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LOWER ESTIMATES ON MICROSTATES FREE ENTROPY DIMENSION

DIMITRI SHLYAKHTENKO

By proving that certain free stochastic differential equations with analytic coefficients have station-
ary solutions, we give a lower estimate on the microstates free entropy dimension of certain n-tuples
X1, . . . , Xn . In particular, we show that δ0(X1, . . . , Xn) ≥ dimM⊗Mo V , where M = W ∗(X1, . . . , Xn)

and V =
{
(∂(X1), . . . , ∂(Xn)) : ∂ ∈C

}
is the set of values of derivations A=C[X1, . . . Xn]→ A⊗A with

the property that ∂∗∂(A) ⊂ A. We show that for q sufficiently small (depending on n) and X1, . . . , Xn

a q-semicircular family, δ0(X1, . . . , Xn) > 1. In particular, for small q , q-deformed free group factors
have no Cartan subalgebras. An essential tool in our analysis is a free analog of an inequality between
Wasserstein distance and Fisher information introduced by Otto and Villani (and also studied in the free
case by Biane and Voiculescu).

1. Introduction

We present in this paper a general technique for proving lower estimates for Voiculescu’s microstates
free entropy dimension δ0. The free entropy dimension δ0 was introduced in [Voiculescu 1994; 1996]
and is a number associated to an n-tuple of self-adjoint elements X1, . . . , Xn in a tracial von Neumann
algebra. This quantity has been used by various authors [Voiculescu 1996; Ge 1998; Ge and Shen 2002;
Ştefan 2005; Jung 2007] to prove a number of very important results in von Neumann algebras. These
results often take the form: If δ0(X1, . . . , Xn) > 1, then M = W ∗(X1, . . . , Xn) cannot have certain
decomposition properties (for example, is non-0, has no Cartan subalgebras, is not a nontrivial tensor
product and so on). For this reason, it is important to know if some given von Neumann algebra has a
set of generators with the property that δ0 > 1. We prove that this is the case (for small values of q) for
the “q-deformed free group factors” of [Bożejko and Speicher 1991].

Theorem 1. For a fixed N and all |q| < (4N 3
+ 2)−1, the q-semicircular family X1, . . . , X N satisfies

δ0(X1, . . . , X N ) > 1 and δ0(X1, . . . , X N )≥ N (1− q2 N (1− q2 N )−1).

The theorem applies for |q| ≤ 0.029 if N = 2. Combined with the available results on free entropy
dimension, we obtain that, in this range of values of q, the algebras 0q(R

N )=W ∗(X1, . . . , X N ) have no
Cartan subalgebras (or, more generally, that 0q(R

N ), when viewed as a bimodule over any of its abelian
subalgebras, contain a coarse subbimodule). Theorem 1 also implies that these algebras are prime (this
was already proved in [Shlyakhtenko 2004] using the techniques of [Ozawa 2004]).

The free entropy dimension δ0 is closely related to L2 Betti numbers [Connes and Shlyakhtenko
2005; Mineyev and Shlyakhtenko 2005] — more precisely, with Murray–von Neumann dimensions of
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spaces of certain derivations. For example, the nonmicrostates free entropy dimension δ∗ (which is the
nonmicrostates “relative” of δ0) is in many cases equal to L2 Betti numbers of the underlying (nonclosed)
algebra [Mineyev and Shlyakhtenko 2005; Shlyakhtenko 2006]. It is known that δ0 ≤ δ

∗ and thus it is
important to find lower estimates for δ0 in terms of dimensions of spaces of derivations. To this end we
prove.

Theorem 2. Let (A, τ ) be a finitely-generated algebra with a positive trace τ and generators X1,. . . ,X N ,
and let Derc(A; A⊗ A) denote the space of derivations from A to A⊗ A which are L2 closable and such
that ∂∗∂(X j ) ∈ A. Consider the A,A-bimodule

V =
{
(δ(X1), . . . , δ(Xn)) : δ ∈ Derc(A; A⊗ A)

}
⊂ (A⊗ A)N .

Finally, assume that M = W ∗(A, τ ) can be embedded into the ultrapower of the hyperfinite II1 factor.
Then

δ0(X1, . . . , Xn)≥ dimM⊗Mo V L2(A⊗A,τ⊗τ)N
.

We actually prove Theorem 2 under a less restrictive assumption: we require that δ(X j ) and δ∗δ(X j )

be “analytic” as functions of X1, . . . , X N ; more precisely, there should exist noncommutative power
series 4 j and ξ j with sufficiently large multiradii of convergence so that δ(X j )=4 j (X1, . . . , X N ) and
δ∗δ(X j )= ξ j (X1, . . . , X N ); see Theorem 16 below for a precise statement.

This theorem is a rich source of lower estimates for δ0. For example, if T ∈ A⊗ A, then

δ : X 7→ [X, T ] = XT − T X

is a derivation in Derc(A; A⊗ A). If W ∗(A) is diffuse, then the map

L2(A⊗ A) 3 T 7→
(
[T, X1], . . . , [T, X N ]

)
→ L2(A⊗ A)N

is injective and thus the dimension over M⊗Mo of its image is the same as the dimension of L2(A⊗ A),
that is, 1. Hence dimM⊗Mo V ≥ 1 and so δ0(X1, . . . , Xn)≥ 1 if W ∗(A) is Rω embeddable (“hyperfinite
monotonicity” in [Jung 2003b]).

If the two tuples X1, . . . , Xm and Xm+1, . . . X N are freely independent and each generates a diffuse
von Neumann algebra, then for T ∈ A⊗ A the derivation δ defined by δ(X j ) = [X j , T ] for 1 ≤ j ≤ m
and δ(X j )= 0 for m+1≤ j ≤ N is also in Derc(A). Then one easily gets that dimM⊗Mo V > 1 (indeed,
V contains vectors of the form

(
[T, X1], . . . , [T, Xm], 0, . . . , 0

)
, T ∈ L2(A⊗ A), and so its closure is

strictly larger than the closure of the set of all vectors
(
[T, X1], . . . , [T, X N ]

)
, T ∈ L2(A⊗ A)). Thus

δ0(X1, . . . , X N ) > 1 if W ∗(A) is Rω embeddable.
If X1, . . . , X N are such that their conjugate variables [Voiculescu 1998] are polynomials, then the

difference quotient derivations are in Derc and thus V = (A ⊗ A)N , and so δ0 = N (if W ∗(A) is Rω

embeddable).
In the case that X1, . . . , X N are generators of the group algebra C0 of a discrete group 0,

δ∗(X1, . . . , X N )= β
(2)
1 (0)−β

(2)
0 (0)+ 1,

where β(2)j are the L2 Betti numbers of 0 (see [Lück 2002] for a definition). It is therefore natural to ask
whether the same holds true for δ0 instead of δ∗ for some class of groups. If this is true, then knowing that
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β
(2)
1 (0) 6= 0 implies that δ0 > 1 and thus the group algebra has a variety of properties that we explained

above (see also [Peterson 2009]).
It is clearly necessary for the equality δ0= β

(2)
1 −β

(2)
0 +1 that 0 can be embedded into the ultrapower

of the hyperfinite II1 factor (because otherwise δ0 would be −∞). In particular, one is tempted to
conjecture that equality holds at least in the case when 0 is residually finite.

Theorem 2 implies a result like the one in [Brown et al. 2008]:

Theorem 3. Assume that 0 is embeddable into the unitary group of the ultrapower of the hyperfinite II1

factor. Then
δ0(0)≥ dimL(0) {c : 0→ C0 cocycle}.

In particular, if 0 belongs to the class of groups containing all groups with β(2)1 = 0 and closed under
amalgamated free products over finite subgroups, passage to finite index subgroups and finite extensions,
then

δ0(0)= β
(2)
1 (0)−β

(2)
0 (0)+ 1.

Let us now describe the main idea of the present paper. Our main result states that if the von Neumann
algebra M =W ∗(X1, . . . , Xn) can be embedded into the ultrapower of the hyperfinite II1 factor, then

δ0(X1, . . . , Xn)≥ dimM⊗Mo V, (1-1)

where V =
{
(∂(X1), . . . , ∂(Xn)) : ∂ ∈ C

}L2

and C is some class of derivations from the algebra of non-
commutative polynomials C[X1, . . . , Xn] to L2(M)⊗ L2(Mo), which will be made precise later.

The quantity δ0(X1, . . . , Xn) is, very roughly, a kind of Minkowski dimension (“relative” to Rω) of
the set V of embeddings of M into Rω, the ultrapower of the hyperfinite II1 factor (indeed, the set of such
embeddings can be identified with the set of images under the embedding of the generators X1, . . . , Xn ,
that is, with the set of microstates for X1, . . . , Xn). On the other hand, dimM⊗Mo V is a linear dimension
(relative to M ⊗Mo) of a certain vector space. If we could find an interpretation for V as a subspace of
a “tangent space” to V, then the inequality (1-1) takes the form of the inequality linking the Minkowski
dimension of a manifold with the linear dimension of its tangent space. One natural proof of such an
inequality would involve proving that a linear homomorphism of the tangent space to a manifold at some
point can be exponentiated to a local diffeomorphism of a neighborhood of that point.

Thus an essential step in proving a lower inequality on free entropy dimension is to find an analog of
such an exponential map.

This leads to the idea, given a matrix Qi j ∈
(
L2(M)⊗ L2(Mo)

)n of values of derivations (so that
Qi j = ∂ j (X i ) for some n-tuple of derivation ∂ j belonging to our class C), to try to associate to Q a
one-parameter deformation αt of a given embedding α= α0 of M into Rω. It turns out that there are two
(related) ways to do this.

The first approach comes from the idea that we (at least in principle) know how to exponentiate deriva-
tions from an algebra to itself (the result should be a one-parameter automorphism group of the algebra).
We thus try to extend ∂ = ∂1⊕· · ·⊕∂n to a derivation of a larger algebra A=C[X1, . . . , Xn, S1, . . . , Sn],
where S1, . . . , Sn are free from X1, . . . , Xn and form a free semicircular family. The key point is that
the closure in L2(A) of span(M S1 M +· · ·+M Sn M) is isomorphic to [L2(M)⊗ L2(M)]n . The inverse
of this isomorphism takes an n-tuple a = (a1 ⊗ b1, . . . , an ⊗ bn) to

∑
a j S j b j , which we denote by
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a#S. We now define a new derivation ∂̃ of A with values in L2(A) by ∂̃(X j )= ∂(X j )#S. To be able to
exponentiate ∂̃ , we need to make sure that it is antihermitian as an unbounded operator on L2(A), which
naturally leads to the equation ∂̃(S j )=−∂

∗(ζ j ), where ζ j = (0, . . . , 1⊗ 1, . . . , 0) ( j-th entry nonzero).
One can check that if ζ j is in the domain of ∂∗ for all j , then ∂̃ is a closable operator which has an
antihermitian extension, and so it can be exponentiated to a one-parameter group of automorphisms αt

of L2(A). Unfortunately, unless we know more about the derivation ∂ (such as, for example, assuming
that ∂̃(A) ⊂ A), we cannot prove that αt takes W ∗(A) to W ∗(A). However, if this is the case, then we
do get a one-parameter family of embeddings αt |M : M→ M ∗ L(F(n))⊂ Rω. We explain this approach
in more detail in the Appendix.

The second approach was suggested to us by A. Guionnet, to whom we are indebted for generously
allowing us to publish it. The idea involves considering the free stochastic differential equation

d X j (t)=
∑

i

Qi j (X1(t), . . . , Xn(t))#d Si −
1
2ξ j (X1(t), . . . , Xn(t)), X j (0)= X j , (1-2)

where ∂(X j ) = (Q1 j , . . . , Qnj ) ∈
(
L2(M) ⊗ L2(Mo)

)n and ξ j (X1, . . . , Xn) = ∂
∗∂(X j ). One diffi-

culty in even phrasing the problem is that it is not quite clear what is meant by Qi j and ξ j applied to
their arguments (in the classical case, this would mean a function applied to the random variable X (t)).
However, if this equation can be formulated and has a stationary solution X (t) (namely one for which
the law does not depend on t), then the map αt : X j 7→ X j (t2) determines a one-parameter family of
embeddings of the von Neumann algebra M into some other von Neumann algebra M (generated by all
X (t) : t ≥ 0). This can be carried out successfully if Q and ξ are sufficiently nice; this is this is the case,
for example, when X1, . . . , Xn are q-semicircular variables, in which case Q and ξ can be taken to be
analytic noncommutative power series.

Let us assume now that ∂ takes B = C[X1, . . . , Xn] to B ⊗ Bo and also ∂∗(1 ⊗ 1) ∈ B (this is
the case, for example, if X1, . . . , Xn have polynomial conjugate variables [Voiculescu 1998]). Then
both approaches work to actually give one a stronger statement: one gets a one-parameter family of
embeddings αt : M → Rω so that ‖αt(X j )− (X j + t

∑
i Qi j #Si )‖2 = O(t2). Let us assume for the

moment that Qi j = δi j 1⊗ 1, so that our estimate reads

‖αt(X j )− (X j + t S j )‖2 = O(t2). (1-3)

An estimate of this kind was used as a crucial step by Otto and Villani in their work on the classical
transportation cost inequality [Otto and Villani 2000, §4 Lemma 2]; a free version (for n = 1) is the key
ingredient in the proof of free transportation cost inequality and free Wasserstein distance given in [Biane
and Voiculescu 2001]. Indeed, since the law of αt(X j ) is the same as X j , one obtains after working out
the error bounds an estimate on the noncommutative Wasserstein distance between the laws µX1,...,Xn

and µX1+t S1,...,Xn+t Sn :

dW (µX1,...,Xn , µX1+t S1,...,Xn+t Sn )≤
1
28(X1, . . . , Xn)

1/2t + O(t2).

We now point out that this estimate is of direct relevance to a lower estimate on δ0. Indeed, suppose
that some n-tuple of k × k matrices x1, . . . , xn has as its law approximately the law of X1, . . . , Xn

(that is, (x1, . . . , xn) ∈ 0(X1, . . . , Xn; k, l, ε) in the notation of [Voiculescu 1994]). Then (1-3) implies
that by approximating αt(X j ) with polynomials in X1, . . . , Xn, S1, . . . , Sn , one can find another n-tuple
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x ′1, . . . , x ′n with almost the same law as X1, . . . , Xn , and so that ‖x ′j− (x j+ ts j )‖ ≤Ct2 (here s1, . . . , sn

are some matrices whose law is approximately that of S1, . . . , Sn , and which are approximately free
from x1, . . . , xn). But this means that if one moves along a line starting at x1, . . . , xn in the direction
of s1, . . . , sn , then the distance to the set 0(X1, . . . , Xn; k, l, ε) grows quadratically. Thus this line is
tangent to the set0(X1, . . . , Xn; k, l, ε). From this one can derive estimates relating the packing numbers
of 0(X1, . . . , Xn; k, l, ε) and 0(X1 + t S1, . . . , Xn + t Sn; k, l, ε) which can be converted into a lower
estimate on δ0.

In conclusion, it is worth pointing out that the main obstacle that we face in trying to extend the
estimate (1-1) to larger classes of derivations is the question of existence of stationary solutions of (1-2)
for more general classes of functions Q and ξ (and not, surprisingly enough, the “usual” difficulties in
dealing with sets of microstates).

2. Existence of stationary solutions

2.1. Free SDEs with analytic coefficients. The main result of this section states that a free stochastic
differential equation of the form

d X t =4#d St −
1
2ξt dt

where X t is an N -tuple of random variables has a stationary solution, as long as the coefficients 4 and
ξ are analytic (that is, they are noncommutative power series with sufficient radii of convergence).

2.1.1. Estimates on certain operators appearing in free Ito calculus. Let f be a noncommutative power
series in N variables. We denote by c f (n) the maximal modulus of a coefficient of a monomial of degree
n in f . Thus if f =

∑
fi1...in X i1 · · · X in , then c f (n)=maxi1...in | fi1...in |. We also write

φ f (z)=
∑

c f (n)zn.

Then φ f (z) is a formal power series in z. If ρ is the radius of convergence of φ f , we’ll say that R= ρ/N
is the multiradius of convergence of f .

We also write
‖ f ‖ρ =

∑
n≥0

c f (n)N nρn
∈ [0,+∞].

Note that ‖ f ‖ρ = sup|z|≤Nρ |φ f (z)| (since all of the coefficients in the power series φ f (z) are real and
positive).

We denote by F(R) the collection of all power series f for which the multiradius of convergence is
at least R. In other words, we require ‖ f ‖ρ <∞ for all ρ < R.

Note that FR is a complete topological vector space when endowed with the topology such that Ti→T
if and only if ‖Ti − T ‖ρ→ 0 for all ρ < R.

Let 9 be a noncommutative power series in N variables having the form∑
fi1,...,ik ; j1,..., jl Yi1 · · · Yik ⊗ Y j1 · · · Y jl .

We call 9 a formal noncommutative power series with values in C〈Y1, . . . , YN 〉
⊗2. We write c9(m, n)

the maximal modulus of a coefficient of a monomial of the form Yi1 · · · Yim ⊗ Y j1 · · · Y jn in 9. We let
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φ9(z, w)=
∑

n,m cψ(m,n)zmwn . We put

‖9‖ρ = sup
|z|,|w|≤Nρ

|φ9(z, w)| = φ9(Nρ, Nρ)=
∑
n≥0

( ∑
k+l=n

c9(k, l)
)

N nρn
∈ [0,+∞].

We denote by F′(R) the collection of all noncommutative power series for which ‖9‖ρ < ∞ for all
ρ < R.

It will be convenient to use the following notation. Let φ(z1, . . . , zn), ψ(z1, . . . , zn) be two formal
power series (in commuting variables). We say that φ≺ψ if all coefficients in φ,ψ are real and positive,
and for each k1, . . . , kn , the coefficient of zk1

1 · · · z
kn
n in φ is less than or equal to the corresponding

coefficient in ψ .
If M is a unital Banach algebra, Y1, . . . , YN ∈M and ‖Y j‖<ρ for all j , then ‖g(Y1, . . . , Yn)‖ ≤ ‖g‖ρ

whenever g is in any one of the spaces F(R), or F′(R) (here the norm ‖g(Y1, . . . , Yn)‖ denotes the norm
on M or on the projective tensor product M⊗2, as appropriate).

We now collect some facts about power series:

• Let f, g ∈ F(R). Then φ f g ≺ φ f φg. In particular, f g ∈ F(R) and ‖ f g‖ρ ≤ ‖ f ‖ρ‖g‖ρ .

• Let f =
∑

fi1...in X i1 · · · X in ∈ F(R) and denote by Di j f the formal power series

Di j f =
∑
i1...in

∑
k<l

δik=iδil= j fi1...in X ik+1 · · · X il−1 ⊗ X il+1 · · · X in X i1 · · · X ik−1 .

Since a monomial X i1 · · · X ik ⊗ X j1 · · · X jr could arise in the expression for Di j f in at most r + 1
ways, cD j f (a, b)≤ (b+ 1)c f (a+ b+ 2). Denote by φ̂ f the power series

φ̂ f (z, w)=
∑
n,m

(n+ 1)c f (n+m+ 2)zmwn.

Then φD j f ≺ φ̂ f . Since φ̂ f (z, z)≺ φ′′f (z), we conclude that

‖Di j f ‖ρ ≤ sup
|z|≤Nρ

|φ′′f (z)|

and in particular Di j f ∈ F′(R).

• Let 2=
∑
2i1...in; j1... jm X i1 · · · X in ⊗ X j1 · · · X jm ∈ F′(R), and let

9 =
∑

9i1...in; j1... jm X i1 . . . X in ⊗ X j1 . . . X jm ∈ F′.

Consider

9#in2=
∑

9t1...ta,s1,...,sb2i1...in; j1... jm X i1 · · · X in X t1 · · · X ta ⊗ Xs1 · · · Xsb X j1 · · · X jm .

(In the simple case that 9 = A⊗ B and 2 = P ⊗ Q, where A, B, P, Q are monomials, we have
9#in2= P A⊗ B Q, that is, #in is the “inside” multiplication on F′(R)). Then

c9#in2(n,m)≤
∑

k+l=n

∑
r+s=m

c9(k, r)c2(l, s),
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and hence the coefficient of znwm in φ9#in2(z, w) is dominated by the coefficient of znwm in
φ9(z, w)φ2(z, w). Consequently, φ9#in2 ≺ φ9φ2 and

‖9#in2‖ρ ≤ ‖9‖ρ‖2‖ρ .

In particular, 9#in2 ∈ F′(R). Similar estimates and conclusion of course hold for the “outside”
multiplication 9#out2, defined by

9#out2=
∑

9s1,...,sb;t1...ta2i1...in; j1... jm X t1 · · · X ta X i1 · · · X in ⊗ X j1 · · · X jm Xs1 · · · Xsb .

In that case we get φ9#out2(z, w)≺ φ9(w, z)φ2(z, w) and ‖9#out2‖ρ ≤ ‖9‖ρ‖2‖ρ .

• Let τ be a linear functional on the algebra of noncommutative polynomials in n variables, so that
|τ(X i1 · · · X in )| ≤ Rn

0 for all n. Given2=
∑
2i1...in; j1... jm X i1 · · · X in⊗X j1 · · · X jm ∈F′(R), assume

that R0 < R and consider the formal sum

(1⊗ τ)(2)=
∑

n,i1,...,in

( ∑
m, j1,..., jm

2i1...in; j1... jmτ(X j1 · · · X jm )

)
X i1 · · · X in .

More precisely, we consider the formal power series in which the coefficient of X i1 · · · X in is given
by the sum ∑

m, j1,..., jm

2i1...in; j1... jmτ(X j1 · · · X jm ).

But since |τ(X j1 · · · X jm )| ≤ Rm
0 , this sum is bounded by the coefficient of zn in the power series

expansion of φ(z, N R0) (as a function of z), and is convergent. Thus φ(1⊗τ)(2)(z) ≺ φ2(z, N R0)

and we readily see that (1⊗ τ)(2) is well-defined, belongs to F(R), and moreover

‖(1⊗ τ)(2)‖ρ ≤ ‖2‖ρ,

whenever ρ > R0.

• Let f =
∑

fi1...in X i1 · · · X in ∈F(R) and consider the j-th cyclic partial derivative [Voiculescu 1999;
2002b]

D j f =
∑
i1...in

n∑
l=1

δil= j X il+1 . . . X in · X i1 · · · X il−1 .

Then we see that φD j f ≺ (φ f )
′ and D j f ∈ F(R).

We now combine these estimates:

Lemma 4. Let τ as above be a linear functional on the space of noncommutative polynomials in N
variables satisfying τ(X i1 · · · X in ) ≤ Rn

0 . Let R > R0 and assume that ξ j ∈ F(R), j = 1, . . . , N ,
9 = (9i j ) ∈ MN×N F′(R). For f ∈ F(R) let

L(τ )( f )= (1⊗ τ)
(∑

i jk

9 jk#in(9ki #out(Di j f ))
)
−

∑
j

1
2ξ j D j f.
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Then L(τ )
j ( f ) ∈ F(R) and moreover for any R0 < ρ < R,

‖L(τ )( f )‖ρ ≤
∑
i jk

‖9 jk‖ρ‖9ki‖ρ · sup
|z|≤Nρ

|φ′′f (z)| +
1
2

∑
j

‖ξ j‖ρ sup
|z|≤Nρ

|φ′f |,

φL(τ )( f )(z)≺
∑
i jk

φ9 jk (z, N R0)φ9ki (N R0, z)φ̂ f (z, N R0)+
1
2

∑
j

φξ j (z)φ
′

f (z),

where φ̂ f (z, w)=
∑

n,m(n+ 1)c f (n+m+ 2)zmwn .

For φ a power series in z, w1, . . . , wk with multiradius of convergence bigger than ρ and all coefficients
of monomials nonnegative, let φw1,...,wk (z)= φ(z, w1, . . . , wk). Set

Qφ(z, w1, . . . wk+1)= ̂φw1,...,wk (z, wk+1) and Dφ(z, w1, . . . , wk)= ∂
2
z φ(z, w1, . . . , wk).

We note that φ̂(z, z) ≺ φ′′(z), and that Q, D and D are monotone for the ordering ≺. It follows that
if κ j , λ j are some power series with radius of convergence bigger than ρ and positive coefficients, then
for any a1, b1, . . . , ak, bk ≥ 0 and any R < ρ,[
Qa1κ1(z)Db1λ1(z)µ1 Qa2κ2(z)Db2λ2(z) · · · Dbkλk

] ∣∣
z=w1=···=w

∑
bk=R

≤
[
Da1κ1(z)Db1λ1(z)Da2κ2(z)Db2λ2(z) · · · Dbkλk

] ∣∣
z=w1=···=w

∑
bk=R .

Now define
L̂φ(z)=

∑
i jk

φψ jk (z, N R0)φ9ki (N R0, z)φ′′(z)+ 1
2

∑
j

φξ j (z)φ
′(z).

Then we have obtained the inequality

φLn f (N R0)≤ L̂nφ f (N R0),

which we record as:

Lemma 5. Let L̂φ(z) =
∑

i jk φψ jk (z, N R0)φ9ki (N R0, z)φ′′(z)+ 1
2

∑
j φξ j (z)φ(z) and let τ be a trace

so that for any monomial P , |τ(P)|< Rn
0 , n = deg P. Then

|τ(Ln f )| ≤ L̂nφ f (N R0).

2.1.2. Analyticity of ∂∗∂(X j ). Let us now assume that4= (41, . . . , 4N )∈F′(R). Let (X1, . . . , X N ) be
an N -tuple of self-adjoint operators in a tracial von Neumann algebra (M, τ ) and assume that ‖X j‖< R
for all j . Let ∂ : L2(M) → L2(M) ⊗ L2(M) be the derivation densely defined on polynomials in
X1, . . . , X N by ∂(X j ) = 4 j (X1, . . . , X N ). We assume that 1⊗ 1 belongs to the domain of ∂∗ and that
there exists some ζ ∈ F(R) so that ∂∗(1⊗ 1)= ζ(X1, . . . , X N ).

Lemma 6. With the assumptions above, there exist ξ j ∈ F(R), j = 1, . . . , N , so that

ξ j (X1, . . . , X N )= ∂
∗∂(X j ).

Proof. It follows from [Voiculescu 1998; Shlyakhtenko 1998] that under these assumptions, ∂ is closable.
Moreover, for any a, b polynomials in X1, . . . , X N , a⊗ b belongs to the domain of ∂∗ and

∂∗(a⊗ b)= aζb+ (1⊗ τ)[∂(a)]b+ a(τ ⊗ 1)[∂(b)],
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where ζ = ζ(X1, . . . , X N )= ∂
∗(1⊗ 1).

Consider now formal power series in N variables having the form

2=
∑

2i1,...,ik ; j1,..., jl ;t1,...,tr Yi1 · · · Yik ⊗ Y j1 · · · Y jl ⊗ Yt1 · · · Ytr .

We write φ2(z, w, v) for the power series whose coefficient of zmwnvk is equal to the maximum

max
{
|2i1,...,im; j1,..., jn;t1,...,tk | : i1, . . . , im, j1, . . . , jn, t1, . . . , tn ∈ {1, . . . , N }

}
.

We denote by F′′(R) the collection of all such power series for which φ2 has a multiradius of convergence
at least N R.

Let D(s)
1 : F

′(R)→ F′′(R) be given by

D(s)
1

∑
fi1,...,ik ; j1,..., jl Yi1 · · · Yik ⊗ Y j1 · · · Y jl =∑

fi1,...,ik ; j1,..., jl

∑
p

δi p=sYi1 · · · Yi p−1 ⊗ Yi p+1 · · · Yik ⊗ Y j1 · · · Y jl .

Then clearly φ
D(s)

1 (9)
(z, z, w)≺ ∂zφ9(z, w) so that D(s)

1 9 indeed lies in F′′(R) if 9 ∈ F′(R).
Similarly, if we define for 9 ∈ F′(R), 2 ∈ F′′(R)

9#(1)in 2=
∑

9t1...ta,s1,...,sb2i1...in; j1... jm;k1...kp Yi1 · · · Yin Yt1 · · · Yta ⊗ Ys1 · · · Ysb Y j1 · · · Y jm ⊗ Yk1 · · · Ykp ,

then φ
9#(1)in 2

(z, v, w) ≺ φ9(z, v)φ2(z, v, w) and in particular 9#(1)in 2 ∈ F′′(R). (Note that #(1)in corre-
sponds to “multiplying around” the first tensor sign in 2).

Finally, if τ is any linear functional so that τ(P) < Rdeg P
0 for any monomial P and we put

M2(9)=
∑

9i1,...,in; j1,..., jm;k1,...kp Yi1 · · · Yinτ(Y j1 · · · Y jm Yk1 · · · Ykp),

then φM2(9)(z) ≤ φ9(z, N R0, N R0) and in particular M2(9) ∈ F(R) once 9 ∈ F′′(R) and R0 < R. In
the foregoing, we’ll use the trace τ of M as our functional.

So if we put
T12= M2(

∑
s

4s#(1)in D(s)
1 ),

then T1 maps F′(R) into F(R).
Note that in the case that 2= A⊗ B, where A, B are monomials, T12= (1⊗ τ)(∂(A)) · B.
One can similarly define T2 : F

′(R)→ F(R); it will have the property that T22= A(τ ⊗ 1)(∂(B)).
Lastly, let ζ ∈ F(R) and let m : F′(R)→ F(R) be given by

m(2)=
∑

2i1,...,in; j1,..., jmζp1,...,pr Yi1 · · · Yin Yp1,...pr Y j1 · · · Y jm .

Once again, φm(2)(z)≺ φ2(z, z)φζ (z).
Let Q(4)= T1(4)+T2(4)+m(4). We claim that ξ = (Q(4))(X1, . . . , X N )= ∂

∗(4(X1, . . . , X N )).
Note that if 4n is a partial sum of 4 (say obtained as the sum of all monomials in 4 having degree

at most n), then Q(4n)(X1, . . . , X N ) = ∂
∗(4n(X1, . . . , X N )). Moreover, as n → ∞, we have that

4n(X1, . . . , X N )→4(X1, . . . , X N ) in L2 and also Q(4n)(X1, . . . , X N )→ Q(4)(X1, . . . , X N ) in L2
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(this can be seen by observing first that the coefficients of Qn(4) converge to the coefficients of Q(4)
and then approximating Q(4) and Q(4n) by their partial sums).

Since ∂∗ is closed, the claimed equality follows. �

2.1.3. Existence of solutions. Recall that a process X (t)
1 , . . . , X (t)

N ∈ (M, τ ) is called stationary if its law
does not depend on t ; that is, for any polynomial f in N noncommuting variables, τ

(
f (X (t)

1 , . . . , X (t)
N )
)

is constant.

Lemma 7. Let X (0)
1 , . . . , X (0)

N be an N-tuple of noncommutative random variables, R0 > max j ‖X
(0)
j ‖

and R > R0. Let ξ j ∈ F(R), 9 = (9i j ) ∈ MN×N (F
′(R)) so that 9i j (Z1, . . . , Z N )

∗
=9 j i (Z1, . . . , Z N )

for any self-adjoint Z1, . . . , Z N .
Consider the free stochastic differential equation

d X i (t)=9(X1(t), . . . , X N (t))#(d S(1)t , . . . , d S(N )t )− 1
2ξi
(
X1(t), . . . , X N (t)

)
dt (2-1)

with the initial condition X j (0) = X (0)
j , j = 1, . . . , n. Here d S(1)t , . . . , d S(N )t is free Brownian motion,

and for Qkl =
∑

akl
i ⊗ bkl

i ∈ M⊗̂M , and Q = (Qkl) ∈ MN×N (M⊗̂M), we write

Q#(W1, . . . ,WN )=

(∑
ki

a1k
i Wkb1k

i , . . . ,
∑

aNk
i W bNk

i

)
.

Let A = W ∗(X (0)
1 , . . . , X (0)

N ) and let ∂ j : L2(A) → L2(A ⊗ A) be derivations densely defined on
polynomials in X (0)

1 , . . . , X (0)
N and determined by

∂ j (X
(0)
i )=4 j i (X

(0)
1 , . . . , X (0)

N ).

Assume that for all j , ∂i X (0)
j ∈ domain ∂∗i and that

ξ j (X
(0)
1 , . . . , X (0)

N )=
∑

i

∂∗i ∂i (X
(0)
j ).

Then there exists a t0 > 0 and a stationary solution X j (t), 0≤ t < t0. This stationary solution satisfies
X j (t) ∈W ∗

(
X1, . . . , X N , {S j (s) : 0≤ s ≤ t}Nj=1

)
.

We note that in view of Lemma 6, we may instead assume that 1⊗ 1 ∈ domain ∂∗j and

∂∗j (1⊗ 1)= ζ j (X
(0)
1 , . . . , X (0)

N )

for some ζ1, . . . , ζN ∈F(R), since this assumption guarantees the existence of ξ j ∈F(R) satisfying the
hypothesis of Lemma 7.

Proof. We note that, because 9 and ξ are analytic, they are Lipschitz in their arguments.
Thus it follows from the standard Picard argument (see [Biane and Speicher 1998]) that a solution

(with given initial conditions) exists, at least for all values of t lying in some small interval [0, t0), t0> 0.
Now choose t0 so that ‖X j (t)‖∞ ≤ R0 < R for all 0 ≤ t < t0 (this is possible, since the solution to the
SDE is locally norm-bounded).
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Next, we note that if we adopt the notations of Lemma 4 and define for f ∈ F(R)

L(τ )( f )=
∑
i jk

(1⊗ τ)(9 jk#in(9ki #out(Di j f )))− 1
2

∑
j

ξ j D j f,

then we have that L(τt ) f ∈ F(R) (here τt refers to the trace on C〈X1(t), . . . , Xn(t)〉 obtained by re-
stricting the trace from the von Neumann algebra containing the process X t for small values of t , that is,
τt(P)= τ(P(X1(t), . . . , Xn(t)))). Ito calculus shows that for any f ∈ F(R),

d
dt
τ( f (X1(t), . . . , X N (t)))

∣∣∣
t=s
= τs((L

(τs) f )(X1(s), . . . , X N (s))).

In particular, replacing f with L(τt ) f and iterating gives us the equality

dn

dtn τ( f (X1(t), . . . , X N (t)))
∣∣∣
t=s
= τs(((L

(τs))n f )(X1(s), . . . , X N (s))).

Since ξ j (X1(0), . . . , Xn(0))=
∑

i ∂
∗

i ∂i (X j (0)),

τ(L(τ0)
(

f (X1(0), . . . , X N (0)))
)
= 0

for any f ∈ F(R). Applying this to f replaced with L(τ0) f and iterating allows us to conclude that

dn

dtn τ( f (X1(t), . . . , X N (t)))
∣∣∣
t=0
= 0, n ≥ 1.

Let as before

L̂φ(z)=
∑
i jk

φ9ik (z, N R0)φ9 jk (N R0, z)φ′′(z)+ 1
2

∑
j

φξ j (z)φ
′(z)= α(z)2φ′′(z)+β(z)φ′(z),

where β(z) is complex-valued function and α(z) is a complex vector-valued analytic function, both
defined on {z : |z|< N R}. Moreover, α and β are real for z ∈ R.

Consider the partial differential equation

∂tφ(x, t)= L̂φ(x, t), φ(x, 0)= φ f (x), x ∈ R.

The solution φ(x, t) will be real-analytic in time (at least for small values of t), because the equation
is elliptic. By Lemma 5, we conclude that∣∣∣∂n

t τ( f (X1(t), . . . , X N (t)))
∣∣
t=s

∣∣∣≤ ∣∣∣(L̂nφ)(N R0, s)
∣∣∣= ∣∣∣∂n

t φ(N R0, t)
∣∣
t=s

∣∣∣.
Hence, since all derivatives of τ( f (X1(t)), . . . , f (X N (t))) vanish at zero,∣∣τ( f (X1(s), . . . , X N (s)))− τ( f (X1(0), . . . , X N (0)))

∣∣
=

∣∣∣∣∫ s

0
· · ·

∫ s

0
∂n

t τ( f (X1(t), . . . , f (X N (t))))
∣∣∣
t=r
(dr)n

∣∣∣∣
≤ C

∫ s

0
· · ·

∫ s

0
(∂n

t φ(N R0, t))
∣∣∣
t=r
≤ φ(N R0, s)− Pn(N R0, s),
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where Pn is the n-th Taylor polynomial of φ at zero. Since φ is real-analytic in s, the right-hand
side of the equation goes to zero as n →∞ for s in some interval including zero. Thus the function
s→ τ( f (X1(s), . . . , X N (s))) is constant and so the solution is stationary. �

We note that once the Equation (2-1) has a stationary solution on a small interval [0, t0), then it of course
has a stationary solution for all time (since the same lemma applied to X t0/2 guarantees existence of the
solution for up to 3t0/2 and so on). However, we will not need this here.

3. Otto–Villani type estimates

The main result of this section is an estimate on the noncommutative Biane–Voiculescu–Wasserstein
distance between the law of an N -tuple of variables X = X1, . . . , X N and the law of the N -tuple
X +
√

t Q#S, where S=(S1, . . . , SN ) is a free semicircular family, Q∈MN×N
(
L2(W ∗(X1, . . . , X N )

⊗2)
)

is a matrix, and for Qi j =
∑

k A(k)i j ⊗ B(k)i j , we denote by Q#S the N -tuple (Y1, . . . , YN ) with

Yi =
∑

j

∑
k

A(k)i j S j B(k)i j .

The sum defining Yi is L2 convergent; in fact, the L2 norm of Yi is the same as the L2 norm of the
element ∑

j

∑
k

A(k)i j ⊗ B(k)i j .

The estimate on Wasserstein distance (Proposition 8) is obtained under the assumptions that a certain
derivation, defined by ∂(X i ) = (Qi1, . . . , Qi N ) ∈

(
L2(W ∗(X1, . . . , X N )

⊗2
)N is closable and satisfies

certain further analyticity conditions (see below for more precise statements). Under such assumptions,
the estimate states that

dW (X, X +
√

t Q#S)≤ Ct.

The main use of this estimate will be to give a lower bound for the microstates free entropy dimension
of X1, . . . , X N (see Section 5).

3.1. An Otto–Villani type estimate on Wasserstein distance via free SDEs.

Proposition 8. Let 4 ∈ MN×N (F
′(R)), M = W ∗(X1, . . . , X N ) and let ∂ j : L2(M)→ L2(M ⊗ M) be

derivations densely defined on polynomials in X1, . . . , X N and determined by

∂ j (X i )=4 j i (X1, . . . , X N ).

Assume that for all j , 1⊗ 1 ∈ domain ∂∗i and that there exist ζ1, . . . , ζN ∈ F(R) so that

ζ j (X1, . . . , X N )= ∂ j (1⊗ 1), j = 1, 2, . . . , N .

Then there exists a II1 factor M ∼= M ∗ L(F∞) and a t0 > 0 so that for all 0 ≤ t < t0 there exists an
embedding αt : M = W ∗(X1, . . . , X N )→M and a free (0, 1)-semicircular family S1, . . . , SN ∈M, free
from M and satisfying the inequality∥∥αt(X j )− (X j +

√
t4(X1, . . . , X N )#S)

∥∥
2 ≤ Ct, (3-1)
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where C is a fixed constant. Furthermore, αt(X j ) ∈ W ∗(X1, . . . , X N , S1, . . . , SN , {S′j }
∞

j=1), where
{S′j }

∞

j=1 are a free semicircular family, free from (X1, . . . , X N , S1, . . . , SN ).

If A can be embedded into Rω, so can M.
In particular, the noncommutative Wasserstein distance of Biane–Voiculescu satisfies

dW
(
(X j )

N
j=1, (X j +

√
t4(X1, . . . , X N )#S)N

j=1
)
≤ Ct.

Proof. By Lemma 6, we can find ξ1, . . . , ξN ∈ F(R) so that ξ j (X1, . . . , X N )= ∂
∗∂(X j ).

Let M=W ∗
(
X1, . . . , X N , {S1(s), . . . , SN (s) : 0≤ s≤ t}

)
, where S j (t) is a free semicircular Brownian

motion. Let X j (t) be a stationary solution to the SDE (2-1) (see Lemma 7). The map that takes a
polynomial in X1, . . . , X N to a polynomial in X1(t), . . . , X N (t) preserves traces and so extends to an
embedding αt :M→M. By the free Burkholder–Gundy inequality [Biane and Speicher 1998], it follows
that for 0≤ t < t0 < 1

‖X j (t)− X j (0)‖ ≤ C1
√

t +C2t ≤ C3
√

t,

where C1 = supt<t0 ‖4(X1(t), . . . , X N (t)‖<∞, C2 =max j supt<t0 ‖ξ j (X1, . . . , X N (t)‖.
Furthermore,

X j (t)− X j (0)=
∫ t

0
4(X1(s), . . . , X N (s))#d S j (s)−

∫ t

0
ξ j (X1(s), . . . , X Nn(s))ds

=

∫ t

0
4(X1(0), . . . , X N (0))#d S j (s)

−

∫ t

0

[
4(X1(0), . . . X N (0))−4(X1(s), . . . , X N (s))

]
#d S j (s)

−

∫ t

0
ξ j (X1(s), . . . , X N (s))ds.

By the Lipschitz property of the coefficients of the SDE (2-1), we see that

‖4(X1(s), . . . , X N (s))−4(X1(0), . . . , X N (0))‖ ≤ K max
j
‖X j (s)− X j (0)‖ ≤ K ′

√
s.

Combining this with the estimate ‖ξ j (X1(t), . . . , X N (t))‖ < K ′′ we may apply the free Burkholder–
Gundy inequality to deduce that

‖X j (t)− (X j (0)+4(X1(0), . . . , X N (0))#S j (t))‖ ≤
∣∣∣∣∫ t

0
(K ′
√

s)2ds
∣∣∣∣1/2+ ∥∥∥∥∫ t

0
K ′′ds

∥∥∥∥≤ Ct.

Thus it is enough to notice that ‖ · ‖2 ≤ ‖ · ‖ and to take S j =
1
√

t
S j (t), which is a (0, 1) semicircular

element.
If M is Rω-embeddable, we may choose M to be Rω-embeddable as well, since it can be chosen to

be a free product of M and a free group factor.
Finally, note that X j (t) ∈ W ∗

(
X1, . . . , X N , {S j (s) : 0 ≤ s ≤ t}Nj=1

)
by construction. But the algebra

W ∗
(
{S j (s) : 0 ≤ s ≤ t}

)
can be viewed as the algebra of the Free Gaussian functor applied to the space

L2
[0, 1], in such a way that S j (s)= S([0, s]). Then W ∗

(
{S j (s) :0≤ s≤ t}

)
⊂W ∗

(
S1, . . . , SN , {S′k}k∈I ( j)

)
,

where {S′k : k ∈ I ( j)} are free semicircular elements corresponding to the completion of the singleton set
{t−1/2χ[0,t]} to an orthonomal basis of L2

[0, 1].
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The estimate for the Wasserstein distance now follows if we note that the law of (αt(X j ))
N
j=1 is the

same as that of (X j )
N
j=1; thus (X j (t))N

j=1 ∪ (X j +
√

t4#S)N
j=1 is a particular 2N -tuple with marginal

distributions the same as those of (X j )
N
j=1 and (X j +

√
t4#S)N

j=1, so that the estimate (3-1) becomes an
estimate on the Wasserstein distance. �

Remark 9. Although we do not need this in the rest of the paper, we note that the estimate in Proposition
8 also holds in the operator norm.

We should mention that an estimate similar to the one in Proposition 8 was obtained by Biane and
Voiculescu [2001] in the case N = 1 under the much less restrictive assumptions that 4 = 1⊗ 1 and
1⊗ 1 ∈ domain ∂∗ (that is, the free Fisher information 8∗(X) is finite). Setting 4i j = δi j 1⊗ 1 we have
proved an analog of their estimate (in the N -variable case), but under the very restrictive assumption
that the conjugate variables ∂∗(4) are analytic functions in X1, . . . , X N . The main technical difficulty
in removing this restriction lies in the question of existence of a stationary solution to (2-1) in the case
of very general drifts ξ .

4. Applications to q-semicircular families

4.1. Estimates on certain operators related to q-semicircular families.

4.1.1. Background on q-semicircular elements. Let HR be a finite-dimensional real Hilbert space, H
its complexification H = HR ⊗R C, and let Fq(H) be the q-deformed Fock space on H [Bożejko and
Speicher 1991]. Thus

Fq(H)= C�⊕
⊕
n≥1

H⊗n,

with the inner product given by

〈ξ1⊗ · · ·⊗ ξn, ζ1⊗ · · ·⊗ ζm〉 = δn=m

∑
π∈Sn

q i(π)
n∏

j=1

〈ξ j , ζπ( j))〉,

where i(π)= #
{
(i, j) : i < j and π(i) > π( j)

}
.

We write H S for the space of Hilbert–Schmidt operators on Fq(H). We denote by 4 ∈ H S the
operator

4=
∑

qn Pn,

where Pn is the orthogonal projection onto the subspace H⊗n
⊂ Fq(H).

For h ∈ H , let l(h) : Fq(h)→ Fq(H) be the creation operator, l(h)(ξ1⊗· · ·⊗ ξn)= h⊗ ξ1⊗· · ·⊗ ξn ,
and for h ∈ HR, let s(h)= l(h)+ l(h)∗. We denote by M the von Neumann algebra W ∗(s(h) : h ∈ HR).
It is known [Ricard 2005; Śniady 2004] that M is a II1 factor and that τ = 〈·�,�〉 is a faithful tracial
state on M . Moreover, Fq(H)= L2(M, τ ) and H S = L2(M, τ )⊗ L2(M, τ ).

Fix an orthonormal basis {hi }
N
i=1⊂ HR and let X i = s(hi ). Thus M =W ∗(X1, . . . , X N ), N = dim HR.

Lemma 10 [Shlyakhtenko 2004]. For j = 1, . . . , N , let ∂ j : C[X1, . . . , X N ] → H S be the derivation
given by ∂ j (X i )= δi= j4. Let ∂ :C[X1, . . . , X N ]→ H SN be given by ∂ = ∂1⊕· · ·⊕∂N and regard ∂ as
an unbounded operator densely defined on L2(M). Then:

(i) ∂ is closable.
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(ii) If we denote by Z j the vector 0⊕· · ·⊕ P�⊕· · ·⊕ 0 ∈ H SN (nonzero entry in j-th place, P� is the
orthogonal projection onto C� ∈ Fq(H)), then Z j is in the domain of ∂∗ and ∂∗(Z j )= h j .

As a consequence of (ii), if we let ∂ be as in the lemma, we have ξ j = ∂
∗(Z j )∈C[X1, · · · , X N ] ⊂F(R)

for any R.

4.1.2. 4 as an analytic function of X1, . . . , Xn . We now claim that for small values of q , the element
4∈ L2(M)⊗2 defined in Lemma 10 can be thought of as an analytic function of the variables X1, . . . , X N .
Recall that hi ∈ H is a fixed orthonormal basis and X j = s(h j ), j = 1, . . . , N thus form a q-semicircular
family.

Lemma 11. Let Wi1,...,in be noncommutative polynomials so that

Wi1,...,in (X1, . . . , X N )�= hi1 ⊗ · · ·⊗ hin .

Then the degree of Wi1,...,in is n, and the maximal absolute value c(n)k of a coefficient of a monomial
X j1 · · · X jk , k ≤ n, in Wi1,...,in satisfies

c(n)k ≤ 2n−k
(

1
1− |q|

)n−k

.

Furthermore, ‖Wi1,...,in‖
2
L2(M) ≤ 2n(1− |q|)−n .

Proof. Clearly, c(n)n = 1. Moreover (compare [Effros and Popa 2003])

Wi1,...,in = X i1 Wi2,...,in −

∑
j≥2

q j−2δi1=i j Wi2,...,î j ,...,in

(where ·̂ denotes omission). So the degree of Wi1,...,in is n and the coefficient cn of a monomial of degree
k in Wi1,...,in is at most the sum of a coefficient of a degree k−1 monomial in Wi2,...,in and

∑
j≥2 q j−2

|k j |,
where k j is a coefficient of a degree k monomial in Wi2,...,î j ,...,in

. By induction, we see that

c(n)k ≤ c(n−1)
k−1 +

n∑
j≥2

|q| j−2c(n−2)
k

≤ 2n−k−2
( 1

1−|q|

)n−k
+ 2n−k−2

( 1
1−|q|

)n−k−2∑
j≥0

|q| j

= 2n−k−2
[( 1

1−|q|

)n−k
+

( 1
1−|q|

)n−k−2 1
1−|q|

]
≤ 2n−k−2

· 2
( 1

1−|q|

)n−k
≤ 2n−k

( 1
1−|q|

)n−k
.

as claimed.
The upper estimate on ‖Wi1,...,in‖

2
L2(M) follows in a similar way. �
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Lemma 12. Let {ξk : k ∈ K } be a finite set of vectors in an inner product space V . Let 0 be the matrix
0k,l = 〈ξk, ξl〉. Assume that 0 is invertible and let B = 0−1/2. Then the vectors

ζl =
∑

k

Bk,lξk

form an orthonormal basis for the span of {ξk : k ∈ K }. Moreover, if λ denotes the smallest eigenvalue
of 0, then |Bk,l | ≤ λ

−1/2 for each k, l.

Proof. We have, using the fact that B is symmetric and B0B = I : 〈ζl, ζl ′〉 = 〈
∑

k,k′ Bk,lξk, Bk′,l ′ξk′〉 =∑
k,k′ Bk,l Bk′,l ′0k,k′ = (B0B)l,l ′ = δl=l ′ . �

Lemma 13. There exist noncommutative polynomials pi1,...,in in X1, . . . , X N so that the vectors

{pi1,...,in (X1, . . . , Xn)�}
N
i1,...,in=1

are orthonormal and have the same span as {Wi1,...,in }
N
i1,...,in=1.

Moreover, these can be chosen so that pi1,...,in is a polynomial of degree at most n and the coefficient
of each degree k monomial in p is at most (1− 2|q|)−n/2(2N )n(1− |q|)k2−k .

Proof. Consider the inner product matrix

0n = [〈Wi1,...,in ,W j1,..., jn 〉]
N
i1,...,in, j1,..., jn=1.

Dykema and Nica [1993, Lemma 3.1] proved that one has the following recursive formula for 0n .
Consider an N n-dimensional vector space W with orthonormal basis ei1,...,in , i1, . . . , in ∈ {1, . . . , N },
and consider the unitary representation πn of the symmetric group Sn given by σ · ei1,...,in = eiσ(1),...,iσ(n) .
Denote by (1→ j) the action (via πn) of the permutation that sends 1 to j , k to k−1 for 2≤ k ≤ j , and
l to l for l > j on W . Let Mn =

∑n
j=1 q j−1(1→ j) ∈ End(W ). Then 01 is the identity N × N matrix,

and

0n = (1⊗0n−1)Mn,

where 1⊗ 0n acts on the basis element e j1,..., jn by sending it to
∑

k2,...,kn
(0n−1) j2,..., jn, k2,...,kn e j1,k2,...,kn

and 0 acts on the basis elements by sending e j1,..., jn to
∑

k1,...,kn
(0n) j1,..., jn, k1,...,kn ek1,...,kn . They then

proceeded to prove that the operator Mn is invertible and derive a bound for its inverse in the course of
proving [Dykema and Nica 1993, Lemma 4.1]. Combining this bound and the recursive formula for 0n

yields the following lower estimate for the smallest eigenvalue of 0n:

cn =

(
1

1− |q|

∞∏
k=1

1− |q|k

1+ |q|k

)n

=

(
1

1− |q|

∞∑
k=−∞

(−1)k |q|k
2
)n

≥

(
1

1− |q|

(
1−

∑
k≥0

|q|k
2
))n

≥
1

(1− |q|)n/2

(
1−

∑
k≥1

|q|k
)n

≥

(
1

1− |q|

(
1−

|q|
1− |q|

))n

=

(
1− 2|q|
(1− |q|)2

)n

.
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Thus if we set B = 0−1/2
n , then all entries of B are bounded from above by c−1/2

n . Thus if we apply
the previous lemma with K = {1, . . . , N }n to the vectors ξi1,...,in =Wi1,...,in�, we obtain that the vectors

ζi =
∑
j∈K

B j,iξ j , i ∈ K

form an orthonormal basis for the subspace of the Fock space spanned by tensors of length n.
Now for i = (i1, . . . , in) ∈ K , let

pi (X1, . . . , X N )=
∑
j∈K

B j,i W j (X1, . . . , X N ).

Then ζi = pi (X1, . . . , X N )� are orthonormal and (because the vacuum vector is separating), the poly-
nomials {pi : i ∈ K } have the same span as {Wi : i ∈ K }.

Furthermore, if a is the coefficient of a degree k monomial r in pi , then a is a sum of at most N n terms,
each of the form (the coefficient of r in W j )B j,i . Using Lemma 11, we therefore obtain the estimate

|a| ≤ N nc−1/2
n 2n−k(1− |q|)−(n−k)

=

(
2N

(1− 2|q|)1/2

)n

2−k(1− |q|)k . �

We now use the terminology of Section 2.1.1 in dealing with noncommutative power series.
Let R0 = 2(1− |q|)−1

≥ 2(1− q)−1
≥ ‖X j‖. Then if α > 1, p = pi1,...,in is as in Lemma 13, and φp

is as in Section 2.1.1, then the coefficient of zk , k ≤ n in φp is bounded by(
2N

(1− 2|q|)1/2

)n

R−k
0 ≤

(
2Nα

(1− 2|q|)1/2

)n

(αN R0)
−k .

In particular for any ρ < αR0,

‖pi1,...,in‖ρ ≤

(
2Nα

(1− 2|q|)1/2

)n n∑
k=0

(αN R0)
−k N kρk

≤

(
2Nα

(1− 2|q|)1/2

)n 1
1− ρ/(αR0)

.

Lemma 14. Let q be such that |q|< (4N 3
+ 2)−1. Then:

(a) The formula

4(Y1, . . . , YN )=
∑

n

qn
∑

i1,...,in

pi1,...,in (Y1, . . . , YN )⊗ pi1,...,in (Y1, . . . , YN )

defines a noncommutative power series with values in C〈Y1, . . . , YN 〉
⊗2 with radius of convergence

strictly bigger than the norm of a q-semicircular element, ‖X j‖ ≤ 2(1− q)−1.

(b) If X1, . . . , X N are q-semicircular elements and 4 is as in Lemma 10, then 4 = 4(X1, . . . , X N )

(convergence in Hilbert–Schmidt norm, identifying H S with L2(M)⊗ L2(M)).

Proof. Clearly,

‖pi1,...,in ⊗ pi1,...,in‖ρ ≤ ‖pi1,...,in‖
2
ρ ≤

(
2Nα

(1− 2|q|)1/2

)2n 1
(1− ρ/(αR0))2

= Kρ

(
4N 2α2

1− 2|q|

)n

for any ρ < αR0, where R0 = 2(1− |q|)−1
≥ ‖X j‖.
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Thus

‖4‖ρ ≤ Kρ

∑
n

(
4N 2α2

1− 2|q|

)n

|q|n N n
≤ Kρ

∑
n

(
4N 3α|q|
1− 2|q|

)n

,

which is finite as long as ρ < αR0 and the fraction in the sum in the right is less than 1. Thus as long as
4N 3
|q| < 1− 2|q|, that is, |q| < (4N 3

+ 2)−1, we can choose some α > 1 so that the series defining 4
has a radius of convergence of at least αR0 > ‖X j‖.

For part (b), we note that because ‖ · ‖L2(M) ≤ ‖ · ‖M and because of the definition of the projective
tensor product, we see that

‖ · ‖H S ≤ ‖ · ‖M⊗̂M

on M⊗̂M . Thus convergence in the projective norm on M⊗̂M guarantees convergence in Hilbert–
Schmidt norm. Furthermore, by definition of orthogonal projection onto a space,

4=
∑

qn Pn,

where Pn =
∑

i1,...,in
pi1,...,in⊗ pi1,...,in =4

(n)(X1, . . . , X N ) are the partial sums of 4(X1, . . . , X N ) (here
we again identify H S and L2

⊗ L2). Hence 4=4(X1, . . . , X N ). �

5. An estimate on free entropy dimension

We now show how an estimate of the form (1-3) can be used to prove a lower bound for the free entropy
dimension δ0.

Recall from [Voiculescu 1996; 1994] that if X1, . . . , Xn ∈ (M, τ ) is an n-tuple of self-adjoint elements,
then the set of microstates 0R(X1, . . . , Xn; l, k, ε) is defined by

0R(X1, . . . , Xn; l, k, ε)=
{
(x1, . . . , xn) ∈ (M sa

k×k)
n
: ‖x j‖< R and∣∣τ(p(X1, . . . , Xn))− (1/k)Tr(p(x1, . . . , xn))

∣∣< ε
for any monomial p of degree ≤ l

}
.

If R is omitted, the value R =∞ is understood. The free entropy is defined by

χ(X1, . . . , Xn)= sup
R

inf
l,ε

lim sup
k→∞

(
1
k2 log Vol(0R(X1, . . . , Xn; l, k, ε))+

n
2

log k
)
.

The set of microstates for X1, . . . , Xn in the presence of Y1, . . . , Ym is defined by

0R(X1, . . . , Xn : Y1, . . . , Ym; l, k, ε)=
{
(x1, . . . , xn) : ∃(y1, . . . , ym)

s.t. (x1, . . . , xn, y1, . . . , ym) ∈ 0R(X1, . . . , Xn, Y1, . . . , Ym; l, k, ε)
}
.

The corresponding free entropy in the presence is then defined as by

χ(X1, . . . , Xn : Y1, . . . , Ym)

= sup
R

inf
l,ε

lim sup
k→∞

(
1
k2 log Vol(0R(X1, . . . , Xn : Y1, . . . , Ym; l, k, ε))+

n
2

log k
)
.
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The supR is attained [Belinschi and Bercovici 2003]; in fact, once R >maxi, j {‖X i‖, ‖Y j‖}, we have

χ(X1, . . . , Xn : Y1, . . . , Ym)= χR(X1, . . . , Xn : Y1, . . . , Ym).

Finally, the free entropy dimension δ0 is defined by

δ0(X1, . . . , Xn)= n+ lim sup
t→0

χ(X1+
√

t S1, . . . , Xn +
√

t Sn : S1, . . . , Sn)

| log t |
,

where S1, . . . , Sn are a free semicircular family, free from X1, . . . , Xn . Equivalently [Jung 2003a] one
sets

Kδ(X1, . . . , Xn)= inf
ε,l

lim sup
k→∞

1
k2 log Kδ(0∞(X1, . . . , Xn; k, l, ε)),

where Kδ(X) is the covering number of a set X (the minimal number of δ-balls needed to cover X ).
Then

δ0(X1, . . . , Xn)= lim sup
t→0

Kt(X1, . . . , Xn)

| log t |
.

Lemma 15. Assume that X1, . . . , Xn ∈ (M, τ ), T jk ∈W ∗(X1, . . . , Xn)⊗W ∗(X1, . . . , Xn)
op are given.

Set ST
j =

∑
k T jk#Sk . Let η = dimM⊗Mo

(
span M ST

1 M + · · ·+M ST
n M

L2(M⊗Mo))
.

Then there exists a constant K depending only on T so that for all R> 0, α> 0, t > 0, there are ε′> 0,
l ′>0, and k ′>0 so that for all 0<ε<ε′, k> k ′, and l> l ′, and any (x1, . . . , xn)∈0(X1, . . . , Xn; k, l, ε)
the set

0R(t S I−T
1 , . . . , t S I−T

n

∣∣ (x1, . . . , xn) : S1, . . . , Sn; k, l, ε)={
(y1, . . . , yn) : ∃(s1, . . . , sn) s.t. (y1, . . . , yn, x1, . . . , xn, s1, . . . , sn) ∈

0R(t S I−T
1 , . . . , t S I−T

n , X1, . . . , Xn, S1, . . . , Sn; k, l, ε)
}

can be covered by (K/t)(n−η+α)k
2

balls of radius t2.

Proof. By considering the diffeomorphism of (M sa
k×k)

n given by (a1, . . . , an) 7→ ((1/t)a1, . . . , (1/t)an),
we may reduce the statement to showing that the set

0R(S I−T
1 , . . . , S I−T

n

∣∣ (x1, . . . , xn) : S1, . . . Sn; k, l, ε)

can be covered by (C/t)(n−η+α)k
2

balls of radius t .
Note that η is the Murray–von Neumann dimension over M ⊗Mo of the image of the map

(ζ1, . . . , ζn) 7→ (ζ T
1 , . . . , ζ

T
n ),

where ζ j ∈ L2(M)⊗ L2(M), M =W ∗(X1, . . . , Xn). Thus if we view T as a matrix in Mn×n(M⊗Mo),
then τ ⊗ τ ⊗Tr(E{0}((I − T )∗(I − T ))) = η (here EX denotes the spectral projection corresponding to
the set X ⊂ R).

Fix α > 0.
Then there exists Q∈Mn×n(C[X1, . . . , Xn]

⊗2) depending only on t so that ‖Qi j−(I−T )i j‖2< t/(2n)
(here we view Q as a matrix whose entries are noncommutative functions in n indeterminates; the entries
of Q are in the space F′(∞) in the notation of Section 2.1.1).
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Set SQ
j =

∑
k Q jk#Sk . Then ∥∥SQ(X1,...,Xn)

j − S I−T
j

∥∥< t
2
.

In particular,
∥∥SQ(X1,...,Xn)

j − S I−T
j

∥∥
2 < t/2. We may moreover choose Q (again, depending only on t)

so that

τ ⊗ τ ⊗Tr(E[0,t/2[(Q∗Q)1/2(X1, . . . , Xn))≥ τ ⊗ τ ⊗Tr(E{0}(I − T )∗(I − T ))= η− 1
2α.

Thus for l sufficiently large and ε > 0 sufficiently small, we have that if

(y1, . . . , yn) ∈ 0R(S I−T
1 , . . . , S I−T

n |(x1, . . . , xn) : S1, . . . , Sn; k, l, ε),

then there exist s1, . . . , sn such that

(s1, . . . , sn, x1, . . . , xn) ∈ 0R(S1, . . . , Sn, X1, . . . , Xn; k, l, ε)

and
‖s Q(x1,...,xn)

j − y j‖2 < t.

By approximating the characteristic function χ[0,t/2] with polynomials on the interval [0,‖Q(x1, . . . , xn)‖]

(which is compact, since ‖x j‖< R), we may moreover assume that l is large enough and ε is small enough
that

1
k2 Tr⊗Tr⊗Tr

(
E[0,t/2](Q∗Q)1/2(x1, . . . , xn)

)
≥ η−α.

Denote by φ the map

(s1, . . . , sn) 7→
(
s Q(x1,...,xn)

1 , . . . , s Q(x1,...,xn)
n

)
.

Let R1 = max j ‖S I−T
j ‖2 + 1. Assume that ε < 1. Then φ : (M sa

k×k)
n
→ (M sa

k×k)
n is a linear map, and

since ‖s j‖
2
2 ≤ 1+ ε < 2, we have the inclusion

0R(S I−T
1 , . . . , S I−T

n |(x1, . . . , xn) : S1, . . . , Sn; k, l, ε)⊂ Nt(φ(B(2)) ∩ B(R1)),

where B(R) the a ball of radius R in (M sa
k×k)

n (endowed with the L2 norm) and Nt denotes a t-
neighborhood.

The matrix of φ is precisely the matrix Q(x1, . . . , xn) ∈ Mn×n(Mk×k)
⊗2.

Let β be such that βnk2 eigenvalues of (φ∗φ)1/2 are less than R0. Then the t-covering number of
φ(B(2))∩ B(R1) is at most (

R1

t

)(1−β)nk2(
2R0

t

)βnk2

.

Let R0 = t/2, so β = (η−α)/n. We conclude that the t-covering number of

0R
(
S I−T

1 , . . . , S I−T
n

∣∣ (x1, . . . , xn) : S1, . . . , Sn; k, l, ε
)

is at most (K/t)(n−η+α)k
2
, for some constant K depending only on R1, which itself depends only on T .

�
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Theorem 16. Assume that X1, . . . , Xn ∈ (M, τ ), S1, . . . , Sn, {S j : j ∈ J } is a free semicircular family,
free from M , T jk ∈ W ∗(X1, . . . , Xn)⊗W ∗(X1, . . . , Xn)

op are given, and that for each t > 0 there exist
Y (t)j ∈W ∗(X1, . . . , Xn, S1, . . . , Sn, {S′j } j∈J ) so that:

• the joint law of (Y (t)1 , . . . , Y (t)n ) is the same as that of (X1, . . . , Xn),

• if we set ST
j =

∑
k T jk#Sk and Z (t)j = X j + t ST

j , then for some t0 > 0 and some constant C <∞

independent of t , we have ‖Z (t)j − Y (t)j ‖2 ≤ Ct2 for all t < t0.

Let M =W ∗(X1, . . . , Xn) and let

η = dimM⊗Mo

(
span M ST

1 M + · · ·+M ST
n M

L2)
.

Assume finally that W ∗(X1, . . . , Xn) embeds into Rω. Then δ0(X1, . . . , Xn)≥ η.

Proof. Let T : (M ⊗Mo)n→ (M ⊗Mo)n be the linear map given by

T (Y1, . . . , Yn)=

(∑
k

T1k#Yk, . . . ,
∑

k

Tnk#Yk

)
(here, as before, we identify (M ⊗ Mo)n with the linear span of M S1 M + · · · + M Sn M via the map
(T1, . . . , Tn) 7→ (ST1, . . . , STn )). Then η is the Murray–von Neumann dimension of the image of T , and
consequently

η = n− dimM⊗Mo ker T .

Let t be fixed.
Since Y (t)j can be approximated by noncommutative polynomials in X1, . . . , Xn , S1, . . . , Sn and
{S′j : j ∈ J }, for any k0, ε0, l0 sufficiently large we may find k > k0, l > l0, ε < ε0 and J0 ⊂ J finite
so that whenever

(z1, . . . , zn) ∈ 0R
(
X1+ t ST

1 , . . . , Xn + t ST
n : S1, . . . , Sn, {S′j } j∈J0; k, l, ε

)
,

there exists
(y1, . . . , yn) ∈ 0R(X1, . . . , Xn; k, l0, ε0)

so that

‖y j − z j‖2 ≤ Ct2. (5-1)

For a set X ⊂ (M sa
k×k)

n we’ll write Kr for its covering number by balls of radius r .
Consider a covering of 0R(X1 + t S1, . . . , Xn + t Sn : S, . . . , Sn, {S′j } j∈J0; k, l, ε) by balls of radius

(C + 2)t2 constructed as follows.
First, let (Bα)α∈I be a covering of 0R

(
X1 + t ST

1 , . . . , Xn + t ST
n : S1, . . . , Sn, {S′j } j∈J0; k, l0, ε0

)
by

balls of radius (C + 1)t2. Because of (5-1), we may assume that

|I | ≤ Kt2(0R(X1, . . . , Xn; k, l, ε)).

Next, for each α ∈ I , let (x (α)1 , . . . , x (α)n ) ∈ Bα be the center of Bα. Consider a covering (C (α)
β : β ∈ Jα)

of 0R
(
t S I−T

1 , . . . , t S I−T
n

∣∣ (x (α)1 , . . . , x (α)n ) : S1, . . . , Sn; k, l, ε
)

by balls of radius t2. By Lemma 15, this
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covering can be chosen to contain |Jα| ≤ (K/t)n−η
′

balls, for any η′ < η. Thus the sets

(Bα +C (α)
β : α ∈ I, β ∈ Jα),

each of which is contained in a ball of radius at most (C + 2)t2, cover the set

0R
(
X1+ t S1, . . . , Xn + t Sn : S1, . . . , Sn; k, l0, ε0

)
.

The cardinality of this covering is at most

f (t2, k)≤ |I | · sup
α
|Jα| ≤ Kt2(0R(X1, . . . , Xn; k, l, ε) · (K t)η

′
−n.

It follows that if we denote by V (R, d) the volume of a ball of radius R in Rd , we find that

Vol(0R(X1+ t S1, . . . , Xn + t Sn : S1, . . . , Sn, {S′j } j∈J0))≤ f (t2, k) · V ((C + 2)t2, nk2),

so that if we denote by Kt2(X1, . . . , Xn) the expression

inf
ε,l

lim sup
k→∞

1
k2 log Kt2(0(X1, . . . , Xn; k, l, ε))

and set C ′ = log(C + 2), we obtain the inequality

inf
ε,l

lim sup
k→∞

1
k2 log Vol0R(X1+ t S1, . . . , Xn + t Sn : S1, . . . , Sn, {S′j } j∈J0; k, l, ε)

≤ lim supk→∞ log f (t2, k)+ 2n log t + log(C + 2)

≤ Kt2(X1, . . . , Xn)+ (η
′
− n) log K t + 2n log t +C ′

= Kt2(X1, . . . , Xn)+ (η
′
+ n) log t + (η′− n) log K +C ′.

By the freeness of {S′j } j∈J and {S1, . . . , Sn, X1, . . . , Xn}, the lim sup on the right-hand side remains the
same if we take J0 =∅. Thus

χR(X1+ t S1, . . . , Xn + t Sn : S1, . . . , Sn)≤ Kt2(X1, . . . , Xn)+ (η
′
+ n) log t +C ′′.

If we divide both sides by | log t | and add n to both sides of the resulting inequality, we obtain

n+
χR(X1+ t S1, . . . , Xn + t Sn : S1, . . . , Sn)

| log t |
≤

Kt2(X1, . . . , Xn)

| log t |
+ (η′+ n)

log t
| log t |

+ n

= 2
Kt2(X1, . . . , Xn)

| log t2|
+ (η′+ n)

log t
| log t |

+ n.

Taking supR and lim supt→0 and noticing that log t < 0 for t < 1, we get the inequality

δ0(X1, . . . , Xn)≤ 2δ0(X1, . . . , Xn)− (η+ n)+ n = 2δ0(X1, . . . , Xn)− η
′.

Solving this inequality for δ0(X1, . . . , Xn) gives finally

δ0(X1, . . . , Xn)≥ η
′.

Since η′ < η was arbitrary, we conclude that δ0(X1, . . . , Xn)≥ η as claimed. �
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Corollary 17. Let (A, τ ) be a finitely-generated algebra with a positive trace τ and generators X1, . . . ,
Xn , and let Dera(A; A⊗ A) denote the space of derivations from A to L2(A⊗ A, τ ⊗ τ) which are L2

closable and so that for some 4 j ∈ F′(R), ξ ∈ F(R), R > max j ‖X j‖, ∂∗(1⊗ 1) = ξ(X1, . . . , Xn) and
∂(X j )=4 j (X1, . . . , Xn). Consider the A,A-bimodule

V =
{
(δ(X1), . . . , δ(Xn)) : δ ∈ Dera(A; A⊗ A)

}
⊂ L2(A⊗ A, τ ⊗ τ)n.

Assume finally that M =W ∗(A, τ )⊂ Rω. Then

δ0(X1, . . . , Xn)≥ dimM⊗Mo V L2(A⊗A,τ⊗τ)n .

Proof. Let P : L2(A⊗ A, τ⊗τ)n→ V be the orthogonal projection, and set v j = P(0, . . . , 1⊗1, . . . , 0)
with 1⊗ 1 in the j-th position. Let v(k)j = (v

(k)
1 j , . . . , v

(k)
nj ) ∈ L2(A⊗ A)n be vectors approximating v j

and having the property that the derivations defined by δ(X j )= v
(k)
i j lie in Dera . Then

ηk = dimM⊗Mo span Av(k)1 A+ · · ·+ Av(k)n A→ dimM⊗Mo V

as k→∞. Now for each k, the derivations δ j : A→ L2(A⊗ A) so that δ j (X i ) = v
(k)
i j belong to Dera .

Applying Lemma 6 and Proposition 8 to Ti j = v
(k)
i j and combining the conclusion with Theorem 16 gives

δ0(X1, . . . , Xn)≥ ηk .

Taking k→∞ we get

δ0(X1, . . . , Xn)≥ dimM⊗Mo V,

as claimed. �

Corollary 18. For a fixed N , and all |q|< (4N 3
+ 2)−1, the q-semicircular family X1, . . . , X N satisfies

δ0(X1, . . . , X N ) > 1 and δ0(X1, . . . , X N )≥ N
(

1−
q2 N

1− q2 N

)
.

In particular, M = W ∗(X1, . . . , X N ) has no Cartan subalgebra. Moreover, for any abelian subalgebra
A⊂ M , L2(M), as an A,A-bimodule, contains a copy of the coarse correspondence.

Proof. Let ∂i be a derivation as in Lemma 10; thus ∂i (X j ) = δi= j4, as defined in Lemma 10. Then for
|q|< (4N 3

+ 2)−1, Lemma 14 shows that ∂i ∈ Dera . Then Theorem 16 implies that

δ0(X1, . . . , X N )≥ dimM⊗Mo

∑
M4i M,

M =W ∗(X1, . . . , Xn). It is known [Shlyakhtenko 2004] that for q2< 1/N (which is the case if we make
the assumptions about q as in the hypothesis of the corollary), this dimension is strictly bigger than 1
and is no less than N (1− q2 N (1− q2 N )−1).

The facts about M follow from [Voiculescu 1996]. �

For N = 2, (4N 3
+ 2)−1

= 1/34. Thus the theorem applies for 0≤ q ≤ 1/34= 0.029 . . . . Our estimate
also shows that δ0(X1, . . . , X N )→ N as q→ 0.
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Corollary 19. Let 0 be a discrete group generated by g1, . . . , gn , and let V ⊂ C1(0, `20) be the subset
consisting of cocycles valued in C0 ⊂ `20. If the group von Neumann algebra of 0 can be embedded
into the ultrapower of the hyperfinite II1 factor (for example, if the group is sofic), then

δ0(C0)≥ dimL(0) V .

Proof. Any such cocycle gives rise to a derivation into C0⊗2 by the formula

∂(γ )= c(γ )⊗ γ−1.

Then ∂∗∂(γ ) = ‖c(γ )‖22γ ∈ C0. Moreover, the bimodule generated by values of these derivations on
any generators of C0 has the same dimension over L(0) ¯⊗L(0) as dimL(0) V̄ . �

For certain Rω embeddable groups (for example, free groups, amenable groups, residually finite groups
with property T , more generally embeddable groups with first L2 Betti number β(2)1 = 0, as well as
groups obtained from these by taking amalgamated free products over finite subgroups and passing to
finite index subgroups and finite extensions), V is actually dense in the set of `2 1-cocycles. Indeed, this is
the case if all `2 derivations are inner (that is, β(2)1 (0)=0). Moreover, it follows from the Mayer–Vietoris
exact sequence that amalgamated free products over finite subgroups retain the property that V is dense
in the space of `2 cocycles. Moreover, this property is also clearly preserved by passing to finite-index
subgroups and finite extensions. So it follows that for such groups 0, δ0(0) = β

(2)
1 (0)+ β

(2)
0 (0)− 1

(compare [Brown et al. 2008]).
It is likely that the techniques of the present paper could be extended to prove the following:

Conjecture 20. Let 0 be a group generated by g1, . . . , gn and assume that L(0) can be embedded into
Rω. Let V ⊂`2(0)n be the subspace {(c(g1), . . . , c(gn)) :c :0→`2(0) 1-cocycle}. Let PV : `

2(0)n→ V
be the orthogonal projection, so that PV ∈ Mn×n(R(0)), where R(0) is the von Neumann algebra gen-
erated by the right regular representation of the group.

Let A ⊂ R(0) be the closure of C0 ⊂ R(0) under holomorphic functional calculus, and let Pa ∈ A

be any projection so that Pa ≤ PV . Then δ0(0)≥ TrMn×n ⊗τR(0)(Pa).

Note that with the notations of the Conjecture, TrMn×n ⊗τR(0)(PV )= β
(2)
1 (0)−β

(2)
0 (0)+ 1= δ∗(0).

It should be noted that the restriction on the values of the cocycles (C0 rather than `20) comes from
the difficulty in the extending the results of Proposition 8 to the case of nonanalytic 4 (though the term
∂∗∂(γ ) continues to be a polynomial even in the case that the cocycle is valued in `2(0) rather than C0).

Appendix: Otto–Villani type estimates via exponentiation of derivations

Let M =W ∗(X1, . . . , X N ), where X1, . . . , X N are self-adjoint.
Let us denote by ζ j the vector (0, . . . , 0, 1⊗1, 0, . . . , 0) ∈ [L2(M, τ )⊗2

]
N (the only nonzero entry is

in the j-th position). One can realize a free semicircular family of cardinality N on the space

H = L2(M, τ )⊕
⊕
k≥1

[
(L2(M, τ )⊗ L2(M, τ ))⊕N ]⊗M k

.

using creation and annihilation operators Si = L i + L∗i , where

L iξ = ζi ⊗M ξ.
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Then for ζ ∈W ∗(M)⊗W ∗(M), the notation Sζ makes sense with Sζi = Si , aSζb+b∗Sζa∗ = Saζb+b∗ζa∗

and ‖Sζ‖2 = ‖ζ‖2.
Let A = Alg(X1, . . . , X N ). For a, b ∈ A⊗ A and j = 1, . . . , N write

(a⊗ b)#S = aSb.

Proposition 21. Let ∂ : A→ V0 = [W ∗(M, τ )⊗W ∗(M, τ )]⊕N
⊂ V = [L2(M, τ )⊗ L2(M, τ )]⊕N be a

derivation. We assume that for each j , ζ j is in the domain of ∂∗ :V→ L2(M, τ ) and that ∂(a∗)= (∂(a))∗,
where ∗ : L2(M)⊗ L2(M) is the involution (a⊗b)∗ = b∗⊗a∗. Let S1, S2, . . . be semicircular elements,
free from M.

Assume that ∂(A)⊂ (A⊗ A)⊕N and also that ∂∗(1⊗ 1) ∈ A.
Then there exists a one-parameter group αt of automorphisms of M ∗W ∗(S1, . . . , SN ) ∼= M ∗ L(FN )

so that A∪ {S j : 1≤ j ≤ N } are analytic for αt and

d
dt
αt(a)

∣∣∣
t=0
= S∂(a) for all a ∈ A,

d
dt
αt(S j )

∣∣∣
t=0
=−∂∗(ζ j ) for j = 1, 2, . . . .

In particular,

αt(a) · 1=
(

a−
t2

2
∂∗(∂(a))

)
+ t∂(a) −

t2

2
(1⊗ ∂ + ∂ ⊗ 1)(∂(a)) ∈ H.

Proof. Let B be the algebra generated by A and S1, . . . , SN in M=W ∗(A, τ ) ∗ L(FN ).
Let Pj : V → L2(A ⊗ A) be the j-th coordinate projection, and let ∂ j : A → A ⊗ A be given by

∂ j = Pj ◦ ∂ .
Let V1, . . . , VN ∈ B be given by

V j =
∑

k

∂k(X j )#Sk = S∂(X j ), j = 1, . . . , N .

Let VN+1, . . . , V2N ∈ B be given by

VN+k =−∂
∗

k (1⊗ 1)=−∂∗(ζk), k = 1, . . . , N .

Then (V1, . . . , V2N )∈ B⊂ L2(B, τ ) is a noncommutative vector field in the sense of [Voiculescu 2002a].
It is routine to check that this vector field is orthogonal to the cyclic gradient space.

We now use [Voiculescu 2002a] to deduce that there exists a one-parameter automorphism group αt

of M=W ∗(B, τ ) such that

d
dt
αt(X j )

∣∣∣
t=0
= V j for j = 1, . . . , N ,

d
dt
αt(Sk)

∣∣∣
t=0
= VN+k for k = 1, . . . , N ,

and moreover that all elements in B are analytic for αt . In particular, we see that

d
dt
αt(X j )

∣∣∣
t=0
= S∂(X j ),

d2

dt2αt(X j )
∣∣∣
t=0
· 1= δ(S∂(X j ))=−∂

∗(∂(X j ))− (1⊗ ∂ + ∂ ⊗ 1)(∂(X j )),

as claimed. �
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Example 22. We give three examples in which the automorphisms αt can be explicitly constructed. The
first is the case that X1, . . . , X N is a free semicircular system and ∂(X j ) = (0, . . . , 1⊗ 1, . . . 0) (that
is, ∂ = ⊕∂ j , where ∂ j are the difference quotient derivations of [Voiculescu 1998]). In this case, the
automorphism αt is given by

αt(X j )= (cos t)X j + (sin t)S j , αt(S j )=−(sin t)X j + (cos t)S j .

Another case is that of a general N -tuple X1, . . . , X N and ∂ an inner derivation given by ∂(X)= [X, T ],
for [T j ]

N
j=1 = [−T ∗j ]

N
j=1 ∈ [M ⊗Mo

]
N . Put z =

∑
T j #S j . Then αt is an inner automorphism given by

αt(Y )= exp(i zt)Y exp(−i zt). Lastly, assume that M =M1∗M2 and the derivations ∂ j are determined by
∂ j |M1=0, ∂ j |M2(x)=[x, T j ] for some T j ∈M⊗Mo. Then again put z=

∑
T j #S j . The automorphism αt

is then given by αt(Y )= exp(i zt)Y exp(−i zt). In particular, αt |M1 = id and αt |M2 is given by conjugation
by unitaries exp(i zt) which are free from M1 and M2.

Proposition 21 can be used to give another proof to the Otto–Villani type estimates (Proposition 8) in
the case of polynomial coefficients, using the following standard lemma:

Lemma 23. Let βt : (M, τ )→ (M, τ ) be a one-parameter group of automorphisms so that τ ◦βt = τ .
Let X ∈ M be an element so that t 7→ βt(X) is twice-differentiable. Finally let

Z =
d
dt
βt(X)

∣∣∣
t=0
, ξ =

d2

dt2βt(X)
∣∣∣
t=0
.

Then, for all t ,

‖βt(X)− (X + t Z)‖2 ≤
t2

2
‖ξ‖2.

Corollary 24. Assume that X1, . . . , X N ∈ A and ∂1, . . . ∂N : A → A ⊗ A are derivations, so that
∂∗j (1⊗ 1) ∈ A. Then we have the following estimate for the free Wasserstein distance:

dW
(
(X1, . . . , X N ), (X1+

√
t
∑

k

∂k(X1)#Sk, . . . , X N +
√

t
∑

k

∂k(X N )#Sk)
)
≤ Ct,

where C is the constant given by

C = 1
2

(∑
j

‖∂∗∂(X j )‖
2
L2(A)+‖(1⊗ ∂ + ∂ ⊗ 1)(∂(X j ))‖

2
[L2(A)⊗L2(A)⊗L2(A)]N2

)1/2

,

where ∂ : A→ [L2(A)⊗ L2(A)]N is the derivation ∂ = ∂1⊕ · · ·⊕ ∂N .
In the specific case of the difference quotient derivations determined by ∂k(X j )= δk j 1⊗ 1, we have

dW
(
(X1, . . . , X N ), (X1+

√
t S1, . . . , X N +

√
t SN )

)
≤

t
2
8∗(X1, . . . , X N )

1/2.

Proof. Let αt be the one-parameter group of automorphisms as in Proposition 21. We note that(∑
j

‖α√t(X j )− (X j +
√

t
∑

k

∂k(X j )#Sk)‖
2
2

)1/2

≤ Ct
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in view of Lemma 23 and the expression for α′′t (X j ). On the other hand, (α√t(X1), . . . , α√t(X N )) has
the same law as (X1, . . . , X N ), since α√t is a ∗-homomorphism. It follows that

dW
(
X1, . . . , X N , (X1+

√
t
∑

k

∂k(X1)#Sk, . . . , X N +
√

t
∑

k

∂k(X N )#Sk)
)

= dW
(
α√t(X1), . . . , α√t(X N ), (X1+

√
t
∑

k

∂k(X1)#Sk, . . . , X N +
√

t
∑

k

∂k(X N )#Sk)
)
≤ Ct.

In the case of the difference quotient derivations, we have:∑
k

∂k(X j )#Sk = S j , (1⊗ ∂ + ∂ ⊗ 1)(∂(X j ))= (1⊗ ∂ + ∂ ⊗ 1)(1⊗ 1)= 0, ∂∗∂(X j )= ∂
∗

j (1⊗ 1).

Thus
C = 1

2

(∑
j

‖∂∗j (1⊗ 1)‖22

)1/2

=
1
28
∗(X1, . . . , X N )

1/2

as claimed. �
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