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ANALYSIS AND PDE
Vol. 2, No. 3, 2009

GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF A 3D LOG-LOG
ENERGY-SUPERCRITICAL WAVE EQUATION

TRISTAN ROY

We prove global existence of smooth solutions of the 3D log-log energy-supercritical wave equation

∂t t u−4u =−u5 logc(log(10+ u2))

with 0< c< 8/225 and smooth initial data (u(0)= u0, ∂t u(0)= u1). First we control the L4
t L12

x norm of
the solution on an arbitrary size time interval by an expression depending on the energy and an a priori
upper bound of its L∞t H̃ 2(R3) norm, with H̃ 2(R3) := Ḣ 2(R3) ∩ Ḣ 1(R3). The proof of this long time
estimate relies upon the use of some potential decay estimates and a modification of an argument by Tao.
Then we find an a posteriori upper bound of the L∞t H̃ 2(R3) norm of the solution by combining the long
time estimate with an induction on time of the Strichartz estimates.

1. Introduction

We shall consider the defocusing log-log energy-supercritical wave equation

∂t t u−4u =− f (u) (1-1)

where u : R×R3
→ R is a real-valued scalar field and f (u) := u5g(u) with g(u) := logc(log(10+u2)),

0< c< 8/225. Classical solutions of (1-1) are solutions that are infinitely differentiable and compactly
supported in space for each fixed time t . It is not difficult to see that classical solutions of (1-1) satisfy
the energy conservation law

E :=
1
2

∫
R3
(∂t u(t, x))2 dx +

1
2

∫
R3
|∇u(t, x)|2 dx +

∫
R3

F(u(t, x)) dx (1-2)

where F(u) :=
∫ u

0 f (v) dv. Classical solutions of (1-1) enjoy three symmetry properties that we use
throughout this paper:

• time translation invariance: if u is a solution of (1-1) and t0 is a fixed time then ũ(t, x) :=u(t−t0, x)
is also a solution of (1-1);

• space translation invariance: if u is a solution of (1-1) and x0 is a fixed point lying in R3 then
ũ(t, x) := u(t, x − x0) is also a solution of (1-1);

• time reversal invariance: if u is a solution to (1-1) then ũ(t, x) := u(−t, x) is also a solution.

MSC2000: 35Q55.
Keywords: global regularity, log-log energy supercritical wave equation.
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262 TRISTAN ROY

The defocusing log-log energy-supercritical wave equation (1-1) is closely related to the power-type
defocusing wave equations, namely,

∂t t u−4u =−|u|p−1u. (1-3)

Solutions of (1-3) have an invariant scaling

u(t, x)→ uλ(t, x) :=
1

λ2/(p−1) u
( t
λ
,

x
λ

)
(1-4)

and (1-3) is sc-critical, where sc :=
3
2
−

2
p−1

. Thus the Ḣ sc(R3)× Ḣ sc−1(R3) norm of (u(0), ∂t u(0)) is
invariant under scaling, i.e.,

‖uλ(0)‖Ḣ sc (R3) = ‖u(0)‖Ḣ sc (R3),

‖∂t uλ(0)‖Ḣ sc−1(R3) = ‖∂t u(0)‖Ḣ sc−1(R3).

If p = 5, then sc = 1 and this is why the quintic defocusing cubic wave equation

∂t t u−4u =−u5 (1-5)

is called the energy-critical equation. If 1 < p < 5 then sc < 1 and (1-3) is energy-subcritical while if
p > 5 then sc > 1 and (1-3) is energy-supercritical. Notice that for every p > 5 there exists two positive
constant λ1(p), λ2(p) such that

λ1(p)|u|5 ≤ | f (u)| ≤ λ2(p)max (1, |u|p). (1-6)

This is why (1-1) is said to belong to the group of barely supercritical equations. There is another way
to see that. Notice that a simple integration by part shows that

F(u)∼
u6

6
g(u), (1-7)

and consequently the nonlinear potential term of the energy
∫

R3 F(u) dx ∼
∫

R3 u6g(u) dx just barely fails
to be controlled by the linear component, in contrast to (1-5).

The energy-critical wave equation (1-5) has received a great deal of attention. Grillakis [1990; 1992]
established global existence of smooth solutions (global regularity) of this equation with smooth initial
data u(0) = u0, ∂t u(0) = u1. His work followed that of Rauch [1981, part I] for small data and that
of Struwe [1988] on the spherically symmetric case. Later Shatah and Struwe [1993] gave a simplified
proof of this result. Kapitanski [1994] and, independently, Shatah and Struwe [1994] proved global
existence of solutions with data (u0, u1) in the energy class.

We are interested in proving global regularity of (1-1) with smooth initial data (u0, u1). By standard
persistence of regularity results it suffices to prove global existence of solutions

u ∈ C
(
[0, T ], H̃ 2(R3)

)
∩C1(

[0, T ], H 1(R3)
)
,

with data (u0, u1) ∈ H̃ 2(R3)× H 1(R3). Here the following space

H̃ 2(R3) := Ḣ 2(R3)∩ Ḣ 1(R3). (1-8)
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In view of the local well-posedness theory [Lindblad and Sogge 1995], standard limit arguments and the
finite speed of propagation it suffices to find an a priori upper bound of the form∥∥(u(T ), ∂t u(T ))

∥∥
H̃2(R3)×H1(R3)

≤ C1
(
‖u0‖H̃2(R3), ‖u1‖H1(R3), T

)
(1-9)

for all times T > 0 and for classical solutions u of (1-1) with smooth and compactly supported data
(u0, u1). Here C1 is a constant depending only on ‖u0‖H̃2(R3), ‖u1‖H1(R3) and the time T .

The global behavior of the solutions of the supercritical wave equations is poorly understood, mostly
because of the lack of conservation laws in H̃ 2(R3). Nevertheless Tao [2007] was able to prove global
regularity for another barely supercritical equation, namely

∂t t u−4u =−u5 log (2+ u2), (1-10)

with radial data. The main result of this paper is:

Theorem 1. The solution of (1-1) with smooth data (u0, u1) exists for all time. Moreover there exists a
nonnegative constant M0 = M0(‖u0‖H̃2(R3), ‖u1‖H1(R3)) depending only on ‖u0‖H̃2(R3) and ‖u1‖H1(R3)

such that
‖u‖L∞t H̃2(R×R3)+‖∂t u‖L∞t H1(R×R3) ≤ M0. (1-11)

We recall some basic properties and estimates. Let Q be a function, let J be an interval and let t0 ∈ J
be a fixed time. If u is a classical solution of the more general problem ∂t t u−4u = Q then u satisfies
the Duhamel formula

u(t)= ul,t0(t)+ unl,t0(t), t ∈ J, (1-12)

with ul,t0 , unl,t0 denoting the linear part and the nonlinear part respectively of the solution starting from t0.
Recall that

ul,t0(t)= cos (t − t0)Du(t0)+
sin (t − t0)D

D
∂t u(t0) (1-13)

and

unl,t0(t)=−
∫ t

t0

sin (t − t ′)D
D

Q(t ′) dt ′, (1-14)

with D the multiplier defined by D̂ f (ξ) := |ξ | f̂ (ξ). An explicit formula for ((sin (t − t ′)D)/D)Q(t ′)
and t 6= t ′ is [sin (t − t ′)D

D
Q(t ′)

]
(x)=

1
4π |t − t ′|

∫
|x−x ′|=|t−t ′|

Q(t ′, x ′) d S(x ′). (1-15)

For a proof see [Sogge 1995]. We recall that ul,t0 satisfies

∂t t ul,t0 −4ul,t0 = 0, ul,t0(t0)= u(t0), ∂t ul,t0(t0)= ∂t u(t0),

while unl,t0 is the solution of

∂t t unl,t0 −4unl,t0 = Q, unl,t0(t0)= 0, ∂t unl,t0(t0)= 0.

We recall the Strichartz estimate [Ginibre and Velo 1995; Keel and Tao 1998; Lindblad and Sogge 1995;
Sogge 1995]

‖u‖Lq
t Lr

x (J×R3) . ‖∂t u(t0)‖L2
x (R

3)+‖∇u(t0)‖L2
x (R

3)+‖Q‖L1
t L2

x (J×R3), (1-16)
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if (q, r) is wave admissible, that is, (q, r) ∈ (2, ∞]× [2, ∞] and 1/q + 3/r = 1/2.
We set some notation that appears throughout the paper. We write C = C(a1, . . . , an) if C only

depends on the parameters a1, . . . , an . We write A . B if there exists a universal nonnegative constant
C ′ > 0 such that A ≤ C ′B. A = O(B) means A . B. More generally we write A .a1,...,an B if there
exists a nonnegative constant C ′ = C(a1, . . . , an) such that A ≤ C ′B. We say that C ′′ is the constant
determined by . in A .a1,...,an B if C ′′ is the smallest constant among the C ′s such that A ≤ C ′B. We
write A �a1,...,an B if there exists a universal nonnegative small constant c = c(a1, . . . , an) such that
A≤ cB. Similar notions are defined for A& B, A&a1,...,an B and A� B. In particular we say that C ′′ is
the constant determined by & in A & B if C ′′ is the largest constant among the C ′s such that A ≥ C ′B.
If x is number then x+ and x− are slight variations of x : x+ := x + αε and x− := x − βε for some
α > 0, β > 0 and 0< ε� 1.

Let 0+ denote the forward light cone

0+ = {(t, x) : t > |x |} , (1-17)

and if J = [a, b] is an interval, let 0+(J ) denote the light cone truncated to J , that is,

0+(J ) := 0+ ∩ (J ×R3). (1-18)

Let e(t) denote the local energy, that is,

e(t) :=
1
2

∫
|x |≤t

(∂t u(t, x))2 dx +
1
2

∫
|x |≤t
|∇u(t, x)|2 dx +

∫
|x |≤t

F(u(t, x)) dx . (1-19)

If u is a solution of (1-1) then by using the finite speed of propagation and the Strichartz estimates we
have

‖u‖Lq
t Lr

x (0+(J ))
. ‖∇u(b)‖L2

x (R
3)+‖∂t u(b)‖L2

x (R
3)+‖Q‖L1

t L2
x (0+(J ))

(1-20)

if (q, r) is wave admissible. If J1 := [a1, a2] and J2 := [a2, a3] then we also have

‖u‖Lq
t Lr

x (0+(J1))
. ‖∇u(a3)‖L2

x (R
3)+‖∂t u(a3)‖L2

x (R
3)+‖Q‖L1

t L2
x (0+(J1∪J2))

. (1-21)

We recall also the well-known Sobolev embeddings. If h is a smooth function then

‖h‖L∞(R3) . ‖h‖H̃2(R3) (1-22)

and
‖h‖L6(R3) . ‖∇h‖L2(R3). (1-23)

If u is the solution of (1-1) with data (u0, u1) ∈ H̃ 2(R3)× H 1(R3), then we get from (1-22)

E . ‖u0‖
2
H̃2(R3)

max
(
1, ‖u0‖

4
H̃2(R3)

g(‖u0‖H̃2(R3))
)
. (1-24)

We shall use the Paley–Littlewood technology. Let φ(ξ) be a bump function adapted to {ξ ∈R3
: |ξ | ≤ 2}

and equal to one on {ξ ∈R3
: |ξ |≤ 1}. If (M, N )∈ 2Z

×2Z are dyadic numbers then the Paley–Littlewood
projection operators PM , P<N and P≥N are defined in the Fourier domain by

P̂M f (ξ) :=
(
φ
( ξ

M

)
−φ

( ξ

2M

))
f̂ (ξ), P̂<N f (ξ) :=

∑
M<N

P̂M f (ξ), P̂≥N f (ξ) :=
∑

M≥N

P̂M f (ξ).

The inverse Sobolev inequality can be stated as follows:
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Proposition 2 (Inverse Sobolev inequality [Tao 2006]). Let g be a smooth function such that

‖g‖Ḣ1(R3) . E1/2l, ‖P≥N g‖L6
x (R

3) & η,

for some real number η > 0 and for some dyadic number N > 0. Then there exists a ball B(x, r) ⊂ R3

with r = O(1/N ) such that we have the mass concentration estimate∫
B(x,r)

|g(y)|2 dy & η3 E−1/2r2. (1-25)

We also recall a result that shows that the mass of solutions of (1-1) can be locally in time controlled.

Proposition 3 (Local mass is locally stable [Tao 2006]). Let J be a time interval, let t , t ′ ∈ J and let
B(x, r) be a ball. Let u be a solution of (1-1). Then(∫

B(x,r)
|u(t ′, y)|2 dy

)1/2

=

(∫
B(x,r)

|u(t, y)|2 dy
)1/2

+ O
(
E1/2
|t − t ′|

)
. (1-26)

This result, proved for (1-5) in [Tao 2006], is also true for (1-1). Indeed the proof relied upon the fact
that the L2(R3) norm of the velocity of the solution of (1-5) at time t is bounded by the square root of
its energy, which is also true for the solution of (1-1) (by (1-2) and (1-7)).

Now we make some comments with respect to Theorem 1. If the function g were a positive constant,
it would be easy to prove that the solution of (1-1) with data (u0, u1) lies in H̃ 2(R3)×H 1(R3), since we
have a good global theory for (1-5). Therefore we can hope to prove global well-posedness for g slowly
increasing to infinity, by extending the technology to prove global well-posedness for (1-5). Notice also
that Tao [2006] found that the solution u of (1-5) satisfies

‖u‖L4
t L12

x (R×R3) . Ẽ Ẽ O(1)
, (1-27)

with Ẽ the energy of u. The structure of g is a double log: it is, roughly speaking, the inverse function
of the towel exponential bound in (1-27).

Now we explain the main ideas of this paper.
Tao [2006] was able to bound on arbitrary long time intervals the L4

t L12
x norm of solutions of the

energy-critical equation (1-5) by a quantity that depends exponentially on their energy. This estimate
can be viewed as a long time estimate. Unfortunately we cannot expect to prove a similar result for (1-1)
since we are not in the energy-critical regime. However we shall prove the following proposition:

Proposition 4 (Long time estimate). Let J = [t1, t2] be a time interval. Let u be a classical solution of
(1-1). Assume that

‖u‖L∞t H̃2(J×R3) ≤ M (1-28)

for some M ≥ 0. Then there exist three constants CL ,0 > 0, CL ,1 > 0 and CL ,2 > 0 such that

• if E � 1
g1/2(M)

(small energy regime) then

‖u‖4L4
t L12

x (J×R3)
≤ CL ,0; (1-29)

• if E & 1
g1/2(M)

(large energy regime) then

‖u‖4L4
t L12

x (J×R3)
≤
(
CL ,1(Eg(M))

)CL ,2(E193/4+g225/8+(M))
. (1-30)
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This proposition shows that we can control the L4
t L12

x (J × R3) norm of solutions of (1-1) by their
energy and an a priori bound of their L∞t H̃ 2(J × R3) norm. We would like to control the pointwise-
in-time H̃ 2(R3)× H 1(R3) norm of u on an interval [0, T ], with T arbitrarily large. This is done by an
induction on time. We assume that this norm is controlled on [0, T ] by a number M0. Then by continuity
we can find a slightly larger interval [0, T ′] such that this norm is bounded by (say) 2M0 on [0, T ′]. This
is our a priori bound. We subdivide [0, T ′] into subintervals where the L4

t L12
x norm of u is small and we

control the pointwise-in-time H̃ 2(R3)×H 1(R3) norm of u on each of these subintervals (see Lemma 6).
Since g varies slowly we can estimate the number of intervals of this partition by using Proposition 4
and we can prove a posteriori that ‖u(t)‖H̃2(R3)+‖∂t u(t)‖H̃1(R3) is bounded on [0, T ′] by M0, provided
that M0 is large enough; see Section 2.

The proof of Proposition 4 is a modification of the argument used in [Tao 2006] to establish a tower-
exponential bound of the L4

t L12
x (J×R3) norm of v, the solution of (1-5). We divide J into subintervals Ji

where the L4
t L12

x norm of u, the solution of (1-1), is “substantial”. Then by using the Strichartz estimates
and the Sobolev embedding (1-22) we notice that the L∞t L6

x(Ji×R3) norm of u is also substantial, more
precisely, we find a lower bound that depends on the energy E and g(M). Then by Proposition 2 we
can localize a bubble where the mass concentrates and we prove that the size of these subintervals is
also substantially large. Tao [2006] used the mass concentration to construct a solution ṽ of (1-5) that
has a smaller energy than v and that coincides with v outside a cone. The idea behind that is to use an
induction on the levels of energy, due to Bourgain [1999], and the small energy theory following from
the Strichartz estimates in order to control the L4

t L12
x norm of v outside a cone. Unfortunately it seems

almost impossible to apply this procedure to our problem. Indeed the energy of the constructed solution
ũ is smaller than the energy E of u by an amount that depends on E but also on g(M) and therefore an
induction on the levels of the energy is possible if the L∞t H̃ 2(J×R3) norm of ũ can be controlled by M ,
which is far from being trivial. It turns out that we do not need to use the Bourgain induction method.
Indeed since we know that the size of the subintervals Ji s is substantially large and since we have a good
control of the L4

t L12
x norm on these subintervals it suffices to find an upper bound of the size of their

union in order to conclude. To this end we divide a cone containing the ball where the mass concentrates
and the Ji s into truncated-in-time cones where the L4

t L12
x norm of u is substantial. Let J̃1, J̃2, . . . be the

sequence of time intervals resulting from this partition. The mass concentration helps us to control the
size of the first time interval J̃1. By using an asymptotic stability result we can prove, roughly speaking,
that if we consider two successive subintervals J̃ j , J̃ j+1 resulting from this partition of the cone then the
size of J̃ j+1 can be controlled by the size of J̃ j ; see (3-34). But a potential energy decay estimate shows
that if the size of the union of the Ji s is too large then we can find a large subinterval [t ′1, t ′2] such that
the L4

t L12
x norm of u on the cone truncated to [t ′1, t ′2] is small. Therefore [t ′1, t ′2] cannot be covered by

many J̃ j s and one of them is very large in comparison with its predecessor, which contradicts (3-34). At
the end of the process we can find an upper bound of the size of the union of the subintervals Ji s and
consequently we can control the L4

t L12
x norm of u on the interval J .

Remark 5. We will frequently use the x+ and x− notations. Indeed the point (2,∞) is not wave
admissible. Therefore we will work with the point (2+,∞−): see (5-6) and (7-9). This generates
slight variations of many quantities throughout this paper. Sometimes we might deal with quantities like
z := x+/ y−. We cannot conclude directly that z = (x/y)+. In this case we create a variation of y so
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small (compared to that of x) that we have z = (x/y)+. These details have been omitted for the sake of
readability. We strongly recommend that the reader ignores these slight variations at the first reading.

2. Proof of Theorem 1

The proof relies upon Proposition 4 and the following lemma, which we prove on page 268.

Lemma 6 (Local boundedness). Let J = [t1, t2] be an interval. Assume that u is a classical solution of
(1-1). Let Z(t) := ‖(u(t), ∂t u(t))‖H̃2(R3)×H1(R3). There exists 0< ε� constant such that if

‖u‖L4
t L12

x (J×R3) ≤
ε

g1/4(Z(t1))
, (2-1)

then there exists Cl > 0 such that

Z(t)≤ 2Cl Z(t1) for t ∈ J . (2-2)

We claim that the set

F :=
{
T ∈ [0, ∞) : sup

t∈[0,T ]

∥∥(u(t), ∂t u(t))
∥∥

H̃2(R3)×H1(R3)
≤ M0

}
(2-3)

is equal to [0, ∞) for some constant M0 := M0(‖u0‖H̃2(R3), ‖u1‖H1(R3)) large enough. Indeed, 0 ∈ F

(this is clear); F is closed, by continuity; and F is open. To see this last fact, let T ∈ F. Then by
continuity there exists δ > 0 such that

sup
t∈[0,T ′]

‖ (u(t), ∂t u(t)) ‖H2(R3)×H1(R3) ≤ 2M0 (2-4)

for every T ′ ∈ [0, T + δ). By (1-29) and (1-30) we have

‖u‖4L4
t L12

x ([0,T ′]×R3)
≤max

(
CL ,0, (CL ,1 E g(2M0))

CL ,2(E (193/4)+g(225/8)+(2M0))
)
. (2-5)

Let N ≥ 1 and let Z(0) := max (Z(0), 1). Without loss of generality we can assume that Cl � 1 so
that 2Cl Z(0)� 1 and logc (2Cl Z(0)

)
� 1. We have, by the elementary rules of the logarithm and the

inequality logc(2nx)≤ logc((2n)x) for n ≥ 1 and x � 1:

N∑
n=1

ε4

g ((2Cl)n Z0)
≥

N∑
n=1

ε4

logc (log((2Cl)2n Z2n(0)+ 10)
) & N∑

n=1

1
logc (2n log (2Cl Z(0))

)
&

1
logc (2Cl Z(0)

) N∑
n=1

1
logc(2n)

&
1

logc (2Cl Z(0)
) ∫ N+1

1

1
logc(2t)

dt

&
1

logc (2Cl Z(0)
) ∫ N+1

1

1
t1/2 dt &

N 1/2

logc (2Cl Z(0)
) . (2-6)
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By Lemma 6, (2-5) and (2-6) we can construct a partition (Jn)1≤n≤N of [0, T ′] such that

‖u‖L4
t L12

x (Jn×R3) =
ε

g1/4 ((2Cl)n Z0)
, 1≤ n < N ,

‖u‖L4
t L12

x (JN×R3) ≤
ε

g1/4
(
(2Cl)N Z0

) , Z(t)≤ (2Cl)
n Z(0),

for t ∈ J1 ∪ · · · ∪ Jn and

N 1/2

logc(2Cl Z(0))
≤max

(
CL ,0, (CL ,1 E g(2M0))

CL ,2(E193/4+g225/8+(2M0))
)
. (2-7)

Since c < 8/225 we have by (1-24)

log N . logc(2Cl Z(0))+ log (CL ,0)

+CL ,2 E (193/4)+ log(225c/8)+ log (10+4M2
0 ) log

(
CL ,1 E logc log(10+4M2

0 )
)

≤ log
( log (M0/Z(0))

log (2Cl)

)
, (2-8)

if M0 = M0(‖u0‖H̃2(R3), ‖u1‖H1(R)) is large enough. To prove the last inequality in (2-8) it is enough,
by using (1-24), to notice that limM0→∞ f (M0)= 0 with

f (M0) :=
logc(2Cl Z(0))+ log (CL ,0)+CL ,2 E (193/4)+ log(225c/8)+ log (10+ 4M2

0 ) log (CL ,1 E logc log(10+4M2
0 ))

log
(

log (M0/Z(0))
log (2Cl )

) .

(2-9)
Therefore we conclude that

sup
t∈[0,T ′]

‖(u(t), ∂t u(t))‖H2(R3)×H1(R3) ≤ (2Cl)
N Z(0)≤ M0. (2-10)

Proof of Lemma 6. By the Strichartz estimates (1-16), the Sobolev embeddings (1-22) and (1-23) and
the elementary estimate |u5

∇ (g(u)) |. |u4
∇ug(u)|, we have

Z(t). Z(t1)+‖u5g(u)‖L1
t L2

x ([t1,t]×R3)+‖u
4
∇ug(u)‖L1

t L2
x ([t1,t]×R3)+‖u

5
∇(g(u))‖L1

t L2
x ([t1,t]×R3)

. Z(t1)+‖u5g(u)‖L1
t L2

x ([t1,t]×R3)+‖u
4
∇ug(u)‖L1

t L2
x ([t1,t]×R3)

. Z(t1)+‖u‖4L4
t L12

x ([t1,t]×R3)
‖u‖L∞t L6

x ([t1,t]×R3)g(‖u‖L∞t L∞x ([t1,t]×R3))

+‖u‖4L4
t L12

x ([t1,t]×R3)
‖∇u‖L∞t L6

x ([t1,t]×R3)g(‖u‖L∞t L∞x ([t1,t]×R3))

. Z(t1)+‖u‖4L4
t L12

x ([t1,t]×R3)
Z(t)g(Z(t)).

(2-11)

Let Cl be the constant determined by the last inequality in (2-11). From (2-1), (2-11) and a continuity
argument, we have (2-2). �

3. Proof of Proposition 4

The proof relies upon five lemmas, which we state here and then prove in subsequent sections, after
seeing how they imply the proposition.
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Lemma 7 (Long time estimate if energy small). Let J = [t1, t2] be a time interval. Let u be a classical
solution of (1-1). Assume that (1-28) holds. If

E �
1

g1/2(M)
, (3-1)

then
‖u‖L4

t L12
x (J×R3) . 1. (3-2)

Lemma 8 (If ‖u‖L4
t L12

x (J×R3) is nonnegligible a mass concentration bubble exists and the size of J is
bounded from below). Let u be a classical solution of (1-1). Let J be a time interval. Assume that (1-28)
holds. Let η be a positive number such that

η ≤
E1/12

g5/24(M)
. (3-3)

If ‖u‖L4
t L12

x (J×R3) ≥ η, then
‖u‖L∞t L6

x (J×R3) & η
2+E−((1/2)+). (3-4)

Moreover, there exist a point x0 ∈ R3, a time t0 ∈ J and a positive number r such that we have the mass
concentration estimate in the ball B(x0, r)∫

B(x0,r)
|u(t0, y)|2 dy & η6+E−(2+)r2, (3-5)

and the following lower bound on the size of J :

|J |& η4 E−2/3r. (3-6)

Lemma 9 (Potential energy decay estimate). Let u be a classical solution of (1-1). Let [a, b] be an
interval. Then we have the potential energy decay estimate∫

|x |≤b
F(u(b, x)) dx .

a
b

(
e(a)+ e1/3(a)

)
+ e(b)− e(a)+ (e(b)− e(a))1/3 . (3-7)

Lemma 10 (L4
t L12

x norm of u is small on a large truncation of the forward light cone). Let J = [t1, t2] be
an interval. Let u be a classical solution of (1-1). Assume that (1-28) holds. Let η be a positive number
such that

η�min
(

E1/4, E5/18,
E1/12

g5/24(M)

)
. (3-8)

Assume also that there exists C2� 1 such that[
t1, (C2 E10+η−(36+))4C2 E10+η−(36+)

t1
]
⊂ J. (3-9)

Then there exists a subinterval J ′ = [t ′1, t ′2] such that
∣∣t ′2/t ′1∣∣∼ E10+η−(36+) and

‖u‖L4
t L12

x (0+(J ′))
≤ η. (3-10)

Lemma 11 (Asymptotic stability). Let J = [t1, t2] be a time interval. Let J ′ = [t ′1, t ′2] ⊂ J and let
t ∈ J/J ′. Let u be a classical solution of (1-1). Assume that (1-28) holds. Then

‖ul,t ′2(t)− ul,t ′1(t)‖L∞x (R3) .
E5/6g1/6(M)

dist1/2(t, J ′)
. (3-11)
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We are ready to prove Proposition 4. We assume that we have an a priori bound M of the L∞t H̃ 2(J×R3)

norm of the solution u. There are two steps:

• If E � 1/g1/2(M), then we know from Lemma 7 that (1-29) holds.

• Therefore we assume that the energy is large, that is,

E &
1

g1/2(M)
. (3-12)

We can assume without loss of generality that

‖u‖L4
t L12

x (J×R3) ≥
E1/12

g5/24(M)
. (3-13)

From (3-13) we can partition J into subintervals J1, . . . , Jl such that for i = 1, . . . , l − 1,

‖u‖L4
t L12

x (Ji×R3) =
E1/12

g5/24(M)
and ‖u‖L4

t L12
x (Jl×R3) ≤

E1/12

g5/24(M)
. (3-14)

Before moving forward we say that an interval Ji is exceptional if

‖ul,t1‖L4
t L12

x (Ji×R3)+‖ul,t2‖L4
t L12

x (Ji×R3) ≥
1

(C3 Eg(M))C4(E (193/4)+g(225/8)+(M))
, (3-15)

for some C3� 1, C4� 1 to be chosen later. (The numbers 193/4 and 225/8 will play an important role
in (3-44).) Otherwise Ji is unexceptional. Let E denote the set of J ′i s that are exceptional and let Ec

denote the set of nonempty sequences of consecutive unexceptional intervals Ji . By (1-16), (3-12) and
(3-15),

card (E). E2 [O(Eg(M))]O(E (193/4)+g(225/8)+(M)) . [O(Eg(M))]O(E (193/4)+g(225/8)+(M)) . (3-16)

Since card (Ec). card (E) we have

‖u‖4L4
t L12

x (J×R3)
. [O(Eg(M))]O(E (193/4)+g(225/8)+(M))

( E1/3

g5/6(M)
+ sup

K∈Ec

‖u‖4L4
t L12

x (K×R3)

)
. (3-17)

Let K = Ji0 ∪ · · · ∪ Ji1 be a sequence of consecutive unexceptional intervals. If N (K ) is the number of
Ji s making K then by (3-12), (3-14) and (3-17) we have

‖u‖L4
t L12

x (J×R3) .
(

sup
K∈Ec

N (K )
)

[O(Eg(M))]O(E (193/4)+g(225/8)+(M)) . (3-18)

Therefore it suffices to estimate N (K ) for every K = Ji0 ∪· · ·∪ Ji1 . We will do that by first determining
a lower bound for the size of the elements Ji s and then by estimating the size of K . By (3-12), (3-14)
and Lemma 8, there exists for i ∈ [i0, . . . i1] a (ti , ri , xi ) ∈

(
Ji × ( 0,∞)×R3

)
such that

1
r2

i

∫
B(xi ,ri )

|u(ti , y)|2 dy &
E−(3/2+)

g5/4+(M)
(3-19)

and

|Ji |&
E−1/3ri

g5/6(M)
. (3-20)
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Let k ∈ [i0, . . . , i1] be such that rk = mini∈[i0, i1]
ri ; let f (t, r, x) := 1

r2

∫
B(x,r) |u(t, y)|2 dy; let C5 be

the constant determined by (3-19); and let r0 = r0(M) be defined by

r0 M2
=

C5 E−((3/2)+)

4g(5/4)+(M)
.

Since f (t, r, x)≤ r M2 we have

f (t, r0, x)≤
C5 E−((3/2)+)

4g(5/4)+(M)
.

The set A := {(t, r, x) : t ∈ K , r0 ≤ r ≤ rk, x ∈R3
} is connected. Therefore its image is connected by f

and there exists (t̃, r̃ , x̃) ∈ K × [r0, rk] ×R3 such that f (t̃, r̃ , x̃) = (C5 E−((3/2)+))/(2g(5/4)+(M)) . In
other words we have the following mass concentration

1
r̃2

∫
B(x̃,r̃)

u2(t̃, x) dx =
C5 E−(3/2+)

2g(5/4)+(M)
. (3-21)

Moreover we have the useful lower bound for the size of Ji ,1 i0 ≤ i ≤ i1:

|Ji |& r̃
E−1/3

g5/6(M)
. (3-22)

At this point we need to use the following lemma, which gives information about the size of K .

Lemma 12. Let K be a sequence of unexceptional intervals. Assume there exist t̄ ∈ K , x̄ ∈ R3 and
r̄ ∈ (0,∞) such that

1
r̄2

∫
B(x̄,r̄)

u2(t̄, y) dy & E−((3/2)+)g(5/4)+(M). (3-23)

Then there exist two constants C6� 1, C7� 1 such that

|K | ≤ (C6 Eg(M))C7 E (193/4)+g(225/8)+(M)r̄ . (3-24)

If we combine the lemma with (3-22) we can estimate N (K ). More precisely, by Lemma 12, (3-22)
and (3-12) we have

N (K ).
(C6 Eg(M))C7 E (193/4)+g(225/8)+(M)r̃

r̃ E−(1/3)
g5/6(M)

.
(
O(Eg(M))

)O(E (193/4)+g(225/8)+(M))
. (3-25)

Plugging this upper bound for N (K ) into (3-18) we get (1-30), completing the proof of the proposition
(modulo the lemmas).

Proof of Lemma 12. By using the space translation invariance of (1-1) we can reduce to the case where
x̄ vanishes.2 By using the time reversal invariance and the time translation invariance3 it suffices to
estimate |K ∩ [t̄, ∞)|. By using the time translation invariance again4 we can assume that t̄ = r̄ and

1Notice that we have the lower bound r̃ ≥ C5 E−((3/2)+)/(4M2g(5/4)+(M)). One might think that the presence of r̃ in
(3-22) is annoying since this lower bound is crude. However we will see that r̃ disappears at the end of the process: see (3-25).
Therefore a sharp lower bound is not required.

2We consider the function u1(t, x)= u(t, x − x̄) and we abuse notation in the sequel by writing u1 for u.
3We consider the function u2(t, x) := u(2t̄ − t, x) and we abuse notation in the sequel by writing u2 for u.
4We consider the function u3(t, x) := u(t + (t̄ − r̄), x) and we abuse notation in the sequel by writing u3 for u.
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therefore r̄ ∈ K . Let K+ := K ∩ [r̄ ,∞). We are interested in estimating |K+|. We would like to use
Lemma 10. Therefore, we consider the set 0+(K+). We have

1
r̄2

∫
B(0,r̄)
|u(r̄ , y)|2 dy &

E−((3/2)+)

g(5/4)+(M)
. (3-26)

Therefore by Proposition 3 and (3-26) we have∫
B(0,r̄)
|u(t, y)|2 dy &

E−((3/2)+)r̄2

g(5/4)+(M)
(3-27)

if (t−r̄)E1/2
≤ (c0 E−((3/4)+)r̄/g(5/8)+(M)) for some c0�1. Therefore by Hölder there exists 0< c1�1

small enough such that

‖u‖
L4

t L12
x

(
0+

([
r̄ ,r̄+ c0 E−((5/4)+) r̄

g(5/8)+(M)

])) ≥ c1
E−17/16

g25/32(M)
. (3-28)

Suppose first that ‖u‖L4
t L12

x (0+(K+))
≤ c1

E−(17/16)

g(25/32)(M)
. In this case we get from (3-28)

K+ ⊂
[
r̄ , r̄ +

c0 E−((5/4)+)r̄
g(5/8)+(M)

]
, (3-29)

and, using also (3-12), we get (3-24).

Now suppose instead that ‖u‖L4
t L12

x (0+(K+))
≥ c1

E−((17/16)+)

g(25/32)+(M)
. Define

η̃ :=
c1

4
E−((17/16))+

g(25/32)+(M)
, (3-30)

and divide 0+(K+) into consecutive cone truncations 0+( J̃1), . . . , 0+( J̃k) such that, for j =1, . . . , k−1,

‖u‖L4
t L12

x (0+( J̃ j ))
= η̃ (3-31)

and
‖u‖L4

t L12
x (0+( J̃k))

≤ η̃. (3-32)

We get from (3-28)

J̃1 ⊂

[
r̄ , r̄ +

c0 E−((5/4)+)r̄
g(5/8)+(M)

]
. (3-33)

Result 13. If j ∈ [1, . . . , k− 1] we either have

| J̃ j+1|. | J̃ j |η̃
−4 E8/3g1/3(M) (3-34)

or

| J̃ j | ≥ (C6 Eg(M))C7 E (193/4)+g(225/8)+(M)r̄ (3-35)

for some constants C6� 1, C7� 1.
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Proof. We get from (1-21), (3-12) and (3-30)

‖u− ul,t j+1‖L4
t L12

x (0+( J̃ j ))
. ‖u5g(u)‖L1

t L2
x (0+( J̃ j∪ ˜J j+1))

. ‖u4
‖L1

t L3
x (0+( J̃ j∪ ˜J j+1))

‖ug1/6(u)‖L∞t L6
x (0+( J̃ j∪ ˜J j+1))

g5/6(M)

. η̃4 E1/6g5/6(M)

� η̃, (3-36)

with J j = [t j−1, t j ]. Therefore by (3-31) we have ‖ul,t j+1‖L4
t L12

x (0+( J̃ j ))
∼ η̃. This implies that

‖ul,t j+1 − ul,t2‖L4
t L12

x (0+( J̃ j ))
& η̃ (3-37)

or
‖ul,t2‖L4

t L12
x (0+( J̃ j ))

& η̃. (3-38)

Case 1. ‖ul,t j+1 − ul,t2‖L4
t L12

x (0+( J̃i ))
& η̃. By Lemma 11 and Hölder we have

‖ul,t j+1 − ul,t2‖L4
t L12

x (0+( J̃ j ))
. | J̃ j |

1/4
‖ul,t j+1 − ul,t2‖L∞t L12

x (0+( J̃ j ))

. | J̃ j |
1/4
‖ul,t j+1 − ul,t2‖

1/2
L∞t L∞x (0+( J̃ j ))

‖ul,t j+1 − ul,t2‖
1/2
L∞t L6

x (0+( J̃ j ))

.
| J̃ j |

1/4 E2/3g1/12(M)

| J̃ j+1|1/4
. (3-39)

We get (3-34) from (3-37) and (3-39).

Case 2. ‖ul,t2‖L4
t L12

x (0+( J̃ j ))
& η̃. In this case ‖ul,t2‖L4

t L12
x ( J̃ j )

& η̃. Recall that K+ is a subinterval of
K = Ji0 ∪ · · · ∪ Ji1 , sequence of unexceptional intervals Ji , i0 ≤ i ≤ i1. Consequently there are at least
∼ η̃(C3 Eg(M))C4 E (193/4)+g(225/8)+(M) intervals J j that cover J̃i . Therefore we get (3-35) from (3-22) and
(3-12). �

Using Result 13 and Lemma 10 we can get an upper bound on the size |K+|:

Result 14. We have
|K+| ≤ (C6 Eg(M))C7(E (193/4)+g(225/8)+(M))r̄ . (3-40)

Proof. Let B := (C6 Eg(M))C7(E (193/4)+g(225/8)+(M)). Assume that (3-40) fails. Let J̃ j1 be the first interval
for which | J̃1 ∪ · · · ∪ J̃ j1 | exceeds Br̄ . Then j1 6= 1, | J̃ j1 |. | J̃ j1−1|η̃

−4 E8/3g1/3(M) and we have

c1 E−5/4r̃
g(5/8)(M)

+ T2− T1+ (T2− T1)η̃
−4 E8/3g1/3(M)& | J̃1| + · · · + | J̃ j1 | ≥ Br̄ , (3-41)

if [T1, T2] := J̃2 ∪ · · · ∪ J̃ j1−1. Therefore by (3-12) and (3-41) we have

T2− T1 &
η̃4 E−(8/3)Br̄

g1/3(M)
. (3-42)

Moreover T1 ≤ r̄ + (c1 E−((5/4)+)r̄)/(g(5/8)+(M)). Therefore by (3-12) we have

T1 = O(r̄). (3-43)
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By (3-42) and (3-43) we have

T2

T1
≥

(
C2 E10+

( η̃
4

)−(36+))4C2 E10+(η̃/4)−(36+)

, (3-44)

with C2 defined in Lemma 10, provided that C6, C7 � max (c1,C2). Therefore we can apply Lemma
10 and find a subinterval [t ′1, t ′2] ⊂ J̃2∪· · ·∪ J̃ j1−1 with

∣∣t ′2/t ′1∣∣∼ E10+η̃−(36+) and ‖u‖L4
t L12

x ([t
′

1,t
′

2])
≤ η̃/4.

This means that [t ′1, t ′2] ⊂ [T1, T2] is covered by at most two consecutive intervals. It is convenient to
introduce [t ′1, t ′2]g, the geometric mean of t ′1 and t ′2. We have [t ′1, t ′2]g ∼ η̃

−18 E5t ′1. There are two cases.

Case 1. [t ′1, t ′2] is covered by one interval J̃ j̄ = [a j̄ , b j̄ ], 2≤ j̄ ≤ j1−1. Then | J̃ j̄ |& η̃
−(36+)E10+t ′1 and

| J̃ j̄−1| ≤ t ′1. Therefore | J̃ j̄ |& η̃
−(36+)E10+

| J̃ j̄−1|. Contradiction with (3-12) and (3-34).

Case 2. [t ′1, t ′2] is covered by two intervals J̃ j̄ =[a j̄ , b j̄ ] and J̃ j̄+1=[a j̄+1, b j̄+1] for some 2≤ j̄ ≤ j1−2.
Then there are two subcases.

Case 2a. b j̄ ≤ [t
′

1, t ′2]g. In this case | J̃ j̄+1| & η̃
−(36+)E10+t ′1 and | J̃ j̄ | ≤ η̃

−(18+)E5+t ′1. Therefore by
(3-12) we have | J̃ j̄+1|& η̃

−(18+)E5+
| J̃ j̄ |. Contradiction with (3-12) and (3-34).

Case 2b. b j̄ ≥ [t
′

1, t ′2]g. In this case by (3-12) | J̃ j̄ | & η̃−(18+)E5+t ′1 and | J̃ j̄−1| ≤ t ′1. Therefore
| J̃ j̄ |& η̃

−(18+)E5+
| J̃ j̄−1|. Contradiction with (3-12) and (3-34).

This exhausts all cases. Thus we have proved Result 14 and so also Lemma 12. �

Remark 15. It seems likely that we can find a better upper bound for |K+| than (3-40) by exploiting
Lemma 11 in a better way. For instance we can consider k successive time intervals J̃ j+1, . . . , J̃ j+k ,
k > 1 and prove an estimate like

| J̃ j+1| + · · · | J̃ j+k | . | J̃ j |η̃
−4 E8/3g1/3(M). (3-45)

This estimate is stronger than (3-34). We can probably find a smaller B such that (3-44) holds with
η̃ substituted for something like kη̃ and, by modifying the argument above, find a contradiction with
(3-45). At the end of the process we can probably prove global existence of smooth solutions to (1-1)
for 0< c < c0, with c0 > 8/225 to be determined. We will not pursue these matters.

4. Proof of Lemma 7

Applying the Strichartz estimates and the Hölder inequality,

‖u‖L4
t L12

x (J×R3) . E1/2
+‖u4

‖L1
t L2

x (J×R3)‖ug1/6(u)‖L∞t L6
x (J×R3)‖g

5/6(u)‖L∞t L∞x (J×R3)

. E1/2
+ E1/6g5/6(M)‖u‖4L4

t L12
x (J×R3)

. (4-1)

Hence (3-2) by (3-1) and a continuity argument.
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5. Proof of Lemma 8

Let J ′ = [t ′1, t ′2] ⊂ J be such that ‖u‖L4
t L12

x (J ′×R3) = η. Then by (1-22) and (3-3)

‖ f (u)‖L1
t L2

x (J ′×R3) . ‖ug1/6(u)‖L∞t L6
x (J ′×R3)‖u‖

4
L4

t L12
x (J ′×R3)

‖g5/6(u)‖L∞t L∞x (J ′×R3)

. E1/6η4g5/6(M). E1/2.
(5-1)

It is slightly unfortunate that (2,∞) is not wave admissible. Therefore we consider the admissible pair
(2+ ε, 6(2+ε)/ε) with ε� 1. By the Strichartz estimates and (5-1), we have

‖u‖L2+ε
t L(6(2+ε))/εx (J ′×R3)

. ‖∇u(t ′1)‖L2(R3)+‖u(t
′

1)‖L2(R3)+‖ f (u)‖L1
t L2

x (J ′×R3) . E1/2. (5-2)

Let N be a frequency to be chosen later. By the Bernstein inequality and (1-7) we have

‖P<N u‖L4
t L12

x (J ′×R3) . N 1/4
|J ′|1/4‖u‖L∞t L6

x (J ′×R3) . N 1/4
|J ′|1/4 E1/6. (5-3)

Therefore
‖P<N u‖L4

t L12
x (J ′×R3) . |J

′
|
1/4 N 1/4 E1/6. (5-4)

Let c2� 1. Then if N = c4
2(η

4/(|J ′|E2/3)) we have

‖P≥N u‖L4
t L12

x (J ′×R3) & η and ‖u‖L4
t L12

x (J ′×R3) ∼ ‖P≥N u‖L4
t L12

x (J ′×R3). (5-5)

By (5-2) and (5-5) we have

η ∼ ‖P≥N u‖L4
t L12

x (J ′×R3)

. ‖P≥N u‖(2+ε)/4
L2+ε

t L(6(2+ε))/εx (J ′×R3)
‖P≥N u‖1−(2+ε)/4L∞t L6

x (J ′×R3)

. E (2+ε)/8‖P≥N u‖1−((2+ε)/4)L∞t L6
x (J ′×R3)

. (5-6)

Therefore we conclude that ‖P≥N‖L∞t L6
x (J ′×R3) & η

2+E−((1/2)+). Applying Proposition 2 we get (3-5).

6. Proof of Lemma 9

Bahouri and Gerard [1999, page 171] used arguments from Grillakis [1990; 1992] and Shatah–Struwe
[1993] to derive an a priori estimate of the solution u to the 3D quintic defocusing wave equation, that
is, ∂t t u−4u+ u5

= 0. More precisely they were able to prove∫
|x |≤b
|u(b, x)|6 dx .

a
b
(ẽ(a)+ ẽ1/3(a))+ ẽ(b)− ẽ(a)+ (ẽ(b)− ẽ(a))1/3, (6-1)

with

ẽ(t) :=
1
2

∫
|x |≤t

(∂t u)2 dx +
1
2

∫
|x |≤t
|∇u|2 dx +

1
6

∫
|x |≤t

u6 dx . (6-2)

Since we apply their ideas to the potential f we just sketch the proof. Given the cone 0+([a, b]) we
denote by ∂0+([a, b]) the mantle of the cone 0+([a, b]), that is,

∂0+([a, b]) :=
{
(t ′, x) ∈ [a, b]×R3, t = |x |

}
. (6-3)
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The local energy identity

e(b)− e(a)=
1

2
√

2

∫
∂0+([a,b])

∣∣∣∣ x∂t u
t
+∇u

∣∣∣∣2+ 1
√

2

∫
∂0+([a,b])

F(u) (6-4)

results from the integration of the identity ∂t u (∂t t u−4u+ f (u))= 0 on the cone 0+([a, b]). We have
[Shatah and Struwe 1998]

∂t

( t
2
(∂t u)2+

t
2
|∇u|2+ (x .∇u)∂t u+ t F(u)+ u∂t u

)
− div

(
t∇u∂t u+ (x .∇u)∇u−

|∇u|2x
2
+
(∂t u)2x

2
− x F(u)+ u∇u

)
+ u f (u)− 4F(u)= 0. (6-5)

Integrating this identity on 0+([a, b]), we have

X (b)− X (a)+ Y (a, b)=
∫
0+([a,b])

4F(u)− u f (u), (6-6)

with
X (t) :=

∫
|x |≤t

t
2
(∂t u)2+

t
2
|∇u|2+ (x .∇u)∂t u+ t F(u)+ u∂t u (6-7)

and
Y (a, b) :=

−
1
√

2

∫
∂0+([a,b])

(
t
2
(∂t u)2+

t
2
|∇u|2+ (x .∇u)∂t u+ t F(u)+ u∂t u+ t

∇u.x
|x |

∂t u+
|x .∇u|2

|x |

−
|∇u|2

2
|x | +

(∂t u)2|x |
2

− |x |F(u)+ u
∇u.x
|x |

)
. (6-8)

In fact we have [Shatah and Struwe 1993]

X (t)=
∫
|x |≤t

t
[1

2
(∂t u)2+

1
2

∣∣∣∇u+
ux
|x |2

∣∣∣2]+ ∂t u(x .∇u+ u)+ t F(u)−
∫
|x |=t

u2

2
. (6-9)

Since t = |x | on ∂0+([a, b]) we have

Y (a, b)=−
1
√

2

∫
∂0+([a,b])

|x |(∂t u)2+ 2(x .∇u)∂t u+ u∂t u+
(x .∇u)2

|x |
+ u
∇u.x
|x |

, (6-10)

and after some computations [Shatah and Struwe 1993], we get

Y (a, b)=−
1
√

2

∫
∂0+([a,b])

1
t
(t∂t u+ (∇u.x)+ u)2+

∫
|x |=b

u2

2
−

∫
|x |=a

u2

2
. (6-11)

Therefore, if

H(t) :=
∫
|x |≤t

t
[1

2
(∂t u)2+

1
2

∣∣∣∇u+
ux
|x |2

∣∣∣2]+ ∂t u(x .∇u+ u)+ t F(u), (6-12)

then

H(b)− H(a)=
1
√

2

∫
∂0+([a,b])

1
t
(t∂t u+∇u.x + u)2+

∫
0+([a,b])

4F(u)− u f (u). (6-13)
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We estimate H(t), following [Bahouri and Gérard 1999]. We have

|∂t u(x .∇u+ u)| ≤
t
2

(
(∂t u)2+

∣∣∣∇u+
ux
|x |2

∣∣∣2) . t
(
(∂t u)2+ |∇u|2+

u2

|x |2

)
. (6-14)

Therefore by (6-14), the Hölder inequality and (1-7), we have

H(t) . t
(

e(t)+
∫
|x |≤t

u2

|x |2

)
. t

(
e(t)+

( ∫
|x |≤t

u6
)1/3

)
. t

(
e(t)+ e1/3(t)

)
. (6-15)

Moreover by (6-4), the Hölder inequality and (1-7), we have

1
√

2

∫
∂0+([a,b])

1
t

(
t∂t u+∇u.x + u

)2
.

b

2
√

2

∫
∂0+([a,b])

(
∇u · x

t
+ ∂t u

)2
+

1

2
√

2

∫
∂0+([a,b])

u2

t2

. b
∫
∂0+([a,b])

∣∣∣ x
t
∂t u+∇u

∣∣∣2+ 1

2
√

2

( ∫
∂0+([a,b])

u6
)1/3

. b
(
(e(b)− e(a))+ (e(b)− e(a))1/3

)
. (6-16)

We get from (1-7)

4F(u)− u f (u)≤ 0. (6-17)

By (6-13), and (6-15)–(6-17), we have

∫
|x |≤b

F(u) .
H(b)

b
.

H(a)+ 1
√

2

∫
∂0+([a,b])

1
t
(t∂t u+∇u.x + u)2

b

.
a
b

(
e(a)+ e1/3(a)

)
+ e(b)− e(a)+ (e(b)− e(a))1/3 . (6-18)

7. Proof of Lemma 10

The proof relies upon two results that we prove in the subsections.

Result 16. Let u be a classical solution of (1-1). Assume that (1-28) holds. Let η be a positive number
such that (3-3) holds. If ‖u‖L4

t L12
x (0+(J ))

≥ η then

‖u‖L∞t L6
x (0+(J )) & η

2+E−((1/2)+). (7-1)

Result 17. Let u be a smooth solution to (1-1). Assume that (1-28) holds. Let η be a positive number
such that

η ≤min(1, E1/18). (7-2)

Let J = [t1, t2] be an interval such that [t1, t1(Eη−18)4Eη−18
] ⊂ J . Then there exists a subinterval

J ′ = [t ′1, t ′2] such that
∣∣t ′2/t ′1∣∣= Eη−18 and

‖u‖L∞t L6
x (0+(J ′)) . η. (7-3)
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Let C9 be the constant determined by & in (7-1). Let C10 be the constant determined by . in (7-3).
We get from (3-9):

[
t1, t1

(
E
(C9η

2+E−(1/2)+

2C10

)−18
)4E

(
C9η

2+E−(1/2)+
2C10

)−18]
⊂
[
t1, C2(E10+η−(36+))4C2 E10+η−(36+)

t1
]

⊂ J, (7-4)

if C2 � max (C9,C10). Therefore, since (C9η
2+E−(1/2+))/(2C10) satisfies (7-2) by (3-8), we can use

Result 17 and show that there exists a subinterval J ′ = [t ′1, t ′2] such that |t ′2/t
′

1| ∼ E10+η−(36+) and

‖u‖L∞t L6
x (0+(J ′)) ≤

C9η
2+E−(1/2+)C10

2C10
≤ C9

η2+E−(1/2+)

2
. (7-5)

Now we claim that ‖u‖L4
t L12

x (0+(J ′))
≤ η. If not by (3-8) and Result 16 we have

‖u‖L∞t L6
x (0+(J ′)) ≥ C9η

2+E−(1/2+). (7-6)

Contradiction with (7-5).

Proof of Result 16. We substitute J ′ for 0+(J ′) in (5-1) to get

‖ f (u)‖L1
t L2

x (0+(J ′))
. E1/2. (7-7)

By the Strichartz estimates (1-20) on the truncated cone 0+(J ′) we have

‖u‖L2+ε
t L(6(2+ε))/εx (0+(J ′))

. E1/2, (7-8)

after following similar steps to prove (5-2). Therefore

η = ‖u‖L4
t L12

x (0+(J ))
. ‖u‖(2+ε)/4

L2+ε
t L(6(2+ε))/εx (0+(J ′))

‖u‖1−((2+ε)/4)L∞t L6
x (0+(J ′))

. E (2+ε)/8‖u‖1−((2+ε)/4)L∞t L6
x (0+(J ′))

. (7-9)

Therefore (7-1) holds. �

Proof of Result 17. By (7-2) we have Eη−18
≥ 1. Let n be the largest integer such that 2n ≤ 4Eη−18.

This implies that n ≥ Eη−18. Let A := Eη−18. Now we consider the interval [t1, A2nt1] ⊂ J . We write
[t1, A2nt1] = [t1, A2t1] ∪ · · · ∪ [A2(n−1)t1, A2nt1]. We have

n∑
i=1

e(A2i t1)− e(A2(i−1)t1)≤ 2E, (7-10)

and by the pigeonhole principle there exists i0 ∈ [1, n] such that

e(A2i0 t1)− e(A2(i0−1)t1). η18. (7-11)

Now we choose a := A2(i0−1)t1 and b ∈ [A2i0−1t1, A2i0 t1]. Let t ′1 := A2(i0−1)t1, t ′2 := A2i0−1t1 and
J ′ := [t ′1, t ′2]. We apply (3-7) and (7-2) to get

‖u‖L∞t L6
x (0+([t

′

1, t ′2]))
. ‖F(u)‖L∞t L1

x (0+([t
′

1, t ′2]))
. (E−1η18(E + E1/3)+ η18

+ η6)1/6 . η. �
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Proof of Lemma 11

We have after computation of the derivative of e(t)

∂t e(t)≥
∫
|x |=t

F(u) d S, (7-12)

and integrating with respect of time∫
I

∫
|x |≤t

g(u)u6(t ′, x ′) d S dt ′ . E . (7-13)

By using the space and time translation invariance∫
J

∫
|x ′−x |=|t ′−t |

g(u)u6(t ′, x ′) d S dt ′ . E . (7-14)

Therefore (1-15), (1-22), (7-14) and the Hölder inequality give us∣∣∣∣−∫
J ′

sin (t−t ′)D
D

g(u)u5 dt ′
∣∣∣∣= ∣∣∣∣ 1

4π |t−t ′|

∫
|x ′−x |=|t ′−t |

g5/6(u)u5g1/6(u) d Sdt ′
∣∣∣∣

.
∫

J ′

1
|t−t ′|

( ∫
|x ′−x |=|t ′−t |

u6g(u)d S
)5/6( ∫

|x ′−x |=|t ′−t |
g(u) d S

)1/6
dt ′

. g1/6(M)
∫

J ′

1
|t − t ′|2/3

( ∫
|x ′−x |=|t ′−t |

u6g(u) d S
)5/6

dt ′

. g1/6(M)E5/6
( ∫

J ′

1
|t−t ′|4

)1/6
. g1/6(M)

E5/6

dist1/2(t, J ′)
. (7-15)

Notice that

u(t)= ul,ti (t)−
∫ t

ti

sin (t − t ′)D
D

u5(t ′)g(u(t ′)) dt ′, (7-16)

for i = 1, 2. We get (3-11) from (7-15) and (7-16).
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PERIODIC STOCHASTIC KORTEWEG–DE VRIES EQUATION
WITH ADDITIVE SPACE-TIME WHITE NOISE

TADAHIRO OH

We prove the local well-posedness of the periodic stochastic Korteweg–de Vries equation with the addi-
tive space-time white noise. To treat low regularity of the white noise in space, we consider the Cauchy
problem in the Besov-type space b̂s

p,∞(T) for s=− 1
2+, p= 2+ such that sp<−1. In establishing local

well-posedness, we use a variant of the Bourgain space adapted to b̂s
p,∞(T) and establish a nonlinear

estimate on the second iteration on the integral formulation. The deterministic part of the nonlinear
estimate also yields the local well-posedness of the deterministic KdV in M(T), the space of finite Borel
measures on T.

1. Introduction

In this paper, we prove the local well-posedness of the periodic stochastic Korteweg–de Vries (SKdV)
equation with additive space-time white noise:{

du+ (∂3
x u+ u∂x u)dt = dW,

u(x, 0)= u0(x),
(1)

where u is a real-valued function, (x, t) ∈ T×R+ with T= [0, 2π), and W (t)= ∂B/∂x is a cylindrical
Wiener process on L2(T). With en(x)= 1

√
2π

einx , we have W (t)= β0(t)e0+
∑

n 6=0
1
√

2
βn(t)en(x), where

{βn}n≥0 is a family of mutually independent complex-valued Brownian motions (here we take β0 to be
real-valued) in a fixed probability space (�,F, P) associated with a filtration {Ft }t≥0 and β−n(t)=βn(t)
for n ≥ 1. Note that Var(βn(1))= 2 for n ≥ 1.

De Bouard et al. [2004] considered{
du+ (∂3

x u+ u∂x u)dt = φdW,
u(x, 0)= u0(x),

(2)

where φ is a bounded linear operator in L2(T). They showed that (2) is locally well posed when φ is a
Hilbert–Schmidt operator from L2(T) to H s(T) for s >−1

2 . See the references in their paper for earlier
work in the periodic and nonperiodic settings.

In this work, we consider the case when φ is the identity operator on L2(T), that is, we take the
additive noise to be the space-time white noise ∂2 B/∂t ∂x , where B(x, t) is a two parameter Brownian
motion on T×R+. Note that φ is a Hilbert–Schmidt operator from L2(T) to H s(T) for s <− 1

2 but not
for s ≥− 1

2 .

MSC2000: 35Q53, 60H15.
Keywords: stochastic KdV, white noise, local well-posedness.
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Suppose that u is the solution to (1), or equivalently to (2) with φ= Id, the identity operator on L2(T).
Let v1(x, t)= u(x +α0t, t)−α0, where α0 is the mean of u0. Then, v1 satisfies (1) with the mean-zero
initial condition u0−α0. Now, let P0 be the projection onto the spatial frequency 0, and Pn 6=0= Id−P0.
Note that P0W (t) = β0(t)e0(x) = 1

√
2π
β0(t). By letting v2 = v1−

1
√

2π
β0(t), we see that u satisfies (1)

if and only if v2 satisfies{
dv2+

(
∂3

x v2+ (v2+
1
√

2π
β0(t))∂xv2

)
dt = Pn 6=0 dW,

v2(x, 0)= u0(x)−α0,

almost surely since β0(0)= 0 a.s. By setting v3(x, t)= v2(x+ cω(t), t) with cω(t)=
∫ t

0
1
√

2π
β0(t ′)dt ′, it

follows that v3 satisfies {
dv3+ (∂

3
x v3+ v3∂xv3)dt = dW̃ ,

v3(x, 0)= u0(x)−α0,

where
W̃ (x, t)=

∑
n 6=0

1
√

2
βn(t)en(x + cω(t))=

∑
n 6=0

1
√

2
βn(t)eincω(t)en(x);

that is, v3 solves (2), where

φ = diag(φn; n 6= 0) with φn(t)= eincω(t) and cω(t)=
∫ t

0
1
√

2π
β0(t ′)dt ′ (3)

(with respect to the basis {en}n∈Z). Moreover, v3 has spatial mean 0 (as long as it exists) since e0 does
not lie in the range of φ. Therefore, in the remainder of the paper, we concentrate on studying the local
well-posedness of (2) with φ given by (3) and the mean-zero initial condition u0 (which implies that u
has spatial mean 0 as long as it exists).

Recall that u is called a (local-in-time) mild solution to (2) if u satisfies

u(t)= S(t)u0−
1
2

∫ t

0
S(t − t ′)∂x u2(t ′)dt ′+

∫ t

0
S(t − t ′)φ(t ′)dW (t ′) (4)

at least for t ∈ [0, T ] for some T > 0, where S(t)= e−t∂3
x .

Note that the first two terms in (4) also appear in the deterministic KdV theory. Thus, we briefly
review recent well-posedness results of the periodic (deterministic) KdV.{

ut + uxxx + uux = 0,
u
∣∣
t=0 = u0,

(x, t) ∈ T×R. (5)

Bourgain [1993] introduced a new weighted space-time Sobolev space X s,b whose norm is given by

‖u‖X s,b(T×R) = ‖〈n〉
s
〈τ − n3

〉
bû(n, τ )‖L2

n,τ (Z×R), (6)

where 〈 · 〉 = 1+ | · |. He proved the local well-posedness of (5) in L2(T) via the fixed point argument,
immediately yielding the global well-posedness in L2(T) thanks to the conservation of the L2 norm.
Kenig et al. [1996] improved Bourgain’s result and established the local well-posedness in H−

1
2 (T) by

establishing the bilinear estimate

‖∂x(uv)‖X s,− 1
2
. ‖u‖

X s, 1
2
‖v‖

X s, 1
2

(7)
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for s≥− 1
2 under the mean-zero assumption on u and v. Colliander et al. [2003] proved the corresponding

global well-posedness result via the I -method.
There are also results on (5) which exploit its complete integrability. Bourgain [1997] proved the

global well-posedness of (5) in the class M(T) of measures µ, assuming that its total variation ‖µ‖ is
sufficiently small. His proof is based on the trilinear estimate on the second iteration of the integral
formulation of (5), assuming an a priori uniform bound on the Fourier coefficients of the solution u of
the form

sup
n∈Z

|û(n, t)|< C for all t ∈ R. (8)

He then established (8) using complete integrability. More recently, Kappeler and Topalov [2006] proved
the global well-posedness of the KdV in H−1(T) via the inverse spectral method.

There are also results on the necessary conditions on the regularity with respect to smoothness or
uniform continuity of the solution map : u0 ∈ H s(T)→ u(t) ∈ H s(T). Bourgain [1997] showed that if
the solution map is C3, then s ≥ −1

2 . Christ et al. [2003] proved that if the solution map is uniformly
continuous, then s≥−1

2 . (See also [Kenig et al. 2001].) These results, in particular, imply that we cannot
hope to have a local-in-time solution of KdV via the fixed point argument in H s , s < − 1

2 . Recall that,
for each fixed t , the space-time white noise ∂2 B/∂t ∂x lies in

⋂
s<−1/2 H s

\ H−
1
2 almost surely. Hence,

these results for KdV cannot be applied to study the local well-posedness of (1).
Now, let us discuss the spaces which capture the regularities of the spatial and space-time white noise.

Recently, we proved the invariance of the (spatial) white noise for the (deterministic) KdV in [Oh 2009a]
(also see [Oh 2009b]) by first establishing the local well-posedness in an appropriate Banach space
containing the support of the (spatial) white noise. Define the Besov-type space via the norm

‖ f ‖b̂s
p,∞
:= ‖ f̂ ‖bs

p,∞
= sup

j

∥∥〈n〉s f̂ (n)
∥∥

L p
|n|∼2 j
= sup

j

( ∑
|n|∼2 j

〈n〉sp
| f̂ (n)|p

)1/p

. (9)

In [Oh 2009a], using the theory of abstract Wiener spaces, we showed that b̂s
p,∞ contains the full support

of the (spatial) white noise for sp <−1. (The statement also holds true for sp =−1.)
Let’s consider the stochastic convolution 8(t) given by

8(t)=
∫ t

0
S(t − t ′)φ(t ′)dW (t ′), (10)

where φ is given by (3). Define a variant of the X s,b space adjusted to b̂s
p,∞(T). Let X s,b

p,q be the
completion of the Schwartz class S(T×R) under the norm

‖u‖X s,b
p,q
=
∥∥〈n〉s〈τ − n3

〉
bû(n, τ )

∥∥
b0

p,∞Lq
τ
. (11)

Note that X s,b
p,q defined in (11) is the space of functions u such that S(−t)u( · , t) ∈ (b̂s

p,∞)x(FLb,q)t ,
where FLb,q is defined via the norm

‖ f ‖FLb,q := ‖〈τ 〉b f̂ (τ )‖Lq . (12)

In the same paper we also showed that the local-in-time white noise is supported on FLc,q for cq <−1.
This implies that the Brownian motion belongs locally in time to FLb,q for (b−1)q <−1. Hence, with
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b< 1
2 and q = 2, we see that the local-in-time stochastic convolution η(t)8(t) lies in X s,b

p,q almost surely,
with sp<−1, b< 1

2 and q=2, where η(t) is a smooth cutoff supported on [−1, 2]with η(t)≡1 on [0, 1].
The argument in [De Bouard et al. 2004] is based on the result by Roynette [1993] on the endpoint

regularity of the Brownian motion, which states that the Brownian motion β(t) belongs to the Besov
space B1/2

p,q if and only if q =∞ (with 1 ≤ p <∞). The authors then proved a variant of the bilinear
estimate (7) by Kenig, Ponce and Vega, adjusted to their Besov space setting, establishing the local well-
posedness via the fixed point theorem. The use of a variant of the bilinear estimate (7) required a slight
regularization of the noise in space via φ so that the smoothed noise has the spatial regularity s > −1

2 .
Thus, they could not treat the space-time white noise, that is, φ = Id.

Our result is based on two observations. First, our l p
n -based function spaces b̂s

p,∞ in (9) and X s,b
p,q in

(11) capture the regularity of the spatial and space-time white noise for sp <−1, b < 1
2 and q = 2. The

second is that we can indeed carry out the argument in [Bourgain 1997], a nonlinear estimate on the
second iteration, without assuming the a priori bound (8), if we take the initial data u0 ∈ b̂s

p,∞ for s>− 1
2

with p > 2. Then, we construct a solution u as a strong limit of the smooth solutions uN (with smooth
uN

0 and φN ) of (2). Note that our nonlinear estimate on the second iteration in Section 5 depends on the
stochastic term, whereas the bilinear estimate in [De Bouard et al. 2004] is entirely deterministic.

Finally, we present our main results.

Theorem 1. Let φ be as in (3) and p = 2+. Let s =− 1
2 + δ with (p− 2)/(4p) < δ < (p− 2)/(2p), so

sp < −1. Also, let u0 be F0-measurable such that it has mean 0 and belongs to b̂s
p,∞(T) almost surely.

Then, there exists a stopping time Tω > 0 and a unique process u ∈C
(
[0, Tω]; b̂s

p,∞(T)
)

satisfying (2) on
[0, Tω] almost surely.

As a corollary, we obtain:

Theorem 2. The stochastic KdV (1) with the additive space-time white noise is locally well posed almost
surely (with the prescribed mean on u0).

Remark 1.1. Our argument provides an answer to the question posed in [Bourgain 1997, remark on
p. 120], at least in the local-in-time setting. The deterministic part of the nonlinear estimate in Section 5
can be used to establish the local well-posedness of (5) for a finite Borel measure u0 = µ ∈ M(T) with
‖µ‖ <∞ without the complete integrability or the smallness assumption on µ. Note that µ ∈ b̂s

p,∞ for
sp ≤ −1 since supn |µ̂(n)| < ‖µ‖ <∞. Hence, it can be used to study the Cauchy problem on M(T)
for nonintegrable KdV-variants. Also, see [Oh 2009b].

Remark 1.2. Let FLs,p(T) be the space of functions on T defined via the norm ‖ f ‖FLs,p=‖〈n〉s f̂ (n)‖L p
n
.

Recall from [Oh 2009a] that FLs,p(T) contains the support of the (spatial) white noise when sp <−1.
Then, Theorems 1 and 2 can also be established in FLs,p(T) for s =−1

2+, p = 2+ with sp <−1. The
modification is straightforward once we note that ‖ f ‖FLs−ε,p . ‖ f ‖b̂s

p,∞
for any ε > 0, and thus we omit

the details.

This paper is organized as follows: In Section 2, we introduce some notations. In Section 3, we intro-
duce function spaces along with their embeddings and state deterministic linear estimates from [Bourgain
1993] and [Oh 2009a]. In Section 4, we study some basic properties of the stochastic convolution. In
Section 5, we prove Theorem 1 by establishing the nonlinear estimate on the second iteration of the
integral formulation (4).
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2. Notation

In the periodic setting on T, the spatial Fourier domain is Z. Let dn be the normalized counting measure
on Z. We say that f ∈ L p(Z), where 1≤ p <∞, if

‖ f ‖L p(Z) =

(∫
Z

| f (n)|pdn
)1/p

:=

(
1

2π

∑
n∈Z

| f (n)|p
)1/p

<∞.

If p = ∞, we have the obvious definition involving the supremum. We often drop 2π for simplicity.
If a function depends on both x and t , we use ∧x (and ∧t ) to denote the spatial (and temporal) Fourier
transform, respectively. However, when there is no confusion, we simply use ∧ to denote the spatial
Fourier transform, the temporal Fourier transform, and the space-time Fourier transform, depending on
the context.

For a Banach space X ⊂ S′(T×R), we use X̂ to denote the space of the Fourier transforms of the
functions in X , which is a Banach space with the norm ‖ f ‖X̂ = ‖F

−1
n,τ f ‖X , where F−1 denotes the

inverse Fourier transform (in n and τ ). Also, for a space Y of functions on Z, we use Ŷ to denote the
space of the inverse Fourier transforms of the functions in Y with the norm ‖ f ‖Ŷ =‖F f ‖Y . Now, define
b̂s

p,q(T) by the norm

‖ f ‖b̂s
p,q (T)
= ‖ f̂ ‖bs

p,q (Z) :=
∥∥‖〈n〉s f̂ (n)‖L p

|n|∼2 j

∥∥
lq

j
=

( ∞∑
j=0

( ∑
|n|∼2 j

〈n〉sp
| f̂ (n)|p

)q/p )1/q

(13)

for q <∞ and by (9) when q =∞.
Throughout the paper, η(t) denotes a smooth cutoff supported on [−1, 2] with η(t)≡ 1 on [0, 1], and

let ηT (t)= η(T
−1t). We use c, C to denote various constants, usually depending only on s, p, and δ. If

a constant depends on other quantities, we make it explicit. We use A . B to denote an estimate of the
form A ≤ C B. Similarly, we use A ∼ B to denote A . B and B . A and use A� B when there is no
general constant C such that B ≤ C A. We also use a+ and a− to denote a+ ε and a− ε, respectively,
for arbitrarily small ε� 1.

3. Function spaces and basic embeddings

Let X s,b denote the usual periodic Bourgain space defined in (6). We often use the shorthand notation
‖ · ‖s,b to denote the X s,b norm. Now, define X s,b

p,q , the Bourgain space adapted to b̂s
p,∞, to be the

completion of the Schwartz functions on T×R with respect to the norm given by

‖u‖X s,b
p,q
=
∥∥〈n〉s〈τ − n3

〉
bû(n, τ )

∥∥
b0

p,∞Lq
τ
= sup

j

∥∥〈n〉s〈τ − n3
〉

bû(n, τ )
∥∥

L p
|n|∼2 j Lq

τ
. (14)

In the following, we take p = 2+ and s = −1
2+ = −

1
2 + δ with δ < (p−2)/2p (and δ > (p−2)/4p)

such that sp <−1. Lastly, given T > 0, we define X s,b,T
p,q as a restriction of X s,b

p,q on [0, T ] by

‖u‖X s,b,T
p,q
= ‖u‖X s,b

p,q [0,T ]
= inf

{
‖ũ‖X s,b

p,q
: ũ|[0,T ] = u

}
.

We define the local-in-time versions of the other function spaces analogously.
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Now, we discuss the basic embeddings. For p ≥ 2, we have ‖an‖L p
n
≤ ‖an‖L2

n
. Thus, we have

‖ f ‖b̂s
p,∞
≤ ‖ f ‖H s , and thus

‖u‖X s,b
p,2
≤ ‖u‖X s,b . (15)

By the Hölder inequality, we have

‖ f ‖
H−

1
2−δ
=

(∑
j

(2 j )0−‖〈n〉−
1
2−δ+ f̂ (n)‖2

|n|∼2 j

)1/2

≤ sup
j
‖〈n〉−2δ+

‖L2p/p−2‖〈n〉−
1
2+δ f̂ (n)‖L p

n
≤ ‖ f ‖b̂s

p,∞

(16)

for s =− 1
2 + δ with δ > (p−2)/4p. Hence, for s =− 1

2 + δ with δ > (p−2)/4p, we have

‖u‖
X−

1
2−δ,b
. ‖u‖X s,b

p,2
. (17)

Now, we briefly go over the linear estimates. Let S(t) = e−t∂3
x and T ≤ 1 in the following. We first

present the homogeneous and nonhomogeneous linear estimates. See [Bourgain 1993; Kenig et al. 1993;
Oh 2009a] for details of the proofs.

Lemma 3.1. For any s ∈ R and b < 1
2 , we have ‖S(t)u0‖X s,b,T

p,2
. T (1/2)−b

‖u0‖b̂s
p,∞

.

Lemma 3.2. For any s ∈ R and b ≤ 1
2 , we have∥∥∥∥∫ t

0
S(t − t ′)F(x, t ′)dt ′

∥∥∥∥
X s,b,T

p,2

. ‖F‖X s,b−1
p,2
+‖F‖X s,−1

p,1
.

Also, we have
∥∥∫ t

0 S(t − t ′)F(x, t ′)dt ′
∥∥

X s,b,T
p,2
. ‖F‖X s,b−1

p,2
for b > 1

2 .

The next lemma is the periodic L4 Strichartz estimate due to Bourgain [1993].

Lemma 3.3. Let u be a function on T×R. Then, we have ‖u‖L4
x,t
. ‖u‖

X0, 1
3
.

Lastly, recall that by restricting the Bourgain spaces onto a small time interval [0, T ], we can gain a
small power of T . See [Colliander and Oh 2009] for the proof.

Lemma 3.4. For 0≤ b′ < b ≤ 1
2 , we have

‖u‖X s,b′,T = ‖ηT u‖X s,b′,T . T b−b′−
‖u‖X s,b .

4. Stochastic convolution

In this section, we study basic properties of the stochastic convolution8(t) defined in (10). In particular,
we prove that η8 belongs to X s,b,T

p,2 and is continuous from [0, T ] into b̂s
p,∞ for T ≤ 1 almost surely for

sp<−1 and (b−1) ·2<−1, where η(t) is a smooth cutoff supported on [−1, 2] with η(t)≡ 1 on [0, 1].
Before stating the main results, we point out the following. Let φ be the identity operator on L2(T)

or be as in (3). Then, we know that such φ is Hilbert–Schmidt from L2(T) into H s(T) if and only if
s <− 1

2 . In other words, with a slight abuse of notation, define

φ :=
∑
n∈Z

φen =
∑
n∈Z

φnen (18)
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in view of φ = diag(φn; n 6= 0). Then, we have φ ∈ H s(T) if and only if s < −1
2 . Moreover, we have

‖φ‖H S(L2;H s) = ‖φ‖H s , where ‖ · ‖H S(L2;H s) denotes the Hilbert–Schmidt norm from L2(T) to H s(T).
For such φ, we also have φ ∈ b̂s

p,∞(T) if and only if sp ≤ −1, and we can use ‖φ‖b̂s
p,∞

to discuss the
regularity of φ in place of the Hilbert–Schmidt norm. This is one of the reasons for using this space.
(We need only sp <−1 for our purpose since the nonlinear estimate in Section 5 holds for s =−1

2 and
p = 2+ with sp <−1.)

Proposition 4.1. Let 0<T ≤1 and p=2+. Let s=− 1
2+δ and b= 1

2−δ, with (p−2)/4p<δ<(p−2)/2p
such that sp <−1 and (b−1) ·2<−1. Then, for the stochastic convolution 8(t) defined in (10) with φ
as in (3), we have

E
[
‖η8‖X s,b,T

p,2

]
≤ C(η, s, p) <∞. (19)

In particular, 8 ∈ X
−

1
2+δ,

1
2−δ,T

p,2 almost surely.

Before going into the proof of Proposition 4.1, recall the following. Let β1 and β2 be independent real-
valued Brownian motions on (�,F, P), and f1(t, ω) and f2(t, ω) be real-valued stochastic processes
independent of β1 and β2. Then, we can regard β j and f j as β j (t, ω)=β j (t, ω1) and f j (t, ω)= f j (t, ω2),
where ω= (ω1, ω2) ∈�1×�2 =�. Thus, in taking an expectation, we can first integrate over ω1 ∈�1.
Then, for m ∈ N, we have

E

[∣∣∣∣∫ b

a
f1(t)dβ1(t)+

∫ b

a
f2(t)dβ2(t)

∣∣∣∣2m]
= E

[ 2m∑
k=0

(
2m
k

)(∫ b

a
f1(t)dβ1(t)

)k(∫ b

a
f2(t)dβ2(t)

)2m−k]

= E�2

[ m∑
n=0

(
2m
2n

)
(2n)!
2nn!
‖ f1( · , ω2)‖

2n
L2(a,b)

(2(m− n))!
2m−n(m− n)!

‖ f2( · , ω2)‖
2(m−n)
L2(a,b)

]
. (20)

In the computation above, we used the fact that, for each fixed ω2,
∫ b

a f j (t, ω2)dβ j (t, ω1) is a Gaussian
random variable on �1 with variance ‖ f j ( · , ω2)‖

2
L2(a,b).

Proof. By the Hölder inequality, we have∥∥〈τ − n3
〉
(1/2)−δû(n, τ )

∥∥
L2
τ
≤ ‖〈τ − n3

〉
−2δ
‖L2p/p−2

τ

∥∥〈τ − n3
〉
(1/2)+δû(n, τ )

∥∥
L p
τ
,

that is, we have ‖η8‖X s,1/2−δ
p,2

. ‖η8‖X s,1/2+δ
p,p

as long as δ > (p−2)/4p. Thus, we will work in X s,1/2+δ
p,p

in the following.
Define g(t) = η(t)

∫ t
0 S(−r)φ(r)dW (r) such that η(t)8( · , t) = S(t)g( · , t). Assume that each βn is

extended to a Brownian motion on R in such a way that the family {βn}n≥0 is still independent. Note
that for t ∈ [0, T ], we have

ĝ(n, t)= η(t)
∫ t

0
η(r)e−irn3

φn(r)χ[0,T ](r) 1
√

2
dβn(r). (21)

We have inserted η(r) and χ[0,T ](r) in the integrand since η(r)χ[0,T ](r) ≡ 1 for r ∈ [0, t] ⊂ [0, T ]. For
notational simplicity, we use φn(r) to denote φn(r)χ[0,T ](r) in the following, that is, we assume that φn

is supported on [0, T ]. By (3), we have |φn(r)| ≤ 1 for r ∈ R.
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Now, we write the left-hand side of (19) as

E
[
‖η8‖

X
s, 1

2+δ,T
p,p

]
. E

[
sup

j
2 js
( ∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

|ĝ(n, τ )|pdτ
)1/p]

+ E

[
sup

j
2 js
( ∑
|n|∼2 j

∫
|τ |≤2
|ĝ(n, τ )|pdτ

)1/p]
. (22)

Part 1. First, we estimate the second term in (22). Let

Gn(r, τ )= η(r)e−irn3
φn(r)

∫
∞

r
η(t)e−i tτdt. (23)

Also write βn = β
(r)
n + iβ(i)n where β(r)n = Re βn and β(i)n = Im βn . Then, by the stochastic Fubini

Theorem, we have, for m ∈ N,

E
[
|ĝ(n, τ )|2m]

= E

[ ∣∣∣∣∫
R

η(t)e−i tτ
∫ t

−∞

η(r)e−irn3
φn(r) 1

√
2
dβn(r)dt

∣∣∣∣2m]
= 2−mE

[ ∣∣∣∣∫ 2

−1
Gn(r, τ )dβn(r)

∣∣∣2m
]

. E

[ ∣∣∣∣∫ 2

−1
Re Gn(r, τ )dβ(r)n (r)−

∫ 2

−1
Im Gn(r, τ )dβ(i)n (r)

∣∣∣∣2m]
+E

[ ∣∣∣∣∫ 2

−1
Im Gn(r, τ )dβ(r)n (r)+

∫ 2

−1
Re Gn(r, τ )dβ(i)n (r)

∣∣∣∣2m]
. (24)

Note that |Re Gn(r, τ )|, |Im Gn(r, τ )| ≤ |Gn(r, τ )| ≤ ‖η‖L1 |φn(r)|. ‖η‖L1χ[0,T ](r). Thus, we have∥∥Re Gn(r, τ )
∥∥2k

L2
r

∥∥Im Gn(r, τ )
∥∥2(m−k)

L2
r

. ‖η‖2m
L1

for k = 0, . . . ,m. Then, by (20) along with the independence of φn , β(r)n , and β(i)n , we have

‖ĝ(n, τ )‖L2m(�) ≤ C = C(η,m)

independent of n and τ . Hence, for p ∈ (2, 4), we have(
E
[
|ĝ(n, τ )|p

])1/p
≤ ‖ĝ(n, τ )‖θL2(�)

‖ĝ(n, τ )‖1−θL4(�)
. 1 (25)

by interpolation, where θ ∈ (0, 1) such that 1
p
=
θ
2
+

1−θ
4

. Then, the second term in (22) is estimated by

(22)≤
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∫
|τ |≤2

E
[
|ĝ(n, τ )|p

]
dτ
)1/p

.

( ∞∑
j=0

2 jsp
∑
|n|∼2 j

1
)1/p

∼

( ∞∑
j=0

2(sp+1) j
)1/p

≤ C <∞, (26)

since sp <−1.
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Part 2. Next, we estimate the first term in (22). Let{
G(1)

n (r, τ )= η(r)e−irn3
φn(r)

∫
∞

r η′(t)(e−i tτ/ iτ)dt,

G(2)
n (r, τ )= η2(r)e−irn3

φn(r)(e−irτ/ iτ).
(27)

Then, by the stochastic Fubini theorem and integration by parts, we have

√
2ĝ(n, τ )=

∫ 2

−1
Gn(r, τ )dβn(r)=

∫ 2

−1
G(1)

n (r, τ )dβn(r)+
∫ 2

−1
G(2)

n (r, τ )dβn(r)

=: I (1)n (τ )+ I (2)n (τ ).

(28)

Thus |ĝ(n, τ )|p .
∣∣I (1)n (τ )

∣∣p
+
∣∣I (2)n (τ )

∣∣p.
First, we estimate the contribution from G(1)

n . For |τ | ∼ 2k , we have∣∣∣∣∫ ∞
r

η′(t)
e−i tτ

iτ
dt
∣∣∣∣≤ |τ−2η′(r)| +

∣∣∣∣∫ ∞
r

η′′(t)
e−i tτ

τ 2 dt
∣∣∣∣≤ Cη2−2k (29)

by partial integration. Thus, we have |G(1)
n (r, τ )| . 2−2k . Then, repeating a similar computation as in

Part 1, we obtain (
E
[
|I (1)n (τ )|p

])1/p
≤ ‖I (1)n (τ )‖θL2(�)

‖I (1)n (τ )‖1−θL4(�)
. 2−2k, (30)

by (20) and interpolation. Hence, the contribution to (22) is estimated by

(22)≤
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

E
[
|I (1)n (τ )|p

]
dτ
)1/p

.

( ∞∑
j=0

2 j (sp+1)
∞∑

k=1

2k(−(3p/2)+δp+1)
)1/p

≤ C <∞, (31)

since sp <−1 and − 3
2 p+ δp+ 1< 0.

Now, we consider the contribution from I (2)n (τ ). With βn = β
(r)
n + iβ(i)n , we have |I (2)n (τ )|2 .∣∣∫ 2

−1 G(2)
n (r, τ )dβ(r)n (r)

∣∣2 + ∣∣∫ 2
−1 G(2)

n (r, τ )dβ(i)n (r)
∣∣2. We only estimate the first term since the second

term is estimated in the same way. By the Ito formula (see [De Bouard et al. 2004]), we have∣∣∣∣∫ 2

−1
G(2)

n (r, τ )dβ(r)n (r)
∣∣∣∣2 = ∫ 2

−1
η4(t)
|φn(t)|2

τ 2 dt + 2 Re
∫ 2

−1

∫ t

−∞

G(2)
n (r, τ )dβ(r)n (r)G(2)

n (t, τ )dβ(r)n (t)

=: I ′n(τ )+ I ′′n (τ ).

The contribution from I ′n(τ ) is at most

(22).
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

|τ |−pdτ
(∫ 2

−1
η4(t)dt

)p/2 )1/p

. ‖η‖2L4

( ∞∑
j=0

2 j (sp+1)
∞∑

k=1

2k(− p
2+δp+1)

)1/p

≤ C <∞, (32)

since sp <−1 and δ < (p−2)/2p.
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We finally estimate the contribution from I ′′n (τ ). Write

I ′′n (τ )=
∫ 2

−1
Hn(t)dβ(r)n (t),

where Hn(t)=
∫ t
−∞

H̃n(r, t)dβ(r)n (r) with

H̃n(r, t)= 2τ−2 Re
(
η2(r)η2(t)ei(t−r)n3

φn(r)φn(t)ei(t−r)τ ). (33)

Then, by the Ito isometry and |φn(w, t)| ≤ 1 for all (ω, t) ∈�×R, we have

E
[
|I ′′n (τ )|

2]
= E

[(∫ 2

−1
Hn(t)dβ(r)n (t)

)2]
∼

∫ 2

−1
E
[
H 2

n (t)
]
dt

=

∫ 2

−1
E

[(∫ t

−∞

H̃n(r, t)dβ(r)n (r)
)2]

dt =
∫ 2

−1

∫ t

−1
E
[
|H̃n(r, t)|2

]
drdt

. τ−4
∫ 2

−1

∫ t

−1
η4(r)η4(t)drdt . τ−4. (34)

Hence, the contribution from I ′′n (τ ) is at most

(22).
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

E
[
|I ′′n (τ )|

p/2]dτ)1/p

.

( ∞∑
j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

(
E
[
|I ′′n (τ )|

2])p/4dτ
)1/p

.

( ∞∑
j=0

2 j (sp+1)
∞∑

k=1

2k(− p
2+δp+1)

)1/p

≤ C <∞, (35)

for p ≤ 4, sp <−1, and δ < (p−2)/2p. �

We state a corollary to the proof of Proposition 4.1 for a general diagonal covariance operator φ(t, ω)=
diag(φn(t, ω); n ∈ Z), which is independent of {βn}n≥1.

Corollary 4.2. Let 0 < T ≤ 1, p = 2+, and s, s ′ ∈ R with s < s ′. Moreover, let b = 1
2 − δ with

(p−2)/4p < δ < (p−2)/2p, so (b− 1) · 2 < −1. Then, for the stochastic convolution 8(t) defined in
(10) with φ ∈ L p([0, T ]×�; b̂s′

p,∞), independent of {βn}n≥1, we have

E
[
‖η8‖X s,b,T

p,2

]
≤ C(η, s, s ′, p)‖φ‖L p([0,T ]×�;b̂s′

p,∞)
. (36)

In particular, 8 ∈ X
s, 1

2−δ,T
p,2 almost surely.

Proof. In the proof of Proposition 4.1, we used |φn(t)| ≤ 1 whenever φn(t) appeared. Now, we briefly
go through that proof, keeping track of φn(t). Since φ is independent of {βn}n≥1, we regard βn and φn

as βn(t, ω)= βn(t, ω1) and φn(t, ω)= φn(t, ω2), where ω = (ω1, ω2) ∈�1×�2 =�.



PERIODIC STOCHASTIC KORTEWEG–DE VRIES EQUATION WITH SPACE-TIME WHITE NOISE 291

In (25), we have E
[
|ĝ(n, τ )|p

]
. E�2‖φn(·, ω2)‖

p
L2[0,T ]. Then, in (26), we have

(22)≤
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∫
|τ |≤2

E�2‖φn(·, ω2)‖
p
L2[0,T ]dτ

)1/p

≤

( ∞∑
j=0

2 j (s−s′)p2 js′ p
∑
|n|∼2 j

‖φn(·, ω2)‖
p
L p([0,T ]×�2)

)1/p

. ‖φ‖L p([0,T ]×�;b̂s′
p,∞)
,

since s−s ′< 0. A similar modification in (30) and (31) (alternatively, (32)) takes care of the contribution
from I (1)n (τ ) (alternatively, I ′n(τ )). Now, as for I ′′n (τ ), we first integrate only over �1 in (34) and obtain

E�1

[
|I ′′n (τ )|

2]. τ−4
∫ 2

−1

∫ t

−1
η4(r)η4(t)|φn(r)|2|φn(t)|2drdt . τ−4

‖φn‖
4
L2[0,T ].

Then, in (35), we have

E
[
|I ′′n (τ )|

p/2]
= E�2

[
‖I ′′n (τ )‖

p/2
L p/2(�1)

]
≤ E�2

[
‖I ′′n (τ )‖

p/2
L2(�1)

]
. τ−p E�2‖φn( · , ω2)‖

p
L2[0,T ]

for p ∈ [2, 4]. The rest follows as before. �

Now, we discuss the continuity of the stochastic convolution. In the remaining of this section, we
show that the stochastic convolution 8(t) defined in (10) belongs to C

(
[0, T ]; b̂s

p,∞(T)
)

almost surely.
With βn = β

(r)
n + iβ(i)n , we have

8(t)=
1
√

2

∑
n 6=0

∫ t

0
S(t − r)φn(r)endβ(r)n (r)+ i

1
√

2

∑
n 6=0

∫ t

0
S(t − r)φn(r)endβ(i)n (r), (37)

since φe0= 0 and φen =φnen , n 6= 0. In the following, we only show the continuity of the first stochastic
convolution in (37), which we denote by 8(r)(t). Also, let W (r)(t)= 1

√
2

∑
n β

(r)
n (t)en . As in [Da Prato

2004], we use the factorization method based on the elementary identity∫ t

r
(t − t ′)α−1(t ′− r)−αdt ′ =

π

sinπα
(38)

with α ∈ (0, 1) for 0≤ r ≤ t ′ ≤ t . Using (38), we can write the first term in (37) as

8(r)(t)=
sinπα
π

∫ t

0
S(t − t ′)(t − t ′)α−1Y (t ′)dt ′, (39)

where

Y (t ′)=
∫ t ′

0
S(t ′− r)(t ′− r)−αφ(r)dW (r)(r). (40)

First, we present a lemma that provides a criterion for the continuity of (39) in terms of the L2m-
integrability of Y (t ′).

Lemma 4.3 [Da Prato 2004, Lemma 2.7]. Let T >0, α∈(0, 1), and m> 1
2α

. For f∈ L2m
(
[0,T];b̂s

p,∞(T)
)
,

let

F(t)=
∫ t

0
S(t − t ′)(t − t ′)α−1 f (t ′)dt ′, 0≤ t ≤ T .
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Then, F ∈ C
(
[0, T ]; b̂s

p,∞(T)
)
. Moreover, there exists C = C(m, T ) such that

‖F(t)‖b̂s
p,∞
≤ C‖ f ‖L2m([0,T ];b̂s

p,∞)
, 0≤ t ≤ T .

Remark 4.4. Although Da Prato states his Lemma 2.7 for a Hilbert space H , his proof makes no use of
the Hilbert space structure of H . Thus the same result holds for b̂s

p,∞(T) as well.

In view of Lemma 4.3, it suffices to show that Y (t ′) ∈ L2m
(
[0, T ]; b̂s

p,∞(T)
)

a.s.

Proposition 4.5. Let T > 0, m ≥ 2, s =− 1
2+, and p = 2+ such that sp <−1. Let φ be as in (3). Then,

the stochastic convolution 8(r)(t) is continuous from [0, T ] into b̂s
p,∞ almost surely. Moreover, there

exists
E
(

sup
t∈[0,T ]

‖8(r)(t)‖2m
b̂s

p,∞

)
≤ C(m, T, s, p) <∞.

Proof. Let α ∈
( 1

2m ,
1
2

)
and Y as in (40). First, note that Y is real-valued since φ−n(s)e−n = φn(s)en

and β(r)−n = β
(r)
n . Note that {β(r)n }n 6=0 and φ are independent since φ depends only on β0. Thus, we can

regard β(r)n and φ as β(r)n (ω)= β
(r)
n (ω1) and φ(ω)= φ(ω2), where ω = (ω1, ω2) ∈�1×�2 =�. Then,

for each fixed ω2 and t ′ ∈ [0, t], Ŷ (t ′)(n) is a Gaussian random variable on �1 with Var�1

(
Ŷ (t ′)(n)

)
=

E�1

[
|Ŷ (t ′)(n)|2

]
.

Let Gn(r, ω2) = (t ′ − r)−αei(t ′−r)n3
φn(r, ω2). Note that |Gn(r, ω2)| = (t ′ − r)−α for 0 < r < t ′ and

n 6= 0. By the Ito isometry, we have

E�1

[
|Ŷ (t ′)(n)|2

]
=

1
2 E�1

[ ∣∣∣∣∫ t ′

0
Gn(r, ω2)dβ(r, ω1)

∣∣∣∣2]= 1
2

∫ t ′

0
|Gn(r, ω2)|

2dr ∼
∫ t ′

0
(t ′− r)−2αdr.

By the Minkowski integral inequality (with p = 2+< 2m) after replacing sup j by
∑

j , we have

E�1

(
‖Y (t ′, · , ω2)‖

2m
b̂s

p,∞

)
= E�1

[(
sup

j

∑
|n|∼2 j

〈n〉sp
|Ŷ (t ′)(n)|p

)2m/p]

.

( ∞∑
j=0

∑
|n|∼2 j

2 jsp
(

E�1

[
|Ŷ (t ′)(n)|2m])p/2m)2m/p

∼

( ∞∑
j=0

2 j (sp+1))2m/p
(∫ t ′

0
(t ′− r)−2αdr

)m

.

(
(t ′)1−2α

1− 2α

)m

,

since sp <−1. Therefore∫ T

0
E
(
‖Y (t ′)‖2m

b̂s
p,∞

)
dt ′ =

∫ T

0
E�2E�1

(
‖Y (t ′)‖2m

b̂s
p,∞

)
dt ′

.
∫ T

0

(
(t ′)1−2α

1− 2α

)m

dt ′ . T (1−2α)m+1 < C(m, T, s, p) <∞.

In particular, it follows that Y ( · , ω) ∈ L2m
(
[0, T ]; b̂s

p,∞
)

almost surely. Then, the desired result follows
from Lemma 4.3. �
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5. Nonlinear estimate on the second iteration

Now, we present the crucial nonlinear analysis. First, we briefly go over Bourgain’s argument [1997].
By writing the integral equation, the deterministic KdV (5) is equivalent to

u(t)= S(t)u0−
1
2 N(u, u)(t), (41)

where N( · , · ) is given by

N(u1, u2)(t) :=
∫ t

0
S(t − t ′)∂x(u1u2)(t ′)dt ′. (42)

In the following, we assume that the initial condition u0 has mean 0, which implies that u(t) has
spatial mean 0 for each t ∈ R. We use (n, τ ), (n1, τ1), and (n2, τ2) to denote the Fourier variables for
uu, the first factor, and the second factor u of uu in N(u, u), respectively, thus we have n = n1+n2 and
τ = τ1+ τ2. By the mean-zero assumption on u and since we have ∂x(uu) in the definition of N(u, u),
we assume n, n1, n2 6= 0. We also use the following notation:

σ0 := 〈τ − n3
〉 and σ j := 〈τ j − n3

j 〉.

One of the main ingredients is the observation due to Bourgain [1993]:

n3
− n3

1− n3
2 = 3nn1n2 for n = n1+ n2, (43)

which in turn implies that
MAX :=max(σ0, σ1, σ2)& 〈nn1n2〉. (44)

Now, define
A j = {(n, n1, n2, τ, τ1, τ2) ∈ Z3

×R3
: σ j =MAX}, (45)

and let N j (u, u) denote the contribution of N(u, u) on A j . By the standard bilinear estimate as in
[Bourgain 1993; Kenig et al. 1996], we have

‖N0(u, u)‖
−

1
2+δ,

1
2−δ
≤ o(1)‖u‖2

−
1
2−δ,

1
2−δ
, (46)

where o(1) = T θ with some θ > 0 by considering the estimate on a short time interval [−T, T ] (for
example, Lemma 3.4). See (2.17), (2.26), and (2.68) in [Bourgain 1997]. Here, we abuse the notation
and use ‖ · ‖s,b = ‖ · ‖X s,b to denote the local-in-time version as well. Note that the temporal regularity
b equals 1

2 − δ <
1
2 . This allows us to improve the spatial regularity by 2δ. Clearly, we cannot expect

to do the same for N1(u, u). (By symmetry, we do not consider N2(u, u) in the following.) The bilinear
estimate (7) is known to fail for any s ∈ R if b < 1

2 due to the contribution from N1(u, u) [Kenig et al.
1996]. Following the notation in [Bourgain 1997], let

Is,b = ‖N1(u, u)‖X s,b and α := 1
2 − δ <

1
2 . (47)

Then, by Lemma 3.2 and duality with ‖d(n, τ )‖L2
n,τ
≤ 1, we have

I−α,1−α = ‖N1(u, u)‖−α,1−α .
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0
û(n1, τ1)

〈n2〉
1−αc(n2, τ2)

σ α2
, (48)
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where

c(n2, τ2)= 〈n2〉
−(1−α)σ α2 û(n2, τ2) so that ‖c‖L2

n,τ
= ‖u‖−(1−α),α = ‖u‖− 1

2−δ,
1
2−δ
. (49)

The main idea here is to consider the second iteration, that is, substitute (41) for û(n1, τ1) in (48), thus
leading to a trilinear expression. Since σ1 =MAX& 〈nn1n2〉 � 1 on A1, we can assume that

û(n1, τ1)= (N(u, u))∧(n1, τ1)∼
|n1|

σ1

∑
n1=n3+n4

∫
τ1=τ3+τ4

û(n3, τ3)û(n4, τ4)dτ4. (50)

Note that û(n1, τ1) cannot come from S(t)u0 of (41) since we have σ1 ∼ 1 for the linear part. Moreover,
by the standard computation [Bourgain 1993], we have

N(u, u)(x, t)=−i
∞∑

k=1

ik tk

k!

∑
n 6=0

ei(nx+n3t)
∫
η(λ− n3)∂̂x u2(n, λ)dλ

+ i
∑
n 6=0

einx
∫
(1− η)(τ − n3)

τ − n3 ∂̂x u2(n, τ )eiτ t dτ

+ i
∑
n 6=0

ei(nx+n3t)
∫
(1− η)(λ− n3)

λ− n3 ∂̂x u2(n, λ)dλ

=:M1(u, u)(x, t)+M2(u, u)(x, t)+M3(u, u)(x, t). (51)

Note that (M1(u, u))∧(n1, τ1) and (M3(u, u))∧(n1, τ1) are distributions supported on {τ1 − n3
1 = 0}, so

σ1 ∼ 1. Hence, the only contribution for the second iteration on A1 comes from M2(u, u) whose Fourier
transform is given in (50). This shows the validity of the assumption (50).

The σ1 appearing in the denominator allows us to cancel 〈n〉1−α and 〈n2〉
1−α in the numerator in (48).

Then, I−α,1−α can be estimated by

.
∑

n=n1+n2
n1=n3+n4

∫
τ=τ1+τ2
τ1=τ3+τ4

〈n〉1−αd(n, τ )
σ α0

|n1|

σ1
û(n3, τ3)û(n4, τ4)

〈n2〉
1−αc(n2, τ2)

σ α2
.

(52)

Bourgain then divided the argument into several cases, depending on the sizes of σ0, . . . , σ4. Here, the
key algebraic relation is

n3
− n3

2− n3
3− n3

4 = 3(n2+ n3)(n3+ n4)(n4+ n2) with n = n2+ n3+ n4. (53)

Then, Bourgain proved [1997, (2.69)]

I−α,1−α ≤ o(1)‖u‖−(1−α),α I−α,1−α + o(1)‖u‖3
−(1−α),α + o(1)‖u‖−(1−α),α, (54)

assuming the a priori estimate (8): |û(n, t)|< C for all n ∈ Z, t ∈ R. Indeed, the estimates involving the
first two terms on the right-hand side of (54) were obtained without (8), and only the last term in (54)
required (8) [Bourgain 1997, “Estimation of (2.62)”], which was then used to deduce

‖û(n, · )‖L2
τ
< C. (55)
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The a priori estimate (8) is derived via the isospectral property of the KdV flow and is false for a general
function in X−(1−α),α. (It is here that the smallness of the total variation ‖µ‖ is used.)

Our goal is to carry out a similar analysis for SKdV (2) on the second iteration without the a priori es-
timates (8) and (55) coming from the complete integrability of KdV. We achieve this goal by considering
the estimate in

X−α,αp,2 = X
−

1
2+δ,

1
2−δ

p,2 ,

where p = 2+ and p−2
4p

< δ <
p−2
2p

. By (15) and (17) (recall −α =− 1
2 + δ and −(1−α)=− 1

2 − δ),
we have

‖u‖X−α,αp,2
≤ ‖u‖X−α,α and ‖u‖X−(1−α),α . ‖u‖X−α,αp,2

. (56)

Then, it follows from (46) and (56) that

‖N0(u, u)‖X−α,αp,2
≤ o(1)‖u‖2X−α,αp,2

. (57)

Now, we consider the estimate on ‖N1(u, u)‖X−α,αp,2
. From (56) and α < 1− α, it suffices to control

I−α,1−α. As in the deterministic case, we consider the second iteration, and substitute (4) for û(n1, τ1)

in (48). As before, there is no contribution from S(t)u0, or M1(u, u), M3(u, u) defined in (51). There
are two contributions:

(i) N1(M2(u, u), u) from the deterministic nonlinear part: In this case, we can use the estimates from
[Bourgain 1997] except when the a priori bound (8) was assumed; that is, we need to estimate the
contribution from [Bourgain 1997, (2.62)]:

Rα :=
∑

n

∫
τ=τ2+τ3+τ4

χB
d(n, τ )
〈n〉1+ασ α0

û(−n, τ2)û(n, τ3)û(n, τ4)dτ2dτ3dτ4, (58)

where ‖d(n, τ )‖L2
n,τ
≤ 1 and B = {σ0, σ2, σ3, σ4 < |n|γ } with some small parameter γ > 0. Note

that this corresponds to the case n2 = −n and n3 = n4 = n in (52) after some reduction. In our
analysis, we directly estimate Rα in terms of ‖u‖X−α,αp,2

. The key observation is that we can take the
spatial regularity s =−α to be greater than − 1

2 by choosing p > 2.

(ii) N1(8, u) from the stochastic convolution 8 in (10): In view of (56), we estimate

E
[
‖N1(η8, u)‖X−α,1−α

]
(59)

via the stochastic analysis from Section 4.

Remark 5.1. In fact, we do not need to take an expectation in (59) since we establish local well-
posedness pathwise in ω, that is, for almost every fixed ω. Nonetheless, we estimate (59) with the
expectation since it shows how F N

1 and F N
2 defined in (70) arise along with their estimates.

Estimate on (i). In [Bourgain 1997], the parameter γ = γ (α), subject to the conditions (2.43) and (2.60)
therein, played a certain role in estimating Rα along with the a priori bound (8). However, it plays no
role in our analysis. By the Cauchy–Schwarz and Young’s inequalities, we have

(58)≤
∑

n

‖d(n, · )‖L2
τ
〈n〉−1−α

‖û(−n, τ2)‖L6/5
τ2
‖û(n, τ3)‖L6/5

τ3
‖û(n, τ4)‖L6/5

τ4
.
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By the Hölder inequality (with appropriate ± signs) and the fact that −1−α <−3α,

(58)≤
∑

n

‖d(n, · )‖L2
τ

4∏
j=2

〈n〉−α−‖σ−αj ‖L3
τ j
‖σ αj û(±n, τ j )‖L2

τ j
≤ ‖d( · , · )‖L2

n,τ
‖u‖3

X−α,α6,2
≤ ‖u‖3X−α,αp,2

,

where the last two inequalities follow by choosing α > 1
3 and p = 2+< 6.

Estimate on (ii). We use the notation from the proof of Proposition 4.1. It follows from (28) and
η(t)8( · , t)= S(t)g( · , t) that

(η8)∧(n1, τ1)= ĝ(n1, τ1− n3
1)=

1
√

2
I (1)n1

(τ1− n3
1)+

1
√

2
I (2)n1

(τ1− n3
1).

Recall that σ1=〈τ1−n3
1〉& 〈nn1n2〉. Also, recall from the proof of Proposition 4.1 that |φn1(r)|=χ[0,T ](r)

is independent of ω.

• Contribution from I (1)n1 (τ1− n3
1): From (48) with (27), (28), and (29), we estimate (59) by

(59). E

[ ∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0

1
σ 2

1

∫ T

0
|φn1(r)|dβn1(r)

〈n2〉
1−αc(n2, τ2)

σ α2

]
. (60)

By the Cauchy–Schwarz inequality in ω and the Ito isometry,

(59).
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
d(n, τ )
σ α0

‖φn1‖L2[0,T ]

σ
(3/2)−δ
1 〈n1〉(1/2)+δ

‖c(n2, τ2)‖L2(�)

σ α2
. (61)

By the L4
x,t , L2

x,t , L4
x,t -Hölder inequality along with Lemma 3.3, (16), (18), (49), and (56), this leads to

(59). T θ
‖d‖L2

n,τ
‖φ‖

L2([0,T ];H−
1
2−δ)
‖c‖L2(�;L2

n,τ )
≤ T θ
‖φ‖L p([0,T ];b̂−αp,∞)

‖u‖L2(�;X−(1−α),α)

. T θ
‖φ‖L p([0,T ];b̂−αp,∞)

‖u‖L2(�;X−α,αp,2 ).

Remark 5.2. Strictly speaking, we need to take the supremum over {‖d‖L2
n,τ
= 1} inside the expectation

in (60). However, we do not worry about this issue to simplify the presentation, since we have

(59)≤ ‖N1(η8, u)‖L2(�;X−α,1−α)

≤

(∑
n

∫
〈n〉2−2α

σ 2α
0

E

[∣∣∣∣ ∫ T

0
|φn1(r)|

∑
n=n1+n2

∫
τ=τ1+τ2

〈n2〉
1−αc(n2, τ2)

σ 2
1 σ

α
2

dτ1dβn1(r)
∣∣∣∣2 ] dτ

)1/2

= sup
‖d‖L2

n,τ
=1
(61)

by the Ito isometry. Also, recall that we have I (1)n1 (τ1−n3
1)=

∫ T
0 G(1)

n1 (r, τ1−n3
1)dβn1(r) where G(1)

n (r, τ )
is defined in (27). Hence, strictly speaking, we should replace G(1)

n1 (r, τ1 − n3
1) by σ−2

1 |φn1(r)| in (60)
only after the application of the Ito isometry. Once again, we do not worry about this issue to simplify
the presentation. The same remark applies to the following as well.



PERIODIC STOCHASTIC KORTEWEG–DE VRIES EQUATION WITH SPACE-TIME WHITE NOISE 297

• Contribution from I (2)n1 (τ1−n3
1): Suppose max(σ0, σ2)& 〈nn1n2〉

1/100; say σ0≥ 〈nn1n2〉
1/100. Then

(59). E

[ ∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0

1
σ1

∫ T

0
|φn1(r)|dβn1(r)

〈n2〉
1−αc(n2, τ2)

σ α2

]

.
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
d(n, τ )

σ α−200δ
0

‖φn1‖L2[0,T ]

σ
(1/2)+δ
1 〈n1〉(1/2)+δ

‖c(n2, τ2)‖L2(�)

σ α2
. (62)

Then we can conclude this case as before by the L4
x,t , L2

x,t , L4
x,t -Hölder inequality as long as α−200δ> 1

3 ,
which can be guaranteed by taking δ > 0 sufficiently small, or equivalently, taking p > 2 sufficiently
close to 2.

Now assume instead max(σ0, σ2)� 〈nn1n2〉
1/100. We invoke a result contained in [Colliander et al.

2003, (7.50) and Lemma 7.4]. The conclusion there is stated with −1 as the exponent of 〈τ − n3
〉,

instead of −3
4 ; but by examining the proof, one sees that it will work with any exponent more negative

than −
( 2

3 +
1

100

)
.

Lemma 5.3. For �(n)= {η ∈ R : η =−3nn1n2+ o(〈nn1n2〉
1/100) for some n1 ∈ Z with n = n1+ n2},∫

〈τ − n3
〉
−3/4χ�(n)(τ − n3) dτ . 1. (63)

We have

(59).E

[ ∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0

χ�(n1)(τ1−n3
1)

σ1

∫ T

0
|φn1(r)|dβn1(r)

〈n2〉
1−αc(n2, τ2)

σ α2

]
.

By the Cauchy–Schwarz inequality and the Ito isometry, this yields

(59).
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
d(n, τ )
σ α0

χ�(n1)(τ1− n3
1)‖φn1‖L2[0,T ]

σ
(1/2)−δ
1 〈n1〉(1/2)+δ

‖c(n2, τ2)‖L2(�)

σ α2
. (64)

By the L4
x,t , L2

x,t , L4
x,t -Hölder inequality along with Lemma 3.3, Lemma 5.3, and Equations (16), (18),

(49), and (56), we get

(59). T θ
‖d‖L2

n,τ

∥∥〈n1〉
−

1
2−δ‖φn1‖L2[0,T ]‖χ�(n1)(τ1− n3

1)σ
−

1
2+δ

1 ‖L2
τ

∥∥
L2

n
‖c‖L2(�;L2

n,τ )

≤ T θ
‖φ‖

L2([0,T ];H−
1
2−δ)
‖u‖L2(�;X−(1−α),α) . T θ

‖φ‖L p([0,T ];b̂−αp,∞)
‖u‖L2(�;X−α,αp,2 ).

Proof of Theorem 1. Fix a mean-zero u0∈ b̂−α
′

p,∞(T) and φ as in (3), where α′= 1
2−δ−with p−2

4p <δ<
p−2
2p

such that (−α′)p<−1. Consider sequences of initial data uN
0 ∈ L2(T) and diagonal covariance operator

φN
∈ H S(L2

; L2), given by

uN
0 = P≤N u0 =

∑
|n|≤N

û0(n)einx and φN (t, ω) := diag(φn(t, ω); 0< |n| ≤ N ), (65)

where φn is given in (3). Now, fix α = 1
2 − δ > α′ as in (47). Note that such uN

0 converges to u0 in
FL−α,p(T), and thus in b̂−αp,∞(T). Also, φN converges to φ in FL−

1
2−,p(T) for each t and ω, and thus
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in b̂
−

1
2−

p,∞ (T). Then, by the monotone convergence theorem, φN converges to φ in L p
(
[0, 1]×�; b̂

−
1
2−

p,∞
)
.

(Indeed, the convergence is in L∞
(
[0, 1]×�; b̂

−
1
2−

p,∞
)
, since we have |φn(t, ω)| = 1 for all n, independent

of t ∈ R and ω ∈�.) Note that a slight loss of the regularity −α <−α′ was necessary since uN
0 defined

in (65) does not necessarily converge to u0 in b̂−α
′

p,∞(T) due to the L∞ nature of the norm over the dyadic
blocks. We can avoid such a loss of the regularity if we start with u0 ∈ FLs,p(T).

Now, let 0N
= 0N

uN
0

be the map defined by

0Nv = 0N
uN

0
v := S(t)uN

0 −
1
2 N(v, v)+ η8N , (66)

where 8N is the stochastic convolution defined in (10) with the covariance operator φN . By the well-
posedness result in [De Bouard et al. 2004], there exists a unique global solution uN

∈ L∞(R+;L2(T))∩

C(R+; B0−
2,1(T)) a.s. to (66) for each N since φN

∈ H S(L2
; L2).

Now, we put all the estimates together. Note that all the implicit constants are independent of N . Also,
when there is no superscript N , it means that N =∞. From Lemma 3.1, we have

‖S(t)uN
0 ‖X s,b,T

p,2
≤ C1‖uN

0 ‖b̂s
p,∞

(67)

for any s, b ∈ R with C1 = C1(b). In particular, by taking b > 1
2 , we see that S(t)u0 is continuous on

[0, T ] with values in b̂s
p,∞. Also, by taking b< 1

2 , we gain a power of T . From the definition of N j ( · , · )

and (57), we have

‖N(uN , uN )‖X−α,α,Tp,2
≤ C2T θ1‖uN

‖
2
X−α,α,Tp,2

+ 2‖N1(uN , uN )‖X−α,α,Tp,2
. (68)

Also, from (47) and (56), we have

‖N1(uN , uN )‖X−α,1−α,Tp,2
≤ I N
−α,1−α. (69)

Recall that η8 ∈ X−α,αp,2 a.s. from Proposition 4.1. Moreover, by defining F N
1 and F N

2 on T×R×�

via their Fourier transforms

F̂ N
1 (n, τ )= 〈n〉

−
1
2−δ
(
σ
−

3
2+δ

0 + σ
−

1
2−δ

0

) ∫ T

0
|φn(r)|dβn(r),

F̂ N
2 (n, τ )= 〈n〉

−
1
2−δχ�(n)(τ − n3)σ

−
1
2+δ

0

∫ T

0
|φn(r)|dβn(r)

(70)

for |n| ≤ N , we have F N
1 , F N

2 ∈ L2(�; L2
x,t) by the Ito isometry and Lemma 5.3, which is basically

shown in the estimate on (ii). See (61) and (64). Then, from (54) and the estimates on (i) and (ii), we
have

I N
−α,1−α ≤ C3

(
T θ2‖uN

‖X−α,α,Tp,2
I N
−α,1−α + T θ3‖uN

‖
3
X−α,α,Tp,2

+ T θ4 L N
ω ‖u

N
‖X−α,α,Tp,2

)
, (71)

where L N
ω = L N (F N

1 , F N
2 )(ω) := ‖F

N
1 (ω)‖L2

x,t
+‖F N

2 (ω)‖L2
x,t
<∞ a.s. Moreover, L N

ω is nondecreasing
in N .
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For fixed R > 0, choose T > 0 small such that C3T θ2 R ≤ 1
2 . Then, from (71), we have

I N
−α,1−α ≤ 2C3

(
T θ3‖uN

‖
3
X−α,α,Tp,2

+ T θ4 L N
ω ‖u

N
‖X−α,α,Tp,2

)
(72)

for ‖uN
‖X−α,α,Tp,2

≤ R. From (66)–(72), we have

‖uN
‖X−α,α,Tp,2

= ‖0N uN
‖X−α,α,Tp,2

≤ C1‖uN
0 ‖b̂−αp,∞

+
1
2C2T θ1‖uN

‖
2
X−α,α,Tp,2

+ 2C3
(
T θ3‖uN

‖
3
X−α,α,Tp,2

+ T θ4 L N
ω ‖u

N
‖X−α,α,Tp,2

)
+C4‖η8

N (ω)‖X−α,αp,2
, (73)

and

‖uN
− uM

‖X−α,α,Tp,2
= ‖0N uN

−0M uM
‖X−α,α,Tp,2

≤ C1‖uN
0 − uM

0 ‖b̂−αp,∞
+

1
2C2T θ1

(
‖uN
‖X−α,α,Tp,2

+‖uM
‖X−α,α,Tp,2

)
‖uN
− uM

‖X−α,α,Tp,2

+C5T θ3
(
‖uN
‖

2
X−α,α,Tp,2

+‖uM
‖

2
X−α,α,Tp,2

)
‖uN
− uM

‖X−α,α,Tp,2

+ 2C3T θ4 L N
ω ‖u

N
− uM

‖X−α,α,Tp,2
+ 2C3T θ4 L̃ N ,M

ω ‖uM
‖X−α,α,Tp,2

+C4‖η(8
N
−8M)‖X−α,αp,2

, (74)

where
L̃ N ,M
ω := ‖F N

1 − F M
1 ‖L2

x,t
+‖F N

2 − F M
2 ‖L2

x,t
. (75)

Note that in estimating the difference 0N uN
−0M uM on A1, one needs to consider

Ĩ−α,1−α := ‖N1(uN , uN )−N1(uM , uM)‖−α,1−α (76)

as in [Bourgain 1997]. We can follow the argument on pages 135–136 in that reference, except for Rα
defined in (58), which yields the third term on the right-hand side of (74). As for Rα, we can write

N(N(u, u), u)−N(N(v, v), v)= N(N(u+ v, u− v), u)+N(N(v, v), u− v) (77)

as in [Bourgain 1997, (3.4)], and then we can repeat the computation done for Rα in the estimate on (i),
also yielding the third term on the right-hand side of (74).

By the definition of uN
0 , we have 2C1‖uN

0 ‖b̂−αp,∞
≤ 2C1‖u0‖b̂−αp,∞

+
1
2 for N sufficiently large. And

since φN converges to φ in L p
(
[0, 1] × �; b̂−α+p,∞

)
, it follows from Corollary 4.2 and the estimate on

(ii), see (61), (62), and (64), that E[‖η(8N
− 8)‖X−α,αp,2

] and E[L̃ N ,∞
ω ] defined in (75) converge to 0.

Hence, ‖η(8N
−8)‖X−α,αp,2

+ L̃ N ,∞
ω → 0 a.s. after selecting a subsequence (which we still denote with the

index N .) Then, by Egoroff’s theorem, given ε > 0, there exists a set �ε with P(�c
ε) < 2−1ε such that

‖η(8N
−8)‖X−α,αp,2

+ L̃ N ,∞
ω → 0 uniformly in �ε. In particular, 2C4‖η8

N
‖X−α,αp,2

≤ 2C4‖η8‖X−α,αp,2
+

1
2

for large N uniformly on �ε. In the following, we will work on �ε.
Now, let Rω = 2(C1‖u0‖b̂−αp,∞

+C4‖η8(ω)‖X−α,αp,2
)+ 1, and define the stopping time Tω by

Tω = inf
{
T > 0 :max(C3T θ2 Rω, P1(T, Rω, ω), P2(T, Rω, ω)≥ 1

2

}
, (78)

where
P1(T, Rω, ω)= 1

2C2T θ1 Rω+ 2C3T θ3(Rω)2+ 2C3T θ4 Lω from (73),

P2(T, Rω, ω)= C2T θ1 Rω+ 2C5T θ3(Rω)2+ 2C3T θ4 Lω from (74).
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The first condition in the definition of Tω guarantees (72), and hence (73) and (74), for ‖uN
‖X−α,α,Tp,2

≤ Rω.
The second condition along with (73) indeed guarantees that

‖uN
‖X−α,α,Tp,2

≤ Rω (79)

for T ≤Tω, for the following reason. Because of the temporal regularity b=α< 1
2 , we have ‖uN

‖X−α,α,Tp,2
=

‖χ[0,T ]uN
‖X−α,αp,2

, where χ[0,T ] denotes the characteristic function of the time interval [0, T ] [Bourgain
1999]. Hence, ‖uN

‖X−α,α,Tp,2
is continuous in T since∣∣‖uN

‖X−α,α,T+δp,2
−‖uN

‖X−α,α,Tp,2

∣∣≤ ‖uN
‖X−α,αp,2 [T,T+δ] . δ

θ
‖uN
‖

X0−, 1
2 [T,T+δ]

(80)

for sufficiently small δ > 0. Note that the last term in (80) is finite for small δ since the local-in-time
solutions constructed in [De Bouard et al. 2004] are controlled in this norm (indeed in a stronger norm
adapted to the Besov space B0−

2,1 .) Then, (79) follows from (73), the second condition in (78), and the
continuity of the norm in T since (79) clearly holds at T = 0.

From (74) along with the third condition in (78), we have

‖uN
− uM

‖X−α,α,Tωp,2
≤ 2C1‖uN

0 − uM
0 ‖b̂−αp,∞

+ 4C3T θ4 Rω L̃ N ,M
ω + 2C4‖η(8

N
−8M)‖X−α,αp,2

. (81)

The right-hand side of (81) goes to 0 as N ,M→∞ since uN
0 is Cauchy in b̂−αp,∞ and

‖η(8N
−8M)‖X−α,αp,2

+ L̃ N ,M
ω → 0

on �ε uniformly in N ,M . Let u denote the limit in X−α,α,Tωp,2 .
In the following, we give a brief discussion to show that the limit u is a solution to (4). Clearly, S(t)uN

0
and η8N converge to S(t)u0 and η8 in X−α,α,Tωp,2 . It follows from (57) that N0(uN , uN ) converges to
N0(u, u) in X−α,α,Tωp,2 . In view of (72), (74), and (76), we see that N j (uN , uN ) is Cauchy in a slightly
stronger space X−α,1−α,Tωp,2 , j = 1, 2. Let v j denote the corresponding limit. Thus, from (66), we have

u = S(t)u0−
1
2 N0(u, u)− 1

2(v1+ v2)+ η8. (82)

Now, we need to show that N j (uN , uN ) indeed converges to N j (u, u), j = 1, 2. By symmetry, we only
consider N1(u, u)−N1(uN , uN ). As before, we substitute (82) (and (66)) in the first factor u (and uN )
of N1( · , · ), respectively. There are three contributions to consider.

(A) Contribution from the stochastic terms: We have

N1(η8, u)−N1(η8
N , uN )= N1(η(8−8

N ), u)+N1(η8
N , u− uN ). (83)

From the estimate on (ii), we have

‖(83)‖X−α,α,Tωp,2
. L̃ N ,∞

ω ‖u‖X−α,α,Tωp,2
+ L N

ω ‖u
N
− u‖X−α,α,Tωp,2

→ 0

as N →∞, since ‖u‖X−α,α,Tp,2
≤ Rω and L̃ N ,∞

ω → 0 uniformly on �ε.

(B) Contribution from N0( · , · ): In this case, we consider

N1(N0(u, u), u)−N1(N0(uN , uN ), uN ). (84)
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Note that we have σ1 ≥ σ0, σ2, σ3, σ4 from the definition of N1( · , · ) and N0( · , · ), see (50) and
(52). Indeed, we have σ1 ≥ σ0, σ2 since we are on A1 defined in (45), and also σ1 ≥ σ3, σ4 since we
are on the support of N0( · , · ) in the first factor of N1( · , · ). Once again, one can easily follow the
argument in [Bourgain 1997, page 136] and show

‖(84)‖X−α,α,Tωp,2
.
(
‖uN
‖

2
X−α,α,Tωp,2

+‖u‖2
X−α,α,Tωp,2

)
‖uN
− u‖X−α,α,Tωp,2

→ 0.

In treating Rα− RN
α defined in (58), one needs to proceed as before, using (77) and the estimate on

(i).

(C) Contribution from v j and N j (uN , uN ), j =1 or 2: By symmetry, assume j =1. In this case, we have
σ1 ≥ σ0, σ2 but σ3 ≥ σ1, σ4, thus we control (54) by the first term on the right-hand side [Bourgain
1997, (II.1) on page 126]. Now, we need to estimate

N1(v1, u)−N1(N1(uN , uN ), uN )=N1(v1−N1(uN , uN ), u)+N1(N1(uN , uN ), u−uN )=: I+ II. (85)

Then, by proceeding as in [Bourgain 1997] with (56) and (72), we have

‖ II ‖X−α,1−α,Tωp,2
. I N
−α,1−α‖u− uN

‖X−(1−α),α,Tω . ‖u− uN
‖X−α,α,Tωp,2

→ 0.

By proceeding as in [Bourgain 1997, (II.1)] with |n1|
α replaced by |n1|

1−α, followed by (56), we
have

‖ I ‖X−α,1−α,Tωp,2
. ‖v1−N1(uN , uN )‖−(1−α),1−α‖u‖−(1−α),α

. ‖v1−N1(uN , uN )‖X−α,1−α,Tωp,2
‖u‖X−α,α,Tωp,2

→ 0,

since v1 = limN→∞N1(uN , uN ) in X−α,1−α,Tωp,2 by definition.

Hence, we have u = 0u0u for each ω ∈ �ε, so u is a mild solution to (2) on [0, Tω]. Let �(1) = �ε.
Now, we can recursively construct

�( j+1)
⊂� \

j⋃
k=1

�(k)

for j = 1, 2, . . . with P(� \
⋃ j

k=1�
(k)) < 2− jε such that ‖η(8N

−8)‖X−α,αp,2
and L̃ N ,∞

ω converge to 0
uniformly in each �( j). Then, by repeating the argument, we can construct a solution u on

⋃
∞

j=1�
( j).

Note that P(� \
⋃
∞

j=1�
( j))= 0.

We have constructed a solution u to (2) in X−α,α,Tωp,2 with u0 ∈ b̂−α
′

p,∞. Since u is a solution, the a priori
estimate (73) holds with the regularity (s, b) = (−α′, α′) in place of (−α, α). Then, we easily see that
u ∈ X−α

′,α′,Tω
p,2 by redefining Rω and Tω with this regularity. In the remaining of the paper, we work only

with the spatial regularity s = −α′, that is, there is no approximating sequences any more. Hence, for
notational simplicity, we will use −α in place of −α′ to denote the spatial regularity of the solution in
the following.

We still need to take care of several issues. Note that the temporal regularity b = α = 1
2 − δ of the

solution u is less than 1
2 . In particular, we need to show that the solution u is continuous from [0, Tω]

into b̂−αp,∞. We also need to show its uniqueness and continuous dependence on the initial data.
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From Proposition 4.5, η8 ∈ C([0, Tω]; b̂−αp,∞) a.s. Also, it follows from (67) with b = 1
2 + δ, (69),

(72), and symmetry on σ1 and σ2, that

S(t)u0+N1(u, u)+N2(u, u) ∈ X
−α, 1

2+δ,Tω
p,2 ⊂ C([0, Tω]; b̂−αp,∞)

almost surely. Now, we consider N0(u, u), that is, when σ0 =MAX. Note that the contribution comes
only from M2(u, u) defined in (51). Define

N3(u, u)= the contribution of N0(u, u) on {max(σ1, σ2)& 〈nn1n2〉
1/100
},

N4(u, u)= N0(u, u)−N3(u, u).

(a) First, we consider N3(u, u), so max(σ1, σ2) & 〈nn1n2〉
1/100; say σ1 & 〈nn1n2〉

1/100. Then, by (15)
and Lemma 3.2, we have

‖N3(u,u)‖
X
−α, 1

2+δ,Tω
p,2

. ‖∂x(u2)‖
X
−α,− 1

2+δ,Tω
p,2

. ‖∂x(u2)‖
X−α,−

1
2+δ,Tω

.

By duality and (44), the right-hand side equals

sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

〈n〉1−αd(n, τ )

σ
(1/2)−δ
0

2∏
j=1

〈n j 〉
1−αc(n j , τ j )

σ αj
dτdτ1

. sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

d(n, τ )
c(n1, τ1)

σ α−200δ
1

c(n2, τ2)

σ α2
dτdτ1,

where c(n, τ ) is defined in (49). Thus, by the L2
x,t , L4

x,t , L4
x,t -Hölder inequality along with Lemma

3.3, (49), and (56), we conclude that

‖N3(u, u)‖
X
−α, 1

2+δ,Tω
p,2

. ‖c‖2L2
n,τ
≤ ‖u‖2X−(1−α),α . ‖u‖

2
X−α,αp,2

<∞.

(b) Now, consider N4(u, u), so max(σ1, σ2)�〈nn1n2〉
1/100. It suffices to show that N0(u, u)∈ X−α,0,Tωp,1 ,

since X−α,0,Tωp,1 ⊂ C([0, Tω]; b̂−αp,∞). Then, by Cauchy–Schwarz inequality, Lemma 5.3 and duality,
we have

‖N4(u, u)‖X−α,0,Tωp,1
≤ ‖∂x(u2)‖X−α,−1,Tω

2,1
≤
∥∥‖〈n〉−α〈τ − n3

〉
−1χ�(n)(τ − n3)∂̂x(u2)(n, τ )‖L1

τ

∥∥
L2

n

≤
∥∥〈τ − n3

〉
−

1
2+δχ�(n)(τ − n3)

∥∥
L2
τ
‖∂x(u2)‖

−α,− 1
2−δ

. sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

〈n〉1−αd(n, τ )

σ
(1/2)+δ
0

2∏
j=1

〈n j 〉
1−αc(n j , τ j )

σ αj
dτdτ1

. sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

d(n, τ )
c(n1, τ1)

σ α1

c(n2, τ2)

σ α2
dτdτ1.

The rest follows as before. Hence, the solution u is continuous from [0, Tω] to b̂−αp,∞.
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Lastly, we show the uniqueness and the continuous dependence of the solutions on the initial data.
Let u and v be the mild solutions of (2) on [0, Tω] with initial data u0 and v0; then

u− v = 0u0u−0v0v = S(t)(u0− v0)−
1
2

(
N(u, u)−N(v, v)

)
, (86)

where 0 is defined in (66). Moreover, assume that

‖u0‖b̂−αp,∞
≤ R, ‖v0‖b̂−αp,∞

≤ R, ‖u‖X−α,α,Tωp,2
≤ R, ‖v‖X−α,α,Tωp,2

≤ R. (87)

Let Ñ j (u, v) :=−1
2

(
N j (u, u)−N j (v, v)

)
for j = 1, . . . , 4. First, note that ‖Ñ4(u, v)‖X−α,ε,Tωp,1

. R2 <∞

from (a slight variation of) Case (b), and we have

‖(u− v)− Ñ4(u, v)‖X−α,ε,Tωp,1
≤

∥∥∥∥S(t)(u0− v0)+

3∑
j=1

Ñ j (u, v)
∥∥∥∥

X
−α, 1

2+δ,Tω
p,2

. C1(R) <∞

by Cauchy–Schwarz inequality with ε < δ, followed by (67), (69), (72), Case (a), and (87). Then, by
interpolation and Cauchy–Schwarz inequality, we have

‖u−v‖C([0,Tω];b̂−αp,∞)
. ‖u−v‖X−α,0,Tωp,1

. ‖u−v‖β
X−α,−δ−,Tωp,1

‖u−v‖1−β
X−α,ε,Tωp,1

.C2(R)‖u−v‖
β

X
−α, 1

2−δ,Tω
p,2

(88)

with β = ε
ε+δ+

∈ (0, 1). From (67) and the nonlinear estimates (see (68), (72), (74), (76)), we have

‖u− v‖
X
−α, 1

2−δ,Tω
p,2

. ‖u0− v0‖b̂−αp,∞
+C3(R)T θ

ω ‖u− v‖
X
−α, 1

2−δ,Tω
p,2

.

Hence, for sufficiently small T > 0, we have

‖u− v‖
X
−α, 1

2−δ,Tω
p,2

. ‖u0− v0‖b̂−αp,∞
. (89)

Therefore, it follows from (88) and (89) that the solution map is Hölder continuous with the bound

‖u− v‖C([0,Tω];b̂−αp,∞)
≤ C4(R)‖u0− v0‖

β

b̂−αp,∞
.

In particular, the solution is unique. This completes the proof of Theorem 1. �
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STABILITY FOR STRONGLY COUPLED CRITICAL ELLIPTIC SYSTEMS
IN A FULLY INHOMOGENEOUS MEDIUM

OLIVIER DRUET AND EMMANUEL HEBEY

We investigate and prove analytic stability for strongly coupled critical elliptic systems in the inhomo-
geneous context of a compact Riemannian manifold.

Coupled systems of nonlinear Schrödinger equations are now a part of several important branches of
mathematical physics. They appear in the Hartree–Fock theory for Bose–Einstein double condensates,
in fiber-optic theory, in the theory of Langmuir waves in plasma physics, and in the behavior of deep
water waves and freak waves in the ocean. A general reference book on such systems and their role in
physics has been written by Ablowitz et al. [2004]. We focus here on coupled Gross–Pitaevskii type
equations. These systems of equations are strongly related to two branches of mathematical physics.
They arise [Burke et al. 1997] in the Hartree–Fock theory for double condensates, which are binary
mixtures of Bose–Einstein condensates in two different hyperfine states. They also arise in the study of
incoherent solitons in nonlinear optics, as describe in [Akhmediev and Ankiewicz 1998; Christodoulides
et al. 1997; Hioe 1999; Hioe and Salter 2002; Kanna and Lakshmanan 2001]. Looking for standing
wave solutions for these time evolution systems gives rise to their elliptic analogues that we investigate
here. We consider these elliptic systems of equations in arbitrary dimensions n≥ 3, in the critical energy
regime, and in a fully inhomogeneous medium that we model by an arbitrary compact Riemannian
manifold, thus breaking the various symmetries that these systems enjoy in the Euclidean setting.

In what follows we let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. For
p ≥ 1 an integer, we let M s

p(R) denote the vector space of symmetrical p× p real matrices, and A be
a C1 map from M to M s

p(R). We can write A = (Ai j )i, j , where the Ai j ’s are C1 real valued functions
in M . Let1g =− divg ∇ be the Laplace–Beltrami operator on M . Let also H 1(M) be the Sobolev space
of functions in L2(M) with one derivative in L2(M). A p-map U= (u1, . . . , u p) from M to Rp is said
to be nonnegative if ui ≥ 0 for all i . The coupled system of nonlinear Schrödinger equations we consider
here is written as

1gui +

p∑
j=1

Ai j (x)u j = |U|
2?−2ui (0-1)

in M for all i , where |U|2 =
∑p

i=1 u2
i , and 2? = 2n/(n − 2) is the critical Sobolev exponent for the

embeddings of the Sobolev space H 1(M) into Lebesgue’s spaces. The systems (0-1) are weakly coupled
by the linear matrix A, and strongly coupled by the Gross–Pitaevskii type nonlinearity in the right hand
side of (0-1). Besides, (0-1) is critical for Sobolev embeddings. From the viewpoint of conformal

MSC2000: primary 35C20, 58J37; secondary 35Q51, 35Q55, 35Q60.
Keywords: Critical equations, elliptic systems, Riemannian manifolds, stability, strong coupling.
The authors were partially supported by the ANR grant ANR-08-BLAN-0335-01.
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geometry, our systems are pure extensions of Yamabe type equations in the strongly coupled regime. As
a by-product (0-1) inherits a conformal structure.

Our aim in this paper is to discuss stability for systems like (0-1). Contrary to time evolution equations,
where perturbations of the initial data together with perturbations of the equations are used to measure
stability, stability for elliptic equations has to do solely with perturbations of the equations. In the
framework of systems such as (0-1), stability is naturally measured with respect to perturbations of the
map A. In what follows, a system like (0-1) is said to be analytically stable if for any sequence (Aα)α of
maps from M to M s

p(R), α ∈N, and for any bounded sequence in H 1 of nonnegative nontrivial solutions
Uα of the associated systems (0-1), if Aα→ A in C1 as α→+∞, then, up to a subsequence, Uα→U

in C2 as α→+∞ for some nonnegative nontrivial solution U of (0-1). When the strong convergence
in C2 is replaced by a weak convergence Uα ⇀ U in H 1, the system (0-1) is said to be weakly stable.
We refer to Section 1 for more precise definitions.

Before stating our theorem we need to introduce two assumptions. Let 1g be the Laplace–Beltrami
operator acting on p-maps by acting on each of the components of the map, and let Vect+(Rp) be the
set of vectors in Rp with nonnegative components. The first assumption we may impose is

Ker(1g + A) ∩ L2(M,Vect+(Rp))= {0}, (H)

where Ker(1g+ A) is the kernel of 1g+ A, and L2(M,Vect+(Rp)) stands for the set of L2 maps from
M to Vect+(Rp). In order to introduce our second assumption we let An = An(A) be given by

An = A− n−2
4(n−1)

Sg Idp, (0-2)

where Sg is the scalar curvature of g, and Idp is the identity p× p matrix. For x ∈ M , let also IsAn(x) be
the set consisting of the isotropic vectors for An(x), namely of the vectors X ∈ Rp which are such that
〈An(x).X, X〉Rp = 0, where 〈·, ·〉Rp is the Euclidean scalar product in Rp. The second assumption we
introduce is that for any x ∈ M , An(x) should not possess stable subspaces with an orthonormal basis
consisting of isotropic nonnegative vectors. More precisely, it is this:

For any x ∈ M and any k ∈ {1, . . . , p}, there does not exist an orthonormal family
(e1, . . . , ek) of vectors in IsAn(x) ∩Vect+(Rp) such that An(x)V ⊂ V , where V is
the k-dimensional subspace of Rp with basis (e1, . . . , ek).

(H′)

The case k = 1 in (H′) reduces to the nonexistence of a nontrivial vector in Vect+(Rp)∩Ker An(x),
where Ker An(x) is the kernel of An(x). An assumption like (H′) is automatically satisfied in several
simple situations. This is the case if we prevent the existence of isotropic vectors for An . In particular,
(H′) holds true if An(x) > 0 or An(x) < 0 for all x in the sense of bilinear forms. Clearly there are
other cases where (H′) holds true. Assumption (H) is analytic in nature. Assumption (H′) is algebraic
in nature and related to the underlying geometric conformal structure of the equations. Our main result,
establishing analytic stability for (0-1), is stated as follows.

Theorem 0.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n≥4 and p≥1 be an
integer. For any C1-map A : M→ M s

p(R) satisfying (H) and (H′), the system (0-1) is analytically stable
when n 6= 6, and weakly stable when n = 6. Besides, there are examples of six-dimensional manifolds
and C1-maps A satisfying (H) and (H′) for which (0-1) is analytically unstable.
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A closely related notion to stability is that of compactness. A system like (0-1) is said to be compact
if bounded sequences in H 1 of nonnegative solutions of (0-1) converge, up to a subsequence, in the C2-
topology. As is easily seen, analytic stability implies compactness. In particular, as a direct consequence
of the analytic stability part in our theorem, we get that systems like (0-1) are compact when n 6= 6 as
soon as (H) and (H′) are satisfied. Assumptions (H) and (H′) in Theorem 0.1 are sharp, as discussed in
Section 1 below.

Most of the asymptotic analysis developed in this paper carries over to the n = 3 case. However,
the concluding argument needs to be changed when n = 3. In this dimension the mass of the Green’s
expansion of the Schrödinger operator1g+A leads over An . We can conclude when the mass is positive.
The analysis is developed in [Druet et al. 2009].

The paper is organized as follows. We discuss general properties of stability and compactness in
Section 1. We prove the n = 6 part of Theorem 0.1 in Section 2. We provide a complete classification
of H 1-nonnegative solutions of the strongly coupled critical limit Euclidean system 1ui = |U|

2?−2ui ,
i = 1, . . . , p, in Section 3. We prove Theorem 0.1 in its n 6= 6 part in Sections 4 to 10. In the process we
establish in Sections 5, 6, and 8 the full C0-theory for the blow-up of arbitrary sequences of solutions of
strongly coupled systems like (0-1).

1. General considerations on stability and compactness

We start with the precise definition of elliptic stability we use for our systems (0-1). As already mentioned
stability is here measured with respect to perturbations of the parameter A in (0-1). In doing so we
preserve the conformal structure of the equation. Historically speaking such type of perturbations were
first considered in the early work of Aubin [1976] on the Yamabe equation. Given (Aα)α a sequence of
C1 maps from M to M s

p(R), with Aα = (Aαi j )i, j for all α integer, we consider the systems

1gui +

p∑
j=1

Aαi j (x)u j = |U|
2?−2ui . (1-1)

A sequence (Uα)α of C2 maps from M to Rp is said to be a sequence of nonnegative solutions of (1-1) if
for any α ∈N, Uα = (uα1 , . . . , uαp) solves (0-1) and uαi ≥ 0 for all i . The sequence is said to be bounded
in H 1(M), or to have finite energy, if its components ui

α are all bounded in H 1(M) with respect to α.
Given 3 > 0, we define the slice S3A to be the set of p-maps U ∈ H 1 such that U solves (0-1), U is
nonnegative and the H 1-norm of U is less than or equal to 3. By standard regularity, adapting classical
arguments from Trudinger [1968], weak solutions in H 1 of systems like (0-1) are always of class C2. In
particular, S3A ⊂ C2 for all 3> 0. For X, Y ⊂ C2 we let d ↪→C2 (X; Y ) be the C2-pointed distance from X
to Y defined by

d ↪→C2 (X; Y )= sup
U∈X

inf
V∈Y
‖V−U‖C2, (1-2)

where ‖V−U‖C2 =
∑

i ‖vi − ui‖C2 and the ui ’s and vi ’s are the components of U and V. Stability in
the elliptic regime is defined in Definition 1.1 below. The C1 convergence Aα → A in Definition 1.1
refers to the C1 convergence of the components Aαi j of Aα to the components Ai j of A. Similarly, the C2

convergences, and the weak convergences in H 1, of the Uα’s in Definition 1.1 refer to the convergences
of the components of the maps.
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Definition 1.1. Let (M, g) be a smooth compact Riemannian manifold, let p ≥ 1 be an integer, and let
A : M→ M s

p(R) be a C1 map. The system (0-1) is said to be

(i) analytically stable if for any sequence (Aα)α of C1 maps from M to M s
p(R) such that Aα → A

in C1(M) as α→+∞, and for any bounded sequence (Uα)α in H 1(M) of nonnegative nontriv-
ial solutions of (1-1), there exists a nonnegative nontrivial solution U of (0-1) such that, up to a
subsequence, the Uα’s converge strongly to U in C2(M) as α→+∞, and

(ii) weakly stable if for any sequence (Aα)α of C1 maps from M to M s
p(R) such that Aα→ A in C1(M)

as α→+∞ and for any bounded sequence (Uα)α in H 1(M) of nonnegative nontrivial solutions of
(1-1), there exists a nonnegative nontrivial solution U of (0-1) such that, up to a subsequence, the
Uα’s converge weakly to U in H 1(M) as α→+∞.

The system is said to be geometrically stable, if the slices S3A are stable for all 3> 0, where S3A is said
to be stable, if for any ε > 0, there exists δ > 0 such that for any C1 map A′ from M to M s

p(R), we have
d ↪→C2 (S

3
A′;S

3
A) < ε when ‖A′− A‖C1 < δ.

As already mentioned, a classical notion in the study of critical elliptic equations is that of compact-
ness. A system like (0-1) is said to be compact if any bounded sequence (Uα)α in H 1(M) of nonnegative
nontrivial solutions of (0-1) converges in C2(M) as α→+∞ to a nonnegative nontrivial solution U of
(0-1). This corresponds to the particular situation where Aα = A for all α in (i). Analytic stability as
defined in (i) implies weak stability, geometric stability, and compactness. More precisely:

Proposition 1.2. Assume (H). If the system (0-1) is analytically stable, it is weakly stable, geometrically
stable, and compact. A compact system is analytically stable if and only if it is geometrically stable.

Proof. It is obvious that analytic stability implies weak stability, geometric stability, and compactness.
The only assertion, which deserves to be proved, is that a compact geometrically stable system like (0-1)
is analytically stable. Let (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in
C1(M) as α→+∞, and let (Uα)α be a bounded sequence in H 1 of nonnegative nontrivial solutions of
(1-1). Since (0-1) is geometrically stable there exists (Vα)α, a bounded sequence in H 1 of nonnegative
solutions of (0-1), such that, up to a subsequence, Uα−Vα converges to zero in C2 as α→+∞. Since
(0-1) is compact, up to a subsequence, Vα→ V in C2 as α→+∞, where V is a nonnegative solution
of (0-1). In particular, up to a subsequence, Uα→ V in C2 as α→+∞. It remains to prove that V is
nontrivial, and this is given by Lemma 1.3 below. Proposition 1.2 is proved. �

The following lemma, which we derive as a direct consequence of (H), was used in the proof of
Proposition 1.2. By standard elliptic theory, moreover, when A satisfies (H), we have Uα 6→ 0 in H 1 as
α→+∞.

Lemma 1.3. Let (M, g) be a smooth compact Riemannian manifold, let p ≥ 1 be an integer, and let
A : M→ M s

p(R) be a C1 map satisfying (H). Let (Aα)α be a sequence of C1 maps from M to M s
p(R)

such that Aα→ A in C1(M) as α→+∞, and let (Uα)α be a bounded sequence in H 1 of nonnegative
nontrivial solutions of (1-1). Then Uα 6→ 0 in L∞(M) as α→+∞.

Proof. By contradiction we assume that there exists (Uα)α, a bounded sequence in H 1 of nonnegative
nontrivial solutions of (1-1), such that maxM |Uα|6→ 0 as α→+∞, where |Uα|6 =

∑
i ui,α is the sum

of the components of the Uα’s. Let εα = |Uα|6 and define vi,α by vi,α = ε
−1
α ui,α for all i and α. Then
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1gvi,α +

p∑
j=1

Aαi j (x)v j,α = ε
4/(n−2)
α |Vα|

2?−2vi,α (1-3)

for all i and α, where Vα is the p-map whose components are the vi,α’s for i = 1, . . . , p. By construction
the vi,α’s are bounded in L∞(M). By standard elliptic theory it follows that, up to a subsequence, they
converge in C2(M) to vi ’s as α→+∞. Let V be the p-map with components vi for i = 1, . . . , p. By
construction V is nonnegative and nontrivial, since there is one point, where |V|6 equals one. Letting
α→+∞ in (1-3) it follows that V ∈ Ker(1g + A), and we get a contradiction with (H). �

Proposition 1.2 leaves open the question of whether or not there exist geometrically stable noncompact
systems like (0-1). However, we can have noncompact systems with geometrically stable specific slices
as discussed below. The most well-known example of a noncompact critical system like (0-1) is given by
the Yamabe equation on the sphere. The Yamabe equation on the n-sphere possesses a (n+1)-parameter
noncompact family of solutions and it turns out that it is also geometrically unstable. This is a direct
consequence of the constructions in [Druet and Hebey 2005a], where arbitrarily high energy solutions
of approximated equations are constructed, together with the property that all nonnegative nontrivial
solutions of the Yamabe equation on the sphere have the same energy. On the other hand, the first blow-
up slice for this equation is geometrically H 1-stable in the sense of Definition 1.1 when we replace the
C2-pointed distance and the C2-norm in (1-2) by a H 1-pointed distance and a H 1-norm, where the first
blow-up slice is given by 3 = K 2

n , and Kn is as in (3-8). This geometric H 1-stability of the first blow-
up slice follows from H 1-decompositions as in Proposition 4.2. As a direct consequence, noncompact
equations may have stable slices.

In the subcritical regime, compactness goes back to [Gidas and Spruck 1981]. In the more involved
critical regime, it goes back to Schoen’s conjecture [Schoen 1989; 1991] that compactness holds true
for the geometric Yamabe equation as soon as the background manifold is distinct from the sphere. His
conjecture has been a source of motivations for several years. The conjecture was proved to be true for
conformally flat manifolds by Schoen [1989; 1991]. The nonconformally flat case turned out to be more
intricate. The case of low-dimensional manifolds was recently addressed in [Druet 2004; Marques 2005;
Li and Zhu 1999; Li and Zhang 2004; 2005], and compactness up to dimension 24 was finally proved
recently [Khuri et al. 2009]. On the other hand, Brendle [2008a] and Brendle and Marques [2009]
exhibited counterexamples to the conjecture in dimensions n ≥ 25. For any n ≥ 25 they constructed
examples of nonconformally flat n-manifolds with the striking property that their associated Yamabe
equations possess sequences of solutions with minimal type energy and unbounded L∞-norms. In par-
ticular, they proved the very surprising result that the compactness conjecture is false for nonconformally
flat manifolds in any dimension n ≥ 25. A very interesting survey on the subject is [Brendle 2008b]. We
refer also to [Druet and Hebey 2005b].

An easy remark is that if u is a solution of a scalar Yamabe type equation with linear term h, that is,
an equation of the form

1gu+ h(x)u = u2?−1, (1-4)

then U =
( 1
√

p u, . . . , 1
√

p u
)

is a solution of (0-1) when Ai j = hai j for all i, j , and
∑p

j=1 ai j = 1 for
all i . In what follows we let (ai j )i, j be a symmetrical matrix of C1 functions ai j : M → R such that∑p

j=1 ai j (x)= 1 for all i = 1, . . . , p and all x ∈ M . A possible choice is ai j = δi j for all i, j . Then we
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define A(g) and A′(g) to be the C1 maps from M to M s
p(R) given by

A(g)i j =
n−2

4(n−1)
Sgai j and A′(g)i j =

n−2
4(n−1)

(max
M

Sg)ai j

for all i, j = 1, . . . , p, where Sg is the scalar curvature of g. By combining results in [Brendle 2008a;
Brendle and Marques 2009], where noncompactness of the Yamabe equation in the nonconformally flat
case is investigated, and those in [Druet and Hebey 2005a; Hebey and Vaugon 2001], where unstability
of Yamabe type equations in the conformally flat case is investigated, we obtain the following theorem,
in view of the remark above.

Theorem 1.4. The system (0-1) associated with A(g) is analytically unstable when posed on spherical
spaces forms in any dimension n ≥ 6, and even noncompact when posed on the sphere in any dimension
n ≥ 3. For any conformally flat manifold (M, g) of dimension n ≥ 4 there exists a conformal metric
g̃ to g of nonconstant scalar curvature having one and only one maximum point such that the system
(0-1) associated with A′(g̃) is analytically unstable. In any dimension n ≥ 25 there are examples of
nonconformally flat manifolds such that the system (0-1) associated with A(g) is noncompact, and thus
also analytically unstable.

The examples in Theorem 1.4 do not satisfy (H′). This can be checked by noting that (1, . . . , 1) ∈
Ker An(x) for all x , where An is as in (0-2). Theorem 0.1 and Theorem 1.4 complement each other. As a
remark, the Yamabe equation on quotients of the sphere is obviously compact since it possesses a unique
solution. In particular, there are compact equations which are neither analytically nor geometrically
stable. Compactness does not imply stability. We concentrate in the rest of this section on the subcritical
regime for systems like (0-1) and prove that analytic stability holds true in the subcritical regime without
assuming (H′). Let q ∈ (2, 2?) and let us consider the subcritical system

1gui +

p∑
j=1

Ai j (x)u j = |U|
q−2ui (1-5)

in M for all i , where A = (Ai j )i, j is a C1 map from M to M s
p(R). We define the notions of analytic

stability, weak stability, and geometric stability for (1-5) as in Definition 1.1.

Proposition 1.5. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and A : M→ M s

p(R) be a C1 map satisfying (H). For any q ∈ (2, 2?) the subcritical system
(1-5) is analytically stable.

Proof. Let (Aα)α be a sequence of C1 maps from M to M s
p(R) such that Aα→ A in C1(M) as α→+∞,

and let (Uα)α be an arbitrary bounded sequence in H 1 of nonnegative nontrivial solutions of

1gui,α +

p∑
j=1

Aαi j (x)u j,α = |Uα|
q−2ui,α (1-6)

for all i and all α. We aim in proving that a subsequence of (Uα)α converges in C2 to a nonnegative
nontrivial solution of (1-6). The nontriviality of any strong limit follows from (H) mimicking the proof
of Lemma 1.3. Then, as is easily checked, it suffices to prove that the Uα’s are L∞-bounded in M .
By contradiction we assume that there exists a sequence (xα)α of points, where the |Uα|’s are maximum
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such that, up to a subsequence, |Uα(xα)|→+∞ as α→+∞. Let µα = |Uα(xα)|−(q−2)/2. Then µα→ 0
as α→+∞. Let Ũα be given for x ∈ Rn by

Ũα(x)= µ2/(q−2)
α Uα

(
expxα (µαx)

)
and let gα be the metric given by gα(x) = (exp?xα g)(µαx). We have gα→ ξ in C2

loc(R
n) as α→+∞,

where ξ is the Euclidean metric. Noting that

1gα ũi,α +µ
2
α

p∑
j=1

Aαi j
(
expxα (µαx)

)
ũ j,α = |Ũα|

q−2ũi,α

for all i and α, since |Ũα| ≤ 1 for all α by construction, it follows from standard elliptic theory that there
exists Ũ ∈ C2(Rn) such that, up to a subsequence, Ũα→ Ũ in C2

loc(R
n). We have |Ũα(0)| = 1 for all α.

Hence, |Ũ(0)| = 1. Moreover, for any R > 0, and for α sufficiently large,∫
B0(R)
|Ũ|qdx ≤ C

∫
B0(R)
|Ũα|

qdvgα

≤ C
∫

B0(1/µα)
|Ũα|

qdvgα = Cµ2q/(q−2)−n
α

∫
Bxα (1)

|Uα|
qdvg ≤ Cµ2q/(q−2)−n

α ,

since the Uα’s have bounded energy. Noting that 2q/(q−2)>n as soon as q<2? and letting α→+∞ in
the inequality above, we get

∫
B0(R)
|Ũ|qdx = 0. This is in contradiction with |Ũ(0)| = 1. The proposition

is proved. �

Analytic stability for critical equations like (1-4) has been investigated in [Druet 2003]. The case
p = 1 in Theorem 0.1, in its n 6= 6 part and when considering C2,θ -perturbations of h, was proved in
the same paper. The proof we propose here extends to the case of systems, allows us to consider C0,η-
perturbations of h, see the remark at the end of Section 10, and is more direct. At the time of [Druet
2003], analytic stability was still referred to as compactness. The confusion in the terminology has been
the source of several misunderstandings.

2. The six-dimensional case

We discuss and prove the six-dimensional last assertion in Theorem 0.1 concerning the existence of
systems like (0-1) in dimension n = 6, which satisfy (H) and (H′), but which, contrary to what happens
when n 6= 6, are not analytically stable. We restrict ourselves to a very explicit construction in the case
of the unit sphere (S6, g0). A more general discussion could have been developed. We let (ai j )i, j be a
symmetrical matrix of C1 functions ai j : S6

→ R such that
∑p

j=1 ai j (x) = 1 for all i = 1, . . . , p and
all x ∈ S6. If h : S6

→ R is of class C1, we define A(h) to be the C1 map from S6 to M s
p(R) with

components A(h)i j given by A(h)i j = hai j for all i, j = 1, . . . , p. When n = 6, we have 2? = 3. For the
unit sphere (S6, g0), we also have

n−2
4(n−1)

Sg0 = 6.

Proposition 2.1. Let (S6, g0) be the unit six-dimensional sphere in R7. There exists h : S6
→ R, h > 6

everywhere and of class C1, such that the system (0-1) associated with A= A(h) is analytically unstable.
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Proof. We fix x0 ∈ S6 and let r be the distance to x0. We let also θ be given by θ = cos r . First we claim
that there exist smooth positive functions h and u in S6, which we write into the form h(x)= ĥ(θ) and
u(x)= û(θ), such that

1g0u+ hu = u2 and h > 6 (2-1)

in S6, and such that
ĥ(1)= 3û(1), û(1)= 6 and ĥ′(1)= 2û′(1). (2-2)

To prove the claim we let û be given by

û(θ)= 6
(
1− 2(θ−1)+ 3(θ−1)2

)
. (2-3)

Clearly, û(1)= 6 and û′(1)=−12. Since 1g0θ = 6θ and |∇θ |2 = 1− θ2, we get
1
61g0u = 6(7θ2

− 8θ − 1).

In particular, the first equation in (2-1) is satisfied if we let ĥ be given by

1
6 ĥ(θ)= 3θ2

− 8θ + 6− 7θ2
−8θ−1

3θ2−8θ+6
. (2-4)

As is easily checked from (2-4), ĥ(1)= 3û(1) and ĥ′(1)= 2û′(1). In particular, (2-2) holds true. Noting
that ĥ > 6 for all θ ∈ [−1,+1], we get two explicit smooth positive functions h and u in S6, given by
(2-3) and (2-4), such that (2-1) and (2-2) hold true. This proves the above claim. Now, for β > 1, we
define Bβ by Bβ(x)= B̂β(θ), where

B̂β(θ)= 6(β2
− 1)(β − θ)−2.

We have 1g0 Bβ + 6Bβ = B2
β in S6. Let

uβ = u+ Bβ (2-5)

and ûβ = û + B̂β , where u and û are as in (2-1) and (2-2). As is easily checked from (2-1) and the
equation satisfied by Bβ , we have

1g0uβ + hβuβ = u2
β (2-6)

in S6 for all β > 1, where hβ = ĥβ(θ) is given by

ĥβ = ĥ−
(12û+6−ĥ)B̂β

û+ B̂β
. (2-7)

Noting, thanks to (2-2), that hβ→ h in C0
loc(S

6) as β→ 1, while ĥ′β→ ĥ′ in L∞
(
[−1,+1]

)
as β→ 1,

we conclude that hβ → h in C1(S6). Now we let (βα)α be a sequence of positive real numbers such
that βα > 1 for all α and βα → 1 as α→+∞. We let Uα = p−1/2(uβα , . . . , uβα ), Aα = A(hβα ), and
A = A(h) where uβ is given by (2-5), hβ = ĥβ(θ) is given by (2-7), and h = ĥ(θ) is given by (2-4).
The Uα’s solve (1-1), they have bounded energy, and Aα → A in C1. Noting that ‖Uα‖∞→+∞ as
α→+∞, this proves the proposition. �

It is easily checked that A = A(h) satisfies (H). If U ∈ L2(M,Vect+(Rp)) is in the kernel of the
vector Schrödinger operator associated with A(h), we conclude by summing over the components that
|U|6 =

∑p
i=1 ui belongs to Ker(1g0 + h). This is impossible unless U≡ 0 since h > 0. It is also easily

seen that, at least for small perturbations ai j of δi j , the map A = A(h) satisfies (H′).
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3. The limit system

Of importance in blow-up theory, when discussing critical equations, is the classification of the solutions
of the critical limit Euclidean system we get by blowing up the original equations. In our case, we need
to classify the Ḣ 1-nonnegative solutions of the limit system

1ui = |U|
2?−2ui , (3-1)

where |U|2 =
∑p

i=1 u2
i , and 1=−

∑n
i=1 ∂

2/∂x2
i is the Euclidean Laplace–Beltrami operator . Depend-

ing on the context, we let Ḣ 1(Rn) be the homogeneous Sobolev space defined as the completion of
functions with compact supports, or of p-maps with compact supports, with respect to the L2-norm of
their gradient. The classification result we prove here is stated as follows.

Proposition 3.1. Let p≥ 1 and U∈ Ḣ 1(Rn) be a nonnegative solution of (3-1). Then there exist a ∈Rn ,
λ > 0, and 3 ∈ S p−1

+ , such that

U(x)=

(
λ

λ2+
|x−a|2

n(n−2)

)(n−2)/2

3 (3-2)

for all x ∈ Rn , where S p−1
+ consists of those elements (31, . . . , 3p) in the unit sphere S p−1 (in Rp) that

satisfy 3i ≥ 0 for all i .

We prove Proposition 3.1 in several steps. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1).
Regularity theory and the maximum principle apply to (3-1). In particular, U is necessarily smooth with
the property that for any i , either ui ≡ 0 or ui > 0 in Rn . We may therefore assume that there exists
p′ ≤ p such that ui > 0 in Rn for all i = 1, . . . , p′. A first step in the proof of Proposition 3.1 is as
follows.

Step 1. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for all i = 1, . . . , p′,
p′ ≤ p. Then, for any R > 0,

min
∂B0(R)

ui

u j
≤

ui

u j
≤ max
∂B0(R)

ui

u j
(3-3)

in B0(R) for all i, j ∈ {1, . . . , p′}.

Proof of Step 1. By (3-1),

1
( ui

u j

)
= 2

(
∇

( ui
u j

)
,∇u j

)
u−1

j .

Applying the maximum principle we get (3-3). �

The main objective now is to prove that

min
∂B0(R)

ui
u j
→ λi, j and max

∂B0(R)

ui
u j
→ λi, j (3-4)

as R → +∞ for some λi, j > 0 so that, together with Step 1, we obtain ui = λi, j u j in Rn for all
i, j = 1, . . . p′. To prove (3-4) we first observe that

|x |(n−2)/2ui (x)→ 0 (3-5)
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as |x |→+∞ for all i ∈{1, . . . , p′}. Indeed, let r>0, and Vr =r (n−2)/2U (r x). We have1Vr =|Vr |
2?−2Vr

and ∫
B0(2)\B0(1/2)

|Vr |
2? dx→ 0 as r→+∞,

since ui ∈ L2?(R) for all i . Then vi
r→ 0 in C0

loc

(
B0
( 3

2

)
\ B0

( 3
4

))
as r→+∞ for all i , where the vi

r ’s are
the components of Vr . This proves (3-5). Now, in order to prove (3-4), we prove that the following step
holds true.

Step 2. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for all i = 1, . . . , p′,
p′ ≤ p. For any 0< ε < 1

2 , there exists Cε > 0 such that

ui (x)≤ Cε|x |(2−n)(1−ε)

for all x ∈ Rn and all i ∈ {1, . . . , p′}.

Proof of Step 2. Let 0< ε < 1
2 and Rε > 0 be such that

sup
x∈Rn\B0(Rε)

|x |2|U (x)|2
?
−2
≤
(n− 2)2

2
ε(1− ε).

It is always possible to find such a Rε thanks to (3-5). For R ≥ Rε, we let

η(R)= max
i=1,...,p′

max
∂B0(R)

ui

and

Gε(x)= η(Rε)
(
|x |
Rε

)(2−n)(1−ε)
+ η(R)

(
|x |
R

)(2−n)ε
.

It is clear that ui ≤ Gε on ∂B0(Rε)
⋃
∂B0(R). Let us assume that ui

Gε
possesses a local maximum at

x ∈ B0(R) \ B0(Rε). Then
1ui (x)
ui (x)

≥
1Gε(x)
Gε(x))

.

Since
1Gε(x)
Gε(x)

= ε(1− ε)(n− 2)2|x |−2,

we get
|x |2|U (x)|2

?
−2
≥ ε(1− ε)(n− 2)2.

But this is absurd by the choice of Rε we made. Thus we can write, for any R> Rε and any i ∈{1, . . . , p′},

ui (x)≤ η(Rε)
(
|x |
Rε

)(2−n)(1−ε)
+ η(R)

(
|x |
R

)(2−n)ε
(3-6)

in B0(R) \ B0(Rε). Fix x ∈ Rn
\ B0(Rε). Passing to the limit as R → +∞ in (3-6), since, by (3-5),

R(n−2)/2η(R)→ 0 as R→+∞, we get

ui (x)≤ η(Rε)
(
|x |
Rε

)(2−n)(1−ε)
.

This ends the proof of Step 2. �
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Step 3. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for all i = 1, . . . , p′,
p′ ≤ p. Then ui ∈ L2?−1(Rn) and

lim
|x |→+∞

|x |n−2ui (x)=
1

(n− 2)ωn−1

∫
Rn
|U |2

?
−2ui dx

for all i ∈ {1, . . . , p′}.

Proof of Step 3. We apply Green’s representation formula in Bx(R) and get

ui (x)=
1

(n− 2)ωn−1

∫
Bx (R)

(
|x − y|2−n

− R2−n)
|U (y)|2

?
−2ui (y) dy+

1
ωn−1 Rn−1

∫
∂Bx (R)

ui dσ.

Thanks to the estimate of Step 2 with 0 < ε < 2/(n+ 2), we have ui ∈ L2?−1(Rn) for all i . Passing to
the limit as R→+∞ we obtain

ui (x)=
1

(n− 2)ωn−1

∫
Rn
|x − y|2−n

|U (y)|2
?
−2ui (y) dy.

Thus

|x |n−2ui (x)

=
1

(n− 2)ωn−1

∫
Rn

|x |n−2

|x−y|n−2 |U (y)|
2?−2ui (y) dy

=
1

(n− 2)ωn−1

(∫
B0(R)
|U (y)|2

?
−2ui (y) dy+ oR(1)+

∫
Rn\B0(R)

|x |n−2

|x−y|n−2 |U (y)|
2?−2ui (y) dy

)
,

where oR(1)→ 0 as |x | → +∞. Now, using Step 2, we write∫
Rn\B0(R)

|x |n−2

|x − y|n−2 |U (y)|
2?−2ui (y) dy

≤ N (2?−2)/2C2?−1
ε

∫
Bx (|x |/2)

|x |n−2

|x − y|n−2 dy
(
|x |
2

)−(n+2)(1−ε)
+ 2n−2

∫
Rn\B0(R)

|U (y)|2
?
−2ui (y) dy

≤ N (2?−2)/2C2?−1
ε 2(n+2)(1−ε)−2ωn−1|x |n−(n+2)(1−ε)

+ 2n−2
∫

Rn\B0(R)
|U (y)|2

?
−2ui (y) dy.

Choosing 0< ε < 2
n+2

, we thus obtain that

lim
R→+∞

lim sup
|x |→+∞

∫
Rn\B0(R)

|x |n−2

|x − y|n−2 |U (y)|
2?−2ui (y) dy = 0.

This ends the proof of Step 3. �

Using Steps 1 and 3 we are now in a position to prove (3-4), and then Proposition 3.1.

Proof of Proposition 3.1. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for
all i = 1, . . . , p′, p′ ≤ p. Since the ui ’s are all positive for i = 1, . . . , p′, we get from Step 3 that

min
∂B0(R)

ui

u j
, max
∂B0(R)

ui

u j
→ λi, j
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as R→+∞, where λi, j > 0 is given by

λi, j =

∫
Rn |U |2

?
−2ui dx∫

Rn |U |2
?−2u j dx

.

In particular, (3-4) holds true. Thanks to Step 1, we thus get

ui = λi u1

for all i ∈ {1, . . . , p′} where λi = λi,1. By (3-1) we then get

1u1 = |3
′
|
2?−2u2?−1

1

in Rn where 3′ = (λi )i=1,...,p′ . By [Caffarelli et al. 1989] we can write

u1(x)= |3′|−1

( µ

µ2+
|x−x0|

2

n(n−2)

)(n−2)/2

(3-7)

for some x0 ∈ Rn and some µ> 0. In particular, since ui = λi u1, we get with (3-7) that (3-2) holds true
with 3 = (3i )i , where 3i = |3

′
|
−1λi for all i = 1, . . . , p′, and λi = 0 for all i > p′. Clearly, |3| = 1.

This ends the proof of Proposition 3.1. �

Let Kn be the sharp constant for the Sobolev inequality ‖u‖2? ≤ K‖∇u‖2 corresponding to the em-
bedding Ḣ 1(Rn)⊂ L2?(Rn). Then, as is well known,

Kn =

√
4

n(n− 2)ω2/n
n
, (3-8)

where ωn is the volume of the unit sphere. The multipliers in (3-2), which we get by taking the Euclidean
norm |U| of U in (3-2), turn out to be extremal functions for the sharp Euclidean Sobolev inequality
‖u‖2? ≤ Kn‖∇u‖2. As a direct consequence of Proposition 3.1 we then get∫

Rn
|U|2

?

dx = K−n
n (3-9)

for all nonnegative solutions U ∈ Ḣ 1(Rn) of (3-1), where Kn is as in (3-8). Proposition 3.1, combined
with the moving sphere approach, gives the full classification of nonnegative solutions of (3-1), namely
without the requirement that U ∈ Ḣ 1. This is carried out in [Druet et al. 2009].

4. Weak pointwise estimates

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be an integer, and
(xα)α be a converging sequence of points in M . Let also (λα)α be a sequence of positive real numbers.
For U : M→ Rp and V : Rn

→ Rp, we define the direct R̂λαxα -rescalings and the inverse Řλαxα -rescalings
by (

R̂λαxα U
)
(x)= λ(n−2)/2

α U(expxα (λαx)) and
(
Řλαxα V

)
(x)= λ(n−2)/2

α V(λα exp−1
xα (x)), (4-1)

where x in the first equation is a variable in Rn , x in the second equation is a variable in M , localized
around the limit of the xα’s, and expxα is the exponential map at xα.
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Definition 4.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 and p ≥ 1
be an integer. A p-vector bubble is a sequence (Bα)α of p-maps from M to Rp given by

Bα(x)=

( µα

µ2
α +

dg(xα, x)2

n(n−2)

)(n−2)/2

3 (4-2)

for all x ∈ M and all α, where (xα)α is a converging sequence of points in M , (µα)α is a sequence of
positive real numbers converging to 0, and 3 ∈ S p−1

+ . The xα’s are the centers of the bubble, the µα’s
are the weights of the bubble, and 3 is the S p−1-projection of the bubble.

The right-hand side in (4-2) can be seen as the Riemannian extension of the right-hand side in (3-2).
At last we let u0 : R

n
→ R be the function given by

u0(x)=
(

1+
|x |2

n(n− 2)

)−(n−2)/2

(4-3)

for all x ∈Rn . Another possible definition of u0 is that it is the unique nonnegative solution of1u=u2?−1

which achieves its maximum at 0 and which is such that u0(0) = 1. The result we prove in this section
provides a complete description of the blow-up in Sobolev spaces and very useful pointwise estimates.

Proposition 4.2. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in C1(M) as
α → +∞ for some C1 map A from M to M s

p(R). Let also (Uα)α be an arbitrary bounded sequence
in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. Then there exist
N ∈N?, a nonnegative solution U∞ of (0-1), and vector bubbles (Bi

α)α as in (4-2) for i = 1, . . . , N , such
that, up to a subsequence,

Uα =U∞+

N∑
i=1

Bi
α +Rα for all α,∫

M
|Uα|

2?dvg =

∫
M
|U∞|

2?dvg + N K−n
n + o(1) for all α, and

D(n−2)/2
α

∣∣∣∣Uα −U∞−

N∑
i=1

Bi
α

∣∣∣∣→ 0 in L∞(M) as α→+∞,

(4-4)

where Rα→ 0 in H 1(M) as α→+∞, o(1)→ 0 as α→+∞, Kn is as in (3-8), Dα : M→ R+ is given
by

Dα(x)= min
i=1,...,N

(
dg(xi,α, x)+µi,α

)
,

and the xi,α’s andµi,α’s are the centers and weights of the vector bubbles (Bi
α)α. Moreover, as α→+∞,

dg(xi,α, x j,α)
2

µi,αµ j,α
+
µi,α

µ j,α
+
µ j,α

µi,α
→+∞ for all i 6= j and

R̂µi,α
xi,α Uα→ u03i in C2

loc(R
n
\Si ) for all i,

(4-5)
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where the R̂µαxα -rescaling procedure is defined in (4-1), u0 is as in (4-3), the3i ’s are the S p−1-projections
of the (Bi

α)α’s,

Si =

{
lim

α→+∞
µ−1

i,α exp−1
xi,α
(x j,α), j ∈ Ii

}
,

the limits in the definition of Si are as α → +∞, and Ii consists of the j’s such that dg(xi,α, x j,α) =

O(µi,α) and µ j,α = o(µi,α) for all α.

Proof. Let Iα be the free functionals associated with (0-1). They are defined for U ∈ H 1(M) by

Iα(U)=
1
2

∫
M

(
|∇U|2+ Aα(U,U)

)
dvg −

1
2?

∫
M
|U|2

?

dvg.

The Uα’s in Proposition 4.2 solve (0-1) and are bounded in H 1. In particular, (Uα)α is a Palais–Smale
sequence for the Iα’s in the sense that the sequence (Iα(Uα))α is bounded and DIα(Uα)→ 0 in H 1(M)′

as α→+∞. Let η be a smooth cutoff function in Rn with small support around 0. Mimicking the proof
in [Struwe 1984] (see also [Druet et al. 2004] for its Riemannian analogue), we get that there exist N ∈N?,
a nonnegative solution U∞ of (0-1), converging sequences (xi,α)α in M , sequences (µi,α)α of positive
real numbers converging to 0, and nonnegative solutions Ui ∈ Ḣ 1(Rn) of (3-1) in Rn , i = 1, . . . , N , such
that, up to a subsequence, the first equation in (4-5) holds true, such that

Uα =U∞+

N∑
i=1

ηi
α Ř1/µi,α

xi,α Ui +Rα (4-6)

for all α, and such that∫
M
|Uα|

2?dvg =

∫
M
|U∞|

2?dvg +

N∑
i=1

∫
Rn
|Ui |

2?dx + o(1) (4-7)

for all α, where ηi
α(x)= η(exp−1

xi,α
(x)), the Ř1/µi,α

xi,α -rescalings are defined in (4-1), Rα→ 0 in H 1(M) as
α→+∞, and o(1)→ 0 as α→+∞. By Proposition 3.1,

Ui (x)=

(
λi

λ2
i +
|x−ai |

n(n−2)

)(n−2)/2

3i (4-8)

for some ai ∈ Rn , λi > 0, 3i ∈ S p−1
+ , and all x ∈ Rn . Up to changing the xi,α’s and µi,α’s, letting

x̃i,α = expxi,α
(µi,αai ) and µ̃i,α = λiµi,α, we can write, as in [Druet and Hebey 2005b], that

ηi
α Ř1/µi,α

xi,α Ui =Bi
α +Rα (4-9)

for all α, where Ui is as in (4-8), Rα→ 0 in H 1(M) as α→+∞, and (Bi
α)α is the vector bubble with

center x̃i,α, weight µ̃i,α, and S p−1-projection 3i . Noting that the changes xi,α→ x̃i,α and µi,α→ µ̃i,α

do not affect the first equation in (4-5), it follows from the above discussion, from (3-9), and from (4-6),
(4-7), and (4-9), that the two first equations in (4-4) and the first equation in (4-5) hold true. Now we
forget about the tilde notation for the centers and weights of the bubbles and, for i = 1, . . . , N , we let
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Si be as in Proposition 4.2. As one can check from the first equations in (4-4) and (4-5), for any i ,

R̂µi,α
xi,α

N∑
j=1

B j
α→ u03i in L∞loc(R

n
\Si ) and R̂µi,α

xi,α Uα − R̂µi,α
xi,α

N∑
j=1

B j
α→ 0 in L2?

loc(R
n) (4-10)

as α→+∞, where the R̂µi,α
xi,α -rescalings are defined in (4-1), 3i is the S p−1-projection of (Bi

α)α, and u0

is as in (4-3). Moreover, in any compact subset of Rn , and for α sufficiently large,

1gα ũi,α +µ
2
i,α

p∑
j=1

Ãαi j (x)ũ j,α = |Ũα|
2?−2ũi,α (4-11)

for all α and all i , where the ũi,α’s are the components of Ũα = R̂µi,α
xi,α Uα,

Ãαi j (x)= Aαi j (expxi,α
(µi,αx)),

and gα is the Riemannian metric in Rn given by gα(x)= (exp?xi,α
g)(µi,αx). Since µi,α→ 0 as α→+∞,

we get that gα → ξ in C2
loc(R

n) as α → +∞, where ξ is the Euclidean metric. By (4-10), for any
x ∈ Rn

\Si ,

lim
δ→0

lim sup
α→+∞

∫
Bx (δ)

|R̂µi,α
xi,α Uα|

2?dx = 0. (4-12)

In particular, the L2?-norm of R̂µi,α
xi,α Uα can be made uniformly arbitrarily small in small regions of

Rn
\Si , and by adapting and transposing the classical regularity argument [Trudinger 1968] to the present

situation (see also [Struwe 1990]) we get from (4-11) and (4-12) that the Ũα’s are uniformly bounded
in C2,θ

loc (R
n
\Si ). It easily follows that, up to a subsequence, the second equation in (4-5) also holds true.

Now it remains to prove that the third equation in (4-4) holds true. We proceed by contradiction and
assume that there exists ε0 > 0 and a sequence (xα)α in M such that, up to a subsequence,

Dα(xα)2
∣∣∣∣Uα(xα)−U∞(xα)−

N∑
i=1

Bi
α(xα)

∣∣∣∣2?−2

=max
M

D2
α

∣∣∣∣Uα −U∞−

N∑
i=1

Bi
α

∣∣∣∣2?−2

≥ 4ε0 (4-13)

for all α. First we claim that
Dα(xα)2|Bi

α(xα)|
2?−2
→ 0 (4-14)

as α→+∞, for all i = 1, . . . , N . In order to prove (4-14) we proceed by contradiction and assume that
there exists i = 1, . . . , N and ε1 > 0 such that, up to a subsequence,

Dα(xα)2|Bi
α(xα)|

2?−2
≥ ε1 (4-15)

for all α. Up to passing to another subsequence we may then assume that there is λ∈ [0,+∞) such that

dg(xi,α, xα)
µi,α

→ λ as α→+∞, and
µ j,α

µi,α
+

dg(x j,α, xα)
µi,α

≥
√
ε1 for all α and j. (4-16)

Then, letting yα =µ−1
i,α exp−1

xi,α
(xα), we get from the second equation in (4-16) that there exists ε > 0 such

that d(yα,Si )≥ ε for all α, and it follows from the second equation in (4-5) that

Dα(xα)2
∣∣Uα(xα)−U∞(xα)−Bi

α(xα)
∣∣2?−2
→ 0 as α→+∞. (4-17)
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By the first equation in (4-5), and by (4-16), we can also write

Dα(xα)2
∣∣B j

α(xα)
∣∣2?−2
→ 0 (4-18)

as α→+∞, for all j 6= i . Combining (4-17) and (4-18) we get a contradiction with (4-13). It follows
that (4-14) holds true. Next we claim that

|Uα(xα)| → +∞ as α→+∞. (4-19)

By (4-13) and (4-14), we see that (4-19) holds if Dα(xα)→ 0 as α→ +∞. Suppose on the contrary
that, up to a subsequence, Dα(xα)→ δ as α→+∞ for some δ > 0. Then, by (4-13) and (4-14),∣∣Uα(x)−U∞(x)

∣∣2?−2
+ o(1)≤ 8

∣∣Uα(xα)−U∞(xα)
∣∣2?−2
+ o(1) (4-20)

for all x ∈ Bxα (δ/2) and all α sufficiently large. Now, if we assume that (4-19) is false, then we get from
(4-20) that the Uα’s are bounded in a neighbourhood of the xα’s, and it follows from standard elliptic
theory that Uα(xα)−U∞(xα)→ 0 as α→+∞. Noting that this convergence of the (Uα −U∞)(xα)’s
is in contradiction with (4-13) and (4-14), we obtain (4-19).

Now let the µα’s be given by µ1−(n/2)
α = |Uα(xα)| for all α, and define the Vα’s by Vα = R̂µαxα Uα,

where the R̂µαxα -rescalings are defined in (4-1). Then,

1gαvi,α +µ
2
α

p∑
j=1

Âαi j (x)v j,α = |Vα|
2?−2vi,α (4-21)

in B0(δ/µα) for all α, where the vi,α’s are the components of Vα, the Âαi j ’s are given by Âαi j (x) =
Aαi j (expxα (µαx)), and gα is given by gα(x)= (exp?xα g)(µαx). From (4-19) we have µα→0 as α→+∞.
In particular, gα→ ξ in C2

loc(R
n) as α→+∞. We also have |Vα(0)| = 1 for all α. Noting that the Vα’s

are bounded in Ḣ 1(Rn), we may assume that, up to a subsequence, Vα ⇀ V∞ weakly in H 1
loc(R

n) as
α→+∞ for some V∞ ∈ H 1(Rn) that solves (3-1). Let S̃ be given by

S̃=

{
lim

α→+∞

1
µα

exp−1
xα (xi,α) : i ∈ J

}
,

where J consists of the i = 1, . . . , N which are such that dg(xi,α, xα)= O(µα) and µi,α = o(µα) for all
α. In what follows we let K bRn

\S̃ be a compact subset of Rn
\S̃, and let x ∈ K . By (4-13) and (4-14)

we have∣∣∣∣Vα(x)−µ(n−2)/2
α U∞(yα)−µ(n−2)/2

α

N∑
i=1

3i Bi,α(yα)
∣∣∣∣2?−2

≤

(
Dα(xα)
Dα(yα)

)2

(1+ o(1))+ o(1), (4-22)

where yα = expxα (µαx) for all α, 3i is the S p−1-projection of (Bi
α)α for all i , and Bi,α = |B

i
α| for all α

and i . Now we claim that
µ(n−2)/2
α |Bi,α(yα)| → 0 (4-23)

as α→+∞, for all i = 1, . . . , N . Equation (4-23) is obvious if µα = o(µi,α). On the other hand, if we
assume that µi,α = o(µα), then, since dξ (x, S̃) > 0, we get µα = O(dg(xi,α, yα)). Here again, (4-23)
holds true. At last we may assume that there exists C > 0 such that C−1µα ≤ µi,α ≤ Cµα for all α.
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Then (4-23) holds true unless dg(xi,α, yα)= O(µi,α). In this case we have dg(xi,α, xα)= O(µi,α), and it
follows that |Bi,α(xα)|/|Uα(xα)| 6→ 0 as α→+∞. Combining (4-13) and (4-14) we get a contradiction,
and it follows that (4-23) holds true. In particular, by (4-19), (4-22), and (4-23), we can write

|Vα(x)|2
?
−2
≤

(
Dα(xα)
Dα(yα)

)2

(1+ o(1))+ o(1). (4-24)

At this point we claim that
Dα(xα)= O(Dα(yα)). (4-25)

We prove (4-25) by contradiction and assume that

dg(xi,α, yα)+µi,α = o(Dα(xα)). (4-26)

If dg(xi,α, xα)/µα→+∞ as α→+∞, then

dg(xi,α, yα)+µi,α ≥ (1+ o(1))dg(xi,α, xα)+µi,α ≥ (1+ o(1))Dα(xα),

and this contradicts (4-26). Hence, dg(xi,α, xα)= O(µα). Then, by (4-26),

dg(xi,α, yα)+µi,α = o(µα)+ o(µi,α). (4-27)

In particular, dg(xi,α, yα)= o(µα). Since x ∈ K , this implies in turn that µα = O(µi,α), and we get with
(4-27) that µi,α + o(µi,α)= 0, another contradiction. This proves (4-25). By (4-24) and (4-25), for any
compact subset K b Rn

\S̃, there exists CK > 0 such that |Vα| ≤ CK in K . In particular, by standard
elliptic theory and (4-21), we get

Vα→ V∞ in C2
loc(R

n
\S̃) as α→+∞. (4-28)

Clearly 0 6∈ S̃ since, if not the case, Dα(xα)= o(µα) and we get a contradiction with (4-13). Thus, since
|Vα(0)| = 1 for all α, we see that |V∞(0)| = 1 and V∞ 6≡ 0 is not identically zero. By Proposition 3.1 it
follows that there exists a ∈ Rn , λ > 0, and 3 ∈ S p−1

+ , such that

V∞(x)=

(
λ

λ2+
|x−a|

n(n−2)

)(n−2)/2

3 (4-29)

for all x ∈Rn . Let K bRn
\S̃ be a nonempty compact subset of Rn

\S̃. By the first equation in (4-4) and
by (4-23), we can write Vα→ 0 in L2?(K ) as α→+∞. Then, by (4-28), we get

∫
K |V∞|

2?dx = 0, a
contradiction with (4-29). Proposition 4.2 is proved. �

5. A first strong pointwise estimate

We prove pointwise estimates on the Uα’s which we use as the initial step in the induction argument we
develop in the next section. First we fix some notations. We let (Uα)α be an arbitrary bounded sequence
in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. Proposition 4.2
applies to the Uα’s. We let S be the set of the geometrical points of the Uα’s. Then,

S=
{

lim
α→+∞

xi,α : i = 1, . . . , N
}
, (5-1)
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where all the limits do exist, up to a subsequence. For δ > 0 small enough, we let

ηα(δ)= max
M\

⋃N
i=1 Bxi,α (δ)

|Uα|. (5-2)

Thanks to the last equation in (4-4) of Proposition 4.2

lim sup
α→+∞

ηα(δ)≤ ‖U∞‖∞. (5-3)

Moreover, by standard elliptic theory, for any δ′ > δ,

max
M\

⋃N
i=1 Bxi,α (δ

′)
|∇Uα|g = O(ηα(δ)). (5-4)

In what follows we let R0 > 0 be such that for any i = 1, . . . , N ,

|x | ≤
R0

2
(5-5)

for all x ∈ Si , where Si is as in Proposition 4.2. We also set

µα = max
i∈{1,...,N }

µi,α, and rα(x)= min
i∈{1,...,N }

dg(xi,α, x). (5-6)

The pointwise estimate we prove in this section is stated as follows.

Proposition 5.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in C1(M) as
α→+∞ for some C1 map A from M to M s

p(R) satisfying (H). Let also (Uα)α be an arbitrary bounded
sequence in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. There
exists C1 > 0 such that, up to passing to a subsequence on the Uα’s, there holds that for any sequence
(xα)α of points in M , ∣∣Uα(xα)−U∞(xα)

∣∣≤ C1µ
(n−2)/2
α Dα(xα)2−n

+ εα‖U∞‖∞, (5-7)

where Dα and U∞ are as in Proposition 4.2, µα is as in (5-6), and εα→ 0 as α→+∞.

We divide the proof of Proposition 5.1 into two steps.

Step 1. For any 0< ε < 1
2 , there exist Rε > 0, δε > 0 and Cε > 0 such that

|Uα(x)| ≤ Cε
(
µ(1−2ε)(n−2)/2
α rα(x)(2−n)(1−ε)

+ ηα(δε)rα(x)(2−n)ε)
for all α and all x ∈ M \

⋃N
i=1 Bxi,α (Rεµi,α).

Proof of Step 1. Let 0< ε < 1
2 . Consider G the Green’s function of the operator u 7→1gu+u. We know

(see [Druet et al. 2004], for example) that there exist γ1 > 1, γ2 > 0 and γ3 > 0 such that for any distinct
x, y ∈ M ,

1
γ1
≤ dg(x, y)n−2G(x, y)≤ γ1 (5-8)

and
|∇G(x, y)|2

G(x, y)2
≥ γ2dg(x, y)−2

− γ3, (5-9)
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where ∇ in (5-9) is with respect to one of the two variables, for instance y. We let

9α,ε(x)= µ(1−2ε)(n−2)/2
α

N∑
i=1

G(xi,α, x)1−ε + ηα(δ)
N∑

i=1

G(xi,α, x)ε,

and let yα ∈ M \
⋃N

i=1 Bxi,α (Rµi,α) be such that

max
M\

⋃p
i=1 Bxi,α (Rµi,α)

∑p
i=1 ui,α

9α,ε
=

∑N
i=1 ui,α

9α,ε
(yα) (5-10)

for all α. We claim that, if δ > 0 is chosen sufficiently small and R > 0 sufficiently large, then

yα ∈ ∂
(

M \
N⋃

i=1
Bxi,α (Rµi,α)

)
or rα(yα) > δ (5-11)

for α large. We prove the claim by contradiction. Indeed, assume that (5-11) fails for all α. We can write

1g
(∑p

i=1 ui,α
)∑p

i=1 ui,α
(yα)≥

1g9α,ε

9α,ε
(yα). (5-12)

Thanks to (1-1),
1g
(∑p

i=1 ui,α
)∑p

i=1 ui,α
(yα)≤ |Uα(yα)|2

?
−2
+ p‖Aα‖∞,

where ‖Aα‖∞=maxi, j ‖Aαi j‖∞ for all α. By (5-12) we then get
1g9α,ε
9α,ε

(yα)≤|Uα(yα)|2
?
−2
+ p‖Aα‖∞.

Since rα(yα)≤ δ, this yields

rα(yα)2
1g9α,ε

9α,ε
(yα)≤ rα(yα)2|Uα(yα)|2

?
−2
+ δ2 p‖A‖∞+ o(1). (5-13)

Now we write

1g9α,ε(yα)= ε(1− ε)µ(1−2ε)(n−2)/2
α

N∑
i=1

∣∣∇G(xi,α, yα)
∣∣2
g

G(xi,α, yα)2
G(xi,α, yα)1−ε

+ε(1− ε)ηα(δ)
N∑

i=1

∣∣∇G(xi,α, yα)
∣∣2
g

G(xi,α, yα)2
G(xi,α, yα)ε

−εηα(δ)
N∑

i=1
G(xi,α, yα)ε − (1− ε)µ(1−2ε)(n−2)/2

α

N∑
i=1

G(xi,α, yα)1−ε.

Using (5-8) and (5-9), and since 0< ε < 1
2 , it follows that

1g9α,ε(yα)

≥−(1− ε)9α,ε(yα)− γ3ε(1− ε)9α,ε(yα) + ε(1− ε)γ2µ
(1−2ε)(n−2)/2
α

N∑
i=1

dg(xi,α, yα)−2G(xi,α, yα)1−ε

+ ε(1− ε)γ2ηα(δ)
N∑

i=1
dg(xi,α, yα)−2G(xi,α, yα)ε

≥−(1− ε)(1+ γ3ε)9α,ε(yα)+ ε(1− ε)γ2γ
ε−1
1 µ(1−2ε)(n−2)/2

α rα(yα)−2−(n−2)(1−ε)

+ ε(1− ε)γ2γ
−ε
1 ηα(δ)rα(yα)−2−(n−2)ε.
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From (5-8) we obtain 9α,ε(yα)≤ Nγ 1−ε
1 µ

(1−2ε)(n−2)/2
α rα(yα)−(n−2)(1−ε)

+ Nγ ε1 ηα(δ)rα(yα)
−(n−2)ε, and

we can write

rα(yα)21g9α,ε(yα)≥−(1− ε)(1+ γ3ε)rα(yα)29α,ε(yα)+
1
N
ε(1− ε)γ2γ

2(ε−1)
1 9α,ε(yα).

Coming back to (5-13), we thus get

1
N
ε(1− ε)γ2γ

2(ε−1)
1 ≤ rα(yα)2|Uα(yα)|2

?
−2
+ δ2 p‖A‖∞+ o(1)+ (1− ε)(1+ γ3ε)δ

2,

since we assumed that rα(yα)≤ δ. By the last equation in (4-4) of Proposition 4.2 we can choose δ > 0
and R > 0 so as to get a contradiction. Thus (5-11) is proved. Up to choosing R a little bit larger, we
deduce from the second equation in (4-5) of Proposition 4.2, and the definitions of µα and ηα(δ), that
there exists C > 0 such that

sup
M\

⋃N
i=1 Bxi,α (Rµi,α)

∑p
i=1 ui,α

9α,ε
≤ Cε.

Using (5-8), we obtain the existence of δε > 0, Rε > 0 and Cε > 0 such that
p∑

i=1

ui,α(x)≤ Cε
(
µ(1−2ε)(n−2)/2
α rα(x)(2−n)(1−ε)

+ ηα(δε)rα(x)(2−n)ε
)

for all α and all x ∈ M \
⋃N

i=1 Bxi,α (Rεµi,α). This proves Step 1. �

Step 2. There exists C0 > 0 such that |Uα(x)| ≤ C0
(
µ
(n−2)/2
α Dα(x)2−n

+ ‖U∞‖∞
)

for all α and all
x ∈ M.

Proof of Step 2. First we prove that there is δ > 0 small such that for any sequence (yα) of points in M ,

lim sup
α→+∞

|Uα(yα)|

µ
(n−2)/2
α Dα(yα)2−n + ηα(δ)

<+∞. (5-14)

By the definition of ηα(δ), it is clear that (5-14) holds if rα(yα)≥ δ. Now assume that rα(yα)= O(µα).
Then Dα(yα)= O(µα). We can use the last equation in (4-4) of Proposition 4.2 to obtain

Dα(yα)2µ−1
α |Uα(yα)|2/n−2

= O(Dα(yα)µ−1
α )+ O

( N∑
i=1

Dα(yα)2µ−1
α µ

−1
i,α

(
1+

dg(xi,α, yα)2

n(n− 2)µ2
i,α

)−1)
= O(1),

since Dα(yα)≤ dg(xi,α, yα)+µi,α for all i ∈ {1, . . . , N }. In particular, (5-14) holds true also in this case.
Thus we may assume from now on that

rα(yα)≤ δ and
rα(yα)
µα

→+∞ as α→+∞. (5-15)

We let λ > 1 be such that λp‖A‖∞ 6∈ Sp(1g) and we let G be the Green’s function of 1g − λp‖A‖∞.
Here again, there exist C1 > 1, C2 > 0 and C3 > 0 such that

1
C1

dg(x, y)2−n
−C2 ≤ G(x, y)≤ C1dg(x, y)2−n (5-16)
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and
|∇G(x, y)|g ≤ C3dg(x, y)1−n (5-17)

for all x, y ∈ M , x 6= y. We let x0 ∈ S be such that dg(yα, x0) ≤ δ+ o(1); such an x0 does exist thanks
to (5-15). We choose δ > 0 such that

dg(x, y)≥ 4δ (5-18)

for all x, y ∈ S, x 6= y, and such that

δ ≤ 1
4(C1C2)

−1/(n−2), (5-19)

where C1 and C2 are as in (5-16). We write with Green’s representation formula that
p∑

i=1

ui,α(yα)=
∫

Bx0 (2δ)
G(yα, x)

(
1g

( p∑
i=1

ui,α

)
− λp‖A‖∞

p∑
i=1

uαi

)
(x) dvg(x)

+

∫
∂Bx0 (2δ)

G(yα, x)∂ν

( p∑
i=1

ui,α

)
(x) dσg(x)−

∫
∂Bx0 (2δ)

∂νG(yα, x)
( p∑

i=1

ui,α

)
(x) dσg(x). (5-20)

Since λ > 1, we get with (1-1) that

1g

( p∑
i=1

ui,α

)
− λp‖A‖∞

p∑
i=1

ui,α ≤ |Uα|
2?−2

p∑
i=1

ui,α.

We have G(yα, x)≥ 0 in Bx0(2δ) for α large, thanks to (5-16) and (5-19). Thus we can write∫
Bx0 (2δ)

G(yα, x)
(
1g

( p∑
i=1

ui,α

)
− λp‖A‖∞

p∑
i=1

ui,α

)
(x) dvg(x)

≤ C1

∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−2

p∑
i=1

ui,α(x) dvg(x). (5-21)

From (5-18), we also know that dg
(
xi,α, ∂Bx0(2δ)

)
≥ δ for all i = 1, . . . , N and for α large so that we

can control the boundary terms in (5-20) thanks to (5-4), (5-16) and (5-17). We thus obtain that

|Uα(yα)| = O(ηα(δ))+ O
(∫

M
dg(yα, x)2−n

|Uα(x)|2
?
−1dvg(x)

)
. (5-22)

We fix 0< ε < 1
n+2

and we let Rε > 0, δε > 0 and Cε > 0 be given by Step 1. We write∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)

≤

∫
Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)+

p∑
i=1

∫
Bxi,α (Rεµα)

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x),

where Mα,ε = M \
⋃N

i=1 Bxi,α (Rεµα). From (5-15) and Hölder’s inequalities we obtain∫
Bxi,α (Rεµα)

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)= O

(
µ(n−2)/2
α dg(xi,α, yα)2−n)
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for all i ∈ {1, . . . , N }. Thus we get∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)

≤

∫
Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)+ O

(
µ(n−2)/2
α rα(yα)2−n). (5-23)

Using Step 1, we know that for any x ∈ Mα,ε,

|Uα(x)|2
?
−1
≤ 22?−2C2?−1

ε

(
µ
(1−2ε)(n+2)/2
α

rα(x)(n+2)(1−ε) +
ηα(δε)

2?−1

rα(x)(n+2)ε

)
so that∫

Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)

≤ 22?−2C2?−1
ε µ(1−2ε)(n+2)/2

α

∫
Mα,ε

dg(yα, x)2−nrα(x)−(n+2)(1−ε)dvg(x)

+ 22?−2C2?−1
ε ηα(δε)

2?−1
∫

Mα,ε

dg(yα, x)2−nrα(x)−(n+2)εdvg(x)

≤ 22?−2C2?−1
ε µ(1−2ε)(n+2)/2

α

N∑
i=1

∫
M\Bxi,α (Rεµα)

dg(yα, x)2−ndg(xi,α, x)−(n+2)(1−ε)dvg(x)

+ 22?−2C2?−1
ε ηα(δε)

2?−1
N∑

i=1

∫
M\Bxi,α (Rεµα)

dg(yα, x)2−ndg(xi,α, x)−(n+2)εdvg(x).

From (5-15), straightforward computations yield∫
Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)= O

(
µ(n−2)/2
α rα(yα)2−n)

+ O
(
ηα(δε)

2?−1).
Coming back to (5-23), using (5-3), we finally obtain that∫

M
dg(yα, x)2−n

|Uα(x)|2
?
−1dvg(x)= O

(
µ(n−2)/2
α rα(yα)2−n)

+ O(ηα(δε)).

Coming back to (5-22), taking 0<δ<δε such that (5-18) and (5-19) hold, we get (5-14) under assumption
(5-15). In particular, if δ is chosen sufficiently small, (5-14) holds. Now we claim that if U∞ ≡ 0, then

ηα(δ)= O
(
µ(n−2)/2
α

)
. (5-24)

As a consequence of (5-14), there exists C0 > 0 such that in any compact subset K of M \S,

|Uα(x)| ≤ C0

(
µ(n−2)/2
α CK + ηα(δ)

)
for some CK > 0. If (5-24) were false, we would get by standard elliptic theory that

Uα

ηα(δ)
→ H in C2

loc(M \S) as α→+∞,
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where H satisfies 1g H + AH = 0 in M \S and |H | ≤C0 in M \S. This implies that H is in the kernel
of1g+ A. Since all the components of H are nonnegative and H is not identically zero by the definition
of ηα(δ), this would contradict assumption (H). In particular, (5-24) is proved. Noting that if U∞ 6≡ 0,
then, by (5-3), ηα(δ)= O(‖U∞‖∞), we get with (5-14) that Step 2 holds true. �

Conclusion of the proof of Proposition 5.1. If U∞ ≡ 0, the proposition is a direct consequence of Step 2.
Assume now that U∞ 6≡ 0. We let H be the Green’s function of the Laplacian on M normalized such
that H(x, y)≥ 1 for all x, y ∈ M , x 6= y. There exists 21 > 1 such that

1
21

dg(x, y)2−n
≤H(x, y)≤21dg(x, y)2−n (5-25)

for all x, y ∈ M , x 6= y. We let (xα) be a sequence of points in M and prove that

|Uα(xα)−U∞(xα)| = O
(
µ(n−2)/2
α Dα(xα)2−n

)
+ o(1). (5-26)

If Dα(xα)= O(µα), then (5-26) is a direct consequence of the last equation in (4-4) of Proposition 4.2.
We may therefore assume that

Dα(xα)
µα

→+∞ as α→+∞. (5-27)

By standard elliptic theory,

Uα→U∞ in C2
loc(M \S) as α→+∞, (5-28)

where S is as in (5-1). We write using Green’s representation formula that
p∑

i=1

ui,α(xα)−
p∑

i=1

ui,∞(xα)=
1

Vg

p∑
i=1

∫
M

(
ui,α(xα)− ui,∞(xα)

)
dvg

+

p∑
i=1

∫
M

H(xα, x)1g(ui,α − ui,∞)(x) dvg(x),

where Vg is the volume of (M, g), and the ui,∞’s are the components of U∞. Then we get
p∑

i=1

ui,α(xα)−
p∑

i=1

ui,∞(xα)=
p∑

i=1

∫
M

H(xα, x)1g(ui,α − ui,∞)(x) dvg(x)+ o(1). (5-29)

Thanks to (5-28) there exists δα > 0, δα→ 0 as α→+∞, such that, up to a subsequence,

‖Uα −U∞‖C2({Dα>δα}) = o(1), (5-30)

where ‖U‖C2 =
∑p

i=1 ‖ui‖C2 , and {Dα > δα} is the subset of M consisting of the x ∈ M such that
Dα(x) > δα. In particular, it follows from (5-25), (5-29) and (5-30) that

p∑
i=1

ui,α(xα)−
p∑

i=1

ui,∞(xα)=
p∑

i=1

∫
{Dα(x)≤δα}

H(xα, x)1gui,α(x) dvg(x)+ o(1).

The proof of (5-26) then follows the lines of the proof of Step 2, using the estimate of that step. This
ends the proof of Proposition 5.1. �
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6. Strong pointwise estimates and sharp asymptotics

We now turn to pointwise estimates and sharp asymptotics. Our main result in this section is this:

Proposition 6.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in C1(M) as
α→+∞ for some C1 map A from M to M s

p(R) satisfying (H). Let also (Uα)α be an arbitrary bounded
sequence in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. Up to
passing to a subsequence on the Uα’s, there holds that for any sequence (xα)α of points in M ,∣∣∣∣Uα(xα)−U∞(xα)−

N∑
i=1

Bi,α(xα)3i

∣∣∣∣= εα‖U∞‖∞+ O
(
µ(n−2)/2
α

)
+ o

( N∑
i=1

Bi,α(xα)
)
, (6-1)

where Bi
α = Bi,α3i for all α and all i , where U∞, N , and the Bi

α’s are as in Proposition 4.2, where
εα→ 0 as α→+∞, and µα =maxi µi,α is the maximum weight of the weights of the Bi,α’s as in (5-6).

We prove Proposition 6.1 in several steps, based on induction on the following statement, defined for
1≤ k ≤ N + 1:

There exists Ck > 0 such that, up to a subsequence on the Uα’s, for any sequence (xα)
of points in M ,∣∣∣Uα(xα)−U∞(xα)−

k−1∑
i=1

Bi,α(xα)3i

∣∣∣
≤ Ck

(
µ
(n−2)/2
α +χkµ

(n−2)/2
k,α Rk,α(xα)2−n

)
+ εα‖U∞‖∞+ o

( k−1∑
i=1

Bi,α(xα)
)
,

where εα→ 0 as α→+∞, χk = 1 if k ≤ N , and χN+1 = 0.

(Ik)

Here we have reordered the blow-up points in such a way that µα = µ1,α ≥ µ2,α ≥ · · · ≥ µN ,α, and we
have defined

ri,α(x)= min
i≤ j≤N

dg(x j,α, x), (6-2)

Ri,α(x)= min
i≤ j≤N

(
dg(x j,α, x)+µ j,α

)
. (6-3)

We have R1,α(x)= Dα(x) and r1,α(x)= rα(x), where Dα is as in Proposition 4.2 and rα is as in (5-6).
We will refer to the whole indented statement above as (Ik), as well as the inequality so labeled.

Clearly, Proposition 6.1 is equivalent to (IN+1), while Proposition 5.1 implies (I1).
We apply induction on k to pass from (I1) to (IN ), and then we use a slightly distinct argument to

pass from (IN ) to (IN+1). In the following, we fix 1 ≤ κ ≤ N − 1 and assume that (Iκ ) holds true.
We proceed in several steps, but first we fix some notation. As in the preceding section we let G be the
Green’s function of the operator u 7→1gu+u. Then (5-8) and (5-9) hold. We fix 0< ε < 1/(n+2) and
fix R0 as in (5-5). For any 1≤ i ≤ κ , we define

8εi,α(x)=min
{
µ
(1−2ε)(n−2)/2
i,α G(xi,α, x)1−ε; D0µ

−(1−2ε)(n−2)/2
i,α G(xi,α, x)ε

}
, (6-4)

where x ∈ M \ {xi,α},
D0 = γ

2ε−1
1 (4R0)

(2−n)(1−2ε),
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and γ1 is as in (5-8). This choice of D0, together with (5-8), implies that

8εi,α(x)= D0µ
−(1−2ε)(n−2)/2
i,α G(xi,α, x)ε,

if dg(xi,α, x)≤ 2R0µi,α. We also let

ϕεα(x)=max
{
‖U∞‖∞;µ

(1−2ε)(n−2)/2
α

} N∑
i=1

G(xi,α, x)ε (6-5)

and
9ε
α(x)=

N∑
i=κ+1

G(xi,α, x)1−ε. (6-6)

For 1≤ i ≤ κ , we set

�εi,α =
{

x ∈ M s.t. 8εi,α(x)≥8
ε
j,α(x) for all 1≤ j ≤ κ

}
. (6-7)

We also set

D(ε)=
γ2ε(1− ε)

2N
, (6-8)

where γ2 is as in (5-8), and we define νκ,α by

ν(1−2ε)(n−2)/2
κ,α =max

{
µ
(1−2ε)(n−2)/2
κ+1,α ; max

1≤i≤κ
sup
�̃εi,α

8εi,α(x)

9ε
α(x)

}
, (6-9)

where
�̃εi,α =

{
x ∈�εi,α s.t. dg(xi,α, x)2Qκ,α(x)2

?
−2
≥ D(ε)

}
, (6-10)

and Qκ,α(x)= |Uα(x)−U∞(x)−
∑κ

i=1 Bi,α(x)3i |. By convention, the suprema in (6-9) are −∞ if the
sets �̃εi,α are empty. We can now start the proof of Proposition 6.1.

Step 1. νκ,α = O(µκ,α).

Proof of Step 1. We let yα ∈ �̃εi,α and assume that

ν1−2ε
κ,α 9ε

α(yα)
2/(n−2)

=8εi,α(yα)
2/(n−2).

This and (5-8) imply that

ν1−2ε
κ,α = O

(
Rκ+1,α(yα)2(1−ε)8εi,α(yα)

2/(n−2)). (6-11)

Since (Ik) holds and yα ∈ �̃εi,α, we also have

D(ε)≤ o(1)+ o
( κ−1∑

j=1
dg(xi,α, yα)2 B j,α(yα)2

?
−2
)
+ O

(
µ2
κ,αdg(xi,α, yα)2 Rκ,α(yα)−4).

Since yα ∈ �̃εi,α and �̃εi,α ⊂�
ε
i,α, we can write

κ−1∑
j=1

dg(xi,α, yα)2 B j,α(yα)2
?
−2
= O(1),

and we thus get
Rκ,α(yα)2 = O

(
µκ,αdg(xi,α, yα)

)
. (6-12)

If Rκ+1,α(yα)= O(Rκ,α(yα)), we get from (6-11) and (6-12) that

ν1−2ε
κ,α = O

(
µ1−ε
κ,α dg(xi,α, yα)1−ε8εi,α(yα)

2/(n−2))
= O(µ1−ε

κ,α µ
−ε
i,α)= O(µ1−2ε

κ,α ),
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and Step 1 is proved. Assume now that Rκ,α(yα)= o(Rκ+1,α(yα)). Then (6-12) becomes(
dg(xκ,α, yα)+µκ,α

)2
= O(µκ,αdg(xi,α, yα)). (6-13)

If i=κ we obtain dg(xi,α, yα)=O(µi,α); using the last equation in (4-4), and sinceµi,α=o(Rκ+1,α(yα)),
we obtain that

dg(xi,α, yα)2
∣∣∣∣Uα(yα)−U∞(yα)−

κ∑
j=1

B j,α(yα)3 j

∣∣∣∣2?−2

→ 0 as α→+∞.

This contradicts the fact that yα ∈ �̃εi,α. Thus we must have 1 ≤ i ≤ κ − 1. Since 8εi,α(yα) ≥8
ε
κ,α(yα),

because of (5-8), we can write

µ1−2ε
κ,α dg(xκ,α, yα)−2ε(µκ,α+dg(xκ,α, yα)

)−2(1−2ε)
=O

(
µ1−2ε

i,α dg(xi,α, yα)−2ε(µi,α+dg(xi,α, yα)
)−2(1−2ε))

.

In particular we obtain with (6-13) that(
µi,α + dg(xi,α, yα)

)1−ε
= O(µεκ,αµ

1−2ε
i,α ).

Since µk,α ≤µi,α, this implies that dg(xi,α, yα)= O(µi,α). We also get µi,α = O(µκ,α). Then we obtain
with (6-13) that dg(xκ,α, yα)= O(µi,α), and this contradicts the first equation in (4-5) of Proposition 4.2.
Step 1 is proved. �

Step 2. There exists Cε > 0 such that

|Uα(x)|≤Cε

( κ∑
i=1

8εi,α(x)+ν
(1−2ε)(n−2)/2
κ,α rκ+1,α(x)(2−n)(1−ε)

+max
{
‖U∞‖∞;µ

(1−2ε)(n−2)/2
α

}
rα(x)(2−n)ε

)
for all x ∈ M \

⋃N
i=κ+1 Bxi,α (R0µi,α).

Proof of Step 2. We let yα ∈ M \
⋃N

i=κ+1 Bxi,α (R0µi,α) be such that∑p
i=1 ui,α∑κ

i=18
ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

(yα)= sup
M\

⋃N
i=κ+1 Bxi,α (Rεµi,α)

∑p
i=1 ui,α∑κ

i=18
ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

,

(6-14)
and we assume by contradiction that∑p

i=1 uαi∑κ
i=18

ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

(yα)→+∞ as α→+∞. (6-15)

From (Iκ ) and (6-15) we get
rα(yα)→ 0 as α→+∞. (6-16)

We also have, using the second equation in (4-5),
dg(x j,α, yα)

µ j,α
→+∞ (6-17)

as α→+∞ for all κ+1≤ j ≤ N . Here we used the fact that, by (6-9), νκ,α ≥µκ+1,α. Thanks to (6-15)
and the second equation in (4-5), we also know that, for any 1≤ j ≤ κ , either

dg(x j,α, yα)≤ R0µ j,α or
dg(x j,α, yα)

µ j,α
→+∞ as α→+∞. (6-18)
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In particular, thanks to (6-14) we can write

1g
∑p

i=1 ui,α∑p
i=1 ui,α

(yα)≥
1g

(∑κ
i=18

ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕ

ε
α

)
∑κ

i=18
ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

(yα). (6-19)

From (1-1), (5-8), and (5-9), we then get

0≥
κ∑

i=1

(
dg(xi,α, yα)−2

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
8εi,α(yα)

+

(
rκ+1,α(yα)−2

Nγ 2(1−ε)
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

+

(
rα(yα)−2

Nγ 2ε
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ϕα,ε(yα), (6-20)

where

Aε =
p‖Aα‖∞+ (1+ γ3ε)(1− ε)

γ2ε(1− ε)
.

We let in the following 1≤ i ≤ κ be such that yα ∈�εi,α. Then we deduce from (6-20) that

0≥
(

dg(xi,α, yα)−2
−

κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
− κAε

)
8εi,α(yα)

+

(
rκ+1,α(yα)−2

Nγ 2(1−ε)
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

+

(
rα(yα)−2

Nγ 2ε
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ϕα,ε(yα). (6-21)

From (6-15), we know that

‖U∞‖∞ = o(|Uα(yα)|) and µ(n−2)/2
α = o(|Uα(yα)|), (6-22)

and that

B j,α(yα)= o(|Uα(yα)|) (6-23)

for all 1≤ j ≤ κ since

B j,α(yα)= O(8εj,α(yα)) (6-24)

for all 1≤ j ≤ κ . From (6-17), we have

Rκ+1,α(yα)2 B j,α(yα)2
?
−2
= o(1) (6-25)

for all κ + 1 ≤ j ≤ N . Thus we can deduce from the last equation in (4-4) of Proposition 4.2 together
with (6-22), (6-23), and (6-25), that

Dα(yα)2|Uα(yα)|2
?
−2
= o(1). (6-26)
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Using (6-16) and (6-26), we can transform (6-21) into

0≥
(

dg(xi,α, yα)−2
−

κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
− κAε

)
8εi,α(yα)

+

(
rκ+1,α(yα)−2

Nγ 2(1−ε)
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

+

(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα). (6-27)

Since (Iκ ) holds true, we can prove with (6-22) and (6-23) that

|Uα(yα)|2
?
−2
= O

(
µ2
κ,αRκ+1,α(yα)−4). (6-28)

This implies that
Rκ+1,α(yα)2|Uα(yα)|2

?
−2
→ 0 as α→+∞. (6-29)

Indeed, if it is not the case, we would have from (6-28) that

Rκ+1,α(yα)= O(µk,α)

and thanks to (6-26) that there exists j ∈ {1, . . . , κ} such that

dg(x j,α, yα)+µ j,α = o(Rκ+1,α(yα)).

In particular, we get a contradiction since µ j,α ≥ µκ,α. As a remark, (6-28) also implies that

Rκ+1,α(yα)→ 0 as α→+∞, (6-30)

due to (6-23). Now, thanks to (6-29) and (6-30), we deduce from (6-27) that

0≥
(

dg(xi,α, yα)−2
−

κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
− κAε

)
8εi,α(yα)

+

(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α rκ+1,α(yα)−29α,ε(yα)

+

(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα). (6-31)

If yα 6∈ �̃εi,α, we transform (6-31) into

0≥
(

1+ o(1)−
κD(ε)

γ2ε(1− ε)
− κAεdg(xi,α, yα)2

)
dg(xi,α, yα)−28εi,α(yα)

+

(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α rκ+1,α(yα)−29α,ε(yα)+

(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα)

by using (6-22) and (6-23). This leads to(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα)= O
(
µ
(1−2ε)(n−2)/2
i,α

)
,

thanks to our choice of D(ε). From (5-8), (6-16), and the definition of ϕα,ε, we clearly get a contradiction.
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Thus yα ∈ �̃εi,α. Coming back to (6-31), we obtain in this situation that(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)≤

(
κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
+ κAε

)
rκ+1,α(yα)28εi,α(yα).

Using (6-29), (6-30), and the definition of νκ,α, this leads to(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)= o(8εi,α(yα))= o

(
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

)
and this is again a contradiction. Thus (6-15) cannot hold true and we get the equation in Step 2 from
(5-8). This ends the proof of Step 2. �

Step 3. There exists C0 > 0 such that

|Uα(x)| ≤ C0

( κ∑
i=1

Bi,α(x)+‖U∞‖∞+ ν(n−2)/2
κ,α Rκ+1,α(x)2−n

)
for all x ∈ M and all α > 0.

Proof of Step 3. We let (yα) be a sequence of points in M and we aim to prove that

lim sup
α→+∞

|Uα(yα)|∑κ
i=1 Bi,α(yα)+‖U∞‖∞+ ν

(n−2)/2
κ,α Rκ+1,α(yα)2−n

<+∞. (6-32)

Since (Iκ ) holds true, it is clear that (6-32) also holds true as soon as

µ(n−2)/2
κ,α Rκ+1,α(yα)2−n

= O(Bi,α(yα))

for some 1 ≤ i ≤ κ . By contradiction we assume in what follows that (6-32) does not hold true. Thus
we assume from now on that

Rκ+1,α(yα)2 = o(µi,αµκ,α)+ o
(
µκ,α

µi,α
dg(xi,α, yα)2

)
(6-33)

for all 1≤ i ≤ κ . This implies in particular that

Rκ+1,α(yα)→ 0 as α→+∞. (6-34)

Thanks to the last equation in (4-4) and to (6-33), we can assume that

Rα(yα)= Rκ+1,α(yα) and
Rκ+1,α(yα)
νκ,α

→+∞ as α→+∞. (6-35)

Indeed, otherwise, (6-32) holds true. We let λ> 1 be such that λp‖A‖∞ 6∈ Sp(1g), where Sp(1g) is the
spectrum of 1g, and let G be the Green’s function of Lg =1g − λp‖A‖∞. There exist C1 > 1, C2 > 0
and C3 > 0 such that

1
C1

dg(x, y)2−n
−C2 ≤ G(x, y)≤ C1dg(x, y)2−n (6-36)

and
|∇G(x, y)|g ≤ C3dg(x, y)1−n (6-37)

for all x, y ∈ M , x 6= y. We let x0 ∈ S be such that dg(yα, x0) ≤ δ+ o(1); such an x0 does exist thanks
to (6-34). We choose δ > 0 such that

dg(x, y)≥ 4δ (6-38)
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for all distinct x, y ∈ S, and such that

δ ≤ 1
4(C1C2)

−1/(n−2), (6-39)

where C1 and C2 are as in (6-36). We write with Green’s representation formula that

p∑
i=1

ui,α(yα)=
∫

Bx0 (2δ)
G(yα, x)Lg

( p∑
i=1

ui,α

)
(x) dvg(x)

+

∫
∂Bx0 (2δ)

G(yα, x)∂ν

( p∑
i=1

ui,α

)
(x) dσg(x)−

∫
∂Bx0 (2δ)

∂νG(yα, x)
( p∑

i=1

ui,α

)
(x) dσg(x). (6-40)

Since λ > 1, we get with (1-1) that

Lg

( p∑
i=1

ui,α

)
≤ |Uα|

2?−2
p∑

i=1

ui,α.

We have G(yα, x)≥ 0 in Bx0(2δ) for α large by (6-36) and (6-39). Thus we can write∫
Bx0 (2δ)

G(yα, x)Lg

( p∑
i=1

ui,α

)
(x) dvg(x)≤C1

∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−2

p∑
i=1

ui,α(x) dvg(x). (6-41)

From (6-38), we also know that

dg
(
xi,α, ∂Bx0(2δ)

)
≥ δ

for α large. In particular, we can control the boundary terms in (6-40) thanks to Proposition 5.1 and
standard elliptic theory. We thus obtain that

|Uα(yα)| = O
(

max
{
µ(n−2)/2
α ; ‖U∞‖∞

})
+ O

(∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1 dvg(x)

)
. (6-42)

We can now write thanks to Step 2 that∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)= O

( κ∑
i=1

∫
M

dg(yα, x)2−n8εi,α(x)
2?−1dvg(x)

)

+ O
(

max
{
‖U∞‖

2?−1
∞
;µ(1−2ε)(n+2)/2

α

} ∫
M

dg(yα, x)2−n

rα(x)(n+2)ε dvg(x)
)

+ O
(
ν(1−2ε)(n+2)/2
κ,α

∫
{rκ+1,α(x)≥R0νκ,α}

dg(yα, x)2−n

rκ+1,α(x)(n+2)(1−ε) dvg(x)
)

+ O
(∫
{rκ+1,α(x)≤R0νκ,α}

dg(yα, x)2−n
|Uα
|
2?−1dvg(x)

)
. (6-43)

Since 0< ε < 1
n+2

, it follows from Giraud’s lemma that∫
M

dg(yα, x)2−nrα(x)−(n+2)ε dvg(x)= O(1). (6-44)
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We can also write, for 1≤ i ≤ κ ,∫
M

dg(yα, x)2−n8εi,α(x)
2?−1dvg(x)

= O
(
µ
−(1−2ε)(n+2)/2
i,α

∫
{dg(xi,α,x)≤µi,α}

dg(yα, x)2−ndg(xi,α, x)−(n+2)εdvg(x)
)

+ O
(
µ
(1−2ε)(n+2)/2
i,α

∫
{dg(xi,α,x)≥µi,α}

dg(yα, x)2−ndg(xi,α, x)−(n+2)(1−ε)dvg(x)
)

thanks to (5-8) and (6-4). Direct computations, using Giraud’s lemma and the inequalities 0<ε< 1
n+2

,
lead then to ∫

M
dg(yα, x)2−n8εi,α(x)

2?−1 dvg(x)= O(Bi,α(yα)). (6-45)

By direct computations, using Giraud’s lemma, the inequalities 0< ε < 1
n+2

and (6-35), we also get

ν(1−2ε)(n+2)/2
κ,α

∫
{rκ+1,α(x)≥R0νκ,α}

dg(yα, x)2−nrκ+1,α(x)−(n+2)(1−ε)dvg(x)

= O
(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n), (6-46)

while, using (6-35), the fact that νκ,α ≥ µκ+1,α, and Hölder’s inequalities, we also have∫
{rκ+1,α(x)≤R0νκ,α}

dg(yα, x)2−n
|Uα|

2?−1dvg(x)= O
(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n). (6-47)

Coming back to (6-42) with (6-43)-(6-47), we obtain a contradiction with the assumption that (6-32)
does not hold true. This proves Step 3. �

The fourth step in the proof of Proposition 6.1 is as follows. The constants C > 0 in the statement of
this step and its proof are independent of α and built on Cκ . They may change from line to line.

Step 4. There exists C > 0 such that for any sequence (yα) of points in M ,

|Uα(yα)−U∞(yα)−
κ∑

i=1

Bi,α(yα)3i |

≤ εα‖U∞‖∞+ o
( κ∑

i=1

Bi,α(yα)
)
+C

(
µ(n−2)/2
α + ν(n−2)/2

κ,α Rκ+1,α(yα)2−n),
where εα→ 0 as α→+∞.

Proof of Step 4. Let (yα) be a sequence of points in M . Assume first that

Rκ+1,α(yα)= O(νκ,α). (6-48)

If Rκ+1,α(yα)= Dα(yα), we can apply the last equation in (4-4) of Proposition 4.2 to obtain∣∣∣∣Uα(yα)−U∞(yα)−
κ∑

i=1

Bi,α(yα)3i

∣∣∣∣≤ Cν(n−2)/2
κ,α Rκ+1,α(yα)2−n.

In particular, the estimate of Step 4 holds true. If Dα(yα) < Rκ+1,α(yα), then from Step 1 and (6-48) we
obtain the existence of some 1≤ i ≤ κ such that

dg(xi,α, yα)+µi,α < Rκ+1,α(yα)= O(µκ,α).
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This implies the following facts:

µi,α = O(µκ,α),

dg(xi,α, yα)= O(µi,α),

Rκ+1,α(yα)≥ µi,α.

Using (4-5) in Proposition 4.2 we get∣∣∣∣Uα(yα)−U∞(yα)−
κ∑

i=1

Bi,α(yα)3i

∣∣∣∣= o(Bi,α(yα)),

and the estimate of Step 4 holds also in this case. As a consequence, we may assume below that

Rκ+1,α(yα)
νκ,α

→+∞ as α→+∞. (6-49)

The rest of the proof is based on controlling the different terms we get from Green’s representation
formula. We let H be the Green’s function of the Laplacian on M normalized such that H(x, y)≥ 1 for
all x, y ∈ M , x 6= y. Then (5-25) holds and moreover

(x, y)
8
7→ dg(x, y)n−2H(x, y)

extends to a continuous function in M ×M whose value on the diagonal is

8(x, x)=
1

(n− 2)ωn−1

for all x . Now we write, for any i ∈ {1, . . . , p},

ui,α(yα)− ui,∞(yα)=
1

Vg

∫
M
(ui,α − ui,∞) dvg +

∫
M

H(x, yα)1g(ui,α − ui,∞)(x) dvg(x). (6-50)

Since (Iκ ) holds true, we can write∣∣∣∣∫
M
(ui,α − ui,∞) dvg

∣∣∣∣≤ Cµ(n−2)/2
α + εα‖U∞‖∞,

where εα→ 0 as α→+∞. Thus we can transform (6-50) into∣∣∣∣ui,α(yα)− ui,∞(yα)−
∫

M
H(x, yα)1g(ui,α − ui,∞)(x) dvg(x)

∣∣∣∣≤ Cµ(n−2)/2
α + εα‖U∞‖∞. (6-51)

In view of the equations satisfied by the Uα’s and U∞, we can now write

1g(ui,α − ui,∞)= |Uα|
2?−2ui,α − |U∞|

2?−2ui,∞−

p∑
j=1

Aαi j u j,α +

p∑
j=1

Ai j u j,∞

= |Uα −U∞|
2?−2(ui,α − ui,∞)+

(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞)

+
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞−

p∑
j=1

Aαi j (u j,α − u j,∞)+

p∑
j=1

(Ai j − Aαi j )u j,∞.
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Thus we obtain∣∣∣∣ui,α(yα)− ui,∞(yα)−
∫

M
Hyα |Uα −U∞|

2?−2(ui,α − ui,∞) dvg

∣∣∣∣
≤

∣∣∣∣∫
M

Hyα

(
|Uα|

2?−2
− |Uα −U∞|

2?−2
)
(ui,α − ui,∞) dvg

∣∣∣∣
+

∣∣∣∣ ∫
M

Hyα

(
|Uα|

2?−2
− |U∞|

2?−2
)

ui,∞dvg

∣∣∣∣ + ∣∣∣∣ p∑
j=1

∫
M

Hyα

(
Ai j − Aαi j

)
(x)u j,∞dvg

∣∣∣∣
+

∣∣∣∣ p∑
j=1

∫
M

Hyα Aαi j
(
u j,α − u j,∞

)
dvg

∣∣∣∣+Cµ(n−2)/2
α + εα|U∞|∞, (6-52)

where Hyα (x)=H(yα, x) for all x . The convergence of the Aα’s to A, together with (5-25), implies that
p∑

j=1

∫
M

Hyα (Ai j − Aαi j )u j,∞dvg = εα‖U∞‖∞, (6-53)

where εα→ 0 as α→+∞. Now we get with (5-25) that∣∣∣∣ p∑
j=1

∫
M

Hyα Aαi j
(
u j,α − u j,∞

)
dvg

∣∣∣∣≤ pC‖Aα‖∞

∫
M

dg(yα, x)2−n
|Uα(x)−U∞(x)| dvg(x).

Thanks to (Iκ ), we can write

|Uα(x)−U∞(x)| ≤ D1

( κ∑
j=1

B j,α(x)+µ(n−2)/2
κ,α Rκ+1,α(x)2−n

+µ(n−2)/2
α

)
+ εα‖U∞‖∞

for some D1 > 0, where εα→ 0 as α→+∞, while, thanks to Step 3, we have

|Uα(x)−U∞(x)| ≤ D2

( κ∑
j=1

B j,α(x)+ ν(n−2)/2
κ,α Rκ+1,α(x)2−n

+‖U∞‖∞

)
for some D2 > 0. Thus we can write∣∣∣∣ p∑

j=1

∫
M

Hyα Aαi j
(
u j,α − u j,∞

)
dvg

∣∣∣∣≤C
( κ∑

j=1

∫
M

dg(yα, x)2−n B j,α(x) dvg(x)
)
+εα‖U∞‖∞+Cµ(n−2)/2

α

+Cµ(n−2)/2
κ,α

∫
{Rκ+1,α(x)≥ηα}

dg(yα, x)2−n Rκ+1,α(x)2−ndvg(x)

+Cν(n−2)/2
κ,α

∫
{Rκ+1,α(x)≤ηα}

dg(yα, x)2−n Rκ+1,α(x)2−ndvg(x),

where ηα = 2diamg M if U∞ ≡ 0, ηα = µ
1/2
κ,α otherwise, and diamg M is the diameter of M with respect

to g. Simple computations, using Giraud’s lemma, then lead to the estimate∣∣∣∣ p∑
j=1

∫
M

Hyα Aαi j (u j,α − u j,∞) dvg

∣∣∣∣
≤ o

( κ∑
j=1

|Bαj (yα)|
)
+Cµ(n−2)/2

α + εα‖U∞‖∞+Cν(n−2)/2
κ,α Rκ+1,α(yα)2−n. (6-54)
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If U∞ ≡ 0, we have ∫
M

Hyα
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg = 0,

while, if U∞ 6≡ 0, we write, thanks to Proposition 5.1,∫
M

Hyα
(
|Uα|

2?−2
−|U∞|

2?−2)ui,∞dvg = o(1)+
∫
{Dα≤µ

1/4
α }

Hyα
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg

= o(1)+ O
(∫
{Dα≤µ

1/4
α }

dg(x, yα)2−n
|Uα(x)|2

?
−2dvg(x)

)
. (6-55)

Now we use Step 3 and we briefly distinguish the n = 3, 4, 5, and n ≥ 6 cases in the forthcoming
computations. We let (Rα)α be suitably chosen such that Rα → +∞ as α → +∞. Assuming that
n = 3, 4, 5, we write with (6-55) that∫

M
Hyα

(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg

= o(1)+ O
(∫
{Rκ+1,α≤Rκ+1,α(yα)/Rα}

dg(x, yα)2−n
|Uα(x)|2

?
−2 dvg(x)

)
+ O

(∫
{Rκ+1,α≥Rκ+1,α(yα)/Rα}∩{Dα≤µ

1/4
α }

dg(x, yα)2−n
|Uα(x)|2

?
−2dvg(x)

)

= o(1)+ O
( κ∑

j=1

∫
M

dg(x, yα)2−n B j,α(x)2
?
−2dvg(x)

)
+ O

(
ν2
κ,α

∫
{Rκ+1,α≥Rκ+1,α(yα)/Rα}

dg(x, yα)2−n Rκ+1,α(x)−4dvg(x)
)

= o(1)+ o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n),

and, assuming that n ≥ 6, since 2?− 2 ∈ (0, 1] in this case, we get from (6-55) that∫
M

Hyα
(
|Uα|

2?−2
−|U∞|

2?−2)ui,∞dvg = o(1)+ O
(∫
{Dα≤µ

1/4
α }

dg(x, yα)2−n
|Uα(x)|dvg(x)

)

= o(1)+ O
( κ∑

j=1

∫
M

dg(x, yα)2−n B j,α(x) dvg(x)
)

+ O
(
ν(n−2)/2
κ,α

∫
M

dg (x, yα)2−n Rκ+1,α(x)2−ndvg(x)
)

= o(1)+ o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n

)
.
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Thus, in all cases,∫
M

Hyα
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg

= o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n)

+ εα‖U∞‖∞. (6-56)

Similarly, if U∞ ≡ 0, then∫
M

Hyα
(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞) dvg = 0,

while, if U∞ 6≡ 0, we can write∫
M

Hyα
(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞) dvg

= o(1)+ O
(∫
{Rα(x)≤µ

1/4
α }

dg(yα, x)2−n
|Uα(x)|2

?
−2 dvg(x)

)
= o(1)+ o

( κ∑
j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n).

Thus we have obtained∫
M

Hyα
(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞) dvg

= o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n

)
+ εα‖U∞‖∞. (6-57)

Coming back to (6-52): thanks to (6-53)–(6-57), we now obtain∣∣∣∣Uα(yα)−U∞(yα)−
∫

M
Hyα |Uα −U∞|

2?−2 (Uα −U∞) dvg

∣∣∣∣
≤ o

( κ∑
j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n

)
+ εα‖U∞‖∞+Cµ(n−2)/2

α . (6-58)

Using (4-5), (5-25), and the extension property of dg(x, y)n−2H(x, y) mentioned above, we can find a
sequence (Rα)α such that Rα→+∞ as α→+∞, that∣∣∣∣∫

Mi,α

Hyα |Uα −U∞|
2?−2(Uα −U∞) dvg − Bi,α(yα)3i

∣∣∣∣≤ Cµ(n−2)/2
α + o(Bi,α(yα))

for all i ∈ {1, . . . , κ}, and that the sets

Mi,α = Bxi,α (Rαµi,α)
∖ ⋃

i+1≤ j≤N
Bx j,α (R

−1
α µi,α)

are disjoint.
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Then we can write thanks to Proposition 5.1, Step 3, and (6-49), that∫
M\

⋃
1≤i≤κ Mi,α

dg(yα, x)2−n
|Uα(x)−U∞(x)|2

?
−1dvg(x)

≤ εα‖U∞‖∞+Cµ(n−2)/2
α +C

κ∑
j=1

∫
Mα

dg(yα, x)2−n B j,α(x)2
?
−1dvg(x)

+Cν(n+2)/2
κ,α

∫
{Rκ+1,α≥νκ,α}

dg(yα, x)2−n

Rκ+1,α(x)(n+2) dvg(x)+Cν(n−2)/2
κ,α Rκ+1,α(yα)2−n

≤ εα‖U∞‖∞+Cµ(n−2)/2
α + o

( κ∑
j=1

B j,α(yα)
)
+Cν(n−2)/2

κ,α Rκ+1,α(yα)2−n.

Coming back to (6-58), this ends the proof of Step 4. �

Step 5. νκ,α = µκ+1,α.

Proof of Step 5. We proceed by contradiction and thus assume that there exists i ∈ {1, . . . , κ} and a
sequence (yα) of points in �̃εi,α such that

ν(1−2ε)(n−2)/2
κ,α 9ε

α(yα)=8
ε
i,α(yα). (6-59)

Since yα ∈ �̃εi,α, we know that
8εi,α(yα)≥8

ε
j,α(yα) (6-60)

for all 1≤ j ≤ κ and that

dg(xi,α, yα)2
∣∣∣∣Uα(yα)−U∞(yα)−

κ∑
j=1

B j,α(yα)3 j

∣∣∣∣2?−2

≥ D(ε). (6-61)

Clearly,
dg(xi,α, x)2 Bi,α(x)2

?
−2
= O (1) . (6-62)

We now claim that
dg(xi,α, yα)2 B j,α(yα)2

?
−2
→ 0 as α→+∞ (6-63)

for all 1 ≤ j ≤ κ , j 6= i . In order to prove (6-63), we proceed by contradiction once again and assume
that there exists 1≤ j ≤ κ , j 6= i , such that(

dg(x j,α, yα)+µ j,α
)2
= O

(
µ j,αdg(xi,α, yα)

)
. (6-64)

Since 8εi,α(yα)≥8
ε
j,α(yα), we then get(

dg(xi,α, yα)+µi,α
)1−ε
= O(µεj,αµ

1−2ε
i,α ),

so µi,α = O(µ j,α) and dg(xi,α, yα)1−ε = O(µεj,αµ
1−2ε
i,α ). Coming back to (6-64), we also obtain µ j,α =

O(µi,α) and dg(x j,α, yα)= O(µi,α). This contradicts the first equation in (4-5). Thus (6-63) is proved.
Applying Step 4, we get from (6-61), (6-62), and (6-63) that

Rκ+1,α(yα)2 = O
(
νκ,αdg(xi,α, yα)

)
. (6-65)
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Using (5-8) and (6-59), we also have(
dg(xi,α, yα)+µi,α

)2(1−ε)
= O

(
µ1−2ε

i,α ν2ε−1
κ,α Rκ+1,α(yα)2(1−ε)

)
,

so that, with (6-65) and Step 1, we get that µi,α = O(µκ,α), that dg(xi,α, yα)= O(µi,α) and that µi,α =

O
(
Rκ+1,α(yα)

)
. Using the second equation in (4-5) of Proposition 4.2 we then obtain

dg(xi,α, yα)2|Uα(yα)− Bi,α3i (yα)|2
?
−2
→ 0 as α→+∞.

This contradicts (6-61) thanks to (6-63). Step 5 is proved. �

Conclusion of the proof of Proposition 6.1. By Proposition 5.1 we know that (I1) holds true. By Steps 4
and 5, and by induction, it follows that (IN ) holds true. It remains to prove that (IN+1) also holds true.
For this we proceed with similar arguments to those developed in the proof of Step 4. We let (yα) be a
sequence of points in M and write, for any i = 1, . . . , p,

ui,α(yα)− ui,∞(yα)=
1

Vg

∫
M
(ui,α − ui,∞) dvg +

∫
M

Hyα1g(ui,α − ui,∞) dvg, (6-66)

where Hyα ( · ) = H( · , yα) and H is the Green’s function of 1g normalized so that H ≥ 1. Since (IN )

holds true, ∫
M
|ui,α − ui,∞|dvg ≤ Cµ(n−2)/2

α + εα‖U∞‖∞,

where C > 0 is independent of α, and εα→ 0 as α→+∞. Using the equations satisfied by the Uα’s
and U∞, but also (IN ), mimicking what was done in the proof of Step 4, we get with (6-66) that∣∣∣∣Uα(yα)−U∞(yα)−

∫
M

Hyα |Uα −U∞|
2?−2(ui,α − ui,∞) dvg

∣∣∣∣
≤ Cµ(n−2)/2

α + o
( N∑

i=1

Bi,α(yα)
)
+ εα‖U∞‖∞. (6-67)

We also have∣∣∣∣∫
M

Hyα |Uα −U∞|
2?−2(ui,α − ui,∞) dvg −

N∑
i=1

Bi,α(yα)3i

∣∣∣∣
≤ Cµ(n−2)/2

α + o
( N∑

i=1

Bi,α(yα)
)
+ εα‖U∞‖∞, (6-68)

where C > 0 in (6-67), (6-68) is independent of α, and εα → 0 as α→ +∞. Combining (6-67) and
(6-68), we get (IN+1). This ends the proof of Proposition 6.1. �

7. A Pohozaev identity for systems

Let (M, g) be a smooth compact Riemannian manifold. Let also X be a smooth 1-form over M and
U :M→Rp be a C2-map. We define X (∇U) by X (∇U)= (∇U, X). This is a p-map with components
X (∇U)i = (∇ui , X) where the ui ’s are the components of U. We define also |∇U| and (T∇X)U by
|∇U|2 =

∑p
i=1 |∇ui |

2 and (T∇X)U =
∑p

i=1 S]X (∇ui ,∇ui ), where S]X is the (0, 2)-tensor field we obtain
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from the (2, 0)-tensor field SX by the musical isomorphism, and

SX =∇X −
1
n
(divgX)g. (7-1)

For � a smooth bounded domain in M we let ν be the unit outer normal to ∂�. The Pohozaev-type
identity for systems we prove is stated as follows.

Proposition 7.1. Let (M, g) be a smooth compact Riemannian n-manifold, � be a smooth bounded
domain in M , and A : M→ M s

p(R) be a C1-map. Let X be a smooth 1-form over M and U be a solution
of (0-1). Then∫
�

〈AU, X (∇U)〉Rp dvg +
n−2
4n

∫
�

(1g(divgX))|U|2dvg +
n−2
2n

∫
�

(divgX)〈AU,U〉Rp dvg

=−

∫
�

(T∇X)Udvg +
n−2
2n

∫
∂�

X (ν)|U|2
?

dσg −
n−2
4n

∫
∂�

∂ν(divgX)|U|2dσg

+
n−2
2n

∫
∂�

(divgX)〈∂νU,U〉Rp dσg −

∫
∂�

B∂�(U) dσg, (7-2)

where X (∇U) and (T∇X)U are as above, B∂�(U) = 1
2 X (ν)|∇U|2 − 〈X (∇U), ∂νU〉Rp on ∂�, and

〈 · , · 〉Rp is the scalar product in Rp.

Proof. Integrating by parts we easily see that for u : M→ R of class C2,∫
�
(∇u, X)1gudvg =

∫
�

S]X,2(∇u,∇u) dvg +

∫
∂�

(
1
2

∫
�

X (ν)|∇u|2− (∇u, X)∂νu
)

dσg, (7-3)

where SX,2 =∇X− 1
2(divg X)g. If we assume now that U is a p-map, applying (7-3) to the components

ui of U, and summing over i , we obtain∫
�

〈X (∇U),1gU〉Rp dvg =

∫
�

S]X,2(∇U,∇U) dvg +

∫
∂�

B∂�(U) dσg.

We assume now that U solves (0-1) and we use the equations satisfied by U to explicit the left-hand side
in the preceding equation. We can write∫
�

〈X (∇U),1gU〉Rp dvg =

∫
�

|U|2
?
−2
〈X (∇U),U〉Rp dvg −

∫
�

〈AU, X (∇U)〉Rp dvg

=
1
2?

∫
�

(∇|U|2
?

, X)dvg −

∫
�

〈AU, X (∇U)〉Rp dvg

=−
1
2?

∫
�

(divg X)|U|2
?

dvg −

∫
�

〈AU, X (∇U)〉Rp dvg +
1
2?

∫
∂�

X (ν)|U|2
?

dσg.

Then we get∫
�

〈AU, X (∇U)〉Rp dvg +
1
2?

∫
�

(divg X)|U|2
?

dvg +

∫
�

S]X,2(∇U,∇U) dvg

=
1
2?

∫
∂�

X (ν)|U|2
?

dσg −

∫
∂�

B∂�(U) dσg.



STABILITY FOR STRONGLY COUPLED CRITICAL ELLIPTIC SYSTEMS IN INHOMOGENEOUS MEDIA 343

Using once again (0-1), we obtain∫
�

S]X,2(∇U,∇U) dvg =

∫
�

S]X (∇U,∇U) dvg −
1
2?

∫
�

(divg X)|∇U|2dvg

=

∫
�

S]X (∇U,∇U) dvg −
1
2?

∫
∂�

(divg X)〈∂νU,U〉Rp dσg

+
n−2
4n

∫
∂�

∂ν(divg X)|U|2dσg +
n−2
4n

∫
�

(1g(divg X))|U|2dvg

−
1
2?

∫
�

(divg X)|U|2
?

dvg +
1
2?

∫
�

(divg X)〈AU,U〉Rp dvg,

and (7-2) easily follows. This ends the proof of the proposition. �

The Pohozaev-type identity (7-2) is used repeatedly, with different choices of X , in the next section.

8. The range of influence of blow-up points

We start with notations and the definition of the range of influence of blow-up points. The blow-up points
xi,α of Proposition 4.2 come with vector bubbles (Bi

α)α as in the same proposition. We let 3i be the
S p−1 projection of (Bi

α)α, and Bi,α = |B
i
α| for all i and all α. As above, (Aα)α is a sequence of C1 maps

from M to M s
p(R) such that Aα → A in C1(M) as α→+∞ for some C1 map A from M to M s

p(R)

satisfying (H), and we order the blow-up points in such a way that

µα = µ1,α ≥ · · · ≥ µN ,α, (8-1)

where the µi,α’s are the weights of the vector bubble (Bi
α)α. Given i, j ∈ {1, . . . , N }, i 6= j , we let si, j,α

be given by

s2
i, j,α =

µi,α

µ j,α

dg(xi,α, x j,α)
2

n(n− 2)
+µi,αµ j,α = µi,αB j,α(xi,α)

−2/(n−2) (8-2)

and we define the range of influence of the blow-up point xi,α by

ri,α =

{
min j∈Ai si, j,α if U∞ ≡ 0,
min

{
min j∈Ai si, j,α;

√
µi,α

}
if U∞ 6≡ 0.

(8-3)

where
Ai =

{
j ∈ {1, . . . , N } , j 6= i s.t. µi,α = O(µ j,α)

}
. (8-4)

If Ai = ∅ (so that, in particular, i = 1) and U∞ ≡ 0, we let by definition ri,α =
1
2 ig, where ig is the

injectivity radius of (M, g). Using the first equation in (4-5) it is easily checked that
si, j,α

µi,α
→+∞ as α→+∞ for all i, j ∈ {1, . . . , N } and all j ∈Ai . (8-5)

This implies in particular that
ri,α

µi,α
→+∞ as α→+∞. (8-6)

If j ∈Ai and i ∈A j , we let λi, j ≥ 0 be given by

λi, j =

(
lim

α→+∞

µ j,α

µi,α

)(n−2)/2

. (8-7)
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Given i ∈ {1, . . . , N }, we also let

Bi =

{{
j ∈ {1, . . . , N } , j 6= i s.t. dg(xi,α, x j,α)= O(ri,α)

}
if ri,α→ 0,{

j ∈ {1, . . . , N }, j 6= i s.t. x j ∈ Bxi (
1
2 ig)

}
if ri,α 6→ 0.

(8-8)

and, for j ∈Bi ,
zi, j = lim

α→+∞
r−1

i,α exp−1
xi,α
(x j,α). (8-9)

Up to a subsequence, all these limits exist. We let δi > 0 be such that for any i and any j ∈Bi ,

|zi, j | 6= 0⇒ |zi, j | ≥ 10δi . (8-10)

We also define Ci to be the subset of Bi given by

Ci =
{

j ∈Bi s.t. zi, j = 0
}
∩Ac

i . (8-11)

It can be proved that there exists a subset Di of Ci and a family (Ri, j ) j∈Di of positive real numbers such
that the two following assertions hold true: for any j, k ∈ Di , j 6= k,

dg(x j,α, xk,α)

s j,i,α
→+∞ (8-12)

as α→+∞, and for any j ∈ Ci there exists a unique k ∈ Di such that

lim sup
α→+∞

dg(x j,α, xk,α)

sk,i,α
≤

Ri,k

20
and lim sup

α→+∞

s j,i,α

sk,i,α
≤

Ri,k

20
. (8-13)

We also introduce the subsets
�i,α = Bxi,α (δiri,α)

∖ ⋃
j∈Di

�i, j,α (8-14)

of M , where
�i, j,α = Bx j,α (Ri, j s j,i,α) (8-15)

for all j ∈ Di . The �i, j,α’s are disjoint for α sufficiently large.
We now prove two lemmas to be used in the proof of Theorem 0.1.

Lemma 8.1. Let i ∈ {1, . . . , N }. Up to passing to a subsequence,

|Uα −3i Bi,α| = o(Bi,α)+ O
(
µ
(n−2)/2
i,α r2−n

i,α

)
+ O

(∑
j∈Di

B j,α

)
= O(Bi,α)

in Bxi,α

(
4δiri,α

)
\
⋃

j∈Di
Bx j,α

( 1
10 Ri, j s j,i,α

)
, and so, in particular, in �i,α.

Proof. Let xα ∈ Bxi,α

(
4δiri,α

)
\
⋃

j∈Di
Bx j,α

( 1
10 Ri, j s j,i,α

)
. Thanks to Proposition 6.1 we can write

Uα(xα)=U∞(xα)+ εα‖U∞‖∞+ O
(
µ(n−2)/2
α

)
+

N∑
j=1

(
3 j + o(1)

)
B j,α(xα). (8-16)

By the definition of ri,α, we know that r2
i,α ≤ µi,α if U∞ 6≡ 0 so that

U∞(xα)+ εα‖U∞‖∞ = µ
(n−2)/2
i,α r2−n

i,α

{
0 if U∞ ≡ 0,(
limα→+∞ rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi )+ o(1) if U∞ 6≡ 0.

(8-17)
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We now estimate B j,α(xα). Assume first that j 6∈Ci and j 6= i . As one can check with a little bit of work
from the above definitions, if ri,α→ 0 as α→+∞, then

B j,α(xα)= µ
(n−2)/2
i,α r2−n

i,α 3i, j,α, (8-18)

where

3i, j,α =


( n(n−2)
|z−zi, j |

2
µ j,α

µi,α

)(n−2)/2
+ o(1) if j ∈Ai ∩Bi and i ∈A j ,

rn−2
i,α /s

n−2
i, j,α + o(1) if j ∈Ai \Bi or j ∈Ai ∩Bi and i 6∈A j ,

o(1) if j ∈Ac
i \Ci ,

where, up to a subsequence,
z = lim

α→+∞
r−1

i,α exp−1
xi,α
(xα).

Note that zi, j 6= 0 if j ∈Ai ∩Bi and i ∈A j . This is a direct consequence of the definition of the si, j,α’s
and (8-6). Moreover, |z− zi, j | ≥ 6δi in this case. As a consequence we have proved that

Uα(xα)= O
(
µ(n−2)/2
α

)
+o
(
µ
(n−2)/2
i,α r2−n

i,α

)
+
(
3i + o(1)

)
Bi,α(xα)

+µ
(n−2)/2
i,α r2−n

i,α 3(1)i,α +µ
(n−2)/2
i,α r2−n

i,α

∑
j∈Ai

3(2)i, j,α3 j +
∑
j∈Ci

(
3 j + o(1)

)
B j,α(xα), (8-19)

where

3(1)i,α =
{

0 if U∞ ≡ 0,(
limα→+∞ rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi ) if U∞ 6≡ 0,

and

3(2)i, j,α =

{(
n(n− 2)

)(n−2)/2
λi, j/|z− zi, j |

n−2 if j ∈Bi and i ∈A j ,

limα→+∞ rn−2
i,α /s

n−2
i, j,α if j 6∈Bi or i 6∈A j .

Let j ∈ Ci . We claim that, up to a subsequence,

lim
α→+∞

(
B j,α(xα)
Bi,α(xα)

)2/(n−2)

= n(n− 2) lim
α→+∞

s2
j,i,α

dg(x j,α, xα)2
. (8-20)

To prove (8-20), we first remark that i ∈ A j since j ∈ Ci (and in particular j 6∈ Ai ). Thus, using (8-5),
we obtain that(

B j,α(xα)
Bi,α(xα)

)2/(n−2)

=
(
1+ o(1)

)
µ j,αµ

−1
i,αdg(x j,α, xα)−2(n(n− 2)µ2

i,α + dg(xi,α, xα)2
)

= n(n− 2)
s2

j,i,α

dg(x j,α, xα)2
+ o(1)+ O

(
µ j,α

µi,α

∣∣dg(xi,α, xα)2− dg(xi,α, x j,α)
2
∣∣

dg(x j,α, xα)2

)
.

From the triangle inequality, we easily get∣∣dg(xi,α, xα)2− dg(xi,α, x j,α)
2
∣∣

dg(x j,α, xα)2
≤ 1+ 2

dg(xi,α, x j,α)

dg(x j,α, xα)
= O (1)+ O

(
s j,i,α

dg(x j,α, xα)

√
µi,α

µ j,α

)
,

hence the estimate (8-20). Now, for j ∈ Ci , we let k ∈ Di be given by (8-13). By (8-20) it is easily
checked that

B j,α(xα)= O(Bk,α(xα)). (8-21)
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Since
µ
(n−2)/2
i,α r2−n

i,α = O(Bi,α(xα)), (8-22)

the first estimate in the lemma clearly holds true thanks to (8-19) and (8-21). Here it can be noted that

µ(n−2)/2
α = O

(
µ
(n−2)/2
i,α r2−n

i,α

)
for all i . Applying (8-20) again we easily obtain the second estimate in the lemma. This ends the proof
of Lemma 8.1. �

Now we prove that the following elliptic type lemma holds true. Lemma 8.2 provides estimates on
the Uα’s and ∇Uα’s in small regions around the blow-up points xi,α.

Lemma 8.2. There exists C > 0 such that, up to a subsequence,

|Uα| ≤ Cµ(n−2)/2
i,α r2−n

i,α and |∇Uα| ≤ Cµ(n−2)/2
i,α r1−n

i,α

in Bxi,α (2δiri,α) \ Bxi,α

( 1
2δiri,α

)
. There also exists C > 0 such that, up to a subsequence, for any j ∈ Di ,

|Uα| ≤ Cµ(n−2)/2
j,α s2−n

j,i,α and |∇Uα| ≤ Cµ(n−2)/2
j,α s1−n

j,i,α

in Bx j,α (5Ri, j s j,i,α) \ Bx j,α

( 1
5 Ri, j s j,i,α

)
.

Proof. The lemma follows from standard elliptic theory and the estimates we proved in Lemma 8.1.
Assuming first that xα ∈ Bxi,α (4δiri,α) \ Bxi,α

( 1
4δiri,α

)
, we easily get from Lemma 8.1 that

|Uα(xα)| = O
(
µ
(n−2)/2
i,α r2−n

i,α

)
. (8-23)

On the other hand, if we let Ũα be given by Ũα(x)= r (n−2)/2
i,α Uα

(
expxi,α

(ri,αx)
)
, then

1g̃αŨα + r2
i,α ÃαŨα = |Ũα|

2?−2Ũα, (8-24)

where g̃α =
(
exp?xi,α

g
)
(ri,αx) and Ãα(x) = Aα

(
expxi,α

(ri,αx)
)
. The first two estimates in Lemma 8.2

follow from (8-23) and (8-24) by standard elliptic theory. Similarly, if we assume that

xα ∈ Bx j,α (10Ri, j s j,i,α) \ Bx j,α

( 1
10 Ri, j s j,i,α

)
,

noting that s j,i,α = o(ri,α) in this case, we get from Lemma 8.1 and (8-20) that

|Uα(xα)| = O
(
µ
(n−2)/2
j,α s2−n

j,i,α

)
. (8-25)

Letting Ûα be given by Ûα(x)= s(n−2)/2
j,i,α Uα

(
expx j,α

(s j,i,αx)
)
, we also have

1ĝαÛα + s2
j,i,α ÂαÛα = |Ûα|

2?−2Ûα, (8-26)

where ĝα = (exp?x j,α
g)(s j,i,αx) and Âα(x)= Aα

(
expx j,α

(s j,i,αx)
)
. The last two estimates in Lemma 8.2

follow from (8-25) and (8-26) here again by standard elliptic theory. This proves Lemma 8.2. �

9. Sharp asymptotics for the range of influence

Our goal now is to prove the sharp asymptotics connecting the range of influence ri,α of the blow-up
points with the weights µi,α of the bubbles in the decomposition of Proposition 4.2. This is the subject of
Proposition 9.2. We adopt here the notations of the preceding section. In particular, (Aα)α is a sequence
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of C1 maps from M to M s
p(R) such that Aα→ A in C1(M) as α→+∞ for some C1 map A from M

to M s
p(R) satisfying (H), and we order the blow-up points in such a way that

µα = µ1,α ≥ · · · ≥ µN ,α,

where the µi,α’s are the weights of the vector bubble (Bi
α)α in Proposition 4.2, and let the ri,α’s be given

by (8-3). First we prove:

Lemma 9.1. If ri,α = o
(√
µi,α/µα

)
, then, up to a subsequence,

rn−2
i,α µ

1−(n/2)
i,α Uα

(
expxi,α

(ri,αz)
)
→
(
n(n− 2)

)(n−2)/2(
3i |z|2−n

+Hi (z)
)

in C2
loc

(
B0(2δi ) \ {0}

)p as α→+∞, where

Hi (z)=
∑

j∈Ai∩Bi ,
i∈A j

λi, j3 j

|z− zi, j |
n−2 + X i

is a smooth function in B0 (2δi ) satisfying that Hi (0) 6= 0, the λi, j ’s are as in (8-7), δi is as in (8-10), and
the X i ’s are nonnegative vectors in Rp.

Proof. Let z ∈ B0(3δi ) \ {0} and set xα = expxi,α
(ri,αz). Let also Wα be given by

Uα(x)= rn−2
i,α µ

−(n−2)/2
i,α Uα

(
expxi,α

(ri,αx)
)
.

Then

1gαUα + r2
i,α ÃαUα =

(µi,α

ri,α

)2
|Uα|

2?−2Uα, (9-1)

where gα = (exp?xi,α
g)(ri,αx) and Ãα(x)= Aα

(
expxi,α

(ri,αx)
)
. In particular, we get by (8-6), (8-19) and

(8-20) that, if r2
i,α = o

(
µi,α/µα

)
, then

lim
α→+∞

rn−2
i,α µ

1− n
2

i,α Uα(xα)=
(
n(n− 2)

)(n−2)/2(
3i |z|2−n

+Hi (z)
)
, (9-2)

where Hi (z) is the sum of two terms:{
0 if U∞ ≡ 0(
limα→+∞ rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi ) if U∞ 6≡ 0

and ∑
j∈Ai

3 j

{(
n(n− 2)

)(n−2)/2
λi, j/|z− zi, j |

n−2 if j ∈Bi and i ∈A j ,

limα→+∞ rn−2
i,α /s

n−2
i, j,α if j 6∈Bi or i 6∈A j .

As a remark, if j ∈ Ai and i ∈ A j , then µi,α ∼ µ j,α. In particular, zi, j 6= 0 since, if not the case, we
would get from the inequality ri,α ≤ si, j,α that ri,α = o(µi,α) and then that dg(xi,α, x j,α) = o(µi,α), a
contradiction with the first equation in (4-5) of Proposition 4.2. By (9-1) and (9-2), standard elliptic
theory gives the lemma, up to the proof that Hi (0) 6= 0. Assume first that there exists j ∈ Ai such that
si, j,α = ri,α. Then in the term involving this j in the above sum over Ai there is at least one line which
is positive. Since all the other terms are nonnegative, this proves that Hi (0) 6= 0. The other possibility
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is that U∞ 6≡ 0 and that r2
i,α = µi,α so the first term in the definition of Hi is nonzero. Indeed, by the

maximum principle, since
1g|U∞|6 +3|U∞|6 ≥ 0

for some 3> 0, where |U∞|6 =
∑

i ui,∞ is the sum of the components of U∞, we get that |U∞|6 > 0
in M if U∞ 6≡ 0. Then, here again, Hi (0) 6= 0. Noting that the above two possibilities are the only two
possibilities since our assumption on ri,α clearly implies that ri,α→ 0 as α→+∞, this ends the proof
of Lemma 9.1. �

As it can be checked from the above proof, we have an explicit formula for the X i ’s in Lemma 9.1.
We get that

X i =

(
lim

α→+∞
rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi )+

∑
j∈(Ai\Bi )∪2i

(
lim

α→+∞

ri,α

si, j,α

)n−2
3 j , (9-3)

where we adopt the convention that the first term in the right-hand side of (9-3) is zero if U∞ ≡ 0, that
the second term is zero if (Ai\Bi )∪2i = ∅, and where 2i = { j ∈ Ai s.t. i 6∈ A j }. Now, at this point,
we can state Proposition 9.2 which establishes sharp asymptotics connecting the range of influence ri,α

of the blow-up points xi,α to the weights µi,α of the bubbles in the decomposition of Proposition 4.2.

Proposition 9.2. Let (M, g) be a smooth compact Riemannian manifold of dimension n≥ 4, p≥ 1 be an
integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα→ A in C1(M) as α→+∞
for some C1 map A from M to M s

p(R) satisfying (H). Let also (Uα)α be an arbitrary bounded sequence
in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞→+∞ as α→+∞. Let i ∈ {1, . . . , N }
and assume that, up to a subsequence, ri,α = o

(√
µi,α/µα

)
. Then((

A(xi )−
1
6 Sg(xi ) Idp

)
3i + o(1)

)
r2

i,α ln
1
µi,α
= 2Hi (0)+ o(1) (9-4)

if n = 4, and((
A(xi )−

n−2
4(n−1)

Sg(xi ) Idp

)
3i + o(1)

)
µ4−n

i,α rn−2
i,α

=
nn−2(n− 2)n−1ωn−1∫

Rn u2
0 dx

(
Hi (0)+

n−4
2
〈3i ,Hi (0)〉Rp3i

)
+ o(1) (9-5)

if n ≥ 5, where Hi is as in Lemma 9.1, the ri,α’s are as in (8-3), and u0 is given by (4-3). Moreover,
〈3i ,∇Hi (0)〉Rp ≡ 0.

We prove Proposition 9.2 by reverse induction on i . We let i ∈ {1, . . . , N } be such that
√
µαri,α =

o
(√
µi,α

)
and, in case i < N , we assume that

for any j = i + 1, . . . , N , (9-4) and (9-5) hold for j if
√
µαr j,α = o

(√
µ j,α

)
. (Hi )

If i = N we do not assume anything. Then we aim to prove that (9-4) and (9-5) hold true for i . As a
remark it should be noted that we always have

Hi (0)+
n−4

2
〈3i ,Hi (0)〉Rp3i 6= 0. (9-6)
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Let i ∈
{
1, . . . , N

}
, i < N , be arbitrary. Assuming (Hi ), we get that for any j ∈ Di ,

s2−n
j,i,α =

{
O
(
− lnµ j,α

)
if n = 4,

O
(
µ4−n

j,α

)
if n ≥ 5.

(9-7)

Indeed, if j ∈ Di , then j > i . Moreover, for any j ∈ Di , we have i ∈ A j , so s j,i,α ≥ r j,α, and clearly
s2

j,i,α = o(µ j,αµ
−1
i,α)= o(µ j,αµ

−1
α ). In particular,

√
µαr j,α = o

(√
µ j,α

)
, and (9-7) is a direct consequence

of (Hi ), thanks to (9-6). Now we prove Proposition 9.2 in several steps. In the sequel we let Rt(α)

represent any quantity such that

Rt(α)=

{
o
(
−µ2

i,α lnµi,α
)

if n = 4,

o(µ2
i,α) if n ≥ 5.

(9-8)

The first step in the proof of Proposition 9.2 is as follows.

Step 1. Let i ∈
{
1, . . . , N

}
be arbitrary. In case i < N , assume that (Hi ) holds true. Let

Fα =
(
64ω3

(
〈A(xi )3i ,3i 〉Rp −

1
6 Sg(xi )

)
+ o(1)

)
µ2

i,α ln
ri,α

µi,α
+ o

(
−µ2

i,α lnµi,α
)

if n = 4, and

Fα =

((
〈A(xi )3i ,3i 〉Rp −

n−2
4(n−1)

Sg(xi )
) ∫

Rn
u2

0dx + o(1)
)
µ2

i,α

if n ≥ 5. Then we have, up to passing to a subsequence,

Fα =

(
1
2 nn−2(n− 2)nωn−1〈3i ,Hi (0)〉Rp + o(1)

)
µn−2

i,α r2−n
i,α

if
√
µαri,α = o

(√
µi,α

)
, and Fα = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise, where Hi is as in Lemma 9.1, the

ri,α’s are as in (8-3), and u0 is as in (4-3).

Proof of Step 1. We apply the Pohozaev identity (7-2) of Proposition 7.1 in Section 7 to Uα in �i,α with
X = Xα given by

Xα(x)=
(

1−
1

6(n− 1)
Rc]g(x)

(
∇ fα(x),∇ fα(x)

))
∇ fα(x), (9-9)

where fα(x) = 1
2 dg(xi,α, x)2, and Rc]g is the (0, 2)-tensor field we get from the (2, 0)-Ricci tensor Rcg

due to the musical isomorphism. We obtain∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg

+
n− 2

4n

∫
�i,α

(1g(divg Xα))|Uα|
2dvg +

n− 2
2n

∫
�i,α

(divg Xα)〈AαUα,Uα〉Rp dvg

= Qα −

∑
j∈Di

Q j
α + R1,α + R2,α −

∑
j∈Di

R j
2,α, (9-10)
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where, if ν = να stands for the unit outer normal to ∂Bxi,α (δiri,α), the Qα’s are given by

Qα =
n− 2

2n

∫
∂Bxi,α (δi ri,α)

(divg Xα)〈∂νUα,Uα〉Rp dσg

−

∫
∂Bxi,α (δi ri,α)

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg, (9-11)

the Q j
α’s are given by

Q j
α =

n− 2
2n

∫
∂�i, j,α

(divg Xα)〈∂νUα,Uα〉Rp dσg

−

∫
∂�i, j,α

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg, (9-12)

where �i, j,α is as in (8-15), the R1,α’s are given by

R1,α =−

∫
�i,α

(T∇Xα)Uαdvg, (9-13)

where (T∇X)U =
∑p

i=1 S]X (∇ui ,∇ui ) and SX is as in (7-1), the R2,α’s are given by

R2,α =
n− 2

2n

∫
∂Bxi,α (δi ri,α)

Xα(ν)|Uα|
2?dσg −

n− 2
4n

∫
∂Bxi,α (δi ri,α)

(∂ν(divg Xα))|Uα|
2dσg, (9-14)

and the R j
2,α’s are given by

R j
2,α =

n− 2
2n

∫
∂�i, j,α

Xα(ν)|Uα|
2?dσg −

n− 2
4n

∫
∂�i, j,α

(∂ν(divg Xα))|Uα|
2dσg. (9-15)

Note that Di =∅ if i = N . Thanks to the expression of the Xα’s in (9-9) we have the estimates

|Xα(x)| = O(dg(xi,α, x)),

divg Xα(x)− n = O(dg(xi,α, x)2),

|∇(divg Xα)(x)| = O(dg(xi,α, x)),

1g(divg Xα)(x)= n
n−1

Sg(xi,α)+ O(dg(xi,α, x)).

(9-16)

In what follows we estimate the different terms involved in (9-10). We start with estimates on the Q j
α’s

and R j
2,α’s in (9-12) and (9-15). Since

dg(xi,α, x)≤ dg(xi,α, x j,α)+ Ri, j s j,i,α = O
(√

µi,α

µ j,α
s j,i,α

)
on ∂�i, j,α, we obtain from Lemma 8.2, (9-7) and (9-16) that

Q j
α + R j

2,α = O
(√

µi,α
µ j,α

µn−2
j,α s2−n

j,i,α

)
= Rt(α), (9-17)

where Rt(α) is as in (9-8). Now we estimate the R2,α’s in (9-14). Still from Lemma 8.2, we obtain by
direct computations, using (8-6) and (9-16), that

R2,α = O(µn−2
i,α )+ o

(
µn−2

i,α r2−n
i,α

)
. (9-18)
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Concerning the right-hand side of (9-10) it remains to estimate the Qα’s in (9-11) and the R1,α’s in
(9-13). We start with estimates for the R1,α’s. We remark that S]Xα = O(dg(xi,α, x)2) and that

(T∇Xα)Bi
α
= O

(
dg(xi,α, x)3|∇Bi,α|

2).
In particular, we can write

R1,α = O
(∫

�i,α

dg(xi,α, x)3|∇Bi,α|
2dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|∇Bi,α||∇
(
Uα
− Bi,α3i

)
|dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|∇
(
Uα
− Bi,α3i

)
|
2dvg

)
.

Direct computations lead to∫
�i,α

dg(xi,α, x)2+κ |∇Bi,α|
2dvg =

{
Oκ

(
−µ2

i,α lnµi,α
)

if n = 4,
Oκ(µ

2
i,α) if n ≥ 5,

where Oκ = O if κ = 0, and Oκ = o if κ = 1. Integrating by parts and using Lemma 8.1, Lemma 8.2,
and (9-7), we can write∫
�i,α

dg(xi,α, x)2|∇(Uα−Bi,α3i )|
2dvg

= O
(∫

∂�i,α

|Uα−Bi,α3i |dg(xi,α, x)2|∇(Uα−Bi,α3i )|dσg

)
+ O

(∫
∂�i,α

dg(xi,α, x)|Uα−Bi,α3i |
2dσg

)
+ O

(∫
�i,α

|Uα−Bi,α3i |
2dvg

)
+

∫
�i,α

dg(xi,α, x)2
〈
Uα−Bi,α3i ,1g(Uα−Bi,α3i )

〉
Rp dvg,

and then∫
�i,α

dg(xi,α, x)2|∇(Uα − Bi,α3i )|
2dvg

=

∫
�i,α

dg(xi,α, x)2
〈
Uα − Bi,α3i ,1g(Uα − Bi,α3i )

〉
Rp dvg + o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α),

where Rt(α) is as in (9-8). It remains to remark that thanks to the equations satisfied by the Uα’s, and
the expression of 1g in geodesic polar coordinates, we have∫
�i,α

dg(xi,α, x)2
〈
Uα−Bi,α3i ,1g(Uα−Bi,α3i )

〉
Rp dvg

= O
(∫

�i,α

dg(xi,α, x)2|Uα−Bi,α3i |
(
|Uα|

2?−1
+ B2?−1

i,α

)
dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|Uα−Bi,α3i ||Uα|dvg

)
+ O

(∫
�i,α

dg(xi,α, x)3|Uα−Bi,α3i ||∇Bi,α|dvg

)
,

so that, by Lemma 8.1, using Hölder’s inequalities,

R1,α = o
(
µn−2

i,α r2−n
i,α

)
+ Rt(α), (9-19)
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where Rt(α) is as in (9-8). Still concerning the right-hand side of (9-10) it remains to estimate the Qα’s
in (9-11). Thanks to Lemma 8.2 and Lemma 9.1, we get by simple computations that

Qα =
(
−

1
2 nn−2(n− 2)nωn−1〈3i ,Hi (0)〉Rp + o(1)

)
µn−2

i,α r2−n
i,α + O

(
µn−2

i,α

)
, (9-20)

if ri,α = o
(√
µi,α/µα

)
, and Qα = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise. Now we concentrate on the left-hand

side of (9-10). Writing Aα(x)= Aα(xi,α)+ O(dg(xi,α, x)), we get∫
�i,α

〈
AαUα,Xα(∇Uα)

〉
Rp dvg=

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αXα(∇Uα)kdvg+O
(∫

�i,α

dg(xi,α,x)2|Uα||∇Uα|dvg

)
.

Using the Cauchy–Schwarz inequality, we can write∫
�i,α

dg(xi,α, x)2|Uα||∇Uα|dvg ≤5
1
j=0

(∫
�i,α

dg(xi,α, x)3−2 j
|∇

1− j Uα|
2dvg

)1/2

.

Using Lemma 8.1 it is easily checked that∫
�i,α

dg(xi,α, x)|Uα|
2dvg = Rt(α), (9-21)

where Rt(α) is as in (9-8). We integrate by parts and use the equations satisfied by the Uα’s, together
with Lemma 8.1, Lemma 8.2, and (9-7), to obtain∫
�i,α

dg(xi,α, x)3|∇Uα|
2dvg = O

(∫
∂�i,α

dg(xi,α, x)3|∇Uα||Uα|dσg

)
+ O

(∫
∂�i,α

dg(xi,α, x)2|Uα|
2dσg

)
+ O

(∫
�i,α

dg(xi,α, x)3|Uα|
2?dvg

)
+ O

(∫
�i,α

dg(xi,α, x)|Uα|
2dvg

)
,

and then that ∫
�i,α

dg(xi,α, x)3|∇Uα|
2dvg = o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α),

where Rt(α) is as in (9-8). Thus we get that∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg =

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αXα(∇Uα)kdvg + o
(
µn−2

i,α r2−n
i,α

)
+ Rt(α).

Integrating by parts again, and estimating the different terms as above, it is easily checked that we actually
have∫

�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg =−
n
2

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αuk,αdvg + o
(
µn−2

i,α r2−n
i,α

)
+ Rt(α),
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where Rt(α) is as in (9-8). Proceeding as above, thanks to (9-16), one finally gets that∫
�i,α

〈
AαUα, Xα(∇Uα)

〉
Rp dvg +

n− 2
4n

∫
�i,α

(1g(divg Xα))|Uα|
2dvg

+
n− 2

2n

∫
�i,α

(divg Xα)〈AαUα,Uα〉Rp dvg

=−

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αuk,αdvg +
n− 2

4(n− 1)
Sg(xi,α)

∫
�i,α

|Uα|
2dvg + o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α),

(9-22)

where Rt(α) is as in (9-8). We have∫
�i, j,α

B2
i,αdvg = Rt(α) for all j ∈ Di . (9-23)

Indeed, if dg(xi,α, x j,α)/s j,i,α→+∞ as α→+∞, then∫
Bx j,α (Ri, j s j,i,α)

B2
i,αdvg = O

(
sn

j,i,αBi,α(x j,α)
2)
= O

(
µn−2

j,α s4−n
j,i,α

)
= Rt(α),

thanks to (9-7), and if dg(xi,α, x j,α)= O(s j,i,α), then s j,i,α = o(µi,α) and∫
Bx j,α (Ri, j s j,i,α)

B2
i,αdvg = O

(
µ2−n

i,α sn
j,i,α

)
= o(µ2

i,α).

Clearly, (9-23) follows from these two equations. Plugging (9-23) into (9-22), we get from Lemma 8.1
that∫
�i,α

〈
AαUα, Xα(∇Uα)

〉
Rp dvg+

n−2
4n

∫
�i,α

(1g(divg Xα))|Uα|
2dvg+

n−2
2n

∫
�i,α

(divg Xα)〈AαUα,Uα〉Rp dvg

=−

(〈
A(xi )3i ,3i

〉
Rp −

n−2
4(n−1)

Sg(xi )+ o(1)
) ∫

Bxi,α (δi ri,α)

B2
i,αdvg + o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α). (9-24)

We have ∫
Bxi,α (δi ri,α)

B2
i,αdvg =

{
64ω3µ

2
i,α ln(ri,α/µi,α)+ o

(
−µ2

i,α lnµi,α
)

if n = 4,(∫
Rn u2

0dx
)
µ2

i,α + o(µ2
i,α) if n ≥ 5,

(9-25)

where u0 is given by (4-3). Combining (9-10), (9-17)–(9-20), (9-24), and (9-25) yields the proof of
Step 1. �

Step 2. Let i ∈ {1, . . . , N } be arbitrary. In case i < N , assume that (Hi ) holds. Let Kα be given by

Kα =

(
64ω3

(
A(xi )3i −

1
6 Sg(xi )3i

)
+ o(1)

)
µ2

i,α ln
ri,α

µi,α
+ o

(
−µ2

i,α lnµi,α
)

in case n = 4, and

Kα =

((
A(xi )3i −

n− 2
4(n− 1)

Sg(xi )3i

) ∫
Rn

u2
0dx + o(1)

)
µ2

i,α



354 OLIVIER DRUET AND EMMANUEL HEBEY

in case n ≥ 5. Then, up to passing to a subsequence, we have

Kα =

(
nn−2(n− 2)n−1ωn−1

(
Hi (0)+

n−4
2
〈
Hi (0),3i

〉
3i

)
+ o(1)

)
µn−2

i,α r2−n
i,α ,

if
√
µαri,α = o

(√
µi,α

)
, and Kα = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise, where Hi is as in Lemma 9.1, the

ri,α’s are as in (8-3), and u0 is as in (4-3).

Proof of Step 2. We multiply the line k of the system (1-1) by ul,α and integrate over �i,α. This leads to∫
�i,α

ul,α1guk,αdvg +

p∑
m=1

∫
�i,α

Aαkmul,αum,αdvg =

∫
�i,α

|Uα|
2?−2ukαul,αdvg. (9-26)

Let the 3i,k’s, k = 1, . . . , p, be the components of 3i , and the Hi,k’s be the components of Hi . We
define Sαk,l by

Sαk,l =
(

nn−2(n− 2)n−1ωn−1
(
3i,kHi,l(0)−3i,lHi,k(0)

)
+ o(1)

)
µn−2

i,α r2−n
i,α ,

if ri,α = o
(√
µi,α/µα

)
, and Sαk,l = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise. We also define T α

k,l by

T α
k,l =

{(
64ω3Wk,l + o(1)

)
µ2

i,α ln(ri,α/µi,α)+ o
(
−µ2

i,α lnµi,α
)

if n = 4,(
Wk,l

∫
Rn u2

0dx + o(1)
)
µ2

i,α if n ≥ 5,

where

Wk,l =

p∑
m=1

(
A(xi )lm3i,k3i,m − A(xi )km3i,l3i,m

)
,

and u0 is given by (4-3). Integrating by parts, thanks to Lemma 8.2 and Lemma 9.1, we have∫
�i,α

ul,α1guk,αdvg =

∫
�i,α

uk,α1gul,αdvg +

∫
∂�i,α

(uk,α∂νul,α − ul,α∂νuk,α) dσg

=

∫
�i,α

|Uα|
2?−2ukαul,αdvg −

p∑
m=1

∫
�i,α

Aαlmuk,αum,αdvg + O
(∑

j∈Di

µn−2
j,α s2−n

j,i,α

)
+ Sαk,l .

Now we write Aα(x) = Aα(xi,α) + O(dg(xi,α, x)). With similar estimates as in the proof of Step 1,
thanks to (9-21), we get that

p∑
m=1

∫
�i,α

Aαlmuk,αum,αdvg −

p∑
m=1

∫
�i,α

Aαkmul,αum,αdvg = o
(
µn−2

i,α r2−n
i,α

)
+ T α

k,l .

Coming back to (9-26) with all these estimates, thanks to (9-7), we obtain that Sαk,l = T α
k,l . In particular,∑

k Sαk,l3i,k =
∑

k T α
k,l3i,k and Step 2 follows from Step 1. This ends the proof of Step 2. �

Conclusion of the proof of Proposition 9.2. Equations (9-4) and (9-5) follow from Step 2. It remains to
prove that 〈3i ,∇Hi (0)〉Rp ≡ 0. We assume here that

√
µαri,α = o

(√
µi,α

)
. In particular, ri,α → 0 as

α→+∞. Let Y be an arbitrary 1-form in Rn . We apply once more the Pohozaev identity (7-2) to Uα

in �i,α. However, here we choose X = Xα to be given in the exponential chart at xi,α by

Xα
κ = Yκ − 2

3 Rκ jkl(xi,α)x j xkY l,
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where Y l
= Yl for all l and the Rκ jkl are the components of the Riemann tensor Rmg at xi,α in the

exponential chart. As is easily checked, still in geodesic normal coordinates at xi,α,

(∇Xα)κ j =−Rκ jkl(xi,α)xkY l
+ O(|x |2),

so that divg(Xα)= O
(
|x |2

)
. Then, thanks to the symmetries of the Riemann tensor, we obtain with the

Pohozaev identity that∫
∂�i,α

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg +

∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg

= O
(∫

�i,α

|Uα|
2dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|∇Uα|
2dvg

)
+ O

(∫
∂�i,α

|Uα|
2?dσg

)
+ O

(∫
∂�i,α

|Uα|
2dσg

)
+ O

(∫
∂�i,α

|∂νUα||Uα|dσg

)
,

(9-27)

Estimating the right-hand side of (9-27) via (9-7) and using Lemma 8.1 and Lemma 8.2, we get∫
∂�i,α

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg +

∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg = R̂t(α), (9-28)

where R̂t(α) is such that

R̂t(α)=

{
O
(
−µ2

i,α lnµi,α
)
+ O

(
µn−2

i,α r2−n
i,α

)
if n = 4,

O(µ2
i,α)+ O

(
µn−2

i,α r2−n
i,α

)
if n ≥ 5.

(9-29)

Now we can write∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg =

p∑
k,l=1

Aαkl(xi,α)

∫
�i,α

uk,αXα(∇Uα)ldvg + O(Tα),

where

Tα =
∫
�i,α

dg(xi,α, x)|∇Uα||Uα|dvg,

obtaining∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg

=
1
2

p∑
k,l=1

Aαkl(xi,α)

∫
∂�i,α

uk,αul,αXα(ν) dσg −
1
2

p∑
k,l=1

Aαkl(xi,α)

∫
�i,α

uk,αul,α divg
(
Xα
)

dvg + O(Tα).

As above, estimating the various terms in this equation, it follows that∫
�i,α

〈
AαUα, Xα(∇Uα)

〉
Rp dvg = R̂t(α), (9-30)

where R̂t(α) is as in (9-29). As a consequence, coming back to (9-28), thanks to (9-30), we get∫
∂�i,α

(1
2 Xα(ν)|∇Uα|

2
−
〈
Xα(∇Uα), ∂νUα

〉
Rp

)
dσg = R̂t(α), (9-31)
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where R̂t(α) is as in (9-29). By Lemmas 8.2 and 9.1, together with (9-7), we have∫
∂�i,α

( 1
2 Xα(ν)|∇Uα|

2
−
〈
Xα(∇Uα), ∂νUα

〉
Rp

)
dσg

=

(
nn−2(n− 2)n−1ωn−1

〈
3i , (Y (∇Hi ))0

〉
Rp + o(1)

)
µn−2

i,α r1−n
i,α + Ŵα, (9-32)

where (Y (∇Hi ))0 ∈ Rp is such that (Y (∇Hi ))
l
0 =

∑n
κ=1 Yκ(∇κHi,l)(0) for all l = 1, . . . , p, and

Ŵα =

{
o
(
µ2

i,α(− lnµi,α)
3/2
)

if n = 4,

o(µ2
i,α) if n ≥ 5.

As a consequence of Step 2 we have

ri,α =

{
O
(
(− lnµi,α)

−1/2
)

if n = 4,

O
(
µ
(n−4)/(n−2)
i,α

)
if n ≥ 5.

Coming back to (9-31)–(9-32), it follows that
〈
3i , (Y (∇Hi ))0

〉
Rp = 0, and since Y is arbitrary, we get〈

3i ,∇Hi (0)
〉
Rp ≡ 0. �

10. Proof of Theorem 0.1

We prove Theorem 0.1 using Proposition 9.2. We let (Aα)α be a sequence of C1 maps from M to M s
p(R)

such that Aα → A in C1(M) as α→ +∞ for some C1 map A from M to M s
p(R) satisfying (H) and

(H′). We also let (Uα)α be an arbitrary bounded sequence in H 1(M) of nonnegative solutions of (1-1)
and we assume by contradiction that ‖Uα‖∞→+∞ as α→+∞. We order the blow-up points of the
Uα’s in such a way that

µα = µ1,α ≥ · · · ≥ µN ,α,

where the µi,α’s are the weights of the vector bubble (Bi
α)α in Proposition 4.2, and we let Ai be as in

(8-4). We consider A1. By (H′), Ker An(x)∩Vect+(Rp)= {0} for all x ∈ M , where An is as in (0-2). In
particular, if the ri,α’s are as in (8-3), it follows from Step 2 in Section 9 that r1,α→ 0 as α→+∞. As
a direct consequence, A1 6=∅. Let i ∈A1. Still by Step 2 in Section 9, we have ri,α→ 0 as α→+∞.
By Proposition 9.2, since Ker An(x)∩Vect+(Rp)= {0} for all x ∈ M , for any i ∈A1 ∪ {1}, there exists
Ci > 0 such that

r2
i,α ln

1
µi,α
→ Ci if n = 4 and rn−2

i,α µ
4−n
i,α → Ci if n ≥ 5 (10-1)

as α → +∞. By (10-1), µi,α = o(ri,α) for all i ∈ A1 ∪ {1}. We also get from (10-1) that for any
i ∈A1 ∪ {1},

µi,α = o(r2
i,α) if n = 4, 5 and r2

i,α = o(µi,α) if n ≥ 7. (10-2)

As a remark, it follows from (10-2) that U∞ ≡ 0 when n = 4, 5 since, if not the case, r2
i,α ≤ µi,α. It also

follows from (10-2) that for any i ∈A1∪{1}, Ai ∩Bi 6=∅, where the Bi ’s are as in (8-8). By (9-3), we
get with (10-2) that

Hi (z)=
∑

j∈Ai∩Bi

λi, j3 j

|z− zi, j |
n−2 , (10-3)
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where Hi is as in Lemma 9.1. In particular, the 3i ’s are the S p−1 projections of the bubbles (Bi
α)α. Let

E1= (A1∩B1)∪{1}. For any i ∈A1∩B1, we have Ai ∩Bi =E1\{i}. We pick up some i ∈E1 such that
dg(x1,α, xi,α) ≥ dg(x1,α, x j,α) for all j ∈ E1. By Proposition 9.2 we have

〈
3i ,∇Hi (0)

〉
Rp = 0. Together

with (10-3), this implies that 〈3i ,3 j 〉Rp = 0 for all j ∈ E1 \ {i}. Repeating the operation with E1 \ {i},
and so on up to exhaust all the indices in E1, we obtain that 〈3i ,3 j 〉Rp = δi j for all i, j ∈E1. Moreover,
it follows from (9-4) and (9-5) in Proposition 9.2 that V = Vect{3i , i ∈ E1} is a stable vector space of
An(x1). Noting that

〈
3i ,Hi (0)

〉
Rp = 0 for all i ∈ E1, we also get with (9-4) and (9-5) in Proposition 9.2

that the 3i ’s are isotropic vectors for An(x1) for all i ∈ E1. In particular, we get a contradiction with
(H′). This proves Theorem 0.1 when n 6= 6. When n = 6, thanks to Proposition 2.1, it remains to prove
that our systems are weakly stable, and thus that we necessarily have U∞ 6≡ 0 if we assume (H′). When
n = 6, it follows from (10-1) that r2

i,α ∼ µi,α. Then, by (9-3),

Hi (z)=
∑

j∈Ai∩Bi

λi, j3 j

|z− zi, j |
n−2 +CU∞(x1), (10-4)

where r−4
i,αµ

2
i,α→C as α→+∞. As above, 〈3i ,3 j 〉Rp = δi j for all i, j ∈E1, but we may have E1={1}.

By Proposition 9.2, V = Vect{3i , i ∈ E1} is a stable vector space of A6(x1) and the 3i ’s are isotropic
vectors for A6(x1) for all i ∈ E1 if U∞(x1) = 0. In particular, we do get a contradiction with (H′) if
U∞(x1)= 0. This proves Theorem 0.1 when n = 6.

As a remark, if n = 6 and A6 < 0 in M in the sense of bilinear forms, where A6 is as in (0-2), then
we also get a contradiction by (9-5) in Proposition 9.2 since r2

i,α ∼ µi,α and Hi (0),
〈
3i ,Hi (0)

〉
Rp3i ∈

Vect+(Rp). In particular, we recover analytic stability for our systems if we assume that A6 < 0 in
M in the sense of bilinear forms. More precisely, letting (M, g) be a smooth compact six-dimensional
Riemannian manifold, p ≥ 1 be an integer, and A : M→ M s

p(R) be a C1-map such that A satisfies (H),
the system (0-1) associated with A is analytically stable if A6(x) < 0 in the sense of bilinear forms for
all x .

As another remark, it is easily seen from (9-4) and (9-5) in Proposition 9.2 that for any n ≥ 4, and any
i ∈ A1 ∪ {1}, An(x1)3i ∈ Vect+(Rp). In particular, we can replace (H′) in Theorem 0.1 by the slightly
more general condition that for any x ∈ M , and any k ∈ {1, . . . , p}, there does not exist an orthonormal
family (e1, . . . , ek) of vectors in IsAn(x) ∩Vect+(Rp) such that An(x)V ⊂ V and An(x)ei ∈ Vect+(Rp)

for all i , where V is the k-dimensional subspace of Rp with basis (e1, . . . , ek).
As a final remark we mention that Theorem 0.1 still holds true, and can be proved with only slight

modifications in the arguments of Section 9, if the C1 convergence of the Aα’s is replaced by a C0,θ -
convergence of the Aα’s with θ = 1 when n = 4, and θ > 2/(n− 2) when n ≥ 5.
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GLOBAL REGULARITY FOR A LOGARITHMICALLY SUPERCRITICAL
HYPERDISSIPATIVE NAVIER–STOKES EQUATION

TERENCE TAO

Let d ≥ 3. We consider the global Cauchy problem for the generalized Navier–Stokes system

∂t u+ (u · ∇)u =−D2u−∇ p, ∇ · u = 0, u(0, x)= u0(x)

for u : R+ ×Rd
→ Rd and p : R+ ×Rd

→ R, where u0 : R
d
→ Rd is smooth and divergence free, and

D is a Fourier multiplier whose symbol m : Rd
→ R+ is nonnegative; the case m(ξ) = |ξ | is essentially

Navier–Stokes. It is folklore that one has global regularity in the critical and subcritical hyperdissipation
regimes m(ξ) = |ξ |α for α ≥ (d + 2)/4. We improve this slightly by establishing global regularity
under the slightly weaker condition that m(ξ) ≥ |ξ |(d+2)/4/g(|ξ |) for all sufficiently large ξ and some
nondecreasing function g : R+→ R+ such that

∫
∞

1 ds/(sg(s)4) = +∞. In particular, the results apply
for the logarithmically supercritical dissipation m(ξ) := |ξ |(d+2)/4/ log(2+ |ξ |2)1/4.

1. Introduction

Let d ≥ 3. This note is concerned with solutions to the generalised Navier–Stokes system

∂t u+ (u · ∇)u =−D2u−∇ p,

∇ · u = 0,

u(0, x)= u0(x),

(1)

where u :R+×Rd
→Rd , p :R+×Rd

→R are smooth, and u0 :R
d
→Rd is smooth, compactly supported,

and divergence-free, and D is a Fourier multiplier1 whose symbol m :Rd
→R+ is nonnegative; the case

m(ξ)= |ξ | is essentially the Navier–Stokes system, while the case m = 0 is the Euler system.
For d≥3, the global regularity of the Navier–Stokes system is of course a notoriously difficult unsolved

problem, due in large part to the supercritical nature of the equation with respect to the energy E(u(t)) :=∫
Rd |u(t, x)|2 dx . This supercriticality can be avoided by strengthening the dissipative symbol m(ξ), for

instance setting m(ξ) := |ξ |α for some α > 1. This hyper-dissipative variant of the Navier–Stokes
equation becomes subcritical for α > (d + 2)/4 (and critical for α = (d + 2)/4), and it is known that
global regularity can be recovered in these cases; see [Katz and Pavlović 2002] for further discussion.
For 1≤ α < (d + 2)/4, only partial regularity results are known; see [Caffarelli et al. 1982] for the case
α = 1 and [Katz and Pavlović 2002] for the case α > 1.

MSC2000: 35Q30.
Keywords: Navier–Stokes, energy method.
The author is supported by NSF Research Award DMS-0649473, the NSF Waterman award and a grant from the MacArthur
Foundation.

1The exact definition of the Fourier transform is inessential here, but for concreteness, take f̂ (ξ) :=
∫

Rd f (x)e−i x ·ξdx .
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The purpose of this note is to extend the global regularity result very slightly into the supercritical
regime.

Theorem 1.1. Suppose that m obeys the lower bound

m(ξ)≥ |ξ |(d+2)/4/g(|ξ |) (2)

for all sufficiently large |ξ |, where g : R+→ R+ is a nondecreasing function such that∫
∞

1

ds
sg(s)4

=∞. (3)

Then for any smooth, compactly supported initial data u0, one has a global smooth solution to (1).

Note that the hypotheses are for instance satisfied when

m(ξ) := |ξ |(d+2)/4/ log1/4(2+ |ξ |2); (4)

thus

|D|2 =
(−1)(d+2)/4

log1/2(2−1)
.

Analogous “barely supercritical” global regularity results were established for the nonlinear wave equa-
tion recently [Tao 2007; Roy 2008; 2009].

The argument is quite simple, being based on the classical energy method and Sobolev embedding.
The basic point is that whereas in the critical and subcritical cases one can get an energy inequality of
the form

∂t‖u(t)‖2H k(Rd ) ≤ Ca(t)‖u(t)‖2H k(Rd )

for some locally integrable function a(t) of time, a constant C , and some large k, which by Gronwall’s
inequality is sufficient to establish a suitable a priori bound, in the logarithmically supercritical case (4)
one instead obtains the slightly weaker inequality

∂t‖u(t)‖2H k(Rd ) ≤ Ca(t)‖u(t)‖2H k(Rd ) log(2+‖u(t)‖H k(Rd ))

(thanks to an endpoint version of Sobolev embedding, closely related to an inequality of Brézis and
Wainger [1980]), which is still sufficient to obtain an a priori bound (though one which is now double-
exponential rather than single-exponential; compare [Beale et al. 1984]).

Remark 1.2. It may well be that the condition (3) can be relaxed further by a more sophisticated argu-
ment. Indeed, the following heuristic suggests that one should be able to weaken (3) to∫

∞

1

ds
sg(s)2

=∞,

thus allowing one to increase the 1
4 exponent in (4) to 1

2 . Consider a blowup scenario in which the solution
blows up at some finite time T∗, and is concentrated on a ball of radius 1/N (t) for times 0 < t < T∗,
where N (t)→∞ as t → T∗. As the energy of the fluid must stay bounded, we obtain the heuristic
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bound u(t)= O(N (t)d/2) for times 0< t < T∗. In particular, we expect the fluid to propagate at speeds
O(N (t)d/2), leading to the heuristic ODE

d
dt

1
N (t)

= O(N (t)d/2)

for the radius 1/N (t) of the fluid. Solving this ODE, we are led to a heuristic upper bound N (t) =
O
(
(T∗− t)2/(d+2)

)
on the blowup rate. On the other hand, from the energy inequality

2
∫ T∗

0

∫
Rd
|Du(t, x)|2 dxdt ≤

∫
Rd
|u0(x)|2 dx

one is led to the heuristic bound ∫ T∗

0

1
N (t)(d+2)/2g(N (t))2

dt <∞.

This is incompatible with the upper bound N (t) = O((T∗ − t)2/(d+2)) if
∫ T∗

1 ds/(sg(s)2) = ∞. Un-
fortunately the author was not able to make this argument precise, as there appear to be multiple and
inequivalent ways to rigorously define an analogue of the “frequency scale” N (t), and all attempts of the
author to equate different versions of these analogues lost one or more powers of g(s).

To go beyond the barrier
∫
∞

1 ds/(sg(s)2) =∞ (with the aim of getting closer to the Navier–Stokes
regime, in which g(s)= s1/4 in three dimensions), the heuristic analysis above suggests that one would
need to force the energy to not concentrate into small balls, but instead to exhibit turbulent behaviour.

2. Proof of theorem

We now prove Theorem 1.1. Let k be a large integer (for example, k := 100d will suffice).
Standard energy method arguments (see, for example, [Kato 1985]) show that if the initial data is

smooth and compactly supported, then either a smooth H∞ solution exists for all time, or there exists
a smooth solution up to some blowup time 0 < T∗ <∞, and ‖u(t)‖H k(Rd )→∞ as t → T∗. Thus, to
establish global regularity, it suffices to prove an a priori bound of the form

‖u(t)‖H k(Rd ) ≤ C(k, d, ‖u0‖H k(Rd ), T, g)

for all 0 ≤ t ≤ T <∞ and all smooth H∞ solutions u : [0, T ] ×Rd
→ Rd to (1), where the quantity

C(k, d, ‖u0‖H k(Rd ), T, g) only depends on k, d, ‖u0‖H k(Rd ), T , and g.
We now fix u0, u, T , and let C denote any constant depending on k, d , ‖u0‖H k(Rd ), T , and g (whose

value can vary from line to line). Multiplying the Navier–Stokes equation by u and integrating by parts,
we obtain the well-known energy identity

∂t

∫
Rd
|u(t, x)|2 dx =−2a(t),

where

a(t) := ‖Du‖2L2(Rd ) (5)
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(note that the pressure term ∇ p disappears thanks to the divergence free condition); integrating this in
time, we obtain the energy dissipation bound∫ T

0
a(t) dt ≤ C. (6)

Now, we consider the higher energy

Ek(t) :=
k∑

j=0

∫
Rd
|∇

j u(t, x)|2 dx . (7)

Differentiating (7) in time and integrating by parts, we obtain

∂t Ek(t)=−2
k∑

j=0

‖∇
j Du(t)‖2L2(Rd )− 2

k∑
j=0

∫
Rd
∇

j u(t, x) · ∇ j ((u · ∇)u)(t, x) dx;

again, the pressure term disappears thanks to the divergence-free condition. For brevity we shall now
drop explicit mention of the t and x variables.

We apply the Leibniz rule to ∇ j ((u · ∇)u). There is one term involving ( j+1)-st derivatives of u,
but the contribution of that term vanishes by integration by parts and the divergence free property. The
remaining terms give contributions of the form

k∑
j=0

∑
1≤ j1, j2≤ j
j1+ j2= j+1

∫
Rd

O(∇ j u∇ j1u∇ j2u) dx,

where O(∇ j u∇ j1u∇ j2u) denotes some constant-coefficient trilinear combination of the components of
∇

j u, ∇ j1u, and ∇ j2u whose explicit form is easily computed, but is not of importance to our argument.
We can integrate by parts using D and D−1 and then use Cauchy–Schwarz to obtain the bound∫

Rd
O(∇ j u∇ j1u∇ j2u) dx ≤ ‖(1+ D)∇ j u‖L2(Rd )

∥∥(1+ D)−1(O(∇ j1u∇ j2u))
∥∥

L2(Rd )
.

By the arithmetic mean-geometric mean inequality we then have∫
Rd

O(∇ j u∇ j1u∇ j2u) dx ≤ c‖(1+ D)∇ j u‖2L2(Rd )+
1
c

∥∥(1+ D)−1(O(∇ j1u∇ j2u))
∥∥2

L2(Rd )

for any c > 0. Finally, from the triangle inequality, (7), and the fact that D commutes with ∇ j , we have

‖(1+ D)∇ j u‖2L2(Rd ) ≤ C
(
‖∇

j Du‖2L2(Rd )+ Ek
)
.

Putting this all together and choosing c small enough, we conclude that

∂t Ek ≤ C Ek +C
∑

1≤ j1≤ j2≤k
j1+ j2≤k+1

∥∥(1+ D)−1(O(∇ j1u∇ j2u))
∥∥2

L2(Rd )
. (8)

To estimate this expression, we introduce a parameter N > 1 (depending on t) to be optimised later, and
write

(1+ D)−1
= (1+ D)−1 P≤N + (1+ D)−1 P>N ,
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where P≤N and P>N are the Fourier projections to the regions {ξ : |ξ | ≤ N } and {ξ : |ξ |> N }.
We first deal with the low-frequency contribution to (8). From Plancherel’s theorem and (2) we obtain∥∥(1+ D)−1 P≤N (O(∇

j1u∇ j2u))
∥∥

L2(Rd )
≤ Cg(N )

∥∥〈∇〉−(d+2)/4O(∇ j1u∇ j2u)
∥∥

L2(Rd )
,

where 〈∇〉−(d+2)/4 is the Fourier multiplier with symbol 〈ξ〉−(d+2)/4, where 〈ξ〉 := (1+|ξ |2)1/2. Applying
Sobolev embedding, we can bound the right-hand side by

≤ Cg(N )
∥∥|∇ j1u| |∇ j2u|

∥∥
L4d/(3d+2)(Rd )

.

By Hölder’s inequality and the Gagliardo–Nirenberg inequality, we can bound this by

≤ Cg(N )‖∇u‖L4d/(d+2)(Rd )‖∇
j1+ j2−1u‖L2(Rd ),

which by (7) is bounded by
≤ Cg(N )‖∇u‖L4d/(d+2)(Rd )E

1/2
k .

Next, we partition

‖∇u‖L4d/(d+2)(Rd ) ≤ ‖∇P≤N u‖L4d/(d+2)(Rd )+‖∇P>N u‖L4d/(d+2)(Rd ).

From Sobolev embedding and Plancherel, together with (2) and (5), we have

‖∇P≤N u‖L4d/(d+2)(Rd ) ≤ C‖〈∇〉(d+2)/4 P≤N u‖L2(Rd ) ≤ Cg(N )(1+ a(t))1/2.

Meanwhile, from Sobolev embedding we have

‖∇P>N u‖L4d/(d+2)(Rd ) ≤
1
N

E1/2
k ,

(say) if k is large enough. Putting this all together, we see that the low-frequency contribution to (8) is

≤ Cg(N )2 Ek

[
g(N )2(1+ a(t))+

1
N 2 Ek

]
.

Next, we turn to the high-frequency contribution to (8). From Plancherel, Hölder’s inequality, and (7)
we have ∥∥(1+ D)−1 P≥N (O(∇

j1u∇ j2u))
∥∥

L2(Rd )
≤ Cg(N )N−(d+2)/4∥∥|∇ j1u| |∇ j2u|

∥∥
L2(Rd )

≤ Cg(N )N−(d+2)/4
‖∇

j1u‖L∞(Rd )E
1/2
k ,

while from Sobolev embedding and (7) we see (for k large enough) that

‖∇
j1u‖L∞(Rd ) ≤ C E1/2

k .

Thus the high-frequency contribution to (8) is at most Cg(N )2 N−(d+2)/2 E2
k .

Putting this all together, we conclude that

∂t Ek ≤ Cg(N )2 Ek

[
g(N )2(1+ a(t))+

1
N

Ek

]
.

We now optimize in N , setting N := 1+ Ek , to obtain

∂t Ek ≤ Cg(1+ Ek)
4 Ek(1+ a(t)).
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From (6), (3) and separation of variables we see that the ODE

∂t E = Cg(1+ E)4 E(1+ a(t))

with initial data E(0) ≥ 0 does not blow up in time. Also, from (7) we have Ek(0) ≤ C . A standard
ODE comparison (or continuity) argument then shows that Ek(t)≤C(T ) for all 0≤ t ≤ T , and the claim
follows.

Remark 2.1. It should be clear to the experts that the domain Rd here could be replaced by any other
sufficiently smooth domain, for example, the torus Rd/Zd , using standard substitutes for the Littlewood–
Paley type operators P≤N , P>N (one could use spectral projections of the Laplacian). We omit the details.
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[Katz and Pavlović 2002] N. H. Katz and N. Pavlović, “A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes
equation with hyper-dissipation”, Geom. Funct. Anal. 12:2 (2002), 355–379. MR 2003e:35243 Zbl 0999.35069

[Roy 2008] T. Roy, “Global existence of smooth solutions of a 3D loglog energy-supercritical wave equation”, preprint, 2008.
arXiv 0810.5175
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