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We show absence of energy levels repulsion for the eigenvalues of random Schrödinger operators in
the continuum. We prove that, in the localization region at the bottom of the spectrum, the properly
rescaled eigenvalues of a continuum Anderson Hamiltonian are distributed as a Poisson point process
with intensity measure given by the density of states. In addition, we prove that in this localization region
the eigenvalues are simple.

These results rely on a Minami estimate for continuum Anderson Hamiltonians. We also give a
simple, transparent proof of Minami’s estimate for the (discrete) Anderson model.

1. Introduction

Local fluctuations of eigenvalues of random operators are believed to distinguish between localized and
delocalized regimes, indicating an Anderson metal-insulator transition. Exponential decay of eigenfunc-
tions implies that disjoint regions of space are uncorrelated and create almost independent eigenvalues,
leading to the absence of energy levels repulsion, which is mathematically translated in terms of a Poisson
point process. On the other hand, extended states imply that distant regions have mutual influence, and
thus create some repulsion between energy levels.

Local fluctuations of eigenvalues have been studied within the context of random matrix theory, in
particular Wigner matrices and GUE matrices [Bellissard 2004; Disertori et al. 2002; Erdős et al. 2009b;
2009a; Johansson 1998; 2001; Schenker and Schulz-Baldes 2007]. It is challenging to understand
random hermitian band matrices from the perspective of their eigenvalues fluctuations, by proving a
transition between Poisson statistics and a semi-circle law for the density of states (a signature of energy
levels repulsion), and relate this to the (discrete) Anderson model [Bellissard 2004; Disertori et al. 2002].
CMV matrices are another class of random matrices for which Poisson statistics and a transition to energy
levels repulsion have been proved been proved [Killip and Stoiciu 2009; Stoiciu 2006; 2007].

For random Schrödinger operators, Poisson statistics for eigenvalues were first proved by Molchanov
[1980/81] for the same one-dimensional continuum random Schrödinger operator for which Anderson
localization was first rigorously established [Gol’dsheı̆d et al. 1977]. Molchanov’s proof was based
on a detailed analysis of localization in finite intervals for this particular random Schrödinger operator
[Molchanov 1978].

Poisson statistics for eigenvalues of the Anderson model was established in [Minami 1996]. The
Anderson model, a random Schrödinger operator on `2(Zd), is the discrete analogue of the Anderson
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Hamiltonian. A crucial ingredient in Minami’s proof is an estimate of the probability of two or more
eigenvalues in an interval. The key step in the proof of this estimate, namely [Minami 1996, Lemma 2],
estimates the average of a determinant whose entries are matrix elements of the imaginary part of the
resolvent. The more recent proofs of Minami’s estimate by Bellissard et al. [2007] and Graf and Vaghi
[2007] are variants of Minami’s. Since those arguments do not seem to extend to the continuum, a
Minami-type estimate and Poisson statistics for the eigenvalues have until now been challenging ques-
tions for continuum Anderson Hamiltonians.

Here we introduce a fundamentally new approach to Minami’s estimate. Unlike the previous approach,
ours relies on averaging spectral projections, a technique that does extend to the continuum. Combined
with a property of rank-one perturbations, it provides a simple and transparent proof of Minami’s estimate
for the Anderson model, valid for single-site probability distributions with compact support and no atoms,
which is presented here as an illustration of the method. On the continuum, our proof of Minami’s
estimate circumvents the unavailability of that rank-one property by averaging the spectral shift function,
using refined bounds on the density of states not previously available.

Once we have Minami’s estimate in the continuum, we prove Poisson statistics for eigenvalues of the
Anderson Hamiltonian. We start by approximating the point process defined by the rescaled eigenvalues
by superpositions of independent point processes, as in [Molchanov 1980/81; Minami 1996]. But our
proof that these superpositions converge weakly to the desired Poisson point process differs from Mi-
nami’s for the Anderson model, since his way of identifying the intensity measure of the Poisson process,
which relies on complex analysis, is not readily applicable in the continuum. We identify this intensity
measure using methods of real analysis.

Klein and Molchanov [2006] showed that Minami’s estimate implies simplicity of eigenvalues for the
Anderson model, a result previously obtained by Simon [1994] by different methods. Their arguments
can also be applied in the continuum, so we also obtain simplicity of eigenvalues in the continuum.
Previous results [Combes and Hislop 1994; Germinet and Klein 2006] proved only finite multiplicity of
the eigenvalues in the localization region.

2. Main results

To state our results we introduce the following notation. We write

3L(x) := x +
[
−

L
2 ,

L
2

[d (2-1)

for the (half-open, half-closed) box of side L > 0 centered at x ∈Rd . By 3L we denote a box 3L(x) for
some x ∈Rd . Given a box3=3L(x), we set 3̃=3∩Zd . If B is a set, we write χB for its characteristic
function. We set χ (L)x := χ3L (x). The Lebesgue measure of a Borel set B ⊂ R will be denoted by |B|.
If r > 0, we denote by [r ] the largest integer less than equal to r , and by [[r ]] the smallest integer bigger
than r . By a constant we will always mean a finite constant. Constants such as Ca,b,... will be finite and
depending only on the parameters or quantities a, b, . . .; they will be independent of other parameters or
quantities in the equation.

We consider random Schrödinger operators on L2(Rd) of the type

Hω := −1+ Vper+ Vω, (2-2)
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where 1 is the d-dimensional Laplacian operator, Vper is a bounded Zd -periodic potentia,; and Vω is an
Anderson-type random potential, given by

Vω(x) :=
∑
j∈Zd

ω j u j (x), with u j (x)= u(x − j), (2-3)

where the single-site potential u is a nonnegative bounded measurable function on Rd with compact
support, uniformly bounded away from zero in a neighborhood of the origin, and ω = {ω j } j∈Zd is a
family of independent identically distributed random variables, whose common probability distribution
µ is nondegenerate with a bounded density ρ with compact support.

We normalize Hω as follows. We first require inf suppµ=0, which can always be realized by changing
the periodic potential Vper. Next we assume ‖u‖∞ = 1, which can achieved by rescaling µ. We then
adjust Vper by adding a constant so inf σ(−1+ Vper) = 0, in which case [0, E∗] ⊂ σ(−1+ Vper) for
some E∗ > 0. Thus, without loss of generality, we will assume that the random Schrödinger operator
Hω given in (2-2)–(2-3) is normalized as follows:

(I) The free Hamiltonian H0 := −1+ Vper has 0 as the bottom of its spectrum:

inf σ(H0)= 0. (2-4)

(II) The single-site potential u is a measurable function on Rd such that

‖u‖∞ = 1 and u−χ3δ− (0) ≤ u ≤ χ3δ+ (0) with u−, δ± ∈ ]0,∞[; (2-5)

we set
U+ :=

∥∥∑
j∈Zd u j

∥∥
∞
≤max

{
1, δd
+

}
. (2-6)

(III) ω = {ω j } j∈Zd is a family of independent, identically distributed random variables, whose common
probability distribution µ has a density ρ such that

{0,Mρ} ∈ ess supp ρ ⊂ [0,Mρ] with Mρ ∈ ]0,∞[ and ρ+ := ‖ρ‖∞ <∞. (2-7)

A random Schrödinger operator Hω on L2(Rd) as in (2-2)–(2-3), normalized as in (I)-(III), will be called
an Anderson Hamiltonian. The common probability distribution µ in (III) is said to be uniform-like if
its density ρ also satisfies ρ− := ess inf ρχ[0,Mρ ] > 0, in which case we have

ρ−χ[0,Mρ ] ≤ ρ ≤ ρ+χ[0,Mρ ] with ρ±,Mρ ∈ ]0,∞[. (2-8)

An Anderson Hamiltonian Hω is a Zd -ergodic family of random self-adjoint operators. It follows
from standard results [Klein and Molchanov 2006; Carmona and Lacroix 1990; Pastur and Figotin 1992]
that there exist fixed subsets 6, 6pp, 6ac and 6sc of R so that the spectrum σ(Hω) of Hω, as well as
its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets
with probability one. With our normalization, the nonrandom spectrum 6 of an Anderson Hamitonian
Hω satisfies [Kirsch and Martinelli 1982]

σ(H0)⊂6 ⊂ [0,∞[, (2-9)

so inf6 = 0 and [0, E∗] ⊂6 for some E∗ = E∗(Vper) > 0. Note that 6 = σ(−1)= [0,∞[ if Vper = 0.
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An Anderson Hamiltonian Hω exhibits Anderson and dynamical localization at the bottom of the spec-
trum [Martinelli and Holden 1984; Combes and Hislop 1994; Klopp 1995; Kirsch et al. 1998; Germinet
and De Bièvre 1998; Damanik and Stollmann 2001; Germinet and Klein 2001; 2003a; Aizenman et al.
2006]. More precisely, there exists an energy E1 > 0 such that [0, E1] ⊂ 4

CL, where 4CL is the region
of complete localization for the random operator Hω [Germinet and Klein 2004; 2006]. (See Appendix
A for a discussion of localization. Note that R \6 ⊂ 4CL in our definition.) Similarly, given an energy
E1 > 0, we have [0, E1] ⊂ 4

CL if ρ+ in (2-7) is sufficiently small, corresponding to a large disorder
regime.

Finite volume operators will be defined for finite boxes3=3L( j), where j ∈Zd and L ∈ 2N, L>δ+.
Given such3, we will consider the random Schrödinger operator H (3)

ω on L2(3) given by the restriction
of the Anderson Hamiltonian Hω to 3 with periodic boundary condition. To do so, we identify 3 with
a torus in the usual way by identifying opposite edges, and define finite volume operators

H (3)
ω := H (3)

0 + V (3)
ω on L2(3). (2-10)

The finite volume free Hamiltonian H (3)
0 is given by

H (3)
0 := −1(3)+ V (3)

per on L2(3), (2-11)

where 1(3) is the Laplacian on 3 with periodic boundary condition and V (3)
per is the restriction of Vper

to 3. The random potential V (3)
ω is the restriction of Vω(3) to 3, where, given ω =

{
ωi
}

i∈Zd , ω(3) ={
ω
(3)
i

}
i∈Zd is defined as follows:

ω
(3)
i =

{
ωi if i ∈3,
ω
(3)
k if k− i ∈ LZd .

(2-12)

The random finite volume operator H (3)
ω is covariant with respect to translations in the torus. If B ⊂ R

is a Borel set, we write P (3)ω (B) := χB(H
(3)
ω ) and Pω(B) := χB(Hω) for the spectral projections.

The finite volume operator H (3)
ω has a compact resolvent, and hence its (ω-dependent) spectrum

consists of isolated eigenvalues with finite multiplicity. It satisfies a Wegner estimate [Combes and
Hislop 1994; Combes et al. 2007a]: Given E0 > 0, there exists a constant KW , independent of 3, such
that for all intervals I ⊂ [0, E0] we have

E
{
tr P (3)ω (I )

}
≤ KW ρ+|I ||3|. (2-13)

The constant KW given in [Combes and Hislop 1994; Combes et al. 2007a] depends on E0, d, u, Vper,Mρ ,
but not on ρ+.

The integrated density of states (IDS) for Hω is given, for a.e. E ∈ R, by

N (E) := lim
L→∞
|3L(0)|−1 tr P (3L (0))

ω (]−∞, E]) for P-a.e. ω, (2-14)

in the sense that the limit exists and is the same for P-a.e. ω [Carmona and Lacroix 1990; Pastur and
Figotin 1992]. It follows from (2-13) that the IDS N (E) is locally Lipschitz, hence continuous, so (2-14)
holds for all E ∈ R. For all E ∈ R we have

N (E)= lim
L→∞

E
{
|3L |

−1 tr P (3L )
ω (]−∞, E])

}
. (2-15)
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N (E) is a nondecreasing absolutely continuous function on R, the cumulative distribution function of
the density of states measure, given by

η(B) := E tr
{
χ
(1)
0 Pω(B)χ

(1)
0

}
for a Borel set B ⊂ R. (2-16)

In particular N (E) is differentiable a.e. with respect to Lebesgue measure, with n(E) := N ′(E) ≥ 0
being the density of the measure η, so n(E) > 0 for η-a.e. E .

Given an energy E ∈ 6, using (2-13) we define a point process ξ (3)E,ω on the real line by the rescaled
spectrum of the finite volume operator H (3)

ω near E:

ξ
(3)
E,ω(B) := tr

{
χB(|3|(H (3)

ω −E))
}
= tr

{
P (3)ω (E+ |3|−1 B)

}
(2-17)

for a Borel set B ⊂ R. (We refer to [Daley and Vere-Jones 1988] for definitions and results concerning
random measures and point processes.)

Theorem 2.1. Let Hω be an Anderson Hamiltonian with δ− ≥ 2 and a uniform-like distribution µ. Then
there exists an energy E0 > 0, such that:

(a) For all energies E ∈4CL
∩[0, E0[ such that the IDS N (E) is differentiable at E with n(E) := N ′(E)

positive, the point process ξ (3L )
E,ω converges weakly, as L→∞, to the Poisson point process ξE on R

with intensity measure νE(B) := E ξE(B)= n(E)|B|, that is, dνE = n(E)dE.

(b) With probability one, every eigenvalue of Hω in 4CL
∩ [0, E0[ is simple.

Similarly, given an energy E0 > 0, (a) and (b) hold if the probability distribution µ in (2-8) has a density
ρ with (ρ+/ρ−)ρ2d

−1
+ sufficiently small. In fact, there exists a constant Qd,Vper > 0, such that (a) and (b)

hold whenever

U+u−2d

−

ρ+
ρ−
ρ2d
−1
+

γd(E0)min
{
1, E2d

−d−1
0

}
max

{
1, E2d+2

0
}
≤ Qd,Vper, (2-18)

where we have γd(E0)= 1 if d ≥ 2, and γ1(E0)= γ1,Vper(E0) ∈ ]0, 1] with limE0→0 γ1(E0)= 0.

The next theorem gives our Minami estimate for the continuum Anderson Hamiltonian, a crucial
ingredient for proving Theorem 2.1.

Theorem 2.2. Let Hω be an Anderson Hamiltonian with δ− ≥ 2 and a uniform-like distribution µ. Then
there exists a constant Qd,Vper > 0, such that whenever (2-18) holds for an energy E0 > 0, we have the
Minami estimate

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ KM(ρ+|I ||3|)2, (2-19)

for all intervals I ⊂ [0, E0] and 3=3L with L ≥ L(E0), with a constant

KM ≤ Cd,Vper,Mρ (1+ E0)
4[[d/4]]. (2-20)

In more detail:

(i) If Hω is an Anderson Hamiltonian with δ− ≥ 2, there exists a constant Cd,Vper such that, given an
energy E0 > 0, the Wegner estimate (2-13) holds for all intervals I ⊂ [0, E0] with a constant

KW ≤ Cd,Vperu
−2d

−
ρ2d
−1
+

γd(E0)min
{
1, E2d

−d−1
0

}
max

{
1, E2d+2

0
}
, (2-21)

where we have γd(E0)= 1 if d ≥ 2, and γ1(E0)= γ1,Vper(E0) ∈ ]0, 1] with limE0→0 γ1(E0)= 0.
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(ii) If Hω is an Anderson Hamiltonian with a uniform-like distribution µ, and for a given E0 > 0 the
constant KW in (2-13) satisfies

2KW U+
ρ+
ρ−
≤ 1, (2-22)

then (2-19) holds for all intervals I ⊂[0, E0] with a constant KM =Cd,Vper,u,Mρ ,E0 KW . If in addition
δ− ≥ 2, we have (2-20).

Our approach to Minami’s estimate is discussed in Section 3, where it is illustrated by a proof of the
estimate for the (discrete) Anderson model (Theorem 3.3). We also comment on the differences between
the discrete and the continuum cases.

On the lattice (the Anderson model), the Wegner estimate (2-13) is a simple consequence of spectral
averaging ((3-14)), and holds with KW =1 for all E0 [Wegner 1981; Fröhlich and Spencer 1983; Carmona
et al. 1987; Kirsch 2008]. On the continuum the Wegner estimate, which has not been as simple to
prove, comes with an E0 dependent constant KW (which also depends on d , Vper, and u) [Combes and
Hislop 1994; Combes et al. 2007a]. The proof given in [Combes and Hislop 1994] requires the covering
condition δ−≥1. It allows estimates of the constant, but the estimates do not go to 0 as either E0 or ρ+ go
to 0. The proof in [Combes et al. 2007a] does not require a covering condition, but it uses [Combes et al.
2003, Proposition 1.3] (cf. [Combes et al. 2007a, Theorem 2.1]), which relies on the unique continuation
principle to show that some constant is strictly positive, giving no control on the constant in (2-13). To
prove that (2-22) holds, so we have (2-19), we need suitable control of the constant KW , as in (2-21). To
obtain this control we introduce a double averaging procedure which uses the covering condition δ−≥ 2.

Note that the estimate (2-21) provides a bound on the differentiated density of states n(E) := N ′(E)
in the interval [0, E0], whenever it exists, since it then follows from (2-13) and (2-21) that

n(E)≤ Cd,Vperu
−2d

−
ρ2d

+
γd(E)min

{
1, E2d

−d−1}max
{
1, E2d+2}

. (2-23)

Once we have the Minami estimate (2-19), we may prove Poisson statistics and simplicity of eigen-
values. The next theorem is proven for arbitrary Anderson Hamiltonians.

Theorem 2.3. Let Hω be an Anderson Hamiltonian. Suppose there exists an open interval I such that
for all large boxes3 the estimate (2-19) holds for any interval I ⊂ I with |I | ≤ δ0, for some δ0 > 0, with
some constant KM .

(a) For all energies E ∈ I∩4CL such that the IDS N (E) is differentiable at E with n(E) := N ′(E) > 0,
the point process ξ (3L )

E,ω converges weakly, as L →∞, to the Poisson point process ξE on R with
intensity measure νE(B) := E ξE(B)= n(E)|B|, that is, dνE = n(E)dE.

(b) With probability one, every eigenvalue of Hω in I∩4CL is simple.

Theorem 2.3(a) is proven by approximating the point process ξ (3L )
E,ω by superpositions of independent

point processes, as in [Molchanov 1980/81; Minami 1996], which are then shown to converge weakly to
the desired Poisson point process. But here our proof diverges from Minami’s, who used the connection,
valid for the Anderson model, between the Borel transform of the density of states measure η and averages
of the matrix elements of the imaginary part of the resolvent, to identify the intensity measure of the limit
point process. Instead, we introduce the random measures

θ
(3)
E,ω(B) := tr

{
χ3Pω(E+ |3|−1 B)χ3

}
for a Borel set B ⊂ R, (2-24)
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justified by (2-13)–(2-16), which we show to have the same weak limit as the point processes ξ (3)E,ω , and
use them to show that, thanks to the Lebesgue Differentiation Theorem, the intensity measure νE of the
limit point process ξE satisfies dνE = n(E)dE .

Theorem 2.1 follows immediately by combining Theorem 2.2 and Theorem 2.3. Theorem 2.2 is proven
in Sections 4 and 5. In Section 4 we prove Wegner estimates with control of the constant in Lemma 4.1,
and a Wegner estimate with one random variable ω j fixed in Lemma 4.2. Theorem 2.2(i) follows from
Lemma 4.1(i). Section 5 contains the proof of Minami’s estimate: Theorem 2.2(ii) is proven in Lemma
5.1(i), completing the proof of Theorem 2.2. Theorem 2.3 is proven in Sections 6 and 7. In Section 6 we
prove Theorem 2.3(a), namely the convergence of the rescaled eigenvalues to a Poisson point process.
Finally, in Section 7 we discuss how Theorem 2.3(b) follows from the Minami estimate (2-19) and [Klein
and Molchanov 2006].

Some comments about our notation: Finite volumes will always be understood to be boxes3=3L( j0)
with j0 ∈Zd and L ∈ 2N, L >δ+. We will always identify such3 with the torus j0+Rd/LZd . If j ∈ 3̃,
we will consider subboxes 3(3)s ( j) of 3, where 0< s ≤ L , defined by

3(3)s ( j) :=
{⋃

k∈LZd 3s( j + k)
}
∩3,

that is, χ
3
(3)
s ( j) := χ3

∑
k∈LZd χ3s( j+k). Similarly, we define functions u(3)j on the torus 3 by u(3)j :=

χ3
∑

k∈LZd u j+k , that is, the function u j will be assumed to have been wrapped around the torus3. Note
that we then have V (3)

ω =
∑

j∈3̃ ω j u
(3)
j . We will abuse the notation and just write 3s( j) for 3(3)s ( j),

u j for u(3)j , and V (3)
ω =

∑
j∈3̃ ω j u j . In addition, given j ∈ ϒ ∩Zd , where ϒ =3L(0) or Rd , we write

ω= (ω⊥j , ω j ), and H (ϒ)

(ω⊥j ,ω j=s)
= H (ϒ)

(ω⊥j ,s)
, P (ϒ)

(ω⊥j ,ω j=s)
(I )= P (ϒ)

(ω⊥j ,s)
(I ) when we want to make explicit that

ω j = s.

3. A new approach to Minami’s estimate illustrated by a proof for the (discrete) Anderson Model

The starting point and key idea in our approach is contained in the following simple lemma.

Lemma 3.1. Consider the self-adjoint operator Hs = H0 + sW on the Hilbert space H, where H0 and
W are self-adjoint operators on H, with W ≥ 0 bounded, and s ≥ 0. Let Ps(J )= χJ (Hs) for an interval
J , and suppose tr Ps(]−∞, c]) <∞ for all c ∈ R and s ≥ 0. Then, for all a, b ∈ R with a < b we have

tr Ps(]a, b])≤
{
tr P0(]−∞, b])− tr Pt(]−∞, b])

}
+ tr Pt(]a, b]) for 0≤ s ≤ t. (3-1)

Proof. Let a, b ∈ R with a < b and 0≤ s ≤ t . Then, since W ≥ 0, we have

tr Ps(]a, b])= tr Ps(]−∞, b])− tr Ps(]−∞, a])

≤ tr P0(]−∞, b])− tr Pt(]−∞, a])

= tr P0(]−∞, b])− tr Pt(]−∞, b])+ tr Pt(]a, b]), (3-2)

as required. �

We will also use the basic spectral averaging estimate: Let H0 and W be self-adjoint operators on
a Hilbert space H, with W ≥ 0 bounded. Consider the random operator Hξ := H0 + ξW , where ξ
is a random variable with a nondegenerate probability distribution µ with compact support. The basic
spectral averaging estimate for such perturbations of self-adjoint operators says that, given ϕ ∈ H with
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‖ϕ‖ = 1, then for all bounded intervals I ⊂ R we have (see [Combes and Hislop 1994, Corollary 4.2],
[Combes et al. 2007a, (3.16)])

Eξ
{
〈ϕ,
√

WχI (Hξ )
√

Wϕ〉
}
:=

∫
dµ(ξ)

〈
ϕ,
√

WχI (Hξ )
√

Wϕ
〉
≤ Qµ(|I |), (3-3)

where

Qµ(s) :=
{
ρ∞s if µ has a bounded density ρ as in (2-7),
8 supa∈R µ([a, a+s]) otherwise.

(3-4)

As a consequence, given a trace class operator S ≥ 0 on H, we have

Eξ
{
tr{
√

WχI (Hξ )
√

W S}
}
≤ (tr S)Qµ(|I |). (3-5)

Note that the measure µ has no atoms if and only if lims↓0 Qµ(s)= 0.
Lemma 3.1 will allow the decoupling of random variables for the performance of two spectral aver-

agings.
We will first illustrate our approach to Minami’s estimate by giving a simple and transparent proof of

the estimate for in the discrete case, that is, for the Anderson model. We will then comment on how to
proceed in the continuum case, that is, for the Anderson Hamiltonian.

Minami’s estimate for the (discrete) Anderson model. An Anderson model will be a discrete random
Schrödinger operator of the form

Hω = H0+ Vω on `2(Zd), (3-6)

where H0 is a bounded self-adjoint operator and Vω is the random potential given by Vω( j) = ω j for
j ∈ Zd , where ω = {ω j } j∈Zd is a family of independent, identically distributed random variables with
common probability distribution µ. (The usual Anderson model has H0 =−1, where 1 is the discrete
Laplacian.) We assume µ has compact support and no atoms. Adjusting H0 and µ, we may assume

{0,M} ∈ suppµ⊂ [0,M] with M ∈]0,∞[. (3-7)

Restrictions of Hω to finite volumes 3⊂ Zd are denoted by H (3)
ω , a self-adjoint operator of the form

H (3)
ω = H (3)

0 + V (3)
ω on `2(3), (3-8)

where H (3)
0 is a self-adjoint restriction of H0 to the finite-dimensional Hilbert space `2(3), and V (3)

ω is
the restriction of Vω to 3. (In the discrete case our results are not sensitive to the choice of H0,3, they
hold for any boundary condition.) Given a Borel set J ⊂ R, we write P (3)ω (J ) = P (3)Hω (J ) = χJ (H

(3)
ω )

for the associated spectral projection.
What makes the discrete case much easier than the continuum is that in the discrete case finite volume

operators are finite-dimensional and each random variable couples a rank-one perturbation. Given a unit
vector ϕ in a Hilbert space H, we let 5ϕ denote the orthogonal projection onto Cϕ, the one-dimensional
subspace spanned by ϕ. With this notation, the potentials in (3-6) and (3-8) are given by sums of rank-one
perturbations:

Vω =
∑
j∈Zd

ω j5 j and V (3)
ω =

∑
j∈3

ω j5 j , with 5 j =5δ j . (3-9)
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For rank-one perturbations Lemma 3.1 has the following consequence:

Lemma 3.2. Let Hs be as in Lemma 3.1 with W =5ϕ for some unit vector ϕ ∈H. Then, for all a, b ∈R

with a < b we have

tr Ps(]a, b])≤ 1+ tr Pt(]a, b]) for all 0≤ s ≤ t. (3-10)

Proof. Let 0≤ s ≤ t . Recall that for any c ∈ R we always have

0≤ tr Ps(]−∞, c])− tr Pt(]−∞, c])≤ 1, (3-11)

the last inequality being a consequence of the min-max principle applied to rank-one perturbations, for
example, [Kirsch 2008, Lemma 5.22]. Thus (3-10) follows immediately from (3-1). �

For rank-one perturbations the fundamental spectral averaging estimate (3-3) may be stated as follows:
Consider the random self-adjoint operator

Hξ = H0+ ξ5ϕ on H, (3-12)

where H0 is a self-adjoint operator on the Hilbert space H, ϕ ∈ H with ‖ϕ‖ = 1, and ξ is a random
variable with a nondegenerate probability distribution µ with compact support. Let Pξ (J )= χJ (Hξ ) for
a Borel set J ⊂ R. Then for all bounded intervals I ⊂ R we have [Wegner 1981; Fröhlich and Spencer
1983; Carmona et al. 1987; Kirsch 2008; Combes and Hislop 1994; Combes et al. 2007a]

Eξ
{
〈ϕ, Pξ (I )ϕ〉

}
:=

∫
dµ(ξ) 〈ϕ, Pξ (I )ϕ〉 ≤ Qµ(|I |). (3-13)

The Wegner estimate for an Anderson model [Wegner 1981; Fröhlich and Spencer 1983; Carmona
et al. 1987; Kirsch 2008] is an immediate consequence of (3-13):

E
{
tr P (3)Hω (I )

}
=

∑
j∈3

Eω⊥j

{
Eω j {〈δ j , P (3)Hω (I )δ j 〉}

}
≤ Qµ(|I |)|3|. (3-14)

We can now prove Minami’s estimate for an Anderson model for arbitrary µ with compact support
and no atoms, a result previously known only for µ with a bounded density [Minami 1996; Bellissard
et al. 2007; Graf and Vaghi 2007].

Theorem 3.3. Let Hω be an Anderson model as in (3-6), with µ arbitrary except for compact support
and no atoms. Let 3⊂ Zd be a finite volume. For any bounded interval I we have

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ (Qµ(|I |)|3|)2. (3-15)

Theorem 3.3 is extended in [Combes et al. 2009], allowing for n arbitrary intervals and arbitrary single-
site probability measure µ with no atoms. We also give applications of (3-15), deriving new results about
the multiplicity of eigenvalues and Mott’s formula for the ac-conductivity when the single-site probability
distribution is Hölder continuous.

Proof of Theorem 3.3. Fix 3 ⊂ Zd and let I be a bounded interval. Since the measure µ has no atoms,
it follows from (3-14) that Eω

{
tr P (3)ω ({c})

}
= 0 for any c ∈ R. Thus we may take all intervals to be of
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the form ]a, b], and use Lemma 3.2 to decouple the random variable ω j from the random variables ω⊥j .
In view of (3-7), for all τ j ≥ M , j ∈ Zd , we have

(tr P (3)ω (I ))(tr P (3)ω (I )− 1)=
∑
j∈3

{
〈δ j , P (3)ω (I )δ j 〉(tr P (3)ω (I )− 1)

}
≤

∑
j∈3

{
〈δ j , P (3)

(ω⊥j ,ω j )
(I )δ j 〉(tr P (3)

(ω⊥j ,τ j )
(I ))

}
. (3-16)

We now average over the random variables ω = {ω j } j∈Zd . Using (3-13), we get

Eω
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤

∑
j∈3

Eω⊥j

{
(tr P (3)

(ω⊥j ,τ j )
(I ))

(
Eω j

{
〈δ j , P (3)

(ω⊥j ,ω j )
(I )δ j 〉

})}
≤ Qµ(|I |)

∑
j∈3

Eω⊥j

{
tr P (3)

(ω⊥j ,τ j )
(I )
}
. (3-17)

This holds for all τ j ≥ M , j ∈ Zd , so we now take τ j = M+ ω̃ j , where ω̃= {ω̃ j } j∈Zd and ω= {ω j } j∈Zd

are two independent, identically distributed collections of random variables. Now τ =
{
τ j
}

j∈Zd are
independent identically distributed random variables with a common probability distribution µτ such
that Qµτ = Qµ. We get

Eω
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
= Eτ

{
Eω
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}}
≤ Qµ(|I |)

∑
j∈3

E(ω⊥j ,τ j )
(tr P (3)

(ω⊥j ,τ j )
(I ))≤ (Qµ(|I |)|3|)2, (3-18)

where we used the Wegner estimate (3-14). (More precisely, we estimate as in (3-14); the random
variables do not need to be identically distributed.) �

Stepping up to the continuum. Unfortunately things are not so simple for the continuum Anderson
Hamiltonian. The main reason is that the random potential Vω in (2-3) is a sum of independent random
perturbations of infinite rank, not of rank one as in the discrete case, and thus the a priori bound in (3-11),
and also Lemma 3.2, are not applicable anymore.

To prove Minami’s estimate on the continuum we will use the fundamental spectral averaging estimate
as in (3-5). The straightforward expansion of the trace in (3-14) and (3-17) cannot be used for the spectral
averaging, even with u j instead of δ j , and will be replaced by a more sophisticated expansion in terms of
trace class operators, as in [Combes and Hislop 1994; Combes et al. 2007a] ((4-1)–(4-5)). Lemma 3.1 will
be modified, since the term in brackets in (3-1) does not satisfy an a priori bound as in (3-11) anymore.
This term will be estimated using the Birman–Solomyak formula; see (5-3), (5-4). The bound in (3-11)
is then replaced by averaging the resulting expression over all the other random variables and using the
Wegner estimate (2-13); see (5-9). The resulting bound is useful if the constant KW in (2-13) is not too big
(we have KW = 1 in the lattice, as can be seen in (3-14)). Since previous proofs of the Wegner estimate
do not give the desired control of KW , we must revisit the Wegner estimate. We introduce a double
averaging procedure that provides the desired estimates on the constant KW (Lemma 4.1). In addition,
because of the way we use the Birman–Solomyak formula, we do not have freedom in the choice of τ j as
in (3-16), we have to take τ j = Mρ . Thus we cannot average in τ as in (3-18); this argument is replaced
by a refinement of the Wegner estimate where one of the random variables is fixed (Lemma 4.2).
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4. The Wegner estimate revisited

Let Hω be the Anderson Hamiltonian, E0 > 0, I ⊂ [0, E0] an interval, and 3 a finite box. To prove the
Wegner estimate (2-13), it is shown in [Combes and Hislop 1994; Combes et al. 2007a] that

tr P (3)ω (I )≤ Q1
∑
j,k∈3̃

∣∣tr{√uk P (3)ω (I )
√

u j T (3)
j,k }

∣∣, (4-1)

where
{
T (3)

j,k

}
j,k∈3̃ are (nonrandom) trace class operators in L2(3) such that

max
j∈3̃

{∑
k∈3̃

‖T (3)
j,k ‖1

}
≤ Q2, (4-2)

the constants Q1, Q2 depending only on E0, d, u, Vper,Mρ . Letting

T (3)
j,k =U (3)

j,k |T
(3)
j,k |

be the polar decomposition of the operator T (3)
j,k , recalling that then |T (3)∗

j,k |=U (3)
j,k T (3)

j,k U (3)∗
j,k , and setting

S(3)j :=
1
2

∑
k∈3̃

(
|T (3)∗

j,k | + |T
(3)

k, j |
)
≥ 0 for j ∈ 3̃, (4-3)

we obtain
tr P (3)ω (I )≤ Q1

∑
j∈3̃

tr
{√

u j P (3)ω (I )
√

u j S(3)j

}
, (4-4)

with
max
j∈3̃

{
tr S(3)j

}
≤ Q2. (4-5)

If we now take the expectation in (4-4), use (3-5) and (4-5), we get the Wegner estimate (2-13) with
KW = Q1 Q2.

We will need control of the constant KW and a Wegner estimate with one of the random variables,
say ω0, fixed. In the course of obtaining control over KW we will derive (4-1) with estimates on the
constants Q1 and Q2 in the case when δ− ≥ 1.

A Wegner estimate with control of the constants.

Lemma 4.1. Let Hω be an Anderson Hamiltonian.

(i) Assume δ− ≥ 2. Then there exists a constant Cd,Vper such that, given an energy E0 > 0, (2-13) holds
for all intervals I ⊂ [0, E0] with a constant

KW ≤ Cd,Vper

(ρ+
u−

)2d

γd(E0)min
{
1, E2d

−d−1
0

}
max

{
1, E2d+2

0
}
, (4-6)

where we have γd(E0)= 1 if d ≥ 2, and γ1(E0)= γ1,Vper(E0) ∈ ]0, 1] with limE0→0 γ1(E0)= 0.

(ii) Assume δ− ≥ 1. Then, given an energy E0 > 0, (4-1)–(4-5) hold for all intervals I ⊂ [0, E0] with
constants

Q1 = (1+ E0)
2[[d/4]] and Q2 = C ′d,Vper

, (4-7)
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and hence (2-13) holds for all intervals I ⊂ [0, E0] with a constant

KW ≤ C ′d,Vper
(1+ E0)

2[[d/4]]. (4-8)

Proof. Assume δ− ≥ m, where m is either 1 or 2. We set

χ
(m)
j = χ3m( j) for j ∈ ϒ̃ := ϒ ∩Zd ,

where ϒ is either Rd or a finite box 3 (recall that in this case χ3m( j) denotes χ (3)3m( j), a subbox in the
torus). Note that for any j0 ∈ ϒ̃ we have ∑

j∈( j0+mZd )∩ϒ

χ
(m)
j = 1. (4-9)

We also let χ̂ (m)j = u j
−1/2χ

(m)
j on 3m( j), χ̂ (m)j = 0 otherwise. It follows from (2-5) that

χ̂
(m)
j ≤ u−1/2

− χ
(m)
j .

(Recall we write u j for u(3)j .)
To prove (i), assume δ− ≥ 2. We write ω′ = {ω j } j∈2Zd , ω′′ = {ω j } j /∈2Zd . We set

Hω′′ := H0+ Vω′′, Vω′′ :=
∑

j /∈2Zd

ω j u j . (4-10)

Note that Hω′′ is a 2Zd ergodic family of random self-adjoint operators, and we have

Hω ≥ Hω′′ ≥ H0, Hω′′ ≥ Vω′′ . (4-11)

Fix an energy E0 > 0, a box 3, and let I = ]a, b] ⊂ [0, E0]. Set p = 2d+1. Given t > 0, the function
gt(x) = (1 + t x)−2p is convex on the interval ]−1/t,∞[. Thus, using (4-11), we can proceed as in
[Combes and Hislop 1994] using convexity and Jensen’s inequality (see Lemma B.1 in Appendix B),
and then (4-9) and (2-5), to get

tr P (3)ω (I )≤ (1+ t E0)
2p tr

{
P (3)ω (I )(1+ t H (3)

ω )−2p P (3)ω (I )
}

≤ (1+ t E0)
2p tr

{
P (3)ω (I )(1+ t H (3)

ω′′ )
−2p P (3)ω (I )

}
= (1+ t E0)

2p tr
{

P (3)ω (I )(1+ t H (3)
ω′′ )

−2p}
= (1+ t E0)

2p
∑

j,k∈3∩2Zd

tr
{

P (3)ω (I )χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

}
= (1+ t E0)

2p
∑

j,k∈3∩2Zd

tr
{√

uk P (3)ω (I )
√

u j χ̂
(2)
j (1+ t H (3)

ω′′ )
−2pχ̂

(2)
k

}
. (4-12)
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It then follows from (3-5), proceeding as in (4-1)–(4-4) (see also [Combes et al. 2007a, Lemma 2.1]),
that

Eω′ tr P (3)ω (I )≤ (1+ t E0)
2pρ+|I |

∑
j,k∈3∩2Zd

∥∥χ̂ (2)j (1+ t H (3)
ω′′ )

−2pχ̂
(2)
k

∥∥
1

≤ (1+ t E0)
2pu−1
−
ρ+|I |

∑
j,k∈3∩2Zd

∥∥χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

∥∥
1. (4-13)

We now use several deterministic estimates. First,∥∥χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

∥∥
1
≤

∑
r∈3∩2Zd

∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
2

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ
(2)
k

∥∥
2. (4-14)

Second,

∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥2

2
≤
∥∥χ (2)j (1+ t H (3)

ω′′ )
−pχ (2)r

∥∥∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
1
. (4-15)

Third, we estimate ∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
using the Combes–Thomas estimate. We use the precise estimate provided in [Germinet and Klein 2003b,
(19) in Theorem 1] (with γ = 1

2 ), modified for finite volume operators with periodic boundary condition
as in [Figotin and Klein 1996, Lemma 18] and [Klein and Koines 2001, Theorem 3.6], plus the fact that
we are using boxes of side 2. For L ≥ Ld we have, with d3( j, r) the distance on the torus 3,

∥∥χ (2)j (1+t H (3)
ω′′ )

−pχ (2)r

∥∥= t−p
∥∥χ (2)j (t−1

+ H (3)
ω′′ )

−pχ (2)r

∥∥≤ t−p( 4
3 t
)p exp 1

2
√

t
exp

(
−

1

8
√

td
d3( j, r)

)
=
( 4

3

)p exp
1

2
√

t
exp

(
−

1

8
√

td
d3( j, r)

)
. (4-16)

Fourth, note that∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥
1
≤
∥∥χ (2)j (1+ t H (3)

ω′′ )
−p/2∥∥

2

∥∥χ (2)r (1+ t H (3)
ω′′ )

−p/2∥∥
2

=
∥∥χ (2)j (1+ t H (3)

ω′′ )
−pχ

(2)
j

∥∥1/2

1

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥1/2

1 . (4-17)

We now average over ω′′. Using (4-14)–(4-17), we have

Eω′′
{∥∥χ (2)j (1+ t H (3)

ω′′ )
−pχ (2)r

∥∥1/2

1

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ
(2)
k

∥∥1/2

1

}
≤ Eω′′

{∥∥χ (2)j (1+ t H (3)
ω′′ )

−pχ
(2)
j

∥∥1/4

1

∥∥χ (2)r (1+ t H (3)
ω′′ )

−pχ (2)r

∥∥1/2

1 ×
∥∥χ (2)k (1+ t H (3)

ω′′ )
−pχ

(2)
k

∥∥1/4

1

}
≤ βt := Eω′′

{∥∥χ (2)0 (1+ t H (3)
ω′′ )

−pχ
(2)
0

∥∥
1

}
, (4-18)

where we used Hölder’s inequality plus translation invariance (in the torus) of the expectation.
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It now follows from (4-14), (4-15), (4-16), (4-17), and (4-18) that

Eω′′

{ ∑
j,k∈3∩2Zd

∥∥χ (2)j (1+ t H (3)
ω′′ )

−2pχ
(2)
k

∥∥
1

}
≤ βt exp 1

2
√

t

( 4
3

)p ∑
j,k,r∈3∩2Zd

exp
(
−

1

16
√

td
d3( j, r)

)
exp

(
−

1

16
√

td
d3(r, k)

)

≤ 2−dβt exp 1
2
√

t

( 4
3

)p
|3|

( ∑
r∈2Zd

exp
(
−

1

16
√

td
|r |
))2

= 2−dβt exp 1
2
√

t

( 4
3

)p
|3|

(∑
s∈Z

exp
(
−

1
8d
√

t
|s|
))2d

≤ 2−dβt exp 1
2
√

t

( 4
3

)p
|3|

(
1+ 2

∫
∞

0
ds exp

(
−

1
8d
√

t
|s|
))2d

≤ 2−dβt exp 1
2
√

t

( 4
3

)p
|3|(1+ 16d

√
t)2d ,

(4-19)

so we conclude from (4-13) that

Eω tr P (3)ω (I )≤
( 4

3

)p 1
2u−

(1+ t E0)
2pβt exp 1

2
√

t
(1+ 16d

√
t)2dρ+|I ||3|. (4-20)

We now estimate βt . We have, using periodicity, and again Lemma B.1 with H (3)
ω′′ ≥ Vω′′ and (2-5),

βt := Eω′′
{
tr{χ (2)0 (1+ t H (3)

ω′′ )
−pχ

(2)
0 }

}
=

2d

|3|
Eω′′

{
tr{(1+ t H (3)

ω′′ )
−p
}
}

≤
2d

|3|
Eω′′

{
tr
{
(1+ t H (3)

ω′′ )
−p/4(1+ tVω′′)−p/2(1+ t H (3)

ω′′ )
−p/4}}

=
2d

|3|
Eω′′

{
tr
{
(1+ tVω′′)−p/4(1+ t H (3)

ω′′ )
−p/2(1+ tVω′′)−p/4}}

= Eω′′
{
tr
{
χ
(2)
0 (1+ tVω′′)−p/4(1+ t H (3)

ω′′ )
−p/2(1+ tVω′′)−p/4χ

(2)
0

}}
= Eω′′

{
tr
{
(1+ tVω′′)−p/4χ

(2)
0 (1+ t H (3)

ω′′ )
−p/2χ

(2)
0 (1+ tVω′′)−p/4}}

≤ Eω′′
{
(1+ tu−ω̂0)

−p/2 tr{χ (2)0 (1+ t H (3)
ω′′ )

−p/2χ
(2)
0 }

}
,

(4-21)

where we set, with Q := {0, 1}d \ {0} ⊂ Zd ,

ω̂0 =
∑
q∈Q

ω̂0,q with ω̂0,q :=min{ωq+i : i ∈ 2Zd , |q + i |∞ = 1}. (4-22)

Note that |Q| = 2d
− 1, and (q + 2Zd) ∩ (q ′ + 2Zd) = ∅ if q, q ′ ∈ Q with q 6= q ′, so {ω̂0,q}q∈Q are

independent random variables.
Now, with 2 :=max{− ess inf Vper, 0},

tr
{
χ
(2)
0 (1+ t H (3)

ω′′ )
−p/2χ

(2)
0

}
≤

{
sup
E≥0

(1+2+E
1+t E

)p/2}
tr
{
χ
(2)
0 (H (3)

ω′′ + 1+2)−p/2χ
(2)
0

}
≤ Cd,2 max{1, t−p/2

}, (4-23)
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where (as in the proof of Lemma A.4 of [Germinet and Klein 2004], for example) we used the fact that
tr
{
χ
(2)
0 (H (3)

ω′′ +1+2)−p/2χ
(2)
0

}
is uniformly bounded, independently of3— itself a consequence of the

inequality p = 2d+1
≥ 4[[d/4]], where [[d/4]] is the smallest integer exceeding d/4.

Moreover, since p = 2d+1 > 2(2d
− 1),

Eω′′{(1+ tu−ω̂0)
−p/2
} ≤

∏
q∈Q

Eω′′
{
(1+ tu−ω̂0,q)

−p/(2(2d
−1))}

=

∏
q∈Q

Eω′′
{

max
i∈2Zd

|q+i |∞=1

(1+ tu−ωq+i )
−p/(2(2d

−1))}
≤
(
2d Eω0

{
(1+ tu−ω0)

−p/(2(2d
−1))})2d

−1

≤

(
2d ρ+

∫
∞

0
dω0 (1+ tu−ω0)

−p/(2(2d
−1))

)2d
−1

≤

(
2d(2d

− 1) ρ+
(2d − 1− p

2 )tu−

)2d
−1

= C ′d
( ρ+

tu−

)2d
−1
. (4-24)

Thus, we have

βt ≤ C ′d,2 max{1, t−2d
}

( ρ+
tu−

)2d
−1
, (4-25)

so it follows from (4-20) that

Eω tr P (3)ω (I )≤
C ′d,2
u−

(1+ t E0)
2d+2

exp 1
2
√

t
(1+ 16d

√
t)2d max{1, t−2d

}

( ρ+
tu−

)2d
−1
ρ+|I ||3|. (4-26)

If E0 ≤ 3, we choose t = 1/E0, obtaining

Eω tr P (3)ω (I )≤ C ′′d,2
(ρ+

u−

)2d

E2d
−d−1

0 |I ||3|. (4-27)

If E0 > 3, we take t = 1, getting

Eω tr P (3)ω (I )≤ C ′′′d,2

(ρ+
u−

)2d

E2d+2

0 |I ||3|. (4-28)

Thus, for all E0 > 0 we have

Eω tr P (3)ω (I )≤
Cd,2

u−

(ρ+
u−

)2d
−1

min{1, E2d
−d−1

0 }max{1, E2d+2

0 }ρ+|I ||3|. (4-29)

For d = 1 we need to do a bit better. In this case we redo (4-23) as follows:

tr
{
χ
(2)
0 (1+ t H (3)

ω′′ )
−p/2χ

(2)
0

}
≤ tr

{
χ
(2)
0 (1+ t H (3)

ω′′ )
−1χ

(2)
0

}
≤ αt := tr

{
χ
(2)
0 (1+ t H (3)

0 )−1χ
(2)
0

}
. (4-30)

For d = 1 the estimate (4-26) now becomes

Eω tr P (3)ω (I )≤
C1,θ

u−
(1+ t E0)

8 exp 1
2
√

t
(1+ 16

√
t)2αt

( ρ+
tu−

)
ρ+|I ||3|, (4-31)
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and thus (4-29) becomes

Eω tr P (3)ω (I )≤
C1,2

u−

ρ+

u−
γ1(E0)max{1, E8

0}ρ+|I ||3|. (4-32)

where γ1(E0)≤ 1 and limE0→0 γ1(E0)= 0 uniformly in 3 large.
This proves (i). To prove (ii), we now assume δ− ≥ 1. We proceed as in the proof of (i), with ω′ = ω

and ω′′= {ω j } j /∈Zd =∅, that is Vω′′ = 0 and Hω′′ = H0. We also now fix p= 2[[d/4]]. Then (4-12) yields
(4-1) with Q1 = (1+ t E0)

2p and T (3)
j,k = χ̂

(1)
j (1+ t H (3)

0 )−2pχ̂
(1)
k . Proceeding as in (4-14)–(4-19) gives

(4-2) with
Q2 = β

(0)
t exp 1

4
√

t

( 4
3

)p
(1+ 32d

√
t)2d , (4-33)

where, as in (4-23),

β
(0)
t :=

∥∥χ (1)0 (1+ t H (3)
0 )−pχ

(1)
0

∥∥
1 ≤ Cd,2 max{1, t−p

} ≤ Cd,2. (4-34)

We now set t = 1, obtaining (4-7) and (4-8). �

A Wegner estimate with ω0 fixed. Let ϒ =3L(0) or Rd . Given τ ∈ R, we consider (recall u0 = u)

H (ϒ)

(ω(0),τ )
= H (ϒ)

(ω(0),ω0=τ)
= H (ϒ)

ω + (τ −ω0)u. (4-35)

Lemma 4.2. Let Hω be an Anderson Hamiltonian, E0 > 0. Given τ ∈ R, there exists a constant K̃W =

K̃W (d, u, Vper, E0,Mρ, τ ), such that for any interval I ⊂ [0, E0] and finite box 3=3L(0) we have

Eω(0)
{
tr P (3)

(ω(0),τ )
(I )
}
≤ K̃Wρ+|I ||3|. (4-36)

Moreover, if δ− ≥ 2, we have
K̃W ≤ Cd,Vper,τ (1+ E0)

2[[ d4 ]]. (4-37)

Proof. We will show that the proof of Theorem 1.3 of [Combes et al. 2007a] can be modified to yield the
proposition. All references of the form (2.N) in this proof will be to that paper unless otherwise stated.

We introduce the background potential

H1 := H0+ τ
∑

j∈2Zd

u j =−1+ V (2)
per , (4-38)

where V (2)
per = Vper+ τ

∑
j∈2Zd u j is a 2Zd -periodic potential. It follows that

H(ω(0),τ ) = H1+ Vω(0)(τ ) with Vω(0)(τ ) :=
∑

j∈(2Z)d\{0}

(ω j − τ)u j +
∑

j∈Z\(2Z)d

ω j u j . (4-39)

The main point is that the single-site potential u0 = u does not appear in the sum, but all the other u j ’s
appear with a random coefficient.

To prove (4-36) with no conditions on δ−, we proceed as in Section 2 of [Combes et al. 2007a]. We
take an interval I ⊂[0, E0], write Ĩ =[0, E0+1]; I and Ĩ replace the intervals1 and 1̃ in that paper. The
potential V3 in equation (2.7) there is replaced by V (3)

ω(0)
(τ ), which only involves the random variables

ω(0). As a consequence, the sum in (2.10) runs over indices i, j ∈ 3̃\{0}. The spectral averaging in (2.13)
can thus be performed with respect to the random variables ω(0). Similarly for (2.18), since K̃ (n)i1, jn
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of (2.17) is now constructed only with the single-site potentials u j ’s present in V (3)

ω(0)
(τ ), that is, u j with

j ∈ 3̃ \ {0}. We thus get the analog of (2.20), with M0 = Mρ + |τ |, namely, with P1(B)= χB(H1),

Eω(0)
{
tr
{

P (3)
(ω(0),τ )

(I )P (3)1 (R \ Ĩ )
}}
≤ K1ρ+|I ||3|, (4-40)

for an appropriate constant K1.
It remains to bound Eω(0)

{
tr
{

P (3)
(ω(0),τ )

(I )P (3)1 ( Ĩ )
}}

. For this purpose, we set

Ṽ1 =
∑

j∈(e1+2Zd )

u j , (4-41)

where e1 = (1, 0, 0, . . . , 0) /∈ 2Zd , and we use H1 and Ṽ (3)
1 , the restriction of Ṽ1 to 3, instead of H0

and Ṽ3 =
∑

j∈Zd∩3 u j , in the crucial estimate (2.1) of [Combes et al. 2007a]. Since H1 and Ṽ1 are both
2Zd -periodic, we have1 the equivalent of (2.1),

P (3)1 ( Ĩ )Ṽ (3)
1 P (3)1 ( Ĩ )≥ C(E0, u, Vper, τ )P

(3)
1 ( Ĩ ), (4-42)

with a constant C(E0, u, Vper, τ ) > 0. Since

Ṽ1 ≤ Ṽ0⊥ :=
∑

j∈Zd\{0}

u j , (4-43)

it follows that
P (3)1 ( Ĩ )Ṽ (3)

0⊥ P (3)1 ( Ĩ )≥ C(E0, u, Vper, τ )P
(3)
1 ( Ĩ ). (4-44)

As a consequence, we get (2.21) with Ṽ3 replaced by Ṽ (3)
0⊥ , and hence we obtain the analogue of (2.31):

Eω(0)
{
tr
{

P (3)1 ( Ĩ )Ṽ (3)
0⊥ P (3)

(ω(0),τ )
(I )Ṽ (3)

0⊥ P (3)1 ( Ĩ )
}}
≤ K2ρ+|I ||3|, (4-45)

for an appropriate constant K2.
The desired bound (4-36) now follows as the analogue of (2.32).
If δ− ≥ 2, we have ∑

j∈(( j0+Zd )\{0})∩3

u j ≥ u−χ3, (4-46)

so we can apply the proof of Lemma 4.1(ii) to the random operator Hω(0),τ getting (4-36) with (4-37). �

5. The Minami estimate

Theorem 2.2 follows by combining Lemma 4.1(i) and the following lemma:

Lemma 5.1. Let Hω be an Anderson Hamiltonian with a uniform-like distribution µ. Let E0 > 0 and
suppose the Wegner estimate (2-13) holds for all intervals I ⊂ [0, E0] with a constant KW such that

2KW U+
ρ+
ρ−
≤ 1. (5-1)

Then there exists a constant KM = KM(u, ρ±,Mρ, E0, d) such that the Minami estimate (2-19) holds
for all intervals I ⊂ [0, E0].

1by [Combes et al. 2003, Proposition 1.3]; see also [Combes et al. 2007a, Theorem 2.1].
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If δ− ≥ 2, we have the estimate

KM ≤ Cd,Vper,Mρ (1+ E0)
4[[ d4 ]]. (5-2)

Proof. Let 3 be a finite box. It follows from (2-13) that Eω{tr P (3)ω ({c})} = 0 for any c ∈ R. Thus we
may take all bounded intervals to be of the form ]a, b]. For such an interval we modify Lemma 3.1 as
follows: Given δ > 0 small, we pick a nonincreasing function h ∈ C∞(R), such that h(t) = 1 for t ≤ 0
and h(t)= 0 for t ≥ δ. Note that 0≤ h ≤ 1, h′ ≤ 0, supp h′ ⊂ [0, δ],

∫
R

dt h′(t)=−1, and we can choose
h so |h′| ≤ 2

δ . Given c ∈R, we set hc(t)= h(t−c), and note that hc−δ ≤ χ]−∞,c] ≤ hc. We let I = ]a, b],
Iδ = ]a− δ, b+ δ]. Using h, we rework (3-1) in the following way. Given j ∈ 3̃ and τ ≥ Mρ , we have

tr P (3)ω (I )≤ tr hb(H (3)
ω )− tr ha−δ(H (3)

ω )

≤
{
tr hb

(
H (3)

(ω⊥j ,ω j=0)

)
− tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)}
+
{
tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)
− tr ha−δ

(
H (3)

(ω⊥j ,ω j=τ)

)}
≤
{
tr hb

(
H (3)

(ω⊥j ,ω j=0)

)
− tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)}
+ tr P (3)

(ω⊥j ,ω j=τ)
(Iδ). (5-3)

We now fix τ =Mρ and use the Birman–Solomyak formula [Simon 1998] as in [Combes et al. 2007b,
(7)–(8)], plus the hypothesis (2-8), obtaining

ξ
(3)
b,τ (ω

⊥

j ) := tr hb
(
H (3)

(ω⊥j ,ω j=0)

)
− tr hb

(
H (3)

(ω⊥j ,ω j=τ)

)
= −

∫ τ

0
ds tr

{√
u j h′b(H

(3)

(ω⊥j ,ω j=s)
)
√

u j
}

≤
2
δ

∫ τ

0
ds tr

{√
u j P (3)

(ω⊥j ,ω j=s)
(]b, b+ δ])

√
u j
}

≤
2
δρ−

∫
dsρ(s) tr

{√
u j P (3)

(ω⊥j ,ω j=s)
(]b, b+ δ])

√
u j
}
. (5-4)

Note that ξ (3)b,τ (ω
⊥

j ) is closely related to the spectral shift function associated to the pair H (3)

(ω⊥j ,ω j=0)
and

H (3)

(ω⊥j ,ω j=τ)
.

Now fix E0 > 0, let I = ]a, b] ⊂ [0, E0[, and consider δ > 0 such that b+ δ ≤ E0, so Iδ ⊂ [0, E0]. If
tr P (3)ω (I )≥ 1, it follows from (4-4) that

(tr P (3)ω (I ))(tr P (3)ω (I )− 1)≤ Q1
∑
j∈3̃

tr
{√

u j P (3)ω (I )
√

u j S(3)j

}
(tr P (3)ω (I )− 1), (5-5)

so, using (5-3) and (5-4), we get

(tr P (3)ω (I ))(tr P (3)ω (I )− 1)≤ Q1
∑
j∈3̃

{(
tr
{√

u j P (3)ω (I )
√

u j S(3)j

})
8
(3)
b,τ (ω

⊥

j )
}
, (5-6)

where for each j ∈ 3̃

8
(3)
b,τ (ω

⊥

j ) :=
(
ξ
(3)
b,τ (ω

⊥

j )− 1
)
+ tr P (3)

(ω⊥j ,τ )
(Iδ) (5-7)

is independent of the random variable ω j . If tr P (3)ω (I ) < 1 , we have P (3)ω (I ) = 0, and hence we also
have (5-6).
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Thus, if we now take the expectation in (5-6), use (3-5) and (4-5), we get

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ Q1 Q2ρ+|I |

∑
j∈3̃

Eω⊥j

{
8
(3)
b,τ (ω

⊥

j )
}

= Q1 Q2ρ+|I | |3|Eω⊥k
{
8
(3)
b,τ (ω

⊥

k )
}

(5-8)

for any k ∈ 3̃.
We will now estimate Eω⊥k

{
8
(3)
b,τ (ω

⊥

k )
}
. It follows from (5-4) and (2-13) that, if we have (5-1),

Eω⊥k

{
ξ
(3)
b,τ (ω

⊥

k )
}
≤

2
δρ−

Eω
{
tr
{√

uk P (3)ω (]b, b+ δ])
√

uk
}}

=
2

δρ−|3|
Eω
{∑

j∈3̃
tr
{√

u j P (3)(ω) (]b, b+ δ])
√

u j
}}

≤
2U+
δρ−|3|

Eω
{
tr P (3)ω (]b, b+ δ])

}
≤ 2KW U+

r
r
ρ+ρ− ≤ 1. (5-9)

In this case, we have

Eω⊥k

{
8
(3)
b,τ (ω

⊥

k )
}
≤ Eω⊥k

{
tr P (3)

(ω⊥k ,τ )
(Iδ)

}
≤ K̃Wρ+(|I | + 2δ)|3|, (5-10)

where we used Lemma 4.2, where K̃W = K̃W (d, u, Vper, E0,Mρ).
Combining (5-8) and (5-10) we get

E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
≤ Q1 Q2 K̃W |I |(|I | + 2δ)(ρ+|3|)2. (5-11)

Letting δ→ 0 we get (2-19) with KM = Q1 Q2 K̃W .
If δ− ≥ 2, the estimate (5-2) follows from (4-7) and (4-37). �

6. Poisson statistics

In this section we prove Theorem 2.3(a).
Let Hω be an Anderson Hamiltonian, and suppose I is an open interval such that for all large boxes

3 the estimate (2-19) holds for any interval I ⊂ I with |I | ≤ δ0, for some δ0 > 0, with some constant
KM . (We will assume that a given 3 is large enough.) Recall we have (2-13) for these intervals with
some constant KW .

Let E ∈ I∩4CL be such that the IDS N (E) is differentiable at E with n(E) := N ′(E) > 0. It follows
from (2-13) that we then have

0< n(E)≤ KWρ+. (6-1)

We fix an open interval I1 such that E∈I1⊂I1⊂I∩4CL. Note that for each bounded Borel set B⊂R

there exists a finite cB = cB,E,I1 such that E+ |3|−1 B ⊂ I1 and |E+ |3|−1 B| ≤ δ0 if |3| ≥ cB . The
point process ξ (3)ω = ξ

(3)
E,ω of (2-17) has an intensity measure given by ν(3)(B) := E ξ

(3)
ω (B) for a Borel

set B ⊂ R; it follows from (2-13) that,

ν(3)(B)≤ KWρ+|B| for all 3 with |3| ≥ cB . (6-2)
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We start with the same general strategy used in [Molchanov 1980/81; Minami 1996]. We fix a ∈ ]0, 1[,
and divide3=3L(0) into ML boxes3(m)=3`(km) of side `≈ La , `∈ 2N, centered at km ∈3∩(2Zd);
note ML =

|3L |
|3`|
≈ L(1−a)d . For each m = 1, 2, . . . ,ML we define point processes

ξ (3,m)ω (B) := tr P (3
(m))

ω (E+ |3|−1 B) for a Borel set B ⊂ R. (6-3)

Note that {ξ (3,m)ω }m=1,2,...,ML are independent, identically distributed point processes, each with intensity
measure (using (2-13))

ν(3,m)(B) := E ξ (3,m)ω (B)≤ KWρ+|B|M−1
L for all 3 with |3| ≥ cB . (6-4)

We consider their superposition, the point process

ξ̃ (3)ω :=

ML∑
m=1

ξ (3,m)ω , (6-5)

with intensity measure

ν̃(3)(B) := E ξ̃ (3)ω (B)≤ KWρ+|B| for all 3 with |3| ≥ cB . (6-6)

We will prove that ξ̃ (3)ω ≈ ξ
(3)
ω as L→∞, and that ξ̃ (3)ω converges weakly, as L→∞, to the Poisson point

process ξ with intensity measure ν(B) := E ξ(B) = n(E)|B|. But here we must use different methods
from [Molchanov 1980/81; Minami 1996].

So let θ (3)ω = θ
(3)
E,ω be the random measure defined in (2-24); its intensity measure is

η(3)(B) := E θ (3)ω (B)= |3|η(E+ |3|−1 B), (6-7)

where η is the density of states measure, given in (2-16). It again follows from (2-13) that

η(3)(B)≤ KWρ+|B| for all 3 with |3| ≥ cB . (6-8)

We start with a lemma. Given a measure η on R, we write η( f ) :=
∫

R
f dη for suitable functions f ,

say, f ∈ Fb,K , the collection of bounded Borel functions on R vanishing outside a compact interval. It
follows from (2-17) that for all f ∈ Fb,K we have

ξ (3)ω ( f )= tr f3(H (3)
ω ), where f3(E) := f (|3|(E −E)), (6-9)

with similar expressions for ξ̃ (3)ω ( f ), ξ (3,m)ω ( f ), and θ (3)ω ( f ).

Lemma 6.1. For all f ∈ Fb,K we have

lim
L→∞

E
∣∣ξ (3)ω ( f )− ξ̃ (3)ω ( f )

∣∣= 0 (6-10)

and
lim

L→∞
E
∣∣ξ (3)ω ( f )− θ (3)ω ( f )

∣∣= 0. (6-11)

Proof. In view of (6-2), (6-6), and (6-8), it suffices to prove (6-10) and (6-11) for f ∈ C∞K (R), since
{ f ∈ C∞K (R) : supp f ⊂ J } is dense in L1(J, dE) for any interval J .
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So let f ∈ C∞K (R). To prove (6-10), we set `′ ≈ `−
√
`, 3(m,′) = 3`′(km), and 3(m,′′) = 3`(km) \

3`′(km). Using χ3 =
∑ML

m=1 χ3(m) , we get

ξ (3)ω ( f )− ξ̃ (3)ω ( f )=
ML∑

m=1

(
tr
{
χ3(m) f3(H (3)

ω )χ3(m)
}
− tr f3(H (3(m))

ω )
)

=

ML∑
m=1

(
tr
{
χ3(m,′) f3(H (3)

ω )χ3(m,′)
}
− tr{χ3(m,′) f3(H (3(m))

ω )χ3(m,′)}
)

+

ML∑
m=1

(
tr
{
χ3(m,′′) f3(H (3)

ω )χ3(m,′′)
}
− tr

{
χ3(m,′′) f3(H (3(m))

ω )χ3(m,′′)
})
. (6-12)

We now use the fact that the expectation is invariant under translations in the torus to get, for any m,

E
∣∣ξ (3)ω ( f )− ξ̃ (3)ω ( f )

∣∣≤ MLE
∣∣tr{χ3(m,′) f3(H (3)

ω )χ3(m,′)
}
− tr

{
χ3(m,′) f3(H (3(m))

ω )χ3(m,′)
}∣∣ (6-13)

+MLE
∣∣tr{χ3(m,′′) f3(H (3)

ω )χ3(m,′′)
}
− tr

{
χ3(m,′′) f3(H (3(m))

ω )χ3(m,′′)
}∣∣. (6-14)

It follows from the Wegner estimate (2-13) that

MLE
∣∣tr{χ3(m,′′) f3(H (3)

ω )χ3(m,′′)
}∣∣≤ ML

|3(m,′′)|

|3|
E tr
{
| f3|(H (3)

ω )
}

≤ ML
|3(m,′′)|

|3|
KWρ+|3|

∫
R

| f3|(E)dE

=
|3(m,′′)|

|3(m)|
KWρ+‖ f ‖1. (6-15)

Similarly,

MLE
∣∣tr{χ3(m,′′) f3(H (3(m))

ω )χ3(m,′′)
}∣∣≤ ML

|3(m,′′)|

|3(m)|
E tr
{
| f3|(H (3(m))

ω )
}

≤ ML
|3(m,′′)|

|3(m)|
KWρ+|3

(m)
|

∫
R

| f3|(E)dE

=
|3(m,′′)|

|3(m)|
KWρ+‖ f ‖1. (6-16)

Since
|3(m,′′)|

|3(m)|
≈
`d−1
√
`

`d =
1
√
`
≈

1

L
a
2
→ 0 as L→∞, (6-17)

the term in (6-14) goes to 0 as L→∞.
To finish the proof of (6-10) we need to show that the term in (6-13) also goes to 0 as L →∞. To

do that we will use that I1 ⊂ 4
CL, the Helffer–Sjöstrand formula for smooth functions of self-adjoint

operators, and estimates on Schrödinger operators.
Given a box 3, we identify L2(3) with the subspace of L2(Rd) consisting of functions vanishing

outside3. Given a function φ ∈C∞K (R), we let W (φ) to be the closure of the local first order differential
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operator [1,φ] on C∞K (R). We set

χφ := χsuppφ, χ∇φ := χsupp∇φ,

and note that W (φ)=χ∇φW (φ)=W (φ)χ∇φ =χ∇φW (φ)χ∇φ . We recall that if suppφ⊂3◦, the interior
of 3, which here may be either a finite box or Rd , we have∥∥(H (3)

ω + 1)−1/2W (φ)
∥∥= ∥∥W (φ)(H (3)

ω + 1)−1/2∥∥≤ Cφ := C1
(
‖1φ‖∞+‖∇φ‖∞

)
, (6-18)

where C1 depends only on d . We also recall that for all x ∈3 we have∥∥χ31(x)(H
(3)
ω + 1)−1∥∥

pd
≤ C2 <∞ with pd = [

d
2 ] + 1, (6-19)

the constant C2 being independent of x and 3 for L ≥ 2 [Klein et al. 2002, (130)–(136)].
We now recall the Helffer–Sjöstrand formula; refer to [Hunziker and Sigal 2000, Appendix B] for

details. Given g ∈ C∞(R) and m ∈ N, we set

{{g}}m :=
m∑

r=0

∫
R

du |g(r)(u)| (1+ |u|2)(r−1)/2. (6-20)

If {{g}}m <∞ with m ≥ 2, then for any self-adjoint operator K we have

f (K )=
∫

R2
dg̃(z) (K − z)−1, (6-21)

where the integral converges absolutely in operator norm. Here z = x + iy, g̃(z) is an almost ana-
lytic extension of g to the complex plane, dg̃(z) := 1

2π ∂z̄ g̃(z) dx dy with ∂z̄ = ∂x + i∂y , and |dg̃(z)| :=
(2π)−1

|∂ z̄ g̃(z)| dx dy. Moreover, for all p ≥ 0 we have∫
R2
|dg̃(z)|

1
|= z|p

≤ cp {{g}}m <∞ for m ≥ p+ 1 (6-22)

with a constant cp.
Since f ∈C∞K (R), we have, using the Helffer–Sjöstrand formula with3=3L , R(3)ω (z)= (H (3)

ω −z)−1

and R(3,m)ω (z)= (H (3(m))
ω − z)−1, and taking φ0 ∈ C∞K (3`−10d(km)) such that φ0χ3`−20d (km) = χ3`−20d (km)

and 0≤ φ0 ≤ 1, that

T (3)
ω := χ3(m,′) f3(H (3)

ω )χ3(m,′) −χ3(m,′) f3(H (3(m))
ω )χ3(m,′) (6-23)

=

∫
R2

d f̃3(z)
{
χ3(m,′) R

(3)
ω (z)χ3(m,′) −χ3(m,′) R

(3,m)
ω (z)χ3(m,′)

}
=

∫
R2

d f̃3(z)
{
χ3(m,′) R

(3)
ω (z)φ0χ3(m,′) −χ3(m,′)φ0 R(3,m)ω (z)χ3(m,′)

}
=

∫
R2

d f̃3(z)
{
χ3(m,′) R

(3)
ω (z)W (φ0)R(3,m)ω (z)χ3(m,′)

}
, (6-24)

where we used the geometric resolvent identity.
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Now let us pick functions φi ∈C∞K (R), i = 1, 2, . . . , 2p−1, such that 0≤ φi ≤ 1, φiχ∇φi−1 = χ∇φi−1 ,
and χφiχ3`−30d (km) = 0 for i = 1, 2, . . . , 2p− 1. Using the resolvent identity 2p− 1 times we get

χ3(m,′) R
(3)
ω (z)W (φ0)

= χ3(m,′) R
(3)
ω (z)W (φ2p−1)R(3)ω (z)W (φ2p−2) . . . R(3)ω (z)W (φ1)R(3)ω (z)W (φ0)

=
{
χ3(m,′) R

(3)
ω (z)

}{
W (φ2p−1)R(3)ω (z)W (φ2p−2)

}{
χ∇φ2p−2 R(3)ω (z)

}
×
{
W (φ2p−3)R(3)ω (z)W (φ2p−4)

}
. . .
{
χ∇φ2 R(3)ω (z)

}{
W (φ1)R(3)ω (z)W (φ0)

}
. (6-25)

We now use that the integral in (6-24) is performed over a compact domain in R2, which depends only
on the function f , so there is constant C f such that for z in the region of integration we have∥∥(H (3)

ω + 1)R(3)ω (z)
∥∥≤ C f

|=z|
, (6-26)

and hence, using (6-18) and (6-19), we have∥∥W (φi )R(3)ω (z)W (φi−1)
∥∥≤ C f Cφi Cφi−1

|=z|
(6-27)

and, for B ⊂3L ′ ⊂3, ∥∥χB R(3)ω (z)
∥∥

pd
≤

C f C2

|=z|
|3L ′ |. (6-28)

We now choose p = pd as in (6-19), and note that we can choose the functions φi ∈ C∞K (R), i =
1, 2, . . . , 2pd − 1 so that the constants Cφi are independent of 3, say all Cφi ≤ C3 From (6-25), (6-27),
and (6-28), we get

∥∥χ3(m,′) R(3)ω (z)W (φ0)R(3,m)ω (z)χ3(m,′)
∥∥

1 ≤

(
C f C2

|=z|
|3(m)|

)pd
(

C f C2
3

|=z|

)pd∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)
∥∥

≤ C4C ′f `
pd |=z|−2pd

∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)
∥∥.

(6-29)
We now use that I1 ⊂ 4CL, the region of complete localization for Hω. The term in (6-13) is

MLE{T (3)
ω }, with T (3)

ω as in (6-23). It follows from (6-24), (6-25), and (6-29) that for large L ,

MLE{T (3)
ω } ≤ MLC4C ′f `

pd

∫
R2
|d f̃3(z)| |=z|−2pd E

{∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)
∥∥}

≤ MLC4C ′f `
pd

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 E
{∥∥χ∇φ0 R(3,m)ω (z)χ3(m,′)

∥∥1/5}
≤ MLC4C ′f `

pd+2d(ρ++
√
ρ+)

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 e−`

1/4

≤ Ld`pd+de−`
1/4

c2pd+
4
5
C4C ′f (ρ++

√
ρ+) {{ f3}}2pd+2 .

(6-30)

where we used (A-4) and (6-22). Note that 2pd ≤ d + 1 and

{{ f3}}m ≤ CE0, f,m |3|
m−1 for all m = 2, 3, . . . . (6-31)
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It follows that

MLE{T (3)
ω } ≤ Ld2

+3d`3d/2+1e−`
1/4

c2pd+
4
5
C f,E0,d(ρ++

√
ρ+)→ 0 as L→∞. (6-32)

Thus (6-10) is proven.
The proof of (6-11) is similar. With 3=3L(0), we set L ′ ≈ L−

√
L , 3′ =3L ′(0), and 3′′ =3\3′.

We have
θ (3)ω ( f )− ξ (3)ω ( f )= tr{χ3 f3(Hω)χ3}− tr f3(H (3)

ω )

=
(
tr{χ3′ f3(Hω)χ3′}− tr{χ3′ f3(H (3)

ω )χ3′}
)

+
(
tr{χ3,′′ f3(Hω)χ3′′}− tr{χ3′′ f3(H (3)

ω )χ3′′}
)
,

(6-33)

and hence

E
∣∣θ (3)ω ( f )− ξ (3)ω ( f )

∣∣≤ E
∣∣tr{χ3′ f3(Hω)χ3′}− tr{χ3′ f3(H (3)

ω )χ3′}
∣∣ (6-34)

+ E
∣∣tr{χ3,′′ f3(Hω)χ3′′}− tr{χ3′′ f3(H (3)

ω )χ3′′}
∣∣. (6-35)

We now use the Wegner estimate (2-13) to obtain

E
∣∣tr{χ3′′ f3(H (3)

ω )χ3′′}
∣∣≤ |3′′|
|3|

E tr
{
| f3|(H (3)

ω )
}

≤
|3′′|

|3|
KWρ+|3|

∫
R

| f3|(E) dE =
|3′′|

|3|
KWρ+‖ f ‖1,

(6-36)

and
E
∣∣tr{χ3′′ f3(Hω)χ3′′}∣∣≤ |3′′|E tr

{
χ0| f3|(H (3)

ω )χ0
}
= |3′′|N (| f3|)

≤ |3′′|KWρ+

∫
R

| f3|(E) dE =
|3′′|

|3|
KWρ+‖ f ‖1.

(6-37)

Since |3′′|/|3| ≈ 1/
√

L , the term in (6-35) goes to 0 as L→∞.
To finish the proof of (6-11) , we need to show that the term in (6-34) also goes to 0 as L→∞. As

before, we use the Helffer–Sjöstrand formula. We have, taking φ0 ∈C∞K (3L−10d(0)) such that 0≤φ0≤ 1
and φ0χ3L−20d (0) = χ3L−20d (0), that

S(3)ω :=χ3′ f3(Hω)χ3′ −χ3′ f3(H
(3
ω )χ3′ (6-38)

=

∫
R2

d f̃3(z)
{
χ3′Rω(z)χ3′ −χ3′R(3)ω (z)χ3′

}
=

∫
R2

d f̃3(z)
{
χ3′Rω(z)φ0χ3′ −χ3′φ0 R(3)ω (z)χ3′

}
=

∫
R2

d f̃3(z)
{
χ3′Rω(z)W (φ0)R(3)ω (z)χ3′

}
. (6-39)

Proceeding as in (6-25)–(6-29), we get∥∥χ3′Rω(z)W (φ0)R(3)ω (z)χ3′
∥∥

1 ≤ C4C ′f L pd |=z|−2pd‖χ∇φ0 R(3)ω (z)χ3′‖. (6-40)
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Recall that I1 ⊂ 4
CL. The term in (6-34) is E{S(3)ω }, with S(3)ω as in (6-38). It follows from (6-39)

and (6-40) that for large L ,

E{S(3)ω } ≤ C4C ′f L pd

∫
R2
|d f̃3(z)| |=z|−2pd E

{
‖χ∇φ0 R(3)ω (z)χ3′‖

}
≤ MLC4C ′f L pd

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 E
{
‖χ∇φ0 R(3)ω (z)χ3′‖1/5

}
≤ C4C ′f L pd+2d(ρ++

√
ρ+)

∫
R2
|d f̃3(z)| |=z|−2pd−

4
5 e−L1/4

≤ L pd+2de−L1/4
c2pd+

4
5
C4C ′f (ρ++

√
ρ+) {{ f3}}2pd+2

≤ Ld2
+5de−L1/4

c2pd+
4
5
C f,E0,d(ρ++

√
ρ+)→ 0 as L→∞, (6-41)

where we used (A-4) and (6-22).
Thus (6-11) is proven, and with it the lemma. �

Given point processes {ζn}n∈N and ζ on R, we let ζn⇒ ζ denote the weak convergence of ζn to ζ as
n→∞. We recall [Daley and Vere-Jones 1988, Proposition 9.1.VII] that ζn⇒ ζ if and only if

lim
n→∞

E e−ζn( f )
= E e−ζ( f ) for all f ∈ CK ,+(R). (6-42)

The following lemma shows that it suffices to prove that ξ̃ (3)ω ⇒ ξ to prove Theorem 2.3(b).

Lemma 6.2. ξ (3)ω ⇒ ξ if and only if ξ̃ (3)ω ⇒ ξ .

Proof. If ζi , i = 1, 2, are point processes on R, defined on the same probability space, we have, for all
f ∈ CK ,+(R), ∣∣Ee−ζ1( f )

− Ee−ζ2( f )
∣∣≤ E

∣∣ζ1( f )− ζ2( f )
∣∣. (6-43)

The lemma follows immediately from (6-42), (6-43), and Lemma 6.1. �

We are now ready to prove Theorem 2.3(a). In view of Lemma 6.2, it suffices to prove that ξ̃ (3)ω ⇒ ξ .
By standard results from the theory of point processes (cf. [Daley and Vere-Jones 1988, Theorem 9.2.V
and subsequent remark]; see also [Kritchevski 2008, Theorem 2.3]), this is equivalent to verifying the
following three conditions for all bounded intervals I (recall 3=3L(0)):

lim
L→∞

max
m=1,2,...,ML

P{ξ (3,m)ω (I )≥ 1} = 0, (6-44)

lim
L→∞

ML∑
m=1

P{ξ (3,m)ω (I )≥ 1} = n(E)|I |, (6-45)

lim
L→∞

ML∑
m=1

P{ξ (3,m)ω (I )≥ 2} = 0. (6-46)

Since P{ξ
(3,m)
ω (I ) ≥ 1} ≤ E{ξ

(3,m)
ω (I )}, (6-44) follows immediately from (6-4). In addition, it follows

from the definition (6-3) and the estimate (2-19), that for all 3 with |3| ≥ cI we have

P{ξ (3,m)ω (I )≥ 2} ≤ 1
2 E
{
(ξ (3,m)ω (I ))(ξ (3,m)ω (I )− 1)

}
≤

1
2 KM(ρ+|I |M−1

L )2, (6-47)

so (6-46) follows.
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Thus Theorem 2.3(a) is proved if we verify condition (6-45). To do so, we first notice that

E{ξ (3,m)ω (I )} =
∞∑

k=1

P{ξ (3,m)ω (I )≥ k}, (6-48)

and, as in [Kritchevski 2008],
∞∑

k=2

P{ξ (3,m)ω (I )≥ k} =
∞∑

k=2

(k− 1)P{ξ (3,m)ω (I )= k}

≤

∞∑
k=2

k(k− 1)P{ξ (3,m)ω (I )= k} = E
{
(ξ (3,m)ω (I ))(ξ (3,m)ω (I )− 1)

}
. (6-49)

It thus follows, as in (6-47), that

0≤ E{̃ξ (3)ω (I )}−
ML∑

m=1

P{ξ (3,m)ω (I )≥ 1} ≤ ML KM(ρ+|I |M−1
L )2→ 0 as L→∞. (6-50)

We conclude that (6-45) is equivalent to

lim
L→∞

E{̃ξ (3)ω (I )} = n(E)|I |, (6-51)

and hence, by Lemma 6.1, equivalent to

lim
L→∞

E{θ (3)ω (I )} = n(E)|I |. (6-52)

But it follows from (6-7) that, for all 3 such that |3| ≥ cI

E{θ (3)ω (I )} = |3|η(E+ |3|−1 I )= |3|
∫

E+|3|−1 I
n(E) dE . (6-53)

Since by our hypothesis E is a Lebesgue point of the locally integrable function n(E) (cf. [Yeh 2006,
Definition 25.13]), and the sets E+|3|−1 I shrink nicely to E as L→∞ (cf. [Yeh 2006, Definition 25.16]),
we can use the Lebesgue Differentiation Theorem (cf. [Yeh 2006, Theorem 25.17]) to conclude that

lim
L→∞
|3|

∫
E+|3|−1 I

n(E)dE = n(E)|I |. (6-54)

Thus (6-52), and hence (6-45), is proven, completing the proof of Theorem 2.3(a).

7. Simplicity of eigenvalues

We prove Theorem 2.3(b) proceeding as in [Klein and Molchanov 2006]. Let Hω be an Anderson
Hamiltonian, and let I be an open interval such that for large boxes 3 the estimate (2-19) holds for
any interval I ⊂ I with |I | ≤ δ0, for some δ0 > 0, with some constant KM . We call ϕ ∈ L2(Rd) fast
decaying if it has β-decay for some β > 5

2 d , which in the continuum means that ‖χ (1)x ϕ‖ ≤Cϕ〈x〉−β for
some constant Cϕ , where 〈x〉 :=

√
1+ |x |2. We will show that, with probability one, Hω cannot have an

eigenvalue in I with 2 linearly independent fast decaying eigenfunctions.
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Let I ⊂ I be a closed interval, q > 2d, L ∈ 2N large, 3L = 3L(0). We cover the interval I by
2
(
[Lq/2|I |] + 1

)
≤ Lq
|I | + 2 intervals of length 2L−q , in such a way that any subinterval J ⊂ I with

length |J | ≤ L−q will be contained in one of these intervals. ([x] denotes the largest integer ≤ x .) Let
BL ,I,q denote the complement to the event that tr P (3L )

ω (J ) ≤ 1 for all subintervals J ⊂ I with length
|J | ≤ L−q . The probability of BL ,I,q can be estimated, using (2-19) and

P{tr P (3)ω (I )≥ 2} ≤ 1
2 E
{
(tr P (3)ω (I ))(tr P (3)ω (I )− 1)

}
, (7-1)

by

P{BL ,I,q} ≤
1
2 KMρ

2
+
(Lq
|I | + 2)(2L−q)2L2d

≤ 2KMρ
2
+
(|I | + 1)L−q+2d . (7-2)

Thus, taking scales Lk=2k , k=1, 2, . . ., it follows from the Borel–Cantelli Lemma that, with probability
one, the event BLk ,I,q eventually does not occur.

Let ω be in the set of probability one for which we have pure point spectrum with exponentially decay-
ing eigenfunctions in the region of complete localization 4CL. Suppose there exists E ∈ I∩4CL which
is an eigenvalue of Hω with 2 linearly independent eigenfunctions. In particular these eigenfunctions
decay exponentially, so, if we fix β > 5

2 d, they both have β-decay. Pick an open interval I 3 E , such
that Ī ⊂ I ∩4CL. [Klein and Molchanov 2006, Lemma 1] can be adapted to the continuum by using
smooth functions to localize the eigenfunctions in finite boxes. It then follows that for L large enough
the finite volume operator H (3L )

ω has at least 2 eigenvalues in the interval JE,L = [E−εL , E+εL ], where
εL = C L−β+

d
2 for an appropriate constant C independent of L . Since β > 5d

2 there exists q > 2d such
that β− d

2 > q , and hence εL < L−q for all large L . But with probability one this is impossible since the
event BLk , Ī ,q does not occur for large Lk .

Theorem 2.3(b) is proven.

Appendix A. The region of complete localization

In this appendix we discuss localization for an Anderson Hamiltonian Hω. Localization is most com-
monly taken to be Anderson localization: pure point spectrum with exponentially decaying eigenstates
with probability one. It is also natural to consider dynamical localization, where the moments of a wave
packet, initially localized both in space and in energy, should remain uniformly bounded under time
evolution. For the multidimensional continuum Anderson Hamiltonian, localization has been proved
by a multiscale analysis [Martinelli and Holden 1984; Combes and Hislop 1994; Klopp 1995; Kirsch
et al. 1998; Germinet and De Bièvre 1998; Damanik and Stollmann 2001; Germinet and Klein 2001;
2003a], and, in the case when we have the covering condition δ− ≥ 1, also by the fractional moment
method [Aizenman et al. 2006]. These methods give more than just Anderson or dynamical localization,
although they imply both. In the case when both methods are available, that is, δ− ≥ 1, they have the
same region of applicability [Germinet and Klein 2006; Klein 2008].

Thus, following [Germinet and Klein 2006], we consider the region of complete localization 4CL for
an Anderson Hamiltonian Hω, defined as the set of energies E ∈R where we have the conclusions of the
bootstrap multiscale analysis of [Germinet and Klein 2001], that is, as the set of E ∈ R for which there
exists some open interval I 3 E , such that given any ζ , 0< ζ < 1, and α, 1< α < ζ−1, there is a length
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scale L0 ∈ 2N and a mass m > 0, so if we take Lk+1 ≈ Lαk with Lk+1 ∈ 2N, k = 0, 1, . . . , we have

P{R(m, Lk, I, x, y)} ≥ 1− e−Lζk (A-1)

for all k = 0, 1, . . ., and x, y ∈ Zd with |x − y| > Lk + %, where % > 0 is a constant depending only on
supp u, and

R(m, L , I, x, y)= ω{; for every E ′ ∈ I either 3L(x) or 3L(y) is (ω,m, E ′)-regular}. (A-2)

Given E ∈ R, x ∈ Zd and L ∈ 6N, we say that the box 3L(x) is (ω,m, E)-regular for a given m > 0 if
E /∈ σ(H (3L (x))

ω ) and∥∥0(L)x R(3L (x))
ω (E + iδ)χ3 L

3
(x)
∥∥≤ exp

(
−m L

2

)
for all δ ∈ R, (A-3)

where R(3L (x))
ω (E+ iδ)= (H (3L (x))

ω − (E+ iδ))−1 and 0(L)x denotes the charateristic function of the belt
3L−1(x)\3L−3(x). (See [Germinet and Klein 2001; 2004; 2006; Klein 2008]; note that all the proofs
work with the definition (A-3), that is, with the insertion of “for all δ ∈R” They also work with the finite
volume operators with periodic boundary condition used in this article.)

By construction 4CL is an open set. It can be characterized in many different ways [Germinet and
Klein 2004; 2006]. For convenience, our definition includes the complement of the spectrum of Hω in
the region of complete localization, that is, R \6 ⊂ 4CL. The spectral region of complete localization,
4CL
∩6, is called the “strong insulator region” in [Germinet and Klein 2004].) If the conditions for

the fractional moment method are satisfied, 4CL coincides with the set of energies where the fractional
moment method can be performed. (Minami [1996] proved Poisson statistics for the Anderson model
in the region of validity of the fractional moment method, in other words, in the region of complete
localization for the Anderson model.)

Proposition A.1. Consider a closed bounded interval I ⊂ 4CL. Then for all z ∈ C with <z ∈ I , and
boxes 3=3L , we have, for s ∈ ]0, 1

4 [ and ξ ∈ ]0, 1[, and x, y ∈3 with |x − y| ≥ (log L)(1/ξ)+,

E
{
‖χ (1)x R(3)ω (z)χ (1)y ‖

s}
≤ Cs,I,ζ (ρ++

√
ρ+)e−|x−y|ξ (A-4)

for L ≥ L1(ξ, I, s).

We will need the following consequence of the Wegner estimate (2-13).

Lemma A.2. Let I = [c, d] be such that (2-13) holds for any subinterval of [c−1, d+1] with a constant
KW . Then for any s ∈

]
0, 1

2

[
, box 3, and z ∈ C with <z ∈ I , we have

E
{
‖R(3)ω (z)‖s

}
≤ Cs KWρ+|3|. (A-5)

Proof. Let <z ∈ I . It follows from (2-13) that for all t ≥ 1

P
{
‖R(3)ω (z)‖ ≥ t

}
≤

2
t

KWρ+|3| (A-6)

Thus

E{‖R(3)ω (z)‖s} =
∫
∞

0
t P
{
‖R(3)ω (z)‖s ≥ t

}
dt ≤ 1+

∫
∞

1
t
(
2t−1/s KWρ+|3|

)
dt

≤ 1+C ′s KWρ+|3|. �
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If we have the covering condition δ−≥ 1, (A-5) holds without the volume factor in the right hand side
[Aizenman et al. 2006].

Proof of Proposition A.1. Given 0 < ξ < 1, we pick ζ such that ζ 2 < ξ < ζ < 1 (always possible) and
set α = ζ/ξ , note α < ζ−1. Since I ⊂ 4CL, there is a scale L0 ∈ 2N and a mass mζ > 0, such that, if
we set Lk+1 ≈ Lαk , with Lk+1 ∈ 2N, k = 0, 1, . . . , we have the estimate (A-1) for x, y ∈ Zd such that
|x − y|> Lk + %.

Let us now fix3=3L , x, y ∈3L ∩Zd and pick k such that Lk+1+%≥ |x− y|> Lk+%. In this case,
if ω ∈ R

(
mζ , Lk, I, x, y

)
, then for <z ∈ I either 3Lk (x) or 3Lk (y) is (ω,m,<z)-regular; say 3Lk (x)

is (ω,m,<z)-regular. (Note that we take the boxes of size Lk in the torus 3.) Then, using (A-3) and
[Germinet and Klein 2001, (2.9)], we reach∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥≤ γI
∥∥0(Lk)

x R
(3Lk (x))
ω (z)χ (1)x

∥∥∥∥χ (1)y R(3)ω (z)0(Lk)
x

∥∥
≤ γI exp

(
−mζ

Lk
2

)∥∥R(3)ω (z)
∥∥. (A-7)

Thus, with s ∈ ]0, 1
4 [, using Lemma A.2,

E
{∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥s
: ω ∈ R(mζ , Lk, I, x, y)

}
≤ γ s

I exp
(
−smζ

Lk
2

)
E
{
‖R(3)ω (z)‖s

}
≤ Cs KWρ+|3|γ

s
I exp

(
−smζ

Lk
2

)
≤ Cs,Iρ+|3| exp

(
−smζ

Lk
2

)
, (A-8)

and
E
{∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥s
: ω /∈ R(mζ , Lk, I, x, y)

}
≤
(
E{‖R(3)ω (z)‖2s

}
)1/2(

P{ω /∈ R(mζ , Lk, I, x, y)}
)1/2

≤ (C2s KWρ+|3|)
1/2 exp

(
−

1
2 Lζk

)
≤ C ′s,I (ρ+|3|)

1/2 exp
(
−

1
2 Lζk

)
. (A-9)

It follows that for Lk sufficiently large, that is, |x − y| large, we have

E
{∥∥χ (1)y R(3)ω (z)χ (1)x

∥∥s}
≤ Cs,I,ζ (ρ++

√
ρ+)|3| exp

(
−

1
2 Lζk

)
≤ Cs,I,ζ (ρ++

√
ρ+)|3| exp

(
−

1
2 Lξk+1

)
≤ C ′s,I,ζ (ρ++

√
ρ+)|3| exp

(
−

1
2 |x − y|ξ

)
, (A-10)

so (A-4) follows for |x − y| ≥ (log L)(1/ξ)+ (with a slightly smaller ξ ). �

Appendix B. A convexity inequality for traces

The following inequality was used in [Combes and Hislop 1994, Proof of Proposition 4.5] and also in
the derivation of (4-12) above.

Lemma B.1. Let H1 and H2 be two self-adjoint operators on a Hilbert space H, such that H1 is diago-
nalizable and H1 ≥ H2. Let f and g be bounded Borel functions on some open interval I ⊃ σ(H1), such
that g is real-valued, nonincreasing, and convex on I . Then

tr
{

f̄ (H1)g(H1) f (H1)
}
≤ tr

{
f̄ (H1)g(H2) f (H1)

}
. (B-1)
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Proof. Let ϕ ∈H be an eigenvector of H1 with eigenvalue λ and satisfying ‖ϕ‖ = 1. Then〈
ϕ, f̄ (H1)g(H1) f (H1)ϕ

〉
= f̄ (λ)g(λ) f (λ)= f̄ (λ)g(〈ϕ, H1ϕ〉) f (λ)≤ f̄ (λ)g(〈ϕ, H2ϕ〉) f (λ)

≤ f̄ (λ)〈ϕ, g(H2)ϕ〉 f (λ)=
〈
ϕ, f̄ (H1)g(H2) f (H1)ϕ

〉
, (B-2)

where the first inequality follows from g nonincreasing and H1 ≥ H2, and the second inequality used the
convexity of the function g, Jensen’s inequality (compare [Yeh 2006, Theorem 14.16]), and the spectral
theorem.

Since H1 is diagonalizable, (B-1) follows by expanding the trace on an orthonormal basis of eigen-
values for H1 and using (B-2) for each term. �
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[Erdős et al. 2009b] L. Erdős, B. Schlein, and H.-T. Yau, “Semicircle law on short scales and delocalization of eigenvectors for
Wigner random matrices”, Ann. Probab. 37:3 (2009), 815–852. MR 2537522 Zbl 1175.15028

[Figotin and Klein 1996] A. Figotin and A. Klein, “Localization of classical waves. I. Acoustic waves”, Comm. Math. Phys.
180:2 (1996), 439–482. MR 2000d:35240a Zbl 0878.35109



POISSON STATISTICS FOR EIGENVALUES OF CONTINUUM RANDOM SCHRÖDINGER OPERATORS 79

[Fröhlich and Spencer 1983] J. Fröhlich and T. Spencer, “Absence of diffusion in the Anderson tight binding model for large
disorder or low energy”, Comm. Math. Phys. 88:2 (1983), 151–184. MR 85c:82004 Zbl 0519.60066

[Germinet and De Bièvre 1998] F. Germinet and S. De Bièvre, “Dynamical localization for discrete and continuous random
Schrödinger operators”, Comm. Math. Phys. 194:2 (1998), 323–341. MR 99d:82033 Zbl 0911.60099

[Germinet and Klein 2001] F. Germinet and A. Klein, “Bootstrap multiscale analysis and localization in random media”,
Comm. Math. Phys. 222:2 (2001), 415–448. MR 2002m:82035 Zbl 0982.82030

[Germinet and Klein 2003a] F. Germinet and A. Klein, “Explicit finite volume criteria for localization in continuous random
media and applications”, Geom. Funct. Anal. 13:6 (2003), 1201–1238. MR 2004m:82063 Zbl 1086.82008

[Germinet and Klein 2003b] F. Germinet and A. Klein, “Operator kernel estimates for functions of generalized Schrödinger
operators”, Proc. Amer. Math. Soc. 131:3 (2003), 911–920. MR 2003k:47067 Zbl 1013.81009

[Germinet and Klein 2004] F. Germinet and A. Klein, “A characterization of the Anderson metal-insulator transport transition”,
Duke Math. J. 124:2 (2004), 309–350. MR 2005e:82051 Zbl 1062.82020

[Germinet and Klein 2006] F. Germinet and A. Klein, “New characterizations of the region of complete localization for random
Schrödinger operators”, J. Stat. Phys. 122:1 (2006), 73–94. MR 2007c:82041 Zbl 1127.82031

[Gol’dsheı̆d et al. 1977] I. J. Gol’dsheı̆d, S. A. Molchanov, and L. A. Pastur, “A random homogeneous Schrödinger operator
has a pure point spectrum”, Funktsional. Anal. i Prilozhen. 11:1 (1977), 1–10, 96. In Russian; translated in Funct. Anal. Appl.
11, (1977), 1–8. MR 57 #10266

[Graf and Vaghi 2007] G. M. Graf and A. Vaghi, “A remark on the estimate of a determinant by Minami”, Lett. Math. Phys.
79:1 (2007), 17–22. MR 2008b:81077 Zbl 1104.82008

[Hunziker and Sigal 2000] W. Hunziker and I. M. Sigal, “Time-dependent scattering theory of N -body quantum systems”, Rev.
Math. Phys. 12:8 (2000), 1033–1084. MR 2001k:81347 Zbl 0978.47008

[Johansson 1998] K. Johansson, “On fluctuations of eigenvalues of random Hermitian matrices”, Duke Math. J. 91:1 (1998),
151–204. MR 2000m:82026 Zbl 1039.82504

[Johansson 2001] K. Johansson, “Universality of the local spacing distribution in certain ensembles of Hermitian Wigner
matrices”, Comm. Math. Phys. 215:3 (2001), 683–705. MR 2002j:15024 Zbl 0978.15020

[Killip and Stoiciu 2009] R. Killip and M. Stoiciu, “Eigenvalue statistics for CMV matrices: from Poisson to clock via random
matrix ensembles”, Duke Math. J. 146:3 (2009), 361–399. MR 2009k:81087 Zbl 1155.81020

[Kirsch 2008] W. Kirsch, “An invitation to random Schrödinger operators”, pp. 1–119 in Random Schrödinger operators,
edited by M. Disertori et al., Panor. Synthèses 25, Soc. Math. France, Paris, 2008. MR 2509110 Zbl 1162.82004

[Kirsch and Martinelli 1982] W. Kirsch and F. Martinelli, “On the ergodic properties of the spectrum of general random
operators”, J. Reine Angew. Math. 334 (1982), 141–156. MR 84g:60102a Zbl 0476.60058

[Kirsch et al. 1998] W. Kirsch, P. Stollmann, and G. Stolz, “Localization for random perturbations of periodic Schrödinger
operators”, Random Oper. Stochastic Equations 6:3 (1998), 241–268. MR 99c:82038 Zbl 0927.60067

[Klein 2008] A. Klein, “Multiscale analysis and localization of random operators”, pp. 121–159 in Random Schrödinger oper-
ators, edited by M. Disertori et al., Panor. Synthèses 25, Soc. Math. France, Paris, 2008. MR 2509111 Zbl 05533269

[Klein and Koines 2001] A. Klein and A. Koines, “A general framework for localization of classical waves. I. Inhomogeneous
media and defect eigenmodes”, Math. Phys. Anal. Geom. 4:2 (2001), 97–130. MR 2002i:35187 Zbl 0987.35154

[Klein and Molchanov 2006] A. Klein and S. Molchanov, “Simplicity of eigenvalues in the Anderson model”, J. Stat. Phys.
122:1 (2006), 95–99. MR 2007c:82042 Zbl 1152.82010

[Klein et al. 2002] A. Klein, A. Koines, and M. Seifert, “Generalized eigenfunctions for waves in inhomogeneous media”, J.
Funct. Anal. 190:1 (2002), 255–291. MR 2004a:35165 Zbl 1043.35097

[Klopp 1995] F. Klopp, “Localization for some continuous random Schrödinger operators”, Comm. Math. Phys. 167:3 (1995),
553–569. MR 95m:82080 Zbl 0820.60044

[Kritchevski 2008] E. Kritchevski, “Poisson statistics of eigenvalues in the hierarchical Anderson model”, Ann. Henri Poincaré
9:4 (2008), 685–709. MR 2009b:82056 Zbl 1149.82017

[Martinelli and Holden 1984] F. Martinelli and H. Holden, “On absence of diffusion near the bottom of the spectrum for a
random Schrödinger operator on L2(Rν)”, Comm. Math. Phys. 93:2 (1984), 197–217. MR 85m:82103 Zbl 0546.60063



80 JEAN-MICHEL COMBES, FRANÇOIS GERMINET AND ABEL KLEIN

[Minami 1996] N. Minami, “Local fluctuation of the spectrum of a multidimensional Anderson tight binding model”, Comm.
Math. Phys. 177:3 (1996), 709–725. MR 97d:82046 Zbl 0851.60100

[Molchanov 1978] S. A. Molchanov, “Structure of the eigenfunctions of one-dimensional unordered structures”, Izv. Akad.
Nauk SSSR Ser. Mat. 42:1 (1978), 70–103, 214. In Russian; translated in Math. USSR-Izv. 12 (1978) 69–101. MR 58 #6662
Zbl 0401.34023

[Molchanov 1980/81] S. A. Molchanov, “The local structure of the spectrum of the one-dimensional Schrödinger operator”,
Comm. Math. Phys. 78:3 (1980/81), 429–446. MR 82d:35076 Zbl 0584.60072

[Pastur and Figotin 1992] L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 297, Springer, Berlin, 1992. MR 94h:47068
Zbl 0752.47002

[Schenker and Schulz-Baldes 2007] J. Schenker and H. Schulz-Baldes, “Gaussian fluctuations for random matrices with cor-
related entries”, Int. Math. Res. Not. IMRN 15 (2007), Art. ID rnm047, 36. MR 2009b:60120 Zbl 1128.60026

[Simon 1994] B. Simon, “Cyclic vectors in the Anderson model”, Rev. Math. Phys. 6:5A (1994), 1183–1185. MR 95i:82058
Zbl 0841.60081

[Simon 1998] B. Simon, “Spectral averaging and the Krein spectral shift”, Proc. Amer. Math. Soc. 126:5 (1998), 1409–1413.
MR 98j:47030 Zbl 0892.47021

[Stoiciu 2006] M. Stoiciu, “The statistical distribution of the zeros of random paraorthogonal polynomials on the unit circle”,
J. Approx. Theory 139:1-2 (2006), 29–64. MR 2007d:60034 Zbl 1088.42017

[Stoiciu 2007] M. Stoiciu, “Poisson statistics for eigenvalues: from random Schrödinger operators to random CMV matrices”,
pp. 465–475 in Probability and mathematical physics, edited by D. A. Dawson et al., CRM Proc. Lecture Notes 42, Amer.
Math. Soc., Providence, RI, 2007. MR 2009c:82029 Zbl 1132.15022

[Wegner 1981] F. Wegner, “Bounds on the density of states in disordered systems”, Z. Phys. B 44:1-2 (1981), 9–15. MR 83b:
82060

[Yeh 2006] J. Yeh, Real analysis, 2nd. ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. Theory of measure
and integration. MR 2007i:28001 Zbl 1098.28002

Received 9 Jul 2009. Accepted 6 Aug 2009.

JEAN-MICHEL COMBES: combes@cpt.univ-mrs.fr
Département de Mathématiques, Université du Sud: Toulon-Var, 83130 La Garde, France

and

Centre de Physique Théorique, CNRS Luminy, Case 907, 13288 Marseille, France

FRANÇOIS GERMINET: germinet@math.u-cergy.fr
Département de Mathématiques, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France
http://www.u-cergy.fr/rech/pages/germinet/

ABEL KLEIN: aklein@uci.edu
Department of Mathematics, University of California, Irvine, CA 92697-3875, United States



Analysis & PDE
pjm.math.berkeley.edu/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
University of California

Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
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