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REGULARITY OF WEAK SOLUTIONS
OF A COMPLEX MONGE–AMPÈRE EQUATION

GÁBOR SZÉKELYHIDI AND VALENTINO TOSATTI

We prove the smoothness of weak solutions to an elliptic complex Monge–Ampère equation, using the
smoothing property of the corresponding parabolic flow.

1. Introduction

Let (M, ω) be a compact Kähler manifold. Our main result is the following.

Theorem 1. Suppose that ϕ ∈ P SH(M, ω)∩ L∞(M) is a solution of the equation

(ω+
√
−1∂∂ϕ)n = e−F(ϕ,z)ωn

in the sense of pluripotential theory [Bedford and Taylor 1976], where F : R×M→ R is smooth. Then
ϕ is smooth.

In particular, if M is Fano, ω ∈ c1(M), and hω satisfies
√
−1∂∂hω = Ric(ω)− ω, then we can set

F(ϕ, z)= ϕ− hω. The result then implies that Kähler–Einstein currents with bounded potentials are in
fact smooth. Such weak Kähler–Einstein metrics were studied by Berman, Boucksom, Guedj, and Zeriahi
in [Berman et al. 2009], as part of their variational approach to complex Monge–Ampère equations.

It follows from [Kołodziej 2008] (see also [Guedj et al. 2008]) that the solution ϕ in Theorem 1 is
automatically Cα for some α>0, but it does not seem possible to use this directly to get further regularity.
The difficulty is that in the equation

(ω+
√
−1∂∂ϕ)n = e f ωn,

the C1 estimate for ϕ (due to Błocki [2009] and Hanani [1996]) depends on a C1 bound for f , and in
turn the Laplacian estimate for ϕ (due to Yau [1978] and Aubin [1976]) depends on the Laplacian of f .

To get around this difficulty we look at the corresponding parabolic flow

∂ϕ

∂t
= log

(ω+
√
−1∂∂ϕ)n

ωn + F(ϕ, z).

Following the construction of [Song and Tian 2009] for the Kähler–Ricci flow, we show that to find a
solution for a short time, it is enough to have a C0 initial condition ϕ0 for which (ω+

√
−1∂∂ϕ0)

n is
bounded (see also [Chen and Ding 2007; Chen and Tian 2008; Chen et al. 2011] for earlier results, as
well as [Simon 2002] for a weaker statement in the Riemannian case). The solution of the flow will be
smooth at any positive time. Then we need to argue that if the initial condition ϕ0 is a weak solution of
the elliptic problem then the flow is stationary, so in fact ϕ0 is smooth.
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In Section 2 we show that the flow (with smooth initial data) exists for a short time, which only
depends on a bound for sup |ϕ0| and sup |ϕ̇0|. In Section 3 we use this to construct a solution to the flow
with rough initial data, and we prove Theorem 1.

2. Existence for the parabolic equation

In this section we consider the parabolic equation

∂ϕ

∂t
= log

(ω+
√
−1∂∂ϕ)n

ωn + F(ϕ, z), (1)

where F : R×M→ R is smooth and we have the smooth initial condition ϕ|t=0 = ϕ0. We write ϕ̇0 for
∂ϕ/∂t at t = 0.

The main result of this section is the following:

Proposition 2. There exist T > 0 depending only on sup |ϕ0|, sup |ϕ̇0| (and ω and F), such that there
is a smooth solution ϕ(t, z) : [0, T ] × M → R to (1). We also have smooth functions Ck : (0, T ] → R

depending only on sup |ϕ0|, sup |ϕ̇0| such that

‖ϕ(t)‖Ck(M) < Ck(t) (2)

as long as t 6 T . (Note that Ck(t)→∞ as t→ 0.)

The proof of the C1 estimate is based on the arguments in [Błocki 2009] (see also [Hanani 1996;
Phong and Sturm 2010]), whereas the C2 estimate is based on the Aubin–Yau second order estimate
[Aubin 1976; Yau 1978] (see also [Song and Tian 2009] for the parabolic version we need here). The C3

and higher order estimates follow the standard arguments in [Yau 1978; Cao 1985; Phong et al. 2007],
although there are a few new terms to control.

The existence of a smooth solution for t ∈ [0, T ′) for some T ′ > 0 that depends on the C2,α norm of
ϕ0 is standard. The aim is to obtain the estimates (2), which allow us to extend the solution up to a time
T , which only depends on the initial condition in a weaker way. We will write ϕ(t) for the short time
solution.

Lemma 3. There exists T,C > 0 depending only on sup |ϕ0| and sup |ϕ̇0| such that

|ϕ(t)|, |ϕ̇(t)|< C, (3)

as long as the solution exists and t 6 T . In particular,∣∣∣∣log
(ω+
√
−1∂∂ϕ)n

ωn

∣∣∣∣< C (4)

for t 6 T .

Proof. For all s, define
F(s)= supz∈M F(s, z),

which is a continuous function. At any given time t where ϕ exists, the maximum of ϕ(t, · ) is achieved
at some point z ∈ M , and at z we have

log
(ω+
√
−1∂∂ϕ)n

ωn 6 0.
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It follows that
dϕmax

dt
6 F(ϕmax, z)6 F(ϕmax),

where the derivative is interpreted as the limsup of the forward difference quotients at the points where it
does not exist (compare [Hamilton 1986, Lemma 3.5]). Comparing with the solution of the corresponding
ODE, we find that there exist T,C >0 depending only on sup |ϕ0| such that as long as our solution exists,
and t 6 T , we have supϕ(t)<C . In a similar way we get a lower bound on ϕ(t, · ), so we have |ϕ(t)|<C
as long as the solution exists and t 6 T .

Differentiating the equation we obtain
∂ϕ̇

∂t
=1ϕϕ̇+ F ′(ϕ, z)ϕ̇, (5)

where F ′ is the derivative of F with respect to the ϕ variable. Since F ′(ϕ, z) is bounded as long as ϕ is
bounded, from the maximum principle we get

sup |ϕ̇(t)|< sup |ϕ̇(0)|eκt , (6)

where κ depends on F and sup |ϕ(0)|. Hence for our choice of T , we get

sup |ϕ̇(t)|< C,

for t 6 T , where C depends on sup |ϕ0| and sup |ϕ̇0|. �

In the lemmas below T will be the same as in the previous lemma.

Lemma 4. There exists C > 0 depending on sup |ϕ0| and sup |ϕ̇0| such that

|∇ϕ(t)|2ω < eC/t , (7)

as long as the solution exists and t 6 T for the T in Lemma 3.

Proof. We modify Błocki’s estimate [2009] for the complex Monge–Ampère equation (compare [Hanani
1996]). Define

K = t log |∇ϕ|2ω− γ (ϕ),

where γ will be chosen later. Suppose that sup(0,t]×M K = K (t, z) is achieved. Pick normal coordinates
for ω at z, such that ϕi j̄ is diagonal at this point (here and henceforth, indices will denote covariant
derivatives with respect to the metric ω). We write β = |∇ϕ|2ω and 1ϕ for the Laplacian of the metric
ω+
√
−1∂∂ϕ. There exists B > 0 such that

06
(
∂

∂t
−1ϕ

)
K 6−

t
β

∑
i,p

|ϕi p|
2
+ |ϕi p̄|

2

1+ϕp p̄
+ (t−1(γ ′)2+ γ ′′)

∑
p

|ϕp|
2

1+ϕp p̄

−(γ ′− Bt)
∑

p

1
1+ϕp p̄

+ logβ +
Ct
β
− γ ′ϕ̇+ nγ ′+Ct.

The constant C depends on bounds for F and F ′, and also we used that ∇K = 0 at (t, z).
Now we apply Błocki’s trick to get rid of the term containing (γ ′)2. At (t, z) we have

tβp = γ
′βϕp,
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where
βp = ϕpϕp p̄ +

∑
j

ϕ j pϕ j̄ ,

remembering that ϕ j p̄ is diagonal. It follows that∑
j

ϕ j pϕ j̄ = (t
−1γ ′β −ϕp p̄)ϕp,

and so

t
β

∑
j,p

|ϕ j p|
2

1+ϕp p̄
>

t
β2

∑
p

∣∣∑
j ϕ j pϕ j̄

∣∣2
1+ϕp p̄

=
t
β2

∑
p

|t−1γ ′β −ϕp p̄|
2
|ϕp|

2

1+ϕp p̄
> t−1(γ ′)2

∑
p

|ϕp|
2

1+ϕp p̄
− 2γ ′,

where we assume that γ ′ > 0. Also from Lemma 3 we know that ϕ̇ is bounded. Combining these
estimates we obtain

06 γ ′′
∑

p

|ϕp|
2

1+ϕp p̄
− (γ ′− Bt)

∑
p

1
1+ϕp p̄

+ logβ +
Ct
β
+Cγ ′+Ct.

We now choose γ (s)= As− 1
A s2. We can assume that logβ > 1 at (t, z), so in particular t

β
is bounded

above as long as t < T . Then if A is chosen sufficiently large, we get a constant C ′ > 0 such that∑
p

1
1+ϕp p̄

+

∑
p

|ϕp|
2

1+ϕp p̄
6 C ′ logβ, (8)

so in particular (1+ϕp p̄)
−1 6 C ′ logβ for each p. From (4) we know that∏

p

(1+ϕp p̄) < C,

so
1+ϕp p̄ 6 C(C ′ logβ)n−1,

and using (8) we get
β =

∑
p

|ϕp|
2 6 C(C ′ logβ)n.

This shows that β < C and in turn K < C for some constant C . So either K achieves a maximum for
some t > 0 in which case we have just bounded it, or it achieves its maximum for t = 0, which is bounded
in terms of sup |ϕ0|. �

From now on, we write g for the metric ω and gϕ for the metric ω+
√
−1∂∂ϕ.

Lemma 5. There exists C > 0 depending on sup |ϕ0| and sup |ϕ̇0| such that

0< trg(gϕ)= n+1gϕ(t) < eCeC/t
, (9)

as long as the solution exists and t 6 T , where T is as in Lemma 3.

Proof. We let
H = e−α/t log trg(gϕ)− Aϕ,
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where α = C from Lemma 4 and A is chosen later. In particular we will use that e−α/t
|∇ϕ|2g < 1.

Standard calculations (from [Aubin 1976; Yau 1978]) show that there exist B > 0 such that

1ϕ log trg(gϕ)>−B trgϕ g−
trg Ric(gϕ)

trg(gϕ)
.

Using this we can compute(
∂

∂t
−1ϕ

)
H

6
αe−α/t

t2 log trg(gϕ)+
Ce−α/t

trg(gϕ)
+

e−α/t1g F(ϕ, z)
trg(gϕ)

+ Be−α/t trgϕ g− Aϕ̇+ An− A trgϕ g. (10)

Here

1g F(ϕ, z)=1g F + 2 Re(gi j̄ F ′i ϕ j̄ )+ F ′1gϕ+ F ′′|∇ϕ|2g,

where F ′ is the derivative in the ϕ variable, and 1g F is the Laplacian of F(ϕ, z) in the z variable. So
we have constants C1,C2,C3 such that

1g F(ϕ, z)6 C1+C2|∇ϕ|
2
g +C3 trg(gϕ).

From (4) we have bounds on above and below on det gϕ
det g , so for some constant C we have trg(gϕ) > C−1

and also trg(gϕ)6 C(trgϕ g)n−1. Using these in (10) we get(
∂

∂t
−1ϕ

)
H 6−(A− Be−α/t) trgϕ g+C log trgϕ g+C

6−(A−C − Be−α/t) trgϕ g+C ′,

as long as t 6 T . Choosing A large enough, we can use the maximum principle to bound H in terms of
its value for t = 0, which is bounded by sup |ϕ0|. �

We note here that if one is interested in the special case of weak Kähler–Einstein currents (i.e., F =
ϕ − hω), then the gradient estimate in Lemma 4 is not needed. We now describe how to get the higher
order estimates, as long as the solution exists and t 6 T , for the T from Lemma 3. As in [Yau 1978],
we let ϕi jk be the third covariant derivative of ϕ with respect to the Levi-Civita connection of ω, and we
define

S = gi p
ϕ gq j

ϕ gkr
ϕ ϕi jkϕpqr .

From now on, we will denote by C(t) a smooth real function defined on (0, T ], which is allowed to blow
up when t approaches zero, which depends only on sup |ϕ0|, sup |ϕ̇0| and which may vary from line to
line. These functions C(t) can be made completely explicit. Using (9) it is clear that an estimate of the
form S 6 C(t) implies an estimate of the form ‖ϕ(t)‖C2+α(g) 6 C(t), for any 0 < α < 1. To estimate
S we first compute its evolution. It is convenient to use the general computation by Phong, Šešum, and
Sturm [Phong et al. 2007], which uses the following notation. We denote by hi

j = gik(g jk+ϕ jk), which
is an endomorphism of the tangent bundle. Then S can be written in terms of the connection ∇hh−1 as

S = g pq
ϕ gϕ,i j g

k`
ϕ (∇phh−1)ik(∇qhh−1)

j
` = |∇hh−1

|
2
gϕ ,
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where ∇ is the Levi-Civita connection of ωϕ . Then the computations in [Phong et al. 2007] yield(
∂

∂t
−1ϕ

)
S =−|∇(∇hh−1)|2gϕ − |∇(∇hh−1)|2gϕ + 2 Re

〈
(∇T −∇R,∇hh−1〉

gϕ

+ (∇phh−1)ik(∇qhh−1)
j
`(T

pq gϕ,i j g
k`
ϕ − g pq

ϕ Ti j g
k`
ϕ + g pq

ϕ gϕ,i j T
k`),

where Ti j =−
(
∂gϕ/∂t +Ric(gϕ)

)
i j , (∇T )p

qr = g ps
ϕ ∇q Trs , (∇R)p

qr = gst
ϕ ∇s R p

rqt and R p
rqt is the curvature

of the fixed metric g. Along the standard Kähler–Ricci flow the tensor T vanishes, while in our case
differentiating (1) we get

−Ti j = Ric(g)i j + F ′′ϕiϕ j + F ′ϕi j + Fi j + 2 Re(F ′i ϕ j ). (11)

Using (7) and (9) we can then estimate∣∣(∇phh−1)ik(∇qhh−1)
j
`(T

pq gϕ,i j g
k`
ϕ − g pq

ϕ Ti j g
k`
ϕ + g pq

ϕ gϕ,i j T
k`)
∣∣6 C(t)S.

The term 2 Re〈∇R,∇hh−1
〉gϕ is comparable to S, but bounding 2 Re〈∇T,∇hh−1

〉gϕ requires a bit more
work. Differentiating (11) and using (3), (7) and (9) we see that all the terms in 2 Re〈∇T,∇hh−1

〉gϕ are
comparable to C(t)S except for two terms of the form

〈ϕi j gk`
ϕ ϕ`, (∇i hh−1)kj 〉gϕ .

We bound these by |ϕi j |
2
gϕ +C(t)S, so overall we get(

∂

∂t
−1ϕ

)
S 6 C(t)S+ |ϕi j |

2
gϕ +C.

The term C(t)S can be controlled by using trg(gϕ) in the usual way [Phong et al. 2007]. For the term
|ϕi j |

2
gϕ we note that using (3), (7) and (9) we have(

∂

∂t
−1ϕ

)
|∇ϕ|2g 6−

∑
i,p

|ϕi p|
2
+ |ϕi p̄|

2

1+ϕp p̄
+ 2 Re〈∇ϕ, F ′∇ϕ+∇F〉g +C trgϕ g|∇ϕ|2g

6−
|ϕi j |

2
gϕ

C(t)
+C(t).

We can then apply the maximum principle to the quantity

G =
S

C1(t)
+

trg(gϕ)
C2(t)

+
|∇ϕ|2g

C3(t)
,

for suitable functions Ci (t) that depend only on the given data, and get G 6C , which implies the desired
estimate for S. This means that as long as the solution exists and 0 < t 6 T we have a bound on
‖ϕ(t)‖C2+α(M). Since by standard parabolic theory one can start the flow with initial data in C2+α, this
shows that the flow has a C2+α solution defined on [0, T ].

The next step is to estimate sup |ϕ̈(t)| and sup |∂i∂ j ϕ̇(t)|. It is easy to see that both of these quantities
are bounded if we bound |Ric(gϕ)|gϕ . Following the computation in [Phong et al. 2011, p. 107] one can
derive the following estimate (there are essentially no new bad terms in this case)(

∂

∂t
−1ϕ

)
|Ric(gϕ)|gϕ 6 C(t)|Rm(gϕ)|2+C(t).
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From one of the two good positive terms in the evolution of S we get(
∂

∂t
−1ϕ

)
S 6−

|Rm(gϕ)|2

C(t)
+C(t)

and so the maximum principle applied to the quantity
|Ric(gϕ)|gϕ

C1(t)
+

S
C2(t)

gives the desired bound |Ric(gϕ)|gϕ 6 C(t).
It now follows from the parabolic Schauder estimates applied to (5) that we have bounds for ϕ in the

parabolic Hölder space C2+α,1+α/2(M × [ε, T ]) for any ε > 0, with the bounds only depending on ε,
sup |ϕ0| and sup |ϕ̇0|. By the parabolic Schauder estimates we then also get bounds on all higher order
derivatives for ϕ, and letting ε→ 0 we get the required bounds on ϕ(t) that blow up as t goes to zero.
In particular, we get a smooth solution ϕ(t) that exists on [0, T ], with bounds as in (2). This completes
the proof of Proposition 2.

3. Proof of Theorem 1

Suppose that ϕ is a bounded ω-plurisubharmonic solution of the equation

(ω+
√
−1∂∂ϕ)n = e−F(ϕ,z)ωn, (12)

where F is a smooth function. First of all we want to prove existence of the flow (1) with rough initial
data ϕ. For this, we follow the proof in [Song and Tian 2009] in the case of Kähler–Ricci flow.

It follows from [Kołodziej 1998] that in this case ϕ is continuous (in fact it is even Cα; see [Guedj
et al. 2008; Kołodziej 2008]). Let us approximate ϕ with a sequence of smooth functions uk , such that

sup
M
|ϕ− uk | → 0, (13)

as k→∞. By the theorem in [Yau 1978] there are smooth functions ψk such that

(ω+
√
−1∂∂ψk)

n
= cke−F(uk ,z)ωn, (14)

where the positive constants ck are chosen so that the integrals of both sides of (14) match. When k is
large we see that ck approaches 1. Moreover, we can normalize the solution ψk so that

sup
M
(ψk −ϕ)= sup

M
(ϕ−ψk).

Using (13) together with Kołodziej’s stability result [2003] we obtain

lim
k→∞
‖ψk −ϕ‖L∞ = 0. (15)

Using Proposition 2 we can solve the equation

∂ϕk

∂t
= log

(ω+
√
−1∂∂ϕk)

n

ωn + F(ϕk, z)− log ck, (16)

with initial condition ϕk |t=0 = ψk for a short time t ∈ [0, T ] independent of k, since by (13), (14) and
(15) we have uniform bounds on the initial data sup |ψk | and sup |ϕ̇k(0)|. As in [Song and Tian 2009]
we have:
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Lemma 6. The sequence ϕk is a Cauchy sequence in C0([0, T ]×M), ie.

lim
j,k→∞

‖ϕ j −ϕk‖L∞([0,T ]×M) = 0.

Proof. Fix j, k and let µ= ϕ j −ϕk . Then

∂µ

∂t
= log

(ω+
√
−1∂∂ϕk +

√
−1∂∂µ)n

(ω+
√
−1∂∂ϕk)n

+ F(ϕ j , z)− F(ϕk, z)+ log
ck

c j
,

and µ|t=0 = ψ j −ψk . At any time given time t , the maximum of µ is achieved at some point z ∈ M ,
and at z we have

dµmax

dt
6 F(ϕ j (t, z), z)− F(ϕk(t, z), z)+ log

ck

c j
6 κ|µ(z)| + log

ck

c j
,

where κ is independent of j, k. Here and henceforth the derivative is interpreted as the limsup of the
forward difference quotients at the points where it does not exist [Hamilton 1986, Lemma 3.5]. Similarly,
at the point z′ where the minimum of µ is achieved, we have

dµmin

dt
>−κ|µ(z′)| + log

ck

c j
.

Putting these together we see that
d|µ|max

dt
6 κ|µ|max+

∣∣∣log ck
c j

∣∣∣.
It follows that

sup
[0,T ]×M

|ϕ j −ϕk |6 eκT
(
‖ψ j −ψk‖L∞(M)+

1
κ

∣∣∣log ck
c j

∣∣∣)− 1
κ

∣∣∣log ck
c j

∣∣∣.
Now (15) and the fact that ck converges to 1 imply the result. �

Using this lemma we can define
8= lim

j→∞
ϕ j ,

which is in C0([0, T ]×M). Moreover from Proposition 2 for any ε > 0 we have uniform bounds on all
derivatives of the ϕ j for t ∈ [ε, T ], so in fact for all k we have

lim
j→∞
‖8−ϕ j‖Ck(M×[ε,T ]) = 0.

From (6) we get
sup

M
|ϕ̇k(t)|< C sup

M
|ϕ̇k(0)|

for t ∈ [0, T ), but from (16) we have

ϕ̇k(0)= log
(ω+
√
−1∂∂ψk)

n

ωn + F(ψk, z)− log ck = F(ψk, z)− F(ϕk, z)− log ck,

which converges to zero when k goes to infinity. It follows that for any t > 0 we have

8̇(t)= lim
j→∞

ϕ̇ j (t)= 0.

Hence 8 is constant on (0, T ], but since it is continuous on [0, T ] it follows that 8(t) = 8(0) for all
t 6 T . But 8(0) is our solution ϕ of (12), whereas 8(t) is smooth for t > 0. Hence ϕ is smooth.
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