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PERIODIC STOCHASTIC KORTEWEG–DE VRIES EQUATION
WITH ADDITIVE SPACE-TIME WHITE NOISE

TADAHIRO OH

We prove the local well-posedness of the periodic stochastic Korteweg–de Vries equation with the addi-
tive space-time white noise. To treat low regularity of the white noise in space, we consider the Cauchy
problem in the Besov-type space b̂s

p,∞(T) for s=− 1
2+, p= 2+ such that sp<−1. In establishing local

well-posedness, we use a variant of the Bourgain space adapted to b̂s
p,∞(T) and establish a nonlinear

estimate on the second iteration on the integral formulation. The deterministic part of the nonlinear
estimate also yields the local well-posedness of the deterministic KdV in M(T), the space of finite Borel
measures on T.

1. Introduction

In this paper, we prove the local well-posedness of the periodic stochastic Korteweg–de Vries (SKdV)
equation with additive space-time white noise:{

du+ (∂3
x u+ u∂x u)dt = dW,

u(x, 0)= u0(x),
(1)

where u is a real-valued function, (x, t) ∈ T×R+ with T= [0, 2π), and W (t)= ∂B/∂x is a cylindrical
Wiener process on L2(T). With en(x)= 1

√
2π

einx , we have W (t)= β0(t)e0+
∑

n 6=0
1
√

2
βn(t)en(x), where

{βn}n≥0 is a family of mutually independent complex-valued Brownian motions (here we take β0 to be
real-valued) in a fixed probability space (�,F, P) associated with a filtration {Ft }t≥0 and β−n(t)=βn(t)
for n ≥ 1. Note that Var(βn(1))= 2 for n ≥ 1.

De Bouard et al. [2004] considered{
du+ (∂3

x u+ u∂x u)dt = φdW,
u(x, 0)= u0(x),

(2)

where φ is a bounded linear operator in L2(T). They showed that (2) is locally well posed when φ is a
Hilbert–Schmidt operator from L2(T) to H s(T) for s >−1

2 . See the references in their paper for earlier
work in the periodic and nonperiodic settings.

In this work, we consider the case when φ is the identity operator on L2(T), that is, we take the
additive noise to be the space-time white noise ∂2 B/∂t ∂x , where B(x, t) is a two parameter Brownian
motion on T×R+. Note that φ is a Hilbert–Schmidt operator from L2(T) to H s(T) for s <− 1

2 but not
for s ≥− 1

2 .
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Suppose that u is the solution to (1), or equivalently to (2) with φ= Id, the identity operator on L2(T).
Let v1(x, t)= u(x +α0t, t)−α0, where α0 is the mean of u0. Then, v1 satisfies (1) with the mean-zero
initial condition u0−α0. Now, let P0 be the projection onto the spatial frequency 0, and Pn 6=0= Id−P0.
Note that P0W (t) = β0(t)e0(x) = 1

√
2π
β0(t). By letting v2 = v1−

1
√

2π
β0(t), we see that u satisfies (1)

if and only if v2 satisfies{
dv2+

(
∂3

x v2+ (v2+
1
√

2π
β0(t))∂xv2

)
dt = Pn 6=0 dW,

v2(x, 0)= u0(x)−α0,

almost surely since β0(0)= 0 a.s. By setting v3(x, t)= v2(x+ cω(t), t) with cω(t)=
∫ t

0
1
√

2π
β0(t ′)dt ′, it

follows that v3 satisfies {
dv3+ (∂

3
x v3+ v3∂xv3)dt = dW̃ ,

v3(x, 0)= u0(x)−α0,

where
W̃ (x, t)=

∑
n 6=0

1
√

2
βn(t)en(x + cω(t))=

∑
n 6=0

1
√

2
βn(t)eincω(t)en(x);

that is, v3 solves (2), where

φ = diag(φn; n 6= 0) with φn(t)= eincω(t) and cω(t)=
∫ t

0
1
√

2π
β0(t ′)dt ′ (3)

(with respect to the basis {en}n∈Z). Moreover, v3 has spatial mean 0 (as long as it exists) since e0 does
not lie in the range of φ. Therefore, in the remainder of the paper, we concentrate on studying the local
well-posedness of (2) with φ given by (3) and the mean-zero initial condition u0 (which implies that u
has spatial mean 0 as long as it exists).

Recall that u is called a (local-in-time) mild solution to (2) if u satisfies

u(t)= S(t)u0−
1
2

∫ t

0
S(t − t ′)∂x u2(t ′)dt ′+

∫ t

0
S(t − t ′)φ(t ′)dW (t ′) (4)

at least for t ∈ [0, T ] for some T > 0, where S(t)= e−t∂3
x .

Note that the first two terms in (4) also appear in the deterministic KdV theory. Thus, we briefly
review recent well-posedness results of the periodic (deterministic) KdV.{

ut + uxxx + uux = 0,
u
∣∣
t=0 = u0,

(x, t) ∈ T×R. (5)

Bourgain [1993] introduced a new weighted space-time Sobolev space X s,b whose norm is given by

‖u‖X s,b(T×R) = ‖〈n〉
s
〈τ − n3

〉
bû(n, τ )‖L2

n,τ (Z×R), (6)

where 〈 · 〉 = 1+ | · |. He proved the local well-posedness of (5) in L2(T) via the fixed point argument,
immediately yielding the global well-posedness in L2(T) thanks to the conservation of the L2 norm.
Kenig et al. [1996] improved Bourgain’s result and established the local well-posedness in H−

1
2 (T) by

establishing the bilinear estimate

‖∂x(uv)‖X s,− 1
2
. ‖u‖

X s, 1
2
‖v‖

X s, 1
2

(7)
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for s≥− 1
2 under the mean-zero assumption on u and v. Colliander et al. [2003] proved the corresponding

global well-posedness result via the I -method.
There are also results on (5) which exploit its complete integrability. Bourgain [1997] proved the

global well-posedness of (5) in the class M(T) of measures µ, assuming that its total variation ‖µ‖ is
sufficiently small. His proof is based on the trilinear estimate on the second iteration of the integral
formulation of (5), assuming an a priori uniform bound on the Fourier coefficients of the solution u of
the form

sup
n∈Z

|û(n, t)|< C for all t ∈ R. (8)

He then established (8) using complete integrability. More recently, Kappeler and Topalov [2006] proved
the global well-posedness of the KdV in H−1(T) via the inverse spectral method.

There are also results on the necessary conditions on the regularity with respect to smoothness or
uniform continuity of the solution map : u0 ∈ H s(T)→ u(t) ∈ H s(T). Bourgain [1997] showed that if
the solution map is C3, then s ≥ −1

2 . Christ et al. [2003] proved that if the solution map is uniformly
continuous, then s≥−1

2 . (See also [Kenig et al. 2001].) These results, in particular, imply that we cannot
hope to have a local-in-time solution of KdV via the fixed point argument in H s , s < − 1

2 . Recall that,
for each fixed t , the space-time white noise ∂2 B/∂t ∂x lies in

⋂
s<−1/2 H s

\ H−
1
2 almost surely. Hence,

these results for KdV cannot be applied to study the local well-posedness of (1).
Now, let us discuss the spaces which capture the regularities of the spatial and space-time white noise.

Recently, we proved the invariance of the (spatial) white noise for the (deterministic) KdV in [Oh 2009a]
(also see [Oh 2009b]) by first establishing the local well-posedness in an appropriate Banach space
containing the support of the (spatial) white noise. Define the Besov-type space via the norm

‖ f ‖b̂s
p,∞
:= ‖ f̂ ‖bs

p,∞
= sup

j

∥∥〈n〉s f̂ (n)
∥∥

L p
|n|∼2 j
= sup

j

( ∑
|n|∼2 j

〈n〉sp
| f̂ (n)|p

)1/p

. (9)

In [Oh 2009a], using the theory of abstract Wiener spaces, we showed that b̂s
p,∞ contains the full support

of the (spatial) white noise for sp <−1. (The statement also holds true for sp =−1.)
Let’s consider the stochastic convolution 8(t) given by

8(t)=
∫ t

0
S(t − t ′)φ(t ′)dW (t ′), (10)

where φ is given by (3). Define a variant of the X s,b space adjusted to b̂s
p,∞(T). Let X s,b

p,q be the
completion of the Schwartz class S(T×R) under the norm

‖u‖X s,b
p,q
=
∥∥〈n〉s〈τ − n3

〉
bû(n, τ )

∥∥
b0

p,∞Lq
τ
. (11)

Note that X s,b
p,q defined in (11) is the space of functions u such that S(−t)u( · , t) ∈ (b̂s

p,∞)x(FLb,q)t ,
where FLb,q is defined via the norm

‖ f ‖FLb,q := ‖〈τ 〉b f̂ (τ )‖Lq . (12)

In the same paper we also showed that the local-in-time white noise is supported on FLc,q for cq <−1.
This implies that the Brownian motion belongs locally in time to FLb,q for (b−1)q <−1. Hence, with



284 TADAHIRO OH

b< 1
2 and q = 2, we see that the local-in-time stochastic convolution η(t)8(t) lies in X s,b

p,q almost surely,
with sp<−1, b< 1

2 and q=2, where η(t) is a smooth cutoff supported on [−1, 2]with η(t)≡1 on [0, 1].
The argument in [De Bouard et al. 2004] is based on the result by Roynette [1993] on the endpoint

regularity of the Brownian motion, which states that the Brownian motion β(t) belongs to the Besov
space B1/2

p,q if and only if q =∞ (with 1 ≤ p <∞). The authors then proved a variant of the bilinear
estimate (7) by Kenig, Ponce and Vega, adjusted to their Besov space setting, establishing the local well-
posedness via the fixed point theorem. The use of a variant of the bilinear estimate (7) required a slight
regularization of the noise in space via φ so that the smoothed noise has the spatial regularity s > −1

2 .
Thus, they could not treat the space-time white noise, that is, φ = Id.

Our result is based on two observations. First, our l p
n -based function spaces b̂s

p,∞ in (9) and X s,b
p,q in

(11) capture the regularity of the spatial and space-time white noise for sp <−1, b < 1
2 and q = 2. The

second is that we can indeed carry out the argument in [Bourgain 1997], a nonlinear estimate on the
second iteration, without assuming the a priori bound (8), if we take the initial data u0 ∈ b̂s

p,∞ for s>− 1
2

with p > 2. Then, we construct a solution u as a strong limit of the smooth solutions uN (with smooth
uN

0 and φN ) of (2). Note that our nonlinear estimate on the second iteration in Section 5 depends on the
stochastic term, whereas the bilinear estimate in [De Bouard et al. 2004] is entirely deterministic.

Finally, we present our main results.

Theorem 1. Let φ be as in (3) and p = 2+. Let s =− 1
2 + δ with (p− 2)/(4p) < δ < (p− 2)/(2p), so

sp < −1. Also, let u0 be F0-measurable such that it has mean 0 and belongs to b̂s
p,∞(T) almost surely.

Then, there exists a stopping time Tω > 0 and a unique process u ∈C
(
[0, Tω]; b̂s

p,∞(T)
)

satisfying (2) on
[0, Tω] almost surely.

As a corollary, we obtain:

Theorem 2. The stochastic KdV (1) with the additive space-time white noise is locally well posed almost
surely (with the prescribed mean on u0).

Remark 1.1. Our argument provides an answer to the question posed in [Bourgain 1997, remark on
p. 120], at least in the local-in-time setting. The deterministic part of the nonlinear estimate in Section 5
can be used to establish the local well-posedness of (5) for a finite Borel measure u0 = µ ∈ M(T) with
‖µ‖ <∞ without the complete integrability or the smallness assumption on µ. Note that µ ∈ b̂s

p,∞ for
sp ≤ −1 since supn |µ̂(n)| < ‖µ‖ <∞. Hence, it can be used to study the Cauchy problem on M(T)
for nonintegrable KdV-variants. Also, see [Oh 2009b].

Remark 1.2. Let FLs,p(T) be the space of functions on T defined via the norm ‖ f ‖FLs,p=‖〈n〉s f̂ (n)‖L p
n
.

Recall from [Oh 2009a] that FLs,p(T) contains the support of the (spatial) white noise when sp <−1.
Then, Theorems 1 and 2 can also be established in FLs,p(T) for s =−1

2+, p = 2+ with sp <−1. The
modification is straightforward once we note that ‖ f ‖FLs−ε,p . ‖ f ‖b̂s

p,∞
for any ε > 0, and thus we omit

the details.

This paper is organized as follows: In Section 2, we introduce some notations. In Section 3, we intro-
duce function spaces along with their embeddings and state deterministic linear estimates from [Bourgain
1993] and [Oh 2009a]. In Section 4, we study some basic properties of the stochastic convolution. In
Section 5, we prove Theorem 1 by establishing the nonlinear estimate on the second iteration of the
integral formulation (4).
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2. Notation

In the periodic setting on T, the spatial Fourier domain is Z. Let dn be the normalized counting measure
on Z. We say that f ∈ L p(Z), where 1≤ p <∞, if

‖ f ‖L p(Z) =

(∫
Z

| f (n)|pdn
)1/p

:=

(
1

2π

∑
n∈Z

| f (n)|p
)1/p

<∞.

If p = ∞, we have the obvious definition involving the supremum. We often drop 2π for simplicity.
If a function depends on both x and t , we use ∧x (and ∧t ) to denote the spatial (and temporal) Fourier
transform, respectively. However, when there is no confusion, we simply use ∧ to denote the spatial
Fourier transform, the temporal Fourier transform, and the space-time Fourier transform, depending on
the context.

For a Banach space X ⊂ S′(T×R), we use X̂ to denote the space of the Fourier transforms of the
functions in X , which is a Banach space with the norm ‖ f ‖X̂ = ‖F

−1
n,τ f ‖X , where F−1 denotes the

inverse Fourier transform (in n and τ ). Also, for a space Y of functions on Z, we use Ŷ to denote the
space of the inverse Fourier transforms of the functions in Y with the norm ‖ f ‖Ŷ =‖F f ‖Y . Now, define
b̂s

p,q(T) by the norm

‖ f ‖b̂s
p,q (T)
= ‖ f̂ ‖bs

p,q (Z) :=
∥∥‖〈n〉s f̂ (n)‖L p

|n|∼2 j

∥∥
lq

j
=

( ∞∑
j=0

( ∑
|n|∼2 j

〈n〉sp
| f̂ (n)|p

)q/p )1/q

(13)

for q <∞ and by (9) when q =∞.
Throughout the paper, η(t) denotes a smooth cutoff supported on [−1, 2] with η(t)≡ 1 on [0, 1], and

let ηT (t)= η(T
−1t). We use c, C to denote various constants, usually depending only on s, p, and δ. If

a constant depends on other quantities, we make it explicit. We use A . B to denote an estimate of the
form A ≤ C B. Similarly, we use A ∼ B to denote A . B and B . A and use A� B when there is no
general constant C such that B ≤ C A. We also use a+ and a− to denote a+ ε and a− ε, respectively,
for arbitrarily small ε� 1.

3. Function spaces and basic embeddings

Let X s,b denote the usual periodic Bourgain space defined in (6). We often use the shorthand notation
‖ · ‖s,b to denote the X s,b norm. Now, define X s,b

p,q , the Bourgain space adapted to b̂s
p,∞, to be the

completion of the Schwartz functions on T×R with respect to the norm given by

‖u‖X s,b
p,q
=
∥∥〈n〉s〈τ − n3

〉
bû(n, τ )

∥∥
b0

p,∞Lq
τ
= sup

j

∥∥〈n〉s〈τ − n3
〉

bû(n, τ )
∥∥

L p
|n|∼2 j Lq

τ
. (14)

In the following, we take p = 2+ and s = −1
2+ = −

1
2 + δ with δ < (p−2)/2p (and δ > (p−2)/4p)

such that sp <−1. Lastly, given T > 0, we define X s,b,T
p,q as a restriction of X s,b

p,q on [0, T ] by

‖u‖X s,b,T
p,q
= ‖u‖X s,b

p,q [0,T ]
= inf

{
‖ũ‖X s,b

p,q
: ũ|[0,T ] = u

}
.

We define the local-in-time versions of the other function spaces analogously.
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Now, we discuss the basic embeddings. For p ≥ 2, we have ‖an‖L p
n
≤ ‖an‖L2

n
. Thus, we have

‖ f ‖b̂s
p,∞
≤ ‖ f ‖H s , and thus

‖u‖X s,b
p,2
≤ ‖u‖X s,b . (15)

By the Hölder inequality, we have

‖ f ‖
H−

1
2−δ
=

(∑
j

(2 j )0−‖〈n〉−
1
2−δ+ f̂ (n)‖2

|n|∼2 j

)1/2

≤ sup
j
‖〈n〉−2δ+

‖L2p/p−2‖〈n〉−
1
2+δ f̂ (n)‖L p

n
≤ ‖ f ‖b̂s

p,∞

(16)

for s =− 1
2 + δ with δ > (p−2)/4p. Hence, for s =− 1

2 + δ with δ > (p−2)/4p, we have

‖u‖
X−

1
2−δ,b
. ‖u‖X s,b

p,2
. (17)

Now, we briefly go over the linear estimates. Let S(t) = e−t∂3
x and T ≤ 1 in the following. We first

present the homogeneous and nonhomogeneous linear estimates. See [Bourgain 1993; Kenig et al. 1993;
Oh 2009a] for details of the proofs.

Lemma 3.1. For any s ∈ R and b < 1
2 , we have ‖S(t)u0‖X s,b,T

p,2
. T (1/2)−b

‖u0‖b̂s
p,∞

.

Lemma 3.2. For any s ∈ R and b ≤ 1
2 , we have∥∥∥∥∫ t

0
S(t − t ′)F(x, t ′)dt ′

∥∥∥∥
X s,b,T

p,2

. ‖F‖X s,b−1
p,2
+‖F‖X s,−1

p,1
.

Also, we have
∥∥∫ t

0 S(t − t ′)F(x, t ′)dt ′
∥∥

X s,b,T
p,2
. ‖F‖X s,b−1

p,2
for b > 1

2 .

The next lemma is the periodic L4 Strichartz estimate due to Bourgain [1993].

Lemma 3.3. Let u be a function on T×R. Then, we have ‖u‖L4
x,t
. ‖u‖

X0, 1
3
.

Lastly, recall that by restricting the Bourgain spaces onto a small time interval [0, T ], we can gain a
small power of T . See [Colliander and Oh 2009] for the proof.

Lemma 3.4. For 0≤ b′ < b ≤ 1
2 , we have

‖u‖X s,b′,T = ‖ηT u‖X s,b′,T . T b−b′−
‖u‖X s,b .

4. Stochastic convolution

In this section, we study basic properties of the stochastic convolution8(t) defined in (10). In particular,
we prove that η8 belongs to X s,b,T

p,2 and is continuous from [0, T ] into b̂s
p,∞ for T ≤ 1 almost surely for

sp<−1 and (b−1) ·2<−1, where η(t) is a smooth cutoff supported on [−1, 2] with η(t)≡ 1 on [0, 1].
Before stating the main results, we point out the following. Let φ be the identity operator on L2(T)

or be as in (3). Then, we know that such φ is Hilbert–Schmidt from L2(T) into H s(T) if and only if
s <− 1

2 . In other words, with a slight abuse of notation, define

φ :=
∑
n∈Z

φen =
∑
n∈Z

φnen (18)
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in view of φ = diag(φn; n 6= 0). Then, we have φ ∈ H s(T) if and only if s < −1
2 . Moreover, we have

‖φ‖H S(L2;H s) = ‖φ‖H s , where ‖ · ‖H S(L2;H s) denotes the Hilbert–Schmidt norm from L2(T) to H s(T).
For such φ, we also have φ ∈ b̂s

p,∞(T) if and only if sp ≤ −1, and we can use ‖φ‖b̂s
p,∞

to discuss the
regularity of φ in place of the Hilbert–Schmidt norm. This is one of the reasons for using this space.
(We need only sp <−1 for our purpose since the nonlinear estimate in Section 5 holds for s =−1

2 and
p = 2+ with sp <−1.)

Proposition 4.1. Let 0<T ≤1 and p=2+. Let s=− 1
2+δ and b= 1

2−δ, with (p−2)/4p<δ<(p−2)/2p
such that sp <−1 and (b−1) ·2<−1. Then, for the stochastic convolution 8(t) defined in (10) with φ
as in (3), we have

E
[
‖η8‖X s,b,T

p,2

]
≤ C(η, s, p) <∞. (19)

In particular, 8 ∈ X
−

1
2+δ,

1
2−δ,T

p,2 almost surely.

Before going into the proof of Proposition 4.1, recall the following. Let β1 and β2 be independent real-
valued Brownian motions on (�,F, P), and f1(t, ω) and f2(t, ω) be real-valued stochastic processes
independent of β1 and β2. Then, we can regard β j and f j as β j (t, ω)=β j (t, ω1) and f j (t, ω)= f j (t, ω2),
where ω= (ω1, ω2) ∈�1×�2 =�. Thus, in taking an expectation, we can first integrate over ω1 ∈�1.
Then, for m ∈ N, we have

E

[∣∣∣∣∫ b

a
f1(t)dβ1(t)+

∫ b

a
f2(t)dβ2(t)

∣∣∣∣2m]
= E

[ 2m∑
k=0

(
2m
k

)(∫ b

a
f1(t)dβ1(t)

)k(∫ b

a
f2(t)dβ2(t)

)2m−k]

= E�2

[ m∑
n=0

(
2m
2n

)
(2n)!
2nn!
‖ f1( · , ω2)‖

2n
L2(a,b)

(2(m− n))!
2m−n(m− n)!

‖ f2( · , ω2)‖
2(m−n)
L2(a,b)

]
. (20)

In the computation above, we used the fact that, for each fixed ω2,
∫ b

a f j (t, ω2)dβ j (t, ω1) is a Gaussian
random variable on �1 with variance ‖ f j ( · , ω2)‖

2
L2(a,b).

Proof. By the Hölder inequality, we have∥∥〈τ − n3
〉
(1/2)−δû(n, τ )

∥∥
L2
τ
≤ ‖〈τ − n3

〉
−2δ
‖L2p/p−2

τ

∥∥〈τ − n3
〉
(1/2)+δû(n, τ )

∥∥
L p
τ
,

that is, we have ‖η8‖X s,1/2−δ
p,2

. ‖η8‖X s,1/2+δ
p,p

as long as δ > (p−2)/4p. Thus, we will work in X s,1/2+δ
p,p

in the following.
Define g(t) = η(t)

∫ t
0 S(−r)φ(r)dW (r) such that η(t)8( · , t) = S(t)g( · , t). Assume that each βn is

extended to a Brownian motion on R in such a way that the family {βn}n≥0 is still independent. Note
that for t ∈ [0, T ], we have

ĝ(n, t)= η(t)
∫ t

0
η(r)e−irn3

φn(r)χ[0,T ](r) 1
√

2
dβn(r). (21)

We have inserted η(r) and χ[0,T ](r) in the integrand since η(r)χ[0,T ](r) ≡ 1 for r ∈ [0, t] ⊂ [0, T ]. For
notational simplicity, we use φn(r) to denote φn(r)χ[0,T ](r) in the following, that is, we assume that φn

is supported on [0, T ]. By (3), we have |φn(r)| ≤ 1 for r ∈ R.
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Now, we write the left-hand side of (19) as

E
[
‖η8‖

X
s, 1

2+δ,T
p,p

]
. E

[
sup

j
2 js
( ∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

|ĝ(n, τ )|pdτ
)1/p]

+ E

[
sup

j
2 js
( ∑
|n|∼2 j

∫
|τ |≤2
|ĝ(n, τ )|pdτ

)1/p]
. (22)

Part 1. First, we estimate the second term in (22). Let

Gn(r, τ )= η(r)e−irn3
φn(r)

∫
∞

r
η(t)e−i tτdt. (23)

Also write βn = β
(r)
n + iβ(i)n where β(r)n = Re βn and β(i)n = Im βn . Then, by the stochastic Fubini

Theorem, we have, for m ∈ N,

E
[
|ĝ(n, τ )|2m]

= E

[ ∣∣∣∣∫
R

η(t)e−i tτ
∫ t

−∞

η(r)e−irn3
φn(r) 1

√
2
dβn(r)dt

∣∣∣∣2m]
= 2−mE

[ ∣∣∣∣∫ 2

−1
Gn(r, τ )dβn(r)

∣∣∣2m
]

. E

[ ∣∣∣∣∫ 2

−1
Re Gn(r, τ )dβ(r)n (r)−

∫ 2

−1
Im Gn(r, τ )dβ(i)n (r)

∣∣∣∣2m]
+E

[ ∣∣∣∣∫ 2

−1
Im Gn(r, τ )dβ(r)n (r)+

∫ 2

−1
Re Gn(r, τ )dβ(i)n (r)

∣∣∣∣2m]
. (24)

Note that |Re Gn(r, τ )|, |Im Gn(r, τ )| ≤ |Gn(r, τ )| ≤ ‖η‖L1 |φn(r)|. ‖η‖L1χ[0,T ](r). Thus, we have∥∥Re Gn(r, τ )
∥∥2k

L2
r

∥∥Im Gn(r, τ )
∥∥2(m−k)

L2
r

. ‖η‖2m
L1

for k = 0, . . . ,m. Then, by (20) along with the independence of φn , β(r)n , and β(i)n , we have

‖ĝ(n, τ )‖L2m(�) ≤ C = C(η,m)

independent of n and τ . Hence, for p ∈ (2, 4), we have(
E
[
|ĝ(n, τ )|p

])1/p
≤ ‖ĝ(n, τ )‖θL2(�)

‖ĝ(n, τ )‖1−θL4(�)
. 1 (25)

by interpolation, where θ ∈ (0, 1) such that 1
p
=
θ
2
+

1−θ
4

. Then, the second term in (22) is estimated by

(22)≤
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∫
|τ |≤2

E
[
|ĝ(n, τ )|p

]
dτ
)1/p

.

( ∞∑
j=0

2 jsp
∑
|n|∼2 j

1
)1/p

∼

( ∞∑
j=0

2(sp+1) j
)1/p

≤ C <∞, (26)

since sp <−1.
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Part 2. Next, we estimate the first term in (22). Let{
G(1)

n (r, τ )= η(r)e−irn3
φn(r)

∫
∞

r η′(t)(e−i tτ/ iτ)dt,

G(2)
n (r, τ )= η2(r)e−irn3

φn(r)(e−irτ/ iτ).
(27)

Then, by the stochastic Fubini theorem and integration by parts, we have

√
2ĝ(n, τ )=

∫ 2

−1
Gn(r, τ )dβn(r)=

∫ 2

−1
G(1)

n (r, τ )dβn(r)+
∫ 2

−1
G(2)

n (r, τ )dβn(r)

=: I (1)n (τ )+ I (2)n (τ ).

(28)

Thus |ĝ(n, τ )|p .
∣∣I (1)n (τ )

∣∣p
+
∣∣I (2)n (τ )

∣∣p.
First, we estimate the contribution from G(1)

n . For |τ | ∼ 2k , we have∣∣∣∣∫ ∞
r

η′(t)
e−i tτ

iτ
dt
∣∣∣∣≤ |τ−2η′(r)| +

∣∣∣∣∫ ∞
r

η′′(t)
e−i tτ

τ 2 dt
∣∣∣∣≤ Cη2−2k (29)

by partial integration. Thus, we have |G(1)
n (r, τ )| . 2−2k . Then, repeating a similar computation as in

Part 1, we obtain (
E
[
|I (1)n (τ )|p

])1/p
≤ ‖I (1)n (τ )‖θL2(�)

‖I (1)n (τ )‖1−θL4(�)
. 2−2k, (30)

by (20) and interpolation. Hence, the contribution to (22) is estimated by

(22)≤
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

E
[
|I (1)n (τ )|p

]
dτ
)1/p

.

( ∞∑
j=0

2 j (sp+1)
∞∑

k=1

2k(−(3p/2)+δp+1)
)1/p

≤ C <∞, (31)

since sp <−1 and − 3
2 p+ δp+ 1< 0.

Now, we consider the contribution from I (2)n (τ ). With βn = β
(r)
n + iβ(i)n , we have |I (2)n (τ )|2 .∣∣∫ 2

−1 G(2)
n (r, τ )dβ(r)n (r)

∣∣2 + ∣∣∫ 2
−1 G(2)

n (r, τ )dβ(i)n (r)
∣∣2. We only estimate the first term since the second

term is estimated in the same way. By the Ito formula (see [De Bouard et al. 2004]), we have∣∣∣∣∫ 2

−1
G(2)

n (r, τ )dβ(r)n (r)
∣∣∣∣2 = ∫ 2

−1
η4(t)
|φn(t)|2

τ 2 dt + 2 Re
∫ 2

−1

∫ t

−∞

G(2)
n (r, τ )dβ(r)n (r)G(2)

n (t, τ )dβ(r)n (t)

=: I ′n(τ )+ I ′′n (τ ).

The contribution from I ′n(τ ) is at most

(22).
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

|τ |−pdτ
(∫ 2

−1
η4(t)dt

)p/2 )1/p

. ‖η‖2L4

( ∞∑
j=0

2 j (sp+1)
∞∑

k=1

2k(− p
2+δp+1)

)1/p

≤ C <∞, (32)

since sp <−1 and δ < (p−2)/2p.
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We finally estimate the contribution from I ′′n (τ ). Write

I ′′n (τ )=
∫ 2

−1
Hn(t)dβ(r)n (t),

where Hn(t)=
∫ t
−∞

H̃n(r, t)dβ(r)n (r) with

H̃n(r, t)= 2τ−2 Re
(
η2(r)η2(t)ei(t−r)n3

φn(r)φn(t)ei(t−r)τ ). (33)

Then, by the Ito isometry and |φn(w, t)| ≤ 1 for all (ω, t) ∈�×R, we have

E
[
|I ′′n (τ )|

2]
= E

[(∫ 2

−1
Hn(t)dβ(r)n (t)

)2]
∼

∫ 2

−1
E
[
H 2

n (t)
]
dt

=

∫ 2

−1
E

[(∫ t

−∞

H̃n(r, t)dβ(r)n (r)
)2]

dt =
∫ 2

−1

∫ t

−1
E
[
|H̃n(r, t)|2

]
drdt

. τ−4
∫ 2

−1

∫ t

−1
η4(r)η4(t)drdt . τ−4. (34)

Hence, the contribution from I ′′n (τ ) is at most

(22).
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

E
[
|I ′′n (τ )|

p/2]dτ)1/p

.

( ∞∑
j=0

2 jsp
∑
|n|∼2 j

∞∑
k=1

2kp( 1
2+δ)

∫
|τ |∼2k

(
E
[
|I ′′n (τ )|

2])p/4dτ
)1/p

.

( ∞∑
j=0

2 j (sp+1)
∞∑

k=1

2k(− p
2+δp+1)

)1/p

≤ C <∞, (35)

for p ≤ 4, sp <−1, and δ < (p−2)/2p. �

We state a corollary to the proof of Proposition 4.1 for a general diagonal covariance operator φ(t, ω)=
diag(φn(t, ω); n ∈ Z), which is independent of {βn}n≥1.

Corollary 4.2. Let 0 < T ≤ 1, p = 2+, and s, s ′ ∈ R with s < s ′. Moreover, let b = 1
2 − δ with

(p−2)/4p < δ < (p−2)/2p, so (b− 1) · 2 < −1. Then, for the stochastic convolution 8(t) defined in
(10) with φ ∈ L p([0, T ]×�; b̂s′

p,∞), independent of {βn}n≥1, we have

E
[
‖η8‖X s,b,T

p,2

]
≤ C(η, s, s ′, p)‖φ‖L p([0,T ]×�;b̂s′

p,∞)
. (36)

In particular, 8 ∈ X
s, 1

2−δ,T
p,2 almost surely.

Proof. In the proof of Proposition 4.1, we used |φn(t)| ≤ 1 whenever φn(t) appeared. Now, we briefly
go through that proof, keeping track of φn(t). Since φ is independent of {βn}n≥1, we regard βn and φn

as βn(t, ω)= βn(t, ω1) and φn(t, ω)= φn(t, ω2), where ω = (ω1, ω2) ∈�1×�2 =�.
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In (25), we have E
[
|ĝ(n, τ )|p

]
. E�2‖φn(·, ω2)‖

p
L2[0,T ]. Then, in (26), we have

(22)≤
( ∞∑

j=0

2 jsp
∑
|n|∼2 j

∫
|τ |≤2

E�2‖φn(·, ω2)‖
p
L2[0,T ]dτ

)1/p

≤

( ∞∑
j=0

2 j (s−s′)p2 js′ p
∑
|n|∼2 j

‖φn(·, ω2)‖
p
L p([0,T ]×�2)

)1/p

. ‖φ‖L p([0,T ]×�;b̂s′
p,∞)
,

since s−s ′< 0. A similar modification in (30) and (31) (alternatively, (32)) takes care of the contribution
from I (1)n (τ ) (alternatively, I ′n(τ )). Now, as for I ′′n (τ ), we first integrate only over �1 in (34) and obtain

E�1

[
|I ′′n (τ )|

2]. τ−4
∫ 2

−1

∫ t

−1
η4(r)η4(t)|φn(r)|2|φn(t)|2drdt . τ−4

‖φn‖
4
L2[0,T ].

Then, in (35), we have

E
[
|I ′′n (τ )|

p/2]
= E�2

[
‖I ′′n (τ )‖

p/2
L p/2(�1)

]
≤ E�2

[
‖I ′′n (τ )‖

p/2
L2(�1)

]
. τ−p E�2‖φn( · , ω2)‖

p
L2[0,T ]

for p ∈ [2, 4]. The rest follows as before. �

Now, we discuss the continuity of the stochastic convolution. In the remaining of this section, we
show that the stochastic convolution 8(t) defined in (10) belongs to C

(
[0, T ]; b̂s

p,∞(T)
)

almost surely.
With βn = β

(r)
n + iβ(i)n , we have

8(t)=
1
√

2

∑
n 6=0

∫ t

0
S(t − r)φn(r)endβ(r)n (r)+ i

1
√

2

∑
n 6=0

∫ t

0
S(t − r)φn(r)endβ(i)n (r), (37)

since φe0= 0 and φen =φnen , n 6= 0. In the following, we only show the continuity of the first stochastic
convolution in (37), which we denote by 8(r)(t). Also, let W (r)(t)= 1

√
2

∑
n β

(r)
n (t)en . As in [Da Prato

2004], we use the factorization method based on the elementary identity∫ t

r
(t − t ′)α−1(t ′− r)−αdt ′ =

π

sinπα
(38)

with α ∈ (0, 1) for 0≤ r ≤ t ′ ≤ t . Using (38), we can write the first term in (37) as

8(r)(t)=
sinπα
π

∫ t

0
S(t − t ′)(t − t ′)α−1Y (t ′)dt ′, (39)

where

Y (t ′)=
∫ t ′

0
S(t ′− r)(t ′− r)−αφ(r)dW (r)(r). (40)

First, we present a lemma that provides a criterion for the continuity of (39) in terms of the L2m-
integrability of Y (t ′).

Lemma 4.3 [Da Prato 2004, Lemma 2.7]. Let T >0, α∈(0, 1), and m> 1
2α

. For f∈ L2m
(
[0,T];b̂s

p,∞(T)
)
,

let

F(t)=
∫ t

0
S(t − t ′)(t − t ′)α−1 f (t ′)dt ′, 0≤ t ≤ T .
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Then, F ∈ C
(
[0, T ]; b̂s

p,∞(T)
)
. Moreover, there exists C = C(m, T ) such that

‖F(t)‖b̂s
p,∞
≤ C‖ f ‖L2m([0,T ];b̂s

p,∞)
, 0≤ t ≤ T .

Remark 4.4. Although Da Prato states his Lemma 2.7 for a Hilbert space H , his proof makes no use of
the Hilbert space structure of H . Thus the same result holds for b̂s

p,∞(T) as well.

In view of Lemma 4.3, it suffices to show that Y (t ′) ∈ L2m
(
[0, T ]; b̂s

p,∞(T)
)

a.s.

Proposition 4.5. Let T > 0, m ≥ 2, s =− 1
2+, and p = 2+ such that sp <−1. Let φ be as in (3). Then,

the stochastic convolution 8(r)(t) is continuous from [0, T ] into b̂s
p,∞ almost surely. Moreover, there

exists
E
(

sup
t∈[0,T ]

‖8(r)(t)‖2m
b̂s

p,∞

)
≤ C(m, T, s, p) <∞.

Proof. Let α ∈
( 1

2m ,
1
2

)
and Y as in (40). First, note that Y is real-valued since φ−n(s)e−n = φn(s)en

and β(r)−n = β
(r)
n . Note that {β(r)n }n 6=0 and φ are independent since φ depends only on β0. Thus, we can

regard β(r)n and φ as β(r)n (ω)= β
(r)
n (ω1) and φ(ω)= φ(ω2), where ω = (ω1, ω2) ∈�1×�2 =�. Then,

for each fixed ω2 and t ′ ∈ [0, t], Ŷ (t ′)(n) is a Gaussian random variable on �1 with Var�1

(
Ŷ (t ′)(n)

)
=

E�1

[
|Ŷ (t ′)(n)|2

]
.

Let Gn(r, ω2) = (t ′ − r)−αei(t ′−r)n3
φn(r, ω2). Note that |Gn(r, ω2)| = (t ′ − r)−α for 0 < r < t ′ and

n 6= 0. By the Ito isometry, we have

E�1

[
|Ŷ (t ′)(n)|2

]
=

1
2 E�1

[ ∣∣∣∣∫ t ′

0
Gn(r, ω2)dβ(r, ω1)

∣∣∣∣2]= 1
2

∫ t ′

0
|Gn(r, ω2)|

2dr ∼
∫ t ′

0
(t ′− r)−2αdr.

By the Minkowski integral inequality (with p = 2+< 2m) after replacing sup j by
∑

j , we have

E�1

(
‖Y (t ′, · , ω2)‖

2m
b̂s

p,∞

)
= E�1

[(
sup

j

∑
|n|∼2 j

〈n〉sp
|Ŷ (t ′)(n)|p

)2m/p]

.

( ∞∑
j=0

∑
|n|∼2 j

2 jsp
(

E�1

[
|Ŷ (t ′)(n)|2m])p/2m)2m/p

∼

( ∞∑
j=0

2 j (sp+1))2m/p
(∫ t ′

0
(t ′− r)−2αdr

)m

.

(
(t ′)1−2α

1− 2α

)m

,

since sp <−1. Therefore∫ T

0
E
(
‖Y (t ′)‖2m

b̂s
p,∞

)
dt ′ =

∫ T

0
E�2E�1

(
‖Y (t ′)‖2m

b̂s
p,∞

)
dt ′

.
∫ T

0

(
(t ′)1−2α

1− 2α

)m

dt ′ . T (1−2α)m+1 < C(m, T, s, p) <∞.

In particular, it follows that Y ( · , ω) ∈ L2m
(
[0, T ]; b̂s

p,∞
)

almost surely. Then, the desired result follows
from Lemma 4.3. �
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5. Nonlinear estimate on the second iteration

Now, we present the crucial nonlinear analysis. First, we briefly go over Bourgain’s argument [1997].
By writing the integral equation, the deterministic KdV (5) is equivalent to

u(t)= S(t)u0−
1
2 N(u, u)(t), (41)

where N( · , · ) is given by

N(u1, u2)(t) :=
∫ t

0
S(t − t ′)∂x(u1u2)(t ′)dt ′. (42)

In the following, we assume that the initial condition u0 has mean 0, which implies that u(t) has
spatial mean 0 for each t ∈ R. We use (n, τ ), (n1, τ1), and (n2, τ2) to denote the Fourier variables for
uu, the first factor, and the second factor u of uu in N(u, u), respectively, thus we have n = n1+n2 and
τ = τ1+ τ2. By the mean-zero assumption on u and since we have ∂x(uu) in the definition of N(u, u),
we assume n, n1, n2 6= 0. We also use the following notation:

σ0 := 〈τ − n3
〉 and σ j := 〈τ j − n3

j 〉.

One of the main ingredients is the observation due to Bourgain [1993]:

n3
− n3

1− n3
2 = 3nn1n2 for n = n1+ n2, (43)

which in turn implies that
MAX :=max(σ0, σ1, σ2)& 〈nn1n2〉. (44)

Now, define
A j = {(n, n1, n2, τ, τ1, τ2) ∈ Z3

×R3
: σ j =MAX}, (45)

and let N j (u, u) denote the contribution of N(u, u) on A j . By the standard bilinear estimate as in
[Bourgain 1993; Kenig et al. 1996], we have

‖N0(u, u)‖
−

1
2+δ,

1
2−δ
≤ o(1)‖u‖2

−
1
2−δ,

1
2−δ
, (46)

where o(1) = T θ with some θ > 0 by considering the estimate on a short time interval [−T, T ] (for
example, Lemma 3.4). See (2.17), (2.26), and (2.68) in [Bourgain 1997]. Here, we abuse the notation
and use ‖ · ‖s,b = ‖ · ‖X s,b to denote the local-in-time version as well. Note that the temporal regularity
b equals 1

2 − δ <
1
2 . This allows us to improve the spatial regularity by 2δ. Clearly, we cannot expect

to do the same for N1(u, u). (By symmetry, we do not consider N2(u, u) in the following.) The bilinear
estimate (7) is known to fail for any s ∈ R if b < 1

2 due to the contribution from N1(u, u) [Kenig et al.
1996]. Following the notation in [Bourgain 1997], let

Is,b = ‖N1(u, u)‖X s,b and α := 1
2 − δ <

1
2 . (47)

Then, by Lemma 3.2 and duality with ‖d(n, τ )‖L2
n,τ
≤ 1, we have

I−α,1−α = ‖N1(u, u)‖−α,1−α .
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0
û(n1, τ1)

〈n2〉
1−αc(n2, τ2)

σ α2
, (48)
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where

c(n2, τ2)= 〈n2〉
−(1−α)σ α2 û(n2, τ2) so that ‖c‖L2

n,τ
= ‖u‖−(1−α),α = ‖u‖− 1

2−δ,
1
2−δ
. (49)

The main idea here is to consider the second iteration, that is, substitute (41) for û(n1, τ1) in (48), thus
leading to a trilinear expression. Since σ1 =MAX& 〈nn1n2〉 � 1 on A1, we can assume that

û(n1, τ1)= (N(u, u))∧(n1, τ1)∼
|n1|

σ1

∑
n1=n3+n4

∫
τ1=τ3+τ4

û(n3, τ3)û(n4, τ4)dτ4. (50)

Note that û(n1, τ1) cannot come from S(t)u0 of (41) since we have σ1 ∼ 1 for the linear part. Moreover,
by the standard computation [Bourgain 1993], we have

N(u, u)(x, t)=−i
∞∑

k=1

ik tk

k!

∑
n 6=0

ei(nx+n3t)
∫
η(λ− n3)∂̂x u2(n, λ)dλ

+ i
∑
n 6=0

einx
∫
(1− η)(τ − n3)

τ − n3 ∂̂x u2(n, τ )eiτ t dτ

+ i
∑
n 6=0

ei(nx+n3t)
∫
(1− η)(λ− n3)

λ− n3 ∂̂x u2(n, λ)dλ

=:M1(u, u)(x, t)+M2(u, u)(x, t)+M3(u, u)(x, t). (51)

Note that (M1(u, u))∧(n1, τ1) and (M3(u, u))∧(n1, τ1) are distributions supported on {τ1 − n3
1 = 0}, so

σ1 ∼ 1. Hence, the only contribution for the second iteration on A1 comes from M2(u, u) whose Fourier
transform is given in (50). This shows the validity of the assumption (50).

The σ1 appearing in the denominator allows us to cancel 〈n〉1−α and 〈n2〉
1−α in the numerator in (48).

Then, I−α,1−α can be estimated by

.
∑

n=n1+n2
n1=n3+n4

∫
τ=τ1+τ2
τ1=τ3+τ4

〈n〉1−αd(n, τ )
σ α0

|n1|

σ1
û(n3, τ3)û(n4, τ4)

〈n2〉
1−αc(n2, τ2)

σ α2
.

(52)

Bourgain then divided the argument into several cases, depending on the sizes of σ0, . . . , σ4. Here, the
key algebraic relation is

n3
− n3

2− n3
3− n3

4 = 3(n2+ n3)(n3+ n4)(n4+ n2) with n = n2+ n3+ n4. (53)

Then, Bourgain proved [1997, (2.69)]

I−α,1−α ≤ o(1)‖u‖−(1−α),α I−α,1−α + o(1)‖u‖3
−(1−α),α + o(1)‖u‖−(1−α),α, (54)

assuming the a priori estimate (8): |û(n, t)|< C for all n ∈ Z, t ∈ R. Indeed, the estimates involving the
first two terms on the right-hand side of (54) were obtained without (8), and only the last term in (54)
required (8) [Bourgain 1997, “Estimation of (2.62)”], which was then used to deduce

‖û(n, · )‖L2
τ
< C. (55)
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The a priori estimate (8) is derived via the isospectral property of the KdV flow and is false for a general
function in X−(1−α),α. (It is here that the smallness of the total variation ‖µ‖ is used.)

Our goal is to carry out a similar analysis for SKdV (2) on the second iteration without the a priori es-
timates (8) and (55) coming from the complete integrability of KdV. We achieve this goal by considering
the estimate in

X−α,αp,2 = X
−

1
2+δ,

1
2−δ

p,2 ,

where p = 2+ and p−2
4p

< δ <
p−2
2p

. By (15) and (17) (recall −α =− 1
2 + δ and −(1−α)=− 1

2 − δ),
we have

‖u‖X−α,αp,2
≤ ‖u‖X−α,α and ‖u‖X−(1−α),α . ‖u‖X−α,αp,2

. (56)

Then, it follows from (46) and (56) that

‖N0(u, u)‖X−α,αp,2
≤ o(1)‖u‖2X−α,αp,2

. (57)

Now, we consider the estimate on ‖N1(u, u)‖X−α,αp,2
. From (56) and α < 1− α, it suffices to control

I−α,1−α. As in the deterministic case, we consider the second iteration, and substitute (4) for û(n1, τ1)

in (48). As before, there is no contribution from S(t)u0, or M1(u, u), M3(u, u) defined in (51). There
are two contributions:

(i) N1(M2(u, u), u) from the deterministic nonlinear part: In this case, we can use the estimates from
[Bourgain 1997] except when the a priori bound (8) was assumed; that is, we need to estimate the
contribution from [Bourgain 1997, (2.62)]:

Rα :=
∑

n

∫
τ=τ2+τ3+τ4

χB
d(n, τ )
〈n〉1+ασ α0

û(−n, τ2)û(n, τ3)û(n, τ4)dτ2dτ3dτ4, (58)

where ‖d(n, τ )‖L2
n,τ
≤ 1 and B = {σ0, σ2, σ3, σ4 < |n|γ } with some small parameter γ > 0. Note

that this corresponds to the case n2 = −n and n3 = n4 = n in (52) after some reduction. In our
analysis, we directly estimate Rα in terms of ‖u‖X−α,αp,2

. The key observation is that we can take the
spatial regularity s =−α to be greater than − 1

2 by choosing p > 2.

(ii) N1(8, u) from the stochastic convolution 8 in (10): In view of (56), we estimate

E
[
‖N1(η8, u)‖X−α,1−α

]
(59)

via the stochastic analysis from Section 4.

Remark 5.1. In fact, we do not need to take an expectation in (59) since we establish local well-
posedness pathwise in ω, that is, for almost every fixed ω. Nonetheless, we estimate (59) with the
expectation since it shows how F N

1 and F N
2 defined in (70) arise along with their estimates.

Estimate on (i). In [Bourgain 1997], the parameter γ = γ (α), subject to the conditions (2.43) and (2.60)
therein, played a certain role in estimating Rα along with the a priori bound (8). However, it plays no
role in our analysis. By the Cauchy–Schwarz and Young’s inequalities, we have

(58)≤
∑

n

‖d(n, · )‖L2
τ
〈n〉−1−α

‖û(−n, τ2)‖L6/5
τ2
‖û(n, τ3)‖L6/5

τ3
‖û(n, τ4)‖L6/5

τ4
.
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By the Hölder inequality (with appropriate ± signs) and the fact that −1−α <−3α,

(58)≤
∑

n

‖d(n, · )‖L2
τ

4∏
j=2

〈n〉−α−‖σ−αj ‖L3
τ j
‖σ αj û(±n, τ j )‖L2

τ j
≤ ‖d( · , · )‖L2

n,τ
‖u‖3

X−α,α6,2
≤ ‖u‖3X−α,αp,2

,

where the last two inequalities follow by choosing α > 1
3 and p = 2+< 6.

Estimate on (ii). We use the notation from the proof of Proposition 4.1. It follows from (28) and
η(t)8( · , t)= S(t)g( · , t) that

(η8)∧(n1, τ1)= ĝ(n1, τ1− n3
1)=

1
√

2
I (1)n1

(τ1− n3
1)+

1
√

2
I (2)n1

(τ1− n3
1).

Recall that σ1=〈τ1−n3
1〉& 〈nn1n2〉. Also, recall from the proof of Proposition 4.1 that |φn1(r)|=χ[0,T ](r)

is independent of ω.

• Contribution from I (1)n1 (τ1− n3
1): From (48) with (27), (28), and (29), we estimate (59) by

(59). E

[ ∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0

1
σ 2

1

∫ T

0
|φn1(r)|dβn1(r)

〈n2〉
1−αc(n2, τ2)

σ α2

]
. (60)

By the Cauchy–Schwarz inequality in ω and the Ito isometry,

(59).
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
d(n, τ )
σ α0

‖φn1‖L2[0,T ]

σ
(3/2)−δ
1 〈n1〉(1/2)+δ

‖c(n2, τ2)‖L2(�)

σ α2
. (61)

By the L4
x,t , L2

x,t , L4
x,t -Hölder inequality along with Lemma 3.3, (16), (18), (49), and (56), this leads to

(59). T θ
‖d‖L2

n,τ
‖φ‖

L2([0,T ];H−
1
2−δ)
‖c‖L2(�;L2

n,τ )
≤ T θ
‖φ‖L p([0,T ];b̂−αp,∞)

‖u‖L2(�;X−(1−α),α)

. T θ
‖φ‖L p([0,T ];b̂−αp,∞)

‖u‖L2(�;X−α,αp,2 ).

Remark 5.2. Strictly speaking, we need to take the supremum over {‖d‖L2
n,τ
= 1} inside the expectation

in (60). However, we do not worry about this issue to simplify the presentation, since we have

(59)≤ ‖N1(η8, u)‖L2(�;X−α,1−α)

≤

(∑
n

∫
〈n〉2−2α

σ 2α
0

E

[∣∣∣∣ ∫ T

0
|φn1(r)|

∑
n=n1+n2

∫
τ=τ1+τ2

〈n2〉
1−αc(n2, τ2)

σ 2
1 σ

α
2

dτ1dβn1(r)
∣∣∣∣2 ] dτ

)1/2

= sup
‖d‖L2

n,τ
=1
(61)

by the Ito isometry. Also, recall that we have I (1)n1 (τ1−n3
1)=

∫ T
0 G(1)

n1 (r, τ1−n3
1)dβn1(r) where G(1)

n (r, τ )
is defined in (27). Hence, strictly speaking, we should replace G(1)

n1 (r, τ1 − n3
1) by σ−2

1 |φn1(r)| in (60)
only after the application of the Ito isometry. Once again, we do not worry about this issue to simplify
the presentation. The same remark applies to the following as well.
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• Contribution from I (2)n1 (τ1−n3
1): Suppose max(σ0, σ2)& 〈nn1n2〉

1/100; say σ0≥ 〈nn1n2〉
1/100. Then

(59). E

[ ∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0

1
σ1

∫ T

0
|φn1(r)|dβn1(r)

〈n2〉
1−αc(n2, τ2)

σ α2

]

.
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
d(n, τ )

σ α−200δ
0

‖φn1‖L2[0,T ]

σ
(1/2)+δ
1 〈n1〉(1/2)+δ

‖c(n2, τ2)‖L2(�)

σ α2
. (62)

Then we can conclude this case as before by the L4
x,t , L2

x,t , L4
x,t -Hölder inequality as long as α−200δ> 1

3 ,
which can be guaranteed by taking δ > 0 sufficiently small, or equivalently, taking p > 2 sufficiently
close to 2.

Now assume instead max(σ0, σ2)� 〈nn1n2〉
1/100. We invoke a result contained in [Colliander et al.

2003, (7.50) and Lemma 7.4]. The conclusion there is stated with −1 as the exponent of 〈τ − n3
〉,

instead of −3
4 ; but by examining the proof, one sees that it will work with any exponent more negative

than −
( 2

3 +
1

100

)
.

Lemma 5.3. For �(n)= {η ∈ R : η =−3nn1n2+ o(〈nn1n2〉
1/100) for some n1 ∈ Z with n = n1+ n2},∫

〈τ − n3
〉
−3/4χ�(n)(τ − n3) dτ . 1. (63)

We have

(59).E

[ ∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
〈n〉1−αd(n, τ )

σ α0

χ�(n1)(τ1−n3
1)

σ1

∫ T

0
|φn1(r)|dβn1(r)

〈n2〉
1−αc(n2, τ2)

σ α2

]
.

By the Cauchy–Schwarz inequality and the Ito isometry, this yields

(59).
∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

dτdτ1
d(n, τ )
σ α0

χ�(n1)(τ1− n3
1)‖φn1‖L2[0,T ]

σ
(1/2)−δ
1 〈n1〉(1/2)+δ

‖c(n2, τ2)‖L2(�)

σ α2
. (64)

By the L4
x,t , L2

x,t , L4
x,t -Hölder inequality along with Lemma 3.3, Lemma 5.3, and Equations (16), (18),

(49), and (56), we get

(59). T θ
‖d‖L2

n,τ

∥∥〈n1〉
−

1
2−δ‖φn1‖L2[0,T ]‖χ�(n1)(τ1− n3

1)σ
−

1
2+δ

1 ‖L2
τ

∥∥
L2

n
‖c‖L2(�;L2

n,τ )

≤ T θ
‖φ‖

L2([0,T ];H−
1
2−δ)
‖u‖L2(�;X−(1−α),α) . T θ

‖φ‖L p([0,T ];b̂−αp,∞)
‖u‖L2(�;X−α,αp,2 ).

Proof of Theorem 1. Fix a mean-zero u0∈ b̂−α
′

p,∞(T) and φ as in (3), where α′= 1
2−δ−with p−2

4p <δ<
p−2
2p

such that (−α′)p<−1. Consider sequences of initial data uN
0 ∈ L2(T) and diagonal covariance operator

φN
∈ H S(L2

; L2), given by

uN
0 = P≤N u0 =

∑
|n|≤N

û0(n)einx and φN (t, ω) := diag(φn(t, ω); 0< |n| ≤ N ), (65)

where φn is given in (3). Now, fix α = 1
2 − δ > α′ as in (47). Note that such uN

0 converges to u0 in
FL−α,p(T), and thus in b̂−αp,∞(T). Also, φN converges to φ in FL−

1
2−,p(T) for each t and ω, and thus
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in b̂
−

1
2−

p,∞ (T). Then, by the monotone convergence theorem, φN converges to φ in L p
(
[0, 1]×�; b̂

−
1
2−

p,∞
)
.

(Indeed, the convergence is in L∞
(
[0, 1]×�; b̂

−
1
2−

p,∞
)
, since we have |φn(t, ω)| = 1 for all n, independent

of t ∈ R and ω ∈�.) Note that a slight loss of the regularity −α <−α′ was necessary since uN
0 defined

in (65) does not necessarily converge to u0 in b̂−α
′

p,∞(T) due to the L∞ nature of the norm over the dyadic
blocks. We can avoid such a loss of the regularity if we start with u0 ∈ FLs,p(T).

Now, let 0N
= 0N

uN
0

be the map defined by

0Nv = 0N
uN

0
v := S(t)uN

0 −
1
2 N(v, v)+ η8N , (66)

where 8N is the stochastic convolution defined in (10) with the covariance operator φN . By the well-
posedness result in [De Bouard et al. 2004], there exists a unique global solution uN

∈ L∞(R+;L2(T))∩

C(R+; B0−
2,1(T)) a.s. to (66) for each N since φN

∈ H S(L2
; L2).

Now, we put all the estimates together. Note that all the implicit constants are independent of N . Also,
when there is no superscript N , it means that N =∞. From Lemma 3.1, we have

‖S(t)uN
0 ‖X s,b,T

p,2
≤ C1‖uN

0 ‖b̂s
p,∞

(67)

for any s, b ∈ R with C1 = C1(b). In particular, by taking b > 1
2 , we see that S(t)u0 is continuous on

[0, T ] with values in b̂s
p,∞. Also, by taking b< 1

2 , we gain a power of T . From the definition of N j ( · , · )

and (57), we have

‖N(uN , uN )‖X−α,α,Tp,2
≤ C2T θ1‖uN

‖
2
X−α,α,Tp,2

+ 2‖N1(uN , uN )‖X−α,α,Tp,2
. (68)

Also, from (47) and (56), we have

‖N1(uN , uN )‖X−α,1−α,Tp,2
≤ I N
−α,1−α. (69)

Recall that η8 ∈ X−α,αp,2 a.s. from Proposition 4.1. Moreover, by defining F N
1 and F N

2 on T×R×�

via their Fourier transforms

F̂ N
1 (n, τ )= 〈n〉

−
1
2−δ
(
σ
−

3
2+δ

0 + σ
−

1
2−δ

0

) ∫ T

0
|φn(r)|dβn(r),

F̂ N
2 (n, τ )= 〈n〉

−
1
2−δχ�(n)(τ − n3)σ

−
1
2+δ

0

∫ T

0
|φn(r)|dβn(r)

(70)

for |n| ≤ N , we have F N
1 , F N

2 ∈ L2(�; L2
x,t) by the Ito isometry and Lemma 5.3, which is basically

shown in the estimate on (ii). See (61) and (64). Then, from (54) and the estimates on (i) and (ii), we
have

I N
−α,1−α ≤ C3

(
T θ2‖uN

‖X−α,α,Tp,2
I N
−α,1−α + T θ3‖uN

‖
3
X−α,α,Tp,2

+ T θ4 L N
ω ‖u

N
‖X−α,α,Tp,2

)
, (71)

where L N
ω = L N (F N

1 , F N
2 )(ω) := ‖F

N
1 (ω)‖L2

x,t
+‖F N

2 (ω)‖L2
x,t
<∞ a.s. Moreover, L N

ω is nondecreasing
in N .
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For fixed R > 0, choose T > 0 small such that C3T θ2 R ≤ 1
2 . Then, from (71), we have

I N
−α,1−α ≤ 2C3

(
T θ3‖uN

‖
3
X−α,α,Tp,2

+ T θ4 L N
ω ‖u

N
‖X−α,α,Tp,2

)
(72)

for ‖uN
‖X−α,α,Tp,2

≤ R. From (66)–(72), we have

‖uN
‖X−α,α,Tp,2

= ‖0N uN
‖X−α,α,Tp,2

≤ C1‖uN
0 ‖b̂−αp,∞

+
1
2C2T θ1‖uN

‖
2
X−α,α,Tp,2

+ 2C3
(
T θ3‖uN

‖
3
X−α,α,Tp,2

+ T θ4 L N
ω ‖u

N
‖X−α,α,Tp,2

)
+C4‖η8

N (ω)‖X−α,αp,2
, (73)

and

‖uN
− uM

‖X−α,α,Tp,2
= ‖0N uN

−0M uM
‖X−α,α,Tp,2

≤ C1‖uN
0 − uM

0 ‖b̂−αp,∞
+

1
2C2T θ1

(
‖uN
‖X−α,α,Tp,2

+‖uM
‖X−α,α,Tp,2

)
‖uN
− uM

‖X−α,α,Tp,2

+C5T θ3
(
‖uN
‖

2
X−α,α,Tp,2

+‖uM
‖

2
X−α,α,Tp,2

)
‖uN
− uM

‖X−α,α,Tp,2

+ 2C3T θ4 L N
ω ‖u

N
− uM

‖X−α,α,Tp,2
+ 2C3T θ4 L̃ N ,M

ω ‖uM
‖X−α,α,Tp,2

+C4‖η(8
N
−8M)‖X−α,αp,2

, (74)

where
L̃ N ,M
ω := ‖F N

1 − F M
1 ‖L2

x,t
+‖F N

2 − F M
2 ‖L2

x,t
. (75)

Note that in estimating the difference 0N uN
−0M uM on A1, one needs to consider

Ĩ−α,1−α := ‖N1(uN , uN )−N1(uM , uM)‖−α,1−α (76)

as in [Bourgain 1997]. We can follow the argument on pages 135–136 in that reference, except for Rα
defined in (58), which yields the third term on the right-hand side of (74). As for Rα, we can write

N(N(u, u), u)−N(N(v, v), v)= N(N(u+ v, u− v), u)+N(N(v, v), u− v) (77)

as in [Bourgain 1997, (3.4)], and then we can repeat the computation done for Rα in the estimate on (i),
also yielding the third term on the right-hand side of (74).

By the definition of uN
0 , we have 2C1‖uN

0 ‖b̂−αp,∞
≤ 2C1‖u0‖b̂−αp,∞

+
1
2 for N sufficiently large. And

since φN converges to φ in L p
(
[0, 1] × �; b̂−α+p,∞

)
, it follows from Corollary 4.2 and the estimate on

(ii), see (61), (62), and (64), that E[‖η(8N
− 8)‖X−α,αp,2

] and E[L̃ N ,∞
ω ] defined in (75) converge to 0.

Hence, ‖η(8N
−8)‖X−α,αp,2

+ L̃ N ,∞
ω → 0 a.s. after selecting a subsequence (which we still denote with the

index N .) Then, by Egoroff’s theorem, given ε > 0, there exists a set �ε with P(�c
ε) < 2−1ε such that

‖η(8N
−8)‖X−α,αp,2

+ L̃ N ,∞
ω → 0 uniformly in �ε. In particular, 2C4‖η8

N
‖X−α,αp,2

≤ 2C4‖η8‖X−α,αp,2
+

1
2

for large N uniformly on �ε. In the following, we will work on �ε.
Now, let Rω = 2(C1‖u0‖b̂−αp,∞

+C4‖η8(ω)‖X−α,αp,2
)+ 1, and define the stopping time Tω by

Tω = inf
{
T > 0 :max(C3T θ2 Rω, P1(T, Rω, ω), P2(T, Rω, ω)≥ 1

2

}
, (78)

where
P1(T, Rω, ω)= 1

2C2T θ1 Rω+ 2C3T θ3(Rω)2+ 2C3T θ4 Lω from (73),

P2(T, Rω, ω)= C2T θ1 Rω+ 2C5T θ3(Rω)2+ 2C3T θ4 Lω from (74).
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The first condition in the definition of Tω guarantees (72), and hence (73) and (74), for ‖uN
‖X−α,α,Tp,2

≤ Rω.
The second condition along with (73) indeed guarantees that

‖uN
‖X−α,α,Tp,2

≤ Rω (79)

for T ≤Tω, for the following reason. Because of the temporal regularity b=α< 1
2 , we have ‖uN

‖X−α,α,Tp,2
=

‖χ[0,T ]uN
‖X−α,αp,2

, where χ[0,T ] denotes the characteristic function of the time interval [0, T ] [Bourgain
1999]. Hence, ‖uN

‖X−α,α,Tp,2
is continuous in T since∣∣‖uN

‖X−α,α,T+δp,2
−‖uN

‖X−α,α,Tp,2

∣∣≤ ‖uN
‖X−α,αp,2 [T,T+δ] . δ

θ
‖uN
‖

X0−, 1
2 [T,T+δ]

(80)

for sufficiently small δ > 0. Note that the last term in (80) is finite for small δ since the local-in-time
solutions constructed in [De Bouard et al. 2004] are controlled in this norm (indeed in a stronger norm
adapted to the Besov space B0−

2,1 .) Then, (79) follows from (73), the second condition in (78), and the
continuity of the norm in T since (79) clearly holds at T = 0.

From (74) along with the third condition in (78), we have

‖uN
− uM

‖X−α,α,Tωp,2
≤ 2C1‖uN

0 − uM
0 ‖b̂−αp,∞

+ 4C3T θ4 Rω L̃ N ,M
ω + 2C4‖η(8

N
−8M)‖X−α,αp,2

. (81)

The right-hand side of (81) goes to 0 as N ,M→∞ since uN
0 is Cauchy in b̂−αp,∞ and

‖η(8N
−8M)‖X−α,αp,2

+ L̃ N ,M
ω → 0

on �ε uniformly in N ,M . Let u denote the limit in X−α,α,Tωp,2 .
In the following, we give a brief discussion to show that the limit u is a solution to (4). Clearly, S(t)uN

0
and η8N converge to S(t)u0 and η8 in X−α,α,Tωp,2 . It follows from (57) that N0(uN , uN ) converges to
N0(u, u) in X−α,α,Tωp,2 . In view of (72), (74), and (76), we see that N j (uN , uN ) is Cauchy in a slightly
stronger space X−α,1−α,Tωp,2 , j = 1, 2. Let v j denote the corresponding limit. Thus, from (66), we have

u = S(t)u0−
1
2 N0(u, u)− 1

2(v1+ v2)+ η8. (82)

Now, we need to show that N j (uN , uN ) indeed converges to N j (u, u), j = 1, 2. By symmetry, we only
consider N1(u, u)−N1(uN , uN ). As before, we substitute (82) (and (66)) in the first factor u (and uN )
of N1( · , · ), respectively. There are three contributions to consider.

(A) Contribution from the stochastic terms: We have

N1(η8, u)−N1(η8
N , uN )= N1(η(8−8

N ), u)+N1(η8
N , u− uN ). (83)

From the estimate on (ii), we have

‖(83)‖X−α,α,Tωp,2
. L̃ N ,∞

ω ‖u‖X−α,α,Tωp,2
+ L N

ω ‖u
N
− u‖X−α,α,Tωp,2

→ 0

as N →∞, since ‖u‖X−α,α,Tp,2
≤ Rω and L̃ N ,∞

ω → 0 uniformly on �ε.

(B) Contribution from N0( · , · ): In this case, we consider

N1(N0(u, u), u)−N1(N0(uN , uN ), uN ). (84)
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Note that we have σ1 ≥ σ0, σ2, σ3, σ4 from the definition of N1( · , · ) and N0( · , · ), see (50) and
(52). Indeed, we have σ1 ≥ σ0, σ2 since we are on A1 defined in (45), and also σ1 ≥ σ3, σ4 since we
are on the support of N0( · , · ) in the first factor of N1( · , · ). Once again, one can easily follow the
argument in [Bourgain 1997, page 136] and show

‖(84)‖X−α,α,Tωp,2
.
(
‖uN
‖

2
X−α,α,Tωp,2

+‖u‖2
X−α,α,Tωp,2

)
‖uN
− u‖X−α,α,Tωp,2

→ 0.

In treating Rα− RN
α defined in (58), one needs to proceed as before, using (77) and the estimate on

(i).

(C) Contribution from v j and N j (uN , uN ), j =1 or 2: By symmetry, assume j =1. In this case, we have
σ1 ≥ σ0, σ2 but σ3 ≥ σ1, σ4, thus we control (54) by the first term on the right-hand side [Bourgain
1997, (II.1) on page 126]. Now, we need to estimate

N1(v1, u)−N1(N1(uN , uN ), uN )=N1(v1−N1(uN , uN ), u)+N1(N1(uN , uN ), u−uN )=: I+ II. (85)

Then, by proceeding as in [Bourgain 1997] with (56) and (72), we have

‖ II ‖X−α,1−α,Tωp,2
. I N
−α,1−α‖u− uN

‖X−(1−α),α,Tω . ‖u− uN
‖X−α,α,Tωp,2

→ 0.

By proceeding as in [Bourgain 1997, (II.1)] with |n1|
α replaced by |n1|

1−α, followed by (56), we
have

‖ I ‖X−α,1−α,Tωp,2
. ‖v1−N1(uN , uN )‖−(1−α),1−α‖u‖−(1−α),α

. ‖v1−N1(uN , uN )‖X−α,1−α,Tωp,2
‖u‖X−α,α,Tωp,2

→ 0,

since v1 = limN→∞N1(uN , uN ) in X−α,1−α,Tωp,2 by definition.

Hence, we have u = 0u0u for each ω ∈ �ε, so u is a mild solution to (2) on [0, Tω]. Let �(1) = �ε.
Now, we can recursively construct

�( j+1)
⊂� \

j⋃
k=1

�(k)

for j = 1, 2, . . . with P(� \
⋃ j

k=1�
(k)) < 2− jε such that ‖η(8N

−8)‖X−α,αp,2
and L̃ N ,∞

ω converge to 0
uniformly in each �( j). Then, by repeating the argument, we can construct a solution u on

⋃
∞

j=1�
( j).

Note that P(� \
⋃
∞

j=1�
( j))= 0.

We have constructed a solution u to (2) in X−α,α,Tωp,2 with u0 ∈ b̂−α
′

p,∞. Since u is a solution, the a priori
estimate (73) holds with the regularity (s, b) = (−α′, α′) in place of (−α, α). Then, we easily see that
u ∈ X−α

′,α′,Tω
p,2 by redefining Rω and Tω with this regularity. In the remaining of the paper, we work only

with the spatial regularity s = −α′, that is, there is no approximating sequences any more. Hence, for
notational simplicity, we will use −α in place of −α′ to denote the spatial regularity of the solution in
the following.

We still need to take care of several issues. Note that the temporal regularity b = α = 1
2 − δ of the

solution u is less than 1
2 . In particular, we need to show that the solution u is continuous from [0, Tω]

into b̂−αp,∞. We also need to show its uniqueness and continuous dependence on the initial data.
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From Proposition 4.5, η8 ∈ C([0, Tω]; b̂−αp,∞) a.s. Also, it follows from (67) with b = 1
2 + δ, (69),

(72), and symmetry on σ1 and σ2, that

S(t)u0+N1(u, u)+N2(u, u) ∈ X
−α, 1

2+δ,Tω
p,2 ⊂ C([0, Tω]; b̂−αp,∞)

almost surely. Now, we consider N0(u, u), that is, when σ0 =MAX. Note that the contribution comes
only from M2(u, u) defined in (51). Define

N3(u, u)= the contribution of N0(u, u) on {max(σ1, σ2)& 〈nn1n2〉
1/100
},

N4(u, u)= N0(u, u)−N3(u, u).

(a) First, we consider N3(u, u), so max(σ1, σ2) & 〈nn1n2〉
1/100; say σ1 & 〈nn1n2〉

1/100. Then, by (15)
and Lemma 3.2, we have

‖N3(u,u)‖
X
−α, 1

2+δ,Tω
p,2

. ‖∂x(u2)‖
X
−α,− 1

2+δ,Tω
p,2

. ‖∂x(u2)‖
X−α,−

1
2+δ,Tω

.

By duality and (44), the right-hand side equals

sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

〈n〉1−αd(n, τ )

σ
(1/2)−δ
0

2∏
j=1

〈n j 〉
1−αc(n j , τ j )

σ αj
dτdτ1

. sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

d(n, τ )
c(n1, τ1)

σ α−200δ
1

c(n2, τ2)

σ α2
dτdτ1,

where c(n, τ ) is defined in (49). Thus, by the L2
x,t , L4

x,t , L4
x,t -Hölder inequality along with Lemma

3.3, (49), and (56), we conclude that

‖N3(u, u)‖
X
−α, 1

2+δ,Tω
p,2

. ‖c‖2L2
n,τ
≤ ‖u‖2X−(1−α),α . ‖u‖

2
X−α,αp,2

<∞.

(b) Now, consider N4(u, u), so max(σ1, σ2)�〈nn1n2〉
1/100. It suffices to show that N0(u, u)∈ X−α,0,Tωp,1 ,

since X−α,0,Tωp,1 ⊂ C([0, Tω]; b̂−αp,∞). Then, by Cauchy–Schwarz inequality, Lemma 5.3 and duality,
we have

‖N4(u, u)‖X−α,0,Tωp,1
≤ ‖∂x(u2)‖X−α,−1,Tω

2,1
≤
∥∥‖〈n〉−α〈τ − n3

〉
−1χ�(n)(τ − n3)∂̂x(u2)(n, τ )‖L1

τ

∥∥
L2

n

≤
∥∥〈τ − n3

〉
−

1
2+δχ�(n)(τ − n3)

∥∥
L2
τ
‖∂x(u2)‖

−α,− 1
2−δ

. sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

〈n〉1−αd(n, τ )

σ
(1/2)+δ
0

2∏
j=1

〈n j 〉
1−αc(n j , τ j )

σ αj
dτdτ1

. sup
‖d‖L2

n,τ
=1

∑
n,n1

n=n1+n2

∫
τ=τ1+τ2

d(n, τ )
c(n1, τ1)

σ α1

c(n2, τ2)

σ α2
dτdτ1.

The rest follows as before. Hence, the solution u is continuous from [0, Tω] to b̂−αp,∞.
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Lastly, we show the uniqueness and the continuous dependence of the solutions on the initial data.
Let u and v be the mild solutions of (2) on [0, Tω] with initial data u0 and v0; then

u− v = 0u0u−0v0v = S(t)(u0− v0)−
1
2

(
N(u, u)−N(v, v)

)
, (86)

where 0 is defined in (66). Moreover, assume that

‖u0‖b̂−αp,∞
≤ R, ‖v0‖b̂−αp,∞

≤ R, ‖u‖X−α,α,Tωp,2
≤ R, ‖v‖X−α,α,Tωp,2

≤ R. (87)

Let Ñ j (u, v) :=−1
2

(
N j (u, u)−N j (v, v)

)
for j = 1, . . . , 4. First, note that ‖Ñ4(u, v)‖X−α,ε,Tωp,1

. R2 <∞

from (a slight variation of) Case (b), and we have

‖(u− v)− Ñ4(u, v)‖X−α,ε,Tωp,1
≤

∥∥∥∥S(t)(u0− v0)+

3∑
j=1

Ñ j (u, v)
∥∥∥∥

X
−α, 1

2+δ,Tω
p,2

. C1(R) <∞

by Cauchy–Schwarz inequality with ε < δ, followed by (67), (69), (72), Case (a), and (87). Then, by
interpolation and Cauchy–Schwarz inequality, we have

‖u−v‖C([0,Tω];b̂−αp,∞)
. ‖u−v‖X−α,0,Tωp,1

. ‖u−v‖β
X−α,−δ−,Tωp,1

‖u−v‖1−β
X−α,ε,Tωp,1

.C2(R)‖u−v‖
β

X
−α, 1

2−δ,Tω
p,2

(88)

with β = ε
ε+δ+

∈ (0, 1). From (67) and the nonlinear estimates (see (68), (72), (74), (76)), we have

‖u− v‖
X
−α, 1

2−δ,Tω
p,2

. ‖u0− v0‖b̂−αp,∞
+C3(R)T θ

ω ‖u− v‖
X
−α, 1

2−δ,Tω
p,2

.

Hence, for sufficiently small T > 0, we have

‖u− v‖
X
−α, 1

2−δ,Tω
p,2

. ‖u0− v0‖b̂−αp,∞
. (89)

Therefore, it follows from (88) and (89) that the solution map is Hölder continuous with the bound

‖u− v‖C([0,Tω];b̂−αp,∞)
≤ C4(R)‖u0− v0‖

β

b̂−αp,∞
.

In particular, the solution is unique. This completes the proof of Theorem 1. �
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