κP(w, λ)= Dim Ker(P(w)− λ IdN )

K P(w, λ)= max
{
k : ∂

j
λ p(w, λ)= 0 for j < k

}
where p(w, λ) = |P(w)− λ IdN | is the characteristic polynomial. We have κP ≤ K P with equality for
symmetric systems but in general we need not have equality; see Example 2.7. If

�k(P)=
{
(w, λ) ∈ T ∗Rn

× C : K P(w, λ)≥ k
}

k ≥ 1,

then ∅ =�N+1(P)⊆�N (P)⊆ · · · ⊆�1(P) and we may define

4(P)=

⋃
j>1

∂� j (P)

where ∂� j (P) is the boundary of � j (P) in the relative topology of �1(P).

Clearly, � j (P) is a closed set for any j ≥ 1. By definition we find that the multiplicity K P of
the zeros of |P(w) − λ IdN | is locally constant on �1(P) \ 4(P). If P(w) is symmetric then κP =

Dim Ker(P(w)−λ IdN ) also is constant on �1(P)\4(P). This is not true in general; see Example 3.9.

Remark 2.6. We find that4(P) is closed and nowhere dense in�1(P) since it is the union of boundaries
of closed sets. We also find that

(w, λ) ∈4(P)⇔ (w, λ) ∈4(P∗)

since |P∗
− λ IdN | = |P − λ IdN |.



328 NILS DENCKER

Example 2.7. If

P(w)=

(
λ1(w) 1

0 λ2(w)

)
where λ j (w) ∈ C∞, j = 1, 2, then

�1(P)= {(w, λ) : λ= λ j (w), j = 1, 2}

�2(P)= {(w, λ) : λ= λ1(w)= λ2(w)} ,

but κP ≡ 1 on �1(P).

Example 2.8. Let

P(t)=

(
0 1
t 0

)
t ∈ R.

Then P(t) has the eigenvalues ±
√

t , and κP ≡ 1 on �1(P).

Example 2.9. If

P =

(
w1 +w2 w3

w3 w1 −w2

)
then

�1(P)=
{
(w; λ j ) : λ j = w1 + (−1) j

√
w2

2 +w2
3, j = 1, 2

}
.

We have that �2(P)= {(w1, 0, 0;w1) : w1 ∈ R} and κP = 2 on �2(P).

Definition 2.10. Let π j be the projections

π1(w, λ)= w and π2(w, λ)= λ.

Then we define for λ ∈ C the closed sets

6λ(P)= π1
(
�1(P)∩π−1

2 (λ)
)
= {w : |P(w)− λ IdN | = 0}

X (P)= π1 (4(P))⊆ T ∗Rn.

Remark 2.11. Observe that X (P) is nowhere dense in T ∗Rn and P(w) has constant characteristics
near w0 /∈ X (P). This means that |P(w)− λ IdN | = 0 if and only if λ = λ j (w) for j = 1, . . . k, where
the eigenvalues λ j (w) 6= λk(w) for j 6= k when |w−w0| � 1.

In fact, π−1
1 (w) is a finite set for any w ∈ T ∗Rn and since the eigenvalues are continuous functions of

the parameters, the relative topology on�1(P) is generated by π−1
1 (ω)∩�1(P) for open sets ω⊂ T ∗Rn .

Definition 2.12. For an N × N system P ∈ C∞(T ∗Rn) we define the weakly singular eigenvalue set

6ws(P)= π2 (4(P))⊆ C

and the strongly singular eigenvalue set

6ss(P)=
{
λ : π−1

2 (λ)∩�1(P)⊆4(P)
}
.

Remark 2.13. It is clear from the definition that 6ss(P)⊆6ws(P). We have that 6ws(P)∪6∞(P) and
6ss(P)∪6∞(P) are closed, and 6ss(P) is nowhere dense.
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In fact, if λ j → λ /∈ 6∞(P), then π−1
2 (λ j )∩�1(P) is contained in a compact set for j � 1, which

then either intersects4(P) or is contained in4(P). Since4(P) is closed, these properties are preserved
in the limit.

Also, if λ ∈ 6ss(P), then there exists (w j , λ j ) ∈ 4(P) such that λ j → λ as j → ∞. Since 4(P)
is nowhere dense in �1(P), there exists (w jk, λ jk) ∈�1(P) \4(P) converging to (w j , λ j ) as k → ∞.
Then 6(P) \ 6ss(P) 3 λ j j → λ, so 6ss(P) is nowhere dense. On the other hand, it is possible that
6ws(P)=6(P) by the following example.

Example 2.14. Let P(w) be the system in Example 2.9; then we have

6ws(P)=6(P)= R

and 6ss(P) = ∅. In fact, the eigenvalues coincide only when w2 = w3 = 0 and the eigenvalue λ = w1

is also attained at some point where w2 6= 0. If we multiply P(w) with w4 + iw5, we obtain that
6ws(P)=6(P)= C. If we set P̃(w1, w2)= P(0, w1, w2) we find that 6ss(P̃)=6ws(P̃)= {0}.

Lemma 2.15. Let P ∈ C∞(T ∗Rn) be an N × N system. If (w0, λ0) ∈�1(P) \4(P) then there exists a
unique C∞ function λ(w) so that (w, λ) ∈�1(P) if and only if λ= λ(w) in a neighborhood of (w0, λ0).
If λ0 ∈ 6(P) \ (6ws(P) ∪6∞(P)) then there is λ(w) ∈ C∞ such that (w, λ) ∈ �1(P) if and only if
λ= λ(w) in a neighborhood of 6λ0(P).

We find from Lemma 2.15 that �1(P)\4(P) is locally given as a C∞ manifold over T ∗Rn , and that
the eigenvalues λ j (w) ∈ C∞ outside X (P). This is not true if we instead assume that κP is constant on
�1(P); see Example 2.8.

Proof. If (w0, λ0) ∈�1(P) \4(P), then

λ→ |P(w)− λ IdN |

vanishes of exactly order k > 0 on �1(P) in a neighborhood of (w0, λ0), so

∂k
λ |P(w0)− λ IdN | 6= 0 for λ= λ0.

Thus λ = λ(w) is the unique solution to ∂k−1
λ |P(w)− λ IdN | = 0 near w0 which is C∞ by the Implicit

Function Theorem.
If λ0 ∈6(P)\(6ws(P)∪6∞(P)) then we obtain this in a neighborhood of any w0 ∈6λ0(P)b T ∗Rn .

Using a C∞ partition of unity we find by uniqueness that λ(w) ∈ C∞ in a neighborhood of 6λ0(P). �

Remark 2.16. Observe that if λ0 ∈ 6(P) \ (6ws(P) ∪ 6∞(P)) and λ(w) ∈ C∞ satisfies |P(w) −

λ(w) IdN | ≡ 0 near 6λ0(P) and λ|6λ0 (P) = λ0, then we find by Sard’s Theorem that d Re λ and d Im λ

are linearly independent on the codimension 2 manifold 6µ(P) for almost all values µ close to λ0. Thus
for n = 1 we find that 6µ(P) is a discrete set for almost all values µ close to λ0.

In fact, since λ0 /∈6∞(P) we find that 6µ(P)→6λ0(P) when µ→ λ0 so 6µ(P)= {w : λ(w)= µ}

for |µ− λ0| � 1.

Definition 2.17. A C∞ function λ(w) is called a germ of eigenvalues at w0 for the N × N system P ∈

C∞(T ∗Rn) if
|P(w)− λ(w) IdN | ≡ 0 in a neighborhood of w0.
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If this holds in a neighborhood of every point in ωb T ∗Rn then we say that λ(w) is a germ of eigenvalues
for P on ω.

Remark 2.18. If λ0 ∈ 6(P) \ (6ss(P) ∪ 6∞(P)) then there exists w0 ∈ 6λ0(P) so that (w0, λ0) ∈

�1(P) \ 4(P). By Lemma 2.15 there exists a C∞ germ λ(w) of eigenvalues at w0 for P such that
λ(w0) = λ0. If λ0 ∈ 6(P) \ (6ws(P) ∪ 6∞(P)) then there exists a C∞ germ λ(w) of eigenvalues
on 6λ0(P).

As in the scalar case we obtain that the spectrum is essentially discrete outside 6∞(P).

Proposition 2.19. Assume that the N × N system P(h) is given by (2.2) with principal symbol P ∈

C∞

b (T
∗Rn). Let � be an open connected set, satisfying

�∩6∞(P)= ∅ and �∩ {6(P) 6= ∅.

Then (P(h)− z IdN )
−1, 0 < h � 1, z ∈ �, is a meromorphic family of operators with poles of finite

rank. In particular, for h sufficiently small, the spectrum of P(h) is discrete in any such set. When
�∩6(P)= ∅ we find that � contains no spectrum of Pw(x, h D).

Proof. We shall follow the proof of Proposition 3.3 in [Dencker et al. 2004]. If� satisfies the assumptions
of the proposition then there exists C > 0 such that

|(P(w)− z IdN )
−1

| ≤ C if z ∈� and |w|> C . (2.5)

In fact, otherwise there would exist w j → ∞ and z j ∈� such that |(P(w j )− z j IdN )
−1

| → ∞, j → ∞.
Thus, there exists u j ∈ CN such that |u j | = 1 and P(w j )u j − z j u j → 0. Since 6(P)b C we obtain after
picking a subsequence that z j → z ∈�∩6∞(P)= ∅. The assumption that �∩{6(p) 6= ∅ implies that
for some z0 ∈ � we have (P(w)− z0 IdN )

−1
∈ C∞

b . Let χ ∈ C∞

0 (T
∗Rn), 0 ≤ χ(w) ≤ 1 and χ(w) = 1

when |w| ≤ C , where C is given by (2.5). Let

R(w, z)= χ(w)(P(w)− z0 IdN )
−1

+ (1 −χ(w))(P(w)− z IdN )
−1

∈ C∞

b

for z ∈�. The symbolic calculus then gives

Rw(x, h D, z)(P(h)− z IdN )= I + h B1(h, z)+ K1(h, z)

(P(h)− z IdN )Rw(x, h D, z)= I + h B2(h, z)+ K2(h, z)

where K j (h, z) are compact operators on L2(Rn) depending holomorphically on z, vanishing for z = z0,
and B j (h, z) are bounded on L2(Rn), j = 1, 2. By the analytic Fredholm theory we conclude that
(P(h)− z IdN )

−1 is meromorphic in z ∈� for h sufficiently small. When �∩6(P)= ∅ we can choose
R(w, z)= (P(w)−z IdN )

−1, then K j ≡ 0 for j = 1, 2, and P(h)−z IdN is invertible for small enough h.
�

We shall show how the reduction to the case of bounded operator can be done in the systems case,
following [Dencker et al. 2004]. Let m(w) be a positive function on T ∗Rn satisfying

1 ≤ m(w)≤ C〈w−w0〉
N m(w0) , ∀ w, w0 ∈ T ∗Rn
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for some fixed C and N , where 〈w〉 = 1 + |w|. Then m is an admissible weight function and we can
define the symbol classes P ∈ S(m) by

‖∂αwP(w)‖ ≤ Cαm(w) ∀α.

Following [Dimassi and Sjöstrand 1999] we then define the semiclassical operator P(h)= Pw(x, h D).
In the analytic case we require that the symbol estimates hold in a tubular neighborhood of T ∗Rn:

‖∂αwP(w)‖ ≤ Cαm(Rew) for |Imw| ≤ 1/C ∀α (2.6)

One typical example of an admissible weight function is m(x, ξ)= (〈ξ〉2
+ 〈x〉

p).
Now we make the ellipticity assumption

‖P−1(w)‖ ≤ C0m−1(w) |w| � 1 (2.7)

and in the analytic case we assume this in a tubular neighborhood of T ∗Rn as in (2.6). By Leibniz’ rule
we obtain that P−1

∈ S(m−1) at infinity, that is,

‖∂αwP−1(w)‖ ≤ C ′

αm−1(w) |w| � 1.

When z 6∈6(P)∪6∞(P) we find as before that

‖(P(w)− z IdN )
−1

‖ ≤ C ∀w

since the resolvent is uniformly bounded at infinity. This implies that P(w)(P(w) − z IdN )
−1 and

(P(w)− z IdN )
−1 P(w) are bounded. Again by Leibniz’ rule, (2.7) holds with P replaced by P − z IdN

thus (P(w)−z IdN )
−1

∈ S(m−1) and we may define the semiclassical operator ((P−z IdN )
−1)w(x, h D).

Since m ≥ 1 we find that P(w)− z IdN ∈ S(m), so by using the calculus we obtain that

(Pw − z IdN )((P − z IdN )
−1)w = 1 + h Rw1

((P − z IdN )
−1)w(Pw − z IdN )= 1 + h Rw2

where R j ∈ S(1), j = 1, 2. For small enough h we get invertibility and the following result.

Proposition 2.20. Assume that P ∈ S(m) is an N×N system satisfying (2.7) and that z 6∈6(P)∪6∞(P).
Then we find that Pw − z IdN is invertible for small enough h.

This makes it possible to reduce to the case of operators with bounded symbols.

Remark 2.21. If z1 /∈ Spec(P) we may define the operator

Q = (P − z1 IdN )
−1(P − z2 IdN ) z2 6= z1.

The resolvents of Q and P are related by

(Q − ζ IdN )
−1

= (1 − ζ )−1(P − z1 IdN )
(

P −
ζ z1 − z2

ζ − 1
IdN

)−1
ζ 6= 1

when (ζ z1 − z2)/(ζ − 1) /∈ Spec(P).
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Example 2.22. Let
P(x, ξ)= |ξ |2 IdN +i K (x)

where 0 ≤ K (x) ∈ C∞

b ; then we find that P ∈ S(m) with m(x, ξ)= |ξ |2 +1. If 0 /∈6∞(K ) then K (x) is
invertible for |x |� 1, so P−1

∈ S(m−1) at infinity. Since Re z ≥ 0 in6(P) we find from Proposition 2.20
that Pw(x, h D)+ IdN is invertible for small enough h and Pw(x, h D)(Pw(x, h D)+ IdN )

−1 is bounded
in L2 with principal symbol P(w)(P(w)+ IdN )

−1
∈ C∞

b .

In order to measure the singularities of the solutions, we shall introduce the semiclassical wave front
sets.

Definition 2.23. For u ∈ L2(Rn) we say that w0 /∈ WFh(u) if there exists a ∈ C∞

0 (T
∗Rn) such that

a(w0) 6= 0 and the L2 norm
‖aw(x, h D)u‖ ≤ Ckhk

∀ k. (2.8)

We call WFh(u) the semiclassical wave front set of u.

Observe that this definition is equivalent to Definition (2.5) in [Dencker et al. 2004] which use the FBI
transform T given by (4.26): w0 /∈ WFh(u) if ‖T u(w)‖= O(h∞)when |w−w0|� 1. We may also define
the analytic semiclassical wave front set by the condition that ‖T u(w)‖ = O(e−c/h) in a neighborhood
of w0 for some c > 0; see (2.6) in [Dencker et al. 2004].

Observe that if u = (u1, . . . , uN )∈ L2(Rn,CN )we may define WFh(u)=
⋂

j WFh(u j ) but this gives no
information about which components of u that are singular. Therefore we shall define the corresponding
vector valued polarization sets.

Definition 2.24. For u ∈ L2(Rn,CN ), we say that (w0, z0) /∈ WFpol
h (u)⊆ T ∗Rn

×CN if there exists A(h)
given by (2.2) with principal symbol A(w) such that A(w0)z0 6= 0 and A(h)u satisfies (2.8). We call
WFpol

h (u) the semiclassical polarization set of u.

We could similarly define the analytic semiclassical polarization set by using the FBI transform and
analytic pseudodifferential operators.

Remark 2.25. The semiclassical polarization sets are closed, linear in the fiber and has the functorial
properties of the C∞ polarization sets in [Dencker 1982]. In particular, we find that

π(WFpol
h (u) \ 0)= WFh(u)=

⋃
j

WFh(u j )

if π is the projection along the fiber variables: π : T ∗Rn
× CN

7→ T ∗Rn . We also find that

A(WFpol
h (u))=

{
(w, A(w)z) : (w, z) ∈ WFpol

h (u)
}

⊆ WFpol
h (A(h)u)

if A(w) is the principal symbol of A(h), which implies that WFpol
h (Au) = A(WFpol

h (u)) when A(h) is
elliptic.

This follows from the proofs of Propositions 2.5 and 2.7 in [Dencker 1982].

Example 2.26. Let u = (u1, . . . , uN ) ∈ L2(T ∗Rn,CN ) where WFh(u1) = {w0} and WFh(u j ) = ∅ for
j > 1. Then

WFpol
h (u)= {(w0, (z, 0, . . . )) : z ∈ C}
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since ‖Aw(x, h D)u‖ = O(h∞) if Awu =
∑

j>1 Awj u j and w0 ∈ WFh(u). By taking a suitable invertible
E we obtain

WFpol
h (Eu)= {(w0, zv) : z ∈ C}

for any v ∈ CN .

We shall use the following definitions from [Pravda-Starov 2006a], here and in the following ‖P(h)‖
will denote the L2 operator norm of P(h).

Definition 2.27. Let P(h), 0< h ≤ 1, be a semiclassical family of operators on L2(Rn) with domain D.
For µ > 0 we define the pseudospectrum of index µ as the set

3sc
µ (P(h))=

{
z ∈ C : ∀ C > 0, ∀ h0 > 0, ∃ 0< h < h0, ‖(P(h)− z IdN )

−1
‖ ≥ Ch−µ

}
and the injectivity pseudospectrum of index µ as

λsc
µ (P(h)) =

{
z ∈ C : ∀ C > 0, ∀ h0 > 0, ∃ 0< h < h0, ∃ u ∈ D, ‖u‖ = 1, ‖(P(h)− z IdN )u‖ ≤ Chµ

}
.

We define the pseudospectrum of infinite index as 3sc
∞
(P(h))=

⋂
µ3

sc
µ (P(h)) and correspondingly the

injectivity pseudospectrum of infinite index.

Here we use the convention that ‖(P(h)− λ IdN )
−1

‖ = ∞ when λ is in the spectrum Spec(P(h)).
Observe that we have the obvious inclusion λsc

µ (P(h)) ⊆ 3sc
µ (P(h)) for all µ. We get equality if, for

example, P(h) is Fredholm of index ≥ 0.

3. The interior case

Recall that the scalar symbol p(x, ξ) ∈ C∞(T ∗Rn) is of principal type if dp 6= 0 when p = 0. In the
following we let ∂νP(w) = 〈ν, d P(w)〉 for P ∈ C1(T ∗Rn) and ν ∈ T ∗Rn . We shall use the following
definition of systems of principal type, in fact, most of the systems we consider will be of this type. We
shall denote Ker P and Ran P the kernel and range of P .

Definition 3.1. The N × N system P(w) ∈ C∞(T ∗Rn) is of principal type at w0 if

Ker P(w0) 3 u 7→ ∂νP(w0)u ∈ Coker P(w0)= CN/Ran P(w0) (3.1)

is bijective for some ν ∈ Tw0(T
∗Rn). The operator P(h) given by (2.2) is of principal type if the principal

symbol P = σ(P(h)) is of principal type.

Remark 3.2. If P(w) ∈ C∞ is of principal type and A(w), B(w) ∈ C∞ are invertible then AP B is of
principal type. We have that P(w) is of principal type if and only if the adjoint P∗ is of principal type.

In fact, by Leibniz’ rule we have

∂(AP B)= (∂A)P B + A(∂P)B + AP∂B (3.2)

and Ran(AP B) = A(Ran P) and Ker(AP B) = B−1(Ker P) when A and B are invertible, which gives
the invariance under left and right multiplication. Since Ker P∗(w0) = Ran P(w0)

⊥ we find that P
satisfies (3.1) if and only if

Ker P(w0)× Ker P∗(w0) 3 (u, v) 7→ 〈∂νP(w0)u, v〉
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is a nondegenerate bilinear form. Since 〈∂νP∗v, u〉 = 〈∂νPu, v〉 we find that P∗ is of principal type if
and only if P is.

Observe that if P only has one vanishing eigenvalue λ (with multiplicity one) then the condition that
P is of principal type reduces to the condition in the scalar case: dλ 6= 0. In fact, by using the spectral
projection one can find invertible systems A and B so that

AP B =

(
λ 0
0 E

)
with E invertible (N − 1)× (N − 1) system, and this system is obviously of principal type.

Example 3.3. Consider the system in Example 2.7

P(w)=

(
λ1(w) 1

0 λ2(w)

)
where λ j (w)∈ C∞, j = 1, 2. We find that P(w)−λ Id2 is not of principal type when λ= λ1(w)= λ2(w)

since Ker(P(w)− λ Id2)= Ran(P(w)− λ Id2)= C × {0} is preserved by ∂P .

Observe that the property of being of principal type is not stable under C1 perturbation, not even when
P = P∗ is symmetric, by the following example.

Example 3.4. The system

P(w)=

(
w1 −w2 w2

w2 −w1 −w2

)
= P∗(w) w = (w1, w2)

is of principal type when w1 = w2 = 0, but not of principal type when w2 6= 0 and w1 = 0. In fact,

∂w1 P =

(
1 0
0 −1

)
is invertible, and when w2 6= 0 we have that

Ker P(0, w2)= Ker ∂w2 P(0, w2)= {z(1, 1) : z ∈ C}

which is mapped to Ran P(0, w2)= {z(1,−1) : z ∈ C} by ∂w1 P .

We shall obtain a simple characterization of systems of principal type. Recall κP , K P and4(P) given
by Definition 2.5.

Proposition 3.5. Assume P(w) ∈ C∞ is an N × N system and that (w0, λ0) ∈ �1(P) \ 4(P); then
P(w)− λ0 IdN is of principal type at w0 if and only if κP ≡ K P at (w0, λ0) and dλ(w0) 6= 0 for the C∞

germ of eigenvalues λ(w) for P at w0 satisfying λ(w0)= λ0.

Thus, in the case λ0 = 0 /∈ 6ws(P) we find that P(w) is of principal type if and only if λ is of
principal type and we have no nontrivial Jordan boxes in the normal form. Observe that by the proof of
Lemma 2.15 the C∞ germ λ(w) is the unique solution to ∂k

λ p(w, λ) = 0 for k = K P(w, λ)− 1 where
p(w, λ) = |P(w)− λ IdN | is the characteristic equation. Thus we find that dλ(w) 6= 0 if and only if
∂w∂

k
λ p(w, λ) 6= 0. For symmetric operators we have κP ≡ K P and we only need this condition when

(w0, λ0) /∈4(P).
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Example 3.6. The system P(w) in Example 3.4 has eigenvalues −w2 ±

√

w2
1 +w2

2 which are equal
if and only if w1 = w2 = 0, so {0} = 6ws(P). When w2 6= 0 and w1 ≈ 0 the eigenvalue close to
zero is w2

1/2w2 + O(w4
1) which has vanishing differential at w1 = 0. The characteristic equation is

p(w, λ)= λ2
+ 2λw2 −w2

1 , so dw p = 0 when w1 = λ= 0.

Proof of Proposition 3.5. Of course, it is no restriction to assume λ0 = 0. First we note that P(w) is of
principal type at w0 if and only if

∂k
ν |P(w0)| 6= 0 k = κP(w0, 0) (3.3)

for some ν ∈ T (T ∗Rn). Observe that ∂ j
|P(w0)| = 0 for j < k. In fact, by choosing bases for Ker P(w0)

and Im P(w0) respectively, and extending to bases of CN , we obtain matrices A and B so that

AP(w)B =

(
P11(w) P12(w)

P21(w) P22(w)

)
where |P22(w0)| 6= 0 and P11, P12 and P21 all vanish at w0. By the invariance, P is of principal type if
and only if ∂νP11 is invertible for some ν, so by expanding the determinant we obtain (3.3).

Since (w0, 0) ∈ �1(P) \4(P) we find from Lemma 2.15 that we may choose a neighborhood ω of
(w0, 0) such that (w, λ) ∈�1(P)∩ω if and only if λ= λ(w) ∈ C∞. Then

|P(w)− λ IdN | = (λ(w)− λ)me(w, λ)

nearw0, where e(w, λ) 6= 0 and m = K P(w0, 0)≥ κP(w0, 0). Letting λ= 0 we obtain that ∂ j
ν |P(w0)|= 0

if j < m and ∂m
ν |P(w0)| = (∂νλ(w0))

me(w0, 0). �

Remark 3.7. Proposition 3.5 shows that for a symmetric system the property to be of principal type is
stable outside4(P): if the symmetric system P(w)−λ IdN is of principal type at a point (w0, λ0) /∈4(P)
then it is in a neighborhood. It follows from Sard’s Theorem that symmetric systems P(w)− λ IdN are
of principal type almost everywhere on �1(P).

In fact, for symmetric systems we have κP ≡ K P and the differential dλ 6= 0 almost everywhere on
�1(P) \4(P). For C∞ germs of eigenvalues we can define the following bracket condition.

Definition 3.8. Let P ∈ C∞(T ∗Rn) be an N × N system; then we define

3(P)=3−(P)∪3+(P)

where 3±(P) is the set of λ0 ∈6(P) such that there exists w0 ∈6λ0(P) so that (w0, λ0) /∈4(P) and

± {Re λ, Im λ} (w0) > 0 (3.4)

for the unique C∞ germ λ(w) of eigenvalues at w0 for P such that λ(w0)= λ0.

Observe that 3±(P) ∩ 6ss(P) = ∅, and it follows from Proposition 3.5 that P(w) − λ0 IdN is of
principal type at w0 ∈ 3±(P) if and only if κP = K P at (w0, λ0), since dλ(w0) 6= 0 when (3.4) holds.
Because of the bracket condition (3.4) we find that3±(P) is contained in the interior of the values6(P).

Example 3.9. Let

P(x, ξ)=

(
q(x, ξ) χ(x)

0 q(x, ξ)

)
(x, ξ) ∈ T ∗R



336 NILS DENCKER

where q(x, ξ) = ξ + i x2 and 0 ≤ χ(x) ∈ C∞(R) such that χ(x) = 0 when x ≤ 0 and χ(x) > 0
when x > 0. Then 6(P) = {Im z ≥ 0}, 3±(P) = {Im z > 0} and 4(P) = ∅. For Im λ > 0 we find
6λ(P)= {(±

√
Im λ,Re λ)} and P − λ Id2 is of principal type at 6λ(P) only when x < 0.

Theorem 3.10. Let P ∈ C∞(T ∗Rn) be an N × N system; then we have that

3(P) \
(
6ws(P)∪6∞(P)

)
⊆3−(P) (3.5)

when n ≥ 2. Assume that P(h) is given by (2.2) with principal symbol P ∈ C∞

b (T
∗Rn), and that λ0 ∈

3−(P), 0 6= u0 ∈ Ker(P(w0)− λ0 IdN ) and P(w)− λ IdN is of principal type on 6λ(P) near w0 for
|λ − λ0| � 1, for the w0 ∈ 6λ0(P) in Definition 3.8. Then there exists h0 > 0 and u(h) ∈ L2(Rn),
0< h ≤ h0, so that ‖u(h)‖ ≤ 1,

‖(P(h)− λ0 IdN )u(h)‖ ≤ CN hN
∀ N 0< h ≤ h0 (3.6)

and WFpol
h (u(h))= {(w0, u0)}. There also exists a dense subset of values λ0 ∈3(P) so that

‖(P(h)− λ0 IdN )
−1

‖ ≥ C ′

N h−N
∀ N . (3.7)

If all the terms Pj in the expansion (2.2) are analytic satisfying (2.3) then h±N may be replaced by
exp(∓c/h) in (3.6)–(3.7).

Here we use the convention that ‖(P(h)− λ IdN )
−1

‖ = ∞ when λ is in the spectrum Spec(P(h)).
Condition (3.6) means that λ0 is in the injectivity pseudospectrum λsc

∞
(P), and (3.7) means that λ0 is in

the pseudospectrum 3sc
∞
(P).

Remark 3.11. If P(h) is Fredholm of nonnegative index then (3.6) holds for λ0 in a dense subset of
3(P). In the analytic case, it follows from the proof that it suffices that Pj (w) is analytic satisfying (2.3)
in a fixed complex neighborhood of w0 ∈6λ(P) for all j .

In fact, if P(h) is Fredholm of nonnegative index and λ0 ∈ Spec(P(h)) then the dimension of
Ker(P(h)− λ0 IdN ) is positive and (3.6) holds.

Example 3.12. Let
P(x, ξ)= |ξ |2 Id +i K (x) (x, ξ) ∈ T ∗Rn

where K (x) ∈ C∞(Rn) is symmetric for all x . Then we find that

3−(P)=3(P)=
{

Re z ≥ 0 ∧ Im z ∈6(K ) \
(
6ss(K )∪6∞(K )

)}
.

In fact, for any Im z ∈6(K )\ (6ss(K )
⋃
6∞(K )) there exists a germ of eigenvalues λ(x) ∈ C∞(ω) for

K (x) in an open set ω ⊂ Rn so that λ(x0) = Im z for some x0 ∈ ω. By Sard’s Theorem, we find that
almost all values of λ(x) in ω are nonsingular, and if dλ 6= 0 and Re z > 0 we may choose ξ0 ∈ Rn so
that |ξ0|

2
= Re z and 〈ξ0, ∂xλ〉 < 0. Then the C∞ germ of eigenvalues |ξ |2 + iλ(x) for P satisfies (3.4)

at (x0, ξ0) with the minus sign. Since K (x) is symmetric, we find that P(w)− z IdN is of principal type.

Proof of Theorem 3.10. First we are going to prove (3.5) in the case n ≥ 2. Let

W =6ws(P)∪6∞(P)
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which is a closed set by Remark 2.13; then we find that every point in 3(P) \ W is a limit point of(
3−(P)∪3+(P)

)
\ W = (3−(P) \ W )∪ (3+(P) \ W ).

Thus, we only have to show that λ0 ∈3−(P) if

λ0 ∈3+(P) \ W =3+(P) \
(
6ws(P)∪6∞(P)

)
. (3.8)

By Lemma 2.15 and Remark 2.16 we find from (3.8) that there exists a C∞ germ of eigenvalues λ(w) ∈
C∞ so that 6µ(P) is equal to the level sets {w : λ(w)= µ} for |µ−λ0| � 1. By definition we find that
the Poisson bracket {Re λ, Im λ} does not vanish identically on 6λ0(P). Now by Remark 2.16, d Re λ
and d Im λ are linearly independent on 6µ(P) for almost all µ close to λ0, and then 6µ(P) is a C∞

manifold of codimension 2. By using Lemma 3.1 of [Dencker et al. 2004] we obtain that {Re λ, Im λ}

changes sign on 6µ(P) for almost all values µ near λ0, so we find that those values also are in 3−(P).
By taking the closure we obtain (3.5).

Next, assume that λ∈3−(P), it is no restriction to assume λ=0. By the assumptions there existsw0 ∈

60(P) and λ(w)∈ C∞ such that λ(w0)= 0, {Re λ, Im λ}< 0 at w0, (w0, 0) /∈4(P), and P(w)−λ IdN is
of principal type on 6λ(P) near w0 when |λ| � 1. Then Proposition 3.5 gives that κP ≡ K P is constant
on �1(P) near (w0, λ0), so

Dim Ker(P(w)− λ(w) IdN )≡ K > 0

in a neighborhood of w0. Since the dimension is constant we can construct a base {u1(w), . . . , uK (w)} ∈

C∞ for Ker(P(w)− λ(w) IdN ) in a neighborhood of w0. By orthonormalizing it and extending to CN

we obtain orthogonal E(w) ∈ C∞ so that

E∗(w)P(w)E(w)=

(
λ(w) IdK P12

0 P22

)
= P0(w). (3.9)

If P(w) is analytic in a tubular neighborhood of T ∗Rn then E(w) can be chosen analytic in that neigh-
borhood. Since P0 is of principal type at w0 by Remark 3.2 and ∂P0(w0) maps Ker P0(w0) into itself,
we find that Ran P0(w0)∩ Ker P0(w0)= {0} and thus |P22(w0)| 6= 0. In fact, if there exists u′′

6= 0 such
that P22(w0)u′′

= 0, then by applying P(w0) on u = (0, u′′) /∈ Ker P0(w0) we obtain

0 6= P0(w0)u = (P12(w0)u′′, 0) ∈ Ker P0(w0)∩ Ran P0(w0)

which gives a contradiction. Clearly, the norm of the resolvent P(h)−1 only changes with a multiplica-
tive constant under left and right multiplication of P(h) by invertible systems. Now Ew(x, h D) and
(E∗)w(x, h D) are invertible in L2 for small enough h, and

(E∗)wP(h)Ew =

(
P11 P12

P21 P22

)
where σ(P11)= λ IdN , P21 = O(h) and P22(h) is invertible for small h. By multiplying from the right by(

IdK 0
−P22(h)−1 P21(h) IdN−K

)
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for small h, we obtain that P21(h) ≡ 0 and this only changes lower order terms in P11(h). Then by
multiplying from the left by (

IdK −P12(h)P22(h)−1

0 IdN−K

)
we obtain that P12(h)≡ 0 without changing P11(h) or P22(h).

Thus, in order to prove (3.6) we may assume N = K and P(w)= λ(w) IdK . By conjugating similarly
as in the scalar case (see the proof of Proposition 26.3.1 in Volume IV of [Hörmander 1983–1985]), we
can reduce to the case when P(h)= λw(x, h D) IdK . In fact, let

P(h)= λw(x, h D) IdK +

∑
j≥1

h j Pwj (x, h D) (3.10)

A(h) =
∑

j≥0 h j Awj (x, h D) and B(h) =
∑

j≥0 h j Bwj (x, h D) with B0(w) ≡ A0(w). Then the calculus
gives

P(h)A(h)− B(h)λw(x, h D)=

∑
j≥1

h j Ewj (x, h D)

with

Ek =
1
2i

Hλ(Ak−1 + Bk−1)+ P1 Ak−1 + λ(Ak − Bk)+ Rk k ≥ 1.

Here Hλ is the Hamilton vector field of λ, Rk only depends on A j and B j for j < k −1 and R1 ≡ 0. Now
we can choose A0 so that A0 = IdK on V0 = {w : Im λ(w)= 0} and 1

i HλA0 + P1 A0 vanishes of infinite
order on V0 near w0. In fact, since {Re λ, Im λ} 6= 0 we find d Im λ 6= 0 on V0, and V0 is noncharacteristic
for HRe λ. Thus, the equation determines all derivatives of A0 on V0, and we may use the Borel Theorem
to obtain a solution. Then, by taking

B1 − A1 =

(1
i

HλA0 + P1 A0

)
λ−1

∈ C∞

we obtain E0 ≡ 0. Lower order terms are eliminated similarly, by making

1
2i

Hλ(A j−1 + B j−1)+ P1 A j−1 + R j

vanish of infinite order on V0. Observe that only the difference A j−1−B j−1 is determined in the previous
step. Thus we can reduce to the case P = λw(x, h D) Id and then the C∞ result follows from the scalar
case (see Theorem 1.2 in [Dencker et al. 2004]) by using Remark 2.25 and Example 2.26.

The analytic case follows as in the proof of Theorem 1.2′ in [Dencker et al. 2004] by applying a
holomorphic WKB construction to P = P11 on the form

u(z, h)∼ eiφ(z)/h
∞∑
j=0

A j (z)h j z = x + iy ∈ Cn

which will be an approximate solution to P(h)u(z, h) = 0. Here P(h) is given by (2.2) with P0(w) =

λ(w) Id, Pj satisfying (2.3) and Pwj (z, h Dz) given by the formula (2.1) where the integration may be
deformed to a suitable chosen contour instead of T ∗Rn (see [Sjöstrand 1982, Section 4]). The holo-
morphic phase function φ(z) satisfying λ(z, dzφ) = 0 is constructed as in [Dencker et al. 2004] so that
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dzφ(x0) = ξ0 and Imφ(x) ≥ c|x − x0|
2, c > 0, and w0 = (x0, ξ0). The holomorphic amplitude A0(z)

satisfies the transport equation∑
j

∂ζ jλ(z, dzφ(z))Dz j A0(z)+ P1(z, dzφ(z))A0(z)= 0

with A0(x0) 6= 0. The lower order terms in the expansion solve∑
j

∂ζ jλ(z, dzφ(z))Dz j Ak(z)+ P1(z, dzφ(z))Ak(z)= Sk(z)

where Sk(z) only depends on A j and Pj+1 for j < k. As in the scalar case, we find from (2.3) that the
solutions satisfy ‖Ak(z)‖ ≤ C0Ckkk see Theorem 9.3 in [Sjöstrand 1982]. By solving up to k < c/h,
cutting of near x0 and restricting to Rn we obtain that P(h)u = O(e−c/h). The details are left to the
reader; see the proof of Theorem 1.2′ in [Dencker et al. 2004].

For the last result, we observe that
{
Re λ, Im λ

}
= −{Re λ, Im λ}, λ ∈ 6(P) ⇔ λ ∈ 6(P∗), P∗ is

of principal type if and only if P is, and Remark 2.6 gives (w, λ) ∈ 4(P) ⇔ (w, λ) ∈ 4(P∗). Thus,
λ ∈3+(P) if and only if λ ∈3−(P∗) and

‖(P(h)− λ IdN )
−1

‖ = ‖(P∗(h)− λ IdN )
−1

‖.

From the definition, we find that any λ0 ∈ 3(P) is an accumulation point of 3±(P), so we obtain the
result from (3.6). �

Remark 3.13. In order to get the estimate (3.6) it suffices that there exists a semibicharacteristic 0
of λ− λ0 through w0 such that 0 × {λ0} ∩4(P) = ∅, P(w)− λ IdN is of principal type near 0 for
λ near λ0 and that condition (9) is not satisfied on 0; see [Hörmander 1983–1985, Definition 26.4.6,
Volume IV]. This means that there exists 0 6= q ∈ C∞ such that 0 is a bicharacteristic of Re q(λ− λ0)

through w0 and Im q(λ− λ0) changes sign from + to − when going in the positive direction on 0.

In fact, once we have reduced to the normal form (3.10), the construction of approximate local solu-
tions in the proof of [Hörmander 1983–1985, Theorem 26.4.7, Volume IV] can be adapted to this case,
since the principal part is scalar. See also Theorem 1.3 in [Pravda-Starov 2006b, Section 3.2] for a similar
scalar semiclassical estimate.

When P(w) is not of principal type, the reduction in the proof of Theorem 3.10 may not be possible
since P22 in (3.9) needs not be invertible by the following example.

Example 3.14. Let

P(h)=

(
λw(x, h D) 1

h λw(x, h D)

)
where λ ∈ C∞ satisfies the bracket condition (3.4). The principal symbol is

P(w)=

(
λ(w) 1

0 λ(w)

)
with eigenvalue λ(w) and we have

Ker(P(w)− λ(w) Id2)= Ran(P(w)− λ(w) Id2)= {(z, 0) : z ∈ C} ∀w.
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We find that P is not of principal type since d P = dλ Id2. Observe that 4(P)= ∅ since K P is constant
on �1(P).

When the dimension is equal to one, we have to add some conditions in order to get the inclusion (3.5).

Lemma 3.15. Let P(w)∈ C∞(T ∗R) be an N ×N system. Then for every component� of C\(6ws(P)∪
6∞(P)) which has nonempty intersection with {6(P) we find that

�⊆3−(P). (3.11)

The condition of having nonempty intersection with the complement is necessary even in the scalar
case; see the remark and Lemma 3.2’ on page 394 in [Dencker et al. 2004].

Proof. If µ /∈6∞(P) we find that the index

i = var argγ |P(w)−µ IdN | (3.12)

is well-defined and continuous when γ is a positively oriented circle {w : |w| = R} for R � 1. If λ0 /∈

6ws(P)∪6∞(P) then we find from Lemma 2.15 that the characteristic polynomial is equal to

|P(w)−µ IdN | = (λ(w)−µ)ke(w,µ)

near w0 ∈ 6λ0(P), here λ, e ∈ C∞, e 6= 0 and k = K P(w0). By Remark 2.16 we find for almost all µ
close to λ0 that d Re λ∧d Im λ 6= 0 on λ−1(µ)=6µ(P), which is then a finite set of points on which the
Poisson bracket is nonvanishing. If µ /∈6(P) we find that the index (3.12) vanishes, since one can then
let R → 0. Thus, if a component � of C \ (6ws(P)∪6∞(P)) has nonempty intersection with {6(P),
we obtain that i = 0 in �. When µ0 ∈ �∩3(P) we find from the definition that the Poisson bracket
{Re λ, Im λ} cannot vanish identically on 6µ(P) for all µ close to µ0. Since the index is equal to the
sum of positive multiples of the values of the Poisson brackets at 6µ(P), we find that the bracket must
be negative at some point w0 ∈6µ(P), for almost all µ near λ0, which gives (3.11). �

4. The quasisymmetrizable case

First we note that if the system P(w)− z IdN is of principal type near 6z(P) for z close to λ ∈ ∂6(P)\
(6ws(P)∪6∞(P)) and6λ(P) has no closed semibicharacteristics, then one can generalize Theorem 1.3
in [Dencker et al. 2004] to obtain

‖(P(h)− λ IdN )
−1

‖ ≤ C/h h → 0. (4.1)

In fact, by using the reduction in the proof of Theorem 3.10 this follows from the scalar case; see Example
4.12. But then the eigenvalues close to λ have constant multiplicity.

Generically, we have that the eigenvalues of the principal symbol P have constant multiplicity almost
everywhere since 4(P) is nowhere dense. But at the boundary ∂6(P) this needs not be the case. For
example, if

P(t, τ )= τ Id +i K (t)

where C∞
3 K ≥ 0 is unbounded and 0 ∈6ss(K ), then R = ∂6(P)⊆6ss(P).
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When the multiplicity of the eigenvalues of the principal symbol is not constant the situation is more
complicated. The following example shows that then it is not sufficient to have conditions only on the
eigenvalues in order to obtain the estimate (4.1), not even in the principal type case.

Example 4.1. Let a1(t), a2(t) ∈ C∞(R) be real valued, a2(0)= 0, a′

2(0) > 0 and let

Pw(t, h Dt)=

(
h Dt + a1(t) a2(t)− ia1(t)

a2(t)+ ia1(t) −h Dt + a1(t)

)
= Pw(t, h Dt)

∗.

Then the eigenvalues of P(t, τ ) are

λ= a1(t)±
√
τ 2

+ a2
1(t)+ a2

2(t) ∈ R

which coincide if and only if τ = a1(t)= a2(t)= 0. We have that

1
2

(
1 i
1 −i

)
P

(
1 1
i −i

)
=

(
h Dt + ia2(t) 0

2a1(t) h Dt − ia2(t)

)
= P̃(h).

Thus we can construct uh(t) =
t(0, u2(t)) so that ‖uh‖ = 1 and P̃(h)uh = O(hN ) for h → 0; see

Theorem 1.2 in [Dencker et al. 2004]. When a2 is analytic we may obtain that P̃(h)uh = O(exp(−c/h))
by Theorem 1.2′ in [Dencker et al. 2004]. By the invariance, we see that P is of principal type at t = τ =0
if and only if a1(0)= 0. If a1(0)= 0 then6ws(P)={0} and when a1 6= 0 we have that Pw is a self-adjoint
diagonalizable system. In the case a1(t) ≡ 0 and a2(t) ≡ t the eigenvalues of P(t, h Dt) are ±

√
2nh,

n ∈ N; see the proof of Proposition 3.6.1 in [Helffer and Sjöstrand 1990].

Of course, the problem is that the eigenvalues are not invariant under multiplication with elliptic
systems. To obtain the estimate (4.1) for operators that are not of principal type, it is not even sufficient
that the eigenvalues are real having constant multiplicity.

Example 4.2. Let a(t) ∈ C∞(R) be real valued, a(0)= 0, a′(0) > 0 and

Pw(t, h Dt)=

(
h Dt a(t)

−ha(t) h Dt

)
.

Then the principal symbol is

P(t, τ )=

(
τ a(t)
0 τ

)
so the only eigenvalue is τ . Thus 4(P) = ∅ but the principal symbol is not diagonalizable, and when
a(t) 6= 0 the system is not of principal type. We have(

h1/2 0
0 −1

)
P

(
h−1/2 0

0 1

)
=

√
h

(√
h Dt a(t)

a(t) −
√

h Dt

)
thus we obtain that ‖Pw(t, h Dt)

−1
‖ ≥ CN h−N for all N , when h → 0 by using Example 4.1 with a1 ≡ 0

and a2 ≡ a. When a is analytic we obtain ‖P(t, h Dt)
−1

‖ ≥ exp(c/
√

h).

For nonprincipal type operators, to obtain the estimate (4.1) it is not even sufficient that the principal
symbol has real eigenvalues of multiplicity one.
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Example 4.3. Let a(t) ∈ C∞(R), a(0)= 0, a′(0) > 0 and

P(h)=

(
1 h Dt

h iha(t)

)
with principal symbol (

1 τ

0 0

)
thus the eigenvalues are 0 and 1, so 4(P)= ∅. Since(

1 0
−h 1

)
P(h)

(
1 −h Dt

0 1

)
=

(
1 0
0 −h

) (
1 0
0 h Dt − ia(t)

)
we obtain as in Example 4.1 that ‖P(h)−1

‖ ≥ CN h−N when h → 0 for all N , and for analytic a(t)
we obtain ‖P(h)−1

‖ ≥ Cec/h , h → 0 . Now ∂τ P maps Ker P(0) into Ran P(0) so the system is not
of principal type. Observe that this property is not preserved under the multiplications above, since the
systems are not elliptic.

Instead of using properties of the eigenvalues of the principal symbol, we shall use properties that
are invariant under multiplication with invertible systems. First we consider the scalar case, recall that a
scalar p ∈ C∞ is of principal type if dp 6= 0 when p = 0. We have the following normal form for scalar
principal type operators near the boundary ∂6(P). Recall that a semibicharacteristic of p is a nontrivial
bicharacteristic of Re qp, for q 6= 0.

Example 4.4. Assume that p(x, ξ) ∈ C∞(T ∗Rn) is of principal type and 0 ∈ ∂6(p)\6∞(p). Then we
find from the proof of Lemma 4.1 in [Dencker et al. 2004] that there exists 0 6= q ∈ C∞ so that

Im qp ≥ 0 and d Re qp 6= 0

in a neighborhood of w0 ∈ 60(p). In fact, condition (1.7) in that lemma is not needed to obtain a local
preparation. By making a symplectic change of variables and using the Malgrange preparation theorem
we then find that

p(x, ξ)= e(x, ξ)(ξ1 + i f (x, ξ ′)) ξ = (ξ1, ξ
′) (4.2)

in a neighborhood of w0 ∈ 60(p), where e 6= 0 and f ≥ 0. If there are no closed semibicharacteristics
of p then we obtain this in a neighborhood of 60(p) by a partition of unity.

This normal form in the scalar case motivates the following definition.

Definition 4.5. We say that the N × N system P(w) ∈ C∞(T ∗Rn) is quasisymmetrizable with respect
to the real C∞ vector field V in �⊆ T ∗Rn if ∃ N × N system M(w) ∈ C∞(T ∗Rn) so that in � we have

Re〈M(V P)u, u〉 ≥ c‖u‖
2
− C‖Pu‖

2 c > 0 (4.3)

Im〈M Pu, u〉 ≥ −C‖Pu‖
2 (4.4)

for any u ∈ CN , the system M is called a symmetrizer for P .
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The definition is clearly independent of the choice of coordinates in T ∗Rn and choice of base in CN .
When P is elliptic, we may take M = i P∗ as multiplier; then P is quasisymmetrizable with respect to
any vector field because ‖Pu‖ ∼= ‖u‖. Observe that for a fixed vector field V the set of multipliers M
satisfying (4.3)–(4.4) is a convex cone, a sum of two multipliers is also a multiplier. Thus, given a vector
field V it suffices to make a local choice of multiplier M and then use a partition of unity to get a global
one.

Taylor has studied symmetrizable systems of the type Dt Id +i K , for which there exists R> 0 making
RK symmetric (see Definition 4.3.2 in [Taylor 1981]). These systems are quasisymmetrizable with
respect to ∂τ with symmetrizer R. We see from Example 4.4 that the scalar symbol p of principal type
is quasisymmetrizable in neighborhood of any point at ∂6(p) \6∞(p).

The invariance properties of quasisymmetrizable systems are partly due to the following simple and
probably well-known result on semibounded matrices. In the following, we shall denote Re A =

1
2(A +

A∗) and i Im A =
1
2(A − A∗) the symmetric and antisymmetric parts of the matrix A. Also, if U and V

are linear subspaces of CN , then we let U + V = {u + v : u ∈ U ∧ v ∈ V }.

Lemma 4.6. Assume that Q is an N × N matrix such that Im zQ ≥ 0 for some 0 6= z ∈ C. Then we find

Ker Q = Ker Q∗
= Ker(Re Q)∩ Ker(Im Q) (4.5)

and Ran Q = Ran(Re Q)+ Ran(Im Q) is orthogonal to Ker Q.

Proof. By multiplying with z we may assume that Im Q ≥ 0, clearly the conclusions are invariant under
multiplication with complex numbers. If u ∈Ker Q, then we have 〈Im Qu, u〉= Im〈Qu, u〉=0. By using
the Cauchy–Schwarz inequality on Im Q ≥ 0 we find that 〈Im Qu, v〉 = 0 for any v. Thus u ∈ Ker(Im Q)
so Ker Q ⊆ Ker Q∗. We get equality and (4.5) by the rank theorem, since Ker Q∗

= Ran Q⊥.
For the last statement we observe that Ran Q ⊆ Ran(Re Q)+ Ran(Im Q)= (Ker Q)⊥ by (4.5) where

we also get equality by the rank theorem. �

Proposition 4.7. Assume that P(w) ∈ C∞(T ∗Rn) is a quasisymmetrizable system; then we find that P
is of principal type. Also, the symmetrizer M is invertible if Im M P ≥ cP∗ P for some c > 0.

Observe that by adding i%P∗ to M we may assume that Q = M P satisfies

Im Q ≥ (%− C)P∗ P ≥ P∗ P ≥ cQ∗Q c > 0 (4.6)

for % ≥ C + 1, and then the symmetrizer is invertible by Proposition 4.7.

Proof. Assume that (4.3)–(4.4) hold at w0, Ker P(w0) 6= {0} but (3.1) is not a bijection. Then there exists
0 6= u ∈ Ker P(w0) and v ∈ CN such that V P(w0)u = P(w0)v, so (4.3) gives

Re〈M P(w0)v, u〉 = Re〈MV P(w0)u, u〉 ≥ c‖u‖
2 > 0.

This means that
Ran M P(w0) 6⊆ Ker P(w0)

⊥. (4.7)

Let M% = M + i%P∗ then we have that

Im〈M%Pu, u〉 ≥ (%− C)‖Pu‖
2
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so for large enough % we have Im M%P ≥ 0. By Lemma 4.6 we find

Ran M%P⊥ Ker M%P.

Since Ker P ⊆ Ker M%P and Ran P∗ P ⊆ Ran P∗
⊥ Ker P we find that Ran M P⊥ Ker P for any %. This

gives a contradiction to (4.7), thus P is of principal type.
Next, we shall show that M is invertible at w0 if Im M P ≥ cP∗ P at w0 for some c > 0. Then we

find as before from Lemma 4.6 that Ran M P(w0)⊥ Ker M P(w0). By choosing a base for Ker P(w0)

and completing it to a base of CN we may assume that

P(w0)=

(
0 P12(w0)

0 P22(w0)

)
where P22 is (N − K )× (N − K ) system, K = Dim Ker P(w0). Now, by multiplying P from the left
with an orthogonal matrix E we may assume that P12(w0)= 0. In fact, this only amounts to choosing an
orthonormal base for Ran P(w0)

⊥ and completing to an orthonormal base for CN . Observe that M P is
unchanged if we replace M with M E−1, which is invertible if and only if M is. Since Dim Ker P(w0)= K
we obtain |P22(w0)| 6= 0. Letting

M =

(
M11 M12

M21 M22

)
,

we find

M P =

(
0 0
0 M22 P22

)
at w0.

In fact, (M P)12(w0) = M12(w0)P22(w0) = 0 since Ran M P(w0) = Ker M P(w0)
⊥. We obtain that

M12(w0)= 0, and by assumption

Im M22 P22 ≥ cP∗

22 P22 at w0,

which gives |M22(w0)| 6= 0. Since P11, P21 and M12 vanish at w0 we find

Re V (M P)11(w0)= Re M11(w0)V P11(w0) > c

which gives |M11(w0)| 6=0. Since M12(w0)=0 and |M22(w0)| 6=0 we obtain that M(w0) is invertible. �

Remark 4.8. The N × N system P ∈ C∞(T ∗Rn) is quasisymmetrizable with respect to V if and only
if there exists an invertible symmetrizer M such that Q = M P satisfies

Re〈(V Q)u, u〉 ≥ c‖u‖
2
− C‖Qu‖

2 c > 0 (4.8)

Im〈Qu, u〉 ≥ 0 (4.9)

for any u ∈ CN .

In fact, by the Cauchy–Schwarz inequality we find

|〈(V M)Pu, u〉| ≤ ε‖u‖
2
+ Cε‖Pu‖

2
∀ ε > 0 ∀ u ∈ CN .

Since M is invertible, we also have that ‖Pu‖ ∼= ‖Qu‖.
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Definition 4.9. If the N × N system Q ∈ C∞(T ∗Rn) satisfies (4.8)–(4.9) then Q is quasisymmetric with
respect to the real C∞ vector field V .

Proposition 4.10. Let P(w) ∈ C∞(T ∗Rn) be an N × N quasisymmetrizable system; then P∗ is qua-
sisymmetrizable. If A(w) and B(w) ∈ C∞(T ∗Rn) are invertible N × N systems then B P A is quasisym-
metrizable.

Proof. Clearly (4.8)–(4.9) are invariant under left multiplication of P with invertible systems E , just
replace M with M E−1. Since we may write B P A = B(A∗)−1 A∗ P A it suffices to show that E∗ P E is
quasisymmetrizable if E is invertible. By Remark 4.8 there exists a symmetrizer M so that Q = M P is
quasisymmetric, that is, satisfies (4.8)–(4.9). It then follows from Proposition 4.11 that

QE = E∗QE = E∗M(E∗)−1 E∗ P E

also satisfies (4.8) and (4.9), so E∗ P E is quasisymmetrizable.
Finally, we shall prove that P∗ is quasisymmetrizable if P is. Since Q = M P is quasisymmetric, we

find from Proposition 4.11 that Q∗
= P∗M∗ is quasisymmetric. By multiplying with (M∗)−1 from the

right, we find from the first part of the proof that P∗ is quasisymmetrizable. �

Proposition 4.11. If Q ∈ C∞(T ∗Rn) is quasisymmetric, then Q∗ is quasisymmetric. If E ∈ C∞(T ∗Rn)

is invertible, then E∗QE are quasisymmetric.

Proof. First we note that (4.8) holds if and only if

Re〈(V Q)u, u〉 ≥ c‖u‖
2

∀ u ∈ Ker Q (4.10)

for some c> 0. In fact, Q∗Q has a positive lower bound on the orthogonal complement Ker Q⊥ so that

‖u‖ ≤ C‖Qu‖ for u ∈ Ker Q⊥.

Thus, if u = u′
+ u′′ with u′

∈ Ker Q and u′′
∈ Ker Q⊥ we find that Qu = Qu′′,

Re〈(V Q)u′, u′′
〉 ≥ −ε‖u′

‖
2
− Cε‖u′′

‖
2
≥ −ε‖u′

‖
2
− C ′

ε‖Qu‖
2

∀ ε > 0

and Re〈(V Q)u′′, u′′
〉 ≥ −C‖u′′

‖
2

≥ −C ′
‖Qu‖

2. By choosing ε small enough we obtain (4.8) by us-
ing (4.10) on u′.

Next, we note that Im Q∗
= −Im Q and Re Q∗

= Re Q, so −Q∗ satisfies (4.9) and (4.10) with V re-
placed by −V , and thus it is quasisymmetric. Finally, we shall show that QE = E∗QE is quasisymmetric
when E is invertible. We obtain from (4.9) that

Im〈QE u, u〉 = Im〈QEu, Eu〉 ≥ 0 ∀ u ∈ CN .

Next, we shall show that QE satisfies (4.10) on Ker QE = E−1 Ker Q, which will give (4.8). We find
from Leibniz’ rule that V QE = (V E∗)QE + E∗(V Q)E + E∗Q(V E) where (4.10) gives

Re〈E∗(V Q)Eu, u〉 ≥ c‖Eu‖
2
≥ c′

‖u‖
2 u ∈ Ker QE

since then Eu ∈ Ker Q. Similarly we obtain that 〈(V E∗)QEu, u〉 = 0 when u ∈ Ker QE . Now since
Im QE ≥ 0 we find from Lemma 4.6 that

Ker Q∗

E = Ker QE
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which gives 〈E∗Q(V E)u, u〉 = 〈E−1(V E)u, Q∗

E u〉 = 0 when u ∈ Ker QE = Ker Q∗

E . Thus QE satis-
fies (4.10) so it is quasisymmetric. �

Example 4.12. Assume that P(w) ∈ C∞ is an N × N system such that z ∈6(P) \ (6ws(P)∩6∞(P))
and that P(w)−λ IdN is of principal type when |λ− z| � 1. By Lemma 2.15 and Proposition 3.5 there
exists a C∞ germ of eigenvalues λ(w) ∈ C∞ for P so that Dim Ker(P(w)− λ(w) IdN ) is constant near
6z(P). By using the spectral projection as in the proof of Proposition 3.5 and making a base change
B(w) ∈ C∞ we obtain

P(w)= B−1(w)

(
λ(w) IdK 0

0 P22(w)

)
B(w) (4.11)

in a neighborhood of 6z(P), here |P22 − λ(w) Id| 6= 0. We find from Proposition 3.5 that dλ 6= 0 when
λ = z, so λ− z is of principal type. Proposition 4.10 gives that P − z IdN is quasisymmetrizable near
any w0 ∈6z(P) if z ∈ ∂6(λ). In fact, by Example 4.4 there exists q(w) ∈ C∞ so that

|d Re q(λ− z)| 6= 0 (4.12)

Im q(λ− z)≥ 0 (4.13)

and we get the normal form (4.2) for λ near 6z(P) = {λ(w)= z}. One can then take V normal to
6 = {Re q(λ− z)= 0} at 6z(P) and use

M = B∗

(
q IdK 0

0 M22

)
B

with M22(w)= (P22(w)− z Id)−1 for example. Then

Q = M(P − z IdN )= B∗

(
q(λ− z) IdK 0

0 IdN−K

)
B. (4.14)

If there are no closed semibicharacteristics of λ− z then we also find from Example 4.4 that P − z IdN is
quasisymmetrizable in a neighborhood of 6z(P); see the proof of Lemma 4.1 in [Dencker et al. 2004].

Example 4.13. Let
P(x, ξ)= |ξ |2 IdN +i K (x)

where 0 ≤ K (x) ∈ C∞. When z > 0 we find that P − z IdN is quasisymmetric in a neighborhood of
6z(P) with respect to the exterior normal 〈ξ, ∂ξ 〉 to 6z(P)=

{
|ξ |2 = z

}
.

For scalar symbols, we find that 0 ∈ ∂6(p) if and only if p is quasisymmetrizable, see Example 4.4.
But in the system case, this needs not be the case according to the following example.

Example 4.14. Let

P(w)=

(
w2 + iw3 w1

w1 w2 − iw3

)
w = (w1, w2, w3),

which is quasisymmetrizable with respect to ∂w1 with symmetrizer

M =

(
0 1
1 0

)
.
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In fact, ∂w1 M P = Id2 and

M P(w)=

(
w1 w2 − iw3

w2 + iw3 w1

)
= (M P(w))∗

so Im M P ≡ 0. Since eigenvalues of P(w) are w2 ±

√

w2
1 −w2

3 we find that 6(P)= C so 0 ∈
◦

6(P) is
not a boundary point of the eigenvalues.

For quasisymmetrizable systems we have the following result.

Theorem 4.15. Let the N × N system P(h) be given by (2.2) with principal symbol P ∈ C∞

b (T
∗Rn).

Assume that z /∈ 6∞(P) and there exists a real valued function T (w) ∈ C∞ such that P(w)− z IdN is
quasisymmetrizable with respect to the Hamilton vector field HT (w) in a neighborhood of 6z(P). Then
for any K > 0 we have {

ζ ∈ C : |ζ − z|< K h log(1/h)
}
∩ Spec(P(h))= ∅ (4.15)

for 0< h � 1, and
|(P(h)− z)−1

| ≤ C/h 0< h � 1. (4.16)

If P is analytic in a tubular neighborhood of T ∗Rn then there exists c0 > 0 such that{
ζ ∈ C : |ζ − z|< c0

}
∩ Spec(P(h))= ∅.

Condition (4.16) means that λ /∈3sc
1 (P), which is the pseudospectrum of index 1 by Definition 2.27.

The reason for the difference between (4.15) and (4.16) is that we make a change of norm in the proof
that is not uniform in h. The conditions in Theorem 4.15 give some geometrical information on the
bicharacteristic flow of the eigenvalues according to the following result.

Remark 4.16. The conditions in Theorem 4.15 imply that the limit set at 6z(P) of the nontrivial
semibicharacteristics of the eigenvalues close to zero of Q = M(P − z IdN ) is a union of compact
curves on which T is strictly monotone, thus they cannot form closed orbits.

In fact, locally (w, λ) ∈�1(P) \4(P) if and only if λ= λ(w) ∈ C∞ by Lemma 2.15. Since P(w)−
λ IdN is of principal type by Proposition 4.7, we find that Dim Ker(P(w)− λ(w) IdN ) is constant by
Proposition 3.5. Thus we obtain the normal form (4.14) as in Example 4.12. This shows that the Hamilton
vector field Hλ of an eigenvalue is determined by 〈d Qu, u〉 with 0 6= u ∈ Ker(P − ν IdN ) for ν close to
z =λ(w) by the invariance property given by (3.2). Now 〈(HT Re Q)u, u〉>0 for 0 6=u ∈Ker(P−z IdN ),
and d〈Im Qu, u〉 = 0 for u ∈ Ker M(P − z IdN ) by (4.9). Thus by picking subsequences we find that
the limits of nontrivial semibicharacteristics of eigenvalues λ of Q close to 0 give curves on which T is
strictly monotone. Since z /∈ 6∞(P) these limit bicharacteristics are compact and cannot form closed
orbits.

Example 4.17. Consider the system in Example 4.13

P(x, ξ)= |ξ |2 IdN +i K (x)

where 0 ≤ K (x) ∈ C∞. Then for z > 0 we find that P − z IdN is quasisymmetric in a neighborhood of
6z(P) with respect to V = HT , for T (x, ξ) = −〈ξ, x〉. If K (x) ∈ C∞

b and 0 /∈ 6∞(K ) then we obtain
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from Proposition 2.20, Remark 2.21, Example 2.22 and Theorem 4.15 that

‖(Pw(x, h D)− z)−1
‖ ≤ C/h 0< h � 1

since z /∈6∞(P).

Proof of Theorem 4.15. We shall first consider the C∞

b case. We may assume without loss of generality
that z = 0, and we shall follow the proof of Theorem 1.3 in [Dencker et al. 2004]. By the conditions, we
find from Definition 4.5, Remark 4.8 and (4.6) that there exists a function T (w) ∈ C∞

0 and a multiplier
M(w) ∈ C∞

b (T
∗Rn) so that Q = M P satisfies

Re HT Q ≥ c − C Im Q (4.17)

Im Q ≥ c Q∗Q (4.18)

for some c > 0 and then M is invertible by Proposition 4.7. In fact, outside a neighborhood of 60(P)
we have P∗ P ≥ c0; then we may choose M = i P∗ so that Q = i P∗ P and use a partition of unity to get
a global multiplier. Let

C1h ≤ ε ≤ C2h log 1
h

(4.19)

where C1 � 1 will be chosen large. Let T = Tw(x, h D)

Q(h)= Mw(x, h D)P(h)= Qw(x, h D)+ O(h) (4.20)

Qε(h)= eεT/h Q(h)e−εT/h
= e

ε
h adT Q(h)∼

∞∑
k=0

εk

hkk!
(adT )

k(Q(h))

where adT Q(h)= [T (h), Q(h)] = O(h). By the assumption on ε and the boundedness of adT /h we find
that the asymptotic expansion makes sense. Since ε2

= O(h) we see that the symbol of Qε(h) is equal to

Qε = Q + iε{T, Q} + O(h).

Since T is a scalar function, we obtain

Im Qε = Im Q + εRe HT Q + O(h). (4.21)

Now to simplify notation, we drop the parameter h in the operators Q(h) and P(h), and we shall use the
same letters for operators and the corresponding symbols. Using (4.17) and (4.18) in (4.21), we obtain
for small enough ε that

Im Qε ≥ (1 − Cε) Im Q + cε− Ch ≥ cε− Ch (4.22)

Since the symbol of 1
2i (Qε − (Qε)

∗) is equal to the expression (4.22) modulo O(h), the sharp Gårding
inequality for systems in Proposition A.5 gives

Im〈Qεu, u〉 ≥ (cε− C0h)‖u‖
2
≥
εc
2

‖u‖
2

for h � ε� 1. By using the Cauchy–Schwarz inequality, we obtain
εc
2

‖u‖ ≤ ‖Qεu‖. (4.23)
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Since Q = M P the calculus gives
Qε = MεPε + O(h) (4.24)

where Pε = e−εT/h PeεT/h and Mε = e−εT/h MeεT/h
= M + O(ε) is bounded and invertible for small

enough ε. For h � ε we obtain from (4.23)–(4.24) that

‖u‖ ≤
C
ε

‖Pεu‖ (4.25)

so Pε is injective with closed range. Now −Q∗ satisfies the conditions (4.3)–(4.4), with T replaced
by −T . Thus we also obtain the estimate (4.23) for Q∗

ε = P∗
ε M∗

ε +O(h). Since M∗
ε is invertible for small

enough h we obtain the estimate (4.25) for P∗
ε , thus Pε is surjective. Because the conjugation by eεT/h

is uniformly bounded on L2 when ε ≤ Ch we obtain the estimate (4.16) from (4.25).
Now conjugation with eεT/h is bounded in L2 (but not uniformly) also when (4.19) holds. By taking C2

arbitrarily large in (4.19) we find from the estimate (4.25) for Pε and P∗
ε that

D
(

0, K h log 1
h

)
∩ Spec(P)= ∅

for any K > 0 when h > 0 is sufficiently small.

The analytic case. We assume as before that z = 0 and

P(h)∼

∑
j≥0

h j Pwj (x, h D) P0 = P

where the Pj are bounded and holomorphic in a tubular neighborhood of T ∗Rn , satisfy (2.3), and
Pwj (z, h Dz) is defined by the formula (2.1), where we may change the integration to a suitable chosen
contour instead of T ∗Rn (see [Sjöstrand 1982, Section 4]). As before, we shall follow the proof of
Theorem 1.3 in [Dencker et al. 2004] and use the theory of the weighted spaces H(3%T ) developed in
[Helffer and Sjöstrand 1990] (see also [Martinez 2002]).

The complexification T ∗Cn of the symplectic manifold T ∗Rn is equipped with a complex symplectic
form ωC giving two natural real symplectic forms ImωC and ReωC. We find that T ∗Rn is Lagrangian
with respect to the first form and symplectic with respect to the second. In general, a submanifold
satisfying these two conditions is called an IR-manifold.

Assume that T ∈ C∞

0 (T
∗Rn); then we may associate to it a natural family of IR-manifolds:

3%T = {w+ i%HT (w) : w ∈ T ∗Rn
} ⊂ T ∗Cn with % ∈ R and |%| small

where as before we identify T (T ∗Rn) with T ∗Rn; see [Dencker et al. 2004, page 391]. Since Im(ζdz)
is closed on 3%T ,we find that there exists a function G% on 3%T such that

dG% = −Im(ζdz)|3%T

In fact, we can write it down explicitly by parametrizing 3%T by T ∗Rn:

G%(z, ζ )= −〈ξ, %∇ξT (x, ξ)〉 + %T (x, ξ) for (z, ζ )= (x, ξ)+ i%HT (x, ξ)

The associated spaces H(3%T ) are going to be defined by using the FBI transform:

T : L2(Rn)→ L2(T ∗Rn)
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given by

T u(x, ξ)= cnh−3n/4
∫

Rn
ei(〈x−y,ξ〉+i |x−y|

2)/(2h)u(y) dy. (4.26)

The FBI transform may be continued analytically to 3%T so that T3%T u ∈ C∞(3%T ). Since 3%T differs
from T ∗Rn on a compact set only, we find that T3%T u is square integrable on 3%T . The FBI transform
can of course also be defined on u ∈ L2(Rn) having values in CN , and the spaces H(3%T ) are defined
by putting h dependent norms on L2(Rn):

‖u‖
2
H(3%T )

=

∫
3%T

|T3%T u(z, ζ )|2e−2G%(z,ζ )/h(ω|3%T )
n/n! = ‖T3%T u‖

2
L2(%,h)

Suppose that P1 and P2 are bounded and holomorphic N × N systems in a neighbourhood of T ∗Rn

in T ∗Cn and that u ∈ L2(Rn,CN ). Then we find for % > 0 small enough

〈Pw1 (x, h D)u, Pw2 (x, h D)v〉H(3%T )

= 〈(P1|3%T )T3%T u, (P2|3%T )T3%T v〉L2(%,h) + O(h)‖u‖H(3%T )‖v‖H(3%T ).

By taking P1 = P2 = P and u = v we obtain

‖Pw(x, h D)u‖
2
H(3%T )

= ‖(P|3%T )T3%T u‖
2
L2(%,h) + O(h)‖u‖

2
H(3%T )

(4.27)

as in the scalar case; see [Helffer and Sjöstrand 1990] or [Martinez 2002].
By Remark 4.8 we may assume that M P = Q satisfies (4.8)–(4.9), with invertible M . The analyticity

of P gives

P(w+ i%HT )= P(w)+ i%HT P(w)+ O(%2) |%| � 1

by Taylor’s formula; thus

Im M(w)P(w+ i%HT (w))= Im Q(w)+ %Re M(w)HT P(w)+ O(%2).

Since we have Re M HT P > c−C Im Q, c> 0, by (4.8) and Im Q ≥ 0 by (4.9), we obtain for sufficiently
small % > 0 that

Im M(w)P(w+ i%HT (w))≥ (1 − C%) Im Q(w)+ c%+ O(%2)≥ c%/2 (4.28)

which gives by the Cauchy–Schwarz inequality that ‖P �3%T u‖ ≥ c′%‖u‖. Thus

‖P−1 �3%T ‖ ≤ C/%. (4.29)

Now recall that H(3%T ) is equal to L2 as a space and that the norms are equivalent for every fixed h (but
not uniformly). Thus the spectrum of P(h) does not depend on whether the operator is realized on L2

or on H(3%T ). We conclude from (4.27) and (4.29) that 0 has an h-independent neighbourhood which
is disjoint from the spectrum of P(h), when h is small enough. �
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Summing up, we have proved the following result.

Proposition 4.18. Assume that P(h) is an N × N system on the form given by (2.2) with analytic princi-
pal symbol P(w), and that there exists a real valued function T (w)∈ C∞(T ∗Rn) such that P(w)−z IdN

is quasisymmetrizable with respect to HT in a neighborhood of 6z(P). Define the IR-manifold

3%T = {w+ i%HT (w); w ∈ T ∗Rn
}

for % > 0 small enough. Then

P(h)− z : H(3%T ) −→ H(3%T )

has a bounded inverse for h small enough, which gives

Spec(P(h))∩ D(z, δ)= ∅ 0< h < h0

for δ small enough.

Remark 4.19. It is clear from the proof of Theorem 4.15 that in the analytic case it suffices that Pj is
analytic in a fixed complex neighborhood of 6z(P)b T ∗Rn , j ≥ 0.

5. The subelliptic case

We shall investigate when we have an estimate of the resolvent which is better than the quasisymmetric
estimate, for example the subelliptic type of estimate

‖(P(h)− λ IdN )
−1

‖ ≤ Ch−µ h → 0

with µ< 1, which we obtain in the scalar case under the bracket condition; see Theorem 1.4 in [Dencker
et al. 2004].

Example 5.1. Consider the scalar operator pw = h Dt + i f w(t, x, h Dx) where 0 ≤ f (t, x, ξ) ∈ C∞

b ,
(t, x) ∈ R×Rn , and 0 ∈ ∂6( f ). Then we obtain from Theorem 1.4 in [Dencker et al. 2004] the estimate

hk/k+1
‖u‖ ≤ C‖pwu‖ h � 1 ∀ u ∈ C∞

0 (5.1)

if 0 /∈6∞( f ) and ∑
j≤k

|∂
j

t f | 6= 0. (5.2)

These conditions are also necessary. For example, if | f (t)| ≤ C |t |k then an easy computation gives
‖h Dt u + i f u‖/‖u‖ ≤ chk/k+1 if u(t)= φ(th−1/k+1) with 0 6= φ(t) ∈ C∞

0 (R).

The following example shows that condition (5.2) is not sufficient for systems.

Example 5.2. Let P = h Dt Id2 +i F(t) where

F(t)=

(
t2 t3

t3 t4

)
.

Then we have

F (3)(0)=

(
0 6
6 0

)
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which gives that ⋂
j≤3

Ker F ( j)(0)= {0} .

But by taking u(t)=χ(t)(t,−1)t with 0 6=χ(t)∈C∞

0 (R), we obtain F(t)u(t)≡0 so we find ‖Pu‖/‖u‖≤

ch. Observe that

F(t)=

(
1 −t
t 1

) (
t2 0
0 0

) (
1 t
−t 1

)
.

Thus F(t)= t2 B∗(t)5(t)B(t) where B(t) is invertible and 5(t) is a projection of rank one.

Example 5.3. Let P = h Dt Id2 +i F(t) where

F(t)=

(
t2

+ t8 t3
− t7

t3
− t7 t4

+ t6

)
=

(
1 −t
t 1

) (
t2 0
0 t6

) (
1 t
−t 1

)
.

Then we have that

P = (1 + t2)−1
(

1 −t
t 1

) (
h Dt + i(t2

+ t4) 0
0 h Dt + i(t6

+ t8)

) (
1 t
−t 1

)
+ O(h).

Thus we find from the scalar case that h6/7
‖u‖ ≤ C‖Pu‖ for h � 1; see [Dencker et al. 2004, Theo-

rem 1.4]. Observe that this operator is, element for element, a higher order perturbation of the operator
of Example 5.2.

Definition 5.4. Let 0 ≤ F(t) ∈ L∞

loc(R) be an N × N system; then we define

�δ(F)=

{
t : min

‖u‖=1
〈F(t)u, u〉 ≤ δ

}
0< δ ≤ 1

which is well-defined almost everywhere and contains 60(F)= |F |
−1(0).

Observe that one can also use this definition in the scalar case, then �δ( f )= f −1([0, δ]) for nonneg-
ative functions f .

Remark 5.5. Observe that if F ≥ 0 and E is invertible then we find that

�δ(E∗F E)⊆�Cδ(F)

where C = ‖E−1
‖

2.

Example 5.6. For the scalar symbols p(x, ξ)= τ + i f (t, x, ξ) in Example 5.1 we find from Proposition
A.1 that (5.2) is equivalent to

|{t : f (t, x, ξ)≤ δ}| = |�δ( fx,ξ )| ≤ Cδ1/k 0< δ � 1 ∀ x, ξ,

where fx,ξ (t)= f (t, x, ξ).

Example 5.7. For the matrix F(t) in Example 5.3 we find from Remark 5.5 that |�δ(F)| ≤ Cδ1/6, and
for the matrix in Example 5.2 we find that |�δ(F)| = ∞.

We also have examples when the semidefinite imaginary part vanishes of infinite order.
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Example 5.8. Let p(x, ξ)= τ + i f (t, x, ξ) where 0 ≤ f (t, x, ξ)≤ Ce−1/|t |σ , σ > 0, then we obtain that

|�δ( fx,ξ )| ≤ C0|log δ|−1/σ 0< δ � 1 ∀ x, ξ.

(We owe this example to Y. Morimoto.)

The following example shows that for subelliptic type of estimates it is not sufficient to have condi-
tions only on the vanishing of the symbol, we also need conditions on the semibicharacteristics of the
eigenvalues.

Example 5.9. Let

P = h Dt Id2 +αh
(

Dx 0
0 −Dx

)
+ i(t −βx)2 Id2 (t, x) ∈ R2

with α, β ∈ R. Then we see from the scalar case that P satisfies the estimate (5.1) with µ= 2/3 if and
only either α = 0 or α 6= 0 and β 6= ±1/α.

Definition 5.10. Let Q(w) ∈ C∞(T ∗Rn) be an N × N system and let w0 ∈ 6 ⊂ T ∗Rn . We say that Q
satisfies the approximation property on 6 near w0 if there exists a Q invariant C∞ subbundle V of CN

over T ∗Rn such that V(w0)= Ker QN (w0) and

Re〈Q(w)v, v〉 = 0 v ∈ V(w) w ∈6 (5.3)

near w0. That V is Q invariant means that Q(w)v ∈ V(w) for v ∈ V(w).

Here Ker QN (w0) is the space of the generalized eigenvectors corresponding to the zero eigenvalue.
The symbol of the system in Example 5.9 satisfies the approximation property on 6 = {τ = 0} if and
only if α = 0.

Let Q̃ = Q|V then since Im i Q̃ = Re Q̃ we obtain from Lemma 4.6 that Ran Q̃⊥ Ker Q̃ on 6. Thus
Ker Q̃N

= Ker Q̃ on6, and since Ker Q̃N (w0)= V(w0)we find that Ker QN (w0)= V(w0)= Ker Q(w0).
It follows from Example 5.13 that Ker Q ⊆ V near w0.

Remark 5.11. Assume that Q satisfies the approximation property on the C∞ hypersurface 6 and is
quasisymmetric with respect to V /∈ T6. Then the limits of the nontrivial semibicharacteristics of the
eigenvalues of Q close to zero coincide with the bicharacteristics of 6.

In fact, the approximation property in Definition 5.10 and Example 5.13 give that 〈Re Qu, u〉 = 0 for
u ∈ Ker Q ⊆ V on 6. Since Im Q ≥ 0 we find that

〈d Qu, u〉 = 0 ∀ u ∈ Ker Q on T6. (5.4)

By Remark 4.16 the limits of the nontrivial semibicharacteristics of the eigenvalues close to zero of Q
are curves with tangents determined by 〈d Qu, u〉 for u ∈ Ker Q. Since V Re Q 6= 0 on Ker Q we find
from (5.4) that the limit curves coincide with the bicharacteristics of 6, which are the flow-outs of the
Hamilton vector field.

Example 5.12. Observe that Definition 5.10 is empty if Dim Ker QN (w0)= 0. If Dim Ker QN (w0) > 0,
then there exists ε > 0 and a neighborhood ω to w0 so that

5(w)=
1

2π i

∫
|z|=ε

(z IdN −Q(w))−1 dz ∈ C∞(ω) (5.5)
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is the spectral projection on the (generalized) eigenvectors with eigenvalues having absolute value less
than ε. Then Ran5 is a Q invariant bundle over ω so that Ran5(w0) = Ker QN (w0). Condition (5.3)
with V = Ran5 means that 5∗ Re Q5 ≡ 0 in ω. When Im Q(w0) ≥ 0 we find that 5∗Q5(w0) = 0;
then Q satisfies the approximation property on 6 near w0 with V = Ran5 if and only if

d(5∗(Re Q)5)|T6 ≡ 0 near w0.

Example 5.13. If Q satisfies the approximation property on 6, then by choosing an orthonormal base
for V and extending it to an orthonormal base for CN we obtain the system on the form

Q =

(
Q11 Q12

0 Q22

)
(5.6)

where Q11 is K × K system such that QN
11(w0) = 0, Re Q11 = 0 on 6 and |Q22| 6= 0. By multiplying

from the left with (
IdK −Q12 Q−1

22
0 IdN−K

)
we obtain that Q12 ≡ 0 without changing Q11 or Q22.

In fact, the eigenvalues of Q are then eigenvalues of either Q11 or Q22. Since V(w0) are the (general-
ized) eigenvectors corresponding to the zero eigenvalue of Q(w0)we find that all eigenvalues of Q22(w0)

are nonvanishing, thus Q22 is invertible near w0,

Remark 5.14. If Q satisfies the approximation property on6 nearw0, then it satisfies the approximation
property on 6 near w1, for w1 sufficiently close to w0.

In fact, let Q11 be the restriction of Q to V as in Example 5.13, then since Re Q11 = Im i Q11 = 0 on6
we find from Lemma 4.6 that Ran Q11⊥ Ker Q11 and Ker Q11 = Ker QN

11 on 6. Since Q22 is invertible
in (5.6), we find that Ker Q ⊆ V. Thus, by using the spectral projection (5.5) of Q11 near w1 ∈ 6 for
small enough ε we obtain an invariant subbundle Ṽ ⊆ V so that Ṽ(w1)= Ker Q11(w1)= Ker QN (w1).

If Q ∈ C∞ satisfies the approximation property and QE = E∗QE with invertible E ∈ C∞, then it
follows from the proof of Proposition 5.18 below that there exist invertible A, B ∈ C∞ such that AQE

and Q∗B satisfy the approximation property.

Definition 5.15. Let P ∈ C∞(T ∗Rn) be an N × N system and let φ(r) be a positive nondecreasing
function on R+. We say that P is of subelliptic type φ if for anyw0 ∈60(P) there exists a neighborhoodω
ofw0, a C∞ hypersurface6 3w0, a real C∞ vector field V /∈ T6 and an invertible symmetrizer M ∈ C∞

so that Q = M P is quasisymmetric with respect to V in ω and satisfies the approximation property on
6 ∩ω. Also, for every bicharacteristic γ of 6 the arc length∣∣γ ∩�δ(Im Q)∩ω

∣∣ ≤ Cφ(δ) 0< δ � 1 (5.7)

We say that z is of subelliptic type φ for P ∈ C∞ if P − z IdN is of subelliptic type φ. If φ(δ)= δµ then
we say that the system is of finite type of order µ≥ 0, which generalizes the definition of finite type for
scalar operators in [Dencker et al. 2004].

Recall that the bicharacteristics of a hypersurface in T ∗X are the flow-outs of the Hamilton vector
field of 6. Of course, if P is elliptic then by choosing M = i P−1 we obtain Q = i IdN , so P is trivially
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of subelliptic type. If P is of subelliptic type, then it is quasisymmetrizable by definition and thus of
principal type.

Remark 5.16. Observe that we may assume that

Im〈Qu, u〉 ≥ c‖Qu‖
2

∀ u ∈ CN (5.8)

in Definition 5.15.

In fact, by adding i%P∗ to M we obtain (5.8) for large enough % by (4.6), and this only increases
Im Q.

Since Q is in C∞ the estimate (5.7) cannot be satisfied for any φ(δ) � δ (unless Q is elliptic) and
it is trivially satisfied with φ ≡ 1, thus we shall only consider cδ ≤ φ(δ) � 1 (or finite type of order
0 < µ ≤ 1). Actually, for C∞ symbols of finite type, the only relevant values in (5.7) are µ = 1/k for
even k > 0; see Proposition A.2 in the Appendix.

Actually, the condition that φ is nondecreasing is unnecessary, since the left-hand side in (5.7) is non-
decreasing (and upper semicontinuous) in δ, we can replace φ(δ) by infε>δ φ(ε) to make it nondecreasing
(and upper semicontinuous).

Example 5.17. Assume that Q is quasisymmetric with respect to the real vector field V , satisfying (5.7)
and the approximation property on 6. Then by choosing an orthonormal base as in Example 5.13 we
obtain the system on the form

Q =

(
Q11 Q12

0 Q22

)
where Q11 is K × K system such that QN

11(w0) = 0, Re Q11 = 0 on 6 and |Q22| 6= 0. Since Q is
quasisymmetric with respect to V we also obtain that Q11(w0)= 0, Re V Q11 > 0, Im Q j j ≥ 0 for j = 1,
2. In fact, then Lemma 4.6 gives that Im Q⊥ Ker Q so Ker QN

= Ker Q. Since Q satisfies (5.7) and
�δ(Im Q11) ⊆ �δ(Im Q) we find that Q11 satisfies (5.7). By multiplying from the left as in Example
5.13 we obtain that Q12 ≡ 0 without changing Q11 or Q22.

Proposition 5.18. If the N×N system P(w)∈C∞(T ∗Rn) is of subelliptic type φ then P∗ is of subelliptic
type φ. If A(w) and B(w)∈ C∞(T ∗Rn) are invertible N × N systems, then AP B is of subelliptic type φ.

Proof. Let M be the symmetrizer in Definition 5.15 so that Q = M P is quasisymmetric with respect to
V . By choosing a suitable base and changing the symmetrizer as in Example 5.17, we may write

Q =

(
Q11 0
0 Q22

)
(5.9)

where Q11 is K × K system such that Q11(w0) = 0, V Re Q11 > 0, Re Q11 = 0 on 6 and that Q22 is
invertible. We also have Im Q ≥ 0 and that Q satisfies (5.7). Let V1 = {u ∈ CN

: u j = 0 for j > K } and
V2 = {u ∈ CN

: u j = 0 for j ≤ K }, these are Q invariant bundles such that V1 ⊕ V2 = CN .
First we are going to show that P̃ = AP B is of subelliptic type. By taking M̃ = B−1 M A−1 we find

that

M̃ P̃ = Q̃ = B−1 Q B
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and it is clear that B−1V j are Q̃ invariant bundles, j = 1, 2. By choosing bases in B−1V j for j = 1, 2,
we obtain a base for CN in which Q̃ has a block form:

Q̃ =

(
Q̃11 0
0 Q̃22

)
Here Q̃ j j : B−1V j 7→ B−1V j , is given by Q̃ j j = B−1

j Q j j B j with

B j : B−1V j 3 u 7→ Bu ∈ V j j = 1, 2.

By multiplying Q̃ from the left with

B =

(
B∗

1 B1 0
0 B∗

2 B2

)
we obtain that

Q = BQ̃ = BM̃ P̃ =

(
B∗

1 Q11 B1 0
0 B∗

2 Q22 B2

)
=

(
Q11 0
0 Q22

)
.

It is clear that Im Q ≥ 0, Q11(w0) = 0, Re Q11 = 0 on 6, |Q22| 6= 0 and V Re Q11 > 0 by Proposition
4.11. Finally, we obtain from Remark 5.5 that

�δ(Im Q)⊆�Cδ(Im Q)

for some C > 0, which proves that P̃ = AP B is of subelliptic type. Observe that Q = AQ B , where
Q B = B∗Q B and A = BB−1(B∗)−1.

To show that P∗ also is of subelliptic type, we may assume as before that Q = M P is on the form (5.9)
with Q11(w0) = 0, V Re Q11 > 0, Re Q11 = 0 on 6, Q22 is invertible, Im Q ≥ 0 and Q satisfies (5.7).
Then we find that

−P∗M∗
= −Q∗

=

(
−Q∗

11 0
0 −Q∗

22

)
satisfies the same conditions with respect to −V , so it is of subelliptic type with multiplier IdN . By the
first part of the proof we obtain that P∗ is of subelliptic type. �

Example 5.19. In the scalar case, p ∈ C∞(T ∗Rn) is quasisymmetrizable with respect to Ht = ∂τ near w0

if and only if

p(t, x; τ, ξ)= q(t, x; τ, ξ)(τ + i f (t, x, ξ)) near w0 (5.10)

with f ≥ 0 and q 6= 0; see Example 4.4. If 0 /∈ 6∞(p) we find by taking q−1 as symmetrizer that p
in (5.10) is of finite type of order µ if and only if µ= 1/k for an even k such that∑

j≤k

|∂k
t f |> 0

by Proposition A.1. In fact, the approximation property is trivial since f is real. Thus we obtain the case
in [Dencker et al. 2004, Theorem 1.4]; see Example 5.1.
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Theorem 5.20. Assume that the N × N system P(h) is given by the expansion (2.2) with principal
symbol P ∈ C∞

b (T
∗Rn). Assume that z ∈ 6(P) \6∞(P) is of subelliptic type φ for P , where φ > 0 is

nondecreasing on R+. Then there exists h0 > 0 so that

‖(P(h)− z IdN )
−1

‖ ≤ C/ψ(h) 0< h ≤ h0 (5.11)

where ψ(h)= δ is the inverse to h = δφ(δ). It follows that there exists c0 > 0 such that

{w : |w− z| ≤ c0ψ(h)} ∩ σ(P(h))= ∅ 0< h ≤ h0.

Theorem 5.20 will be proved in Section 6. Observe that if φ(δ)→ c > 0 as δ→ 0 then ψ(h)= O(h)
and Theorem 5.20 follows from Theorem 4.15. Thus we shall assume that φ(δ)→ 0 as δ → 0, then we
find that h = δφ(δ) = o(δ) so ψ(h) � h when h → 0. In the finite type case: φ(δ) = δµ we find that
δφ(δ) = δ1+µ and ψ(h) = h1/µ+1. When µ = 1/k we find that 1 +µ = (k + 1)/k and ψ(h) = hk/k+1.
Thus Theorem 5.20 generalizes Theorem 1.4 in [Dencker et al. 2004] by Example 5.19. Condition (5.11)
with ψ(h)= h1/µ+1 means that λ /∈3sc

1/µ+1(P), which is the pseudospectrum of index 1/µ+ 1.

Example 5.21. Assume that P(w) ∈ C∞ is N × N and z ∈6(P)\ (6ws(P)∪6∞(P)). Then 6µ(P)=
{λ(w)= µ} for µ close to z, where λ ∈ C∞ is a germ of eigenvalues for P at 6z(P); see Lemma 2.15.
If z ∈ ∂6(λ) we find from Example 4.12 that P(w)− z IdN is quasisymmetrizable near w0 ∈ 6z(P)
if P(w)− λ IdN is of principal type when |λ− z| � 1. Then P is on the form (4.11) and there exists
q(w) ∈ C∞ so that (4.12)–(4.13) hold near 6z(P). We can then choose the multiplier M so that Q is
on the form (4.14). By taking 6 = {Re q(λ− z)= 0} we obtain that P − z IdN is of subelliptic type φ
if (5.7) is satisfied for Im q(λ− z). In fact, by the invariance we find that the approximation property is
trivially satisfied since Re qλ≡ 0 on 6.

Example 5.22. Let
P(x, ξ)= |ξ |2 IdN +i K (x) (x, ξ) ∈ T ∗Rn

where K (x) ∈ C∞(Rn) is symmetric as in Example 3.12. We find that P − z IdN is of finite type of
order 1/2 when z = iλ for almost all λ ∈ 6(K ) \ (6ws(K ) ∪6∞(K )) by Example 5.21. In fact, then
z ∈6(P)\(6ws(P)∩6∞(P)) and the C∞ germ of eigenvalues for P near6z(P) is λ(x, ξ)=|ξ |2+iκ(x),
where κ(x) is a C∞ germ of eigenvalues for K (x) near 6λ(K ) = {κ(x)= λ}. For almost all values λ
we have dκ(x) 6= 0 on 6λ(K ). By taking q = i we obtain for such values that (5.7) is satisfied for
Im i(λ(w) − iλ) = |ξ |2 with φ(δ) = δ1/2, since Re i(λ(w) − iλ) = λ − κ(x) = 0 on 6 = 6λ(K ).
If K (x) ∈ C∞

b and 0 /∈ 6∞(K ) then we may use Theorem 5.20, Proposition 2.20, Remark 2.21 and
Example 2.22 to obtain the estimate

‖(Pw(x, h D)− z IdN )
−1

‖ ≤ Ch−2/3 0< h � 1

on the resolvent.

Example 5.23. Let
P(t, x; τ, ξ)= τM(t, x, ξ)+ i F(t, x, ξ) ∈ C∞

where M ≥ c0 > 0 and F ≥ 0 satisfies∣∣∣{t : inf
|u|=1

〈F(t, x, ξ)u, u〉 ≤ δ
}∣∣∣ ≤ Cφ(δ) ∀ x, ξ. (5.12)
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Then P is quasisymmetrizable with respect to ∂τ with symmetrizer IdN . When τ = 0 we obtain that
Re P = 0, so by taking V = Ran5 for the spectral projection 5 given by (5.5) for F , we find that P
satisfies the approximation property with respect to 6 = {τ = 0}. Since �δ(Im P) = �δ(F) we find
from (5.12) that P is of subelliptic type φ. Observe that if 0 /∈ 6∞(F) we obtain from Proposition A.2
that (5.12) is satisfied for φ(δ)= δµ if and only if µ≤ 1/k for an even k ≥ 0 so that∑

j≤k

|∂
j

t 〈F(t, x, ξ)u(t), u(t)〉|> 0 ∀ t, x, ξ

for any 0 6= u(t) ∈ C∞(R).

6. Proof of Theorem 5.20

By subtracting z IdN we may assume z = 0. Let w̃0 ∈60(P); then by Definition 5.15 and Remark 5.16
there exist a C∞ hypersurface 6 and a real C∞ vector field V /∈ T6, an invertible symmetrizer M ∈ C∞

so that Q = M P satisfies (5.7), the approximation property on 6, and

V Re Q ≥ c − C Im Q (6.1)

Im Q ≥ c Q∗Q (6.2)

in a neighborhood ω of w̃0, here c > 0.
Since (6.1) is stable under small perturbations in V we can replace V with Ht for some real t ∈ C∞

after shrinkingω. By solving the initial value problem Htτ ≡−1, τ |6=0, and completing to a symplectic
C∞ coordinate system (t, τ, x, ξ) we obtain that 6 = {τ = 0} in a neighborhood of w̃0 = (0, 0, w0). We
obtain from Definition 5.15 that

Re〈Qu, u〉 = 0 when τ = 0 and u ∈ V (6.3)

near w̃0. Here V is a Q invariant C∞ subbundle of CN such that V(w̃0)= Ker QN (w̃0)= Ker Q(w̃0) by
Lemma 4.6. By condition (5.7) we have that∣∣�δ(Im Qw)∩ {|t |< c}

∣∣ ≤ Cφ(δ) 0< δ � 1 (6.4)

when |w−w0|< c, here Qw(t)= Q(t, 0, w). Since these are all local conditions, we may assume that
M and Q ∈ C∞

b . We shall obtain Theorem 5.20 from the following estimate.

Proposition 6.1. Assume that Q ∈ C∞

b (T
∗Rn) is an N × N system satisfying (6.1)–(6.4) in a neighbor-

hood of w̃0 = (0, 0, w0) with V = ∂τ and nondecreasing φ(δ) → 0 as δ → 0. Then there exist h0 > 0
and R ∈ C∞

b (T
∗Rn) so that w̃0 /∈ supp R and

ψ(h)‖u‖ ≤ C(‖Qw(t, x, h Dt,x)u‖ +‖Rw(t, x, h Dt,x)u‖ + h‖u‖) 0< h ≤ h0 (6.5)

for any u ∈ C∞

0 (R
n,CN ). Here ψ(h)= δ � h is the inverse to h = δφ(δ).

Let ω be a neighborhood of w̃0 such that supp R ∩ω= ∅, where R is given by Proposition 6.1. Take
ϕ ∈ C∞

0 (ω) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 in a neighborhood of w̃0. By substituting ϕw(t, x, h Dt,x)u
in (6.5) we obtain from the calculus that for any N we have

ψ(h)‖ϕw(t, x, h Dt,x)u‖ ≤ CN (‖Qw(t, x, h Dt,x)ϕ
w(t, x, h Dt,x)u‖ + hN

‖u‖) ∀ u ∈ C∞

0 (6.6)
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for small enough h since Rϕ ≡ 0. Now the commutator

‖[Qw(t, x, h Dt,x), ϕ
w(t, x, h Dt,x)]u‖ ≤ Ch‖u‖ u ∈ C∞

0 .

Since Q = M P the calculus gives

‖Qw(t, x, h Dt,x)u‖ ≤ ‖Mw(t, x, h Dt,x)P(h)u‖ + Ch‖u‖ ≤ C ′(‖P(h)u‖ + h‖u‖) u ∈ C∞

0 . (6.7)

The estimates (6.6)–(6.7) give

ψ(h)‖ϕw(t, x, h Dt,x)u‖ ≤ C(‖P(h)u‖ + h‖u‖). (6.8)

Since 0 /∈6∞(P) we obtain by using the Borel Theorem finitely many functions φ j ∈ C∞

0 , j = 1, . . . , N ,
such that 0≤φ j ≤1,

∑
j φ j =1 on60(P) and the estimate (6.8) holds with φ=φ j . Let φ0 =1−

∑
j≥1 φ j ;

then since 0 /∈6∞(P) we find that ‖P−1
‖ ≤ C on suppφ0. Thus φ0 = φ0 P−1 P and the calculus gives

‖φw0 (t, x, h Dt,x)u‖ ≤ C(‖P(h)u‖ + h‖u‖) u ∈ C∞

0 .

By summing up, we obtain

ψ(h)‖u‖ ≤ C(‖P(h)u‖ + h‖u‖) u ∈ C∞

0 . (6.9)

Since h = δφ(δ)� δ we find ψ(h)= δ� h when h → 0. Thus, we find for small enough h that the last
term in the right hand side of (6.9) can be cancelled by changing the constant; then P(h) is injective with
closed range. Since P∗(h) also is of subelliptic type φ by Proposition 5.18 we obtain the estimate (6.9)
for P∗(h). Thus P∗(h) is injective making P(h) is surjective, which together with (6.9) gives Theorem
5.20.

Proof of Proposition 6.1. First we shall prepare the symbol Q locally near w̃0 =(0, 0, w0). Since Im Q ≥0
we obtain from Lemma 4.6 that Ran Q(w̃0)⊥ Ker Q(w̃0) which gives Ker QN (w̃0) = Ker Q(w̃0). Let
Dim Ker Q(w̃0)= K then by choosing an orthonormal base and multiplying from the left as in Example
5.17, we may assume that

Q =

(
Q11 0
0 Q22

)
where Q11 is K × K matrix, Q11(w̃0) = 0 and |Q22(w̃0)| 6= 0. Also, we find that Q11 satisfies the
conditions (6.1)–(6.4) with V = CK near w̃0.

Now it suffices to prove the estimate with Q replaced by Q11. In fact, by using the ellipticity of Q22

at w̃0 we find

‖u′′
‖ ≤ C(‖Qw

22u′′
‖ +‖Rw1 u′′

‖ + h‖u′′
‖ u′′

∈ C∞

0 (R
n,CN−K )

where u = (u′, u′′) and w̃0 /∈ supp R1. Thus, if we have the estimate (6.5) for Qw
11 with R = R2, then

since ψ(h) is bounded we obtain the estimate for Qw:

ψ(h)‖u‖ ≤ C0(‖Qw
11u′

‖ +‖Qw
22u′′

‖ +‖Rwu‖ + h‖u‖)≤ C1(‖Qwu‖ +‖Rwu‖ + h‖u‖)

where w̃0 /∈ supp R, R = (R1, R2).
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Thus, in the following we may assume that Q = Q11 is K × K system satisfying the conditions (6.1)–
(6.4) with V = CK near w̃0. Since ∂τ Re Q > 0 at w̃0 by (6.1), we find from the matrix version of the
Malgrange Preparation Theorem in [Dencker 1993, Theorem 4.3] that

Q(t, τ, w)= E(t, τ, w)(τ Id +K0(t, w)) near w̃0

where E , K0 ∈ C∞, and Re E > 0 at w̃0. By taking M(t, w)= E(t, 0, w) we find Re M > 0 and

Q(t, τ, w)= E0(t, τ, w)(τM(t, w)+ i K (t, w))= E0(t, τ, w)Q0(t, τ, w)

where E0(t, 0, w)≡ Id. Thus we find that Q0 satisfies (6.2), (6.3) and (6.4) when τ = 0 near w̃0. Since
K (0, w0)= 0 we obtain that Im K ≡ 0 and K ≥ cK 2

≥ 0 near (0, w0). We have Re M > 0 and

|〈Im Mu, u〉| ≤ C〈K u, u〉
1/2

‖u‖ near (0, w0). (6.10)

In fact, we have
0 ≤ Im Q ≤ K + τ(Im M + Re(E1K ))+ Cτ 2

where E1(t, w)= ∂τ E(t, 0, w). Lemma A.7 gives

|〈Im Mu, u〉 + Re〈E1K u, u〉| ≤ C〈K u, u〉
1/2

‖u‖

and since K 2
≤ C K we obtain

|Re〈E1K u, u〉| ≤ C‖K u‖‖u‖ ≤ C0〈K u, u〉
1/2

‖u‖

which gives (6.10). Now by cutting off when |τ | ≥ c > 0 we obtain that

Qw
= Ew0 Qw

0 + Rw0 + h Rw1

where R j ∈ C∞

b and w̃0 /∈ supp R0. Thus, it suffices to prove the estimate (6.5) for Qw
0 . We may now

reduce to the case when Re M ≡ Id. In fact,

Qw
0

∼= Mw
0 ((Id +i Mw

1 )h Dt + i Kw
1 )M

w
0 modulo O(h)

where M0 = (Re M)1/2 is invertible, M∗

1 = M1 and K1 = M−1
0 K M−1

0 ≥ 0. By changing M1 and K1 and
making K1 > 0 outside a neighborhood of (0, w0) we may assume that M1, K1 ∈ C∞

b and i K1 satis-
fies (6.4) for all c > 0 and any w, by the invariance given by Remark 5.5. Observe that condition (6.10)
also is invariant under the mapping Q0 7→ E∗Q0 E .

We shall use the symbol classes f ∈ S(m, g) defined by

|∂ν1 . . . ∂νk f | ≤ Ckm
k∏

j=1

g(ν j )
1/2

∀ ν1, . . . , νk ∀ k

for constant weight m and metric g, and Op S(m, g) the corresponding Weyl operators f w. We shall
need the following estimate for the model operator Qw

0 .

Proposition 6.2. Assume that

Q = Mw(t, x, h Dx)h Dt + i Kw(t, x, h Dx),
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where M(t, w) and 0 ≤ K (t, w) ∈ L∞(R,C∞

b (T
∗Rn)) are N × N system such that Re M ≡ Id, Im M

satisfies (6.10) and i K satisfies (6.4) for all w and c > 0 with non-decreasing 0 < φ(δ) → 0 as
δ → 0. Then there exists a real valued B(t, w) ∈ L∞(R, S(1, H |dw|

2/h)) such that h B(t, w)/ψ(h) ∈

Lip(R, S(1, H |dw|
2/h)), and

ψ(h)‖u‖
2
≤ Im〈Qu, Bw(t, x, h Dx)u〉 + Ch2

‖Dt u‖
2 0< h � 1 (6.11)

for any u ∈ C∞

0 (R
n+1,CN ). Here the bounds on B(t, w) are uniform, ψ(h) = δ � h is the inverse to

h = δφ(δ) so 0< H =
√

h/ψ(h)� 1 as h → 0.

Observe that H 2
= h/ψ(h) = φ(ψ(h)) → 0 and h/H =

√
ψ(h)h � ψ(h) → 0 as h → 0, since

0< φ(δ) is non-decreasing.
To prove Proposition 6.1 we shall cut off where |τ | ≷ ε

√
ψ/h. Take χ0(r) ∈ C∞

0 (R) such that
0 ≤ χ0 ≤ 1, χ0(r) = 1 when |r | ≤ 1 and |r | ≤ 2 in suppχ0. Then 1 − χ0 = χ1 where 0 ≤ χ1 ≤ 1 is
supported where |r | ≥ 1. Let φ j,ε(r) = χ j (hr/ε

√
ψ), j = 0, 1, for ε > 0; then φ0,ε is supported where

|r | ≤ 2ε
√
ψ/h and φ1,ε is supported where |r | ≥ ε

√
ψ/h. We have that φ j,ε(τ )∈ S(1, h2dτ 2/ψ), j = 0,

1, and u = φ0,ε(Dt)u +φ1,ε(Dt)u, where we shall estimate each term separately. Observe that we shall
use the ordinary quantization and not the semiclassical for these operators.

To estimate the first term, we substitute φ0,ε(Dt)u in (6.11). We find that

ψ(h)‖φ0,ε(Dt)u‖
2
≤ Im〈Qu, φ0,ε(Dt)Bw(t, x, h Dx)φ0,ε(Dt)u〉

+ Im〈[Q, φ0,ε(Dt)]u, Bw(t, x, h Dx)φ0,ε(Dt)u〉 + 4Cε2ψ‖u‖
2 (6.12)

In fact, h‖Dtφ0,ε(Dt)u‖ ≤ 2ε
√
ψ‖u‖ since it is a Fourier multiplier and |hτφ0,ε(τ )| ≤ 2ε

√
ψ . Next we

shall estimate the commutator term. Since Re Q = h Dt Id −h∂t Im Mw/2 and Im Q = h Im MwDt +

Kw
+ h∂t Im Mw/2i we find that [Re Q, φ0,ε(Dt)] ∈ Op S(h,G) and

[Q, φ0,ε(Dt)] = i[Im Q, φ0,ε(Dt)] = i[Kw, φ0,ε(Dt)] = −h∂t Kwφ2,ε(Dt)/ε
√
ψ

is a symmetric operator modulo Op S(h,G), where G = dt2
+h2dτ 2/ψ+|dx |

2
+h2

|dξ |2 and φ2,ε(τ )=

χ ′

0(hτ/ε
√
ψ). In fact, we have that h2/ψ(h)≤ Ch, h[∂t Im Mw, φ0,ε(Dt)] and [Im Mw, φ0,ε(Dt)]h Dt ∈

Op S(h,G), since |τ | ≤ ε
√
ψ/h in suppφ0,ε(τ ). Thus, we find that

− 2i Im
(
φ0,ε(Dt)Bw[Q, φ0,ε(Dt)]

)
= 2ihε−1ψ−1/2 Im

(
φ0,ε(Dt)Bw∂t Kwφ2,ε(Dt)

)
= hε−1ψ−1/2

(
φ0,ε(Dt)Bw[∂t Kw, φ2,ε(Dt)] +φ0,ε(Dt)[Bw, φ2,ε(Dt)]∂t Kw

+φ2,ε(Dt)[φ0,ε(Dt), Bw]∂t Kw
+φ2,ε(Dt)Bw[φ0,ε(Dt), ∂t Kw

]

)
(6.13)

modulo Op S(h,G). As before, the calculus gives that [φ j,ε(Dt), ∂t Kw
] ∈ Op S(hψ−1/2,G) for any

j . Since t → h Bw/ψ ∈ Lip(R,Op S(1,G)) uniformly and φ j,ε(τ ) = χ j (hτ/ε
√
ψ) with χ ′

j ∈ C∞

0 (R),
Lemma A.4 with κ = ε

√
ψ/h gives that∥∥[φ j,ε(Dt), Bw]

∥∥
L(L2(Rn+1))

≤ C
√
ψ/ε
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uniformly. If we combine the estimates above we can estimate the commutator term:

| Im〈[Q, φ0,ε(Dt)]u, Bw(t, x, h Dx)φ0,ε(Dt)u〉| ≤ Ch‖u‖
2
� ψ(h)‖u‖

2 h � 1 (6.14)

which together with (6.12) will give the estimate for the first term for small enough ε and h.
We also have to estimate φ1,ε(Dt)u; then we shall use that Q is elliptic when |τ | 6= 0. We have

‖φ1,ε(Dt)u‖
2
= 〈χw(Dt)u, u〉

where χ(τ) = φ2
1,ε(τ ) ∈ S(1, h2dτ 2/ψ) is real with support where |τ | ≥ ε

√
ψ/h. Thus, we may write

χ(Dt)=%(Dt)h Dt where %(τ)=χ(τ)/hτ ∈ S(ψ−1/2, h2dτ 2/ψ) by Leibniz’ rule since |τ |−1
≤ h/ε

√
ψ

in supp %. Now h Dt Id = Re Q + h∂t Im Mw/2 so we find

〈χ(Dt)u, u〉 = Re〈%(Dt)Qu, u〉 +
h
2

Re〈%(Dt)(∂t Im Mw)u, u〉 + Im〈%(Dt) Im Qu, u〉

where |h Re〈%(Dt)(∂t Im Mw)u, u〉| ≤ Ch‖u‖
2/ε

√
ψ and

| Re〈%(Dt)Qu, u〉| ≤ ‖Qu‖‖%(Dt)u‖ ≤ ‖Qu‖‖u‖/ε
√
ψ

since %(Dt) is a Fourier multiplier and |%(τ)| ≤ 1/ε
√
ψ . We have that

Im Q = Kw(t, x, h Dx)+ h Dt Im Mw(t, x, h Dx)−
h
2i
∂t Im Mw(t, x, h Dx)

where Im Mw(t, x, h Dx) and Kw(t, x, h Dx)∈Op S(1,G) are symmetric. Since %=χ/hτ ∈ S(ψ−1/2,G)

is real we find that

Im(%(Dt) Im Q)= Im %(Dt)Kw
+ Imχ(Dt) Im Mw

=
1
2i

(
[%(Dt), Kw(t, x, h Dx)] + [χ(Dt), Im Mw(t, x, h Dx)]

)
modulo terms in Op S(h/

√
ψ,G)⊆ Op S(h/ψ,G). Here the calculus gives

[%(Dt), Kw(t, x, h Dx)] ∈ Op S(h/ψ,G)

and similarly we have that

[χ(Dt), Im Mw(t, x, h Dx)] ∈ Op S(h/
√
ψ,G)⊆ Op S(h/ψ,G)

which gives that |Im〈%(Dt) Im Qu, u〉| ≤ Ch‖u‖
2/ψ . In fact, since the metric G is constant, it is uni-

formly σ temperate for all h > 0. We obtain that

ψ(h)‖φ1,ε(Dt)u‖
2
≤ Cε(

√
ψ‖Qu‖‖u‖ + h‖u‖

2)

which together with (6.12) and (6.14) gives the estimate (6.5) for small enough ε and h, since h/ψ(h)→0
as h → 0. �

Proof of Proposition 6.2. We shall do a second microlocalization in w = (x, ξ). By making a linear
symplectic change of coordinates (x, ξ) 7→ (h1/2x, h−1/2ξ) we see that Q(t, τ, x, hξ) is changed into

Q(t, τ, h1/2w) ∈ S(1, dt2
+ dτ 2

+ h|dw|
2) when |τ | ≤ c.



THE PSEUDOSPECTRUM OF SYSTEMS OF SEMICLASSICAL OPERATORS 363

In these coordinates we find B(h1/2w) ∈ S(1,G), G = H |dw|
2, if B(w) ∈ S(1, H |dw|

2/h). In the
following, we shall use ordinary Weyl quantization in the w variables.

We shall follow an approach similar to the one of [Dencker et al. 2004, Section 5]. To localize the
estimate we take {φ j (w)} j , {ψ j (w)} j ∈ S(1,G) with values in `2, such that 0 ≤ φ j , 0 ≤ ψ j ,

∑
j φ

2
j ≡ 1

and φ jψ j = φ j for all j . We may also assume that ψ j is supported in a G neighborhood of w j . This can
be done uniformly in H , by taking φ j (w)=8 j (H 1/2w) and ψ j (w)=9 j (H 1/2w), with {8 j (w)} j and
{9 j (w)} j ∈ S(1, |dw|

2). Since
∑
φ2

j = 1 and G = H |dw|
2 the calculus gives∑

j

‖φwj (x, Dx)u‖
2
− C H 2

‖u‖
2
≤ ‖u‖

2
≤

∑
j

‖φwj (x, Dx)u‖
2
+ C H 2

‖u‖
2

for u ∈ C∞

0 (R
n), thus for small enough H we find∑

j

‖φwj (x, Dx)u‖
2
≤ 2‖u‖

2
≤ 4

∑
j

‖φwj (x, Dx)u‖
2 for u ∈ C∞

0 (R
n). (6.15)

Observe that since φ j has values in `2 we find that {φwj Rwj } j ∈ Op S(H ν,G) also has values in `2 if
R j ∈ S(H ν,G) uniformly. Such terms will be summable:∑

j

‖rwj u‖
2
≤ C H 2ν

‖u‖
2 (6.16)

for {r j } j ∈ S(H ν,G) with values in `2; see [Hörmander 1983–1985, Volume III, page 169]. Now we
fix j and let

Q j (t, τ )= Q(t, τ, h1/2w j )= M j (t)τ + i K j (t)

where M j (t) = M(t, h1/2w j ) and K j (t) = K (t, h1/2w j ) ∈ L∞(R). Since K (t, w) ≥ 0 we find from
Lemma A.7 and (6.10) that

|〈Im M j (t)u, u〉| + |〈dwK (t, h1/2w j )u, u〉| ≤ C〈K j (t)u, u〉
1/2

‖u‖ ∀ u ∈ CN
∀ t (6.17)

and condition (6.4) means that ∣∣∣{t : inf
|u|=1

〈K j (t)u, u〉 ≤ δ
}∣∣∣ ≤ Cφ(δ). (6.18)

We shall prove an estimate for the corresponding one-dimensional operator

Q j (t, h Dt)= M j (t)h Dt + i K j (t)

by using the following result.

Lemma 6.3. Assume that
Q(t, h Dt)= M(t)h Dt + i K (t)

where M(t) and 0 ≤ K (t) are N × N systems, which are uniformly bounded in L∞(R), such that
Re M ≡ Id, Im M satisfies (6.10) for almost all t and i K satisfies (6.4) for any c> 0 with non-decreasing
φ(δ) → 0 as δ → 0. Then there exists a uniformly bounded real B(t) ∈ L∞(R) so that h B(t)/ψ(h) ∈

Lip(R) uniformly and

ψ(h)‖u‖
2
+ 〈K u, u〉 ≤ Im〈Qu, Bu〉 + Ch2

‖Dt u‖
2 0< h � 1 (6.19)
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for any u ∈ C∞

0 (R,CN ). Here ψ(h)= δ � h is the inverse to h = δφ(δ).

Proof. Let 0 ≤8h(t)≤ 1 be the characteristic function of the set �δ(K ) with δ =ψ(h). Since δ =ψ(h)
is the inverse of h = δφ(δ) we find that φ(ψ(h))= h/δ = h/ψ(h). Thus, we obtain from (6.18) that∫

8h(t) dt = |�δ(K )| ≤ Ch/ψ(h)

Letting

E(t)= exp
(ψ(h)

h

∫ t

0
8h(s) ds

)
,

we find that E and E−1
∈ L∞(R)∩ C0(R) uniformly and E ′

= ψ(h)h−18h E in D′(R). We have

E(t)Q(t, h Dt)E−1(t)= Q(t, h Dt)+ E(t)h[M(t)Dt , E−1(t)] IdN

= Q(t, h Dt)+ iψ(h)8h(t) IdN −ψ(h)8h(t) Im M(t) (6.20)

since (E−1)′ = −E ′E−2. In the following, we let

F(t)= K (t)+ψ(h) IdN ≥ ψ(h) IdN .

By definition we have 8h(t) < 1 H⇒ K (t)≥ ψ(h) IdN , so

K (t)+ψ(h)8h(t) IdN ≥
1
2 F(t).

Thus by taking the inner product in L2(R) we find from (6.20) that

Im〈E(t)Q(t, h Dt)E−1(t)u, u〉 ≥
1
2〈F(t)u, u〉 + 〈Im M(t)h Dt u, u〉 − ch‖u‖

2 u ∈ C∞

0 (R,CN )

since Im Q(t, h Dt) = K (t)+ Im M(t)h Dt +
h
2i ∂t Im M(t). Now we may use (6.10) to estimate for any

ε > 0
|〈Im Mh Dt u, u〉| ≤ ε〈K u, u〉 + Cε(h2

‖Dt u‖
2
+ h‖u‖

2) ∀ u ∈ C∞

0 (R,CN ). (6.21)

In fact, u = χ0(h Dt)u +χ1(h Dt)u where χ0(r) ∈ C∞

0 (R) and |r | ≥ 1 in suppχ1. We obtain from (6.10)
for any ε > 0 that

|〈Im M(t)χ0(hτ)hτu, u〉| ≤ C〈K (t)u, u〉
1/2

|χ0(hτ)hτ |‖u‖ ≤ ε〈K (t)u, u〉 + Cε‖χ0(hτ)hτu‖
2

so by using Gårdings inequality in Proposition A.5 on

εK (t)+ Cεχ2
0 (h Dt)h2 D2

t ± Im M(t)χ0(h Dt)h Dt

we obtain

|〈Im M(t)χ0(h Dt)h Dt u, u〉| ≤ ε〈K (t)u, u〉 + Cεh2
‖Dt u‖

2
+ C0h‖u‖

2
∀ u ∈ C∞

0 (R,CN )

since ‖χ0(h Dt)h Dt u‖ ≤ C‖h Dt u‖. The other term is easier to estimate:

|〈Im M(t)χ1(h Dt)h Dt u, u〉| ≤ C‖h Dt u‖‖χ1(h Dt)u‖ ≤ C1h2
‖Dt u‖

2

since |χ1(hτ)| ≤ C |hτ |. By taking ε = 1/6 in (6.21) we obtain

〈F(t)u, u〉 ≤ 3 Im〈E(t)Q(t, h Dt)E−1(t)u, u〉 + C(h2
‖Dt u‖

2
+ h‖u‖

2).



THE PSEUDOSPECTRUM OF SYSTEMS OF SEMICLASSICAL OPERATORS 365

Now h Dt Eu = Eh Dt u − iψ(h)8h Eu so we find by substituting E(t)u that

ψ(h)‖E(t)u‖
2
+ 〈K E(t)u, E(t)u〉

≤ 3 Im〈Q(t, h Dt)u, E2(t)u〉 + C(h2
‖Dt u‖

2
+ h‖u‖

2
+ψ2(h)‖E(t)u‖

2)

for u ∈ C∞

0 (R,CN ). Since E ≥ c, K ≥ 0 and h � ψ(h)� 1 when h → 0 we obtain (6.19) with scalar
B = %E2 for %� 1 and h � 1. �

To finish the proof of Proposition 6.2, we substitute φwj u in the estimate (6.19) with Q = Q j to obtain

ψ(h)‖φwj u‖
2
+ 〈K jφ

w
j u, φwj u〉 ≤ Im〈φwj Q j (t, h Dt)u, B j (t)φwj u〉 + Ch2

‖φwj Dt u‖
2 (6.22)

for u ∈ C∞

0 (R
n+1,CN ), since φwj (x, Dx) and Q j (t, h Dt) commute. Next, we shall replace the approxi-

mation Q j by the original operator Q. In a G neighborhood of suppφ j we may use the Taylor expansion
in w to write for almost all t

Q(t, τ, h1/2w)− Q j (t, τ )= i(K (t, h1/2w)− K j (t))+ (M(t, h1/2w)− M j (t))τ. (6.23)

We shall start by estimating the last term in (6.23). Since M(t, w) ∈ C∞

b we have

|M(t, h1/2w)− M j (t)| ≤ Ch1/2 H−1/2 in suppφ j (6.24)

because then |w−w j | ≤ cH−1/2. Since M(t, h1/2w)∈ S(1, h|dw|
2) and h � H we find from (6.24) that

M(t, h1/2w)− M j (t) ∈ S(h1/2 H−1/2,G) in suppφ j uniformly in t . By the Cauchy–Schwarz inequality
we find

|〈φwj (M
w

− M j )h Dt u, B j (t)φwj u〉| ≤ C(‖χwj h Dt u‖
2
+ h H−1

‖φwj u‖
2) (6.25)

for u ∈ C∞

0 (R
n+1,CN ) where χwj = h−1/2 H 1/2φwj (M

w
− M j ) ∈ Op S(1,G) uniformly in t with values

in `2. Thus we find from (6.16) that∑
j

‖χwj h Dt u‖
2
≤ C‖h Dt u‖

2 u ∈ C∞

0 (R
n+1)

and for the last terms in (6.25) we have

h H−1
∑

j

‖φwj u‖
2
≤ 2h H−1

‖u‖
2
� ψ(h)‖u‖

2 h → 0 u ∈ C∞

0 (R
n+1)

by (6.15). For the first term in the right hand side of (6.23) we find from Taylor’s formula

K (t, h1/2w)− K j (t)= h1/2
〈S j (t),W j (w)〉 + R j (t, τ, w) in suppφ j

where S j (t) = ∂wK (t, h1/2w j ) ∈ L∞(R), R j ∈ S(h H−1,G) uniformly for almost all t and W j ∈

S(h−1/2, h|dw|
2) such that φ j (w)W j (w)= φ j (w)(w−w j )= O(H−1/2). Here we could take W j (w)=

χ(h1/2(w−w j ))(w−w j ) for a suitable cut-off function χ ∈ C∞

0 . We obtain from the calculus that

φwj K j (t)= φwj Kw(t, h1/2x, h1/2 Dx)− h1/2φwj 〈S j (t),Ww
j 〉 + R̃wj ,
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where {R̃ j } j ∈ S(h H−1,G) with values in `2 for almost all t . Thus we may estimate the sum of these
error terms by (6.16) to obtain∑

j

|〈R̃wj u, B j (t)φwj u〉| ≤ Ch H−1
‖u‖

2
� ψ(h)‖u‖

2 as h → 0 for u ∈ C∞

0 (R
n+1,CN ). (6.26)

Observe that it follows from (6.17) for any κ > 0 and almost all t that

|〈S j (t)u, u〉| ≤ C〈K j (t)u, u〉
1/2

‖u‖ ≤ κ〈K j (t)u, u〉 + C‖u‖
2/κ ∀ u ∈ CN .

Let F j (t)= F(t, h1/2w j )= K j (t)+ψ(h) IdN ; then by taking κ = %H 1/2h−1/2 we find that for any %> 0
there exists h% > 0 so that

h1/2 H−1/2
|〈S j u, u〉| ≤ %〈K j u, u〉 + Ch H−1

‖u‖
2/% ≤ %〈F j u, u〉 ∀ u ∈ CN 0< h ≤ h% (6.27)

since h H−1
� ψ(h) when h � 1. Now F j and S j only depend on t , so by (6.27) we may use Remark

A.6 in the Appendix for fixed t with A = h1/2 H−1/2S j , B = %F j , u replaced with φwj u and v with
B j H 1/2φwj Ww

j u. Integration then gives

h1/2
|〈B jφ

w
j 〈S j (t),Ww

j 〉u, φwj u〉| ≤
3%
2
(〈F j (t)φwj u, φwj u〉 + 〈F j (t)ψwj u, ψwj u〉) (6.28)

for u ∈ C∞

0 (R
n+1,CN ), 0< h ≤ h%, where

ψwj = B j H 1/2φwj Ww
j ∈ Op S(1,G) with values in `2.

In fact, since φ j ∈ S(1,G) and W j ∈ S(h−1/2, h|dw|
2) we find that

φwj Ww
j = (φ j W j )

w modulo Op S(H 1/2,G).

Also, since |φ j W j | ≤ C H−1/2 we find from Leibniz’ rule that φ j W j ∈ S(H−1/2,G). Now F ≥

ψ(h) IdN � h H−1 IdN so by using Proposition A.9 in the Appendix and then integrating in t we find
that ∑

j

〈F j (t)ψwj u, ψwj u〉 ≤ C
∑

j

〈F j (t)φwj u, φwj u〉 u ∈ C∞

0 (R
n+1,CN ).

We obtain from (6.15) that

ψ(h)‖u‖
2
≤ 2

∑
j

〈F j (t)φwj u, φwj u〉 u ∈ C∞

0 (R
n+1,CN ).

Thus, for any % > 0 we obtain from (6.22) and (6.25)–(6.28) that

(1 − C0%)
∑

j

〈F j (t)φwj u, φwj u〉 ≤

∑
j

Im〈φwj Qu, B j (t)φwj u〉 + C%h2
‖Dt u‖

2 0< h ≤ h%.

We have that
∑

j B jφ
w
j φ

w
j ∈ S(1,G) is a scalar symmetric operator uniformly in t . When % = 1/2C0

we obtain the estimate (6.11) with Bw = 4
∑

j B jφ
w
j φ

w
j , which finishes the proof of Proposition 6.2. �
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Appendix

We shall first study the condition for the one-dimensional model operator

h Dt IdN +i F(t) 0 ≤ F(t) ∈ C∞(R)

to be of finite type of order µ:
|�δ(F)| ≤ Cδµ 0< δ � 1 (A.1)

and we shall assume that 0 /∈6∞(P). When F(t) /∈ C∞(R) we may have any µ> 0 in (A.1), for example
with F(t) = |t |1/µ IdN . But when F ∈ C1

b the estimate cannot hold with µ > 1, and since it trivially
holds for µ= 0 the only interesting cases are 0< µ≤ 1.

When 0 ≤ F(t) is diagonalizable for any t with eigenvalues λ j (t) ∈ C∞, j = 1, . . . , N , then condi-
tion (A.1) is equivalent to ∣∣�δ(λ j )

∣∣ ≤ Cδµ ∀ j 0< δ � 1

since �δ(F)=
⋃

j �δ(λ j ). Thus we shall start by studying the scalar case.

Proposition A.1. Assume that 0≤ f (t)∈C∞(R) such that f (t)≥ c>0 when |t |�1, that is, 0 /∈6∞( f ).
We find that f satisfies (A.1) with µ > 0 if and only if µ≤ 1/k for an even k ≥ 0 so that∑

j≤k

|∂
j

t f (t)|> 0 ∀ t. (A.2)

Simple examples as f (t)= e−t2
show that the condition that 0 /∈6∞( f ) is necessary for the conclusion

of Proposition A.1.

Proof. Assume that (A.2) does not hold with k ≤ 1/µ; then there exists t0 such that f ( j)(t0) = 0 for
all integer j ≤ 1/µ. Then Taylor’s formula gives that f (t) ≤ c|t − t0|k and |�δ( f )| ≥ cδ1/k where
k = [1/µ] + 1> 1/µ, which contradicts condition (A.1).

Assume now that condition (A.2) holds for some k, then f −1(0) consists of finitely many points. In
fact, else there would exist t0 where f vanishes of infinite order since f (t) 6= 0 when |t | � 1. Also
note that

⋂
δ>0�δ( f ) = f −1(0), in fact f must have a positive infimum outside any neighborhood of

f −1(0). Thus, in order to estimate |�δ( f )| for δ� 1 we only have to consider a small neighborhood ω
of t0 ∈ f −1(0). Assume that

f (t0)= f ′(t0)= · · · = f ( j−1)(t0)= 0 and f ( j)(t0) 6= 0

for some j ≤ k. Since f ≥ 0 we find that j must be even and f ( j)(t0) > 0. Taylor’s formula gives as
before f (t)≥ c|t − t0| j for |t − t0| � 1 and thus we find that

|�δ( f )∩ω| ≤ Cδ1/j
≤ Cδ1/k 0< δ � 1

if ω is a small neighborhood of t0. Since f −1(0) consists of finitely many points we find that (A.1) is
satisfied with µ= 1/k for an even k. �

So if 0 ≤ F ∈ C∞(R) is C∞ diagonalizable system and 0 /∈6∞(P), condition (A.1) is equivalent to∑
j≤k

|∂
j

t 〈F(t)u(t), u(t)〉|/‖u(t)‖2 > 0 ∀ t
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for any 0 6= u(t) ∈ C∞(R), since this holds for diagonal matrices and is invariant. This is true also in the
general case by the following proposition.

Proposition A.2. Assume that 0 ≤ F(t) ∈ C∞(R) is an N × N system such that 0 /∈ 6∞(F). We find
that F satisfies (A.1) with µ > 0 if and only if µ≤ 1/k for an even k ≥ 0 so that∑

j≤k

|∂
j

t 〈F(t)u(t), u(t)〉|/‖u(t)‖2 > 0 ∀ t (A.3)

for any 0 6= u(t) ∈ C∞(R).

Observe that since 0 /∈6∞(F) it suffices to check condition (A.3) on a compact interval.

Proof. First we assume that (A.1) holds with µ > 0, let u(t) ∈ C∞(R,CN ) such that |u(t)| ≡ 1, and
f (t)= 〈F(t)u(t), u(t)〉 ∈ C∞(R). Then we have �δ( f )⊂�δ(F) so (A.1) gives

|�δ( f )| ≤ |�δ(F)| ≤ Cδµ 0< δ � 1.

The first part of the proof of Proposition A.1 then gives (A.3) for some k ≤ 1/µ.
For the proof of the sufficiency of (A.3) we need the following simple lemma.

Lemma A.3. Assume that F(t) = F∗(t) ∈ Ck(R) is an N × N system with eigenvalues λ j (t) ∈ R,
j = 1, . . . , N. Then, for any t0 ∈ R, there exist analytic v j (t) ∈ CN , j = 1, . . . , N , so that {v j (t0)} is a
base for CN and ∣∣λ j (t)− 〈F(t)v j (t), v j (t)〉

∣∣ ≤ C |t − t0|k for |t − t0| ≤ 1

after a renumbering of the eigenvalues.

By a well-known theorem of Rellich, the eigenvalues λ(t) ∈ C1(R) for symmetric F(t) ∈ C1(R);
see [Kato 1966, Theorem II.6.8].

Proof. It is no restriction to assume t0 = 0. By Taylor’s formula

F(t)= Fk(t)+ Rk(t)

where Fk and Rk are symmetric, Fk(t) is a polynomial of degree k − 1 and Rk(t)= O(|t |k). Since Fk(t)
is symmetric and holomorphic, it has a base of normalized holomorphic eigenvectors v j (t) with real
holomorphic eigenvalues λ̃ j (t) by [Kato 1966, Theorem II.6.1]. Thus λ̃ j (t)= 〈Fk(t)v j (t), v j (t)〉 and by
the minimax principle we may renumber the eigenvalues so that

|λ j (t)− λ̃ j (t)| ≤ ‖Rk(t)‖ ≤ C |t |k ∀ j.

The result then follows since

|〈(F(t)− Fk(t))v j (t), v j (t)〉| = |〈Rk(t)v j (t), v j (t)〉| ≤ C |t |k ∀ j. �

Assume now that Equation (A.3) holds for some k. As in the scalar case, we have that k is even and⋂
δ>0�δ(F)=60(F)= |F |

−1(0). Thus, for small δ we only have to consider a small neighborhood of
t0 ∈60(F). Then by using Lemma A.3 we have after renumbering that for each eigenvalue λ(t) of F(t)
there exists v(t) ∈ C∞ so that |v(t)| ≥ c > 0 and

|λ(t)− 〈F(t)v(t), v(t)〉| ≤ C |t − t0|k+1 when |t − t0| ≤ c. (A.4)
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Now if 60(F) 3 t j → t0 is an accumulation point, then after choosing a subsequence we obtain that
for some eigenvalue λk we have λk(t j ) = 0 for all j . Then λk vanishes of infinite order at t0, contra-
dicting (A.3) by (A.4). Thus, we find that 60(F) is a finite collection of points. By using (A.3) with
u(t)= v(t) we find as in the second part of the proof of Proposition A.1 that

〈F(t)v(t), v(t)〉 ≥ c|t − t0| j
|t − t0| � 1

for some even j ≤ k, which by (A.4) gives that

λ(t)≥ c|t − t0| j
− C |t − t0|k+1

≥ c′
|t − t0| j

|t − t0| � 1.

Thus |�δ(λ) ∩ ω| ≤ cδ1/j if ω for δ � 1 if ω is a small neighborhood of t0 ∈ 60(F). Since �δ(F) =⋃
j �δ(λ j ), where {λ j (t)} j are the eigenvalues of F(t), we find by adding up that |�δ(F)| ≤ Cδ1/k .

Thus the largest µ satisfying (A.1) must be ≥ 1/k. �

Let A(t) ∈ Lip(R,L(L2(Rn))) be the L2(Rn) bounded operators which are Lipschitz continuous in
the parameter t ∈ R. This means that

A(s)− A(t)
s − t

= B(s, t) ∈ L(L2(Rn)) uniformly in s and t . (A.5)

One example is A(t) = aw(t, x, Dx) where a(t, x, ξ) ∈ Lip(R, S(1,G)) for a σ temperate metric G
which is constant in t such that G/Gσ

≤ 1.

Lemma A.4. Assume that A(t)∈ Lip(R,L(L2(Rn))) and φ(τ)∈C∞(R) such that φ′(τ )∈C∞

0 (R). Then
for κ > 0 we can estimate the commutator∥∥[

φ(Dt/κ), A(t)
]∥∥

L(L2(Rn+1))
≤ Cκ−1,

where the constant only depends on φ and the bound on A(t) in Lip(R,L(L2(Rn))).

Proof. In the following, we shall denote by A(t, x, y) the distribution kernel of A(t). Then we find
from (A.5) that

A(s, x, y)− A(t, x, y)= (s − t)B(s, t, x, y), (A.6)

where B(s, t, x, y) is the kernel for B(s, t) for s, t ∈ R. Then〈[
φ(Dt/κ), A(t)

]
u, v

〉
= (2π)−1

∫
ei(t−s)τφ(τ/κ)(A(s, x, y)− A(t, x, y))u(s, x)v(t, y) dτ ds dt dx dy (A.7)

for u, v ∈ C∞

0 (R
n+1), and by using (A.6) we obtain that the commutator has kernel

1
2π

∫
ei(t−s)τφ(τ/κ)(s−t)B(s,t,x,y)dτ =

1
κ

∫
ei(t−s)τρ(τ/κ)B(s,t,x,y)dτ = ρ̂(κ(s−t))B(s,t,x,y)

in D(R2n+2), where ρ ∈ C∞

0 (R). Thus, we may estimate (A.7) by using Cauchy–Schwarz:∫
|̂%(κs)〈B(s + t, t)u(s + t), v(t)〉L2(Rn)| dt ds ≤ Cκ−1

‖u‖‖v‖

where the norms are in L(L2(Rn+1)). �
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We shall need some results about the lower bounds of systems, and we shall use the following version
of the Gårding inequality for systems. A convenient way for proving the inequality is to use the Wick
quantization of a ∈ L∞(T ∗Rn) given by

aWick(x, Dx)u(x)=

∫
T ∗Rn

a(y, η)6wy,η(x, Dx)u(x) dy dη u ∈ S(Rn)

using the rank one orthogonal projections 6wy,η(x, Dx) in L2(Rn) with Weyl symbol

6y,η(x, ξ)= π−n exp
(
−|x − y|

2
− |ξ − η|2

)
(see [Dencker 1999, Appendix B] or [Lerner 1997, Section 4]). We find that aWick: S(Rn) 7→ S′(Rn) is
symmetric on S(Rn) if a is real-valued,

a ≥ 0 H⇒
(
aWick(x, Dx)u, u

)
≥ 0 u ∈ S(Rn), (A.8)

‖aWick(x, Dx)‖L(L2(Rn)) ≤ ‖a‖L∞(T ∗Rn),

which is the main advantage with the Wick quantization. If a ∈ S(1, h|dw|
2) we find that

aWick
= aw + rw (A.9)

where r ∈ S(h, h|dw|
2). For a reference; see [Lerner 1997, Proposition 4.2].

Proposition A.5. Let 0 ≤ A ∈ C∞

b (T
∗Rn) be an N × N system, then we find that

〈Aw(x, h D)u, u〉 ≥ −Ch‖u‖
2

∀ u ∈ C∞

0 (R
n,CN ).

This result is well known (see for example Theorem 18.6.14 in Volume III of [Hörmander 1983–1985])
but we shall give a short and direct proof.

Proof. By making a L2 preserving linear symplectic change of coordinates: (x, ξ) 7→ (h1/2x, h−1/2ξ)

we may assume that 0 ≤ A ∈ S(1, h|dw|
2). Then we find from (A.9) that Aw = AWick

+ Rw where
R ∈ S(h, h|dw|

2). Since A ≥ 0 we obtain from (A.8) that

〈Awu, u〉 ≥ 〈Rwu, u〉 ≥ −Ch‖u‖
2

∀ u ∈ C∞

0 (R
n,CN ). �

Remark A.6. Assume that A and B are N × N matrices such that ±A ≤ B. Then we find

|〈Au, v〉| ≤
3
2 (〈Bu, u〉 + 〈Bv, v〉) ∀ u, v ∈ Cn.

In fact, since B ± A ≥ 0 we find by the Cauchy–Schwarz inequality that

2 |〈(B ± A)u, v〉| ≤ 〈(B ± A)u, u〉 + 〈(B ± A)v, v〉 ∀ u, v ∈ Cn

and 2 |〈Bu, v〉| ≤ 〈Bu, u〉 + 〈Bv, v〉. The estimate can then be expanded to give the inequality, since

|〈Au, u〉| ≤ 〈Bu, u〉 ∀ u ∈ Cn

by the assumption.

Lemma A.7. Assume that 0 ≤ F(t) ∈ C2(R) is an N × N system such that F ′′
∈ L∞(R). Then we have

|〈F ′(0)u, u〉|
2
≤ C‖F ′′

‖L∞〈F(0)u, u〉‖u‖
2

∀ u ∈ CN .
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Proof. Take u ∈ CN with |u| = 1 and let 0 ≤ f (t) = 〈F(t)u, u〉 ∈ C2(R). Then | f ′′
| ≤ ‖F ′′

‖L∞ so
Lemma 7.7.2 in Volume I of [Hörmander 1983–1985] gives

| f ′(0)|2 = |〈F ′(0)u, u〉|
2
≤ C‖F ′′

‖L∞ f (0)= C‖F ′′
‖L∞〈F(0)u, u〉. �

Lemma A.8. Assume that F ≥ 0 is an N × N matrix and that A is a L2 bounded scalar operator. Then

0 ≤ 〈F Au, Au〉 ≤ ‖A‖
2
〈Fu, u〉

for any u ∈ C∞

0 (R
n,CN ).

Proof. Since F ≥ 0 we can choose an orthonormal base for CN such that 〈Fu, u〉 =
∑N

j=1 f j |u j |
2 for

u = (u1, u2, . . . ) ∈ CN , where f j ≥ 0 are the eigenvalues of F . In this base we find

0 ≤ 〈F Au, Au〉 =

∑
j

f j‖Au j‖
2
≤ ‖A‖

2
∑

j

f j‖u j‖
2
= ‖A‖

2
〈Fu, u〉

for u ∈ C∞

0 (R
n,CN ). �

Proposition A.9. Assume that h/H ≤ F ∈ S(1, g) is an N × N system, {φ j } and {ψ j } ∈ S(1,G) with
values in `2 such that

∑
j |φ j |

2
≥ c > 0 and ψ j is supported in a fixed G neighborhood of w j ∈ suppφ j

for all j . Here g = h|dw|
2 and G = H |dw|

2 are constant metrics, 0 < h ≤ H ≤ 1. If F j = F(w j ) we
find for H � 1 that∑

j

〈F jψ
w
j (x, Dx)u, ψwj (x, Dx)u〉 ≤ C

∑
j

〈F jφ
w
j (x, Dx)u, φwj (x, Dx)u〉 (A.10)

for any u ∈ C∞

0 (R
n,CN ).

Proof. Since χ =
∑

j |φ j |
2
≥ c > 0 we find that χ−1

∈ S(1,G). The calculus gives

(χ−1)w
∑

j

φwj φ
w
j = 1 + rw

where r ∈ S(H,G) uniformly in H . Thus, the mapping u 7→ (χ−1)w
∑

j φ
w
j φ

w
j u is a homeomorphism

on L2(Rn) for small enough H . Now the constant metric G = H |dw|
2 is trivially strongly σ temperate

according to Definition 7.1 in [Bony and Chemin 1994], so Theorem 7.6 in the same reference gives
B ∈ S(1,G) such that

Bw(χ−1)w
∑

j

φwj φ
w
j =

∑
j

Bwj φ
w
j = 1

where Bwj = Bw(χ−1)wφwj ∈ Op S(1,G) uniformly, which gives 1 =
∑

j φ
w
j B

w

j since (Bwj )
∗
= B

w

j . Now
we shall put

F̃w(x, Dx)=

∑
j

ψwj (x, Dx)F jψ
w
j (x, Dx).

Then
F̃w

=

∑
jk

φwj B
w

j F̃wBwk φ
w
k =

∑
jkl

φwj B
w

j ψ
w
l Flψ

w
l Bwk φ

w
k . (A.11)
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Let Cw
jkl = B

w

j ψ
w
l ψ

w
l Bwk ; then we find from (A.11) that

〈F̃wu, u〉 =

∑
jkl

〈FlCw
jklφ

w
k u, φwj u〉.

Let d jk be the H−1
|dw|

2 distance between the G neighborhoods in which ψ j and ψk are supported.
The usual calculus estimates (see [Hörmander 1983–1985, Volume III, page 168] or [Bony and Chemin
1994, Theorem 2.6]) gives that the L2 operator norm of Cw

jkl can be estimated by

‖Cw
jkl‖ ≤ CN (1 + d jl + dlk)

−N

for any N . We find by Taylor’s formula, Lemma A.7 and the Cauchy–Schwarz inequality that

|〈(F j − Fk)u, u〉| ≤ C1|w j −wk |〈Fku, u〉
1/2h1/2

‖u‖ + C2h|w j −wk |
2
‖u‖

2
≤ C〈Fku, u〉(1 + d jk)

2

since |w j −wk | ≤ C(d jk + H−1/2) and h ≤ h H−1
≤ Fk . Since Fl ≥ 0 we obtain that

2|〈Flu, v〉| ≤ 〈Flu, u〉
1/2

〈Flv, v〉
1/2

≤ C〈F j u, u〉
1/2

〈Fkv, v〉
1/2(1 + d jl)(1 + dlk)

and Lemma A.8 gives

〈FkCw
jklφ

w
k u, FkCw

jklφ
w
k u〉 ≤ ‖C jkl‖

2
〈Fkφ

w
k u, φwk u〉.

Thus we find that∑
jkl

〈FlCw
jklφ

w
k u, φwj u〉 ≤ CN

∑
jkl

(1 + d jl + dlk)
2−N

〈Fkφ
w
k u, φwk u〉

1/2
〈F jφ

w
j u, φwj u〉

1/2

≤ CN

∑
jkl

(1 + d jl)
1−N/2(1 + dlk)

1−N/2(
〈F jφ

w
j u, φwj u〉 + 〈Fkφ

w
k u, φwk u〉

)
Since

∑
j (1 + d jk)

−N
≤ C for all k for N large enough by [Hörmander 1983–1985, Volume III, page

168]), we obtain the estimate (A.10) and the result. �
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