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REGULARITY OF WEAK SOLUTIONS
OF A COMPLEX MONGE–AMPÈRE EQUATION

GÁBOR SZÉKELYHIDI AND VALENTINO TOSATTI

We prove the smoothness of weak solutions to an elliptic complex Monge–Ampère equation, using the
smoothing property of the corresponding parabolic flow.

1. Introduction

Let (M, ω) be a compact Kähler manifold. Our main result is the following.

Theorem 1. Suppose that ϕ ∈ P SH(M, ω)∩ L∞(M) is a solution of the equation

(ω+
√
−1∂∂ϕ)n = e−F(ϕ,z)ωn

in the sense of pluripotential theory [Bedford and Taylor 1976], where F : R×M→ R is smooth. Then
ϕ is smooth.

In particular, if M is Fano, ω ∈ c1(M), and hω satisfies
√
−1∂∂hω = Ric(ω)− ω, then we can set

F(ϕ, z)= ϕ− hω. The result then implies that Kähler–Einstein currents with bounded potentials are in
fact smooth. Such weak Kähler–Einstein metrics were studied by Berman, Boucksom, Guedj, and Zeriahi
in [Berman et al. 2009], as part of their variational approach to complex Monge–Ampère equations.

It follows from [Kołodziej 2008] (see also [Guedj et al. 2008]) that the solution ϕ in Theorem 1 is
automatically Cα for some α>0, but it does not seem possible to use this directly to get further regularity.
The difficulty is that in the equation

(ω+
√
−1∂∂ϕ)n = e f ωn,

the C1 estimate for ϕ (due to Błocki [2009] and Hanani [1996]) depends on a C1 bound for f , and in
turn the Laplacian estimate for ϕ (due to Yau [1978] and Aubin [1976]) depends on the Laplacian of f .

To get around this difficulty we look at the corresponding parabolic flow

∂ϕ

∂t
= log

(ω+
√
−1∂∂ϕ)n

ωn + F(ϕ, z).

Following the construction of [Song and Tian 2009] for the Kähler–Ricci flow, we show that to find a
solution for a short time, it is enough to have a C0 initial condition ϕ0 for which (ω+

√
−1∂∂ϕ0)

n is
bounded (see also [Chen and Ding 2007; Chen and Tian 2008; Chen et al. 2011] for earlier results, as
well as [Simon 2002] for a weaker statement in the Riemannian case). The solution of the flow will be
smooth at any positive time. Then we need to argue that if the initial condition ϕ0 is a weak solution of
the elliptic problem then the flow is stationary, so in fact ϕ0 is smooth.

MSC2000: primary 32Q20, 32W20, 35J60; secondary 53C44.
Keywords: complex Monge–Ampère equations, regularity of weak solutions, parabolic flows.
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370 GÁBOR SZÉKELYHIDI AND VALENTINO TOSATTI

In Section 2 we show that the flow (with smooth initial data) exists for a short time, which only
depends on a bound for sup |ϕ0| and sup |ϕ̇0|. In Section 3 we use this to construct a solution to the flow
with rough initial data, and we prove Theorem 1.

2. Existence for the parabolic equation

In this section we consider the parabolic equation

∂ϕ

∂t
= log

(ω+
√
−1∂∂ϕ)n

ωn + F(ϕ, z), (1)

where F : R×M→ R is smooth and we have the smooth initial condition ϕ|t=0 = ϕ0. We write ϕ̇0 for
∂ϕ/∂t at t = 0.

The main result of this section is the following:

Proposition 2. There exist T > 0 depending only on sup |ϕ0|, sup |ϕ̇0| (and ω and F), such that there
is a smooth solution ϕ(t, z) : [0, T ] × M → R to (1). We also have smooth functions Ck : (0, T ] → R

depending only on sup |ϕ0|, sup |ϕ̇0| such that

‖ϕ(t)‖Ck(M) < Ck(t) (2)

as long as t 6 T . (Note that Ck(t)→∞ as t→ 0.)

The proof of the C1 estimate is based on the arguments in [Błocki 2009] (see also [Hanani 1996;
Phong and Sturm 2010]), whereas the C2 estimate is based on the Aubin–Yau second order estimate
[Aubin 1976; Yau 1978] (see also [Song and Tian 2009] for the parabolic version we need here). The C3

and higher order estimates follow the standard arguments in [Yau 1978; Cao 1985; Phong et al. 2007],
although there are a few new terms to control.

The existence of a smooth solution for t ∈ [0, T ′) for some T ′ > 0 that depends on the C2,α norm of
ϕ0 is standard. The aim is to obtain the estimates (2), which allow us to extend the solution up to a time
T , which only depends on the initial condition in a weaker way. We will write ϕ(t) for the short time
solution.

Lemma 3. There exists T,C > 0 depending only on sup |ϕ0| and sup |ϕ̇0| such that

|ϕ(t)|, |ϕ̇(t)|< C, (3)

as long as the solution exists and t 6 T . In particular,∣∣∣∣log
(ω+
√
−1∂∂ϕ)n

ωn

∣∣∣∣< C (4)

for t 6 T .

Proof. For all s, define
F(s)= supz∈M F(s, z),

which is a continuous function. At any given time t where ϕ exists, the maximum of ϕ(t, · ) is achieved
at some point z ∈ M , and at z we have

log
(ω+
√
−1∂∂ϕ)n

ωn 6 0.



REGULARITY OF WEAK SOLUTIONS OF A COMPLEX MONGE–AMPÈRE EQUATION 371

It follows that
dϕmax

dt
6 F(ϕmax, z)6 F(ϕmax),

where the derivative is interpreted as the limsup of the forward difference quotients at the points where it
does not exist (compare [Hamilton 1986, Lemma 3.5]). Comparing with the solution of the corresponding
ODE, we find that there exist T,C >0 depending only on sup |ϕ0| such that as long as our solution exists,
and t 6 T , we have supϕ(t)<C . In a similar way we get a lower bound on ϕ(t, · ), so we have |ϕ(t)|<C
as long as the solution exists and t 6 T .

Differentiating the equation we obtain
∂ϕ̇

∂t
=1ϕϕ̇+ F ′(ϕ, z)ϕ̇, (5)

where F ′ is the derivative of F with respect to the ϕ variable. Since F ′(ϕ, z) is bounded as long as ϕ is
bounded, from the maximum principle we get

sup |ϕ̇(t)|< sup |ϕ̇(0)|eκt , (6)

where κ depends on F and sup |ϕ(0)|. Hence for our choice of T , we get

sup |ϕ̇(t)|< C,

for t 6 T , where C depends on sup |ϕ0| and sup |ϕ̇0|. �

In the lemmas below T will be the same as in the previous lemma.

Lemma 4. There exists C > 0 depending on sup |ϕ0| and sup |ϕ̇0| such that

|∇ϕ(t)|2ω < eC/t , (7)

as long as the solution exists and t 6 T for the T in Lemma 3.

Proof. We modify Błocki’s estimate [2009] for the complex Monge–Ampère equation (compare [Hanani
1996]). Define

K = t log |∇ϕ|2ω− γ (ϕ),

where γ will be chosen later. Suppose that sup(0,t]×M K = K (t, z) is achieved. Pick normal coordinates
for ω at z, such that ϕi j̄ is diagonal at this point (here and henceforth, indices will denote covariant
derivatives with respect to the metric ω). We write β = |∇ϕ|2ω and 1ϕ for the Laplacian of the metric
ω+
√
−1∂∂ϕ. There exists B > 0 such that

06
(
∂

∂t
−1ϕ

)
K 6−

t
β

∑
i,p

|ϕi p|
2
+ |ϕi p̄|

2

1+ϕp p̄
+ (t−1(γ ′)2+ γ ′′)

∑
p

|ϕp|
2

1+ϕp p̄

−(γ ′− Bt)
∑

p

1
1+ϕp p̄

+ logβ +
Ct
β
− γ ′ϕ̇+ nγ ′+Ct.

The constant C depends on bounds for F and F ′, and also we used that ∇K = 0 at (t, z).
Now we apply Błocki’s trick to get rid of the term containing (γ ′)2. At (t, z) we have

tβp = γ
′βϕp,
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where
βp = ϕpϕp p̄ +

∑
j

ϕ j pϕ j̄ ,

remembering that ϕ j p̄ is diagonal. It follows that∑
j

ϕ j pϕ j̄ = (t
−1γ ′β −ϕp p̄)ϕp,

and so

t
β

∑
j,p

|ϕ j p|
2

1+ϕp p̄
>

t
β2

∑
p

∣∣∑
j ϕ j pϕ j̄

∣∣2
1+ϕp p̄

=
t
β2

∑
p

|t−1γ ′β −ϕp p̄|
2
|ϕp|

2

1+ϕp p̄
> t−1(γ ′)2

∑
p

|ϕp|
2

1+ϕp p̄
− 2γ ′,

where we assume that γ ′ > 0. Also from Lemma 3 we know that ϕ̇ is bounded. Combining these
estimates we obtain

06 γ ′′
∑

p

|ϕp|
2

1+ϕp p̄
− (γ ′− Bt)

∑
p

1
1+ϕp p̄

+ logβ +
Ct
β
+Cγ ′+Ct.

We now choose γ (s)= As− 1
A s2. We can assume that logβ > 1 at (t, z), so in particular t

β
is bounded

above as long as t < T . Then if A is chosen sufficiently large, we get a constant C ′ > 0 such that∑
p

1
1+ϕp p̄

+

∑
p

|ϕp|
2

1+ϕp p̄
6 C ′ logβ, (8)

so in particular (1+ϕp p̄)
−1 6 C ′ logβ for each p. From (4) we know that∏

p

(1+ϕp p̄) < C,

so
1+ϕp p̄ 6 C(C ′ logβ)n−1,

and using (8) we get
β =

∑
p

|ϕp|
2 6 C(C ′ logβ)n.

This shows that β < C and in turn K < C for some constant C . So either K achieves a maximum for
some t > 0 in which case we have just bounded it, or it achieves its maximum for t = 0, which is bounded
in terms of sup |ϕ0|. �

From now on, we write g for the metric ω and gϕ for the metric ω+
√
−1∂∂ϕ.

Lemma 5. There exists C > 0 depending on sup |ϕ0| and sup |ϕ̇0| such that

0< trg(gϕ)= n+1gϕ(t) < eCeC/t
, (9)

as long as the solution exists and t 6 T , where T is as in Lemma 3.

Proof. We let
H = e−α/t log trg(gϕ)− Aϕ,
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where α = C from Lemma 4 and A is chosen later. In particular we will use that e−α/t
|∇ϕ|2g < 1.

Standard calculations (from [Aubin 1976; Yau 1978]) show that there exist B > 0 such that

1ϕ log trg(gϕ)>−B trgϕ g−
trg Ric(gϕ)

trg(gϕ)
.

Using this we can compute(
∂

∂t
−1ϕ

)
H

6
αe−α/t

t2 log trg(gϕ)+
Ce−α/t

trg(gϕ)
+

e−α/t1g F(ϕ, z)
trg(gϕ)

+ Be−α/t trgϕ g− Aϕ̇+ An− A trgϕ g. (10)

Here

1g F(ϕ, z)=1g F + 2 Re(gi j̄ F ′i ϕ j̄ )+ F ′1gϕ+ F ′′|∇ϕ|2g,

where F ′ is the derivative in the ϕ variable, and 1g F is the Laplacian of F(ϕ, z) in the z variable. So
we have constants C1,C2,C3 such that

1g F(ϕ, z)6 C1+C2|∇ϕ|
2
g +C3 trg(gϕ).

From (4) we have bounds on above and below on det gϕ
det g , so for some constant C we have trg(gϕ) > C−1

and also trg(gϕ)6 C(trgϕ g)n−1. Using these in (10) we get(
∂

∂t
−1ϕ

)
H 6−(A− Be−α/t) trgϕ g+C log trgϕ g+C

6−(A−C − Be−α/t) trgϕ g+C ′,

as long as t 6 T . Choosing A large enough, we can use the maximum principle to bound H in terms of
its value for t = 0, which is bounded by sup |ϕ0|. �

We note here that if one is interested in the special case of weak Kähler–Einstein currents (i.e., F =
ϕ − hω), then the gradient estimate in Lemma 4 is not needed. We now describe how to get the higher
order estimates, as long as the solution exists and t 6 T , for the T from Lemma 3. As in [Yau 1978],
we let ϕi jk be the third covariant derivative of ϕ with respect to the Levi-Civita connection of ω, and we
define

S = gi p
ϕ gq j

ϕ gkr
ϕ ϕi jkϕpqr .

From now on, we will denote by C(t) a smooth real function defined on (0, T ], which is allowed to blow
up when t approaches zero, which depends only on sup |ϕ0|, sup |ϕ̇0| and which may vary from line to
line. These functions C(t) can be made completely explicit. Using (9) it is clear that an estimate of the
form S 6 C(t) implies an estimate of the form ‖ϕ(t)‖C2+α(g) 6 C(t), for any 0 < α < 1. To estimate
S we first compute its evolution. It is convenient to use the general computation by Phong, Šešum, and
Sturm [Phong et al. 2007], which uses the following notation. We denote by hi

j = gik(g jk+ϕ jk), which
is an endomorphism of the tangent bundle. Then S can be written in terms of the connection ∇hh−1 as

S = g pq
ϕ gϕ,i j g

k`
ϕ (∇phh−1)ik(∇qhh−1)

j
` = |∇hh−1

|
2
gϕ ,
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where ∇ is the Levi-Civita connection of ωϕ . Then the computations in [Phong et al. 2007] yield(
∂

∂t
−1ϕ

)
S =−|∇(∇hh−1)|2gϕ − |∇(∇hh−1)|2gϕ + 2 Re

〈
(∇T −∇R,∇hh−1〉

gϕ

+ (∇phh−1)ik(∇qhh−1)
j
`(T

pq gϕ,i j g
k`
ϕ − g pq

ϕ Ti j g
k`
ϕ + g pq

ϕ gϕ,i j T
k`),

where Ti j =−
(
∂gϕ/∂t +Ric(gϕ)

)
i j , (∇T )p

qr = g ps
ϕ ∇q Trs , (∇R)p

qr = gst
ϕ ∇s R p

rqt and R p
rqt is the curvature

of the fixed metric g. Along the standard Kähler–Ricci flow the tensor T vanishes, while in our case
differentiating (1) we get

−Ti j = Ric(g)i j + F ′′ϕiϕ j + F ′ϕi j + Fi j + 2 Re(F ′i ϕ j ). (11)

Using (7) and (9) we can then estimate∣∣(∇phh−1)ik(∇qhh−1)
j
`(T

pq gϕ,i j g
k`
ϕ − g pq

ϕ Ti j g
k`
ϕ + g pq

ϕ gϕ,i j T
k`)
∣∣6 C(t)S.

The term 2 Re〈∇R,∇hh−1
〉gϕ is comparable to S, but bounding 2 Re〈∇T,∇hh−1

〉gϕ requires a bit more
work. Differentiating (11) and using (3), (7) and (9) we see that all the terms in 2 Re〈∇T,∇hh−1

〉gϕ are
comparable to C(t)S except for two terms of the form

〈ϕi j gk`
ϕ ϕ`, (∇i hh−1)kj 〉gϕ .

We bound these by |ϕi j |
2
gϕ +C(t)S, so overall we get(

∂

∂t
−1ϕ

)
S 6 C(t)S+ |ϕi j |

2
gϕ +C.

The term C(t)S can be controlled by using trg(gϕ) in the usual way [Phong et al. 2007]. For the term
|ϕi j |

2
gϕ we note that using (3), (7) and (9) we have(

∂

∂t
−1ϕ

)
|∇ϕ|2g 6−

∑
i,p

|ϕi p|
2
+ |ϕi p̄|

2

1+ϕp p̄
+ 2 Re〈∇ϕ, F ′∇ϕ+∇F〉g +C trgϕ g|∇ϕ|2g

6−
|ϕi j |

2
gϕ

C(t)
+C(t).

We can then apply the maximum principle to the quantity

G =
S

C1(t)
+

trg(gϕ)
C2(t)

+
|∇ϕ|2g

C3(t)
,

for suitable functions Ci (t) that depend only on the given data, and get G 6C , which implies the desired
estimate for S. This means that as long as the solution exists and 0 < t 6 T we have a bound on
‖ϕ(t)‖C2+α(M). Since by standard parabolic theory one can start the flow with initial data in C2+α, this
shows that the flow has a C2+α solution defined on [0, T ].

The next step is to estimate sup |ϕ̈(t)| and sup |∂i∂ j ϕ̇(t)|. It is easy to see that both of these quantities
are bounded if we bound |Ric(gϕ)|gϕ . Following the computation in [Phong et al. 2011, p. 107] one can
derive the following estimate (there are essentially no new bad terms in this case)(

∂

∂t
−1ϕ

)
|Ric(gϕ)|gϕ 6 C(t)|Rm(gϕ)|2+C(t).
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From one of the two good positive terms in the evolution of S we get(
∂

∂t
−1ϕ

)
S 6−

|Rm(gϕ)|2

C(t)
+C(t)

and so the maximum principle applied to the quantity
|Ric(gϕ)|gϕ

C1(t)
+

S
C2(t)

gives the desired bound |Ric(gϕ)|gϕ 6 C(t).
It now follows from the parabolic Schauder estimates applied to (5) that we have bounds for ϕ in the

parabolic Hölder space C2+α,1+α/2(M × [ε, T ]) for any ε > 0, with the bounds only depending on ε,
sup |ϕ0| and sup |ϕ̇0|. By the parabolic Schauder estimates we then also get bounds on all higher order
derivatives for ϕ, and letting ε→ 0 we get the required bounds on ϕ(t) that blow up as t goes to zero.
In particular, we get a smooth solution ϕ(t) that exists on [0, T ], with bounds as in (2). This completes
the proof of Proposition 2.

3. Proof of Theorem 1

Suppose that ϕ is a bounded ω-plurisubharmonic solution of the equation

(ω+
√
−1∂∂ϕ)n = e−F(ϕ,z)ωn, (12)

where F is a smooth function. First of all we want to prove existence of the flow (1) with rough initial
data ϕ. For this, we follow the proof in [Song and Tian 2009] in the case of Kähler–Ricci flow.

It follows from [Kołodziej 1998] that in this case ϕ is continuous (in fact it is even Cα; see [Guedj
et al. 2008; Kołodziej 2008]). Let us approximate ϕ with a sequence of smooth functions uk , such that

sup
M
|ϕ− uk | → 0, (13)

as k→∞. By the theorem in [Yau 1978] there are smooth functions ψk such that

(ω+
√
−1∂∂ψk)

n
= cke−F(uk ,z)ωn, (14)

where the positive constants ck are chosen so that the integrals of both sides of (14) match. When k is
large we see that ck approaches 1. Moreover, we can normalize the solution ψk so that

sup
M
(ψk −ϕ)= sup

M
(ϕ−ψk).

Using (13) together with Kołodziej’s stability result [2003] we obtain

lim
k→∞
‖ψk −ϕ‖L∞ = 0. (15)

Using Proposition 2 we can solve the equation

∂ϕk

∂t
= log

(ω+
√
−1∂∂ϕk)

n

ωn + F(ϕk, z)− log ck, (16)

with initial condition ϕk |t=0 = ψk for a short time t ∈ [0, T ] independent of k, since by (13), (14) and
(15) we have uniform bounds on the initial data sup |ψk | and sup |ϕ̇k(0)|. As in [Song and Tian 2009]
we have:
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Lemma 6. The sequence ϕk is a Cauchy sequence in C0([0, T ]×M), ie.

lim
j,k→∞

‖ϕ j −ϕk‖L∞([0,T ]×M) = 0.

Proof. Fix j, k and let µ= ϕ j −ϕk . Then

∂µ

∂t
= log

(ω+
√
−1∂∂ϕk +

√
−1∂∂µ)n

(ω+
√
−1∂∂ϕk)n

+ F(ϕ j , z)− F(ϕk, z)+ log
ck

c j
,

and µ|t=0 = ψ j −ψk . At any time given time t , the maximum of µ is achieved at some point z ∈ M ,
and at z we have

dµmax

dt
6 F(ϕ j (t, z), z)− F(ϕk(t, z), z)+ log

ck

c j
6 κ|µ(z)| + log

ck

c j
,

where κ is independent of j, k. Here and henceforth the derivative is interpreted as the limsup of the
forward difference quotients at the points where it does not exist [Hamilton 1986, Lemma 3.5]. Similarly,
at the point z′ where the minimum of µ is achieved, we have

dµmin

dt
>−κ|µ(z′)| + log

ck

c j
.

Putting these together we see that
d|µ|max

dt
6 κ|µ|max+

∣∣∣log ck
c j

∣∣∣.
It follows that

sup
[0,T ]×M

|ϕ j −ϕk |6 eκT
(
‖ψ j −ψk‖L∞(M)+

1
κ

∣∣∣log ck
c j

∣∣∣)− 1
κ

∣∣∣log ck
c j

∣∣∣.
Now (15) and the fact that ck converges to 1 imply the result. �

Using this lemma we can define
8= lim

j→∞
ϕ j ,

which is in C0([0, T ]×M). Moreover from Proposition 2 for any ε > 0 we have uniform bounds on all
derivatives of the ϕ j for t ∈ [ε, T ], so in fact for all k we have

lim
j→∞
‖8−ϕ j‖Ck(M×[ε,T ]) = 0.

From (6) we get
sup

M
|ϕ̇k(t)|< C sup

M
|ϕ̇k(0)|

for t ∈ [0, T ), but from (16) we have

ϕ̇k(0)= log
(ω+
√
−1∂∂ψk)

n

ωn + F(ψk, z)− log ck = F(ψk, z)− F(ϕk, z)− log ck,

which converges to zero when k goes to infinity. It follows that for any t > 0 we have

8̇(t)= lim
j→∞

ϕ̇ j (t)= 0.

Hence 8 is constant on (0, T ], but since it is continuous on [0, T ] it follows that 8(t) = 8(0) for all
t 6 T . But 8(0) is our solution ϕ of (12), whereas 8(t) is smooth for t > 0. Hence ϕ is smooth.
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TRAVELING WAVES FOR THE CUBIC SZEGŐ EQUATION ON THE REAL LINE

OANA POCOVNICU

We consider the cubic Szegő equation i@tuD….juj2u/ in the Hardy space L2
C.R/ on the upper half-plane,

where … is the Szegő projector. It was first introduced by Gérard and Grellier as a toy model for totally
nondispersive evolution equations. We show that the only traveling waves are of the form C=.x �p/,
where p 2 C with Im p < 0. Moreover, they are shown to be orbitally stable, in contrast to the situation
on the unit disk where some traveling waves were shown to be unstable.

1. Introduction

One of the most important properties in the study of nonlinear Schrödinger equations (NLS) is dispersion.
It is often exhibited in the form of the Strichartz estimates of the corresponding linear flow. In case of the
cubic NLS,

i@tuC�uD juj2u; .t;x/ 2 R�M; (1-1)

Burq, Gérard, and Tzvetkov [Burq et al. 2005] observed that the dispersive properties are strongly
influenced by the geometry of the underlying manifold M . Taking this idea further, Gérard and Grellier
[2010b] remarked a lack of dispersion when M is a sub-Riemannian manifold (for example, the Heisenberg
group). In this situation, many of the classical arguments used in the study of NLS no longer hold. As a
consequence, even the problem of global well-posedness of (1-1) on a sub-Riemannian manifold still
remains open.

Gérard and Grellier [2010a; 2010b] introduced a model of a nondispersive Hamiltonian equation
called the cubic Szegő equation. (See (1-2) below.) The study of this equation is the first step toward
understanding existence and other properties of smooth solutions of NLS in the absence of dispersion.
Remarkably, the Szegő equation turned out to be completely integrable in the following sense. It
possesses a Lax pair structure and an infinite sequence of conservation laws. Moreover, the dynamics
can be approximated by a sequence of finite-dimensional completely integrable Hamiltonian systems.
To illustrate the degeneracy of this completely integrable structure, several instability phenomena were
established in [Gérard and Grellier 2010a].

Gérard and Grellier studied the Szegő equation on the circle S1. More precisely, solutions were
considered to belong at all time to the Hardy space L2

C.S
1/ on the unit disk D D fjzj < 1g. This is

the space of L2-functions on S1 with Of .k/ D 0 for all k < 0. These functions can be extended as

MSC2000: 35B15, 37K10, 47B35.
Keywords: nonlinear Schrödinger equations, Szegő equation, integrable Hamiltonian systems, Lax pair, traveling wave, orbital

stability, Hankel operators.
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holomorphic functions on the unit disk. Several properties of the Hardy space on the unit disk naturally
transfer to the Hardy space L2

C.R/ on the upper half-plane CC D fzI Im z > 0g, defined by

L2
C.R/D

�
f holomorphic on CCI kgkL2

C
.R/ WD sup

y>0

�Z
R

jg.xC iy/j2 dx

�1=2

<1

�
:

In view of the Paley–Wiener theorem, we identify this space of holomorphic functions on CC with the
space of its boundary values:

L2
C.R/D ff 2L2.R/I supp Of � Œ0;1/g:

The transfer from L2
C.S

1/ to L2
C.R/ is made by the usual conformal transformation

! W D! CC; !.z/D i
1C z

1� z
:

However, the image of a solution of the Szegő equation on S1 under the conformal transformation is no
longer a solution of the Szegő equation on R. Therefore, we study the Szegő equation on R directly.

Endowing L2.R/ with the usual scalar product .u; v/ D
R

R
u Nv, we define the Szegő projector … W

L2.R/!L2
C.R/ to be the projector onto the nonnegative frequencies:

….f /.x/D
1

2�

Z 1
0

eix� Of .�/ d�:

For u 2L2
C.R/, we consider the Szegő equation on the real line:

i@tuD….juj
2u/; x 2 R: (1-2)

This is a Hamiltonian evolution associated to the Hamiltonian

E.u/D

Z
R

juj4 dx

defined on L4
C.R/. From this structure, we obtain the formal conservation law

E.u.t//DE.u.0//:

The invariance under translations and under modulations provides two more conservation laws,

Q.u.t//DQ.u.0// and M.u.t//DM.u.0//;

where

Q.u/D

Z
R

juj2 dx and M.u/D

Z
R

NuDu dx; with D D�i@x :

Now, we define the Sobolev spaces H s
C.R/ for s � 0:

H s
C.R/D

�
h 2L2

C.R/I khkH s
C
WD

�
1

2�

Z 1
0

.1Cj�j2/sj Oh.�/j2 d�

�1=2

<1

�
:
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Similarly, we define the homogeneous Sobolev norm for h 2 PH s
C by

khk PH s
C

WD

�
1

2�

Z 1
0

j�j2s
j Oh.�/j2

�1=2

<1:

Slight modifications of the proof of the corresponding result in [Gérard and Grellier 2010a] lead to
this well-posedness result:

Theorem 1.1. The cubic Szegő equation (1-2) is globally well-posed in H s
C.R/ for s � 1

2
. That is, given

u0 2H
1=2
C , there exists a unique global-in-time solution u 2 C.RIH

1=2
C / of (1-2) with initial condition

u0. Moreover, if u0 2H s
C for some s > 1

2
, then u 2 C.RIH s

C/.

In this paper, we concentrate on the study of traveling waves. The two main goals are the classification
of traveling waves and their stability. As a result, we show that the situation on the real line is essentially
different from that on the circle.

A solution for the cubic Szegő equation on the real line (1-2) is called a traveling wave if there exist
c; ! 2 R such that

u.t; z/D e�i!tu0.z� ct/; z 2 CC[R; t 2 R (1-3)

for some u0 2H
1=2
C .R/. Note that a solution to (1-2) in H

1=2
C .R/ has a natural extension onto CC, and

we have used this viewpoint in (1-3). Substituting (1-3) into (1-2), we see that u0 satisfies on R the
equation

cDu0C!u0 D….ju0j
2u0/: (1-4)

In the following, we use the simpler notation u instead of u0 when we study time-independent problems.
From (1-4), we see that traveling waves with nonzero velocity, c ¤ 0, have good regularity. Indeed, we
prove that u 2H s

C.R/ for all s � 0 in Lemma 3.1. In particular, by Sobolev embedding theorem, we have
u 2L

p
C.R/ for 2� p �1. On the other hand, (1-4) yields in Lemma 4.1 that there exist no nontrivial

stationary waves, i.e. traveling waves of velocity c D 0, in L2
C.

Now, we present our main results:

Theorem 1.2. A function u 2 C.R;H
1=2
C .R// is a traveling wave if and only if there exist C;p 2 C with

Im p < 0 such that

u.0; z/D
C

z�p
: (1-5)

Theorem 1.3. Let a> 0, r > 0, and consider the cylinder

C.a; r/D
n ˛

z�p
I j˛j D a; Imp D�r

o
:

Let fun
0
g �H

1=2
C with

inf
�2C.a;r/

kun
0 ��kH 1=2

C

! 0 as n!C1;

and let un denote the solution to (1-2) with initial data un
0
. Then

sup
t2R

inf
�2C.a;r/

kun.t;x/��.x/k
H

1=2
C

! 0:
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Let us compare our results to those in [Gérard and Grellier 2010a]. In the case of the Szegő equation
on S1, the nontrivial stationary waves (c D 0) are finite Blaschke products of the form

˛

NY
jD1

z�pj

1�pj z
;

where j˛j2 D !, N 2 N, and p1;p2; : : : ;pN 2 D, and the traveling waves with nonzero velocity are
rational functions of the form

C zl

zN �p
; (1-6)

where N 2 N, l 2 f0; 1; : : : ;N � 1g, C;p 2 C, and jpj > 1. Moreover, instability phenomena were
displayed for some of the above traveling waves. For the cubic Szegő equation on R, Theorems 1.2 and
1.3 state that there exist fewer traveling waves — corresponding to N D 1 and l D 0 in (1-6) — and that
there is no instability phenomenon.

The proof of Theorem 1.2 involves arguments from several areas of analysis: a Kronecker-type theorem,
scattering theory, existence of a Lax pair structure, a theorem by Lax on invariant subspaces of the Hardy
space, and canonical factorization of Beurling–Lax inner functions. We now introduce the main notions
and known results, and briefly describe the strategy of the proof.

As in [Gérard and Grellier 2010a], an important property of the Szegő equation on R is the existence
of a Lax pair structure. Using the Szegő projector, we first define two important classes of operators on
L2
C: the Hankel and Toeplitz operators. We use these operators to find a Lax pair. See Proposition 1.4.

A Hankel operator Hu WL
2
C!L2

C of symbol u 2H
1=2
C is defined by

Hu.h/D….u Nh/:

Hu is C-antilinear and satisfies

.Hu.h1/; h2/D .Hu.h2/; h1/: (1-7)

In Lemma 3.5 below we prove that Hu is a Hilbert–Schmidt operator of Hilbert–Schmidt norm

1
p

2�
kuk PH 1=2 :

A Toeplitz operator Tb WL
2
C!L2

C of symbol b 2L1.R/ is defined by

Tb.h/D….bh/:

Tb is C-linear. Moreover, Tb is self-adjoint if and only if b is real-valued.

Proposition 1.4. Let u 2 C.RIH s
C/ for some s > 1

2
. The cubic Szegő equation (1-2) is equivalent to the

evolution equation
d

dt
Hu D ŒBu;Hu�; (1-8)

where Bu D
i
2
H 2

u � iTjuj2 . In other words, the pair .Hu;Bu/ is a Lax pair for the cubic Szegő equation
on the real line.
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The proof of Proposition 1.4 follows the same lines as that of the corresponding result on S1 in [Gérard
and Grellier 2010a], and is based on the identity

H….juj2u/ D Tjuj2HuCHuTjuj2 �H 3
u : (1-9)

Combining (1-4) and (1-9), we deduce that if u is a traveling wave with c ¤ 0, then the identity

AuHuCHuAuC
!

c
HuC

1

c
H 3

u D 0; (1-10)

holds, where

Au DD�
1

c
Tjuj2 : (1-11)

In Section 2, we prove a Kronecker-type theorem for the Hardy space L2
C.R/, where we classify all

the symbols u such that the operator Hu has finite rank. The classical theorem for L2
C.S

1/ is due to
Kronecker. For a proof, see [Gérard and Grellier 2010a].

We prove Theorem 1.2 in Section 4. We first prove that all traveling waves are rational functions.
On S1, this follows easily from the Kronecker theorem and the fact that the operator Au has discrete
spectrum. On R, however, it turns out that Au has continuous spectrum. Therefore, we use scattering
theory to study the spectral properties of Au in detail in Section 3. More precisely, we show that the
generalized wave operators �˙.D;Au/, rigorously defined by (3-1) below, exist and are complete. As a
result, we obtain that

Hac.Au/� Ker Hu;

where Hac.Au/ is the absolutely continuous subspace of Au. The subspace Ker Hu plays an important
role in our analysis. More precisely, it turns out to be invariant under multiplication by ei˛x , for all ˛ � 0.
Therefore, applying a theorem by Lax (Proposition 4.4) on invariant subspaces, it results that

Ker Hu D �L2
C;

where � is an inner function in the sense of Beurling and Lax, i.e., a bounded holomorphic function on
CC such that j�.x/j D 1 for all x 2 R. Using the Lax pair structure and the identity (1-10), we show that
� satisfies the simple equation

cD� D juj2�:

However, as an inner function, � satisfies a canonical factorization (4-3). From this, it follows that �
belongs to a special class of inner functions, the finite Blaschke products, i.e.,

�.z/D

NY
jD1

z��j

z��j

;

where N 2 N and Im�j > 0 for all j D 1; 2; : : : ;N . The Kronecker-type theorem then yields that the
traveling wave u is a rational function. In the case of S1, the natural shift, multiplication by eix , was
used in concluding traveling waves are of the form (1-6). In our case, we use the “infinitesimal” shift,
multiplication by x, to show that traveling waves are of the form (1-5).
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Finally, we prove Theorem 1.3 in Section 5. The orbital stability of traveling waves is a consequence
of the fact that traveling waves are ground states for the following inequality, an analogue of the sharp
Gagliardo–Nirenberg inequality given in [Weinstein 1982].

Proposition 1.5. For all u 2H
1=2
C .R/, the following Gagliardo–Nirenberg inequality holds:

kukL4 �
1

4
p
�
kuk

1=2

L2 kuk
1=2

PH
1=2
C

; (1-12)

or, equivalently,

E �
1

�
MQ:

Equality holds if and only if uD
C

x�p
, where C;p 2 C with Im p < 0.

Remark 1.6. Using Proposition 1.5, one can verify that the functions uD C=.x �p/, with Im p < 0,
are indeed initial data for traveling waves. More precisely, since they are minimizers of the functional

v 2H
1=2
C 7!M.v/Q.v/��E.v/;

the differential of this functional at u is zero. Thus,

1
2
Q.u/DuC 1

2
M.u/u��….juj2u/D 0:

Consequently, u is a solution of (1-4) with

c D
Q.u/

2�
D
jC j2

�2 Im p
; ! D

M.u/

2�
D
jC j2

4.Im p/2
;

and hence it is an initial datum for a traveling wave.

In the case of S1, the Gagliardo–Nirenberg inequality suffices to conclude the stability of the traveling
waves with N D 1. However, in the case of R, we need to use in addition a concentration-compactness
argument. This concentration-compactness argument, which first appeared in [Cazenave and Lions 1982],
was refined and turned into profile decomposition theorems by Gérard [1998] and later by Hmidi and
Keraani [2006]. We use it in the form of Proposition 5.1, a profile decomposition theorem for bounded
sequences in H

1=2
C .

We conclude this introduction by presenting two open problems. Here, we use the term soliton instead
of traveling wave, so that we put into light several connections with existing works. The first problem is
the soliton resolution, which consists in writing any solution as a superposition of solitons and radiation.
For the KdV equation, this property was rigorously stated in [Eckhaus and Schuur 1983] for initial data
to which the Inverse Scattering Transform applies. Therefore, for the Szegő equation, one needs to solve
inverse spectral problems for the Hankel operators and also find explicit action angle coordinates.

The second open problem is the interaction of solitons with external potentials. Consider the Szegő
equation with a linear potential, where initial data are taken to be of the form (1-5). As in [Holmer and
Zworski 2008] and [Perelman 2009], it would be interesting to investigate if solutions of the perturbed
Szegő equation can be approximated by traveling wave solutions to the original Szegő equation (1-2).



TRAVELING WAVES FOR THE CUBIC SZEGŐ EQUATION ON THE REAL LINE 385

2. A Kronecker-type theorem

A theorem by Kronecker asserts in the setting of S1 that the set of symbols u such that Hu is of rank
N is precisely a 2N -dimensional complex submanifold of L2

C.S
1/ containing only rational functions.

In this section, we prove the analogue of this. For a different proof of a similar result on some Hankel
operators on L2

C.R/ defined in a slightly different way, see [Peller 2003, Lemma 8.12, p. 54].

Definition. Let N 2 N�. We denote by M.N / the set of rational functions of the form

A.z/

B.z/
;

where A 2 CN�1Œz�, B 2 CN Œz�, 0 � deg.A/ � N � 1, deg.B/ D N , B.0/ D 1, B.z/ ¤ 0, for all
z 2 CC[R, and A and B have no common factors.

Theorem 2.1. A function u belongs to M.N / if and only if the Hankel operator Hu has complex rank N .
Moreover, if u 2 M.N / is of the form u.z/ D A.z/=B.z/, where B.z/ D

QJ
jD1.z � pj /

mj withPJ
jD1 mj DN and Im pj < 0 for all j D 1; 2; : : : ;J , then the range of Hu is given by

Ran Hu D spanC

�
1

.z�pj /m
I 1�m�mj

�J

jD1

(2-1)

Proof. The theorem will follow from two implications:

(i) u 2M.N /H) rk.Hu/�N .

(ii) rk.Hu/DN H) u 2M.N /.

Let us first prove (i). Let u 2M.N /, i.e., u is a linear combination of terms 1

.z�p/m
, where Im p < 0,

1�m�mp, and
P

mp DN . Computing the integralZ
R

e�ix�

.x�p/m
dx;

using the residue theorem, we obtain that Ou.�/D 0 for all � � 0 and Ou.�/ is a linear combination of terms
�m�1e�ip� , with 1�m�mp, for � > 0.

Given h 2L2
C, we have 1Hu.h/.�/D 0 for � < 0. For � > 0, we have

1Hu.h/.�/D
1

2�

Z 0

�1

Ou.� � �/
ONh.�/ d�D

1

2�

Z 1
0

Ou.�C �/ Oh.�/ d�

D

X
1�m�mpP

mpDN

cm;p

�m�1X
kD0

C k
m�1�

m�1�k

Z 1
0

�k Oh.�/e�ip� d�

�
e�ip�

D

X
1�m�mpP

mpDN

Qdm;p.u; h/�
m�1e�ip�

D

X
1�m�mpP

mpDN

dm;p.u; h/

�
1

.x�p/m

�^
.�/;
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where cm;p, Qdm;p, dm;p are constants depending on p and m. Hence,

Hu.h/.x/D
X

1�m�mpP
mpDN

dm;p.u; h/

.x�p/m
(2-2)

and rk.Hu/�N .
Let us now prove (ii). Assume that rank.Hu/DN , so the range of Hu, Ran Hu, is a 2N -dimensional

real vector space. As Hu is C-antilinear, one can choose a basis of Ran Hu of eigenvectors of Hu in the
following way:

fv1; iv1; : : : ; vN ; ivN I Hu.vj /D �jvj ; �j > 0; j D 1; 2; : : : ;N g

Let wj D
p
�jvj : If h 2L2

C, then by Parseval’s identity we have

Hu.h/D

NX
jD1

.Hu.h/; vj /vj C

NX
jD1

.Hu.h/; ivj /ivj D 2

NX
jD1

.Hu.h/; vj /vj D 2

NX
jD1

.Hu.vj /; h/vj

D 2

NX
jD1

.�jvj ; h/vj D 2

NX
jD1

.wj ; h/wj D
1

�

NX
jD1

�Z 1
0

Owj .�/ Oh.�/ d�

�
wj :

Consequently,

1Hu.h/.�/D
1

2�
1��0

Z 1
0

Ou.�C �/ Oh.�/ d�D
1

�
1��0

NX
jD1

Z 1
0

Owj .�/ Owj .�/ Oh.�/ d�;

and hence,

1��0

Z 1
0

�
Ou.�C �/� 2

NX
jD1

Owj .�/ Owj .�/

�
Oh.�/ d�D 0;

for all h 2L2
C. Therefore, for all �; �� 0, we have

Ou.�C �/D 2

NX
jD1

Owj .�/ Owj .�/: (2-3)

Let L > 2N C 1 be an even integer and let � be the probability density function of the chi-square
distribution defined by

�.�/D

(
2�L=2�

�
L

2

��1
�.L=2/�1e��=2 if � � 0;

0 if � < 0;

where � is the gamma function. Then, its Fourier transform is

b�.x/D .1C 2ix/�L=2:
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Notice that � 2H N .R/ since

k�k2
H N D

Z
R

hxi2N

j1C 2ixjL
dx;

which is convergent if and only if 2N �L< �1.
Let h�;  i D

R
R
�.x/ .x/ for all � 2H�N .R/ and  2H N .R/. Consider the matrix A� defined by0BBBB@

h Ow1; �i h Ow
0
1
; �i � � � h Ow

.N /
1

; �i

h Ow2; �i h Ow
0
2
; �i � � � h Ow

.N /
2

; �i
:::

:::
: : :

:::

h OwN ; �i h Ow
0
N
; �i � � � h Ow

.N /
N

; �i

1CCCCA :
Since rk.A�/�N , it results that there exists .c0; c1; : : : ; cN /¤ 0 such that� NX

kD0

ck Owj
.k/; �

�
D 0;

for all j D 1; 2; : : : ;N . Then, since supp� � Œ0;1/ and by (2-3), we have for all �� 0 that

NX
kD0

D
ck Ou

.k/.�/; �.� � �/
E
�
D

NX
kD0

D
ck Ou

.k/.�C �/; �.�/
E
�
D

NX
kD0

.�1/kck

Z 1
0

Ou.�C �/�.k/.�/d�

D 2

NX
kD0

.�1/kck

Z 1
0

� NX
jD1

Owj .�/ Owj .�/
�
�.k/.�/d�

D 2

NX
jD1

Owj .�/

NX
kD0

ck

D
Ow
.k/
j .�/; �.�/

E
D 0:

Set T D
PN

kD0 ck Ou
.k/. Then T 2H�N and supp T 2 Œ0;1/. We have just proved that for all �� 0

0D hT; �.� � �/i D

Z
R

T .�/�.� � �/d� D

Z
R

T .�/
� Z

R

eix.���/

.1C 2ix/L=2
dx
�
d�

D

Z
R

� Z
R

T .�/eix�d�
� e�ix�

.1C 2ix/L=2
dx D

Z
R

F�1T .x/
e�ix�

.1C 2ix/L=2
dx:

Seting R.x/ WD 1
.1C2ix/L=2 F�1T .x/, we have OR 2H L=2�N .R/�H 1=2.R/ and

0D

Z
R

R.x/e�ix�dx D OR.�/ for all �� 0:

Thus supp OR� .�1; 0�. By the definition of R, .1� 2D�/
L=2 OR.�/D T .�/. Since the left hand-side is

supported on .�1; 0� and the right hand-side is supported on Œ0;1/, we deduce that supp T � 0. In
particular, Tj�>0D 0. This yields that Ouj�>0 is a weak solution on .0;1/ of the linear ordinary differential
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equation
NX

kD0

ckv
.k/.�/D 0:

Then, by [Hörmander 1990, Theorem 4.4.8, p. 115], we have Ouj�>0 2 C N ..0;1//; further, Ouj�>0 is a
classical solution of this equation, and therefore it is a linear combination of terms

�m�1eq� ;

where q 2 C is a root of the polynomial P .X /D
PN

kD0 ckX k with multiplicity mq , 1�m�mq , andP
q mq D N . Note that we must have Re q < 0, because u 2 L2

C.R/. Therefore we will set q D �ip,
with Im p < 0, and obtain that Ou.�/ is a linear combination of terms �m�1e�ip� for � > 0. By the
hypothesis u 2L2

C.R/, we obtain Ou.�/D 0 for � � 0. Hence, for all � 2 R, Ou.�/ is a linear combination
of ..x�p/�m/^.�/, with 1� q �mq and

P
mq DN . Thus u 2M.N 0/ for some N 0 �N . If N 0 <N ,

implication (i) above yields rk.Hu/�N 0, contradicting our assumption. In conclusion, u 2M.N /.
Finally, when u 2M.N / we have rk.Hu/DN and (2-2), and thus (2-1) follows. �

As a consequence of (2-1) we make the following remark.

Remark 2.2. If u 2M.N /, then u 2 Ran Hu.

3. Spectral properties of the operator Au for a traveling wave u

Let us first recall the definition and the basic properties of the generalized wave operators, which are the
main objects in scattering theory. We refer to [Reed and Simon 1979, Chapter XI] for more details.

Let A and B be two self-adjoint operators on a Hilbert space H. The basic principle of scattering
theory is to compare the free dynamics corresponding to e�iAt and e�iBt . The fact that e�iBt� “looks
asymptotically free” as t !�1, with respect to A, means that there exists �C 2H such that

lim
t!�1

ke�iBt� � e�itA�Ck D 0;

or, equivalently,
lim

t!�1
keiAte�itB� ��Ck D 0:

Hence, we reduced ourselves to the problem of the existence of a strong limit. Let Hac.B/ be the
absolutely continuous subspace for B and let Pac.B/ be the orthogonal projection onto this subspace. In
the definition of the generalized wave operators we have � 2Hac.B/.

We say that the generalized wave operators exist if the following strong limits exist:

�˙.A;B/D lim
t!�1

eitAe�itBPac.B/: (3-1)

The wave operators �˙.A;B/ are partial isometries with initial subspace Hac.B/ and with values in
Ran �˙.A;B/. Moreover, Ran�˙.A;B/ � Hac.A/. If Ran�˙.A;B/ D Hac.A/, we say that the
generalized wave operators are complete. Lastly, we note that

A�˙.A;B/D�˙.A;B/B: (3-2)
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Lemma 3.1. If u 2H
1=2
C is a traveling wave, then u 2H s

C.R/ for all s � 0. In particular, by Sobolev
embedding theorem, we have u 2Lp.R/ for 2� p �1.

Proof. Because u 2 H 1=2.R/, the Sobolev embedding theorem yields u 2 Lp.R/, for all 2 � p <1.
Therefore juj2u 2L2.R/ and thus ….juj2u/ 2L2

C. Using equation (1-4), namely

cDuC!uD….juj2u/;

we deduce that Du2L2
C. Consequently, u2H 1

C and by Sobolev embedding theorem we have u2L1.R/.
Then u2D Nu; juj2Du 2L2.R/. Applying the operator D to both sides of (1-4), we obtain D2u 2L2.R/

and hence u 2H 2
C. Iterating this argument infinitely many times, the conclusion follows. �

Proposition 3.2. Let u be a traveling wave. Then, .AuC i/�1� .DC i/�1 is a trace class operator.

Proof. We prove first that for all f 2L2.R/, the operator .DC i/�1f , defined on L2.R/ by�
.DC i/�1f

�
h.x/D .DC i/�1.f h/.x/

is Hilbert–Schmidt. Denote by F the Fourier transform. In view of the isomorphism of L2.R/ induced
by the Fourier transform, .DC i/�1f is a Hilbert–Schmidt operator if and only if F.DC i/�1f is one.
The latter is an integral operator of kernel

K.�; �/D
1

2�
�

1

�C i
Of .� � �/:

Indeed,

F
�
.DC i/�1f h

�
.�/D

1

2�
�

1

�C i
cf h.�/D

1

2�

Z
R

1

�C i
Of .� � �/ Oh.�/ d�D

Z
R

K.�; �/ Oh.�/ d�:

Therefore, it is Hilbert–Schmidt if and only if K.�; �/ 2 L2
�;�
.R � R/. By the change of variables

� 7! � D � � � we have

kK.�; �/k2
L2
�;�

D
1

4�2

Z
R

d�

�2C 1

Z
R

j Of .�/j2 d� D Ckf k2
L2 <1:

Hence .D C i/�1f is a Hilbert–Schmidt operator and so is Nf .D C i/�1, its adjoint. According to
Lemma 3.1, u 2 L1.R/ and thus juj2 2 L2.R/. Taking f D juj2 and f D u, we conclude that the
operators .DC i/�1juj2, .DC i/�1u, and Nu.DC i/�1 are all Hilbert–Schmidt.

We write

.AuC i/�1
� .DC i/�1

D .DC i/�1.D�Au/.AuC i/�1

D
1

c
.DC i/�1Tjuj2.AuC i/�1

D
1

c
….DC i/�1

juj2.AuC i/�1
DL.AuC i/�1;

where LD 1
c
….DC i/�1juj2. Note that L is a Hilbert–Schmidt operator since it is the composition of

the bounded operator 1
c
… WL2.R/!L2

C with the Hilbert–Schmidt operator .DC i/�1juj2. Finally, we
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write, using the latter formula twice

.AuC i/�1
� .DC i/�1

DL.L.AuC i/�1
C .DC i/�1/

DL ıL ı .AuC i/�1
C

1

c
….DC i/�1u ı Nu.DC i/�1:

We obtain that .AuC i/�1� .DC i/�1 is a trace class operator since the composition of two Hilbert–
Schmidt operators is a trace class operator. �

Corollary 3.3. If u is a traveling wave, the wave operators �˙.D;Au/ exist and are complete.

Proof. This easily follows from Kuroda–Birman theorem [Reed and Simon 1979, Theorem XI.9]: Let A

and B be two self-adjoint operators on a Hilbert space such that .AC i/�1� .BC i/�1 is a trace class
operator. Then �˙.A;B/ exist and are complete. �

Corollary 3.4. If u is a traveling wave, then �ac.Au/D Œ0;C1/.

Proof. Since�˙.D;Au/ are complete, it results that they are isometries from Hac.Au/ onto Hac.D/DL2
C.

By (3-2), we then have

AujHac.Au/
D Œ�˙.D;Au/jHac.Au/

��1D�˙.D;Au/jHac.Au/
:

Consequently, �ac.Au/D �ac.D/D Œ0;C1/. �

Our main goal in the following is to prove that Hac.Au/� Ker Hu. As we will see below, it is enough
to prove that

�
�C.D;Au/H

2
u

�
.Hac.Au//D 0.

Lemma 3.5. Hu is a Hilbert–Schmidt operator on L2
C.R/ of Hilbert–Schmidt norm 1

p
2�
kuk PH 1=2

C

.

Proof. Denote by kT kH S the Hilbert–Schmidt norm of a Hilbert–Schmidt operator T . By (2-2), we have

1Hu.h/.�/D
1

2�
1��0

Z 1
0

Ou.�C �/ Oh.�/ d�:

Then, we obtain

Hu.h/.x/D
1

4�2

Z 1
0

Z 1
0

eix�
Ou.�C �/ Oh.�/ d�d�

D
1

4�2

Z
R

�Z 1
0

Z 1
0

eix�eiy�
Ou.�C �/ d� d�

�
Nh.y/ dy:

Using the fact that the Hilbert–Schmidt norm of an operator is equal to the norm of its integral kernel,
Plancherel’s formula, and Fubini’s theorem, we have

kHu.h/k
2
H S D

1

16�4

 Z 1
0

Z 1
0

eix�eiy�
Ou.�C �/ d� d�

2

L2
x;y

D
1

4�2
k1��01��0 Ou.�C �/k

2

L2
�;�

D
1

4�2

Z 1
0

Z 1
0

j Ou.�C �/j2 d� d� D
1

4�2

Z 1
0

Z 1
�

j Ou.�/j2 d� d�

D
1

4�2

Z 1
0

�Z �

0

d�

�
j Ou.�/j2 d� D

1

4�2

Z 1
0

�j Ou.�/j2 d� D
1

2�
kuk2

PH 1=2
: �
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Lemma 3.6. Ker H 2
u D Ker Hu. Moreover, if Ran Hu is finite-dimensional, then Ran H 2

u D Ran Hu.

Proof. Let f 2Ker H 2
u . Then, by (1-7) and the fact that .Hu.h1/; h2/D .Hu.h2/; h1/ for all h1; h2 2L2

C,
we have

kHuf k
2
L2 D .Huf;Huf /D .H

2
uf; f /D 0;

and thus Huf D 0. Hence, Ker H 2
u � Ker Hu . Therefore, we obtain Ker H 2

u D Ker Hu since the inverse
inclusion is obvious.

The identity (1-7) yields also Ker Hu D .Ran Hu/
?. Moreover, it implies that H 2

u is a self-adjoint
operator and therefore, Ker H 2

u D .Ran H 2
u /
?. Hence, we obtain

.Ran H 2
u /
?
D .Ran Hu/

?:

Taking the orthogonal complement of both sides, this yields

Ran H 2
u D Ran Hu:

If Ran Hu is finite-dimensional, so is Ran H 2
u , since Ran H 2

u � Ran Hu. Thus, Ran H 2
u and Ran Hu are

closed. It follows that Ran H 2
u D Ran Hu. �

Lemma 3.7. If u is a traveling wave, then

AuH 2
u DH 2

u Au: (3-3)

Consequently, if Ran Hu is finite-dimensional, then Au.Ran Hu/� Ran Hu.

Proof. The commutativity relation (3-3) is a consequence of identity (1-10). The second statement then
follows by Lemma 3.6, Ran H 2

u D Ran Hu. �

It is a classical fact that if A and B are two self-adjoint operators on a Hilbert space H such that
AB D BA, then B.Hac.A//�Hac.A/. For completeness, we prove this here in the case of Au and H 2

u :

Lemma 3.8. H 2
u Hac.Au/�Hac.Au/.

Proof. As we will see below, the inclusion follows if we prove that �H 2
u�
� �� for all � 2L2

C, where
the �H 2

u�
and �� denote the spectral measures of H 2

u� and � with respect to the operator Au.
Let E � R be a measurable set and f D 1E . By (3-3) and the Cauchy–Schwarz inequality we have

�H 2
u�
.E/D

Z
R

fd�H 2
u�
D .H 2

u�; f .Au/H
2
u�/D .H

2
u�;H

2
uf .Au/�/D .H

4
u�; f .Au/�/

�
p
.f .Au/�; f .Au/�/kH

4
u�kL2 D

p
.�; f .Au/�/kH

4
u�kL2 D

q
��.E/kH

4
u�kL2 :

Therefore, �H 2
u�
� �� . Denote by m the Lebesgue measure on R. If � 2Hac.Au/, then ���m and

thus �H 2
u�
�m. Hence, H 2

u Hac.Au/�Hac.Au/. �

Proposition 3.9. If u is a traveling wave, then Hac.Au/� Ker Hu.

Proof. It is enough to prove that
�
�C.D;Au/H

2
u

�
.Hac.Au//D 0. If this holds, then H 2

u

�
Hac.Au/

�
D 0

since H 2
u Hac.Au/ � Hac.Au/ and �C.D;Au/ is an isometry on Hac.Au/. Therefore, Hac.Au/ �

Ker H 2
u D Ker Hu.
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First note that

HueitD
D eitDH�t .u/; (3-4)

where �a denotes the translation �au.x/D u.x� a/. Indeed, for f 2L2
C, passing into Fourier space, we

have �
HueitDf

�^
.�/D 1��0

�
ueitDf

�^
.�/D

1

2�
1��0

Z
R

Ou.� � �/eit� ONf .�/ d�

D
1

2�
1��0eit�

Z
e�it.���/

Ou.� � �/
ONf .�/ d�D 1��0eit�

�
�t .u/ Nf

�^
.�/

D 1��0

�
eitD.�t .u/ Nf /

�^
.�/D

�
eitDH�t .u/f

�^
.�/:

By Lemma 3.8, (3-3), and (3-4), we have for all f 2Hac.Au/

eitDe�itAuPacH
2
uf D eitDe�itAuH 2

uf D eitDH 2
u e�itAuf D eitDHuHue�itDeitDe�itAuf

D eitDHue�itDH��t .u/e
itDe�itAuf DH 2

��t .u/
eitDe�itAuPac.Au/f:

We intend to prove that H 2
��t .u/

eitDe�itAuPac.Au/f tends to 0 in the L2
C-norm as t !�1. From this,

we conclude that �C.D;Au/H
2
uf D 0. Since, by Lemma 3.5, H��t .u/ is uniformly bounded, it suffices

to prove that H��t .u/e
itDe�itAuPac.Au/f tends to 0. We haveH��t .u/e

itDe�itAuPac.Au/f


L2
C

�
H��t .u/

�
eitDe�itAuPac.Au/f ��

C.D;Au/f
�

L2
C

CkH��t .u/�
C.D;Au/f kL2

C

�
1
p

2�
kuk PH 1=2

eitDe�itAuPac.Au/f ��
C.D;Au/f


L2
C

C

Z
R

ju.xC t/j2j�C.D;Au/f .x/j
2 dx

(3-5)

The first term on the last line converges to 0 by the definition of the wave operator �C.D;Au/. Since u

is a traveling wave, we can write

u 2
\
s�0

H s.R/� C1
!0.R/;

where C1
!0
.R/ is the space of functions f of class C1 such that lim

x!�1
Dkf .x/D lim

x!1
Dkf .x/D 0

for all k 2 N. Therefore, for arbitrary fixed x, we have

lim
t!�1

��t .u/.x/D lim
t!�1

u.xC t/D 0:

Note also that

ju.xC t/j2 j�C.D;Au/f .x/j
2
� kuk2L1 j�

C.D;Au/f .x/j
2

for all x 2 R. Thus the last term in (3-5) converges to 0 by the dominated convergence theorem. This
shows that

�
�C.D;Au/H

2
u

�
.Hac.Au//D 0. �
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4. Classification of traveling waves

Lemma 4.1. There are no nontrivial traveling waves of velocity c D 0 in L2
C.R/.

Proof. Let u be a nontrivial traveling wave of velocity c D 0. Then, (1-4) gives ….juj2u/D !u. Taking
the scalar product with ei�xu.x/, where � � 0, we obtain

F.juj4�!juj2/.�/D 0;

where F denotes the Fourier transform. Since juj4�!juj2 is a real-valued function, we have that the last
equality holds for all � 2 R. Thus juj4�!juj2 D 0 on R and therefore u.x/D 0 or ju.x/j2 D ! > 0, for
all x 2 R. Since the function u is holomorphic on CC, its trace on R is either identically zero, or the set
of zeros of u on R has Lebesgue measure zero. In conclusion, we have juj2 D ! > 0 a.e. on R and thus u

is not a function in L2
C.R/. �

Lemma 4.2. If u 2 H s
C for s > 1

2
and v 2 Ker Hu, then Nuv 2 L2

C. Moreover, if u 2 L1.R/, then
Tjuj2v D juj

2v.

Proof. Indeed, 0 D Hu.v/ D ….u Nv/ and thus Nuv 2 L2
C. Furthermore, since u; Nuv 2 L2

C, we obtain
Tjuj2v D….u Nuv/D juj

2v. �

Lemma 4.3. Let u2H s
C, s > 1

2
, be a solution of the cubic Szegő equation (1-2). For the Cauchy problem�

i@t D ju.t/j
2 

 jtD0 D  0;
(4-1)

if  0 2 Ker Hu.0/, then  .t/ 2 Ker Hu.t/ for all t 2 R.

Proof. Let us first consider �
i@t 1 D Tju.t/j2 1

 1jtD0 D  0;

Using the Lax pair structure, we have

@tHu. 1/D ŒBu;Hu� 1CHu@t 1 D
�

i
2
H 2

u � iTjuj2 ;Hu

�
 1CHu.�iTjuj2 1/

D�iTjuj2Hu 1� iHuTjuj2 1C iHuTjuj2 1 D�iTjuj2Hu 1:

The solution of the linear Cauchy problem�
@tHu. 1/D�iTjuj2Hu 1;

Hu. 1.0//D 0

is identically zero: Hu.t/ 1.t/D 0 for all t 2 R. Consequently,  1.t/ 2 Ker Hu.t/, and by Lemma 4.2
we obtain Tjuj2 1 D juj

2 1. In conclusion,  .t/D  1.t/ 2 Ker Hu.t/. �
The space Ker Hu is invariant under multiplication by ei˛x , for all ˛ � 0. Indeed, suppose f 2Ker Hu.

Then .u Nf /^.�/D 0, for all � � 0 and�
Hu.e

i˛xf /
�^
.�/D

�
e�i˛xu Nf

�^
.�/D .u Nf /^.�C˛/D 0;

for all �; ˛ � 0. Hence, ei˛xf 2 Ker Hu for all ˛ � 0.
One can then apply the following theorem to the subspaces Ker Hu0

.
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Proposition 4.4 [Lax 1959]. Every nonempty closed subspace of L2
C that is invariant under multiplication

by ei˛x for all ˛�0 is of the form FL2
C, where F is an analytic function in the upper-half plane, jF.z/j�1

for all z 2 CC, and jF.x/j D 1 for all x 2 R. Moreover, F is uniquely determined up to multiplication by
a complex constant of absolute value 1.

We deduce that Ker Hu0
D �L2

C, where � is a holomorphic function in the upper half-plane CC,
satisfying j�.x/j D 1 on R and j�.z/j � 1 for all z 2 CC.

Functions satisfying the properties in Proposition 4.4 are called inner functions in the sense of Beurling
and Lax. A special class of such functions is that of Blaschke products. Given �j 2 C such that for all j

Im�j > 0 and
X

j

Im�j

1Cj�j j
2
<1;

the corresponding Blaschke product is defined by

B.z/D
Y
j

"j
z��j

z��j

; where "j D
j�2
j
C1j

�2
j
C1

(4-2)

(by definition "j D 1 if �j D 1).
Inner functions have a canonical factorization, which is analogous to the canonical factorization of

inner functions on the unit disk; see [Rudin 1974, Theorem 17.15] or [Nikolski 2002, Theorem 6.4.4].
More precisely, every inner function F can be written as the product

F.z/D �B.z/eiaz exp
�

i

Z
R

1C tz

t � z
d�.t/

�
; (4-3)

where z 2CC, �2C with j�jD 1, a� 0, B is a Blaschke product, and � is a positive singular measure with
respect to the Lebesgue measure. In particular, the inner function � has such a canonical factorization.

Proposition 4.5. Let u be a traveling wave and denote by � an inner function such that Ker Hu0
D �L2

C.
Then, � satisfies the following equation on R:

cD� D ju0j
2�: (4-4)

Proof. Since u.t;x/D e�i!tu0.x� ct/, we have Hu.t/ D e�i!t�ctHu0
��ct . Thus,

Ker Hu.t/ D �ct Ker Hu0
D �ct .�/L

2
C:

Let f 2L2
C and let  0D �f 2Ker Hu0

be the initial data of the Cauchy problem (4-1) in Lemma 4.3.

We then have �e�i
R t

0 ju.s/j
2 dsf 2 Ker Hu.t/. Therefore,

�e�i
R t

0 ju.s/j
2 dsL2

C � �ct .�/L
2
C: (4-5)

Conversely, by solving backward the problem (4-1) with the initial data in �ct .�/L
2
C at time t , up to the

time t D 0, we obtain

�ct .�/L
2
C � �e�i

R t

0 ju.s/j
2 dsL2

C

and thus, the two sets are equal.
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Let us first prove that �t WD �e�i
R t

0 ju.s/j
2 ds is an inner function. Note that �t is well defined on R and

its absolute value is 1 on R. Consider the function defined by h.x/D �t .x/=.xC i/ for x 2 R. Since
h 2L2

C, we can write using the Poisson integral that

h.z/D
1

�

Z 1
�1

Im z
h.x/

jz�xj2
dx

for all z 2 CC. Then,

zh.z/D
1

�

Z 1
�1

Im z
xh.x/

jz�xj2
dxC

1

�

Z 1
�1

Im z
.z�x/h.x/

jz�xj2
dx:

Note that the last integral is equal to Z 1
�1

Im z
h.x/

Nz�x
dx:

By the residue theorem and using the fact that the function h=.Nz �x/ is holomorphic on CC, we have
that this integral is zero and thus

zh.z/D
1

�

Z 1
�1

Im z
xh.x/

jz�xj2
dx:

Therefore, we can use the Poisson integral to extend �t to CC as a holomorphic function.

�t .z/D .zC i/h.z/D
1

�

Z 1
�1

Im z
.xC i/h.x/

jz�xj2
dx D

1

�

Z 1
�1

Im z
�t .x/

jz�xj2
dx: (4-6)

Moreover,

j�t .z/j �
1

�

Z 1
�1

Im z
1

jz�xj2
dx D 1;

for all z 2 CC. Hence �t is an inner function.
Since �ct .�/ and �e�i

R t

0 ju.s/j
2 ds are inner functions and

�e�i
R t

0 ju.s/j
2 dsL2

C D �ct .�/L
2
C;

Proposition 4.4 yields the existence of a real-valued function  such that  .0/D 0 and

�e�i
R t

0 ju.s/j
2 ds
D �ct .�/e

i.t/:

Taking the derivative with respect to t , we obtain that � satisfies the equation

cD�.x/D ju.t;xC ct/j2�.x/C P .t/�.x/:

for all t 2 R. Since u is a traveling wave, we have ju.t;xC ct/j D je�i!tu0.x/j D ju0.x/j. Then we
deduce that P .t/D k and hence  .t/D kt , for some k 2 R. Therefore,

cD� D .ju0j
2
C k/�: (4-7)
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We prove in the following that k D 0. First, note that k
c
� 0. The function �u0 2 Ker Hu0

and by
Lemma 4.2, we have ju0j

2�D u0.u0�/2L2
C. If k=c is negative, setting � WD 1

c
ju0j

2� 2L2
C and passing

into Fourier space, we have

O�.�/D
1

� � k=c
O�.�/ 1Œ0;1/.�/:

This implies that � 2L2
C, contradicting j�.x/j D 1 for all x 2 R.

Let us now prove that k=c D 0. Let h 2L2
C be regular. Then �h 2 Ker Hu0

, and by (4-7) we have

Au0
.�h/D

�
D�

1

c
ju0j

2
�
.�h/D �

�
D�

1

c
ju0j

2
�
.h/C hD� D �

�
DC

k

c

�
h:

Denoting by ��h.Au0
/ the spectral measure corresponding to �h, we haveZ

fd��h D .�h; f .Au0
/�h/D

�
�h; �f

�
DC

k

c

�
h
�
D

�
h; f

�
DC

k

c

�
h
�

D
1

2�

Z 1
0

f
�
�C

k

c

�
j Oh.�/j2 d� D

1

2�

Z 1
k=c

f .�/
ˇ̌̌
Oh
�
��

k

c

�ˇ̌̌2
d�:

Consequently, supp��h.Au0
/ � Œk=c;C1/. By Proposition 3.9, we have Hac.Au0

/ � Ker Hu0
, and

therefore

�ac.Au0
/D

[
 2Hac.Au0

/

supp� �
[

�h2Ker Hu0

supp��h �

h
k

c
;1

�
:

Since, by Corollary 3.4, �ac.Au0
/D Œ0;1/, this yields k D 0. �

Proposition 4.6. All traveling waves are rational functions.

Proof. We first prove that � is a Blaschke product.
Since � is an inner function in the sense of Beurling and Lax, it has the canonical decomposition

�.z/D �B.z/eiaz exp
�

i

Z
R

1C tz

t � z
d�.t/

�
; (4-8)

where z 2 CC, � is a complex number of absolute value 1, a� 0, B is a Blaschke product having exactly
the same zeroes as �, and � is a positive singular measure with respect to the Lebesgue measure.

Because � satisfies (4-4) and u0 2L1.R/, we obtain that � has bounded derivative on R and hence it
is uniformly continuous on R. Then, since � satisfies the Poisson formula (4-6), it follows that

�.xC i"/! �.x/; as "! 0;

uniformly for x 2 R. Since � is uniformly continuous on R and since j�.x/j D 1 for all x 2 R, we
deduce that the zeroes of �, and hence those of the Blaschke product B as well, lie outside a strip
fz 2 CI 0� Im z � "0g, for some "0 > 0. Therefore, we have

�.xC i"/

B.xC i"/
!

�.x/

B.x/
as "! 0
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uniformly for x in compact subsets of R. Taking the logarithm of the absolute value and noticing that
j�.x/=B.x/j D 1, we obtain Z

R

"

.x� t/2C "2
d�.t/! 0;

uniformly for x in compact subsets in R. In particular, for all ı > 0 there exists 0< "1 � "0 such that for
all 0< "� "1 and for all x 2 Œ0; 1�, we have

1

2"
�.Œx� ";xC "�/�

Z xC"

x�"

"

.x� t/2C "2
d�.t/�

Z
R

"

.x� t/2C "2
d�.t/� ı:

Taking "D 1

2N
� "1 with N 2 N�, we obtain

�.Œ0; 1�/D �

�N�1[
kD0

h
k

N
;
kC1

N

i�
�N ı

1

N
D ı:

In conclusion, �.Œ0; 1�/D 0, and one can prove similarly that the measure � of any compact interval in R

is zero. Hence � � 0.
Consequently, �.x/D �B.x/eiax for all x 2 R. On the other hand, because � satisfies (4-4), we have

�.x/D �.0/e.i=c/
R x

0 ju0j
2

and, in particular, limx!1 �.x/D �.0/e
.i=c/

R1
0 ju0j

2

. Since limx!1B.x/D

1, we conclude that aD 0. Substituting � D �B (4-4), we obtain

c

i

B0

B
D ju0j

2:

Then
1

i

Z 1
�1

B0.x/

B.x/
dx <1:

Computing this integral, we obtain that

1

i

Z 1
�1

B0.x/

B.x/
dx D 2

X
j

Z 1
�1

Im�j

jx��j j
2

dx D 2
X

j

�

and thus it is finite if and only if B is a finite Blaschke product, B.x/D
QN

jD1 "j
x��j

x��j

.
We prove that the traveling wave u is a rational function. We have

Ker Hu D �L2
C D BL2

C:

Set Y WD spanC

n
1

x��j

oN

jD1
I we show that BL2

C D Y ?. Indeed, f 2 Y ? if and only if

f .�j /D
1

2�

Z
R

ei��j bf .�/ d� D
1

2�

�
Of ; e�i�j �

�
D

�
f;

1

x��j

�
D 0;

if and only if there exists h 2 L2
C such that f D Bh. Hence Ker Hu D Y ?. This yields Ran H u D Y .

By Remark 2.2 it follows that u is a rational function. More precisely, u 2 Ran Hu D Y . �

Proposition 4.7. If u is a traveling wave, there exists � > 0 such that H 2
u uD �u.
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Proof. According to Remark 2.2, since u is a rational function, we have u 2 Ran Hu.
Secondly, u satisfies the equation of the traveling waves (1-4), which is equivalent to Au.u/D�

!
c

u.
Therefore, u is an eigenfunction of the operator Au for the eigenvalue �!=c. Applying the identity
(1-10),

AuHuCHuAuC
!

c
HuC

1

c
H 3

u D 0;

to u and then to Huu, one deduces that AuH 2
u uD�!

c
H 2

u u. Therefore, the conclusion of the proposition
follows once we prove all the eigenfunctions of the operator Au belonging to Ran Hu, corresponding to
the same eigenvalue, are linearly dependent.

Let a be en eigenvalue of the operator Au and let  1;  2 2Ker.Au�a/\Ran Hu. Since u is a rational
function, by the Kronecker type Theorem 2.1,  1 and  2 are also nonconstant rational functions. Then,
one can find ˛; ˇ 2 C, .˛; ˇ/¤ .0; 0/, such that  WD ˛ 1Cˇ 2 DO. 1

x2 / as x!1. Moreover, we
have  2L1.R/, x 2L2.R/, and thus we can compute Au.x /.

Passing into Fourier space we have

2….xf /.�/D i.@� Of /1��0 D i@�. Of 1��0/� i Of .�/ı�D0 D
1x…f .�/� i Of .0/ı�D0;

for all f 2L1.R/. Thus, we obtain ….xf /D x….f /C 1
2� i
Of .0/ for all f 2L1.R/. We then have

Au.x /D xAu. /C
1

i
 �

1

2c� i

Z
R

juj2 dx

and therefore, since Au D a ,

Au.x /D ax C
1

i
 �

1

2c� i

Z
R

juj2 dx: (4-9)

Since x 2 Ran Hu and Au.Ran Hu/� Ran Hu by Lemma 3.7, we have Au.x / 2 Ran Hu � L2.R/.
The constant in (4-9) is zero because all the other terms are in L2.R/. Then we have

.Au� a/.x /D
1

i
 : (4-10)

Applying the self-adjoint operator Au� a to both sides of (4-10), we obtain .Au� a/2.x /D 0 and

k.Au� a/.x /k2
L2 D

�
.Au� a/.x /; .Au� a/.x /

�
D
�
.Au� a/2.x /;x 

�
D 0:

Thus, .Au� a/.x /D 0. In conclusion, by (4-10),  D 0 and therefore all the eigenfunctions belonging
to Ran Hu, corresponding to the same eigenvalue a, are linearly dependent. �

Proof of Theorem 1.2. Since u 2Ran Hu, there exists a unique function g 2Ran Hu such that uDHu.g/.
By Proposition 4.7, it results that Hu.u/D �g. Applying the identity (1-10),

AuHuCHuAuC
!

c
HuC

1

c
H 3

u D 0;

to g and using AuuD�
!

c
u, one obtains

Hu

�
AugC

�

c
g
�
D 0:
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Since Au.Ran Hu/� Ran Hu, we have

AugC
�

c
g 2 Ran Hu\Ker Hu:

Therefore, AugC
�

c
g D 0, which is equivalent to

cDg�Tjuj2gC�g D 0:

We next find a simpler version of this equation, in order to determine the function g explicitly. Note
that Nu.1�g/ 2L2

C, since it is orthogonal to each complex conjugate of a holomorphic function f 2L2
C:

. Nu.1�g/; Nf /D .f .1�g/;u/D .f;u/� .f;Hu.g//D 0:

Thus,

Tjuj2.g/D….juj
2/�….juj2.1�g//DHu.u/� juj

2.1�g/D �g� juj2.1�g/:

Passing into Fourier space and using the fact that juj2 is a real-valued function, one can write

juj2 D

Z 1
0

eix�bjuj2.�/ d�C

Z 1
0

e�ix�bjuj2.�/ d� D….juj2/C….juj2/:

Therefore juj2DHu.u/CHu.u/D �.gC Ng/. Consequently, Tjuj2.g/D �.� NgCg2Cjgj2/ and g solves
the equation

cDg��g2
C�.gC Ng� jgj2/D 0: (4-11)

We prove that gC Ng� jgj2 D 0. First, note that Nu.1�g/ 2L2
C , also yields .1�g/f 2 Ker Hu, for all

f 2L2
C. Secondly, let us prove that gC Ng� jgj2 is orthogonal to the complex conjugate of all f 2L2

C:

.gC Ng� jgj2; Nf /D .g; Nf /� .f .1�g/;g/D�
�
f .1�g/;

1

�
Hu.u/

�
D�

1

�

�
u;Hu.f .1�g//

�
D 0:

In addition, since gC Ng� jgj2 is a real-valued function, we have

.gC Ng� jgj2; f /D .gC Ng� jgj2; Nf /D 0

for all f 2L2
C. Therefore, gC Ng�jgj2 is orthogonal to all the functions in L2.R/ and thus gC Ng�jgj2D0.

This is equivalent to j1�gj D 1 on R. Moreover, (4-11) gives the precise formula for g:

g.z/D
r

z�p
;

where r;p 2 C and Im.p/ < 0: Thus 1�g.x/D
x� Np

x�p
for all x 2 R and

Ker H 1
z�p
D

z� Np

z�p
L2
C D .1�g/L2

C � Ker Hu:

Consequently, u 2 Ran Hu � Ran H 1
z�p
D

C

z�p
. �
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5. Orbital stability of traveling waves

In order to prove the orbital stability of traveling waves, we first use the fact that they are minimizers of
the Gagliardo–Nirenberg inequality. We begin this section by proving this inequality:

Proof of Proposition 1.5, the Gagliardo–Nirenberg inequality. The proof is similar to that of the Gagliardo–
Nirenberg inequality for the circle, in [Gérard and Grellier 2010b]. The idea is to write all the norms in
the Fourier space, using Plancherel’s identity.

E D kuk4
L4 D ku

2
k

2
L2 D

1

2�

bu2
2

L2 D
1

2�

Z
R

jbu2.�/j2 d�:

Using the fact that u 2L2
C and Cauchy–Schwarz inequality, we have

jbu2.�/j2 D
1

4�2

ˇ̌̌̌ Z �

0

bu.�/bu.� � �/ d�

ˇ̌̌̌2
�

1

4�2
�

Z �

0

jbu.�/j2jbu.� � �/j2 d�

�
1

4�2

�Z �

0

�jbu.�/j2jbu.� � �/j2 d�C

Z �

0

.� � �/jbu.�/j2jbu.� � �/j2 d�

�
:

By the change of variables � � � 7! � in the second integral, we have

jbu2.�/j2 �
1

2�2

Z �

0

�jbu.�/j2jbu.� � �/j2 d�:

By Fubini’s theorem and change of variables � D � � � it results that

E �
1

4�3

Z
R

Z �

0

�jbu.�/j2jbu.� � �/j2 d�d� D
1

4�3

Z C1
0

�jbu.�/j2 d�

Z C1
0

jbu.�/j2 d� D
1

�
MQ:

Equality holds if and only if we have equality in Cauchy–Schwarz inequality, i.e.

bu.�/bu.�/Dbu.�C �/bu.0/;
for all �; �� 0. This is true if and only if

bu.�/D e�ip�bu.0/ for all � � 0:

Since u 2H
1=2
C , this yields Im.p/ < 0 and u.x/D C=.x�p/, for some constant C . �

The second argument we use in proving the stability of traveling waves is a profile decomposition
theorem. It states that bounded sequences in H

1=2
C can be written as superposition of translations of fixed

profiles and of a remainder term. The remainder is small in all the Lp-norms, 2< p <1. Moreover, the
superposition is almost orthogonal in the H

1=2
C -norm.

Proposition 5.1 (Profile decomposition theorem for bounded sequences in H
1=2
C ). Let fvngn2N be a

bounded sequence in H
1=2
C . There exist a subsequence of fvngn2N, still denoted by fvngn2N, a sequence

of fixed profiles in H
1=2
C , fV .j/gj2N, and a family of real sequences fx.j/gj2N such that for all ` 2N� we

have
vn
D

X̀
jD1

V .j/.x�x.j/n /C r .`/n ;
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where
lim
`!1

lim sup
n!1

kr .`/n kLp.R/ D 0

for all p 2 .2;1/, and

kvn
k

2
L2 D

X̀
jD1

kV .j/
k

2
L2 Ckr

.`/
n k

2
L2 C o.1/ as n!1;

kvn
k

2
PH

1=2
C

D

X̀
jD1

kV .j/
k

2
PH

1=2
C

Ckr .`/n k
2
PH

1=2
C

C o.1/ as n!1;

lim
n!1

kvn
k

4
L4 D

1X
jD1

kV .j/
k

4
L4 :

The proof of this proposition follows exactly the same lines as that of the profile decomposition theorem
for bounded sequences in H 1.R/; see [Hmidi and Keraani 2006, Proposition 2.1]. However, note that in
our case, the profiles V .j/ belong to the space H

1=2
C (not only to the space H 1=2.R/), as they are weak

limits of translations of the sequence fvngn2N.

Proof of Theorem 1.3. According to Proposition 1.5, C.a; r/ is the set of minimizers of the problem

inf
˚
M.u/Iu 2H

1=2
C ; Q.u/D q.a; r/; E.u/D e.a; r/

	
;

where

q.a; r/D
a2�

r
; e.a; r/D

a4�

2r3
:

We denote the infimum by m.a; r/. Since

inf
�2C.a;r/

kun
0 ��kH 1=2

C

! 0;

by the Sobolev embedding theorem, we deduce

Q.un
0/! q.a; r/; E.un

0/! e.a; r/; M.un
0/!m.a; r/:

Let ftngn2N be an arbitrary sequence of real numbers. The conservation laws yield

Q.un.tn//! q.a; r/; E.un.tn//! e.a; r/; M.un.tn//!m.a; r/:

We can choose two sequences of positive numbers fang and f�ng such that vn.x/ WD anun.tn; �nx/

satisfies kvnkL2.R/ D 1, kvnkL4.R/ D 1. Notice that

an! a1; �n! �1;

where a1 > 0, �1 > 0, and
�1

a4
1

D e.a; r/;
�1

a2
1

D q.a; r/:
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Then

kvn
k

1=2

PH
1=2
C

D

kvnk
1=2

L2 kv
nk

1=2

PH
1=2
C

kvnkL4

D

kun.tn/k
1=2

L2 ku
n.tn/k

1=2

PH
1=2
C

kun.tn/kL4

for all n 2 N:

In particular, as a consequence of the Gagliardo–Nirenberg inequality,

lim
n!1

kvn
k PH 1=2
C

D
p
�:

Thus the sequence fvngn2N is bounded in H
1=2
C . From the profile decomposition theorem (Proposition 5.1),

we obtain that there exist real sequences fx.j/gj2N depending on the sequence ftngn2N in the definition
of fvngn2N, such that for all ` 2 N� we have

vn
D

X̀
jD1

V .j/.x�x.j/n /C r .`/n ;

where

lim
`!1

lim sup
n!1

kr .`/n kLp.R/ D 0

for all p 2 .2;1/, and

kvn
k

2
L2 D

X̀
jD1

kV .j/
k

2
L2 Ckr

.`/
n k

2
L2 C o.1/ as n!1;

kvn
k

2
PH

1=2
C

D

X̀
jD1

kV .j/
k

2
PH

1=2
C

Ckr .`/n k
2
PH

1=2
C

C o.1/ as n!1;

lim
n!1

kvn
k

4
L4 D

1X
jD1

kV .j/
k

4
L4 :

Consequently,

1�

1X
jD1

kV .j/
k

2
L2 ; � �

1X
jD1

kV .j/
k

2
PH

1=2
C

; 1D

1X
jD1

kV .j/
k

4
L4 : (5-1)

Therefore, by the Gagliardo–Nirenberg inequality (1-12), we have

� �

� 1X
jD1

kV .j/
k

2
L2

�� 1X
jD1

kV .j/
k

2
PH

1=2
C

�
�

1X
jD1

kV .j/
k

2
L2kV

.j/
k

2
PH

1=2
C

� �

1X
jD1

kV .j/
k

4
L4 D �:

Thus, there exist only one profile V WD V .1/ and a sequence x D x.1/ such that

vn
DV .x�xn/C rn;

kvn
k

2
L2 DkV k

2
L2 Ckrnk

2
L2 C o.1/ as n!1; (5-2)

kvn
k

2
PH

1=2
C

DkV k2
PH

1=2
C

Ckrnk
2
PH

1=2
C

C o.1/ as n!1: (5-3)
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According to (5-1), V satisfies 1� kV k2
L2 , � � kV k2

PH
1=2
C

, and kV k4
L4 D 1. In conclusion,

� D �kV k4
L4 � kV k

2
L2kV k

2
PH

1=2
C

� �:

Hence, V is a minimizer in the Gagliardo–Nirenberg inequality. Moreover,

kV k2
L2 D 1D kvn

kL2 ; kV k2
PH

1=2
C

D � D lim
n!1

kvn
k

2
PH

1=2
C

:

By (5-2) and (5-3), we have rn! 0 in H
1=2
C as n!1. Consequently, vn. � Cxn/! V in H

1=2
C , or

equivalently,
lim

n!1

anun.tn; �nx/�V .x�xn/


H
1=2
C

D 0:

We then have

lim
n!1

un.tn;x/�
1

a1
V

�
x�xn�1

�1

�
H

1=2
C

D 0:

Notice that, since V is a minimizer in the Gagliardo–Nirenberg inequality, we have

Q�.x/ WD
1

a1
V

�
x

�1

�
D

˛

x�p
2 C.a; r/:

Then, since xn�1 2 R, we have �.x/D Q�.x�xn�1/D
˛

x� Qp
2 C.a; r/. Thus,

inf
�2C.a;r/

kun.tn;x/��.x/kH 1=2
C

! 0; as n!1: (5-4)

The conclusion follows by approximating the supremum in the statement by the sequence in (5-4) with
an appropriate ftngn2N. �
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SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR
KLEIN–GORDON EQUATION

SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

We show scattering versus blow-up dichotomy below the ground state energy for the focusing nonlinear
Klein–Gordon equation, in the spirit of Kenig and Merle for the H 1 critical wave and Schrödinger
equations. Our result includes the H 1 critical case, where the threshold is given by the ground state for
the massless equation, and the 2D square-exponential case, where the mass for the ground state may be
modified, depending on the constant in the sharp Trudinger–Moser inequality. The main difficulty is the
lack of scaling invariance in both the linear and the nonlinear terms.
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1. Introduction

The problem and overview. We study global and asymptotic behavior of solutions in the energy space
for the nonlinear Klein–Gordon equation (NLKG):

Ru��uCu D f 0.u/; u W R1Cd
! R .d 2 N/; (1-1)

where f W R! R is a given function. Typical examples that we can treat are the power nonlinearities in
any dimension:

f .u/ D �jujpC2 .2? < pC 2 � 2?; � � 0/; (1-2)

where 2? and 2? respectively denote the L2 and H 1 critical powers

2? D 2C
4

d
; 2? D

(
2C

4

d�2
if d � 3;

1 if d � 2;
(1-3)

MSC2000: 35L70, 35B40, 35B44, 47J30.
Keywords: nonlinear Klein–Gordon equation, scattering theory, blow-up solution, ground state, Sobolev critical exponent,

Trudinger–Moser inequality.
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and the square-exponential nonlinearity in two spatial dimensions:

f .u/ D �jujpe�juj
2

; .d D 2; p > 4; � � 0; � > 0/; (1-4)

which is related to the critical case for the Trudinger–Moser inequality. The equation conserves (at least
formally) the energy

E.uI t/ D E.u.t/; Pu.t// WD

Z
Rd

j Puj2Cjruj2Cjuj2

2
�f .u/ dx: (1-5)

The main goal in this paper is to give necessary and sufficient conditions for the solution u to scatter,
which means that u is asymptotic to some free solutions as t !˙1, under the condition that u has less
energy than the least energy static solution, namely the ground state. In the defocusing case, where f has
the opposite sign, one has the scattering result for all finite energy solutions, see [Brenner 1984; Ginibre
and Velo 1985a; Nakanishi 1999a; 1999b; 2001; Ibrahim et al. 2009]. In the focusing case, it turns out
that the solutions below the ground energy split into the scattering solutions and the blow-up solutions (in
both time directions in both cases). Such results have been recently established for many other equations
including the nonlinear wave equation (NLW), the nonlinear Schrödinger equation (NLS), the Yang–
Mills system and the wave maps, since Kenig-Merle’s [Kenig and Merle 2006] on NLS with the H 1

critical power (i.e. pC 2 D 2? in (1-2)); see [Akahori and Nawa 2010; Côte et al. 2008; Duyckaerts
et al. 2008; Kenig and Merle 2008; Killip et al. 2008; 2009; Krieger and Schlag 2009; Sterbenz and
Tataru 2010; Tao 2008a; 2008b; 2008c; 2009a; 2009b].

To be more precise, let us recall the result by Kenig and Merle for the critical nonlinear wave equation

Ru��u D f 0.u/; f .u/ D juj2
?

: (1-6)

Let E.0/.u/ be the conserved energy, and Q be a static solution with the least energy:

E.0/.u/ WD

Z
Rd

j Puj2Cjruj2

2
Cf .u/ dx; Q.x/ WD

"
1C

jxj2

d.d � 2/

#�.d�2/=2

: (1-7)

Kenig and Merle [2008] proved that every solution with E.0/.u/ < E.0/.Q/ scatters in the energy space
as t ! ˙1, provided that kru.0/kL2 < krQkL2 , and otherwise it blows up in finite time both for
t > 0 and for t < 0. The idea of their proof is to bring the concentration compactness argument into
the scattering problem by using space-time norms and the concept of a “critical element”, that is, the
minimal non-scattering solution.

The equations in those papers following Kenig and Merle have a common important property—the
scaling invariance. It is further shared with the solution space (either the energy space or L2, i.e. the
critical case), except for the NLS with a subcritical power [Duyckaerts et al. 2008; Akahori and Nawa
2010]. The scaling invariance brings significant difficulties for the analysis, but also a lot of algebraic or
geometric structures and simplifications. Hence it is a natural question what happens if the invariance is
broken in the linear and the nonlinear parts of the equation. This is the main technical challenge in this
paper.

The dichotomy into the global existence and the blow-up has been known long before the scattering
result of Kenig and Merle, under the name of “potential well”, defined by derivatives of the static energy
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functional. More precisely, Payne and Sattinger [1975] proved on bounded domains the dichotomy into
blow-up and global existence for solutions below the ground energy, by the sign of the functional

K1;0.u/ WD

Z
jruj2Cjuj2�uf 0.u/ dx: (1-8)

It is easy to observe that their argument applies to the whole space Rd as soon as one has the local
wellposedness in the energy space. Hence our primary task is to prove the scattering result in the region
of global existence. Then our first problem due to the inhomogeneity is that the above functional K1;0

is not suited for the scattering proof, though it is useful for the blow-up and global existence. More
specifically, we want to use the functional

Kd;�2.u/ WD

Z
2jruj2C d Œuf 0.u/� 2f .u/� dx; (1-9)

which is related to the virial identity. There is actually a one-parameter family of functionals, corre-
sponding to various scalings, each of which defines a splitting of the solutions below the ground energy
by its sign. For example, Shatah [1985] used another functional

K0;1.u/ WD

Z
d � 2

2
jruj2C

d

2
juj2� df .u/ dx; (1-10)

to prove the instability of the standing waves. Note that in his proof the instability is not given by blow-
up in the region K0;1.u/ < 0. More recently, Ohta and Todorova [2007] proved blow-up in the region
Kd;�2.u/ < 0, but they need radial symmetry for the powers p close to 2?.

The special feature of the critical wave Equation (1-6) is that those functionals are the same modulo
constant multiples, which is exactly due to the scaling invariance. For the NLS with a subcritical power
[Duyckaerts et al. 2008; Akahori and Nawa 2010], the functionals are different from each other, but the
situation is much better than NLKG, because they contain only two terms (without the L2 norm), the L2

is another conserved quantity, and the virial identity is used both for the blow-up and for the scattering,
while K1;0 is not so useful for NLS.

It turns out, however, that those algebraically different functionals for NLKG define the same splitting
below the threshold energy. This observation does not seem to be well recognized, but it is indeed crucial
for the proof of the dichotomy, since we need different functionals for the blow-up and for the scattering.

One interesting feature resulting from the breakdown of the scaling is that, for some nonlinearity,
the energy threshold is not given by the ground state of the original NLKG, but by that of a modified
equation. More precisely, for the H 1 critical power (p C 2 D 2?) in three dimensions or higher, the
threshold is given by that of the critical wave equation, or massless Klein–Gordon equation. This can be
expected because the concentration by the critical scaling makes the L2 norm vanish while preserving
other components, namely the massless energy. However the transition from the Klein–Gordon to the
wave requires some effort in the scattering proof.

We find another instance of mass modification, which is more surprising. That is in two dimensions
and for nonlinearities which grow slightly slower than the square exponential ejuj

2

, where the mass for
the threshold ground energy can change to any number between 0 and 1, depending on the constant
in the sharp (L2) Trudinger–Moser inequality. Thus we prove the existence of extremizers as well as
the ground states with mass less than or equal to the sharp constant, which also seems new for general
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nonlinearity on the whole plane. For the existence of the ground state on bounded domains, we refer to
[Figueiredo et al. 1995; Adimurthi 1990; Adimurthi and Struwe 2000]. One should be warned, however,
that the situation on the whole plane is different from that on disks, unlike the higher dimensional Sobolev
critical case, since here the concentration compactness has to be accompanied with a leak of L2 norm
to the spatial infinity. This will be discussed in [Ibrahim et al. 2011].

It is worth noting that the scattering result in the focusing exponential case is actually easier to
obtain than in the defocusing case, concerning the global Strichartz estimate. This is because the
(mass-modified) ground energy threshold implies that our solutions are in the subcritical regime for
the Trudinger–Moser inequality. Hence concentration of energy is a priori precluded, and so we do not
need the concentration radius or the localized Strichartz estimate used in [Ibrahim et al. 2009] on the
Trudinger–Moser threshold in the defocusing case. This is another striking difference from the power
case, where the analysis for the focusing case essentially contains that for the defocusing case.

Main result. To state the main results of this paper, we need to introduce some notation and assumptions
for the variational setting and the nonlinear setting of the problem.

Variational setting. To specify our class of solutions, we need the static energy

J.'/ WD
1

2

Z
Rd

Œjr'j2Cj'j2� dx�F.'/; F.'/ WD

Z
Rd

f .'/ dx; (1-11)

and its derivatives with respect to different scalings. In the critical and exponential cases, we also need
the energy with a modified mass c � 0,

J .c/.'/ D
1

2

Z
Rd

Œjr'j2C cj'j2� dx�F.'/: (1-12)

For any ˛; ˇ; � 2 R and ' W Rd ! R, we define the two-parameter rescaling family

'�˛;ˇ.x/ D e˛�'.e�ˇ�x/; (1-13)

and the differential operator L˛;ˇ acting on any functional S W H 1.Rd /! R by

L˛;ˇS.'/ D
d

d�

ˇ̌̌̌
�D0

S.'�˛;ˇ/: (1-14)

The scaling derivative of the static energy is denoted by

K˛;ˇ.'/ WD L˛;ˇJ.'/

D

Z
Rd

�
2˛C .d � 2/ˇ

2
jr'j2C

2˛C dˇ

2
j'j2�˛'f 0.'/� d f̌ .'/

�
dx;

K
.c/

˛;ˇ
.'/ WD L˛;ˇJ .c/.'/:

(1-15)

For each .˛; ˇ/ 2 R2 in the range

˛ � 0; 2˛C dˇ � 0; 2˛C .d � 2/ˇ � 0; .˛; ˇ/ 6D .0; 0/; (1-16)
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we consider the constrained minimization problem

m˛;ˇ D inffJ.'/ j ' 2 H 1.Rd /; ' 6D 0; K˛;ˇ.'/ D 0g: (1-17)

We will prove that it is attained, (after a modification of the mass in some cases), provided that .˛; ˇ/ is
in the above range (1-16). The condition on .˛; ˇ/ is also necessary in general (see Proposition A.1).

Our solutions start from the following subsets of the energy space:

KC˛;ˇ D
˚
.u0;u1/ 2 H 1.Rd /�L2.Rd / j E.u0;u1/ < m˛;ˇ; K˛;ˇ.u0/ � 0

	
;

K�˛;ˇ D
˚
.u0;u1/ 2 H 1.Rd /�L2.Rd / j E.u0;u1/ < m˛;ˇ; K˛;ˇ.u0/ < 0

	
:

(1-18)

Nonlinear setting. For the nonlinearity f , we consider the following three cases: the H 1 subcritical
(d � 1), the 2D exponential case, and the H 1 critical (d � 3) cases. First we assume that f W R! R is
C 2 and

f .0/ D f 0.0/ D f 00.0/ D 0: (1-19)

Secondly for the variational arguments, we need some monotonicity and convexity conditions. Let D

denote the linear operator defined by
Df .u/ WD uf 0.u/: (1-20)

We assume that f satisfies for some " > 0,

.D� 2?� "/f � 0; .D� 2/.D� 2?� "/f � 0; (1-21)

which implies in particular that

D2f � .2?C "/Df � .2?C "/
2f � 0: (1-22)

Finally we need regularity and growth conditions, which can differ for small juj and large juj. Fix a
cut-off function � 2 C1

0
.R/ satisfying �.r/ D 1 for jr j � 1 and �.r/ D 0 for jr j � 2, and set

�R.x/ WD �.jxj=R/; (1-23)

for arbitrary vector x and R > 0. Decompose the nonlinearity by

fS .u/ WD �1.u/f .u/; fL.u/ D f .u/�fS .u/: (1-24)

We assume that for some p1 > 2?� 2(
jf 00

S
.u/j. jujp1 .d � 4/;

jf 00
S
.u1/�f

00
S
.u2/j. ju1�u2j

p1 .d � 5/;
(1-25)

where we should choose p1 < 1 for d � 5.
For the behavior of f for large juj, we distinguish three cases:
(1) H 1 subcritical case: We assume that for some p2 < 2?� 28̂<̂

:
jf 00

L
.u/j. jujp2 .2 � d � 4/

jf 00
L
.u1/�f

00
L
.u2/j. .ju1jC ju2j/

p2�1ju1�u2j .d � 5 and p2 � 1/

jf 00
L
.u1/�f

00
L
.u2/j. ju1�u2j

p2 .d � 5 and p2 < 1/:

(1-26)
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We allow p2 D 2?�2 in some of the later arguments. There is no growth restriction for d D 1. A typical
example is

f .u/ D �1juj
q1 C � � ��k juj

qk ; (1-27)

where �j > 0 and 2? < qj < 2? for all j , which satisfies (1-26) as well as (1-19), (1-21) and (1-25).

(2) H 1 critical case. We assume
d � 3; f .u/ D juj2

?

=2?: (1-28)

In this case, we do not include lower powers in order to avoid their nontrivial effects in the variational
characterization. The absence of lower powers will only be used in Section 2. In particular the Strichartz
spaces we use in Section 4 can handle the sum of a critical power with a subcritical function.

(3) 2D exponential case: We assume that

d D 2;

9�0 � 0

�
8� > �0; limjuj!1 f 00L

.u/e��juj
2

D 0

8� < �0; limjuj!1 fL.u/e
��juj2 D1

�
and if �0 > 0 then lim

juj!1

fL.u/

DfL.u/
D 0:

(1-29)

Then we define C ?
TM by

C ?
TM.F / D sup

˚
2F.'/k'k�2

L2.R2/
j 0 6D ' 2 H 1.R2/; �0kr'k

2
L2.R2/

� 4�
	
: (1-30)

For example, all the conditions are satisfied by

f .u/ D e�0juj
2

� 1� �0juj
2
�

1
2
�2

0 juj
4 (1-31)

and by
f .u/ D jujpe�0juj

2C juj; (1-32)

where p > 4, �0 � 0, and max.�; 0/� 1 (depending on �0.p � 4/). More specifically, it suffices to
have for all u 2 Œ0;1/ that

8�0u2
C 3uC 2.p� 4/ > 0; (1-33)

since, putting g WD Df=f D 2�0u2C uCp, we have 2? D 4 and

.D� 2/.D� 4/f D Œ.g� 4/2CDgC 2.g� 4/�f;

DgC 2.g� 4/ D 8�0u2
C 3uC 2.p� 4/ D 2Œg.3u=2/� 4��u2=2:

(1-34)

In addition, one can easily observe that C ?
TM.F /D1 if  � 0 and C ?

TM.F / <1 if  < 0, using Moser’s
sequence of functions for the former, and by the spherical symmetrization for the latter (compare [Moser
1971; Adachi and Tanaka 2000; Ruf 2005]).1

1Actually, the optimal (fastest) growth to have C?TM.F / <1 is given by

f .u/ � e�0juj
2

=juj2 .juj ! 1/; (1-35)

as shown in [Ibrahim et al. 2011]. The results in the present paper do not rely on this observation, though it seems to have its
own interest.
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In short, our assumption on f is that

.1-19/; .1-21/; .1-25/; and Œ.1-26/ or .1-28/ or .1-29/�: (1-36)

Then by Sobolev or Trudinger–Moser, we observe that F , L˛;ˇF and L2
˛;ˇF are continuous functionals

on H 1.Rd /.
Now we can state our main result. Denote the quadratic part of the energy (i.e., the linear energy) by

EQ.uI t/ D EQ.u.t/; Pu.t// WD

Z
Rd

j Puj2Cjruj2Cjuj2

2
dx: (1-37)

Theorem 1.1. Assume (1-36) for f . Then for all .˛; ˇ/ in (1-16), both m˛;ˇ and K˙˛;ˇ are independent
of .˛; ˇ/. Moreover (1-1) is locally wellposed in the energy space H 1 �L2, and

(1) If .u.0/; Pu.0// 2 K�˛;ˇ, then u extends neither for t ! 1 nor for t ! �1 as the unique strong
solution in H 1 �L2.

(2) If .u.0/; Pu.0// 2 KC˛;ˇ, then u scatters both in t ! ˙1 in the energy space. In other words, u is a
global solution and there are v˙ satisfying

Rv˙��v˙C v˙ D 0;

EQ.u� v˙; Pu� Pv˙/! 0 .t !˙1/:
(1-38)

The dichotomy of global existence versus blow-up in the subcritical case was essentially given in
[Payne and Sattinger 1975], using K1;0, on bounded domains. Hence our main contribution is the
scattering part, and the parameter independence of K˙˛;ˇ. The corresponding result in the defocusing
case (hence only the scattering) has been shown in [Brenner 1984; Ginibre and Velo 1985b] for the
subcritical f in three dimensions and higher, in [Nakanishi 1999b] in lower dimensions, in [Nakanishi
1999a] for the H 1 critical f , and in [Ibrahim et al. 2009] for the 2D exponential nonlinearity. The
massless H 1 critical case (the other powers cannot be controlled by the massless energy) was solved by
[Bahouri and Shatah 1998; Bahouri and Gérard 1999] for the defocusing f and by [Kenig and Merle
2008] for the focusing nonlinearity.

The parameter independence of m˛;ˇ seems to be known in the study of stability of standing waves,
but the authors could not find an available result as general as the above one. See [Ohta and Todorova
2007; Zhang 2002] for partial results. We quote a recent paper [Jeanjean and Le Coz 2009] for a pure
power nonlinearity, but unfortunately their range of .˛; ˇ/ was not correct (the condition ˛ � 0 was
overlooked; its necessity is shown by Proposition A.1).

The parameter independence of K˙˛;ˇ, on the other hand, does not seem to have got much attention
from the stability analysis, but it is essential in our proof of the scattering, since the monotonicity is
given for the blow-up and for the scattering in terms of different K˛;ˇ, respectively K1;0 and Kd;�2.

Thanks to the parameter independence, we may write

m D m˛;ˇ and K˙ D K˙˛;ˇ:

We will also show the following important properties of the energy threshold.
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Proposition 1.2. Let the assumptions be as in Theorem 1.1.

(1) In the subcritical case (1-26), the threshold energy m is attained by some Q 2H 1.Rd /, independent
of .˛; ˇ/, solving the static equation

��QCQ D f 0.Q/; (1-39)

with the least energy J.Q/ D m among the solutions in H 1.Rd /. In other words, m is attained by
the ground states.

(2) In the critical case (1-28), there is no minimizer for (1-17), but we have

m D J .0/.Q/; (1-40)

for a static solution Q 2 PH 1.Rd / of the massless equation

��Q D f 0.Q/; (1-41)

with the least massless energy J .0/. In other words, m equals the massless ground energy.

(3) In the exponential case (1-29), let

c WD min.1;C ?
TM.F //;

where C ?
TM.F / is as in (1-30). Then

m D J .c/.Q/; (1-42)

for a static solution Q 2 H 1.R2/ of the mass-modified equation

��QC cQ D f 0.Q/; (1-43)

with the least energy J .c/.Q/. Moreover we have

m � 2�=�0; (1-44)

where the equality holds if and only if C ?
TM.F / � 1, and m D m˛;ˇ is attained in (1-17) if and only

if C ?
TM.F / � 1.

Again this is well known in the subcritical case. Hence the main novelty is in the mass change in
the critical and exponential cases. Note that the ground state Q with a different mass c 2 Œ0; 1/ yields
standing wave solutions e˙it!Q.x/ with 1�!2 D c. But it is not a true obstruction for the scattering,
because its dynamical energy is above m, although m is the right threshold in the sense that for higher
energy level E > m the sets K˙ are no longer separated from each other, that is, @KC\ @K� 6D ∅.

Some notation. We recall some standard notation. F denotes the Fourier transform on Rd , and

hri WD
p

1�� D F�1
p

1Cj�j2 F: (1-45)
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Lp, H s , Bs
p;q and PBs

p;q respectively denote the Lebesgue, Sobolev, inhomogeneous and homogeneous
Besov spaces on Rd . For later use we recall the most used functionals K˛;ˇ and H˛;ˇ:

K1;0.'/ D

Z
Rd

�
jr'j2Cj'j2�'f 0.'/

�
dx;

K0;1.'/ D

Z
Rd

h
d�2

2
jr'j2C

d

2
j'j2� df .'/

i
dx; (1-46)

Kd;�2.'/ D

Z
Rd

�
2jr'j2� d.D� 2/f .'/

�
dx;

H1;0.'/ D
1

2

Z
Rd

Œ.D� 2/f .'/� dx;

H0;1.'/ D

Z
Rd

h
1

d
jr'j2

i
dx; (1-47)

Hd;�2.'/ D

Z
Rd

h
1

2
j'j2C

d

4
.D� 2�/f .'/

i
dx:

We give a table of notation on page 458.

2. Variational characterizations

In this section, we prove Proposition 1.2. In particular we prove the existence of ground states as
constrained minimizers, the .˛; ˇ/-independence of the splittings, together with various estimates for
solutions below the threshold by variational arguments, which will be used for the scattering and blowup.

Throughout this section, we assume that .˛; ˇ/ is in the range (1-16). For ease of presentation, we
often omit .˛; ˇ/ from the subscript. We associate with it the following two numbers:

N� D max.2˛C dˇ; 2˛C .d � 2/ˇ/; � D min.2˛C dˇ; 2˛C .d � 2/ˇ/; (2-1)

which come from the scaling exponents for PH 1 and L2 in (1-13). Notice that in the range (1-16), we
have N� > 0, � � 0, and that ˛ D �D 0 if and only if .d; ˛/D .2; 0/, which will often be an exceptional
case in the following arguments.

We decompose K˛;ˇ D L˛;ˇJ into the quadratic and the nonlinear parts:

K˛;ˇ D K
Q

˛;ˇ
CKN

˛;ˇ; K
Q

˛;ˇ
.'/ D L˛;ˇk'k

2
H 1=2; KN

˛;ˇ.'/ D �L˛;ˇF.'/: (2-2)

Then K
Q

˛;ˇ
.'�
˛;ˇ
/ is non-negative and non-decreasing with respect to � 2 R, and

lim
�!�1

K
Q

˛;ˇ
.'�˛;ˇ/ D 0; (2-3)

from its explicit form.

Energy landscape in various scales. First we investigate how J and its derivatives behave with respect
to the scaling '�

˛;ˇ
, in order to get m˛;ˇ as a minimax value. The results of this subsection are essentially

known, at least under more restrictions on the nonlinearity and .˛; ˇ/.
We start from the origin of the energy space.
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Lemma 2.1 (Positivity of K near 0). Assume that f satisfies (1-36), and that .˛; ˇ/ satisfies (1-16) and
.d; ˛/ 6D .2; 0/. Then for any bounded sequence 'n 2 H 1.Rd / n f0g such that K

Q

˛;ˇ
.'n/! 0, we have,

for large n,
K˛;ˇ.'n/ > 0: (2-4)

Note that if .d; ˛/ D .2; 0/ the conclusion is false, since in that case KQ.'�/ D edˇ�KQ.'/! 0 as
�! �1, but K.'�/ D edˇ�K.'/ can be negative.

Proof. First we consider the H 1 subcritical/critical cases. If d � 2 then

jDf .'/jC jf .'/j. j'jp1C2
Cj'jp2C2; (2-5)

for some 2? < p1C 2 < p2C 2 � 2?; hence, by the Gagliardo–Nirenberg inequality

k'k
q

L
q
x
. kr'kd.q=2�1/

L2
x

k'k
d�q.d�2/=2

L2
x

.2 � q � 2?/; (2-6)

we obtain
jF.'/jC jLF.'/j .

P
qDp1C2;p2C2

kr'k
d.q=2�1/

L2
x

k'k
d�q.d�2/=2

L2
x

: (2-7)

If d D 1 then we can dispose of fL by Sobolev H 1.R/ � L1.R/. Then we get

jF.'/jC jLF.'/j. kr'kp1=2C1

L2
x

k'k
p1=2C1

L2
x

C.k'kH 1/; (2-8)

for some function C determined by fL.
Hence if 2˛C .d � 2/ˇ > 0 then for any d we have

jKN .'/j D o.kr'k2
L2

x
/ D o.KQ.'//: (2-9)

Under the assumption, 2˛C .d � 2/ˇ D 0 is possible only for d D 1; then, using (2-8),

jKN .'/j D o.k'k2
L2

x
/ D o.KQ.'//: (2-10)

Finally we consider the 2D exponential case (1-29). Then we have

jDf .'/jC jf .'/j. j'jp.e�j'j2 � 1/; (2-11)

for some p > 2 and any � > �0. Since ˛ > 0, we have KQ.'n/& kr'nk
2
L2 ! 0, so it suffices to

consider ' 2 H 1 satisfying, for some q > 1 such that .4�p/q < 2,

q�kr'k2
L2 � 2�: (2-12)

Let q0 D q=.q � 1/ be the Hölder conjugate. Then by Hölder, Gagliardo–Nirenberg (2-6) and the
Trudinger–Moser inequality

kr'kL2.R2/ <
p

4� H)

Z
R2

.ej'j
2

� 1/ dx .
k'k2

L2.R2/

4� �kr'k2
L2.R2/

; (2-13)

we obtain
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jLF.'/jC jF.'/j. k'kp
Lpq0
keq�j'j2

� 1k
1=q

L1 . k'k
2=q0

L2 kr'k
p�2=q0

L2

�
k'k2

L2

4� � q�kr'k2
L2

�1=q

. k'k2
L2kr'k

p�2=q0

L2 :

(2-14)

Since p� 2=q0 > 2 by the choice of q, we get

jKN .'/j D o.kr'k2
L2/ D o.KQ.'//: (2-15)

Thus in all cases K.'/ � KQ.'/ > 0 when 0 < KQ.'/� 1. �
The following inequalities describe the graph of J , and will play the central role in the succeeding

arguments.

Lemma 2.2 (Mountain-pass structure). Assume that f satisfies (1-36) and .˛; ˇ/ satisfies (1-16). Then
for any ' 2 H 1.Rd / we have

.L˛;ˇ � N�/k'k
2
H 1 � �2jˇjmin.k'k2

L2 ; kr'k
2
L2/;

.L˛;ˇ � N�/F.'/ � ˛"F.'/;
(2-16)

where " > 0 is given in (1-21). Hence

. N��L˛;ˇ/J.'/ � ˛"F.'/Cjˇjmin.k'k2
L2 ; kr'k

2
L2/: (2-17)

Moreover we have

�.L˛;ˇ � N�/.L˛;ˇ ��/J.'/ D .L˛;ˇ � N�/.L˛;ˇ ��/F.'/ �
2˛"

d C 1
L˛;ˇF.'/ �

2˛" N�

d C 1
F.'/: (2-18)

Proof. First we observe that

.L� 2˛� .d � 2/ˇ/kr'k2
L2

x
D 0; .L� 2˛� dˇ/k'k2

L2
x
D 0; (2-19)

and for any functional S of the form S.'/ D
R

Rd s.'/ dx,

L˛;ˇS.'/ D

Z
Rd

Œ.˛DCˇd/s�.'/ dx; (2-20)

where Df .'/ D 'f 0.'/ as defined in (1-20). Using this, we obtain

.L� N�/k'k2
H 1 D �2jˇj �

(
kr'k2

L2 .ˇ � 0/;

k'k2
L2 .ˇ � 0/;

(2-21)

and also

LF.'/ D

Z
Œ˛.D� 2/C 2˛C dˇ�f .'/ dx D

Z
Œ.˛D� 2˛C 2ˇ/C 2˛C .d � 2/ˇ�f .'/ dx: (2-22)

Since

˛D� 2˛C 2ˇ D ˛.D� 2?/C
2

d
.2˛C dˇ/; (2-23)

using (1-21), we obtain
LF � . N�C˛"/F: (2-24)
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Using these computations, we have

�.L� N�/.L��/J.'/ D .L� N�/.L��/F.'/

D ˛

Z
.˛D� 2˛C 2ˇ/.D� 2/f .'/ dx

� ˛"

Z h
˛.D� 2/C

2

d
.2˛C dˇ/

i
f .'/ dx

�
2

d C 1
˛"LF.'/ �

2˛" N�

d C 1
F.'/;

(2-25)

where we used (2-23) and (1-21) in the first inequality, min.1; 2=d/ � 2=.d C 1/ in the second, and
(2-24) in the last. �

Using the inequalities above, we can replace the minimized quantity in (1-17) with a positive definite
one, while extending the minimizing region from “the mountain ridge” to “the mountain flank”. Let

H˛;ˇ WD .1�L˛;ˇ= N�/J: (2-26)

Then Lemma 2.2 implies that H˛;ˇ > 0 and

L˛;ˇH˛;ˇ D �.L��/.L� N�/J= N�C�.1�L= N�/J �
2˛"

d C 1
F C�H˛;ˇ � 0: (2-27)

We can rewrite the minimization problem (1-17) by using H :

Lemma 2.3 (Minimization of H ). Assume that f satisfies (1-36) and .˛; ˇ/ satisfies (1-16). Then m˛;ˇ

in (1-17) equals
m˛;ˇ D inffH˛;ˇ.'/ j ' 2 H 1.Rd /; ' 6D 0; K˛;ˇ.'/ � 0g: (2-28)

Proof. Let m0 denote the right side of (2-28). Then m � m0 is trivial because J D H if K D 0, so it
suffices to show m � m0. Take ' 2 H 1 such that K.'/ < 0.

If .d; ˛/ 6D .2; 0/, then from Lemma 2.1 together with (2-3), we deduce that

.d; ˛/ 6D .2; 0/; K.'/ < 0 H) 9� < 0; K.'�/ D 0; H.'�/ � H.'/; (2-29)

where the latter inequality follows from (2-27) since H.'�/ is nondecreasing in �. Hence m � m0.
If .d; ˛/ D .2; 0/, then we use another scaling �u with � 2 .0; 1/. We have KQ.�'/ D �2KQ.'/

and jKN .�'/j D o.�4/ by (2-7) or (2-14). Hence K.�'/ > 0 for small � > 0, and so we deduce

.d; ˛/ D .2; 0/; K.'/ < 0 H) 9� 2 .0; 1/; K.�'/ D 0; H.�'/ � H.'/; (2-30)

where the inequality follows from H.'/ D kr'k2
L2

x

=2 in this case. Hence m � m0. �

The ground state as common minimizer. Now we can prove the parameter independence of m˛;ˇ via
its characterization by the ground states. First we consider the H 1 subcritical case.

Lemma 2.4 (Ground state in the subcritical case). Assume that f satisfies (1-36) and (1-26), and that
.˛; ˇ/ satisfies (1-16). Then m˛;ˇ in (1-17) is positive and independent of .˛; ˇ/. Moreover m˛;ˇD J.Q/

for some Q 2 H 1.Rd / solving the static NLKG (1-39) with the minimal J.Q/ among the solutions in
H 1.Rd /.
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Proof. Let 'n 2 H 1 be a minimizing sequence for (2-28), namely K.'n/ � 0, 'n 6D 0 and H.'n/& m.
First we consider the case .d; ˛/ 6D .2; 0/. Let '�n be the Schwartz symmetrization of 'n, i.e. the radial

decreasing rearrangement. Since the symmetrization preserves the nonlinear parts and does not increase
the PH 1 part, we have '�n 6D 0, K.'�n / � K.'n/ � 0 and H.'n/ � H.'�n /! m. Then using (2-29), we
may replace it by symmetric  n 2 H 1 such that

 n 6D 0; K. n/ D 0; J. n/ D H. n/! m: (2-31)

If ˛ > 0, then (2-17) implies

. N�C˛"/J. n/ � ˛"k nk
2
H 1=2I (2-32)

hence  n is bounded in H 1.
If ˛ D 0 (and d > 2), then H. n/ D kr nk

2

L2
x

=d is bounded, and if k nkL2 !1, then by (2-7)

dˇk nk
2
L2 � 2KQ. n/ D �2KN . n/ � o.k nk

d�2?.d�2/=2

L2 /; (2-33)

but since d � 2?.d � 2/=2 < 2, this is a contradiction. Hence  n is bounded in H 1.
Since  n is bounded in H 1, after replacing with some appropriate subsequence, it converges to some

 weakly in H 1. By the radial symmetry, it also converges strongly in Lp for all 2 < p < 2?. Then in
the subcritical case (1-26), the nonlinear parts converge, and so K. / � 0 and H. / � m.

If  D 0, then K. n/ D 0 implies that KQ. n/ D �KN . n/ ! 0, and by Lemma 2.1 we have
K. n/ > 0 for large n, a contradiction. Hence  6D 0.

By (2-29), we may replace  by its rescaling, so that K. / D 0, J. / D H. / � m and  6D 0.
Then  is a minimizer and m D H. / > 0.

Since  is a minimizer for (1-17), there is a Lagrange multiplier � 2 R such that

J 0. / D �K0. /: (2-34)

Then denoting L D @� 
�
˛;ˇ
j�D0, we get

0 D K. / D LJ. / D hJ 0. / j L i D �hK0. / j L i D �L2J. /: (2-35)

By (2-18) and LJ. / D 0, we have

L2J. / � � N��J. /�
2˛" N�

d C 1
F. / < 0; (2-36)

since � > 0 or ˛ > 0.
Therefore � D 0 and  is a solution to (1-39). The minimality of J. / among the solutions is clear

from (1-17), since every solution Q in H 1 of (1-39) satisfies K.Q/ D hJ 0.Q/ j LQi D 0. This implies
that m˛;ˇ is independent of .˛; ˇ/.

In the exceptional case .d; ˛/ D .2; 0/, the above argument needs considerable modifications, due to
the scaling invariance

H.'/ D kr'k2
L2=2 D H.'�/; K.'�/ D edˇ�K.'/: (2-37)
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First, we should use (2-30) instead of (2-29) to get  n satisfying (2-31). Next, the invariance breaks the
H 1 boundedness of  n. But we are free to replace each  n by its rescaling so that k nkL2 D 1, without
losing its properties (2-31). Then

1 D k nk
2
L2 D 2F. n/! 2F. /;

which clearly implies that the limit  is nonzero. By (2-30), we may replace  by its constant multiple,
so that K. / D 0, J. / D H. / � m and  6D 0. Then  is a minimizer and m D H. / > 0.

Finally, the invariance gives us L2J. / D 0 and the Lagrange multiplier � may be nonzero. In this
case (2-34) is written

�� D .�dˇ� 1/Œ �f 0. /�: (2-38)

Since h�� j  iL2
x
> 0 and

h �f 0. / j  iL2
x
D K0;2=d . /�

Z
.D� 2/f . / dx < 0; (2-39)

we have .�dˇ� 1/ < 0. Hence there exists � > 0 such that  � solves the static NLKG (1-39), and it is
also a minimizer. �

H 1 critical case; massless threshold. In the H 1 critical case (1-28), we still have the .˛; ˇ/ indepen-
dence, but m˛;ˇ is equal to the massless energy of the massless ground state. This is a consequence of
the invariance of the massless energy with respect to the PH 1 scaling.

Lemma 2.5 (Ground state in H 1 critical case). Assume that f satisfies (1-28), and that .˛; ˇ/ satisfies
(1-16). Then m˛;ˇ in (1-17) is positive and independent of .˛; ˇ/. Moreover m˛;ˇ D J .0/.Q/ for some
Q 2 PH 1.Rd / solving the static massless NLKG (1-41), with the minimal J .0/.Q/ among the solutions
in PH 1.Rd /.

Proof. Let Hw and Kw be the massless versions of H and K, respectively. Then

m D mw
WD inf fHw.'/ j ' 2 H 1; Kw.'/ < 0g: (2-40)

Indeed, comparing this expression with (2-28), we easily get m � mw from Hw � H and Kw < K if
2˛Cdˇ > 0. If 2˛Cdˇ D 0, then we may replace K � 0 in (2-28) by K < 0, because for any nonzero
' 2 H 1 satisfying K.'/ � 0, we have by (2-18)

LK.'/ � N�K.'/�
2˛" N�

d C 1
F.'/ < 0; (2-41)

which implies that K.'�/ < 0 for all � > 0, and so the set K < 0 is dense in the minimization set of
(2-28). Hence m � mw in this case too.

To prove m � mw, let

'� D '�d=2�1;�1 (2-42)

denote the PH 1 invariant scaling. Then K.'�/ ! Kw.'/ and H.'�/ ! Hw.'/ as � ! 1. Hence if
Kw.'/ < 0 then K.'�/ < 0 for large �, and so m � mw.
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Due to the PH 1 scale invariance, Kw
˛;ˇ

for all .˛; ˇ/ are constant multiples of the same functional, and
Hw is independent of .˛; ˇ/, so is the minimization for mw. In fact we have

mw
D inffkr'k2

L2=d j ' 2 H 1; kr'k2
L2 < k'k

2?

L2? g: (2-43)

By homogeneity and the scaling ' 7! �', this is equal to

inf
06D'2H 1

1

d
kr'k2

L2

"
kr'k2

L2

k'k2
?

L2?

#d�2
2

D inf
06D'2H 1

1

d

�
kr'kL2

k'kL2?

�d

D
.C ?

S
/�d

d
; (2-44)

where C ?
S

denotes the best constant for the Sobolev inequality

k'kL2? � C ?
Skr'kL2 ; (2-45)

which is well known to be attained by the explicit Q 2 PH 1 given by

Q.x/ D

"
1C

jxj2

d.d � 2/

#�d�2
2

; (2-46)

which solves (1-41). �

Exponential case; mass-modified threshold. In the 2D exponential case (1-29), the conclusion is some-
what intermediate between the above two cases. If C ?

TM.F / � 1 then m˛;ˇ is achieved by a ground state,
but if C ?

TM.F / < 1 then we can still see m˛;ˇ as the energy of a ground state to an equation (1-43) where
the mass is changed to c D min.1;C ?

TM.F // 2 .0; 1/.

Lemma 2.6 (Ground state in the exponential case). Assume that f satisfies (1-36) and (1-29), and that
.˛; ˇ/ satisfies (1-16). Then m˛;ˇ in (1-17) is independent of .˛; ˇ/ and 0 < m˛;ˇ � 2�=�0, where the
second inequality is strict if and only if C ?

TM.F / > 1. Moreover m˛;ˇ D J .c/.Q/ with cDmin.1;C ?
TM.F //

for some Q 2 H 1.R2/ solving the modified static NLKG (1-43) with the minimal J .c/.Q/ among the
solutions in H 1.R2/.

For the proof, we prepare some notations and lemmas. For any functional G on H 1.R2/ and any
A > 0, we introduce the Trudinger–Moser ratio

C A
TM.G/ WD sup

˚
2G.'/k'k�2

L2 j 0 6D ' 2 H 1.R2/; kr'kL2 � A
	
; (2-47)

the Trudinger–Moser threshold on the PH 1 norm:

M.G/ WD supfA > 0 j C A
TM.G/ <1g; (2-48)

and the ratio on the threshold:
C ?

TM.G/ WD C
M.G/

TM .G/: (2-49)

The growth condition (1-29) together with (1-21) implies

M.L˛;ˇF / DM.F / D
p

4�=�0 (2-50)

for any .˛; ˇ/ satisfying (1-16), by the Trudinger–Moser inequality (2-13). Hence the definition of C ?
TM

just given is consistent with (1-30).
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For any functional G of the form G.'/ D
R

g.'/ dx, and for any sequence .'n/n2N 2 H 1.R2/N, we
define its concentration (at x D 0) conc G..'n/n2N/ by

conc G..'n/n2N/ WD lim
"!C0

lim
n!1

Z
jxj<"

g.'n/ dx: (2-51)

We will use the following compactness by dominated convergence.

Lemma 2.7. Let g; h W R! R be continuous functions satisfying

lim
u!˙1

jg.u/j

h.u/
D 0; lim

u!0

jg.u/j

juj2
D 0: (2-52)

Let 'n be a sequence of radial functions, weakly convergent to ' in H 1.R2/ such that fh.'n/gn is
bounded in L1.R2/. Then g.'n/! g.'/ strongly in L1.R2/.

Proof. By assumption (2-52), for any " > 0 there exist ı > 0 such that

juj > 1=.2ı/ or juj < 2ı H) jg.u/j < ".h.u/Cjuj2/: (2-53)

Then we have Z
j'nj>1=.2ı/ or j'nj<2ı

jg.'n/jdx. "
Z

h.'n/Cj'nj
2dx. ": (2-54)

The radial Sobolev inequality kr1=2'nkL1 . k'nk
1=2

L2 kr'nk
1=2

L2 implies that 'n.x/ are uniformly small
for large x. Then the weak convergence together with

'n.R1/�'n.R2/ D

Z R2

R1

@r'n.r/ dr (2-55)

implies that 'n.x/! '.x/ for x 6D 0. Then Fatou’s lemma impliesZ
j'j>1=.2ı/ or j'j<2ı

jg.'/jdx. "; (2-56)

and the dominated convergence theorem implies

kg.ı/.'n/�g.ı/.'/kL1 ! 0 .n!1/; (2-57)

where g.ı/ is defined by g.ı/.u/D .1��ı.u//�1=ı.u/g.u/ using the cut-off defined in (1-23). Combining
(2-54), (2-56) and (2-57), we deduce the desired convergence. �

Proof of Lemma 2.6. We start with the exceptional case .d; ˛/ D .2; 0/. First, let A > 0 and assume
C A

TM.F / > 1. Then there exists 0 6D ' 2H 1 such that kr'kL2 �A and F.'/ > k'k2
L2=2. For small " > 0

we have K0;1..1� "/'/ < 0, and hence m0;1 � kr.1� "/'nk
2
L2=2 < A2=2. Hence m0;1 �M.F /2=2.

Consider the case C ?
TM.F / > 1. Then by choosing A D M.F / in the above argument, we get

m0;1 < M.F /2=2. Now we take a minimizing sequence for m0;1. By the Schwartz symmetrization
and rescalings as in the proof of Lemma 2.4 for .d; ˛/ D .2; 0/, we get a sequence of radial functions
 n 2 H 1 such that

k nkL2 D 1; H0;1. n/! m0;1; K0;1. n/ D 1� 2F. n/ D 0; (2-58)
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and  n !  in H 1. Because of m0;1 < M.F /2=2, we can choose some � 2 .�0; 2�=m0;1/, so that
e�j nj

2

� 1 is bounded in L1 by the Trudinger–Moser inequality (2-13). Then we can use Lemma 2.7
with 'n WD  n, g WD f and h.u/ WD e�juj

2

� 1, which implies F. n/! F. /. Hence  attains m0;1.
After appropriate rescalings, we obtain a ground state Q, as in the proof of Lemma 2.4.

Next consider the case C ?
TM.F / � 1. Then for any  2 H 1 satisfying kr kL2 � M.F / we have

K0;1. / � 0. Hence

m0;1 D inffkr'k2
L2=2 j K0;1.'/ < 0g �M.F /2=2; (2-59)

and so m0;1 DM.F /2=2. Now we show that there exists ' 2 H 1 satisfying

kr'kL2 DM.F /; F.'/ D C ?
TM.F /=2; k'kL2 D 1: (2-60)

After rescaling this ', we obtain a ground state Q. However, due to the criticality, we have to approximate
the problem by a subcritical one, namely we first prove the existence of 'n 2 H 1 satisfying

kr'nkL2 �M.F /�
1

n
; F.'n/ D cn=2; k'nkL2 D 1 (2-61)

where cn WDC
M.F /� 1

n
TM .F /; then 0< cn%C ?

TM.F /� 1. Fix n� 1 and let 'k 2H 1.R2/ be a maximizing
sequence for cn (see (2-47)):

kr'k
kL2 �M.F /�

1

n
; F.'k/% cn=2; k'

k
kL2 D 1; (2-62)

where the L2 norm is normalized by the rescaling '�
0;1

. The Schwartz symmetrization enables us to
assume that 'k are radial functions, and convergent to some 'n weakly in H 1, by extracting a subse-
quence. Moreover, we have F.'k/! F.'n/ D cn=2, by Lemma 2.7 with g WD f and h D e�juj

2

� 1

for some � 2 .�0; 4�=.M.F /� 1=n/2/.
Thus 'n is a maximizer, which implies that k'nkL2 D 1 and

���'n D f
0.'n/� cn'n; (2-63)

for a Lagrange multiplier �.n/ 2 R. Multiplying it with 'n, we obtain

�kr'nk
2
L2 D

Z
Df .'n/ dx� cnk'nk

2
L2 D

Z
.D� 2/f .'n/ dx > 0; (2-64)

since .D� 2/f > 0. Hence � > 0, and so Qn.x/ WD 'n.�
1=2x/ 2 H 1 satisfies

krQnkL2 �M.F /�
1

n
; ��QnC cnQn D f

0.Qn/: (2-65)

Now consider the limit n!1. The equation for Qn implies that 0 D K
.cn/
0;1

.Qn/ D K
.cn/
1;�1

.Qn/, so

cnkQnk
2
L2 D 2F.Qn/; krQnk

2
L2 D 2

Z
.D� 2/f .Qn/ dx � 4F.Qn/; (2-66)

where the last inequality follows from .D � 4/f � 0. Since krQnkL2 is bounded and cn is positive
non-decreasing, we deduce that kQnkL2 and

R
Df .Qn/ dx are bounded as n ! 1. Hence we may
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extract a subsequence so that Qn converges to some Q weakly in H 1, and then apply Lemma 2.7 with
'n WD Qn, g D f 0 and h WD Df . Then f 0.Qn/! f 0.Q/ strongly in L1, and so Q solves

��QC cQ D f 0.Q/; c WD C ?
TM.F /: (2-67)

This implies that

K
.c/
0;1
.Q/ D hJ .c/

0
.Q/ j L0;1Qi D 0; (2-68)

namely 2F.Q/D ckQk2
L2 . Hence Q is a maximizer for C

M.F /
TM .F /with a non-zero Lagrange multiplier,

which implies that krQkL2 DM.F /. Thus J .c/.Q/DM.F /2=2 is unique for any solution Q of (2-67).
Next we consider m˛;ˇ with ˛ > 0. If m0;1 < M.F /2=2, then there exists a ground state Q, which

satisfies K˛;ˇ.Q/ D 0 for all .˛; ˇ/. Hence m˛;ˇ � J.Q/ D m0;1.
Otherwise, m0;1 DM.F /2=2DM.LF /2=2. For any A >M.LF /, there exists a sequence 'n 2H 1

satisfying

kr'nkL2 � A; k'nkL2 ! 0; LF.'n/!1: (2-69)

Since K.'/ D ˛kr'k2
L2 C .˛Cˇ/k'k

2
L2 �LF.'/ and ˛ > 0, we can replace each 'n with 'n.x=�n/

with some �n !C0, so that we have after the rescaling

kr'nkL2 � A; K.'n/ D 0; k'nkL2 ! 0: (2-70)

Hence

m˛;ˇ � lim
n!1

J.'n/ � A2=2;

and so m˛;ˇ �M.LF /2=2 D m0;1. Thus in both cases we have m˛;ˇ � m0;1 �M.F /2=2.
Now suppose that m˛;ˇ < m0;1 �M.F /2=2. As in the proof of Lemma 2.4 for .d; ˛/ 6D .2; 0/, we

may find a sequence of radial 'n 2 H 1 such that

K.'n/ D 0; H.'n/& m: (2-71)

Therefore there exists ' such that 'n ! ' weakly in H 1, and pointwise for x 6D 0.
Let  n D 'n�'. Then  n ! 0 weakly in H 1, and so

lim
n!1

KQ.'n/ D lim
n!1

KQ. n/CKQ.'/ D lim
n!1

LF.'n/ D conc LF..'n/n/CLF.'/; (2-72)

where the second identity is because K.'n/D 0, and the last one follows from 'n.x/! '.x/ for x 6D 0

and the radial Sobolev inequality kr1=2'nkL1 . k'nkH 1 . Since H.'/ � m by Fatou’s lemma, we have
K.'/ � 0, otherwise there would be some � < 0 such that K.'�/ D 0 and H.'�/ < H.'/ � m, a
contradiction. Thus KQ.'/ � LF.'/, and so from (2-72), we deduce

lim
n!1

KQ. n/ � conc LF..'n/n/: (2-73)

Since LF.'n/ is bounded by (2-72), Lemma 2.7 with hn WD .˛DCˇd/f implies that conc F..'n/n/D

0. Hence by (2-73) and .L� N�/F � 0, we get

lim
n!1

KQ. n/ � conc.L� N�/F..'n/n/ � lim
n!1

.L� N�/F.'n/: (2-74)
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On the other hand we have

m D lim
n!1

H.'n/ D lim
n!1

H Q. n/CH Q.'/C lim
n!1

.L� N�/F.'n/= N�; (2-75)

where H Q. / WD .1�L= N�/k k2
H 1=2 denotes the quadratic part of H . Combining the above two, and

discarding H Q.'/ � 0, we obtain

lim
n!1

k nk
2
H 1=2 � m < M.F /2=2 D 2�=�0: (2-76)

Hence applying Lemma 2.7 to 'n with h.u/ WD e�juj
2

�1 for some � 2 .�0; 2�=m/, we get LF.'n/!

LF.'/, and so ' is a minimizer for m˛;ˇ. Indeed, we have

e�j'nj
2

� 1 � eC�;�0 j'j
2

� 1C e�
0j nj

2

� 1 (2-77)

for some �0 2 .�; 2�=m/ and constant C�;�0 > 0. Hence h.'n/ is uniformly bounded in L1. Recall that
for a fixed ' 2 H 1, eC�;�0 j'j

2

� 1 2 L1.
Then as in the proof of Lemma 2.4, we obtain a ground state Q with J.Q/ D m˛;ˇ < m0;1, which is

a contradiction since K0;1.Q/ D 0. Hence m˛;ˇ D m0;1 for all .˛; ˇ/ in the range (1-16). �
Remark 2.8. In the above argument for .˛; ˇ/D .0; 1/ in the case C ?

TM.F / � 1, we used a priori bounds
on the ground state to get the compactness. For general sequences, we can have concentrating loss of
compactness on the kinetic threshold kr'kL2 DM.F / if and only if f satisfies

lim
juj!1

e��0juj
2

juj2f .u/ 2 .0;1/: (2-78)

Lemma 2.6 implies that the concentration requires more energy than the (mass-modified) ground state.
Similar phenomena have been observed in slightly different settings (either on a bounded domain or on the
H 1.R2/ threshold, where e�0juj

2

appears as the critical growth instead of e�0juj
2

=juj2, see [Carleson and
Chang 1986; Flucher 1992; Ruf 2005]). More details about this issue, including the above concentration
compactness, will be addressed in a forthcoming paper.

Parameter independence of the splitting. The .˛; ˇ/-independence of K˙˛;ˇ follows from that of m˛;ˇ

and contractivity of KC
˛;ˇ

.

Lemma 2.9 (Parameter independence of K˙). Assume that f satisfies (1-36), and that .˛; ˇ/ satisfies
(1-16). Then K˙˛;ˇ in (1-18) are independent of .˛; ˇ/.

Proof. Since m˛;ˇ is independent of .˛; ˇ/, we only need to see that the sign of K is independent under
the threshold m. Also, we may restrict to the first component. For any ı � 0, we define K˙ı˛;ˇ � H 1 by

KCı˛;ˇ D f' 2 H 1
j J.'/ < m� ı; K˛;ˇ.'/ � 0g;

K�ı˛;ˇ D f' 2 H 1
j J.'/ < m� ı; K˛;ˇ.'/ < 0g:

(2-79)

Then .u0;u1/ 2 K˙˛;ˇ if and only if u0 2 K˙ı˛;ˇ with ı D ku1k
2
L2=2. In addition, the disjoint union

KCı˛;ˇ [K�ı˛;ˇ is already independent of ˛ and ˇ. Hence it suffices to show the independence of KCı˛;ˇ.
First we consider the interior exponents satisfying 2˛C dˇ > 0 and 2˛C .d � 2/ˇ > 0. Then KCı˛;ˇ

is contracted to f0g by the rescaling ' 7! '� with 0 � �! �1. This is due to the following facts:
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(1) K.'�/ > 0 is preserved as long as J.'�/ < m, by the definition of m.

(2) J.'�/ does not increase as � decreases, as long as LJ.'�/ D K.'�/ > 0.

(3) '� ! 0 in H 1 as �! �1, since 2˛C dˇ > 0 and 2˛C .d � 2/ˇ > 0.

In particular, J cannot be negative on KC˛;ˇ , and so KCı˛;ˇ D ∅ for ı � m. For 0 � ı < m, both K˙ı˛;ˇ
are open in H 1. It follows for K�ı from the definition, and for KCı from the facts that J.'/ < m and
K.'/ D 0 imply ' D 0, and that a neighborhood of 0 is contained in KCı, which follows from (2-7),
(2-8) or (2-14). Then the above argument of the scaling contraction shows that KCı˛;ˇ is connected. Hence
each KCı˛;ˇ cannot be separated by KCı˛0;ˇ0 and K�ı˛0;ˇ0 with any other .˛0; ˇ0/ in the interior range. Since
KCı˛;ˇ \KCı˛0;ˇ0 contains 0, we conclude that KCı˛;ˇ D KCı˛0;ˇ0 .

Finally for .˛; ˇ/ on the boundary 2˛C dˇ D 0 or 2˛C .d � 2/ˇ D 0, take a sequence .˛n; ˇn/ in
the interior converging to .˛; ˇ/. Then K˛n;ˇn

! K˛;ˇ, and so

K˙ı˛;ˇ �
[
n

K˙ı˛n;ˇn
: (2-80)

Since the right side is independent of the parameter, so is the left. �

Variational estimates. We conclude this section with a few estimates on the energy-type functionals,
which will be important in the proof of the blow-up and the scattering. We start with the easy observation
that the free energy and the nonlinear energy are equivalent in the set KC.

Lemma 2.10 (Free energy equivalence in KC). Assume that f satisfies (1-36). Then for any .u0;u1/ 2

H 1.Rd /�L2.Rd / we have

K1;0.u0/ � 0 H)

(
J.u0/ � ku0k

2

H 1
x

=2 � .1C d=2/J.u0/;

E.u0;u1/ � EQ.u0;u1/ � .1C d=2/E.u0;u1/:
(2-81)

Proof. Since .D� 2� c/f .u/ � 0 with c WD 4=d > 0 by (1-21), we have for any .u0;u1/ 2 H 1�L2,

K1;0.u0/ D ku0k
2

H 1
x
� .2C c/F.u0/�

Z
.D� 2� c/f .u0/dx

� .2C c/J.u0/� cku0k
2

H 1
x
=2 D .2C c/E.u0;u1/� cEQ.u0;u1/�k Puk

2

L2
x
;

(2-82)

and hence we obtain the desired estimate. �

In the 2D exponential case, we have a sharper bound on the derivatives, which implies that KC is in
the subcritical regime for the Trudinger–Moser inequality.

Lemma 2.11 (Subcritical bound in KC in the 2D exponential case). Assume that f satisfies (1-36) and
(1-29). Then for any .u0;u1/ 2 KC we have

kru0k
2
L2 Cku1k

2
L2 < 2m �M.F /2 D 4�=�0: (2-83)

Proof. Since K0;1.u0/ � 0, we have

kru0k
2
L2 Cku1k

2
L2 � kru0k

2
L2 Cku1k

2
L2 CK0;1.u0/ D 2E.u0;u1/ < 2m: �
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The next estimate gives a lower bound on jKj under the threshold m, which will be important both
for the blow-up and for the scattering.

Lemma 2.12 (Uniform bounds on K). Assume that f satisfies (1-21), and that .˛; ˇ/ satisfies (1-16)
and .d; ˛/ 6D .2; 0/. Then there exists ı > 0 determined by .˛; ˇ/, d and " in (1-21), such that for any
' 2 H 1 with J.'/ < m we have

K˛;ˇ.'/ � min. N�.m�J.'//; ıK
Q

˛;ˇ
.'// or K˛;ˇ.'/ � � N�.m�J.'//: (2-84)

Note that if .d; ˛/ D .2; 0/ then the conclusion is false, since in that case

K.'�˛;ˇ/ D edˇ�K.'/! 0 as �! �1; (2-85)

while J.'�/ is away from m, since it is decreasing if K.'/ > 0 and J.'�/% H.'/ < m if K.'/ < 0.

Proof. We may assume ' 6D 0. Let j .�/ D J.'�/ and n.�/ D F.'�/, where '�
˛;ˇ
D '� is the rescaling

(1-13). Then j .0/ D J.'/ and j 0.0/ D K.'/, and (2-18) implies

j 00 � . N�C�/j 0� N��j �
2˛"

d C 1
n0: (2-86)

First we consider the case K.'/ < 0. By Lemma 2.1 together with (2-3), there exists �0 < 0 such
that j 0.�/ < 0 for �0 < � � 0 and j 0.�0/ D 0. For �0 � � � 0 we have from (2-16),

. N�C�/j 0� N��j � N�j 0: (2-87)

Inserting this in (2-86) and integrating it, we getZ 0

�0

j 00.�/ d� � N�

Z 0

�0

j 0.�/ d�; (2-88)

and hence
K.'/ D j 0.0/ � N�.j .0/� j .�0//: (2-89)

Since K.'�0/ D 0 and '�0 6D 0, we have j .�0/ D J.'�0/ � m. Thus we obtain

K.'/ � � N�.m�J.'//: (2-90)

Next we consider the case K.'/ > 0. If

.2 N�C�/K.'/ � N��J.'/C
2˛"

d C 1
LF.'/; (2-91)

then applying (2-81) to the first term on the right-hand side, and K D KQ�LF to the second one, we
get �

2 N�C�C
2˛"

d C 1

�
K.'/ �

N��

2C d
k'k2

H 1 C
2˛"

d C 1
KQ.'/; (2-92)

and so K.'/ � ıKQ.'/ for some ı > 0, since � > 0 or ˛ > 0. If (2-91) fails, then

.2 N�C�/j 0 < N��j C
2˛"

d C 1
n0; (2-93)



426 SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

at � D 0, and so from (2-86),
j 00 < � N�j 0: (2-94)

Now let � increase. As long as (2-93) holds and j 0 > 0, we have j 00 < 0 and so j 0 decreases and j

increases. Also by (2-18) and (2-16) we have

n00 � . N�C�/n0� N��n � N�n0 � N�2n > 0: (2-95)

Hence (2-93) is preserved until j 0 reaches 0. It does reach at finite �0 > 0, because the right-hand side
of (2-86) is negative and decreasing as long as j 0 > 0. Now integrating (2-94) we obtain

K.'/ D j 0.0/ � N�.j .�0/� j .0// � N�.m�J.'//; (2-96)

where we used that J.'�0/ � m which follows from K.'�0/ D 0 and '�0 6D 0. �

3. Blow-up

Here we prove the blow-up part of Theorem 1.1. The idea is essentially due to Payne and Sattinger
[1975], but we give a full proof for convenience. We will use that K� is stable under the flow.

Assume for a contradiction that a solution u exists for all t > 0. (The proof for t < 0 is the same.)
Let

y.t/ WD ku.t;x/k2
L2

x.Rd /
: (3-1)

Multiplying the equation with u, and using (2-82), we get

Ry D 2k Puk2
L2 � 2K1;0.u/ � .4C c/k Puk2

L2 � 2.2C c/E.u/C ckuk2
H 1 ; (3-2)

for some c > 0. Sine u.t/ 2 K�, Lemma 2.12 implies that there is some positive ı � �K1;0.u.t//. Thus
for all t > 0 we have

Ry.t/ � 2ı > 0; (3-3)

and so y.t/ D ku.t/k2
L2 !1 as t !1. Going back to (3-2), and using Schwarz, we deduce that for

large t

Ry � .4C c/k Puk2
L2 >

4C c

4

Py2

y
; (3-4)

therefore

.y�c=4/t t D �
c

4
y�c=4�2

�
y Ry �

4C c

4
Py2

�
< 0; (3-5)

which contradicts that y !1.

4. Global space-time norm

In this section we introduce Strichartz-type estimates and a perturbation lemma for global space-time
bounds of the solution.

The inhomogeneity of the Klein–Gordon equation makes the exponents a bit more complicated than
the case of wave or Schrödinger equation. In the H 1 critical case, we get another complication in higher
dimensions, due to the fact that we have to estimate the difference of solutions in some Sobolev (or
Besov) spaces with positive regularity but the nonlinearity is not twice differentiable.2 This is not a

2The problem is not in the local regularity of the nonlinearity (at u D 0), but rather in the global Hölder continuity for fL.
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problem in the subcritical case, where we are allowed to lose small regularity, so that we can estimate
the difference in some Lp spaces and then interpolate. This technical issue was solved in the pure
critical case in [Nakanishi 1999a] by using space-time norms with exponents away from the admissible
region for the standard Strichartz estimate, which was later called “exotic Strichartz estimates” in the
Schrödinger case [Tao and Visan 2005].

Here we have a further complication by the presence of lower powers, for which we need the exotic
Strichartz for the Klein–Gordon equation. Note that it is not a big trouble in the Schrödinger case (see
[Tao et al. 2007]), because the same Strichartz estimate is used both for higher and lower powers. In
the Klein–Gordon case, in contrast, we have to use different Strichartz norms, with better regularity for
higher powers and with better decay for lower powers. It is easy in the standard Strichartz estimate,
where we can freely mix different norms by the duality argument, but this does not work for the exotic
Strichartz estimate, which uses exponents away from the duality. Hence we are forced to use a common
exponent for different powers, which makes our estimates much more involved. In particular, when we
have both the H 1 critical and the L2 critical powers, we need three steps to close our estimates.

Reduction to a first-order equation. To simplify the notation, we rewrite NLKG as a first-order equation.
To any real-valued function u.t;x/, we associate a complex-valued3 function Eu.t;x/ thus:

Eu D hriu� i Pu; u D hri�1 Re Eu: (4-1)

This relation u$ Eu will be assumed for any space-time function u throughout this paper. The free and
nonlinear Klein–Gordon equations are given by

.�C 1/u D 0
�
equivalently; .i@t Chri/Eu D 0

�
;

.�C 1/u D f 0.u/
�
equivalently; .i@t Chri/Eu D f

0.hri�1 Re Eu/
�
;

(4-2)

and the free energy is given by EQ.u/ D kEuk2
L2

x

=2. We set

zE.'/ WD k'k2
L2

x
=2�F.hri�1 Re'/; zK˛;ˇ.'/ WD K

Q

˛;ˇ
.hri�1'/CKN

˛;ˇ.hri
�1 Re'/: (4-3)

Remark that
zE.Eu.t// D E.uI t/; zK.Eu.t// � K.u.t//; (4-4)

where the inequality is an equality if and only if Pu.t/ D 0. The invariant set KC D KC˛;ˇ for Eu is given
by

zKC WD f' 2 L2.Rd / j zE.'/ < m; K.Rehri�1'/ � 0g

D f' 2 L2.Rd / j zE.'/ < m; zK.'/ � 0g:
(4-5)

The second identity is proved as follows. Let ' 2 L2.Rd / satisfy zE.'/ < m and K.Rehri�1'/ < 0.
Let  1 D Rehri�1' and  2 D Imhri�1'. Then Lemma 2.12 implies that

K. 1/ � � N�.m�J. 1// < � N�k 2k
2

H 1
x
=2 � �KQ. 2/; (4-6)

3We do not need the complex structure; we use i purely for notational convenience, and could use vector notation instead,
especially if u is originally complex-valued. We chose the complex form rather than the vector one to avoid adding a subscript,
for this notation will be applied mostly to sequences.
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so zK.'/DK. 1/CKQ. 2/ < 0. Hence under the condition zE.'/ <m, the signs of K. 1/ and zK.'/
are the same, which proves (4-5).

Strichartz-type estimates and exponents. Here we recall the Strichartz estimate for the free Klein–
Gordon equation, introducing some notation for the space-time norms and special exponents.

With any triplet .b; c; �/ 2 Œ0; 1�2�R and any q 2 .0;1�, we associate the following Banach function
spaces on I �Rd for any interval I :

Œ.b; c; �/�q.I/ WD L
1=b
t .I IB�1=c;q.R

d //;

Œ.b; c; �/�0.I/ WD L
1=b
t .I IL1=c.Rd //;

Œ.b; c; �/��q.I/ WD L
1=b
t .I I PB�1=c;q.R

d //;

(4-7)

where Bs
p;q and PBs

p;q respectively denote the inhomogeneous and homogeneous Besov spaces, and the
following characteristic numbers with a parameter � 2 Œ0; 1�:

reg� .b; c; �/ WD � � .1� 2�=d/b� d.c � 1
2
/;

str� .b; c; �/ WD 2bC .d � 1C �/.c � 1
2
/;

dec� .b; c; �/ WD bC .d � 1C �/.c � 1
2
/:

(4-8)

The cases � D 0; 1 correspond respectively to the wave and the Klein–Gordon equations. reg� indicates
the regularity of the space, while str� and dec� indicate the space-time decay, corresponding respectively
to the Strichartz and the Lp �Lq decay estimates. We denote the regularity change and the duality in
H s�1=2 (here �1

2
takes account of one regularity gain in the wave equation) respectively by

.b; c; �/s WD .b; c; s/; .b; c; �/�.s/ WD .1� b; 1� c;�� C 2s� 1/: (4-9)

Given a real number s, we say that Z D .Z1;Z2;Z3/ is Strichartz s-admissible if for some � 2 Œ0; 1�
we have

0 � Z1 �
1
2
; 0 � Z2 <

1
2
; reg� .Z/ � s; str� .Z/ � 0: (4-10)

We avoid the endpoint Z2 D
1
2

to mix different � ’s. We now state the Strichartz estimates:

Lemma 4.1 (see [Brenner 1984; Ginibre and Velo 1985a; Machihara et al. 2002]). For any s 2 R, let Z

and T be s-admissible. Then for any space-time function u.t;x/, any interval I � R, and any t0 2 I ,
we have

kukŒZ �2.I /. ku.t0/kH s CkPu.t0/kH s�1 CkRu��uCukŒT �.s/�2.I /; (4-11)

where the implicit constant does not depend on I or t0.

The “exotic Strichartz estimate” is given for the Klein–Gordon equation by

Lemma 4.2. Let Z;T 2 R3 satisfy for some � 2 Œ0; 1�

reg� .Z/ � reg� .T /C 2; str� .Z/ � str� .T /� 2; 0 < Z1;T1 < 1;

dec� .Z/ < 0 < dec� .T /� 1; 0 <
1

2
�Z2;T2�

1

2
<

1

d�1C�
:

(4-12)
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Then, for any interval I � R, t0 2 I , and u.t;x/ satisfying u.t0/ D Pu.t0/ D 0,

kukŒZ �2.I /. k Ru��uCukŒT �2.I /: (4-13)

Proof. The wave case � D 0 was essentially proved in [Nakanishi 1999a, Lemma 7.4], where the
borderline case str0.Z/ D str0.T / � 2 was excluded for the real interpolation to improve the Besov
exponent 2. Here we discard that improvement, restoring the borderline case, which is needed for the
lower critical power p1 D 4=d .

The proof is rather immediate from the standard Strichartz estimate and the Lp decay estimate. Indeed,
if str� .Z/ D 0 D str� .T / � 2 and reg� .Z/ D reg� .T / C 2, then the above estimate is nothing but
Strichartz. If moreover Z2 C T2 D 1, then the estimate directly follows from the Lp decay and the
Hardy–Littlewood–Sobolev inequalityZ t

t0

hri
�1e˙i.t�s/hrih.s/ ds


ŒZ �2.I /

.
Z t

t0

jt � sj�2Z1kh.s/k
B

T3
1=T2;2

ds


L1=T1 .I /

. khkŒT �2.I /: (4-14)

This estimate can be translated in the time and the regularity exponents as

Z 7! Z0 D ZC .b; 0; s/; T 7! T 0 D T C .b; 0; s/ (4-15)

for any s 2 R and b 2 .�1=2; 1=2/, as long as 0 < Z0
1
;T 0

1
< 1. By the complex interpolation for those

estimates and the standard Strichartz estimate, we obtain the desired estimate in the case str� .Z/ D
str� .T /� 2 and reg� .Z/ D reg� .T /C 2. It is extended to the remaining cases (with inequality in these
relations) by the Sobolev embedding. �

The following interpolation is convenient for switching from some exponents to others:

Lemma 4.3. Let Z;A;B;C 2 Œ0; 1��R and � 2 Œ0; 1�. Assume that A1 < Z1 < B1 and that either

(1) min.str� .A/; str� .B/; str� .C // � str� .Z/ and min.reg� .A/; reg� .B// > reg� .Z/, or

(2) min.str� .A/; str� .B// > str� .Z/ and min.reg� .A/; reg� .B/; reg� .C // � reg� .Z/.

Then there exist ˛; ˇ;  2 .0; 1/ such that ˛ C ˇ C  D 1 and that, for all q 2 .0;1�, we have the
interpolation inequality

kukŒZ �q . kuk
˛
ŒA�1
kuk

ˇ

ŒB�1
kuk



ŒC �1
: (4-16)

Proof. Since A1 < Z1 < B1, for any 0 < �2 � 1 there exists �1 2 .0; 1/ such that

.1� �2/..1� �1/A1C �1B1/C �2C1 D Z1: (4-17)

Let zZ WD .1� �2/..1� �1/AC �1B/C �2C . Then from the assumption we have

str� . zZ/ � str� .Z/; reg� . zZ/ � reg� .Z/; (4-18)

which imply zZ2 �Z2 and zZ3�d zZ2 �Z3�dZ2, and so we have the Sobolev embedding Œ zZ�q � ŒZ�q .
In the first case, we have reg� . zZ/ > reg� .Z/ and so�

Œ ŒA�1; ŒB�1��1
; ŒC �1

�
�2
D Œ zZ�1 � ŒZ�q: (4-19)
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The desired inequality follows from that for the complex interpolation.
It remains to prove the result under condition (2). By the real interpolation in the Besov space in x

and Hölder in t , we have for all 0 < ı � 1,

kukŒZ �q . kuk
1=2

ŒZC�1
kuk

1=2

ŒZ��1
; Z˙ WD Z˙ ı.1; 0; 1� 2�=d/: (4-20)

Let 0 < "� 1 satisfy ".B1�A1/.1� �2/ D ı and

zZ˙ WD .1� �2/..1� �1� "/AC .�1˙ "/B/C �2C: (4-21)

Then from the assumption and the definition of Z˙ and ", we have

str� . zZ˙/ > str� .Z˙/; reg� . zZ˙/ � reg� .Z˙/ D reg� .Z/; (4-22)

when " > 0 is small. Hence we have the Sobolev embedding�
Œ ŒA�1; ŒB�1��1˙"; ŒC �1

�
�2
D Œ zZ˙�1 � ŒZ

˙�1; (4-23)

where the left-hand side is a nested complex interpolation space. Now the conclusion follows from the
interpolation inequality. �

Global perturbation of Strichartz norms. Now we fix a few particular exponents. Define H;W;K by

H WD
�
0;

1

2
; 1
�
; W WD

�
d�1

2.dC1/
;W1;

1

2

�
; K WD

�
d

2.dC2/
;K1;

1

2

�
: (4-24)

Then ŒH �2 D L1t H 1
x is the energy space, while W and K are 1-admissible, diagonal and boundary

exponents respectively for the wave (� D 0) and the Klein–Gordon (� D 1) equations:

1 D reg0.H / D reg1.H / D reg0.W / D reg1.K/;

0 D str0.H / D str1.H / D str0.W / D str1.K/:
(4-25)

Let eq.u/ denote the left-hand side of NLKG:

eq.u/ WD ut t ��uCu�f 0.u/: (4-26)

Recall the convention u$ Eu (page 427) to switch to first-order equations. We will treat the H 1 critical
case (1-28) together with the subcritical case. Since fS .u/ is for small juj and fL.u/ for large juj, we
may freely lower p1 in (1-25) and raise p2 in (1-26). Hence we assume (1-25) with

2?� 2 D
4

d
< p1 <

4.d C 1/

.d C 2/.d � 1/
; (4-27)

and we assume either d D 1, (1-29), or (1-26), with

4.d C 1/

d2� d � 1
< p2 � 2?� 2: (4-28)

Before the main perturbation lemma, we see that ŒH �2 \ ŒW �2 \ ŒK�2 is enough to bound the full
Strichartz norms of the solutions.
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Lemma 4.4. Assume that f satisfies (1-36). Let Z, T and U be 1-admissible. In the 2D exponential case
(1-29), let‚ 2 .0; 1/. Then there exist a constant C1 > 0 and a continuous function C2 W .0;1/! .0;1/

such that for any interval I , any t0 2 I and any w.t;x/, we have

kwkŒZ �2.I / � C1k Ew.t0/kL2
x
CC1keq.w/k.ŒT �.1/�2CŒU�.1/�2/.I /CC2.kwk.ŒH �2\ŒW �2\ŒK �2/.I //; (4-29)

provided, in the exponential case, that

sup
t2I

�0krwk
2

L2
x
� 4�‚: (4-30)

We remark that (4-30) is needed only in the exponential case.

Proof. We may assume ‚ > 1
2

without losing any generality. We introduce the new exponents M ] and
X by

M ]
WD

2

p2.d C 1/
.1; 1; 0/; X WD .�; 0; � � �2/; (4-31)

with some � 2 .0; 1=10/ satisfying ‚ < .1� �/2, where M ] is used only if d � 2 and X only in the
exponential case. In either case we have

0 > str0.M ]/; 0 > str0.X /; 1 � reg0.M ]/; 1 > reg0.X /; 0 < M
]
1
;X1 < W1: (4-32)

Hence by Lemma 4.3(1), we have

kwkŒM ]�2.I /
CkwkŒX �2.I /. kwk.ŒH �2\ŒW �2\ŒK �2/.I /: (4-33)

The Strichartz estimate gives

kwkŒZ �2.I /

. k Ew.t0/kL2
x
Ckeq.w/k.ŒT �.1/�2CŒU�.1/�2/.I /Ckf

0.w/k.ŒK�.1/�2CŒW �.1/�2CL1
t L2

x/.I /
: (4-34)

By the standard nonlinear estimate we have

kf 0S .w/kŒK�.1/�2.I /. kwkŒK �2.I /kwk
4=d

ŒK �0.I /
; (4-35)

and in the subcritical/critical cases

kf 0L.w/kŒW �.1/�2.I /. kwkŒW �2.I /kwk
p2

ŒM ]�0.I /
: (4-36)

In the exponential case, there are � > �0 and � > 0 such that

sup
t2I

�kwk2
H 1
�
� 4�‚0; (4-37)

where ‚0 WD 1C‚

2
< 1 and

k'kH 1
�
WD kr'k2

L2
x
C�k'k2

L2
x
: (4-38)

Then we have

kf 0L.w/kL2
x
. kjwj.e�jwj2 � 1/kL2

x
. kwkL1x ke

�jwj2
� 1k

1=2

L1
x

ke�jwj
2

k
1=2

L1x
; (4-39)
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where the second factor is bounded by Trudinger–Moser:

ke�jwj
2

� 1kL1
x
. kwk2

L2=.1�‚
0/; (4-40)

and the third factor is bounded by the following log-interpolation inequality [Ibrahim et al. 2007, Theorem
1.3]: for any ˛ 2 .0; 1/, � > 1=.2�˛/ and � > 0, there is C > 0 such that

k'k2
L1.R2/

� �k'k2
H 1
�.R2/

�
C C log.1Ck'kC˛.R2/=k'kH 1

�.R2//
�
; (4-41)

for any ' 2H 1\C ˛.R2/, where C ˛ DB˛1;1 denotes the Hölder space. Plugging this with ˛ WD ���2

into the exponential, we get

ke�jwj
2

kL1x .
�
1CkwkC˛x =kwkH 1

�

���kwk2
H 1
� .

�
1C �kwk2C˛x

=‚0
�2��‚0

; (4-42)

where � > 0 is chosen so that

1 < 2��˛; .2��‚0C 1/� D 1: (4-43)

Since fL vanishes for small juj, we may assume kwkC˛x & kwkL1x & 1. Hence

ke�jwj
2

kL1x . kwk
4��‚0

C˛x
D kwk

2.1=��1/

C˛x
; (4-44)

and plugging this into (4-39), we get

kf 0L.w/kL1
t L2

x
. kwk

L
1=�
t L1x

kwkL1t L2
x
kwk

1=��1

L
1=�
t C˛x

. kwk1=�
ŒX �2
kwkŒH �2 ; (4-45)

which concludes the proof. �
Lemma 4.5. Assume that f satisfies (1-36). Let Z, T , U and V be 1-admissible and reg0.V / D 1.
In the exponential case (1-29), let ‚ 2 .0; 1/. Then there are continuous functions "0;C0 W .0;1/

2 !

.0;1/ such that the following holds: Let I � R be an interval, t0 2 I and Eu; Ew 2 C.I IL2.Rd //. Let
E0 D eihri.t�t0/.Eu� Ew/.t0/ and assume that for some A;B > 0 we have

kEukL1t .I IL
2
x/
Ck EwkL1t .I IL

2
x/
� A; (4-46)

kwkŒW �2.I /\ŒK �2.I / � B; (4-47)

k.eq.u/; eq.w//k.ŒT �.1/�2CŒU�.1/�2/.I /Ck0kŒV �1.I / � "0.A;B/; (4-48)

and in the exponential case,

sup
t2I

�0 max.kruk2
L2

x
; krwk2

L2
x
/ � 4�‚: (4-49)

Then we have
kukŒZ �2.I / � C0.A;B/: (4-50)

Remark 4.6. (4-49) is needed only in the exponential case. The lemma remains valid in the lower critical
case p1 D 4=d D 2?� 2, if we assume in addition that

k0kŒK �0.I / � "0.A;B/: (4-51)

We will indicate the necessary modifications in the proof.
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Proof of Lemma 4.5. We restrict p1;p2 as in (4-27) and (4-28), without losing any generality. In the
following, C. � ; : : : / denotes arbitrary positive constants which may depend continuously on the indicated
parameters. Let ı 2 .0; 1/ be a fixed small number, whose smallness will be specified by the following
arguments. Let

e WD eq.u/� eq.w/;  WD u�w: (4-52)

Then we have the equation for the difference

R �� C  D f 0.wC  /�f 0.w/� e; E .t0/ D E0.t0/: (4-53)

First note that by Lemma 4.4, we have the full Strichartz norms on w.
Next we estimate the difference u�w in the easier case d � 4. We define new exponents S;L and a

space X by
ŒS �0 WD L

p1C1
t L2.p1C1/

x ; ŒL�0 WD L
p2C1
t L2.p2C1/

x ;

X WD

8̂<̂
:
ŒS �0 .d D 1/

ŒS �0\ ŒX �2 .1-29/;

ŒS �0\ ŒL�0 (otherwise).

(4-54)

Thanks to the restrictions (4-27) and (4-28), we have

0 > str1.S/; 0 > str0.L/; 1 > reg1.S/; 1 > reg0.L/: (4-55)

Hence by Lemma 4.3(2) with C WD V , we get for some �1; �2 2 .0; 1/,

k0kX.I /.A1��1"
�1

0
CA1��2"

�2

0
: (4-56)

If p1 ! 4=d , then str0.S/! 0, and we would need the smallness in ŒK�0.I/.
Since w 2 X.I/ by Lemma 4.4, there exists a partition of the right half of I :

t0 < t1 < � � � < tn; Ij D .tj ; tjC1/; I \ .t0;1/ D .t0; tn/ (4-57)

such that n � C.A;B; ı/ and

kwkX.Ij / � ı .j D 0; : : : ; n� 1/: (4-58)

We omit the estimate on I \ .�1; t0/ since it is the same by symmetry.
Let j be the free solution defined by

Ej WD eihri.t�tj / E .tj /: (4-59)

Then the Strichartz estimate applied to the equations of  and jC1 implies

k � jkX.Ij /CkjC1� jkX.R/. kf 0.wC  /�f 0.w/kL1
t L2

x.Ij /
Ckek.ŒU�.1/�2CŒT �.1/�2/.Ij /: (4-60)

The nonlinear difference is estimated as follows. For smaller juj, we have by Hölder

kf 0S .wC  /�f
0

S .w/kL1
t L2

x
. k.w;  /kp1

ŒS �0
kkŒS �0 ; (4-61)
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and for larger juj for d � 2 in the subcritical/critical cases,

kf 0L.wC  /�f
0

L.w/kL1
t L2

x
. k.w;  /kp2

ŒL�0
kkŒL�0 : (4-62)

If d D 1, let C.�/ D supjuj�� jf
00

L
.u/j=jujp1 . Then we have

kf 0L.wC  /�f
0

L.w/kL1
t L2

x
.C.kwkL1t;x CkkL

1
t;x
/k.w;  /k

p1

ŒS �0
kkŒS �0

.C.k.w;  /kL1t H 1
x
/k.w;  /k

p1

ŒS �0
kkŒS �0 : (4-63)

In the exponential case, there exist � > �0 and �> 0 such that (4-37). Letw� DwC� D .1��/wC�u

for � 2 Œ0; 1�. Then we have
�kw�k

2

H 1
�
� 4�‚0;

where ‚0 D 1C‚

2
and H 1

� is defined in (4-38). In the same way as for (4-45), we obtain

kf 0L.wC /�f
0

L.w/kL1
t L2

x
�

Z 1

0

kf 00L .w� /kL1
t L2

x
d� . sup

�2Œ0;1�

kw�kŒH �2 kw�k
1=��1

ŒX �2
k kŒX �2

.Ak.w;  /k
1=��1

ŒX �2
k kŒX �2 : (4-64)

Thus in all cases, assuming

kkX.Ij / � ı � 1 .j D 0; : : : ; n� 1/; (4-65)

where the smallness depends on A (and ‚), we get

kkX.Ij /CkjC1kX.tjC1;tn/ � CkjkX.tj ;tn/C "0; (4-66)

for some absolute constant C � 2. Then by (4-56) and iteration in j we get

kkX.I /. .2C /n.A1��1"
�1

0
CA1��2"

�2

0
/ � C.A;B/."

�1

0
C "

�2

0
/: (4-67)

Choosing "0.A;B/ sufficiently small, we can make the last bound much smaller than ı, and thus the
assumption (4-65) is justified by continuity in t and induction on j . Then repeating the estimate (4-60)
once more, we can estimate the full Strichartz norms on  , which implies also the bound on u.

Next we estimate the difference u�w in the harder case d � 5, where we need the new exponents
zM , M , zN , N , R, Q, P , and Y defined by

M D
2

dC1

�
1

p2
.1C d; 0; 0/�

d�2

4
.d;�1; 0/

�
;

zN D
2

dC1

��
1

2
;
d�1

4
; 1

�
C

�
1�

d�2

4
p2

�
.�d; 1; 0/

�
;

zM DM C
2

p2.dC1/
.0; 1=d; 1/; N D zN �

2

dC1
.0; 1=d; 1/;

Q D
.1; 2; 2/

p1.dC1/
; P D

.4; d�1; 4/

2.dC1/
; Y D

.6; dC3; 4/

2.dC1/
;

R D

�
.dC4/

2.dC2/.p1C1/
;R1;

1

2

�
:

(4-68)



SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR KLEIN–GORDON EQUATION 435

In the case p2 > 1, we need another exponent

yM WD zM C
2.p2� 1/

p2.d C 1/
.0; 1=d; 1/; (4-69)

and if p2 � 1 then we put yM D zM . Note that p1 < 1 under (4-27) for d � 5. Then we have the sharp
Sobolev embedding

Œ yM �q � Œ zM �q � ŒM �q; Œ zN �q � ŒN �q; (4-70)

and nonlinear and interpolation relations

RCp1R0
D K�.1/; R D .1�˛/W C˛K; M ]

D .1�ˇ/W 0
CˇR0; (4-71)

for some ˛; ˇ 2 .0; 1/, thanks to (4-27) and (4-28). Y is a non-admissible exponent satisfying

Y D zN Cp2M D N Cp2
zM D P Cp1Q0

D P0
Cp1Q; (4-72)

where the second and the last identities follow from P3 D p1Q3, zN3 D p2
zM3, and the above sharp

embeddings. If p2 > 1, we have in addition

Y D N C yM C .p2� 1/M: (4-73)

These exponents satisfy (when d � 5)

1 D reg0. zN / D � reg0.Y / � reg0. yM /; 1 > reg1.Q/; reg1.P /;�reg1.Y /;

0 > str0. yM /; str0. zN /; str1.Q/; str1.P /;

str0. zN / � str0.Y /� 2; str1.P / D str1.Y /� 2;

0 � yM1; yM2;Q1;Q2;R1 <
1
2
; 1 < dec0.Y /; dec1.Y /;

Y2 <
1

2
C

1

d
; zN2 >

1

2
�

1

d�1
; P2 >

1

2
�

1

d
:

(4-74)

Moreover, reg0. yM / D 1 only if p2 D 2?� 2 D 4=.d � 2/. Lemma 4.3(1) implies that

kwk
.ŒQ�2p1

\Œ yM �2\Œ zM �2p2
/.I /
. kwk.ŒH �2\ŒK �2\ŒW �2/.I /.ACB: (4-75)

As before, we divide I \ .t0;1/ into t0 < � � � < tn, n � C.A;B/ such that

kwk
.ŒQ�2p1

\Œ yM �2\Œ zM �2p2
\ŒK �2\ŒW �2/.Ij /

� ı � 1 .j D 0; : : : ; n� 1/: (4-76)

We also introduce the following spaces:

Y0 WD ŒW �0\ ŒR�0; zY WD Œ zN �2\ ŒP �2; Y WD ŒW �2\ ŒK�2;

Y�0 WD ŒW
�.1/�0C ŒK

�.1/�0; Y� WD ŒW �.1/�2C ŒK
�.1/�2:

(4-77)

Our proof for d � 5 consists of three steps:

(1) We estimate  in Y0, assuming it is bounded in some norm similar to (4-76). Here we can use the
standard Strichartz because the estimates do not contain spatial derivative.

(2) We estimate  in zY, under the same assumption on  . Here we use the exotic Strichartz.
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(3) We estimate u in Y by using the bounds in Œ zN �2 \ ŒR�0. The assumption in the previous steps is
justified once we get a better bound.

Actually we could skip the first step, by using interpolation in the last step to bound ŒR�0 by the other
norms. However, if p1 D 4=d the lower critical power, then RDK and the first step becomes necessary.

Assuming that

kk
.ŒQ�2p1

\Œ yM �2p2
\ŒR�0\ŒM ]�0/.Ij /

� ı .j D 0; : : : ; n� 1/; (4-78)

we have by Strichartz and Hölder (since W 0 and R0 are 1
2

-admissible)

k�jkY0.Ij /CkjC1�jkY0.R/. kf
0.wC  /�f 0.w/kY�

0
.Ij /
CkekY�.Ij /

. k.w;  /kp1

ŒR�0.Ij /
kkŒR�0.Ij /Ck.w;  /k

p2

ŒM ]�0.Ij /
kkŒW �0.Ij /C "0

. ıp1kkY0.Ij /C "0; (4-79)

where we used (4-76) and (4-78). By Lemma 4.3(2), we have

k0kY0.I /.A1��3"
�3

0
CA1��4"

�4

0
; (4-80)

for some �3; �4 2 .0; 1/. Note that str1.R/! 0 as p1! 4=d , hence in the lower critical case we would
need 0 to be small in ŒK�0. By the same argument as for (4-67), we obtain

kkY0.I / � C.A;B/."
�3

0
C "

�4

0
/� ı: (4-81)

Next, still assuming (4-78), we have by the exotic Strichartz estimate,

k�jkzY.Ij /CkjC1�jkzY.R/. kf
0.wC /�f 0.w/kŒY �2.Ij /CkekY�.Ij /; (4-82)

where the nonlinear difference is estimated by

kf 0L.wC  /�f
0

L.w/kŒY �2

. k.w;  /kp2

ŒM �0
kk

Œ zN �2
Ck.w;  /k

p2

Œ zM �2p2

kkŒN �0 Ck.w;  /k
p2�1

ŒM �0
k.w;  /k

Œ yM �2
kkŒN �0 ; (4-83)

where the last term is for p2 > 1 while the second last is for p2 � 1, and similarly

kf 0S .wC  /�f
0

S .w/kŒY �2 . k.w;  /k
p1

ŒQ�0
kkŒP �2 Ck.w;  /k

p1

ŒQ�2p1

kkŒP �0 : (4-84)

Thus we obtain
k � jkzY.Ij /CkjC1� jkzY.R/. ı

p1kkzY.Ij /C "0; (4-85)

where we used (4-76), (4-78), and the following embeddings in x

ŒQ�2p1
� ŒQ�0; ŒP �2 � ŒP �0; Œ yM �2C Œ zM �2p2

� ŒM �0; Œ zN �2 � ŒN �0: (4-86)

By Lemma 4.3 and Strichartz, we have

k0kŒ zN �2.I /
. k0k

1��5

ŒH �2.I /\ŒW �2.I /
k0k

�5

ŒM �0.I /
.A1��5"

�5

0
;

k0kŒP �2.I /. k0k
1��6

ŒH �2.I /\ŒK �2.I /
k0k

�6

ŒM �0.I /
.A1��6"

�6

0
;

(4-87)
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for some �5; �6 2 .0; 1/. Note that str1.P / is away from 0 as p1 ! 4=d , and so �5; �6 are uniformly
bounded from below. Thus by the same argument as for (4-67),

kkzY.I / � C.A;B/."
�5

0
C "

�6

0
/� ı: (4-88)

Hence under the assumption (4-78) we have obtained

kk
ŒW �0.I /\ŒR�0.I /\Œ zN �2.I /\ŒP �2.I /

.C.A;B/
6P

kD3

"
�k

0
� ı: (4-89)

Finally by Strichartz, (4-76) and (4-78), we have

kukY.Ij /. kEu.tj /kL2
x
Ckeq.u/Cf 0.u/kY�.Ij /

.AC "0Ckuk
p1

ŒR�0.Ij /
kukŒR�2.Ij /Ckuk

p2

ŒM ]�0.Ij /
kukŒW �2.Ij /

.AC "0C ı
p1kukY.Ij /:

(4-90)

Hence we obtain
kukY.Ij /.AC "0; (4-91)

and so
kukY.I /. n.AC "0/ � C.A;B/; (4-92)

which is extended to the full Strichartz norms by Lemma 4.4.
It remains to justify (4-78). By Lemma 4.3(2), we have

kk
ŒQ�2p1

\Œ yM �2\Œ zM �2p2

.
P

kD7;8

kk
1��k

ŒH �2\ŒK �2\ŒW �2
kk

�k

ŒP �2\Œ zN �2
; (4-93)

for some �7; �8 2 .0; 1/. If p1 D 4=d , then we need to add ŒK�0 to the last factor.
In either case, by (4-91), (4-76), (4-89), and (4-71), we obtain

kk
.ŒQ�2p1

\Œ yM �2\Œ zM �2p2
\ŒR�0\ŒM ]�0/.Ij /

.C.A;B/"�0; (4-94)

for some � 2 .0; 1/. By choosing "0.A;B/ sufficiently small, the last bound can be made much smaller
than ı. Then the assumption (4-78) is justified by continuity in t and induction in j . Thus we have
obtained the desired estimates. �

5. Profile decomposition

In this section, following Bahouri, Gérard, Kenig, and Merle, we investigate behavior of general se-
quences of solutions, by asymptotic expansion into a series of transformation sequences of fixed space-
time functions, called profiles. This is the fundamental part for the construction of a critical element in
the next section.

Linear profile decomposition. Here we give the Klein–Gordon version of Bahouri and Gérard’s profile
decomposition for the massless free wave equation. The only essential difference is that the massive
equation does not commute with the scaling transforms, but the proof goes almost the same.

For simple presentation, we introduce some notation. For any triple .t}
~
;x}
~
; h}
~
/ 2 R1Cd � .0;1/

with arbitrary suffix ~ and }, let �}
~

, T }
~

and hri}
~

respectively denote the scaled time shift, the unitary
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and the self-adjoint operators in L2.Rd /, defined by

�}
~
D �

t}
~

h}
~

; T }
~
'.x/ D .h}

~
/�d=2'

�
x�x}

~

h}
~

�
; hri}

~
D

q
��C .h}

~
/2: (5-1)

We denote by MC the set of Fourier multipliers on Rd :

MC D
˚
F�1
Q�F j Q� 2 C.Rd / and Q�.x/ has a finite limit as jxj ! 1

	
: (5-2)

(Practically we need only 1 and jrjhri�1 in MC). Also recall the correspondence u $ Eu defined on
page 427.

Lemma 5.1 (Linear profile decomposition). Let Evn D eihrit Evn.0/ be a sequence of free Klein–Gordon
solutions with bounded L2

x norm. Then, possibly after replacing it with some subsequence, there exist
K 2 f0; 1; 2 : : : ;1g and, for each integer j 2 Œ0;K/, 'j 2 L2.Rd / and f.tj

n ;x
j
n ; h

j
n/gn2N � R�Rd �

.0; 1� satisfying the following. Define Evj
n and Ewk

n for each j < k � K by

Evj
n D eihri.t�t

j
n /T j

n '
j ; Evn D

k�1P
jD0

Evj
n C Ew

k
n : (5-3)

Then
lim

k!K
lim

n!1
k Ewk

nkL1t .RIB
�d=2
1;1.Rd //

D 0; (5-4)

and for any Fourier multiplier � 2 MC, any l < j < k � K and any t 2 R,

lim
n!1

j log.hl
n=hj

n/jC
jt l

n� t
j
n jC jx

l
n�x

j
n j

hl
n

D1; (5-5)

lim
n!1

h�Evl
n.t/ j �Ev

j
n .t/iL2

x
D 0 D lim

n!1
h�Evj

n .t/ j � Ew
k
n .t/iL2

x
: (5-6)

Moreover, each sequence fhj
ngn2N either goes to 0 or is identically 1 for all n.

We call such a sequence fEvj
ngn2N a free concentrating wave for each j , and Ewk

n the remainder. We
say that f.tj

n ;x
j
n ; h

j
n/gn and f.tk

n ;x
k
n ; h

k
n/g are orthogonal when (5-5) holds. Note that (5-6) implies

lim
n!1

h
kEvn.t/k

2

L2
x
�
P

j<k

kEvj
n .t/k

2

L2
x
�k Ewk

nk
2

L2
x

i
D 0: (5-7)

We remark that the case h
j
n !1 is excluded by the presence of the mass, or more precisely by the use

of inhomogeneous Besov norm for the remainder.

Proof. We introduce a Littlewood–Paley decomposition for the Besov norm. Let ƒ0.x/ 2 S.Rd / such
that its Fourier transform zƒ0.�/ D 1 for j�j � 1 and zƒ0.�/ D 0 for j�j � 2. Then we define ƒk.x/ for
any k 2 N and ƒ.0/.x/ by the Fourier transforms

zƒk.�/ D zƒ0.2
�k�/� zƒ0.2

�kC1�/; zƒ.0/ D zƒ0.�/� zƒ0.2�/: (5-8)

Let

� WD lim
n!1

kEvnkL1t B
�d=2
1;1
� lim

n!1
sup

t2R; x2Rd ; k�0

2�kd=2
jƒk � Evn.t;x/j: (5-9)
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If � D 0, we are done with K D 0. Otherwise, there exists a sequence .tn;xn; kn/ such that for large n

2�knd=2
jƒkn

� Evn.tn;xn/j � �=2: (5-10)

Now we define hn and  n by
hn D 2�kn ; Evn.tn;x/ D Tn n: (5-11)

Since  n is bounded in L2
x , it converges weakly to some  in L2

x , up to an extraction of a subsequence.
Moreover,

2�knd=2
jƒkn

� Evn.tn;xn/j D

�
jƒ0 � n.0/j .kn D 0/;

jƒ.0/ � n.0/j .kn � 1/;
(5-12)

and hence by the weak convergence and by Schwarz

k kL2
x
& jhƒ0 j  ijC jhƒ.0/ j  ij � �=2: (5-13)

If hn! 0, then we put .t0
n ;x

0
n ; h

0
n/D .tn;xn; hn/ and '0 D . Otherwise, we may assume, by extracting

a subsequence, that hn converges to some h1 > 0, and we put

.t0
n ;x

0
n ; h

0
n/ D .tn;xn; 1/; '0

D h
�d=2
1  .x=h1/: (5-14)

Then we have Tn �T 0
n '

0 ! 0 strongly in L2
x . Now we define Ev0

n and Ew1
n by

Ev0
n D eihri.t�t0

n/T 0
n '

0; Ew1
n D Evn� Ev

0
n: (5-15)

Then .T 0
n /
�1 Ew1

n.t
0
n /D .T

0
n /
�1Tn n�'

0! 0 weakly in L2, and �T 0
n D T 0

n �
0
n, where �0

n denotes the
Fourier multiplier whose symbol is the rescaling of �’s, that is Q�.�=h0

n/. By the definition of MC, the
symbol of �0

n converges, including the case h0
n ! 0, so �0

n converges strongly in L2.Rd / to some �0
1.

Hence
h�Ev0

n.t
0
n / j � Ew

1
n.t

0
n /iL2

x
D h�0

n'
0
j �0

n.T
0
n /
�1
Ew1

n.t
0
n /iL2

x
! 0: (5-16)

The left-hand side is preserved in t , hence the above holds at any t . This is the decomposition for k D 1.
Next we apply the same procedure to the sequence Ew1

n in place of Evn. Then either the Besov norm
goes to 0 and K D 1, or otherwise we find the next concentrating wave Ev1

n and the remainder Ew2
n , such

that for some .t1
n ;x

1
n ; h

1
n/ and '1 2 L2.Rd /,

Ew1
n D Ev

1
nC Ew

2
n; Ev1

n D eihri.t�t1
n/T 1

n '
1; h�Ev1

n.t/ j � Ew
2
n.t/iL2

x
! 0; (5-17)

.T 1
n /
�1 Ew2

n.t
1
n /! 0 weakly in L2

x as n!1, and

lim
n!1

k Ew1
nkL1t B

�d=2
1;1
. k'1

kL2 : (5-18)

Iterating the procedure, we obtain the desired decomposition. L2 orthogonality implies k'kkL2
x
! 0

as k !1, and then (5-18) (for general k) gives the decay of the remainder in the Besov norm.
It remains to prove the orthogonality (5-5) as well as (5-6). First we have

h�Evl
n.0/ j �Ev

j
n .0/i D he

�ihrit l
nT l

n�
l
n'

l
j e�ihrit

j
n T j

n �
j
n'

j
i D hSj ;l

n �l
n'

l
j �j

n'
j
i; (5-19)
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where Q�l
n D Q�.�=hl

n/ as before, and S
j ;l
n is defined by

Sj ;l
n WD .T j

n /
�1eihri.t

j
n�t l

n/T l
n D e�ihri

j
nt
j ;l
n .T j

n /
�1T l

n D e�ihri
j
nt
j ;l
n T j ;l

n ; (5-20)

with the sequence
.tj ;l

n ;xj ;l
n ; hj ;l

n / WD .t l
n� tj

n ;x
l
n�xj

n ; h
l
n/=hj

n: (5-21)

Using the last formula in (5-20), (5-5), and the uniform time decay of eihri
j
nt W S! S0, it is easy to see

that S
j ;l
n ! 0 weakly on L2

x as n ! 1 for all j < l . Since Q�l
n D Q�.�=hl

n/ and Q�j
n are convergent,

(5-19) also tends to 0. Then we have also

h�Evj
n .t/ j � Ew

k
n .t/iL2

x
D

D
�Evj

n .t/ j � Ew
jC1
n .t/�

k�1P
mDjC1

�Evm
n .t/

E
L2

x

! 0I (5-22)

thus we obtain (5-6). Now suppose that (5-5) fails. Then there exists a minimal .l; j / breaking (5-5),
with respect to the natural order

.l1; j1/ � .l2; j2/ () l1 � l2 and j1 � j2: (5-23)

By extracting a subsequence, we may assume that hl
n! hl

1, log.hl
n=h

j
n/, .t l

n�t
j
n /=hl

n and .xl
n�x

j
n /=hl

n

all converge. Now we inspect

.T l
n /
�1
EwlC1

n .t l
n/ D

jP
mDlC1

S l;m
n 'm

CS l;j
n .T j

n /
�1
EwjC1

n .tj
n /: (5-24)

where S
l;j
n converges strongly to a unitary operator, due to the convergence of .t l;j

n ;x
l;j
n ; h

l;j
n / and hl

n.
Since S

l;m
n ! 0 for m < j and .T j

n /
�1 Ew

jC1
n .t

j
n /! 0 weakly in L2

x , we deduce from the weak limit
of (5-24) that 'k D 0, a contradiction. This proves the orthogonality (5-5). �

Those free concentrating waves with scaling going to 0 are vanishing in any Besov space with less
regularity. Hence in the subcritical case, we may freeze the scaling to 1 by regarding them as a part of
remainder. Hence:

Corollary 5.2. Let Evn be a sequence of free Klein–Gordon solutions with bounded L2
x norm. Then,

after replacing it with some subsequence, there exist K 2 f0; 1; 2 : : : ;1g and data 'j 2 L2.Rd / and
f.t

j
n ;x

j
n /gn2N � R � Rd , for each integer j 2 Œ0;K/, satisfying the following. Define Evj

n and Ewk
n for

each j < k � K by

Evj
n D eihri.t�t

j
n /'j .x�xj

n /; Evn D

k�1P
jD0

Evj
n C Ew

k
n : (5-25)

Then, for any s < �d=2, we have

lim
k!K

lim
n!1

k Ewk
nkL1.RIBs

1;1
.Rd // D 0; (5-26)

and for any � 2 MC, any l < j < k � K and any t 2 R,

lim
n!1

h�Evl
n j �Ev

j
n i

2

L2
x
D 0 D lim

n!1
h�Evj

n j � Ew
k
n iL2

x
; (5-27)

lim
n!1

jtj
n � tk

n jC jx
j
n �xk

n j D 1: (5-28)
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Orthogonality holds also for the nonlinear energy, which implies that the decomposition is closed
in zKC. Recall the vector notation for the energy (page 427). We will use the following estimates for
1 < p <1:

kŒjrj� hrin�'kLp
x
. hnkhr=hni

�1'kLp
x
;

kŒjrj�1
� hri

�1
n �'kLp

x
. khr=hni

�2
jrj
�1'kLp

x
I

(5-29)

they hold uniformly for 0 < hn � 1, by Mihlin’s theorem on Fourier multipliers.

Lemma 5.3. Assume that f satisfies (1-36). Let Evn be a sequence of free Klein–Gordon solutions satisfy-
ing Evn.0/ 2 zK

C and limn!1
zE.Evn.0// <m. Let EvnD

P
j<k Ev

j
nC Ew

k
n be the linear profile decomposition

given by Lemma 5.1. Except for the H 1 critical case (1-28), it may be given by Corollary 5.2 too. Then
we have Evj

n .0/ 2 zK
C for large n and all j < K, and

lim
k!K

lim
n!1

ˇ̌̌
zE.Evn.0//�

P
j<k

zE.Evj
n .0//�

zE. Ewk
n .0//

ˇ̌̌
D 0: (5-30)

Moreover we have for all j < K

0 � lim
n!1

zE.Evj
n .0// � lim

n!1
zE.Evj

n .0// � lim
n!1

zE.Evn.0//; (5-31)

where the last inequality becomes an equality only if K D 1 and Ew1
n ! 0 in L1t L2

x .

Proof. First we see that in the exponential case (1-29), all the profiles and remainders are in the subcritical
regime. Since Evn.0/ 2 zK

C, Lemma 2.11 implies

krhri
�1 Re Evn.0/k

2

L2
x
Ck Im Evn.0/k

2

L2
x
< 2m � 4�=�0: (5-32)

For any .�0; : : : ; �k/ 2 C1Ck satisfying k�kL1 D maxj j�j j � 1, let

v�n D
P

j<k

�jv
j
n C �kw

k
n : (5-33)

Choosing � D jrjhri�1 2 MC in (5-27), we get

lim
n!1

sup
t2R

krv�nk
2

L2
x
� lim

n!1
krhri

�1
Evnk

2

L2
x
DWM < 4�=�0: (5-34)

Hence there exist � > �0 and q 2 .1; 2/ such that q�M < 4� .
Now we start proving (5-30) in all the cases. Since the linear version of (5-30) is given by Lemma 5.1,

it suffices to show orthogonality in F , i.e.

lim
k!K

lim
n!1

ˇ̌̌
F.vn.0//�

P
j<k

F.vj
n .0//�F.wk

n .0//
ˇ̌̌
D 0: (5-35)

For this we may neglect wk
n , because by the decay in B

1�d=2
1;1 and interpolation with the H 1 bound we

have
lim

k!K
lim

n!1
kwk

n .0/kLp
x
D 0 .2 < p � 2?/: (5-36)

In the exponential case, we deal with wk
n as follows. Let v<kC�

n D vn� .1��/w
k
n for 0 � � � 1. Using
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the Hölder and Trudinger–Moser inequalities, we get

jF.vn/�F.v<k
n /j �

Z 1

0

Z
jf 0.v<kC�

n /wk
n jdxd� �

Z 1

0

d�keq�jv
<kC�
n j2

� 1k
1=q

L1
x

kwk
nkLq0

x

�

Z 1

0

d�

�kv<kC�
n k2

L2
x

4� � q�M

�1=q

kwk
nkLq0

x
: (5-37)

In the subcritical and exponential cases, it suffices to have the decay in Bs
1;1

for all s < 1�d=2, which
is given by Corollary 5.2. Thus in any case we are allowed to replace vn.0/ by v<k

n .0/ in (5-35).
Next we may discard those j for which �j

n D �t
j
n =h

j
n ! ˙1, since for any p 2 .2; 2?� satisfying

1=p D 1=2� s=d with s 2 .0; 1�, we have

kvj
n .0/kLp

x
. ke�ihri

j
n�
j
n jrj

�s'j
kLp

x
! 0 .n!1/; (5-38)

by the decay of eihri
j
nt in S ! Lp as jt j ! 1, which is uniform in n, and the Sobolev embedding

PH s
x � L

p
x .

So extracting a subsequence, we may assume that �j
n has a finite limit �j

1 for all j . Let

 j
WD Re e�ihri

j
1�

j
1'j

2 L2
x.R

d /: (5-39)

Then vj
n .0/� hri

�1T
j
n  

j ! 0 strongly in H 1
x , thus (5-35) has been reduced toˇ̌̌̌

F
�P

j<k

hri
�1T j

n  
j
�
�
P

j<k

F.hri�1T j
n  

j /

ˇ̌̌̌
! 0: (5-40)

In the subcritical and exponential cases, if h
j
n! 0 then hri�1T

j
n  

j ! 0 strongly in L
p
x for 2 � p <

2?, so it can be neglected. Hence we may assume that h
j
n � 1. Then each T

j
n hri

�1 j is getting away
from the others as n!1, and (5-40) follows.

In the critical case, if h
j
n ! 0 then we have by (5-29),

khri
�1T j

n  
j
� hj

nT j
n jrj

�1 j
k

L2?
x
. khr=hj

ni
�2
jrj
�1 j

k
L2?

x
! 0: (5-41)

Hence we may replace hri�1T
j
n  

j in (5-40) by h
j
nT

j
n
O j for some O j 2 L2? , including the case

h
j
n � 1. Then we may further replace each O j by

L j
n .x/ WD

O j .x/�

�
0 if there is l < j s.t. hl

n < h
j
n and .x�x

j ;l
n /=h

j ;l
n 2 supp O l ;

1 otherwise;
(5-42)

where .xj ;l
n ; h

j ;l
n / is defined in (5-21), because (5-5) after the above reduction implies either h

j ;l
n ! 0 or

jx
j ;l
n j !1, and so L j ! O j at almost every x 2 Rd as n!1, and strongly in L2?

x by the dominated
convergence theorem. Now the decomposition is trivial

F
�P

j<k

hj
nT j

n
L j

n

�
D
P

j<k

F.hj
nT j

n
L j

n /; (5-43)

by the support property of L j
n . Thus we have obtained (5-35) and (5-30).
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By exactly the same argument, we obtain also

lim
k!K

lim
n!1

ˇ̌̌
zK˛;ˇ.Evn.0//�

P
j<k

zK˛;ˇ.Ev
j
n .0//�

zK˛;ˇ. Ew
k
n .0//

ˇ̌̌
D 0: (5-44)

The remaining conclusions follow from the next lemma. �

Lemma 5.4 (Decomposition in QKC). Assume f satisfies (1-36). Let k 2 N and '0; : : : ; 'k 2 H 1.Rd /.
Assume that

zE
� kP

jD0

'j

�
� m� ı; zK˛;ˇ

� kP
jD0

'j

�
� �";

zE
� kP

jD0

'j

�
�

kP
jD0

zE.'j /� "; zK˛;ˇ

� kP
jD0

'j

�
�

kP
jD0

zK˛;ˇ.'j /C ";

(5-45)

for some .˛; ˇ/ in (1-16) and some ı; " > 0 satisfying ".1C2= N�/ < ı. Then Q'j 2
zKC for all j D 0; : : : ; k,

i.e. 0 � zE.'j / < m and zK˛;ˇ.'j / � 0 for all .˛; ˇ/ in (1-16).

Proof. Let  j D Rehri�1'j and suppose that zK.'l/ < 0 for some l . Then K. l/ � zK.'l/ < 0 and so
H. l/ � m. Since H is non-negative,

m �
kP

jD0

H. j / �
kP

jD0

ŒH. j /CH Q.Imhri�1'j /� D
kP

jD0

Œ zE.'j /� zK.'j /= N��

� zE
� kP

jD0

'j

�
� zK

� kP
jD0

'j

�
= N�C ".1C 1= N�/ < m; (5-46)

where H Q denotes the quadratic part of H . Hence K. j / � 0 for all j , and so

zE.'j / � J. j / D H. j /CK. j /= N� � 0: �

Nonlinear profile decomposition. The next step is to construct a similar decomposition for the nonlinear
solutions with the same initial data.

First we construct a nonlinear profile corresponding to a free concentrating wave. Let Evn be a free
concentrating wave for a sequence .tn;xn; hn/ 2 R�Rd � .0; 1�,

.i@t Chri/Evn D 0; Evn.tn/ D Tn ;  .x/ 2 L2; (5-47)

satisfying Evn.0/ 2 zK
C. Here we use Lemma 5.1 only in the H 1 critical case, and Corollary 5.2 in the

subcritical and exponential cases. Hence hn! 0 can happen only in the critical case, otherwise hn � 1.
Let un be the nonlinear solution with the same initial data

.i@t Chri/Eun D f
0.un/; Eun.0/ D Evn.0/ 2 zK

C; (5-48)

which may be local in time. Next we define EVn and EUn by undoing the transforms

Evn D Tn
EVn..t � tn/=hn/; Eun D Tn

EUn..t � tn/=hn/: (5-49)
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Then they satisfy the rescaled equations

EVn D eithrin ; EUn D
EVn� i

Z t

�n

ei.t�s/hrinf 0.Rehri�1
n
EUn/ ds; (5-50)

where �n D �tn=hn. Extracting a subsequence, we may assume convergence:

hn ! h1 2 Œ0; 1�; �n ! �1 2 Œ�1;1�: (5-51)

Then the limit equations are naturally given by

EV1 D eithri1 ; EU1 D EV1� i

Z t

�1

ei.t�s/hri1f 0. yU1/ ds; (5-52)

where yU1 is defined by

yU1 WD Rehri�1
1
EU1 D

�
Rehri�1 EU1 .h1 D 1/;

Re jrj�1 EU1 .h1 D 0/:
(5-53)

The unique existence of a local solution EU1 around t D �1 is known in all cases, including h1 D 0

and �1 D ˙1 (the latter corresponding to the existence of the wave operators), by using the standard
iteration with the Strichartz estimate. In the exponential case, it requires that EU1 is in the subcritical
regime in the Trudinger–Moser inequality. It is guaranteed by Lemma 5.3, because EV1.t/ 2 zKC for t

close to �1, and so EU1.t/ 2 zKC for all t in its existence interval.
EU1 on the maximal existence interval is called the nonlinear profile associated with the free concen-

trating wave Evn. The nonlinear concentrating wave Eu.n/ associated with Evn is defined by

Eu.n/ D Tn
EU1..t � tn/=hn/: (5-54)

If h1 D 1 then u.n/ solves NLKG. If h1 D 0 then it solves

.@2
t ��C 1/u.n/ D .i@t Chri/Eu.n/ D .hri� jrj/Eu.n/Cf

0.jrj�1
hriu.n//: (5-55)

The existence time of u.n/ may be finite and even go to 0, but at least we have

kEun.0/� Eu.n/.0/kL2
x
D k EVn.�n/� EU1.�n/kL2

x

� k EVn.�n/� EV1.�n/kL2
x
Ck EV1.�n/� EU1.�n/kL2

x
! 0: (5-56)

Let un be a sequence of (local) solutions of NLKG in KC around t D 0, and let vn be the sequence
of the free solutions with the same initial data. We consider the linear profile decomposition given by
Lemma 5.1 or 5.2:

Evn D

k�1P
jD0

Evj
n C Ew

k
n ; Evj

n D eihri.t�t
j
n /T j

n '
j : (5-57)

With each free concentrating wave fEvj
ngn2N, we associate the nonlinear concentrating wave fEuj

.n/
gn2N.

A nonlinear profile decomposition of un is given by

Eu<k
.n/ WD

k�1P
jD0

Eu
j

.n/
: (5-58)
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We are going to prove that Eu<k
.n/

is a good approximation for Eun, provided that each nonlinear profile
has finite global Strichartz norm (in Lemma 5.6). Now we define the Strichartz norms for the profile
decomposition, using the notation from page 428. Let ST and ST � be the function spaces on R1Cd

defined by
ST D ŒW �2\ ŒK�2; ST � D ŒW �.1/�2C ŒK

�.1/�2CL1
t L2

x; (5-59)

where the exponents W and K as well as their duals are as defined in (4-24) and (4-9). The Strichartz
norm for the nonlinear profile depends on the scaling h}1 for any suffix }:

ST }1 WD

�
ŒW �2\ ŒK�2 .h}1 D 1/;

ŒW ��
2

.h}1 D 0/:
(5-60)

In other words, we take the scaling invariant part if h}n ! C0, which can happen only in the H 1

critical case. The following estimate will be convenient in treating the concentrating case: For any
S 2 Œ0; 1�� Œ0; 1

2
�� Œ0; 1� we have

ku.n/kŒS �2.R/. .hn/
1�reg0.S/

k yU1kŒS ��
2
.R/; (5-61)

where yU1 is as defined in (5-53). Indeed, using PB0
p;2
�Lp with p D 1=S2 � 2 in the lower frequencies,

we have

ku.n/kŒS �2 . kjrj
�S3hri

S3u.n/kŒS ��
2

� .hn/
1�reg0.S/

kRe jrj�S3hri
S3�1
n

EU
j
1kŒS ��

2
. .hn/

1�reg0.S/
k yU

j
1kŒS ��

2
: (5-62)

Concerning the orthogonality in the Strichartz norms, we have:

Lemma 5.5. Assume that f satisfies (1-36). Suppose that in the nonlinear profile decomposition (5-58)
we have

k yU
j
1kST

j
1.R/

Ck EU
j
1kL1t L2

x.R/
<1 (5-63)

for each j < K. Then, for any finite interval I , any j < K and any k � K, we have

lim
n!1

ku
j

.n/
kST .I /. k yU j

1kST
j
1.R/

; (5-64)

lim
n!1

ku<k
.n/k

2
ST .I /. lim

n!1

P
j<k

ku
j

.n/
k

2
ST .I /; (5-65)

where the implicit constants do not depend on I , j or k. We also have

lim
n!1

f 0.u<k
.n//�

P
j<k

f 0
�
.hri

j
1/
�1
hriu

j

.n/

�
ST �.I /

D 0: (5-66)

Proof. First note that if h
j
1 D 1 then u

j

.n/
is just a sequence of space-time translations of yU j

1. In
particular, (5-64) is trivial in that case.

Next we prove (5-64) in the case h
j
1 D 0, which is only in the H 1 critical case. For the moment we

drop the superscript j . For the ŒW �2 part, (5-61) gives us

ku.n/kŒW �2.I /. k yU1kŒW ��
2
.R/ D k

yU1kST
j
1.R/

: (5-67)
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For the ŒK�2 part, let V be the following interpolation between H and W

V WD
1

d C 2
H C

d C 1

d C 2
W D KC

.�1; 0; 1/

2.d C 2/
: (5-68)

Then using Hölder in t and (5-61) together with reg0.K/ D .d C 1/=.d C 2/, we get

ku.n/kŒK �2.I /. ku.n/kŒV 1
2 �2.I /

jI j
1

2.dC2/ . .hn/
1

2.dC2/ k yU1kŒV ��
2
.R/jI j

1
2.dC2/ ! 0; (5-69)

as n!1. Thus we have proved (5-64).
Next we prove (5-65) in the subcritical and exponential cases. Define yU j

1;R, u
j

.n/;R
for R� 1 and

u<k
.n/;R

by

yU
j
1;R D �R.t;x/

yU
j
1; u

j

.n/;R
D T j

n
yU

j
1;R.t � tj

n /; u<k
.n/;R D

P
j<k

u
j

.n/;R
; (5-70)

where �
R

is the cut-off defined in (1-23). Then we have

ku<k
.n/ �u<k

.n/;RkST .R/ �
P

j<k

k.1��R.t;x//
yU

j
1kST .R/ ! 0; .R!C0/ (5-71)

so we may replace u<k
.n/

by u<k
.n/;R

. Let ıl
m denote the difference operator

ıl
m'.x/ D '.x� 2�mel/�'.x/; (5-72)

where el denotes the l-th unit vector in Rd . Each Besov norm in ST is equivalent to

dP
lD1

P
j<k

2smıl
mu

j

.n/;R


L

p
t `

2
m�0

L
q
x

C

P
j<k

u
j

.n/;R


L

p
t L

q
x

; (5-73)

where .1=p; 1=q; s/ DW or K. (5-28) implies that each supp u
j

.n/;R
is away from the others at least by

distance 2 for large n, and then supp ıl
mu

j

.n/;R
are also disjoint for j < k at each l;m. Hence the first

norm in (5-73) equals

k2smıl
mu

j

.n/;R
kLp

t `
2
m�0

L
q
x`

2
j<k
� k2smıl

mu
j

.n/;R
k`2
j<k

L
p
t `

2
m�0

L
q
x
. kuj

.n/;R
k`2
j<k

L
p
t Bs

q;2
; (5-74)

where the first inequality is by Minkowski. Thus we have obtained (5-65) in the subcritical and expo-
nential cases.

Next we prove (5-65) in the H 1 critical case. For the nonlinear concentrating waves with h
j
1 D 1,

the above argument works. For those with h
j
1 D 0, the K component is vanishing by (5-69). Hence it

suffices to estimate ŒW �2 in the case all h
j
n tend to 0 as j !1. Using that W3 D

1
2
2 .0; 1/, we haveu<k

.n/


ŒW �2.R/

.
jrj�1

hriu<k
.n/


ŒW ��

2
.R/
D
Re jrj�1

Eu<k
.n/


ŒW ��

2
.R/
�

 P
j<k

Luj ;l
n;m


L

p
t `

2
m2ZL

q
x

; (5-75)

where we have put .1=p; 1=q; s/ D W and

Luj ;l
n;m WD 2smıl

mhj
nT j

n
yU

j
1..t � tj

n /=hj
n/; (5-76)
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where ıl
m is the difference operator defined in (5-72). For R� 1, let

Luj ;l
n;m;R.t;x/ WD

�
�

h
j
nR
.t � t

j
n ;x�x

j
n / Lu

j ;l
n;m.t;x/ .jm� log2 h

j
nj � R/

0 .jm� log2 h
j
nj > R/;

(5-77)

where �� is as in (1-23). Then by the same computation as for (5-61), we have

k Luj ;l
n;m� Lu

j ;l
n;m;RkLp

t `
2
m2ZL

q
x
. k2smıl

m
yU

j
1kLp

t `
2
mL

q
x.jt jCjmjCjxj>R/ ! 0; (5-78)

as R ! 1 uniformly in n. Hence we may replace Luj ;l
n;m by Luj ;l

n;m;R in (5-75). The orthogonality (5-5)
implies that fsupp.t;m;x/ Lu

j ;l
n;m;Rgj<k becomes mutually disjoint for large n. Then arguing as in (5-74),

we obtain (5-65).
To prove (5-66) in the subcritical and exponential cases is easier than (5-65), because after the smooth

cut-off, we have for large n

f 0.u<k
.n/;R/ D

P
j<k

f 0.u
j

.n/;R
/: (5-79)

Note that the u
j

.n/
2 ST implies that the full Strichartz norms are finite by Lemma 4.4. The error for

f 0.u<k
.n/
/ coming from the cut-off is small in ST � by (4-61)–(4-64) if d � 4. When d � 5, the difference

estimates in the proof of Lemma 4.5 are not sufficient because they control only the exotic norm Y . In
order to estimate the difference in the admissible dual norm ST �.I/, we introduce the new exponents

H" WD

�
"2;

1�"

2
; 0
�
; W" WD W �p2".d;�1; 0/; M ]

" WDM ]
C ".d;�1; 0/; (5-80)

where W and M ] were defined in (4-24) and (4-31), and " 2 .0;p1/ is fixed small enough to have

str0.H"/; str0.M ]
" /; str0.W"/ < 0; reg0.H"/ < 1;

reg0.W"/ D reg0.W / D 1; reg0.M ]
" / D reg0.M ]/ � 1;

W"Cp2M ]
" D W Cp2M ]

D W �.1/:

(5-81)

Then we have, for any u and v,

kf 0S .u/�f
0

S .v/kL1
t L2

x.I /
. jI j1�"2

ku� vkŒH"�0.I /

�
kukL1t L2

x.I /
CkvkL1t L2

x.I /

�"
; (5-82)

because jf 0
S
.u/�f 0

S
.v/j. ju� vj.jujC jvj/". For large u, we have if p2 � 1,

kf 0L.u/�f
0

L.v/kŒW �.1/�2

. kukp2

ŒM
]
" �0
ku� vkŒW"�2 Cku� vkŒM ]

" �0

�
kuk

ŒM
]
" �0
Ckvk

ŒM
]
" �0

�p2�1
kvkŒW"�2 ; (5-83)

and if p2 < 1,

kf 0L.u/�f
0

L.v/kŒW �.1/" �2
. kukp2

ŒM
]
" �0
ku� vkŒW"�2 Cku� vk

p2

ŒM
]
" �0
kvkŒW"�2 : (5-84)

The latter estimate is not Lipschitz in u� v, but suffices for our purpose here.4 Thus we obtain (5-66)
in the subcritical and exponential cases.

4The situation is different from the long-time iteration in the previous section, where we needed the exotic Strichartz estimate
in order to get the Lipschitz estimate for the iteration along the numerous time intervals.
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It remains to prove (5-66) in the H 1 critical case, where we need further cut-off to get a disjoint sum.
First we see that each u

j

.n/
in u<k

.n/
may be replaced with

u
j

hni
WD .hri

j
1/
�1
hriu

j

.n/
D hj

nT j
n
yU

j
1..t � tj

n /=hj
n/: (5-85)

For the moment we drop the superscript j . Let p2 D 4=.d �2/ and h1 D 0. If d � 4, then we have by
using (4-62) and (5-29)

kf 0.u.n//�f
0.uhni/kL1

t L2
x.R/
. kuhnikp2

ŒL�0.R/
ku.n/�uhnikŒL�0.R/

�k yU1k
p2

ŒL�0.R/

Œjrjhri�1
n � 1� yU1


ŒL�0.R/

. k yU1kp2

ŒL�0.R/
khr=hni

�2 yU1kŒL�0.R/ ! 0; (5-86)

since yU1 2 ŒH ��
2
\ ŒW ��

2
� ŒL�0 by the homogeneous version of Lemma 4.3(1).

If d � 5, we introduce a new exponent

G WD
d � 2

d C 2

�
1

d C 1
;

d C 3

2.d C 1/
; 0

�
: (5-87)

Then reg0.G/ D 1, str0.G/ < 0 and

.2?� 1/G D W �.1/�
.1; 0; 1/

2
: (5-88)

Hence

kf 0.u.n//�f
0.uhni/kŒW �.1/�2.I /

. kf 0.u.n//�f 0.uhni/kŒW �.1/��
2
.R/CjI j

1=2
kf 0.u.n//�f

0.uhni/kŒ.2?�1/G�0.I /; (5-89)

where the first term on the right is dominated by (the homogeneous version of (5-83)–(5-84))

kuhnik
p2

ŒM
]
" �0.R/

ku.n/�uhnikŒW"��2.R/
Cku.n/�uhnik

�

ŒM
]
" �0.R/

k.uhni;u.n//k
p2��

ŒW"�
�
2
.R/

. k yU1kp2

ŒM
]
" �0.R/

khr=hni
�2 yU1kŒW"��2.R/

Ckhr=hni
�2 yU1k

�

ŒM
]
" �0.R/

k yU1k
p2��

ŒW"�
�
2
.R/
; (5-90)

where � WD min.p2; 1/. The right-hand side goes to 0, since yU1 2 ŒH ��
2
\ ŒW"�

�
2
� ŒM

]
" �0 by the

homogeneous version of Lemma 4.3(1). Similarly, the last term in (5-89) is bounded by

kuhnik
p2

ŒG�0.R/
ku.n/�uhnikŒG�0.R/ � k

yU1k
p2

ŒG�0.R/
khr=hni

�2 yU1kŒG�0.R/ ! 0: (5-91)

Thus it suffices to show f 0�P
j<k

u
j

hni

�
�
P

j<k

f 0.u
j

hni
/


ST �.I /
! 0: (5-92)

Now we define yU j
n;R for any R� 1 by

yU j
n;R.t;x/ D �R.t;x/

yU
j
1.t;x/

Q
f.1��

h
j ;l
n R

/.t � tj ;l
n ;x�xj ;l

n / j 1 � l < k; hl
nR < hj

ng; (5-93)

where �
R

and .tj ;l
n ;x

j ;l
n ; h

j ;l
n / are as defined respectively in (1-23) and (5-21). Then yU j

n;R is uniformly
bounded in ŒH ��

2
.R/\ ŒW ��

2
.R/, and

yU j
n;R ! �R

yU
j
1 in ŒM ]�0.R/ as n!1,
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because either h
j ;l
n ! 0 or jtj ;l

n j C jx
j ;l
n j ! 1 by the orthogonality (5-5). Then by the homogeneous

version of Lemma 4.3(2), it converges also in ŒL�0.R/ (if d � 4), ŒW"�
�
2
.R/ and ŒM ]

" �0.R/. Moreover,
we have �

R
yU

j
1 !

yU
j
1 as R!1 in the same spaces.

Hence we may replace u
j

hni
by

u
j

hni;R
WD hj

nT j
n
yU j

n;R..t � tj
n /=hj

n/;

and then we get the desired result, since fsupp.t;x/ u
j

hni;R
gj<k are mutually disjoint for large n, and so

f 0
�P

j<k

u
j

hni;R

�
D
P

j<k

f 0.u
j

hni;R
/; (5-94)

which concludes the proof of (5-66). �

The next lemma is the conclusion of this section.

Lemma 5.6. Assume that f satisfies (1-36). Let un be a sequence of local solutions of NLKG around
t D 0 in KC satisfying limn!1E.un/ < m. Suppose that in its nonlinear profile decomposition (5-58),
every nonlinear profile EU j

1 has finite global Strichartz and energy norms, i.e.

k yU
j
1kST

j
1.R/

Ck EU
j
1kL1t L2

x.R/
<1: (5-95)

Then un is bounded for large n in the Strichartz and the energy norms, i.e.

lim
n!1

kunkST .R/CkEunkL1t L2
x.R/

<1: (5-96)

Proof. We will apply the perturbation lemma to u<k
.n/
Cwk

n as an approximate solution. First observe that

kEun.0/� Eu
<k
.n/.0/�w

k
n .0/kL2

x
�
P

j<k

kEvj
n .0/� Eu

j

.n/
.0/kL2

x
D o.1/ (5-97)

and
kEun.0/k

2
L2 D kEvnk

2

L2
x
�
P

j<k

kEvj
nk

2

L2
x
C o.1/ D

P
j<k

kEu
j

.n/
.0/k2

L2
x
C o.1/; (5-98)

where o.1/! 0 as n!1. Hence except for a finite set J � N, the energy of u
j

.n/
with j 62 J is smaller

than the iteration threshold, which implies

ku
j

.n/
kST .R/. kEuj

.n/
.0/kL2

x
.j 62 J /: (5-99)

Combining (5-65), (5-64), (5-99) and (5-98), we obtain, for any finite interval I ,

sup
k

lim
n!1

ku<k
.n/k

2
ST .I /.

P
j2J

k yU
j
1k

2

ST
j
1

C lim
n!1

kEun.0/k
2

L2
x
<1: (5-100)

The equation of u<k
.n/

is given by

eq.u<k
.n// D

P
j<k

�
hri� hri

j
1

�
Eu

j

.n/
Cf 0

�
u<k
.n/

�
�
P

j<k

f 0
�
u

j

hni

�
; (5-101)
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where u
j

hni
D .hri

j
1/
�1hriu

j

.n/
as before. The nonlinear part goes to 0 by (5-66), while the linear part

vanishes if h
j
1 D 1, and is dominated if h

j
1 D 0 by

k.hri� jrj/Eu
j

.n/
kL1

t L2
x.I /
. jI j khri�1

Eu
j

.n/
kL1t L2

x.R/

� jI j khr=hj
ni
�1 EU

j
1kL1t L2

x.R/
! 0 .n!1/; (5-102)

by continuity in t for bounded t , and by the scattering of yU j
1 for jt j ! 1, which follows from

k yU
j
1kŒW ��

2
.R/ <1. Hence Lemma 4.4 gives for any 1-admissible Z

sup
k

lim
n!1

ku<k
.n/kŒZ �2.R/ <1: (5-103)

On the other hand, by Lemma 4.3 we can extend the smallness of wk
n from L1t Bs

1;1 to the other
spaces that we need for the nonlinear difference estimates, those being ŒS �0, ŒL�0, ŒX �2, ŒH"�0, ŒM ]

" �0,
and ŒW"�2, depending on d and f . In addition, in the exponential case (1-29), Lemmas 5.3 and 2.11
imply that u<k

.n/
and wk

n are both in the subcritical regime for the Trudinger–Moser inequality. Putting
them together with the above bounds on u<k

.n/
in the nonlinear difference estimates (4-61)–(4-64) or

(5-82)–(5-84), we get

lim
k!K

lim
n!1

kf 0.u<k
.n/ Cw

k
n /�f

0.u<k
.n//kST �.I / D 0; (5-104)

and so
lim

k!K
lim

n!1
keq.u<k

.n/ Cw
k
n /kST �.I / D 0: (5-105)

Hence for k sufficiently close to K and n large enough, the true solution un and the approximate
solution u<k

.n/
Cwk

n satisfy all the assumptions of the perturbation Lemma 4.5. Hence un is bounded in
global Strichartz norms for large n. �

6. Extraction of a critical element

In this section, we prove that if uniform global Strichartz bound fails strictly below the variational thresh-
old m, then we have a global solution in KC with infinite Strichartz norm and with the minimal energy,
which is called a critical element.

Let E? be the threshold for the uniform Strichartz bound. More precisely,

E?
WD supfA > 0 j S.A/ <1g; (6-1)

where S.A/ denotes the supremum of kukST .I / for any strong solution u in KC on any interval I

satisfying E.u/ � A.
The small energy scattering tells us E? > 0, and the presence of the ground state tells us E? � m, at

least in the subcritical case, and also in the other cases if we allow complex-valued solutions, because the
stationary solutions with different masses yield standing wave solutions of the original NLKG. Anyway,
we are going to prove E? � m by contradiction.

We remark that there is an alternative threshold:

E?
FS WD sup

�
A > 0

ˇ̌̌̌
if u is a solution in KC of NLKG
with E.u/�A, then kukST .R/<1

�
: (6-2)
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Obviously E? � E?
FS

. Kenig and Merle [2008] chose this definition. The advantage of using E? is
that E? � m implies uniform bound on the global Strichartz norms below m, which is very important
in applications where we want to perturb the equation.

The next lemma is the conclusion of this section.

Lemma 6.1. Assume that f satisfies (1-36), and let un be a sequence of solutions of NLKG in KC on
In � R satisfying

E.un/! E? < m; kunkST .In/ !1 .n!1/: (6-3)

Then there exists a global solution u� of NLKG in KC satisfying

E.u�/ D E?; ku�kST .R/ D1: (6-4)

In addition, there are a sequence .tn;xn/ 2 R�Rd and ' 2 L2.Rd / such that along some subsequence,

kEun.0;x/� e�ihritn'.x�xn/kL2
x
! 0: (6-5)

We call such a global solution u� a critical element. Observe that by the definition of E?, we can find
such a sequence un, once we have E? < m.

Proof. We can translate un in t so that 0 2 In for all n. Then we consider the linear and nonlinear
profile decompositions of un, using Lemma 5.1 in the H 1 critical case (1-28) and Corollary 5.2 in the
subcritical and exponential cases.

eihrit
Eun.0/ D

P
j<k

Evj
n C Ew

k
n ; Evj

n D eihri.t�t
j
n /T j

n '
j ;

u<k
.n/ D

P
j<k

u
j

.n/
; Eu

j

.n/
D T j

n
EU

j
1..t � tj

n /=hj
n/;

kEvj
n .0/� Eu

j

.n/
.0/kL2

x
! 0 .n!1/:

(6-6)

Lemma 5.6 precludes that all the nonlinear profiles EU j
1 have finite global Strichartz norm. On the other

hand, every solution of NLKG in KC with energy less than E? has global finite Strichartz norm by the
definition of E?. Hence by Lemma 5.3 we deduce that there is only one profile i.e. K D 1, and moreover

zE.Eu0
.n// D E?; Eu0

.n/.0/ 2
zKC; k yU 0

1kST 0
1.R/

D1; lim
n!1

k Ew1
nkL1t L2

x
D 0: (6-7)

If h0
n ! 0 in the critical case, then yU 0

1 D jrj
�1 Re EU 0

1 solves the massless equation

.@2
t ��/

yU 0
1 D f

0. yU 0
1/; (6-8)

and satisfies

E0. yU 0
1/ D E? < m D J .0/.Q/; Kw. yU 0

1.0// � 0; k yU 0
1kŒW ��

2
D1; (6-9)

where Q is the massless ground state and Kw is the massless version of K. However, there is no such
solution, by [Kenig and Merle 2008].5 Hence h0

n � 1 in all cases, and we obtain (6-5).

5That reference is restricted to the dimensions d � 5 for simplicity of the perturbation argument, but the elimination of
critical elements works in any higher dimensions.
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Hence h0
n � 1 in all cases, and we obtain (6-5).

It remains to prove that yU 0
1 D hri

�1 Re EU 0
1 is a global solution. Suppose not. Then we can choose

a sequence tn 2 R approaching the maximal existence time. Since the sequence of solutions yU 0
1.tC tn/

satisfies the assumption of this lemma, we may apply the above argument to it. In particular, from (6-5)
we obtain

k EU 0
1.tn/� e�ihrit 0n .x�x0n/kL2

x
! 0; (6-10)

for some  2 L2
x and another sequence .t 0n;x

0
n/ 2 R�Rd . Let Ev WD eihrit . Since it is a free solution,

for any " > 0 there is ı > 0 such that for any interval I satisfying jI j � 2ı, we have khri�1EvkST .I / � ",
where ST D ŒW �2\ ŒK�2 as in (5-59). Then (6-10) implies that

lim
n!1

khri
�1eihrit EU 0

1.tn/kST .�ı;ı/ � ": (6-11)

If " > 0 is small enough, this implies that the solution yU 0
1 exists on .tn � ı; tn C ı/, by the iteration

argument, for large n. This contradicts the choice of tn. Hence yU 0
1 is global and so a critical element. �

7. Extinction of the critical element

In this section, we prove that the critical element can not exist by deriving a contradiction from a few
properties of it. The main idea follows [Kenig and Merle 2006; 2008]. Let uc be a critical element given
by Lemma 6.1. Since NLKG is symmetric in t , we may assume that kuckST .0;1/ D 1. We call such
u a forward critical element. Note that since the critical element is in KC, we have EQ.uI t/ � E.u/

uniformly, by Lemma 2.10.

Compactness. First we show that the trajectory of a forward critical element is precompact for positive
time in the energy space modulo spatial translations.

Lemma 7.1. Assume that f satisfies (1-36), and let uc be a forward critical element. Then there exists
c W .0;1/! Rd such that the set

f.u; Pu/.t;x� c.t// j 0 < t <1g (7-1)

is precompact in H 1.Rd /�L2.Rd /.

Proof. The proof in [Kenig and Merle 2008] can be adapted verbatim, but we give a sketch for the sake
of completeness. Recall the convention u$ Eu defined on page 427.

It suffices to prove precompactness of fEu.tn/g in L2
x for any t1; t2; � � � > 0. If tn converges, then it

is trivial from the continuity in t . Hence we may assume that tn ! 1. Applying Lemma 6.1 to the
sequence of solutions u.t C tn/, we get another sequence .t 0n;x

0
n/ 2 R1Cd and ' 2 L2 such that

Eu.tn;x/� e�ihrit 0n'.x�x0n/! 0 in L2
x .n!1/: (7-2)

If t 0n ! �1, then we have

keihrit
Eu.tn/kST .0;1/ D ke

ihrit'kST .�t 0n;1/
C o.1/! 0; (7-3)

so that we can solve NLKG of u for t > tn with large n globally by iteration with small Strichartz norms,
contradicting its forward criticality.
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If t 0n !C1, then we have

keihrit
Eu.tn/kST .�1;0/ D ke

ihrit'kST .�1;�t 0n/
C o.1/! 0; (7-4)

so that we can solve NLKG of u for t < tn with large n with diminishing Strichartz norms, which implies
u D 0 by taking the limit, a contradiction.

Thus t 0n is precompact, so is Eu.tn;xCx0n/ in L2
x by (7-2). �

As a consequence, the energy of u stays within a fixed radius for all positive time, modulo arbitrarily
small rest. More precisely, we define the exterior energy by

ER;c.uI t/ D

Z
jx�cj�R

jut j
2
Cjruj2Cjuj2Cjf .u/jC juf 0.u/jdx; (7-5)

for any R > 0 and c 2 Rd . Then we have

Corollary 7.2. Let u be a forward critical element. Then for any " > 0, there exist R0."/ > 0 and
c.t/ W .0;1/! Rd such that at any t > 0 we have

ER0;c.t/.uI t/ � "E.u/: (7-6)

Zero momentum and non-propagation. Next we observe that the critical element can not move with
any positive speed in the sense of energy. For that we first need to see that the (conserved) momentum

P .u/ WD

Z
Rd

utrudx 2 Rd (7-7)

is zero for any critical element u.

Lemma 7.3. For any critical element u, we have P .u/ D 0.

Proof. For j D 1; : : : ; d and � 2 R, we define the operator L�j of Lorentz transformation:

L�j u.x0; : : : ;xd / D u.y0; : : : ;yd /;

y0 D x0 cosh�Cxj sinh�; yj D x0 sinh�Cxj cosh�; yk D xk .k 6D 0; j /:
(7-8)

Then L˛j L
ˇ
j D L

˛Cˇ
j . Since @�y0 D yj and @�yj D y0, we have

@�L�j u D L�j Œ.xj@t C t@j /u�: (7-9)

Also we have

@tL
�
j D L�j .s@t C c@j /; @t tL

�
j D L�j .s

2@t t C 2sc@tj C c2@jj /;

@j L�j D L�j .c@t C s@j /; @jj L�j D L�j .c
2@t t C 2sc@tj C s2@jj /;

(7-10)

where s WD sinh� and c WD cosh�. In particular Œ@2
t ��;L

�
j � D 0, and so L�j maps global solutions to

themselves. For the space-time norm, we have“
L�j v dt dxj D

“
v

ˇ̌̌̌�
c s

s c

�ˇ̌̌̌
dt dxj D

“
v dt dxj I (7-11)
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hence L�j preserves all L
p
t;x.R

1Cd / norm. For any solution u, we have

@0
�E.L�j u/ D hut j @

0
�@tL

�
j uiC hru j @0

�rL�j uiC hu�f 0.u/ j @0
�L�j ui

D hut j xj ut t C tutj Cuj iC huk j xj ukt C tukj C ıkj ut iC hu�f
0.u/ j xj ut C tuj i

D hxj ut j �uiC 2hut j uj i � hxj ukt j uki D hut j uj i D P .u/; (7-12)

where @0
�
WD @�j�D0. If Pj .u/ 6D 0 for some j , then we obtain another global solution L�j u, which

has smaller energy and infinite Strichartz norm. It also belongs to KC, by continuity. More precisely,
the continuity of L�j u in � in the energy space easily follows from the local wellposedness if u has
compactly supported initial data. Then the original solution is approximated by smooth cut-off using the
finite propagation property. Thus we obtain another critical element with less energy, a contradiction.
Hence P .u/ D 0. �

Next we see stillness of critical elements in terms of the energy propagation. For any R> 0, we define
the localized center of energy XR.t/ 2 Rd by

XR.uI t/ WD

Z
�R.x/xe.u/.t;x/ dx; (7-13)

where �
R

is as defined in (1-23), and e.u/ denote the energy density of u, namely

e.u/ D .jut j
2
Cjruj2Cjuj2/=2�f .u/: (7-14)

From the energy identity Pe.u/ D r � .utru/, we get for any solution u

d

dt
XR.uI t/ D �dP .u/C

Z
Œd.1��R.x//C .r@r /�R.x/�utru: (7-15)

If u is a critical element, the first term disappears by the above lemma, so we haveˇ̌̌̌
d

dt
XR.uI t/

ˇ̌̌̌
.ER;0.uI t/: (7-16)

Moreover, since u is in KC, by Lemma 2.12 there exists ı0 2 .0; 1/ such that

K1;0.u.t// � ı0ku.t/k
2
H 1 for all t 2 R: (7-17)

Lemma 7.4. Let u be a forward critical element, and let R0."/ > 0, c.t/ 2 Rd and ı0 > 0 be as in (7-6)
and (7-17). If 0 < "� ı0 and R� R0."/ then we have

jc.t/� c.0/j � R�R0."/; (7-18)

for 0 < t < t0 till some t0& ı0R=".

Proof. By translation in x, we may assume that c.0/D 0. Let t0 be the final time for the above property

t0 D infft > 0 j jc.t/j � R�R0g: (7-19)
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Then the finite speed of propagation implies that t0 > 0. For any 0 < t < t0 we have jc.t/j � R�R0,
hence by (7-6) we have ER;0 � "E.u/, and so by (7-16) we getˇ̌̌̌

d

dt
XR.uI t/

ˇ̌̌̌
. "E.u/: (7-20)

Next we expand it around c:

c.t/ �XR.uI t/ D jc.t/j
2

Z
�R.x/e.u/ dxC

Z
�R.x/c � .x� c/e.u/ dx; (7-21)

where the first term on the right is bounded from below by

E.u/�

Z
.1��R.x//e.u/ dx � k Pu.t/k2

L2
x
=2CK1;0.u.t//�CER;0.t/

� ı0E.u/�C "E.u/& ı0E.u/; (7-22)

since " � ı0. The second term of (7-21) is dominated by splitting the integral into jx � cj � R0 and
jx � cj � R0. In the interior it is bounded by using the energy bound, and in the exterior it is bounded
by using (7-6). Thus we obtainˇ̌̌̌Z

�R.x/c � .x� c/e.u/ dx

ˇ̌̌̌
. .R0CR"/E.u/jcj: (7-23)

In the same way we have jXR.uI 0/j. .R0CR"/E.u/, since c.0/ D 0. Thus we get

ı0E.u/jc.t/j. .R0CR"C "t/E.u/; (7-24)

and sending t ! t0, we get ı0R. "t0. �

Dispersion and contradiction. Finally we use the localized virial identity to see dispersion of the critical
element, which will contradict the above non-propagation property. For any R > 0, we define the
localized virial VR.uI t/ 2 R by

VR.uI t/ WD h�R.x/ut j .x � r Cr �x/ui; (7-25)

where �
R

is as defined in (1-23). Then we have for any solution u,

d

dt
VR.uI t/ D �

Z
�R.x/Œ2jruj2� d.D� 2/f .u/�C

d

2
juj2��R.x/ dx

�

Z
r@r�R.x/

�
jut j

2
C 2jur j

2
� jruj2� juj2C 2f .u/

�
dx

� �Kd;�2.u.t//CCER;0.uI t/: (7-26)

If u is a critical element, then u 2 KC and hence by Lemma 2.12, there exists ı2 2 .0; 1/ such that

Kd;�2.u.t// � ı2kru.t/k2
L2

x
(7-27)

for all t > 0. Thus we obtain, integrating in t ,

VR.uI t0/ � VR.uI 0/� ı2

Z t0

0

kru.t/k2
L2

x
dt CC "E.u/t0: (7-28)
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Now by the compactness Lemma 7.1, we have:

Lemma 7.5. Let u be a forward critical element. Then for any " > 0 there exists C > 0 such that

ku.t/k2
L2

x
� Ckru.t/k2

L2
x
C "k Pu.t/k2

L2
x
; (7-29)

for all t > 0.

Proof. Otherwise there exists a sequence tn > 0 such that

ku.tn/k
2

L2
x
> nkru.tn/k

2

L2
x
C "k Pu.tn/k

2

L2
x
: (7-30)

Since u is L2
x bounded, it follows that kru.tn/kL2

x
! 0. Then Lemma 7.1 implies that, after passing to

a subsequence, u.tn/! 0 strongly in H 1
x , then the above inequality implies that Pu.tn/! 0 too. Hence

EQ.uI tn/! 0, which contradicts the energy equivalence, Lemma 2.10. �

Multiplying the equation with u, and then applying the above lemma with " D 1
4

, we obtain

@t hu j Pui D

Z
Rd

j Puj2� jruj2� juj2CDf .u/ dx �

Z
Rd

j Puj2=2Cjuj2�C jruj2dx; (7-31)

with some C > 0. Hence Z t0

0

k Puk2
L2

x
Ckuk2

L2
x
dt .E.u/C

Z t0

0

kruk2
L2

x
dt; (7-32)

and so

t0E.u/ �

Z t0

0

EQ.uI t/ dt .E.u/C

Z t0

0

kruk2
L2

x
dt: (7-33)

Now we choose positive " � ı2ı0 and R � R0."/. Then by Lemma 7.4 there exists t0 � ı0R="

such that ER;0.uI t/ � "E.u/ for 0 < t < t0. Then from (7-28) and (7-33), we have

�VR.uI t0/CVR.uI 0/& Œı2t0�C "t0�C �E.u/& ı2t0E.u/ �
ı2ı0R

"
E.u/; (7-34)

while the left-hand side is dominated by RE.u/— a contradiction when "=ı2ı0 is small enough. �

Appendix: The range of scaling exponents

In Section 2, we have shown that m˛;ˇ in (1-17) is positive and achieved (after modification of the mass
in the critical and exponential cases) if .˛; ˇ/ satisfies (1-16). Here we see that it is also necessary,
modulo the obvious symmetry .˛; ˇ/ ! .�˛;�ˇ/. For simplicity, we consider only the pure power
nonlinearity.

Proposition A.1. Assume that neither .˛; ˇ/ 2 R2 nor .�˛;�ˇ/ satisfies (1-16). There exists q 2

.2?; 2
?/ such that m˛;ˇ D �1 for f .'/ D j'jq .

Proof. By symmetry with respect to .˛; ˇ/! .�˛;�ˇ/, we may assume that ˇ > 0 and N�D 2˛Cdˇ > 0.
First we consider the case ˛ < 0 and � > 0, which implies that d � 2. Let .2?; 2?/ 3 q D 2C p,

then we have
˛pC N� � d�=.d � 2/ > 0: (A-1)
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Decompose K.'/ by setting

K D K1CK2; K1.'/ D �
kr'k2

L2

2
; K2.'/ D N�

k'k2
L2

2
� .˛pC N�/F.'/: (A-2)

Suppose that 0 6D ' 2 H 1.Rd / satisfies K2.'/ D 0. If there is no such ', then K is positive definite
and the minimization set in (1-17) becomes empty. Let 1 < � ! 1C 0. Then

0 > K2.�'/! K2.'/ D 0; K1.�'/! K1.'/ > 0: (A-3)

Now let �.�/ > 0 solve

0 D K.�'.x=�// D �d�2K1.�'/C�
dK2.�'/I (A-4)

in other words �.�/ D Œ�K2.�'/=K1.�'/�
1=2. Then �.�/!1 as � ! 1C 0 due to (A-3). Since

N�J. / D K. /Cˇkr k2
L2 C˛pF. /; (A-5)

we obtain
N�J.�'.x=�// D ˇ�2�d�2

kr'k2
L2 C˛p�

dF.�'/! �1; (A-6)

which implies that m D �1.
Next, if N� D 0 > ˛, which implies d � 2, then for any nonzero ' 2 H 1.Rd / satisfying K.'/ D 0

we have
K.'.x=�// D �dK.'/ D 0; (A-7)

and similarly as above,
J.'.x=�// D O.��d /!1 as �!1:

Finally consider the case � < 0 < N�. Then ˛pC 2ˇ D 0 has a solution p 2 .4=d; 2? � 2/. Since
˛pC N� D ˛pC 2ˇC�, there exists p 2 .4=d; 2?� 2/ such that

˛pC N� < 0 < ˛pC 2ˇ: (A-8)

Then KN .'/ D �.˛pC N�/F.'/ is positive and so for any ' 2 H 1.Rd /, K.�'/ � 0 if � � 1. Since
the kinetic term in K is negative, there exists �.�/ 2 Rd such that K.ei�x�'/ D 0. Since

��J. / D �K. /C 2ˇ
k'k2

L2

2
� .˛pC 2ˇ/F. /; (A-9)

we obtain

��J.ei�x�'/ D 2ˇ�2
k'k2

L2

2
� .˛pC 2ˇ/F.� /! �1; (A-10)

which implies that m D �1. �
The above proof shows that if ˛ < 0 and � � 0 then m D �1 for all q 2 .2; 2?�. The choice of q

was needed only in the other region.
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Table of Notation
Notation applies to any s 2 R, � � 0, .˛; ˇ/ 2 R2, j ; k 2 Z, Z 2 R3, I � R, '; 2 H 1.Rd /,

u 2 Ct .H
1
x .R

d //, any suffix };~, any sequence 'n 2 H 1.Rd /, and any functional G on H 1.Rd /.

d 2 N, 2?; 2
? > 0: space dimension and critical powers (1-3)

Dimension and scaling
˛; ˇ 2 R, N� � � � 0: scaling exponents and their functions (2-1)
'�
˛;ˇ

, L˛;ˇG: rescaled family and scaling derivative (1-13) (1-14)
(subscript }˛;ˇ and ~˛;ˇ are often written as } and ~)

1st order representation Eu $ u: linked with each other by (4-1)

F.'/; f .s/ � 0: nonlinear energy and its density (1-11)
Nonlinearity fS .s/; fL.s/ � 0: small and large parts of f (1-24)

p1;p2 > 0, �0 � 0: leading powers of fS and fL (1-25) (1-26) (1-29)

J.'/;J .�/.'/ 2 R: static energy, with mass change (1-11) (1-12)
K˛;ˇ.'/;K

.c/

˛;ˇ
.'/ 2 R, H˛;ˇ.'/ � 0: derivatives of J (1-15) (2-26)

K
Q

˛;ˇ
.'/;KN

˛;ˇ
.'/ 2 R: quadratic and nonlinear parts of K (2-2)

Functionals
E.uI t/;E.';  /; e.u/ 2 R: total energy and its density (1-5) (7-14)
EQ.uI t/;EQ.';  / � 0: linear energy (1-37)
zE.'/; zK˛;ˇ.'/ 2 R: vector versions of E and K (4-3)
P .uI t/;ER;c.uI t/ 2 R: momentum and exterior energy (7-7) (7-5)
XR.uI t/;VR.uI t/ 2 R: localized energy center and virial (7-13) (7-25)

m˛;ˇ;E
? � 0: static and scattering energy thresholds (1-17) (6-1)

K˙˛;ˇ , zKC
˛;ˇ

: splitting below the threshold (1-18) (4-5)
Variational splittings C �

TM.G/;C
?
TM.G/ 2 Œ0;1�: Trudinger–Moser ratio (2-47) (2-49)

M.G/ 2 Œ0;1�: Trudinger–Moser threshold on PH 1 (2-48)
conc G..'n/n/ 2 R: concentration at x D 0 (2-51)

ŒZ��.I/; ŒZ�0.I/; ŒZ�
�
�.I/: Lebesgue–Besov spaces on I �Rd (4-7)

Zs;Z�.s/ 2 R3: regularity change and dual of exponents (4-9)
reg� .Z/; str� .Z/; dec� .Z/ 2 R: regularity and decay indexes (4-8)
H;W;K;M ];V 2 R3: exponents for d 2 N (4-24) (4-31) (5-68)

Function spaces X;S;L 2 R3: exponents for d � 4 (4-31) (4-54)
and exponents zM ;M; yM ; zN ;N;Q;P;Y;R;G 2 R3: exponents for d � 5 (4-68) (4-69) (5-87)

H";W";M
]
" 2 R3: exponents for d � 5 (5-81)

H 1
� , MC: H 1.R2/ and a set of Fourier multipliers on Rd (4-38) (5-2)

X, Y, Y0, zY, Y�
0
, Y�: Strichartz-type spaces (4-54) (4-77)

ST .I/;ST �.I/;ST }1.I/: Strichartz-type spaces on I �Rd (5-59) (5-60)

.t}
~
;x}
~
; h}
~
/ 2 R1Cd � Œ0; 1�: time-space-scale shift parameter page 438

}
~
D �t}

~
=h}
~
2 R: rescaled time shift

h}1 2 f0; 1g,
}
1 2 Œ�1;1�: limit of h}n and }n

Profile decomposition
T }
~
'; hri~}': operators dependent on .x}

~
; h}
~
/ (5-1)

.t
jl
n ;x

jl
n ; h

jl
n /, S

jl
n u: relative shift and transform (5-21) (5-20)

�}
~
2 R, �}1 2 Œ�1;1�: scaled time shift and its limit (5-1)

EU}1, yU}1, : nonlinear profiles (scaled limit) (5-52) (5-53)
Eu

j

.n/
, Eu<k
.n/

: nonlinear profiles (in original scales) (5-54) (5-58)



SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR KLEIN–GORDON EQUATION 459

References

[Adachi and Tanaka 2000] S. Adachi and K. Tanaka, “Trudinger type inequalities in RN and their best exponents”, Proc. Amer.
Math. Soc. 128:7 (2000), 2051–2057. MR 2000m:46069 Zbl 0980.46020

[Adimurthi 1990] Adimurthi, “Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the
n-Laplacian”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. .4/ 17:3 (1990), 393–413. MR 91j:35016 Zbl 0732.35028

[Adimurthi and Struwe 2000] Adimurthi and M. Struwe, “Global compactness properties of semilinear elliptic equations with
critical exponential growth”, J. Funct. Anal. 175:1 (2000), 125–167. MR 2001g:35063 Zbl 0956.35045

[Akahori and Nawa 2010] T. Akahori and H. Nawa, “Blowup and scattering problems for the nonlinear Schrödinger equations”,
preprint, 2010. arXiv 1006.1485

[Bahouri and Gérard 1999] H. Bahouri and P. Gérard, “High frequency approximation of solutions to critical nonlinear wave
equations”, Amer. J. Math. 121:1 (1999), 131–175. MR 2000i:35123 Zbl 0919.35089

[Bahouri and Shatah 1998] H. Bahouri and J. Shatah, “Decay estimates for the critical semilinear wave equation”, Ann. Inst.
H. Poincaré Anal. Non Linéaire 15:6 (1998), 783–789. MR 99h:35136 Zbl 0924.35084

[Brenner 1984] P. Brenner, “On space-time means and everywhere defined scattering operators for nonlinear Klein–Gordon
equations”, Math. Z. 186:3 (1984), 383–391. MR 85h:35183 Zbl 0524.35084

[Carleson and Chang 1986] L. Carleson and S.-Y. A. Chang, “On the existence of an extremal function for an inequality of J.
Moser”, Bull. Sci. Math. .2/ 110:2 (1986), 113–127. MR 88f:46070

[Côte et al. 2008] R. Côte, C. E. Kenig, and F. Merle, “Scattering below critical energy for the radial 4D Yang–Mills equation
and for the 2D corotational wave map system”, Comm. Math. Phys. 284:1 (2008), 203–225. MR 2010k:35312 Zbl 1170.35064

[Duyckaerts et al. 2008] T. Duyckaerts, J. Holmer, and S. Roudenko, “Scattering for the non-radial 3D cubic nonlinear
Schrödinger equation”, Math. Res. Lett. 15:6 (2008), 1233–1250. MR 2010e:35257

[Figueiredo et al. 1995] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, “Elliptic equations in R2 with nonlinearities in the
critical growth range”, Calc. Var. Partial Differential Equations 3:2 (1995), 139–153. MR 97c:35063a Zbl 0820.35060

[Flucher 1992] M. Flucher, “Extremal functions for the Trudinger–Moser inequality in 2 dimensions”, Comment. Math. Helv.
67:3 (1992), 471–497. MR 93k:58073 Zbl 0763.58008

[Ginibre and Velo 1985a] J. Ginibre and G. Velo, “The global Cauchy problem for the nonlinear Klein–Gordon equation”,
Math. Z. 189:4 (1985), 487–505. MR 86f:35149 Zbl 0549.35108

[Ginibre and Velo 1985b] J. Ginibre and G. Velo, “Time decay of finite energy solutions of the nonlinear Klein–Gordon and
Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor. 43:4 (1985), 399–442. MR 87g:35208

[Ibrahim et al. 2007] S. Ibrahim, M. Majdoub, and N. Masmoudi, “Double logarithmic inequality with a sharp constant”, Proc.
Amer. Math. Soc. 135:1 (2007), 87–97. MR 2008a:46034 Zbl 1130.46018

[Ibrahim et al. 2009] S. Ibrahim, M. Majdoub, N. Masmoudi, and K. Nakanishi, “Scattering for the two-dimensional energy-
critical wave equation”, Duke Math. J. 150:2 (2009), 287–329. MR 2010k:35313 Zbl 1206.35175

[Ibrahim et al. 2011] S. Ibrahim, N. Masmoudi, and K. Nakanishi, “Trudinger–Moser inequality on the whole plane with the
exact growth condition”, preprint, 2011. arXiv 1110.1712

[Jeanjean and Le Coz 2009] L. Jeanjean and S. Le Coz, “Instability for standing waves of nonlinear Klein–Gordon equations
via mountain-pass arguments”, Trans. Amer. Math. Soc. 361:10 (2009), 5401–5416. MR 2010h:35269 Zbl 1176.35156

[Kenig and Merle 2006] C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical,
focusing, non-linear Schrödinger equation in the radial case”, Invent. Math. 166:3 (2006), 645–675. MR 2007g:35232

[Kenig and Merle 2008] C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical
focusing non-linear wave equation”, Acta Math. 201:2 (2008), 147–212. MR 2011a:35344 Zbl 1183.35202

[Killip et al. 2008] R. Killip, M. Visan, and X. Zhang, “The mass-critical nonlinear Schrödinger equation with radial data in
dimensions three and higher”, Anal. PDE 1:2 (2008), 229–266. MR 2011b:35487

[Killip et al. 2009] R. Killip, T. Tao, and M. Visan, “The cubic nonlinear Schrödinger equation in two dimensions with radial
data”, J. Eur. Math. Soc. .JEMS/ 11:6 (2009), 1203–1258. MR 2010m:35487

[Krieger and Schlag 2009] J. Krieger and W. Schlag, “Concentration compactness for critical wave maps”, preprint, 2009.
arXiv 0908.2474



460 SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

[Machihara et al. 2002] S. Machihara, K. Nakanishi, and T. Ozawa, “Nonrelativistic limit in the energy space for nonlinear
Klein–Gordon equations”, Math. Ann. 322:3 (2002), 603–621. MR 2003b:35199 Zbl 0991.35080

[Moser 1971] J. Moser, “A sharp form of an inequality by N. Trudinger”, Indiana Univ. Math. J. 20 (1971), 1077–1092. MR 46
#662 Zbl 0213.13001

[Nakanishi 1999a] K. Nakanishi, “Scattering theory for the nonlinear Klein–Gordon equation with Sobolev critical power”,
Internat. Math. Res. Notices 1 (1999), 31–60. MR 2000a:35174 Zbl 0933.35166

[Nakanishi 1999b] K. Nakanishi, “Energy scattering for nonlinear Klein–Gordon and Schrödinger equations in spatial dimen-
sions 1 and 2”, J. Funct. Anal. 169:1 (1999), 201–225. MR 2000m:35141

[Nakanishi 2001] K. Nakanishi, “Remarks on the energy scattering for nonlinear Klein–Gordon and Schrödinger equations”,
Tohoku Math. J. .2/ 53:2 (2001), 285–303. MR 2002e:35220

[Ohta and Todorova 2007] M. Ohta and G. Todorova, “Strong instability of standing waves for the nonlinear Klein–Gordon
equation and the Klein–Gordon–Zakharov system”, SIAM J. Math. Anal. 38:6 (2007), 1912–1931. MR 2008a:35198 Zbl
1128.35074

[Payne and Sattinger 1975] L. E. Payne and D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations”,
Israel J. Math. 22:3-4 (1975), 273–303. MR 53 #6112 Zbl 0317.35059

[Ruf 2005] B. Ruf, “A sharp Trudinger–Moser type inequality for unbounded domains in R2”, J. Funct. Anal. 219:2 (2005),
340–367. MR 2005k:46082 Zbl 1119.46033

[Shatah 1985] J. Shatah, “Unstable ground state of nonlinear Klein–Gordon equations”, Trans. Amer. Math. Soc. 290:2 (1985),
701–710. MR 86k:35088 Zbl 0617.35072

[Sterbenz and Tataru 2010] J. Sterbenz and D. Tataru, “Regularity of wave-maps in dimension 2C 1”, Comm. Math. Phys.
298:1 (2010), 231–264. MR 2011h:58026 Zbl 1218.35057

[Tao 2008a] T. Tao, “Global regularity of wave maps, III: Large energy from R1C2 to hyperbolic spaces”, preprint, 2008.
arXiv 0805.4666

[Tao 2008b] T. Tao, “Global regularity of wave maps, IV: Absence of stationary or self-similar solutions in the energy class”,
preprint, 2008. arXiv 0806.3592

[Tao 2008c] T. Tao, “Global regularity of wave maps, V: Large data local wellposedness in the energy class”, preprint, 2008.
arXiv 0808.0368

[Tao 2009a] T. Tao, “Global regularity of wave maps, VI: Abstract theory of minimal-energy blowup solutions”, preprint, 2009.
arXiv 0906.2833

[Tao 2009b] T. Tao, “Global regularity of wave maps, VII: Control of delocalised or dispersed solutions”, preprint, 2009.
arXiv 0908.0776

[Tao and Visan 2005] T. Tao and M. Visan, “Stability of energy-critical nonlinear Schrödinger equations in high dimensions”,
Electron. J. Differential Equations (2005), art. no. 118. MR 2006e:35307

[Tao et al. 2007] T. Tao, M. Visan, and X. Zhang, “The nonlinear Schrödinger equation with combined power-type nonlineari-
ties”, Comm. Partial Differential Equations 32:7-9 (2007), 1281–1343. MR 2009f:35324

[Zhang 2002] J. Zhang, “Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations”, Non-
linear Anal. A: Theory Methods 48:2 (2002), 191–207. MR 2002h:35303

Received 28 Jan 2010. Revised 11 May 2010. Accepted 8 Jun 2010.

SLIM IBRAHIM: ibrahim@math.uvic.ca
Department of Mathematics and Statistics, University of Victoria, PO Box 3060 STN CSC, Victoria V8P 5C3, Canada
http://www.math.uvic.ca/~ibrahim/

NADER MASMOUDI: masmoudi@courant.nyu.edu
Courant Institute for Mathematical Sciences, New York University, New York, NY 10012-1185, United States
http://www.math.nyu.edu/faculty/masmoudi

KENJI NAKANISHI: n-kenji@math.kyoto-u.ac.jp
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

mathematical sciences publishers msp



ANALYSIS AND PDE
Vol. 4, No. 3, 2011

msp

RAYLEIGH-TYPE SURFACE QUASIMODES IN GENERAL LINEAR ELASTICITY

SÖNKE HANSEN

Rayleigh-type surface waves correspond to the characteristic variety, in the elliptic boundary region,
of the displacement-to-traction map. In this paper, surface quasimodes are constructed for the reduced
elastic wave equation, anisotropic in general, with traction-free boundary. Assuming a global variant of
a condition of Barnett and Lothe, the construction is reduced to an eigenvalue problem for a selfadjoint
scalar first order pseudodifferential operator on the boundary. The principal and the subprincipal symbol
of this operator are computed. The formula for the subprincipal symbol seems to be new even in the
isotropic case.

1. Introduction

Rayleigh [1887] discovered the existence of surface waves which propagate along a traction-free flat
boundary of an isotropic elastic body and which decay exponentially into the interior. The propagation
speed of the surface wave is strictly less than that of body waves. Barnett and Lothe [1976] showed that
Rayleigh-type surface waves can also exist at flat boundaries of anisotropic elastic media.

The goal of this paper is to construct, for elastic media which are not necessarily isotropic, Rayleigh-
type surface quasimodes which are asymptotic to eigenvalues or resonances. We use a geometric version
of semiclassical microlocal analysis.

The Rayleigh wave phenomenon of isotropic elastodynamics was explained by Taylor [1979] as prop-
agation of singularities, over the elliptic boundary region, for the Neumann (displacement-to-traction)
operator. Nakamura [1991] generalized this to anisotropic media, using the theory of Barnett and Lothe.
Assuming isotropy of the elastic medium, Cardoso and Popov [1992] and Stefanov [2000] constructed
Rayleigh quasimodes.

Let .M;g/ be an oriented Riemannian manifold with nonempty compact smooth boundary X . The
(infinitesimal) displacement of an elastic medium occupying M is a vector field u on M . The Lie
derivative of the metric tensor is a symmetric tensor field, Def uDLug=2, called the deformation (strain)
tensor caused by the displacement u. The elastic properties are defined by the elasticity (stiffness) tensor.
This is a real fourth order tensor field C 2C1.M IEnd.T 0;2M //, e 7!Ce, which maps into symmetric
tensors and vanishes on antisymmetric tensors. We assume positive definiteness of C , i.e., .e j f /C D
.Ce j f / defines an inner product on the space of symmetric tensors e and f . Here . � j � / denotes the
inner product on tensors induced from g. This assumption is often called the strong convexity condition.
If coordinates are given, then the components of C satisfy symmetries, C ijk` D C jik` D C k`ij , and
C ijk`eij ek` > 0 if eij is a nonzero symmetric tensor. (We use the summation convention.) Denote the

MSC2010: primary 35Q74; secondary 74J15, 35P20, 35S05.
Keywords: Rayleigh surface waves, elastodynamics, anisotropy, quasimodes, microlocal analysis.

461



462 SÖNKE HANSEN

Riemannian volume elements on M and X by dVM and dVX , respectively. The elasticity operator L

and the traction T are defined, on compactly supported vector fields, byZ
M

.Def u j Def v/C dVM D

Z
M

.Lu j v/ dVM C

Z
X

.T u j v/ dVX : (1)

A positive mass density � 2 C1.M / and the elasticity tensor C define the material properties of the
elastic medium. If the surface X is traction-free, then vibrations of the medium are solutions of the
following eigenvalue problem: Lu D �2�u in M , T u D 0 at X . See [Marsden and Hughes 1983] for
linear elasticity in the language of Riemannian geometry.

The principal symbol of L, and of the h-differential operator h2L, equals the acoustic tensor, c.�/D

c.�; �/2End.CTxM /, � 2T �x M ; see (31). Here the associated acoustical tensor c.�; �/2End.CTxM /,
�; � 2 T �x M , is defined as follows:�

c.�; �/v j w
�
D
�
v˝ � j w˝ �

�
C
: (2)

(Using g, we identify vectors with covectors.) The ik-th covariant component of c.�;�/ equals C ijk`�j�`.
The existence of Rayleigh waves depends on the characteristic variety, †, of the surface impedance

tensor, z. To define z, we first recall the definition of the elliptic boundary region, E � T �X . Let �
denote the unit exterior conormal field of the boundary X . Identify T �X D �? � T �

X
M . By definition,

� 2 E if and only if c.� C s�/ � � Id is positive definite for real s. From the factorization theory of
selfadjoint matrix polynomials one gets q.�/ 2 End.CTxM /, � 2 E\T �x X , such that

c.�C s�/� � IdD
�
s Id�q�.�/

�
c.�/

�
s Id�q.�/

�
; (3)

s 2C. Moreover, the spectrum of q.�/ lies in the lower half-plane, spec q.�/�C�, and these properties
determine q.�/ uniquely. The surface impedance tensor z is defined as follows:

z.�/D ic.�/q.�/C ic.�; �/; � 2 E: (4)

The significance of z results from the fact, proved in Lemma 18, that z is the principal symbol of a
parametrix of the displacement-to-traction operator. In physics, the meaning of z is that it relates the
amplitudes of displacements to the amplitudes of tractions (forces) needed to sustain these.

The surface impedance tensor is Hermitian, and positive definite for large j�j [Barnett and Lothe 1985,
Theorem 6]. If dim M D 3, then

z.�/, � 2 E, has at most one nonpositive eigenvalue. (U)

This property expresses the uniqueness of Rayleigh-type surface waves [Barnett and Lothe 1985, Theo-
rem 8]. In case dim X ¤ 3, we shall assume (U) as a hypothesis. The characteristic variety of z,

†D f� 2 E I det z.�/D 0g;

is a smooth hypersurface, transversal to the radial directions of the fibers of T �X . Compare [Barnett
and Lothe 1985, Theorem 7]. Rayleigh waves exist only if † is not empty. We shall make the stronger
assumption that † intersects every radial line:

†\RC� ¤∅ if � 2 T �X n 0: (E1)
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Compare [Barnett and Lothe 1985, Theorem 12], [Nakamura 1991, Theorem 2.2], [Kawashita and
Nakamura 2000, (ERW)]. Assuming (U) and (E1), there exists a unique p 2 C1.T �X n 0/, p > 0,
homogeneous of degree 1, such that

†D p�1.1/: (5)

See Proposition 6. Furthermore, the kernel of z defines a line bundle, ker z �†, over the compact base
†. We shall require that its first Chern class vanishes:

ker z �† is a trivial line bundle. (E2)

In particular, the bundle is assumed to possess a unit section. Property (E2) is stable with respect to
homotopies in the material properties; see Corollary 7. In the case of isotropic elasticity with positive
Lamé parameters, (U), (E1), and (E2) hold. Moreover,

†D fcr j�j D 1g � ED fcsj�j> 1g; p.�/D cr j�j:

Here cr is the propagation speed of the Rayleigh surface wave which is strictly less than the speeds of
the body waves, 0< cr < cs < cp. See Example 8.

Next we state the central result of this paper: The traction-free surface eigenvalue problem can be
intertwined with a selfadjoint eigenvalue problem on the boundary. We employ a semiclassical pseudo-
differential calculus, with distributions and operators depending on a small parameter, 0 < h � 1. We
write Ah�Bh if and only if the Schwartz kernel of Ah�Bh belongs to C1 with seminorms satisfying
OC1.h

1/.

Theorem 1. Assume dim M D 3, or (U). Assume (E1), (E2). Given a unit section v of ker z � †, there
exists a selfadjoint, elliptic operator P 2‰1.X I�1=2/, independent of h, and operators,

Bh WL
2.X ICTX M /!L2.M ICTM /; kBhk D O.h1=2/;

Jh; QJh 2‰
0;0.X I�1=2;CTX M /; J�h Jh elliptic at †,

such that �
h2L� �

�
Bh � 0; TBhJh �

QJh.P � h�1/;

and BhjX D Id in a neighborhood of †. The principal symbol of P equals p of (5). Furthermore, there
is a formula, (50), for the subprincipal symbol psub of P . If v is changed to another unit section, ei'v,
then the subprincipal symbol changes to psubCfp; 'g, where fp; 'g denotes the Poisson bracket.

This result is known in the isotropic case [Cardoso and Popov 1992; Stefanov 2000], except for the
assertions about the subprincipal symbol.

The operator Bh is a parametrix of the Dirichlet problem near †; see Proposition 17. Its range
consists of functions which are smooth in the interior of M , supported in a preassigned neighborhood
of the boundary, and which decay like e�ı distX =h into the interior.

Ignoring finitely many eigenvalues the spectrum of P consists of a sequence of positive eigenval-
ues �j " 1. Applying Theorem 1 to an associated orthonormal system of eigenvectors we obtain, in
Proposition 21, a sequence of quasimode states: Luj � �

2
j �uj D OC1.h

1
j / with boundary tractions

equal to zero. Moreover, the quasimode states are well-separated. The construction also works when
starting with a sequence of almost orthogonal quasimode states of P .
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Let DD fu 2C1c I T uD 0g. The unbounded operator D!L2.M ICTM I � dVM /, u 7! ��1Lu, is
symmetric and nonnegative. The associated quadratic form is given by the left-hand side of (1). Denote
by LT the Friedrichs extension of this operator. For a selfadjoint operator A with spectrum consisting
of a sequence of eigenvalues accumulating at C1, denote by NA.�/ the usual counting function for the
eigenvalues of A. The following lower bound on NLT

.�/ is an example application of our results.

Corollary 2. Assume M compact, dim M D 3, and (E1), (E2). Let P be the selfadjoint operator given
in Theorem 1. For every m> 1, NLT

.�/�NP .���
�m/ is bounded from below.

Rayleigh waves have been studied in several papers with the emphasis of getting information about
resonances in scattering theory [Stefanov and Vodev 1994; 1995; 1996; Sjöstrand and Vodev 1997; Vodev
1997; Stefanov 2000], and, for anisotropic media, [Kawashita and Nakamura 2000]. Stefanov [2000]
uses Rayleigh quasimodes to derive lower bounds on the number of resonances. See the remark at the
end of Section 9 about going from quasimodes to resonances.

The subprincipal symbol psub affects the eigenvalue asymptotics of P [Duistermaat and Guillemin
1975], and it enters quasimode constructions [Cardoso and Popov 1992]. The subprincipal symbol occurs
in the final formulas via integrals, such as

R
S�X psub and

R
 psub, where  is a closed bicharacteristic.

We point out that these integrals do not depend on the choice of the unit section v in Theorem 1, although
psub itself does. An important aim of the present work is to give explicit formulas for the subprincipal
symbol of P . These seem to be new even in the isotropic case which is dealt with in more detail in
Proposition 25. The main difficulty comes from the fact that an invariant notion of subprincipal symbol
has only been available for scalar operators. To overcome this obstacle we adapt and systematically
use the geometric pseudodifferential calculus of Sharafutdinov [2004; 2005] which assumes given a
differential geometric structure. The principal and subprincipal symbol levels are contained in the leading
symbol of a (pseudo-)differential operator.

The paper is organized as follows. In Section 2 the surface impedance tensor is studied; in particular,
a selfcontained treatment of Barnett–Lothe theory is given. The leading geometric symbols of some
differential operators are computed in Section 3. In Section 4 we geometrically decompose the elasticity
operator near the boundary into normal and tangential operators, keeping track of leading geometric
symbols. Section 5 gives, microlocally at the elliptic region E, a factorization of h2L�� into a product
of first order operators. Using the factorization, we construct in Section 6 a parametrix for the Dirich-
let problem microlocally at E. The displacement-to-traction operator Z is defined in Section 7, and
its leading geometric symbol is determined. In Section 8 we derive a diagonalization of Z, and we
prove Theorem 1. In Section 9 we construct localized traction-free surface quasimodes, and we prove
Corollary 2. In Section 10 we calculate, for an isotropic elastic medium, the subprincipal symbol of P .
The Appendix contains a detailed exposition of Sharafutdinov’s geometric pseudodifferential calculus in
a semiclassical setting.

2. The surface impedance tensor

First we collect some well-known facts about spectral factorizations of selfadjoint matrix polynomials.
Refer to [Gohberg et al. 1982, Chapter 11]. Let V be a finite-dimensional complex Hilbert space, and
f .s/D as2CbsC c 2 End.V / a quadratic polynomial in the complex variable s. The spectrum of f is
the set of s 2C such that ker f .s/¤ 0. Assume that the leading coefficient of f , a, is nonsingular. Then
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the spectrum is finite. Assume that f is selfadjoint, f .s/� D f .Ns/, and that, in addition f .s/ is positive
definite for real s. The spectrum of f is a disjoint union �C[��, where �C and �� are contained in the
upper and lower half-planes, respectively. There is a unique q2End.V / such that f .s/D .s�q�/a.s�q/,
and the spectrum of q equals ��. If  is a closed Jordan curve which contains �� in its interior and �C
in its exterior, then

q

I


f .s/�1ds D

I


sf .s/�1ds: (6)

The integral on the left is nonsingular. Jordan–Keldysh chains are a means to compute q. In particular,
one has qv D sv if f .s/v D 0 and Im s < 0. Moreover, the solvency equation f .q/D 0 holds.

The following representation of the factor q by integrals is important. We shall also apply it later to
establish symbol properties. Denote by i D

p
�1 the imaginary unit.

Lemma 3. Let f and q be as above. Then

a qf0 D�� i IdCf1; (7)

where f0 D
R1
�1

f .s/�1ds is selfadjoint and positive definite, and

f1 D

Z
jsj�1

saf .s/�1dsC

Z
jsj>1

s�1
�
s2a�f .s/

�
f .s/�1ds:

The integrals converge absolutely in End.V /.

Proof. Let R be the negatively oriented closed contour composed of the semicircle fjsj DR; Im s � 0g

and the interval Œ�R;R�. The integral representation (6) holds with  D R if R is sufficiently large.
We have f .s/�1 D s�2a�1CO.jsj�3/ as jsj !1. It follows that

lim
R!1

I
R

f .s/�1ds D

Z 1
�1

f .s/�1ds

and

lim
R!1

I
R

saf .s/�1ds D�� i IdC lim
R!1

Z R

�R

saf .s/�1ds:

Using s2af .s/�1� IdD .s2a�f .s//f .s/�1 we obtainZ
1<jsj�R

saf .s/�1ds D

Z
1<jsj�R

s�1
�
s2a�f .s/

�
f .s/�1ds:

This proves the formulas. The remaining assertions follow from these and the positive definiteness
of f .s/. �

Let � 2 T �x X , and denote by � 2 T �x M the unit exterior normal. Set aD c.�/, a1.�/D c.�; �/, and
a2.�/D c.�/. Note that a1.�/

� D c.�; �/. The polynomial

f .s/D c.�C s�/� �D as2
C .a1C a�1/sC a2� �; (8)

f .s/D f .s; �/, has values in End.CTxM /. It is selfadjoint with real coefficients. By definition, � 2 E

if and only if f .s/ is positive definite for s 2 R.

Lemma 4. The elliptic region E is an open subset of T �X with compact complement. Moreover, E is
symmetric and star shaped with respect to infinity, i.e., t� 2 E whenever � 2 E and t real, jt j � 1.
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Proof. By positive definiteness of C , there exists ı > 0 such that g.v; c.�/v/ � ıjv˝ �C �˝ vj2 for
(co-)vectors v; �. The symmetrization of a nonzero real elementary tensor is nonzero. Therefore, with a
new ı > 0, in the sense of selfadjoint maps,

c.�/� ıj�j2 Id : (9)

Since j� C s�j2 D j�j2 C s2 the first assertions follow. The symmetry and the star-shapedness follow
from c.t�/D t2c.�/. �

If � 2 E, then (7) holds with q D q.�/, fj D fj .�/. The spectral factor q solves (3); using current
notation:

as2
C .a1C a�1/sC a2� �D .s� q�/a.s� q/: (10)

The spectrum of q lies in the lower half-plane, and q is uniquely determined by these properties. Notice
that q is a smooth section of the bundle �� End.CTX M / � E, where � W E � T �X � X denotes the
canonical projection.

The surface impedance tensor, defined in (4), equals z D i.aqC a1/. Lemma 3 implies

zf0 D � IdCi.f1C a1f0/: (11)

Since the fj ’s are real, this gives the decomposition of z into real and imaginary parts. Following [Mielke
and Fu 2004], we shall use the Riccati-type equation

.zC ia�1/a
�1.z� ia1/D a2� � (12)

to deduce properties of z. Equation (12) follows upon insertion of q D�a�1.izCa1/ into the solvency
equation associated with (10),

aq2
C .a1C a�1/qC a2� �D 0: (13)

A consequence of (12) is

.iq/�z0C z0.iq/D a�1
0
qC q�a01C .a2� �/

0
C q�a0q; (14)

where the prime denotes the derivative with respect to some chosen parameter. The spectra of q and q�

are disjoint. Therefore, the Sylvester equation .iq/�xCx.iq/D i.xq�q�x/D y has a unique solution
x for given y. The solution is, in fact, given by an integral, xD

R 0
�1

exp.i rq/�y exp.i rq/ dr . It follows
that x is positive definite if y is.

Proposition 5. The impedance tensor z.�/, � 2 E, has the following properties.

(i) z.�/ is selfadjoint.

(ii) z.�/ is positive definite if j�j is sufficiently large.

(iii) Re z.�/ is positive definite.

(iv) z.�/ has at least two positive eigenvalues if dim M � 3.

(v) .d=dt/jtD1t�1z.t�/D Pz� z is positive definite.

(vi) The complex conjugate z.�/D z.��/.

We call Pz.�/ D .d=dt/jtD1z.t�/ the radial derivative of z at �. It follows from (v) that Pz is positive
definite on the kernel of z, ker z.
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Proof. To prove (i) we follow the arguments in [Mielke and Fu 2004, Theorem 2.2]. First note that
(12) remains true if z is replaced by z�. Subtracting the two equations we get the Sylvester equation
.iq/�.z� z�/C .z� z�/.iq/D 0, implying z� z� D 0.

It follows from (11) that Re z D �f �1
0

. This proves (iii).
Suppose dim M � 3. Aiming at an indirect proof of (iv), assume that z.�/, � 2 T �x X , has at most

one positive eigenvalue. Then there exists w 2 CTxM such that z.�/ is negative semidefinite on the
orthogonal complement w?. Choose a real vector v ¤ 0 which is orthogonal to both Rew and Imw.
Then v 2 w?, and .Re z.�/v j v/D .z.�/v j v/� 0, contradicting the positive definiteness of Re z.

Next we prove (v) following the method of [Mielke and Fu 2004, Theorem 2.3]. Since aj .�/ is
homogeneous of degree j in �, (12) implies

.t�1z.t�/C ia�1.�//a
�1.t�1z.t�/� ia1.�//D a2.�/� t�2�:

Taking the derivative with respect to t at t D 1, we get

.iq/�.Pz� z/C .Pz� z/.iq/D 2�:

By the remarks following (14), we see that Pz� z is positive definite.
We now prove (vi). Note f .s;��/D f .�s; �/, fj .��/D .�1/jfj .�/, and a1.��/D�a1.�/. Using

(11) we derive z.��/f0.�/D z.�/f0.�/. Since f0 is real and nonsingular the formula follows.
It remains to prove (ii). Let � 2 TxX , j�j D 1. It suffices to show that z1 D limt"1 t�1z.t�/ exists

and is positive definite. Set qt D t�1q.t�/, t > 1 large. From (10) deduce

as2
C .a1.�/C a�1.�//sC a2.�/� t�2�D .s� q�t /a.s� qt /; s 2 R:

Using (7) and dominated convergence in the integrals giving fj we infer that q1D limt"1 qt exists. In
particular, t�1z.t�/ converges to z1D i.aq1Ca1.�// as t "1. Let y 2TxM such that .z1y j y/� 0.
We must show yD 0. Set w.r/D exp.i rq1/y, r � 0. The solvency Equation (13) holds with q replaced
by q1, � D 0. Therefore, aD2

rw C .a1 C a�
1
/Drw C a2w D 0 holds, where we use the abbreviation

aj D aj .�/. Take the inner product in CTxM with w and integrate. An integration by parts givesZ 0

�1

.aDrwCa1w jDrw/C .Drw j a1w/C .a2w jw/ dr D i.aDrwCa1w jw/
ˇ̌0
�1
D .z1y j y/� 0:

Set W .r/Dw.r/˝�CDrw.r/˝� 2 End.CTxM /. Recall aD c.�/, a1D c.�; �/, a2D c.�/, and (2).
We have shown: Z 0

�1

.W .r/ jW .r//C dr � 0:

Recall that C is real, and that . � j � /C is an inner product on symmetric 2-tensors. It follows that the
symmetrization of W .r/ vanishes for all r � 0. In particular,�

w.r/˝ �CDrw.r/˝ � j �˝ �C �˝ �
�
D 0 (15)

for � 2 CT �x M , r � 0. Recall .� j �/D 0. Setting � D �, we derive Dr .w.r/ j �/D .Drw.r/ j �/D 0.
Since w.r/! 0 as r!�1, we obtain .w.r/ j �/D 0. Now, (15) simplifies to .Drw.r/ j �/D 0. Since
� is arbitrary, this implies, successively, Drw D 0, w D 0, y D 0. �
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If dim M D 3 then (U) holds. This follows from (iv).

Proposition 6. Assume (U). Then the characteristic variety of z, † D fdet z.�/ D 0g, is a smooth hy-
persurface in E. Each radial line RC� � T �X intersects † in at most one point, and the intersection
is transversal. The kernel of zj† defines a line bundle ker z � †. Assume, in addition, (E1). There is a
unique p 2 C1.T �X n 0/, homogeneous of degree one, such that † D p�1.1/. Moreover, p > 0, and
p.��/D p.�/.

Proof. From the assumption and (v) of Proposition 5 it follows that .d=dt/ det z.t�/ > 0 if t� 2†, t > 0.
In particular, zero is a regular value of det z. Hence † is a codimension one submanifold transversal to
the radial field. Since RC� \E is connected, a given radial line RC� intersects † in at most one point.
Because of (U) and the selfadjointness of z, zero is simple eigenvalue of z. It follows that ker z � † is
a line bundle. Now assume also (E1). Then each radial line intersects † in a unique point. Define p as
follows. For 0¤ � 2 T �X set p.�/D 1=t if t� 2†, t > 0. Smoothness of p follows from the implicit
function theorem. The evenness of p is a consequence of (vi). The other properties of p are obvious.
Clearly, the homogeneity and pj† D 1 determine p uniquely. �
Corollary 7. Let �t and Ct be homotopies of the mass densities and the elasticity tensors, 0 � t � 1.
Assume that the associated surface impedance tensors zt and their characteristic varieties†t satisfy (U)
and (E1) for every t . The line bundles ker z0 �†0 and ker z1 �†1 are isomorphic.

Proof. The factorization (3) and the definition of the impedance tensor imply that zt depends continuously
on the homotopy parameter t . It follows from Proposition 6 that the characteristic varieties are canonically
diffeomorphic to the sphere bundle SX . We deduce that the Chern classes of the bundles ker zt � SX

do not depend on t . The assertion follows from this. �
Example 8. We consider, as special case, an isotropic elastic medium. We shall verify (U), (E1), and
(E2). The elasticity tensor reads, in component notation,

C ijk`
D �gij gk`

C�.gikgj`
Cgi`gjk/; (16)

where �;� denote the Lamé parameters. Equivalently,

c.�; �/D ��˝ �C��˝ �C�g.�; �/ Id : (17)

Positive definiteness of C is equivalent to �> 0, � dim M C 2�> 0. We make the stronger assumption
�;� > 0. Let � 2 T �x X . We list the eigenvalues s 2 C and the eigenvectors v 2 CTxM of the quadratic
polynomial c.�C s�/� �:

(a) .�C 2�/.j�j2C s2/� �D 0 and v D �C s�,

(b) �.j�j2C s2/� �D 0 and v D s� � j�j2�,

(c) �.j�j2C s2/� �D 0 and v is orthogonal to � and �.

Introduce cp D
p
.�C 2�/=� and cs D

p
�=�, the speeds of pressure and of shear waves, respectively.

Assume that � 2 E. This is equivalent to csj�j> 1. The above eigenvalues and eigenvectors diagonalize
q, q.�/v D sv if Im s < 0. Denote by V the subbundle of ��

�
CTX M

�
� E spanned by � and � , and

V ? its orthogonal bundle. Fix the orthonormal frame �; O� D �=j�j of V , and choose an orthonormal
frame of V ?. In block decompositions of matrices we let the indices 1 and 2 correspond to V and
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V ?, respectively. We denote by .e/ij the block ij of the matrix which represents the endomorphism e.
Observe that q leaves V and V ? invariant, .q/12 D 0D .q/21. A simple computation gives

.iq/11 D
j�j

b

"
ut
p

1�t �i.b�ut/

i.b�t/ t
p

1�ut

#
: (18)

Here t D .csj�j/
�2, u D .cs=cp/

2 D �=.�C2�/, b D 1�
p

1�ut
p

1�t . Moreover, .iq/22 equals
j�j
p

1�t times the unit matrix. The maps aD c.�/ and a1D c.�; �/ also leave V and V ? invariant. We
compute

.z/11 D
�j�j

b

"
t
p

1�t �i.2b�t/

i.2b�t/ t
p

1�ut

#
; (19)

and .z/22 D �.iq/22. The determinant of z equals .�j�j
p

1�t/dim V? times

det.z/11 D �
2
j�j2b�1

�
4
p
.1�t/.1�ut/�.2�t/2

�
: (20)

Given u 2 �0; 1=2Œ, the unique zero t 2 �0; 1Œ is found as the solution of Rayleigh’s cubic equation [1887,
(24)], namely 0D ..t�2/4�16.1�t/.1�ut//=t . Define the Rayleigh wave speed cr D cs

p
t 2C1.X /.

Set p.�/D cr j�j. The characteristic variety † equals fp.�/D 1g. Thus (U) and (E1) hold. Obviously,
i.2b� t/�C t

p
1� t O� 2 ker z.�/, � 2†. Observe that

2.2b� t/D t.2� t/ on †. (21)

Thus
i.2� t/�C 2

p
1� t O� 2 ker z; t D .cr=cs/

2; (22)

is a nowhere vanishing section of the kernel bundle. Hence also (E2) holds. This example is of course
well-known.

Remark. The identity (11) goes back to Barnett and Lothe; compare [Lothe and Barnett 1976, (3.18)].
It is key to proving, in dimension three, the uniqueness of subsonic traction-free surface waves [Barnett
and Lothe 1985, Theorem 8]. The second assumption in Proposition 6 is needed to prove the existence of
Rayleigh surface waves. Compare with Theorem 12 of the same reference, where existence criteria are
given in terms of the so-called limiting velocity which corresponds to the boundary of the elliptic region.
See [Nakamura 1991, Theorem 2.2] for the Barnett–Lothe condition in a microlocal setting, and the real
principal type property of the Lopatinski matrix it entails. See [Tanuma 2007] for a recent exposition of
Barnett–Lothe theory, and for a treatment of isotropic and transversely isotropic media.

3. Connections and geometric symbols

The elasticity operator is defined in terms of the Levi-Civita connection and of the elasticity tensor. We
use the geometric pseudodifferential calculus of the Appendix to define and compute the leading symbol
of the elasticity operator. The leading symbol includes the principal and the subprincipal level. The
calculus depends on the choice of connections.

Equip M with the Levi-Civita connection of g. Let exp denote its exponential map. If x;y 2M , then
denote by Œy � x� the shortest geodesic segment from x to y, assuming its interior does not intersect the
boundary, and that it is unique.
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Let E � M be a (complex) vector bundle with connection rE . Denote by �E
 2 End.Ex;Ey/ the

parallel transport map along a given curve  in M from x to y, e.g., �E
Œy�x�

. The connection can be
recovered from its parallel transport maps:

r
E
v s.x/D

d
dt

ˇ̌
tD0

�E
Œx�expx tv�s.expx tv/: (23)

Denote by ��E � T �M the pullback of E to the cotangent bundle � W T �M ! M . Let a be a
smooth section of ��E � T �M . Following [Sharafutdinov 2004; 2005], we introduce the vertical and
the horizontal covariant derivative of a. The vertical derivative

v
ra.x; �/ 2Ex˝TxM;

at � 2 T �x M , is the derivative of the map T �x M ! Ex , � 7! a.x; �/. The definition of the verti-
cal derivative depends only on the linear structure of the fibers of T �M . The horizontal derivative
hra.x; �/ 2Ex˝T �x M is the derivative at v D 0 of a map TxM !Ex ,

h
ra.x; �/D

@

@v

ˇ̌
vD0

�E
Œx�expx v�

a.expx v; �
T �M
Œexpx v�x��/: (24)

The horizontal derivative depends on the Riemannian structure and on the connection rE . In the scalar
case, E D C, in local coordinates,

h
ra.x; �/D

�
@xj a.x; �/C�k

ij .x/�k@�i
a.x; �/

�
dxj ;

where �k
ij denote the Christoffel symbols of the Levi-Civita connection. Writing a local section of ��E

as a sum of products a1.x; �/a2.x/ where a1 is scalar and a2 a section of E one readily derives local
formulas for the horizontal derivative in terms of connection coefficients. The vertical and the horizontal
derivative extend to first order differential operators, vr and hr, which map sections of ��.E˝T r;sM /

to sections of ��.E˝ T rC1;sM / and of ��.E˝ T r;sC1M /, respectively. The operators vr and hr

commute. It suffices to prove this when E is the trivial line bundle, E D C. In this case the assertion is
easily checked in normal coordinates.

Let F � M be another vector bundle. Let A W C1.M IE/! C1.M IF / be a differential operator
of order m. We introduce a small parameter, 0< h� 1, and we replace A by the h-differential operator
hmA. Then A2‰m;0.M IE;F / as a semiclassical (pseudo-)differential operator. Refer to the Appendix
for an exposition of Sharafutdinov’s geometric pseudodifferential calculus in a semiclassical setting. The
formula (67) for the geometric symbol, �h.A/ 2 Sm;0, simplifies to

�h.A/.x; �/s DAy

�
eih�;exp�1

x yi=h�E
Œy�x�s

�ˇ̌
yDx

; (25)

where � 2 T �x M , s 2 Ex , and i D
p
�1. The geometric symbol extends by continuity to the boundary

of M . In symbol computations we track the leading geometric symbol, defined before Proposition 27.
In the following, the symbol of an operator is always its geometric symbol.

For the Laplace–Beltrami operator one has �h.�h2�/.x; �/ D j�j2. This is readily checked using
normal coordinates.

From (25) and (23) deduce

�h.�ihrE/.�/e D e˝ � 2Ex˝T �x M: (26)
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As before, to ease notation, we usually do not write the base point x into the arguments of tensors and
symbols.

If E � M is a Hermitian vector bundle then we define, using the volume element dVM , the Hilbert
space L2.E/. Assume E and F are Hermitian vector bundles having metric connections. The leading
symbol of the formal adjoint A� of A is given by

�h.A
�/� �h.A/

�
� ih tr

�
v
r

h
r�h.A/

�
�
: (27)

See Proposition 27.
Equip the bundle E˝ T �M with the induced Hermitian structure and the induced connection. The

connection is metric. Observe that the horizontal derivative of �h.�ihrE/� vanishes. Therefore, (27)
and (26) imply

�h

�
.�ihrE/�

�
.�/.e˝ �/D g.�; �/e; �; � 2 T �x M; e 2Ex : (28)

By Proposition 28 the leading symbol of a composition is given as follows:

�h.AB/� �h.A/�h.B/� ih tr
�
v
r�h.A/:

h
r�h.B/

�
: (29)

The trace is the contraction of the TM ˝ T �M factor which is produced by a pair of vertical and
horizontal derivatives. Note: In (29) and below, the dot terminates a differentiated expression, serving
as a closing bracket.

Let C 2C1.M IEnd.E˝T �M //. View C as an operator acting by multiplication on sections of the
bundle E˝T �M � M . Let r denote the connection on the bundle End.E˝T �M /� M induced from
the Levi-Civita connection and from rE . Define sections c; div c of �� End.E/� T �M as follows:

c.�/e D h�; ��C.e˝ �/i; .div c/.�/e D
P

j h�
j ; .��rvjC /.e˝ �/i;

where the angular brackets denote contractions on covectors, using g. Furthermore, .vj / and .�j / are
any dual frames of TM and T �M .

Lemma 9. �h.�h2rE�ıC ırE/D c � ih div cCO.h2/.

Proof. Observe that �h.C /D �
�C , and hr��C D ��rC . The symbol (28) is linear in �. Its vertical

derivative is obvious. Using (29), the symbol a of �ihrE�ıC is found to be

a.�/.e˝ �/D h�; ��C.e˝ �/i � ih
P

j h�
j ; ��rvjC.e˝ �/i:

Here .vj / and .�j / are as in the definition of div c. The horizontal derivative of the symbol of �ihrE

vanishes. Therefore,

�h.�h2
r

E�
ıC ırE/.�/e D a.�/�h.�ihrE/.�/e D a.�/.e˝ �/;

where we used (29). �
Now assume E D CTM and C the elasticity tensor. Identify

End.CT 0;2M /D End.CTM ˝CT �M /:

Let L the elasticity operator defined in (1). Recall from Riemannian geometry the following relation
between the Levi-Civita connection and the Lie derivative:

.Lug/.v; w/D g.rvu; w/Cg.v;rwu/; (30)
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for (real) vector fields u; v; w. Using the symmetries of the elasticity tensor we get

LD Def� ıC ıDefD .�ir/� ıC ı .�ir/:

We obtain the following corollary to Lemma 9:

�h.h
2L� �/D c � � Id�ih div cCO.h2/: (31)

If the C ijk` represent C with respect to some given local coordinates, then (31) reads

�h.h
2L� �/.�/

ik
D C ijk`�j�` � �ı

ik
�
p
�1hC

ijk`

jj
�`CO.h2/:

The vertical bar followed by j means covariant differentiation with respect to the j -th coordinate. If the
elastic medium is isotropic, the leading symbol becomes

�h.h
2L� �/.�/

� �.c2
p j�j

2
� 1/P .�/C �.c2

s j�j
2
� 1/.Id�P .�//� ih

�
r�˝ �C .r�˝ �/�Ch�;r�i Id

�
; (32)

where P .�/D O�˝ O� denotes the orthogonal projection to the propagation direction O� D �=j�j.

4. The elasticity operator in a boundary collar

In a boundary collar, ��"; 0��X �M , we write the elasticity operator L in terms differential operators
on X having coefficients which depend on r 2 I , the negative distance to X .

Let N.x/ 2 TxM denote the unit exterior normal at x 2 X . There exists " > 0 such that, if we
set I D ��"; 0�, the exponential map of the Levi-Civita connection defines a diffeomorphism onto a
neighborhood of X in M :

I �X !M; .r;x/ 7! y D exp.rN.x//:

Essentially without losing generality, we assume that this map is onto M . The inverse map is y 7! .r;x/,
where �r D d.y;X / is the distance from y to X , and x D p.y/ is the unique point in X closest to y.
The distance function r satisfies the (eikonal) equation jrr j D 1 in M . Extend N to M by N D rr .
Also introduce the unit conormal field � D dr . The level hypersurfaces

Mr D fy 2M I r C d.y;X /D 0g

are diffeomorphic to X DM0. The shape operator S D rN is a field of symmetric endomorphisms
of TM , g.Su; v/ D g.u;Sv/. The second fundamental forms of the level hypersurfaces Mr assign
.u; v/ 7! �g.Su; v/ (Weingarten equation). The dependence of the metric tensor on r is given by the
formula .LN g/.v; w/ D 2g.Sv;w/. This formula follows from (30). Introduce J 2 C1.Ir �X /, the
solution of @r log J D tr S , J jrD0D 1. Then we have the following formula for the volume form of M :Z

M

f .y/ dVM .y/D

Z
I

Z
X

f .exp.rN.x///J.r;x/ dVX .x/ dr; (33)

f 2C1c .M /. See [Petersen 1998, Chapter 2] for the geometry of hypersurfaces using distance functions.
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Let E � M be a vector bundle with connection rE . Denote by Er � Mr the bundles induced by the
inclusions Mr �M , r 2I . Set EX DE0. Let u2C1.M IE/ be a section of E. Using parallel transport
in E along the geodesics which intersect the boundary orthogonally, define zu W I ! C1.X IEX / by

zu.r/.x/D zu.r;x/D �E
Œx�y�u.y/ if y D exp.rN.x//.

The map
C1.M IE/! C1.I;C1.X IEX //; u 7! zu; (34)

is an isomorphism of Fréchet spaces. The isomorphism commutes with bundle operations such as tensor
products and contractions.

The covariant derivative in normal direction is transformed into @r under the above isomorphism:

A
rE

N
u.r/D @r zu.r/; r 2 I: (35)

To see this, consider the geodesic I !M , r 7! y.r/ D exp.rN.x//. The tangent vectors are Py.r/ D
N.y.r//. Using (23), it follows that

.rE
N.y.r//u/.y.r//D

d

ds

ˇ̌
sDr

�E
Œy.r/�y.s/�u.y.s//D �

E
Œy.r/�x�

d

ds

ˇ̌
sDr
zu.s;x/:

This implies (35). We have rN N D SN D 0. It follows that @r
zN D 0, and @rz� D 0. Abusing notation,

we write @r to denote rE
N

.
Define ��e D e˝ � and ��.e˝ �/D h�; �ie. Notice that �� and �� commute with @r .
Let F � M be a another vector bundle with a connection. Let B W C1.M IE/! C1.M IF / be a

differential operator. Assume that B is tangential. This means, by definition, that B commutes with the
distance function r , ŒB; r � D 0. Then, for every r 2 I , B restricts to an operator Br W C

1.Mr IEr /!

C1.Mr IFr /, Br U D .Bu/jMr
, where u is a section of E � M which extends a given section U

of Er � Mr . The assumption ŒB; r � D 0 implies that Br is well-defined. Parallel transport along the
geodesics orthogonal to X defines bundle isomorphisms ErŠEX and FrŠFX . Via these isomorphisms
the Br ’s induce differential operators B.r/ WC1.X IEX /!C1.X IFX /, called associated with B, such
that fBu.r/DB.r/zu.r/, r 2I . Each B.r/ is a differential operator having coefficients which are C1 with
respect to r . Conversely, an operator B is tangential if it is given in this way by a family of differential
operators fB.r/ I r 2 Ig with coefficients depending smoothly on r .

Lemma 10. Let E � M be a real vector bundle with connection rE . Then

r
E
D ��@r CB; (36)

where B is tangential. Moreover, B.0/DrEX .

Here E ˝ T �M carries the induced connection. The lemma extends, by decomposition into real
and imaginary parts, to complexifications of real bundles with connections. In particular, it holds for
complexified tensor bundles with the Levi-Civita connection.

Proof. Let P?;P k 2 C1.M IEnd.TM // denote the orthogonal projectors onto the span of N and
onto its orthogonal complement, N?, respectively. Identify E ˝ T �M with Hom.TM;E/. Let u 2

C1.M IE/. We have the following decomposition in C1.M IHom.TM;E//:

r
EuD .rEu/P?C .rEu/P k D .rE

N u/˝ �CBu:
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This defines B, and implies (36). Note that B is tangential. We have

B.0/zu.0/D BujX D
�
.rEu/P k

�
jX D

�
r

EX .ujX /
��

P kjX
�
:

This proves the asserted formula for B.0/. �
Assume E � M a Hermitian bundle with a metric connection. Using (33), and the fact that parallel

transport preserves inner products, we haveZ
M

.u j v/E dVM D

Z
I

Z
X

.zu j zv/EX
J dVX dr; (37)

if u; v 2 C1c .M IE/. Formal adjoints of differential operators on M are taken with respect to these
inner products. The inner product of sections u and v of EX � X is

R
X .u j v/EX

dVX . Formal adjoints
of operators A.r/ associated with a tangential operator A are defined with respect to this inner product.

Next we prove a formula expressing the elasticity operator L as a quadratic polynomial in Dr D�i@r

with tangential coefficients. Now assume E D CTM , and let B as in (36). Define tangential operators

A0 D ��C�� ; A1 D�i ��CB; A2 D B�CB:

The order of Aj is j . Moreover, A�
1
D iB�C�� .

Proposition 11. The elasticity and traction operators defined in (1) are as follows:

LD .Dr � i tr S/.A0Dr CA1/CA�1Dr CA2; �iT DA0.0/Dr CA1.0/:

Furthermore, A�
1
.0/DA1.0/

�.

Proof. Let u; v 2 C1c .M ICTM /. It follows from (30) and the symmetry properties of the elasticity
tensor that Z

M

�
Def u j Def v

�
C

dVM D

Z
M

�
Cru j rv

�
dVM :

Inserting (36) and using the definition of Aj , the right-hand side equalsZ
M

.��Cru j @rv/ dVM C

Z
M

.B�Cru j v/ dVM

D

Z
M

.A0@r uC iA1u j @rv/ dVM C

Z
M

.�iA�1@r uCA2u j v/ dVM :

We integrate by parts, using (37), and getZ
M

.w j @rv/ dVM

D

Z
I

Z
X

. zw j @r zv/J dVX dr D

Z
X

�
w.0/ j v.0/

�
dVX �

Z
I

Z
X

�
.@r log J / zwC @r zw j zv

�
J dVX dr:

Summing up we haveZ
M

�
Def u j Def v

�
C

dVM D

Z
M

�
.Dr � i tr S/.A0Dr CA1/uCA�1Dr uCA2u j v

�
dVM

C

Z
X

�
A0.0/.@r u/.0/C iA1.0/u.0/ j v.0/

�
dVX :

Comparing with (1) the formulas for L and T follow. The last assertion follows because J D 1 at X . �
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Next we compute the leading symbols of the operators (associated with) Aj . The symbols are r -
dependent sections of �� End.CTX M /� T �X . Dropping tildes, the symbol of A0 equals

�h.A0/D aD c.�/ 2 C1.I;C1.T �X I�� End.CTX M //:

Introduce the divergence of the acoustic tensor restricted to X as follows:

.divX c/.�/v D
X

˛
h�˛; .��rv˛C /.v˝ �/i;

if � 2 T �x M , v 2 TxM , x 2 X . Here .v˛/ and .�˛/ are any dual frames of TX and T �X . If local
coordinates are chosen such that r is one coordinate and the other coordinates are constant along the
geodesics orthogonal to X , then .divX c/.�/ik D C i˛k`

j˛
�`. Here the summation convention is used

with Latin indices referring to all coordinates, and Greek referring to all coordinates except r . We also
need the contraction hC;Si 2 C1.M IEnd.TM // of the elasticity tensor with the shape operator, in
coordinates,

hC;Siik D C ijk`Sj`; Sj` D �j j`:

(Because rN S D 0 one can also write Greek indices instead of j and `.)

Lemma 12. Let a1 and a2 denote the principal symbols of the h-differential operators hA1 and h2A2,
respectively. At r D 0: a1.�/D c.�; �/, and a2.�/D c.�/. On the leading symbol level, �h.hA1/D a1,
�h.hA�

1
/D a�

1
� iha1�, and �h.h

2A2/D a2� iha2�CO.h2/, where, at r D 0,

a1� D .divX c/.�/C��hC;Si; a2�.�/D .divX c/.�/:

Proof. By Lemma 10 we have

hA1.0/D ��C ı .�ihr/; h2A2.0/D .�ihr/� ıC ı .�ihr/;

where r D rTX is the Levi-Civita connection of the boundary. We compute the leading symbol of
hA1.0/ using the composition formula (29). Recall (26). The vertical derivative of the symbol of ��C
vanishes, Hence

�h.hA1/.0/.�/D �h.hA1.0//.�/D c.�; �/; � 2 T �X M:

The formula for �h.h
2A2.0// follows from Lemma 9. In view of (27), a1�D tr vr hra�

1
. Since a�

1
.�/D

c.�; �/D h�; ��.C��/i is linear in �, its vertical derivative is immediate. Hence

tr vr h
ra�1 D

X
˛
h�˛; ��rv˛ .C��/i:

Now, rv.C��/ equals .rvC /�� plus a contraction of C with rv�DSv, proving the formula for a1�. �

If the elastic medium is isotropic, (16), then a straightforward computation shows that, at r D 0,

.divX c/.�/D .r�˝ �/C .r�˝ �/�Ch�;r�i Id;

hC;Si D .�C�/S C .� tr S/ Id:

Here r�;r� 2 TX � TX M are the gradients of the Lamé parameters restricted to X .
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5. Microlocal factorization

We factorize, microlocally in the elliptic region, the h-differential operator h2L� � into a product with
right factor hDr �Q, where Q is a tangential h-pseudodifferential operator such that the spectrum of its
principal symbol is contained in the lower half-plane, C�.

As in the previous section we identify M with a boundary collar I �X , and sections of CTM � M

with r -dependent sections of CTX M � X . Operators are polynomials in Dr=hDhDr with tangential h-
(pseudo-)differential operators as coefficients. The latter are quantizations (64), Bh DOph.bh/ 2‰

m;k
tang ,

of tangential symbols,

bh 2 S
m;k
tang D C1.I;Sm;k.T �X I�� End.CTX M ///:

By Proposition 11 the principal symbol f .s; �/D c.�Cs�/�� of h2L�� at �Cs� is a second order
polynomial in s. View s as the symbol of Dr=h. The coefficients are h-independent tangential symbols.
By (9), there exists a constant ı > 0 such that

f .s; �/� ı.1Cjsj2Cj�j2/ Id; s 2 R; (38)

holds if � is sufficiently large. If F � E is closed and R> 0, then F nfj�j>Rg is compact. Hence there
exist 0< "0; ı such that (38) holds uniformly for .r; �/ 2 Œ�"0; 0��F . We say that a property holds at the
elliptic region E if it is true in every open subset of I �E where (38) holds uniformly.

Recall from Section 2 that we have a unique spectral factorization (10) at E.

Lemma 13. Let q D q.�/, � 2 E, the unique solution of the spectral factorization f .s; �/ D .s �

q.�/�/a.s� q.�//, spec q.�/� C�. Then q 2 S1
tang at E.

Proof. By Lemma 3 we have a q D �� if �1
0
C f1f

�1
0

with integrals fj D fj .�/ defined there. Using
(38), we can estimate f0.�/D

R
f .s; �/�1ds as follows:

jf0.�/j �

Z 1
�1

ı�1.1Cjsj2Cj�j2/�1ds D �=ıh�i;

h�i D .1C j�j2/1=2. The integrand f .s; �/�1 remains integrable after applying @r , hr, and vr finitely
many times. Therefore these derivatives can be interchanged with the integral. In view of the symbol
properties of f , we deduce, using estimates as above, f0 2 S�1

tang at E. Using an upper bound f .s; �/ �
ı�1.jsj2C h�i2/ Id, we derive f0.�/ � ıh�i

�1 Id, again in the sense of selfadjoint maps. Therefore f0

is an elliptic symbol, and f �1
0
2 S1

tang at E.
Write f1 D f10Cf11, where f10.�/D

R
jsj�1 saf .s; �/�1ds,

f11.�/D

Z
jsj>1

s�1
�
s2a�f .s; �/

�
f .s; �/�1ds:

Recall that s2a� f .s/D �s.a1C a�
1
/� .a2 � �/. Reasoning as in the proof of f0 2 S�1

tang, we see that
the integrand of f11 and its derivatives are integrable. Moreover, we deduce f11 2S0

tang. It is easy to see
that f10 2 S�2

tang. Therefore, at E, f1 2 S0
tang. The lemma follows. �

For an h-tempered family .uh/2h�1C�1.X / one defines the semiclassical wavefront set WFh.uh/�

T �X tS�X [Gérard 1988; Sjöstrand and Zworski 2002]. Below we deal with operators associated to
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symbols which are not defined on all of T �X but only at E. These operators are defined microlocally in
E by letting them operate on the subspace of distributions .uh/ which satisfy WFh.uh/� E, modulo the
space h1C1.

Lemma 14. Let q be as in Lemma 13. Microlocally at E,

h2L� �D .Dr=h�Q]/A0.Dr=h�Q/; (39)

where Q;Q] 2‰
1;0
tang, such that Q�Oph.q/;Q

]�Oph.q
�/ 2‰

0;�1
tang . Here A0 is as in Proposition 11.

Proof. Initially we set QD Oph.q/ and Q] D Oph.q
�/. At E,

h2L� �D .Dr=h�Q]/A0.Dr=h�Q/CR1CR0 Dr=h; (40)

where Rj 2‰
j ;�1
tang . Here we used the formula for L given in Proposition 11. Observe that, if A 2‰

m;k
tang ,

then the commutator ŒDr=h;A� belongs to ‰m;k�1
tang . Aiming at an inductive construction, we assume that

(40) holds for some positive integer k such that Rj 2‰
jC1�k;�k
tang . The spectra of q and q� are disjoint.

It follows that the equation sq�q�sD r has, at E, for every symbol r 2Sm a unique solution s 2Sm�1.
Applying this construction to the principal symbols of the Rj ’s, we find operators Sj 2 ‰

j�k;�k
tang such

that Sj Q�Q]Sj �Rj lies in ‰j�k;�k�1
tang . Set

Q1 DQ�A�1
0 .S0QCS1/; Q

]
1
DQ]

C .Q]S0CS1/A
�1
0 :

Then

.Dr=h�Q
]
1
/A0.Dr=h�Q1/D .Dr=h�Q]/A0.Dr=h�Q/C

�
S0Q�Q]S0

�
Dr=hC

�
S1Q�Q]S1

�
CŒDr=h;S0QCS1�� .Q

]S0CS1/A
�1
0 .S0QCS1/:

Replace Q and Q] by Q1 and Q
]
1
, respectively. By the symbol calculus, (40) holds with smaller errors,

Rj 2‰
j�k;�k�1
tang . The proof is completed using asymptotic summation. �

It follows from the foregoing construction that the symbol of Q is classical.

6. A Dirichlet parametrix

Microlocally at E, we solve, constructing a parametrix, Bf D u, the Dirichlet problem h2Lu��uD 0,
ujX D f . We adapt the method of [Taylor 1996, 7.12] to our setting.

Denote by

Sm
pois � C1.Œ�1; 0�;C1.T �X I�� End.CTX M ///

the space of symbols b.s; �/, �1� s � 0, � 2 T �X , that satisfy the estimates

j@�s .
v
r/j .h

r/`b.s; �/
ˇ̌
� C�j`h�i

mC��j ;

for all nonnegative integers � , j , and `. Let S
m;k
pois denote the corresponding space of h-dependent symbols

bh. Observe that g.sh�i/ 2 S0
pois if g.t/D jt jj e"t , " > 0, j a nonnegative integer.
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We continue to work in a collar I � X � M . Choose a cutoff �0 as in (64). Let ı > 0. Given
bh 2 S

m;k
pois , introduce the operator Bh D Opı;h.bh.r=h// by setting

Bhf .r;y/D .2�h/�n

Z
T �y

Z
Ty

e�ih�;vi=hCırh�i=h�0.y; v/bh.r=h;y; �/�
CTX M
Œy�expy v�

f .expy v/ dv d�; (41)

for r 2 I , n D dim X . We call Bh a Poisson operator with symbol bh and (exponential) decay ı. The
arguments in [Taylor 1996, Chapter 7, Proposition 12.4] apply to give Bh WL

2.X /!H
�mC1=2

h
.I �X /

with norm O.h�kC1=2/. (The Sobolev spaces H s
h

are defined using hD instead of D.) If 0< ı0 < ı and
j 2 N, then

rj Bh 2 Opı0;h S
m�j ;k�j
pois :

Moreover, Bhf 2 C1 in r < 0, and Bhf .r/ decays together with its derivatives as eı
0r=h, uniformly if

f ranges in a bounded subset of L2.X /. We call h-dependent operators negligible if they have Schwartz
kernels which are smooth and OC1.M�X /.h

1/. We write A � B if and only if A�B is negligible.
Note that Bh in (41) is negligible if there exists � > 0 such that bh.s; �/D 0 if �� < s � 0.

We need to handle the composition of a Poisson operator with a tangential operator. The following
lemma deals with this when the symbols are classical, i.e., possess asymptotic expansions in powers of h.

Lemma 15. Let 0 < ı0 < ı. Let A D Oph a.r/ and B D Opı;h b.r=h/, where a D a.r; �/ 2 S1
tang and

b.s; �/ 2 Sm
pois are h-independent symbols. Then

AB � Opı0;h c.r=h/;

where c D ch 2 S
mC1;0
pois has an asymptotic expansion c �

P
j�0 hj cj , cj 2 S

mC1�j
pois . The principal term

equals
c0.s; �/D a.0; �/b.s; �/e.ı�ı

0/sh�i:

Proof. Using Taylor expansions, a.r; �/ D
P

j<N rj aj .�/C rN a0
N
.r; �/, and the properties of rj B

noted above, we may assume without loss of generality that a does not depend on r . Arguing as in the
proof of Proposition 28 we can write, at least formally, AB D Op0;h Qc.r=h/, where

Qc.s;x;�/D .2�h/�2n

Z
Tx�T �x �Tx�T �x

ei'=ha.x;�/�
��End.CTX M /

Œx�y�
b.s;y;�/eısh�iM.x;wCv;v/d.v;�;w;#/;

' as in (72). We use the standard arguments in handling compositions of symbols: dyadic decompositions
and the method of (non-)stationary phase. We infer that there exist � > 0 and dj 2 S

mC1�j
pois , d0.s; �/D

a.�/b.s; �/, such that for every N ,

Qc.s; �/D

� X
j<3N

hj dj .s; �/

�
eısh�iC QdN h.s; �/e

�sh�i;

where QdN h 2 S
mC1�N;�N
pois . Observe that h�i=h�i is uniformly bounded from below if � and � range

in the same dyadic shell. Above we have chosen � less than ı times this bound. Define ch.s; �/ as
the product of an asymptotic sum

P
j�0 hj dj .s; �/ with the symbol e.ı�ı

0/sh�i 2 S0
pois. It follows that

AB �Opı0;h c.r=h/ belongs to Op�;h S
mC1�N;�N
pois for every N . Thus AB � Opı0;h c.r=h/. �
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Let q and Q be as in Lemma 14. If �2E ranges in a set having a positive distance to the complement
of the elliptic region, then there exist positive constants ı0 and M such that

jesiq.0;�/
j �Mesı0h�i; s � 0: (42)

This follows from the fact that the spectrum of q.0; �/=h�i is contained in a compact subset of the lower
half-plane then. We shall solve .Dr=h�Q/B � 0, BjrD0 D Id, microlocally at E. On the symbol level
we have to solve linear ordinary differential equations with constant coefficient matrices. The following
assertions are true microlocally in E where (42) holds.

Lemma 16. Let 0 < ı < ı0. Let r 2 S1Cm
pois and v 2 Sm. Let b.s; �/ be the solution of the initial value

problem

@sb.s; �/D
�
iq.0; �/� ıh�i

�
b.s; �/C r.s; �/; �1< s � 0; (43)

and b.0; �/D v.�/. Then b.s; �/ 2 Sm
pois.

Proof. Note that the coefficient matrix of (43) does not depend on s. Representing b by Duhamel’s
formula and using (42) we derive the estimate

jb.s; �/j �M jv.�/jCM

Z 0

s

e.ı0�ı/sh�ijr.s; �/j ds �M jv.�/jC
M

ı0� ı
sup
s�0

jr.s; �/j=h�i:

Moreover, we can estimate @sb.s; �/ by estimating the right-hand side of (43). Differentiating (43) we
derive linear ordinary differential equations for @�s .

vr/j .hr/`b.s; �/. These equations are of the same
structure as (43) with the same coefficient matrix. The asserted symbol estimates are obtained recursively.

�

Proposition 17. Let 0<ı<ı0, and �>0. There exists B 2Opı;h S
0;0
pois with Schwartz kernel supported in

�� < s� 0, such that, microlocally at E, .Dr=h�Q/B� 0 and BjrD0D Id. Moreover, .h2L��/B� 0.

Proof. It follows from Lemma 15 that, for a classical symbol b 2 S
m;k
pois , 0 < ı0 < ı, modulo negligible

operators, the composition

.Dr=h�Q/Opı;h b.r=h/

equals Opı0;h c.r=h/, c 2 S
mC1;k
pois . Moreover, c is classical, and, modulo S

m;k�1
pois ,

c.s; �/�
�
� i@sb.s; �/� iıh�ib.s; �/� q.0; �/b.s; �/

�
e.ı�ı

0/sh�i:

Fix a sequence .ıj /, ı < ıjC1<ıj . Using Lemmas 15 and 16 we recursively find h-independent symbols
bj 2 S

1�j
pois , b1jrD0 D Id, bj jrD0 D 0 if j > 1, such that Bj D hj�1 Opıj ;h bj .r=h/ satisfy

.Dr=h�Q/.B1C � � �CBj / 2 Opı0;h S
1�j ;�j
pois ; ıjC1 < ı

0 < ıj :

Now B is constructed using asymptotic summation. The last assertion follows from the factorization (39).
�
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7. The displacement-to-traction operator

In this section we deal with operators on the boundary X . Therefore, in the following, operators and
symbols are, as a rule, evaluated at r D 0.

Let B denote the Dirichlet parametrix given in Proposition 17 and T the traction defined in (1). The
operator Z D hTB is called the semiclassical displacement-to-traction operator, or Neumann operator,
at E. By Propositions 11 and 17 we have, if WFh.f /� E,

Zf D .iA0Dr=hBf C ihA1Bf /jX D iA0.0/Q.0/f C ihA1.0/f:

Therefore, Z D iA0QC ihA1, and Z is, microlocally in E, a pseudodifferential operator of class ‰1;0.
The symbol of Z is classical since the symbols of Aj and Q are.

Lemma 18. The displacement-to-traction operator Z is, in E, up to a negligible operator, formally
selfadjoint. The principal symbol of Z equals the surface impedance tensor

z D i.aqC a1/ 2 S1.EI�� End.CTX M //: (44)

The leading symbol of Z is zC hz�, where z� 2 S0,

z�q� q�z� D i tr.S/zC i@r z� a2�� a1�qC tr
�
v
rq�:ah

rq
�
: (45)

Proof. Let f1; f2 2L2.X ICTX M /, WFh.fj /� E, and set uj D Bfj . By (1),Z
X

.Zf1 j f2/ dVX �

Z
X

.f1 jZf2/ dVX D h�1

Z
M

.u1 j h
2Lu2� �u2/� .h

2Lu1� �u1 j u2/ dVM :

It follows from Proposition 17 that the right-hand side is O.h1/, uniformly if the fj ’s range in a bounded
set and have h-wavefronts contained in a common closed subset of E. Thus Z� D Z in E. Recalling
Z D iA0QC ihA1, we infer from the symbol calculus that z D i.aqC a1/ is the principal symbol.

It remains to prove the formula for z�. Write the leading symbols of Q and Q] as q C hq� and
q� C hq]�, respectively. It is easy to see that z� D iaq�. Recall the formula for L in Proposition 11.
The factorization (39) is equivalent to

.Dr=h� ih tr.S//hA1C .hA�1� ih tr.S/A0/Dr=hCh2A2��D�Dr=hA0Q�Q]A0Dr=hCQ]A0Q:

This in turn is equivalent to the following two equations of tangential operators:

hA1C hA�1 � ih tr.S/A0CA0QCQ]A0 D 0;

ŒDr=h;A0QC hA1�� ih tr.S/hA1C h2A2� ��Q]A0QD 0:

On the principal symbol level these equations become a1Ca�
1
CaqC q�aD 0 and a2��� q�aq D 0.

These equations agree with (10). On the leading symbol level the equations become, after division by h,

�ia1�� i tr.S/aC aq�C q]�a� i tr
�
v
rq�:hra

�
D 0;

�@r z� i tr.S/a1� ia2�� q�aq�� q]�aqC i tr
�
v
rq�:hraq

�
D 0:

Elimination of q]� from these equations gives

.aq�/q� q�.aq�/D ia1�qC tr.S/zC @r zC ia2�� i tr
�
v
rq�:ah

rq
�
:
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Formula (45) for z� D iaq� follows. �

In principle z� is found as the unique solution of the linear Equation (45). The right-hand side of
the equation consists of known quantities and their first order derivatives. Refer to Section 10 for an
algorithm computing z� if the elastic medium is isotropic.

8. Diagonalization of Z

Assume (U) and (E1). By Proposition 6 the kernel ker z defines a line bundle over the characteristic
variety †Dp�1.1/ of the surface impedance tensor z. Since zero is a simple eigenvalue of z at †, there
exist � > 0 and an open neighborhood K � E of † such that z.�/, � 2 K, has exactly one eigenvalue
�0.�/ of modulus<�. (In the following, K is to be replaced by a smaller neighborhood when necessary.)
The line bundle E0 D ker.z � �0/ � K is a subbundle of ��CTX M D Hom.C; ��CTX M /. The
orthoprojector onto this bundle is given by a contour integral, u0 D .2� i/�1

H
j�jD�.�� z/�1d�. Denote

by u1 D Id�u0 the orthoprojector onto the orthogonal bundle, E1.
Assume also (E2). Choose a unit section v of ker z �†, jvj D 1. Using u0, extend v to a unit section

of E0 �K. Call this section also v. Clearly, u0D v˝v
�. If R2‰0;0 denotes the inverse of a square root

of the scalar operator Oph.v/
�Oph.v/, then V D Oph.v/R satisfies V �V D Id, i.e., V is an isometry.

Lemma 19. Choose V 2 ‰0;0.KIC;CTX M /, with principal symbol v, such that V �V D Id. Set
U0DV V �, U1D Id�U0. There exist B 2‰�1;�2.X ICTX M /, B�DB, and R2‰�1;�1.X ICTX M /,
R�CRD 0, such that, microlocally in K,

.Id�R�/Z.Id�R/D U0.ZCB/U0CU1.ZCB/U1: (46)

In particular,
.Id�R�/Z.Id�R/V D V V �.ZCB/V: (47)

The leading symbol of the scalar operator V �.ZCB/V 2‰1;0 equals

�0C h.z�v j v/� ih tr
�
v� vrz:hrvCvrv�:hr�0:v

�
: (48)

Here, as in Lemma 18, zC hz� denotes the leading symbol of Z.

Proof. To prove (46) we adopt ideas from [Stefanov 2000]. The operators U0 and U1 are orthogonal
projectors, U �j D Uj D U 2

j , and U1U0 D 0. Write

Z D U0ZU0CU1ZU1CB;

where B D U0ZU1 C U1ZU0. Since uj z D zuj and u1u0 D 0 we have B 2 ‰0;�1. Let hb, with
b D b� 2 S0, denote the principal symbol of B. Define the section zj D zjEj of End.Ej /. The spectra
of z0 and z1 are disjoint. Therefore the Sylvester equation sz0 � z1s D u1bu0 has a unique solution s

which is a section of Hom.E0;E1/. We extend s to a section of End.��CTX M / by s D u1su0. Then
sz�zsD u1bu0, and s 2 S�1. Define S DOph.hs/ and RDU0S�U1�U1SU0. Then, R�D�R and
B D U0BU1CU1BU0 � R�Z CZR modulo ‰�1;�2. Therefore, with a different B 2 ‰�NC1;�N ,
N D 2, and Z0 DZ1 DZ, we have

.Id�R�/Z.Id�R/D U0Z0U0CU1Z1U1CB: (49)
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If N � 2 then, using the same construction as before, we find R1 2 ‰
�N;�N , R�

1
D �R1 such that

U0BU1CU1BU0 �R�
1
ZCZR1 modulo ‰�N;�N�1. Hence we get (49) with R and Zj replaced by

RCR1 and Zj CB, respectively. The new error B belongs to ‰�N;�N�1. Iterating this construction
and using asymptotic summation (46) follows. Since U0V D V , (46) implies (47).

Observe that the leading symbols of V �.Z C B/V and V �ZV are equal. The principal symbol
equals .v j zv/ D �0 because jvj D 1. We write the leading symbol of V as .1C h /v C hw, where
v�wD .w j v/D 0. Note that .v j zw/D 0. A straightforward symbol computation, using (68) and (71),
gives

�h.V
�ZV /� �0C h.z�v j v/C h. C  /�0� ih tr

�
v� vrz:hrvCvr h

rv�:zvCvrv�:hrzv
�

modulo O.h2/. From V �V D 1 it follows that the leading symbol of V �V equals unity. Since jvj2 D 1

is the principal symbol, this implies

h. C  /� ih tr
�
v
r

h
rv�:vC v

rv�:hrv
�
D 0:

Therefore the expression for the symbol of V �ZV simplifies to

�h.V
�ZV /� �0C h.z�v j v/C ih tr

�
�0
v
rv�:hrv� v� vrz:hrv�vrv�:hrzv

�
modulo O.h2/. Using hrzv D �0

hrvChr�0:v we deduce (48). �

Denote by ‰m
phg the class of h-independent pseudodifferential operators A with polyhomogeneous

symbols, a �
P

j�m aj , aj homogeneous of degree j . When regarded as an h-dependent operator,
A2‰m;m has the classical symbol

P
j�m h�j aj . In the next lemma, following [Popov and Vodev 1999]

and [Stefanov 2000], we use this relation to conjugate the scalar operator constructed in Lemma 19 into
hP � 1, where P is h-independent.

Recall that �1=2 � X denotes the bundle of half-densities.

Lemma 20. There is a selfadjoint operator P 2‰1
phg.X I�

1=2/with principal symbol p, and an operator
A 2 ‰0;0 from half-density sections to scalar functions, elliptic near †, such that A�V �.ZCB/VAD

hP � 1 in a neighborhood of †. The subprincipal symbol of P equals, on †,

psub D .Pzv j v/
�1
�

Re.z�v j v/C Im tr.v� vrz:hrv/
�
C Im tr.h

rp:vrv�:v/: (50)

Here Pz denotes the radial derivative of z. If instead of v another unit section QvDei'v of ker z �† is used
to define V , and thus P , then the principal symbol of P remains unchanged, whereas the subprincipal
changes to Qpsub D psubCfp; 'g on †. Here fp; 'g denotes the Poisson bracket.

Obviously, P is elliptic and bounded from below.

Proof. The radial derivatives of p and of �0D .zv j v/ are, at †, equal to 1 and .Pzv j v/ > 0, respectively.
Therefore, near†, a2

0
�0Dp�1 for some a0 2C1, a0>0. Set QZDA�

0
V �.ZCB/VA0, A0DOph.a0/.

Choose QP1 2 ‰
1;0 (formally) selfadjoint with leading symbol p � ih tr.vr hrp/=2. The selfadjoint

operators QZ and QP1 � 1 have the same principal symbol, p � 1. Therefore, the imaginary parts of their
leading symbols are equal. It follows that the principal symbol q0 of QQ0 D

QZ� . QP1�1/ 2‰0;0 equals,
on †, a2

0
D .Pzv j v/�1 times the real part of the coefficient of h in (48).
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Define p0 2C1.T �X n0/, homogeneous of degree 0, and r�1 2S�1 such that q0Dp0C2.p�1/r�1

holds in a neighborhood of †. Then

.1� h Oph.r�1/
�/ QZ.1� h Oph.r�1//D QP1C h QP0� 1C h QQ�1;

where QP0 is selfadjoint with principal symbol p0. Proceeding inductively, we obtain selfadjoint operators
QPj 2‰

j ;0 with classical symbols such that, for N < 1,

.1� hR�N /
QZ.1� hRN /D h

P
N<j�1

h�j QPj � 1C h�N QQN ;

where QQN 2 ‰
N;0, RN 2 ‰

�1;0. Therefore, there is an h-independent operator P 2 ‰1
phg such that

.1� hR�/ QZ.1� hR/D hP � 1 near †. Moreover, P � QP1C h QP0 modulo ‰�1;�2. The symbol of P

equals p � i tr.vr hrp/=2C p0 modulo S�1. It follows from Corollary 29, or rather its analogue for
h-independent operators, that p is the principal symbol of P and psubD p0 its subprincipal symbol. By
construction p0 D q0 on †. Formula (50) follows from the formula for q0 mentioned earlier.

Note that fp; 'g D tr
�
vrp:hr' � hrp:vr'

�
. The last assertion of the lemma follows from (50),

using v� vrz:v D vr�0. �

Proof of Theorem 1. The following assertions hold microlocally in a neighborhood of †. It follows from
Lemmas 19 and 20 that

.Id�R�/Z.Id�R/VAD VA��.hP � 1/;

where A�� denotes a parametrix of A�. Define JhD .Id�R/VA and QJhD .Id�R�/�1VA��. We have
Jh; QJh2‰

0;0, QJh�Jh2‰
�1;�1. Moreover, J�

h
Jh is elliptic. By definition of Z, TBhJhD

QJh.P�h�1/,
where Bh is the Dirichlet parametrix given in Proposition 17. Combining the results in Section 6 with
Lemmas 19 and 20, the theorem follows. �

9. Construction of quasimodes

Given P of Theorem 1 we associate to the sequence of positive eigenvalues of P a sequence of quasi-
modes of LT . We follow [Stefanov 2000, Section 4], differing in some details, however.

Let P , Bh, and Jh as in Theorem 1. Assume given a sequence of quasimodes, .�j /, with almost
orthogonal quasimodes states:

Pfj ��jfj D OC1.h
1
j /; .fj j fk/� ıjk D O..hj C hk/

1/; (51)

fj 2 C1.X I�1=2/, 0< �j � �jC1!1, hj D �
�1
j .

We define quasimode states for the traction-free boundary problem. By Theorem 1 the traction tj D

TBhj Jhj fj D OC1.h
1
j /. Choose u0j D OC1.h

1
j / satisfying A0.0/@r u0j jX C tj D 0 and u0j jX D 0.

Define uj 2 C1c .M ICTM /,

uj D h
�1=2
j

�
Bhj Jhj fj Cu0j /: (52)

By Theorem 1,
Luj ��

2
j �uj D OC1.h

1
j /; T uj D 0; (53)

and kujkL2 D O.1/. We can assume that the uj are supported in a given neighborhood of X . Using the
ellipticity of L, we deduce kujkH 2 D O.h�2

j /.
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To go from quasimodes to eigenvalues or, in scattering theory, to resonances, it is desirable to be able
to decompose the quasimodes into well-separated clusters. In addition, the quasimode states of each
cluster should be linearly independent, and remain so after applying small perturbations.

Proposition 21. Let the assumptions of Theorem 1 hold. Assume given quasimodes �j D h�1
j > 0 of P

as in (51), and define uj as in (52). Then (53) holds. Let m > dim X . There exist ı > 0 and a covering
of f�j g by a sequence of intervals Œak ; bk �� RC, such that

bk C 2ıb�m�dim X
k < akC1; bk � ak < b�m

k :

Let wj 2H 2.M ICTM / be such that, for some N � 0,

kwjkH 2 D O.h�2�N
j /; wj �uj D OL2.h2 dim XCN

j /:

Then, for large k, fwj gak��j�bk
is linearly independent.

Proof. Property (53) is clear by the arguments already given.
It is well-known that a quasimode sequence (51) is asymptotic to a subsequence of the sequence of

eigenvalues of P . The latter satisfies the Weyl asymptotics. Hence we have a Weyl estimate j �C�dim X
j .

It follows that every interval Œa; b�, 1 � b, of length > L has a subinterval of length � Lb� dim X =C

containing no quasimode �j . The existence of intervals Œak ; bk � having the stated properties follows
from this observation. Compare [Stefanov 1999, Proof of Theorem 2]. Define the set of indices of the
k-th cluster: Ik D fj I �j 2 Œak ; bk �g.

Choose a left inverse Kh 2‰
0;0.X ICTX M; �1=2/ of Jh, KhJh D Id at †. Since J�

h
Jh is elliptic at

†, Kh is readily found.
Denote by  W v 7! vjX the trace map. By (52), h

1=2
j uj D Jhj fj C u0j . From (51) it follows that

WFhj fj �†. Therefore,

h
1=2
j Khj uj D fj COC1.h

1
j /:

By the remark after Lemma 26 we can assume that there exists a constant C such that for all j ; ` 2 Ik ,
k 2 N,

kKh` �Khj kL2!L2 � Cbk jh` � hj j:

Using bk jh` � hj j � bka�2
k
j�` ��j j � a�2

k
b�mC1

k
, it follows that

h
1=2
j k.Kh` �Khj /ujkL2 D O.b�m

k /; j ; ` 2 Ik ;

if k is sufficiently large. The assumptions on wj imply kwj � ujkH 1 D O.h1Cdim X
j /. Here we use

the estimate kvk2
H 1 � CkvkL2kvkH 2 . Applying the trace theorem, kwj � ujkL2 D O.h1Cdim X

j /.
Summarizing the estimates, we have shown that, for some " > 0,

kh
1=2
j Kh`wj �fjkL2 D O.h"Cdim X

`
/; j ; ` 2 Ik :

Because of almost orthogonality of the fj and the Weyl estimate, we can apply [Stefanov 1999, Lemma
4]. We obtain, for every ` 2 Ik , the linear independence of fKh`wj gj2Ik

when k is sufficiently large.
Since Kh` is linear, also fwj gj2Ik

is linearly independent. �
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Proof of Corollary 2. We apply Proposition 21 with �j "1 the sequence of positive eigenvalues of P ,
counted with multiplicities, and ffj g a corresponding orthonormal system of eigenvectors. Fix m >

dim X . Let Œak ; bk � be the intervals, clustering f�j g, given in the proposition. The quasimode states
defined in (52) belong to the domain of the selfadjoint operator LT . Let �k denote the spectral projector
for LT of the interval Œa0

k
; b0

k
�, where a0

k
D ak � ıb

�m�dim X
k

, b0
k
D bk C ıb

�m�dim X
k

. The intervals
Œa0

k
; b0

k
� are pairwise disjoint. Set wj D�kuj if �j 2 Œak ; bk �. A well-known argument, using the spectral

theorem, gives
ı2b�2m�2 dim X

k kwj �ujk
2
L2 � k.LT ��

2
j /ujk

2
L2 D O.b�1k /

if �j 2 Œak ; bk �. Since LT is elliptic, we have kwjkH 2 D O.�2
j /. Now Proposition 21, with N D 0,

implies that, for k sufficiently large, the rank of �k equals ]fj I �j 2 Œak ; bk �g. Hence an increase by n

of NP over Œak ; bk � leads to an increase � n of NLT
over Œa0

k
; b0

k
�. Taking into account the widths of the

intervals, the corollary follows. �

Remark. The foregoing arguments also apply to give lower bounds for the counting function of reso-
nances. In this case, �k is the projector onto the space of resonant states which correspond to resonances
in rectangles Œak ; bk �C i Œ0; sk �. To satisfy the assumptions in Proposition 21 for wj D �kuj , one es-
tablishes resolvent estimates. See [Stefanov and Vodev 1996; Tang and Zworski 1998; Stefanov 1999;
Stefanov 2000] for ways from quasimodes to resonances. The clustering method was developed in this
context [Stefanov 1999] to handle multiplicities appropriately. Resolvent estimates for anisotropic elastic
systems are given in [Kawashita and Nakamura 2000].

10. The isotropic subprincipal symbol

In this section we assume that the elastic medium is isotropic. We evaluate the subprincipal symbol of
P , psub, starting from the general formula (50).

We continue with Example 8, referring to the notation introduced there. The kernel bundle ker z is
a line subbundle of V , the subbundle of CTX M spanned by �, O� D �=j�j. Abbreviate (19) and (18) as
follows:

.z/11 D

�
�1 �i�2
i�2 �3

�
; .iq/11 D

�
�11 �i�12

i�21 �22

�
:

It will be convenient to use the velocities relative to the Rayleigh wave speed, �sD cr=cs and �pD cr=cp.
Then t D �2

s , ut D �2
p on †D fcr j�j D 1g. Moreover, we set �s D .1� �

2
s /

1=2, �p D .1� �2
p /

1=2,
We first show how to evaluate .z�v j v/, v 2 ker z, z� as in (45).

Lemma 22. Set K D .iq/11. Define Yj by (55), (56), and (58) below. Let X D .xjk/ the selfadjoint
2� 2 matrix which is the unique solution of

XKCK�X D�2Y1�Y2�Y �2 CY3CY �3 : (54)

Let v D v1�C v2
O� 2 ker z. Then

2 Re.z�v j v/D x11jv1j
2
Cx22jv2j

2
C 2 Re x12 Nv1v2:

Proof. Set x D z� C z��. Then 2 Re.z�v j v/ D .xv j v/. By (45), x satisfies the uniquely solvable
Sylvester equation x.iq/C .iq/�x D iy C .iy/�, where y equals the right-hand side of (45). Since q
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leaves V and V ? invariant, X D .x/11 D .xjk/ is the unique solution of (54) provided the right-hand
side of the equation equals .iyC .iy/�/11. The latter holds if

Y1 D .tr.S/zC @r z/11; Y2 D .a1�iq/11; Y3 D
�
i tr vr.iq/�:ah

riq
�
11
:

Observe that the a2� term of (45) drops out because of the skewness of .ia2�/11. In the following we
derive formulas for Yj .

The basis vectors � and O� do not depend on r . Therefore, .@r z/11 D @r .z/11. We obtain

Y1 D tr.S/
�
�1 �i�2
i�2 �3

�
C

�
@r�1 �i@r�2
i@r�2 @r�3

�
: (55)

Using Lemma 12 and the remark following it we obtain a formula for .a1�/11. Clearly, .a1�iq/11D

.a1�/11.iq/11. We derive

Y2 D

"
� tr S h O�;r�i

h O�;r�i � tr SC.�C�/h O�;S O�i

#�
�11 �i�12

i�21 �22

�
: (56)

It remains to determine Y3. Fix an orthonormal frame .�j / of T �
X

M , �1D �, �2D
O� . To compute the

contraction we use the frame .�j /j�2 of T �X , and the dual frame. We compute derivatives of

iq D j�j
p

1� t.Id��˝ � � O�˝ O�/ C �11�˝ � � i�12�˝ O�C i�21
O�˝ �C �22

O�˝ O�:

Set sjk D hS�j ; �ki. A calculation using hr� D S and hrO� D 0 gives�
h
rjiq

�
11
D

h
rj.iq/11C sj2j�jb

�1M; j � 2;

where

M D

�
0 .ut � b/

p
1� t

.ut � b/
p

1� t i.ut � t/

�
:

Regard the coefficients �jk as functions of cs; cp; j�j. Then hrj.iq/11 D h�j ;rcsiKs C h�j ;rcpiKp,
where Ks and Kp denote the partial derivatives of .iq/11 with respect to cs and cp, respectively. In
particular, �

h
r2iq

�
11
D hO�;rcsiKsCh

O�;rcpiKpC s22j�jb
�1M:

Define w1 D Œ.ut � b/
p

1� t ;�i.b�ut/�. The row k > 2 in
�

hrjiq
�
21

equals sjkb�1j�jw1.
The vertical derivative of a function � which, when restricted to a fiber depends only on j�j, is given

by its radial derivative:
v
r�� D j�j

�1
h O�; �i P�: (57)

A calculation using vr� D 0 and vrO� D j�j�1.Id�O�˝ O�/ gives�
v
rjiq

�
11
D

v
rj.iq/11 D j�j

�1ı2j
PK; j � 2;

where we have set
PK D

�
P�11 �i P�12

i P�21 P�22

�
:

Define w2 D Œi.b� t/;
p

1�ut �
p

1� t �. The row k > 2 in
�
vrjiq

�
21

equals ıjkb�1w2.
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Set A D .a/11 D diagŒ�C 2�;��. Note that .a/22 equals � times the unit matrix. Summing over
j � 2 we derive

Y3D i PK�A
�
j O�j�1

h O�;rcsiKsCj
O�j�1
h O�;rcpiKpCs22b�1M

�
C i�b�2

j�j.tr.S/�s22/w
�
2˝w1; (58)

evaluated at †. �

Denote by v the unique unit section of ker.z��0/ satisfying . O� j v/ > 0, so

v D �1
�
i�2�C .�1��0/ O�

�
;

 > 0 such that jvj D 1. We compute the v-dependent terms in the right-hand side of (50).

Lemma 23. On † we have Im tr hrp:vrv�:v D 0, and

16 2 Im tr.v� vrz:hrv/

Dm3��1c2
r �

6
s .4��

2
s /.2��

2
s /
�
2�s
P�3� .2��

2
s /
P�2
�
s22C2m3cr�

6
s .2��

2
s /.5�

2
s �4��4

s / tr0 S; (59)

where tr0 S D tr S � s22, s22 D h
O�;S O�i, and mD �j�j=b.

Proof. Set 1 D �2= and 2 D .�1��0/= . We continue to use the frame .�j /. For j � 2 we have

v
rjv
�
D�i vrj1:�

�
C
v
rj2: O�

�
Cj�j�1.1� ı2j /2�

�
j ;

h
rjv D i h

rj1:�C
h
rj2: O�C i1S�j :

Note that vrjv
�:v is real. Hence Im tr hrp:vrv�:v D 0. We need the vertical derivative of z. To

compute it we proceed in the same way as we did when computing the derivatives of iq. Recall that z

equals �? Id on V ?, where �? D �j�j
p

1� t . We obtain
�
vrjz

�
11
D vrj.z/11. Moreover, the column

k > 2 in .vrjz/12 equals ıjk j�j
�1 times the transpose of the row vector Œ�i�2; �3� �

?�. We get

Im v� vrjz:hrjv D 1 Re v� vrjz:S�j

D 1.2
v
rj�3� 1

v
rj�2/s2j C 1j�j

�1
�
2.�3� �

?/� 1�2
�
sjj .1� ı2j /:

Summing over j � 2 we obtain

 2 Im tr.v� vrz:hrv/D �1�2
v
r

S O�
�3� �

2
2
v
r

S O�
�2C cr�2

�
�1.�3� �

?/� �2
2

�
tr0.S/:

The first term on the right equals

m2
j�j�1s22.2b� t/

�
t
p

1� t P�3� .2b� t/ P�2
�
:

Moreover, using the definition of b, we calculate

�3� �
?
Dm.

p
1�ut �

p
1� t/:

Using (21), 4b D t.4� t/, we derive (59). �

The restriction to † of the radial derivative of the eigenvalue �0 D .zv j v/ D a�2
0
.p � 1/ equals

P�0 D .Pzv j v/D a�2
0

because Pp D 1 on †.
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Lemma 24. Let mD �j�j=b. On †, we have

 2 P�0 Dm3�6
s .4� �

2
s /�s

�
�p=�sC cs�s=cp�pC �

2
s � 2

�
;

Proof. The section wD i�2�C�1 O� equals v on †. Therefore  2�0� .zw jw/D �1 det.z/11 to second
order on †. Inserting (20),

 2�0 �mbt
p

1� t
�
4
p
.1� t/.1�ut/� .2� t/2

�
:

Recall that p D cr j�j D �st�1=2, †D ft D �2
s g. The rule of de l’Hospital gives

lim
t!�2

s

4
p
.1� t/.1�ut/� .2� t/2

�st�1=2� 1
D 4�2

s

�
�p=�sC cs�s=cp�pC �

2
s � 2

�
:

Summarizing, the formula for  2 P�0 D 
2�0=.p� 1/ follows. �

Inserting the formulas of the lemmas of this section into the general formula (50) for the subprincipal
symbol of P we obtain a formula for the subprincipal symbol in the isotropic case.

Proposition 25. Denote by X D .xjk/ the 2� 2 matrix solving (54). Set

N D �s

�
�p=�sC cs�s=cp�pC �

2
s � 2

�
:

Let P be the operator of Lemma 20 determined by the unit section v of ker z having positive O� component.
The subprincipal symbol of P is given as follows.

16Npsub D .cr=2�/
�
x11.2� �

2
s /

2
C 4x22.1� �

2
s /

2
C 4 Im x12.2� �

2
s /�s

�
C��1c2

r .2��
2
s /
�
2�s
P�3�.2��

2
s /
P�2
�
hS O�; O�iC2cr .4��

2
s /
�1.2��2

s /.5�
2
s �4��4

s /.tr.S/�hS O�; O�i/:

Proof. On †, w D v D .mt=2/
�
i.2 � t/� C 2

p
1� t O�

�
. Using Lemmas 22 and 24 we calculate

16N Re.z�w j w/= 2 P�0. The result is the first term on the right-hand side of the claimed formula.
Similarly, we obtain the other terms combining the Lemmas 23 and 24. �

The constituents of the above formula for psub are curvature and velocities (Lamé parameters), as-
sumed known. It seems difficult to analyze the formula further unless it is specialized to particular cases.
However, it should be noted that the formula allows explicit numerical evaluation of psub. Therefore it
can be used when solving transport equations for Rayleigh wave amplitudes numerically with a (seismic)
ray tracing program, say. Formulas for the amplitudes of Rayleigh waves were given by in [Babich and
Kirpichnikova 2004].

Appendix: Geometric pseudodifferential calculus

Pseudodifferential operators on manifolds are usually introduced by reducing to the euclidean case via
partitions of unity, [Hörmander 1985, 18.1; Zworski 2011]. The principal symbol of a pseudodifferential
operator is invariantly defined. If the operator acts on sections of the line bundle of half-densities then
there also is an invariantly defined subprincipal symbol [Hörmander 1985, Theorem 18.1.33; Sjöstrand
and Zworski 2002, Appendix].
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In the body of the paper we explicitly track, down to the subprincipal level, symbols of operators
acting between vector bundles. To achieve this we use Sharafutdinov’s geometric pseudodifferential
calculus [Sharafutdinov 2004; 2005]. The purpose of this appendix is to recall this calculus, presenting
a semiclassical variant. Since we have to refer, in the main part of the present paper, to proofs of the
calculus, we give a rather detailed presentation. The calculus depends on a symmetric connection of
the manifold and on metric connections of the (Hermitian) bundles. We make the stronger assumption
that the manifold is Riemannian and that the symmetric connection is the Levi-Civita connection. The
important features of the calculus are a symbol isomorphism modulo order minus infinity, and complete
symbol expansions for products and adjoints given solely in terms of geometric data. Using connections
to develop a pseudodifferential calculus and to prove the existence of a complete symbol isomorphism
was done earlier in [Widom 1980]. This was further developed by Pflaum [1998], who gave a conve-
nient quantization map from symbols to operators. Sharafutdinov gave symbol expansions in terms of
geometric data.

Let X a compact Riemannian manifold without boundary, dim X D n. The exponential map, exp, of
the Levi-Civita connection defines a diffeomorphism, .x; v/ 7! .x;y/ D .x; expx v/, between a neigh-
borhood of the zero-section of the tangent bundle T D TX and a neighborhood of the diagonal in X 2.
In the proofs of the propositions below we need the following properties of exp. In local coordinates the
exponential map satisfies

.expx v/
i
D xi

C vi
�� i

jk.x/v
jvk=2CO.jvj3/; (60)

where � i
jk

denotes the Christoffel symbols. Normal coordinates centered at x satisfy .expx v/
i D vi .

There exist 0< r <R< inj.x/, the injectivity radius of X , such that the equation

expexpx v
z D expx w (61)

defines, for every v 2 Tx D TxX , jvj < R, a diffeomorphism w 7! z D z.x; v; w/ from an open
neighborhood of the origin, contained in fjwj < Rg � Tx , onto the ball fjzj < rg � Ty , y D expx v.
This map is used below to change variables of integration. Obviously, z.x; 0; w/ D w. A computation
in normal coordinates centered at x shows that

.z0w/
�1z D w� vCO..jvjC jwj/3/ as v;w! 0. (62)

Recall, from Section 3, the notation for segments and for parallel transport maps. In local coordinates,�
�TX
Œexpx v�x�w

�i
D wi

�� i
jk.x/w

jvk
CO.jvj2/: (63)

Let E � X and F � X be Hermitian vector bundles with metric connections. Recall from Section 3
the definition (24) of horizontal derivatives and the definition of vertical derivatives. A C1 section a of
the bundle ��Hom.E;F / � T �X is called a Hom.E;F /-valued symbol of order m 2 R, a 2 Sm D

Sm.T �X I��Hom.E;F //, if and only if for all nonnegative integers j and `,

sup
x;�

.1Cj�j/j�m
ˇ̌
.vr/j .h

r/`a.x; �/
ˇ̌
<1:

These are the usual type .1; 0/ symbol estimates. The symbol space Sm is a Fréchet space. The space
Sm;k D Sm;k.T �X I��Hom.E;F // of h-dependent symbols of order m and degree k is the Fréchet
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space of families ah 2 Sm such that fhkah I 0< h� 1g is bounded in Sm. We call a 2 Sm;k classical if
there exists an asymptotic expansion a�

P
j hj�kaj with h-independent symbols aj 2 Sm�j .

In the following lemma we define, in a semiclassical setting, the quantization of symbols according to
Sharafutdinov’s geometric pseudodifferential calculus. We relate this definition of h-pseudodifferential
operators to the definition in the euclidean situation. For semiclassical analysis, in particular, for the class
‰m;k D Oph Sm;k of h-pseudodifferential operators, including mapping properties, and for frequency
sets (h-wavefront sets), refer to [Gérard 1988; Ivrii 1998; Dimassi and Sjöstrand 1999; Sjöstrand and
Zworski 2002; Zworski 2011]. The class of negligible operators, ‰�1;�1, consists of h-dependent
operators whose Schwartz kernels are C1 with O.h1/ seminorms.

Fix �0 2C1.TX /, real-valued, jvj< r on the support of �0.x; v/, such that �0D1 in a neighborhood
of the zero-section in TX .

Lemma 26. Let ah 2 Sm;k be a Hom.E;F /-valued symbol. Then

Ahuh.x/D .2�h/�n

Z
T �x

Z
Tx

e�ih�;vi=h�0.x; v/ � ah.x; �/�
E
Œx�expx v�

uh.expx v/ dv d�; (64)

defines an h-pseudodifferential operator Ah 2 ‰
m;k.X IE;F /. Given a point x there exists a geodesic

ball U centered at x, and a symbol aU
h
2 Sm;k such that, for uh compactly supported in U ,

Ahuh.y/D .2�h/�n

Z
T �x

Z
Tx

eih�;v�wi=haU
h .y; �/�

E
Œy�y0�uh.y

0/ dw d�;

where y D expx v and y0 D expx w. Moreover, at x, aU
h
� ah modulo Sm�2;k�2. Every h-pseudo-

differential operator is, modulo negligible operators, of the form (64).

The measures in (64) are the normalized Lebesgue measures of the euclidean spaces Tx and T �x .

Proof. We shall drop the subscript h from the notation. Fix x 2 X . Let U denote a geodesic ball with
center x and radius �R. In the following we assume that the support of u is a compact subset of U . In
(64) we replace the variables x; v; � by y; z; �. Next we change variables in the integral Au.y/ such that
the domain of integration does not depend on y. Set y D expx v. Define z D z.x; v; w/ by (61). Using
the symplectic map .w; #/ 7! .z; �/, � D t .z0w/

�1# , we get

Au.y/D

Z
Tx

K.v; w/�E
Œy�expx w�

u.expx w/ dw;

where the kernel K is given by

K.v; w/D .2�h/�n

Z
T �x

e�i'=h�0.y; z/a.y; �/ d#;

with 'Dh�; ziDh#; .z0w/
�1zi. Since zD0 if and only if vDw, we have '.v;w; #/Dh .v;w/#;w�vi.

Here  D IdCO.jvj2 C jwj2/ by (62). Decreasing the radius of U and making the linear change of
variables � D  .v;w/# , we get

K.v; w/D .2�h/�n

Z
T �x

eih�;v�wi=h�0.y; z/a.y; �/J1.v; w/ d�;
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with J1.v; w/D1CO.jvj2Cjwj2/. It follows that A restricted to U is an h-pseudodifferential operator of
class ‰m;k . As it stands the symbol depends on v; �; w. Using the standard symbol reduction procedure
we obtain aU .expx v; �/. Moreover, the asymptotic expansion implies that, as v!0, aU�a2Sm�2;k�2.

Note that Au.y/D 0 if the distance between y and supp u is > r . Using a partition of unity, we infer
that the class of operators given by (64) equals the class of h-pseudodifferential operators with Schwartz
kernels supported in small neighborhoods of the diagonal. �

Standard arguments show that up to a negligible operator Ah D Oph.ah/ does not depend on the
choice of the cutoff �0. The space

‰m;k.X IE;F /D Oph Sm;k
C‰�1;�1:

is the space h-pseudodifferential order m and degree k. We denote the geometric symbol by �h.Ah/Dah.

Remark. Let Ah D Oph.ah/ 2 ‰
0;0. Then Ah is L2 bounded, uniformly in h. Assume, in addition,

that ah depends differentiably on h with @hah 2 S0;0. Changing variables in (64) from � to � D �=h,
we obtain Ah1

�Ah0
D
R h1

h0
h�1 Oph.bh/ dh, where bh 2 S0;0, bh.x; �/D h@hah.x; �/C

vr�ah.x; �/.
This implies the following useful Lipschitz estimate:

kAh1
�Ah0

kL2!L2 � C h�1
0 jh1� h0j if h0 < h1,

where kOph.bh/kL2!L2 � C <1. The assumption holds if ah is classical and given as a Borel sum.

In the following, we often suppress from writing the h-dependence of symbols, operators and distri-
butions. Moreover, when dealing with integrals like (64), we move, without explicitly writing this, the
x-dependence from the domain of integration into the integrand using arguments as in the proof of the
lemma.

Lebesgue measure dv on TxX and Riemannian volume are related byZ
f .y/ dVX .y/D

Z
f .expx v/J0.x; v/ dv;

where yD expx v and J0 is the Jacobian, satisfying J0D 1CO.jvj2/ at vD 0. Let ADAh be as in (64).
The Schwartz kernel KA of A,

Au.x/D

Z
X

KA.x;y/u.y/ dVX .y/; KA.x;y/ 2 Hom.Ey ;Fx/:

equals in a neighborhood of the diagonal a partial Fourier transform of the symbol,

KA.x;y/D .2�h/�n

Z
T �x

e�ih�;exp�1
x yi=ha.x; �/ d�  .x;y/�E

Œx�y�: (65)

Here  .x;y/ D �0.x; v/=J0.x; v/, y D expx v. The symbol a is recovered via the inverse Fourier
transform:

a.x; �/�

Z
Tx

eih�;vi=h.�0J0/.x; v/KA.x; expx v/�
E
Œexpx v�x� dv (66)
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modulo S�1;�1. The correspondence between an operator AD Oph.a/ and its full symbol a, named
the geometric symbol of A, defines the complete symbol isomorphism

‰m;k.X IE;F /=‰�1;�1 Š Sm;k.T �X IHom.��E; ��F //=S�1;�1:

The geometric symbol can also be computed by applying the operator to suitable testing functions:

a.x; �/s �Ay

�
eih�;exp�1

x yi=h�0.x; exp�1
x y/�E

Œy�x�s
�
jyDx : (67)

Here Ay means that A acts on functions of the variable y. In particular, in case E D C, the geometric
symbol is obtained at the center of normal coordinates xj when A is applied to ei�jxj =h and evaluated
at xj D 0.

We derive symbol properties and expansions using the method of stationary phase:�
det.H=2� ih/

�1=2 Z
ei.'.x//=ha.x/ dx D exp

�
2�1ihhH�1@; @i

��
ei�.x/=ha.x/

�ˇ̌
xD0

D

X
j<3N

.ih/j

j !2j
hH�1@; @ij

�
ei�.x/=ha.x/

�ˇ̌
xD0
CO.hN /:

Here ' 2C1 is real-valued, '0.x/D 0 if and only if xD 0, H D'00.0/ is nonsingular, and '.0/D 0. The
remainder �.x/D '.x/�hHx;xi=2 vanishes to third order at xD 0. The expansion has the advantage,
when compared to that obtained using the Morse lemma, of giving an efficient algorithm for computing
the asymptotic series.

See [Asada and Fujiwara 1978, Lemma 3.2] and [Hörmander 1990, Theorem 7.7.5], where the ex-
pansion is arranged in powers of !�1 D h.

We are mainly interested in the leading symbols of operators. We define the leading symbol of an
operator Oph.a/ 2‰

m;k as the residue of a in Sm;k=Sm�2;k�2. The principal symbol is, of course, the
residue in Sm;k=Sm�1;k�1.

Proposition 27. Let A D Oph.a/ as in (64) with geometric symbol a 2 Sm;k . The formal adjoint
A� 2‰m;k.X IF;E/ has the geometric symbol

b � a�� ih tr vr h
ra� mod Sm�2;k�2: (68)

If a is classical then so is b.

Notice that vr hra� is a section of ��.Hom.F;E/˝ T ˝ T �/. The trace is taken of the T ˝ T �

part.

Proof. The formal adjoint of A is defined byZ
X

�
u1.x/ jAu2.x/

�
F

dVX .x/D

Z
X

�
A�u1.y/ j u2.y/

�
E

dVX .y/:

The Schwartz kernel satisfies KA�.x;y/ D KA.y;x/
�. Recall that parallel transport preserves inner

products. It follows from (65) that

KA�.x;y/D .2�h/�n

Z
T �y

eih�;exp�1
y xi=h�E

Œx�y�a.y; �/
�d�  .y;x/;
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and KA�.x;y/D 0 if the distance between x and y is > r . Set yD expx v. Define z 2Ty by expy zDx.
After a linear change variables from � 2 T �y to � D t .exp0x.v//� 2 T �x we have

KA�.x;y/D .2�h/�n

Z
T �x

eih�;zi=h�E
Œx�y�a.y; �/

�d�  .y;x/=J1.x; v/;

with Jacobian J1.x; v/D 1CO.jvj2/. Define

b.x; �/D

Z
Tx

eih�;vi=h.�0J0/.x; v/KA�.x;y/�
F
Œy�x�dv:

Inserting KA� we have

b.x; �/D .2�h/�n

Z
Tx

Z
T �x

ei'=h
QaJd� dv; (69)

where
' D h�; viC h�; zi D �h� � �; viC h�;ˆi;

QaD �E
Œx�y�a.y; �/

��F
Œy�x� D �

Hom.F;E/
Œx�y�

a.y; �/�;

J D �0.x; v/J0.x; v/ .y;x/=J1.x; v/D 1CO.jvj2/;

and ˆ D ˆ.x; v/ D exp0x.v/
�1

z C v. A computation in normal coordinates centered at x shows that
ˆ D O.jvj3/ as v ! 0. If '0

�
D 0 then z D 0, hence v D 0. It follows that the critical points of ' are

defined by v D 0, � D �.
Apply the method of stationary phase to (69) and deduce that b 2 Sm;k . Moreover, the following

asymptotic expansion holds:

b �
X

j

.ih/j

j !
h�@� ; @vi

j
�
eih�;ˆi=h

Qa
�ˇ̌
vD0;�D�

: (70)

Differentiation of the exponential factor brings out a nonzero factor only if it consumes at least three
derivatives with respect to v and at most one derivative with respect to �. It follows that the sum is
asymptotic. Moreover, b is determined modulo Sm�2;k�2 by the terms in the asymptotic sum with
j < 2, b � a�� ihh@� ; @vi Qa. Observe that

�T
Œx�expx v�

ı exp0x.v/D IdTx
CO.jvj2/ as v! 0.

It follows that @v Qa
ˇ̌
vD0
D hra�.x; �/. Hence b � a�� ih tr vr hra�. The Schwartz kernels of Oph.b/

and A� are equal in a neighborhood of the diagonal. Therefore A��B 2‰�1;�1. �

Proposition 28. Let A 2 ‰mA;kA.X IF;G/ and B 2 ‰mB;kB .X IE;F / with geometric symbols a and
b, respectively. Set k D kAC kB , mDmACmB . Then AB 2‰m;k.X IE;G/ with geometric symbol

c � ab� ih tr
�
v
ra:hrb

�
(71)

modulo Sm�2;k�2. If a and b are classical then so is c.

Again the trace is taken of the T ˝T � part, and the dot terminates differentiated expressions.
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Proof. Setting y D expx v, the operator C DAB is given by

C u.x/D

.2�h/�2n

ZZZZ
Tx�T �x �Ty�T �y

e�i.h�;viCh�;zi/=ha.x; �/ � �F
Œx�y�

�
b.y; �/�E

Œy�expy z�u.expy z/
�

dz d� dv d�:

Here and in the following we do not write the cutoff factors. Let z D z.x; v; w/ be the solution of
expy z D expx w. The symplectic change of variables .w; #/ 7! .z; �/, � D t .z0w/

�1# , preserves the
volume form. We get C u.x/D

R
Tx

KC .x; expx w/u.expx w/J0.x; w/ dw, with Schwartz kernel

KC .x; expx w/J0.x; w/D .2�h/�2n

Z
T �x �Tx�T �x

e�i.h�;viCh�;zi/=hc0d.#; v; �/ �E
Œx�expx w�

;

c0D a.x; �/�
Hom.E;F /
Œx�y�

b.y; �/M.x; w; v/. Here M.x; w; v/ 2GL.Ex/ denotes the parallel transport in
E along the geodesic triangle x! expx w! expx v! x. It follows that the symbol of C equals

c.x; �/D .2�h/�2n

Z
Tx�T �x �Tx�T �x

ei'=hc0d.v; �; w; #/; (72)

' D h�; wi � h�; vi � h�; zi. We introduce w� v as a new variable, w. Then (72) holds with

' D�h�� �; vi � h# � �; wiC h#;ˆi;

c0 D a.x; �/�
Hom.E;F /
Œx�y�

b.y; �/M.x; wC v; v/;

Here ˆDw�.z0w.x; v; wCv//
�1z.x; v; wCv/2T �x . By (62), ˆ vanishes to third order at vDwD 0.

Clearly, v D 0D z at a critical point of '. It follows that v D w D 0 and �D # D � define the critical
points.

Now apply the method of stationary phase to (72) and deduce that c 2 Sm;k is a symbol which,
moreover, has an asymptotic expansion

c �
X

j

.�ih/j

j !

�
h@# ; @wiC h@�; @vi

�j �
eih#;ˆi=hc0

�ˇ̌
vDwD0;�D#D�

: (73)

Using that ˆ does not depend on � and # , and vanishes to third order at v D w D 0, we infer that the
summands with j > 1 belong to Sm�2;k�2. It follows that

ab� ihh@�a; @v QbM i � ihah@# ; @wi QbM;

evaluated at the critical point, is the leading symbol of C . Here QbD �Hom.E;F /
Œx�y�

b.y; �/. We have @w QbD 0

at v D w D 0. This follows from �0w D 0 which is a corollary of z D w at v D 0. The derivatives of M

with respect to v and w vanish at vDwD 0. Using �T
Œx�expx v�

ız0w D IdTx
CO.jvj2/ at wD 0, we derive

@v Qb D @v�
Hom.E;F /
Œx�expx v�

b.expx v;
t .z0w/

�1#/D h
rb.x; #/;

at v D w D 0. Summarizing the computations, (71) follows. �
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Remark. The proofs of Propositions 27 and 28 follow those in [Sharafutdinov 2004; 2005] closely with
only minor modifications. Our derivation of the asymptotic expansions of the symbols of adjoints and
products may be somewhat shorter, however. We differ in defining the adjoint with respect to the volume
element rather than using half-densities. Notice that the symbol expansions (70) and (73) depend only on
the given symbols and on the geometry. In the formulas (68) and (71), we extracted the leading symbols.

For the purposes of the present paper it suffices to assume X compact. A symbol calculus on general
(complete) Riemannian manifolds needs to take the injectivity radius into account and handle mapping
properties more explicitly.

It is well-known that a pseudodifferential operator acting on half-densities has an invariantly defined
subprincipal symbol; see [Sjöstrand and Zworski 2002, Appendix] for a proof in the semiclassical case.
We relate the subprincipal symbol to the leading geometric symbol. Equip the half-density bundle�1=2 �
X with the inner product .u jv/Du� Nv= dVX , where the operations on the right are in the sense of densities.
The connection given by r�

1=2

dV
1=2

X
D 0 is metric with respect to the Hermitian structure of �1=2.

Corollary 29. Let A2‰m;k.X I�1=2/. The leading symbol of A equals that of the corresponding scalar
operator QA 2 ‰m;k.X / which is given by QAuD dV

�1=2
X

A.u dV
1=2

X
/. If the geometric symbol a of A is

classical, a�
P

j�0 hj�kaj , aj 2 Sm�j , then h�ka0 is the principal symbol of A, and

asub D h1�k.a1C i vra0:
h
ra0=2/

is its subprincipal symbol.

Proof. Consider the multiplication operator dV
1=2

X
2 ‰0;0.X IC; �1=2/. The Hom.C; �1=2/-valued

symbol �� dV
1=2

X
is the leading symbol of this operator. Note that its horizontal and vertical derivatives

vanish. The equality of the leading symbols of A and QA now follows from Proposition 28.
Let aU denote the local symbol of A in a geodesic coordinate chart U centered at a given point x.

We use normal coordinates centered at x. Assume a classical, hka D a0 C ha1 C O.h2/. Then aU is
classical, and hkaU D a0CO.h/. Moreover, it follows from Lemma 26 that hkaU D a0Cha1CO.h2/

at x. The subprincipal symbol equals, by definition, h1�k.a1C 2�1i
P

j @
2a0=@xj@�j /. The horizontal

derivative in the j -th coordinate direction equals, at x, the partial derivative with respect to xj . The
formula for the subprincipal symbol follows. �
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