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1. The results

Let (ML, G) be a Riemannian manifold of dimension n > 2 with Riemannian volume density dG and
associated Laplace—Beltrami operator Ag. The Strichartz estimates for the Schrodinger equation

ioiu+ Agu =0, Ujr=0 = U, (1-1)

are basically estimates of
1/p

1
lullLrqo.1).L9 M.dG)) = (/0 llu(z, ’)”lL)q(M’dc)dt) ,

in terms of certain L? quantities of 1o, when the pair of exponents (p, ¢) satisfies the admissibility

conditions
2 n n

;—1‘5:5’ =2, (p,q)#(2,00). (1-2)

Strichartz estimates play an important role in the proof of local existence results for nonlinear Schrodinger

equations (see for instance [Ginibre and Velo 1985; Cazenave 2003; Burq et al. 2004]). We won’t
consider such applications in this paper and will only focus on the estimates themselves.

We review some classical results. If Ml = R" with the flat metric, it is well known [Strichartz 1977,

Ginibre and Velo 1985; Keel and Tao 1998] that
Nl Lrqo.ny.Lomny S lluoll 2@en)- (1-3)

MSC2000: 35B45, 35830, 58J40, 58147.
Keywords: Strichartz estimates, asymptotically hyperbolic, Isozaki—Kiada parametrix, semiclassical functional calculus.
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2 JEAN-MARC BOUCLET

In this model case, the time interval [0, 1] can be replaced by R and the Strichartz estimates are said to
be global in time. Furthermore, the conditions (1-2) are seen to be natural by considering the action of
the scaling u(t, x) — u(t/A?, x /1) on both Schrodinger equation and Strichartz estimates.

(In this paper we will not pursue global in time Strichartz estimates. Although one can expect that
they exist, it is not clear how to obtain them by the present method. One may hope to obtain such global
in time results at least for initial data spectrally cutoff on the low frequencies by combining the present
analysis with the method of [Bouclet and Tzvetkov 2008].)

In more general situations, estimates of the form (1-3) sometimes have to be replaced by

lullzro,11.L9taGy S Nluollgsutacy, s =0, (1-4)

where
2
ol s a.ac := I1(1 — Ag)* uoll 2,46y

is the natural L? Sobolev norm. If s > 0, estimates such as (1-4) are called Strichartz estimates with
loss (of s derivatives). Notice that, under fairly general assumptions on (Jl, G), we have the Sobolev
embeddings H* (M, dG) C L1(M, dG) for s > n/2 —n/q. They show that (1-4) holds automatically if s
is large enough and the point of Strichartz estimates with loss (and a fortiori without loss) is to consider
smaller s than those given by Sobolev embeddings.

Such inequalities have been proved by Bourgain [1993] for the flat tori T! and T?2, for certain values
of p,q and any s > 0 (i.e., with “almost no loss”), and by Burq, Gérard, and Tzvetkov [Burq et al.
2004] for any compact manifold with s = 1/p. The techniques of the latter work are actually very robust
and can be applied to prove the same results on many noncompact manifolds; the estimates are known
to be sharp for .M = S* with p = 2 and by considering certain subsequences of eigenfunctions of the
Laplacian. This counterexample can then be used to construct quasimodes and show that (1-4) cannot
hold in general with s = 0, even for noncompact manifolds.

A natural question is therefore to find (sufficient) conditions leading to estimates with no loss.

A classical one is the nontrapping condition. We recall that (M, G) is nontrapping if all geodesics
escape to infinity (implying that Jl is noncompact). It was for instance shown in [Staffilani and Tataru
2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007] that, for nontrapping perturbations of the
flat metric on R", (1-4) holds with s =0. By a perturbation we mean that the departure of G from the flat
metric Gy is small near infinity and we refer to those papers for more details. In [Hassell et al. 2006],
the more general case of nontrapping asymptotically conic manifolds was considered. To emphasize
the difference with the asymptotically hyperbolic manifolds studied in this paper, we simply recall that
(M, G) is asymptotically conic if G is close to dr* 4+ r2g, in a neighborhood of infinity diffeomorphic
to (R, +00) x S, for some fixed metric g on a compact manifold S. The asymptotically Euclidean case
corresponds to the case where § = §"~ 1.

The nontrapping condition, however, has several drawbacks, such as being nongeneric and difficult to
check. Moreover, it is not clearly a necessary condition to get Strichartz estimates without loss.

In [Bouclet and Tzvetkov 2007], we partially got rid of this condition by considering Strichartz esti-
mates localized near spatial infinity. For long-range perturbations G of the Euclidean metric on /il = R"
(meaning that 9% (G (x) — Ggucl) = O((x)~""lly for T > 0), trapping or not, we proved the existence of
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R > 0 large enough such that, if X € C;°(R") satisfies X = 1 for |x| < R, then

(1= XullLrqo.11;e®.a6)) S luoll 2@ ac)- (1-5)

This shows that the possible loss in Strichartz estimates can only come from a bounded region where the
metric is essentially arbitrary (recall that being asymptotically Euclidean is only a condition at infinity).
One can loosely interpret this result as follows: as long as the metric is close to a model one for which
one has Strichartz estimates without loss, the solution to the Schrodinger equation satisfies Strichartz
estimates without loss too.

The first goal of the present paper is to show that the same result holds in (bounded) negative curvature,
more precisely for asymptotically hyperbolic (AH) manifolds. We point out, however, that even if our
Theorem 1.2 below is formally the same as in the asymptotically Euclidean case [Bouclet and Tzvetkov
2007, Theorem 1], its proof involves new arguments using the negative curvature. One of the messages
of this paper is that, by taking advantage of certain curvature effects described at the end of this Section,
we prove Strichartz estimates using long time (microlocal) parametrices of the Schrédinger group which
are localized in very narrow regions of the phase space, much smaller than those considered in the
asymptotically Euclidean situation.

As far as the Schrodinger equation is concerned, Strichartz estimates on negatively curved spaces have
been studied in [Banica 2007; Pierfelice 2006; 2008; Anker and Pierfelice 2009] (see [Tataru 2001] for
the wave equation). In [Pierfelice 2006], Pierfelice considers perturbations of the Schrodinger equation
on the hyperbolic space H" by singular time-dependent radial potentials, with radial initial data (and also
radial source terms) and derives some weighted Strichartz estimates without loss. The nonradial case for
the free Schrodinger equation on H” is studied in [Banica 2007] where weighted Strichartz estimates are
obtained too. The more general case of certain Lie groups, namely Damek-Ricci spaces, was considered
in [Pierfelice 2008] for global in time estimates (see also [Banica et al. 2008] for the two-dimensional
case) and further generalized in [Banica and Duyckaerts 2007]. In these last papers, only radial data
are considered. This radial assumption was removed in [Anker and Pierfelice 2009]. This last paper
also shows, with [Banica et al. 2008], in such geometries, the set of admissible pairs for the Strichartz
estimates is contained in a triangle, and thus is much wider than in the (asymptotically) Euclidean case.
One expects that such a result remains valid in our context, but this does not clearly follow from the tools
presented here and might require refined propagation estimates.

In this article, we give a proof of Strichartz estimates at infinity which is purely (micro)local and so, to
a large extent, stable under perturbation. We do not use any Lie group structure or spherical symmetry,
nor do we assume any nontrapping condition. We refer to Definition 1.1 below for precise statements
and simply quote here that our class of manifolds contains H”, some of its quotients and perturbations
thereof. In particular, we do not assume that the curvature is constant, even near infinity. (Powerful
microlocal techniques for AH manifolds have already been developed by Melrose and his school; see
[Mazzeo and Melrose 1987] and the references in [Melrose 1995]. These geometric methods, based on
compactification and blowup considerations, are perfectly designed for conformally compact manifolds
with boundary, but do not clearly apply to the more general manifolds we study here.)

In the next few pages we fix our framework and state our main results precisely, highlighting the key
points that allow us to prove them. We conclude the section with an overview of the remainder of the
article, on page 7.
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Definition 1.1 (AH manifold). (", G) is asymptotically hyperbolic if there exist a compact set K € M,
a real number Ry > 0, a compact manifold without boundary S and a function

reC®UM,R) with r(m)— 400 as m — oo (1-6)

(a coordinate near Jit \ ¥) such that we have an isometry

W M\, G) = ((Rar, +00), X S, dr’ +€¥ (1)), (1-7)
where g(r) is a family of metrics on S depending smoothly on r such that, for some T > 0 and some
fixed metric g on S, we have

k —1—k

||ar (g(r)_g)Hcoc(S’T*S@T*S) Sr ’ for r> Rﬁ{, (1_8)

for all k£ > 0 and all seminorms || - [|co(s, 7+s@7*s) in the space of smooth sections of 7*S ® T*S.

With no loss of generality, we can assume that the decay rate = in (1-8) satisfies
O<t<l. (1-9)

Therefore, by analogy with the standard terminology in Euclidean scattering, dr? + ¢* g(r) can be
considered as a long-range perturbation of the metric dr> 4 ¢ g. Notice that the conformally compact
case quoted above corresponds to the special situation where g(r) is of the form g(e™"), for some family
of metrics (g(x))o<x«1 depending smoothly on x € [0, xg) (x¢ small enough) up to x = 0. In that case,
g(r) is an exponentially small perturbation of g = g(0). The assumption (1-8) is therefore more general.

We next denote by Ag the Laplace—Beltrami operator associated to this metric. It is classical that
this operator is essentially self-adjoint on C;°(M) (using for instance the method of [Helffer and Robert
1983]), and therefore generates a unitary group e//26 on L>(L, dG).

Our main result is the following.

Theorem 1.2. There exists X € C3° (M), with X = 1 on a sufficiently large compact set, such that, for all
pair (p, q) satisfying (1-2),

(L= X)€" 2 ugl Lo 0,11: 20 a6y S ol 22 un.ac)s ug € Co° (AL). (1-10)

This theorem is the AH analogue of Theorem 1 of [Bouclet and Tzvetkov 2007] in the asymptotically
Euclidean case.

To be more complete, let us point out that the analysis contained in this paper and a classical argument
due to [Staffilani and Tataru 2002] (see also [Bouclet and Tzvetkov 2007, Section 5]), using the local
smoothing effect [Doi 1996], would give the following global in space estimates.

Theorem 1.3. If in addition (M, G) is nontrapping, then we have global in space Strichartz estimates
with no loss: for all pair (p, q) satisfying (1-2),
le" 2% ugll Lr o, 11, Leit,a6y S Nuoll 2uac)s up € Co°(M).

We state this result as a theorem although we won’t explicitly prove it. The techniques are fairly
well known and don’t involve any new argument in the present context. We simply note that resolvent
estimates implying the local smoothing effect can be found in [Cardoso and Vodev 2002].
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Remark. Theorem 1.2 reduces the proof of potential improvements of Burq—Gérard—Tzvetkov inequal-
ities to local in space estimates of the form

I Xullzrqo,11,L9.a6) S lluoll #s i.d).

with 0 < s < 1/p. It would be interesting to know if such inequalities holds for some trapping AH
manifolds.

We now describe, quite informally, the key points of the analysis developed in this paper. Assuming
for simplicity that § = S' (and thus n = 2), we consider the model case where the principal symbol of
the Laplacian is

p=p>te ¥yl
For convenience, we introduce

P = _e(n—l)r/ZAGe—(n—l)r/l _ —er/zAGe_’/z,

which is self-adjoint with respect to dr d@, instead of e~V dr d6 = e" dr df for the Laplacian itself.

Recall first that, by the Keel-Tao T'T* Theorem [1998], proving Strichartz estimates (without loss)
mainly reduces to prove certain dispersion estimates. Using the natural semiclassical time scaling ¢ — ht,
this basically requires to control the propagator e ~//*F for semiclassical times of order #~!. Such a control
on the full propagator is out of reach (basically because of trapped trajectories) but, fortunately, studying
some of its cutoffs will be sufficient.

After fairly classical reductions, we will work with semiclassical pseudodifferential operators localized
where r > 1 and p € I, I being a (relatively) compact interval of (0, 400). We can split the latter region
into two areas defined by

F+={r>>1, pel, p>—%pl/2}, F_={r>>1, pel, p<%pl/2},

respectively called the outgoing and incoming areas. The main interest of such areas is that one has a
very good control on the geodesic flow therein (see Section 3). Basically, geodesics with initial data
in outgoing (resp. incoming) areas escape to infinity as r — 400 (resp. t — —o0), which is proved in
Proposition 3.3. One thus expects to be able to give long time approximations of the propagator e ~/*"¥
microlocalized in such areas, for large times (¢ > 0 in outgoing areas and ¢ < 0 in incoming ones).

In the asymptotically Euclidean case, it turns out that one can give accurate approximations of e =/ x*
for times ¢ such that 0 < £+ < h~!, if x* are pseudodifferential cutoffs localized in I'®. This is not the
AH case: here we are only able to approximate e ~//"F x gi for cutoffs XF localized in much smaller areas,
namely

If@={r>1, pel, p>U=-Hp'?}, T @ ={r>1, pel, p<(E-1p'"?},

which we call strongly outgoing/incoming areas. Here & will be a fixed small real number. We then
obtain approximations of the form

TP Y E = Jos(@®)e D Jg (bEY + OV, 0<=+r<ht. (1-11)
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Here e~i""D7 is the semiclassical group associated to the radial part D? of P. Here and in the sequel, we
shall use the standard notation

D,=i"'3,, Dy=i""dp.
The operators Jg= (a*) and Jg+(b) are Fourier integral operators with amplitudes a®, b* supported in
strongly outgoing (4) / incoming (—) areas and phases essentially of the form

€—2r 2

SExrp+60n+

i.e., the sum of the free phase rp + 61 and of a term whose Hessian is nondegenerate in 1, which will be
crucial for the final stationary phase argument (the small factor e 2" will be eliminated by a change of
variable). The nondegeneracy of the full phase of the parametrix (1-11) in p will come of course from
e~ithD} | This approximation of S* comes basically from (4-34) and (4-35). Although the right-hand
side does not depend on =, it is only defined in the disconnected regions {p > 0} and {p < 0}.

The approximation (1-11) is the AH Isozaki—Kiada parametrix and a significant part of this paper is
devoted to its construction. We mention that it is an adaptation to the AH geometry of an approximation
introduced first in [Isozaki and Kitada 1985] to study perturbations of the Euclidean Laplacian by long-
range potentials. In the present paper, it will be used very similarly to the usual (semiclassical) Euclidean
one as in [Bouclet and Tzvetkov 2007]. Its main interest is to give microlocal approximations of the
propagator for times of size h~!. Recall however the big difference with the asymptotically Euclidean
case where one is able to consider cutoffs supported in I'* rather than F:E (e) inthe AH case. We therefore
have to consider the left parts, namely

r

nter

=T\ (o),

which we call intermediate areas. These areas will only contribute to the dispersion estimates for small
times, in view of the following argument. By choosing é small enough and by splitting the interval
(— 3. 1—¢?) into small intervals of size §, we can write

rf.= U [r>1, pel, pp P eo,a+8))= U i, e).
1587 1<571

Carefuly consideration of the Hamiltonian flow <I>’p of p shows that, for any fixed (small) time 7y, we can
choose § (which depends also on ¢) such that

@ (M, (e, )NTE (. e.8) =2 for £1>1. (1-12)

inter

By semiclassical propagation, this implies that

XE TP xE — g(h>®)  for £1 > 1,

inter mter

for pseudodifferential operators ther localized in Fmter(l g, 6). Such operators typically appear in the
TT* argument and the estimate above reduces the proof of dispersion estimates to times |t| < #y. The
latter range of times can then be treated by fairly standard geometric optics approximation.

We interpret (1-12) as a negative curvature effect on the geodesic flow, which we can roughly de-

scribe as follows, say in the outgoing case. For initial conditions (r, 6, p, 1) in Fmter(l g, 6), the bounds
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% < p < (1 —=¢?)p'/? yield the lower bound

pr=2"0') 2 €%

1/2 increases fast

over a sufficiently long time, if we set (r', 0%, p', ') =: @',. This ensures that p'/p
enough to leave the interval (o7, o7 + &) before t = ty and give (1-12). In the asymptotically flat case,
that is, with »~2 instead of ¢~2", we have p’ = 2(r')~3(n")? and its control from below is not as good,

basically because of the “extra” third power of (')~

Overview of remaining sections. In Section 2, we introduce all the necessary definitions, and some
additional results, needed to prove Theorem 1.2. The latter proof is given in Section 2E using microlocal
approximations which will be proved in Sections 5, 6 and 7.

In Section 3, we study the properties of the geodesic flow in outgoing/incoming areas required to
construct the phases involved in the Isozaki—Kiada parametrix. This parametrix is then constructed in
Section 5.

In Section 6 we prove two results: the small semiclassical time approximation of the Schrodinger
group by the WKB method and the propagation of the microlocal support (Egorov theorem). These
results are essentially well known. We need however to check that all the symbols and phases belong to
the natural classes (for AH geometry) of Definition 2.2 below. Furthermore, we use our Egorov theorem
to obtain a propagation property in a time scale of size ™!, which is not quite standard.

Finally, in Section 7, we prove dispersion estimates using basically stationary phase estimates in the
parametrices obtained in Sections 5 and 6.

Up to the semiclassical functional calculus, which is taken from [Bouclet 2007; Bouclet 2010] and
whose results are recalled in Section 2C, this paper is essentially self-contained. This is not only for
the reader’s convenience, but also because the results of Section 6 do require proofs in the AH setting,
although they are in principle well known. The construction of Section 5 is new.

2. The strategy of the proof of Theorem 1.2

2A. The setup. Before discussing the proof of Theorem 1.2, we give the form of the Laplacian, volume
densities and related objects on AH manifolds.

The isometry (1-7) defines polar coordinates: r is the radial coordinate and S will be called the angular
manifold. Coordinates on S will be denoted by 9y, ..., 6,_.

A finite atlas on M\ X is obtained as follows. By (1-7), we have a natural projection g : (M\F, G) — S
defined as the second component of W, that is,

W (m) = (r(m), ms(m)) € (Ry, +00) x § form e M\ K. 2-1)
Choosing a finite cover of the angular manifold by coordinate patches U,, say

s=Uu, (2-2)
ey

with corresponding diffeomorphisms
VU= u(U) CR™, (2-3)
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we consider the open sets
WU, := W ((Ry, +00) x U,) C M\ K

and then define diffeomorphisms

W, 0 U, — (Ry, +00) x ¥, (U) CR", (2-4)
by
W, (m) = (r(m), Y. (ws(m))) .
The collection (U,, ¥,),cs is then an atlas on M\ K. If 6y, ..., 6,_; are the coordinates in U,, that is,
Y, = (04, ...,0,_1), the coordinates in U, are then (r, 6y, ..., 6,_1).
We now give formulas for the Riemannian measure dG and the Laplacian Ag on Jl \ H. In local
coordinates 6 = (0, ..., 6,_1) on S, the Riemannian density associated to g(r) reads

dg(r) :=det(g(r, 0))"/?|dOy A - - AdB,_1],

where det(g(r, 0)) =det(gi(r, 0)) if g(r) = gk (r, 0) dO; db) (using the summation convention). Then,
in local coordinates on Jl \ ¥, the Riemannian density is

dG ="V det(g(r, 0)? |dr AdOy A -+~ AdBy_1]. (2-5)

Now consider the Laplacian. Slightly abusing the notation, we set

1 dr det(g(r, s))

f Ry, s €S, 2-6
2 det(zg(rs)) TS (2-6)

c(r,s) =

since, for fixed r, the quotient of 9, det(g j« (r, 0)) by 2 det(g j(r, )) is intrinsically defined as a function
on §, independently of the choice of the coordinate chart. We then have

AG =3+ e Agry +c(r, )3, + (n— 1)d,.
It will turn out be convenient to work with the density
dG = """ 4G, (2-7)

rather than dG itself. In particular, we will use the following elementary property: for all relatively
compact subset V' € ¢,(U,), all R > Ry and all 1 < g < oo, we have the equivalence of norms

lull Louagy = lu oW, e, suppu) C W' ((R, +00) x V), (2-8)

L9(R") being the usual Lebesgue space. This is a simple consequence of (1-8) and (2-5) (we consider
R > Ry since (1-8) gives an upper bound for det g(r, €) as r — Ry, not a lower bound).
We then have a unitary isomorphism

L2, dG) s urs e D2y ¢ 120, dG), (2-9)

and Ag is unitarily equivalent to the operator

n—1

Ag:=e""Age ™, yn =5,

(2-10)
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on L2(, dG). This operator reads
Ao =87 +e 2 Mgy +(r, $)d — yuc(r,s) — v, (2-11)
and we will work with
P=—Ag—V. (2-12)
If g,(r, ., -) is the principal symbol of —A,) in the chart U,, namely
a.(r.0,6)= > g 0&&, (2-13)
1<k,l<n—1

the principal symbol of P in the chart AU, is then
po=p’+e 2 qr,0,m). = p* +q.(r.6, ¢ ). (2-14)

The full symbol of P is of the form p, + p, 1 + p..o with

Puj= Z akp(r,0)p e P, j=0,1. (2-15)
k+IBl=j

The terms of degree 1 in  come from the first-order terms of the symbol of —A, ). In the expression
of Ag they carry a factor e~ and therefore, if j = 1, k = 0 and |8| = 1 above, we could write
axp(r,0) =e"b, yp(r, 0) for some function b, xg bounded as r — 00. This remark and (1-8) show more
precisely that, for all V & ¢, (U,), the coefficients in (2-15) decay as

19788 a,15(r, )| < Cyja(r) ™', HeV, r>Ry+1. (2-16)

The decay rate —7 —1— j will be important to solve transport equations for the Isozaki—Kiada parametrix.
This is the main reason of the long-range assumption (1-8).

2B. Pseudodifferential operators and the spaces RBpyp(2). We will consider h-pseudodifferential op-
erators (h-WDOs) in a neighborhood of infinity and the calculus will be rather elementary. For instance,
we will only consider compositions of operators with symbols supported in the same coordinate patch
and no invariance result under diffeomorphism will be necessary.

The first step is to construct a suitable partition of unity near infinity. Using the cover (2-2) and the
related diffeomorphisms (2-3), we consider a partition of unity on S of the form

Y woyi=1, withi € CF®R™). supp(ic) € ¥ (Uy), (2-17)
€y
and a function x € C c><é([Ri) such that

supp(x) C [Ry; + 1, +00), k=1 on [Ry+2,4+00). (2-18)
Then, the functions (k ® k) o ¥, € C*° (M) satisfy

1 if >R 2
Z(x@m)o%(m):{ trm) = Ry 2, (2-19)
— 0 if r(m) < Ry+1,
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which means that they define a partition of unity near infinity. We could obtain a partition of unity on Jit
by adding a finite number of compactly supported functions (in coordinate patches) be we won’t need it
since the whole analysis in this paper will be localized near infinity.

We also consider & € C*°(R) and k, € Cg° (R" 1, for all « € $, such that

k=1 on(Ry+ 3, +00), supp(&) C (Ry + . +00), (2:20)
ik,=1 near supp(x,), supp(k,) € Y. (U)).
We next choose, for each ¢ € $, two relatively compact open subsets V, and V, such that
supp(k,) €V, € V/ Esupp(k,) and k, =1 near V. (2-21)

We are now ready to define our WDOs. In the following definition, we will say that a € C*®(R*") is
a symbol if either a € C;° (R?") —that is, a is bounded with all derivatives bounded — or

a(r,8,p,n) = as(r, 0)p*nP, (2-22)

with a;g € C;°(R"), the sum being finite. We shall give examples below. Notice that throughout this
paper, p and n will denote respectively the dual variables to r and 6.

Definition 2.1. For ¢ € $, all i € (0, 1] and all symbol a such that
supp(a) C [Ry + 1, +00) x V/ x R", (2-23)
we define
Op,(a) : CF (M) — C® (L),

by
(@)L(a)u) oW, '(r,0) = a(r, 0, hD,, hDy) (& (r)&.(0) (oW, (1, 6)). (2-24)

Note the cutoff Kk ®k, in the right-hand side of (2-24). It makes the Schwartz kernel of (’)?) ,(a) supported in
a closed subset of JM? strictly contained in the patch AU? so that Op,(a) is fully defined by the prescription
of W, Op, (a)¥}. For future reference, we recall that the kernel of the latter operator is

Qrh)™" / / =IO 10 0 5 ) dp iy R()ELO). (2-25)

The notation 5?7 , refers to the following relation with the measure dG:ifaeC e (R?") satisfies (2-23),
then

”apL(a)||L2(/1/L,d’(.;\)*>L2(M’d’G\) S 1, h € (0, 1] (2—26)

This is a direct consequence of the Calderén—Vaillancourt theorem using (2-8) with g = 2, the inclusions
in (2-20), and (2-21). In the “gauge” defined by d G, the latter gives

lle™"" Op (@)e?"" | L2i.a6)— 12cac) S 1. h € (0,11, (2-27)

Working with the measure dG is to this extent more natural and avoids to deal with exponential weights.
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We now describe the typical symbols we shall use in this paper. Using (2-17), (2-18), (2-19) and
(2-21), we can write

WP =" 0p ((c®k)x (p.+hp.i+hpo)). r>Ry+2, (2-28)
ey

using (2-13), (2-14) and (2-15). One observes that the symbols involved in (2-28) are of the form
a,r,0,p,n)=a,,0,p,e "n), (2-29)

with @, € S2(R" x R"). It will turn out that the functional calculus of A2 P (or h2A¢) will involve more
generally symbols of this form with g, € ST (R" x R"). For instance, if f € Cj°(R), the semiclassical
principal symbol of f(h*P) or f(—h?>Ag) will be

f(p*+q.(r,0,e ")), (2-30)

which, once multiplied by the cutoff k¥ ® k,, is of the form (2-29) with g, € ST°°(R" x R"). This type of
symbols is the model of functions described in Definition 2.2 below. To state this definition, we introduce
the notation '

Dl =Pl o] oz ok
for all j,k € Ng and &, B € Ni .

Definition 2.2. Given an open set 2 C T*R"” = (0, +00), x [Rg’l x R, x RZ’I, we define

Pryp(Q) = {a € C*(Q): D{Pa € L®(Q) forall j k € No, ., p e NG~}

and
Fhyp(Q) = {a € C(R™) : supp(a) C Q2 and a € Byyp(Q) }.
A family (a,)yen is bounded in Bayp(S2) if (Djy” ay)ven is bounded in L(<) for all j. k. e, B.
Note that considering 2 C T*R’} is not necessary but, since we shall work only in the region where
r > 1, this will be sufficient.

Example 2.3. Consider the following diffeomorphism from R*" onto itself
Foyp : (r, 0, p,m) = (r,6,p,e "1n). (2-31)
If a, € SO(R" x R") is supported in Fpy,(€2), with @ C T*R’, then (2-29) belongs to Fhyp(£2).
Proof. We only need to check that (2-29) belongs to By, (£2). We have
3-(a(r, 0, p, e m) = (3,a)(r,0,p, e n) —e "0 (9a)(r, 0, p, &) jg=ery
which is bounded since £ - 9z a, is bounded. Similarly
"8y (ar,0, p,e7" ) = (3:a)(r,0, p, &) g=cry,

is bounded too. Derivatives with respect to p, 6 are harmless and higher-order derivatives in r, n are
treated similarly. (|

The next lemma gives a characterization of functions in By, (£2).
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Lemma 2.4. Let Q@ C T*R'} be an open subset and assume that
Fryp(2) CRL x B,  with B bounded. (2-32)

A function a € C*°() is of the form

a(r,0,p,m)=a(r,0,p,e""n), witha e Cp°(Fnyp(2)), (2-33)
if and only if
D#¥a e L*®(Q) forall j.k.a.B. (2-34)

Here Cp°(2) and Cp°(Fiyp(S2)) are spaces of smooth functions bounded with all derivatives bounded on
Q and Fyy,(S2), respectively.

Proof. That (2-33) implies (2-34) is proved in the same way as Example 2.3: the boundedness of & - dza
follows from the boundedness of & = e™"n in Fyyp(€2) by (2-32) and the fact that a € Cp°(Fhyp(L2)).
Conversely, one checks by induction that

a(r,0,p,8):=a(@,0,p,e&),
belongs to Cp°(Fhyp(£2)), using again the boundedness of & on Fyyp(2). Il

Example 2.5. For all f € Cj°(R"), all R > Ry and all V € ¥,(U,), (2-30) satisfies the conditions of
this lemma with 2 = (R, +00) x V x R".

Proof. By (1-8), there exists C > 1 such that
ClEP <qr0,8) <ClE)* forr>R, 0eV, R, (2-35)
and, using the notation (2-13),
19/05g" (r,0)] < Cjx forr >R, 6€V. (2-36)

Therefore, (2-35) and the compact support of f ensure that ¢~"n and p are bounded, hence that (2-32)
holds on the support of (2-30). Then, (2-36) implies that f (p? + q.(r, 0, &)) belongs to Cp°(Fryp(£2))
(notice that here Fyyp(€2) = (R, +00) x V x R"). Il

We conclude this subsection with the following useful remarks. If a, b € Fpy,(£2) for some €2 (such
a, b satisfy (2-23)), we have the composition rule

Op, (@) Op,(b) = Op,((a#b)(h)), (2-37)

if (a#b)(h) denotes the full symbol of a(r, 8, hD,, hDy)b(r, 0, hD,, hDy). In particular all the terms of
the expansion of (a#b)(h) belong to Fhy,(£2) and are supported in supp(a) N supp(d). Similarly, for all
N > 0, we have

Op,(a)" = Op,(at +---+hVa%) + N Ry(a, h) (2-38)

with ag, ..., ay € Fnyp(€2) supported in supp(a) and || Ry (a, ") || 2 d6)— L2 (.dC) <1 for h € (0, 1].
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2C. The functional calculus. In Proposition 2.7 below, we give two pseudodifferential approximations
of f(h?P) near infinity of ., when f e Cy°(R). The first approximation, namely (2-43), is given in
terms of the “quantization” 5}1 defined in the previous subsection. This is the one we shall mostly use
in this paper. However, at some crucial points, we shall need another approximation, (2-44), which uses
properly supported WDOs.

To define such properly supported operators, we need a function

¢ e CP(RY), =1 near0, supp(¢) small enough,

which will basically be used as a cutoff near the diagonal. The smallness of the support will be fixed in
the following definition.

Definition 2.6. For ¢t € $, all 1 € (0, 1] and all symbol a satisfying (2-23), we define
Op, pr(a) : C5Z (M) — C*= (M),

as the unique operator with kernel supported in Ou% and such that the kernel of W} 5;7 [a)W,, is

Qrh)™" f / en =059 5 nydpdnc(r —r',6 —8'). (2-39)

The advantage of choosing the support of ¢ small enough is that, using (2-23), we can assume that, on
the support of (2-39), r’ belongs to a neighborhood of [ Ry + 1, +00) and 6" belongs to a neighborhood of
V/. For instance, we may assume that ' € € ~1(1) and " € &' (1) so that we can put a factor & ()&, (6")
for free to the right-hand side of (2-39). The latter implies, using (2-8), (2-25), and (2-39), the standard
off-diagonal fast decay of kernels of ¥YDOs and the Calder6n—Vaillancourt theorem stating that, for all
aecCp (R?) satisfying (2-23) and all N € Ny, we have

10p,(a) — Opupr @l 12 (1,d6)—> L2, dG) S hv, h e (0,1]. (2-40)

This shows that, up to remainders of size £, @L(a) and Op, jr(a) coincide as bounded operators on
L?(M, dG). Under the same assumptions on a, we also have

1O pr (@ L2 (it.06)— L2d6) S s h e (0, 1], (2-41)

which is a first difference with @L(a) for which we have only (2-27) in general. The estimate (2-41) is
equivalent to the uniform boundedness (with respect to & € (0, 1]) of """ Op, ,,,(a)e™ """ on L2, dﬁ).
The latter is obtained similarly to (2-26), using the Calderén—Vaillancourt theorem, for we only have
to consider the kernel obtained by multiplying (2-39) by e"** "), which is bounded (as well as its
derivatives) on the support of ¢(r —r’, 6 — 6’).

In other words, (2-41) can be interpreted as a boundedness result between (exponentially) weighted
L? spaces. Similar properties holds for L¢ spaces (under suitable assumptions on the symbol @) and they
are the main reason for considering properly supported operators. In particular, they lead to following
proposition, where we collect the estimates we shall need in this paper. We refer to [Bouclet 2007] for
the proof.
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Proposition 2.7. Let f € C;°(R) and let I € (0, +00) be an open interval containing supp(f). Let
Xy € Cg°(M) and R > Ry + 1 be such that

Xy(m)=1 if r(m) < R+1.
Then, for all N > 0 and all 1 € $, we can find symbols
ao(f)s -y aun(f) € Fnyp((R, +00) x V, x R" N p; (D)) (2-42)
(where p, is the principal symbol of P in the chart U,) such that, if we set

a™ (f, h) =a,o(f) +ha, 1 (f)+- -+ hNa v (f),

we have
(1= X5) f(h*P) =Y Op,@™ (f, 1)) + K" Ry (£, ), (2-43)
=X ]
(1—Xg) f(B*P) = % Oppe (@™ (f, 1)) + N Ry e (f, 1), (2-44)

where, for each q € [2, 00],

le™" R pe (fs Wl L2040.0G)— Lo (.aG) S BT forh e 0,11, (2-45)

and
RN (f. Wl 2 i) 2dey S 1 for e (0, 1. (2-46)

In addition, for all 1 € $ and all q € [2, 0o], we have

11
le™"" Oppe(@™ (fs W) 124.06) > Loiacy Sh 270 for h e (0,11, (2-47)

and, for all g € [1,00] and all y € R,
le™" Oppe(@™ (£ I | Loiatdty Loy S 1 forh € (0,11 (2-48)

In this proposition, as well as in further definitions or propositions, the interval / can be considered
as a semiclassical energy window, in the sense that the principal symbol of 22 P will live in I. In the
sequel, 1 will be more explicitly of the form (%, 4) or ( —¢&, 4+ 8) see for instance (2-54).

To make (2-42) more explicit, let us quote for instance that

ao()(r, 0, p, ) = k() f (0> +q.(r, 6, ¢ ) x (1 = Xar) (W, (r, 0)).

More generally, (2-42) and Lemma 2.4 show that a, o(f), ..., a, n(f) are of the form (2-29), with
a,(r, 9, p, &) compactly supported with respect to (p, &).

The estimate (2-48) basically means that Op,, pr(af )( f,h) preserves all L9 spaces with any expo-
nential weights. In particular, since LY(M,dG) = e~ 7"/91L9 (M, dG) replacing dG by dG in (2-48)
would give a completely equivalent statement. This estimate is the main reason for introducing properly
supported operators. Of course, (2-48) holds for other symbols than those involved in the functional
calculus of P. We have more generally (see [Bouclet 2007]) for all y € R,

lle””" Op, pr(al)e ||Lq(m dG)— L (M,dG) ~ <1 forhe(0,1], (2-49)
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for any g € [1, oo] and any
a, € Pnyp ((Ryg + 1, +00) x V/ x R" N p7' (1)) ,

provided I’ is bounded.

By the unitary equivalence of P and —Ag — y2, we would get a very similar pseudodifferential
expansion for f (—h?Ag). (Here we have only described (1 — X)) f (h?P) since this will be sufficient
for our present purpose, but of course there is a completely analogous result for the compactly supported
part Xy f (h?P); see [Bouclet 2007].) Such an approximation of f (—h?Ag) was used in [Bouclet 2010]
to prove the next two propositions.

Proposition 2.8. Consider a dyadic partition of unit
L= fo+)_ f@ "),
k=0

for A in a neighborhood of [0, +00), with
foeCFEM®),  feCq ([3.4). (2-50)
Then, for all X € C3°(M) and all g € [2, 00), we have

1/2
||(1—x>u||Lq<M,dG)§< > ||<1—x>f<—h2AG>u||%q<M,dG>) + lull 2 .a)-

h2=2"*k
k>0

This proposition leads to the following classical reduction.

Proposition 2.9. Let X € C;°(M) and (p, q) be an admissible pair. Then (1-10) holds true if and only if
there exists C such that

11 = X)€" f(—h* Ag)uollLro.11:L9 a6y < Clluoll 2(u.a6)- (2-51)
forall h € (0, 1] and ug € C3°(M).

This result is essentially well known and proved in [Bouclet 2010] for a class of noncompact manifolds.
We simply recall here that the LY — L7 boundedness of the spectral cutoffs f(—h2Ag) is not necessary
to prove this result, although the latter slightly simplifies the proof when it is available.

2D. Outgoing and incoming areas. Propositions 2.7 and 2.9 lead to a microlocalization of Theorem 1.2:
as we shall see more precisely in Section 2E, they allow to reduce the proof of (1-10) to the same estimate
in which 1 — X is replaced by A-WDOs. But this microlocalization, i.e., the support of the symbols in
(2-42), is still too rough to simplify the proof of Theorem 1.2 in a significant way. The purpose of this
subsection is to describe convenient regions which will refine this localization.

Definition 2.10. Fix ¢ € $. For R > Ry + 1, an open subset V € V/ (see (2-21)), an open interval
I € (0,400) and o € (—1, 1), we define

TR, V. Lo)={(r0,p.m)eR”":r>R, 0V, pel, £p>—op//?},

L

where p, is the principal symbol of P in the chart AU, given by (2-14). The open set I';'(R, V, I, 0) is
called an outgoing area, and I', (R, V, I, ') an incoming area.
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We note in passing that, except from the localization in 6, these areas are defined using only the
variable r, its dual p and the principal symbol of P. In particular, up to the choice of the coordinate r,
the conditions » > R, p, € I and p > —ap}/ 2 define invariant subsets of T*M(. However the whole
analysis in this paper will be localized in charts and we will not use this invariance property.

Let us record some useful properties of outgoing/incoming areas. First, they decrease with respect to
V,I,0 and R~

Ri>Ry, VicV,, LCh, o1<0p = T'F(R,Vi,11,001) CTF(Ry, Vo, b, 00).  (2-52)
Second, we have
THR, V., LYUT (R, V, 1Y) = (R, +00) x V x R" N p; (D). (2-53)
Here we have chosen o = % but any o € (0, 1) would work as well.

We will use the following elementary property, proved later as part (ii) of Proposition 4.1.

Proposition 2.11. Any symbol a € Fpy, ((R, +00) x V xR"N pt_1 (I)) can be written as
a=a"+a", with aieffhyp(l"ti(R, V,1, %))

This splitting into outgoing/incoming areas was sufficient to use the Isozaki—Kiada parametrix in the
asymptotically Euclidean case; in the AH case, we will only be able to construct this parametrix in much
smaller areas, called strongly outgoing/incoming areas, which we now introduce.

We first describe briefly the meaning of such areas, say in the outgoing case. Basically, being in an
outgoing area means that p is not too close to —p'/?; the aim of strongly outgoing areas is to guarantee
that p is very close to p'/?, which is of course a much stronger restriction. This amounts essentially to
chose o close to —1 in the definition of outgoing areas. We will measure this closeness in term of a small
parameter €. It will actually be convenient to have the other parameters, namely R, V, I, depending also

on &, so we introduce
Re)=1/e, V,,={0ecR":distd, V) <&}, I(e)=(}—e4+¢), (2-54)
where we recall that V, is defined in (2-21).
Definition 2.12. For all ¢ > 0 small enough, we set
TE(e) :=TF(R(e), Vie, I(e), % — 1).
The open set F:“S(S) is called a strongly outgoing area, and I', ((¢) a strong incoming area.

The main interest of such areas is to ensure that e~ |n| is small if ¢ is small. Indeed, if g € [0, +00)
and —1 < o < 0, we have the equivalence

12 «— 4p>0 and q < o 2(1—0%)p°. (2-55)

+tp > —0(p’+q)
Therefore, there exists C such that, for all & small enough and (r, 6, p, 1) € Ffs (e),
q.(r,0,e"n) < Ce?,

which, by (2-35), is equivalent to
le”"nl S e. (2-56)



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 17

Note also that, by (2-52), strongly outgoing/incoming areas decrease with ¢.

We now quote a result that motivates, at least partially, the introduction of strongly outgoing/incoming
areas. Its proof is given in Section 4A.

Denote by &' the Hamiltonian flow of p,. This is of course the geodesic flow written in the chart
W, (U,) x R" of T*AM.

Proposition 2.13. Fix o € (—1, 1). There exists R, > 0 such that for all R > R and all ¢ > 0 small
enough, there exists tg > 0 such that

O (IF(R, V., (f—e,4+¢),0)) CTH(e) if £t >1tg,.
In particular, for all ¢ > 0 small enough, there exists T, > 0 such that

O(TER), Vi, I(e),0)) CTE(e) if £t >T,. (2-57)

.S

Note that, since p, is only defined in the chart W, (U,) x R”", its flow is not complete. We shall however
see in Section 3 that, for any initial data (r, 6, p, ) € FLi (R(e), V,, 1,0), CIDf(r, 0, p, n) is well defined
for all ¢ > 0; that is, CDf(r, 0,p,n) € ¥, (U,) x R" for all ¢ > 0.

Proposition 2.13 essentially states that the forward flow sends outgoing areas into strongly outgoing
areas in finite time, and likewise the backward flow sends incoming areas into strongly incoming ones.
This will be interesting for the proof of Proposition 2.24.

The last type of region we need to consider are the infermediate areas. They should have two
properties: firstly they should essentially cover the complement of strongly outgoing/incoming areas
in outgoing/incoming areas and, secondly, be small enough.

To define them we need the following. For all ¢ > 0 and all § > 0, we can find L + 1 real numbers,
o0, ...,0[,

(/2 —1=0p <01 < <oy =1, (2-58)

such that -1
(/2 =1,3) = U (01-1.0141) (2-59)

and =
lo74+1 —01-1] < 6. (2-60)

Note that the intervals overlap in (2-59), since (07_1, 0741) always contains o;.

Definition 2.14. The intermediate outgoing and incoming areas associated to the cover (2-59) are

I 8D ={(0,p,m) eR" :r > R(e), 0 €V,, pel(e), £p/p!* € (o141, —01-1)},

forl<I<L-—1.
Notice that, by definition,

I (e, 80 CTE(R(e), Vi, I (o), 1). 2-61)

In the notation, we only specify the parameters which are relevant for our analysis, namely ¢, §, but,
of course, intermediate areas depend on the choice of oy, ..., or. Here § measures the smallness and
Proposition 2.16 below will explain how to choose this parameter.
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Proposition 2.15. Fix ¢ > 0 small enough, 6 > 0 and oy, ..., oy satisfying (2-58), (2-59) and (2-60).
Then, any symbol
a™ € Py (T (R(2), Vi, 1(8), 3))

can be written as

+_  + + +
a =daq +al,inter—i_' : '+aL—1,inter’

with af € Fuyp(TE(€)) and af e, € Fryp (T (82 83 D).
The proof is given in Section 4A.

We conclude this subsection with the following proposition which will be crucial for the proof of
Theorem 1.2 and motivates the introduction of intermediate areas. The proof is given in Section 4A.

Proposition 2.16. Fixt > 0. Then, for all ¢ > 0 small enough, we can find § > 0 small enough such that,
for any choice of oy, ..., or, satisfying (2-58), (2-59) and (2-60), we have, forall 1 <l <L —1,

CD ( Lll’ltel‘(8 8 l))ﬂl—d:

L, 1nter

(e,08;1) =2, (2-62)

provided that
+t>1.

2E. The main steps of the proof of Theorem 1.2. We already know from Proposition 2.9 that we only
have to find X € C§°(M) such that (2-51) holds, which is equivalent to

lle™"" (1 = X) f (> PYe ™ "Puoll o o.1): La (a.dGy) < Clluoll 2u,46) (2-63)
using the unitary map (2-9) and (2-11), (2-12).
Before choosing X, we introduce the following operators. Choose a cutoff f € C5°((0, +00)) such
that ff = f.
Lemma 2.17. For all X € C§°(M), we can write
(1 =0 f(h*P) = (1= ) Ape(h) + R(h)
with R(h) satisfying, for all q € [2, o],
||e_y"rR(h)||L2(M dG)— L1 (M,dG) ~> S (2-64)

and Apc(h) such that, for all g € [2, 0],

le™"" Apr(M) | 20, d6) > e (acy Sh (%_é)» (2-65)
lle™ 7" Ape(h)e”" || Lo, dGy— Lo ,a6) S 1, (2-66)
[ Apr ()" ™" |l 11 .d6)— L2 dey ST "2, (2-67)
lle”" Ape(h)* e ™" || L1 (.dCy— L i.dT) S 1- (2-68)

Proof. This is an immediate consequence of Proposition 2.7. Using (2-44), with N such that N+1>n/2,
we define A, (h) as the sum of the properly supported pseudodifferential operators. We thus have (2-64),
(2-65) and (2-66). The estimates (2-67) and (2-68) are obtained by taking the adjoints (with ¢ = oo in
(2-65)) with respect to dG. O
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Basically, the operators e """ A (h) and A, (h)*e™ """ will be used as “ghost cutoffs” to deal with
remainder terms of parametrices which will be O(A") in PLA(M, d’(?)), using the Sobolev embeddings
(2-65) and (2-67). They will be “transparent” for the principal terms of the parametrices by (2-66) and
(2-68), which uses crucially that they are properly supported.

For ¢ to be fixed below, we choose X € C3°(.Ml) such that
x=1 forr(m)<3e !

This function will appear in Proposition 2.18 below only trough its support. More precisely, the propo-

sition states that to prove (2-63) for such a X (with ¢ small enough), it is sufficient to prove the estimate

(2-70) for a class of symbols supported where r(m) > e~

Proposition 2.18 (Microlocalization of Strichartz estimates). To prove (2-63), it is sufficient to show
that, for some & small enough and all

a, € Fnyp ((R(e), +00) x Vi x RN p (I (e))) , (2-69)
where we recall that R(g) = ¢~ and 1 (¢) = (Alf —&,4+ 8), we have

lle™"" Ape(h) Op (a)e ™" P uoll e o,11: e uayy < Clluoll 2u.d6)- (2-70)
uniformly with respect to h € (0, 1].

Proof. Choose Xo € C3°(M) such that

Xo=1 forr(m) < 8_1,

Xo=0 forr(m)>2s"".

We then have (1 — Xo) = 1 near supp(1 — X) so, by the proper support of the kernel of Ay.(h), we also
have

(1 - X)Apr(h) = (1 - X)Apr(h)(l - XO),
at least for ¢ small enough. The latter and (2-64) reduces the proof of (2-63) to the study of
eV Ape(h) (1 — Xo) f(h*P)e™"F.

By splitting (1 — Xo) f (h*P) using (2-43) with N + 1 > n/2, we obtain the result using (2-46) and
(2-65). O

We now introduce a second small parameter § > 0. By Propositions 2.11 and 2.15, for all § > 0, any
a, satisfying (2-69) can be written as

L—1
o + -
a=ag +ag + 1221 4] inter +al,inter’ (2-71)

with
af € P, ) ner € Fayp(Tiiper (@ 85 D). (2-72)

L,inter
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Proposition 2.19 (Reduction to microlocalized dispersion estimates). To prove (2-70), it is sufficient to
show that, for some ¢ and § small enough, we have

< Celht|™?,  (2-73)

Ll (da)—>L°°(dG) = C$,8 |ht|7n/2v (2_74)

le™7" Ape(h) Op (a)e ™" Op,(aZ)* Ape(h) e V"
He*J/nrApr(h)@)L (alzl:’imer)efithp @L(a[i’imer)*Apr(h)*eiynr

for

LU(dG)— L®(dG)

he(,1] and 0<4r<2n ' (2-75)

Recall that the important point in this lemma is (2-75), i.e., that it is sufficient to consider ¢ > O for
outgoing localizations, and ¢ < 0 for incoming ones.

Proof. Define

TE( h, &) =e " Ap()Op,(aD)e P, T75 (1. h,e,8) = e " Ap(h)Op,(apimer)e "' .
By (2-26) and (2-65) (with g = 2), we have,

||Tsi(l, h, 8)”L2(d/G\)—>L2(dG) + ||Tlicmer(f, h, e, 3)||L2(d’é)_>L2(dG) <Cgs forhe(0,1], teR;

hence by the Keel-Tao Theorem [1998], the inequality (2-70) would follow from the estimates

ITE @, b, )T (s, by ©)* Il L a6y Loowoy < Celt — 5172, (2-76)
||T1fmer(l‘, h, 8)7ﬁnter(s» h, &) L1 we)—L=we) < Ceslt — 5|72, 2-77)

for h € (0, 1] and ¢, s € [0, 1]. Using the time rescaling # — ht, the equality L' (dG) = e~ 2" L1(dG),
and the fact that the adjoint of (2-9) is given by e”"", we see that (2-76) and (2-77) are respectively
equivalent to (2-73) and (2-74), for h € (0, 1] and |¢]| < 2n~ 1.

The reduction (2-75) to &=t > 0 is obtained similarly to [Bouclet and Tzvetkov 2007, Lemma 4.3]. We
only recall here that it is based on the simple observation that the operators 7 (#)T (s)* considered above
are of the form Be~'~9” B* so L™ bounds on their Schwartz kernel for &(¢ —s) > 0 give automatically
bounds for £(¢ — s) < 0 by taking the adjoints. (|

As we shall see, there are basically two reasons for choosing ¢ small enough. The next result is the
first condition.

Proposition 2.20 (Time h~! Isozaki-Kiada parametrix). For all & > 0 small enough and all aF in
E;"hyp(Ffs(e)), we can write

oithP @L(asi)* = EIjI:((t’ h) —|—hnRIjI:((T, h),
with
”e—yﬂrEIﬁI:((t’ h)e_ynr”Ll(d/G\)—)Loc(dG) S |ht|_n/2’ (2—78)

IRt W 26— 120y S 1 (2-79)

he(,1], 0<z=+r<2nl
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Proof. By (2-38), the result follows from Theorem 5.1 and by a stationary phase argument justified by
Propositions 7.2, 7.3, 7.6, Lemma 7.9 and Propositions 7.11, 7.12. O

Proposition 2.20 is mainly an application of the Isozaki—Kiada parametrix. It has the following con-
sequence.

Proposition 2.21 (Time 4 ~! strongly incoming/outgoing dispersion estimates). For all & > 0 sufficiently
small, (2-73) holds for all h, t satisfying (2-75).

Proof. We first replace 0p[(ai) by Op,, pr(ai) to the left of e~/""F in (2-73). The remainder term, which
is O(h®°) in §E(L2(dG)) by (2-40), produces a term of size O(h>) in L(L! (dG) L*>(d@G)) using (2-65)
(with ¢ = 00) and (2-67). We then use Proposition 2.20: the remainder term satisfies

le " Ape(h) Op, pr(@X)e ™ P h" Rig (¢, h) Ape(h)* e ™" <1< |he|792,

LY(dG)—L®(dG) ~

and the main term E k (t, h) gives the expected contribution via the use of (2-66), (2-68), and (2-49) for
Optypr(aS ). O

The second condition on & will come from Proposition 2.24. It uses Proposition 2.16 which depends
on some fixed small time which will be given by the following result.

Proposition 2.22 (Time 1 geometric optics). There exists twkp > 0 such that, for all ¢ > 0 small enough
and all symbol a* € Fhyp (Fti(R(s), Vi, 1, %)), we can write
e ™ Op,(a*)* = Eqy (1. h) + 1" Ry (1, ),
with
le™" g (ts e " | iy 1o (acy S el ™2, (2-80)

I RWKB t, W 26y 126 S 15

for
he,1], O0<=£r<twks- (2-81)

Proof. This follows from the stationary phase theorem, using the parametrix given in Theorem 6.1 and
Propositions 7.2, 7.3, 7.6, and 7.8. O

The first consequence of this proposition is the following result on short-time dispersion estimates,
whose proof is completely similar to that of Proposition 2.21.

Proposition 2.23 (Time 1 dispersion estimates in intermediate areas). For all ¢ > 0, all § > 0 and all
satisfying (2-72), the estimate (2-74) holds for all h, t satisfying (2-81).

We can now give the second condition on &, also giving the choice of §. The proof is given in on page
65 (Section 6B).

Proposition 2.24 (Negligibility of 1 <¢ < h~! dispersion estimates in intermediate areas). If ¢ is small
enough, we can choose § > 0 small enough such that, forall 1 <l <L —1, all

bl:i,:inter € g)hyp( zmter(g 5 l))

+
al ,inter

and all N > 0, we have

| 0pt(bl 1nter)eilthp OPL(bl 1nter) ”Lz(d/G\)%Lz(d’G\) = Cl’NhN’ (2-82)
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for
he,1], twkp <=+r<2h%

This is, at least intuitively, a consequence of Proposition 2.16 with t = twgp and of the Egorov theorem

which shows that e~/""? @[(bffimer)* lives semiclassically in the region ®! (supp(bfimer)).

We summarize the reasoning above as follows.

Proof of Theorem 1.2. Using Proposition 2.21, we first choose ¢y > 0 small enough that, for all ¢ €
(0, &o], (2-73) holds for 0 < +r < 2h~ 1. By possibly decreasing gp, we then choose twgp according
to Proposition 2.22, uniformly with respect to ¢ € (0, g9]. Next, according to Proposition 2.24, we fix
e € (0, go] and § > 0 small enough that (2-82) holds for twxp < £t < 2h—1. Using (2-65), (2-67) and
Proposition 2.24 with N = n and A aﬁmer defined by (2-71), we have

[,inter

< Ces < |ht| ™2,

—¥n N (4T —ithP Ay ¢+ —¥n
”e VrAPr(h)Opt(al,inter)e " OPL(al,inter)*APr(h)*e " LY(dG)—L*(dG) =

for twkg < £t < 2h~!. On the other hand, (2-74) holds for 0 < +¢ < fwkas, using Proposition 2.22.
Therefore (2-74) holds for 0 < #¢ < 2h~!. By Proposition 2.19, this proves (2-70) for all a, satisfying
(2-69). By Proposition 2.18, this implies (2-63) which, by Proposition 2.9, implies Theorem 1.2. O

3. Estimates on the geodesic flow near infinity

In this section, we describe some properties of the Hamiltonian flow of functions of the form

p(r,0,p,n) = p> +w(r)q(r,6,n), (3-1)

on T*R% =R} x [RZ’I x R, x [Rgfl. Here ¢ is an homogeneous polynomial of degree 2 with respect
to n and w a positive function. In Section 3B, we will assume that w(r) = e~ 2" but we start with more
general cases in Section 3A.

The motivation for the study of (3-1) comes naturally from the form of the principal symbol p, of P
given by (2-14).

We emphasize that the symbol p considered in this section is defined on T*R’, whereas p, is only
defined on a subset of the form 7*(Ry;, +00) x V,. The results of Section 3B will nevertheless hold for
p. as well with no difficulty for we shall have a good localization of the flow in the regions we consider
(see Corollary 3.10).

3A. A general result. Let w = w(r) be a smooth function on R™ = (0, +00) such that

w/ /
w>0, w <0, (E) >0, (3-2)
and, for some 0 <y < 1,
d4+9r !
lim sup/ — €[—00,0). (3-3)
r—>—+o0 Jr w

Note that lim, _, ;o w(r) exists, by (3-2), and that (3-3) implies that this limit must be 0. Note also that,
for all R > 0, we have

w(r) <1 and |w' @) Sw(r) forre[R,+00).
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2 2r

These assumptions are satisfied for instance by w(r) =r “or w(r) = e
We assume that g is an homogeneous polynomial of degree 2 with respect to 1 of the form

q(rag’ U)ZQO(Q,U)“FQI(”,Q,TI) (3_4)

with gg, g1 homogeneous polynomials of degree 2 with respect to n satisfying, for some 0 < 7 <1,

18502 go(0, M| < (m)* !, (3-5)
1070508 q1(r, 6, M| < ()~ (m)> 7P, (3-6)

and, for some C > 0,
C'Inl* <q(r.6.n) < Cinl, 3-7)

for (r, 0, n) € Rt x R"™! x R"~!. The latter implies, by possibly increasing C, that
ClnlP <qo@.m <Cll’,  (@.m)eR"™ xR (3-8)
Setting ¢’ = 9,q (= 9,q1), we finally assume that,
w
7

/
2% 0 a5  r— 4oo, (3-9)
q w

uniformly with respect to # € R"~! and n € R*~!\ 0.
The Hamiltonian flow @' = (r', 87, p’, n"), generated by p, is the solution to the system

r=2p,
6= wdq/dn,
)= woq/n. (3-10)
p= —wqg—wq,
= —wdq/d0,
with initial condition
', 0", o', =0 = (r, 0, p, M). (3-11)
172

Our main purpose is to show that, if p > —p'/< (with p = p(r, 8, p, n)) and r is large enough, then

@' is defined for all # > 0 and r, — 400 as t — +oo (we will obtain a similar result for r < 0 provided
p < p'/?). This result relies mainly on the following remark: if n # 0, we can write

/ / w’ 2( w q/>
— — =Y (p— 1+ 2 1),
w'q —wq w(p p”) +w’Xq

Using (3-9) and the negativity of w’/w, this shows that, for all £ > 0, we can find R > 0 such that
/
—w'qg —wqg' > —(1—¢&)(p— ,02)%, on [R, +00), x Ry~ xR, x R~ (3-12)

which we shall exploit to prove that p > 0.
In the following lemma and in the sequel, we shall use extensively the shorter notation

p=p0,p,n).
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Lemma 3.1. Denote by (—t_, ty) (t+ € (0, 400]) the maximal interval on which the solution of (3-10),
with initial condition (3-11), is defined. Then

1+ = W
Furthermore, either r, — Q as t — t4 (resp. t — —t_) or t; = +00 (resp. t_ = 400).
Note that, if p(r, 0, p,n) =0, i.e., p =0 and n = 0, then it is trivial that 7, = 400.

Proof. We will only consider the case of 7, the one of 7_ being similar. By the conservation of energy
we have |p!| < pl/2 thus, for ¢ € [0, £y), ' is bounded,

Ir'—r| < 2tp'/?, (3-13)

and ' > r — 2tp'/?. We now argue by contradiction and assume that ¢, < r/2p'/? (in particular, that

t, is finite). Then ry :=r — 2ty p'/?> > 0 and r, > r, for all ¢ € [0, ;). Furthermore, by (3-7), we have
lwdyg| < C(wg +w) < C(p + w), with w bounded on [r4, +00), hence 6' is bounded on [0, z,.). One
shows similarly that ¢’ and 7’ are bounded on [0, 7,), using that |w’| < w on [ry, +00) for p. This
implies that lim,_,,, (r', 0', p, n") exists and belongs to (0, +00) x R"~! x R x R"~!. The solution can
therefore be continued beyond 7., which yields the contradiction.

We now consider the second statement. Assume that 7y < +00. We must show that r* — 0 as r — 7.
Assume that this is wrong. Then there exists R > 0 small enough and a sequence #; — . such that
r'« > R for all kK > 0. On the other hand, by energy conservation, we have |r'—r%| <2 pl/ 2|t —s| for all
t,s €[0,ty), hence

r' > —2p'2 |t — 1| > R/2

provided |t — #;] < R/4p'/?. Since f; can be chosen as close to 7. as we want, there exists & >
0 small enough such that r* > R/2 for t € [ty — &,ty). Then, by the same argument as above,
lim,_,,, (r", 6", p', n") exists and belongs to (0, +00) x R"~! x R x R"~!. The solution can be continued
beyond ¢, ; hence ¢t = +o00, which is a contradiction. O

Lemma 3.2. Let 0 < ¢ < 1. For any R > 0 such that (3-12) holds, we have:
(i) Ifr' > R and p" > 0 for some 1y € [0, ty), then t; = 400 and
r'>R, p'>p" r'>r042(—1)p" forallt>t.
(ii) Ifr'"® > R and p" < 0 for some ty € (—t_, 0], then —t_ = —o0 and
r">R, p'<p® r>r42(t—1)p" forallt <t.
Proof. As in Lemma 3.1, we only consider the case of 7. It suffices to show that
r'> R forallt € [ty, ty). (3-14)

Indeed, if this is true, Lemma 3.1 shows that z, = 400 and then, by (3-12), we have p’ > 0, whence
p' > pand r'—r > 2p%(t —1y). Let us prove (3-14). Consider the set

I={relto,ty):r* > Rand p* > p" for all s € [19, 1]}
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It is clearly an interval containing #y and we set 7 := sup /. By continuity, p’ > p™/2 > 0 for 7 in a small
neighborhood J of #y. This implies that 7/ > 0 on J, hence that r* > r > R on J N[fy, t;) and thus that
o' > 0on JN[t, ty) which in turn shows that p’ > p on J N [fg, ). This proves that T > fy. Then,
on [t9, T), we have

r'=R, p'=p". (3-15)
Now assume, by contradiction, that 7 < ¢;. Then (3-15) holds on [#, T'] and in particular we have
rT >0 £ 2(T —t)p™ > r. Thus r' > R in a neighborhood of 7 and this implies that 4’ > 0 in this
neighborhood. Hence there exists 7” > T such that (3-15) holds on [#y, T'] yielding a contradiction. [J

To state the next result, we define [ € (0, +00] as
(14+p)r w/
[=—1lim sup/ — (3-16)
r—>+00 Jr w

and we choose an arbitrary o € R such that

2., (4., \"* .
0<o<{_7+<l_2+1) if I < +oo,

1 if | =4-o00.

(3-17)

1/2
Note that 0 < —% + <;12 + 1) < 1if [ is finite, and that (3-17) is equivalent to

(1-0%1/2>20 > 0.

Proposition 3.3. For any o satisfying (3-17), there exists Ry, > 0 large enough that the following
property holds. Letr > Ry, , . Then:

G) If p > —op'/?, then ty = +00 and

r' > max ((1—p)r, (1—y—0y)r+20p1/2|t|) (3-18)

forallt = 0.
(i) If p < op'/?, then —t_ = —o0 and (3-18) holds for t < 0.

This proposition means that, by choosing initial data with r large enough and p > —op!/? (resp.
p < op'/?), the forward (resp. backward) trajectory lies in a neighborhood of infinity. In particular, the
forward (resp. backward) flow starting at (r, 6, p, n), with p > —op'/? (resp. p < op'/? ) depends only
on the values of p on [(1 — y)r, +00) x R*! x R x R*~ 1,

172

Proof. We only consider the case where p > —op!/?, the case where p < o p!/? being similar. If | < oo,

(3-17) allows one to choose 0 < ¢ < 1 such that
(11— —01/2>20. (3-19)

If | = oo, we choose an arbitrary ¢ € (0, 1). We next choose R so that (3-12) holds with the above choice
of &. If p > op'/? (recall that p'/?> > 0 since p > —op'/?) and r > R, then Lemma 3.2 shows that the
result holds with R,, ,.» = R. We can therefore assume that p < op'/2. Set

Ri=(0—-y"'R, T=yr/2p'2 (3-20)
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By Lemma 3.1, we have ¢t > T and, if r > Ry,
r'>r—=2tp'?>1=y)r>R fortel0,T].

Using (3-12), this implies that 6’ > 0 on [0, 7] and hence that p' > —op!/? for all € [0, T]. We
now prove by contradiction that there exists ¢ € [0, T'] such that p’ > crpl/ 2 If this is wrong, we have
(p")? < 02p on [0, T'], thus (3-12) shows that, for all 7 € [0, T],

o> —(1—e)(1— oz)p%(r’) >—(1—-8)1-— az)p%/(r +2tp'/?y,

using the third estimate of (3-2) and the fact that ' < r 4-2¢p!/? in the second inequality. By integration

over [0, T], we get
(14+y)r w/

1
pT—pz—(l—e)(l—oz)p‘”Q/ — (3-21)

using the second equality in (3-20). Fix R; such that, for all » > R,

— = 4o
(1—&)(1—0?)
With such a choice (and (3-19) if [ is finite), we see that, if » > max(R, Ry), (3-21) implies that
pT —p =>20p'/? and hence that p” > o p!/? which yields the expected contradiction.
In summary, we have shown that for any r > max(R;, R;) and any p > —o pl/ 2 there exists thel0, T]
such that p > op'/? > 0 and " > R, hence ¢, = 400 by Lemma 3.2. Furthermore, r’ > (1 — y)r on
[0, T]and r' > rT +2(t — T)op'? > (1 — (1 +0)y)r +2top'/? on [T, +-00). The result follows since

(I—=p)r ifte[0, T],
(1—y—oy)r+20p"?t ift>T. O

A4+9r 4 (1—e)l if I <400,
_/r if 1 = +oo.

max ((l—y)r, (1—y—oyp)r +20p1/2t) = {

3B. The asymptotically hyperbolic case. We will now prove more precise estimates on the Hamiltonian

flow of p when
wr)=e 7.

In that case, the conditions (3-2), (3-3) and (3-9) are fulfilled, with any 0 < y < 1 in (3-3) and we have
[ = +00 in (3-16).
We shall need the following improvement of Proposition 3.3.

Proposition 3.4. Let 0 < o < 1. There exist Ry > 0 and Cy > 0 such that: ifr > Ry and p > —op'/?
(resp. p < op'/?), then

rl>r+20p'? 1| - C,, forall t >0 (resp.t <0).
The improvement consists in replacing (1 — y — o y)r in the estimate (3-18) by r — C,.

Proof. Here again we only consider the case r > 0. By Proposition 3.3, we may assume that r’ > R for
all + > 0, with R large enough so that (3-12) holds with ¢ = % This implies that

o =2e""q(r', 0" n") — e qi(r', 0" ) = e q(r", 6", ') = p— (p)>. (3-22)
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If p > op'/?, then the result follows from Lemma 3.2 (with C, = 0). If p < op'/?, we will show that,

with T = 20p~1/2/(1 — &?), there exists ¢ € [0, T] such that p’ > op!/2. Assume that this is wrong.
Then (p')?> < o%p on [0, T] and by integrating the above estimate on p’, we get

pl —p=T(1-0*)p=20p'"
This proves that ol >0 pl/ 2 which is a contradiction. Therefore, by Lemma 3.2, we see that r’ — rl >
20p1/2(t —T) for t > T. On the other hand, we have r! > r — Zpl/zt for t € [0, T']. The latter implies

that v’ > r +20p'/?t —2p'2(1 +0)t > r +20p'/?t —45/(1 — o) for t € [0, T]. This holds in particular
for t = T and then for > T'. Thus the results holds with C, =40/(1 — o). O

We have so far only studied some localization properties of ®’, the Hamiltonian flow of p. We shall
now give estimates on derivatives of ®’. We start with the following lemma giving some rough estimates.
They will serve as a priori estimates for the proof of Proposition 3.8 below.

Lemma 3.5. Forall 0 < o < 1, there exists R > 0 such that, for all (r, 0, p, n) € T*R} satisfying
r>R, =+p> —O’pl/z, pE (%, 4), (3-23)

and all =t > 0, we have
|e"P108 9] o5 0 (@ — @°)(r, 6, p, )| < (1)

Note the e’!?! factor in front of the derivatives.
We will need two lemmas. The first one, proved by induction, is a soft version of the classical Faa di
Bruno formula.

Lemma 3.6. Let 2; C R™, Q, C R" be open subsets, with ni, ny > 1. Consider smooth maps y =
Oty o3 Yny) 1 Q21 = Qand Z : Q1 X Qp — R, withns > 1. Then, for all |y| > 1,

A (Z(x, y(x))) = By Z)(x, y(x))BY y(x) + (9L Z) (x, y(x)) + Ry (x)

where R, (x) vanishes identically if |y| = 1 and, otherwise, is a linear combination of

_ ! v "2 Vi
(07770 Z) (e, y ) (05 31 () . 0 Y1) o (37 Yna () By s (X)),
with y, v/, ;/]; eNg', v=(v1,...,vn,) € Ny satisfying vy #0, v # 0 and
Y <7 2<pl+ly=yI=<Iyl y}+-~-+yll+--~+y72+---+y’332=y’,

and using the convention that Bi/l(yk(x) ... ajﬁk vi(x) =1if vy =0 (if v # O then y’l‘, AU y"vk are all
nonzero).

In the second lemma, we consider the linear differential equation
X=AWNOX+Y(), (3-24)

where A(-) is a continuous map from [0, +00) to the space My xn(R)) of N x N matrices with real
entries, for some N > 1, and Y(-) € C([0, +00), CV). We assume that A(-) belongs to a subset
B C C([0, +00), My xn(R)) for which there exist d > 0 and Cg > 0 such that

A < Cxe™®*" forallt >0and A(-) € B,
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with ||| - ||| a matrix norm associated to the norm || - || on C¥, i.e., such that ||M Z|| < ||M]|| | Z||, for all
M e Myxy(R) and Z € CV.

Lemma 3.7. There exists C > 0 such that, for all A(-) € B and all Y (-) satisfying

o0
/ 1Y (@)t < oo,
0

the solutions X (-) of (3-24) satisfy
Xl =C (IIX(O)II +/0 1Y ()l dS> fort=0. (3-25)

Proof. First fix 0 < 8 < g and & = 85 — 8. Choose T > 0 such that Cze %' < ¢ for t > T. By Gronwall’s
lemma, we have

IX ()] < (IIX(T)II + / oonY(s)nds) D fore>T,
T

T
||X(r>||s<||X<0>||+/ ||Y(s)||ds)ec'ﬂ for t € [0, T].
0

These two inequalities give, for some C depending only on Cg, ég, 6 and T,

IX®l =C (IIX(0)||+/ 1Y ()l dS> e’ fort>0.
0

Used as an a priori estimate in (3-24), this yields

IX@] < 1Y @)l + CCqe™ (IIX(O)II +/0 1Y ()l dS> forz >0,

which implies (3-25). O

Proof of Lemma 3.5. As before, we only prove the result for ¢t > 0. For |8|+ j + |«| +k =0, the result is
a consequence of the motion equations (3-10) and energy conservation. Indeed, for ' — r, the estimate
follows directly from (3-13). Next, the equation of motion for 8, together with (3-7) and Proposition 3.4,
shows that
1S e IS e ) S 1+ p:

hence that |6'— 6| < (t) by integration. One similarly shows that [p’— p| + |0 — p| < (t). We now
consider the derivatives and write, for simplicity, 0¥ = 8,’78 97 0F 8’;. Denoting by H), is the Hamiltonian
vector field of p and applying d" to (3-10), we obtain

P17 d! = (dH,)(d")e"F1a¥d" + R(1),

where, by Lemma 3.6, R(¢) vanishes if |y| =1 or, if |y| > 2, is a linear combination of

2n

(3“Hp)(q>f)er\ﬂ|(ay{rf ... 33’51#) .. (a)ﬁ ,7;71 . ay‘%;n ;7271), (3-26)
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Here v = (vq, ..., vy,) is of length at least 2, all the derivatives of ®' involved in R(¢) are of strictly
smaller order than y (meaning that yfl_ <y and yfl_ # y), and

2<Pl<lyl, yitoHvE =y (3-27)

Writing d H,, as a matrix, we have

0020 0 0 0 0
g - 0000f o[ 901—20g Baq 0 dg
Ho=1ooo00|"¢  [49.q1-4g—02g 200q—02q1 0 29,g—02
rq1 q rrql 0q qul T}q nrql
0000 209q — 2541 —9q 0 —dryq

Defining M as the first (constant) matrix of the right-hand side and using Proposition 3.4, we have
|dH, (@) = M| S e (') S e 27 ()P + (1)) S e
using that 2p'/2 > 1 and that e~ ()? is bounded, by (3-23). We then set
Aty =e ™M (dH,(d") — M) ™,
X(t)=e M Plgr! — 1Py @0
Y@O)=e"™MR(t)+ A(r)e" Pl 00,

so that
X =AOX@®)+Y @), X(0)=0.

Noting that M? = 0, we have
exp(£tM) =1+tM, |exp(£tM)| < (t); (3-28)

thus
A1) Se 7 (1)r Se /2 (3-29)

To estimate X (¢) by Lemma 3.7, we still need to estimate Y (). We first assume that 0¥ = 85 with
|B| = 1. We then have R(¢) =0 and

A P1970° = =™ (3 H,) (D)e,
since Ma,’78 @0 =0. By Proposition 3.4 and (3-23) again, we obtain
| H) (@) S e () Se ™7,

so that |Y (r)] < e~'/2. Using (3-29) and Lemma 3.7, we get |X(1)] < 1. Since M3} ®° = 0, we can
rewrite X (f) = e 'Me” 8,’,3(<I>’— ®Y) and, using (3-28), finally get

e 3l (@' — @) < (1),
The other first-order derivatives of ®'— ®° are studied similarly (note that there is no ¢’ factor then), by
showing that X (¢) is bounded and using that X (¢) = e M7 (p'— PO + (M — 1)97 DO with (3-28) to

get
197 (' — @%)| < (1).
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For higher-order derivatives, 37®% = 0 and 97 (P’ — &) = 37 P'. Furthermore, since the derivatives of
@' involved in R(¢) are of strictly smaller order than y, we can proceed by induction. By writing x’ for
r', p', 0" and

o = ol aft ot ol
for the derivatives involved in (3-26), with 1 <i <2n and 1 </ <vj; (recall that, if v; =0, the corresponding
product in (3-26) is 1), the induction hypothesis yields

e 7| S ),
since 87 x' = 9% (x'— x%) if B #£0. If n+2 <i <2n (and v; # 0), we also have
a7t i1 S (1),
unless 9% = 8,']8; with |,Bli| = 1, in which case we only have |8V§ nf_n_ll < (t). By setting

E=n+2<i<2n:31 <<y such that ! =8,’,3’l with |,Bf|=1},
and N = #¢€, we thus obtain

1(3-26)| < e™1(3" Hp) ()| ()N 1;[ 187!y .

Since the components of H), are polynomial of degree 2 with respect to the last n — 1 variables, we only
need to consider the case where N < 2, otherwise v, + - -+ vy, > 3 and 3" H, = 0. Furthermore

0" Hyp) (@] S e ()i S e ()27,

For N <2, we have ()2 < ()2N + ()N 50, using that eN"e™2" < ¢~ @=Nr=201 e see that
eNre= 2" (n')2=N < ¢! which finally implies |(3-26)| < (£)!"le=9" < e791/2, Therefore |Y (1)| < ()¢~ "
and, by Lemma 3.7, | X (¢)| is bounded. The result then follows easily. Il

The following proposition will be important in Section 4C to construct and estimate phase functions.

Proposition 3.8. Forall 0 < o < 1, there exists R > 0 such that, for all j, k € Ny, o, B € Ng_l, with the
notation

Dl =Pl ag ok,
(introduced before Definition 2.2) and (I)+ = max(0, [), we have
jok, _ 2-1B8D+  —
|Digs” (' =7 = 2lt1p" )| S (e7 (n/p"/?) " T prEHA,

hyp
jock - — 1 —(k+
|D]Ot ﬁ(et 9)| S € r(e r(TI/Pl/Z))( lﬁI)JrP & \ﬁl)/Z’

hyp
o ak - C-1BD: 1k
IDLP (o = )+ 1D (o = )| < (7" (n/ p!/2)) @70 pUi=k=Ifbr2,

and, forall 0 < ¢ < 1,

ok - 2— —4(1— 12 (1
DI (o' F p! )| < (e (g p'/2)) O e d =P =k =IBD 2,
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uniformly with respect to (r, 0, p, n) and t satisfying
r>R, =+£p> —O’pl/z, +r > 0. (3-30)

Apart from the energy localization and the localization in 6, the conditions (3-30) are the main ones
that define outgoing/incoming areas according to Definition 2.10.

Note also that, if (7, 8, p, n) are restricted to a subset where p belongs to a compact subset of (0, 4-00),
the estimates of Proposition 3.8 read

| Dlsa P (ri=r =21t1p") |+ | Dl (0= p) |+ [ iy ('=m)| < (7 () ™, (3-31)
|D}{;¥;€ﬁ(9t_9)| <e™ (e—r<n>)(1—|ﬁ|)+ ’ (3-32)

|D‘}{§§ﬂ(ptq:pl/2)’ < (e—r<n>)(2—\ﬂl)+ e—4(1—8)|t|p1/2. (3-33)

Actually the latter estimates are equivalent to Proposition 3.8, in view of the elementary scaling properties
', 6,8, p,m) = (™, 67)(r, 0, p/h.n/M), (3-34)

(o' "), 8, p,m) = 1™, ™) (1,0, p/h.n/M), (3-35)

valid for A > 0. Note that the condition (3-30) is invariant under the scaling (¢, p, n) — (A, p/X, n/1).

To prove Proposition 3.8, we need the following lemma (which will also be useful in proof of
Proposition 2.16 in Section 4A).

Lemma 3.9. For all 0 < o < 1, there exist R > 0 and C > 0 such that, for all (r, 0, p, n) satisfying
(3-23),
o' F p? < Ce™E  for £1>0. (3-36)

12 g5 t — +o0.

In particular, p' — +p

Proof. We consider the case where ¢+ > 0, the case of negative times being similar. Using (3-12),
Proposition 3.4 and Lemma 3.5, we can choose R large enough such that o’ > 0 and

P e I P S e T (Inl+ ()2 S e T (Il + (1) S e, (3-37)

using the fact that e[5> < p in the last estimate. Therefore, p’ has a limit as t — +o0c. By the energy
conservation and the estimate on e~ 2" In' | given by (3-37), we have p = (p")?+0(e~°"), which shows

that (p")> — p. Since p' is nondecreasing and o’ = p > —p'/2, the limit must be p'/2. Then we get
(3-36) by integrating the equation of motion for p’ between ¢ and 400, namely
o o R
p'?—p' = / ptds = / e (29, 0%, ") — (3,q1)(r*, 0°, ")) ds (3-38)
t t
where, by Proposition 3.4 and Lemma 3.5, the integrand is O(e™2 7275 ({s) + (n))?). Il

Proof of Proposition 3.8. We only need to prove (3-31), (3-32) and (3-33) with p € (%, 4) and, again, we
only consider >0 and p > —o p'/?. We first assume that j +|a|+k+|8| =0. By (3-10), Proposition 3.4
and Lemma 3.5, we have

071 S e 27l + (1) S e ),

1711 S e 2 (] + (1) S e )%
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hence |n'—n| < e 2" (n)? and |0'— 0| < e~ (n). In particular, n'—n and 6’ — 6 are bounded. The motion
equation for r' yields

t
rt—r—2tp1/2:2/ (p* — p'?) ds, (3-39)
0

and, using (3-36), we get |r' —r — 2tp'/?| < 1. The latter estimate and the boundedness |’ — 5| imply,
together with (3-38),
1/2
(m?. (3-40)
Furthermore, since |p'/2 —p| =|p>— pl/|p+ p'/*| S e~ |n|?, we also have |p'— p| < e~ (n)2. Putting
(3-40) into (3-39), we obtain |r' —r — 2tp'/?| < e7?"(n)? which completes the proof of (3-31), (3-32)
and (3-33) for j + |a| + k + |B8] = 0 (note that we can choose ¢ = 0 in this case).
We now prove (3-32) when j+|a|+k+|B| > 1. We first note that, by Lemma 3.5 and the boundedness
of |r'—r —2tp'/?|, we have

|,0[— p1/2| S; 672r74tp

|Dj/a/k/‘3/(e_r1nt)} < |Dj/a/k/'3/(g_r[ (r’t— n))‘ + ‘Dj/a/k’ﬂ/(e_rrn)‘

hyp hyp hyp
S6721[71/2<t>j'+|a’|+k’+|ﬂ’\(e*r+(e*r|n|)(1*|ﬁ'|)+)
SJ e—thl/Z <t>j’+|o{/|+k/+|}3/‘ (e—r<n>)(1_|,3/‘)+’ (3_41)

for all j'+ |&’| + k' + |B’| = 0. By writing

t
91—0:/ e (Byq)(r*, 0%, e ) ds,
0

and using (3-41), Lemma 3.5 (more precisely, the estimates |Dﬂ;g KB Hrt\ + |D£;§Hk"ﬂ ”9’| < () if 7+
la”|+ k" +|B"| # 0), the Leibniz formula and Lemma 3.6, we obtain (3-32). We obtain similarly (3-33)
and then (3-31) (also using that (e~ (7))> < e (n) < 1). Note that, for ' — r — 2tp'/2, (3-31) follows

directly from (3-33) and (3-39). Il

Corollary 3.10. Let V € V' € R"™! be two relatively compact open subsets and let 0 < o < 1. There
exists R > 0 and C > 0 such that the conditions

r>R, 0e€V, Z£p> —O‘pl/z, (3-42)

imply that, for all &t > 0,
r'>r—C and 0'eV'.

In particular, if (3-42) holds, the flow ®'(r, 0, p, n) depend only on p on T*((r —C, 4+00) x V/) for
+r>0.

This corollary allows us to localize the estimates of Proposition 3.8 in charts of asymptotically hyper-
bolic manifolds.

4. The Hamilton-Jacobi and transport equations

In this section, we develop the analytical tools necessary for the Isozaki—Kiada parametrix that will be
constructed in Section 5. We mainly construct the phases and amplitudes needed for that parametrix, but
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also prove certain useful properties of outgoing/incoming areas, including those quoted without proof in
Section 2D.

All the statements in this section will hold in a coordinate chart at infinity, associated to a fixed coor-
dinate patch U, on the angular manifold. Thus, for notational simplicity, we will drop the corresponding
index ¢ from the notation.

4A. Properties of outgoing, incoming and intermediate areas. Here we collect some properties of out-
going, incoming and intermediate areas which will be needed for the construction of the Isozaki—Kiada
parametrix. We also prove a part of the results quoted without proofs in Section 2D, namely Propositions
2.11, 2.13, 2.15 and 2.16.

In the first proposition below, we use the classes 'y (€2) introduced in Definition 2.2.

Proposition 4.1. (i) Assume that

R > R, VieV,, I € I, o] < 0. 4-1)

Then we can find )(lj;2 € Fhyp (Fi(Rz, Vo, I, 02)) such that
Xi,,=1 on T*(Ry, Vi, I1,00).

(ii) Any symbol a € Fnyp ((R, +00) x V xR"N pil(l)) can be written

a=a"4+a", with at e thyp(Fi(R, vV, I, %))
One important point in this proposition is that X li_)z and a* can be chosen in Fhyp-
Proof. (i) We may for instance choose

Xiaa(r, 0,0, 1) = XRy o Ry (D XV v OV X151, (P) Xy (0 / p'),
with X, Rrys Xo150, € C(R), Xv, v, € C5°(V2) and Xy, 1, € C3°(12) such that
SUpp(Xg,—R,) C (Ra, +00),  supp(X¢,—q,) C (=02, +00),

XR >k, =1 on (Ry,+00), Xy-y,=1onVy, Xj,op=1onl, Xs-s=1 on(—oq,+00).

Notice that p/p'/? is smooth on the support of X;, ., (p). The so defined XT _,, is smooth on R2",
supported in I*(Ry, Vo, I, 02), identically 1 on I'*(Ry, Vi, I, 01), and one easily checks that it belongs
t0 Bhyp (Fi(Rg, Vo, I, 02)), using for instance Lemma 2.4.

(i1) This is very similar to the first case. We may for instance choose

a*(r,0, p.n) =a(r,0, p, MXi 0/ P,

with X}, € C*°(R) such that

XT/z +Xip=1 supp(Xf/z) C (=3, +00), supp(XT/Z) C (=00, 3).

Here again p/p'/? is smooth on the support of a and a® € %hyp(Fi(R, V,1, %)) U

By Proposition 4.1(i), I*(Ry, Va, I, 00) is a neighborhood of the closure of I'*(Ry, Vi, I, 01) under
the assumption (4-1). In the following proposition, we make this remark more quantitative.
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Proposition 4.2. Assume (4-1). There exists ¢ > 0 such that, for all (+',0', p',n') € R*" and all
(rv 99 O, 77) € Fi(Rlv Vlv I], 0'1),

(0,0, — (0, p M) <e = (,0,0.1) el (R, Vo, b, ).
Proof. Choose first g > 0 such that, if |[r — |+ 160 — 0’| < &9, ¥’ > R, and 6’ € V,. Then, by writing
q(r' 0 e ) —q( 0 e = q(r, 0 0 =)+ () = Dg(r, 0", e ), (4-2)
and using (3-5), (3-6) with the Taylor formula, we get
.0, p' 0y = p(r, 6, p. ) <1p> = P |+ Cln' — 0> + C(r —r'|+10 —0'De” " In|*,

where e~ |n|?

is bounded, using (3-7). Since p is bounded too, we obtain

P 0" 0" )= p(r. 0, p. )| <C|(r.0,p,m) — (.0, 0", 1)

El

provided that |(r, 0,p,n)—",0,0, 77’)| < g¢ and therefore,

’

|p'2a 0" 0/ ) — p P 0, p. )| < C|(r, 0, p,m) — (', 0, o' 1)

/

P B P
pyr, 0, p' ')y pl2(r, 0, p,m)

<Cl|r6,p,m)—@".0, 0.7

’

if ‘(”’ 0,p,m— ("0, 0, 77/)‘ is small enough, using that I, € (0, +00). The conclusion is then easy. [
Similarly to (2-54), we fix Vy; € R*~! a relatively compact open subset of ¥, (U,) and define
y y compact op
R(e)=1/e, V.={0eR" ' :dist(9, Vp) < &} (4-3)

In the sequel, we shall need very often the following result on strongly outgoing/incoming areas
(see Propositions 4.8, 4.14 and Lemmas 4.11, 4.16). This will for instance be the case when we use
Taylor’s formula and want to guarantee that the whole segment between two points of a strongly outgo-
ing/incoming area is still contained in such an area.

Proposition 4.3. For all M > 0, there exist eyy > 0 and Cyy > 1 such that, for all 0 < ¢ < gy, the
following holds: if

(r,0, p,n) € T (o), (4-4)
and
rr—r>—-M, 0/ —0|<Me* | —pl<Me* |y —n|<Mee'?, (4-5)

then, forall 0 <s <1,
(', 0", p',sn') € TF(Cue).

In particular, (r', 0, p’,0) € th(CMe).

Remark. There should not be any confusion between the interpolation parameter 0 < s < 1 and the
subscript g, which refers to strongly outgoing/incoming areas (and which are independent of s).
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Proof. Using (2-56) and (4-2), we first note the existence of M’ > 0 such that, for all 0 < ¢ < %, if (4-4)
and (4-5) hold then

|’ 0" p' sy = p(r. 0, p. )| < M'e?,

using in particular that sn’ —n=s(n’ —n) + (s — 1)n. If Cy; is large enough and 0 < eCy; < }l, we obtain
0<%—CM8 <%—S—M/ezfp(r',é/,,o/,sn')§4+8+M/82<4—|—CM8.

If 0 < & < &) with &), small enough, then p(+', 0', p’, sn')/ p(r, 0, p, n) = 1 +0(e?) so that

+p’ +p p(r,0,p,m'? p'—p

PG 0 p s p(r 6, p. )2 p(r 0 pl s 2T p(r 07, pl )1

> 1—(Cye)?,

by possibly increasing Cy,. In addition, dist(8, Vy) < |8’ — 0| + dist(6, V) < (Cpe)?, by possibly
increasing Cy; again and decreasing &y. Finally, 7’ >r — M > e'/* — M > ¢!/C¥¢ forall 0 < & < ey
by possibly decreasing ), again, so (', 0', p’, sn') € TE(Cpe). O

We can now prove Proposition 2.13, which states that one can reach a strongly outgoing (incoming)
area from an outgoing (incoming) one in finite time, along the geodesic flow.

Proof of Proposition 2.13. We consider only the outgoing case. With no loss of generality, we may
assume that 0 <o < 1. By choosing R > R/ large enough, we can use Proposition 3.4 and Corollary 3.10.
By Proposition 3.4, we have r; > r +ct — C for some C, ¢ > 0, hence r; > R(¢) for all t > tg ., provided

ctre —C+ R > R(¢). (4-6)

By Proposition 3.8, we have |§" — 0| < e hence 6’ € V,, for ¢ small enough and all r > 0, since
e~1/¢ « g%, Using (3-33) and the energy conservation, we shall have p’/p'/2(+', 0, p', ') > 1 — &2
provided for instance that

1/2

emP e < g, 4-7)

with & small enough. Choosing g . so that (4-6) and (4-7) hold, we get the result. U

We conclude this part with an explicit construction for cutoffs.
In Section 5, we will need a result similar to Proposition 4.1(i). This is the purpose of the following
result.

Proposition 4.4. We can find 0 < v < 1 and a family of cutoffs in_)s € Ef’hyp(I’sE (e'1v)), defined for all
& small enough, such that

X5, =1 on TEED) (4-8)
and, uniformly on R2",
e 1l 0., | + e X NP0 dro x| SeV2 j=1,2. (4-9)

That we can find, for each &, X;tzﬁa € ffhyp(l“sc (') satisfying (4-8) would follow directly from
Proposition 4.1. The important additional point here is the control with respect to ¢ given by (4-9). Note
also that the power % is essentially irrelevant: we only mean that the left-hand side of (4-9) is uniformly
small as ¢ — 0. This rather technical point will only be used in Section 5 to globalize suitably certain

phase functions.
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Proof. For 0 < § < 1 to be chosen later, we consider the characteristic functions )_(£1+5 and )_(;/m of
L4844 ¢119) and V + B(0, £219) respectively. Choose ¢/ € C°(R), ¢V € C(R"1) both equal
(2 pectively ¢leCRm), ¢V eCy q

to 1 near 0, such that [ ¢/ = [¢Y =1 and set

_ A=\ __ - 00—\ _,_
Ko () = / Xeres ()¢ (8%)8 2, X 0) = / Xies (0" (gzm)g (=D g9,

One then easily checks that, if ¢ is small enough,

xls=1on(}—¢%4+¢, XV (0) =1 if dist(®, V) < &,

X£1+a =0 outside (zlt - 81+§’ 4+ SH_%)» X;/ZM (0) =0 if dist(0, V) > 82+%.

1

3, 00), we now define

Choosing @ € C*(R) supported in (4, 00) such that @ = 1 near |

2
X5 (r6,p,n)= a)< )xfm (0) xL11s(p) 0 (£p) 5’(6‘2’12—15)

2>

_r
R(€3/2)

On the support of X ; s (P), we have p? > ‘—11 — O(e) so the factor w(£p) only determines the sign of p.

By (2-55) and (2-56), one sees that (4-8) holds with v = §/2, if ¢ is small enough. Furthermore, Xjé_)s
is supported in I'F(¢!*") and belongs to By, (TE(!1)).
We prove (4-9). Since e~ ||*> < 4% on the support of in_)s, the first-order derivatives satisfy
1005 | S RED) T e P ™ + e <1
—1-25

10,65 | Se™!7%,

e2—>¢
e2—>¢ ’
1/2

S
|89X:|: | g 8—2—25 +8_1_28€_2r|7’)|2 g 8—2—28
§672r|n|(871725+8*4+5) < 6787 ,

19, %5 |

e2—>¢

using the fact that e =2 |n| < e < e~ for the last estimate. Similarly

+ —2-28 —1-28 —3-48 + i
|apar,9X82_)$|§€ X & =¢ s |an8r,9xsz_)8|,\,
. _ _2_ _ _ _ 12 . .
Since e~ || 3% <&'= and e |n| < e~ ", the result follows with § = 75 (hence with v = 55).
O

We finally consider the statements involving intermediate areas.
Proof of Proposition 2.15. By (2-58) and (2-59), we can find X _, X400 € C®(R) and
X1 € C°(—=0141, —01-1),

for 1 <[ <L — 1, such that
L—1
SUPP(X—o00) C (=00, —07—1), SUPP(X1oc) € (1 —&%, +00) and Xjoo+ Y. X/ +X—oc =1 onR.
=1

This simply relies on the overlapping property of the intervals in (2-59). We then obtain the result by
considering
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+ + 1/2
at(r, 0, p,n) =a*(r,0, p,n) Xteo(£p/p""),

@t (r 0. p,m) =a*(r, 0, p.m) Xi(£p/p'D), 1<I<L-2,
GE (20, 0, 1) = a=(r, 0, . 1) (X1 + X—00)(£p/ P2,

since, in the definition of alf_l’ inter» the cutoff guarantees that +p/ p'/? < —op_pand a™ that +p/p'/? >
—% = —0L. Ol

Proof of Proposition 2.16. We consider the outgoing case, the incoming one being similar. Using
Corollary 3.10, we may assume that, if ¢ is small enough, (3-22) holds for any initial condition such
that » > R(¢), 0 € V and p > —%pl/z. In particular 7 — p’ is nondecreasing for r > 0. Assume that
1 <p/p"? <1—(¢/2)* and set

Ios

t8=tg(r,9,p,n):=sup{t20:—< p

4
— + ¢ forallse[O,t]}.
pl/2 = pin

Notice that #, is finite by Lemma 3.9 and that p’s = p + p'/2e*. If 1 — (¢/2)> + &* > % we have
|,o’/p1/2| <1- ((9/2)2 +¢* on [0, ,). Thus, if & is small enough (independent of (r, 6, p, 7)), we have

(0")?/p <1—(g/2)* forall t € [0, t,) and then, by (3-22) again, we have p’ > (¢/2)?p on [0, t,], so

p'e — p = (g/2)*pts.

This shows that 7, < &*/(¢/2)? p =4&?/p. Then, for & small enough such that 4s2/p <t forall (r, 0, p, 1)
in

{0, 0.m eR™:r>R(e), 0V, pel(e), -2 <p/p"? <1—(s/2)%}, (4-10)
and with § = &* /2, we have p'— p > 26p1/ 2 for all t > t. This implies (2-62) since, for any choice of
09, ...,0r and any [/, Fiter(e, 8; 1) is contained in (4-10). O

4B. Hyperbolic long/short-range symbols. In this short subsection, we introduce the definitions of
short/long-range hyperbolic symbols which will be useful for the resolution of transport equations in
Section 4E. We prove in passing Proposition 4.6 below which will be used at several places, in particular
in Section 4C.

Definition 4.5. A smooth function a+ on I'E(e) is said to be of hyperbolic short range if
10/95050Pasr(r. 0, p. I S (r —log(m) "', (.0, p.n) eTE(e), (4-11)
and of hyperbolic long range if
19705 950 ax(r. 0. p, M S (r —log(m) ™/, (6. p.1) €TE(e). (4-12)

Notice that in this definition, we do not assume that a € %hyp(f‘sjE (¢)). However, this will be the case
in the applications and we now give a simple criterion to check that a symbol a € %hyp(r‘:E (e)) is of
hyperbolic short/long range.

For ¢ small enough, by restricting a to a smaller area F;t(s /C), with C > 1 large enough (or to FSi (e2),
I‘Si (€3) as it will be the case in the applications), using Lemma 2.4 and Proposition 4.3, we have

1
a(r,0,p,n) =a(r6,p,0) +/O (0ga)(r, 0, p, $E)|g=e-rpds e n, (4-13)
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where a belongs to Cgo(thp(Fsi(e))) and (r, 0, p,sn) € Ff(e) if (r,0,p,n) € Fsi(e/C). Since
10/0fe ™" n| < (r —log(n))™™  forall N >0and (r,60, p,n) € TS (e),
we obtain that, for a € By, (I'E(e)),
a is of hyperbolic short/long range in F:E (¢/C) <= ay;—o is of usual short/long range (4-14)

in the sense that
| (8705 05a) (r, 6, p,0)| S ()" for (.6, p, 0) €T (o),

in the long-range case (recall that 0 < 7 < 1) and
| (8795 95a) (r,0,p, 0)| S (r)"""177 for (1,6, p,0) € TS (&),
in the short-range case.

To calculate a),—¢ in some applications, we shall use the following elementary result.

Proposition 4.6. Forallr > 0, all 0 € R and all £p > 0, we have, for all £t > 0,
(r', 0", p', 0 =0 = (r +2tp, 0, p, 0), (4-15)

t
3, (r', 0", p', ") jy=o = (o,/ e hess, [q1(r +sp, 0) ds, 0, Id). (4-16)
0

where hess, [q](r, 0) is the Hessian matrix of q with respect to n (which is independent of ).

Proof. One simply checks that the right-hand side of (4-15) is a solution to (3-10) (with w(r) = e~ )
for £¢ > 0. Applying then 9, to (3-10), one sees easily as well that the right-hand side of (4-16) is a
solution to the corresponding system. g

Remark. If ¢ is small enough then, on Fsi(e), we have
r —log(n) > 0. (4-17)
In particular, in this region, (r —log(n)) is equivalent to the weight

(r —log(n)) = max(l, r —log(n))

which was introduced by Froese and Hislop [1989]. For the study of global in time estimates, which
we hope to consider in a future work, the resolvent estimates proved in [Bouclet 2006] suggest that the
hyperbolic short/long-range conditions (4-11)/(4-12) would play the same role as the usual Euclidean
short/long-range conditions used in [Bouclet and Tzvetkov 2008].

4C. The Hamilton—Jacobi equation. We now use the results of Section 3B to solve the time-independent
Hamilton—Jacobi equations giving the phases of the Isozaki—Kiada parametrix.

Lemma 4.7. There exists 0 < g9 < 1 such that, for all 0 < ¢ < g9 and all £t > 0, the map
(60,0, > (10,0, 1")
is a diffeomorphism from Fsi(s) onto its range and

I’ c Wt (TEe) forall 1> 0. (4-18)
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Proof. See Appendix A. U

The power &> in (4-18) is not very important. It is only a rough explicit quantitative bound for the size
of a strongly outgoing area contained in ;' ('} (¢)) for all # > 0 (or a strongly incoming area contained
in ¥, (I'y (e)) for all  <0).

The components of the inverse map (lIJfE)_1 are of the form (r, 9, p;, n;) with

pr=p(r,0,0,m), n=nr0,p,1n).

Here we omit the &+ dependence for notational simplicity. We thus have

pl(r’ 9’ pt’nt):p’ T[I(I",Q, IOZ’ nt):n’ (4'19)
at least for all (r, 0, p, n) € T(e}) and £ > 0.

Remark. It follows from the proof of Lemma 4.7 and the scaling properties (3-34), (3-35) that \IlfE is
actually a diffeomorphism from the cone generated by I'(ep) onto its range, the latter range containing
the cone generated by F;t (88). Therefore (p;, ;) is actually the restriction to FSi (8(3)) of a map defined
on the cone generated by I“;JE (88) and, using (3-35), we have

(1, 1)(r, 6, Ap, An) = A(pas, Man)(r, 0, p, 1) if £ >0and (r,6, p, n) € TE(e)), (4-20)
for all A > 0.

Proposition 4.8. There exists &1 < 88 such that, for all j, k € Ny, «, B € Ngfl,

jock, jock
D" (o = )| + [ Digy (e = S 1, (1,0, p,m) €T (1), +t>0. (4-21)

In addition, if (r, 0, p,0) € I‘SfE (e1), we have

(IOI’ Ut)\n:O = (/0’ 0)7 (4_22)
I (e — P> M — My=0 = (0, 0). (4-23)

Proof. By (4-18), any (r, 0, p, ) € I'F(¢}) can be written as W;"(r, 0, 4, 1) with (r, 0, 5, i1) € ['F(ey).
Hence

sup |pr—pl+In —nl < sup |5—p'(F, 0,5, D +i—n"F 86,50l

TE(ed) I (20)

By (3-31), the right-hand side is bounded, so we obtain (4-21) for j + |¢| + k + |8] = 0. Then, for ¢
small enough, using Propositions 3.8 and 4.6, we remark that, for (r, 8, p, n) € F:E (),

1
|85, (0", 0" —=1)| < /0 19,8p. (0", 1) (. 0, p,sm)| dsinl S le™ | Se,

since, by Proposition 4.3, (r, 8, p, sn) € F;‘E (eg)if (r,0,p0,n) € l";t(e) and ¢ is small enough. Therefore,
if & is small enough,

19p.5(p", ") —1d,| <1 on TF(e), (4-24)
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for all & > 0. Here | - | is a matrix norm. We can now prove (4-21) when j + || +k+|8]| > 1. Assume
first that D{lya: — 85 , with | 8] = 1, and set for simplicity
Et(”,g,l)an)=(Pt,nt)(",e,,o’n), Et(ra97ﬁ’ﬁ)=(/0tant)(r597157ﬁ)’ E=(10’ n)a
when (1,6, p, n) € TE(&3), (r, 0, p, ) € TE(e) and £¢ > 0. Applying e’a,’f to (4-19), we get
(05,780, 0, E)e’df B, = (0,8 n) = "0/ B,
and using that (3; ; E’)a,’f E= 81’73 E’, we obtain
(8[5’}7’Et)(]", 9’ Et)era;{’g(:l - E) = er (aﬁ(E - Et))l(r,Q,E,) )
where the right-hand side is bounded, by (3-31). Using (4-24), we see that e¢” 8,‘;‘ (E; — E) is bounded on
FS:t (e1) for £¢ > 0, by choosing &; < 88 and such that (4-24) holds. The other first-order derivatives are
treated similarly and are simpler to handle since there is no e". When j + |«| 4+ k + | 8| > 2, we iterate

this process using Lemma 3.6. To complete the proof of the proposition, we finally note that (4-22) and
(4-23) are easy consequences of (4-19) and Proposition 4.6. Il

By Propositions 4.7 and 4.8, we can define r{ =r5(r, 6, p, n) and 65 = 05(r, 6, p, n) on T (1) by
r; =rir0,p,n), 60 =0°(r,0,p,n) for £t>=xs>0,

where £t > +5 > 0 means more precisely that r > s > 0 if (r,0, p,n) € F:_(El) and r < s <0if
(r, 0, p,n) €'y (¢1). Here we assume that &1 is small enough so that Proposition 3.8 hold for r > R(e1)
and o = % (for instance), which justifies that r} and 8; are well defined (and that their derivatives can be
estimated using Proposition 3.8).

By the classical Hamilton—Jacobi theory, the function ¥ defined by

St 0,p,m)=rip+0-n—1p>—te Fiq(r!, 0, n) (4-25)
solve the following time-dependent eikonal equation, for (r, 9, p, n) € Fsi (e1) and £t > 0,
;XL =pr,0,0,2Xy,0021), Xili—o=rp+6-n. (4-26)
To put it in a more standard way, note that (4-25) is obtained by defining X4 via
Ti(t,r, 0,0 ) =r'p" +60"-n'—tp(r', 0", p' n"). (4-27)

(This simple expression uses the fact that p is homogeneous of degree 2 in (p, n).) Now assume for a
while that

+oo
S0 p.myi=rp+0 -+ [ 8 (Bae.r 0.0 —10%) dr (+-28)
0
is well defined on FSjE (e1). Then, at least formally,

0,08+, 0,0,1) = [_l)igloo 0rpX+(t,1,0,p,1). (4-29)

The latter only uses the fact that the term 7o inside the integral is independent of r, 8. If we know in
addition that
lim 0,¥4(t,7,0,p0,n) =-+00, (4-30)
t—Fo00
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then, using the fact that £ are generating functions of @, that is,
O'(r,0,0,2s,0%1) = (0,24, 0,24, p,n) for £1>0, (4-31)
we obtain, on I'F(ey),

p(r,0, 0,8+, 9Sx) = lim p(0,¥s, 9T, p, 1) = 0. (4-32)

Proposition 4.9. There exist 0 < gy < &1 such that we can find S+ = S+(r, 0, p, ), defined on FSjE (&2),
real-valued, satisfying
p(r,0,8,Sx,9S1) = p* onTF(e), (4-33)
and such that
S+(r 0, p,m) =rp+0-n+9+(r.0,p,n), (4-34)

for some ¢ € ‘?YS»hyp(l";IE (&2)) satisfying, when (r, 6, p, 0) € l"s:IE (&2),

+o00
Q=0 =0, € d@rjy=0=0, e hess,[pslj=0 = / e P hess,[q](r +2tp, O)dt.  (4-35)
0

It is convenient to note that, by possibly decreasing &, and by using Lemma 2.4, (4-13), and the first
two equalities in (4-35), we can write

0:(r,0,p,m) = Y ag(r,0,p, e me 1P, (4-36)
BI=2

with ag € Cp° (Fayp(T*(£2))).

Proof. We consider only the outgoing case. To complete the proof of (4-33), we have to prove the missing
details, namely the convergence of the integral in (4-28) (plus its derivability) and the limits (4-29) and
(4-30). Defining (o7, n}) := (p°, n°)(, 6, p;, n;), the equations of motion yield

t t t
rf=r+2 / pids =r+2ip—2 / / e~ (2q(r!, 01 1) — D) (', 01 1)) duds.  (4-37)
0 0 Js
By Propositions 3.8 and 4.8, we have the following bounds on I'j"(¢1), for s > 0 and ¢ > 0,

h h; — h
D =] S s)s D6 =) Se’s D =] S 1. (4-38)

In addition, using Proposition 3.4 and (4-18), we have, for s > 0 and ¢ > 0,
s> r4+2(1—e%sp'2(r, 0, p1.n) —C>r+5/4—C onTJ (%), (4-39)

with & small enough such that, p'/?(r, 6, p,, n,) > }. Using (4-37), (4-38), (4-39), with &, := &3 < &;
small enough, and Lemma 3.6, we obtain the existence of a bounded family (a;);>¢ in %hyp(Fj (£2))
such that
ri=r+2tp+a/r,6,p,n fort>0. (4-40)
One shows similarly that (8/—0) -n =" (0/—0) -e~"n is bounded in %hyp(f‘s+ (&7)) for t > 0, and hence
that
X, —(rp+6-n-+1tp?) isboundedin Bpy,(IF(e2)) fort >0, (4-41)
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which proves (4-30). Then, using (4-26) and (4-31), we note that
0T —p =€ q(3,Ty, 0, T4, ). (4-42)

Therefore, using (4-39), (4-40), (4-41) and (4-42), we obtain the convergence of the integral in (4-28)
and the limit (4-29) as well as the fact that S;.(r, 6, p, n) —rp — 6 - n belongs to By (I (£2)). Finally,
the formulas in (4-35) follow directly from (4-42) combined with (4-22) and (4-15). O

Remark 1. By applying 0, to (4-41) we see that there exists C such that
18,24 (t, 7,0, p,m) — 0] < Ce™" < e R forall (r,6, p, n) € TF(ez) and ¢ > 0.

This shows, in the spirit of Corollary 3.10, that the proof above depends only on the definition of g (r, 6, 1)
for 6 in an arbitrarily small neighborhood of Vo, provided ¢; is small enough.

Remark 2. Using (3-34), (3-35) and (4-20), one sees that Sy is actually well defined on the conical area
given by
r>R(e), 6eVy,, =Ep>(1 —e%)pl/z,

and that
Yi(t,r,0, 0, An) =AXL (M, 1,0,p,n) if A>0.

Thus that S+ is the restriction to FSjE (e2) of an homogeneous function of degree 1 with respect to (p, 1).

We conclude this part with a result useful for considering phases globally defined on R** when we
shall construct Fourier integral operators.

Proposition 4.10. For some small enough €3 > 0, there exists a family of functions (S+ ¢)o<e<e;. globally
defined on R*", such that

Ote(r,0,0,m):=8+:(r,0,p,n)—rp—06-n

coincides with ¢ on FSjE (¢) and satisfies

supp(p+¢) CTT(e!?), @1 € Bryp(TE (), (4-43)
1950 ® Vg9 (r, 0, p. M| <5 for (r,0,p,m) R, 0 <& <e3, (4-44)
with | - | a matrix norm.

In further applications, (4-44) will also be used under the equivalent form

199,y ®3.084.6(r, 0, p,m) —1d,| <1 for (r,0,p,n) eR™, 0 <e <es. (4-45)

Remark. Although this proposition allows one to assume that they are globally defined, the phases Si .
solve the Hamilton—Jacobi equations on F;'E(sz) only.

Proof. We use Proposition 4.4 and consider
See(r,0,0,m) :=rp+0 -1+ Xen.(r,0, 0, Mex(r,0,0,1), (4-46)
with ¢4 defined in Proposition 4.9. We have S1 . = S+ on FSi (¢) and, using(4-9) and (4-36),
10p.y ® 3054, 0, p,m) —1d,| ' on R™, (4-47)
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since e |y < e'/2 on r (¢!/2). This yields the result if ¢ is small. O

4D. Fourier integral operators on R". In this subsection, we derive some basic properties of Fourier
integral operators associated to the phases S+ obtained in Proposition 4.9.
For simplicity, we introduce the shorter notation

By () = Bryp(T(©)),  F7(6) 1= Sy (T (e)), (4-48)

where the classes By, and Fpyp were defined in Definition 2.2.
By Propositions 4.9 and 4.10, for all & € (0, 1], all & small enough and all a* € ¥£(¢), we can define
the operator

T @) IR — SR, (4-49)

as the operator with Schwartz kernel
KE(r,60,r,0")=Qruh)™" / i ($£6.pm=r"o=6"0) 4 £ 9 5 1y dp di.

Since the symbol a* is supported in I'F(g), the phase Si can be replaced by Si . which is globally
defined (see Proposition 4.10). Note also that J;E (a™) maps clearly the Schwartz space into itself since,
for fixed 1 say h = 1, it can be considered as the pseudodifferential operator with symbol ¢/%+a* =
e'?=:a® which belongs to CJ°(R>").

To obtain the L? boundedness of such operators uniformly in 4 € (0, 1] as well as the factorization
Proposition 4.13 below, which are both consequences of the usual Kuranishi trick, we need a preliminary
result.

Consider the maps (Ei,g, gi,g) ‘R — R" defined by

1
(Pier 1), 0,70, p, 1) = / 86 Sc.e(r' +50r—1'), 6" +56 —0'), p, mds (4-50)
0

so that
(r—=r)pret+O—0) nee="Scc(r,0,p,1)—See(r', 60", 0,m). (4-51)

Lemma 4.11. For all (r,0,r',0") € R¥ and all 0 < ¢ < 3, the map (p, n) — (p+.e, N+.e) is a dif-
feomorphism from R" onto itself. Denoting by (p4 ., M4 ) the corresponding inverse, we have, for all
0<e<es,

089787, 0595 05 ((Pae. TTa0) — (0. M) S 1 on R (4-52)

n-r-r

Furthermore, there exists e¢ > 0 such that, for all 0 < ¢ < g¢, we have

(r,0,0,m) €T5() = (10, paeiNte) g €T3 (), (4-53)
(0, paes M) |y g €T (D) = (10, p,m) €T (o), (4-54)

and
1859707 0508 05 (P o T1.0) — (02 M) oo | S P on T (63). (4-55)
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Proof. The estimate (4-45) implies directly that (p, n) — (p+e, UES is a diffeomorphism for all
(r,0,r',0") € R?" and 0 < & < 3. Evaluating (4-50) at (r, 6,1/, 6, Pt.es N+ ), Namely

(p,m) = (B:I:,Es ﬂj:,g)(r, 0,r', 0, ﬁ:ﬁ:,a’ ﬁ:l:,a)? (4-56)

yields

1
(/07 77) - (ﬁi,87 ﬁj:,g) - / ar,&@:l:,s(r/ + s(r - r/)v 9/ + S(e - 0/)7 ﬁi,s» ﬁi,g)ds' (4_57)
0

By (4-43) we have ¢4 . € Cgo([Rz”), 80 (01 ¢» M+ ) — (P, m) is bounded, for fixed ¢. For the deriva-
tives, we apply 8,’? Brj a-r",' g 85‘,/ 8’; to the right-hand side of (4-57) and obtain (4-52) by induction, using
Lemma 3.6.

To prove (4-53), we simply notice that ¢ . coincides with ¢+ on F:E(e3) so that

= 9,00+(r, 0, p, )| S €7,

(0. 1) = (Ptes Nt6) r=r 0=

using (2-56) and (4-36). The result follows from Proposition 4.3 and the fact that IF(Ce) C T'E(e!/3)
for ¢ small enough. To get (4-54), we use directly Proposition A.1 proving that Fsc () c ! (I‘:E (e))
with

W0, 0.m) = (10, pre Nte) ey gog = (10,352, 0, p. 1), dpS£(r, 0, p, M),

which is actually independent of ¢ and ¢.
By (4-52), (4-55) holds when B8 = 0. Consider next the first-order derivatives when |8| = 1 and the
other multi-indices are 0. Applying 8,’,3 to (4-56) and evaluating at r =1/, 6 = 0’, we get

(ap,n(gi,89 Hi,s))a;{? ((ﬁﬁ;,g’ ﬁ:l;g) - (/07 77)) = afar,eﬁﬂi(’”, 9’ ﬁj:,w ﬁ:l:,g)

where we have replaced ¢4 . by ¢4 using (4-54). Since (8p,n(£:t, e N, 8))_1 is uniformly bounded and
e'P 8,’73 Or 00+ (r, 0,046 Nx, 6) is bounded, using (4-54) again, we get the result in this case. Higher-order
derivatives are obtained similarly by induction, using Lemma 3.6. U

Proposition 4.12. Forall 0 < & < gg and all at, bt e H’Si(s), we have

<Ch"*! forhe (0,11,  (4-58)

H J}it(ai)‘]hi(bi)* - Z hkcl?:(r’ 9’ hDr’ hD@) LZ(IR")—>L2(R”) -

k<N

where the constant C can be chosen uniformly with respect to a* and b* when they vary in bounded
subsets of $E(¢) and where the symbols cki are given by

1 ; .
+ _ _ — — _ _
Cr = Z Tava;{/ag/D;])Dg (a(r, 9, Pt es ni,e) b(l”, 9,, Pt es nzt,e) Jac(pi,sv Ui,s))‘,:,/, 0=0"" (4’59)
JjHlel=k? T

with Jac(Dy. ., Ts..) = |det@p., (B o Ta )| In particular,

e e FEES). (4-60)
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Proof. The Schwartz kernel of J;F(a*)J;=(b¥)* takes the form
Qrh)™ / i S2e 00 M=Se 6102 g 9, p ) B, 67, p, ) dp dn

and this can be rewritten using the Kuranishi trick, that is, (4-51) and Lemma 4.11, as

)™ / RO 0 B G VBT O Pa e e ac(Pe o Te D dpd.  (4-61)

By (4-52), the symbol in (4-61) belongs to C,fo([R3”). Therefore, the standard h-pseudodifferential
calculus implies that, with ¢; defined by (4-59), we obtain the L? bound (4-58) by the Calderén—
Vaillancourt theorem. In addition, by (4-53) (applied with (o0, n) = (04 ¢, N+ o) r=r",6=0'), W€ have
supp(cki) crf (¢'/3). One then checks that cf € %fﬁ (e'73), using (4-55). O

We note in passing that this proposition shows that, for all 0 < & < g¢ and all a™ € S’f (e),
”Jhi(ai)”LZ(Rn)_)LZ(Rn) <C for h e (0, 1] (4-62)

More precisely, the constant C can be chosen independently of a* if, for ¢ fixed, a* vary in a bounded
subset of $E(¢).

Proposition 4.13. For all 0 < ¢ < &g, the following holds: if we are given a(:)t, ey a,jf, € $E(e) with
aa: >1 onTE(@E, (4-63)
then, for all XSjE € 97?(89), we can find b(jf, e blj\c, € 9?(83) such that, if we set

a*(h)y=ay +---+hVay, b (h)=by+---+h"by,

we have

| 7,7 @ () J;-(6* (h)* = X5 (r, 6, hD,, hDy) |5 <Ch"* forn € (0, 11.

(R")%LZ(R”) -

Proof. By Proposition 4.12 and the notation therein, we only need to find b, ..., bﬁ such that
g =xf, =0 fork=1,....,N

Using Lemma 4.11 and (4-59), the first equation, ng = xZ, is solved explicitly by

1

b:t(raev ) )= Xi(raev 9 )JaC( 9 ) ’ ’ X =
0001 = (00, pee N (e D)y 00 X (F 5

where l/a0 is well defined since X £, 0, Pt.es N+, ¢)|r'=r, 0'=0 18 supported in Fi(e3) by (4-54). Thus,
b(jf is well defined, supported in Fi(83) and belongs to BF (53) by (4-50) and Proposition 4.9 (since
(Bi’s,iji’g)v =r, 0'=0 = OrpS+ In Ff(s"’)) Furthermore, b (r, 0,04 ¢ Nt )r'=r, /= 1s supported in
I'£(¢”). We then find the other symbols by induction for we have a triangular system of equations. More
precisely, the k-th equation ¢y =0 (k > 1), reads

(bki(r’ 9’ ﬁ:l:,e? ﬁi,e) a()i(r’ 97 ﬁ:l:,s’ ﬁi,s) Jac(ﬁzl:,a’ ﬁi,s))p’:r/’g:gr = d;jt(r, 0, P, 77)
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where d,fc is a linear combination of symbols of the form

D) 0. P s T0) s g O G0, Dt T =00 S ity (7 6 9, 1)
with ko < k and 8,4,y a product of derivatives of order > 1 of (o4 ., 74 )(r,6,7', 1, p, n) evaluated
atr =r’,0 = 6’'. By the induction assumption (Byb,:{';)(r, 0,01 6 N+ )r=r,0=¢ 18 supported in It (&),
so we have
(r, 0, ptes Nt.e) r=r =0 € T (67),
using (4-53). Therefore, 8k, 1,y (7, 6, P65 N+.e)lr=r 6=0' belongs to %f(ﬁ) by (4-55) and b,f satisfies
the expected properties. O

4E. The transport equations. In this subsection, we solve the time-independent transport equations
related to the phases constructed in Proposition 4.9. If we define (v*, wh) = (T, wH @, 0, p, n) by

vt 0pp) (1,0, 0,5+, 39 S+) 20,8+
L) = (., , (4-64)
w Oy p)(r, 0, 0,5+, 0 S+) e 7 (9,q)(r, 6, 09 5+)

these transport equations take the form
vEd,at +wt- Bgai + yj[ajE =7t (4-65)
where y*, z* are given and a™ is the unknown function of (r, 0, p, ). Such equations arise naturally
in the construction of the Isozaki—Kiada parametrix (see Section 5). They can be solved standardly by
the method of characteristics and therefore, we start with the study the integral curves of the vector field
(vE, wh).
Given (r, 0, p, n) € F:E (e2), with & > 0 small enough (to be specified below), we denote by

rE=rE0,p,m), 0X=050.0,p,1),

the solution to

{r'f=vi(r,i,9,i,p,n), 4-66)

0F = w05, p, 1),
with initial data
r(;t(r, 0,p,n)=r, Ggﬁ(r, 0,p,n)=0.

In this problem, p and 5 are parameters. Equivalently,
¢ =07 (0, 0,m) = (5,67, p, ) (4-67)
is the flow of the autonomous vector field (vE, w®, 0, 0).

Proposition 4.14. There exists e4 > 0 such that for all (r, 0, p, n) € Fsi (83), the solution (rtJr , Qﬁ') (resp.
(r, ,6,)) is globally defined on [0, +00) (resp. (—o0, 0]). There also exists C > 0 such that, for all
O<e<eqandall (r,0,p,n) € Ff(ez), we have

6, p,n) eTE(e) for £1>0, (4-68)

and
rE —r —2tp| < Ce?min(l, J¢]), |67 —6]| < Ce™. (4-69)
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Furthermore,

|D1{;{§ﬂ(rti - 2tp)| + |Dk{;§ﬂ(9zi - 9)| < Cjukp- (4-70)
for (r,0, p,n) € TE(e}) and £t > 0.

Since S+ . =S+ on F;'E (&), the localization property (4-68) shows that qﬁti still solves (4-66) on F;JE (€2)
if one replaces (v, w¥) by (vf, wét ), the latter being obtained by replacing S+ by Si . in (4-64).

Proof. Here again we only consider the outgoing case. By (4-36), there exists Cy > 1 such that, for all
(r,0,p,n) €T (),

18,4 — pl < Coe™"Inl and  |e™ (3y9)(r, 8, 3 S1)| < Coe |- (4-71)
By (2-56), there exists C; > 1 such that, for all ¢ > 0 small enough and all (r, 6, p, n) € F:r (e), we have
e'Inl<Cie and e ¥yl < Cié?, (4-72)
the last inequality following from e~ R®) < ¢. If & small enough, we may also assume that
p>4 forall (r,60,p,n) €T (o).
Now fix M =5CyCy, and for (, 0, p, n) € F:r(sz), consider & := I (r, 6, p, n) defined by
T ={t>0:(,6)) is defined and r;” > r +5/8, 6, — 0| < Me* for all s € [0, ]}.

The set J is clearly an interval containing O and, if e is small enough, Proposition 4.3 shows that
(r, 05, p,m) € T{(e) forall s € T. Thus, by (4-71) and (4-72), we have

s 7S
lFF —2p| <2CoCie and |6| < CoC1e? forse T,

and, by possibly assuming that CoC;e < é, we have 77 > 0 on J. Choosing Cp > 1 as in Proposition 4.3,
we now claim that, if

e<e&/Cy and r > R(Cye),

then T :=sup J = +o00. Assume this is wrong. Then T is finite, belongs to I and, on [0, T'], we have

rt>r+4s/8>r |6 —0]| < Cie? < Me?,

s0, by Proposition 4.3, (r;7, 0, p, n) € T (Cye) C T (e2) and, by (4-71) and (4-72),

s 2Ys 0

T
Irf —r —2pT| < Coe™" |n] / e™*ds < Coe™" || T < CoCieT, (4-73)
0
T
16 — 6] < Coe™*|n| / e *ds < 4Coe ¥ |n| < 5CCie%. (4-74)
0

This implies that r;r >r-+7/8 and that |9;f —6| < Me?, so the flow can be continued beyond 7, yielding
a contradiction with the definition of 7. The flow is thus well defined for # > 0. Then (4-69) follows
from the first inequalities of (4-73) and (4-74) with an arbitrary ¢t > 0 instead of T, since e ™" |n| < &2 for
(r,0,p,n) elf (€2). If € is small enough, Proposition 4.3 shows that (4-68) is a direct consequence of
(4-69), using that e~ < &*.
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It remains to prove (4-70) for j + |a|+k +|B8| > 1. We consider 7,/ :=r;" —2tp and 6, := 6,*, which
satisfy

dr

dt

de;

=070 o,

=w(t7 f;’_’ 9_;’_7 P, n)a (4-75)

with

u(t,r,0,p,m = @e)r+2tp,0, p, 1),

W(t,r,0,p,n)=e > (d,q) (r +2tp,0, %S+ (r +2tp, 0, p, 1))
Using (4-36), we have, for all j/, o/, k', B,

‘Dj,a,k/ﬂ/(i_), )| S (1) e 4P <=2 fort>0, on e/ 0), (4-76)

with C such thatif (r, 0, p, n) e} (e2/C) then (r+2tp, 0, p, n) € Fj(ez/C). Note also that if ¢ is small
enough and (r, 6, p, n) € FS+ (&%), we have (f;r, 9_,+, p,N)E F;r (e2/C), using (4-69) and Proposition 4.3.
We then obtain (4-70) by induction by applying D;;‘: f 1o (4-75). Indeed, using Lemma 3.6 and (4-76),
we have

d L o s~ B

ED}{;‘;*3 (FF.07) = (0.0 (0. M) DY P (7,7, 6,) + (e ™),
where O(e~2*") = 0 for first-order derivatives and, otherwise, follows from the induction assumption.
Since |9,.0 (v, W)| S e~%"!, Lemma 3.7 yields the result. Il

We now come to the resolution of (4-65) in a way suitable to further purposes.

Proposition 4.15. There exists ¢5 > 0 such that, for all 0 < & < &5 and all y* € ?/?)hyp(l"gIE (&) of hyper-
bolic short range in I‘;JE (e), the function

N +o0
+ .+
Apom = expfo Yoo ds,

solves (4-65) on F;'E (€%) with z+ =0, belongs to %hyp(r;f(sZ)) and alim — 1 is of hyperbolic long range
in TE(?).
In addition, for all z* € Bhyp (F;JE (8)), of hyperbolic short range in Fsc (&), the function

E=ed K
aij;hom:_/o Zio¢;texp</0 yio¢uidlft)ds

solves (4-65) on Fsi (e?), belongs to %hyp(Fsc (e?)), and is of hyperbolic long range in F:E (&2).
Lemma 4.16. There exists 5 > 0 such that, for all j, o, k, f and all N > 0,
|0/ a5 0% 08 (riE —r —2tp) |+ |81 9 9%0E (0 — 0)| < (r —log(m) ™",
on stE (e5), uniformly with respect to +t > 0.
Proof. By Proposition 4.3, there exists C > 0 such that, for all ¢ small enough and all s € [0, 1],
(r.0,0,m) €TI (") = (.0, p,5m) €T (CeY). (4-77)

Therefore, if Ce2 < 83 and if we set X,lL (r,0,p,n) = (r,ﬂE —r=2tp, G,i —60), we can write

1
xti<r,9,p,n)=xti(r,9,p,0>+/ ("8, XF)(r, 0, p,sn)ds-e ",
0
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on TF(¢?). The crucial remark is that X;(r, 6, p, 0) = 0. Indeed, by (4-34) and the first equation in
(4-35), we have 0,5+ = p and 9y S+ = 0 at n = O (notice that (r, 0, p,0) € F;t(ez) if Ce? < &), s0
the solution to (4-66) is simply (r + 2tp, 6) in this case. In addition, by (4-70), (X ,i),zo is bounded in
Bhyp(TE(62)). Thus, for all N > 0,

|0/ 050500 X;7(r, 0, p, )| S e () S (r—log(m) ™" for £1>0, (r,6, p,n) € T (D),
which yields the result. 0

Proof of Proposition 4.15. For simplicity we set 37 = 3/ 83953}, Then, using Lemma 3.6 with [y| > 1,
37 (y* 0 ¢F) is the sum of

(0,y) 0 ¢F07r + (99y™) 0 b7 - 0705 + 80800 (359 y5) 0 (4-78)

and of a linear combination of
@ K0P P vy E) 0 (87rE .. T rE) (07O ... a7 6F)n-1), (4-79)
where (Qsi)l, e (Qsi)n_l are the components of Qsi, 0,0,k', BH+>_ y{ =y, using the convention and

the notation of Lemma 3.6. By (4-70), we have

13, y5) 0T 87rE| < (rF —log(n)) " 2e " Pl(s)",

where k = 1 if k =1 and j + |a| + |B] =0, and ¥ = 0 otherwise. On the other hand, by Lemma 4.16,
we have

1@, y5) 0 §5707rT] S (" —log(m) ™72 (r —log(n) ™7 ()",
with the same « as above and j = j if j > 2, or j =0 for j < 1. Similarly, we also have

By ™) 07" - 8767| < (r" —log(m) ~"~! min(e™ ", (r —log(n)) ™).
while, for the last term of (4-78), we have
1870800(3537 ) 0 ¢77| < min(e™ e 2P F —log (i) 7T,
since e~ 18I < e 1BIre=21BlsI for rs —r —2ps is bounded from below and ps > 0. Now, we remark that
(8717 .. 9% rE)| < (s)™ r —Tog(n)) ™™,
where 7; is the number of 3 = a,jfl 83 i 8];’1 8,'? i for which jzl =0, Ng=0if jzl <1 for all [ and Ny is any
positive number if j,1 > 2 for at least one [. We therefore obtain, if 8 = g/,
|4-79)] < ()" —log(n)) ™~ min(e ™" Pl{s)", (r —log(n))" ="~/ (s)"),

since v; — Py — j > 0 in the case where no r derivative fall on the components of 6 and only r derivatives
of order at most 1 fall on r. If 8 # B/, we have

|(4-79)] S min(e PPNV ()71 (1 —Tog(n)) 7'M (r —log(m) " 7" (5)).
Since rsi —r — 2ps is bounded from below, ps > 0 (with |p| = 1) and using (4-17), we have
(r —log(n) """ < (r —log(n) +Is)) 7"
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All this implies that

DI (yEodE) [ S(s)7™" and  [97050508 (yE 0 g¥F) | < (r —log(n) +1sl) " (r —log(n)) /.

and since .
/ (r — log(n) + Is)) ™ "ds < (r — log(m)
0

(using (4-17) on strongly outgoing/incoming areas), we see that the function foioo y£ o ¢ ds belongs
to %hyp(r‘:E (€%)) and is of hyperbolic long range. This implies easily that the same holds for alim — 1.
One then checks that “tim solves the homogeneous transport equation by computing d(a}im ) qf) /dt at
t = 0%, One studies similarly the case of at U

inhom*

5. An Isozaki-Kiada type parametrix

In this section, we prove an approximation of e~/*"* @L(Xf) when X is supported in the strongly
outgoing (4) or incoming (—) region Ffs (&) (see Definition 2.12 for these areas and Definition 2.1 for
67)[( -)). We recall that ¢ is an arbitrary index corresponding to the chart at infinity we consider and
where the symbols are supported (see (2-4) and (2-19)).

Here we will prove an L? approximation, valid for times such that 0 < +¢ < 4~!. Basically, we will
show that, for any N, e~ /""F 5}@ (xE) is the sum of a Fourier integral operator and of a term of order A"
in the operator norm of L2(M, d/G\), uniformly for 0 <t < hL.

We will therefore essentially prove half of Proposition 2.20, namely the estimate (2-79). The disper-
sion estimate (2-78), following from a stationary phase argument on the Fourier integral operator, will

be proved in Section 7.

In the sequel, we choose an arbitrary ¢ € $ (see (2-2)). Since it will be fixed, we drop it most of the
time from the notation (in particular in phases, symbols) and keep it only for the diffeomorphism W,, the
regions I'5 (+) and (5-3).

In the next result, we use the classes of symbols Fpyp( - ) introduced in Definition 2.2 and the Fourier
integral operators (4-49) defined in Section 4D. For these operators, the phases are associated to the
Hamiltonian p = p,, the principal symbol of P in the ¢-th chart (this notation is consistant with (5-3)).

Theorem 5.1. For all N > 0, there exists e(N) > 0 such that, for all 0 < ¢ < &(N), the following holds:
there exists a* (h) = aa_L 4+ hNa,j\E, with a(:)t, e aﬁ € 5"hyp(Ffs(8)), such that for all

XE € Pryp(TE (") (5-1)
we can find b*(h) = b(jf 4+ 4 hNbi with
by, ..., by € (T (), (5-2)
such that, for all T > 0, there exists C > 0 such that
<Ch!,

” o—ithP @t(xsi) _ lljt*(‘]];t(ai(h))e_ilhDg J;:(bi(h))*)(llj[_l)*||L2(d’G\)_>L2(d/G\)

provided that
0<+t<Th !, h e (0, 1].
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By the inclusions in (2-20), together with (2-21) and (2-54), the symbols a* (k) and b*(h) are sup-
ported in (e~ !, 4+00) x Vie xR C (Ry+1, +00) x V/ x R, for & small. Therefore the Schwartz kernel
of the operator Jf(ai(h))e_”wf JiE(bE(h))* is supported in ((Ry + 1, +00) x VL’)2 and hence

\I’l*(.]hi((li(h))e_ithDrzJh:t(b:t(h))*)(\pt_l)*

is well defined on the whole manifold (by the implicit requirement that its kernel vanishes outside the
coordinate patch U, x U, of M x M).

We also remark that (N) could certainly be chosen independently of N. However this is useless for
the applications we have in mind and we will not consider this refinement.

Before starting the proof, we give some heuristic ideas about our parametrix. It gives a microlocal
approximation of e/’"* for initial data microlocalized in strongly outgoing/incoming areas. In such
areas, e "7 is small and r is large, so the geodesic flow is close to the “free” flow of p? uniformly in the
future/past, as a consequence of Proposition 3.8 basically. This closeness at the classical level remains
true at the quantum level in the sense that the flow ¢/""? can be put in the normal form e/"*2*
up to the conjugation by time-independent Fourier integral operators. We point out that we state this

, 1.e.,

approximation on a 2! time scale, but it would more generally hold for times of order 2=, for any
N. To obtain a semiglobal in time parametrix (one with ¢ > 0 or t < 0), we would need to combine our
construction with a priori estimates on e/ of local energy decay type, to control the error terms given
by the Duhamel formula.

Let us fix or recall some notation. We set
P, = (¥ HY*P(W)* = p(r,0, Dy, Dy) + p1(r, 0, D,, Dg) + po(r, 0), (5-3)

with p the principal symbol and p; of degree 2 —k in (p, n) for k =1, 2. For simplicity, we also use the
notation (4-48).

Recall finally that, for some fixed ¢, > 0 small enough, Proposition 4.10 proves the existence of S.
solving

p(r,0,9,8+,09S+) = p> for (r,0,p,n) € F]’Ls(gt). (5-4)
Proof of Theorem 5.1. For simplicity we set
Ar=J @ (), Be=JF@®Th).
By the Duhamel formula, we have
i

t
i f eI (RP P AL — ALh*DDe P ds. (5-5)
0

—ithP j,* A —ithD?
e ‘-I’[ Ai = ‘-IJL Aie r—

Multiplying (5-5) by B} (\Ill_l)* and defining

Ci = XE(r 0, hD,, hDy)& @) — AL B%, Di(s):= (h*P,Ayx — ALh>D2)e "I BY  (5-6)
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(where «k and k, are the cutoffs used in Definition 2.1), we obtain
e Op, (x7) t
=W Aye P B (WY e PR Oy (W — IE /0 e =Py DL (5)(W Y ds. (5-7)
Using (2-8) with g = 2, the theorem will then be proved if we find a*(h) and b*(h) such that
ICel 2@y 2y S and  ID() 2@y 2@y SAVT forhe 0,11, (5-8)

uniformly with respect to 0 < s < Th~! for D (s).
For simplicity we only consider the outgoing case but the incoming one is of course completely similar.

Construction of a* (h). We first define (v, wt) by (4-64) and also set
y+ = p(r59’8r580)S++p1(r59,8r’80)5+‘ (5_9)

Lemma 5.2. There exists & < ¢, such that y* belongs t0 By (I :rs(ét)) and is of hyperbolic short range
on T (&).

Proof. This follows from (2-11) and (4-14), since Proposition 4.9 shows that yf;:() =0. Il
Elementary computations show that, for all a(J)r e a; € Ef;’yp (¢) and a™(h) = a(J)r +---+hnN a;,

N+2
R PJF (@t (h)) — JF (@t ()R D? =3 BT,
=0

where the symbols are given by
d = (p(r,0,8,5+,35+) — p*)a —i (vTo.qf | +wt - 3at | +yTa" )+ Paf,
=—i (v+8ra1+_1 +wt. Bga;r_l + y+al+_1) + P[a;r_z, (5-10)

using (5-4) and assuming ¢ < g¢,. Here, we have 0 </ < N + 2 and the convention that afz = afl =

a; = a;\; 42 =0. In particular, the first three terms are given by

df =0, (5-11)
id} = vt d.af +w' - dpaf +yTaf, (5-12)
id;r =v+8raf+w+-3eafr+y+afr+ipta5r- (5-13)

Using Proposition 4.15, Lemma 5.2 and assuming &, < min(élz, &5) we can define

“+00
5’o+(r,9,p,n)=e><p/0 y oo (r,0,p,m)ds for (r,0,p,n) €T (&),

SO &(J{ € %hyp(f‘jfs (&), &J — 1 is of hyperbolic long range in F:rs(él) and
v+a,&0+ +wt. 89&5{ —|—y+&ar =0 on F:rs(él).

Since the function fooo yT o ¢l ds is bounded on F:rs(ét) (see the proof of Proposition 4.15), we also
have
ag(r,0,p,m) 21 for (r,0,p,n) € E). (5-14)

.S
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Using (2-11) and the fact that &ar — 1 is of hyperbolic long range, it is easy to check that P[&a_ is of
hyperbolic short range in F:r L(£2). By Proposition 4.15, we can then define

+0o0 K}
al =i / (Pag)o¢] exp (/ ytogf du) ds onT} (&),
0 0
which belongs to %hyp(Ffs(éf)), is of hyperbolic long range in F:rs(é[) and satisfies
vtoaf +wt - dpaf +ytal =-iPa on F:rs(élz).
More generally, for 1 </ < N, we can define iteratively
+00 K 5l
af“:i/ (Ptaltl)oqﬁjexp(/ y+o¢;du> ds on F:'S(el ),
0 0

which belongs to By, (I’ :rs(élzl)), is of hyperbolic long range in F:rs(th’) and satisfies

A A ~ . A A2l
v+8,a1+ +w'. E)gafr + y*alJr = —lPLalJr_1 on Ffs(s[ ),

using Proposition 4.15 and the fact that PL&;L_l is of hyperbolic short range if &;L is of hyperbolic long
range. Therefore, using Proposition 4.4 with ¢ < é?N and setting

at=x%, a" for0O<I<N,
l e2—¢e"l

with the &;L defined above, we have constructed a(")Ir e alt € ff;ryp(g) with a(")'r satisfying (4-63), by
(5-14). Furthermore,

dt e Sfljyp(e) for 0<I<N+2 (5-15)
and

d" =0 on T} (e*) for0<I!<N. (5-16)
Construction of bt (h). Given X € S’flryp(89), we simply choose the symbols b, ..., b]f, according to

Proposition 4.13, with ¢ < min(é?N, £6).

Justification of the parametrix. Since K ® k, = 1 near the support of X, we have

| %5 (.6, hDy, hDg) — X3 (r, 6, h Dy, hDg) (R @ R 12 g rM, he (o1,

<
)= L2(R1) ~
for all M, using the standard symbolic calculus, the Calderén—Vaillancourt Theorem and the fact that
El’lfyp (e)cC go([REZ”). Using Proposition 4.13, we therefore obtain

Ict - AN he(0,1].

<
(RM)— L2(R") ~

It remains to consider D (s), which reads

N+2 N ‘
D+(S) — Z Z hl+mJ}j—(d[—i-)eflshD,?J/:-(bnt)*‘
=0 ,—
By (4-62) and (5-15), the part of the sum where / > N + 1, has an L? operator norm of order AV +1
Once divided by / and integrated over an interval of size at most 2~!, the corresponding operator norm
is O(hV~1). The control of the other terms of the sum will follow from the next result.
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Proposition 5.3. If ¢ is small enough, then, for all 0 <[, m < N and all M > 0, we have

_; 2 _
|7, (dye=ismPr J,j(b;)*||L2(Rn)_)L2(R,,) <C:hM forhe (0,11, 0<s<Th "

The proof is based on a fairly elementary nonstationary phase argument. To control the operator norms
of the kernels obtained after integrations by parts, we need the following rough lemma.

Lemma 5.4. Fora € C;° (R3") compactly supported with respect to p, let us set
alf (r.0.7'.0') = @h)™" // S 0.0 00 (0. 0 o ) dp .
using Sy defined in Proposition 4.10. Denote by &Q;{ : L2(R") — L?(R") the operator with Schwartz
kernel [a];[. Then, there exists no(n) > 0 such that, for all &€ small enough,
sty 1 L2y 22y < Ceh™"0(5)"™ MaX yj<ny SUPgan (107 al| oo,
forallh e (0,1],alls e Randall a € Cl‘;o(l]@") satisfying
supp(a) C {|p| < 10}.

Proof. We get this as a simple consequence of the Calderon—Vaillancourt Theorem by interpreting &Q;
as the pseudodifferential operator with symbol

L r,0,p.n)—sp>— 0.0 -1
e P+.e(n0,p.m)=5p" =@ o ( p ma(r,@, r', 0, p, 1),

where ¢ . is defined in Proposition 4.10. U
Proof of Proposition 5.3. We notice first that, by Proposition 4.9 and (4-36),

3 (S4(r, 0, p,n) —sp> = S4.(r', 0", p, ) =7 —r —2sp +O(e?), (5-17)
3y (S, 0, p, ) —sp* =S, 0", p, ) =0 — 0" +0(e™ /%), (5-18)
on the support of ler r,0,p, n)b,'n* (r',0’, p, n). On the other hand, by construction, we have
dif =i (v X, tw T B Xene) A+ PXe2n 8 ) — X2 P
(with the convention that a*, = a*, = 0). Using in particular that
wt = e (0,9)(r. 0. ¢ S,

we conclude that d;r is a sum of terms of the form c(r, 9, p, n)a,f (e™” 89)"‘)(:2_)8, with j + |¢| > 1 and

c € Bt (¢). Using the form of X;_)S given by Proposition 4.4, we see that, on the support of such terms,
at least one of the following properties hold:

el <r<e? (5-19)

pr.0.p.n) <t —&> or p(r.0,p,n)=4+¢, (5-20)
84_2K S e_2r|77|2 S 82, (5_21)

dist(8, V,) > &*, (5-22)

for some fixed 0 < k < 1 in (5-21). For terms such that (5-19) holds on their supports, we have
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(5-17)<e2—e 2 —2sp+C < —1—2sp. (5-23)

for ¢ small enough and integrate by parts with respect to p. For those satisfying (5-20) on their supports,
then we must have

1

/02—15—82

or p*—4>¢g%
since e~ |n|> < &2 in any case, whereas on the support of b;", where p(r’, ', p, n) € (% —&3, 4+ 83)
and e[| < &,

,02—‘—112—83 and p2—4§83,

so that the amplitude vanishes identically, again if ¢ is small enough. For those satisfying (5-21) on their
supports, we have e || ~' < &2, Since e |n| < &3, we get

¢ <C+(1+Kk)Ine <0,

which implies again that (5-17) < —1—2sp, if ¢ is small enough. Thus on the supports of terms satisfying
either (5-19) or (5-20) or (5-21), we have |(5-17)| 2 (s). By standard integrations by parts, the kernel of
corresponding operator can be written, for all M, as in Lemma 5.4 with amplitudes of order (%/(s))™ in
Cgo([R3”). Hence, their L? operator norms are of order (1/(s))~" with an arbitrary M.

For the remaining terms satisfying (5-22) on their supports, we remark that |6’ — 0| > &> (otherwise
dist(0, V,) < |0 — 6’| +dist(0’, V,) < &> + &% « &*) hence

1(5-18)] = &°.

Thus, for all M > 0, the kernel of the corresponding operators can be written as in Lemma 5.4 with
amplitudes of order AM in C°(R3"). Since M is arbitrary, their L? operator norms are of order A" if
Is] <kl O

This completes the proof of Theorem 5.1. g

6. Geometric optics and Egorov’s theorem on AH manifolds

As in the previous section, we fix here an arbitrary index ¢ corresponding a coordinate patch and then
drop it from the notation in symbols, phases, intervals, etc.

6A. Finite time WKB approximation. Next we give a short time parametrix of e~/""* @L(X +) when
X* is supported in an outgoing (+) or an incoming (—) area. This parametrix is the standard geometric
optic (or WKB) approximation which is basically well known. Nevertheless, in the literature, one mostly
finds local versions (i.e., with X € C§°) or versions in R" for elliptic operators. Here we are neither in
a relatively compact set nor in the uniformly elliptic setting, so we recall the construction with some
details.

Analogously to Section 5, we prove here an L? approximation. The related dispersion estimates
leading to (2-80) will be derived in Section 7.

We also emphasize that, although we shall prove this approximation with a specified time orientation
(t >0 for x* and r <0 for X ™), this result has nothing to do with outgoing/incoming areas; in principle we
should be able to state a similar result for any X supported in p~ (1) and for times |f| <« 1. We restrict
the sense of time for only two reasons: firstly, because it is sufficient for our purpose and, secondly,
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because we can use directly Proposition 3.8 (we should otherwise give a similar result for the geodesic
flow for ¢ in an open neighborhood of 0).
Fix
Lelh el; €(0,+00),
three relatively compact open subsets of V, (see (2-21)),
Vie,eVseV/,

and three real numbers
—l<or<om<oy<l.

For some Rj3 large enough to be fixed below, we also choose arbitrary Ry, R, real numbers such that
R > R, > Rs.
Theorem 6.1. For all R3 large enough, there exists twkg > 0 and a function
T € C*([0, £twks] x R*, R)

such that, for any
X € Puyp (TE(RY, Vi, I, 01))), (6-1)

we can find
ay (1), ..., ax(t) € Fuyp(TE(Ry, Va, b, 02)),

depending smoothly on t for 0 < £t < twks, and such that, if we set
ay(t, ) =ag @)+ +hNay @),

the operator defined on C3°(R") by the kernel

(95 (t,an @, )] t,r,0,r,0")=Qxh)™" //e’i(gi(””e""”)r/p9/"7)a§(t,h,r,9,p,n)dpdn,
satisfies, with 1, the characteristic function of (R3, +00) X V3,
—ithP 3% (yE + + —1\* N+1
H e """ Op, (X )_‘I’z*}h (’»“N(t’ h)) 1, (‘I’z ) ||L2(M,d’§)—>L2(m,d’5) <Ch"T, (6-2)

for

0<=4r<twk, he(0,1].
In addition, the functions ©* are of the form
S50, 0m =rp+0-n+ (5,10, 0,m) —rp—n-1) X35, 0, p, ),

with X:Zt_)3 € thyp(F[i(Rg, V3, Iz, 03)) such that Xf_)3 =1on Fti(Rz, Vo, I, 0»), and some bounded
family (Z5 (1)) o<tr<nys i1 Bhyp(TE(R3, Vi, I3, 03)) satisfying

{a,zoi+p(r,9,arzoi,agzgﬂ):o, 63)
250, 7,0,p,n) =rp+6 -1,
and .

DI (S5t r. 0. p.m)—rp—60-1—1p(r.0. p. ) | < Craupt®. (6-4)
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both for
0<=t <twks and (r,0,p,n) € T=(Rs, V3, I3, 03).
We also have
(==t r0,p,m)—rp—6- Moeisany Pounded in SPryp(TE (R, V3, I3, 03)). (6-5)
Finally, forall0 < j <N,

(@7 (1) g ranyyy 5 bounded in oy (T3 (R, Vo, I, 02)). (6-6)

Notice that V; € V/, so it makes sense to consider @L(Xi); see (2-23).

In principle it is not necessary to have R3 large to get such a lemma, but this will be sufficient for our
applications. The interest of choosing R3 large is simply to allow to use directly Proposition 3.8.

Note also that, by (6-6), the kernel of $;- (¢, ay (¢, h)) 1, is supported in ((R3, +00) x V3).

Proof of Theorem 6.1. The proof will occupy the rest of this section.
We need to find X4 and ai (t, h) such that

$£(0, a3 (0, h)) = x*(r, 0, hD,, hDy), (6-7)
(hD, + W P)FE(t, a5 (t, h)) = kN T2RE (¢, h), (6-8)

where P, = (¥, 1)*PW} and
IRY (t, Wl 2@y 2@y < C, he (0,11, 0<%t < twis. (6-9)

Indeed, if (6-7), (6-8) and (6-9) hold, the equality

WEgE (1, ak e M) 1, ()

*

— e P XE(r, 0, hD,, hD)1, (¥,1)"
v /’ e_i(’_s)hﬁ‘IJ[*RN(S, m, (\p[—l)* ds
will yield (6-2) since, for all M > 0, 0
1 X (r, 0. h Dy, kD)1, (W, 1)" = Op, (XD 12 .6y L2 ud5) < Curh™.

by standard off-diagonal decay (see Definition 2.1 for 6}9[), since 1, =1 near I, (supp(Xi)).

To get the conditions to be satisfied by £+ and agt, cees af, we observe that
N+2
(hDy+12P) $5 (1.ak . ) = 3 Wi g7 (1,67()), (6-10)
j=0
where, if we additionally set afz = al—Ll = af,H = aﬁrz =0,
bj= @S+ p(r,0,0,5%, 0 =")a’ +i"' (0 + T aj_, + Pal,, (6-11)
with

TH =20, 0, + (0yq)(r, 0, e F) - e 05+ (p+ p1)(r, 0, 3,, 0) T, (6-12)
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where g = g, is defined in (2-13) and p; is the homogeneous part of degree 1 of the full symbol of P,.
To obtain (6-7), (6-8) and (6-9) it will therefore be sufficient to solve the eikonal equation (6-3), then the
transport equations

@ +THaf =0,  aF(0,-)=x%(), (6-13)
& +THaf =—iPat |, at(0,-)=0, (6-14)

for 1 <k < N, and finally to get an L? bound for Fourier integral operators of the form j,jl: (t, a) (using
the Kuranishi trick).

To solve (6-3), we need the following lemma for which we recall that (r', 67, p’, n") is the Hamiltonian
flow of p.

Lemma 6.2. For all —1 < o < o ik < L, all open intervals Ijx € I eik € (0, +00), all open subsets
Veik € V. ik € V) and all Reix > Relk large enough, there exists t| > 0 small enough that

Wi (0, 0,m > (0" p,m)
is a diffeomorphism from Fi(Relk, Lo T 00) onto its range for all 0 < &t <ty and
I (Reiks Veiks Leiks 0ei) C W (T (R Vi Lo 05))  forall 0 <+t <1y,
Proof. First choose a 0, € R, and open interval 1, and open set V, such that
oo <oun <1, I €1 € (0, +00), L EVI eV

Also choose R, > 0 large enough that Proposition 3.8 holds with o = |0, | and R = R/,,. We then
choose arbitrary R.jx and Réik such that

/ V
Reik > R > Ry,

and then X5, € S’hyp(Fi(Relk, Vi, 15, 02.)) such xEt,,=1on Fi(Relk, Lo Lo 00i)- The existence
of such a function follows from Proposition 4.1(i). In particular, Xt s, and 9y¢, p,,,X,i ,, are bounded on
R2". For 4+ > 0, consider the map

t t
gl R* 5 T,0,p,1n) (/ 20%ds, / e—r“(anq)(rﬂ 6%, e n*) ds) X,i_),,(r, 0, p,n) €R*, (6-15)
0 0

so that, by the equations of motion,
+
\Ij:tl: = IdRz" (‘9:|:’ 0) on F (Relk’ elk’ Iélk’ elk)

By Proposition 3.8 we have |9, , ¢ | < |t]; hence Idga + (8;:, 0) is a diffeomorphism from R>"
onto itself, for all ¢ > 0 small enough. Therefore, it remains to show that, if 7 is small enough and
(r,0,p,m) € F (Reik, Veik, Leik, Oeik) is of the form

r,0,p,m)=@"0", p",n)+ (L0, 0", n),0),

then (+',0’, o', 1) € Fi(Relk, Lo T 05,)- We have trivially p = p” and n = . By Proposition 3.8,
lef| <1t] on R, so [r—r'|+10 —6'| < |t]; hence r' > R.. " and 0’ € V. if ¢ is small enough. Moreover,
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by writing
q(r,6,e7 M —q(r', 0" e ) =q(r,0,e ) —q(, 6/ e+ (1= g (6 e,
we see that
|p(rv Qv O, 77) _p(r/’e/v O, 77)| S |t|v
using the boundedness of [e™" 'n| and Taylor’s formula. Hence

p( 0, p,m)elly and +p>—olypt’ 0, p, )

if ¢ is small enough, since p(r, 0, p, 1) € Lk and £p > —o.ixp(r, 6, p, 77)1/2. This completes the proof.
O

Now fix Leik, 10y, Veik, Ve

uik» and oei, aéik as in Lemma 6.2, with the additional conditions
Veik =V3, Lk =13, Ocik =03.
Denote by \I—',jE the inverse of W/ and define (r;, 6;) = (r;, 6,)(r, 0, p, 1) by
WEr 0, p.m) = (12 01 p. 1) € T3 (Riges Vi L 0l

if (r,0,p,n) € Fli(Reik, Veik, Leik, 0eik) and 0 < ¢ < t;. Here #;, Rqjx and Réik are those given by
Lemma 6.2.

Proposition 6.3. For all R3 > R.ix, there exists teix > 0 such that
Egt(t, ro,0,n):=rp+6-n+tp(:, 6, p,n),
solves (6-3) on F[:t(Rg, Vi, I3, 03) for 0 < £t < tex, and such that
(25 (t,7,0,0,0) —rp—0-No<ti<ry is bounded in By (TE(R3, V3, I3, 03)). (6-16)
Proof. That Eoi solves the eikonal equation is standard, so we only have to show (6-16). Since
Egt(t, O, o) =rp+0-n+ @ —r)p+e @ —0)-e n+te 2 g(r,, 0, e ),
(6-16) would follow from the estimates

|D£;¥;ﬁ(r’ =]+ \Dé;)t;ﬁ(er(ez — )| < Cjars. (6-17)

for 0 < 4+t < £tk and (r, 0, p, n) € F[jE (R3, V3, I3, 03). The equations of motion yield

t t
r’:r—i—/ 2p°ds, 9f:9+f e (0,q)(r*, 0%, e n*) ds, (6-18)
0 0

so, by Proposition 3.8 with R, of Lemma 6.2 and by choosing z.x small enough, we see that, for
0 < £1 < feik,

100", 0" —1d,| <1 on TF (R, Vi T 041
where |- | is a matrix norm. Therefore, by differentiating the identity (v, 8")(r;, 0;, p, n) = (r, 6) one
obtains, similarly to Proposition 4.8,

| Dy (r = 1) + | Dy 6 — 0)] < Ciap (6-19)



60 JEAN-MARC BOUCLET

for0 <+t <t and (r, 0, p,n) € Fti(R3, Vi, I3, 03). This proves the expected estimates for r, —r. The
second equation of (6-18) evaluated at (r,, 6;, p, ) yields

t ) s
¢ 0-00= [ @00 ds, (6-20)
0

where x} =x%(ry, 0;, p, ) forx =r, 0, .
Combining (6-19) and Proposition 3.8, we have, on Fti(R3, V3, I3, 03),

| DI (rs = )| + | DL 0F — 0)| + | Dy (0 = )| < Cjap for 0 < et 5 <t
from which the estimate of the second term of (6-17) follows using (6-20). U

We now solve the transport equations. By (6-12), we have to consider the time-dependent vector field
(v, wi) defined on TF(R3, V3, I3, 03), for 0 < 1 < feix, by

(vf) B ((appxr, 0,9,55, 3 25'[)) ( 28,2 )

w;") " \@yp)(r,0,8,28, 8 5F) e ¥ (0,9)(r,0,8EE))

We then denote by ¢§: ; the flow, from time s to time ¢, of (vti, wti, Ogr-) namely the solution to
qoE., = WE@E, ), wE@E,),0), ¢, (1 0,p,m)=(0,p,1). (6-22)

Lemma 6.4. For any open interval Ii;, anyoy € R, and any open subsetVy, C R such that

(6-21)

Rtr>R3, Vtr@VS, Itl‘@l?)v _1<O'tr<0'37

there exists O < ty < teix small enough that

¢si_)t is well defined on Fti(Rtr, Vie, I, o) forall 0 <£s <1, 0<£t<n (6-23)
and
DR (¢, —1d)| S 1 on TRy, Ve Iy o) for 0 < ks, £t <1 (6-24)

By (6-23), we mean in particular that
¢s—1 (07 (Rur, Vir, I, o)) C T (R3, V3, I3, 03)  for 0 < s, 1 < 1. (6-25)

The estimate (6-24) can be restated by saying that the components of d)f_) ; —Id are bounded families of
Bhyp (TE(Rir, Vir, Iir, ) for 0 < £5, 1 <15,
Proof. For all § > 0 small enough, we have
lr—r'|+10—6'| <8 and (1,0, p,n) € T (Ry, Vir, L, 04
— (.0, 0,1 €TE(Rs, V3, I,03)  (6-26)

by Proposition 4.2. Denoting by (rsi_m Gsi_n, 0, 1) the components of ¢Si_>,, they must be solutions of
the problem

t
., 6. = (r.6) + / E wEYE,,. 6%, p. 0.
S

By (6-16), we have
|E, wH)|+ 18,0 (v, w)| < C, (6-27)
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on l“[jE (R3, V3, I3, 03), for 0 < £t <t.jk. Therefore, the sequence uf(r) = uf(t, s,r, 0, p,n) defined by

O =00 w0 =00+ [ @F b, e,

is a Cauchy sequence in CY([0, £1,], R™) for all (r, 6, 0, M) € Fti(Rtr, Vie, Iir, 01r) and 0 < +5 < 1, for
some t; small enough independent of (r, 8, p, n). Indeed, using (6-26) and choosing #, small enough so

that ZkEO(C 1)k*! < 8, a standard induction using (6-27) shows that

U (1) —uf ()] < (Cr)FH,

which makes the sequence well defined and convergent. This proves (6-23). We then obtain (6-24)
by induction by differentiating the equations in (6-22). This proof is completely similar to that of the
estimate (4-70) in Proposition 4.14 (and much simpler since it is local in time) so we omit the details. [

Now denote by q,lL = qfE (r, 6, p, n) the function defined on [0, £zek] X Fli(R, V,1,0) by

g5 = (p+p)(,6,0,,0) %y .
This function was involved in (6-12).

Proposition 6.5. Choose Ry, Vi, Iy and oy such that
Ry>Ry>R3, VheVweV;, bLeEl,€lz, o0y<oy<o;.
There exists t, > 0 small enough that, for all X* satisfying (6-1), the functions
a(ﬂf,...,aiz[O,:I:ttr]sz”%C

vanishing outside FLi (R, Vi, I, 0») and defined iteratively on Fti(Rz, Va, I, 07) by

t
af(t):=xFopE,  exp ( fo a5 o¢?is) :

t t
at(t): = —f i(Pai (51, ¢i5,,) exp (f a od)ti_)szdsz) ds; forl<k<N
0 S1

are smooth and solve (6-13) and (6-14). Furthermore, for all 0 <k < N,
(@ (1))0<tr<t, is bounded in Fhyp(TE(Ra, Va, I, 02)).

Proof. Fix R, V,

/ /
s Vie» It and oy, such that

Ry>R,>Ry, VLEV.EVy, LEI.Ely, o03<o0, <0y
By choosing 0 < #; <, small enough, we then have, for all 0 < &5, 1 < #,

o (Fli(Rl, Vi, 11,01)) C TE(Ry, Va, I, 02),

s—>t

oL, (TE(Ry, Va, h, 02)) CTE(RY, VL I, o)),

s—>t

o=, (TERL, V), I, 0)) C TE(Ry, Vs e, 04).

s—>t

(6-28)

(6-29)
(6-30)
(6-31)
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This follows from Proposition 4.2 and the fact that |qb,i_>s —Id| < |t —s|, which comes from the integration
of (6-22) between s and ¢, using (6-24). By Lemma 6.4, the flow is well defined on I“LjE (R, Vir, I, 04r),
therefore the condition (6-31) ensures that we have the pseudo-group property

by oy =5 0 < s, 41, +u <1y, (6-32)

s—>u’

on (R}, V., I

(VL I, o)), In particular, ¢, 0 ¢F,, = Id on this set. Therefore, by (6-30), we have

TE(Ry, Vo, b, 02) C ot (TE(RL, Vi, 1, 00) -

tr>

This implies that the map
(t,r,0,p,1) > (1,97, (1,0, p, )
is a diffeomorphism from (0, #,) x T'X(R}, V{, I/, o) onto its range and that this range contains

tro Ttre

(0, £1;) % Fli(Rz, Vi, I, 02). Restricted to the latter set, the inverse is given by (¢, qb,i s) which shows
that (j)ti_)s is smooth with respect to ¢. Furthermore, by differentiating in ¢ the relation qb,i_” ) qbsc_” =1d,
one obtains

qE. + (P00t E, wh) =0,  on TE(Ry, Vs, I, 00),

for 0 < £t < f,. Using this relation, one easily checks that a(:)IE solves (6-13) on F[i(Rz, Vo, 1>, 07). In
addition, if
(.0, p,m) € TR, Vi I, o) \T(Ra, Vo, I, 02),

we have ¢ (. 0, p, n) ¢ supp(X*) otherwise (r,6, p,n) € [F(Ra, Va, I, 02) by (6-1), (6-29) and
(6-32). This shows that, extended by 0 outside Fti(Rz, Vo, I, 00), aSE is smooth. The property (6-28)
for k = 0 is then a direct consequence of (6-24). We note in passing that we have

supp(ay (1)) C ¢y, (supp(XH)).

The proof for the higher-order terms a,:f, k > 1, is then obtained similarly by induction using that
supp(Pag_ (s1)) C g, ,, (supp(X™)) for all 1. m

Proof of Theorem 6.1. There remains to prove (6-4), to globalize T to prove (6-5) and the bound (6-9).
By Proposition 4.1, we can choose

X3 4 € Puyp(TE(Rs, Vs, I3, 03)) suchthat X3 ;=1 on ['E(Ry, Va, b, o).
We set
SEE 0. o) =rp+0 0+ Xy 5(r 0. p. ) x (B (1.1, 0, p.0) —1p—6 7).

It coincides with Egt on [0, £teix] X F[i(Rz, Vi, I, 02) so it is a solution to the eikonal equation on
[0, £twkg] % Fli(Rz, Va, I, 07), for any 0 < twkp < f.ik. Furthermore, (6-16) implies (6-5) and, by
using

t
Sot.r.0.0.m)=rp+6- 77+/0 p(r. 0.9, 35 (s), 09 T () ds, (6-33)

we get (6-4) since (6-16) and (6-33) itself show that the components of (3, X (s) — p, dg =T (s) — n) are
O(s) in By (TE(R3, V3, I3, 03)).
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To prove (6-9), we use the Kuranishi trick which is as follows. By Taylor’s formula, we can write
S50, 0 =20 o) = (=), 6,7 6 p )+ (O =6 (.6, 8', pm).
Using again (6-33) and (6-16), we obtain

187059 09508 (6%, i) (1, 1, 6.7, 6, p. ) — (0. M) | < Crajrarnglt]. (6-34)

for (r,0,r",6', p, n € R¥) and 0 < £t < t.j. The latter implies that, for all 0 < £¢ < twkp small enough
and all (r, 0,1, 0") € R?", the map

(0. 1) = (55,777,
is a diffeomorphism from R" onto itself. Furthermore, proceeding similarly to the proof of (4-52) in
Lemma 4.11, we see that its inverse (5, 77) — (pT, nT) satisfies

|0705'0), 05 0507 ((0*, ™) (2, 7,0, 7,0, 5. 7) — (5, ) | < Clajrarngs (6-35)

on R, uniformly with respect to 0 < £¢ < twgg. Thus, for any bounded family (ai(t))osi,stWKB in
Phyp(TE(R2, Va, I, 02)), the kernel of §7- (¢, a* (1)) $; (¢, a* (1))*, which reads

Q@rh)™ / FEECROPD-TECH 00 GE ¢y 0. 5 )G p ) dp i, (6-36)
can be written as
@iy [ BV 10,1, 0' 5 djd i (6-37)

with B(z, - ) bounded in C;° (R3) as 0 < &1 < twks. By the Calderén—Vaillancourt theorem the operator
given by (6-37) is uniformly bounded; hence ||}f (t, at (1)) Il L2(rry— 2@y < C whenever 0 < &7 < twks
and & € (0, 1], where C depends only a finite number of seminorms of a*(t) in C;’Q(RZ”). Using (6-10),
(6-11) (with a;t (t) solutions to the transport equations) and (6-28), the bound above yields (6-9), which
completes the proof of Theorem 6.1. O

6B. Proof of Proposition 2.24. To prove Proposition 2.24, we first need a version of the semiclassical
Egorov Theorem in the asymptotically hyperbolic setting. We recall that ®' = (r', 6, p’, ") denotes
the Hamiltonian flow of the principal symbol p of P.

Fix an open subset V € V/, an open interval I € (0, +00), and —1 <o < 1.

Theorem 6.6. If R > 0 is large enough the following holds: for all T > 0, all N > 0 and all
a € Fnyp(TER,V, 1, 0)), (6-38)
we can find
ap(t),...,ay(t) € thyp(q)’(supp(a))) forO0 <+t <T, (6-39)
such that, forall0 <+t <T andall0 <h <1,

_ < CnrohMth (6-40)
L2(M,dG)— L2(M,dG) — T

Y . N —
He—lthP OPL(Cl)elthP _ Z hk Opt(dk(t))
k=0
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This theorem is basically well known. Here the main point is to check (6-39), namely that ag(?), .. .,
ay(t) lie in By, (CD’ (supp(a))). Notice that, by Corollary 3.10, ®'(supp(a)) is contained in the same
chart as a in which it is therefore sufficient to work.

Using the group property, it is sufficient to prove the result when T is small enough (depending only
on V, I, o). To check this point, we choose open sets Vi, V, such that V € V| € V, € V/. Then, for
some C > 0 and all R large enough,

o' (I(R,V,1,0)) CTHR-C, Vi, 1,0), £t>0,
o' (I"(R—C,Vi,1,0)) CTFE(R—2C, Vo, 1,0), =+t>0.

This follows from Corollary 3.10 and the fact that p’ can be assumed to be nondecreasing, using (3-22).

Thus, it is sufficient to prove (6-40) for 0 < £t < & with ¢ > 0 small enough independent of a €
Phyp(TE(R — C, Vi, 1, 0)). Indeed, if this holds, it holds for a satisfying (6-38) and

o~ ) N —

el&‘hP 0pl(a)€_l€hP _ hk Op[(ak(g)) + hN-‘rl RN(h, 8)

k=0
with Ry (h, ¢) uniformly bounded on L2(M, dG) and ax(e) € Fnyp(CE(R — C, Vi, I, 0)), with ax(e)
supported in ®¢ (supp(a)) more precisely. Conjugating the expression above by e ~¢"* and then applying
the same result with ag (¢) instead of @ we can write

o . N
2P Op (a)e 2" — 3 Bk Op, (ar(2€)) + KV T Ry (h, 2¢),
k=0

where ay(2¢) is supported in o2 (supp(a)), which is still contained in FLi(R —C, Vq,1,0), and thus
allows one to iterate the procedure.
The interest of considering small times is justified by the following lemma.

Lemma 6.7. Fix V1, I, o as above. For some R| > 0 large enough and ¢ > 0 small enough,

| Dy (@07 = 1d0y)| < Cjagp on & (I (R, V1. 1. 0),

forall0 < £t <e.
Proof. Using the identity
t
d(®'—1dy,) =/ dH,(®%)dd’ds
0

and Proposition 3.8, we have |d(®'—1da,)| < [t| hence |(d®) ™| <1 on TE(Ry, Vi, I, 0) if R is large
enough and 7 is small enough. We then obtain the result by applying D{l;: Flodio (®")~! and using the
Faa di Bruno formula. For instance, if j =k = |o| =0 and |8]| = 1, we have

D] g€ 0 (@) 7! = 1day) = (Iday — D] 1) ] Tdy
where, using Proposition 3.8, the right-hand side is bounded for this is simply e” 8,’,3 (Idp, — @) evaluated
at (®')~!. Higher-order derivatives are studied similarly by iteration, using Lemma 3.6. O
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Naturally, (&' )_1 is the reverse Hamiltonian flow, namely flowing @’(Fti(Rl, Vi, 1, a)) back to
T'*(Ry, Vi, I, o). More precisely, for 0 < £t <,

d
E@’)—l(ne,p,n>=—Hp(<d>f>—1<r,e,p,n>) for (r, 0, p, n) € @ (TE(Ry, Vi, 1,0)).  (6-41)

We prefer to keep the notation (®)~ ! on <I>’(Fli(R1, Vi, 1, cr)) rather than using ®~', since we have
only studied ®’ for 7 > 0 on outgoing areas and ¢ < 0 on incoming areas.
We have essentially all the tools needed to solve the transport equations considered in the next lemma.

Lemma 6.8. There exists C > 0 such that, for all R large enough, the following holds: for any aj,; €
thyp(FLi(R, V, 1, o)) and any bounded family (f (t))o<+r<e ofﬂ’hyp(Fti(R —-C, Vi, 1, 0)), smooth with
respect to t and such that

supp(f (1)) C @' (supp(@ini)),
the function defined for 0 < +t < ¢ by

aini 0 (P71 + [§ f(5) 0@ 0 (d)"'ds  on ' (supp(a)),
0 outside,

a(t) :={

is smooth and satisfies
da®)+{p,a®)}=f@), a(0)= ain. (6-42)
Furthermore
(a(t))o<ti=e is bounded in Fnyy (I7(R —C, V1, 1,0)). (6-43)

In (6-43), we consider Fti(R — C, V1, 1, 0) for it is independent of ¢ but, by construction, a(t) is
supported in the smaller region ®’(supp(a)).

Proof. To check the smoothness of ag(¢) it suffices to see that aip o (®')~! and f(s) o (P'~)~!
are defined and smooth in a neighborhood of ®(supp(a)), while they vanish on the complement of
@' (supp(a)) (relatively to the neighborhood). Indeed (®')~! is defined on ®'(I'*(R — C, Vi, I, 0))
and if (r, 6, p, n) belongs to ®'(I'E(R — C, Vi, I, o)) but doesn’t belong to @' (supp(a)), then dgirc o
(®)~Y(r, 0, p, n) =0; otherwise, (®)~1(r, 0, p, n) should belong to supp(a) and thus (r, 6, p, 1) should
belong to ®’(supp(a)). Similarly,

t
fo ()o@ o (d)'(r, 0, p,n)ds

must vanish, otherwise there would be s between 0 and ¢ such that ®* o (®")~!(r, 8, p, ) € ®*(supp(a))
implying that (r, 0, p, n) € ®'(supp(a)). Then (6-42) follows directly from (6-41) and (6-43) follows
from Lemma 6.7. O

Proof of Theorem 6.6. By Lemma 6.8, the solutions of the transport equations (6-42) belong to the set
thyp(F;—L(R —C, V1, 1,0)). The proof is then standard; see [Robert 1987], for instance. O

Proof of Proposition 2.24. We start by choosing ¢ > 0 and § > 0 according to Proposition 2.16 with
t = twks. Then, using (2-26), (2-37), (2-38) and Theorem 6.6, it is straightforward to show that, for all
T >twgg and all N > 0,

s + —ithP A + N
H Opt(b[’imer)e ! Op[(b[’inter)* ||L2(d/(§)arr0wL2(d/G\) S CT,l,Nh for h € (07 1]v tWKB S j:t S T
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It is therefore sufficient to show the existence of T large enough such that

| Op, (b3 o)™ Op, (b <C nh" forhe (0,11, T <+t <2h~'. (6-44)

1, mter) ” L2(dG)arrowL2(dG) =

For simplicity we consider positive times and set B = Opt(b ). For T to be chosen, we write

1,inter

e—ithPB* — e_i(t_T)hPB(T)*e_iThP, B(T) — e_iThPBeiThP.

As above, we may write

B(T)" = Y. h*Op,(bi(T)) +h" ' By (h),
k<N

with By (h) uniformly bounded on L2(M, d’('?\) and
bk(T) € S)hyp(q)T(supp(bl mter))) - thP(CDT(FL lnter(g’ 8; l)))

By (2-57), for all & > 0, we can choose T large enough that &7 (T’ (85 8: D)) C T (%), Thus, if & is
small enough, Theorem 5.1 allows one to write, for ¢ > T,

eI Op (b (T2)) = W (J;F @z (h))e ™ CTORDE o (b () ) (W) + hY Ry (1, ),
with Ry (¢, h) uniformly bounded on L2(M, dG) for h € (0, 11and 0 <7 — T; <2h~", and

az(h) € Fuyp(T(8)).
We will therefore get (6-44) with T = T; if we choose £ small enough such that, for all N,

167 e (r: 0. R Dy, hDg) J,F @@z ()| - < Cyh".

1,inter (RH)—L2(R")

By the standard composition rule between pseudodifferential and Fourier integral operators (see [Robert
19871), b}/ 0, h Dy, hDg) J;" (az(h)) is the sum of an operator with norm of order A" and of Fourier
integral operators with amplitudes vanishing outside the support of

(r,0,0,S4,0084) az(r, 6, p,n, h),

l inter

where Sy = S (7, 6, p, n) is the phase defined in Proposition 4.9. It is therefore sufficient to show that,
for £ small enough, the support of the amplitude above is empty. Indeed, on this support we have
0, S+
p(r,0,0,54, 395+)1/2 N

P,
p(r, 0, p,n)!/?

—(g/2), >1-—&2 (6-45)

Furthermore, by Proposition 4.9, we also have
18, S — r| + 18654 — n| < 8

on Fffs (&), where a;(h) is supported. Since p is bounded from above and from below on Ffs (&), we

obtain, for all £ small enough,
P,
pr,0,p, M2~

which is clearly incompatible with the second condition of (6-45). O

<1—(g/2)*+C& <1—(g/4)%,
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7. Dispersion estimates

In this section, we prove Propositions 2.20 and 2.22, using respectively the parametrices given in The-
orems 5.1 and 6.1. The dispersion estimates will basically follow from the stationary phase theorem,
applied to the kernels of these parametrices which are oscillatory integrals. The principle is thus quite
simple. One needs however to check some technical points essentially due to the noncompactness of the
manifold and, more precisely, to the nonuniform ellipticity of the symbol of the Laplacian.

Here is some heuristic in the case of the Isozaki—Kiada parametrix. We have to consider oscillatory
integrals with phases whose model is

2
—2r _ e—2r’) |n|

r—rp+©—0)-n—tp*+ (e ,
4p

where r, 7', 6, ' are parameters and p, n the integration variables. Due to the localization of the ampli-
tudes, we may also assume that (r, 0, p, n) and (v, ', p, ) belong to strongly outgoing/incoming area.
The critical point satisfies (assuming that it is unique)

2
r—r' =2tp— (e — e—Z”)% =0, (7-1)
4p
0—0 + (e—2r _ e—2r/)l =0, (7-2)
2p

where one should also keep in mind that e"n and e~ "n’ are small since the amplitudes are supported
in strongly outgoing/incoming areas. In particular, p is close to &p'/? and thus is far from 0. By (7-1),
one obtains at the critical point that, as expected,

rar 4+ 2tp =1 +2|tp], (7-3)
where tp = |tp| by the sense of time considered in outgoing/incoming areas. This in turn shows that

0—0 ~ =27 1 — —2tp ﬁ
(1)

In Proposition 7.2, we check that this intuition is correct, and we improve the localization around critical
points in Proposition 7.6. To use the stationary phase theorem, one needs to check the nondegeneracy of
the phase. Using the change of variable & = ¢™"1/, the phase is changed into

2
=t e’ 005 —1p? (@2 - ED
0

and its hessian becomes

—2 201"y _q
t o2 _ | _e—< 0 5/‘)) . (7-4)
0 —%— 2tp §/p 0

Since & is small, the second matrix is small compared to the first one. When ¢ is not too large, the entry
(e_z(”_r') —1)/(2tp) is bounded from above and below (recall (7-3)) and the phase is thus nondegenerate.
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This is made more rigorous in Proposition 7.11. When ¢ becomes large the hessian matrix is basically

equivalent to
(—2t )
0 —-1/2p)

which is again nondegenerate but will contribute apparently only through a factor |¢ in the stationary
phase theorem. However, recalling the change of variable e ="' = & whose Jacobian is ¢’ ®~ 1, and using
the two factors e~ "=17"/2 e=(=Dr/2 o poth sides of the kernel (written with respect to d G rather than
d’(?), we get a factor of the form e ~D'=/2 which decays exponentially in 7 by (7-3) and provides
(much more than) the missing |¢|~"*~1/2 decay. This is made more rigorous in Proposition 7.12.

=172

The aim of the following subsection is to justify this intuition. In particular, to justify the above
approximations (e.g. the precise meaning of (7-3) or the smallness of the second matrix in (7-4)) we
need to be in an asymptotic regime given by a certain (small) parameter: in the Isozaki—Kiada case, the
relevant parameter is ¢ (the size of the strongly outgoing/incoming areas) and, in the WKB case, it is the
range of time.

7A. Stationary and nonstationary phase estimates. For simplicity, we drop the index ¢ from the nota-
tion, including in outgoing/incoming areas. In both Isozaki—Kiada and WKB parametrices, we have to
consider oscillatory integrals of the form

@ty [[[ehe ertr ot 6,10 ) dpad. @-5)
For the Isozaki—Kiada parametrix, the amplitude is independent of ¢ and of the form
At 7,0,7,0', p, ) = a*(r, 0, p, ) b=(7, 0, p, ),
with
a® € Fnyp(TF(e)) and b € Fuyp(I'E(e?)), (7-6)
with ¢ > 0 small to be fixed. The phase reads
cD;ll:((t’ r, 97 r/v 6/’ P, 77) = Si,&‘(rv 9, o, 77) - tloz - Si,&‘(r/’ 9/7 P, 77)»

where S1 . is defined in Proposition 4.10. We recall that it coincides with S4 on I“;JE (¢) (hence on F:E (&%)
too), where S1 is given by Proposition 4.9. We can therefore freely replace Si . by S+, or more generally
by any other continuation of S outside I'£(¢). Here we have 0 < £+ < 2h~!. The integral (7-5) is well
defined for (r, 0, ", 8’) € R*" but, using (7-6), we can assume that

r>el, eV, r=e3 6eVs. (7-7)

The first goal of this section is to prove that, if ¢ is small enough, we can use stationary phase estimates.
The second goal is to show a similar result for the WKB parametrix, using twgp as small parameter
(see Theorem 6.1). In this case, we have to consider

A\:;/KB(tar597 r/7 9/’ /05 n) =a:t(t7r’ 99 10’ n),
where, for V, € ¥, (U,), I, € (0, +00), 03 € (—1, 1), some R, > 0 large enough and some fwgg > 0,

(@ (1))0<tr<ms 18 bounded in Fryp (I (R2, Va, b, 02)). (7-8)
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In particular, we can assume that
r>Ry, 6eV,. (7-9)

The phase is of the form
Spt,r,0,1,0 0, 0) =25, r,0,p,0)—r'p—0" -1, (7-10)

and we refer to Theorem 6.1 for more details. We only recall here that the phase X% is defined
on [0, £rwkg] x R?" and solves the eikonal equation (6-3) on [0, :twkg] % '+ (R3, V3, I3, 03), with
I'*(Ry, Vo, I, 00) C T'*(R3, V3, Iz, 03). Here again, the condition (7-8) implies that we can freely
modify >* outside I'*(Ry, Vs, L1, 02).

Below, we will use the notation &+ (resp. A®) either for dDIiK or QD\iVKB (resp. AIjEK or A@KB), as long
as a single analysis for both cases will be possible. For convenience we also define

2h~!  for Isozaki—Kiada,

0§:I:I§T(h):::
twkg for WKB.

In the next lemma, we summarize the basic properties of A* and ®* needed to get a first nonstationary
phase result. For simplicity, we set 8 = 3/ 359/, 9% ok 3.

Lemma 7.1. In each case, for all |y| > 0, the amplitude satisfies
07 A%(t,r, 0,70, p,m| < C, (7-11)

for all
r,6,r,60,p,MeR™, he(,1], 0<z+t<T(h), (7-12)

and we may assume that the phase satisfies
|07 (@*(t, 1, 0,7,0", p, ) —(r—r")p— (0 —0")-n)| < Cplt), (7-13)
under the condition (7-12) too. In particular, for all |y| > 1,
|8V8pd>i(t, r0,r', 0, p,n)| < Cylt), (7-14)
under the condition (7-12).

Proof. If A* = Aﬁ(, (7-11) follows easily from Definition 2.2, (7-6), (7-8) and the time independence of
Aﬁ(. If A* = A@KB, (7-11) is a direct consequence of (7-8). For the phase, Proposition 4.10 shows that
@IiK —(r—r")p— (0 —0")-nis the sum of a function f € Cl‘)’o([F\R3”) with —zp?; similarly, by Lemma 7.5,
CID\%KB —(r—r")p—(0—6")-n is the sum of some f € C;° (R3) with —tp(r, 0, p, n). Since the amplitude
is compactly supported with respect to p and p(r, 6, p, n), we may replace CDIiK by (r —r')p— (0 —06)-
N+ f —tp>X1(p) and Ppp by (r —r)p — (O —0') -+ f —tp(r, 0, p, X1 (p(r, 0, p, n)), for some
X1 € Cy°(R). This implies (7-13) and completes the proof. O

Now choose X1 € C°(—1,1), X2 € CgO(IR”_l), both equal to 1 near 0 and define, for any ¢y, ¢z > 0,

9, o+ 9, d*
Ar  =x 2 X = A%,
‘<c1<r>) 2( &




70 JEAN-MARC BOUCLET

Let E*(t, h) be the operator with Schwartz kernel (7-5) and EE _ (¢, h) the operator with Schwartz kernel

1,02

@ty [[[ebeertrtrmpL 10,00 p.mdpdn, 7-15)

forh € (0, 1] and 0 < £¢ < T (h).
Proposition 7.2 (Semiclassical finite speed of propagation). For all c¢i, c» > 0 and all N > 0, we have

| E* @, ) — EZ (6, || ooy 2@y < CNA@ b forhe (0,11, 0<4t <T(h).  (7-16)

C1,C2

Moreover, if c1 is small enough, there exists C > 0, independent of =t € [0, T (h)] and of c» > 0, such that

r—r<C (7-17)

+
C1,e2°

on the support of A
Proof. The kernel of E*(t, h) — EX (¢, h) is an oscillatory integral similar to (7-15) with amplitude

C1,C2

9,d* 9, d+* 9, d*
AT — AT cz:(l—xl( £ ))x2< L )Ai+<1—x2( L ))Ai.
’ ci{t) &) 2

On the support of the second term of the right-hand side, we integrate by part M times with
h
1[0, D*|?

3, ®= - 3,

All derivatives of BnCIJi/ |8,,CI>jE|2 are bounded since ¢ is bounded in the WKB case and 8V8,7d>ljf< is
independent of ¢ and bounded for |y| > 1. On the support of the first term, integrate by part M times with

"y
0,0 "

Using (7-14), we have, on the support of the first term, [37(1/9,®%)| < 1, for all y. Thus, using also
(7-11), we end up in both cases with an integral of the form

i [[[eherertr o g 6. p.6) dpd e

with BE(¢, -) bounded in Cr (R3), for 0 < 47 < T'(h). We then interpret this integral as the ker-
nel of a pseudodifferential operator with symbol 2" exp(i (®E — (r—r")p — (0—6") - 1)/ h)Bi (in the
spirit of Lemma 5.4). By the Calderén—Vaillancourt Theorem and (7-13), its operator norm has order
hM ((t)/ h)™, for some universal n( depending only on n. Thus we get (7-16) by choosing M = N +2n.

To prove the second statement, we consider separately the two cases. For the WKB parametrix, ¢ is
bounded. Thus, by (7-13), 9, d>€,EVKB — (r —r’) is bounded and since |3, CD\fVKBl < c1(t), on the support
of A%EVKB’CI’CZ, r — r’ must be bounded too. For the Isozaki—Kiada parametrix, as long as ¢ belongs to a
bounded set the same argument holds. We may therefore assume that +¢ > 7" with 7 > 0 a fixed large
constant. We then exploit two facts: first, for some ¢ > 0, we have ¢ < £p < ¢! and tp > 0 on the
support of Aﬂi. Second, f* := CDIj]E( —(r—r)p— (0 —0)-n+1p? is independent of ¢ and bounded,
together with all its derivatives on the support of A;—;. Then

3, 0% =r—r' = 2tp+9,f%;
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hence, on the support of xl(apq>§</c1<t)), we have
r—r'>—ci(t)+2tp—d,f*
If ¢ is small enough and T large enough, we have 2tp —c (¢t) > 0 for t > T'. This completes the proof. [

Remark. It is clear from the proof that the constant C in (7-17) is uniform with respect to & > 0 small
in the Isozaki—Kiada case (recall that the amplitudes depend respectively on ¢ and & for the WKB and
the IK parametrices).

From now on, we fix ¢; > 0 small enough that (7-17) holds.

Proposition 7.3 (Dispersion estimate for times < h). For all c; > 0, and still with y,, = % we have

le™"" EZ ., (t, e ™" |11y ooy < Caeslht| /7 for 0 < %1 < min(T (h), h).

C1,C2

Note that the condition =t < min(7 (h), h) is essentially the condition ¢ < h. We have put it under
this form only because of those / such that & > twgg. This will not modify the rest of the analysis.
Furthermore, the latter /& correspond to bounded frequencies and their contribution to the Strichartz
estimates can be treated by Sobolev embeddings.

Proof- In the Isozaki-Kiada case, both e "' = & and e~ are supported in a compact set. In the WKB
one, e~"n is compactly supported but, using (7-17), this also implies that e~"'7 is compactly supported.
Therefore, in both cases, the change of variable e"/n = & shows that the kernel of Ef,f o (t, h) is an
integral of the form

hfne(nfl)r’ / e,%dﬁ(t,r,@,r’,@’,p,e’f)B:I:(t’ 6, r/’ 0/’ 0, é__) d,O d%_,

with B* bounded on [0, £7 (h)] x R* and supported in a region where |p| + |&] < 1. The kernel
of e*V”’ng’cz (1)e™ """ is then simply obtained by multiplying the integral above by e """+ so its

modulus is controlled by A" ~") < |ht|7"/2, by (7-17) and the fact that 0 < &¢ < . This completes
the proof. g

To prove the dispersion estimates for 7 < £¢ < T (h) we need to analyze the phases more precisely.
In the following lemma and its proof, we shall use the notation (3-4).

Lemma 7.4. For all (fixed) € > 0 small enough, we can find a family of real-valued functions ((pjct’s)0<g<<1
such that

ot =i =g, onTi), (7-18)
93 . € Fnyp (Ts(E)) (7-19)
and that, if we set
qo(6,e7"n)

R r,@, N - st r,9, ) -
+6(r 0, p,m) =9y (r,0,p,1) 1

the following holds for j + |a| < 1:
sup  |(e"3,)P9]959% Ry o(r, 0, p, )| < {

(r,&,n)eﬂ'\!’z"’l
+pel4,4]

Ce™?  ifk+1|Bl <2,

: (7-20)
Csjak,B lfk+|,3| >3,

where T, the decay rate in (1-8), satisfies (1-9).
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Proof. Using (4-35) and Taylor’s formula, we can write

Ee)
wi(rﬁ,p,n)=/ e MPq(r+2tp, 0, e n)dt + Y a,(r, 0, p, n)(e ),
0 y1=3

with a, € By, (I'E(ep)) for some fixed g9 > 0. Therefore,

Q0. e"n) _ fi“ —
0

1 qi(r+2tp,0, e "mydt + 3 a,(r,0, p, (e "n)”, (7-21)

lyl=3

(P:t(r,e,p,n)_

with g satisfying (3-6). Denote by R(r, 6, p, n) the right-hand side of (7-21) and choose X1 € C{°(R)
and X, € Cgo(lR"_l) both equal to 1 near 0. For some & > 0 to be fixed below, choose th such that

X; € Fnp(TEE@), x5 =1 on I'F@EY,

using Proposition 4.1. (We don’t need Proposition 4.4 here, since £° will be fixed.) We then claim that,
if £ is small enough (and fixed) and & with &’ is small enough too, the function

qo0(0. e~ 1) .
PLe(r 0. pom) ===+ R(.0.p. MXz (.60, p, mXa(e™ /e (1 = X)),

satisfies (7-18), (7-19) and (7-20). Indeed, by choosing & small enough, we have +p ~ 1 on the support
of Xgi, so the integral in (7-21) is exponentially convergent. Furthermore, since

(" 8,)P87 (" X1(e " n/e'/?) | < CeV/HM-1AI,
for all y, and using the fact that, if tp > 0 and r > O,
(" 0,)P 8] g 0k g1 (r +1p. 0, e~ )| < Clel*(r) Tl 7P,

we get the estimate (7-20). Finally, since ¢”|n| < ¢ and r > ¢ on I“;JE (¢), we have (7-18) for all & small
enough. The property (7-19) is clear thanks to X;. O

In the following lemma, we use the notation of Theorem 6.1.
Lemma 7.5. We can find a family of real-valued functions (E;f(r))ositS,WKB such that
TEO=2F@t)  onTE(Ry, Va, I, 02), (7-22)
and, for all k, B,

sup |(¢"9,)P 08 (S5t .0, p.m) —rp—60-n—1p(r,0, p.m)| < Cgt”. (7-23)
R2n

Proof. Using the function )(Zi%3 of Theorem 6.1, the result is straightforward by considering
E;f(t, r,0,p,1n)
= Xf_)g(r, 0,0,m) (Eoi(t, r0,p,m)—rp—0-n—tp(r,0,p,n)+rp+6-n+1ipr,0,p,n),

and using (6-4). O
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We remark that % satisfies (6-5) whereas E:f does not. This was the reason for considering X% first,
since the property (6-5) is convenient to prove L? bounds for Fourier integral operators.

The estimates (7-20) and (7-23) show that we have good asymptotics for the phases in certain regimes,
namely ¢ — O for the Isozaki—Kiada parametrix and t — 0 for the WKB parametrix. Using Lemmas 7.4
and 7.5, we replace ¢4 . by go_ﬁct’ . and * by E;f in the expression of q:%( and CD%EVKB, respectively.

To use a single formalism for both cases, we introduce the parameter

. £ for the Isozaki—Kiada parametrix,
T twip for the WKB parametrix,

where t{ 5 > 0 will denote the size of the time interval where ¢ will be allowed to live. Using the change
of variable & = ¢~"'n and factorizing by 7 in the phase, the integral (7-15) can be written

’ -t HE ~
(2h) """ /elhq)*st(z’p’E)Afl’Cz,\sl(Z,,0,5) dp d§,

where h € (0, 1],

5 (v.p.6) = %<I>i(t, r6,r',0 p,e ), (7-24)
A 0P 8) = A o(t.1,0.1,0, p, &6, (7-25)

and
y=(ht,r0,r, 6, (7-26)

with r, r’ satisfying (7-17) and

0 <+t < T(h, hy) := {2313_1 for the Isozaki—Kiada Parametrix,
tykg for the WKB parametrix.

The kernel of e_V'”Ef,T’C2 (t, h)e™ " then becomes

, &t -
2 h) eV’ / IO OAE (v, p. &) dpdE.

Proposition 7.6 (nonstationary phase). There exists C' > 0 such that the condition

0—6’'

r—r’

t o (7-27)

+e”

implies that for all co > 0, all N > 0 and all 0 < Ay < 1, we can find C,, ., such that, for all
he (1], +relh, T(hrw)l, =1, (.6,r,6)eR”,

with r, v’ satisfying (7-17), we have

, L HE (v ~ —n -
‘(Znh)_”e””(’ ”fe’w%&’”’S)Afl,cz,kﬁ(y,p,é)dpdé < Conah™" o™,

Proof. For t # 0, we define
r—r 0—0

é?ee = o+e ”

£
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Then
~ —_— ! ’ —_— !
V, ¢ ®ire = (—r tr A te )

We then start with the case of @&KB. By Lemma 7.5 and (7-17), Vp,%‘(&)/\sl — &Dfree) is a function of
(t,r,0,r, p, &) which is bounded on the support of the amplitude, as well as all its derivatives in p, &,
uniformly with respect to (¢, r, 6, r’). Therefore, if C’ is large enough, we have

0—0'

|va§(’i))~sl t

) (7-28)

/
2|5+

and the result follows from standard integrations by parts. Note that, here, we have not used the smallness
of Ay (i.e., of ). We shall use it for the case of @Ij;( which we now consider. Since +p € [}1, 4] on the
support of the amplitude if ¢ = A is small enough, Lemma 7.4 and Taylor’s formula imply that

s g 0. ¢""§) —qo (9, §) —r’ -0’
Vo (Pr = B%) = (20,00 + V¢ " tee(yp 8) (S )

where €. (y, p, &) and all its derivatives in p, £ go to 0 as ¢ — 0, uniformly with respect to y (see (7-26))
with r, 7/ satisfying (7-17) and (£p, &) € [3,4] x R"~!. Furthermore, using (7-17) and the fact that
|€] < & on the support of the amplitude, we have
r—r’ 0-—6'
r 0t

000, ¢ ") — qo(¥', §)
p

thus, using that ' > 0 on the support of the amplitude, we have (7-28) if ¢ is small enough. In addition,

for all k + |B| = 2, we also have

< r—r’ 0-—6'

~ t 7t

on the support of the amplitude, using (7-17). The result then follows again from integrations by parts. [

< g3

~

Vp,&

|0k 0L @,

We next state a convenient form of the stationary phase theorem with parameters; the demonstration —
a simple adaptation of the proof of [Hormander 1983, Theorem 7.7.5] —is given in Appendix A for
completeness.

Proposition 7.7 (Stationary phase theorem). Let Q2 be a set and
fR'xQ3x, )= f(x,y) eR
a function, smooth with respect to x and such that
Hess,[f1(x,y) =8(y) + R(x,y) for(x,y) eR" xQ, (7-29)
with S(y) a symmetric nonsingular matrix such that
IS;MTIST foryeQ, (7-30)
and R(x, y) a symmetric matrix such that

ISR, M <% for (x,y) eR" x Q, (7-31)
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where || - || is the Euclidean matrix norm. Then there exists N > 0 such that, for all K € R", there exists
Ck > 0 satisfying
- N
’ / ¢TIy (x)dx| < Cxw™? sup [[8%ullp=(x) sup (sup 8% f (e, )|+ 1) ,
|la|<N 2<|a|<N \xekK

forally € Q,allu € Cg°(K) and all o > 1.
For the WKB parametrix, we shall use this proposition fairly directly by considering

r—r'
t

Notice in particular that r —r’ is bounded on Qwkg (fvks)-

Proposition 7.8 (Dispersion estimate for the WKB parametrix). Fix ¢, > 0. There exists tyyg > 0 small

enough such that, forall y = (h, t,r,0,1r',0") € SZ%EVKB (t&t,KB) and all > 1, we have

/ 0 (.0.6) ~
Q2mh) ="t =" / e ks * B(y,p,@dpds‘sw””-

Proof. This is a straightforward application of Proposition 7.7 since, using (7-23), we have

Hess) ¢[Pe 1= <g Hesgn (q)) + O(tyvkg)
where the first matrix of the right-hand side satisfies (7-30) by the uniform ellipticity of g. The conclusion
is then clear since all derivatives, in p, &, of A;&KB are bounded, as well as those of é,&KB of order at
least 2, on the support of the amplitude. U

1,02, Bk

To be in position to use Proposition 7.7 for the Isozaki—Kiada parametrix, we still need two lemmas.

Lemma 7.9 (Sharper localization for IK). Let Xo € C5°(R) be equal to 1 near 0 and set

Xe(y, p) = Xo (e—f/“(zp— "t” )) (7-32)

Then, for all ¢ > 0 small enough, all N > 0 and all c; > 0, there exists C., . such that, for all
he(0,1, +h<t<2h', w>1,
and all (r, 0, r',0") € R* satisfying (7-7) and such that
6-6'
t

/
‘r—r ‘ er/

; <, (7-33)

we have

C1,€2,€

Qmh) e ") f PP O —x,(y, p)AE (. p. &) dpdE| < Copych 0.

Proof. By the same analysis as in the proof of Proposition 7.6, using Lemma 7.4 and (7-33), we may

write

~ r—r’
dE(y, p, &) = — P p*+ RE(y, p, &),
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where, on the support of the amplitude, we have
B, RE| < e/?, 105l RE| S 1

for k 4 |B] > 1. On the other hand, on the support of (1 — X.(y, p)) we also have, for some ¢ > 0,

!/ /
rtr —2p>ce"* or rtr

—2p < —ce"/*,

Therefore, if ¢ is small enough,
10,95 (y, p, §) Z ™%,

on the support of the amplitude and the result follows from integrations by parts in p. g

Basically, the interest of the localization (7-34) is to replace le p in (7-20) by 2t /(r —r’) up to a small
error. We implement this idea as follows. By Lemma 7.9, we can replace AT _ _(y, p, &) in (7-25) by

C1,€2,&

Xe(y, DAL . (v, P, E). (7-34)

+

o1.c,.e hence, for some ¢ > 0,

If ¢ is small enough, we have £p € [}—P 4] on the support of A

el (7-35)

clt|<r—r'<c”

on the support of (7-34), which is stronger than (7-17). Furthermore, the condition (7-33) together with
(7-7) implies that we may assume that [§ — 8’| < C’e™* " |¢|. From now on we fix
c=¢e.
Thus, by writing
0y P =0 — 0"+ 0 0(r. 0, p. 1) — By (', 0, p, 1),
with g1 € %hyp(ri(ez)), we have|d,¢+(r, 0, p, m)| S e and 9,90+ (', 0", p, n)| S e™" on the support

of the amplitude. By (7-7), we have for instance |9, CDIjIE( — (6 —0")| < &? if & is small enough. We may
therefore assume that

—r

/ 1’ |t|
10 —0'| <C'e—. (7-36)
(t)

To be set of parameters for the stationary phase theorem, we will thus choose
Qﬂi(e) = {(h, t,r,0,r',0"):h e (0,11, %1 € [h, 2~ "] and (7-7), (7-33), (7-35), (7-36) hold} .

Before applying Proposition 7.7, we still need to modify the phase &Dgi outside the support of the new
amplitude (7-34).

Lemma 7.10. We can find ‘-IJSjE smooth and real-valued such that, on the support of (7-34),
UE(, p, &) = dE(y, p, 6),

and
1— eZ(r/—r)
2(r —r')

r—r' 0—6" ,
Wy, p, &) = —p+— e'E—p*—

g0, &) +¥E(y, p, &), (7-37)
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where, for all k + | 8| < 2,

sup  [(VP2000LwE (v, p, )1 >0 as e -0, (7-38)
(p,6)eR"
YEQix ()
and for k| +|B| = 3,
sup | 8%0LuE(y. p.E)| < Cep. (7-39)
(p,§)eR”
yeQiy ()

Proof. We shall basically combine (7-20) with the fact that

120 —(r —r')/t] S et (7-40)

on the support of (7-34). By Lemma 7.4, the phase reads
r—r/ 9—9/ ’ 9/, _62(}’/—1‘) 97 R r,9, ’e}’/ _R r/velv ’er/
S e D8 o 900.8) | Reo(r.0.p.e’8) t o8 08)

The last term of this sum satisfies the estimates (7-38) and (7-39): for 0 < £¢ <1, it follows from Taylor’s
formula using (7-33) and Lemma 7.4 with j 4 || = 1, and for ¢ > 1 it follows from Lemma 7.4 with
j + || = 0. For the term involving gy we write

1 . 1 L_ 1 20— (r—r))/t
4_pr‘2<r—r/>+<4pt 2(r—r'>>x‘( B )

using (7-40) with & small enough and X; € Cgo([R”*I) equal to 1 near 0, and

qo(0, ¢" "E) = g0, €) + 2T (qo (6, £) — qo(6, £)) X2(E),

with X» € C° (R*=1) equal to 1 near 0. We obtain the estimates (7-38) and (7-39) for

1 ’
1 @00, 6) — o0, )X (6),
ot

using (7-36), and for

. 1 1 20— (r—r')/t
2" =r) / _
(1 e )410(9 »S) (4,0t 2(,._,,./))X1 ( 87/8 )

using (7-35). In both cases, we can freely multiply the functions by a compactly support cutoff in p
using that + & 1 on the support of the amplitude. This completes the proof. U

Proposition 7.11 (bounded times). There exists esx > O such that, for all T > 0, all 0 < & < &g, there
exists C, 1 such that, for all

h € (0, 1], h<=xt<T, (r,0,r',0") satisfying (7-7), (7-35) and (7-36) , (7-41)

we have

)(m)—"w(“—” f e OO PE Y (v 0)Ae ee (v p. E)dp dE| < Corlht| ™2, (7-42)
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Proof. By Lemma 7.10, we can replace &Df by \Ilsi. We then have

2 0

Hessp’g[\llgi]z l_eZ(r/—r)HeSS( ) +o(1),
2r—ry om0

where o(1) — 0 as ¢ — 0, uniformly with respect to (o, &) € R" and to the parameters satisfying (7-41).
Using the upper bound in (7-35) and the boundedness of ¢, the positive number

1— eZ(r’—r)
2(r —r')
belongs to a compact subset of (0, 00), yielding the condition (7-30). We then conclude by applying
Proposition 7.7. U

To obtain (7-42), we have used the boundedness of e?»" =), since |r —r’| was bounded. In principle,
the condition (7-35) implies that """ ~") decays exponentially in time. We shall exploit the latter below.

Proposition 7.12 (Large times). There exists T > 0 and ¢, such that, for all 0 < & < g, there exists C,
such that, for all

h e (0, 1], T <=4t <2h!, (r,0,r',0") satisfying (7-7), (7-35) and (7-36) , (7-43)

we have

—n ¥ —r i Lpt e —n
‘<2nh> e?n =" / e PPy (3, p)Aey ee (v, p, &) dp dE| < Celht| "2,

Proof. Choose T large enough such that, for 7 > T and r, r’ satisfying (7-35), we have ¢2¢'~") < %
To compensate the factor 1/(r — ) in (7-37) (of order 1/|¢] by (7-35)), we consider the new variable
|t|'/2¢ = £. By (7-38), if ¢ is small enough, this new phase satisfies the assumptions of Proposition 7.7.
In the corresponding estimate given by Proposition 7.7, derivatives of the new amplitude as well as
derivatives of the new phase of order at least 3 will grow at most polynomially with respect to ¢. This
gives a polynomial growth in ¢ of the coefficient in the stationary phase estimate of Proposition 7.7 but
such a growth is controlled by the exponential decay of eVnt'=") < =l This completes the proof. [

7B. Proof of Proposition 2.20. By (2-38), up to a remainder of operator norm of size A" (uniformly
in time), we may replace @at(asi)* by a linear combination of operators of the form (’)Tnl(iz;t) with
supp(aX) C supp(ar). We next apply Theorem 5.1 to order n + 1 and are left with the study of
the Fourier integral operator part. By Proposition 7.2, the amplitude can be modified so that, up to a
remainder of operator norm of order A" uniformly in time, we are left with an operator whose kernel
K*(r,0,r',0', 1, h) satisfies

e K= (r, 6,7, 6" 1, e | S | T2, he(0,11,0 < £t <2

Indeed, for ¢ < A, this follows from Proposition 7.3 and for ¢ > A, from Propositions 7.11 and 7.12 with
w = %t/ h and also from Proposition 7.6 and Lemma 7.9 with N > n/2. O

Proof of Proposition 2.22. It is completely similar to the one of Proposition 2.20 by considering times
0 < %1 <ty With 1y small enough to be in position to use both Theorem 6.1 and Proposition 7.8. [
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Appendix A. Control on the range of some diffeomorphisms

In this section, we prove a proposition implying Lemma 4.7 and (4-54) in Lemma 4.11. For simplicity,
we consider the outgoing case only but the symmetric result holds in the incoming one.
Let us define the following conical subset of T*R’| \ 0,
M@ = {20, 0,m) 17 > R(&), 0 € Ve, p> (1= (0>+4q(r,0,e7 )2}, (A-1)

s-con

which is the cone generated by I'f (¢).

1

Proposition A.1. Assume that, for some 0 < & < 7, we are given a family of maps (V');>¢ defined on

It (8), of the form
(0, p,m) =(r.0,p'(r.0,0,0).0' (.0, p,n) € R,

satisfying, for allr > R(€),0 € Vs, p > (1 —82)p'/?, t > 0 and 1 > 0,

(Btv ﬂt)(r7 9’ )"p7 )\77) = )"(B)Lt’ 7_7)\1)(’”7 97 107 ’7)7 (A-Z)
(L)t,ﬂt)(r,e,p,O):(p,O), (A'3)

and such that
(2’— P)i>0 and (the components of ) (yt— n)t>0 are bounded in %hyp(f‘;|r (8)). (A-4)

Then, there exists 0 < & <& such that, forallt > 0 and all 0 < ¢ < &, V' is a diffeomorphism from F:“ (e)
onto its range and

THE) cw' (Tfe), t>0, 0<e<é.
Lemma 4.7 is indeed a consequence of Proposition A.1 since Proposition 3.8, (3-35) and (4-15) show
that (A-2), (A-3) and (A-4) hold with (o', n) = (p’, n). Similarly, for Lemma 4.11, we consider
(Bt’ 7_,]1‘)(,,.’ 0’ O, 77) = (8-‘1-5 7_7_1,_)(7', 0’ r, 97 O, 77)

which is independent of ¢ and satisfies the assumptions (A-2), (A-3), (A-4) by (4-50), Proposition 4.9
and Remark 2 after Proposition 4.9.

To prove the proposition, we need another conical subset of 7*R’ \ 0:

Thon@ ={0,p.0):r>R(), 0V, p>(1—)(p"+n»)'?}.

s-con

Using the diffeomorphism Fyy, defined by (2-31), we have

Fop(CEon@®) = {0, 0. p. 1) 17 > R(e), 0 € Ve, p>(1—eD)(p* +]e ")} (A-5)
The latter is of interest in view of the following lemma.

Lemma A.2. There exists C > 1 such that, for all € > 0 small enough,

It (e/C)C F (T () cTf, (Ce).

Ss-con yp §-con
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Proof. By (3-7), we have, for some 0 < ¢ < 1,
ce NP <qr0,e"n<c e n’,  r>R(), 0V, neR"L

Using (2-55), it suffices to show the existence of C > 1 satisfying, for all ¢ small enough,

A= (/O (1= =(/O) < =) (1= (1 =), (A-6)

and
(1—e) (1= —-eD?) <c(1—(Ce)) 2 (1= (1—(Ce)??). (A7)
For ¢ — 0, the left-hand side of (A-6) is equivalent to 2¢7(e/C)? and the right-hand side to 262,
Therefore, (A-6) holds if ¢='/C? < 1 and ¢ is small enough. We get (A-7) similarly. Il

Let us now consider (1,0) = (1,0, ...,0) e R"\ 0. For all 0 < & < 1, let us denote by €™ (¢) the cone
generated by B((1, 0), €), namely

@t (e) ={(po, An) | A >0, (p— D+ n* <e&?}.

Since p > 1 —¢& > 0and p2/(p> + [n?) > 1 —&2/(1 —&)? on B((1,0), ¢), it is then not hard to check
that, for all ¢ small enough,

€T (/4 C{p > (1—eH(p*+nH"2),

and
{p>—eM(p*+nH"? cer(e),

since, if p > (1 —&2)(p>+ [n|*)'/? then (1, n/p) € B((1, 0), 2¢), using that 1 — (1 —£?)? < 4s%(1 — )2
for ¢ small enough. In particular, we obtain

(R(g), +00) x Ve x €T (e2/4) c T _ () C (R(e), +00) x V, x €1 (2¢). (A-8)

s-con

We next recall a standard lemma the simple proof of which we omit.

Lemma A.3. Let xg € R", ¢ > 0 and f : B(xg, &) — R" such that f(xo) = xo and f —id is % Lipschitz
(meaning that | f(x) —x+y— f(y)| <|x —y|/2) on B(xg, €). Then f is injective on B(xy, €) and

B(xo, £/2) C f(B(x0, €)).
Proof of Proposition A.1. Set
froa(p, &)= (p'(r,0,p,e"8),e7 ' (1,0, p, €E)).
By Lemma 2.4 and (A-4), we have, for k + | 8| =2,
10507 fro (0. MIS T, 120, (1,6, p, €) € Fayp(T (8)), (A-9)
and, by choosing &; small enough, we also have

r>RE), 6€Ve, (0,6)€B((1,0),8) = (1,6,,&) € Fuyp(I'J(8)).
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By (A-3) 0, ¢ fr0.:(p,0) =1d, , so (A-9) implies that f, 4, —1d, is %—Lipschitz on B((1,0), 2¢) for all
& small enough, all t > 0, r > R(¢€), and 0 € V;. Therefore, by Lemma A.3,

B((1,0),¢e) C fi.ro (B((1,0),2¢)), t>0, r>R(), 0eVs.

Using (A-2), we can replace the balls in the inclusion above by the cones they generate and, using
Lemma A.2 with (A-8), we get

rf..(e/20) c W (T, @v2ce' ), >0, (A-10)

s-con s-con

for all & small enough, with the C > 1 of Lemma A.2. Since f,¢; —Id, is %-Lipschitz on B((1,0), 2¢)

for all + > 0, (A-2) implies that it is also %—Lipschitz on the cone generated by B((1,0), 2¢) so f.o.;

is injective on this cone. Thus, for all ¢ small enough and ¢ > 0, W' is injective on '} (¢) and is a
diffeomorphism onto its range. By (A-10), we have

rHE®) crf,, ) cv (T, e),

s-con s-con

for all + > 0 and all ¢ small enough, so the proof will be completed by showing that, for all ¢ small
enough and all ¢ > 0, the following implication holds:

(r,0,p,1)=V'(r,0,p1,m) e () with (.6, p1,m) el (e)
=  prO.p.m)e(G—ed+e). (A1)

Assume the first line of (A-11). Using (A-3) at (o1, 0) and the fact that f; ¢ —Id, is %—Lipschitz, we
have

[(p,e”"n)—(p1, e n)| = |firolpr. e m) — (o1, e " n)l <le""nil/2. (A-12)

Therefore |e™"n — e 1| < |e""n1|/2 and we get |n1] < 2|n|. Since e "|n| < &3, (A-12) shows that
lo—pi1l+1e™"(n—n)| < & hence that

1p(r, 6, p1,m) — p(r, 6, p, M| S &
Since p(r, 0, p,n) € (% — &3, 4+ &%), the latter yields (A-11) for & small enough. Il

Proof of Proposition 7.7.
Note first that, for all y € €2, the map

R'>x— V,f(x,y) eR"

is a diffeomorphism since, by considering F(x, y) := S(y)~!'V, f(x, y) and using (7-29), (7-31) and
(7-30), x = F(x,y)—xis % Lipschitz. For all y € 2, we denote by xg = xo(y) the unique solution to

V, f(x0,y) =0.
Now consider

g(x,y) = f(x,y)— f(xo,y) — (Hessc[ f1(x0, y)(x — x0), x —x0) /2,
and, for all s € [0, 1],

fs(x,y) = f(xo,y) + (Hessc[ f1(x0, y)(x —x0), x — x0) /24+58(x, y).
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Notice that f; = f, that fy — f(xo, ¥) is quadratic with respect to x — xo and that

1
Vifs(x,y) = {S(y)+S/O R(xo+1(x — x0), y)dt + (1 — 5) R(xo, y)} (x — xo),

by Taylor’s formula and (7-29). By (7-30), there exists ¢ > 0 such that |S(y)X| > 2c|X]|, for all X € R"
and all y € Q2 hence (7-31) implies that

Vi fs(x, )| = clx — xo()], s€[0,1], (x,y) eR" x Q. (A-13)

Lemma A.4. For all K € R" and all integer k > 1, there exists C > 0 and N > 0 such that, for all
s €[0,1],all y € Q and all u such that

ue Cg (K)NCHR™\ {xo()), (A-14)
dyu(xo(y)) =0, le| < 2k, (A-15)
9%u € L¥(R"), | = 2k, (A-16)
we have
[ ) — N
‘/ ela)fs(xs})u(X)dX < Cw k lg‘lg;(k ”aaM“LOC(K) 25%?;(2]{(1 +jl€l£. |aafs|) , w> 1.

Notice that the assumption (A-16) is only a condition near x¢(y). It guarantees the boundedness of
9%u(x)/|x — xol*~1.

Proof. We proceed by induction and consider first kK = 1. We would like to integrate by part using
the operator |V, f;| 2V, f; - V. but, since V, f; may vanish on the support of u, we consider Ls :=
(Vs fs|2 +8) 7'V, f; - V. which satisfies

iw f S y(x)dx = l(siﬁ)l/(L(;ei“’fY(x’)’))u(x)dx.
We then integrate by part at fixed § > 0, using that

IL(S: {fos'vx+Axfs_ <Hessx[fs]vxf5a fos)}-

AAEY V. fil2+6

Since | Ay fy (x, Y)u(x)| Smaxjg=2 | A f5 (-, W) oo k) 19%u || Lo |x —x0(y)|* and using (A-13), by letting
é | 0 we get

iw f Ty (x)dx

< Cmax [0%ul| = k) max (1 + sup [3* f;]).
‘0{‘52 |Ol|:2 xeRn

Here the constant C is independent of y, u, s and w; it depends only on K and the constant ¢ in (A-13).
The result then follows by induction using that

Ve 5|72V f, Bxtt), IV fsl 72 (Ax fou, |V fs ™4 (Hess, [ fs1Vi fs, Vi fs) u

satisfy the assumptions (A-14), (A-15) and (A-16) if u does for k + 1. O
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End of the proof of Proposition 7.7. We next consider I (s) = [ ¢!y (x)dx so that, for all j € N,
we have

Since 3% (g(x, y)?/) =0 for all || < 6, Lemma A.4 yields, with k = 3j > n/2,

[x=x0(y)

1@ (5)] = Co™" max [18“ull =) max (14 sup [9°£1)", s €0, 1]
|| <6 2<|a|<6j xeRn

Since I(1) = [ /™Yy (x)dx, the estimate

1) = > 10 /11 < sup [1%7(s)[/2))!,

1<2j s€[0,1]

reduces the proof to estimating the integrals 1) (0) whose common phase f; is quadratic, up to a constant
term and whose amplitude is u(x)g(x, L. By Taylor’s formula g(x, y) is of order |x — x0(y)|? so the
derivatives of u(x)g(x, y) may be of order (xo(»))* on which we have no control. By choosing K a
bounded neighborhood of K and applying Lemma A.4 to the subset of €2 on which xq(y) ¢ K, we can
assume that we consider those y for which xq(y) € K. We then use the Lemma 7.7.3 of [Hormander
1983] on oscillatory integrals with quadratic phases, observing that |02 g( -, W L>(k,) 1s controlled by
(products of) of norms || aff( -, W lLe(k,) with |B] > 2, since x is bounded on the support of u and xo(y)
remains bounded. (|
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ASYMPTOTIC BEHAVIORS OF NONVARIATIONAL ELLIPTIC SYSTEMS

SzU-YU SOPHIE CHEN

We use a method, inspired by Pohozaev’s work, to study asymptotic behaviors of nonvariational elliptic
systems in dimension n > 3. As an application, we prove removal of an apparent singularity in a ball and
uniqueness of the entire solution. All results apply to changing sign solutions.

In this paper, we study solutions of elliptic systems on R”, n > 3.

A classical work by Gidas and Spruck [1981] asserts that any nonnegative solution to Au+|u|* 2u =0
in R" with 2 < « < 2n/(n — 2) (subcritical case) is trivial. For « = 2n/(n — 2), Caffarelli, Gidas and
Spruck [1989] proved that any nonnegative solution in R” is of the form u = (a + b|x|*)~"~2/2, where
a, b are constants. Such problem for elliptic systems are also studied, for example, in the studies of
Lane-Emden type systems; see [Zou 2000; Polacik etal. 2007; Souplet 2009] and the references therein.

By contrast, the behaviors of changing sign solutions are more delicate. For example, there exists a
sequence of changing sign solutions to Au + |u|* 2u = 0 in R" with 2 < & < 2n/(n — 2) [Kuzin and
Pohozaev 1997]. In this paper, we study under what circumstances a solution to an elliptic system in
an exterior domain is asymptotic to |x|~"~2 at infinity. Such decay is optimal in the sense that infinity
is a regular point in the inverted coordinates. It is known [Kuzin and Pohozaev 1997] that there exist
solutions to Au + u®~! =0 in R” that decay more slowly than x|~ Thus, a suitable integrability
condition is necessary to exclude such a case.

While the study of changing sign solutions to elliptic systems is interesting by itself, the problem
is well motivated by differential geometry. For example, the decay of curvature tensors was studied
for Yang—Mills fields [Uhlenbeck 1982], Einstein metrics [Bando et al. 1989] and other generalizations
[Tian and Viaclovsky 2005; Chen 2009], just to name a few. A typical system is of the form

ARm);jx = Qjjr(Rm, Rm),

where Rm is the Riemannian curvature tensor and Q is a quadratic in Rm. A natural geometric assump-
tion is that | Rm | is in L"/2. Therefore, | Rm | vanishes at infinity and the problem is to find out the decay
rate. The study of geometrical systems is more subtle as (Rm);;; satisfies an extra relation, the Bianchi
identity, and the underlying spaces are not Euclidean.

The technique we use in this paper is based on the method developed in [Chen 2009] on asymptotically
flat manifolds, where a special geometric setting is considered. In this paper, we study general nonvari-
ational elliptic systems of the reaction-diffusion type. Our result applies to changing sign solutions and
includes the supercritical case (i.e., Au + Cu®~! =0 with @ > 2n/(n —2), where C is a constant).

The author was supported by the Miller Institute for Basic Research in Science, and while preparing the manuscript, by NSF
grant DMS-0635607.

MSC2000: 35B40, 35J45.

Keywords: elliptic system, decay estimates, Liouville.
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LetV=(V,...,V,) and f I -R™ — R. Consider the system of equations

D AGAV =LV, (1)

j=1

where A is a constant invertible symmetric matrix and i = 1, ..., m. Note that f/(V) or V; may have
no sign. We assume the following structure conditions:

(Al) |ff{(V)I < CIV 9.
(A2) [VfI(V)| =ClViet,
Let K be a compact subset in R".

Theorem 1. Let g > (n +2)/n and p = (n/2)(q — 1). Suppose that f' satisfies (A1) and (A2). Let
V e LP(R" \ K) be a solution to (1) in R*\ K. Then |V| = O(|x|”""2) and |VV| = O(|x|~ " V) at
infinity.

An immediate consequence is a result on singularity removal for affine invariant equations. For scalar
equations, the problem was studied in [Gidas and Spruck 1981; Brézis and Lions 1981; Caffarelli et al.
1989].

Let B; be the unit ball centered at the origin.

Corollary 2. Suppose f' are homogeneous functions of degree (n +2)/(n —2). Let V e L*"/"=2)(B))
be a solution to (1) in By \ {0}. Then V can be extended to a smooth solution to (1) in B;.

By performing a linear transformation W; = j AijVj, the system (1) can be reduced to an equation
of the diagonal form AW = f(W). The assumptions (A1)—(A2) and other conditions on V or f'
equivalently hold for W and f. Therefore, for Theorem 1 and Corollary 2, we may assume without loss
of generality the equation is of the diagonal form.

We turn to study the uniqueness of entire solutions for variational systems. Let P(V) be a homoge-
neous function of degree g + 1. Suppose that A;; is positive definite and f =93P /9V'in (1). For scalar
equations, there is a large literature on the uniqueness problem; see, for example, [Gidas and Spruck
1981; Bidaut-Véron 1989; Serrin and Zou 2002]; see also [Pucci and Serrin 2007] and the references
therein. For systems, when P(V) <0 and g > (n 4+ 2)/(n — 2) (supercritical case), the problem was
studied by Pucci and Serrin [1986] under some asymptotic assumption of V. Their result also holds for
the nonhomogeneous function P (and more general P (x, V, VV)) satisfying some inequality.

Theorem 3. Let g > (n+2)/n, g # m+2)/(n —2) and p = (n/2)(q — 1). Suppose P(V) is a
homogeneous function of degree q + 1. Suppose that A;; is positive definite and f T=9P/3Viin(1). Let
V e LP(R") be a solution to (1) in R". Then V = 0.

We outline the proofs. To fix notation, we denote by dx the volume element in R" and by dS the
area element of a hypersurface in R”. Let B,(x) and S, (x) be the ball of radius r and sphere of radius r
centered at x, respectively. When x is at the origin, we simply denote by B, and S;.

The idea of the proof of Theorem 1 is to compare the size of fR,,\ B, |VV |2dx (as a function of r) to its
derivative — |, s IVV |2dS. Then by the ordinary differential inequality lemma, we get the optimal decay
of |[VV] and, as a consequence, the decay of |V|. In order to relate the two integrands, we use some
version of Pohozaev’s identity for nonvariational systems. Pohozaev’s ingenious idea [1965] is to use a
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conformal Killing field to prove uniqueness in a star-shaped domain. This idea was generalized nicely
by Pucci and Serrin [1986] to general variational systems. Our use of the identity is different from the
original one. We apply the identity to an unbounded domain (the complement of a large ball) and use
only the size of | f?|. Therefore, our method can be applied to nonvariational systems.

The proof of Theorem 3 is a combination of Theorem 1 and Pohozaev’s original idea. Since the
solution decays fast enough at infinity, no terms from infinity contribute to the main integrand. We use
the identity differently such that we obtain the uniqueness also in the subcritical case, in contrast to the
problem in star-shaped regions where one has to restrict to the supercritical case.

Finally, we show that the assumptions in these theorems are sharp.

Example 4. Consider the equation Au +u"+?/=2 = in R". By [Caffarelli et al. 1989], nonnegative
solutions are of the form u = (a + b|x|?)~"~2/2. Therefore, u decays as |x|~"~2 at infinity. This
example shows that in Theorem 3, the assumption g # (n+2)/(n —2) is necessary. Consider instead the
equation in Bj \ {0}. There exists a nonnegative radial singular solution with the blow-up rate |x|~"~2/2
near the origin. Therefore, in Corollary 2, the condition V e L?"/"=2)(By) is sharp.

Example 5. Consider Au+u? =0 in R". For ¢ > (n+2)/(n —2), there exists a solution asymptotic to
|x|=2/@=1 at infinity [Kuzin and Pohozaev 1997]. Hence, in Theorem 1, the conditions ¢ = (2p +n)/n
and V € L? are sharp. Moreover, in Theorem 3, the condition ¢ = (2p +n)/n is also sharp.

1. Preliminaries

We collect some standard results in elliptic regularity theory and ordinary differential equations. Lemmas
6-8 follow by an argument similar to [Bando et al. 1989, Section 4].

Let C, be the Sobolev constant and y = n/(n — 2). Suppose that the nonnegative function u € C%!
satisfies Au 4 Cou? > 0 weakly in the sense that

/(—(Vu, Vo) + Coulgp)dx >0 forall0<¢ e C.
Let ¢ > 0 be a function with compact support and let s > 1. Then, by the Cauchy inequality,
/(pzuq—l—s—l dx > Co—l f<4(szl) |(pvu3/2|2+ g¢u5/2<v(p’ VMS/2>) dx
s
>c! (3(s — DV - L|w|2u5> dx.
-0 52 (s—1)

By the Sobolev inequality, we have

‘ 1y 2c . 2 )
(/((pzué)y dx) < C/(ﬁgozu‘” 1+(1+(si—1)2>|V(p|2u‘>dx, )

where C = C(n, C, Cop).
In Lemmas 6-8, u is a C%! function.



88 SZU-YU SOPHIE CHEN

Lemma 6. Let p > 1 and g = (2p +n)/n. Suppose that the nonnegative function u € L? (B, ) satisfies
Au + Cou? = 0 weakly in B,. Then there exists € > 0 such that iffBr uPdx < e, then

supu < Crfn/pllulle(Br), where C = C(n, p, Cy, Cp).
B2

Proof. Let s = p in (2). Then

1/y
( / (PuPy dx) <c f W9 (9%uP) + [V 2uP) dx

2/n 1/y
§C(/ u”dx) (/(gozup)y dx) +C/|V¢|2updx.
{supp ¢}

We choose ¢ to be a cutoff function such that ¢ =1 in B, > and ¢ = 0 outside B,, with |[Vg| < C rL

We get
17y
(/ up”dx> 5%/ u’ dx.
r
Br/Z B,

Choose a sequence ry = Q4270 Apply (and rescale) the above inequality for B, and B, with
pr = py*=!. By Moser iteration, we have supp, , it < Cr‘”/P||u||Lp(Br). O

Lemma?7. Let p>n/(n—2) and g = (2p+n)/n. Suppose that the nonnegative function u € L? (R"\ B,)
satisfies Au + Cou? > 0 weakly in R" \ B,. Then there exists € > 0 such that iffR"\B,Mp < €, then
u=0(x|™) forall A <n—2as |x| = oo.

Proof. By Lemma 6, u = O(|x|™"/P). Let s = p((n —2)/n) > 1 in (2). Then

1y 2/n 1/y
(/ 0> uP dx) < C(/ u? dx) </(<p2up(”_2/”))y dx) +C/ IVol?uP"=2/m dx.
{supp ¢}

¢ 1s chosen to be a cutoff function such that ¢ = 1 in B,» \ By, and ¢ = 0 outside By, \ B, with
IVo| < C(1/r +1/r'). Let ¥’ — oco. Then

l/y 2/n l/y
(/(pzyupdx) §C(f|V¢|”dx> (/ updx> .
{supp Vo}
1/y 1/y
(/ updx) §C</ updx> .
IR’l\B2r B2r\Br

This gives fR"\B,”p = O(r~?%) for some small § > 0. Therefore, by Lemma 6, u = O (|x|~®/P=6/p)y,
Let Ao = sup{A : u = O(]x|™")}. By iteration and a contradiction argument, we get that A\ =n —2. [

And thus,

Suppose that & > 0 is a C” function. The nonnegative function u € C%! satisfies Au + Cohu > 0
weakly if

/(—(Vu, Vo) +C0hu¢) dx>0 forall0<¢eCyr.
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Lemma 8. Let p > 1 andt > n/2. Suppose that the nonnegative function h € L' (B,) satisfies f B, hldx <
C/r?=". Suppose also that the nonnegative function u € L?(B,) satisfies Au+ Cohu > 0 weakly in B,.
Then supy, , u < Cr="/?||ul|Lr(,), where C = C(n, p, Cy, Co, C1).

Proof. The proof is by standard Moser iteration. See Morrey [1966]. g
The following is a basic result in ordinary differential equations [Chen 2009].
Lemma 9. Suppose that f(r) > 0 satisfies f(r) < —(r/a) f'(r) + Cor " for some a, b > 0.
(1) a # b. Then there exists a constant C3 such that

—a,aCy _p
f) =G+ =

Therefore, f(r) = O (r~™MabYy g5 r — o0,
(i) a = b. Then there exists a constant C3 such that
fr)<Csr ¢ +aCur “Inr.

Therefore, f(r) = O@ *Inr) asr — oo.

2. Proof of Theorem 1

As we explained in the introduction, without loss of generality we may assume the equation is of the
diagonal form, that is,

AV; = [1(V). (3)
We first derive a version of Pohozaev’s identity for nonvariational systems. Let €2 be a domain in R"” and
N be the unit outer normal on 9€2. We perform integration by parts repeatedly.

/ka(V)XzDszdx
@ gl
=/ > AVix D, Vidx
Q IT
=/ —ZDiVjDi(xlDIVj)dx+/ Y D;Vix,D;V;N;dS
Q

il 9251

_ 2 24 X1 V. N
—/Q<—IVV| —XI:Dz(WVl )E)dx+/aQ§D,v,x,Dlv,N,ds

:(%_1)/ |VV|2dx—/ %ZlVVlleNldS+/ > DiVjxDV;N;dS. (4)
Q Q2 / Q2 il

It is worth mentioning that x; D; is a conformal Killing field in R".
We note that |V| and |V V| are C%! functions. By (3) and (A1)—(A2), we have

AlV|=—C|V|4,
AlVV|>—C|V|TTl vy,
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weakly. Since V € LP(R" \ K), there exists a large number R such that fw\ gyl V17dx < €, where € is
as in Lemma 6. Applying Lemma 6 to B, (xg) where |xg| > 2r > 2R, we get |V| = O (|x|~"/P).

Case 1. If (n+2)/n < q <n/(n—2) (or equivalently, 1 < p <n/(n —2)), thenn/p > n —2. By
Lemma 6, we have |V| = O(|x|™"/?). Let ¢ be a cutoff function such that ¢ = 1 in B, and ¢ = 0 outside
By, with |Vg| < Cr~!. Applying ¢V; to (3) and integrating gives
/ IVV[*dx < C/ VI dx + %/ V[2dx = 0" @) < 0(r—"?),
B, (x0) By (x0) ™ J By (x0)
where |xo| > 2r > 1. By Lemma 8 with 4 = |V|9~!, we obtain |[VV| = O(|x|~"~D) and thus |V| =
O(lx|="=2).

Case 2. 1f n/(n—2) < q (or equivalently p >n/(n—2)), by Lemma 7, |V| = O(|x|™*) forall A < n —2.
Therefore,
/ IVV|2dx < c/ V]9t dx + %f IV 2dx = O3,
B, (x0) By, (x0) ™ J By (x0)

where |xg| > 2r > 1. Moreover, |V| € L? for all p’ > n/(n —2). Choose p’ < p close to n/(n — 2).
Hence, g > (2p’ +n)/n. We can then find ¢’ > n/2 such that

/ (VI dx < quL,_n, where |xo| > 2r > 1.
By (x0)

This is possible because X is close to n — 2. By Lemma 8, we obtain

c L
sup |VV| = =25 IV V Il 205, (g = O =1y where |xo| > 2r > 1.
Br2(xp)

Let Q@ = Bg \ B, in (4). We have

/ > FAV)x D Vidx

Sy
’ n 2 1 2
— ——1>/|VV| dx—/ ) |VV|x1N;dS+/ Y D;VjxDiV;N;dS. (5)
(2 Q 392 i 02 ! !

i,j,l
Note that
lim | R|VV|?dS= Jim O(R™2~%1) =,
— 00

R— o0 Sk

Let R — oo in (5). Then there is no boundary term coming from infinity. We can choose 2 = R" \ B,.
The boundary terms only occur on S,. On 9€2, N = —x/r. Hence,

/ Zf"(V)xlD,dexz(ﬁ—l)/ |VV|2dx+f f|VV|2dS—rf Yy V2dS
"\ B 2 R™\ B, s, 2 s,

ok,
> (ﬁ—l)f |VV|2dx—/ "\VV2ds.
2 R\ B, S, 2
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Let G(r) := [ 5 |VVI*dx. Since G'(r) = — [5 |[VV|*dS, the previous formula becomes

2 k
G(r)<——"— G/(r)—i——/ FEV)x, D Vidx.
n—2 n—2 R"\B'kZl:

The key idea is to compare the size of G(r) to that of G'(r). The coefficient in front of G’(r) plays
an important role. Here is the only place we use the condition of | f|. We have

/‘ EJHWMQWMS/’ |V|9)x||VV]dx = O(r~*atDm),
"By 7 R™\B,
Thus,
G@r) < —LZG’(r) + CrMatDn,
n_

Since ¢ > n/(n —2) and A is close to n — 2, we have A(g + 1) —n > n —2. By Lemma 9, this implies
G(r) = O(r~"=2). By the Sobolev inequality, we get

/ V2D ax = 0o@F™").
BZV\Br
Finally, by Lemma 6 and 8 we obtain |V|= O(|x|~""?) and [VV| = O(|x|~"~D). O

3. Proofs of Corollary 2 and Theorem 3

Proof of Corollary 2. Since the equation is invariant under inversion, we transform the solution to R" \ B;
and apply Theorem 1.
Let y = x/|x|?. Define U;(y) = (1/]y|"~?)Vi(y/|y|?). This is called the Kelvin transform with the

property that

1
Ain ) = MTHAXW(X)'

This can also be viewed as the conformal change formula of the conformal Laplacian with zero scalar
curvature. Therefore, U; (y) satisfies

1 . )
S UG) = fUG) iR\ B,

ZAijAin()’) =

; [yl

where we use that f' is homogeneous of degree (n +2)/(n —2). Moreover,
/ |U|2n/(n—2) dy — / (|V||y|—n+2)2n/(n—2)dy — / (|V||x|n—2)2n/(n—2)|x|—2ndx
R\ By R™\B, B1\{0}
:/ |V 2/ 0=2 dx < oo.
B1\{0}
Now we apply Theorem 1 with p =2n/(n —2) and ¢ = (n +2)/(n — 2). We get |[U| = O(|y|~"~?)

and [VU| = O(]y|~® D). Hence, |V| = O(1) and |VV| = O(|x|™!). As aresult, V € L>(B;) and
VV e LP(B)) forall p <n.
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We show that V is a weak solution to (1) in By. Let ¢ € HO1 (B1, R™). Let n¢(]x]) be a compactly
supported function in By \ {0} such that ny — 1 a.e. in By and ||n||z»(,) — 0 as k — oo. (Such functions
were used by Serrin [1964].) Then

/ Mk ZAileijlVidx = f - Z 1 (V)gimidx —/ Z DiniAijejDyVidx.
B i B Biiji
The last term can be estimated as follows.
[ 3 Diaize;Divids| = Cllpllae sy 19V iz Inclzncay < el — 0
Biiji
as k — oo. Hence, in the limit
| S aspgipividx= [ =3 fvpas
Bij i By
Thus, V is a weak solution in B;. It follows by elliptic regularity that V € C*°(B). g

Proof of Theorem 3. Since A;; is positive definite, there exists an orthogonal matrix M such that

Al
M'AM = 5 :
An
where A, ..., A, are positive. Let
Vi
B = M °. . M_1 .
Vi
. . aP(W)
By performing a transformation W; = ) ;jBijVj, the system can be reduced to AW; = W Thus,

without loss of generality we may assume the equation is of the diagonal form.
Let Q2 = Bg in (4). Therefore, N = x/R. We get

f ka(V)xlDlvkdx:(ﬂ—l)/ |VV|2dx—/ Riwviras+r [ |vyv|ds.
By k.l 2 Bp SR 2 SR

Since fk = dP/dV, we have
/ —nP(V)dx:(ﬁ—l)/ |VV|2dx—/ Rivviras+r |VNV|2dS—/ RP(V)dS. (6)
BR 2 BR SR 2 SR SR

On the other hand, we also have
/ (q+1)P(V)dx:/ Zg—‘]/)dex:—/ |VV|2dx+/ > DyV;V;ds, (7)
Bg Br % k Bg Sk

where we use the Euler formula for homogeneous functions.
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Case 1. n > 4. By Theorem 1, when R — o0, (6) becomes

/ —nP(V)dx = (% — 1) / IVV|?dx + O(R™"2) 4+ O(R™+D=2+n)
Br Bg

=(§—1)f IVV2dx +o(1),
Bgr

where we use conditions on p, g and n > 4 to get (¢ + 1)(n —2) —n > 0. Similarly, (7) gives

(q+1)P(V)dx:_/ Vx4 O(R-"D).

BR BR

Combining the above two formulas and noting that ¢ + 1 # 2n/(n — 2), we finally arrive at
/ IVV|2dx = o(1).
Bg

We have |VV| =0 and hence V =0.

Case 2. n = 3. Note that sup |V | < (C/|x|"/?)||V | ». Combining this fact with Theorem 1, we have
|V| = O(|x|™*), where A = max{1, 3/ p}. Therefore,

p — — i — — 2_p — é 0
(g+1) 3>max{q 2,p(q+1) 3}>maX{ 1+3, 1+p}> .
Then (6) becomes

f —3P(V)dx = (%—1)/ IVV[*dx + O(R™") + O(RHTDH)
BR BR

_ (3 _ 1)f IVV 2dx + o(1),
2 BR
as in Case 1. The rest of proof is the same as in Case 1. O
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GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS
WITH SOME CLASSES OF LARGE INITIAL DATA

MARIUS PAICU AND ZHIFEI ZHANG

Chemin, Gallagher, and Paicu obtained in 2010 a class of large initial data that generate a global smooth
solution to the three-dimensional, incompressible Navier—Stokes equation. The data varies slowly in the
vertical direction — it is expressed as a function of ex3 —and it has a norm that blows up as the small
parameter goes to zero. This type of initial data can be regarded as an ill prepared case, in contrast with
the well prepared case treated in earlier papers. The data was supposed to evolve in a special domain,
namely Q= Th2 X R,. The choice of a periodic domain in the horizontal variable played an important role.

The aim of this article is to study the case where the fluid evolves in the whole space R>. In this case,
we have to overcome the difficulties coming from very low horizontal frequencies. We consider in this
paper an intermediate situation between the well prepared case and ill prepared situation (the norms of
the horizontal components of initial data are small but the norm of the vertical component blows up as
the small parameter goes to zero). The proof uses the analytical-type estimates and the special structure
of the nonlinear term of the equation.

1. Introduction

We study in this paper the Navier—Stokes equations with initial data which is slowly varying in the
vertical variable. More precisely we consider the system

ou—+u-Vu—Au=—-Vp inRy x Q,
divu =0, (NS)
Ulr=0 = uo,e,

where Q = R3 and ug,¢ 1s a divergence-free vector field, whose dependence on the vertical variable x3

will be chosen to be slow, meaning that it depends on ex3, where ¢ is a small parameter. The goal is to
prove the global existence in time of the solution generated by this type of initial data, with no smallness
assumption on its norm.

This type of initial data (slowly varying in the vertical direction) has also been studied by Chemin,
Gallagher, and coworkers. The case of well prepared initial data, of the form (eug (xp, €x3), ug(xh, £x3)),
was dealt with in [Chemin and Gallagher 2010]; the more difficult case of ill prepared initial data, of the
form (u” (xp,, ex3), e 'u3(xy, £x3)), in [Chemin et al. 2011].

Here we consider a class of large initial data lying between those two cases, having the form

Ly _1
o = (82up (xp, £x3), 8 2 (xp, £x3)).

Z. Zhang is supported by NSF of China under Grant 10990013, 11071007, and SRF for ROCS, SEM.
MSC2000: 35B65, 35Q35, 76D99, 76N10.
Keywords: Navier—Stokes equations, global well-posedness, large data.
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We recall some classical facts about the Navier—Stokes system, focusing on conditions that imply the
global existence of the strong solution.

The first important result about the classical Navier—Stokes system [Leray 1934] asserted that for any
initial data of finite energy there exists at least one global in time weak solution that satisfies the energy
estimate. This solution is unique in R?, but it is not known to be unique in R>. Leray’s result uses the
structure of the nonlinear terms in order to obtain the energy inequality. The question of regularity of
the weak solutions also remains open.

The Fujita—Kato theorem [1964] gives a partial answer for the construction of global unique solution:
it allows one to construct a unique local in time solution in the homogeneous Sobolev spaces H 2 (R,
or in the Lebesgue space L3(R?) [Kato 1984]. If the initial data is small compared to the viscosity, that
is, if ||u0||H 1 =cv, the strong solution exists globally in time. This result was generalized by Cannone,
Meyer and Planchon [Cannone et al. 1994] to Besov spaces of negative index of regularity. Those authors
proved that, if the initial data belongs to the Besov space B;;FS/ P(R3) and is small in the norm of this
Besov space, compared to the viscosity, then the solution is global in time.

Later, Koch and Tataru [2001] obtained a unique global in time solution for the Navier—Stokes equation
for small data belonging to a more general space of initial data, namely derivatives of BMO functions.

Concerning the methods for obtaining such results, we recall that the existence of a unique, global in
time solution to the Navier—Stokes equation is a standard consequence of the Banach fixed point theorem,
as long as the initial data is chosen small enough in some scale-invariant space (with norm invariant under
the scaling ru(M%t, Ax)) embedded in Bo_ol,oo (the Besov space), with norm

1F e Esup, g2 [le" £l 1.
See [Cannone et al. 1994; Fujita and Kato 1964; Koch and Tataru 2001; Weissler 1980] for proofs in
various scale-invariant function spaces.

These theorems are general results of global existence for small initial data and do not take into
account any algebraical properties of the nonlinear terms in the Navier—Stokes equations. Proving such
results without any smallness assumption or geometrical invariance hypothesis implying conservation of
quantities beyond the scaling is a challenge. Only modest progress has been made in that direction: see
[Chemin et al. 2000; 2006; 2011; Chemin and Gallagher 2006; 2009; 2010; Chemin and Zhang 2007;
Gallagher et al. 2003; Makhalov and Nikolaenko 2003; Raugel and Sell 1993] and references therein.

Here are some cases where large initial data is known to imply global existence of the solution:

For regular axisymmetric initial data without swirl, the Navier—Stokes system has a unique global in
time solution. This result from [Ukhovskii and ITudovich 1968] is based on the conservation of some
quantities beyond the scaling regularity level.

The case of large (in some sense) initial data for fluids evolving in thin domains was first considered
in [Raugel and Sell 1993]. Roughly speaking, the three-dimensional Navier—Stokes system can be seen
as a perturbation of the two-dimensional Navier—Stokes system if the vertical thickness of the domain is
small enough. More generally, a solution exists globally in time if the initial data can be split as vy + wo,
where vg is a two-dimensional divergence-free vector field in LZ(ThZ) and wg € ik (T?) satisfies

2
|| 4] ”Lz(lez)

<
C])2 = CVv.

w . €X
l O||H%(T3) p
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The case of initial data with large vortex in the vertical direction (rotug = rotug + 10,0, 1)),
or equivalently the case of rotating fluids, was studied in [Makhalov and Nikolaenko 2003] for periodic
domains and in [Chemin et al. 2000; Chemin et al. 2006] for a rotating fluid in R* or in RZ x (0, 1). When
the rotation is fast enough the fluid tends to have a two-dimensional behavior far from the boundary of
the domain, by the Taylor-Proudman column theorem [Pedlovsky 1979]. For example, when the domain
is R? the fluctuation of this motion is dispersed to infinity and some Strichatz quantities became small
[Chemin et al. 2000], which allow to obtain the global existence of the solution (for ¢ small enough).

An important issue for the Navier—Stokes equations is to make the best possible use of the algebraical
structure of the nonlinear terms. Some results have made crucial use of this structure, and have proved
very fruitful.

The case of Navier—Stokes equations with vanishing vertical viscosity was first studied in [Chemin
et al. 2000], which contains proofs of local existence for large data in anisotropic Sobolev spaces H**,
with s > %, and of global existence and uniqueness for small initial data. One of the key observations
there is that, even if there is no vertical viscosity and thus no smoothing in the vertical variable, the partial
derivative 93 is only applied to the component u3 in the nonlinear term. The divergence-free condition
implies that dzus is regular enough to get good estimates of the nonlinear term.

Global existence of the solution for the anisotropic Navier—Stokes system with high oscillatory initial
data was obtained in [Chemin and Zhang 2007].

A different idea, still using the special structure of the Navier—Stokes equation, was used in [Chemin
and Gallagher 2006] to construct the first example of periodic initial data which is big in C~', and
strongly oscillating in one direction which generate a global solution. The initial data is given by

u) = (Nup(xp) cos(Nx3), — divy, up (xp) sin(Nx3)),

where ||uy|| 212 = C(nN )5. This result was generalized to R3 in [Chemin and Gallagher 2009].

The same authors [Chemin and Gallagher 2010] studied the Navier—Stokes equations for initial data
that varies slowly in the vertical direction in the well prepared case. The well prepared case means that
the norm of the initial data is large but does not blow up when the parameter ¢ converges to zero. We
note that important remarks on the pressure term and the bilinear term were used in this paper in order
to obtain the global existence for large data.

The case of slowly varying initial data in the vertical direction (ell prepared initial data) was recently
studied in [Chemin et al. 2011]. Here the horizontal components have large norm and the vertical com-
ponent has a norm that blows up when the parameter goes to zero. After a change of scale, one obtains
a Navier—Stokes type system with anisotropic viscosity —vA.u, where A, = A, + 82832, and anisotropic
pressure gradient, namely —(V,,p, €233p). In this equation there is a loss of regularity in the vertical
variable in Sobolev estimates.

To overcome this difficulty one needs to work with analytical initial data. The most important tool
was developed in [Chemin 2004] and consists in making analytical type estimates, and at the same time
to control the size of the analyticity band. This is done by controlling nonlinear quantities that depend
on the solution itself. Even in this situation, it is important to take into account very carefully the special
structure of the Navier—Stokes equations. In fact, a global in time Cauchy—Kowalewskaya type theorem
was obtained in [Chemin et al. 2011]. (Some local in time results for Euler and Prandtl equation with
analytic initial data can be found in [Sammartino and Caflisch 1998].)
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In [Chemin et al. 2011] the fluid is supposed to evolve in a special domain, 2 = Th2 x R,. This choice
of domain is justified by the pressure term: the pressure satisfies the elliptic equation A, p = 9;0; (u'ul),
and consequently, V,p = (—Ae)—lvhaiaj (u'u’). Because A;l converges to A;l, it is important to
control the low horizontal frequencies, in contrast with the case of the periodic torus in the horizontal
variable, where we have only zero horizontal frequency and high horizontal frequencies.

In this paper we investigate the case where the fluid evolves in the full space R3. In that situation,
we are able to solve globally in time the equation (conveniently rescaled in &) for small analytic-type
initial data. To do this, we need to control the low horizontal frequencies very precisely. Note that we
can construct functional spaces where the operator A;lvh (aVyb) is bounded. However, we still need
to impose on the initial data more regularity control on low horizontal frequencies; thus we make the
assumption ug( -, x3) € LZ(R%) NH> ([R{ﬁ). In the vertical variable we need to impose analyticity of the
data. The method of the proof follows closely the argument of [Chemin et al. 2011], but instead to use
pointwise estimates on the Fourier variables, we write an equation with a regularizing term in the vertical
variable and we use energy estimates on anisotropic Sobolev spaces of the form H%* respectively H -3,

Our main result in the case of the full space R? is the following (for notation see the next section).

Theorem 1.1. Let a > 0 and % > a > 0. There exist positive constants gg and n such that, for any
divergence-free field vy satisfying

def D _1 D
lvollx i-allvollx d+ <1, lvollxs = (e PP vgll gos +a~2 e P yg| g-1.)

and for any ¢ € (0, &g), the Navier—Stokes system (NS) with initial data
up = (S%Ug (X, €x3), 8_%1)3()5}“ £x3))
has a global smooth solution on R>.

We emphasize that we obtain the global wellposedness under a smallness condition which is invariant
by the scaling of the equation, and this is the main motivation of Theorem 1.1.
As mentioned, to prove the theorem we will first transform the system using the change of scale

& Lo -13
u®(t, xp, x3) = (20" (1, xp, £x3), €7 20° (¢, Xp, £x3))

into a system of Navier—Stokes type, with a vertical vanishing viscosity, that is the Laplacian operator
became —vA,v — 2vd3v and a changed pressure term which became —(V}, p, &2, D).

Taking advantage of the fact that we’re working in R3, we can also consider a different type of initial
data, with larger amplitude but strongly oscillating in the horizontal variables:

L h, -1 |
u8=(8 2vg (e xp, X3), € 205 (e xh,X3)).

This type of initial data has Bo_ol’ o Norm of the same order as the initial data in the previous theorem. In
order to solve the Navier—Stokes equations with this new type of initial data, we make a different change
of scale,

ut(t, xp, x3) = (8_%1)}1 (7%, 67 %y, x3), £33 (7%, 67y, x3))
and we note that the rescaled system that we obtain is exactly the same as in the proof of Theorem 1.1.
Consequently, we obtain:
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Theorem 1.2. Let a > 0 and % > a > 0. There exist positive constants &y and n such that, for any
divergence-free field vy satisfying
lvollx3-<llvollx3+e <n

and any ¢ € (0, &), the Navier—Stokes system (NS) with initial data
up = (ef%vé’ (e 'xp, x3), efgvg(aflxh, x3))

has a global smooth solution on R3.

2. A simplified model

We start with an equation already studied in [Chemin et al. 2011], where a complete proof of global well-
posedness is given. For completeness and because we are going to use the method of energy estimates,
we sketch the proof related to the energy estimates. Consider the equation

du +yu+a(D)w?) =0,

where a(D) is a Fourier multiplier of order one. For any function f such that the following definition
makes sense, we define e/P! f = F~! (e‘“g | f(& )), where f = % f denotes the Fourier transform and %!
denotes the inverse of Fourier transform. Then, if the initial data satisfies

8|D|

e’ P ugllgs < cy with6>Oands>%d,

we have a global solution in the same space. The idea of the method in [Chemin 2004; Chemin et al.
2011] is the following: we want to control certain analytical quantities on the solution, but we must
prevent a decrease in the radius of analyticity of the solution. Introduce 6(¢), representing the loss of
analyticity. We set ®(, &) = (§ — A0(1)|&] and ue = F ' (e®"9)ii(€)). The function 6(¢) is defined as
the unique solution of the ordinary differential equation

0(t) = lluallas, 6(0)=0.
The computations that follow are performed under the condition 6(¢) < §/A (which implies ® > 0). The
equation satisfied by ity is
Qi + yile + A0 (1) [E|de +aE)e® (u2) = 0.

This contains an extra-regularizing term, since we control a quantity that takes into account the analyticity
of the solution. As 6 approaches 0, we obtain by an energy estimate in H* the inequality
1d
2dt
Following the proof of [Chemin et al. 2011, Lemma 2.1] (which uses the important fact that e®%) is a
sublinear function, and also the classical Bony decomposition [1981]), we get

. 1
lua 3 + vlusllzs +20MDI2usls < Cl@(D)u?)e, ue)ms-

1
|a(D) () o, ue)| < Cllue|usll D> uslls-
Choosing A = 4C we obtain

. R B
0(t) = lluo @) |l g < 2[le’Plugll gse™,
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which, for u( small enough, gives

0(t) <y~ 1" lull s < 837"
This allows us to obtain the global in time existence of the solution.

3. Structure of the proof

Reduction to a rescaled problem. We seek a solution of the form
def , L o _1l 3
ue(r,x) = (20" (1, xp, £x3), €207 (1, xp, £x3)).

This leads to the rescaled Navier—Stokes system

9, v — Aol — 82832Uh + 8%1) Vol = —th,
1
8{v3 — Apvd — 828321)3 +eiv-Voi= —828361, (RNS,)
divv =0,
v(0) = vo(x),

where Ay, défa% + 822 and Vj, déf(a 1, 02). As there is no boundary, the rescaled pressure g can be computed

with the formula

—Acg =e2divy(v- V), Ap= Ay + 292, (3-2)

When ¢ tends to zero, A! looks like A;l. Thus, for low horizontal frequencies, an expression of
\/ A;l cannot be estimated in L2. This is one reason for working in Th2 X R, in [Chemin et al. 2011].
To obtain a similar result in R, we need to introduce the following anisotropic Sobolev space.

Definition 3.1. Let s, 0 € R, o0 < 1. The anisotropic Sobolev space H?* is defined by
H = {f €F'®): || fllzes <00},

where
def

I 1300 = fR 3 612 L+ 151 f()1PdE, &= (&, &).

For any f, g € H>®, we set

def 1
(f. &) ros = (IDl"(D3)° f. |D4|7(D3)*g) 2. (D3) = (1+D3]*)2.
Theorem 3.2. Let a > 0, % > o > 0. There exist two positive constants gy and n such that for any
divergence-free fields v satisfying
lvoll x3—«llvollx s+« <1,

and for any ¢ € (0, g9), (RNS,) has a global smooth solution on R>.
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Definition of the functional setting. As in [Chemin et al. 2011], the proof relies on exponential decay
estimates for the Fourier transform of the solution. Thus, for any locally bounded function ¥ on R* x R3
and for any function f, continuous in time and compactly supported in Fourier space, we define

def - —1/ W, 7y
fo)=F (" f1,).
Now we introduce a key quantity we want to control in order to prove the theorem. We define the function

0(t) by

emdif—( ellvh ()13 [V O |4 e+ 103 (O3 3 03O 144 )

+ [Vive (O go.i -« [ Vave () | go.d+e,  (3-3)
with 6(0) = 0, and we also define

def
W (1) = e (D) goi-ollve @)l o +a,

where
def

O(1,8) =a(l —210(1))(&3), (3-4)
for some A that will be chosen later on. We denoted by (&3) = (1+ |§3|2)% which is a sublinear function.
Main steps of the proof.

Proposition 3.3. Let s > 0. A constant C exists such that, for any positive A and for any t satisfying
0(t) < 1/r, we have
t
1
RGN
0
t
< exp(CO) [P 1. + Ca / B 10 (1) 0 dT
0

! 1
+¢ [ w@ et @l [ 19 ©.d)
0

Proposition 3.4. Let 1 > s > 0. Then there exist C and Ao such that for any . > Ly and for any t
satisfying 0(t) < 1/A, we have

t
1o 120, + / Voo (0o dt
0

t

1
= exp(COM) 1P w930, +C / V(D)o (D) l7.dT +— —||v;<r>||%,;sdr].

10

Proposition 3.3 will be proved in Section 4, and Proposition 3.4 in Section 5. For the moment, let us
assume that they are true and conclude the proof of Theorem 3.2. As in [Chemin et al. 2011], we use a
continuation argument. For any A > Ag and 5, define

T (T 0(T) +W(T) < 4n).
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Similar to the argument in [Chemin et al. 2011], 7, is of the form [0, T*) for some positive 7*. Thus,
it suffices to prove that T* = 4-00. In order to two propositions, we need to assume that 6(7T) < 1/A,
which leads to the condition

4n <

>)|,_.

We set
def ) ! ) | 2 3 2
Fs(t) = llve ()50 + | Vive (D)l 0.dT + p (”821)(1)(1')”1_1%,.; + ||U¢(T)||H%.x)df-
0 0

From Propositions 3.3 and 3.4, it follows that for all 7 € J,
1 r,
Fy(1) < exp(4Cr) (Ene“ "ol + e g 30 + C / 0(D)llvg (Dl 70.dT

AR 2 L3 2 2
400 | (2ol 2 0@t + el ) de )

Now we choose 1 such that

exp(4Cn) < 4Cnexp(4Cn) < 5.

_8’

With this choice of 1, we infer from Gronwall’s inequality that

Fy(1) < 2( 1e“P w13 1.0 + e P ugl %, ) < 2wl

Taking s = % —aand s = % + o respectively, we obtain

1 1
a='0(t) + V(1) <2F7_, () FP o (1) < 4llvollxi-ellvollx b+ < 4,

which ensures that 7* = 400, thus concluding the proof of Theorem 3.2. O

4. The action of subadditive phases on products

For any function f, we denote by f7 the inverse Fourier transform of | f |. Let us notice that the map
f+ f preserves the norm of all H%** spaces. Throughout this section, ¥ will denote a locally bounded
function on Rt x R3 which satisfies the following inequality

W, 8) =W, & —n+W(,n). (4-1)

Before presenting the product estimates, let us recall the Littlewood—Paley decomposition. Choose
two nonnegative even functions x, ¢ € ¥(R) supported, respectively, in B = {§ € R, [§] < %} and
={§ eR, § <5 <%} such that

XE+Y e E)=1 forfeR,
j=0

Zw@‘fé) =1 for&eR\{0}.

jez
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The frequency localization operators A? and S;.’ in the vertical direction are defined by

F- (@& f) for j >0,

ASf =185 f for j =—1,
0 for j < =2,
S'f=F"'(xQ@ V&) f)= > ALf
/<J 1

The frequency localization operators A’? and S}.’ in the horizontal direction are defined by

At =Fe@ &l f). Sif= > Alf forjez
J'=j-1
It is easy to verify that
1f s & Y 225227 | AYAL £117. (4-2)
j.keZ
In the sequel, we will constantly use the Bony’s decomposition [1981]:

f§=Tjg+RYg, (4-3)
with
Tjg=) Si1fAs. Rpg=) Sjafajs.
J J

We also use the Bony’s decomposition in the horizontal direction:

fe=Tie+Tig+R"(f2), (4-4)
with

Tig=>Y St fAlg, RMf.e)= D> Alfile.
J 1 =Jjl=<1

Lemma 4.1 (Bernstein’s inequality). Let 1 < p < g < oo. If f € LP(R?), there exists a constant C
independent of f, j such that

supp / (&1 < C2/) — 1l < 26
supp f < [ L2 <lel < €2 = fle =27 sup 97 fu.

1Bl=le

1
Lemma 4.2. Let s > 0, 01, 05 < 1 such that o1 + 0, > 0 and % > a > 0. Assume that ay € H° 21 and
by € HS. Then

. . . 1 1
I[AYARTD)] Iz + I[AYARRED) | N2 < Ceu2 ' =% 27 lag 1 2,0 1 allaw (| 3oy, Lsa 1Dw [ o2

with the sequence (c; i) j kez of positive numbers satisfying

2
ch’k <1.
ik
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Proof. Let us firstly prove the case when the function W is identically 0. Below we only present the proof
of R;b, the proof for T,/b is very similar. Using Bony’s decomposition (4-4) in the horizontal direction,
we write

AjALRID) = AVAL(SY LaAyb) =" A?AZ(T}‘;IHQA?J? + Th;/ bSh 0+ RM(SY ha, Alb))
Iz J

0 NI I 1

Considering the support of the Fourier transform of Tshv p A’]’.,b, we have
j'+2

JZj—4 K —k|<4

Then, by Lemma 4.1,

h ANl
Miz<C Yo > IS)aSi_jad ALl
J'zj—4 [k —k|<4

h AN
<C D D IS oS alle I AYALD] .
J'=j—4 K —k|<4

We use Lemma 4.1 again to get
. " .
1SY oSt jallee < > > [AYARal e <C Y Y 2 ||A;%,,A2,,a||L3§Lih
j//Sj,JFl k//Sk/_z j//§,/+1 k//Sk/_z )
=1 " . l l
<=C Y Y 2P AL ALalle < C20 M all 2, s ullallZe, de-
j//fj/+1 k' <k'—2
from which it follows that
1ok 15 1 A
2 < C2M " ¥al 20 s ullal i de D Y IAYALD] L
J'=j—4 |k'—k|<4

—jsn(l—o1—0)k | 113 3
< Cej 2772070k g2 1 llalZ, e bl e, (4-5)

Similarly, we have
m= Y > AAlAYySh bSY,ALa).
=4 K—k<4

Then, by Lemma 4.1,

h AN
Il <C Yo >0 IALSE bl 1z IS)0Abal2 1
Jzj—4 1k —k|<4 ‘ *

< C2I0== Dk g2 a2, s (b e 20D epe,
iy Hcrl,jfoz Hal.z+ut H 2 k j
J'=j—4 k' —k|<4

—jsn(l—c1—o)ky 113 3
< Ceju 27207 a )12, 1 allal e, s D] s (4-6)



GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS 105

We turn to III. We have

M= )" > AVALSY ,ALaAY ALD).
J'=j—4 kK k"=k-2
|k’—k”|§l

So, by Lemma 4.1,

M. <C > > 258V, ApaAy ALD| 2 1
j'=j—4 kK k'>k-2 B
‘k’—k”‘fl

k AN AN
<c > Y 2 1S3 2 Al ez 185 AL 2
‘]/2]_4 k’,k”Zk*Z
‘k/_k//‘fl
. 1 1 — "—k)A—(j =]
< C27 P2 a3 s lal oy gDl goos Y Y 27T g,
Jzj—4 k=zk=2

. 1 1
< Ccj 27207 a )12, 1l Z ey dia D] oo (4-7)
Summing up (4-5), (4-6), and (4-7), we obtain

AN —isA(l—c1—0)k 1 1
IAYAL(RB) 12 < Ceju220-7=¥ a2 1 lalb yeallblless.

The lemma is proved in the case when the function W is identically 0. In order to treat the general case,
we only need to notice the fact that

| FLA AL (RD)]w (§)] < FIA AL (R, :b))1E). O
As a consequence of Lemma 4.2 and (4-2), we have:

Lemma 4.3. Let % >a>0,5 >0, and o1, 0y < 1 such that 61 + 0> > 0. Let {61, 6»} = {01, 0n}. Then

1 1 1 1
1@y |l goror-1s < C(llawll o, 3o llaw o, s e lbw llmozs + lawll gors 10wl 25,1 -a 150125, 100 )-

5. Classical analytical-type estimates

In this section, we prove Proposition 3.3. In this part, we don’t need to use any regularizing effect from
the analyticity, but only the fact that the e®*-%») is a sublinear function.
Notice that 0,vep + ar6(t)(D3)ve = (0,v) e, we find from (RNS,) that

vy +ard (1) (D3)vlh — Apvly — 2030} +62 (- Voo = Vi,
3,v3, 4+ arf(1)(D3)vd — Apvd — 620203 + 62 (- Vod)o = —620390,
divve =0,

e (0) = e*Pyg (x).

(-1
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Step 1. Estimates on the vertical component vfb. Noting that 6(r) > 0, we get from the second equation
of (5-1) that

1d
dtll Vo (D71 + IVAva DI + 68305 (1171,

2
< —gi((v Vir)e, Uq;)H,%.S +gi((v‘divhvh)®, U<31>)H*%,: (3540, v;?p)H,% .
ET4 T+
Here we used the fact that dive = 0, so v - Vv3 = v - V03 — v3divj,0".
For II, an application of Lemma 4.3 gives
1 .
) < 21 @ divav "ol v -
< Ce3 (1031713 V3173 a1Vl gos + 103 b V0 120 4 o V0l 120 ) 103 -4
< COW gl -1 + 5@l Vave s + 15 1va 73 s- (5-3)
For I, we get by integration by parts that
1 def
I= ((lehU 1)3)q>, U,?D)H 1 82((v U3)q>, th@) s ill +I,.
As in (5-3), we have
L] < CODIvaliz-1s + 150l Vave 0. + 1o5lva Tt (5-4)
and by Lemma 4.3,
1
Ll < &2 @) ol m-4s IVavgll -1
1 1
< Cet (ol larse 10310 4 1031 20 e+ 1051 20310 120 e [V 2 ) V03 -
< CY@O)(ellvg s + vallEds) + 151 Vava -1 (5-5)

Now, we turn to the estimates of the pressure. Recall that
—Aep =£7(3;0;0'v7) + 8,03 (v'v?) — 203 (W div ).
Here and in what follows the indexes i, j run from 1 to 2. Thus, we can write p = p' + p* + p>, with
Pl=e3(=A) 190,00, pP=er(—A) 0300, pP=—2e2(—A0) B0 div "), (5-6)
Integrating by parts, we get
£2(03Pg Vo) t-be = —€(Pg. €030 H-1s = Ce%lIPg -1 + oo ledsv5 I7-4 0.
which together with the fact that the operator 9;9;(—A ¢)~! is bounded on H%* together with Lemma 4.3
implies that
(03P, vp)r-1s < CENW" @ VMol 1. + 1551103031173
< C& gL G Nl o s v ll o b+ + 100||883vq>||H
< Cezlll(t)e”vq,||H%,.y + WI|883U¢||H_%,S. (5-7)
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For the term containing p,, we get by integration by parts that
82(83p<2D, vg,)Hf%.s = —8% (82332(—A8)_1 (viv3)q>, Bivé)H_,
Using the fact that (£33)2(—A,) ! is bounded on H* together with Lemma 4.3, we then have
2933, v3)r-bs < Ce W VMol g1 V03l 5L
< CU@)(ellvp it + gl L) + 1651 Vava -1 (5-8)

For the last term, coming from p3, we use again the fact that (33)%(—A,)~ ! is bounded on H%* and
obtain ]
2 3.3 L TR | 3
e (Bpg, vp)u-3 < Ce2|[[(v divv)ollp-bsllvgplla-3s
j 312 1 B2 1L y.,3 02
< COONVHIG -1 + 5@l Vvl o, + 1o 103 14 (5-9)

Summing up (5-2)—(5-5) and (5-7)—(5-9), we obtain
D313 1 + 1030133
dar"® H—72 P H7s
< COD N l13-1 + CU@) (ellvB 131 + 03 1315) + mal Vavhl2e,,  (5-10)
where we used the equality ||th(3b||§{_%,5 = ||vé||%1%,s.

Step 2. Estimates on the horizontal component vg. From the first equation of (5-1), we infer that

;j leZvl (D11 -1. + 12 Vvl (13- 1. + elleds vl (D113
< —8((v-Vvh)q>,82 vg,)H L~ (thq>, véﬁ)H Ls
=B 1§ (5-11)
We rewrite I as
I= —8((1) th ), £2 vg,)H Ls 8((v383vh)q>, s%vg})H_%rdifI] + 1.
An application of Lemma 4.3 gives
| < el 0" Vo Yol 3o lle2 vl -1
< Co(Ivh Iz 11 o lvhli §+a||vhv@||HoA+||v¢||H2 AN /AT [y P
< COD el + 1ol Vivlh 20, + phlle2 vl 131, (5-12)

For I,, we use integration by parts and divv = 0 to get

1 def
L = —e((divpvv") e, e208) 1, + (0107, e268505) 1, E oy +1na.

As in (5-12), we have

L] < CO@ ezl 131, + al Va1, + 2 lle 2l 13 (5-13)
21 = o725 T 10041 VAVl gos T 100 ollH7s
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and by Lemma 4.3,
1
|| < ||<v3vh>q>||Hf%sez||ea3v’;>||H }
2 iz iz 3 | % h 1
< C(I0l oo 103131410 1383w+ 101201 101201 03 1212 030 1 -
I3
< Cabd )V 130, + CY O vy 171 + m||883vg||H*%vS- (5-14)
To deal with the pressure, we write p = p! + p> + p3, with p', p?, p? defined by (5-6). Using the
boundedness of the operator 9;9;(—A &)~ on H%* together with Lemma 4.3, we have
_ P 1.
e(ViPg, V) r-ts = —e((—Ae) 10,0, (v'v) o, £2divavg) 5}
1
<Ce|(v"® vh>q>||Hf%s||ezvhvé||Hf%
1 1
<Ce? ||v¢||H0 AT Wne Vol b lle Vivg llg-bos
< CU) 20121 + 1hylle2 Vavh 13- 1. (5-15)

For the term coming from p,, we integrate by parts to get

_ i 1,
e(ViPg: Vo) -t = —(£0:03(—Ae) T (V' 1) g, £2div 405 -1
then note that £939; (—A,) ! is bounded on H%*. We get, by Lemma 4.3,
1
e(Vape, Vo) a-4s < Cl@W Vo llg-1s 82 Viavl [l -4
. 1
< Cab(O) |V 1130, + CU O3 1310 + 15512 Vavlh1I2, 1. (5-16)

Similarly,
(Vipy, V) -t
< Cll*div "o llg-tolle ol Il -1
< (0135 V3123 e V30 00+ 103 b 1020 N0 20 )l 2 -
< COD eI 1s + 1@ Vivh 20, + 15 103 131 (5-17)

Summing up (5-11)—(5-17) yields

d ., 1 1
e v O + 18205 (017,35
<C9(f)(||8zvq>”1.1 +a||v©||H0v)
1
+CU O (o171 + el 1310) + mall Vavhll3, + 55llvaliF s, (5-18)

Now we are in a position to prove Proposition 3.3. Combining the energy estimate (5-10) with (5-18),
we obtain

d 1 1
S U011 + 10 ONF-1) + (le2ve (D173 + 1va O173.)

<O (el 131 + I 12,-1.) + Cab @) 1V 120,
+CUD (20 1310 + 13131 ) + Sall Vvl 2.
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From this and Gronwall’s inequality, it follows that
le 2 (D131 + v (D11 + /0 (e b () B + 10O )de
< exp(c /O é(r)dr) (ne” woll3 . +a fo B (D) 20.d +C /0 W) (et (@t
+ vy (@131 )dT + 5a /0 t ||vhv’;,<r>||§{o,xdr>.
This finishes the proof of Proposition 3.3. O

6. Regularizing the effect of analyticity

Let’s now prove Proposition 3.4. Here we will encounter two kinds of bad terms, where we lose a
vertical derivative. The first one is (v39;v")¢ and the second term comes from —V, p. In this last
term, we really lose a vertical derivative. To compensate this loss, we use the divergence-free condition
(33u° = —divj, u") and more important, the fact that the equation contain an extra-regularizing term
given by the analyticity of the solution.

Step 1. Estimates on the horizontal component vg. Let us recall that vg, verifies the equations
h ; h h g2 i h
0ivg +ar0(t)(D3)vg — Apvg — 83v¢ e2(v-Vv")e = —Viqe.

Note that 6 > 0, we perform an energy estimate in H%* to obtain

d
2 ds ”vq>”H0r +a)»9(t)||vq>||H0v+2 =+ ||vth>||H0v + I|883U(I)||H0v

<e2((V" @ VM) g, Vivh) os — 22 (330300, v2) yos — (Vi po. v) gos

EA | ) (6-1)

We get by Lemma 4.3 and interpolation that

1] < Ce2[|(v" @ V")l o Vi 0l g0
< CoT 01211 a1 e IV i de V0 s
<Ce||vq,||H2 anvq,nHl uanv@n,,zwmonvhv@nyov
< Celvhl 201 101201 VU0 s IV 120 1 10 00 100 s + 1 1 Vvl

< CU D) |vg 315 + COONVG 0. + 1551 Vv [0, - (6-2)
To estimate II, we use Bony’s decomposition (4-3) to rewrite it as

1 1 def
= —¢2(03(T}v3), V) gos — &2 (33(RU,V") @, V) gos =11 +11.
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From the proof of Lemma 4.2, it is easy to find that
2| < Cll| D3> (Rvavh)cbIIH—— e D312 | Dy 2 vl | o
1 1
< ClVA 11 03131 e 105 1 osed V0" [ s
< Cab ()1 130,43 + 10501 Ver" 0. (6-3)

Due to div v = 0, we rewrite II; as

Iy = &2 (T}, divy v")a, vh) gos — 2 (T v ), V) gos S 1y + 1.
Using Lemma 4.2 and interpolation, we have
Wiy | < e2)(T}, b dive v all-dollvg o
< e V1210 12,1 1 V0 s 0 s
< CYD[[ 151 + COO V150 + 1051 Vv 30, (6-4)
From the proof of Lemma 4.2, and using the fact that s < 1, we can conclude that
izl < €l ot 10 it N Ver” s
< CIVI 00y 0BV 131 e I V60" 0,
< Cad () |vg 30t + 1551 Vev" 1570 (6-5)

We next turn to the estimate of the pressure. Recall that p = p' 4+ p? + p? with p!, p?, p> defined by
(5-6). Using the boundedness of (—A,)~19;0 ; on H”*® together with Lemma 4.3, we get

1 . h 1 -1 ij s oh
(VDo Vo) gos = —€2((=Ag) 7 9;0;(v'v)) g, div vg) yos
1
< Ce2[|(V" @ ")l 0. || Vi v I o
< CY O lI3ns + COONVE 1 F0s + 1551 Vvl [0, (6-6)
Notice that 9;9; (—A,)~! is bounded on H. Exactly as in the estimate of II, we obtain
(Vi Pg: Vi) os < CUD VG173, + CODO NG 130, + Cab 1V 13001 + 7051 Ve 1305 (6-7)
We write
_1 1 _ _1 .
Vip3 = —2031 D3| 72 (V| Dy|2 [ D312 (= Ae) 7)1 Dyl 2 (v div 0"
thus,
3 h 1 1 —1 _1 3. h _L oy
(Vipps V) gos = —=2((Val Dyl2[e D3| 2 (= Ag) ™) Dy ™2 (v div 4v™), 33(D3) "2 0) gos.
Note that V| Dy, | 3 |8D3|%(—Ag)_1 is a bounded operator on H”*. Thus we get, by Lemma 4.3,
(Vhpgp, UI&))HO’S
_1 . _1
< CllIDyl z(v3dwhv’“>|| #10:1193(D3) "2 vg | 0.
< C(IVR I3 4 10334 3a IVl 05 + 103 1 IT00 1 20105 10 4 ) 0" 0

h 1 1 -
< Cad () |vg 0.y + 1651 Vava o, + 50 0g 1174 (6-8)
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Summing up (6-1)-(6-8), we get by taking A big enough that

d . -
Euvg(t)u%,o,s H VRSO0, < CODOIVEI 0, + CE OV, + ma™ v 131 (6-9)

Step 2. Estimates on the vertical component vfl,. Recall that v?b satisfies
9,03 j 3 3 3 )
(Vg +Aal (t){(D3)vg — Apvg — 83v¢+82(v Vv)e = —€703¢op.

We perform an energy estimate in H%* to obtain

1d
S V3 lI30. + VAV 500 + 3303 130,

1 .
< —e2 (0" Vyud)e, v3) yos + 2 ((03div 0", v3) o — £2(33 pas v3) o

0 ) U 7 (6-10)

Using Lemma 4.3 and interpolation, we have

Lo h 3 3
I < Cez||(v" - Vjv )<1>||H" lvell a3
3 h 3,4 3,4 3
< Ce? (II%IIH7 Tall%llfqé LaIVRVp I os + Vgl IVRVS 1 0.1 - ”vth)”[z_Ioéw)”vcp”H%*‘

< CYO)[volly, + CODvoll3os + 1651 Vave 5. (6-11)

and similarly,
T3 div ik 3
I = Ce2|(vdiv ) ol -3 Vgl H3s

< CUOIv3111, + CODIEI1Z0, + 1a5 11 Vave 20, (6-12)

Using the decomposition (5-6), we can similarly obtain
| < CW () [[voll%, + COHONvollZ0, + 1551 Vive 2. (6-13)
Summing up (6-10)—(6-13), we obtain
d .
Euvfp 130, + 1VRV3 1205 < CU OV |30 + COO o2, + 21 VAV, (6-14)
Now we combine (6-9) with (6-14) to obtain
d ) 1
Zoveli. +1Vivelho, < COOIVellfo, + CYOIvellf s + 1o Vol

From this and Gronwall’s inequality, we infer that
2 ' 2
s O, + [ 1900,

<exp(C /0 é(r)dr)<||e“<[’3>vo||2os / \If(r>||vq><r)||,,“dr+ f ||v¢(r>||stdr>

This finishes the proof of Proposition 3.4. O
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DYNAMICS ON GRASSMANNIANS AND RESOLVENTS OF CONE OPERATORS

JUAN B. GIL, THOMAS KRAINER AND GERARDO A. MENDOZA

The paper proves the existence and elucidates the structure of the asymptotic expansion of the trace
of the resolvent of a closed extension of a general elliptic cone operator on a compact manifold with
boundary as the spectral parameter tends to infinity. The hypotheses involve only minimal conditions on
the symbols of the operator. The results combine previous investigations by the authors on the subject
with an analysis of the asymptotics of a family of projections related to the domain. This entails a
detailed study of the dynamics of a flow on the Grassmannian of domains.

1. Introduction

In [Gil et al. 2010] we analyzed the behavior of the trace of the resolvent of an elliptic cone operator
on a compact manifold as the spectral parameter increases radially assuming, in addition to natural ray
conditions on its symbols, that the domain is stationary. We complete this analysis with Theorem 1.4 of
the present paper, which describes the behavior of that trace without any restriction on the domain. The
main new ingredient is Theorem 4.13 on the asymptotics of a family of projections related to the domain.
This involves a fairly detailed analysis of the dynamics of a flow on the Grassmannian of domains.

Let M be a smooth compact n-dimensional manifold with boundary Y. A cone operator on M is
an element A € x " Diff)) (M; E), m > 0; here Diff} (M; E) is the space of b-differential operators of
Melrose [1993] acting on sections of a vector bundle £ — M and x is a defining function of ¥ in M,
positive in M. Associated with such an operator is a pair of symbols, the c-symbol ‘@ (A) and the wedge
symbol A.. The former is a bundle endomorphism closely related to the regular principal symbol of
A, indeed ellipticity is defined as the invertibility of ‘¢ (A). The wedge symbol is a partial differential
operator on N, Y, the closed inward pointing normal bundle of Y in M, essentially the original operator
with coefficients frozen at the boundary. See [Gil et al. 2010, Section 2] for a brief overview and [Gil
et al. 2007a, Section 3] for a detailed exposition of basic facts concerning cone operators.

Fix a Hermitian metric on E and a smooth positive b-density m; on M (xm;, is a smooth everywhere
positive density on M) to define the spaces xVLi(M ; E). Let A be a cone operator. The unbounded
operator

A:C®(M;E) Cx"L}(M; E) - x"L}(M; E) (1.1)
admits a variety of closed extensions with domains % C xVLi(M ; E) such that @ in CD C Dpax, Where
D min 1S the domain of the closure of (1.1) and

Bmax = {u € xYL3(M; E) : Au € x"L,(M; E)}.

Work partially supported by the National Science Foundation, Grants DMS-0901173 and DMS-0901202.
MSC2010: primary 58J35; secondary 37C70, 35P05, 47A10.
Keywords: resolvents, trace asymptotics, manifolds with conical singularities, spectral theory, dynamics on Grassmannians.
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When A is c-elliptic, A is Fredholm with any such domain [Lesch 1997, Proposition 1.3.16]. We may
assume without loss of generality that y = —m /2, since otherwise we may replace A by the operator
x VM2 A xvtm2 € x ™ Diff)! (M; E).

The set of closed extensions is parametrized by the elements of the various Grassmannian manifolds
associated with the finite-dimensional space Dmax/PDmin, @ useful point of view exploited extensively
in [Gil et al. 2007a]. Recall that both spaces Dmax/Dmin and DA max/D . min are determined by the
set {o € spec,(A) : —m/2 < Imo < m/2}, together with certain finite dimensional spaces of functions
associated to each element of this set. Also recall that the boundary spectrum of A, denoted by spec;,(A),
is the set of points in C at which the conormal symbol (indicial family) of A is not invertible. The
intersection of this set with horizontal strips in C is finite.

Associated with N, Y there are analogous Hilbert spaces me/ 2L%(NjLY ; EA). Here x, is the function
determined by dx on N.Y, E, is the pullback of E|y to N, Y, and the density is lemy where my is
the density on Y obtained by contraction of m; with xd,. We will drop the subscript A from x, and E 4,
and trivialize N, Y as Y =[0, co) x Y using the defining function. The space x ™"/ 2L%(Y ", E) carries
a natural unitary R action (g, u) — k,u which after fixing a Hermitian connection on E is given by

Kou(x,y) = 0™ ?u(ox,y) forp=>0, (x,y) €Y’

The minimal and maximal domains, @ min and D max, of A, are defined in an analogous fashion as
those of A, the first of these spaces being the domain of the closure of

A CO(YN E) Cx"PLAYN E) —> x "2LA(Y E). (1.2)

A fundamental property of A, is its k-homogeneity, ko An = 0" A ky. Thus D min and D max are
both «-invariant, hence there is an R action

O Kp: gD/\,max/@/\,min - gb/\,max/gb/\,mina

which in turn induces for each d” an action on Gry/ (D x max/D A min), the complex Grassmannian of
d"-dimensional subspaces of D » max/PD A min- Observe that since the quotient is finite dimensional these
actions extend holomorphically to C . R_.

Assuming the c-ellipticity of A, we constructed in [Gil et al. 2007a, Theorem 4.7] and reviewed in
[Gil et al. 2010, Section 2] a natural isomorphism

0 : Dmax/Dmin — gb/\,max/gb/\,min,

allowing, in particular, passage from a domain 9 for A to a domain %, for A, which we shall call the
associated domain.
We showed in [Gil et al. 2006] that if

% (A) — A is invertible for A in a closed sector A C C which is a sector of minimal

growth for A, with the associated domain %, defined via @ /D x min = 6 (D/Dmin), (1.3)

then A is also a sector of minimal growth for Ag, the operator A with domain 9, and for / € N sufficiently
large, (Ag—A)~! is an analytic family of trace class operators. In [Gil et al. 2010] we gave the asymptotic
expansion of Tr(Ag — )~ under the condition that & was stationary. Recall that a subspace % C Dpax
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with Dpin C 9D is said to be stationary if 8(D/D A max) € Grar (DA max/Da.min) 15 a fixed point of the
action k. More generally, assuming only (1.3), we now prove:

Theorem 1.4. Let A be an elliptic cone operator of degree m > 0 on M, and let % be a domain for A so
that (1.3) is satisfied. For any ¢ € C*°(M; End(E)) and |l € N with ml > n,

o0 . .
Tr(p(Ag —A) ™) ~ 3 ry U, L AN Tog MAY™ as |A] — oo,
=0
where each r; is a rational function in N + 1 variables, N € Ny, with real numbers i, k=1,..., N,
and Vj > Vjy = —00 as Jj — oo. We have rj = pj/q; with pj, q; € Clz1, ..., zn1] such that
qj (A AN Clog A) is uniformly bounded away from zero for large A.

The expansion above is to be understood as the asymptotic expansion of a symbol into its components
as discussed in the Appendix. As shown in [Gil et al. 2010],

n—1 .
Tr(p(Ag — 1) ™) ~ 30 ;a7 4o log (WA + 53, (3),
j=0
with coefficients o; € C that are independent of the choice of domain %, and a remainder sq (1) of order
O(|A|™"). Here we will show that sg(A) is in fact a symbol that admits an expansion into components
that exhibit in general the structure shown in Theorem 1.4. More precisely, let

M={Reo/m: 0 €specy(A), —m/2 <Imo <m/2}, (1.5)
where spec;, (A) denotes the boundary spectrum of A; see [Melrose 1993]. Set

¢ = additive semigroup generated by
{Im(c — ") : 0, 6" € spec,(A), —m/2 <Imo <Imo’ <m/2}U(=Np), (1.6)

which is a discrete subset of R_ without points of accumulation. Then

so(A) ~ 3 ry (WL AT log M)AY/™ as |A| — oo, 1.7

ved
v<—Im

where the p; are the elements of 91 and the r, are rational functions of their arguments as described in
the theorem.

An analysis of the arguments of Sections 3 and 4 shows that the structure of the functions r, depends
strongly on the relation of the domain with the part of the boundary spectrum in the “critical strip”
{o €e C: —m/2 < Imo < m/2}. This includes what elements of the set 9 actually appear in the r,,
and whether they are truly rational functions and not just polynomials. We will not follow up on this
observation in detail, but only single out here the following two cases because of their special role in
the existing literature. When 9 is stationary, the machinery of Sections 3 and 4 is not needed, and we
recover the results of [Gil et al. 2010]: the r, are just polynomials in log A, and the numbers v in (1.7)
are all integers. If 9 is nonstationary, but the elements of spec,(A) in the critical strip are vertically
aligned, then again there is no dependence on the elements of 21, but the coefficients are generically
rational functions of log A. Note that all second order regular singular operators in the sense of Briining
and Seeley [1987; 1991] (see also [Kirsten et al. 2008a]) have this special property.
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By standard arguments, Theorem 1.4 implies corresponding results about the expansion of the heat
trace Tr(<pe"A9') as t — 0T if Ag is sectorial, and about the structure of the ¢-function if Ag is positive.
It has been observed by other authors that the resolvent trace, the heat kernel, and the ¢-function for
certain model operators may exhibit so called unusual or exotic behavior [Falomir et al. 2004; 2003;
2002; Kirsten et al. 2006; 2008a; 2008b; Loya et al. 2007]. This is accounted for in Theorem 1.4 by
the fact that the components may have noninteger orders v; belonging to the set €, and that the r; may
be genuine rational functions and not mere polynomials. For example, the former implies that the ¢-
function of a positive operator might have poles at unusual locations, and the latter that it might not extend
meromorphically to C at all. Both phenomena have been observed for ¢-functions of model operators.

Earlier investigations on this subject typically relied on separation of variables and special function
techniques to carry out the analysis near the boundary. This is one major reason why all previously
known results are limited to narrow classes of operators. Here and in [Gil et al. 2010] we develop a
new approach which leads to the completely general result Theorem 1.4. This result is new even for
Laplacians with respect to warped cone metrics, or, more generally, for c-Laplacians [Gil et al. 2010].

Throughout this paper we assume that the ray conditions (1.3) hold. We will rely heavily on [Gil et al.
2010], where we analyzed (Ag — 1)~! with the aid of the formula

(Aq =07 = A0 (A =7
and the representation

(Ag =0 '=BMW) +[1—BMW(A-W]FaM)'T (), (1.8)

obtained in [Gil et al. 2006]. The analogous formula for (Ax g, — A~ Lis briefly reviewed in Section 2.

In [Gil et al. 2010] we described in full generality the asymptotic behavior of the operator families
B(A), [1 — B(X)(A —M)], and T(A), and gave an asymptotic expansion of Fg M Vif D s stationary.
Therefore, to complete the picture we only need to show that F5(1)~! has a full asymptotic expansion
and describe its qualitative features for a general domain %.

We end this introduction with an overview of the paper. There is a formula similar to (1.8) concern-
ing the extension of (1.2) with domain @,. The analysis of Fg(1)~! in the reference just cited was
facilitated by the fact that the corresponding operator F. g (A)~! for A, g, has a simple homogeneity
property when 9 is stationary. In Section 2 we will establish an explicit connection between the operator
Fng,(x)~! and a family of projections for a general domain % . This family of projections, previously
studied in the context of rays of minimal growth in [Gil et al. 2007a; 2007b], is analyzed further in
Sections 3 and 4, and is shown to fully determine the asymptotic structure of F, g, (1)~!, summarized
in Proposition 2.17. As a consequence, we obtain in Proposition 2.20 a description of the asymptotic
structure of (Axg, —A) .

The family of projections is closely related to the curve through %, /% A min determined by the flow
defined by k on Grg" (D max/%.min). The behavior of an abstract version of ICE 1(@ A DA min) 1S ana-
lyzed extensively in Section 3. Let € denote a finite dimensional complex vector space and a : € — €
an arbitrary linear map. The main technical result of Section 3 is an algorithm (Lemmas 3.5 and 3.11)
which is used to obtain a basis of ¢'®*D for all sufficiently large ¢ (really, all complex 7 with |Im¢| < 6
and Re ¢ large); here D C € is a linear subspace. The dependence of the section on ¢ is explicit enough to
allow the determination of the nature of the -limit sets of the flow 7 > ¢'® on Gry» (€) (Proposition 3.3).
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The results of Section 3 are used in Section 4 to obtain the asymptotic behavior of the aforementioned
family of projections, and consequently of F, g, (1)~! when A € A as |A| — oo, assuming only the ray
condition (1.3) for A, on @, (in the equivalent form given by (iii) of Theorem 2.15).

The work comes together in Section 5. There we obtain first the full asymptotics of Fg (1)~ using
results from [Gil et al. 2006; 2010] and the asymptotics of Fx g, (A)~! obtained earlier. This is then
combined with work done in [Gil et al. 2010] on the asymptotics of the rest of the operators in (1.8),
giving Theorem 5.6 on the asymptotics of the trace Tr(¢(Ag — A)~!). The manipulation of symbols
and their asymptotics is carried out within the framework of refined classes of symbols discussed in the
Appendix.

2. Resolvent of the model operator

In [Gil et al. 2006; 2007a; 2007b] we studied the existence of sectors of minimal growth and the structure
of resolvents for the closed extensions of an elliptic cone operator A and its wedge symbol A,. In
particular, in [Gil et al. 2006] we determined that A is a sector of minimal growth for Ag if @ (A) — X is
invertible for A in A, and if A is also a sector of minimal growth for A, with the associated domain % 4.
In this section we will briefly review and refine some of the results concerning the resolvent of A, g, in
the closed sector A.

The set

bg-res(A ) = {A € C: A, — A is injective on DA min and surjective on QDA,maX},

introduced in [Gil et al. 2007a], is of interest for a number of reasons, including the property that if
A € bg-res(A ) then every closed extension of A, — X is Fredholm. Using the property

KQA/\ :Q_mA/\KQ, (2.1)

one verifies that bg-res(A ) is a disjoint union of open sectors in C. Defining d” = —ind(A  min — A)
and d’ = ind(Amax — A) for A in one of these sectors, one has that if (A, g, — A) is invertible, then
dim(Dp /DA min) = d” and dimker(A max —2) = d’. The dimension of D max /DA min is d’ +d”.
From now on we assume that A # C is a fixed closed sector such that A~ 0 C bg-res(A,) and
res Apg, N A # @. Without loss of generality we also assume that A has nonempty interior. The set
res Ax.g, N A has discrete complement in A and is therefore connected.
Corresponding to (1.8), there is a representation

(Ana,— W) ' =B +[1 = BAQ)(An = D)]Fra, W) 'TA(A)  for ke ANres(Apg,). (2.2)

As we shall see in Section 5, if A is a sector of minimal growth for A g,, then the asymptotic structure
of Fra, (1)~ determines much of the asymptotic structure of the operator Fg (A)~! in (1.8).
If 9, is k-invariant, then F, g, (1)~ has the homogeneity property

i ym Fro, W7 = Frg, ()7 2.3)

and is, in that sense, the principal homogeneous component of Fg (1)~!. This facilitates the expansion of
Fo(A)~" as shown in [Gil et al. 2010, Proposition 5.17]. However, if %, is not x-invariant, F, g, !
fails to be homogeneous and its asymptotic behavior is more intricate.
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The identity (2.2) obtained in [Gil et al. 2006] begins with a choice of a family of operators K. (}) :
C4" — x™M2L2(Y"; E) which is k-homogeneous of degree m and such that

(Ar=1 KA() : Dpmin®CY — x"PLY(Y" E)
is invertible for all A € A \. 0. The homogeneity condition on K, means that
KA (0"A) =0"Kk,KA(X) foro > 0. 2.4)

Defining the action of R, on C% to be the trivial action, this condition on the family K (i) becomes
the same homogeneity property that the family A, — A has because of (2.1). Other than this, the choice
of K, is largely at our disposal. That such a family K. (X) exists is guaranteed by the condition that
A N0 Cbg-res(An). We now proceed to make a specific choice of KA ()).

Let Ag € A be such that A A.a, — A 18 invertible for every A = e’ 1o € A. We fix A¢ (for convenience
on the central axis of the sector) and a cut-off function w € C2°([0, 1)), and define

KA() = (Ax — DoA™k jpopm  for k€ ANO (2.5)

acting on D /D min = C?". The factor w(x|)»|l/m)lc|k/)\o‘1/m in (2.5) is to be understood as the compo-
sition
K|}~/)\0|l/m ~ w(x‘}tll/m)
gbA/Qb/\,min I gbA,max/gbmmin = Cng,maX C gb/\,max E—— gb/\,maXa

in which the last operator is multiplication by the function w(x|A]Y/™) and we use the canonical identi-
fication of DA max/D A, min With the orthogonal complement €, max Of D min In DA max Using the graph
inner product

(u’v)AA =(A/\M7 AAU)+(M9 U)5 u,v egbA,max-

By definition, K . (A) satisfies (2.4) and the family
(Ar=r KAL) : D min ® Dr/Dpmin — X "*Ly(Y"; E)

is invertible for every A on the arc {A € A : |A| = |Ag|} through X¢. Therefore, using x-homogeneity, it is
invertible for every A € A N\ 0. If

BA(A
( /\( )) Ixim/zLi(YA; E) — gb/\,min @gb/\/gb/\,min
TA ()

is the inverse of (A/\’min—)\. KA(A)), then Tx(A)(Ax —A) =0 on DA min, 0 it induces a map
FA(A) =[TAM)(Ax—M)] gb/\,max/gb/\,min - gzj/\/gzj/\,min’

whose restriction Fu g, (A) = FA(X)|, /o, .. 18 invertible for A € res(A, ,) N A \ 0 and leads to (2.2).
Moreover, since Th(L)K (L) = 1, we have

Fra, (M) '=qa(Ang,— 1) KAL)
= qn(Ana, — 1) (An = DoA™y 50 10m s

where g : DA max = Da.max/DA.min 1 the quotient map.
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For A € bg-res(A,) let 5 1 ) = ker(Ax max — A). Then, by [Gil et al. 2007a, Lemma 5.7],
reres(Ang,) ifandonlyif Damax =DA B IHas, (2.6)

in which case we let 7y, %, , be the projection on %, according to this decomposition. If B max(A) is

the right inverse of A max — A with range KL o then

(Ang,.— 2 =79, 9, Bama),

and Ba max (L) (AA max — A) 1s the orthogonal projection onto 57{*’ ,- Thus

75, %5 Bamax (M) (A max — A) = TTa, %, ;.5

and therefore,
Fra, ()»)_1 =GN TTD, FHn a)(x|)»|1/m)lc|)h/,\0||/,,,,
Let
D=%\/Drmin, Kar=Hnr+DAmin)/DA min- (2.7)

Again by [Gil et al. 2007a, Lemma 5.7], either of the conditions in (2.6) is equivalent to D N K ; =0,
hence to

gbA,max/gb/\,min =D® K/\,A (28)

by dimensional considerations, since dim K, ; = dimJ, ; =d’. Let then p. K, be the projection on
D according to the decomposition (2.8). Then g g, %, , = 7p K, , g~ and

Fra, 00~ =7 k., qr@ @Yk g 1m
:”D,KA,AKIA/AOI‘/’"’ (29)
since multiplication by 1—w (x|A| 1/my maps D max 1Nt0 DA min for every A.
We will now express Fa p, (0)~! in terms of projections with K, ;, in place of K, ;. This will of
course requlre replacing D by a family depending on A.

Fix A € A let S be the connected component of { : {™A € A} containing R, . Since A # C, Sy
omits a ray, and so the map Ry 3 0 = k, € Aut(D A max/D A min) €xtends holomorphically to a map

Sk,m EX K; € AUt(@/\,max/gb/\,min)-

It is an elementary fact that
-1
k, (DK, K = JTK—ID K

A simple consequence of (2.1) is that K¢ %A a=Haaem if & € Ry, hence also ke KA 5 = Ka y¢m for
such ¢ since the maps gnlu, ;, : Hax — K . are isomorphisms. Therefore

~1
K, (DK, ;K = 1D K e (2.10)

if ¢ € Ry. This formula holds also for arbitrary ¢ € S, ,,. To see this we make use of the family
of isomorphisms P(A') : Hxx, = K (defined for A" in the connected component of bg-res(A )
containing o) constructed in Section 7 of [Gil et al. 2007a]. Its two basic properties are that A" — B (1) ¢
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is holomorphic for each ¢ € I, ;, and that x,'B(1") = P(o™1) if o € Ry. These statements are,
respectively, Proposition 7.9 and Lemma 7.11 of [Gil et al. 2007a]. Let

f : gzj/\,max —-C
be an arbitrary continuous linear map that vanishes on ¥, ;. For any ¢ € J{, ,, the function

Sim 3¢ (fikcPBO/E™)p) e C

is holomorphic and vanishes on R, the latter because «/P(1/¢™) = P(A) for such ¢. Therefore
(fikePBA/e™)p) =0 forall ¢ € Sy . Since f is arbitrary, we must have «.P(L/¢™)¢p € H . Hence

BO/T™M € rep K

Since P(A/¢™) : Ha ny —> H A x/em is an isomorphism, we have H 4 j /om = K{lf]{m,\ when ¢ € Sy . This
shows that
Knem ZK;IK/\,)u
and hence that (2.10) holds for ¢ € S .
The principal branch of the m-th root gives a bijection

(™0 A = Sigm (2.11)
The reader may now verify that for this root, with the notation E = ¢/|¢| whenever ¢ € C \ 0, one has
-1 -1 _ -1 o -1
i Fnn )5 = 6y, kg m (ﬂk(;»}k())l/m D’KA.?\O)K()A»/XO)I/’” 2.12)

when A € A N res(Ax.a,). The arguments leading to this formula remain valid if A is replaced by a
slightly bigger closed sector, so the formula just proved holds in (A \0) Nres(Ax.g,).

The projection in parentheses in (2.12) is thus a key component of the resolvent of A, g, whose
behavior for large |A| will be analyzed in Section 4 under a certain fundamental condition which happens
to be equivalent to the condition that A is a sector of minimal growth for A, g,. We now proceed to
discuss this condition.

The condition that the sector A with A \.0 C bg-res(A,) is a sector of minimal growth for A, g, was
shown in [Gil et al. 2007a, Theorem 8.3] to be equivalent to the invertibility of A, g, — A for A in

Ar={reA:|A[= R},

together with the uniform boundedness in A of the projection nKlf‘ll/ p.k; - Further, it was shown in [Gil
. . . .. . . A mn . * . .
et al. 2007b] that along a ray containing Ag, this condition is in turn equivalent to requiring that the curve

o>k, ' D[R, 00) > Grar(D s max/D . min)
does not approach the set
Vi = {D € Grar(Da max/Damin) : DN KA, # 0} (2.13)
as o — 00, a condition conveniently phrased in terms of the limiting set

Q (D) = {D/ € Grgr (D max/D A min) : 0y — 00 in Ry such that ICQ_VID — D asv — oo}.
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Aray {rio € C:r > 0} contained in bg-res(A ) is a ray of minimal growth for A, g, if and only if

Q7(D) ﬂCVKMO =0.
Define

Q/_\(D) = {D/ € Grg7 (DA max/ DA min) :

3{¢,)%2, € C with Ag¢, € A and |¢,| — 00 s.t. lim,_ Icg;}mD =D'}, (2.19)
in which we are using the holomorphic extension of ¢ — K, to S), » and the m-th root is the principal
branch, as specified in (2.11). We can now consolidate all these conditions as follows.

Theorem 2.15. Let A be a closed sector such that A ~. 0 C bg-res(A ), and let 1y € A. The following
statements are equivalent:

(1) A is a sector of minimal growth for A g, .

(ii) There are constants C, R > 0 such that Agr Cres(Ax g, ) and ||7r
every ¢ such that Aol € Ag.

(iii) Qx(D)NV,, =2.

_] D KA A0 ||.§£(§DA max/DA,min) — Cfor

Proof. By means of (2.10) we get the identity

v

1
:c;ll/mD,KA,AO—’Cgl/m’clko\‘/’”( DK, ) K |1/m g1ms

Wl/m
which is valid for large A € A, { = A /A9, and g“ =¢/|¢]. Since Kg1/m and ch ;. are uniformly bounded,
Theorem 8.3 of [Gil et al. 2007a] gives the equivalence of (i) and (11)

We now prove that (ii) and (iii) are equivalent. Let €A max =D 1 max/D A, min and assume (iii) is satisfied.
Since €, (D) and Vg, , 1 are closed sets in Grdw (€ . max), there is a neighborhood U of Vg, o and a
constant R > 0 such that if |Ag¢| > R then ICC,/,H D €. Let § : Grgr (€ A max) X Grg' (€x max) = Rbe asin
Section 5 of [Gil et al. 2007a]. Since V'k, % is the zero set of the continuous function V' +— 6 (1", KA 3,),
there is a constant 59 > O such that § (IC | /mD Kn.) > 6o for every ¢ such that Ao¢ € Ag. Then
Lemma 5.12 of the same reference gives (11)

Conversely, let (ii) be satisfied. Suppose €2, (D) N Vg, %o # @ and let Dy be an element in the
intersection. Thus Dy N K, ;, # {0} and there is a sequence {¢,}72, C C with Ao, € A such that
|&y| = oo and

D, =« ]/mD—>D0 as v — 0o.

If v is such that |Ag¢,| > R, then Ao, € I‘CS(A/\,@A) and D N K4 5, = {0}, so D, N K4 3, = {0}. Thus
for v large enough D, €V, , .

Pick u € Dy N K 5, with |u]| = 1. Let wp, be the orthogonal projection on D,. Since D, — Dy as
v — oo, we have mp, — mp,, so u, =np,u — wp,u =u. For v large, D, ¢°VKMO’ sou,—u #0. Now,
since u, € Dy, u € K, »,, and u, — u,

U,—u u
v )— v — 00 as v — o0.

T —
D”’K“%(nuu—un oty —u]

But this contradicts (ii). Hence Q7 (D) NV'k, o =9 O
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If 9 4 is not k-invariant, the asymptotic analysis of F, g, (A)~! (through the analysis of the projection
7Dk, ,) leads to rational functions of the form

iy in o pJRL AN og L)
r(AH L ATEY (Tog A) = JOTT. A Tog )’ (2.16)
with u; € R for [ =1, ..., N, where g(z1, ..., Zy+1) is a polynomial over C such that
lg i, A log )| > 8,

for some § > 0 and every sufficiently large A € A, and

POIFL A Togh) = 3 dgr (WA logk A,
ok

with = (uy, ..., Uy), @ € Nf)v, k € Ny, and coefficients
Aok € COO(A N0, LD /DA min gzj/\,max/gb/\,min))a

such that aui (0™ X) = Kpaqk (1) for every g > 0.

Proposition 2.17. If A is a sector of minimal growth for A g, , then for R > 0 large enough, the family
Frna,(A) = FA(W)|a, /%, i 1S invertible for A € Ag and Fy g, M)~ has the following properties:

(i) Fra, ()" € C®(AR; L(DBA/D A min> Dr.max/D min)), and for every a, B € No we have

[ 50L Fra, 007" | = OAY™*F) as [1] — oo, (2.18)

with v = 0.

(ii) Forall j € Ny there exist rational functions r; of the form (2.16) and a decreasing sequence of real
numbers 0 = vy > v| > - - - — —00 such that for every J € N, the difference
J=1

Fag, )7 =3 M L AT Tog a) AV (2.19)
j=0

satisfies (2.18) with v = v; + ¢ for any ¢ > 0.

The phases 1, ..., uy and the exponents v; in (2.19) depend on the boundary spectrum of A. In
fact, wi, ..., uy € Mand v; € € for all j; see (1.5) and (1.6).

This suggests the introduction of operator-valued symbols with a notion of asymptotic expansion in
components that take into account the rational structure above and the x-homogeneity of the numerators.
The idea of course is to have a class of symbols whose structure is preserved under composition, differen-
tiation, and asymptotic summation. In the Appendix we propose such a class, Sg‘;: (A; E, E), a subclass
of the operator-valued symbols S®(A; E, E) introduced by Schulze, where E and E are Hilbert spaces
with suitable group actions. The space S;}: (A; E, E) is contained in $**¢(A; E, E) for any ¢ > 0.

As reviewed at the beginning of the Appendix, the notion of anisotropic homogeneity in S™ (A; E, E)
depends on the group actions in E and E. Thus homogeneity is always to be understood with respect to
these actions.

In the symbol terminology, we have

Fra, (W)™ € (89 NS (AR: Dn/Drmins Damax/D a.min)-
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where D /D A min carries the trivial action and D max /D A min 15 equipped with k.

Proof of Proposition 2.17. Since A is a sector of minimal growth for A, g, there exists R > 0 such that
(An,3,— A) is invertible for A € Ag, which by definition is equivalent to the invertibility of F, g, (A).
Since the map ¢ +— Kg1/m is uniformly bounded (recall that 2 = ¢/|¢]), the relation (2.12) together with
Theorem 2.15 give the estimate (2.18) for « = 8 = 0. If we differentiate with respect to A (or 1), then

9 Fna, M ==Fra, )70 Faa, WIFra, (W) = =Fra, W) [0, FAG)Fag, ()"
Now, if we equip D /%D A min With the trivial group action and D max /DA min With k,, then

FA(M): gbA,max/gb/\,min — 9DA/QD/\,min
is homogeneous of degree zero, hence [|9; F(A)k; 1/m|| is O(|x|~") as |A| = oo. Therefore,

[t pm 5. Frz, 007 = OUAITY)  as A — oo,

|M11/m 0 Fra, (1)~! can be written as

00 P, ) 1003 FA GOm0 P, 07,

and the first and last factors are uniformly bounded by our previous argument. The corresponding esti-
mates for arbitrary derivatives follow by induction.
Next, observe that by (2.12),

since Kk

-1

-1 _
F/\’@A()\.) —Ké-l/m (n—'f;lmD,KA,AO)Kfl/m’

1/
with { =A/Ap and g: =¢/I¢|. For» € Ag letk(A) =K1/ and IQ(A) = "gl/lm- Then k(X) is a homogeneous
symbol in SO (A g; D x. max/D a.min> Da.max/D a.min)» Where the first copy of the quotient is equipped with
the trivial action and the target space carries k,. Similarly, /2()») e SOAR: T, /DA mins DA max/ DA, min)
with respect to the trivial action on both spaces.

Finally, the asymptotic expansion claimed in (ii) follows from Theorem 4.13 together with the homo-
geneity properties of k(1) and k(). U

As a consequence of Proposition 2.17, and since BA(A), 1 — BA(A)(Ar—2A), and Tx(X) in (2.2) are
homogeneous of degree —m, 0, and —m, in their respective classes, we obtain:

Proposition 2.20. If A is a sector of minimal growth for A g, , then for R > 0 large enough, we have
(Ana, =2 e S5 NS (AR X "2LY, D ma),

where the spaces are equipped with the standard action k,. The components have orders vt with v € €
and their phases belong to IN; see (1.5) and (1.6).

3. Limiting orbits

We will write € instead of D max/D A min and denote by a : € — € the infinitesimal generator of the
R action (g, v) — ICQ_IU on €, so that ICQ_ID = ¢'*D with t = log o. In what follows we allow ¢ to be
complex. The spectrum of a is related to the boundary spectrum of A by

speca={—ioc —m/2:0 €spec,(A), —m/2 <Imo <m/2}. (3.1)
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For each A € spec a let €, be the generalized eigenspace of a associated with A, let ) : € — € be the
projection on €, according to the decomposition

€ = @ €.

Aespeca

Define N : € — € and N, : €, — €, by

N=a-— Z )\'n)\v NA.:N|%)\_’

Aespeca

respectively. Thus N is the nilpotent part of a. Correspondingly, let

a:€—>¢ da= > (Imim, (3.2)

Aespeca

so a’ is the skew-adjoint component of the semisimple part of a.
For i € Re(spec a) let
b= @ 6

Aespeca
Rei=pn
let 77, : € — € be the projection on € « according to the decomposition
€= @ Ep,
neRe(spec a)
and set
N, =N|%M 1€ — €.
Fix an auxiliary Hermitian inner product on € so that @ €, is an orthogonal decomposition of €. Then
o’ is skew-adjoint and e'® is unitary if 7 is real.
Proposition 3.3. For every D € Gryr(€) there is Do € Gryr(€) such that
dist(e’®D, ' Dyo) — 0 as Ret — oo in Sy = {t € C: |Im¢| < 6} (3.4)
for any 6 > 0. The set
Qy (D) ={D" € Grg:(€) : 3{t,} C Sy : Ret, - 00 and limy_. o "D = D'}
is the closure of
(' Do i 1 € Syl

We are using Q7 for the limit set for consistency with common usage: we are letting Re s tend to
infinity.

If & is a vector space, we will write %[z, 1 '] for the space of polynomials in # and ¢ ~! with coefficients
in ¥ (that is, the %-valued rational functions on C with a pole only at 0). If p € F[r, 171, let ¢y (p) denote
the coefficient of #° in p, and if p # 0, let

ord(p) = max{s € Z : c;(p) # 0}.

The proof of the proposition hinges on the following lemma, whose proof will be given later.
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Lemma 3.5. Let D C € be an arbitrary nonzero subspace. Define D' = D and by induction define
i = max{u € Re(speca) : 7,D' # 0}, D' =kery|p, Dy, =(DTHin D!,
starting with | = 1. Let L be the smallest | such that D'*' = 0. Thus

T lpt i Dy, — 7, Dy, is an isomorphism (3.6)
L
and D = @ D,,. Then for each | there are elements
=1
pr €y Dylt, 1/t], k=1,...,dimD,,,

such that with y P
G (1) = e (1),
we have ord é,lc = 0 and the elements ) .
gk = CO(qk)’
fork=1,...,dim D,,, are independent.
Proof of Proposition 3.3. Suppose D C € is a subspace. With the notation of Lemma 3.5 let
Dy,.co =span{gh :k=1,...,dimD,,}.

Since e’NM is invertible and g, (1) = g,lc + ﬁi(t) with Ei(t) =0~ for large Ret (¢ € Sp), the vectors
ﬁ,lc (¢t) form a basis of 7, D,, for all sufficiently large ¢. Using (3.6) we get unique elements

Pk €Dyt 1/t], 7Pt = pr.
For each [ the p,lc (t) give a basis of D, if ¢ is large enough, and therefore also the
e Mpt(t), k=1,...,dimD,,,
form a basis of D, for large Re . Consequently, the vectors
e Mpt(t), k=1,...,dimD,, I=1,...,L,

form a basis of ¢’®D for large Ret. We have, with N, = N|¢,,

— l A— N, l
% l/vllpk(t)z Z P Ml)et Aﬂkpk(l)
Aespeca
— Z el(l—m)elen)\pllc(Z)_i_ Z e’(k_’“)e’N*mpfc(t)
Aespeca Aespeca
Re A=p Re i<y
:e’“etNWfrﬂ,p,’{(t)—l- > e’(’\_“’)e’N*mp,’{(t)
A€spec a
Re A<y
ta o 1 7l t(A— tN l
= e (g )+ X TN pr)
AEespec a
Re A<y

S0 e'%e~H p,l( ) = e’“/g,l( + hi (1), where hi (1) =0(t~") as Ret — oo in Sy. It follows that (3.4) holds
with Doo = @3/, Dy;.00- This completes the proof of the first assertion of Proposition 3.3.
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Remark 3.7. The formulas for the v} (1) = e'®~"# pl (¢) given in the last displayed line above will even-
tually give the asymptotics of the projections . p g (assuming Vg N Q1 (D) = &, see Theorem 2.15).
Note that the shift by m/2 in (3.1) is irrelevant and that the coefficients of the exponents in the formula
for v,l((t) belong to

{A—ReA : A, 1 €speca, Rex <Rel'}. (3.8)

Because of (3.1), this set is equal to
—ifo —ilmo’: 0,0’ €specy(A), —m/2 <Imo <Imo’' <m/2}. (3.9)

If all elements of {o € spec,(A) : —m/2 < Imo < m/2} have the same real part, then all elements of
(3.8) have the same imaginary part v, the operator a’ is multiplication by iv, and we can divide each of
the v,lC (t) by /"’ to obtain a basis of ¢'®D in which the coefficients of the exponents are all real.

To prove the second assertion of the proposition, we note first that (3.4) implies that Q;(D) is con-
tained in the closure of {¢'¥ Dy, : 1 € Sp}. To prove the opposite inclusion, it is enough to show that

¢'¥ Do € QF (D) (3.10)

for each 1 € S, since Q;f (D) is a closed set. Writing e’ Dy, as ¢/ ™7 @ (eRe? @ D) further reduces the
problem to the case 6 = 0 (that is, ¢ real). While proving (3.10) we will also show that the closure ¥ of
{e'¥ Do : t € R} is an embedded torus, equal to 7 (D).

Let {Ak}le be an enumeration of the elements of spec a. Define f : RX x Gry»(€) — Grg#(€) by

f(1,D) =X,

t=(t!,..., tX). This is a smooth map. Since the 7, commute with each other, f defines a left action
of RX on Gry»(€). For each t € RX define

Je 1 Grgr(€) > Grg(€), fr(D)= f(z, D),
and for each D € Gry(€6) let
fPRY > Grgn(€),  fP(t)= f(z. D).

The maps f; are diffeomorphisms.
We claim that £~ factors as the composition of a smooth group homomorphism ¢ : R — TX " onto

a torus and an embedding & : TX "= Gryr (@),
¢
RK
A

fDool
Gl‘d// (%) .

LES

Both ¢ and /& depend on D.
To prove the claim we begin by observing that {u € TRX : dfP~(u) = 0} is translation-invariant.
Indeed, let 7o € RX, let v = (v', ..., v&) e RX, and let y : R — RX be the curve y(¢) = tv. Then

P20+ y) = fro fP> (1)),
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SO
deOQ (Z vkatklfo) =df Odeoo (Z vk8,k|o).

Since f, is a diffeomorphism,
> 0¥kl € [ker df P Ty RE — T o (1) Grar (€)1 <= Y v* 9|0 € [ker df P~ : ToRX — T Gryr (€)1.

Thus the kernel of df P~ is translation-invariant as asserted.

Identify the kernel of df P~ : T)RX — Tp, Grgr(€) with a subspace & of RX in the standard fashion.
Then fP= is constant on the translates of ¥ and if % is a subspace of RX complementary to &, then
fP=|g is an immersion. Renumbering the elements of spec a’ (and reordering the components of RX
accordingly) we may take ® = RX "% 0.

Since fPx|g is an immersion, the sets

Fp={teR: fP~(r)=D"}

are discrete for each D’ € fP~(®). Using again the property 2= (1) +12) = f, o fP>(1) for arbitrary
71, 7o € RX, we see that & D, 1s an additive subgroup of %k and that f De is constant on the lateral classes
of ¥p_ . Therefore f Do factors through a (smooth) homomorphism ¢ : R — % /% p_ and a continuous
map R/Fp, — Grgr(€). Since f D is 277 -periodic in all variables, 27 ZK ‘cF Do» SO R/Fp_ isindeed
atorus TX'. Since ¢ is a local diffeomorphism and f P~ is smooth, /4 is smooth.

With this, the proof of the second assertion of the proposition goes as follows. Let L C RX be the
subspace generated by (Im Ay, ..., ImAg). This is a line or the origin. Its image by ¢ is a subgroup H
of TX', so the closure of ¢ (L) is a torus G C TX', and h(¢ (L)) is an embedded torus ¥ C Grg(€). On
the other hand, hog (L) = fP=(L) is the image of the curve y : 1 — ¢’ D, so the closure of the image
of y is €. Clearly, QJ(D) C %. The equality of Q(J)F(D) and & is clear if y is periodic or L = {0}. So
assume that y is not periodic and L # {0}. Then H # G and there is a sequence

{gv}sozl CGN\H

such that g, — e, the identity element of G. Let v be an element of the Lie algebra of G such that H is the
image of t — exp(tv). For each v there is a sequence {t,, p}ff:l, necessarily unbounded because g, ¢ H,
such that g, =lim,_, o exp(t,,,v). We may assume that {z,, p};ozl is monotonic, so it diverges to 400 or
to —oo. In the latter case we replace g, by its group inverse, so we may assume that lim,_, o #, , = 00
for all v. Thus if g € H is arbitrary, then h(gg,) € Q(J)r (D) and h(gg,) converges to h(g). Since Qar(D)
is closed, this shows that ho ¢ (H) C Qa“ (D). Consequently, also ¥ C Q(J)r (D).

This completes the proof of the second assertion of Proposition 3.3. U

As a consequence of the proof we have that Q;(D) is a union of embedded tori:

Qf (D)= | €"“{¢'"Du:1 R}
s€[—6,6]

The proof of Lemma 3.5 will be based on the following lemma. The properties of the elements
ﬁ,lc e m,, Dy, lt, 1/t] whose existence is asserted in Lemma 3.5 pertain only to € i N 1> and the subspace
7y, Dy, of € ;- For the sake of notational simplicity we let W =, D,,, and drop the u,; from the notation.
The space € comes equipped with some Hermitian inner product, and N is nilpotent.
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J M;
Lemma 3.11. There is an orthogonal decomposition W = € EB on (with nontrivial summands) and
nonzero elements J=0m=0
P € Hom(Wj , W)z, 1], (3.12)
h
where w; | j
Wim= @ W=D
m'=m j'=0

satisfying the following properties:
0_
(1) P/ = Ly,

(2) Let Q’]’.l ) = etV P;” (t) and n;” = ord(Q’j’?). Then the sequence {nT},A:; o s strictly decreasing and
consists of nonnegative numbers.

(3) Let
Then i1 My
W1 = (@) (@ D+ D w) (.14
'=0m’'=0 m’'=0
(4) There are unique maps Fm LW g — °W",1 such that
-1 My m—1 .,
G + Z 5 G F 4 G =0 (3.15)
j'=0m’=0 m’'=0
holds on Wj 41, and
_1 M/ m m ’
P = prg Z 3 —n PIF! J i m+1Jr Z (" P (3.16)
Jj'=0m’'=0

The lemma is a definition by induction if we adopt the convention that spaces with negative indices
and summations where the upper index is less than the lower index are the zero space. In the inductive
process that will constitute the proof of the lemma we will first define W} ,, .1 CWj ;, using (3.14) starting
with suitably defined spaces W; ¢ and then define

OW OM/}mmOW ,m—+1*

Note that the right hand side of (3.14) depends only on W; ,,, PJ’.’1 (through GT) and the spaces °l/j’7’, with
Jj < j and m’ arbitrary, or j/ = j and m’ < m. The relation (3.15) follows from (3.14) and induction, and
then (3.16) (where P}" actually means its restriction to W; ,,41) is a definition by induction; it clearly
gives that the P]’." (t) have values in °W]/ as required in (3.12).

We will illustrate the lemma and its proof with an example and then give a proof.

Example 3.17. Suppose € is spanned by elements e ik (j=0,landk=1,..., K;) and that the Hermit-
ian inner product is defined so that these vectors are orthonormal. Define the linear operator N : € —>¢
so that Nej,l =0 and Nej,k =€ k-1 forl <k < Kj. Thus Nkej,k =0 and Nk€jyk+1 =ej1 # 0. Pick
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integers 0 < so < 51 < min{Kyp, K}, and let
W = span{eq sy+1, €15, 41, €0,5,+1 + €1,5,}

If w e W and w # 0O, then N is a polynomial of degree exactly s or s;. Let Wy o =W Nker N+l
that is,

Wo,0 = spanfeq g41}-

Then ¢V w is polynomial of degree s if w € W g. Let Wy g =W Nker N1+ ﬂ“WéO. Thus

W10 =span{eq s,+1, €0,5,+1 +€1.5,},

and e’V w is polynomial of degree exactly s; if w € W' o and w # 0. With these spaces we have
W=Woo®Wi,

as an orthogonal sum. By (1) of Lemma 3.11, P(? = ly,,- SO etV P(? is the restriction of
- 50 k
tN _ 1" Sk
k=0

to Wo.o, ng =50, and G8 is (l/sol)lg”O restricted to W ¢. Thus °V8 =span{ep,1}. The space W 1, defined
using (3.14), is the zero space by the convention on sums where the upper index is less than the lower
index. Thus My = 0. We next analyze what the lemma says when j = 1. As when j =0, Plo = Iy, ,, SO
'V P! is the restriction of

to W .0. Hence ”(1) =51, and G(l) = (l/sl!)](""l lw, - The preimage of CVg by G(l) is
W1 = spanfep s, +1+ €15}

and so OW(I) = span{e; 5,41} and °V(1) =span{e; 1}. With w = e 5, +1 + €15, we have

!
0 050!
Glw=—ey1 = Go_sl'eO’SOH’

Sl!

so with Fo)\| - W1 — W defined by

0,1 _ S()!
FO,l w= _s_l;eoyso-i-l

we have G(l) + GgFé)”ll = 0. Formula (3.16) reads

1 —sp 0,1
Pp(t) = Ly, , + 1" 0y
in this instance, and
SO' £51—50 S0 lk -

- S| 4k
N pl " Sk ' k
el Pl (t)w = Z FN w — T Z FN €0,s0+1-
k=0 " I k=0 %
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In the first sum the highest order term is #°!/s1!ep 1, while in the second it is %/so!ep,1. Taking into
account the coefficient of the second sum we see that 'V P]1 (t)w has order < s1. A more detailed
calculation gives that the order is s; — 1, and that the leading coefficient is given by the map

1 _ so!
(s1=1D!  s1!(so—1)!

its image spans ¥']. Note that ¥ +¥9 + %1 is a direct sum and is invariant under N

w = ( >€0,2+e1,1;

Proof of Lemma 3.11. We note first that the properties of the objects in the lemma are such that

<

J J
Dyoo=3 > V" (3.18)
j=0m=0

m

is a direct sum. Indeed, suppose we have w;" € °ij Jj

0,...,J,m=0,..., M; such that
J M;

> > Glwl=0.

j=0m=0 ’

If some w’/" 18 nonzero, let

Jo = max{;j : Im such that wjm #0}, mo=max{m : w% # 0},

so that w%o # 0. Thus

mo ol M mo—1 m m il M m mo=1 m
Glowt = — ) 3 GTw"— Y G"uw" e Y 3 U
Jj=0 m=0 m=0 Jj=0 m=0 m=0

therefore w € Wiy mo+1 by (3.14). But also w " e °W , a space which by definition is orthogonal to
Wiy mo+1- Consequently w” ]0 =0,a contradlctlon It follows that (3.18) is a direct sum as claimed, and
in particular that the maps

m . m m
G’ |°W;!1 CW =
are isomorphisms.
Note that 'Y w is a nonzero polynomial whenever w € W ~. 0 and let

{s]}_o_{dege w:weW, w#0}

be an enumeration of the degrees of these polynomials, in increasing order. Let ‘W_; o = {0} C W and
inductively define

Wio=WNker N+ NWE, (. j=0,.... J.

J

Thus Wj o C W and W = & Wj o is an orthogonal decomposition of W'; moreover,
j=0
N4 :°Wj,0 — ¢
is injective for j =0, ..., J, and if w € Wj o\ O then ¢’ Nw is a polynomial of degree exactly s; j. The

spaces °ij will be deﬁned so that @, W™ " ="MWjo.
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Let P)(t) = Iy, let Q5(1) = etV P)(t). Then 0{d(Q8) = 5o and G = 1/50! N, ,. By (3.14),
Wo,1 is the preimage of the zero vector space. Since N*° is injective on W o, Wo 1 =0, °W8 = Wo,0 and
My =0. Let °V8 = G0(°W ). This proves the lemma if J = 0.

We continue the proof using induction on J. Suppose that J > 1 and that the lemma has been proved
for W' = @jj.;é W;,0, so we have all objects described in the statement of the lemma, for W’. The
corresponding objects for W ( are then defined by induction in the second index, as follows.

First, let Po(t) = Iy, ,, QJ = e’NP}) (a polynomial in ¢ of degree n9 =sy) and G(} = CSJ(Q(}).

Next, suppose we have found

Wyo0D - DWyy—1 and P/ e LW, W)z, 17']

so that the properties described in the lemma are satisfied for j < J and all m,or j =J andm < M — 1.
As discussed, it follows that

J—1 M;
Z on + Z Z OVI’I’I
j=0m=0
is a direct sum and that the maps
G;'~1|0W_r/n °WJ’" — °ij (3.19)
defined so far are isomorphisms. Suppose further that the n’; = ord(Q"), m =0, ..., M—1, are non-

negative and strictly decrease as m increases. In agreement with (3.14), let

J—1 M;
Wy g = (GY1)~ I(Z Sy zﬂ/'")
j=0m=0
a subspace of the domain W} »/_; of GJM_I. Define WJM_I =Wy m—1 ﬂ‘WJL’M. If w e Wy p, then
) M-2 J—1 M;
G = A DD IR
m=0 j=0 m=0

uniquely with vT € °VJ’" Since the maps (3.19) are isomorphisms, there are unique maps
FJ JM IOWJ’M d L‘[/‘/'jm,

j=0,....,J—landm=0,...,M;,or j=Jandm =0, ..., M — 2 such that

M—2 J—1 M; ”
G '+ GrErM+ Y ZG"”" =0
m=0 j=0m=0
on Wy ., that is, (3.15) holds. Define
M Mmo1 | M2 J=1Mi "
PY =PI T PR Y Y T P
m=0 Jj=0m=0

50 (3.16) holds. Let Q) = e’NP}”. Because of (3.13), each term on the right in

M M—1 M=2 A=l _pm mp Y ny M=T_pym o m, M
Q]= J +Zotj ]QJ +Z Zt JQij’j'
m=

j=0m=0
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M—1 . M—1 Lo M—1

has order n'} ™', s0 ¢, (Q¥) =0if n > nY ' 1f Q) #0, let n¥ = ord(Q). A fortiori n¥ < n'~".
We now show that if QJJ"’ =0, then W; »y =0, so M; = M — 1 and the inductive construction stops.
Let FJmJ’.mH : Wi my1 — W; m be the inclusion map. Note that the combination of indices just used
does not appear in (3.15): these maps are not defined in the statement of the lemma. With this notation

m—1 m— m’ ’ / ~
Py =3 Ty E 4 Y (3.20)
m’'=0
form =1, ..., M and some FI}" € LWy, WH[t, t~1]. Let ?,, be the set of finite strictly increasing
sequences v = (v, Vi, ..., V) of elements of {0, ..., m} with vy =0 and vy =m. Forv=(vg, ..., ) €

P, (m > 1) define

v __ Vo, V1 Vm—1,Vm
f} _'FbJ O...O}v”] ,

v _ vi—1 Vo v—1 Vi vr—1 Vk—1
ny=m; —n;))+m; —n))+---+0n; —n; ).

Since the n’j"/ strictly decrease as m’ increases, the numbers n’; are strictly negative except when v is
the maximal sequence vy in {0, ..., m}, in which case n?‘“a" = 0 and F"= is the inclusion of Wy ,, in
Wy o. It is not hard to prove by induction on m, using (3.20), that

Pr=P) S UFY 4 HY (3.21)

veP,

for all m > 1 where H' € L(Wy ,,, W)[t, t~']. If Q% =0, then P =0, so, since N** H¥ =0,

N PM = S ("INSFY =0,
VG@M

In particular, NI F}"“"‘X = CO(N o P}” )=0. Since N5/ is injective on Wy o, we conclude that the inclusion
of Wy pr in Wy o is zero. This means that W s = 0, so the inductive construction stops with My =M —1.
We will now show that there is a finite M such that QJJ” = 0. The inductive construction gives, as long
as Q7 # 0, the numbers n'y = ord(Q’}) which form a strictly decreasing sequence in m, with n(} =sy.
Suppose ny >0, QJJW # 0, and nl}’[ < 0. In particular, the coefficient of ¢° in Q’}’I vanishes. Using

(3.21) with m = M we have
~ Sy s+n; - ~
NPy = > YN eV EY.

veg’M s=0

s!
The coefficient of ¢ is
1

co(eN PMy = > —(_nv)'N*"3F,“+cO(e’NH}”);
veP y J’

recall that n’, < 0. Since H}V’ maps into W’, we have NS/ co(H}"’) =0, and since ]\75|0WJ_0 =0ifs > sy,
N$N~" =0 if n" # 0. Thus

NS_/ CO(GZ‘NP;W) — NS/F}’max’
where v = (0,1, ..., M). Since co(e”\? PJM ) = 0 by hypothesis, since F}""“X is the inclusion of Wy
in Wy o, and since NS is injective on Wy o, Wy = 0. O
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Proof of Lemma 3.5. Apply Lemma 3.11 to each of the spaces W', =7, D,,,. The corresponding objects
are labeled adjoining / as a subindex. Get in particular, decompositions

B Mjy
~ _ m -~
7D - DDW
=0 m=0

for each /, and operators G, : W', — V", C €,,, such that

Ji Mjy g Mj Ji Mj
m . mn — T
DD Gy : DDV — Duoe =D DV
Jj=0 m=0 j=0 m=0 j=0 m=0

is an isomorphism. Let d}"l =dim °WJ?"I and pick a basis
m m

of W™

M i =0, J,m=0,...,Mj,. Then p7, ,(t) = l»_n’]?flP]’?fl(l‘)wl}fl’k € W,,. These elements

Pl €Wylt, ™, for j=0,....0, m=0,....Mj;, I=1,...d7,
are the ones Lemma 3.5 claims exist. Indeed, since Q;’f ()= Niy P]’?fl (1),

: tNy =1 pm m o mom
palm e Tt P (Owy g = G W
teSy

Since the G%w%,k form a basis of D, «, the ¢ P;f’l (t)w’}flﬁk, form a basis of W', for all # € Sg with
large enough real part. O

4. Asymptotics of the projection

With the setup and (slightly changed) notation leading to and in the proof of Proposition 3.3, given a
subspace D C € and the linear map a: € — € we have, for fixedd >0andt € Sy ={t € C: |Imt| <6},
e'*D =span{vi(t)}, Rer>0

with
@ =g+ Y 0. (4.1)
AEspec a

Re A<y

The g (r) are polynomials in 1/¢ with values in € > the collection of vectors
oo,k = lim g (t)
11— 00

is a basis of D, the py form a finite sequence, possibly with repetitions, of elements in {Re A : A € spec a},
and we have

Pra(t) =™ pe(d),
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where the p(¢) are polynomials in # and 1/¢ with values in €. The additive semigroup S, C C (possibly
without identity) generated by the set (3.8) is a subset of {A € C: Re X < 0} and has the property that
{0 € G4:Re v > u} is finite for every u € R.

Proposition 4.2. Let K € Gry (€) be complementary to D, and suppose that

Yk NQy (D)= 2. (4.3)
There are polynomials py(z', ..., z", t) with values in End(€) and C-valued polynomials
qo@', ... 2V, 1)
such that
3C, Ry > 0 such that |q19(e"’lm’x‘, L, @M gy | >C ift €Sy, Ret > Ry 4.4)
and such that
Tetap K = ﬂg}a et;:&gte;;lifl"'""'e’ite;;l;nNA’Nt’)t), t €Sy, Ret > Ry,

with uniform convergence in norm in the indicated subset of Sy.

Proof. Let K C € be complementary to D as indicated in the statement of the proposition, let u =

[t1, ..., us] be an ordered basis of K. Write g for an ordering of the basis {goo x} of Do. With the
v (¢) ordered as the goo x to form v(¢), we have
a() 0
1=t 1)
where
am)y=) Y MM, m), BO=Y X B (4.6)
k Aespeca k Aespeca
Re A=<pi ReA=<pui

The entries of the matrices o, (¢) and By, (¢) are both polynomials in # and 1/¢, but only in 1/¢ if
Re A = ug. Define

aP =3 ¥ M MWan@), an =3 X a0, 4.7
k Aespeca k Mespeca
Re A= Re A<pi

and likewise B (r) and ,8~ (t). Note that a(¢) and ,3 (t) decrease exponentially as Ret — oo with |Im¢|
bounded.

The hypothesis (4.3) implies that [
invertible for such ¢. In fact,

a(t) 0
B@) 1

] is invertible for every sufficiently large Re¢, so «(¢) is

there are C, Ro > 0 such that |det(ce(r))| > C if t € Sy, Ret > Ry. (4.8)

For suppose this is not the case. Then there is a sequence {t,} in Sy with Re#, — 0o as v — oo such that
deta(t,) — 0. Since both «(¢,) and B(t,) are bounded, we may assume, passing to a subsequence, that
they converge. It follows that e’* D converges, by definition, to an element D’ € Q;(D). Also the matrix
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in (4.5) converges. The vanishing of the determinant of the limiting matrix implies that K N D" # {0},
contradicting (4.3). Thus (4.8) holds.
If ¢ € € then of course

1
4
= ul- s
¢ [g ] |:¢)2:|
where the ¢’ are columns of scalars. Substituting
B a()™' 0
[g u] - [v(t) u] ’ |:—,3(I)O((l‘)_1 I]

gives
B a®)™ 07" _ a(r)~o! :
¢=[v® ”]'[—ﬁ(z)a(t)—l 1] |:g02:| =0 "]'[—ﬂ(r)a(z)“w‘wz]

¢=v(0)-a®)'¢' +u-(—pna®n)'¢' +¢7).
This is the decomposition of ¢ according to € = ¢’*D @ K ; therefore

hence

Teap k=) o) o
Replacing v(t) = g - a(¢) +u - B(t) we obtain
Teap k= (g -a(t)+u-BM)a®) o' =(g+u-pOa@) e (4.9)
The matrix o?)(¢) is invertible because of (4.8) and the decomposition a(¢) = @ (¢) + a(1), so
Ba@) " =g T +a@e® @)
= B (1) Ifo(— D'E0e® 01T, (+10

The series converges absolutely and uniformly in {tr € Sp : Ret > Ry} for some real Ry € R. The entries
of a©(z) are expressions

. N
Z eltlmk Z C)»,vt_v;

Aespeca v=0
hence
deta@ (1) = g (™M, ..., MY 1)1,
for some polynomial ¢(z', ..., z", 1/1). Note that because of (4.8),
there are C, R > 0 such that |det(a’(#))| > C if r € Sy, Ret > Ry. 4.11)

Since @ (1)~! = (deta@ (1)) "' A(r)" where A(¢)" is the matrix of cofactors of & (¢), (4.10) and (4.6)
give
Ban) ™ = X rg(ne” (4.12)
eS,
where G, was defined before the statement of Proposition 4.2 as the additive semigroup generated by
{, —ReA’: A, A €speca, ReA <ReA’} and ry(¢) is a matrix whose entries are of the form

pﬂ(eitlm)‘l, e eitImAN’ t, l/l)
q(eztlm)q’ e ettlmAN’ l/t)nﬁ ’
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for some polynomial py(z',...,zV, ¢, 1/t) and nonnegative integers ny. Multiplying the numerator
and denominator by the same nonnegative (integral) power of ¢ we replace the dependence on 1/¢ by
polynomial dependence in /'™t . ei!ImAv ¢ only. This gives the structure of the “coefficients” of
the e'” stated in the proposition for the expansion of 7 p k. (|

The terms in (4.12) with Re 9 = 0 come from B (1)a @ (r)~!. So the principal part of 7,ap g is
o (Teen )¢ = (g +u- BP0 1) )e!
This principal part is not itself a projection, but
lo (e p k) _”em’Doo,K” —0 as Ret— o0, 1€ 8p.

We now restate Proposition 4.2 as an asymptotics for the family (2.10) using the notation « for the
action on ¢ and express the asymptotics of Jr,c;ll/ . 0.k 1n terms of the boundary spectrum of A exploiting
(3.1). Condition (4.14) below corresponds to our geometric condition in part (iii) of Theorem 2.15
expressing the fact that A is a sector of minimal growth for A, g, . The Q-limit set is the one defined in
(2.14). Recall that by ¢!/ we mean the root defined by the principal branch of the logarithm on C~R_.
We let Ao # 0 be an element in the central axis of A and define A = {¢ : £Ag € A}; this is a closed sector
not containing the negative real axis.

Let G C C be the additive semigroup generated by

{oc —ilmo’: 0,0’ €spec,(A), —m/2 <Imo <Imo’ <m/2}.
Thus —iG = &,. Let 04, ..., oy be an enumeration of the elements of
¥ =spec,(A)N{—m/2 <Imo <m/2}.

Theorem 4.13. Let K € Gry (€) be complementary to D, suppose that

¢ N Q5 (D) = 2. (4.14)
Then there are polynomials py(z', ..., zN,t) with values in End(€) and C-valued polynomials
ge ', ... 2V D)
such that
3C, Ry >0 suchthat |y (¢'Reo/m, . giReon/m | s C ifc e A, |¢] > Ry, (4.15)

and such that

—iv/m iReoy/m iReoy/m —1 -
Tt =9 e DT e 180) R, el > Ro.

K{l/mD, ql?(;iReol/m,.“,é-iReoN/m’mfllogé-) ’

ed
with uniform convergence in norm in the indicated subset of A.

The elements ¢ € & are of course finite sums ¥ = ) 1 jx(0; — i Imoy) for some nonnegative integers
njx, with 0, oy € T and Imo; < Imoy. Separating real and imaginary parts we may write £ /™ as a
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product of factors
g-njk(lmojflmak)/m

é-inijeak/m

We thus see that we may also organize the series expansion of m,-! g in the theorem as

{U’"D
g—iﬁ/mﬁﬂ(giReal/m’ o é-iReaN/m’ m—l IOg{)
el K= ~ (riReoi/m iReon/m_p;—1] ’
¢l/mp #eGR qs (& yoen € ,m~log¢)

where G C R is the additive semigroup generated by
{Imo —Imo’':0,0/ € X, Imo’ < Ima’}
and py, gy are still polynomials.

Remark 4.16. If ¥ lies on a line Reo = ¢, then —i& C R_ — icp. Also in this case, the coefficients
of the exponents in (4.1) can be assumed to have vanishing imaginary part (see Remark 3.7). Assuming
this, the coefficients of the exponents in (4.7) are real, in particular det «® (¢) is just a polynomial in 1/7,
the coefficients ry in the expansion (4.12) can be written as rational functions of ¢ only. Consequently,
in the expansion of the projection in Theorem 4.13, the powers —i?¥} are real < 0 and the coefficients can
be written as rational functions of log ¢.

5. Asymptotic structure of the resolvent

For the analysis of (Ag — )~/ for I € N sufficiently large we make use of the representation (1.8) of the
resolvent as

(Ag — 1)~ =B + G (M), (5.1)

where B(}) is a parametrix of (Ayi, —A) and

Ga() =[1— BA)(A - VIF5(0)~'T(). (5.2)
The starting point of our analysis is
(Ag — 1) = ﬁaﬁ‘m@ )" foranyleN.

We are thus led to further analyze the asymptotic structure of the pieces involved in the representation
of the resolvent. In [Gil et al. 2010] we described in full generality the behavior of

B(A), 1-BM)(A-A), T@),

and we analyzed Fg (1)~ in the special case that 9 is stationary. In the case of a general domain %, we
now obtain as a consequence of Theorem 4.13 the following result.

Proposition 5.3. For R > 0 large enough we have
Fy()™" € (5 N S") (AR D /D mins Dinax/Dmin).

The components of Fo,(A\)~! have orders vt with v € &, the semigroup defined in (1.6), and their phases
belong to the set M defined in (1.5).
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Here S°(Ag; Dr/D A.min> Pmax/Pmin) denotes the standard space of (anisotropic) operator-valued sym-
bols of order zero on Ag (see the Appendix), where % /% . min carries the trivial group action, and
Dmax/Dmin 1s equipped with the group action k, = 9*11cp9. The symbol class

S5 (AR: D /D min: Drmax/Drmin)
is discussed in the Appendix (see Definition A.7). Recall that Ax = {A € A : |A| > R}.

Proof of Proposition 5.3. We follow the line of reasoning of [Gil et al. 2010, Propositions 5.10 and 5.17].
The crucial point is that we now know from Theorem 4.13 and Proposition 2.17 that F g, ! belongs
to the symbol class

(S NSO (AR; Dp/D A mins B max/D . min)

where the actions on D /D min and DA max/DA min are, respectively, the trivial action as above and
k,. The components of Fj g, (A)~! have orders vt with v € &, and their phases belong to the set 1.
Consequently, ®p(A) = 9_1F/\,@A ! belongs to

(S9N SO (AR Dp/D A min> Prmax/Drmin)

and we have the same statement about the orders and phases of its components.
Phrased in the terminology of the present paper, we proved (see [Gil et al. 2010, Proposition 5.10])
that the operator family

F) =[TA)(A=M)]: Dmax/Dmin — @A/@/\,min
belongs to the symbol class
(S N S (A R: Drmax/Drmins D n /D in)

and that
F(LW) @A) — 1 =R € ST (AR; Dr/Drmins Dn/D A min)

for any ¢ > 0. More precisely, F'(1) is an anisotropic log-polyhomogeneous operator-valued symbol.
We thus can infer further that in fact

_ 1\t
R() €SS (AR Da/Dn mins D/ D min)»

and that the components of R() have orders vt with v € &, v < —1, and phases belonging to the set
M. The usual Neumann series argument then yields the existence of a symbol

Ry € S5 (A RS D /D p mins D/ D i)
such that F(A)®o(1)(1+ R1(1)) =1 for A € Ag. Consequently Fg M)~ =dg() (1 + R (L)) lies in
(85 NSO (AR: DA/Dp mins Dax/Drnin).
and its components have the structure that was claimed. U

With Proposition 5.3 and our results in [Gil et al. 2010, Section 5] at our disposal, we now obtain a
general theorem about the asymptotics of the finite rank contribution Gg (1) in the representation (5.1)
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of the resolvent. Before stating it we recall and rephrase the relevant results from that paper about the
other pieces involved in (5.2) using the terminology of the present paper.
Concerning 7 (1) we have [Gil et al. 2010, Proposition 5.5]:

(i) For any cut-off function w € CZ°([0, 1)) the function 7 (A)(1 — w) is rapidly decreasing on A taking
values in §E(x*’"/2H,f, DA/DA min), and
1) =TMNw e ST (A H>2 D 0 /D p min)-
Here %*~"/? is equipped with the (normalized) dilation group action Ko, and we give D /DA min
again the trivial action.

(i) The family #(A) admits a full asymptotic expansion into anisotropic homogeneous components. In
particular, we have
10 € S5 (AL H T D D ).
The spaces H*~"/? are weighted cone Sobolev spaces on Y”. We discussed them in [Gil et al. 2006,
Section 2] and reviewed the definition in [Gil et al. 2010, Section 4] (see also [Schulze 1991], where
different weight functions as x — oo are considered). Note that %% —"/> = x =/ 2le)(Y N E).
Concerning 1 — B(1)(A — A) Proposition 5.20 of [Gil et al. 2010] gives, for any ¢ € C*°(M; End(E)):

(iii) The operator function P(A) = ¢[1 — B(L)(A — 1)] is a smooth function
AR = L Dmax/Drin, x "2 Hy),
which is defined for R > 0 large enough. Let w € C2°([0, 1)) be an arbitrary cut-off function. Then
(1 — w) P(A) is rapidly decreasing on Ag, and
P =P} € S°(AR; Dinax/Drin, K™ "/2);
here % ~"/2 is equipped with the (normalized) dilation group action ko, and the quotient D max /Dmin
is equipped with the group action i,.
(iv) p(A) is an anisotropic log-polyhomogeneous operator-valued symbol on A g. In particular,
p() =P () € S5 (AR; Dmax/Dmin, H* /%)
With 9% as in (1.5) and € as in (1.6) we have:
Theorem 5.4. Let ¢ € C°°(M; End(E)), and let w, w € C°([0, 1)) be arbitrary cut-off functions. For
R > 0 large enough the operator family Gg (1) is defined on Ag, and
(1 —0)pGa(h), 9Ga(M)(1 —w) € F(Ag, I (x™™2Hy, x ™2 HY)).

Moreover,
v
wpGa (M@ € (S5 " NS (Ags &2, 90712,

where the spaces 55"/ and H">~"/2 are equipped with the group action Kko. In fact, wpGg (L)@ takes
values in the trace class operators, and all statements about symbol estimates and asymptotic expansions
hold in trace class norms. The components have orders v with v € €, v < —m, and their phases belong
to M.
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Corollary 5.5. For R > 0 sufficiently large and ¢ € C°°(M; End(E)), the operator famiiy oGp(A) isa
smooth family of trace class operators in x_’”/zL,% for A € Ag,and Tr(pGp(A)) € (Sé;m) NS™™)(AR).
The components have orders vt with v € &, v < —m, and their phases belong to the set .

Theorem 5.4 and Corollary 5.5 follow at once from the previous results about the pieces involved
in the representation (5.2) for Gg (A1) and the properties of the operator-valued symbol class discussed
in the Appendix. In the statement of Corollary 5.5 the scalar symbol spaces are also anisotropic with
anisotropy m. In particular, this means that Tr(¢Gp (1)) = O(IA]™1) as |A] = oo.

We are now in the position to prove the trace expansion claimed in Theorem 1.4. To this end, we need
the following result [Gil et al. 2010, Theorem 4.4]:

(v) Let ¢ € C*°(M; End(E)). If ml > n, then <p8fle()») is a smooth family of trace class operators
in x~/2L2, and the trace Tr(pd. ' B(1)) is a log-polyhomogeneous symbol on A. For large 1 we
have

n—1 .

Tr(pdl ' B(L) ~ 3 ;A Im=DIm g log (AT 1 (M),

j=0

where

r() € (85 NSy (A,

Now, combining (v) with Corollary 5.5, we finally obtain:

Theorem 5.6. Let A C C be a closed sector. Assume that A € x~" Diff)) (M; E), m > 0, with domain
D C x_’”/zLi satisfies the ray conditions (1.3). Then A is a sector of minimal growth for Ag, and for
ml > n, (Ag — A\) " is an analytic family of trace class operators on Ag for some R > 0. Moreover, for
¢ € C*°(M; End(E)),

Tr(p(Ag — 1)) € (Sy” N8 (Ag).

The components have orders vt with v € €, v < n — Im, where € is the semigroup defined in (1.6), and
their phases belong to the set I defined in (1.5).

More precisely, we have the expansion

n—1
Tr(p(Ag —2)™) ~ 3 a2 "D 4, log(MA™ 4 53(1),
j=0
with constants «; € C independent of the choice of domain %, and a domain dependent remainder
sa () € (S5 N STy (Ag).

If all elements of the set {o € spec,(A) : —m/2 < Imo < m/2} are vertically aligned, then the
coefficients r, in the expansion (1.7) of sg(X) are rational functions of log A only. This is because, in
this case, the series representation of the projection in Theorem 4.13 contains only real powers of ¢ and
rational functions of log ¢; see Remark 4.16. This simplifies the structure of F, g, (A)~!' according to
Section 2, and consequently the structure of Fg (M)~ (see the proof of Proposition 5.3). As recalled in
this section, the terms coming from B(X) and the other pieces in the representation (5.2) of Gg(A) do
not generate phases.

If 9 is stationary, then the expansion (1.7) of sg(A) is even simpler: the r, are just polynomials in
log A, and the numbers v are all integers. To see this recall that if %, is «-invariant, then Fx g, M)~1is
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homogeneous, see (2.3), so it belongs to the class
SO AR D /D nmins Drmax/Dmin) C (Sh NSO (AR: Dp/D nmins D rmax/ D a.min)-

Consequently, by the proof of Proposition 5.3, F5(1)~! is log-polyhomogeneous. This property propa-
gates throughout the rest of the results in this section and gives the structure of sg(X) just asserted.

Appendix: A class of symbols

Let A C C be a closed sector. Let E and E be Hilbert spaces equipped with strongly continuous group
actions k, and &,, 0 > 0, respectively. Recall that the space S"(A; E, E) of anisotropic operator-valued
symbols on the sector A of order v € R is defined as the space of all a € C*° (A, £(E, E )) such that for
all o, B e Ny

%7 b1 850 GO | ) = OUA = F) s [ = o0 i A (A1

[A[1/m ||$(E,E)

By S™(A; E, E) we denote the space of anisotropic homogeneous functions of degree v € R, that is,
all a € C*°(A {0}, £(E, E)) such that

a(@"x) =0"kpa(Mk;"  forg>0and 1 € A {0}. (A.2)

Clearly x (A)S™(A; E, E) C S”(A: E, E) with the obvious meaning of notation, where x € C®(R?) is
any excision function of the origin. When E = E=C equipped with the trivial group action the spaces
are dropped from the notation.

Such symbol classes were introduced by Schulze in his theory of pseudodifferential operators on
manifolds with singularities, see [Schulze 1991]. In particular, classical symbols, that is, symbols that
admit asymptotic expansions into homogeneous components, play an important role and were used in
[Gil et al. 2006] for the construction of a parameter-dependent parametrix of A, — A. As illustrated in
the present paper, for a general domain 9, the structure of (Ag — A)~! is rather involved, and classical
symbols do not suffice to describe it. We are therefore led to introduce a new class of (anisotropic)
operator-valued symbols that admit expansions of a more general kind. As it turns out, this class occurs
naturally and is well adapted to describe the structure of resolvents in the general case.

Remark A.3. The operator-valued symbol classes SV(A; E, E )and S ) (A E, E ), as well as the spaces
SQ(];’ +) (A; E, E) and ng (A; E, E) defined in this Appendix, all depend on the choice of the group actions
on E and E. They also depend on the anisotropy parameter m that appears in (A.1) and (A.2). However,
in order to avoid an overload of notation, we will not emphasize this dependence. In this paper, the
anisotropy m is always the order of the cone operator A under study, and the group actions are explicitly
defined when necessary.

Recall that V[z1, ..., zy] denotes the space of polynomials in the variables z;, j =1..., M, with
coefficients in V for any vector space V. We shall make use of this in particular for V = C and
V = SO(A; E, E). In what follows, all holomorphic powers and logarithms on A are defined using
a holomorphic branch of the logarithm with cut I' & A.

Definition A.4. Let v € R. We define S;{ +)(A; E.E ) as the space of all £(E, E )-valued functions s(1)
of the following form:
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There exist polynomials p € SOA; E, E)[zl, ...,zn+1]and g € Clzy, ..., zy+1] in N 41 variables,

N = N(s) € Ny, and real numbers py = ug(s), k=1, ..., N, such that the following holds:

(@) |gAHr, ..o AN log A)| > ¢ > 0 for A € A with || sufficiently large;
(b) s(A) =r(M)A"/™, where . ‘
pAL AN (Tog )
A) = - - .

r) = Oum AN Tog 1)

To clarify the notation, we note that
P N Togh) = Y ag (WAL ATRNeN [ogk )
lee|+hk<M

(A5)

as a function A \ {0} —> £(E, E) with certain aq x (A) € SO E, E). We call the py the phases and

vT the order of s(A).

Every s(A) € Se% R (A; E, E) is an operator function defined everywhere on A except at A = 0 and the
zero set of g(A'#1, ..., AN log ). The latter is a discrete subset of A ~ {0}, and it is finite outside any

neighborhood of zero in view of (a).

Proposition A.6. (1) 59(7: +)(A; E,E ) is a vector space.

(2) Let E be a third Hilbert space with group action Ky, 0 > 0. Composition of operator functions

induces a map
SUO (A B, By x SV (A E, By — S (ALEL B),
(3) Fora, B € Ng we have
820l : SOV (AL E, E) — S{ "D (A EL E).
@) Let s0) € S (A; E, E). Then
Xx(Ws() € ™AL E, EB),

for any & > 0 and any excision function x € C®(R?) of the set where s()) is undefined.

(5) Let s(A) € Sé;ﬁ)(A; E, E) and assume that

_ v/m—e
N =0(|A"")

| ims Qkpgim | g )

as |A| — oo for some € > 0. Then s(A) =0 on A.
In particular, Sg(,ﬁ)(A; E,E)N Sg(];’;)(A; E, E) = {0} whenever v| # v;.

Proof. (1) and (2) are obvious. For (3) note that
0597 : SU(A; E, E) — S0P (A B E),

for any vg. Consequently, 05" 8/-’\3 acts in the spaces

SO (A E, E)A, L AN Jog A — ST BN (A EL BN, LAY Tog A,

([:[)LW' . )LWN, logA] — S(_ma_mﬁ)(A)[kiM] e )LWN’ log A],
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with the obvious meaning of notation (the latter is a special case of the former in view of C C S O(A)).
Statement (3) is an immediate consequence of these observations.

Statement (4) follows at once in view of property (a) in Definition A.4 (and using (3) to estimate
higher derivatives). Note also that, for large A, the numerator in (A.5) can be regarded as a polynomial
in log A of operator-valued symbols of order zero.

In the proof of (5) we may without loss of generality assume that v =0, so s(A) is of the form (A.5).
Since |g(AI#, ..., AN logA)| = @(logM [A]) as |A| = oo we see that it is sufficient to consider the case
g=1,50s(1) = p*, ..., A" log ). For this case we will prove that if

~—1
||K|)L|l/ms()\’)KM|l/m ||$(E,E) —0

as |A| = oo, then s(X) = 0 on A. For this proof we can without loss of generality further assume that

s(X) contains no logarithmic terms, so we have s(1) = p(A/*1, ..., A/*¥). Moreover, we can assume that
the numbers i1, ..., uny € R are independent over the rationals, for if this is not the case we can choose
rationally independent numbers jip, ..., fix € R such that yu; = Zle Zjk ik with coefficients zj; € Z,
and so

K
A = 1_[ (kiﬁk)zjk
k=1

for every j = 1,..., N. Consequently, there are numbers N; € N, j =1,..., K, and a polynomial
peSOA; E,E)lzi, ..., zk] such that
AN .)\iﬂKNKp()\’ilM’ o )\il/LN) — ﬁ(kiﬂl’ o }\’iﬂK)’

and both assertion and assumption are valid for p if and only if they hold for p. So we can indeed assume
that the numbers w;, j =1, ..., N, are independent over the rationals.
Now let Ag € A be arbitrary with |Ag| = 1, and consider the function f : (0, co) - £(FE, E ) defined by

fo) = ;Zglp(gim“‘kgul, e Qim“”)»f)””)/cg.

This function is of the form

fl@)= Y ay@")™ (o)™

la|<M

for certain a, € £(E, E), and by assumption ||f(Q)||$(E,E) — 0 as o — o0o. Let po(z) = > ayz® for

z=1(z1,...,zy) € CV, and consider the curve lel=M

o (@M, ..., 0")eS" x...xS!

on the N-torus. The image of this curve for o > g¢ is a dense subset of the N-torus, where gy > 0 can
be chosen arbitrarily, because the ; are independent over the rationals. The function f is merely the
operator polynomial pg(z) restricted to that curve. Since f (o) — 0 as o — oo, this implies that for any
& > 0 we have || po(2)] < € for all z in a dense subset of the N-torus. This shows that py(z) is the zero
polynomial, and so the function f (o) =0 for all o > 0.

Consequently, the function p(A/#1, ..., A¥¥) vanishes along the ray through Ao, and because Ay was
arbitrary the proof is complete. O
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Definition A.7. For v € R define S;: (A E, E ) as the space of all operator-valued symbols a()) that

admit an asymptotic expansion -
a(d) ~ > xj)s;Q), (A.8)

j=0

+ ~
where s;(1) € S;:")(A; E,E),v=vy>v >--- and v; — —o0 as j — o0, and x;(A) is a suitable
excision function of the set where s;(A) is undefined.

We call 5;(A) the component of order v;.“ of a(A). The components are uniquely determined by the

symbol a(A) (see Proposition A.9).

Familiar symbol classes like classical (polyhomogeneous) symbols, symbols that admit asymptotic
expansions into homogeneous components of complex degrees, or log-polyhomogeneous symbols are
all particular cases of the class defined in Definition A.7. In particular, the denominators ¢ in (A.5) are
equal to one in all those cases.

Of particular interest in the context of this paper are symbols @ (A) with the property that all components
s5j(A) have orders v}L with v; € &, the semigroup defined in (1.6), and phases in the set 91 defined in (1.5).

Proposition A.9. (1) S;{ (A E, E ) is a vector space. For any ¢ > 0 we have the inclusion
Sy(AE,E) C $"Y (A E, E).

(2) Leta()) € Sg: (A E, E). The components s;(1) in (A.8) are uniquely determined by a(}.).
(3) Let E be a third Hilbert space with group action kKo, 0 > 0. Composition of operator functions
induces a map
A B BYx §% (A E. B R RIS LA
w (A E,E) xS (AE,E)— Sy (A EVE).
The components of the composition of two symbols are obtained by formally multiplying the asymp-
totic expansions (A.8) of the factors.

(4) Fora, B € Ny we have
0090 : S5 (A E,E) — 85" " (A E, B,

If (1) are the components of a(\) € Sy (A E, E), the components of 3302 (1) are 9205 (3.
+

(5) Let aj(A) € S;{ (A E, E), where v; — —00 as j — 00, and let vV = maxv;. Let a(A) be an
operator-valued symbol such that a(\) ~ Z?io aj(r).
Then a()\) € S£}7_)z+ (A E, E), and the component of a(\) of order M is obtained by adding the
components of that order of the aj(\). This is a finite sum for each M < v and will yield a nontrivial
result for at most countably many values of M that form a sequence tending to —oo.

Proof. Everything follows from Proposition A.6 and standard arguments. Because of its importance we

will, however, prove (2):
O

To this end, assume that 0 ~ Z?io xj(A)sj(A) with s;(A) € S5’
J — 00. We need to prove that all s;(A) are zero. Because

(A E,E), vj > vy — —00 as

XoWso0) ~ — 3 x; (W5 (1),
j=1
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we see that xo(A)so(A) € SV T¢(A; E, E) for every ¢ > 0. Choose ¢ > 0 such that v; + & < vg. Then

”K‘;'l”’" X0(A)so (K iim “sf(E,E) = O(|r| V1 Fe/my

as [A| — oo, and by Proposition A.6(5) we obtain that so(A) = 0 on A. Consequently all s; (1) are zero
by induction, and (2) is proved. U

By Sgghol(A; E, E) we denote the class of symbols a()) € S;}: (A; E, E) that are holomorphic in A.
Let s () be the components of a(X) € Sgghol(A; E,E ). By Proposition A.9, d;5; (1) are the components
of 9;a(A) =0, and consequently all components s; (1) are holomorphic.

In the case of holomorphic scalar symbols (or, more generally, holomorphic operator-valued symbols
with trivial group actions), we can improve the description of the components as follows.

Proposition A.10. Let a(A) € S&;hol(A), a(A) ~ Z;’io xj(A)s (L) with components s ; (L) of order vf.
For every j € Ny there exist polynomials pj, q; € Clzi, ..., 2y;+1] in N; + 1 variables with constant
coefficients, N € Ny, and real numbers jji, k =1, ..., N, such that the following holds:

(@ |g;(AHt, ., AN Jog A)| > cj > 0 for A € A with |A| sufficiently large;
(b) s;(X) =r;(AH1, ..., AN log M)AYi/™ wherer; = pi/q;-.
Proof. We already know that the components s;(A) are holomorphic. We just need to show that in this

case the numerator polynomials p in Definition A.4 can be chosen to have constant coefficients rather
than homogeneous coefficient functions. This, however, follows from Lemma A.11 below. O

Lemma A.11. Let fi(X), ..., fu(X) be holomorphic functions on A ~\ {0}, and let p be an element
of SO(A)z1,...,zu). Assume that the function p(fi(}), ..., fu(X)) is holomorphic on /O\, except
possibly on a discrete set.

Then there is a polynomial py € Clz1, ..., zm] with constant coefficients such that

pLAR), o fu) = po(fi(D), ..., fu(R))
as functions on A ~ {0}.

Proof. Since all singularities are removable, we know that p(f;(}), ..., fm (1)) is holomorphic every-
where on A. We have

p(fi), .o fu@) = 3 ag/IAD L) -+ far (W)™

le|<D
Let Ao € A. Define

PoGie - am) = Y aa(ho/IroDzS" -2
lal<D

Then clearly
p(fi), ..o, fuR) = po(f1(A), ..., fu (M)

on the ray through Ag. By uniqueness of analytic continuation this equality necessarily holds everywhere
on A, and by continuity then also on A \ {0}. O
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THREE-TERM COMMUTATOR ESTIMATES AND THE REGULARITY
OF %-HARMONIC MAPS INTO SPHERES

FRANCESCA DA L10 AND TRISTAN RIVIERE

We prove the regularity of weak %-harmonic maps from the real line into a sphere. A key step is the
formulation of the %-harmonic map equation in the form of a nonlocal linear Schrodinger type equation
with three-term commutators on the right-hand side. We then establish a sharp estimate for these three-
term commutators.
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1. Introduction

Starting in the early 1950s, the analysis of critical points of conformal invariant lagrangians has attracted
much interest, due to their importance in physics and geometry. (See the introduction of [Riviere 2008]
for an overview.) We recall some classical examples of such operators and their associated variational
problems:

The most elementary example of a two-dimensional conformal invariant lagrangian is the Dirichlet
energy

Ew) = / Vute, )P dx dy, ()
D

where D C R? is an open set and Vu is the gradient of u : D — R. We recall that a map ¢ : C — C is
conformal if it satisfies

‘g_f(:(g_f <§—ﬁ3—‘ﬁ)=0 det Ve =0, Vo £0, 2)

where (-, -) denotes the standard Euclidean inner product in R”.

MSC2000: 58E20, 35B65, 35J20, 35J60, 35599.
Keywords: harmonic map, nonlinear elliptic PDE, regularity of solutions, commutator estimates.
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For every u € W12(D, R) and every conformal map ¢ with deg$ = 1, we have

E(u):E(uo¢)=/_ ‘(Voqﬁ)u(x,y)‘zdxdy.

¢~ 1(D)

The critical points of this functional are the harmonic functions satisfying
Au=0 inD. 3)

We can extend E to maps taking values in R” by setting

m
E(u)=/ ‘Vu(x,y)|2dxdy= > ‘Vu,-(x,y)‘zdxdy, 4
D D =1
where the u; are the components of u. The lagrangian (4) is still conformally invariant and each com-
ponent of its critical points satisfies (3).

We can define the lagrangian (4) also on the set of maps taking values in a compact submanifold
N € R™ without boundary. We have

—Au L T,N,

where T, N is the tangent plane to N at the point # € N'; equivalently, we can write
—Au=AWw)(Vu,Vu) := A(u)(0xu, dxu) + A(u)(0yu, dyu), (5)

where A(u) is the second fundamental form at a point u € N'; see [Hélein 2002], for instance. Equation (5)
is called the harmonic map equation into N.
When N is an oriented hypersurface of R™ the harmonic map equation reads as

—Au =n{Vn,Vu), (6)

where 7 denotes the composition of # with the unit normal vector field v to N.
All these examples belong to the class of conformal invariant coercive lagrangians whose correspond-
ing Euler-Lagrange equation is of the form

—Au = f(u.Vu), (7)
where f :R? x (R ® R?) — R™ is a continuous function satisfying

CHp? =IfE pI=Clp)* forallg, p,

for some positive constant C. One of the main issues concerning equations of the form (7) is the regularity
of solutions u € WI’Z(D,N ). We observe that (7) is critical in dimension # = 2 for the W !*2-norm.
Indeed, if we plug into the nonlinearity f(u,Vu) the information that u € W12(D, N'), we obtain Au €
L'(D), so Vu belongs to leo’coo (D), the weak L? space [Stein 1970], which has the same homogeneity
of L?. Hence we are back in some sense to the initial situation. This shows that the equation is critical.

In general, W !-2 solutions to (7) are not smooth in dimensions greater than 2; for a counterexample,
see [Riviere 2007]. For an exposition of regularity and compactness results for such equations, we refer
the reader to [Giaquinta 1983].
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We next recall the approach introduced by F. Hélein [2002] to prove the regularity of harmonic maps
from a domain D of R? into the unit sphere S™~! of R™. In this case the Euler—Lagrange equation is

—Au = u|Vul?. 8)

Shatah [1988] observed in that u € WI’Z(D, S ’"—1) is a solution of (8) if and only if the conservation
law

div(u;Vuj —ujVu;) =0 foralli,je{l,...,m} 9)
holds. Using (9) and the fact that Z;n=1 ujVuj =0 when |u| = 1, Hélein rewrote (8) in the form
—Au=V+tB-vu, (10)

where V4 B = (VJ-B,-]-) with VJ-B,-J- =u;Vuj—ujVu; (for every vector field v : R? — R", V1y denotes
the 77/2 rotation of the gradient Vv, namely V+v = (—0yv, dxv)).
The right-hand side of (10) can be written as a sum of Jacobians:

VJ'BUVMJ' = 0xuj0y Bij —0yujoxBij.
This particular structure allows us to apply to (8) the following result:

Theorem 1.1 [Wente 1969]. Let D be a smooth bounded domain of R2. Let a and b be measurable
functions in D whose gradients are in L>(D). Then there exists a unique solution ¢ € W12(D) to

A da db  da db D

—Ap=————— inD,

Y= ax dy 0dyox (11)
¢ = on dD.

There exists a constant C > 0 independent of a and b such that
[@lleo + IVellL2 = ClIValL2|VD] L2

In particular ¢ is continuous in D.

Theorem 1.1 applied to (10) leads, via a standard localization argument in elliptic PDEs, to the estimate

IVull 2B, (xo)) = C IIVBllL2(B, (xo)) VUl L2(B, (xo)) T CF VUl L2(3B, (x0)) (12)

for every xo € D and r > 0 such that B,(x¢) C D. Assume we are considering radii r < ry such that
maxx,ep C VBl L2(B, (xy) < % Then (12) implies a Morrey estimate

sup r_ﬂ/ |Vu|? dx < oo (13)
X0,7>0 By (x0)

for some 8 > 0, which itself implies the Holder continuity of u# by a standard embedding result [Giaquinta
1983]. Finally a bootstrap argument implies that u is in fact C*°, and even analytic: see [Hildebrandt
and Widman 1975; Morrey 1966].

In the present work we are interested in one-dimensional quadratic lagrangians invariant under the
trace of conformal maps that keep invariant the half-space [R{i: the Mobius group.
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A typical example, which we will call the L-energy (L for “line”), is the lagrangian
L(u) :/ |A4u(x)| dx, (14)
R

where u is a map from R into a k-dimensional submanifold ' of R” which is at least C2, compact and

without boundary. In fact L (u) coincides with ||u ||i.l 12 (for the definition of the seminorm [|-| ;1,2 ®

see Section 2). A more tractable way to look at this norm is given by the identity

/ |AY*u(x)|? dx = inf{/2 |Vil|? dx : it € WH2(R?, R™) with trace il = u} )
R R2

The Lagrangian L extends to map « in the function space
HY2R,N)={ue H/2(R,R") : u(x) € N ae.}.
The operator A'/* on R is defined by means of the Fourier transform (denoted by ") as
Aty = |g|'" 20,

Denote by 7y the orthogonal projection onto N, which happens to be a C! map in a sufficiently small
neighborhood of N if N is assumed to be C [+1 We now introduce the notion of %—harmonic map into
a manifold.

Definition 1.2. A map u € H'/2(R, N) is called a weak 1-harmonic map into N if
d .
S Lt 19),_y =0 forany g e H'2(R,R™) N L®(R, R™).

In short, a weak %—harmonic map is a critical point of L in HY 2(R, N) for perturbations in the target.

We encounter %—harmonic maps into the circle S, for instance, in the asymptotic of equations in
phase-field theory for fractional reaction-diffusion such as

AN u+u(l—|urH)=0
where u is a complex-valued wavefunction.

In this paper we consider the case N = S™~1. We first write (deferring the proof till Theorem 5.2)
the Buler—Lagrange equation associated to L in H'/2(R, §™1):

Proposition 1.3. Let T be the operator defined by
T(Q.u):= A*(QA*u) — QA ?u + A*uA"*Q, (15)

for O € HY2(®R", Myx,y(R)) [ > 1 and u € HY2(R",R™). (Here n and | are natural numbers and
Mjs;n (R) denotes the space of | x m real matrices.)
A map u in HI/Z(R, S™=1y is a weak %—harmonic map if and only if it satisfies the Euler—Lagrange
equation
A4 A A*u) =T A, u). (16)
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The Euler-Lagrange equation (16) will often be completed by the following “structure equation”,
which is a consequence of the fact that # € S™~! almost everywhere:

Proposition 1.4. Let S be the operator given by
S(0,u) = AV*(QAY*u) —R(OVu) + R(AV*QRAY*u) 17)

for O € HY2(R", Myxp(R)) and u € H'/2(R", R™), where n and [ are natural numbers and R is the
Fourier multiplier of symbol m(&) = i&/|£|.
All maps in HY2(R, S™=1) satisfy

A4 (u- AV*u) = S(u-, u) — RAY*u - RAY*u). (18)

We will first show that H'/2 solutions to the %-harmonic map equation (16) are Holder continuous.
This regularity result will be a direct consequence of a Morrey-type estimate we will establish:

sup r_ﬁ/ |A”4u}2 dx < oo. (19)
Xp€ER By (x0)
r>0

For this purpose, in the spirit of what we have just presented regarding Hélein’s proof of the regularity
of harmonic maps from a two-dimensional domain into a round sphere, we will take advantage of a
“regularity gain” in the right-hand sides of (16) and (18), where the different terms T (uA, u), S(u -, u)
and R(AY4u - RAY*u) play more or less the role played by VLB - Vu in (10). More precisely, we will
establish, for every u € H'/2(R,R™) and O € H'2(R, Mjx,, (R)), the estimates

”T(Q’ u)”[—'[—l/Z(R) =C ” Q”Hl/Z(R) ”u”Hl/Z(Ry (20)
SO, u)||H_1/2(R) =C| Q||H1/2(R) ”u”HVZ(IR)’ (21)
H%(Al/w CRAV ) HH—1/2([R) <C ||u||2.{1/2(R). (22)

The phrase “regularity gain” is illustrated by the fact that, for such # and Q, the individual terms in T

and S (such as AY4(QAY*u) or QAY2u) are not in H~'/2, but the special linear combinations of them

constituting 7 and S do lie in H~/2. In a similar way, in two dimensions, J(a,b) := g—i% — dadb

dy 0x

satisfies
[J(a, D)l -1 = C llall g 151 g1 (23)
as a direct consequence of Wente’s result (Theorem 1.1), whereas the individual terms g—z% and g—;g—z

are not in H~ 1.

The estimates (20) and (21) are in fact consequences of the three-term commutator estimates in the
next two theorems, which are valid in arbitrary dimension and which are two of the main results of
this paper. We recall that BMO denotes the space of bounded mean oscillations functions of John and
Nirenberg (see for instance [Grafakos 2009])

1
4“0~ 1B, (o)l /“(” dy‘ .

lullpo@ry = sup ————
") Xo€ER” |Br(X0)| B (x0)
r>0
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Theorem 1.5. Forn € N*, u € BMO(R"), and Q € H'/2(R", M;xm(R)), set

T(Q.,u) := AV*(OAY*u) — OAV*u + AV*uAN"*Q,
Then T(Q,u) € H™'/2(R") and there exists C > 0, depending only on n, such that

IT(Q. W)l g=172@ny = C 1Ol g2yt Br0@RA) - (24)
Theorem 1.6. For n € N*, u € BMO(R"), and QO € HY2(R", M} (R)), set

S(Q.,u) := AV OA*u] — R(OQVu) + R(AV*QRA*u),

where R is the Fourier multiplier of symbol m(£) = i&/|€|. Then S(Q,u) € H™'/2(R") and there exists
C depending only on n such that

IS(Q. )l 172y = C 1 Q1 gr1/2gmy lull MO @R - (25)

The estimates (20) and (21) follow from Theorems 1.5 and 1.6 as a consequence of the embedding
H'Y2(R) — BMO(R).

The parallel between the structures 7' and S for H'/2 in one hand and the Jacobian structure J for
H'! in the other can be pushed further as follows. As a consequence of a result of R. Coifman, P. L.
Lions, Y. Meyer and S. Semmes [Coifman et al. 1993], the Wente estimate (23) can be deduced from a
more general one. Set, for any i, j € {1,...,n} and a,b € H'(R"),

da 0b  0da 3b

and form the matrix J(a,b) := (J;j(a,b))ij=1

.....

17 D)l -1 ory = € el 1 oy 1B snsocen) - (26)

which is reminiscent of (24) and (25). Recall also that (26) is a consequence of a commutator estimate
by Coifman, R. Rochberg and G. Weiss [Coifman et al. 1976].

Theorems 1.5 and 1.6 will follow respectively Theorems 1.7 and (27) below, which are their “dual
versions”. Recall first that %! (R") denotes the Hardy space of L! functions f on R”satisfying

/ sup |¢r * f|(x) dx < oo,

R™ teR

where ¢(x) := t™" ¢(t~'x) and where ¢ is some function in the Schwartz space #(R") satisfying
fR" ¢ (x) dx = 1. Recall the famous result by Fefferman saying that the dual space to %! is BMO.

Theorem 1.7. For u, Q € HY/2(R"), set
R(Q,u) = AV (QA u) — AV2(Qu) + A*((AV* Q)u).
Then R(Q,u) € %' (R") and

”R(Qv u)||%1(R”) = C” Q”HI/Z(Rn)”u”Hl/Z(Rn)- (27)
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Theorem 1.8. For u, O € HY/2(R") and u € BUO(R"), set
S(0.,u) = AV*(QOA*u) — V(ORu) + RAV*(AV* QRu),
where R is the Fourier multiplier of symbol m(€) = i&/|€|. Then S(Q,u) € %' and

1S(Q.t)llser = NN gri2 g 14l 172 gny- (28)

We say a few words on the proof of the estimates (27) and (28). The compensations of the three dif-
ferent terms in R(Q, u) will be clear from the Littlewood—Paley decomposition of the different products
that we present in Section 3. As usual, we denote by I1;(f, g) the high-low contribution (respectively
from f and g), by I1,( f, g) the low-high contribution, and by IT5( f, g) the high-high contribution. We
also use the notation Iy (A%(fg)), fork =1,2,3 and @ = %, % as an alternative for A% (I (f, g)).

We will use the following decompositions for the operators I1; (R(Q, u)):

1 (R(Q. u)) = I (AV*(QA*u)) + 11 (= A2(Qu) + AV*((A"* Q)u)),

M2(R(Q, u)) = T (AV*(QA*u) — AV2(Qu)) + T (A ((A* Q)u)),

13(R(Q. u)) = I3 (AY*(QA u)) — 5 (AV2(Qu)) + I3 (A*((A* Q)u)) .

Finally, injecting the Morrey estimate (19) in equations (16) and (18), a classical elliptic-type bootstrap
argument leads to the following result (see [Lio and Riviere 2010] for details).

Theorem 1.9. Any weak %—harmonic map in H'/2(R, S™=1) belongs to H} (R, S™=1) for every s € R,
and is therefore C°.

The paper is organized as follows. After a section with preliminary definitions and notation, we prove
in Section 3 we prove the three-term commutator estimates (Theorems 1.5 and 1.6).

In Section 4 we prove some L-energy decrease control estimates on dyadic annuli for general solutions
to certain linear nonlocal systems of equations, which include (16) and (18).

In Section 5 we derive the Euler-Lagrange equation (16) associated to the lagrangian (14); this is
Proposition 1.3. We then prove Proposition 1.4. We finally use the results of the previous section to
deduce the Morrey-type estimate (19) for %—harmonic maps into a sphere.

In the Appendix we study geometric localization properties of the H'/2-norm on the real line for
H'/2_functions in general and we prove some preliminary results.

2. Definitions and notation

For n > 1, let ¥(R") and ¥'(R") denote respectively the spaces of Schwartz functions and tempered
distributions. Given a function v we will denote either by ¥ or by F[v] the Fourier Transform of v:

8(8) = Fo)(&) = /R u()e N

Throughout the paper we use the convention that x, y denote space variables and &, { phase variables.
We recall the definition of fractional Sobolev spaces. For some of the material on the next page, see
[Tartar 2007], for instance.
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Definition 2.1. For s real,

{ve L*(R") : |£*F[v] € L?(R")} if s >0,
{ve P R"): (1+|E]2)2Fv] € L2 R")} ifs <O.
It is known that H—5(R") is the dual of H*(R").

HS(R") = {

For 0 < s < 1, we mention an alternative characterization of H*(R"), which does not use the Fourier
transform.

Lemma 2.2. For 0 <s < 1, the condition u € H*(R") is equivalent to u € L>(R") and

. 1/2
( [ u()? dy) .
n R}’l

|x — y|"+2s

For s > 0 we set
leell s ey = lluell 2y + NEFFON L2y and (el s gny = 11EFF0N L2 @y
For an open set 2 C R”, H%(R2) is the space of the restrictions of functions from H*(R"), and
||u||HS(Q) = inf {||U||HS(R,1) :U =u on Q}.
If0 <s <1,then f € H*(Q) if and only if / € L?(Q) and

_ 1/2
(] [ u)? )" <
QJQ

|x — |2

N ((x) — u(y))> 1/2
IIuIIHs(sz)—(fQ e T B

Finally, for a submanifold N of R, we can define

Moreover,

H*(R,N)={ue H*(R,R™) : u(x) € N a.e.}.

We introduce the so-called Littlewood—Paley or dyadic decomposition of unity. Let ¢ (£) be a radial
Schwartz function supported on {£ : |§] < 2} and equal to 1 on {£: |&] < 1}. Let ¥ (£) be the function
Y (&) = (&) — P (2£); thus ¢ is a bump function supported on the annulus {£ : % <|&| =2}

We put o = ¢, ¥j(§) = y(277/§) for j # 0. The functions v;, for j € Z, are supported on
{£:2/71 <|§| < 27*1}. Moreover )i ¥ (x) = 1.

We then set ¢ (§) := Z/{:—oo Y (§). The function ¢; is supported on {&, |£] < 2/t

We recall the definition of the homogeneous Besov spaces Bls,’q (R™) and homogeneous Triebel—

Lizorkin spaces F »q(R") in terms of the dyadic decomposition.
Definition 2.3. Let s € R, 0 < p, g < oo. For f € ¥'(R"), set
S jsq g1 e Va
(X 205 W Wpgn)  ifa<oo

[/ gs @ny =1 “i=—oc0 (29)
B4 (R N _ ,
supjez 2/° |1 [V FL M e ey if ¢ = oo.
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The homogeneous Besov space with indices s, p, ¢, denoted by Bls,,q (R™), is the space of all tempered
distributions f for which || f|| 5s s 1S finite.
Bp.q(R")
Lets €R, 0 < p,q < oo. Again for /' € ¥'(R"), set

Ly’

1 g oy = H( 0210 2754 \@_l[lﬂj@[f]”q)l/q‘

j=

The homogeneous Triebel-Lizorkin space with indices s, p, q, denoted by F 5.q(R"), is the space of all
tempered distributions f* for which || /|| z ®") is finite.
P.q

It is known that H°(R") = BS ,(R") = F3 ,(R").
Finally we denote by %! (R") the homogeneous Hardy space in R”. It is known that %! (R") ~ F g B
thus we have

1/2
I sy =~ [ (S5 w3LIF)

We recall that in dimension n = 1, the space H'2(R) is continuously embedded in the Besov space
Bgo’w([R{). More precisely we have

H'?(R) — BMO(R) = BY, (R); (30)

see, for instance, [Runst and Sickel 1996, p. 31] or [Triebel 1983, p. 129].
The s-fractional Laplacian of a function u : R” — R is defined as a pseudodifferential operator of
symbol |£]%S:

ASu() = & a(®). (31)
It can also be defined as
Au(x) = pv u(y) = y(x)

: R |x_y|n+2s ’

where p.v. denotes the Cauchy principal value. .

n
In the case s = £, we can write A'/2y = —R(Vu) where % is Fourier multiplier of symbol L > &

o &1 =1

X E) = Y 16X
k=1

for every X : R" — R”; thus & = A~/ 2div.

We denote by B, () the ball of radius r and center x. If X = 0 we simply write B,. If x, y € R”",
X - y denote the scalar product between x, y.

For every function f : R” — R we denote by M ( f) the maximal function of f, namely

M(f) = sup |B(x.r)|”" /B oy (32)

r>0
xX€ER"
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3. Three-term commutator estimates: proof of Theorems 1.5 and 1.6

We consider the dyadic decomposition introduced in Section 2. For every j € Z and f € ¥'(R") we
define the Littlewood—Paley projection operators P; and P<; by

Pif=vjf. P<jf=¢if.
Informally, P; is a frequency projection to the annulus {2771 < |&| < 2/}, while P<; is a frequency

projection to the ball {|£]| < 2/}. We will set Jj = Pj f and fI= P<;f.
We observe that f/ = Zli:—oo frand [ = Zk——oo fx» where the convergence is in ¥ (R").

Given f, g € ¥'(R) we can split the product fg as

fe=T1(f g)+12(f. g) +13(f. 2), (33)
where
] too ., oo Jz# i +o00 a4 too j+4
O (f,e)=2 fig! =212 ek a(fr9)=2"gi f7™ ZJ‘J Z4gk, O3(f.g)=) f; Z4gk
—00 —00 —00 —00 —00 j+ —00 J

This is an example of decomposition into paraproducts (see [Grafakos 2009], for example). Informally,
the first paraproduct IT; is an operator that allows high frequencies of f (~ 2/) multiplied by low
frequencies of g (< 2/) to produce high frequencies in the output; IT, multiplies low frequencies of f
with high frequencies of g to produce high frequencies in the output; and IT3 multiplies high frequencies
of f with high frequencies of g to produce comparable or lower frequencies in the output.

For every j, we have

j+3 .
S frek]ctlel <27t

suppJP[fJ —4 ]C{2J 2<|§|<2/+2} and suppg?[
k=j—3

Lemma 3.1. For every f € ¥ we have sup | f7| < M(f).
jezZ
Proof. We have

fl=g N gyle f =2 / IO =) S0 dy = [ 5N (=272 d:

Z/ [0](z) f(x =277 2) dz

k=—00 21»\B2k 1
< max z x—2"72)dz
_Z S e[ )
k__
< max  2K|F 1 [p)(2)|2 [ F()|ds
Z Byi\Byk—1 B(x,25—)\ B(x,2k~1=J)

< M(f) Z L max 245N g)(2) = CM(S).
k=—

2k 2k—1
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In the last inequality we use the fact that F~1[¢] is in $(R"), and thus
+00

>, mx gl =2 [ 157 el de < oo, .

k=—00 2k \sz—l

Proof of Theorem 1.7. We need to estimate I (R(Q, u)), [1,(R(Q, u)) and TT15(R(Q, u)). Consistently
with our earlier convention, we write, for example, IT;(A#(QA*u)) to mean

AVAIL(Q. A M) = ) AVHQ (AT TH).
j=—00

* Estimate of |IT;(A"4(QAY*u)) ”%1. This expression equals
o . . 1/2 . 2
/n(. > 2 sz-(Al/4uf—4)2) dx < /R" sup; |A1/4u1—4|(zj 2J QJZ) dx

e , 1/2 1/2
1/4 2702
< ( RH(M(A u)) dx) (/R 2.2 0; dx)

= C||u||1.'11/2||Q||H1/2~ (34)

e Estimate of IT; (A"*(A"*Qu) — A'?(Qu)). We show that this term lies in B? , (3 — B? - To
this purpose we use the “commutator structure” of the term above:

112 (A 0y — A2 Qu) | gy

=Sy = ), 2 B (AT = A Q) d
00,00 n ] t_j 53

= SUDjIA] 4 SI/R Zl XE Flul ~FAQ; ARy, — Q; AVhy) dE
0,00 n ] t—j 53

=swppy,, < XX FWTE)

R™ j |r—j|=<3
([, oot e -0 - s -5 dg ) de. 9

Note that in (35) we have |£] <2/73 and 2/72 < |¢| < 2/%2. Thus |£/¢] < %, allowing us to write

3 1 I\~ Jips !
)= b= = )

||§|5—|§—§|5|=|;|5(1_‘1_§

for appropriate coefficients ¢;. Thus the expression on the last two lines of (35) equals

. s I
swp [ 2 % e ( [ kIaooms e -0 3 5 (5) " ) e
=0

14l 5o, SR T 1= T3 (36)
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Next, for k € Z and g € &/, we set
Skg =7 (g Vg T

We note that if /1 € Bgooo then Sy h € Bg;fééHk and if 1 € H® then Sih € HS T/ 24k,
Finally, if 0 € H'/2 then V¥+1(Q) e H~+~1/2,
It follows that (36) is bounded above by

c s Sy oy @ GOV I FS;0; A h)|E) dE

Wil go _=<tj= M JRn T 1 Tsa

<C sl /sz/zw”luf 15101 dx
Vil g <1 St

o
SCZ T Z|2 (l+1/2)]vl+1uj 4||2(l+1)jSlQ |dx
=0

° 1/2 1/2
Cl _ ; . .
<C § F( y Zz 2(l+1/2)j|vl+1uj 4|2 dX) ( N 222(l+1)I|SIQj|2 dx) '
1=0

J

By Plancherel’s theorem, this equals

oo 1/2
Y ([, mrrer e iepigma st) ( [, m 2 0, )Ras
- 3/ j j—4712 12 j 2

- —J |9 J— J |9 .
<cZ “, (/W]zz iP5 ) (/anzz 510,114

€l y—31
fCZﬂz 121712 llull 12
=0

1/2

where we have used the fact that for every vector field X we have

[ Z 27 (X772 dx —/ ZXle 277 dx </ Z 27 (X)dx.  (37)
R7 Rn

j=—00 j—4=>k Jj=—00
4>l

* Estimate of HHZ(A'/“(A'/“QM))H%I: as in (34).
» Estimate of |1 (AY4(QAY*u) — AV2(Qu)) | B : analogous to (35).

¢ Estimate of H I13(AY?(Qu)) H%l We show that thlS lies in the smaller space B 11 (we always have

B L= %€1). We first observe that if 4 € B oo then AV2h € B_ and
] j+6 j+6
APRIHS = 3" Ay <sup 27FA Iy Y 2K < C2 g (38)
keN e

k=—o00 k=—o0
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Thus

I (AY2(Qu) | go =suppay .o <1 | > X AY(Qjui)h
= Boo.co™ R 1k—j<3

=SSP, <t [ 2 X AV2(Qjug)[h T dx
0.0 R™ j |k—jl<3

=SSP, <t [ 2 X (Qjui)[A>h/ 8] dx
Soc0™ Jan T kSl

. Jo.
< CSUP||h||Bgom§1 171 5o, » ;lk_%<32 |Qjuy|dx

1/2

BN |
SC(R szQ}dx) (R zzfu}dx) <101 yualull oy
n n

161

(39)

e Estimate of T15(AY4(QAY*u)). To show that this is in B? |, we observe that if / € Bgo,oo then

1,10
AV*h e B;,{éi, and by arguing as in (38) we get

AR, || oo < 2]'/2||h||]_z';((>)0C>o

Thus

[T (A0, A u)) | go =supyay,, <1 | X X AVHQ A up)h
b Boo.co™ JRM j |k—j|<3

=swppa,, <1 | X% QA Au[Ah O dx

i/2
= CSUp”h”BSOOOSI ||h||BgOC><> . Z|k Z‘;<3 21/ |QjAl/4uk| dx
’ J —JI=

. 1/2 1/2
SC( > 2707 dx) (/ Z(A”“uj)zdx)
R j R j

= C|Oll gr/2llull g1/2-

« Estimate of TT3(A*(AY*Qu)): analogous to (40).

(40)
a

Proof of Theorem 1.5. We use Theorem 1.7 and the duality between BMO and ¢'. For all i, Q € H'/?

and u € BMO we have

/ (AV4(QAY*u)— QA 2u+ AV QA4 u) hdx = / (A4 QA1) ~AY2(Qh)+AY*(hAY* Q)) u dx

= Cllullsmol| R(Q.h) |51 :
by Theorem 1.7, this is at most

Cllullamoll QN g2 1l g12-
Hence

IT(Q, Wl gr—1/2 = supyay ;1 n <1 [Rn T'(Q.u)hdx = Cllullsmoll Qll g1/2-
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Proof of Theorem 1.8. We observe that R is a Fourier multiplier of order zero; thus ® : H —-1/2_, g-1/2
R:H! — %!, and R : B? e B? 1~ See [Taylor 1991] and [Sickel and Triebel 1995].
The estimates are very similar to the ones in Theorem 1.7; thus we will write down only one:

e Estimate of IT{ (RAY*(AY*Q%Ru) — V(Q%Ru)). We observe that Vu = A*RA*u. Hence
[T (RAY4(AV* Q%u) — V(QRu))|| z0
1.1

=sup||h||1.30 <1 o ZI Z| (Q{AI/A(AI/4QJ-%HJ'—4)_V(Qj%uj—4))htdx
00,00 n j t—j <3

zsup"h"BO <1 Z Z %L{j_4(%Al/4h[Al/4QJ‘ —Vth])dx

| XX FRruIHE)

0
Boo.co™ JRn j |1 j]<3

«( [, ston@mmar e -6 (¢ e -<172) s ) g, @

= Sup|p|

Now we can proceed exactly as in (35) and get

sup /R > Y (RAVHAYAQ;RuT T = V(Q;RuT ) hy dx < ClQll g2 llull g1jn. O
<1

171 50, oo "J o le—jl=3
Proof of Theorem 1.6. This follows from Theorem 1.8 and the duality between %! and BMO. O
Lemma 3.2. Let u € H'/2(R"), then R(A*u - RAY*u) € %', and

IR(A - RAY*u) g1 < Cllull, -

Proof. Since % : %! — %1, it is enough to verify that A'*u - RAY*u € %1,

e Estimate of IT;(AY*u, RAY*u):

+o00 1/2
”HI(AIMM,%AIMM)H%I :/ ( Z [A1/4uj(gtAl/4u)j_4)2) dx
Rn

j=—o0
+o00

. 1/2
=< /Rn supj|(9{Al/4u)]_4} (Z[A1/4uj]2) dx

j=0

1/2 +o0 1/2
< (/R |M(%A1/4u)|2dx) (/R .Z [AY4u;1? dx)

j=—00

=< C””“i}l/r (42)

The estimate of the %! norm of TT,(A"4u - RA*u) is similar to (42).
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« Estimate of TT5(AY4u - RAY*u):
T (A 0, RA 1) |

=  su AY* 1 R(AY*uy ) (b7 0 I hy)d
P DS uj R(A uy) + > he)dx
<1 JR

gy <t Jrr TSl (=j-s
. Jj+6
= sup >y (A1/4uj%(A1/4uk)—ijuk+%V(ujuk))(hj_6+ > h,)dx. 43)
il o <t 7 i< (=7

We only estimate the terms with 4/ 6, the estimates with /4, being similar. We have

Pl <t f D 2 (A4 RN *up) —uj Vg )h! =0 dox
oo R" j lk—jl=<3

= Wy =1, 2 T TR ( /R T FRA ][] |x—y|”21dy) dx.

By arguing as in (35), we can show that this is bounded above by C||u ||§1 ,,»- Finally we also have
SUPJA o <1 2. D IV (ujur)h’~® dx
00.00 R™ j |k—jl=<3
=SSP, =t | X 3 ju)VhI =6 dx
00,00 R™ j |k—jl<3
. RN
ECSllp”h”BO <1 ||h||Bgooo Z ZjujukdXSC(/ szujz-dx) :C”””%n/z'
S0.00 IR G lk—j|<3 R J
O
Theorem 1.8 and Lemma 3.2 imply:
Corollary 3.3. Letn € HY2(R", S™=Y). Then AY*[n- AV*n] € %' (R™).
Proof. Since n - Vn = 0 (see proof of Proposition 1.4), we can write
AY4n - AY*n] = AY*n- AV*n]—R[n - Va] + R[AY*n - RAY*n] — R[AY*n - RAY*n]
=Sn-,n)—RA*n-RA*n]. (44)

The estimate in the corollary’s conclusion is a consequence of Theorem 1.8 and Lemma 3.2, which imply
respectively that S(n-,n) € %! and R(AY*n-RAY*n) € %!, O
4. L-energy decrease controls

We now provide (in Propositions 4.1 and 4.2) localization estimates of solutions to the equations
A (MAYu) = T(Q, u) (45)

and
A4 (p-A*u) = S(q -, u) —R(A*u - RA*u), (46)



164 FRANCESCA DA LIO AND TRISTAN RIVIERE

where Q € HY2(R, My, (R)), M € HY2(R, Mjsn(R)), I > 1 and p,q € H'/2(R, R™).

Such estimates will be crucial to obtaining Morrey-type estimates for half-harmonic maps into the
sphere (see Section 5). As observed in Section 1, half-harmonic maps into the sphere satisfy both
equations (16) and (18), which are (45) and (46) with (M, Q) and (p, q) replaced by (uA,uA) and
(u, u), respectively. Roughly speaking, we show that the L2 norm of M A'/#y in a sufficiently small ball
(u being a solution of either (45) or (46)), is controlled by the L2 norm of the same function in annuli
outside the ball multiplied by a “crushing” factor.

To this end we consider a dyadic decomposition of unity (Section 2). For convenience set

Ap = Bynt1 \ Byn—1, A;l = Byn \ Byn-1,

for i € Z. Choose a dyadic decomposition ¢; € C5°(R), so

+o00
supp(j) CA; and ) ¢; =1. (47)
—00

Also define, for s € Z,

h—1
wi=Y . ﬁh=|sz|—1/
—00

B 2k

u(x)dx, ah=|Ah|—1/A u(x) dx, a”'=|A;,|—1f/ u(x) dx.
h

h

Proposition 4.1. Let O € H'/2(R, My, (R)), M € HY2(R, My (R)), [ > 1, and let u € H'/2(R, R™)
be a solution of (45). Then for k < 0 with |k| large enough we have

||MA1/4 A1/4

2
u”Lz(sz)

o0 oo
< c( D 2EIRIMA Ty + D 2T A iz(Ah)). (48)

2 1
u”LZ(BZk) - Z”

Proposition 4.2. Let p,q € HY/2(R, R™) and let u € H'/?(R, R™) be a solution of (46). Then for k <0
with |k| large enough we have

Ip- A ulfagp =3 IA UL,
00 o0
< C( Y 2EEDR g AT, + Zz(k_h)/z”Al/‘t””iz“‘h))' @)
h=k h=k

For the proof, we need some estimates.

Lemma 4.3. Let u € HY2(R). Then, for all k € Z,
+o00

> 2ot =)l 12y = € ( S 2Kl g + 32 HI/Z(AS)). (50)
h=k s<k s>k

Proof of Lemma 4.3. We first have

lon @ =)l 172y < o= 1oy + 10al gl — il (51)
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We estimate separately the two terms on the right-hand side of (51). We have

_ h _ _=h 2
llon(u— h)HHl/z(R) /Ah /Ah “Ph(“ : )(T)z_illlz(u ! )(y){ dx dy

2
<2(/ / |u(x) — u(2y)| dxdy+||wh||go/ / |u_ﬁh|2dxdy)
Ay, JAy, |x — ]

where we used the fact that | Vgy|lce < C 27" and the embedding H'Y2(R) < BMO(R).
2l k

Now we estimate |ii; — i”|. We can write iy = l——oo 'l Moreover,

g — ") < at —a'" + |y —a'"|

§C|Ah|_1/A | h|dx+ Z 21 —k Z |u/s+1 —/S|
h

I=—00 s=l
—1 ~h — Hl—k N ~1 —s+1 (53)
< C|Ap| [ lu—u"|dx + Z 2 Z|As+1| / |u—u’"" | dx
Ap l=—00 s=I Ast1
= (Wb, )+ Z 2l Z Il 1, +1))
s=I
Combining (52) and (53) we get
—ahi - < —_aM - : i — i
”(/)h(u u )||H1/2(R) = ||(ﬂh(u u )||H1/2(R)+ ”‘ph”Hl/Z(R)Wk u |
<c(||u||H1/7(A " Z 2!~k Z Il /2, +1)) (54)
s=I
Multiplying both sides of (54) by 2K~" and summing up from /& = k to 400 we get
00 k—1 h
R (SOl W P
h=k I=—00 s=[+1
=C X Il )( I ”)+ % llgags, )( >y 2
kl<s >sl<k
<C Zzs_ ||u||H1/2(A)+ ZZ |u”H1/2(A) U

s<k

Now we recall the value of the Fourier transform of some functions that will be used in the sequel.
We have

F|x|712)E) = |57/ (55)

The Fourier transforms of |x|, x|x|~!/2, and |x|'/2 are the tempered distributions defined, for every
¢ € F(R), as follows (with 1y the characteristic function of 1):
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¢(x) —¢(0) —21131 ¢ (0)x dx.

(311l ) = (3/1x1 # Tl g) = () # @) = poo | .

— _ , _ 1
(Flc x| 2], ) = (Flx]» FlIx| 712 0) = {()p () * x| 2 0) = pov. [R (w(x)—w(O))li—lmdx,

o @(x) —¢(0)
(d*[|x|1/2]’(p) = p,v,/l;{ de.

Next we introduce the operators
F(Q,a) = AV*(Qa) — QAY*a+ AV*Qa, (56)
G(Q,a) = RAY*(Qa) — QA*Ra + AV*QRa. (57)
We observe that 7(Q,u) = F(Q, AY*u) and S(Q,u) = RG(Q, A'*u).

We now state turn to lemmas where we consider M, u as in Proposition 4.1 or p, u as in Proposition 4.2,
and estimate the H'/2 norm of w = A™"4(M AV*u) or w = A""/*(p - A*u) in By in terms of the
H'/2 norm of w in annuli outside the ball and the L2 norm of A'/#4 in annuli inside and outside the
ball B,«. The key point is that each term is multiplied by a crushing factor.

Lemma 4.4. Assume the hypotheses of Proposition 4.1. There exist C > 0 and n > 0, independent of u
and M , such that for all n € (0, %), all k < ko (where ko € Z depends on n and || Q| g'/2(w)), and all
n > n, we have

I xk—a(w —wg—4) | H1/2(R)

4 2 A (k—h)/2 AL/4 & k—h
<0l xk—a A" u||L2+C( > 2 1A ullp2cq,y + 2 2 ”w”}'II/Z(Ah))» (58)
h=k h=k—n

where w = A™V4*(M AV*u) and we recall that x—_4 =1 on Byk—s and xj—4 =0 on By

Lemma 4.5. Assume the hypotheses of Proposition 4.2. There exist C > 0 and n > 0, independent of u
and M , such that for all (0, %) all k < ko (where ko € Z depends on 1 and the H'/* norms of Q and u
in R), and all n > n, we have

| xke—aw = B—a)|| 512y

& S k—h)/2 k=3 ek
5n||Xk_4A”4u||Lz<R)+C( > 262 A sy o+ Y 2 ||w||H1/2(Ah)), (59)
h=k h=k—n

where w = A™V4(p - AV*u).

Proof of Lemma 4.4. Fix n € (O, %) We first consider k < 0 large enough in absolute value so that
lxx(Q— Qk)”Hl/Z(R) < ¢, where ¢ € (0, 1) will be determined later. We write

F(Q,A*u) = F(Q1, A*u) + F(Q2, A"*u),
where

01 =xk(Q—0k) and Qs =(1—xx)(Q—0k).
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By construction, we have

supp Q2 € ngfl and ”QZ”}’]l/z(R) = ”Q”HI/Z(R)-
For brevity, set
W= Xgk—a(w — Wg—yg).
We rewrite (45) as

+o00

2wy == 3 =) + FQ1 A + FQ2. 8. (60
h=k—4

We take the scalar product of both sides with W and integrate over R. From Corollary A.8 it follows
that

+o00
1i A2 — W Wdx = 1i AY2((1 = yn_ — Wg—q)) - Wdx =0.
N R O R

This allows us to interchange the infinite sum with the integral and the operator A!/? in the expression

+o00 oo
/I%AI/Z( Z op(w — 1I)k_4)) -Wdx = Z / AI/Z((ph(w - u_)k—4)) -Wdx.

h=k—4 h=k—4""
Thus we get from (60) the equality

/ |A4(W)|? dx
R

+o0
=— Z /Al/z(goh(w—li)k_4))-de+/F(Ql,A1/4u)-de+/F(Qz,A1/4u)~de. 61)
h=k—4"" R R

Step 1: estimate of the sum. We split the sum in (61) into two parts: k —4 <h <k —3and h > k —2.

Step 1a. We have

k-3 k-3
- > f A (pp(w —Wg—g))- Wdx < W] HI/Z(R)( > Nen(w —we—s)] Hl/z(m).
h=k—4"R h=k—4
By Lemma 4.3, the right-hand side is bounded above by
k=3 k—5 h
W HI/Z(R)( ) (nwn e+ 326D 3 ) W(As)))
h=k—4 I=—00 s=I+1
k=3
<MWl s X 2ol Hl/z(Ah)). ©)
h=—o00

From the localization theorem A.1 it follows that
k=6 2 = 2
Z ”w”ﬁl/Z(Ah) S C”W”HI/Z(R)’

h=—00
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where C > 0 is independent of k and w. Thus we can find 7, > 6 such that

k—n
> 2h_k||w||H1/2(Ah)§ %”W”HVZ(R) forall n > ny,

h=—00

with the same constant C appearing on the last line of (62). Then for n > n we have

k-3
> [ Ao —in-0) W

h=k—4 k-3

f%“W”fquz(m+C||W||HI/Z(R)( 2 2h_k||w“Hl/2(Ah))' 63)
h=k—n

Step 1b. To estimate the part of the sum in (61) with 7 > k — 2, we use the fact that the supports of ¢,
and of xx_4 are disjoint; in particular 0 ¢ supp((ph (W —Wg—yg) * W) We have

+o00
> [ Ao —in-0) W

h=k—2 +oo
-y f F (€D () (0 (w — r_)) W dx
h=k—2 'R
+o00
< D FTED ooy a8 0 = D) [ IW
h=k—2
+00
<C Y 272 g — )| 2y 2P IV L2y (64)
h=k—2

By Theorem A.5 and Lemma 4.3 the sum on this last line is bounded above by

00
Yo 2 enw — k)| g2y Wl g2

h=k—-2 too s
< Z 2k_4_h(||w||H1/2(Ah) 4+ Z 21—(/(—4)
h=k—2 I=—c0

h
S 0l 12 ) IW ey
s=Il+1

400
5( > 2wl gyt 2 gy TX 274

h=k—4 s<k—4 h>k—41<s—1
+ Y Il X% 2"’1))||Wllguz®
s>k—4 h>s—11<k—4
+00 k—5
s( D T vl g+ D 2h—<k—4>||w||31/2(Ah))||W||H1/2(R). (65)

Finally, set n > 7 = max(n1, n,), where n, > 6 is such that

k—n
c'y 2h_(k_4))||w”H1/2(Ah) < %||W||H1/2(R) forn > n;.
h=—o00
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We conclude from (63)—(65) that

+00 oo
h; /R A (n(w = Br-a)) W = ZIW 51 + C IV 112y h ; XMwll 1724, (©66)
=k—4 =k—n

Step 2: estimate of [, F(Q1, A'*u)- W dx, the second term on the right-hand side of (61). We write

k+1 +o00
F(Q1. A u) = F(Q1. xx—aA"*u)+ Y- F(Qr.opA*u)+ Y F(Q1.9pA*u). (67)
h=k—4 h=k+2

By Theorem 1.7, the integral involving the first term on the right can be estimated as follows:

/R F(Q1. xma A *u)- W dx < C 01l 1/ | xh—a A ull 2 IW [ 12

< Ce ks A ull 2 Wl 12

A

76 IXk—a 8 ull L2 IW Il 172y (68)

where in the last inequality we have made use of the choice of ¢ > 0 (see beginning of proof on page 166).
We also use Theorem 1.7 for the integral involving the second term on the right-hand side of (67):

k+1 k+1

> [R F(Qr,opN*u) - Wdx <C Y | Qill grrallond“ul 2@l Wl gi2gy- (69
h=k—4 h=k—4

Next we want to deal with the term in (67) involving the infinite sum. Again by Corollary A.8 we can
exchange the summation with the integral and write

400 +o00
[( 2 rormarn)was= ¥ [ Fouoan- wx
RN h=k+2 h=k+2 "R

If # > k + 2, we have F(Q1, o AV*u)- W = Q1 AY*(p AV*u) - W, since the supports of Q1 and ¢y,
are disjoint, as are the supports of xz_4 and ¢;. Hence we can write

+o00 +o00
> fF(Ql,(phA”“u)-de: > | 01AY (@A u) - W dx
h=k+2" R h=k+2" R
+o00
= Y [T Qi W)
h=k+2 "R
+o00
= > NF T UEMD)ILooBya\Bys) | Q10n A ull L1 [ W L
h=k+2
400
<C > 272010 A ul i | W 1 (70)

h=k+2
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By Theorem A.5 we finally get

+o00 +o00
> / F(Qr,opAN*u)- Wdx <C Y 201l grageyll lend “ull 2@ W | 12y
h=k+2"" h=k+2

+o00
<C Y KM A ) 2| Wl 12y
h=k+2

Step 3: estimate of [, F(Q2, A'*u)- W dx, the last term in (61). As in Step 2, we write

k+1 400
F(Q2, A*u) = F(Q2., xk—a A )+ 3 F(Qa2.0u A *u)+ Y F(Qa.0pA"*u). (71
h=k—4 h=k+2

For the first term, since the support of Q5 is included in ng_l, we have
F(Q2. xk—aA*u)- W = A4 (02 (xr—a AV u)) - W.

Observe that Q, = Z}tiok_l o (02 —(02)k—1), ((02)k—1 = 0) and by using Corollary A.8 we get

f F(Qs. x—a M) - W dx
R

400
= 3 [ AT(@n(02 = (@) timeb 1) W

h=k—1

400
<C ) /R T E2) (s A * 1) pn (02 — (Q2)k—1)) * W)

h=k—1

+00 =
= C[Wllg: , Xk: 157 (61" | Lo B2\ By | X —a A 1)@ (Q2 = (Q2)k—1) | 1
=k—1

1/4 X _h2qk)2 -
< Cllxk—a A ull 2 lWll grio@ 2 277722 Me0n(Q2 = (Q)k—Dll 12y
h=k—1

From Lemma 4.3, possibly by choosing a smaller k, we get
X k-m)2 5 L
c > 2 len(Q2 = (@2)k-Dl g2y = 27 < 15-
h=k—1
Therefore
/R F(Qa. xk—al*u)- W dx < byl xa—a A ull L2 W || 1725

Now turning to the second term in (71), we bound the corresponding integral using Theorem 1.7:

k+1 k+1

> /[R{F(Qz,fphA”‘Lu)-deSC Y Ol g2y lonA ull 2 W (=) g1y (72)
h=k—4 h=k—4
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Finally we consider the last term in (71). By Corollary A.8 we can write

+00 too
[( X Fooar ) wav= 3 [ Fosgmarin-wx
RN h=k+2 h=k+2" R

Next, since the support of Q5 is included in B;k_l, we have for 1 > k + 2 the equality

F(Qa.gn A *u)- W = (AV4(Q2 04 A1) — Q2 A4 (g A 4u) + AV* Q0 AV u) - W
= AV Q204 A u) - W,

Therefore

+o00

> | F(Qa onAY*u)- W dx (73)
h=k+2" R

+o00 +o00
= Y [ avumat - war= 3 [ S1A Qe A W] d

h=k+27R h=k+2"R

+00
= Y [ a wlswlag
h=k+2""

+o0

Y FTE) ((en A4 u(Q2 = (Q2)k—1)) * W) dx

h=k+2 "R

400
= 20 1FTUE A ooy By (€8 24(Q2 = (02)k=1)) * W 1 .
h=k+2

Now choose ¥, € C5°(R) such that ¥, = 1 in Bynt1 \ Byn—1 and supp ¢ C Btz \ Byn—z. Thus

+00
(13)=C Y 272 Y02 = (0)k-1)| 2y llen A “ull L2y IW L1 gy

h=k+2
400
=C Y M@= 0k-0)| g2y lond ull 2y IW 1/ (74)
h=k+2
+oo ' B 1/2 400 . 1/2
EC( Z 2 —h||Wh(Q2—(Qz)k—l)”%l/z(m) ( Z 2 _h||(phA”4“||iZ) ”W”HVZ(R)‘
h=k+2 h=k+2

where we have applied Theorem A.5 and Cauchy—Schwartz.
From Lemma 4.3 (with ¢ replaced by ) and Theorem A.1 we deduce that

+oo . 1/2
( > 2k—h||wh(Q2—(Qz)k_1)||§~,l/2®) = CllClg1r2my

h=k+2
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Thus
Yo | F(Q2 oA u)-Wdx < C”W”HI/Z(R)( 2 2""’||sohA”4u||iz<R>)
h=k+2"R h=k+1
+oo
< C||W||HI/Z(R)( > 2“‘—”’/2||¢hA‘/4u||Lz(R)). (75)

h=k+1
By combining (68), (69), (70), (72) and (75) we obtain (for some constant C depending on Q)

/ F(Q, AY*u)-Wdx
R

+o00
< 30l xe—a A ull 2| Wl 1oy +C D z(k_h)/2||Al/4u”L2(Ah)”W”HI/Z(R)- (76)

h=k—4
Finally for all n > n we have
|| W”HUZ(R)
+oo +oo
<Nl Xk—a A ull 12y + c( S ] e, + Y 26702 ||A1/4u||Lz(Ah)), (77)
h=k—n h=k—4
concluding the proof of Lemma 4.4. O

Proof of Lemma 4.5. The proof is similar to the preceding one, so we just sketch it. As before, we fix
n € (0, %) We consider k < 0 such that

k@ =@l 12 <6 and XA ull 2 <.

with & > 0 to be determined later.
We observe that (46) is equivalent to

RAV4(p- AV*u) = G(q -, AY*u) — AV*u - (RA*u). 78)
We write
G(q-. A*u) = G(q -, A*u) + G(qs -, AV*u),
where
a1 =xk(q—qr) and g2 = (1—xk)(q—qk)-

c

We observe that supp g, € sz_

. and [|q; ||H1/2(R) < &. We also set
wr = xe A, uy = (1= x) A u, w= A4 (p-AVu), W= gp_g(w — Dg—y).

We rewrite (78) as

+o0
RAZW) = —%A“( > on(w— uvk_o)
h=k—4
+G(q1 -, A*u) + G(ga -, A *u) +uy - (RA*u) 4+ uy - (RAY*u).  (79)
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We multiply (79) by W and integrate over R. By using again Corollary A.8 we get

/ |AY*(W)|? dx (80)
R

400
__ 1/2 o L Al/4 _Al/4
= h§_4/|;e%A (pp(w—wg_4)) (W) dx —I—/I;{G(ql , AN u) (W) dx—{—/RG(q2 , AV u) (W) dx

—I—/ up - (RAY*u)(W) dx+/ Uy - (RAV*u) (W) dx.
R R

The last term vanishes, since ©, and yj_4 have disjoint supports. Estimating fu;e G(Q1, AV*u)(W) dx
and [ G(Q2, AV*u)(W)dx is analogous to what we did for the terms [, F(Q1, A"*u)(W)dx and
J& F(Q2, AV*u)(W) dx of (61). We therefore concentrate on the other two terms in the right-hand side
of (80).

To estimate the sum term, we split it into two parts: one sum for k —4 < h < k — 3 and one for
h > k — 2. For the first part we write

k-3
- /R%Al/z(‘/’h(w—wk—ﬂ)(w) dx

h=k—4 k—3
< > 872w = D) | o2y 1OV 12y
h=k—4

k=3
=C

k=5 h
(||w||H1/2(Ah)+ PO EEDS ||w||H1/2(As))||W||HI/2(R), 81)
h=k—4 I=—00

s=I4+1
where the second inequality follows from Lemma 4.3. Let n; > 6 be such that

k—nl
C X 2 wlguay, = s1Wlguam:
h=—00

If n > ny we have
1 2 k=3 ek
(81) < HIW %1+ I HI/Z(R)(hg_nz Il 372041 ) 52)

For the second part of the sum (4 > k — 2) we use the fact that supp (goh (W —Wp_q) * W) is contained
in B,yn+2 \ Byn—2; in particular, it does not contain 0.

+00 iy
S| RA(pp(w —p—a))W)dx = Y | EFpp(w — wk—a))E) FAWE) dé
h=k—2"® h=k—2""®

400
= 3 [T O enw— i)« W) dx

h=k—2

+o0
= /RSS(X) (op(w — Wg_g) * W) (x) dx = 0.

h=k—-2
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Step 2: estimate of [ uy - (RAY*u)(W) dx. We have

+o00
/[Rul -(Q{A”‘Lu)(W)dx:/Rul -(Qiul)(W)dx—I—};(/Rul~(9R(phA”4u)(W)dx. (83)

By applying Lemma 3.2 and using the embedding of %! (R) into H~'/2(R) we get
/Rul @) (W) dx < Clluy - @) e |V 12 < Cllut 21OV 12

1
=< Cellxe A ull L2 (W) 172 gy = 8||XkA1/4”||L2”(W)”Hl/z(R)-

By choosing ¢ > 0 smaller if needed, we may suppose that Ce <.
Now we observe that for 4 > k the supports of ¢ and xj;_4 are disjoint. Thus

Z / uy - @A) (W) dx = Z / (x) (onAY4u) %y W)) dx
e h;k I 200 BBl 08 A 20) g W)

+o00
=¥ 27222 g A Ly e L2 | O 12y

+00
<Ce Y 252 A ul 2y W) | 12y
h=k

)” —_
< 1S D g O ey i

Proof of Proposition 4.1. From Lemma 4.4, there exist C >0 and 7 > 0 such thatforalln >n,0<n < % 1

k < kg (ko depending on n and the H'/2 norm of 0), every solution to (45) satisfies (77) and thus also

W20

+o00
<7 ||Xk_4A‘/4u||iz+c2"/2h % 2k w2
=K—n

+o00
+C Y 2k Al (84)

ull7 2 -
h=k—4 L*®

H/2(4p)
Now we can fix n > n and we can replace in the second term of (84) C on/2 by C.

From Lemma A.3 it follows that there are C;, C, > 0 and m2; > 0 (independent of # and k) such that
if m > m; we have

+o00
W 112 = C1/ IMA uPdx—Cy Y 2k—h/ |MAY*u|? dx.  (85)
sz n—m h=k—n—m Bzh\Bzhfl

Finally from Lemma A.4 it follows that there is C > 0 such that for all y € (0, 1) there exists ni, > 0
such that if m > m, we have
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+00
k—hy, 12
2.2 1wl 124,

h=k—n
+o00
k—h A— 2

= Z 25T A 1/4(MA1/4u)||H1/2(Ah)

h=k—

" too (86)
Sy/ IMA uPdx+ ) 2<k—h>/2/ |MAY*u|? dx.
|é|§2k—n—m ek —n—m 2h5|5|52h+1

By combining (84), (85) and (86) we get

o0 gy
C Y 2ERIMA Uy, +Co 3 2T A 2y,

h=k—n—m h=k—n—m

C ||MA1/4“||22(szfnfm) =

07 Xe—a Al 2y + CYIMA 2, e (8T
Now choose y,n > 0 so that C;” Icy < % and C° In? < %. With these choices we get for some

constant C > 0

174,112 — Ly Al4,12
”MA u”LZ(sz—n—m) 4 |A u”LZ(BZk_"_m)

00 +o00
sc( 3 2(k_h)/2||MA”4u||iz(Ah)+ 3 2(k_h)/2||A1/4u||Lz(Ah)). (88)
h

h=k—n—m =k—n—m

We observe that in the final estimate (88) the index 7 can be fixed as well. Thus by replacing in (88)
k —n—m by k we get (48) and we conclude the proof. O

The proof of Proposition 4.2 is analogous and we omit it.

S. Morrey estimates and Holder continuity of %-harmonic maps into the sphere

We consider the (m — 1)-dimensional sphere S™~! C R™. Let ITgm—1 be the orthogonal projection on
S™=1_We also consider the Dirichlet energy defined by

L(u)=/ IAY*u(x)|>dx  foru:R— S™ 1. (89)
R
Definition 5.1. We say that u € H'/2(R, S~ 1) is a weak %—harmonic map if

d

%L(Hsm—l (u+19)),_, =0 (90)

for every map ¢ € H'/2(R, R™) N L (R, R™). In other words, weak %—harmonic maps are the critical
points of the functional (89) with respect to perturbations of the form I gim—1 (v + 1¢).

We denote by /\(R™) the exterior algebra (or Grassmann algebra) of R™. If (¢;)i=1,. m is the
canonical orthonormal basis of R™, every element v € /\ p(R™) can be written as v = > 7 vrer, where

I'={iy,....ippwith 1 <iy <---<ip <m, vy :=v;, i, and ef :=e;; A+ Nej,.
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By L we denote the interior multiplication L : /\ , (R™) x A\ 4(R™) — /\ 4— p(R™) defined as follows:
Letef = ejy A---Nej,, ey =ej N-+-Nej,, withg > p. Then ey L ey = 0if I ¢ J; otherwise
erley=(—1)Meg, where eg is a (¢— p)-vector and M is the number of pairs (i, j) € I x J with j >1i.

By the symbol ¢ we denote the first order contraction between multivectors. We recall that it satisfies
aef=alL piffisal-vectorandae(BAYy)=(xef)Ay + (—DPI(axey)ApB,if B and y are
respectively a p-vector and a g-vector.

Finally by the symbol * we denote the Hodge star operator, * : A\ ,(R™) — /\,;—p(R™), defined by

4B =(e1 A Aen) B
Next we write the Euler equation associated to the functional (89).

Theorem 5.2. All weak %-harmom’c maps u € H'/2(R, S™=1) satisfy in a weak sense the equation

/R(Al/2u)-vdx:0, 1)

for every v e HY2(R, R™) N L®(R, R™) such that v € T,,(X)Sm_1 almost everywhere, or equivalently
the equation
AV2urnu=0 in%, (92)
or yet
A*(unA*u)y=T(Q,u) in%, (93)
with Q = un.

Proof. The proof of (91) is analogous that of Lemma 1.4.10 in [Hélein 2002]. For v as in the statement,
we have

Hsm—l(u+lv) =u-+twy,

where

U OTT g ;

w,=/ L(u—l—mv)v]ds.
0 ay;

Hence

L(Hsm—l(u+tv))=/ |A1/4u|2dx+2l/ Ay wy dx + o(1),
R R

as t — 0. Thus (90) is equivalent to

lim [ AY?u-w;dx =0.
=0 Jr

Since IT gm—1 is smooth it follows that w; — wo = d 1 gm—1(u)(v) in H'Y2(R, R™) N L°(R, R™) and
therefore

/ AY*u dT gm—1(u)(v) dx = 0.
R

Since v € Tu(x)S’"—1 a.e., we have dI1 gm—1(u)(v) = v a.e. and (91) follows.
To prove (92), we take ¢ € C°(R, A\ ;u—2(R™)). Then

/(p/\u/\AI/zudx= (/ *(go/\u)-Al/zudx)el/\--~/\em. (94)
R R
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We claim that
v=x(pAu)e Hl/z([R, R™) and wv(x)e€ Tu(x)Sm_1 a.e

That v € H'/2(R, R™) N L°°(R, R™) follows form the fact that its components are the product of two
functions in H'/2(R, R™) N L (R, R™), which is an algebra. Moreover,

veu=x(une)u=xuneru)=0. (95)

It follows from (91) and (94) that

/(p/\u/\Al/zudx=O.
R

This shows that A2y Au=0in %, concluding the proof of (92).
To prove (93) it is enough to observe that A/?u Au = 0 and A*u A AV*u = 0. O

Next we show that any map u € H'/2(R, R™) such that |u| = 1 a.e. satisfies the structural equation (18).

Proof of Proposition 1.4. We observe that if u € H'/2(R, S™~") then Leibniz’s rule holds. Thus
Viul> =2u-Vuin 9@ (96)

Indeed, the equality (96) holds trivially if u € C5°(R, R~ D). Letu € HY2(R, S™1) and let u; jbea
sequence in C§° (R, R™) converging to u in Hl/z([R R™) as j — +o00. Then Vu; — Vu as j — 400
in H~Y3(R,R™~"). Thus uj -Vuj — u-Vu in @’ and (96) follows.

If u e HY2(R, S™=1), then V|u|? = 0 and thus u - Vu = 0 in @’ as well. Thus u satisfies (18) and
this conclude the proof. O

By combining Theorem 5.2, Proposition 1.4 and the results of the previous section we get the Holder
regularity of weak %—harmonic maps.

Theorem 5.3. Let u € HY/2(R, S™ 1) be a harmonic map. Then u eCloa([R{ sm=1y,

Proof. From Theorem 5.2 it follows that u satisfies (93). Moreover, since |u| = 1, Proposition 1.4 implies
that u satisfies (18) as well. Propositions 4.1 and 4.2 yield for £ < 0, with |k| large enough,

lun & ulls 0=€ 22<k DRNA ull o g+ FIA ullF2p - 97)
lu- A ulop 5 = C 22“‘ DIRNA o g+ FIA Ul g, - (98)
Since
||A1/4u||L2(B Q) = [lu- Al/4“”LZ(B )""”u/\AlMu”iz(sz),
we get
1A ullZ2p,,) =€ Z 2EY A7, - (99)
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Now observe that for some C > 0 (independent of k) we have

k—1 k
-1 174, 112 1/4,,112 174, 112
€T 1A gy I Ul SC X 1A gy,

h=—00
From this and (98) it follows that
k—1
> Al g, =€ Z A I

u”LZ(Ah)'
h=—o00

By applying Proposition A.9 and using again (99) we get for 7 > 0 small enough and some S € (0, 1)

/ |AY*u|? dx < CrP. (100)

Condition (100) yields that u belongs to the Morrey—Campanato space $2:=B (see [Adams 1975], page

79), and thus u € Co’ﬂ/z(lR) (see [Adams 1975; Giaquinta 1983], for instance). O
Appendix

We prove here some results used in the previous sections. The first is that the H'2([a, b]) norm, where
—00 < a < b < +o00, can be localized in space. This result, besides being of independent interest, is
used in Section 4 for localization estimates. For simplicity we will suppose that [a, b] = [—1, 1].

Theorem A.1 (Localization of H'/2((—1, 1)) norm). Letu € H'/2((—1, 1)). For some C > 0 we have
||u||H1/2(( 1 1)) z ” ||H1/2(A )

where Aj = B,j+1\ Byj-1.

Proof. For every i € Z, we set A; = Byi \ Byi—1 and i} = |4}|™! fA;. u(x) dx. We have

lu(x)—u()|* u(y)|2

Z // )P

= Ix =yl
Ju(x)—u(»)* |u(x)—u(y)?
I—Zm[/// |x — y|? d dy+2j_zwl>§-1[/// e —yI? e
2
42 Z // Iu(r;)_u(é)l v dy. (101)

j=—00 j+1

We first observe that

|u(x) —u(y)” u(y)|? |u(x) —u(y) u(y)|?
dx d dx d
3 //// T [ ] e ava ao

lx — y|? lx — y|?

i,j=—00 i,j=—00
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and

_ 2 B 5
Z //// |u()|2_ug)| Z / / Iu(?liz ZT;H dx dy. (103)
]__OO

It remains to estimate the double sum in (101). We have

@) —u?

Z Z// -y

j=—OOl>j+1

ey Y 2‘”[/ ) —u(y)? dx dy

j=—00i=j+2

(Z 22‘2’///,| —uldxdy+Z 22‘2’// ju(x) — @2 dx dy

]=—Ool>]+2

+ Z > 2—2’// u(y) — it} |2 dxdy)

j=—o0i=j+2

Jj=—00i=j+2
0 0
_c( Do M —alP+ Y Y 2_2i2j//|u(x)—ﬁ;-|2dx
j=—00i=j+2 j——ooi>j+2 i
+ Z > 2—2’2’[ lu(y) — u-|2dy).
j=—00i>j+2

Denote by W, Wy, W, the three double sums in the last parentheses. We have

Wy = Z Z 2_2’2// lu(x) —it;|>dx = Z 2_2’/ lu(x)— l|2dx(jSlZ_22j)

i=—00j<i—2 i=—00
_ 2
<C Z |4}~ 1/ lu(x) —u; | dx <C Z / / ) u(;/)| dx dy, (104)
i=—o0 i oo’ Al J4; lx =yl

where in the last inequality we used the fact that, for every i,

A [ o= aiPax < [

i

2

u(o) — | 44! /A u(y) dy

i

) =

st [, [ eo—uor dxdy<C/ [ e

A similar calculation yields

lu(x) —u)?
CZ // TR (105)

]_OO
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Finally, to estimate W = Z o 2m2it gl — |2 we first observe that
j=—00i>j+2

i—1

@ =@ < (= j) Y lap —a? and |apg —ig* < |47 1/ u—a| dx,
J

where iti; = |4;]7! J4, u(x) dx. Setting a; = |4;]71 Ja, lu— i17|? dx, we then have

Z > -y ’Za1< Z a Z o i-HY

j=—00i=j+2 I=—0c0 j=—o00i—j=l+1—j

We observe that

/
Z Yoo -2 < Z‘ / 2 xdx =Yy 27D (I42- )

I+1—j

Jj=—oc0i—j=l+1—j j=—o00 j=—o0
+00
5/ 27t+1)dx < C, (106)
1
for some constant C independent of /. It follows that
- ju(x) —u ()
W<C ZaISC/ f T dx dy. (107)
= 4 Ix=Yl

By combining (102), (103), (104), (105), and (107) we finally obtain

14121y S Z 1124,y

Next we show that

D Ml aga S 1l 20y (108)

[=—00

For every [ we have A; = C; U D;, where C; = B,i+1 \ By and D; = B,i \ Byi—1. Thus

Ju(x)—u(»)* Ju(x)—u(y)* Ju(x)—u(»)*
— dxd dx dy dx dy.
/c, /c, lx — y|? y+/Dlthl lx — y|? +2/D,;,/Cl lx — y|? T

Since |J;(C; x Cp), U;(D; x Cp), and |J;(Dy x C;) are disjoint unions contained in [0, 1] x [0, 1], we

have
2 2
Z/ / |u(x)— U(J2/)| dx dy </ / |u(x)— U(Jz/)l dx dy.
~Ja o x=yl 1,11 J=1,11  |x =]
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2 2
Z/ [ Ju(x)— u(g)l dx dy </ / |u(x)— u(z)l dx dy.
7 YDin JC |x =yl [—1,1] J[-1,1] |x — y|
It follows that

Z/ / Ju(x)— u(y)lzd dy </ / |u(x)—u(y)* dx dy
7 Y DinJ Dy |x J’|2 [—1,11 J[-1,1] |x y|2
0

|u(x)—u(y)|?
2 Il = /[11]/[11] ey = el

= |x—yl?

Remark A.2. By analogous computations one can show that for all » > 0 we have

il 312 = Z & IIHI/Z(Ar

j=—o00

where Ajr. = B,j+1, \ Byj—1,, where the equivalence constants do not depend on r.

181

Next we compare the /2 norm of A~'/4(MAY*u) with the L2 norm of MAY*u, where u € H'/2(R)

and M € HY2(R, M;xm(R)), fort > 1.

In the sequel, for p > o > 0, we denote by 1|y|<p, 1p<|x|> and 1,<|x|<¢ the characteristic functions

of the sets of points x € R satisfying the respective inequalities.

Lemma A.3. Let M € HY2(R, Myxm(R)), withm > 1 and t > 1, and let and u € H'/*(R). There exist
Cy >0, Cy > 0 and nyg € N, independent of u and M, such that, for any r € (0,1), n > ng and any

X0 € R, we have

||A—1/4(MA1/4M)||H1/2(B (x0))

+o0
ZCI/ |MA u>dx—Cy Y 2—"/ |MAY*u|? dx.
r/2n (X0) h=—n

By, (x0)\B,n—1, (x0)

Proof. For notational simplicity we take xo = 0, but the estimates made will be independent of xy.

We write
ATVHM A u) = A4 Wy <rpan MAY u) + A7VH((1 = Ljg <p/2n) M A u),
where n > 0 is large enough; the threshold will be determined later in the proof. We have
| AT HMA w) | 12,y
> [ ATV @y MA W) | 1o gy = [ A7 = Lix<rj2) MA 0) | g1/,
= [ AT @ o MAY W) | 12 gy = [ A7 W pan<ixizar MA W) | 125,
— AT @z ar MA W) | 11725,
= [ A7 Qpegzry o MA W) | prao gy = |87 Arpnsivisar MAT 0| 12
— [ AT @z ar MA )| 123, )
We estimate the last three terms in (109).

(109)
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* Estimate of ” AV (L, o <|x|<ar M A1) ”HI/Z(R)' This expression is equal to

1
/ M A*u|? dx = Z/ |MAY*u|? dx. (110)
r/2"<|x|<4r he—n 2hp<|x|<2h+1r

e Estimate of H Aﬁlm(]lIXIZMMAlM”)HHI/Z(B,)' Setting g := 1|x|>4, M A'*u, we have

1A= 4g]|

. (X200 = (x>0

Hl/Z(Br |t—S|2

1 B B 2
-, ﬁ([ G l/z)dx) b
r r X|Zar

2
(mean-value thm.) < C/ / (/ |g(x)|max(|t—x|_3/2, |s—x|_3/2) dx) dt ds
B, JB, \J|x|>4r

+oo ,
EC/ / (Z/zh <|x|<2h+1 |g(x)| max (| —x| 72, |s—x|7/2) dX) dt ds
reBr A p=g v ST =IXI= r
+o00 5
< [ L (E Lo ot
rIBr \ 2y 20 r<|x| <2ty

400 —1/2\2
(Holder inequality) < C / / ( Z 271 (/ lg(x)|? dx) ) dt ds
rJBr \ 4 2hp<|x|<2h+1r

+o00 +o00
(Cauchy-Schwarz) < C ( Z 2_h) (

>

h h+1
hea hed 2hp<|x|<2 r

400
SC(ZZ‘h/ |MA1/4u|2dx). (111)

hed 2hp<|x|<2h+1y

| M A4y |? dx)

« Estimate of ||A_”4(]l|x|5r/2nMA1/4u)||H1/2(Br). We set
Ay i=1{x: 2h =1y < x| <21
By the localization theorem A.1 there exists a constant C>0 (independent of r) such that

1A 4 (@ <rjan MA W)

HI/Z(R)
+o00
<C Z ||A_1/4(]l|x|5r/2"MAI/“”)”ip/z(Ar)
h=—o0 ioo (112)
< C A4 @pnizryon MA0) 1y + C D NA Wiy MA ) g e

h=0
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e Estimate of Z+°° | A7V4(L )< jan M AY4u) |2 Setting

HY2(45)
S(X) := Lyx<p/an MA u

and working as in the first three lines of (111), we can write for this sum the upper bound

+o0 2
Chg;)/;z/;,(/xlﬂ/w |f(x)|max(|t—x|—3/2’ |S—x|_3/2) dx) dt ds
3 3 )
cZ / / max (e~ 1573 /| el i) e
(113)

c 2 C
=— S '2h (/ | f(x)|? a’x) < —/ | MAY*u|? dx.
2= |x|<r/2n 2" Jix|<r/2n

If n is large enough that C C/2” , we get, combining (109), (110), (111), (112) and (113), for some
C1, C, positive,

+00
| A A MA )12, = Cl/ IMA U dx=Cy ) | Z_h/ IM ATl .
Br/2” =— B2h+1r\B2hr

which ends the proof of the lemma. O

We now compare the H'/2 norm of A~'/4(M A*u) in the annuli Ay, = Byn+1(xg) \ Byn—1(xo) with
the L? norm in the same annuli of M A'/#y. This result, like the previous one, was used in the proof of
Proposition 4.1.

Lemma A4. Let M € HI/Z(R,Mtth >1(R)),m=>=1,t>1,and u € HI/Z(R). There exists C > 0
such that for every y € (0,1), for all n = ng € N (ng dependent on y and independent of u and M),
for every k € Z, and any x¢ € R, we have

sz AT A )|

H'/2(B,j41(x0)\ Byn— 1(x0))
h=k

fy/ |MAY*u2dx + Z 2(k—h)/2/ |MAY*u|2dx.
B,k —n (x0) heFk—n B, p+1(x0)\Byn—1(x0)

Proof. Again we take xo = 0, but the estimates will be independent of xy. Given 2 € Z and / > 3 we set
Ah = Bzh-i-l \Bzh—l and Dl,h = Bzh-i-l \Bzh—l.
Fix y € (0, 1). We have, for w = A~"/4(M A'*u) and for any / > 3 (to be chosen later),

lw(x) —w(y)|?
||w||H1/2(Ah) //Ah |x y|2 dxdy

<2||AV4p, , MAY*u|? F2[ A4 (1 —1p, ) M A *u|? (114)

H/2(4y) H'2(A4p)
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The first of these two terms is bounded above by

h+1-1
18740 MOl = [ A SPax= 30 [ avaas a1
D] s=h—I 2Y+1\B25

Multiplying by 2k=h and summing up from /1 = k to +o00 we get

too +00
> 2T, MA |y = C2TE YT / IMA*u>dx.  (116)
h=k h=k—I Byn+1\Byn—1

To estimate the remaining term on the right-hand side of (114), set g = (1 —1p, ,) M A'/*u and write,
as in the first two lines of (111),

||A71/4g||H1/2(A )

2
:/ / 2(/ 2(x) (lt=x |72 = |s—x|71/2) dx) dt ds
A4y, 1t —=51% \J|x|<2h—1 or |x|>20+h

1 2 1 2
52/ / — (/ (same)) dt ds +2/ / > (/ (same)) dtds. (117)
Ap JAp |£—s] |x|>20+h Ay J A, |t—s]| x| <21

For the first of these last two terms we can write, following the same steps as in (111) and using the
fact that, since / > 3, we have |x —¢|, |x —s| > 297! for every 5,1 € A and 29 < |x| < 297F1;

1 2
/ / — / g(x) (|t=x|7Y2 —|s—x|7V?) dx | dt ds
ApJAp |t —s|? |x|>20+h

<c2"’(22q/2

q=h+1

|g(x)|2dx). (118)

q<|x|<24+1
Multiplying the right-hand side by 2k=h where k €7, taking the sum from / = k to 400, interchanging
the summations, and using the fact that g(x) = M A"*u(x) when 29 < |x| <2971, we get the value

c2! +f 2k—4(q—1—k)(f
2

| M A4y )? dx)
q=k+I

4<|x|<2¢+1

+o0
<c2 ') z(k-q)/z(/
2

| M AY*u|? a’x), (119)
q=k—+I

a<|x|<2qt!
which is therefore an upper bound for the contribution to Z 2k=h|w|2 of the term in (117)
containing the integral over |x| > 2/ 74, h=k

We still have to estimate the contribution of the term containing the integral over |x| < 2= we
can assume that & > k. Again following the same reasoning as in (111) and the using the inequalities
|x —s|, |x —t] = 25=2 applicable to this case, we write

H1/2(A )
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1 2
/[ / g(x) (|t=x|7Y2 —|s—x|7V2) dx | dt ds
Ay, |t —51* \Jixj<2n—

sc/ / 2—3"2”—’(f |g(x)|2dx) dt ds = cz—’/ |MAY*u|? dx
Ap JAp |x|<2h—1 x| <2k~

h—I[—-1
=c2—’(/ |MA*ul*dx+ [ |MA”4u|2dx). (120)
|x|<2k—1 g=k—I 24 <|x|<2a+!

Multiply the right-hand side of (120) by 2k=h take the sum from s = k to +o0, interchange the double
summation, evaluate the geometric series, and rename ¢ to / as the index of the remaining summation,
to obtain the upper bound

400
C2_’+1/ |MA*u?dx+C27% )" / 2K M A4 dix (121)
x| <2k=! hek—] ) 21 <Ix|<2h !
400
for the contribution to Y 2K~ |w |2 of the term under consideration (second term on the last
. - H1/2(Ap)
line of (117)). h=k

Now choose / so that C 27! < y < 1, and set ng = /. Then, for all n > ny,

400 h—l1
> ok (C 27! / |MAu?dx +C 272 ) / | M A4y |? dx)
=k |x|<2k—! s—f—] Y 2 <SIx[=25H!
+o00
< )// |MA udx+ f K1 MAYAu|? dx.
|| <2k—n e ) 2 Slx| =20+
By combining (114), (116), (119) and (121), for n > ny we finally get
+o00
k—hj A—1/4 1/4 2
DT MA WG,
h=k
+o00
< )// |MA*ul?dx + ) / 2=W/2 pp AV Y12 dx. O
|x|<2k—n s 2h—1<|x|<2h+1

Next we show a sort of Poincaré inequality for functions in A'/2(R) having compact support. Recall
that, for €2 an open subset of R, the extension by 0 of a function in HO1 / 2(Q) =Cg° (9% vz is, generally
speaking, not in H!/2(R). This is why Lions and Magenes [1972] introduced the set Holé 2(Q) for which
the Poincaré inequality holds.

Theorem A.5. Let v € H'/2(R) be such that suppv C (—1,1). Thenv € L2([—1,1]) and

A—l 1] ()] dx < C”U“ijl/z((—l 2)).
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Proof.
2 _ 2
[—1,1] 1=lyl<2 Jixl<t [x — | i<iyi<a Jixi<1 X —d2
[u(x) —v(y)[? 5
=¢ dx dy = Cllv|%, ,(~2.2)). -
/y|<2 /|x|<2 |x —y|? Y I ”Hl/Z[ )]

From Theorem A.5 it follows that

1ol L2(=r.ryy < Cr' 210l s gy

The next three results justify the interchanging of infinite sums, pseudodifferential operators, and
integrals that we performed several times to obtain the localization estimates in Section 4.

In Lemma A.6 (resp. A.7) we consider a function g € H'/2(R)NL®(R) (resp. / € H'/2(R)NL®(R))
whose support is contained in By (resp. By). We estimate the L2-norm of A'*g (resp. A f) in
annuli Ay = Byn \ Byn—1 with h > k (resp. h < N).

Lemma A.6. Ler g € H'/2(R) N L>®(R) be such that supp g C By (R). Then for all h > k + 3 we have
1AY gl 1204,y < C 2K, (122)
where Ay = Byn \ Byn—1 and C depends on ||g||H1/2(R), g1l Loo()-

Proof We fix h > k + 3 and let x € A,. We set gx = | By | ™! fsz g(x) dx. We have

AV4g(x) = lim g(y)—g3(>26) dy = lim g — z,;(;c)
e>0 Jx—y|ze [|x— Y| / 60 Jix—ylze [x — | /
Y€B, i
=B [ ey + 27 [ g0 - gl dy
By By

< C27"22% (gl oy + gl Loo@)-
In the last inequality we used the fact that H'2(R) < BMO(R). It follows that
[, 18500 d = € 5 (g ey + Nl

Thus (122) holds. O

Lemma A.7. Let f € H'/2(R) N L°(R) be such that supp [ C BSy (R). Forall h < N —3, we have
A fll L2 aydx < € 2072, (123)

where C depends on ”f”Hl/Z(R) and || f]| Loe.
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Proof. Fix h < N —3 and x € Aj. We have

1/4 1 SO) = f(x)
A f(X)_“}E’% [x—y|=e |x — y|3/2 @

o ([ 0=/, | LS LN R
2 |x—y|=2N-1

_ _ v|3/2 _ v|3/2
L0, NNz ylze lx — | |x — |

We observe that if |x — y| <2V =2 and x € A, then |y| <2¥~! and thus f(y) = f(x) = 0. Hence

(u@:/‘ ﬂ”—fﬁhw+/ fW=f
2 2

N-2<jx—y|<aN  |x —y[3/2 Nyl X =y

< CRYNN (| £l sy + 1 o) + 2721l oo o)

< C2 N2 £l gragy + 1/ ILoe)- (125)

From (125) it follows that
/Ah AV f(x) 2 dx < C 2_N+h(l|f||%,1/2(ﬂ) + |f”ioo(R))

and thus (123) holds. o

Corollary A.8. Let g € H'/2(R) N L*(R) with supp g € Bk, for some k € Z and for every N > 0 let
fn be a sequence in H'/?(R) N L% (R) such that ”fN”Hl/Z(R) + | /NllLeom) < C (C independent of
N) and supp fn C By Then

N1—i>r—li-loo : AV* Iy (x)AY*g(x)dx = 0. (126)

Proof. We split the integral in (126) as follows:

f A fy () AV (x) dox
R
k42 N=2
— A1/4 Al/4 d + Al/4 Al/4 d
h:Z_oo /A AN () d h:kZ+3 /A AN g () d

+o00
+ > / AV* () A4 g(x)dx. (127)
h=N—1"4n

We estimate the three summations in (127). We take N > k.



188 FRANCESCA DA LIO AND TRISTAN RIVIERE

By applying Lemma A.7 we have

k+2 k+2

1/4 1/4 1/4 2 1/2 1/4 2 1/2
h;oo/AhA fn (A g(x)dxsh;oo(/Ahm fn(I? dx) (/Ahm g2 dx)

k+2

< Cligl g2l grog + 1/n o) Y 207N72
h=—00

< C26=N)/2, (128)

By Lemma A.6 we have

+00 S
Z / AY* f(x)AV*g(x) dx < C”fN||H1/2(R)(||g||H1/2([RE) tlglreom) Z 2
h=N—174n =

<C2kN, (129)

Finally, by applying Lemmas A.6 and A.7 we get

N-2 400
> / AV fn () A g(x)dx < C2KN2 N pmhi2 < 0= /2, (130)
h=k+3 " A h=k+3
By combining (127), (128) and (129) we get (126) and we can conclude. O

We conclude with the following technical result, used in the proof of Theorem 5.3.

Proposition A.9. Let (ay )y be a sequence of positive real numbers satisfying Z;gio_ . a,zc < 0o and
n +o0
Za,zC <C Z 2(”+1_k)/2c1,2c for every n <0. (131)
—o0 k=n+1

There are 0 < B < 1, C > 0 and n < 0 such that for n < n we have
n
Y ap<c@n.
—00
Proof. Forn <0, we set Ay =Y " alzc. We have a,zC = Aj — Aj_4 and thus

+o00 +00
Ap<C Y 20RO — g ) <C—1/V2) Y 2R, 4,

k=n+1 k=n+1
Therefore
+o00
Ap <7y 20H1R2 4 (132)
n+1
with
C ( 1 ) 1 1
T=—(l—— ) <1——.
C+1 V2 V2
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The relation (132) implies the estimate

+o0
Ap < TApgy +7 Yy 20H17012 4 (133)
n+2

Now we apply induction on A, in (133) and we get

+oo . +o0
(133) < T2 (Z 2(n+2—k)/2Ak) + E(Z 2(l’l+2—k)/2Ak)

n+2 n+2

~+00
=1(t + l/ﬁ)(z 2(n+2—k)/2Ak)

n+2

400
=1(t +1/v2) (A,,+2 +1/v2)° 2<"+3—k>/2Ak)
n+3
+o00
<t(t+ 1/«/5)2 Z 2(”+3_k)/2Ak (by applying induction on A4,4>)
n+3

400
<. <t(r4+1/V/2)™" 22_kAk

k=0

t(t+1/4/2)7" (ké 2—k) ( % a,i)

k=—00

A

+oo
<2(@+1/V)T" Y a4
k=—o00

<Cy™,

with ¥ = 7(t + 1/+/2) . Therefore for some 8 € (0, 1) and for all n < 0 we have 4, < C(2MA. O
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