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1. The results

Let (M, G) be a Riemannian manifold of dimension n > 2 with Riemannian volume density dG and
associated Laplace—Beltrami operator Ag. The Strichartz estimates for the Schrodinger equation

io;u+ Agu =0, Ujr=0 = U, (1-1)

are basically estimates of
1/p

1
el Lro,11,L0 (M,aG)y) = (/0 llu(t, ')”iq(M’dG)dt) ;

in terms of certain L? quantities of uo, when the pair of exponents (p, ¢) satisfies the admissibility

conditions
2 n n

54‘6—]:5, p=2, (p.q) #(2,00). (1-2)

Strichartz estimates play an important role in the proof of local existence results for nonlinear Schrédinger

equations (see for instance [Ginibre and Velo 1985; Cazenave 2003; Burq et al. 2004]). We won’t
consider such applications in this paper and will only focus on the estimates themselves.

We review some classical results. If Al = R" with the flat metric, it is well known [Strichartz 1977,

Ginibre and Velo 1985; Keel and Tao 1998] that

lwllLro.11.20@®my S lloll 22w - (1-3)

MSC2000: 35B45, 35530, 58740, 58J47.
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2 JEAN-MARC BOUCLET

In this model case, the time interval [0, 1] can be replaced by R and the Strichartz estimates are said to
be global in time. Furthermore, the conditions (1-2) are seen to be natural by considering the action of
the scaling u(t, x) — u(t/A%, x/A) on both Schrodinger equation and Strichartz estimates.

(In this paper we will not pursue global in time Strichartz estimates. Although one can expect that
they exist, it is not clear how to obtain them by the present method. One may hope to obtain such global
in time results at least for initial data spectrally cutoff on the low frequencies by combining the present
analysis with the method of [Bouclet and Tzvetkov 2008].)

In more general situations, estimates of the form (1-3) sometimes have to be replaced by

lullzrqo,,ceun.acy S llwollasnacy, s =0, (1-4)

where
5/2
luoll s nacy = 11 = AG)Puoll 20u.a6)s

is the natural L? Sobolev norm. If s > 0, estimates such as (1-4) are called Strichartz estimates with
loss (of s derivatives). Notice that, under fairly general assumptions on (Jl, G), we have the Sobolev
embeddings H* (M, dG) C L4(M, dG) for s > n/2—n/q. They show that (1-4) holds automatically if s
is large enough and the point of Strichartz estimates with loss (and a fortiori without loss) is to consider
smaller s than those given by Sobolev embeddings.

Such inequalities have been proved by Bourgain [1993] for the flat tori T! and T2, for certain values
of p,q and any s > 0 (i.e., with “almost no loss”), and by Burq, Gérard, and Tzvetkov [Burq et al.
2004] for any compact manifold with s = 1/p. The techniques of the latter work are actually very robust
and can be applied to prove the same results on many noncompact manifolds; the estimates are known
to be sharp for .Ml = S* with p = 2 and by considering certain subsequences of eigenfunctions of the
Laplacian. This counterexample can then be used to construct quasimodes and show that (1-4) cannot
hold in general with s = 0, even for noncompact manifolds.

A natural question is therefore to find (sufficient) conditions leading to estimates with no loss.

A classical one is the nontrapping condition. We recall that (M, G) is nontrapping if all geodesics
escape to infinity (implying that Jl is noncompact). It was for instance shown in [Staffilani and Tataru
2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007] that, for nontrapping perturbations of the
flat metric on R", (1-4) holds with s =0. By a perturbation we mean that the departure of G from the flat
metric Gy is small near infinity and we refer to those papers for more details. In [Hassell et al. 2006],
the more general case of nontrapping asymptotically conic manifolds was considered. To emphasize
the difference with the asymptotically hyperbolic manifolds studied in this paper, we simply recall that
(M, G) is asymptotically conic if G is close to dr”> + r?g, in a neighborhood of infinity diffeomorphic
to (R, +00) x S, for some fixed metric g on a compact manifold S. The asymptotically Euclidean case
corresponds to the case where § = S"~!.

The nontrapping condition, however, has several drawbacks, such as being nongeneric and difficult to
check. Moreover, it is not clearly a necessary condition to get Strichartz estimates without loss.

In [Bouclet and Tzvetkov 2007], we partially got rid of this condition by considering Strichartz esti-
mates localized near spatial infinity. For long-range perturbations G of the Euclidean metric on /M = R"
(meaning that 97 (G (x) — Gguel) =0 ((x)~T~lely for 7 > 0), trapping or not, we proved the existence of
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R > 0 large enough such that, if X € C;°(R") satisfies X =1 for |x| < R, then

(1= XullLeqo.11;0®.d6) S ol L2@e.ac)- (1-5)

This shows that the possible loss in Strichartz estimates can only come from a bounded region where the
metric is essentially arbitrary (recall that being asymptotically Euclidean is only a condition at infinity).
One can loosely interpret this result as follows: as long as the metric is close to a model one for which
one has Strichartz estimates without loss, the solution to the Schrodinger equation satisfies Strichartz
estimates without loss too.

The first goal of the present paper is to show that the same result holds in (bounded) negative curvature,
more precisely for asymptotically hyperbolic (AH) manifolds. We point out, however, that even if our
Theorem 1.2 below is formally the same as in the asymptotically Euclidean case [Bouclet and Tzvetkov
2007, Theorem 1], its proof involves new arguments using the negative curvature. One of the messages
of this paper is that, by taking advantage of certain curvature effects described at the end of this Section,
we prove Strichartz estimates using long time (microlocal) parametrices of the Schrédinger group which
are localized in very narrow regions of the phase space, much smaller than those considered in the
asymptotically Euclidean situation.

As far as the Schrodinger equation is concerned, Strichartz estimates on negatively curved spaces have
been studied in [Banica 2007; Pierfelice 2006; 2008; Anker and Pierfelice 2009] (see [Tataru 2001] for
the wave equation). In [Pierfelice 2006], Pierfelice considers perturbations of the Schrédinger equation
on the hyperbolic space H” by singular time-dependent radial potentials, with radial initial data (and also
radial source terms) and derives some weighted Strichartz estimates without loss. The nonradial case for
the free Schrodinger equation on H" is studied in [Banica 2007] where weighted Strichartz estimates are
obtained too. The more general case of certain Lie groups, namely Damek-Ricci spaces, was considered
in [Pierfelice 2008] for global in time estimates (see also [Banica et al. 2008] for the two-dimensional
case) and further generalized in [Banica and Duyckaerts 2007]. In these last papers, only radial data
are considered. This radial assumption was removed in [Anker and Pierfelice 2009]. This last paper
also shows, with [Banica et al. 2008], in such geometries, the set of admissible pairs for the Strichartz
estimates is contained in a triangle, and thus is much wider than in the (asymptotically) Euclidean case.
One expects that such a result remains valid in our context, but this does not clearly follow from the tools
presented here and might require refined propagation estimates.

In this article, we give a proof of Strichartz estimates at infinity which is purely (micro)local and so, to
a large extent, stable under perturbation. We do not use any Lie group structure or spherical symmetry,
nor do we assume any nontrapping condition. We refer to Definition 1.1 below for precise statements
and simply quote here that our class of manifolds contains H", some of its quotients and perturbations
thereof. In particular, we do not assume that the curvature is constant, even near infinity. (Powerful
microlocal techniques for AH manifolds have already been developed by Melrose and his school; see
[Mazzeo and Melrose 1987] and the references in [Melrose 1995]. These geometric methods, based on
compactification and blowup considerations, are perfectly designed for conformally compact manifolds
with boundary, but do not clearly apply to the more general manifolds we study here.)

In the next few pages we fix our framework and state our main results precisely, highlighting the key
points that allow us to prove them. We conclude the section with an overview of the remainder of the
article, on page 7.
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Definition 1.1 (AH manifold). (M", G) is asymptotically hyperbolic if there exist a compact set K € M,
a real number Ry > 0, a compact manifold without boundary S and a function

reC®UWM,R) with r(m)— 400 as m — o0 (1-6)

(a coordinate near Jt \ I) such that we have an isometry

W (M\K, G) = ((Ry, +00), x S, dr’* +e* g(r)), (1-7)
where g(r) is a family of metrics on S depending smoothly on r such that, for some 7 > 0 and some
fixed metric g on S, we have

k —t—k

(ENCIQENY) ||COO(S’T*S®T*S) <r ™% for r > Ry, (1-8)

for all k > 0 and all seminorms | - ||coos, 7+s@7+s) in the space of smooth sections of 7*S ® T*S.

With no loss of generality, we can assume that the decay rate t in (1-8) satisfies
O<t<l. (1-9)

Therefore, by analogy with the standard terminology in Euclidean scattering, dr? + ¢* g(r) can be
considered as a long-range perturbation of the metric dr? 4+ ¢?"g. Notice that the conformally compact
case quoted above corresponds to the special situation where g(r) is of the form g(e™"), for some family
of metrics (g(x))o<x«1 depending smoothly on x € [0, xg) (x¢ small enough) up to x = 0. In that case,
g(r) is an exponentially small perturbation of g = g(0). The assumption (1-8) is therefore more general.

We next denote by Ag the Laplace-Beltrami operator associated to this metric. It is classical that
this operator is essentially self-adjoint on C;°() (using for instance the method of [Helffer and Robert
1983]), and therefore generates a unitary group e/6 on L2(, dG).

Our main result is the following.

Theorem 1.2. There exists X € C{° (M), with X = 1 on a sufficiently large compact set, such that, for all
pair (p, q) satisfying (1-2),

(1= X)€" 2ol Lro,11: 201,460 S N0l 2wacy, o € CGE(AM). (1-10)

This theorem is the AH analogue of Theorem 1 of [Bouclet and Tzvetkov 2007] in the asymptotically
Euclidean case.

To be more complete, let us point out that the analysis contained in this paper and a classical argument
due to [Staffilani and Tataru 2002] (see also [Bouclet and Tzvetkov 2007, Section 5]), using the local
smoothing effect [Doi 1996], would give the following global in space estimates.

Theorem 1.3. If in addition (M, G) is nontrapping, then we have global in space Strichartz estimates
with no loss: for all pair (p, q) satisfying (1-2),
e 2 ugll Lro,13: Lo it,a6y S Nuoll2cuac)s ug € Cy° ().

We state this result as a theorem although we won’t explicitly prove it. The techniques are fairly
well known and don’t involve any new argument in the present context. We simply note that resolvent
estimates implying the local smoothing effect can be found in [Cardoso and Vodev 2002].
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Remark. Theorem 1.2 reduces the proof of potential improvements of Burq—Gérard—Tzvetkov inequal-
ities to local in space estimates of the form

I Xullrqo,11,Lem.a6y) S luoll s un,ac)s

with 0 < s < 1/p. It would be interesting to know if such inequalities holds for some trapping AH
manifolds.

We now describe, quite informally, the key points of the analysis developed in this paper. Assuming
for simplicity that S = S! (and thus n = 2), we consider the model case where the principal symbol of
the Laplacian is

p=p>+e ¥
For convenience, we introduce

P = _e(n—l)r/ZAGe—(n—l)r/Z _ —er/ZAGe_’/Z,

which is self-adjoint with respect to dr d6, instead of e""~D" dr df = " dr d@ for the Laplacian itself.

Recall first that, by the Keel-Tao TT* Theorem [1998], proving Strichartz estimates (without loss)
mainly reduces to prove certain dispersion estimates. Using the natural semiclassical time scaling ¢ +— ht,
this basically requires to control the propagator e ~/*"* for semiclassical times of order 2. Such a control
on the full propagator is out of reach (basically because of trapped trajectories) but, fortunately, studying
some of its cutoffs will be sufficient.

After fairly classical reductions, we will work with semiclassical pseudodifferential operators localized
where r > 1 and p € I, I being a (relatively) compact interval of (0, +00). We can split the latter region
into two areas defined by

F*:{r>>1, peEl, ,O>—%p1/2}, F7={r>>1, pel, ,0<%p1/2},

respectively called the outgoing and incoming areas. The main interest of such areas is that one has a
very good control on the geodesic flow therein (see Section 3). Basically, geodesics with initial data
in outgoing (resp. incoming) areas escape to infinity as ¢t — +o0o (resp. t — —o00), which is proved in
Proposition 3.3. One thus expects to be able to give long time approximations of the propagator e ~//"?
microlocalized in such areas, for large times (¢ > 0 in outgoing areas and ¢ < 0 in incoming ones).

In the asymptotically Euclidean case, it turns out that one can give accurate approximations of e~/ x*
for times ¢ such that 0 < ¢ < h~!, if x* are pseudodifferential cutoffs localized in I'®. This is not the
AH case: here we are only able to approximate e~*/"* x= for cutoffs X localized in much smaller areas,
namely

TFEe ={r>1, pel, p>U-eHp'?}, T ={r>1, pel, p<(@E-1p'?},

which we call strongly outgoing/incoming areas. Here ¢ will be a fixed small real number. We then
obtain approximations of the form

eTIP Y E = Jor(@F)e P Jr (0T +O0Y), 0<Ht Shl (1-11)
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—ithD?

Here e is the semiclassical group associated to the radial part D? of P. Here and in the sequel, we

shall use the standard notation

Drziflar, D9=i*189.
The operators Jg+(a®) and Jg+(bT) are Fourier integral operators with amplitudes a®, b* supported in
strongly outgoing (4) / incoming (—) areas and phases essentially of the form

e—2r 2

4p

Stxrp+0n+

i.e., the sum of the free phase rp + 6n and of a term whose Hessian is nondegenerate in 1, which will be
crucial for the final stationary phase argument (the small factor e~ will be eliminated by a change of
variable). The nondegeneracy of the full phase of the parametrix (1-11) in p will come of course from
e~i"D}  This approximation of S* comes basically from (4-34) and (4-35). Although the right-hand
side does not depend on =, it is only defined in the disconnected regions {p > 0} and {p < 0}.

The approximation (1-11) is the AH Isozaki—Kiada parametrix and a significant part of this paper is
devoted to its construction. We mention that it is an adaptation to the AH geometry of an approximation
introduced first in [Isozaki and Kitada 1985] to study perturbations of the Euclidean Laplacian by long-
range potentials. In the present paper, it will be used very similarly to the usual (semiclassical) Euclidean
one as in [Bouclet and Tzvetkov 2007]. Its main interest is to give microlocal approximations of the
propagator for times of size 2~!. Recall however the big difference with the asymptotically Euclidean
case where one is able to consider cutoffs supported in I'* rather than T (¢) in the AH case. We therefore
have to consider the left parts, namely

i =TT\ (e),

inter

which we call intermediate areas. These areas will only contribute to the dispersion estimates for small
times, in view of the following argument. By choosing é small enough and by splitting the interval
(—1,1—¢?) into small intervals of size §, we can write

Fier :1<U1 {r>1, pel, +pp™'? € (1,01 +9)} :lylriﬁwr(z,s, 5).
N <6~

Carefuly consideration of the Hamiltonian flow CD;, of p shows that, for any fixed (small) time 7y, we can
choose & (which depends also on &) such that

(DIP (Fifter(h &, 5)) N Fi

nter

(l,e,8)=92 for £t>1. (1-12)

By semiclassical propagation, this implies that

+ —ithP y£x
X intere X inter

=0(h>) for +1>1,

for pseudodifferential operators aner localized in Fiﬁter(l, &, 8). Such operators typically appear in the
TT* argument and the estimate above reduces the proof of dispersion estimates to times |f| < 7. The
latter range of times can then be treated by fairly standard geometric optics approximation.

We interpret (1-12) as a negative curvature effect on the geodesic flow, which we can roughly de-

scribe as follows, say in the outgoing case. For initial conditions (r, 8, p, 1) in ngter(l, g, 8), the bounds
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% <p<(1-g&>)p'/? yield the lower bound

pl — 26—2}’" (n[)z > 82,

~

172 increases fast

over a sufficiently long time, if we set (r', 0%, p', n') =: CD;. This ensures that p’/p
enough to leave the interval (o7, o7 + &) before t =ty and give (1-12). In the asymptotically flat case,
that is, with 2 instead of e~2", we have p’ = 2(r")~3(n")? and its control from below is not as good,

basically because of the “extra” third power of (')~

Overview of remaining sections. In Section 2, we introduce all the necessary definitions, and some
additional results, needed to prove Theorem 1.2. The latter proof is given in Section 2E using microlocal
approximations which will be proved in Sections 5, 6 and 7.

In Section 3, we study the properties of the geodesic flow in outgoing/incoming areas required to
construct the phases involved in the Isozaki—Kiada parametrix. This parametrix is then constructed in
Section 5.

In Section 6 we prove two results: the small semiclassical time approximation of the Schrodinger
group by the WKB method and the propagation of the microlocal support (Egorov theorem). These
results are essentially well known. We need however to check that all the symbols and phases belong to
the natural classes (for AH geometry) of Definition 2.2 below. Furthermore, we use our Egorov theorem
to obtain a propagation property in a time scale of size #~', which is not quite standard.

Finally, in Section 7, we prove dispersion estimates using basically stationary phase estimates in the
parametrices obtained in Sections 5 and 6.

Up to the semiclassical functional calculus, which is taken from [Bouclet 2007; Bouclet 2010] and
whose results are recalled in Section 2C, this paper is essentially self-contained. This is not only for
the reader’s convenience, but also because the results of Section 6 do require proofs in the AH setting,
although they are in principle well known. The construction of Section 5 is new.

2. The strategy of the proof of Theorem 1.2

2A. The setup. Before discussing the proof of Theorem 1.2, we give the form of the Laplacian, volume
densities and related objects on AH manifolds.

The isometry (1-7) defines polar coordinates: r is the radial coordinate and S will be called the angular
manifold. Coordinates on S will be denoted by 9y, ..., 6,_1.

A finite atlas on A\ X is obtained as follows. By (1-7), we have a natural projection 7rg : (M\FH, G) — S
defined as the second component of W, that is,

W(m) = (r(m), ws(m)) € (Ry, +00) x § form e M\ K. 2-1)
Choosing a finite cover of the angular manifold by coordinate patches U,, say

s=UUu, (2-2)
e$

with corresponding diffeomorphisms
VU= u(U) C R, (2-3)
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we consider the open sets
U, =" (Ry, +00) x U)) C M\

and then define diffeomorphisms

W, U, = (Ry, +00) x ¥, (U,) C R", (2-4)
by
W, (m) = (r(m), Y. (ws(m))) .
The collection (U,, ¥,),cq is then an atlas on JM\ H. If 61, ..., 6,_; are the coordinates in U,, that is,
v, = (04, ...,0,_1), the coordinates in AU, are then (r, 61, ..., 6,_1).
We now give formulas for the Riemannian measure dG and the Laplacian Ag on Jt \ K. In local
coordinates 0 = (01, ..., 0,—1) on S, the Riemannian density associated to g(r) reads

dg(r) :=det(g(r, 0))'?|d6y A --- AdB,_1],

where det(g(r, 0)) =det(gi(r, 0)) if g(r) = gk (r, 0) d; db (using the summation convention). Then,
in local coordinates on Jl \ ¥, the Riemannian density is

dG ="V det(g(r, ) |dr AdOy A+ AdB,_1]. (2-5)

Now consider the Laplacian. Slightly abusing the notation, we set

_ 1 9rdet(g(r,s))

< 5) =3 Gette(r.s)

forr > Ry, s € S, (2-6)

since, for fixed r, the quotient of 0, det(g jx(r, 0)) by 2 det(g(r, 0)) is intrinsically defined as a function
on S, independently of the choice of the coordinate chart. We then have

Ag = 8,2 + e_erg(,) +c(r, )8, +(n—1)0,.
It will turn out be convenient to work with the density
dG = e'""7 4G, (2-7)

rather than dG itself. In particular, we will use the following elementary property: for all relatively
compact subset V/ € ¥,(U,), all R > Ry and all 1 < g < oo, we have the equivalence of norms

lull poudey ~ oW, Moy, supp(u) C W, ' (R, +00) x V/), (2-8)

L7(R") being the usual Lebesgue space. This is a simple consequence of (1-8) and (2-5) (we consider
R > Ry since (1-8) gives an upper bound for det g(r, 6) as r — Ry, not a lower bound).
We then have a unitary isomorphism

L2, dG) s urs e~ D2y ¢ [2(M, dG), (2-9)

and Ag is unitarily equivalent to the operator

n—1

Ag :=e"" Age ™", y, = 5

(2-10)
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on L>(L, d/@). This operator reads
A =87 +e ¥ Mgy +(r, )3 — yuc(r,s) — v, (2-11)
and we will work with
P=—Ag—V>. (2-12)

If g,(r, ., -) is the principal symbol of — A, in the chart U, namely

9.(r0,6)= Y g 0&E, (2-13)

1<k, l<n—1
the principal symbol of P in the chart AU, is then
po=p+e 2 q(r 0, m), = p* +q.(r. 6, ¢ ). (2-14)
The full symbol of P is of the form p, + p, | + p, o with
pi= Y aupr.0)p e )P, j=01. (2-15)
k+1Bl=j

The terms of degree 1 in n come from the first-order terms of the symbol of —A, . In the expression
of Ag they carry a factor e~? and therefore, if j = 1, k = 0 and || = 1 above, we could write
a,p(r,0) =e""b, 1p(r, 0) for some function b, g bounded as r — 00. This remark and (1-8) show more
precisely that, for all V & ¢, (U,), the coefficients in (2-15) decay as

187 88'a, 1 (r, )| < Cyjo(r) "', 6eV, r>Ry+1. (2-16)

The decay rate —7 —1— j will be important to solve transport equations for the Isozaki—Kiada parametrix.
This is the main reason of the long-range assumption (1-8).

2B. Pseudodifferential operators and the spaces RBpyp(2). We will consider h-pseudodifferential op-
erators (h-WDOs) in a neighborhood of infinity and the calculus will be rather elementary. For instance,
we will only consider compositions of operators with symbols supported in the same coordinate patch
and no invariance result under diffeomorphism will be necessary.

The first step is to construct a suitable partition of unity near infinity. Using the cover (2-2) and the
related diffeomorphisms (2-3), we consider a partition of unity on S of the form

D koy =1, withk, € CPR™™), supp(k,) € ¥.(U)), (2-17)
and a function x € C O‘éifR) such that

supp(k) C [Ry + 1, +-00), k=1 on [Ry+2,+00). (2-18)
Then, the functions (k ® k) o ¥, € C*° (M) satisty

1 if R 2
Z(x@xl)o\vl(m:{ trm) = Ry 2, (2-19)
= 0 if r(m) < Ry+1,
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which means that they define a partition of unity near infinity. We could obtain a partition of unity on Jl
by adding a finite number of compactly supported functions (in coordinate patches) be we won’t need it
since the whole analysis in this paper will be localized near infinity.

We also consider ¥ € C*°(R) and «, € Cgo([R”*I), for all ¢ € $, such that

k=1 on (Rsy{ + %, +oo), supp(k) C (Ry + }T’ +00), (2-20)
k, =1 near supp(k,), supp(k,) € ¥, (U,).
We next choose, for each ¢ € $, two relatively compact open subsets V, and V, such that
supp(k,) €V, € V/ €supp(k,) and K, =1 near V. (2-21)

We are now ready to define our WDOs. In the following definition, we will say that a € C®(R>") is
a symbol if either a € C go([RZ”) —that is, a is bounded with all derivatives bounded — or

a(r,0,p,n) =Y a(r,0)p"n’, (2-22)

with aig € C;°(R"), the sum being finite. We shall give examples below. Notice that throughout this
paper, p and 1 will denote respectively the dual variables to r and 6.

Definition 2.1. For ¢ € $, all & € (0, 1] and all symbol a such that
supp(a) C [Ry + 1, +00) x V! x R", (2-23)
we define
Op,(a) : CZ(M) — C®(M),
by
(Op,(@)u) oW (r,0) = a(r, 6, hD,, hDg) (R (r)&.(0) (u 0 ¥ )(r, 6)) . (2-24)

Note the cutoff ¥ ®k, in the right-hand side of (2-24). It makes the Schwartz kernel of 570[ (a) supported in
a closed subset of JM? strictly contained in the patch U2 so that Op,(a) is fully defined by the prescription
of W, Op, (a)¥}. For future reference, we recall that the kernel of the latter operator is

Qrh)™ / / i TP O= 0 0 b n)dp dn X(r)X.(0)). (2-25)

The notation 6?) , refers to the following relation with the measure dG:ifaeC Z’Q(RZ”) satisfies (2-23),
then

”5}’[((’1)||L2(M,d’6)_)L2(M’d’5) S 1, h € (0, 1] (2-26)

This is a direct consequence of the Calderén—Vaillancourt theorem using (2-8) with ¢ = 2, the inclusions
in (2-20), and (2-21). In the “gauge” defined by dG, the latter gives

e~ 7" 5\pl(a)€y"r||L2(J{/L,dG)—>L2(Jl/L,dG) 5 1, he(,1]. (2-27)

Working with the measure dG is to this extent more natural and avoids to deal with exponential weights.
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We now describe the typical symbols we shall use in this paper. Using (2-17), (2-18), (2-19) and
(2-21), we can write

WP = Z Op, ((k ® k) X (p.+hp i +h*poo)), 1> Ry+2, (2-28)
ey
using (2-13), (2-14) and (2-15). One observes that the symbols involved in (2-28) are of the form
Cl[(l",e,p,T]):le(r,e,p,e_rr’), (2-29)

with @, € S>(R" x R™). It will turn out that the functional calculus of 4% P (or h?>Ag) will involve more
generally symbols of this form with a, € ST (R" x R"). For instance, if f € C5°(R), the semiclassical
principal symbol of f(h%P) or f(—h*Ag) will be

F(p*+qr0,e ")), (2-30)

which, once multiplied by the cutoff ¥ ® x,, is of the form (2-29) with a, € S™*°(R" x R"). This type of
symbols is the model of functions described in Definition 2.2 below. To state this definition, we introduce
the notation .

Dl? = " Plaf o) g ok
for all j,k € Np and o, B € N§ ™.

Definition 2.2. Given an open set Q2 C T*R’, = (0, +-00), x IRZ’1 x R, x [R{g”l, we define

Pryp(Q) = {a € C(Q) : D}3"a € L*(Q) forall j, k € No. e, p e NG~}

and
Fhyp(R) = {a € C®°(R™) : supp(a) C Q2 and a € Bnyp(R)}.
A family (a,)yen is bounded in Bayp($2) if (Dyy” ay)vea is bounded in L(<) for all j. k. o, .
Note that considering 2 C T*R'} is not necessary but, since we shall work only in the region where
r > 1, this will be sufficient.

Example 2.3. Consider the following diffeomorphism from R?" onto itself
Foyp : (r, 0, 0,m) = (r,0,p, e "n). (2-31)
If a, € SO(R" x R") is supported in Fryp(£2), with  C T*R', then (2-29) belongs to Fpy,(£2).
Proof. We only need to check that (2-29) belongs to By, (£2). We have
3 (a(r,0,p, e m) = (3,a)(r,0,p, e n) —e "0 (9a)(r,0, p,&)jg=ery
which is bounded since & - 9z a, is bounded. Similarly
"8y (a(r, 0, p, e ) = (3a) (1, 0, p, &) jg=c—ry

is bounded too. Derivatives with respect to p, 8 are harmless and higher-order derivatives in r, n are
treated similarly. O

The next lemma gives a characterization of functions in By, (£2).
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Lemma 2.4. Let @ C T*R'} be an open subset and assume that
Fryp(2) CRL x B,  with B bounded. (2-32)

A function a € C*°(Q2) is of the form

a(r,0,p,n)=a(r,0,p,e""n), witha e Cp°(Fuyp(2)), (2-33)
if and only if
Djea e L*(Q) forall j.k.a.B. (2-34)

Here Cp°(2) and Cp°(Fryp(S2)) are spaces of smooth functions bounded with all derivatives bounded on
Q and Fyy,(S2), respectively.

Proof. That (2-33) implies (2-34) is proved in the same way as Example 2.3: the boundedness of & - dza
follows from the boundedness of & = e™"n in Fyyp(2) by (2-32) and the fact that a € Cp°(Fryp(2)).
Conversely, one checks by induction that

ar,0,p,8):=a,0,p,eE),
belongs to C;°(Fpyp(£2)), using again the boundedness of & on Fyy,(£2). U

Example 2.5. For all f € Cj°(R"), all R > Ry and all V € W¥,(U,), (2-30) satisfies the conditions of
this lemma with Q = (R, +00) x V x R".

Proof. By (1-8), there exists C > 1 such that
ClEP <qr,0,8) <CIE|> forr>R, 0eV, R, (2-35)
and, using the notation (2-13),
19/00¢" (r,0)| < Cjr forr >R, eV, (2-36)

Therefore, (2-35) and the compact support of f ensure that e~ n and p are bounded, hence that (2-32)
holds on the support of (2-30). Then, (2-36) implies that f(,o2 +q.(r,0,&)) belongs to Cp°(Fryp(£2))
(notice that here Fiy,(2) = (R, +00) x V x R"). O

We conclude this subsection with the following useful remarks. If a, b € Fpy,(£2) for some €2 (such
a, b satisfy (2-23)), we have the composition rule

Op,(a)Op,(b) = Op,((a#b)(h)), (2-37)

if (a#b)(h) denotes the full symbol of a(r, 8, hD,, hDg)b(r, 8, hD,, hDy). In particular all the terms of
the expansion of (a#b)(h) belong to Fhy,(€2) and are supported in supp(a) N supp(b). Similarly, for all
N >0, we have

Op, ()" = Op,(aj +---+hVa}y) +h" ' Ry(a, h) (2-38)

with ag, ..., ay € $hyp(€2) supported in supp(a) and [|Ry (a, )|l 12 u.d6)— L2u.dc) S 1 for h € (0, 1].
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2C. The functional calculus. In Proposition 2.7 below, we give two pseudodifferential approximations
of f(h?>P) near infinity of ., when f € Ci°(R). The first approximation, namely (2-43), is given in
terms of the “quantization” @?)l defined in the previous subsection. This is the one we shall mostly use
in this paper. However, at some crucial points, we shall need another approximation, (2-44), which uses
properly supported WDOs.

To define such properly supported operators, we need a function

¢ e CP(RY), ¢ =1 near0, supp(¢) small enough,

which will basically be used as a cutoff near the diagonal. The smallness of the support will be fixed in
the following definition.

Definition 2.6. For ( € $, all & € (0, 1] and all symbol a satisfying (2-23), we define
Opt,pr(a) : CSO(M) — CP (M),

as the unique operator with kernel supported in 0u3 and such that the kernel of W} @t(a)\lll* is

@)™ / f eh O NG 0 by dpdn ¢ (r—1, 0 — ). (2-39)

The advantage of choosing the support of ¢ small enough is that, using (2-23), we can assume that, on
the support of (2-39), r’ belongs to a neighborhood of [ Ry + 1, +00) and 6’ belongs to a neighborhood of
V/. For instance, we may assume that r’ € £~ 1(1)and 0’ € %, 1(1) so that we can put a factor & ()&, (6")
for free to the right-hand side of (2-39). The latter implies, using (2-8), (2-25), and (2-39), the standard
off-diagonal fast decay of kernels of WDOs and the Calder6n—Vaillancourt theorem stating that, for all
ace Cgo([RZ”) satisfying (2-23) and all N € Ny, we have

10p, (@) — Opupr@) | 2u.d6)— 2 indey S BV, he 0,11, (2-40)

This shows that, up to remainders of size 72°°, 5}7[((1) and Op, y(a) coincide as bounded operators on
L?>(M, dG). Under the same assumptions on a, we also have

0P pr( @ L2(.06)— L2 (.aG) S 1 h € (0, 1], (2-41)

which is a first difference with @L(a) for which we have only (2-27) in general. The estimate (2-41) is
equivalent to the uniform boundedness (with respect to z € (0, 1]) of """ Op, ,,(a)e™ """ on L2 (M, d/é).
The latter is obtained similarly to (2-26), using the Calderén—Vaillancourt theorem, for we only have
to consider the kernel obtained by multiplying (2-39) by e?*" ) which is bounded (as well as its
derivatives) on the support of ¢(r —r’, 6 — 6’).

In other words, (2-41) can be interpreted as a boundedness result between (exponentially) weighted
L? spaces. Similar properties holds for L4 spaces (under suitable assumptions on the symbol @) and they
are the main reason for considering properly supported operators. In particular, they lead to following
proposition, where we collect the estimates we shall need in this paper. We refer to [Bouclet 2007] for
the proof.
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Proposition 2.7. Let f € C;°(R) and let I € (0, +00) be an open interval containing supp(f). Let
Xy € C°(M) and R > Ry + 1 be such that

Xy(m)=1 if rm) <R+1.
Then, for all N > 0 and all 1 € $, we can find symbols
aLo(f)s .. aun(f) € Fnyp((R, +00) x V, x R" N p; (1)) (2-42)
(where p, is the principal symbol of P in the chart W,) such that, if we set

a™ (f,h)y =a,o(f) +ha (f)+---+hVa, n(f),

we have
(1= x5 f(B2P) =Y Op,(a™ (f. h)) + KN Ry (f. h), (2-43)
e9
(1 —Xy) f(h*P) = 23‘ Opupe @™ (f, 1)) + N Ry o (f, 1), (2-44)

where, for each q € [2, o],

_na(l_1
™" Ry (£, M2 ocacy Sh"2 70 for b€ (0,11, (2-45)
and
IRN(f, M 20u,d6)—12de) S 1 for b€ (0, 1]. (2-46)
In addition, for all 1 € $ and all q € [2, o0], we have
(i1
le™" Op.pe(a™ (f, Il 206y Locaac) Sh ™20 forh e ©,1], (2-47)
and, for all g € [1, 00] and all y € R,
le™" Opupe(@™ (£, IE o t.dGrLocudcy S 1 for b € (0,11 @49

In this proposition, as well as in further definitions or propositions, the interval / can be considered
as a semiclassical energy window, in the sense that the principal symbol of 22 P will live in 1. In the
sequel, I will be more explicitly of the form (}‘, 4) or (JT —¢&, 4+ 8); see for instance (2-54).

To make (2-42) more explicit, let us quote for instance that

ao(£)(r, 0, p,n) =k (), 0) f (P> +q.(r, 0, e n) x (1 = X5) (¥, (r, 0)).

More generally, (2-42) and Lemma 2.4 show that a, o(f), ..., a, n(f) are of the form (2-29), with
a,(r, 9, p, &) compactly supported with respect to (p, &).

The estimate (2-48) basically means that Op[,pr(at(N)( f, h)) preserves all LY spaces with any expo-
nential weights. In particular, since LI (M, dG) = e """/9 L9 (M, d’(?), replacing dG by dG in (2-48)
would give a completely equivalent statement. This estimate is the main reason for introducing properly
supported operators. Of course, (2-48) holds for other symbols than those involved in the functional
calculus of P. We have more generally (see [Bouclet 2007]) for all y € R,

le™" Op.pe(a)e” || Lo .6y rodey S 1 for h e (0,11, (2-49)
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for any g € [1, oo] and any
a, € Fnyp (Ry 41, +00) x V/ x R N p7 (1) ,

provided I’ is bounded.

By the unitary equivalence of P and —Ag — yﬁ, we would get a very similar pseudodifferential
expansion for f (—h%Ag). (Here we have only described (1 — X3) f (h?P) since this will be sufficient
for our present purpose, but of course there is a completely analogous result for the compactly supported
part Xy f (h?P); see [Bouclet 2007].) Such an approximation of f (—h?A¢) was used in [Bouclet 2010]
to prove the next two propositions.

Proposition 2.8. Consider a dyadic partition of unit
L= fo)+ > f@ ),
k>0

for ) in a neighborhood of [0, 400), with
foeCPM®),  feCy([5.4]). (2-50)
Then, for all X € C5°(M) and all g € [2, 00), we have

1/2
(1= X)ull L ut.ac) 5( > la —x>f<—h2AG>u||iq(M,dG>> + lull 2ciac)-

h2=27*
k>0

This proposition leads to the following classical reduction.

Proposition 2.9. Let X € C;°(M) and (p, q) be an admissible pair. Then (1-10) holds true if and only if
there exists C such that

(1= X)€" f(—h*Ag)uollLeo,13: a6y < Clluoll L2(u.a6)» (2-51)
forall h € (0, 1] and ug € C3°(M).
This result is essentially well known and proved in [Bouclet 2010] for a class of noncompact manifolds.

We simply recall here that the LY — L9 boundedness of the spectral cutoffs f(—h?Ag) is not necessary
to prove this result, although the latter slightly simplifies the proof when it is available.

2D. Outgoing and incoming areas. Propositions 2.7 and 2.9 lead to a microlocalization of Theorem 1.2:
as we shall see more precisely in Section 2E, they allow to reduce the proof of (1-10) to the same estimate
in which 1 — X is replaced by A-WDOs. But this microlocalization, i.e., the support of the symbols in
(2-42), is still too rough to simplify the proof of Theorem 1.2 in a significant way. The purpose of this
subsection is to describe convenient regions which will refine this localization.

Definition 2.10. Fix « € $. For R > Ry + 1, an open subset V € V/ (see (2-21)), an open interval
I € (0,+00) and o € (—1, 1), we define

TER, V. 1,0o)={(r6,p,m) eR”:r >R, 0V, pel, £p>—op!/?},

L

where p, is the principal symbol of P in the chart U, given by (2-14). The open set I';V(R, V, I, o) is
called an outgoing area, and I', (R, V, I, o) an incoming area.
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We note in passing that, except from the localization in 6, these areas are defined using only the
variable r, its dual p and the principal symbol of P. In particular, up to the choice of the coordinate r,
the conditions » > R, p, € I and +p > —apll/ % define invariant subsets of T*.(. However the whole
analysis in this paper will be localized in charts and we will not use this invariance property.

Let us record some useful properties of outgoing/incoming areas. First, they decrease with respect to
V,I,0 and R™":

Ri>Ry, VicV,, IICh, o1<00 = T (R, Vi,11,00) CTE(Ry, Vo, b, 02).  (2-52)
Second, we have
THR, V., LYUT (R, V, 1Y) = (R, +00) x V x R" N p; (D). (2-53)
Here we have chosen o = % but any o € (0, 1) would work as well.
We will use the following elementary property, proved later as part (ii) of Proposition 4.1.

Proposition 2.11. Any symbol a € Fnyp ((R, +00) x V x R N p; (1)) can be written as
a=at+a",  with a* € Fpy(TT(R,V, 1, })).

This splitting into outgoing/incoming areas was sufficient to use the Isozaki—Kiada parametrix in the
asymptotically Euclidean case; in the AH case, we will only be able to construct this parametrix in much
smaller areas, called strongly outgoing/incoming areas, which we now introduce.

We first describe briefly the meaning of such areas, say in the outgoing case. Basically, being in an

outgoing area means that p is not too close to —p'/?; the aim of strongly outgoing areas is to guarantee

that p is very close to p'/?, which is of course a much stronger restriction. This amounts essentially to
chose o close to —1 in the definition of outgoing areas. We will measure this closeness in term of a small
parameter ¢. It will actually be convenient to have the other parameters, namely R, V, I, depending also
on &, so we introduce

Re)=1/e, V. ={0eR"":distd, V) <e’}, I(e)=(}—e4+e), (2-54)
where we recall that V, is defined in (2-21).
Definition 2.12. For all ¢ > 0 small enough, we set
I (e) =T (R(e), Vie, I (e), 82— 1).
The open set F:rs(s) is called a strongly outgoing area, and I' ((¢) a strong incoming area.

The main interest of such areas is to ensure that e~ |n| is small if ¢ is small. Indeed, if ¢ € [0, +00)
and —1 < o < 0, we have the equivalence

+p>—0(p’+¢)'? < +p>0and g <o 2(1—-0?)p’. (2-55)
Therefore, there exists C such that, for all ¢ small enough and (r, 8, p, n) € Ffs(e),
QI(ra 97 eirn) S C829

which, by (2-35), is equivalent to
el S e (2-56)
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Note also that, by (2-52), strongly outgoing/incoming areas decrease with ¢.

We now quote a result that motivates, at least partially, the introduction of strongly outgoing/incoming
areas. Its proof is given in Section 4A.

Denote by &' the Hamiltonian flow of p,. This is of course the geodesic flow written in the chart
W, (U,) x R" of T*AM.

Proposition 2.13. Fix o € (—1, 1). There exists R, > 0 such that for all R > R and all ¢ > 0 small
enough, there exists tg . > 0 such that

(TR, Vi, (j—.4+6),0)) CT(e) if £1>1g,.
In particular, for all ¢ > 0 small enough, there exists T, > 0 such that

O (ME(R(e), Vi, (), 0)) CTE(e) if £t >T,. (2-57)

.S

Note that, since p, is only defined in the chart W, (°U,) x R", its flow is not complete. We shall however
see in Section 3 that, for any initial data (r, 6, p, ) € F[i(R(s), Vi,1,0), CDf(r, 0, p,n) is well defined
for all ¢ > O; that is, de(r, 0,p0,n) € ¥, (U) x R" for all ¢ > 0.

Proposition 2.13 essentially states that the forward flow sends outgoing areas into strongly outgoing
areas in finite time, and likewise the backward flow sends incoming areas into strongly incoming ones.
This will be interesting for the proof of Proposition 2.24.

The last type of region we need to consider are the intermediate areas. They should have two
properties: firstly they should essentially cover the complement of strongly outgoing/incoming areas
in outgoing/incoming areas and, secondly, be small enough.

To define them we need the following. For all ¢ > 0 and all § > 0, we can find L + 1 real numbers,
a0y ...,0L,

(8/2)2—120'0<0’1<---<0'L=%, (2-58)

such that 1
(€/2°=1,3) = U @1-1,0141) (2-59)

and =
o141 —01-1] < 8. (2-60)

Note that the intervals overlap in (2-59), since (o;_1, o7+1) always contains o;.

Definition 2.14. The intermediate outgoing and incoming areas associated to the cover (2-59) are

I8 8D :={0,0.m) eR” :r > R(e), 0 €V, p el(e), £p/p!* € (o111, —01-1)},

L,inter L
forl <I<L-—1.
Notice that, by definition,

F:l:

L,inter

(e,8:1) CTE(R(e), Vi, I (e), 3). (2-61)

In the notation, we only specify the parameters which are relevant for our analysis, namely ¢, §, but,
of course, intermediate areas depend on the choice of oy, ..., or. Here § measures the smallness and
Proposition 2.16 below will explain how to choose this parameter.
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Proposition 2.15. Fix ¢ > 0 small enough, § > 0 and oy, ..., o, satisfying (2-58), (2-59) and (2-60).
Then, any symbol
a™ € Fpyp (T (R(e), Vi, I (8), 3))

can be written as

+__ + + +
a =d +a1,imer+'”+aL—1,inter’

with af € Puyp(TE (2)) and af e, € Fryp (T e (€2 81 D).
The proof is given in Section 4A.

We conclude this subsection with the following proposition which will be crucial for the proof of
Theorem 1.2 and motivates the introduction of intermediate areas. The proof is given in Section 4A.

Proposition 2.16. Fixt > 0. Then, for all ¢ > 0 small enough, we can find § > 0 small enough such that,
for any choice of 0y, ..., or satisfying (2-58), (2-59) and (2-60), we have, forall 1 <l <L — 1,
D (T (6. 8: D) NI (6,851 = @, (2-62)

L, 1nter t,nter

provided that
+r>1.

2E. The main steps of the proof of Theorem 1.2. We already know from Proposition 2.9 that we only
have to find X € C§°(M) such that (2-51) holds, which is equivalent to

le™" (1= X) f (h* PYe™" P uollLrqo.13: Loatacyy < Clluoll 2 u.d6) - (2-63)
using the unitary map (2-9) and (2-11), (2-12).
Before choosing X, we introduce the following operators. Choose a cutoff f € C;°((0, +00)) such
that ff = f.
Lemma 2.17. For all X € C§°(M), we can write
(1 =0 F WPy = (1= ) Ape(h) + R(h)
with R(h) satisfying, for all g € [2, oo],
le™ " R(M)l r20u.d6)— rem.ac) S 1s (2-64)

and Apc(h) such that, for all g € [2, o0],

le™" Ape (M) | 20, d6) > e (acy Sh (4 5) (2-65)
le™""" Ape(h)e”" || L, d6)— Lo dc) S 1, (2-66)
1A (B e || 1 ) 2 iddy S B2 (2-67)
lle”™" Ape(W) e ™" || 11 (. d)— 1 (at,d0) S 1- (2-68)

Proof. This is an immediate consequence of Proposition 2.7. Using (2-44), with N such that N4+1>n/2,
we define Ay, (h) as the sum of the properly supported pseudodifferential operators. We thus have (2-64),
(2-65) and (2-66). The estimates (2-67) and (2-68) are obtained by taking the adjoints (with ¢ = oo in
(2-65)) with respect to dG. O
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Basically, the operators e """ Ay (h) and A, (h)*e™ """ will be used as “ghost cutoffs” to deal with
remainder terms of parametrices which will be O(A") in & (L*(M, d/é)), using the Sobolev embeddings
(2-65) and (2-67). They will be “transparent” for the principal terms of the parametrices by (2-66) and
(2-68), which uses crucially that they are properly supported.

For ¢ to be fixed below, we choose X € C;°() such that
x=1 forr(m)<3e!

This function will appear in Proposition 2.18 below only trough its support. More precisely, the propo-

sition states that to prove (2-63) for such a X (with ¢ small enough), it is sufficient to prove the estimate

(2-70) for a class of symbols supported where r(m) > &~

Proposition 2.18 (Microlocalization of Strichartz estimates). To prove (2-63), it is sufficient to show
that, for some ¢ small enough and all

a, € Fnyp ((R(e), +00) x V, x R N p7 (I (e)) . (2-69)
where we recall that R(g) = ¢~ and I (¢) = (% —&, 44 8), we have

le™" Ape (1) Op,(a)e ™ Fuoll oo, 1;L9 a6y < Clluoll 2u, s (2-70)
uniformly with respect to h € (0, 1].

Proof. Choose X € C3°(M) such that

Xo=1 forr(m) < 8_],

Xo=0 forr(m)>2e"".

We then have (1 — Xo) = 1 near supp(1 — X) so, by the proper support of the kernel of Ay (h), we also
have

(1 = X)Ape(h) = (1 = X)Ape(R) (1 — Xo),
at least for ¢ small enough. The latter and (2-64) reduces the proof of (2-63) to the study of
e " Ape(h)(1 = Xo) f (> P)e ™" .
By splitting (1 — Xo) f (h*>P) using (2-43) with N 4+ 1 > n/2, we obtain the result using (2-46) and
(2-65). O
We now introduce a second small parameter § > 0. By Propositions 2.11 and 2.15, for all § > 0, any
a, satisfying (2-69) can be written as
P -
a, = dg + ag + lZl al,inter + al,inter’ (2_71)
with
ai € P, ) ner € Pryp (T iper (& 85 D). (2-72)
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Proposition 2.19 (Reduction to microlocalized dispersion estimates). 7o prove (2-70), it is sufficient to
show that, for some ¢ and § small enough, we have

< C,|ht| "2, (2-73)
< Ceslht|™?,  (2-74)

e Ape() Op (a)e™ ™" Op, (aZ)* Ape(h)*e V"
77" Ape(h) Op (@5 )™ " Op(a5e) " Ape () e ™"

for

|Ll (dG)—L>(dG) =

LY(dG)—L>®(dG)

he©,11 and  0<+r<2hl (2-75)

Recall that the important point in this lemma is (2-75), i.e., that it is sufficient to consider ¢ > 0 for
outgoing localizations, and ¢ < 0 for incoming ones.

Proof. Define

TE(t, h, &) = e Ap(h) Op,(a)e P, (t,h,&,8) =e """ Ap(h)Op,(ap iner)e T

l inter
By (2-26) and (2-65) (with g = 2), we have,
||Tsi(f, h, 8)||L2(¢I/G\)—>L2(d0) + ”Tlfmer(t’ h, e, 8)||L2(d/G\)—>L2(dG) <Cgs forhe(0,1], t eR;
hence by the Keel-Tao Theorem [1998], the inequality (2-70) would follow from the estimates
T, by T (s, by )Nl a6y Low@e) < Celt =172, (2-76)
IT, 1, mter(t h,e)T, 1, mter(s’ h, 8)*||Ll(dG)—>L°°(dG) = C8v5|t - s|7n/2’ 2-77)

for h € (0, 1] and ¢, s € [0, 1]. Using the time rescaling 7 — ht, the equality L' (dG) = ="' L'(dG),
and the fact that the adjoint of (2-9) is given by ', we see that (2-76) and (2-77) are respectively
equivalent to (2-73) and (2-74), for h € (0, 1] and || < 2h~ 1.

The reduction (2-75) to £t > 0 is obtained similarly to [Bouclet and Tzvetkov 2007, Lemma 4.3]. We
only recall here that it is based on the simple observation that the operators 7' ()T (s)* considered above
are of the form Be "= B* 50 L°° bounds on their Schwartz kernel for &(¢ —s) > 0 give automatically
bounds for (¢ — 5) < 0 by taking the adjoints. ([

As we shall see, there are basically two reasons for choosing ¢ small enough. The next result is the
first condition.

Proposition 2.20 (Time 4 ~' Isozaki—Kiada parametrix). For all ¢ > O small enough and all a;t in
S’hyp(F .(€)), we can write

e P Op, (@) = Ejf (1. h) + "Rk (1, h),
with
le™" Eqe(t, e ™" | L1 gy Loy S ht] ™72, (2-78)
IR W 26— 2@ S 1 (2-79)

for
he(,1], 0<=4r<2hn'.
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Proof. By (2-38), the result follows from Theorem 5.1 and by a stationary phase argument justified by
Propositions 7.2, 7.3, 7.6, Lemma 7.9 and Propositions 7.11, 7.12. O

Proposition 2.20 is mainly an application of the Isozaki—Kiada parametrix. It has the following con-
sequence.

Proposition 2.21 (Time 4 ~! strongly incoming/outgoing dispersion estimates). For all & > O sufficiently
small, (2-73) holds for all h, t satisfying (2-75).

Proof. We first replace 0pl(ai) by Op,, pr(ai) to the left of e ~1*"? in (2-73). The remainder term, which
is 0(h®) in EE(L2(dG)) by (2-40), produces a term of size 0(k*°) in PL! (dG) L*°(dG)) using (2-65)
(with ¢ = o0) and (2-67). We then use Proposition 2.20: the remainder term satisfies

e Ape(h) Opy pr(a)e ™™ h™ Ry (¢, h) Ape(h)* e~ < |ht|7Y2,

Ll(dG)—>L°°(dG)

and the main term E k (t, h) gives the expected contribution via the use of (2-66), (2-68), and (2-49) for
0pt,pr(as ). |

The second condition on ¢ will come from Proposition 2.24. It uses Proposition 2.16 which depends
on some fixed small time which will be given by the following result.

Proposition 2.22 (Time 1 geometric optics). There exists twxp > 0 such that, for all € > 0 small enough
and all symbol at e Fhyp (Ff—L(R(e), V, 1, %)), we can write

e P Op,(a®)* = Byt h) + " R s (2. ),

with
le™" Eqgp(t. me ™ || 16— L@y S 1htl "2, (2-80)
RS ke s D 26— 12 S 1
for
he@,1], O0<=r<twks. (2-81)
Proof. This follows from the stationary phase theorem, using the parametrix given in Theorem 6.1 and
Propositions 7.2, 7.3, 7.6, and 7.8. ]

The first consequence of this proposition is the following result on short-time dispersion estimates,
whose proof is completely similar to that of Proposition 2.21.

Proposition 2.23 (Time 1 dispersion estimates in intermediate areas). For all ¢ > 0, all § > 0 and all
satisfying (2-72), the estimate (2-74) holds for all h, t satisfying (2-81).

We can now give the second condition on &, also giving the choice of §. The proof is given in on page
65 (Section 6B).

Proposition 2.24 (Negligibility of 1 <¢ < h~! dispersion estimates in intermediate areas). If & is small
enough, we can choose 5 > 0 small enough such that, forall 1 <l <L —1, all

+
bl,inter € 8Jh}’P( Lmter(8 8 l))

al ,inter

and all N > 0, we have

[ OPL(bl 1nter)eilthPOpL(bl 1nter) ||L2(dﬁ)—>L2(d’c$) = Cl,NhN’ (2-82)
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for
he(,1], twkp <=2t <2h'

This is, at least intuitively, a consequence of Proposition 2.16 with ¢t = twgg and of the Egorov theorem

which shows that e ~//"7 @L(bffinter)* lives semiclassically in the region ®! (supp(bll;mer)).

We summarize the reasoning above as follows.

Proof of Theorem 1.2. Using Proposition 2.21, we first choose ¢y > 0 small enough that, for all ¢ €
(0, €0], (2-73) holds for 0 < +r < 2n~1. By possibly decreasing gy, we then choose fwgp according
to Proposition 2.22, uniformly with respect to ¢ € (0, g0]. Next, according to Proposition 2.24, we fix
¢ € (0, go] and § > 0 small enough that (2-82) holds for twgp < £t < 2h1, Using (2-65), (2-67) and
Proposition 2.24 with N = n and b *  defined by (2-71), we have

[,inter = al ,inter

€77 Ape (1) Op, (655 e e ™" Op (@) Ape () e~ | < Ces S Ih1| "2,

L1(dG)— L>®(dG)

for twkp < =+t < 2h~!'. On the other hand, (2-74) holds for 0 < 4t < twgs, using Proposition 2.22.
Therefore (2-74) holds for 0 < #¢ < 2h~'. By Proposition 2.19, this proves (2-70) for all a, satisfying
(2-69). By Proposition 2.18, this implies (2-63) which, by Proposition 2.9, implies Theorem 1.2. (I

3. Estimates on the geodesic flow near infinity
In this section, we describe some properties of the Hamiltonian flow of functions of the form

p(r, 0, p,1) = p* +w(r)q(r,6,n), (3-1)

on T*R% =R} x [Rg’l x R, x [R{’,;*l. Here g is an homogeneous polynomial of degree 2 with respect
to n and w a positive function. In Section 3B, we will assume that w(r) = e~ but we start with more
general cases in Section 3A.

The motivation for the study of (3-1) comes naturally from the form of the principal symbol p, of P
given by (2-14).

We emphasize that the symbol p considered in this section is defined on T*R’, whereas p, is only
defined on a subset of the form 7*(Ry;, +00) x V,. The results of Section 3B will nevertheless hold for
p. as well with no difficulty for we shall have a good localization of the flow in the regions we consider
(see Corollary 3.10).

3A. A general result. Let w = w(r) be a smooth function on RT = (0, +00) such that

w/ /
w>0, w <0, (E) >0, (3-2)
and, for some 0 < y < 1,
497 3y
lim sup/ — € [—o00,0). (3-3)
r—>+00 Jr w

Note that lim, _, 4 o w(r) exists, by (3-2), and that (3-3) implies that this limit must be 0. Note also that,
for all R > 0, we have

wr) <1 and |w' ()| Sw(r) forr €[R, +00).
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2 2r

These assumptions are satisfied for instance by w(r) =r “or w(r) =e"
We assume that ¢ is an homogeneous polynomial of degree 2 with respect to n of the form

q(rvev 77)=510(9» 77)+‘]1(ra9» 71) (3_4)

with qo, g1 homogeneous polynomials of degree 2 with respect to 7 satisfying, for some 0 < 7 <1,

1850800, ) < (>, (3-5)
10/ 05 0L q1(r, 6, M| < (r) 7" (m)> 7P, (3-6)

and, for some C > 0,
C'Inl> <q(r.6.n) < Cinl*, (3-7)

for (r, 0, n) € Rt x R"~! x R"~!. The latter implies, by possibly increasing C, that
CHul’ <qo@.m <Chl, @, R xR (3-8)
Setting ¢’ = 3,9 (= 9,q1), we finally assume that,
w
7

/
1 —0 as r — +o00, 3-9)
qg w

uniformly with respect to 6 € R"~! and n € R*~\ 0.
The Hamiltonian flow ®' = (', 87, p’, n'), generated by p, is the solution to the system

r=2p,
0= waq/dn,
= q/9m. (3-10)
p= —wqg—wq,
n= —wdq/d0,
with initial condition
', 0", o', =0 = (. 0, p, M). (3-11)

Our main purpose is to show that, if p > —pl/2 (with p = p(r, 0, p, n)) and r is large enough, then

@' is defined for all > 0 and r, — 400 as t — 400 (we will obtain a similar result for # < 0 provided
p < p'/?). This result relies mainly on the following remark: if n # 0, we can write

’ ’ w’ 2( w q’)
— — = —— — 1+ — x +).
wq—wq w(p ,o) +w/xq

Using (3-9) and the negativity of w’/w, this shows that, for all £ > 0, we can find R > 0 such that
/
—w'q—wg'=—(1—e)(p—pH T, on [R.+00), xRy xR, xR}~ (3-12)

which we shall exploit to prove that o > 0.
In the following lemma and in the sequel, we shall use extensively the shorter notation

p=p(r0,p,n).
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Lemma 3.1. Denote by (—t_, ty) (t+ € (0, +00]) the maximal interval on which the solution of (3-10),
with initial condition (3-11), is defined. Then

ty > —2p1 72
Furthermore, either r, — Q0 as t — t4 (resp. t — —t_) or t; = +00 (resp. t_ = 400).
Note that, if p(r, 9, p,n) =0, i.e., p =0 and n = 0, then it is trivial that 7 = 400.

Proof. We will only consider the case of 7, the one of 7_ being similar. By the conservation of energy
we have |p’| < p'/? thus, for ¢ € [0, £,.), 7 is bounded,

Ir'—r| < 2tp'/?, (3-13)

172 1/2

and r' > r — 2tp'/*. We now argue by contradiction and assume that 7y < r/2p'/= (in particular, that
t, is finite). Then ry :=r —2t, p'/> > 0 and r, > r, for all ¢ € [0, t,.). Furthermore, by (3-7), we have
lwdyg| < C(wg +w) < C(p+ w), with w bounded on [r, +00), hence 6' is bounded on [0, 7;). One
shows similarly that 4’ and 7' are bounded on [0, z;), using that |w’| < w on [r, +00) for p. This
implies that lim,_,,, (', 6, p', n') exists and belongs to (0, +-00) x R~ x R x R"~!. The solution can
therefore be continued beyond 7, which yields the contradiction.

We now consider the second statement. Assume that 7, < +00. We must show that 7' — 0 ast — 1,.
Assume that this is wrong. Then there exists R > 0 small enough and a sequence #; — ¢, such that
r'* > R for all k > 0. On the other hand, by energy conservation, we have |r'—r*| <2 pl/ 2|t — 5] for all
t,s €10, ty), hence
ri>r —2p'2 1t —1| > R)2

provided |t — #;] < R/4p'/?. Since # can be chosen as close to ¢, as we want, there exists & >
0 small enough such that r' > R/2 for t € [t — &,t;). Then, by the same argument as above,
lim,_,,, (r", 6", p', n") exists and belongs to (0, +00) x R x R x R"~!. The solution can be continued
beyond 7. ; hence 7, = 400, which is a contradiction. (I

Lemma 3.2. Let 0 < ¢ < 1. For any R > 0 such that (3-12) holds, we have:
(i) Ifr"® > R and p™ > 0 for some 1ty € [0, t,), then t, = +00 and
r'">R, p'=>pP rI>r42(t—1))p" forallt>t,.
(ii) Ifr'" > R and p" < 0 for some ty € (—t_, 0], then —t_ = —o0 and
r">R, p'<p® r>r42(t—1)p" forallt<t,.
Proof. As in Lemma 3.1, we only consider the case of 7. It suffices to show that
r'>R forallt ety ty). (3-14)

Indeed, if this is true, Lemma 3.1 shows that 7, = 400 and then, by (3-12), we have ¢’ > 0, whence
p' > pand r'—r’ > 2p"(t — ty). Let us prove (3-14). Consider the set

I={relto,ty):r* > Rand p° > p" for all s € [19, 1]}.
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It is clearly an interval containing 7y and we set T := sup /. By continuity, p’ > p /2 > 0 for ¢ in a small
neighborhood J of #y. This implies that 7 > 0 on J, hence that r* > r© > R on J N[y, t,.) and thus that
o' > 0on JN[t, ty) which in turn shows that p’ > p on J N [ty, £1). This proves that T > #y. Then,
on [t9, T), we have

r"=R, p'=p". (3-15)

Now assume, by contradiction, that T < ¢. Then (3-15) holds on [#p, T] and in particular we have
rT > 7l 4 2(T —19)p™ > r™. Thus r’ > R in a neighborhood of T and this implies that 4’ > 0 in this
neighborhood. Hence there exists 7' > T such that (3-15) holds on [z, T’] yielding a contradiction. [J

To state the next result, we define [/ € (0, +00] as

(14+y)r w'
[ =—1lim sup/ — (3-16)
r—+oo Jr w
and we choose an arbitrary o € R such that
2, (4 iz
2 (30)" i<
0<o—<[ T+ i< oo (3-17)
1 if | =+o0.

1/2
Note that 0 < —% + (;iz + 1) < 1if [ is finite, and that (3-17) is equivalent to

(1—0%1/2>20 > 0.

Proposition 3.3. For any o satisfying (3-17), there exists Ry, , s > 0 large enough that the following
property holds. Letr > Ry, , 5. Then:

() If p > —op'/?, then t, = +00 and

r' > max ((l—y)r,(1—y—ay)r+20p1/2|t|) (3-18)

forallt > 0.
(i) If p < op'/?, then —t_ = —o00 and (3-18) holds for t < 0.

This proposition means that, by choosing initial data with » large enough and p > —op'/? (resp.
p < op'/?), the forward (resp. backward) trajectory lies in a neighborhood of infinity. In particular, the
forward (resp. backward) flow starting at (r, 8, p, n), with p > —ap'/? (resp. p < op'/? ) depends only
on the values of p on [(1 — y)r, +00) x R" ! x R x R"~!.

Proof. We only consider the case where p > —op!/?

(3-17) allows one to choose 0 < ¢ < 1 such that

, the case where p < orpl/ 2 being similar. If / < oo,

(1—e)>(1—0%1/2>20. (3-19)

If | = oo, we choose an arbitrary ¢ € (0, 1). We next choose R so that (3-12) holds with the above choice
of &. If p > op'/? (recall that p'/> > 0 since p > —op!/?) and r > R, then Lemma 3.2 shows that the
result holds with Ry, ,, » = R. We can therefore assume that p < apl/ 2. Set

Ri=(1—-p~'R, T=yr/2p"% (3-20)
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By Lemma 3.1, we have ¢t > T and, if r > Ry,
r'>r—=2tp'?>1—=y)r>R fortel0,T].

Using (3-12), this implies that p* > 0 on [0, 7] and hence that p’ > —opl/? for all t € [0, T]. We
now prove by contradiction that there exists ¢ € [0, T'] such that p’ > op!/%. If this is wrong, we have
(p")? <o?pon [0, T], thus (3-12) shows that, for all # € [0, T'],

p > —(1—e)(1—0Dp(') > —(1—e)(1 — D) p—1(r +2tp'/?),
w w

using the third estimate of (3-2) and the fact that ' < r 4-2¢p!/? in the second inequality. By integration

over [0, T'], we get
(4+py)r w/

1
pT—pz—-e-adpy [ (321

using the second equality in (3-20). Fix R, such that, for all » > R,

— = 4o
(1—e)(1—=02)
With such a choice (and (3-19) if [ is finite), we see that, if » > max(R;, Ry), (3-21) implies that
pT —p =>20p'/? and hence that p” > o p!/? which yields the expected contradiction.
In summary, we have shown that for any r > max(R;, R») and any p > —o pl/ 2 there exists 79 € [0, T']
such that p > op'/2 > 0 and r' > R, hence t, = +0o by Lemma 3.2. Furthermore, ' > (1 — y)r on
[0, T]1and 7' > rT +2(t = T)op'/? > (1 — (1 +0)y)r +2tap'/? on [T, +00). The result follows since

(I—=yr ifrel0, T],
(A—y—oyr+20p'?t ift>T. U

A+9r 4 (I—2e) if | <400,
B f if 1 = +oo.

max ((l—y)r, (1—y—oy)r+2c7p1/2t) = {

3B. The asymptotically hyperbolic case. We will now prove more precise estimates on the Hamiltonian

flow of p when
wr)=e7.

In that case, the conditions (3-2), (3-3) and (3-9) are fulfilled, with any 0 < y < 1 in (3-3) and we have
[ =400 in (3-16).
We shall need the following improvement of Proposition 3.3.

Proposition 3.4. Let 0 < o < 1. There exist R, > 0 and C, > 0 such that: if r > Ry and p > —op'/?
(resp. p < op'/?), then

r'>r+20p'?t| - Cy, forall t >0 (resp.t <0).
The improvement consists in replacing (1 — y — o y)r in the estimate (3-18) by r — C,.

Proof. Here again we only consider the case 7 > 0. By Proposition 3.3, we may assume that r’ > R for
all > 0, with R large enough so that (3-12) holds with ¢ = % This implies that

P =2 q(r', 0" 0"y —e T 0 qu (', 0 ") = e q(r', 0" ') = p— (p")>. (3-22)
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If p > op'/?, then the result follows from Lemma 3.2 (with C, = 0). If p < op!/?, we will show that,

with T = 20p~12/(1 — &?), there exists ¢t € [0, T] such that p’ > op!/2. Assume that this is wrong.
Then (p')? < o?p on [0, T] and by integrating the above estimate on p’, we get

pl—p>=T(A—0p=25p" "

This proves that pl > apl/ 2 which is a contradiction. Therefore, by Lemma 3.2, we see that r’ — rT >
20p1/2(t — T) for t > T. On the other hand, we have r’ > r — 2p1/2t for t € [0, T]. The latter implies
that 7' > r +20p'/?t —2p'2(1 +0)t > r +20p'/*t —40 /(1 — o) for t € [0, T]. This holds in particular
for t = T and then for # > T'. Thus the results holds with C, =40/(1 — o). [l

We have so far only studied some localization properties of ®', the Hamiltonian flow of p. We shall
now give estimates on derivatives of ®’. We start with the following lemma giving some rough estimates.
They will serve as a priori estimates for the proof of Proposition 3.8 below.

Lemma 3.5. Forall 0 < o < 1, there exists R > 0 such that, for all (r, 0, p, n) € T*R!} satisfying
r>R, +p>—-op'? pe (Alf, 4), (3-23)
and all =t > 0, we have
|e"P197 /85 05 (@' — @) (. 6, p. )| S (1),

Note the ¢”?! factor in front of the derivatives.
We will need two lemmas. The first one, proved by induction, is a soft version of the classical Faa di
Bruno formula.

Lemma 3.6. Let 2 C R", Q, C R" be open subsets, with ny, n, > 1. Consider smooth maps y =
1oy V) 1 Q1 = Qe and Z : Q21 x Qp — R, withnz > 1. Then, for all |y| > 1,

N (Z(x, y(x) = By Z) (x, y(x))3Vy(x) + (9 Z) (x, y(x)) + Ry (x)

where R, (x) vanishes identically if |y| = 1 and, otherwise, is a linear combination of

n 2
Voiny

(077 0 2) (v, y ) (07 7100 -0 () . (7 Yy 0) Ly (),
with y, v/, ylj‘ eNg', v= (1, ..., v,) €Ny satisfying v #0, v # 0 and
Y<yo o 2sPitly=VIsi vty b A Y =Y
and using the convention that aﬁyk(x) .. B;ﬁ" yvi(x) = 1ifvp =0 (if vi # O then y’l‘, ce yﬁk are all
nonzero).

In the second lemma, we consider the linear differential equation
X=AMX+Y(), (3-24)

where A(-) is a continuous map from [0, +00) to the space My« ny(R)) of N x N matrices with real
entries, for some N > 1, and Y(-) € C([0, +00), CY). We assume that A(-) belongs to a subset
B C C([0, +00), My« n (R)) for which there exist 5 > 0 and Cgp > 0 such that

Al < Cpe™*" forallz >0and A(-) € B,
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with ||| - ||| a matrix norm associated to the norm || - || on CV, i.e., such that |MZ| < IM|| | Z||, for all
M e Myxn(R) and Z € CV.

Lemma 3.7. There exists C > 0 such that, for all A(-) € B and all Y (-) satisfying

o0
/Hﬂ%m<m
0

the solutions X (-) of (3-24) satisfy
Xl =C (IIX(O)H +/o 1Y ()l ds) Jort>0. (3-25)

Proof. First fix 0 < § < §g and € = 85 — 6. Choose T > 0 such that Cape % <gfort>T. By Gronwall’s
lemma, we have

X @] < (IIX(T)II +/OO||Y(S)|I dS> =1 fort > T,
T

T
nxmns(wwmn+/1uY@w¢Qe%T for t € [0, T].
0

These two inequalities give, for some C depending only on Cg, ép, § and T,

[X®l <C (IIX(O)II +/ 1Y ()] dS) e fort>0.
0

Used as an a priori estimate in (3-24), this yields

IX@I < 1Y @) +CCqe™ (IIX(O)II +f0 1Y ()l dS) forz =0,

which implies (3-25). U

Proof of Lemma 3.5. As before, we only prove the result for # > 0. For |8|+ j + || +k =0, the result is
a consequence of the motion equations (3-10) and energy conservation. Indeed, for r’— r, the estimate
follows directly from (3-13). Next, the equation of motion for 6, together with (3-7) and Proposition 3.4,
shows that

01 S e ' | S e (') S 1+ p;
hence that |6 — 0| < (¢) by integration. One similarly shows that "= pl + In"— p| < (t). We now

consider the derivatives and write, for simplicity, 07 = 8,',3 9/ 0y 8’;. Denoting by H), is the Hamiltonian
vector field of p and applying 0" to (3-10), we obtain

P17 d! = (dH,)(d")eF19¥d" + R(1),

where, by Lemma 3.6, R(¢) vanishes if |y| =1 or, if |y| > 2, is a linear combination of

2n

(3VHP)(q>f)erll3\(3V{rf ... 3V51r’) .. (aV%" ’72—1 o 0Pmp! ) (3-26)

n—1
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Here v = (vq, ..., vy,) is of length at least 2, all the derivatives of ®' involved in R(¢) are of strictly
smaller order than y (meaning that yfi <y and yfi # y), and

2<l<yl. vt trve =y (3-27)

Writing d H,, as a matrix, we have

0020 0 0 0 0
o000 | 9@ —20yg R R

0000 40,1 —4q9—9,,q1 200 —95,q1 0 28,9—09,.q1

0000 209 — 3%, =359 0 —8%q

Defining M as the first (constant) matrix of the right-hand side and using Proposition 3.4, we have
[dHy (@) = M| S e (') S e 2 ()P + ()P S e
using that 2p1/2 > 1 and that e~ (n)? is bounded, by (3-23). We then set
Ay =e ™ (dH,(d") — M) ™,
X(t) =e "M Flgr !l — " 1Plg7 @0,
Y()=e"MR(t)+ A(t)e 137 @,

so that
X)) =AMX@)+Y (@), X(©0)=0.

Noting that M? = 0, we have
exp(£tM)=1+£tM, |exp(tM)| < (t); (3-28)

thus
A S e (1)? Se o2, (3-29)

To estimate X (t) by Lemma 3.7, we still need to estimate Y (). We first assume that 07 = 8,’73 with
|B] = 1. We then have R(¢) =0 and

AN P97 0" = e ™3P Hp) (@")e”,
since M 8,’? @Y = 0. By Proposition 3.4 and (3-23) again, we obtain
(QF H ) (@) S e ™7 (') e,

so that |Y (1)] < e~°'/2. Using (3-29) and Lemma 3.7, we get | X (r)| < 1. Since M8,‘73d>o =0, we can
rewrite X (1) = e Me" 85(':13’— @Y%) and, using (3-28), finally get

"0l (@' — @°)| < ().
The other first-order derivatives of ®'— ®° are studied similarly (note that there is no e’ factor then), by
showing that X (¢) is bounded and using that X (1) = e "™ 37 (®'— &%) + (e="M — 1)37 P° with (3-28) to

get
187 (' — %) < (1).
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For higher-order derivatives, 37®% = 0 and 97 (P’ — ®°) = 3”P’. Furthermore, since the derivatives of
@' involved in R(t) are of strictly smaller order than y, we can proceed by induction. By writing x’ for
r’, p', 0" and

8)’; — 8,’;3; af; 8;‘; a[J)II

for the derivatives involved in (3-26), with 1 <i <2n and 1 <[ <vj; (recall that, if v; =0, the corresponding
product in (3-26) is 1), the induction hypothesis yields

ePIaMx | S o),

since 8,',3;x’ = 85’1 (x'=x%if Bl #0. If n +2 <i <2n (and v; # 0), we also have

lelilrgvigt 1< (1),

unless 97 = 8,’;}1 with |/3,i| =1, in which case we only have |8V§ n_,_1| < (r). By setting

€E=n+2<i<2n:3J1 <l <y suchthatBV; =85; with |,31i|=1},
and N = #¢, we thus obtain

13-26)] < V(0 Hy) () |(1) =N [T187 ', .
€

Since the components of H), are polynomial of degree 2 with respect to the last n — 1 variables, we only
need to consider the case where N < 2, otherwise v, + -+ vy, > 3 and " H, = 0. Furthermore

(8" Hp) ()| S e 2" () 2oV < o2 () 27N

For N <2, we have (n)2~N < ()2N + (1)2N 50, using that eN"e=2" < ¢~ @=Nr=201 e see that
eNT e 2" (n')2=N < =" which finally implies |(3-26)| < (£)!"le=" < e=1/2, Therefore |Y (1)| < (1)e ™!
and, by Lemma 3.7, | X (¢)| is bounded. The result then follows easily. U

The following proposition will be important in Section 4C to construct and estimate phase functions.

Proposition 3.8. For all 0 < o < 1, there exists R > 0 such that, for all j, k € Ny, o, B € Ng_l, with the
notation

Dl? = e"PloP ol gk,
(introduced before Definition 2.2) and (I)+ = max(0, [), we have
i - Q=D+  —
Dy ' =1 =21tp ") S (e n/p!V2) T prHEI,

hyp
jak, - - 1 + ,,—(k+
ID]“ 13(91‘ 9)| SJ r( r<n/p1/2>)( 1B p (k |/3|)/2’

hyp
ok ok - Q18D+ (1—k—
DY (0" = p) |+ 1D’ (1 = )| S (7" (n/ p!/2)) =P plikmtbbrz,

and, forall0 < ¢ < 1,

ok - @C—=1BD+ —4(1— 12 (1—k—
|D}Jl;¥pﬁ(pt:|:pl/2)| 5(6 r(’?/Pl/2>) B +o—4l=e)ltlp p(l k Iﬂl)/Z’
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uniformly with respect to (r, 0, p, n) and t satisfying
r>R, =+p> —O'pl/z, +t > 0. (3-30)

Apart from the energy localization and the localization in 6, the conditions (3-30) are the main ones
that define outgoing/incoming areas according to Definition 2.10.

Note also that, if (r, 8, p, n) are restricted to a subset where p belongs to a compact subset of (0, 4+00),
the estimates of Proposition 3.8 read

| Dla? (ri=r =21t1p" )|+ | Dy (0'= ) |+ D (' =m)| S (7 (m) ", (3-31)
|D£;lé<ﬂ(9z_9)| <e™” (e—r<n))(]—|l3|)+ ’ (3-32)

‘Dl{;;ﬂ(ptzppm” < (e—r<n>)(2—|/3|)+ p—da=oltip'? (3-33)

Actually the latter estimates are equivalent to Proposition 3.8, in view of the elementary scaling properties
' 00 0. p.m) = (™, 0. 0. p/M /M), (3-34)

(0" 1) (.0, p.m) = A(p™. ") (.0, p/h.n/3), (3-35)

valid for A > 0. Note that the condition (3-30) is invariant under the scaling (¢, p, n) — (At, p/A, n/A).

To prove Proposition 3.8, we need the following lemma (which will also be useful in proof of
Proposition 2.16 in Section 4A).

Lemma 3.9. For all 0 < o < 1, there exist R > 0 and C > 0 such that, for all (r, 0, p, n) satisfying
(3-23),
o' Fp'H < CeC  for £1>0. (3-36)

12 st — +o0.

In particular, p' — £p

Proof. We consider the case where ¢ > 0, the case of negative times being similar. Using (3-12),
Proposition 3.4 and Lemma 3.5, we can choose R large enough such that 6’ > 0 and

P S e I P < e (Inl+ (1) S e TN (Il 4 (1) S e, (3-37)

using the fact that e=%"|5|? < p in the last estimate. Therefore, p’ has a limit as t — +o0c. By the energy
conservation and the estimate on e~ | |? given by (3-37), we have p = (p")2 4+ 0(e~°"), which shows
172 the limit must be p'/2. Then we get
(3-36) by integrating the equation of motion for p’ between ¢ and +00, namely

that (p')> — p. Since p’ is nondecreasing and l=p>—p

oo oo
p'?—p'= / pds = / e (29(r, 0%, 1") = Brq) (. 0", ")) ds (3-38)
t t

where, by Proposition 3.4 and Lemma 3.5, the integrand is O(e™2 7275 ((s) + (n)?). [

Proof of Proposition 3.8. We only need to prove (3-31), (3-32) and (3-33) with p € (%, 4) and, again, we
only consider # >0 and p > —o p'/?. We first assume that j +|a|+k+|8| =0. By (3-10), Proposition 3.4
and Lemma 3.5, we have

161 S e 2 (Il + (1) S e (),

17 Se 2 (Inl + (1) Se 2 )3
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hence |n'—n| <e 2 ()% and |6'— 6| < e~ (n). In particular, ' —n and 6/— 6 are bounded. The motion
equation for r’ yields

t
rt—r—2tp1/2=2/ (p* — p') ds, (3-39)
0

and, using (3-36), we get |r'—r — 2tp'/?| < 1. The latter estimate and the boundedness |p’ — n| imply,
together with (3-38),

12

1p' = p' 2 S e ()2, (3-40)

Furthermore, since |p'/2 —p| =|p> — p|/|p+ p'/?| < e 2 |n|?, we also have |p'— p| < e~ (n)?. Putting
(3-40) into (3-39), we obtain |r'—r — 2tp1/2| < e~ (n)* which completes the proof of (3-31), (3-32)
and (3-33) for j + |a| + k + | B8] = O (note that we can choose ¢ = 0 in this case).

We now prove (3-32) when j+|a|+k-+|B8| > 1. We first note that, by Lemma 3.5 and the boundedness
of |r'—r —2tp'/?|, we have

./ /k// ot ./ /k// ot ./ /k// ot
DL P e | < [ Dl P (e (' = )| + | D P (e )
< o720 ()i H KB (o= (T ) 1B D)
Se—2tp'/2<[>j’+|ot'|+k’+|/3'|(e—r<n>)(1—|5/|)+’ (3-41)

for all j' + || + k" +|B'| = 0. By writing

t
0'—0 = / e Bnq)(r*, 0%, e n')ds,
0
la”| + k" 4+|B"| # 0), the Leibniz formula and Lemma 3.6, we obtain (3-32). We obtain similarly (3-33)
and then (3-31) (also using that (e ™" (n))? < e () < 1). Note that, for r' — r — 2tp'/2, (3-31) follows
directly from (3-33) and (3-39). [l

and using (3-41), Lemma 3.5 (more precisely, the estimates \Dj o J"a"k

Corollary 3.10. Let V € V' € R"™! be two relatively compact open subsets and let 0 < o < 1. There
exists R > 0 and C > 0 such that the conditions

r>R, 0eV, =+p>-—op'/? (3-42)

imply that, for all =t > 0,
r'>sr—C and 0'€V'.

In particular, if (3-42) holds, the flow ®'(r, 0, p, n) depend only on p on T*((r —C, 400) x V/) for
+7>0.

This corollary allows us to localize the estimates of Proposition 3.8 in charts of asymptotically hyper-
bolic manifolds.

4. The Hamilton-Jacobi and transport equations

In this section, we develop the analytical tools necessary for the [sozaki—Kiada parametrix that will be
constructed in Section 5. We mainly construct the phases and amplitudes needed for that parametrix, but
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also prove certain useful properties of outgoing/incoming areas, including those quoted without proof in
Section 2D.

All the statements in this section will hold in a coordinate chart at infinity, associated to a fixed coor-
dinate patch U, on the angular manifold. Thus, for notational simplicity, we will drop the corresponding
index ¢ from the notation.

4A. Properties of outgoing, incoming and intermediate areas. Here we collect some properties of out-
going, incoming and intermediate areas which will be needed for the construction of the Isozaki—Kiada
parametrix. We also prove a part of the results quoted without proofs in Section 2D, namely Propositions
2.11, 2.13, 2.15 and 2.16.

In the first proposition below, we use the classes Fyp(£2) introduced in Definition 2.2.

Proposition 4.1. (i) Assume that
R{ > R, Vi @ Vs, I @ I, o1 < 09. 4-1)
Then we can find X;_;z € Fhyp (Fi(Rz, Vo, I, az)) such that
Xi,=1 on TR, Vi, 11, 00).
(i1) Any symbol a € Fpyp ((R, +o0) x VxR'N p_l(I)) can be written
a=at+a, witha®™ € Fnyp(T*(R, V, I, D).
One important point in this proposition is that Xft_ﬂ and a® can be chosen in Fhyp-

Proof. (i) We may for instance choose

X]i_>2(r’ Qs P, T]) = XRlﬂRz(r)XV1—>V2(9)X11—>12(p)Xm*)O'z(:I:p/pl/ZL
with XRi—=Rys Xoy—oy € C*(R), Xvi—»v, € CSO(VQ) and Xn—n € Cgo(lz) such that
Supp(XR1—>R2) C (RZ, +OO)’ Supp(XUl—>0'2) C (_0.29 +OO),
XRi>Rr, =1 on (Ry, +00), Xy-w,=1onV,, X,.p,=1onl, Xs;-4 =1 on(-0oy,+00).
Notice that p/p'/? is smooth on the support of X;, ., (p). The so defined Xf_ﬂ is smooth on R,

supported in IE(Ry, Vo, I, 02), identically 1 on I'+(Ry, Vi, I, 01), and one easily checks that it belongs
to Bhyp (Fi(Rz, Vo, Iy, 02)), using for instance Lemma 2.4.

(i1) This is very similar to the first case. We may for instance choose
a*(r,0, p,n) =a(r,0, p, Mx; 0/ P,
with X7, € C*°(R) such that
X;r/z +X =1 SUPP(XT/z) c(- %’ +00), SuPP(XT/z) C (— oo, %)

Here again p/p'/? is smooth on the support of @ and a™ € %hyp(Fi(R, V.1, %)) ]

By Proposition 4.1(i), I*(Ry, Vo, I, 07) is a neighborhood of the closure of '+ (R, Vi, I, 01) under
the assumption (4-1). In the following proposition, we make this remark more quantitative.
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Proposition 4.2. Assume (4-1). There exists ¢ > 0 such that, for all (r',0’, p’,n") € R** and all
(r,0,p,n) €TE(Ry, Vi, I, 00),

(0, 0,m)— (0, p ) <e = (.0,0.1) el (R, Vo, I, o).
Proof. Choose first g > 0 such that, if |r —r'| + |0 — 0| < &, r’ > R, and 6’ € V,. Then, by writing
qr' 0, e ) —q(' 0 e = g, 0 0 =)+ (@) =g 0 ey, (4-2)
and using (3-5), (3-6) with the Taylor formula, we get
P, 0", p' 0= p(r, 6, p. ) <1p*> = p |+ Cln' = > + C(r —r'| +10 —0'De”|n|?,

—2r|n|2

where e is bounded, using (3-7). Since p is bounded too, we obtain

|p(r', 0", 0" 0 )= p(r,0, p. )| <C|(r,0, 0, ) — (', 0", 0", 1)

’

provided that |(r, 0,p,n)—,0,0, 17’)| < g and therefore,

‘pl/z(r/’ 9/’ p/’ 77/) _pl/z(r’e’ p? 77)‘ S C ‘(rv 07 :0» 77) - (rlv 0/7 /0/’ 77/)|,
/

P P
pl2@a, 0, 0,0y pl2(r,0, p,m)

<C|r6.p.m =0 0.1

if ‘(r, 0,p,m—(",0, 0, n/)‘ is small enough, using that I, € (0, +00). The conclusion is then easy. [J
Similarly to (2-54), we fix Vp C R a relatively compact open subset of ¥, (U,) and define
R(e)=1/e, V.=1{0eR" ! :dist(9, Vp) < &?}. (4-3)

In the sequel, we shall need very often the following result on strongly outgoing/incoming areas
(see Propositions 4.8, 4.14 and Lemmas 4.11, 4.16). This will for instance be the case when we use
Taylor’s formula and want to guarantee that the whole segment between two points of a strongly outgo-
ing/incoming area is still contained in such an area.

Proposition 4.3. For all M > 0, there exist eyy > 0 and Cyy > 1 such that, for all 0 < ¢ < gy, the
following holds: if

(r,0,p,1) € TE(e), (4-4)

and
r—r>—-M, |0/—0|<Me* |p—pl<Me, |5 —n|<Mee'?, (4-5)

then, forall0 <s <1,
(.0, p'.sn) €T (Cie).

In particular, (r', 9, p’, 0) € Fsi(CMs).

Remark. There should not be any confusion between the interpolation parameter 0 < s < 1 and the
subscript ¢, which refers to strongly outgoing/incoming areas (and which are independent of ).
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Proof. Using (2-56) and (4-2), we first note the existence of M’ > 0 such that, for all 0 < ¢ < 7,1f (4-4)
and (4-5) hold then

P, 0", 0 sn') = p(r. 0, p. )| < M'e?,
using in particular that s’ —n=s(n’—n)+ (s — 1)n. If Cy; is large enough and 0 < eCy; < %, we obtain

O<——CM8<%—8—M/8 <p(r', 0,0, sn) <446+ Me> <4+ Cye.
If 0 < & < &y with gy small enough, then p(r’, €', p’, sn')/p(r, 0, p, n) = 1 +0(&?) so that

+p’ +p p(r.0,p,m'"? o —p
— >
p(r/, o', ;0/, sn/)l/z p(r, 0, 0, ,7)1/2 p(r/, ', ,0/, Sn/)]/z p(i‘/, o/, ,0/’ Sn/)l/z
by possibly increasing Cy,. In addition, dist(6, Vp) < |6’ — 0] + dist(9, Vp) < (Cupe)?, by possibly
increasing Cj; again and decreasing ¢),. Finally, r' >r — M > el/e — M > e/ forall) <e <ey
by possibly decreasing &), again, so (', ', p’, sn’) € TE(Cpe). O

1—(Cye)?,

We can now prove Proposition 2.13, which states that one can reach a strongly outgoing (incoming)
area from an outgoing (incoming) one in finite time, along the geodesic flow.

Proof of Proposition 2.13. We consider only the outgoing case. With no loss of generality, we may
assume that 0 < o < 1. By choosing R > R/, large enough, we can use Proposition 3.4 and Corollary 3.10.
By Proposition 3.4, we have r; > r 4ct — C for some C, ¢ > 0, hence r; > R(¢) for all > tg ., provided

ctre —C+ R > R(¢). (4-6)

By Proposition 3.8, we have |#"— 0| < e~ hence 0" € V,, for ¢ small enough and all 7 > 0, since
e Ve « &2 . Using (3-33) and the energy conservation, we shall have p pl2rt, 0t pton') > 1 —
provided for instance that
e P Ptre < g3, (4-7)

with ¢ small enough. Choosing 5 . so that (4-6) and (4-7) hold, we get the result. O

We conclude this part with an explicit construction for cutoffs.
In Section 5, we will need a result similar to Proposition 4.1(i). This is the purpose of the following
result.

Proposition 4.4. We can find 0 < v < 1 and a family of cutoffs in_)s € 83hyp(f‘§E (e'*)), defined for all
& small enough, such that
x5 =1 on TEEH) (4-8)

e2—e¢
and, uniformly on R*",

<el2 j=1,2. (4-9)

32—>£i ~

i |77|]3r9an ‘+ie 2r|77| 8/) naréx

e2—¢

That we can find, for each &, st_w € ffhyp(lﬁs:IE (') satisfying (4-8) would follow directly from
Proposition 4.1. The important additional point here is the control with respect to € given by (4-9). Note
also that the power % is essentially irrelevant: we only mean that the left-hand side of (4-9) is uniformly
small as ¢ — 0. This rather technical point will only be used in Section 5 to globalize suitably certain

phase functions.
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Proof. For 0 < 8 < 1 to be chosen later, we consider the characteristic functions XQM and )_(:m of
(JT —gltd 4+81+8) and V + B(0, e2*?) respectively. Choose ¢/ € CP(R), ¢V € CS°(R"~!) both equal
to 1 near 0, such that [ ¢/ = [ ¢V =1 and set

_ A=\ _i_ - 06—\ _,_
Ko () = f Xers ()¢ (81+25)8 T, a0 0) = / Haes ()¢ (82+25)8 (=D gy,

One then easily checks that, if ¢ is small enough,

XLy =1 on(}—e’ 4+¢?), XV (0) =1 if dist(@, V) < &*,

Xlis =0 ousside (-5, 446175), XL 0) =0 if dist(@, V) = 6772,
Choosing € C*(R) supported in (4, 00) such that w = 1 near [1, 00), we now define

2
+ — r 14 I 1 —ar Inl
Xo (rb,p,m)= w(m)xgm(@) X (p) 0(£p) ¢ <e r84—5)-

On the support of XéHS (p), we have p* > % — O(¢e) so the factor w(£p) only determines the sign of p.
By (2-55) and (2-56), one sees that (4-8) holds with v = §/2, if ¢ is small enough. Furthermore, Xi»a
is supported in ' (¢! ") and belongs to By, (T (! 1)).

We prove (4-9). Since e=%"|n|*> < 4% on the support of X:EZHS, the first-order derivatives satisfy

|arXi | S R(83/2)_1 +e—2r|n|2(8—1—25+8—4+3) S_, 1’

g2—>¢

+ —1-26
10pX5 1 Se :
+ —2-26 —1-26 -2 2 —2-26

B0 X | S 62 g1 B 2 < g2,
_ 1 _ -1

|817X:|: |§€ 2r|77|(8 1 26+8 4-‘1—5) <Le & ,

e2—e¢

using the fact that e~ || < e < e~ for the last estimate. Similarly
- - 3 -172
£ < g2y 12 34

g2l ~ ’

|0y dro X5 | Se*

e2—¢

[0,06 X

Since e~ |p|2e3~% < e!=% and e ¥ |n| < e*f”z, the result follows with § = = (hence with v = 2—10).

O

L
10

We finally consider the statements involving intermediate areas.

Proof of Proposition 2.15. By (2-58) and (2-59), we can find X _~, X400 € C(R) and
X1 € C3°(=0141, —01-1),

for 1 <[ < L — 1, such that
L—1
supp(X—s0) C (—00, —0r—1), sSupp(X+o00) € (1 — 82, +o00) and Xicot+ Y X1+ X—so=1 onR.
=1
This simply relies on the overlapping property of the intervals in (2-59). We then obtain the result by
considering
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a(r,0,p,n) =a*(r,0, p,n) Xieo(Ep/p"?),

@10, 0 ) = a5 (0, p. ) Xi(Ep/p'D). 1<I<L-2.

A7 inier( 05 0 M) =@ (r, 0, p,m) (X1 + X—o00) (£p/p'/?).

1/2

since, in the definition of azcil’ inter» the cutoff guarantees that +p/p*/“ < —op_, and a* that + o/ pl/ 2s

1
1= . O

Proof of Proposition 2.16. We consider the outgoing case, the incoming one being similar. Using
Corollary 3.10, we may assume that, if & is small enough, (3-22) holds for any initial condition such
that r > R(¢),0 € V and p > —%pl/z. In particular 7 — p’ is nondecreasing for ¢+ > 0. Assume that
1 <p/p"? <1—(¢/2)* and set

o’ P

t:t(r,@,p,n)::sup{tiO:—<——|—54 forallse[O,t]}.
€= ‘s pl/2 = pin

Notice that #, is finite by Lemma 3.9 and that p’ = p 4+ p'/2e*. If 1 — (¢/2)* + &* > % we have
|,0t/p1/2| <1- (8/2)2 +¢&* on [0, ). Thus, if & is small enough (independent of (r, 6, p, 7)), we have

(p")?/p <1—(g/2)* forall t € [0, t,) and then, by (3-22) again, we have 5’ > (¢/2)?p on [0, t,], so
P —p > (£/2)* pte.

This shows that 7, < &*/(¢/2)? p =4&?/p. Then, for & small enough such that 4s2/p <t for all (r, 6, p, 1)
in

{0, p,meR":r>R(e), 0V, pel(e), —3<p/p'* <1-(e/2)%}, (4-10)
and with 8§ = &*/2, we have p’' — p > 28p'/? for all ¢ > ¢. This implies (2-62) since, for any choice of
09, ...,or and any [, Ff;ter(g, 8; 1) is contained in (4-10). O

4B. Hyperbolic long/short-range symbols. In this short subsection, we introduce the definitions of
short/long-range hyperbolic symbols which will be useful for the resolution of transport equations in
Section 4E. We prove in passing Proposition 4.6 below which will be used at several places, in particular
in Section 4C.

Definition 4.5. A smooth function as on I'Z(e) is said to be of hyperbolic short range if
10/ 05 050L av(r, 6, p, M| < (r —log(m) "'/, (r.0,p,m) €T (), (4-11)
and of hyperbolic long range if
10/ 05050 ax(r. 6, p. M| S (r —log(n)) ", (r. 0, p.n) €T (e). (4-12)

Notice that in this definition, we do not assume that a € %hyp(l“:E (¢)). However, this will be the case
in the applications and we now give a simple criterion to check that a symbol a € %hyp(f‘sjE (e)) is of
hyperbolic short/long range.

For ¢ small enough, by restricting a to a smaller area F;t (¢/C), with C > 1 large enough (or to stE (),
I'Z(e?) as it will be the case in the applications), using Lemma 2.4 and Proposition 4.3, we have

1
a(r,0,p,n)=a(06,p,0) +/0 (0za)(r, 6, p, 5E)jg—e-rpds e 'y, (4-13)
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where a belongs to C5°(Fhyy(I'E(e))) and (r, 0, p, sn) € T'E(e) if (1,0, p, n) € T'E(e/C). Since
180%e™ | < (r —log(m) ™ forall N > 0and (.6, p, n) € TE(e),
we obtain that, for a € By, (I'E(e)),
a is of hyperbolic short/long range in Fsi(s /C) = aj,— is of usual short/long range (4-14)

in the sense that
| (8]059%a) (.6, p.0)| S (r)""/  for (.6, p,0) € TE(e),

in the long-range case (recall that 0 < 7 < 1) and
| (8795 95a) (r,0,p,0)[ S (r) "' for (r,6, p,0) € T (e),
in the short-range case.

To calculate a),—¢ in some applications, we shall use the following elementary result.

Proposition 4.6. Forallr > 0, all 0 € R and all +p > 0, we have, for all £t > 0,

(rt79tapt’ nt)ln:0=(r+2tp597 /070)9 (4_15)
t

3,(r', 0", p', ") =0 = (o,f e™ 50 hess, [q1(r +sp, 0) ds, 0, Id). (4-16)
0

where hess,[q](r, 0) is the Hessian matrix of q with respect to  (which is independent of n).

Proof. One simply checks that the right-hand side of (4-15) is a solution to (3-10) (with w(r) = e~ )
for £t > 0. Applying then 9, to (3-10), one sees easily as well that the right-hand side of (4-16) is a
solution to the corresponding system. (Il

Remark. If ¢ is small enough then, on I ;t(s), we have
r —log(n) > 0. (4-17)
In particular, in this region, (r —log(n)) is equivalent to the weight

(r —log(n))+ := max(l, r —log(n))

which was introduced by Froese and Hislop [1989]. For the study of global in time estimates, which
we hope to consider in a future work, the resolvent estimates proved in [Bouclet 2006] suggest that the
hyperbolic short/long-range conditions (4-11)/(4-12) would play the same role as the usual Euclidean
short/long-range conditions used in [Bouclet and Tzvetkov 2008].

4C. The Hamilton—Jacobi equation. We now use the results of Section 3B to solve the time-independent
Hamilton—Jacobi equations giving the phases of the Isozaki—Kiada parametrix.

Lemma 4.7. There exists 0 < g9 < 1 such that, for all 0 < ¢ < gg and all £t > 0, the map
WS (0, 0.m) > (60,0, 0")
is a diffeomorphism from FSjE (e) onto its range and

) cvF (ME(e)) forall £t >0. (4-18)
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Proof. See Appendix A. U

The power &3 in (4-18) is not very important. It is only a rough explicit quantitative bound for the size
of a strongly outgoing area contained in \IJ,Jr (F;r (e)) for all # > 0 (or a strongly incoming area contained
in ¥, (I'; (¢)) for all  <0).

The components of the inverse map (\I/,i)_1 are of the form (r, 8, p;, n;) with

pr=p(r,0,0,m), n=nr0,p,1n).

Here we omit the + dependence for notational simplicity. We thus have

pt(r’e’pt’ 77t)=/0, 77’(”,9, pl"nt):n’ (4_19)
at least for all (r, 8, p, n) € Fsi(sg) and +¢ > 0.

Remark. It follows from the proof of Lemma 4.7 and the scaling properties (3-34), (3-35) that \I!,i is
actually a diffeomorphism from the cone generated by I'(gp) onto its range, the latter range containing
the cone generated by FSjE (88). Therefore (po;, 1;) is actually the restriction to FSjE (88) of a map defined
on the cone generated by F;t(eg) and, using (3-35), we have

(Pr, 1) (1, 0, A0, k) = A(par, ma)(r, 6, p, 1) if 1> 0and (r,6, p, n) € TE(ed), (4-20)
for all A > 0.

Proposition 4.8. There exists e < 88 such that, for all j, k € Ny, a, B € Ng_l,

DYl (o= )|+ [ Dl e = S 1, (1,0, p,m) €T (1), *t > 0. (4-21)

In addition, if (r, 0, p,0) € F;t (e1), we have

(pt’ nt)|17=0 = (p’ O)s (4'22)
9y (ot — p. e — M=o = (0, 0). (4-23)

Proof. By (4-18), any (r, 6, p, 1) € ['¥(3) can be written as W= (r, 0, §, ) with (r, 6, 5, ij) € T'F(eo).
Hence

sup |pr—pl+In —nl < sup 15— p'F, 0,5, D +I7—n"F, 0,5 0l

TE(ed) ¥ (e0)

By (3-31), the right-hand side is bounded, so we obtain (4-21) for j + |@¢| + k + |8] = 0. Then, for ¢
small enough, using Propositions 3.8 and 4.6, we remark that, for (r, 0, p, n) € I'E(e),

1
10p.n (0" — P, —n)| < /O 0,3p,5 (0" 1), 0, p, sm)| dsinl Sle " n| Se,

since, by Proposition 4.3, (r, 8, p, sn) € Fsc(eo) if (r,0,p,n) € Fsi(s) and ¢ is small enough. Therefore,
if ¢ is small enough,

195.9(0", ") —1d,| <1 on TF(e), (4-24)
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for all £+ > 0. Here | - | is a matrix norm. We can now prove (4-21) when j + || +k+ || > 1. Assume
first that D}]l;l; L 8,’? , with || = 1, and set for simplicity
Et(",e,ﬂ’n)=(pt»77t)(r»9,,0,77)» Et(r’9959ﬁ):(/0t’nt)(rveaﬁ9ﬁ)v E:(P»n)»
when (r, 0, p, n) e TE(e?), (r,0, p, 1) € TE(e) and £¢ > 0. Applying eraff to (4-19), we get
(05,58 (r, 0, B)e" 0l B, = (0, ¢/ 9n) = "0 &,

~

and using that (3; ; gl e = 85 E', we obtain

Ll o B(g, —8)= (52— gt
(85,78, 0, B)e" 8 (B — B) = ¢" (37(E — EN) (0.2, -

where the right-hand side is bounded, by (3-31). Using (4-24), we see that ¢” 8,‘7" (8; — B) 1s bounded on
FSjE (e1) for £¢ > 0, by choosing & < 88 and such that (4-24) holds. The other first-order derivatives are
treated similarly and are simpler to handle since there is no ¢". When j + |a| + k + | 8| > 2, we iterate
this process using Lemma 3.6. To complete the proof of the proposition, we finally note that (4-22) and
(4-23) are easy consequences of (4-19) and Proposition 4.6. O

By Propositions 4.7 and 4.8, we can define r} =1/ (r, 0, p,n) and 6] =6/ (r, 0, p, n) on Fsi(el) by
r;=rir,0,p,n), 60;=6°(r0,p,n) for £t>=xs>0,

where £t > +s > 0 means more precisely that r > s > 0 if (r,0, p,n) € Fj(el) and t < s <0 if
(r, 0, p,n) €'y (e1). Here we assume that &1 is small enough so that Proposition 3.8 hold for r > R(e)
and o = % (for instance), which justifies that r} and 8; are well defined (and that their derivatives can be
estimated using Proposition 3.8).

By the classical Hamilton—Jacobi theory, the function X defined by

Si(t,r,0,p,m) =r{p+6{-n—1p>—1e"iq(r], 6/, m) (4-25)
solve the following time-dependent eikonal equation, for (r, 8, p, n) € F:E (¢1) and £¢ > 0,
02y =p(r,0,0,X1,02r), Zili—o=rpo+6-n. (4-26)
To put it in a more standard way, note that (4-25) is obtained by defining X4 via
Ti(t,r, 0,00 =rlp" +60" 0" —1p(r', 0", p', n"). (4-27)

(This simple expression uses the fact that p is homogeneous of degree 2 in (p, n).) Now assume for a
while that

+o0
Se(r,0,0,m) :=rp+6-n +f ¥ (DL, 1,0, p, ) —tp*)dt (4-28)
0
is well defined on FSjE (e1). Then, at least formally,

0r085+(r,0,0,1) = t_l)igloo Oro2+(t,1,0,p0,n). (4-29)

The latter only uses the fact that the term 7p? inside the integral is independent of r, §. If we know in
addition that
lim 9,4, 7,6, p, 1) = +00, (4-30)
t— =00
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then, using the fact that ©* are generating functions of @', that is,
Q' (r,0,0, 21, 092s) = (0,24, 0,24, p, ) for £1>0, (4-31)
we obtain, on I'F(e1),

p(r,0,8,5+,0S+) = lim p(3,%x, 0,5+, p, n) = p. (4-32)
t—+00

Proposition 4.9. There exist 0 < ey < &1 such that we can find S+ = S+(r, 0, p, 1), defined on F;t (&2),
real-valued, satisfying
p(r,0,8,Sx,3Ss) =p* onTE(er), (4-33)
and such that
Sﬂ:(rvevpv’]):rp+9‘77+§0:|:(”’97:0v77), (4_34)

for some ¢ € %hyp(f'sfE (&2)) satisfying, when (r, 6, p, 0) € I'sfE (82),

+o0
Pi=0=0, € 3,¢sy=0=0, € hess,[¢+]j,=0 = / e 4P hess,[q1(r +2tp, 6)dt.  (4-35)
0

It is convenient to note that, by possibly decreasing &; and by using Lemma 2.4, (4-13), and the first
two equalities in (4-35), we can write

0r(r0.p.m) = Y ag(r.0.p e me 0P, (4-36)
=2
with a;t € C[C;O(thp(ri(SZ)))'

Proof. We consider only the outgoing case. To complete the proof of (4-33), we have to prove the missing
details, namely the convergence of the integral in (4-28) (plus its derivability) and the limits (4-29) and
(4-30). Defining (o], n7) := (p*, n*)(r, 0, p:, n;), the equations of motion yield

t t t
ri=r +2/ plds=r—+2tp— 2[ / e (2q(r,”, 0/, n') — (0,q)(r/, 6/, n?)) duds. (4-37)
0 0 Js
By Propositions 3.8 and 4.8, we have the following bounds on I'{"(¢), for s > 0 and ¢ > 0,

h h _ h
|Diorsri =) Ss), [Djogs @ =0 Se™,  |Dgstn —m| S 1. (4-38)

In addition, using Proposition 3.4 and (4-18), we have, for s > 0 and ¢ > 0,
S >r 4201 —e%sp?(r, 6, pron) —C=r+s5/4—C onTJ (), (4-39)

with & small enough such that, p'/%(r, 0, p;, ;) > 1. Using (4-37), (4-38), (4-39), with &5 := & < ¢
small enough, and Lemma 3.6, we obtain the existence of a bounded family (a;);>¢ in %hyp(l";|r (&2))
such that
ri=r+2tp+a/r,0,p,n) fort>0. (4-40)
One shows similarly that (6! —6) -n = e" (6! —0) -e~"n is bounded in 97311),1,(FSJr (7)) for t > 0, and hence
that
Y —(@p+60-n+ t,oz) is bounded in %hyp(F;r(sz)) fort >0, (4-41)
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which proves (4-30). Then, using (4-26) and (4-31), we note that
Ty —pt=e"Tq0,4, 0,4, ). (4-42)

Therefore, using (4-39), (4-40), (4-41) and (4-42), we obtain the convergence of the integral in (4-28)
and the limit (4-29) as well as the fact that S..(r, 6, p, n) —rp — 6 - 1 belongs to Bpyp (I (£2)). Finally,
the formulas in (4-35) follow directly from (4-42) combined with (4-22) and (4-15). [l

Remark 1. By applying 9, to (4-41) we see that there exists C such that
18, 24(t,7,0,0,m) — 0] <Ce™" Se R forall (1,6, p,n) € TF(e2) and ¢ > 0.

This shows, in the spirit of Corollary 3.10, that the proof above depends only on the definition of g (r, 8, 1)
for 6 in an arbitrarily small neighborhood of V, provided &5 is small enough.

Remark 2. Using (3-34), (3-35) and (4-20), one sees that Sy is actually well defined on the conical area
given by
r>R(e), 0€V,, =Ep>(1 —8%)p1/2,
and that
Yi(t, 1,0, 0, An) =AXL(Mt, 1,0, p,n) ifL>0.

Thus that St is the restriction to F:E (e2) of an homogeneous function of degree 1 with respect to (p, 1).

We conclude this part with a result useful for considering phases globally defined on R?* when we
shall construct Fourier integral operators.

Proposition 4.10. For some small enough g3 > 0, there exists a family of functions (S+ ¢)o<e<ey> globally
defined on R*", such that

Pi,e(r 0, 0,m) = 816(r,0,p,m) —rp—0-7
coincides with ¢+ on F:E (¢) and satisfies
Supp(¢x.e) C T (), @re € Bryp(T5(12)), (4-43)
90,0 ® g (r. 0, p. )| <5 for (r,6,p,m) R, 0 <& <e3, (4-44)
with | - | @ matrix norm.
In further applications, (4-44) will also be used under the equivalent form
195,y ® 310816, 0, p, ) —1d,| <1 for (0, p,m) €eR™, 0 <& <es. (4-45)

Remark. Although this proposition allows one to assume that they are globally defined, the phases Sy .
solve the Hamilton—Jacobi equations on I‘Si (e2) only.

Proof. We use Proposition 4.4 and consider
Ste(r 0, 0,1 :=rp+0 -1+ X2, 0, p, Mo+, 6, p,1), (4-46)
with ¢ defined in Proposition 4.9. We have St , = S1 on FSjE (¢) and, using(4-9) and (4-36),
99,y ®8r.05+.(r, 0, p,m) —1d,| S on R™, (4-47)
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since e "|n| < e'/2 on rf (e'/%). This yields the result if € is small. U

4D. Fourier integral operators on R". In this subsection, we derive some basic properties of Fourier
integral operators associated to the phases S+ obtained in Proposition 4.9.
For simplicity, we introduce the shorter notation

By () = Bryp(T(0)),  F(e) 1= Sy (T (e)), (4-48)

where the classes By, and Sy, were defined in Definition 2.2.
By Propositions 4.9 and 4.10, for all # € (0, 1], all ¢ small enough and all at e Ef’;t (¢), we can define
the operator

Ji @) IR - SR, (4-49)

as the operator with Schwartz kernel
K (r,0,r',0) = Qruh)™" / e (50-pm=r'0=0"m) g2 (1 g ) dp dn.

Since the symbol a* is supported in I'E(¢), the phase Si can be replaced by Si . which is globally
defined (see Proposition 4.10). Note also that J;E (a™) maps clearly the Schwartz space into itself since,
for fixed h say h = 1, it can be considered as the pseudodifferential operator with symbol e/#*+a* =
e'?+:a® which belongs to C;°(R>").

To obtain the L? boundedness of such operators uniformly in / € (0, 1] as well as the factorization
Proposition 4.13 below, which are both consequences of the usual Kuranishi trick, we need a preliminary
result.

Consider the maps (Bi,g, gi,g) : R — R" defined by

1
(Bi,s, ni,e)(r,9,7/79/7 0, 71) :=/ 8}‘,9S:|:,8(r/+s(r_r/)79/+s(0_0/)’ 0, U)ds (4_50)
- 0

so that
(r=r)pred+O—0) nie="Sce(r,0,p,1)—See(r', 0", p,1). (4-51)

Lemma 4.11. For all (r,6,r',0") € R¥ and all 0 < & < €3, the map (p, n) — (P+.e5 N+.e) s a dif-
feomorphism from R" onto itself. Denoting by (p ., M4 ) the corresponding inverse, we have, for all

0<e¢e<egs,
1869707, 0508 95 (Ps.er e ) — (0 M) S 1 on R™. (4-52)

nrvr

Furthermore, there exists ¢ > 0 such that, for all 0 < ¢ < gg, we have
(r7 05 p7 77) € F::(S) :> (r9 07 Bi,S’ g:t,é‘)lr:r/ygzel € F;t(gl/3)a (4_53)
(ra 9’ Bj:,s, ﬂi,s)lr:r/’ezel e F;t(83) : (ra 9’ /03 77) e F;t(g)’ (4_54)

and
<e P onTF(ed). (4-55)

1880 87, 0 08 05 ((Pa e W) — (P2 1) jpr 6=ty
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Proof. The estimate (4-45) implies directly that (o, n) = (p+.e, gi,g) is a diffeomorphism for all
(r,0,r',0") e R?" and 0 < ¢ < e3. Evaluating (4-50) at (r, 0, 7', 6, P+ N+.)> Namely

(p’ 77) = (Bj:,é‘a ﬂj:,e)(r» 07 r/a 9/5 E:I:,gs ﬁ:l:,g)a (4_56)

yields

1
(0,1 = (P pr e e) = / U@, e(r' +5(r —r"), 0" +50 —0), p1 o 1+ .)ds. (4-57)
0

By (4-43) we have ¢4 . € CEO(RZ”), 80 (P4 ¢» Mx) — (P, m) is bounded, for fixed ¢. For the deriva-
tives, we apply 8,’73 B,j Brj,/ 0y ag,’a’; to the right-hand side of (4-57) and obtain (4-52) by induction, using
Lemma 3.6.

To prove (4-53), we simply notice that ¢4 , coincides with ¢+ on F;t(s3) so that

[(0. 1) = (Pes N6 ir=r =0 | = 10002 (r, 0, p. )| S &7,

using (2-56) and (4-36). The result follows from Proposition 4.3 and the fact that F;'E(C g) C F;t (e'/3)
for ¢ small enough. To get (4-54), we use directly Proposition A.1 proving that F;t(83) C \I!’(I‘;'E ()
with

‘Ijt(r’ 05 :0» 77) = (r? 97 Ei,é‘a gi,s)lr:r/’eze/ = (r’ 97 aFS:l:(ra 97 pv ’7)5 89S:t(rs 9’ /05 7))),

which is actually independent of ¢ and e.
By (4-52), (4-55) holds when B8 = 0. Consider next the first-order derivatives when |8| = 1 and the
other multi-indices are 0. Applying 8,’,3 to (4-56) and evaluating at r =7/, § = 6’, we get

(8p,n(£:|:,89 7_7:&,8))8;73((ﬁj:,8’ ﬁ:l:,e) - (p’ 77)) - afarﬁﬁﬂﬂ:(”’ 99 ﬁi,g? ﬁ:l:,g)

where we have replaced ¢4 . by ¢+ using (4-54). Since (Bp,,,(gi,g, gi,g))_l is uniformly bounded and
e'P 85 0r 090+ (r, 0,046 Nx, 8) is bounded, using (4-54) again, we get the result in this case. Higher-order
derivatives are obtained similarly by induction, using Lemma 3.6. U

Proposition 4.12. Forall 0 < & < g and all a®*, b* ¢ S’Si (), we have

<Ch"*' forhe(0,1],  (4-58)

” Jhi(ai)Jhi(bi)* - hkcki(r, 0,hD,, hDy) LR 2@ =

k<N

where the constant C can be chosen uniformly with respect to a* and b* when they vary in bounded
subsets of Y (¢) and where the symbols c,:(IE are given by

1 ; . _ _ — — _ _
C]:(t = Z ﬁarj/ag/DﬁJ)Dg’ (a(r, 0, ;O:I:,g, ni,s) b(r/7 0/, IO:I:,Sa ni,s) JaC(p:I:,ga ni,s))lr:r/’ 0=0"" (4_59)
A=k

with Jac(p , ﬁivg) = |det(0p,y (01 ¢» ﬁiﬁ))l. In particular,

cf e FEE). (4-60)
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Proof. The Schwartz kernel of Jhi (ai)J;E (b*)* takes the form
(2nh)‘”/ e Sxe 00 M=S2c0" 000 (1 0, p. ) b(r', 07, p, 1) dp dn

and this can be rewritten using the Kuranishi trick, that is, (4-51) and Lemma 4.11, as

Qmh)™ f e%((r—r')ﬂ+(0_9/)"7)a(r,O,Ei’g,ﬁi’g)b(r/,e/,ﬁi’s,ﬁin)Jac(ﬁi’S,ﬁi’S)dpdn. (4-61)

By (4-52), the symbol in (4-61) belongs to Cgo([R{3"). Therefore, the standard /-pseudodifferential
calculus implies that, with ¢ defined by (4-59), we obtain the L> bound (4-58) by the Calderén—
Vaillancourt theorem. In addition, by (4-53) (applied with (0, n) = (04, N+ ¢)jr=r',6=0'), We have
supp(cf) cryf (¢!/3). One then checks that ckjE € %f(sm), using (4-55). [l

We note in passing that this proposition shows that, for all 0 < & < g6 and all a* € ¥E(¢),
1T @)l 2y 2@y < C - for h e (0, 11. (4-62)

More precisely, the constant C can be chosen independently of a* if, for ¢ fixed, a* vary in a bounded
subset of S’SE (e).

Proposition 4.13. For all 0 < e < &g, the following holds: if we are given agt, ey ai € $E(e) with
az 21 onTE(eY), (4-63)
then, for all ch € 5702:(89), we can find bi, R bﬁ € 9’5?(53) such that, if we set

a*(h)y=az +---+hVal, bEMR)=bF+---+ Vb3,

we have
1775 @ (h)) J;F (b* (h))* — xE(r, 0, hD,, hDy) ||L2(R%L2(R,,) <Ch"*!' forh € (0, 1].
Proof. By Proposition 4.12 and the notation therein, we only need to find bE, ..., bljf, such that
g =X,  ¢f=0 fork=1,...,N.

Using Lemma 4.11 and (4-59), the first equation, c(")IE = xZ, is solved explicitly by

1

bg(r 0. p.m) = (XE. 0, prs. nae) Tac(ps.. a6, p.m)
020, pm = (X3, 0, P, M) Jac(pe, N1.6)) ag (r.0,p.n)

r=r, 0'=0 >
where 1/013E is well defined since Xsi(r, 0, Px.es 7_71,8)|r/:r, @'—p 1 supported in FSi (&%) by (4-54). Thus,
bac is well defined, supported in F:E (&%) and belongs to %;t(83) by (4-50) and Proposition 4.9 (since
(gi,s, ﬂi,s)\r’:r, 0'=9 = OrpS+ In F;t(83)). Furthermore, bgt(r, 0,04 6 Nt e)r'=r, 0'=¢ 18 supported in
r: (¢%). We then find the other symbols by induction for we have a triangular system of equations. More
precisely, the k-th equation ¢y =0 (k > 1), reads

(b]:::(rv 0’ ﬁ:l:,aa ﬁ:l:,é‘) a(:)t(r’ 95 E:I:,gv ﬁ:ﬁ:,g) Jac(ﬁ:l:,gv ﬁ:l:,g))lr:r/ﬂ:@/ = d]?:(ra 97 P, n)
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where dkjE is a linear combination of symbols of the form

(ayb]::;)(r’ 05 5:|:,ea ﬁi’e)h‘:r/,@:e/(ay a]i)(rv 9’ ﬁ:t,s’ ﬁ:l:,g)\r:r’,9:6”6k|k2yy’(rv 97 P, 77)

with ky < k and 8y, x,,, a product of derivatives of order > 1 of (o ., 71 )(r,0,7", 7', p, 1) evaluated
atr =r’,0 = 6’. By the induction assumption (aybkiz)(r, 0, Dx ¢ Mto)r=r 6=¢ is supported in ['F(e?),
so we have

(r, 0, pe. o)== € TS (),
using (4-53). Therefore, 8k k,yy (7, 0, P+, N+,¢)r=r,0—¢’ belongs to %;t(83) by (4-55) and bff satisfies
the expected properties. - (I

4E. The transport equations. In this subsection, we solve the time-independent transport equations
related to the phases constructed in Proposition 4.9. If we define wE, wh) = t, wH (T, 0, p, 1) by

vt (0,p)(r,0,0,5+, 095+) 20,8+
L) = = , (4-64)
w (aﬁp)(r797 8}’Sia aGSi) € r(aﬂq)(ra97 89Si)
these transport equations take the form
viSrajE +w*. agai + yiai = 7%, (4-65)

where yi, 7+ are given and a* is the unknown function of (r, 0, p,n). Such equations arise naturally
in the construction of the Isozaki—Kiada parametrix (see Section 5). They can be solved standardly by
the method of characteristics and therefore, we start with the study the integral curves of the vector field
(v, wh).

Given (r, 0, p,n) € F;t (€2), with & > 0 small enough (to be specified below), we denote by

g =rp(n 0, p.m), 67 =676, p,m),

the solution to

{f,i=vi(rti,0,i,p,n), 4-66)

Gli = wi(rti, 9?, £,1),
with initial data
rgt(r, 0,p,n)=r, GOi(r, 0,p,n) =06.

In this problem, p and 5 are parameters. Equivalently,
b =0, p,m) = (7,67, p, 1) (4-67)
is the flow of the autonomous vector field (vi, wt, 0, 0).

Proposition 4.14. There exists e4 > 0 such that for all (r, 0, p, n) € F:E (ei), the solution (r,Jr , 9t+) (resp.
(r;,60,)) is globally defined on [0, +00) (resp. (—o0, 0]). There also exists C > 0 such that, for all
O<e<eqandall (r,0,p,n) € Fsi(sz), we have

rE, 0%, p,n) eTE(e) for £1>0, (4-68)

and
|r¥ —r —2tp| < Ce?min(1, |t]), |67 —0] <Ce™". (4-69)
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Furthermore,

|ijl;t§ﬁ(rfi —r=2p)|+ |Dt]1;§ﬂ(9zi —0)| < Cjanp- (4-70)
fOl" (I", 97 P, n) S F;t(gi) and =+t > 0.

Since S+ . =S+ on Fsi(s), the localization property (4-68) shows that <z>,i still solves (4-66) on I‘;t (€2)
if one replaces (vE, w*) by (vE, wk), the latter being obtained by replacing S+ by Sy . in (4-64).

Proof. Here again we only consider the outgoing case. By (4-36), there exists Co > 1 such that, for all
(r.0,p,m) €T (e2),

10,84 — pl < Coe™"In| and |e~* (3,)(r, 6, 39 S4)| < Coe™ ' [n. (4-71)
By (2-56), there exists C; > 1 such that, for all € > 0 small enough and all (r, 6, p, ) € FS+ (¢), we have
e"In|<Cie and e ¥|n| < Cie?, (4-72)
the last inequality following from e ®® < ¢. If & small enough, we may also assume that
0> % for all (r, 6, p, n) € T (¢).
Now fix M =5CyCy, and for (r,0, p, n) € Ff(ez), consider 7 := 9 (r, 0, p, n) defined by

J={t>0:(],6;)is defined and r;” > r +s/8, [0;" — 6| < Me* for all s € [0, ¢]}.

S’S

The set I is clearly an interval containing 0 and, if ¢ is small enough, Proposition 4.3 shows that
(rf, 05, p,m) € Tf(e) forall s € T. Thus, by (4-71) and (4-72), we have

|’;s+_210|§2C0C18 and |6] < CoCie® forsed,

and, by possibly assuming that CoC e < , we have 7" > 0 on 7. Choosing Cy, > 1 as in Proposition 4.3,
we now claim that, if

e<e&/Cy and r > R(Cye),
then T :=sup J = +o00. Assume this is wrong. Then T is finite, belongs to J and, on [0, T'], we have
rE>r+s/8>r, 10 —0] < Cie? < Me?,

s0, by Proposition 4.3, (r;, 6, p, n) € T (Cye) C T (e2) and, by (4-71) and (4-72),

s 7S 0

T
r —r—2pT| < Coe™" |1 / e*ds < Coe™" || T < CoCieT, (4-73)
0

T
107 — 6] < Coe™ |1 / e™*/*ds < 4Coe || < 5CoCe%. (4-74)
0

This implies that r;r > r+T/8 and that |97J~r —60| < Me?, so the flow can be continued beyond 7, yielding
a contradiction with the definition of 7. The flow is thus well defined for + > 0. Then (4-69) follows
from the first inequalities of (4-73) and (4-74) with an arbitrary ¢ > 0 instead of T, since e~ || < & for
(r,0,p,m) elF (€2). If ¢ is small enough, Proposition 4.3 shows that (4-68) is a direct consequence of
(4-69), using that e™" « &*.
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It remains to prove (4-70) for j + |a|+k+ |B]| > 1. We consider f, = rt —2tp and 9 9t , Which
satisfy

dart o . _
d—;zu(r,rj,ej,p,n), d—;zw(r,rj,ej,p,n), (4-75)

with

u(t, 1,6, p,n) = (B,94)(r +2tp, 6, p, 1),

W(t,r,0,p,m)=e 2" (3,q) (r+2tp,0, 9S4 (r+2tp, 0, p,1)).
Using (4-36), we have, for all j/, o', k', B/,

1D @, m)| S (0¥ e ™ < e forr=0, onT(e/C). (4-76)

with C such thatif (r, 0, p, n) € [ (62/C) then (r+2tp, 0, p, n) € '} (e2/C). Note also that if ¢ is small
enough and (r, 0, p, n) € T} (¢?), we have (7], §;", ,0 77) €'} (e2/C), using (4-69) and Proposition 4.3.
We then obtain (4-70) by induction by applying D% f 1o (4-75). Indeed, using Lemma 3.6 and (4-76),

hyp
we have 4
k ~ R kB .-+ & _
Dl (7F.67) = (8.0 ) DIGFGT.6) + 0™,
where O(e~2°") = 0 for first-order derivatives and, otherwise, follows from the induction assumption.
Since [d,.9 (v, w)| < e~2°", Lemma 3.7 yields the result. O

We now come to the resolution of (4-65) in a way suitable to further purposes.

Proposition 4.15. There exists €5 > 0 such that, for all 0 < & < &5 and all y* € %hyp(f‘f(e)) of hyper-
bolic short range in T (¢), the function

N +o0
+ 4+
Apom = exp/o y-oggds,

solves (4-65) on stE (€2) withz* =0, belongs to %hyp(l";t (€%)) and a}im — 1 is of hyperbolic long range
in TE(e2).
In addition, for all 7+ € Bhyp (I‘;'E (8)), of hyperbolic short range in T'Z(¢), the function

+oo s
ighom = — fo z5 o exp ( fo y©o ¢fdu) ds

solves (4-65) on F;t(sz), belongs to %hyp(l"gIE (€2)), and is of hyperbolic long range in F;'E (€2).
Lemma 4.16. There exists 5 > 0 such that, for all j, o, k, p and all N > 0,
0708 9508 (r;= — r — 2tp)| + |8/ 950537 (0, — 0)| < (r —Tog(m) ™,
on F:E (es), uniformly with respect to +t > 0.
Proof. By Proposition 4.3, there exists C > 0 such that, for all ¢ small enough and all s € [0, 1],
(r,0,p,m) €TF(E?) = (1,0, p,sm) €TF(Ce?). (4-77)

Therefore, if Ce? < ei and if we set Xti(r, 0,0,n) = (rti —r=2tp, Q,i —6), we can write

1
Xti(r, 0,p,n) = Xti(r, 9, p,0) —I—f (eranX,i)(r, 0,p,sn)ds-e "n,
0
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on FSjE (€%). The crucial remark is that X,i (r,0, p,0) = 0. Indeed, by (4-34) and the first equation in
(4-35), we have 0,5+ = p and dgS+ = 0 at n = O (notice that (r, 6, p,0) € Fsi(sz) if Ce? < &), so
the solution to (4-66) is simply (r + 2tp, 6) in this case. In addition, by (4-70), (X ,i),zo is bounded in
Bhyp(T'E(e2)). Thus, for all N >0,

0700500 X5 (r 0, p. )| S e (n) S (r —log(n)) ™™ for £1>0, (.0, p.n) €TF (),
which yields the result. 0

Proof of Proposition 4.15. For simplicity we set 07 = arf 0y 8’;8,’73 . Then, using Lemma 3.6 with |y| > 1,
37 (y* o ¢5") is the sum of

0y ") 0 ¢F07rE + 99y ™) 0 B - 3707 +8j08a0(350L yF) 0 B (4-78)

and of a linear combination of
@5 aBP 00,y 5 0 gE(3V1rE L. 0" rE) L (0 (0 . 21" (0%),1). (4-79)
where (Qsi)l e (OSi)n_l are the components of 9;':, 0,0,k', 8+ )/{ =Y, using the convention and

the notation of Lemma 3.6. By (4-70), we have

13, yF) 0Tl S (rF —log(n)) " 2e " 1Fl(s),

where k =1 if k=1 and j + |a|+ |B8] =0, and ¥ = 0 otherwise. On the other hand, by Lemma 4.16,
we have

1@, 55) 0 9570717 S {r” —log(m) ™" 2 (r —log(n)) ™ ()",
with the same « as above and j = j if j > 2, or j =0 for j < 1. Similarly, we also have

|@py™) 05" - 97657 < (" —log(m) T~ min(e™", (r —log(n)) /),
while, for the last term of (4-78), we have
1870800358 y™) 0 957 < min(e™ Ve 2PIP (rE —log ()77 1),
since e~ 18I < e~ 1Blre=21Bls! for rs —r —2ps is bounded from below and ps > 0. Now, we remark that
(87172 .07 rE)| S ()" (r — log (),
where 7; is the number of 3 = Brjll Bg’l 8];11 8,711 for which jll =0, Ny =0if jll <1 for all [ and Ny is any
positive number if jl1 > 2 for at least one /. We therefore obtain, if 8 = 8/,
|(4-79)| < (" = log(n)) ™"~ min(e~"Pl{s)", (r —log(n))" ™" (s)),
since v; — V) — j > 0 in the case where no r derivative fall on the components of «955 and only r derivatives
of order at most 1 fall on rsi. If B # B/, we have
|(4-79)] < min (eI () (rE —log(m) 7T r — log ()" T Y (5)™).

+

Since r;" —r — 2ps is bounded from below, ps > 0 (with |p| 2 1) and using (4-17), we have

(rEF —log(m) "1 < (r —Tlog(n) + Is) T
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All this implies that

D (yEof) | S ()7 and [9)0g0%0f (yEogF) | < (r —log(n) +1sl) " (r —log(n)) 7,

and since

“+0o0
/0 (r —log(n) +s)) """ 'ds < (r —log(n)*

(using (4-17) on strongly outgoing/incoming areas), we see that the function foioo yE o ¢t ds belongs
to %hyp(l“:E (¢%)) and is of hyperbolic long range. This implies easily that the same holds for a}im — 1.
One then checks that afgm solves the homogeneous transport equation by computing d(alim o ¢,i) /dt at

0t . L. +
t = 0*. One studies similarly the case of a;; . U

5. An Isozaki-Kiada type parametrix

In this section, we prove an approximation of e~"F Op, (x¥) when x¥ is supported in the strongly
outgoing (+) or incoming (—) region I‘fs(e) (see Definition 2.12 for these areas and Definition 2.1 for
6?71( -)). We recall that ¢ is an arbitrary index corresponding to the chart at infinity we consider and
where the symbols are supported (see (2-4) and (2-19)).

Here we will prove an L? approximation, valid for times such that 0 < +¢ < 4!, Basically, we will
show that, for any N, e~/"F Op,(x¥) is the sum of a Fourier integral operator and of a term of order h"
in the operator norm of L (M, d’G\), uniformly for 0 <t < h~l.

We will therefore essentially prove half of Proposition 2.20, namely the estimate (2-79). The disper-
sion estimate (2-78), following from a stationary phase argument on the Fourier integral operator, will
be proved in Section 7.

In the sequel, we choose an arbitrary ¢ € $ (see (2-2)). Since it will be fixed, we drop it most of the
time from the notation (in particular in phases, symbols) and keep it only for the diffeomorphism W,, the
regions I";5 (-) and (5-3).

In the next result, we use the classes of symbols Fpyp( - ) introduced in Definition 2.2 and the Fourier
integral operators (4-49) defined in Section 4D. For these operators, the phases are associated to the
Hamiltonian p = p,, the principal symbol of P in the ¢-th chart (this notation is consistant with (5-3)).

Theorem 5.1. For all N > 0, there exists e(N) > 0 such that, for all 0 < ¢ < &(N), the following holds:
there exists a* (h) = a(j)E 4+ hNaﬁ with agc, el aljf, € S’hyp(FfS(e)), such that for all

XE € Fryp(TE (%) (5-1)
we can find b*(h) = b(jf +--+ hNbf, with
by, ..., by € Py (T (7)), (5-2)
such that, for all T > 0, there exists C > 0 such that
_ithP =~ —ithD? _ _
H ¢ ”hPOPz(XEt) - LI’z*(Jhi(ajE(h))e hD; Ji:i(bi(h))*)(‘pz 1)*HL2(d/G\)aL2(d’G\) <Ch™

provided that
0<+r<Th !, h e (0, 1].
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By the inclusions in (2-20), together with (2-21) and (2-54), the symbols a*(h) and b* (h) are sup-
ported in (e7!, +00) x Vie xR C (Ry+1, +00) x V/ x R", for & small. Therefore the Schwartz kernel
of the operator J,j't(ai(h))e*"’hDr2 JiE(bE(h))* is supported in ((Ry + 1, +00) x Vl’)2 and hence

Iy[*(J/it(ai(h))e_ithDrz J/,?:(b:t(h))*)(q‘][_l)*

is well defined on the whole manifold (by the implicit requirement that its kernel vanishes outside the
coordinate patch U, x U, of M x M).

We also remark that ¢(N) could certainly be chosen independently of N. However this is useless for
the applications we have in mind and we will not consider this refinement.

Before starting the proof, we give some heuristic ideas about our parametrix. It gives a microlocal
approximation of ¢/** for initial data microlocalized in strongly outgoing/incoming areas. In such
areas, e " is small and r is large, so the geodesic flow is close to the “free” flow of p? uniformly in the
future/past, as a consequence of Proposition 3.8 basically. This closeness at the classical level remains
true at the quantum level in the sense that the flow ¢/"? can be put in the normal form e/"*?r
up to the conjugation by time-independent Fourier integral operators. We point out that we state this
approximation on a ~A~! time scale, but it would more generally hold for times of order 2", for any

, 1.e.,

N. To obtain a semiglobal in time parametrix (one with # > 0 or t < 0), we would need to combine our
construction with a priori estimates on e/*”
by the Duhamel formula.

of local energy decay type, to control the error terms given

Let us fix or recall some notation. We set
P, = (W )*P(¥)* = p(r,0, D,, Dg) + pi(r.0, Dy, D) + pa(r. 6), (5-3)
with p the principal symbol and py of degree 2 —k in (p, n) for k =1, 2. For simplicity, we also use the
notation (4-48).

Recall finally that, for some fixed ¢, > 0 small enough, Proposition 4.10 proves the existence of S1
solving

p(r,0,8,8+,098+) = p*> for (r,0,p,n) € I'f(e). (5-4)
Proof of Theorem 5.1. For simplicity we set
Ar=Jf@ (),  Be=J7(0=(h).
By the Duhamel formula, we have

; t
. . 1 . .
e TP YA, = WAL - / e Py (2P AL — ALK DP)e P ds (5-5)
0

Multiplying (5-5) by BX(¥,"!)* and defining

Cy:=XE(r,0,hD,, hDp)(R ®%,) — AxBY, Di(s):= (h2P,Ax — Ah>D}e "I Bx  (5-6)
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(where k and k, are the cutoffs used in Definition 2.1), we obtain
e " Op,(X7)

. t
= WrAgLe P BY (W e P O (WY - ;l— /0 e =Py p L (s)(W N ds. (5-7)

Using (2-8) with ¢ = 2, the theorem will then be proved if we find a*(h) and b*(h) such that
IC 2@y 2@y SHY and  ID2() 2@y p2@n AV forhe 0,11, (5-8)

uniformly with respect to 0 < s < Th~! for D (s).
For simplicity we only consider the outgoing case but the incoming one is of course completely similar.

Construction of a* (h). We first define (v, w™) by (4-64) and also set
yT = p(r, 0,0, 9)Ss + pi1(r, 0, 3, 3) S, (5-9)

Lemma 5.2. There exists &, < ¢, such that y* belongs to %hyp(F:rS (&) and is of hyperbolic short range
on T (&).

Proof. This follows from (2-11) and (4-14), since Proposition 4.9 shows that le; _=0. U
Elementary computations show that, for all aar e a; € Sflfyp(e) and at(h) = aar +---+nVN a]\;,

N+2
R P.J @t (h) — I (@t (m)R*DE =Y h' It (dh),
=0

where the symbols are given by
df = (p(r, 0, 0,5+, 0S+) — ,02) a;“ —1 (UJ’BralJr_l +wt. Bga;r_l + y+a,+_1) + Pta;r_2
=—i (erBralJr_1 +wt. agaf_l +y+al+_1) + Ptaf_z, (5-10)

using (5-4) and assuming & < g,. Here, we have 0 </ < N + 2 and the convention that afz = afl =

a; = a; 42 = 0. In particular, the first three terms are given by

4 =0, (5-11)
idi" = v+8ra8_ +w'- 89613_ + y+a('f, (5-12)
idi|r = v*&,aerw*'aeafr+y+a1++iPzaJ- (5-13)

Using Proposition 4.15, Lemma 5.2 and assuming &, < min(éf, &s) we can define

+o00
&J(r,é,,o,n)=e><p/ yrog(r,0,p,m)ds for (r,0,p,n) €T} (&),
0

SO &8‘ € %hyp(F:rs(éL)), &ar — 1 is of hyperbolic long range in F:rs (&) and
vto.al +wt - deag +yTag =0 on T (E).

Since the function f0°° y* o ¢ ds is bounded on T';/f(€,) (see the proof of Proposition 4.15), we also
have
ag(r,0,p,m) 21 for (r,0,p,n) €T (&). (5-14)
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Using (2-11) and the fact that &8“ — 1 is of hyperbolic long range, it is easy to check that PL&Sr is of
hyperbolic short range in I :’s(éf). By Proposition 4.15, we can then define

+o0o K
&f:i/ (Pad)op exp(/ y+o¢jdu) ds on I“:rs(élz),
0 0
which belongs to %hyp(l"fs(élz)), is of hyperbolic long range in F:’S (&,) and satisfies
vta,af +wt-da) +ytal =—ipaf on T (ED).
More generally, for 1 <[ < N, we can define iteratively
+00 N 5
at :if (Pa;" ) o exp (/ ytopt du) ds onT[ (&),
0 0
which belongs to %hyp(FfS(?:f[)), is of hyperbolic long range in FZF < (élz/) and satisfies
vto, 6" +wt - dpd +yta =—iPat, onTHED),

using Proposition 4.15 and the fact that PL&IJQ1 is of hyperbolic short range if &;r is of hyperbolic long
range. Therefore, using Proposition 4.4 with ¢ < élzN and setting

at=x%, a" for0O<I<N,
1 e2—el

with the &;r defined above, we have constructed a; e a; € H)EFYP(S) with a(")Ir satisfying (4-63), by
(5-14). Furthermore,

di" € $,(e) for 0<I<N+2 (5-15)
and

d" =0 on T} (e*) for0<I<N. (5-16)
Construction of b* (h). Given X € Efﬁryp(s9), we simply choose the symbols b, ..., b;\r, according to

Proposition 4.13, with ¢ < min(élzN, £6).
Justification of the parametrix. Since K ® k, = 1 near the support of X, we have

)HLZ(R")—)LZ(R”) 5 hMa h € (07 l]a

HX:(rv 05 hDra hD@) - X:_(r’ 99 hDr» hDG)(’Z ®Izl
for all M, using the standard symbolic calculus, the Calderén—Vaillancourt Theorem and the fact that
8’}fyp (e)cC ;)’O([RRZ”). Using Proposition 4.13, we therefore obtain

< pN+1 h e (0,1].

”CJr ” L2(R")— L2(R?) ~

It remains to consider D (s), which reads

N+2 N o
D+(S) — Z Z hH»m‘I};I-(dl-l-)eflshDr J};I—(b’q;)*
1=0 =0
By (4-62) and (5-15), the part of the sum where [ > N + 1, has an L? operator norm of order AV
Once divided by / and integrated over an interval of size at most 4!, the corresponding operator norm

is O(hV—1). The control of the other terms of the sum will follow from the next result.
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Proposition 5.3. If ¢ is small enough, then, for all0 <1, m < N and all M > 0, we have

—i 2 —
|9 @He ™™ Pr 1 B | oy 2y < Cel™ - forh € (0,11, 0<s <Th™".

The proof is based on a fairly elementary nonstationary phase argument. To control the operator norms
of the kernels obtained after integrations by parts, we need the following rough lemma.

Lemma 54. Fora € C}° (R3) compactly supported with respect to p, let us set
[al;f (r,0,r',0)= Q2xh)™" //eﬁ(5+,a(r,9,p,n)spzS+.s(f’,9’,p,7)))a(r’9’r/’gf’ 0, n) dpdn,
using Sy . defined in Proposition 4.10. Denote by &Q; : L2(R") — L*(R") the operator with Schwartz
kernel [a];{. Then, there exists no(n) > 0 such that, for all &€ small enough,
sty I L2 @y £2 ey < Ceh ™" (8)™ Max yj<py SUPgan 1187l oo,
forallh € (0,1],alls e Randalla € Cgo([R3") satisfying
supp(a) C {lp| < 10}.

Proof. We get this as a simple consequence of the Calderén—Vaillancourt Theorem by interpreting &i;{
as the pseudodifferential operator with symbol

i en2_ /' nl
eh P+:(0,0,M=5p" = o (r ’e’p’”))a(r,e,r/,e/,,o, 1),

where ¢ . is defined in Proposition 4.10. Il
Proof of Proposition 5.3. We notice first that, by Proposition 4.9 and (4-36),

3 (S4:(r. 0, p.m) —sp” = S.(r'. 0", p.m) =r —r' —2sp +O(), (5-17)
Oy (S4(r, 0, p,m) — 50> = So.(r', 6", p,m) =6 —6'+0(e/*), (5-18)

on the support of d1+ (r,0,p, n)bjn' (r',0’, p, n). On the other hand, by construction, we have
df =i (v 0 X +wT X)) 4 Pi(X a8y ) — X Py
(with the convention that a*, = a*, = 0). Using in particular that
wh =e™"(3,9)(r, 0, e 3 S4),

we conclude that ler is a sum of terms of the form c(r, 8, p, n)a,f (e_’ag)“X;_)g, with j + |¢| > 1 and
¢ € BF (¢). Using the form of X;_)g given by Proposition 4.4, we see that, on the support of such terms,
at least one of the following properties hold:

el <r<e? (5-19)

p(r.6,p.m) <j—e or p(r.0,p,n) =4+¢, (5-20)
e S e P S et (5-21)

dist(0, V,) > &*, (5-22)

for some fixed 0 < k < 1 in (5-21). For terms such that (5-19) holds on their supports, we have
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(5-17) <& 2—e 3 —2sp+C < —1—2sp. (5-23)

for ¢ small enough and integrate by parts with respect to p. For those satisfying (5-20) on their supports,

then we must have

p* —

since e~ %" ||*> < &2 in any case, whereas on the support of b,", where p(r’,0', p, n) € (% -3, 4+ 83)
and e~ [n]? < &°,

2

<—e% or p?—4>¢%

Bl—

p2—%2—83 and p?—4<é’,

so that the amplitude vanishes identically, again if ¢ is small enough. For those satisfying (5-21) on their
supports, we have ¢’ |n|~! < &2, Since e~ || < &3, we get

¢ <C+(1+Kk)ne <0,

which implies again that (5-17) < —1—2sp, if ¢ is small enough. Thus on the supports of terms satisfying
either (5-19) or (5-20) or (5-21), we have |(5-17)| 2 (s). By standard integrations by parts, the kernel of
corresponding operator can be written, for all M, as in Lemma 5.4 with amplitudes of order (k/(s)) in
Ccr (R3"). Hence, their L? operator norms are of order (4/(s))”~"° with an arbitrary M.

For the remaining terms satisfying (5-22) on their supports, we remark that |0’ — 6| > &> (otherwise
dist(0, V,) <0 — 0’| +dist(8’, V) < & + &% « %) hence

(5-18)] > &°.

Thus, for all M > 0, the kernel of the corresponding operators can be written as in Lemma 5.4 with
amplitudes of order 2" in C?([R@”). Since M is arbitrary, their L? operator norms are of order 1Y if
Is| <h L O

This completes the proof of Theorem 5.1. ]

6. Geometric optics and Egorov’s theorem on AH manifolds

As in the previous section, we fix here an arbitrary index ¢ corresponding a coordinate patch and then
drop it from the notation in symbols, phases, intervals, etc.

6A. Finite time WKB approximation. Next we give a short time parametrix of e~//"F @)L(Xi) when
X* is supported in an outgoing (+) or an incoming (—) area. This parametrix is the standard geometric
optic (or WKB) approximation which is basically well known. Nevertheless, in the literature, one mostly
finds local versions (i.e., with X € C{°) or versions in R" for elliptic operators. Here we are neither in
a relatively compact set nor in the uniformly elliptic setting, so we recall the construction with some
details.

Analogously to Section 5, we prove here an L? approximation. The related dispersion estimates
leading to (2-80) will be derived in Section 7.

We also emphasize that, although we shall prove this approximation with a specified time orientation
(t>0for x* and r <0 for X ™), this result has nothing to do with outgoing/incoming areas; in principle we
should be able to state a similar result for any X supported in p~1(I) and for times || < 1. We restrict
the sense of time for only two reasons: firstly, because it is sufficient for our purpose and, secondly,
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because we can use directly Proposition 3.8 (we should otherwise give a similar result for the geodesic
flow for ¢ in an open neighborhood of 0).
Fix
Lelh el; € (0,+00),
three relatively compact open subsets of V, (see (2-21)),
VieEV,eVzeV/,

and three real numbers
—l<oi<om<oz<l.

For some R3 large enough to be fixed below, we also choose arbitrary R, R, real numbers such that
Ri > R, > R3.
Theorem 6.1. For all R3 large enough, there exists twkp > 0 and a function
¥ € C™([0, £rwkg] x R*, R)

such that, for any
X* € Pnyp (T (RY, Vi, 11, 01))), (6-1)

we can find
ay (1), ..., ay ) € Fuyp(TER, Va, b, 0)),

depending smoothly on t for 0 < +t < twks, and such that, if we set
ai(r, h) = agc(t) + - —I—hNa]j\E,(t),

the operator defined on C3°(R") by the kernel

[# (t.ay@. )] . r,0,7,60) = Q@xh)™" / / e (FHCr8.pm=r'p=6"1) £y 0. p.y)dp dn,
satisfies, with 1, the characteristic function of (R3, +00) x V3,

” o ithP @)L (Xﬂ:) _ qjl*}}ﬂlz (t, alj\:,(l‘, h)) 1, (\plfl) < ChN*, (6-2)

" H L2(M,dG)— L2(M,dG) =

for
0<=+r<twgs, he(,1].

In addition, the functions ©F are of the form
S50, o) =rp+0 -0+ (S50, p, ) —rp—1-10) X35( 6, p, 1),

with X;E_>3 € H’hyp(l"ti(R& V3, Iz, 03)) such that ijt_>3 =1on Fli(Rz, Vo, I, 0»), and some bounded
family (25 (1)) o<tr<ts in Buyp(TE(Rs, V3, I3, 03)) satisfying

{8t2§+p(r,0,B,Egt,agﬁoi)zo, 63)
E(?(O,”,va,n)=”p+0’77’
and ‘

Dl (2570, p.m) =ro =600 =1p(r, 0, p, ) | < Craspt’, (6-4)
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both for
0<=+t<twkp and (r.0,p.n) €T, (R3, V3, I3, 03).
We also have
(5@, 0,p,m—rp=0-n)g_y,_,  boundedin Fny(TF(Rs, V3, I3, 03)). (6-5)
Finally, forall0 < j <N,

(@7 (1) g renyyy 8 bounded in Foyp (T3 (Ra, Vo, I, 0)). (6-6)

Notice that V; € V/, so it makes sense to consider @L(Xi); see (2-23).

In principle it is not necessary to have R3 large to get such a lemma, but this will be sufficient for our
applications. The interest of choosing R3 large is simply to allow to use directly Proposition 3.8.

Note also that, by (6-6), the kernel of §;- (1, ax(t, h)) 1, is supported in ((Rs, +00) x V3)%.

Proof of Theorem 6.1. The proof will occupy the rest of this section.
We need to find X4+ and ai (¢, h) such that

F5, (0, ay (0, ) = X*(r, 6, hD,, hDy), (6-7)
(hD, + WP (t, a5 (t, h)) = KN T2RE (1, h), (6-8)

where P, = (\Ill_l)*P\I’l* and
IRY (t, Wl 2@y 2@y < C, he (0,11, 0<%t < twks. (6-9)

Indeed, if (6-7), (6-8) and (6-9) hold, the equality
WIGE (1, af(t, ) 1, (W) — e P xE (0, hD,, hDp)1, (W)
=in"t! /t eI Ry (s, )1, (W) ds
will yield (6-2) since, for all M > 0, ’
1 X (r, 0, hDy, kDo), (W,7)" = Op, (X5l 12446 12 dcy < Cuh™,

by standard off-diagonal decay (see Definition 2.1 for 6}7[), since 1, =1 near I1, ¢ (supp(Xi)).

To get the conditions to be satisfied by ¥ and a(:)t, ey ai we observe that
N+2
(hD: + 1P Jf (r.at, ) = > higi (t, bf(z)) , (6-10)
j=0

where, if we additionally set afz = afl = ai = alﬂf, =0,
bj=@TF +p(r,0,0, 5%, 0T )a; +i~' (3, +TH)a;_, + Pai_,, (6-11)

with
TE=20,570, + (99)(r, 0, ¢ "9 TF) - e "0+ (p+ p1) (1, 6, 0, 9) T, (6-12)
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where g = g, is defined in (2-13) and p; is the homogeneous part of degree 1 of the full symbol of P,.
To obtain (6-7), (6-8) and (6-9) it will therefore be sufficient to solve the eikonal equation (6-3), then the
transport equations

@ +T5Haf =0,  aF(0,-)=x%(), (6-13)
& +I5a =—iPa,,  af0,-)=0, (6-14)

for 1 <k < N, and finally to get an L? bound for Fourier integral operators of the form ;FZE (t, a) (using
the Kuranishi trick).

To solve (6-3), we need the following lemma for which we recall that (', 67, p’, n) is the Hamiltonian
flow of p.

Lemma 6.2. For all —1 < o < 0 ik < 1, all open intervals I.ix € I eik € (0, +00), all open subsets
Veik € Veik € V/ and all Reix > Relk large enough, there exists t; > 0 small enough that

V0, 0,m) > ', 0, p,n)

is a diffeomorphism from Fi(R I, 0%) onto its range for all 0 < £t < t| and

eik’ e]k’
+
F (Reik, Veik, Leik, Oeik) C \Ili(l" (Relk’ e/ik’ Iéik, Uéik)) forall 0 <+t < 1.
Proof. First choose a 0, € R, and open interval 1, and open set V, such that

k<0'k<1 I/ikCI//kC(0+OO) Ve/IkCVkCV

€

Also choose R, > 0 large enough that Proposition 3.8 holds with o = |0, | and R = R[,,. We then
choose arbitrary R.jx and Rélk such that

/ 1
Reik > R > Ry,

and then X, , € ffhyp(Ff(Rglk, Vi, 15, 04)) such Xt ,=1on Fi(Relk, Lo Lo 00)- The existence
of such a function follows from Proposition 4.1(i). In particular, X,i_> , and 0y, p,nx,i ,, are bounded on
R2". For ¢ > 0, consider the map

t t
gl R* > (r,0, p,n) — <f 20°ds, / e—"‘(anq)(r“‘, 0%, e %) ds) X,i_w(r, 0,p,n) €R", (6-15)
0 0
so that, by the equations of motion,
Wl =Tdgo + (¢4, 0)  on T (Reg, Vi Lo Oi)-

By Proposition 3.8 we have [0, ,,¢4| < |t]; hence Idge. + (83:, O) is a diffeomorphism from R*"
onto itself, for all £¢# > 0 small enough. Therefore, it remains to show that, if 7 is small enough and
(r,0,p,m) € F (Reik, Veik, Leik, Oeik) is of the form

(l", 97 P, 77) = (I"/, Q/s p/s 77/) + (8;:(”/’ 9/’ p/s 77/), O)’

then (v, 0, o', ) € Fi(Relk, Lo Iy, 05). We have trivially p = p’ and n = n’. By Proposition 3.8,
le.| < t] on R> so |r—r'|+10 —6’ | < |t|; hence r’ > R’lk and 0’ € Vlk if ¢ is small enough. Moreover,
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by writing
Q(’”, Qs e_rn) - ‘1(”/, Q/a e_r/ﬂ) = Q(r’ 9» e_rn) - Q(’”/, 9/’ e_rﬂ) + (1 - e_Z(r/_r))Q(r/’ 9/’ e—l’n),
we see that

\p(r.6.p.m) —p(', 0", p. )| S el

n| and Taylor’s formula. Hence

using the boundedness of |e™

p(r/v 9/5 P, 77) € Ie/lk and + P> _O—e/ikp(r/» 0/’ P, 77)1/2

if ¢t is small enough, since p(r, 8, p, n) € Ieix and £p > —oei p(r, 6, p, n)'/%. This completes the proof.
O

Now ﬁX Ieik’ Ie/ik’ Veik, V/

ke and oeik, aéik as in Lemma 6.2, with the additional conditions
Veik =V3, Lk =13, Ocik =03.
Denote by \IlfE the inverse of W) and define (r;, 6;) = (r;, 6;)(r, 0, p, 1) by
WE 0, p,m) = (1, 6r, 0, m) € T3 (Reges Vi Lo i)

if (r,0,p,n) € F[i(Reik, Veik, Leik, 0eik) and 0 < £t < t;. Here 1, Rejx and Réik are those given by
Lemma 6.2.

Proposition 6.3. For all R3 > R.i, there exists teix > 0 such that
25,1, 0,p,m) i=rp+6 - n+1tp(re, 6, p, 1),
solves (6-3) on Fti(R3, Vi, I3, 03) for 0 < &t < tei, and such that
(Egt(t, r,0,0,n) —rp—=0-n)o<ti<iy Isbounded in %hyp(rf(Rg, Vs, I3, 03)). (6-16)
Proof. That Zéﬁ solves the eikonal equation is standard, so we only have to show (6-16). Since
EOi(t, 10, 0.0)=rp+0-n+@ —r)p+e @ —0)-e n+te 2 g@r,, 0, e ),
(6-16) would follow from the estimates

|D£;;ﬁ(r’ -+ |Dl{;é{ﬁ(€r(9t — )| < Cjaip, (6-17)

for 0 < &+t < 4tk and (1,0, p, n) € FL:E(R3, Vi, I3, 03). The equations of motion yield

t t
=74 / 20%ds, 0'=60+ / e (0,q)(r*, 0%, e n¥) ds, (6-18)
0 0

so, by Proposition 3.8 with R, of Lemma 6.2 and by choosing #.i small enough, we see that, for
0 < £1 < feik;

|0r0 (', 0" —1d,| < 3 on T (Rl Vi L 060
where | -| is a matrix norm. Therefore, by differentiating the identity (+', 6")(r;, 6;, p, n) = (r, 0) one
obtains, similarly to Proposition 4.8,

| Dy (r = ) + [ D 6 — )] < Ciap (6-19)
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for 0 <+t <tex and (r, 6, p,n) € FLi (R3, V3, I3, 03). This proves the expected estimates for r, —r. The
second equation of (6-18) evaluated at (r;, 6;, p, n) yields

t
e (O —6,)= / e T(Byq)(rf, 05, e ds, (6-20)
0

where x; = x*(ry, 0;, p. ) forx =r, 0, n.
Combining (6-19) and Proposition 3.8, we have, on F[i (R3, V3, I3, 03),

ok ) ' . '
| DL (= )| + | DL 0F — )] + | DL (nf — )| < Cakp for 0 < %1, £5 < tei,
from which the estimate of the second term of (6-17) follows using (6-20). O

We now solve the transport equations. By (6-12), we have to consider the time-dependent vector field
(v, wi) defined on TF(R3, V3, I3, 03), for 0 < %1 < feix, by

(ﬁ) B ((appxr, 0,9, X5, d 25—3) ( 20,25 )

w;") T \@yp)(r,0,8,2F, 8 5F) e (3,9)(r,0,3357))

We then denote by qﬁsi_) , the flow, from time s to time ¢, of (v,i, w,i, Oge) namely the solution to
0p,, =W (), wi (), 0), ¢ (6, p,m) = (.6, p,n). (6-22)

Lemma 6.4. For any open interval I, anyoy € R, and any open subsetVy, C R~ such that

(6-21)

Rtl‘>R3v ‘/'EF@V37 Itr@13a _1 < Oy < 03,

there exists 0 < tp < teix small enough that

qb;t_)t is well defined on I'LjE (R, Vig, I, 0r) forall 0<+s<t, 0<+t <t (6-23)
and
h
|Dj§1,';ﬂ(¢;it —1d)| S 1 on I (Ry, Vi, In, o) for 0 < s, £t <. (6-24)

By (6-23), we mean in particular that
st (07 (R, Vie, I, 0w)) C T (R3, V3, I3, 03) for 0 < s, 1 <1, (6-25)

The estimate (6-24) can be restated by saying that the components of ¢f_> , — Id are bounded families of
Bhyp (T (Rir, Vi, Iir, o)) for 0 < 5, 1 <15
Proof. For all § > 0 small enough, we have
Ir—r'|+160 —6'| <8 and (1,6, p,n) € TF(Ryr, Vir, Ly, 0)
— (.0, 0,1 €TF(Rs, V3, I, 03)  (6-26)

by Proposition 4.2. Denoting by (rsit, QSi “,1» P, 1) the components of qbsi _,;» they must be solutions of
the problem

t
(., 65, = (r6) + f WE, wE)E, . 6%, .. p. m)dr.
S

By (6-16), we have
|(vE, wH)| + 18,0 (v, wH)| < C, (6-27)
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on Fti(R3, Vi, I3, 03), for 0 < 7 <t.. Therefore, the sequence u,jf(t) = uff(t, s, 1,0, p,n) defined by

t
WES = (n0).  uE,()=(n0)+ / (E, wE) (), p. M,

is a Cauchy sequence in C%([0, £1,], R™) for all (r, 0, p, n) € Fli(Rtr, Vie, Itr, o) and 0 < £5 < 1, for
some #; small enough independent of (r, 8, p, ). Indeed, using (6-26) and choosing #, small enough so
that ZkEO(C 1)k*! < 8, a standard induction using (6-27) shows that

luj, (D) —ug ()] < (Cr)FT,

which makes the sequence well defined and convergent. This proves (6-23). We then obtain (6-24)
by induction by differentiating the equations in (6-22). This proof is completely similar to that of the
estimate (4-70) in Proposition 4.14 (and much simpler since it is local in time) so we omit the details. [

Now denote by q,lL = q,i (r, 6, p, n) the function defined on [0, £teik] X Ff(R, V,1,0) by

g;" = (p+p)(r.0, 9., 9) Ty .
This function was involved in (6-12).

Proposition 6.5. Choose Ry, Vi, Iy and oy such that
Ry>Ry>R3, VoeeV,€Vi, LeEl,c€l;, o0y<oy<o;s.
There exists t > 0 small enough that, for all X* satisfying (6-1), the functions
a(:)t,...,af,:[o,:i:ttr]xRZ"eC

vanishing outside Fli(Rz, Va, I, 02) and defined iteratively on Fli(Rz, Va, I, 0n) by

t
ay ()= Xx*op™,  exp (/ a5 0¢?is> :
0

t t
a;t(t)::_/o i(P[a,f_l)(sl,qﬁf_)s])exp(/ qsfod)ti_)szdsz)dsl forl<k<N

S1

are smooth and solve (6-13) and (6-14). Furthermore, for all0 <k < N,
(@ (1))o<tr<r, is bounded in Fuyp(TE(R2, Va, I, 02)). (6-28)

Proof. Fix R/, V/

/ /
s Voo I and oy such that

Ry>R.>Ry, VLEV.EVy, LEI.EIl;, o03<o0, <Oy

By choosing 0 < #; <, small enough, we then have, for all 0 < +s, ¢ < 1,

¢Si—>l (FI,i(R17 V19 11’ O71)) C F?:(RZ, VZ’ 12’ 0-2)5 (6_29)
¢F,, (TER, Vo, b, 02)) CTE(RL, Vi 1L, 00, (6-30)

oL, (TR, Vi, I 00)) C TE(Ry, Ve, Iy 00). (6-31)

s—t



62 JEAN-MARC BOUCLET

This follows from Proposition 4.2 and the fact that |¢,i_>s —1Id| < |t —s|, which comes from the integration
of (6-22) between s and ¢, using (6-24). By Lemma 6.4, the flow is well defined on Fli(Rtr, Vie, Ly, Ow),
therefore the condition (6-31) ensures that we have the pseudo-group property

o, 09T, =oF 0 < +s, +1, +u < t, (6-32)

s—>u’

on TE(R], V., I}

LV L o). In particular, ¢, 0 ¢, , = Id on this set. Therefore, by (6-30), we have

TE(Ry, Vo, b, 02) C o, (TE(RY, Vi Iy o)) -

This implies that the map

(6,76, p.m) > (1,07, (.60, p. 1))
is a diffeomorphism from (0, #,) x T'=(R},, V., I, o) onto its range and that this range contains
0, £¢4) x Fti(Rz, Vs, I>, 02). Restricted to the latter set, the inverse is given by (¢, q’),is) which shows
that qf_) s 18 smooth with respect to ¢. Furthermore, by differentiating in ¢ the relation ¢,i_> 50 ¢si_> ,=1d,
one obtains

0L, 4+ Bropt,,) - E, wH =0,  on TE(Ry, Vo, I, 00),

for 0 < £t < t,. Using this relation, one easily checks that aat solves (6-13) on Fti(Rz, Vo, I, 07). In
addition, if
(r,0, p,n) € TER,, Vi, I, o) \TE(Ra, Vo, I, 02),

we have qbti_)o(r, 0,0,n) ¢ supp(Xi) otherwise (r, 6, p,n) € Fli(Rz, Va, I, 02) by (6-1), (6-29) and
(6-32). This shows that, extended by 0 outside FLi (Ry, Vs, I, 07), aOi is smooth. The property (6-28)
for k = 0 is then a direct consequence of (6-24). We note in passing that we have

supp(a; (1)) C ¢, (supp(X™)).

The proof for the higher-order terms a,:f, k > 1, is then obtained similarly by induction using that
supp(Pais_ (51)) C ¢y, (supp(x™)) for all 5. 0

Proof of Theorem 6.1. There remains to prove (6-4), to globalize ESE, to prove (6-5) and the bound (6-9).
By Proposition 4.1, we can choose

XE 4 € Fnyp(TE(Rs, V3, I3, 03)) suchthat X3 ,=1 on ['*(Ry, Va, I, o).
We set
S50, p,m) =ro+0 -0+ Xy 50, p,m) x (5, 1,0, p,m) —rp—6-1).

It coincides with E(;—L on [0, £teix] X I‘f—L(Rz, Vi, I, 02) so it is a solution to the eikonal equation on
[0, £twkg] % Fli(Rz, Va, I, 07), for any 0 < fwkp < f.jk. Furthermore, (6-16) implies (6-5) and, by
using

t
SEt, 0, p,m) =r0+6-1 +f p(r,0,8,2F(s), 3 TF(s)) ds, (6-33)
0

we get (6-4) since (6-16) and (6-33) itself show that the components of (3, XE(s) — p, dg =T (s) — 1) are
0(s) in Bhyp (TE(R3, V3, I3, 03)).
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To prove (6-9), we use the Kuranishi trick which is as follows. By Taylor’s formula, we can write
S 50, 0,0 =T, 0, pon) =0 =T, 0,7, 6 , p,n)+ O —0") -7, 0,1, 0, p,n).
Using again (6-33) and (6-16), we obtain
87050 02 9508 (6%, i)t r, 6.7, 6', o) — (0. ) | < Cajranslt]. (6-34)

for (r,0,r",6', p, n € R*) and 0 < +¢ < t.;. The latter implies that, for all 0 < +¢ < twkp small enough
and all (r, 0, 1", 0") € R*", the map

(0. m) > (5%, 717),
is a diffeomorphism from R” onto itself. Furthermore, proceeding similarly to the proof of (4-52) in
Lemma 4.11, we see that its inverse (5, 77) — (pT, n) satisfies

07050, a5/ 0500 (0™, n*) (e, 7, 0,7,0", 5, 7)) — (5, ) | < Clajracip, (6-35)

on R, uniformly with respect to 0 < £¢ < twgg. Thus, for any bounded family (ai(t))ofi,StWKB n
Phyp(TE(R2, Va, I, 02)), the kernel of $5 (¢, a* (1)) (¢, a*(t))*, which reads

@rh)™" f e S CrOpm=ZE O o) o2y p 0 p )y aE (T, 00 o) dp d, (6-36)
can be written as
@ty [ b PODD 10,,0' 5 djd (637)

with B(t, -) bounded in C° (R3) as 0 < +1 < twks. By the Calderén—Vaillancourt theorem the operator
given by (6-37) is uniformly bounded; hence ||j}jlE (t,a* (1)) lL2@ny— L2y < C Whenever 0 < &t < twks
and h € (0, 1], where C depends only a finite number of seminorms of a*(t)in C e (R?m). Using (6-10),
(6-11) (with akjE (t) solutions to the transport equations) and (6-28), the bound above yields (6-9), which
completes the proof of Theorem 6.1. ]

6B. Proof of Proposition 2.24. To prove Proposition 2.24, we first need a version of the semiclassical
Egorov Theorem in the asymptotically hyperbolic setting. We recall that ®' = (', ', p’, n") denotes
the Hamiltonian flow of the principal symbol p of P.

Fix an open subset V € V/, an open interval / € (0, +00),and —1 <o < 1.

Theorem 6.6. If R > 0 is large enough the following holds: for all T > 0, all N > 0 and all
a € Shyp(TE(R, V, 1, 0)), (6-38)

we can find
ag(t), ..., an(1) € Suyp(®' (supp(a))) for0<=+r<T, (6-39)
such that, forall 0 <+t <T andall0 < h <1,

. — . N —
He_”hPOpl(a)e”hP — Y W Op,(ar (1)) < Cw.1.ah™ 1. (6-40)
k=0

L2(M,dG)— L2(M,dG) —
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This theorem is basically well known. Here the main point is to check (6-39), namely that ay(¢), . . .,
ay(t) lie in %hyp(CD’ (supp(a))). Notice that, by Corollary 3.10, ®'(supp(a)) is contained in the same
chart as a in which it is therefore sufficient to work.

Using the group property, it is sufficient to prove the result when 7 is small enough (depending only
on V, I, o). To check this point, we choose open sets Vi, V, such that V € V| € V, € V/. Then, for
some C > 0 and all R large enough,

' (IR, V,1,0)) CTHR-C, Vi, 1,0), +t>0,
' (TF(R—C, Vi,1,0)) CTF(R-2C, Vo, 1,0), =£t>0.

This follows from Corollary 3.10 and the fact that p’ can be assumed to be nondecreasing, using (3-22).
Thus, it is sufficient to prove (6-40) for 0 < £t < ¢ with ¢ > 0 small enough independent of a €
Pnyp(TE(R — C, V1, 1, 0)). Indeed, if this holds, it holds for a satisfying (6-38) and

. — . N —_——
elé‘hP Opl(a)e—lahp _ Z hk 0]7[((1]( (8)) + hN-H RN(I’L, 8)
k=0
with Ry (h, €) uniformly bounded on L2(, dG) and ax(e) € Phyp(TER — C, V1, 1, 0)), with ai(e)
supported in ¢ (supp(a)) more precisely. Conjugating the expression above by e~**"* and then applying
the same result with a; (¢) instead of a we can write

. — . N —
e Op (a)e 2P — 3 WFOp, (ar(2e)) + KN TRy (1, 2¢),
k=0

where a;(2¢) is supported in &% (supp(a)), which is still contained in I"Li(R - C, Vi, 1,0), and thus
allows one to iterate the procedure.
The interest of considering small times is justified by the following lemma.

Lemma 6.7. Fix V|, I, o as above. For some R > 0 large enough and ¢ > 0 small enough,

D (@) 7! —1day)| < Cjakp 0n @' (TE(Ry, V1L 1, 0)),

forall0 < £t <e.
Proof. Using the identity

t
d(@’—ldzn)zf dH,(®%)dd'ds
0

and Proposition 3.8, we have |d(®'—1dy,)| < |t| hence [(d®)~'| < 1on TE(Ry, Vi, I, 0) if Ry is large

enough and ¢ is small enough. We then obtain the result by applying D{l)‘f; o d'o (®)~! and using the

Faa di Bruno formula. For instance, if j =k = |o| =0 and || = 1, we have

do!

(@n-1€ 0] ()7 —doy) = (Idgy — d D], 1)e" 0] 1dy

1C:4

where, using Proposition 3.8, the right-hand side is bounded for this is simply e¢” 8,’73 (Id,,, — ®") evaluated
at (®')~!. Higher-order derivatives are studied similarly by iteration, using Lemma 3.6. U
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Naturally, (&' )_1 is the reverse Hamiltonian flow, namely flowing QDI(FLi(Rl, Vi, I, 0)) back to
Fli(Rl, Vi, 1, o). More precisely, for 0 < 4t <e,

d
E(cbf)*l(r,e,p,n)=—H,,((<I>’)*l<r,e,p,n)) for (r, 0, p, n) € @ (TF (R, Vi, 1,0)). (6-41)

We prefer to keep the notation (&)~ on ®(I'*(R, Vi, I, o)) rather than using ®~, since we have
only studied ®’ for ¢ > 0 on outgoing areas and 7 < 0 on incoming areas.
We have essentially all the tools needed to solve the transport equations considered in the next lemma.

Lemma 6.8. There exists C > 0 such that, for all R large enough, the following holds: for any ai,; €
S’hyp(Fli(R, V, 1, 0)) and any bounded family (f (t))o<+i<s of Fhyp (Fli (R—-C, VW, 1, 0)), smooth with
respect to t and such that

supp(f (1)) C @' (supp(@ini)),
the function defined for 0 < £+t < ¢ by

aini 0 (P71 + [§ f(s) 0@ 0 (d)"'ds  on ' (supp(a)),
0 outside,

a(t) .= {

is smooth and satisfies
dat)+{p,a®)}= @), a(0)=apni. (6-42)
Furthermore
(@(t))o<tr<e is bounded in Fpyp, (TF(R—C, Vi, 1,0)). (6-43)

In (6-43), we consider Fli(R — C, Vi, 1,0) for it is independent of ¢ but, by construction, a(t) is
supported in the smaller region ®’(supp(a)).

Proof. To check the smoothness of ag(z) it suffices to see that aj, o (P’ y~! and f(s) o (P!
are defined and smooth in a neighborhood of ®’(supp(a)), while they vanish on the complement of
@' (supp(a)) (relatively to the neighborhood). Indeed (@' )~ ! is defined on &’ (Fli(R —-C,V,1,0))
and if (r, 6, p, n) belongs to ®'(I'X(R — C, V), I, o)) but doesn’t belong to @' (supp(a)), then dgir o
(®)~1(r, 0, p, n) =0; otherwise, (')~ (r, 8, p, n) should belong to supp(a) and thus (, 8, p, 1) should
belong to ®’(supp(a)). Similarly,

/(; f(s)o® o (®)'(r,0,p0,n)ds

must vanish, otherwise there would be s between 0 and ¢ such that ®* o (®)~!(r, 6, p, 1) € @ (supp(a))
implying that (r, 6, p, n) € ®'(supp(a)). Then (6-42) follows directly from (6-41) and (6-43) follows
from Lemma 6.7. O

Proof of Theorem 6.6. By Lemma 6.8, the solutions of the transport equations (6-42) belong to the set
yhyp(Fli(R —C,Vy, 1, 0)). The proof is then standard; see [Robert 1987], for instance. |

Proof of Proposition 2.24. We start by choosing ¢ > 0 and § > 0 according to Proposition 2.16 with
t = twks. Then, using (2-26), (2-37), (2-38) and Theorem 6.6, it is straightforward to show that, for all
T > twgg and all N > 0,

|| a\p[(bﬂ: )e—ithpé\pt(b:t

* N
l,inter [’imer) || L2(d/G\)arrowL2(d/G\) S CT,I,Nh for h € (01 1]9 IWKB S :l:t S T
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It is therefore sufficient to show the existence of T large enough such that

|Op, (b5 e ™™ Op, (b <CyhY forhe (0,11, T <+t <2h™'. (6-44)

1, 1nter) || L2(dG)arrowL?(dG)

For simplicity we consider positive times and set B = Opt(b ). For T to be chosen, we write

[,inter

e—ithPB* — e_i(t_T)hPB(T)*e_iThP, B(T) — e_iThPBeiThP.

As above, we may write

B(T)* = Y h*Op,(b}(T)) + "' By (h),
k<N

with By (h) uniformly bounded on L2, dﬁ) and
bk(T) € EPhyp((I)T(Supp(bl mter))) - g)hyp(qDT(Fz mter(g’ 8; l)))

By (2-57), for all &€ > 0, we can choose T; large enough that <I>T( . mter(e 3; l)) C l":rs (8%). Thus, if & is
small enough, Theorem 5.1 allows one to write, for ¢ > T3,

i —T= — ~ it —T= 2 ~ _
e ' TTORE Op (b (T5)) = W] (J;F @z (h))e ™ TP LF (b () *) (W) + WY Ry (2, h),
with Ry (¢, h) uniformly bounded on L2(A, dG) for h € (0, 1]and 0 <7 — T; < 2h~", and
az(h) € Fnyp(T7(8)).
We will therefore get (6-44) with T = T; if we choose & small enough such that, for all N,

|67 e (r 0. R Dy, hDg) J,F (@ (h)) || - <Cyh".

1,inter (R")—L2(R")

By the standard composition rule between pseudodifferential and Fourier integral operators (see [Robert
1987)), b, inter (s 0, Dy, h Dg) JhJr (az(h)) is the sum of an operator with norm of order 2" and of Fourier
integral operators with amplitudes vanishing outside the support of

(r,0,0,Sy,098y) az(r, 0, p,n, h),

l inter

where S; = S, (r, 8, p, n) is the phase defined in Proposition 4.9. It is therefore sufficient to show that,
for £ small enough, the support of the amplitude above is empty. Indeed, on this support we have
0r S+ 2 p

— (&2}, ——

p(r, 0,9, S+,8QS+)1/2 1=/ p(r, 6, p,m/?

>1-—2% (6-45)

Furthermore, by Proposition 4.9, we also have
18,84 —rl+ 1308+ —nl < &

on F+ (&), where az(h) is supported. Since p is bounded from above and from below on F L(8), we
obtaln, for all &€ small enough,

N
p(r.0,p, M2~

which is clearly incompatible with the second condition of (6-45). ]

<1—(g/2)>+C& <1—(g/4)?,
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7. Dispersion estimates

In this section, we prove Propositions 2.20 and 2.22, using respectively the parametrices given in The-
orems 5.1 and 6.1. The dispersion estimates will basically follow from the stationary phase theorem,
applied to the kernels of these parametrices which are oscillatory integrals. The principle is thus quite
simple. One needs however to check some technical points essentially due to the noncompactness of the
manifold and, more precisely, to the nonuniform ellipticity of the symbol of the Laplacian.

Here is some heuristic in the case of the Isozaki—Kiada parametrix. We have to consider oscillatory
integrals with phases whose model is

Inf?

=1+ —0) - n—1p>+ (¥ —e ) p

where r, 7/, 6, 6’ are parameters and p, n the integration variables. Due to the localization of the ampli-
tudes, we may also assume that (r, 0, p, ) and (+', 6, p, ) belong to strongly outgoing/incoming area.
The critical point satisfies (assuming that it is unique)

r—r =2tp— (e — e*zr’)% = (7-1)
4p2 ’
0—0 + (e—2r _ e—zr/)% =0, (7-2)

where one should also keep in mind that e~"n and e~"n’ are small since the amplitudes are supported
in strongly outgoing/incoming areas. In particular, p is close to +p'/? and thus is far from 0. By (7-1),
one obtains at the critical point that, as expected,

rar 42t =1 4+ 2)tp], (7-3)

where tp = |tp| by the sense of time considered in outgoing/incoming areas. This in turn shows that

00 ~e ¥ (1—e ) L

0
In Proposition 7.2, we check that this intuition is correct, and we improve the localization around critical
points in Proposition 7.6. To use the stationary phase theorem, one needs to check the nondegeneracy of
the phase. Using the change of variable & = ¢~"7/, the phase is changed into

2
r—rp+e (0—0)-&—tp>+ (20" — 1)'5-'
0
and its hessian becomes
-2 —2@r—r") _ 1
T 0 o

Since £ is small, the second matrix is small compared to the first one. When ¢ is not too large, the entry
(e_z(’_’/) —1)/(2tp) is bounded from above and below (recall (7-3)) and the phase is thus nondegenerate.
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This is made more rigorous in Proposition 7.11. When ¢ becomes large the hessian matrix is basically

equivalent to
(—2t )
0 —1/2p)

which is again nondegenerate but will contribute apparently only through a factor |¢ in the stationary
phase theorem. However, recalling the change of variable e "' = £ whose Jacobian is e’ ®~ 1, and using
the two factors e~ "=17'/2_¢=(=Dr/2 on both sides of the kernel (written with respect to dG rather than
dG), we get a factor of the form ¢~ D"="/2 which decays exponentially in ¢ by (7-3) and provides
(much more than) the missing |t|~"~"/? decay. This is made more rigorous in Proposition 7.12.

The aim of the following subsection is to justify this intuition. In particular, to justify the above
approximations (e.g. the precise meaning of (7-3) or the smallness of the second matrix in (7-4)) we
need to be in an asymptotic regime given by a certain (small) parameter: in the Isozaki—Kiada case, the
relevant parameter is ¢ (the size of the strongly outgoing/incoming areas) and, in the WKB case, it is the
range of time.

=172

7A. Stationary and nonstationary phase estimates. For simplicity, we drop the index ¢ from the nota-
tion, including in outgoing/incoming areas. In both Isozaki—Kiada and WKB parametrices, we have to
consider oscillatory integrals of the form

Qrh)™" // R TR0 P A 0 1 0 p, ) dpd. (7-5)
For the Isozaki—Kiada parametrix, the amplitude is independent of ¢ and of the form
AL (t,r,0,7,0", p,n) =a*(r,0, p, ) b=, 0, p, ),
with
a® € Fpyp(TF(e)) and  b* € Fnyp(IF (7)), (7-6)
with ¢ > 0 small to be fixed. The phase reads
DL, 1,0,7,0,0,1) =Sec(r,0,p,m) —tp> =S+, 0, p, 1),

where S. . is defined in Proposition 4.10. We recall that it coincides with S+ on F;t(e) (hence on I‘:E (€3)
too), where Sy is given by Proposition 4.9. We can therefore freely replace Si . by S+, or more generally
by any other continuation of S outside I'£(¢). Here we have 0 < ¢ < 2h~!. The integral (7-5) is well
defined for (r, 0, 7', 8’) € R?" but, using (7-6), we can assume that

r>el, eV, r=e3 6 eVs. (7-7)

The first goal of this section is to prove that, if ¢ is small enough, we can use stationary phase estimates.
The second goal is to show a similar result for the WKB parametrix, using twkp as small parameter
(see Theorem 6.1). In this case, we have to consider

A&KB(I’ r7 95 r/a 9/9 10’ T]) =a:|:(t7 rvea )0» 77),
where, for V, € ¥, (U,), I» € (0, +00), 03 € (—1, 1), some R, > 0 large enough and some twxg > 0,

(@*(1))0<tr=s 1S bounded in Fpyp(TF(R2, V2, b, 02)). (7-8)



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 69

In particular, we can assume that
r>Ry, 6eV,. (7-9)

The phase is of the form
S, 1, 0,1,0 p,m) =25, 1,0, p,m) —r'p—0-n, (7-10)

and we refer to Theorem 6.1 for more details. We only recall here that the phase ©¥ is defined
on [0, £twkg] x R?" and solves the eikonal equation (6-3) on [0, +twkg] x T'F(R3, V3, I3, 03), with
I*(Ry, Vo, I, 02) C T'F(R3, V3, I3, 03). Here again, the condition (7-8) implies that we can freely
modify >* outside I'*(Ry, Vo, I, o).

Below, we will use the notation &+ (resp. A7) either for CI>liK or CD\j,EVKB (resp. Aﬁ( or A\i;,KB), as long
as a single analysis for both cases will be possible. For convenience we also define

2h~!  for Isozaki—Kiada,

0§:l:t§T(h)::{
twkg for WKB.

In the next lemma, we summarize the basic properties of A* and ®* needed to get a first nonstationary
phase result. For simplicity, we set 3" = 9; 35 Brj, 83‘,/ 8’; 85 .

Lemma 7.1. In each case, for all |y| > 0, the amplitude satisfies
|0Y A% (t,r,0,1',60', p, )| < C, (7-11)

for all
r,0,r,0,p,mMeR”, he(,1], 0<=4r<T(h), (7-12)

and we may assume that the phase satisfies
|87 (@F(t, r, 0,160, p,n) — (r—rp— (0 —0')-n)| < Cylt), (7-13)
under the condition (7-12) too. In particular, for all |y| > 1,
|8”8p<bi(t, r0,r', 0", p,m| < Cyt), (7-14)
under the condition (7-12).

Proof. If At = AIjIE(, (7-11) follows easily from Definition 2.2, (7-6), (7-8) and the time independence of
AIiK. If A* = A\TVKB, (7-11) is a direct consequence of (7-8). For the phase, Proposition 4.10 shows that
CDﬁ( —(r—r")p— (0 —0")-n is the sum of a function f € Cgo([R{3”) with —tp?; similarly, by Lemma 7.5,
CD\f,KB —(r—r")p—(0—0")-n is the sum of some f € Cl‘)’o(ﬂ@”) with —tp(r, 0, p, n). Since the amplitude
is compactly supported with respect to p and p(r, 6, p, ), we may replace d>1jf< by r—r')p—(©—06")-
N+ f —tp*X1(p) and @Fyp by (r —r)p — (0 —0") -n+ f —tp(r, 0, p, M X1(p(r, 6, p, n)), for some
X1 € C3°(R). This implies (7-13) and completes the proof. O

Now choose X1 € C3°(—1,1), X2 € Cgo(lR"_l), both equal to 1 near 0 and define, for any c;, c; > 0,

9,d* 9, d*
AT =x 2 X =2 A%
1(cl<r>) e
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Let E* (¢, h) be the operator with Schwartz kernel (7-5) and E £ (t,h)the operator with Schwartz kernel

c1,C2
@rh)™" / / eh ¥ r0r WAL @y 6.7 0 p,n)dpd, (7-15)

for h € (0,1] and 0 < £t < T (h).
Proposition 7.2 (Semiclassical finite speed of propagation). For all c¢i, co > 0 and all N > 0, we have

|E= @) = EZ (6 || ooy 2y < OVl forhe (0,11, 0<4t <T(h).  (7-16)

1,2

Moreover, if ¢y is small enough, there exists C > 0, independent of =t € [0, T (h)] and of co > 0, such that

r'—r<C (7-17)

+
C1,e2°

on the support of A
Proof. The kernel of E*(t, h) — EX (¢, h) is an oscillatory integral similar to (7-15) with amplitude

C1,C2

9,d* 9, d* 9, d*
AT—AT = <1—x1< £ ))x2< L )Ai+<1—x2( L ))Ai.
’ ci(t) 2 2

On the support of the second term of the right-hand side, we integrate by part M times with
h
019, P*|?

3, = - ;.

All derivatives of 8,,<I>i/ |8,7d>i|2 are bounded since ¢ is bounded in the WKB case and 8V8,7q)liK is
independent of ¢ and bounded for |y| > 1. On the support of the first term, integrate by part M times with

h
i0,d% "

Using (7-14), we have, on the support of the first term, [37(1/3,®%)| < 1, for all y. Thus, using also
(7-11), we end up in both cases with an integral of the form

i [[[ebeennr 00,0 .6 dpd s

with B*(z, -) bounded in C,;’o(IR{3"), for 0 < £¢ < T'(h). We then interpret this integral as the ker-
nel of a pseudodifferential operator with symbol A™ exp(i (®* — (r—r')p — (0—06") - n)/ h) B (in the
spirit of Lemma 5.4). By the Calderén—Vaillancourt Theorem and (7-13), its operator norm has order
hM ((t)/ h)™, for some universal no depending only on n. Thus we get (7-16) by choosing M = N +2n,.

To prove the second statement, we consider separately the two cases. For the WKB parametrix, ¢ is
bounded. Thus, by (7-13), 9, CI>\i,\,KB — (r —r’) is bounded and since |9, @@KB| < c1(t), on the support
of A@KB’ et T r’ must be bounded too. For the Isozaki-Kiada parametrix, as long as 7 belongs to a
bounded set the same argument holds. We may therefore assume that £¢ > 7 with T > 0 a fixed large
constant. We then exploit two facts: first, for some ¢ > 0, we have ¢ < £p < ¢! and tp > 0 on the
support of Af%. Second, f* := @f‘% —(r—r)p— (0 —8")-n+1tp? is independent of ¢ and bounded,
together with all its derivatives on the support of Aﬁc Then

QP =r—1r —2p+3,f*;
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hence, on the support of X;(d, CIJIiK/cl (t)), we have
r—r'>—ci{t)+2tp—d,f*.
If ¢ is small enough and T large enough, we have 2tp —c;(¢) > 0 for t > T. This completes the proof. []

Remark. It is clear from the proof that the constant C in (7-17) is uniform with respect to & > 0 small
in the Isozaki—Kiada case (recall that the amplitudes depend respectively on ¢ and ¢ for the WKB and
the IK parametrices).

From now on, we fix ¢; > 0 small enough that (7-17) holds.

Proposition 7.3 (Dispersion estimate for times < h). For all c; > 0, and still with y, = nZ;l’ we have

le " EZ . (1, e ™" || L1 @y Loq@ny < Caoelht| "2 for 0 < £t <min(T (h), h).

C1,C2

Note that the condition &=t < min(7 (h), h) is essentially the condition &=t < h. We have put it under
this form only because of those / such that & > twgg. This will not modify the rest of the analysis.
Furthermore, the latter & correspond to bounded frequencies and their contribution to the Strichartz
estimates can be treated by Sobolev embeddings.

Proof. In the Isozaki—Kiada case, both e "' = & and e~ are supported in a compact set. In the WKB
one, e’ 7 is compactly supported but, using (7-17), this also implies that e~ is compactly supported.
Therefore, in both cases, the change of variable e™" /n = & shows that the kernel of ng o (t, h) is an
integral of the form

hfne(nfl)r’ / e;?@i(t,r,é,r’,é’,p,e’/é)B:I:(t’ 9, I",, 9/’ 0, €)dp dE,

with BT bounded on [0, £7 (k)] x R> and supported in a region where |p| + |€] < 1. The kernel
of e """ EX _ (t)e™" is then simply obtained by multiplying the integral above by e~ 7+, 5o its

modulus is controlled by #~"e"""" =) < |ht|~"/2 by (7-17) and the fact that 0 < £¢ < k. This completes
the proof. (I

To prove the dispersion estimates for 2 < +¢ < T (h) we need to analyze the phases more precisely.
In the following lemma and its proof, we shall use the notation (3-4).

Lemma 7.4. For all (fixed) € > 0 small enough, we can find a family of real-valued functions ((pi’ £)0<e<]
such that

oY, =pr=¢r. onTl(e), (7-18)
O ¢ € Fnyp (Ts(E)) (7-19)
and that, if we set
qo(0,e"n)

R 7',9, ) = s r797 ) -
+e(r,0,0.m) =93 (r,0,0,1m) 1

the following holds for j + || < 1:

sup |@%MW%%Rmmapmns{
(r,6,n)eR>~!
+pel}.4]

Ce™?  ifk+|Bl <2,

: (7-20)
Cejockﬂ lfk+|18| >3,

where T, the decay rate in (1-8), satisfies (1-9).
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Proof. Using (4-35) and Taylor’s formula, we can write

+o00
wi(r,e,p,n)zf e MPq(r+2tp,0, e n)dt + Y a,(r,6, p,n)(e ),
0 lyl=3

with a,, € %hyp(f‘;t(so)) for some fixed gy > 0. Therefore,

q0(97 e_rn) oo —41[0 —r —r y
T4 e Pqi(r+2tp,0, e n)dt + Y ay(r, 0, p,me )Y, (7-21)
0 I¥=3

with g satisfying (3-6). Denote by R(r, 6, p, n) the right-hand side of (7-21) and choose X1 € C{°(R)
and X; € Cgo([R{"*l) both equal to 1 near 0. For some & > 0 to be fixed below, choose ch such that

o+(r,0,p,1m) —

X; € Pnyp(TE@E), X5 =1 on I'F@EY,

using Proposition 4.1. (We don’t need Proposition 4.4 here, since £° will be fixed.) We then claim that,
if € is small enough (and fixed) and & with & is small enough too, the function

qo(0,e"n) _
oY (r 0, p, 1) = 4, TRr6.p, Mz (r, 0, p, mXale " n/e" /P (1 = x1) ('),

satisfies (7-18), (7-19) and (7-20). Indeed, by choosing & small enough, we have +p 2 1 on the support
of th, so the integral in (7-21) is exponentially convergent. Furthermore, since

(" 3,)P8] (e )7 X1(e " n/e'/P)) | < C(eHTIFL
for all y, and using the fact that, if 0 > 0 and r > 0,
|(eran)ﬂ3,!a§{3];Q1(l” +tp, 9’ e_rn)l S C|Z‘|k(}’)_T|e_rT]|2_|’3|,

we get the estimate (7-20). Finally, since ¢’ || < ¢ and r > ¢ on F:E (¢), we have (7-18) for all ¢ small
enough. The property (7-19) is clear thanks to th. (]

In the following lemma, we use the notation of Theorem 6.1.

Lemma 7.5. We can find a family of real-valued functions (ZsjtE (t))o<tr<ryp Such that
SIO =30 onT*(Ry, Vo, b, 0), (7-22)
and, for all k, B,

sup | (e"0,)P 05 (B5(t.r. 0. p.0) —ro—60 - n—1tp(r.0,p.m))| < Cipt™. (7-23)
RZn

Proof. Using the function )(éc_)3 of Theorem 6.1, the result is straightforward by considering
S5t r.60, 0, 1)
= X550, 0,0) (Z5(t, 1,0, 0,0) —rp—0-1—1tp(r,0, p,n)) +rp+6-n+1tp(r,6,p,n),

and using (6-4). ]
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We remark that £ satisfies (6-5) whereas Esjtt does not. This was the reason for considering X+ first,
since the property (6-5) is convenient to prove L? bounds for Fourier integral operators.

The estimates (7-20) and (7-23) show that we have good asymptotics for the phases in certain regimes,
namely ¢ — 0 for the Isozaki—Kiada parametrix and t — 0 for the WKB parametrix. Using Lemmas 7.4
and 7.5, we replace ¢4 . by goj; . and * by Z:f in the expression of dDij( and @@KB, respectively.

To use a single formalism for both cases, we introduce the parameter

o € for the Isozaki—Kiada parametrix,
T twip for the WKB parametrix,

where fyg > 0 will denote the size of the time interval where ¢ will be allowed to live. Using the change
of variable £ = ¢~ 5 and factorizing by ¢ in the phase, the integral (7-15) can be written

’ st HE ~
@)™ / TNEPIAL @ P §) dp dE,

where h € (0, 1],

5 (0,0, 8) = 105 (,1,0,7,0, p, e E), (7-24)
Ai,Cz,Asl(y’ p7 s) = AC],Cz(t9 rs 07 r/7 9/’ )07 er/é)v (7_25)

and
y=(h7 t,r,@,r/,g/), (7_26)

with r, r satisfying (7-17) and

0 <4t < T(h, hy) i= {2!:_1 for the Isozaki—Kiada Parametrix,
twkg for the WKB parametrix.

The kernel of e_V"’ng,cz (t, h)e """ then becomes

—nya(r— LEE (ypof) &
R / LD RE (. p.E)dp d.

Proposition 7.6 (nonstationary phase). There exists C' > 0 such that the condition

r—r’
t

r > C’ (7-27)

60—06'
t

implies that for all c; > 0, all N > 0 and all 0 < Ay < 1, we can find Ce, v 5., such that, for all
he(,1], +te[h Thr)l, w=>1, #0,r,0)ecR™,
with r, r' satisfying (7-17), we have
‘<2ﬂh>‘”6”“"” / OO s p 8 dp ds‘ < Copah "0,
Proof. For t # 0, we define

r—r' ~0—0
p+e :

£.

cD;ree =
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Then

- 66
v q)free — r—r ’ r )
0% < P € :

We then start with the case of CI>\j§,KB. By Lemma 7.5 and (7-17), V, £(®;, — @) is a function of

(t,r,0,r, p, &) which is bounded on the support of the amplitude, as well as all its derivatives in p, &,

uniformly with respect to (¢, r, 6, r’). Therefore, if C’ is large enough, we have

0—6’'
t

~ r—r' /
s 2|22 e

t

: (7-28)

and the result follows from standard integrations by parts. Note that, here, we have not used the smallness
of Ay (i.e., of ). We shall use it for the case of <I>IiK which we now consider. Since +p € [4—1‘, 4] on the
support of the amplitude if ¢ = Ay is small enough, Lemma 7.4 and Taylor’s formula imply that

- - qo(0, ¢ TE) — qo (8, &) —r -0
Vi (@1 = B = (=20, 0)+ V)¢ " ey 0. 6) ().

where ¢.(y, p, &) and all its derivatives in p, £ go to 0 as ¢ — 0, uniformly with respect to y (see (7-26))
with r, r’ satisfying (7-17) and (£p, &) € [1 4] x R*~1. Furthermore, using (7-17) and the fact that

Z!
€] < & on the support of the amplitude, we have
q0(0, ¢"~"€) — qo(8', §) r—r -6
t 7ot
thus, using that " > 0 on the support of the amplitude, we have (7-28) if ¢ is small enough. In addition,
for all k 4+ | 8| > 2, we also have
r—r’ -9’
t 7t

p
on the support of the amplitude, using (7-17). The result then follows again from integrations by parts. [

< g3

~

X

|0k0f &,

S

We next state a convenient form of the stationary phase theorem with parameters; the demonstration —
a simple adaptation of the proof of [Hérmander 1983, Theorem 7.7.5]—is given in Appendix A for
completeness.

Proposition 7.7 (Stationary phase theorem). Ler Q2 be a set and
fR'xQ3@x,y)— f(x,y) eR
a function, smooth with respect to x and such that
Hess,[f1(x, y) =S(y)+ R(x,y) for(x,y)eR" x Q, (7-29)
with S(y) a symmetric nonsingular matrix such that
IS;MTST foryeQ, (7-30)
and R(x, y) a symmetric matrix such that

ISR, M <% for (x,y) e R x Q, (7-31)
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where || - || is the Euclidean matrix norm. Then there exists N > 0 such that, for all K € R", there exists
Ck > 0 satisfying
. N
‘/ el y(x)dx| < Cxw™* sup 10%ullLoocky  sup (sup 10% f(x, y)| + 1) ,
la|<N 2<|a|<N \xek

forally € Q,allu € Ci°(K) and all w > 1.
For the WKB parametrix, we shall use this proposition fairly directly by considering

r—r'

i ) = [0 070,000 h € 011 |57 2% = |
Notice in particular that » — r’ is bounded on Qwkgs (z&‘,KB)‘
Proposition 7.8 (Dispersion estimate for the WKB parametrix). Fix ¢, > 0. There exists tyyg > 0 small

enough such that, forall y = (h, t,r,0,r',0") € Q\i,\,KB (t&t,KB) and all > 1, we have

wd%  (.0.8) ~
WKB +

C1,€2,

(k)" f ¢ s (0, 8)dp ds‘ S
WKB
Proof. This is a straightforward application of Proposition 7.7 since, using (7-23), we have

~ 2 0 ~
Hess, ¢ [@gy 1= (0 Hessn(q)> +0(twkp)-

where the first matrix of the right-hand side satisfies (7-30) by the uniform ellipticity of g. The conclusion

is then clear since all derivatives, in p, &, of Atist are bounded, as well as those of &J,\%KB of order at
‘WKB

least 2, on the support of the amplitude. U
To be in position to use Proposition 7.7 for the Isozaki—Kiada parametrix, we still need two lemmas.

Lemma 7.9 (Sharper localization for IK). Let Xo € C5°(R) be equal to 1 near 0 and set

Xe(y. p) = Xo (e—f/“(Zp - r‘t’/)) . (7-32)

Then, for all ¢ > 0 small enough, all N > 0 and all ¢, > 0, there exists C., n . such that, for all
he (0,1, th<t<2h', w>1,
and all (r, 6, r',0") € R*" satisfying (7-7) and such that
06"
t

! !
‘r_r ‘ ¢ <C, (7-33)

we have

< CCZ’N78h_na)_N.

_ ’_ P hE ~
Qmh) e ") f e P LI (1 — X (y, VAL ., (v, p. E) dp dE

Proof. By the same analysis as in the proof of Proposition 7.6, using Lemma 7.4 and (7-33), we may
write
P

/
tr p—p>+RE(y, p, £),

dE(y, p,€) =
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where, on the support of the amplitude, we have
+ 2 koB pt
0,R7| S e™/?, 1050 RIS 1

for k 4 | 8| > 1. On the other hand, on the support of (1 — X.(y, p)) we also have, for some ¢ > 0,

_ _
r tr —2p>ce* or r tr —2p < —ce*.
Therefore, if ¢ is small enough,
18,7 (v, . )| Z 67/,
on the support of the amplitude and the result follows from integrations by parts in p. O

Basically, the interest of the localization (7-34) is to replace % p in (7-20) by 2¢/(r —r’) up to a small
error. We implement this idea as follows. By Lemma 7.9, we can replace AX (v, p, &) in (7-25) by

C1,€2,&

Xe(y, DAL . (V. 0. E). (7-34)

+
€1,€2,€

If ¢ is small enough, we have +p € [}T, 4] on the support of A hence, for some ¢ > 0,

Hel, (7-35)

clt|<r—r'<c”

on the support of (7-34), which is stronger than (7-17). Furthermore, the condition (7-33) together with
(7-7) implies that we may assume that |6 — 6’| < Cle" |t]. From now on we fix
C) = €.
Thus, by writing
Oy @i =0 — 0"+ 0y 0(r, 0, p. 1) — Dy (', 0/, p. 1),

with g1 € Bhyp(I'E(e2)), we have|d,.(r, 0, p, n)| S e and [d,01 (', 0, p, )| S e on the support
of the amplitude. By (7-7), we have for instance |9, CIDIjIE< — (0 —8")| < & if & is small enough. We may
therefore assume that

r

t
10 —0'| < crelil (7-36)

(1)

To be set of parameters for the stationary phase theorem, we will thus choose
Qf;(e) = {(h, t,r,0,r',0"):he(0,1], £ € [h, 2k T and (7-7), (7-33), (7-35), (7-36) hold} .

Before applying Proposition 7.7, we still need to modify the phase égﬁ outside the support of the new
amplitude (7-34).

Lemma 7.10. We can find \IlgjE smooth and real-valued such that, on the support of (7-34),

VE(y, p, &) = O (y, p, &),

and

r—r ’
\Iji .0, — rle 2
A e T

/ o’ 1— eZ(r’—r)

g0, &) +vE(, p, &), (7-37)
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where, for all k + | 8| < 2,

sup  [()P2080l yE(y, p, £) = 0 as e — 0, (7-38)
(p,&)eR"
YEQix (6)
and for k| +|B8| = 3,
sup | 850l wE(r. p. &) < Cenp. (7-39)
(p,6)eR”
YEQix (6)

Proof. We shall basically combine (7-20) with the fact that
20— (r ="/l S €™, (7-40)
on the support of (7-34). By Lemma 7.4, the phase reads
r—r' 0—-0" .

ot O pz_qow’,s)—ez“’—”qo(e,s) LR 0,p, ") = Re e (7,0, p. 7€)
t t 4pt t ’

The last term of this sum satisfies the estimates (7-38) and (7-39): for 0 < £¢ <1, it follows from Taylor’s
formula using (7-33) and Lemma 7.4 with j + |«| = 1, and for ¢ > 1 it follows from Lemma 7.4 with
J + la| = 0. For the term involving go we write

1 _ 1 L_ 1 20— (r—r')/t
m‘2<r—r/>+(4m 2(r—r/>))“( £7/8 )

using (7-40) with & small enough and X; € C§° (R*~1) equal to 1 near 0, and

go(0, ¢ 7"E) =27 qo (0, €) + X (qo(0, &) — qo (6, ) X2(8),

with X, € Cgo([R{"_l) equal to 1 near 0. We obtain the estimates (7-38) and (7-39) for

1 !
4_e2<’ (qo(0, &) —qo(0, €)) X2 (&),
ot

using (7-36), and for

" 1 1 20— (r—=r)/t
20" =r) l -
(I—e )q0(0", &) (4,0t 2(r—r’))X1 ( o7/8 )

using (7-35). In both cases, we can freely multiply the functions by a compactly support cutoff in p
using that + & 1 on the support of the amplitude. This completes the proof. U

Proposition 7.11 (bounded times). There exists e > 0 such that, for all T > 0, all 0 < ¢ < &g, there
exists Cg 1 such that, for all

h e (0, 1], h<xt<T, (r,0,r',0") satisfying (7-7), (7-35) and (7-36) , (7-41)

we have

—n r' —r i LpE(y e —
‘<2nh> ern =) / iy (3, p)Ary e (v, p, E)dp dE| < Cep|ht| ™2, (7-42)
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Proof. By Lemma 7.10, we can replace ®F by W*. We then have

2 0

Hess, ¢ [VF] = 1_62(r’—r)HeSS( ) +o(D),
2r—r) oo

where o(1) — 0 as ¢ — 0, uniformly with respect to (p, £) € R" and to the parameters satisfying (7-41).
Using the upper bound in (7-35) and the boundedness of ¢, the positive number

1— eZ(r’—r)
2(r — 1)
belongs to a compact subset of (0, 0o), yielding the condition (7-30). We then conclude by applying
Proposition 7.7. U

To obtain (7-42), we have used the boundedness of e? ("= since |r —r’| was bounded. In principle,
the condition (7-35) implies that e”»"~") decays exponentially in time. We shall exploit the latter below.

Proposition 7.12 (Large times). There exists T > 0 and ¢, such that, for all 0 < & < g, there exists C,
such that, for all

h e (0, 1], T <4t <2h !, (r,0,7",0") satisfying (7-7), (7-35) and (7-36) , (7-43)

we have
‘<2nh>—"ew’—” / e PP DX (3, p)Agy oo (v, . E) dp dE| < Celht| "2,

Proof. Choose T large enough such that, for ¢ > T and r, r’ satisfying (7-35), we have 20"~ < %
To compensate the factor 1/(r — r’) in (7-37) (of order 1/|t| by (7-35)), we consider the new variable
t|'/2¢ = £. By (7-38), if ¢ is small enough, this new phase satisfies the assumptions of Proposition 7.7.
In the corresponding estimate given by Proposition 7.7, derivatives of the new amplitude as well as
derivatives of the new phase of order at least 3 will grow at most polynomially with respect to ¢. This
gives a polynomial growth in ¢ of the coefficient in the stationary phase estimate of Proposition 7.7 but
such a growth is controlled by the exponential decay of e?” '=r) < e~l"l, This completes the proof. [J

7B. Proof of Proposition 2.20. By (2-38), up to a remainder of operator norm of size A" (uniformly
in time), we may replace @[(asi)* by a linear combination of operators of the form @)L(Ezsi) with
supp(aX) C supp(aF). We next apply Theorem 5.1 to order n + 1 and are left with the study of
the Fourier integral operator part. By Proposition 7.2, the amplitude can be modified so that, up to a
remainder of operator norm of order 4" uniformly in time, we are left with an operator whose kernel
K*(r,0,r',0',t, h) satisfies

e K= (r, 0,7, 6' 1, e | S The| T2 he (0,1],0 < £t <2

Indeed, for ¢ < h, this follows from Proposition 7.3 and for ¢ > h, from Propositions 7.11 and 7.12 with
w = %t/ h and also from Proposition 7.6 and Lemma 7.9 with N > n/2. U

Proof of Proposition 2.22. 1t is completely similar to the one of Proposition 2.20 by considering times
0 <+ < 1yyxp With 1y small enough to be in position to use both Theorem 6.1 and Proposition 7.8. [J
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Appendix A. Control on the range of some diffeomorphisms

In this section, we prove a proposition implying Lemma 4.7 and (4-54) in Lemma 4.11. For simplicity,
we consider the outgoing case only but the symmetric result holds in the incoming one.
Let us define the following conical subset of 7*R’, \ 0,
M@ ={0.0,p,m) 7> R(e), 0 €V, p> 1= (p*+q(,0,¢ )}, (A-1)

which is the cone generated by I'f (¢).

Proposition A.1. Assume that, for some 0 < & < %,
't (2), of the form

s-con

we are given a family of maps (V'),> defined on

W0, p.0)=(r0,p' (0, p,m).0 (0, p,n0) €R™,

satisfying, forallr > R(g),0 € Vs, p > (1 — 52)p1/2, t>0and X >0,

(Bt’ ﬂt)(rs 9, )\'/Os )\77) = )"(BAI’ Ekt)(r7 05 O, 77)7 (A_Z)
(' ") (r,60,p,0)=(p,0), (A-3)

and such that
(p'— p)i=0 and (the components of ) (' — 1), are bounded in Byyp (T (8)). (A-4)

Then, there exists 0 < & < & such that, for all t > 0 and all 0 < ¢ < &, V' is a diffeomorphism from 1"5Jr (&)
onto its range and

FfEh) cw' (Tfe), t>0 0<e<é.

Lemma 4.7 is indeed a consequence of Proposition A.1 since Proposition 3.8, (3-35) and (4-15) show
that (A-2), (A-3) and (A-4) hold with (o', n") = (o', n'). Similarly, for Lemma 4.11, we consider

(/_)zv ﬂt)(ra 9’ O, 77) = (B-i-’ 1]4_)(/", 9’ r, 85 O, 77)

which is independent of ¢ and satisfies the assumptions (A-2), (A-3), (A-4) by (4-50), Proposition 4.9
and Remark 2 after Proposition 4.9.

To prove the proposition, we need another conical subset of 7*R’} \ 0:

[an@® ={0.0.0,m) 17 > R(e), 0 € Ve, p> (=) +n)"}.

S§-con

Using the diffeomorphism Fyy, defined by (2-31), we have

F—l

p(Teon®) = {6, p,m) 17 > R(&), 0 € Ve, p> (1 —D)(p>+]e 0} 2} (A-5)

The latter is of interest in view of the following lemma.

Lemma A.2. There exists C > 1 such that, for all € > 0 small enough,

s-con s-con s-con

T 0n(e/C) C Fipp (TF,,(6)) C T, (Cé).
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Proof. By (3-7), we have, for some 0 <c < 1,
ce_2r|17|2 <q(r,0,e"n) < c_lle_rnlz, r>R(e), 0V, ne R*1.

Using (2-55), it suffices to show the existence of C > 1 satisfying, for all ¢ small enough,

I =(/ON (1= =(e/C))) <1 =) (1= (1 —D)?), (A-6)

and
(I—eH)(1-(1—e)?) <c(1—(Ce))* (1 —(1—(Ce)*)?). (A-7)
For ¢ — 0, the left-hand side of (A-6) is equivalent to 2C_1(8/ C)? and the right-hand side to 262,
Therefore, (A-6) holds if ¢='/C? < 1 and ¢ is small enough. We get (A-7) similarly. U

Let us now consider (1,0) = (1,0, ...,0) € R"\ 0. For all 0 < & < 1, let us denote by €™ (¢) the cone
generated by B((1, 0), &), namely

€t(e) ={(p, An) | A >0, (p—D?+[n* <e?}.

Since p > 1 —¢& > 0and p?/(p> + |n]?) > 1 —&2/(1 —&)? on B((1,0), &), it is then not hard to check
that, for all ¢ small enough,

Cr(e2/4) C o> (1—e2)(p?+ InH'2,

and
{p>0=eM(p*+ M C 6t (2e),

since, if p > (1 —&2)(p>+ [n|*)'/? then (1, n/p) € B((1, 0), 2¢), using that 1 — (1 —2)? < 48%(1 —&?)?
for ¢ small enough. In particular, we obtain

(R(g), +00) x V, x €T (e2/4) c TF_ () C (R(g), +00) x V, x €1 (2¢). (A-8)

s-con

We next recall a standard lemma the simple proof of which we omit.

Lemma A.3. Let xo € R", ¢ > 0 and f : B(xg, &) = R" such that f(xo) = xo and f —id is % Lipschitz
(meaning that | f(x) —x+y— f(3)| < |x —y|/2) on B(xg, €). Then f is injective on B(xg, €) and

B(xo,€/2) C f(B(xo, £)).
Proof of Proposition A.1. Set
Froa(p. &) = (p'(r, 6, p,€'8), e ' (1,0, p, €'E)).
By Lemma 2.4 and (A-4), we have, for k + | 8| = 2,
10598 fro.i (0. MI ST, 120, (60,0, &) € Fryp(TF (), (A-9)
and, by choosing &; small enough, we also have

r>RE), 6eVs, (0,6) €B((1,0),8) = (,6,0,8) € Fuyp(I'J (8)).
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By (A-3) 0, ¢ fr0.:(p,0) =1d, , so (A-9) implies that f, 5, —1d, is %—Lipschitz on B((1,0), 2¢) for all
¢ small enough, all t > 0, r > R(¢), and 0 € V;. Therefore, by Lemma A.3,

B((1,0),¢e) C fi.ro (B((1,0),2¢)), t>0, r>R(E), 6eVs.

Using (A-2), we can replace the balls in the inclusion above by the cones they generate and, using
Lemma A.2 with (A-8), we get

If(e/20) C W' (TH,,2v2Ce?), 1>, (A-10)

§-con s-con

for all & small enough, with the C > 1 of Lemma A.2. Since f, g —1d, is %-Lipschitz on B((1,0), 2¢)

for all + > 0, (A-2) implies that it is also %—Lipschitz on the cone generated by B((1, 0), 2¢) so f,4.;

is injective on this cone. Thus, for all ¢ small enough and ¢ > 0, W' is injective on '} (¢) and is a
diffeomorphism onto its range. By (A-10), we have

rfe®) crf,, ) cw (If.e),

s-con s-con

for all # > 0 and all & small enough, so the proof will be completed by showing that, for all & small
enough and all ¢ > 0, the following implication holds:

r,0,0,10) =V (r,0,p,m) e with (.6, p1,m) eTF, (e)
=  p(r.0.p.m)€(G—ed+e). (A1)

Assume the first line of (A-11). Using (A-3) at (p1, 0) and the fact that f; , 9 —Id, is %-Lipschitz, we
have

(o, e m) = (p1, e n) =1 firelor, e m) — (o1, e n)l < le”"ml/2. (A-12)

Therefore |e™"n — e 1| < |e”"n11/2 and we get |n;| < 2|n|. Since e™"|n| < &°, (A-12) shows that
lp— pil+le™"(n —m)| < & hence that

|p(r, 0, p1,m) — p(r, 0, p, | <&

Since p(r, 0, p,n) € (}L — &3, 4+ &%), the latter yields (A-11) for & small enough. U

Proof of Proposition 7.7.
Note first that, for all y € €2, the map

R'sx+— V,f(x,y)eR"

is a diffeomorphism since, by considering F(x, y) := S(»)~'V, f(x,y) and using (7-29), (7-31) and
(7-30), x — F(x,y)—x is % Lipschitz. For all y € 2, we denote by xo = xo(y) the unique solution to

Vi f(x0,y)=0.
Now consider

g(x, y) = f(x,y) = f(xo, y) — (Hessy [ f1(x0, y)(x —x0), x — x0) /2,
and, for all s € [0, 1],

fs(x, y) = f(xo, y) + (Hess [ f1(x0, ¥)(x —x0), x — x0) /2 +58(x, y).
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Notice that f; = f, that fy — f(xo, ¥) is quadratic with respect to x — xo and that

1
Vifs(x,y) = {S(y) +SA R(xo +1(x —xo), y)dt + (1 — s)R(xo, y)} (x = xo),

by Taylor’s formula and (7-29). By (7-30), there exists ¢ > 0 such that [S(y)X| > 2¢|X], for all X € R"
and all y € Q hence (7-31) implies that

Vi fs (e, )1 = clx = xo(y)], s€[0,1], (x,y) eR" x Q. (A-13)

Lemma A4. For all K € R" and all integer k > 1, there exists C > 0 and N > 0 such that, for all
s €[0,1],all y € Q and all u such that

u € Co 1K) NC* R\ {xo())). (A-14)
oy u(xo(y)) =0, loe| < 2k, (A-15)
0% € L=(R"M), la| = 2k, (A-16)
we have
‘/ei“’ﬁ‘(x’y)u(x)dx < Cow™* max [|8%u| k) max_ (14 sup |8°’fs|)N, w>1.
lor| <2k 2<|a|<2k xeK

Notice that the assumption (A-16) is only a condition near xo(y). It guarantees the boundedness of
3%u(x)/|x — xo| el

Proof. We proceed by induction and consider first kK = 1. We would like to integrate by part using
the operator |V, fS|*2Vx fs - Vy but, since V, f; may vanish on the support of u, we consider Ls :=
(Vs f5|2 4+ 8) "'V, f; - V, which satisfies

iwf el Oy (x)dx = l(siig/(Lgei“’ﬂ(x’y))u(x)dx.
We then integrate by part at fixed § > 0, using that

1
'Ly =———5— {vxfs'vx+Axfs -

_|V f|2+5 (HCSSx[fS]foS,foS)}.

|V fsl? + 8

Since Ay £y (x, Y)u(x)] Smaxiq=a | Ay f5 (-, ¥) 2o 18%u || oo |x —x0(y)|* and using (A-13), by letting
5} 0 we get

iw / el EY y () dx

< Cmax [|8%ul| = k) max (1 + sup [3* f;]).
la|<2 =2 emn

Here the constant C is independent of y, u, s and w; it depends only on K and the constant ¢ in (A-13).
The result then follows by induction using that

|V fs] 72V fs, Byut), IV s 72 (Ax fo)u, |V f51 7% (Hessy [ fs1Vx fs, Vi fo) u

satisfy the assumptions (A-14), (A-15) and (A-16) if u does for k + 1. [l
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End of the proof of Proposition 7.7. We next consider I (s) = f e'lsE Yy (x)dx so that, for all j € Ny,
we have

129(s) = (i) / el g (x, y) 2T u(x)dx.

Since 9Y (g(x, y)zj) =0 for all |¢| < 6j, Lemma A.4 yields, with k =3j > n/2,

[x=x0(y)

112 (5)] < Cw™/? max 19%u |~k | max (1+sup [3°£,1)".  sel0,11.

le|< xeR®

Since I(1) = [ e'®/ ™Yy (x)dx, the estimate

1) = > 1P/ 11 < sup [1%7(s)]/2))!,

1<2j s€[0,1]

reduces the proof to estimating the integrals /") (0) whose common phase f; is quadratic, up to a constant
term and whose amplitude is u(x)g(x, ). By Taylor s formula g(x, y) is of order |x — xo(y)|? so the
derivatives of u(x)g(x, y)" may be of order (xq( y))?! on which we have no control. By choosing K a
bounded neighborhood of K and applying Lemma A.4 to the subset of €2 on which xq(y) ¢ K, we can
assume that we consider those y for which xo(y) € K. We then use the Lemma 7.7.3 of [Hérmander
1983] on oscillatory integrals with quadratic phases, observing that |0%g( -, y)!||L(k,) is controlled by
(products of) of norms || 8}3 L=k, with |B] > 2, since x is bounded on the support of u and xo(y)
remains bounded. (I
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ASYMPTOTIC BEHAVIORS OF NONVARIATIONAL ELLIPTIC SYSTEMS

SzU-YU SOPHIE CHEN

We use a method, inspired by Pohozaev’s work, to study asymptotic behaviors of nonvariational elliptic
systems in dimension n > 3. As an application, we prove removal of an apparent singularity in a ball and
uniqueness of the entire solution. All results apply to changing sign solutions.

In this paper, we study solutions of elliptic systems on R", n > 3.

A classical work by Gidas and Spruck [1981] asserts that any nonnegative solution to Au+|u|* " 2u =0
in R" with 2 < o < 2n/(n — 2) (subcritical case) is trivial. For « = 2n/(n — 2), Caffarelli, Gidas and
Spruck [1989] proved that any nonnegative solution in R” is of the form u = (a + b|x|*)~"=2/2, where
a, b are constants. Such problem for elliptic systems are also studied, for example, in the studies of
Lane-Emden type systems; see [Zou 2000; Polacik etal. 2007; Souplet 2009] and the references therein.

By contrast, the behaviors of changing sign solutions are more delicate. For example, there exists a
sequence of changing sign solutions to Au + |u|* 2y = 0 in R” with 2 < & < 2n/(n — 2) [Kuzin and
Pohozaev 1997]. In this paper, we study under what circumstances a solution to an elliptic system in
an exterior domain is asymptotic to |x|~"*~2 at infinity. Such decay is optimal in the sense that infinity
is a regular point in the inverted coordinates. It is known [Kuzin and Pohozaev 1997] that there exist
solutions to Au + u®~! =0 in R” that decay more slowly than |x|~"~2) Thus, a suitable integrability
condition is necessary to exclude such a case.

While the study of changing sign solutions to elliptic systems is interesting by itself, the problem
is well motivated by differential geometry. For example, the decay of curvature tensors was studied
for Yang—Mills fields [Uhlenbeck 1982], Einstein metrics [Bando et al. 1989] and other generalizations
[Tian and Viaclovsky 2005; Chen 2009], just to name a few. A typical system is of the form

ARmM);jx = Qjjr(Rm, Rm),

where Rm is the Riemannian curvature tensor and Q is a quadratic in Rm. A natural geometric assump-
tion is that | Rm | is in L"/2. Therefore, | Rm | vanishes at infinity and the problem is to find out the decay
rate. The study of geometrical systems is more subtle as (Rm);;; satisfies an extra relation, the Bianchi
identity, and the underlying spaces are not Euclidean.

The technique we use in this paper is based on the method developed in [Chen 2009] on asymptotically
flat manifolds, where a special geometric setting is considered. In this paper, we study general nonvari-
ational elliptic systems of the reaction-diffusion type. Our result applies to changing sign solutions and
includes the supercritical case (i.e., Au + C u* ' =0 with a > 2n /(n —2), where C is a constant).

The author was supported by the Miller Institute for Basic Research in Science, and while preparing the manuscript, by NSF
grant DMS-0635607.
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LetV=V,...,Vy, and f i+ R™ — R. Consider the system of equations

ZAUAVJ- = Fi(V), (1)

j=1

where A is a constant invertible symmetric matrix and i = 1, ..., m. Note that f/(V) or V; may have
no sign. We assume the following structure conditions:

(A1) |1 (V)| < C|V].
(A2) ViV <Clv)eh.
Let K be a compact subset in R".

Theorem 1. Let g > (n+2)/n and p = (n/2)(q — 1). Suppose that f i satisfies (Al) and (A2). Let
V e LP(R"\ K) be a solution to (1) in R*\ K. Then |V| = O(|x|”"=2) and [VV| = O(|x|~"* V) at
infinity.

An immediate consequence is a result on singularity removal for affine invariant equations. For scalar
equations, the problem was studied in [Gidas and Spruck 1981; Brézis and Lions 1981; Caffarelli et al.
1989].

Let B; be the unit ball centered at the origin.

Corollary 2. Suppose f' are homogeneous functions of degree (n +2)/(n —2). Let V. e L*"/"=2(B))
be a solution to (1) in B\ {0}. Then V can be extended to a smooth solution to (1) in By.

By performing a linear transformation W; = > ;j AijVj, the system (1) can be reduced to an equation
of the diagonal form AW = f(W). The assumptions (A1)-(A2) and other conditions on V or f*
equivalently hold for W and f. Therefore, for Theorem 1 and Corollary 2, we may assume without loss
of generality the equation is of the diagonal form.

We turn to study the uniqueness of entire solutions for variational systems. Let P (V) be a homoge-
neous function of degree g + 1. Suppose that A;; is positive definite and f i =9P/3V'in (1). For scalar
equations, there is a large literature on the uniqueness problem; see, for example, [Gidas and Spruck
1981; Bidaut-Véron 1989; Serrin and Zou 2002]; see also [Pucci and Serrin 2007] and the references
therein. For systems, when P(V) <0 and g > (n + 2)/(n — 2) (supercritical case), the problem was
studied by Pucci and Serrin [1986] under some asymptotic assumption of V. Their result also holds for
the nonhomogeneous function P (and more general P (x, V, VV)) satisfying some inequality.

Theorem 3. Let ¢ > (n+2)/n, g # (n+2)/(n —2) and p = (n/2)(q — 1). Suppose P(V) is a
homogeneous function of degree g + 1. Suppose that A;; is positive definite and f P=9P/3Viin(1). Let
V € LP(R") be a solution to (1) in R". Then V = 0.

We outline the proofs. To fix notation, we denote by dx the volume element in R" and by dS the
area element of a hypersurface in R". Let B,(x) and S, (x) be the ball of radius r and sphere of radius r
centered at x, respectively. When x is at the origin, we simply denote by B, and S,.

The idea of the proof of Theorem 1 is to compare the size of f[R"\ 5 |VV |>dx (as a function of r) to its
derivative — |, s IVV |?dS. Then by the ordinary differential inequality lemma, we get the optimal decay
of |[VV] and, as a consequence, the decay of |V|. In order to relate the two integrands, we use some
version of Pohozaev’s identity for nonvariational systems. Pohozaev’s ingenious idea [1965] is to use a
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conformal Killing field to prove uniqueness in a star-shaped domain. This idea was generalized nicely
by Pucci and Serrin [1986] to general variational systems. Our use of the identity is different from the
original one. We apply the identity to an unbounded domain (the complement of a large ball) and use
only the size of | f’|. Therefore, our method can be applied to nonvariational systems.

The proof of Theorem 3 is a combination of Theorem 1 and Pohozaev’s original idea. Since the
solution decays fast enough at infinity, no terms from infinity contribute to the main integrand. We use
the identity differently such that we obtain the uniqueness also in the subcritical case, in contrast to the
problem in star-shaped regions where one has to restrict to the supercritical case.

Finally, we show that the assumptions in these theorems are sharp.

Example 4. Consider the equation Au +u"+?/=2 = in R". By [Caffarelli et al. 1989], nonnegative
solutions are of the form u = (a + b|x|?)~"2/2, Therefore, u decays as |x|~("=2) at infinity. This
example shows that in Theorem 3, the assumption g 7~ (n+2)/(n —2) is necessary. Consider instead the
equation in By \ {0}. There exists a nonnegative radial singular solution with the blow-up rate |x|~*~2/2
near the origin. Therefore, in Corollary 2, the condition V € L?*/"=2)(By) is sharp.

Example 5. Consider Au +u? =0 in R". For ¢ > (n+2)/(n — 2), there exists a solution asymptotic to
|x|~2/@=D at infinity [Kuzin and Pohozaev 1997]. Hence, in Theorem 1, the conditions ¢ = 2p +n)/n
and V € L? are sharp. Moreover, in Theorem 3, the condition ¢ = (2p +n)/n is also sharp.

1. Preliminaries

We collect some standard results in elliptic regularity theory and ordinary differential equations. Lemmas
6-8 follow by an argument similar to [Bando et al. 1989, Section 4].

Let C, be the Sobolev constant and y = n/(n — 2). Suppose that the nonnegative function u € C%!
satisfies Au + Cou? > 0 weakly in the sense that

/(—(Vu, Vo) + Coulgp)dx >0 forall0 <¢p e C.
Let ¢ > 0 be a function with compact support and let s > 1. Then, by the Cauchy inequality,
/¢2uq+sl dx > Co—l /(4(S;l)|g0vus/2|2+ §¢MS/2<V¢’ vu3/2>> dx
N
o <£(S — 1) eVut? — ngomf) dx.
=0 52 (s—=1)

By the Sobolev inequality, we have

17y 2c ~ 2 )
(/«pzus)y dx) 5C/<ﬁ(p2uq+s 1+(1+(Si—1)2)|V(p|2u‘)dx, )

where C = C(n, Cy, Cp).
In Lemmas 6-8, u is a C%! function.
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Lemma 6. Let p > 1 and g = (2p + n)/n. Suppose that the nonnegative function u € L?(B,) satisfies
Au + Cou? = 0 weakly in B,. Then there exists € > 0 such that iffB,. uPdx < e, then

supu < Cr_”/pllulle(Br), where C = C(n, p, Cs, Cp).
B2

Proof. Let s = p in (2). Then

1/y
( / (@u?y dx) <cC / W\ (@PuP) + Vo PuP) dx

2/n 1/y
< C(/ u? dx> (/(gozu”)y dx) + C/ IV >u? dx.
{supp ¢}

We choose ¢ to be a cutoff function such that ¢ =1 in B, > and ¢ = 0 outside B,, with |[Vg| < C r-L

We get
1/y
(/ u’”’dx) 5%/ uf dx.
r
Br/2 B,

Choose a sequence 7, = (27! +27%)r. Apply (and rescale) the above inequality for B,, and B, . with
pr = pyl. By Moser iteration, we have supp, , i < Cr‘”/pllulle(Br). O

Lemma 7. Let p>n/(n—2) and g = 2p+n)/n. Suppose that the nonnegative function u € L (R"\ B;)
satisfies Au + Cou? > 0 weakly in R" \ B,. Then there exists € > 0 such that iff[Ran\B,“p < €, then
u=0(x|™) forall » <n—2as |x| — oo.

Proof. By Lemma 6, u = O(|x|™"/P). Let s = p((n —2)/n) > 1 in (2). Then

1y 2/n 1y
(/ @*Y uP dx) < C(/ u? dx> (f(@zup("_z/”))y dx) + C/ |V 2uP®=2/n gy,
{supp ¢}

¢ is chosen to be a cutoff function such that ¢ = 1 in B, \ By, and ¢ = 0 outside By, \ B, with
IVo| < C(1/r+1/r"). Letr’ — oo. Then

1y 2/n 1y
(/ (pzyupdx) 5C</|V(p|”dx> (/ updx) .
{supp Vo}
1/y 1/y
(/ updx) §C(/ updx> .
Rn\BZr BZr\Br

This gives fR"\B”p = O(r~?) for some small § > 0. Therefore, by Lemma 6, u = O (|x|~/P=@/p)y
Let Ao = sup{A : u = O(|]x|™")}. By iteration and a contradiction argument, we get that A\ =n —2. [

And thus,

Suppose that & > 0 is a C° function. The nonnegative function u € C%! satisfies Au + Cohu > 0
weakly if

/(—(Vu, Vo) + Cohu¢) dx>0 forall0<¢eCr.
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Lemma 8. Let p > 1 andt > n/2. Suppose that the nonnegative function h € L' (B,) satisfies fB hldx <

C1/r*=". Suppose also that the nonnegative function u € L?(B,) satisfies Au + Cohu > 0 weakly in B,.
Then supp, , U < Cr_"/pllulle(B,_), where C = C(n, p, Cy, Cop, Cy).

Proof. The proof is by standard Moser iteration. See Morrey [1966]. ([l
The following is a basic result in ordinary differential equations [Chen 2009].
Lemma 9. Suppose that f(r) > 0 satisfies f(r) < —(r/a) f'(r) + Cor~" for some a, b > 0.
(1) a # b. Then there exists a constant C3 such that

—a,aCy _p

Therefore, f(r) = O (r—minta.bly o — oo,
(i1) a = b. Then there exists a constant C3 such that
Fr) <Csr ¢ +aCyur “Inr.

Therefore, f(r)= O(r~%Inr) as r — o0.

2. Proof of Theorem 1

As we explained in the introduction, without loss of generality we may assume the equation is of the
diagonal form, that is,

AV; = fi(V). 3)
We first derive a version of Pohozaev’s identity for nonvariational systems. Let €2 be a domain in R” and
N be the unit outer normal on d€2. We perform integration by parts repeatedly.

/ > FV)xD Vedx
Q

k,l
:f ZAVjX[D]deX
Q

Jil

=/ —ZD,-V]-D,-(xlDle)dx—l—/ > D;V;x;DV;N;dS
Q

il 0251

=/(—|VV|2_ZD1(|VV|2)%)dx+/ ZDiijlDIVjNidS
Q ] Q2

il
— (E — 1) / IVV[2dx — / 1 D IVVPxNdS +/ > D;Vix;DV;N;dS. (4)
2 Q 022 0
It is worth mentioning that x; D; is a conformal Killing field in R”".
We note that |V| and |VV| are C%! functions. By (3) and (A1)—(A2), we have

AlV| = —C|V]4,
AlVV|>—C|V|i7 vV,
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weakly. Since V € LP(R" \ K), there exists a large number R such that fRn\ Br |V|Pdx < €, where € is
as in Lemma 6. Applying Lemma 6 to B, (xq) where |xo| > 2r > 2R, we get |V | = O(|x|"/?).

Case 1. If (n+2)/n < g <n/(n—2) (or equivalently, | < p <n/(n—2)),thenn/p > n—2. By
Lemma 6, we have |V | = O(|x|™"/P). Let ¢ be a cutoff function such that ¢ = 1 in B, and ¢ = 0 outside
B,, with |Vg| < Cr~'. Applying ¢V; to (3) and integrating gives
/ IVV|?dx < c/ V9 dx + %/ [VI?dx = 0" 2=@/P)y < 0(r—12),
B, (x0) By, (x0) ™ J By (x0)
where |xo| > 2r > 1. By Lemma 8 with 4 = |V |7~!, we obtain [VV| = O(]x|~"~V) and thus |V| =
O(lx|~"2).

Case 2. If n/(n—2) < q (or equivalently p >n/(n—2)), by Lemma 7, |V| = O(|x|™*) forall A <n —2.
Therefore,

/ |VV|2dx§C/ |V|q+1dx+£2/ |V|2dx:0(r"_2_2)‘),
By (xo) BZr(xO) r Bzr(xo)

where |xo| > 2r > 1. Moreover, |V| € L? for all p’ > n/(n —2). Choose p’ < p close to n/(n — 2).
Hence, ¢ > 2p’ +n)/n. We can then find ¢’ > n/2 such that

n

/ (|V|q_])q/dx < QL,_ where |xg| > 2r > 1.
r4d

Br(xo)

This is possible because A is close to n — 2. By Lemma 8, we obtain

C e
sup [VV| < =55 IV V [l 12, (g = O *=1y where |xo| > 2r > 1.
By j2(xg)

Let 2 = Bg \ B, in (4). We have

f > FAV)x D Vidx
Q

k,l
:<%_1)/ |VV|2dx—/ %ZlVVlleNldS+/ > D;Vix;DiV;N;dS. (5)
Q aQ ; 0 ;7

Note that
lim | RIVV[dS= lim O(R™*7*")=0.
— 00

R—0o0 Sk

Let R — oo in (5). Then there is no boundary term coming from infinity. We can choose 2 = R”" \ B,.
The boundary terms only occur on §,. On 02, N = —x/r. Hence,

/ ka(V)x,DZdex:<Q—1>/ |VV|2dx+/ 5|VV|2dS—r/ \VyV2dS
"B 2 R"\B, 5, 2 5

ok,
> (ﬁ—l)f |VV|2dx—/ T\VV2dsS.
2 R\ B, S, 2
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Let G(r) := |, "B, |IVV|*dx. Since G'(r) = — fSr |VV|?dS, the previous formula becomes

2 k
G(r)<-— r G'(r)+ f f“(Vx;D;Vidx.
n—2 n—>2 R\ B, kz,l

The key idea is to compare the size of G(r) to that of G'(r). The coefficient in front of G’(r) plays
an important role. Here is the only place we use the condition of | f|. We have

f > A V)xDyVidx < / VI1x[|VV]dx = O (7D,
"\Br ki R\ B,

Thus,
G(r) < ——T5G'(r)+ CrHath,
n_

Since ¢ > n/(n —2) and A is close to n — 2, we have A(g + 1) —n > n — 2. By Lemma 9, this implies
G(r) = O(r~=2). By the Sobolev inequality, we get

/ V2 Dy = 0(r™™).
BZr\Br
Finally, by Lemma 6 and 8 we obtain |[V| = O(]x|~""?) and [VV| = O(|x|~"~D). O

3. Proofs of Corollary 2 and Theorem 3

Proof of Corollary 2. Since the equation is invariant under inversion, we transform the solution to R"\ B,
and apply Theorem 1.
Let y = x/|x|?. Define U;(y) = (1/]y|"~2)Vi(y/|y|?). This is called the Kelvin transform with the

property that

1
AyUi(y) = MTHAxVi(X)-

This can also be viewed as the conformal change formula of the conformal Laplacian with zero scalar
curvature. Therefore, U; (y) satisfies

1 ; ; .
Y AGAUIG) = o FAyIPUo) = fU®y) inR"\B,
J
where we use that f' is homogeneous of degree (n +2)/(n —2). Moreover,
/ |U|2n/(n72) dy — / (|V||y|fn+2)2n/(n72)dy — / (|V||x|n72)2n/(n72)|x|72ndx
R\ By R™\ By B1\{0}
=/ V2= gx < 4o0.
B \{0}
Now we apply Theorem 1 with p =2n/(n —2) and ¢ = (n +2)/(n —2). We get |[U| = O(|y|~"~?)

and [VU| = O(]y|~® V). Hence, |V| = O(1) and |VV| = O(|x|™!). As aresult, V € L>(B;) and
VV e LP(B)) forall p <n.
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We show that V is a weak solution to (1) in B;. Let ¢ € H(} (B1, R™). Let n¢(|x]) be a compactly
supported function in By \ {0} such that ny — 1 a.e. in B; and |||l () = 0 as k — oo. (Such functions
were used by Serrin [1964].) Then

/ e Y AijDig;DiVidx = / =Y LI V)gimedsx —/ > DiniAijp;DyVidx.
By B B i
The last term can be estimated as follows.
[ 3 DAy DiVids| = Cllpllaes sy 19V iz Inclzscay <l — 0
Bijji
as k — o00. Hence, in the limit
/ ZA,]D[(p]DIVdX—/ Zf’(V)(p,dx
By ij.l i
Thus, V is a weak solution in Bj. It follows by elliptic regularity that V € C*°(B)). ]

Proof of Theorem 3. Since A;; is positive definite, there exists an orthogonal matrix M such that

A
M™'AM = . :
An
where A, ..., A, are positive. Let
Vi
B=M M
Vi
. . AP (W)
By performing a transformation W; = ) ;jBijVj, the system can be reduced to AW; = Wi . Thus

without loss of generality we may assume the equation is of the diagonal form.
Let 2 = Bg in (4). Therefore, N = x/R. We get

/ka(V)xlDIdex:(%—l>f |VV|2dx—/ §|VV|2dS+R IV V2dS.
Br Sr Sr

Br 1

Since X =93P /dV;, we have

/ —nP(V)dxz(%—l)/ |VV|2dx—f §|VV|2dS+R |VNV|2dS—/ RP(V)dS. (6)
Bp Bg Sk Sk Sr

On the other hand, we also have
(q+1)P(V)dx—/ Za—Vkadx——/ IVV| dx—i—/ ZDNV V;ds, (7)

where we use the Euler formula for homogeneous functions.
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Case 1. n > 4. By Theorem 1, when R — oo, (6) becomes

2

:<%_1)/ IVV|2dx +o(1),
Bg

where we use conditions on p, g and n > 4 to get (¢ + 1)(n —2) —n > 0. Similarly, (7) gives

/ —nP(V)dx = (ﬁ — 1) / IVV2dx + O(R~"=2) 4 O(R-@+D(n=2+n)
Br Br

((I+1)P(V)dx:_/ YV Rdx 4+ O(R-),

BR BR

Combining the above two formulas and noting that ¢ + 1 7~ 2n/(n — 2), we finally arrive at
/ IVV|2dx = o(1).
Bg

We have |[VV| =0 and hence V = 0.

Case 2. n = 3. Note that sup |V| < (C/|x|"/P)||V| 1. Combining this fact with Theorem 1, we have
|V| = O(|x|™*), where A = max{1, 3/p}. Therefore,

A(q+1)_32max{q—2,%(q—i—l)—b’} Zmax{—1+2?p,—l+%} > 0.

Then (6) becomes

/ —3P(V)dx = (5 ~1) f IVV2dx + O(R™Y) + O(RTHa+D+3)
BR BR

2
3 2
=(5-1) [ 1VVPRdx+o),
2 Br
as in Case 1. The rest of proof is the same as in Case 1. (Il
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GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS
WITH SOME CLASSES OF LARGE INITIAL DATA

MARIUS PAICU AND ZHIFEI ZHANG

Chemin, Gallagher, and Paicu obtained in 2010 a class of large initial data that generate a global smooth
solution to the three-dimensional, incompressible Navier—Stokes equation. The data varies slowly in the
vertical direction—it is expressed as a function of ex3 —and it has a norm that blows up as the small
parameter goes to zero. This type of initial data can be regarded as an ill prepared case, in contrast with
the well prepared case treated in earlier papers. The data was supposed to evolve in a special domain,
namely Q2= Th2 xR,. The choice of a periodic domain in the horizontal variable played an important role.

The aim of this article is to study the case where the fluid evolves in the whole space R3. In this case,
we have to overcome the difficulties coming from very low horizontal frequencies. We consider in this
paper an intermediate situation between the well prepared case and ill prepared situation (the norms of
the horizontal components of initial data are small but the norm of the vertical component blows up as
the small parameter goes to zero). The proof uses the analytical-type estimates and the special structure
of the nonlinear term of the equation.

1. Introduction

We study in this paper the Navier—Stokes equations with initial data which is slowly varying in the
vertical variable. More precisely we consider the system

oju+u-Vu—Au=—-Vp inRy x Q,
divu =0, (NS)
Uli=0 = uo,¢,

where Q = R3 and uo. 1s a divergence-free vector field, whose dependence on the vertical variable x3

will be chosen to be slow, meaning that it depends on ex3, where ¢ is a small parameter. The goal is to
prove the global existence in time of the solution generated by this type of initial data, with no smallness
assumption on its norm.

This type of initial data (slowly varying in the vertical direction) has also been studied by Chemin,
Gallagher, and coworkers. The case of well prepared initial data, of the form (sug (xp, €x3), ug(xh, £x3)),
was dealt with in [Chemin and Gallagher 2010]; the more difficult case of ill prepared initial data, of the
form (u” (x5, £x3), e 'u3(xp, £x3)), in [Chemin et al. 2011].

Here we consider a class of large initial data lying between those two cases, having the form

1 _1 3
uoe = (2ug(xp, €x3), € 2uy(xpy, £x3)).

Z. Zhang is supported by NSF of China under Grant 10990013, 11071007, and SRF for ROCS, SEM.
MSC2000: 35B65, 35Q35, 76D99, 76N10.
Keywords: Navier-Stokes equations, global well-posedness, large data.
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We recall some classical facts about the Navier—Stokes system, focusing on conditions that imply the
global existence of the strong solution.

The first important result about the classical Navier—Stokes system [Leray 1934] asserted that for any
initial data of finite energy there exists at least one global in time weak solution that satisfies the energy
estimate. This solution is unique in R2, but it is not known to be unique in R3. Leray’s result uses the
structure of the nonlinear terms in order to obtain the energy inequality. The question of regularity of
the weak solutions also remains open.

The Fujita—Kato theorem [1964] gives a partial answer for the construction of global unique solution:
it allows one to construct a unique local in time solution in the homogeneous Sobolev spaces H 2 (R%),
or in the Lebesgue space L*(R?) [Kato 1984]. If the initial data is small compared to the viscosity, that
is, if ||uo||H 1 =cv, the strong solution exists globally in time. This result was generalized by Cannone,
Meyer and Planchon [Cannone et al. 1994] to Besov spaces of negative index of regularity. Those authors
proved that, if the initial data belongs to the Besov space B;};y (R3) and is small in the norm of this
Besov space, compared to the viscosity, then the solution is global in time.

Later, Koch and Tataru [2001] obtained a unique global in time solution for the Navier—Stokes equation
for small data belonging to a more general space of initial data, namely derivatives of BMO functions.

Concerning the methods for obtaining such results, we recall that the existence of a unique, global in
time solution to the Navier—Stokes equation is a standard consequence of the Banach fixed point theorem,
as long as the initial data is chosen small enough in some scale-invariant space (with norm invariant under
the scaling Aru(M*t, Ax)) embedded in Bo_ol’ - (the Besov space), with norm

def 1 A
1/l g sup,og e f .

See [Cannone et al. 1994; Fujita and Kato 1964; Koch and Tataru 2001; Weissler 1980] for proofs in
various scale-invariant function spaces.

These theorems are general results of global existence for small initial data and do not take into
account any algebraical properties of the nonlinear terms in the Navier—Stokes equations. Proving such
results without any smallness assumption or geometrical invariance hypothesis implying conservation of
quantities beyond the scaling is a challenge. Only modest progress has been made in that direction: see
[Chemin et al. 2000; 2006; 2011; Chemin and Gallagher 2006; 2009; 2010; Chemin and Zhang 2007;
Gallagher et al. 2003; Makhalov and Nikolaenko 2003; Raugel and Sell 1993] and references therein.

Here are some cases where large initial data is known to imply global existence of the solution:

For regular axisymmetric initial data without swirl, the Navier—Stokes system has a unique global in
time solution. This result from [Ukhovskii and Iudovich 1968] is based on the conservation of some
quantities beyond the scaling regularity level.

The case of large (in some sense) initial data for fluids evolving in thin domains was first considered
in [Raugel and Sell 1993]. Roughly speaking, the three-dimensional Navier—Stokes system can be seen
as a perturbation of the two-dimensional Navier—Stokes system if the vertical thickness of the domain is
small enough. More generally, a solution exists globally in time if the initial data can be split as vy + wo,
where vg is a two-dimensional divergence-free vector field in L2(Th2) and wq € H> (T3) satisfies

2
|| UO || LZ(ThZ)

woll .1 ex <cv
lwoll 3 s, €XP — 3

H2(T
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The case of initial data with large vortex in the vertical direction (rotug = rotug + 10,0, 1)),
or equivalently the case of rotating fluids, was studied in [Makhalov and Nikolaenko 2003] for periodic
domains and in [Chemin et al. 2000; Chemin et al. 2006] for a rotating fluid in R* or in RZ x (0, 1). When
the rotation is fast enough the fluid tends to have a two-dimensional behavior far from the boundary of
the domain, by the Taylor—Proudman column theorem [Pedlovsky 1979]. For example, when the domain
is R? the fluctuation of this motion is dispersed to infinity and some Strichatz quantities became small
[Chemin et al. 2000], which allow to obtain the global existence of the solution (for ¢ small enough).

An important issue for the Navier—Stokes equations is to make the best possible use of the algebraical
structure of the nonlinear terms. Some results have made crucial use of this structure, and have proved
very fruitful.

The case of Navier—Stokes equations with vanishing vertical viscosity was first studied in [Chemin
et al. 2000], which contains proofs of local existence for large data in anisotropic Sobolev spaces H%*,
with s > % and of global existence and uniqueness for small initial data. One of the key observations
there is that, even if there is no vertical viscosity and thus no smoothing in the vertical variable, the partial
derivative 03 is only applied to the component u3 in the nonlinear term. The divergence-free condition
implies that dszu3 is regular enough to get good estimates of the nonlinear term.

Global existence of the solution for the anisotropic Navier—Stokes system with high oscillatory initial
data was obtained in [Chemin and Zhang 2007].

A different idea, still using the special structure of the Navier—Stokes equation, was used in [Chemin
and Gallagher 2006] to construct the first example of periodic initial data which is big in C~!, and
strongly oscillating in one direction which generate a global solution. The initial data is given by

u(l)v = (Nuh(xh) COS(N)C3), — dth uh(xh) sin(ng,)),

where ||uy|| L2(T?) <C(nN )é. This result was generalized to R3 in [Chemin and Gallagher 2009].

The same authors [Chemin and Gallagher 2010] studied the Navier—Stokes equations for initial data
that varies slowly in the vertical direction in the well prepared case. The well prepared case means that
the norm of the initial data is large but does not blow up when the parameter ¢ converges to zero. We
note that important remarks on the pressure term and the bilinear term were used in this paper in order
to obtain the global existence for large data.

The case of slowly varying initial data in the vertical direction (ell prepared initial data) was recently
studied in [Chemin et al. 2011]. Here the horizontal components have large norm and the vertical com-
ponent has a norm that blows up when the parameter goes to zero. After a change of scale, one obtains
a Navier—Stokes type system with anisotropic viscosity —vA.u, where A, = A, + 82832, and anisotropic
pressure gradient, namely —(V}, p, €293 p). In this equation there is a loss of regularity in the vertical
variable in Sobolev estimates.

To overcome this difficulty one needs to work with analytical initial data. The most important tool
was developed in [Chemin 2004] and consists in making analytical type estimates, and at the same time
to control the size of the analyticity band. This is done by controlling nonlinear quantities that depend
on the solution itself. Even in this situation, it is important to take into account very carefully the special
structure of the Navier—Stokes equations. In fact, a global in time Cauchy—Kowalewskaya type theorem
was obtained in [Chemin et al. 2011]. (Some local in time results for Euler and Prandtl equation with
analytic initial data can be found in [Sammartino and Caflisch 1998].)
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In [Chemin et al. 2011] the fluid is supposed to evolve in a special domain, Q2 = Th2 x R,. This choice
of domain is justified by the pressure term: the pressure satisfies the elliptic equation Agp = 9;0; (u'u’),
and consequently, V,p = (—=A,)"1V,9; 0 (u'u/). Because A;! converges to A;l, it is important to
control the low horizontal frequencies, in contrast with the case of the periodic torus in the horizontal
variable, where we have only zero horizontal frequency and high horizontal frequencies.

In this paper we investigate the case where the fluid evolves in the full space R3. In that situation,
we are able to solve globally in time the equation (conveniently rescaled in €) for small analytic-type
initial data. To do this, we need to control the low horizontal frequencies very precisely. Note that we
can construct functional spaces where the operator A;lvh (aVyb) is bounded. However, we still need
to impose on the initial data more regularity control on low horizontal frequencies; thus we make the
assumption ug( -, x3) € L2([R§,21) NH> ([RR%). In the vertical variable we need to impose analyticity of the
data. The method of the proof follows closely the argument of [Chemin et al. 2011], but instead to use
pointwise estimates on the Fourier variables, we write an equation with a regularizing term in the vertical
variable and we use energy estimates on anisotropic Sobolev spaces of the form H®* respectively H -2,

Our main result in the case of the full space R’ is the following (for notation see the next section).

Theorem 1.1. Let a > 0 and % > o > 0. There exist positive constants gy and n such that, for any
divergence-free field vy satisfying

def a(D;

D
lvollxi-=llvollxi+e <n, llvollxs = (lle @b

_1
Muoll gos + a2 [|le* P g g-1.1)

and for any ¢ € (0, &), the Navier—Stokes system (NS) with initial data
up = (8% v (xp, £3), £ v (X, ex3))
has a global smooth solution on R>.

We emphasize that we obtain the global wellposedness under a smallness condition which is invariant
by the scaling of the equation, and this is the main motivation of Theorem 1.1.
As mentioned, to prove the theorem we will first transform the system using the change of scale

£ Lo -13
u®(t, xp, x3) = (e20" (1, xp, £x3), €720 (¢, X, £x3))

into a system of Navier—Stokes type, with a vertical vanishing viscosity, that is the Laplacian operator
became —vA,v — £2vd3v and a changed pressure term which became —(V;, p, e23 p)-

Taking advantage of the fact that we’re working in R, we can also consider a different type of initial
data, with larger amplitude but strongly oscillating in the horizontal variables:

L h, —1 _3 3, 1
ug = (725 (e xp, x3), €7 205 (67 o, X3)).

This type of initial data has BO_O{ « horm of the same order as the initial data in the previous theorem. In
order to solve the Navier—Stokes equations with this new type of initial data, we make a different change
of scale,

1

1 3
ut (t, xp, x3) = (e7 20" (6721, e oy, x3), e 720 (e 72, 67 ey, x3))

and we note that the rescaled system that we obtain is exactly the same as in the proof of Theorem 1.1.
Consequently, we obtain:
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Theorem 1.2. Let a > 0 and % > o > 0. There exist positive constants gg and n such that, for any
divergence-free field vy satisfying

lvollx 3 llvollxt+e <n
and any ¢ € (0, &), the Navier—Stokes system (NS) with initial data

Lo, -1 -3 3, -1
uf):(s 2vg (e xp, X3), € 205 (e xh,X3))

has a global smooth solution on R>.

2. A simplified model

We start with an equation already studied in [Chemin et al. 2011], where a complete proof of global well-
posedness is given. For completeness and because we are going to use the method of energy estimates,
we sketch the proof related to the energy estimates. Consider the equation

du +yu+a(D)u?) =0,

where a(D) is a Fourier multiplier of order one. For any function f such that the following definition
makes sense, we define e/P! f = F~! (e‘sIS I f(& )), where f = % f denotes the Fourier transform and %!
denotes the inverse of Fourier transform. Then, if the initial data satisfies

8|D|

e ugllgs < cy with5>0ands>%d,

we have a global solution in the same space. The idea of the method in [Chemin 2004; Chemin et al.
2011] is the following: we want to control certain analytical quantities on the solution, but we must
prevent a decrease in the radius of analyticity of the solution. Introduce 6(¢), representing the loss of
analyticity. We set ®(7, &) = (§ —A0(1))|€] and ue = F ' (e®"9)ii(§)). The function 6(¢) is defined as
the unique solution of the ordinary differential equation

6(t) = luallys, 6(0)=0.

The computations that follow are performed under the condition 6(¢) < §/A (which implies ® > 0). The
equation satisfied by i is

diiig + viie + M (1) [Elie +a(®)e®2) =0.

This contains an extra-regularizing term, since we control a quantity that takes into account the analyticity
of the solution. As 6 approaches 0, we obtain by an energy estimate in H* the inequality

ld 2 2 ; 1 2 2
Eallumllm +yluolly + A0 ID]2us |y < Cla(D)(u ) e, ue) usl.

Following the proof of [Chemin et al. 2011, Lemma 2.1] (which uses the important fact that e®®-¥) is a
sublinear function, and also the classical Bony decomposition [1981]), we get

1
la(D) (U)o, ua)| < Cllus|las|l|D]2uel%s.
Choosing A =4C we obtain

3 3| D —
0(t) = lluo®) g < 2[le’Plugllgse™,
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which, for u#y small enough, gives

3|1D|

0(t) <y 1ePlugllgs <8171

This allows us to obtain the global in time existence of the solution.

3. Structure of the proof

Reduction to a rescaled problem. We seek a solution of the form
def /1 _1
ue(t, %) = (620" (1, xp, £x3), €720 (2, X, £x3)).

This leads to the rescaled Navier—Stokes system

9, v — Apv" —828321)” —i—e%v Vol = —th,

A 1
9,0 — Ayl — 828321)3 +eiv-Vod= —8283(], (RNS
divv =0, )
v(0) = vo(x),

where Ay, défalz + 822 and V,, déf(al, d2). As there is no boundary, the rescaled pressure g can be computed
with the formula

—Ag = e%divh(v -Vv), A=Ay +82832. (3-2)

When ¢ tends to zero, AE_] looks like A;l. Thus, for low horizontal frequencies, an expression of
Vi, A;l cannot be estimated in L2. This is one reason for working in Th2 x R, in [Chemin et al. 2011].
To obtain a similar result in R, we need to introduce the following anisotropic Sobolev space.

Definition 3.1. Let s, 0 € R, o0 < 1. The anisotropic Sobolev space H°* is defined by
H ={f € ¥'®) : || fllnes < o0},

where
def

£ 1o = fR 3 18,177 (1 + 181 | f(E)PdE, & = (&n, &3).

For any f, g € H>®, we set

(f. & os = (1D4I7{D3)° £, D17 (D3)°g) o, (D3) = (1+|Ds )7,

Theorem 3.2. Let a > 0, % > « > 0. There exist two positive constants &) and n such that for any

divergence-free fields vg satisfying
llvollxi-«llvoll x 3+« <1,

and for any ¢ € (0, &9), (RNS,) has a global smooth solution on R>.
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Definition of the functional setting. As in [Chemin et al. 2011], the proof relies on exponential decay
estimates for the Fourier transform of the solution. Thus, for any locally bounded function ¥ on R* x R?
and for any function f, continuous in time and compactly supported in Fourier space, we define

FoeOEF () F, ).

Now we introduce a key quantity we want to control in order to prove the theorem. We define the function
0(t) by

< def
0(t) = —(ellvh Ol g it v Ol ad d+o + V5Ol gt Ao llvg ()l 33 +a)

a
+ IVive (D go.t -« Vave () || ol +e, (3-3)

with 6(0) = 0, and we also define

def
V(1) = [[ve () go i llve () || go. b+,

where
def

(1, §) =a(l —A0(1))(83), (3-4)

for some A that will be chosen later on. We denoted by (&3) = (1 + |&3 |2)% which is a sublinear function.

Main steps of the proaof.

Proposition 3.3. Let s > 0. A constant C exists such that, for any positive A and for any t satisfying
0(t) <1/A, we have

t
1
fo (llezvl (D) 131 + V3 (D) 171 )dT
t
< exp(CO0)[Ie" P vl 1.+ Ca [ GO aud
0

t ! a t
+C/O w(r)(nezvg(r)u%,;,s+||vé(r)||%,;.s)dr+m/0 1950t () 0.d7 |

Proposition 3.4. Let 1 > s > 0. Then there exist C and Ao such that for any A > Ay and for any t
satisfying 6(t) < 1/A, we have

t
e 10, + / Voo (D) 0.d
0

t

! 1 1
< exp(CO ) [ I1e“ P w0, + C / V@ e dr+ 5 | 3@ L.de ]
0 0
Proposition 3.3 will be proved in Section 4, and Proposition 3.4 in Section 5. For the moment, let us
assume that they are true and conclude the proof of Theorem 3.2. As in [Chemin et al. 2011], we use a
continuation argument. For any A > Ag and 7, define

T, ST 0(T) +W(T) < 4n).
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Similar to the argument in [Chemin et al. 2011], 7, is of the form [0, T*) for some positive 7*. Thus,
it suffices to prove that T* = +oc. In order to two propositions, we need to assume that 6(7") < 1/A,
which leads to the condition

4n <

> =

We set

t t

def 1 1

F) & o110, + f Vo (©) o, + - / (63l (O 1210 + 10 @)1 dx.
0 0

From Propositions 3.3 and 3.4, it follows that for all T € J,,
1 r,
Fy(1) < exp(4Cn)(;ne”l’ﬂvou%,_;s + lle P vg |30 + C /0 0(0) v (D)1 30.d7

t l 1o h 2, l 3 2, 2
+4Cn a”gzvcp(f)”f]z»s+a||v<1>(f)||H7~S + lve (D)5, )dT ).
0
Now we choose 1 such that
exp(4Cn) < g, 4Cnexp(4Cn) < .

With this choice of 5, we infer from Gronwall’s inequality that

1
Fu(t) < 2(= e P voll- 1+ 1P uolo, ) < 2lvolle

Taking s = % —aand s = % + o respectively, we obtain

1 1
a™'0(0) + W(0) S2F_,(FE, o (1) < 4luollxd«lvollx ) < 41,

which ensures that 7* = +o0, thus concluding the proof of Theorem 3.2. (]

4. The action of subadditive phases on products

For any function f, we denote by f the inverse Fourier transform of | f |. Let us notice that the map
f+ f preserves the norm of all H%** spaces. Throughout this section, ¥ will denote a locally bounded
function on R x R3 which satisfies the following inequality

V(&) =W, &§—n)+ V(). (4-1)

Before presenting the product estimates, let us recall the Littlewood—Paley decomposition. Choose
two nonnegative even functions x, ¢ € F(R) supported, respectively, in B = {§ € R, |§| < ‘3_‘} and
6={t R, 3 <|& <38} such that

XE+Y e UE)=1 forfeR,
j=0

D e@7E) =1 for&eR\{0).

jez
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The frequency localization operators A;f and S; in the vertical direction are defined by

F @@ |&s)) f) for j >0,

Alf=18f for j =—1,
0 for j < -2,
S' =" (xQI&Df)= Y ALf
/<J 1

The frequency localization operators A}? and S}.’ in the horizontal direction are defined by
Af=F" e EaDf). Stf= Z Ahf o forjez.
/<] 1
It is easy to verify that
1S 3o Y 222 AYAL £117,. (4-2)
j.keZ

In the sequel, we will constantly use the Bony’s decomposition [1981]:

f§=Tg+RYg. 4-3)
with
Tie=) S 1A Rjg=) SjafAjs.
J J
We also use the Bony’s decomposition in the horizontal direction:
fe=Tig+T/g+R"(f g, (4-4)
with

Tig=Y S' fAg. R'(f.9)= > AlfAlg.
j =il

Lemma 4.1 (Bernstein’s inequality). Let 1 < p <g <oo. If f € L? ([Rd), there exists a constant C
independent of f, j such that

supp f C {&] < C27) 1%l < 2 G0y,

supp f < {227 <lgl =2/} = fle =27 sup 198 fllur.
1Bl=lal

1
Lemma 4.2. Lets > 0, o1, 0o < 1 such that o1 + 05 > 0 and % > a > 0. Assume that ay € H° 27 and
by € H°S. Then

. . ‘o 1
I{AYARTD)] 2 + [ AYARRED) | ll2 < Ceju2 =027 lag 1 2,0 1 allaw [ 3o, 1 sa 1Dw | 2

with the sequence (cj ) j kez of positive numbers satisfying

2
ch’k <1.
Jj.k
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Proof. Let us firstly prove the case when the function W is identically 0. Below we only present the proof
of R} b, the proof for T,'b is very similar. Using Bony’s decomposition (4-4) in the horizontal direction,

we write
A;AT(RYD) = ZA AR(SY pady by =" AYAR( T A;,b+T’13/hS;-’,+2a+Rh(S}?,+2a, AYD))
J' 7’

S ) §

Considering the support of the Fourier transform of 7%, aA}b, we have
J'+2

S AVAK(SY,SE_aAy ALD).

J'=j—4 |k —k|<4

Then, by Lemma 4.1,

h AN
Me<C > > ISh oSk jad;ALb| .
J'zj—4 |k'—k|<4

h AN
<C > D IShaSE jalle AL ALD] .
J'’=j—4 |k'—k|<4

We use Lemma 4.1 again to get

h Al k" Al
1S oSk yallze < >0 > NAYALal~<C Y Y 2 [ENZNZ P22

'//<j/+1 k//<k/_2 '//<j/+1 k//<k/_2
=1 2 k// l k
<C Y Z 27"22K | A% Alallz < C20 " a2 1o @l 2oy
//<j +1 k//<k/

from which it follows that
1—o)ky 113 3 A
Iz < C297 ¥ all 2o yoallalZmdea Y. D HALALDIL
J'zj—4 Ik —k|<4

—jsn(l—o1—o)ky 1% 3
< Ccj 2775207 lallZo1-allall 2o LiallDl o . 4-5)

Similarly, we have
H= Y > AVANAYSE bSY,ALa).
J'zi—4 W—k|<4
Then, by Lemma 4.1,
Ml =€ Z Z ”Az’slil’—lbllLEaLi’-Z ”S})’HAZ/QHLQL??
J'=j—4 Ik —k|<4 ; ;

< C2720 K a2 1 lal e g Bl Y Y 27 e
J'Zj—4 k' —k|=4

< Cep 27207 a2 1 flall e, e lIb o, (4-6)
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‘We turn to III. We have

III - Z Z A;)AZ (S;/+2AZ/LZA§/ Ah//b).
J'Zj—4 K K'=k—2
\k/fk”|§l

So, by Lemma 4.1,

Mf.<C > Y 258U ALaAy ALDl 2 o
]/21_4 k’,k”zk72 ‘3 h
|k’—k”|§1

k Ah AN
<c Y Y 2 IS} 2 ALl 2 1AY ALl
J'zj—4 k. k"=k-2
|k/—k//|§1

. 1 1 . .
- l—01—02)k 2 3 - K —k)n—(j'—
<C2720 K a 2 lall e, yealDlgms Y Y 2@t
Jzj—4 K=zk=2

. 1 1
< Cejp 2772070 Ma 12, 1 allalZe, 1Dl s (4-7)
Summing up (4-5), (4-6), and (4-7), we obtain

A —jsn(l—o1—o)ky| .15 i
”AIJJ'A]((Rab)”LZSCCj,kz jspd=e1=e) lall?o) t-all@ll Foy Laa 1Ol o2 .

The lemma is proved in the case when the function W is identically 0. In order to treat the general case,
we only need to notice the fact that

|FLA AL (RaD)]w (§)] < FIA AL (R, :bI1E). O
As a consequence of Lemma 4.2 and (4-2), we have:
Lemma 4.3. Let % >a>0,5 >0,and 01,07 < 1 such that 61 + 0, > 0. Let {61, 62} = {01, 0n}. Then

1 1 1 1
1@b)w |l gorsor-1.s < C(llawl o, 1o llawllZo, e llbwll oz + law |l gos 16wz, 1 b0l 5 1 10)-

5. Classical analytical-type estimates

In this section, we prove Proposition 3.3. In this part, we don’t need to use any regularizing effect from
the analyticity, but only the fact that the e®*:%» is a sublinear function.

Notice that 9;ve + ar6 (1)(D3)vep = (3;v) e, we find from (RNS;) that

vl +ard (1) (D3)vl — Apvlh — 2920l et (- VMg = —Vige,

) 1
d vy +ard(t)(D3)vy, — Apvg — 20303 + 62 (v- Vv)o = —£2d3q0,
div Vp = 0,

v (0) = e“P3)yg (x).

(5-1)
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Step 1. Estimates on the vertical component vfb. Noting that 6(r) > 0, we get from the second equation
of (5-1) that
14
Sdr || v (D71 + I VAV O34 + led3v5 (D117,

< _¢2 (" Vi), vq))H,%,s +87((U3dthvh)q>, U?D)H,%.S — (8390, vé)H,%

0 VI N

(5-2)

Here we used the fact that divv = 0, so v- Vv3 = v" - V,u3 — v3div,v".

For 11, an application of Lemma 4.3 gives
Il < &2 [ (v3divs v i3 |
| < &2 | (v divyv )<1>||H*§3||U<1>||H**°
1
3 3
1o VRVG 1 20 ) 103 14

< CODNvallF-1s + 7652 Vave 0. + 15 1V 74 (5-3)

1 1
<Ce? (||vq>||i, ||vq>||H7 Lta VAV o + l0g 1l a4 ||thq>||fq

For I, we get by integration by parts that

1 . 1 def
[=¢2 ((dlvhvhv3)q>, vfb)H,%,s +e2 ((v v)o, th(b) LEL L.
As in (5-3), we have
Ll < COD gl -1 s + 1o5all Vave 3. + 1510 175 s (5-4)
and by Lemma 4.3,
1
Ll <2 |V llm-3s 1 Vavglla-}
< Cot (I it 103 120 4o 103120 1o+ 10 120 4o 10120 1o 0B M) I VAV
= o lH2 1Yol o, 3o IV Il 0, 5+ ol o t—e Vo ll o L+a IV H3» hVellH-
< CW @) (ellvg s + gl i) + 1l Vava -1 (5-5)
Now, we turn to the estimates of the pressure. Recall that
—Aep=2(3:0;(v'v7) + 805 (v v?) — 203 (v div ")),
Here and in what follows the indexes i, j run from 1 to 2. Thus, we can write p = p' + p* + p>, with
P =62 (=A) 199w, pP=er(—A) 00300, pP=—2e2(—A) B0 div "), (5-6)
Integrating by parts, we get
(93P, Vo) -t = —6(Pg, £3v8) -4 < C&% | pg -1 + 15160503 17 1.,
which together with the fact that the operator 9;9;(—A ¢)~!is bounded on H°* together with Lemma 4.3
implies that
2 B3Pgs Vo) - = CX (V" @ V"ol 1 + 15518305 13- 1.
< CE Vg 17 s 0§ 11 03— 105l 0. 440 + 755 1€0303 171
< Ce2W)e v lI3 ) s + o5 l€d305 1F-1 . (5-7)
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For the term containing p,, we get by integration by parts that
1 _ ,
(03P, Ve s = —€2 (6205 (—Ae) T (V1) 0, Bivg) o1
Using the fact that (€33)2(—A,)~ ! is bounded on H** together with Lemma 4.3, we then have

20 2 3 h
£2(83p%, v3) -bo < Ce2 (WMo ll -4+ Vi I~}

< CY () (ellvgllF 1 + ||v¢||H;s) + ﬁuv;,vén%,_%.x. (5-8)

For the last term, coming from p3, we use again the fact that (93)%(—A,)~! is bounded on H’* and
obtain

2 3 .3 1 34: h 3
(3P Vp)H-1s < Ce2|(Vdivv) el g-1sllvglla-1s
; 32 1 hoy2 1 32
<COMNvaplig-Ls + 150a 1 Vavellgos + 1o5llve lzds- (5-9)

Summing up (5-2)~(5-5) and (5-7)~(5-9), we obtain
D3OI 1 + 301
PRIV AR O NEls
< COONGIT-1s + CYDO (NG 1s + 105 117) + 5al Vivg .. (5-10)
where we used the equality ||th<1>||2 = ||U<D”H2 .

Step 2. Estimates on the horizontal component vé’,. From the first equation of (5-1), we infer that

; jt leZvly (D131 + 162 Vivh (D131 + elledsvy ()11
—8((1) Vvh)cp,ezvé’))H 1s— (th¢,v§,)H L
= (5-11)
We rewrite I as
I= —8((1) thh)cp,szvé’,)H Ls 8((1)3831)/1)(1;,8%1)2)11,%TdifI] +1,.
An application of Lemma 4.3 gives
L] < ell 0" V"ol g-tslle vl -1
< Co(Ivh Iz 11 o Vbl e 1930 s+ 0 ik VR0 201 VRV 20 1) 20l b
< cé(z)||e%v{},||§,,%,s + 155 Va7, + mnsiv@nf,%_s. (5-12)

For I, we use integration by parts and divv =0 to get

L=- ((lehU vh)<1>,82vg>)H”s ((U U3)<I>782<983Uq>) 1 —Izl—l-Izz

As in (5-12), we have

5 Lop2 1 hoy2 1 Lop2
|| < COM)lle2vg -1 + 155¢l Vavgllgos + 1o5l1€2 Ve llz L, (5-13)
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and by Lemma 4.3,
3.1 i h
[122] < ||(v7v )<I>||H*%'582||883U<1>”H 3
hoys 3 1 h
< C(Ilvgll gos |qu>||H7 Wall%ll,ﬁ Lta + ||U<1>||H0 L llvgl Zo dia Vgl ads)e2 ledsvgll -1

< CadO I 130, + CWOIv3 I3 + o5 1030 - (5-14)

To deal with the pressure, we write p = p! + p + p>, with p', p?, p? defined by (5-6). Using the
boundedness of the operator 9;9; (—A.) ' on HOS together with Lemma 4.3, we have

1 .h -1 i L. h
e(ViPp, Vo) H-4s = —e((—=Ae)™ 0;0; (V') o, £2divyvg) g-1.s
h h 1 h
<Ce|(v ®v )<1>||H—%xIISZth@pIIH—l
<C82||v¢I|HoLa||vq>llHoWIIS v¢||st||82thq>||H

< Cxp(t)ngzvq)n,ﬁx + mlls Vvl 13-4, (5-15)
For the term coming from p,, we integrate by parts to get
_ i 1
e(ViPg: Vo) r-bs = —(£0i93(—A0) ™ (V' v)) g, £2div 4G L
then note that £939; (—A,)~! is bounded on H%*. We get, by Lemma 4.3,
1
e(Vaph, v 1o < Cl (0 "ol -4 182 Vavlh |l g1
. 1
< Cab(®)|[vh 1130, + CEDO 031171 + 7u511€2 Vv 1 F-1.0. (5-16)
Similarly,
e(Vipa, Vi) gL
. 1
< Cll(*div ") o | -1 lle2vf | -4
3 % j h % % h 1
< (1131 1= 10121 11a I VRV ros + 03 115 s ||vhv¢||,,0.%_a VRV 120 1 1a) 182 VG Il -
< COWlle2 vl 13-y + 1yl Vavh 120, + 1 03134 (5-17)
Summing up (5-11)—(5-17) yields
d ., 1 1
S 1ET v NI -1 + 120G (113,35
<C9(t)(||82v¢||H +a”Uq>||Hoy)
1
+CU O (IlopllF1s + le2vblF10) + mall Vavh i3, + s5llvaliF s, (5-18)

Now we are in a position to prove Proposition 3.3. Combining the energy estimate (5-10) with (5-18),
we obtain

d 1 1
(120G O 174+ e OIF-1) + (le2ve O IF 4 + 105 (O 17,3.)
= COD(le2vh 13-4+ 103 15-1.) + Caf OV 0,

1 B2
C‘I’(t)(llszv@HHf%,x +llval7s) + 15al Vave 0.
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From this and Gronwall’s inequality, it follows that
fd o 2 3 2
||82vq>(t)||H S PG / (Ie2vg (O34 + vg (D)7 4.)dT
0
t t t
o . 1
<exp(c [ dmar) (ne“w”vou%,_;,s +a [ @B +C [ vt @i
0 0 0
t
+ 13 (O3)dT + 5a / ||vhv$(r>||§,o,sdr).
0
This finishes the proof of Proposition 3.3. ]

6. Regularizing the effect of analyticity

Let’s now prove Proposition 3.4. Here we will encounter two kinds of bad terms, where we lose a
vertical derivative. The first one is (v3330")o and the second term comes from —V, p. In this last
term, we really lose a vertical derivative. To compensate this loss, we use the divergence-free condition
(33u® = —divj, u") and more important, the fact that the equation contain an extra-regularizing term
given by the analyticity of the solution.

Step 1. Estimates on the horizontal component vé‘,. Let us recall that vg verifies the equations
9Vl +ard () (D3)vh — Apvh — e2020" +e2(v- Vol)p = —Vigo.

Note that § > 0, we perform an energy estimate in H%* to obtain

1d 2 h 2
3 — 06 3j0: +ar0 @) Vg l130.1 + VAV 0. + 160305 1 0.

1
<e2((W" @ V"), Vivh) os — 2030300, ) o — (Vi po, V) g0

ol I O ) (6-1)

We get by Lemma 4.3 and interpolation that

L h h h
I < Ce2||(v" @ v )|l gos [ Vavg Il gos

< Cevgllz s -V 3y seallVGm s VAV I o

h
< Cellvpllut rallv ||H1 ‘+a||v<1>||H2v-|-10()||th<1>||H0v
hoys i i 1 B2
SCSHU@”;{O,%—a”UcD” 0, +a||thq>||Hoﬁa||thq>|| 0.1 +a”v&>“H0»°‘”v&>“Hlvs+m”vth>”H0,x
b2
S CY(@)lvgllys + Ce(l)”Uq;”Ho.s m”vhvcp”HO,s- (6-2)

To estimate II, we use Bony’s decomposition (4-3) to rewrite it as

1 1 def
= —52(03(T)v3)a, V) gos — &2 (33(RL,V" )0, V) yos =11 + 1.
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From the proof of Lemma 4.2, it is easy to find that

2| < C|[| D3> (Rvsvh)d>||H—* 1 D312 Dy 2 b | o

1 1
< ClIvR I3 30 0321 eIVl 00+ V" | o
1
< Caf DIV 13011 + 111 Ve 130, (6-3)

Due to div v = 0, we rewrite II; as
1 . 1 def
I = £2 (T, divy v")a, vg) pos — &2 (T, 07 0, V) pos = Iy + 1o
Using Lemma 4.2 and interpolation, we have
i1 <82||( leh v )<I>||H‘* A

< Cet ol 1y Vb I2 3 1 VA0l o [0 ks
< CY OG5 + CONNVG 1700 + 1051 Vave 50, - (6-4)
From the proof of Lemma 4.2, and using the fact that s < 1, we can conclude that
izl < Cllvg st Vg it 1Ver" lns
< C||vq>||HoA+2 ||vq>||H %_all%lle Ll Vev" [ o
< Cab ()1 1 30.+3 + 10511 Ver" 30, (6-5)

We next turn to the estimate of the pressure. Recall that p = p' + p? + p? with p!, p2, p? defined by
(5-6). Using the boundedness of (—A)"19;0 ; on H?* together with Lemma 4.3, we get

(VP V) s = —£2 (= Ag) ' 9:0; (' v ), div vh) o
< Ce2 W' @ V"ol os | Vavlhl o
h 2 o h 2 1 h 2
< CUDI 131, + COONVEIZ 0, + 1a5 11 VaVE 1550, (6-6)
Notice that 0,0 j(—Ag)_1 is bounded on H*. Exactly as in the estimate of II, we obtain
(Vi P Vo) gos < CUD 051510 + CODO NG 130, + Cab) VG 150051 + 70511 Vv 1305- (6-7)

We write
_1 1 _ _1 .
Vips = —283|D3172 (V| Dyl2 e D3| 2 (= Ap) ™) | Dy |72 (v div 0");

thus,
3 h 1 1 —1 -1 3 h 1 n
(ViPo» vg) mos = —2((ValDal2 e D3] (—Ag) ™) |Dy| ™2 (v div 40", 03(D3) ™ 2vg,) oo
Note that Vthh|%|£D3|%(—A8)_1 is a bounded operator on H?*. Thus we get, by Lemma 4.3,

(Vi P, V) pros
1 . _1
<C|||Dh|—z<v3d1vhvh)||Hm||ag<Dz> 20 || o

3 h
<C(||Uq>||H 1oV 173 11 VAVG L o + 0g Il a4 IIthq>||HoLa||thq>IlHo o) 10" N o+

< Cab D110+ + 1551 Vave 0. + 050 103154 (6-8)
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Summing up (6-1)—(6-8), we get by taking A big enough that
d ) B
Envé(r)nzas + VRV D130, < COONVEI10, + CYOIVEIZ 0, + 550 Vg7 ts. (6-9)

Step 2. Estimates on the vertical component vf’l,. Recall that vfb satisfies
311% + )»aé(t)(Dg)v?D — Ahv?b - 828321)(31) + 8%(1) Vod)e = —8283q¢.

We perform an energy estimate in H%* to obtain

oy By + 19003 0, + 60503
< —e2 (V" Viv))a, v3) pos + €2 (W3div "), V) gos — £33 P, V) o
= W ) (6-10)
Using Lemma 4.3 and interpolation, we have
1] < Ce (0" VivHo -t 03 llar s

Cez (Ilvh 3 hois AV/RTE N PP IR v AT, 2 \V/RTE 3 31,1
<Ce2(lvpllft i wllvellf tve IVaVG I Hos + gl a5 VRV 1 20 1o I VUG 1 201 se )1V T 35
2°2 2'2 HY?2 HY2

< CY D)ol + CODlvolos + 1051 Vavell 5. (6-11)

and similarly,
1 .
| < Ce2||(v3div v g |l -t V3 1 ds
< CUOv3113, + CODNVRIZ 0, + 1551 Vive 30, (6-12)

Using the decomposition (5-6), we can similarly obtain
| < CW (O [voll%, + CODNvell0, + 1u51 Vive 2, (6-13)
Summing up (6-10)—(6-13), we obtain
d .
o 03 13,05 + 1VAV 130, < CEDOva 1710 + COO V0130, + 2511 ViV 150, - (6-14)
Now we combine (6-9) with (6-14) to obtain
d . 1
Jolvelho +1Vivelfo. < COOIvellyn, + CYOIvelly s + 1o 10allji
From this and Gronwall’s inequality, we infer that

t
e ()10, + / V00 (0) 0. de
0

t t t
. . 1
<exp(C /0 9(r)dr)(||e P00 + fo V(D) lve (D) l3.dT + 15— /0 ||vé<r)||%1;,xdr>,

This finishes the proof of Proposition 3.4. ]
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DYNAMICS ON GRASSMANNIANS AND RESOLVENTS OF CONE OPERATORS

JUAN B. GIL, THOMAS KRAINER AND GERARDO A. MENDOZA

The paper proves the existence and elucidates the structure of the asymptotic expansion of the trace
of the resolvent of a closed extension of a general elliptic cone operator on a compact manifold with
boundary as the spectral parameter tends to infinity. The hypotheses involve only minimal conditions on
the symbols of the operator. The results combine previous investigations by the authors on the subject
with an analysis of the asymptotics of a family of projections related to the domain. This entails a
detailed study of the dynamics of a flow on the Grassmannian of domains.

1. Introduction

In [Gil et al. 2010] we analyzed the behavior of the trace of the resolvent of an elliptic cone operator
on a compact manifold as the spectral parameter increases radially assuming, in addition to natural ray
conditions on its symbols, that the domain is stationary. We complete this analysis with Theorem 1.4 of
the present paper, which describes the behavior of that trace without any restriction on the domain. The
main new ingredient is Theorem 4.13 on the asymptotics of a family of projections related to the domain.
This involves a fairly detailed analysis of the dynamics of a flow on the Grassmannian of domains.

Let M be a smooth compact n-dimensional manifold with boundary Y. A cone operator on M is
an element A € x " Diff))(M; E), m > 0; here Diff)' (M; E) is the space of b-differential operators of
Melrose [1993] acting on sections of a vector bundle £ — M and x is a defining function of ¥ in M,
positive in M. Associated with such an operator is a pair of symbols, the c-symbol ‘6 (A) and the wedge
symbol A,.. The former is a bundle endomorphism closely related to the regular principal symbol of
A, indeed ellipticity is defined as the invertibility of %@ (A). The wedge symbol is a partial differential
operator on N, Y, the closed inward pointing normal bundle of Y in M, essentially the original operator
with coefficients frozen at the boundary. See [Gil et al. 2010, Section 2] for a brief overview and [Gil
et al. 2007a, Section 3] for a detailed exposition of basic facts concerning cone operators.

Fix a Hermitian metric on E and a smooth positive b-density m; on M (xm;, is a smooth everywhere
positive density on M) to define the spaces xVLi(M ; E). Let A be a cone operator. The unbounded
operator

A:C®(M; E) Cx"L}(M; E) — x"L}(M; E) (1.1)
admits a variety of closed extensions with domains & C xVLz (M; E) such that 9Dy C D C Dax, Where
Dmin 18 the domain of the closure of (1.1) and

Dmax = {u € xYL(M; E) : Au € x"L(M; E)}.

Work partially supported by the National Science Foundation, Grants DMS-0901173 and DMS-0901202.
MSC2010: primary 58J35; secondary 37C70, 35P05, 47A10.
Keywords: resolvents, trace asymptotics, manifolds with conical singularities, spectral theory, dynamics on Grassmannians.
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When A is c-elliptic, A is Fredholm with any such domain [Lesch 1997, Proposition 1.3.16]. We may
assume without loss of generality that y = —m /2, since otherwise we may replace A by the operator
x VM2 A xvTm2 € x 7™ Diff)' (M; E).

The set of closed extensions is parametrized by the elements of the various Grassmannian manifolds
associated with the finite-dimensional space @Dmax/Dmin, @ useful point of view exploited extensively
in [Gil et al. 2007a]. Recall that both spaces Dmax/Dmin and D max/PDa min are determined by the
set {o € spec,(A) : —m/2 < Imo < m/2}, together with certain finite dimensional spaces of functions
associated to each element of this set. Also recall that the boundary spectrum of A, denoted by spec;,(A),
is the set of points in C at which the conormal symbol (indicial family) of A is not invertible. The
intersection of this set with horizontal strips in C is finite.

Associated with N, Y there are analogous Hilbert spaces x;m/ 2Li(NJrY ; EA). Here x, is the function
determined by dx on N, Y, E, is the pullback of E|y to N,Y, and the density is xA_lmy where my is
the density on Y obtained by contraction of m; with xd,. We will drop the subscript A from x, and E 4,
and trivialize N;+Y as Y = [0, co) x Y using the defining function. The space x_'”/zLi(YA; E) carries
a natural unitary R action (o, u) — «,u which after fixing a Hermitian connection on E is given by

m/2

kou(x,y) =0"""u(ox,y) forg>0, (x,y)eY".

The minimal and maximal domains, DA min and DA max, of A are defined in an analogous fashion as
those of A, the first of these spaces being the domain of the closure of

A CO(YN E) Cx"PLAYN E) > x "L (Y E). (1.2)

A fundamental property of A, is its k-homogeneity, kpAx = 0" A k. Thus D, min and D max are
both x-invariant, hence there is an R action

Q> Ky @/\,max/gb/\,min - gz}/\,Inax/gb/\,minv

which in turn induces for each d” an action on Grys (D s max/Da.min)> the complex Grassmannian of
d"-dimensional subspaces of D x max/D A min- Observe that since the quotient is finite dimensional these
actions extend holomorphically to C ~ R_.

Assuming the c-ellipticity of A, we constructed in [Gil et al. 2007a, Theorem 4.7] and reviewed in
[Gil et al. 2010, Section 2] a natural isomorphism

0: gzjmax/gzjmin - gzj/\,max/gzj/\,min’

allowing, in particular, passage from a domain % for A to a domain %, for A, which we shall call the
associated domain.
We showed in [Gil et al. 2006] that if

‘% (A) — X is invertible for A in a closed sector A C C which is a sector of minimal

growth for A, with the associated domain %, defined via D5 /DA min = 0(D/Dmin), (1.3)

then A is also a sector of minimal growth for Ag, the operator A with domain 9, and for / € N sufficiently
large, (Ag — )~ is an analytic family of trace class operators. In [Gil et al. 2010] we gave the asymptotic
expansion of Tr(Ag — )~ under the condition that & was stationary. Recall that a subspace & C D pax
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with Dpin C D is said to be stationary if (D/ DA max) € Grar (DA max/PDa,min) 15 a fixed point of the
action k. More generally, assuming only (1.3), we now prove:

Theorem 1.4. Let A be an elliptic cone operator of degree m > 0 on M, and let % be a domain for A so
that (1.3) is satisfied. For any ¢ € C*°(M; End(E)) and | € N with ml > n,

o0

Tr(p(Ag —2) ") ~ Y (A, LAY Tog MAY/™  as [A] — o0,
J=0
where each rj is a rational function in N + 1 variables, N € Ny, with real numbers p, k =1,..., N,
and Vj > Vjy = —00 as Jj — oo. We have rj = p;/q; with pj, q; € Clz1,...,2Zn+1] such that
qj(AH L AN (log A) is uniformly bounded away from zero for large A.

The expansion above is to be understood as the asymptotic expansion of a symbol into its components
as discussed in the Appendix. As shown in [Gil et al. 2010],

n—1 .
Tr(p(Ag — 1)) ~ Y a; A 7m=D/m 4o, Tog (WA + 59,(A),
j=0
with coefficients o; € C that are independent of the choice of domain %, and a remainder sg (1) of order
O(JA]™"). Here we will show that sg (1) is in fact a symbol that admits an expansion into components
that exhibit in general the structure shown in Theorem 1.4. More precisely, let

M= {Reo/m:o €spec,(A), —m/2 <Imo <m/2}, (1.5)
where spec; (A) denotes the boundary spectrum of A; see [Melrose 1993]. Set

¢ = additive semigroup generated by
{Im(c — ") : 0, 0" € spec,(A), —m/2 <Imo <Imo’ <m/2}U(=Np), (1.6)

which is a discrete subset of R_ without points of accumulation. Then

sa(A) ~ S ry (A A log MAY™ as [A] — oo, (1.7)
ve€

v<—Im

where the u; are the elements of 91 and the r, are rational functions of their arguments as described in
the theorem.

An analysis of the arguments of Sections 3 and 4 shows that the structure of the functions r,, depends
strongly on the relation of the domain with the part of the boundary spectrum in the “critical strip”
{c €e C: —m/2 <Imo < m/2}. This includes what elements of the set 91 actually appear in the r,,
and whether they are truly rational functions and not just polynomials. We will not follow up on this
observation in detail, but only single out here the following two cases because of their special role in
the existing literature. When & is stationary, the machinery of Sections 3 and 4 is not needed, and we
recover the results of [Gil et al. 2010]: the r, are just polynomials in log A, and the numbers v in (1.7)
are all integers. If 9 is nonstationary, but the elements of spec,(A) in the critical strip are vertically
aligned, then again there is no dependence on the elements of 97, but the coefficients are generically
rational functions of log A. Note that all second order regular singular operators in the sense of Briining
and Seeley [1987; 1991] (see also [Kirsten et al. 2008a]) have this special property.
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By standard arguments, Theorem 1.4 implies corresponding results about the expansion of the heat
trace Tr(goe_’ A%) as t — 0T if Ag is sectorial, and about the structure of the ¢-function if Ag is positive.
It has been observed by other authors that the resolvent trace, the heat kernel, and the ¢-function for
certain model operators may exhibit so called unusual or exotic behavior [Falomir et al. 2004; 2003;
2002; Kirsten et al. 2006; 2008a; 2008b; Loya et al. 2007]. This is accounted for in Theorem 1.4 by
the fact that the components may have noninteger orders v; belonging to the set &, and that the r; may
be genuine rational functions and not mere polynomials. For example, the former implies that the ¢-
function of a positive operator might have poles at unusual locations, and the latter that it might not extend
meromorphically to C at all. Both phenomena have been observed for ¢-functions of model operators.

Earlier investigations on this subject typically relied on separation of variables and special function
techniques to carry out the analysis near the boundary. This is one major reason why all previously
known results are limited to narrow classes of operators. Here and in [Gil et al. 2010] we develop a
new approach which leads to the completely general result Theorem 1.4. This result is new even for
Laplacians with respect to warped cone metrics, or, more generally, for c-Laplacians [Gil et al. 2010].

Throughout this paper we assume that the ray conditions (1.3) hold. We will rely heavily on [Gil et al.
2010], where we analyzed (Ag — 1)~ with the aid of the formula

(A =7 = o8l (A =7,
and the representation

(Ao =M '=BM) +[1 = BMW(A -] Fa(M)'T O, (1.8)

obtained in [Gil et al. 2006]. The analogous formula for (A, g, — A lis briefly reviewed in Section 2.

In [Gil et al. 2010] we described in full generality the asymptotic behavior of the operator families
B(A), [1 — B(A)(A — X)), and T(A), and gave an asymptotic expansion of Fg M7 Lif B is stationary.
Therefore, to complete the picture we only need to show that Fg (1) ™! has a full asymptotic expansion
and describe its qualitative features for a general domain 9.

We end this introduction with an overview of the paper. There is a formula similar to (1.8) concern-
ing the extension of (1.2) with domain %,. The analysis of Fg (AM)~! in the reference just cited was
facilitated by the fact that the corresponding operator F, ¢, (A)~! for A, g, has a simple homogeneity
property when 9 is stationary. In Section 2 we will establish an explicit connection between the operator
Fn, (A)~" and a family of projections for a general domain % . This family of projections, previously
studied in the context of rays of minimal growth in [Gil et al. 2007a; 2007b], is analyzed further in
Sections 3 and 4, and is shown to fully determine the asymptotic structure of F, g, (A)~!, summarized
in Proposition 2.17. As a consequence, we obtain in Proposition 2.20 a description of the asymptotic
structure of (Axg, —A) .

The family of projections is closely related to the curve through %, /% A min determined by the flow
defined by k on Grg7 (DA max/D.min). The behavior of an abstract version of IC; I(QD A DA min) 1S ana-
lyzed extensively in Section 3. Let € denote a finite dimensional complex vector space and a : € — €
an arbitrary linear map. The main technical result of Section 3 is an algorithm (Lemmas 3.5 and 3.11)
which is used to obtain a basis of ¢’®D for all sufficiently large ¢ (really, all complex ¢ with [Imz| < 6
and Re ¢ large); here D C € is a linear subspace. The dependence of the section on ¢ is explicit enough to
allow the determination of the nature of the ©2-limit sets of the flow 7 > ¢'® on Gry» (€) (Proposition 3.3).
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The results of Section 3 are used in Section 4 to obtain the asymptotic behavior of the aforementioned
family of projections, and consequently of F, g, (1)~! when A € A as |A| — oo, assuming only the ray
condition (1.3) for A, on 9, (in the equivalent form given by (iii) of Theorem 2.15).

The work comes together in Section 5. There we obtain first the full asymptotics of Fg(X)~' using
results from [Gil et al. 2006; 2010] and the asymptotics of F, g, (A)~! obtained earlier. This is then
combined with work done in [Gil et al. 2010] on the asymptotics of the rest of the operators in (1.8),
giving Theorem 5.6 on the asymptotics of the trace Tr(¢(Ag — A)~!). The manipulation of symbols
and their asymptotics is carried out within the framework of refined classes of symbols discussed in the
Appendix.

2. Resolvent of the model operator

In [Gil et al. 2006; 2007a; 2007b] we studied the existence of sectors of minimal growth and the structure
of resolvents for the closed extensions of an elliptic cone operator A and its wedge symbol A,. In
particular, in [Gil et al. 2006] we determined that A is a sector of minimal growth for Ag if @ (A) — X is
invertible for A in A, and if A is also a sector of minimal growth for A, with the associated domain & .
In this section we will briefly review and refine some of the results concerning the resolvent of A, g, in
the closed sector A.

The set

bg-res(A ) = {A € C: A, — A is injective on D 5 min and surjective on @A,max},

introduced in [Gil et al. 2007a], is of interest for a number of reasons, including the property that if
A € bg-res(A ) then every closed extension of A, — A is Fredholm. Using the property

KoAn = 0" Aniy, 2.1)

one verifies that bg-res(A ) is a disjoint union of open sectors in C. Defining d” = —ind(A A min — A)
and d’ = ind(A max — A) for A in one of these sectors, one has that if (A, g, — 1) is invertible, then
dim(D /DA min) = d” and dimker(A o max — A) = d’. The dimension of D s max/Da min 18 d’ +d”.
From now on we assume that A # C is a fixed closed sector such that A~ 0 C bg-res(A,) and
res Ang, N A # . Without loss of generality we also assume that A has nonempty interior. The set
res An.g, N A has discrete complement in A and is therefore connected.
Corresponding to (1.8), there is a representation

(Ana,— W' =B +[1 = BAQ)(Ar = W) Faa, W) 'TA(A)  for ke ANres(Apg,). (2.2)

As we shall see in Section 5, if A is a sector of minimal growth for A, g,, then the asymptotic structure
of Fra, (A)~! determines much of the asymptotic structure of the operator Fg (A)~! in (1.8).
If 9, is k-invariant, then F, g (A)~! has the homogeneity property

i Fra ) = Frg, (07 23)

and is, in that sense, the principal homogeneous component of Fg(1)~!. This facilitates the expansion of
F5(A)~! as shown in [Gil et al. 2010, Proposition 5.17]. However, if %, is not x-invariant, F, g, (»)~!
fails to be homogeneous and its asymptotic behavior is more intricate.
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The identity (2.2) obtained in [Gil et al. 2006] begins with a choice of a family of operators K. (}) :
c?" — x—m/ 2L%(Y ; E) which is k-homogeneous of degree m and such that

(Ar=r Ka() : Damin ®CY — x™"2LIY " E)
is invertible for all A € A ~. 0. The homogeneity condition on K, means that
Kn(0"A) =0"Kko,KA(X) for o > 0. 2.4)

Defining the action of Ry on C?" to be the trivial action, this condition on the family K (L) becomes
the same homogeneity property that the family A, — A has because of (2.1). Other than this, the choice
of K, is largely at our disposal. That such a family K (%) exists is guaranteed by the condition that
A N0 Cbg-res(A,). We now proceed to make a specific choice of K ()).

Let Ap € A be such that A A0, — A 1s invertible for every A = e’ 1o € A. We fix Ao (for convenience
on the central axis of the sector) and a cut-off function w € C2°([0, 1)), and define

KA() = (Ax — DoA™k jpgm  for ke ANO (2.5)

acting on D /% xmin = C¢'. The factor @ (x| A1Y™Y ke 301m 0 (2.5) is to be understood as the compo-
sition
K paglt/m w(x|A[Mm)

~
gb/\/gb/\,min > @A,max/gb/\,min = %/\,max - gD/\,max > gb/\,max,

in which the last operator is multiplication by the function w(x|1|!/”) and we use the canonical identi-
fication of DA max /DA, min With the orthogonal complement €, max Of DA min in DA max Using the graph
inner product

(u’ U)A,\ = (A/\u7 A/\U) + (ua v)v u,v € gb/\,max-
By definition, K , (1) satisfies (2.4) and the family
(Ar=r KAL) : D min ® D /D min = X "PLy(Y; E)

is invertible for every A on the arc {A € A : |A| = |Ag|} through Ag. Therefore, using x-homogeneity, it is
invertible for every A € A \ 0. If

BA(A) _

(T:m) :x "PLE(Y™ E) = D min © Da/D pmin

is the inverse of (Ammin—)\ KA (A)), then T (A)(An —A) =0 on DA min, S0 it induces a map
F/\()") = [T/\()M)(A/\ - )\)] : gzj/\,max/gb/\,min - gD/\/gb/\,min,

whose restriction Fj g, (A) = FA(A)|, /3, . 18 invertible for A € res(A A g,) N A X\ 0 and leads to (2.2).
Moreover, since To (L) K (A) =1, we have

Fro, (W) ' =qi(Arg, — 1) KAL)
= qn(Ang, — 1) (Ax = DoA™k 50 010m

where ga : Da max = DA max/Da.min 1S the quotient map.
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For A € bg-res(A,) let H 1 » =ker(Ax max —A). Then, by [Gil et al. 2007a, Lemma 5.7],

reres(Ang,) ifandonlyif Damax =DABIHA, (2.6)
in which case we let g, %, , be the projection on %, according to this decomposition. If B, max(A) is
the right inverse of A, max — A with range KL s then

(Ana,— M) =79, 5., Brmax(A),

and Ba max (L) (A A max — A) is the orthogonal projection onto 3{*7 ,- Thus

779, Fp s BAmax () (AA max — A) = 79, %, 5

and therefore,
Fra, ()L)_l =qA TG, Jin s CU()C|)\|Um)’ﬂx/xml/m-
Let
D=DN/Dpmin, Knx=FHns+Damin) /DA min- (2.7)

Again by [Gil et al. 2007a, Lemma 5.7], either of the conditions in (2.6) is equivalent to D N K ; =0,
hence to

C‘QDA,max/gD/\,min =D& KA,A (2-8)

by dimensional considerations, since dim K, ; = dimJ, ; = d’. Let then p. K, be the projection on
D according to the decomposition (2.8). Then g, 7g, %, , = 7p.k,; 9~ and

Fra, ()\)_1 = ”D,KMQ/\CU(MMl/m)K|x/x0|l/m
= TTD.KpsKinsroVms (2.9)
since multiplication by 1—w (x|A| 1/my maps D max 1Nt0 DA min for every A.
We will now express F p, (*)~! in terms of projections with K, , in place of K ;. This will of
course requlre replacing D by a family depending on A.

Fix A € A let S, be the connected component of {¢ : ™A € A} containing Ry. Since A # C, Sy
omits a ray, and so the map Ry 3 ¢ > k, € Aut(D A max /DA, min) €xtends holomorphically to a map

Sk,m = ; = K{ € AUt(@/\,max/@/\,min)-

It is an elementary fact that

IC_](JTD’KA,A)ICC = 7TIC_]D K
A simple consequence of (2.1) is that /c f]fA »=Jn 5 em 1if & € Ry, hence also IC KA » =K em for
such ¢ since the maps gnlu, ; : K — K . are isomorphisms. Therefore

-1
K DK, = Ty (2.10)

if ¢ € Ry. This formula holds also for arbitrary ¢ € S, ,,. To see this we make use of the family
of isomorphisms PB(A) : Hx, — K (defined for A" in the connected component of bg-res(A,)
containing 1) constructed in Section 7 of [Gil et al. 2007a]. Its two basic properties are that A" — P (1) ¢
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is holomorphic for each ¢ € ¥, ;, and that «,B(1") = P(0" 1) if o € Ry. These statements are,
respectively, Proposition 7.9 and Lemma 7.11 of [Gil et al. 2007a]. Let

S i Damax = C
be an arbitrary continuous linear map that vanishes on J{, ;. For any ¢ € ¥, ;, the function

Spm 3¢ = {fikePO/™)p) € C

is holomorphic and vanishes on R, the latter because k;B(1/¢™) = P(A) for such ¢. Therefore
(f, kcPBA/e™)p) =0 for all ¢ € Sy . Since f is arbitrary, we must have «:P(1/¢™)p € K A . Hence

PO/ € iep  Hp s

Since P(A/¢™) : Ha ny —> H a5 em 1s an isomorphism, we have H 5 jom = Ké—_lfjf/\,k when ¢ € Sy . This
shows that
Knyjem = K;_IKA,A,
and hence that (2.10) holds for ¢ € S .
The principal branch of the m-th root gives a bijection

(Y™ ASTA = Sigm. (2.11)
The reader may now verify that for this root, with the notation ;C = ¢/|¢| whenever ¢ € C \ 0, one has
-1 -1 _ -1 o -1
ppguim Engon ) =101 01 mK G g3y tim <7Tlc(;;ko)l/mD,KA,x0)K(i/io)l/m (2.12)

when A € AN res(An g,). The arguments leading to this formula remain valid if A is replaced by a
slightly bigger closed sector, so the formula just proved holds in (A ~\ 0) Nres(Ax g,)-

The projection in parentheses in (2.12) is thus a key component of the resolvent of A, g, whose
behavior for large |A| will be analyzed in Section 4 under a certain fundamental condition which happens
to be equivalent to the condition that A is a sector of minimal growth for A, g,. We now proceed to
discuss this condition.

The condition that the sector A with A ~\.0 C bg-res(A,) is a sector of minimal growth for A, g, was
shown in [Gil et al. 2007a, Theorem 8.3] to be equivalent to the invertibility of A, g, — A for A in

Ar={rAe A:|A| = R},

together with the uniform boundedness in A of the projection rr,(‘f‘ll/ D.K;- Further, it was shown in [Gil
A m

et al. 2007b] that along a ray containing X, this condition is in turn equivalent to requiring that the curve
o>k, D[R, 00) = Grgr (D max/D n.min)
does not approach the set
VK sy =1{D € Grar (D n max/Damin) : DN Ky sy # 0} (2.13)
as o — 00, a condition conveniently phrased in terms of the limiting set

Q (D) = {D/ € Grgr (DA . max/D A min) : 0y — o0 in Ry such that ICQ_VID — D' asv — oo}.
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Aray {rio € C:r > 0} contained in bg-res(A ) is a ray of minimal growth for A, g, if and only if

Q7(D) ﬂWKMO = .
Define

QD)= {D/ € Gy (D max /D A,min) :
3{¢,}°, € C with Aoz, € A and ¢, — 00 s.t. lim, lc;l}mD =D}, (2.19)

in which we are using the holomorphic extension of ¢ — k, to Sy, ,» and the m-th root is the principal
branch, as specified in (2.11). We can now consolidate all these conditions as follows.

Theorem 2.15. Let A be a closed sector such that A ~. 0 C bg-res(A,), and let Ly € A. The following
Statements are equivalent:
(1) A is a sector of minimal growth for Ax g, .

(ii) There are constants C, R > 0 such that Agr Cres(Ax g, ) and ” T
every ¢ such that Lol € Ag.

(i) ;(D)NVk,, =2.

< C for
K l/mD KA A0 LD A, max/DA,min) — f

Proof. By means of (2.10) we get the identity

_ -
nlc;_ll/mD,K/\_xU —"gl/m’clkol‘/’”( m DK oL Ky opimEiims

which is valid for large A € A, { = X /Ag, and 2 =¢/|¢|. Since Kg1/m and IC_l}m are uniformly bounded,
Theorem 8.3 of [Gil et al. 2007a] gives the equivalence of (i) and (ii).

We now prove that (ii) and (iii) are equivalent. Let €A max =D 1 max/D A, min and assume (iii) is satisfied.
Since 2, (D) and Vg, 4 are closed sets in Grdn (€ . max), there is a neighborhood U of Vg, g and a
constant R > 0 such that if [Ag¢| > R then Kgl/m D g. Let § : Grgr (€ max) X Grg' (€A max) = Rbe asin
Section 5 of [Gil et al. 2007a]. Since Vg, X is the zero set of the continuous function V' +— 8(V', KA 3,),
there is a constant 59 > O such that § (IC | /,,ID Kn.2,) > 8o for every ¢ such that Ag¢ € Agr. Then
Lemma 5.12 of the same reference gives (11)

Conversely, let (ii) be satisfied. Suppose 2, (D) N Vk,, #* & and let Dy be an element in the
intersection. Thus Dy N K, ;, # {0} and there is a sequence {¢,}2, C C with Ao, € A such that
|¢,| — oo and

DV=K;}MD—> Dy asv— oo.
v

If v is such that [Ag¢,| > R, then A¢¢, € res(An g,) and DN K, ., = {0}, so D, N K, ;, = {0}. Thus
for v large enough D, €Vk, , .

Pick u € Dy N K 1 5, with |[u]| = 1. Let wp, be the orthogonal projection on D,. Since D, — Dy as
v — oo, we have mp, — mp,, sou, =np,u — wp,u =u. For v large, D, ¢OVKA,A0’ sou, —u #0. Now,
since u, € Dy, u € K, »,, and u, = u,

u,—u u
v )— v — 00 asv— oo.

It =
D“”“-*o(uuv—un ity —u]

But this contradicts (ii). Hence 27 (D) ﬂVKMo =a. U
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If 9, is not k-invariant, the asymptotic analysis of F, g, (*)~! (through the analysis of the projection
7p,K, ;) leads to rational functions of the form

; ; AL AN Tog M)
A i Jogpy = P, AP, log 2.16
rOT log4) gAir, o AN Tog A)’ (2.16)
with ; € R for [ =1, ..., N, where ¢(z1, ..., zn+1) is a polynomial over C such that
lg ™, LAY log A)| > 8,

for some § > 0 and every sufficiently large A € A, and

P A Togh) = 3 dgr (WA logk A,
o,k

with u = (U, ..., Uy), @ € Név, k € Ny, and coefficients
Aok € COO(A N0, $(gzj/\/gb/\,min, gb/\,max/gb/\,min)),

such that aui (0™ ) = Kpaqk () for every g > 0.

Proposition 2.17. If A is a sector of minimal growth for A, g, , then for R > 0 large enough, the family
Fra, (X)) = FAx(M)|, /9, i 1S invertible for A € Ag and Fj g, M)~ has the following properties:

(i) Fra, (W)€ C®(AR; LDA/D A min> Damax/Da.min)), and for every a, B € Ng we have

H"\;ﬂl/mafaf Fra, )7 =0y as |A] — oo, (2.18)

with v = 0.

(i1) For all j € Ny there exist rational functions r; of the form (2.16) and a decreasing sequence of real
numbers 0 = vy > v| > - -+ — —00 such that for every J € N, the difference
J—1

Faa, )7 = 3 rjr, o ATEY Tog ) AV (2.19)
j=0

satisfies (2.18) with v =v; + ¢ for any ¢ > 0.

The phases (1, ..., uy and the exponents v; in (2.19) depend on the boundary spectrum of A. In
fact, wy, ..., uy € Mand v; € € for all j; see (1.5) and (1.6).

This suggests the introduction of operator-valued symbols with a notion of asymptotic expansion in
components that take into account the rational structure above and the k-homogeneity of the numerators.
The idea of course is to have a class of symbols whose structure is preserved under composition, differen-
tiation, and asymptotic summation. In the Appendix we propose such a class, S&: (A E, E ), a subclass
of the operator-valued symbols S®(A; E, E) introduced by Schulze, where E and E are Hilbert spaces
with suitable group actions. The space SQ‘;;r (A; E, E) is contained in §"*¢(A; E, E) for any & > 0.

As reviewed at the beginning of the Appendix, the notion of anisotropic homogeneity in S (A; E, E)
depends on the group actions in E and E. Thus homogeneity is always to be understood with respect to
these actions.

In the symbol terminology, we have

Fra, W) e (SY NSOY(AR: Dr/D amin: Damax/D.min):
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where % 1 /D A min carries the trivial action and DA max /DA min 18 €quipped with k,.

Proof of Proposition 2.17. Since A is a sector of minimal growth for A, g, , there exists R > 0 such that
(An.g,— A) is invertible for A € Ag, which by definition is equivalent to the invertibility of Fx g (}).
Since the map ¢ +— Kii/m is uniformly bounded (recall that g: =¢/I¢]), the relation (2.12) together with
Theorem 2.15 give the estimate (2.18) for « = g = 0. If we differentiate with respect to A (or A), then

0 Fna, (W) = =Fna, ) 03 Fag, W1Fra, (W) = =Fra, W) [ FAOFra, W)
Now, if we equip D /D A min With the trivial group action and D max /D A,min With k,, then
FA(A) : DA max/Da,min = DA/D A min
is homogeneous of degree zero, hence [|9; Fx(A)k ) 1/m|| is O(JA]~") as || = oo. Therefore,

i pm 2 Fre, )~ = ORI as [A] = oo,

Wll/m O Fra, (A)~! can be written as

_[Klzlll/m F/\,@/\ (A')_l][a)hF/\ (}\')K|M|/M][K|;|11/’” F‘/\’@A ()\,)_1],

and the first and last factors are uniformly bounded by our previous argument. The corresponding esti-
mates for arbitrary derivatives follow by induction.
Next, observe that by (2.12),

since k

x(‘,‘/m D,KA,AO)’C;}W
with ¢ =A/Xp and g: =¢/1¢|. For d € Ag letk(X) =k, 1/m and IQ(A) = lcTI}m. Then k(X) is a homogeneous
symbol in SO (A g; D x max/D a.min> Da.max/D a.min)» Where the first copy of the quotient is equipped with
the trivial action and the target space carries k,. Similarly, Ig(k) e SOAR: DA /DA mins DA max/ DA, min)
with respect to the trivial action on both spaces.

Finally, the asymptotic expansion claimed in (ii) follows from Theorem 4.13 together with the homo-
geneity properties of k(1) and k(). O

As a consequence of Proposition 2.17, and since BA(A), 1 — BA(A)(AA—2X), and Tx(A) in (2.2) are
homogeneous of degree —m, 0, and —m, in their respective classes, we obtain:

F/\’@A()\,)_l = Ké-l/m (7T

Proposition 2.20. If A is a sector of minimal growth for Ax g, , then for R > 0 large enough, we have
(Ang, =07 e (S5 NS (Ar; x 2L, Dy ),

where the spaces are equipped with the standard action k,. The components have orders vt with v € €
and their phases belong to IM; see (1.5) and (1.6).

3. Limiting orbits

We will write € instead of D x max/DA.min and denote by a : € — € the infinitesimal generator of the
R action (g, v) — ICQ_IU on €, so that ICQ_ID = ¢'*D with t = log o. In what follows we allow ¢ to be
complex. The spectrum of a is related to the boundary spectrum of A by

speca = {—io —m/2:0 €specy(A), —-m/2 <Imo < m/2}. 3.1
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For each A € spec a let €, be the generalized eigenspace of a associated with A, let 7, : € — € be the
projection on €, according to the decomposition

€ = EB €.

AEspeca

Define N : € — € and N, : €, — €, by

N=a— Z )\'T[)u N)\:NI%)L’

Aespeca

respectively. Thus N is the nilpotent part of a. Correspondingly, let

ad:€—>¢ d= Y (Imi)m, (3.2)

Aespeca

so o’ is the skew-adjoint component of the semisimple part of a.
For 1 € Re(spec a) let
L= D &
AEspeca
Rei=pn
let 77, : € — € be the projection on € . according to the decomposition
€= @ &
eRe(spec a)
and set
N, = N|%H 1€, — €.
Fix an auxiliary Hermitian inner product on € so that @5 €, is an orthogonal decomposition of €. Then
o’ is skew-adjoint and e'® is unitary if 7 is real.
Proposition 3.3. For every D € Gryr(€) there is Do € Grgr(€) such that
dist(e’®D, ¢’ Do) > 0 as Ret — coin Sy = {t € C: [Im¢| <6} (3.4)
for any 6 > 0. The set
Qy (D) ={D" € Grg«(€) : 3{t,} C Sp : Ret, - 00 and limy_. o "D = D'}
is the closure of
{¢'“ Do i 1 € Sp).

We are using Q1 for the limit set for consistency with common usage: we are letting Re ¢ tend to
infinity.

If & is a vector space, we will write %[z, t~!] for the space of polynomials in ¢ and ¢ ~! with coefficients
in & (that is, the %-valued rational functions on C with a pole only at 0). If p € %[z, 71, let ¢y ( p) denote
the coefficient of ¢* in p, and if p # 0, let

ord(p) =max{s € Z: cs,(p) # 0}.

The proof of the proposition hinges on the following lemma, whose proof will be given later.
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Lemma 3.5. Let D C € be an arbitrary nonzero subspace. Define D' = D and by induction define
= max{u € Re(speca) : 7, D' #0}, D' =kert,|p, Dy, =(D"HIn D,
starting with | = 1. Let L be the smallest | such that D'*' = 0. Thus
T lpt i Dy, — 7, Dy, s an isomorphism (3.6)
and D = é D,,,. Then for each | there are elements
- Py €7y Dy lt, 1/t], k=1,...,dimD,,,

such that with y .

Gi (1) = "™ pr (1),
we have ord c},lc = 0 and the elements . )
fork=1,...,dim D,,, are independent.

Proof of Proposition 3.3. Suppose D C € is a subspace. With the notation of Lemma 3.5 let
Dy, oo =span{g; :k=1,...,dimD,,}.

Since e’ Ny is invertible and c},l( (1) = gfc + fzi (t) with ﬁi (t) = O(t~") for large Ret (t € Sp), the vectors
ﬁll( (¢) form a basis of 7, D,, for all sufficiently large ¢. Using (3.6) we get unique elements

pheDylt, 1/t], 7y p.=pr.
For each [ the p,l((t) give a basis of D, if ¢ is large enough, and therefore also the
e Mptt), k=1,...,dimD,,,
form a basis of D, for large Re . Consequently, the vectors
e Mph(ty, k=1,...,dimD,, I=1,...,L,

form a basis of ¢’®D for large Rez. We have, with N, = N, ,

- l A— N, 1
% l/llpk(t) — Z ol A=) pt ZNAG
A€speca
— Z 6[()\_“1)6[Nk7'[)hp,l€(t)+ Z et()\_m)etNkT[}hpllc(t)
Aespec a Aespec a
Re A=y Re A<y
=¢' e’NWr?M,pf((t) + > e’(A_"’)e’N*n,\pfc(t)
Aespeca
Re A<y
ta 1 =l t(A— tN;, l
=" (gt @)+ Y e A=iDe 0. Py (1)
AEspec a
Re A<y

50 e/ pl (1) = 'V gt + hl (1), where hl (1) = O(t~") as Ret — oo in Sp. It follows that (3.4) holds
with Dy, = @zL:l D, .. This completes the proof of the first assertion of Proposition 3.3.
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Remark 3.7. The formulas for the v,l{ (1) =e'%e p,l( (t) given in the last displayed line above will even-
tually give the asymptotics of the projections 7 p g (assuming ¥ x N Q1 (D) = &, see Theorem 2.15).
Note that the shift by m/2 in (3.1) is irrelevant and that the coefficients of the exponents in the formula
for v,lc (t) belong to

{A—Rek/:k,k’especa, Re)»fRe)J}. (3.8)

Because of (3.1), this set is equal to
—i{o —ilmo’: 0,0 € spec,(A), —m/2 <Imo <Imo’ <m/2}. (3.9

If all elements of {o € spec,(A) : —m /2 < Imo < m/2} have the same real part, then all elements of
(3.8) have the same imaginary part v, the operator a’ is multiplication by iv, and we can divide each of
the v,’c (t) by €'"" to obtain a basis of e/®D in which the coefficients of the exponents are all real.

To prove the second assertion of the proposition, we note first that (3.4) implies that QZ(D) is con-
tained in the closure of {¢’® Dy, : ¢ € Sg}. To prove the opposite inclusion, it is enough to show that

¢'" Do € Q5 (D) (3.10)

for each ¢t € Sy, since Qg (D) is a closed set. Writing e'? Do, as e/ ™! @ (eRe1 @' Dy further reduces the
problem to the case 6 = 0 (that is, # real). While proving (3.10) we will also show that the closure & of
(e YDt € R} is an embedded torus, equal to Q(J{ (D).

Let {kk}le be an enumeration of the elements of spec a. Define f : RK x Gry/(€) — Grg»(€) by

f(r, D) = X" p,

t=(t!,..., tX). This is a smooth map. Since the 7;, commute with each other, f defines a left action
of RX on Gry»(€). For each v € RX define

fr : Grgr(€) — Grgn(€),  fo(D) = f(z, D),
and for each D € Grg»(€) let
PR = Gryr(®), fP(r)= f(z, D).

The maps f; are diffeomorphisms.
We claim that fPe factors as the composition of a smooth group homomorphism ¢ : R — TX " onto
a torus and an embedding 4 : TX - Gry» (€),

pEe 0
D
A
Gryr (€).

Both ¢ and 4 depend on D.
To prove the claim we begin by observing that {u € TRX : dfP=(u) = 0} is translation-invariant.
Indeed, let 7o € RX, let v = (v', ..., vX) € RX, and let y : R — RX be the curve y(¢) = tv. Then

P+ () = fo 0 £ (¥ (1)),
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SO
dfP= (X 0¥kl gy) = dfgy 0 df P> (X v504]0).

Since f7, is a diffeomorphism,
> 049,k € [kerdf P : Ty R — T s (1) Gran (€)] <= Y v*9,4lo € [ker df P : ToRX — Tp_Gry (€)].

Thus the kernel of df P~ is translation-invariant as asserted.

Identify the kernel of df P~ : TyRX — Tp_ Gr,(€) with a subspace ¥ of RX in the standard fashion.
Then fP> is constant on the translates of ¥ and if R is a subspace of RX complementary to &, then
fP>|g is an immersion. Renumbering the elements of spec a’ (and reordering the components of R
accordingly) we may take % = RX "% 0.

Since fPx|g is an immersion, the sets

Fp={teR: fP=(1)=D"}

are discrete for each D’ € fP~(R). Using again the property f= (1) +12) = f, o f P> (1) for arbitrary
71, o € RX, we see that & D, 1s an additive subgroup of R and that f Do is constant on the lateral classes
of ¥p_ . Therefore f Do) factors through a (smooth) homomorphism ¢ : R — R /% p_ and a continuous
map R/Fp, — Grgr(€). Since f Do i 277 -periodic in all variables, 277K ¢ F Dos SO R/Fp_ is indeed
a torus TX'. Since ¢ is a local diffeomorphism and fP> is smooth, & is smooth.

With this, the proof of the second assertion of the proposition goes as follows. Let L C RX be the
subspace generated by (Im Ay, ..., ImAg). This is a line or the origin. Its image by ¢ is a subgroup H
of TX', so the closure of ¢ (L) is a torus G C TX', and h(¢ (L)) is an embedded torus ¥ C Grg(€). On
the other hand, ho¢ (L) = fP=(L) is the image of the curve y : f — €'® Dy, so the closure of the image
of y is . Clearly, Q(J)“(D) C %. The equality of Q(T(D) and & is clear if y is periodic or L = {0}. So
assume that y is not periodic and L # {0}. Then H # G and there is a sequence

{gv}gozl CGNH

such that g, — e, the identity element of G. Let v be an element of the Lie algebra of G such that H is the
image of ¢ — exp(fv). For each v there is a sequence {1, p};ozl, necessarily unbounded because g, ¢ H,
such that g, =lim,_, o exp(t,,,v). We may assume that {,, p};o: | 1s monotonic, so it diverges to +00 or
to —oo. In the latter case we replace g, by its group inverse, so we may assume that lim,_, t, , = 00
for all v. Thus if g € H is arbitrary, then i(gg,) € Q(J)’(D) and h(gg,) converges to h(g). Since Q(J)F(D)
is closed, this shows that 2o ¢ (H) C Q(J)F(D). Consequently, also & C Q(')"(D).

This completes the proof of the second assertion of Proposition 3.3. (|

As a consequence of the proof we have that Q;(D) is a union of embedded tori:

Qf (D)= | €"{¢'“ Dot R}
s€[—0.0]

The proof of Lemma 3.5 will be based on the following lemma. The properties of the elements
]3,1( e m,, Dy, lt, 1/t] whose existence is asserted in Lemma 3.5 pertain only to € 1> N, 1> and the subspace
7T, Dy, of € ;- For the sake of notational simplicity we let W' =7, D, and drop the j; from the notation.
The space € comes equipped with some Hermitian inner product, and N is nilpotent.
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J M;
Lemma 3.11. There is an orthogonal decomposition W = @ P °WJ’” (with nontrivial summands) and
nonzero elements j=0m=0
P" € Hom(Wj . Wi)[2, 17", (3.12)
where
M; / J
Win= QW W=D
m'=m j’=0

satisfying the following properties:
(1) PO = Ly,

(2) Let Qm (t) = e’NPm(t) and n = ord(Qm) Then the sequence {n’"} M L, is strictly decreasing and
conszsts of nonnegatlve numbers

(3) Let
Then i1 My
Wjm1 = (G~ <@ EB Vi 4 @ °V’"> (3.14)
=0 m'=0
(4) There are unique maps F; m '"H Wi mg1 — °W",’ such that
j—1 My
Gm+ Z Z Gm m m+l+ Z Gm Jm]m-i-l:O (3.15)
=0m'=0
holds on W; 11, and
-1 My | W
N e TR S

The lemma is a definition by induction if we adopt the convention that spaces with negative indices
and summations where the upper index is less than the lower index are the zero space. In the inductive
process that will constitute the proof of the lemma we will first define W} ,, 1 CWj ,, using (3.14) starting
with suitably defined spaces W; ¢ and then define

W =Wy VW, .

Note that the right hand side of (3.14) depends only on W} ,,, P;" (through GT) and the spaces °Vj'7’/ with
Jj' < j and m’ arbitrary, or j' = j and m’ < m. The relation (3.15) follows from (3.14) and induction, and
then (3.16) (where P;” actually means its restriction to W; ,,41) is a definition by induction; it clearly
gives that the PJ’.”(t) have values in °ij as required in (3.12).

We will illustrate the lemma and its proof with an example and then give a proof.

Example 3.17. Suppose € is spanned by elements e; ; (j =0, landk =1, ..., K;) and that the Hermit-
ian inner product is defined so that these vectors are orthonormal. Define the linear operator N : € —¢
so that Nej; =0 and Nej; =ej 1 for 1 <k < K;. Thus Nkej,k =0 and Nkej’k+1 =ej1 #0. Pick
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integers 0 < 59 < 51 < min{Ky, K}, and let
W = span{eg g,+1, €1,5,4+1, €0,5,+1 + €15, }-

If w e W and w # 0, then ¢’ N w is a polynomial of degree exactly sg or s1. Let Wo o =W Nker Nsotl
that is,

Wo,0 = span{e s)+1}-
Then e’Nw is polynomial of degree 5o if w € Wy 9. Let Wy o0 =W Nker N1t ﬂW&O. Thus
Wi,0 = span{ey 5, +1, €05, +1 + €15}
and e’V w is polynomial of degree exactly s1 if w € W o and w # 0. With these spaces we have

W =Woo®Wi,1

as an orthogonal sum. By (1) of Lemma 3.11, P(g) = ly,,. So eV Pg is the restriction of
~ S0 4k
IN _ " Sk
et =3 7 —N
k=0

to Wo.o, ng =50, and G8 is (l/so!)1\750 restricted to W o. Thus Y0 = span{eq.1}. The space WY 1, defined

using (3.14), is the zero space by the convention on sums where the upper index is less than the lower

index. Thus My = 0. We next analyze what the lemma says when j = 1. As when j =0, P =Ly, 8
etV P! is the restriction of

to W.0. Hence ”(1) =1, and G(l) = (1/s1!)]\~]“1 lw, ,- The preimage of °Vg by G(l) 18
Wi,1 = spanf{eg s, +1 + €1.5,}

and so °W(1) = span{e; 5,+1} and °V(]) =span{e; 1}. With w = eq 5, +1 + €15, Wwe have

1
GII,U——' GO eOs0+l7
St
so with F(? ’11 Wi — °W8 defined by
0,1 _ 0!
FO,I w = eO so+1

we have G0 + G0 0 1 = 0. Formula (3.16) reads

1 —s0 20,1
Pi(t) = Iy, +1t" SOFO’1
in this instance, and

~ st ko s1—so S0 4k
N »l t k olt t
et Pl (l‘)w = g FN k‘N €0,s0+1-
k=0 =0

s1!
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In the first sum the highest order term is #°!/s1! e 1, while in the second it is 7%9/s0! eg,1. Taking into
account the coefficient of the second sum we see that eV Pl1 (r)w has order < s;. A more detailed
calculation gives that the order is s; — 1, and that the leading coefficient is given by the map

1 B so!
(s1=D!  s1!(so—1)!

its image spans °Vi. Note that °V8 —|—°V(1) —|—°Vi is a direct sum and is invariant under N.

w ( )60,2+61,1;

Proof of Lemma 3.11. We note first that the properties of the objects in the lemma are such that

J M;
Dyoo = Z Z OVJm (3.18)
j=0m=0

is a direct sum. Indeed, suppose we have wT € °ij, j=0,...,J,m=0,..., M; such that

m,, m __
Z > Gw} =0.
]:O m=
If some w’j?’ is nonzero, let

Jo = max{;j : Im such that w? #0}, mo=max{m: w% # 0},

so that w%o # 0. Thus

mem Jo—1 M; mo—1 Jo—1 M; mo—1
Giwy == 2 2 Gjwi— > Gjwje > 3 V"= > Vi,
j=0 m=0 m=0 j=0 m=0 m=0

therefore w"'® € W; .11 by (3.14). But also w"'° € W™, a space which by definition is orthogonal to
Jo JO’ 0+ m . . Jo Jo . . .
W;,.mo+1. Consequently w joo =0, a contradiction. It follows that (3.18) is a direct sum as claimed, and
in particular that the maps
m . nm n
Gy hwy Wi = ;
are isomorphisms.
Note that e’V w is a nonzero polynomial whenever w € W' ~. 0 and let

{s;}/o = {dege™Mw:weW, w#0)

be an enumeration of the degrees of these polynomials, in increasing order. Let W_; o = {0} C W and
inductively define

Wio=Wnker N+ nWE, (. j=0,.... J.

J
Thus Wj o C W and W = € Wj o is an orthogonal decomposition of W'; moreover,
Jj=0
Ny Wjo— €

is injective for j =0, ..., J, and if w € Wj o \. 0 then e'Nw is a polynomial of degree exactly s;j. The
spaces W will be defined so that @mW'Jn =W; o.
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Let P)(t) = Fy,,, let Q)(1) = etV P)(t). Then ord(QO) = 50 and G = 1/s0! N~‘0|0W00 By (3.14),
Wo.1 is the preimage of the zero vector space. Since N0 is injective on °W0 0, Wo.1=0, °W0 =Wy, and
My =0. Let °V8 = GO(WO). This proves the lemma if J = 0.

We continue the proof using induction on J. Suppose that J > 1 and that the lemma has been proved
for W' = @]J-;é Wj,0, so we have all objects described in the statement of the lemma, for W’. The
corresponding objects for W o are then defined by induction in the second index, as follows.

First, let PO(t) = Ly 4 QJ — !N P? (a polynomial in ¢ of degree n(} =ysy)and G(} = cSJ(Q(}).

Next, suppose we have found

WyoD - DWyy—1 and P e LW, W)t 17']

so that the properties described in the lemma are satisfied for j < J and all m,or j =J andm <M — 1.
As discussed, it follows that

M=2 -1 M;
2 VY Z Z
m=0 =0 m=0
is a direct sum and that the maps
GTloerv; LW =T (3.19)
defined so far are isomorphisms. Suppose further that the n’; = ord(Q"/), m =0, ..., M—1, are non-

negative and strictly decrease as m increases. In agreement with (3.14), let

M—1 g lM
Wy = (G )1(Z°Vm+2 ZW)
m=0 j=0m=0

a subspace of the domain Wy j—; of G]]W_l. Define WJM_l =Wr pm—1 HW]%M. If w € Wy u, then
J—1 M;
GYw = Z v+ Z 0
m=0 Jj=0m=0
uniquely with v;’ € “V;". Since the maps (3.19) are isomorphisms, there are unique maps

jJ OW]M—>W

j=0,....,J—landm=0,...,M;,or j=Jandm=0,..., M —2 such that

Gy + Z G"F ’”M+J21 % GnFIM =
=0 m=0
on Wy y, that is, (3.15) holds. Define
_ J—1 M, -
Py =pPy "+ Z i My Z Z i prEmM

m=0

50 (3.16) holds. Let Q) = etNP}”. Because of (3.13), each term on the right in

M Mot | M2 e R =l
b n —n m )
QJ= J +Zotj JQ]F],J +ZZt
m=

i
j=0 m=0 '
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has order n]y_l, SO c,,(QIJ”) =0ifn> nly_l. If QZJ"I #0, let nly = ord(Qle[). A fortiori nj < nﬁ/[ I
We now show that if Qly =0, then Wy s =0, so M; = M — 1 and the inductive construction stops.
Let F} " m+] : Wjms+1 — Wj,, be the inclusion map. Note that the combination of indices just used

does not appear in (3.15): these maps are not defined in the statement of the lemma. With this notation

m—=1 !

DL A i L (3.20)
form=1,..., M and some FI}" € LWy, WH[t, t~1]. Let ?,, be the set of finite strictly increasing
sequences v = (v, Vi, ..., V) of elements of {0, ..., m} with v9 =0 and vy =m. For v = (vg, ..., 1x) €
P (m > 1) define

V _ F})O}VI 0---0 F"'nf]—]y‘)m’
n] — (nvl—l 0) + (nVZ 1 n‘}l) I (n;kfl _n‘l;k—l ]

Since the n’f/ strictly decrease as m' increases, the numbers n’; are strictly negative except when v is
the maximal sequence vy in {0, ..., m}, in which case n'}’"a" =0 and F" is the inclusion of Wy ,, in
Wy o. It is not hard to prove by induction on m, using (3.20), that
Pr=P) S UFY 4 HY (3.21)
ve®,,

for all m > 1 where H € L(Wy ., W)[t,t7']. If QY =0, then PM =0, so, since N*' H} =0,

N PM = Y "INV F)=0.
ve@’M

In particular, NI FJ”max = CO(N 8 P}” ) =0. Since N7 is injective on Wy o, we conclude that the inclusion
of Wy pr in Wy o is zero. This means that Wy s = 0, so the inductive construction stops with My =M —1.

We will now show that there is a finite M such that QI}’I = 0. The inductive construction gives, as long
as Q' # 0, the numbers n'y = ord(Q’) which form a strictly decreasing sequence in m, with n(} =sy.
Suppose nl}/] 1>, QI}’I # 0, and njj"[ < 0. In particular, the coefficient of ° in QIJ” vanishes. Using
(3.21) with m = M we have

ts+nj

NP = Z NF)+eNHM.
vePy s=0

The coefficient of ¢° is
co(etNP}”) =Y 1

n )'N TFY +co(e™ HMY:
vePy J

recall that n} < 0. Since H}” maps into W, we have NS CO(H}V’) =0, and since NS lw, o =01f s > s,
N% N~ =0 if n", #0. Thus ~

NS] Co(etNP}W) — NS] F;max’
where v, = (0,1, ..., M). Since co(e’N P}V’ ) = 0 by hypothesis, since F}"“’““ is the inclusion of W}
in Wy o, and since N7 is injective on Wy o, Wy p = 0. U
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Proof of Lemma 3.5. Apply Lemma 3.11 to each of the spaces W, =7, D,,. The corresponding objects
are labeled adjoining / as a subindex. Get in particular, decompositions

1~ DB

j=0 m=0

for each /, and operators G''; : W) — V"), C €,,, such that

g Mji J M J Mj
m . mn — m
DD iy - DDW: — Due =D D
j=0 m=0 j=0 m=0 j=0 m=0

is an isomorphism. Let d;"l =dim °ijl and pick a basis
m m

of W™

HiE Jj=0,....J,m=0,...,M;,. Then ﬁ%,k(t) =1t J’Pml(t)wJ 1k € W ,. These elements

g €Wyl t™, forj=0,.... 0, m=0,....M;;, I=1,...d7,

are the ones Lemma 3.5 claims exist. Indeed, since Q’J’.' HOES eV Pm (1),

tN,, —n'
lim e ™t flP nOwd e =G7 Wt .
Retr—o0
teSy

Since the G;f’lw;”l ;. form a basis of D), , the " P]’."l (t)w’}’l «» form a basis of W, for all 7 € Sy with
large enough real part. O

4. Asymptotics of the projection

With the setup and (slightly changed) notation leading to and in the proof of Proposition 3.3, given a
subspace D C € and the linear map a: € — € we have, for fixed @ > 0andr € Sy ={r € C: |Im¢| <6},
e'*D = span{vi(t)}, Ret>0

with
=g+ ¥ 0. 4.1)
AESpec a

Re A<y

The g (¢) are polynomials in 1/¢ with values in € > the collection of vectors
ook = lim g (t)
—00

is a basis of D, the 1y form a finite sequence, possibly with repetitions, of elements in {Re A : A € spec a},
and we have

P () = ™Mo pr(0),
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where the p(t) are polynomials in 7 and 1/¢ with values in €. The additive semigroup &, C C (possibly
without identity) generated by the set (3.8) is a subset of {* € C: ReA < 0} and has the property that
{0 € G4:Re v > u}is finite for every u € R.

Proposition 4.2. Let K € Grg (€) be complementary to D, and suppose that

VkNQ (D)= 2. (4.3)
There are polynomials py(z', ..., zN, t) with values in End(€) and C-valued polynomials
g9z, ... 20

such that

3C, Ry >0 suchthat |qg ("™, ... "™ 1)| > C ift € Sp, Ret > Ry 4.4)
and such that

10 it Tm A it Tm A
Tetap K = ﬁeZGQ ¢ qf(igtelmkl’l""."'éiflm/\N ,Nt’)t), t €Sy, Ret > Ry,

with uniform convergence in norm in the indicated subset of Sy.

Proof. Let K C ¢ be complementary to D as indicated in the statement of the proposition, let u =

[t1, ..., uqs] be an ordered basis of K. Write g for an ordering of the basis {gxo x} 0f Dso. With the
vk (t) ordered as the g  to form v(¢), we have
a(t) 0
[v(®) u]=[g u]- [ﬁgt; 1} : (4.5)
where
at)y=) Y MM, 0), BO=Y X dPTBL®). (4.6)
k Aespeca k Aespeca
Re A<pux Re A<

The entries of the matrices oy, (f) and By, (¢) are both polynomials in # and 1/¢, but only in 1/¢ if
Re A = uy. Define

P =3 ¥ M MWan@), an=Y ¥ & Ma,0), 4.7)
k Aespeca k Aespeca
Re A=pux Re A<pg

and likewise 8 (¢) and B (t). Note that a(¢) and ,é (t) decrease exponentially as Ret — oo with [Im¢|
bounded.

The hypothesis (4.3) implies that [
invertible for such ¢. In fact,

a(t) 0
B@) 1

] is invertible for every sufficiently large Re#, so a(¢) is

there are C, Ro > 0 such that |det(ee(1))| > C if t € Sy, Ret > Ry. (4.8)

For suppose this is not the case. Then there is a sequence {t,} in Sy with Re#, — 0o as v — oo such that
deta(t,) — 0. Since both a(#,) and B(r,) are bounded, we may assume, passing to a subsequence, that
they converge. It follows that ¢”“ D converges, by definition, to an element D’ € Q;(D). Also the matrix
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in (4.5) converges. The vanishing of the determinant of the limiting matrix implies that K N D" # {0},
contradicting (4.3). Thus (4.8) holds.
If ¢ € € then of course

1
¢
= ul- s
¢=[g u] |:<p2]
where the ¢’ are columns of scalars. Substituting
B a)™ 0
g u)= (o) u)-|_ e ]

gives
_ a®)™ 0][e'] a(n)™'e! .
¢ = [U(Z‘) u] : |:—,3(l‘)0{(l‘)_1 Ii| |:¢2] - [v(t) u] ) |:—,3(l‘)()l(l‘)_l(p1 +(p2i| ’

¢=v(0)- a9 +u- (=N ¢! +¢7).
This is the decomposition of ¢ according to € = ¢'*D @ K ; therefore

hence

Teep,xd =v(t)-a(t) o',
Replacing v(t) = g - «(¢) +u - B(t) we obtain
Teap k¢ = (g -a(t)+u-BO)a®) o' =(g+u-pO)a@) o' (4.9)
The matrix o) (¢) is invertible because of (4.8) and the decomposition « (1) = @ (1) + @(r), so
B =) U +ane® @)
=B @) zi)(_l)l[&(”“(m o' @10

The series converges absolutely and uniformly in {# € Sy : Ret > Ry} for some real Ry € R. The entries
of «©@(z) are expressions

. N
Z eztImA Z C)\,Utfv;

Aespeca v=0
hence
deta @ (1) = g(e" ™M, ..., MY 1)),
for some polynomial q(zl, ..., ZV,1/1). Note that because of (4.8),
there are C, Ry > 0 such that |det(e’(1))| > C if t € Sy, Ret > Ry. 4.11)

Since @ (1)~ = (det @ (7)) "' A(r)" where A(r)" is the matrix of cofactors of @ (¢), (4.10) and (4.6)
give
Bya) ' = 3 ry(0)e” (4.12)
DASIGH
where G, was defined before the statement of Proposition 4.2 as the additive semigroup generated by
{, —RelA : A, ) €speca, Rel <Rel’} and ry(¢) is a matrix whose entries are of the form

pﬁ(eitlm)\]’ o eitImAN’ ¢, l/l)
q(eitlmkl’ e eillm)\.N’ 1/[)”” ’
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for some polynomial py(z!,...,z",t, 1/t) and nonnegative integers ny. Multiplying the numerator
and denominator by the same nonnegative (integral) power of ¢+ we replace the dependence on 1/¢ by
polynomial dependence in e//1™m*1 i Im*~ ¢ only. This gives the structure of the “coefficients” of
the e’V stated in the proposition for the expansion of 7 p k. (I

The terms in (4.12) with Re 9 = 0 come from B (1)o@ (r)~!. So the principal part of 7w,a p g is
o (weap, k)¢ = (g +u- O NV He!
This principal part is not itself a projection, but
16 (Terap k) = Tparp_ kIl = 0 as Rer — oo, 1 € Sp.

We now restate Proposition 4.2 as an asymptotics for the family (2.10) using the notation « for the
action on € and express the asymptotics of JT,C;ll/ . D,k 1n terms of the boundary spectrum of A exploiting
(3.1). Condition (4.14) below corresponds to our geometric condition in part (iii) of Theorem 2.15
expressing the fact that A is a sector of minimal growth for A, g, . The Q-limit set is the one defined in
(2.14). Recall that by ¢ /" we mean the root defined by the principal branch of the logarithm on C~R_.
We let 1o #~ 0 be an element in the central axis of A and define A ={C : Ao € A}; this is a closed sector
not containing the negative real axis.

Let G C C be the additive semigroup generated by

{o —ilmo’:0,0" €spec,(A), —m/2 <Imo <Imo’ <m/2}.
Thus —i& = G,. Let 01, ..., oy be an enumeration of the elements of
¥ =spec, (A)N{—m/2 <Imo <m/2}.

Theorem 4.13. Let K € Gry (€) be complementary to D, suppose that

V¢ N Q5 (D) = 2. (4.14)
Then there are polynomials py(z', ..., z",t) with values in End(€) and C-valued polynomials
qﬁ(zl,...,zN,t)
such that
3C, Ry >0 such that |gy(¢'ReO/m, . giReon/m ny| > C ifc e A, |¢] > Ro, (4.15)

and such that

—iv/m iReoi/m o iReoN/m’ —110 -
’K=Z§ Py (& ooes 8 m__log?) e, || > Ro,

e, qﬁ(giReﬁl/m,“_’g-iReaN/m,m—l logg') ’

K I/mp
¢ Ve

with uniform convergence in norm in the indicated subset of A.

The elements ¢ € & are of course finite sums ¥ =) n (0 —i Im o) for some nonnegative integers
njr, with o, oy € ¥ and Imo; < Imoy. Separating real and imaginary parts we may write /M as a
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product of factors
é-njk(lmaj—lmak)/m

é-injk Re ak/m
We thus see that we may also organize the series expansion of T, K in the theorem as
¢l/mp’

—iv/m 3 iReoyi/m iReony/m -1
T = g Py (L s oes € L m log ¢)
KZ]/'"D’ Pl qﬁ(é-tReal/m’“',g-zReo*N/m’m llogg-)

9

where G C R is the additive semigroup generated by
{Imo —Imo':0,0'eX, Imo’ < Ima’}
and py, gy are still polynomials.

Remark 4.16. If X lies on a line Reo = ¢, then —i& C R_ — icy. Also in this case, the coefficients
of the exponents in (4.1) can be assumed to have vanishing imaginary part (see Remark 3.7). Assuming
this, the coefficients of the exponents in (4.7) are real, in particular det @ (¢) is just a polynomial in 1/1,
the coefficients ry in the expansion (4.12) can be written as rational functions of ¢ only. Consequently,
in the expansion of the projection in Theorem 4.13, the powers —i ¢ are real < 0 and the coefficients can
be written as rational functions of log ¢.

5. Asymptotic structure of the resolvent

For the analysis of (Ag — )~/ for I € N sufficiently large we make use of the representation (1.8) of the
resolvent as

(Ag — 1)~ =B +Gg (), (5.1)
where B(}) is a parametrix of (A, — A) and

Ga() =[1—BO(A - MIF(W) ™' TQ). (5.2)
The starting point of our analysis is

(Ag— 1) = ﬁaﬁm@ —2)7! foranyleN.

We are thus led to further analyze the asymptotic structure of the pieces involved in the representation
of the resolvent. In [Gil et al. 2010] we described in full generality the behavior of

B(), 1—BWX)(A-r), TO),

and we analyzed Fg (1)~ in the special case that 9 is stationary. In the case of a general domain %, we
now obtain as a consequence of Theorem 4.13 the following result.

Proposition 5.3. For R > 0 large enough we have
Fy ()" € (8§ NS (AR D /D mins Drnax/Drmin).

The components of Fo,(A)~! have orders v with v € &, the semigroup defined in (1.6), and their phases
belong to the set M defined in (1.5).
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Here S°(Ag; DA /D A.mins Dmax/Dmin) denotes the standard space of (anisotropic) operator-valued sym-
bols of order zero on Ag (see the Appendix), where % /% min catries the trivial group action, and
Dmax/Dmin 1s equipped with the group action k, = 9_llcp9. The symbol class

S5 (AR: D /P s mins Drmax/Drmin)
is discussed in the Appendix (see Definition A.7). Recall that Agx = {A € A : |A| > R}.

Proof of Proposition 5.3. We follow the line of reasoning of [Gil et al. 2010, Propositions 5.10 and 5.17].
The crucial point is that we now know from Theorem 4.13 and Proposition 2.17 that F, g, () ! belongs
to the symbol class

(83" NSO (AR: Dp/D A mins D amax/D amin)

where the actions on D /DA min aNd DA max/Da min are, respectively, the trivial action as above and
k,. The components of Fx g, (M) ~! have orders vt with v € &, and their phases belong to the set 1.
Consequently, ®o(1) = Q_IFA,@A ! belongs to

(S9N SO (A R: Dr/D A mins Denax/Drmin)

and we have the same statement about the orders and phases of its components.
Phrased in the terminology of the present paper, we proved (see [Gil et al. 2010, Proposition 5.10])
that the operator family

F) =[TA)(A=X)]: Dmax/Dmin — g)D/\/QDA,min
belongs to the symbol class
(8% N S (A Rs Drmax/Drins Dn /B in)

and that
F()@o(A) —1=RM) € ST (AR Da/D A mins DA/D A min)

for any ¢ > 0. More precisely, F()) is an anisotropic log-polyhomogeneous operator-valued symbol.
We thus can infer further that in fact

_1\*+
R(Y) € S5 (AR Da/D n mins Da/D A min)

and that the components of R(A) have orders v with v € €, v < —1, and phases belonging to the set
. The usual Neumann series argument then yields the existence of a symbol

RiG) € S5 (AR; D0 /D mins D /D, min)
such that F(A)®o(X)(1 + R((1)) =1 for A € Ag. Consequently Fg M)~ = Do) (1 + R; () lies in
(85 N SO)(AR: Dr/Dp min: Dmax/Drnin).
and its components have the structure that was claimed. U

With Proposition 5.3 and our results in [Gil et al. 2010, Section 5] at our disposal, we now obtain a
general theorem about the asymptotics of the finite rank contribution Gg(A) in the representation (5.1)
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of the resolvent. Before stating it we recall and rephrase the relevant results from that paper about the
other pieces involved in (5.2) using the terminology of the present paper.
Concerning 7' (1) we have [Gil et al. 2010, Proposition 5.5]:

(i) For any cut-off function w € C2°([0, 1)) the function 7'(A)(1 — w) is rapidly decreasing on A taking
values in £(x~™/2H}, D n/Dn min), and
1) =T Q) € ST (A H "2, D0 /% 5 min).-
Here 95 ~™/2 is equipped with the (normalized) dilation group action ko, and we give D /D a min
again the trivial action.

(i1) The family 7(A) admits a full asymptotic expansion into anisotropic homogeneous components. In
particular, we have
() € S5 (AT T, D /D i),
The spaces #* /2 are weighted cone Sobolev spaces on Y. We discussed them in [Gil et al. 2006,
Section 2] and reviewed the definition in [Gil et al. 2010, Section 4] (see also [Schulze 1991], where
different weight functions as x — oo are considered). Note that HO-—m/2 — x—m/ 2L,%(YA; E).
Concerning 1 — B(1)(A — ) Proposition 5.20 of [Gil et al. 2010] gives, for any ¢ € C*°(M; End(E)):

(iii) The operator function P(A) = ¢[1 — B(A)(A — A)] is a smooth function
AR = L(Dmax/Dmin, x_m/zH};v),

which is defined for R > 0 large enough. Let w € C°([0, 1)) be an arbitrary cut-off function. Then
(1 — w) P(A) is rapidly decreasing on Ag, and

p(A)=wP({}) e SO(AR; Dmax/Dmin; 3{S’7m/2);

here 9¢5- /2 ig equipped with the (normalized) dilation group action «,, and the quotient % max /Dmin
is equipped with the group action k.

(iv) p(A) is an anisotropic log-polyhomogeneous operator-valued symbol on A . In particular,
P =P () € S§ (AR Dinax/Drmin, I "%
With 91 as in (1.5) and € as in (1.6) we have:

Theorem 5.4. Let ¢ € C°°(M; End(E)), and let w, & € C°([0, 1)) be arbitrary cut-off functions. For
R > 0 large enough the operator family Gg (L) is defined on Ag, and

(1 —0)9Ga (), 9Ga(M)(1 —w) € F(Ag, 1" (x™"Hy, x> H})).

Moreover,
+
a)(PGQD ()\:)(Z) € (S9(7t_m) N Sim)(AR, 3{&*?’1/2’ 3{1‘,7111/2)’

where the spaces K="/ and H"~"/% are equipped with the group action Kko. In fact, w9 Gg (L)@ takes
values in the trace class operators, and all statements about symbol estimates and asymptotic expansions
hold in trace class norms. The components have orders vt with v € €, v < —m, and their phases belong
to M.
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Corollary 5.5. For R > 0 sufficiently large and ¢ € C*°(M; End(E)), the operatorfamiiy oGp(L)isa
smooth family of trace class operators in x_”’/zL% for A€ Ag,and Tr(pGp(L)) € (Sggi_m) NS™™)(AR).
The components have orders vt with v € &, v < —m, and their phases belong to the set .

Theorem 5.4 and Corollary 5.5 follow at once from the previous results about the pieces involved
in the representation (5.2) for Gg()\) and the properties of the operator-valued symbol class discussed
in the Appendix. In the statement of Corollary 5.5 the scalar symbol spaces are also anisotropic with
anisotropy m. In particular, this means that Tr(¢Gp (1)) = O(IA™1) as |A] = oo.

We are now in the position to prove the trace expansion claimed in Theorem 1.4. To this end, we need
the following result [Gil et al. 2010, Theorem 4.4]:

(v) Let ¢ € C*°(M; End(E)). If ml > n, then goai_lB(k) is a smooth family of trace class operators
in x~"/ lezj’ and the trace Tr(<,oai_1 B(1)) is a log-polyhomogeneous symbol on A. For large A we
have

n—1 .
Tr(pdl ' BO)) ~ Y a; At 7m=D/m g, Tog (WA 41 (3),
j=0
where
() e (S5 nsTImA.

Now, combining (v) with Corollary 5.5, we finally obtain:

Theorem 5.6. Let A C C be a closed sector. Assume that A € x~™ Diff;) (M; E), m > 0, with domain
D C x—m/lezj satisfies the ray conditions (1.3). Then A is a sector of minimal growth for Ag, and for
ml > n, (Ag — M)~ is an analytic family of trace class operators on Ag for some R > 0. Moreover, for
¢ € C™(M; End(E)),

(n—Im)*

Tr(p(Ag — 1)) € (Sg ol NS" ™) (AR).

The components have orders v with v € &, v < n —Im, where € is the semigroup defined in (1.6), and
their phases belong to the set I defined in (1.5).

More precisely, we have the expansion

n—1
Tr(p(Ag — 1)) ~ 3 a0 4 @, log (AT + 53, (3),
j=0
with constants «; € C independent of the choice of domain %, and a domain dependent remainder
55 (1) € (S NSy (Ag).

If all elements of the set {o € spec,(A) : —m/2 < Imo < m/2} are vertically aligned, then the
coefficients r, in the expansion (1.7) of sg(A) are rational functions of log A only. This is because, in
this case, the series representation of the projection in Theorem 4.13 contains only real powers of ¢ and
rational functions of log ¢; see Remark 4.16. This simplifies the structure of F, g, (A)~!' according to
Section 2, and consequently the structure of Fg(A)~! (see the proof of Proposition 5.3). As recalled in
this section, the terms coming from B(X) and the other pieces in the representation (5.2) of Gg(A) do
not generate phases.

If 9 is stationary, then the expansion (1.7) of sg(A) is even simpler: the r, are just polynomials in
log A, and the numbers v are all integers. To see this recall that if %, is «-invariant, then F, g, M~ lis
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homogeneous, see (2.3), so it belongs to the class
S(O)(AR§ gzj/\/QD/\,minv gzj/\,max/gzj/\,min) C (Sg%+ N SO)(AR; @A/@A,mina gzj/\,max/gb/\,min)-

Consequently, by the proof of Proposition 5.3, F5(1)~! is log-polyhomogeneous. This property propa-
gates throughout the rest of the results in this section and gives the structure of sg()) just asserted.

Appendix: A class of symbols

Let A C C be a closed sector. Let E and E be Hilbert spaces equipped with strongly continuous group
actions k, and k,, 0 > 0, respectively. Recall that the space S”(A; E, E) of anisotropic operator-valued
symbols on the sector A of order v € R is defined as the space of all a € C*° (A, £(E, E )) such that for
all o, B e Ny

%5352 a3 pm | .y = ORI ) as || — o0 in A. (A-D

|A|1/m ||§£(E,E)

By S™(A; E, E) we denote the space of anisotropic homogeneous functions of degree v € R, that s,
all a € C*°(A {0}, £(E, E)) such that

a(e™A) = Q”ﬁga()\)/cg_l for o > 0and A € A ~ {0}. (A2)

Clearly x(MSW(AE, E) C SY(A E, E) with the obvious meaning of notation, where x € C®(R?) is
any excision function of the origin. When E = E=C equipped with the trivial group action the spaces
are dropped from the notation.

Such symbol classes were introduced by Schulze in his theory of pseudodifferential operators on
manifolds with singularities, see [Schulze 1991]. In particular, classical symbols, that is, symbols that
admit asymptotic expansions into homogeneous components, play an important role and were used in
[Gil et al. 2006] for the construction of a parameter-dependent parametrix of Api, — A. As illustrated in
the present paper, for a general domain %, the structure of (Ag — A)~! is rather involved, and classical
symbols do not suffice to describe it. We are therefore led to introduce a new class of (anisotropic)
operator-valued symbols that admit expansions of a more general kind. As it turns out, this class occurs
naturally and is well adapted to describe the structure of resolvents in the general case.

Remark A.3. The operator-valued symbol classes S"(A; E, E )and S ) (A E, E ), as well as the spaces
SQ%) " (A; E, E) and S;{ (A; E, E) defined in this Appendix, all depend on the choice of the group actions
on E and E. They also depend on the anisotropy parameter m that appears in (A.1) and (A.2). However,
in order to avoid an overload of notation, we will not emphasize this dependence. In this paper, the
anisotropy m is always the order of the cone operator A under study, and the group actions are explicitly
defined when necessary.

Recall that V([z1, ..., zu] denotes the space of polynomials in the variables z;, j =1..., M, with
coefficients in V for any vector space V. We shall make use of this in particular for V = C and
V = SO(A; E, E). In what follows, all holomorphic powers and logarithms on A are defined using
a holomorphic branch of the logarithm with cut I' ¢ A.

Definition A.4. Let v € R. We define SQ({ +)(A; E, E) as the space of all £(E, E)-valued functions s(})
of the following form:
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There exist polynomials p € SOA: E, E)[zl, ...,Zn+1land g € Clzy, ..., Zy+1] in N+1 variables,
N = N(s) € Ny, and real numbers p; = ug(s), k =1, ..., N, such that the following holds:
@) |gAH, o AN log A)| > ¢ > 0 for A € A with || sufficiently large;
(b) s(A) =r(A)A"™, where _ _
o pUEL LAY log )
= i, a log )’ (A-)
To clarify the notation, we note that
PO LAY log ) = > A (WAL Ly THNaN logk A
lee|+k<M

as a function A \ {0} - $L(E, E) with certain aq ; (A) € SO E, E). We call the py the phases and
vT the order of s(1).

Every s(A) € Sg(]: " (A; E, E) is an operator function defined everywhere on A except at A = 0 and the
zero set of g(A'#1, ..., AN log ). The latter is a discrete subset of A \ {0}, and it is finite outside any
neighborhood of zero in view of (a).

Proposition A.6. (1) Sg 0 (A; E, E) is a vector space.

(2) Let E be a third Hilbert space with group action Ky, 0 > 0. Composition of operator functions
induces a map

SUO(AS B, By x SV (A E, By > SOTTO(ALE, B,
(3) For a, B € Ng we have
020l : YA E E) — 58D (AL EL E).
4) Lets() € SY(A; E, E). Then
X(Ws() € 8" (A EL E),
for any & > 0 and any excision function x € C®(R?) of the set where s(}) is undefined.
(5) Lets(A) € Sg%ﬁ)(A; E, E) and assume that
H’z|;|ll/ms()‘)"|/\|1/’" H&B(E,E) = 0(|A]"/"™*)

as |A| — oo for some € > 0. Then s(L) =0 on A.
In particular, Sg(flﬂ(A; E,E)N Sg({;)(A; E, E) = {0} whenever v| # v;.

Proof. (1) and (2) are obvious. For (3) note that
8297 S (A E, E) — S0P (AL E, E),
for any vy. Consequently, 07 8{3 acts in the spaces

SCO(A; E, E)INH, LAY log A] — SU0TmaTmBY (A B EYAR, LAY Tog Al
G:[)\.iul o )\‘l‘ILN’ log )\'] — S(—ma—Mﬂ)(A)[)\‘iMl A )\‘i/iN’ log )\.],
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with the obvious meaning of notation (the latter is a special case of the former in view of C C S O(A)).
Statement (3) is an immediate consequence of these observations.

Statement (4) follows at once in view of property (a) in Definition A.4 (and using (3) to estimate
higher derivatives). Note also that, for large A, the numerator in (A.5) can be regarded as a polynomial
in log A of operator-valued symbols of order zero.

In the proof of (5) we may without loss of generality assume that v = 0, so s(A) is of the form (A.5).
Since |g(A*1, ..., AP Tog 1) =0(logM |A]) as |A| — oo we see that it is sufficient to consider the case
g=1,50s(1) = pA#, ..., A" log ). For this case we will prove that if

]
||K|A|1/lns()‘)K|A|1/m ||££(E,E) —0

as |A| — oo, then s(1) = 0 on A. For this proof we can without loss of generality further assume that

s (1) contains no logarithmic terms, so we have s(1) = p(A/*1, ..., A/*N). Moreover, we can assume that
the numbers w1, ..., uny € R are independent over the rationals, for if this is not the case we can choose
rationally independent numbers iy, ..., fix € R such that u; = Zf: 1 Zjki, with coefficients zj; € Z,
and so

K
A — 1‘[ ()Li/lk)z,'k

k=1
for every j = 1,..., N. Consequently, there are numbers N; € N, j =1,..., K, and a polynomial
peSO(A; E, E)lz1, ..., zk] such that
)\’iﬂlNl . .)LiﬂKNKp()LiM’ e AiMN) — ﬁ()\iﬂl, o )LiﬂK)’

and both assertion and assumption are valid for p if and only if they hold for p. So we can indeed assume
that the numbers n;, j =1, ..., N, are independent over the rationals.
Now let Ag € A be arbitrary with |Ag| = 1, and consider the function f : (0, co) — ¥(FE, E ) defined by

f(Q) _ I%Q—lp(gimm)\z)ﬂl, o QimﬂN)ugﬂN)KQ.

This function is of the form

f@ =3 ag(@")™ - (o""N)y™w

la|<M

for certain a, € $(E, E), and by assumption I £ (@lgg. ) — 0as o — oo. Let po(z) = > ayz* for

z=1(z1,...,zn) € CV, and consider the curve lerl=M

o (0™, ..., 0")eS' x... xS

on the N-torus. The image of this curve for ¢ > g is a dense subset of the N-torus, where gy > 0 can
be chosen arbitrarily, because the 1 ; are independent over the rationals. The function f is merely the
operator polynomial p(z) restricted to that curve. Since f(9) — 0 as ¢ — o0, this implies that for any
e > 0 we have || pg(z)|| < € for all z in a dense subset of the N-torus. This shows that py(z) is the zero
polynomial, and so the function f (o) =0 for all o > 0.

Consequently, the function p(A'#!, ..., A¥V) vanishes along the ray through A(, and because A was
arbitrary the proof is complete. U
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Definition A.7. For v € R define 557): (A E, E ) as the space of all operator-valued symbols a(A) that
admit an asymptotic expansion -
ad) ~ 3 xj(A)s; ), (A.8)
=0
+ ~
where s;(1) € S;:j)(A; E,E),v=1vy>v > --- and v; - —oo0 as j — o0, and x;(A) is a suitable
excision function of the set where s; (1) is undefined.
We call 5; (1) the component of order v;r of a(A). The components are uniquely determined by the
symbol a(A) (see Proposition A.9).

Familiar symbol classes like classical (polyhomogeneous) symbols, symbols that admit asymptotic
expansions into homogeneous components of complex degrees, or log-polyhomogeneous symbols are
all particular cases of the class defined in Definition A.7. In particular, the denominators g in (A.5) are
equal to one in all those cases.

Of particular interest in the context of this paper are symbols a (A) with the property that all components
s () have orders v;.“ with v; € €, the semigroup defined in (1.6), and phases in the set 91 defined in (1.5).

Proposition A.9. (1) Sg;;r (A; E, E) is a vector space. For any ¢ > 0 we have the inclusion
Sy (A E, E) C 'Y (A E, E).

(2) Leta()\) € Sg; (A E, E ). The components s;(1) in (A.8) are uniquely determined by a(}.).

(3) Let E be a third Hilbert space with group action Ky, 0 > 0. Composition of operator functions
induces a map
- v A » W1+v2)T A 7
Sp (A E,E)x S5 (A E,E)— Sy (A EVE).

The components of the composition of two symbols are obtained by formally multiplying the asymp-
totic expansions (A.8) of the factors.

(4) Fora, B € Ny we have
8090 : S5 (AL E,E) — 85" " (AL EL ).

If sj (M) are the components of a()) € Sg; (A E, E), the components of 8f8§a(k) are 9y afsj (A).
+

(5) Let aj(A) € S;{ (A E, E), where v; — —00 as j — o0, and let v = maxv;. Let a(l) be an
operator-valued symbol such that a(A) ~ Z?io aj(d).
Then a()\) € SQ‘_;{+ (A E, E ), and the component of a(X) of order M is obtained by adding the
components of that order of the aj(1). This is a finite sum for each M < v and will yield a nontrivial
result for at most countably many values of M that form a sequence tending to —oo.

Proof. Everything follows from Proposition A.6 and standard arguments. Because of its importance we

will, however, prove (2):
o

To this end, assume that 0 ~ Z?io xj(A)sj(A) with s;(A) € S5" (A E, E), Vj > Vjy —> —00 as
J — 00. We need to prove that all s; (1) are zero. Because
o0
X0(M)so(A) ~ = 30 x;(M)s; (),
j=1
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we see that xo(A)so(A) € SU'(A; E, E) for every ¢ > 0. Choose ¢ > 0 such that v; + ¢ < vg. Then

|(V1+8)/m)

||E|;|ll/m XO()\‘)SO()\’)KMP/’" g(E,E) — @(|)\‘

as |A| — 00, and by Proposition A.6(5) we obtain that so(A) = 0 on A. Consequently all s;(1) are zero
by induction, and (2) is proved. U

By S}}:hol(A E, E) we denote the class of symbols a(L) € S"+ (A; E, E) that are holomorphic in A.
Let s;(2) be the components of a() € S‘o‘ji hot (A E, E). By Proposmon A.9, 355 (A) are the components
of d;a(A) =0, and consequently all components s; (1) are holomorphic.

In the case of holomorphic scalar symbols (or, more generally, holomorphic operator-valued symbols
with trivial group actions), we can improve the description of the components as follows.

Proposition A.10. Let a(A) € Sg;hol(A), a(i) ~ Zj?io Xxj(A)s (L) with components s (L) of order v;.r.
For every j € Ny there exist polynomials p;, q; € Clzi, ..., zy;+1] in N;j + 1 variables with constant
coefficients, N; € Ny, and real numbers |1, k =1, ..., N;, such that the following holds:

(@) lg; (A ATHIN; logA)| > ¢; > 0 for A € A with |A| sufficiently large;
(b) s;(X) =r;(AH1, ..., AN Jog M)AVII™ where ri=pjlq;.
Proof. We already know that the components s;(A) are holomorphic. We just need to show that in this

case the numerator polynomials p in Definition A.4 can be chosen to have constant coefficients rather
than homogeneous coefficient functions. This, however, follows from Lemma A.11 below. O

Lemma A.11. Let f1(X), ..., fu(A) be holomorphic functions on A ~\ {0}, and let p be an element
of SO(A)z1,...,zm]. Assume that the function p(fi(L), ..., fu(X)) is holomorphic on 10\, except
possibly on a discrete set.

Then there is a polynomial pg € C[z1, ..., zym] with constant coefficients such that

P, ..o, fuR) = po(fi(A), ..., fu(R)
as functions on A \ {0}.

Proof. Since all singularities are removable, we know that p(fi (1), ..., fm (1)) is holomorphic every-
where on A. We have

P, s fu ) = 3 aa/IADFL1)* - fur ()™

la|<D
Let Ap € A Define
po(zi, - zm) = Y ag(ho/lroDzS" -+ 5t

la|=D
Then clearly
P, .. fu) = po(fi(A), ..., fu(R))

on the ray through Ag. By uniqueness of analytic continuation this equality necessarily holds everywhere
on A, and by continuity then also on A ~ {0}. ]
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THREE-TERM COMMUTATOR ESTIMATES AND THE REGULARITY
OF %-HARMONIC MAPS INTO SPHERES
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We prove the regularity of weak %-harmonic maps from the real line into a sphere. A key step is the
formulation of the %—harmonic map equation in the form of a nonlocal linear Schrodinger type equation
with three-term commutators on the right-hand side. We then establish a sharp estimate for these three-
term commutators.
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1. Introduction

Starting in the early 1950s, the analysis of critical points of conformal invariant lagrangians has attracted
much interest, due to their importance in physics and geometry. (See the introduction of [Riviere 2008]
for an overview.) We recall some classical examples of such operators and their associated variational
problems:

The most elementary example of a two-dimensional conformal invariant lagrangian is the Dirichlet
energy

E() =f Vutr, )P dx dy. ()
D

where D C R? is an open set and Vu is the gradient of u : D — R. We recall that a map ¢ : C — C is
conformal if it satisfies

(3—2%)3—? (g—f,g—i>=o, detVep >0, Vo 0, @)

where (-,-) denotes the standard Euclidean inner product in R”.

MSC2000: 58E20, 35B65, 35J20, 35J60, 35599.
Keywords: harmonic map, nonlinear elliptic PDE, regularity of solutions, commutator estimates.

149


http://pjm.math.berkeley.edu/apde
http://dx.doi.org/10.2140/apde.2011.4-1
http://www.mathscipub.org/

150 FRANCESCA DA LIO AND TRISTAN RIVIERE

For every u € W12(D, R) and every conformal map ¢ with deg ¢ = 1, we have
2
E(u):E(uqu):/ |(Vog)u(x, y)|” dxdy.
¢~ 1(D)

The critical points of this functional are the harmonic functions satisfying
Au=0 in D. 3)

We can extend E to maps taking values in R” by setting

m
E(u):/ !Vu(x,y)‘zdxdy: > !Vu,-(x,y)‘zdxdy, 4)
D D i=1
where the u; are the components of u. The lagrangian (4) is still conformally invariant and each com-
ponent of its critical points satisfies (3).

We can define the lagrangian (4) also on the set of maps taking values in a compact submanifold
N € R™ without boundary. We have

—Au 1L T,N,

where T, N is the tangent plane to N at the point # € N'; equivalently, we can write
—Au=Aw)(Vu,Vu) := A(u)(0xu, dxu) + A(u)(0yu, dyu), 5)

where A(u) is the second fundamental form at a point u € N'; see [Hélein 2002], for instance. Equation (5)
is called the harmonic map equation into N.
When N is an oriented hypersurface of R™ the harmonic map equation reads as

—Au =n{Vn,Vu), (6)

where n denotes the composition of u with the unit normal vector field v to N.
All these examples belong to the class of conformal invariant coercive lagrangians whose correspond-
ing Euler-Lagrange equation is of the form

—Au = f(u,Vu), (7
where 1 :R? x (R™ ® R?) — R™ is a continuous function satisfying

CHpl> =1/ p)| =Clp* forall§, p,

for some positive constant C'. One of the main issues concerning equations of the form (7) is the regularity
of solutions u € W12(D, N). We observe that (7) is critical in dimension n = 2 for the W !*2-norm.
Indeed, if we plug into the nonlinearity f(u,Vu) the information that u € W1-2(D, N'), we obtain Au €
L'(D), so Vu belongs to leo’cC>o (D), the weak L? space [Stein 1970], which has the same homogeneity
of L?. Hence we are back in some sense to the initial situation. This shows that the equation is critical.

In general, W -2 solutions to (7) are not smooth in dimensions greater than 2; for a counterexample,
see [Riviere 2007]. For an exposition of regularity and compactness results for such equations, we refer

the reader to [Giaquinta 1983].
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We next recall the approach introduced by F. Hélein [2002] to prove the regularity of harmonic maps
from a domain D of R? into the unit sphere S”*~! of R™. In this case the Euler-Lagrange equation is

—Au = u|Vul?. 3)

Shatah [1988] observed in that u € W1-2(D, $™~1) is a solution of (8) if and only if the conservation
law

div(u;Vuj —ujVu;) =0 foralli,je{l, ... ,m} ©)
holds. Using (9) and the fact that 7| u;Vu; = 0 when |u| = 1, Hélein rewrote (8) in the form
—Au=V+tB.-Vu, (10)

where V4 B = (VL B;;) with VX B;j = u; Vuj —u; Vu; (for every vector field v: R? — R”, V4 v denotes
the 77/2 rotation of the gradient Vv, namely V+v = (=0yv, 0xv)).
The right-hand side of (10) can be written as a sum of Jacobians:

VJ_BiJ'vuj = axujayBij —ByujaxB,-j.
This particular structure allows us to apply to (8) the following result:

Theorem 1.1 [Wente 1969]. Let D be a smooth bounded domain of R2. Let a and b be measurable
functions in D whose gradients are in L>(D). Then there exists a unique solution ¢ € W12(D) to

da db  da db
=————-——— inD,
dx dy  dy dx (11)
=0 on dD.

There exists a constant C > 0 independent of a and b such that
[@llee + IVellL2 = ClIVal L2][VD] 2.

In particular ¢ is continuous in D.

Theorem 1.1 applied to (10) leads, via a standard localization argument in elliptic PDEs, to the estimate

IVull 2B, (xo)) = C IIVBIlL2(B, (xo)) VUl L2(B, (xo)) T CF VUl L2(3B, (x0)) (12)

for every xg € D and r > 0 such that B, (x¢) C D. Assume we are considering radii r < ro such that
maxy,ep C VBl 128, (x) < % Then (12) implies a Morrey estimate

sup r_ﬂ/ |Vu|? dx < oo (13)
X0,r>0 By (x0)

for some § > 0, which itself implies the Holder continuity of # by a standard embedding result [Giaquinta
1983]. Finally a bootstrap argument implies that u is in fact C®°, and even analytic: see [Hildebrandt
and Widman 1975; Morrey 1966].

In the present work we are interested in one-dimensional quadratic lagrangians invariant under the
trace of conformal maps that keep invariant the half-space [R{i: the Mobius group.
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A typical example, which we will call the L-energy (L for “line”), is the lagrangian
L(u) :/ ’A'/“u(x)!zdx, (14)
R

where u is a map from R into a k-dimensional submanifold ' of R which is at least C, compact and

without boundary. In fact L(u) coincides with ||u|| i] 2@ (for the definition of the seminorm [|-[| ;71,2 ®)

see Section 2). A more tractable way to look at this norm is given by the identity
/ |AY*u(x)|? dx = inf / \Vii|? dx : it € W2(R?, R™) with trace il = u y .
R R%
The Lagrangian L extends to map « in the function space
HY2(R,N)={ue H/2(R,R") : u(x) € N ae.}.
The operator A'/* on R is defined by means of the Fourier transform (denoted by ") as
AV = g2,

Denote by my the orthogonal projection onto N, which happens to be a C d map in a sufficiently small
neighborhood of N if N is assumed to be C I+1 We now introduce the notion of %-harmonic map into
a manifold.

Definition 1.2. A map u € H'/2(R, N) is called a weak -harmonic map into N if
d .
S Lrs(u+19)),_y =0 forany e H'Y2(R,R™) N LR, R™).

In short, a weak %-harmonic map is a critical point of L in HY2(R, N ) for perturbations in the target.

We encounter %—harmonic maps into the circle S!, for instance, in the asymptotic of equations in
phase-field theory for fractional reaction-diffusion such as

A 2u+u(l—|ul*>)=0
where u is a complex-valued wavefunction.

In this paper we consider the case N = S™~!. We first write (deferring the proof till Theorem 5.2)
the Euler—Lagrange equation associated to L in H'/2(R, S~ 1):

Proposition 1.3. Let T be the operator defined by
T(Q,u):= A"*(OAY*u) — QA *u + A"*uA"*Q, (15)

for O € HY2(R", My (R)) I > 1 and u € HY2(R",R™). (Here n and | are natural numbers and
My (R) denotes the space of | x m real matrices.)
A map u in HI/Z(IR, S™=1) is a weak %-harmonic map if and only if it satisfies the Euler—Lagrange
equation
A4 (u A A *u) =T (un, u). (16)
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The Euler-Lagrange equation (16) will often be completed by the following “structure equation”,
which is a consequence of the fact that # € S”~! almost everywhere:

Proposition 1.4. Let S be the operator given by
S(Q.u) := AV*(QAY*u) —R(QVu) + R(AV* QRA"*u) a7

for Q € HY2(R", M (R)) and u € HY2(R", R™), where n and | are natural numbers and R is the
Fourier multiplier of symbol m(&) =i&/|&|.
All maps in HY2(R, S™=1) satisfy

AV (u- A*u) = S, u) —R(AY*u - RAV*u). (18)

We will first show that H!/2 solutions to the %—harmonic map equation (16) are Holder continuous.
This regularity result will be a direct consequence of a Morrey-type estimate we will establish:

sup r_ﬂ/ ‘A”“u‘z dx < o0. (19)
Xp€R By (x0)
r>0

For this purpose, in the spirit of what we have just presented regarding Hélein’s proof of the regularity
of harmonic maps from a two-dimensional domain into a round sphere, we will take advantage of a
“regularity gain” in the right-hand sides of (16) and (18), where the different terms 7T (uA, u), S(u -, u)
and R(A"*u - RA*u) play more or less the role played by VLB - Vu in (10). More precisely, we will
establish, for every u € HY2(R,R™) and Qe HI/Z(R, My (R)), the estimates

“T(Q’ u)”H*l/Z(R) =C || Q”HUZ(R) ”“”I-'II/Z(R)’ (20)
[S(Q, u)”H—l/Z(R) =C| Q”HUZ(R) ”u”Hl/Z([R)’ (21
(A *u '%A”“”))HH—I/Z(R) <C “u”ffll/Z(R)' (22)

The phrase “regularity gain” is illustrated by the fact that, for such # and Q, the individual terms in 7'

and S (such as AY4(QAY*u) or QAY2u) are not in H~'/2, but the special linear combinations of them

constituting 7" and S do lie in H~'/2. In a similar way, in two dimensions, J(a,b) := g—z% — da 0b

. dy dx
satisfies

(@, D)l -1 = C llall g1 161l g (23)

as a direct consequence of Wente’s result (Theorem 1.1), whereas the individual terms g—z% and g—;%

are not in H~1.

The estimates (20) and (21) are in fact consequences of the three-term commutator estimates in the
next two theorems, which are valid in arbitrary dimension and which are two of the main results of
this paper. We recall that BMO denotes the space of bounded mean oscillations functions of John and
Nirenberg (see for instance [Grafakos 2009])

lullpmo@n) = sup ————
") xo€ER” |Br(.X0)| B, (x0)
r>0

1
u(x)—m/u(y)dy‘ dx.
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Theorem 1.5. For n € N*, u € BMO(R"), and Q € HY2(R", My (R)), set

T(Q,u) := A*(QA*u) — QA ?u + AV*uA"*Q,
Then T(Q,u) € H™'/2(R") and there exists C > 0, depending only on n, such that

IT(Q. )l g=172@ny = C 1l gr1/2 gy |1l BrIO@R?) - (24)
Theorem 1.6. For n € N*, u € BMO(R"), and Q € H'Y2(R", My (R)), set

S(0,u) == A [OA*u] — R(QVu) + R(AV* QRA*u),

where R is the Fourier multiplier of symbol m(£) = i&/|€|. Then S(Q,u) € H™'/2(R") and there exists
C depending only on n such that

IS(Q. )l 172y = C 1 QI 172 gmy 11l 0@ - (25)

The estimates (20) and (21) follow from Theorems 1.5 and 1.6 as a consequence of the embedding
H'Y2(R) — BMO(R).

The parallel between the structures 7" and S for H 172 in one hand and the Jacobian structure J for
H' in the other can be pushed further as follows. As a consequence of a result of R. Coifman, P. L.
Lions, Y. Meyer and S. Semmes [Coifman et al. 1993], the Wente estimate (23) can be deduced from a
more general one. Set, forany i, j € {1,...,n} and a,b € H'(R"),

Sty Ja b Ba i
VIR Oxg 0x; 0xj oxg

and form the matrix J(a,b) := (J;jj(a,b));j=1,... n- The main result in [Coifman et al. 1993] implies
” J(Cl, b)”H—l(Rn) =< C ||a||H1(Rn) ”b”BMO(R") s (26)

which is reminiscent of (24) and (25). Recall also that (26) is a consequence of a commutator estimate
by Coifman, R. Rochberg and G. Weiss [Coifman et al. 1976].

Theorems 1.5 and 1.6 will follow respectively Theorems 1.7 and (27) below, which are their ”dual
versions”. Recall first that %! (R”) denotes the Hardy space of L' functions f on R”satisfying

[R sup |s # £1(x) dx < oo,

nteR

where ¢;(x) := t™" ¢(t~'x) and where ¢ is some function in the Schwartz space ¥(R") satisfying
fRn ¢(x) dx = 1. Recall the famous result by Fefferman saying that the dual space to #! is BMO.

Theorem 1.7. For u, Q € HY/2(R"), set
R(Q,u) = AV*(QA*u) — A2(Qu) + AV*((A* Q)u).
Then R(Q,u) € %' (R") and

IR(Q, “)”%I(R") =C| Q”HI/Z(Rn)”u”HUZ(RH)- (27)
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Theorem 1.8. For u, Q € HY2(R") and u € BUO(R"), set
S(0.u) = A*(QAY*u) — V(QRu) + RAY*(AV* Q%u),
where R is the Fourier multiplier of symbol m(§) = i&/|E|. Then S(Q,u) € %' and

IS0, t)ll5er = CNON gri2 g Il 172 gny- (28)

We say a few words on the proof of the estimates (27) and (28). The compensations of the three dif-
ferent terms in R(Q, u) will be clear from the Littlewood-Paley decomposition of the different products
that we present in Section 3. As usual, we denote by IT;(f, g) the high-low contribution (respectively
from f and g), by I1,(f, g) the low-high contribution, and by IT3( f, g) the high-high contribution. We
also use the notation Iy (A*(fg)), fork =1,2,3 and @ = %, %, as an alternative for A*(T1x (£, g)).

We will use the following decompositions for the operators 15 (R(Q, u)):

I (R(Q,u)) = I (A*(QA u)) + 11 (=A"*(Qu) + A*((A* Q)u)).

> (R(Q.u)) = T (A (QA*u) — A2 (Qu)) + o (A ((AV* Q)u)),

3(R(Q.u)) = I3 (A*(QA u)) — I3 (AV2(Qu)) + I3 (A*((A* Q)u)) .

Finally, injecting the Morrey estimate (19) in equations (16) and (18), a classical elliptic-type bootstrap
argument leads to the following result (see [Lio and Riviere 2010] for details).

Theorem 1.9. Any weak %-harmonic map in HY2(R, S™1) belongs to H; (R, S™=1) for every s € R,
and is therefore C*°.

The paper is organized as follows. After a section with preliminary definitions and notation, we prove
in Section 3 we prove the three-term commutator estimates (Theorems 1.5 and 1.6).

In Section 4 we prove some L-energy decrease control estimates on dyadic annuli for general solutions
to certain linear nonlocal systems of equations, which include (16) and (18).

In Section 5 we derive the Euler-Lagrange equation (16) associated to the lagrangian (14); this is
Proposition 1.3. We then prove Proposition 1.4. We finally use the results of the previous section to
deduce the Morrey-type estimate (19) for %-harmonic maps into a sphere.

In the Appendix we study geometric localization properties of the H'/2-norm on the real line for
H'/2_functions in general and we prove some preliminary results.

2. Definitions and notation

For n > 1, let $(R") and ¥'(R") denote respectively the spaces of Schwartz functions and tempered
distributions. Given a function v we will denote either by 0 or by F[v] the Fourier Transform of v:

5(8) = F(E) = /R u()e 6 dx,

Throughout the paper we use the convention that x, y denote space variables and &, { phase variables.
We recall the definition of fractional Sobolev spaces. For some of the material on the next page, see
[Tartar 2007], for instance.
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Definition 2.1. For s real,

{ve L2(R") : |£]°F[v] € L*(R")} if s >0,
{ve P R : (1+|E2)2Fv] € LAR")} ifs <O.
It is known that H 5 (R") is the dual of H*(R").

For 0 < s < 1, we mention an alternative characterization of H*(R"), which does not use the Fourier
transform.

H(R") = {

Lemma 2.2. For 0 <s < 1, the condition u € H*(R") is equivalent to u € L>(R") and

_ 1/2
( [ u)? dy) -
Rn Rn

|x — ylrt2s
For s > 0 we set
ol grs ny = lutll 2y + NEF TN 2y and Nl o gy = NEPFTN L2 .
For an open set 2 C R”, H%(Q2) is the space of the restrictions of functions from H*(R"), and
If0 <s < 1,then f € H(Q) if and only if /' € L?(Q) and

_ 1/2
(] [ e u)? )" <
QJQ

|x_y|n+2s

_ 2 1/2
ey = ([ [ 420 vxay) <o

|x_y|n+2s

Moreover,

Finally, for a submanifold N of R, we can define
H(R,N)={uec H (R,R™) :u(x) e N ae.}.

We introduce the so-called Littlewood—Paley or dyadic decomposition of unity. Let ¢ (&) be a radial
Schwartz function supported on {& : |§| <2} and equal to 1 on {£ : |£]| < 1}. Let ¥ (£) be the function
() := (&) — ¢ (2£); thus ¢ is a bump function supported on the annulus {£ : % <& =2}.

We put o = ¢, ¥;(§) = ¥ (27/&) for j # 0. The functions Y, for j € Z, are supported on
{£:2/71 < |g] <271}, Moreover ez Vi(x)=1.

We then set ¢ (§) := Zi:—m Vi (§). The function ¢; is supported on {&, [£] < 2/t

We recall the definition of the homogeneous Besov spaces Bls,,q (R™) and homogeneous Triebel—

Lizorkin spaces F g (R") in terms of the dyadic decomposition.
Definition 2.3. Let s € R, 0 < p, g < oo. For f € ¥'(R"), set

X . 1/q
(X 25 WS M pgn)  ifa<oo
”f”Bf,q(R”) = Jj=—o00 (29)

supj ez 2715 [ FLS Ml o ey if ¢ = oo.
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The homogeneous Besov space with indices s, p, ¢, denoted by B;,’q (R™), is the space of all tempered
distributions f for which || f| B85, (R is finite.

Lets € R, 0 < p,q < oo. Again for f € ¥'(R"), set

1/ £,y = H<j=§oo 2954 |5 [y, 3] }q)l/q‘

The homogeneous Triebel-Lizorkin space with indices s, p.q, denoted by F .q(R"), is the space of all
tempered distributions f* for which || /| zs ®") is finite.
p.q

It is known that H*(R") = 's ,(R") = .s L(R?).
Finally we denote by %! (R") the homogeneous Hardy space in R”. It is known that 3! (R") ~
thus we have

F
_ 3 1/2
I by~ [ (S5 w3 0)

We recall that in dimension n = 1, the space HY 2(R) is continuously embedded in the Besov space
Bgo,oo(lR). More precisely we have

H'?(R) < BMO(R) = B, o (R):; (30)

see, for instance, [Runst and Sickel 1996, p. 31] or [Triebel 1983, p. 129].
The s-fractional Laplacian of a function u : R” — R is defined as a pseudodifferential operator of
symbol |£|%5:

Asu(g) = [E[*a(®). (31)
It can also be defined as
s u(y) — y(X)
A'u(x) = m )

where p.v. denotes the Cauchy pr1n01pal value.
In the case s = L, we can write A'/2y = —%R(Vu) where @ is Fourier multiplier of symbol — Z Er:

z ISI

RX (&) = il Z £ X (€)

for every X : R” — R"; thus & = A~/ 2div.

We denote by B, (x) the ball of radius r and center X. If X = 0 we simply write B,. If x, y € R”",
X -y denote the scalar product between x, y.

For every function f : R” — R we denote by M ( f) the maximal function of f, namely

M) = sup |B(x.r)|"! [B Ll (32)

r>0
x€eR”
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3. Three-term commutator estimates: proof of Theorems 1.5 and 1.6

We consider the dyadic decomposition introduced in Section 2. For every j € Z and f € ¥'(R") we
define the Littlewood—Paley projection operators P; and P<; by

Pif=vjf. P<jf=¢f.
Informally, P; is a frequency projection to the annulus {2771 < |g| < 27}, while P< j is a frequency

projection to the ball {|&] < Zj} We will set f; = P f and f/ = P<; f.
We observe that f/ =37 fe—oo Jk and f = k_— oo Jk» where the convergence is in ' (R").

Given f, g € ¥'(R) we can split the product fg as

where
+00 g T j—4 +00 , +oo 400 +oo jt+4
Hl(f;g):ZﬁgJ_ :Z/szg/w HZ(](;g):ZngJ_ Zﬁz4gk’ H3(fg)_szj ng
—0 —00  —00 —00 —00  j+4

This is an example of decomposition into paraproducts (see [Grafakos 2009], for example). Informally,
the first paraproduct IT; is an operator that allows high frequencies of f (~ 2/) multiplied by low
frequencies of g (< 2/) to produce high frequencies in the output; IT, multiplies low frequencies of f
with high frequencies of g to produce high frequencies in the output; and IT; multiplies high frequencies
of f with high frequencies of g to produce comparable or lower frequencies in the output.

For every j, we have

. . ; jt3
suppF[f/~4g,) C {22 <1E1 <2772 and suppF|

S fre]C tlel <27t

k=j-3

Lemma 3.1. For every f € ¥ we have sup | f7| < M(f).
jezZ
Proof. We have

S =F e f =2 / FBIQ (x— ) S () dy = /R Fpl2) f(x — 27T 2) d=

Z / “UB) f(x — 277 2) dz

+o00

=Y max |9«f—1[¢1(z)|/3 =2l

k=—00 sz \ 2k—1

+o0
< _Z p T R / () dz

B(x,2k=I)\B(x,2k—1-J)

< M(f) Z max  2%F M ](2)| < CM ().

2k sz 1
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In the last inequality we use the fact that ~![¢] is in $(R"), and thus

+o00
>, mx 25l < 2 [ 157 ple)] e < o 0
oo Bake \Bak—1

Proof of Theorem 1.7. We need to estimate IT; (R(Q, u)), [1,(R(Q, u)) and I13(R(Q, u)). Consistently
with our earlier convention, we write, for example, IT;(A"*(QA!*u)) to mean

AT (Q. AV u)) = Z AV4(Q; (A0 ).
j=—0o0

* Estimate of | IT; (A"*(QA"*u))||,,. This expression equals
© . . 1/2 . 12,
/ ( Z 2J Q}(A1/4u1_4)2) dx S/ sup; |A'/4u]_4|(z 2]Q ) /
n _] Rn

- 1/2 1/2
5( / (M(A”“u))zdx) ( / > 2/’Q}dx)
R R
= Clullgi2121 g2 (34)

« Estimate of IT; (AY*(A"*Qu) — A?(Qu)). We show that this term lies in B? | (%' < B? ). To
this purpose we use the “commutator structure” of the term above:

I (80748 0= 230

= SUP e =t Zl Zl (A4 @™ AV4 Q) — A2/ Q))) hy dx
00,00 noj —jl<3

i Zl Xlz 3 9,7[“]_4] @[A1/4QjA1/4ht _ QjAl/th] dé
" l=jl=

IA

= Supyal -
14l 50,

=swppy, < | XX FuTE)

R j Je—jl=3
X (/Rn FLONO)FIA*hE - 0L — & = ¢]'?) d@) dg. (35)
Note that in (35) we have |§| <2/73 and 2/7% < |¢| <2772, Thus [§/¢] < %’ allowing us to write
1€ cp rEN+1
ST (R RTE z (6)

for appropriate coefficients ¢;. Thus the expression on the last two lines of (35) equals

st — =212 =121} (1=[1-

Gl J—4 U2art o) 1emar A4 1o o N (6!
s[5 % st e ( [ k7o oms e 03 5(;) ) d.

14l s, SR T 1= jT=3 (36)
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Next, for k € Z and g € &', we set
Skg =F g Vg 7).

We note that if 4 € Bgooo then Sih € Bg:fééHk and if 71 € H® then Sih e HSst1/2+k,
Finally, if 0 € H'/? then VA+1(Q) e H=%=1/2,
It follows that (36) is bounded above by

c s Yy v @ EOHYI T FS;0; A h))(E) dE

h <1 I! R |r—jl<
14l 50, <1720 J li=jl<3

o0
cl ; i
<C s ”h”BgoooZﬁ/ S 201291+ 415,05 dx
g =1 ol Jan

<CZ T le (l+l/2)]vl+l j— 4||2(l+1)]S1Q |dx

ad . . 1/2 . 1/2
SCZC—I'(/ 22—2(1-1-1/2)]|vl+1u1—4|2dx) (/R 222(l+1)]|Sle|2dx) .
n i n J
By Plancherel’s theorem, this equals

o 1/2
Y ([ srrenigtawa ) ([ £ 2001510, e
j=0 VR R

o0

1/2 1/2
—c 0_12—31(/ 22_j|9?[Vuj_4]|2d§) ([ Z2f|“f[Qj]I2dé)
— ! R R" j

1/2

o0
-3/
<€ Y 21N sl e,
=0

where we have used the fact that for every vector field X we have
+o00 . .
f > 2—J(Xf—4)2dx=/ ZXle > o2 fdx</ Z 277 (Xj)? dx. (37)
Rt j=—00 j—4>k j=—00
j—a=1
« Estimate of || IT(A"4(AY*Qu)) H%l: as in (34).
e Estimate of | [T (AY4(QAY*u) — AV2(Qu)) HB" : analogous to (35).

« Estimate of ” I3 (AY?(Qu)) ”%1 We show that thls lies in the smaller space B1 | (we always have

B0 — %1). We first observe that if 4 € B oo then AY2h € B_ and
) Jj+6 j+6
ARITO = N A2y < sup [27FAV2hy | Y 2k <c2) Il o __- (38)

keN

k=—o0 k=—o00
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Thus

[T (A(Qup | o =suppuyy <1 | 33 AVQjuih

IR Jk—j|<3

=suppay,, <1 | X X AVAQuilh’Oldx
000 R™ j |k—jl=<3

=suppay, <t | X X (Qui)AhI T dx
00,00 R" lk—j|<3

<C SUP|| 9 <1 1Al g, y ,Z |k—%<3 2| Qjugldx

' 1/2 . 1/2
<C( i 2.2/ Qde) ( i 22’%2-61)6) <ClOl gr2llull g1/2-
n _] n _]

o Estimate of IT5(AY4(QAY*u)). To show that this is in B?

1,1°
AV*h e Boo{éi, and by arguing as in (38) we get
IAYhj | Loe < 272 |1R] o

Thus

[T (A (@ A ) [ go =suppy, <1 | X X AVHQj A u)h
1.1 Boo‘oo R7 ] ‘k—j|§3

= SUP|a| <1 Z > (Q A up)[AVAhT T8 dx
&0 k=7l=3

SCsuppyy silbllg, | 2 X 27210 A uy] d
o0.00 > J lk—jl=3

<C 2/ 0%d . A*uj)?d "
<c([,zvoiu) (/W,Z« )

= COll gr/2llull g1/2-

« Estimate of TT5(AY4(AY*Qu)): analogous to (40).

we observe that if / € Bgo,oo

161

(39)

then

(40)
O

Proof of Theorem 1.5. We use Theorem 1.7 and the duality between BMO and %' . For all h, Q € H'/?

and u € BMO we have

/ (A4 QA4 1)~ QA2 u+AV*QA*u) hdx = / (AVH(QAV*h)—AV2(Qh)+A*(hAY* Q)) u dx
R R”

< Cllullamoll R(Q. 1) 31

by Theorem 1.7, this is at most
Cllullamoll Nl g2 121l gr1s2-
Hence

IT(Q. Wl gr—1/2 = SupPyy 1 o<1 /Rn T(Q,u)hdx < Clullsmoll Ol g1/2-
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Proof of Theorem 1.8. We observe that  is a Fourier multiplier of order zero; thus % : H~1/2 — H~1/2,
R — %', and R : BY | — BY . See [Taylor 1991] and [Sickel and Triebel 1995].
The estimates are very similar to the ones in Theorem 1.7; thus we will write down only one:

e Estimate of IT (RA4(A"*Q%Ru) — V(Q%Ru)). We observe that Vu = AV*RA'/*u. Hence
T (RAY4(AV* Q%u) — V(QRu)) || 30
1.1

< > Y (RAVHAVAQ;RuI ) — V(Q;Ru! ) hy dx

= Supyp| . 1
Il IIBgo.c,o R T —71<3

= SUPIAI 59 51[ > Y R THRAAhAAQ; —Vh Q) dx

suppgy, < | XX FRuITHE)
R iy P

([ Ftoommar e~ (¢ - e -1/ g ) de. @)

Now we can proceed exactly as in (35) and get

sup > 2 (%Al/4(Al/4Qj%uj_4) - v(Qj%uj_‘t)) hydx < C| Q||H1/2 ||u||Hl/2~ O
Il g STIR™ G jr—jI=3
Proof of Theorem 1.6. This follows from Theorem 1.8 and the duality between %! and BMO. O

Lemma 3.2. Let u € HY/2(R"), then R(AY*u - RAY*u) € %', and

IFR(AY 4w - RA ) 51 = Clull -

Proof. Since % : %' — !, it is enough to verify that A4y - RA*u € %!.

* Estimate of TT{ (AY*u, RAY*u):
+o00

1/2
”Hl(Al/‘lu,%Al/“u)H%l :/ ( E: [A1/4uj(97iAl/4u)j_4)2) Jx
Rn

Jj=—00
+o00

' 1/2
< /Rn supj‘(%Al/“u)J_“‘ (Z [A”“uj]z) dx

j=0

1/2 +o0 1/2
< ( f |M(%A”4u)|2dx) ( / >0 (A, dx)
R7 R .

j=—00

= Cllull?, - (42)

The estimate of the %' norm of IT,(AY*u - RAY*u) is similar to (42).
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e Estimate of T13(AY%u - RAY4u):
1T (A0, RAY*u) | 0

= su AV 5 R(AY*up ) (h7 6 j+6h d
p > uj RN uy) + > he)dx
R

g, <t Jrr T s =j-s
. j+6
= su / > (A1/4uj97{(A1/4uk)—ujVuk+%V(ujuk))(h]_6+ » ht)dx. 43)
g <1 IR T el =i

We only estimate the terms with 2/ %, the estimates with /4, being similar. We have

A > (AR R(A ug) — ujVug)h! 78 dx
" olk—jl=3

SUP|lAl 0 <
0,00

= suppp, <1 [ XX %[hf—ﬁ]m(/ %{u,—]%ml“uk][lyv/z—|x—y|l/21dy) dx.
co.c0m JRM j |k—jI<3 R

By arguing as in (35), we can show that this is bounded above by C ||u ”iI /- Finally we also have
SUP|4ll 50 51f > 2> %V(ujuk)hj_G dx
00 IR Jk—jl<3

= SuP"h”BO 51/ Z Z %(u]uk)VhJ_G dx
00,00 R" j |k—jl<3

1/2
szup"h"BO <1 ”h”Bgooo oy 21ujukdx§C( ZZJujz. dx) :C||u||§-{1/2.
S0.00 IR k—j|<3 RTJ

O
Theorem 1.8 and Lemma 3.2 imply:
Corollary 3.3. Letn € HY/2(R", S™~1). Then AY*[n- AV*n] € % (R™).
Proof. Since n - Vn = 0 (see proof of Proposition 1.4), we can write
AV - AY*n) = AV n- AV*n]— R[n - Vn] + R[A*n - RAY*n] — R[AY*n - RAY*n]
=Sm-,n)—R[A*n-RA*n]. (44)

The estimate in the corollary’s conclusion is a consequence of Theorem 1.8 and Lemma 3.2, which imply
respectively that S(n-,n) € %' and R(A*n-RAY*n) € %', O
4. L-energy decrease controls

We now provide (in Propositions 4.1 and 4.2) localization estimates of solutions to the equations
AYH (M A *u) = T(Q,u) (45)

and
A*(p-A*u) = S(q -, u) —RA*u - RAY*u), (46)
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where Q € HY2(R, My (R)), M € HY2(R, Myn(R)), [ > 1 and p,q € HY2(R, R™).

Such estimates will be crucial to obtaining Morrey-type estimates for half-harmonic maps into the
sphere (see Section 5). As observed in Section 1, half-harmonic maps into the sphere satisfy both
equations (16) and (18), which are (45) and (46) with (M, Q) and (p, q) replaced by (uA,uA) and
(u,u), respectively. Roughly speaking, we show that the L2 norm of M A*y in a sufficiently small ball
(u being a solution of either (45) or (46)), is controlled by the L? norm of the same function in annuli
outside the ball multiplied by a “crushing” factor.

To this end we consider a dyadic decomposition of unity (Section 2). For convenience set

Ap = Byn+1 \ Byn—1, A;l = Byn \ Byn-1,

for i € Z. Choose a dyadic decomposition ¢; € C3°(R), so

+o0
supp(pj) C A; and > ¢;j =1. 47)
—0o0

Also define, for h € Z,

h—1
=3 o, L—,,,:|sz|—1/ u(x) dx, ﬁh=|Ah|_1[ u(x) dx, a/”=|A;1|—1/ u(x) dx.
—o0 sz Ap A;’l

Proposition 4.1. Let Q € H'/2(R, My, (R)), M € HY2(R, My (R)), [ > 1, and let u € H'/?(R, R™)
be a solution of (45). Then for k < 0 with |k| large enough we have

/4 2 1 1/4 2
IMA ullz2p ) = 21 ull2p,,)
00 o0
SC(Zz(k—h)/z||MA1/4u||iz(Ah)-I-E 2(""’)/2IIA”“ulliZ(Ah))- (48)
ek h=k

Proposition 4.2. Let p,q € H'/2(R, R™) and let u € H'/2(R, R™) be a solution of (46). Then for k <0
with |k| large enough we have

Ip- A ulzagg,, ) = 1A ullL2p,,
00 o0
< C( Zz(k_},)/znp ) AIMMHiZ(Ah) + Zz(k—h)/Z||A1/4u||iz(Ah)). (49)
s h=k

For the proof, we need some estimates.

Lemma 4.3. Let u € H'/2(R). Then, for all k € Z,

+00
> 2 Hlgntu =l vz = € D2 Hlguragay + 2 F Ml rzgay )-GO
h=k s<k s>k

Proof of Lemma 4.3. We first have

lon =) 12y < o= @) sy + 10m1 g1 2y ik — 1. (51)



THREE-COMMUTATOR ESTIMATES AND THE REGULARITY OF %-HARMONIC MAPS INTO SPHERES 165

We estimate separately the two terms on the right-hand side of (51). We have

_h . _=h 2
It =741 /2 ) = / /Ah = u)()lz—j/(z(u itz dx dy

_ 2
<2(/ / ) “(Zy)l dxdy+||v¢h||§o/ f |u—ﬁh|2dxdy)
Ap JAp lx =yl Ap JAp

<C(““”H1/2(A )—1—2_’1 lu — h|2dx)<C||u||

Ay H1/2(4,) 62

where we used the fact that ||V, |lee < C 27" and the embedding H!/2(R) — BMO(R).
Now we estimate |ii; — i”|. We can write il = 5:100 21=k7'l Moreover,

iy —a"| < |at —a'™| + |ig —a'"|

§C|Ah|_1/A |u—uh|dx+ Z 2[ —k Z |u/s+1 —IS|
h

[=—00 s=I

_ . (53)
< C|Ay I/A lu—a"| dx + Z 2=k Z | Agt1]” /A lu—a**t! | dx
h = s+1

|=—00 s=I

=il 5 2T Wlgnce)

|=—00 s=I

Combining (52) and (53) we get
lon @ =" 12y < Nlon @ =) 12y + lonl HJ/Z(R)mk — |

<c(||u||H1/2(Ah)+ y o "Z Wlgiieay) 69

—00 s=I

Multiplying both sides of (54) by 2k=h and summing up from /2 = k to 400 we get

+00 k—1 h
Z 2k—h( Z 2l_k Z ”u”Hl/Z(A ))
h=k I=—00 s=[+1
=C X Il (Z X2+ > Il (X xoh)

h>k l<s h>s <k

=C X%CZS_ ||u||H1/2(A)+ Z 2% |”||H1/2(A) O
s<
Now we recall the value of the Fourier transform of some functions that will be used in the sequel.

We have
FIx|~12)E) = |57V (55)

The Fourier transforms of |x|, x|x|~'/2, and |x|'/2 are the tempered distributions defined, for every
¢ € #(R), as follows (with 1y the characteristic function of 1):
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¢() —¢(0) ~ 1, )¢ O)x
x2

’

(FIx1). 0) = (Fx/ 1x]]* Fixl. @) = (0.1 % B (x). ) = pov. /R
_ _ ) _ 1
(9?[x|x| 1/2],(p)=(9»*[x]*9?[|x| 1/2]’¢)=((8)0(x)*|x| 1/2’¢)=p.v./l;{((p(x)—¢(0))|i—|w dx,

(@[|x|1/2],go) = p.v./ Mu’x.
R

X772
Next we introduce the operators
F(Q.a) = AV*(Qa)— QA a + A" Qa, (56)
G(0,a) = RAY*(Qa) — OA*Ra + AV*QRa. (57)
We observe that T(Q, u) = F(Q, A"*u) and S(Q,u) = RG(Q, A*u).

We now state turn to lemmas where we consider M, u as in Proposition 4.1 or p, u as in Proposition 4.2,
and estimate the H'/2 norm of w = A~V4(M AY*u) or w = A™V*(p - A*u) in B, in terms of the
H'/2 norm of w in annuli outside the ball and the L2 norm of A'/#4 in annuli inside and outside the
ball B,«. The key point is that each term is multiplied by a crushing factor.

Lemma 4.4. Assume the hypotheses of Proposition 4.1. There exist C > 0 and n > 0, independent of u
and M , such that for all 1 € (0, %), all k < ko (where ko € Z depends on n and || Q| g1/2w)), and all
n >n, we have

| xk—aw = Br—a)|| g1/

1/4 S (k=h) /2y Al/4 1 k—h
<l xe—aA” u||L2+C( 2.2 IA *ull 2+ 2 2 ”w”Hl/Z(Ah))’ (58)
h=k h=k—n

where w = A™V*(M A'Y*u) and we recall that x—4 =1 on Byi—s and xx—4 =0 on BS,_,.

Lemma 4.5. Assume the hypotheses of Proposition 4.2. There exist C > 0 and n > 0, independent of u
and M , such that for all (0, %), all k < ko (where ko € Z depends on 1 and the H'Y2 norms of Q and u
in R), and all n > n, we have

H Xie—a(w —Wg_4) ” H1/2(R)

4 S o (k—h)/2 )| A1/4 k=3 ek
5n||Xk_4A“u||Lz(R)+C( > 2P Ay g+ Y 2 ||w||,~,1/2(Ah)), (59)
h=k _

h=k—n

where w = A™V4(p - AV%u).

Proof of Lemma 4.4. Fix n € (0, 7). We first consider k < 0 large enough in absolute value so that
lxx (O — Qk)||H1/2(R) < ¢, where ¢ € (0, 1) will be determined later. We write

F(Q, A u) = F(Q1, A*u) + F(Q2, A*u),

where

01 =xx(Q—0r) and Qr=(1—x)(Q— Q).
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By construction, we have

supp Q2 C ngfl and ”QZ”HI/Z(R) = Q||H1/2(R)-
For brevity, set
W= xk—a(W — Wg—4q).
We rewrite (45) as

+o00

2wy == X puw— i)+ FQuL A0+ FQa A . (60
h=k—4

We take the scalar product of both sides with W and integrate over R. From Corollary A.8 it follows
that

400
ylm | A“Z(h;jv on(w— uak_n) Wdx = lim | A= v-n) (0 = Bgg)) - W dx = 0.

This allows us to interchange the infinite sum with the integral and the operator A!/? in the expression

+00 oo
R —"—
R h=k—4 h=k—4"®

Thus we get from (60) the equality

/ | A4 (W) dx
R

+o00
=— Y /Al/z(wh(w—zi)k_4))-de+/ F(QI,A”“u)-de—i—/F(Q2,A”4u)-de. (61)
h=k—4 'R R R

Step 1: estimate of the sum. We split the sum in (61) into two parts: k —4 <h <k—-3and h >k —2.

Step 1a. We have
k-3 k-3

- Z /R{Al/z(ﬁﬂh(w_wk—ﬂ)'de < ||W||31/2(R)( Z H(ph(w_wk—4)HHl/2(R))-

h=k—4 h=k—4
By Lemma 4.3, the right-hand side is bounded above by

k—3 k—5 h
Wi 2 (Il + X 2769 Y lwli,))
h=k—4 I=—00 s=I+1
k—3
<CWli( L 2 Hluliuay ) ©
h=—oc
From the localization theorem A.1 it follows that
k—6 ) ~ )
Z ||w||H1/2(Ah) S C”WHHI/Z(R)’

h=—o00
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where C > 0 is independent of k and w. Thus we can find 7y > 6 such that

k—n
chzz“Wmmwmwsgmwmuw for all n > ny,
=—0

with the same constant C appearing on the last line of (62). Then for n > n{ we have

k-3
> [ a0 =)W

h=k—4 k-3

Wy + W iy 2 1wl ). 63
h=k—n

Step 1b. To estimate the part of the sum in (61) with # > k — 2, we use the fact that the supports of ¢y,
and of yj_4 are disjoint; in particular 0 ¢ supp(<ph (W —wp_4q) * W) We have

+o00
> [ A entw— i) W

h=k—2

+00
= 3 [T et — ) W

h=k—-2

+o0
= Z H @_1(@')||Loo(32h+2\32h_2) ||§0h(w - wk—4)”Ll ”I/VHLl
h=k—2

+o00
<C Y 272 gp(w — )| 2y 2P IW L2y (64)
h=k—2

By Theorem A.5 and Lemma 4.3 the sum on this last line is bounded above by

+o00
Yo 2 onw =) | g2y Wl g2

h=k—2 +o0 s
< Z 2k_4_h(||w||H1/2(Ah) + Z 21—(k—4)
h=k—2 I=—00

h
> Nl gy ) IV g
s=l+1

+o00
f( > 2wl gy + D Il ( X2 27

h=k—4 s<k—4 h>k—41<s—1
£ 3 Wolavsay( £ 5 2 Wl
s>k—4 h>s—11<k—4
+00 k-5
5( Yo 2T Ml e, + D zh—("—“)nwnm/z(Ah))||W||Hl/2(R). (65)
h=k—4 h=—o00

Finally, set n > i1 = max(n, ny), where n, > 6 is such that

it i
c Z 2 ||w||H1/2(Ah) = §||W||H1/2([R) for n > n,.
h=—o00
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We conclude from (63)—(65) that

+o0 too
h; /R AV (g (w = B—g)) - W = W 13120 T C I Hl/z(mh; 2wl 124, 66)
=k—4 =k—n

Step 2: estimate of fR F(Q1, A"*u)- W dx, the second term on the right-hand side of (61). We write

k+1
F(Q1, A u) = F(Q1, xp—aA*u) + 3 F(Q1,0p A u) +

400
Y F(Qu.gnAu).  (67)
h=k—4

h=k+2
By Theorem 1.7, the integral involving the first term on the right can be estimated as follows:

/R F(O1. —a &) - W dx < C1 Q1L 1/ | xk—a A ull 2 IW L1 2

< Cellx—s A ull2 Wl 12

< T lxk—a & ull 2 Wl 12y (68)

where in the last inequality we have made use of the choice of € > 0 (see beginning of proof on page 166).
We also use Theorem 1.7 for the integral involving the second term on the right-hand side of (67):

k+1 k+1

Z /RF(QI,(PhAl/Au)'deSC Z ”Ql”Hl/z(R)||(phAl/4u||L2(R)”W”;’[l/Z(R)- (69)
h=k—4 h=k—4

Next we want to deal with the term in (67) involving the infinite sum. Again by Corollary A.8 we can
exchange the summation with the integral and write

+o00 Foo
/R( Z F(Ql,gohA”“u))-de: Z /RF(Ql,(phAl”u)-de.

h=k+2 h=k+2

If h >k + 2, we have F(Q1, o AV*u)-W = Q1 AV*(¢, AV*u) - W, since the supports of Q1 and ¢y,
are disjoint, as are the supports of xz_4 and ¢j. Hence we can write

+o00

400
> | F@uga - wax= 3

O 1 A *(pp A*u) - W dx
h=k+2 h=k+2"R

400
= %[5 (@i )« W)

h=k+2
+00

> 1T E D)oo\ By Q108 A s (W
h=k+2

+oo
<C Y 20 A ull | Wl

(70)
h=k+2
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By Theorem A.5 we finally get

+o0 +o00
> / F(Qr,onA*u)- Wdx < C Y~ 2701 guo eyl lon A ull L2y IW | 172y
h=k+2 "R h=k+2

+o00

<C Y Mg A ul 2 W 12y
h=k+2

Step 3: estimate of [, F(Q2, A'*u)- W dx, the last term in (61). As in Step 2, we write

k+1
F(Qa2, A*u) = F(Q2, p—aA*u) + 3 F(Q2, 0p AV u) +

+00
Y. F(Q2.0pA"*u). (71)
h=k—4

h=k+2
For the first term, since the support of Q5 is included in ng,I , we have
F(Q2. Xk—aA*u)- W = AV (02 (xk—a AV 1)) - W.
Observe that O, = Z‘Zi’%_l 0n(02—(02)k—1), (02)k—1 = 0) and by using Corollary A.8 we get

/ F(Qs. xr—a AV *u) - W dx
R

+o0
= 3 [ A(n02 = (@2 (tamsh ) W

h=k—1

00
=0 3 [ I (e 0002 = (D2im) # W)

h=k—1
=ClIWl . % 1F™ (&1 ) | Lo (B 2\ By | Kk—a A *10) 0 (Q2 — (Q2)i—1) [ 1
=k—1

1/4 % —h/2~k/2 A
< Cllxk—a A ull 2 lW ll oy 2= 27225 2 lon(Q2 = () k=Dl 172y
®) ®)
h=k—1

From Lemma 4.3, possibly by choosing a smaller k, we get

cy 2k —(0 : <lp_ 1
Y Zk: ||§0h(Q2 (Q2)k—1)||H1/2(R) =71 <1g:
=k—1

Therefore
| F (@2 a0 W = Sl W ey

Now turning to the second term in (71), we bound the corresponding integral using Theorem 1.7:

k+1 k+1

> /RF(Q2,<PhAI/4M)'WdX <C Y Qg load ull 2 W=kl g1/2g)-  (72)
h=k—4 h=k—4
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Finally we consider the last term in (71). By Corollary A.8 we can write
+o00 400
/ ( > F(0a. whA”“u)) Wdx= Y | F(Q2.opA"u)-Wdx.
R\ h=k+2 h=k+2"R
Next, since the support of Q5 is included in Bg,‘,,l, we have for & > k + 2 the equality
F(Qa. oA *u)- W = (AV4(Q2 4 A *u) — Q2 AV (@A) + AV* Qo AV *u) - W
= A0 A ) - W.
Therefore

400
> / F(Qa, onA*u)- W dx (73)
R

h=k+2 400 400
= Y [ aana i wax = 3 [ FA Qx| FW ds

h=k+2 h=k+2

00
-y /R E12F(Qp AV )] FIW] dE

h=k+2

+o0
= % [FE) (0n0 (@3~ (@) « W) d

h=k+2

+o00
< > FE ) poocn
h=k+2

Sh+2\Byn—2) ” (90/1 AIMU(QZ - (QZ)k—l)) * W HLI([R)‘

Now choose ¥, € C5°(R) such that ¥, = 1 in Byn+1 \ Byn—1 and supp ¢ C Bya+2 \ Byn—2. Thus

+o00
(713)=C Y 272 yn(Q2 = (@2)k—1)| oy llon A “ull L2y IW L1 gy

h=k+2
+o00
<C Y 2Myu(02— (@D | g2 len A ull L2y Wl 12y (74)
h=k+2
+oo b _ 1/2 400 i 1/2
SC( Y 2 ||wh(Q2—(Qz)k_onip/z(m) ( > 2 ||<ohA”4u||iz) W12y
h=k+2 h=k+2

where we have applied Theorem A.5 and Cauchy—Schwartz.
From Lemma 4.3 (with ¢ replaced by y) and Theorem A.1 we deduce that

+o00

(X

_ 1/2
F (02 0 gy ) =IO ey
h=k+2
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Thus
+o0 1/2
3 [ @zt wax = Wl sy X 2 lond il
h=k+2 h=k+1
+00
< C||W||H1/2(R)( > z“‘—’”/z||<ohA“4u||Lz<R>). (75)
h=k+1

By combining (68), (69), (70), (72) and (75) we obtain (for some constant C depending on Q)

/ F(Q, A*u)- W dx
R

%n”Xk 4A1/4u”L2”W”H1/2(R)+C Z 2(k h)/2||Al/4u||L2(Ah)”W”HI/Z(R) (76)

h=k—4
Finally for all n > n we have
W 1120
+o0 400
< Nl xk—a A sl 12y + c( Yo K Mwlgiag,+ Y 2% ||A”4u||Lz<A,1>), (77)
h=k—n h=k—4
concluding the proof of Lemma 4.4. O

Proof of Lemma 4.5. The proof is similar to the preceding one, so we just sketch it. As before, we fix
ne (0, %) We consider k < 0 such that

Xk @ =@ 12y <& and e A ull 2@ <e.

with & > 0 to be determined later.
We observe that (46) is equivalent to

RAY*(p- AY*u) = G(q -, AV*u) — A*u - (RAY*u). (78)

We write

G(q T A1/4M) = G(Ql ) Al/4u) + G(qZ T Al/4u)’
where

g1 = xk(q—qx) and g2 = (1— xx)(g —qGx)-
We observe that supp g, < Bck , and ||q1 ”FII/Z(R) <e. We also set

up = xie A, us == ) A u, w=A"*(p-AMu), W = xp_a(w—Wg_q).
We rewrite (78) as
+o00

RAVHW) = _@ml/z( > on(w-— wk_4))

h=k—4
+G(qr1 -, A*u) + G(gz -, A *u) +uq - (RA*u) 4+ uy - (RAY*u).  (79)
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We multiply (79) by W and integrate over R. By using again Corollary A.8 we get

/ AV W2 dx (80)
R

+o00
= — QRA]/Z — W WYd G -,A1/4 wW)d G -,A1/4 W) d
h;k—4/R (on(w—wg—4))(W)dx +/R (91 u)(W) x+[[R (42 u)(W) dx

+/ ul-(QJtAl/4u)(W)dx+/ Uy - (RA*u)(W) dx.
R R

The last term vanishes, since #, and ) _4 have disjoint supports. Estimating fu;e G(Q1, AV*u)(W) dx
and [ G(Q2, AV*u)(W)dx is analogous to what we did for the terms [ F(Q1, A"*u)(W)dx and
Jg F(Q2, A*u)(W) dx of (61). We therefore concentrate on the other two terms in the right-hand side
of (80).

To estimate the sum term, we split it into two parts: one sum for k —4 < i1 < k — 3 and one for
h > k —2. For the first part we write

k-3
- /R%Al/z(‘ﬂh(W—u_)k—O)(W) dx

h=k—4

k-3
< > A = wr—a)| 12 1OV 172y
h=k—4
k=3 k=S sy &
<0 2 (olizay+ £ 274 3 ullgusgay )IW i, 6D
h=k—4 |=—00 s=Il+1

where the second inequality follows from Lemma 4.3. Let ny > 6 be such that

k—nl
C > 2wl gaag,y < $IW gy
h=—o00

If n > ny we have

k-3
80 = HW Iy oy CIW g 5 2710l ) 32)
=k—n

For the second part of the sum (4 > k —2) we use the fact that supp(goh (W —Wp_yq) * W) is contained
in Byn+2 \ B,n—2; in particular, it does not contain 0.

+o00 Foo
> [ - Wydx= Y [ eslontw— i l@FWIE de

h=k—2 h=k-2

400
= 3 [T O iig « W) dx

h=k-2

+o00
- Z 5(/)()6) (pp(w—wg_4)* W) (x)dx =0.
R

h=k-2
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Step 2: estimate of [ uq - (RAY*u)(W) dx. We have

400
/Rul S(RAY*u) (W) dxz/Ru] (Rup)(W) dx+}§c/Ru1 (PR AV u) (W) dx. (83)

By applying Lemma 3.2 and using the embedding of %! (R) into H~'/2(R) we get
/Rul (@) (W) dx < Cllug - @)l |V 172y < Clua 13210V 12y

1
= C8||XkAl/4u”L2”(W)”HI/Z(R) = ZSHXkAlMu”LZ”(W)”Hl/z(R)-

By choosing &€ > 0 smaller if needed, we may suppose that Ce <.
Now we observe that for 1 > k the supports of ¢p and yz_4 are disjoint. Thus

Z f u - (%whA”“u)(W)dx—Z f {100 (@10 0+ (0 W)

=C Z X1 200 (B 2\ By o) | (@R A1) % (s W)I 1
h=k

+o00
=Cy 272K 0y AV Loy e L2 | OV gy 12y

+o00
<Ce 3 2521 g AV ull 2y W) | 12y
h=k

n —
vy Z 2D g Al L2y | W) 172y -

Proof of Proposition 4.1. From Lemma 4.4, there exist C > 0 and 7 > 0 such that forall n > 71, 0 < < &,
k < ko (ko depending on n and the H /2 norm of 0), every solution to (45) satisfies (77) and thus also

W12 /2 0

+o00
<n ||><k_4A“4u||iz+cz"/2h % 25 w2
=K—n

LC +§° 2 =h)/2 | A4
h=k—4

2
H]/Z(A ) u”LZ(R)- (84)
Now we can fix n > 1 and we can replace in the second term of (84) C on/2 by C.
From Lemma A.3 it follows that there are Cy, C, > 0 and m; > 0 (independent of n and k) such that

if m > my we have

+o00

> okt / IMAY*u? dx. (85)

2
”W”HI/Z(R) Cq / |MA1/4u| dx —C,
sz—n m h=k—n—m Bzh\Bzh—l

Finally from Lemma A.4 it follows that there is C > 0 such that for all y € (0, 1) there exists m, > 0
such that if m > m, we have
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k—h
h=k—n
-3 I

+o0
5)/[ |MA*ulPdx+ > 2(k—h)/2[ |MAY*u|? dx.
|| <2k—n—m 2

h h+1
h=k—n—m =slgl=2

By combining (84), (85) and (86) we get

ClMA U2, =C > 2P A2, 4G 5 DI A 2

h=k—n—m h=k—n—m

+n2||Xk_4A”“u||iz(R) +CYIMA ullfag e 8D

Now choose y,n > 0 so that C Icy < % and C In? < 1. With these choices we get for some
constant C > 0

| M — LA

2 2
u”LZ(sz—n—m) u”LZ(B k—n—m)

SC( > ok ">/2||MA“4u||L2(A)+ ¥ alke ">/2||A”4u||Lz(Ah)) (88)

h=k—n—m =k—n—m

We observe that in the final estimate (88) the index m can be fixed as well. Thus by replacing in (88)
k —n—m by k we get (48) and we conclude the proof. d

The proof of Proposition 4.2 is analogous and we omit it.

5. Morrey estimates and Holder continuity of %-harmonic maps into the sphere

We consider the (m — 1)-dimensional sphere S™~! C R™. Let I1gm—1 be the orthogonal projection on
S™=1_We also consider the Dirichlet energy defined by

L(u):[ IAY*u(x)|>dx  foru:R— S™1, (89)
R

Definition 5.1. We say that u € H'/2(R, S 1) is a weak %—harmonic map if

d
EL(HSWI—I (u+t¢))|t=0 =0 (90)

for every map ¢ € H'/2(R, R™) N L (R, R™). In other words, weak %—harmonic maps are the critical
points of the functional (89) with respect to perturbations of the form IT gm—1(u + t¢).

We denote by /\(R™) the exterior algebra (or Grassmann algebra) of R”. If (¢;)i=1,. m is the
canonical orthonormal basis of R™, every element v € /\ p(R™) can be written as v = > jvrer, where
I={iy,....ipywith1 <iy <---<i, <m, vy := v, i, and e :=e;; A+ Nej,.
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By L we denote the interior multiplication L : /\ , (R™) x A\ 4(R™) — /\ 4— p(R™) defined as follows:
Lete; = e A---Nej,, ey =ej; A---Aej,, withg > p. Theney L ey = 0if I ¢ J; otherwise
erley=(—1)Meg, where eg is a (¢— p)-vector and M is the number of pairs (i, j) € I x J with j >1i.

By the symbol ¢ we denote the first order contraction between multivectors. We recall that it satisfies
aef=al Bif fisal-vectorandxe (BAY)=(xeB)Ay +(=1)PI(aey)AB,if B and y are
respectively a p-vector and a g-vector.

Finally by the symbol * we denote the Hodge star operator, * : A\ ,(R™) — /\,;—,(R™), defined by

*B=(e1 A---ANey)epB.
Next we write the Euler equation associated to the functional (89).

Theorem 5.2. All weak %-harmonic maps u € H 1/ 2(R, S™=1Y satisfy in a weak sense the equation
/}A”Zm-vdxzo, 1)
R

for every v e HY2(R, R™) N L®(R, R™) such that v € Tu(x)S’”_1 almost everywhere, or equivalently
the equation
AVuru=0 in%, (92)

or yet
A*wunA*u)y=T(Q,u) in%, 93)
with Q = un.

Proof. The proof of (91) is analogous that of Lemma 1.4.10 in [Hélein 2002]. For v as in the statement,
we have

M gm—1(u+1tv) =u+twy,

where

1 8H m— i
wy =/ L(u—i—tsv)v’ds.
0 dyj

Hence

L(Hsm_l(u—i—tv)):/ |A1/4u|2dx+2t[ A?u-w; dx + o(t),
R R

as t — 0. Thus (90) is equivalent to

lim [ AY?u-w;dx =0.
t—0 JRr

Since IT gm—1 is smooth it follows that w; — wo = d I1 gm—1(u)(v) in H'2(R, R™) N L®(R, R™) and
therefore

/ A”“u dnsm—l (u)(v) dx =0.
R

Since v € Tu(x)Sm_1 a.e., we have dI1 gm—1(u)(v) = v a.e. and (91) follows.
To prove (92), we take ¢ € C°(R, A\ ;u—2(R™)). Then

/go/\u/\Al/zudXZ (/*((p/\u)-AI/zudx)el/\-'-/\em. (94)
R R
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We claim that
v=sx(p Au) e HY>(R,R™) and v(x) € TM(X)S’"_1 a.e.

That v € H'/2(R, R™) N L>®(R, R™) follows form the fact that its components are the product of two
functions in H'/2(R, R™) N L (R, R™), which is an algebra. Moreover,

veu=x(uAne)u=x(ureru)=0. (95)

It follows from (91) and (94) that

/(p/\u/\AI/zudx=O.
R

This shows that A2y Au=0in 9, concluding the proof of (92).
To prove (93) it is enough to observe that A?u Au = 0 and AY*u A AV*u = 0. O

Next we show that any map u € H'2(R, R™) such that |u| =1 a.e. satisfies the structural equation (18).

Proof of Proposition 1.4. We observe that if u € H'/2(R, S™~1) then Leibniz’s rule holds. Thus
Viul?=2u-Vuin @ (96)

Indeed, the equality (96) holds trivially if « € C®(R, R™™'). Let u € H'/2(R, S”~"') and let u; be a
sequence in CS°(R, R™) converging to u in H'/?(R,R™) as j — +oc. Then Vu; — Vu as j — +00
in H=Y/2(R, R”~"). Thus u; - Vu; — u - Vu in @’ and (96) follows.

If u e HY/2(R, S™~1), then V|u|* = 0 and thus u - Vi = 0 in @’ as well. Thus u satisfies (18) and
this conclude the proof. O

By combining Theorem 5.2, Proposition 1.4 and the results of the previous section we get the Holder
regularity of weak %—harmonic maps.

Theorem 5.3. Let u € HY/2(R, S™ 1) be a harmonic map. Then u € Clg;a (R, ™1,

Proof. From Theorem 5.2 it follows that u satisfies (93). Moreover, since |u| = 1, Proposition 1.4 implies
that u satisfies (18) as well. Propositions 4.1 and 4.2 yield for k < 0, with |k| large enough,

o0
1/4,,112 (k—h)/2 /4,112 1 /4,112
oA Al = C 3 26N Sl + Il ©7)
NG E <C %0:2(k—h)/2”A1/4u”2 + LAv4y)? (98)
L2(B,i) — = L2(4p) " 4 L2(B,i)
Since
A w72y = lu- A ullfagg ) + luA A ulTa .
we get
o
174,112 (k—=h)/2 ) A1/4,, 112
18l 2, = € 3 262l (99)
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Now observe that for some C > 0 (independent of k) we have

€T 1A gy 1Al € z RS
=—00

From this and (98) it follows that

k—1 00
Z ”Al/‘lu”iz(Ah) <C h¥k2(k—h)/2”Al/4

2
u ||L2(Ah)'
h=—00

By applying Proposition A.9 and using again (99) we get for » > 0 small enough and some g € (0, 1)

/ |AY4u|? dx < CrPB. (100)

Condition (100) yields that u belongs to the Morrey—Campanato space $2:7B (see [Adams 1975, page

79), and thus u € C%A/ 2(R) (see [Adams 1975; Giaquinta 1983], for instance). O
Appendix

We prove here some results used in the previous sections. The first is that the H'2([a, b]) norm, where
—00 < a < b < +o00, can be localized in space. This result, besides being of independent interest, is
used in Section 4 for localization estimates. For simplicity we will suppose that [a, b] =[—1, 1].

Theorem A.1 (Localization of H'/2((—1,1)) norm). Let u € H'/2((=1, 1)). For some C > 0 we have
0
LIS o LTS

where Aj = Byj+1\ Byj-1.
Proof. For every i € Z, we set A; = Byi \ Byi—1 and it} = |A}|™" [, u(x) dx. We have

|lu(x)—u(y)|* u(y)|?
||u|| :/ / dx dy
HI2(-1,0) — J_ 11] -1,1] |x— =y

_ Z // Ju()—u()? dx dy

e BEEEE
|u(x)—u()? Ju(x)—u(y)|*
dx dy dx d
,_Zoo//// |x — yI? +2]_Zoo,§1//// x —y[? g

s Z // GO o

T v 12
j=—o00 Jj+1 |x y|

We first observe that

Ju(x) —u(»)* Ju(x) —u(»)*
Z// dx dy < Z/,L, dx dy (102)

T v _ 2 2
oo [x =yl Ix =l
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and

[, s $ [
Jj=—00

It remains to estimate the double sum in (101). We have

) —u)P

Z Z// RS

j=—ooz>j+l

ey Y 2—2’// ux) —u(y)* dx dy

Jj=—00i=j+2

(Z > 2‘”/,/,' — ;| dx dy + Z > 2‘2’// ju(x) — it} 2 dx dy

j=—oc0i>j+2 J_—°0l>1+2
+ Z > 2—2’// lu(y) —it) |2dxdy)
j=—o00i>j+2

( Z > 2 P + Z > 2—2’21f |u(x) — it} *dx

]——OOI>]+2

B> 2‘2’2’/ u() - u-|2dy).

j=—o00i>j+2

j=—00i=j+2

Denote by W, Wy, W), the three double sums in the last parentheses. We have

Wy = Z 3 2—2’21f lu(x) — it} [2dx = Z 2—2’/ lu(x) — it} 2 dx(lsz_zzf)

i=—00j<i—2 i=—00
_ 2
e Z A4 1/ u(x) — it} 2dx < C Z // '“(T)Z Zl(zy)l dx dy, (104)

where in the last inequality we used the fact that, for every i,

4} 1/ ) — i} 2 < |4}~ 1/,

_ 2
<A~ 2/ / lu(x) —u(y)|? dxa'y<C[/// |u(>|2 §|(§})| dx dy.

A similar calculation yields

2

u(x) — A} lfA u(y) dy

|u(x) —u(y)|” u(y)|?
CZ // Ty dx dy. (105)

j=—00
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Finally, to estimate W = Z > 272 gl — g |2 we first observe that
j=—00i>j+2

i—1
Sr =12 - —/12 - ~ 12 -1 =12
iy — i < (=) ) iy —wp* and iy —ig)* < |4 /Alu—ull dx,
i !

where ii; = |4;|7! fAl u(x)dx. Setting a; = |A;|™! fAl |u —i1;|? dx, we then have

Z > - ’Zaz< Z as Z > G-HY

j=—00i=j+2 I=—0c0 j=—00i—j=l+1—j

We observe that

l
Z Z (i—j)2/7 < Z / 27 ¥xdx = Z 27UHI=D (42— )

I+1—j

j=—00i—j=I+1—j Jj=—o00 Jj=—00
+o00
5/ 27'(t+1)dx < C, (106)
1
for some constant C independent of /. It follows that
0 2
w<c Y alfC/ / Jutx) = ”(zy” dx dy. (107)
= 4 Ix=l

By combining (102), (103), (104), (105), and (107) we finally obtain

312 11»~ Z 112,y

Next we show that
0

2 2
D Nl gy S N0y (108)

l=—00

For every [ we have A; = C; U D;, where C; = Byi+1 \ By and D; = B,i \ Byi—1. Thus

|u(x)—u(y)|? Ju(x)—u(»)* |u(x)—u(y)|?
= dx dy dxdy+2 dx dy.
[c,/c, |x — y|? +/D,h/D, |x — y|? * /D,,,[c, lx — y|? 4

Since | J;(C; x Cp), \U;(D; x Cy), and | J;(D; x C;) are disjoint unions contained in [0, 1] x [0, 1], we

have
2 2
Z// |u(x)— ”(JZ/)| dx dy < / / u(x)— u(J27)| dx dy.
~JaJa  Ix=yl -1,11J[=1,11  |x =]
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Z/ / lu(x)—u(y)|* u(y)|? dx dy < / [ |lu(x)—u(y)|* —u(y)|? dx dy
— 4 JC, =y —1,11J[=1,1]  |x— =2 ’

2 2
W[ ORI,
~Jp I X =) 11 J[-1,11 X =yl
It follows that

Ju(x)—u(y)|?
Z el = /[11][[—1 1 =y ey = gy

Remark A.2. By analogous computations one can show that for all » > 0 we have
+o0
ey = 22 12040y
j=—00

where A]’. = B,i+1, \ Byj-1,, where the equivalence constants do not depend on r.

181

Next we compare the H /2 norm of A~'/4(MA"*u) with the L2 norm of MAY*u, where u € H/2(R)

and M € Hl/z(R,M,xm(R)), fort > 1.

In the sequel, for p > o > 0, we denote by 1<y, Lp<|x|» and 1,<|x|<, the characteristic functions

of the sets of points x € R satisfying the respective inequalities.

Lemma A.3. Let M € HY2(R, Myxm(R)), withm > 1 and t > 1, and let and u € H'/*(R). There exist
Ci >0, Cy > 0and nyg € N, independent of u and M, such that, for any r € (0,1), n > ng and any

X0 € R, we have

||A71/4(MA1/4M)||H1/2(B (x0))

+o00
ZCI/ |MA*u>dx—Cy Y 2—”/
B, j2n (x0) h——n B,p, (x0)\B,yn—1,(x0)

|MAY4u|? dx.

Proof. For notational simplicity we take xo = 0, but the estimates made will be independent of xy.

We write
AVHMAY*u) = A‘1/4(]l|x|5,/2n MA*u) + A‘”“((l — ]l|x|5,/2n)MA”4u),
where n > 0 is large enough; the threshold will be determined later in the proof. We have
| AT MA w) | 12,
= [ AT @ 2 MA W) | 12 g,y — [ ATV = L) MA 1) | g2,
> AT @y MA* W) | 12,y = AT @2 <iwizar MAY*U) | 12,
—| A71/4(]l|)c|24rMAM“)HHl/z(B,)
z | A Ay MA )| a2 gy = [ A7 Wrjansieiar MA 0 12y
—| A_l/él(ﬂlxlzuMA]M”)HHI/Z(Br)'
We estimate the last three terms in (109).

(109)



182 FRANCESCA DA LIO AND TRISTAN RIVIERE

e Estimate of H ATVHLy jan < x| <ar M A1) H A1/2@)- This expression is equal to

/ |MAY*u|? dx = Z/ MAY*u|? dx. (110)
r/2"<|x|<4r 2hy<|x|<2h+1p

* Estimate of | A_l/4(]1|x|24rMAl/4“)HHl/Z(B,)' Setting g := 1|y|>4, M A'*u, we have

: (X7 )0 = (X x )
1A g0 a5 = // |
B, r

|t —s|?

1 B ~ 2
:/ / |t s|2([| A g(x) (Jt—x| 12 _|s—x]| 1/2)dx) dt ds
rJBr |0~ x|>4r

2
(mean-value thm.) < C / / ( / g (x)| max (|t —x| 72, |s—x|73/2) dx) dt ds
r r |X|Z4r

+o00 2
sc[ / (Z/ |g(x)|max(|t—x|_3/2,|s—x|_3/2)dx) dt ds
rJBr \ Ty 2hr<|x|<2h+1r
+o00 2
scf / (Z/ |g(x)|2—3h/2r—3/2dx) dt ds
rJBr \ Ty J 2 r<|x|<2h 1y
+oo —1/2\2
(Hélder inequality) < C / / (ZZ_hr_l( / |g(x)|2dx) )dtds
r N\ h=4 2hr§|x|§2h+1r

+oo +oo
(Cauchy-Schwarz) < C ( Z 2k ) (

> ot

h—d hed 2hr<|x|<2h+1r

| M AY*u|? dx)

+o00
§C(Z2_h/ |MA”4u|2dx). (111)
h—d 2hr<|x|<2h+1r

* Estimate of ||A‘1/4(]l|x\5,/2nMA”4u)||HI/Z(Br). We set
hi=1x 21 < x| < 2
By the localization theorem A.1 there exists a constant C>0 (independent of r) such that

A4 (L <rjon M A 0|2

HY2[R)
+o00
SC Z ||A e (1|x|<r/2”MAI/4”)||H1/2(AF)
h=—o0 S (112)

||A 1/4 (]]-|x|<r/2”MA1/4U)“H1/2(B ) + CZ ”A 1/4 (]]-|x|<r/2"MA1/4u)”H1/2(Ar)
h=0
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* Estimate of Z o 1AV 4@ <pjon M AY4u)||? Setting

H1/2(47)
S (X) 1= Lixj<pjon MAY*u

and working as in the first three lines of (111), we can write for this sum the upper bound
+o0o )
X [ ([ e s-x ) dx ) ar ds
heo Y An/ Ay \Jlx|I=r/2"
+o00 .
=C Z/ / max(lt|‘3,|s|‘3)—(/ If(x)lzdx) di ds
h=0 41’4} 2" \Jx|<r/2n

C+c>o

C
=— 2"’(/ |f(x)|2dx) 5—/ |MAY*u|? dx.
2 lx|<r/2n 2% Jixi<r/2n

h=0

(113)

If n is large enough that C C/Z” , we get, combining (109), (110), (111), (112) and (113), for some
C1, G, positive,

||A”4(MA‘/4u)||H1/2(B)_C1/ |MA*u|? dx — C, Z —”/ |MAY*u|? dx,
B, /on _ B,pt1,\B

2hy

which ends the proof of the lemma. O

We now compare the H'/2 norm of A~"/4(M A'*y) in the annuli Ay, = Byn+1(xo) \ Bon—1(xo) with
the L? norm in the same annuli of M A'/#y. This result, like the previous one, was used in the proof of
Proposition 4.1.

Lemma A4. Let M € Hl/z(R,J‘/Ltth >1(R), m>1,t > 1, and u € H2(R). There exists C > 0
such that for every y € (0,1), for all n = ng € N (ng dependent on y and independent of u and M),
for every k € Z, and any xy € R, we have

Z 2k h||A_l/4(MA1/4u)||

2 H'/2(Byj41(x0)\ Byn— I(XO))

5)/[ |MAY*u2dx + Z‘ 2<’<—">/2/ | M AY*u|?dx.
B, k—n (x0) hek—n B,p41(x0)\Byn—1(x0)

Proof. Again we take xo = 0, but the estimates will be independent of xo. Given 4 € Z and / > 3 we set
Ap = Bynt1 \ Byn—1 and Dy p, = Byt \ Byn—i.
Fix y € (0, 1). We have, for w = A~"4(M A'*u) and for any / > 3 (to be chosen later),

() —w()P
o= [, [, e

<2[|A V4 1p, , M A ul)? F2AVA (1 —1p, ) MAY*u]? (114)

H/2(Ay) H'2(Ap)
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The first of these two terms is bounded above by

h+1-1

> / IMA*u>dx.  (115)
B

|A 41, , MAY*u|? / |MAY*u|? dx =
Dl,h s=h—I 2s+l\B2S

HI/Z(R) =

Multiplying by 2k=h and summing up from /2 = k to 400 we get
+00 too

> 2 MAT p,  MA Y, < C2T Y / IMA*u?dx.  (116)
B,n+1\Byn—1

h=k h=k—I

To estimate the remaining term on the right-hand side of (114), set g = (1—1p, ,) M A'/*u and write,
as in the first two lines of (111),

— 2
”A 1/4g||H1/2(Ah)

1 2
Z/ / 2(/ g(x) (|Z—X|_1/2—|S—x|_1/2) dx) dt ds
Anday 1t =] |x|<2h=lor |x|>2!+h

1 2 1 2
52/ / —2(/ (same)) dt ds+2/ / —2(/ (same)) dtds. (117)
A, Ja, [t—s| |x|>2!+h A, Ja, [t—s| x|<2—1

For the first of these last two terms we can write, following the same steps as in (111) and using the
fact that, since / > 3, we have |x — ¢/, |x —s| > 297! for every 5,1 € Aj, and 29 < |x| <297F1:

/Ah/Ah It—lslz(

2
/| 2l+hg(x)(|t—x|_1/2—|s—x|_1/2) dx) dt ds
x|>

|
o0

§C2h_’( 2—q/

IR

q=h+I

|g(x)|2dx). (118)

q<|x|<2¢+1

Multiplying the right-hand side by 2", where k € Z, taking the sum from / = k to +o0, interchanging

the summations, and using the fact that g(x) = M A'*u(x) when 29 < |x| <2971, we get the value

c2! +f 2k_q(q—l—k)(/
2

|MA”4u|2dx)

g=k+1 9= lx|=27+]
+o00
<c2' Y 2("—‘1)/2(/ |MA“4u|2dx), (119)
Z 29=|x|=<29H1
g=k+1
+o00
which is therefore an upper bound for the contribution to 2k=h|y |2 of the term in (117)

) : - H/2(4p)
containing the integral over |x| > 2/ 74, h=k

We still have to estimate the contribution of the term containing the integral over |x| < 2= we
can assume that 4 > k. Again following the same reasoning as in (111) and the using the inequalities

|x —s], |x —¢| > 2#~2 applicable to this case, we write
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2
1 ~1/2 ~1/2
5 g(x) (lt—x| —|s—x|7"?)dx ) dt ds
Apday |0 =517\ J|x|<2n—

< c/ / 2—3h2h—’(/ |g(x)|2dx) dt ds = cz—’/ |MAY*u|? dx
Ap JAp |x|<2h—1 |x| <21

h—[—1
=c2—’(/ |MA uldx+ / |MA”4u|2dx). (120)
| <2k~ £ Jaasixi<aat

Multiply the right-hand side of (120) by 2k=h take the sum from & = k to +o0, interchange the double
summation, evaluate the geometric series, and rename ¢ to /1 as the index of the remaining summation,
to obtain the upper bound

+o0
C2"+1/ |MA udx +C27% " / 2K M A u)? dx (121)
|x|<2k—! hek—I 2h<|x|<2h+1
+o0
for the contribution to Y 2K~/ |jw||%. of the term under consideration (second term on the last
. - H1/2(A4p)
line of (117)). h=k
Now choose / so that C 27! < y < 1, and set ng = /. Then, for all n > ny,
400 h—I
> ok (c 2! f |MAu?dx+C 272 )" / |MAY*u|? dx)
ek |x|<2k—! s—k—1I 25<|x|<25+!1
+o00
5)// |MA*u*dx + ) / KM M A u)? dx.
|x|<2k—n hek 2h<|x|<2h+1

By combining (114), (116), (119) and (121), for n > ny we finally get

+00

k—h A— 2
Z ) ||A 1/4(MA1/4u)”H1/2(Ah)
h=k
400
< )// |MA udx+ ) / 2=W/2| pp AVAy 12 dx. O
|x|<2k—n hefep ) 2T S x| <2

Next we show a sort of Poincaré inequality for functions in H'2(R) having compact support. Recall
that, for €2 an open subset of R, the extension by 0 of a function in H(} / 2(Q) = C@O(Q)H 1z is, generally
speaking, not in H'/2(R). This is why Lions and Magenes [1972] introduced the set Holé %(Q) for which
the Poincaré inequality holds.

Theorem A.5. Ler v € H'/2(R) be such that suppv C (—1,1). Then v € L2([—1,1]) and

/[—1 . v()|*dx < C v, ((=2.2).
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Proof.
g _ 2
/ |v(x)| dx <C [v()] 5 dx dy < C/ / [v(x) v(;))| dx dy
=l 1slyi=2 Jixist (X = 1<iyl<2 Jixi=1 X =y
() v ,
=€ dx dy = Cllvl,> (=2, 2). 0
/y|<2/|x|<2 |x — y|? Y 1lg2( ]

From Theorem A.5 it follows that

vl L2qrpy < CrY ”v”Hl/Z(R)-

The next three results justify the interchanging of infinite sums, pseudodifferential operators, and
integrals that we performed several times to obtain the localization estimates in Section 4.

In Lemma A.6 (resp. A.7) we consider a function g € H'/2(R)NL®(R) (resp. f € H'/2(R)NL®(R))
whose support is contained in By (resp. By ). We estimate the L?-norm of A*g (resp. A/ f) in
annuli Ay = Byn \ Byn—1 with h > k (resp. h < N).

Lemma A.6. Let g € H'/2(R)N L (R) be such that supp g C B« (R). Then for all h > k + 3 we have
184 gll L2,y = €227, (122)
where Ay, = B,yn \ Byn—1 and C depends on I|g||H1/2([R)’ gl oo ®)-

Proof. We fix h > k + 3 and let x € Aj. We set g5 = |Byx|™! fsz g(x) dx. We have

A"*g(x) = lim

/ g(y)—gx) dy = lim g(y)—gx) dy
g—0 |

x—ylze |x—y[3/2 £=0 Jix—y|ze |x — p[3/2
Y€B, K

180 — gkl dy + 272 / 2() — 2kl dy

2k

< C 27329k B! /
B,

< C27"22% (gl oy + gl Loo@)-

In the last inequality we used the fact that H'Y2(R) < BMO(R). It follows that

[A |AY4g(x)|? dx < C 22k~ 2”(||g||Loo(R)+II(gfllHl/z([R{))
h

Thus (122) holds. O

Lemma A.7. Let f € H'2(R) N L®(R) be such that supp f C BSx (R). Forall h < N — 3, we have

IAY* fll L2 a,ydx < C 2=N/2, (123)

where C depends on || f || gr1/2(y and || f || Lo
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Proof. Fix h < N —3 and x € Aj;,. We have

Al/4f(X) — lim f(y) —f(X) dy
60 Jjx—ylzs |x —p|3/2

o (f [0S0, f =0 ) o
2 |x—y|=2N-1

_ _ 13/2 _ 13/2
L0 oV ylze |x =yl |x =yl

We observe that if |x — y| < 2V 72 and x € Ay, then |y| <2¥~1 and thus f(y) = f(x) = 0. Hence

(124):[ S = /() dy+/ W=/,
2 2

N-2<|x—y|<aN |x—y[3/2 Nelx—y| |x—p[3/?

< CR2NN (| £ sy + 1 o) + 27V f o)

< C2N2( fll ey + 1/ ILoo)- (125)

From (125) it follows that
/Ah IAY4 F(x)|2dx < C 2_N+h(||f”21/2(ﬂ%) + |f||ioo(R))

and thus (123) holds. O

Corollary A.8. Let g € H'/2(R) N L*°(R) with supp g € Bk, for some k € Z and for every N > 0 let
fn be a sequence in H'/2(R) N L®°(R) such that ”fN”FIl/Z(R) + | /N Loy < C (C independent of
N) and supp fn C By Then

lim AY* fn(x)AY*g(x)dx = 0. (126)
N—>+oo JRr

Proof. We split the integral in (126) as follows:

/ AV fi (x) AV g (x) dx
R
k+2 N—=2
— A1/4 A1/4 d A1/4 A1/4 d
h:Z_OO /A REARISE T x+h§+3 /A AN ) d

00
+ > / A4 fn(x)AY*g(x)dx. (127)
h=N—1"4n

We estimate the three summations in (127). We take N > k.
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By applying Lemma A.7 we have

k+2 k+2

h;oo /Ah AV [y () A g (x) dx < h;_oo(/Ah AV fiy (x) 2 dx)1/2(/Ah A4 g(x)|? dx)!/?

k+2
< Clgl g2l grogy + 1 /v lew) Y 20772
h=—0o0
< 2k=N)/2, 128)

By Lemma A.6 we have

+oo IS
Z / AV f(x)A g (x) dx = CILIN iz I8 12y + 18 oo @) Z 2
h=N—1"4n =

< (C2kN, (129)

Finally, by applying Lemmas A.6 and A.7 we get

N-2 +o00
> / A4 fn(x)AV3g(x)dx < C2KN2 N a7hi2 < ¢ =2, (130)
h=k+3 " n h=k+3
By combining (127), (128) and (129) we get (126) and we can conclude. O

We conclude with the following technical result, used in the proof of Theorem 5.3.

Proposition A.9. Let (ay )i be a sequence of positive real numbers satisfying ',tio_oo 61]2c < 00 and
n 400
Za,zC <C Z 2(”“_1‘)/261,2c for everyn <0. (131)
—o0 k=n+1

There are 0 < § < 1, C > 0 and in < 0 such that for n < ii we have
n
Y ap <c@MP.
—00
Proof. Forn <0, we set 4,, = Zfoo a,zc. We have alzC = Ay — Aj—; and thus

+o00 +00
Ap<C Y 2R — g ) <C1—1/V2) Y 2R 4,
k=n+1 k=n+1

Therefore

+o0
A<ty 20H17R2 Y (132)

n+1
with

C 1 1
r:C—H(I—E)<1—E.
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The relation (132) implies the estimate

+o00
Ap S TAggr 1y 2017024, (133)
n+2

Now we apply induction on A,y in (133) and we get

too - +o0
(133) < 2 (Z 2(n+2—k)/2Ak) + E(Z 2(n+2—k)/2Ak)

n+2 n+2

400
=1(r+ l/ﬁ)(z 2(n+2—k)/2Ak)

n+2

+o0
=1(t+1/v2) (A,,+2 +1/V2)° 2<”+3—k)/2Ak)

n+3

400
<t(t+1/2)? Z 2(1+3-)/2 4, (by applying induction on A4 »)
n+3

+o00
<<tV 27Ray
k=0

A

t(t+ 1/6)‘”(% 2"‘)( f a,i)

k=0 k=—o00
+o0

<ua@+ 1V ) 4
k=—oc0

<Cy™,

with y = 7(t + 1/+/2)™". Therefore for some 8 € (0, 1) and for all n < 0 we have 4, < C(2")#. O
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