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We consider the motion by mean curvature of an n-dimensional graph over a time-dependent domain in
Rn intersecting Rn at a constant angle. In the general case, we prove local existence for the corresponding
quasilinear parabolic equation with a free boundary and derive a continuation criterion based on the
second fundamental form. If the initial graph is concave, we show this is preserved and that the solution
exists only for finite time. This corresponds to a symmetric version of mean curvature motion of a
network of hypersurfaces with triple junctions with constant contact angle at the junctions.

1. Time-dependent graphs with a contact angle condition

We consider a moving hypersurface 6t in Rn+1 with normal velocity equal to its mean curvature. We
assume6t to be a graph over a time-dependent open set D(t)⊂Rn , not necessarily bounded or connected.
The (properly embedded) intersection (n−1)-submanifold

0(t)=6t ∩Rn
= ∂D(t)

is a moving boundary. Along 0(t) we impose a constant-angle condition

〈N , en+1〉|0(t) = β,

where 0< β < 1 is a constant and N is the upward unit normal of 6t . Mean curvature motion (mcm) is
defined by the law

VN = H,

where VN = 〈V, N 〉, with V = ∂t F the velocity vector in a given parametrization F(t) of 6t (V depends
on the parametrization, while VN does not). A particular parametrization yields mean curvature flow:

∂t F = H N .

For graphs, it is natural to consider graph mean curvature motion: If 6t = graph w(t) for a function
w(t) : D(t)→ R, imposing 〈∂t F, N 〉 = H with F(y, t)= [y, w(y, t)] for y ∈ D(t), we find

wt =
√

1+ |Dw|2 H
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(and the velocity is vertical, ∂t F =wt en+1). With the contact angle condition, we obtain a free boundary
problem for a quasilinear PDE{

wt = gi j (Dw)wi j in D(t),
w = 0, β

√
1+ |Dw|2 = 1 on ∂D(t),

where gi j (Dw)= δi j
−wiw j/(1+ |Dw|2) is the inverse metric matrix.

Remark. It is easy to see that the constant-angle boundary condition is incompatible with mean curvature
flow parametrized over a fixed domain D0: on ∂D0 we would have 〈F, en+1〉=0, leading to 〈∂t F, en+1〉=

0, which is incompatible with ∂t F = H N and 〈N , en+1〉 = β. If we parametrize over a time-dependent
domain, mean curvature flow leads to a normal velocity for the moving boundary that is difficult to
control; hence we chose to analyze the geometry of the motion in terms of the graph mcm parametrization.

To establish short-time existence (in parabolic Hölder spaces) we will work with a third parametriza-
tion of the motion, defined over a fixed domain:

F(t) : D0→ Rn+1, F(x, t)= [ϕ(x, t), u(x, t)] ∈ Rn
×R,

where ϕ(t) : D0→ D(t) is a diffeomorphism and F is a solution of the parabolic system

Ft = gi j (DF)Fi j ,

where gi j = 〈Fi , F j 〉 is the induced metric on 6t and gi j is the inverse metric matrix.
In the first part of the paper (Sections 3 to 8) we prove the following short-time existence theorem (on

Q := D0×[0, T ]), where by boundary-orthogonal we mean that certain orthogonality conditions at the
boundary, specified in Section 3, are satisfied.

Theorem 1.1. Let60⊂Rn+1 be a C3+ᾱ graph over D0⊂Rn satisfying the contact and angle conditions
at ∂D0. There exist T > 0 depending only on 60, a parametrization F0 = [ϕ0, u0] ∈ C2+α(D0) of
60 (where α = ᾱ2 and ϕ0 is a boundary-orthogonal diffeomorphism of D0), and a unique solution
F ∈ C2+α,1+α/2(QT

;Rn+1) of the system{
∂t F − gi j (DF)∂i∂ j F = 0, F = [ϕ, u] ∈ Rn

×R,

u|∂D0 = 0, N n+1(DF)|∂D0 = β,

with initial data F0, where ϕ(t) : D0→ D(t)⊂ Rn is a boundary-orthogonal diffeomorphism as well.

The system and boundary conditions are discussed in more detail in Section 3. Sections 4, 5, and 6 deal
with compatibility at t = 0, linearization and the verification that the boundary conditions satisfy com-
plementarity. In particular, adjusting the initial diffeomorphism ϕ0 to ensure compatibility (Section 4)
leads to the loss of differentiability seen in Theorem 1.1. The required estimates in Hölder spaces for
the linearized system are described in Section 7 and the proof is concluded (by a fixed-point argument)
in Section 8. While the general scheme is standard, details are included since we are dealing with a free
boundary problem with somewhat nonstandard boundary conditions. Free boundary-type problems for
mean curvature motion of graphs have apparently not been considered previously.

We describe the evolution equations in the rotationally symmetric case in Section 9 (including a sta-
tionary example for the exterior problem) and the extension to the case of a graph motion 6t intersecting
fixed support hypersurfaces orthogonally in Section 10.
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The original motivation for this work was to establish (by classical parabolic PDE methods) existence-
uniqueness for mean curvature motion of networks of surfaces meeting along triple junctions with
constant-angle conditions. One can use a motion6t of graphs with constant contact angle to produce ex-
amples of triple junction motion: three hypersurfaces moving by mean curvature meeting along an (n−1)-
dimensional submanifold 6(t) so that the three normals make constant angles (say, 120 degrees) along
0(t). We simply reflect on Rn , so the hypersurfaces are 6t , Sigmat , and Rn

−D(t). If 6t = graph w(t)
with w > 0, the system is embedded in Rn+1. This is mean curvature motion of a “symmetric triple
junction of graphs”.

Short-time existence holds for general triple junctions of graphs moving by mean curvature with
constant 120-degree angles at the junction, provided a compatibility condition holds along the junction
(see Section 16). Since the free-boundary problem is easier to understand in the symmetric case, we
decided to do this first. In addition, in the present case it is possible to go further towards a geometric
global existence result. In the second part of the paper (Sections 11–15), motivated by recent work on
lens-type curve networks [Schnürer et al. 2007], we consider continuation criteria and the preservation
of concavity. Since we chose to develop these results for graph motion with a free boundary, although
the general lines of proof (via maximum principles) have precedents, the details of the arguments are
new. For example, Section 12 contains an extension of the maximum principle for symmetric tensors
with Neumann-type boundary conditions given in [Stahl 1996], which in our setting allows one to show
preservation of weak concavity in general. Section 14 includes a continuation criterion for the flow. The
results obtained in Sections 11–15 are summarized in the following theorem, where h denotes the second
fundamental form, pulled back to a symmetric 2-tensor on D(t).

Theorem 1.2. If 60 is weakly concave (h ≤ 0 at t = 0), this property is preserved by the evolution. Let
Tmax be the maximal existence time for the evolution. If the mean curvature of 60 is strictly negative
(sup60

H = H0 < 0), then Tmax is finite. Assuming Tmax <∞, we have

lim sup
t→Tmax

[sup
0t

(|h|g + |∇ tanhtan
|g)] =∞

(if n = 2, in the concave case). If there is no gradient blowup at Tmax, the hypersurface contracts to a
compact convex subset of Rn as t→ Tmax.

Remark. We have not yet proved that the diameter tends to zero as t→ Tmax, though this seems likely
based on the experience with curves [Schnürer et al. 2007], in the absence of gradient blowup. It is an
interesting question (even in the concave case, for n = 2) whether gradient blowup can really occur, that
is, whether sup0t

|∇
tanhtan

|g can diverge as t→ Tmax, while |h|g remains bounded on 0t ).

2. Normal velocity of the moving boundary

The evolution is naturally supplied with initial data 60, a graph meeting Rn+1 at the prescribed angle.
Since we are interested in classical solutions in the parabolic Hölder space C2+α,1+α/2, we expect an
additional compatibility condition at t = 0. We discuss this first for graph mcm w(y, t).

Denote by 0(t) a global parametrization of ∂D(t) (with domain in a fixed manifold, and space vari-
ables left implicit). Differentiating in t the contact condition w(0(t), t)= 0, we find

wt +〈Dw, 0̇(t)〉 = 0.
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Denote by nt the unit normal vector field to 0(t), chosen so that the directional derivative dnw > 0. The
contact condition also implies the gradient of w is purely normal:

Dw|∂D(t) = (dntw)nt .

Combining this with the angle condition, and bearing in mind that dntw|0(t) > 0, we find

dntw =
β0

β
on ∂D(t), β0 :=

√
1−β2.

(In fact, this is a more convenient form of the angle boundary condition for w, since it is linear.) Thus,
on ∂D(t),

1
β

H =
√

1+ (dntw)
2 H =

∂w

∂t
=−〈0̇(t), nt 〉dntw =−0̇n(t)

β0

β
,

and we find the normal velocity of the moving boundary, independent of the parametrization of 0t :

0̇n =−
1
β0

H|0(t).

In particular, this must hold at t = 0. Note that we don’t get a compatibility condition in the usual sense
(of a constraint on the 2-jet of the initial data), but instead an equation of motion for the moving boundary.
Later, in the fixed-domain formulation, we will have to deal with a real compatibility condition.

Remark. For more general (nonsymmetric, nonflat) triple junctions with 120-degree angles, the condi-
tion

H 1
+ H 2

= H 3 on 0(t)

must hold at the junction (for graphs, oriented by the upward normal); this gives a geometric constraint
on the initial data, for classical evolution in C2+α,1+α/2. This automatically holds in the symmetric case
(w2
=−w1, w3

≡ 0), since H 3
= 0 and H I

= trg I d2w I for I = 1, 2.

3. Choice of gauge

It is traditional in moving boundary problems to parametrize the time-dependent domain D(t) of the
unknown w(y, t) by a time-dependent diffeomorphism:

y = ϕ(x, t), ϕ(t) : D0→ D(t),

and then derive the equation satisfied by the coordinate-changed function from the equation for w; see,
for example, [Baconneau and Lunardi 2004; Solonnikov 2003]. Motivated by work on curve networks
[Mantegazza et al. 2004], we will, instead, consider a general parametrization

F : D0×[0, T ] → Rn+1, F(x, t)= [ϕ(x, t), u(x, t)] ∈ Rn
×R,

and derive an equation for F directly from the definition of mean curvature motion,

〈∂t F, N 〉 = H.

We’ll still assume ϕ(t) : D0→ D(t) is a diffeomorphism.
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The first and second fundamental forms are given by

gi j = 〈Fi , F j 〉, A(Fi , F j )= 〈Fi j , N 〉,

where we have set DF = Fi ei and D2 F(ei , e j ) = Fi j , with (ei ) the standard basis of Rn+1. The mean
curvature is the trace of A in the induced metric:

H = 〈gi j (DF)Fi j , N 〉.

The equation for F is
〈∂t F − gi j (DF)Fi j , N 〉 = 0.

There is a natural gauge choice yielding a quasilinear parabolic system

∂t F − gi j (DF)Fi j = 0.

We will sometimes refer to this as the split gauge, since in terms of the components F = [ϕ, u] we have
the essentially decoupled system {

∂t u− gi j (Dϕ, Du)ui j = 0,
∂tϕ− gi j (Dϕ, Du)ϕi j = 0.

.

The splitting is useful in stating the boundary conditions{
u|∂D0 = 0 (contact condition),
N n+1(Dϕ, Du)|∂D0 = β (angle condition).

We immediately see a problem: we have two scalar boundary conditions for n+ 1 unknowns, and no
moving boundary to help! Our solution to this is to introduce n− 1 additional orthogonality conditions
at the boundary for the parametrization ϕ(t). We impose

〈Dτϕ, Dnϕ〉|∂D0 = 0 (orthogonality condition),

for any τ ∈ T ∂D0, where n denotes the inward unit normal to D0. (We fix a tubular neighborhood N of
∂D0 and extend n to N so that dnn = 0 in N.)

Geometrically, the orthogonality boundary condition has a precedent in a method often adopted when
dealing with the evolution of hypersurfaces in Rn+1 intersecting a fixed n-dimensional support surface
orthogonally (see [Struwe 1988], for example), where one replaces vanishing inner product of the unit
normals — a single scalar condition — by a stronger Neumann-type condition for the parametrization
corresponding to n− 1 scalar conditions. (More details are given in Section 10.)

The system must also be supplied with initial data. We assume given an initial hypersurface 60, the
graph of a C3+ᾱ function ũ0(x) defined in the C3+ᾱ domain D0 ⊂ Rn . (The reason for this choice of
differentiability class will be seen later.) It would seem natural to set ϕ0= IdD0 , but this causes problems
related to compatibility; see Section 4. We do require the 1-jet of ϕ0 at the boundary to be that of the
identity:

ϕ0|∂D0
= Id, Dϕ0|∂D = I.

(In particular, the orthogonality condition holds at t = 0.)
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We need a more explicit expression for the unit normal, and for that we use the “vector product”

Ñ (Dϕ, Du) := (−1)n det
[

e1 · · · en+1

DF1
· · · DFn+1

]
= (−1)n det

[
e1 . . . en en+1

Dϕ1 . . . Dϕn Du

]
:= [J (Dϕ, Du), Jϕ] ∈ Rn

×R,

where DF i
∈ Rn for i = 1, . . . n+ 1, Jϕ > 0 is the Jacobian of ϕ and (−1)n is introduced to make sure

the last component is positive. J (Dϕ, Du) is an Rn-valued multilinear form, linear in the components
ui of Du, and of weight n− 1 in the components of Dϕ. It is easy to check that J (I, Du)=−Du. The
unit normal is

N (Dϕ, Du)= Ñ (Dϕ, Du)/
(
|J (Dϕ, Du)|2+ (Jϕ)2

)1/2
.

Thus the angle condition may be stated in the form

β
[
|J (Du, Dϕ)|2+ (Jϕ)2

]1/2
|∂D0
= Jϕ |∂D0

,

and we lose nothing by squaring it:

B(Dϕ, Du) := β2
|J (Du, Dϕ)|2−β2

0 (Jϕ)
2
|∂D0
= 0.

4. Compatibility and the choice of ϕ0

Assume Dϕ0|∂D0
= I. Differentiating in t the contact condition u|∂D0 = 0 and evaluating at t = 0, we find

0= gi j (I, Du0)u0i j ≡ gi j
0 u0i j on ∂D0.

To interpret this condition, consider the mean curvature at t = 0, on ∂D0:

H0 =
1
v0

[
〈J (I, Du0), gi j

0 ϕ0i j 〉+ Jϕ0 gi j
0 u0i j

]
,

where

v0 =
[
|J (I, Du0)|

2
+ J 2

ϕ0

]1/2
|∂D0
= (|Du0|

2
+ 1)1/2

|∂D0
=

1
β
,

using the equality

J (I, Du0)=−Du0 =−(Dnu0)n =−
β0

β
n

on ∂D0. (Recall that β0 :=
√

1−β2.) Thus the compatibility condition is equivalent to

H0|∂D0 =−β0gi j
0 〈ϕ0i j , n〉|∂D0 .

This implies we can’t choose ϕ0 ≡ Id (on all of D0), unless H0|∂D0 ≡ 0, a constraint not present in the
geometric problem (as seen above).1 Instead, regarding H0 as given (by 60), and using

gi j
0 = δi j −

u0i u0 j

v2
0
= δi j −β

2
0 ni n j ,

1The compatibility condition H0|∂D0
= 0 does occur for graph mcm with Dirichlet boundary conditions in a mean-convex

domain [Huisken 1989].
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we find the compatibility constraint〈
(δi j −β

2
0 ni n j )ϕ0i j , n

〉
=−

1
β0

H0 on ∂D0.

Given the zero- and first-order constraints on ϕ0, this can also be written as

ni n j
〈ϕ0i j , n〉 = −

1
β2β0

H0 on ∂D0.

The next lemma, whose proof is given in Appendix A, shows that this can be solved.

Lemma 4.1. Let D0⊂Rn be a uniformly C3+α domain (possibly unbounded), h ∈Cα(∂D0) (0<α< 1).

(i) One can find a diffeomorphism ϕ ∈ Diff2+α(D0) satisfying on ∂D0

ϕ = Id, dϕ = I, n · d2ϕ(n, n)= h.

(ii) More generally, given a nonvanishing vector field

e ∈ C1+α(∂D0;R
n)

with 〈e, u〉 6= 0 on ∂D0, one can find ϕ ∈ Diff2+α(D0) satisfying on ∂D0

ϕ = Id, dnϕ = e, n · d2ϕ(n, n)= h.

If ∂D0 has two components, we may even require ϕ to satisfy the conditions in parts (i) and (ii) at the
two components with different functions h. (This will be needed in Section 10).

As usual, a domain is uniformly C3+α if at each boundary point there are local charts to the upper
half-space (of class C3+α), defined on balls of uniform radius, and with uniform bounds on the C3+α

norms of the charts and their inverses.

Remark 4.2. In particular, ϕ satisfies the orthogonality conditions at ∂D0.

Remark 4.3. It is at this step in the proof that we have a drop in regularity: for C2+α local solutions,
we require C3+α initial data. While this is not unexpected in free-boundary problems (see, for example,
[Baconneau and Lunardi 2004]), I don’t know a counterexample to the lemma if D0 is assumed to be a
C2+α domain.

Remark 4.4. In our application of the lemma, we in fact have h ∈ C1+α(∂D0), but this does not imply
higher regularity for ϕ.

5. Linearization

The evolution equation and boundary conditions in split gauge are
Ft − gi j (DF)Fi j = 0,

u|∂D0 = 0,
B(Dϕ, Du)|∂D0 = 0,

O(Dϕ)|∂D0 = 0,
where

O(Dϕ) := 〈DTϕ, Dnϕ〉.
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Here DTϕ = Dϕ− (dnϕ)〈 · , n〉 is an Rn-valued (n− 1)-form on ∂D0. We’ll prove short-time existence
for this system (with initial data u0, ϕ0) in C2+α,1+α/2 by the usual fixed-point argument based on linear
parabolic theory. Given F = [ϕ̄, ū] in a suitable ball in this Hölder space with center F0 = [ϕ0, u0], it
suffices to consider the pseudolinearization of the system:

Ft − gi j (DF0)Fi j = [gi j (DF)− gi j (DF0)]F i j =: F(F, F0)=: F. (LPDE)

A fixed point of the map F 7→ F corresponds to a solution of the quasilinear equation.
For the nonlinear boundary conditions, we need the honest linearization at F0. For the angle condition,

a computation using the boundary constraints on u0 and ϕ0 yields

1
2 L0 B[Dϕ, Du] = ββ0dnu−β2

0 〈dnϕ, n〉.

The corresponding linear boundary condition will be

ββ0dnu−β2
0 〈dnϕ, n〉 =B(DF, DF0) :=B,

where

2B(DF1, DF2) := B(Dϕ1, Du1)− B(Dϕ2, Du2)−L0 B
(
D(ϕ1−ϕ2), D(u1− u2)

)
,

and we used
−

1
2 L0[Dϕ0, Du0]|∂D0 = ββ0dnu0−β

2
0 〈dnϕ0, n〉|∂D0 = 0.

Also, B(Dϕ0, Du0)|∂D0 = 0, so at a fixed point B(Dϕ, Du)|∂D0 = 0.
Linearizing the orthogonality boundary condition, we find that L0O[Dϕ] is the (n−1)-form on ∂D0

given by
L0O[Dϕ](v)= (∂ jϕ

i
+ ∂iϕ

j )n j (δik − nkni )vk

(summing over repeated indices). The corresponding linear boundary condition is

〈dnϕ, projT ( · )〉+ 〈DTϕ, n〉 = −�(Dϕ̄, Dϕ0)=:�,

where projT denotes orthogonal projection Rn
→ T ∂D0, and

�(Dϕ1, Dϕ2) := O(Dϕ1)−O(Dϕ2)−L0O[Dϕ1− Dϕ2],

and we used
L0O[Dϕ0]|∂D0 = 〈(dnϕ0)

T , · 〉 + 〈DTϕ0, n〉|∂D0 = 0.

6. Complementarity

We wish to apply linear existence theory to the system

Ft − gi j (DF0)Fi j = F,

with boundary conditions at ∂D0
u = 0
ββ0dnu+β2

0 〈dnϕ, n〉 =B,

〈dnϕ, projT ( · )〉+ 〈DTϕ, n〉 = −�
(LBC)
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and initial conditions

ut=0 = u0, ϕt=0 = ϕ0.

It is easy to see that the initial data satisfy the linearized boundary conditions, and above we constructed
ϕ0 so as to guarantee gi j (Du0, Dϕ0)u0i j |∂D0 = 0. (There is no first-order compatibility condition for ϕ0.)
Thus the linear system satisfies the required compatibility at t = 0.

Since the linearized boundary conditions are slightly nonstandard, we must verify they satisfy the
Lopatinski–Shapiro complementarity conditions. We fix x0 ∈ ∂D0 and introduce adapted coordinates
(ρ, σ ) in a neighborhood N0 ⊂ N of x0 in D0:

x ∈ N0 H⇒ x = 00(σ )+ ρn(σ ), σ = (σa) ∈U,

where U⊂Rn−1 is open and 00 :U→Rn is a local chart for ∂D0 at x0. This defines a basis of tangential
vector fields in 00(U), and we may assume that at x0, we have 〈τa, τb〉 = δab and ∇τaτb(x0)= 0 (for the
induced connection on T ∂D0). Let U and ψ be defined in (−ρ1, 0)×U×[0, T ] by

U (ρ, σ, t)= u(00(σ )+ ρn(σ ), t), ψ(ρ, σ, t)= ϕ(00(σ )+ ρn(σ ), t).

In these coordinates, the induced metric is written in block form as

[g(DF0)] =

[
|ψρ |

2
+ (Uρ)

2
〈ψρ, ψa〉+UρUa

〈ψρ, ψa〉+UρUa 〈ψa, ψb〉+UaUb

]
|t=0

=

[
1/β2 0

0 In−1

]

at t = 0 and x0.
We have

Uρρ = D2u(n, n),

since dnn = 0, and

Uab = D2u(τa, τb)+ Du · ∇τaτb = D2u(τa, τb) at x0.

We don’t need Uρa , since gρa = 0 at x0.
Thus

trg0 D2u(x0)= β
2 D2u(n, n)+

∑
a

D2u(τa, τa)= β
2Uρρ +

∑
a

Uaa := β
2Uρρ +1σU,

and, likewise,

trg0 D2ϕ(x0)= β
2ψρρ +1σψ.

For the linearized orthogonality operator, note that, at x0,

L0O[Dψ] = (〈ψρ, τa〉+ 〈ψa, n〉)τa.

Putting everything together, the linear system to consider at x0 is{
Ut −β

2Uρρ −1σU = 0,
ψt −β

2ψρρ −1σψ = 0,
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with boundary conditions
U |ρ=0 = 0,
β0〈ψρ, n〉+βUρ |ρ=0 = b(σ, t),
〈ψρ, τa〉+ 〈ψa, n〉|ρ=0 = ωa(σ, t), a = 1, . . . n− 1.

Now take the Fourier transform in σ ∈ Rn−1 (corresponding to ξ ∈ Rn−1), Laplace transform in t
(corresponding to p ∈ C) to obtain

Û (ρ, ξ, p) ∈ C, ψ̂(ρ, ξ, p) ∈ Cn
; ξ ∈ Rn−1, p ∈ C, ρ < 0.

In transformed variables, we obtain the following system of linear ODE in ρ < 0, for fixed (ξ, p):{
β2Ûρρ − (p+ |ξ |2)Û = 0,
β2ψ̂ρρ − (p+ |ξ |2)ψ̂ = 0

Writing the solution in the form [
Û (ρ)
ψ̂(ρ)

]
= eiργ

[
Û (0)
ψ̂(0)

]
,

we find the characteristic equation β2γ 2
+ p+ |ξ |2 = 0, and choose the root γ so that iγ = (1/β)

√
1

(where 1= p+|ξ |2 and we take the branch of the square root defined by Re
√
1> 0). Here (p, ξ)∈A,

where
A=

{
(p, ξ) ∈ C×Rn−1

: |p| + |ξ |> 0, Re p >−|ξ |2
}
.

Thus the solutions decay as ρ→−∞.
Let W+ be the space of such decaying solutions; it has complex dimension n − 1. The relevant

boundary operator on W+ is

B

[
Û
ψ̂

]
=

 Û
β0〈ψ̂ρ, n〉+βÛρ

〈ψ̂ρ, τa〉+ iξa〈9̂, n〉


|ρ=0

=

 Û (0)
β0(iγ )〈ψ̂(0), n〉+ iβγ Û (0)
(iγ )〈ψ̂(0), τa〉+ iξa〈ψ̂(0), n〉


(a vector in C×C×Cn−1).

The complementarity condition (see [Eidelman and Zhitarashu 1998], for example) is the statement
that B is a linear isomorphism from W+ to Cn+1. With respect to the basis

{
Û (0), 〈ψ̂(0), n〉, 〈ψ̂(0), τa〉

}
of W+, the matrix of B is (in block form)

[B] =

 1 0 [0]1×(n−1)

−
√
1 −(β0/β)

√
1 [0]1×(n−1)

[0](n−1)×1 [iξa](n−1)×1 −(
√
1/β)In−1

 .
This is triangular with nonzero diagonal entries for every (p, ξ) ∈A. Hence B is an isomorphism.

7. Estimates in Hölder spaces

For the fixed-point argument based on the linear system, we need estimates for ‖F‖α, ‖B‖1+α, ‖�‖1+α
of two types, namely mapping and contraction estimates.
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More precisely, for T > 0, R > 0 and QT
= D0×[0, T ] consider the open ball

BT
R =

{
F ∈ C2+α,1+α/2(QT ,Rn+1) : ‖F − F0‖2+α < R, F |t=0 = F0

}
.

(F0 = [ϕ0, u0] is defined from the initial surface 60, via Lemma 4.1.) Solving the linear system with
right-hand side defined by F ∈ BT

R defines a map F : F 7→ F , and we need to verify that, for suitable
choices of T and R, F maps into BT

R and is a contraction.
The argument that follows is standard, and the experienced reader may want to skip to the statement

of local existence in Theorem 8.1. On the other hand, the result is not covered by any general theorem
proved in detail in a reference known to the author, and some readers may find it useful to have all the
details included. Another reason is that, although the “right-hand sides” are clearly quadratic, without
explicit expressions one might run into trouble with compositions — which cause problems in Hölder
spaces — or when appealing to Taylor-remainder arguments if the domain is not convex.

The estimates required to document that F maps into BT
R are of the form

‖F(F, F0)‖α +‖B(DF, DF0)‖1+α +‖�(Dϕ̄, Dϕ0)‖1+α→ 0 as T → 0+,

and the contraction estimates are of the form

‖F(F1, F0)−F(F2, F0)‖α +‖B(DF1, DF2)‖1+α +‖�(Dϕ1, Dϕ2)‖1+α ≤ µ(T )‖F1
− F2
‖2+α,

where µ(T )→ 0 as T → 0+.

Notation. The (α, α/2) norms are taken on QT , the (1+α, (1+α)/2) norms on ∂D0×[0, T ]). Double
bars without an index refer to the (2+ α, 1+ α/2) norm, single bars to supremum norms over QT , and
parabolic norms are indexed by their spatial regularity (α for (α, α/2), etc.) In general, we use brackets
for Hölder-type difference quotients.

We deal with the estimates for the forcing term F first. Consider the map

G : Imm(Rn,Rn+1)→ GLn

that associates to the linear immersion A the inverse matrix of (〈Ai , A j 〉)
n
i=1, inner products of the rows

of A. G is smooth, in particular locally Lipschitz in the space W of linear immersions. Hence, if F1, F2

are maps QT
→ Rn+1 such that DF i

∈ Cα,α/2(QT ) and DF i (z) ∈ K for all z ∈ QT , where K ⊂W is a
fixed compact set, we have the bound

‖G(DF1)−G(DF2)‖α ≤ cK‖D(F1
− F2)‖α.

In fact our maps F i are in C2+α,1+α/2, so DF i
∈C1+α,(1+α)/2. From this higher regularity we obtain the

decay as T → 0+. Assuming F1
|t=0 = F2

|t=0, we have

|D(F1
− F2)| ≤ [D(F1

− F2)]
(1+α)/2
t T (1+α)/2.

Now recall the elementary fact that if D ⊂ Rn is a uniformly C1 domain (not necessarily convex or
bounded) and f ∈C1(D) with α ∈ (0, 1), we have for the α-Hölder difference quotient | f |α the estimate
[ f ]α≤CD‖ f ‖C1 . (Here “uniformly C1” means that D can be covered by countably many balls of a fixed
radius, which are domains of C1 manifold-with-boundary local charts for D, with uniform C1 bounds for
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the charts and their inverses. The constant CD depends on those bounds.) Applying this to DF , where
F = F1

− F2 vanishes identically at t = 0, and assuming T < 1, we obtain

[DF]ax ≤ c
(
|DF | + |D2 F |

)
≤ c

(
[DF](1+α)/2t T (1+α)/2

+ [D2 F]α/2t T α/2)
≤ c‖F‖T α/2,

(where c depends on D0) and similarly for the Hölder difference quotient in t :

[DF]α/2t ≤ [DF]1+α/2t T 1/2
≤ ‖F‖T 1/2,

so we have
‖D(F1

− F2)‖α ≤ c‖F1
− F2
‖T α/2.

We conclude, under the assumption F1
= F2 at t = 0

‖G(DF1)−G(DF2)‖α ≤ cK‖F1
− F2
‖T α/2.

In particular, applying this to F and F0, we find∥∥(G(DF)−G(DF0)
)
D2 F

∥∥
α
≤ cK‖F − F0‖T α/2

‖F‖,

and for F1 and F2 coinciding at t = 0∥∥(G(DF1)−G(DF2)
)
D2 F1∥∥

α
≤ cK‖F1

− F2
‖T α/2

‖F1
‖,

as well as ∥∥(G(DF2)−G(DF0)
)
(D2 F1

− D2 F2)
∥∥
α
≤ cK‖F2

− F0‖T α/2
‖F1
− F2
‖,

so we have the mapping and contraction estimates for F(F, F0) and F(F1, F0)−F(F2, F0).

Lemma 7.1. Assume F, F0, F1, F2 are in C2+α,1+α/2(QT
;Rn+1) and have the same initial values, and

that DF, DF0, DF1, DF2 all take values in the compact subset K of Imm(Rn,Rn+1). Then

‖F(F, F0)‖α ≤ cK‖F − F0‖‖F‖T α/2,

‖F(F1, F0)−F(F2, F0)‖α ≤ cK
(
‖F1
‖+‖F2

− F0‖
)
T α/2
‖F1
− F2
‖.

In particular, if F ∈ BT
R ,

‖F(F, F0)‖α ≤ c0 RT α/2.

If F1, F2
∈ BT

R , we have

‖F(F1, F0)−F(F2, F0)‖α ≤ c0T α/2
‖F1
− F2
‖.

(The constant c0 depends only on the data at t = 0, and we assume T < 1, R < 1.)

Turning to the orthogonality boundary condition, first observe that

�(Dϕ1, Dϕ2)

= 〈DTϕ1, dnϕ
1
〉− 〈DTϕ2, dnϕ

2
〉−L0O[Dϕ1

− Dϕ2
]

=
〈
DT (ϕ1

−ϕ2), dnϕ
1〉
+
〈
DTϕ2, dn(ϕ

1
−ϕ2)

〉
−
〈
dn(ϕ

1
−ϕ2), DTϕ0

〉
−
〈
DT (ϕ1

−ϕ2), dnϕ0
〉

=
〈
DTϕ1

− DTϕ2, dnϕ
1
− dnϕ0

〉
+
〈
dnϕ

1
− dnϕ

2, DTϕ2
− DTϕ0

〉
,
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which has quadratic structure. Using a local frame (τa)
n−1
a=1 for T ∂D0, we find the components

�a(Dϕ1, Dϕ2)=
[
∂i (ϕ

1
−ϕ2)∂ j (ϕ

1
−ϕ0)+ ∂ j (ϕ

1
−ϕ2)∂i (ϕ

2
−ϕ0)

]
n jτ i

a.

The summation convention is i, j = 1, . . . , n, so �a is a sum of terms of the form

b(x)D(ϕ1
−ϕ2)D(ϕ3

−ϕ4),

where b(x)= n jτ i
a and the ϕ I coincide at t = 0. It is then not hard to show that∥∥b(x)D(ϕ1

−ϕ2)D(ϕ3
−ϕ4)

∥∥
1+α ≤ c‖b‖1+α‖ϕ1

−ϕ2
‖‖ϕ3
−ϕ4
‖T α,

with c depending on the C1 norms of local charts for D0. To bound the norm ‖n ⊗ τa‖1+α, note that
|n||τa| ≤ 1, |D(n⊗ τa)| ≤ |Dn| + |Dτa|, and [D(n⊗ τa)]

α
x ≤ [Dn]αx +[Dτa]

α
x . Since n =−(β/β0)Du0

on ∂D0 and ∂D0 is a level set of u0, we clearly have

‖Dn‖α +‖Dτa‖α ≤ c‖D2u0‖α ≤ c‖u0‖.

We summarize the conclusion in the following lemma:

Lemma 7.2. Assume ϕ̄, ϕ0, ϕ
1, ϕ2
∈ C2+α,1+α/2(QT

;Rn) have the same initial values. Then

‖�(Dϕ̄, Dϕ0)‖1+α ≤ c0‖u0‖‖ϕ̄−ϕ0‖
2T α

and
‖�(Dϕ1, Dϕ2)‖1+α ≤ c0‖u0‖

(
‖ϕ1
−ϕ0‖+‖ϕ

2
−ϕ0‖

)
T α
‖ϕ1
−ϕ2
‖

with c0 depending only on the data at t = 0. In particular, if F = [ϕ̄, ū] ∈ BT
R , we have

‖�(Dϕ̄, Dϕ0)‖1+α ≤ c0 R2T α,

and for F I
= [ϕ̄ I , ū I

] ∈ BT
R , I = 1, 2, we have

‖�(Dϕ̄1, Dϕ̄2)‖1+α ≤ c0 RT α
‖ϕ̄1
− ϕ̄2
‖.

To explain the estimates for the angle condition, we write the normal vector as a multilinear form on
DF i

Ñ (DF)= Jn(DF) := (−1)n
n+1∑
i=1

(−1)i−1(DF1
∧ . . . ˆDF i ∧ . . . DFn+1)ei ∈ Rn+1

(DF i omitted in the i-th term of the sum), where DF i
∈ Rn for i = 1, . . . , n + 1 and we identify the

n-multivector in Rn with a scalar, using the standard volume form. The angle condition has the form

β2
|Ñ |2−〈Ñ , en+1〉

2
= 0 on ∂D0,

and we set
B(DF) := β2

|Jn(DF)|2−〈Jn(DF), en+1〉
2,

with linearization at DF0 = [In|Du0]

L0 B[DF] = 2β2〈Jn(DF0), D Jn(DF0)[DF]
〉
− 2

〈
Jn(DF0), en+1

〉 〈
D Jn(DF0)[DF], en+1

〉
.
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Under the assumption F1
= F2 at t = 0, we need an estimate in C1+α,(1+α)/2 for

B(DF1, DF2)

:= B(DF1)− B(DF2)−L0 B[DF1
− DF2

]

= β2(
|Jn(DF1)|2− |Jn(DF2)|2− 2

〈
Jn(DF0), D Jn(DF0)[DF1

− DF2
]
〉)

−
(
〈Jn(DF1), en+1〉

2
−〈Jn(DF2), en+1〉

2
− 2〈Jn(DF0), en+1〉

〈
D Jn(DF0)[DF1

− DF2
], en+1

〉)
.

It will suffice to estimate the expression in the first parenthesis; the second is analogous.
We need the following algebraic observation: if T0 = [In|Du0] and T are n × (n + 1) matrices, the

expression
|Jn(T0+ T )|2− |Jn(T0)|

2
− 2

〈
Jn(T0), D Jn(T0)[T ]

〉
is a linear combination (with constant coefficients) of terms of the form

u0i p(2)(T ), u0i u0 j p(2)(T ), p(2)(T ),

where the p(2)(T ) are polynomials in the entries of T (with constant coefficients) with terms of degree
2≤ deg ≤ 2n.

Thus B(DF1, DF2) is a linear combination (with constant coefficients) of terms

u0i p(2)(DF1
− DF2), u0i u0 j p(2)(DF1

− DF2), p(2)(DF1
− DF2),

with the p(2) as described, and hence it is a linear combination of terms of the form

u0i (F
1 j
k − F2 j

k )d , u0i u0l(F
1 j
k − F2 j

k )d , (F1 j
k − F2 j

k )d

(where 2≤ d ≤ 2n, 1≤ j ≤ n+ 1, 1≤ i, l, k ≤ n), which we write symbolically as

B(DF1, DF2)∼
∑

2≤d≤2n

b(x)(DF1
− DF2)d ,

where b(x) is constant or u0i (x) or u0i (x)u0 j (x). For the degree d terms G(d)
∼ b(x)(DF1

− DF2)d , it
is not hard to show the bound

‖G(d)
‖1+α ≤ c‖b‖1+α‖F1

− F2
‖

d T α, 2≤ d ≤ 2n.

We conclude:

Lemma 7.3. Assume F, F0, F1, F2 are in C2+α,1+α/2(QT
;Rn+1) and have the same initial values. Then

‖B(DF, DF0)‖1+α ≤ c(1+‖u0‖
2)(1+‖F − F0‖

2n−2)T α
‖F − F0‖

2.

‖B(DF1, DF2)‖1+α ≤ c(1+‖u0‖
2)(1+‖F1

− F2
‖

2n−2)T α
‖F1
− F2
‖

2

with c depending only on F0. In particular, if F ∈ BT
R then

‖B(DF, DF0)‖1+α ≤ c0 R2T α,

and if F1, F2
∈ BT

R then
‖B(DF1, DF2)‖1+α ≤ c0T α

‖F1
− F2
‖,

with c0 depending only on F0.
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8. Local existence

Given a C3+ᾱ graph 60 over a uniformly C3+ᾱ domain D0 ⊂ Rn (for arbitrary ᾱ ∈ (0, 1)) satisfying
the contact and angle conditions, let ϕ0 ∈ Diff2+ᾱ be the diffeomorphism given by Lemma 4.1 (with
the 1-jet of the identity at ∂D0 and 2-jet determined by the mean curvature of 60 at ∂D0). Then find
u0 ∈ C2+α(D0) so that F0 = [ϕ0, u0] ∈ C2+α(D0;R

n+1) parametrizes 60 over D0 (α = ᾱ2 < ᾱ).
(Precisely, if [z, ũ0(z)] parametrizes 60 as a graph, and ϕ0 is given by Lemma 4.1, let u0 = ũ0 ◦ ϕ0;

so u0 ∈ C2+α.)
We obtained in Section 7 all the estimates needed for a fixed-point argument in the set

BT
R =

{
F ∈ C2+α,1+α/2(QT ,Rn+1) : ‖F − F0‖< R, F |t=0 = F0

}
.

Choose R<1 and T0<1 small enough (depending only on F0) so that, for F ∈ BT0
R , F(t)=[ϕ(t), u(t)]

defines an embedding of D0, with ϕ(t) a diffeomorphism onto its image D(t). Let K ⊂ Imm(Rn,Rn+1)

be a compact set containing DF(z) for all F ∈ BR and z ∈ QT0 . Now consider T < T0.
Given F ∈ BT

R , solve the linear system (LPDE)/(LBC) with initial data F0 to get F ∈C2+α,1+α/2(QT ).
(This is possible since the complementarity and compatibility conditions hold for the linear system.) This
defines a map F : F 7→ F .

From linear parabolic theory (see [Eidelman and Zhitarashu 1998, theorem VI.21], for example), we
have

‖F − F0‖ ≤ M
(
‖F(F, F0)‖α +‖B(DF, DF0)‖1+α +‖�(Dϕ̄, Dϕ0)‖1+α

)
,

where M > 0 depends on the Cα,α/2 norm of the coefficients of the linear system, that is, ultimately on
‖F0‖.

From Lemmas 7.1–7.3, it follows that

‖F − F0‖ ≤ Mc0(RT α/2
+ R2T α) < R

provided T is chosen small enough (depending only on F0.) Thus F maps BT
R to itself.

Similarly, if F(F i )= F i for i = 1, 2, standard estimates for the linear system solved by F1
− F2 give

‖F1
− F2
‖ ≤ M

(
‖F(F1, F2)‖α +‖B(DF1, DF2)‖1+α +‖�(Dϕ̄1, Dϕ̄2)‖1+α

)
Again the estimates in Lemmas 7.1–7.3 imply

‖F1
− F2
‖ ≤ Mc0(T α/2

+ T α)‖F1
− F2
‖< 1

2‖F
1
− F2
‖,

assuming T is small enough (depending only on F0). This concludes the argument for local existence.

Theorem 8.1. Let60⊂Rn+1 be a C3+ᾱ graph over D0⊂Rn satisfying the contact and angle conditions
at ∂D0. With α = ᾱ2, there exists a parametrization F0 = [ϕ0, u0] ∈ C2+α(D0) of 60, a number T > 0
depending only on F0 and a unique solution F ∈ C2+α,1+α/2(QT

;Rn+1) of the system{
∂t F − gi j (DF)∂i∂ j F = 0, F = [ϕ, u]

u|∂D0 = 0, N n+1(Dϕ, Du)|∂D0 = β, 〈D
Tϕ, dnϕ〉|∂D0 = 0
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with initial data F0. For each t ∈ [0, T ], F(t) is a C2+α embedding parametrizing a surface 6t which
satisfies the contact and angle conditions and moves by mean curvature. In addition, F(t) satisfies the
orthogonality condition at ∂D0.

The hypersurfaces 6t are graphs. For each t ∈ [0, T ], ϕ(t) : D0 → D(t) is a diffeomorphism and
6t = graph(w(t)) for w(t) : D(t)→ R given by w(t) = u(t) ◦ ϕ−1(t). (Since w(t) lies in C2+α2

(D(t)),
it is less regular than u(t) or ϕ(t).) D(t) is a uniformly C2+α domain.

Remark. This theorem does not address the geometric uniqueness of the motion, given 60. It only as-
serts uniqueness for solutions of the parametrized flow (including the orthogonality boundary condition)
in the given regularity class.

9. Rotational symmetry

In this section we record the equations for two rotationally symmetric instances of the problem:

(i) D0 and D(t) are disks, and u > 0 (lens case).

(ii) D0 and D(t) are complements of disks in Rn (exterior case). For simplicity we restrict to n = 2.

Let F(r) = [ϕ(r), u(r)] parametrize a hypersurface 6, where ϕ(r) = φ(r)er is a diffeomorphism
onto its image. Here er and eθ are orthonormal vectors, outward normal and counterclockwise tangent,
respectively, to the circles r = const. The unit upward normal vector and mean curvature are

N =
[−ur er , φr ]√

u2
r +φ

2
r

and H =
1

(φ2
r + u2

r )
3/2

(
φr M(φr , ur )[D2u] − 〈ur er , EM(φr , ur [D2ϕ]〉

)
,

where

M(φr , ur )[D2u] = urr + (φ
2
r + u2

r )
urφr

φ2 , EM(φr , ur )[D2ϕ] =
[
φrr + (φ

2
r + u2

r )
(rφr

φ2 −
1
φ

)]
er .

Simplifying we get

H =
1

(φ2
r + u2

r )
3/2

[
φr urr − urφrr + (φ

2
r + u2

r )
ur

φ

]
.

Now consider the time-dependent case F(r, t)= [φ(r, t)er , u(r, t)]. From the expressions above, one
finds easily that the equation 〈∂t F, N 〉 = H takes the form

φr

(
ut −

1
φ2

r +u2
r

M(φr , ur )[D2u]
)
= ur

〈
er , ϕt −

1
φ2

r +u2
r

EM(φr , ur )[D2ϕ]
〉
.

In split gauge, we consider the system
ut −

1
φ2

r +u2
r

M(φr , ur )[D2u] = 0,

ϕt −
1

φ2
r +u2

r

EM(φr , ur )[D2ϕ] = 0.

Note that φ(r, t)= r solves the φ equation, and that in this case the u equation becomes

wt −
wrr

1+w2
r
−
wr

r
= 0.
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This can be compared with the equation for curve networks,

wt −
wxx

1+w2
x
= 0.

The boundary conditions are easily stated (we assume D0 is the unit disk or its complement). The
“contact condition” at r = 1 is u = 0. For the “angle condition” at r = 1, we find

u2
r =

β2
0

β2φ
2
r , β0 :=

√
1−β2.

Assuming φr > 0 at r = 1, this resolves as

βur +β0φr = 0 at r = 1 (lens case),

βur −β0φr = 0 at r = 1 (exterior case).

(For lenses, one also has at r = 0: ur = 0 and φr = 1.) Thus in both cases one can work with linear
Dirichlet/Neumann-type boundary conditions.

One reason to consider the exterior case is that, unlike the lens case, it admits stationary solutions.
Geometrically one just has to consider one-half of a catenoid truncated at an appropriate height. For
example, for 120-degree junctions the equation for stationary solutions{ urr

1+u2
r
+

ur
r
= 0 in{r > 1},

ur |r=1 =
√

3, u|r=1 = 0.

admits the explicit solution

u(r)=

√
3

2

(
ln(2r +

√
4r2− 3)− ln 3

)
, r >

√
3/2.

Problem. It would be interesting to consider the nonlinear dynamical stability of this solution (even
linear stability is yet to be considered). One may even work with bounded domains by introducing a
fixed boundary at some R > 1 intersecting the surface orthogonally (see Section 10).

10. Fixed supporting hypersurfaces

Extending the local existence theorem to the case of hypersurfaces intersecting a fixed hypersurface S

orthogonally presents no essential difficulty. The case of vertical support surface leads directly to graph
evolution with a standard Neumann condition on a fixed boundary; we consider the complementary case
where S is a graph. Let S⊂Rn+1 be a C4 embedded hypersurface (not necessarily connected), the graph
over D⊂ Rn of B ∈ C4(D), oriented by the upward unit normal

ν(y) := 1
vB
ν̃(y), ν̃(y) := [−DB(y), 1] ∈ Rn

×R, vB :=

√
1+ |DB(y)|2.

We assume ν to be nowhere vertical in D (DB 6= 0). To state the problem in the graph parametrization,
we consider a time-dependent domain D(t)⊂Rn with a boundary consisting of two components ∂1 D(t)
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and ∂2 D(t), both moving. The hypersurface 6t is the graph of w( · , t) over D(t) solving the parabolic
equation

wt − gi j (Dw)wi j = 0 in E :=
⋃

t∈[0,T ]
D(t)×{t} ∈ Rn+1

×[0, T ]

with boundary conditions

w( · , t)|∂1 D(t) = 0,
√

1+ |Dw|2|∂1 D(t) = 1/β

(as before), and on ∂2 D(t)

w = B, ∇w · ∇B =−1.

(The first-order condition on ∂2 D(t) is equivalent to 〈ν, N 〉 = 0.)
Differentiating in t the boundary condition w = B leads easily to an equation for the normal velocity

of the interface 0(t)= ∂2 D(t):

0̇n =
vH

Bn −wn
.

Note that wn at ∂2 D(t) can be computed from Bn , since

−1=∇w · ∇B = wn Bn + |∇
T B|2;

in particular neither Bn nor wn can vanish (so both have constant sign on connected components of ∂2 D),
and one easily computes: wn − Bn =−v

2
B/Bn .

Let 3=6∩S be the intersection (n−1)-manifold, the graph of w (or B) over ∂2 D. Given the graph
parametrizations of 6 and S, say

G(y)= [y, w(y)], B(y)= [y, B(y)], y ∈ ∂2 D,

and τ ∈ T ∂2 D, we have the tangent vectors

Gn := [n, wn] ∈ T6, G B := [∇B,−1] = −vBν ∈ T6, Gτ := [τ,∇w · τ ] ∈ T3,

and the second fundamental forms of 6 and S (for e ∈ Rn arbitrary):

A(dGe, dGe)= 1
v

d2w(e, e), A(dBe, dBe)= 1
vB

d2 B(e, e).

From the equality 〈ν, N 〉 = 0 at ∂2 D, it follows easily that (compare [Stahl 1996])

A(Gτ , ν)=−A(Gτ , N ), τ ∈ T ∂D.

For the remainder of this section, we concentrate on the boundary conditions at ∂2 D0. To establish
short-time existence, we consider as before the parametrized flow

Ft − trgd2 F = 0, g = g(d F), F = [ϕ, u].

The contact and angle boundary conditions are

u|∂2 D0 = B ◦ϕ|∂2 D0, 〈N , ν ◦ϕ〉|∂2 D0 = 0.
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Again we have two scalar boundary conditions for n + 1 components. Here the solution is easier than
at the junction. With the notation Fn = d Fn = [ϕn, un], we replace the angle condition by the “vector
Neumann condition”

Fn ⊥ T S or Fn =−αvBν on ∂2 D0,

where α : ∂2 D0→ R, or equivalently (since this leads to α =−un)

ϕn =−un(∇B ◦ϕ) on ∂2 D0.

Clearly the Neumann condition implies the angle condition 〈N , ν ◦ ϕ〉 = 0, but not conversely. This
linear Neumann-type condition can easily be incorporated into the fixed-point existence scheme described
earlier.

There is one issue to consider: the zero- and first-order compatibility conditions must hold at ∂2 D0

at t = 0. The initial hypersurface 60 uniquely determines w0 and D0 ⊂ Rn (satisfying w0 = B and
∇w0 · ∇B = −1 on ∂2 D0), and then once ϕ0 ∈ Diff(D0) is fixed, u0 = w0 ◦ ϕ0 is also determined. We
may assume

ϕ0 = id, ϕ0n =∇B on ∂2 D0,

so

u0n =∇w0 ·ϕ0n =∇w0 · ∇B =−1 on ∂2 D0,

and then the Neumann condition F0n |∂2 D0 =−vBν holds at t = 0, on ∂2 D0.

The first-order compatibility condition is

trgd2u0 = ut =∇B ·ϕt =∇B · trgd2ϕ0 on ∂D0,

or equivalently

trg〈ν, d2 F0〉 = 0 on ∂D0.

(This is not a mean curvature condition; the mean curvature of 60 is H = trg〈N , d2 F0〉.)
From now on we omit the subscript 0 but continue to discuss compatibility at t = 0. First observe that

the Neumann condition leads to a splitting of the induced metric. Given τ ∈ T ∂2 D0, let Fτ = d Fτ ∈ T3.
Then (recalling un =−1 on ∂2 D0)

〈Fτ , Fn〉 =
〈
[τ, d Bτ ], [ϕn, un]

〉
=∇B · τ −∇B · τ = 0.

Thus we have

trg〈ν, d2 F〉 = gab
〈ν, d2 F(τa, τb)〉+ gnn

〈ν, d2 F(Fn, Fn)〉,

for a local basis {Ta = d Fτa}
n−1
a=1 of T3 with gab = 〈Ta, Tb〉 and gnn = |Fn|

2
= v2

B .
Differentiating in n the condition un = ∇w · ϕn (assuming, as usual, that n is extended to a tubular

neighborhood N of ∂2 D0 as a self-parallel vector field) we find

unn = d2w(n,∇B)+∇w · d2ϕ(n, n).
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(This is legitimate, since u = w ◦ϕ throughout N.) This is used to compute

〈ν, d2 F(n, n)〉 = 1
vB
[unn −∇B · d2ϕ(n, n)]

=
1
vB

[
d2w(n,∇B)+ (∇w−∇B) · d2ϕ(n, n)

]
=−vA(Gn, ν)+

1
vB
(wn − Bn)n · d2ϕ(n, n).

Bearing in mind the expression for wn − Bn found earlier, the compatibility condition may be stated in
the form

vB

Bn
n · d2ϕ(n, n)=−vA(Gn, ν)+ gab

〈d2 F(τa, τb), ν〉.

We are now in the same situation as in Section 4. Given the 1-jet of ϕ0 on ∂2 D0, we extend ϕ0 to
a tubular neighborhood N of ∂2 D0 (and then to all of D0) so that n · d2ϕ(n, n) has the value on ∂2 D0

dictated by the compatibility condition, using Lemma 4.1(ii). We just need to verify that the right-hand
side of the expression above depends only on 60, S and the 1-jet of ϕ0 over ∂2 D0. Clearly only the term
gab
〈ν, d2 F(τa, τb)〉 is potentially an issue.

Fix p ∈ ∂2 D0 and let {τa} be an orthonormal frame for T ∂2 D0 near p, parallel at p for the connection
induced on ∂2 D0 from Rn . If K denotes the second fundamental form of ∂2 D0 in Rn , we have

τa(τb)= K(τa, τb)n at p;

on the left-hand-side, τb is regarded as a vector-valued function in Rn . Still computing at p, this implies

d2 F(τa, τb)= τa(d Fτb)− d F(τa(τb))= τa(dBτb)−K(τa, τb)Fn

= d2B(τa, τb)+K(τa, τb)Bn −K(τa, τn)Fn,

where Fn =−vν and Bn = dBn ∈ T S. Hence

〈ν, d2 F(τa, τb)〉 = 〈ν, d2B(τa, τb)〉+ vK(τa, τb)=A(Ta, Tb)+ vK(τa, τb).

This clearly depends only on S and on 60. We summarize the discussion in a lemma.

Lemma 10.1. Let 60 = graph(w0) be a C3 graph over D0 ⊂ Rn (a uniformly C3 domain) intersecting
a fixed hypersurface S = graph(B) over ∂D0. Consider the parametrized mean curvature motion with
Neumann boundary condition

F ∈ C2,1(D0×[0, T ])→ Rn+1, F = [ϕ, u],

Ft − trgd2 F = 0, g = g(d F), u ◦ϕ = B and Fn ⊥ T S on ∂D0.

Then ϕ0 ∈ Diff(D0) can be chosen so that (with u0 = w0 ◦ ϕ0) the initial data F0 = [ϕ0, u0] satisfies the
zero- and first-order compatibility conditions at t = 0 and ∂D0:

ϕ0n =−u0n(∇B ◦ϕ0), 〈ν ◦ϕ0, trg0d2 F0〉 = 0.

Remark. Differentiating dwτa = d Bτa along τb, we find

d2w(τa, τb)− d2 B(τa, τb)= (wn − Bn)K(τa, τb)
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(reminding us that, althoughw≡ B on ∂D0, the tangential components of their Hessians do not coincide.)
From this follows the expression for K in terms of A and A:

K(τa, τb)=
1

wn − Bn

[
vA(Ta, Tb)− vBA(Ta, Tb)

]
.

It is also easy to express the corresponding traces in terms of the mean curvatures H3 and H3 of 3 in
6 and S:

H3
=
v

vB
gab A(Ta, Tb), H3

=
vB

v
gabA(Ta, Tb).

11. Boundary conditions for the second fundamental form

To understand the long-term behavior of a graph (6t) in Rn+1 moving by mean curvature and intersecting
Rn at a constant angle, we need to consider the evolution of its second fundamental form. Working in
the graph parametrization the boundary conditions are easy to state and linear:

w|∂D(t) = 0, dnw|∂D(t) =
β0

β
,

where n = nt is the inner unit normal to ∂D(t). It is possible to reparametrize the 6t over a different
time-dependent domain D(t), obtaining mean curvature flow

Ft : D(t)→ Rn+1, ∂t F= H N ,

with boundary conditions

Fn+1
|∂D(t) = 0, N n+1

|∂D(t) = β.

For this parametrization the evolution equation for the second fundamental form (and its covariant deriva-
tives of arbitrary order) is well-understood [Huisken 1984]. The disadvantage is that the unit normal N|Ft

depends nonlinearly on the components of F, and as a result the boundary conditions for the second
fundamental form (which are needed for global estimates over spacetime domains) do not admit simple
expressions. Therefore we choose to work with graph flow at the cost of having to derive and understand
a new set of evolution equations. The equations for h and the mean curvature H are derived in Appendix
B. In this section we derive boundary conditions. The development is similar that in [Stahl 1996] for
MCF of hypersurfaces intersecting a fixed boundary orthogonally.

It is easy to see that h splits on ∂D(t): if τ ∈ T ∂D(t) is a tangential vector field, and n = nt is the
inner unit normal

h(n, τ )=
1
v

d2w(n, τ )=
1
v
(τ(wn)− Dw · ∇̄τn)= 0 on ∂D(t),

since wn ≡ β0/β on the boundary and ∇̄τn ∈ T ∂D(t) (∇̄ is the euclidean connection). In particular, it
follows that h(Dw, τ)= 0 on ∂D(t).

Remark. Already this simple fact cannot be shown for a(ν, τ ), the second fundamental form in the
MCF parametrization, regarded as a quadratic form on D(t).
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Boundary condition for H. In Section 2 we derived the equation for the normal velocity of the moving
boundary 0t = ∂D(t):

0̇n =−
v

wn
H =−

1
β0

H at ∂D(t).

Since 〈N , en+1〉(0(t), t)≡ β on ∂D(t) we have

〈∂t N , en+1〉 = −〈∂k N , en+1〉0̇
k,

where ∂k N =−gi j hik G j with en+1 component

〈∂k N , en+1〉 = −gi jw j hik =−
1
v2 h(Dw, ∂k)=−

1
v2wnh(n, ∂k).

Hence we find, on ∂D(t),

〈∂t N , en+1〉 =
wn

v2 h(n, 0̇)=
wn

v2 0̇nh(n, n)=−βHhnn. (11-1)

(We set hnn := h(n, n)). Denote by ∇6 the gradient of 6t , in the induced metric (∇6 f = gi j fi G j ).
Using ∂t N =−∇6H − Hv−1

∇
6v, combined with the expressions (valid on ∂D(t))

〈∇
6H, en+1〉 = gi j Hi 〈G j , en+1〉 = gi j Hiw j =

1
v2wi Hi =

wn

v2 Hn = ββ0 Hn,

〈∇
6v, en+1〉 =

vnwn

v2 =
w2

n

v2 hnn = β
2
0 hnn,

we find on ∂D(t)
〈∂t N , en+1〉 = −ββ0(Hn +β0 Hhnn). (11-2)

Comparing expressions for 〈∂t N , en+1〉 in (11-1) and (11-2) yields a Neumann-type condition for H . We
state this as a lemma (including the evolution equation derived in Appendix B). Here L = Lg denotes
the operator L[ f ] = ∂t f − trg D2 f and ω = Dw/v, a vector field in D(t).

Lemma 11.1. For the surfaces6t evolving by graph mean curvature motion with constant contact angle,
the mean curvature satisfies{

L[H ] = |h|2g H + Hh2(ω, ω)− H 2h(ω, ω) on D(t),
dn H = (β2/β0)Hhnn on ∂D(t).

Boundary conditions for hi j . Fix p ∈ ∂D(t) and let (τa) be an orthonormal frame for Tp∂D(t) (in the
induced metric) satisfying ∇0τa

τb(p) = 0, where ∇0 is the connection induced on 0t by the euclidean
connection d, or, equivalently, by ∇, the Levi-Civita connection of the metric g in D(t). We extend the
τa to a tubular neighborhood of 0t so that ∇̄nτa = 0. Differentiating h(n, τb)= 0 along τa , we find

(∇τa h)(n, τb)=−h(∇τa n, τb)− h(n,∇τaτb). (11-3)

The second fundamental form K(τ, τ ′) of 0t in (D(t), eucl) (equivalently, in (D(t), g)) is defined by

dτaτb =∇
0
τa
τb+K(τa, τb)n on ∂D(t).

To relate K to h|∂D(t), note that since w = 0 on ∂D(t) we have

h(τa, τb)=
1
v

d2w(τa, τb)=
1
v
(τa(τbw)− Dw · dτaτb)=−dτaτb ·

Dw
v
=−β0K(τa, τb).
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(So we see that 0t convex with respect to n corresponds to 6t concave over D(t), as expected.) In (B-1)
in the appendix we observe that ∇∂i ∂ j = (hi j/v)Dw. Then

∇τaτb = τ
i
a
(
(τ

j
b )i∂ j + τ

j
b∇∂i ∂ j

)
= dτaτb+

1
v
τ i

aτ
j

b hi j Dw

=∇
0
τa
τb+K(τa, τb)n+

wn
v

h(τa, τb)n =
(
−

1
β0
+β0

)
h(τa, τb)n =−

β2

β0
h(τa, τb)n

at p, given our assumption ∇0τa
τb(p)= 0. We use this immediately to compute, at p,

∇τa n = 〈∇τa n, τb〉gτb =−〈n,∇τaτb〉gτb =
β2

β0
|n|2gh(τa, τb)τb =

1
β0

h(τa, τb)τb,

since |n|2g = gi j ni n j
= 1+w2

n = β
−2 at p. Using these expressions for ∇τa n and ∇τaτb in (11-3) and

recalling the Codazzi equations, we obtain

(∇nh)(τa, τb)= (∇τa h)(n, τb)=−
1
β0

∑
c

h(τa, τc)h(τc, τb)+
β2

β0
h(τa, τb)hnn.

This can also be written in the form

β0(∇nh)(τ, τ ′)=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′). (11-4)

It turns out the expression for the n-directional derivative of h(τ, τ ′) is exactly the same (at ∂D(t)):

β0dn(h(τ, τ ′))=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′). (11-5)

The reason is that ∇nτa = 0 at the boundary, also for the g-connection

∇nτa = dn(τa)+ niτ j
a∇∂i ∂ j = 0+ 1

v
h(n, τa)Dw = 0,

so in fact

(∇nh)(τa, τb)= n(h(τa, τb))= dn(h(τa, τb)).

As done in [Stahl 1996], we combine this with the result for Hn to compute (∇nh)(n, n). From

Hn =∇n(trgh)= trg(∇nh)= β2(∇nh)(n, n)+
∑

a

(∇nh)(τa, τa).

Here we used |n|2g = β
−2 on ∂D(t), which also implies H = β2hnn+

∑
a h(τa, τa). Using also |htan

|
2
=∑

(htan)2(τa, τa), we find for (∇nh)(n, n)

β2(∇nh)(n, n)=
β2

β0
Hhnn +

1
β0
|htan
|
2
−
β2

β0
(H −β2hnn)hnn =

1
β0
(|htan
|
2
+β4h2

nn)=
1
β0
|h|2g,

since gnn
= β2 at ∂D(t). Equivalently,

β0(∇nh)(n, n)=
1
β2 |h|

2
g on ∂D(t).

It is easy to obtain the corresponding expression for the euclidean connection. Noting that

∇nn = dnn+ ni n j 1
v

hi j Dw = β0hnnn at ∂D(t),
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we find
(dnh)(n, n)= n(hnn)= (∇nh)(n, n)+ 2h(∇nn, n)= (∇nh)(n, n)+ 2β0h2

nn,

so that
β0dn(h(n, n))=

1
β2 |h|

2
g + 2β2

0 h2
nn on ∂D(t).

We record these results as a lemma, including also the evolution equations derived in Appendix B.

Lemma 11.2. Under graph mean curvature motion with constant contact angle, the second fundamental
form satisfies the following tensorial evolution equations, where Ci j and C i j are symmetric 2-tensors
cubic in h; see (B-2) and (B-3). Recall that ω = Dw/v and dω denotes directional derivative.

(i) For the operator L = Lg,

L[hi j ] = −2[hk
i dω(h jk)+ hk

j dω(hik)] +C i j on D(t),

with boundary conditions on ∂D(t) given by
h(n, τ )= 0,

β0dn(h(τ, τ ′))=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′),

β0dn(h(n, n)) = |h|2g/β
2
+ 2β2

0 h2
nn.

(ii) For the operator ∂t −1g, where 1g is the Laplace–Beltrami operator of g

(∂t −1g)[h]i j = H(∇ωh)i j + Hi h(ω, ∂ j )+ H j h(ω, ∂i )+Ci j on D(t),

with boundary conditions on ∂D(t) given by
h(n, τ )= 0,

β0(∇nh)(τ, τ ′)=−(htan)2(τ, τ ′)+β2hnnh(τ, τ ′),

β0(∇nh)(n, n) = |h|2g/β
2.

It is also useful to compute the boundary condition for |h|2g. Using Lemma 11.2(ii), we have at ∂D(t)

(β0/2)dn|h|2g = β0〈∇nh, h〉g

= β0β
4(∇nh)(n, n)hnn +β0

∑
b,c
(∇nh)(τa, τb)h(τa, τb)

= β2
|h|2ghnn +

∑
a,b
[−(htan)2(τa, τb)+β

2hnnh(τa, τb)]h(τa, τb)

= β2(
|h|2g + |h

tan
|
2
g
)
hnn − trg(htan)3

Since trgh3
= β6(hnn)

3
+ trg(htan)3 on ∂D(t), we may state this in a slightly different form. Including

also the evolution equation for |h|2g (see Appendix B), we have the following lemma:

Lemma 11.3. Under graph mean curvature flow, the function |h|2g satisfies the evolution equation and
Neumann boundary condition{

(∂t −1g)|h|2g =−2|∇h|2g + Hdω|h|2g + 2|h|4g − 4Hh3(ω, ω)− 2H |h|2gh(ω, ω),
(β0/2)dn|h|2g = 2β2

|h|2ghnn − trg(h3) on ∂D(t).
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12. A maximum principle for symmetric 2-tensors

By the local existence theorem, for suitable initial data we have a mean curvature motion F = [ϕ, u] ∈
C2+α,1+α/2(Q0,Rn+1), where Q0 = D0 × [0, T ] and, for each t ∈ [0, T ], ϕt : D0 → D(t) is a C2+α

diffeomorphism. In particular, with δ = α2, wt = ut ◦ ϕ
−1
t : D(t) → R defines a graph mcm w ∈

C2+δ,1+δ/2(E;R) in an open spacetime domain

E =
⋃

t∈(0,T )

D(t)×{t} ⊂ Rn
×R.

We have a C2+α,1+α/2 diffeomorphism

8 : Q0→ E, 8(x, t)= (ϕt(x), t),

which, for any t0 > 0, restricts to a diffeomorphism Qt0 → Et0 , where

Qt0 = D0× (t0, T ), Et0 =
⋃

t∈(t0,T )

D(t)×{t}.

The parabolic boundary of E is the disjoint union of base and lateral boundary:

∂p E = (D0×{0})t ∂l E, ∂l E =
⋃

t∈(0,T )

∂D(t)×{t}.

(The notions of parabolic boundary, base and lateral boundary have general definitions for arbitrary
bounded spacetime domains [Lieberman 1996], but using 8 it is easy to see that they are given by the
above sets.) In particular, note that 8 defines a diffeomorphism

Qt0 ∪ ∂l Qt0 → Et0 ∪ ∂l Et0,

for each t0 > 0. This diffeomorphism is Ck+α,(k+α)/2 up to the lateral boundary, if D0 is a Ck+α domain
and F ∈ Ck+α,(k+α)/2)(Q0).

Denote by L the operator L = ∂t − gi j (Dw)∂i∂ j , so Lw = 0 in E and w = 0 on ∂l E . The following
height bound is immediate.

Lemma 12.1. Assume 0<w0 < M in D0. Then 0≤ w ≤ M in E (and vanishes only on ∂l E).

Proof. This follows from the weak maximum principle for the operator L , since 0 ≤ w ≤ M holds on
the parabolic boundary ∂p E . �

It is well-known that the function v =
√

1+ |Dw|2 solves the evolution equation (assuming Dw ∈
C2,1(E)— see [Guan 1996], for example)

L[v] +
2
v

gi jviv j =−v|h|2g, or L[v] = −
2
v
|Dv|2g − v|h|

2
g.

From the maximum principle, we have the following global bound on v (equivalently, on |Dw|):

Lemma 12.2. Assume w is a solution with Dw ∈ C2,1(E). Then, on E ,

v(z)≤max{supD(t0) v(x, t0), 1/β}.

Proof. By the weak maximum principle, maxE v =max∂p E v. Note that v|S ≡ 1/β. �
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It follows from this lemma that gi j (t) is uniformly equivalent to the euclidean metric in D(t): If v≤ v̄
in E , and X is a vector field in D(t), then

|X |2e ≤ |X |
2
g = gi j X i X j

= |X |2e + (X · Dw)
2
≤ |X |2e(1+ |Dw|

2)≤ v̄2
|X |2e .

Also, if ω := v−1 Dw then

|ω|2e =
|Dw|2e
v2 = 1−

1
v2 ≤ 1−

1
v̄2 .

The main result in this section is a maximum principle for symmetric 2-tensors satisfying a parabolic
equation on a spacetime domain such as E (image of a cylinder under a diffeomorphism of the special
type 8).

We recall the boundary point lemma for scalar equations, which holds for open spacetime domains
�⊂ Rn

×R+ satisfying an interior ball condition:

For each P = (p, t̄) ∈ ∂l� there is a ball B (in the euclidean metric in Rn+1) which is tangent
to ∂l� only at P and satisfies:
(i) The line segment from P to the center of the ball is not parallel to the t axis.

(ii) B ∩ {t ≤ t̄} ⊂�∩ {t ≤ t̄}.

For the domain of interest the interior ball condition follows from the fact that ∂l E =8(∂D0×(0, T )),
with 8 ∈ C2,1(D0× (0, T )) of the special form above.

Lemma 12.3 [Protter and Weinberger 1984, Theorem 6, page 174]. Let � ⊂ Rn
×R+ be a connected

open set satisfying the interior ball condition. Assume f ∈ C2,1(�) satisfies the uniformly parabolic
inequality

∂t f − trgd2 f − dX f ≤ 0.

Here g = gt is a Riemannian metric in each section �(t), and X t is a bounded vector field in �(t).
Denote by n = nt the inner unit normal of �(t). Assume the supremum M of f in �t̄ := �∩ {t ≤ t̄} is
attained at the point P ∈ ∂�(t̄), and that f < M for t < t̄ . Then dn f (P) < 0.

We now state the hypotheses of our tensorial maximum principle.
E ⊂ Rn

× [0, T ] is the image of a cylinder D0× (0, T ) under a C3,2 diffeomorphism 8 of the form
8(x, t) = (ϕt(x), t) with ϕt : D0→ D(t) a C3 diffeomorphism up to the boundary for each t ∈ [0, T ]
(here D(t) is the t-level set of E); D0 ⊂ Rn is assumed to be the image of the closed unit ball under a
C3 diffeomorphism. In particular, the lateral boundary ∂l E is of class C3,2. On ∂l E we have the inner
unit normal n = nt ∈Rn . Extend nt to a vector field in all of D(t) so that it is in C2,1(E,Rn), arbitrarily
except for the requirements that |n| ≤ 1 pointwise and dnn = 0 in a tubular neighborhood of ∂D(t)
(equivalently, ni∂i n j

= 0 for each j). Fix R > 0 so that D(t)⊂ BR(0) for each t ∈ [0, T ].
The assumptions on the coefficients are given next:

• g = gt is a t-dependent Riemannian metric in D(t), uniformly equivalent to the euclidean metric
for t ∈ [0, T ];

• X = X t is a bounded t-dependent vector field in D(t);
• q = q(z,m) assigns to each z ∈ E and each m in S (the space of quadratic forms in Rn) a quadratic

form q ∈ S. q is assumed to be C2,1 in z, locally Lipschitz in m (uniformly in z ∈ E);
• b = b(z,m) ∈ S is defined for z ∈ ∂l E , with the same regularity assumptions as q.
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We state the next theorem in terms of the Laplace–Beltrami heat operator ∂t−1g and the g-Riemannian
connection ∇, but the result also holds for L and the “euclidean connection” d .

Theorem 12.4. Assume m ∈ C2,1(E;S) satisfies in E the tensorial differential inequality

∂t mi j − (1gm)i j ≤ (∇X m)i j + qi j ( · ,m( · )),

and on ∂l E the boundary condition

(∇nm)i j (z)≥ bi j (z,m(z)).

Suppose the functions q and b satisfy the following null eigenvector conditions: for any m̂ ∈ S and any
null eigenvector V ∈ Rn of m̂ (meaning that m̂i j V j

= 0 for all i), we have qi j (z, m̂)V i V j
≤ 0 for all

z ∈ E and bi j (z, m̂)V i V j
≥ 0 for all z ∈ ∂l E. Then weak concavity of m at t = 0 is preserved:

m ≤ 0 in D(0) H⇒ m ≤ 0 in E .

Proof. The assumptions imply that there is a K > 0 (depending only on E and on the functions X , g, n,
q , and b) satisfying

|n|C2,1(E) ≤ K , |X (z)|eucl ≤ K , |g(z)| + |g−1(z)| ≤ K , z ∈ E,

and if m, m̂ ∈ C2,1(E,S) satisfy (for some µ : E→ R+)

−µ(z)g ≤ m(z)− m̂(z)≤ µ(z)g,

(where the inequality of quadratic forms has the usual meaning) then also

q(z,m(z))≤ q(z, m̂(z))+ Kµ(z)g, z ∈ E,

b(z,m(z))≥ b(z, m̂(z))− Kµ(z)g, z ∈ ∂l E .

Now, for z ∈ E , z = (x, t) define

ϕ(z) := −2K n(z) · x := 2K s(z),

where we use the euclidean inner product and, on ∂l E , s is the “support function” of ∂D(t) (positive if
D(t) is convex and contains the origin). It is clear that we can find M = M(R, K ) > 0 depending only
on K , R and |n|C2,1 so that

|ϕ|C2,1 ≤ M, |dϕ|2g + |1gϕ| ≤ M, |X · dϕ| ≤ M.

We assume also M≥K . Now, given m as in the statement of the theorem and given constants ε>0, γ >0,
and δ > 0, define for Eδ := E ∩ {t < δ}

m̂(z) := m(z)− (εt + γ eϕ(z))g, z ∈ Eδ.

Clearly m̂ ∈ C2,1(Eδ;S). We now derive the constraints on δ, ε, and γ . It will turn out that δ must be
taken small enough (depending only on K , R), ε > 0 is arbitrary, and γ is ε times a constant depending
only on K , R.
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The following inequalities are easily derived:

q(z,m(z))≤ q(z, m̂(z))+ K (εt + γ eϕ(z))g,

∇X m =∇X m̂+ γ (eϕdXϕ)g ≤ ∇X m̂+ (γ eϕM)g,

∂t m̂ = ∂t m− εg− (γ eϕ∂tϕ)g ≤ ∂t m+ (γ eϕM)g− εg,

1gm̂ =1gd2m̂− γ eϕ(|dϕ|2g +1gϕ)g ≥1gm− (γ eϕM)g,

b(z,m(z))≥ b(z, m̂(z))− K (εt + γ eϕ)g.

We use this to compute

∂t m̂−1gm̂ ≤ ∂t m−1gm+ (2γ eϕM)g− εg

≤ q(z,m(z))+∇X m+ (2γ eϕM)g− εg

≤ q(z, m̂(z))+∇X m̂+ K (εt + γ eϕ)g+ (3Mγ eϕ)g− εg

≤ q(z, m̂(z))+∇X m̂+Mεtg+ 4Mγ eϕg− εg,

using K ≤ M in the last step. We conclude the inequality

∂t m̂−1gm̂ ≤ q(z, m̂(z))+∇X m̂− (ε/2)g (12-1)

will hold in Eδ, provided the constants are selected so that, for z ∈ Eδ

4Mγ eϕ(z)+Mεt ≤ ε/2. (12-2)

Turning to boundary points z = (x, t) ∈ ∂l E , note that dnϕ =−2K , so that

∇nm̂(z)=∇nm(z)− (γ eϕ(z)dnϕ(z))g

≥ b(z,m(z))− (γ eϕ(z)dnϕ(z))g

≥ b(z, m̂(z))− K (εt + γ eϕ(z))g− (γ eϕ(z)dnϕ(z))g

≥ b(z, m̂(z))+ K (γ eϕ(z)− εt)g,

implying the inequality
∇nm̂(z)≥ b(z, m̂), z ∈ ∂l Eδ (12-3)

will hold provided the constants are so chosen that, on ∂l Eδ

εt ≤ γ eϕ(z). (12-4)

Bearing in mind that e−2K R
≤ eϕ(z) ≤ e2K R on E , it is not hard to arrange for (12-2) and (12-4) to hold,

or equivalently, for
εt ≤ γ eϕ(z), 10Mγ eϕ(z) ≤ ε.

Given ε > 0, define γ so that 10Mγ e2K R
= ε. Then the second inequality holds, and so will the first,

provided that
εt ≤ γ e−2K R

= (ε/10M)e−4K R,

which is true for any ε > 0, if δ is defined by δ := e−4K R/10M (recall t ∈ [0, δ]).
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Note that, since m ≤ 0 at t = 0, it follows that m̂ is negative definite at t = 0, and hence also for small
time, and we claim that this persists throughout Eδ so that (letting ε→ 0) m ≤ 0 in Eδ. Restarting the
argument at t = δ, we see that this is enough to prove the theorem.

To prove the claim, suppose for a contradiction that m̂ acquires a null eigenvector 0 6= V ∈ Rn at a
point z1 = (x1, t1) ∈ Eδ with t1 ∈ (0, δ] the first time this happens.

Let f̂ (z) := m̂i j V i V j for z ∈ Eδ (that is, we “extend” V to Eδ as a constant vector). It follows from
(12-1) that f̂ satisfies in Eδ

∂t f̂ ≤ (1gm̂)i j V i V j
+ (∇X m̂)i j V i V j

+ qi j ( · , m̂)V i V j
−

1
2ε|V |

2
g.

A short, standard Riemannian calculation using the fact that V is a null eigenvector for m̂ shows that

dX f̂ = (∇X m̂)i j V i V j , 1g f̂ = (1gm̂)i j V i V j .

Using the null eigenvector condition for q , we find that f̂ satisfies in Eδ the strict inequality

∂t f̂ < trgd2 f̂ + dX f̂ .

This shows x1 cannot be an interior point of D(t1), for then (as a first-time interior maximum point for
f̂ ) we would have 1g f̂ (z1)≤ 0 and d f̂ (z1)= 0, contradicting ∂t f̂ (z1)≥ 0. Thus x1 ∈ ∂D(t1). Since f̂
satisfies the differential inequality just stated and z1 = (x1, t1) is a first-time boundary maximum in Eδ,
the parabolic Hopf lemma (Lemma 12.3) implies dn f̂ (z1) < 0. On the other hand, as seen in (12-3),

dn f̂ = (∇nm̂)i j V i V j
≥ bi j (z1, m̂(z1))V i V j

≥ 0,

from the null eigenvector condition on the boundary. This contradiction concludes the proof. �

Corollary 12.5. Suppose m ∈ C2,1(E,S) satisfies the same differential inequality with the same hy-
potheses on the coefficients as in Theorem 12.4 (including the null eigenvector condition for q), and the
boundary conditions 

m(z)(n, τ )= 0, ∀z = (x, t) ∈ ∂l E, τ ∈ Tx∂D(t)

(∇nm)(n, n)≥ bnn(z,m(z))

(∇nm)(τ, τ )≥ btan(z,m(z))(τ, τ ), τ ∈ Tx∂D(t),

for functions bnn(z, m̂) from ∂l E×S to R and btan assigning to (z, m̂) ∈ ∂l E×S, z = (x, t), a quadratic
form in Tx∂D(t). Suppose bnn ≥ 0 in E ×S and btan satisfies, for each m̂ ∈ S,

m̂i jτ
i
= 0 for some τ ∈ Tx∂D(t) H⇒ btan(z, m̂)(τ, τ )≥ 0.

Then, as in the theorem, weak concavity is preserved:

m ≤ 0 at t = 0 H⇒ m ≤ 0 in E .

Proof. As for the theorem, with the following change in the last part of the proof: If 0 6= V ∈Rn is a null
eigenvector of m̂ (defined as in the proof of the theorem) at a boundary point z1 = (x1, t1) ∈ ∂l E , write

V = V nn+ V T , V T
∈ Tx1∂D(t1).
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Assume first that V n
6= 0. Then, noting that m̂ splits at the boundary if m does, we see that n is a

null eigenvector of m̂ at z1, so we define f̂ (z) = m̂i j (z)ni (z1)n j (z1) and repeat the argument. At z1,
(∇nm̂)(n, n)≥ bnn(z1, m̂(z1))≥ 0 leads to a contradiction with the parabolic Hopf lemma, as before.

If V n
= 0, then V T

∈ Tx1∂D(t1) must be a null eigenvector of m̂ at the boundary point z1, and then
we run the argument with f̂ (z)= m̂(z)(V T , V T ), leading to a contradiction, as before. �

Corollary 12.6. Let w ∈ C4,2(E) define a mcm of graphs with constant-angle boundary conditions,
where E is as in the statement of Theorem 12.4. Then weak concavity is preserved:

h ≤ 0 at t = 0 H⇒ h ≤ 0 in E .

Proof. From Lemma 11.2, h satisfies (∂t −1g)hi j = H∇ωhi j + q(z, h)i j and

q(z, h)i j = Hi h(ω, ∂ j )+ H j h(ω, ∂i )+ |h|2ghi j + Hh(∂i , ω)h(∂ j , ω)− Hh(ω, ω)hi j ,

where Hi , H j , H and ωi are regarded as fixed functions of z ∈ E . Clearly q satisfies the null eigenvector
condition, since qi j V i V j

= 0 when hi j V j
= 0 for all i . In addition, expressions obtained for dnh in

Lemma 11.2 show that the boundary conditions in Corollary 12.5 are satisfied with

bnn(z, m̂)≡ 0, btan(z, m̂)=−((m̂)tan)2+β2m̂nnm̂tan.

Hence the claim follows from Corollary 12.5. �

For less regular solutions, we may apply the theorem to a domain Et0 = E ∩ {t > t0} for arbitrarily
small δ > 0. Thus, assuming h < 0 at t = 0 (strictly negative definite), we conclude from Corollary 12.6
that h ≤ 0 for all t .

Remark. It seems plausible that a slightly different version of the result in this section could be used to
strengthen the conclusions in [Stahl 1996].

Finite existence time. It is not difficult to derive that the flow is defined only for finite time in the concave
case.

Lemma 12.7. Let w ∈ C4,2(E), E ⊂ Rn
×[0, T ), define a graph mcm 6t with constant-angle boundary

conditions on a moving boundary. Assume that 60 (and hence 6t , for all t) is weakly concave. Assume
that H|t=0 ≤ H0 < 0, where H0 is a negative constant, and that T = sup{t ∈ [0, T ) : D(t) 6= ∅}. Then
T ≤ t∗ = 1/(2H 2

0 cn), where cn > 0 depends only on n and an upper bound for v in E.

The proof is based on the evolution equation and boundary condition for H (see Appendix B; we have
ω = Dw/v):

L[H ] = |h|2g H + Hh2(ω, ω)− H 2h(ω, ω), Hn = (β
2/β0)Hhnn.

Since h2(ω, ω)≥ 0, |h|2g ≥ (1/n)H 2 and (given that h ≤ 0) h(ω, ω)≥ |Dw|2 H , we have

L[H ] ≤ 1
n

H 3
+ |Dw|2 H 3

≤ cn H 3,

where cn depends on n and on supE |v|, already known to be finite. Let φ(t) solve the ODE φ̇ =

cnφ
3, φ(0)= H0, so

φ(t)= H0[1− 2cn H 2
0 t]−1/2, 0≤ t < t∗ :=

1
2H 2

0 cn
.
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Then, with ψ := 1
n
(H 2
+ Hφ+φ2) > 0 and setting χ = H −φ, we have L[χ ] ≤ ψχ in E and

χn =
β2

β0
(χ +φ)hnn ≥

β2

β0
χ on ∂l E,

since φ < 0 and hnn ≤ 0. Given that χ ≤ 0 at t = 0, it follows from the maximum principle that χ ≤ 0,
or H ≤ φ in [0,min{T, t∗}). This shows t∗ < T is impossible, since φ→−∞ as t→ t∗.

Remark 12.8. It would be natural to try to show that a negative upper bound H0 on the mean curvature
(at t = 0) is preserved, at least under the assumption of concavity. Unfortunately, the evolution equation
for H (under graph mcm) does not lend itself to a maximum principle argument. Letting u := H − H0,
we have

L[u] = |h|2gu+ uh2(ω, ω)− u(H + H0)h(ω, ω)+ H0 Q in E,

with
Q := |h|2g + h2(ω, ω)− H0h(ω, ω). (12-5)

At a point where u = 0, we would need to show L[u] ≤ 0. But it is not true that Q ≥ 0 at such a point.
(Note that un ≥ 0 does hold at boundary points.)

The exception is if n = 2 (under an additional condition). Let ω̂=ω/|ω|g, ω̃=ω⊥/|ω|g. It is easy to
check that B= {ω̂, ω̃} is a g-orthonormal frame at each point where ω 6= 0. Then with

a := h(ω̂, ω̂), b := h(ω̂, ω̃), c := h(ω̃, ω̃),
we have

h2(ω̂, ω̂)− Hh(ω̂, ω̂)= a2
+ b2
− (a+ c)a = b2

− ac =−1,

where 1, the determinant of the matrix of h in B, is nonnegative if h ≤ 0. In particular,

h2(ω, ω)− Hh(ω, ω)=−|ω|2g1≤ 0

in the concave case. Now consider the expression (12-5) for Q, at a point where u = 0, or H = H0.
Since |ω|2g = |Dw|

2 we can write

Q = |h|2g + h2(ω, ω)− Hh(ω, ω)

= a2
+ 2b2

+ c2
+ |Dw|2(b2

− ac)

= b2(2+ |Dw|2)+ a2
− |Dw|2ac+ c2,

so Q ≥ 0 provided |Dw|2 ≤ 2. This last condition is equivalent to v ≤
√

3, and hence (Lemma 12.2) is
preserved by the evolution if it holds at t = 0. Thus:

Proposition 12.9. Assume n= 2, h ≤ 0, and v≤
√

3 on60 (in particular, β ≥ 1/
√

3). Then H ≤ H0 < 0
at t = 0 implies H ≤ H0 for all t ∈ [0, Tmax).

13. Global bounds from boundary bounds for ∇nh

In this section we begin to develop a continuation criterion for solutions of graph mean curvature motion
with constant contact angle based on the second fundamental form. Our first observation is that the
supremum of |h|g on the moving boundary controls its value in the interior. Recall we already have a
bound on supE v (Lemma 12.2) and it is a well known-fact for mean curvature flow of graphs that this
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implies interior bounds for the second fundamental form and its covariant derivatives [Ecker and Huisken
1991; Ecker 2004]. In the next lemma we describe a global bound for mean curvature motion of graphs
with moving boundaries.

Lemma 13.1. Let w : E → R be a (sufficiently regular) solution of graph mcm in a spacetime domain
E ⊂ Rn

×[0, T ], where T <∞. Assume the first derivative bound v(x, t)≤ v̄ holds globally in E. Then
if the bound |h|g ≤ h0 holds on the parabolic boundary ∂p E , we also have the global bound

|h|g ≤ a0 in E

for a constant a0 depending only on n, v̄, h0, T and the initial data of w.

Proof. The proof is simpler under the assumption that h is negative definite, that is, the concave case.
(As shown in the previous section, this condition is preserved if it holds at t = 0.) We give the details in
this case only.

The norms of tensors in D(t) will always be taken with respect to the induced metric g, so we write
|h| for |h|g, |∇h| for |∇h|g, and |D f |2 = gi j fi f j for a function f .

Recall the evolution equations L[v] = −v|h|2− 2|Dv|2/v (so L[v2
] = −2v2

|h|2− 6|Dv|2) and

L[|h|2] = −2|∇h|2+ 2|h|4− 4Hh3(ω, ω)− 2H |h|2h(ω, ω).

In the concave case H ≤ 0 and h3 is negative definite, so we get

L[|h|2] ≤ −2|∇h|2+ 2|h|4.

The idea then is to apply the maximum principle to f = |h|2v2. In the evolution equation for f ,

L[ f ] = v2L[|h|2] + |h|2L[v2
] − 2〈D|h|2, Dv2

〉g,

the terms ±2v2
|h|4 cancel exactly, and we have the inequality

L[ f ] ≤ −2v2
|∇h|2− 6|h|2|Dv|2− 2〈D|h|2, Dv2

〉g.

The term with the inner product can be estimated in two ways:

|〈D|h|2, Dv2
〉g| ≤

∣∣D|h|2∣∣|Dv2
| ≤ 4

∣∣h|v|∇h
∣∣|Dv| ≤ 2v2

|∇h|2+ 2|h|2|Dv|2

and

〈D|h|2, Dv2
〉g =

1
v2 〈D(|h|

2v2), Dv2
〉g −
|h|2

v2 |Dv
2
|
2
=

1
v2 〈D f, Dv2

〉g − 4|h|2|Dv|2.

Using the second expression, we have

L[ f ] ≤ −2v2
|∇h|2− 6|h|2|Dv|2−

1
v2 〈D f, Dv2

〉g + 4|h|2|Dv|2−〈D|h|2, Dv2
〉g,

and then estimating the remaining inner product term from the first expression

L[ f ] ≤ −2v2
|∇h|2− 6|h|2|Dv|2−

1
v2 〈D f, Dv2

〉g + 4|h|2|Dv|2+ 2v2
|∇h|2+ 2|h|2|Dv|2,

yielding after cancellation

L[ f ] ≤ −
1
v2 〈D f, Dv2

〉g.
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Applying the (weak) maximum principle to f , we conclude

maxE |h|
2
≤maxE f ≤max∂p E f ≤ v̄2 max∂p E |h|2,

which implies the result (for the concave case) with an explicit constant a0 = v̄h0.
In the general case, we have

L[|h|2] ≤ −2|∇h|2+ cn|h|4.

Then the proof follows the same lines as [Ecker 2004, Proposition 3.21]. We apply the maximum prin-
ciple to f = |h|2(η ◦ v2), for a carefully chosen function η(s). �

Evolution of |∇h|2. In the calculation that follows, we adopt the usual convention that in symbols such
as ∇2h ∗ (∇h)(2) ∗ h(3) and (∇ j h)(p) = ∇ j h ∗ · · · ∗ ∇ j h (p times ), ∗ denotes some unspecified g-
contraction of the tensors in question.

For the time derivative, we have

∂t |∇h|2 = 2〈∂t(∇h),∇h〉+ ∂t(gi j g pq grs)(∇i h)pr (∇ j h)qs

= 2〈∂t(∇h),∇h〉+ 3(∂t gi j )〈∇i h,∇ j h〉,

using the Codazzi identity.
For the Hessian (using ∇k∂l = hklω, derived as (B-1) in Appendix B), we get

∇
2
k,l |∇h|2 = 2〈∇l(∇k∇h),∇h〉+ 2〈∇k∇h,∇l∇h〉− hkldω|∇h|2

= 2〈∇2
k,l(∇h),∇h〉+ 2〈hkl∇ω∇h,∇h〉+ 2〈∇k∇h,∇l∇h〉− hkldω|∇h|2

= 2〈∇2
k,l(∇h),∇h〉+ 2〈∇k∇h,∇l∇h〉,

after cancellation. Taking traces we find

(∂t −1)|∇h|2 =−2|∇2h|2+ 2〈(∂t −1)(∇h),∇h〉+ 3(∂t gi j )〈∇i h,∇ j h〉.

Commutation of covariant derivatives introduces the Riemann curvature tensor, and the time derivative
of the connection is also needed:

(∂t −1)(∇h)=∇[(∂t −1)h] + (∇Rm) ∗ h+Rm ∗ (∇h)+ (∂t0) ∗ h,

where (see appendix)

∂t h =∇d H + H∇ωh+ T + h(3), Ti j = Hi h(ω, ∂ j )+ H j h(ω, ∂i ),

which combined with 0 = hω and ∂tω =∇H + h(2) is easily seen to imply

∂t0 = (∇d H)ω+∇h ∗ h+ h(3) ∼∇2h+∇h ∗ h+ h(3).

From the Gauss equation, Rm∼ h ∗ h. Thus

〈(∂t −1)(∇h),∇h〉 ∼ 〈∇[(∂t −1)h],∇h〉+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2)+∇h ∗ h(4).

On the other hand, from the evolution equation for h (Appendix B) we have

〈∇[(∂t −1)h],∇h〉 = 〈∇(H∇ωh+ T + h(3)),∇h〉 = 〈∇(H∇ωh),∇h〉+ 〈∇T,∇h〉+ (∇h)(2) ∗ h(2).
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Computing the terms on the right, we find

〈∇(H∇ωh),∇h〉 = 〈∇ωh,∇∇H h〉+ H〈∇(∇ωh),∇h〉 = 〈∇ωh,∇∇H h〉+∇2h ∗∇h ∗ h,

and using the Codazzi identity

〈∇T,∇h〉 = 2〈∇ωh,∇∇H h〉+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2).

Putting together these results, we have

〈(∂t −1)(∇h),∇h〉 = 3〈∇ωh,∇∇H h〉+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2)+∇h ∗ h(4).

On the other hand, using the expression for ∂t gi j given in the appendix we find

3∂t gi j
〈∇i h,∇ j h〉 = −6〈∇ωh,∇∇H h〉+ (∇h)(2) ∗ h(2).

So we have cancellation, and obtain the evolution equation

(∂t −1)|∇h|2 =−2|∇2h|2+∇2h ∗∇h ∗ h+ (∇h)(2) ∗ h(2)+∇h ∗ h(4).

Remark. Without the cancellation, the right-hand side would involve terms of type (∇h)(3), which would
be a problem for the argument that follows.

Given this calculation, the following lemma has a very simple proof.

Lemma 13.2. For a solution w ∈ C5,3(E), assume we have a uniform bound for h: |h| ≤ a0 in E. Then
there are constants α > 0,C > 0 depending only on the dimension and a0, so that the function

f (x, t)= α|∇h|2+ |h|2

is a subsolution in E , that is, (∂t −1) f ≤ C.

Proof. The calculation above implies that

(∂t −1)|∇h|2 ≤−2|∇2h|2+ cn
(
a0|∇

2h||∇h| + a2
0 |∇h|2+ a4

0 |∇h|
)
,

while the evolution equation for |h|2 implies that

(∂t −1h)|h|2 ≤−2|∇h|2+ cn(a2
0 |∇h| + a4

0).

Clearly we may choose α small enough to satisfy the claim. �

Our next goal is to extend this argument to higher covariant derivatives of h. It turns out this does not
involve a cancellation similar to the one noted above. The terms appearing in each expression below all
have the same weight, the weight of a term T = (∇ j1h)(p1) ∗ · · · ∗ (∇ jr h)(pr ) being the positive integer

w[T ] =
r∑

i=1

pi ( ji + 1)

— in particular, w[∇ j h] = j + 1 and w[(∇ j h)(p)] = p( j + 1) for j ≥ 0, and p ≥ 1. We introduce a
convenient notation for the “error terms”. For integers w0 ≥ 1 and n ≥ 0, the notation Ẽw0,n is used for
a generic term of weight w0 and involving covariant derivatives of h of order at most n; i.e.,

T = Ẽw0,n means w[T ] = w0, ji ≤ n.
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The symbol Ew0,n denotes such a term satisfying the additional restrictions

pi =

{
1 if ji = n,
1 or 2 if ji = n− 1 and n ≥ 1.

Sometimes the same notation is used for the real vector space spanned by terms of the given type. For
example, above we showed that

(∂t −1)|h|2 =−2|∇h|2+ E4,1 and (∂t −1)|∇h|2 =−2|∇2h|2+ E6,2. (13-1)

These symbols have some useful properties. For example, one sees by induction that

∇(En+3,n+1)⊂ En+4,n+2, n ≥ 0,

using the easily checked fact that

En+3,n+1
= (∇n+1h) ∗ h+ (∇nh) ∗ [∇h+ h(2)] + Ẽn+3,n−1, n > 1. (13-2)

The property (13-1) generalizes to higher n:

Lemma 13.3. (∂t −1)|∇
nh|2 =−2|∇n+1h|2+ E2n+4,n+1 for n ≥ 0.

Proof (for n ≥ 2). With the natural multiindex notation,

∂t |∇h|2 = 2〈∂t(∇
nh),∇nh〉+ ∂t(g IJ g pr gqs)(∇n

I h)pq(∇
n
J h)rs, |I | = |J | = n.

Using the Codazzi identity and the curvature tensor repeatedly, we obtain

∂t(g IJ g pr gqs)(∇n
I h)pq(∇

n
J h)rs = (n+ 2)(∂t gi j )〈∇i∇

n−1h,∇ j∇
n−1h〉

+(∂t gi j )Rm[∇n−2h]i ∗Rm[∇n−2h] j + (∂t gi j )(∇nh)i ∗Rm[∇n−2h] j .

Since ∂t gi j
=∇h+ h(2) (see (B-4) in Appendix B) and Rm= h ∗ h, this reduces to

(∇nh)(2) ∗ (∇h+ h(2))+ (∇n−2h)(2) ∗ (∇h+ h(2)) ∗ h(4)+ (∇nh) ∗ (∇n−2h) ∗ (∇h+ h(2)) ∗ h(2),

which is in E2n+4,n+1.
Turning to space derivatives, we have (as for n = 1)

1|∇nh|2 = 2〈1(∇nh),∇nh〉+ 2|∇n+1h|2,

and therefore

(∂t −1)|∇
nh|2 =−2|∇n+1h|2+ 2〈(∂t −1)(∇

nh),∇nh〉+ E2n+4,n+1.

The conclusion of the lemma is now an immediate consequence of the next claim, and of the expression
(13-2) for a general term in En+3,n+1. �

Claim. (∂t −1)[∇
nh] ∈ En+3,n+1 for n ≥ 0.

Proof. We work by induction on n, the cases n = 0, 1 having already been checked:

(∂t −1)h = H∇ωh+ T + h(3) ∈ E3,1, (∂t −1)(∇h)=∇[(∂t −1)h] + E4,2
∈ E4,2.
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For the induction step, it is enough to show that

(∂t −1)[∇
n+1h] = ∇

[
(∂t −1)(∇

nh)
]
+ En+4,n+2,

since ∇En+3,n+1
⊂ En+4,n+2.

For the time derivative part, we have, for any multiindex i I of length n+ 1 (with n = |I |),

∂t [∇
n+1h]i I = ∂t

[
∂i (∇

nh[∂I ])− (∇
nh)(∇i∂I )

]
= ∂i (∂t(∇

nh[∂I ]))− ∂t(∇
nh[∇i∂I ])

=∇i (∂t(∇
nh))[∂I ] + ∂t(∇

nh)(∇i∂I )− ∂t(∇
nh)(∇i∂I )−∇

nh[∂t(∇i∂I )].

For a multiindex I = i1 . . . in of length n denote by I k
p the multiindex of length n obtained from I by

setting its k-th entry ik equal to p. It is then clear that

∂t(∇i∂I )=

n∑
k=1

∑
p

(∂t0
p
iik
)∂I k

p
.

In symbolic notation, the preceding calculation is summarized as

∂t [∇
n+1h] = ∇(∂t∇

nh)+ (∇nh) ∗ (∂t0).

Since ∂t0 ∈ E3,2, this says
∂t [∇

n+1h] = ∇(∂t∇
nh)+ En+4,n+2.

Covariant derivatives in space may be dealt with in the usual way. Again for a multiindex i I of length
n+ 1, we have for first-order derivatives

∇k(∇
n+1
i I h)=∇k(∇i (∇

n
I h))−∇k(∇

nh(∇i∂I ))

=∇i (∇k(∇
n
I h))−∇k(∇

nh(∇i∂I ))+Rmik[∇
n
I h],

and for second-order covariant derivatives

∇l(∇k(∇
n+1
i I h))=∇l(∇i (∇k(∇

n
I h)))+∇l(Rmik[∇

n
I h])−∇l(∇k(∇

nh(∇i∂I )))

=∇i (∇l(∇k(∇
n
I h)))+Rmil[∇k(∇

n
I h)] +∇(Rm ∗∇nh)+∇2(∇nh ∗ h)

=∇i (∇
2
l,k(∇

n
I h))+∇i (∇∇l∂k∇

n
I h)+Rm ∗∇n+1h+∇(Rm ∗∇nh)+∇2(∇nh ∗ h),

∇
2
l,k(∇

n+1
i I h)=∇i (∇

2
l,k(∇

n
I h))−∇∇l∂k (∇

n+1
i I h)+∇(0 ∗∇n+1h)

+Rm ∗∇n+1h+∇(Rm ∗∇nh)+∇2(∇nh ∗ h)

=∇i (∇
2
l,k(∇

n
I h))+0∗∇n+2h+∇(0∗∇n+1h)+Rm∗∇n+1h+∇(Rm∗∇nh)+∇2(∇nh∗h).

Taking traces with gkl and using the expressions Rm= h(2), ∇Rm=∇h ∗h, 0 = hω, ∇0 =∇h+h(2),
it follows easily that

1(∇n+1h)=∇(1(∇nh))+ En+4,n+2,

and therefore
(∂t −1)[∇

n+1h] = ∇[(∂t −1)(∇
nh)] + En+4,n+2,

proving the claim and the lemma. �

The analog of Lemma 13.2 for higher covariant derivatives of h follows easily from these remarks.
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Lemma 13.4. For a solution w ∈Cn+5,[(n+5)/2]+1(E) assume we have a uniform bound for h and its first
n covariant derivatives |∇ j h| ≤ a j in E , j = 0, . . . , n. Then there are constants α > 0,C > 0 depending
only on the dimension and the a j , so that the function

fn+1(x, t)= α|∇n+1h|2+ |∇nh|2

is a subsolution in E , that is, (∂t −1) fn+1 ≤ C.

Proof. In the proof we denote by Cn a generic positive constant depending only on dimension and the
a j , j = 0, . . . , n. We have

(∂t −1)|∇
nh|2 =−2|∇n+1h|2+ E2n+4,n+1, (∂t −1)|∇

n+1h|2 =−2|∇n+1h|2+ E2n+6,n+2,

where

E2n+4,n+1
=∇

n+1h ∗∇nh ∗ h+ (∇nh)(2) ∗ Ẽ2,1
+ (∇nh) ∗ Ẽn+3,n−1

+ Ẽ2n+4,n−1,

E2n+6,n+2
=∇

n+2h ∗∇n+1h ∗ h+ (∇n+1h)(2) ∗ Ẽ2,1
+ (∇n+1h) ∗ Ẽn+4,n

+ Ẽ2n+6,n.

This implies

(∂t −1)|∇
nh|2 ≤−2|∇n+1h|2+Cn|∇

n+1h| +Cn,

(∂t −1)|∇
n+1h|2 ≤−2|∇n+2h|2+Cn|∇

n+2h||∇n+1h| +Cn(|∇
n+1h|2+ |∇n+1h| + 1).

It is easy to see from these inequalities that α can be chosen sufficiently small so that the conclusion of
the lemma will hold. �

14. Hölder gradient estimate for the second fundamental form

Notation. In this section, parabolic Hölder spaces are denoted by a single superscript; i.e., C2+α,(1+α)/2

becomes C2+α, etc. Capital X , Y , etc., denote general points in the spacetime domain E . This follows
the notation used in [Lieberman 1996].

A continuation criterion for the solution w(y, t) in ET in terms of a bound on the norm |h|g of
the second fundamental form would follow from an a priori C3+δ(ET ) bound on a solution, assuming
|h|g ≤ a0 in ET ; equivalently, from a global a priori Hölder gradient bound |∇h|δ ≤ M in ET (for
suitably controlled M). In this section we show how such a bound follows from the a priori estimates of
linear parabolic theory applied to the evolution equations for v, H , and the Weingarten operator, under
an additional hypothesis.

Assuming w ∈ C2+δ(ET ) is a solution, satisfying in addition |h|g ≤ a0 in ET , we already observed
the maximum principle implies bounds

0≤ w ≤ w0, 1≤ v ≤ v̄ in ET ,

depending only on the initial data and β (we assume w ≥ 0, at t = 0, vanishing only on ∂D0.) In
particular, g is uniformly equivalent to the euclidean metric on ET . In this section, bounds depending on
a0, v̄, and the initial data will be denoted generically by a constant M > 0 (dependence on β will not be
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recorded explicitly). The bound on h implies a uniform C2 bound for the spacetime domain ET , which
we can express in terms of a diffeomorphism 8 : D0×[0, T ] → ET by

|8|C2 ≤ M.

We will also need to assume a uniform gradient bound on the boundary for the second fundamental form:

|(∇τh)(τ, τ )| ≤ a1 for all τ ∈ T ∂D(t) with |τ | = 1.

Estimates depending a0, a1, v̄ and the initial data will be given in terms of constants denoted generically
by M1.

In fact ET is a bounded domain in Rn
× [0, T ] of class C2+δ with bounds controlled by M1. (This

statement includes some regularity in t , so it is not immediate from the uniform bound assumed for
∇

tanhtan on ∂l E). To see this, consider the equation satisfied by wk = ∂kw, written in “divergence form”
with Dirichlet boundary conditions{

∂twk − ∂i (gi j∂ jwk)= gk
:= (∂k gi j )wi j − (∂i gi j )∂ jwk,

wk |∂l E := ϕ
k
= (β0/β)nk, wk |t=0 = ∂kw0.

Assuming ∂kw ∈ C1+δ(E), the following estimate holds [Lieberman 1996, Theorem 4.27]:

|wk |1+δ ≤ C
(
sup

E
|wk | + ‖gk

‖1,n+1+δ + |ϕ
k
|1+δ;∂l E + |∂kw0|1+δ;D0

)
.

Here ‖gk
‖1,n+1+δ is the norm in the spacetime Morrey space L1,n+1+δ(E)

‖gk
‖1,n+1+δ = sup

Y∈E,
r<diamE

(
r−(n+1+δ)

∫
E[Y,r ]

|gn
|d X

)
.

In the present case this can easily be estimated, since

|∂k gi j
| = |hi

kω
j
+ h j

kω
i
| ≤ M, |∂ jwk | ≤ v̄a0 ≤ M H⇒ |gk

| ≤ M,

and |E[Y, r ]| ≤ Crn+2, while δ ∈ (0, 1). Thus ‖gk
‖1,n+1+δ ≤ M .

Since |∇τ (∇τn)| ≤ c
(
|(∇τh)(τ, τ )|+ |h|

)
≤ M1, it follows that n is C2 in space variables on ∂l E . On

the other hand, Dw = ω/β on ∂D(t), and ω is a solution of ∂tω
k
= trg D2ωk

+ |h|2gω
k , hence n is also

C1 in time on ∂l E . We conclude |ϕk
|1+δ;∂l E ≤ (β0/β)|n|1+δ;∂l E ≤ M1.

Therefore we have |Dw|1+δ ≤ M1, and |w|2+δ ≤ M1 (note that C depends on |gi j
|Cδ and other

constants also controlled by M .) In particular, ET is a C2+δ domain with chart constants controlled by
M1. (In fact, in a neighborhood of any point P ∈ ∂l E with ∂y2w 6= 0, a boundary chart 9 is given by
9(y1, y2, t)= (y1, w(y, t), t).)

The first-order term in the evolution equation for h (or for the Weingarten operator) involves DH ;
hence the next step is to obtain a global gradient bound |DH |1+α ≤ M1 in ET . The mean curvature
satisfies the “divergence form” equation with Neumann boundary conditions{

∂t H − ∂ j (gi j (X)Hi )+ ∂ j (gi j )(X)∂i H − c(X)H = 0,
dn H = (β2/β0)Hhnn := ψ on ∂D(t), H|t=0 = H0,
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where
c := |h|2g − h2(ω, ω)+ Hh(ω, ω).

Then with the regularity conditions for the domain and the coefficients

∂l E ∈ C1+δ, n ∈ Cδ(∂l E), ∂ j (gi j ) ∈ L1,n+1+δ(E), c ∈ L1,n+1+δ(E),

and assuming H ∈ C1+δ(E), or w ∈ C3+δ(E), we have the bound

|H |1+δ;E ≤ C
(
supE |H | + |ψ |δ;∂l E + |H0|1+δ;D0

)
.

As noted earlier
‖∂ j gi j

‖1,n+1+δ +‖c‖1,n+1+δ ≤ M,

hence C is controlled by M . In addition, |w|2+δ ≤ M1 implies |h|δ ≤ M1, and hence |ψ |δ;∂l E ≤ M1. We
conclude |H |1+δ ≤ M1, and state it as a lemma.

Lemma 14.1. Let w ∈ C3+δ(ET ) be a classical solution of graph mean curvature motion with contact
and constant-angle boundary conditions. Assume that |h|g ≤ a0 on ∂l E and that |(∇τh)(τ, τ )| ≤ a1 on
∂l E. Then we have a global gradient bound for H :

supET |DH |δ ≤ M1,

for a constant M1 depending on δ, v̄, a0, a1 and the initial data w0.

Corollary 14.2. Under the same hypotheses as Lemma 14.1, we have a global gradient bound

supE |∇h|g ≤ M1,

for a positive constant M1 depending on δ, v̄, a0, a1 and the initial data w0.

Proof. The bound on the components (∇nh)(τ, τ ) and (∇nh)(n, n) on the lateral boundary ∂l E follows
immediately from the expressions in Section 11. The bound on (∇τh)(τ, τ ) over ∂l E is hypothesized,
and then the bound on the remaining component (∇τh)(n, n) follows from the global gradient bound
|DH | ≤ M implied by Lemma 14.1. Thus |∇h| ≤ M1 on ∂l E , and then the global bound follows from
Lemma 13.2 and the maximum principle. �

To improve the conclusion of Corollary 14.2 to a Hölder gradient bound, it is natural to consider the
evolution equation for h with the Neumann-type boundary conditions derived in Section 11. One is then
faced with the problem that those boundary conditions do not control components such as (∇τh)(τ, τ )
on ∂t E . So as a preliminary step we consider the evolution equation for v, which has the advantage that
the boundary values are constant. Written in linear form, we have{

∂tv− gi j (X)vi j + bi (X)∂iv+ c(X)v = 0,
v|∂t E = 1/β, v|t=0 = v0,

where

gi j (X)= δi j −
wiw j

1+ |Dw|2
(X), bi (X)=

2gi jwkwk j

1+ |Dw|2
(X), c(X)= |h|2g(X).
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We clearly have gi j
∈ Cδ (since Dw ∈ Cδ), as well as bi , c ∈ Cδ (since h ∈ Cδ), and ∂l E ∈ C2+δ with

bounds controlled by M1 in all cases as observed earlier. Therefore assuming v ∈ C2+δ (equivalently,
w ∈ C3+δ) we have the bound

|v|2+δ;E ≤ C
(

supE v+
1
β

)
,

with C controlled by M1. Thus |D2v|δ ≤ M1. Recalling v−1∂iv = h(∂i , ω), this implies that

|(∇τh)(n, n)|δ;∂l E = |(∇nh)(τ, n)|δ;∂l E ≤ M1 for all τ ∈ T ∂D(t) and |τ | = 1.

Since H=β2hnn+h(τ, τ ) on ∂l E , it follows from Lemma 14.1 that we also have |(∇τh)(τ, τ )|δ;∂l E ≤M1.
For the remaining components of ∇h, this bound follows directly from the boundary conditions

|(∇nh)(τ, τ )|δ;∂l E + |(∇nh)(n, n)|δ;∂l E ≤ M1.

Now consider the evolution of the components of the Weingarten operator, written in divergence form
with Neumann boundary conditions{

∂t hk
j − ∂i (gil∂lhk

j )= f k
j in ET , f k

j := H j hk
l ω

l
− Hlhl

jω
k
+ h(3)kj − (∂i gil)(∂lhk

j ),

dn(hk
j )= ϕ

k
j on ∂l E, hk

j |t=0
= hk

j0.

The same theorem quoted above gives the estimate (assuming hk
j ∈ C1+δ or w ∈ C3+δ)

|hk
j |1+δ;E ≤ C

(
supE |h

k
j | + ‖ f k

j ‖1,n+1+δ + |ϕ
k
j |δ;∂l E + |hk

0 j |1+δ;D0

)
.

Note that

dn(hk
j )= gik(∇nh)i j = β

2(∇nh)(n, ∂ j )nk
+ (∇nh)(τ, ∂ j )τ

k on ∂l E .

From this and the above discussion it follows that |ϕk
j |δ;∂l E ≤M1. The bound ‖ f k

j ‖1,n+1+δ ≤M1 follows
from Lemma 14.1 and Corollary 14.2. We conclude |hk

j |1+δ;E ≤ M1. The 1+ δ estimate for hk
j clearly

implies the following lemma:

Lemma 14.3. Let w ∈ C3+δ(ET ) be a classical solution of graph mean curvature motion with contact
and constant-angle boundary conditions. Assume that |h|g ≤ a0 on ∂l E and that |(∇τh)(τ, τ )|∂l E ≤ a1.
Then we have a global Hölder gradient bound for h:

|∇h|δ;ET ≤ M1,

for a constant M1 depending on δ, v̄, a0, a1 and the initial data w0.

Remark. This is clearly equivalent to a global a priori C3+δ bound for w on ET , |w|3+δ ≤ M1.

Lemma 14.3 is the main step in the derivation of a “continuation criterion” for this flow.

Proposition 14.4. Assume the maximal existence time Tmax is finite. Then (for n = 2, in the concave
case)

lim sup
t→Tmax

sup
∂D(t)

(|h|g + |(∇τh)(τ, τ )|)=∞.
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Proof. For w0 ∈ C3+ᾱ(D0) satisfying the contact angle condition (with ᾱ ∈ (0, 1) arbitrary) and α = ᾱ2,
Theorem 8.1 yields a unique solution F = [u, ϕ] of mcm with contact angle/orthogonality boundary
conditions in a maximal time interval [0, Tmax] with F ∈ C2+α(QTmax

0 ), QTmax
0 = Q × [0, Tmax); this is

also the unique solution in F ∈C2+δ2
(QTmax

0 ), where δ=α2. Thenw=u◦ϕ−1
∈C2+δ(ETmax) is a solution

of graph mcm, which for any t0 > 0 is in C3+δ(ETmax
t0 ). By contradiction, assume |h|g+|(∇τh)(τ, τ )| is

bounded in ET
t0 for any T < Tmax (with bound independent of T ). Then Lemma 14.3 applies, giving an a

priori bound |∇h|δ;ET
t0
≤ M1, for T arbitrarily close to Tmax. In particular, |w( · , T )|C3+δ(D(T )) ≤ M1, and

for T close enough to Tmax we can use Theorem 8.1 again, with initial data w( · , T ), to find a solution
F ′= [u′, ϕ′] ∈C2+δ2

(QT ′
0 ) (where T ′> Tmax), extending F . This contradicts the maximality of Tmax. �

15. Behavior at the extinction time

In this section we consider the behavior of 6t as t approaches the maximal existence time T , in the
concave case. We assume H ≤ H0 < 0 at t = 0, so T is finite. Let Kt ⊂Rn+1 be the compact convex set
bounded by 6t . Since H ≤ 0, {Kt } is a decreasing family, and the intersection

KT =
⋂

0≤t<T
Kt ⊂ Rn+1

is compact, convex and nonempty. It turns out that KT has zero (n + 1)-volume. In this section we
use the support function to show this when n = 2 (following the argument in [Stahl 1996]), under the
assumption that there is no gradient blowup.

Assume the origin 0 ∈ Rn is a point of KT . The support function of Kt (with respect to this origin) is
the function p( · , t) on D(t) given by

p(y, t)=
〈
G(y, t), N (y, t)

〉
, G(y, t)= [y, w(y, t)].

Since Kt is convex, p > 0 in D(t); the evolution equations and boundary conditions for p are easily
computed. From L[G] = 0 and L[N ] = |h|2g N , we have

L[p] = 〈L[G], N 〉+ 〈G, L[N ]〉− 2gkl
〈∂k G, ∂l N 〉 = |h|2g p+ 2H,

and, since 〈dnG, N 〉 = 0,
pn |∂D(t) = 〈G, dn N 〉 = −A(GT , N ),

where, with yT
:= y− (y ·n)n ∈ Ty∂D(t), the tangential component GT

:= G−〈G, N 〉N is easily seen
to be, at ∂D(t),

GT
=

1
v2 [w

2
n yT
+ y, 0].

Since h(yT , n)= 0 at ∂D(t), this implies A(GT , n)= β2(y · n)h(n, n). Note that p(y)=−β0(y · n) on
∂D(t), so we have

pn |∂D(t) =
β2

β0
phnn,

which is reminiscent of the boundary condition for H . We also have the upper bound

p ≤ ‖G‖ ≤maxD(0) ‖G0‖ := p0,

since the Kt are nested.
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Proposition 15.1. Let n = 2. Assume that

lim sup
t→T

sup
y∈∂D(t)

|h|g =∞

at the maximal existence time T . Then

lim inf
t→T

inf
y∈D(t)

p(y, t)= 0.

Proof. Reasoning by contradiction, assume p> 2δ > 0 for t ∈ [0, T ).We claim that this implies an upper
bound for |H | (and hence for |h|, since |h|2≤ nH 2) contradicting the fact that lim supt→T sup0t

|h| =∞.
To prove the claim, consider the function

f (y, t) :=
|H |

p− δ
=−

H
p− δ

.

Using the evolution equations and boundary conditions for H and p we find (with ω̂ := ω/|ω|g, see
Remark 15.2 below)

L[ f ] = f (−δ |h|2g + 2p f )+ |ω|2g
(
h2(ω̂, ω̂)− Hh(ω̂, ω̂)

)
−

2
p− δ

gkl∂k f ∂l p

and
fn |∂D(t) =−δ

β2

β0
hnn

|h|2

(p− δ)2
≥ 0.

Since |h|2g ≥
1
n

H 2
=

1
n

f 2(p− δ)2 we get

L[ f ] ≤ f
(
−
(p− δ)2δ

n
f 2
+ 2p f

)
+ |ω|2g

(
h2(ω̂, ω̂)− Hh(ω̂, ω̂)

)
−

2
p− δ

〈∇ f,∇ p〉g.

Now recall from Remark 12.8 that if n = 2

h2(ω̂, ω̂)− Hh(ω̂, ω̂)=−1≤ 0,

so

L[ f ] ≤ f
(
−
(p− δ)2δ

n
f 2
+ 2p f

)
−

2
p− δ

〈∇ f,∇ p〉g.

Let δ > 0 be so small that supD(0) f|t=0 < 2np0/δ
3. We claim this persists for all t ∈ [0, T ). If not,

assume f (y0, t0) = 2np0/δ
3 with t0 > 0 smallest possible and let y0 be a local maximum of f ( · , t0).

Since fn ≥ 0 at ∂D(t0), the boundary point lemma implies that z0 = (y0, t0) can’t be a boundary point
of E . Thus y0 ∈ ∂D(t0) is an interior point, so L[ f ]|z0 ≥ 0 and ∇ f (z0)= 0: hence

(p− δ)2δ
n

f (z0)≤ 2p(z0), or f (z0)≤
2np(z0)

δ(p− δ)2
≤

2np0

δ(p− δ)2
,

which is not possible since p−δ>δ. Thus f (y, t)<4p0/δ
3 in E , which implies the bound |H |≤4p2

0/δ
3

for t ∈ [0, T ), contradicting the maximality of T . �

Remark 15.2. It is easy to verify that the vector fields

ω =
1
v
[w1, w2], ω̃ = vω⊥ = [−w2, w1]
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in D(t)⊂ R2 satisfy
〈ω, ω̃〉g = 0, |ω|2g = |ω̃|

2
g = |Dw|

2
e := w

2
1 +w

2
2.

Thus we may think of {ω, ω̃} as a “conformal pseudoframe” (ω and ω̃ vanish when Dw = 0), defined
on all of D(t). Moreover, at the boundary ∂D(t),

ω = β0n, ω̃ =
β0

β
n⊥ =

β0

β
τ,

where {τ, n} is an euclidean-orthonormal frame along 0t . Thus ω and ω̃ supply canonical extensions of
n, τ to the interior of D(t) as uniformly bounded vector fields.

It follows from the proposition that KT cannot contain a half-ball of positive radius centered at a
point of R2; in particular, vol3(KT ) = 0. Based on the experience with curve networks [Schnürer et al.
2007], one is led to expect that KT is a point (diamKT = 0), at least under the same assumption as
the proposition (no gradient blowup). We have not been able to show this yet; existence of self-similar
solutions and comparison arguments appropriate to the free-boundary setting appear to be needed for the
usual approach to work.

16. Final comments

Local existence. We state here a local existence theorem for configurations of graphs over domains with
moving boundaries. In this setting, a triple junction configuration consists of three embedded hypersur-
faces 61, 62, 63 in Rn+1, graphs of functions w I defined over time-dependent domains D1(t), D2(t)⊂
Rn (D1 covered by one graph, D2 by two graphs), satisfying the following conditions:

(1) The 6 I intersect along an (n−1)-dimensional graph3(t) (the “junction”), along which the upward
unit normals satisfy the relation: N1+ N2 = N3.

(2) If a fixed support hypersurface S ⊂ Rn+1 is given (also a graph, not necessarily connected), the 6 I

intersect S orthogonally.

Topologically, in the case of bounded domains one has the following examples:

(i) Lens type: two disks or two annuli covering D2(t) and one annulus covering D1(t).

(ii) Exterior type: two annuli covering D2(t) and one disk covering D1(t).

The boundary component of the annuli disjoint from the junction intersects the support hypersurface S
orthogonally for each t .

Let 6 I
0 (I = 1, 2, 3) be graphs of C3+α functions over C3+α domains D1

0, D2
0 ⊂ Rn , defining a triple

junction configuration and satisfying the compatibility condition for the mean curvatures on the common
boundary 00 of D1

0 and D2
0

H 1
+ H 2

= H 3.

Then there exists T > 0 depending only on the initial data, and functions w I
∈ C2+α,1+α/2(Q I ), Q I

⊂

Rn
× [0, T ), so that the graphs of w I (., t) : D I (t)→ R define a triple junction configuration for each

t ∈ [0, T ) moving by mean curvature.
The proof will be given elsewhere.
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Uniqueness. An interesting issue we have not addressed here is whether one has breakdown of unique-
ness for initial data of lower regularity, or if the “orthogonality condition” at the junction is removed.
For curve networks, nonuniqueness has been considered in [Mazzeo and Sáez 2007]; but neither a drop
in regularity (from initial data to solution in Hölder spaces) nor the orthogonality condition play a role
in the case of curves.

Appendix A. Proof of Lemma 4.1

Throughout the proof n denotes the inner unit normal at ∂D, extended to a tubular neighborhood N in
Rn so that Dnn = 0. Since D is uniformly C3+α, it follows that n ∈ C2+α(∂D) with uniform bounds.
Denote by ρ the oriented distance to the ∂D (so Dρ = n in N). Let ζ ∈ C3(D) be a cutoff function with
ζ ≡ 1 in N1 ⊂ N, ζ ≡ 0 in D \N.

We find ϕ of the form
ϕ(x)= x + ζ(x) f (x)n(x)

with f ∈ C2+α(N). The 1-jet conditions on ϕ at ∂D translate to these conditions on f :

f|∂D = 0, D f|∂D = 0, D2 f (n, n)|∂D =1 f |∂D = h.

Lemma A.1. Let D be a uniformly C3+α domain with boundary distance function ρ>0. Let h∈Cα(∂D)
be bounded. There exists an extension g ∈ C∞(D)∩C(D) such that g|∂D = h, supD |g| ≤ sup∂D |h| and
ρ2g ∈ C2+α(D).

Given this lemma, all we have to do is set f = 1
2ρ

2g, which clearly satisfies all the requirements (in
particular, 1 f = h at ∂D.)

To verify that ϕ is a diffeomorphism, it suffices to check that |ζ f n|C1 (in N⊂ {ρ < ρ0}) is small if ρ0

is small. This is easily seen: |ζ f n|C0 ≤
1
2ρ

2
0 |g|C0 ; from |Dζ | ≤ cρ−1

0 it follows that | f Dζ | ≤ cρ0|g|C0 ;
and |D f | ≤ 1

2ρ
α
0 ‖g‖C2+α(D) on N, since D f ∈ C1+α(D) and D f|∂D = 0. Finally, with A the second

fundamental form of ∂D,

|Dn| ≤ |A|C0 H⇒ | f Dn| ≤ 1
2ρ

2
0 |g|C0 |A|C0 .

A word about Lemma A.1. (This is probably in the literature, but I don’t know a reference.) If D is
the upper half-space, we solve 1g = 0 in D with boundary values h. Then the estimate

[D2(ρ2 P ∗ h)]α(D)≤ c|h|Cα(∂D)

follows by direct computation with the Poisson kernel P; for the rest of the norm, use interpolation.
Then transfer the estimate to a general domain using “adapted local charts” in which ρ in D corresponds
to the vertical coordinate in the upper half-space. (It is easy to see that at each boundary point there is a
C2+α adapted chart with uniform bounds.)

Appendix B. Evolution equations for the second fundamental form

We consider mean curvature motion of graphs:

G(y, t)= [y, w(y, t)], y ∈ D(t)⊂ Rn, wt = gi jwi j = vH, v =
√

1+ |Dw|2.



MEAN CURVATURE MOTION OF GRAPHS WITH CONSTANT CONTACT ANGLE AT A FREE BOUNDARY 403

In this appendix we include evolution equations for geometric quantities, in terms of the operators

∂t −1g, L = ∂t − trgd2.

It is often convenient to use the vector field in D(t)

ω :=
1
v

Dw.

Since −ω is the Rn component of the unit normal N and L[N ] = |h|2g N , we have

L[ωi
] = |h|2gω

i , |h|2g := gik g jlhi j hkl .

Here h = (hi j ) is the pullback to D(t) of the second fundamental form A:

h(∂i , ∂ j )= hi j = A(Gi ,G j )=
1
v
wi j .

First, denoting by∇ the pullback to D(t) of the induced connection∇6 (that is, G∗(∇X Y )=∇6G∗X G∗Y
for any vector fields X, Y in D(t)), and using the definition

∇
6
Gi

G j = Gi j −〈Gi j , N 〉N = [0, wi j ] −
1
v2wi j [−Dw, 1] =

wi j

v2 [Dw, |Dw|
2
] =

wi j

v2 G∗Dw,

we conclude that
∇∂i ∂ j =

1
v

hi j Dw = hi jω. (B-1)

From this one derives easily a useful expression relating the Laplace–Beltrami operator and the oper-
ator trgd2 acting on functions

1g f = trgd2 f −
H
v
wm fm = trgd2 f − Hdω f.

We also have, for the covariant derivatives of h with respect to the euclidean connection and to∇=∇g:

∂m(hi j )=∇mhi j + [h jmhik + himh jk]ω
k .

(Here ∇h is the symmetric (3, 0)-tensor with components: ∇mhi j = (∇∂m h)(∂i , ∂ j ).)
Iterating this and taking g-traces yields, using the Codazzi identity and the easily verified relation

∂iω
k
= hk

i := g jkhi j ,

trgd2(hi j )= gmk∂m(∂k(hi j ))

= gmk(∇2
∂m ,∂k

h)(∂i , ∂ j )+ H∇ωhi j + 2[hk
i ∇kh j p + hk

j∇khi p]ω
p
+ [Hi h j p + H j hi p]ω

p

+ 2
[
hi p(h2) jq + (h2)i ph jq + Hhi ph jq

]
ωpωq

+ 2(h3)i j + 2(h2)i j h(ω, ω).

Here the powers h2 and h3 of h are the symmetric 2-tensors defined used the metric:

(h2)i j := gkphikh pj = hk
i h pj , (h3)i j := gkpglqhikh plhq j .

Note also that
[hk

i ∇kh j p + hk
j∇khi p]ω

p
=∇ω(h2)i j ,

using the Codazzi identity.
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Evolution equations for h. Starting from G t = vHen+1 = H
(
N + v−1

[Dw, |Dw|2]
)
= H N + H G∗ω

and Nt =−∇
6H − Hv−1

∇
6v (where ∇6 f = gi j f j Gi and ∇ f = gi j f j∂i ) we have

∂t(hi j )= 〈(H N )i j , N 〉− 〈Gi j ,∇
6H〉−

H
v
〈Gi j ,∇

6v〉+ 〈(H G∗ω)i j , N 〉.

Using the easily derived facts

〈Ni j , N 〉 = −h2(∂i , ∂ j ), Hi j −〈Gi j ,∇
6H〉 = (∇d H)(∂i , ∂ j ),

1
v
〈Gi j ,∇

6v〉 = h(ω, ω)hi j ,

we obtain

∂t(hi j )= (∇d H)(∂i , ∂ j )− Hh2(∂i , ∂ j )− Hh(ω, ω)hi j +〈(H G∗ω)i j , N 〉,
where

〈(H G∗ω)i j , N 〉 = Hi 〈(G∗ω) j , N 〉+ H j 〈(G∗ω)i , N 〉+ H〈(G∗ω)i j , N 〉.

To identify the terms, computation shows that

〈(G∗ω)i , N 〉 = h(ω, ∂i ),

and hence, using also

∇
6
Gi
(G∗ω)= G∗(∇∂iω), ∇∂iω = (h

p
i +ω

qhiqω
p)∂p =

∑
p

hi p∂p,

we obtain (using ωk∂ j (hik)=∇ωhi j + 2h(∂i , ω)h(∂ j , ω)) that

〈(G∗ω)i j , N 〉 = ∂ j (ω
khik)−〈∇

6
Gi
(G∗ω), ∂ j N 〉 = hk

j hik +ω
k∂ j (hik)+ h(∂ j ,∇∂iω)

= (∇ωh)i j + (h2)i j + 2h(ω, ∂i )h(ω, ∂ j )+
∑

p
hi ph j p

= (∇ωh)i j + 2(h2)i j + 3h(ω, ∂i )h(ω, ∂ j ),

since
∑

p hi ph j p = (h2)i j + h(ω, ∂i )h(ω, ∂ j ). Combining all the terms yields

∂t(hi j )= (∇d H)(∂i , ∂ j )+ H∇ωhi j + Hi h(ω, ∂ j )+ H j h(ω, ∂i )

+ H(h2)i j + 3Hh(ω, ∂i )h(ω, ∂ j )− Hh(ω, ω)hi j .

From this expression and Simons’ identity (in tensorial form)

∇d H =1gh+ |h|2gh− Hh2,

we obtain easily a tensorial “heat equation” for h:

[(∂t −1g)h]i j = H∇ωhi j + Hi h(ω, ∂ j )+ H j h(ω, ∂i )+Ci j ,

with
Ci j := |h|2ghi j + 3Hh(∂i , ω)h(∂ j , ω)− Hh(ω, ω)hi j . (B-2)

Using the earlier computation relating 1gh (the tensorial Laplacian of h) and trgd2h, we obtain from
this the evolution equation in terms of L:

L[hi j ] = −2[hk
i ∇ωh jk + hk

j∇ωhik] + C̃i j ,
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where

C̃i j := Ci j −2
[
h(∂i , ω)h2(∂ j , ω)+ h2(∂i , ω)h(∂ j , ω)

]
−2(h3)i j −2(h2)i j h(ω, ω)−2Hh(∂i , ω)h(∂ j , ω).

We may also write this purely in terms of the euclidean connection d:

L[hi j ] = −2[hk
i dωh jk + hk

j dωhik] +C i j ,

where

C i j = Ci j + 2
[
h(∂i , ω)h2(∂ j , ω)+ h2(∂i , ω)h(∂ j , ω)

]
−2(h3)i j −2(h2)i j h(ω, ω)−2Hh(∂i , ω)h(∂ j , ω).

(B-3)

Time derivatives and evolution equations for ω and g. The time derivative of ω is simply minus the
time derivative of the Rn component of N . In addition, one computes easily that (∇v)/v = S(ω), where

S(X) := S(X i∂i )= hi
j X j∂i

is the Weingarten operator. Hence

∂tω =∇H +
H
v
∇v =∇H + H S(ω). (B-4)

For the metric and “inverse metric” tensors it follows from ∂t gi j = (wiw j )t and wi t = (vH)i that

∂t gi j = v
2(Hiω

j
+ H jω

i )+ v2 H
(
h(ω, ∂i )ω

j
+ h(ω, ∂ j )ω

i).
Then, using ∂t gi j

=−gik∂t gkl gl j , we have

∂t gi j
=−

[
(∇H)iω j

+ (∇H j )ωi]
− H

[
S(ω)iω j

+ S(ω) jωi].
Since we know the evolution equation of ω, it is easy to obtain that of gi j :

L[gi j
] = −L[ωiω j

] = −L[ωi
]ω j
+ 2gkl(∂kω

i )(∂lω
j )−ωi L[ω j

].

Using ∂kω
i
= hi

k , we find
L[gi j
] = −2|h|2gω

iω j
+ 2(h2)i j .

It is also easy to see that ∂k gi j
=−(hi

kω
j
+ h j

kω
i ).

Evolution of the mean curvature. To compute the evolution equation for H = gi j hi j , we just need to
remember that gi j is time-dependent:

(∂t −1g)H = (∂t gi j )(hi j )+ trg[(∂t −1g)h] = −2h(∇H, ω)− 2Hh2(ω, ω)+ trg[(∂t −1g)h].

The result is
(∂t −1g)H = HdωH + |h|2g H + Hh2(ω, ω)− H 2h(ω, ω).

Since
L[ f ] = (∂t −1g) f − Hdω f

(for any f ), we see that the equation in terms of L has no first-order terms:

L[H ] = |h|2g H + Hh2(ω, ω)− H 2h(ω, ω).
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One can also derive L[H ] from the expression L[gi j hi j ] = L[gi j
]hi j + gi j L[hi j ] − 2gkl(∂k gi j )(∂lhi j ).

Evolution of the Weingarten operator. The tensorial Laplacian of S is the (1, 1) tensor 1g S with com-
ponents 1ghk

j . We have

1ghk
j = gik1ghi j or 〈(1g S)X, Y 〉g = (1gh)(X, Y ).

The evolution equation is easily obtained:

(∂t −1g)hk
j = (∂t gik)hi j + gik(∂t −1g)hi j

= H∇ωhk
j + H j hk

l ω
l
− Hlhl

jω
k
+ |h|2ghk

j + 2H S(ω)kh(ω, ∂ j )− Hh(ω, ω)hk
j − Hh(S(ω), ∂ j )ω

k .

Remark. Since the components of ∇S are given by

(∇ωS)(∂ j )= (∇ωhk
j )∂k, ∇ωhk

j = dω(hk
j )+ h2(ω, ∂ j )ω

k
− h(ω, ∂ j )S(ω)k,

we see that upon setting j = k and adding over k we recover the evolution equation for H .

The evolution equation for hk
j in terms of L follows from the calculation

L[hk
j ] = L[gik

]hi j + gik L[hi j ] − 2gmn(∂m gik)(∂nhi j )

=−2(∇ωhk
m)h

m
j + (∂ j |h|2g)ω

k

+ |h|2ghk
j − Hh(ω, ω)hk

j + H S(ω)kh(∂ j , ω)+ 2h3(∂ j , ω)ω
k
− 2(h2)kpω

ph(∂ j , ω).

Setting j = k and adding over k, we recover the earlier expression for L[H ].

Evolution of |h|2
g . That gi j is time-dependent introduces an additional term in the usual expression

(∂t −1g)|h|2g =−2|∇h|2g + 2〈h, (∂t −1g)h〉g + 2(∂t gi j )(h2)i j .

Using the expressions given earlier, one easily finds

(∂t −1g)|h|2g =−2|∇h|2g + Hdω|h|2g + 2|h|4g − 4Hh3(ω, ω)− 2H |h|2gh(ω, ω),

L[|h|2g] = −2|∇h|2g + 2|h|4g − 4Hh3(ω, ω)− 2H |h|2gh(ω, ω).
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