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1. The results

Let (M,G) be a Riemannian manifold of dimension n ≥ 2 with Riemannian volume density dG and
associated Laplace–Beltrami operator 1G . The Strichartz estimates for the Schrödinger equation

i∂t u+1Gu = 0, u|t=0 = u0, (1-1)

are basically estimates of

‖u‖L p([0,1],Lq (M,dG)) :=

(∫ 1

0
‖u(t, · )‖p

Lq (M,dG)dt
)1/p

,

in terms of certain L2 quantities of u0, when the pair of exponents (p, q) satisfies the admissibility
conditions

2
p
+

n
q
=

n
2
, p ≥ 2, (p, q) 6= (2,∞). (1-2)

Strichartz estimates play an important role in the proof of local existence results for nonlinear Schrödinger
equations (see for instance [Ginibre and Velo 1985; Cazenave 2003; Burq et al. 2004]). We won’t
consider such applications in this paper and will only focus on the estimates themselves.

We review some classical results. If M = Rn with the flat metric, it is well known [Strichartz 1977;
Ginibre and Velo 1985; Keel and Tao 1998] that

‖u‖L p([0,1],Lq (Rn)) . ‖u0‖L2(Rn). (1-3)

MSC2000: 35B45, 35S30, 58J40, 58J47.
Keywords: Strichartz estimates, asymptotically hyperbolic, Isozaki–Kiada parametrix, semiclassical functional calculus.

1



2 JEAN-MARC BOUCLET

In this model case, the time interval [0, 1] can be replaced by R and the Strichartz estimates are said to
be global in time. Furthermore, the conditions (1-2) are seen to be natural by considering the action of
the scaling u(t, x) 7→ u(t/λ2, x/λ) on both Schrödinger equation and Strichartz estimates.

(In this paper we will not pursue global in time Strichartz estimates. Although one can expect that
they exist, it is not clear how to obtain them by the present method. One may hope to obtain such global
in time results at least for initial data spectrally cutoff on the low frequencies by combining the present
analysis with the method of [Bouclet and Tzvetkov 2008].)

In more general situations, estimates of the form (1-3) sometimes have to be replaced by

‖u‖L p([0,1],Lq (M,dG)) . ‖u0‖H s(M,dG), s ≥ 0, (1-4)

where

‖u0‖H s(M,dG) := ‖(1−1G)
s/2u0‖L2(M,dG),

is the natural L2 Sobolev norm. If s > 0, estimates such as (1-4) are called Strichartz estimates with
loss (of s derivatives). Notice that, under fairly general assumptions on (M,G), we have the Sobolev
embeddings H s(M, dG)⊂ Lq(M, dG) for s > n/2−n/q. They show that (1-4) holds automatically if s
is large enough and the point of Strichartz estimates with loss (and a fortiori without loss) is to consider
smaller s than those given by Sobolev embeddings.

Such inequalities have been proved by Bourgain [1993] for the flat tori T1 and T2, for certain values
of p, q and any s > 0 (i.e., with “almost no loss”), and by Burq, Gérard, and Tzvetkov [Burq et al.
2004] for any compact manifold with s = 1/p. The techniques of the latter work are actually very robust
and can be applied to prove the same results on many noncompact manifolds; the estimates are known
to be sharp for M = S3 with p = 2 and by considering certain subsequences of eigenfunctions of the
Laplacian. This counterexample can then be used to construct quasimodes and show that (1-4) cannot
hold in general with s = 0, even for noncompact manifolds.

A natural question is therefore to find (sufficient) conditions leading to estimates with no loss.
A classical one is the nontrapping condition. We recall that (M,G) is nontrapping if all geodesics

escape to infinity (implying that M is noncompact). It was for instance shown in [Staffilani and Tataru
2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007] that, for nontrapping perturbations of the
flat metric on Rn , (1-4) holds with s= 0. By a perturbation we mean that the departure of G from the flat
metric GEucl is small near infinity and we refer to those papers for more details. In [Hassell et al. 2006],
the more general case of nontrapping asymptotically conic manifolds was considered. To emphasize
the difference with the asymptotically hyperbolic manifolds studied in this paper, we simply recall that
(M,G) is asymptotically conic if G is close to dr2

+ r2g, in a neighborhood of infinity diffeomorphic
to (R,+∞)× S, for some fixed metric g on a compact manifold S. The asymptotically Euclidean case
corresponds to the case where S = Sn−1.

The nontrapping condition, however, has several drawbacks, such as being nongeneric and difficult to
check. Moreover, it is not clearly a necessary condition to get Strichartz estimates without loss.

In [Bouclet and Tzvetkov 2007], we partially got rid of this condition by considering Strichartz esti-
mates localized near spatial infinity. For long-range perturbations G of the Euclidean metric on M= Rn

(meaning that ∂αx (G(x)−GEucl) = O(〈x〉−τ−|α|) for τ > 0), trapping or not, we proved the existence of
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R > 0 large enough such that, if χ ∈ C∞0 (R
n) satisfies χ ≡ 1 for |x | ≤ R, then

‖(1−χ)u‖L p([0,1];Lq (Rn,dG)) . ‖u0‖L2(Rn,dG). (1-5)

This shows that the possible loss in Strichartz estimates can only come from a bounded region where the
metric is essentially arbitrary (recall that being asymptotically Euclidean is only a condition at infinity).
One can loosely interpret this result as follows: as long as the metric is close to a model one for which
one has Strichartz estimates without loss, the solution to the Schrödinger equation satisfies Strichartz
estimates without loss too.

The first goal of the present paper is to show that the same result holds in (bounded) negative curvature,
more precisely for asymptotically hyperbolic (AH) manifolds. We point out, however, that even if our
Theorem 1.2 below is formally the same as in the asymptotically Euclidean case [Bouclet and Tzvetkov
2007, Theorem 1], its proof involves new arguments using the negative curvature. One of the messages
of this paper is that, by taking advantage of certain curvature effects described at the end of this Section,
we prove Strichartz estimates using long time (microlocal) parametrices of the Schrödinger group which
are localized in very narrow regions of the phase space, much smaller than those considered in the
asymptotically Euclidean situation.

As far as the Schrödinger equation is concerned, Strichartz estimates on negatively curved spaces have
been studied in [Banica 2007; Pierfelice 2006; 2008; Anker and Pierfelice 2009] (see [Tataru 2001] for
the wave equation). In [Pierfelice 2006], Pierfelice considers perturbations of the Schrödinger equation
on the hyperbolic space Hn by singular time-dependent radial potentials, with radial initial data (and also
radial source terms) and derives some weighted Strichartz estimates without loss. The nonradial case for
the free Schrödinger equation on Hn is studied in [Banica 2007] where weighted Strichartz estimates are
obtained too. The more general case of certain Lie groups, namely Damek-Ricci spaces, was considered
in [Pierfelice 2008] for global in time estimates (see also [Banica et al. 2008] for the two-dimensional
case) and further generalized in [Banica and Duyckaerts 2007]. In these last papers, only radial data
are considered. This radial assumption was removed in [Anker and Pierfelice 2009]. This last paper
also shows, with [Banica et al. 2008], in such geometries, the set of admissible pairs for the Strichartz
estimates is contained in a triangle, and thus is much wider than in the (asymptotically) Euclidean case.
One expects that such a result remains valid in our context, but this does not clearly follow from the tools
presented here and might require refined propagation estimates.

In this article, we give a proof of Strichartz estimates at infinity which is purely (micro)local and so, to
a large extent, stable under perturbation. We do not use any Lie group structure or spherical symmetry,
nor do we assume any nontrapping condition. We refer to Definition 1.1 below for precise statements
and simply quote here that our class of manifolds contains Hn , some of its quotients and perturbations
thereof. In particular, we do not assume that the curvature is constant, even near infinity. (Powerful
microlocal techniques for AH manifolds have already been developed by Melrose and his school; see
[Mazzeo and Melrose 1987] and the references in [Melrose 1995]. These geometric methods, based on
compactification and blowup considerations, are perfectly designed for conformally compact manifolds
with boundary, but do not clearly apply to the more general manifolds we study here.)

In the next few pages we fix our framework and state our main results precisely, highlighting the key
points that allow us to prove them. We conclude the section with an overview of the remainder of the
article, on page 7.



4 JEAN-MARC BOUCLET

Definition 1.1 (AH manifold). (Mn,G) is asymptotically hyperbolic if there exist a compact set KbM,
a real number RK > 0, a compact manifold without boundary S and a function

r ∈ C∞(M,R) with r(m)→+∞ as m→∞ (1-6)

(a coordinate near M \K) such that we have an isometry

9 : (M \K,G)→
(
(RK,+∞)r × S, dr2

+ e2r g(r)
)
, (1-7)

where g(r) is a family of metrics on S depending smoothly on r such that, for some τ > 0 and some
fixed metric g on S, we have∥∥∂k

r (g(r)− g)
∥∥

C∞(S,T ∗S⊗T ∗S) . r−τ−k for r > RK, (1-8)

for all k ≥ 0 and all seminorms ‖ · ‖C∞(S,T ∗S⊗T ∗S) in the space of smooth sections of T ∗S⊗ T ∗S.

With no loss of generality, we can assume that the decay rate τ in (1-8) satisfies

0< τ < 1. (1-9)

Therefore, by analogy with the standard terminology in Euclidean scattering, dr2
+ e2r g(r) can be

considered as a long-range perturbation of the metric dr2
+ e2r g. Notice that the conformally compact

case quoted above corresponds to the special situation where g(r) is of the form g̃(e−r ), for some family
of metrics (g̃(x))0≤x�1 depending smoothly on x ∈ [0, x0) (x0 small enough) up to x = 0. In that case,
g(r) is an exponentially small perturbation of g= g̃(0). The assumption (1-8) is therefore more general.

We next denote by 1G the Laplace–Beltrami operator associated to this metric. It is classical that
this operator is essentially self-adjoint on C∞0 (M) (using for instance the method of [Helffer and Robert
1983]), and therefore generates a unitary group ei t1G on L2(M, dG).

Our main result is the following.

Theorem 1.2. There exists χ ∈ C∞0 (M), with χ ≡ 1 on a sufficiently large compact set, such that, for all
pair (p, q) satisfying (1-2),

‖(1−χ)ei t1G u0‖L p([0,1];Lq (M,dG)) . ‖u0‖L2(M,dG), u0 ∈ C∞0 (M). (1-10)

This theorem is the AH analogue of Theorem 1 of [Bouclet and Tzvetkov 2007] in the asymptotically
Euclidean case.

To be more complete, let us point out that the analysis contained in this paper and a classical argument
due to [Staffilani and Tataru 2002] (see also [Bouclet and Tzvetkov 2007, Section 5]), using the local
smoothing effect [Doi 1996], would give the following global in space estimates.

Theorem 1.3. If in addition (M,G) is nontrapping, then we have global in space Strichartz estimates
with no loss: for all pair (p, q) satisfying (1-2),

‖ei t1G u0‖L p([0,1];Lq (M,dG)) . ‖u0‖L2(M,dG), u0 ∈ C∞0 (M).

We state this result as a theorem although we won’t explicitly prove it. The techniques are fairly
well known and don’t involve any new argument in the present context. We simply note that resolvent
estimates implying the local smoothing effect can be found in [Cardoso and Vodev 2002].
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Remark. Theorem 1.2 reduces the proof of potential improvements of Burq–Gérard–Tzvetkov inequal-
ities to local in space estimates of the form

‖χu‖L p([0,1],Lq (M,dG)) . ‖u0‖H s(M,dG),

with 0 ≤ s < 1/p. It would be interesting to know if such inequalities holds for some trapping AH
manifolds.

We now describe, quite informally, the key points of the analysis developed in this paper. Assuming
for simplicity that S = S1 (and thus n = 2), we consider the model case where the principal symbol of
the Laplacian is

p = ρ2
+ e−2rη2.

For convenience, we introduce

P := −e(n−1)r/21Ge−(n−1)r/2
=−er/21Ge−r/2,

which is self-adjoint with respect to dr dθ , instead of e(n−1)r dr dθ = er dr dθ for the Laplacian itself.
Recall first that, by the Keel–Tao T T ∗ Theorem [1998], proving Strichartz estimates (without loss)

mainly reduces to prove certain dispersion estimates. Using the natural semiclassical time scaling t 7→ht ,
this basically requires to control the propagator e−i th P for semiclassical times of order h−1. Such a control
on the full propagator is out of reach (basically because of trapped trajectories) but, fortunately, studying
some of its cutoffs will be sufficient.

After fairly classical reductions, we will work with semiclassical pseudodifferential operators localized
where r� 1 and p ∈ I , I being a (relatively) compact interval of (0,+∞). We can split the latter region
into two areas defined by

0+ =
{
r � 1, p ∈ I, ρ >− 1

2 p1/2} , 0− =
{
r � 1, p ∈ I, ρ < 1

2 p1/2} ,
respectively called the outgoing and incoming areas. The main interest of such areas is that one has a
very good control on the geodesic flow therein (see Section 3). Basically, geodesics with initial data
in outgoing (resp. incoming) areas escape to infinity as t →+∞ (resp. t →−∞), which is proved in
Proposition 3.3. One thus expects to be able to give long time approximations of the propagator e−i th P ,
microlocalized in such areas, for large times (t ≥ 0 in outgoing areas and t ≤ 0 in incoming ones).

In the asymptotically Euclidean case, it turns out that one can give accurate approximations of e−i th Pχ±

for times t such that 0≤±t . h−1, if χ± are pseudodifferential cutoffs localized in 0±. This is not the
AH case: here we are only able to approximate e−i th Pχ±s for cutoffs χ±s localized in much smaller areas,
namely

0+s (ε)=
{
r � 1, p ∈ I, ρ > (1−ε2)p1/2} , 0−s (ε)=

{
r � 1, p ∈ I, ρ < (ε2

−1)p1/2} ,
which we call strongly outgoing/incoming areas. Here ε will be a fixed small real number. We then
obtain approximations of the form

e−i th Pχ±s = JS±(a±)e−i th D2
r JS±(b±)∗+O(hN ), 0≤±t . h−1. (1-11)



6 JEAN-MARC BOUCLET

Here e−i th D2
r is the semiclassical group associated to the radial part D2

r of P . Here and in the sequel, we
shall use the standard notation

Dr = i−1∂r , Dθ = i−1∂θ .

The operators JS±(a±) and JS±(b±) are Fourier integral operators with amplitudes a±, b± supported in
strongly outgoing (+) / incoming (−) areas and phases essentially of the form

S± ≈ rρ+ θη+
e−2rη2

4ρ
,

i.e., the sum of the free phase rρ+θη and of a term whose Hessian is nondegenerate in η, which will be
crucial for the final stationary phase argument (the small factor e−2r will be eliminated by a change of
variable). The nondegeneracy of the full phase of the parametrix (1-11) in ρ will come of course from
e−i th D2

r . This approximation of S± comes basically from (4-34) and (4-35). Although the right-hand
side does not depend on ±, it is only defined in the disconnected regions {ρ > 0} and {ρ < 0}.

The approximation (1-11) is the AH Isozaki–Kiada parametrix and a significant part of this paper is
devoted to its construction. We mention that it is an adaptation to the AH geometry of an approximation
introduced first in [Isozaki and Kitada 1985] to study perturbations of the Euclidean Laplacian by long-
range potentials. In the present paper, it will be used very similarly to the usual (semiclassical) Euclidean
one as in [Bouclet and Tzvetkov 2007]. Its main interest is to give microlocal approximations of the
propagator for times of size h−1. Recall however the big difference with the asymptotically Euclidean
case where one is able to consider cutoffs supported in 0± rather than 0±s (ε) in the AH case. We therefore
have to consider the left parts, namely

0±inter = 0
±
\0±s (ε),

which we call intermediate areas. These areas will only contribute to the dispersion estimates for small
times, in view of the following argument. By choosing δ small enough and by splitting the interval(
−

1
2 , 1−ε2

)
into small intervals of size δ, we can write

0±inter =
⋃

l.δ−1

{
r � 1, p ∈ I, ±ρp−1/2

∈ (σl, σl + δ)
}
=

⋃
l.δ−1

0±inter(l, ε, δ).

Carefuly consideration of the Hamiltonian flow8t
p of p shows that, for any fixed (small) time t0, we can

choose δ (which depends also on ε) such that

8t
p
(
0±inter(l, ε, δ)

)
∩0±inter(l, ε, δ)=∅ for ± t ≥ t0. (1-12)

By semiclassical propagation, this implies that

χ±
intere

−i th Pχ±∗
inter = O(h∞) for ± t ≥ t0,

for pseudodifferential operators χ±inter localized in 0±inter(l, ε, δ). Such operators typically appear in the
T T ∗ argument and the estimate above reduces the proof of dispersion estimates to times |t | ≤ t0. The
latter range of times can then be treated by fairly standard geometric optics approximation.

We interpret (1-12) as a negative curvature effect on the geodesic flow, which we can roughly de-
scribe as follows, say in the outgoing case. For initial conditions (r, θ, ρ, η) in 0+inter(l, ε, δ), the bounds
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1
2 < ρ ≤ (1− ε

2)p1/2 yield the lower bound

ρ̇t
= 2e−2r t

(ηt)2 & ε2,

over a sufficiently long time, if we set (r t , θ t , ρt , ηt) =: 8t
p. This ensures that ρt/p1/2 increases fast

enough to leave the interval (σl, σl + δ) before t = t0 and give (1-12). In the asymptotically flat case,
that is, with r−2 instead of e−2r , we have ρ̇t

= 2(r t)−3(ηt)2 and its control from below is not as good,
basically because of the “extra” third power of (r t)−1.

Overview of remaining sections. In Section 2, we introduce all the necessary definitions, and some
additional results, needed to prove Theorem 1.2. The latter proof is given in Section 2E using microlocal
approximations which will be proved in Sections 5, 6 and 7.

In Section 3, we study the properties of the geodesic flow in outgoing/incoming areas required to
construct the phases involved in the Isozaki–Kiada parametrix. This parametrix is then constructed in
Section 5.

In Section 6 we prove two results: the small semiclassical time approximation of the Schrödinger
group by the WKB method and the propagation of the microlocal support (Egorov theorem). These
results are essentially well known. We need however to check that all the symbols and phases belong to
the natural classes (for AH geometry) of Definition 2.2 below. Furthermore, we use our Egorov theorem
to obtain a propagation property in a time scale of size h−1, which is not quite standard.

Finally, in Section 7, we prove dispersion estimates using basically stationary phase estimates in the
parametrices obtained in Sections 5 and 6.

Up to the semiclassical functional calculus, which is taken from [Bouclet 2007; Bouclet 2010] and
whose results are recalled in Section 2C, this paper is essentially self-contained. This is not only for
the reader’s convenience, but also because the results of Section 6 do require proofs in the AH setting,
although they are in principle well known. The construction of Section 5 is new.

2. The strategy of the proof of Theorem 1.2

2A. The setup. Before discussing the proof of Theorem 1.2, we give the form of the Laplacian, volume
densities and related objects on AH manifolds.

The isometry (1-7) defines polar coordinates: r is the radial coordinate and S will be called the angular
manifold. Coordinates on S will be denoted by θ1, . . . , θn−1.

A finite atlas on M\K is obtained as follows. By (1-7), we have a natural projection πS : (M\K,G)→ S
defined as the second component of 9, that is,

9(m)= (r(m), πS(m)) ∈ (RK,+∞)× S for m ∈M \K. (2-1)

Choosing a finite cover of the angular manifold by coordinate patches Uι, say

S =
⋃
ι∈I

Uι, (2-2)

with corresponding diffeomorphisms

ψι :Uι→ ψι(Uι)⊂ Rn−1, (2-3)
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we consider the open sets
Uι :=9

−1 ((RK,+∞)×Uι)⊂M \K

and then define diffeomorphisms

9ι :Uι→ (RK,+∞)×ψι(Uι)⊂ Rn, (2-4)

by
9ι(m)= (r(m), ψι(πS(m))) .

The collection (Uι, 9ι)ι∈I is then an atlas on M \K. If θ1, . . . , θn−1 are the coordinates in Uι, that is,
ψι = (θ1, . . . , θn−1), the coordinates in Uι are then (r, θ1, . . . , θn−1).

We now give formulas for the Riemannian measure dG and the Laplacian 1G on M \ K. In local
coordinates θ = (θ1, . . . , θn−1) on S, the Riemannian density associated to g(r) reads

dg(r) := det(g(r, θ))1/2|dθ1 ∧ · · · ∧ dθn−1|,

where det(g(r, θ))= det(g jk(r, θ)) if g(r)= g jk(r, θ) dθ j dθk (using the summation convention). Then,
in local coordinates on M \K, the Riemannian density is

dG = e(n−1)r det(g(r, θ))1/2 |dr ∧ dθ1 ∧ · · · ∧ dθn−1|. (2-5)

Now consider the Laplacian. Slightly abusing the notation, we set

c(r, s)= 1
2
∂r det(g(r, s))

det(g(r, s))
for r > RK, s ∈ S, (2-6)

since, for fixed r , the quotient of ∂r det(g jk(r, θ)) by 2 det(g jk(r, θ)) is intrinsically defined as a function
on S, independently of the choice of the coordinate chart. We then have

1G = ∂
2
r + e−2r1g(r)+ c(r, s)∂r + (n− 1)∂r .

It will turn out be convenient to work with the density

d̂G = e(1−n)r dG, (2-7)

rather than dG itself. In particular, we will use the following elementary property: for all relatively
compact subset V ′ι b ψι(Uι), all R > RK and all 1≤ q ≤∞, we have the equivalence of norms

‖u‖Lq (M,d̂G) ≈ ‖u ◦9
−1
ι ‖Lq (Rn), supp(u)⊂9−1

ι

(
(R,+∞)× V ′ι

)
, (2-8)

Lq(Rn) being the usual Lebesgue space. This is a simple consequence of (1-8) and (2-5) (we consider
R > RK since (1-8) gives an upper bound for det g(r, θ) as r→ RK, not a lower bound).

We then have a unitary isomorphism

L2(M, d̂G) 3 u 7→ e−(n−1)r/2u ∈ L2(M, dG), (2-9)

and 1G is unitarily equivalent to the operator

1̂G := eγnr1Ge−γnr , γn =
n−1

2
, (2-10)
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on L2(M, d̂G). This operator reads

1̂G = ∂
2
r + e−2r1g(r)+ c(r, s)∂r − γnc(r, s)− γ2

n, (2-11)

and we will work with
P =−1̂G − γ

2
n. (2-12)

If qι(r, ., · ) is the principal symbol of −1g(r) in the chart Uι, namely

qι(r, θ, ξ)=
∑

1≤k,l≤n−1

gkl(r, θ)ξkξl, (2-13)

the principal symbol of P in the chart Uι is then

pι = ρ2
+ e−2r qι(r, θ, η),= ρ2

+ qι(r, θ, e−rη). (2-14)

The full symbol of P is of the form pι+ pι,1+ pι,0 with

pι, j =
∑

k+|β|= j

aι,kβ(r, θ)ρk(e−rη)β, j = 0, 1. (2-15)

The terms of degree 1 in η come from the first-order terms of the symbol of −1g(r). In the expression
of 1G they carry a factor e−2r and therefore, if j = 1, k = 0 and |β| = 1 above, we could write
aι,kβ(r, θ)= e−r bι,kβ(r, θ) for some function bι,kβ bounded as r→∞. This remark and (1-8) show more
precisely that, for all V b ψι(Uι), the coefficients in (2-15) decay as

|∂ j
r ∂

α
θ aι,kβ(r, θ)| ≤ CV jα〈r〉−τ−1− j , θ ∈ V, r ≥ RK+ 1. (2-16)

The decay rate−τ−1− j will be important to solve transport equations for the Isozaki–Kiada parametrix.
This is the main reason of the long-range assumption (1-8).

2B. Pseudodifferential operators and the spaces Bhyp(�). We will consider h-pseudodifferential op-
erators (h-9DOs) in a neighborhood of infinity and the calculus will be rather elementary. For instance,
we will only consider compositions of operators with symbols supported in the same coordinate patch
and no invariance result under diffeomorphism will be necessary.

The first step is to construct a suitable partition of unity near infinity. Using the cover (2-2) and the
related diffeomorphisms (2-3), we consider a partition of unity on S of the form∑

ι∈I

κι ◦ψι = 1, with κι ∈ C∞0 (R
n−1), supp(κι)b ψι(Uι), (2-17)

and a function κ ∈ C∞(R) such that

supp(κ)⊂ [RK+ 1,+∞), κ ≡ 1 on [RK+ 2,+∞). (2-18)

Then, the functions (κ ⊗ κι) ◦9ι ∈ C∞(M) satisfy∑
ι∈I

(κ ⊗ κι) ◦9ι(m)=
{

1 if r(m)≥ RK+ 2,
0 if r(m)≤ RK+ 1,

(2-19)
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which means that they define a partition of unity near infinity. We could obtain a partition of unity on M

by adding a finite number of compactly supported functions (in coordinate patches) be we won’t need it
since the whole analysis in this paper will be localized near infinity.

We also consider κ̃ ∈ C∞(R) and κ̃ι ∈ C∞0 (R
n−1), for all ι ∈ I, such that

κ̃ ≡ 1 on
(
RK+

1
2 ,+∞

)
, supp(κ̃)⊂ (RK+

1
4 ,+∞),

κ̃ι ≡ 1 near supp(κι), supp(κ̃ι)b ψι(Uι).
(2-20)

We next choose, for each ι ∈ I, two relatively compact open subsets Vι and V ′ι such that

supp(κι)b Vι b V ′ι b supp(κ̃ι) and κ̃ι ≡ 1 near V ′ι . (2-21)

We are now ready to define our 9DOs. In the following definition, we will say that a ∈ C∞(R2n) is
a symbol if either a ∈ C∞b (R

2n)— that is, a is bounded with all derivatives bounded — or

a(r, θ, ρ, η)=
∑

akβ(r, θ)ρkηβ, (2-22)

with akβ ∈ C∞b (R
n), the sum being finite. We shall give examples below. Notice that throughout this

paper, ρ and η will denote respectively the dual variables to r and θ .

Definition 2.1. For ι ∈ I, all h ∈ (0, 1] and all symbol a such that

supp(a)⊂ [RK+ 1,+∞)× V ′ι ×Rn, (2-23)

we define

Ôpι(a) : C
∞

0 (M)→ C∞(M),

by (
Ôpι(a)u

)
◦9−1

ι (r, θ)= a(r, θ, h Dr , h Dθ )
(
κ̃(r)κ̃ι(θ)(u ◦9−1

ι )(r, θ)
)
. (2-24)

Note the cutoff κ̃⊗κ̃ι in the right-hand side of (2-24). It makes the Schwartz kernel of Ôpι(a) supported in
a closed subset of M2 strictly contained in the patch U2

ι so that Ôpι(a) is fully defined by the prescription
of 9ι∗Ôpι(a)9

∗
ι . For future reference, we recall that the kernel of the latter operator is

(2πh)−n
∫∫

e
i
h (r−r ′)ρ+ i

h (θ−θ
′)·ηa(r, θ, ρ, η) dρ dη χ̃(r ′)χ̃ι(θ ′). (2-25)

The notation Ôpι refers to the following relation with the measure d̂G: if a ∈C∞b (R
2n) satisfies (2-23),

then

‖Ôpι(a)‖L2(M,d̂G)→L2(M,d̂G) . 1, h ∈ (0, 1]. (2-26)

This is a direct consequence of the Calderón–Vaillancourt theorem using (2-8) with q = 2, the inclusions
in (2-20), and (2-21). In the “gauge” defined by dG, the latter gives

‖e−γnr Ôpι(a)e
γnr
‖L2(M,dG)→L2(M,dG) . 1, h ∈ (0, 1]. (2-27)

Working with the measure d̂G is to this extent more natural and avoids to deal with exponential weights.
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We now describe the typical symbols we shall use in this paper. Using (2-17), (2-18), (2-19) and
(2-21), we can write

h2 P =
∑
ι∈I

Ôpι
(
(κ ⊗ κι)× (pι+ hpι,1+ h2 pι,0)

)
, r > RK+ 2, (2-28)

using (2-13), (2-14) and (2-15). One observes that the symbols involved in (2-28) are of the form

aι(r, θ, ρ, η)= ãι(r, θ, ρ, e−rη), (2-29)

with ãι ∈ S2(Rn
×Rn). It will turn out that the functional calculus of h2 P (or h21G) will involve more

generally symbols of this form with aι ∈ S−∞(Rn
×Rn). For instance, if f ∈ C∞0 (R), the semiclassical

principal symbol of f (h2 P) or f (−h21G) will be

f (ρ2
+ qι(r, θ, e−rη)), (2-30)

which, once multiplied by the cutoff κ⊗ κι, is of the form (2-29) with ãι ∈ S−∞(Rn
×Rn). This type of

symbols is the model of functions described in Definition 2.2 below. To state this definition, we introduce
the notation

D jαkβ
hyp := er |β|∂βη ∂

j
r ∂

α
θ ∂

k
ρ,

for all j, k ∈ N0 and α, β ∈ Nn−1
0 .

Definition 2.2. Given an open set �⊂ T ∗Rn
+
= (0,+∞)r ×Rn−1

θ ×Rρ ×Rn−1
θ , we define

Bhyp(�)=
{
a ∈ C∞(�) : D jαkβ

hyp a ∈ L∞(�) for all j, k ∈ N0, α, β ∈ Nn−1
0

}
and

Shyp(�)=
{
a ∈ C∞(R2n) : supp(a)⊂� and a ∈Bhyp(�)

}
.

A family (aν)ν∈3 is bounded in Bhyp(�) if (D jαkβ
hyp aν)ν∈3 is bounded in L∞(�) for all j, k, α, β.

Note that considering � ⊂ T ∗Rn
+

is not necessary but, since we shall work only in the region where
r � 1, this will be sufficient.

Example 2.3. Consider the following diffeomorphism from R2n onto itself

Fhyp : (r, θ, ρ, η) 7→ (r, θ, ρ, e−rη). (2-31)

If aι ∈ S0(Rn
×Rn) is supported in Fhyp(�), with �⊂ T ∗Rn

+
, then (2-29) belongs to Shyp(�).

Proof. We only need to check that (2-29) belongs to Bhyp(�). We have

∂r
(
ãι(r, θ, ρ, e−rη)

)
= (∂r ãι)(r, θ, ρ, e−rη)− e−rη · (∂ξ ãι)(r, θ, ρ, ξ)|ξ=e−rη,

which is bounded since ξ · ∂ξaι is bounded. Similarly

er∂η
(
ãι(r, θ, ρ, e−rη)

)
= (∂ξ ãι)(r, θ, ρ, ξ)|ξ=e−rη,

is bounded too. Derivatives with respect to ρ, θ are harmless and higher-order derivatives in r, η are
treated similarly. �

The next lemma gives a characterization of functions in Bhyp(�).
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Lemma 2.4. Let �⊂ T ∗Rn
+

be an open subset and assume that

Fhyp(�)⊂ Rn
+
× B, with B bounded. (2-32)

A function a ∈ C∞(�) is of the form

a(r, θ, ρ, η)= ã(r, θ, ρ, e−rη), with ã ∈ C∞b (Fhyp(�)), (2-33)

if and only if

D jαkβ
hyp a ∈ L∞(�) for all j, k, α, β. (2-34)

Here C∞b (�) and C∞b (Fhyp(�)) are spaces of smooth functions bounded with all derivatives bounded on
� and Fhyp(�), respectively.

Proof. That (2-33) implies (2-34) is proved in the same way as Example 2.3: the boundedness of ξ · ∂ξ ã
follows from the boundedness of ξ = e−rη in Fhyp(�) by (2-32) and the fact that ã ∈ C∞b (Fhyp(�)).
Conversely, one checks by induction that

ã(r, θ, ρ, ξ) := a(r, θ, ρ, erξ),

belongs to C∞b (Fhyp(�)), using again the boundedness of ξ on Fhyp(�). �

Example 2.5. For all f ∈ C∞0 (R
n), all R > RK and all V b 9ι(Uι), (2-30) satisfies the conditions of

this lemma with �= (R,+∞)× V ×Rn .

Proof. By (1-8), there exists C > 1 such that

C−1
|ξ |2 . qι(r, θ, ξ). C |ξ |2 for r > R, θ ∈ V, ξ ∈ Rn−1, (2-35)

and, using the notation (2-13),

|∂ j
r ∂

α
θ gkl(r, θ)| ≤ C jk for r > R, θ ∈ V . (2-36)

Therefore, (2-35) and the compact support of f ensure that e−rη and ρ are bounded, hence that (2-32)
holds on the support of (2-30). Then, (2-36) implies that f (ρ2

+ qι(r, θ, ξ)) belongs to C∞b (Fhyp(�))

(notice that here Fhyp(�)= (R,+∞)× V ×Rn). �

We conclude this subsection with the following useful remarks. If a, b ∈ Shyp(�) for some � (such
a, b satisfy (2-23)), we have the composition rule

Ôpι(a)Ôpι(b)= Ôpι((a#b)(h)), (2-37)

if (a#b)(h) denotes the full symbol of a(r, θ, h Dr , h Dθ )b(r, θ, h Dr , h Dθ ). In particular all the terms of
the expansion of (a#b)(h) belong to Shyp(�) and are supported in supp(a)∩ supp(b). Similarly, for all
N ≥ 0, we have

Ôpι(a)
∗
= Ôpι(a

∗

0 + · · ·+ hN a∗N )+ hN+1 RN (a, h) (2-38)

with a∗0 , . . . , a∗N ∈ Shyp(�) supported in supp(a) and ‖RN (a, h)‖L2(M,d̂G)→L2(M,d̂G) . 1 for h ∈ (0, 1].
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2C. The functional calculus. In Proposition 2.7 below, we give two pseudodifferential approximations
of f (h2 P) near infinity of M, when f ∈ C∞0 (R). The first approximation, namely (2-43), is given in
terms of the “quantization” Ôpι defined in the previous subsection. This is the one we shall mostly use
in this paper. However, at some crucial points, we shall need another approximation, (2-44), which uses
properly supported 9DOs.

To define such properly supported operators, we need a function

ζ ∈ C∞0 (R
n), ζ ≡ 1 near 0, supp(ζ ) small enough,

which will basically be used as a cutoff near the diagonal. The smallness of the support will be fixed in
the following definition.

Definition 2.6. For ι ∈ I, all h ∈ (0, 1] and all symbol a satisfying (2-23), we define

Opι,pr(a) : C∞0 (M)→ C∞(M),

as the unique operator with kernel supported in U2
ι and such that the kernel of 9∗ι Ôpι(a)9ι∗ is

(2πh)−n
∫∫

e
i
h (r−r ′)ρ+ i

h (θ−θ
′)·ηa(r, θ, ρ, η) dρ dη ζ(r − r ′, θ − θ ′). (2-39)

The advantage of choosing the support of ζ small enough is that, using (2-23), we can assume that, on
the support of (2-39), r ′ belongs to a neighborhood of [RK+1,+∞) and θ ′ belongs to a neighborhood of
V ′ι . For instance, we may assume that r ′ ∈ κ̃−1(1) and θ ′ ∈ κ̃−1

ι (1) so that we can put a factor κ̃(r ′)κ̃ι(θ ′)
for free to the right-hand side of (2-39). The latter implies, using (2-8), (2-25), and (2-39), the standard
off-diagonal fast decay of kernels of 9DOs and the Calderón–Vaillancourt theorem stating that, for all
a ∈ C∞b (R

2n) satisfying (2-23) and all N ∈ N0, we have

‖Ôpι(a)− Opι,pr(a)‖L2(M,d̂G)→L2(M,d̂G) . hN , h ∈ (0, 1]. (2-40)

This shows that, up to remainders of size h∞, Ôpι(a) and Opι,pr(a) coincide as bounded operators on
L2(M, d̂G). Under the same assumptions on a, we also have

‖Opι,pr(a)‖L2(M,dG)→L2(M,dG) . 1, h ∈ (0, 1], (2-41)

which is a first difference with Ôpι(a) for which we have only (2-27) in general. The estimate (2-41) is
equivalent to the uniform boundedness (with respect to h ∈ (0, 1]) of eγnr Opι,pr (a)e−γnr on L2(M, d̂G).
The latter is obtained similarly to (2-26), using the Calderón–Vaillancourt theorem, for we only have
to consider the kernel obtained by multiplying (2-39) by eγn(r−r ′), which is bounded (as well as its
derivatives) on the support of ζ(r − r ′, θ − θ ′).

In other words, (2-41) can be interpreted as a boundedness result between (exponentially) weighted
L2 spaces. Similar properties holds for Lq spaces (under suitable assumptions on the symbol a) and they
are the main reason for considering properly supported operators. In particular, they lead to following
proposition, where we collect the estimates we shall need in this paper. We refer to [Bouclet 2007] for
the proof.
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Proposition 2.7. Let f ∈ C∞0 (R) and let I b (0,+∞) be an open interval containing supp( f ). Let
χK ∈ C∞0 (M) and R > RK+ 1 be such that

χK(m)= 1 if r(m)≤ R+ 1.

Then, for all N ≥ 0 and all ι ∈ I, we can find symbols

aι,0( f ), . . . , aι,N ( f ) ∈ Shyp
(
(R,+∞)× Vι×Rn

∩ p−1
ι (I )

)
(2-42)

(where pι is the principal symbol of P in the chart Uι) such that, if we set

a(N )ι ( f, h)= aι,0( f )+ haι,1( f )+ · · ·+ hN aι,N ( f ),

we have

(1−χK) f (h2 P)=
∑
ι∈I

Ôpι(a
(N )
ι ( f, h))+ hN+1 R̂N ( f, h), (2-43)

(1−χK) f (h2 P)=
∑
ι∈I

Opι,pr(a(N )ι ( f, h))+ hN+1 RN ,pr( f, h), (2-44)

where, for each q ∈ [2,∞],

‖e−γnr RN ,pr( f, h)‖L2(M,d̂G)→Lq (M,dG) . h−n( 1
2−

1
q ) for h ∈ (0, 1], (2-45)

and

‖R̂N ( f, h)‖L2(M,d̂G)→L2(M,d̂G) . 1 for h ∈ (0, 1]. (2-46)

In addition, for all ι ∈ I and all q ∈ [2,∞], we have

‖e−γnr Opι,pr(a(N )ι ( f, h))‖L2(M,d̂G)→Lq (M,dG) . h−n( 1
2−

1
q ) for h ∈ (0, 1], (2-47)

and, for all q ∈ [1,∞] and all γ ∈ R,

‖e−γr Opι,pr(a(N )ι ( f, h))eγr
‖Lq (M,d̂G)→Lq (M,d̂G) . 1 for h ∈ (0, 1]. (2-48)

In this proposition, as well as in further definitions or propositions, the interval I can be considered
as a semiclassical energy window, in the sense that the principal symbol of h2 P will live in I . In the
sequel, I will be more explicitly of the form

( 1
4 , 4

)
or
( 1

4 − ε, 4+ ε
)
; see for instance (2-54).

To make (2-42) more explicit, let us quote for instance that

aι,0( f )(r, θ, ρ, η)= κ(r)κι(θ) f (ρ2
+ qι(r, θ, e−rη))× (1−χK)(9

−1
ι (r, θ)).

More generally, (2-42) and Lemma 2.4 show that aι,0( f ), . . . , aι,N ( f ) are of the form (2-29), with
ãι(r, θ, ρ, ξ) compactly supported with respect to (ρ, ξ).

The estimate (2-48) basically means that Opι,pr(a
(N )
ι ( f, h)) preserves all Lq spaces with any expo-

nential weights. In particular, since Lq(M, dG) = e−γnr/q Lq(M, d̂G), replacing d̂G by dG in (2-48)
would give a completely equivalent statement. This estimate is the main reason for introducing properly
supported operators. Of course, (2-48) holds for other symbols than those involved in the functional
calculus of P . We have more generally (see [Bouclet 2007]) for all γ ∈ R,

‖e−γr Opι,pr(aι)eγr
‖Lq (M,d̂G)→Lq (M,d̂G) . 1 for h ∈ (0, 1], (2-49)
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for any q ∈ [1,∞] and any

aι ∈ Shyp
(
(RK+ 1,+∞)× V ′ι ×Rn

∩ p−1
ι (I ′)

)
,

provided I ′ is bounded.
By the unitary equivalence of P and −1G − γ

2
n , we would get a very similar pseudodifferential

expansion for f (−h21G). (Here we have only described (1− χK) f (h2 P) since this will be sufficient
for our present purpose, but of course there is a completely analogous result for the compactly supported
part χK f (h2 P); see [Bouclet 2007].) Such an approximation of f (−h21G) was used in [Bouclet 2010]
to prove the next two propositions.

Proposition 2.8. Consider a dyadic partition of unit

1= f0(λ)+
∑
k≥0

f (2−kλ),

for λ in a neighborhood of [0,+∞), with

f0 ∈ C∞0 (R), f ∈ C∞0
(
[

1
4 , 4]

)
. (2-50)

Then, for all χ ∈ C∞0 (M) and all q ∈ [2,∞), we have

‖(1−χ)u‖Lq (M,dG) .

( ∑
h2
=2−k

k≥0

‖(1−χ) f (−h21G)u‖2Lq (M,dG)

)1/2

+‖u‖L2(M,dG).

This proposition leads to the following classical reduction.

Proposition 2.9. Let χ ∈ C∞0 (M) and (p, q) be an admissible pair. Then (1-10) holds true if and only if
there exists C such that

‖(1−χ)ei t1G f (−h21G)u0‖L p([0,1];Lq (M,dG)) ≤ C‖u0‖L2(M,dG), (2-51)

for all h ∈ (0, 1] and u0 ∈ C∞0 (M).

This result is essentially well known and proved in [Bouclet 2010] for a class of noncompact manifolds.
We simply recall here that the Lq

→ Lq boundedness of the spectral cutoffs f (−h21G) is not necessary
to prove this result, although the latter slightly simplifies the proof when it is available.

2D. Outgoing and incoming areas. Propositions 2.7 and 2.9 lead to a microlocalization of Theorem 1.2:
as we shall see more precisely in Section 2E, they allow to reduce the proof of (1-10) to the same estimate
in which 1− χ is replaced by h-9DOs. But this microlocalization, i.e., the support of the symbols in
(2-42), is still too rough to simplify the proof of Theorem 1.2 in a significant way. The purpose of this
subsection is to describe convenient regions which will refine this localization.

Definition 2.10. Fix ι ∈ I. For R > RK + 1, an open subset V b V ′ι (see (2-21)), an open interval
I b (0,+∞) and σ ∈ (−1, 1), we define

0±ι (R, V, I, σ )=
{
(r, θ, ρ, η) ∈ R2n

: r > R, θ ∈ V, pι ∈ I, ±ρ >−σ p1/2
ι

}
,

where pι is the principal symbol of P in the chart Uι given by (2-14). The open set 0+ι (R, V, I, σ ) is
called an outgoing area, and 0−ι (R, V, I, σ ) an incoming area.
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We note in passing that, except from the localization in θ , these areas are defined using only the
variable r , its dual ρ and the principal symbol of P . In particular, up to the choice of the coordinate r ,
the conditions r > R, pι ∈ I and ±ρ > −σ p1/2

ι define invariant subsets of T ∗M. However the whole
analysis in this paper will be localized in charts and we will not use this invariance property.

Let us record some useful properties of outgoing/incoming areas. First, they decrease with respect to
V, I, σ and R−1:

R1 ≥ R2, V1 ⊂ V2, I1 ⊂ I2, σ1 ≤ σ2 H⇒ 0±ι (R1, V1, I1, σ1)⊂ 0
±

ι (R2, V2, I2, σ2). (2-52)

Second, we have

0+ι
(
R, V, I, 1

2

)
∪0−ι

(
R, V, I, 1

2

)
= (R,+∞)× V ×Rn

∩ p−1
ι (I ). (2-53)

Here we have chosen σ = 1
2 but any σ ∈ (0, 1) would work as well.

We will use the following elementary property, proved later as part (ii) of Proposition 4.1.

Proposition 2.11. Any symbol a ∈ Shyp
(
(R,+∞)× V ×Rn

∩ p−1
ι (I )

)
can be written as

a = a++ a−, with a± ∈ Shyp
(
0±ι (R, V, I, 1

2)
)
.

This splitting into outgoing/incoming areas was sufficient to use the Isozaki–Kiada parametrix in the
asymptotically Euclidean case; in the AH case, we will only be able to construct this parametrix in much
smaller areas, called strongly outgoing/incoming areas, which we now introduce.

We first describe briefly the meaning of such areas, say in the outgoing case. Basically, being in an
outgoing area means that ρ is not too close to −p1/2; the aim of strongly outgoing areas is to guarantee
that ρ is very close to p1/2, which is of course a much stronger restriction. This amounts essentially to
chose σ close to−1 in the definition of outgoing areas. We will measure this closeness in term of a small
parameter ε. It will actually be convenient to have the other parameters, namely R, V, I , depending also
on ε, so we introduce

R(ε)= 1/ε, Vι,ε = {θ ∈ Rn−1
: dist(θ, Vι) < ε2

}, I (ε)=
( 1

4 − ε, 4+ ε
)
, (2-54)

where we recall that Vι is defined in (2-21).

Definition 2.12. For all ε > 0 small enough, we set

0±ι,s(ε) := 0
±

ι

(
R(ε), Vι,ε, I (ε), ε2

− 1
)
.

The open set 0+ι,s(ε) is called a strongly outgoing area, and 0−ι,s(ε) a strong incoming area.

The main interest of such areas is to ensure that e−r
|η| is small if ε is small. Indeed, if q ∈ [0,+∞)

and −1< σ < 0, we have the equivalence

±ρ >−σ(ρ2
+ q)1/2 ⇐⇒ ±ρ > 0 and q < σ−2(1− σ 2)ρ2. (2-55)

Therefore, there exists C such that, for all ε small enough and (r, θ, ρ, η) ∈ 0±ι,s(ε),

qι(r, θ, e−rη)≤ Cε2,

which, by (2-35), is equivalent to
|e−rη|. ε. (2-56)
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Note also that, by (2-52), strongly outgoing/incoming areas decrease with ε.

We now quote a result that motivates, at least partially, the introduction of strongly outgoing/incoming
areas. Its proof is given in Section 4A.

Denote by 8t
ι the Hamiltonian flow of pι. This is of course the geodesic flow written in the chart

9ι(Uι)×Rn of T ∗M.

Proposition 2.13. Fix σ ∈ (−1, 1). There exists R′σ > 0 such that for all R ≥ R′σ and all ε > 0 small
enough, there exists tR,ε ≥ 0 such that

8t
ι

(
0±ι (R, Vι, (1

4 − ε, 4+ ε), σ )
)
⊂ 0±ι,s(ε) if ± t ≥ tR,ε.

In particular, for all ε > 0 small enough, there exists Tε > 0 such that

8t
ι

(
0±ι (R(ε), Vι, I (ε), σ )

)
⊂ 0±ι,s(ε) if ± t ≥ Tε. (2-57)

Note that, since pι is only defined in the chart9ι(Uι)×Rn , its flow is not complete. We shall however
see in Section 3 that, for any initial data (r, θ, ρ, η) ∈ 0±ι (R(ε), Vι, I, σ ), 8t

ι(r, θ, ρ, η) is well defined
for all ±t ≥ 0; that is, 8t

ι(r, θ, ρ, η) ∈9ι(Uι)×Rn for all ±t ≥ 0.
Proposition 2.13 essentially states that the forward flow sends outgoing areas into strongly outgoing

areas in finite time, and likewise the backward flow sends incoming areas into strongly incoming ones.
This will be interesting for the proof of Proposition 2.24.

The last type of region we need to consider are the intermediate areas. They should have two
properties: firstly they should essentially cover the complement of strongly outgoing/incoming areas
in outgoing/incoming areas and, secondly, be small enough.

To define them we need the following. For all ε > 0 and all δ > 0, we can find L + 1 real numbers,
σ0, . . . , σL ,

(ε/2)2− 1= σ0 < σ1 < · · ·< σL =
1
2 , (2-58)

such that (
(ε/2)2− 1, 1

2

)
=

L−1⋃
l=1
(σl−1, σl+1) (2-59)

and
|σl+1− σl−1| ≤ δ. (2-60)

Note that the intervals overlap in (2-59), since (σl−1, σl+1) always contains σl .

Definition 2.14. The intermediate outgoing and incoming areas associated to the cover (2-59) are

0±ι,inter(ε, δ; l) :=
{
(r, θ, ρ, η) ∈ R2n

: r > R(ε), θ ∈ Vι, pι ∈ I (ε), ±ρ/p1/2
ι ∈ (−σl+1,−σl−1)

}
,

for 1≤ l ≤ L − 1.

Notice that, by definition,

0±ι,inter(ε, δ; l)⊂ 0
±

ι

(
R(ε), Vι, I (ε), 1

2

)
. (2-61)

In the notation, we only specify the parameters which are relevant for our analysis, namely ε, δ, but,
of course, intermediate areas depend on the choice of σ1, . . . , σL . Here δ measures the smallness and
Proposition 2.16 below will explain how to choose this parameter.
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Proposition 2.15. Fix ε > 0 small enough, δ > 0 and σ0, . . . , σL satisfying (2-58), (2-59) and (2-60).
Then, any symbol

a± ∈ Shyp
(
0±ι (R(ε), Vι, I (ε), 1

2)
)

can be written as
a± = a±s + a±1,inter+ · · ·+ a±L−1,inter,

with a±s ∈ Shyp(0
±
ι,s(ε)) and a±l,inter ∈ Shyp(0

±

ι,inter(ε, δ; l)).

The proof is given in Section 4A.

We conclude this subsection with the following proposition which will be crucial for the proof of
Theorem 1.2 and motivates the introduction of intermediate areas. The proof is given in Section 4A.

Proposition 2.16. Fix t > 0. Then, for all ε > 0 small enough, we can find δ > 0 small enough such that,
for any choice of σ0, . . . , σL satisfying (2-58), (2-59) and (2-60), we have, for all 1≤ l ≤ L − 1,

8t
ι

(
0±ι,inter(ε, δ; l)

)
∩0±ι,inter(ε, δ; l)=∅, (2-62)

provided that
±t ≥ t .

2E. The main steps of the proof of Theorem 1.2. We already know from Proposition 2.9 that we only
have to find χ ∈ C∞0 (M) such that (2-51) holds, which is equivalent to

‖e−γnr (1−χ) f (h2 P)e−i t Pu0‖L p([0,1];Lq (M,dG)) ≤ C‖u0‖L2(M,d̂G), (2-63)

using the unitary map (2-9) and (2-11), (2-12).
Before choosing χ, we introduce the following operators. Choose a cutoff f̃ ∈ C∞0 ((0,+∞)) such

that f̃ f = f .

Lemma 2.17. For all χ ∈ C∞0 (M), we can write

(1−χ) f̃ (h2 P)= (1−χ)Apr(h)+ R(h)

with R(h) satisfying, for all q ∈ [2,∞],

‖e−γnr R(h)‖L2(M,d̂G)→Lq (M,dG) . 1, (2-64)

and Apr(h) such that, for all q ∈ [2,∞],

‖e−γnr Apr(h)‖L2(M,d̂G)→Lq (M,dG) . h−n
(

1
2−

1
q

)
, (2-65)

‖e−γnr Apr(h)eγnr
‖L∞(M,dG)→L∞(M,dG) . 1, (2-66)

‖Apr(h)∗e−γnr
‖L1(M,d̂G)→L2(M,d̂G) . h−n/2, (2-67)

‖eγnr Apr(h)∗e−γnr
‖L1(M,d̂G)→L1(M,d̂G) . 1. (2-68)

Proof. This is an immediate consequence of Proposition 2.7. Using (2-44), with N such that N+1≥n/2,
we define Apr(h) as the sum of the properly supported pseudodifferential operators. We thus have (2-64),
(2-65) and (2-66). The estimates (2-67) and (2-68) are obtained by taking the adjoints (with q =∞ in
(2-65)) with respect to d̂G. �
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Basically, the operators e−γnr Apr(h) and Apr(h)∗e−γnr will be used as “ghost cutoffs” to deal with
remainder terms of parametrices which will be O(hN ) in L(L2(M, d̂G)), using the Sobolev embeddings
(2-65) and (2-67). They will be “transparent” for the principal terms of the parametrices by (2-66) and
(2-68), which uses crucially that they are properly supported.

For ε to be fixed below, we choose χ ∈ C∞0 (M) such that

χ ≡ 1 for r(m)≤ 3ε−1.

This function will appear in Proposition 2.18 below only trough its support. More precisely, the propo-
sition states that to prove (2-63) for such a χ (with ε small enough), it is sufficient to prove the estimate
(2-70) for a class of symbols supported where r(m)≥ ε−1.

Proposition 2.18 (Microlocalization of Strichartz estimates). To prove (2-63), it is sufficient to show
that, for some ε small enough and all

aι ∈ Shyp
(
(R(ε),+∞)× Vι×Rn

∩ p−1
ι (I (ε))

)
, (2-69)

where we recall that R(ε)= ε−1 and I (ε)=
( 1

4 − ε, 4+ ε
)
, we have

‖e−γnr Apr(h)Ôpι(aι)e
−i t Pu0‖L p([0,1];Lq (M,dG)) ≤ C‖u0‖L2(M,d̂G), (2-70)

uniformly with respect to h ∈ (0, 1].

Proof. Choose χ0 ∈ C∞0 (M) such that

χ0 ≡ 1 for r(m)≤ ε−1,

χ0 ≡ 0 for r(m)≥ 2ε−1.

We then have (1− χ0) ≡ 1 near supp(1− χ) so, by the proper support of the kernel of Apr(h), we also
have

(1−χ)Apr(h)= (1−χ)Apr(h)(1−χ0),

at least for ε small enough. The latter and (2-64) reduces the proof of (2-63) to the study of

e−γnr Apr(h)(1−χ0) f (h2 P)e−i t P .

By splitting (1 − χ0) f (h2 P) using (2-43) with N + 1 ≥ n/2, we obtain the result using (2-46) and
(2-65). �

We now introduce a second small parameter δ > 0. By Propositions 2.11 and 2.15, for all δ > 0, any
aι satisfying (2-69) can be written as

aι = a+s + a−s +
L−1∑
l=1

a+l,inter+ a−l,inter, (2-71)

with
a±s ∈ Shyp(0

±

ι,s(ε)), a±l,inter ∈ Shyp(0
±

ι,inter(ε, δ; l)). (2-72)
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Proposition 2.19 (Reduction to microlocalized dispersion estimates). To prove (2-70), it is sufficient to
show that, for some ε and δ small enough, we have∥∥e−γnr Apr(h)Ôpι(a

±

s )e
−i th P Ôpι(a

±

s )
∗Apr(h)∗e−γnr

∥∥
L1(d̂G)→L∞(dG) ≤ Cε|ht |−n/2, (2-73)∥∥e−γnr Apr(h)Ôpι(a

±

l,inter)e
−i th P Ôpι(a

±

l,inter)
∗Apr(h)∗e−γnr

∥∥
L1(d̂G)→L∞(dG) ≤ Cε,δ|ht |−n/2, (2-74)

for
h ∈ (0, 1] and 0≤±t ≤ 2h−1. (2-75)

Recall that the important point in this lemma is (2-75), i.e., that it is sufficient to consider t ≥ 0 for
outgoing localizations, and t ≤ 0 for incoming ones.

Proof. Define

T±s (t, h, ε)= e−γnr Apr(h)Ôpι(a
±

s )e
−i t P , T±l,inter(t, h, ε, δ)= e−γnr Apr(h)Ôpι(al,inter)e−i t P .

By (2-26) and (2-65) (with q = 2), we have,

‖T±s (t, h, ε)‖L2(d̂G)→L2(dG)+‖T
±

l,inter(t, h, ε, δ)‖L2(d̂G)→L2(dG) ≤ Cε,δ for h ∈ (0, 1], t ∈ R;

hence by the Keel–Tao Theorem [1998], the inequality (2-70) would follow from the estimates

‖T±s (t, h, ε)T±s (s, h, ε)∗‖L1(dG)→L∞(dG) ≤ Cε|t − s|−n/2, (2-76)

‖T±l,inter(t, h, ε)T±l,inter(s, h, ε)∗‖L1(dG)→L∞(dG) ≤ Cε,δ|t − s|−n/2, (2-77)

for h ∈ (0, 1] and t, s ∈ [0, 1]. Using the time rescaling t 7→ ht , the equality L1(dG) = e−2γnr L1(d̂G),
and the fact that the adjoint of (2-9) is given by eγnr , we see that (2-76) and (2-77) are respectively
equivalent to (2-73) and (2-74), for h ∈ (0, 1] and |t | ≤ 2h−1.

The reduction (2-75) to ±t ≥ 0 is obtained similarly to [Bouclet and Tzvetkov 2007, Lemma 4.3]. We
only recall here that it is based on the simple observation that the operators T (t)T (s)∗ considered above
are of the form Be−i(t−s)P B∗, so L∞ bounds on their Schwartz kernel for±(t−s)≥ 0 give automatically
bounds for ±(t − s)≤ 0 by taking the adjoints. �

As we shall see, there are basically two reasons for choosing ε small enough. The next result is the
first condition.

Proposition 2.20 (Time h−1 Isozaki–Kiada parametrix). For all ε > 0 small enough and all a±s in
Shyp(0

±
ι,s(ε)), we can write

e−i th P Ôpι(a
±

s )
∗
= E±IK(t, h)+ hn R±IK(t, h),

with

‖e−γnr E±IK(t, h)e−γnr
‖L1(d̂G)→L∞(dG) . |ht |−n/2, (2-78)

‖R±IK(t, h)‖L2(d̂G)→L2(d̂G) . 1, (2-79)

for
h ∈ (0, 1], 0≤±t ≤ 2h−1.
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Proof. By (2-38), the result follows from Theorem 5.1 and by a stationary phase argument justified by
Propositions 7.2, 7.3, 7.6, Lemma 7.9 and Propositions 7.11, 7.12. �

Proposition 2.20 is mainly an application of the Isozaki–Kiada parametrix. It has the following con-
sequence.

Proposition 2.21 (Time h−1 strongly incoming/outgoing dispersion estimates). For all ε > 0 sufficiently
small, (2-73) holds for all h, t satisfying (2-75).

Proof. We first replace Ôpι(a
±
s ) by Opι,pr(a±s ) to the left of e−i th P in (2-73). The remainder term, which

is O(h∞) in L(L2(d̂G)) by (2-40), produces a term of size O(h∞) in L(L1(d̂G), L∞(dG)) using (2-65)
(with q =∞) and (2-67). We then use Proposition 2.20: the remainder term satisfies∥∥e−γnr Apr(h)Opι,pr(a±s )e

−i th P hn R±IK(t, h)Apr(h)∗e−γnr
∥∥

L1(d̂G)→L∞(dG) . 1. |ht |−d/2,

and the main term E±IK(t, h) gives the expected contribution via the use of (2-66), (2-68), and (2-49) for
Opι,pr(a±s ). �

The second condition on ε will come from Proposition 2.24. It uses Proposition 2.16 which depends
on some fixed small time which will be given by the following result.

Proposition 2.22 (Time 1 geometric optics). There exists tWKB > 0 such that, for all ε > 0 small enough
and all symbol a± ∈ Shyp

(
0±ι (R(ε), Vι, I, 1

2)
)
, we can write

e−i th P Ôpι(a
±)∗ = E±WKB(t, h)+ hn R±WKB(t, h),

with
‖e−γnr E±WKB(t, h)e−γnr

‖L1(d̂G)→L∞(dG) . |ht |−n/2,

‖R±WKB(t, h)‖L2(d̂G)→L2(d̂G) . 1,

(2-80)

for
h ∈ (0, 1], 0≤±t ≤ tWKB. (2-81)

Proof. This follows from the stationary phase theorem, using the parametrix given in Theorem 6.1 and
Propositions 7.2, 7.3, 7.6, and 7.8. �

The first consequence of this proposition is the following result on short-time dispersion estimates,
whose proof is completely similar to that of Proposition 2.21.

Proposition 2.23 (Time 1 dispersion estimates in intermediate areas). For all ε > 0, all δ > 0 and all
a±l,inter satisfying (2-72), the estimate (2-74) holds for all h, t satisfying (2-81).

We can now give the second condition on ε, also giving the choice of δ. The proof is given in on page
65 (Section 6B).

Proposition 2.24 (Negligibility of 1. t . h−1 dispersion estimates in intermediate areas). If ε is small
enough, we can choose δ > 0 small enough such that, for all 1≤ l ≤ L − 1, all

b±l,inter ∈ Shyp
(
0±ι,inter(ε, δ; l)

)
,

and all N ≥ 0, we have

‖Ôpι(b
±

l,inter)e
−i th P Ôpι(b

±

l,inter)
∗
‖L2(d̂G)→L2(d̂G) ≤ Cl,N hN , (2-82)
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for
h ∈ (0, 1], tWKB ≤±t ≤ 2h−1.

This is, at least intuitively, a consequence of Proposition 2.16 with t= tWKB and of the Egorov theorem
which shows that e−i th P Ôpι(b

±

l,inter)
∗ lives semiclassically in the region 8t

ι

(
supp(b±l,inter)

)
.

We summarize the reasoning above as follows.

Proof of Theorem 1.2. Using Proposition 2.21, we first choose ε0 > 0 small enough that, for all ε ∈
(0, ε0], (2-73) holds for 0 ≤ ±t ≤ 2h−1. By possibly decreasing ε0, we then choose tWKB according
to Proposition 2.22, uniformly with respect to ε ∈ (0, ε0]. Next, according to Proposition 2.24, we fix
ε ∈ (0, ε0] and δ > 0 small enough that (2-82) holds for tWKB ≤ ±t ≤ 2h−1. Using (2-65), (2-67) and
Proposition 2.24 with N = n and b±l,inter = a±l,inter defined by (2-71), we have∥∥e−γnr Apr(h)Ôpι(a

±

l,inter)e
−i th P Ôpι(a

±

l,inter)
∗Apr(h)∗e−γnr

∥∥
L1(d̂G)→L∞(dG) ≤ Cε,δ . |ht |−n/2,

for tWKB ≤ ±t ≤ 2h−1. On the other hand, (2-74) holds for 0 ≤ ±t ≤ tWKB, using Proposition 2.22.
Therefore (2-74) holds for 0 ≤ ±t ≤ 2h−1. By Proposition 2.19, this proves (2-70) for all aι satisfying
(2-69). By Proposition 2.18, this implies (2-63) which, by Proposition 2.9, implies Theorem 1.2. �

3. Estimates on the geodesic flow near infinity

In this section, we describe some properties of the Hamiltonian flow of functions of the form

p(r, θ, ρ, η)= ρ2
+w(r)q(r, θ, η), (3-1)

on T ∗Rn
+
= R+r ×Rn−1

θ ×Rρ ×Rn−1
η . Here q is an homogeneous polynomial of degree 2 with respect

to η and w a positive function. In Section 3B, we will assume that w(r) = e−2r but we start with more
general cases in Section 3A.

The motivation for the study of (3-1) comes naturally from the form of the principal symbol pι of P
given by (2-14).

We emphasize that the symbol p considered in this section is defined on T ∗Rn
+

whereas pι is only
defined on a subset of the form T ∗(RK,+∞)× Vι. The results of Section 3B will nevertheless hold for
pι as well with no difficulty for we shall have a good localization of the flow in the regions we consider
(see Corollary 3.10).

3A. A general result. Let w = w(r) be a smooth function on R+ = (0,+∞) such that

w > 0, w′ < 0,
(
w′

w

)′
≥ 0, (3-2)

and, for some 0< γ < 1,

lim sup
r→+∞

∫ (1+γ)r

r

w′

w
∈ [−∞, 0). (3-3)

Note that limr→+∞w(r) exists, by (3-2), and that (3-3) implies that this limit must be 0. Note also that,
for all R > 0, we have

w(r). 1 and |w′(r)|. w(r) for r ∈ [R,+∞).
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These assumptions are satisfied for instance by w(r)= r−2 or w(r)= e−2r .
We assume that q is an homogeneous polynomial of degree 2 with respect to η of the form

q(r, θ, η)= q0(θ, η)+ q1(r, θ, η) (3-4)

with q0, q1 homogeneous polynomials of degree 2 with respect to η satisfying, for some 0< τ ≤ 1,

|∂αθ ∂
β
η q0(θ, η)|. 〈η〉

2−|β|, (3-5)

|∂ j
r ∂

α
θ ∂

β
η q1(r, θ, η)|. 〈r〉−τ− j

〈η〉2−|β|, (3-6)

and, for some C > 0,
C−1
|η|2 ≤ q(r, θ, η)≤ C |η|2, (3-7)

for (r, θ, η) ∈ R+×Rn−1
×Rn−1. The latter implies, by possibly increasing C , that

C−1
|η|2 ≤ q0(θ, η)≤ C |η|2, (θ, η) ∈ Rn−1

×Rn−1. (3-8)

Setting q ′ = ∂r q (= ∂r q1), we finally assume that,

q ′

q
×
w

w′
→ 0 as r→+∞, (3-9)

uniformly with respect to θ ∈ Rn−1 and η ∈ Rn−1
\ 0.

The Hamiltonian flow 8t
= (r t , θ t , ρt , ηt), generated by p, is the solution to the system

ṙ = 2ρ,
θ̇ = w ∂q/∂η,
ρ̇ = −w′q −wq ′,
η̇ = −w∂q/∂θ,

(3-10)

with initial condition
(r t , θ t , ρt , ηt)|t=0 = (r, θ, ρ, η). (3-11)

Our main purpose is to show that, if ρ > −p1/2 (with p = p(r, θ, ρ, η)) and r is large enough, then
8t is defined for all t ≥ 0 and rt →+∞ as t→+∞ (we will obtain a similar result for t ≤ 0 provided
ρ < p1/2). This result relies mainly on the following remark: if η 6= 0, we can write

−w′q −wq ′ =−w
′

w

(
p− ρ2) (1+ w

w′
×

q ′

q

)
.

Using (3-9) and the negativity of w′/w, this shows that, for all ε > 0, we can find R > 0 such that

−w′q −wq ′ ≥−(1− ε)(p− ρ2)
w′

w
, on [R,+∞)r ×Rn−1

θ ×Rρ ×Rn−1
η (3-12)

which we shall exploit to prove that ρ̇ ≥ 0.
In the following lemma and in the sequel, we shall use extensively the shorter notation

p = p(r, θ, ρ, η).
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Lemma 3.1. Denote by (−t−, t+) (t± ∈ (0,+∞]) the maximal interval on which the solution of (3-10),
with initial condition (3-11), is defined. Then

t± ≥
r

2p1/2 .

Furthermore, either rt → 0 as t→ t+ (resp. t→−t−) or t+ =+∞ (resp. t− =+∞).

Note that, if p(r, θ, ρ, η)= 0, i.e., ρ = 0 and η = 0, then it is trivial that t± =+∞.

Proof. We will only consider the case of t+, the one of t− being similar. By the conservation of energy
we have |ρt

| ≤ p1/2 thus, for t ∈ [0, t+), ṙ t is bounded,

|r t
− r | ≤ 2tp1/2, (3-13)

and r t
≥ r − 2tp1/2. We now argue by contradiction and assume that t+ < r/2p1/2 (in particular, that

t+ is finite). Then r+ := r − 2t+ p1/2 > 0 and rt ≥ r+ for all t ∈ [0, t+). Furthermore, by (3-7), we have
|w∂ηq| ≤ C(wq +w)≤ C(p+w), with w bounded on [r+,+∞), hence θ̇ t is bounded on [0, t+). One
shows similarly that ρ̇t and η̇t are bounded on [0, t+), using that |w′| . w on [r+,+∞) for ρ̇. This
implies that limt→t+(r

t , θ t , ρt , ηt) exists and belongs to (0,+∞)×Rn−1
×R×Rn−1. The solution can

therefore be continued beyond t+, which yields the contradiction.
We now consider the second statement. Assume that t+<+∞. We must show that r t

→ 0 as t→ t+.
Assume that this is wrong. Then there exists R > 0 small enough and a sequence tk → t+ such that
r tk ≥ R for all k ≥ 0. On the other hand, by energy conservation, we have |r t

− r s
| ≤ 2p1/2

|t − s| for all
t, s ∈ [0, t+), hence

r t
≥ r tk − 2p1/2

|t − tk | ≥ R/2

provided |t − tk | ≤ R/4p1/2. Since tk can be chosen as close to t+ as we want, there exists ε >
0 small enough such that r t

≥ R/2 for t ∈ [t+ − ε, t+). Then, by the same argument as above,
limt→t+(r

t , θ t , ρt , ηt) exists and belongs to (0,+∞)×Rn−1
×R×Rn−1. The solution can be continued

beyond t+; hence t+ =+∞, which is a contradiction. �

Lemma 3.2. Let 0< ε < 1. For any R > 0 such that (3-12) holds, we have:

(i) If r t0 ≥ R and ρt0 > 0 for some t0 ∈ [0, t+), then t+ =+∞ and

r t
≥ R, ρt

≥ ρt0, r t
≥ r t0 + 2(t − t0)ρt0 for all t ≥ t0.

(ii) If r t0 ≥ R and ρt0 < 0 for some t0 ∈ (−t−, 0], then −t− =−∞ and

r t
≥ R, ρt

≤ ρt0, r t
≥ r t0 + 2(t − t0)ρt0 for all t ≤ t0.

Proof. As in Lemma 3.1, we only consider the case of t+. It suffices to show that

r t
≥ R for all t ∈ [t0, t+). (3-14)

Indeed, if this is true, Lemma 3.1 shows that t+ = +∞ and then, by (3-12), we have ρ̇t
≥ 0, whence

ρt
≥ ρt0 and r t

− r t0 ≥ 2ρt0(t − t0). Let us prove (3-14). Consider the set

I =
{
t ∈ [t0, t+) : r s

≥ R and ρs
≥ ρt0 for all s ∈ [t0, t]

}
.
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It is clearly an interval containing t0 and we set T := sup I . By continuity, ρt
≥ ρt0/2> 0 for t in a small

neighborhood J of t0. This implies that ṙ t > 0 on J , hence that r t
≥ r t0 ≥ R on J ∩[t0, t+) and thus that

ρ̇t
≥ 0 on J ∩ [t0, t+) which in turn shows that ρt

≥ ρt0 on J ∩ [t0, t+). This proves that T > t0. Then,
on [t0, T ), we have

r t
≥ R, ρt

≥ ρt0 . (3-15)

Now assume, by contradiction, that T < t+. Then (3-15) holds on [t0, T ] and in particular we have
r T
≥ r t0 + 2(T − t0)ρt0 > r t0 . Thus r t

≥ R in a neighborhood of T and this implies that ρ̇t
≥ 0 in this

neighborhood. Hence there exists T ′ > T such that (3-15) holds on [t0, T ′] yielding a contradiction. �

To state the next result, we define l ∈ (0,+∞] as

l =− lim sup
r→+∞

∫ (1+γ)r

r

w′

w
(3-16)

and we choose an arbitrary σ ∈ R such that

0< σ <

{
−

2
l
+

( 4
l2 + 1

)1/2
if l <+∞,

1 if l =+∞.
(3-17)

Note that 0<−2
l
+

( 4
l2 + 1

)1/2
< 1 if l is finite, and that (3-17) is equivalent to

(1− σ 2)l/2> 2σ > 0.

Proposition 3.3. For any σ satisfying (3-17), there exists Rw,γ,σ > 0 large enough that the following
property holds. Let r > Rw,γ,σ . Then:

(i) If ρ >−σ p1/2, then t+ =+∞ and

r t
≥max

(
(1− γ)r, (1− γ− σγ)r + 2σ p1/2

|t |
)

(3-18)

for all t ≥ 0.

(ii) If ρ < σ p1/2, then −t− =−∞ and (3-18) holds for t ≤ 0.

This proposition means that, by choosing initial data with r large enough and ρ > −σ p1/2 (resp.
ρ < σ p1/2), the forward (resp. backward) trajectory lies in a neighborhood of infinity. In particular, the
forward (resp. backward) flow starting at (r, θ, ρ, η), with ρ >−σ p1/2 (resp. ρ < σ p1/2 ) depends only
on the values of p on [(1− γ)r,+∞)×Rn−1

×R×Rn−1.

Proof. We only consider the case where ρ >−σ p1/2, the case where ρ < σ p1/2 being similar. If l <∞,
(3-17) allows one to choose 0< ε < 1 such that

(1− ε)2(1− σ 2)l/2≥ 2σ. (3-19)

If l =∞, we choose an arbitrary ε ∈ (0, 1). We next choose R so that (3-12) holds with the above choice
of ε. If ρ ≥ σ p1/2 (recall that p1/2 > 0 since ρ > −σ p1/2) and r ≥ R, then Lemma 3.2 shows that the
result holds with Rw,γ,σ = R. We can therefore assume that ρ < σ p1/2. Set

R1 = (1− γ)−1 R, T = γr/2p1/2. (3-20)
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By Lemma 3.1, we have t+ > T and, if r ≥ R1,

r t
≥ r − 2tp1/2

≥ (1− γ)r ≥ R for t ∈ [0, T ].

Using (3-12), this implies that ρ̇t
≥ 0 on [0, T ] and hence that ρt

≥ −σ p1/2 for all t ∈ [0, T ]. We
now prove by contradiction that there exists t ∈ [0, T ] such that ρt

≥ σ p1/2. If this is wrong, we have
(ρt)2 ≤ σ 2 p on [0, T ], thus (3-12) shows that, for all t ∈ [0, T ],

ρ̇t
≥−(1− ε)(1− σ 2)p

w′

w
(r t)≥−(1− ε)(1− σ 2)p

w′

w
(r + 2tp1/2),

using the third estimate of (3-2) and the fact that r t
≤ r+2tp1/2 in the second inequality. By integration

over [0, T ], we get

ρT
− ρ ≥−(1− ε)(1− σ 2)p1/2 1

2

∫ (1+γ)r

r

w′

w
, (3-21)

using the second equality in (3-20). Fix R2 such that, for all r > R2,

−

∫ (1+γ)r

r

w′

w
>

 (1− ε)l if l <+∞,
4σ

(1−ε)(1−σ 2)
if l =+∞.

With such a choice (and (3-19) if l is finite), we see that, if r ≥ max(R1, R2), (3-21) implies that
ρT
− ρ ≥ 2σ p1/2 and hence that ρT

≥ σ p1/2 which yields the expected contradiction.
In summary, we have shown that for any r ≥max(R1, R2) and any ρ >−σ p1/2, there exists t0 ∈ [0, T ]

such that ρt0 ≥ σ p1/2 > 0 and r t0 ≥ R, hence t+ = +∞ by Lemma 3.2. Furthermore, r t
≥ (1− γ)r on

[0, T ] and r t
≥ r T
+ 2(t − T )σ p1/2

≥ (1− (1+ σ)γ)r + 2tσ p1/2 on [T,+∞). The result follows since

max
(
(1−γ)r, (1−γ−σγ)r + 2σ p1/2t

)
=

{
(1− γ)r if t ∈ [0, T ],
(1− γ− σγ)r + 2σ p1/2t if t > T . �

3B. The asymptotically hyperbolic case. We will now prove more precise estimates on the Hamiltonian
flow of p when

w(r)= e−2r .

In that case, the conditions (3-2), (3-3) and (3-9) are fulfilled, with any 0 < γ < 1 in (3-3) and we have
l =+∞ in (3-16).

We shall need the following improvement of Proposition 3.3.

Proposition 3.4. Let 0 < σ < 1. There exist Rσ > 0 and Cσ > 0 such that: if r ≥ Rσ and ρ > −σ p1/2

(resp. ρ < σ p1/2), then

r t
≥ r + 2σ p1/2

|t | −Cσ , for all t ≥ 0 (resp. t ≤ 0).

The improvement consists in replacing (1− γ− σγ)r in the estimate (3-18) by r −Cσ .

Proof. Here again we only consider the case t ≥ 0. By Proposition 3.3, we may assume that r t
≥ R for

all t ≥ 0, with R large enough so that (3-12) holds with ε = 1
2 . This implies that

ρ̇t
= 2e−2r t

q(r t , θ t , ηt)− e−2r t
∂r q1(r t , θ t , ηt)≥ e−2r t

q(r t , θ t , ηt)= p− (ρt)2. (3-22)
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If ρ ≥ σ p1/2, then the result follows from Lemma 3.2 (with Cσ = 0). If ρ < σ p1/2, we will show that,
with T = 2σ p−1/2/(1− σ 2), there exists t ∈ [0, T ] such that ρt

≥ σ p1/2. Assume that this is wrong.
Then (ρt)2 ≤ σ 2 p on [0, T ] and by integrating the above estimate on ρ̇t , we get

ρT
− ρ ≥ T (1− σ 2)p = 2σ p1/2.

This proves that ρT
≥ σ p1/2 which is a contradiction. Therefore, by Lemma 3.2, we see that r t

− r T
≥

2σ p1/2(t − T ) for t ≥ T . On the other hand, we have r t
≥ r − 2p1/2t for t ∈ [0, T ]. The latter implies

that r t
≥ r+2σ p1/2t−2p1/2(1+σ)t ≥ r+2σ p1/2t−4σ/(1−σ) for t ∈ [0, T ]. This holds in particular

for t = T and then for t ≥ T . Thus the results holds with Cσ = 4σ/(1− σ). �

We have so far only studied some localization properties of 8t , the Hamiltonian flow of p. We shall
now give estimates on derivatives of8t . We start with the following lemma giving some rough estimates.
They will serve as a priori estimates for the proof of Proposition 3.8 below.

Lemma 3.5. For all 0< σ < 1, there exists R > 0 such that, for all (r, θ, ρ, η) ∈ T ∗Rn
+

satisfying

r > R, ±ρ >−σ p1/2, p ∈
( 1

4 , 4
)
, (3-23)

and all ±t ≥ 0, we have ∣∣er |β|∂βη ∂
j

r ∂
α
θ ∂

k
ρ(8

t
−80)(r, θ, ρ, η)

∣∣. 〈t〉.
Note the er |β| factor in front of the derivatives.
We will need two lemmas. The first one, proved by induction, is a soft version of the classical Faà di

Bruno formula.

Lemma 3.6. Let �1 ⊂ Rn1 , �2 ⊂ Rn2 be open subsets, with n1, n2 ≥ 1. Consider smooth maps y =
(y1, . . . , yn2) :�1→�2 and Z :�1×�2→ Rn3 , with n3 ≥ 1. Then, for all |γ| ≥ 1,

∂γx (Z(x, y(x)))= (∂y Z)(x, y(x))∂γx y(x)+
(
∂γx Z

)
(x, y(x))+ Rγ(x)

where Rγ(x) vanishes identically if |γ| = 1 and, otherwise, is a linear combination of(
∂γ−γ

′

x ∂νy Z
)
(x, y(x))

(
∂
γ1

1
x y1(x) . . . ∂

γ1
ν1

x y1(x)
)
. . .
(
∂
γ

n2
1

x yn2(x) . . . ∂
γ

n2
νn2

x yn2(x)
)
,

with γ, γ′, γk
j ∈ N

n1
0 , ν = (ν1, . . . , νn2) ∈ N

n2
0 satisfying γ′ 6= 0, ν 6= 0 and

γ′ ≤ γ, 2≤ |ν| + |γ− γ′| ≤ |γ|, γ1
1+ · · ·+ γ

1
ν1
+ · · ·+ γ

n2
1 + · · ·+ γ

n2
νn2
= γ′,

and using the convention that ∂
γk

1
x yk(x) . . . ∂

γk
νk

x yk(x) ≡ 1 if νk = 0 (if νk 6= 0 then γk
1, . . . , γ

k
νk

are all
nonzero).

In the second lemma, we consider the linear differential equation

Ẋ = A(t)X + Y (t), (3-24)

where A( · ) is a continuous map from [0,+∞) to the space MN×N (R)) of N × N matrices with real
entries, for some N ≥ 1, and Y ( · ) ∈ C([0,+∞),CN ). We assume that A( · ) belongs to a subset
B⊂ C([0,+∞),MN×N (R)) for which there exist δB > 0 and CB > 0 such that

|||A(t)||| ≤ CBe−δBt for all t ≥ 0 and A( · ) ∈B,
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with ||| · ||| a matrix norm associated to the norm ‖ · ‖ on CN , i.e., such that ‖M Z‖ ≤ |||M ||| ‖Z‖, for all
M ∈MN×N (R) and Z ∈ CN .

Lemma 3.7. There exists C > 0 such that, for all A( · ) ∈B and all Y ( · ) satisfying∫
∞

0
‖Y (t)‖dt <∞,

the solutions X ( · ) of (3-24) satisfy

‖X (t)‖ ≤ C
(
‖X (0)‖+

∫
∞

0
‖Y (s)‖ ds

)
for t ≥ 0. (3-25)

Proof. First fix 0<δ<δB and ε= δB−δ. Choose T > 0 such that CBe−δBt
≤ ε for t ≥ T . By Gronwall’s

lemma, we have

‖X (t)‖ ≤
(
‖X (T )‖+

∫
∞

T
‖Y (s)‖ ds

)
eε(t−T ) for t ≥ T,

‖X (t)‖ ≤
(
‖X (0)‖ +

∫ T

0
‖Y (s)‖ ds

)
eCBT for t ∈ [0, T ].

These two inequalities give, for some C depending only on CB, δB, δ and T ,

‖X (t)‖ ≤ C
(
‖X (0)‖+

∫
∞

0
‖Y (s)‖ ds

)
eεt for t ≥ 0.

Used as an a priori estimate in (3-24), this yields

‖Ẋ(t)‖ ≤ ‖Y (t)‖+CCBe−δt
(
‖X (0)‖+

∫
∞

0
‖Y (s)‖ ds

)
for t ≥ 0,

which implies (3-25). �

Proof of Lemma 3.5. As before, we only prove the result for t ≥ 0. For |β|+ j+|α|+k = 0, the result is
a consequence of the motion equations (3-10) and energy conservation. Indeed, for r t

− r , the estimate
follows directly from (3-13). Next, the equation of motion for θ , together with (3-7) and Proposition 3.4,
shows that

|θ̇ t
|. e−2r t

|ηt
|. e−2r t

〈ηt
〉

2 . 1+ p;

hence that |θ t
− θ | . 〈t〉 by integration. One similarly shows that |ρt

− ρ| + |ηt
− ρ| . 〈t〉. We now

consider the derivatives and write, for simplicity, ∂γ = ∂βη ∂
j

r ∂
α
θ ∂

k
ρ . Denoting by Hp is the Hamiltonian

vector field of p and applying ∂γ to (3-10), we obtain

er |β|∂γ8̇t
= (d Hp)(8

t)er |β|∂γ8t
+ R(t),

where, by Lemma 3.6, R(t) vanishes if |γ| = 1 or, if |γ| ≥ 2, is a linear combination of

(∂νHp)(8
t)er |β|(∂γ1

1r t
· · · ∂

γ1
ν1 r t)
· · ·
(
∂γ

2n
1 ηt

n−1 · · · ∂
γ2n
ν2n ηt

n−1
)
. (3-26)
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Here ν = (ν1, . . . , ν2n) is of length at least 2, all the derivatives of 8t involved in R(t) are of strictly
smaller order than γ (meaning that γi

li ≤ γ and γi
li 6= γ), and

2≤ |ν| ≤ |γ|, γ1
1+ · · ·+ γ

2n
ν2n
= γ. (3-27)

Writing d Hp as a matrix, we have

d Hp =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

+ e−2r


0 0 0 0

∂2
rηq1−2∂ηq ∂2

θηq 0 ∂2
ηηq

4∂r q1−4q−∂2
rr q1 2∂θq−∂2

θr q1 0 2∂ηq−∂2
ηr q1

2∂θq−∂2
rθq1 −∂2

θθq 0 −∂2
ηθq

 .
Defining M as the first (constant) matrix of the right-hand side and using Proposition 3.4, we have∣∣d Hp(8

t)−M
∣∣. e−2r t

〈ηt
〉

2 . e−2r−2σ t(〈η〉2+〈t〉2). e−σ t ,

using that 2p1/2
≥ 1 and that e−2r

〈η〉2 is bounded, by (3-23). We then set

A(t)= e−t M (d Hp(8
t)−M

)
et M ,

X (t)= e−t M er |β|∂γ8t
− er |β|∂γ80,

Y (t)= e−t M R(t)+ A(t)er |β|∂γ80,

so that
Ẋ(t)= A(t)X (t)+ Y (t), X (0)= 0.

Noting that M2
= 0, we have

exp(±t M)= 1± t M, | exp(±t M)|. 〈t〉; (3-28)

thus
|A(t)|. e−σ t

〈t〉2 . e−σ t/2. (3-29)

To estimate X (t) by Lemma 3.7, we still need to estimate Y (t). We first assume that ∂γ = ∂βη with
|β| = 1. We then have R(t)= 0 and

A(t)er |β|∂γ80
= e−t M(∂βη Hp)(8

t)er ,

since M∂βη80
= 0. By Proposition 3.4 and (3-23) again, we obtain

|(∂βη Hp)(8
t)|. e−2r−2σ t

〈ηt
〉. e−r−σ t ,

so that |Y (t)| . e−σ t/2. Using (3-29) and Lemma 3.7, we get |X (t)| . 1. Since M∂βη80
= 0, we can

rewrite X (t)= e−t M er∂
β
η (8

t
−80) and, using (3-28), finally get∣∣er∂βη (8

t
−80)

∣∣. 〈t〉.
The other first-order derivatives of 8t

−80 are studied similarly (note that there is no er factor then), by
showing that X (t) is bounded and using that X (t)= e−t M∂γ(8t

−80)+ (e−t M
−1)∂γ80 with (3-28) to

get
|∂γ(8t

−80)|. 〈t〉.
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For higher-order derivatives, ∂γ80
= 0 and ∂γ(8t

−80) = ∂γ8t . Furthermore, since the derivatives of
8t involved in R(t) are of strictly smaller order than γ, we can proceed by induction. By writing x t for
r t , ρt , θ t and

∂γ
i
l = ∂

β i
l
η ∂

ki
l

r ∂
αi

l
θ ∂

j i
l
ρ

for the derivatives involved in (3-26), with 1≤ i≤2n and 1≤ l≤νi (recall that, if νi =0, the corresponding
product in (3-26) is 1), the induction hypothesis yields

|e|β
i
l |r∂γ

i
l x t
|. 〈t〉,

since ∂
β i

l
η x t
= ∂

β i
l
η (x t
− x0) if β i

l 6= 0. If n+ 2≤ i ≤ 2n (and νi 6= 0), we also have

|e|β
i
l |r∂γ

i
lηt

i−n−1|. 〈t〉,

unless ∂γ
i
l = ∂

β i
l
η with |β i

l | = 1, in which case we only have |∂γ
i
lηt

i−n−1|. 〈t〉. By setting

E= {n+ 2≤ i ≤ 2n : ∃1≤ l ≤ νi such that ∂γ
i
l = ∂

β i
l
η with |β i

l | = 1},

and N = #E, we thus obtain

|(3-26)|. eNr
|(∂νHp)(8

t)|〈t〉|ν|−N ∏
E

|∂γ
i
lηt

i−n−1|.

Since the components of Hp are polynomial of degree 2 with respect to the last n−1 variables, we only
need to consider the case where N ≤ 2, otherwise νn+2+ · · ·+ ν2n ≥ 3 and ∂νHp ≡ 0. Furthermore

|(∂νHp)(8
t)|. e−2r t

〈ηt
〉

2−νn+2−···−ν2n . e−2r t
〈ηt
〉

2−N .

For N ≤ 2, we have 〈ηt
〉

2−N . 〈η〉2−N
+ 〈t〉2−N so, using that eNr e−2r t

. e−(2−N )r−2σ t , we see that
eNr e−2r t

〈ηt
〉

2−N . e−σ t which finally implies |(3-26)|. 〈t〉|ν|e−σ t . e−σ t/2. Therefore |Y (t)|. 〈t〉e−σ t

and, by Lemma 3.7, |X (t)| is bounded. The result then follows easily. �

The following proposition will be important in Section 4C to construct and estimate phase functions.

Proposition 3.8. For all 0< σ < 1, there exists R > 0 such that, for all j, k ∈N0, α, β ∈Nn−1
0 , with the

notation
D jαkβ

hyp = er |β|∂βη ∂
j

r ∂
α
θ ∂

k
ρ,

(introduced before Definition 2.2) and (l)+ =max(0, l), we have

|D jαkβ
hyp (r t

− r − 2|t |p1/2)|.
(
e−r
〈η/p1/2

〉
)(2−|β|)+ p−(k+|β|)/2,

|D jαkβ
hyp (θ t

− θ)|. e−r(e−r
〈η/p1/2

〉
)(1−|β|)+ p−(k+|β|)/2,

|D jαkβ
hyp (ρt

− ρ)| + |D jαkβ
hyp (ηt

− η)|.
(
e−r
〈η/p1/2

〉
)(2−|β|)+ p(1−k−|β|)/2,

and, for all 0< ε < 1,∣∣D jαkβ
hyp (ρt

∓ p1/2)
∣∣. (e−r

〈η/p1/2
〉
)(2−|β|)+e−4(1−ε)|t |p1/2

p(1−k−|β|)/2,
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uniformly with respect to (r, θ, ρ, η) and t satisfying

r > R, ±ρ >−σ p1/2, ±t ≥ 0. (3-30)

Apart from the energy localization and the localization in θ , the conditions (3-30) are the main ones
that define outgoing/incoming areas according to Definition 2.10.

Note also that, if (r, θ, ρ, η) are restricted to a subset where p belongs to a compact subset of (0,+∞),
the estimates of Proposition 3.8 read∣∣D jαkβ

hyp (r t
−r−2|t |p1/2)

∣∣+∣∣D jαkβ
hyp (ρt

−ρ)
∣∣+∣∣D jαkβ

hyp (ηt
−η)

∣∣. (e−r
〈η〉
)(2−|β|)+

, (3-31)∣∣D jαkβ
hyp (θ t

−θ)
∣∣. e−r (e−r

〈η〉
)(1−|β|)+

, (3-32)∣∣D jαkβ
hyp (ρt

∓ p1/2)
∣∣. (e−r

〈η〉
)(2−|β|)+ e−4(1−ε)|t |p1/2

. (3-33)

Actually the latter estimates are equivalent to Proposition 3.8, in view of the elementary scaling properties

(r t , θ t)(r, θ, ρ, η)= (rλt , θλt)(r, θ, ρ/λ, η/λ), (3-34)

(ρt , ηt)(r, θ, ρ, η)= λ(ρλt , ηλt)(r, θ, ρ/λ, η/λ), (3-35)

valid for λ > 0. Note that the condition (3-30) is invariant under the scaling (t, ρ, η) 7→ (λt, ρ/λ, η/λ).

To prove Proposition 3.8, we need the following lemma (which will also be useful in proof of
Proposition 2.16 in Section 4A).

Lemma 3.9. For all 0 < σ < 1, there exist R > 0 and C > 0 such that, for all (r, θ, ρ, η) satisfying
(3-23),

|ρt
∓ p1/2

| ≤ Ce−|t |/C for ± t ≥ 0. (3-36)

In particular, ρt
→±p1/2 as t→±∞.

Proof. We consider the case where t ≥ 0, the case of negative times being similar. Using (3-12),
Proposition 3.4 and Lemma 3.5, we can choose R large enough such that ρ̇t

≥ 0 and

ρ̇t . e−2r t
|ηt
|
2 . e−2r t

(|η| + 〈t〉)2 . e−2r−2σ t(|η| + 〈t〉)2 . e−σ t , (3-37)

using the fact that e−2r
|η|2 . p in the last estimate. Therefore, ρt has a limit as t→+∞. By the energy

conservation and the estimate on e−2r t
|ηt
|
2 given by (3-37), we have p = (ρt)2+O(e−σ t), which shows

that (ρt)2→ p. Since ρt is nondecreasing and ρ0
= ρ > −p1/2, the limit must be p1/2. Then we get

(3-36) by integrating the equation of motion for ρt between t and +∞, namely

p1/2
− ρt
=

∫
∞

t
ρ̇s ds =

∫
∞

t
e−2r s (

2q(r s, θ s, ηs)− (∂r q1)(r s, θ s, ηs)
)

ds (3-38)

where, by Proposition 3.4 and Lemma 3.5, the integrand is O(e−2r−2σ s(〈s〉+ 〈η〉)2). �

Proof of Proposition 3.8. We only need to prove (3-31), (3-32) and (3-33) with p ∈ ( 1
4 , 4) and, again, we

only consider t ≥ 0 and ρ >−σ p1/2. We first assume that j+|α|+k+|β|= 0. By (3-10), Proposition 3.4
and Lemma 3.5, we have

|θ̇ t
|. e−2r−2σ t(|η| + 〈t〉). e−2r−σ t

〈η〉,

|η̇t
|. e−2r−2σ t(|η| + 〈t〉)2 . e−2r−σ t

〈η〉2;
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hence |ηt
−η|. e−2r

〈η〉2 and |θ t
−θ |. e−2r

〈η〉. In particular, ηt
−η and θ t

−θ are bounded. The motion
equation for r t yields

r t
− r − 2tp1/2

= 2
∫ t

0
(ρs
− p1/2) ds, (3-39)

and, using (3-36), we get |r t
− r − 2tp1/2

| . 1. The latter estimate and the boundedness |ηt
− η| imply,

together with (3-38),
|ρt
− p1/2

|. e−2r−4tp1/2
〈η〉2. (3-40)

Furthermore, since |p1/2
−ρ| = |ρ2

− p|/|ρ+ p1/2
|. e−2r

|η|2, we also have |ρt
−ρ|. e−2r

〈η〉2. Putting
(3-40) into (3-39), we obtain |r t

− r − 2tp1/2
| . e−2r

〈η〉2 which completes the proof of (3-31), (3-32)
and (3-33) for j + |α| + k+ |β| = 0 (note that we can choose ε = 0 in this case).

We now prove (3-32) when j+|α|+k+|β|≥1. We first note that, by Lemma 3.5 and the boundedness
of |r t
− r − 2tp1/2

|, we have∣∣D j ′α′k′β ′

hyp (e−r t
ηt)
∣∣≤ ∣∣D j ′α′k′β ′

hyp (e−r t
(ηt
− η))

∣∣+ ∣∣D j ′α′k′β ′

hyp (e−r t
η)
∣∣

. e−2tp1/2
〈t〉 j

′
+|α′|+k′+|β ′|(e−r

+ (e−r
|η|)(1−|β

′
|)+
)

. e−2tp1/2
〈t〉 j

′
+|α′|+k′+|β ′|(e−r

〈η〉
)(1−|β ′|)+

, (3-41)

for all j ′+ |α′| + k ′+ |β ′| ≥ 0. By writing

θ t
− θ =

∫ t

0
e−r s

(∂ηq)(r s, θ s, e−r s
ηs) ds,

and using (3-41), Lemma 3.5 (more precisely, the estimates
∣∣D j ′′α′′k′′β ′′

hyp r t
∣∣+ ∣∣D j ′′α′′k′′β ′′

hyp θ t
∣∣. 〈t〉 if j ′′+

|α′′|+k ′′+|β ′′| 6= 0), the Leibniz formula and Lemma 3.6, we obtain (3-32). We obtain similarly (3-33)
and then (3-31) (also using that (e−r

〈η〉)2 . e−r
〈η〉 . 1). Note that, for r t

− r − 2tp1/2, (3-31) follows
directly from (3-33) and (3-39). �

Corollary 3.10. Let V b V ′ b Rn−1 be two relatively compact open subsets and let 0 < σ < 1. There
exists R > 0 and C > 0 such that the conditions

r > R, θ ∈ V, ±ρ >−σ p1/2, (3-42)

imply that, for all ±t ≥ 0,
r t > r −C and θ t

∈ V ′.

In particular, if (3-42) holds, the flow 8t(r, θ, ρ, η) depend only on p on T ∗
(
(r −C,+∞)× V ′

)
for

±t ≥ 0.

This corollary allows us to localize the estimates of Proposition 3.8 in charts of asymptotically hyper-
bolic manifolds.

4. The Hamilton–Jacobi and transport equations

In this section, we develop the analytical tools necessary for the Isozaki–Kiada parametrix that will be
constructed in Section 5. We mainly construct the phases and amplitudes needed for that parametrix, but
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also prove certain useful properties of outgoing/incoming areas, including those quoted without proof in
Section 2D.

All the statements in this section will hold in a coordinate chart at infinity, associated to a fixed coor-
dinate patch Uι on the angular manifold. Thus, for notational simplicity, we will drop the corresponding
index ι from the notation.

4A. Properties of outgoing, incoming and intermediate areas. Here we collect some properties of out-
going, incoming and intermediate areas which will be needed for the construction of the Isozaki–Kiada
parametrix. We also prove a part of the results quoted without proofs in Section 2D, namely Propositions
2.11, 2.13, 2.15 and 2.16.

In the first proposition below, we use the classes Shyp(�) introduced in Definition 2.2.

Proposition 4.1. (i) Assume that

R1 > R2, V1 b V2, I1 b I2, σ1 < σ2. (4-1)

Then we can find χ±1→2 ∈ Shyp
(
0±(R2, V2, I2, σ2)

)
such that

χ±
1→2 ≡ 1 on 0±(R1, V1, I1, σ1).

(ii) Any symbol a ∈ Shyp
(
(R,+∞)× V ×Rn

∩ p−1(I )
)

can be written

a = a++ a−, with a± ∈ Shyp
(
0±(R, V, I, 1

2)
)
.

One important point in this proposition is that χ±1→2 and a± can be chosen in Shyp.

Proof. (i) We may for instance choose

χ±
1→2(r, θ, ρ, η)= χR1→R2(r)χV1→V2(θ)χ I1→I2(p)χσ1→σ2(±ρ/p1/2),

with χR1→R2, χσ1→σ2 ∈ C∞(R), χV1→V2 ∈ C∞0 (V2) and χ I1→I2 ∈ C∞0 (I2) such that

supp(χR1→R2)⊂ (R2,+∞), supp(χσ1→σ2)⊂ (−σ2,+∞),

χR1→R2 ≡ 1 on (R1,+∞), χV1→V2 ≡ 1 on V1, χ I1→I2 ≡ 1 on I1, χσ1→σ2 ≡ 1 on (−σ1,+∞).

Notice that ρ/p1/2 is smooth on the support of χ I1→I2(p). The so defined χ±1→2 is smooth on R2n ,
supported in 0±(R2, V2, I2, σ2), identically 1 on 0±(R1, V1, I1, σ1), and one easily checks that it belongs
to Bhyp

(
0±(R2, V2, I2, σ2)

)
, using for instance Lemma 2.4.

(ii) This is very similar to the first case. We may for instance choose

a±(r, θ, ρ, η)= a(r, θ, ρ, η)χ±1/2(ρ/p1/2),

with χ±1/2 ∈ C∞(R) such that

χ+
1/2+

χ−
1/2 ≡ 1, supp(χ+1/2)⊂

(
−

1
2 ,+∞

)
, supp(χ+1/2)⊂

(
−∞, 1

2

)
.

Here again ρ/p1/2 is smooth on the support of a and a± ∈Bhyp
(
0±(R, V, I, 1

2)
)
. �

By Proposition 4.1(i), 0±(R2, V2, I2, σ2) is a neighborhood of the closure of 0±(R1, V1, I1, σ1) under
the assumption (4-1). In the following proposition, we make this remark more quantitative.
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Proposition 4.2. Assume (4-1). There exists ε > 0 such that, for all (r ′, θ ′, ρ ′, η′) ∈ R2n and all
(r, θ, ρ, η) ∈ 0±(R1, V1, I1, σ1),

|(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)| ≤ ε H⇒ (r ′, θ ′, ρ ′, η′) ∈ 0±(R2, V2, I2, σ2).

Proof. Choose first ε0 > 0 such that, if |r − r ′| + |θ − θ ′| ≤ ε0, r ′ > R2 and θ ′ ∈ V2. Then, by writing

q(r ′, θ ′, e−r ′η′)− q(r ′, θ ′, e−rη)= e−2r ′q(r ′, θ ′, η′− η)+ (e2(r−r ′)
− 1)q(r ′, θ ′, e−rη), (4-2)

and using (3-5), (3-6) with the Taylor formula, we get

|p(r ′, θ ′, ρ ′, η′)− p(r, θ, ρ, η)| ≤ |ρ2
− ρ ′2| +C |η′− η|2+C(|r − r ′| + |θ − θ ′|)e−2r

|η|2,

where e−2r
|η|2 is bounded, using (3-7). Since ρ is bounded too, we obtain∣∣p(r ′, θ ′, ρ ′, η′)− p(r, θ, ρ, η)

∣∣≤ C
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣,

provided that
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣≤ ε0 and therefore,∣∣p1/2(r ′, θ ′, ρ ′, η′)− p1/2(r, θ, ρ, η)

∣∣≤ C
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣,∣∣∣∣ ρ ′

p1/2(r ′, θ ′, ρ ′, η′)
−

ρ

p1/2(r, θ, ρ, η)

∣∣∣∣≤ C
∣∣(r, θ, ρ, η)− (r ′, θ ′, ρ ′, η′)∣∣,

if
∣∣(r, θ, ρ, η)−(r ′, θ ′, ρ ′, η′)∣∣ is small enough, using that I2b (0,+∞). The conclusion is then easy. �

Similarly to (2-54), we fix V0 ⊂ Rn−1 a relatively compact open subset of ψι(Uι) and define

R(ε)= 1/ε, Vε = {θ ∈ Rn−1
: dist(θ, V0) < ε

2
}. (4-3)

In the sequel, we shall need very often the following result on strongly outgoing/incoming areas
(see Propositions 4.8, 4.14 and Lemmas 4.11, 4.16). This will for instance be the case when we use
Taylor’s formula and want to guarantee that the whole segment between two points of a strongly outgo-
ing/incoming area is still contained in such an area.

Proposition 4.3. For all M > 0, there exist εM > 0 and CM > 1 such that, for all 0 < ε ≤ εM , the
following holds: if

(r, θ, ρ, η) ∈ 0±s (ε), (4-4)

and

r ′− r ≥−M, |θ ′− θ |< Mε2, |ρ ′− ρ|< Mε2, |η′− η|< Mεe1/ε, (4-5)

then, for all 0≤ s ≤ 1,

(r ′, θ ′, ρ ′, sη′) ∈ 0±s (CMε).

In particular, (r ′, θ ′, ρ ′, 0) ∈ 0±s (CMε).

Remark. There should not be any confusion between the interpolation parameter 0 ≤ s ≤ 1 and the
subscript s, which refers to strongly outgoing/incoming areas (and which are independent of s).
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Proof. Using (2-56) and (4-2), we first note the existence of M ′ > 0 such that, for all 0< ε < 1
4 , if (4-4)

and (4-5) hold then ∣∣p(r ′, θ ′, ρ ′, sη′)− p(r, θ, ρ, η)
∣∣≤ M ′ε2,

using in particular that sη′−η= s(η′−η)+(s−1)η. If CM is large enough and 0<εCM <
1
4 , we obtain

0< 1
4 −CMε <

1
4 − ε−M ′ε2

≤ p(r ′, θ ′, ρ ′, sη′)≤ 4+ ε+M ′ε2 < 4+CMε.

If 0< ε ≤ εM with εM small enough, then p(r ′, θ ′, ρ ′, sη′)/p(r, θ, ρ, η)= 1+O(ε2) so that

±ρ ′

p(r ′, θ ′, ρ ′, sη′)1/2
=

±ρ

p(r, θ, ρ, η)1/2
p(r, θ, ρ, η)1/2

p(r ′, θ ′, ρ ′, sη′)1/2
±

ρ ′− ρ

p(r ′, θ ′, ρ ′, sη′)1/2
> 1− (CMε)

2,

by possibly increasing CM . In addition, dist(θ, V0) ≤ |θ
′
− θ | + dist(θ, V0) < (CMε)

2, by possibly
increasing CM again and decreasing εM . Finally, r ′ ≥ r −M > e1/ε

−M > e1/CMε, for all 0 < ε ≤ εM

by possibly decreasing εM again, so (r ′, θ ′, ρ ′, sη′) ∈ 0±s (CMε). �

We can now prove Proposition 2.13, which states that one can reach a strongly outgoing (incoming)
area from an outgoing (incoming) one in finite time, along the geodesic flow.

Proof of Proposition 2.13. We consider only the outgoing case. With no loss of generality, we may
assume that 0<σ <1. By choosing R≥ R′σ large enough, we can use Proposition 3.4 and Corollary 3.10.
By Proposition 3.4, we have rt ≥ r+ct−C for some C, c> 0, hence rt > R(ε) for all t ≥ tR,ε, provided

ctR,ε −C + R > R(ε). (4-6)

By Proposition 3.8, we have |θ t
− θ | . e−r hence θ t

∈ Vε, for ε small enough and all t ≥ 0, since
e−1/ε

� ε2. Using (3-33) and the energy conservation, we shall have ρt/p1/2(r t , θ t , ρt , ηt) > 1− ε2

provided for instance that
e−p1/2tR,ε ≤ ε3, (4-7)

with ε small enough. Choosing tR,ε so that (4-6) and (4-7) hold, we get the result. �

We conclude this part with an explicit construction for cutoffs.
In Section 5, we will need a result similar to Proposition 4.1(i). This is the purpose of the following

result.

Proposition 4.4. We can find 0< ν < 1 and a family of cutoffs χ±
ε2→ε
∈ Shyp(0

±
s (ε

1+ν)), defined for all
ε small enough, such that

χ±
ε2→ε
= 1 on 0±s (ε

2) (4-8)

and, uniformly on R2n ,∣∣e−2r
|η| j∂r,θ,ρ,ηχ

±

ε2→ε

∣∣+ ∣∣e−2r
|η|2∂ρ,η∂r,θχ

±

ε2→ε

∣∣. ε1/2, j = 1, 2. (4-9)

That we can find, for each ε, χ±
ε2→ε
∈ Shyp(0

±
s (ε

1+ν)) satisfying (4-8) would follow directly from
Proposition 4.1. The important additional point here is the control with respect to ε given by (4-9). Note
also that the power 1

2 is essentially irrelevant: we only mean that the left-hand side of (4-9) is uniformly
small as ε→ 0. This rather technical point will only be used in Section 5 to globalize suitably certain
phase functions.
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Proof. For 0 < δ < 1 to be chosen later, we consider the characteristic functions χ̄ I
ε1+δ and χ̄V

ε2+δ of( 1
4 − ε

1+δ, 4+ ε1+δ
)

and V + B(0, ε2+δ) respectively. Choose ζ I
∈ C∞0 (R), ζ

V
∈ C∞0 (R

n−1) both equal
to 1 near 0, such that

∫
ζ I
=
∫
ζ V
= 1 and set

χ I
ε1+δ (λ)=

∫
χ̄ I
ε1+δ (µ)ζ

I
(
λ−µ

ε1+2δ

)
ε−1−2δdµ, χV

ε2+δ (θ)=

∫
χ̄V
ε2+δ (ϑ)ζ

V
(
θ −ϑ

ε2+2δ

)
ε−(n−1)(2+2δ)dϑ.

One then easily checks that, if ε is small enough,

χ I
ε1+δ ≡ 1 on

( 1
4 − ε

2, 4+ ε2), χV
ε2+δ (θ)= 1 if dist(θ, V ) < ε4,

χ I
ε1+δ ≡ 0 outside

( 1
4 − ε

1+ δ
4 , 4+ ε1+ δ

4
)
, χV

ε2+δ (θ)= 0 if dist(θ, V )≥ ε2+ δ
2 .

Choosing ω ∈ C∞(R) supported in
(1

4 ,∞
)

such that ω = 1 near
[ 1

3 ,∞
)
, we now define

χ±
ε2→ε

(r, θ, ρ, η)= ω
(

r
R(ε3/2)

)
χV
ε2+δ (θ) χ

I
ε1+δ (p) ω(±ρ) ζ I

(
e−2r |η|

2

ε4−δ

)
.

On the support of χ I
ε1+δ (p), we have ρ2

≥
1
4 − O(ε) so the factor ω(±ρ) only determines the sign of ρ.

By (2-55) and (2-56), one sees that (4-8) holds with ν = δ/2, if ε is small enough. Furthermore, χ±
ε2→ε

is supported in 0±s (ε
1+ν) and belongs to Bhyp(0

±
s (ε

1+ν)).
We prove (4-9). Since e−2r

|η|2 . ε4−δ on the support of χ±
ε2→ε

, the first-order derivatives satisfy

|∂rχ
±

ε2→ε
|. R(ε3/2)−1

+ e−2r
|η|2(ε−1−2δ

+ ε−4+δ). 1,

|∂ρχ
±

ε2→ε
|. ε−1−2δ,

|∂θχ
±

ε2→ε
|. ε−2−2δ

+ ε−1−2δe−2r
|η|2 . ε−2−2δ,

|∂ηχ
±

ε2→ε
|. e−2r

|η|(ε−1−2δ
+ ε−4+δ)� e−ε

−1/2
,

using the fact that e−2r
|η|. e−r

≤ e−ε
−1

for the last estimate. Similarly

|∂ρ∂r,θχ
±

ε2→ε
|. ε−2−2δ

× ε−1−2δ
= ε−3−4δ, |∂η∂r,θχ

±

ε2→ε
|. e−ε

−1/2
.

Since e−2r
|η|2e−3−4δ . ε1−5δ and e−2r

|η| � e−ε
−1/2

, the result follows with δ = 1
10 (hence with ν = 1

20 ).
�

We finally consider the statements involving intermediate areas.

Proof of Proposition 2.15. By (2-58) and (2-59), we can find χ−∞, χ+∞ ∈ C∞(R) and

χl ∈ C∞0 (−σl+1,−σl−1),

for 1≤ l ≤ L − 1, such that

supp(χ−∞)⊂ (−∞,−σL−1), supp(χ+∞) ∈ (1− ε2,+∞) and χ
+∞+

L−1∑
l=1
χl +χ−∞ ≡ 1 on R.

This simply relies on the overlapping property of the intervals in (2-59). We then obtain the result by
considering
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a±s (r, θ, ρ, η)= a±(r, θ, ρ, η) χ+∞(±ρ/p1/2),

a±l,inter(r, θ, ρ, η)= a±(r, θ, ρ, η) χl(±ρ/p1/2), 1≤ l ≤ L − 2,

a±L−1,inter(r, θ, ρ, η)= a±(r, θ, ρ, η) (χL−1+χ−∞)(±ρ/p1/2).

since, in the definition of a±L−1,inter, the cutoff guarantees that±ρ/p1/2<−σL−2 and a± that±ρ/p1/2>

−
1
2 =−σL . �

Proof of Proposition 2.16. We consider the outgoing case, the incoming one being similar. Using
Corollary 3.10, we may assume that, if ε is small enough, (3-22) holds for any initial condition such
that r > R(ε), θ ∈ V and ρ ≥ −1

2 p1/2. In particular t 7→ ρt is nondecreasing for t ≥ 0. Assume that
1
2 ≤ ρ/p1/2

≤ 1− (ε/2)2 and set

tε = tε(r, θ, ρ, η) := sup
{

t ≥ 0 :
ρs

p1/2 <
ρ

p1/2 + ε
4 for all s ∈ [0, t]

}
.

Notice that tε is finite by Lemma 3.9 and that ρtε = ρ + p1/2ε4. If 1 − (ε/2)2 + ε4
≥

1
2 , we have

|ρt/p1/2
| ≤ 1− (ε/2)2+ ε4 on [0, tε). Thus, if ε is small enough (independent of (r, θ, ρ, η)), we have

(ρt)2/p ≤ 1− (ε/2)2 for all t ∈ [0, tε) and then, by (3-22) again, we have ρ̇t
≥ (ε/2)2 p on [0, tε], so

ρtε − ρ ≥ (ε/2)2 ptε.

This shows that tε≤ ε4/(ε/2)2 p=4ε2/p. Then, for ε small enough such that 4ε2/p≤ t for all (r, θ, ρ, η)
in {

(r, θ, ρ, η) ∈ R2n
: r > R(ε), θ ∈ V, p ∈ I (ε), − 1

2 ≤ ρ/p1/2
≤ 1− (ε/2)2

}
, (4-10)

and with δ = ε4/2, we have ρt
− ρ ≥ 2δp1/2 for all t ≥ t . This implies (2-62) since, for any choice of

σ0, . . . , σL and any l, 0±inter(ε, δ; l) is contained in (4-10). �

4B. Hyperbolic long/short-range symbols. In this short subsection, we introduce the definitions of
short/long-range hyperbolic symbols which will be useful for the resolution of transport equations in
Section 4E. We prove in passing Proposition 4.6 below which will be used at several places, in particular
in Section 4C.

Definition 4.5. A smooth function a± on 0±s (ε) is said to be of hyperbolic short range if

|∂ j
r ∂

α
θ ∂

k
ρ∂

β
η a±(r, θ, ρ, η)|. 〈r − log〈η〉〉−τ−1− j , (r, θ, ρ, η) ∈ 0±s (ε), (4-11)

and of hyperbolic long range if

|∂ j
r ∂

α
θ ∂

k
ρ∂

β
η a±(r, θ, ρ, η)|. 〈r − log〈η〉〉−τ− j , (r, θ, ρ, η) ∈ 0±s (ε). (4-12)

Notice that in this definition, we do not assume that a ∈Bhyp(0
±
s (ε)). However, this will be the case

in the applications and we now give a simple criterion to check that a symbol a ∈ Bhyp(0
±
s (ε)) is of

hyperbolic short/long range.
For ε small enough, by restricting a to a smaller area 0±s (ε/C), with C>1 large enough (or to 0±s (ε

2),
0±s (ε

3) as it will be the case in the applications), using Lemma 2.4 and Proposition 4.3, we have

a(r, θ, ρ, η)= a(r, θ, ρ, 0)+
∫ 1

0
(∂ξ ã)(r, θ, ρ, sξ)|ξ=e−rηds · e−rη, (4-13)



38 JEAN-MARC BOUCLET

where ã belongs to C∞b (Fhyp(0
±
s (ε))) and (r, θ, ρ, sη) ∈ 0±s (ε) if (r, θ, ρ, η) ∈ 0±s (ε/C). Since

|∂ j
r ∂

β
η e−rη|. 〈r − log〈η〉〉−N for all N > 0 and (r, θ, ρ, η) ∈ 0±s (ε),

we obtain that, for a ∈Bhyp(0
±
s (ε)),

a is of hyperbolic short/long range in 0±s (ε/C) ⇐⇒ a|η=0 is of usual short/long range (4-14)

in the sense that ∣∣ (∂ j
r ∂

α
θ ∂

k
ρa
)
(r, θ, ρ, 0)

∣∣. 〈r〉−τ− j for (r, θ, ρ, 0) ∈ 0±s (ε),

in the long-range case (recall that 0< τ ≤ 1) and∣∣ (∂ j
r ∂

α
θ ∂

k
ρa
)
(r, θ, ρ, 0)

∣∣. 〈r〉−τ−1− j for (r, θ, ρ, 0) ∈ 0±s (ε),

in the short-range case.

To calculate a|η=0 in some applications, we shall use the following elementary result.

Proposition 4.6. For all r > 0, all θ ∈ Rn−1 and all ±ρ > 0, we have, for all ±t ≥ 0,

(r t , θ t , ρt , ηt)|η=0 = (r + 2tρ, θ, ρ, 0), (4-15)

∂η(r t , θ t , ρt , ηt)|η=0 =

(
0,
∫ t

0
e−2r−4sρ hessη[q](r + sρ, θ) ds, 0, Id

)
. (4-16)

where hessη[q](r, θ) is the Hessian matrix of q with respect to η (which is independent of η).

Proof. One simply checks that the right-hand side of (4-15) is a solution to (3-10) (with w(r) = e−2r )
for ±t ≥ 0. Applying then ∂η to (3-10), one sees easily as well that the right-hand side of (4-16) is a
solution to the corresponding system. �

Remark. If ε is small enough then, on 0±s (ε), we have

r − log〈η〉 ≥ 0. (4-17)

In particular, in this region, 〈r − log〈η〉〉 is equivalent to the weight

〈r − log〈η〉〉+ :=max(1, r − log〈η〉)

which was introduced by Froese and Hislop [1989]. For the study of global in time estimates, which
we hope to consider in a future work, the resolvent estimates proved in [Bouclet 2006] suggest that the
hyperbolic short/long-range conditions (4-11)/(4-12) would play the same role as the usual Euclidean
short/long-range conditions used in [Bouclet and Tzvetkov 2008].

4C. The Hamilton–Jacobi equation. We now use the results of Section 3B to solve the time-independent
Hamilton–Jacobi equations giving the phases of the Isozaki–Kiada parametrix.

Lemma 4.7. There exists 0< ε0 < 1 such that, for all 0< ε ≤ ε0 and all ±t ≥ 0, the map

9±t : (r, θ, ρ, η) 7→ (r, θ, ρt , ηt)

is a diffeomorphism from 0±s (ε) onto its range and

0±s (ε
3)⊂9±t

(
0±s (ε)

)
for all ± t ≥ 0. (4-18)
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Proof. See Appendix A. �

The power ε3 in (4-18) is not very important. It is only a rough explicit quantitative bound for the size
of a strongly outgoing area contained in 9+t (0+s (ε)) for all t ≥ 0 (or a strongly incoming area contained
in 9−t (0−s (ε)) for all t ≤ 0).

The components of the inverse map (9±t )−1 are of the form (r, θ, ρt , ηt) with

ρt = ρt(r, θ, ρ, η), ηt = ηt(r, θ, ρ, η).

Here we omit the ± dependence for notational simplicity. We thus have

ρt(r, θ, ρt , ηt)= ρ, ηt(r, θ, ρt , ηt)= η, (4-19)

at least for all (r, θ, ρ, η) ∈ 0±s (ε
3
0) and ±t ≥ 0.

Remark. It follows from the proof of Lemma 4.7 and the scaling properties (3-34), (3-35) that 9±t is
actually a diffeomorphism from the cone generated by 0±s (ε0) onto its range, the latter range containing
the cone generated by 0±s (ε

3
0). Therefore (ρt , ηt) is actually the restriction to 0±s (ε

3
0) of a map defined

on the cone generated by 0±s (ε
3
0) and, using (3-35), we have

(ρt , ηt)(r, θ, λρ, λη)= λ(ρλt , ηλt)(r, θ, ρ, η) if ± t ≥ 0 and (r, θ, ρ, η) ∈ 0±s (ε
3
0), (4-20)

for all λ > 0.

Proposition 4.8. There exists ε1 ≤ ε
3
0 such that, for all j, k ∈ N0, α, β ∈ Nn−1

0 ,∣∣D jαkβ
hyp (ρt − ρ)

∣∣+ ∣∣D jαkβ
hyp (ηt − η)

∣∣. 1, (r, θ, ρ, η) ∈ 0±s (ε1), ±t ≥ 0. (4-21)

In addition, if (r, θ, ρ, 0) ∈ 0±s (ε1), we have

(ρt , ηt)|η=0 = (ρ, 0), (4-22)

∂η(ρt − ρ, ηt − η)|η=0 = (0, 0). (4-23)

Proof. By (4-18), any (r, θ, ρ, η) ∈ 0±s (ε
3
0) can be written as 9±t (r, θ, ρ̃, η̃) with (r, θ, ρ̃, η̃) ∈ 0±s (ε0).

Hence
sup
0±s (ε

3
0)

|ρt − ρ| + |ηt − η| ≤ sup
0±s (ε0)

|ρ̃− ρt(r̃ , θ̃ , ρ̃, η̃)| + |η̃− ηt(r̃ , θ̃ , ρ̃, η̃)|.

By (3-31), the right-hand side is bounded, so we obtain (4-21) for j + |α| + k + |β| = 0. Then, for ε
small enough, using Propositions 3.8 and 4.6, we remark that, for (r, θ, ρ, η) ∈ 0±s (ε),∣∣∂ρ,η (ρt

− ρ, ηt
− η

)∣∣≤ ∫ 1

0

∣∣∂η∂ρ,η(ρt , ηt)(r, θ, ρ, sη)
∣∣ ds|η|. |e−rη|. ε,

since, by Proposition 4.3, (r, θ, ρ, sη)∈0±s (ε0) if (r, θ, ρ, η)∈0±s (ε) and ε is small enough. Therefore,
if ε is small enough,

|∂ρ,η(ρ
t , ηt)− Idn| ≤

1
2 on 0±s (ε), (4-24)
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for all ±t ≥ 0. Here | · | is a matrix norm. We can now prove (4-21) when j+|α|+k+|β| ≥ 1. Assume
first that D jαkβ

hyp = er∂
β
η , with |β| = 1, and set for simplicity

4t(r, θ, ρ, η)= (ρt , ηt)(r, θ, ρ, η), 4t(r, θ, ρ̃, η̃)= (ρt , ηt)(r, θ, ρ̃, η̃), 4= (ρ, η),

when (r, θ, ρ, η) ∈ 0±s (ε
3), (r, θ, ρ̃, η̃) ∈ 0±s (ε) and ±t ≥ 0. Applying er∂

β
η to (4-19), we get

(∂ρ̃,η̃4
t)(r, θ,4t)er∂βη4t = (0, er∂βη η)= er∂βη4,

and using that (∂ρ̃,η̃4t)∂
β
η4= ∂

β

η̃
4t , we obtain

(∂ρ̃,η̃4
t)(r, θ,4t)er∂βη (4t −4)= er (∂η̃(4−4t)

)
|(r,θ,4t )

,

where the right-hand side is bounded, by (3-31). Using (4-24), we see that er∂αη (4t −4) is bounded on
0±s (ε1) for ±t ≥ 0, by choosing ε1 ≤ ε

3
0 and such that (4-24) holds. The other first-order derivatives are

treated similarly and are simpler to handle since there is no er . When j + |α| + k + |β| ≥ 2, we iterate
this process using Lemma 3.6. To complete the proof of the proposition, we finally note that (4-22) and
(4-23) are easy consequences of (4-19) and Proposition 4.6. �

By Propositions 4.7 and 4.8, we can define r s
t = r s

t (r, θ, ρ, η) and θ s
t = θ

s
t (r, θ, ρ, η) on 0±s (ε1) by

r s
t = r s(r, θ, ρt , ηt), θ s

t = θ
s(r, θ, ρt , ηt) for ± t ≥±s ≥ 0,

where ±t ≥ ±s ≥ 0 means more precisely that t ≥ s ≥ 0 if (r, θ, ρ, η) ∈ 0+s (ε1) and t ≤ s ≤ 0 if
(r, θ, ρ, η) ∈0−s (ε1). Here we assume that ε1 is small enough so that Proposition 3.8 hold for r > R(ε1)

and σ = 1
2 (for instance), which justifies that r s

t and θ s
t are well defined (and that their derivatives can be

estimated using Proposition 3.8).
By the classical Hamilton–Jacobi theory, the function 6± defined by

6±(t, r, θ, ρ, η)= r t
t ρ+ θ

t
t · η− tρ2

− te−2r t
t q(r t

t , θ
t
t , η) (4-25)

solve the following time-dependent eikonal equation, for (r, θ, ρ, η) ∈ 0±s (ε1) and ±t ≥ 0,

∂t6± = p(r, θ, ∂r6±, ∂θ6±), 6±|t=0 = rρ+ θ · η. (4-26)

To put it in a more standard way, note that (4-25) is obtained by defining 6± via

6±(t, r, θ, ρt , ηt)= r tρt
+ θ t
· ηt
− tp(r t , θ t , ρt , ηt). (4-27)

(This simple expression uses the fact that p is homogeneous of degree 2 in (ρ, η).) Now assume for a
while that

S±(r, θ, ρ, η) := rρ+ θ · η+
∫
±∞

0
∂t
(
6±(t, r, θ, ρ, η)− tρ2) dt (4-28)

is well defined on 0±s (ε1). Then, at least formally,

∂r,θ S±(r, θ, ρ, η)= lim
t→±∞

∂r,θ6±(t, r, θ, ρ, η). (4-29)

The latter only uses the fact that the term tρ2 inside the integral is independent of r, θ . If we know in
addition that

lim
t→±∞

∂ρ6±(t, r, θ, ρ, η)=+∞, (4-30)
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then, using the fact that 6± are generating functions of 8t , that is,

8t(r, θ, ∂r6±, ∂θ6±)= (∂ρ6±, ∂η6±, ρ, η) for ± t ≥ 0, (4-31)

we obtain, on 0±s (ε1),

p(r, θ, ∂r S±, ∂θ S±)= lim
t→±∞

p(∂ρ6±, ∂η6±, ρ, η)= ρ2. (4-32)

Proposition 4.9. There exist 0 < ε2 ≤ ε1 such that we can find S± = S±(r, θ, ρ, η), defined on 0±s (ε2),
real-valued, satisfying

p(r, θ, ∂r S±, ∂θ S±)= ρ2 on 0±s (ε2), (4-33)

and such that
S±(r, θ, ρ, η)= rρ+ θ · η+ϕ±(r, θ, ρ, η), (4-34)

for some ϕ± ∈Bhyp(0
±
s (ε2)) satisfying, when (r, θ, ρ, 0) ∈ 0±s (ε2),

ϕ±|η=0 = 0, er∂ηϕ±|η=0 = 0, e2r hessη[ϕ±]|η=0 =

∫
±∞

0
e−4tρ hessη[q](r + 2tρ, θ)dt. (4-35)

It is convenient to note that, by possibly decreasing ε2 and by using Lemma 2.4, (4-13), and the first
two equalities in (4-35), we can write

ϕ±(r, θ, ρ, η)=
∑
|β|=2

a±β (r, θ, ρ, e−rη)e−2rηβ, (4-36)

with a±β ∈ C∞b (Fhyp(0
±(ε2))).

Proof. We consider only the outgoing case. To complete the proof of (4-33), we have to prove the missing
details, namely the convergence of the integral in (4-28) (plus its derivability) and the limits (4-29) and
(4-30). Defining (ρs

t , η
s
t ) := (ρ

s, ηs)(r, θ, ρt , ηt), the equations of motion yield

r t
t = r + 2

∫ t

0
ρs

t ds = r + 2tρ− 2
∫ t

0

∫ t

s
e−2ru

t
(
2q(ru

t , θ
u
t , η

u
t )− (∂r q)(ru

t , θ
u
t , η

u
t )
)

du ds. (4-37)

By Propositions 3.8 and 4.8, we have the following bounds on 0+s (ε1), for s ≥ 0 and t ≥ 0,∣∣Dhyp
jαkβ(r

s
t − r)

∣∣. 〈s〉, ∣∣Dhyp
jαkβ(θ

s
t − θ)

∣∣. e−r ,
∣∣Dhyp

jαkβ(η
s
t − η)

∣∣. 1. (4-38)

In addition, using Proposition 3.4 and (4-18), we have, for s ≥ 0 and t ≥ 0,

r s
t ≥ r + 2(1− ε6)sp1/2(r, θ, ρt , ηt)−C ≥ r + s/4−C on 0+s (ε

3), (4-39)

with ε small enough such that, p1/2(r, θ, ρt , ηt) ≥
1
4 . Using (4-37), (4-38), (4-39), with ε2 := ε

3
≤ ε1

small enough, and Lemma 3.6, we obtain the existence of a bounded family (at)t≥0 in Bhyp(0
+
s (ε2))

such that
r t

t = r + 2tρ+ at(r, θ, ρ, η) for t ≥ 0. (4-40)

One shows similarly that (θ t
t− θ) ·η= er (θ t

t− θ) · e
−rη is bounded in Bhyp(0

+
s (ε2)) for t ≥ 0, and hence

that
6+− (rρ+ θ · η+ tρ2) is bounded in Bhyp(0

+

s (ε2)) for t ≥ 0, (4-41)
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which proves (4-30). Then, using (4-26) and (4-31), we note that

∂t6+− ρ
2
= e−2∂ρ6+q(∂ρ6+, ∂η6+, η). (4-42)

Therefore, using (4-39), (4-40), (4-41) and (4-42), we obtain the convergence of the integral in (4-28)
and the limit (4-29) as well as the fact that S+(r, θ, ρ, η)− rρ− θ · η belongs to Bhyp(0

+
s (ε2)). Finally,

the formulas in (4-35) follow directly from (4-42) combined with (4-22) and (4-15). �

Remark 1. By applying ∂η to (4-41) we see that there exists C such that

|∂η6+(t, r, θ, ρ, η)− θ | ≤ Ce−r . e−R(ε2) for all (r, θ, ρ, η) ∈ 0+s (ε2) and t ≥ 0.

This shows, in the spirit of Corollary 3.10, that the proof above depends only on the definition of q(r, θ, η)
for θ in an arbitrarily small neighborhood of V 0, provided ε2 is small enough.

Remark 2. Using (3-34), (3-35) and (4-20), one sees that S± is actually well defined on the conical area
given by

r > R(ε2), θ ∈ Vε2, ±ρ > (1− ε
2
2)p

1/2,

and that
6±(t, r, θ, λρ, λη)= λ6±(λt, r, θ, ρ, η) if λ > 0.

Thus that S± is the restriction to 0±s (ε2) of an homogeneous function of degree 1 with respect to (ρ, η).

We conclude this part with a result useful for considering phases globally defined on R2n when we
shall construct Fourier integral operators.

Proposition 4.10. For some small enough ε3> 0, there exists a family of functions (S±,ε)0<ε≤ε3 , globally
defined on R2n , such that

ϕ±,ε(r, θ, ρ, η) := S±,ε(r, θ, ρ, η)− rρ− θ · η

coincides with ϕ± on 0±s (ε) and satisfies

supp(ϕ±,ε)⊂ 0±s (ε
1/2), ϕ±,ε ∈Bhyp(0

±

s (ε
1/2)), (4-43)∣∣∂ρ,η⊗ ∂r,θϕ±,ε(r, θ, ρ, η)

∣∣≤ 1
2 for (r, θ, ρ, η) ∈ R2n, 0< ε ≤ ε3, (4-44)

with | · | a matrix norm.

In further applications, (4-44) will also be used under the equivalent form∣∣∂ρ,η⊗ ∂r,θ S±,ε(r, θ, ρ, η)− Idn
∣∣≤ 1

2 for (r, θ, ρ, η) ∈ R2n, 0< ε ≤ ε3. (4-45)

Remark. Although this proposition allows one to assume that they are globally defined, the phases S±,ε
solve the Hamilton–Jacobi equations on 0±s (ε2) only.

Proof. We use Proposition 4.4 and consider

S±,ε(r, θ, ρ, η) := rρ+ θ · η+χε1/2→ε(r, θ, ρ, η)ϕ±(r, θ, ρ, η), (4-46)

with ϕ± defined in Proposition 4.9. We have S±,ε = S± on 0±s (ε) and, using(4-9) and (4-36),∣∣∂ρ,η⊗ ∂r,θ S±,ε(r, θ, ρ, η)− Idn
∣∣. ε1/4 on R2n, (4-47)
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since e−r
|η|. ε1/2 on 0+s (ε

1/2). This yields the result if ε is small. �

4D. Fourier integral operators on Rn. In this subsection, we derive some basic properties of Fourier
integral operators associated to the phases S± obtained in Proposition 4.9.

For simplicity, we introduce the shorter notation

B±s (ε) :=Bhyp(0
±

s (ε)), S±s (ε) := S±hyp(0
±

s (ε)), (4-48)

where the classes Bhyp and Shyp were defined in Definition 2.2.
By Propositions 4.9 and 4.10, for all h ∈ (0, 1], all ε small enough and all a± ∈ S±s (ε), we can define

the operator

J±h (a
±) : S(Rn)→ S(Rn), (4-49)

as the operator with Schwartz kernel

K±h (r, θ, r
′, θ ′)= (2πh)−n

∫
e

i
h (S±(r,θ,ρ,η)−r ′ρ−θ ′·η)a±(r, θ, ρ, η) dρ dη.

Since the symbol a± is supported in 0±s (ε), the phase S± can be replaced by S±,ε which is globally
defined (see Proposition 4.10). Note also that J±h (a

±) maps clearly the Schwartz space into itself since,
for fixed h say h = 1, it can be considered as the pseudodifferential operator with symbol eiϕ±a± =
eiϕ±,εa± which belongs to C∞b (R

2n).
To obtain the L2 boundedness of such operators uniformly in h ∈ (0, 1] as well as the factorization

Proposition 4.13 below, which are both consequences of the usual Kuranishi trick, we need a preliminary
result.

Consider the maps (ρ±,ε, η±,ε) : R3n
→ Rn defined by

(ρ±,ε, η±,ε)(r, θ, r ′, θ ′, ρ, η) :=
∫ 1

0
∂r,θ S±,ε(r ′+ s(r − r ′), θ ′+ s(θ − θ ′), ρ, η)ds (4-50)

so that

(r − r ′)ρ±,ε + (θ − θ ′) · η±,ε = S±,ε(r, θ, ρ, η)− S±,ε(r ′, θ ′, ρ, η). (4-51)

Lemma 4.11. For all (r, θ, r ′, θ ′) ∈ R2n and all 0 < ε ≤ ε3, the map (ρ, η) 7→ (ρ±,ε, η±,ε) is a dif-
feomorphism from Rn onto itself. Denoting by (ρ±,ε, η±,ε) the corresponding inverse, we have, for all
0< ε ≤ ε3, ∣∣∂βη ∂ j

r ∂
j ′

r ′ ∂
α
θ ∂

α′

θ ′ ∂
k
ρ((ρ±,ε, η±,ε)− (ρ, η))

∣∣. 1 on R3n. (4-52)

Furthermore, there exists ε6 > 0 such that, for all 0< ε ≤ ε6, we have

(r, θ, ρ, η) ∈ 0±s (ε) H⇒
(
r, θ, ρ±,ε, η±,ε

)
|r=r ′,θ=θ ′ ∈ 0

±

s (ε
1/3), (4-53)(

r, θ, ρ±,ε, η±,ε
)
|r=r ′,θ=θ ′ ∈ 0

±

s (ε
3) H⇒ (r, θ, ρ, η) ∈ 0±s (ε), (4-54)

and ∣∣∂βη ∂ j
r ∂

j ′

r ′ ∂
α
θ ∂

α′

θ ′ ∂
k
ρ((ρ±,ε, η±,ε)− (ρ, η))|r=r ′,θ=θ ′

∣∣. e−|β|r on 0+s (ε
3). (4-55)
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Proof. The estimate (4-45) implies directly that (ρ, η) 7→ (ρ±,ε, η±,ε) is a diffeomorphism for all
(r, θ, r ′, θ ′) ∈ R2n and 0< ε ≤ ε3. Evaluating (4-50) at (r, θ, r ′, θ ′, ρ±,ε, η±,ε), namely

(ρ, η)= (ρ±,ε, η±,ε)(r, θ, r ′, θ ′, ρ±,ε, ρ±,ε), (4-56)

yields

(ρ, η)− (ρ±,ε, η±,ε)=

∫ 1

0
∂r,θϕ±,ε(r ′+ s(r − r ′), θ ′+ s(θ − θ ′), ρ±,ε, η±,ε)ds. (4-57)

By (4-43) we have ϕ±,ε ∈ C∞b (R
2n), so (ρ±,ε, η±,ε)− (ρ, η) is bounded, for fixed ε. For the deriva-

tives, we apply ∂βη ∂
j

r ∂
j ′

r ′ ∂
α
θ ∂

α′

θ ′ ∂
k
ρ to the right-hand side of (4-57) and obtain (4-52) by induction, using

Lemma 3.6.
To prove (4-53), we simply notice that ϕ±,ε coincides with ϕ± on 0±s (ε

3) so that∣∣(ρ, η)− (ρ±,ε, η±,ε)|r=r ′,θ=θ ′
∣∣= |∂r,θϕ±(r, θ, ρ, η)|. ε2,

using (2-56) and (4-36). The result follows from Proposition 4.3 and the fact that 0±s (Cε) ⊂ 0
±
s (ε

1/3)

for ε small enough. To get (4-54), we use directly Proposition A.1 proving that 0±s (ε
3) ⊂ 9 t(0±s (ε))

with

9 t(r, θ, ρ, η) :=
(
r, θ, ρ±,ε, η±,ε

)
|r=r ′,θ=θ ′ =

(
r, θ, ∂r S±(r, θ, ρ, η), ∂θ S±(r, θ, ρ, η)

)
,

which is actually independent of t and ε.
By (4-52), (4-55) holds when β = 0. Consider next the first-order derivatives when |β| = 1 and the

other multi-indices are 0. Applying ∂βη to (4-56) and evaluating at r = r ′, θ = θ ′, we get(
∂ρ,η(ρ±,ε, η±,ε)

)
∂βη
(
(ρ±,ε, η±,ε)− (ρ, η)

)
= ∂βη ∂r,θϕ±(r, θ, ρ±,ε, η±,ε)

where we have replaced ϕ±,ε by ϕ± using (4-54). Since
(
∂ρ,η(ρ±,ε, η±,ε)

)
−1 is uniformly bounded and

erβ∂
β
η ∂r,θϕ±

(
r, θ, ρ±,ε, η±,ε

)
is bounded, using (4-54) again, we get the result in this case. Higher-order

derivatives are obtained similarly by induction, using Lemma 3.6. �

Proposition 4.12. For all 0< ε ≤ ε6 and all a±, b± ∈ S±s (ε), we have∥∥∥J±h (a
±)J±h (b

±)∗−
∑

k≤N
hkc±k (r, θ, h Dr , h Dθ )

∥∥∥
L2(Rn)→L2(Rn)

≤ ChN+1 for h ∈ (0, 1], (4-58)

where the constant C can be chosen uniformly with respect to a± and b± when they vary in bounded
subsets of S±s (ε) and where the symbols c±k are given by

c±k =
∑

j+|α|=k

1
j !α!

∂
j

r ′∂
α
θ ′D

j
ρDα

η

(
a(r, θ, ρ±,ε, η±,ε) b(r ′, θ ′, ρ±,ε, η±,ε) Jac(ρ±,ε, η±,ε)

)
|r=r ′, θ=θ ′, (4-59)

with Jac(ρ±,ε, η±,ε)= |det(∂ρ,η(ρ±,ε, η±,ε))|. In particular,

c±k ∈ S±s (ε
1/3). (4-60)
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Proof. The Schwartz kernel of J±h (a
±)J±h (b

±)∗ takes the form

(2πh)−n
∫

e
i
h (S±,ε(r,θ,ρ,η)−S±,ε(r ′,θ ′,ρ,η))a(r, θ, ρ, η) b(r ′, θ ′, ρ, η) dρ dη

and this can be rewritten using the Kuranishi trick, that is, (4-51) and Lemma 4.11, as

(2πh)−n
∫

e
i
h ((r−r ′)ρ+(θ−θ ′)·η)a(r, θ, ρ±,ε, η±,ε)b(r ′, θ ′, ρ±,ε, η±,ε)Jac(ρ±,ε, η±,ε) dρ dη. (4-61)

By (4-52), the symbol in (4-61) belongs to C∞b (R
3n). Therefore, the standard h-pseudodifferential

calculus implies that, with ck defined by (4-59), we obtain the L2 bound (4-58) by the Calderón–
Vaillancourt theorem. In addition, by (4-53) (applied with (ρ, η) = (ρ±,ε, η±,ε)|r=r ′,θ=θ ′), we have
supp(c±k )⊂ 0

+
s (ε

1/3). One then checks that c±k ∈B±s (ε
1/3), using (4-55). �

We note in passing that this proposition shows that, for all 0< ε ≤ ε6 and all a± ∈ S±s (ε),

‖J±h (a
±)‖L2(Rn)→L2(Rn) ≤ C for h ∈ (0, 1]. (4-62)

More precisely, the constant C can be chosen independently of a± if, for ε fixed, a± vary in a bounded
subset of S±s (ε).

Proposition 4.13. For all 0< ε ≤ ε6, the following holds: if we are given a±0 , . . . , a±N ∈ S±s (ε) with

a±0 & 1 on 0±s (ε
3), (4-63)

then, for all χ±s ∈ S±s (ε
9), we can find b±0 , . . . , b±N ∈ S±s (ε

3) such that, if we set

a±(h)= a±0 + · · ·+ hN a±N , b±(h)= b±0 + · · ·+ hN b±N ,

we have∥∥J±h (a
±(h))J±h (b

±(h))∗−χ±s (r, θ, h Dr , h Dθ )
∥∥

L2(Rn)→L2(Rn)
≤ ChN+1 for h ∈ (0, 1].

Proof. By Proposition 4.12 and the notation therein, we only need to find b±0 , . . . , b±N such that

c±0 = χ
±

s , c±k = 0 for k = 1, . . . , N .

Using Lemma 4.11 and (4-59), the first equation, c±0 = χ
±
s , is solved explicitly by

b±0 (r, θ, ρ, η)=
(
χ±s (r, θ, ρ±,ε, η±,ε) Jac(ρ±,ε, η±,ε)

)
|r ′=r, θ ′=θ ×

1
a±0 (r, θ, ρ, η)

,

where 1/a±0 is well defined since χ±s (r, θ, ρ±,ε, η±,ε)|r ′=r, θ ′=θ is supported in 0±s (ε
3) by (4-54). Thus,

b±0 is well defined, supported in 0±s (ε
3) and belongs to B±s (ε

3) by (4-50) and Proposition 4.9 (since
(ρ±,ε, η±,ε)|r ′=r, θ ′=θ = ∂r,θ S± in 0±s (ε

3)). Furthermore, b±0 (r, θ, ρ±,ε, η±,ε)|r ′=r, θ ′=θ is supported in
0±s (ε

9). We then find the other symbols by induction for we have a triangular system of equations. More
precisely, the k-th equation ck ≡ 0 (k ≥ 1), reads(

b±k (r, θ, ρ±,ε, η±,ε) a±0 (r, θ, ρ±,ε, η±,ε) Jac(ρ±,ε, η±,ε)
)
|r=r ′,θ=θ ′ = d±k (r, θ, ρ, η)
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where d±k is a linear combination of symbols of the form

(∂γb±k2
)(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′

(∂γ
′

a±k1
)(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′δ k1k2γγ′(r, θ, ρ, η)

with k2 < k and δk1k2γγ′ a product of derivatives of order ≥ 1 of (ρ±,ε, η±,ε)(r, θ, r ′, η′, ρ, η) evaluated
at r = r ′, θ = θ ′. By the induction assumption (∂γb±k2

)(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′ is supported in 0±s (ε
9),

so we have
(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′ ∈ 0

±

s (ε
3),

using (4-53). Therefore, δk1k2γγ′(r, θ, ρ±,ε, η±,ε)|r=r ′,θ=θ ′ belongs to B±s (ε
3) by (4-55) and b±k satisfies

the expected properties. �

4E. The transport equations. In this subsection, we solve the time-independent transport equations
related to the phases constructed in Proposition 4.9. If we define (v±, w±)= (v±, w±)(r, θ, ρ, η) by(

v±

w±

)
:=

(
(∂ρ p)(r, θ, ∂r S±, ∂θ S±)
(∂η p)(r, θ, ∂r S±, ∂θ S±)

)
=

(
2∂r S±

e−2r (∂ηq)(r, θ, ∂θ S±)

)
, (4-64)

these transport equations take the form

v±∂r a±+w± · ∂θa±+ y±a± = z±, (4-65)

where y±, z± are given and a± is the unknown function of (r, θ, ρ, η). Such equations arise naturally
in the construction of the Isozaki–Kiada parametrix (see Section 5). They can be solved standardly by
the method of characteristics and therefore, we start with the study the integral curves of the vector field
(v±, w±).

Given (r, θ, ρ, η) ∈ 0±s (ε
2), with ε > 0 small enough (to be specified below), we denote by

r±t = r±t (r, θ, ρ, η), θ±t = θ
±

t (r, θ, ρ, η),

the solution to {
ṙ±t = v

±(r±t , θ
±

t , ρ, η),

θ̇±t = w
±(r±t , θ

±

t , ρ, η),
(4-66)

with initial data
r±0 (r, θ, ρ, η)= r, θ±0 (r, θ, ρ, η)= θ.

In this problem, ρ and η are parameters. Equivalently,

φ±t = φ
±

t (r, θ, ρ, η) := (r
±

t , θ
±

t , ρ, η) (4-67)

is the flow of the autonomous vector field (v±, w±, 0, 0).

Proposition 4.14. There exists ε4 > 0 such that for all (r, θ, ρ, η) ∈ 0±s (ε
2
4), the solution (r+t , θ

+
t ) (resp.

(r−t , θ
−
t )) is globally defined on [0,+∞) (resp. (−∞, 0]). There also exists C > 0 such that, for all

0< ε ≤ ε4 and all (r, θ, ρ, η) ∈ 0±s (ε
2), we have

(r±t , θ
±

t , ρ, η) ∈ 0
±

s (ε) for ± t ≥ 0, (4-68)

and ∣∣r±t − r − 2tρ
∣∣≤ Cε2 min(1, |t |),

∣∣θ±t − θ ∣∣≤ Ce−r . (4-69)
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Furthermore, ∣∣D jαkβ
hyp (r±t − r − 2tρ)

∣∣+ ∣∣D jαkβ
hyp (θ±t − θ)

∣∣≤ C jαkβ . (4-70)

for (r, θ, ρ, η) ∈ 0±s (ε
2
4) and ±t ≥ 0.

Since S±,ε= S± on 0±s (ε), the localization property (4-68) shows that φ±t still solves (4-66) on 0±s (ε
2)

if one replaces (v±, w±) by (v±ε , w
±
ε ), the latter being obtained by replacing S± by S±,ε in (4-64).

Proof. Here again we only consider the outgoing case. By (4-36), there exists C0 ≥ 1 such that, for all
(r, θ, ρ, η) ∈ 0+s (ε2),

|∂r S+− ρ| ≤ C0e−r
|η| and |e−2r (∂ηq)(r, θ, ∂θ S+)| ≤ C0e−2r

|η|. (4-71)

By (2-56), there exists C1 ≥ 1 such that, for all ε > 0 small enough and all (r, θ, ρ, η)∈0+s (ε), we have

e−r
|η| ≤ C1ε and e−2r

|η| ≤ C1ε
2, (4-72)

the last inequality following from e−R(ε)
≤ ε. If ε small enough, we may also assume that

ρ > 1
8 for all (r, θ, ρ, η) ∈ 0+s (ε).

Now fix M = 5C0C1, and for (r, θ, ρ, η) ∈ 0+s (ε
2), consider T := T(r, θ, ρ, η) defined by

T=
{
t ≥ 0 : (r+s , θ

+

s ) is defined and r+s ≥ r + s/8, |θ+s − θ | ≤ Mε2 for all s ∈ [0, t]
}
.

The set T is clearly an interval containing 0 and, if ε is small enough, Proposition 4.3 shows that
(r+s , θ

+
s , ρ, η) ∈ 0

+
s (ε) for all s ∈ T. Thus, by (4-71) and (4-72), we have

|ṙ+s − 2ρ| ≤ 2C0C1ε and |θ̇+s | ≤ C0C1ε
2 for s ∈ T,

and, by possibly assuming that C0C1ε<
1
8 , we have ṙ+s >0 on T. Choosing CM ≥1 as in Proposition 4.3,

we now claim that, if
ε < ε2/CM and r > R(CMε),

then T := sup T=+∞. Assume this is wrong. Then T is finite, belongs to T and, on [0, T ], we have

r+s ≥ r + s/8≥ r, |θ+s − θ | ≤ C1ε
2 < Mε2,

so, by Proposition 4.3, (r+s , θ
+
s , ρ, η) ∈ 0

+
s (CMε)⊂ 0

+
s (ε2) and, by (4-71) and (4-72),

|r+T − r − 2ρT | ≤ C0e−r
|η|

∫ T

0
e−s/8 ds ≤ C0e−r

|η| T ≤ C0C1εT, (4-73)

|θ+T − θ | ≤ C0e−2r
|η|

∫ T

0
e−s/4 ds ≤ 4C0e−2r

|η|< 5C0C1ε
2. (4-74)

This implies that r+T > r+T/8 and that |θ+T −θ |<Mε2, so the flow can be continued beyond T , yielding
a contradiction with the definition of T . The flow is thus well defined for t ≥ 0. Then (4-69) follows
from the first inequalities of (4-73) and (4-74) with an arbitrary t ≥ 0 instead of T , since e−r

|η|. ε2 for
(r, θ, ρ, η) ∈ 0+s (ε

2). If ε is small enough, Proposition 4.3 shows that (4-68) is a direct consequence of
(4-69), using that e−r

� ε4.
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It remains to prove (4-70) for j+|α|+k+|β| ≥ 1. We consider r+t := r+t −2tρ and θ+t := θ
+
t , which

satisfy
dr+t
dt
= v(t, r+t , θ

+

t , ρ, η),
dθ+t
dt
= w(t, r+t , θ

+

t , ρ, η), (4-75)

with
v(t, r, θ, ρ, η)= (∂rϕ+)(r + 2tρ, θ, ρ, η),

w(t, r, θ, ρ, η)= e−2r−4tρ (∂ηq) (r + 2tρ, θ, ∂θ S+(r + 2tρ, θ, ρ, η)) .

Using (4-36), we have, for all j ′, α′, k ′, β ′,∣∣D j ′α′k′β ′

hyp (v,w)
∣∣. 〈t〉k′e−4tρ . e−2tρ for t ≥ 0, on 0+s (ε2/C), (4-76)

with C such that if (r, θ, ρ, η)∈0+s (ε2/C) then (r+2tρ, θ, ρ, η)∈0+s (ε2/C). Note also that if ε is small
enough and (r, θ, ρ, η)∈0+s (ε

2), we have (r+t , θ
+
t , ρ, η)∈0

+
s (ε2/C), using (4-69) and Proposition 4.3.

We then obtain (4-70) by induction by applying D jαkβ
hyp to (4-75). Indeed, using Lemma 3.6 and (4-76),

we have
d
dt

D jαkβ
hyp

(
r+t , θ

+

t
)
=
(
∂r,θ (v,w)

)
D jαkβ

hyp (r+t , θ
+

t )+O(e−2ρt),

where O(e−2ρt) = 0 for first-order derivatives and, otherwise, follows from the induction assumption.
Since |∂r,θ (v,w)|. e−2ρt , Lemma 3.7 yields the result. �

We now come to the resolution of (4-65) in a way suitable to further purposes.

Proposition 4.15. There exists ε5 > 0 such that, for all 0< ε ≤ ε5 and all y± ∈Bhyp(0
±
s (ε)) of hyper-

bolic short range in 0±s (ε), the function

a±hom = exp
∫
±∞

0
y± ◦φ±s ds,

solves (4-65) on 0±s (ε
2) with z± ≡ 0 , belongs to Bhyp(0

±
s (ε

2)) and a±hom−1 is of hyperbolic long range
in 0±s (ε

2).
In addition, for all z± ∈Bhyp

(
0±s (ε)

)
, of hyperbolic short range in 0±s (ε), the function

a±inhom =−

∫
±∞

0
z± ◦φ±s exp

(∫ s

0
y± ◦φ±u du

)
ds

solves (4-65) on 0±s (ε
2), belongs to Bhyp(0

±
s (ε

2)), and is of hyperbolic long range in 0±s (ε
2).

Lemma 4.16. There exists ε5 > 0 such that, for all j, α, k, β and all N ≥ 0,∣∣∂ j
r ∂

α
θ ∂

k
ρ∂

β
η

(
r±t − r − 2tρ

)∣∣+ ∣∣∂ j
r ∂

α
θ ∂

k
ρ∂

β
η (θ
±

t − θ)
∣∣. 〈r − log〈η〉〉−N ,

on 0±s (ε5), uniformly with respect to ±t ≥ 0.

Proof. By Proposition 4.3, there exists C > 0 such that, for all ε small enough and all s ∈ [0, 1],

(r, θ, ρ, η) ∈ 0±s (ε
2) H⇒ (r, θ, ρ, sη) ∈ 0±s (Cε

2). (4-77)

Therefore, if Cε2
≤ ε2

4 and if we set X±t (r, θ, ρ, η)= (r
±
t − r − 2tρ, θ±t − θ), we can write

X±t (r, θ, ρ, η)= X±t (r, θ, ρ, 0)+
∫ 1

0
(er∂ηX±t )(r, θ, ρ, sη) ds · e−rη,
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on 0±s (ε
2). The crucial remark is that X±t (r, θ, ρ, 0) = 0. Indeed, by (4-34) and the first equation in

(4-35), we have ∂r S± ≡ ρ and ∂θ S± ≡ 0 at η = 0 (notice that (r, θ, ρ, 0) ∈ 0±s (ε2) if Cε2
≤ ε2), so

the solution to (4-66) is simply (r + 2tρ, θ) in this case. In addition, by (4-70), (X±t )t≥0 is bounded in
Bhyp(0

±
s (ε

2)). Thus, for all N ≥ 0,∣∣∂ j
r ∂

α
θ ∂

k
ρ∂

β
η X±t (r, θ, ρ, η)

∣∣. e−r
〈η〉. 〈r − log〈η〉〉−N for ± t ≥ 0, (r, θ, ρ, η) ∈ 0±s (ε

2),

which yields the result. �

Proof of Proposition 4.15. For simplicity we set ∂γ = ∂ j
r ∂

α
θ ∂

k
ρ∂

β
η . Then, using Lemma 3.6 with |γ| ≥ 1,

∂γ
(
y± ◦φ±s

)
is the sum of

(∂r y±) ◦φ±s ∂
γr±s + (∂θ y±) ◦φ±s · ∂

γθ±s + δ j0δα0(∂
k
ρ∂

β
η y±) ◦φ±s (4-78)

and of a linear combination of

(∂k−k′
ρ ∂β−β

′

η ∂νr,θ y±) ◦φ±s
(
∂γ

1
1r±s . . . ∂

γ1
ν1 r±s

)
. . .
(
∂γ

n
1 (θ±s )n−1 . . . ∂

γn
νn

x (θ±s )n−1
)
, (4-79)

where (θ±s )1, . . . , (θ
±
s )n−1 are the components of θ±s , (0, 0, k ′, β ′)+

∑
γ

j
i = γ, using the convention and

the notation of Lemma 3.6. By (4-70), we have

|(∂r y±) ◦φ±s ∂
γr±s |. 〈r

±

s − log〈η〉〉−τ−2e−r |β|
〈s〉κ ,

where κ = 1 if k = 1 and j + |α| + |β| = 0, and κ = 0 otherwise. On the other hand, by Lemma 4.16,
we have

|(∂r y±) ◦φ±s ∂
γr±s |. 〈r

±

s − log〈η〉〉−τ−2
〈r − log〈η〉〉− j̃

〈s〉κ ,

with the same κ as above and j̃ = j if j ≥ 2, or j̃ = 0 for j ≤ 1. Similarly, we also have

|(∂θ y±) ◦φ±s · ∂
γθ±s |. 〈r

±

s − log〈η〉〉−τ−1 min
(
e−|β|r , 〈r − log〈η〉〉− j),

while, for the last term of (4-78), we have

|δ j0δα0(∂
k
ρ∂

β
η y±) ◦φ±s |.min

(
e−|β|r e−2|β‖ρs|, 〈r±s − log〈η〉〉−τ−1− j),

since e−|β|r
±
s . e−|β|r e−2|β‖s| for r±s − r −2ρs is bounded from below and ρs ≥ 0. Now, we remark that∣∣(∂γ1

1r±s . . . ∂
γ1
ν1 r±s

)∣∣. 〈s〉ν̃1〈r − log〈η〉〉−N0,

where ν̃1 is the number of ∂γ
1
l = ∂

j1
l

r ∂
α1

l
θ ∂

k1
l
ρ ∂

β1
l
η for which j1

l = 0, N0 = 0 if j1
l ≤ 1 for all l and N0 is any

positive number if j1
l ≥ 2 for at least one l. We therefore obtain, if β = β ′,

|(4-79)|. 〈r±s − log〈η〉〉−τ−1−ν1 min
(
e−r |β|

〈s〉ν1, 〈r − log〈η〉〉ν1−ν̃1− j
〈s〉ν̃1

)
,

since ν1−ν̃1− j ≥ 0 in the case where no r derivative fall on the components of θ±s and only r derivatives
of order at most 1 fall on r±s . If β 6= β ′, we have

|(4-79)|.min
(
e−2|β−β ′||ρs|e−|β|r 〈s〉ν1, 〈r±s − log〈η〉〉−τ−1−ν1〈r − log〈η〉〉ν1−ν̃1− j

〈s〉ν̃1
)
.

Since r±s − r − 2ρs is bounded from below, ρs ≥ 0 (with |ρ|& 1) and using (4-17), we have

〈r±s − log〈η〉〉−τ−1−ν1 . 〈r − log〈η〉+ |s|〉−τ−1−ν1 .
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All this implies that∣∣D jαkβ
hyp

(
y± ◦φ±s

) ∣∣. 〈s〉−τ−1 and
∣∣∂ j

r ∂
α
θ ∂

k
ρ∂

β
η

(
y± ◦φ±s

) ∣∣. 〈r − log〈η〉+ |s|〉−τ−1
〈r − log〈η〉〉− j ,

and since ∫
+∞

0
〈r − log〈η〉+ |s|〉−τ−1ds . 〈r − log〈η〉〉−τ

(using (4-17) on strongly outgoing/incoming areas), we see that the function
∫
±∞

0 y± ◦ φ±s ds belongs
to Bhyp(0

±
s (ε

2)) and is of hyperbolic long range. This implies easily that the same holds for a±hom− 1.
One then checks that a±hom solves the homogeneous transport equation by computing d(a±hom ◦φ

±
t )/dt at

t = 0±. One studies similarly the case of a±inhom. �

5. An Isozaki–Kiada type parametrix

In this section, we prove an approximation of e−i th P Ôpι(χ
±
s ) when χ±s is supported in the strongly

outgoing (+) or incoming (−) region 0±ι,s(ε) (see Definition 2.12 for these areas and Definition 2.1 for
Ôpι( · )). We recall that ι is an arbitrary index corresponding to the chart at infinity we consider and
where the symbols are supported (see (2-4) and (2-19)).

Here we will prove an L2 approximation, valid for times such that 0 ≤ ±t . h−1. Basically, we will
show that, for any N , e−i th P Ôpι(χ

±
s ) is the sum of a Fourier integral operator and of a term of order hN

in the operator norm of L2(M, d̂G), uniformly for 0≤ t . h−1.
We will therefore essentially prove half of Proposition 2.20, namely the estimate (2-79). The disper-

sion estimate (2-78), following from a stationary phase argument on the Fourier integral operator, will
be proved in Section 7.

In the sequel, we choose an arbitrary ι ∈ I (see (2-2)). Since it will be fixed, we drop it most of the
time from the notation (in particular in phases, symbols) and keep it only for the diffeomorphism 9ι, the
regions 0±ι,s( · ) and (5-3).

In the next result, we use the classes of symbols Shyp( · ) introduced in Definition 2.2 and the Fourier
integral operators (4-49) defined in Section 4D. For these operators, the phases are associated to the
Hamiltonian p = pι, the principal symbol of P in the ι-th chart (this notation is consistant with (5-3)).

Theorem 5.1. For all N ≥ 0, there exists ε(N ) > 0 such that, for all 0< ε ≤ ε(N ), the following holds:
there exists a±(h)= a±0 + · · ·+ hN a±N with a±0 , . . . , a±N ∈ Shyp(0

±
ι,s(ε)), such that for all

χ±s ∈ Shyp(0
±

ι,s(ε
9)) (5-1)

we can find b±(h)= b±0 + · · ·+ hN b±N with

b±0 , . . . , b±N ∈ Shyp(0
±

ι,s(ε
3)), (5-2)

such that, for all T > 0, there exists C > 0 such that∥∥ e−i th P Ôpι(χ
±

s )−9
∗

ι

(
J±h (a

±(h))e−i th D2
r J±h (b

±(h))∗
)(
9−1
ι

)∗∥∥
L2(d̂G)→L2(d̂G) ≤ ChN−1,

provided that
0≤±t ≤ T h−1, h ∈ (0, 1].
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By the inclusions in (2-20), together with (2-21) and (2-54), the symbols a±(h) and b±(h) are sup-
ported in (ε−1,+∞)×Vι,ε×Rn

⊂ (RK+1,+∞)×V ′ι ×Rn , for ε small. Therefore the Schwartz kernel
of the operator J±h (a

±(h))e−i th D2
r J±h (b

±(h))∗ is supported in
(
(RK+ 1,+∞)× V ′ι

)2 and hence

9∗ι
(
J±h (a

±(h))e−i th D2
r J±h (b

±(h))∗
)
(9−1

ι )∗

is well defined on the whole manifold (by the implicit requirement that its kernel vanishes outside the
coordinate patch Uι×Uι of M×M).

We also remark that ε(N ) could certainly be chosen independently of N . However this is useless for
the applications we have in mind and we will not consider this refinement.

Before starting the proof, we give some heuristic ideas about our parametrix. It gives a microlocal
approximation of ei th P for initial data microlocalized in strongly outgoing/incoming areas. In such
areas, e−rη is small and r is large, so the geodesic flow is close to the “free” flow of ρ2 uniformly in the
future/past, as a consequence of Proposition 3.8 basically. This closeness at the classical level remains
true at the quantum level in the sense that the flow ei th P can be put in the normal form ei th D2

r , i.e.,
up to the conjugation by time-independent Fourier integral operators. We point out that we state this
approximation on a h−1 time scale, but it would more generally hold for times of order h−N , for any
N . To obtain a semiglobal in time parametrix (one with t ≥ 0 or t ≤ 0), we would need to combine our
construction with a priori estimates on ei th P of local energy decay type, to control the error terms given
by the Duhamel formula.

Let us fix or recall some notation. We set

Pι = (9−1
ι )∗P(9ι)∗ = p(r, θ, Dr , Dθ )+ p1(r, θ, Dr , Dθ )+ p2(r, θ), (5-3)

with p the principal symbol and pk of degree 2−k in (ρ, η) for k = 1, 2. For simplicity, we also use the
notation (4-48).

Recall finally that, for some fixed ει > 0 small enough, Proposition 4.10 proves the existence of S±
solving

p(r, θ, ∂r S±, ∂θ S±)= ρ2 for (r, θ, ρ, η) ∈ 0+ι,s(ει). (5-4)

Proof of Theorem 5.1. For simplicity we set

A± = J±h (a
±(h)), B± = J±h (b

±(h)).

By the Duhamel formula, we have

e−i th P9∗ι A± =9∗ι A±e−i th D2
r −

i
h

∫ t

0
e−i(t−s)h P9∗ι (h

2 PιA±− A±h2 D2
r )e
−ish D2

r ds. (5-5)

Multiplying (5-5) by B∗
±
(9−1

ι )∗ and defining

C± := χ±s (r, θ, h Dr , h Dθ )(κ̃ ⊗ κ̃ι)− A±B∗
±
, D±(s) := (h2 PιA±− A±h2 D2

r )e
−ish D2

r B∗
±

(5-6)
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(where κ̃ and κ̃ι are the cutoffs used in Definition 2.1), we obtain

e−i th P Ôpι(χ
±

s )

=9∗ι A±e−i th Dr B∗
±
(9−1

ι )∗+ e−i th P9∗ι C±(9−1
ι )∗−

i
h

∫ t

0
e−i(t−s)h P9∗ι D±(s)(9−1

ι )∗ds. (5-7)

Using (2-8) with q = 2, the theorem will then be proved if we find a±(h) and b±(h) such that

‖C±‖L2(Rn)→L2(Rn) . hN and ‖D±(s)‖L2(Rn)→L2(Rn) . hN+1 for h ∈ (0, 1], (5-8)

uniformly with respect to 0≤±s ≤ T h−1 for D±(s).
For simplicity we only consider the outgoing case but the incoming one is of course completely similar.

Construction of a+(h). We first define (v+, w+) by (4-64) and also set

y+ := p(r, θ, ∂r , ∂θ )S++ p1(r, θ, ∂r , ∂θ )S+. (5-9)

Lemma 5.2. There exists ε̃ι ≤ ει such that y+ belongs to Bhyp(0
+
ι,s(ε̃ι)) and is of hyperbolic short range

on 0+ι,s(ε̃ι).

Proof. This follows from (2-11) and (4-14), since Proposition 4.9 shows that y+
|η=0 ≡ 0. �

Elementary computations show that, for all a+0 , . . . , a+N ∈ S+hyp(ε) and a+(h)= a+0 + · · ·+ hN a+N ,

h2 Pι J+h (a
+(h))− J+h (a

+(h))h2 D2
r =

N+2∑
l=0

hl J+h (d
+

l ),

where the symbols are given by

d+l =
(

p(r, θ, ∂r S+, ∂θ S+)− ρ2) a+l − i
(
v+∂r a+l−1+w

+
· ∂θa+l−1+ y+a+l−1

)
+ Pιa+l−2

=−i
(
v+∂r a+l−1+w

+
· ∂θa+l−1+ y+a+l−1

)
+ Pιa+l−2, (5-10)

using (5-4) and assuming ε ≤ ει. Here, we have 0 ≤ l ≤ N + 2 and the convention that a+
−2 = a+

−1 =

a+N+1 = a+N+2 ≡ 0. In particular, the first three terms are given by

d+0 = 0, (5-11)

id+1 = v
+∂r a+0 +w

+
· ∂θa+0 + y+a+0 , (5-12)

id+2 = v
+∂r a+1 +w

+
· ∂θa+1 + y+a+1 + i Pιa+0 . (5-13)

Using Proposition 4.15, Lemma 5.2 and assuming ε̂ι ≤min(ε̃2
ι , ε5) we can define

â+0 (r, θ, ρ, η)= exp
∫
+∞

0
y+ ◦φ+s (r, θ, ρ, η) ds for (r, θ, ρ, η) ∈ 0+ι,s(ε̂ι),

so â+0 ∈Bhyp(0
+
ι,s(ε̂ι)), â+0 − 1 is of hyperbolic long range in 0+ι,s(ε̂ι) and

v+∂r â+0 +w
+
· ∂θ â+0 + y+â+0 ≡ 0 on 0+ι,s(ε̂ι).

Since the function
∫
∞

0 y+ ◦ φ+s ds is bounded on 0+ι,s(ε̂ι) (see the proof of Proposition 4.15), we also
have

â+0 (r, θ, ρ, η)& 1 for (r, θ, ρ, η) ∈ 0+ι,s(ε̂ι). (5-14)
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Using (2-11) and the fact that â+0 − 1 is of hyperbolic long range, it is easy to check that Pιâ+0 is of
hyperbolic short range in 0+ι,s(ε̂

2
ι ). By Proposition 4.15, we can then define

â+1 = i
∫
+∞

0
(Pιâ+0 ) ◦φ

+

s exp
(∫ s

0
y+ ◦φ+u du

)
ds on 0+ι,s(ε̂

2
ι ),

which belongs to Bhyp(0
+
ι,s(ε̂

2
ι )), is of hyperbolic long range in 0+ι,s(ε̂ι) and satisfies

v+∂r â+1 +w
+
· ∂θ â+1 + y+â+1 ≡−i Pιâ+0 on 0+ι,s(ε̂

2
ι ).

More generally, for 1≤ l ≤ N , we can define iteratively

â+l = i
∫
+∞

0
(Pιâ+l−1) ◦φ

+

s exp
(∫ s

0
y+ ◦φ+u du

)
ds on 0+ι,s(ε̂

2l

ι ),

which belongs to Bhyp(0
+
ι,s(ε̂

2l

ι )), is of hyperbolic long range in 0+ι,s(ε̂
2l

ι ) and satisfies

v+∂r â+l +w
+
· ∂θ â+l + y+â+l ≡−i Pιâ+l−1 on 0+ι,s(ε̂

2l

ι ),

using Proposition 4.15 and the fact that Pιâ+l−1 is of hyperbolic short range if â+l is of hyperbolic long
range. Therefore, using Proposition 4.4 with ε ≤ ε̂2N

ι and setting

a+l = χ
+

ε2→ε
â+l for 0≤ l ≤ N ,

with the â+l defined above, we have constructed a+0 , . . . , a+N ∈ S+hyp(ε) with a+0 satisfying (4-63), by
(5-14). Furthermore,

d+l ∈ S+hyp(ε) for 0≤ l ≤ N + 2 (5-15)

and
d+l ≡ 0 on 0+ι,s(ε

2) for 0≤ l ≤ N . (5-16)

Construction of b+(h). Given χ+s ∈ S+hyp(ε
9), we simply choose the symbols b+0 , . . . , b+N according to

Proposition 4.13, with ε ≤min(ε̂2N

ι , ε6).

Justification of the parametrix. Since κ̃ ⊗ κ̃ι ≡ 1 near the support of χ+s , we have∥∥χ+s (r, θ, h Dr , h Dθ )−χ
+

s (r, θ, h Dr , h Dθ )(κ̃ ⊗ κ̃ι)
∥∥

L2(Rn)→L2(Rn)
. hM , h ∈ (0, 1],

for all M , using the standard symbolic calculus, the Calderón–Vaillancourt Theorem and the fact that
S+hyp(ε)⊂ C∞b (R

2n). Using Proposition 4.13, we therefore obtain∥∥C+
∥∥

L2(Rn)→L2(Rn)
. hN+1, h ∈ (0, 1].

It remains to consider D+(s), which reads

D+(s)=
N+2∑
l=0

N∑
m=0

hl+m J+h (d
+

l )e
−ish D2

r J+h (b
+

m)
∗.

By (4-62) and (5-15), the part of the sum where l ≥ N + 1, has an L2 operator norm of order hN+1.
Once divided by h and integrated over an interval of size at most h−1, the corresponding operator norm
is O(hN−1). The control of the other terms of the sum will follow from the next result.
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Proposition 5.3. If ε is small enough, then, for all 0≤ l,m ≤ N and all M ≥ 0, we have∥∥J+h (d
+

l )e
−ish D2

r J+h (b
+

m)
∗
∥∥

L2(Rn)→L2(Rn)
≤ CεhM for h ∈ (0, 1], 0≤ s ≤ T h−1.

The proof is based on a fairly elementary nonstationary phase argument. To control the operator norms
of the kernels obtained after integrations by parts, we need the following rough lemma.

Lemma 5.4. For a ∈ C∞b (R
3n) compactly supported with respect to ρ, let us set

[a]+h (r, θ, r
′, θ ′)= (2πh)−n

∫∫
e

i
h (S+,ε(r,θ,ρ,η)−sρ2

−S+,ε(r ′,θ ′,ρ,η))a(r, θ, r ′, θ ′, ρ, η) dρ dη,

using S+,ε defined in Proposition 4.10. Denote by A+h : L2(Rn)→ L2(Rn) the operator with Schwartz
kernel [a]+h . Then, there exists n0(n)≥ 0 such that, for all ε small enough,

‖A+h ‖L2(Rn)→L2(Rn) ≤ Cεh−n0〈s〉n0 max|γ|≤n0 supR3n ‖∂
γa‖∞,

for all h ∈ (0, 1], all s ∈ R and all a ∈ C∞b (R
3n) satisfying

supp(a)⊂ {|ρ| ≤ 10}.

Proof. We get this as a simple consequence of the Calderón–Vaillancourt Theorem by interpreting A+h
as the pseudodifferential operator with symbol

e
i
h (ϕ+,ε(r,θ,ρ,η)−sρ2

−ϕ+,ε(r ′,θ ′,ρ,η))a(r, θ, r ′, θ ′, ρ, η),

where ϕ+,ε is defined in Proposition 4.10. �

Proof of Proposition 5.3. We notice first that, by Proposition 4.9 and (4-36),

∂ρ
(
S+(r, θ, ρ, η)− sρ2

− S+(r ′, θ ′, ρ, η)
)
= r − r ′− 2sρ+O(ε2), (5-17)

∂η
(
S+(r, θ, ρ, η)− sρ2

− S+(r ′, θ ′, ρ, η)
)
= θ − θ ′+O(e−1/ε), (5-18)

on the support of d+l (r, θ, ρ, η)b
+
m(r
′, θ ′, ρ, η). On the other hand, by construction, we have

d+l = i−1 (v+∂rχε2→ε +w
+
· ∂θχε2→ε

)
â+l−1+ Pι(χε2→εâ

+

l−2)−
χ
ε2→εPιâ+l−2

(with the convention that â+
−2 = â+

−1 ≡ 0). Using in particular that

w+ = e−r (∂ηq)(r, θ, e−r∂θ S+),

we conclude that d+l is a sum of terms of the form c(r, θ, ρ, η)∂ j
r (e−r∂θ )

αχ+
ε2→ε

, with j + |α| ≥ 1 and
c ∈B+s (ε). Using the form of χ+

ε2→ε
given by Proposition 4.4, we see that, on the support of such terms,

at least one of the following properties hold:

ε−1
≤ r ≤ ε−2, (5-19)

p(r, θ, ρ, η)≤ 1
4 − ε

2 or p(r, θ, ρ, η)≥ 4+ ε2, (5-20)

ε4−2κ . e−2r
|η|2 . ε2, (5-21)

dist(θ, Vι)≥ ε4, (5-22)

for some fixed 0< κ < 1 in (5-21). For terms such that (5-19) holds on their supports, we have
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(5-17)≤ ε−2
− ε−3

− 2sρ+C ≤−1− 2sρ. (5-23)

for ε small enough and integrate by parts with respect to ρ. For those satisfying (5-20) on their supports,
then we must have

ρ2
−

1
4 ≤−ε

2 or ρ2
− 4& ε2,

since e−2r
|η|2 . ε2 in any case, whereas on the support of b+l , where p(r ′, θ ′, ρ, η) ∈

( 1
4 − ε

3, 4+ ε3
)

and e−2r ′
|η|2 . ε6,

ρ2
−

1
4 &−ε

3 and ρ2
− 4≤ ε3,

so that the amplitude vanishes identically, again if ε is small enough. For those satisfying (5-21) on their
supports, we have er

|η|−1 . εκ−2. Since e−r ′
|η|. ε3, we get

er−r ′
≤ C + (1+ κ) ln ε� 0,

which implies again that (5-17)≤−1−2sρ, if ε is small enough. Thus on the supports of terms satisfying
either (5-19) or (5-20) or (5-21), we have |(5-17)|& 〈s〉. By standard integrations by parts, the kernel of
corresponding operator can be written, for all M , as in Lemma 5.4 with amplitudes of order (h/〈s〉)M in
C∞b (R

3n). Hence, their L2 operator norms are of order (h/〈s〉)M−n0 with an arbitrary M .
For the remaining terms satisfying (5-22) on their supports, we remark that |θ ′− θ | ≥ ε5 (otherwise

dist(θ, Vι)≤ |θ − θ ′| + dist(θ ′, Vι) < ε5
+ ε6
� ε4) hence

|(5-18)|& ε5.

Thus, for all M ≥ 0, the kernel of the corresponding operators can be written as in Lemma 5.4 with
amplitudes of order hM in C∞b (R

3n). Since M is arbitrary, their L2 operator norms are of order hM if
|s|. h−1. �

This completes the proof of Theorem 5.1. �

6. Geometric optics and Egorov’s theorem on AH manifolds

As in the previous section, we fix here an arbitrary index ι corresponding a coordinate patch and then
drop it from the notation in symbols, phases, intervals, etc.

6A. Finite time WKB approximation. Next we give a short time parametrix of e−i th P Ôpι(χ
±) when

χ± is supported in an outgoing (+) or an incoming (−) area. This parametrix is the standard geometric
optic (or WKB) approximation which is basically well known. Nevertheless, in the literature, one mostly
finds local versions (i.e., with χ ∈ C∞0 ) or versions in Rn for elliptic operators. Here we are neither in
a relatively compact set nor in the uniformly elliptic setting, so we recall the construction with some
details.

Analogously to Section 5, we prove here an L2 approximation. The related dispersion estimates
leading to (2-80) will be derived in Section 7.

We also emphasize that, although we shall prove this approximation with a specified time orientation
(t≥0 for χ+ and t≤0 for χ−), this result has nothing to do with outgoing/incoming areas; in principle we
should be able to state a similar result for any χ supported in p−1(I ) and for times |t | � 1. We restrict
the sense of time for only two reasons: firstly, because it is sufficient for our purpose and, secondly,
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because we can use directly Proposition 3.8 (we should otherwise give a similar result for the geodesic
flow for t in an open neighborhood of 0).

Fix
I1 b I2 b I3 b (0,+∞),

three relatively compact open subsets of V ′ι (see (2-21)),

V1 b V2 b V3 b V ′ι ,

and three real numbers
−1< σ1 < σ2 < σ3 < 1.

For some R3 large enough to be fixed below, we also choose arbitrary R1, R2 real numbers such that

R1 > R2 > R3.

Theorem 6.1. For all R3 large enough, there exists tWKB > 0 and a function

6 ∈ C∞
(
[0,±tWKB]×R2n,R

)
such that, for any

χ± ∈ Shyp
(
0±ι (R1, V1, I1, σ1)

)
, (6-1)

we can find
a±0 (t), . . . , a±N (t) ∈ Shyp

(
0±ι (R2, V2, I2, σ2)

)
,

depending smoothly on t for 0≤±t ≤ tWKB, and such that, if we set

a±N (t, h)= a±0 (t)+ · · ·+ hN a±N (t),

the operator defined on C∞0 (R
n) by the kernel[

J±h
(
t, a±N (t, h)

)]
(t, r, θ, r ′, θ ′)= (2πh)−n

∫∫
e

i
h (6

±(t,r,θ,ρ,η)−r ′ρ−θ ′·η)a±N (t, h, r, θ, ρ, η) dρ dη,

satisfies, with 1ι the characteristic function of (R3,+∞)× V3,∥∥ e−i th P Ôpι
(
χ±
)
−9∗ι J±h

(
t, a±N (t, h)

)
1ι
(
9−1
ι

)∗∥∥
L2(M,d̂G)→L2(M,d̂G) ≤ ChN+1, (6-2)

for
0≤±t ≤ tWKB, h ∈ (0, 1].

In addition, the functions 6± are of the form

6±(t, r, θ, ρ, η)= rρ+ θ · η+
(
6±0 (t, r, θ, ρ, η)− rρ− η · η

)
χ±

2→3(r, θ, ρ, η),

with χ±2→3 ∈ Shyp(0
±
ι (R3, V3, I3, σ3)) such that χ±2→3 ≡ 1 on 0±ι (R2, V2, I2, σ2), and some bounded

family (6±0 (t))0≤±t≤tWKB in Bhyp(0
±
ι (R3, V3, I3, σ3)) satisfying{
∂t6
±

0 + p(r, θ, ∂r6
±

0 , ∂θ6
±

0 )= 0,
6±0 (0, r, θ, ρ, η)= rρ+ θ · η,

(6-3)

and ∣∣D jαkβ
hyp

(
6±0 (t, r, θ, ρ, η)− rρ− θ · η− tp(r, θ, ρ, η)

) ∣∣≤ C jαkβ t2, (6-4)
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both for
0≤±t ≤ tWKB and (r, θ, ρ, η) ∈ 0±ι (R3, V3, I3, σ3).

We also have(
6±(t, r, θ, ρ, η)− rρ− θ · η

)
0≤±t≤tWKB

bounded in Shyp
(
0±ι (R3, V3, I3, σ3)

)
. (6-5)

Finally, for all 0≤ j ≤ N ,(
a±j (t)

)
0≤±t≤tWKB

is bounded in Shyp
(
0±ι (R2, V2, I2, σ2)

)
. (6-6)

Notice that V1 b V ′ι , so it makes sense to consider Ôpι(χ
±); see (2-23).

In principle it is not necessary to have R3 large to get such a lemma, but this will be sufficient for our
applications. The interest of choosing R3 large is simply to allow to use directly Proposition 3.8.

Note also that, by (6-6), the kernel of J±h
(
t, a±N (t, h)

)
1ι is supported in ((R3,+∞)× V3)

2.

Proof of Theorem 6.1. The proof will occupy the rest of this section.
We need to find 6± and a±N (t, h) such that

J±h
(
0, a±N (0, h)

)
= χ±(r, θ, h Dr , h Dθ ), (6-7)

(h Dt + h2 Pι)J±h (t, a±N (t, h))= hN+2 R±N (t, h), (6-8)

where Pι = (9−1
ι )∗P9∗ι and

‖R±N (t, h)‖L2(Rn)→L2(Rn) ≤ C, h ∈ (0, 1], 0≤±t ≤ tWKB. (6-9)

Indeed, if (6-7), (6-8) and (6-9) hold, the equality

9∗ι J±h
(
t, a±N (t, h)

)
1ι
(
9−1
ι

)∗
− e−i th P9∗ι χ

±(r, θ, h Dr , h Dθ )1ι
(
9−1
ι

)∗
= ihN+1

∫ t

0
e−i(t−s)h P̃9∗ι RN (s, h)1ι

(
9−1
ι

)∗
ds

will yield (6-2) since, for all M > 0,

‖9∗ι χ
±(r, θ, h Dr , h Dθ )1ι

(
9−1
ι

)∗
− Ôpι(χ

±)‖L2(M,d̂G)→L2(M,d̂G) ≤ CM hM ,

by standard off-diagonal decay (see Definition 2.1 for Ôpι), since 1ι ≡ 1 near 5r,θ
(
supp(χ±)

)
.

To get the conditions to be satisfied by 6± and a±0 , . . . , a±N we observe that

(
h Dt + h2 Pι

)
J±h

(
t, a±N (t, h)

)
=

N+2∑
j=0

h j J±h

(
t, b±j (t)

)
, (6-10)

where, if we additionally set a±
−2 = a±

−1 = a±N+1 = a±N+2 ≡ 0,

b j = (∂t6
±
+ p(r, θ, ∂r6

±, ∂θ6
±))a±j + i−1(∂t +T±)a±j−1+ Pa±j−2, (6-11)

with
T± = 2∂r6

±∂r + (∂ηq)(r, θ, e−r∂θ6
±) · e−r∂θ + (p+ p1)(r, θ, ∂r , ∂θ )6

±, (6-12)
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where q = qι is defined in (2-13) and p1 is the homogeneous part of degree 1 of the full symbol of Pι.
To obtain (6-7), (6-8) and (6-9) it will therefore be sufficient to solve the eikonal equation (6-3), then the
transport equations

(∂t +T±)a±0 = 0, a±0 (0, · )= χ
±(.), (6-13)

(∂t +T±)a±k =−i Pιa±k−1, a±k (0, · )= 0, (6-14)

for 1≤ k ≤ N , and finally to get an L2 bound for Fourier integral operators of the form J±h (t, a) (using
the Kuranishi trick).

To solve (6-3), we need the following lemma for which we recall that (r t , θ t , ρt , ηt) is the Hamiltonian
flow of p.

Lemma 6.2. For all −1 < σeik < σ ′eik < 1, all open intervals Ieik b I ′eik b (0,+∞), all open subsets
Veik b V ′eik b V ′ι and all Reik > R′eik large enough, there exists t1 > 0 small enough that

9 t
±
: (r, θ, ρ, η) 7→ (r t , θ t , ρ, η)

is a diffeomorphism from 0±ι (R
′

eik, V ′eik, I ′eik, σ
′

eik) onto its range for all 0≤±t < t1 and

0±ι (Reik, Veik, Ieik, σeik)⊂9
t
±

(
0±ι (R

′

eik, V ′eik, I ′eik, σ
′

eik)
)

for all 0≤±t < t1.

Proof. First choose a σ ′′eik ∈ R, and open interval I ′′eik and open set V ′′eik such that

σ ′eik < σ
′′

eik < 1, I ′eik b I ′′eik b (0,+∞), V ′eik b V ′′eik b V ′ι .

Also choose R′′eik > 0 large enough that Proposition 3.8 holds with σ = |σ ′′eik| and R = R′′eik. We then
choose arbitrary Reik and R′eik such that

Reik > R′eik > R′′eik,

and then χ±′→′′ ∈Shyp(0
±
ι (R

′′

eik, V ′′eik, I ′′eik, σ
′′

eik)) such χ±′→′′≡1 on 0±ι (R
′

eik, V ′eik, I ′eik, σ
′

eik). The existence
of such a function follows from Proposition 4.1(i). In particular, χ±′→′′ and ∂r,θ,ρ,ηχ

±
′→′′ are bounded on

R2n . For ±t ≥ 0, consider the map

εt
±
: R2n

3 (r, θ, ρ, η) 7→
(∫ t

0
2ρs ds,

∫ t

0
e−r s

(∂ηq)(r s, θ s, e−r s
ηs) ds

)
χ±
′→′′

(r, θ, ρ, η) ∈ Rn, (6-15)

so that, by the equations of motion,

9 t
±
= IdR2n + (εt

±
, 0) on 0±ι (R

′

eik, V ′eik, I ′eik, σ
′

eik).

By Proposition 3.8 we have |∂r,θ,ρ,ηε
t
±
| . |t |; hence IdR2n +

(
εt
±
, 0
)

is a diffeomorphism from R2n

onto itself, for all ±t ≥ 0 small enough. Therefore, it remains to show that, if t is small enough and
(r, θ, ρ, η) ∈ 0±ι (Reik, Veik, Ieik, σeik) is of the form

(r, θ, ρ, η)= (r ′, θ ′, ρ ′, η′)+ (εt
±
(r ′, θ ′, ρ ′, η′), 0),

then (r ′, θ ′, ρ ′, η′) ∈ 0±ι (R
′

eik, V ′eik, I ′eik, σ
′

eik). We have trivially ρ = ρ ′ and η = η′. By Proposition 3.8,
|εt
±
|. |t | on R2n , so |r−r ′|+|θ−θ ′|. |t |; hence r ′> R′eik and θ ′ ∈ V ′eik if t is small enough. Moreover,
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by writing

q(r, θ, e−rη)− q(r ′, θ ′, e−r ′η)= q(r, θ, e−rη)− q(r ′, θ ′, e−rη)+ (1− e−2(r ′−r))q(r ′, θ ′, e−rη),

we see that ∣∣p(r, θ, ρ, η)− p(r ′, θ ′, ρ, η)
∣∣. |t |,

using the boundedness of |e−r ′η| and Taylor’s formula. Hence

p(r ′, θ ′, ρ, η) ∈ I ′eik and ± ρ >−σ ′eik p(r ′, θ ′, ρ, η)1/2

if t is small enough, since p(r, θ, ρ, η) ∈ Ieik and ±ρ >−σeik p(r, θ, ρ, η)1/2. This completes the proof.
�

Now fix Ieik, I ′eik, Veik, V ′eik, and σeik, σ
′

eik as in Lemma 6.2, with the additional conditions

Veik = V3, Ieik = I3, σeik = σ3.

Denote by 9±t the inverse of 9 t
±

and define (rt , θt)= (rt , θt)(r, θ, ρ, η) by

9±t (r, θ, ρ, η)= (rt , θt , ρ, η) ∈ 0
±

ι (R
′

eik, V ′eik, I ′eik, σ
′

eik),

if (r, θ, ρ, η) ∈ 0±ι (Reik, Veik, Ieik, σeik) and 0 ≤ ±t < t1. Here t1, Reik and R′eik are those given by
Lemma 6.2.

Proposition 6.3. For all R3 > Reik, there exists teik > 0 such that

6±0 (t, r, θ, ρ, η) := rtρ+ θt · η+ tp(rt , θt , ρ, η),

solves (6-3) on 0±ι (R3, V3, I3, σ3) for 0≤±t ≤ teik, and such that

(6±0 (t, r, θ, ρ, η)− rρ− θ · η)0≤±t≤teik is bounded in Bhyp
(
0±ι (R3, V3, I3, σ3)

)
. (6-16)

Proof. That 6±0 solves the eikonal equation is standard, so we only have to show (6-16). Since

6±0 (t, r, θ, ρ, η)= rρ+ θ · η+ (rt − r)ρ+ er (θt − θ) · e−rη+ te−2(rt−r)q(rt , θt , e−rη),

(6-16) would follow from the estimates∣∣D jαkβ
hyp (rt − r)

∣∣+ ∣∣D jαkβ
hyp (er (θt − θ))

∣∣≤ C jαkβ, (6-17)

for 0≤±t ≤±teik and (r, θ, ρ, η) ∈ 0±ι (R3, V3, I3, σ3). The equations of motion yield

r t
= r +

∫ t

0
2ρs ds, θ t

= θ +

∫ t

0
e−r s

(∂ηq)(r s, θ s, e−r s
ηs) ds, (6-18)

so, by Proposition 3.8 with R′eik of Lemma 6.2 and by choosing teik small enough, we see that, for
0≤±t ≤ teik,

|∂r,θ (r t , θ t)− Idn| ≤
1
2 on 0±ι (R

′

eik, V ′eik, I ′eik, σ
′

eik),

where | · | is a matrix norm. Therefore, by differentiating the identity (r t , θ t)(rt , θt , ρ, η) = (r, θ) one
obtains, similarly to Proposition 4.8,

|D jαkβ
hyp (rt − r)| + |D jαkβ

hyp (θt − θ)| ≤ C jαkβ, (6-19)
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for 0≤±t ≤ teik and (r, θ, ρ, η)∈0±ι (R3, V3, I3, σ3). This proves the expected estimates for rt−r . The
second equation of (6-18) evaluated at (rt , θt , ρ, η) yields

er (θ − θt)=

∫ t

0
er−r s

t (∂ηq)(r s
t , θ

s
t , e−r s

t ηs
t ) ds, (6-20)

where x s
t = x s(rt , θt , ρ, η) for x = r, θ, η.

Combining (6-19) and Proposition 3.8, we have, on 0±ι (R3, V3, I3, σ3),∣∣D jαkβ
hyp (r s

t − r)
∣∣+ ∣∣D jαkβ

hyp (θ s
t − θ)

∣∣+ ∣∣D jαkβ
hyp (ηs

t − η)
∣∣≤ C jαkβ for 0≤±t,±s ≤ teik,

from which the estimate of the second term of (6-17) follows using (6-20). �

We now solve the transport equations. By (6-12), we have to consider the time-dependent vector field
(v±t , w

±
t ) defined on 0±ι (R3, V3, I3, σ3), for 0≤±t ≤ teik, by(

v±t
w±t

)
:=

(
(∂ρ p)(r, θ, ∂r6

±

0 , ∂θ6
±

0 )

(∂η p)(r, θ, ∂r6
±

0 , ∂θ6
±

0 )

)
=

(
2∂r6

±

0

e−2r (∂ηq)(r, θ, ∂θ6±0 )

)
. (6-21)

We then denote by φ±s→t the flow, from time s to time t , of (v±t , w
±
t , 0Rn ) namely the solution to

∂tφ
±

s→t = (v
±

t (φ
±

s→t), w
±

t (φ
±

s→t), 0), φ±s→s(r, θ, ρ, η)= (r, θ, ρ, η). (6-22)

Lemma 6.4. For any open interval Itr, anyσtr ∈ R, and any open subsetVtr ⊂ Rn−1 such that

Rtr > R3, Vtr b V3, Itr b I3, −1< σtr < σ3,

there exists 0< t2 ≤ teik small enough that

φ±s→t is well defined on 0±ι (Rtr, Vtr, Itr, σtr) for all 0≤±s ≤ t2, 0≤±t ≤ t2 (6-23)

and ∣∣Dhyp
jαkβ

(
φ±s→t − Id

)∣∣. 1 on 0±ι (Rtr, Vtr, Itr, σtr) for 0≤±s,±t ≤ t2. (6-24)

By (6-23), we mean in particular that

φs→t
(
0±ι (Rtr, Vtr, Itr, σtr)

)
⊂ 0±ι (R3, V3, I3, σ3) for 0≤±s,±t ≤ t2. (6-25)

The estimate (6-24) can be restated by saying that the components of φ±s→t − Id are bounded families of
Bhyp

(
0±ι (Rtr, Vtr, Itr, σtr)

)
for 0≤±s,±t ≤ t2.

Proof. For all δ > 0 small enough, we have

|r − r ′| + |θ − θ ′| ≤ δ and (r, θ, ρ, η) ∈ 0±ι (Rtr, Vtr, Itr, σtr)

H⇒ (r ′, θ ′, ρ, η) ∈ 0±ι (R3, V3, I3, σ3) (6-26)

by Proposition 4.2. Denoting by (r±s→t , θ
±
s→t , ρ, η) the components of φ±s→t , they must be solutions of

the problem

(r±s→t , θ
±

s→t)= (r, θ)+
∫ t

s
(v±τ , w

±

τ )(r
±

s→τ , θ
±

s→τ , ρ, η)dτ.

By (6-16), we have
|(v±τ , w

±

τ )| + |∂r,θ (v
±

τ , w
±

τ )| ≤ C, (6-27)
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on 0±ι (R3, V3, I3, σ3), for 0≤±τ ≤ teik. Therefore, the sequence u±n (t)= u±n (t, s, r, θ, ρ, η) defined by

u±0 (s)= (r, θ), u±k+1(t)= (r, θ)+
∫ t

s
(v±τ , w

±

τ )(u
±

k (τ ), ρ, η)dτ,

is a Cauchy sequence in C0([0,±t2],Rn) for all (r, θ, ρ, η) ∈ 0±ι (Rtr, Vtr, Itr, σtr) and 0 ≤ ±s ≤ t2, for
some t2 small enough independent of (r, θ, ρ, η). Indeed, using (6-26) and choosing t2 small enough so
that

∑
k≥0(Ct2)k+1

≤ δ, a standard induction using (6-27) shows that

|u±k+1(t)− u±k (t)| ≤ (Ct2)k+1,

which makes the sequence well defined and convergent. This proves (6-23). We then obtain (6-24)
by induction by differentiating the equations in (6-22). This proof is completely similar to that of the
estimate (4-70) in Proposition 4.14 (and much simpler since it is local in time) so we omit the details. �

Now denote by q±t = q±t (r, θ, ρ, η) the function defined on [0,±teik]×0
±
ι (R, V, I, σ ) by

q±t := (p+ p1)(r, θ, ∂r , ∂θ )6
±

0 .

This function was involved in (6-12).

Proposition 6.5. Choose Rtr, Vtr, Itr and σtr such that

R2 > Rtr > R3, V2 b Vtr b V3, I2 b Itr b I3, σ2 < σtr < σ3.

There exists ttr > 0 small enough that, for all χ± satisfying (6-1), the functions

a±0 , . . . , a±N : [0,±ttr]×R2n
→ C

vanishing outside 0±ι (R2, V2, I2, σ2) and defined iteratively on 0±ι (R2, V2, I2, σ2) by

a±0 (t): = χ
±
◦φ±t→0 exp

(∫ t

0
q±s ◦φ

±

t→s

)
,

a±k (t): = −
∫ t

0
i(Pιa±k−1)(s1, φ

±

t→s1
) exp

(∫ t

s1

q±s2
◦φ±t→s2

ds2

)
ds1 for 1≤ k ≤ N

are smooth and solve (6-13) and (6-14). Furthermore, for all 0≤ k ≤ N ,

(a±k (t))0≤±t≤ttr is bounded in Shyp
(
0±ι (R2, V2, I2, σ2)

)
. (6-28)

Proof. Fix R′tr, V ′tr, I ′tr and σ ′tr such that

R2 > R′tr > Rtr, V2 b V ′tr b Vtr, I2 b I ′tr b Itr, σ2 < σ
′

tr < σtr.

By choosing 0< ttr ≤ t2 small enough, we then have, for all 0≤±s,±t ≤ ttr,

φ±s→t
(
0±ι (R1, V1, I1, σ1)

)
⊂ 0±ι (R2, V2, I2, σ2), (6-29)

φ±s→t
(
0±ι (R2, V2, I2, σ2)

)
⊂ 0±ι (R

′

tr, V ′tr, I ′tr, σ
′

tr), (6-30)

φ±s→t
(
0±ι (R

′

tr, V ′tr, I ′tr, σ
′

tr)
)
⊂ 0±ι (Rtr, Vtr, Itr, σtr). (6-31)
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This follows from Proposition 4.2 and the fact that |φ±t→s−Id|. |t−s|, which comes from the integration
of (6-22) between s and t , using (6-24). By Lemma 6.4, the flow is well defined on 0±ι (Rtr, Vtr, Itr, σtr),
therefore the condition (6-31) ensures that we have the pseudo-group property

φ±t→u ◦φ
±

s→t = φ
±

s→u, 0≤±s,±t,±u ≤ ttr, (6-32)

on 0±ι (R
′
tr, V ′tr, I ′tr, σ

′
tr). In particular, φ±t→s ◦φ

±
s→t = Id on this set. Therefore, by (6-30), we have

0±ι (R2, V2, I2, σ2)⊂ φ
±

t→s
(
0±ι (R

′

tr, V ′tr, I ′tr, σ
′

tr)
)
.

This implies that the map
(t, r, θ, ρ, η) 7→ (t, φ±s→t(r, θ, ρ, η))

is a diffeomorphism from (0,±ttr) × 0±ι (R
′
tr, V ′tr, I ′tr, σ

′
tr) onto its range and that this range contains

(0,±ttr)×0±ι (R2, V2, I2, σ2). Restricted to the latter set, the inverse is given by (t, φ±t→s) which shows
that φ±t→s is smooth with respect to t . Furthermore, by differentiating in t the relation φ±t→s ◦φ

±
s→t = Id,

one obtains
∂tφ
±

t→s + (∂r,θφ
±

t→s) · (v
±

t , w
±

t )= 0, on 0±ι (R2, V2, I2, σ2),

for 0 < ±t < ttr. Using this relation, one easily checks that a±0 solves (6-13) on 0±ι (R2, V2, I2, σ2). In
addition, if

(r, θ, ρ, η) ∈ 0±ι (R
′

tr, V ′tr, I ′tr, σ
′

tr) \0
±

ι (R2, V2, I2, σ2),

we have φ±t→0(r, θ, ρ, η) /∈ supp(χ±) otherwise (r, θ, ρ, η) ∈ 0±ι (R2, V2, I2, σ2) by (6-1), (6-29) and
(6-32). This shows that, extended by 0 outside 0±ι (R2, V2, I2, σ2), a±0 is smooth. The property (6-28)
for k = 0 is then a direct consequence of (6-24). We note in passing that we have

supp(a±0 (t))⊂ φ
±

0→t(supp(χ±)).

The proof for the higher-order terms a±k , k ≥ 1, is then obtained similarly by induction using that
supp(Pιa±k−1(s1))⊂ φ

±

0→s1
(supp(χ±)) for all s1. �

Proof of Theorem 6.1. There remains to prove (6-4), to globalize 6±0 , to prove (6-5) and the bound (6-9).
By Proposition 4.1, we can choose

χ±
2→3 ∈ Shyp(0

±

ι (R3, V3, I3, σ3)) such that χ±2→3 ≡ 1 on 0±ι (R2, V2, I2, σ2).

We set

6±(t, r, θ, ρ, η)= rρ+ θ · η+χ±2→3(r, θ, ρ, η)×
(
6±0 (t, r, θ, ρ, η)− rρ− θ · η

)
.

It coincides with 6±0 on [0,±teik] × 0
±
ι (R2, V2, I2, σ2) so it is a solution to the eikonal equation on

[0,±tWKB] × 0
±
ι (R2, V2, I2, σ2), for any 0 < tWKB ≤ teik. Furthermore, (6-16) implies (6-5) and, by

using

6±0 (t, r, θ, ρ, η)= rρ+ θ · η+
∫ t

0
p(r, θ, ∂r6

±

0 (s), ∂θ6
±

0 (s)) ds, (6-33)

we get (6-4) since (6-16) and (6-33) itself show that the components of (∂r6
±(s)−ρ, ∂θ6±(s)−η) are

O(s) in Bhyp(0
±
ι (R3, V3, I3, σ3)).
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To prove (6-9), we use the Kuranishi trick which is as follows. By Taylor’s formula, we can write

6±(t, r, θ, ρ, η)−6±(t, r ′, θ ′, ρ, η)= (r −r ′)ρ̃±(t, r, θ, r ′, θ ′, ρ, η)+ (θ − θ ′) · η̃±(t, r, θ, r ′, θ ′, ρ, η).

Using again (6-33) and (6-16), we obtain∣∣∂ j
r ∂

α
θ ∂

j ′

r ′ ∂
α′

θ ′ ∂
k
ρ∂

β
η

(
(ρ̃±, η̃±)(t, r, θ, r ′, θ ′, ρ, η)− (ρ, η)

) ∣∣≤ C jα j ′α′kβ |t |, (6-34)

for (r, θ, r ′, θ ′, ρ, η ∈R3n) and 0≤±t ≤ teik. The latter implies that, for all 0≤±t ≤ tWKB small enough
and all (r, θ, r ′, θ ′) ∈ R2n , the map

(ρ, η) 7→ (ρ̃±, η̃±),

is a diffeomorphism from Rn onto itself. Furthermore, proceeding similarly to the proof of (4-52) in
Lemma 4.11, we see that its inverse (ρ̃, η̃) 7→ (ρ±, η±) satisfies∣∣∂ j

r ∂
α
θ ∂

j ′

r ′ ∂
α′

θ ′ ∂
k
ρ̃∂

β

η̃

(
(ρ±, η±)(t, r, θ, r ′, θ ′, ρ̃, η̃)− (ρ̃, η̃)

) ∣∣≤ C jα j ′α′kβ, (6-35)

on R3n , uniformly with respect to 0 ≤ ±t ≤ tWKB. Thus, for any bounded family (a±(t))0≤±t≤tWKB in
Shyp(0

±
ι (R2, V2, I2, σ2)), the kernel of J±h (t, a±(t))J±h (t, a±(t))∗, which reads

(2πh)−n
∫

e
i
h (6

±(t,r,θ,ρ,η)−6±(t,r ′,θ ′,ρ,η)) a±(t, r, θ, ρ, η) a±(t, r ′, θ ′, ρ, η) dρ dη, (6-36)

can be written as

(2πh)−n
∫

e
i
h ((r−r ′)ρ̃+(θ−θ ′)·η̃))B(t, r, θ, r ′, θ ′, ρ̃, η̃) dρ̃d η̃, (6-37)

with B(t, · ) bounded in C∞b (R
3n) as 0≤±t ≤ tWKB. By the Calderón–Vaillancourt theorem the operator

given by (6-37) is uniformly bounded; hence ‖J±h (t, a±(t))‖L2(Rn)→L2(Rn) ≤C whenever 0≤±t ≤ tWKB

and h ∈ (0, 1], where C depends only a finite number of seminorms of a±(t) in C∞b (R
2n). Using (6-10),

(6-11) (with a±k (t) solutions to the transport equations) and (6-28), the bound above yields (6-9), which
completes the proof of Theorem 6.1. �

6B. Proof of Proposition 2.24. To prove Proposition 2.24, we first need a version of the semiclassical
Egorov Theorem in the asymptotically hyperbolic setting. We recall that 8t

= (r t , θ t , ρt , ηt) denotes
the Hamiltonian flow of the principal symbol p of P .

Fix an open subset V b V ′ι , an open interval I b (0,+∞), and −1< σ < 1.

Theorem 6.6. If R > 0 is large enough the following holds: for all T > 0, all N ≥ 0 and all

a ∈ Shyp
(
0±ι (R, V, I, σ )

)
, (6-38)

we can find
a0(t), . . . , aN (t) ∈ Shyp

(
8t(supp(a))

)
for 0≤±t ≤ T, (6-39)

such that, for all 0≤±t ≤ T and all 0< h ≤ 1,∥∥∥e−i th P Ôpι(a)e
i th P
−

N∑
k=0

hk Ôpι(ak(t))
∥∥∥

L2(M,d̂G)→L2(M,d̂G)
≤ CN ,T,ahN+1. (6-40)
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This theorem is basically well known. Here the main point is to check (6-39), namely that a0(t), . . . ,
aN (t) lie in Bhyp

(
8t(supp(a))

)
. Notice that, by Corollary 3.10, 8t(supp(a)) is contained in the same

chart as a in which it is therefore sufficient to work.
Using the group property, it is sufficient to prove the result when T is small enough (depending only

on V, I, σ ). To check this point, we choose open sets V1, V2 such that V b V1 b V2 b V ′ι . Then, for
some C > 0 and all R large enough,

8t(0±ι (R, V, I, σ )
)
⊂ 0±ι (R−C, V1, I, σ ), ± t ≥ 0,

8t(0±ι (R−C, V1, I, σ )
)
⊂ 0±ι (R− 2C, V2, I, σ ), ± t ≥ 0.

This follows from Corollary 3.10 and the fact that ρt can be assumed to be nondecreasing, using (3-22).
Thus, it is sufficient to prove (6-40) for 0 ≤ ±t ≤ ε with ε > 0 small enough independent of a ∈
Shyp

(
0±ι (R−C, V1, I, σ )

)
. Indeed, if this holds, it holds for a satisfying (6-38) and

eiεh P Ôpι(a)e
−iεh P

−

N∑
k=0

hk Ôpι(ak(ε))+ hN+1 RN (h, ε)

with RN (h, ε) uniformly bounded on L2(M, d̂G) and ak(ε) ∈ Shyp
(
0±ι (R − C, V1, I, σ )

)
, with ak(ε)

supported in8ε (supp(a))more precisely. Conjugating the expression above by e−iεh P and then applying
the same result with ak(ε) instead of a we can write

ei2εh P Ôpι(a)e
−2iεh P

−

N∑
k=0

hk Ôpι(ak(2ε))+ hN+1 RN (h, 2ε),

where ak(2ε) is supported in 82ε(supp(a)), which is still contained in 0±ι (R − C, V1, I, σ ), and thus
allows one to iterate the procedure.

The interest of considering small times is justified by the following lemma.

Lemma 6.7. Fix V1, I, σ as above. For some R1 > 0 large enough and ε > 0 small enough,∣∣D jαkβ
hyp

(
(8t)−1

− Id2n
)∣∣≤ C jαkβ on 8t(0±ι (R1, V1, I, σ )

)
,

for all 0≤±t ≤ ε.

Proof. Using the identity

d(8t
− Id2n)=

∫ t

0
d Hp(8

s)d8s ds

and Proposition 3.8, we have |d(8t
− Id2n)|. |t | hence |(d8t)−1

|. 1 on 0±ι (R1, V1, I, σ ) if R1 is large
enough and t is small enough. We then obtain the result by applying D jαkβ

hyp to 8t
◦ (8t)−1 and using the

Faà di Bruno formula. For instance, if j = k = |α| = 0 and |β| = 1, we have

d8t
|(8t )−1er∂βη ((8

t)−1
− Id2n)= (Id2n − d8t

|(8t )−1)er∂βη Id2n

where, using Proposition 3.8, the right-hand side is bounded for this is simply er∂
β
η (Id2n−8

t) evaluated
at (8t)−1. Higher-order derivatives are studied similarly by iteration, using Lemma 3.6. �
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Naturally, (8t)−1 is the reverse Hamiltonian flow, namely flowing 8t
(
0±ι (R1, V1, I, σ )

)
back to

0±ι (R1, V1, I, σ ). More precisely, for 0≤±t ≤ ε,

d
dt
(8t)−1(r, θ, ρ, η)=−Hp

(
(8t)−1(r, θ, ρ, η)

)
for (r, θ, ρ, η) ∈8±ε

(
0±ι (R1, V1, I, σ )

)
. (6-41)

We prefer to keep the notation (8t)−1 on 8t
(
0±ι (R1, V1, I, σ )

)
rather than using 8−t , since we have

only studied 8t for t ≥ 0 on outgoing areas and t ≤ 0 on incoming areas.
We have essentially all the tools needed to solve the transport equations considered in the next lemma.

Lemma 6.8. There exists C > 0 such that, for all R large enough, the following holds: for any aini ∈

Shyp
(
0±ι (R, V, I, σ )

)
and any bounded family ( f (t))0≤±t≤ε of Shyp

(
0±ι (R−C, V1, I, σ )

)
, smooth with

respect to t and such that
supp( f (t))⊂8t(supp(aini)),

the function defined for 0≤±t ≤ ε by

a(t) :=
{

aini ◦ (8
t)−1
+
∫ t

0 f (s) ◦8s
◦ (8t)−1 ds on 8t(supp(a)),

0 outside,

is smooth and satisfies
∂t a(t)+{p, a(t)} = f (t), a(0)= aini. (6-42)

Furthermore
(a(t))0≤±t≤ε is bounded in Shyp

(
0±ι (R−C, V1, I, σ )

)
. (6-43)

In (6-43), we consider 0±ι (R − C, V1, I, σ ) for it is independent of t but, by construction, a(t) is
supported in the smaller region 8t(supp(a)).

Proof. To check the smoothness of a0(t) it suffices to see that aini ◦ (8
t)−1 and f (s) ◦ (8t−s)−1

are defined and smooth in a neighborhood of 8t(supp(a)), while they vanish on the complement of
8t(supp(a)) (relatively to the neighborhood). Indeed (8t)−1 is defined on 8t(0±ι (R − C, V1, I, σ ))
and if (r, θ, ρ, η) belongs to 8t(0±ι (R − C, V1, I, σ )) but doesn’t belong to 8t(supp(a)), then acirc ◦

(8t)−1(r, θ, ρ, η)=0; otherwise, (8t)−1(r, θ, ρ, η) should belong to supp(a) and thus (r, θ, ρ, η) should
belong to 8t(supp(a)). Similarly,∫ t

0
f (s) ◦8s

◦ (8t)−1(r, θ, ρ, η) ds

must vanish, otherwise there would be s between 0 and t such that8s
◦(8t)−1(r, θ, ρ, η)∈8s(supp(a))

implying that (r, θ, ρ, η) ∈ 8t(supp(a)). Then (6-42) follows directly from (6-41) and (6-43) follows
from Lemma 6.7. �

Proof of Theorem 6.6. By Lemma 6.8, the solutions of the transport equations (6-42) belong to the set
Shyp(0

±
ι (R−C, V1, I, σ )). The proof is then standard; see [Robert 1987], for instance. �

Proof of Proposition 2.24. We start by choosing ε > 0 and δ > 0 according to Proposition 2.16 with
t = tWKB. Then, using (2-26), (2-37), (2-38) and Theorem 6.6, it is straightforward to show that, for all
T ≥ tWKB and all N ≥ 0,∥∥Ôpι(b

±

l,inter)e
−i th P Ôpι(b

±

l,inter)
∗
∥∥

L2(d̂G)arrowL2(d̂G) ≤ CT,l,N hN for h ∈ (0, 1], tWKB ≤±t ≤ T .
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It is therefore sufficient to show the existence of T large enough such that∥∥Ôpι(b
±

l,inter)e
−i th P Ôpι(b

±

l,inter)
∗
∥∥

L2(d̂G)arrowL2(d̂G) ≤ Cl,N hN for h ∈ (0, 1], T ≤±t ≤ 2h−1. (6-44)

For simplicity we consider positive times and set B = Ôpι(b
+

l,inter). For T to be chosen, we write

e−i th P B∗ = e−i(t−T )h P B(T )∗e−iT h P , B(T )= e−iT h P BeiT h P .

As above, we may write
B(T )∗ =

∑
k≤N

hk Ôpι(b
∗

k (T ))+ hN+1 BN (h),

with BN (h) uniformly bounded on L2(M, d̂G) and

b∗k (T ) ∈ Shyp
(
8T (supp(b+l,inter))

)
⊂ Shyp

(
8T (0+ι,inter(ε, δ; l))

)
.

By (2-57), for all ε̃ > 0, we can choose Tε̃ large enough that 8T
(
0+ι,inter(ε, δ; l)

)
⊂ 0+ι,s(ε̃

9). Thus, if ε̃ is
small enough, Theorem 5.1 allows one to write, for t ≥ Tε̃,

e−i(t−Tε̃)h P Ôpι(b
∗

k (Tε̃))=9
∗

ι

(
J+h (ãε̃(h))e

−i(t−Tε̃)h D2
r J+h (b̃ε̃(h))

∗
)
(9−1

ι )∗+ hN RN (t, h),

with RN (t, h) uniformly bounded on L2(M, d̂G) for h ∈ (0, 1] and 0≤ t − Tε̃ ≤ 2h−1, and

ãε̃(h) ∈ Shyp
(
0+ι,s(ε̃)

)
.

We will therefore get (6-44) with T = Tε̃ if we choose ε̃ small enough such that, for all N ,∥∥b+l,inter(r, θ, h Dr , h Dθ )J+h (ãε̃(h))
∥∥

L2(Rn)→L2(Rn)
≤ CN hN .

By the standard composition rule between pseudodifferential and Fourier integral operators (see [Robert
1987]), b+l,inter(r, θ, h Dr , h Dθ ) J+h (ãε̃(h)) is the sum of an operator with norm of order hN and of Fourier
integral operators with amplitudes vanishing outside the support of

b+l,inter(r, θ, ∂r S+, ∂θ S+) ãε̃(r, θ, ρ, η, h),

where S+ = S+(r, θ, ρ, η) is the phase defined in Proposition 4.9. It is therefore sufficient to show that,
for ε̃ small enough, the support of the amplitude above is empty. Indeed, on this support we have

∂r S+
p(r, θ, ∂r S+, ∂θ S+)1/2

≤ 1− (ε/2)2,
ρ

p(r, θ, ρ, η)1/2
> 1− ε̃2. (6-45)

Furthermore, by Proposition 4.9, we also have

|∂r S+− r | + |∂θ S+− η|. ε̃2

on 0+ι,s(ε̃), where ãε̃(h) is supported. Since p is bounded from above and from below on 0+ι,s(ε̃), we
obtain, for all ε̃ small enough,

ρ

p(r, θ, ρ, η)1/2
≤ 1− (ε/2)2+C ε̃2

≤ 1− (ε/4)2,

which is clearly incompatible with the second condition of (6-45). �
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7. Dispersion estimates

In this section, we prove Propositions 2.20 and 2.22, using respectively the parametrices given in The-
orems 5.1 and 6.1. The dispersion estimates will basically follow from the stationary phase theorem,
applied to the kernels of these parametrices which are oscillatory integrals. The principle is thus quite
simple. One needs however to check some technical points essentially due to the noncompactness of the
manifold and, more precisely, to the nonuniform ellipticity of the symbol of the Laplacian.

Here is some heuristic in the case of the Isozaki–Kiada parametrix. We have to consider oscillatory
integrals with phases whose model is

(r − r ′)ρ+ (θ − θ ′) · η− tρ2
+ (e−2r

− e−2r ′)
|η|2

4ρ
,

where r, r ′, θ, θ ′ are parameters and ρ, η the integration variables. Due to the localization of the ampli-
tudes, we may also assume that (r, θ, ρ, η) and (r ′, θ ′, ρ, η) belong to strongly outgoing/incoming area.
The critical point satisfies (assuming that it is unique)

r − r ′− 2tρ− (e−2r
− e−2r ′)

|η|2

4ρ2 = 0, (7-1)

θ − θ ′+ (e−2r
− e−2r ′)

η

2ρ
= 0, (7-2)

where one should also keep in mind that e−rη and e−rη′ are small since the amplitudes are supported
in strongly outgoing/incoming areas. In particular, ρ is close to ±p1/2 and thus is far from 0. By (7-1),
one obtains at the critical point that, as expected,

r ≈ r ′+ 2tρ = r ′+ 2|tρ|, (7-3)

where tρ = |tρ| by the sense of time considered in outgoing/incoming areas. This in turn shows that

θ − θ ′ ≈ e−2r ′ (1− e−2tρ) η
ρ
.

In Proposition 7.2, we check that this intuition is correct, and we improve the localization around critical
points in Proposition 7.6. To use the stationary phase theorem, one needs to check the nondegeneracy of
the phase. Using the change of variable ξ = e−rη′, the phase is changed into

(r − r ′)ρ+ er ′(θ − θ ′) · ξ − tρ2
+ (e−2(r−r ′)

− 1)
|ξ |2

4ρ

and its hessian becomes

t


−2

0 e−2(r−r ′)
−1

2tρ

− e−2(r−r ′)
− 1

2tρ

(
0 ξ/ρ

ξ/ρ 0

) . (7-4)

Since ξ is small, the second matrix is small compared to the first one. When t is not too large, the entry
(e−2(r−r ′)

−1)/(2tρ) is bounded from above and below (recall (7-3)) and the phase is thus nondegenerate.
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This is made more rigorous in Proposition 7.11. When t becomes large the hessian matrix is basically
equivalent to (

−2t
0 −1/(2ρ)

)
which is again nondegenerate but will contribute apparently only through a factor |t |−1/2 in the stationary
phase theorem. However, recalling the change of variable e−r ′η= ξ whose Jacobian is er ′(n−1), and using
the two factors e−(n−1)r ′/2, e−(n−1)r/2 on both sides of the kernel (written with respect to dG rather than
d̂G), we get a factor of the form e(n−1)(r ′−r)/2 which decays exponentially in t by (7-3) and provides
(much more than) the missing |t |−(n−1)/2 decay. This is made more rigorous in Proposition 7.12.

The aim of the following subsection is to justify this intuition. In particular, to justify the above
approximations (e.g. the precise meaning of (7-3) or the smallness of the second matrix in (7-4)) we
need to be in an asymptotic regime given by a certain (small) parameter: in the Isozaki–Kiada case, the
relevant parameter is ε (the size of the strongly outgoing/incoming areas) and, in the WKB case, it is the
range of time.

7A. Stationary and nonstationary phase estimates. For simplicity, we drop the index ι from the nota-
tion, including in outgoing/incoming areas. In both Isozaki–Kiada and WKB parametrices, we have to
consider oscillatory integrals of the form

(2πh)−n
∫∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,η)A±(t, r, θ, r ′, θ ′, ρ, η) dρ dη. (7-5)

For the Isozaki–Kiada parametrix, the amplitude is independent of t and of the form

A±IK(t, r, θ, r
′, θ ′, ρ, η)= a±(r, θ, ρ, η) b±(r ′, θ ′, ρ, η),

with
a± ∈ Shyp

(
0±s (ε)

)
and b± ∈ Shyp

(
0±s (ε

3)
)
, (7-6)

with ε > 0 small to be fixed. The phase reads

8±IK(t, r, θ, r
′, θ ′, ρ, η)= S±,ε(r, θ, ρ, η)− tρ2

− S±,ε(r ′, θ ′, ρ, η),

where S±,ε is defined in Proposition 4.10. We recall that it coincides with S± on 0±s (ε) (hence on 0±s (ε
3)

too), where S± is given by Proposition 4.9. We can therefore freely replace S±,ε by S±, or more generally
by any other continuation of S± outside 0±s (ε). Here we have 0≤±t ≤ 2h−1. The integral (7-5) is well
defined for (r, θ, r ′, θ ′) ∈ R2n but, using (7-6), we can assume that

r ≥ ε−1, θ ∈ Vε, r ′ ≥ ε−3, θ ′ ∈ Vε3 . (7-7)

The first goal of this section is to prove that, if ε is small enough, we can use stationary phase estimates.
The second goal is to show a similar result for the WKB parametrix, using tWKB as small parameter

(see Theorem 6.1). In this case, we have to consider

A±WKB(t, r, θ, r
′, θ ′, ρ, η)= a±(t, r, θ, ρ, η),

where, for V2 b ψι(Uι), I2 b (0,+∞), σ2 ∈ (−1, 1), some R2 > 0 large enough and some tWKB > 0,

(a±(t))0≤±t≤tWKB is bounded in Shyp
(
0±(R2, V2, I2, σ2)

)
. (7-8)
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In particular, we can assume that
r ≥ R2, θ ∈ V2. (7-9)

The phase is of the form

8±WKB(t, r, θ, r
′, θ ′, ρ, η)=6±(t, r, θ, ρ, η)− r ′ρ− θ ′ · η, (7-10)

and we refer to Theorem 6.1 for more details. We only recall here that the phase 6± is defined
on [0,±tWKB] × R2n and solves the eikonal equation (6-3) on [0,±tWKB] × 0

±(R3, V3, I3, σ3), with
0±(R2, V2, I2, σ2) ⊂ 0

±(R3, V3, I3, σ3). Here again, the condition (7-8) implies that we can freely
modify 6± outside 0±(R2, V2, I2, σ2).

Below, we will use the notation 8± (resp. A±) either for 8±IK or 8±WKB (resp. A±IK or A±WKB), as long
as a single analysis for both cases will be possible. For convenience we also define

0≤±t ≤ T (h) :=
{

2h−1 for Isozaki–Kiada,
tWKB for WKB.

In the next lemma, we summarize the basic properties of A± and8± needed to get a first nonstationary
phase result. For simplicity, we set ∂γ = ∂ j

r ∂
α
θ ∂

j ′

r ′ ∂
α′

θ ′ ∂
k
ρ∂

β
η .

Lemma 7.1. In each case, for all |γ| ≥ 0, the amplitude satisfies∣∣∂γA±(t, r, θ, r ′, θ ′, ρ, η)
∣∣≤ Cγ (7-11)

for all
(r, θ, r ′, θ ′, ρ, η) ∈ R3n, h ∈ (0, 1], 0≤±t ≤ T (h), (7-12)

and we may assume that the phase satisfies∣∣∂γ(8±(t, r, θ, r ′, θ ′, ρ, η)− (r − r ′)ρ− (θ − θ ′) · η
)∣∣≤ Cγ〈t〉, (7-13)

under the condition (7-12) too. In particular, for all |γ| ≥ 1,

|∂γ∂ρ8
±(t, r, θ, r ′, θ ′, ρ, η)| ≤ Cγ〈t〉, (7-14)

under the condition (7-12).

Proof. If A± = A±IK, (7-11) follows easily from Definition 2.2, (7-6), (7-8) and the time independence of
A±IK. If A± = A±WKB, (7-11) is a direct consequence of (7-8). For the phase, Proposition 4.10 shows that
8±IK− (r−r ′)ρ− (θ−θ ′) ·η is the sum of a function f ∈C∞b (R

3n) with −tρ2; similarly, by Lemma 7.5,
8±WKB−(r−r ′)ρ−(θ−θ ′)·η is the sum of some f ∈C∞b (R

3n) with−tp(r, θ, ρ, η). Since the amplitude
is compactly supported with respect to ρ and p(r, θ, ρ, η), we may replace 8±IK by (r − r ′)ρ− (θ − θ ′) ·
η+ f − tρ2χ1(ρ) and 8±WKB by (r − r ′)ρ − (θ − θ ′) · η+ f − tp(r, θ, ρ, η)χ1(p(r, θ, ρ, η)), for some
χ1 ∈ C∞0 (R). This implies (7-13) and completes the proof. �

Now choose χ1 ∈ C∞0 (−1, 1), χ2 ∈ C∞0 (R
n−1), both equal to 1 near 0 and define, for any c1, c2 > 0,

A±c1,c2
= χ1

(
∂ρ8

±

c1〈t〉

)
χ2

(
∂η8

±

c2

)
A±.
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Let E±(t, h) be the operator with Schwartz kernel (7-5) and E±c1,c2
(t, h) the operator with Schwartz kernel

(2πh)−n
∫∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,η)A±c1,c2

(t, r, θ, r ′, θ ′, ρ, η) dρ dη, (7-15)

for h ∈ (0, 1] and 0≤±t ≤ T (h).

Proposition 7.2 (Semiclassical finite speed of propagation). For all c1, c2 > 0 and all N ≥ 0, we have∥∥E±(t, h)− E±c1,c2
(t, h)

∥∥
L2(Rn)→L2(Rn)

≤ CN ,A,8,c1,c2hN for h ∈ (0, 1], 0≤±t ≤ T (h). (7-16)

Moreover, if c1 is small enough, there exists C ≥ 0, independent of±t ∈ [0, T (h)] and of c2> 0, such that

r ′− r ≤ C (7-17)

on the support of A±c1,c2
.

Proof. The kernel of E±(t, h)− E±c1,c2
(t, h) is an oscillatory integral similar to (7-15) with amplitude

A±− A±c1,c2
=

(
1−χ1

(
∂ρ8

±

c1〈t〉

))
χ2

(
∂η8

±

c2

)
A±+

(
1−χ2

(
∂η8

±

c2

))
A±.

On the support of the second term of the right-hand side, we integrate by part M times with
h

i |∂η8±|2
∂η8

±
· ∂η.

All derivatives of ∂η8±/|∂η8±|2 are bounded since t is bounded in the WKB case and ∂γ∂η8±IK is
independent of t and bounded for |γ| ≥ 1. On the support of the first term, integrate by part M times with

h
i∂ρ8±

∂ρ .

Using (7-14), we have, on the support of the first term, |∂γ(1/∂ρ8±)| . 1, for all γ. Thus, using also
(7-11), we end up in both cases with an integral of the form

hM−n
∫∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,ξ)B±(t, r, θ, r ′, θ ′, ρ, ξ) dρd ξ

with B±(t, · ) bounded in C∞b (R
3n), for 0 ≤ ±t ≤ T (h). We then interpret this integral as the ker-

nel of a pseudodifferential operator with symbol hM exp
(
i(8± − (r−r ′)ρ − (θ−θ ′) · η)/h

)
B± (in the

spirit of Lemma 5.4). By the Calderón–Vaillancourt Theorem and (7-13), its operator norm has order
hM(〈t〉/h)n0 , for some universal n0 depending only on n. Thus we get (7-16) by choosing M = N+2n0.

To prove the second statement, we consider separately the two cases. For the WKB parametrix, t is
bounded. Thus, by (7-13), ∂ρ8±WKB − (r − r ′) is bounded and since |∂ρ8±WKB| . c1〈t〉, on the support
of A±WKB,c1,c2

, r − r ′ must be bounded too. For the Isozaki–Kiada parametrix, as long as t belongs to a
bounded set the same argument holds. We may therefore assume that ±t ≥ T with T > 0 a fixed large
constant. We then exploit two facts: first, for some c > 0, we have c < ±ρ < c−1 and tρ ≥ 0 on the
support of A±IK. Second, f ± := 8±IK − (r − r ′)ρ − (θ − θ ′) · η+ tρ2 is independent of t and bounded,
together with all its derivatives on the support of A±IK. Then

∂ρ8
±

IK = r − r ′− 2tρ+ ∂ρ f ±;
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hence, on the support of χ1(∂ρ8
±

IK/c1〈t〉), we have

r − r ′ ≥−c1〈t〉+ 2tρ− ∂ρ f ±.

If c1 is small enough and T large enough, we have 2tρ−c1〈t〉≥ 0 for t ≥ T . This completes the proof. �

Remark. It is clear from the proof that the constant C in (7-17) is uniform with respect to ε > 0 small
in the Isozaki–Kiada case (recall that the amplitudes depend respectively on t and ε for the WKB and
the IK parametrices).

From now on, we fix c1 > 0 small enough that (7-17) holds.

Proposition 7.3 (Dispersion estimate for times ≤ h). For all c2 > 0, and still with γn =
n−1

2
, we have

‖e−γnr E±c1,c2
(t, h)e−γnr

‖L1(Rn)→L∞(Rn) ≤ CA,8,c2 |ht |−n/2 for 0<±t ≤min(T (h), h).

Note that the condition ±t ≤min(T (h), h) is essentially the condition ±t ≤ h. We have put it under
this form only because of those h such that h ≥ tWKB. This will not modify the rest of the analysis.
Furthermore, the latter h correspond to bounded frequencies and their contribution to the Strichartz
estimates can be treated by Sobolev embeddings.

Proof. In the Isozaki–Kiada case, both e−r ′η = ξ and e−rη are supported in a compact set. In the WKB
one, e−rη is compactly supported but, using (7-17), this also implies that e−r ′η is compactly supported.
Therefore, in both cases, the change of variable e−r ′η = ξ shows that the kernel of E±c1,c2

(t, h) is an
integral of the form

h−ne(n−1)r ′
∫

e
i
h8
±(t,r,θ,r ′,θ ′,ρ,er ′ξ)B±(t, θ, r ′, θ ′, ρ, ξ) dρ dξ,

with B± bounded on [0,±T (h)] × R3n and supported in a region where |ρ| + |ξ | . 1. The kernel
of e−γnr E±c1,c2

(t)e−γnr is then simply obtained by multiplying the integral above by e−γn(r+r ′), so its
modulus is controlled by h−neγn(r ′−r) . |ht |−n/2, by (7-17) and the fact that 0<±t ≤ h. This completes
the proof. �

To prove the dispersion estimates for h ≤±t ≤ T (h) we need to analyze the phases more precisely.
In the following lemma and its proof, we shall use the notation (3-4).

Lemma 7.4. For all (fixed) ε̃ >0 small enough, we can find a family of real-valued functions (ϕst
±,ε)0<ε�1

such that
ϕst
±,ε = ϕ± = ϕ±,ε on 0±s (ε), (7-18)

ϕst
±,ε ∈ Shyp (0s(ε̃)) , (7-19)

and that, if we set

R±,ε(r, θ, ρ, η)= ϕst
±,ε(r, θ, ρ, η)−

q0(θ, e−rη)

4ρ
the following holds for j + |α| ≤ 1:

sup
(r,θ,η)∈R2n−1

±ρ∈[ 14 ,4]

∣∣(er∂η)
β∂ j

r ∂
α
θ ∂

k
ρ R±,ε(r, θ, ρ, η)

∣∣≤ {Cετ/2 if k+ |β| ≤ 2,
Cε jαkβ if k+ |β| ≥ 3,

(7-20)

where τ , the decay rate in (1-8), satisfies (1-9).
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Proof. Using (4-35) and Taylor’s formula, we can write

ϕ±(r, θ, ρ, η)=
∫
±∞

0
e−4tρq(r + 2tρ, θ, e−rη)dt +

∑
|γ|=3

aγ(r, θ, ρ, η)(e−rη)γ,

with aγ ∈Bhyp(0
±
s (ε0)) for some fixed ε0 > 0. Therefore,

ϕ±(r, θ, ρ, η)−
q0(θ, e−rη)

4ρ
=

∫
±∞

0
e−4tρq1(r + 2tρ, θ, e−rη)dt +

∑
|γ|=3

aγ(r, θ, ρ, η)(e−rη)γ, (7-21)

with q1 satisfying (3-6). Denote by R(r, θ, ρ, η) the right-hand side of (7-21) and choose χ1 ∈ C∞0 (R)
and χ2 ∈ C∞0 (R

n−1) both equal to 1 near 0. For some ε̃ > 0 to be fixed below, choose χ±
ε̃

such that

χ±
ε̃
∈ Shyp(0

±

s (ε̃)), χ±
ε̃
≡ 1 on 0±s (ε̃

2),

using Proposition 4.1. (We don’t need Proposition 4.4 here, since ε0 will be fixed.) We then claim that,
if ε̃ is small enough (and fixed) and ε with ε̃′ is small enough too, the function

ϕst
±,ε(r, θ, ρ, η) :=

q0(θ, e−rη)

4ρ
+ R(r, θ, ρ, η)χ±

ε̃
(r, θ, ρ, η)χ2(e−rη/ε1/2)(1−χ1)(ε

1/2r),

satisfies (7-18), (7-19) and (7-20). Indeed, by choosing ε̃ small enough, we have ±ρ ≈ 1 on the support
of χ±

ε̃
, so the integral in (7-21) is exponentially convergent. Furthermore, since∣∣(er∂η)

β∂ j
r
(
(e−rη)γχ1(e−rη/ε1/2)

) ∣∣≤ C(ε1/2)|γ|−|β|,

for all γ, and using the fact that, if tρ ≥ 0 and r ≥ 0,∣∣(er∂η)
β∂ j

r ∂
α
θ ∂

k
ρq1(r + tρ, θ, e−rη)

∣∣≤ C |t |k〈r〉−τ |e−rη|2−|β|,

we get the estimate (7-20). Finally, since er
|η| . ε and r ≥ ε on 0±s (ε), we have (7-18) for all ε small

enough. The property (7-19) is clear thanks to χ±
ε̃

. �

In the following lemma, we use the notation of Theorem 6.1.

Lemma 7.5. We can find a family of real-valued functions (6±st (t))0≤±t≤tWKB such that

6±st (t)=6
±(t) on 0±(R2, V2, I2, σ2), (7-22)

and, for all k, β,

sup
R2n

∣∣(er∂η)
β∂k
ρ

(
6±st (t, r, θ, ρ, η)− rρ− θ · η− tp(r, θ, ρ, η)

)∣∣≤ Ckβ t2. (7-23)

Proof. Using the function χ±2→3 of Theorem 6.1, the result is straightforward by considering

6±st (t, r, θ, ρ, η)

= χ±2→3(r, θ, ρ, η)
(
6±0 (t, r, θ, ρ, η)− rρ− θ · η− tp(r, θ, ρ, η)

)
+ rρ+ θ · η+ tp(r, θ, ρ, η),

and using (6-4). �
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We remark that 6± satisfies (6-5) whereas 6±st does not. This was the reason for considering 6± first,
since the property (6-5) is convenient to prove L2 bounds for Fourier integral operators.

The estimates (7-20) and (7-23) show that we have good asymptotics for the phases in certain regimes,
namely ε→ 0 for the Isozaki–Kiada parametrix and t→ 0 for the WKB parametrix. Using Lemmas 7.4
and 7.5, we replace ϕ±,ε by ϕst

±,ε and 6± by 6±st in the expression of 8±IK and 8±WKB, respectively.
To use a single formalism for both cases, we introduce the parameter

λst :=

{
ε for the Isozaki–Kiada parametrix,
t st
WKB for the WKB parametrix,

where t st
WKB> 0 will denote the size of the time interval where t will be allowed to live. Using the change

of variable ξ = e−r ′η and factorizing by t in the phase, the integral (7-15) can be written

(2πh)−ne2γnr ′
∫

ei t
h 8̃
±

λst
(z,ρ,ξ) Ã±c1,c2λst

(z, ρ, ξ) dρ dξ,

where h ∈ (0, 1],

8̃±λst
(y, ρ, ξ)= 1

t
8±(t, r, θ, r ′, θ ′, ρ, er ′ξ), (7-24)

Ã±c1,c2,λst
(y, ρ, ξ)= Ac1,c2(t, r, θ, r

′, θ ′, ρ, er ′ξ), (7-25)

and
y = (h, t, r, θ, r ′, θ ′), (7-26)

with r, r ′ satisfying (7-17) and

0<±t ≤ T (h, λst) :=

{
2h−1 for the Isozaki–Kiada parametrix,
t st
WKB for the WKB parametrix.

The kernel of e−γnr E±c1,c2
(t, h)e−γnr then becomes

(2πh)−neγn(r ′−r)
∫

ei t
h 8̃
±

λst
(y,ρ,ξ) Ã±c1,c2,λst

(y, ρ, ξ) dρ dξ.

Proposition 7.6 (nonstationary phase). There exists C ′ > 0 such that the condition∣∣∣∣r−r ′

t

∣∣∣∣+ er ′
∣∣∣∣θ−θ ′t

∣∣∣∣≥ C ′ (7-27)

implies that for all c2 > 0, all N ≥ 0 and all 0< λst� 1, we can find Cc2,N ,λst such that, for all

h ∈ (0, 1], ±t ∈ [h, T (h, λst)], ω ≥ 1, (r, θ, r ′, θ ′) ∈ R2n,

with r, r ′ satisfying (7-17), we have∣∣∣∣(2πh)−neγn(r ′−r)
∫

eiω8̃±λst
(y,ρ,ξ) Ã±c1,c2,λst

(y, ρ, ξ) dρ dξ
∣∣∣∣≤ Cc2,N ,λsth

−nω−N .

Proof. For t 6= 0, we define

8̃free
t :=

r − r ′

t
ρ+ er ′ θ − θ

′

t
· ξ.
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Then

∇ρ,ξ 8̃
free
t =

(
r−r ′

t
, er ′ θ−θ

′

t

)
.

We then start with the case of 8±WKB. By Lemma 7.5 and (7-17), ∇ρ,ξ (8̃λst − 8̃
free
t ) is a function of

(t, r, θ, r ′, ρ, ξ) which is bounded on the support of the amplitude, as well as all its derivatives in ρ, ξ ,
uniformly with respect to (t, r, θ, r ′). Therefore, if C ′ is large enough, we have∣∣∇ρ,ξ 8̃λst

∣∣& ∣∣∣r−r ′

t

∣∣∣+ er ′
∣∣∣θ−θ ′t

∣∣∣, (7-28)

and the result follows from standard integrations by parts. Note that, here, we have not used the smallness
of λst (i.e., of t). We shall use it for the case of 8±IK which we now consider. Since ±ρ ∈

[ 1
4 , 4

]
on the

support of the amplitude if ε = λst is small enough, Lemma 7.4 and Taylor’s formula imply that

∇ρ,ξ (8̃λst − 8̃
free
t )= (−2ρ, 0)+∇ρ,ξ

q0(θ, er ′−rξ)− q0(θ
′, ξ)

tρ
+ εε(y, ρ, ξ)

(
r−r ′

t
,
θ−θ ′

t

)
,

where εε(y, ρ, ξ) and all its derivatives in ρ, ξ go to 0 as ε→ 0, uniformly with respect to y (see (7-26))
with r, r ′ satisfying (7-17) and (±ρ, ξ) ∈

[ 1
4 , 4

]
× Rn−1. Furthermore, using (7-17) and the fact that

|ξ |. ε3 on the support of the amplitude, we have∣∣∣∣∣∇ρ,ξ q0(θ, er ′−rξ)− q0(θ
′, ξ)

tρ

∣∣∣∣∣. ε3
∣∣∣∣(r−r ′

t
,
θ−θ ′

t

)∣∣∣∣
thus, using that r ′ ≥ 0 on the support of the amplitude, we have (7-28) if ε is small enough. In addition,
for all k+ |β| ≥ 2, we also have ∣∣∂k

ρ∂
β
ξ 8̃λst

∣∣. ∣∣∣∣(r−r ′

t
,
θ−θ ′

t

)∣∣∣∣
on the support of the amplitude, using (7-17). The result then follows again from integrations by parts. �

We next state a convenient form of the stationary phase theorem with parameters; the demonstration —
a simple adaptation of the proof of [Hörmander 1983, Theorem 7.7.5] — is given in Appendix A for
completeness.

Proposition 7.7 (Stationary phase theorem). Let � be a set and

f : Rn
×� 3 (x, y) 7→ f (x, y) ∈ R

a function, smooth with respect to x and such that

Hessx [ f ](x, y)= S(y)+ R(x, y) for (x, y) ∈ Rn
×�, (7-29)

with S(y) a symmetric nonsingular matrix such that

|S(y)−1
|. 1 for y ∈�, (7-30)

and R(x, y) a symmetric matrix such that

‖S(y)−1 R(x, y)‖ ≤ 1
2 for (x, y) ∈ Rn

×�, (7-31)
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where ‖ · ‖ is the Euclidean matrix norm. Then there exists N ≥ 0 such that, for all K b Rn , there exists
CK > 0 satisfying∣∣∣∣∫ eiω f (x,y)u(x)dx

∣∣∣∣≤ CKω
−n/2 sup

|α|≤N
‖∂αu‖L∞(K ) sup

2≤|α|≤N

(
sup
x∈K
|∂α f (x, y)| + 1

)N

,

for all y ∈�, all u ∈ C∞0 (K ) and all ω ≥ 1.

For the WKB parametrix, we shall use this proposition fairly directly by considering

�±WKB

(
t st
WKB

)
=

{
(h, t, r, θ, r ′, θ ′) : h ∈ (0, 1],

∣∣∣r−r ′

t

∣∣∣≤ C ′, h ≤±t ≤ t st
WKB

}
.

Notice in particular that r − r ′ is bounded on �WKB
(
t st
WKB

)
.

Proposition 7.8 (Dispersion estimate for the WKB parametrix). Fix c2 > 0. There exists t st
WKB > 0 small

enough such that, for all y = (h, t, r, θ, r ′, θ ′) ∈�±WKB

(
t st
WKB

)
and all ω ≥ 1, we have∣∣∣∣(2πh)−neγn(r ′−r)

∫
e

iω8̃±
tst
WKB

(y,ρ,ξ)
Ã±c1,c2,t st

WKB
(y, ρ, ξ) dρ dξ

∣∣∣∣. ω−n/2.

Proof. This is a straightforward application of Proposition 7.7 since, using (7-23), we have

Hessρ,ξ [8̃t st
WKB
] =

(
2 0
0 Hessη(q)

)
+O(t st

WKB),

where the first matrix of the right-hand side satisfies (7-30) by the uniform ellipticity of q. The conclusion
is then clear since all derivatives, in ρ, ξ , of Ã±t st

WKB
are bounded, as well as those of 8̃t st

WKB
of order at

least 2, on the support of the amplitude. �

To be in position to use Proposition 7.7 for the Isozaki–Kiada parametrix, we still need two lemmas.

Lemma 7.9 (Sharper localization for IK). Let χ0 ∈ C∞0 (R) be equal to 1 near 0 and set

χε(y, ρ)= χ0

(
ε−τ/4

(
2ρ− r−r ′

t

))
. (7-32)

Then, for all ε > 0 small enough, all N ≥ 0 and all c2 > 0, there exists Cc2,N ,ε such that, for all

h ∈ (0, 1], ±h ≤ t ≤ 2h−1, ω ≥ 1,

and all (r, θ, r ′, θ ′) ∈ R2n satisfying (7-7) and such that∣∣∣r−r ′

t

∣∣∣+ er ′
∣∣∣θ−θ ′t

∣∣∣≤ C ′, (7-33)

we have∣∣∣∣(2πh)−neγn(r ′−r)
∫

eiω8̃±ε (y,ρ,ξ)(1−χε(y, ρ)) Ã±c1,c2,ε
(y, ρ, ξ) dρ dξ

∣∣∣∣≤ Cc2,N ,εh
−nω−N .

Proof. By the same analysis as in the proof of Proposition 7.6, using Lemma 7.4 and (7-33), we may
write

8̃±ε (y, ρ, ξ)=
r−r ′

t
ρ− ρ2

+ R±ε (y, ρ, ξ),
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where, on the support of the amplitude, we have

|∂ρR±ε |. ε
τ/2, |∂k

ρ∂
β
ξ R±ε |. 1

for k+ |β| ≥ 1. On the other hand, on the support of (1−χε(y, ρ)) we also have, for some c > 0,

r−r ′

t
− 2ρ ≥ cετ/4 or r−r ′

t
− 2ρ ≤−cετ/4.

Therefore, if ε is small enough,
|∂ρ8̃

±

ε (y, ρ, ξ)|& ε
τ/4,

on the support of the amplitude and the result follows from integrations by parts in ρ. �

Basically, the interest of the localization (7-34) is to replace 1
4ρ in (7-20) by 2t/(r − r ′) up to a small

error. We implement this idea as follows. By Lemma 7.9, we can replace Ã±c1,c2,ε
(y, ρ, ξ) in (7-25) by

χε(y, ρ) Ã±c1,c2,ε
(y, ρ, ξ). (7-34)

If ε is small enough, we have ±ρ ∈
[1

4 , 4
]

on the support of Ã±c1,c2,ε
hence, for some c > 0,

c|t | ≤ r − r ′ ≤ c−1
|t |, (7-35)

on the support of (7-34), which is stronger than (7-17). Furthermore, the condition (7-33) together with
(7-7) implies that we may assume that |θ − θ ′| ≤ C ′e−ε

−3
|t |. From now on we fix

c2 = ε.

Thus, by writing
∂η8

±

IK = θ − θ
′
+ ∂ηϕ±(r, θ, ρ, η)− ∂ηϕ±(r ′, θ ′, ρ, η),

with ϕ± ∈Bhyp(0
±(ε2)), we have|∂ηϕ±(r, θ, ρ, η)|. e−r and |∂ηϕ±(r ′, θ ′, ρ, η)|. e−r ′ on the support

of the amplitude. By (7-7), we have for instance |∂η8±IK− (θ − θ
′)| ≤ ε2 if ε is small enough. We may

therefore assume that

|θ − θ ′| ≤ C ′′ε
|t |
〈t〉
. (7-36)

To be set of parameters for the stationary phase theorem, we will thus choose

�±IK(ε)=
{
(h, t, r, θ, r ′, θ ′) : h ∈ (0, 1], ±t ∈ [h, 2h−1

] and (7-7), (7-33), (7-35), (7-36) hold
}
.

Before applying Proposition 7.7, we still need to modify the phase 8̃±ε outside the support of the new
amplitude (7-34).

Lemma 7.10. We can find 9±ε smooth and real-valued such that, on the support of (7-34),

9±ε (y, ρ, ξ)= 8̃
±

ε (y, ρ, ξ),

and

9±ε (y, ρ, ξ)=
r − r ′

t
ρ+

θ − θ ′

t
er ′ξ − ρ2

−
1− e2(r ′−r)

2(r − r ′)
q0(θ

′, ξ)+ψ±ε (y, ρ, ξ), (7-37)
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where, for all k+ |β| ≤ 2,

sup
(ρ,ξ)∈Rn

y∈�±IK(ε)

|〈t〉|β|/2∂k
ρ∂

β
ξ ψ
±

ε (y, ρ, ξ)| → 0 as ε→ 0, (7-38)

and for |k| + |β| ≥ 3,
sup

(ρ,ξ)∈Rn

y∈�±IK(ε)

| ∂k
ρ∂

β
ξ ψ
±

ε (y, ρ, ξ)| ≤ Cε,k,β . (7-39)

Proof. We shall basically combine (7-20) with the fact that

|2ρ− (r − r ′)/t |. ετ/4, (7-40)

on the support of (7-34). By Lemma 7.4, the phase reads

r − r ′

t
ρ+

θ − θ ′

t
er ′ξ − ρ2

−
q0(θ

′, ξ)− e2(r ′−r)q0(θ, ξ)

4ρt
+

R±,ε(r, θ, ρ, er ′ξ)− R±,ε(r ′, θ ′, ρ, er ′ξ)

t
.

The last term of this sum satisfies the estimates (7-38) and (7-39): for 0<±t ≤1, it follows from Taylor’s
formula using (7-33) and Lemma 7.4 with j + |α| = 1, and for ±t ≥ 1 it follows from Lemma 7.4 with
j + |α| = 0. For the term involving q0 we write

1
4ρt
=

1
2(r − r ′)

+

(
1

4ρt
−

1
2(r − r ′)

)
χ1

(
2ρ− (r − r ′)/t

ετ/8

)
,

using (7-40) with ε small enough and χ1 ∈ C∞0 (R
n−1) equal to 1 near 0, and

q0(θ, er ′−rξ)= e2(r ′−r)q0(θ
′, ξ)+ e2(r ′−r)(q0(θ, ξ)− q0(θ

′, ξ))χ2(ξ),

with χ2 ∈ C∞0 (R
n−1) equal to 1 near 0. We obtain the estimates (7-38) and (7-39) for

1
4ρt

e2(r ′−r)(q0(θ, ξ)− q0(θ
′, ξ))χ2(ξ),

using (7-36), and for

(1− e2(r ′−r))q0(θ
′, ξ)

(
1

4ρt
−

1
2(r − r ′)

)
χ1

(
2ρ− (r − r ′)/t

ετ/8

)
using (7-35). In both cases, we can freely multiply the functions by a compactly support cutoff in ρ
using that ±≈ 1 on the support of the amplitude. This completes the proof. �

Proposition 7.11 (bounded times). There exists εst > 0 such that, for all T > 0, all 0 < ε ≤ εst, there
exists Cε,T such that, for all

h ∈ (0, 1], h ≤±t ≤ T, (r, θ, r ′, θ ′) satisfying (7-7), (7-35) and (7-36) , (7-41)

we have ∣∣∣∣(2πh)−neγn(r ′−r)
∫

ei t
h 8̃
±
ε (y,ρ,ξ)χε(y, ρ) Ãc1,ε,ε(y, ρ, ξ) dρ dξ

∣∣∣∣≤ Cε,T |ht |−n/2. (7-42)
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Proof. By Lemma 7.10, we can replace 8̃±ε by 9±ε . We then have

Hessρ,ξ [9±ε ] =

 2 0

0 1−e2(r ′−r)

2(r−r ′)
Hessη(q0)

+ o(1),

where o(1)→ 0 as ε→ 0 , uniformly with respect to (ρ, ξ)∈Rn and to the parameters satisfying (7-41).
Using the upper bound in (7-35) and the boundedness of t , the positive number

1− e2(r ′−r)

2(r − r ′)

belongs to a compact subset of (0,∞), yielding the condition (7-30). We then conclude by applying
Proposition 7.7. �

To obtain (7-42), we have used the boundedness of eγn(r ′−r), since |r − r ′| was bounded. In principle,
the condition (7-35) implies that eγn(r ′−r) decays exponentially in time. We shall exploit the latter below.

Proposition 7.12 (Large times). There exists T > 0 and ε′st such that, for all 0< ε ≤ ε′st, there exists Cε
such that, for all

h ∈ (0, 1], T ≤±t ≤ 2h−1, (r, θ, r ′, θ ′) satisfying (7-7), (7-35) and (7-36) , (7-43)

we have ∣∣∣∣(2πh)−neγn(r ′−r)
∫

ei t
h 8̃
±
ε (y,ρ,ξ)χε(y, ρ) Ãc1,ε,ε(y, ρ, ξ) dρ dξ

∣∣∣∣≤ Cε|ht |−n/2.

Proof. Choose T large enough such that, for t ≥ T and r, r ′ satisfying (7-35), we have e2(r ′−r)
≤

1
2 .

To compensate the factor 1/(r − r ′) in (7-37) (of order 1/|t | by (7-35)), we consider the new variable
|t |1/2ζ = ξ . By (7-38), if ε is small enough, this new phase satisfies the assumptions of Proposition 7.7.
In the corresponding estimate given by Proposition 7.7, derivatives of the new amplitude as well as
derivatives of the new phase of order at least 3 will grow at most polynomially with respect to t . This
gives a polynomial growth in t of the coefficient in the stationary phase estimate of Proposition 7.7 but
such a growth is controlled by the exponential decay of eγn(r ′−r) . e−c|t |. This completes the proof. �

7B. Proof of Proposition 2.20. By (2-38), up to a remainder of operator norm of size hn (uniformly
in time), we may replace Ôpι(a

±
s )
∗ by a linear combination of operators of the form Ôpι(ã

±
s ) with

supp(ã±s ) ⊂ supp(a±s ). We next apply Theorem 5.1 to order n + 1 and are left with the study of
the Fourier integral operator part. By Proposition 7.2, the amplitude can be modified so that, up to a
remainder of operator norm of order hn uniformly in time, we are left with an operator whose kernel
K±(r, θ, r ′, θ ′, t, h) satisfies

|e−γnr K±(r, θ, r ′, θ ′, t, h)e−γnr ′
|. |ht |−n/2, h ∈ (0, 1], 0<±t ≤ 2h.

Indeed, for t ≤ h, this follows from Proposition 7.3 and for t ≥ h, from Propositions 7.11 and 7.12 with
ω =±t/h and also from Proposition 7.6 and Lemma 7.9 with N ≥ n/2. �

Proof of Proposition 2.22. It is completely similar to the one of Proposition 2.20 by considering times
0≤±t ≤ t st

WKB with t st
WKB small enough to be in position to use both Theorem 6.1 and Proposition 7.8. �
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Appendix A. Control on the range of some diffeomorphisms

In this section, we prove a proposition implying Lemma 4.7 and (4-54) in Lemma 4.11. For simplicity,
we consider the outgoing case only but the symmetric result holds in the incoming one.

Let us define the following conical subset of T ∗Rn
+
\ 0,

0+s-con(ε)=
{
(r, θ, ρ, η) : r > R(ε), θ ∈ Vε, ρ > (1− ε2)(ρ2

+ q(r, θ, e−rη))1/2
}
, (A-1)

which is the cone generated by 0+s (ε).

Proposition A.1. Assume that, for some 0 < ε̄ < 1
4 , we are given a family of maps (9 t)t≥0 defined on

0+s-con(ε̄), of the form

9 t(r, θ, ρ, η)= (r, θ, ρt(r, θ, ρ, η), ηt(r, θ, ρ, η)) ∈ R2n,

satisfying, for all r > R(ε̄), θ ∈ Vε̄, ρ > (1− ε̄2)p1/2, t ≥ 0 and λ > 0,

(ρt , ηt)(r, θ, λρ, λη)= λ(ρλt , ηλt)(r, θ, ρ, η), (A-2)

(ρt , ηt)(r, θ, ρ, 0)= (ρ, 0), (A-3)

and such that

(ρt
− ρ)t≥0 and (the components of ) (ηt

− η)t≥0 are bounded in Bhyp(0
+

s (ε̄)). (A-4)

Then, there exists 0< ε̃≤ ε̄ such that, for all t ≥ 0 and all 0< ε≤ ε̃, 9 t is a diffeomorphism from 0+s (ε)

onto its range and
0+s (ε

3)⊂9 t (0+s (ε)) , t ≥ 0, 0< ε ≤ ε̃.

Lemma 4.7 is indeed a consequence of Proposition A.1 since Proposition 3.8, (3-35) and (4-15) show
that (A-2), (A-3) and (A-4) hold with (ρt , ηt)= (ρt , ηt). Similarly, for Lemma 4.11, we consider

(ρt , ηt)(r, θ, ρ, η) := (ρ+, η+)(r, θ, r, θ, ρ, η)

which is independent of t and satisfies the assumptions (A-2), (A-3), (A-4) by (4-50), Proposition 4.9
and Remark 2 after Proposition 4.9.

To prove the proposition, we need another conical subset of T ∗Rn
+
\ 0:

0̃+s-con(ε)=
{
(r, θ, ρ, η) : r > R(ε), θ ∈ Vε, ρ > (1− ε2)(ρ2

+ |η|2)1/2
}
.

Using the diffeomorphism Fhyp defined by (2-31), we have

F−1
hyp

(
0̃+s-con(ε)

)
=
{
(r, θ, ρ, η) : r > R(ε), θ ∈ Vε, ρ > (1− ε2)(ρ2

+ |e−rη|2)1/2
}
. (A-5)

The latter is of interest in view of the following lemma.

Lemma A.2. There exists C > 1 such that, for all ε > 0 small enough,

0+s-con(ε/C)⊂ F−1
hyp

(
0̃+s-con(ε)

)
⊂ 0+s-con(Cε).
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Proof. By (3-7), we have, for some 0< c < 1,

ce−2r
|η|2 ≤ q(r, θ, e−rη)≤ c−1

|e−rη|2, r > R(ε), θ ∈ Vε, η ∈ Rn−1.

Using (2-55), it suffices to show the existence of C > 1 satisfying, for all ε small enough,

c−1(1− (ε/C)2)−2 (1− (1− (ε/C)2)2
)
≤ (1− ε2)−2(1− (1− ε2)2

)
, (A-6)

and
(1− ε2)−2 (1− (1− ε2)2

)
≤ c(1− (Cε)2)−2 (1− (1− (Cε)2)2) . (A-7)

For ε → 0, the left-hand side of (A-6) is equivalent to 2c−1(ε/C)2 and the right-hand side to 2ε2.
Therefore, (A-6) holds if c−1/C2 < 1 and ε is small enough. We get (A-7) similarly. �

Let us now consider (1, 0)= (1, 0, . . . , 0) ∈Rn
\0. For all 0< ε < 1, let us denote by C+(ε) the cone

generated by B((1, 0), ε), namely

C+(ε)= {(λρ, λη) | λ > 0, (ρ− 1)2+ |η|2 < ε2
}.

Since ρ > 1− ε > 0 and ρ2/(ρ2
+ |η|2) > 1− ε2/(1− ε)2 on B((1, 0), ε), it is then not hard to check

that, for all ε small enough,

C+(ε2/4)⊂ {ρ > (1− ε2)(ρ2
+ |η|2)1/2},

and
{ρ > (1− ε2)(ρ2

+ |η|2)1/2} ⊂ C+(2ε),

since, if ρ > (1−ε2)(ρ2
+|η|2)1/2 then (1, η/ρ) ∈ B((1, 0), 2ε), using that 1− (1−ε2)2 < 4ε2(1−ε2)2

for ε small enough. In particular, we obtain

(R(ε),+∞)× Vε×C+(ε2/4)⊂ 0̃+s-con(ε)⊂ (R(ε),+∞)× Vε×C+(2ε). (A-8)

We next recall a standard lemma the simple proof of which we omit.

Lemma A.3. Let x0 ∈ Rn , ε > 0 and f : B(x0, ε)→ Rn such that f (x0) = x0 and f − id is 1
2 Lipschitz

(meaning that | f (x)− x + y− f (y)| ≤ |x − y|/2) on B(x0, ε). Then f is injective on B(x0, ε) and

B(x0, ε/2)⊂ f (B(x0, ε)).

Proof of Proposition A.1. Set

fr,θ,t(ρ, ξ)=
(
ρt(r, θ, ρ, erξ), e−rηt(r, θ, ρ, erξ)

)
.

By Lemma 2.4 and (A-4), we have, for k+ |β| = 2,

|∂k
ρ∂

β
η fr,θ,t(ρ, η)|. 1, t ≥ 0, (r, θ, ρ, ξ) ∈ Fhyp(0

+

s (ε̄)), (A-9)

and, by choosing ε̄1 small enough, we also have

r > R(ε̄), θ ∈ Vε̄, (ρ, ξ) ∈ B((1, 0), ε̄1) H⇒ (r, θ, ρ, ξ) ∈ Fhyp(0
+

s (ε̄)).
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By (A-3) ∂ρ,ξ fr,θ,t(ρ, 0)= Idn , so (A-9) implies that fr,θ,t − Idn is 1
2 -Lipschitz on B((1, 0), 2ε) for all

ε small enough, all t ≥ 0, r > R(ε̄), and θ ∈ Vε̄. Therefore, by Lemma A.3,

B((1, 0), ε)⊂ ft,r,θ (B((1, 0), 2ε)) , t ≥ 0, r > R(ε̃), θ ∈ Vε̃.

Using (A-2), we can replace the balls in the inclusion above by the cones they generate and, using
Lemma A.2 with (A-8), we get

0+s-con(ε/2C)⊂9 t(0+s-con(2
√

2Cε1/2)
)
, t ≥ 0, (A-10)

for all ε small enough, with the C > 1 of Lemma A.2. Since fr,θ,t − Idn is 1
2 -Lipschitz on B((1, 0), 2ε)

for all t ≥ 0, (A-2) implies that it is also 1
2 -Lipschitz on the cone generated by B((1, 0), 2ε) so fr,θ,t

is injective on this cone. Thus, for all ε small enough and t ≥ 0, 9 t is injective on 0+s-con(ε) and is a
diffeomorphism onto its range. By (A-10), we have

0+s (ε
3)⊂ 0+s-con(ε

3)⊂9 t (0+s-con(ε)
)
,

for all t ≥ 0 and all ε small enough, so the proof will be completed by showing that, for all ε small
enough and all t ≥ 0, the following implication holds:

(r, θ, ρ, η)=9 t(r, θ, ρ1, η1) ∈ 0
+

s (ε
3) with (r, θ, ρ1, η1) ∈ 0

+

s-con(ε)

H⇒ p(r, θ, ρ1, η1) ∈ (
1
4 − ε, 4+ ε). (A-11)

Assume the first line of (A-11). Using (A-3) at (ρ1, 0) and the fact that ft,r,θ − Idn is 1
2 -Lipschitz, we

have
|(ρ, e−rη)− (ρ1, e−rη1)| = | ft,r,θ (ρ1, e−rη1)− (ρ1, e−rη1)| ≤ |e−rη1|/2. (A-12)

Therefore |e−rη − e−rη1| ≤ |e−rη1|/2 and we get |η1| ≤ 2|η|. Since e−r
|η| . ε3, (A-12) shows that

|ρ− ρ1| + |e−r (η− η1)|. ε3 hence that

|p(r, θ, ρ1, η1)− p(r, θ, ρ, η)|. ε3.

Since p(r, θ, ρ, η) ∈ ( 1
4 − ε

3, 4+ ε3), the latter yields (A-11) for ε small enough. �

Proof of Proposition 7.7.
Note first that, for all y ∈�, the map

Rn
3 x 7→ ∇x f (x, y) ∈ Rn

is a diffeomorphism since, by considering F(x, y) := S(y)−1
∇x f (x, y) and using (7-29), (7-31) and

(7-30), x 7→ F(x, y)− x is 1
2 Lipschitz. For all y ∈�, we denote by x0 = x0(y) the unique solution to

∇x f (x0, y)= 0.

Now consider

g(x, y)= f (x, y)− f (x0, y)−〈Hessx [ f ](x0, y)(x − x0), x − x0〉 /2,

and, for all s ∈ [0, 1],

fs(x, y)= f (x0, y)+〈Hessx [ f ](x0, y)(x − x0), x − x0〉 /2+ sg(x, y).
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Notice that f1 = f , that f0− f (x0, y) is quadratic with respect to x − x0 and that

∇x fs(x, y)=
{

S(y)+ s
∫ 1

0
R(x0+ t (x − x0), y)dt + (1− s)R(x0, y)

}
(x − x0),

by Taylor’s formula and (7-29). By (7-30), there exists c > 0 such that |S(y)X | ≥ 2c|X |, for all X ∈ Rn

and all y ∈� hence (7-31) implies that

|∇x fs(x, y)| ≥ c|x − x0(y)|, s ∈ [0, 1], (x, y) ∈ Rn
×�. (A-13)

Lemma A.4. For all K b Rn and all integer k ≥ 1, there exists C > 0 and N > 0 such that, for all
s ∈ [0, 1], all y ∈� and all u such that

u ∈ C2k−1
0 (K )∩C2k(Rn

\ {x0(y)}), (A-14)

∂αx u(x0(y))= 0, |α|< 2k, (A-15)

∂αx u ∈ L∞(Rn), |α| = 2k, (A-16)

we have ∣∣∣∣∫ eiω fs(x,y)u(x)dx
∣∣∣∣≤ Cω−k max

|α|≤2k
‖∂αu‖L∞(K ) max

2≤|α|≤2k

(
1+ sup

x∈K
|∂α fs |

)N
, ω ≥ 1.

Notice that the assumption (A-16) is only a condition near x0(y). It guarantees the boundedness of
∂αu(x)/|x − x0|

2k−|α|.

Proof. We proceed by induction and consider first k = 1. We would like to integrate by part using
the operator |∇x fs |

−2
∇x fs · ∇x but, since ∇x fs may vanish on the support of u, we consider Lδ :=

(|∇x fs |
2
+ δ)−1

∇x fs · ∇x which satisfies

iω
∫

eiω fs(x,y)u(x)dx = lim
δ↓0

∫
(Lδeiω fs(x,y))u(x)dx .

We then integrate by part at fixed δ > 0, using that

tLδ =−
1

|∇x fs |
2+ δ

{
∇x fs · ∇x +1x fs −

2
|∇x fs |

2+ δ
〈Hessx [ fs]∇x fs,∇x fs〉

}
.

Since |1x fs(x, y)u(x)|.max|α|=2 ‖1x fs( · , y)‖L∞(K )‖∂
αu‖L∞ |x−x0(y)|2 and using (A-13), by letting

δ ↓ 0 we get ∣∣∣∣iω ∫ eiω fs(x,y)u(x)dx
∣∣∣∣≤ C max

|α|≤2
‖∂αu‖L∞(K ) max

|α|=2

(
1+ sup

x∈Rn
|∂α fs |

)
.

Here the constant C is independent of y, u, s and ω; it depends only on K and the constant c in (A-13).
The result then follows by induction using that

|∇x fs |
−2
〈∇x fs, ∂x u〉, |∇x fs |

−2(1x fs)u, |∇x fs |
−4
〈Hessx [ fs]∇x fs,∇x fs〉 u

satisfy the assumptions (A-14), (A-15) and (A-16) if u does for k+ 1. �
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End of the proof of Proposition 7.7. We next consider I (s) =
∫

eiω fs(x,y)u(x)dx so that, for all j ∈ N0,
we have

I (2 j)(s)= (iω)2 j
∫

eiω fs(x,y)g(x, y)2 j u(x)dx .

Since ∂αx
(
g(x, y)2 j

)
|x=x0(y)

= 0 for all |α|< 6 j , Lemma A.4 yields, with k = 3 j ≥ n/2,

|I (2 j)(s)| ≤ Cω−n/2 max
|α|≤6 j

‖∂αu‖L∞(K ) max
2≤|α|≤6 j

(
1+ sup

x∈Rn
|∂α fs |

)N
, s ∈ [0, 1].

Since I (1)=
∫

eiω f (x,y)u(x)dx , the estimate

|I (1)−
∑
l<2 j

I (l)(0)/ l!| ≤ sup
s∈[0,1]

|I (2 j)(s)|/(2 j)!,

reduces the proof to estimating the integrals I (l)(0)whose common phase f0 is quadratic, up to a constant
term and whose amplitude is u(x)g(x, y)l . By Taylor’s formula g(x, y) is of order |x − x0(y)|2 so the
derivatives of u(x)g(x, y)l may be of order 〈x0(y)〉2l on which we have no control. By choosing K̃ a
bounded neighborhood of K and applying Lemma A.4 to the subset of � on which x0(y) /∈ K̃ , we can
assume that we consider those y for which x0(y) ∈ K̃ . We then use the Lemma 7.7.3 of [Hörmander
1983] on oscillatory integrals with quadratic phases, observing that ‖∂αx g( · , y)l‖L∞(Kx ) is controlled by
(products of) of norms ‖∂βx f ( · , y)‖L∞(Kx ) with |β| ≥ 2, since x is bounded on the support of u and x0(y)
remains bounded. �
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ASYMPTOTIC BEHAVIORS OF NONVARIATIONAL ELLIPTIC SYSTEMS

SZU-YU SOPHIE CHEN

We use a method, inspired by Pohozaev’s work, to study asymptotic behaviors of nonvariational elliptic
systems in dimension n≥ 3. As an application, we prove removal of an apparent singularity in a ball and
uniqueness of the entire solution. All results apply to changing sign solutions.

In this paper, we study solutions of elliptic systems on Rn, n ≥ 3.
A classical work by Gidas and Spruck [1981] asserts that any nonnegative solution to1u+|u|α−2u=0

in Rn with 2 < α < 2n/(n − 2) (subcritical case) is trivial. For α = 2n/(n − 2), Caffarelli, Gidas and
Spruck [1989] proved that any nonnegative solution in Rn is of the form u = (a+ b|x |2)−(n−2)/2, where
a, b are constants. Such problem for elliptic systems are also studied, for example, in the studies of
Lane–Emden type systems; see [Zou 2000; Poláčik etal. 2007; Souplet 2009] and the references therein.

By contrast, the behaviors of changing sign solutions are more delicate. For example, there exists a
sequence of changing sign solutions to 1u + |u|α−2u = 0 in Rn with 2 < α < 2n/(n − 2) [Kuzin and
Pohozaev 1997]. In this paper, we study under what circumstances a solution to an elliptic system in
an exterior domain is asymptotic to |x |−(n−2) at infinity. Such decay is optimal in the sense that infinity
is a regular point in the inverted coordinates. It is known [Kuzin and Pohozaev 1997] that there exist
solutions to 1u + uα−1

= 0 in Rn that decay more slowly than |x |−(n−2). Thus, a suitable integrability
condition is necessary to exclude such a case.

While the study of changing sign solutions to elliptic systems is interesting by itself, the problem
is well motivated by differential geometry. For example, the decay of curvature tensors was studied
for Yang–Mills fields [Uhlenbeck 1982], Einstein metrics [Bando et al. 1989] and other generalizations
[Tian and Viaclovsky 2005; Chen 2009], just to name a few. A typical system is of the form

1(Rm)i jkl = Qi jkl(Rm,Rm),

where Rm is the Riemannian curvature tensor and Q is a quadratic in Rm. A natural geometric assump-
tion is that |Rm | is in Ln/2. Therefore, |Rm | vanishes at infinity and the problem is to find out the decay
rate. The study of geometrical systems is more subtle as (Rm)i jkl satisfies an extra relation, the Bianchi
identity, and the underlying spaces are not Euclidean.

The technique we use in this paper is based on the method developed in [Chen 2009] on asymptotically
flat manifolds, where a special geometric setting is considered. In this paper, we study general nonvari-
ational elliptic systems of the reaction-diffusion type. Our result applies to changing sign solutions and
includes the supercritical case (i.e., 1u+Cuα−1

= 0 with α > 2n/(n− 2), where C is a constant).

The author was supported by the Miller Institute for Basic Research in Science, and while preparing the manuscript, by NSF
grant DMS-0635607.
MSC2000: 35B40, 35J45.
Keywords: elliptic system, decay estimates, Liouville.
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Let V = (V1, . . . , Vm) and f i
: Rm
→ R. Consider the system of equations

m∑
j=1

Ai j1V j = f i (V ), (1)

where A is a constant invertible symmetric matrix and i = 1, . . . ,m. Note that f i (V ) or Vi may have
no sign. We assume the following structure conditions:

(A1) | f i (V )| ≤ C |V |q .

(A2) |∇ f i (V )| ≤ C |V |q−1.

Let K be a compact subset in Rn .

Theorem 1. Let q > (n + 2)/n and p = (n/2)(q − 1). Suppose that f i satisfies (A1) and (A2). Let
V ∈ L p(Rn

\ K ) be a solution to (1) in Rn
\ K . Then |V | = O(|x |−(n−2)) and |∇V | = O(|x |−(n−1)) at

infinity.

An immediate consequence is a result on singularity removal for affine invariant equations. For scalar
equations, the problem was studied in [Gidas and Spruck 1981; Brézis and Lions 1981; Caffarelli et al.
1989].

Let B1 be the unit ball centered at the origin.

Corollary 2. Suppose f i are homogeneous functions of degree (n+ 2)/(n− 2). Let V ∈ L2n/(n−2)(B1)

be a solution to (1) in B1 \ {0}. Then V can be extended to a smooth solution to (1) in B1.

By performing a linear transformation Wi =
∑

j Ai j V j , the system (1) can be reduced to an equation
of the diagonal form 1W = f̃ (W ). The assumptions (A1)–(A2) and other conditions on V or f i

equivalently hold for W and f̃ . Therefore, for Theorem 1 and Corollary 2, we may assume without loss
of generality the equation is of the diagonal form.

We turn to study the uniqueness of entire solutions for variational systems. Let P(V ) be a homoge-
neous function of degree q+1. Suppose that Ai j is positive definite and f i

= ∂P/∂V i in (1). For scalar
equations, there is a large literature on the uniqueness problem; see, for example, [Gidas and Spruck
1981; Bidaut-Véron 1989; Serrin and Zou 2002]; see also [Pucci and Serrin 2007] and the references
therein. For systems, when P(V ) ≤ 0 and q > (n + 2)/(n − 2) (supercritical case), the problem was
studied by Pucci and Serrin [1986] under some asymptotic assumption of V . Their result also holds for
the nonhomogeneous function P (and more general P(x, V,∇V )) satisfying some inequality.

Theorem 3. Let q > (n + 2)/n, q 6= (n + 2)/(n − 2) and p = (n/2)(q − 1). Suppose P(V ) is a
homogeneous function of degree q+1. Suppose that Ai j is positive definite and f i

= ∂P/∂V i in (1). Let
V ∈ L p(Rn) be a solution to (1) in Rn . Then V ≡ 0.

We outline the proofs. To fix notation, we denote by dx the volume element in Rn and by d S the
area element of a hypersurface in Rn . Let Br (x) and Sr (x) be the ball of radius r and sphere of radius r
centered at x , respectively. When x is at the origin, we simply denote by Br and Sr .

The idea of the proof of Theorem 1 is to compare the size of
∫

Rn\Br
|∇V |2dx (as a function of r ) to its

derivative −
∫

Sr
|∇V |2d S. Then by the ordinary differential inequality lemma, we get the optimal decay

of |∇V | and, as a consequence, the decay of |V |. In order to relate the two integrands, we use some
version of Pohozaev’s identity for nonvariational systems. Pohozaev’s ingenious idea [1965] is to use a
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conformal Killing field to prove uniqueness in a star-shaped domain. This idea was generalized nicely
by Pucci and Serrin [1986] to general variational systems. Our use of the identity is different from the
original one. We apply the identity to an unbounded domain (the complement of a large ball) and use
only the size of | f i

|. Therefore, our method can be applied to nonvariational systems.
The proof of Theorem 3 is a combination of Theorem 1 and Pohozaev’s original idea. Since the

solution decays fast enough at infinity, no terms from infinity contribute to the main integrand. We use
the identity differently such that we obtain the uniqueness also in the subcritical case, in contrast to the
problem in star-shaped regions where one has to restrict to the supercritical case.

Finally, we show that the assumptions in these theorems are sharp.

Example 4. Consider the equation 1u+u(n+2)/(n−2)
= 0 in Rn . By [Caffarelli et al. 1989], nonnegative

solutions are of the form u = (a + b|x |2)−(n−2)/2. Therefore, u decays as |x |−(n−2) at infinity. This
example shows that in Theorem 3, the assumption q 6= (n+2)/(n−2) is necessary. Consider instead the
equation in B1 \{0}. There exists a nonnegative radial singular solution with the blow-up rate |x |−(n−2)/2

near the origin. Therefore, in Corollary 2, the condition V ∈ L2n/(n−2)(B1) is sharp.

Example 5. Consider 1u+uq
= 0 in Rn . For q > (n+2)/(n−2), there exists a solution asymptotic to

|x |−2/(q−1) at infinity [Kuzin and Pohozaev 1997]. Hence, in Theorem 1, the conditions q = (2p+n)/n
and V ∈ L p are sharp. Moreover, in Theorem 3, the condition q = (2p+ n)/n is also sharp.

1. Preliminaries

We collect some standard results in elliptic regularity theory and ordinary differential equations. Lemmas
6–8 follow by an argument similar to [Bando et al. 1989, Section 4].

Let Cs be the Sobolev constant and γ = n/(n − 2). Suppose that the nonnegative function u ∈ C0,1

satisfies 1u+C0uq
≥ 0 weakly in the sense that∫

(−〈∇u,∇φ〉+C0uqφ)dx ≥ 0 for all 0≤ φ ∈ C∞o .

Let ϕ ≥ 0 be a function with compact support and let s > 1. Then, by the Cauchy inequality,∫
ϕ2uq+s−1 dx ≥ C−1

0

∫ (4(s−1)
s2 |ϕ∇us/2

|
2
+

4
s
ϕus/2

〈∇ϕ,∇us/2
〉

)
dx

≥ C−1
0

∫ ( 2
s2 (s− 1)|ϕ∇us/2

|
2
−

2
(s−1)

|∇ϕ|2us
)

dx .

By the Sobolev inequality, we have(∫
(ϕ2us)γ dx

)1/γ

≤ C
∫ (

s2C0
2(s−1)

ϕ2uq+s−1
+

(
1+ s2

(s−1)2
)
|∇ϕ|2us

)
dx, (2)

where C = C(n,Cs,C0).
In Lemmas 6–8, u is a C0,1 function.
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Lemma 6. Let p > 1 and q = (2p+ n)/n. Suppose that the nonnegative function u ∈ L p(Br ) satisfies
1u+C0uq

≥ 0 weakly in Br . Then there exists ε > 0 such that if
∫

Br
u pdx < ε, then

sup
Br/2

u ≤ Cr−n/p
‖u‖L p(Br ), where C = C(n, p,Cs,C0).

Proof. Let s = p in (2). Then(∫
(ϕ2u p)γ dx

)1/γ

≤ C
∫
(uq−1(ϕ2u p)+ |∇ϕ|2u p) dx

≤ C
(∫
{supp ϕ}

u p dx
)2/n(∫

(ϕ2u p)γ dx
)1/γ

+C
∫
|∇ϕ|2u p dx .

We choose ϕ to be a cutoff function such that ϕ = 1 in Br/2 and ϕ = 0 outside Br , with |∇ϕ| ≤ Cr−1.
We get (∫

Br/2

u pγ dx
)1/γ

≤
C
r2

∫
Br

u p dx .

Choose a sequence rk = (2−1
+ 2−k)r . Apply (and rescale) the above inequality for Brk and Brk+1 with

pk = pγ k−1. By Moser iteration, we have supBr/2
u ≤ Cr−n/p

‖u‖L p(Br ). �

Lemma 7. Let p>n/(n−2) and q= (2p+n)/n. Suppose that the nonnegative function u ∈ L p(Rn
\Br )

satisfies 1u + C0uq
≥ 0 weakly in Rn

\ Br . Then there exists ε > 0 such that if
∫

Rn\Br
u p < ε, then

u = O(|x |−λ) for all λ < n− 2 as |x | →∞.

Proof. By Lemma 6, u = O(|x |−n/p). Let s = p((n− 2)/n) > 1 in (2). Then(∫
ϕ2γ u p dx

)1/γ

≤ C
(∫
{supp ϕ}

u p dx
)2/n(∫

(ϕ2u p(n−2/n))γ dx
)1/γ

+C
∫
|∇ϕ|2u p(n−2)/n dx .

ϕ is chosen to be a cutoff function such that ϕ = 1 in Br ′ \ B2r and ϕ = 0 outside B2r ′ \ Br with
|∇ϕ| ≤ C(1/r + 1/r ′). Let r ′→∞. Then(∫

ϕ2γ u p dx
)1/γ

≤ C
(∫
|∇ϕ|n dx

)2/n(∫
{supp ∇ϕ}

u p dx
)1/γ

.

And thus, (∫
Rn\B2r

u p dx
)1/γ

≤ C
(∫

B2r\Br

u p dx
)1/γ

.

This gives
∫

Rn\Br
u p
= O(r−δ) for some small δ > 0. Therefore, by Lemma 6, u = O(|x |−(n/p)−(δ/p)).

Let λ0 = sup{λ : u = O(|x |−λ)}. By iteration and a contradiction argument, we get that λ0 = n− 2. �

Suppose that h ≥ 0 is a C0 function. The nonnegative function u ∈ C0,1 satisfies 1u + C0hu ≥ 0
weakly if ∫ (

−〈∇u,∇φ〉+C0huφ
)

dx ≥ 0 for all 0≤ φ ∈ C∞o .
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Lemma 8. Let p> 1 and t > n/2. Suppose that the nonnegative function h ∈ L t(Br ) satisfies
∫

Br
ht dx ≤

C1/r2t−n . Suppose also that the nonnegative function u ∈ L p(Br ) satisfies1u+C0hu ≥ 0 weakly in Br .
Then supBr/2

u ≤ Cr−n/p
‖u‖L p(Br ), where C = C(n, p,Cs,C0,C1).

Proof. The proof is by standard Moser iteration. See Morrey [1966]. �

The following is a basic result in ordinary differential equations [Chen 2009].

Lemma 9. Suppose that f (r)≥ 0 satisfies f (r)≤−(r/a) f ′(r)+C2r−b for some a, b > 0.

(i) a 6= b. Then there exists a constant C3 such that

f (r)≤ C3r−a
+

a C2
a−b

r−b.

Therefore, f (r)= O(r−min{a,b}) as r→∞.

(ii) a = b. Then there exists a constant C3 such that

f (r)≤ C3r−a
+ a C2r−a ln r.

Therefore, f (r)= O(r−a ln r) as r→∞.

2. Proof of Theorem 1

As we explained in the introduction, without loss of generality we may assume the equation is of the
diagonal form, that is,

1Vi = f i (V ). (3)

We first derive a version of Pohozaev’s identity for nonvariational systems. Let � be a domain in Rn and
N be the unit outer normal on ∂�. We perform integration by parts repeatedly.∫
�

∑
k,l

f k(V )xl Dl Vk dx

=

∫
�

∑
j,l

1V j xl Dl V j dx

=

∫
�

−

∑
i, j,l

Di V j Di (xl Dl V j )dx +
∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S

=

∫
�

(
−|∇V |2−

∑
l

Dl(|∇V |2) xl
2

)
dx +

∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S

=

(n
2
− 1

) ∫
�

|∇V |2 dx −
∫
∂�

1
2

∑
l

|∇V |2xl Nl d S+
∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S. (4)

It is worth mentioning that xl Dl is a conformal Killing field in Rn .
We note that |V | and |∇V | are C0,1 functions. By (3) and (A1)–(A2), we have

1|V | ≥ −C |V |q ,

1|∇V | ≥ −C |V |q−1
|∇V |,
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weakly. Since V ∈ L p(Rn
\ K ), there exists a large number R such that

∫
Rn\BR
|V |pdx < ε, where ε is

as in Lemma 6. Applying Lemma 6 to Br (x0) where |x0| ≥ 2r ≥ 2R, we get |V | = O(|x |−n/p).

Case 1. If (n + 2)/n < q ≤ n/(n − 2) (or equivalently, 1 < p ≤ n/(n − 2)), then n/p ≥ n − 2. By
Lemma 6, we have |V | = O(|x |−n/p). Let ϕ be a cutoff function such that ϕ= 1 in Br and ϕ= 0 outside
B2r with |∇ϕ| ≤ Cr−1. Applying ϕVi to (3) and integrating gives∫

Br (x0)

|∇V |2 dx ≤ C
∫

B2r (x0)

|V |q+1 dx + C
r2

∫
B2r (x0)

|V |2 dx = O(rn−2−(2n/p))≤ O(r−n+2),

where |x0| ≥ 2r � 1. By Lemma 8 with h = |V |q−1, we obtain |∇V | = O(|x |−(n−1)) and thus |V | =
O(|x |−(n−2)).

Case 2. If n/(n−2) < q (or equivalently p> n/(n−2)), by Lemma 7, |V | = O(|x |−λ) for all λ< n−2.
Therefore, ∫

Br (x0)

|∇V |2dx ≤ C
∫

B2r (x0)

|V |q+1dx + C
r2

∫
B2r (x0)

|V |2dx = O(rn−2−2λ),

where |x0| ≥ 2r � 1. Moreover, |V | ∈ L p′ for all p′ > n/(n − 2). Choose p′ < p close to n/(n − 2).
Hence, q > (2p′+ n)/n. We can then find q ′ > n/2 such that∫

Br (x0)

(|V |q−1)q
′

dx ≤ C
r2q ′−n , where |x0| ≥ 2r � 1.

This is possible because λ is close to n− 2. By Lemma 8, we obtain

sup
Br/2(x0)

|∇V | ≤ C
rn/2 ‖∇V ‖L2(Br (x0)) = O(r−λ−1), where |x0| ≥ 2r � 1.

Let �= BR \ Br in (4). We have∫
�

∑
k,l

f k(V )xl Dl Vkdx

=

(n
2
− 1

) ∫
�

|∇V |2dx −
∫
∂�

1
2

∑
l

|∇V |2xl Nl d S+
∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S. (5)

Note that

lim
R→∞

∫
SR

R|∇V |2 d S = lim
R→∞

O(R−2λ−2+n)= 0.

Let R→∞ in (5). Then there is no boundary term coming from infinity. We can choose �= Rn
\ Br .

The boundary terms only occur on Sr . On ∂�, N =−x/r . Hence,∫
Rn\Br

∑
k,l

f k(V )xl Dl Vk dx =
(n

2
− 1

) ∫
Rn\Br

|∇V |2 dx +
∫

Sr

r
2
|∇V |2 d S− r

∫
Sr

|∇N V |2 d S

≥

(n
2
− 1

) ∫
Rn\Br

|∇V |2 dx −
∫

Sr

r
2
|∇V |2 d S.
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Let G(r) :=
∫

Rn\Br
|∇V |2 dx . Since G ′(r)=−

∫
Sr
|∇V |2 d S, the previous formula becomes

G(r)≤− r
n−2

G ′(r)+ 2
n−2

∫
Rn\Br

∑
k,l

f k(V )xl Dl Vk dx .

The key idea is to compare the size of G(r) to that of G ′(r). The coefficient in front of G ′(r) plays
an important role. Here is the only place we use the condition of | f i

|. We have∫
Rn\Br

∑
k,l

f k(V )xl Dl Vk dx ≤
∫

Rn\Br

|V |q |x ||∇V |dx = O(r−λ(q+1)+n).

Thus,
G(r)≤− r

n−2
G ′(r)+Cr−λ(q+1)+n.

Since q > n/(n− 2) and λ is close to n− 2, we have λ(q + 1)− n > n− 2. By Lemma 9, this implies
G(r)= O(r−(n−2)). By the Sobolev inequality, we get∫

B2r\Br

|V |2n/(n−2)dx = O(r−n).

Finally, by Lemma 6 and 8 we obtain |V | = O(|x |−(n−2)) and |∇V | = O(|x |−(n−1)). �

3. Proofs of Corollary 2 and Theorem 3

Proof of Corollary 2. Since the equation is invariant under inversion, we transform the solution to Rn
\B1

and apply Theorem 1.
Let y = x/|x |2. Define Ui (y) = (1/|y|n−2)Vi (y/|y|2). This is called the Kelvin transform with the

property that

1yUi (y)=
1
|y|n+21x Vi (x).

This can also be viewed as the conformal change formula of the conformal Laplacian with zero scalar
curvature. Therefore, Ui (y) satisfies∑

j

Ai j1yUi (y)=
1
|y|n+2 f i (|y|n−2U (y))= f i (U (y)) in Rn

\ B1,

where we use that f i is homogeneous of degree (n+ 2)/(n− 2). Moreover,∫
Rn\B1

|U |2n/(n−2)dy =
∫

Rn\B1

(|V ||y|−n+2)2n/(n−2)dy =
∫

B1\{0}
(|V ||x |n−2)2n/(n−2)

|x |−2n dx

=

∫
B1\{0}

|V |2n/(n−2)dx <+∞.

Now we apply Theorem 1 with p = 2n/(n − 2) and q = (n + 2)/(n − 2). We get |U | = O(|y|−(n−2))

and |∇U | = O(|y|−(n−1)). Hence, |V | = O(1) and |∇V | = O(|x |−1). As a result, V ∈ L∞(B1) and
∇V ∈ L p(B1) for all p < n.
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We show that V is a weak solution to (1) in B1. Let ϕ ∈ H 1
0 (B1,Rm). Let ηk(|x |) be a compactly

supported function in B1\{0} such that ηk→ 1 a.e. in B1 and ‖ηk‖Ln(B1)→ 0 as k→∞. (Such functions
were used by Serrin [1964].) Then∫

B1

ηk

∑
i, j,l

Ai j Dlϕ j Dl Vi dx =
∫

B1

−

∑
i

f i (V )ϕiηk dx −
∫

B1

∑
i, j,l

Dlηk Ai jϕ j Dl Vi dx .

The last term can be estimated as follows.∣∣∣∫
B1

∑
i, j,l

Dlηk Ai jϕ j Dl Vi dx
∣∣∣≤ C‖ϕ‖L2n/(n−2)(B1)‖∇V ‖L2(B1)‖ηk‖Ln(B1) ≤ C‖ηk‖Ln(B1)→ 0

as k→∞. Hence, in the limit∫
B1

∑
i, j,l

Ai j Dlϕ j Dl Vi dx =
∫

B1

−

∑
i

f i (V )ϕi dx .

Thus, V is a weak solution in B1. It follows by elliptic regularity that V ∈ C∞(B1). �

Proof of Theorem 3. Since Ai j is positive definite, there exists an orthogonal matrix M such that

M−1 AM =

λ1
. . .

λn

 ,
where λ1, . . . , λn are positive. Let

B = M


√
λ1

. . .
√
λn

M−1.

By performing a transformation Wi =
∑

j Bi j V j , the system can be reduced to 1Wi =
∂ P̃(W )

∂W i . Thus,
without loss of generality we may assume the equation is of the diagonal form.

Let �= BR in (4). Therefore, N = x/R. We get∫
BR

∑
k,l

f k(V )xl Dl Vk dx =
(n

2
− 1

) ∫
BR

|∇V |2 dx −
∫

SR

R
2
|∇V |2 d S+ R

∫
SR

|∇N V |2 d S.

Since f k
= ∂P/∂Vk , we have∫

BR

−n P(V )dx =
(n

2
− 1

) ∫
BR

|∇V |2 dx −
∫

SR

R
2
|∇V |2 d S+ R

∫
SR

|∇N V |2d S−
∫

SR

R P(V )d S. (6)

On the other hand, we also have∫
BR

(q + 1)P(V )dx =
∫

BR

∑
k

∂P
∂Vk

Vk dx =−
∫

BR

|∇V |2 dx +
∫

SR

∑
j

DN V j V j d S, (7)

where we use the Euler formula for homogeneous functions.
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Case 1. n ≥ 4. By Theorem 1, when R→∞, (6) becomes∫
BR

−n P(V )dx =
(n

2
− 1

) ∫
BR

|∇V |2 dx + O(R−(n−2))+ O(R−(q+1)(n−2)+n)

=

(n
2
− 1

) ∫
BR

|∇V |2 dx + o(1),

where we use conditions on p, q and n ≥ 4 to get (q + 1)(n− 2)− n > 0. Similarly, (7) gives∫
BR

(q + 1)P(V )dx =−
∫

BR

|∇V |2dx + O(R−(n−2)).

Combining the above two formulas and noting that q + 1 6= 2n/(n− 2), we finally arrive at∫
BR

|∇V |2dx = o(1).

We have |∇V | ≡ 0 and hence V ≡ 0.

Case 2. n = 3. Note that sup |V | ≤ (C/|x |n/p)‖V ‖L p . Combining this fact with Theorem 1, we have
|V | = O(|x |−λ), where λ=max{1, 3/p}. Therefore,

λ(q + 1)− 3≥max
{

q − 2, 3
p
(q + 1)− 3

}
≥max

{
−1+ 2p

3
,−1+ 6

p

}
> 0.

Then (6) becomes∫
BR

−3P(V )dx =
(3

2
− 1

) ∫
BR

|∇V |2 dx + O(R−1)+ O(R−λ(q+1)+3)

=

(3
2
− 1

) ∫
BR

|∇V |2 dx + o(1),

as in Case 1. The rest of proof is the same as in Case 1. �
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GLOBAL REGULARITY FOR THE NAVIER–STOKES EQUATIONS
WITH SOME CLASSES OF LARGE INITIAL DATA

MARIUS PAICU AND ZHIFEI ZHANG

Chemin, Gallagher, and Paicu obtained in 2010 a class of large initial data that generate a global smooth
solution to the three-dimensional, incompressible Navier–Stokes equation. The data varies slowly in the
vertical direction — it is expressed as a function of εx3 — and it has a norm that blows up as the small
parameter goes to zero. This type of initial data can be regarded as an ill prepared case, in contrast with
the well prepared case treated in earlier papers. The data was supposed to evolve in a special domain,
namely�=T 2

h ×Rv . The choice of a periodic domain in the horizontal variable played an important role.
The aim of this article is to study the case where the fluid evolves in the whole space R3. In this case,

we have to overcome the difficulties coming from very low horizontal frequencies. We consider in this
paper an intermediate situation between the well prepared case and ill prepared situation (the norms of
the horizontal components of initial data are small but the norm of the vertical component blows up as
the small parameter goes to zero). The proof uses the analytical-type estimates and the special structure
of the nonlinear term of the equation.

1. Introduction

We study in this paper the Navier–Stokes equations with initial data which is slowly varying in the
vertical variable. More precisely we consider the system

∂t u+ u · ∇u−1u =−∇ p in R+×�,

div u = 0,
u|t=0 = u0,ε,

(NS)

where � = R3 and u0,ε is a divergence-free vector field, whose dependence on the vertical variable x3

will be chosen to be slow, meaning that it depends on εx3, where ε is a small parameter. The goal is to
prove the global existence in time of the solution generated by this type of initial data, with no smallness
assumption on its norm.

This type of initial data (slowly varying in the vertical direction) has also been studied by Chemin,
Gallagher, and coworkers. The case of well prepared initial data, of the form (εuh

0(xh, εx3), u3
0(xh, εx3)),

was dealt with in [Chemin and Gallagher 2010]; the more difficult case of ill prepared initial data, of the
form (uh(xh, εx3), ε

−1u3(xh, εx3)), in [Chemin et al. 2011].
Here we consider a class of large initial data lying between those two cases, having the form

u0,ε = (ε
1
2 uh

0(xh, εx3), ε
−

1
2 u3

0(xh, εx3)).

Z. Zhang is supported by NSF of China under Grant 10990013, 11071007, and SRF for ROCS, SEM.
MSC2000: 35B65, 35Q35, 76D99, 76N10.
Keywords: Navier–Stokes equations, global well-posedness, large data.
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96 MARIUS PAICU AND ZHIFEI ZHANG

We recall some classical facts about the Navier–Stokes system, focusing on conditions that imply the
global existence of the strong solution.

The first important result about the classical Navier–Stokes system [Leray 1934] asserted that for any
initial data of finite energy there exists at least one global in time weak solution that satisfies the energy
estimate. This solution is unique in R2, but it is not known to be unique in R3. Leray’s result uses the
structure of the nonlinear terms in order to obtain the energy inequality. The question of regularity of
the weak solutions also remains open.

The Fujita–Kato theorem [1964] gives a partial answer for the construction of global unique solution:
it allows one to construct a unique local in time solution in the homogeneous Sobolev spaces Ḣ

1
2 (R3),

or in the Lebesgue space L3(R3) [Kato 1984]. If the initial data is small compared to the viscosity, that
is, if ‖u0‖Ḣ

1
2
≤ cν, the strong solution exists globally in time. This result was generalized by Cannone,

Meyer and Planchon [Cannone et al. 1994] to Besov spaces of negative index of regularity. Those authors
proved that, if the initial data belongs to the Besov space B−1+3/p

p,∞ (R3) and is small in the norm of this
Besov space, compared to the viscosity, then the solution is global in time.

Later, Koch and Tataru [2001] obtained a unique global in time solution for the Navier–Stokes equation
for small data belonging to a more general space of initial data, namely derivatives of BMO functions.

Concerning the methods for obtaining such results, we recall that the existence of a unique, global in
time solution to the Navier–Stokes equation is a standard consequence of the Banach fixed point theorem,
as long as the initial data is chosen small enough in some scale-invariant space (with norm invariant under
the scaling λu(λ2t, λx)) embedded in Ḃ−1

∞,∞ (the Besov space), with norm

‖ f ‖Ḃ−1
∞,∞

def
= supt>0 t

1
2 ‖et1 f ‖L∞ .

See [Cannone et al. 1994; Fujita and Kato 1964; Koch and Tataru 2001; Weissler 1980] for proofs in
various scale-invariant function spaces.

These theorems are general results of global existence for small initial data and do not take into
account any algebraical properties of the nonlinear terms in the Navier–Stokes equations. Proving such
results without any smallness assumption or geometrical invariance hypothesis implying conservation of
quantities beyond the scaling is a challenge. Only modest progress has been made in that direction: see
[Chemin et al. 2000; 2006; 2011; Chemin and Gallagher 2006; 2009; 2010; Chemin and Zhang 2007;
Gallagher et al. 2003; Makhalov and Nikolaenko 2003; Raugel and Sell 1993] and references therein.

Here are some cases where large initial data is known to imply global existence of the solution:
For regular axisymmetric initial data without swirl, the Navier–Stokes system has a unique global in

time solution. This result from [Ukhovskii and Iudovich 1968] is based on the conservation of some
quantities beyond the scaling regularity level.

The case of large (in some sense) initial data for fluids evolving in thin domains was first considered
in [Raugel and Sell 1993]. Roughly speaking, the three-dimensional Navier–Stokes system can be seen
as a perturbation of the two-dimensional Navier–Stokes system if the vertical thickness of the domain is
small enough. More generally, a solution exists globally in time if the initial data can be split as v0+w0,
where v0 is a two-dimensional divergence-free vector field in L2(T 2

h ) and w0 ∈ Ḣ
1
2 (T 3) satisfies

‖w0‖Ḣ
1
2 (T 3)

exp
‖v0‖

2
L2(T 2

h )

Cν2 ≤ cν.
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The case of initial data with large vortex in the vertical direction (rot uε0 = rot u0 + ε
−1(0, 0, 1)),

or equivalently the case of rotating fluids, was studied in [Makhalov and Nikolaenko 2003] for periodic
domains and in [Chemin et al. 2000; Chemin et al. 2006] for a rotating fluid in R3 or in R2

×(0, 1). When
the rotation is fast enough the fluid tends to have a two-dimensional behavior far from the boundary of
the domain, by the Taylor–Proudman column theorem [Pedlovsky 1979]. For example, when the domain
is R3 the fluctuation of this motion is dispersed to infinity and some Strichatz quantities became small
[Chemin et al. 2000], which allow to obtain the global existence of the solution (for ε small enough).

An important issue for the Navier–Stokes equations is to make the best possible use of the algebraical
structure of the nonlinear terms. Some results have made crucial use of this structure, and have proved
very fruitful.

The case of Navier–Stokes equations with vanishing vertical viscosity was first studied in [Chemin
et al. 2000], which contains proofs of local existence for large data in anisotropic Sobolev spaces H 0,s ,
with s > 1

2 , and of global existence and uniqueness for small initial data. One of the key observations
there is that, even if there is no vertical viscosity and thus no smoothing in the vertical variable, the partial
derivative ∂3 is only applied to the component u3 in the nonlinear term. The divergence-free condition
implies that ∂3u3 is regular enough to get good estimates of the nonlinear term.

Global existence of the solution for the anisotropic Navier–Stokes system with high oscillatory initial
data was obtained in [Chemin and Zhang 2007].

A different idea, still using the special structure of the Navier–Stokes equation, was used in [Chemin
and Gallagher 2006] to construct the first example of periodic initial data which is big in C−1, and
strongly oscillating in one direction which generate a global solution. The initial data is given by

uN
0 = (Nuh(xh) cos(N x3),− divh uh(xh) sin(N x3)),

where ‖uh‖L2(T 2
h )
≤ C(ln N )

1
9 . This result was generalized to R3 in [Chemin and Gallagher 2009].

The same authors [Chemin and Gallagher 2010] studied the Navier–Stokes equations for initial data
that varies slowly in the vertical direction in the well prepared case. The well prepared case means that
the norm of the initial data is large but does not blow up when the parameter ε converges to zero. We
note that important remarks on the pressure term and the bilinear term were used in this paper in order
to obtain the global existence for large data.

The case of slowly varying initial data in the vertical direction (ell prepared initial data) was recently
studied in [Chemin et al. 2011]. Here the horizontal components have large norm and the vertical com-
ponent has a norm that blows up when the parameter goes to zero. After a change of scale, one obtains
a Navier–Stokes type system with anisotropic viscosity −ν1εu, where 1ε =1h+ε

2∂2
3 , and anisotropic

pressure gradient, namely −(∇h p, ε2∂3 p). In this equation there is a loss of regularity in the vertical
variable in Sobolev estimates.

To overcome this difficulty one needs to work with analytical initial data. The most important tool
was developed in [Chemin 2004] and consists in making analytical type estimates, and at the same time
to control the size of the analyticity band. This is done by controlling nonlinear quantities that depend
on the solution itself. Even in this situation, it is important to take into account very carefully the special
structure of the Navier–Stokes equations. In fact, a global in time Cauchy–Kowalewskaya type theorem
was obtained in [Chemin et al. 2011]. (Some local in time results for Euler and Prandtl equation with
analytic initial data can be found in [Sammartino and Caflisch 1998].)
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In [Chemin et al. 2011] the fluid is supposed to evolve in a special domain, �= T 2
h ×Rv. This choice

of domain is justified by the pressure term: the pressure satisfies the elliptic equation 1ε p= ∂i∂ j (ui u j ),
and consequently, ∇h p = (−1ε)−1

∇h∂i∂ j (ui u j ). Because 1−1
ε converges to 1−1

h , it is important to
control the low horizontal frequencies, in contrast with the case of the periodic torus in the horizontal
variable, where we have only zero horizontal frequency and high horizontal frequencies.

In this paper we investigate the case where the fluid evolves in the full space R3. In that situation,
we are able to solve globally in time the equation (conveniently rescaled in ε) for small analytic-type
initial data. To do this, we need to control the low horizontal frequencies very precisely. Note that we
can construct functional spaces where the operator 1−1

h ∇h(a∇hb) is bounded. However, we still need
to impose on the initial data more regularity control on low horizontal frequencies; thus we make the
assumption u0( · , x3) ∈ L2(R2

h)∩ Ḣ−
1
2 (R2

h). In the vertical variable we need to impose analyticity of the
data. The method of the proof follows closely the argument of [Chemin et al. 2011], but instead to use
pointwise estimates on the Fourier variables, we write an equation with a regularizing term in the vertical
variable and we use energy estimates on anisotropic Sobolev spaces of the form H 0,s respectively H−

1
2 ,s .

Our main result in the case of the full space R3 is the following (for notation see the next section).

Theorem 1.1. Let a > 0 and 1
2 > α > 0. There exist positive constants ε0 and η such that, for any

divergence-free field v0 satisfying

‖v0‖X
1
2−α‖v0‖X

1
2+α ≤ η, ‖v0‖X s

def
=
(
‖ea〈D3〉v0‖H0,s + a−

1
2 ‖ea〈D3〉v0‖H−

1
2 ,s
)

and for any ε ∈ (0, ε0), the Navier–Stokes system (NS) with initial data

uε0 =
(
ε

1
2 vh

0 (xh, εx3), ε
−

1
2 v3

0(xh, εx3)
)

has a global smooth solution on R3.

We emphasize that we obtain the global wellposedness under a smallness condition which is invariant
by the scaling of the equation, and this is the main motivation of Theorem 1.1.

As mentioned, to prove the theorem we will first transform the system using the change of scale

uε(t, xh, x3)=
(
ε

1
2 vh(t, xh, εx3), ε

−
1
2 v3(t, xh, εx3)

)
into a system of Navier–Stokes type, with a vertical vanishing viscosity, that is the Laplacian operator
became −ν1hv− ε

2ν∂3v and a changed pressure term which became −(∇h p, ε2∂3 p).

Taking advantage of the fact that we’re working in R3, we can also consider a different type of initial
data, with larger amplitude but strongly oscillating in the horizontal variables:

uε0 =
(
ε−

1
2 vh

0 (ε
−1xh, x3), ε

−
3
2 v3

0(ε
−1xh, x3)

)
.

This type of initial data has Ḃ−1
∞,∞ norm of the same order as the initial data in the previous theorem. In

order to solve the Navier–Stokes equations with this new type of initial data, we make a different change
of scale,

uε(t, xh, x3)=
(
ε−

1
2 vh(ε−2t, ε−1xh, x3), ε

−
3
2 v3(ε−2t, ε−1xh, x3)

)
and we note that the rescaled system that we obtain is exactly the same as in the proof of Theorem 1.1.
Consequently, we obtain:
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Theorem 1.2. Let a > 0 and 1
2 > α > 0. There exist positive constants ε0 and η such that, for any

divergence-free field v0 satisfying
‖v0‖X

1
2−α‖v0‖X

1
2+α ≤ η

and any ε ∈ (0, ε0), the Navier–Stokes system (NS) with initial data

uε0 =
(
ε−

1
2 vh

0 (ε
−1xh, x3), ε

−
3
2 v3

0(ε
−1xh, x3)

)
has a global smooth solution on R3.

2. A simplified model

We start with an equation already studied in [Chemin et al. 2011], where a complete proof of global well-
posedness is given. For completeness and because we are going to use the method of energy estimates,
we sketch the proof related to the energy estimates. Consider the equation

∂t u+ γu+ a(D)(u2)= 0,

where a(D) is a Fourier multiplier of order one. For any function f such that the following definition
makes sense, we define eδ|D| f =F−1

(
eδ|ξ | f̂ (ξ)

)
, where f̂ =F f denotes the Fourier transform and F−1

denotes the inverse of Fourier transform. Then, if the initial data satisfies

‖eδ|D|u0‖H s ≤ cγ with δ > 0 and s > 1
2 d,

we have a global solution in the same space. The idea of the method in [Chemin 2004; Chemin et al.
2011] is the following: we want to control certain analytical quantities on the solution, but we must
prevent a decrease in the radius of analyticity of the solution. Introduce θ(t), representing the loss of
analyticity. We set 8(t, ξ)= (δ−λθ(t))|ξ | and u8 =F−1

(
e8(t,ξ)û(ξ)

)
. The function θ(t) is defined as

the unique solution of the ordinary differential equation

θ̇ (t)= ‖u8‖H s , θ(0)= 0.

The computations that follow are performed under the condition θ(t)≤ δ/λ (which implies 8≥ 0). The
equation satisfied by ûφ is

∂t û8+ γû8+ λθ̇(t)|ξ |û8+ a(ξ)e8(û2)= 0.

This contains an extra-regularizing term, since we control a quantity that takes into account the analyticity
of the solution. As θ̇ approaches 0, we obtain by an energy estimate in H s the inequality

1
2

d
dt
‖u8‖2H s + γ‖u8‖2H s + λθ̇(t)‖|D|

1
2 u8‖2H s ≤ C |(a(D)(u2)8, u8)H s |.

Following the proof of [Chemin et al. 2011, Lemma 2.1] (which uses the important fact that e8(t,ξ) is a
sublinear function, and also the classical Bony decomposition [1981]), we get

|a(D)(u2)8, u8)| ≤ C‖u8‖H s‖|D|
1
2 u8‖2H s .

Choosing λ= 4C we obtain

θ̇ (t)= ‖u8(t)‖H s ≤ 2‖eδ|D|u0‖H s e−γt ,
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which, for u0 small enough, gives

θ(t)≤ γ−1
‖eδ|D|u0‖H s ≤ δλ−1.

This allows us to obtain the global in time existence of the solution.

3. Structure of the proof

Reduction to a rescaled problem. We seek a solution of the form

uε(t, x) def
=
(
ε

1
2 vh(t, xh, εx3), ε

−
1
2 v3(t, xh, εx3)

)
.

This leads to the rescaled Navier–Stokes system
∂tv

h
−1hv

h
− ε2∂2

3v
h
+ ε

1
2 v · ∇vh

=−∇
hq,

∂tv
3
−1hv

3
− ε2∂2

3v
3
+ ε

1
2 v · ∇v3

=−ε2∂3q,
divv = 0,
v(0)= v0(x),

(RNSε)

where1h
def
= ∂2

1+∂
2
2 and ∇h

def
= (∂1, ∂2). As there is no boundary, the rescaled pressure q can be computed

with the formula

−1εq = ε
1
2 divh(v · ∇v), 1ε =1h + ε

2∂2
3 . (3-2)

When ε tends to zero, 1−1
ε looks like 1−1

h . Thus, for low horizontal frequencies, an expression of
∇h1

−1
h cannot be estimated in L2. This is one reason for working in T 2

h ×Rv in [Chemin et al. 2011].
To obtain a similar result in R3, we need to introduce the following anisotropic Sobolev space.

Definition 3.1. Let s, σ ∈ R, σ < 1. The anisotropic Sobolev space Hσ,s is defined by

Hσ,s
= { f ∈ S′(R3) : ‖ f ‖Hσ,s <∞},

where

‖ f ‖2Hσ,s
def
=

∫
R3
|ξh|

2σ (1+ |ξ3|
2)s | f̂ (ξ)|2dξ, ξ = (ξh, ξ3).

For any f, g ∈ Hσ,s , we set

( f, g)Hσ,s
def
=
(
|Dh|

σ
〈D3〉

s f, |Dh|
σ
〈D3〉

s g
)

L2, 〈D3〉 = (1+ |D3|
2)

1
2 .

Theorem 3.2. Let a > 0, 1
2 > α > 0. There exist two positive constants ε0 and η such that for any

divergence-free fields v0 satisfying

‖v0‖X
1
2−α‖v0‖X

1
2+α ≤ η,

and for any ε ∈ (0, ε0), (RNSε) has a global smooth solution on R3.
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Definition of the functional setting. As in [Chemin et al. 2011], the proof relies on exponential decay
estimates for the Fourier transform of the solution. Thus, for any locally bounded function9 on R+×R3

and for any function f , continuous in time and compactly supported in Fourier space, we define

f9(t)
def
= F−1(e9(t,·) f̂ (t, ·)

)
.

Now we introduce a key quantity we want to control in order to prove the theorem. We define the function
θ(t) by

θ̇ (t) def
=

1
a

(
ε‖vh

8(t)‖H
1
2 ,

1
2−α‖v

h
8(t)‖H

1
2 ,

1
2+α +‖v

3
8(t)‖H

1
2 ,

1
2−α‖v

3
8(t)‖H

1
2 ,

1
2+α
)

+‖∇hv8(t)‖H0, 1
2−α‖∇hv8(t)‖H0, 1

2+α , (3-3)

with θ(0)= 0, and we also define

9(t) def
= ‖v8(t)‖H0, 1

2−α‖v8(t)‖H0, 1
2+α ,

where
8(t, ξ) def

= a(1− λθ(t))〈ξ3〉, (3-4)

for some λ that will be chosen later on. We denoted by 〈ξ3〉 = (1+|ξ3|
2)

1
2 which is a sublinear function.

Main steps of the proof.

Proposition 3.3. Let s > 0. A constant C exists such that, for any positive λ and for any t satisfying
θ(t)≤ 1/λ, we have∫ t

0

(
‖ε

1
2 vh
8(τ )‖

2
H

1
2 ,s +‖v

3
8(τ )‖

2
H

1
2 ,s

)
dτ

≤ exp
(
Cθ(t)

)[
‖ea〈D3〉v0‖

2
H−

1
2 ,s
+Ca

∫ t

0
θ̇ (τ )‖vh

8(τ )‖
2
H0,s dτ

+C
∫ t

0
9(τ)

(
‖ε

1
2 vh
8(τ )‖

2
H

1
2 ,s +‖v

3
8(τ )‖

2
H

1
2 ,s

)
dτ +

a
10

∫ t

0
‖∇hv

h
8(τ )‖

2
H0,s dτ

]
.

Proposition 3.4. Let 1 > s > 0. Then there exist C and λ0 such that for any λ ≥ λ0 and for any t
satisfying θ(t)≤ 1/λ, we have

‖v8(t)‖2H0,s +

∫ t

0
‖∇hv8(τ )‖

2
H0,s dτ

≤ exp
(
Cθ(t)

)[
‖ea〈D3〉v0‖

2
H0,s +C

∫ t

0
9(τ)‖v8(τ )‖

2
H1,s dτ +

1
10

∫ t

0

1
a
‖v3
8(τ )‖

2
H

1
2 ,s dτ

]
.

Proposition 3.3 will be proved in Section 4, and Proposition 3.4 in Section 5. For the moment, let us
assume that they are true and conclude the proof of Theorem 3.2. As in [Chemin et al. 2011], we use a
continuation argument. For any λ≥ λ0 and η, define

Tλ
def
= {T : θ(T )+9(T )≤ 4η}.
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Similar to the argument in [Chemin et al. 2011], Tλ is of the form [0, T ∗) for some positive T ∗. Thus,
it suffices to prove that T ∗ = +∞. In order to two propositions, we need to assume that θ(T ) ≤ 1/λ,
which leads to the condition

4η ≤ 1
λ
.

We set

Fs(t)
def
= ‖v8(t)‖2H0,s +

∫ t

0
‖∇hv8(τ )‖

2
H0,s dτ +

1
a

∫ t

0

(
‖ε

1
2 vh
8(τ )‖

2
H

1
2 ,s +‖v

3
8(τ )‖

2
H

1
2 ,s

)
dτ.

From Propositions 3.3 and 3.4, it follows that for all T ∈ Tλ,

Fs(t)≤ 10
9 exp

(
4Cη

)(1
a
‖ea〈D3〉v0‖

2
H−

1
2 ,s
+‖ea〈D3〉v0‖

2
H0,s +C

∫ t

0
θ̇ (τ )‖vh

8(τ )‖
2
H0,s dτ

+4Cη
∫ t

0

(1
a
‖ε

1
2 vh
8(τ )‖

2
H

1
2 ,s +

1
a
‖v3
8(τ )‖

2
H

1
2 ,s +‖v8(τ )‖

2
H1,s

)
dτ
)
.

Now we choose η such that

exp(4Cη)≤ 9
8 , 4Cη exp(4Cη)≤ 1

4 .

With this choice of η, we infer from Gronwall’s inequality that

Fs(t) < 2
(1

a
‖ea〈D3〉v0‖

2
H−

1
2 ,s
+‖ea〈D3〉v0‖

2
H0,s

)
≤ 2‖v0‖

2
X s .

Taking s = 1
2 −α and s = 1

2 +α respectively, we obtain

a−1θ(t)+9(t)≤ 2F
1
21

2−α
(t)F

1
21

2+α
(t) < 4‖v0‖X

1
2−α‖v0‖X

1
2+α ≤ 4η,

which ensures that T ∗ =+∞, thus concluding the proof of Theorem 3.2. �

4. The action of subadditive phases on products

For any function f , we denote by f + the inverse Fourier transform of | f̂ |. Let us notice that the map
f 7→ f + preserves the norm of all Hσ,s spaces. Throughout this section,9 will denote a locally bounded
function on R+×R3 which satisfies the following inequality

9(t, ξ)≤9(t, ξ − η)+9(t, η). (4-1)

Before presenting the product estimates, let us recall the Littlewood–Paley decomposition. Choose
two nonnegative even functions χ , ϕ ∈ S(R) supported, respectively, in B = {ξ ∈ R, |ξ | ≤ 4

3} and
C= {ξ ∈ R, 3

4 ≤ |ξ | ≤
8
3} such that

χ(ξ)+
∑
j≥0

ϕ(2− jξ)= 1 for ξ ∈ R,

∑
j∈Z

ϕ(2− jξ)= 1 for ξ ∈ R \ {0}.
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The frequency localization operators 1vj and Svj in the vertical direction are defined by

1vj f =


F−1(ϕ(2− j

|ξ3|) f̂ ) for j ≥ 0,

Sv0 f for j =−1,

0 for j ≤−2,

Svj f = F−1(χ(2− j
|ξ3|) f̂

)
=

∑
j ′≤ j−1

1vj ′ f.

The frequency localization operators 1̇h
j and Sh

j in the horizontal direction are defined by

1̇h
j f = F−1(ϕ(2− j

|ξh|) f̂
)
, Sh

j f =
∑

j ′≤ j−1

1̇h
j ′ f for j ∈ Z.

It is easy to verify that

‖ f ‖2Hσ,s ≈

∑
j,k∈Z

22 js22kσ
‖1vj1̇

h
k f ‖2L2 . (4-2)

In the sequel, we will constantly use the Bony’s decomposition [1981]:

f g = T v
f g+ Rvf g, (4-3)

with

T v
f g =

∑
j

Svj−1 f1vj g, Rvf g =
∑

j

Svj+2 f1vj g.

We also use the Bony’s decomposition in the horizontal direction:

f g = T h
f g+ T h

f g+ Rh( f, g), (4-4)

with

T h
f g =

∑
j

Sh
j−1 f 1̇h

j g, Rh( f, g)=
∑
| j ′− j |≤1

1̇h
j f 1̇h

j ′g.

Lemma 4.1 (Bernstein’s inequality). Let 1 ≤ p ≤ q ≤ ∞. If f ∈ L p(Rd), there exists a constant C
independent of f , j such that

supp f̂ ⊂ {|ξ | ≤ C2 j
} H⇒ ‖∂α f ‖Lq ≤ C2 j |α|+d j

(
1
p−

1
q

)
‖ f ‖L p ,

supp f̂ ⊂
{ 1

C
2 j
≤ |ξ | ≤ C2 j

}
H⇒ ‖ f ‖L p ≤ C2− j |α| sup

|β|=|α|

‖∂β f ‖L p .

Lemma 4.2. Let s > 0, σ1, σ2 < 1 such that σ1+σ2 > 0 and 1
2 > α > 0. Assume that a9 ∈ Hσ1,

1
2+α and

b9 ∈ Hσ2,s . Then

‖
[
1vj1̇

h
k (T

v
a b)

]
9
‖L2 +‖

[
1vj1̇

h
k (R

v
ab)
]
9
‖L2 ≤ Cc j,k2(1−σ1−σ2)k2− js

‖a9‖
1
2
Hσ1,

1
2−α
‖a9‖

1
2
Hσ1,

1
2+α
‖b9‖Hσ2,s ,

with the sequence (c j,k) j,k∈Z of positive numbers satisfying∑
j,k

c2
j,k ≤ 1.
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Proof. Let us firstly prove the case when the function9 is identically 0. Below we only present the proof
of Rvab, the proof for T v

a b is very similar. Using Bony’s decomposition (4-4) in the horizontal direction,
we write

1 j1̇
h
k (R

v
ab)=

∑
j ′
1vj1̇

h
k (S

v
j ′+2a1vj ′b)=

∑
j ′
1vj1̇

h
k
(
T h

Svj ′+2a1
v
j ′b+ T h

1vj ′b
Svj ′+2a+ Rh(Svj ′+2a,1vj ′b)

)
def
= I+ II+ III.

Considering the support of the Fourier transform of T h
Svj ′+2a1

v
j ′b, we have

I=
∑

j ′≥ j−4

∑
|k′−k|≤4

1vj1̇
h
k
(
Svj ′+2Sh

k′−1a1vj ′1̇
h
k′b
)
.

Then, by Lemma 4.1,

‖I‖L2 ≤ C
∑

j ′≥ j−4

∑
|k′−k|≤4

‖Svj ′+2Sh
k′−1a1 j ′1̇

h
k′b‖L2

≤ C
∑

j ′≥ j−4

∑
|k′−k|≤4

‖Svj ′+2Sh
k′−1a‖L∞‖1

v
j ′1̇

h
k′b‖L2 .

We use Lemma 4.1 again to get

‖Svj ′+2Sh
k′−1a‖L∞ ≤

∑
j ′′≤ j ′+1

∑
k′′≤k′−2

‖1vj ′′1̇
h
k′′a‖L∞ ≤ C

∑
j ′′≤ j ′+1

∑
k′′≤k′−2

2k′′
‖1vj ′′1̇

h
k′′a‖L∞x3

L2
xh

≤ C
∑

j ′′≤ j ′+1

∑
k′′≤k′−2

2 j ′′/22k′′
‖1vj ′′1̇

h
k′′a‖L2 ≤ C2(1−σ1)k‖a‖

1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
,

from which it follows that

‖I‖L2 ≤ C2(1−σ1)k‖a‖
1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α

∑
j ′≥ j−4

∑
|k′−k|≤4

‖1vj ′1̇
h
k′b‖L2

≤ Cc j,k2− js2(1−σ1−σ2)k‖a‖
1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
‖b‖Hσ2,s . (4-5)

Similarly, we have

II=
∑

j ′≥ j−4

∑
|k′−k|≤4

1vj1̇
h
k (1

v
j ′S

h
k′−1bSvj ′+21̇

h
k′a).

Then, by Lemma 4.1,

‖II‖L2 ≤ C
∑

j ′≥ j−4

∑
|k′−k|≤4

‖1vj ′S
h
k′−1b‖L2

x3
L∞xh
‖Svj ′+21̇

h
k′a‖L2

xh
L∞x3

≤ C2− js2(1−σ1−σ2)k‖a‖
1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
‖b‖Hσ2,s

∑
j ′≥ j−4

∑
|k′−k|≤4

2−( j ′− j)sck′c j ′

≤ Cc j,k2− js2(1−σ1−σ2)k‖a‖
1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
‖b‖Hσ2,s . (4-6)
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We turn to III. We have

III=
∑

j ′≥ j−4

∑
k′,k′′≥k−2
|k′−k′′|≤1

1vj1̇
h
k (S

v
j ′+21̇

h
k′a1

v
j ′1̇

h
k′′b).

So, by Lemma 4.1,

‖III‖L2 ≤ C
∑

j ′≥ j−4

∑
k′,k′′≥k−2
|k′−k′′|≤1

2k
‖Svj ′+21̇

h
k′a1

v
j ′1̇

h
k′′b‖L2

x3
L1

xh

≤ C
∑

j ′≥ j−4

∑
k′,k′′≥k−2
|k′−k′′|≤1

2k
‖Svj ′+21̇

h
k′a‖L∞x3

L2
xh
‖1vj ′1̇

h
k′′b‖L2

≤ C2− js2(1−σ1−σ2)k‖a‖
1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
‖b‖Hσ2,s

∑
j ′≥ j−4

∑
k′≥k−2

2−(σ1+σ2)(k′−k)2−( j ′− j)sck′c j ′

≤ Cc j,k2− js2(1−σ1−σ2)k‖a‖
1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
‖b‖Hσ2,s . (4-7)

Summing up (4-5), (4-6), and (4-7), we obtain

‖1vj1̇
h
k (Rab)‖L2 ≤ Cc j,k2− js2(1−σ1−σ2)k‖a‖

1
2
Hσ1,

1
2−α
‖a‖

1
2
Hσ1,

1
2+α
‖b‖Hσ2,s .

The lemma is proved in the case when the function 9 is identically 0. In order to treat the general case,
we only need to notice the fact that

|F[1 j1̇
h
k (Rab)]9(ξ)| ≤ F[1 j1̇

h
k (Ra+9

b+9)](ξ). �

As a consequence of Lemma 4.2 and (4-2), we have:

Lemma 4.3. Let 1
2 > α > 0, s > 0, and σ1, σ2 < 1 such that σ1+ σ2 > 0. Let {σ̃1, σ̃2} = {σ1, σ2}. Then

‖(ab)9‖Hσ1+σ2−1,s ≤ C
(
‖a9‖

1
2
Hσ1,

1
2−α
‖a9‖

1
2
Hσ1,

1
2+α
‖b9‖Hσ2,s +‖a9‖H σ̃1,s‖b9‖

1
2
H σ̃2,

1
2−α
‖b9‖

1
2
H σ̃2,

1
2+α

)
.

5. Classical analytical-type estimates

In this section, we prove Proposition 3.3. In this part, we don’t need to use any regularizing effect from
the analyticity, but only the fact that the e8(t,ξ3) is a sublinear function.

Notice that ∂tv8+ aλθ̇(t)〈D3〉v8 = (∂tv)8, we find from (RNSε) that
∂tv

h
8+ aλθ̇(t)〈D3〉v

h
8−1hv

h
8− ε

2∂2
3v

h
8+ ε

1
2 (v · ∇vh)8 =−∇hq8,

∂tv
3
8+ aλθ̇(t)〈D3〉v

3
8−1hv

3
8− ε

2∂2
3v

3
8+ ε

1
2 (v · ∇v3)8 =−ε

2∂3q8,

div v8 = 0,
v8(0)= ea〈D3〉v0(x).

(5-1)
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Step 1. Estimates on the vertical component v3
8. Noting that θ̇ (t)≥ 0, we get from the second equation

of (5-1) that

1
2

d
dt
‖v3
8(t)‖

2
H−

1
2 ,s
+‖∇hv

3
8(t)‖

2
H−

1
2 ,s
+‖ε∂3v

3
8(t)‖

2
H−

1
2 ,s

≤−ε
1
2
(
(vh
· ∇hv

3)8, v
3
8

)
H−

1
2 ,s
+ ε

1
2
(
(v3divhv

h)8, v
3
8

)
H−

1
2 ,s
− ε2(∂3q8, v3

8

)
H−

1
2 ,s

def
= I+ II+ III.

(5-2)

Here we used the fact that div v = 0, so v · ∇v3
= vh
· ∇hv

3
− v3divhv

h .
For II, an application of Lemma 4.3 gives

|II| ≤ ε
1
2 ‖(v3divhv

h)8‖H−
1
2 ,s‖v

3
8‖H−

1
2 ,s

≤ Cε
1
2
(
‖v3
8‖

1
2
H

1
2 ,

1
2−α
‖v3
8‖

1
2
H

1
2 ,

1
2+α
‖∇hv

h
8‖H0,s +‖v3

8‖H
1
2 ,s‖∇hv

h
8‖

1
2
H0, 1

2−α
‖∇hv

h
8‖

1
2
H0, 1

2+α

)
‖v3
8‖H−

1
2 ,s

≤ C θ̇ (t)‖v3
8‖

2
H−

1
2 ,s
+

1
100a‖∇hv

h
8‖

2
H0,s +

1
100‖v

3
8‖

2
H

1
2 ,s . (5-3)

For I, we get by integration by parts that

I= ε
1
2
(
(divhv

hv3)8, v
3
8

)
H−

1
2 ,s
+ ε

1
2
(
(vhv3)8,∇hv

3
8

)
H−

1
2 ,s

def
= I1+ I2.

As in (5-3), we have

|I1| ≤ C θ̇ (t)‖v3
8‖

2
H−

1
2 ,s
+

1
100a‖∇hv

h
8‖

2
H0,s +

1
100‖v

3
8‖

2
H

1
2 ,s , (5-4)

and by Lemma 4.3,

|I2| ≤ ε
1
2 ‖(v3vh)8‖H−

1
2 ,s‖∇hv

3
8‖H−

1
2 ,s

≤ Cε
1
2
(
‖vh
8‖H

1
2 ,s‖v

3
8‖

1
2
H0, 1

2−α
‖v3
8‖

1
2
H0, 1

2+α
+‖vh

8‖
1
2
H0, 1

2−α
‖vh
8‖

1
2
H0, 1

2+α
‖v3
8‖H

1
2 ,s
)
‖∇hv

3
8‖H−

1
2 ,s

≤ C9(t)
(
ε‖vh

8‖
2
H

1
2 ,s +‖v

3
8‖

2
H

1
2 ,s

)
+

1
100‖∇hv

3
8‖

2
H−

1
2 ,s
. (5-5)

Now, we turn to the estimates of the pressure. Recall that

−1ε p = ε
1
2
(
∂i∂ j (v

iv j )+ ∂i∂3(v
iv3)− 2∂3(v

3div hv
h)
)
.

Here and in what follows the indexes i, j run from 1 to 2. Thus, we can write p = p1
+ p2
+ p3, with

p1
= ε

1
2 (−1ε)

−1∂i∂ j (v
iv j ), p2

= ε
1
2 (−1ε)

−1∂i∂3(v
iv3), p3

=−2ε
1
2 (−1ε)

−1∂3(v
3div hv

h). (5-6)

Integrating by parts, we get

ε2(∂3 p1
8, v

3
8)H−

1
2 ,s =−ε(p

1
8, ε∂3v

3
8)H−

1
2 ,s ≤ Cε2

‖p1
8‖

2
H−

1
2 ,s
+

1
100‖ε∂3v

3
8‖

2
H−

1
2 ,s
,

which together with the fact that the operator ∂i∂ j (−1ε)
−1 is bounded on Hσ,s together with Lemma 4.3

implies that

ε2(∂3 p1
8, v

3
8)H−

1
2 ,s ≤ Cε3

‖(vh
⊗ vh)8‖

2
H−

1
2 ,s
+

1
100‖ε∂3v

3
8‖

2
H−

1
2 ,s

≤ Cε3
‖vh
8‖

2
H

1
2 ,s‖v

h
8‖H0, 1

2−α‖v
h
8‖H0, 1

2+α +
1

100‖ε∂3v
3
8‖

2
H−

1
2 ,s

≤ Cε29(t)ε‖vh
8‖

2
H

1
2 ,s +

1
100‖ε∂3v

3
8‖

2
H−

1
2 ,s
. (5-7)
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For the term containing p2, we get by integration by parts that

ε2(∂3 p2
8, v

3
8)H−

1
2 ,s =−ε

1
2
(
ε2∂2

3 (−1ε)
−1(viv3)8, ∂iv

3
8

)
H−

1
2 ,s
.

Using the fact that (ε∂3)
2(−1ε)

−1 is bounded on Hσ,s together with Lemma 4.3, we then have

ε2(∂3 p2
8, v

3
8)H−

1
2 ,s ≤ Cε

1
2 ‖(v3vh)8‖H−

1
2 ,s‖∇hv

3
8‖H−

1
2 ,s

≤ C9(t)
(
ε‖vh

8‖
2
H

1
2 ,s +‖v

3
8‖

2
H

1
2 ,s

)
+

1
100‖∇hv

3
8‖

2
H−

1
2 ,s
. (5-8)

For the last term, coming from p3, we use again the fact that (ε∂3)
2(−1ε)

−1 is bounded on Hσ,s and
obtain

ε2(∂3 p3
8, v

3
8)H−

1
2 ,s ≤ Cε

1
2 ‖(v3div vh)8‖H−

1
2 ,s‖v

3
8‖H−

1
2 ,s

≤ C θ̇ (t)‖v3
8‖

2
H−

1
2 ,s
+

1
100a‖∇hv

h
8‖

2
H0,s +

1
100‖v

3
8‖

2
H

1
2 ,s . (5-9)

Summing up (5-2)–(5-5) and (5-7)–(5-9), we obtain

d
dt
‖v3
8(t)‖

2
H−

1
2 ,s
+‖v3

8(t)‖
2
H

1
2 ,s

≤ C θ̇ (t)‖v3
8‖

2
H−

1
2 ,s
+C9(t)

(
ε‖vh

8‖
2
H

1
2 ,s +‖v

3
8‖

2
H

1
2 ,s

)
+

1
20a‖∇hv

h
8‖

2
H0,s , (5-10)

where we used the equality ‖∇hv
3
8‖

2
H−

1
2 ,s
= ‖v3

8‖
2
H

1
2 ,s

.

Step 2. Estimates on the horizontal component vh
8. From the first equation of (5-1), we infer that

1
2

d
dt
‖ε

1
2 vh
8(t)‖

2
H−

1
2 ,s
+‖ε

1
2∇hv

h
8(t)‖

2
H−

1
2 ,s
+ ε‖ε∂3v

h
8(t)‖

2
H−

1
2 ,s

≤−ε
(
(v · ∇vh)8, ε

1
2 vh
8

)
H−

1
2 ,s
− ε

(
∇hq8, vh

8

)
H−

1
2 ,s

def
= I+ II. (5-11)

We rewrite I as

I=−ε
(
(vh
· ∇hv

h)8, ε
1
2 vh
8

)
H−

1
2 ,s
− ε

(
(v3∂3v

h)8, ε
1
2 vh
8

)
H−

1
2 ,s

def
= I1+ I2.

An application of Lemma 4.3 gives

|I1| ≤ ε‖(v
h
∇hv

h)8‖H−
1
2 ,s‖ε

1
2 vh
8‖H−

1
2 ,s

≤ Cε
(
‖vh
8‖

1
2
H

1
2 ,

1
2−α
‖vh
8‖

1
2
H

1
2 ,

1
2+α
‖∇hv

h
8‖H0,s +‖vh

8‖H
1
2 ,s‖∇hv

h
8‖

1
2
H0, 1

2−α
‖∇hv

h
8‖

1
2
H0, 1

2+α

)
‖ε

1
2 vh
8‖H−

1
2 ,s

≤ C θ̇ (t)‖ε
1
2 vh
8‖

2
H−

1
2 ,s
+

1
100a‖∇hv

h
8‖

2
H0,s +

1
100‖ε

1
2 vh
8‖

2
H

1
2 ,s . (5-12)

For I2, we use integration by parts and div v = 0 to get

I2 =−ε
(
(divhv

hvh)8, ε
1
2 vh
8

)
H−

1
2 ,s
+
(
(vhv3)8, ε

1
2 ε∂3v

h
8

)
H−

1
2 ,s

def
= I21+ I22.

As in (5-12), we have

|I21| ≤ C θ̇ (t)‖ε
1
2 vh
8‖

2
H−

1
2 ,s
+

1
100a‖∇hv

h
8‖

2
H0,s +

1
100‖ε

1
2 vh
8‖

2
H

1
2 ,s , (5-13)
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and by Lemma 4.3,

|I22| ≤ ‖(v
3vh)8‖H−

1
2 ,sε

1
2 ‖ε∂3v

h
8‖H−

1
2 ,s

≤ C
(
‖vh
8‖H0,s‖v3

8‖
1
2
H

1
2 ,

1
2−α
‖v3
8‖

1
2
H

1
2 ,

1
2+α
+‖vh

8‖
1
2
H0, 1

2−α
‖vh
8‖

1
2
H0, 1

2+α
‖v3
8‖H

1
2 ,s
)
ε

1
2 ‖ε∂3v

h
8‖H−

1
2 ,s

≤ Caθ̇ (t)‖vh
8‖

2
H0,s +C9(t)‖v3

8‖
2
H

1
2 ,s +

ε

100
‖ε∂3v

h
8‖H−

1
2 ,s . (5-14)

To deal with the pressure, we write p = p1
+ p2

+ p3, with p1, p2, p3 defined by (5-6). Using the
boundedness of the operator ∂i∂ j (−1ε)

−1 on Hσ,s together with Lemma 4.3, we have

ε(∇h p1
8, v

h
8)H−

1
2 ,s =−ε((−1ε)

−1∂i∂ j (v
iv j )8, ε

1
2 divhv

h
8)H−

1
2 ,s

≤ Cε‖(vh
⊗ vh)8‖H−

1
2 ,s‖ε

1
2∇hv

h
8‖H−

1
2 ,s

≤ Cε
1
2 ‖vh

8‖
1
2
H0, 1

2−α
‖vh
8‖

1
2
H0, 1

2+α
‖ε

1
2 vh
8‖H

1
2 ,s‖ε

1
2∇hv

h
8‖H−

1
2 ,s

≤ C9(t)‖ε
1
2 vh
8‖

2
H

1
2 ,s +

1
100‖ε

1
2∇hv

h
8‖

2
H−

1
2 ,s
. (5-15)

For the term coming from p2, we integrate by parts to get

ε(∇h p2
8, v

h
8)H−

1
2 ,s =−

(
ε∂i∂3(−1ε)

−1(viv3)8, ε
1
2 div hv

h
8

)
H−

1
2 ,s
,

then note that ε∂3∂i (−1ε)
−1 is bounded on Hσ,s . We get, by Lemma 4.3,

ε(∇h p2
8, v

h
8)H−

1
2 ,s ≤ C‖(v3vh)8‖H−

1
2 ,s‖ε

1
2∇hv

h
8‖H−

1
2 ,s

≤ Caθ̇ (t)‖vh
8‖

2
H0,s +C9(t)‖v3

8‖
2
H

1
2 ,s +

1
100‖ε

1
2∇hv

h
8‖

2
H−

1
2 ,s
. (5-16)

Similarly,

ε(∇h p3
8, v

h
8)H−

1
2 ,s

≤ C‖(v3div hv
h)8‖H−

1
2 ,s‖ε

1
2 vh
8‖H−

1
2 ,s

≤
(
‖v3
8‖

1
2
H

1
2 ,

1
2−α
‖v3
8‖

1
2
H

1
2 ,

1
2+α
‖∇hv

h
8‖H0,s +‖v3

8‖H
1
2 ,s‖∇hv

h
8‖

1
2
H0, 1

2−α
‖∇hv

h
8‖

1
2
H0, 1

2+α

)
‖ε

1
2 vh
8‖H−

1
2 ,s

≤ C θ̇ (t)‖ε
1
2 vh
8‖

2
H−

1
2 ,s
+

1
100a‖∇hv

h
8‖

2
H0,s +

1
100‖v

3
8‖

2
H

1
2 ,s . (5-17)

Summing up (5-11)–(5-17) yields

d
dt
‖ε

1
2 vh
8(t)‖

2
H−

1
2 ,s
+‖ε

1
2 vh
8(t)‖

2
H

1
2 ,s

≤ C θ̇ (t)
(
‖ε

1
2 vh
8‖

2
H−

1
2 ,s
+ a‖vh

8‖
2
H0,s

)
+C9(t)

(
‖v3
8‖

2
H

1
2 ,s +‖ε

1
2 vh
8‖

2
H

1
2 ,s

)
+

1
20a‖∇hv

h
8‖

2
H0,s +

1
20‖v

3
8‖

2
H

1
2 ,s . (5-18)

Now we are in a position to prove Proposition 3.3. Combining the energy estimate (5-10) with (5-18),
we obtain

d
dt
(
‖ε

1
2 vh
8(t)‖

2
H−

1
2 ,s
+‖v3

8(t)‖
2
H−

1
2 ,s

)
+
(
‖ε

1
2 vh
8(t)‖

2
H

1
2 ,s +‖v

3
8(t)‖

2
H

1
2 ,s

)
≤ C θ̇ (t)

(
‖ε

1
2 vh
8‖

2
H−

1
2 ,s
+‖v3

8‖
2
H−

1
2 ,s

)
+Caθ̇ (t)‖vh

8‖
2
H0,s

+C9(t)
(
‖ε

1
2 vh
8‖

2
H−

1
2 ,s
+‖v3

8‖
2
H

1
2 ,s

)
+

1
10a‖∇hv

h
8‖

2
H0,s .
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From this and Gronwall’s inequality, it follows that

‖ε
1
2 vh
8(t)‖

2
H−

1
2 ,s
+‖v3

8(t)‖
2
H−

1
2 ,s
+

∫ t

0

(
‖ε

1
2 vh
8(τ )‖

2
H

1
2 ,s +‖v

3
8(τ )‖

2
H

1
2 ,s

)
dτ

≤ exp
(

C
∫ t

0
θ̇ (τ )dτ

)(
‖ea〈D3〉v0‖

2
H−

1
2 ,s
+ a

∫ t

0
θ̇ (τ )‖vh

8(τ )‖
2
H0,s d +C

∫ t

0
9(τ)

(
‖ε

1
2 vh
8(τ )‖

2
H

1
2 ,sτ

+‖v3
8(τ )‖

2
H

1
2 ,s

)
dτ + 1

10a
∫ t

0
‖∇hv

h
8(τ )‖

2
H0,s dτ

)
.

This finishes the proof of Proposition 3.3. �

6. Regularizing the effect of analyticity

Let’s now prove Proposition 3.4. Here we will encounter two kinds of bad terms, where we lose a
vertical derivative. The first one is (v3∂3v

h)8 and the second term comes from −∇h p. In this last
term, we really lose a vertical derivative. To compensate this loss, we use the divergence-free condition
(∂3u3

= − divh uh) and more important, the fact that the equation contain an extra-regularizing term
given by the analyticity of the solution.

Step 1. Estimates on the horizontal component vh
8. Let us recall that vh

8 verifies the equations

∂tv
h
8+ aλθ̇(t)〈D3〉v

h
8−1hv

h
8− ε

2∂2
3v

h
8+ ε

1
2 (v · ∇vh)8 =−∇hq8.

Note that θ̇ ≥ 0, we perform an energy estimate in H 0,s to obtain

1
2

d
dt
‖vh
8‖

2
H0,s + aλθ̇(t)‖vh

8‖
2
H0,s+ 1

2
+‖∇hv

h
8‖

2
H0,s +‖ε∂3v

h
8‖

2
H0,s

≤ ε
1
2 ((vh

⊗ vh)8,∇hv
h
8)H0,s − ε

1
2 (∂3(v

3vh)8, v
h
8)H0,s − (∇h p8, vh

8)H0,s

def
= I+ II+ III. (6-1)

We get by Lemma 4.3 and interpolation that

|I| ≤ Cε
1
2 ‖(vh

⊗ vh)8‖H0,s‖∇hv
h
8‖H0,s

≤ Cε
1
2 ‖vh

8‖
1
2
H

1
2 ,

1
2−α
‖vh
8‖

1
2
H

1
2 ,

1
2+α
‖vh
8‖H

1
2 ,s‖∇hv

h
8‖H0,s

≤ Cε‖vh
8‖H

1
2 ,

1
2−α‖v

h
8‖H

1
2 ,

1
2+α‖v

h
8‖

2
H

1
2 ,s +

1
100‖∇hv

h
8‖H0,s

≤ Cε‖vh
8‖

1
2
H0, 1

2−α
‖vh
8‖

1
2
H0, 1

2+α
‖∇hv

h
8‖

1
2
H0, 1

2−α
‖∇hv

h
8‖

1
2
H0, 1

2+α
‖vh
8‖H0,s‖vh

8‖H1,s +
1

100‖∇hv
h
8‖

2
H0,s

≤ C9(t)‖vh
8‖

2
H1,s +C θ̇ (t)‖vh

8‖
2
H0,s +

1
100‖∇hv

h
8‖

2
H0,s . (6-2)

To estimate II, we use Bony’s decomposition (4-3) to rewrite it as

II=−ε
1
2 (∂3(T v

vhv3)8, v
h
8)H0,s − ε

1
2 (∂3(Rvv3

vh)8, v
h
8)H0,s

def
= II1+ II2.
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From the proof of Lemma 4.2, it is easy to find that

|II2| ≤ C‖|D3|
1
2 (Rv

v3v
h)8‖H−

1
2 ,s‖|εD3|

1
2 |Dh|

1
2 vh
8‖H0,s

≤ C‖v3
8‖

1
2
H

1
2 ,

1
2−α
‖v3
8‖

1
2
H

1
2 ,

1
2+α
‖vh
8‖H0,s+ 1

2 ‖∇εv
h
‖H0,s

≤ Caθ̇ (t)‖vh
8‖

2
H0,s+ 1

2
+

1
100‖∇εv

h
‖

2
H0,s . (6-3)

Due to div v = 0, we rewrite II1 as

II1 = ε
1
2 ((T v

vh divh v
h)8, v

h
8)H0,s − ε

1
2 ((T v

∂3vhv
3)8, v

h
8)H0,s

def
= II11+ II12.

Using Lemma 4.2 and interpolation, we have

|II11| ≤ ε
1
2 ‖(T v

vh divh v
h)8‖H−

1
2 ,s‖v

h
8‖H

1
2 ,s

≤ Cε
1
2 ‖vh

8‖
1
2
H

1
2 ,

1
2−α
‖vh
8‖

1
2
H

1
2 ,

1
2+α
‖∇hv

h
8‖H0,s‖vh

8‖H
1
2 ,s

≤ C9(t)‖vh
8‖

2
H1,s +C θ̇ (t)‖vh

8‖
2
H0,s +

1
100‖∇hv

h
8‖

2
H0,s . (6-4)

From the proof of Lemma 4.2, and using the fact that s < 1, we can conclude that

|II12| ≤ C‖vh
8‖H0,s+ 1

2 ‖v
3
8‖H

1
2 ,s‖∇εv

h
‖H0,s

≤ C‖vh
8‖

1
2
H0,s+ 1

2
‖v3
8‖

1
2
H

1
2 ,

1
2−α
‖v3
8‖

1
2
H

1
2 ,

1
2+α
‖∇εv

h
‖H0,s

≤ Caθ̇ (t)‖vh
8‖

2
H0,s+ 1

2
+

1
100‖∇εv

h
‖

2
H0,s . (6-5)

We next turn to the estimate of the pressure. Recall that p= p1
+ p2
+ p3 with p1, p2, p3 defined by

(5-6). Using the boundedness of (−1ε)−1∂i∂ j on Hσ,s together with Lemma 4.3, we get

(∇h p1
8, v

h
8)H0,s =−ε

1
2 ((−1ε)

−1∂i∂ j (v
iv j )8, div vh

8)H0,s

≤ Cε
1
2 ‖(vh

⊗ vh)8‖H0,s‖∇hv
h
8‖H0,s

≤ C9(t)‖vh
8‖

2
H1,s +C θ̇ (t)‖vh

8‖
2
H0,s +

1
100‖∇hv

h
8‖

2
H0,s . (6-6)

Notice that ∂i∂ j (−1ε)
−1 is bounded on Hσ,s . Exactly as in the estimate of II, we obtain

(∇h p2
8, v

h
8)H0,s ≤ C9(t)‖vh

8‖
2
H1,s +C θ̇ (t)‖vh

8‖
2
H0,s +Caθ̇ (t)‖vh

8‖
2
H0,s+ 1

2
+

1
100‖∇εv

h
‖

2
H0,s . (6-7)

We write
∇h p3 =−2∂3|D3|

−
1
2
(
∇h|Dh|

1
2 |εD3|

1/2(−1ε)
−1)
|Dh|

−
1
2 (v3div hv

h);

thus,

(∇h p3
8, v

h
8)H0,s =−2(

(
∇h|Dh|

1
2 |εD3|

1
2 (−1ε)

−1)
|Dh|

−
1
2 (v3div hv

h), ∂3〈D3〉
−

1
2 vh
8)H0,s .

Note that ∇h|Dh|
1
2 |εD3|

1
2 (−1ε)

−1 is a bounded operator on Hσ,s . Thus we get, by Lemma 4.3,

(∇h p3
8, v

h
8)H0,s

≤ C‖|Dh|
−

1
2 (v3div hv

h)‖H0,s‖∂3〈D3〉
−

1
2 vh
8‖H0,s

≤ C
(
‖v3
8‖

1
2
H

1
2 ,

1
2−α
‖v3
8‖

1
2
H

1
2 ,

1
2+α
‖∇hv

h
8‖H0,s +‖v3

8‖H
1
2 ,s‖∇hv

h
8‖

1
2
H0, 1

2−α
‖∇hv

h
8‖

1
2
H0, 1

2+α

)
‖vh
‖H0,s+ 1

2

≤ Caθ̇ (t)‖vh
8‖

2
H0,s+ 1

2
+

1
100‖∇hv

h
8‖

2
H0,s +

1
100a−1

‖v3
8‖

2
H

1
2 ,s . (6-8)
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Summing up (6-1)–(6-8), we get by taking λ big enough that

d
dt
‖vh
8(t)‖

2
H0,s +‖∇hv

h
8(t)‖

2
H0,s ≤ C θ̇ (t)‖vh

8‖
2
H0,s +C9(t)‖vh

8‖
2
H1,s +

1
20a−1

‖v3
8‖

2
H

1
2 ,s . (6-9)

Step 2. Estimates on the vertical component v3
8. Recall that v3

8 satisfies

∂tv
3
8+ λaθ̇ (t)〈D3〉v

3
8−1hv

3
8− ε

2∂2
3v

3
8+ ε

1
2 (v · ∇v3)8 =−ε

2∂3q8.

We perform an energy estimate in H 0,s to obtain

1
2

d
dt
‖v3
8‖

2
H0,s +‖∇hv

3
8‖

2
H0,s +‖ε∂3v

3
8‖

2
H0,s

≤−ε
1
2 ((vh

· ∇hv
3)8, v

3
8)H0,s + ε

1
2 ((v3div hv

h)8, v
3
8)H0,s − ε2(∂3 p8, v3

8)H0,s

def
= I+ II+ III. (6-10)

Using Lemma 4.3 and interpolation, we have

|I| ≤ Cε
1
2 ‖(vh

· ∇hv
3)8‖H−

1
2 ,s‖v

3
8‖H

1
2 ,s

≤ Cε
1
2
(
‖vh
8‖

1
2
H

1
2 ,

1
2−α
‖vh
8‖

1
2
H

1
2 ,

1
2+α
‖∇hv

3
8‖H0,s +‖vh

8‖H
1
2 ,s‖∇hv

3
8‖

1
2
H0, 1

2−α
‖∇hv

3
8‖

1
2
H0, 1

2+α

)
‖v3
8‖H

1
2 ,s

≤ C9(t)‖v8‖2H1,s +C θ̇ (t)‖v8‖2H0,s +
1

100‖∇hv8‖
2
H0,s , (6-11)

and similarly,
|II| ≤ Cε

1
2 ‖(v3div hv

h)8‖H−
1
2 ,s‖v

3
8‖H

1
2 ,s

≤ C9(t)‖v3
8‖

2
H1,s +C θ̇ (t)‖v3

8‖
2
H0,s +

1
100‖∇hv8‖

2
H0,s . (6-12)

Using the decomposition (5-6), we can similarly obtain

|III| ≤ C9(t)‖v8‖2H1,s +C θ̇ (t)‖v8‖2H0,s +
1

100‖∇hv8‖
2
H0,s . (6-13)

Summing up (6-10)–(6-13), we obtain

d
dt
‖v3
8‖

2
H0,s +‖∇hv

3
8‖

2
H0,s ≤ C9(t)‖v8‖2H1,s +C θ̇ (t)‖v8‖2H0,s +

1
20‖∇hv

h
8‖

2
H0,s . (6-14)

Now we combine (6-9) with (6-14) to obtain

d
dt
‖v8‖

2
H0,s +‖∇hv8‖

2
H0,s ≤ C θ̇ (t)‖v8‖2H0,s +C9(t)‖v8‖2H1,s +

1
10a
‖v3
8‖

2
H

1
2 ,s .

From this and Gronwall’s inequality, we infer that

‖v8(t)‖2H0,s +

∫ t

0
‖∇hv8(τ )‖

2
H0,s dτ

≤ exp
(
C
∫ t

0
θ̇ (τ )dτ

)(
‖ea〈D3〉v0‖

2
H0,s +

∫ t

0
9(τ)‖v8(τ )‖

2
H1,s dτ +

1
10a

∫ t

0
‖v3
8(τ )‖

2
H

1
2 ,s dτ

)
,

This finishes the proof of Proposition 3.4. �
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DYNAMICS ON GRASSMANNIANS AND RESOLVENTS OF CONE OPERATORS

JUAN B. GIL, THOMAS KRAINER AND GERARDO A. MENDOZA

The paper proves the existence and elucidates the structure of the asymptotic expansion of the trace
of the resolvent of a closed extension of a general elliptic cone operator on a compact manifold with
boundary as the spectral parameter tends to infinity. The hypotheses involve only minimal conditions on
the symbols of the operator. The results combine previous investigations by the authors on the subject
with an analysis of the asymptotics of a family of projections related to the domain. This entails a
detailed study of the dynamics of a flow on the Grassmannian of domains.

1. Introduction

In [Gil et al. 2010] we analyzed the behavior of the trace of the resolvent of an elliptic cone operator
on a compact manifold as the spectral parameter increases radially assuming, in addition to natural ray
conditions on its symbols, that the domain is stationary. We complete this analysis with Theorem 1.4 of
the present paper, which describes the behavior of that trace without any restriction on the domain. The
main new ingredient is Theorem 4.13 on the asymptotics of a family of projections related to the domain.
This involves a fairly detailed analysis of the dynamics of a flow on the Grassmannian of domains.

Let M be a smooth compact n-dimensional manifold with boundary Y . A cone operator on M is
an element A ∈ x−m Diffm

b (M; E), m > 0; here Diffm
b (M; E) is the space of b-differential operators of

Melrose [1993] acting on sections of a vector bundle E → M and x is a defining function of Y in M ,
positive in

◦

M . Associated with such an operator is a pair of symbols, the c-symbol cσ (A) and the wedge
symbol A∧. The former is a bundle endomorphism closely related to the regular principal symbol of
A, indeed ellipticity is defined as the invertibility of cσ (A). The wedge symbol is a partial differential
operator on N+Y , the closed inward pointing normal bundle of Y in M , essentially the original operator
with coefficients frozen at the boundary. See [Gil et al. 2010, Section 2] for a brief overview and [Gil
et al. 2007a, Section 3] for a detailed exposition of basic facts concerning cone operators.

Fix a Hermitian metric on E and a smooth positive b-density mb on M (xmb is a smooth everywhere
positive density on M) to define the spaces xγL2

b(M; E). Let A be a cone operator. The unbounded
operator

A : C∞c (
◦

M; E)⊂ xγL2
b(M; E)→ xγL2

b(M; E) (1.1)

admits a variety of closed extensions with domains D⊂ xγL2
b(M; E) such that Dmin ⊂D⊂Dmax, where

Dmin is the domain of the closure of (1.1) and

Dmax =
{
u ∈ xγL2

b(M; E) : Au ∈ xγL2
b(M; E)

}
.
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MSC2010: primary 58J35; secondary 37C70, 35P05, 47A10.
Keywords: resolvents, trace asymptotics, manifolds with conical singularities, spectral theory, dynamics on Grassmannians.
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When A is c-elliptic, A is Fredholm with any such domain [Lesch 1997, Proposition 1.3.16]. We may
assume without loss of generality that γ = −m/2, since otherwise we may replace A by the operator
x−γ−m/2 A xγ+m/2

∈ x−m Diffm
b (M; E).

The set of closed extensions is parametrized by the elements of the various Grassmannian manifolds
associated with the finite-dimensional space Dmax/Dmin, a useful point of view exploited extensively
in [Gil et al. 2007a]. Recall that both spaces Dmax/Dmin and D∧,max/D∧,min are determined by the
set {σ ∈ specb(A) : −m/2 < Im σ < m/2}, together with certain finite dimensional spaces of functions
associated to each element of this set. Also recall that the boundary spectrum of A, denoted by specb(A),
is the set of points in C at which the conormal symbol (indicial family) of A is not invertible. The
intersection of this set with horizontal strips in C is finite.

Associated with N+Y there are analogous Hilbert spaces x−m/2
∧ L2

b(N+Y ; E∧). Here x∧ is the function
determined by dx on N+Y , E∧ is the pullback of E |Y to N+Y , and the density is x−1

∧ mY where mY is
the density on Y obtained by contraction of mb with x∂x . We will drop the subscript ∧ from x∧ and E∧,
and trivialize N+Y as Y∧ = [0,∞)×Y using the defining function. The space x−m/2L2

b(Y
∧
; E) carries

a natural unitary R+ action (%, u) 7→ κ%u which after fixing a Hermitian connection on E is given by

κ%u(x, y)= %m/2u(%x, y) for % > 0, (x, y) ∈ Y∧.

The minimal and maximal domains, D∧,min and D∧,max, of A∧ are defined in an analogous fashion as
those of A, the first of these spaces being the domain of the closure of

A∧ : C∞c (
◦

Y∧; E)⊂ x−m/2L2
b(Y
∧
; E)→ x−m/2L2

b(Y
∧
; E). (1.2)

A fundamental property of A∧ is its κ-homogeneity, κ%A∧ = %−m A∧κ%. Thus D∧,min and D∧,max are
both κ-invariant, hence there is an R+ action

% 7→ κ% : D∧,max/D∧,min→ D∧,max/D∧,min,

which in turn induces for each d ′′ an action on Grd ′′(D∧,max/D∧,min), the complex Grassmannian of
d ′′-dimensional subspaces of D∧,max/D∧,min. Observe that since the quotient is finite dimensional these
actions extend holomorphically to C r R−.

Assuming the c-ellipticity of A, we constructed in [Gil et al. 2007a, Theorem 4.7] and reviewed in
[Gil et al. 2010, Section 2] a natural isomorphism

θ : Dmax/Dmin→ D∧,max/D∧,min,

allowing, in particular, passage from a domain D for A to a domain D∧ for A∧ which we shall call the
associated domain.

We showed in [Gil et al. 2006] that if
cσ (A)− λ is invertible for λ in a closed sector 3 ( C which is a sector of minimal
growth for A∧ with the associated domain D∧ defined via D∧/D∧,min = θ(D/Dmin),

(1.3)

then3 is also a sector of minimal growth for AD, the operator A with domain D, and for l ∈N sufficiently
large, (AD−λ)

−l is an analytic family of trace class operators. In [Gil et al. 2010] we gave the asymptotic
expansion of Tr(AD− λ)

−l under the condition that D was stationary. Recall that a subspace D⊂ Dmax
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with Dmin ⊂ D is said to be stationary if θ(D/D∧,max) ∈ Grd ′′(D∧,max/D∧,min) is a fixed point of the
action κ . More generally, assuming only (1.3), we now prove:

Theorem 1.4. Let A be an elliptic cone operator of degree m > 0 on M , and let D be a domain for A so
that (1.3) is satisfied. For any ϕ ∈ C∞(M;End(E)) and l ∈ N with ml > n,

Tr(ϕ(AD− λ)
−l)∼

∞∑
j=0

r j (λ
iµ1, . . . , λiµN , log λ)λν j/m as |λ| →∞,

where each r j is a rational function in N + 1 variables, N ∈ N0, with real numbers µk , k = 1, . . . , N ,
and ν j > ν j+1 → −∞ as j → ∞. We have r j = p j/q j with p j , q j ∈ C[z1, . . . , zN+1] such that
q j (λ

iµ1, . . . , λiµN , log λ) is uniformly bounded away from zero for large λ.

The expansion above is to be understood as the asymptotic expansion of a symbol into its components
as discussed in the Appendix. As shown in [Gil et al. 2010],

Tr(ϕ(AD− λ)
−l)∼

n−1∑
j=0
α jλ

(n−lm− j)/m
+αn log(λ)λ−l

+ sD(λ),

with coefficients α j ∈C that are independent of the choice of domain D, and a remainder sD(λ) of order
O(|λ|−l). Here we will show that sD(λ) is in fact a symbol that admits an expansion into components
that exhibit in general the structure shown in Theorem 1.4. More precisely, let

M=
{
Re σ/m : σ ∈ specb(A), −m/2< Im σ < m/2

}
, (1.5)

where specb(A) denotes the boundary spectrum of A; see [Melrose 1993]. Set

E= additive semigroup generated by{
Im(σ − σ ′) : σ, σ ′ ∈ specb(A), −m/2< Im σ ≤ Im σ ′ < m/2

}
∪ (−N0), (1.6)

which is a discrete subset of R− without points of accumulation. Then

sD(λ)∼
∑
ν∈E
ν≤−lm

rν(λiµ1, . . . , λiµN , log λ)λν/m as |λ| →∞, (1.7)

where the µi are the elements of M and the rν are rational functions of their arguments as described in
the theorem.

An analysis of the arguments of Sections 3 and 4 shows that the structure of the functions rν depends
strongly on the relation of the domain with the part of the boundary spectrum in the “critical strip”
{σ ∈ C : −m/2 < Im σ < m/2}. This includes what elements of the set M actually appear in the rν ,
and whether they are truly rational functions and not just polynomials. We will not follow up on this
observation in detail, but only single out here the following two cases because of their special role in
the existing literature. When D is stationary, the machinery of Sections 3 and 4 is not needed, and we
recover the results of [Gil et al. 2010]: the rν are just polynomials in log λ, and the numbers ν in (1.7)
are all integers. If D is nonstationary, but the elements of specb(A) in the critical strip are vertically
aligned, then again there is no dependence on the elements of M, but the coefficients are generically
rational functions of log λ. Note that all second order regular singular operators in the sense of Brüning
and Seeley [1987; 1991] (see also [Kirsten et al. 2008a]) have this special property.
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By standard arguments, Theorem 1.4 implies corresponding results about the expansion of the heat
trace Tr

(
ϕe−t AD

)
as t→ 0+ if AD is sectorial, and about the structure of the ζ -function if AD is positive.

It has been observed by other authors that the resolvent trace, the heat kernel, and the ζ -function for
certain model operators may exhibit so called unusual or exotic behavior [Falomir et al. 2004; 2003;
2002; Kirsten et al. 2006; 2008a; 2008b; Loya et al. 2007]. This is accounted for in Theorem 1.4 by
the fact that the components may have noninteger orders ν j belonging to the set E, and that the r j may
be genuine rational functions and not mere polynomials. For example, the former implies that the ζ -
function of a positive operator might have poles at unusual locations, and the latter that it might not extend
meromorphically to C at all. Both phenomena have been observed for ζ -functions of model operators.

Earlier investigations on this subject typically relied on separation of variables and special function
techniques to carry out the analysis near the boundary. This is one major reason why all previously
known results are limited to narrow classes of operators. Here and in [Gil et al. 2010] we develop a
new approach which leads to the completely general result Theorem 1.4. This result is new even for
Laplacians with respect to warped cone metrics, or, more generally, for c-Laplacians [Gil et al. 2010].

Throughout this paper we assume that the ray conditions (1.3) hold. We will rely heavily on [Gil et al.
2010], where we analyzed (AD− λ)

−l with the aid of the formula

(AD− λ)
−l
=

1
l−1

∂ l−1
λ (AD− λ)

−1,

and the representation

(AD− λ)
−1
= B(λ)+

[
1− B(λ)(A− λ)

]
FD(λ)

−1T (λ), (1.8)

obtained in [Gil et al. 2006]. The analogous formula for (A∧,D∧− λ)
−1 is briefly reviewed in Section 2.

In [Gil et al. 2010] we described in full generality the asymptotic behavior of the operator families
B(λ), [1− B(λ)(A− λ)], and T (λ), and gave an asymptotic expansion of FD(λ)

−1 if D is stationary.
Therefore, to complete the picture we only need to show that FD(λ)

−1 has a full asymptotic expansion
and describe its qualitative features for a general domain D.

We end this introduction with an overview of the paper. There is a formula similar to (1.8) concern-
ing the extension of (1.2) with domain D∧. The analysis of FD(λ)

−1 in the reference just cited was
facilitated by the fact that the corresponding operator F∧,D∧(λ)

−1 for A∧,D∧ has a simple homogeneity
property when D is stationary. In Section 2 we will establish an explicit connection between the operator
F∧,D∧(λ)

−1 and a family of projections for a general domain D∧. This family of projections, previously
studied in the context of rays of minimal growth in [Gil et al. 2007a; 2007b], is analyzed further in
Sections 3 and 4, and is shown to fully determine the asymptotic structure of F∧,D∧(λ)

−1, summarized
in Proposition 2.17. As a consequence, we obtain in Proposition 2.20 a description of the asymptotic
structure of (A∧,D∧ − λ)

−1.
The family of projections is closely related to the curve through D∧/D∧,min determined by the flow

defined by κ on Grd ′′(D∧,max/D∧,min). The behavior of an abstract version of κ−1
ζ (D∧/D∧,min) is ana-

lyzed extensively in Section 3. Let E denote a finite dimensional complex vector space and a : E→ E

an arbitrary linear map. The main technical result of Section 3 is an algorithm (Lemmas 3.5 and 3.11)
which is used to obtain a basis of etaD for all sufficiently large t (really, all complex t with |Im t | ≤ θ
and Re t large); here D⊂E is a linear subspace. The dependence of the section on t is explicit enough to
allow the determination of the nature of the�-limit sets of the flow t 7→ eta on Grd ′′(E) (Proposition 3.3).
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The results of Section 3 are used in Section 4 to obtain the asymptotic behavior of the aforementioned
family of projections, and consequently of F∧,D∧(λ)

−1 when λ ∈3 as |λ| →∞, assuming only the ray
condition (1.3) for A∧ on D∧ (in the equivalent form given by (iii) of Theorem 2.15).

The work comes together in Section 5. There we obtain first the full asymptotics of FD(λ)
−1 using

results from [Gil et al. 2006; 2010] and the asymptotics of F∧,D∧(λ)
−1 obtained earlier. This is then

combined with work done in [Gil et al. 2010] on the asymptotics of the rest of the operators in (1.8),
giving Theorem 5.6 on the asymptotics of the trace Tr(ϕ(AD − λ)

−l). The manipulation of symbols
and their asymptotics is carried out within the framework of refined classes of symbols discussed in the
Appendix.

2. Resolvent of the model operator

In [Gil et al. 2006; 2007a; 2007b] we studied the existence of sectors of minimal growth and the structure
of resolvents for the closed extensions of an elliptic cone operator A and its wedge symbol A∧. In
particular, in [Gil et al. 2006] we determined that 3 is a sector of minimal growth for AD if cσ (A)−λ is
invertible for λ in 3, and if 3 is also a sector of minimal growth for A∧ with the associated domain D∧.
In this section we will briefly review and refine some of the results concerning the resolvent of A∧,D∧ in
the closed sector 3.

The set

bg-res(A∧)=
{
λ ∈ C : A∧− λ is injective on D∧,min and surjective on D∧,max

}
,

introduced in [Gil et al. 2007a], is of interest for a number of reasons, including the property that if
λ ∈ bg-res(A∧) then every closed extension of A∧− λ is Fredholm. Using the property

κ%A∧ = %−m A∧κ%, (2.1)

one verifies that bg-res(A∧) is a disjoint union of open sectors in C. Defining d ′′ = − ind(A∧,min − λ)

and d ′ = ind(A∧max − λ) for λ in one of these sectors, one has that if (A∧,D∧− λ) is invertible, then
dim(D∧/D∧,min)= d ′′ and dim ker(A∧,max− λ)= d ′. The dimension of D∧,max/D∧,min is d ′+ d ′′.

From now on we assume that 3 6= C is a fixed closed sector such that 3r 0 ⊂ bg-res(A∧) and
res A∧,D∧∩3 6= ∅. Without loss of generality we also assume that 3 has nonempty interior. The set
res A∧,D∧ ∩3 has discrete complement in 3 and is therefore connected.

Corresponding to (1.8), there is a representation

(A∧,D∧− λ)
−1
= B∧(λ)+

[
1− B∧(λ)(A∧− λ)

]
F∧,D∧(λ)

−1T∧(λ) for λ ∈3∩ res(A∧,D∧). (2.2)

As we shall see in Section 5, if 3 is a sector of minimal growth for A∧,D∧ , then the asymptotic structure
of F∧,D∧(λ)

−1 determines much of the asymptotic structure of the operator FD(λ)
−1 in (1.8).

If D∧ is κ-invariant, then F∧,D∧(λ)
−1 has the homogeneity property

κ−1
|λ|1/m F∧,D∧(λ)

−1
= F∧,D∧(λ̂)

−1, (2.3)

and is, in that sense, the principal homogeneous component of FD(λ)
−1. This facilitates the expansion of

FD(λ)
−1 as shown in [Gil et al. 2010, Proposition 5.17]. However, if D∧ is not κ-invariant, F∧,D∧(λ)

−1

fails to be homogeneous and its asymptotic behavior is more intricate.
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The identity (2.2) obtained in [Gil et al. 2006] begins with a choice of a family of operators K∧(λ) :
Cd ′′
→ x−m/2L2

b(Y
∧
; E) which is κ-homogeneous of degree m and such that(

A∧−λ K∧(λ)
)
: D∧,min⊕Cd ′′

→ x−m/2L2
b(Y
∧
; E)

is invertible for all λ ∈3r 0. The homogeneity condition on K∧ means that

K∧(%mλ)= %mκ%K∧(λ) for % > 0. (2.4)

Defining the action of R+ on Cd ′′ to be the trivial action, this condition on the family K∧(λ) becomes
the same homogeneity property that the family A∧− λ has because of (2.1). Other than this, the choice
of K∧ is largely at our disposal. That such a family K∧(λ) exists is guaranteed by the condition that
3r 0⊂ bg-res(A∧). We now proceed to make a specific choice of K∧(λ).

Let λ0 ∈
◦

3 be such that A∧,D∧− λ is invertible for every λ = eiϑλ0 ∈3. We fix λ0 (for convenience
on the central axis of the sector) and a cut-off function ω ∈ C∞c ([0, 1)), and define

K∧(λ)= (A∧− λ)ω(x |λ|1/m)κ|λ/λ0|1/m for λ ∈3r 0 (2.5)

acting on D∧/D∧,min ∼= Cd ′′ . The factor ω(x |λ|1/m)κ|λ/λ0|1/m in (2.5) is to be understood as the compo-
sition

D∧/D∧,min

κ
|λ/λ0|

1/m

−−−−−→ D∧,max/D∧,min ∼= E∧,max ⊂ D∧,max
ω(x |λ|1/m)
−−−−−−→ D∧,max,

in which the last operator is multiplication by the function ω(x |λ|1/m) and we use the canonical identi-
fication of D∧,max/D∧,min with the orthogonal complement E∧,max of D∧,min in D∧,max using the graph
inner product

(u, v)A∧ = (A∧u, A∧v)+ (u, v), u, v ∈ D∧,max.

By definition, K∧(λ) satisfies (2.4) and the family(
A∧−λ K∧(λ)

)
: D∧,min⊕D∧/D∧,min→ x−m/2L2

b(Y
∧
; E)

is invertible for every λ on the arc {λ ∈3 : |λ| = |λ0|} through λ0. Therefore, using κ-homogeneity, it is
invertible for every λ ∈3r 0. If(

B∧(λ)
T∧(λ)

)
: x−m/2L2

b(Y
∧
; E)→ D∧,min⊕D∧/D∧,min

is the inverse of
(

A∧,min−λ K∧(λ)
)
, then T∧(λ)(A∧− λ)= 0 on D∧,min, so it induces a map

F∧(λ)= [T∧(λ)(A∧− λ)] : D∧,max/D∧,min → D∧/D∧,min,

whose restriction F∧,D∧(λ)= F∧(λ)|D∧/D∧,min is invertible for λ ∈ res(A∧,D∧)∩3r 0 and leads to (2.2).
Moreover, since T∧(λ)K∧(λ)= 1, we have

F∧,D∧(λ)
−1
= q∧(A∧,D∧− λ)

−1K∧(λ)

= q∧(A∧,D∧− λ)
−1(A∧− λ)ω(x |λ|1/m)κ|λ/λ0|1/m ,

where q∧ : D∧,max→ D∧,max/D∧,min is the quotient map.



DYNAMICS ON GRASSMANNIANS AND RESOLVENTS OF CONE OPERATORS 121

For λ ∈ bg-res(A∧) let K∧,λ = ker(A∧,max− λ). Then, by [Gil et al. 2007a, Lemma 5.7],

λ ∈ res(A∧,D∧) if and only if D∧,max = D∧⊕K∧,λ, (2.6)

in which case we let πD∧,K∧,λ be the projection on D∧ according to this decomposition. If B∧,max(λ) is
the right inverse of A∧,max− λ with range K⊥

∧,λ, then

(A∧,D∧− λ)
−1
= πD∧,K∧,λ B∧,max(λ),

and B∧,max(λ)(A∧,max− λ) is the orthogonal projection onto K⊥
∧,λ. Thus

πD∧,K∧,λ B∧,max(λ)(A∧,max− λ)= πD∧,K∧,λ,

and therefore,
F∧,D∧(λ)

−1
= q∧ πD∧,K∧,λ ω(x |λ|

1/m)κ|λ/λ0|1/m .

Let
D = D∧/D∧,min, K∧,λ = (K∧,λ+D∧,min)/D∧,min. (2.7)

Again by [Gil et al. 2007a, Lemma 5.7], either of the conditions in (2.6) is equivalent to D ∩ K∧,λ = 0,
hence to

D∧,max/D∧,min = D⊕ K∧,λ (2.8)

by dimensional considerations, since dim K∧,λ = dim K∧,λ = d ′. Let then πD,K∧,λ be the projection on
D according to the decomposition (2.8). Then q∧ πD∧,K∧,λ = πD,K∧,λ q∧ and

F∧,D∧(λ)
−1
= πD,K∧,λq∧ω(x |λ|

1/m)κ|λ/λ0|1/m

= πD,K∧,λκ|λ/λ0|1/m , (2.9)

since multiplication by 1−ω(x |λ|1/m) maps D∧,max into D∧,min for every λ.
We will now express F∧,D∧(λ)

−1 in terms of projections with K∧,λ0 in place of K∧,λ. This will of
course require replacing D by a family depending on λ.

Fix λ ∈
◦

3, let Sλ,m be the connected component of {ζ : ζmλ ∈
◦

3} containing R+. Since 3 6= C, Sλ,m
omits a ray, and so the map R+ 3 % 7→ κ% ∈ Aut(D∧,max/D∧,min) extends holomorphically to a map

Sλ,m 3 ζ 7→ κζ ∈ Aut(D∧,max/D∧,min).

It is an elementary fact that
κ−1
ζ (πD,K∧,λ)κζ = πκ−1

ζ D,κ−1
ζ K∧,λ .

A simple consequence of (2.1) is that κ−1
ζ K∧,λ =K∧,λ/ζm if ζ ∈ R+, hence also κ−1

ζ K∧,λ = K∧,λ/ζm for
such ζ since the maps q∧|K∧,λ : K∧,λ→ K∧,λ are isomorphisms. Therefore

κ−1
ζ (πD,K∧,λ)κζ = πκ−1

ζ D,K∧,λ/ζm , (2.10)

if ζ ∈ R+. This formula holds also for arbitrary ζ ∈ Sλ,m . To see this we make use of the family
of isomorphisms P(λ′) : K∧,λ0 → K∧,λ′ (defined for λ′ in the connected component of bg-res(A∧)
containing λ0) constructed in Section 7 of [Gil et al. 2007a]. Its two basic properties are that λ′ 7→P(λ′)φ
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is holomorphic for each φ ∈ K∧,λ0 and that κ%P(λ′) = P(%mλ′) if % ∈ R+. These statements are,
respectively, Proposition 7.9 and Lemma 7.11 of [Gil et al. 2007a]. Let

f : D∧,max→ C

be an arbitrary continuous linear map that vanishes on K∧,λ. For any φ ∈ K∧,λ0 the function

Sλ,m 3 ζ 7→ 〈 f, κζP(λ/ζm)φ〉 ∈ C

is holomorphic and vanishes on R+, the latter because κζP(λ/ζm) = P(λ) for such ζ . Therefore
〈 f, κζP(λ/ζm)φ〉 = 0 for all ζ ∈ Sλ,m . Since f is arbitrary, we must have κζP(λ/ζm)φ ∈ K∧,λ. Hence

P(λ/ζm)φ ∈ κ−1
ζ K∧,λ.

Since P(λ/ζm) :K∧,λ0→K∧,λ/ζm is an isomorphism, we have K∧,λ/ζm = κ−1
ζ K∧,λ when ζ ∈ Sλ,m . This

shows that
K∧,λ/ζm = κ−1

ζ K∧,λ,

and hence that (2.10) holds for ζ ∈ Sλ,m .
The principal branch of the m-th root gives a bijection

( · )1/m
: λ−1

0
◦

3→ Sλ0,m . (2.11)

The reader may now verify that for this root, with the notation ζ̂ = ζ/|ζ | whenever ζ ∈ C r 0, one has

κ−1
|λ|1/m F∧,D∧(λ)

−1
= κ−1
|λ0|1/mκ(λ̂/λ̂0)1/m

(
πκ−1

(λ/λ0)
1/m D,K∧,λ0

)
κ−1
(λ̂/λ̂0)1/m (2.12)

when λ ∈
◦

3 ∩ res(A∧,D∧). The arguments leading to this formula remain valid if 3 is replaced by a
slightly bigger closed sector, so the formula just proved holds in (3r 0)∩ res(A∧,D∧).

The projection in parentheses in (2.12) is thus a key component of the resolvent of A∧,D∧ whose
behavior for large |λ| will be analyzed in Section 4 under a certain fundamental condition which happens
to be equivalent to the condition that 3 is a sector of minimal growth for A∧,D∧ . We now proceed to
discuss this condition.

The condition that the sector 3 with 3r0⊂ bg-res(A∧) is a sector of minimal growth for A∧,D∧ was
shown in [Gil et al. 2007a, Theorem 8.3] to be equivalent to the invertibility of A∧,D∧− λ for λ in

3R = {λ ∈3 : |λ| ≥ R},

together with the uniform boundedness in3R of the projection πκ−1
|λ|1/m D,K

λ̂
. Further, it was shown in [Gil

et al. 2007b] that along a ray containing λ0, this condition is in turn equivalent to requiring that the curve

% 7→ κ−1
% D : [R,∞)→ Grd ′′(D∧,max/D∧,min)

does not approach the set

VK∧,λ0
=
{

D ∈ Grd ′′(D∧,max/D∧,min) : D ∩ K∧,λ0 6= 0
}

(2.13)

as %→∞, a condition conveniently phrased in terms of the limiting set

�−(D)=
{

D′ ∈ Grd ′′(D∧,max/D∧,min) : ∃ %ν→∞ in R+ such that κ−1
%ν

D→ D′ as ν→∞
}
.
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A ray {rλ0 ∈ C : r > 0} contained in bg-res(A∧) is a ray of minimal growth for A∧,D∧ if and only if

�−(D)∩VK∧,λ0
=∅.

Define

�−3(D)=
{

D′ ∈ Grd ′′(D∧,max/D∧,min) :

∃ {ζν}
∞

ν=1 ⊂ C with λ0ζν ∈3 and |ζν | →∞ s.t. limν→∞ κ
−1
ζ

1/m
ν

D = D′
}
, (2.14)

in which we are using the holomorphic extension of % 7→ κ% to Sλ0,m and the m-th root is the principal
branch, as specified in (2.11). We can now consolidate all these conditions as follows.

Theorem 2.15. Let 3 be a closed sector such that 3r 0 ⊂ bg-res(A∧), and let λ0 ∈
◦

3. The following
statements are equivalent:

(i) 3 is a sector of minimal growth for A∧,D∧ .

(ii) There are constants C, R> 0 such that3R ⊂ res(A∧,D∧) and
∥∥πκ−1

ζ1/m D,K∧,λ0

∥∥
L(D∧,max/D∧,min)

≤C for
every ζ such that λ0ζ ∈3R .

(iii) �−3(D)∩VK∧,λ0
=∅.

Proof. By means of (2.10) we get the identity

πκ−1
ζ1/m D,K∧,λ0

= κ−1
ζ̂ 1/mκ|λ0|1/m

(
πκ−1
|λ|1/m D,K

∧,λ̂

)
κ−1
|λ0|1/mκζ̂ 1/m ,

which is valid for large λ ∈3, ζ = λ/λ0, and ζ̂ = ζ/|ζ |. Since κζ̂ 1/m and κ−1
ζ̂ 1/m are uniformly bounded,

Theorem 8.3 of [Gil et al. 2007a] gives the equivalence of (i) and (ii).
We now prove that (ii) and (iii) are equivalent. Let E∧,max=D∧,max/D∧,min and assume (iii) is satisfied.

Since �−3(D) and VK∧,λ0
are closed sets in Grd ′′(E∧,max), there is a neighborhood U of VK∧,λ0

and a
constant R> 0 such that if |λ0ζ |> R then κ−1

ζ 1/m D 6∈U. Let δ :Grd ′′(E∧,max)×Grd ′(E∧,max)→R be as in
Section 5 of [Gil et al. 2007a]. Since VK∧,λ0

is the zero set of the continuous function V 7→ δ(V, K∧,λ0),
there is a constant δ0 > 0 such that δ(κ−1

ζ 1/m D, K∧,λ0) > δ0 for every ζ such that λ0ζ ∈ 3R . Then
Lemma 5.12 of the same reference gives (ii).

Conversely, let (ii) be satisfied. Suppose �−3(D) ∩ VK∧,λ0
6= ∅ and let D0 be an element in the

intersection. Thus D0 ∩ K∧,λ0 6= {0} and there is a sequence {ζν}∞ν=1 ⊂ C with λ0ζν ∈ 3 such that
|ζν | →∞ and

Dν = κ
−1
ζ

1/m
ν

D→ D0 as ν→∞.

If ν is such that |λ0ζν | > R, then λ0ζν ∈ res(A∧,D∧) and D ∩ K∧,λ0ζν = {0}, so Dν ∩ K∧,λ0 = {0}. Thus
for ν large enough Dν 6∈ VK∧,λ0

.
Pick u ∈ D0 ∩ K∧,λ0 with ‖u‖ = 1. Let πDν

be the orthogonal projection on Dν . Since Dν→ D0 as
ν→∞, we have πDν

→ πD0 , so uν = πDν
u→ πD0u = u. For ν large, Dν 6∈VK∧,λ0

, so uν−u 6= 0. Now,
since uν ∈ Dν , u ∈ K∧,λ0 , and uν→ u,

πDν ,K∧,λ0

( uν−u
‖uν−u‖

)
=

uν
‖uν−u‖

→∞ as ν→∞.

But this contradicts (ii). Hence �−(D)∩VK∧,λ0
=∅. �
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If D∧ is not κ-invariant, the asymptotic analysis of F∧,D∧(λ)
−1 (through the analysis of the projection

πD,K∧,λ) leads to rational functions of the form

r(λiµ1, . . . , λiµN , log λ)= p(λiµ1, . . . , λiµN , log λ)
q(λiµ1, . . . , λiµN , log λ)

, (2.16)

with µl ∈ R for l = 1, . . . , N , where q(z1, . . . , zN+1) is a polynomial over C such that∣∣q(λiµ1, . . . , λiµN , log λ)
∣∣> δ,

for some δ > 0 and every sufficiently large λ ∈3, and

p(λiµ1, . . . , λiµN , log λ)=
∑
α,k

aαk(λ)λ
iαµ logk λ,

with µ= (µ1, . . . , µN ), α ∈ NN
0 , k ∈ N0, and coefficients

aαk ∈ C∞
(
3r 0,L(D∧/D∧,min,D∧,max/D∧,min)

)
,

such that aαk(%
mλ)= κ%aαk(λ) for every % > 0.

Proposition 2.17. If 3 is a sector of minimal growth for A∧,D∧ , then for R > 0 large enough, the family
F∧,D∧(λ)= F∧(λ)|D∧/D∧,min is invertible for λ ∈3R and F∧,D∧(λ)

−1 has the following properties:

(i) F∧,D∧(λ)
−1
∈ C∞(3R;L(D∧/D∧,min,D∧,max/D∧,min)), and for every α, β ∈ N0 we have∥∥κ−1

|λ|1/m∂
α
λ ∂

β

λ̄
F∧,D∧(λ)

−1∥∥= O(|λ|ν/m−α−β) as |λ| →∞, (2.18)

with ν = 0.

(ii) For all j ∈ N0 there exist rational functions r j of the form (2.16) and a decreasing sequence of real
numbers 0= ν0 > ν1 > · · · → −∞ such that for every J ∈ N, the difference

F∧,D∧(λ)
−1
−

J−1∑
j=0

r j (λ
iµ1, . . . , λiµN , log λ) λν j/m (2.19)

satisfies (2.18) with ν = νJ + ε for any ε > 0.

The phases µ1, . . . , µN and the exponents ν j in (2.19) depend on the boundary spectrum of A. In
fact, µ1, . . . , µN ∈M and ν j ∈ E for all j ; see (1.5) and (1.6).

This suggests the introduction of operator-valued symbols with a notion of asymptotic expansion in
components that take into account the rational structure above and the κ-homogeneity of the numerators.
The idea of course is to have a class of symbols whose structure is preserved under composition, differen-
tiation, and asymptotic summation. In the Appendix we propose such a class, Sν

+

R (3; E, Ẽ), a subclass
of the operator-valued symbols S∞(3; E, Ẽ) introduced by Schulze, where E and Ẽ are Hilbert spaces
with suitable group actions. The space Sν

+

R (3; E, Ẽ) is contained in Sν+ε(3; E, Ẽ) for any ε > 0.
As reviewed at the beginning of the Appendix, the notion of anisotropic homogeneity in S(ν)(3; E, Ẽ)

depends on the group actions in E and Ẽ . Thus homogeneity is always to be understood with respect to
these actions.

In the symbol terminology, we have

F∧,D∧(λ)
−1
∈ (S0+

R ∩ S0)(3R;D∧/D∧,min,D∧,max/D∧,min),
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where D∧/D∧,min carries the trivial action and D∧,max/D∧,min is equipped with κ%.

Proof of Proposition 2.17. Since 3 is a sector of minimal growth for A∧,D∧ , there exists R > 0 such that
(A∧,D∧− λ) is invertible for λ ∈ 3R , which by definition is equivalent to the invertibility of F∧,D∧(λ).
Since the map ζ 7→ κζ̂ 1/m is uniformly bounded (recall that ζ̂ = ζ/|ζ |), the relation (2.12) together with
Theorem 2.15 give the estimate (2.18) for α = β = 0. If we differentiate with respect to λ (or λ̄), then

∂λF∧,D∧(λ)
−1
=−F∧,D∧(λ)

−1
[∂λF∧,D∧(λ)]F∧,D∧(λ)

−1
=−F∧,D∧(λ)

−1
[∂λF∧(λ)]F∧,D∧(λ)

−1.

Now, if we equip D∧/D∧,min with the trivial group action and D∧,max/D∧,min with κ%, then

F∧(λ) : D∧,max/D∧,min→ D∧/D∧,min

is homogeneous of degree zero, hence ‖∂λF∧(λ)κ|λ|1/m‖ is O(|λ|−1) as |λ| →∞. Therefore,∥∥κ−1
|λ|1/m∂λF∧,D∧(λ)

−1∥∥= O(|λ|−1) as |λ| →∞,

since κ−1
|λ|1/m∂λF∧,D∧(λ)

−1 can be written as

−[κ−1
|λ|1/m F∧,D∧(λ)

−1
][∂λF∧(λ)κ|λ|1/m ][κ−1

|λ|1/m F∧,D∧(λ)
−1
],

and the first and last factors are uniformly bounded by our previous argument. The corresponding esti-
mates for arbitrary derivatives follow by induction.

Next, observe that by (2.12),

F∧,D∧(λ)
−1
= κζ 1/m

(
πκ−1

ζ1/m D,K∧,λ0

)
κ−1
ζ̂ 1/m ,

with ζ = λ/λ0 and ζ̂ = ζ/|ζ |. For λ∈3R let k(λ)= κζ 1/m and k̂(λ)= κ−1
ζ̂ 1/m . Then k(λ) is a homogeneous

symbol in S(0)(3R;D∧,max/D∧,min,D∧,max/D∧,min), where the first copy of the quotient is equipped with
the trivial action and the target space carries κ%. Similarly, k̂(λ) ∈ S(0)(3R;D∧/D∧,min,D∧,max/D∧,min)

with respect to the trivial action on both spaces.
Finally, the asymptotic expansion claimed in (ii) follows from Theorem 4.13 together with the homo-

geneity properties of k(λ) and k̂(λ). �

As a consequence of Proposition 2.17, and since B∧(λ), 1− B∧(λ)(A∧−λ), and T∧(λ) in (2.2) are
homogeneous of degree −m, 0, and −m, in their respective classes, we obtain:

Proposition 2.20. If 3 is a sector of minimal growth for A∧,D∧ , then for R > 0 large enough, we have

(A∧,D∧− λ)
−1
∈ (S(−m)+

R ∩ S−m)(3R; x−m/2L2
b,D∧,max),

where the spaces are equipped with the standard action κ%. The components have orders ν+ with ν ∈ E

and their phases belong to M; see (1.5) and (1.6).

3. Limiting orbits

We will write E instead of D∧,max/D∧,min and denote by a : E→ E the infinitesimal generator of the
R+ action (%, v) 7→ κ−1

% v on E, so that κ−1
% D = etaD with t = log %. In what follows we allow t to be

complex. The spectrum of a is related to the boundary spectrum of A by

spec a=
{
−iσ −m/2 : σ ∈ specb(A), −m/2< Im σ < m/2

}
. (3.1)
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For each λ ∈ spec a let Eλ be the generalized eigenspace of a associated with λ, let πλ : E→ E be the
projection on Eλ according to the decomposition

E=
⊕

λ∈spec a

Eλ.

Define N : E→ E and Nλ : Eλ→ Eλ by

N = a −
∑

λ∈spec a
λπλ, Nλ = N |Eλ,

respectively. Thus N is the nilpotent part of a. Correspondingly, let

a′ : E→ E, a′ =
∑

λ∈spec a
(i Im λ)πλ, (3.2)

so a′ is the skew-adjoint component of the semisimple part of a.
For µ ∈ Re(spec a) let

Ẽµ =
⊕

λ∈spec a
Re λ=µ

Eλ,

let π̃µ : E→ E be the projection on Ẽµ according to the decomposition

E=
⊕

µ∈Re(spec a)

Ẽµ,

and set
Ñµ = N |Ẽµ : Ẽµ→ Ẽµ.

Fix an auxiliary Hermitian inner product on E so that
⊕

Eλ is an orthogonal decomposition of E. Then
a′ is skew-adjoint and eta′ is unitary if t is real.

Proposition 3.3. For every D ∈ Grd ′′(E) there is D∞ ∈ Grd ′′(E) such that

dist(etaD, eta′D∞)→ 0 as Re t→∞ in Sθ = {t ∈ C : |Im t | ≤ θ} (3.4)

for any θ > 0. The set

�+θ (D)=
{

D′ ∈ Grd ′′(E) : ∃{tν} ⊂ Sθ : Re tν→∞ and limν→∞ etνaD = D′
}

is the closure of
{eta′D∞ : t ∈ Sθ }.

We are using �+ for the limit set for consistency with common usage: we are letting Re t tend to
infinity.

If F is a vector space, we will write F[t, t−1
] for the space of polynomials in t and t−1 with coefficients

in F (that is, the F-valued rational functions on C with a pole only at 0). If p∈F[t, t−1
], let cs(p) denote

the coefficient of t s in p, and if p 6= 0, let

ord(p)=max{s ∈ Z : cs(p) 6= 0}.

The proof of the proposition hinges on the following lemma, whose proof will be given later.
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Lemma 3.5. Let D ⊂ E be an arbitrary nonzero subspace. Define D1
= D and by induction define

µl =max
{
µ ∈ Re(spec a) : π̃µDl

6= 0
}
, Dl+1

= ker π̃µl |Dl , Dµl = (D
l+1)⊥ ∩ Dl,

starting with l = 1. Let L be the smallest l such that Dl+1
= 0. Thus

π̃µl |Dl : Dµl → π̃µl Dµl is an isomorphism (3.6)

and D =
L⊕

l=1
Dµl . Then for each l there are elements

p̃l
k ∈ π̃µl Dµl [t, 1/t], k = 1, . . . , dim Dµl ,

such that with
q̃l

k(t)= et Ñµl p̃l
k(t),

we have ord q̃l
k = 0 and the elements

gl
k = c0(q̃l

k),

for k = 1, . . . , dim Dµl , are independent.

Proof of Proposition 3.3. Suppose D ⊂ E is a subspace. With the notation of Lemma 3.5 let

Dµl ,∞ = span{gl
k : k = 1, . . . , dim Dµl }.

Since et Ñµl is invertible and q̃l
k(t) = gl

k + h̃l
k(t) with h̃l

k(t) = O(t−1) for large Re t (t ∈ Sθ ), the vectors
p̃l

k(t) form a basis of π̃µl Dµl for all sufficiently large t . Using (3.6) we get unique elements

pl
k ∈ Dµl [t, 1/t], π̃µl pl

k = p̃l
k .

For each l the pl
k(t) give a basis of Dµl if t is large enough, and therefore also the

e−tµl pl
k(t), k = 1, . . . , dim Dµl ,

form a basis of Dµl for large Re t . Consequently, the vectors

etae−tµl pl
k(t), k = 1, . . . , dim Dµl , l = 1, . . . , L ,

form a basis of etaD for large Re t . We have, with Nλ = N |Eλ ,

etae−tµl pl
k(t)=

∑
λ∈spec a

et (λ−µl )et Nλπλ pl
k(t)

=
∑

λ∈spec a
Re λ=µl

et (λ−µl )et Nλπλ pl
k(t)+

∑
λ∈spec a
Re λ<µl

et (λ−µl )et Nλπλ pl
k(t)

= eta′et Ñµl π̃µl pl
k(t)+

∑
λ∈spec a
Re λ<µl

et (λ−µl )et Nλπλ pl
k(t)

= eta′(gl
k + h̃l

k(t))+
∑

λ∈spec a
Re λ<µl

et (λ−µl )et Nλπλ pl
k(t)

so etae−tµl pl
k(t) = eta′gl

k + hl
k(t), where hl

k(t) = O(t−1) as Re t →∞ in Sθ . It follows that (3.4) holds
with D∞ =

⊕L
l=1 Dµl ,∞. This completes the proof of the first assertion of Proposition 3.3.
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Remark 3.7. The formulas for the vl
k(t)= etae−tµl pl

k(t) given in the last displayed line above will even-
tually give the asymptotics of the projections πeta D,K (assuming VK ∩�

+(D)=∅, see Theorem 2.15).
Note that the shift by m/2 in (3.1) is irrelevant and that the coefficients of the exponents in the formula
for vl

k(t) belong to {
λ−Re λ′ : λ, λ′ ∈ spec a, Re λ≤ Re λ′

}
. (3.8)

Because of (3.1), this set is equal to

−i
{
σ − i Im σ ′ : σ, σ ′ ∈ specb(A), −m/2< Im σ ≤ Im σ ′ < m/2

}
. (3.9)

If all elements of {σ ∈ specb(A) : −m/2 < Im σ < m/2} have the same real part, then all elements of
(3.8) have the same imaginary part ν, the operator a′ is multiplication by iν, and we can divide each of
the vl

k(t) by ei tν to obtain a basis of etaD in which the coefficients of the exponents are all real.

To prove the second assertion of the proposition, we note first that (3.4) implies that �+θ (D) is con-
tained in the closure of {eta′D∞ : t ∈ Sθ }. To prove the opposite inclusion, it is enough to show that

eta′D∞ ∈�+θ (D) (3.10)

for each t ∈ Sθ , since �+θ (D) is a closed set. Writing eta′D∞ as ei Im t a′(eRe t a′D∞) further reduces the
problem to the case θ = 0 (that is, t real). While proving (3.10) we will also show that the closure X of
{eta′D∞ : t ∈ R} is an embedded torus, equal to �+0 (D).

Let {λk}
K
k=1 be an enumeration of the elements of spec a. Define f : RK

×Grd ′′(E)→ Grd ′′(E) by

f (τ, D)= e
∑

iτ kπλk D,

τ = (τ 1, . . . , τ K ). This is a smooth map. Since the πλk commute with each other, f defines a left action
of RK on Grd ′′(E). For each τ ∈ RK define

fτ : Grd ′′(E)→ Grd ′′(E), fτ (D)= f (τ, D),

and for each D ∈ Grd ′′(E) let

f D
: RK
→ Grd ′′(E), f D(τ )= f (τ, D).

The maps fτ are diffeomorphisms.
We claim that f D∞ factors as the composition of a smooth group homomorphism φ :RK

→ TK ′ onto
a torus and an embedding h : TK ′

→ Grd ′′(E),

RK TK ′

Grd ′′(E).
?

f D∞

φ
-

h.

.......................................................................................................=

Both φ and h depend on D∞.
To prove the claim we begin by observing that {u ∈ T RK

: d f D∞(u) = 0} is translation-invariant.
Indeed, let τ0 ∈ RK , let v = (v1, . . . , vK ) ∈ RK , and let γ : R→ RK be the curve γ(t)= tv. Then

f D∞(τ0+ γ(t))= fτ0 ◦ f D∞(γ(t)),
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so
d f D∞

(∑
vk∂τ k |τ0

)
= d fτ0 ◦ d f D∞

(∑
vk∂τ k |0

)
.

Since fτ0 is a diffeomorphism,∑
vk∂τ k |τ0 ∈[ker d f D∞ :Tτ0RK

→T f D∞ (τ0)Grd ′′(E)] ⇐⇒
∑
vk∂τ k |0∈[ker d f D∞ :T0RK

→TD∞Grd ′′(E)].

Thus the kernel of d f D∞ is translation-invariant as asserted.
Identify the kernel of d f D∞ : T0RK

→ TD∞Grd ′′(E) with a subspace S of RK in the standard fashion.
Then f D∞ is constant on the translates of S and if R is a subspace of RK complementary to S, then
f D∞ |R is an immersion. Renumbering the elements of spec a′ (and reordering the components of RK

accordingly) we may take R= RK ′
× 0.

Since f D∞ |R is an immersion, the sets

FD′ = {τ ∈R : f D∞(τ )= D′}

are discrete for each D′ ∈ f D∞(R). Using again the property f D∞(τ1+τ2)= fτ1 ◦ f D∞(τ2) for arbitrary
τ1, τ2 ∈RK , we see that FD∞ is an additive subgroup of R and that f D∞ is constant on the lateral classes
of FD∞ . Therefore f D∞ |R factors through a (smooth) homomorphism φ :R→R/FD∞ and a continuous
map R/FD∞→Grd ′′(E). Since f D∞ is 2π -periodic in all variables, 2πZK ′

⊂FD∞ , so R/FD∞ is indeed
a torus TK ′ . Since φ is a local diffeomorphism and f D∞ is smooth, h is smooth.

With this, the proof of the second assertion of the proposition goes as follows. Let L ⊂ RK be the
subspace generated by (Im λ1, . . . , Im λK ). This is a line or the origin. Its image by φ is a subgroup H
of TK ′ , so the closure of φ(L) is a torus G ⊂ TK ′ , and h(φ(L)) is an embedded torus X⊂ Grd ′′(E). On
the other hand, h ◦φ(L)= f D∞(L) is the image of the curve γ : t→ eta′D∞, so the closure of the image
of γ is X. Clearly, �+0 (D) ⊂ X. The equality of �+0 (D) and X is clear if γ is periodic or L = {0}. So
assume that γ is not periodic and L 6= {0}. Then H 6= G and there is a sequence

{gν}∞ν=1 ⊂ G r H

such that gν→ e, the identity element of G. Let v be an element of the Lie algebra of G such that H is the
image of t 7→ exp(tv). For each ν there is a sequence {tν,ρ}∞ρ=1, necessarily unbounded because gν /∈ H ,
such that gν = limρ→∞ exp(tν,ρv). We may assume that {tν,ρ}∞ρ=1 is monotonic, so it diverges to +∞ or
to −∞. In the latter case we replace gν by its group inverse, so we may assume that limρ→∞ tν,ρ =∞
for all ν. Thus if g ∈ H is arbitrary, then h(ggν) ∈�+0 (D) and h(ggν) converges to h(g). Since �+0 (D)
is closed, this shows that h ◦φ(H)⊂�+0 (D). Consequently, also X⊂�+0 (D).

This completes the proof of the second assertion of Proposition 3.3. �

As a consequence of the proof we have that �+θ (D) is a union of embedded tori:

�+θ (D)=
⋃

s∈[−θ,θ ]

eisa′
{eta′D∞ : t ∈ R}.

The proof of Lemma 3.5 will be based on the following lemma. The properties of the elements
p̃l

k ∈ π̃µl Dµl [t, 1/t] whose existence is asserted in Lemma 3.5 pertain only to Ẽµl , Ñµl , and the subspace
π̃µl Dµl of Ẽµl . For the sake of notational simplicity we let W= π̃µl Dµl and drop theµl from the notation.
The space Ẽ comes equipped with some Hermitian inner product, and Ñ is nilpotent.
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Lemma 3.11. There is an orthogonal decomposition W=
J⊕

j=0

M j⊕
m=0

Wm
j (with nontrivial summands) and

nonzero elements

Pm
j ∈ Hom(Wj,m,Wj ′)[t, t−1

], (3.12)

where

Wj,m =

M j⊕
m′=m

Wm′
j , W′j =

j⊕
j ′=0

Wj ′,0,

satisfying the following properties:

(1) P0
j = IWj,0 .

(2) Let Qm
j (t) = et Ñ Pm

j (t) and nm
j = ord(Qm

j ). Then the sequence {nm
j }

M j
m=0 is strictly decreasing and

consists of nonnegative numbers.

(3) Let
Gm

j = cnm
j
(Qm

j ), Vm
j = Gm

j (W
m
j ). (3.13)

Then

Wj,m+1 = (Gm
j )
−1
( j−1⊕

j ′=0

M j ′⊕
m′=0

Vm′
j ′ +

m−1⊕
m′=0

Vm′
j

)
. (3.14)

(4) There are unique maps Fm′,m+1
j ′, j :Wj,m+1→Wm′

j ′ such that

Gm
j +

j−1∑
j ′=0

M j ′∑
m′=0

Gm′
j ′ Fm′,m+1

j ′, j +

m−1∑
m′=0

Gm′
j Fm′,m+1

j, j = 0 (3.15)

holds on Wj,m+1, and

Pm+1
j = Pm

j +
j−1∑
j ′=0

M j ′∑
m′=0

tnm
j −nm′

j ′ Pm′
j ′ Fm′,m+1

j ′, j +

m−1∑
m′=0

tnm
j −nm′

j Pm′
j Fm′,m+1

j, j . (3.16)

The lemma is a definition by induction if we adopt the convention that spaces with negative indices
and summations where the upper index is less than the lower index are the zero space. In the inductive
process that will constitute the proof of the lemma we will first define Wj,m+1⊂Wj,m using (3.14) starting
with suitably defined spaces Wj,0 and then define

Wm
j =Wj,m ∩W⊥j,m+1.

Note that the right hand side of (3.14) depends only on Wj,m , Pm
j (through Gm

j ) and the spaces Vm′
j ′ with

j ′< j and m′ arbitrary, or j ′= j and m′<m. The relation (3.15) follows from (3.14) and induction, and
then (3.16) (where Pm

j actually means its restriction to Wj,m+1) is a definition by induction; it clearly
gives that the Pm

j (t) have values in W′j as required in (3.12).
We will illustrate the lemma and its proof with an example and then give a proof.

Example 3.17. Suppose Ẽ is spanned by elements e j,k ( j = 0, 1 and k= 1, . . . , K j ) and that the Hermit-
ian inner product is defined so that these vectors are orthonormal. Define the linear operator Ñ : Ẽ→ Ẽ

so that Ñe j,1 = 0 and Ñe j,k = e j,k−1 for 1 < k ≤ K j . Thus Ñ ke j,k = 0 and Ñ ke j,k+1 = e j,1 6= 0. Pick



DYNAMICS ON GRASSMANNIANS AND RESOLVENTS OF CONE OPERATORS 131

integers 0≤ s0 < s1 <min{K0, K1}, and let

W= span{e0,s0+1, e1,s1+1, e0,s1+1+ e1,s1}.

If w ∈W and w 6= 0, then et Ñw is a polynomial of degree exactly s0 or s1. Let W0,0 =W∩ ker Ñ s0+1,
that is,

W0,0 = span{e0,s0+1}.

Then et Ñw is polynomial of degree s0 if w ∈W0,0. Let W1,0 =W∩ ker Ñ s1+1
∩W⊥0,0. Thus

W1,0 = span{e1,s1+1, e0,s1+1+ e1,s1},

and et Ñw is polynomial of degree exactly s1 if w ∈W1,0 and w 6= 0. With these spaces we have

W=W0,0⊕W1,1

as an orthogonal sum. By (1) of Lemma 3.11, P0
0 = IW0,0 . So et Ñ P0

0 is the restriction of

et Ñ
=

s0∑
k=0

tk

k!
Ñ k

to W0,0, n0
0= s0, and G0

0 is (1/s0!)Ñ s0 restricted to W0,0. Thus V0
0= span{e0,1}. The space W0,1, defined

using (3.14), is the zero space by the convention on sums where the upper index is less than the lower
index. Thus M0 = 0. We next analyze what the lemma says when j = 1. As when j = 0, P0

1 = IW1,0 , so
et Ñ P0

1 is the restriction of

et Ñ
=

s1∑
k=0

tk

k!
Ñ k

to W1,0. Hence n0
1 = s1, and G0

1 = (1/s1!)Ñ s1 |W1,0 . The preimage of V0
0 by G0

1 is

W1,1 = span{e0,s1+1+ e1,s1},

and so W0
1 = span{e1,s1+1} and V0

1 = span{e1,1}. With w = e0,s1+1+ e1,s1 we have

G0
1w =

1
s1!

e0,1 = G0
0

s0!

s1!
e0,s0+1,

so with F0,1
0,1 :W1,1→W0

0 defined by

F0,1
0,1w =−

s0!

s1!
e0,s0+1

we have G0
1+G0

0 F0,1
0,1 = 0. Formula (3.16) reads

P1
1 (t)= IW1,1 + t s1−s0 F0,1

0,1

in this instance, and

et Ñ P1
1 (t)w =

s1∑
k=0

tk

k!
Ñ kw−

s0! t s1−s0

s1!

s0∑
k=0

tk

k!
Ñ ke0,s0+1.
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In the first sum the highest order term is t s1/s1! e0,1, while in the second it is t s0/s0! e0,1. Taking into
account the coefficient of the second sum we see that et Ñ P1

1 (t)w has order < s1. A more detailed
calculation gives that the order is s1− 1, and that the leading coefficient is given by the map

w 7→
( 1
(s1−1)!

−
s0!

s1!(s0−1)!

)
e0,2+ e1,1;

its image spans V1
1. Note that V0

0+V0
1+V1

1 is a direct sum and is invariant under Ñ .

Proof of Lemma 3.11. We note first that the properties of the objects in the lemma are such that

Dµ,∞ =

J∑
j=0

M j∑
m=0

Vm
j (3.18)

is a direct sum. Indeed, suppose we have wm
j ∈Wm

j , j = 0, . . . , J , m = 0, . . . ,M j such that

J∑
j=0

M j∑
m=0

Gm
j w

m
j = 0.

If some wm
j is nonzero, let

j0 =max{ j : ∃m such that wm
j 6= 0}, m0 =max{m : wm

j0 6= 0},

so that wm0
j0 6= 0. Thus

Gm0
j0 w

m0
j0 =−

j0−1∑
j=0

M j∑
m=0

Gm
j w

m
j −

m0−1∑
m=0

Gm
j0w

m
j0 ∈

j0−1∑
j=0

M j∑
m=0

Vm
j −

m0−1∑
m=0

Vm
j0
,

therefore wm0
j0 ∈Wj0,m0+1 by (3.14). But also wm0

j0 ∈Wm0
j0

, a space which by definition is orthogonal to
Wj0,m0+1. Consequently wm0

j0 = 0, a contradiction. It follows that (3.18) is a direct sum as claimed, and
in particular that the maps

Gm
j |Wm

j
:Wm

j → Vm
j

are isomorphisms.
Note that et Ñw is a nonzero polynomial whenever w ∈W r 0 and let

{s j }
J
j=0 = {deg et Ñw : w ∈W, w 6= 0}

be an enumeration of the degrees of these polynomials, in increasing order. Let W−1,0 = {0} ⊂W and
inductively define

Wj,0 =W∩ ker Ñ s j+1
∩W⊥j−1,0, j = 0, . . . , J.

Thus Wj,0 ⊂W and W=
J⊕

j=0
Wj,0 is an orthogonal decomposition of W; moreover,

Ñ s j |Wj,0 :Wj,0→ Ẽ

is injective for j = 0, . . . , J , and if w ∈Wj,0 r 0 then et Ñw is a polynomial of degree exactly s j . The
spaces Wm

j will be defined so that
⊕

mWm
j =Wj,0.
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Let P0
0 (t) = IW0,0 , let Q0

0(t) = et Ñ P0
0 (t). Then ord(Q0

0) = s0 and G0
0 = 1/s0! Ñ s0 |W0,0 . By (3.14),

W0,1 is the preimage of the zero vector space. Since Ñ s0 is injective on W0,0, W0,1 = 0, W0
0 =W0,0 and

M0 = 0. Let V0
0 = G0

0(W
0
0). This proves the lemma if J = 0.

We continue the proof using induction on J . Suppose that J ≥ 1 and that the lemma has been proved
for W′ =

⊕J−1
j=0 Wj,0, so we have all objects described in the statement of the lemma, for W′. The

corresponding objects for WJ ,0 are then defined by induction in the second index, as follows.
First, let P0

J (t)= IWJ ,0 , Q0
J = et Ñ P0

J (a polynomial in t of degree n0
J = sJ ) and G0

J = csJ (Q
0
J ).

Next, suppose we have found

WJ ,0 ⊃ · · · ⊃WJ ,M−1 and Pm
j ∈ L(Wj,m,W)[t, t−1

]

so that the properties described in the lemma are satisfied for j < J and all m, or j = J and m ≤ M−1.
As discussed, it follows that

M−2∑
m=0

Vm
J +

J−1∑
j=0

M j∑
m=0

Vm
j

is a direct sum and that the maps
Gm

j |Wm
j
:Wm

j → Vm
j (3.19)

defined so far are isomorphisms. Suppose further that the nm
J = ord(Qm

J ), m = 0, . . . ,M−1, are non-
negative and strictly decrease as m increases. In agreement with (3.14), let

WJ ,M = (G M−1
J )−1

(M−2∑
m=0

Vm
J +

J−1∑
j=0

M j∑
m=0

Vm
j

)
,

a subspace of the domain WJ ,M−1 of G M−1
J . Define WM−1

J =WJ ,M−1 ∩W⊥J ,M . If w ∈WJ ,M , then

G M−1
J w =

M−2∑
m=0

vm
J +

J−1∑
j=0

M j∑
m=0

vm
j

uniquely with vm
j ∈ Vm

j . Since the maps (3.19) are isomorphisms, there are unique maps

Fm,M
j,J :WJ ,M →Wm

j ,

j = 0, . . . , J − 1 and m = 0, . . . ,M j , or j = J and m = 0, . . . ,M − 2 such that

G M−1
J +

M−2∑
m=0

Gm
J Fm,M

J,J +
J−1∑
j=0

M j∑
m=0

Gm
j Fm,M

j,J = 0

on WJ ,M , that is, (3.15) holds. Define

P M
J = P M−1

J +

M−2∑
m=0

tnM−1
J −nm

J Pm
J Fm,M

J,J +
J−1∑
j=0

M j∑
m=0

tnM−1
J −nm

j Pm
j Fm,M

j,J

so (3.16) holds. Let QM
J = et Ñ P M

J . Because of (3.13), each term on the right in

QM
J = QM−1

J +

M−2∑
m=0

tnM−1
J −nm

J Qm
J Fm,M

J,J +
J−1∑
j=0

M j∑
m=0

tnM−1
J −nm

j Qm
j Fm,M

j,J .
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has order nM−1
J , so cn(QM

J )= 0 if n ≥ nM−1
J . If QM

J 6= 0, let nM
J = ord(QM

J ). A fortiori nM
J < nM−1

J .
We now show that if QM

J = 0, then WJ ,M = 0, so MJ = M − 1 and the inductive construction stops.
Let Fm,m+1

j, j :Wj,m+1→Wj,m be the inclusion map. Note that the combination of indices just used
does not appear in (3.15): these maps are not defined in the statement of the lemma. With this notation

Pm
J =

m−1∑
m′=0

tnm−1
J −nm′

J Pm′
J Fm′,m

J,J + H̃ m
J (3.20)

for m = 1, . . . ,M and some H̃ m
J ∈ L(WJ ,m,W′)[t, t−1

]. Let Pm be the set of finite strictly increasing
sequences ν = (ν0, ν1, . . . , νk) of elements of {0, . . . ,m} with ν0= 0 and νk =m. For ν = (ν0, . . . , νk)∈

Pm (m ≥ 1) define

Fν
J = Fν0,ν1

J,J ◦ · · · ◦ Fνm−1,νm
J,J ,

nνJ = (n
ν1−1
J − nν0

J )+ (n
ν2−1
J − nν1

J )+ · · ·+ (n
νk−1
J − nνk−1

J ).

Since the nm′
J strictly decrease as m′ increases, the numbers nνJ are strictly negative except when ν is

the maximal sequence νmax in {0, . . . ,m}, in which case nνmax
J = 0 and Fνmax is the inclusion of WJ ,m in

WJ ,0. It is not hard to prove by induction on m, using (3.20), that

Pm
J = P0

J
∑
ν∈Pm

tnνJ Fν
J + H m

J (3.21)

for all m ≥ 1 where H m
J ∈ L(WJ ,m,W′)[t, t−1

]. If QM
J = 0, then P M

J = 0, so, since Ñ sJ H M
J = 0,

Ñ sJ P M
J =

∑
ν∈PM

tnνJ Ñ sJ Fν
J = 0.

In particular, Ñ sJ Fνmax
J = c0(Ñ sJ P M

J )= 0. Since Ñ sJ is injective on WJ ,0, we conclude that the inclusion
of WJ ,M in WJ ,0 is zero. This means that WJ ,M = 0, so the inductive construction stops with MJ =M−1.

We will now show that there is a finite M such that QM
J = 0. The inductive construction gives, as long

as Qm
J 6= 0, the numbers nm

J = ord(Qm
J ) which form a strictly decreasing sequence in m, with n0

J = sJ .
Suppose nM−1

J ≥ 0, QM
J 6= 0, and nM

J < 0. In particular, the coefficient of t0 in QM
J vanishes. Using

(3.21) with m = M we have

et Ñ P M
J =

∑
ν∈PM

sJ∑
s=0

t s+nνJ

s!
Ñ s Fν

J + et Ñ H M
J .

The coefficient of t0 is

c0(et Ñ P M
J )=

∑
ν∈PM

1
(−nνJ )!

Ñ−nνJ Fν
J + c0(et Ñ H M

J );

recall that nνJ ≤ 0. Since H M
J maps into W′, we have Ñ sJ c0(H M

J )= 0, and since Ñ s
|WJ ,0 = 0 if s > sJ ,

Ñ sJ Ñ−nνJ = 0 if nνJ 6= 0. Thus

Ñ sJ c0(et Ñ P M
J )= Ñ sJ Fνmax

J ,

where νmax = (0, 1, . . . ,M). Since c0(et Ñ P M
J ) = 0 by hypothesis, since Fνmax

J is the inclusion of WJ ,M

in WJ ,0, and since Ñ sJ is injective on WJ ,0, WJ ,M = 0. �
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Proof of Lemma 3.5. Apply Lemma 3.11 to each of the spaces Wµl = π̃µl Dµl . The corresponding objects
are labeled adjoining l as a subindex. Get in particular, decompositions

π̃µl Dµl =

Jl⊕
j=0

M j,l⊕
m=0

Wm
j,l ⊂ Ẽµl

for each l, and operators Gm
j,l :W

m
j,l→ Vm

j,l ⊂ Ẽµl such that

Jl⊕
j=0

M j,l⊕
m=0

Gm
j,l |Wm

j,l
:

Jl⊕
j=0

M j,l⊕
m=0

Wm
j,l→ Dµl ,∞ =

Jl⊕
j=0

M j,l⊕
m=0

Vm
j,l

is an isomorphism. Let dm
j,l = dim Wm

j,l and pick a basis

wm
j,l.k, 1≤ k ≤ dm

j,l

of Wm
j,l , j = 0, . . . , Jl , m = 0, . . . ,M j,l . Then p̃m

j,l,k(t)= t−nm
j,l Pm

j,l(t)w
m
j,l,k ∈Wµl . These elements

p̃m
j,l,k ∈Wµl [t, t−1

], for j = 0, . . . , Jl, m = 0, . . . ,M j,l, l = 1, . . . dm
j,l,

are the ones Lemma 3.5 claims exist. Indeed, since Qm
j,l(t)= et Ñµl Pm

j,l(t),

lim
Re t→∞

t∈Sθ

et Ñµl t−nm
j,l Pm

j,l(t)w
m
j,l,k = Gm

j,lw
m
j,l,l .

Since the Gm
j,lw

m
j,l,k form a basis of Dµ,∞, the t−nm

j,l Pm
j,l(t)w

m
j,l,k , form a basis of Wµl for all t ∈ Sθ with

large enough real part. �

4. Asymptotics of the projection

With the setup and (slightly changed) notation leading to and in the proof of Proposition 3.3, given a
subspace D ⊂ E and the linear map a : E→ E we have, for fixed θ ≥ 0 and t ∈ Sθ = {t ∈ C : |Im t | ≤ θ},

etaD = span{vk(t)}, Re t � 0

with

vk(t)= eta′gk(t)+
∑

λ∈spec a
Re λ<µk

et (λ−µk) p̂k,λ(t). (4.1)

The gk(t) are polynomials in 1/t with values in Ẽµk , the collection of vectors

g∞,k = lim
t→∞

gk(t)

is a basis of D∞, theµk form a finite sequence, possibly with repetitions, of elements in {Re λ :λ∈ spec a},
and we have

p̂k,λ(t)= et Nλπλ pk(t),
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where the p(t) are polynomials in t and 1/t with values in E. The additive semigroup Sa ⊂C (possibly
without identity) generated by the set (3.8) is a subset of {λ ∈ C : Re λ ≤ 0} and has the property that
{ϑ ∈Sa : Reϑ > µ} is finite for every µ ∈ R.

Proposition 4.2. Let K ∈ Grd ′(E) be complementary to D, and suppose that

VK ∩�
+

θ (D)=∅. (4.3)

There are polynomials pϑ(z1, . . . , zN , t) with values in End(E) and C-valued polynomials

qϑ(z1, . . . , zN , t)

such that

∃C, R0 > 0 such that
∣∣qϑ(ei t Im λ1, . . . , ei t Im λN , t)

∣∣> C if t ∈ Sθ , Re t > R0 (4.4)

and such that

πeta D,K =
∑
ϑ∈Sa

etϑ pϑ(ei t Im λ1, . . . , ei t Im λN , t)
qϑ(ei t Im λ1, . . . , ei t Im λN , t)

, t ∈ Sθ , Re t > R0,

with uniform convergence in norm in the indicated subset of Sθ .

Proof. Let K ⊂ E be complementary to D as indicated in the statement of the proposition, let u =
[u1, . . . , ud ′] be an ordered basis of K . Write g for an ordering of the basis {g∞,k} of D∞. With the
vk(t) ordered as the g∞,k to form v(t), we have[

v(t) u
]
=
[
g u

]
·

[
α(t) 0
β(t) I

]
, (4.5)

where
α(t)=

∑
k

∑
λ∈spec a
Re λ≤µk

et (λ−µk)αk,λ(t), β(t)=
∑
k

∑
λ∈spec a
Re λ≤µk

et (λ−µk)βk,λ(t). (4.6)

The entries of the matrices αk,λ(t) and βk,λ(t) are both polynomials in t and 1/t , but only in 1/t if
Re λ= µk . Define

α(0)(t)=
∑
k

∑
λ∈spec a
Re λ=µk

et (λ−µk)αk,λ(t), α̃(t)=
∑
k

∑
λ∈spec a
Re λ<µk

et (λ−µk)αk,λ(t), (4.7)

and likewise β(0)(t) and β̃(t). Note that α̃(t) and β̃(t) decrease exponentially as Re t →∞ with |Im t |
bounded.

The hypothesis (4.3) implies that
[
α(t) 0
β(t) I

]
is invertible for every sufficiently large Re t , so α(t) is

invertible for such t . In fact,

there are C, R0 > 0 such that
∣∣det(α(t))

∣∣> C if t ∈ Sθ , Re t > R0. (4.8)

For suppose this is not the case. Then there is a sequence {tν} in Sθ with Re tν→∞ as ν→∞ such that
detα(tν)→ 0. Since both α(tν) and β(tν) are bounded, we may assume, passing to a subsequence, that
they converge. It follows that etνa D converges, by definition, to an element D′ ∈�+θ (D). Also the matrix
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in (4.5) converges. The vanishing of the determinant of the limiting matrix implies that K ∩ D′ 6= {0},
contradicting (4.3). Thus (4.8) holds.

If φ ∈ E then of course

φ =
[
g u

]
·

[
ϕ1

ϕ2

]
,

where the ϕi are columns of scalars. Substituting[
g u

]
=
[
v(t) u

]
·

[
α(t)−1 0

−β(t)α(t)−1 I

]
gives

φ =
[
v(t) u

]
·

[
α(t)−1 0

−β(t)α(t)−1 I

] [
ϕ1

ϕ2

]
=
[
v(t) u

]
·

[
α(t)−1ϕ1

−β(t)α(t)−1ϕ1
+ϕ2

]
;

hence
φ = v(t) ·α(t)−1ϕ1

+ u · (−β(t)α(t)−1ϕ1
+ϕ2).

This is the decomposition of φ according to E= etaD⊕ K ; therefore

πeta D,Kφ = v(t) ·α(t)−1ϕ1.

Replacing v(t)= g ·α(t)+ u ·β(t) we obtain

πeta D,Kφ = (g ·α(t)+ u ·β(t))α(t)−1ϕ1
= (g+ u ·β(t)α(t)−1)ϕ1. (4.9)

The matrix α(0)(t) is invertible because of (4.8) and the decomposition α(t)= α(0)(t)+ α̃(t), so

β(t)α(t)−1
= β(t)α(0)(t)−1(I + α̃(t)α(0)(t)−1)−1

= β(t)α(0)(t)−1
∞∑

l=0
(−1)l[α̃(t)α(0)(t)−1

]
l .

(4.10)

The series converges absolutely and uniformly in {t ∈ Sθ : Re t > R0} for some real R0 ∈ R. The entries
of α(0)(t) are expressions ∑

λ∈spec a
ei t Im λ

N∑
ν=0

cλ,ν t−ν;

hence
detα(0)(t)= q(ei t Im λ1, . . . , ei t Im λN , 1/t),

for some polynomial q(z1, . . . , zN , 1/t). Note that because of (4.8),

there are C, R0 > 0 such that
∣∣det(α0(t))

∣∣> C if t ∈ Sθ , Re t > R0. (4.11)

Since α(0)(t)−1
= (detα(0)(t))−11(t)† where 1(t)† is the matrix of cofactors of α(0)(t), (4.10) and (4.6)

give
β(t)α(t)−1

=
∑
ϑ∈Sa

rϑ(t)etϑ (4.12)

where Sa was defined before the statement of Proposition 4.2 as the additive semigroup generated by
{λ−Re λ′ : λ, λ′ ∈ spec a, Re λ≤ Re λ′} and rϑ(t) is a matrix whose entries are of the form

pϑ(ei t Im λ1, . . . , ei t Im λN , t, 1/t)
q(ei t Im λ1, . . . , ei t Im λN , 1/t)nϑ

,
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for some polynomial pϑ(z1, . . . , zN , t, 1/t) and nonnegative integers nϑ . Multiplying the numerator
and denominator by the same nonnegative (integral) power of t we replace the dependence on 1/t by
polynomial dependence in ei t Im λ1, . . . , ei t Im λN , t only. This gives the structure of the “coefficients” of
the etϑ stated in the proposition for the expansion of πeta D,K . �

The terms in (4.12) with Reϑ = 0 come from β(0)(t)α(0)(t)−1. So the principal part of πeta D,K is

σ (πeta D,K )φ = (g+ u ·β(0)(t)α(0)(t)−1)ϕ1

This principal part is not itself a projection, but

‖σ (πeta D,K )−πeta′D∞,K‖→ 0 as Re t→∞, t ∈ Sθ .

We now restate Proposition 4.2 as an asymptotics for the family (2.10) using the notation κ for the
action on E and express the asymptotics of πκ−1

ζ1/m D,K in terms of the boundary spectrum of A exploiting
(3.1). Condition (4.14) below corresponds to our geometric condition in part (iii) of Theorem 2.15
expressing the fact that 3 is a sector of minimal growth for A∧,D∧ . The �-limit set is the one defined in
(2.14). Recall that by ζ 1/m we mean the root defined by the principal branch of the logarithm on CrR−.
We let λ0 6= 0 be an element in the central axis of 3 and define 3̃= {ζ : ζλ0 ∈3}; this is a closed sector
not containing the negative real axis.

Let S⊂ C be the additive semigroup generated by

{σ − i Im σ ′ : σ, σ ′ ∈ specb(A), −m/2< Im σ ≤ Im σ ′ < m/2}.

Thus −iS=Sa. Let σ1, . . . , σN be an enumeration of the elements of

6 = specb(A)∩ {−m/2< Im σ < m/2}.

Theorem 4.13. Let K ∈ Grd ′(E) be complementary to D, suppose that

VK ∩�
−

3(D)=∅. (4.14)

Then there are polynomials pϑ(z1, . . . , zN , t) with values in End(E) and C-valued polynomials

qϑ(z1, . . . , zN , t)

such that

∃C, R0 > 0 such that
∣∣qϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m, t)

∣∣> C if ζ ∈ 3̃, |ζ |> R0, (4.15)

and such that

πκ−1
ζ1/m D

,K =
∑
ϑ∈S

ζ−iϑ/m pϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )
qϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )

, ζ ∈ 3̃, |ζ |> R0,

with uniform convergence in norm in the indicated subset of 3̃.

The elements ϑ ∈S are of course finite sums ϑ =
∑

n jk(σ j − i Im σk) for some nonnegative integers
n jk , with σ j , σk ∈6 and Im σ j ≤ Im σk . Separating real and imaginary parts we may write ζ−iϑ/m as a
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product of factors
ζ n jk(Im σ j−Im σk)/m

ζ in jk Re σk/m .

We thus see that we may also organize the series expansion of πκ−1
ζ1/m D

,K in the theorem as

πκ−1
ζ1/m D

,K =
∑
ϑ∈SR

ζ−iϑ/m p̃ϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )
q̃ϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )

,

where SR ⊂ R is the additive semigroup generated by{
Im σ − Im σ ′ : σ, σ ′ ∈6, Im σ ′ ≤ Im σ ′

}
and p̃ϑ , q̃ϑ are still polynomials.

Remark 4.16. If 6 lies on a line Re σ = c0, then −iS ⊂ R− − ic0. Also in this case, the coefficients
of the exponents in (4.1) can be assumed to have vanishing imaginary part (see Remark 3.7). Assuming
this, the coefficients of the exponents in (4.7) are real, in particular detα(0)(t) is just a polynomial in 1/t ,
the coefficients rϑ in the expansion (4.12) can be written as rational functions of t only. Consequently,
in the expansion of the projection in Theorem 4.13, the powers −iϑ are real ≤ 0 and the coefficients can
be written as rational functions of log ζ .

5. Asymptotic structure of the resolvent

For the analysis of (AD−λ)
−l for l ∈N sufficiently large we make use of the representation (1.8) of the

resolvent as

(AD− λ)
−1
= B(λ)+GD(λ), (5.1)

where B(λ) is a parametrix of (Amin− λ) and

GD(λ)= [1− B(λ)(A− λ)]FD(λ)
−1T (λ). (5.2)

The starting point of our analysis is

(AD− λ)
−l
=

1
(l−1)!

∂ l−1
λ (AD− λ)

−1 for any l ∈ N.

We are thus led to further analyze the asymptotic structure of the pieces involved in the representation
of the resolvent. In [Gil et al. 2010] we described in full generality the behavior of

B(λ), 1− B(λ)(A−λ), T (λ),

and we analyzed FD(λ)
−1 in the special case that D is stationary. In the case of a general domain D, we

now obtain as a consequence of Theorem 4.13 the following result.

Proposition 5.3. For R > 0 large enough we have

FD(λ)
−1
∈ (S0+

R ∩ S0)(3R;D∧/D∧,min,Dmax/Dmin).

The components of FD(λ)
−1 have orders ν+ with ν ∈ E, the semigroup defined in (1.6), and their phases

belong to the set M defined in (1.5).
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Here S0(3R;D∧/D∧,min,Dmax/Dmin) denotes the standard space of (anisotropic) operator-valued sym-
bols of order zero on 3R (see the Appendix), where D∧/D∧,min carries the trivial group action, and
Dmax/Dmin is equipped with the group action κ̃% = θ−1κρθ . The symbol class

S0+
R (3R;D∧/D∧,min,Dmax/Dmin)

is discussed in the Appendix (see Definition A.7). Recall that 3R = {λ ∈3 : |λ| ≥ R}.

Proof of Proposition 5.3. We follow the line of reasoning of [Gil et al. 2010, Propositions 5.10 and 5.17].
The crucial point is that we now know from Theorem 4.13 and Proposition 2.17 that F∧,D∧(λ)

−1 belongs
to the symbol class

(S0+
R ∩ S0)(3R;D∧/D∧,min,D∧,max/D∧,min),

where the actions on D∧/D∧,min and D∧,max/D∧,min are, respectively, the trivial action as above and
κ%. The components of F∧,D∧(λ)

−1 have orders ν+ with ν ∈ E, and their phases belong to the set M.
Consequently, 80(λ)= θ

−1 F∧,D∧(λ)
−1 belongs to

(S0+
R ∩ S0)(3R;D∧/D∧,min,Dmax/Dmin),

and we have the same statement about the orders and phases of its components.
Phrased in the terminology of the present paper, we proved (see [Gil et al. 2010, Proposition 5.10])

that the operator family

F(λ)= [T (λ)(A− λ)] : Dmax/Dmin→ D∧/D∧,min

belongs to the symbol class

(S0+
R ∩ S0)(3R;Dmax/Dmin,D∧/D∧,min),

and that
F(λ)80(λ)− 1= R(λ) ∈ S−1+ε(3R;D∧/D∧,min,D∧/D∧,min)

for any ε > 0. More precisely, F(λ) is an anisotropic log-polyhomogeneous operator-valued symbol.
We thus can infer further that in fact

R(λ) ∈ S(−1)+
R (3R;D∧/D∧,min,D∧/D∧,min),

and that the components of R(λ) have orders ν+ with ν ∈ E, ν ≤ −1, and phases belonging to the set
M. The usual Neumann series argument then yields the existence of a symbol

R1(λ) ∈ S(−1)+
R (3R;D∧/D∧,min,D∧/D∧,min)

such that F(λ)80(λ)(1+ R1(λ))= 1 for λ ∈3R . Consequently FD(λ)
−1
=80(λ)(1+ R1(λ)) lies in

(S0+
R ∩ S0)(3R;D∧/D∧,min,Dmax/Dmin),

and its components have the structure that was claimed. �

With Proposition 5.3 and our results in [Gil et al. 2010, Section 5] at our disposal, we now obtain a
general theorem about the asymptotics of the finite rank contribution GD(λ) in the representation (5.1)
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of the resolvent. Before stating it we recall and rephrase the relevant results from that paper about the
other pieces involved in (5.2) using the terminology of the present paper.

Concerning T (λ) we have [Gil et al. 2010, Proposition 5.5]:

(i) For any cut-off function ω ∈C∞c ([0, 1)) the function T (λ)(1−ω) is rapidly decreasing on 3 taking
values in L(x−m/2 H s

b ,D∧/D∧,min), and

t (λ)= T (λ)ω ∈ S−m(3;Ks,−m/2,D∧/D∧,min).

Here Ks,−m/2 is equipped with the (normalized) dilation group action κ%, and we give D∧/D∧,min

again the trivial action.

(ii) The family t (λ) admits a full asymptotic expansion into anisotropic homogeneous components. In
particular, we have

t (λ) ∈ S(−m)+
R (3;Ks,−m/2,D∧/D∧,min).

The spaces Ks,−m/2 are weighted cone Sobolev spaces on Y∧. We discussed them in [Gil et al. 2006,
Section 2] and reviewed the definition in [Gil et al. 2010, Section 4] (see also [Schulze 1991], where
different weight functions as x→∞ are considered). Note that K0,−m/2

= x−m/2L2
b(Y
∧
; E).

Concerning 1−B(λ)(A−λ) Proposition 5.20 of [Gil et al. 2010] gives, for any ϕ ∈C∞(M;End(E)):

(iii) The operator function P(λ)= ϕ[1− B(λ)(A− λ)] is a smooth function

3R→ L(Dmax/Dmin, x−m/2 H s
b ),

which is defined for R > 0 large enough. Let ω ∈C∞c ([0, 1)) be an arbitrary cut-off function. Then
(1−ω)P(λ) is rapidly decreasing on 3R , and

p(λ)= ωP(λ) ∈ S0(3R;Dmax/Dmin,Ks,−m/2);

here Ks,−m/2 is equipped with the (normalized) dilation group action κ%, and the quotient Dmax/Dmin

is equipped with the group action κ̃%.

(iv) p(λ) is an anisotropic log-polyhomogeneous operator-valued symbol on 3R . In particular,

p(λ)= ωP(λ) ∈ S0+
R (3R;Dmax/Dmin,Ks,−m/2).

With M as in (1.5) and E as in (1.6) we have:

Theorem 5.4. Let ϕ ∈ C∞(M;End(E)), and let ω, ω̃ ∈ C∞c ([0, 1)) be arbitrary cut-off functions. For
R > 0 large enough the operator family GD(λ) is defined on 3R , and

(1−ω)ϕGD(λ), ϕGD(λ)(1−ω) ∈ S
(
3R, l1(x−m/2 H s

b , x−m/2 H t
b)
)
.

Moreover,
ωϕGD(λ)ω̃ ∈ (S

(−m)+
R ∩ S−m)(3R;K

s,−m/2,Kt,−m/2),

where the spaces Ks,−m/2 and Kt,−m/2 are equipped with the group action κ%. In fact, ωϕGD(λ)ω̃ takes
values in the trace class operators, and all statements about symbol estimates and asymptotic expansions
hold in trace class norms. The components have orders ν+ with ν ∈ E, ν ≤−m, and their phases belong
to M.
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Corollary 5.5. For R > 0 sufficiently large and ϕ ∈ C∞(M;End(E)), the operator family ϕG D(λ) is a
smooth family of trace class operators in x−m/2L2

b for λ ∈3R , and Tr(ϕG D(λ)) ∈ (S
(−m)+
R ∩ S−m)(3R).

The components have orders ν+ with ν ∈ E, ν ≤−m, and their phases belong to the set M.

Theorem 5.4 and Corollary 5.5 follow at once from the previous results about the pieces involved
in the representation (5.2) for GD(λ) and the properties of the operator-valued symbol class discussed
in the Appendix. In the statement of Corollary 5.5 the scalar symbol spaces are also anisotropic with
anisotropy m. In particular, this means that Tr(ϕG D(λ))= O(|λ|−1) as |λ| →∞.

We are now in the position to prove the trace expansion claimed in Theorem 1.4. To this end, we need
the following result [Gil et al. 2010, Theorem 4.4]:

(v) Let ϕ ∈ C∞(M;End(E)). If ml > n, then ϕ∂ l−1
λ B(λ) is a smooth family of trace class operators

in x−m/2L2
b, and the trace Tr(ϕ∂ l−1

λ B(λ)) is a log-polyhomogeneous symbol on 3. For large λ we
have

Tr(ϕ∂ l−1
λ B(λ))∼

n−1∑
j=0
α jλ

(n−lm− j)/m
+αn log(λ)λ−l

+ r(λ),

where
r(λ) ∈ (S(−lm)+

R ∩ S−lm)(3).

Now, combining (v) with Corollary 5.5, we finally obtain:

Theorem 5.6. Let 3 ⊂ C be a closed sector. Assume that A ∈ x−m Diffm
b (M; E), m > 0, with domain

D ⊂ x−m/2L2
b satisfies the ray conditions (1.3). Then 3 is a sector of minimal growth for AD, and for

ml > n, (AD− λ)
−l is an analytic family of trace class operators on 3R for some R > 0. Moreover, for

ϕ ∈ C∞(M;End(E)),
Tr(ϕ(AD− λ)

−l) ∈ (S(n−lm)+
R,hol ∩ Sn−lm)(3R).

The components have orders ν+ with ν ∈ E, ν ≤ n− lm, where E is the semigroup defined in (1.6), and
their phases belong to the set M defined in (1.5).

More precisely, we have the expansion

Tr(ϕ(AD− λ)
−l)∼

n−1∑
j=0
α jλ

(n−lm− j)/m
+αn log(λ)λ−l

+ sD(λ),

with constants α j ∈ C independent of the choice of domain D, and a domain dependent remainder
sD(λ) ∈ (S

(−lm)+
R,hol ∩ S−lm)(3R).

If all elements of the set {σ ∈ specb(A) : −m/2 < Im σ < m/2} are vertically aligned, then the
coefficients rν in the expansion (1.7) of sD(λ) are rational functions of log λ only. This is because, in
this case, the series representation of the projection in Theorem 4.13 contains only real powers of ζ and
rational functions of log ζ ; see Remark 4.16. This simplifies the structure of F∧,D∧(λ)

−1 according to
Section 2, and consequently the structure of FD(λ)

−1 (see the proof of Proposition 5.3). As recalled in
this section, the terms coming from B(λ) and the other pieces in the representation (5.2) of GD(λ) do
not generate phases.

If D is stationary, then the expansion (1.7) of sD(λ) is even simpler: the rν are just polynomials in
log λ, and the numbers ν are all integers. To see this recall that if D∧ is κ-invariant, then F∧,D∧(λ)

−1 is
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homogeneous, see (2.3), so it belongs to the class

S(0)(3R;D∧/D∧,min,D∧,max/D∧,min)⊂ (S0+
R ∩ S0)(3R;D∧/D∧,min,D∧,max/D∧,min).

Consequently, by the proof of Proposition 5.3, FD(λ)
−1 is log-polyhomogeneous. This property propa-

gates throughout the rest of the results in this section and gives the structure of sD(λ) just asserted.

Appendix: A class of symbols

Let 3 ⊂ C be a closed sector. Let E and Ẽ be Hilbert spaces equipped with strongly continuous group
actions κ% and κ̃%, % > 0, respectively. Recall that the space Sν(3; E, Ẽ) of anisotropic operator-valued
symbols on the sector 3 of order ν ∈ R is defined as the space of all a ∈ C∞(3,L(E, Ẽ)) such that for
all α, β ∈ N0 ∥∥κ̃−1

|λ|1/m∂
α
λ ∂

β

λ̄
a(λ)κ|λ|1/m

∥∥
L(E,Ẽ) = O(|λ|ν/m−α−β) as |λ| →∞ in 3. (A.1)

By S(ν)(3; E, Ẽ) we denote the space of anisotropic homogeneous functions of degree ν ∈ R, that is,
all a ∈ C∞(3r {0},L(E, Ẽ)) such that

a(%mλ)= %ν κ̃%a(λ)κ−1
% for % > 0 and λ ∈3r {0}. (A.2)

Clearly χ(λ)S(ν)(3; E, Ẽ)⊂ Sν(3; E, Ẽ) with the obvious meaning of notation, where χ ∈C∞(R2) is
any excision function of the origin. When E = Ẽ = C equipped with the trivial group action the spaces
are dropped from the notation.

Such symbol classes were introduced by Schulze in his theory of pseudodifferential operators on
manifolds with singularities, see [Schulze 1991]. In particular, classical symbols, that is, symbols that
admit asymptotic expansions into homogeneous components, play an important role and were used in
[Gil et al. 2006] for the construction of a parameter-dependent parametrix of Amin−λ. As illustrated in
the present paper, for a general domain D, the structure of (AD− λ)

−1 is rather involved, and classical
symbols do not suffice to describe it. We are therefore led to introduce a new class of (anisotropic)
operator-valued symbols that admit expansions of a more general kind. As it turns out, this class occurs
naturally and is well adapted to describe the structure of resolvents in the general case.

Remark A.3. The operator-valued symbol classes Sν(3; E, Ẽ) and S(ν)(3; E, Ẽ), as well as the spaces
S(ν

+)
R (3; E, Ẽ) and Sν

+

R (3; E, Ẽ) defined in this Appendix, all depend on the choice of the group actions
on E and Ẽ . They also depend on the anisotropy parameter m that appears in (A.1) and (A.2). However,
in order to avoid an overload of notation, we will not emphasize this dependence. In this paper, the
anisotropy m is always the order of the cone operator A under study, and the group actions are explicitly
defined when necessary.

Recall that V [z1, . . . , zM ] denotes the space of polynomials in the variables z j , j = 1 . . . ,M , with
coefficients in V for any vector space V . We shall make use of this in particular for V = C and
V = S(0)(3; E, Ẽ). In what follows, all holomorphic powers and logarithms on

◦

3 are defined using
a holomorphic branch of the logarithm with cut 0 6⊂3.

Definition A.4. Let ν ∈R. We define S(ν
+)

R (3; E, Ẽ) as the space of all L(E, Ẽ)-valued functions s(λ)
of the following form:
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There exist polynomials p ∈ S(0)(3; E, Ẽ)[z1, . . . , zN+1] and q ∈C[z1, . . . , zN+1] in N+1 variables,
N = N (s) ∈ N0, and real numbers µk = µk(s), k = 1, . . . , N , such that the following holds:

(a) |q(λiµ1, . . . , λiµN , log λ)| ≥ c > 0 for λ ∈3 with |λ| sufficiently large;

(b) s(λ)= r(λ)λν/m , where

r(λ)= p(λiµ1, . . . , λiµN , log λ)
q(λiµ1, . . . , λiµN , log λ)

. (A.5)

To clarify the notation, we note that

p(λiµ1, . . . , λiµN , log λ)=
∑

|α|+k≤M
aα,k(λ)λiµ1α1 · · · λiµNαN logk λ

as a function 3r {0} → L(E, Ẽ) with certain aα,k(λ) ∈ S(0)(3; E, Ẽ). We call the µk the phases and
ν+ the order of s(λ).

Every s(λ)∈ S(ν
+)

R (3; E, Ẽ) is an operator function defined everywhere on 3 except at λ= 0 and the
zero set of q(λiµ1, . . . , λiµN , log λ). The latter is a discrete subset of 3r {0}, and it is finite outside any
neighborhood of zero in view of (a).

Proposition A.6. (1) S(ν
+)

R (3; E, Ẽ) is a vector space.

(2) Let Ê be a third Hilbert space with group action κ̂%, % > 0. Composition of operator functions
induces a map

S
(ν+1 )

R (3; Ẽ, Ê)× S
(ν+2 )

R (3; E, Ẽ)→ S((ν1+ν2)
+)

R (3; E, Ê).

(3) For α, β ∈ N0 we have

∂αλ ∂
β

λ̄
: S(ν

+)
R (3; E, Ẽ)→ S((ν−mα−mβ)+)

R (3; E, Ẽ).

(4) Let s(λ) ∈ S(ν
+)

R (3; E, Ẽ). Then

χ(λ)s(λ) ∈ Sν+ε(3; E, Ẽ),

for any ε > 0 and any excision function χ ∈ C∞(R2) of the set where s(λ) is undefined.

(5) Let s(λ) ∈ S(ν
+)

R (3; E, Ẽ) and assume that∥∥κ̃−1
|λ|1/m s(λ)κ|λ|1/m

∥∥
L(E,Ẽ) = O(|λ|ν/m−ε)

as |λ| →∞ for some ε > 0. Then s(λ)≡ 0 on 3.
In particular, S(ν

+

1 )
R (3; E, Ẽ)∩ S(ν

+

2 )
R (3; E, Ẽ)= {0} whenever ν1 6= ν2.

Proof. (1) and (2) are obvious. For (3) note that

∂αλ ∂
β

λ̄
: S(ν0)(3; E, Ẽ)→ S(ν0−mα−mβ)(3; E, Ẽ),

for any ν0. Consequently, ∂αλ ∂
β

λ̄
acts in the spaces

S(ν0)(3; E, Ẽ)[λiµ1, . . . , λiµN , log λ] → S(ν0−mα−mβ)(3; E, Ẽ)[λiµ1, . . . , λiµN , log λ],

C[λiµ1, . . . , λiµN , log λ] → S(−mα−mβ)(3)[λiµ1, . . . , λiµN , log λ],
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with the obvious meaning of notation (the latter is a special case of the former in view of C⊂ S(0)(3)).
Statement (3) is an immediate consequence of these observations.

Statement (4) follows at once in view of property (a) in Definition A.4 (and using (3) to estimate
higher derivatives). Note also that, for large λ, the numerator in (A.5) can be regarded as a polynomial
in log λ of operator-valued symbols of order zero.

In the proof of (5) we may without loss of generality assume that ν = 0, so s(λ) is of the form (A.5).
Since |q(λiµ1, . . . , λiµN , log λ)| =O(logM

|λ|) as |λ|→∞ we see that it is sufficient to consider the case
q ≡ 1, so s(λ)= p(λiµ1, . . . , λiµN , log λ). For this case we will prove that if

‖κ̃−1
|λ|1/m s(λ)κ|λ|1/m‖L(E,Ẽ)→ 0

as |λ| → ∞, then s(λ) ≡ 0 on 3. For this proof we can without loss of generality further assume that
s(λ) contains no logarithmic terms, so we have s(λ)= p(λiµ1, . . . , λiµN ). Moreover, we can assume that
the numbers µ1, . . . , µN ∈R are independent over the rationals, for if this is not the case we can choose
rationally independent numbers µ̃1, . . . , µ̃K ∈ R such that µ j =

∑K
k=1 z jkµ̃k with coefficients z jk ∈ Z,

and so

λiµ j =

K∏
k=1
(λiµ̃k )z jk

for every j = 1, . . . , N . Consequently, there are numbers N j ∈ N, j = 1, . . . , K , and a polynomial
p̃ ∈ S(0)(3; E, Ẽ)[z1, . . . , zK ] such that

λiµ̃1 N1 · · · λiµ̃K NK p(λiµ1, . . . , λiµN )= p̃(λiµ̃1, . . . , λiµ̃K ),

and both assertion and assumption are valid for p if and only if they hold for p̃. So we can indeed assume
that the numbers µ j , j = 1, . . . , N , are independent over the rationals.

Now let λ0 ∈3 be arbitrary with |λ0| = 1, and consider the function f : (0,∞)→L(E, Ẽ) defined by

f (%)= κ̃−1
% p(%imµ1λ

iµ1
0 , . . . , %imµNλ

iµN
0 )κ%.

This function is of the form

f (%)=
∑
|α|≤M

aα(%iµ1)α1 · · · (%iµN )αN

for certain aα ∈ L(E, Ẽ), and by assumption ‖ f (%)‖L(E,Ẽ)→ 0 as %→∞. Let p0(z)=
∑
|α|≤M

aαzα for
z = (z1, . . . , zN ) ∈ CN , and consider the curve

% 7→ (%iµ1, . . . , %iµN ) ∈ S1
× . . .×S1

on the N -torus. The image of this curve for % > %0 is a dense subset of the N -torus, where %0 > 0 can
be chosen arbitrarily, because the µ j are independent over the rationals. The function f is merely the
operator polynomial p0(z) restricted to that curve. Since f (%)→ 0 as %→∞, this implies that for any
ε > 0 we have ‖p0(z)‖< ε for all z in a dense subset of the N -torus. This shows that p0(z) is the zero
polynomial, and so the function f (%)= 0 for all % > 0.

Consequently, the function p(λiµ1, . . . , λiµN ) vanishes along the ray through λ0, and because λ0 was
arbitrary the proof is complete. �
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Definition A.7. For ν ∈ R define Sν
+

R (3; E, Ẽ) as the space of all operator-valued symbols a(λ) that
admit an asymptotic expansion

a(λ)∼
∞∑
j=0
χ j (λ)s j (λ), (A.8)

where s j (λ) ∈ S
(ν+j )

R (3; E, Ẽ), ν = ν0 > ν1 > · · · and ν j → −∞ as j →∞, and χ j (λ) is a suitable
excision function of the set where s j (λ) is undefined.

We call s j (λ) the component of order ν+j of a(λ). The components are uniquely determined by the
symbol a(λ) (see Proposition A.9).

Familiar symbol classes like classical (polyhomogeneous) symbols, symbols that admit asymptotic
expansions into homogeneous components of complex degrees, or log-polyhomogeneous symbols are
all particular cases of the class defined in Definition A.7. In particular, the denominators q in (A.5) are
equal to one in all those cases.

Of particular interest in the context of this paper are symbols a(λ)with the property that all components
s j (λ) have orders ν+j with ν j ∈E, the semigroup defined in (1.6), and phases in the set M defined in (1.5).

Proposition A.9. (1) Sν
+

R (3; E, Ẽ) is a vector space. For any ε > 0 we have the inclusion

Sν
+

R (3; E, Ẽ)⊂ Sν+ε(3; E, Ẽ).

(2) Let a(λ) ∈ Sν
+

R (3; E, Ẽ). The components s j (λ) in (A.8) are uniquely determined by a(λ).

(3) Let Ê be a third Hilbert space with group action κ̂%, % > 0. Composition of operator functions
induces a map

S
ν+1
R (3; Ẽ, Ê)× S

ν+2
R (3; E, Ẽ)→ S(ν1+ν2)

+

R (3; E, Ê).

The components of the composition of two symbols are obtained by formally multiplying the asymp-
totic expansions (A.8) of the factors.

(4) For α, β ∈ N0 we have

∂αλ ∂
β

λ̄
: Sν

+

R (3; E, Ẽ)→ S(ν−mα−mβ)+

R (3; E, Ẽ).

If s j (λ) are the components of a(λ) ∈ Sν
+

R (3; E, Ẽ), the components of ∂αλ ∂
β

λ̄
a(λ) are ∂αλ ∂

β

λ̄
s j (λ).

(5) Let a j (λ) ∈ S
ν+j
R (3; E, Ẽ), where ν j → −∞ as j → ∞, and let ν̄ = max ν j . Let a(λ) be an

operator-valued symbol such that a(λ)∼
∑
∞

j=0 a j (λ).
Then a(λ) ∈ Sν̄

+

R (3; E, Ẽ), and the component of a(λ) of order M+ is obtained by adding the
components of that order of the a j (λ). This is a finite sum for each M ≤ ν̄ and will yield a nontrivial
result for at most countably many values of M that form a sequence tending to −∞.

Proof. Everything follows from Proposition A.6 and standard arguments. Because of its importance we
will, however, prove (2):

To this end, assume that 0 ∼
∑
∞

j=0 χ j (λ)s j (λ) with s j (λ) ∈ S
(ν+j )

R (3; E, Ẽ), ν j > ν j+1 → −∞ as
j→∞. We need to prove that all s j (λ) are zero. Because

χ0(λ)s0(λ)∼−
∞∑
j=1
χ j (λ)s j (λ),
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we see that χ0(λ)s0(λ) ∈ Sν1+ε(3; E, Ẽ) for every ε > 0. Choose ε > 0 such that ν1+ ε < ν0. Then∥∥κ̃−1
|λ|1/mχ0(λ)s0(λ)κ|λ|1/m

∥∥
L(E,Ẽ) = O(|λ|(ν1+ε)/m)

as |λ| →∞, and by Proposition A.6(5) we obtain that s0(λ)≡ 0 on 3. Consequently all s j (λ) are zero
by induction, and (2) is proved. �

By Sν
+

R,hol(3; E, Ẽ) we denote the class of symbols a(λ) ∈ Sν
+

R (3; E, Ẽ) that are holomorphic in
◦

3.
Let s j (λ) be the components of a(λ)∈ Sν

+

R,hol(3; E, Ẽ). By Proposition A.9, ∂λ̄s j (λ) are the components
of ∂λ̄a(λ)≡ 0, and consequently all components s j (λ) are holomorphic.

In the case of holomorphic scalar symbols (or, more generally, holomorphic operator-valued symbols
with trivial group actions), we can improve the description of the components as follows.

Proposition A.10. Let a(λ) ∈ Sν
+

R,hol(3), a(λ)∼
∑
∞

j=0 χ j (λ)s j (λ) with components s j (λ) of order ν+j .
For every j ∈N0 there exist polynomials p j , q j ∈ C[z1, . . . , zN j+1] in N j + 1 variables with constant

coefficients, N j ∈ N0, and real numbers µjk , k = 1, . . . , N j , such that the following holds:

(a) |q j (λ
iµj1, . . . , λ

iµj N j , log λ)| ≥ c j > 0 for λ ∈3 with |λ| sufficiently large;

(b) s j (λ)= r j (λ
iµj1, . . . , λ

iµj N j , log λ)λν j/m , where r j = p j/q j .

Proof. We already know that the components s j (λ) are holomorphic. We just need to show that in this
case the numerator polynomials p in Definition A.4 can be chosen to have constant coefficients rather
than homogeneous coefficient functions. This, however, follows from Lemma A.11 below. �

Lemma A.11. Let f1(λ), . . . , fM(λ) be holomorphic functions on 3 r {0}, and let p be an element
of S(0)(3)[z1, . . . , zM ]. Assume that the function p( f1(λ), . . . , fM(λ)) is holomorphic on

◦

3, except
possibly on a discrete set.

Then there is a polynomial p0 ∈ C[z1, . . . , zM ] with constant coefficients such that

p( f1(λ), . . . , fM(λ))= p0( f1(λ), . . . , fM(λ))

as functions on 3r {0}.

Proof. Since all singularities are removable, we know that p( f1(λ), . . . , fM(λ)) is holomorphic every-
where on

◦

3. We have

p( f1(λ), . . . , fM(λ))=
∑
|α|≤D

aα(λ/|λ|) f1(λ)
α1 · · · fM(λ)

αM .

Let λ0 ∈
◦

3. Define

p0(z1, . . . , zM)=
∑
|α|≤D

aα(λ0/|λ0|)z
α1
1 · · · z

αM
M .

Then clearly
p( f1(λ), . . . , fM(λ))= p0( f1(λ), . . . , fM(λ))

on the ray through λ0. By uniqueness of analytic continuation this equality necessarily holds everywhere
on

◦

3, and by continuity then also on 3r {0}. �
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We prove the regularity of weak 1
2

-harmonic maps from the real line into a sphere. A key step is the
formulation of the 1
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1. Introduction

Starting in the early 1950s, the analysis of critical points of conformal invariant lagrangians has attracted
much interest, due to their importance in physics and geometry. (See the introduction of [Rivière 2008]
for an overview.) We recall some classical examples of such operators and their associated variational
problems:

The most elementary example of a two-dimensional conformal invariant lagrangian is the Dirichlet
energy

E.u/D

Z
D

jru.x;y/j2 dx dy; (1)

where D �R2 is an open set and ru is the gradient of u WD! R. We recall that a map � W C! C is
conformal if it satisfiesˇ̌̌

@�

@x

ˇ̌̌
D

ˇ̌̌
@�

@y

ˇ̌̌
;

D
@�

@x
;
@�

@y

E
D 0; detr� � 0; r� ¤ 0; (2)

where h � ; � i denotes the standard Euclidean inner product in Rn.

MSC2000: 58E20, 35B65, 35J20, 35J60, 35S99.
Keywords: harmonic map, nonlinear elliptic PDE, regularity of solutions, commutator estimates.
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For every u 2W 1;2.D;R/ and every conformal map � with deg� D 1, we have

E.u/DE.u ı�/D

Z
��1.D/

ˇ̌
.r ı�/u.x;y/

ˇ̌2
dx dy:

The critical points of this functional are the harmonic functions satisfying

�uD 0 in D: (3)

We can extend E to maps taking values in Rm by setting

E.u/D

Z
D

ˇ̌
ru.x;y/

ˇ̌2
dx dy D

Z
D

mP
iD1

ˇ̌
rui.x;y/

ˇ̌2
dx dy; (4)

where the ui are the components of u. The lagrangian (4) is still conformally invariant and each com-
ponent of its critical points satisfies (3).

We can define the lagrangian (4) also on the set of maps taking values in a compact submanifold
N� Rm without boundary. We have

��u? TuN;

where TuN is the tangent plane to N at the point u 2 N; equivalently, we can write

��uDA.u/.ru;ru/ WDA.u/.@xu; @xu/CA.u/.@yu; @yu/; (5)

where A.u/ is the second fundamental form at a point u2N; see [Hélein 2002], for instance. Equation (5)
is called the harmonic map equation into N.

When N is an oriented hypersurface of Rm the harmonic map equation reads as

��uD nhrn;rui; (6)

where n denotes the composition of u with the unit normal vector field � to N.
All these examples belong to the class of conformal invariant coercive lagrangians whose correspond-

ing Euler–Lagrange equation is of the form

��uD f .u;ru/; (7)

where f W R2 � .Rm˝R2/! Rm is a continuous function satisfying

C�1
jpj2 � jf .�;p/j � C jpj2 for all �;p;

for some positive constant C . One of the main issues concerning equations of the form (7) is the regularity
of solutions u 2 W 1;2.D;N/. We observe that (7) is critical in dimension n D 2 for the W 1;2-norm.
Indeed, if we plug into the nonlinearity f .u;ru/ the information that u 2W 1;2.D;N/, we obtain �u 2

L1.D/, so ru belongs to L
2;1
loc .D/, the weak L2 space [Stein 1970], which has the same homogeneity

of L2. Hence we are back in some sense to the initial situation. This shows that the equation is critical.
In general, W 1;2 solutions to (7) are not smooth in dimensions greater than 2; for a counterexample,

see [Rivière 2007]. For an exposition of regularity and compactness results for such equations, we refer
the reader to [Giaquinta 1983].
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We next recall the approach introduced by F. Hélein [2002] to prove the regularity of harmonic maps
from a domain D of R2 into the unit sphere Sm�1 of Rm. In this case the Euler–Lagrange equation is

��uD ujruj2: (8)

Shatah [1988] observed in that u 2W 1;2.D;Sm�1/ is a solution of (8) if and only if the conservation
law

div.uiruj �ujrui/D 0 for all i; j 2 f1; : : : ;mg (9)

holds. Using (9) and the fact that
Pm

jD1 ujruj D 0 when juj � 1, Hélein rewrote (8) in the form

��uDr?B � ru; (10)

where r?BD .r?Bij /with r?Bij Duiruj�ujrui (for every vector field v WR2!Rn, r?v denotes
the �=2 rotation of the gradient rv, namely r?v D .�@yv; @xv//.

The right-hand side of (10) can be written as a sum of Jacobians:

r
?Bijruj D @xuj@yBij � @yuj@xBij :

This particular structure allows us to apply to (8) the following result:

Theorem 1.1 [Wente 1969]. Let D be a smooth bounded domain of R2. Let a and b be measurable
functions in D whose gradients are in L2.D/. Then there exists a unique solution ' 2W 1;2.D/ to8<:��' D

@a

@x

@b

@y
�
@a

@y

@b

@x
in D;

' D 0 on @D.
(11)

There exists a constant C > 0 independent of a and b such that

k'k1Ckr'kL2 � CkrakL2krbkL2 :

In particular ' is continuous in D.

Theorem 1.1 applied to (10) leads, via a standard localization argument in elliptic PDEs, to the estimate

krukL2.Br .x0//
� C krBkL2.Br .x0//

krukL2.Br .x0//
CC r krukL2.@Br .x0//

(12)

for every x0 2 D and r > 0 such that Br .x0/ � D. Assume we are considering radii r < r0 such that
maxx02D C krBkL2.Br .x0//

< 1
2

. Then (12) implies a Morrey estimate

sup
x0;r>0

r�ˇ
Z

Br .x0/

jruj2 dx <1 (13)

for some ˇ>0, which itself implies the Hölder continuity of u by a standard embedding result [Giaquinta
1983]. Finally a bootstrap argument implies that u is in fact C1, and even analytic: see [Hildebrandt
and Widman 1975; Morrey 1966].

In the present work we are interested in one-dimensional quadratic lagrangians invariant under the
trace of conformal maps that keep invariant the half-space R2

C: the Möbius group.
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A typical example, which we will call the L-energy (L for “line”), is the lagrangian

L.u/D

Z
R

ˇ̌
�1=4u.x/

ˇ̌2
dx; (14)

where u is a map from R into a k-dimensional submanifold N of Rm which is at least C 2, compact and
without boundary. In fact L.u/ coincides with kuk2

PH 1=2.R/
(for the definition of the seminorm k�k PH 1=2.R/

see Section 2). A more tractable way to look at this norm is given by the identityZ
R

j�1=4u.x/j2 dx D inf

(Z
R2
C

jr Quj2 dx W Qu 2W 1;2.R2;Rm/ with trace QuD u

)
:

The Lagrangian L extends to map u in the function space

PH 1=2.R;N/D fu 2 PH 1=2.R;Rm/ W u.x/ 2 N a:e:g:

The operator �1=4 on R is defined by means of the Fourier transform (denoted by O ) as

1�1=4uD j�j1=2 Ou:

Denote by �N the orthogonal projection onto N, which happens to be a C l map in a sufficiently small
neighborhood of N if N is assumed to be C lC1. We now introduce the notion of 1

2
-harmonic map into

a manifold.

Definition 1.2. A map u 2 PH 1=2.R;N/ is called a weak 1
2

-harmonic map into N if

d

dt
L.�N.uC t�//jtD0

D 0 for any � 2 PH 1=2.R;Rm/\L1.R;Rm/:

In short, a weak 1
2

-harmonic map is a critical point of L in PH 1=2.R;N/ for perturbations in the target.

We encounter 1
2

-harmonic maps into the circle S1, for instance, in the asymptotic of equations in
phase-field theory for fractional reaction-diffusion such as

�2�1=2uCu.1� juj2/D 0

where u is a complex-valued wavefunction.

In this paper we consider the case N D Sm�1. We first write (deferring the proof till Theorem 5.2)
the Euler–Lagrange equation associated to L in PH 1=2.R;Sm�1/:

Proposition 1.3. Let T be the operator defined by

T .Q;u/ WD�1=4.Q�1=4u/�Q�1=2uC�1=4u�1=4Q; (15)

for Q 2 PH 1=2.Rn;Ml�m.R// l � 1 and u 2 PH 1=2.Rn;Rm/. (Here n and l are natural numbers and
Ml�m.R/ denotes the space of l �m real matrices.)

A map u in PH 1=2.R;Sm�1/ is a weak 1
2

-harmonic map if and only if it satisfies the Euler–Lagrange
equation

�1=4.u^�1=4u/D T .u^;u/: (16)
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The Euler–Lagrange equation (16) will often be completed by the following “structure equation”,
which is a consequence of the fact that u 2 Sm�1 almost everywhere:

Proposition 1.4. Let S be the operator given by

S.Q;u/ WD�1=4.Q�1=4u/�R.Qru/CR.�1=4QR�1=4u/ (17)

for Q 2 PH 1=2.Rn;Ml�m.R// and u 2 PH 1=2.Rn;Rm/, where n and l are natural numbers and R is the
Fourier multiplier of symbol m.�/D i�=j�j .

All maps in PH 1=2.R;Sm�1/ satisfy

�1=4.u ��1=4u/D S.u�;u/�R.�1=4u �R�1=4u/: (18)

We will first show that PH 1=2 solutions to the 1
2

-harmonic map equation (16) are Hölder continuous.
This regularity result will be a direct consequence of a Morrey-type estimate we will establish:

sup
x02R
r>0

r�ˇ
Z

Br .x0/

ˇ̌
�1=4u

ˇ̌2
dx <1: (19)

For this purpose, in the spirit of what we have just presented regarding Hélein’s proof of the regularity
of harmonic maps from a two-dimensional domain into a round sphere, we will take advantage of a
“regularity gain” in the right-hand sides of (16) and (18), where the different terms T .u^;u/, S.u � ;u/

and R.�1=4u �R�1=4u/ play more or less the role played by r?B � ru in (10). More precisely, we will
establish, for every u 2 PH 1=2.R;Rm/ and Q 2H 1=2.R;Ml�m.R//, the estimates

kT .Q;u/k PH�1=2.R/
� C kQk PH 1=2.R/

kuk PH 1=2.R/
; (20)

kS.Q;u/k PH�1=2.R/
� C kQk PH 1=2.R/

kuk PH 1=2.R/
; (21)R.�1=4u �R�1=4u//


PH�1=2.R/

� C kuk2
PH 1=2.R/

: (22)

The phrase “regularity gain” is illustrated by the fact that, for such u and Q, the individual terms in T

and S (such as �1=4.Q�1=4u/ or Q�1=2u) are not in PH�1=2, but the special linear combinations of them
constituting T and S do lie in PH�1=2. In a similar way, in two dimensions, J.a; b/ WD @a

@x
@b
@y
�
@a
@y
@b
@x

satisfies
kJ.a; b/k PH�1 � C kak PH 1 kbk PH 1 (23)

as a direct consequence of Wente’s result (Theorem 1.1), whereas the individual terms @a
@x
@b
@y

and @a
@y
@b
@x

are not in PH�1.

The estimates (20) and (21) are in fact consequences of the three-term commutator estimates in the
next two theorems, which are valid in arbitrary dimension and which are two of the main results of
this paper. We recall that BMO denotes the space of bounded mean oscillations functions of John and
Nirenberg (see for instance [Grafakos 2009])

kukBMO.Rn/ D sup
x02Rn

r>0

1

jBr .x0/j

Z
Br .x0/

ˇ̌̌̌
u.x/�

1

jBr .x0/j

Z
u.y/ dy

ˇ̌̌̌
dx:
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Theorem 1.5. For n 2 N�, u 2 BMO.Rn/, and Q 2 PH 1=2.Rn;Ml�m.R//, set

T .Q;u/ WD�1=4.Q�1=4u/�Q�1=2uC�1=4u�1=4Q;

Then T .Q;u/ 2H�1=2.Rn/ and there exists C > 0, depending only on n, such that

kT .Q;u/kH�1=2.Rn/ � C kQk PH 1=2.Rn/
kukBMO.Rn/ : (24)

Theorem 1.6. For n 2 N�, u 2 BMO.Rn/, and Q 2 PH 1=2.Rn;Ml�m.R//, set

S.Q;u/ WD�1=4ŒQ�1=4u��R.Qru/CR.�1=4QR�1=4u/;

where R is the Fourier multiplier of symbol m.�/D i�=j�j . Then S.Q;u/2H�1=2.Rn/ and there exists
C depending only on n such that

kS.Q;u/kH�1=2.Rn/ � C kQk PH 1=2.Rn/
kukBMO.Rn/ : (25)

The estimates (20) and (21) follow from Theorems 1.5 and 1.6 as a consequence of the embedding
PH 1=2.R/ ,! BMO.R/.

The parallel between the structures T and S for H 1=2 in one hand and the Jacobian structure J for
H 1 in the other can be pushed further as follows. As a consequence of a result of R. Coifman, P. L.
Lions, Y. Meyer and S. Semmes [Coifman et al. 1993], the Wente estimate (23) can be deduced from a
more general one. Set, for any i; j 2 f1; : : : ; ng and a; b 2 PH 1.Rn/,

Jij .a; b/ WD
@a

@xi

@b

@xj
�
@a

@xj

@b

@xi
;

and form the matrix J.a; b/ WD .Jij .a; b//ijD1;:::;n. The main result in [Coifman et al. 1993] implies

kJ.a; b/k PH�1.Rn/
� C kak PH 1.Rn/

kbkBMO.Rn/ ; (26)

which is reminiscent of (24) and (25). Recall also that (26) is a consequence of a commutator estimate
by Coifman, R. Rochberg and G. Weiss [Coifman et al. 1976].

Theorems 1.5 and 1.6 will follow respectively Theorems 1.7 and (27) below, which are their ”dual
versions”. Recall first that H1.Rn/ denotes the Hardy space of L1 functions f on RnsatisfyingZ

Rn

sup
t2R

j�t �f j.x/ dx <1;

where �t .x/ WD t�n �.t�1x/ and where � is some function in the Schwartz space S.Rn/ satisfyingR
Rn �.x/ dx D 1. Recall the famous result by Fefferman saying that the dual space to H1 is BMO.

Theorem 1.7. For u;Q 2 PH 1=2.Rn/, set

R.Q;u/D�1=4.Q�1=4u/��1=2.Qu/C�1=4..�1=4Q/u/:

Then R.Q;u/ 2H1.Rn/ and

kR.Q;u/kH1.Rn/ � CkQk PH 1=2.Rn/
kuk PH 1=2.Rn/

: (27)
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Theorem 1.8. For u;Q 2 PH 1=2.Rn/ and u 2 BMO.Rn/, set

QS.Q;u/D�1=4.Q�1=4u/�r.QRu/CR�1=4.�1=4QRu/;

where R is the Fourier multiplier of symbol m.�/D i�=j�j . Then QS.Q;u/ 2H1 and

k QS.Q;u/kH1 � CkQk PH 1=2.Rn/
kuk PH 1=2.Rn/

: (28)

We say a few words on the proof of the estimates (27) and (28). The compensations of the three dif-
ferent terms in R.Q;u/ will be clear from the Littlewood–Paley decomposition of the different products
that we present in Section 3. As usual, we denote by …1.f;g/ the high-low contribution (respectively
from f and g), by …2.f;g/ the low-high contribution, and by …3.f;g/ the high-high contribution. We
also use the notation …k.�

˛.fg//, for k D 1; 2; 3 and ˛ D 1
4
; 1

2
, as an alternative for �˛.…k.f;g//.

We will use the following decompositions for the operators …k.R.Q;u//:

…1.R.Q;u//D…1.�
1=4.Q�1=4u//„ ƒ‚ …C…1.��

1=2.Qu/C�1=4..�1=4Q/u//„ ƒ‚ …;
…2.R.Q;u//D…2.�

1=4.Q�1=4u/��1=2.Qu//„ ƒ‚ …C…2.�
1=4..�1=4Q/u//„ ƒ‚ …;

…3.R.Q;u//D…3.�
1=4.Q�1=4u//„ ƒ‚ …�…3.�

1=2.Qu//„ ƒ‚ …C…3.�
1=4..�1=4Q/u//„ ƒ‚ … :

Finally, injecting the Morrey estimate (19) in equations (16) and (18), a classical elliptic-type bootstrap
argument leads to the following result (see [Lio and Riviere 2010] for details).

Theorem 1.9. Any weak 1
2

-harmonic map in PH 1=2.R;Sm�1/ belongs to H s
loc.R;S

m�1/ for every s 2R,
and is therefore C1.

The paper is organized as follows. After a section with preliminary definitions and notation, we prove
in Section 3 we prove the three-term commutator estimates (Theorems 1.5 and 1.6).

In Section 4 we prove some L-energy decrease control estimates on dyadic annuli for general solutions
to certain linear nonlocal systems of equations, which include (16) and (18).

In Section 5 we derive the Euler–Lagrange equation (16) associated to the lagrangian (14); this is
Proposition 1.3. We then prove Proposition 1.4. We finally use the results of the previous section to
deduce the Morrey-type estimate (19) for 1

2
-harmonic maps into a sphere.

In the Appendix we study geometric localization properties of the PH 1=2-norm on the real line for
PH 1=2-functions in general and we prove some preliminary results.

2. Definitions and notation

For n � 1, let S.Rn/ and S0.Rn/ denote respectively the spaces of Schwartz functions and tempered
distributions. Given a function v we will denote either by Ov or by FŒv� the Fourier Transform of v:

Ov.�/D FŒv�.�/D

Z
Rn

v.x/e�ih�;xi dx:

Throughout the paper we use the convention that x;y denote space variables and �; � phase variables.
We recall the definition of fractional Sobolev spaces. For some of the material on the next page, see

[Tartar 2007], for instance.
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Definition 2.1. For s real,

H s.Rn/D

�
fv 2L2.Rn/ W j�jsFŒv� 2L2.Rn/g if s � 0,

fv 2 S0.Rn/ W .1Cj�j2/s=2FŒv� 2L2.Rn/g if s < 0.

It is known that H�s.Rn/ is the dual of H s.Rn/.

For 0< s < 1, we mention an alternative characterization of H s.Rn/, which does not use the Fourier
transform.

Lemma 2.2. For 0< s < 1, the condition u 2H s.Rn/ is equivalent to u 2L2.Rn/ and�Z
Rn

Z
Rn

.u.x/�u.y//2

jx�yjnC2s
dx dy

�1=2

<1:

For s > 0 we set

kukH s.Rn/ D kukL2.Rn/Ckj�j
sFŒv�kL2.Rn/ and kuk PH s.Rn/

D kj�jsFŒv�kL2.Rn/:

For an open set �� Rn, H s.�/ is the space of the restrictions of functions from H s.Rn/, and

kuk PH s.�/
D inf

˚
kU k PH s.Rn/

W U D u on �
	
:

If 0< s < 1, then f 2H s.�/ if and only if f 2L2.�/ and�Z
�

Z
�

.u.x/�u.y//2

jx�yjnC2s
dx dy

�1=2

<1:

Moreover,

kuk PH s.�/
'

�Z
�

Z
�

.u.x/�u.y//2

jx�yjnC2s
dx dy

�1=2

<1:

Finally, for a submanifold N of Rm, we can define

H s.R;N/D fu 2H s.R;Rm/ W u.x/ 2 N a:e:g:

We introduce the so-called Littlewood–Paley or dyadic decomposition of unity. Let �.�/ be a radial
Schwartz function supported on f� W j�j � 2g and equal to 1 on f� W j�j � 1g. Let  .�/ be the function
 .�/ WD �.�/��.2�/; thus  is a bump function supported on the annulus f� W 1

2
� j�j � 2g.

We put  0 D �,  j .�/ D  .2�j�/ for j ¤ 0. The functions  j , for j 2 Z, are supported on
f� W 2j�1 � j�j � 2jC1g. Moreover

P
j2Z  j .x/D 1.

We then set �j .�/ WD
Pj

kD�1
 k.�/. The function �j is supported on f�; j�j � 2jC1g.

We recall the definition of the homogeneous Besov spaces PBs
p;q.R

n/ and homogeneous Triebel–
Lizorkin spaces PF s

pq.R
n/ in terms of the dyadic decomposition.

Definition 2.3. Let s 2 R, 0< p; q �1. For f 2 S0.Rn/, set

kf k PBs
p;q.Rn/

D

8̂<̂
:
� 1P

jD�1

2jsqkF�1Œ j FŒf ��k
q

Lp.Rn/

�1=q
if q <1;

supj2Z 2jskF�1Œ j FŒf ��kLp.Rn/ if q D1.
(29)
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The homogeneous Besov space with indices s;p; q, denoted by PBs
p;q.R

n/, is the space of all tempered
distributions f for which kf k PBs

p;q.Rn/
is finite.

Let s 2 R, 0< p; q <1. Again for f 2 S0.Rn/, set

kf k PF s
p;q.Rn/

D

� 1P
jD�1

2jsq
ˇ̌
F�1Œ j FŒf ��

ˇ̌q�1=q
Lp
:

The homogeneous Triebel–Lizorkin space with indices s;p; q, denoted by PF s
p;q.R

n/, is the space of all
tempered distributions f for which kf k PF s

p;q.Rn/
is finite.

It is known that PH s.Rn/D PBs
2;2
.Rn/D PF s

2;2
.Rn/.

Finally we denote by H1.Rn/ the homogeneous Hardy space in Rn. It is known that H1.Rn/' F0
2;1

;
thus we have

kf kH1.Rn/ '

Z
R

�P
j

jF�1Œ j FŒf ��j2
�1=2

dx:

We recall that in dimension nD 1, the space PH 1=2.R/ is continuously embedded in the Besov space
PB0
1;1.R/. More precisely we have

PH 1=2.R/ ,! BMO.R/ ,! PB0
1;1.R/I (30)

see, for instance, [Runst and Sickel 1996, p. 31] or [Triebel 1983, p. 129].
The s-fractional Laplacian of a function u W Rn ! R is defined as a pseudodifferential operator of

symbol j�j2s:
b�su.�/D j�j2s

Ou.�/: (31)

It can also be defined as

�su.x/D p:v:

Z
R

u.y/�y.x/

jx�yjnC2s
dy;

where p:v: denotes the Cauchy principal value.
In the case sD 1

2
, we can write�1=2uD�R.ru/ where R is Fourier multiplier of symbol

i

j�j

nP
kD1

�k :

bRX .�/D
1

j�j

nX
kD1

i�k OXk.�/

for every X W Rn! Rn; thus RD��1=2div.
We denote by Br . Nx/ the ball of radius r and center Nx. If Nx D 0 we simply write Br . If x;y 2 Rn,

x �y denote the scalar product between x;y.
For every function f W Rn! R we denote by M.f / the maximal function of f , namely

M.f /D sup
r>0

x2Rn

jB.x; r/j�1

Z
B.x;r/

jf .y/j dy: (32)
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3. Three-term commutator estimates: proof of Theorems 1.5 and 1.6

We consider the dyadic decomposition introduced in Section 2. For every j 2 Z and f 2 S0.Rn/ we
define the Littlewood–Paley projection operators Pj and P�j by

bPjf D  j
Of ; 1P�jf D �j

Of :

Informally, Pj is a frequency projection to the annulus f2j�1 � j�j � 2j g, while P�j is a frequency
projection to the ball fj�j � 2j g. We will set fj D Pjf and f j D P�jf .

We observe that f j D
Pj

kD�1
fk and f D

PC1
kD�1 fk , where the convergence is in S0.Rn/.

Given f;g 2 S0.R/ we can split the product fg as

fg D…1.f;g/C…2.f;g/C…3.f;g/; (33)

where

…1.f;g/D
C1P
�1

fj gj�4
D

C1P
�1

fj

j�4P
�1

gk ; …2.f;g/D
C1P
�1

gjf
j�4
D

C1P
�1

fj

C1P
jC4

gk ; …3.f;g/D
C1P
�1

fj

jC4P
j�4

gk :

This is an example of decomposition into paraproducts (see [Grafakos 2009], for example). Informally,
the first paraproduct …1 is an operator that allows high frequencies of f .� 2j / multiplied by low
frequencies of g .� 2j / to produce high frequencies in the output; …2 multiplies low frequencies of f
with high frequencies of g to produce high frequencies in the output; and…3 multiplies high frequencies
of f with high frequencies of g to produce comparable or lower frequencies in the output.

For every j , we have

supp F Œf j�4gj �� f2
j�2
� j�j � 2jC2

g and supp F
h jC3P

kDj�3

fj gk

i
� fj�j � 2jC5

g:

Lemma 3.1. For every f 2 S0 we have sup
j2Z

jf j j �M.f /.

Proof. We have

f j
D F�1Œ�j � ? f D 2j

Z
R

F�1Œ��.2j .x�y//f .y/ dy D

Z
R

F�1Œ��.z/f .x� 2�j z/ dz

D

C1X
kD�1

Z
B

2k nB2k�1

F�1Œ��.z/f .x� 2�j z/ dz

�

C1X
kD�1

max
B

2k nB2k�1

jF�1Œ��.z/j

Z
B

2k nB2k�1

jf .x� 2�j z/j dz

�

C1X
kD�1

max
B

2k nB2k�1

2k
jF�1Œ��.z/j2j�k

Z
B.x;2k�j /nB.x;2k�1�j /

jf .z/j dz

�M.f /

C1X
kD�1

max
B

2k nB2k�1

2k
jF�1Œ��.z/j � CM.f /:
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In the last inequality we use the fact that F�1Œ�� is in S.Rn/, and thus

C1X
kD�1

max
B

2k nB2k�1

2k
jF�1Œ��.z/j � 2

Z
R

jF�1Œ��.z/j d� < 1: �

Proof of Theorem 1.7. We need to estimate…1.R.Q;u//;…2.R.Q;u// and…3.R.Q;u//. Consistently
with our earlier convention, we write, for example, …1.�

1=4.Q�1=4u// to mean

�1=4.…1.Q; �
1=4u//D

1X
jD�1

�1=4.Qj .�
1=4uj�4//:

� Estimate of
…1.�

1=4.Q�1=4u//


H1 . This expression equalsZ
Rn

�
1P

jD�1

2j Q2
j .�

1=4uj�4/2
�1=2

dx �

Z
Rn

supj j�
1=4uj�4j

�P
j 2j Q2

j

�1=2
dx

�

�Z
Rn

.M.�1=4u//2 dx

�1=2 �Z
R

P
j 2j Q2

j dx

�1=2

� Ckuk PH 1=2kQk PH 1=2 : (34)

� Estimate of …1

�
�1=4.�1=4Qu/��1=2.Qu/

�
. We show that this term lies in PB0

1;1
(H1 ,! PB0

1;1
). To

this purpose we use the “commutator structure” of the term above:…1

�
�1=4.�1=4Q/u��1=2.Qu/

�
PB0

1;1

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jt�j j�3

�
�1=4.uj�4�1=4Qj /��

1=2.uj�4Qj /
�
ht dx

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jt�j j�3

FŒuj�4�FŒ�1=4Qj�
1=4ht �Qj�

1=2ht � d�

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jt�j j�3

FŒuj�4�.�/

�

�Z
Rn

FŒQj �.�/FŒ�
1=4ht �.� � �/.j�j

1=2
� j� � �j1=2/ d�

�
d�: (35)

Note that in (35) we have j�j � 2j�3 and 2j�2 � j�j � 2jC2. Thus j�=�j � 1
2

, allowing us to write

ˇ̌
j�j

1
2 � j� � �j

1
2

ˇ̌
D j�j

1
2

�
1�

ˇ̌̌
1�

�

�

ˇ̌̌ 1
2
�
D j�j

1
2
�

�

�
1C

ˇ̌̌
1�

�

�

ˇ̌̌ 1
2
��1
D j�j

1
2

1X
lD0

cl

l !

��
�

�lC1

for appropriate coefficients cl . Thus the expression on the last two lines of (35) equals

sup
khk PB0

1;1
�1

Z
Rn

P
j

P
jt�j j�3

FŒuj�4�.�/

�Z
Rn

j�j1=2FŒQj �.�/FŒ�
1=4ht �.� � �/

1X
lD0

cl

l !

��
�

�lC1
d�

�
d�:

(36)



160 FRANCESCA DA LIO AND TRISTAN RIVIÈRE

Next, for k 2 Z and g 2 S0, we set

Skg D F�1Œ��.kC1/
j�j1=2Fg�:

We note that if h 2 PBs
1;1 then Skh 2 PB

sC1=2Ck
1;1 and if h 2 PH s then Skh 2 PH sC1=2Ck .

Finally, if Q 2 PH 1=2 then rkC1.Q/ 2 PH�k�1=2.
It follows that (36) is bounded above by

C sup
khk PB0

1;1
�1

1X
lD0

cl

l !

Z
Rn

P
j

P
jt�j j�3

.i/�.lC1/FŒrlC1uj�4�FŒSlQj�
1=4ht /�.�/ d�

� C sup
khk PB0

1;1
�1

khk PB0
1;1

1X
lD0

cl

l !

Z
Rn

P
j

2j=2
jr

lC1uj�4
jjSlQj j dx

� C

1X
lD0

cl

l !

Z
Rn

P
j

j2�.lC1=2/j
r

lC1uj�4
jj2.lC1/j SlQj j dx

� C

1X
lD0

cl

l !

�Z
Rn

P
j

2�2.lC1=2/j
jr

lC1uj�4
j
2 dx

�1=2�Z
Rn

P
j

22.lC1/j
jSlQj j

2 dx

�1=2

:

By Plancherel’s theorem, this equals

C

1X
lD0

cl

l !

�Z
Rn

P
j

2�2.lC1=2/j
j�j2l
jFŒruj�4�j2d�

�1=2�Z
Rn

P
j

22.lC1/j
j�j�2.lC1=2/

jFŒQj �j
2d�

�1=2

� C

1X
lD0

cl

l !
2�3l

�Z
Rn

P
j

2�j
jFŒruj�4�j2d�

�1=2�Z
Rn

P
j

2j
jFŒQj �j

2d�

�1=2

� C

1X
lD0

cl

l !
2�3l
kQk PH 1=2kuk PH 1=2 ;

where we have used the fact that for every vector field X we haveZ
Rn

C1X
jD�1

2�j .X j�4/2 dx D

Z
Rn

X
k;l

XkXl

X
j�4�k
j�4�l

2�j dx .
Z

Rn

C1X
jD�1

2�j .Xj /
2 dx: (37)

� Estimate of
…2.�

1=4.�1=4Qu//


H1 : as in (34).

� Estimate of
…2

�
�1=4.Q�1=4u/��1=2.Qu/

�
PB0

1;1

: analogous to (35).

� Estimate of
…3.�

1=2.Qu//


H1 . We show that this lies in the smaller space PB0
1;1

(we always have
PB0
1;1
,!H1). We first observe that if h 2 PB0

1;1 then �1=2h 2 PB�1
1;1 and

�1=2hjC6
D

jC6X
kD�1

�1=2hk � sup
k2N

j2�k�1=2hk j

jC6X
kD�1

2k
� C 2j

khk PB0
1;1

: (38)
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Thus…3.�
1=2.Qu//


PB0

1;1

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

�1=2.Qj uk/h

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

�1=2.Qj uk/Œh
jC6� dx

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

.Qj uk/Œ�
1=2hjC6� dx

� C supkhk PB0
1;1

�1 khk PB0
1;1

Z
Rn

P
j

P
jk�j j�3

2j
jQj uk j dx

� C

�Z
Rn

P
j

2j Q2
j dx

�1=2�Z
Rn

P
j

2j u2
j dx

�1=2

� CkQk PH 1=2kuk PH 1=2 : (39)

� Estimate of …3.�
1=4.Q�1=4u//. To show that this is in PB0

1;1
, we observe that if h 2 PB0

1;1 then
�1=4h 2 B

�1=2
1;1, and by arguing as in (38) we get

k�1=4hjkL1 � 2j=2
khk PB0

1;1
:

Thus…3.�
1=4.Q; �1=4u//


PB0

1;1

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

�1=4.Qj�
1=4uk/h

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

.Qj�
1=4uk/Œ�

1=4hjC6� dx

� C supkhk PB0
1;1

�1 khk PB0
1;1

Z
Rn

P
j

P
jk�j j�3

2j=2
jQj�

1=4uk j dx

� C

�Z
Rn

P
j

2j Q2
j dx

�1=2�Z
Rn

P
j

.�1=4uj /
2 dx

�1=2

� CkQk PH 1=2kuk PH 1=2 : (40)

� Estimate of …3.�
1=4.�1=4Qu//: analogous to (40). �

Proof of Theorem 1.5. We use Theorem 1.7 and the duality between BMO and H1. For all h;Q 2 PH 1=2

and u 2 BMO we haveZ
Rn

�
�1=4.Q�1=4u/�Q�1=2uC�1=4Q�1=4u

�
hdx D

Z
Rn

�
�1=4.Q�1=4h/��1=2.Qh/C�1=4.h�1=4Q/

�
udx

� CkukBMOkR.Q;h/kH1 I

by Theorem 1.7, this is at most
CkukBMOkQk PH 1=2khk PH 1=2 :

Hence

kT .Q;u/k PH�1=2 D supkhk PH 1=2�1

Z
Rn

T .Q;u/hdx � CkukBMOkQk PH 1=2 : �
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Proof of Theorem 1.8. We observe that R is a Fourier multiplier of order zero; thus R WH�1=2!H�1=2,
R WH1!H1, and R W PB0

1;1
! PB0

1;1
. See [Taylor 1991] and [Sickel and Triebel 1995].

The estimates are very similar to the ones in Theorem 1.7; thus we will write down only one:

� Estimate of …1

�
R�1=4.�1=4QRu/�r.QRu/

�
. We observe that ruD�1=4R�1=4u. Hence…1

�
R�1=4.�1=4QRu/�r.QRu/

�
PB0

1;1

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jt�j j�3

�
R�1=4.�1=4Qj Ruj�4/�r.Qj Ruj�4/

�
ht dx

' supkhk PB0
1;1

�1

Z
Rn

P
j

P
jt�j j�3

Ruj�4
�
R�1=4ht�

1=4Qj �rhtQj

�
dx

' supkhk PB0
1;1

�1

Z
Rn

P
j

P
jt�j j�3

FŒRuj�4�.�/

�

�Z
Rn

FŒQj �.�/FŒR�
1=4ht �.� � �/

�
j�j1=2� j� � �j1=2

�
d�

�
d�: (41)

Now we can proceed exactly as in (35) and get

sup
khk PB0

1;1
�1

Z
Rn

P
j

P
jt�j j�3

�
R�1=4.�1=4Qj Ruj�4/�r.Qj Ruj�4/

�
ht dx � CkQk PH 1=2kuk PH 1=2 : �

Proof of Theorem 1.6. This follows from Theorem 1.8 and the duality between H1 and BMO. �

Lemma 3.2. Let u 2 PH 1=2.Rn/, then R.�1=4u �R�1=4u/ 2H1, and

kR.�1=4u �R�1=4u/kH1 � Ckuk2
PH 1=2

:

Proof. Since R WH1!H1, it is enough to verify that �1=4u �R�1=4u 2H1.

� Estimate of …1.�
1=4u;R�1=4u/:

…1.�
1=4u;R�1=4u/


H1 D

Z
Rn

� C1X
jD�1

�
�1=4uj .R�

1=4u/j�4
�2�1=2

dx

�

Z
Rn

supj

ˇ̌
.R�1=4u/j�4

ˇ̌�C1X
jD0

Œ�1=4uj �
2

�1=2

dx

�

�Z
Rn

jM.R�1=4u/j2 dx

�1=2�Z
Rn

C1X
jD�1

Œ�1=4uj �
2 dx

�1=2

� Ckuk2
PH 1=2

: (42)

The estimate of the H1 norm of …2.�
1=4u �R�1=4u/ is similar to (42).
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� Estimate of …3.�
1=4u �R�1=4u/:…1.�

1=4u;R�1=4u/


H1

D sup
khk PB0

1;1
�1

Z
Rn

P
j

P
jk�j j�3

�1=4uj R.�1=4uk/
�
hj�6

C

jC6P
tDj�5

ht

�
dx

D sup
khk PB0

1;1
�1

Z
Rn

P
j

P
jk�j j�3

�
�1=4uj R.�1=4uk/�ujrukC

1
2
r.uj uk/

��
hj�6

C

jC6P
tDj�5

ht

�
dx: (43)

We only estimate the terms with hj�6, the estimates with ht being similar. We have

supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

.�1=4uj R.�1=4uk/�ujruk/h
j�6 dx

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

FŒhj�6�.x/

�Z
Rn

FŒuj �FŒR�
1=4uk �Œjyj

1=2
� jx�yj1=2� dy

�
dx:

By arguing as in (35), we can show that this is bounded above by Ckuk2
PH 1=2

. Finally we also have

supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

1
2
r.uj uk/h

j�6 dx

D supkhk PB0
1;1

�1

Z
Rn

P
j

P
jk�j j�3

1
2
.uj uk/rhj�6 dx

� C supkhk PB0
1;1

�1 khk PB0
1;1

Z
Rn

P
j

P
jk�j j�3

2j uj ukdx � C

�Z
Rn

P
j

2j u2
j dx

�1=2

D Ckuk2
PH 1=2

:

�
Theorem 1.8 and Lemma 3.2 imply:

Corollary 3.3. Let n 2 PH 1=2.Rn;Sm�1/. Then �1=4Œn ��1=4n� 2H1.Rn/.

Proof. Since n � rnD 0 (see proof of Proposition 1.4), we can write

�1=4Œn ��1=4n�D�1=4Œn ��1=4n��RŒn � rn�CRŒ�1=4n �R�1=4n��RŒ�1=4n �R�1=4n�

D S.n � ; n/�RŒ�1=4n �R�1=4n�: (44)

The estimate in the corollary’s conclusion is a consequence of Theorem 1.8 and Lemma 3.2, which imply
respectively that S.n � ; n/ 2H1 and R.�1=4n �R�1=4n/ 2H1. �

4. L-energy decrease controls

We now provide (in Propositions 4.1 and 4.2) localization estimates of solutions to the equations

�1=4.M�1=4u/D T .Q;u/ (45)

and

�1=4.p ��1=4u/D S.q � ;u/�R.�1=4u �R�1=4u/; (46)
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where Q 2 PH 1=2.R;Ml�m.R//, M 2 PH 1=2.R;Ml�m.R//, l � 1 and p; q 2 PH 1=2.R;Rm/.

Such estimates will be crucial to obtaining Morrey-type estimates for half-harmonic maps into the
sphere (see Section 5). As observed in Section 1, half-harmonic maps into the sphere satisfy both
equations (16) and (18), which are (45) and (46) with .M;Q/ and .p; q/ replaced by .u^;u^/ and
.u;u/, respectively. Roughly speaking, we show that the L2 norm of M�1=4u in a sufficiently small ball
(u being a solution of either (45) or (46)), is controlled by the L2 norm of the same function in annuli
outside the ball multiplied by a “crushing” factor.

To this end we consider a dyadic decomposition of unity (Section 2). For convenience set

Ah D B2hC1 nB2h�1 ; A0h D B2h nB2h�1 ;

for h 2 Z. Choose a dyadic decomposition 'j 2 C1
0
.R/, so

supp.'j /�Aj and
C1P
�1

'j D 1: (47)

Also define, for h 2 Z,

�h WD

h�1P
�1

'j ; NuhDjB2k j
�1

Z
B

2k

u.x/ dx; Nuh
DjAhj

�1

Z
Ah

u.x/ dx; Nu0hDjA0hj
�1

Z
A0

h

u.x/ dx:

Proposition 4.1. Let Q2 PH 1=2.R;Ml�m.R//, M 2 PH 1=2.R;Ml�m.R//, l �1, and let u2 PH 1=2.R;Rm/

be a solution of (45). Then for k < 0 with jkj large enough we have

kM�1=4uk2
L2.B

2k /
�

1
4
k�1=4uk2

L2.B
2k /

� C

� 1X
hDk

2.k�h/=2
kM�1=4uk2

L2.Ah/
C

1X
hDk

2.k�h/=2
k�1=4uk2

L2.Ah/

�
: (48)

Proposition 4.2. Let p; q 2 PH 1=2.R;Rm/ and let u2 PH 1=2.R;Rm/ be a solution of (46). Then for k < 0

with jkj large enough we have

kp ��1=4uk2
L2.B

2k /
�

1
4
k�1=4uk2

L2.B
2k /

� C

� 1X
hDk

2.k�h/=2
kp ��1=4uk2

L2.Ah/
C

1X
hDk

2.k�h/=2
k�1=4uk2

L2.Ah/

�
: (49)

For the proof, we need some estimates.

Lemma 4.3. Let u 2 PH 1=2.R/. Then, for all k 2 Z,
C1X
hDk

2k�h
k'h.u� Nuk/k PH 1=2.R/

� C

�X
s�k

2s�k
kuk PH 1=2.As/

C

X
s�k

2k�s
kuk PH 1=2.As/

�
: (50)

Proof of Lemma 4.3. We first have

k'h.u� Nuk/k PH 1=2.R/
� k'h.u� Nu

h/k PH 1=2.R/
Ck'hk PH 1=2.R/

j Nuk � Nu
h
j: (51)
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We estimate separately the two terms on the right-hand side of (51). We have

k'h.u� Nu
h/k2

PH 1=2.R/
D

Z
Ah

Z
Ah

ˇ̌
'h.u� Nu

h/.x/�'h.u� Nu
h/.y/

ˇ̌2
jx�yj2

dx dy

� 2

�Z
Ah

Z
Ah

ju.x/�u.y/j2

jx�yj2
dx dyCkr'hk

2
1

Z
Ah

Z
Ah

ju� Nuh
j
2 dx dy

�
� C

�
kuk2

PH 1=2.Ah/
C 2�h

Z
Ah

ju� Nuh
j
2 dx

�
� Ckuk2

PH 1=2.Ah/
; (52)

where we used the fact that kr'hk1 � C 2�h and the embedding PH 1=2.R/ ,! BMO.R/.
Now we estimate j Nuk � Nu

hj. We can write Nuk D
Pk�1

lD�1 2l�k Nu0l . Moreover,

j Nuk � Nu
h
j � j Nuh

� Nu0hjC j Nuk � Nu
0h
j

� C jAhj
�1

Z
Ah

ju� Nuh
j dxC

k�1P
lD�1

2l�k
h�1P
sDl

j Nu0sC1
� Nu0sj

� C jAhj
�1

Z
Ah

ju� Nuh
j dxC

k�1P
lD�1

2l�k
h�1P
sDl

jAsC1j
�1

Z
AsC1

ju� NusC1
j dx

� C

�
kuk PH 1=2.Ah/

C

k�1P
lD�1

2l�k
h�1P
sDl

kuk PH 1=2.AsC1/

�
:

(53)

Combining (52) and (53) we get

k'h.u� Nu
h/k PH 1=2.R/

� k'h.u� Nu
h/k PH 1=2.R/

Ck'hk PH 1=2.R/
j Nuk � Nu

h
j

� C

�
kuk PH 1=2.Ah/

C

k�1P
lD�1

2l�k
h�1P
sDl

kuk PH 1=2.AsC1/

�
: (54)

Multiplying both sides of (54) by 2k�h and summing up from hD k to C1 we get

C1P
hDk

2k�h

�
k�1P

lD�1

2l�k
hP

sDlC1

kuk PH 1=2.As/

�
� C

P
s�k

kuk PH 1=2.As/

� P
h�k

P
l�s

2l�h
�
C
P
s�k

kuk PH 1=2.As/

� P
h�s

P
l�k

2l�h
�

� C
P
s�k

2s�k
kuk PH 1=2.As/

C
P
s�k

2k�s
kuk PH 1=2.As/

: �

Now we recall the value of the Fourier transform of some functions that will be used in the sequel.
We have

FŒjxj�1=2�.�/D j�j�1=2: (55)

The Fourier transforms of jxj, x jxj�1=2, and jxj1=2 are the tempered distributions defined, for every
' 2 S.R/, as follows (with 1X the characteristic function of 1):
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˝
FŒjxj�; '

˛
D
˝
FŒx=jxj� ?FŒx�; '

˛
D
˝
p:v:.x�1/ ? .ı/00.x/; '

˛
D p:v:

Z
R

'.x/�'.0/�1B1.0/�
0.0/x

x2
dx;

˝
FŒx jxj�1=2�; '

˛
D
˝
FŒx� ?FŒjxj�1=2�; '

˛
D
˝
.ı/00.x/? jxj

�1=2; '
˛
D p:v:

Z
R

�
'.x/�'.0/

� x

jxj

1

jxj3=2
dx;

˝
FŒjxj1=2�; '

˛
D p:v:

Z
R

'.x/�'.0/

jxj3=2
dx:

Next we introduce the operators

F.Q; a/D�1=4.Qa/�Q�1=4aC�1=4Qa; (56)

G.Q; a/DR�1=4.Qa/�Q�1=4RaC�1=4QRa: (57)

We observe that T .Q;u/D F.Q; �1=4u/ and S.Q;u/DRG.Q; �1=4u/.

We now state turn to lemmas where we consider M;u as in Proposition 4.1 or p;u as in Proposition 4.2,
and estimate the PH 1=2 norm of w D ��1=4.M�1=4u/ or w D ��1=4.p ��1=4u/ in B2k in terms of the
PH 1=2 norm of w in annuli outside the ball and the L2 norm of �1=4u in annuli inside and outside the

ball B2k . The key point is that each term is multiplied by a crushing factor.

Lemma 4.4. Assume the hypotheses of Proposition 4.1. There exist C > 0 and Nn > 0, independent of u

and M , such that for all � 2
�
0; 1

4

�
, all k < k0 (where k0 2 Z depends on � and kQk PH 1=2.R/), and all

n� Nn, we have�k�4.w� Nwk�4/

PH 1=2.R/

� �k�k�4�
1=4ukL2 CC

�
1P

hDk

2.k�h/=2
k�1=4ukL2.Ah/

C

C1P
hDk�n

2k�h
kwk PH 1=2.Ah/

�
; (58)

where w D��1=4.M�1=4u/ and we recall that �k�4 � 1 on B2k�5 and �k�4 � 0 on Bc
2k�4 .

Lemma 4.5. Assume the hypotheses of Proposition 4.2. There exist C > 0 and Nn > 0, independent of u

and M , such that for all
�
0; 1

4

�
, all k < k0 (where k0 2 Z depends on � and the PH 1=2 norms of Q and u

in R), and all n� Nn, we have�k�4.w� Nwk�4/

PH 1=2.R/

� �k�k�4�
1=4ukL2.R/CC

�
1P

hDk

2.k�h/=2
k�1=4ukL2.Ah/

C

k�3P
hDk�n

2h�k
kwk PH 1=2.Ah/

�
; (59)

where w D��1=4.p ��1=4u/.

Proof of Lemma 4.4. Fix � 2
�
0; 1

4

�
. We first consider k < 0 large enough in absolute value so that

k�k.Q� NQk/k PH 1=2.R/
� ", where " 2 .0; 1/ will be determined later. We write

F.Q; �1=4u/D F.Q1; �
1=4u/CF.Q2; �

1=4u/;

where

Q1 D �k.Q� NQk/ and Q2 D .1��k/.Q� NQk/:
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By construction, we have

supp Q2 � Bc
2k�1 and kQ2k PH 1=2.R/

� kQk PH 1=2.R/
:

For brevity, set
W WD �k�4.w� Nwk�4/:

We rewrite (45) as

�1=2.W /D��1=2

� C1X
hDk�4

'h.w� Nwk�4/

�
CF.Q1; �

1=4u/CF.Q2; �
1=4u/: (60)

We take the scalar product of both sides with W and integrate over R. From Corollary A.8 it follows
that

lim
N!C1

Z
R

�1=2

� C1X
hDN

'h.w� Nwk�4/

�
�W dx D lim

N!C1

Z
R

�1=2
�
.1��N�1/.w� Nwk�4/

�
�W dx D 0:

This allows us to interchange the infinite sum with the integral and the operator �1=2 in the expressionZ
R

�1=2

� C1X
hDk�4

'h.w� Nwk�4/

�
�W dx D

C1X
hDk�4

Z
R

�1=2
�
'h.w� Nwk�4/

�
�W dx:

Thus we get from (60) the equalityZ
R

ˇ̌
�1=4.W /

ˇ̌2
dx

D�

C1X
hDk�4

Z
R

�1=2.'h.w� Nwk�4// �W dxC

Z
R

F.Q1; �
1=4u/ �W dxC

Z
R

F.Q2; �
1=4u/ �W dx: (61)

Step 1: estimate of the sum. We split the sum in (61) into two parts: k � 4� h� k � 3 and h� k � 2.

Step 1a. We have

�

k�3X
hDk�4

Z
R

�1=2.'h.w� Nwk�4// �W dx � kW k PH 1=2.R/

� k�3X
hDk�4

'h.w� Nwk�4/

PH 1=2.R/

�
:

By Lemma 4.3, the right-hand side is bounded above by

kW k PH 1=2.R/

� k�3X
hDk�4

�
kwk PH 1=2.Ah/

C

k�5X
lD�1

2l�.k�4/
hX

sDlC1

kwk PH 1=2.As/

��

� CkW k PH 1=2.R/

� k�3X
hD�1

2h�k
kwk PH 1=2.Ah/

�
: (62)

From the localization theorem A.1 it follows that
k�6P

hD�1

kwk2
PH 1=2.Ah/

� QC kW k2
PH 1=2.R/

;
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where QC > 0 is independent of k and w. Thus we can find n1 � 6 such that

C
k�nP

hD�1

2h�k
kwk PH 1=2.Ah/

�
1
8
kW k PH 1=2.R/

for all n� n1;

with the same constant C appearing on the last line of (62). Then for n� n1 we have
k�3X

hDk�4

Z
R

�1=2
�
'h.w� Nwk�4/

�
�W dx

�
1
8
kW k2

PH 1=2.R/
CC kW k PH 1=2.R/

� k�3X
hDk�n

2h�k
kwk PH 1=2.Ah/

�
: (63)

Step 1b. To estimate the part of the sum in (61) with h � k � 2, we use the fact that the supports of 'h

and of �k�4 are disjoint; in particular 0 … supp
�
'h.w� Nwk�4/ ?W

�
. We have

C1X
hDk�2

Z
R

�1=2
�
'h.w� Nwk�4/

�
�W dx

D

C1X
hDk�2

Z
R

F�1.j�j/.x/
�
'h.w� Nwk�4/

�
?W dx

�

C1X
hDk�2

F�1.j�j/


L1.B
2hC2nB2h�2 /

'h.w� Nwk�4/


L1kW kL1

� C

C1X
hDk�2

2�2h2h=2
'h.w� Nwk�4/


L2.R/

2k=2
kW kL2.R/: (64)

By Theorem A.5 and Lemma 4.3 the sum on this last line is bounded above by
C1X

hDk�2

2k�4�h
'h.w� Nwk�4/


PH 1=2.R/

kW k PH 1=2.R/

�

C1X
hDk�2

2k�4�h
�
kwk PH 1=2.Ah/

C

k�5P
lD�1

2l�.k�4/
hP

sDlC1

kwk PH 1=2.As/

�
kW k PH 1=2.R/

�

� C1X
hDk�4

2k�h�4
kwk PH 1=2.Ah/

C

X
s�k�4

kwk PH 1=2.As/

� P
h�k�4

P
l�s�1

2l�h
�

C

X
s�k�4

kwk PH 1=2.As/

� P
h�s�1

P
l�k�4

2l�h
��
kW k PH 1=2.R/

�

� C1X
hDk�4

2k�4�h
kwk PH 1=2.Ah/

C

k�5X
hD�1

2h�.k�4/
kwk PH 1=2.Ah/

�
kW k PH 1=2.R/

: (65)

Finally, set n> NnDmax.n1; n2/, where n2 � 6 is such that

C
k�nP

hD�1

2h�.k�4//
kwk PH 1=2.Ah/

�
1
8
kW k PH 1=2.R/

for n� n2:
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We conclude from (63)–(65) that

C1X
hDk�4

Z
R

�1=2.'h.w� Nwk�4// �W �
1
4
kW k2

PH 1=2.R/
CC kW k PH 1=2.R/

C1X
hDk�n

2k�h
kwk PH 1=2.Ah/

: (66)

Step 2: estimate of
R

R
F.Q1; �

1=4u/ �W dx, the second term on the right-hand side of (61). We write

F.Q1; �
1=4u/D F.Q1; �k�4�

1=4u/C
kC1P

hDk�4

F.Q1; 'h�
1=4u/C

C1P
hDkC2

F.Q1; 'h�
1=4u/: (67)

By Theorem 1.7, the integral involving the first term on the right can be estimated as follows:Z
R

F.Q1; �k�4�
1=4u/ �W dx � C kQ1k PH 1=2.R/

k�k�4�
1=4ukL2kW k PH 1=2.R/

� C "k�k�4�
1=4ukL2 kW k PH 1=2.R/

�
1

16
k�k�4�

1=4ukL2 kW k PH 1=2.R/
; (68)

where in the last inequality we have made use of the choice of ">0 (see beginning of proof on page 166).
We also use Theorem 1.7 for the integral involving the second term on the right-hand side of (67):

kC1X
hDk�4

Z
R

F.Q1; 'h�
1=4u/ �W dx � C

kC1X
hDk�4

kQ1k PH 1=2.R/
k'h�

1=4ukL2.R/kW k PH 1=2.R/
: (69)

Next we want to deal with the term in (67) involving the infinite sum. Again by Corollary A.8 we can
exchange the summation with the integral and writeZ

R

� C1X
hDkC2

F.Q1; 'h�
1=4u/

�
�W dx D

C1X
hDkC2

Z
R

F.Q1; 'h�
1=4u/ �W dx:

If h � k C 2, we have F.Q1; 'h�
1=4u/ �W DQ1�

1=4.'h�
1=4u/ �W , since the supports of Q1 and 'h

are disjoint, as are the supports of �k�4 and 'h. Hence we can write

C1X
hDkC2

Z
R

F.Q1; 'h�
1=4u/ �W dx D

C1X
hDkC2

Z
R

Q1�
1=4.'h�

1=4u/ �W dx

D

C1X
hDkC2

Z
R

F�1.j�j1=2/.x/
�
.Q1'h�

1=4u/ ?W
�

D

C1X
hDkC2

kF�1.j�j1=2/kL1.B
2hC2nB2h�2 / kQ1'h�

1=4ukL1 kW kL1

� C

C1X
hDkC2

2�3h=2
kQ1'h�

1=4ukL1kW kL1 : (70)
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By Theorem A.5 we finally get

C1X
hDkC2

Z
R

F.Q1; 'h�
1=4u/ �W dx � C

C1X
hDkC2

2k�h
kQ1k PH 1=2.R/

k k'h�
1=4ukL2.R/kW k PH 1=2.R/

� C

C1X
hDkC2

2k�h
k'h�

1=4ukL2kW k PH 1=2.R/
:

Step 3: estimate of
R

R
F.Q2; �

1=4u/ �W dx, the last term in (61). As in Step 2, we write

F.Q2; �
1=4u/D F.Q2; �k�4�

1=4u/C
kC1P

hDk�4

F.Q2; 'h�
1=4u/C

C1P
hDkC2

F.Q2; 'h�
1=4u/: (71)

For the first term, since the support of Q2 is included in Bc
2k�1 , we have

F.Q2; �k�4�
1=4u/ �W D�1=4

�
Q2.�k�4�

1=4u/
�
�W:

Observe that Q2 D
PC1

hDk�1 'h.Q2� . NQ2/k�1/, (. NQ2/k�1 D 0) and by using Corollary A.8 we getZ
R

F.Q2; �k�4�
1=4u/ �W dx

D

C1X
hDk�1

Z
R

�1=4
�
.'h.Q2� . NQ2/k�1//.�k�4�

1=4u/
�
�W

� C

C1X
hDk�1

Z
R

F�1.j�j1=2/
��
.�k�4�

1=4u/'h.Q2� . NQ2/k�1/
�
?W

�
� CkW kL1

C1P
hDk�1

kF�1.j�j1=2/kL1.B
2hC2nB2h�2 /k.�k�4�

1=4u/'h.Q2� . NQ2/k�1/kL1

� Ck�k�4�
1=4ukL2kW k PH 1=2.R/

C1P
hDk�1

2�h=22k=2
k'h.Q2� . NQ2/k�1/k PH 1=2.R/

:

From Lemma 4.3, possibly by choosing a smaller k, we get

C
C1P

hDk�1

2.k�h/=2
k'h.Q2� . NQ2/k�1/k PH 1=2.R/

�
1
4
� < 1

16
:

Therefore Z
R

F.Q2; �k�4�
1=4u/ �W dx � 1

4
�k�k�4�

1=4ukL2kW k PH 1=2.R/
:

Now turning to the second term in (71), we bound the corresponding integral using Theorem 1.7:

kC1X
hDk�4

Z
R

F.Q2; 'h�
1=4u/�W dx � C

kC1X
hDk�4

kQk PH 1=2.R/
k'h�

1=4ukL2 kW .w� Nwk�4/k PH 1=2.R/
: (72)
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Finally we consider the last term in (71). By Corollary A.8 we can writeZ
R

� C1X
hDkC2

F.Q2; 'h�
1=4u/

�
�W dx D

C1X
hDkC2

Z
R

F.Q2; 'h�
1=4u/ �W dx:

Next, since the support of Q2 is included in Bc
2k�1 , we have for h� kC 2 the equality

F.Q2; 'h�
1=4u/ �W D

�
�1=4.Q2 'h�

1=4u/�Q2�
1=4.'h�

1=4u/C�1=4Q2'h�
1=4u

�
�W

D�1=4.Q2'h�
1=4u/ �W:

Therefore

C1X
hDkC2

Z
R

F.Q2; 'h�
1=4u/ �W dx

D

C1X
hDkC2

Z
R

�1=4.Q2'h�
1=4u/ �W dx D

C1X
hDkC2

Z
R

FŒ�1=4.Q2'h�
1=4u/�FŒW � d�

D

C1X
hDkC2

Z
R

j�j1=2FŒ.Q2'h�
1=4u/�FŒW � d�

D

C1X
hDkC2

Z
R

F�1.j�j1=2/
��
'h�

1=4u.Q2� . NQ2/k�1/
�
?W

�
dx

�

C1X
hDkC2

F�1Œj�1=2�


L1.B
2hC2nB2h�2 /

�'h�
1=4u.Q2� . NQ2/k�1/

�
?W


L1.R/

:

(73)

Now choose  h 2 C1
0
.R/ such that  h � 1 in B2hC1 nB2h�1 and supp � B2hC2 nB2h�2 . Thus

.73/� C

C1X
hDkC2

2�3h=2
 h.Q2� . NQ2/k�1/


L2.R/

k'h�
1=4ukL2.R/ kW kL1.R/

� C

C1X
hDkC2

2k�h
 h.Q2� . NQ2/k�1/


PH 1=2.R/

k'h�
1=4ukL2.R/ kW k PH 1=2.R/

� C

� C1X
hDkC2

2k�h
k h.Q2� . NQ2/k�1/k

2
PH 1=2.R/

�1=2� C1X
hDkC2

2k�h
k'h�

1=4uk2
L2

�1=2

kW k PH 1=2.R/
:

(74)

where we have applied Theorem A.5 and Cauchy–Schwartz.
From Lemma 4.3 (with ' replaced by  ) and Theorem A.1 we deduce that� C1X

hDkC2

2k�h
k h.Q2� . NQ2/k�1/k

2
PH 1=2.R/

�1=2

� CkQk PH 1=2.R/
:
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Thus
C1X

hDkC2

Z
R

F.Q2; 'h�
1=4u/ �W dx � CkW k PH 1=2.R/

� C1X
hDkC1

2k�h
k'h�

1=4uk2
L2.R/

�1=2

� CkW k PH 1=2.R/

� C1X
hDkC1

2.k�h/=2
k'h�

1=4ukL2.R/

�
: (75)

By combining (68), (69), (70), (72) and (75) we obtain (for some constant C depending on Q)Z
R

F.Q; �1=4u/ �W dx

�
1
2
�k�k�4�

1=4ukL2kW k PH 1=2.R/
CC

C1X
hDk�4

2.k�h/=2
k�1=4ukL2.Ah/

kW k PH 1=2.R/
: (76)

Finally for all n� Nn we have

kW k PH 1=2.R/

� �k�k�4�
1=4uk PH 1=2.R/

CC

� C1X
hDk�n

2k�h
kwk PH 1=2.As/

C

C1X
hDk�4

2.k�h/=2
k�1=4ukL2.Ah/

�
; (77)

concluding the proof of Lemma 4.4. �

Proof of Lemma 4.5. The proof is similar to the preceding one, so we just sketch it. As before, we fix
� 2

�
0; 1

4

�
. We consider k < 0 such that

k�k.q� Nqk/k PH 1=2.R/
� " and k�k�

1=4ukL2.R/ � ";

with " > 0 to be determined later.
We observe that (46) is equivalent to

R�1=4.p ��1=4u/DG.q � ; �1=4u/��1=4u � .R�1=4u/: (78)

We write
G.q � ; �1=4u/DG.q1 � ; �

1=4u/CG.q2 � ; �
1=4u/;

where
q1 D �k.q� Nqk/ and q2 D .1��k/.q� Nqk/:

We observe that supp q2 � Bc
2k�1 and kq1k PH 1=2.R/

� ". We also set

u1 D �k�
1=4u; u2 D .1��k/�

1=4u; w D��1=4.p ��1=4u/; W D �k�4.w� Nwk�4/:

We rewrite (78) as

R�1=2.W /D�R�1=2

� C1X
hDk�4

'h.w� Nwk�4/

�
CG.q1 � ; �

1=4u/CG.q2 � ; �
1=4u/Cu1 � .R�

1=4u/Cu2 � .R�
1=4u/: (79)
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We multiply (79) by W and integrate over R. By using again Corollary A.8 we getZ
R

j�1=4.W /j2 dx

D�

C1X
hDk�4

Z
R

R�1=2.'h.w� Nwk�4//.W / dx C

Z
R

G.q1 � ; �
1=4u/.W / dxC

Z
R

G.q2 � ; �
1=4u/.W / dx

C

Z
R

u1 �.R�
1=4u/.W / dxC

Z
R

u2 �.R�
1=4u/.W / dx:

(80)

The last term vanishes, since u2 and �k�4 have disjoint supports. Estimating
R

R
G.Q1; �

1=4u/.W / dx

and
R

R
G.Q2; �

1=4u/.W / dx is analogous to what we did for the terms
R

R
F.Q1; �

1=4u/.W / dx andR
R

F.Q2; �
1=4u/.W / dx of (61). We therefore concentrate on the other two terms in the right-hand side

of (80).
To estimate the sum term, we split it into two parts: one sum for k � 4 � h � k � 3 and one for

h� k � 2. For the first part we write

�

k�3X
hDk�4

Z
R

R�1=2.'h.w� Nwk�4//.W / dx

�

k�3X
hDk�4

�1=2.'h.w� Nwk�4//

PH�1=2.R/

k.W /k PH 1=2.R/

� C

k�3X
hDk�4

�
kwk PH 1=2.Ah/

C

k�5P
lD�1

2l�.k�4/
hP

sDlC1

kwk PH 1=2.As/

�
kW k PH 1=2.R/;

(81)

where the second inequality follows from Lemma 4.3. Let n1 � 6 be such that

C
k�n1P

hD�1

2h�k
kwk PH 1=2.Ah/

�
1
8
kW k PH 1=2.R/

:

If n� n1 we have

.81/� 1
8
kW k2

PH 1=2.R/
CCkW k PH 1=2.R/

�
k�3P

hDk�n

2h�k
kwk PH 1=2.Ah/

�
: (82)

For the second part of the sum (h� k�2) we use the fact that supp
�
'h.w� Nwk�4/?W

�
is contained

in B2hC2 nB2h�2 ; in particular, it does not contain 0.

C1X
hDk�2

Z
R

R�1=2.'h.w� Nwk�4//.W / dx D

C1X
hDk�2

Z
R

�FŒ'h.w� Nwk�4/�.�/FŒW �.�/ d�

D

C1X
hDk�2

Z
R

F�1.�/.x/
�
'h.w� Nwk�4/ ?W

�
dx

D

C1X
hDk�2

Z
R

ı00.x/ .'h.w� Nwk�4/ ?W / .x/ dx D 0:
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Step 2: estimate of
R

R
u1 � .R�

1=4u/.W / dx. We have

Z
R

u1 � .R�
1=4u/.W / dx D

Z
R

u1 � .Ru1/.W / dxC

C1X
hDk

Z
R

u1 � .R'h�
1=4u/.W / dx: (83)

By applying Lemma 3.2 and using the embedding of H1.R/ into PH�1=2.R/ we getZ
R

u1 � .Ru1/.W / dx � Cku1 � .Ru1/kH1k.W /k PH 1=2.R/
� Cku1k

2
L2k.W /k PH 1=2.R/

� C "k�k�
1=4ukL2k.W /k PH 1=2.R/

�
1

4
"k�k�

1=4ukL2k.W /k PH 1=2.R/
:

By choosing " > 0 smaller if needed, we may suppose that C " <.
Now we observe that for h� k the supports of 'h and �k�4 are disjoint. Thus

C1X
hDk

Z
R

u1 � .R'h�
1=4u/.W / dx D

C1X
hDk

Z
R

F�1Œ
�

j�j
�.x/

�
.'h�

1=4u/ ? .u1W /
�

dx

� C
C1P
hDk

kjxj�1
kL1.B

2hC2nB2h�2 /k.'h�
1=4u/ ? .u1W /kL1

� C
C1P
hDk

2�h2h=22k=2
k'h�

1=4ukL2.R/ku1kL2.R/k.W /k PH 1=2.R/

� C "
C1P
hDk

2.k�2/=2
k'h�

1=4ukL2.R/k.W /k PH 1=2.R/

�
�

4

C1P
hDk

2.k�2/=2
k'h�

1=4ukL2.R/k.W /k PH 1=2.R/
: �

Proof of Proposition 4.1. From Lemma 4.4, there exist C > 0 and Nn> 0 such that for all n> Nn, 0<�< 1
4

,
k < k0 (k0 depending on � and the PH 1=2 norm of Q), every solution to (45) satisfies (77) and thus also

kW k2
PH 1=2.R/

� �2
k�k�4�

1=4uk2
L2 CC 2n=2

C1P
hDk�n

2k�h
kwk2

PH 1=2.Ah/
CC

C1P
hDk�4

2.k�h/=2
k�1=4uk2

L2.R/
: (84)

Now we can fix n� Nn and we can replace in the second term of (84) C 2n=2 by C .
From Lemma A.3 it follows that there are C1;C2 > 0 and m1 > 0 (independent of n and k) such that

if m�m1 we have

kW k2
PH 1=2.R/

� C1

Z
B

2k�n�m

jM�1=4uj2 dx�C2

C1X
hDk�n�m

2k�h

Z
B

2hnB2h�1

jM�1=4uj2 dx: (85)

Finally from Lemma A.4 it follows that there is C > 0 such that for all  2 .0; 1/ there exists m2 > 0

such that if m�m2 we have
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C1X
hDk�n

2k�h
kwk2

PH 1=2.Ah/

D

C1X
hDk�n

2k�h
k��1=4.M�1=4u/k2

PH 1=2.Ah/

� 

Z
j�j�2k�n�m

jM�1=4uj2 dxC

C1X
hDk�n�m

2.k�h/=2

Z
2h�j�j�2hC1

jM�1=4uj2 dx:

(86)

By combining (84), (85) and (86) we get

C1kM�1=4uk2
L2.B

2k�n�m /
� C

1P
hDk�n�m

2.k�h/=2
kM�1=4uk2

L2.Ah/
CC2

C1P
hDk�n�m

2.k�h/=2
k�1=4ukL2.Ah/

C�2
k�k�4�

1=4uk2
L2.R/

CCkM�1=4uk2
L2.B

2k�n�m /
: (87)

Now choose ; � > 0 so that C�1
1

C < 1
4

and C�1
1
�2 < 1

4
. With these choices we get for some

constant C > 0

kM�1=4uk2
L2.B

2k�n�m /
�

1
4
k�1=4uk2

L2.B
2k�n�m /

� C

�
1P

hDk�n�m

2.k�h/=2
kM�1=4uk2

L2.Ah/
C

C1P
hDk�n�m

2.k�h/=2
k�1=4ukL2.Ah/

�
: (88)

We observe that in the final estimate (88) the index m can be fixed as well. Thus by replacing in (88)
k � n�m by k we get (48) and we conclude the proof. �

The proof of Proposition 4.2 is analogous and we omit it.

5. Morrey estimates and Hölder continuity of 1
2

-harmonic maps into the sphere

We consider the .m� 1/-dimensional sphere Sm�1 � Rm. Let …Sm�1 be the orthogonal projection on
Sm�1. We also consider the Dirichlet energy defined by

L.u/D

Z
R

j�1=4u.x/j2 dx for u W R! Sm�1: (89)

Definition 5.1. We say that u 2H 1=2.R;Sm�1/ is a weak 1
2

-harmonic map if

d

dt
L.…Sm�1.uC t�//jtD0

D 0 (90)

for every map � 2H 1=2.R;Rm/\L1.R;Rm/. In other words, weak 1
2

-harmonic maps are the critical
points of the functional (89) with respect to perturbations of the form …Sm�1.uC t�/.

We denote by
V
.Rm/ the exterior algebra (or Grassmann algebra) of Rm. If .ei/iD1;:::;m is the

canonical orthonormal basis of Rm, every element v 2
V

p.R
m/ can be written as v D

P
I vI eI , where

I D fi1; : : : ; ipg with 1� i1 � � � � � ip �m, vI WD vi1;:::;ip , and eI WD ei1
^ � � � ^ eip .
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By we denote the interior multiplication W
V

p.R
m/�

V
q.R

m/!
V

q�p.R
m/ defined as follows:

Let eI D ei1
^ � � � ^ eip , eJ D ej1

^ � � � ^ ejq
, with q � p. Then eI eJ D 0 if I 6� J ; otherwise

eI eJ D .�1/M eK , where eK is a .q�p/-vector and M is the number of pairs .i; j /2 I�J with j > i .
By the symbol � we denote the first order contraction between multivectors. We recall that it satisfies

˛ � ˇ D ˛ ˇ if ˇ is a 1-vector and ˛ � .ˇ ^  / D .˛ � ˇ/ ^  C .�1/pq.˛ �  / ^ ˇ, if ˇ and  are
respectively a p-vector and a q-vector.

Finally by the symbol � we denote the Hodge star operator, � W
V

p.R
m/!

V
m�p.R

m/, defined by
�ˇ D .e1 ^ � � � ^ en/ �ˇ.

Next we write the Euler equation associated to the functional (89).

Theorem 5.2. All weak 1
2

-harmonic maps u 2H 1=2.R;Sm�1/ satisfy in a weak sense the equationZ
R

.�1=2u/ � v dx D 0; (91)

for every v 2H 1=2.R;Rm/\L1.R;Rm/ such that v 2 Tu.x/S
m�1 almost everywhere, or equivalently

the equation
�1=2u^uD 0 in D0, (92)

or yet
�1=4.u^�1=4u/D T .Q;u/ in D0, (93)

with QD u^ .

Proof. The proof of (91) is analogous that of Lemma 1.4.10 in [Hélein 2002]. For v as in the statement,
we have

…Sm�1.uC tv/D uC twt ;

where

wt D

Z 1

0

@…Sm�1

@yj
.uC tsv/vj ds:

Hence

L.…Sm�1.uC tv//D

Z
R

j�1=4uj2 dxC 2t

Z
R

�1=2u �wt dxC o.t/;

as t ! 0. Thus (90) is equivalent to

lim
t!0

Z
R

�1=2u �wt dx D 0:

Since …Sm�1 is smooth it follows that wt !w0 D d…Sm�1.u/.v/ in H 1=2.R;Rm/\L1.R;Rm/ and
therefore Z

R

�1=4u d…Sm�1.u/.v/ dx D 0:

Since v 2 Tu.x/S
m�1 a.e., we have d…Sm�1.u/.v/D v a.e. and (91) follows.

To prove (92), we take ' 2 C1
0
.R;

V
m�2.R

m//. ThenZ
R

' ^u^�1=2u dx D

�Z
R

�.' ^u/ ��1=2u dx

�
e1 ^ � � � ^ em: (94)
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We claim that

v D �.' ^u/ 2 PH 1=2.R;Rm/ and v.x/ 2 Tu.x/S
m�1 a.e.

That v 2 H 1=2.R;Rm/\L1.R;Rm/ follows form the fact that its components are the product of two
functions in PH 1=2.R;Rm/\L1.R;Rm/, which is an algebra. Moreover,

v �uD �.u^'/ �uD �.u^' ^u/D 0: (95)

It follows from (91) and (94) that Z
R

' ^u^�1=2u dx D 0:

This shows that �1=2u^uD 0 in D0, concluding the proof of (92).

To prove (93) it is enough to observe that �1=2u^uD 0 and �1=4u^�1=4uD 0. �

Next we show that any map u2 PH 1=2.R;Rm/ such that jujD1 a.e. satisfies the structural equation (18).

Proof of Proposition 1.4. We observe that if u 2 PH 1=2.R;Sm�1/ then Leibniz’s rule holds. Thus

rjuj2 D 2u � ru in D0: (96)

Indeed, the equality (96) holds trivially if u 2 C1
0
.R;Rm�1/. Let u 2 PH 1=2.R;Sm�1/ and let uj be a

sequence in C1
0
.R;Rm/ converging to u in PH 1=2.R;Rm/ as j !C1. Then ruj !ru as j !C1

in PH�1=2.R;Rm�1/. Thus uj � ruj ! u � ru in D0 and (96) follows.
If u 2 PH 1=2.R;Sm�1/, then rjuj2 D 0 and thus u � ruD 0 in D0 as well. Thus u satisfies (18) and

this conclude the proof. �

By combining Theorem 5.2, Proposition 1.4 and the results of the previous section we get the Hölder
regularity of weak 1

2
-harmonic maps.

Theorem 5.3. Let u 2 PH 1=2.R;Sm�1/ be a harmonic map. Then u 2 C
0;˛
loc .R;S

m�1/.

Proof. From Theorem 5.2 it follows that u satisfies (93). Moreover, since jujD 1, Proposition 1.4 implies
that u satisfies (18) as well. Propositions 4.1 and 4.2 yield for k < 0, with jkj large enough,

ku^�1=4uk2
L2.B

2k /
� C

1P
hDk

2.k�h/=2
k�1=4uk2

L2.Ah/
C

1
4
k�1=4uk2

L2.B
2k /
; (97)

ku ��1=4uk2
L2.B

2k /
� C

1P
hDk

2.k�h/=2
k�1=4uk2

L2.Ah/
C

1
4
k�1=4uk2

L2.B
2k /
: (98)

Since

k�1=4uk2
L2.B

2k /
D ku ��1=4uk2

L2.B
2k /
Cku^�1=4uk2

L2.B
2k /
;

we get

k�1=4uk2
L2.B

2k /
� C

1P
hDk

2.k�h/=2
k�1=4uk2

L2.Ah/
: (99)
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Now observe that for some C > 0 (independent of k) we have

C�1
k�1P

hD�1

k�1=4uk2
L2.Ah/

� k�1=4uk2
L2.B

2k /
� C

kP
hD�1

k�1=4uk2
L2.Ah/

:

From this and (98) it follows that

k�1P
hD�1

k�1=4uk2
L2.Ah/

� C
1P

hDk

2.k�h/=2
k�1=4uk2

L2.Ah/
:

By applying Proposition A.9 and using again (99) we get for r > 0 small enough and some ˇ 2 .0; 1/Z
Br

j�1=4uj2 dx � C rˇ: (100)

Condition (100) yields that u belongs to the Morrey–Campanato space L2;�ˇ (see [Adams 1975], page
79), and thus u 2 C 0;ˇ=2.R/ (see [Adams 1975; Giaquinta 1983], for instance). �

Appendix

We prove here some results used in the previous sections. The first is that the PH 1:2.Œa; b�/ norm, where
�1 � a < b � C1, can be localized in space. This result, besides being of independent interest, is
used in Section 4 for localization estimates. For simplicity we will suppose that Œa; b�D Œ�1; 1�.

Theorem A.1 (Localization of H 1=2..�1; 1// norm). Let u 2H 1=2..�1; 1//. For some C > 0 we have

kuk2
PH 1=2..�1;1//

'

0P
jD�1

kuk2
PH 1=2.Aj /

;

where Aj D B2jC1 nB2j�1 .

Proof. For every i 2 Z, we set A0i D B2i nB2i�1 and Nu0i D jA
0
i j
�1
R
A0

i
u.x/ dx. We have

kuk2
PH 1=2..�1;1//

'

Z
Œ�1;1�

Z
Œ�1;1�

ju.x/�u.y/j2

jx�yj2
dx dy

D

0X
i;jD�1

Z
A0

i

Z
A0
j

ju.x/�u.y/j2

jx�yj2
dx dy

D

0X
iD�1

Z
A0

i

Z
A0

i

ju.x/�u.y/j2

jx�yj2
dx dyC 2

0X
jD�1

X
i>jC1

Z
A0

i

Z
A0
j

ju.x/�u.y/j2

jx�yj2
dx dy

C 2

0X
jD�1

Z
A0
j

Z
A0
jC1

ju.x/�u.y/j2

jx�yj2
dx dy: (101)

We first observe that
0X

i;jD�1

Z
A0

i

Z
A0
j

ju.x/�u.y/j2

jx�yj2
dx dy �

0X
i;jD�1

Z
Ai

Z
Aj

ju.x/�u.y/j2

jx�yj2
dx dy (102)
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and
0X

jD�1

Z
A0
j

Z
A0
jC1

ju.x/�u.y/j2

jx�yj2
dx dy �

0X
jD�1

Z
Aj

Z
Aj

ju.x/�u.y/j2

jx�yj2
dx dy: (103)

It remains to estimate the double sum in (101). We have

0X
jD�1

X
i>jC1

Z
A0

i

Z
A0
j

ju.x/�u.y/j2

jx�yj2
dx dy

� C

0X
jD�1

X
i�jC2

2�2i

Z
A0

i

Z
A0
j

ju.x/�u.y/j2 dx dy

� C

� 0X
jD�1

X
i�jC2

2�2i

Z
A0

i

Z
A0
j

j Nu0i � Nu
0
j j

2 dx dy C

0X
jD�1

X
i�jC2

2�2i

Z
A0

i

Z
A0
j

ju.x/� Nu0i j
2 dx dy

C

0X
jD�1

X
i�jC2

2�2i

Z
A0

i

Z
A0
j

ju.y/� Nu0j j
2 dx dy

�

� C

� 0X
jD�1

X
i�jC2

2�2i2iCj
j Nu0i � Nu

0
j j

2
C

0X
jD�1

X
i�jC2

2�2i2j

Z
A0

i

ju.x/� Nu0i j
2dx

C

0X
jD�1

X
i�jC2

2�2i2i

Z
A0
j

ju.y/� Nu0j j
2dy

�
:

Denote by W;Wx;Wy the three double sums in the last parentheses. We have

Wx D

0X
iD�1

X
j�i�2

2�2i2j

Z
A0

i

ju.x/� Nu0i j
2dx D

0X
iD�1

2�2i

Z
A0

i

ju.x/� Nu0i j
2 dx

� P
j�i�2

2j
�

� C

0X
iD�1

jA0i j
�1

Z
A0

i

ju.x/� Nu0i j
2dx � C

0X
iD�1

Z
A0

i

Z
A0

i

ju.x/�u.y/j2

jx�yj2
dx dy; (104)

where in the last inequality we used the fact that, for every i ,

jA0i j
�1

Z
A0

i

ju.x/� Nu0i j
2dx � jA0i j

�1

Z
A0

i

ˇ̌̌̌
u.x/� jA0i j

�1

Z
A0

i

u.y/ dy

ˇ̌̌̌2
dx

� jA0i j
�2

Z
A0

i

Z
A0

i

ju.x/�u.y/j2 dx dy � C

Z
A0

i

Z
A0

i

ju.x/�u.y/j2

jx�yj2
dx dy:

A similar calculation yields

Wy � C

0X
jD�1

Z
A0
j

Z
A0
j

ju.x/�u.y/j2

jx�yj2
dx dy: (105)
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Finally, to estimate W D
0P

jD�1

P
i�jC2

2�2i2iCj j Nu0i � Nu
0
j j

2, we first observe that

j Nu0i � Nu
0
j j

2
� .i � j /

i�1X
j

j Nu0lC1� Nu
0
l j

2 and j NulC1� Nul j
2
� jAl j

�1

Z
Al

ju� Nul j
2 dx;

where Nul D jAl j
�1
R
Al

u.x/ dx. Setting al D jAl j
�1
R
Al
ju� Nul j

2 dx, we then have

W �

0X
jD�1

X
i�jC2

.i � j /2j�i
i�1X
j

al �

0X
lD�1

al

lX
jD�1

X
i�j�lC1�j

.i � j /2j�i :

We observe that

lX
jD�1

X
i�j�lC1�j

.i�j /2j�i
�

lX
jD�1

Z C1
lC1�j

2�xx dx D

lX
jD�1

2�.lC1�j/.lC2�j /

�

Z C1
1

2�t .tC1/ dx � C; (106)

for some constant C independent of l . It follows that

W � C

0X
lD�1

al � C

Z
Al

Z
Al

ju.x/�u.y/j2

jx�yj2
dx dy: (107)

By combining (102), (103), (104), (105), and (107) we finally obtain

kuk2
PH 1=2..�1;1//

.
0X

lD�1

kuk2
PH 1=2.Al /

:

Next we show that
0X

lD�1

kuk2
PH 1=2.Al /

. kuk2
PH 1=2..�1;1//

: (108)

For every l we have Al D Cl [Dl , where Cl D B2lC1 nB2l and Dl D B2l nB2l�1 . Thus

kuk2
PH 1=2.Al /

D

Z
Cl

Z
Cl

ju.x/�u.y/j2

jx�yj2
dx dyC

Z
Dl;h

Z
Dl

ju.x/�u.y/j2

jx�yj2
dx dyC 2

Z
Dl;h

Z
Cl

ju.x/�u.y/j2

jx�yj2
dx dy:

Since
S

l.Cl �Cl/,
S

l.Dl �Cl/, and
S

l.Dl �Cl/ are disjoint unions contained in Œ0; 1�� Œ0; 1�, we
have X

l

Z
Cl

Z
Cl

ju.x/�u.y/j2

jx�yj2
dx dy �

Z
Œ�1;1�

Z
Œ�1;1�

ju.x/�u.y/j2

jx�yj2
dx dy;
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X
l

Z
Dl;h

Z
Cl

ju.x/�u.y/j2

jx�yj2
dx dy �

Z
Œ�1;1�

Z
Œ�1;1�

ju.x/�u.y/j2

jx�yj2
dx dy;

X
l

Z
Dl;h

Z
Dl

ju.x/�u.y/j2

jx�yj2
dx dy �

Z
Œ�1;1�

Z
Œ�1;1�

ju.x/�u.y/j2

jx�yj2
dx dy:

It follows that
0X

lD�1

kuk2
PH 1=2.Al /

� NC

Z
Œ�1;1�

Z
Œ�1;1�

ju.x/�u.y/j2

jx�yj2
dx dy D NCkuk2

PH 1=2..�1;1//
: �

Remark A.2. By analogous computations one can show that for all r > 0 we have

kuk2
PH 1=2.R/

'

C1X
jD�1

kuk2
PH 1=2.Ar

j
/
;

where Ar
j D B2jC1r nB2j�1r , where the equivalence constants do not depend on r .

Next we compare the PH 1=2 norm of��1=4.M�1=4u/with the L2 norm of M�1=4u, where u2 PH 1=2.R/

and M 2 PH 1=2.R;Mt�m.R//, for t � 1.
In the sequel, for � � � � 0, we denote by 1jxj��, 1��jxj, and 1��jxj�� the characteristic functions

of the sets of points x 2 R satisfying the respective inequalities.

Lemma A.3. Let M 2 PH 1=2.R;Mt�m.R//, with m� 1 and t � 1, and let and u 2 PH 1=2.R/. There exist
C1 > 0, C2 > 0 and n0 2 N, independent of u and M , such that, for any r 2 .0; 1/, n > n0 and any
x0 2 R, we have

k��1=4.M�1=4u/k2
PH 1=2.Br .x0//

� C1

Z
Br=2n .x0/

jM�1=4uj2 dx�C2

C1X
hD�n

2�h

Z
B

2hr
.x0/nB2h�1r

.x0/

jM�1=4uj2 dx:

Proof. For notational simplicity we take x0 D 0, but the estimates made will be independent of x0.
We write

��1=4.M�1=4u/D��1=4.1jxj�r=2nM�1=4u/C��1=4
�
.1�1jxj�r=2n/M�1=4u

�
;

where n> 0 is large enough; the threshold will be determined later in the proof. We have��1=4.M�1=4u/

PH 1=2.Br /

�
��1=4.1r=2nM�1=4u/


PH 1=2.Br /

�
��1=4..1�1jxj�r=2n/M�1=4u/


PH 1=2.Br /

�
��1=4.1r=2nM�1=4u/


PH 1=2.Br /

�
��1=4.1r=2n�jxj�4r M�1=4u/


PH 1=2.Br /

�
��1=4.1jxj�4r M�1=4u/


PH 1=2.Br /

�
��1=4.1jxj�r=2nM�1=4u/


PH 1=2.Br /

�
��1=4.1r=2n�jxj�4r M�1=4u/


PH 1=2.R/

�
��1=4.1jxj�4r M�1=4u/


PH 1=2.Br /

: (109)

We estimate the last three terms in (109).
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� Estimate of
��1=4.1r=2n�jxj�4r M�1=4u/


PH 1=2.R/

. This expression is equal toZ
r=2n�jxj�4r

jM�1=4uj2 dx D

1X
hD�n

Z
2hr�jxj�2hC1r

jM�1=4uj2 dx: (110)

� Estimate of
��1=4.1jxj�4r M�1=4u/


PH 1=2.Br /

. Setting g WD 1jxj�4r M�1=4u, we have

k��1=4gk2
PH 1=2.Br /

D

Z
Br

Z
Br

ˇ̌
.jxj�2 ?g/.t/� .jxj�2 ?g/.s/

ˇ̌2
jt � sj2

dt ds

D

Z
Br

Z
Br

1

jt � sj2

�Z
jxj�4r

g.x/
�
jt�xj�1=2

� js�xj�1=2
�

dx

�2

dt ds

(mean-value thm.)� C

Z
Br

Z
Br

�Z
jxj�4r

jg.x/jmax
�
jt�xj�3=2; js�xj�3=2

�
dx

�2

dt ds

� C

Z
Br

Z
Br

�C1X
hD4

Z
2hr�jxj�2hC1r

jg.x/jmax
�
jt�xj�3=2; js�xj�3=2

�
dx

�2

dt ds

� C

Z
Br

Z
Br

�C1X
hD4

Z
2hr�jxj�2hC1r

jg.x/j 2�3h=2 r�3=2 dx

�2

dt ds

(Hölder inequality)� C

Z
Br

Z
Br

�C1X
hD4

2�hr�1

�Z
2hr�jxj�2hC1r

jg.x/j2 dx

��1=2 �2

dt ds

(Cauchy–Schwarz)� C

�C1X
hD4

2�h

��C1X
hD4

2�h

Z
2hr�jxj�2hC1r

jM�1=4uj2 dx

�

� C

�C1X
hD4

2�h

Z
2hr�jxj�2hC1r

jM�1=4uj2 dx

�
: (111)

� Estimate of k��1=4.1jxj�r=2nM�1=4u/k PH 1=2.Br /
. We set

Ar
h WD fx W 2

h�1r � jxj � 2hC1rg:

By the localization theorem A.1 there exists a constant QC > 0 (independent of r ) such that

k��1=4.1jxj�r=2nM�1=4u/k2
PH 1=2.R/

� QC

C1X
hD�1

k��1=4.1jxj�r=2nM�1=4u/k2
PH 1=2.Ar

h
/

� QC k��1=4.1jxj�r=2nM�1=4u/k2
PH 1=2.Br /

C QC

C1X
hD0

k��1=4.1jxj�r=2nM�1=4u/k2
PH 1=2.Ar

h
/
:

(112)
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� Estimate of
PC1

hD0 k�
�1=4.1jxj�r=2nM�1=4u/k2

PH 1=2.Ar
h
/
. Setting

f .x/ WD 1jxj�r=2nM�1=4u

and working as in the first three lines of (111), we can write for this sum the upper bound

C

C1X
hD0

Z
Ar

h

Z
Ar

h

�Z
jxj�r=2n

jf .x/jmax
�
jt�xj�3=2; js�xj�3=2

�
dx

�2

dt ds

� C

C1X
hD0

Z
Ar

h

Z
Ar

h

max.jt j�3; jsj�3/
r

2n

�Z
jxj�r=2n

jf .x/j2 dx

�
dt ds

D
C

2n

C1X
hD0

2�h

�Z
jxj�r=2n

jf .x/j2 dx

�
�

C

2n

Z
jxj�r=2n

jM�1=4uj2 dx:

(113)

If n is large enough that C QC=2n < 1
2

, we get, combining (109), (110), (111), (112) and (113), for some
C1;C2 positive,

k��1=4.M�1=4u/k2
PH 1=2.Br /

� C1

Z
Br=2n

jM�1=4uj2 dx�C2

C1X
hD�n

2�h

Z
B

2hC1r
nB

2hr

jM�1=4uj2 dx;

which ends the proof of the lemma. �

We now compare the PH 1=2 norm of ��1=4.M�1=4u/ in the annuli AhDB2hC1.x0/nB2h�1.x0/ with
the L2 norm in the same annuli of M�1=4u. This result, like the previous one, was used in the proof of
Proposition 4.1.

Lemma A.4. Let M 2 PH 1=2.R;Mt�mt � 1.R//, m � 1; t � 1, and u 2 PH 1=2.R/. There exists C > 0

such that for every  2 .0; 1/, for all n � n0 2 N (n0 dependent on  and independent of u and M ),
for every k 2 Z, and any x0 2 R, we have

C1X
hDk

2k�h
k��1=4.M�1=4u/k2

PH 1=2.B
2hC1 .x0/nB2h�1 .x0//

� 

Z
B

2k�n .x0/

jM�1=4uj2dxC

C1X
hDk�n

2.k�h/=2

Z
B

2hC1 .x0/nB2h�1 .x0/

jM�1=4uj2dx:

Proof. Again we take x0D 0, but the estimates will be independent of x0. Given h 2 Z and l � 3 we set
Ah D B2hC1 nB2h�1 and Dl;h D B2hCl nB2h�l .

Fix  2 .0; 1/. We have, for w D��1=4.M�1=4u/ and for any l � 3 (to be chosen later),

kwk2
PH 1=2.Ah/

D

Z
Ah

Z
Ah

jw.x/�w.y/j2

jx�yj2
dx dy

� 2 k��1=4
1Dl;h

M�1=4uk2
PH 1=2.Ah/

C 2 k��1=4.1�1Dl;h
/M�1=4uk2

PH 1=2.Ah/
: (114)
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The first of these two terms is bounded above by

k��1=4
1Dl;h

M�1=4uk2
PH 1=2.R/

D

Z
Dl;h

jM�1=4uj2 dx D

hCl�1X
sDh�l

Z
B

2sC1nB2s

jM�1=4uj2 dx: (115)

Multiplying by 2k�h and summing up from hD k to C1 we get

C1X
hDk

2k�h
k��1=4

1Dl;h
M�1=4uk2

PH 1=2.Ah/
� C 2�l

C1X
hDk�l

Z
B

2hC1nB2h�1

jM�1=4uj2 dx: (116)

To estimate the remaining term on the right-hand side of (114), set gD .1�1Dl;h
/M�1=4u and write,

as in the first two lines of (111),

k��1=4gk2
PH 1=2.Ah/

D

Z
Ah

Z
Ah

1

jt � sj2

�Z
jxj<2h�l or jxj>2lCh

g.x/
�
jt�xj�1=2

� js�xj�1=2
�

dx

�2

dt ds

� 2

Z
Ah

Z
Ah

1

jt�sj2

�Z
jxj>2lCh

(same)
�2

dt ds C 2

Z
Ah

Z
Ah

1

jt�sj2

�Z
jxj<2h�l

(same)
�2

dt ds: (117)

For the first of these last two terms we can write, following the same steps as in (111) and using the
fact that, since l � 3, we have jx� t j; jx� sj � 2q�1 for every s; t 2Ah and 2q � jxj � 2qC1:Z

Ah

Z
Ah

1

jt � sj2

�Z
jxj>2lCh

g.x/
�
jt�xj�1=2

� js�xj�1=2
�

dx

�2

dt ds

� C 2h�l

� 1X
qDhCl

2�q

Z
2q�jxj�2qC1

jg.x/j2 dx

�
: (118)

Multiplying the right-hand side by 2k�h, where k 2Z, taking the sum from hD k toC1, interchanging
the summations, and using the fact that g.x/DM�1=4u.x/ when 2q � jxj � 2qC1, we get the value

C 2�l
C1X

qDkCl

2k�q.q� l � k/

�Z
2q�jxj�2qC1

jM�1=4uj2 dx

�

� C 2�l
C1X

qDkCl

2.k�q/=2

�Z
2q�jxj�2qC1

jM�1=4uj2 dx

�
; (119)

which is therefore an upper bound for the contribution to
C1P
hDk

2k�hkwk2
PH 1=2.Ah/

of the term in (117)
containing the integral over jxj> 2lCh.

We still have to estimate the contribution of the term containing the integral over jxj < 2h�l . We
can assume that h � k. Again following the same reasoning as in (111) and the using the inequalities
jx� sj; jx� t j � 2h�2 applicable to this case, we write
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Ah

Z
Ah

1

jt � sj2

�Z
jxj<2h�l

g.x/
�
jt�xj�1=2

� js�xj�1=2
�

dx

�2

dt ds

� C

Z
Ah

Z
Ah

2�3h2h�l

�Z
jxj<2h�l

jg.x/j2 dx

�
dt ds D C 2�l

Z
jxj<2h�l

jM�1=4uj2 dx

D C 2�l

�Z
jxj<2k�l

jM�1=4uj2 dxC

h�l�1X
qDk�l

Z
2q�jxj<2qC1

jM�1=4uj2 dx

�
: (120)

Multiply the right-hand side of (120) by 2k�h, take the sum from hDk toC1, interchange the double
summation, evaluate the geometric series, and rename q to h as the index of the remaining summation,
to obtain the upper bound

C 2�lC1

Z
jxj<2k�l

jM�1=4uj2 dxCC 2�2l
C1X

hDk�l

Z
2h�jxj<2hC1

2k�h
jM�1=4uj2 dx (121)

for the contribution to
C1P
hDk

2k�hkwk2
PH 1=2.Ah/

of the term under consideration (second term on the last
line of (117)).

Now choose l so that C 2�l <  < 1, and set n0 D l . Then, for all n� n0,

C1X
hDk

2k�h

�
C 2�l

Z
jxj<2k�l

jM�1=4uj2 dxCC 2�2l
h�lX

sDk�l

Z
2s�jxj�2sC1

jM�1=4uj2 dx

�

� 

Z
jxj<2k�n

jM�1=4uj2 dxC

C1X
hDk�n

Z
2h�jxj�2hC1

2k�h
jM�1=4uj2 dx:

By combining (114), (116), (119) and (121), for n� n0 we finally get

C1X
hDk

2k�h
k��1=4.M�1=4u/k2

PH 1=2.Ah/

� 

Z
jxj<2k�n

jM�1=4uj2 dxC

C1X
hDk�n

Z
2h�1�jxj�2hC1

2.k�h/=2
jM�1=4uj2 dx: �

Next we show a sort of Poincaré inequality for functions in PH 1=2.R/ having compact support. Recall
that, for� an open subset of R, the extension by 0 of a function in H

1=2
0

.�/DC1
0
.�/H

1=2

is, generally
speaking, not in H 1=2.R/. This is why Lions and Magenes [1972] introduced the set H

1=2
00

.�/ for which
the Poincaré inequality holds.

Theorem A.5. Let v 2 PH 1=2.R/ be such that supp v � .�1; 1/. Then v 2L2.Œ�1; 1�/ andZ
Œ�1;1�

jv.x/j2 dx � Ckvk2
PH 1=2

..�2; 2//:
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Proof.Z
Œ�1;1�

jv.x/j2 dx � C

Z
1�jyj�2

Z
jxj�1

jv.x/j2

jx�yj2
dx dy � C

Z
1�jyj�2

Z
jxj�1

jv.x/� v.y/j2

jx�yj2
dx dy

� C

Z
jyj�2

Z
jxj�2

jv.x/� v.y/j2

jx�yj2
dx dy D Ckvk2

PH 1=2
.Œ�2; 2�/: �

From Theorem A.5 it follows that

kvkL2..�r;r// � C r1=2
kvk PH 1=2.R/

:

The next three results justify the interchanging of infinite sums, pseudodifferential operators, and
integrals that we performed several times to obtain the localization estimates in Section 4.

In Lemma A.6 (resp. A.7) we consider a function g2 PH 1=2.R/\L1.R/ (resp. f 2 PH 1=2.R/\L1.R/)
whose support is contained in B2k (resp. Bc

2N ). We estimate the L2-norm of �1=4g (resp. �1=4f ) in
annuli Ah D B2h nB2h�1 with h� k (resp. h�N ).

Lemma A.6. Let g 2 PH 1=2.R/\L1.R/ be such that supp g�B2k .R/. Then for all h> kC3 we have

k�1=4gkL2.Ah/
� C 2k�h; (122)

where Ah D B2h nB2h�1 and C depends on kgk PH 1=2.R/
; kgkL1.R/.

Proof. We fix h> kC 3 and let x 2Ah. We set Ngk D jB2k j
�1
R

B
2k

g.x/ dx. We have

�1=4g.x/D lim
"!0

Z
jx�yj�"

g.y/�g.x/

jx�yj3=2
dy D lim

"!0

Z
jx�yj�"
y2B

2k

g.y/�g.x/

jx�yj3=2
dy

� C 2�3h=22k
jB2k j

�1

Z
B

2k

jg.y/� Ngk j dyC 2�3h=2

Z
B

2k

jg.x/� Ngk j dy

� C 2�3h=22k.kgk PH 1=2.R/
CkgkL1.R//:

In the last inequality we used the fact that PH 1=2.R/ ,! BMO.R/. It follows thatZ
Ah

j�1=4g.x/j2 dx � C 22k�2h
�
kgk2L1.R/Ckgk

2
PH 1=2.R/

�
:

Thus (122) holds. �

Lemma A.7. Let f 2 PH 1=2.R/\L1.R/ be such that suppf � Bc
2N .R/. For all h<N � 3, we have

k�1=4f kL2.Ah/
dx � C 2.h�N /=2; (123)

where C depends on kf k PH 1=2.R/
and kf kL1 .
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Proof. Fix h<N � 3 and x 2Ah. We have

�1=4f .x/D lim
"!0

Z
jx�yj�"

f .y/�f .x/

jx�yj3=2
dy

D lim
"!0

"<2N�1

�Z
2N�1�jx�yj�"

f .y/�f .x/

jx�yj3=2
dy C

Z
jx�yj�2N�1

f .y/�f .x/

jx�yj3=2
dy

�
: (124)

We observe that if jx�yj< 2N�2 and x 2Ah then jyj< 2N�1 and thus f .y/D f .x/D 0. Hence

.124/D

Z
2N�2�jx�yj�2N

f .y/�f .x/

jx�yj3=2
dyC

Z
2N�jx�yj

f .y/�f .x/

jx�yj3=2
dy

� C Œ2�3=2N 2N .kf k PH 1=2.R/
Ckf kL1.R//C 2�N=2

kf kL1.R/�

� C 2�N=2.kf k PH 1=2.R/
Ckf kL1.R//: (125)

From (125) it follows thatZ
Ah

j�1=4f .x/j2 dx � C 2�NCh
�
kf k2

PH 1=2.R/
Cjf k2L1.R/

�
and thus (123) holds. �

Corollary A.8. Let g 2H 1=2.R/\L1.R/ with supp g 2 B2k , for some k 2 Z and for every N > 0 let
fN be a sequence in H 1=2.R/\L1.R/ such that kfN k PH 1=2.R/

CkfN kL1.R/ � C (C independent of
N ) and suppfN � Bc

2N Then

lim
N!C1

Z
R

�1=4fN .x/�
1=4g.x/ dx D 0: (126)

Proof. We split the integral in (126) as follows:Z
R

�1=4fN .x/�
1=4g.x/ dx

D

kC2X
hD�1

Z
Ah

�1=4fN .x/�
1=4g.x/ dxC

N�2X
hDkC3

Z
Ah

�1=4fN .x/�
1=4g.x/ dx

C

C1X
hDN�1

Z
Ah

�1=4fN .x/�
1=4g.x/ dx: (127)

We estimate the three summations in (127). We take N � k.
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By applying Lemma A.7 we have

kC2X
hD�1

Z
Ah

�1=4fN .x/�
1=4g.x/ dx �

kC2X
hD�1

.

Z
Ah

j�1=4fN .x/j
2 dx/1=2.

Z
Ah

j�1=4g.x/j2 dx/1=2

� Ckgk PH 1=2.kfN k PH 1=2.R/
CkfN kL1.R//

kC2X
hD�1

2.h�N /=2

� C 2.k�N /=2: (128)

By Lemma A.6 we have

C1X
hDN�1

Z
Ah

�1=4f .x/�1=4g.x/ dx � CkfN k PH 1=2.R/
.kgk PH 1=2.R/

CjgkL1.R//

C1X
hDN�1

2k�h

� C 2k�N : (129)

Finally, by applying Lemmas A.6 and A.7 we get

N�2X
hDkC3

Z
Ah

�1=4fN .x/�
1=4g.x/ dx � C 2k�N=2

C1X
hDkC3

2�h=2
� C 2.k�N /=2: (130)

By combining (127), (128) and (129) we get (126) and we can conclude. �
We conclude with the following technical result, used in the proof of Theorem 5.3.

Proposition A.9. Let .ak/k be a sequence of positive real numbers satisfying
PC1

kD�1 a2
k
<1 and

nX
�1

a2
k � C

C1X
kDnC1

2.nC1�k/=2a2
k for every n� 0: (131)

There are 0< ˇ < 1, C > 0 and Nn< 0 such that for n� Nn we have
nX
�1

a2
k � C.2n/ˇ:

Proof. For n< 0, we set An D
Pn
�1 a2

k
. We have a2

k
DAk �Ak�1 and thus

An � C

C1X
kDnC1

2.nC1�k/=2.Ak �Ak�1/� C.1� 1=
p

2/

C1X
kDnC1

2.nC1�k/=2Ak �CAn:

Therefore

An � �

C1X
nC1

2.nC1�k/=2Ak ; (132)

with

� D
C

C C 1

�
1�

1
p

2

�
< 1�

1
p

2
:
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The relation (132) implies the estimate

An � �AnC1C �

C1X
nC2

2.nC1�k/=2Ak : (133)

Now we apply induction on AnC1 in (133) and we get

.133/� �2

�C1X
nC2

2.nC2�k/=2Ak

�
C

�
p

2

�C1X
nC2

2.nC2�k/=2Ak

�

D �.� C 1=
p

2/

�C1X
nC2

2.nC2�k/=2Ak

�

D �.� C 1=
p

2/

�
AnC2C 1=

p
2

C1X
nC3

2.nC3�k/=2Ak

�

� �.� C 1=
p

2/2
C1X
nC3

2.nC3�k/=2Ak (by applying induction on AnC2)

� � � � � �.� C 1=
p

2/�n
C1X
kD0

2�kAk

� �.� C 1=
p

2/�n

� 1X
kD0

2�k

�� C1X
kD�1

a2
k

�

� 2�.� C 1=
p

2/�n
C1X

kD�1

a2
k

� C�n;

with  D �.� C 1=
p

2/�n. Therefore for some ˇ 2 .0; 1/ and for all n< 0 we have An � C.2n/ˇ. �
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