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POLYNOMIALS WITH NO ZEROS ON THE BIDISK

GREG KNESE

We prove a detailed sums of squares formula for two-variable polynomials with no zeros on the bidisk
D2, extending previous such formulas by Cole and Wermer and by Geronimo and Woerdeman. Our
formula is related to the Christoffel–Darboux formula for orthogonal polynomials on the unit circle, but
the extension to two variables involves issues of uniqueness in the formula and the study of ideals of two-
variable orthogonal polynomials with respect to a positive Borel measure on the torus which may have
infinite mass. We present applications to two-variable Fejér–Riesz factorizations, analytic extension the-
orems for a class of bordered curves called distinguished varieties, and Pick interpolation on the bidisk.

1. Introduction 109
2. An example 114
3. Sums of squares and uniqueness 114
4. Preliminaries 117
5. General properties of orthogonal polynomials on T2 121
6. OC measures 124
7. Bernstein–Szegő measures 130
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1. Introduction

Let q ∈ C[z, w] be a polynomial of degree (n,m) (degree n in z and degree m in w). Suppose q has no
zeros on the unit bidisk D2

:=D×D⊂C2. Then, q satisfies the following “sums of (Hermitian) squares”
formula: there exist polynomials A j ∈ C[z, w], for j = 1, . . . , n, and Bk ∈ C[z, w], for k = 1, . . . ,m
such that

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)
n∑

j=1

|A j (z, w)|2+ (1− |w|2)
m∑

k=1

|Bk(z, w)|2 (1-1)

MSC2000: primary 42C05; secondary 47A57, 46C07, 42B05, 14M12.
Keywords: bidisk, Christoffel–Darboux, sums of squares, Fejér–Riesz, orthogonal polynomials, distinguished varieties, Pick

interpolation, Andô’s inequality, Bernstein–Szegő measures, torus, stable polynomials.
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110 GREG KNESE

where ←q is the “reflection” of q:
←q(z, w)= znwmq

( 1
z̄
,

1
w̄

)
.

This was first proved in [Cole and Wermer 1999]. Here is an example.

Example 1.1. The polynomial q(z, w)= 2− z−w has degree (1, 1) and no zeros on D2. The reflection
of q is ←q(z, w)= 2zw−w− z. The sum of squares decomposition for q is rather simple:

|2− z−w|2− |2zw−w− z|2 = (1− |z|2)2|1−w|2+ (1− |w|2)2|1− z|2.

There are several reasons why we deem the Cole–Wermer formula interesting. First, it can be used to
give direct proofs of Andô’s inequality from operator theory (in [Cole and Wermer 1999]) and Agler’s
Pick interpolation theorem for the bidisk (see Section 12 for this simple derivation). Second, (1-1) can be
thought of as a two-variable version of the Christoffel–Darboux formula for orthogonal polynomials on
the unit circle. The Christoffel–Darboux formula is fundamental in the theory of orthogonal polynomials
on the unit circle [Simon 2005; 2008]. Third, the most obvious analogue of (1-1) in three or more
variables is false as it would imply a three operator version of Andô’s inequality (something known to be
false). Fourth, (1-1) can be used to prove a determinantal representation for a class of algebraic curves
in C2 called distinguished varieties (as in [Knese 2009]).

One drawback to the Cole–Wermer formula is that the sums of squares decomposition is not unique.

Example 1.2.

|3− z−w|2− |3zw− z−w|2

= (1− |z|2)3
∣∣∣∣1−
√

5
2
+

1+
√

5
2

w

∣∣∣∣2+ (1− |w|2)3∣∣∣∣1+
√

5
2
+

1−
√

5
2

z
∣∣∣∣2

= (1− |z|2)3
∣∣∣∣1+
√

5
2
+

1−
√

5
2

w

∣∣∣∣2+ (1− |w|2)3∣∣∣∣1−
√

5
2
+

1+
√

5
2

z
∣∣∣∣2

(Example 2.1 below is more interesting.) It turns out that we can make the Cole–Wermer sums of squares
decomposition unique if we require more.

Here is an abridged version of our main theorem. We will fill in more details in Theorem 8.1. All new
terminology in the theorem is explained immediately following its statement.

Theorem 1.3. Let q ∈C[z, w] be almost stable and deg q ≤ (n,m). Then, there exist vector polynomials
E ∈ Cn

[z, w] and F ∈ Cm
[z, w], deg E≤ (n−1,m), deg F≤ (n,m−1) such that

(1) E is horizontally D-stable;

(2) F is vertically E-stable;

(3) the following formula holds

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2; (1-2)

(4) E ∈Cn
[z, w] and F ∈Cm

[z, w] satisfying items (1) and (3) are unique up to unitary multiplication.
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Definition 1.4. A polynomial is p ∈C[z, w] is stable if p has no zeros on D2. A polynomial p ∈C[z, w]
is almost stable if p has no zeros on D2 and finitely many zeros on T2.

For instance, p(z, w)= 3− z−w is stable; q(z, w)= 2− z−w is almost stable.

Notation 1.5. We use T to denote the unit circle ∂D and T2 is the two-dimensional torus, or just torus;
E :=C\D is the exterior disk. We use CN

[z] to denote the set of CN -valued polynomials in the variable
z; likewise, we use CN

[z, w] to denote the set of CN -valued polynomials in z and w. We define

3N (z) :=


1
z
...

zN−1

 ∈ CN
[z]. (1-3)

If E(z, w)=
∑n−1

j=0 E j (w)z j
∈CN
[z, w] has degree less than n in z, we will frequently write E in the

matrix form
E(z, w)= (E0(w),E1(w), . . . ,En−1(w))3n(z)= E(w)3n(z),

where E(w)= (E0(w),E1(w), . . . ,En−1(w)) is an N × n matrix valued polynomial in w.
Similarly, if F ∈ CM

[z, w] has degree less than m in w, we may write

F(z, w)= F(z)3m(w),

where F(z) is an M ×m matrix polynomial in z.

Definition 1.6. Let �⊂C. Under the conventions above, we say E is horizontally�-stable if E(w) has
full rank for all w ∈�; we say F is vertically �-stable if F(z) has full rank for all z ∈�.

Typically, � is one of following sets: D, E,D∪ E, or D unioned with a subset of T.

Let us explain the terminology. For fixed w0 ∈ D, call the set {(z, w0) : z ∈ C} a horizontal line over
D. Supposing N ≤ n, being horizontally D-stable is equivalent to saying the image of

E : C2
→ CN

when restricted to a horizontal line over D sits in no linear subspace of dimension less than N . The
reason is simple:

E(z, w0)= E(w0)3n(z),

and when E(w0) has full rank, the span of the right hand side as z varies over C is CN . Being horizontally
D-stable is much stronger than saying E is nonvanishing on C×D. A similar interpretation holds for F
and “vertical” objects.

Notation 1.7. We let | · | denote the standard norm on CN (where the N will be understood from context)
and therefore if E= (e1, . . . , eN )

t
∈ CN

[z, w], then

|E(z, w)|2 =
N∑

j=1

|e j (z, w)|2

is evaluated pointwise (and does not represent any type of function space norm).
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Definition 1.8. The degree of p ∈ C[z, w] will always refer to the bidegree. So,

deg p = (n,m)

means p has degree n in z and m in w, while

deg p ≤ (n,m)

means p has at most degree n in z and at most m in w. The same notation applies to vector and matrix
polynomials component-wise.

Frequent use will be made of the following notion of polynomial reflection.

Definition 1.9. If p ∈ C[z, w] is a polynomial of degree at most ( j, k) we define the reflection (at the
( j, k) degree) to be

←p(z, w) := z jwk p(1/z̄, 1/w̄).

Remark 1.10. In the case of a stable polynomial (no zeros on the closed bidisk D2), the theorem is
deducible from the work of Geronimo and Woerdeman [2004]. It is the goal of the present paper to
extend the sums of squares decomposition with uniqueness to all polynomials with no zeros on the open
bidisk D2. Why are we concerned with such an extension?

First, it allows a direct, unified proof of the Cole–Wermer formula which does not make use of Andô’s
inequality, Agler’s Pick interpolation theorem, or any of their close relatives (the original proof of Cole
and Wermer relies heavily on these results). Our hope is that the uniqueness aspects could prove helpful
in uniqueness issues of Pick interpolation on the bidisk.

Second, it allows us to improve a bounded analytic extension theorem (from [Knese 2009]) for the
already alluded to curves called distinguished varieties. See Section 11.

Third, our method of proof may be of interest to some as we study orthogonal polynomials with
respect to a positive Borel measure on T2 which may have infinite mass. Since such measures will
not necessarily have finite moments, methods involving doubly Toeplitz matrices (as in [Geronimo and
Woerdeman 2004]) are not directly available to us, and therefore our method of using reproducing kernels
of subspaces of polynomials from [Knese 2008] is well adapted to the present situation. Our method
of proof also allows us to improve a characterization of two-variable Fejér–Riesz factorizations from
[Geronimo and Woerdeman 2004]. See Section 10.

Remark 1.11. The assumption that q is almost stable (i.e., has finitely many zeros on T2) is there to
put us into the most interesting case and not to avoid a difficulty. Every polynomial q with no zeros on
the bidisk can be factored into q = q1q2 where q1 has at most finitely many zeros on the two-torus and
every factor of q2 has infinitely many zeros on the two-torus. If q has a nontrivial factor of the type q2,
then it can be factored out of the entire sums of squares formula. These polynomials with no zeros on
the bidisk and infinitely many zeros on the two-torus can be studied separately; see [Knese 2009]. These
notions will appear several places later on so we give the following definitions of toral and atoral.

Definition 1.12. A polynomial p ∈ C[z, w] is toral if every factor of p has infinitely many zeros on T2.

Definition 1.13. A polynomial p ∈ C[z, w] is atoral if p has finitely many zeros on T2.

These terms were introduced in [Agler et al. 2006] in a more natural way that makes sense for higher
dimensions, but these definitions will suffice for our purposes.
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Remark 1.14. The requirements on E and F in Theorem 1.3 that make the decomposition unique are
essential in proving our bounded analytic extension theorem for distinguished varieties. The requirements
are also curiously asymmetric. In fact, the entire formula (1-2) can be “reflected”: replace (z, w) with
(1/z̄, 1/w̄) and multiply through by −|znwm

|
2. The result will be a new sums of squares formula with

E and F replaced with
←

E(z, w)= zn−1wmE(1/z̄, 1/w̄) and
←

F(z, w)= znwm−1F(1/z̄, 1/w̄),

respectively. These new choices will have the stability requirements reversed in Theorem 1.3: E will
be horizontally E-stable and F will be vertically D-stable. (Notice that in Example 2.1, below, the two
choices for the sums of squares decompositions are not simply obtained from one another by performing
this reflection.)

These thoughts beg the following question. Which almost stable polynomials have a unique sums of
squares decomposition?

Theorem 1.15. Suppose q ∈C[z, w] is almost stable with deg q ≤ (n,m). The following are equivalent.

(1) There exist unique nonnegative functions 01, 02 which can be written as the sum of the squared
moduli of two-variable polynomials such that

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)01(z, w)+ (1− |w|2)02(z, w). (1-4)

(2) There are no nonzero polynomials f ∈ C[z, w] with degree at most (n−1,m−1) such that

f
q
∈ L2(T2).

(3) There exist vector polynomials E∈Cn
[z, w], deg E≤ (n−1,m) and F∈Cm

[z, w], deg F≤ (n,m−1)
satisfying

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2

that are symmetric in the sense that:

E(z, w)= zn−1wmE(1/z̄, 1/w̄) and F(z, w)= znwm−1F(1/z̄, 1/w̄).

Moreover, E is horizontally D∪ E-stable, and F is vertically D∪ E-stable.

The polynomial q(z, w)= 2− z−w from Example 1.1 has a unique sums of squares decomposition,
since the decomposition we gave satisfies (3), after multiplying by a suitable unimodular constant. Item
(2) says that the polynomials with a unique decomposition must in some sense have as many zeros as
possible on the torus. Because of this, polynomials with no zeros on the closed bidisk never have unique
decompositions unless they are one variable polynomials.

Corollary 1.16. If q ∈ C[z, w] is stable, then q has a unique sums of squares decomposition if and only
if q is a function of only one variable (i.e., one of q’s partial derivatives vanishes identically).

It would be interesting to have a parametrization of the polynomials in Theorem 1.15. Both Theorem
1.15 and Corollary 1.16 are proved in Section 9.
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2. An example

Example 2.1. Let f (z, w)= 2− zw− z2w. One decomposition of f is

|2− zw− z2w|2− |2z3w2
− z2w− zw|2 = (1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2,

where

E(z, w)=
√

2

 1− z2w

w− zw2

zw− z2w2

=√2

1 0 −w

w −w2 0
0 w −w2

 1
z
z2

 ,
F(z, w)=

√
2
(

z− z3w

1− zw

)
=
√

2
(

z −z3

1 −z

)(
1
w

)
.

Alternatively, we could choose instead

E(z, w)=


√

2(z− z2w)

z− z2

2− zw− z2w

=
0
√

2 −
√

2w
0 1 −1
2 −w −w

 1
z
z2

 ,
F(z, w)=

(
z+ z2

− 2z3w

z2
− z3

)
=

(
z+ z2

−2z3

z2
− z3 0

)(
1
w

)
.

These two choices are not equivalent up to unitary multiplication (reflecting is no remedy either) as
can be checked. The second choices of E and F fit the requirements of Theorem 1.3, while the first
choices do not.

3. Sums of squares and uniqueness

In this section we present several lemmas on sums of squares decompositions. Lemma 3.4 proves
uniqueness in Theorem 1.3, namely, item (4). This section can easily be skipped and referred back
to as necessary. It is included here because it does not require the more demanding notation of the rest
of the paper.

The following theorem can be found in [D’Angelo 1993].

Theorem 3.1 (polarization for holomorphic functions). Let � be a domain in CN and set

�∗ = {z̄ = (z̄1, . . . , z̄N ) : z ∈�}.

If f :�×�∗→ C is a holomorphic function with the property that

f (z, z̄)= 0 for all z ∈�

then
f (z, w)= 0 for all (z, w) ∈�×�∗.

The following lemma holds equally well for multivariable polynomials, and may be well known to
some readers. See [Cole and Wermer 1999, Appendix] for a proof.
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Lemma 3.2. Suppose 0(z) is a sum of squares of polynomials and let N be the rank of the matrix of
coefficients of 0. Then, there exists A ∈ CN

[z] so that

0(z)= |A(z)|2

and A is minimal in the sense that

|A(z)|2 ≡ |B(z)|2, B ∈ CM
[z]

implies B(z)= V A(z) for some isometric M × N matrix V .

Lemma 3.3. Let E ∈ Cn
[z, w], deg E ≤ (n−1,m). Suppose E is horizontally D-stable. Suppose further

that A ∈ CN
[z, w] satisfies

|E(z, w)|2 = |A(z, w)|2 for (z, w) ∈ C×T.

Then, n≤ N , A(z, w) has degree at most n−1 in z and there exists an N×n matrix valued rational inner
function 9 : D→ CN×n , holomorphic on D such that

A(z, w)=9(w)E(z, w).

By N × n matrix valued inner function we mean that 9 is isometry valued on the circle (or more
appropriately, unitary valued in the case n = N ).

Proof. We have assumed
|E(z, w)|2 = |A(z, w)|2,

for all z ∈ C but w ∈ T. By the polarization theorem for holomorphic functions

〈E(z, w),E(Z , w)〉 = 〈A(z, w),A(Z , w)〉, (3-1)

for all z, Z ∈ C and w ∈ T. The left hand side has degree at most n−1 in z and this implies A(z, w)
has degree at most n−1 in z as follows. If some component with the largest degree, say A1(z, w) =∑M

j=0 a j (w)z j , of A(z, w) has degree M larger than n−1, then

A1(z, w)A1(Z , w)= |aM(w)|
2zM Z̄ M

+ lower order terms.

We necessarily have aM(w)≡ 0 on T, which implies aM(w)≡ 0 for all w ∈ C.
Therefore, we may write

A(z, w)= A(w)3n(z),

where A(w) is an N × n matrix polynomial. Let us write

E(z, w)= E(w)3n(z), E(w) ∈ Cn×n
[w].

Saying E is horizontally D-stable means E(w) is invertible for all w ∈ D.
Rewriting (3-1) in matrix form we have

3n(Z)∗E(w)∗E(w)3n(z)=3n(Z)∗A(w)∗A(w)3n(z),

and since this holds for all z, Z ∈ C

E(w)∗E(w)= A(w)∗A(w) (3-2)
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for all w ∈ T because 3n(z) spans Cn as z varies over any n points. Now define

9(w)= A(w)E(w)−1

for w ∈D, a rational matrix polynomial with no poles on the disk (since E(w) is invertible in the disk).
Equation (3-2) says that 9(w) is isometric for w ∈ T. In particular, n ≤ N , any singularities of 9 on
the circle are removable (9 is rational and bounded on the circle), and by the maximum principle 9 is
contraction valued in the disk. By definition, A(z, w)=9(w)E(z, w) for all z, w ∈ C. �

Lemma 3.4 (uniqueness). Let E, Ẽ ∈ Cn
[z, w], deg E, Ẽ ≤ (n−1,m). Suppose both E and Ẽ are hori-

zontally D-stable.
Suppose further that there are vector polynomials F, F̃ ∈ Cm

[z, w] such that

(1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2 = (1− |z|2)|Ẽ(z, w)|2+ (1− |w|2)|F̃(z, w)|2. (3-3)

Then, there exists an n× n unitary U1 and an m×m unitary U2 such that

E(z, w)=U1Ẽ(z, w), F(z, w)=U2F̃(z, w).

Proof. Setting |w| = 1 in (3-3) and canceling the factor (1− |z|2) we have

|E(z, w)|2 = |Ẽ(z, w)|2 for (z, w) ∈ C×T.

Both E and Ẽ satisfy the conditions of Lemma 3.3. Therefore, there exist n× n matrix valued rational
inner functions 91, 92 : D→ Cn×n such that

Ẽ(z, w)=91(w)E(z, w), E(z, w)=92(w)Ẽ(z, w).

This implies 91(w)92(w)= I , and as 91, 92 are contractive valued, we must have 91 and 92 constant
and equal to unitary matrices. Hence, there exists an n× n unitary matrix U1 such that

E(z, w)=U1Ẽ(z, w),

which implies
|E(z, w)|2 = |Ẽ(z, w)|2 for all (z, w) ∈ C2.

In turn, by (3-3) we have

|F(z, w)|2 = |F̃(z, w)|2 for all (z, w) ∈ C2.

By Lemma 3.2, there exists an m×m unitary matrix U2 such that

F(z, w)=U2F̃(z, w). �

We conclude this section with a lemma about the presence of zeros on the “undistinguished” portion
of the boundary of D2, namely (D×T)∪ (T×D).

Lemma 3.5. Suppose q ∈ C[z, w] has no zeros on D2. If q(z0, w0)= 0 for some (z0, w0) ∈ T×D, then
q(z0, w) = 0 for all w ∈ C; i.e., (z− z0) divides q. In particular, there can only be finitely many z0 ∈ T

such that q(z0, · ) has a zero in D.
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Proof. There is no harm in assuming q is irreducible. Suppose q(z0, w) is not identically zero as a
function of w. Then, we can apply the Weierstrass preparation theorem to q and write

q(z, w)= u(z, w)(zk
+ a1(w)zk−1

+ · · ·+ ak(w))

on some bidisk D1× D2 containing (z0, w0) where u is holomorphic and nonvanishing on D1× D2 and
each a j is holomorphic on D2. We also assume D2⊂D. Furthermore, for w ∈ D2\{w0}, each a j (w) is a
symmetric function of the k (necessarily) distinct roots (by irreducibility) z1(w), z2(w), . . . , zk(w)∈ D1

of q(·, w) for w ∈ D2 \ {w0}. Note ak(w) = (−1)kz1(w) · · · zk(w) for w 6= w0 and ak(w0) = (−z0)
k .

Since q has no zeros in D2, |z j (w)| ≥ 1 for all j and w ∈ D2, and hence |ak(w)| ≥ 1 for all w ∈ D2.
Since |ak(w0)| = 1 the maximum principle implies ak is a unimodular constant, which in turn implies
the roots z1(w), . . . , zk(w) are all unimodular valued. The roots must be constant and equal to z0; that
is, q(z, w) can be divided by z− z0. �

4. Preliminaries

As in [Knese 2008], our approach will be to study two-variable orthogonal polynomials with respect to
a positive Borel measure µ on the two-torus. The difference is that here we allow measures with infinite
mass. In particular, we study “Bernstein–Szegő” measures on T2

1
|q(z, w)|2

dσ,

where dσ is normalized Lebesgue measure on the torus:

dσ = dσ(z, w)=
dz

2π i z
dw

2π iw
, (4-1)

and q ∈ C[z, w] has finitely many zeros on T2 (and hence this measure can have infinite mass). On one
hand, this causes a number of certain superficial (but still interesting) changes in the theory. For instance,
we have to deal with the ideal C[z, w] ∩ L2(µ) of polynomials in L2(µ) as opposed to all of C[z, w]
when studying orthogonal polynomials. (In particular, studying moment matrices will not be an option,
because our measures may not have finite moments.) On the other hand, this change forces us to take
greater care in certain situations. For instance, if q ∈C[z, w] has no zeros on the bidisk and finitely many
zeros on the two-torus, we cannot say (as we would in the case with no zeros on T2) that∫

T2

1
q(z, w)

dσ(z, w)=
1

q(0, 0)

since 1/q will not be integrable. Perhaps this integral could be understood in a principal value sense,
however we confront this issue in our own way in Proposition 7.1.

Let us begin to provide some details. We shall make the following standing assumptions:

• µ is a positive Borel measure on T2;

• the ideal
Iµ := L2(µ)∩C[z, w] (4-2)

is nontrivial, where elements of C[z, w] here are thought of as measurable functions on T2;
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• the support of µ is not contained in the zero set of a nonzero polynomial, thus ensuring that
‖q‖L2(µ) 6= 0 if q 6= 0.

The inner product on L2(µ) will be denoted by

〈 f, g〉µ =
∫

T2
f ḡdµ. (4-3)

We shall make use of the machinery of reproducing kernel Hilbert spaces.

Notation 4.1. Given a finite-dimensional subspace V ⊂ L2(µ)∩C[z, w], we shall use KV to denote the
reproducing kernel of V . Namely, for each (Z ,W ) ∈ C2, KV(Z ,W ) is the unique element of V satisfying

f (Z ,W )= 〈 f, KV(Z ,W )〉µ for all f ∈ V

and we define KV : C2
×C2

→ C by

KV ((z, w), (Z ,W )) := KV(Z ,W )(z, w).

It is not hard to show KV is conjugate symmetric:

KV ((z, w), (Z ,W ))= KV ((Z ,W ), (z, w)),

and if {e1, . . . , eN } is an orthonormal basis of V , then

KV ((z, w), (Z ,W ))=

N∑
j=1

e j (z, w)e j (Z ,W ).

Given q ∈ C[z, w] we use
q̂( j, k) (4-4)

to denote the coefficient of z jwk in the Fourier series of q .

Remark 4.2. Throughout, we fix positive integers n and m. The notations below depend on this.

We use the following notations as in [Knese 2008] which define subspaces of polynomials based on
what frequencies may appear in their Fourier series (or in other language, we define subspaces based
on the carrier of the polynomials). The symbols should be thought of a lying in the grid Z2 with the
lower left corners representing the origin. A blackened section denotes excluded Fourier support. The
box with the lower left corner missing * denotes the polynomials of degree at most (n,m) which vanish
at (0, 0), while the box with the upper right corner missing ) denotes the polynomials of degree at most
(n,m) with no (n,m) Fourier coefficient.

Notation 4.3. ( := {q ∈ C[z, w] : deg(q)≤ (n,m)}

< := {q ∈ C[z, w] : deg(q)≤ (n−1,m)}

2 := {q ∈ C[z, w] : deg(q)≤ (n,m−1)}

Z := {q ∈ C[z, w] : deg(q)≤ (n−1,m−1)}

* := {q ∈( : q(0, 0)= 0}

) := {q ∈( : q̂(n,m)= 0}
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For any of the above subspaces (and similar variations) we shall use a subscript µ to denote the
intersection with L2(µ). Namely,

(µ :=(∩ L2(µ)

<µ :=<∩ L2(µ)

2µ :=2∩ L2(µ), . . . .

We use the following notations for shifts and certain orthogonal complements using the inner product
on L2(µ).

Notation 4.4. wZµ := {wp : p ∈Zµ} zZµ := {zp : p ∈Zµ}

=µ :=<µ	Zµ >µ :=<µ	 (wZµ)

3µ :=2µ	Zµ 4µ :=2µ	 (zZµ)

.µ :=)µ	2µ ,µ :=*µ	 (w2µ)

\µ :=(µ	*µ [µ :=(µ	)µ

For instance, =µ denotes all p ∈ C[z, w] ∩ L2(µ) of degree at most (n−1,m) which are orthogonal
to the polynomials in C[z, w] ∩ L2(µ) of degree at most (n−1,m−1).

A discussion of the notation. A more traditional notation for the subspaces above might work as follows:

Pn,m := {q ∈ C[z, w] : deg(q)≤ (n,m)}

Pn,m−1 := {q ∈ C[z, w] : deg(q)≤ (n,m−1)}

Pn−1,m−1 := {q ∈ C[z, w] : deg(q)≤ (n−1,m−1)}

P(n,m)
n,m := {q ∈ C[z, w] : deg(q)≤ (n,m), q̂(n,m)= 0}

In which case one could write out orthogonal complements in detail as in:

Pn,m 	Pn,m−1.

To illustrate how cumbersome this becomes let us compare this more traditional notation with the box
notation above. In the rest of this paper it will be important to decompose (Pn,m)µ (or (µ) in a variety
of ways. With more traditional notation we have:

Pn,m = (Pn,m 	P(n,m)
n,m ) ⊕P(n,m)

n,m

= (Pn,m 	P(n,m)
n,m ) ⊕(P(n,m)

n,m 	Pn,m−1)⊕Pn,m−1.

All orthogonal sums and complements are taken with respect to L2(µ). With our notation we have:

(µ = ((µ	)µ)︸ ︷︷ ︸⊕ )µ︸ ︷︷ ︸
= [µ ⊕ ()µ	2µ)︸ ︷︷ ︸⊕2µ
= [µ ⊕ .µ ⊕2µ
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It becomes necessary to take this even further:

(µ = [µ ⊕ .µ ⊕ 2µ︸ ︷︷ ︸
= [µ ⊕ .µ ⊕ (2µ	Zµ)︸ ︷︷ ︸⊕Zµ
= [µ ⊕ .µ ⊕ 3µ ⊕Zµ

Another way of decomposing (µ is as

(µ =\µ⊕,µ⊕Hµ⊕

Z

µ

All of these decompositions translate into formulas for reproducing kernels since the reproducing
kernel of a direct sum is the sum of the reproducing kernels [Knese 2008, Section 3]. Therefore,

K(µ = K[µ+ K.µ+ K3µ+ KZµ, (4-5)

K(µ = K\µ+ K,µ+ KHµ+ K

Z

µ. (4-6)

�

The two subspaces \µ,[µ are either one-dimensional or trivial and are important enough to warrant
special names:

Maxµ :=\µ =(µ	*µ = {p ∈ C[z, w] ∩ L2(µ) : p ∈(µ, p ⊥*µ}, (4-7)

Minµ :=[µ =(µ	)µ = {p ∈ C[z, w] ∩ L2(µ) : p ∈(µ, p ⊥)µ}. (4-8)

We choose these names because p ∈Maxµ maximizes the quantity

| f (0, 0)|
‖ f ‖L2

µ

among all f ∈ C[z, w] ∩ L2(µ) of degree at most (n,m). This follows from the fact that p ∈Maxµ if
and only if p is orthogonal to all f ∈(µ vanishing at (0, 0). Elements of Minµ maximize the value of

| f̂ (n,m)|
‖ f ‖L2

µ

among f ∈(µ.
We continue Example 1.1 to make all these definitions concrete.

Example 4.5. Let q(z, w)= 2− z−w. Let

dµ=
1

|2− z−w|2
dσ(z, w)=

1
(2π i)2|2− z−w|2

dz
z

dw
w
.

It turns out that Iµ = L2(µ)∩C[z, w] equals the maximal ideal (z− 1, w− 1)⊂ C[z, w]. Indeed, a
double application of Cauchy’s formula shows

1 /∈ L2(µ) and z− 1, w− 1 ∈ L2(µ).
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Also,
2− z−w ⊥ w(z− 1), z(w− 1), 2zw− z−w ⊥ (z− 1), (w− 1).

If we set n = 1 and m = 1, then

Zµ = {0}, since 1 /∈ L2(µ),

<µ = (w− 1)C,

2µ = (z− 1)C,

(µ = span{z− 1, w− 1, z+w− 2zw},

\µ = (2− z−w)C,

[µ = (2zw− z−w)C.

Since Zµ is trivial,
=µ =<µ	Zµ =<µ.

In general, =µ 6=<µ, but the singularity of µ forces certain subspaces to degenerate.

5. General properties of orthogonal polynomials on T2

This section is about orthogonal polynomials on T2 with respect to a (not necessarily finite) positive
Borel measure on T2. We use reproducing kernels to study entire subspaces of polynomials all at once,
so the “orthogonal polynomials” are in some sense disguised.

The heart of the following two propositions should be familiar to those who know something about
orthogonal polynomials on the unit circle. Namely, if ρ is a probability measure on T, and if q ∈
C[z], deg q ≤ n, then in L2(ρ)

q ⊥ z, z2, . . . , zn
H⇒ q is stable.

In two variables, consider the subspace of polynomials 4µ =2µ	 Zµ; that is, all

p ∈ C[z, w] ∩ L2(µ), deg p ≤ (n,m−1)

satisfying
p ⊥ span{z jwk

: 1≤ j ≤ n, 0≤ k ≤ m−1} ∩ L2(µ).

The conclusion of the first proposition below is that p(z, w) has no factors of the form (z − z0) with
z0 ∈ D, and the second proposition says that a vector consisting of an orthonormal basis for 4µ is
vertically D-stable. Both of these notions are generalizations of one variable stability.

Another way to generalize orthogonal polynomials from one to two variables is to consider p ∈
C[z, w] ∩ L2(µ), deg p ≤ (n,m) satisfying

p ⊥ span{z jwk
: 0≤ j ≤ n, 0≤ k ≤ m, ( j, k) 6= (0, 0)} ∩ L2(µ),

namely, p ∈Maxµ =\µ. This situation is much more subtle and is the topic of Section 6.

Definition 5.1. We say an element p of C[z, w] is a divisor of the ideal Iµ if whenever pq ∈ Iµ, then
q ∈ Iµ.
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Polynomials with no zeros on T2 are always divisors of Iµ.

Proposition 5.2.

(1) (a) If p is a nonzero element of 4µ or 5µ, then p is not divisible by a polynomial of the form
L(z, w)= z− z0 for z0 ∈ D.

(b) If p is a nonzero element of 3µ or 6µ then p is not divisible by any L(z, w) = z − z0 when
z0 ∈ C \D.

(c) In addition, if z0 ∈T, and L(z, w)= z−z0 happens to be a divisor in Iµ, then nonzero elements
of 4µ,3µ,5µ,6µ cannot have L as a factor.

(2) (a) If p is a nonzero element of>µ or8µ, then p cannot have a factor of the form J (z, w)=w−w0

when w0 ∈ D.
(b) If p is a nonzero element of=µ or7µ, then p cannot have a factor of the form J (z, w)=w−w0

when w0 ∈ C \D.
(c) In addition, if w0 ∈ T, and J (z, w) = w − w0 happens to be a divisor in Iµ, then nonzero

elements of >µ,=µ,8µ,7µ cannot have J as a factor.

Proof. We prove item (1a). Let p ∈ 4µ and suppose p = gL for some g ∈ Z where L(z, w) = z − z0

with |z0|< 1. Since L has no zeros on T2, g= p/L ∈ L2(µ). Then, z0g(z, w)= zg(z, w)− p(z, w) and

|z0|
2
‖g‖2L2(µ) = ‖−p+ zg‖2L2(µ) = ‖p‖2L2(µ)+‖zg‖2L2(µ) = ‖p‖2L2(µ)+‖g‖

2
L2(µ).

since p ⊥µ zg. Rearranging we arrive at

‖p‖2L2(µ) = (|z0|
2
− 1)‖g‖2L2(µ) < 0,

a contradiction. The proofs of the other statements are variations on the above idea. �

Curiously, slightly more complicated factors can be ruled out by a similar argument. For instance, if
|a| < 1, then P(z, w) = z2

− aw3 cannot be a factor of any polynomial in 5µ. If |a| = 1 and P is a
divisor of Iµ then the same conclusion holds.

The next proposition shows that horizontal D-stability occurs naturally (recall Definition 1.6).

Proposition 5.3. Let {e1, . . . , eN } ⊂C[z, w] be an orthonormal basis for>µ which we write vectorially
as E(z, w) = (e1(z, w), . . . , eN (z, w))t . Then, N ≤ n and E is horizontally D∪ X-stable, where X ⊂ T

is the set of w0 ∈ T such that L(z, w)= w−w0 is a divisor of Iµ.
The same results hold for 4µ with the roles of z and w switched.

Proof. First, we claim dim>µ := N ≤ n. Given n + 1 polynomials in >µ, some linear combination
of them will be a multiple of w (since the degree in z is at most n−1); such a combination would be
orthogonal to itself (by definition of >µ) and therefore zero; and hence any n+1 polynomials in >µ are
dependent. So, dim>µ ≤ n.

Write
E(z, w)= E(w)3n(z),

where E(w) is an (N × n)-matrix valued polynomial in w of degree at most m. We must prove E is
horizontally D∪ X -stable which means E(w) has rank N for all w ∈ D∪ X .



POLYNOMIALS WITH NO ZEROS ON THE BIDISK 123

So, suppose E(w0) has rank less than N at some point w0 ∈C. Since E(w0) is N×n and N ≤ n there
must be a nonzero vector v ∈ CN such that vt E(w0) = 0t ; that is, the following (necessarily nonzero)
polynomial

q(z, w)= vt E(w)3n(z)= vt E(z, w)

is in >µ and vanishes on the set {w = w0}. By the previous proposition this can only happen if w0 /∈ D

and when w0 ∈ T, w−w0 cannot be a divisor of Iµ. So, E(w0) has full rank N everywhere in D and at
all points w0 ∈ T for which w−w0 is a divisor of Iµ; that is, E is horizontally D∪ X -stable. �

Continuing our previous aside, we can also say that E ∈ CN
[z, w] as above when restricted to the

variety {z2
− aw3

= 0} (here |a|< 1) does not sit inside any proper subspace of CN .

Remark 5.4. The main ideas of the previous two propositions appeared in the appendix of [Knese 2009]
in a less detailed form.

The following is an analogue of the one variable Christoffel–Darboux formula.

Proposition 5.5 (Christoffel–Darboux type formulas). Suppressing ((z, w), (z, w)) in front of each ker-
nel we have

K4µ− K3µ = (1− |z|2)KZµ and K>µ− K=µ = (1− |w|2)KZµ.

Proof. Let us decompose 2µ, the subspace of polynomials p ∈ C[z, w] ∩ L2(µ), deg p ≤ (n,m−1), in
two ways:

2µ = (2µ	 Zµ)⊕ Zµ =4µ⊕ zZµ,

2µ = (2µ	Zµ)⊕ Zµ =3µ⊕ Zµ.

The reproducing kernel of a direct sum is the sum of the reproducing kernels [Knese 2008, Section 3],
and so

K4µ+ K (zZµ)︸ ︷︷ ︸= K3µ+ KZµ,

K4µ+ z Z̄ KZµ = K3µ+ KZµ,

since shifting a subspace by z “shifts” the reproducing kernel by the factor z Z̄ . Here we have suppressed
the argument ((z, w), (Z ,W )) in front of every reproducing kernel. After rearranging we get the first
equation of the proposition:

K4µ− K3µ = KZµ− z Z̄ KZµ = (1− z Z̄)KZµ.

The proof of the second equation is similar. �

Definition 5.6. A polynomial p ∈ C[z, w] is T2-symmetric if it equals a unimodular constant µ times
its reflection:

p(z, w)= µ←p(z, w)= µz jwk p(1/z̄, 1/w̄);

here p has degree exactly ( j, k).

Proposition 5.7. Let P be the greatest common divisor of (µ. Then, every factor of P is T2-symmetric
and the zero set of every factor of P intersects T2.
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Proof. The greatest common divisor P is necessarily T2-symmetric (basically since the set (µ is). Let
q be an irreducible factor of P and let j be the highest power such that q j divides P . Suppose q is not
a multiple of ←q. Then q j←q j divides P . Let p be an element of (µ divisible by the maximal number of
factors of q; that is, qk divides p and no nonzero element of (µ is divisible by qk+1. Since ←q j divides p
we may write p = qk←q j g for some g ∈ C[z, w]. Since |q| = |←q| on T2, it follows that p being in L2(µ)

implies qk+ j g ∈ L2(µ). In particular, qk+ j g ∈ (µ contradicting the maximality property of p and k.
Hence, q must be T2-symmetric.

The zero set of every factor q of P must intersect T2 since otherwise qg ∈ L2(µ) implies g ∈ L2(µ)

for any g ∈ C[z, w]. �

Question 5.8. Is P toral? That is, does the zero set of every factor of P intersect T2 on an infinite set?

This question is made more difficult by the fact that there exist irreducible, atoral, T2-symmetric
polynomials:

p(z, w)= (3z+ 1)w2
− (z+ 3)(3z+ 1)w+ z(z+ 3)

is such a polynomial taken from [Agler et al. 2008].

6. OC measures

The following theorem should be thought of as an attempt to prove a two-variable Christoffel–Darboux
formula for general positive Borel measures which fails. The expression ε below measures how much it
fails.

Theorem 6.1. Let µ be a positive Borel measure on T2 for which C[z, w] ∩ L2(µ) 6= {0} and for which
Maxµ =\µ is one-dimensional. Let

ε := (K.µ− K=µ)− (K,µ− KRµ).

If q is any unit norm polynomial in Maxµ, then writing

qq̄ = q(z, w)q(Z ,W )

and omitting the expressions ((z, w), (Z ,W )), we get:

qq̄ −←q←q = (1− z Z̄)(1−wW̄ )KZµ

+ (1− z Z̄)K=µ+ (1−wW̄ )K3µ+ ε

= (1− z Z̄)K=µ+ (1−wW̄ )K4µ+ ε

= (1− z Z̄)K>µ+ (1−wW̄ )K3µ+ ε.

The proof of this theorem is identical to the proof of Theorem 4.5 in [Knese 2008], which is for
probability measures. We already have many of the details in place so it seems worthwhile to include
the proof.
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Proof. By Equation (4-5),

K(µ = K[µ+ K.µ+ K3µ+ KZµ

= K[µ+ K=µ+ K3µ+ KZµ+ (K.µ− K=µ), (6-1)

and, by Equation (4-6),

K(µ = K\µ+ K,µ+ KHµ+ K

Z

µ

= K\µ+ KRµ+ KHµ+ K

Z

µ+ (K,µ− KRµ)

= K\µ+ z Z̄ K>µ+wW̄ K4µ+ z Z̄wW̄ KZµ+ (K,µ− KRµ).

Using the formulas in Proposition 5.5 to eliminate K4µ and K>µ, we get:

K(µ =K\µ+ z Z̄(K=µ+ (1−wW̄ )KZµ)+wW̄ (K3µ+ (1− z Z̄)KZµ)

+ z Z̄wW̄ KZµ+ (K,µ− KRµ)

=K\µ+ z Z̄ K=µ+wW̄ K3µ

+ (z Z̄ +wW̄ − z Z̄wW̄ )KZµ+ (K,µ− KRµ).

Combined with Equation (6-1) above we have

K\µ− K[µ = (1− z Z̄)K=µ+ (1−wW̄ )K3µ+ (1− z Z̄)(1−wW̄ )KZµ+ ε.

Note that since Maxµ =\µ is one-dimensional, qq̄ is its reproducing kernel. Likewise, Minµ =[µ
is the reflection of Maxµ and therefore has reproducing kernel ←q←q . This proves the first formula of the
theorem.

The remaining formulas follow from Proposition 5.5 by eliminating either K3µ or K=µ. See [Knese
2008] for more details. �

The ε in Theorem 6.1 is identically zero for measures of the following type, as we explain below.

Definition 6.2. We will call the measure µ an OC measure if it satisfies this orthogonality condition:

.µ ==µ. (OC)

These measures are so fundamental to the rest of the paper that they warrant extra discussion. Note
that being an OC measure is only a constraint on how µ behaves with respect to polynomials of degree
at most (n,m). When µ is a finite measure, being an OC measure is a condition on the moments of µ,
as is explained in [Knese 2008, Appendix].

Discussion of OC measures. Recall Iµ=C[z, w]∩L2(µ). Here are four ways to interpret OC measures:

• Every p ∈ Iµ of degree at most (n,m) with p̂(n,m)= 0 which is orthogonal to polynomials in Iµ
of degree at most (n,m−1) automatically satisfies

p̂(n, k)= 0 for k = 0, 1, . . . ,m−1.

In symbols:
(p ∈)µ and p ⊥2µ) H⇒ p ∈<µ.
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• Every p ∈Iµ of degree at most (n−1,m) which is orthogonal to all polynomials in Iµ of degree at
most (n−1,m−1) is automatically orthogonal to all polynomials in Iµ of degree at most (n,m−1).
In symbols:

(p ∈<µ and p ⊥Zµ) H⇒ p ⊥2µ.

• An OC measure satisfies a certain inclusion-exclusion principle:

0= K)µ− K<µ− K2µ+ KZµ. (6-2)

To see this, consider the decompositions

K)µ = K.µ+ K3µ+ KZµ,

K<µ = K=µ+ KZµ,

K2µ = K3µ+ KZµ.

When µ is an OC measure, .µ ==µ. This yields Equation (6-2).
The symmetry in Equation (6-2) also proves that

.µ ==µ if and only if -µ =3µ.

• An OC measure behaves like a Bernstein–Szegő measure

1
|q(z, w)|2

dσ(z, w);

here q ∈ C[z, w] has no zeros on D2. Section 7 is devoted to this fact and its converse: Bernstein–
Szegő measures are OC measures! See Corollary 7.6 and Theorem 7.4. �

Additionally, if .µ ==µ holds, then we have

,µ =Rµ

by reflecting these subspaces (polynomial reflection is an antiunitary and so preserves orthogonality
relations).

Therefore, ifµ is an OC measure then the ε in Theorem 6.1, given by (K.µ−K=µ)−(K,µ−KRµ),
disappears.

Hence, if µ is an OC measure, we have

q(z, w)q(Z ,W )−
←q(z, w)←q(Z ,W )= (1− z Z̄)K=µ((z, w),(Z ,W ))+(1−wW̄ )K4µ((z, w),(Z ,W )),

where q is any unit norm polynomial in Maxµ =\µ.
Evaluating on the diagonal (z, w)= (Z ,W ) we have

|q(z, w)|2 ≥ |q(z, w)|2− |←q(z, w)|2

= (1− |z|2)K=µ((z, w), (z, w))+ (1− |w|2)K4µ((z, w), (z, w))≥ 0, (6-3)

for all (z, w) ∈ D2. If we scrutinize this inequality, we can prove something quite strong.
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Proposition 6.3. Let µ be an OC measure and let q be any unit norm polynomial in Maxµ. If q(z0, w0)

vanishes for some (z0, w0) ∈ D2, every element of (µ vanishes at (z0, w0).

Proof. Recall two formulas from above. By Proposition 5.5

K4µ− K3µ = (1− |z|2)KZµ (6-4)

and by (4-5)
K(µ = KZµ+ K3µ+ K.µ+

←q←q, (6-5)

where every reproducing kernel is evaluated on the diagonal (z, w)= (Z ,W ).
First, suppose (z0, w0)∈D2. We write v= (z0, w0) for short. From (6-3), it is immediate that q(v)= 0

implies
←q(v)= K=µ(v, v)= K4µ(v, v)= 0. (6-6)

Then, K(µ(v, v) = 0 by formulas (6-4) and (6-5). Indeed, K4µ(v, v) = 0 implies K3µ(v, v) =
KZµ(v, v)= 0 by (6-4) (using the fact that reproducing kernels are nonnegative on the diagonal). Then,
(6-5) implies K(µ(v, v)= 0 since K.µ = K=µ by assumption. If K(µ(v, v)= 0 then every element
of (µ must vanish at v.

To prove the claim for v = (z0, w0) ∈D2 \D2, notice that the left hand side of (6-3) vanishes to order
at least two at v, and the terms (1− |z|2) and (1− |w|2) can vanish to order at most one. This again
implies (6-6) and by a similar argument K(µ(v, v)= 0.

Therefore, every element of (µ vanishes at a zero of q in D2. �

Remark 6.4. If µ is a finite measure, then 1 ∈(µ and this implies q has no zeros on the closed bidisk.
Hence, this proves stability in the case of probability measures, as in [Geronimo and Woerdeman 2004;
Knese 2008].

Corollary 6.5. Suppose µ is an OC measure and let q be any unit norm polynomial in Maxµ. Then, q
can be factored into q = q1q2 where

• q1 divides every element of (µ;

• every irreducible factor of q1 is T2-symmetric, has infinitely many zeros in D2, and vanishes some-
where on T2; and

• q2 has no zeros in D2 \T2 and finitely many zeros in T2.

Proof. It is clear q may be factored into the form q = q1q2 where every irreducible factor of q1 has
infinitely many zeros in D2 and q2 has finitely many zeros in D2 (we of course allow for the case where
q1 or q2 is a constant).

Suppose f is an irreducible factor of q possessing infinitely many zeros in D2; that is, a factor of
q1. By Proposition 6.3, every element of (µ has infinitely many zeros in common with f and hence f
divides every element of (µ. So, f can be divided out of both sides of the inequality (6-3) and using
the resulting inequality one can then show that if f occurs in the factorization of q with multiplicity, it
then divides every element of(µ with the same multiplicity. Hence, q1 divides every element of(µ. By
Proposition 5.7, any such f necessarily is T2-symmetric and vanishes somewhere on T2. This proves
the first two items in the statement of the corollary.
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Finally, if q2 has finitely many zeros in D2, q2 can have no zeros in the bidisk. By Lemma 3.5, q2 can
have no zeros on the sides: D×T and T×D. This proves the third item. �

Since the factor q1 in the above corollary divides every element of (µ, the study of µ and (µ can be
separated into the study of q1 and the study of |q1|

2dµ and the set (µ/q1 (which is nothing more than
all p ∈ L2(|q1|

2dµ) of degree less than or equal to (n − n1,m −m1), where (n1,m1) is the degree of
q1). Indeed, the map sending

f ∈(µ 7→ f/q1 ∈(µ/q1

is an isometry (using the inner product of L2(µ) on the left and the inner product of L2(|q1|
2dµ) on the

right). Although this is a somewhat trivial observation, we now feel justified in making the assumption
that Minµ and Maxµ have no common factor, a statement equivalent to saying q and ←q have no common
factor. A statement which is in turn equivalent to saying q1 is a constant. The following proposition is
immediate, since its hypotheses imply q = q2 in Corollary 6.5.

Proposition 6.6. If µ is an OC measure and if Maxµ and Minµ are one-dimensional and have no factor
in common, then any q ∈Maxµ is almost stable.

Lemma 6.7. Suppose Minµ is one-dimensional and has no factor in common with Maxµ, and suppose
µ is an OC measure. Then,

dim>µ = n and dim3µ = m.

Proof. Let h be a unit norm polynomial in Minµ. The polynomial h necessarily has degree exactly
(n,m), otherwise it would be orthogonal to itself. Set q =

←

h, where the reflection is performed at the
(n,m) level. By Theorem 6.1 with ε = 0,

q(z, w)q(Z ,W )−
←q(z, w)←q(Z ,W )

= (1− z Z̄)K>µ((z, w), (Z ,W ))+ (1−wW̄ )K3µ((z, w), (Z ,W )).

Let d1 = dim>µ and d2 = dim3µ; let e1, . . . , ed1 be an orthonormal basis for >µ and f1, . . . , fd2 an
orthonormal basis for 3µ. We write these vectorially as

E(z, w)=

 e1(z, w)
...

ed1(z, w)

 and F(z, w)=

 f1(z, w)
...

fd2(z, w)

 ,
and then the formula above becomes

q(z, w)q(Z ,W )−
←q(z, w)←q(Z ,W )= (1− z Z̄)〈E(z, w),E(Z ,W )〉+ (1−wW̄ )〈F(z, w),F(Z ,W )〉.

Upon rearranging we have

q(z, w)q(Z ,W )+ z Z̄〈E(z, w),E(Z ,W )〉+wW̄ 〈F(z, w),F(Z ,W )〉

=
←q(z, w)←q(Z ,W )+〈E(z, w),E(Z ,W )〉+ 〈F(z, w),F(Z ,W )〉.
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The map defined by  q(z, w)
zE(z, w)
wF(z, w)

 7→
←q(z, w)E(z, w)

F(z, w)


for each (z, w) ∈ C2 defines a unitary on the span of the elements in C1+d1+d2 of the form on the left to
the span of the elements in C1+d1+d2 of the form on the right, which can be extended to a unitary matrix
U of dimensions (1+d1+d2)× (1+d1+d2). We write U in block form as

U =

C Cd1+d2

C

Cd1+d2

(
A B
C D

)
.

We also define a Cd1+d2-valued polynomial G by

G(z, w) :=
(

E(z, w)
F(z, w)

)
,

and define the (d1+ d2)× (d1+ d2) diagonal matrix

1(z, w) :=
(

z Id1 0
0 w Id2

)
.

Then,
Aq(z, w)+ B1(z, w)G(z, w)= ←q(z, w),
Cq(z, w)+ D1(z, w)G(z, w)=G(z, w).

The latter formula implies

G(z, w)= q(z, w)(I − D1(z, w))−1C,

and in turn the former formula implies

A+ B1(z, w)(I − D1(z, w))−1C =
←q(z, w)
q(z, w)

.

Since ←q/q is already in reduced terms we must have d1 ≥ n and d2 ≥m. We already know d1 ≤ n and
d2 ≤ m (see Proposition 5.3). Therefore, n = dim>µ and m = dim4µ, and the result follows. �

Theorem 6.8 (spectral matching). Let µ and ρ be two OC measures. Suppose Maxµ =Maxρ 6= {0} and
let q ∈Maxµ. Assume q and ←q have no common factor. Then, (µ = (ρ and the inner products 〈 · , · 〉µ
and 〈 · , · 〉ρ agree up to a constant multiple on (µ; that is,

1
‖q‖2L2(µ)

〈 f, g〉µ =
1

‖q‖2L2(ρ)

〈 f, g〉ρ for all f, g ∈(µ.

In other words,
1

‖q‖2L2(µ)

K(µ =
1

‖q‖2L2(ρ)

K(ρ .
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Proof. We may renormalize µ and ρ so that 1= ‖q‖L2(µ) = ‖q‖L2(ρ).
By choosing orthonormal bases for the n-dimensional subspaces (by Lemma 6.7)>µ and>ρ , we may

write
K>µ((z, w), (Z ,W ))= 〈Eµ(z, w),Eµ(Z ,W )〉,

K>ρ((z, w), (Z ,W ))= 〈Eρ(z, w),Eρ(Z ,W )〉,

for Eµ,Eρ ∈ Cn
[z, w].

Likewise, we may write the m-dimensional subspaces 3µ and 3ρ as

K3µ((z, w), (Z ,W ))= 〈Fµ(z, w),Fµ(Z ,W )〉,

K3ρ((z, w), (Z ,W ))= 〈Fρ(z, w),Fρ(Z ,W )〉,

where Fµ,Fρ ∈ Cm
[z, w].

By Proposition 5.3, both Eµ,Fµ and Eρ,Fρ satisfy the hypotheses of Lemma 3.4 (in place of E,F
and Ẽ, F̃), since by Theorem 6.1, we have

(1− z Z̄)K>µ((z, w), (Z ,W ))+ (1−wW̄ )K3µ((z, w), (Z ,W ))

= (1− z Z̄)K>ρ((z, w), (Z ,W ))+ (1−wW̄ )K3ρ((z, w), (Z ,W )).

Therefore, Eµ is a unitary multiple of Eρ and Fµ is a unitary multiple of Fρ . In other words,

K3µ((z, w), (Z ,W ))= K3ρ((z, w), (Z ,W )),

K>µ((z, w), (Z ,W ))= K>ρ((z, w), (Z ,W )). (6-7)

Now we will see that this is all that is needed to reassemble the two inner products on (µ or (ρ .
By reflection

K4µ((z, w), (Z ,W ))= K4ρ((z, w), (Z ,W )),

and by the formulas (which hold for both µ and ρ)

K4µ− K3µ = (1− |z|2)KZµ (Proposition 5.5)

and
K(µ = KZµ+ K3µ+ K.µ+

←q←q (Equation (4-5))

where every reproducing kernel is evaluated on the diagonal (z, w)= (Z ,W ), we see that

K(µ = K(ρ .

(This is similar to the argument in the proof of Proposition 6.3.) �

7. Bernstein–Szegő measures

Converse to the previous section, we now study Bernstein–Szegő measures, which will be shown to be
OC measures. Bernstein–Szegő measures are measures on T2 of the form

dµ=
1

|q(z, w)|2
dσ(z, w),
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where q ∈ C[z, w] has no zeros on D2. (Recall dσ is normalized Lebesgue measure on T2.)
The following proposition looks innocuous, but it addresses the main technical difficulty not present

in the case of polynomials with no zeros on the entire closed bidisk. Note this proposition does not
require the polynomial to have finitely many zeros on T2.

Proposition 7.1. Let q ∈ C[z, w] have degree at most (n,m) and no zeros on D2. Define a measure on
T2 by

dµ=
1

|q(z, w)|2
dσ(z, w).

Then, q ∈Maxµ and more generally

q ⊥µ { f ∈ L2(µ) : f̂ ( j, k)= 0 for k < 0 and for k = 0 and j ≤ 0}.

Proof. Let f ∈ L2(µ) satisfy

f̂ ( j, k)= 0 for k < 0 and for k = 0 and j ≤ 0.

It is necessarily true that f ∈ L2(T2). For almost every z ∈ T, the function f(z)(w) = f (z, w) is in
L2(T) and since f̂ ( j, k)= 0 for k < 0, f(z) is actually in H 2(T) for almost every z ∈ T.

So, the function (of w)

g(z)(w) :=
f (z, w)
q(z, w)

is in the Smirnov class N+ (which consists of all ratios of bounded analytic functions with outer denom-
inator; see [Duren 1970, Section 2.5]), for almost every z ∈ T: q(z, · ) has no zeros in the disk for all
but finitely many z ∈ T (by Lemma 3.5) and is therefore outer for almost every z ∈ T. Since f ∈ L2(µ),
Fubini’s theorem says that for almost every z ∈ T, we have g(z) ∈ L2(T). By Theorem 2.11 in [Duren
1970], N+ ∩ L2(T)= H 2(T), and therefore g(z) ∈ H 2(T) for almost every z ∈ T.

Owing to the fact that g(z) is orthogonal to w j for j < 0,

f (z, 0)=
∫

T

f (z, w)
dw

2π iw
=

∫
T

f (z, w)
q(z, w)

q(z, w)
dw

2π iw
=

∫
T

f (z, w)
q(z, w)

q(z, 0)
dw

2π iw

for almost every z ∈ T, and so∫
T2

f (z, w)
q(z, w)

dw
2π iw

dz
2π i z

=

∫
T

f (z, 0)
q(z, 0)

dz
2π i z

.

Now, the function defined by h(z) = f (z, 0)/q(z, 0) is in L2(T) by Fubini’s theorem. Also, h is in the
Smirnov class N+ because f (·, 0) is in H 2(T) (by the assumption that f̂ ( j, 0)= 0 for j ≤ 0), and q(·, 0)
is outer since q(z, 0) has no zeros in the disk. Therefore, h is in H 2(T). Thus, we may conclude∫

T2

f (z, w)
q(z, w)

dw
2π iw

dz
2π i z

=

∫
T

f (z, 0)
q(z, 0)

dz
2π i z

=
f (0, 0)
q(0, 0)

= 0,

since f̂ (0, 0)= 0.
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Since

〈 f, q〉µ =
∫

T2

f (z, w)q(z, w)
|q(z, w)|2

dσ(z, w)=
∫

T2

f (z, w)
q(z, w)

dσ(z, w),

we have shown 〈 f, q〉µ = 0, or in other words f ⊥µ q . �

From here, the proofs follow the stable case, as in [Knese 2008], with some minor changes.

Corollary 7.2. If f ∈ L2(µ)∩ H 2(T2) and

f̂ ( j, k)= 0 for k > m and for k = m and j ≥ n,

then 〈 f,←qg〉µ = 0 for any g ∈ H∞(T2).

Proof. Notice that 〈←qg, f 〉µ = 〈 f̄ gznwm, q〉µ. Also, notice that f̄ gznwm satisfies the hypotheses of the
previous proposition (it helps to draw a picture of the frequency support of f and f̄ gznwm). Therefore,
〈 f,←qg〉µ = 0. �

Lemma 7.3. Define

L(Z ,W )(z, w)= L((z, w), (Z ,W ))= (z Z̄)n
q(z, w)q(1/z̄,W )−

←q(z, w)←q(1/z̄,W )

(1− z Z̄)(1−wW̄ )
. (7-1)

Suppose f ∈ L2(µ) ∩ H 2(T2), with f̂ ( j, k) = 0 for k > m and for k = m and j ≥ n. Then, for
(Z ,W ) ∈ D2,

m−1∑
k=0

∞∑
j=n

f̂ ( j, k)Z j W k
= 〈 f, L(Z ,W )〉µ.

Proof. By Corollary 7.2, f is orthogonal to the function

G(Z ,W )(z, w)=
←q(z, w)zn←q(1/z̄,W )

(1− z Z̄)(1−wW̄ )

for each (Z ,W ) ∈ D2.
Therefore,

〈 f, L(Z ,W )〉µ =

∫
T2

f (z, w)q(z, w)q(z,W )(z̄ Z)n

(1− z̄ Z)(1− w̄W )|q(z, w)|2
dwdz

(2π i)2zw

=

∫
T

∫
T

f (z, w)q(z,W )(z̄ Z)n

(1− z̄ Z)(w−W )q(z, w)
dw
2π i

dz
2π i z

(7-2)

=

∫
T

f (z,W )

q(z,W )
q(z,W )

(z̄ Z)n

(1− z̄ Z)
dz

2π i z
(7-3)

=

∞∑
j=n

m−1∑
k=0

f̂ ( j, k)Z j W k . (7-4)

Going from (7-2) to (7-3) is an application of the Cauchy integral formula and going from (7-3) to (7-4)
involves cancellation and another application of the Cauchy integral formula. �
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Theorem 7.4. Let q be a nonzero polynomial of degree at most (n,m) with no zeros on D2. Define a
measure on T2 by

dµ=
1

|q(z, w)|2
dσ(z, w).

Then, µ is an OC measure.

Proof. Let

HS= { f ∈ L2(µ)∩ H 2(T2) : f̂ ( j, k)= 0 for k ≥ m},

(HS= half strip) and let

NHS= { f ∈ L2(µ)∩ H 2(T2) : f̂ ( j, k)= 0 for k > m and when k = m and j ≥ n},

(NHS= notched half strip).
We claim that NHS	µ HS = =µ. To prove NHS	µ HS ⊂ =µ, notice that L(Z ,W ) from Lemma 7.3

is in HS since the numerator of L(Z ,W ) vanishes when w = 1/W̄ , and hence L(Z ,W ) is a polynomial of
degree at most m−1 in w. So, if f ∈ NHS	µ HS, then

0= 〈 f, L(Z ,W )〉µ =

∞∑
j=n

m−1∑
k=0

f̂ ( j, k)Z j W k,

which means f ∈<µ and therefore f ∈=µ. So, NHS	µ HS⊂=µ.
To prove that =µ ⊂ NHS	µ HS, let PHS : L2(µ)→ HS denote the orthogonal projection onto HS, a

necessarily closed subspace of L2(µ) (the topology on L2(µ) is finer than the topology on L2(T2)). If
f ∈=µ then

f − PHS f ∈ NHS	µ HS⊂=µ,

and this implies

PHS f ∈=µ ∩HS= {0}.

Hence, PHS f = 0 which means f ⊥µ HS. In other words, f ∈NHS	µ HS. Hence, NHS	µ HS==µ.
Now, since =µ ⊂ NHS	µ HS, it follows that =µ ⊂.µ. A similar argument to the above (using the

projection PHS) proves .µ ⊂ NHS	µ HS==µ. This implies =µ =.µ; namely, µ is an OC measure.
�

Corollary 7.5. Let q be a nonzero polynomial of degree at most (n,m) with no zeros on D2. Define a
measure on T2 by

dµ=
1

|q(z, w)|2
dσ(z, w).

Then,

q(z, w)q(Z ,W )−
←q(z, w)←q(Z ,W )= (1− z Z̄)K>µ((z, w), (Z ,W ))+(1−wW̄ )K3µ((z, w), (Z ,W )).

Proof. Proposition 7.1 says q ∈Maxµ and Theorem 7.4 says.µ==µ. Since ‖q‖L2(µ)=1, the conclusion
follows from Theorem 6.1 since .µ ==µ says ε = 0. �



134 GREG KNESE

Corollary 7.6 (“Bernstein–Szegő approximation”). Let ρ be an OC measure and suppose q ∈Maxρ has
no factors in common with ←q. Define

dµ=
1

|q(z, w)|2
dσ(z, w).

If we normalize ρ so that ‖q‖L2(ρ) = 1, then (ρ =(µ and

K(ρ = K(µ,

that is, the inner products on (µ and (ρ from L2(µ) and L2(ρ) agree.

Proof. By Proposition 7.1 q ∈ Maxµ and by Theorem 7.4, µ is an OC measure. We have assumed q
has no factors in common with ←q and this allows us to apply Theorem 6.8, from which the conclusion
follows immediately. �

One final lemma will make the proof of the main theorem a matter of bookkeeping. We use the
following notations:

Zq = {(z, w) ∈ C2
: q(z, w)= 0}, (7-5)

π1(z, w)= z and π2(z, w)= w. (7-6)

Lemma 7.7. If µ is the Bernstein–Szegő measure associated to q ∈ C[z, w], that is,

dµ=
1

|q(z, w)|2
dσ(z, w),

then J (z, w)= (w−w0) and L(z, w)= (z−z0)will be divisors of the ideal Iµ wheneverw0 /∈π2(Zq∩T2)

and z0 /∈ π1(Zq ∩T2), respectively.

Proof. If (z−z0) f (z, w)∈ L2(µ) for some f ∈C[z, w] and z0 /∈π1(Zq∩T2), then let U be a neighborhood
of Zz−z0∩T2 which does not intersect Zq . Then, |z−z0|

2 is bounded below on T2
\U and |q|2 is bounded

below on U , say by a constant c. Then,

∞>

∫
T2

|z− z0|
2
| f (z, w)|2

|q(z, w)|2
dσ ≥

∫
T2\U

c| f (z, w)|2

|q(z, w)|2
dσ

and

∞>

∫
U
| f (z, w)|2 dσ ≥

∫
U

c| f (z, w)|2

|q(z, w)|2
dσ

together imply

‖ f ‖2L2(µ) =

∫
U

| f (z, w)|2

|q(z, w)|2
dσ +

∫
T2\U

| f (z, w)|2

|q(z, w)|2
dσ <∞.

So, L is a divisor of Iµ. The proof for J is similar. �
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8. Proof of the main theorem

We have all of the pieces in place to prove the theorem from the introduction. Here is the main theorem
with extra details filled in. When we use the inner product notation 〈 · , · 〉 below with no subscript, we
are taking inner products in CN (where the N is taken from context) and not taking any kind of Hilbert
function space inner product.

Theorem 8.1. Let q ∈C[z, w] be almost stable with deg q ≤ (n,m). Then, there exist vector polynomials
E ∈ Cn

[z, w] and F ∈ Cm
[z, w], with deg E≤ (n−1,m), and deg F≤ (n,m−1), satisfying the following

conditions:

(1) E is horizontally D∪ X-stable where X = T \ (π2(Zq)).

(2)
←

F is vertically D∪ Y -stable where Y = T \ (π1(Zq)).

(3) q(z, w)q(Z ,W )−
←q(z, w)←q(Z ,W )

= (1− z Z̄)〈E(z, w),E(Z ,W )〉+ (1−wW̄ )〈F(z, w),F(Z ,W )〉. (8-1)

(4) If Ẽ ∈ Cn
[z, w] and F̃ ∈ Cm

[z, w] satisfy items (1) and (3) above in place of E and F, then there
exist unitary matrices U1, U2 such that

E(z, w)=U1Ẽ(z, w) and F(z, w)=U2F̃(z, w).

Proof. We use the setup (and conclusion) of Corollary 7.5. By Lemma 6.7, >µ has dimension n and
3µ has dimension m. Let {e1, . . . , en} be an orthonormal basis of >µ and { f1, . . . , fm} an orthonormal
basis of 3µ. Define E= (e1, . . . , en)

t
∈ Cn
[z, w] and F= ( f1, . . . , fm)

t
∈ Cm
[z, w]. Corollary 7.5 now

proves item (3).
Write E(z, w) = E(w)3n(z) and F(z, w) = F(z)3m(w). With these choices, Proposition 5.3 says

E(w) is invertible for all w ∈ D with the exception of w0 ∈ T with the property that w −w0 is not a
divisor of Iµ. Lemma 7.7 says (w−w0) is a divisor of Iµ whenw0 /∈π2(Zq∩T2). So, E(w) is invertible
when w ∈ D \π2(Zq ∩T2). The entries of

←

F(z, w)= znwm−1F(1/z̄, 1/w̄)

form an orthonormal basis for 4µ and
←

F(z, w)= zn F(1/z̄)wm−13m(1/w̄)= zn F(1/z̄)χ3m(w),

where χ is the m × m matrix with ones on the antidiagonal (entries ( j,m − j)) and zeros elsewhere.
By Proposition 5.3 and Lemma 7.7 zn F(1/z̄)χ is invertible for z ∈ D \ π1(Zq ∩ T2). Of course, χ is
invertible, so the same statement holds for zn F(1/z̄). This proves items (1) and (2) of Theorem 8.1.

Lemma 3.4 proves item (4). �

9. Polynomials with unique decompositions

In this section we give a characterization of the polynomials with no zeros on the bidisk that have a
unique sums of squares decomposition.
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Proof of Theorem 1.15. Suppose q is almost stable with deg p = (n,m).
To prove item (1) implies (2) in Theorem 1.15, suppose there are unique 01 and 02, sums of squared

moduli of two-variable polynomials, such that

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)01(z, w)+ (1− |w|2)02(z, w).

By Corollary 7.5, if µ is the Bernstein–Szegő measure associated to q then

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)K>µ((z, w), (z, w))+ (1− |w|2)K3µ((z, w), (z, w))

= (1− |z|2)K=µ((z, w), (z, w))+ (1− |w|2)K4µ((z, w), (z, w)).

These reproducing kernels can be written as sums of squares of two variable polynomials. Since we are
assuming such decompositions are unique we have

K>µ((z, w), (z, w))= K=µ((z, w), (z, w)).

Because of the formula (Proposition 5.5)

K>µ((z, w), (z, w))− K=µ((z, w), (z, w))= (1− |w|2)KZµ((z, w), (z, w)), (9-1)

we see that
KZµ((z, w), (z, w))= 0.

This implies Zµ = {0}. In other words, there are no nonzero f ∈ Z∩ L2(µ) = Z∩ L2(1/|q|2dσ) and
this just says there are no nonzero f ∈Z such that

f/q ∈ L2(T2).

This proves that item (1) implies item (2) in Theorem 1.15.
To prove item (2) implies (3) in the theorem, assume there are no nonzero f ∈Z such that

f/q ∈ L2(T2).

Notationally, Zµ = {0} and again by (9-1) we have

K>µ((z, w), (z, w))= K=µ((z, w), (z, w)).

The two subspaces >µ and =µ are reflections of one another. So, if we write

K>µ((z, w), (z, w))= K=µ((z, w), (z, w))= |E(z, w)|2,

where E(z, w) = (E1(z, w), . . . , En(z, w))t ∈ Cn
[z, w] and E1, . . . , En are an orthonormal basis for

>µ ==µ, then the entries of
←

E(z, w) := zn−1wmE(1/z̄, 1/w̄)

also form an orthonormal basis for >µ ==µ. So,

|E(z, w)|2 = |
←

E(z, w)|2,

and by Lemma 3.2 there is an n× n unitary matrix U such that

UE(z, w)=
←

E(z, w).
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(As we commented there Lemma 3.2 holds for two-variable polynomials just as well.) If we reflect both
sides of this equation (take conjugates, replace (z, w) with (1/z̄, 1/w̄), and multiply through by zn−1wm)
we see that

Ū
←

E(z, w)= E(z, w).

Note that Ū is the matrix obtained by taking complex conjugates of each entry of U and is not the adjoint
of U . In fact, Ū−1

=U t and therefore

U t E(z, w)=
←

E(z, w)=UE(z, w).

Hence, U = U t since the vectors E(z, w) span all of Cn as (z, w) varies over C2 (by Proposition 5.3).
The matrix U is therefore symmetric unitary. Symmetric unitaries can be factored as U = V t V where
V is a unitary — this is the so-called Takagi factorization. The vector polynomial

V E(z, w)

is then symmetric since its reflection is

V̄
←

E(z, w)= (V t)−1UE(z, w)= V E(z, w)

as U = V t V . So we replace E with V E and this proves there exists a symmetric vector polynomial E
such that

K>µ((z, w), (z, w))= K=µ((z, w), (z, w))= |E(z, w)|2.

By Proposition 5.3, E is horizontally D∪ E-stable, since E and
←

E are both horizontally D-stable.
Similar arguments show that whenZµ={0}, there exists a symmetric vector polynomial F∈Cm

[z, w]
of degree (n,m−1) which is vertically D∪ E-stable, and

K4µ((z, w), (z, w))= K3µ((z, w), (z, w))= |F(z, w)|2.

By Corollary 7.5, we have that

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2, (9-2)

where E and F satisfy all of the desired properties. This proves item (2) implies item (3).
To prove item (3) implies (1) assume (9-2) holds where E is horizontally D-stable and F is vertically

D-stable. We must show this is the only sums of squares decomposition for q.
Suppose there are vector polynomials A ∈ CN

[z, w],B ∈ CM
[z, w] such that

|q(z, w)|2− |←q(z, w)|2 = (1− |z|2)|A(z, w)|2+ (1− |w|2)|B(z, w)|2.

Setting |w| = 1, Equation (9-2) implies

|E(z, w)|2 = |A(z, w)|2 for (z, w) ∈ C×T.

Since E is horizontally D-stable, Lemma 3.3 applies: n≤ N and there exists a one variable N×n matrix
valued rational inner function 91 such that

A(z, w)=91(w)E(z, w) for (z, w) ∈ D2.



138 GREG KNESE

By similar reasoning, m ≤ M and there exists an M ×m matrix valued rational inner function 92 such
that

B(z, w)=92(z)F(z, w).

So,
|A(z, w)|2 ≤ |E(z, w)|2, |B(z, w)|2 ≤ |F(z, w)|2 for all (z, w) ∈ D2.

However, we must have equality at every point in both of these inequalities because otherwise

(1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2 = (1− |z|2)|A(z, w)|2+ (1− |w|2)|B(z, w)|2

would be violated. Hence, the sums of squares terms for q are unique:

|A(z, w)|2 = |E(z, w)|2, |B(z, w)|2 = |F(z, w)|2 for all (z, w) ∈ C2.

This proves (3) implies (1) and concludes the proof. �

Corollary 1.16 says that the only stable polynomials with a unique decomposition are one variable
polynomials. We prove this now.

Proof of Corollary 1.16. Suppose p ∈ C[z, w] is stable and deg p = (n,m). It is implicit in most of this
paper that n,m> 0. By Theorem 1.15, since 1/|p|2 is integrable, it follows that p does not have a unique
sums of squares decomposition. If n= 0 or m = 0 then p is really just a one variable polynomial with no
zeros on closed disk. It is well known that the decomposition in the one variable Christoffel–Darboux
formula is unique, since the sums of squares term can just be solved for; it equals

|p(z)|2− |←p(z)|2

1− |z|2

in the case where m = 0. �

10. Application: Fejér–Riesz factorization

The classical Fejér–Riesz theorem says that a nonnegative one variable trigonometric polynomial t can be
factored as |p(z)|2 where p ∈C[z] has no zeros in the disk D. It is false that all nonnegative two variable
trig polynomials can be factored as |p(z, w)|2 where p ∈ C[z, w] has no zeros on the bidisk. Indeed,
Geronimo and Woerdeman [2004] give a characterization of which strictly positive trig polynomials have
a “Fejér–Riesz type factorization”. We reprove and extend this result to certain cases of nonnegative
trigonometric polynomials. Our proof does not make use of a certain “maximal entropy result” and is
therefore self-contained.

We emphasize that requiring a finite measure µ to be an OC measure is a condition on its moments
[Knese 2008, Appendix]. First, let us establish the strictly positive result.

Theorem 10.1 [Geronimo and Woerdeman 2004]. Let t :T2
→C be a positive trigonometric polynomial

of two variables with Fourier coefficients t̂( j, k) supported on the set | j | ≤ n, |k| ≤m. Then, there exists
a stable p ∈ C[z, w], deg p ≤ (n,m) satisfying t (z, w)= |p(z, w)|2 for all (z, w) ∈ T2 if and only if the
measure dµ= (1/t)dσ is an OC measure.
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Proof. The “only if” direction follows from Theorem 7.4. To prove the “if” direction, observe that if µ
is an OC measure, then by Corollary 7.6, if p is a unit norm polynomial in Maxµ, then p is stable (see
Remark 6.4) and defining

dρ =
1

|p(z, w)|2
dσ,

we have that the inner products on L2(µ) and L2(ρ) agree when restricted to (. So, the moments agree:∫
T2

z jwkdµ=
∫

T2
z jwkdρ for | j | ≤ n, |k| ≤ m.

Here is where we deviate from the Geronimo–Woerdeman proof. Observe that

1=
∫

T2

|p(z, w)|
√

t (z, w)

√
t (z, w)
|p(z, w)|

σ ≤

√∫
T2

|p(z, w)|2

t (z, w)
dσ

√∫
T2

t (z, w)
|p(z, w)|2

dσ = ‖p‖L2(µ)

√
‖t‖L1(ρ) (10-1)

by Cauchy–Schwarz. Now, ‖p‖L2(µ) = 1 since p was chosen to have unit norm, and since the moments
of µ and ρ agree,

‖t‖L1(ρ) = ‖t‖L1(µ) =

∫
T2

t (z, w)
t (z, w)

dσ = 1.

Therefore, we have equality in the above application of Cauchy–Schwarz (Equation (10-1)). So, |p|/
√

t
and
√

t/|p| are multiples of one another, implying |p|2 = ct for some constant c. The constant c must
be 1 since p has unit norm in L2(µ). Hence, t (z, w)= |p(z, w)|2 for (z, w) ∈ T2. �

We would like to extend this result to the case of nonnegative trigonometric polynomials, and we
have some results in this direction. Work on characterizing when a nonnegative operator-valued two
variable polynomial has a Fejér–Riesz type factorization was done in [Dritschel and Woerdeman 2005].
(Although the subtleties of all of the different candidates for the notion of outerness in several variables
seem to have prevented getting a necessary and sufficient condition for a Fejér–Riesz factorization in
that paper.)

We believe that any Fejér–Riesz type factorization for nonnegative two-variable trigonometric polyno-
mials should take into account the notions of toral and atoral polynomials. These notions were alluded
to in Remark 1.11.

Example 10.2. Consider the nonnegative trigonometric polynomial t (z, w) = |z − w|2. It cannot be
factored as |p(z, w)|2 where p ∈ C[z, w] has no zeros on the bidisk, because p would necessarily
vanish on the set {(z, w) ∈ T2

: z = w} and therefore z − w would divide p. So, the polynomial
zwt (z, w)= 2zw− z2

−w2 associated to t has a toral factor, and since this toral factor has zeros in the
bidisk, there is no hope for such a Fejér–Riesz type of factorization. So, the question of whether a Fejér–
Riesz factorization exists depends on the properties of the toral factors of t . This is true more generally.

Let t : T2
→ C be a nonnegative trigonometric polynomial of two variables, given by

t (z, w)=
N∑

j=−N

M∑
k=−M

t jkz jwk
≥ 0,

and let q(z, w) := zNwM t (z, w) ∈ C[z, w].
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Lemma 10.3. If q has an irreducible toral factor p, then p2 divides q , and t/|p|2 is a nonnegative
trigonometric polynomial.

Proof. Write q = hp for some h ∈ C[z, w]. By definition of toral, p has infinitely many zeros on T2.
The lemma is not difficult in the case where p is a linear polynomial in one variable alone, so we assume
this is not the case. Suppose p has degree (n,m). Let (z0, w0) ∈ T2

∩ Z p with the property that p(·, w0)

has a zero of multiplicity one at z0 and t (·, w0) is not identically zero; this will be the case for all but
finitely many of the (z, w) ∈ T2

∩ Z p. Now, t (z, w0) = z−Nw−M
0 h(z, w0)p(z, w0), and as t (·, w0) is a

nonnegative trig polynomial of one variable, it must have zeros of even order on T. Hence, h(z0, w0)=0.
Therefore, h and p share infinitely many zeros, and this implies p divides h by irreducibility of p. Hence,
p2 divides q. Toral polynomials are T2-symmetric in the sense that

←p = cp

for some unimodular constant c. So,

t (z, w)= z−Nw−M p(z, w)2g(z, w)= z−N+nw−M+m
|p(z, w)|2g(z, w) for some g ∈ C[z, w].

Thus, t/|p|2 is a nonnegative trig polynomial. �

Corollary 10.4. If t is a nonnegative trigonometric polynomial, then t can be factored into t (z, w) =
|p(z, w)|2s(z, w) where p ∈ C[z, w] is a toral polynomial (or is a constant) and s is a nonnegative
trigonometric polynomial with finitely many zeros on T2.

The corollary divides the study of characterizing trig polynomials with a Fejér–Riesz factorization
into the question of when a toral polynomial has no zeros on the bidisk and when a nonnegative trig
polynomial finitely many zeros on the torus has a Fejér–Riesz factorization.

To introduce the next result we recall that every positive two variable trigonometric polynomial can
be written as a sum of squares of two-variable polynomials. This was proved in [Dritschel 2004] and
reproved in [Geronimo and Lai 2006] (the latter paper has a summary of related known results). It is
unknown if all nonnegative trigonometric polynomials can be written as a sum of squares of two variable
polynomials. The above corollary says that it is enough to address this question for trig polynomials with
finitely many zeros. On the other hand, if it is true that all nonnegative trig polynomials are equal to a
sum of squares of polynomials, then our approach allows us to characterize when they can be written as
a single square of a polynomial with no zeros on the bidisk.

Theorem 10.5. Suppose p1, . . . , pN ∈ C[z, w] have degree at most (n,m) and no common factor. Also,
assume that for some j , p j (0, 0) 6= 0. Let

t (z, w)=
N∑

j=1

|p j (z, w)|2 for (z, w) ∈ T2,

and define dµ= (1/t)dσ . The trigonometric polynomial t can be written as t (z, w)= |p(z, w)|2, where
p has no zeros on the bidisk, if and only if µ is an OC measure.

If every p j vanishes at the origin, we could apply a Möbius transformation to make sure not all of the
polynomials vanish at the origin and then apply the above theorem to check whether the trig polynomial
has the desired factorization.
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Proof. Our proof in the case of a strictly positive trig polynomial carries over with some modifications.
The “only if” direction again follows from Theorem 7.4. Let us prove that if µ is an OC measure then t
has a Fejér–Riesz type of decomposition.

Since t is of the given form it is clear that each p j ∈ L2(µ), as |p j |
2/t ≤1 on the torus. The assumption

that p j (0, 0) 6= 0 guarantees that Maxµ is nonempty (since we then know *µ 6= (µ). Let q be a unit
norm polynomial in Maxµ. By Corollary 6.5, q is almost stable. To see this, note the corollary says q
can be factored as q1q2 where q1 divides every element of (µ and q2 is almost stable, but we assumed
p1, . . . , pN have no common factor. Hence, q1 must be a constant.

Define

dρ =
1

|q(z, w)|2
dσ.

By Corollary 7.6, (µ =(ρ and the inner products of L2(µ) and L2(ρ) agree on (µ. In particular,

p j/q ∈ L2(T2) for each j.

Just as in the proof in the strictly positive case, we can prove

1≤ ‖q‖L2(µ)

√
‖t‖L1(ρ)

by an application of Cauchy–Schwarz. Since q has unit norm, ‖q‖L2(µ)= 1, and since the inner products
agree, we have

‖t‖L1(ρ) =

N∑
j=1

‖p j‖
2
L2(ρ) =

N∑
j=1

‖p j‖
2
L2(µ) = ‖t‖L1(µ) = 1.

Therefore, just as in the proof for the strictly positive case, we have equality in Cauchy–Schwarz, which
implies t = |q|2 on the torus. �

So, the above theorem addresses nonnegative trig polynomials of a specific form. The above proof
would also work if we could decompose t as

t (z, w)=
N∑

j=1

p j (z, w)q j (z, w),

where p j , q j ∈ L2((1/t)dσ) have no common factor and not all vanish at (0, 0).

Question 10.6. Can every nonnegative two variable trigonometric polynomial t be decomposed as

t (z, w)=
N∑

j=1

p j (z, w)q j (z, w),

where p j , q j are in L2(1
t dσ) and have no common factor?

Next, we tackle toral factors of nonnegative trig polynomials.

Theorem 10.7. An irreducible toral polynomial p ∈ C[z, w] has no zeros in the bidisk if and only if
←

∂p
∂z
+

←

∂p
∂w



142 GREG KNESE

is almost stable. In this case, all of the zeros on T2 occur at singularities of Z p (i.e., common zeros of
∂p/∂z and ∂p/∂w).

The above reflections are performed at the degrees of ∂p/∂z and ∂p/∂w that would generically be
expected. Namely, if p has degree (n,m), we reflect ∂p/∂z at the degree (n−1,m).

Proof. If p is toral, then p is necessarily T2 symmetric, meaning p is a unimodular constant times ←p
(and in fact we may assume p = ←p by multiplying by an appropriate constant). It is proved in [Knese
2009] that if p is T2 symmetric and has no zeros in the bidisk, then

←

∂p
∂z
+

←

∂p
∂w

has no zeros in the set D2 except possibly at singularities of Z p (and there can be at most finitely many
singularities).

Conversely, suppose
←

∂p/∂z+
←

∂p/∂w is almost stable. This implies

φ(z, w)=
z(∂p/∂z)(z, w)+w(∂p/∂w)(z, w)

←

(∂p/∂z)(z, w)+
←

(∂p/∂w)(z, w)

is a (nonconstant) inner function on the bidisk, and must be bounded by 1 in modulus on the bidisk.
It is also proved in [Knese 2009] that if p is T2 symmetric, then

(n+m)p(z, w)= z
∂p
∂z
(z, w)+w

∂p
∂w

(z, w)+
←

∂p
∂z
(z, w)+

←

∂p
∂w

(z, w).

So, if p(z, w)= 0 for some (z, w) ∈ D2, then |φ(z, w)| = 1, which is a contradiction. Therefore, p has
no zeros in the bidisk. �

Remark 10.8. We view this as progress on determining which nonnegative trig polynomials have a
Fejér–Riesz decomposition for the following reasons. A nonnegative trig polynomial has a unique toral
factor |p|2 and determining whether p has no zeros in the bidisk can be approached by looking at each
factor of p. For the factors f whose zero sets have no singularities on the torus, the above theorem
says we can check whether

←

∂ f/∂z+
←

∂ f/∂w is stable. A two-variable Schur–Cohn test, such as the one
presented in [Geronimo and Woerdeman 2004], can be used to check this condition. For factors with
singularities on the torus, one would need to adapt the Schur–Cohn test to the almost stable case. We
leave this for future work.

To summarize, given a nonnegative trig polynomial t we can factor it into t (z, w)= |p(z, w)|2s(z, w)
where p is a toral polynomial and s is a nonnegative trig polynomial with finitely many zeros on T2. The
above remark addresses cases where we can determine whether p has no zeros in the bidisk. If s has no
zeros on the torus, the Geronimo–Woerdeman theorem characterizes whether it can be factored as |q|2

where q is stable. We have extended this characterization to a class of nonnegative trig polynomials with
a special form, for which it is unknown whether this is all nonnegative trig polynomials.
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11. Application: distinguished varieties

One of our main applications is a bounded analytic extension theorem for distinguished varieties, which
we now define.

Definition 11.1. A nonempty subset V ⊂ C2 is a distinguished variety if V is an algebraic curve: there
exists p ∈ C[z, w] such that

V = {(z, w) ∈ C2
: p(z, w)= 0}

and V exits the bidisk through the distinguished boundary

∂(V ∩D2)⊂ T2.

Our goal is to prove the following result. (This is a more qualitative version of Theorem 11.4 below.)

Theorem 11.2. Let V ⊂C2 be a distinguished variety. Then, there is a rational function of z, C(z), with
no poles in D, such that for every f ∈ C[z, w], there is a rational function F ∈ C(z, w), holomorphic on
D2, which agrees with f on V :

F(z, w)= f (z, w) for all (z, w) ∈ V ∩D2

and satisfies the estimate

|F(z, w)| ≤ |C(z)| sup
V∩D2
| f | for all (z, w) ∈ D2.

If V has no singularities on T2, C(z) can be taken to be a constant.

The last statement is already proved in [Knese 2009]. Essentially, the purpose of this section is to
inject the work of this paper into the work of [Knese 2009]. The use of the Cole–Wermer sums of
squares formula is essential to the work in [Knese 2009], and if we use Theorem 1.3 in its place, the
following lengthy theorem can be proved by slightly modifying the proofs in [Knese 2009].

Theorem 11.3. Let V be a distinguished variety given as the zero set of a square-free polynomial p ∈
C[z, w] of degree (n,m). Let a, b > 0 be positive real numbers. Then, there exist P ∈ Cn

[z, w], deg P ≤
(n−1,m), and Q ∈ Cm

[z, w], deg Q≤ (n,m−1) such that

• P is horizontally D∪X2-stable and Q is vertically D∪X1-stable where X2=T\π2(S), X1=T\π1(S)
and S is the set of singularities of V ;

• (bm− an)|p(z, w)|2+ 2 Re
[(

az ∂p
∂z
(z, w)− bw ∂p

∂w
(z, w)

)
p(z, w)

]
+ (1− |z|2)|P(z, w)|2

= (1− |w|2)|Q(z, w)|2;

• there is a m×m matrix-valued rational inner function8 :D→Cm×m such that V has the following
representation

V ∩D2
= {(z, w) ∈ D2

: det(w Im −8(z))= 0},

and Q is a “polynomial eigenvector” for 8:

8(z)Q(z, w)= wQ(z, w) for all (z, w) ∈ V .
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Guide to the proof. Everything above is contained in a theorem in [Knese 2009] except for the horizontal
and vertical stability of P, Q, respectively. So let us briefly outline how all of this can be done. All of
the following are proved in [Knese 2009]:

(1) If p ∈ C[z, w] has degree (n,m) and defines a distinguished variety, then the polynomial

q(z, w)= zn p
( 1

z
, w
)

is T2-symmetric and has no zeros on the bidisk.

(2) Such a q has the property that for each a, b > 0

a
←

∂q
∂z
+ b

←

∂q
∂w

has no zeros on the closed bidisk D2 except possibly at the finite number of singularities of Zq ,
which necessarily occur on T2.

(3) Such a q satisfies

(an+ bm)2|q(z, w)|2− 2 Re[(azqz(z, w)+ bwqw(z, w))(an+ bm)q(z, w)]

= |a
←

∂q
∂z
(z, w)+ b

←

∂q
∂w

(z, w)|2− |az
∂q
∂z
(z, w)+ bw

∂q
∂w

(z, w)|2. (11-1)

By Theorem 8.1, this last item (11-1) can written as

(1− |z|2)|E(z, w)|2+ (1− |w|2)|F(z, w)|2

where E is horizontally D∪Y2-stable and
←

F is vertically D∪Y1-stable; here Y2=T\π2(Sq), Y1=T\π1(Sq),
and Sq is the set of singularities of q . If we convert back to statements involving the polynomial p (by
replacing z with 1/z and multiplying by zn) we get

(bm− an)|p(z, w)|2+ 2 Re
[(

az
∂p
∂z
(z, w)− bw

∂p
∂w

(z, w)
)

p(z, w)
]
+ (1− |z|2)|P(z, w)|2

= (1− |w|2)|Q(z, w)|2,

where P is horizontally D∪ X2-stable, Q is vertically D∪ X1-stable, X2 = T \ π2(S), X1 = T \ π1(S),
and S is the set of singularities of V .

For the rest of the theorem, the proofs in [Knese 2009] can be applied unchanged. �

Here is the promised bounded analytic extension theorem. The proof is identical to the proof in [Knese
2009] for distinguished varieties with no singularities on the torus. The only difference is that we did
not have Theorem 1.3 to tell us that Q as above is vertically D∪ X1-stable, where X1 = T \ π1(S). (In
the case of no singularities we already knew Q is vertically D-stable.)

Let us write
Q(z, w)= Q(z)3m(w),

where the matrix polynomial Q(z) is invertible for all z ∈ D ∪ X1 (by definition of vertical D ∪ X1-
stability).
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Theorem 11.4. Let V be a distinguished variety and let 8, Q, and Q be as in Theorem 11.3. Then, for
any polynomial f ∈ C[z, w], the rational function

F(z, w) := (1, 0, . . . , 0)Q(z)−1 f (z Im,8(z))Q(z, w)

is equal to f on V ∩D2 and we have the estimates

|F(z, w)| ≤ ‖Q(z)−1
‖ |Q(z, w)| sup

V∩D2
| f | ≤

√
m‖Q(z)−1

‖ ‖Q(z)‖ sup
V∩D2
| f | for all (z, w) ∈ D2.

Here we are taking the operator norm of the matrices Q(z) and Q(z)−1.

In words, the growth of the extension F is controlled by a rational function of one variable. When V
has no singularities on T2, Q(z) is invertible for z ∈ D and

sup
D

‖Q(z)−1
‖ ‖Q(z)‖

is a finite constant.
The following is an example of the above two theorems.

Example 11.5. Consider the following reducible distinguished variety in C2

V = {(z, w) ∈ C2
: (z−w)(z2

−w)= 0}.

Like all distinguished varieties it has a determinantal representation of the following form:

V ∩D2
= {(z, w) ∈ D2

: det(w I −8(z))= 0},

where 8 is a rational matrix valued inner function. One choice of 8 is

8(z)=
1
2

(
z(1+ z) z2(1− z)
(1− z) z(1+ z)

)
.

As can easily be checked

det(w I2−8(z))= w2
− zw− z2w+ z3

= (w− z)(w− z2).

The variety V is simple yet instructive because it has a singularity at the origin and more importantly a
singularity on the torus at the point (1, 1).

One choice for Q as above is

Q(z, w)=
(

2w− z− z2

1− z

)
.

Writing

Q(z, w)= Q(z)
(

1
w

)
,

where

Q(z)=
(
−z− z2 2

1− z 0

)
,

we note that Q(z) is invertible in D \ {1}; that is, Q is vertically D \ {1}-stable.
The analytic extension theorem now works as follows.
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Let f ∈ C[z, w] which we think of as a function on V . Then, the rational function

F(z, w)= (1, 0)Q(z)−1 f (z I,8(z))Q(z, w)

agrees with f on V because Q is a polynomial eigenvector for 8 on V . Furthermore, the size of F on
the bidisk can be estimated purely in terms of a fixed rational function of z and the supremum of f on
V ∩D2.

Indeed,

|F(z, w)| ≤ |(1, 0)Q(z)−1
| |Q(z, w)| sup

V∩D2
| f | ≤

√
1+

16
|1− z|2

sup
V∩D2
| f |.

12. Application: Agler’s Pick interpolation theorem

As another application we give a simple proof of necessity in the Pick interpolation theorem on the
bidisk. The proof below sidesteps the use of Andô’s inequality and cone-separation arguments found in
most proofs. (The proof of sufficiency can be accomplished with a “lurking isometry” argument; see
Lemma 6.7 for something similar.) The proof is very similar to the argument in [Cole and Wermer 1999]
for establishing Andô’s inequality from the sum of squares decomposition.

Theorem 12.1 (Agler). Given distinct points

(z1, w1), . . . , (zN , wN ) ∈ D2

and complex numbers
c1, . . . , cN ∈ D,

there exists a holomorphic function f : D2
→ D which interpolates

f (z j , w j )= c j for j = 1, 2, . . . , N

if and only if there exist positive semidefinite N × N matrices 0 and 1 such that

1− c j c̄k = (1− z j z̄k)0 jk + (1−w j w̄k)1 jk .

Proof of necessity. We first prove the theorem for rational inner functions and then use an approximation
theorem to prove necessity in general. So, let f be a rational inner function on the bidisk. Every rational
inner function can be written as f = ←p/p for some p ∈C[z, w] of degree at most (n,m) having no zeros
on the bidisk [Rudin 1969, Section 5.5.1]. Decomposing p as in (8-1) and setting (z, w)= (z j , w j ) and
(Z ,W )= (zk, wk) we have

p(z j , w j )p(zk, wk)−
←p(z j , w j )

←p(zk, wk)

= (1− z j z̄k)〈E(z j , w j ),E(zk, wk)〉+ (1−w j w̄k)〈F(z j , w j ),F(zk, wk)〉.

Therefore, if f (z j , w j )= (
←p/p)(z j , w j )= c j , then

0 jk =
1

p(z j , w j )p(zk, wk)
〈E(z j , w j ),E(zk, wk)〉, 1 jk =

1

p(z j , w j )p(zk, wk)
〈F(z j , w j ),F(zk, wk)〉
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are both positive semidefinite matrices and they satisfy

1− c j c̄k = (1− z j z̄k)0 jk + (1−w j w̄k)1 jk, (12-1)

as desired.
In general, suppose f : D2

→ D is holomorphic and f (z j , w j )= c j . Rudin’s extension of Carathéo-
dory’s theorem to the polydisk [Rudin 1969, Theorem 5.5.1] says that f is the pointwise limit of a
sequence of rational inner functions: fα→ f as α→∞, where α is used to index the positive integers.
Corresponding to each such rational inner function fα, we write fα(z j , w j )= cα, j and we choose positive
semidefinite matrices 0α,1α so that an equation analogous to (12-1) holds:

1− cα, j c̄α,k = (1− z j z̄k)(0α) jk + (1−w j w̄k)(1α) jk . (12-2)

The set of positive semidefinite matrices (of a fixed size) with diagonal entries bounded by some constant
is compact (their operator norms are bounded by their traces which are uniformly bounded). The diagonal
entries of 0α and 1α are bounded independently of α (e.g., it is not hard to prove

1
1− |z j |

2 ≥ (0α) j j

for j = 1, . . . , N ) and therefore we may choose a subsequence so that 0α converges to some positive
semidefinite matrix 0 and 1α converges to some positive semidefinite matrix 1. Therefore, if we take
the limit as α→∞ in Equation (12-2) we have proved

1− c j c̄k = (1− z j z̄k)0 jk + (1−w j w̄k)1 jk,

which proves necessity in general. �

Question 12.2. Can the uniqueness in Theorem 1.3 be carried over in some way to the above theorem?

Solutions to extremal Pick problems in two variables (those solvable with a function of norm one but
no less) are not unique as they are in one variable, so we are necessarily vague in our question.

13. Questions

We have already asked three questions: Questions 5.8, 10.6, and 12.2. Here are two others. One of the
most fundamental questions to come out of our research is the following:

Question 13.1. When is a rational function p/q in L2(T2)?

Here we may as well assume p, q ∈ C[z, w] are relatively prime but we are otherwise not imposing
any conditions on their zero sets. If we impose restrictions, we can ask a more concrete question.

Suppose q ∈ C[z, w] is almost stable, deg q = (n,m), and suppose p ∈ C[z, w] has degree ≤
(n − 1,m − 1). If p/q ∈ L2(T2), then the sums of squares decomposition (as in Theorem 6.1) tells
us that there is a constant c such that

|q(z, w)|2− |←q(z, w)|2 ≥ c(1− |z|2)(1− |w|2)|p(z, w)|2 for (z, w) ∈ D2, (13-1)

since p will be in Zµ for the Bernstein–Szegő measure µ associated to q .

Question 13.2. Is the converse true? Does the estimate (13-1) imply p/q ∈ L2(T2)?
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Notational index and conventions

In this section we index where various notations and terms are defined in the paper. We also list our
notational conventions.

stable/almost stable Definition 1.4 horizontally stable Definition 1.6
vertically stable Definition 1.6 reflection ←q(z, w) Definition 1.9
3n(z),3m(w) Equation (1-3) toral Definition 1.12
atoral Definition 1.13 divisor of ideal Definition 5.1
distinguished variety Definition 11.1 dσ = dσ(z, w) Equation (4-1)
degree (n,m) Definition 1.8 q̂( j, k) Equation (4-4)
(,<,2,Z,*,) Notation 4.3 〈 f, g〉µ Equation (4-3)
KV , K(µ, etc. Notation 4.1 wZµ, zZµ,=µ,\µ, etc. Notation 4.4
Maxµ,Minµ Equations (4-7) and (4-8) Iµ Equation (4-2)
OC measure Definition 6.2 T2-symmetric Definition 5.6
L(Z ,W ) Equation (7-1) π1, π2 Equation (7-6)
Zq Equation (7-5) CN

[z,CN
[z, w], E Notation 1.5

n,m fixed positive integers (see Remark 4.2)
p, q elements of C[z, w]
E,F,G,A,B,Q vector polynomials
E, F, A, B, Q matrix polynomials in one variable
〈 · , · 〉 with no subscript inner product on CN (N determined from context)
L2(T2) L2 on the torus with respect to Lebesgue measure
L2(µ), L2(ρ) L2 on the torus with respect to the measure µ or ρ
H 2(T), H 2(T2) classical Hardy space on T or T2

8,9 one variable matrix valued inner functions
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LOCAL WELLPOSEDNESS FOR
THE 2+1-DIMENSIONAL MONOPOLE EQUATION

MAGDALENA CZUBAK

The space-time monopole equation on R2+1 can be derived by a dimensional reduction of the antiselfdual
Yang–Mills equations on R2+2. It can be also viewed as the hyperbolic analog of Bogomolny equations.
We uncover null forms in the nonlinearities and employ optimal bilinear estimates in the framework of
wave–Sobolev spaces. As a result, we show the equation is locally wellposed in the Coulomb gauge for
initial data sufficiently small in H s for s > 1

4 .

1. Introduction

In this paper we study local wellposedness of the Cauchy problem for the monopole equation on R2+1

Minkowski space in the Coulomb gauge. The space-time monopole equation can be derived by a dimen-
sional reduction from the antiselfdual Yang–Mills equations on R2+2, and is given by

FA = ∗DAφ, (ME)

where FA is the curvature of a one-form connection A on R2+1, DAφ is a covariant derivative of the
Higgs field φ, and ∗ is the Hodge star operator with respect to the Minkowski R2+1 metric. (ME) is
a hyperbolic analog of Bogomolny equations, and was first introduced by Ward [1989] and discussed
from the point of view of twistors. Ward [1999] also studied its soliton solutions. Recently, Dai, Terng
and Uhlenbeck [2006] gave a broad survey on the space-time monopole equation. In particular, using
the inverse scattering transform they have shown global existence and uniqueness up to a gauge trans-
formation for small initial data in W 2,1. However, L2 based wellposedness theory for this equation has
not been investigated. The objective of this paper is to fill this gap by specifically treating the Cauchy
problem for rough initial data in H s .

Written in coordinates, (ME) is a system of first order hyperbolic partial differential equations. The
unknowns are a pair (A, φ). If (A, φ) solve the equation, then so do

λA(λt, λx) and λφ(λt, λx), for any λ > 0.

This results in the critical exponent sc=0. Since in general one expects local wellposedness for s> sc the
goal would be to show (ME) is wellposed for s> 0. Nevertheless, the two dimensions create an obstacle,
which so far only allows s > 1

4 . We explain this now. In Section 4 we choose a Coulomb gauge, and

MSC2000: 35L70, 70S15.
Keywords: monopole, null form, Coulomb gauge, wellposedness.
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reformulate (ME) as a system of semilinear wave equations coupled with an elliptic equation, to which
we refer as auxiliary monopole equations (aME). Schematically it looks as follows:

�u =B+(∂u, ∂v, A0),

�v =B−(∂u, ∂v, A0),

4A0 = C(∂u, ∂v, A0),

(aME)

where B±,C are bilinear forms,1 A0 is the temporal part of the connection A, ∂u, ∂v denote space-time
derivatives of u and v respectively, and are given in terms of φ and the spatial part of A. As a result,
showing wellposedness of (ME) for s > 0 can follow from showing (aME) is wellposed for s > 1 (see
Theorem 4.1). Also, the most difficult nonlinearity that we have to handle is contained in B±(∂u, ∂v, A0).
Luckily, it exhibits a structure of a null form. There are two standard null forms:

Q0(u, v)=−∂t u∂tv+∇u · ∇v, Qαβ(u, v)= ∂αu∂βv− ∂βu∂αv.

The null condition was introduced by Klainerman [1984], and it was first applied to produce better local
wellposedness results for wave equations with a null form by Klainerman and Machedon [1993]. Indeed,
in low dimensions, for these kind of nonlinearities one can assume much less regularity of the initial data
than for the general products. Counterexamples for general products were shown by Lindblad [1996].
We uncover the null form Qαβ in our system of wave equations as well as a new type of a null form
which is related to Qαβ . Unfortunately, the results in two spatial dimensions for Qαβ are not as optimal
as they are in higher dimensions or as they are for Q0. In fact, the best result in literature so far for Qαβ in
two dimensions is due to Zhou [1997]. He establishes local wellposedness for initial data in H s

×H s−1

for s > 5
4 . In addition, by examining the first iterate Zhou shows that this is as close as one can get

to the critical level using iteration methods.2 On the other hand, for dimensions n ≥ 3 Klainerman and
Machedon [1996] showed almost optimal local wellposedness in H s

× H s−1 for s > n/2. The articles
[Klainerman and Machedon 1995; Klainerman and Selberg 2002] give equally satisfying results for Q0,
and in all dimensions n ≥ 2.

Now, one of the nonlinearities in the system (aME) is Qαβ , so showing (aME) is locally wellposed
for s > 5

4 would be sharp by iteration methods. This is what we do, and as a result we obtain local
wellposedness of (ME) in the Coulomb gauge for s > 1

4 (see the Main Theorem below). However,
(aME) is not exactly (ME), so we hope to treat (ME) directly in the near future and improve the results.
What should be mentioned here is that we have considered other traditional gauges such as Lorentz and
Temporal, but they have not been as nearly useful as the Coulomb gauge. Perhaps other, less traditional
gauges could be used. Moreover, we note that even the estimates involving the temporal variable A0

seem to require s > 1
4 .

We include a brief discussion about global wellposedness. As already mentioned, in [Dai et al. 2006]
the inverse scattering transform is used to show global existence and uniqueness up to a gauge transfor-
mation for small data in W 2,1. To extend it to global wellposedness in L2 based theory, we would like
to benefit from the local result in this article. It is not immediately clear how this can be accomplished

1See Section 4 for the precise formula for B± and C.
2The discussion of the first iterate can be also found in the appendix of [Klainerman and Selberg 2002], and it can be deduced

from the estimates and counterexamples found within [Foschi and Klainerman 2000].
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since, for example, the energy functional is not positive definite and, in fact, it vanishes for the solutions
of (ME) [Ward 1989]. Global wellposedness is an interesting question, and we would like to investigate
it in the future.

The main result of this paper is contained in the following theorem.

Main Theorem. Let 1
4 < s < 1

2 and r ∈ (0, 2s] and consider the space-time monopole equation

FA = ∗DAφ, (ME)

with initial data
(A1, A2, φ)|t=0 = (a1, a2, φ0),

then (ME) in the Coulomb gauge is locally wellposed for initial data sufficiently small in H s(R2) in the
following sense.

• Local existence: For all a1, a2, φ0 ∈ H s(R2) sufficiently small there exist T > 0 depending contin-
uously on the norm of the initial data, and functions

A0 ∈ Cb([0, T ], Ḣ r ), A1, A2, φ ∈ Cb([0, T ], H s),

which solve (ME) in the Coulomb gauge on [0, T ] ×R2 in the sense of distributions and such that
the initial conditions are satisfied.

• Uniqueness: If T > 0 and (A, φ) and (A′, φ′) are two solutions of (ME) in the Coulomb gauge on
(0, T )×R2 belonging to

Cb([0, T ], Ḣ r )× (H s,θ
T )3

with the same initial data, then (A, φ)= (A′, φ′) on (0, T )×R2.

• Continuous dependence on the initial data: For any a1, a2, φ0 ∈ H s(R2) there is a neighborhood
U of a1, a2, φ0 in (H s(R2))3 such that the solution map (a, φ0)→ (A, φ) is continuous from U into
Cb([0, T ], Ḣ r )× (Cb([0, T ], H s))3.

Remark 1.1. The spaces H s,θ
T are defined in Section 2B.

Remark 1.2. The initial data does not have to be given in the Coulomb gauge. See Theorem 3.3.

Remark 1.3. There are two reasons for the requirement of the small initial data. First, the construction
of the global Coulomb gauge requires an assumption on the size of the data (see Section 3B). The second
obstacle comes from the elliptic equation for A0 in (aME), and including A0 in the Picard iteration. See
Remark 4.2 for further discussion.

Remark 1.4. We do not prescribe initial data for A0, because when A is in the Coulomb gauge, A0(t)
can be determined at any time by solving the elliptic equation. See Section 4 for more details.

Remark 1.5. To simplify the exposition, in this paper we assume 1
4 < s < 1

2 . See [Czubak 2008] for all
s > 1

4 . In general, the higher the value of s, the less delicate the estimates have to be. We have a uniform
way to handle all s > 1

4 for the estimates involving the null forms (see Section 5B1 for a discussion).
Therefore the reason for restricting the range of s is rather due to the technicalities of the estimates for
A0 (Theorems 5.3 and 5.5 and Corollaries 5.4 and 5.6) and the regularity of the gauge transformations
(Lemma 3.1). The technicalities are not very interesting and are handled in [Czubak 2008] with similar
arguments as those presented here.
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The outline of the paper is as follows. Section 2 sets notation, introduces spaces, and estimates used
throughout the paper. In Section 3 we take a closer look at the equations and discuss gauge transforma-
tions. In Section 4 we rewrite (ME) as a system of wave equations coupled with an elliptic equation. We
also show local wellposedness of the new system implies local wellposedness of (ME) in the Coulomb
gauge. Section 5 is devoted to the proof of the Main Theorem, which is reduced to establishing estimates
(5-4)–(5-8).

2. Preliminaries

First we establish notation, then we introduce function spaces as well as estimates used.

2A. Notation. The expression a . b means a ≤ Cb for some positive constant C . A point in the 2+1-
dimensional Minkowski space is written as (t, x) = (xα)0≤α≤2. Greek indices range from 0 to 2, and
Roman indices range from 1 to 2. We raise and lower indices with the Minkowski metric diag(−1, 1, 1).
We write ∂α = ∂xα and ∂t = ∂0, and we also use the Einstein notation. Therefore, ∂ i∂i =4, and ∂α∂α =
−∂2

t +4 = �. When we refer to spatial and time derivatives of a function f , we write ∂ f , and when
we consider only spatial derivatives of f , we write ∇ f . Finally, d denotes the exterior differentiation
operator and d∗ its dual given by d∗= (−1)k ∗∗∗d∗, where ∗ is the Hodge ∗ operator (see, for example,
[Roe 1998]) and k comes from d∗ acting on some given k-form. It will be clear from the context, when
∗ and d∗ operators act with respect to the Minkowski metric and when with respect to the Euclidean
metric. For the convenience of the reader we include the following: with respect to the Euclidean metric
on R2 we have

∗dx = dy, ∗dy =−dx, ∗1= dx ∧ dy,

and with respect to the diag(−1, 1, 1) metric on R2+1,

∗dt = dx ∧ dy, ∗dx = dt ∧ dy, ∗dy =−dt ∧ dx .

2B. Function spaces. We use Picard iteration. Here we introduce the spaces, in which we are going to
perform the iteration3. First we define the following Fourier multiplier operators

3̂α f (ξ)= (1+ |ξ |2)α/2 f̂ (ξ), 3̂α+u(τ, ξ)= (1+ τ 2
+ |ξ |2)α/2û(τ, ξ),

3̂α−u(τ, ξ)=
(

1+
(τ 2
− |ξ |2)2

1+ τ 2+ |ξ |2

)α/2
û(τ, ξ),

where the symbol of 3α
−

is comparable to (1+
∣∣|τ |− |ξ |∣∣)α. The corresponding homogeneous operators

are denoted by Dα, Dα
+
, Dα
−

, respectively.
Now, the spaces of interest are the wave-Sobolev spaces, H s,θ and Hs,θ , given by4

‖u‖H s,θ = ‖3s3θ
−

u‖L2(R2+1), ‖u‖Hs,θ = ‖u‖H s,θ +‖∂t u‖H s−1,θ .

3We are also going to employ a combination of the standard L p
t W s,q

x spaces for A0. See Section 5C.
4These spaces, together with results in [Selberg 2002b], allowed Klainerman and Selberg to present a unified approach to

local wellposedness for wave maps, Yang–Mills and Maxwell–Klein–Gordon types of equations in [Klainerman and Selberg
2002], and are now the natural choice for low regularity subcritical local wellposedness for wave equations. See also [Tao
2006].
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An equivalent norm for Hs,θ is ‖u‖Hs,θ =‖3s−13+3
θ
−

u‖L2(R2+1). By results in [Selberg 1999] if θ >1/2,
we have

H s,θ ↪→ Cb(R, H s), (2-1)

Hs,θ ↪→ Cb(R, H s)∩C1
b(R, H s−1). (2-2)

This is a crucial fact needed to localize our solutions in time. We denote the restrictions to the time
interval [0, T ] by

H s,θ
T and Hs,θ

T ,

respectively.

2C. Estimates used. Throughout the paper we use the following estimates:

‖D−σ (uv)‖L p
t Lq

x
. ‖u‖H s,θ‖v‖H s,θ (2-3)

is a theorem established by Klainerman and Tataru [1999] for the space-time operator D+. The proof
for the spatial operator D is in [Selberg 1999]. There are several conditions that σ, p, q have to satisfy,
and they are listed in Section 5D, where we discuss the application of the estimate. Further,

‖u‖L p
t L2

x
. ‖u‖H0,θ ≤∞ if 2≤ p ≤∞, θ > 1

2 , (2-4)

‖u‖L p
t Lq

x
. ‖u‖H1−2/q−1/p,θ if 2≤ p ≤∞, 2≤ q <∞, 2/p ≤ 1

2 − 1/q, θ > 1
2 , (2-5)

‖uv‖L2
t,x
. ‖u‖Ha,α‖v‖Hb,β if a, b, α, β ≥ 0, a+ b > 1, α+β > 1

2 . (2-6)

Estimate (2-4) can be proved by interpolation between H 0,θ ↪→ L2
t,x and (2-1) with s = 0. Estimate (2-5)

is a two-dimensional case of Theorem D in [Klainerman and Selberg 2002]. Finally, (2-6) is a special
case of the proposition in [Klainerman and Selberg 2002, Appendix A.2].

3. A closer look at the monopole equations

3A. Derivation and background. Electric charge is quantized, which means that it appears in integer
multiples of an electron. This is called the principle of quantization and has been observed in nature.
The only theoretical proof so far was presented by Paul Dirac [1931]. In the proof Dirac introduced the
concept of a magnetic monopole, of an isolated point-source of a magnetic charge. Despite extensive
research, magnetic monopoles have not been (yet) found in nature. We refer to magnetic monopoles as
Euclidean monopoles. The Euclidean monopole equation has exactly the same form as our space-time
monopole equation (ME),

FA = ∗DAφ,

with the exception that ∗ acts here with respect to the Euclidean metric and the base manifold is R3

instead of R2+1. The Euclidean monopole equations are also referred to as Bogomolny equations. For
more on Euclidean monopoles we refer the reader to [Jaffe and Taubes 1980] and [Atiyah and Hitchin
1988]. In this paper we study the space-time monopole equation, which was first introduced by Ward
[1989]. Both the Euclidean and the space-time monopole equations are examples of integrable systems
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and have an equivalent formulation as a Lax pair. This and much more can be found in [Dai et al. 2006].
Given a space-time monopole equation

FA = ∗DAφ, (ME)

the unknowns are a pair (A, φ). A is a connection 1-form given by

A = A0dt + A1dx + A2dy, where Aα : R2+1
→ g. (3-1)

Here g is the Lie algebra of a Lie group G, which is typically taken to be a matrix group SU (n) or U (n).
In this paper we consider G = SU (n), but everything we say here should generalize to any compact Lie
group.

To be more general we could say A is a connection on a principal G-bundle. Then observe that the
G-bundle we deal here with is a trivial bundle R2+1

×G.
Next, φ is a section of a vector bundle associated to the G-bundle by a representation. We use the

adjoint representation. Since we have a trivial bundle, we can just think of the Higgs field φ as a map
from R2,1

→ g.
FA is the curvature of A. It is a Lie algebra valued 2-form on R2+1

FA =
1
2 Fαβdxα ∧ dxβ, where Fαβ = ∂αAβ − ∂β Aα + [Aα, Aβ], (3-2)

where [ · , · ] denotes the Lie bracket, which for matrices can be thought of simply as [X, Y ] = XY−Y X .
When we write [φ, B], where B is a 1-form, we mean

[φ, B] = [φ, Bi ]dx i and [B,C] = 1
2 [Bi ,C j ]dx i

∧ dx j , for two 1-forms B,C . (3-3)

In the physics language, frequently adopted by the mathematicians, A is called a gauge potential, φ a
scalar field and FA is called an electromagnetic field.

Next, DA is the covariant exterior derivative associated to A, and DAφ is given by

DAφ = Dαφdxα, where Dαφ = ∂αφ+ [Aα, φ]. (3-4)

The space-time monopole equation (ME) is obtained by a dimensional reduction of the antiselfdual
Yang–Mills equations on R2+2, given by

FA =−∗FA. (ASDYM)

If the curvature of a connection A satisfies (ASDYM), then A is called an antiselfdual connection. (The
corresponding selfdual Yang-Mills equation is

FA = ∗FA; (SDYM)

in either case FA satisfies the Yang–Mills equation DA∗F = 0, since FA =±∗FA implies

DA∗F =±DA F = 0,

as can be seen from the second Bianchi identity, or by direct computation from (3-2).)
Both (ASDYM) and (SDYM) are known to give rise to many different integrable equations (see [Ward

1985; Ablowitz et al. 2003] and references therein). In particular, the 2+2 signature is used to derive
both KDV and NLS in [Mason and Sparling 1989], and harmonic maps from R2 and R1+1 into a Lie
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group in [Uhlenbeck 1992]. Also see [Ward 1989], where Einstein’s vacuum equation for cylindrically
symmetric space-times, and the sine-Gordon equation are derived from (ME).

We now present the details of the derivation of (ME) from (ASDYM) outlined in [Dai et al. 2006].
Let

dx2
1 + dx2

2 − dx2
3 − dx2

4

be a metric on R2+2, then in coordinates (ASDYM) is

F12 =−F34, F13 =−F24, F23 = F14. (3-5)

The next step is the dimensional reduction, where we assume the connection A is independent of x3, and
we let A3 = φ. Then (3-5) becomes

D0φ = F12, D1φ = F02, D2φ = F10, (3-6)

where we use index 0 instead of 4. This is exactly (ME) written out in components.

Remark 3.1. Equivalently we could write (ME) as

Fαβ =−εαβγ Dγφ, (3-7)

where εαβγ is a completely antisymmetric tensor with ε012= 1, and where we raise the index γ using the
Minkowski metric. We choose to work with the Hodge operator ∗ as it simplifies our task in Section 4.

Following [Dai et al. 2006], there is another way to write (ME), which is very useful for computations.
(ME) is an equation involving 2-forms on both sides. By taking the parts corresponding to dt ∧ dx and
dt ∧ dy on the one hand, and the parts corresponding to dx ∧ dy on the other, we obtain, respectively,

∂t A+ [A0, A] − d A0 = ∗dφ+ [∗A, φ], (3-8)

d A+ [A, A] = ∗(∂tφ+ [A0, φ]). (3-9)

Observe that now operators d and ∗ act only with respect to the spatial variables. Similarly, A now
denotes only the spatial part of the connection, i.e., A = (A1, A2). Moreover, (3-8) is an equation
involving 1-forms, and (3-9) involves 2-forms.

3B. Gauge transformations. (ME) is invariant under gauge transformations. Indeed, if we have a
smooth map g, with compact support such that g : R2+1

→ G, and

A→ Ag = g Ag−1
+ gdg−1, φ→ φg = gφg−1, (3-10)

then a computation shows FA → gFAg−1 and DAφ → gDAφg−1. Therefore if a pair (A, φ) solves
(ME), so does (Ag, φg).

We would like to discuss the regularity of the gauge transformations. If A ∈ X, φ ∈ Y where X, Y are
some Banach spaces, the smoothness and compact support assumption on g can be lowered just enough
so the gauge transformation defined above is a continuous map from X back into X , and from Y back
into Y . First note that since we are mapping into a compact Lie group, we can assume g ∈ L∞t,x and
‖g‖L∞t,x =‖g

−1
‖L∞t,x . Next, note that the Main Theorem produces a solution so that φ and the spatial parts

of the connection A1, A2 ∈ Cb(I, H s), 1
4 < s < 1

2 , and A0 ∈ Cb(I, Ḣ r ), r ∈ (0, 2s].
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Lemma 3.1. Let 0 < α < 1, and Y = Cb(I, Ḣ 1
∩ Ḣα+1) ∩ L∞, then the gauge action is a continuous

map from
Cb(I, Hα)× Y → Cb(I, Hα), (h, g) 7→ ghg−1

+ gdg−1, (3-11)

and the following estimate holds:

‖hg‖Cb(I,Hα) . (‖h‖Cb(I,Hα)+ 1)‖g‖2Y . (3-12)

Proof. The continuity of the map easily follows from the inequalities we obtain below. Next, for fixed t
we have

‖g(t)h(t)g−1(t)+ g(t)dg−1(t)‖Hα . ‖ghg−1
‖L2 +‖Dα(ghg−1)‖L2 +‖gdg−1

‖Hα ,

where for the ease of notation we eliminated writing of the variable t on the right side of the inequality.
The first term is bounded by ‖h(t)‖Hα‖g‖2L∞ . For the second one we have

‖Dα(ghg−1)‖L2 . ‖Dαgh‖L2‖g‖L∞ +‖h Dαg−1
‖L2‖g‖L∞ +‖h‖Ḣα‖g‖2L∞ .

It is enough to only look at the first term since g and g−1 have the same regularity. By Hölder’s inequality
and Sobolev embedding

‖Dαgh‖L2 ≤ ‖Dαg‖L2/α‖h‖L(1/2−α/2)−1 . ‖g‖Ḣ1‖h‖Ḣα , (3-13)

where we use that α
2
=

1
2
−

1−α
2

. Finally for the last term we have

‖gdg−1
‖Hα . ‖g‖Ḣ1‖g‖L∞ +‖Dαgdg−1

‖L2 +‖g‖Ḣα+1‖g‖L∞, (3-14)

and we are done if we observe that the second term can be handled exactly as in (3-13). �

Remark 3.2. We assume 0< α < 1 since this is the case we need. However it is not difficult to see the
lemma still holds with α = 0 or α ≥ 1 [Czubak 2008].

From the lemma, we trivially obtain the following corollary.

Corollary 3.2. Let 0< r , s < 1,

X = Cb(I, Ḣ r )×Cb(I, H s)×Cb(I, H s), and Y = Cb(I, Ḣ 1
∩ Ḣ s+1

∩ Ḣ r+1)∩ L∞.

Then the gauge action is a continuous map from

X × Y → X, (A0, A1, A2) 7→ Ag, (3-15)

as well as from
Cb(I, H s)× Y → Cb(I, H s), φ 7→ φg = gφg−1, (3-16)

and the following estimates hold:

‖Ag‖X . (1+‖A‖X )‖g‖2Y ,

‖φg‖Cb(I,H s) . ‖φ‖Cb(I,H s)‖g‖2Y .
(3-17)
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Since in this paper we work in the Coulomb gauge, we ask: given any initial data a1, a2, φ0 ∈ H s(R2),
can we find a gauge transformation so that the initial data is placed in the Coulomb gauge? Dell’Antonio
and Zwanziger [1991] produce a global Ḣ 1 Coulomb gauge using variational methods. Here, we also
require g ∈ Ḣ s+1, and two dimensions are tricky. Fortunately, if the initial data is small, we can obtain a
global gauge with the additional regularity as needed. This has been studied by the author and Uhlenbeck
for two dimensions and higher; the result in two dimensions is the following:

Theorem 3.3 [Czubak and Uhlenbeck ≥ 2010]. Let s > 0. Given A(0)= a sufficiently small in

H s(R2)× H s(R2),

there exists a gauge transformation g ∈ Ḣ s+1(R2)∩ Ḣ 1(R2)∩ L∞ such that ∂ i (gai g−1
+ g∂i g−1)= 0.

4. The monopole equation in the Coulomb gauge as a system of wave and elliptic equations

We begin by rewriting the monopole equation in the Coulomb gauge as a system of wave equations
coupled with an elliptic equation. We refer to the new system as the auxiliary monopole equations (aME).
Then we establish that local wellposedness (LWP) for (ME) in the Coulomb gauge can be obtained from
LWP of (aME).

4A. Derivation of (aME) from (ME). Suppose we have initial data

Ai |t=0 = ai for i = 1, 2 and φ|t=0 = φ0, (4-1)

where ∂ i ai = 0. Recall equations (3-8) and (3-9):

∂t A+ [A0, A] − d A0 = ∗dφ+ [∗A, φ], (4-2)

d A+ [A, A] = ∗(∂tφ+ [A0, φ]), (4-3)

where d and ∗ act only with respect to the spatial variables, and A denotes only the spatial part of the
connection. If we impose the Coulomb gauge condition, then

d∗A = 0. (4-4)

By equivalence of closed and exact forms on Rn , we can further suppose that

A = ∗d f, (4-5)

for some f : R2+1
→ g. Observe that

d ∗ d f =4 f dx ∧ dy, [∗d f, ∗d f ] = [d f, d f ] = 1/2[∂i f, ∂ j f ]dx i
∧ dx j , (4-6)

and ∗ ∗ω =−ω for a one-form on R2. Hence (4-2) and (4-3) become

∂t ∗ d f + [A0, ∗d f ] − d A0 = ∗dφ− [d f, φ], (4-7)

4 f + [∂1 f, ∂2 f ] = ∂tφ+ [A0, φ]. (4-8)

Take d∗ of (4-7) to obtain
4A0 =−d∗[A0, ∗d f ] − d∗[d f, φ].
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This is the elliptic equation in (aME). To uncover the wave equations we proceed as follows. Take d of
(4-7)

∂t4 f + ∂ j
[A0, ∂ j f ] = 4φ+ ∂2[∂1 f, φ] − ∂1[∂2 f, φ]. (4-9)

Consider (4-9) and (4-8) on the spatial Fourier transform side:

−∂t |ξ |
2 f̂ + |ξ |2φ̂ = i(ξ2 ̂[∂1 f, φ] − ξ1 ̂[∂2 f, φ] − ξ j ̂[A0, ∂ j f ]), (4-10)

−|ξ |2 f̂ − ∂t φ̂ =− ̂[∂1 f, ∂2 f ] + ̂[A0, φ]. (4-11)

This allows us to write (4-10) and (4-11) as a system for φ and d f :

(∂t − i |ξ |)(φ̂+ i |ξ | f̂ )=−B̂+(φ, d f, A0), (4-12)

(∂t + i |ξ |)(φ̂− i |ξ | f̂ )=−B̂−(φ, d f, A0), (4-13)

where

B̂± =− ̂[∂1 f, ∂2 f ] + ̂[A0, φ] ±

(
ξ1

|ξ |
̂[∂2 f, φ] −

ξ2

|ξ |
̂[∂1 f, φ] +

ξ j

|ξ |
̂[A0, ∂ j f ]

)
. (4-14)

Indeed, multiply (4-10) by i/|ξ |, and first add the resulting equation to (4-11) to obtain (4-12), and then
subtract it from (4-11) to obtain (4-13). Now we let

φ̂+ i |ξ | f̂ = (∂t + i |ξ |)û and φ̂− i |ξ | f̂ = (∂t − i |ξ |)v̂, (4-15)

where u, v : R2+1
→ g. This gives

�u =B+(φ, d f, A0), �v =B−(φ, d f, A0).

See Remark 4.1 below.
Now we discuss initial data. From (4-15), we have

∂t û(0)= φ̂0+ i |ξ | f̂ (0)− i |ξ |û(0), (4-16)

∂t v̂(0)= φ̂0− i |ξ | f̂ (0)+ i |ξ |v̂(0). (4-17)

We are free to choose any data for u and v, as long as in the end we can recover the original data for φ
and A. Hence we just let u(0)= v(0)= 0. We still need to say what |ξ | f̂ (0) is in terms of the initial data
(a, φ0). Let ĥ = |ξ | f̂ (0). By (4-1) and (4-5) we ahve a1 = A1(0)=−∂2 f (0) and a2 = A2(0)= ∂1 f (0).
Therefore

R1h = a2, R2h =−a1,

where R j denotes the Riesz transform, (−4)−1/2∂ j . Differentiate the first equation with respect to x ,
the second with respect to y, and add them together to obtain

4D−1h = ∂1a2− ∂2a1.

So
h = R2a1− R1a2, (4-18)

It follows that the initial data for u and v are

u(0)= v(0)= 0, ∂t u(0)= φ0+ ih, ∂tv(0)= φ0− ih, (4-19)
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with h defined by (4-18).
In summary, the monopole equation in the Coulomb gauge

FA = ∗DAφ, d∗A = 0,

with initial data (4-1) can be rewritten as the system

�u =B+(φ,∇ f, A0),

�v =B−(φ,∇ f, A0),

4A0 = C(φ,∇ f, A0),

(aME)

where
C=−∂1[A0, ∂2 f ] + ∂2[A0, ∂1 f ] + ∂ j [∂ j f, φ], (4-20)

B± =−B1∓ iB2+B3∓ iB4, (4-21)

and

B1 = [∂1 f, ∂2 f ], B2 = R1[∂2 f, φ] − R2[∂1 f, φ], B3 = [A0, φ], B4 = R j [A0, ∂ j f ]. (4-22)

The initial data for (aME) is given by (4-19).

Remark 4.1. u and v are our new unknowns, but we are really interested in φ and d f . Therefore, we
observe that once we know what u and v are, we can determine φ and d f by using

φ̂ =
(∂t + i |ξ |)û+ (∂t − i |ξ |)v̂

2
, i |ξ | f̂ =

(∂t + i |ξ |)û− (∂t − i |ξ |)v̂
2

, (4-23)

or equivalently

φ =
(∂t + i D)u+ (∂t − i D)v

2
, ∂ j f =−i R j

((∂t + i D)u− (∂t − i D)v
2

)
. (4-24)

From d f we get A by letting A=∗d f . Finally, for simplicity we usually keep the nonlinearities in terms
of φ and d f . However, since φ and d f can be written in terms of derivatives of u and v we sometimes
write B±(φ, d f, A0) as B±(∂u, ∂v, A0).

Remark 4.2. (aME) has some resemblance to a system considered by Selberg [2002a] for the Maxwell–
Klein–Gordon (MKG) equations, where he successfully obtains almost optimal local wellposedness in
dimensions 1+ 4. Besides the dimension considered, there are two fundamental technical differences
applicable to our problem. First comes from the fact that the monopole equation we consider here is
an example of a system in the nonabelian gauge theory whereas MKG is an example of a system in
the abelian gauge theory. The existence of a global Coulomb gauge requires smallness of initial data in
the nonabelian gauge theories, but is not needed in the abelian theories. Another technical difference
arises from Selberg being able to solve the elliptic equation for his temporal variable A0 using the Riesz
representation theorem, where he does not require smallness of the initial data. The elliptic equation in
(aME) is more difficult, so we include A0 in the Picard iteration. As a result we are not able to allow
large data by taking a small time interval, which we could do if we only had the two wave equations.
Finally, we point out that the proof of our estimates involving A0 is modeled after Selberg’s proof in
[Selberg 2002a] (see Remark 5.1 and Section 5C).
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4B. Return to the monopole equation. Now we have a theorem, where we show how LWP for (aME)
implies LWP for (ME) in the Coulomb gauge. For completeness, we first state exactly what we mean by
LWP of (aME).

Let r ∈ (0,min(2s, 1+ s)], s > 0. Consider the system (aME) with initial data

(u, ut)|t=0 = (u0, u1) and (v, vt)|t=0 = (v0, v1)

in H s+1
× H s , then (aME) is LWP if the following conditions are satisfied:

Local existence. There exist T > 0 depending continuously on the norm of the initial data, and functions

A0 ∈ Cb([0, T ], Ḣ r ), u, v ∈Hs+1,θ
T ↪→ Cb([0, T ], H s+1)∩C1

b([0, T ], H s),

which solve (aME) on [0, T ] ×R2 in the sense of distributions and such that the initial conditions are
satisfied.

Uniqueness. If T >0 and (A0, u, v) and (A′0, u′, v′) are two solutions of (aME) on (0, T )×R2 belonging
to

Cb([0, T ], Ḣ r )×Hs+1,θ
T ×Hs+1,θ

T ,

with the same initial data, then (A0, u, v)= (A′0, u′, v′) on (0, T )×R2.

Continuous dependence on initial data. For any (u0, u1), (v0, v1) ∈ H s+1
×H s there is a neighborhood

U of the initial data such that the solution map (u0, u1), (v0, v1)→ (A0, u, v) is continuous from U into
Cb([0, T ], Ḣ r )×

(
Cb([0, T ], H s+1)∩C1

b([0, T ], H s)
)2.

In fact, by the results in [Selberg 2002b] combined with estimates for the elliptic equation, we can
show the stronger estimates

‖u− u′‖Hs+1,θ
T
+‖v− v′‖Hs+1,θ

T
+‖A0− A′0‖Cb([0,T ],Ḣ r )

. ‖u0− u′0‖H s+1 +‖u1− u′1‖H s +‖v0− v
′

0‖H s+1 +‖v1− v
′

1‖H s , (4-25)

where (u′0, u′1), (v
′

0, v
′

1) are sufficiently close to (u0, u1), (v0, v1).

Remark 4.3. Note that below we have no restriction on s, that is, if we could show (aME) is LWP in
H s+1

× H s , s > 0, we would get LWP of (ME) in the Coulomb gauge in H s for s > 0 as well.

Theorem 4.1. Consider (ME) in the Coulomb gauge with the following initial data in H s for s > 0:

Ai |t=0 = ai , i = 1, 2, φ|t=0 = φ0, with ∂ i ai = 0. (4-26)

Then local wellposedness of (aME) with initial data as in (4-19) implies local wellposedness of (ME) in
the Coulomb gauge with initial data given by (4-26).

Proof. First, in view of Section 4A it is clear that if u, v satisfy (aME) with initial data as in (4-19), then
solutions of (ME) in the Coulomb gauge satisfy the initial data as given in (4-26).

Local existence. From (4-24), if

u, v ∈Hs+1,θ
T , then φ, A = ∗d f ∈ H s,θ

T ,

as needed. We now verify that if (u, v, A0) solve (aME), then (φ, d f, A0) solve (ME) in the Coulomb
gauge. Since A= ∗d f , A is in the Coulomb gauge: d ∗A=−∗d∗(∗d f )= 0. Next note that (ME) in the
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Coulomb gauge is equivalent to (4-7) and (4-8). Suppose u, v, A0 solve (aME). It follows (d f, φ) solve
(4-12) and (4-13). Add (4-12) to (4-13) to recover (4-11), which is equivalent to (4-8).

Next given (aME) we need to show (4-7) holds. Write (4-7) in coordinates,

∂1 A0− ∂2φ+ ∂t∂2 f = [∂1 f, φ] − [A0, ∂2 f ], (4-27)

∂2 A0+ ∂1φ− ∂t∂1 f = [∂2 f, φ] + [A0, ∂1 f ]. (4-28)

From the elliptic equation in (aME) we have:

A0 =4
−1(−∂1[A0, ∂2 f ] + ∂2[A0, ∂1 f ] + ∂1[∂1 f, φ] + ∂2[∂2 f, φ]). (4-29)

Also subtract (4-12) from (4-13) and multiply by |ξ | on both sides to obtain (4-9), which implies

φ− ∂t f =4−1(∂ j [A0, ∂ j f ] − ∂2[∂1 f, φ] + ∂1[∂2 f, φ]). (4-30)

In order to recover (4-27), first use (4-29) to get

∂1 A0 =4
−1(−∂2

1 [A0, ∂2 f ] + ∂1∂2[A0, ∂1 f ] + ∂2
1 [∂1 f, φ] + ∂1∂2[∂2 f, φ]). (4-31)

Next use (4-30) to get

∂2(φ− ∂t f )=4−1(∂2∂1[A0, ∂1 f ] + ∂2
2 [A0, ∂2 f ] − ∂2

2 [∂1 f, φ] + ∂2∂1[∂2 f, φ]), (4-32)

and subtract this from (4-31) to get (4-27) as needed. We recover (4-28) in the exactly same way.

Continuous dependence on initial data. We would like to show that

‖A0− A′0‖Cb([0,T ],Ḣ r )+‖A1− A′1‖H s,θ
T
+‖A2− A′2‖H s,θ

T
+‖φ−φ′‖H s,θ

T

. ‖a1− a′1‖H s +‖a2− a′2‖H s +‖φ0−φ
′

0‖H s (4-33)

for any a′1, a′2, φ
′

0 sufficiently close to a1, a2, φ0. In view of LWP for (aME) with data given by

u(0)= v(0)= 0, ∂t u(0)= φ0+ ih, ∂tv(0)= φ0− ih, h = R2a1− R1a2,

and by (4-25) we have

‖u− u′‖Hs+1,θ
T
+‖v− v′‖Hs+1,θ

T
+‖A0− A′0‖Cb([0,T ],Ḣ r )

. ‖u′0‖H s+1 +‖φ0+ ih− u′1‖H s +‖v′0‖H s+1 +‖φ0− ih− v′1‖H s , (4-34)

for all u′0, v
′

0, u′1, v
′

1 satisfying

‖u′0‖H s+1 +‖φ0+ ih− u′1‖H s +‖v′0‖H s+1 +‖φ0− ih− v′1‖H s ≤ δ, for some δ > 0. (4-35)

In particular choose

u′0 = v
′

0 = 0, u′1 = φ
′

0+ ih′, v′1 = φ
′

0− ih′, h′ = R2a′1− R1a′2, (4-36)
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such that

‖φ0+ih−φ′0−ih′‖H s+‖φ0−ih−φ′0+ih′‖H s . ‖φ0−φ
′

0‖H s+‖R1(a2−a′2)‖H s+‖R2(a1−a′1)‖H s

≤ ‖φ0−φ
′

0‖H s+‖a1−a′1‖H s+‖a2−a′2‖H s

≤ δ.

(4-37)

Then, by (4-34)–(4-37), ‖A0− A′0‖Cb([0,T ],Ḣ r ) is bounded by the right side of (4-33). Next observe that

‖A1− A′1‖H s,θ
T
. ‖R2(∂t + i D)(u− u′)‖H s,θ

T
+‖R2(∂t − i D)(v− v′)‖H s,θ

T

≤ ‖u− u′‖Hs+1,θ
T
+‖v− v′‖Hs+1,θ

T
.

So again by (4-34)–(4-37) ‖A1− A′1‖H s,θ
T

is bounded by the right side of (4-33). We bound the difference
for A2 and φ in a similar fashion.

Uniqueness. By LWP of (aME), A0 is unique in the required class. We need to show A and φ are unique
in H s,θ

T . However, by (4-33) this is obvious. �

5. Proof of the Main Theorem

By Theorem 4.1 it is enough to show LWP for (aME). We start by explaining how we are going to
perform our iteration.

5A. Set up of the iteration. Equations (aME) are written for functions u and v. Nevertheless, functions
u and v are only our auxiliary functions, and we are really interested in solving for d f and φ. In addition,
the nonlinearities B± are a linear combination of terms Bi , i = 1, 2, 3, 4, given by (4-22), and the Bi are
written in terms of φ, d f and A0. Also, when we do our estimates, it is easier to keep the Bi in terms
of φ and d f with the exception of B2, which we rewrite in terms of ∂u and ∂v (see Section 5B2 for the
details). These comments motivate the following procedure for our iteration. Start with φ−1= d f−1= 0.
Then B± ≡ 0. Solve the homogeneous wave equations for u0, v0 with the initial data given by (4-19).
Then to solve for d f0, φ0, use (4-24). Then feed φ0 and d f0 into the elliptic equation,

4A0,0 =−d∗([A0,0, ∗d f0] + [d f0, φ0]), (5-1)

and solve for A0,0. Next we take d f0, φ0 and A0,0 plug them into B1,B3,B4, but rewrite B2 in terms
of ∂u0, ∂v0. We continue in this manner, so at the j th step of the iteration, j ≥ 1, we solve

�u j =−B1(∇ f j−1)− iB2(∂u j−1, ∂v j−1)+B3(A0, j−1, φ j−1)− iB4(A0, j−1,∇ f j−1),

�v j =−B1(∇ f j−1)+ iB2(∂u j−1, ∂v j−1)+B3(A0, j−1, φ j−1)+ iB4(A0, j−1,∇ f j−1),

4A0, j =−d∗([A0, j , ∗d f j ] + [d f j , φ j ]).

5B. Estimates needed. The elliptic equation is discussed in Section 5C. Therefore we begin by dis-
cussing the inversion of the wave operator in Hs+1,θ spaces. The main idea is that for the purposes of
local in time estimates �−1 can be replaced with 3−1

+ 3
−1
− . The first estimates, leading to wellposedness

for small initial data, were proved by Klainerman and Machedon [1995]. The small data assumption was
removed by Selberg [2002b], who showed that by introducing ε small enough in the invertible version
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of the wave operator, that is, 3−1
+ 3

−1+ε
− , we can use initial data as large as we wish.5 Selberg [2002b]

also gave a very useful, general framework for local wellposedness of wave equations, which reduces
the proof of the Main Theorem to establishing the estimates below, for the nonlinearities B±, and to
combining them with appropriate elliptic estimates from Section 5C. The needed estimates for B± are

‖3−1
+
3−1+ε
−

B±(∂u, ∂v, A0)‖Hs+1,θ . ‖u‖Hs+1,θ +‖v‖Hs+1,θ , (5-2)

‖3−1
+
3−1+ε
−

(
B±(∂u, ∂v, A0)−B±(∂u′, ∂v′, A′0)

)
‖Hs+1,θ . ‖u− u′‖Hs+1,θ +‖v− v′‖Hs+1,θ , (5-3)

where the suppressed constants depend continuously on the Hs+1,θ norms of u, u′, v, v′. Since B± are
bilinear, (5-3) can follow from (5-2). In this paper small initial data is necessary (see Theorem 3.3 and
Section 5C), so we do not need ε, but we keep it to make the estimates general. Let 1

4 < s < 1
2 and set

θ, ε as follows:

3
4
−
ε
2
< θ ≤ s+ 1

2
− ε, and θ < 1− ε, 0≤ ε <min

(
2s− 1

2
,

1
2

)
.

Next observe 3+31−ε
− Hs+1,θ

= H s,θ−1+ε, as well as that

‖∇ f ‖H s,θ , ‖φ‖H s,θ . ‖u‖Hs+1,θ +‖v‖Hs+1,θ .

Therefore, using (4-21) and (4-22), it is enough to prove the following:

‖B1‖H s,θ−1+ε = ‖[∂1 f, ∂2 f ]‖H s,θ−1+ε . ‖∇ f ‖2H s,θ , (5-4)

‖B2‖H s,θ−1+ε . ‖[∂ j f, φ]‖H s,θ−1+ε . ‖∂ j f ‖H s,θ‖φ‖H s,θ for j = 1, 2, (5-5)

‖B3‖H s,θ−1+ε . ‖A0φ‖H s,θ−1+ε . ‖A0‖‖φ‖H s,θ , (5-6)

‖B4‖H s,θ−1+ε . ‖A0∂ j f ‖H s,θ−1+ε . ‖A0‖‖∂ j f ‖H s,θ for j = 1, 2, (5-7)

where the norm used for A0 is immaterial, mainly because in Section 5C we show that

‖A0‖. ‖∇ f ‖H s,θ‖φ‖H s,θ . (5-8)

A few remarks are in order. Estimate (5-4) corresponds to estimates for the null form Qi j , and estimate
(5-5) gives rise to a new null form Q (this is discussed in the next two sections). A0 in estimates (5-6)
and (5-7) solves the elliptic equation in (aME), which results in a quite good regularity for A0. As a
result, we do not have to look for any special structures to get (5-6) and (5-7) to hold, so we can drop the
brackets, and also treat these estimates as equivalent since φ and d f exhibit the same regularity. Finally,
since Riesz transforms are clearly bounded on L2, we ignore them in the estimates needed in (5-5) and
(5-7). The estimates (5-4) and (5-5) for the null forms are the most interesting. Hence we discuss them
first, and then we consider the elliptic terms.

5B1. Null forms: proof of estimate (5-4). [∂1 f, ∂2 f ] has a structure of a null form Qi j :

[∂1 f, ∂2 f ] = ∂1 f ∂2 f − ∂2 f ∂1 f = Q12( f, f ).

5See also [Klainerman and Selberg 2002, Section 5] for an excellent discussion and motivation of the issues involved in the
Picard iteration.
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It follows that (5-4) is equivalent to

‖Q12( f, f )‖H s,θ−1+ε . ‖∇ f ‖2H s,θ .

Fortunately the hard work for null forms of type Qα,β in two dimensions is already carried out by Zhou
[1997]. His proof is done using spaces N s+1,θ with the norm given by6

‖u‖N s+1,θ = ‖3s+1
+
3θ
−

u‖L2 . (5-9)

In his work θ = s+ 1
2 . We state Zhou’s result.

Theorem [Zhou 1997]. Consider in R2+1 the space-time norms (5-9) and functions ϕ,ψ defined on
R2+1. The estimates

‖Qαβ(ϕ, ψ)‖N s,s−1/2 . ‖ϕ‖N s+1,s+1/2‖ψ‖N s+1,s+1/2

hold for any 1
4 < s < 1

2 .

Our iteration is done using spaces Hs+1,θ . Inspection of Zhou’s proof shows that it could be easily
modified to be placed in the context of Hs+1,θ spaces. However, even though our auxiliary functions’
iterates u j and v j belong to Hs+1,θ , from (4-24) we only have

d f ∈ H s,θ
⇒‖3s3θ

−
D f ‖L2(R2+1) <∞, (5-10)

but again inspection of Zhou’s proof shows we can still handle Q12( f, f ) given only that (5-10) holds.
Zhou’s proof works for 1

4 < s < 1
2 . However, it motivates an alternate proof that uses Hs+1,θ and works

for all values of s > 1
4 . The proof is closely related to the original proof in [Zhou 1997], but on the

surface it seems more concise. The reason for this is that we use Theorem F from [Klainerman and
Selberg 2002], which involves all the technicalities. See [Czubak 2008] for the details.

5B2. Null forms: proof of estimate (5-5). We need

‖[∂ j f, φ]‖H s,θ−1+ε . ‖∂ j f ‖H s,θ‖φ‖H s,θ , j = 1, 2.

However, analysis of the first iterate shows that for this estimate to hold we need s > 3
4 , so we need to

work a little bit harder, and use (4-24)7

[∂ j f, φ] = − i
4 [R j (∂t u+ i Du− ∂tv+ i Dv), ∂t u+ i Du+ ∂tv− i Dv]. (5-11)

If we use the bilinearity of the bracket, we can group (5-11) by terms involving brackets of u with itself,
v with itself, and then also by the terms that are mixed, that is, involve both u and v. So we have

4i[∂ j f, φ] = [R j (∂t + i D)u, (∂t + i D)u] − [R j (∂t − i D)v, (∂t − i D)v]

+ [R j (∂t + i D)u, (∂t − i D)v] − [R j (∂t − i D)v, (∂t + i D)u].

Since u and v are matrix-valued and do not commute we need to combine the last two brackets to take
advantage of a null form structure. This corresponds to (5-13) below (note the plus sign in the formula).

The needed estimates are contained in the following theorem.

6See [Selberg 1999, Section 3.5] for a comparison with Hs+1,θ spaces.
7The obvious way is to just substitute for φ and leave ∂ j f the same, but it is an exercise to see that this does not work — for

several reasons!
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Theorem 5.1. Suppose s > 1
4

and 3
4
−
ε
2
< θ ≤ s+ 1

2
, with θ < 1− ε and 0≤ ε <min

(
2s− 1

2
,

1
2

)
. Let

Q(ϕ, ψ) be given by

Q(ϕ, ψ)= (∂t ± i D)R jϕ(∂t ± i D)ψ − (∂t ± i D)ϕ(∂t ± i D)R jψ, or (5-12)

Q(ϕ, ψ)= (∂t ± i D)R jϕ(∂t ∓ i D)ψ + (∂t ± i D)ϕ(∂t ∓ i D)R jψ. (5-13)

Then
Q(Hs+1,θ ,Hs+1,θ ) ↪→ H s,θ−1+ε (5-14)

or, equivalently,
‖Q(ϕ, ψ)‖H s,θ−1+ε . ‖ϕ‖Hs+1,θ‖ψ‖Hs+1,θ . (5-15)

Proof. We show the details only for

(∂t + i D)R jϕ(∂t − i D)ψ + (∂t + i D)ϕ(∂t − i D)R jψ,

as the rest follows similarly. Observe that the symbol of Q is then

q(τ, ξ, λ, η)=
( ξ j

|ξ |
+
η j

|η|

)
(τ + |ξ |)(λ− |η|).

Suppose τλ≥ 0, then

q ≤ 2
∣∣(τ + |ξ |)(λ− |η|)∣∣≤ { 2

∣∣|τ | + |ξ |∣∣∣∣|λ| − |η|∣∣ if τ, λ≥ 0,
2
∣∣|τ | − |ξ |∣∣∣∣|η| + |λ|∣∣ if τ, λ≤ 0.

It follows∫∫
τλ≥0
|3s3θ−1+ε

−
Q(ϕ, ψ)|2dτdξ . ‖D+ϕD−ψ‖2H s,θ−1+ε +‖D−ϕD+ψ‖2H s,θ−1+ε , (5-16)

and the estimate follows by Theorem 5.2 below.
Suppose τλ < 0. If we break down the computations into the region{

(τ, ξ), (λ, η) : |τ | ≥ 2|ξ | or |λ| ≥ 2|η|
}

(5-17)

and its complement, then in the region (5-17), we bound q by

q ≤ 2(|τ | + |ξ |)(|λ| + |η|),

since there we do not need any special structure. (This is a simple exercise in this region; see [Czubak
2008, Appendix B].)

In the complementary region, we have

q ≤ 4|ξ ||η|
∣∣∣∣ ξi

|ξ |
+
ηi

|η|

∣∣∣∣ ,
which is the absolute value of the symbol of the null form Qt j in the first iterate. It has received a lot
of attention, but we have not seen a reference where it was discussed in a context other than that of
the initial data in H s+1

× H s . This may be because it has not come up as a nonlinearity before, and/or
because it can be handled in the same way as the null form Qi j . The details are in [Czubak 2008]. �
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Now we prove an estimate needed to show (5-16) is bounded by the square of the right side of (5-15).

Theorem 5.2. Let s > 0, max
( 1

2 , 1− s
)
< θ < 1, and 0≤ ε ≤ 1− θ . Then

‖D+ϕD−ψ‖H s,θ−1+ε . ‖ϕ‖Hs+1,θ‖ψ‖Hs+1,θ .

Proof. We would like to show that ‖3s3θ−1+ε
− (D+ϕD−ψ)‖L2(R2+1) . ‖ϕ‖Hs+1,θ‖ψ‖Hs+1,θ . This follows

from showing that
H s,θ
·Hs+1,θ−1 ↪→ H s,θ−1+ε,

which by the product rule8 for the operator 3s in turn follows from

H 0,θ
·Hs+1,θ−1 ↪→ H 0,θ−1+ε, H s,θ

·H1,θ−1 ↪→ H 0,θ−1+ε.

It is easy to check that Hs+1,θ−1 ↪→ H s+1+θ−1,0 and H1,θ−1 ↪→ H θ,0, so we just need to show

H 0,θ
· H s+θ,0 ↪→ H 0,θ−1+ε, H s,θ

· H θ,0 ↪→ H 0,θ−1+ε,

which are weaker than
H 0,θ
· H s+θ,0 ↪→ L2, H s,θ

· H θ,0 ↪→ L2,

but those follow from the Klainerman–Selberg estimate (2-6) as long as s + θ > 1, which holds by the
conditions we impose on s and θ . �

An alternate approach could be to follow the set up used by [Klainerman and Machedon 1995] and
estimate the integral directly.

5B3. Elliptic piece: proof of estimate (5-6). Recall we wish to show

‖A0w‖H s,θ−1+ε . ‖A0‖‖w‖H s,θ . (5-18)

We need this estimate during our iteration, so we really mean A0, j , but for simplicity we omit writing of
the index j . Now we choose a norm for A0 to be anything that makes (5-18) possible to establish. This
results in

‖A0‖ = ‖A0‖L p̃
t L∞x
+‖Ds A0‖L p

t Lq
x
,

where
p̃ ∈

(
1− 2s, 1

2

)
,

2
p
= 1− 1

q
, max

(1
3
(1− 2s), s

2

)
<

1
q
<

2
3

s. (5-19)

For now we assume we can show A0 ∈ L p̃
t L∞x ∩ L p

t Ẇ s,q
x and delay the proof to Section 5C, where the

reasons for our choices of p̃, p, q should become clear. We start by using θ − 1+ ε < 0:

‖A0w‖H s,θ−1+ε ≤ ‖3s(A0w)‖L2(R2+1) . ‖A0w‖L2(R2+1)+‖D
s(A0w)‖L2(R2+1). (5-20)

For the first term, by Hölder’s inequality,

‖A0w‖L2(R2+1) ≤ ‖A0‖L p̃
t L∞x
‖w‖

L p̃′
t L2

x
, for 1

p̃
+

1
p̃′
=

1
2
, p as in (5-19)

. ‖A0‖‖w‖H0,θ , by (2-4)

≤ ‖A0‖‖w‖H s,θ .

(5-21)

8On L2 this is very easy to establish using triangle inequality. See [Klainerman and Selberg 2002].
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We bound the second term in (5-20) by

‖Ds(A0w)‖L2(R2+1) . ‖A0‖L p̃
t L∞x
‖Dsw‖

L p̃′
t L2

x︸ ︷︷ ︸
I

+‖Ds A0‖L p
t Lq

x
‖w‖

L p′
t Lq′

x︸ ︷︷ ︸
II

,

where
1
p
+

1
p′
=

1
2
=

1
q
+

1
q ′

and p, q are as in(5-19) and p̃ as in (5-21). I is handled similarly to (5-21) as follows. Apply (2-4) with
u = Dsw to obtain

I . ‖A0‖‖Dsw‖H0,θ ≤ ‖A0‖‖w‖H s,θ . (5-22)

We now consider II. By the choices of p, q , the Klainerman–Selberg estimate (2-5) applies (see the
discussion in Section 5D for an explanation) and gives

II ≤ ‖A0‖‖w‖L p′
t Lq′

x
. ‖A0‖‖w‖H1−2/q′−1/p′,θ . (5-23)

From (5-19) we also have

II . ‖A0‖‖w‖H1−2/q′−1/p′,θ . ‖A0‖‖w‖H s,θ . (5-24)

and (5-18) follows now from (5-21), (5-22) and (5-24).

Remark 5.1. The above proof illustrates other difficulties due to working in two dimensions. Initially,
we wanted to follow the proof of estimate (38) in [Selberg 2002a], and just use the ‖3s A0‖L p

t Lq
x

norm.
Unfortunately in two dimensions, the condition sq > 2 needed to show that A0 ∈ L p

t L∞x is disjoint from
the conditions needed to use Klainerman–Tataru estimate (2-3) and establish that 3s A0 ∈ L p

t Lq
x in the

first place. This resulted in the L p̃
t L∞x ∩L p

t Ẇ s,q
x space above and also having to employ the Klainerman–

Selberg estimate (2-5), which was not needed for the proof of [Selberg 2002a, estimate (38)].

5C. Elliptic regularity: estimates for A0. Here we present a variety of a priori estimates for the non-
dynamical variable A0. At each point we could add the index j to A0, d f and φ. Therefore the presen-
tation also applies to the iterates A0, j . It is an exercise to show that the estimates we obtain here are
enough to solve for A0, j at each step as well as to close the iteration for A0. Let A0 solve

4A0 =−d∗[A0, ∗d f ] − d∗[d f, φ] = −∂1[A0, ∂2 f ] + ∂2[A0, ∂1 f ] + ∂ j [∂ j f, φ].

There is a wide range of estimates A0 satisfies. Nevertheless, the two spatial dimensions limit our “range
of motion.” For example, it does not seem possible to place A0(t) in L2. We state the general results
and only show the cases we need to prove A0 ∈ L p̃

t L∞x ∩ L p
t Ẇ s,q

x as required in the last section. The rest
of the cases can be found in [Czubak 2008]. We add that the proofs of both of the following theorems
were originally inspired by the proof of estimate (45) in [Selberg 2002a]. We start with the homogeneous
estimates.

Theorem 5.3. Let s > 0, and let 0≤ a ≤ s+1 be given, and suppose 1≤ p ≤∞ and 1< q <∞ satisfy

max
(1

3
(1+ 2a− 4s), 1

2
(1+ a− 4s), 1

2
min(a, 1)

)
<

1
q
<

1+a
2
, (5-25)

1− 2
q
+ a− 2s ≤ 1

p
≤

1
2

(
1− 1

q

)
,

1
p
<
(

1− 2
q
+ a

)
. (5-26)
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(i) If 0 ≤ a ≤ 1 and the H s,θ norm of ∇ f is sufficiently small, then A0 ∈ L p
t Ẇ a,q

x and we have the
estimate

‖A0‖L p
t Ẇ a,q

x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-27)

(ii) If 1< a ≤ s+ 1 and A0 ∈ L p
t L(1/q−1/2)−1

x , then A0 ∈ L p
t Ẇ a,q

x and we have

‖A0‖L p
t Ẇ a,q

x
. (‖A0‖L p

t L(1/q−1/2)−1
x

+‖φ‖H s,θ )‖∇ f ‖H s,θ . (5-28)

Corollary 5.4. Let s > 0, then A0 ∈ Cb(I : Ḣa
x ), where

0< a ≤
{

2s if 0< s ≤ 1,
1+ s if 1< s.

Proof of Corollary 5.4. Suppose 0 < s < 1
2 . Then use part (i) of the theorem with q = 2 and p =∞ to

obtain A0 ∈ L∞t Ḣa
x for a ≤ 2s. A0 continuous as a function of time easily follows from a contraction

argument in Cb(I : Ḣa
x ) using L∞t Ḣa

x estimates. The case s ≥ 1
2 is considered in [Czubak 2008]. �

So far we just need s > 0 in order to make the estimates work. The requirement for s > 1
4 does not

come in until we start looking at the nonhomogeneous spaces, where also the range of p and q is smaller.
However, we can distinguish two cases, aq < 2 and aq > 2.

Theorem 5.5. Let s > 0, and suppose the H s,θ norm of ∇ f is sufficiently small.

(i) If aq < 2 for 0< a <min(2s, 1) and if p and q satisfy

max
(1

2
+ a− 2s, a

2

)
<

1
q
<

1
2
, (5-29)

1− 2
q
+ a− 2s ≤ 1

p
<

1
2
−

1
q
, (5-30)

then A0 ∈ L p
t W a,q

x and we have the estimate

‖A0‖L p
t W a,q

x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-31)

(ii) If aq > 2, we need s > 1
4 and 0< a <min(4s− 1, 1+ s, 2s). Suppose p and q also satisfy

max
(a−s

2
,

1
2
+ a− 2s

)
<

1
q
<

1
2

min(a, 1), (5-32)

1− 2
q
+ a− 2s ≤ 1

p
<

1
2
−

1
q
; (5-33)

then A0 ∈ L p
t W a,q

x and we have the estimate

‖A0‖L p
t W a,q

x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-34)
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Corollary 5.6. If s > 1
4 and the H s,θ norm of ∇ f is sufficiently small, we have in particular A0 ∈ L p

t L∞x
for p satisfying

1− 2s < 1
p
<

1
2
, (5-35)

and we have the estimate
‖A0‖L p

t L∞x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-36)

Proof of Corollary 5.6. For each p∈ (1−2s, 1
2) we can find some a and q, which satisfy the conditions of

Theorem 5.5, part (ii). The corollary then follows from the Sobolev embedding: W a,q(R2) ↪→ L∞(R2)

for aq > 2. �

Remark 5.2. Estimate (5-34) is where s > 1
4 is needed. Conditions on 1

p in (5-33) are needed so we
can use (below) the Klainerman–Tataru estimate (2-3). In order to be able to choose such 1

p , obviously
1− 2

q + a − 2s must be strictly less than 1
2 −

1
q . This forces 1

q to be strictly greater than 1
2 + a − 2s.

We also need aq > 2 to use the Sobolev embedding in Corollary 5.6, so if we want to be able to find q
between 1

2 +a−2s and a
2 , a is forced to be strictly less than 4s−1. Therefore s must be greater than 1

4 .
See below for another instance of requiring s > 1

4 .

5D. Proof of estimates needed in 5B3. Recall we would like to show A0 ∈ L p̃
t L∞x ∩L p

t Ẇ s,q
x . Therefore,

we are interested in part (i) of Theorem 5.3 and part ii) in Theorem 5.5, so we can conclude Corollary
5.6. Moreover, we need a specific case of part (i) in Theorem 5.3, because we need A0 ∈ L p

t Ẇ s,q
x , where

p, q in addition satisfy

1−
2
p
≤

1
q
<

1
2

and
2
q
−

1
2
+

1
p
≤ s, (5-37)

so we can use the embedding

H s,θ ↪→ H 1−(1−2/q)−(1/2−1/p),θ ↪→ L(1/2−1/p)−1

t L(1/2−1/q)−1

x (5-38)

in (5-23) and (5-24). When we put (5-37) together with (5-25) and (5-26) with a = s, we obtain the
second line of (5-19), namely

2
p
= 1− 1

q
, max

(1
3
(1− 2s), s

2

)
<

1
q
<

2
3

s. (5-39)

Remark 5.3. Observe that in order to be able to find such q we must have s > 1
4 .

Consider
‖A0‖L p

t Ẇ s,q
x
= ‖4

−1(d∗[A0, ∗d f ] + d∗[d f, φ])‖L p
t Ẇ s,q

x

. ‖D−1(A0∇ f )‖L p
t Ẇ s,q

x
+‖D−1(∇ f φ)‖L p

t Ẇ s,q
x

. ‖Ds−1(A0∇ f )‖L p
t Lq

x
+‖Ds−1(∇ f φ)‖L p

t Lq
x

. ‖A0∇ f ‖L p
t Lr

x
+‖Ds−1(∇ f φ)‖L p

t Lq
x
,

(5-40)

where we use the Sobolev embedding with 1
q =

1
r −

1−s
2 . The latter term is bounded by ‖∇ f ‖H s,θ‖φ‖H s,θ

using the Klainerman–Tataru estimate (2-3), whose application we discuss in the section below. For the
former we use 1

r =
1
q +

1−s
2 = (

1
q −

s
2)+

1
2 :

‖A0∇ f ‖L p
t Lr

x
≤ ‖A0‖L p

t L(1/q−s/2)−1
x

‖∇ f ‖L∞t L2
x
. ‖A0‖L p

t Ẇ s,q
x
‖∇ f ‖H s,θ . (5-41)
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Then if the H s,θ norm of ∇ f is sufficiently small, we obtain

‖A0‖L p
t Ẇ s,q

x
. ‖∇ f ‖H s,θ‖φ‖H s,θ , (5-42)

as needed.
For the nonhomogeneous estimate, since here 1

4 < s < 1
2 the upper bound for a is simply 4s − 1. In

addition, for our purposes right now it suffices to show the estimate for one particular a. Therefore we
set 0< a <min(s, 4s− 1) for 1

4 < s < 1
2 , and we let p, q satisfy (5-32) and (5-33). We have

‖A0‖L p
t W a,q

x
. ‖D−1(A0∇ f )‖L p

t W a,q
x
+‖D−1(∇ f φ)‖L p

t W a,q
x

. ‖D−1(A0∇ f )‖L p
t Lq

x
+‖D−1(∇ f φ)‖L p

t Lq
x
+‖Da−1(A0∇ f )‖L p

t Lq
x
+‖Da−1(∇ f φ)‖L p

t Lq
x
.

(5-43)

The Klainerman–Tataru estimate (2-3) handles the second and the last term (see below). Consider the
first term:

‖D−1(A0∇ f )‖L p
t Lq

x
. ‖A0∇ f ‖L p

t Lr
x
, for

1
q
=

1
r
−

1
2
,

≤ ‖A0‖L p
t Lq

x
‖∇ f ‖L∞t L2

x

≤ ‖A0‖L p
t W a,q

x
‖∇ f ‖H s,θ . (5-44)

For the third term we have

‖Da−1(A0∇ f )‖L p
t Lq

x
. ‖A0∇ f ‖L p

t Lr
x
, for 1

q
=

1
r
−

1−a
2

. ‖A0‖L p
t Lq

x
‖Da
∇ f ‖L∞t L2

x
, for 1

r
=

1
q
+

(1
2
−

a
2

)
. ‖A0‖L p

t W a,q
x
‖∇ f ‖H s,θ ,

Then as before, this completes the proof if the H s,θ norm of ∇ f is sufficiently small.

Applying the Klainerman–Tataru theorem. We said that several of the above estimates follow from the
Klainerman–Tataru estimate (2-3). We need to check that this is in fact the case. We begin by stating the
theorem. We state it for two dimensions only, and as it is given in [Klainerman and Selberg 2002] (the
original result holds for n ≥ 2).

Theorem [Klainerman and Tataru 1999]. Let 1≤ p ≤∞, 1≤ q <∞. Assume that

1
p
≤

1
2

(
1− 1

q

)
, (5-45)

0< σ < 2
(

1− 1
q
−

1
p

)
, (5-46)

s1, s2 < 1− 1
q
−

1
2p
, (5-47)

s1+ s2+ σ = 2
(

1− 1
q
−

1
2p

)
. (5-48)

Then
‖D−σ (uv)‖L p

t Lq
x (R2) . ‖u‖H s1,θ‖v‖H s2,θ ,

provided θ > 1
2 .
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The first time we use the theorem is in (5-40) for the term ‖Ds−1(∇ f φ)‖L p
t Lq

x
. Note that σ = 1− s.

Clearly 1 ≤ p ≤∞, 1 ≤ q <∞. Next by (5-39) 2
p = 1− 1

q , so (5-45) holds. Since s < 1
2 , σ > 0, and

we can see (5-46) holds when we substitute 1
2 −

1
2q for 1

p in the right side and use 1
q <

2
3 s. Next we let

s1 = s2 and with σ = 1− s > 0, (5-48) implies (5-47), so we only check (5-48). To that end we must be
able to choose s1 so that

2s1 = 1− 2
q
−

1
p
+ s ≤ 2s,

which is equivalent to our condition on p and one of the lower bounds on 1
q .

The next place we use the theorem is in (5-43) for ‖D−1(∇ f φ)‖L p
t Lq

x
, ‖Da−1(∇ f φ)‖L p

t Lq
x
, where p

and q are as in (5-32) and (5-33) with 0< a <min(s, 4s− 1) < 1. Then for σ = 1, by the right side of
(5-33), (5-46) holds and implies (5-45). Note, since (5-46) is true with σ = 1, it is true with σ = 1− a.
Next, for σ = 1 (5-48) gives (5-47) and also for σ = 1−a as long as 0< a < 1. So again it is sufficient
to see we can have s1 defined by (5-48) such that s1 ≤ s, but for σ = 1−a that follows from the left side
of (5-33), and shows we can find it for σ = 1 as well.
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REGULARITY OF ALMOST PERIODIC MODULO SCALING SOLUTIONS
FOR MASS-CRITICAL NLS AND APPLICATIONS

DONG LI AND XIAOYI ZHANG

We consider the L2
x solution u to mass-critical NLS iut +1u =±|u|4/du. We prove that in dimensions

d ≥ 4, if the solution is spherically symmetric and is almost periodic modulo scaling, then it must lie in
H 1+ε

x for some ε > 0. Moreover, the kinetic energy of the solution is localized uniformly in time. One
important application of the theorem is a simplified proof of the scattering conjecture for mass-critical
NLS without reducing to three enemies. As another important application, we establish a Liouville type
result for L2

x initial data with ground state mass. We prove that if a radial L2
x solution to focusing mass-

critical problem has the ground state mass and does not scatter in both time directions, then it must
be global and coincide with the solitary wave up to symmetries. Here the ground state is the unique,
positive, radial solution to elliptic equation1Q−Q+Q1+4/d

= 0. This is the first rigidity type result in
scale invariant space L2

x .

1. Introduction

Main results. We consider the d-dimensional mass-critical nonlinear Schrödinger equation

iut +1u = µ|u|4/du =: F(u). (1-1)

Here, µ = ±1, with µ = +1 known as the defocusing and µ = −1 as the focusing case. The name
“mass-critical” refers to the fact that the scaling symmetry

u(t, x)= λd/2u(λ2t, λx) (1-2)

leaves both the equation and the mass invariant. Here the mass is defined as

M(u(t))=
∫

Rd
|u(t, x)|2 dx = M(u0). (1-3)

The precise meaning of the solution we discuss throughout the paper is the following:

Definition 1.1 (solution). A function u : I × Rd
→ C on a nonempty time interval I ⊂ R is a strong

L2
x(R

d) solution (or solution for short) if it lies in the class C0
t L2

x(K ×Rd)∩ L2(d+2)/d
t,x (K ×Rd) for all

compact K ⊂ I , and we have the Duhamel formula

u(t1)= ei(t1−t0)1u(t0)− i
∫ t1

t0
ei(t1−t)1F(u(t)) dt (1-4)

MSC2000: 35Q55.
Keywords: Schrödinger equation, mass-critical.
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for all t0, t1 ∈ I . Here ei t1 is the propagator for free Schrödinger equation. We say that u is a maximal-
lifespan solution if the solution can not be extended to any strictly larger interval. We say that u is global
if I = R.

The standard local theory for such solutions was worked out by Cazenave and Weissler [2003]. They
constructed the local in time solution for arbitrary initial data in L2

x(R
d). They also showed that the

solution depends continuously on the initial data in the same space. However due to the criticality of the
problem, the lifespan of the local solution depends on the profile of the initial data instead of the mere
L2

x -norm. When the initial data is small enough, they proved the solution exists globally and scatters in
the following sense: there exist unique u± ∈ L2

x(R
d) such that

lim
t→∞
‖u(t)− ei t1u+‖L2

x
= lim

t→−∞
‖u(t)− ei t1u−‖L2

x
= 0. (1-5)

Whilst the local theory is fairly complete, the understanding of the global theory for large solutions is
still only partial. Briefly speaking, the global theory for large solutions amounts to proving the global
wellposedness and scattering for generic L2

x initial data in the defocusing case; investigating the long
time behavior of global solutions, characterizing the structure and profile of finite time blowup solutions
in the focusing case and so on. In recent years, by using concentration compactness tools developed
and used in [Merle 1993; Kenig and Merle 2006; Keraani 2001; 2006; Bégout and Vargas 2007; Killip
et al. 2008; 2009a; 2009b; Li and Zhang 2009b; 2009a], one can address part of these problems by
exploring the properties of a large class of solutions which have certain compactness properties. To this
end, following [Tao et al. 2008], we introduce:

Definition 1.2 (almost periodic modulo symmetry solutions). Let u be the maximal-lifespan solution of
(1-1) on time interval I . Let I0 ⊂ I be a subinterval. We say u is almost periodic modulo symmetries on
I0 if there exists functions x(t), N (t), ξ(t), θ(t) with t ∈ I0 such that the orbit{

eiθ(t)ei x ·ξ(t)N (t)−d/2u
(

t, x−x(t)
N (t)

)
, t ∈ I0

}
is precompact in L2

x(R
d). By the Arzelà–Ascoli Theorem, an equivalent way to write this definition is

the following: there exists a function C(η) such that for any η > 0,∫
|x−x(t)|>C(η)/N (t)

|u(t, x)|2 dx ≤ η,
∫

|ξ−ξ(t)|>C(η)N (t)

|û(t, ξ)|2dξ ≤ η.

In particular, we call u is almost periodic modulo scaling on I0 if, in this situation, x(t) = ξ(t) ≡ 0 for
all t ∈ I0.

The parameter N (t) is the frequency scale. In the physical space, its reciprocal corresponds to the
concentration size of the solution. The parameter x(t), ξ(t) correspond to the center of mass at physical
and frequency spaces respectively. Basically we have no a priori control on these parameters, which is
the main source of the difficulty of establishing useful properties for almost periodic modulo symmetry
solutions. However, under the spherical symmetry assumption, one is allowed to fix the center of mass,
thus leaving only one parameter N (t) which can still vary arbitrarily. This case turns out to be treatable
in high dimensions d ≥ 4. Here is the main theorem of this paper:
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Theorem 1.3. Let d ≥ 4. Let u be a maximal-lifespan solution on I and is spherically symmetric.
Suppose u is almost periodic modulo scaling on I . Then there exists ε = ε(d) < 4/d such that

u(t) ∈ H 1+ε
x for all t ∈ I. (1-6)

Moreover, the kinetic energy of the solution is localized uniformly in time: for any η > 0, there exists
C(η) such that for any t ∈ I ∫

|x |≥C(η)
|∇u(t, x)|2 dx ≤ η. (1-7)

Here, ε only depends on the dimension d, while C(η) depends also on the solution u.

Remark 1.4. This result seems a bit surprising in view of the fact that the scaling parameter N (t) can
vary arbitrarily and the solution is only assumed to be in the scale invariant space L2

x . On the other hand,
Theorem 1.3 bears similarities with previous works [Killip et al. 2008; 2009a; 2009b; Li and Zhang
2009b], where they were able to deal with dimensions two and higher. However in [Killip et al. 2009a;
Li and Zhang 2009b], the solution is assumed to have H 1

x regularity and this latter fact allows one to
treat solutions being almost periodic modulo scaling in only one time direction. In [Killip et al. 2008;
2009b], the additional regularity is only established for three typical solutions known as three enemies.
Namely, these are almost periodic modulo scaling solutions with a priori control on N (t):

(a) The self-similar solution. This solution is defined on maximal time interval (0,∞) and N (t)= t−1/2

for any t ∈ (0,∞).

(b) The soliton-like solution. This solution is global and N (t)= 1.

(c) The high to low cascade. This solution is also global with N (t) satisfying the conditions N (t) ≤ 1
and lim inft→±∞ N (t)= 0.

On the other hand, the technique in this paper allows us to deal with all enemies with no a priori as-
sumption on N (t) in dimensions d ≥ 4.

Remark 1.5. The dependence on the dimension comes from the fact that in dimension d ≥ 4, the non-
linearity |u|4/du can be put in Lebesgue space L p

x (R
d) for some p ≥ 1 only knowing that u ∈ L2

x(R
d).

This property is not available in low dimensions d = 2, 3. So in these dimensions, it is still open proving
the additional regularity for solutions other than the three enemies.

Remark 1.6. Besides the spherical symmetry, we can also consider other symmetries that can freeze the
center of mass at the origin. For example, one can consider the splitting spherical symmetry introduced
in [Li and Zhang 2009b]. In [Li and Zhang 2009a], we select the six dimensions as a sample case to
show how the technique can be extended to deal with the solution with splitting spherical symmetry
and is almost periodic modulo scaling. There the main difficulty comes from the fact that the waves
can propagate anisotropically along splitting subspaces. As shown in the proofs of Proposition 4.4 and
Proposition 4.6, the spherical symmetry is mainly used to treat the part where the plane waves travel
away from the origin. For this part, one uses the weighted Strichartz estimate for radial functions to
get the decay. In the splittingly spherical symmetric case, we develop tools such as weighted Strichartz
estimate (see [Li and Zhang 2009b]) for splittingly spherical symmetric functions to make use of the
decay property.
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Remark 1.7. To prove Theorem 1.3 we need to control the parts of the solution both near the spatial
origin and away from it. To control the part away from the origin, we use the techniques from [Killip
et al. 2009a] where we need the radial assumption on the solution. To control the part near the origin,
we introduce a novel local iteration scheme which actually does not need the radial assumption provided
we already have the control on the piece away from the origin. We should also stress that our proof uses
the almost periodicity in a very light way. Instead of assuming the solution is almost periodic modulo
scaling on the whole time interval, one could assume the following sequential almost periodicity: there
exist t+n → sup I , t−n → inf I and scaling parameters N (t+n ), N (t−n ), such that both of the sets

{N (t+n )
−d/2u(t+n , · /N (t+n ))}, {N (t

−

n )
−d/2u(t−n , · /N (t−n ))}

are precompact in L2
x(R

d).

Applications of Theorem 1.3. The applications of Theorem 1.3 are related to the scattering conjecture
and the rigidity conjecture which we now explain. In the defocusing case, the scattering conjecture says
that all solutions with finite mass exist globally and scatter in both time directions. In the focusing case,
besides scattering solutions, there exist finite time blowup solutions as shown in [Glassey 1977] and the
solitary wave solutions of the form ei t R(x). Here R solves the elliptic equation

1R− R+ |R|4/d R = 0.

There are infinitely many solutions to this equation, but only one positive solution which is spherically
symmetric (up to translations) and whose mass is minimal among all these R′s. This solution is usually
called the ground state:

Definition 1.8 (ground state [Berestycki and Lions 1979; Kwong 1989]). The ground state Q refers to
the unique positive radial Schwartz solution to the elliptic equation

1Q− Q+ |Q|4/d Q = 0.

It is believed that the mass of Q serves as the minimal mass among all the nonscattering solutions in
the focusing case. To summarize, we have:

Conjecture 1.9 (scattering conjecture). Let u0 ∈ L2
x(R

d). In the focusing case, we also assume M(u0) <

M(Q). Then the corresponding solution to (1-1) exists globally and scatters in both time directions.

This conjecture has been proved in dimensions d ≥ 2 when the initial data is spherically symmetric;
see [Killip et al. 2008; 2009b].1 We now give a high level overview of the proof which is based on a
contradiction argument. Assuming the scattering conjecture is not true, one can then use concentration
compactness tools to obtain minimal mass nonscattering2 solutions which are almost periodic modulo
scaling (due to the spherical symmetry) with scaling parameter N (t). To obtain better control of N (t),
another limiting procedure is performed to reduce the consideration to three typical solutions alluded
as to “three enemies”. To kill three enemies and thereby obtaining the contradiction, one can use the

1In the defocusing case and d ≥ 3, one can take advantage of Morawetz estimate to prove the additional regularity; see [Tao
et al. 2007] for more details.

2Here by “nonscattering”, we mean that the L2(d+2)/d
t,x norm of the solution is infinite. Obviously, a “nonscattering” solution

may blow up at finite time or exist globally with infinite L2(d+2)/d
t,x norm.
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information of N (t) to obtain additional regularity of these solutions which together with a truncated
virial argument establishes the claim.

Thanks to Theorem 1.3, we can simplify the argument by directly working with all enemies whose
scaling parameter N (t) can vary arbitrarily in dimensions d ≥ 4. In other words, the limiting procedure
of picking three enemies is not needed here. We record the result as:

Corollary 1.10 (scattering in dimension d ≥ 4 with spherical symmetry). Let d ≥ 4. Let u0 ∈ L2
x(R

d) be
spherically symmetric. In the focusing case, we assume M(u0) < M(Q). Then the solution to (1-1) with
this initial data exists globally and satisfies

‖u‖L2(d+2)/d
t,x (R×Rd )

≤ C(‖u0‖L2
x
).

We turn now to the rigidity conjecture.
In the focusing case, a main issue is to understand the large time behavior of nonscattering solutions.

This problem has only been addressed in the case when the mass of u is equal to or slightly bigger than
that of the ground state; see [Merle 1993; Merle and Raphael 2005; Killip et al. 2009a; Li and Zhang
2009b] and the references therein. In this paper, we are primarily concerned with the case when the
solution has the ground state mass. Our main focus is to characterize and classify all such solutions. At
the level of ground state mass, there are two explicit examples of nonscattering solutions: the solitary
wave SW which exists globally and the pseudoconformal ground state Pc(Q) which blows up at t = 0:

SW= ei t Q(x), Pc(Q)= |t |−d/2e(i |x |
2
−4)/(4t)Q

( x
t

)
.

It is conjectured that, up to symmetries, these are the only two threshold solutions for scattering at the
level of minimal mass. Associated with this is the following rigidity conjecture which identifies all
solutions with ground state mass as either SW or Pc(Q) if they do not scatter. Since both mass and the
equation are invariant under a couple of symmetries, the coincidence of the solutions with the examples
only hold modulo these symmetries. Specifically, the symmetries are: translation, phase rotation, scaling
and the Galilean boost.

Conjecture 1.11 (rigidity conjecture at the ground state mass). Let u0 ∈ L2
x(R

d) satisfy M(u0)= M(Q).
Then only the following cases can occur:

(1) The solution u blows up at finite time, then in this case u must coincide with Pc(Q) up to symmetries
of the equation.

(2) The solution u is a global solution. Then in this case, u either scatters in both time directions or u
must coincide with SW up to symmetries of the equation.

Merle [1993] considered the first part of the conjecture, where he identified all finite time blowup
solutions as Pc(Q) under an additional H 1

x assumption on the initial data. See also [Weinstein 1986]
for the preliminary result and [Hmidi and Keraani 2005] for a simplified proof of Merle’s argument. By
Merle’s result and pseudoconformal transformation, the second part of the conjecture, which character-
izes all global solutions with ground state mass, still holds if we make the strong assumption that the
initial data u0 ∈6 = { f ∈ H 1

x , x f ∈ L2
x}. Finally it is worthwhile noticing that Merle’s argument works

for all dimensions without any symmetry assumption on the initial data.
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Without the 6 assumption on the initial data, it is not clear at all how to deal with the case when u0

is merely in L2
x and the corresponding solution is global. Recently in [Killip et al. 2009a; Li and Zhang

2009b], we proved the second part of the conjecture when the initial data u0 ∈ H 1
x (R

d), d ≥ 2 and is
spherically symmetric. In dimensions d ≥ 4, the results hold even under a weaker symmetry assumption,
namely, the initial data is only required to be splitting-spherical symmetric (see [Li and Zhang 2009b]
for more details).

As stated, all the results concerning the rigidity conjecture require the H 1
x regularity on the initial data

since it is the minimal regularity to define the energy and to carry out the spectral analysis. Here the
energy refers to

E(u(t))= 1
2
‖∇u(t)‖2L2

x
−

d
2(d+2)

‖u(t)‖2(d+2)/d
L2(d+2)/d

x
= E(u0).

To prove the rigidity results for pure L2
x solutions, a reasonable strategy is to upgrade the regularity of

the solution to H 1
x or better by taking advantage of certain compactness properties of the solutions. This

is where Theorem 1.3 has to be used. We can then use known H 1
x results to classify these solutions.

Therefore as a direct consequence of Theorem 1.3, we have:

Theorem 1.12 (rigidity for two-way nonscattering solutions with ground state mass). Let d ≥ 4. Let
u0 ∈ L2

x(R
d) be spherically symmetric and M(u0)= M(Q). Let u be the maximal lifespan solution on I

which does not scatter on both sides:

‖u‖L2(d+2)/d
t,x ([t0,sup I )×Rd )

= ‖u‖L2(d+2)/d
t,x ((inf I,t0]×Rd )

=∞, t0 ∈ I.

Then I = R and u = ei t Q up to phase rotation and scaling.

For technical reasons, we need to impose the condition that the solution does not scatter in both time
directions. It is an interesting problem to extend our techniques to the case when the solution scatters
only in one time direction, but does not scatter in the other.

We give the proof of these two results in Section 3. Now we briefly sketch the proof of Theorem 1.3.

Main idea of the proof of Theorem 1.3: a local iteration scheme. We will work with each single dyadic
frequency of u:

‖PN u(t)‖L2
x
.

The decay in N will correspond to the regularity of the solution. First we observe that when restricted
to the region away from the origin, the argument in [Killip et al. 2009a] gives us

‖φ>1 PN u(t)‖L2
x
. N−1−ε (1-8)

with a uniform in time bound. Here φ>1 is a smooth cut-off function supported in the region |x | > 1.
This reduces matters to estimating the part of the solution near the spatial origin, that is, ‖φ≤1 PN u(t)‖L2

x
.

This piece is trivially bounded by

AN = ‖PN u‖S([t,t+1/
√

N ]),

that is, the Strichartz norm of PN u on a local time interval [t, t + 1/
√

N ]. It turns out, after some
technical manipulations, that this latter quantity is better suited for iteration and bootstrapping. Indeed
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we shall establish recurrent relations for AN and we will iterate our estimates only finitely many (but
sufficiently many) steps. The crucial point is that during the iteration process, we shall never need more
than the information of the solution on a unit time interval [t, t + 1]. Therefore we do not need to use
the full control of N (t). We remark that although as a sacrifice the H 1+ε

x norm of u(t) depends on t , this
information combined with the kinetic energy localization in Section 3 suffice to prove Corollary 1.10
and Theorem 1.12.

2. Preliminaries

Some notation. We write X . Y or Y & X to indicate X ≤ CY for some constant C > 0. We use O(Y )
to denote any quantity X such that |X | . Y . We use the notation X ∼ Y whenever X . Y . X . The
fact that these constants depend upon the dimension d will be suppressed. If C depends upon some
additional parameters, we will indicate this with subscripts; for example, X . u Y denotes the assertion
that X ≤ CuY for some Cu depending on u. Sometimes when the context is clear, we will suppress
the dependence on u and write X . u Y as X . Y . We will write C = C(Y1, . . . , Yn) to stress that the
constant C depends on quantities Y1, . . . , Yn . We denote by X± any quantity of the form X ± ε for any
ε > 0.

We use the “Japanese bracket” convention: 〈x〉 := (1+ |x |2)1/2.
We write Lq

t Lr
x to denote the Banach space with norm

‖u‖Lq
t Lr

x (R×Rd ) :=

(∫
R

(∫
Rd
|u(t, x)|r dx

)q/r

dt
)1/q

,

with the usual modifications when q or r are equal to infinity, or when the domain R×Rd is replaced
by a smaller region of spacetime such as I ×Rd . When q = r we abbreviate Lq

t Lq
x as Lq

t,x .
Throughout this paper, we will use φ ∈ C∞(Rd) for a radial bump function supported in the ball
{x ∈ Rd

: |x | ≤ 25/24} and equal to 1 on the ball {x ∈ Rd
: |x | ≤ 1}. For any constant C > 0, we set

φ≤C(x) := φ(x/C) and φ>C := 1−φ≤C .

Basic harmonic analysis. For each number N > 0, we define the Fourier multipliers

P̂≤N f (ξ) := φ≤N (ξ) f̂ (ξ),

P̂>N f (ξ) := φ>N (ξ) f̂ (ξ),

P̂N f (ξ) := (φ≤N −φ≤N/2)(ξ) f̂ (ξ),

and similarly P<N and P≥N . We also define

PM<···≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N . We will usually use these multipliers when M and N are dyadic numbers (that is, of
the form 2n for some integer n); in particular, all summations over N or M are understood to be over
dyadic numbers. Nevertheless, it will occasionally be convenient to allow M and N not to be powers of 2.
Since PN is not truly a projection (P2

N 6= PN ), we will occasionally need to use fattened Littlewood–Paley
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operators:
P̃N := PN/2+ PN + P2N . (2-1)

These obey PN P̃N = P̃N PN = PN .
Like all Fourier multipliers, the Littlewood–Paley operators commute with the propagator ei t1, as

well as with differential operators such as i∂t +1. We will use basic properties of these operators many
times, including:

Lemma 2.1 (Bernstein estimates). For 1≤ p ≤ q ≤∞,∥∥|∇|±s PN f
∥∥

L p
x (Rd )
∼ N±s

‖PN f ‖L p
x (Rd ),

‖P≤N f ‖Lq
x (Rd ) . N d/p−d/q

‖P≤N f ‖L p
x (Rd ),

‖PN f ‖Lq
x (Rd ) . N d/p−d/q

‖PN f ‖L p
x (Rd ).

While it is true that spatial cutoffs do not commute with Littlewood–Paley operators, we still have the
following:

Lemma 2.2 (mismatch estimates in real space). Let R, N > 0. Then∥∥φ>R∇P≤Nφ≤R/2 f
∥∥

L p
x (Rd )

.m N 1−m R−m
‖ f ‖L p

x (Rd ),∥∥φ>R P≤Nφ≤R/2 f
∥∥

L p
x (Rd )

.m N−m R−m
‖ f ‖L p

x (Rd )

for any 1≤ p ≤∞ and m ≥ 0.

Proof. We will only prove the first inequality; the second follows similarly.
It is not hard to obtain kernel estimates for the operator φ>R∇P≤Nφ≤R/2. Indeed, an exercise in

nonstationary phase shows∣∣φ>R∇P≤Nφ≤R/2(x, y)
∣∣. N d+1−2k

|x − y|−2kφ|x−y|>R/2

for any k ≥ 0. An application of Young’s inequality yields the claim. �

Similar estimates hold when the roles of the frequency and physical spaces are interchanged. The proof
is easiest when working on L2

x , which is the case we will need; nevertheless, the following statement
holds on L p

x for any 1≤ p ≤∞.

Lemma 2.3 (mismatch estimates in frequency space). For R > 0 and N ,M > 0 such that max{N ,M} ≥
4 min{N ,M}, ∥∥PNφ≤R PM f

∥∥
L2

x (R
d )
.m max{N ,M}−m R−m

‖ f ‖L2
x (R

d ),∥∥PNφ≤R∇PM f
∥∥

L2
x (R

d )
.m M max{N ,M}−m R−m

‖ f ‖L2
x (R

d )

for any m ≥ 0. The same estimates hold if we replace φ≤R by φ>R .

Proof. The first claim follows from Plancherel’s Theorem and Lemma 2.2 and its adjoint. To obtain the
second claim from this, we write

PNφ≤R∇PM = PNφ≤R PM∇ P̃M

and note that ‖∇ P̃M‖L2
x→L2

x
. M . �
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Some analysis tools. We will need the following radial Sobolev embedding to exploit the decay property
of a radial function. For the proof and the more complete version, see [Tao et al. 2007].

Lemma 2.4 (radial Sobolev embedding [Tao et al. 2007]). Let the dimension d be at least 2. Let s > 0,
α > 0 and 1< p, q <∞ obey the scaling restriction α+ s = d(1/q − 1/p). Then the following holds:

‖|x |α f ‖L p(Rd ) . ‖|∇|
s f ‖Lq (Rd ),

where the implicit constant depends on s, α, p, q. When p =∞, we have

‖|x |(d−1)/2 PN f ‖L∞(Rd ) . N 1/2
‖PN f ‖L2

x (R
d ).

We will need the following fractional chain rule lemma.

Lemma 2.5 (fractional chain rule for a C1 function [Christ and Weinstein 1991; Staffilani 1997; Taylor
2000]). Let G ∈ C1(C), σ ∈ (0, 1), and 1< r, r1, r2 <∞ such that 1/r = 1/r1+ 1/r2. Then we have

‖|∇|
σG(u)‖r . ‖G ′(u)‖r1‖|∇|

σu‖r2 .

Proof. See [Christ and Weinstein 1991; Staffilani 1997; Taylor 2000]. �

Lemma 2.6 [Killip et al. 2008]. Let 0< s < 1+ 4/d and F(u)= |u|4/du. Then

‖|∇|
s F(u)‖L(2(d+2))/(d+4)

x
. ‖|∇|su‖L2(d+2)/d

x
‖u‖4/d

L2(d+2)/d
x

.

We will need the following sharp Gagliardo–Nirenberg inequality:

Lemma 2.7 [Weinstein 1983]. Let Q be the ground state in the Definition 1.8. Then for any f ∈ H 1
x (R

d),
we have

‖ f ‖2(d+2)/d
L2(d+2)/d

x
≤

d + 2
d

(
M( f )
M(Q)

)2/d

‖∇ f ‖2L2
x
. (2-2)

The equality holds only and if only

f = ceiθλd/2 Q(λ(x − x0)) (2-3)

for (c, θ, λ) ∈ (R+,R,R+).

Strichartz estimates. The free Schrödinger flow has the explicit expression

ei t1 f (x)=
1

(4π t)d/2

∫
Rd

ei |x−y|2/4t f (y) dy,

from which we can derive the kernel estimate of the frequency localized propagator.

Lemma 2.8 (kernel estimates [Killip et al. 2008; 2009b]). For any m ≥ 0, we have

|(PN ei t1(x, y)|.m


|t |−d/2 if |x − y| ∼ Nt,

N d

|N 2t |m〈N |x − y|〉m
otherwise,

for |t | ≥ N−2 and
|(PN ei t1)(x, y)|.m N d

〈N |x − y|〉−m for |t | ≤ N−2.
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We will frequently use the standard Strichartz estimate. Let d ≥ 3. Let I be a time interval. We define
the Strichartz space on I :

S(I )= L∞t L2
x(I ×Rd)∩ L2

t L2d/(d−2)
x (I ×Rd).

We also define N (I ) to be L1
t L2

x(I ×Rd)+ L2
t L2d/(d+2)

x (I ×Rd). Then the standard Strichartz estimate
reads:

Lemma 2.9 (Strichartz). Let d ≥ 3. Let I be an interval, t0 ∈ I , and let u0 ∈ L2
x(R

d) and f ∈ N (I ).
Then, the function u defined by

u(t) := ei(t−t0)1u0− i
∫ t

t0
ei(t−t ′)1 f (t ′) dt ′

obeys the estimate
‖u‖S(I ) . ‖u0‖L2

x
+‖ f ‖N (I ),

where all spacetime norms are over I ×Rd .

Proof. See, for example, [Ginibre and Velo 1992; Strichartz 1977]. For the endpoint see [Keel and Tao
1998]. �

We will also need a weighted Strichartz estimate, which exploits heavily the spherical symmetry in
order to obtain spatial decay.

Lemma 2.10 (weighted Strichartz [Killip et al. 2008; 2009b]). Let I be an interval, t0 ∈ I , and let
F : I ×Rd

→ C be spherically symmetric. Then,∥∥∥∥∫ t

t0
ei(t−t ′)1F(t ′) dt ′

∥∥∥∥
L2

x

.
∥∥|x |−2(d−1)/q F

∥∥
Lq/(q−1)

t L2q/(q+4)
x (I×Rd )

for all 4≤ q ≤∞.

The in/out decomposition. We will need an incoming/outgoing decomposition; we will use the one
developed in [Killip et al. 2008; 2009b]. As there, we define operators P± by

[P± f ](r) := 1
2

f (r)± i
π

∫
∞

0

r2−d f (ρ) ρd−1 dρ
r2− ρ2 ,

where the radial function f : Rd
→ C is written as a function of radius only. We will denote by P+ the

projection onto outgoing spherical waves; however, it is not a true projection as it is neither idempotent
nor self-adjoint. Similarly, P− plays the role of a projection onto incoming spherical waves; its kernel
is the complex conjugate of the kernel of P+ as required by time-reversal symmetry.

For N > 0 let P±N denote the product P±PN , where PN is the Littlewood–Paley projection. We record
the following properties of P±:

Proposition 2.11 (properties of P± [Killip et al. 2008; 2009b]).

(i) P++ P− represents the projection from L2 onto L2
rad.

(ii) Fix N > 0. Then
‖χ&1/N P±

≥N f ‖L2(Rd ) . ‖ f ‖L2(Rd )

with an N-independent constant.
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(iii) If the dimension d = 2, then P± are bounded on L2(R2).

(iv) For |x |& N−1 and t & N−2, the integral kernel obeys

∣∣[P±N e∓i t1
](x, y)

∣∣.

(|x ||y|)−(d−1)/2

|t |−1/2
|y| − |x | ∼ Nt,

N d

(N |x |)(d−1)/2〈N |y|〉(d−1)/2

〈
N 2t + N |x | − N |y|

〉−m otherwise,

for all m ≥ 0.

(v) For |x |& N−1 and |t |. N−2, the integral kernel obeys∣∣[P±N e∓i t1
](x, y)

∣∣. N d

(N |x |)(d−1)/2〈N |y|〉(d−1)/2

〈
N |x | − N |y|

〉−m

for any m ≥ 0.

3. Theorem 1.3 implies Corollary 1.10 and Theorem 1.12

In this section, we assume Theorem 1.3 holds momentarily and prove the scattering and the rigidity
results Corollary 1.10 and Theorem 1.12.

Proof of Corollary 1.10. Suppose by contradiction that Corollary 1.10 does not hold. Then there exists
minimal mass Mc for which Mc < ∞ in the defocusing case, Mc < M(Q) in the focusing case and
maximal-lifespan solution u(t, x) on I = (−T∗, T ∗) such that

(1) u is spherically symmetric and M(u)= Mc;

(2) u is almost periodic modulo scaling on I .

See for instance [Tao et al. 2008] for this part of the argument which is by now standard. Applying
Theorem 1.3, we know that u ∈ H 1+ε

x . We now detail the rest of the argument in the focusing case,
since the defocusing case is even simpler. By the sharp Gagliardo–Nirenberg inequality and the fact that
M(u) < M(Q) we have

‖u(t)‖H1
x
.M(u) 1.

From this and the standard local theory in H 1
x we know that u exists globally, that is, T∗ = T ∗ =∞. In

this situation, the contradiction will come from the truncated virial and the kinetic energy localization as
we explain now. Let φ≤R be the smooth cutoff function, we define the truncated virial as

VR(t)=
∫
φ≤R(x)|x |2|u(t, x)|2 dx .

Obviously

VR(t). R2 for all t ∈ R. (3-1)

On the other hand, we compute the second derivative of virial with respect to t ; this gives

∂t t VR(t)= 8E(u)+ O
(∫
|x |>R
|∇u(t, x)|2+ |u(t, x)|2(d+2)/d

+
1
R2

∫
|x |>R
|u(t, x)|2 dx

)
. (3-2)
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Since M(u) < M(Q) and u ∈ H 1
x , from the sharp Gagliardo–Nirenberg inequality (2-2) we have

E(u) > 0.

Now we can use the kinetic energy localization (1-7) and the Gagliardo–Nirenberg inequality to control
the O( ) term in (3-2) and finally get

∂t t VR(t)≥ 4E(u) > 0

by taking R sufficiently large. This obviously contradicts (3-1), finishing the proof of Corollary 1.10. �

Proof of Theorem 1.12. Let d ≥ 4 and let u be the solution of (1-1) satisfying the following:

(1) M(u)= M(Q) and u is spherically symmetric.

(2) u does not scatter in both time directions.

By [Killip et al. 2008] or Corollary 1.10, M(Q) is the minimal mass, and the compactness argument in
[Keraani 2006; Bégout and Vargas 2007; Tao et al. 2008] shows that u is almost periodic modulo scaling
in both time directions. Now we can apply Theorem 1.3 to deduce that u ∈ H 1

x . Since from Merle’s
result, the only finite-time blowup solution must be Pc(Q) up to symmetries and Pc(Q) scatters in one
time direction, we know from condition (2) that u must be a global solution.

From (2-2), this global solution u satisfies E(u) ≥ 0. Moreover, the same virial argument as in the
proof of Corollary 1.10 precludes the case E(u) > 0, thus E(u) = 0. From here the coincidence of the
solution with solitary wave follows immediately, again by the sharp Gagliardo–Nirenberg inequality. �

4. The proof of Theorem 1.3

The proof of Theorem 1.3 proceeds in two steps. In the first step, we prove that away from the origin,
the solution has H 1+ε

x regularity. Moreover, a similar (but more refined) argument establishes the spatial
decay estimate. These two pieces together suffice for us to establish the kinetic localization estimate.
However, in this step, the total kinetic energy does not need to be finite.

In the second step, we prove the total kinetic energy is actually finite by controlling the piece near the
spatial origin. Thanks to the first step, we only need to consider a single frequency PN u with spatial cutoff
φ≤1. We can bound this quantity by the Strichartz norm of PN u on a short time interval [t, t + 1/

√
N ].

We then establish a recurrent relation for this local Strichartz norm. Iterating the estimates finitely many
times then yields the desired bound. More details are given below.

Before proceeding, we remark that in all of the arguments that follow, the only property we use for
an almost periodic modulo scaling solution is that it satisfies the improved Duhamel formula. This was
first derived in [Tao et al. 2008].

Proposition 4.1 (improved Duhamel formula [Tao et al. 2008]). Let u be the solution of (1-1) and is
almost periodic modulo scaling on the time interval I . Then

u(t)= lim
T→inf I

−i
∫ t

T
ei(t−τ)1F(u(τ )) dτ = lim

T→sup I
i
∫ T

t
ei(t−τ)1F(u(τ )) dτ. (4-1)

Here the limit is in weak L2
x sense.
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Remark 4.2. As was already mentioned in Remark 1.7, we actually only need the sequential almost
periodicity of the solution for the later proof to work. This would imply the following sequence version
of improved Duhamel formula:

u(t)= lim
n→∞
−i
∫ t

T−n
ei(t−τ)1F(u(τ )) dτ = lim

n→∞
i
∫ T+n

t
ei(t−τ)1F(u(τ )) dτ.

Here again the limit is in weak L2
x sense.

In what follows, we shall only assume that

u is a maximal lifespan solution on I ;
u is spherically symmetric in space;
u satisfies the improved Duhamel formula (4-1).

 (4-2)

By time translation invariance and without loss of generality we also assume [0, 1] ⊂ I .

Localization for kinetic energy. The purpose of this section is to establish the uniform in time localiza-
tion of the kinetic energy for solutions satisfying the conditions (4-2). More precisely, we will prove:

Proposition 4.3 (kinetic energy localization). Suppose u satisfies (4-2). Then there exists a function
C(η) such that

‖φ>C(η)∇u(t)‖L2
x
≤ η for all η > 0, t ∈ I.

As shown in the proof of [Li and Zhang 2009b, Theorems 1.14–1.15, page 31], Proposition 4.3
will follow immediately from the following two propositions which concern the decay of each single
frequency.

Proposition 4.4 (frequency decay estimate). Suppose u satisfies (4-2). Let ε = (d − 1)/d. Then for any
t ∈ I and N ≥ 1, we have

‖φ>1 PN u(t)‖L2
x
. N−1−ε. (4-3)

Remark 4.5. The decay N−1−(d−1)/d may seem a bit surprising since the exponent 1+(d−1)/d is bigger
than the regularity of the nonlinearity 1+ 4/d for dimension d > 5. However this is not contradictory
since in (4-3) we are only considering the part of the solution away from the origin. In this regime
the additional regularity of the solution comes from the smoothing effects of the Schrödinger equation
and the radial symmetry. On the other hand for the part of the solution near the origin, we only obtain
Sobolev regularity H s for some s < 1+ 4/d (see (4-24)).

Proposition 4.6 (spatial decay estimate). Suppose u satisfies (4-2). Let N0, N1 be two dyadic numbers.
Then there exist R0 = R0(N0, N1) and δ = δ(d) such that for all R ≥ R0, N ∈ [N0, N1] and t ∈ I , we
have

‖φ>R PN u(t)‖L2
x
. R−δ.

The proofs of both propositions have been presented, in various forms, in [Killip et al. 2009a; Li and
Zhang 2009b]. We sketch the proofs here for the sake of completeness. The proof of Proposition 4.3
will be skipped since it follows directly from Proposition 4.4 and Proposition 4.6.



188 DONG LI AND XIAOYI ZHANG

Proof of Proposition 4.4. We first use the in/out decomposition and triangle inequality for the bound

‖φ>1 PN u(t)‖2 ≤ ‖φ>1 P+N u(t)‖2+‖φ>1 P−N u(t)‖2.

Since the two terms give the same contribution, we only estimate, for instance, the outgoing piece. For
this piece, we use the forward Duhamel formula. Moreover, we will split the integral into different time
regimes and introduce the spatial cutoffs. We have

‖φ>1 P+N u(t)‖2 .
∥∥∥∥φ>1 P+N

∫ sup I

t
ei(t−s)1F(u(s)) ds

∥∥∥∥
2

.

∥∥∥∥φ>1 P+N

∫ sup I−t

0
e−is1F(u(t + s)) dτ

∥∥∥∥
2

.

∥∥∥∥φ>1 P+N

∫ 1/N

0
e−is1φ>1/2 F(u(t + s))ds

∥∥∥∥
2

(4-4)

+

∥∥∥∥φ>1 P+N

∫ 1/N

0
e−is1φ≤1/2 F(u(t + s)) ds

∥∥∥∥
2

(4-5)

+

∥∥∥∥φ>1 P+N

∫ sup I−t

1/N
e−is1φ>Ns/2 F(u(t + s)) ds

∥∥∥∥
2

(4-6)

+

∥∥∥∥φ>1 P+N

∫ sup I−t

1/N
e−is1φ≤Ns/2 F(u(t + s)) ds

∥∥∥∥
2
. (4-7)

The main contribution comes from (4-4) and (4-6). To estimate (4-4), we drop the bounded operator
φ>1 P+N and commute the frequency cutoff P̃N with the spatial cutoff φ>1(this produces a harmless high
order term by the mismatch estimate Lemma 2.3). Thus we have

(4-4).
∥∥∥∥ ∫ 1/N

0
e−is1φ>1/2 PN/8<···≤8N F(φ>1/4u(t + s)) d

∥∥∥∥
2
+ N−10. (4-8)

We now use the weighted Strichartz lemma (Lemma 2.10) to estimate the last term:

(4-4). ‖PN/8<···≤8N F(φ>1/4u(t + s))‖Ld/(d−1)
s L2d/(d+4)

x ([0,1/N ])+ N−10 . N−(d−1)/d .

The estimate of (4-6) follows in a similar way. Applying the mismatch estimate and weighted Strichartz
inequality, we have

(4-6).
∥∥∥∥ ∫ sup I−t

1/N
e−is1φ>Ns/2 PN/8<···≤8N F(φ>Ns/4u(t + s)) ds

∥∥∥∥
2
+ N−10

. ‖(Ns)−2(d−1)/d PN/8<···≤8N F(φ>Ns/4u(t + s))‖Ld/(d−1)
s L2d/(d+4)

x ([1/N ,sup I−t))+ N−10

. N−2(d−1)/d
‖s−2(d−1)/d

‖F(φ>Ns/4u(t + s))‖L2d/(d+4)
x

‖Ld/(d−1)
s ([1/N ,sup I−t))+ N−10

. N−(d−1)/d .



REGULARITY OF APMS SOLUTIONS FOR MASS-CRITICAL NLS AND APPLICATIONS 189

Finally we consider the contribution from the tail terms (4-7) and (4-5). Applying Proposition 2.11, we
bound the kernel as follows:

|(φ>1 P+N e−is1φ≤1/2)(x, y)|. N−9d
〈N (x−y)〉−10d for 0< s ≤ 1

N
,

|(φ>1 P+N e−is1φ≤Ns/2)(x, y)|. N d
〈N 2s〉−10d

〈N (x−y)〉−10d . N−9d
〈N (x−y)〉−10d for s > 1

N
.

The desired decay then follows from the kernel estimate and a simple use of Young’s inequality. Com-
bining the estimates of these four pieces together, we obtain

‖φ>1 PN u(t)‖L2
x
. N−(d−1)/d for all t ∈ I.

Moreover it is easy to check that, after notational change, the same analysis establishes

‖φ>c PN u(t)‖L2
x
. c N−(d−1)/d for all t ∈ I. (4-9)

This implies

‖|∇|
(d−1)/d−(φ>cu(t))‖L2

x
. c 1 for all t ∈ I. (4-10)

Now we can upgrade the decay (4-9) by inserting (4-10) when we repeat the same argument as above.
For example, using Bernstein and (4-10), the term (4-4) can be re-estimated as follows:

(4-4). ‖PN/8<···≤8N F(φ>1/4u(t + s))‖Ld/(d−1)
s L2d/(d+4)

x ([0,1/N ])

. N−2d/(d−1)+
‖|∇|

(d−1)/d−F(φ>1/4u(t + s))‖L∞s L2d/(d+4)
x ([0,1/N ])

. N−2(d−1)/d+.

The same computation applies to (4-6), so we get

‖φ>c PN u(t)‖2 . c N−2(d−1)/d+ for all t ∈ I.

Another repetition of the argument yields (4-3) for ε = (d − 1)/d . �

The proof of Proposition 4.6 has the same spirit as the proof of Proposition 4.4. So here we only
briefly sketch the proof.

Proof sketch of Proposition 4.6. Using the in/out decomposition, it suffices to consider the piece

‖φ>R P+N u(t)‖2,

for which we use the forward Duhamel formula to express u(t). This further reduces our consideration
to the integral

‖φ>R P+N

∫ sup I−t

0
e−is1F(u(t + s)) ds‖2.

Now we split the time integral into regimes where 0 < s < R/(100N ), and s > R/(100N ). For the
small time regime, we insert the spatial cutoff φ>R/2 and φ≤R/2. For the large time regime, we insert
the spatial cutoff φ>Ns/2 and φ≤Ns/2. As indicated in the proof of Proposition 4.4, the pieces with cutoff
near the origin will give arbitrary decay in R by using the kernel estimate Proposition 2.11. The pieces
with cutoff away from the origin can be dealt with by the weighted Strichartz estimate. The point here
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is that since the frequencies are fixed in the dyadic interval [N0, N1], we can take R sufficiently large to
cancel any N dependent quantity. �

Local iteration to prove H1+
x regularity. In this part, we prove u(0) = u0 ∈ H 1+

x . This amounts to
showing ‖P≥N u0‖L2

x
. N−1− for N ≥ 1. Using Proposition 4.4, we first show the quantity ‖P≥N u0‖L2

x

is determined by the dual Strichartz norm of the nonlinearity on the local time interval [0, 1/
√

N ].

Lemma 4.7. Let u satisfy (4-2). Let ε = (d − 1)/d. Then for any N ≥ 1, we have

‖P≥N u0‖L2
x
≤ C(d, ‖u0‖L2

x
)
(
N−1−ε

+‖P≥N F(u)‖L2(d+2)/(d+4)
t,x ([0,1/

√
N ]×Rd )

)
. (4-11)

Remark 4.8. Here the choice of the time interval cutoff at N−1/2 is not special. Perhaps a more natural
choice is 1/N since the solution propagates at speed N and one is localizing to spacial scale O(1). This
latter choice would also work for our iteration scheme.

Proof. Since by Proposition 4.4, we have that ‖φ>1 P≥N u0‖L2
x
. N−1−ε, we only need to estimate the

piece ‖φ≤1 P≥N u0‖L2
x
. In the following, the implicit constants are allowed to depend on d and ‖u0‖L2

x
.

By the improved Duhamel formula we get

‖φ≤1 P≥N u0‖L2
x
≤ ‖φ≤1 P≥N

∫ sup I

0
e−iτ1F(u(τ )) dτ‖L2

x

≤ ‖φ≤1 P≥N

∫ 1/
√

N

0
e−iτ1F(u(τ )) dτ‖L2

x
(4-12)

+‖φ≤1 P≥N

∫ sup I

1/
√

N
e−iτ1φ≤Nτ/8 F(u(τ )) dτ‖L2

x
(4-13)

+‖φ≤1 P≥N

∫ sup I

1/
√

N
e−iτ1φ>Nτ/8 F(u(τ )) dτ‖L2

x
. (4-14)

For (4-12), we use Strichartz to bound it by

‖P≥N F(u)‖L2(d+2)/(d+4)
t,x ([0,1/

√
N ]×Rd )

.

For (4-13), using the kernel estimate with m = 10d , we have

(4-13)≤
∑

M≥N

∥∥∥∥φ≤1 PM

∫ sup I

1/
√

N
e−iτ1φ≤Nτ/8 F(u(τ )) dτ

∥∥∥∥
L2

x

.
∑

M≥N

Md−20d
∫ sup I

1/
√

N
τ−10d

‖〈M | · |〉−10d
∗ F(u)‖L2

x
dτ

.
∑

M≥N

Md−20d M (1/2)(10d−1)
‖F(u)‖L∞τ L2d/(d+4)

x
‖〈M | · |〉−10d

‖Ld/(d−2)
x

.
∑

M≥N

M (3/2)(1−10d)

. N−10.
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For (4-14), by the triangle inequality, we have

(4-14).
∥∥∥∥P≥N

∫ sup I

1/
√

N
e−iτ1φ>Nτ/8 F(uφ>1/8)(τ ) dτ

∥∥∥∥
L2

x

.

∥∥∥∥P≥N

∫ sup I

1/
√

N
e−iτ1φ>Nτ/8 P≤N/8 F(uφ>1/8)(τ ) dτ

∥∥∥∥
L2

x

(4-15)

+

∥∥∥∥P≥N

∫ sup I

1/
√

N
e−iτ1φ>Nτ/8 P>N/8 F(uφ>1/8)(τ ) dτ

∥∥∥∥
L2

x

(4-16)

For the term (4-15), we use the mismatch estimate Lemma 2.3 and Bernstein to bound it as

(4-15).
∫ sup I

1/
√

N
(N 2τ)−10d

‖P≤N/8 F(uφ>1/8)‖L2
x

dτ .
∫ sup I

1/
√

N
(N 2τ)−10d N 2 dτ . N−5.

For the term (4-16), we use weighted Strichartz to estimate and Proposition 4.3 to get

(4-16). ‖(Nτ)−2(d−1)/d P>N/8 F(uφ>1/8)‖Ld/(d−1)
τ L2d/(d+4)

x ([1/
√

N ,sup I )×Rd )

. N−2(d−1)/d
‖τ−2(d−1)/d

‖Ld/(d−1)
τ ([1/

√
N ,sup I )) · N

−1
‖∇P>N/8 F(uφ>1/8)‖L∞τ L2d/(d+4)

x

. N−1−3(d−1)/(2d).

This finishes the proof of Lemma 4.7. �

Now we further estimate the dual Strichartz norm of the nonlinearity.

Lemma 4.9 (dual Strichartz norm control). Let u satisfy (4-2). Let β > 0, N0 ≥ 1, N > (1/β)N0. Then
for any 0< s < 1+ 4/d , we have

‖P≥N F(u)‖L2(d+2)/(d+4)
t,x ([0,1/

√
N ]×Rd )

. ‖u‖4/d
S([0,1/

√
N ])

∑
M≤βN

(M
N

)s
‖PM u‖S([0,1/

√
N ])

+‖u>βN‖S([0,1/
√

N ])

(
N 4/(d+2)

0 N−1/(d+2)
+‖u>N0‖

8/(d(d+2))
L∞τ L2

x
‖u>N0‖

4/(d+2)
S([0,1/

√
N ])

)
. (4-17)

Proof. By splitting u into low, medium and high frequencies, u = u≤N0 + uN0<···≤βN + u>βN , we write

F(u)= F(u≤βN )+ O(u>βN |u≤N0 |
4/d)+ O(u>βN |u>N0 |

4/d). (4-18)

The contribution due to the first term can be estimated as follows. By using Lemma 2.6, we have

‖P≥N F(u≤βN )‖L2(d+2)/(d+4)
t,x ([0,1/

√
N ]×Rd )

. N−s
‖|∇|

s P≥N F(u≤βN )‖L2(d+2)/(d+4)
t,x ([0,1/

√
N ]×Rd )

. N−s
‖|∇|

su≤βN‖L2(d+2)/d
t,x ([0,1/

√
N ]×Rd )

‖u≤βN‖
4/d
L2(d+2)/d

t,x ([0,1/
√

N ]×Rd )

. ‖u‖4/d
S([0,1/

√
N ])

∑
M≤βN

(M
N

)s
‖PM u‖S([0,1/

√
N ]).
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For the contribution due to the second part of (4-18), we use Bernstein to get

‖u>βN |u≤N0 |
4/d
‖L2(d+2)/(d+4)

t,x ([0,1/
√

N ]×Rd )
. ‖u>βN‖L2(d+2)/d

t,x ([0,1/
√

N ]×Rd )
‖u≤N0‖

4/d
L2(d+2)/d

t,x ([0,1/
√

N ]×Rd )

. ‖u>βN‖S([0,1/
√

N ])N
4/(d+2)
0 N−1/(d+2)

‖u≤N0‖
4/d
L∞τ L2

x

. ‖u>βN‖S([0,1/
√

N ])N
4/(d+2)
0 N−1/(d+2).

For the third term in (4-18), we use Hölder and interpolation to get

‖u>βN |u>N0 |
4/d
‖L2(d+2)/(d+4)

t,x ([0,1/
√

N ]×Rd )

. ‖u>βN‖L2(d+2)/d
t,x ([0,1/

√
N ]×Rd )

‖u>N0‖
4/d
L2(d+2)/d

t,x ([0,1/
√

N ]×Rd )

. ‖u>βN‖S([0,1/
√

N ])‖u>N0‖
8/(d(d+2))
L∞t L2

x ([0,1/
√

N ]×Rd )
‖u>N0‖

4/(d+2)
S([0,1/

√
N ])
.

Collecting the three pieces together, we get (4-17). �

Now by Strichartz estimate,

‖P≥N u‖S([0,1/
√

N ]) . ‖P≥N u0‖L2
x
+‖P≥N F(u)‖L2(d+2)/(d+4)

t,x ([0,1/
√

N ]×Rd )
,

and the latter is in turn determined by ‖P≥N u‖S([0,1/
√

N ]) due to Lemma 4.7 and Lemma 4.9. This enables
us to set up a recurrent relation for ‖P≥N u‖S([0,1/

√
N ]).

We define
AN = ‖P≥N u‖S([0,1/

√
N ]).

Since locally the Strichartz norm of u is bounded, we can write

A := ‖u‖S([0,1])+ 1<∞.

Using the Strichartz inequality, Lemma 4.7, Lemma 4.9 and taking s = 1+ 2/d , we obtain

AN ≤ C(d)
(
‖P≥N u0‖L2

x
+‖P≥N F(u)‖L2(d+2)/(d+4)

t,x ([0,1/
√

N ]×Rd )

)
≤ C(d, ‖u0‖L2

x
)

(
N−1−ε

+ A4/d
∑

M≤βN

(M
N

)1+2/d
‖PM u‖S([0,1/

√
N ]) (4-19)

+‖P≥βN u‖S([0,1/
√

N ])

(
N 4/(d+2)

0 N−1/(d+2)
+ A4/(d+2)

‖u≥N0‖
8/(d(d+2))
L∞t L2

x ([0,1/
√

N ])

))
. (4-20)

For (4-19), we do a little modification. Noting PM = PM P≥M/2, we have

(4-19). A4/d
∑

M≤βN

(M
N

)1+2/d
‖P≥M/2u‖S([0,1/

√
N ])

. A4/d
∑

M≤2βN

(M
N

)1+2/d
‖P≥M u‖S([0,1/

√
N ]).

We shall take β to be sufficiently small. The constraint on β will be specified later.
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Now we absorb (4-20) into (4-19) through taking suitable parameters. First we take N0 = N0(β, A)
such that

A4/(d+2)
‖u>N0‖

8/(d(d+2))
L∞t L2

x ([0,1])
≤

1
100

β1+2/d .

This is certainly possible since u ∈ C([0, 1], L2
x) and [0, 1] is a compact interval. Then we assume

N ≥ M0 where

M−1/(d+2)
0 N 4/(d+2)

0 ≤
1

100
β1+2/d . (4-21)

Under these restrictions we have

(4-20)≤ 1
2β

1+2/d
‖P≥βN u‖S([0,1/

√
N ]). (4-22)

Therefore we get for all N ≥ M0 that

AN ≤ C(d, ‖u0‖L2
x
)

(
N−1−ε

+

∑
M≤2βN

(M
N

)1+2/d
‖P≥M u‖S([0,1/

√
N ])

)

≤ N−1−ε/2
+

∑
M≤2βN

(M
N

)1+1/d
‖P≥M u‖S([0,1/

√
N ]),

where in the last inequality we have killed the constant C(d, ‖u0‖L2
x
). This is possible by first taking β

sufficiently small, then taking M0 large enough.
We split the summation into M ≤ M0 and M > M0. For large M , we trivially bound the summand by(M

N

)1+1/d
AM .

Then we sum all the pieces for small M , which gives that∑
M≤M0

(M
N

)1+1/d
‖P≥M u‖S([0,1/

√
N ]) . AM1+1/d

0 N−1−1/d .

Finally we establish the following recurrence relation for AN : Let s = 1/d+1. Then there exists C1 > 0
such that for all N ≥ M0,

AN ≤ C1 M s
0 N−s

+

∑
M0<M≤2βN

(M
N

)s
AM . (4-23)

This combined with the trivial bound AN ≤ A will give us the final control on AN ,

AN ≤ C(A,M0)N−s+ for all N ≥ M0, (4-24)

if we apply the following lemma:

Lemma 4.10 (recursive control). Let s> 1, γ > 0 and s−γ > 1. Let C1> 0 be such that for all N ≥M0,

AN ≤ C1 M s
0 N−s

+

∑
M0≤M≤β ′N

(M
N

)s
AM , (4-25)

AN ≤ A. (4-26)
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Then there exists a constant c(s, γ, A) > 0 such that for all 0< β ′ < c(s, γ, A), we have

AN ≤ 2C1 M s
0 N−s+γ for all N ≥ M0. (4-27)

Proof. We will inductively prove that

AN ≤ 2C1 M s
0 N−s+γ

+ (β ′) j . (4-28)

First, plugging the bound (4-26) into (4-25), we get

AN ≤ C1 M0 N−s
+C(s)A(β ′)s ≤ 2C1 M0 N−s+γ

+β ′,

by requiring (β ′)s−1 < 1/(100C(s)A). This establishes (4-28) for j = 1.
Now assuming (4-28) holds for j-th step, we plug this bound into (4-25) to compute

AN ≤ C1 M s
0 N−s

+ 2C(s)(β ′)γ ·C1 M s
0 N−s+γ

+C(s)(β ′)s−1
· (β ′) j+1

≤ 2C1 M s
0 N−s+γ

+ (β ′) j+1,

by requiring (β ′)γ < 1/(100C(s)). This establishes (4-28) for j + 1.
Finally, (4-27) follows by taking j→∞ in (4-28). �
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ESTIMÉES DES NOYAUX DE GREEN ET DE LA CHALEUR
SUR LES ESPACES SYMÉTRIQUES

GILLES CARRON

On majore les noyaux de Green et de la chaleur au dehors de la diagonale pour des opérateurs de type
laplacien sur les espaces symétriques.

We provide an upper bound for the off-diagonal entries of the Green and heat kernel for Laplace-type
operators on symmetric spaces.

1. Introduction

On considère ici un espace symétrique X = G/K de type non compact. À une représentation unitaire
(ρ, V ) de dimension finie de K , on associe le fibré vectoriel G×K V au dessus de X , dont l’espace des
sections lisses s’identifie à

C∞(E)'
{

f ∈ C∞(G, V ) : g ∈ G, k ∈ K ⇒ f (gk)= ρ(k−1) f (g)
}

L’objet de cet article est un opérateur de type laplacien G-invariant agissant sur les sections de E

L =∇∗∇ + R (1-1)

où ∇ est une connexion hermitienne G-invariante sur E et R une section G-invariante du fibré des
endomorphismes hermitiens de E . Nous donnons quelques estimations de la résolvante et du noyau de
la chaleur associé à L . Notre premier résultat est le suivant :

Théorème A. Notons λ0 le bas du spectre de l’opérateur L , o = Id .K ∈ X et Gs(x, y) le noyau de
Schwartz de la résolvante

(
L − λ0+ s2

)−1 où s est un nombre complexe tel que s et s2 aient leurs parties
réelles strictement positives. Il y a une constante C telle que pour tout x ∈ X tel que d(x, o) ≥ 2, on ait
alors :

|Gs(x, o)| ≤ Ce−ρ(x
+)−Re(s)d(x,o) ,

où on a noté x+ la composante suivant ā+ de x = gK dans la décomposition de Cartan G = K eā+K et
ρ ∈ a∗

C
la demi somme des racines restreintes positives associées à (gC, a).

Le calcul explicite de λ0 est en général difficile. Le bas du spectre du laplacien agissant sur les fonctions
est égal à ‖ρ‖2. Concernant le laplacien de Hodge–de Rham sur les formes différentielles des calculs
explicites sont faits par H. Donnelly [1981] et E. Pedon [1999; 2005] en rang 1 et par N. Lohoué et
S. Medhi [2007, Appendix A] pour certains espaces hermitiens.

MSC2000: primary 53C35, 58J50; secondary 22E40.
Mots-clefs: espace symétrique, noyau de Green, noyau de la chaleur, laplacien, propagation à vitesse finie, symmetric space,

Green kernel, heat kernel, laplacian, finite-speed propagation.
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La preuve de notre estimation n’utilise que deux ingrédients, à savoir une estimation du volume de
KB(x, 1) ⊂ X et un argument désormais classique, introduit par J. Cheeger, M. Gromov et M. Taylor
[Cheeger et al. 1982], de propagation à vitesse finie. Pour certains espaces localement symétriques ou
à géométrie bornée, Taylor [1989] a utilisé la technique de propagation à vitesse finie pour obtenir des
résultats optimaux sur les normes L p

→ L p de fonctions du laplacien.
Notre résultat est sensiblement meilleur que celui obtenu récemment par Lohoué et Mehdi [2007] à

propos du laplacien de Hodge–de Rham ; en utilisant un théorème de Paley–Wiener de P. Delorme [2005]
et la théorie des représentations de G, ils obtiennent pour tout ε ∈ ]0, 1[ l’existence d’une constante Cε
telle que pour tout x ∈ X tel que d(x, o)≥ 1,

|Gs(x, o)| ≤ Cε80(x) e−(1−ε)Re(s)d(x,o) ,

où80 est la fonction sphérique élémentaire de Harish-Chandra de G. On sait qu’il y a une constante telle
que 80(x)≥ C e−ρ(x

+

), en fait la fonction 80(x)eρ(x
+) croı̂t polynomialement sur ā+ [Anker 1987].

L’approche développée par R. Mazzeo et A. Vasy utilise elle la géométrie de l’espace symétrique et une
construction de parametrice reliée à cette géométrie. Il s’agit d’une méthode beaucoup plus élaborée que
la nôtre mais elle fournit beaucoup plus d’informations que l’estimation ponctuelle obtenue ici. Dans
le cas de l’espace symétrique SL3(R)/SO3(R), Mazzeo et Vasy [2007] ont obtenu un développement
asymptotique complet de la résolvante ; de plus cette méthode pourrait être généralisée à toutes les
géométries asymptotiquement symétriques.

Cependant notre estimation n’est pas, en général, optimale. Par exemple pour les fonctions, on sait
grâce au travail de J-P. Anker et L. Ji [1999, Theorem 4.22(i)] que pour s > 0, l’on a une estimation de
la forme

C−1d(x, o)−β80(x)e−sd(x,o)
≤ Gs(x, o) ≤ C d(x, o)−β80(x)e−sd(x,o)

où si on note 6++ les racines positives indivisibles et l le rang de X alors β = |6++| + (l − 1)/2. En
fait, on a l’estimation d(x, o)−β80(x)≤Cd(x, o)−(l−1)/2e−ρ(x

+). Sur les fonctions, notre estimation est
donc optimale en rang 1, et en rang supérieur, elle est optimale à un facteur polynomial près ; notons
également que grâce à [Carron et Pedon 2004, Theorem 3.6], notre résultat est optimal pour le laplacien
de Hodge–de Rham en rang 1.

Nous avons également obtenu une estimation du noyau de Schwartz de l’opérateur de la chaleur e−t L

par la même méthode. Pour énoncer ce résultat, on rappelle quelques notations sur la structure algébrique
de X . On note k⊂ g les algèbres de Lie de K et G et

g= k⊕ p

la décomposition en espaces propres de l’involution de Cartan θ . Soit a⊂ p une sous-algèbre abélienne
maximale et 6⊂ a∗

C
le système restreint des racines de (g, a). On fixe alors a+⊂ a une chambre de Weyl

et on note 6+⊂6 le système des racines restreintes positives associées. Le rang de l’espace symétrique
X est l = dim a ; la dimension de l’espace symétrique X est notée d . L’espace p se décompose en

p= a⊕
⊕
α∈6+

pα.

où si on introduit
nα = {n ∈ g : a ∈ a⇒ ad(a)n = α(a)}
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alors

pα = {x + θ(x) : x ∈ nα}.

On note aussi mα = dim nα et donc ρ = 1
2

∑
α∈6+ mαα ∈ a∗

C
. Dans la décomposition de Cartan de

G = K eā+K , si x = gK ∈ X = G/K , on note x+ l’unique élément de ā+ tel que g ∈ K ex+K . Notre
estimation est alors la suivante :

Théorème B. Notons ht(x, y) le noyau de Schwartz de l’opérateur de la chaleur e−t L . Il existe une
constante C telle que pour tout x ∈ X tel que d(x, o)≥ 2 on ait :

|ht(x, o)| ≤ C e−λ0t−ρ(x+)−d(x,o)2/4tφt(x)

où

φt(x)=



√
t

d(x, o)+
√

t
si d(x, o)≤ t,

d(x, o)(d+l)/2−1

t (d+l−1)/2

∏
α∈6+

(
1+α(x+)
t

d(x, 0)
+α(x+)

)mα/2

si d(x, o)≥ t.

Cette majoration n’est également pas optimale. On peut comparer notre estimation avec celle obtenue
par Lohoué et Mehdi [2007] à propos du laplacien de Hodge–de Rham ; ils obtiennent pour tout ε∈ ]0, 1[
des constantes Cε et Aε telles que si d(x, o)≥ Aε alors

|ht(x, o)| ≤ Cε80(x)e−λ0t e−(1−ε)d(x,o)
2/4t t−εγ .

Notre estimation est donc meilleure lorsque d(x, o) tend vers l’infini mais bien plus mauvaise lorsque t
tend vers +∞. Dans le cas de l’espace hyperbolique réel et du laplacien scalaire, on peut vérifier avec
l’estimation de E. Davies et N. Mandouvalos [1988] que notre estimée est optimale dans le régime où
d(x, o)≥max{2, t}.

2. Une estimée de volume

Proposition 2.1. Il y a des constantes strictement positives c,C telles que pour tout ε ∈ [0, 1[ et x ∈ X

cεl e2ρ(x+)
∏
α∈6+

(
ε+α(x+)
1+α(x+)

)mα

≤ vol KB(x, ε) ≤ Cεl e2ρ(x+)
∏
α∈6+

(
ε+α(x+)
1+α(x+)

)mα

.

Démonstration. Grâce à [Anker et Ji 1999, lemme 2.1.2], nous savons que

KB(x, ε)' K exp(B(x+, ε)∩ ā+)

dans la décomposition de Cartan X = K eā+ . Ainsi si J (h) dk dh est la forme volume de X dans les
coordonnées (k, h) 7→ keh K nous avons :

vol KB(x, ε)=
∫

B(x+,ε)∩a+
J (h) dh.
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Cependant nous avons pour une constante positive C :

J (h)= C
∏
α∈6+

sinhmα (α(h))≈ Ce2ρ(h)
∏
α∈6+

(
α(h)

1+α(h)

)mα

;

c’est à dire qu’il y a une constante η > 0 tel que pour tout h :

ηe2ρ(h)
∏
α∈6+

(
α(h)

1+α(h)

)mα

≤ J (h)≤ η−1e2ρ(h)
∏
α∈6+

(
α(h)

1+α(h)

)mα

Grâce à la preuve de [Anker et Ji 1999, lemme 2.1.6(i)], on en déduit que pour ε ∈ ]0, 1[ et h ∈
B(x+, ε)∩ a+, on a

ρ(x+)− |ρ| ≤ ρ(h)≤ ρ(x+)+ |ρ|

et pour α ∈6+,

|α(h− x+)| ≤ ε/
√

2,
(

1−
1
√

2

)
(1+α(x+))≤ 1+α(h)≤ 2(1+α(x+)), α(h)≤ α(x+)+ ε.

On en déduit aisément la majoration annoncée.
Pour la minoration, on considère6+++={α1, . . . , αl} un système de racines réduites qui est une base

de a∗
C

et E1, . . . , El la base de a duale à 6+++. On pose alors

v =
∑

i

Ei .

Ainsi pour α ∈6+, on a α(v)≥ 1. On a bien évidemment

B
(

x++
ε

10+ 10|v|
v,

ε

20+ 20|v|

)
⊂ B(x+, ε);

or sur la boule de gauche on a pour α ∈6+

α ≥ α(x+)+
ε

10+ 10|v|
α(v)−

ε

20+ 20|v|
≥ α(x+)+

ε

20+ 20|v|
.

On obtient ainsi facilement une minoration du volume de KB
(

x++
ε

10+10|v|
v,

ε

20+ 20|v|

)
et donc

du volume de KB(x+, ε). �

3. Estimation du noyau de Green

Ici, on étudie le noyau de Schwartz de l’opérateur (L−λ0+s2)−1 au dehors de la diagonale où s est un
nombre complexe de partie réelle strictement positive. On commence par une estimée classique induite
par la propriété de propagation à vitesse finie de l’opérateur cos

(
t
√

L − λ0
)

; cf. [Cheeger et al. 1982,
Proposition 3.1] et aussi [Ma et Marinescu 2007, appendice D]. On considère x ∈ X vérifiant d(x, o)≥ 2
et on note A := KB(x, 1).

Lemme 3.1. Soit σ ∈ L2(A, E) et u := (L − λ0+ s2)−1σ . Alors on a

‖u‖L2(B(o,1)) ≤
1

(Re s)2
e−Re(s)(d(x,o)−2)

‖σ‖L2 .
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Démonstration. En effet, on a

u =
∫
∞

0

e−sξ

s
cos
(
ξ
√

L − λ0
)
σ dξ.

Les hypothèses faites sur x et σ et la propriété de propagation à vitesse finie impliquent que dès que
0≤ ξ ≤ d(x, o)− 2 , on a

∥∥cos
(
ξ
√

L − λ0
)
σ
∥∥

L2(B(o,1)) = 0 . D’où

‖u‖L2(B(o,1)) ≤

∫
∞

d(x,o)−2

e−Re(s)ξ

|s|

∥∥∥cos
(
ξ
√

L − λ0

)
σ
∥∥∥

L2(B(o,1))
dξ

≤

∫
∞

d(x,o)−2

e−Re(s)ξ

|s|

∥∥∥cos
(
ξ
√

L − λ0

)
σ
∥∥∥

L2(X)
dξ

≤

∫
∞

d(x,o)−2

e−Re(s)ξ

|s|
‖σ‖L2(X) dξ ≤

1
(Re s)2

e−Re(s)(d(x,o)−2)
‖σ‖L2 . �

On utilise alors l’estimée elliptique standard suivante :

Proposition 3.2. Soit λ ∈ C. Il y a une constante C qui dépend de X, λ, L telle que si r ∈ ]0, 1] et si
v ∈ L2(B(x, r), E) vérifie Lv = λv alors

|v(x)| ≤
C

rd/2 ‖v‖L2(B(x,r)).

On en déduit l’existence d’une constante C qui ne dépend que de X, L , s telle que

|u(o)| ≤ Ce−Re(s)d(x,o)
‖σ‖L2(A).

Cette estimation fournit une majoration de la norme de l’application linéaire

T : L2(A, E) 7→ Eo ' V, σ → (L − λ0− s2)−1σ(o)

Et donc cela induit la même majoration de la norme de l’opérateur adjoint T ∗ : V ' Eo→ L2(A, E)
qui est défini pour v ∈ Eo par :

(T ∗v)(y)= Gs(y, o)v

On obtient donc : ∫
KB(x,1)

|Gs(y, o)|2 dy ≤ Ce−2 Re(s)d(x,o).

Lemme 3.3. il y a une constante C qui ne dépend que de X telle que si f ∈ L1(A) alors il existe k ∈ K
tel que

‖ f ‖L1(B(kx, 1
4 ))
≤ Ce−2ρ(x+)

‖ f ‖L1(A).

Démonstration. En effet,∫
KB(x, 1

4 )

(∫
B(y, 1

2 )

| f |(z) dz
)

dy =
∫

KB(x,1)
vol

(
B(z, 1

2)∩ KB(x, 1
4)
)
| f |(z) dz

≤ vol B(0, 1
2)

∫
KB(x,1)

| f |(z) dz.
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On en déduit donc l’existence d’un y ∈ KB(x, 1
4) tel que

vol KB(x, 1
4)‖ f ‖L1(B(y,1/2)) ≤ C‖ f ‖L1 .

Il y a donc un k ∈ K tel que d(y, kx) ≤ 1
4 , d’où B(kx, 1

4) ⊂ B(y, 1
2). Maintenant, grâce à l’estimée

donnée par la proposition 2.1, soit vol(KB(x, 1
4))≈ e2ρ(x+), on obtient bien le résultat annoncé. �

On en déduit donc l’existence d’un k ∈ K tel que∫
B(kx,1/4)

|Gs(y, o)|2 dy ≤ Ce−2 Re(s)d(x,o)−2ρ(x+).

Les mêmes estimées elliptiques entraı̂nent alors

|Gs(kx, o)| = |Gs(o, x)| ≤ Ce−Re(s)d(x,o)−ρ(x+),

ce qui démontre le théorème A.

4. Estimation du noyau de la chaleur

On étudie maintenant de la même façon le noyau de Schwartz de l’opérateur de la chaleur e−t L au
dehors de la diagonale. On considère donc x ∈ X et ε > 0 tels que d(x, o)≥ 2ε. On note A := KB(x, ε).
Nous commençons par le même type d’estimations :

Lemme 4.1. Soit σ ∈ L2(A, E) et ft := e−t Lσ . Alors on a

‖ ft‖L2(B(o,ε)) ≤
e−λ0t
√
π t

∫
∞

d(x,o)−2ε
e−ξ

2/4t dξ ‖σ‖L2 .

Cette estimation se montre de la même façon que l’estimée du lemme 3.1, en partant de la formule :

ft =
e−λ0t
√
π t

∫
∞

0
e−ξ

2/4t cos
(
ξ
√

L − λ0
)
σ dξ.

Maintenant, on utilise l’estimation parabolique suivante :

Proposition 4.2. Il y a une constante C (qui ne dépend que de X, L) telle que si r ∈ ]0, 1] et si v ∈
L2([t − r2, t]× B(x, r), E) est une solution de l’équation :

∂

∂t
v+ Lv = 0

alors

|v(t, x)|2 ≤
C

rd+2

∫ t

t−r2

(∫
B(x,r)

|v(τ, y)|2 dy
)

dτ.

Ceci provient du fait que si on note µ la plus petite valeur propre de l’opérateur R dans la formule
(1-1) alors la fonction u définie par

u(t, x)= |v(t, x)|eµt

vérifie
∂

∂t
u+1u ≤ 0.
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Les inégalités paraboliques de J. Moser impliquent alors ce résultat ; voir [Moser 1964], [Grigor’yan
1994, Theorem 3.1] ou [Saloff-Coste 1992, Theorem 5.1].

On en déduit l’existence d’une constante C telle que

| ft(o)|2 ≤
C
εd+2

∫
[t−ε2,t]×B(o,ε)

| fτ (y)|2 dτ dy.

Avec l’estimation ∫
∞

A
e−ξ

2/4t dξ =
√

t
∫
∞

A2/4t
e−v

dv
√
v
≤

C
√

t
A/
√

t + 1
e−A2/4t ,

on obtient, pour ε ∈ ]0, 1] et t ≥ 2ε2 et d(x, o)≥ 2, l’estimée suivante :

| ft(o)| ≤ Cε−d/2
√

t
d(x, o)+

√
t

e−λ0t−(d(x,o)−2ε)2/4t
‖σ‖L2 .

Avec les mêmes arguments que ceux utilisés dans la preuve du théorème A, on en déduit :(∫
KB(x,ε)

|ht(y, o)|2 dy
)1/2

≤ C ε−d/2
√

t
d(x, o)+

√
t

e−λ0t−(d(x,o)−2ε)2/4t .

La même argumentation basée sur le lemme 3.3 permet de trouver k ∈ K tel que(∫
B(kx,ε/4)

|ht(y, o)|2 dy
)1/2

≤ C (vol KB(x, ε))−1/2
√

t
d(x, o)+

√
t

e−λ0t−(d(x,o)−2ε)2/4t .

Les mêmes estimées paraboliques donnent alors la majoration suivante : pour ε ∈ ]0, 1/2], t ≥ 3ε2 et
d(x, o)≥ 2, on a

|ht(kx, o)| = |ht(x, o)| ≤ C(εd vol KB(x, ε))−1/2
√

t
d(x, o)+

√
t

e−λ0t−(d(x,o)−2ε)2/4t .

Or nous avons
(d(x, o)− 2ε)2

4t
=

d(x, o)2

4t
−

d(x, o)ε
t
+
ε2

t
.

Donc lorsque d(x, o)≤ t on choisit ε = 1
100 et on obtient la majoration :

|ht(x, o)| ≤ C
√

t
d(x, o)+

√
t

e−λ0t−d(x,o)2/4t−ρ(x+)

Lorsque d(x, o)≥ t on choisit ε = t
100d(x, o)

et on obtient pour d(x, o)≥ 2

|ht(x, o)| ≤
C
√

t
d(x, o)

(
d(x, o)

t

)(d+l)/2 ∏
α∈6+

(
1+α(x+)
t

100d(x, o)
+α(x+)

)mα/2

e−λ0t−d(x,o)2/4t−ρ(x+)

≤
Cd(x, o)(d+l)/2−1

t (d+l−1)/2

∏
α∈6+

(
1+α(x+)
t

d(x, o)
+α(x+)

)mα/2

e−λ0t−d(x,o)2/4t−ρ(x+),

ce qui termine la démonstration du théorème B.
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5. Applications

Dans [Carron et Pedon 2004], une estimation du prolongement analytique de la résolvante avait été
obtenue ; cependant les méthodes rudimentaires utilisées ici ne permettent pas d’obtenir un tel résultat.
Néanmoins, nos estimées, comme celles de Lohoué et Mehdi, permettent une estimation inférieure du bas
du spectre de l’opérateur L sur des espaces localement symétriques 0\G/K où 0⊂G est un sous-groupe
discret sans torsion.

Définition. (cf. [Carron et Pedon 2004, Theorem 2.7]) Soit 0⊂G est un sous-groupe discret sans torsion.
On note δ̃(0) l’exposant critique modifié de 0 qui est l’exposant critique de la série de Poincaré :∑

γ∈0

e−ρ(γ
+)−sd(γ (o),o)

;

c’est à dire :
δ̃(0)= inf

{
s ∈ R :

∑
γ∈0

e−ρ(γ
+)−sd(γ (o),o) <∞

}
.

Notons G0
s (x, y) le noyau de Green de l’opérateur (1−|ρ|2+ s2)−1 agissant sur les fonctions. Grâce à

notre estimation et à l’estimation inférieure de G0 dans [Anker et Ji 1999, Theorem 4.2.2], on sait que
pour tout s > 0 et η ∈ ]0, s[, il y a une constante Cs,η tel que pour tout x, y ∈ X ,

|Gs(x, y)| ≤ Cs,ηG0
s−η(x, y).

Le même raisonnement que celui utilisé pour démontrer [Carron et Pedon 2004, Theorem 2.7] montre
que :

Théorème 5.1. Notons toujours λ0 le bas du spectre de l’opérateur L sur X = G/K .

(i) Si δ̃(0) > 0 alors le bas du spectre de L sur 0\G/K est minoré par λ0− (δ̃(0))
2.

(ii) Si δ̃(0)≤ 0 alors le bas du spectre de L sur 0\G/K est minoré par λ0.

(iii) Si δ̃(0) ≤ 0 et si le rayon d’injectivité de 0\G/K est non-majoré, i.e., sup
x∈X

inf
γ∈0

d(x, γ (x)) = ∞,
alors le bas du spectre de L est λ0.

Remarques 5.2. (i) Cet exposant critique modifié se compare aisément à l’exposant critique de 0, à
savoir à δ(0), l’exposant critique de la série∑

γ∈0

e−sd(γ (o),o).

Si on note ρmin = infH∈a+ ρ(h)/|h| alors

ρmin+ δ̃(0)≤ δ(0)≤ |ρ| + δ̃(0)

ce qui permet de ré-obtenir le résultat dans [Lohoué et Mehdi 2007, Theorem 6.1].

(ii) Lorsque δ̃(0) <
√
λ0, ce résultat implique que le noyau L2 de L sur 0\G/K est trivial. Il est

cependant difficile d’obtenir des calculs explicites de λ0. Concernant le laplacien de Hodge–de Rham
sur les formes différentielles des calculs explicites se trouvent dans [Donnelly 1981 ; 1999; 2005]
en rang 1 et dans [Lohoué et Mehdi 2007, Appendix A] pour certains espaces hermitiens.



ESTIMÉES DES NOYAUX DE GREEN ET DE LA CHALEUR SUR LES ESPACES SYMÉTRIQUES 205

Remerciements

Je remercie ici E. Pedon et M. Olbrich pour leurs commentaires très utiles. Je remercie également le
rapporteur pour ses remarques perspicaces. Je bénéficie du support partiel du projet ANR GeomEinstein
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LOWER BOUNDS FOR RESONANCES OF INFINITE-AREA
RIEMANN SURFACES

DMITRY JAKOBSON AND FRÉDÉRIC NAUD

For infinite-area, geometrically finite surfaces X = 0\H2, we prove new omega lower bounds on the
local density of resonances D(z) when z lies in a logarithmic neighborhood of the real axis. These lower
bounds involve the dimension δ of the limit set of 0. The first bound is valid when δ > 1

2 and shows
logarithmic growth of the number D(z) of resonances at high energy, that is, when |Re(z)| → +∞. The
second bound holds for δ > 3

4 and if 0 is an infinite-index subgroup of certain arithmetic groups. In
this case we obtain a polynomial lower bound. Both results are in favor of a conjecture of Guillopé and
Zworski on the existence of a fractal Weyl law for resonances.

1. Introduction and results

Resonances arise in spectral theory on noncompact Riemannian manifolds when one tries to figure out
what the natural replacement data should be for the missing eigenvalues of the Laplacian. The basic
problem of the mathematical theory of resonances is to relate the resonances spectrum (which is a discrete
set of complex numbers) to the geometry of the underlying manifold and its geodesic flow. In this paper
we will focus on a particular setting where the spectral and scattering theory are already well developed:
infinite-area surfaces with constant negative curvature. For a detailed account of the spectral theory of
infinite-area surfaces, we refer the reader to [Borthwick 2007]. Let H2 be the hyperbolic plane endowed
with its standard metric of constant Gaussian curvature−1. Let 0 be a geometrically finite discrete group
of isometries acting on H2. This means that 0 admits a finite sided polygonal fundamental domain in
H2. We will require that 0 has no elliptic elements different from the identity and that the quotient 0\H2

is of infinite hyperbolic area. Under these assumptions, the quotient space X = 0\H2 is a nice Riemann
surface whose geometry can be described as follows. The surface X can be decomposed into a finite area
surface with geodesic boundary N , called the Nielsen region, on which infinite-area ends Fi are glued :
the funnels. We assume throughout that the number of funnels f is not zero. Each funnel Fi is isometric
to a half-cylinder

Fi = (R/ li Z)θ × (R
+)t ,

where li > 0, with the warped metric

ds2
= dt2

+ cosh2 t dθ2.

MSC2000: 11F72, 58J50.
Keywords: Laplacian, resonances, arithmetic fuchsian groups.
Jakobson was partially supported by NSERC, FQRNT and a Dawson fellowship. Naud was partially supported by ANR grants
JC05-52556 and 09-JCJC-0099-01.
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The Nielsen region N is itself decomposed into a compact surface K with geodesic and horocyclic
boundary on which c noncompact, finite area ends Ci are glued: the cusps. A cusp Ci is isometric to a
half-cylinder

Ci = (R/hi Z)θ × ([1,+∞))y,

where hi > 0, endowed with the familiar Poincaré metric

ds2
=

dθ2
+ dy2

y2 .

Let1X be the hyperbolic Laplacian on X . Its spectrum on L2(X) has been described by Lax and Phillips
[1984a; 1984b; 1985]:

[ 1
4 ,+∞

)
is the continuous spectrum, and there are no embedded eigenvalues.

The rest of the spectrum is made of a (possibly empty) finite set of eigenvalues, starting at δ(1−δ), where
0 ≤ δ < 1 is the Hausdorff dimension of the limit set of 0. The fact that the bottom of the spectrum is
related to the dimension δ was first pointed out by Patterson [1976] for convex cocompact groups (which
amounts to saying that there are no cusps on X or equivalently, no parabolic elements in 0). This result
was later extended for geometrically finite groups by Sullivan [1979; 1984].

The dimension δ has another important interpretation. Let S1 X denote the unit tangent bundle; then
the trapped set is defined as the set of points in S1 X whose orbit under the geodesic flow remains (after
projection on X ) in the Nielsen region N in the past and future. The Liouville measure of this set is
always zero, but its Hausdorff dimension is actually 2δ+ 1.

By the preceding description of the spectrum, the resolvent

R(λ)=
(
1X −

1
4 − λ

2)−1
: L2(X)→ L2(X),

is therefore well defined and analytic on the lower half-plane {Im λ < 0} except at a possible finite
set of poles corresponding to the finite point spectrum. Resonances are then defined as poles of the
meromorphic continuation of

R(λ) : C∞0 (X)→ C∞(X)

to the whole complex plane. The set of poles is denoted by RX . This continuation is usually performed
via the analytic Fredholm theorem after the construction of an adequate parametrix. The first result of this
kind in the more general setting of asymptotically hyperbolic manifolds is due to Mazzeo and Melrose
[1987]. A more precise parametrix for surfaces was constructed by Guillopé and Zworski [1995; 1997];
it allowed them to obtain global counting results for resonances of the following type. Let N (R) be the
number of resonances (counted with multiplicity) of modulus smaller than R. We have for all R ≥ 0,

C−1 R2
≤ N (R)≤ C +C R2,

for some C>0. Hence the set of resonances satisfies a quadratic growth law similar to the usual Weyl law
for finite area surfaces. These bounds are actually valid for compact perturbations of the hyperbolic metric
[Borthwick 2008], and in particular are not sensitive to the geometry of the trapped set. It is therefore nec-
essary to examine finer properties of RX to recover some geometrical information on X . The most natural
thing to do is to look at resonances that are close to the real axis. Physically, these are the most relevant
resonances, because they correspond to metastable states that live the longest (the imaginary part corre-
sponding to the decay rate). In the case of Schottky groups (equivalently, convex cocompact quotients
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in dimension 2), a “fractal” upper bound was obtained in [Zworski 1999; Guillopé et al. 2004], namely

NC(T )= O(T 1+δ), (1)
where

NC(T ) := #{z ∈RX : Im z ≤ C, |Re z| ≤ T }.

The first proof of a geometric bound of this type involving fractal dimension is due to Sjöstrand [1990]
for potential scattering. This upper bound, together with numerical experiments, has led to the following
conjecture, known as the fractal Weyl law.

Conjecture 1.1 (Guillopé–Zworski). There exist C > 0 and A > 0 such that for all T large enough,

A−1T 1+δ
≤ NC(T )≤ AT 1+δ.

The only existing lower bound can be found in [Guillopé and Zworski 1999], where the authors show
that for all ε > 0, one can find Cε > 0 such that

NCε (T )=�(T
1−ε),

where �( · ) means being not a O( · ); in other words, one can find a sequence (Ti )i∈N with Ti →∞

such that

lim
i→∞

NCε (Ti )

T 1−ε
i

=+∞.

This is a frustrating lower bound: not only it does not involve δ but it is not even optimal in the computable
case of elementary groups where NC(T ) grows linearly. Guillopé et al. [2004] actually prove a stronger
statement than (1). Let D(z) be the number of resonances in the disc centered at z and radius one:

D(z) := #{λ ∈RX : |λ− z| ≤ 1}.

Then if Im z ≤ C , we have D(z) = O(|Re z|δ), the implied constant depending solely on C . A similar
statement for semiclassical Schrödinger operators can be found in [Sjöstrand and Zworski 2007]. Note
that if the Guillopé–Zworski conjecture holds, then by the box principle, for all ε > 0, one can find a
sequence (zi ) with |Re zi | → +∞ and Im zi ≤ C such that for all i ∈ N,

D(zi )≥ |Re zi |
δ−ε . (2)

To state our results, we need one more piece of notation. Let A > 0 and set

WA = {λ ∈ C : Im λ≤ A log(1+ |Re λ|)}.

Guillopé and Zworski [1997] have shown that in logarithmic regions WA, the density of resonances grows
at least linearly. We shall prove the following thing.

Theorem 1.2. Let 0 be a geometrically finite group as above. Assume that δ > 1
2 , and fix arbitrarily

small ε > 0 and A > 0. Then there exists a sequence (zi )i∈N with zi ∈WA and |Re zi | →+∞, such that
for all i ≥ 0,

D(zi )≥ (log |Re zi |)
(δ−1/2)/δ−ε .

In other words, the local density D(z) of resonances in logarithmic regions WA is not bounded, and
sensitive to the dimension of the trapped set. This implies in particular that the resonance set RX ∩WA
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is different from a lattice when δ > 1
2 , which clearly could not follow from the existing lower bound

in strips nor the global counting results. Building groups with δ > 1
2 is easy: if there is a parabolic

element this is always the case and if one wants to consider only convex-cocompact groups, pinching a
pair of pants will do it; see Section 4. We point out that the proof is based on Dirichlet box arguments,
a technique that has proved useful to obtain lower bounds for the remainder in Weyl’s law on compact
negatively curved manifolds; see [Jakobson et al. 2008; Jakobson and Polterovich 2007].

It is possible to obtain significantly better lower bounds that are closer to (2), by using infinite-index
subgroups of arithmetic groups. Arithmetic groups are algebraically defined discrete groups of isome-
tries of H2, the most celebrated being the modular group PSL2(Z). For more details on definitions and
references, see Section 3. Our result is as follows.

Theorem 1.3. Let 0 be a geometrically finite group as above, and assume that 0 is an infinite-index
subgroup of an arithmetic group 00 derived from a quaternion algebra. Suppose δ > 3

4 , and fix arbitrarily
small ε > 0 and A > 0. Then there exists a sequence (zk) ∈ WA with |Re zk | → +∞, such that for all
k ≥ 0,

D(zk)≥ |Re zk |
2δ−3/2−ε .

This improvement is based on the very special structure of closed geodesics on arithmetic surfaces: the
set of lengths has high multiplicities and good separation (see Section 3 for more details). We point
out that these techniques due to Selberg have been used recently by Anantharaman [2009] to obtain
some results on the spectral deviations for the damped wave equation on compact arithmetic surfaces.
This lower bound is clearly in favor of the Guillopé–Zworski conjecture, at least for the class of groups
considered above. One may wonder at this point if Theorem 1.3 is not empty: Gamburd [2002] has
shown in (see Section 4 for details) the existence of several geometrically finite subgroups 0 of PSL2(Z)

with dimension δ > 3
4 . Another natural question is can we give a bound on the sequence |Re zk |? We

explain at the end of Section 3 how one can obtain a polynomial upper bound: for each ε > 0 one can
find an exponent pε > 0 such that |Re zk | = O (k pε ).

The lower bounds obtained above are to our knowledge the first examples in the literature which are
related to the dimension of the trapped set, at least for fractal dimensions. Similar results should hold
for higher dimensional convex-compact manifolds, by applying a similar strategy of proof based on the
trace formula in [Guillarmou and Naud 2006].

The plan of the paper is as follows: in Section 2 we recall the necessary material for the proofs,
including the wave trace formula which is at the basis of our results. We then prove Theorem 1.2 by a
Dirichlet box-principle argument. Section 3 is devoted to the case of arithmetically built groups. The
heart of the proof is based on a trick of Selberg and Hejhal on mean square estimates. This is where
the high multiplicity and the separation play a key role. In Section 4 we discuss various examples
of geometrically finite groups with δ large, and we construct an explicit family of convex cocompact
subgroups of PSL2(Z) with δ > 3

4 .

2. Wave trace and log lower bounds

In this section, we prove Theorem 1.2. Some of the technical estimates below will be of some use in
the next section. We use the notation of the introduction. The constant A > 0 defining the logarithmic
region WA is set once for all.
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The variant of Selberg’s trace formula we need here is due to [Guillopé and Zworski 1999]. We denote
by P the set of primitive closed geodesics on the surface X = 0\H2, and if γ ∈ P, l(γ) is the length. In
the following, c is the number of cusps, and N is the Nielsen region. Let ϕ ∈ C∞0 ((0,+∞)), that is, a
smooth function, compactly supported in R∗

+
. We have the identity

∑
λ∈RX

ϕ̂(−λ)=−
Vol(N )

4π

∫
+∞

0

cosh(x/2)

sinh2(x/2)
ϕ(x)dx

+
c
2

∫
+∞

0

cosh(x/2)
sinh(x/2)

ϕ(x)dx +
∑
γ∈P

∑
k≥1

l(γ)
2 sinh(kl(γ)/2)

ϕ(kl(γ)), (3)

where ϕ̂ is the usual Fourier transform,

ϕ̂(ξ)=

∫
R

ϕ(x)e−i xξdx .

We recall that RX (except a possible finite number of term on the imaginary axis starting at λ= i
( 1

2−δ
)
)

is included in the upper half-plane. Note that we have omitted the main singular terms at t = 0 which
are not relevant for our problem; see [Guillopé and Zworski 1999] for the formula in full detail. Proofs
of Theorem 1.2 and 1.3 are based on the use of test functions of the form

ϕt,α(x)= e−i t xϕ0(x −α),

where t>0, α>0 will be large and ϕ0∈C∞0 (R) is a positive function, supported on the interval [−1,+1]
identical to 1 on

[
−

1
2 ,+

1
2

]
. The basic idea is to use the full-length spectrum (the set of lengths of closed

geodesics) in the contribution from the geometric side instead of one single, closed primitive geodesic
and its iterates as in the proof of Guillopé and Zworski [1999]. The price to pay for that is to lose
positivity and deal with oscillating contributions. We start with some useful lemmas that consist mainly
of brute force estimates. They will be used to control sums over resonances in the proof of Theorem 1.2
and 1.3. The reader can skip it for its first reading.

Lemma 2.1. For all N ≥ 0, one can find CN > 0 such that for all ξ ∈ C,

|ϕ̂t,α(ξ)| ≤ CN
eα Im ξ+|Im ξ |

(1+ |t + ξ |)N .

Proof. Write ϕ̂t,α(ξ) = e−iα(t+ξ)ϕ̂0(t + ξ), and integrate by parts N times. Notice that while estimating
|ϕ̂0(u)|with u ∈C, there is an extra factor e|Im u| coming out, which explain the presence of the (harmless)
extra term |Im ξ | in the exponents above. �

Lemma 2.2. Let f : R+→ R+ be either f (x) = (log(1+ x))β or f (x) = xβ with 0 < β < 1. Assume
that D(z)= O( f (|Re z|)) for all z ∈WA with |Re z| large enough. Then, for all α, t large and all k ≥ 0,
one has ∣∣∣∣ ∑

λ∈WA∩RX

ϕ̂α,t(−λ)

∣∣∣∣= O
(eα(δ−1/2)

tk

)
+ O( f (t)),

where the implied constants do not depend on α, t .
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Proof. Let us assume that D(z)= O( f (|Re z|)) whenever |Re(z)| ≥ p0 ≥ 1 and z ∈WA. Let t > 0 be so
large that t > p0+ 1, assume that α > 1. By absolute convergence one can write∑

λ∈WA∩RX

ϕ̂α,t(−λ)=
∑
p∈Z

∑
p≤Re λ≤p+1
λ∈WA∩RX

ϕ̂α,t(−λ).

Let us set
Sp(α, t)=

∑
p≤Re λ≤p+1
λ∈WA∩RX

ϕ̂α,t(−λ).

We split the above sum as∑
λ∈WA∩RX

ϕ̂α,t(−λ)=
∑

p<−p0

Sp(α, t)+
∑

−p0≤p≤p0

Sp(α, t)+
∑
p>p0

Sp(α, t).

The middle term involves only finitely many resonances λ∈WA, and they satisfy Im λ≥ 1
2−δ. Therefore

using Lemma 2.1, we have∣∣∣∣ ∑
−p0≤p≤p0

Sp(α, t)
∣∣∣∣≤ Ck

e(−α+1)(1/2−δ)

(1+ |t − p0− 1|)k
∑

λ∈RX∩WA
|Re λ|≤p0

1= O
(eα(δ−1/2)

tk

)
.

The first term can be estimated as∣∣∣∣ ∑
p<−p0

Sp(α, t)
∣∣∣∣≤ C2

∑
p<−p0

1
(1+ |p+ 1− t |)2

∑
p≤Re λ≤p+1
λ∈RX∩WA

e(−α+1) Im λ,

while the last term is of size∣∣∣∣∑
p>p0

Sp(α, t)
∣∣∣∣≤ C2

∑
p>p0

S̃p(α)

(1+min{|p− t |, |p+ 1− t |})2
,

where we have set
S̃p(α)=

∑
p≤Re λ≤p+1
λ∈WA∩RX

e(−α+1) Im λ.

The following lemma will be convenient (this is where the hypothesis on D(z) is used).

Lemma 2.3. Under the hypothesis of Lemma 2.2, there exists a constant M , independent of α, p and
such that for all |p| ≥ p0, we have

S̃p(α)≤ M f (|p|).

Let us postpone the proof of this result for a moment and show how to end the proof of Lemma 2.2.
Clearly, using Lemma 2.3, the sum of the first and last terms is smaller than

C
∑
p∈Z

f (|p|)
(1+ |p− t |)2

,
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for a constant C > 0 large enough. We can now write, denoting by [t] the integer part of t ,∑
p∈Z

f (|p|)
(1+ |p− t |)2

=

∑
q∈Z

f (|q + [t]|)
(1+ |q + [t] − t |)2

≤ C ′
∑
q∈Z

f (|q| + [t])
(1+ |q|)2

,

again for a well chosen C ′ > 0 (we have used the fact that f is increasing). To end the proof, simply
write ∑

q∈Z

f (|q| + [t])
(1+ |q|)2

=

∑
|q|≤[t]

f (|q| + [t])
(1+ |q|)2

+

∑
|q|>[t]

f (|q| + [t])
(1+ |q|)2

,

which yields ∑
q∈Z

f (|q| + [t])
(1+ |q|)2

≤ f (2[t])
∑
q∈Z

1
(1+ |q|)2

+

∑
|q|>[t]

f (2|q|)
(1+ |q|)2

.

Since f (2|q|) = O(|q|1−ε), the second term is clearly bounded in t and we get the upper bound of
size O( f (2t)). It remains to prove Lemma 2.3. It will follow from a standard covering argument. It
is enough to consider just the case p > p0. We recall that for all λ ∈ RX , then for Re λ 6= 0 we have
actually Im λ≥ 0 by definition. Let Ap denote the set

Ap = {z ∈WA : p ≤ Re z ≤ p+ 1},

let D(z) denote the unit disc centered at z ∈ C, and set

K (p)=max{k ≥ 0 : k
√

3≤ A log(1+ p)}.

For 1≤ k ≤ K (p), we define the rectangle R(k) by

R(k)= {z ∈Ap : (k− 1)
√

3≤ Im z ≤ k
√

3}.

Set l = A log(1+ p)− K (p)
√

3<
√

3. One can check that, for p large enough,

Ap ⊂

(K (p)⋃
k=1

R(k)
)
∪ D

(
p+ 1

2 + i(K (p)+ l/2)
)
∪ D

(
p+ 1

2 + i(K (p)+ l)
)
.

Indeed,

Ap
∖(K (p)⋃

k=1
R(k)

)
is exactly the set

{z ∈ C : p ≤ Re z ≤ p+ 1 and K (p)
√

3≤ Im z ≤ A log(1+Re z)},

which is clearly covered by the union of the two above discs as long as

A log(1+ p+ 1)− A log(1+ p)= A log
(

1+ 1
p+1

)
≤

√
3

2
.
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Note that for all k = 1, . . . , K (p), we have R(k)⊂ D
(

p+ 1
2 + i
√

3( 1
2 + k− 1)

)
. We can now conclude

by estimating

S̃p(α)=
∑

λ∈Ap∩RX

e(−α+1) Im λ

≤

K (p)−1∑
j=0

D
(

p+ 1
2+ i
√

3(1
2+ j)

)
e(−α+1) j

√
3
+D

(
p+ 1

2+ i(K (p))+ 1
2

)
+D

(
p+ 1

2+ i(K (p))+ 1
2

)
.

Recalling that α > 1 and D(z)≤ C f (|Re z|) for all z ∈WA with |Re z| ≥ p0, we thus obtain

S̃p(α)≤ 2C f (p+ 1
2)+C

f (p+ 1
2)

1− e(−α+1)
√

3
,

and therefore S̃p(α)= O( f (p)), uniformly in α. �

Before we start the proof of Theorem 1.2, we need one more lemma, which is the key observation
that motivates the definition of the region WA.

Lemma 2.4. There exist some constants α0,C0 > 0, independent of α, t such that for all α ≥ α0,∣∣∣∣ ∑
λ∈RX\WA

ϕ̂α,t(−λ)

∣∣∣∣≤ C0.

Proof. We assume first that α > 1. If λ 6∈WA, then Im λ≥ 0 and

|λ|2 = (Re λ)2+ (Im λ)2 ≤ e(2/A) Im λ
+ (Im λ)2 ≤ e(3/A) Im λ,

whenever Im λ≥CA where CA is a large enough constant depending on A. We can assume in the sequel
that CA ≥ 1. Using Lemma 2.1 with N = 0, we get∣∣∣∣ ∑

λ∈RX\WA

ϕ̂α,t(−λ)

∣∣∣∣≤ C0#{λ ∈RX \WA : Im λ≤ CA}+
∑

λ∈RX\WA
Im λ≥CA

1
|λ|(α−1)2A/3 .

The first term is clearly independent of α while the second can be bounded by the Stieltjes integral∑
λ∈RX\WA
Im λ≥CA

1
|λ|(α−1)2A/3 ≤

∫
+∞

1
u−(α−1)2A/3d N (u),

where N (u)= O(u2) is the counting function for resonances in discs defined in Section 1. By integration
by parts, the above integral is clearly convergent and bounded in α as long as

A(α− 1) > 3.

The proof is complete. �
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We can now start the proof of Theorem 1.2. Let’s test the trace formula (3) with the family ϕα,t , where
α is a large positive number:∑
λ∈RX

ϕ̂α,t(−λ)=−
Vol(N )

4π

∫ α+1

α−1

cosh(x/2)

sinh2(x/2)
ϕα,t(x)dx +

c
2

∫ α+1

α−1

cosh(x/2)
sinh(x/2)

ϕα,t(x)dx

+

∑
α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

e−i tkl(γ)ϕ0(kl(γ)−α).

The first two terms on the right side are clearly bounded with respect to α and t . To get an appropriate
control on the sum

Sα,t :=
∑

α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

e−i tkl(γ)ϕ0(kl(γ)−α),

we will use the following lemma, also known as the Dirichlet box theorem.

Lemma 2.5. Let α1, . . . , αN ∈R, and D ∈N∗. For all Q ≥ 2 one can find an integer q ∈ {D, . . . , DQN
}

such that
max

1≤ j≤N
‖qα j‖ ≤

1
Q
,

where ‖x‖ =minn∈Z |x − n|.

Proof. We use the box principle. Set

Nα := #{(k, l(γ)) ∈ N∗×P : kl(γ) ∈ [α− 1, α+ 1]}.

Fix a constant ε0 > 0 and set Dα = [(4π)ε0 Nα ]. By Lemma 2.5 with Q = [4π ], for all α � 1, one can
find qα ∈ {Dα, . . . , DαQNα } such that

max
α−1≤kl(γ)≤α+1

‖qαkl(γ)‖ ≤ 1
Q
.

Set tα := 2πqα, we have for all α− 1≤ kl(γ)≤ α+ 1,∣∣ei tαkl(γ)
− 1

∣∣≤ 2π
Q
<

2
3
.

Hence we get

|Sα,tα | ≥
1
3

( ∑
α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

ϕ0(kl(γ)−α)
)
≥ C0e−α/2

∑
α− 1

2≤kl(γ)≤α+ 1
2

1,

for a well chosen constant C0 > 0. We now recall that by the prime geodesic theorem (see [Naud 2005]
for a proof and references in the case of infinite-area surfaces), one has, as T →+∞,

#{(k, l(γ)) ∈ N∗×P : kl(γ)≤ T } =
eδT

δT
(1+ o(1)) .

This yields, for α large,

|Sα,tα | ≥ C1
e(δ−1/2)α

α
,
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where C1 is again a suitable constant. Using the prime geodesic theorem, one shows also that

C−1
2

eδα

α
≤ Nα ≤ C2eδα,

with C2 > 0 and α large. We have therefore log log tα ≤ δα+constants, which can be more conveniently
restated as

log log tα ≤ (δ+ ε)α for all ε > 0 and α large.

Similarly we get the lower bound
log log tα ≥ (δ− ε)α.

We can now conclude the proof. Assume that δ > 1
2 . Suppose that for all z ∈ WA with |Re z| ≥ R0, one

has D(z)≤ (log |Re z|)β , where β > 0 will be determined later on. Then by Lemma 2.2 with k = 1, and
Lemma 2.4, one gets as α→+∞,

C1
e(δ−1/2)α

α
≤ |Sα,tα | ≤ O(1)+ O

(
eα(δ−1/2)

tα

)
+ O((log tα)β).

Now recall that
log log tα
δ+ ε

≤ α ≤
log log tα
δ− ε

,

so that we have

C1(δ+ ε)

log log tα
(log tα)(δ−1/2/δ+ε)

≤ O(1)+ O
(
(log tα)(δ−1/2/δ−ε)

tα

)
+ O((log tα)β).

We have a contradiction whenever β < (δ− 1
2)/(δ+ε). As a conclusion, for all ε > 0 and all R0 ≥ 0 one

can find z ∈WA with |Re z| ≥ R0 and D(z) > (log |Re z|)((δ−1/2)/(δ))−ε . This proves Theorem 1.2. �

3. Mean square lower bounds and arithmetic length spectrum

The goal of this section is to prove Theorem 1.3. First we need to a recall a few basic facts about arithmetic
group. Instead of detailing the construction of such groups, we refer the reader to the introductory book
[Katok 1992], and will use a characterization of arithmetic groups derived from quaternion algebra due
to Takeuchi [1975], which is all we need for this section.

We recall that a discrete group of isometries of the hyperbolic plane H2 can be viewed as a discrete
subgroup of PSL2(R). If M ∈ PSL2(R) corresponds to a hyperbolic isometry, then Tr M is related to the
translation length l of M by the formula 2 cosh(l/2)= |Tr M |. Takeuchi’s result is as follows.

Theorem 3.1 (Takeuchi). Let 0 be a discrete, cofinite subgroup of PSL2(R). Set

Tr0 := {Tr T : T ∈ 0}.

Then 0 is derived from a quaternion algebra if and only if

(1) the field K =Q(Tr0) is an algebraic field of finite degree and Tr0 is a subset of the ring of integers
of K , and

(2) for all embeddings ϕ : K → C, ϕ 6= I d , the set ϕ(Tr γ) is bounded in C.
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For a proof of this characterization, see [Katok 1992; Takeuchi 1975]. Condition (2) has some strong
implications on the structure of the trace set Tr0, as the next result shows. A similar statement can be
found in [Luo and Sarnak 1994].

Lemma 3.2. Let 00 be an arithmetic group derived from a quaternion algebra.

(1) There exists a constant C0 > 0 depending solely on 00 such that for all x, x ′ ∈ Tr00 with x 6= x ′,
|x − x ′| ≥ C0.

(2) There exists a constant M0 depending only on 00 such that for all R large,

50(x) := #{x ∈ Tr00 : |x | ≤ R} ≤ M0 R.

Proof. Clearly (1) implies (2) by a box argument. Let us prove (1). The field K =Q(Tr00) is a totally
real number field of degree say n = [K :Q]. Let ϕ1 = Id, ϕ2, . . . , ϕn be the n distinct embeddings of K
into C. The set Tr00 is a subset of the ring of integers OK of K . We denote by N K

Q
( · ) the norm on K .

We recall that if x ∈ OK then N K
Q
(x) ∈ Z. Let x 6= x ′ belong to Tr00, we have

1≤ |N K
Q (x − x ′)| =

n∏
i=1

|ϕi (x − x ′)| ≤ |x − x ′|Mn−1,

where M > 0 is given by property (2) of Takeuchi’s characterization. �

This important feature of the trace set was noticed by physicists working on quantum chaos [Bogo-
molny et al. 1997] and was clearly emphasized by Luo and Sarnak [1994] in their work on the number
variance of arithmetic surfaces. Selberg and Hejhal [1976], when trying to obtain sharp lower bounds
for the error term in Weyl’s law, had already noticed similar properties for some examples of cocompact
arithmetic groups.

In the rest of this section we will work with a geometrically finite group 0 as defined in Section 1,
and we assume in addition that 0 is an infinite-index subgroup of an arithmetic group 00, derived from a
quaternion algebra. The simplest examples of such groups 0 that one can think of are finitely generated
Schottky subgroups of PSL2(Z), but there are definitely many other examples, see the next section.

Given such a group 0, one can define the length spectrum of X = 0\H2 by

L0 := {kl(γ) : (k, γ) ∈ N∗×P},

where as in the preceding section, P is the set of primitive closed geodesics. We have the following key
properties.

Proposition 3.3. Let 0 be a fuchsian group as above, then we have:

(1) Let l1, l2 ∈ L0 with 2 cosh(li/2)= Tr Mi , i ∈ {1, 2}, then

|l1− l2| ≥ e−(max(l1,l2))/2 |Tr M1−Tr M2|.

(2) There exists a constant C1 > 0 depending only on 00 such that for all α large,

#{l ∈ L0 : α− 1≤ l ≤ α+ 1} ≤ C1eα/2.
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Proof. The set of closed geodesics on X=0\H2 is in one-to-one correspondence with the set of conjugacy
classes of hyperbolic elements in the fundamental group 0, each closed geodesic γ having its length l(γ)
given by the formula

2 cosh(l(γ)/2)= |Tr Tγ|,

where Tγ ∈ 0 is an hyperbolic isometry. The length spectrum L0 is therefore in one-to-one corre-
spondence with the trace set Tr0 via the above formula (except for the conjugacy classes of parabolic
elements with trace 2). Since we have Tr0⊂ Tr00, we can use the preceding Lemma and crude bounds
to prove estimate (2). To obtain the first lower bound (1), one simply writes (assuming l2 > l1),

l2− l1 = 2
∫ x2

x1

dt
t
≥ 2

x2− x1

x2
,

where we have
xi = eli/2 = 1

2

(
Tr Mi +

√
(Tr Mi )2− 4

)
.

Clearly one gets

x2− x1 =
1
2

∫ Tr M2

Tr M1

(
1+

u
√

u2− 4

)
du ≥

1
2
(Tr M2−Tr M1),

and the proof is done. �

When compared with the prime geodesic theorem (see Section 2), estimate (2) in the proposition
shows that whenever δ > 1

2 there must be some exponentially large multiplicities in the length spectrum.
This is the key observation of Selberg and Hejhal [Hejhal 1976, Section 18, Chapter 2] that will allow
us to produce a better lower bound than in Section 2. More precisely:

Proposition 3.4. Let 0 be a group as above, δ being the dimension of its limit set. Let Sα,t be the sum
defined by

Sα,t :=
∑

α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

e−i tkl(γ)ϕ0(kl(γ)−α).

There exists a constant A> 0 such that for all T large, if one sets α= 2 log T − A then the integral I(T )
defined by

I(T )=
∫ 3T

T

(
1−
|t − 2T |

T

)
|Sα,t |

2dt,

enjoys the lower bound

I(T )≥ C2
T 1+4δ−3

(log T )2
,

for some constant C2 > 0 independent of T .

Let us show how Theorem 1.3 follows from this lower bound. First we assume that for all z ∈ WA

with |Re z| ≥ R0, we have
D(z)≤ |Re z|β,

for some 0< β < 1. Set α = 2 log T − A, where A is given by the above proposition. We have

C2
T 1+4δ−3

(log T )2
≤ I(T )≤

∫ 3T

T
|Sα,t |

2dt.
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By the trace formula (3) applied to ϕα,t , and Lemma 2.2 with k = 2, Lemma 2.4, we have

|Sα,t | ≤ O(1)+ O
(T 2δ−1

T 2

)
+ O(tβ);

therefore
∫ 3T

T |Sα,t |
2dt=O(T 2β+1), which produces a contradiction whenever β <2δ−3/2. This proves

Theorem 1.3. �

Proof of Proposition 3.4. We start with an elementary observation. For all λ ∈ R and T > 0 set

J (T, λ)=
∫ 3T

T

(
1−
|t − 2T |

T

)
e−iλt dt.

Lemma 3.5. With the preceding notation, we have |J (T, λ)| ≤ 4
λ2T

for all λ 6= 0, while J (T, 0)= T .

Proof. This follows by direct computation. �

At this point we need some more notation. If ` ∈ L0, we denote by µ(`) the multiplicity of ` as the
length of a closed geodesic. If ` ∈ L0, then let ˜̀ denote the primitive length of `, that is, if ` = kl(γ)
with γ a primitive closed geodesic, then ˜̀ = l(γ). Using this notation, we have

I(T )=
∑

`,`′∈L0

˜̀ ˜̀′µ(`)µ(`′)

4 sinh(`/2) sinh(`′/2)
J (T, `− `′)ϕ0(`−α)ϕ0(`

′
−α).

We now set I(T )= I1(T )+I2(T ), where

I1(T )= T
∑
`∈L0

( ˜̀µ(`))2

4 sinh2(`/2)
ϕ2

0(`−α)

and

I2(T )=
∑

`,`′∈L0
6̀=`′

˜̀ ˜̀′µ(`)µ(`′)

4 sinh(`/2) sinh(`′/2)
J (T, `− `′)ϕ0(`−α)ϕ0(`

′
−α).

By Lemma 3.5, we have

|I2(T )| ≤
4
T

∑
`,`′∈L0
6̀=`′

˜̀ ˜̀′µ(`)µ(`′)ϕ0(`−α)ϕ0(`
′
−α)

4 sinh(`/2) sinh(`′/2)(`− `′)2
.

Using the inequality ab ≤ 1
2(a

2
+ b2) for all a, b ∈ R, we get by the symmetry of the summation

|I2(T )| ≤
4
T

∑
`,`′∈L0
6̀=`′

( ˜̀µ(`))2ϕ2
0(`−α)

4 sinh(`/2) sinh(`′/2)(`− `′)2
.

Therefore, one can find a constant C > 0 such that, for all α and T large,

|I2(T )| ≤ C
e−α

T

∑
`∈L0

( ˜̀µ(`))2ϕ2
0(`−α)

∑
`′∈L0∩[α−1,α+1]

`′ 6=`

1
(`− `′)2

.
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By Proposition 3.3(1), we can write x = 2 cosh(`/2), where x ∈ Tr0, and thus∑
`′∈L0∩[α−1,α+1]

`′ 6=`

1
(`− `′)2

≤ eα+1
∑

x ′∈Tr0

1
(x − x ′)2

.

We can now bound ∑
x ′∈Tr0

1
(x − x ′)2

≤

∫ x−C0

2

d50(u)
(x − u)2

+

∫
+∞

x+C0

d50(u)
(x − u)2

,

where 50 is the counting function for the trace set of the arithmetic group 00 and the constant C0 is
given by Lemma 3.2. Using the fact that the growth 50(u) = O(u), two Stieltjes integration by parts
show that there exists a constant C̃0 depending only on 00 such that for all x ∈ Tr0,∑

x ′∈Tr0

1
(x − x ′)2

≤ C̃0.

Going back to I2(T ), we have obtained for T and α large,

|I2(T )| ≤
C ′

T

∑
`∈L0

( ˜̀µ(`))2ϕ2
0(`−α).

Recall that

I1(T )= T
∑
`∈L0

( ˜̀µ(`))2

4 sinh2(`/2)
ϕ2

0(`−α)≥ C ′′e−αT
∑
`∈L0

( ˜̀µ(`))2ϕ2
0(`−α),

again for α large and some C ′′ > 0. Therefore |I2| ≤
1
2 I1 as long as

eα ≤
1
2

C ′′

C ′
T 2,

which is definitely achieved if one sets α = 2 log T − A, where A� 1. We have thus

|I(T )| ≥ 1
2 |I1(T )| ≥ C ′′e−αT

∑
`∈L0∩[α−1,α+1]

( ˜̀µ(`))2ϕ2
0(`−α)≥ C̃ ′′e−αT

∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

(µ(`))2,

for some C̃ ′′ > 0. By Schwarz inequality we get( ∑
α− 1

2≤kl(γ)≤α+ 1
2

1
)2

=

( ∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

µ(`)

)2

≤

( ∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

(µ(`))2
)( ∑

`∈L0∩[α−
1
2 ,α+

1
2 ]

1
)
.

By Proposition 3.3(2), ∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

1= O(eα/2),

while the prime geodesic theorem yields ∑
α− 1

2≤kl(γ)≤α+ 1
2

1≥ B
eδα

α
,
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where B > 0. Hence we have obtained∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

(µ(`))2 ≥ B2 e(2δ−1/2)α

α2 .

Going back to I(T ) and recalling that α = 2 log T − A we get

|I(T )| ≥ B ′
T 1+4δ−3

(log T )2
.

The proof is now complete. �

It is now time to indicate how to get upper bounds on the sequence |Re zk | as k→∞. First, we can
notice that the above Proposition 3.4 still holds on shorter intervals. Indeed, pick any 0< ρ < 1 and set

Iρ(T )=
∫ 2T+T ρ

2T−T ρ

(
1−
|t − 2T |

T ρ

)
|Sα,t |

2dt,

then one can show that taking α = 2ρ log T − A, for some A� 1, there exists a constant Cρ > 0 such
that for T large one has

Iρ(T )≥ Cρ
T (4δ−3)ρ+ρ

(log T )2
.

The assumption of Lemma 2.2 can be weakened: indeed to get the desired upper bound on |Sα,t |=O(tβ),
it is enough to assume that

D(z)= O(|Re z|β)

for all z ∈ WA and Re z ∈ [2t − tµ, 2t + tµ], for some 0< µ < 1. These two minor modifications allow
to obtain a more precise statement (by following the same line of proof). For all ε > 0, one can find an
exponent 1> ρε > 0 such that for all T large, there exists z ∈WA with the property

Re z ∈ [2T − T ρε , 2T + T ρε ] and D(z)≥ Re z2δ−3/2−ε .

Choose 1 > µε > ρε and define by induction a sequence (Tk) by T0 � 1 and for all k ≥ 0, Tk+1 =

Tk + (Tk)
µε . For all k ≥ 0, set

Ik = [2Tk − (Tk)
ρε , 2Tk + (Tk)

ρε ].

For all k ≥ 0, one can find zk ∈WA with

Re zk ∈ Ik and D(zk)≥ (Re zk)
2δ−3/2−ε .

Moreover because µε > ρε , we have D(zk)∩ D(zk+1) = ∅ for k large. To obtain the leading behavior
of Tk as k→+∞, one can perform a change of variable xk = 1/Tk and consider the dynamical system
on the real line given by

fµε (x)=
x

1+ x1−µε
.

Clearly 0 is a neutral fixed point for fµε and for all x0 > 0,

xk = f (k)µε
(x0) > 0
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tends to 0 as k→+∞. Remark that since we have for x ≤ 1,

fµε (x)≤
x

1+ x
,

we get the crude upper bound

xk = O
(1

k

)
.

To obtain an asymptotic estimate, we set uk = (xk)
α, where α will be determined later on. Writing

uN − u0 =

N−1∑
k=0

fµ(xk)
α
− xαk ,

and since we have the local expansion at x = 0

fµ(x)α − xα =−αx1−µ+α
+ O(x2−2µ+α),

the choice of α = µ− 1 yields as N →+∞,

uN = (1−µ)N + O
( N∑

k=1

1
k1−µ

)
= (1−µ)N + O(Nµ).

Therefore
lim

k→∞
(1−µε)1/(1−µε)k1/(1−µε)xk = 1.

Thus we have the polynomial bound |Re zk | = O(k1/(1−µε)). Clearly the exponent pε =
1

1−µε
will tend

to infinity as ε goes to 0.

4. Examples

In this section with discuss briefly examples of surfaces X = 0\H2 satisfying the assumptions of Theo-
rems 1.2 and 1.3. We assume that the reader has some basic knowledge in fuchsian groups and hyperbolic
geometry, for which we refer to [Katok 1992]. By the work of Patterson [1976], we know that if X has
at least one cusp, that is, if 0 has at least one nontrivial parabolic element, then the dimension δ > 1

2 . If
one wants examples without cusps, then δ can be made arbitrarily close to 1 by “pinching” the geodesic
boundary of Nielsen’s region. Let us explain what we mean. By [Patterson 1976] and the spectral
analysis in [Lax and Phillips 1984a; 1984b; 1985], we have δ > 1

2 if and only if λ0(X) < 1
4 , where λ0(X)

is the bottom of the spectrum of the Laplacian 1X . In that case λ0(X) = δ(1− δ). Hence to get δ > 1
2 ,

it is enough to show that the Rayleigh quotient

λ0(X)= inf
f 6=0

∫
X |∇ f |2dVol∫

X f 2dVol
< 1

4 ,

where f is an L2 function on X with an L2 gradient ∇ f . Based on the above formula, Pignataro and
Sullivan proved the following, where `(X) denotes the maximum length of the closed geodesics which
are the boundary of the Nielsen region of X (the convex core):
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Proposition 4.1 [Pignataro and Sullivan 1986]. There exists a constant C(X) > 0 depending only the
topology of X such that

λ0(X)≤ C(X)`(X).

Therefore if `(X) is small enough, one definitely has δ > 1
2 . Applying the same strategy to find

examples satisfying the hypothesis of Theorem 1.3 is harder. Indeed, the discreteness of arithmetic
groups makes it difficult to perform deformations. What we are looking for are geometrically finite,
infinite-index subgroups 0 of arithmetic groups derived from quaternion algebras with δ(0) > 3

4 . The
easiest thing to do is to consider first PSL2(Z) and look at some of its subgroups.

Let us first consider the group 3N obtained as

3N := 〈g0, g1, . . . , gN 〉,

where

g0(z)=
−1
z
'

( 0 −1
1 0

)
, gk = τ

k g0τ
−k, τ (z)= z+ 2'

( 1 2
0 1

)
.

Let D j , j = 0, . . . , N be the unit closed disc centered at 2 j . A fundamental domain for the action of
3N on H2 is given by

F= H2 \ (D0 ∪ · · · ∪ DN ).

The group 3N is therefore geometrically finite and has no parabolic elements, despite the presence of
(false) “cusps” in the fundamental domain. The elliptic elements are the conjugacy classes of g0, . . . , gN ,
which are of order 2. Up to a covering of order 2, we can get rid of them.

For k = 1, . . . , N , set hk = g0gk , and consider the subgroup

0N = 〈h1, . . . , hN ; h−1
1 , . . . , h−1

N 〉,

then it is easy to see that 0N is a subgroup of3N of index 2 and has no elliptic elements, hence a convex
cocompact group. Because 0N is of finite index the critical exponents δ(0N ) and δ(3N ) are the same:
the critical exponent is defined as the infimum of positive real numbers σ such that the Poincaré series

P(σ ) :=
∑
γ∈0

e−σd(i,γi),

are convergent. Here d is the hyperbolic distance in the half-plane model. A classical result of Sullivan
[1984] shows that for geometrically finite groups, the critical exponent is also the Hausdorff dimension of
the limit set, hence3N and 0N have same dimension for their limit set. The group3N is also considered
in [Gamburd 2002], where he shows using a min-max argument and a suitable test function that δ(3N )

can be made as close to 1 as we want, provided N is large enough (estimates are effective).
An alternative way to construct similar convex cocompact subgroups of PSL2(Z) with δ close to

1 is given in [Bourgain and Kontorovich 2010]. The idea is to start with the free subgroup 0(2) =
〈A, B, A−1, B−1

〉 generated by

A =
( 1 2

0 1

)
, B =

( 1 0
2 1

)
.
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Its commutator subgroup is a free, infinitely generated subgroup with critical exponent 1. Moreover it has
no parabolic elements. This commutator subgroup contains finitely generated (hence convex cocompact)
subgroups with critical exponent δ arbitrarily close to 1.

As a conclusion, we have found several examples of convex cocompact subgroups of PSL2(Z) with
δ > 3

4 . By a similar technique, one can produce several examples with cusps. In that direction, let us
point out that the Hecke group 03 generated by g : z 7→ −1/z and h : z 7→ z + 3 is a good candidate:
its Hausdorff dimension was estimated by Phillips and Sarnak [1985] to be δ = 0.753± 0.003. Can one
prove (or disprove) rigorously that δ > 0.75?

It would be interesting in itself to find similar constructions for arithmetic groups that were not con-
sidered in this paper. In a sequel, the authors plan to address the case of arithmetic groups derived
from quaternion division algebras (which are cocompact surface groups). It would also be interesting to
consider groups acting on higher-dimensional hyperbolic spaces, for example arithmetic Kleinian groups.
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