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TRAVELING WAVES FOR THE CUBIC SZEGŐ EQUATION ON THE REAL LINE

OANA POCOVNICU

We consider the cubic Szegő equation i@tuD….juj2u/ in the Hardy space L2
C.R/ on the upper half-plane,

where … is the Szegő projector. It was first introduced by Gérard and Grellier as a toy model for totally
nondispersive evolution equations. We show that the only traveling waves are of the form C=.x �p/,
where p 2 C with Im p < 0. Moreover, they are shown to be orbitally stable, in contrast to the situation
on the unit disk where some traveling waves were shown to be unstable.

1. Introduction

One of the most important properties in the study of nonlinear Schrödinger equations (NLS) is dispersion.
It is often exhibited in the form of the Strichartz estimates of the corresponding linear flow. In case of the
cubic NLS,

i@tuC�uD juj2u; .t;x/ 2 R�M; (1-1)

Burq, Gérard, and Tzvetkov [Burq et al. 2005] observed that the dispersive properties are strongly
influenced by the geometry of the underlying manifold M . Taking this idea further, Gérard and Grellier
[2010b] remarked a lack of dispersion when M is a sub-Riemannian manifold (for example, the Heisenberg
group). In this situation, many of the classical arguments used in the study of NLS no longer hold. As a
consequence, even the problem of global well-posedness of (1-1) on a sub-Riemannian manifold still
remains open.

Gérard and Grellier [2010a; 2010b] introduced a model of a nondispersive Hamiltonian equation
called the cubic Szegő equation. (See (1-2) below.) The study of this equation is the first step toward
understanding existence and other properties of smooth solutions of NLS in the absence of dispersion.
Remarkably, the Szegő equation turned out to be completely integrable in the following sense. It
possesses a Lax pair structure and an infinite sequence of conservation laws. Moreover, the dynamics
can be approximated by a sequence of finite-dimensional completely integrable Hamiltonian systems.
To illustrate the degeneracy of this completely integrable structure, several instability phenomena were
established in [Gérard and Grellier 2010a].

Gérard and Grellier studied the Szegő equation on the circle S1. More precisely, solutions were
considered to belong at all time to the Hardy space L2

C.S
1/ on the unit disk D D fjzj < 1g. This is

the space of L2-functions on S1 with Of .k/ D 0 for all k < 0. These functions can be extended as
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holomorphic functions on the unit disk. Several properties of the Hardy space on the unit disk naturally
transfer to the Hardy space L2

C.R/ on the upper half-plane CC D fzI Im z > 0g, defined by

L2
C.R/D

�
f holomorphic on CCI kgkL2

C
.R/ WD sup

y>0

�Z
R

jg.xC iy/j2 dx

�1=2

<1

�
:

In view of the Paley–Wiener theorem, we identify this space of holomorphic functions on CC with the
space of its boundary values:

L2
C.R/D ff 2L2.R/I supp Of � Œ0;1/g:

The transfer from L2
C.S

1/ to L2
C.R/ is made by the usual conformal transformation

! W D! CC; !.z/D i
1C z

1� z
:

However, the image of a solution of the Szegő equation on S1 under the conformal transformation is no
longer a solution of the Szegő equation on R. Therefore, we study the Szegő equation on R directly.

Endowing L2.R/ with the usual scalar product .u; v/ D
R

R
u Nv, we define the Szegő projector … W

L2.R/!L2
C.R/ to be the projector onto the nonnegative frequencies:

….f /.x/D
1

2�

Z 1
0

eix� Of .�/ d�:

For u 2L2
C.R/, we consider the Szegő equation on the real line:

i@tuD….juj
2u/; x 2 R: (1-2)

This is a Hamiltonian evolution associated to the Hamiltonian

E.u/D

Z
R

juj4 dx

defined on L4
C.R/. From this structure, we obtain the formal conservation law

E.u.t//DE.u.0//:

The invariance under translations and under modulations provides two more conservation laws,

Q.u.t//DQ.u.0// and M.u.t//DM.u.0//;

where

Q.u/D

Z
R

juj2 dx and M.u/D

Z
R

NuDu dx; with D D�i@x :

Now, we define the Sobolev spaces H s
C.R/ for s � 0:

H s
C.R/D

�
h 2L2

C.R/I khkH s
C
WD

�
1

2�

Z 1
0

.1Cj�j2/sj Oh.�/j2 d�

�1=2

<1

�
:
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Similarly, we define the homogeneous Sobolev norm for h 2 PH s
C by

khk PH s
C

WD

�
1

2�

Z 1
0

j�j2s
j Oh.�/j2

�1=2

<1:

Slight modifications of the proof of the corresponding result in [Gérard and Grellier 2010a] lead to
this well-posedness result:

Theorem 1.1. The cubic Szegő equation (1-2) is globally well-posed in H s
C.R/ for s � 1

2
. That is, given

u0 2H
1=2
C , there exists a unique global-in-time solution u 2 C.RIH

1=2
C / of (1-2) with initial condition

u0. Moreover, if u0 2H s
C for some s > 1

2
, then u 2 C.RIH s

C/.

In this paper, we concentrate on the study of traveling waves. The two main goals are the classification
of traveling waves and their stability. As a result, we show that the situation on the real line is essentially
different from that on the circle.

A solution for the cubic Szegő equation on the real line (1-2) is called a traveling wave if there exist
c; ! 2 R such that

u.t; z/D e�i!tu0.z� ct/; z 2 CC[R; t 2 R (1-3)

for some u0 2H
1=2
C .R/. Note that a solution to (1-2) in H

1=2
C .R/ has a natural extension onto CC, and

we have used this viewpoint in (1-3). Substituting (1-3) into (1-2), we see that u0 satisfies on R the
equation

cDu0C!u0 D….ju0j
2u0/: (1-4)

In the following, we use the simpler notation u instead of u0 when we study time-independent problems.
From (1-4), we see that traveling waves with nonzero velocity, c ¤ 0, have good regularity. Indeed, we
prove that u 2H s

C.R/ for all s � 0 in Lemma 3.1. In particular, by Sobolev embedding theorem, we have
u 2L

p
C.R/ for 2� p �1. On the other hand, (1-4) yields in Lemma 4.1 that there exist no nontrivial

stationary waves, i.e. traveling waves of velocity c D 0, in L2
C.

Now, we present our main results:

Theorem 1.2. A function u 2 C.R;H
1=2
C .R// is a traveling wave if and only if there exist C;p 2 C with

Im p < 0 such that

u.0; z/D
C

z�p
: (1-5)

Theorem 1.3. Let a> 0, r > 0, and consider the cylinder

C.a; r/D
n ˛

z�p
I j˛j D a; Imp D�r

o
:

Let fun
0
g �H

1=2
C with

inf
�2C.a;r/

kun
0 ��kH 1=2

C

! 0 as n!C1;

and let un denote the solution to (1-2) with initial data un
0
. Then

sup
t2R

inf
�2C.a;r/

kun.t;x/��.x/k
H

1=2
C

! 0:
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Let us compare our results to those in [Gérard and Grellier 2010a]. In the case of the Szegő equation
on S1, the nontrivial stationary waves (c D 0) are finite Blaschke products of the form

˛

NY
jD1

z�pj

1�pj z
;

where j˛j2 D !, N 2 N, and p1;p2; : : : ;pN 2 D, and the traveling waves with nonzero velocity are
rational functions of the form

C zl

zN �p
; (1-6)

where N 2 N, l 2 f0; 1; : : : ;N � 1g, C;p 2 C, and jpj > 1. Moreover, instability phenomena were
displayed for some of the above traveling waves. For the cubic Szegő equation on R, Theorems 1.2 and
1.3 state that there exist fewer traveling waves — corresponding to N D 1 and l D 0 in (1-6) — and that
there is no instability phenomenon.

The proof of Theorem 1.2 involves arguments from several areas of analysis: a Kronecker-type theorem,
scattering theory, existence of a Lax pair structure, a theorem by Lax on invariant subspaces of the Hardy
space, and canonical factorization of Beurling–Lax inner functions. We now introduce the main notions
and known results, and briefly describe the strategy of the proof.

As in [Gérard and Grellier 2010a], an important property of the Szegő equation on R is the existence
of a Lax pair structure. Using the Szegő projector, we first define two important classes of operators on
L2
C: the Hankel and Toeplitz operators. We use these operators to find a Lax pair. See Proposition 1.4.

A Hankel operator Hu WL
2
C!L2

C of symbol u 2H
1=2
C is defined by

Hu.h/D….u Nh/:

Hu is C-antilinear and satisfies

.Hu.h1/; h2/D .Hu.h2/; h1/: (1-7)

In Lemma 3.5 below we prove that Hu is a Hilbert–Schmidt operator of Hilbert–Schmidt norm

1
p

2�
kuk PH 1=2 :

A Toeplitz operator Tb WL
2
C!L2

C of symbol b 2L1.R/ is defined by

Tb.h/D….bh/:

Tb is C-linear. Moreover, Tb is self-adjoint if and only if b is real-valued.

Proposition 1.4. Let u 2 C.RIH s
C/ for some s > 1

2
. The cubic Szegő equation (1-2) is equivalent to the

evolution equation
d

dt
Hu D ŒBu;Hu�; (1-8)

where Bu D
i
2
H 2

u � iTjuj2 . In other words, the pair .Hu;Bu/ is a Lax pair for the cubic Szegő equation
on the real line.



TRAVELING WAVES FOR THE CUBIC SZEGŐ EQUATION ON THE REAL LINE 383

The proof of Proposition 1.4 follows the same lines as that of the corresponding result on S1 in [Gérard
and Grellier 2010a], and is based on the identity

H….juj2u/ D Tjuj2HuCHuTjuj2 �H 3
u : (1-9)

Combining (1-4) and (1-9), we deduce that if u is a traveling wave with c ¤ 0, then the identity

AuHuCHuAuC
!

c
HuC

1

c
H 3

u D 0; (1-10)

holds, where

Au DD�
1

c
Tjuj2 : (1-11)

In Section 2, we prove a Kronecker-type theorem for the Hardy space L2
C.R/, where we classify all

the symbols u such that the operator Hu has finite rank. The classical theorem for L2
C.S

1/ is due to
Kronecker. For a proof, see [Gérard and Grellier 2010a].

We prove Theorem 1.2 in Section 4. We first prove that all traveling waves are rational functions.
On S1, this follows easily from the Kronecker theorem and the fact that the operator Au has discrete
spectrum. On R, however, it turns out that Au has continuous spectrum. Therefore, we use scattering
theory to study the spectral properties of Au in detail in Section 3. More precisely, we show that the
generalized wave operators �˙.D;Au/, rigorously defined by (3-1) below, exist and are complete. As a
result, we obtain that

Hac.Au/� Ker Hu;

where Hac.Au/ is the absolutely continuous subspace of Au. The subspace Ker Hu plays an important
role in our analysis. More precisely, it turns out to be invariant under multiplication by ei˛x , for all ˛ � 0.
Therefore, applying a theorem by Lax (Proposition 4.4) on invariant subspaces, it results that

Ker Hu D �L2
C;

where � is an inner function in the sense of Beurling and Lax, i.e., a bounded holomorphic function on
CC such that j�.x/j D 1 for all x 2 R. Using the Lax pair structure and the identity (1-10), we show that
� satisfies the simple equation

cD� D juj2�:

However, as an inner function, � satisfies a canonical factorization (4-3). From this, it follows that �
belongs to a special class of inner functions, the finite Blaschke products, i.e.,

�.z/D

NY
jD1

z��j

z��j

;

where N 2 N and Im�j > 0 for all j D 1; 2; : : : ;N . The Kronecker-type theorem then yields that the
traveling wave u is a rational function. In the case of S1, the natural shift, multiplication by eix , was
used in concluding traveling waves are of the form (1-6). In our case, we use the “infinitesimal” shift,
multiplication by x, to show that traveling waves are of the form (1-5).
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Finally, we prove Theorem 1.3 in Section 5. The orbital stability of traveling waves is a consequence
of the fact that traveling waves are ground states for the following inequality, an analogue of the sharp
Gagliardo–Nirenberg inequality given in [Weinstein 1982].

Proposition 1.5. For all u 2H
1=2
C .R/, the following Gagliardo–Nirenberg inequality holds:

kukL4 �
1

4
p
�
kuk

1=2

L2 kuk
1=2

PH
1=2
C

; (1-12)

or, equivalently,

E �
1

�
MQ:

Equality holds if and only if uD
C

x�p
, where C;p 2 C with Im p < 0.

Remark 1.6. Using Proposition 1.5, one can verify that the functions uD C=.x �p/, with Im p < 0,
are indeed initial data for traveling waves. More precisely, since they are minimizers of the functional

v 2H
1=2
C 7!M.v/Q.v/��E.v/;

the differential of this functional at u is zero. Thus,

1
2
Q.u/DuC 1

2
M.u/u��….juj2u/D 0:

Consequently, u is a solution of (1-4) with

c D
Q.u/

2�
D
jC j2

�2 Im p
; ! D

M.u/

2�
D
jC j2

4.Im p/2
;

and hence it is an initial datum for a traveling wave.

In the case of S1, the Gagliardo–Nirenberg inequality suffices to conclude the stability of the traveling
waves with N D 1. However, in the case of R, we need to use in addition a concentration-compactness
argument. This concentration-compactness argument, which first appeared in [Cazenave and Lions 1982],
was refined and turned into profile decomposition theorems by Gérard [1998] and later by Hmidi and
Keraani [2006]. We use it in the form of Proposition 5.1, a profile decomposition theorem for bounded
sequences in H

1=2
C .

We conclude this introduction by presenting two open problems. Here, we use the term soliton instead
of traveling wave, so that we put into light several connections with existing works. The first problem is
the soliton resolution, which consists in writing any solution as a superposition of solitons and radiation.
For the KdV equation, this property was rigorously stated in [Eckhaus and Schuur 1983] for initial data
to which the Inverse Scattering Transform applies. Therefore, for the Szegő equation, one needs to solve
inverse spectral problems for the Hankel operators and also find explicit action angle coordinates.

The second open problem is the interaction of solitons with external potentials. Consider the Szegő
equation with a linear potential, where initial data are taken to be of the form (1-5). As in [Holmer and
Zworski 2008] and [Perelman 2009], it would be interesting to investigate if solutions of the perturbed
Szegő equation can be approximated by traveling wave solutions to the original Szegő equation (1-2).
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2. A Kronecker-type theorem

A theorem by Kronecker asserts in the setting of S1 that the set of symbols u such that Hu is of rank
N is precisely a 2N -dimensional complex submanifold of L2

C.S
1/ containing only rational functions.

In this section, we prove the analogue of this. For a different proof of a similar result on some Hankel
operators on L2

C.R/ defined in a slightly different way, see [Peller 2003, Lemma 8.12, p. 54].

Definition. Let N 2 N�. We denote by M.N / the set of rational functions of the form

A.z/

B.z/
;

where A 2 CN�1Œz�, B 2 CN Œz�, 0 � deg.A/ � N � 1, deg.B/ D N , B.0/ D 1, B.z/ ¤ 0, for all
z 2 CC[R, and A and B have no common factors.

Theorem 2.1. A function u belongs to M.N / if and only if the Hankel operator Hu has complex rank N .
Moreover, if u 2 M.N / is of the form u.z/ D A.z/=B.z/, where B.z/ D

QJ
jD1.z � pj /

mj withPJ
jD1 mj DN and Im pj < 0 for all j D 1; 2; : : : ;J , then the range of Hu is given by

Ran Hu D spanC

�
1

.z�pj /m
I 1�m�mj

�J

jD1

(2-1)

Proof. The theorem will follow from two implications:

(i) u 2M.N /H) rk.Hu/�N .

(ii) rk.Hu/DN H) u 2M.N /.

Let us first prove (i). Let u 2M.N /, i.e., u is a linear combination of terms 1

.z�p/m
, where Im p < 0,

1�m�mp, and
P

mp DN . Computing the integralZ
R

e�ix�

.x�p/m
dx;

using the residue theorem, we obtain that Ou.�/D 0 for all � � 0 and Ou.�/ is a linear combination of terms
�m�1e�ip� , with 1�m�mp, for � > 0.

Given h 2L2
C, we have 1Hu.h/.�/D 0 for � < 0. For � > 0, we have

1Hu.h/.�/D
1

2�

Z 0

�1

Ou.� � �/
ONh.�/ d�D

1

2�

Z 1
0

Ou.�C �/ Oh.�/ d�

D

X
1�m�mpP

mpDN

cm;p

�m�1X
kD0

C k
m�1�

m�1�k

Z 1
0

�k Oh.�/e�ip� d�

�
e�ip�

D

X
1�m�mpP

mpDN

Qdm;p.u; h/�
m�1e�ip�

D

X
1�m�mpP

mpDN

dm;p.u; h/

�
1

.x�p/m

�^
.�/;
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where cm;p, Qdm;p, dm;p are constants depending on p and m. Hence,

Hu.h/.x/D
X

1�m�mpP
mpDN

dm;p.u; h/

.x�p/m
(2-2)

and rk.Hu/�N .
Let us now prove (ii). Assume that rank.Hu/DN , so the range of Hu, Ran Hu, is a 2N -dimensional

real vector space. As Hu is C-antilinear, one can choose a basis of Ran Hu of eigenvectors of Hu in the
following way:

fv1; iv1; : : : ; vN ; ivN I Hu.vj /D �jvj ; �j > 0; j D 1; 2; : : : ;N g

Let wj D
p
�jvj : If h 2L2

C, then by Parseval’s identity we have

Hu.h/D

NX
jD1

.Hu.h/; vj /vj C

NX
jD1

.Hu.h/; ivj /ivj D 2

NX
jD1

.Hu.h/; vj /vj D 2

NX
jD1

.Hu.vj /; h/vj

D 2

NX
jD1

.�jvj ; h/vj D 2

NX
jD1

.wj ; h/wj D
1

�

NX
jD1

�Z 1
0

Owj .�/ Oh.�/ d�

�
wj :

Consequently,

1Hu.h/.�/D
1

2�
1��0

Z 1
0

Ou.�C �/ Oh.�/ d�D
1

�
1��0

NX
jD1

Z 1
0

Owj .�/ Owj .�/ Oh.�/ d�;

and hence,

1��0

Z 1
0

�
Ou.�C �/� 2

NX
jD1

Owj .�/ Owj .�/

�
Oh.�/ d�D 0;

for all h 2L2
C. Therefore, for all �; �� 0, we have

Ou.�C �/D 2

NX
jD1

Owj .�/ Owj .�/: (2-3)

Let L > 2N C 1 be an even integer and let � be the probability density function of the chi-square
distribution defined by

�.�/D

(
2�L=2�

�
L

2

��1
�.L=2/�1e��=2 if � � 0;

0 if � < 0;

where � is the gamma function. Then, its Fourier transform is

b�.x/D .1C 2ix/�L=2:
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Notice that � 2H N .R/ since

k�k2
H N D

Z
R

hxi2N

j1C 2ixjL
dx;

which is convergent if and only if 2N �L< �1.
Let h�;  i D

R
R
�.x/ .x/ for all � 2H�N .R/ and  2H N .R/. Consider the matrix A� defined by0BBBB@

h Ow1; �i h Ow
0
1
; �i � � � h Ow

.N /
1

; �i

h Ow2; �i h Ow
0
2
; �i � � � h Ow

.N /
2

; �i
:::

:::
: : :

:::

h OwN ; �i h Ow
0
N
; �i � � � h Ow

.N /
N

; �i

1CCCCA :
Since rk.A�/�N , it results that there exists .c0; c1; : : : ; cN /¤ 0 such that� NX

kD0

ck Owj
.k/; �

�
D 0;

for all j D 1; 2; : : : ;N . Then, since supp� � Œ0;1/ and by (2-3), we have for all �� 0 that

NX
kD0

D
ck Ou

.k/.�/; �.� � �/
E
�
D

NX
kD0

D
ck Ou

.k/.�C �/; �.�/
E
�
D

NX
kD0

.�1/kck

Z 1
0

Ou.�C �/�.k/.�/d�

D 2

NX
kD0

.�1/kck

Z 1
0

� NX
jD1

Owj .�/ Owj .�/
�
�.k/.�/d�

D 2

NX
jD1

Owj .�/

NX
kD0

ck

D
Ow
.k/
j .�/; �.�/

E
D 0:

Set T D
PN

kD0 ck Ou
.k/. Then T 2H�N and supp T 2 Œ0;1/. We have just proved that for all �� 0

0D hT; �.� � �/i D

Z
R

T .�/�.� � �/d� D

Z
R

T .�/
� Z

R

eix.���/

.1C 2ix/L=2
dx
�
d�

D

Z
R

� Z
R

T .�/eix�d�
� e�ix�

.1C 2ix/L=2
dx D

Z
R

F�1T .x/
e�ix�

.1C 2ix/L=2
dx:

Seting R.x/ WD 1
.1C2ix/L=2 F�1T .x/, we have OR 2H L=2�N .R/�H 1=2.R/ and

0D

Z
R

R.x/e�ix�dx D OR.�/ for all �� 0:

Thus supp OR� .�1; 0�. By the definition of R, .1� 2D�/
L=2 OR.�/D T .�/. Since the left hand-side is

supported on .�1; 0� and the right hand-side is supported on Œ0;1/, we deduce that supp T � 0. In
particular, Tj�>0D 0. This yields that Ouj�>0 is a weak solution on .0;1/ of the linear ordinary differential
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equation
NX

kD0

ckv
.k/.�/D 0:

Then, by [Hörmander 1990, Theorem 4.4.8, p. 115], we have Ouj�>0 2 C N ..0;1//; further, Ouj�>0 is a
classical solution of this equation, and therefore it is a linear combination of terms

�m�1eq� ;

where q 2 C is a root of the polynomial P .X /D
PN

kD0 ckX k with multiplicity mq , 1�m�mq , andP
q mq D N . Note that we must have Re q < 0, because u 2 L2

C.R/. Therefore we will set q D �ip,
with Im p < 0, and obtain that Ou.�/ is a linear combination of terms �m�1e�ip� for � > 0. By the
hypothesis u 2L2

C.R/, we obtain Ou.�/D 0 for � � 0. Hence, for all � 2 R, Ou.�/ is a linear combination
of ..x�p/�m/^.�/, with 1� q �mq and

P
mq DN . Thus u 2M.N 0/ for some N 0 �N . If N 0 <N ,

implication (i) above yields rk.Hu/�N 0, contradicting our assumption. In conclusion, u 2M.N /.
Finally, when u 2M.N / we have rk.Hu/DN and (2-2), and thus (2-1) follows. �

As a consequence of (2-1) we make the following remark.

Remark 2.2. If u 2M.N /, then u 2 Ran Hu.

3. Spectral properties of the operator Au for a traveling wave u

Let us first recall the definition and the basic properties of the generalized wave operators, which are the
main objects in scattering theory. We refer to [Reed and Simon 1979, Chapter XI] for more details.

Let A and B be two self-adjoint operators on a Hilbert space H. The basic principle of scattering
theory is to compare the free dynamics corresponding to e�iAt and e�iBt . The fact that e�iBt� “looks
asymptotically free” as t !�1, with respect to A, means that there exists �C 2H such that

lim
t!�1

ke�iBt� � e�itA�Ck D 0;

or, equivalently,
lim

t!�1
keiAte�itB� ��Ck D 0:

Hence, we reduced ourselves to the problem of the existence of a strong limit. Let Hac.B/ be the
absolutely continuous subspace for B and let Pac.B/ be the orthogonal projection onto this subspace. In
the definition of the generalized wave operators we have � 2Hac.B/.

We say that the generalized wave operators exist if the following strong limits exist:

�˙.A;B/D lim
t!�1

eitAe�itBPac.B/: (3-1)

The wave operators �˙.A;B/ are partial isometries with initial subspace Hac.B/ and with values in
Ran �˙.A;B/. Moreover, Ran�˙.A;B/ � Hac.A/. If Ran�˙.A;B/ D Hac.A/, we say that the
generalized wave operators are complete. Lastly, we note that

A�˙.A;B/D�˙.A;B/B: (3-2)
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Lemma 3.1. If u 2H
1=2
C is a traveling wave, then u 2H s

C.R/ for all s � 0. In particular, by Sobolev
embedding theorem, we have u 2Lp.R/ for 2� p �1.

Proof. Because u 2 H 1=2.R/, the Sobolev embedding theorem yields u 2 Lp.R/, for all 2 � p <1.
Therefore juj2u 2L2.R/ and thus ….juj2u/ 2L2

C. Using equation (1-4), namely

cDuC!uD….juj2u/;

we deduce that Du2L2
C. Consequently, u2H 1

C and by Sobolev embedding theorem we have u2L1.R/.
Then u2D Nu; juj2Du 2L2.R/. Applying the operator D to both sides of (1-4), we obtain D2u 2L2.R/

and hence u 2H 2
C. Iterating this argument infinitely many times, the conclusion follows. �

Proposition 3.2. Let u be a traveling wave. Then, .AuC i/�1� .DC i/�1 is a trace class operator.

Proof. We prove first that for all f 2L2.R/, the operator .DC i/�1f , defined on L2.R/ by�
.DC i/�1f

�
h.x/D .DC i/�1.f h/.x/

is Hilbert–Schmidt. Denote by F the Fourier transform. In view of the isomorphism of L2.R/ induced
by the Fourier transform, .DC i/�1f is a Hilbert–Schmidt operator if and only if F.DC i/�1f is one.
The latter is an integral operator of kernel

K.�; �/D
1

2�
�

1

�C i
Of .� � �/:

Indeed,

F
�
.DC i/�1f h

�
.�/D

1

2�
�

1

�C i
cf h.�/D

1

2�

Z
R

1

�C i
Of .� � �/ Oh.�/ d�D

Z
R

K.�; �/ Oh.�/ d�:

Therefore, it is Hilbert–Schmidt if and only if K.�; �/ 2 L2
�;�
.R � R/. By the change of variables

� 7! � D � � � we have

kK.�; �/k2
L2
�;�

D
1

4�2

Z
R

d�

�2C 1

Z
R

j Of .�/j2 d� D Ckf k2
L2 <1:

Hence .D C i/�1f is a Hilbert–Schmidt operator and so is Nf .D C i/�1, its adjoint. According to
Lemma 3.1, u 2 L1.R/ and thus juj2 2 L2.R/. Taking f D juj2 and f D u, we conclude that the
operators .DC i/�1juj2, .DC i/�1u, and Nu.DC i/�1 are all Hilbert–Schmidt.

We write

.AuC i/�1
� .DC i/�1

D .DC i/�1.D�Au/.AuC i/�1

D
1

c
.DC i/�1Tjuj2.AuC i/�1

D
1

c
….DC i/�1

juj2.AuC i/�1
DL.AuC i/�1;

where LD 1
c
….DC i/�1juj2. Note that L is a Hilbert–Schmidt operator since it is the composition of

the bounded operator 1
c
… WL2.R/!L2

C with the Hilbert–Schmidt operator .DC i/�1juj2. Finally, we
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write, using the latter formula twice

.AuC i/�1
� .DC i/�1

DL.L.AuC i/�1
C .DC i/�1/

DL ıL ı .AuC i/�1
C

1

c
….DC i/�1u ı Nu.DC i/�1:

We obtain that .AuC i/�1� .DC i/�1 is a trace class operator since the composition of two Hilbert–
Schmidt operators is a trace class operator. �

Corollary 3.3. If u is a traveling wave, the wave operators �˙.D;Au/ exist and are complete.

Proof. This easily follows from Kuroda–Birman theorem [Reed and Simon 1979, Theorem XI.9]: Let A

and B be two self-adjoint operators on a Hilbert space such that .AC i/�1� .BC i/�1 is a trace class
operator. Then �˙.A;B/ exist and are complete. �

Corollary 3.4. If u is a traveling wave, then �ac.Au/D Œ0;C1/.

Proof. Since�˙.D;Au/ are complete, it results that they are isometries from Hac.Au/ onto Hac.D/DL2
C.

By (3-2), we then have

AujHac.Au/
D Œ�˙.D;Au/jHac.Au/

��1D�˙.D;Au/jHac.Au/
:

Consequently, �ac.Au/D �ac.D/D Œ0;C1/. �

Our main goal in the following is to prove that Hac.Au/� Ker Hu. As we will see below, it is enough
to prove that

�
�C.D;Au/H

2
u

�
.Hac.Au//D 0.

Lemma 3.5. Hu is a Hilbert–Schmidt operator on L2
C.R/ of Hilbert–Schmidt norm 1

p
2�
kuk PH 1=2

C

.

Proof. Denote by kT kH S the Hilbert–Schmidt norm of a Hilbert–Schmidt operator T . By (2-2), we have

1Hu.h/.�/D
1

2�
1��0

Z 1
0

Ou.�C �/ Oh.�/ d�:

Then, we obtain

Hu.h/.x/D
1

4�2

Z 1
0

Z 1
0

eix�
Ou.�C �/ Oh.�/ d�d�

D
1

4�2

Z
R

�Z 1
0

Z 1
0

eix�eiy�
Ou.�C �/ d� d�

�
Nh.y/ dy:

Using the fact that the Hilbert–Schmidt norm of an operator is equal to the norm of its integral kernel,
Plancherel’s formula, and Fubini’s theorem, we have

kHu.h/k
2
H S D

1

16�4

 Z 1
0

Z 1
0

eix�eiy�
Ou.�C �/ d� d�

2

L2
x;y

D
1

4�2
k1��01��0 Ou.�C �/k

2

L2
�;�

D
1

4�2

Z 1
0

Z 1
0

j Ou.�C �/j2 d� d� D
1

4�2

Z 1
0

Z 1
�

j Ou.�/j2 d� d�

D
1

4�2

Z 1
0

�Z �

0

d�

�
j Ou.�/j2 d� D

1

4�2

Z 1
0

�j Ou.�/j2 d� D
1

2�
kuk2

PH 1=2
: �
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Lemma 3.6. Ker H 2
u D Ker Hu. Moreover, if Ran Hu is finite-dimensional, then Ran H 2

u D Ran Hu.

Proof. Let f 2Ker H 2
u . Then, by (1-7) and the fact that .Hu.h1/; h2/D .Hu.h2/; h1/ for all h1; h2 2L2

C,
we have

kHuf k
2
L2 D .Huf;Huf /D .H

2
uf; f /D 0;

and thus Huf D 0. Hence, Ker H 2
u � Ker Hu . Therefore, we obtain Ker H 2

u D Ker Hu since the inverse
inclusion is obvious.

The identity (1-7) yields also Ker Hu D .Ran Hu/
?. Moreover, it implies that H 2

u is a self-adjoint
operator and therefore, Ker H 2

u D .Ran H 2
u /
?. Hence, we obtain

.Ran H 2
u /
?
D .Ran Hu/

?:

Taking the orthogonal complement of both sides, this yields

Ran H 2
u D Ran Hu:

If Ran Hu is finite-dimensional, so is Ran H 2
u , since Ran H 2

u � Ran Hu. Thus, Ran H 2
u and Ran Hu are

closed. It follows that Ran H 2
u D Ran Hu. �

Lemma 3.7. If u is a traveling wave, then

AuH 2
u DH 2

u Au: (3-3)

Consequently, if Ran Hu is finite-dimensional, then Au.Ran Hu/� Ran Hu.

Proof. The commutativity relation (3-3) is a consequence of identity (1-10). The second statement then
follows by Lemma 3.6, Ran H 2

u D Ran Hu. �

It is a classical fact that if A and B are two self-adjoint operators on a Hilbert space H such that
AB D BA, then B.Hac.A//�Hac.A/. For completeness, we prove this here in the case of Au and H 2

u :

Lemma 3.8. H 2
u Hac.Au/�Hac.Au/.

Proof. As we will see below, the inclusion follows if we prove that �H 2
u�
� �� for all � 2L2

C, where
the �H 2

u�
and �� denote the spectral measures of H 2

u� and � with respect to the operator Au.
Let E � R be a measurable set and f D 1E . By (3-3) and the Cauchy–Schwarz inequality we have

�H 2
u�
.E/D

Z
R

fd�H 2
u�
D .H 2

u�; f .Au/H
2
u�/D .H

2
u�;H

2
uf .Au/�/D .H

4
u�; f .Au/�/

�
p
.f .Au/�; f .Au/�/kH

4
u�kL2 D

p
.�; f .Au/�/kH

4
u�kL2 D

q
��.E/kH

4
u�kL2 :

Therefore, �H 2
u�
� �� . Denote by m the Lebesgue measure on R. If � 2Hac.Au/, then ���m and

thus �H 2
u�
�m. Hence, H 2

u Hac.Au/�Hac.Au/. �

Proposition 3.9. If u is a traveling wave, then Hac.Au/� Ker Hu.

Proof. It is enough to prove that
�
�C.D;Au/H

2
u

�
.Hac.Au//D 0. If this holds, then H 2

u

�
Hac.Au/

�
D 0

since H 2
u Hac.Au/ � Hac.Au/ and �C.D;Au/ is an isometry on Hac.Au/. Therefore, Hac.Au/ �

Ker H 2
u D Ker Hu.
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First note that

HueitD
D eitDH�t .u/; (3-4)

where �a denotes the translation �au.x/D u.x� a/. Indeed, for f 2L2
C, passing into Fourier space, we

have �
HueitDf

�^
.�/D 1��0

�
ueitDf

�^
.�/D

1

2�
1��0

Z
R

Ou.� � �/eit� ONf .�/ d�

D
1

2�
1��0eit�

Z
e�it.���/

Ou.� � �/
ONf .�/ d�D 1��0eit�

�
�t .u/ Nf

�^
.�/

D 1��0

�
eitD.�t .u/ Nf /

�^
.�/D

�
eitDH�t .u/f

�^
.�/:

By Lemma 3.8, (3-3), and (3-4), we have for all f 2Hac.Au/

eitDe�itAuPacH
2
uf D eitDe�itAuH 2

uf D eitDH 2
u e�itAuf D eitDHuHue�itDeitDe�itAuf

D eitDHue�itDH��t .u/e
itDe�itAuf DH 2

��t .u/
eitDe�itAuPac.Au/f:

We intend to prove that H 2
��t .u/

eitDe�itAuPac.Au/f tends to 0 in the L2
C-norm as t !�1. From this,

we conclude that �C.D;Au/H
2
uf D 0. Since, by Lemma 3.5, H��t .u/ is uniformly bounded, it suffices

to prove that H��t .u/e
itDe�itAuPac.Au/f tends to 0. We haveH��t .u/e

itDe�itAuPac.Au/f


L2
C

�
H��t .u/

�
eitDe�itAuPac.Au/f ��

C.D;Au/f
�

L2
C

CkH��t .u/�
C.D;Au/f kL2

C

�
1
p

2�
kuk PH 1=2

eitDe�itAuPac.Au/f ��
C.D;Au/f


L2
C

C

Z
R

ju.xC t/j2j�C.D;Au/f .x/j
2 dx

(3-5)

The first term on the last line converges to 0 by the definition of the wave operator �C.D;Au/. Since u

is a traveling wave, we can write

u 2
\
s�0

H s.R/� C1
!0.R/;

where C1
!0
.R/ is the space of functions f of class C1 such that lim

x!�1
Dkf .x/D lim

x!1
Dkf .x/D 0

for all k 2 N. Therefore, for arbitrary fixed x, we have

lim
t!�1

��t .u/.x/D lim
t!�1

u.xC t/D 0:

Note also that

ju.xC t/j2 j�C.D;Au/f .x/j
2
� kuk2L1 j�

C.D;Au/f .x/j
2

for all x 2 R. Thus the last term in (3-5) converges to 0 by the dominated convergence theorem. This
shows that

�
�C.D;Au/H

2
u

�
.Hac.Au//D 0. �
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4. Classification of traveling waves

Lemma 4.1. There are no nontrivial traveling waves of velocity c D 0 in L2
C.R/.

Proof. Let u be a nontrivial traveling wave of velocity c D 0. Then, (1-4) gives ….juj2u/D !u. Taking
the scalar product with ei�xu.x/, where � � 0, we obtain

F.juj4�!juj2/.�/D 0;

where F denotes the Fourier transform. Since juj4�!juj2 is a real-valued function, we have that the last
equality holds for all � 2 R. Thus juj4�!juj2 D 0 on R and therefore u.x/D 0 or ju.x/j2 D ! > 0, for
all x 2 R. Since the function u is holomorphic on CC, its trace on R is either identically zero, or the set
of zeros of u on R has Lebesgue measure zero. In conclusion, we have juj2 D ! > 0 a.e. on R and thus u

is not a function in L2
C.R/. �

Lemma 4.2. If u 2 H s
C for s > 1

2
and v 2 Ker Hu, then Nuv 2 L2

C. Moreover, if u 2 L1.R/, then
Tjuj2v D juj

2v.

Proof. Indeed, 0 D Hu.v/ D ….u Nv/ and thus Nuv 2 L2
C. Furthermore, since u; Nuv 2 L2

C, we obtain
Tjuj2v D….u Nuv/D juj

2v. �

Lemma 4.3. Let u2H s
C, s > 1

2
, be a solution of the cubic Szegő equation (1-2). For the Cauchy problem�

i@t D ju.t/j
2 

 jtD0 D  0;
(4-1)

if  0 2 Ker Hu.0/, then  .t/ 2 Ker Hu.t/ for all t 2 R.

Proof. Let us first consider �
i@t 1 D Tju.t/j2 1

 1jtD0 D  0;

Using the Lax pair structure, we have

@tHu. 1/D ŒBu;Hu� 1CHu@t 1 D
�

i
2
H 2

u � iTjuj2 ;Hu

�
 1CHu.�iTjuj2 1/

D�iTjuj2Hu 1� iHuTjuj2 1C iHuTjuj2 1 D�iTjuj2Hu 1:

The solution of the linear Cauchy problem�
@tHu. 1/D�iTjuj2Hu 1;

Hu. 1.0//D 0

is identically zero: Hu.t/ 1.t/D 0 for all t 2 R. Consequently,  1.t/ 2 Ker Hu.t/, and by Lemma 4.2
we obtain Tjuj2 1 D juj

2 1. In conclusion,  .t/D  1.t/ 2 Ker Hu.t/. �
The space Ker Hu is invariant under multiplication by ei˛x , for all ˛ � 0. Indeed, suppose f 2Ker Hu.

Then .u Nf /^.�/D 0, for all � � 0 and�
Hu.e

i˛xf /
�^
.�/D

�
e�i˛xu Nf

�^
.�/D .u Nf /^.�C˛/D 0;

for all �; ˛ � 0. Hence, ei˛xf 2 Ker Hu for all ˛ � 0.
One can then apply the following theorem to the subspaces Ker Hu0

.
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Proposition 4.4 [Lax 1959]. Every nonempty closed subspace of L2
C that is invariant under multiplication

by ei˛x for all ˛�0 is of the form FL2
C, where F is an analytic function in the upper-half plane, jF.z/j�1

for all z 2 CC, and jF.x/j D 1 for all x 2 R. Moreover, F is uniquely determined up to multiplication by
a complex constant of absolute value 1.

We deduce that Ker Hu0
D �L2

C, where � is a holomorphic function in the upper half-plane CC,
satisfying j�.x/j D 1 on R and j�.z/j � 1 for all z 2 CC.

Functions satisfying the properties in Proposition 4.4 are called inner functions in the sense of Beurling
and Lax. A special class of such functions is that of Blaschke products. Given �j 2 C such that for all j

Im�j > 0 and
X

j

Im�j

1Cj�j j
2
<1;

the corresponding Blaschke product is defined by

B.z/D
Y
j

"j
z��j

z��j

; where "j D
j�2
j
C1j

�2
j
C1

(4-2)

(by definition "j D 1 if �j D 1).
Inner functions have a canonical factorization, which is analogous to the canonical factorization of

inner functions on the unit disk; see [Rudin 1974, Theorem 17.15] or [Nikolski 2002, Theorem 6.4.4].
More precisely, every inner function F can be written as the product

F.z/D �B.z/eiaz exp
�

i

Z
R

1C tz

t � z
d�.t/

�
; (4-3)

where z 2CC, �2C with j�jD 1, a� 0, B is a Blaschke product, and � is a positive singular measure with
respect to the Lebesgue measure. In particular, the inner function � has such a canonical factorization.

Proposition 4.5. Let u be a traveling wave and denote by � an inner function such that Ker Hu0
D �L2

C.
Then, � satisfies the following equation on R:

cD� D ju0j
2�: (4-4)

Proof. Since u.t;x/D e�i!tu0.x� ct/, we have Hu.t/ D e�i!t�ctHu0
��ct . Thus,

Ker Hu.t/ D �ct Ker Hu0
D �ct .�/L

2
C:

Let f 2L2
C and let  0D �f 2Ker Hu0

be the initial data of the Cauchy problem (4-1) in Lemma 4.3.

We then have �e�i
R t

0 ju.s/j
2 dsf 2 Ker Hu.t/. Therefore,

�e�i
R t

0 ju.s/j
2 dsL2

C � �ct .�/L
2
C: (4-5)

Conversely, by solving backward the problem (4-1) with the initial data in �ct .�/L
2
C at time t , up to the

time t D 0, we obtain

�ct .�/L
2
C � �e�i

R t

0 ju.s/j
2 dsL2

C

and thus, the two sets are equal.
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Let us first prove that �t WD �e�i
R t

0 ju.s/j
2 ds is an inner function. Note that �t is well defined on R and

its absolute value is 1 on R. Consider the function defined by h.x/D �t .x/=.xC i/ for x 2 R. Since
h 2L2

C, we can write using the Poisson integral that

h.z/D
1

�

Z 1
�1

Im z
h.x/

jz�xj2
dx

for all z 2 CC. Then,

zh.z/D
1

�

Z 1
�1

Im z
xh.x/

jz�xj2
dxC

1

�

Z 1
�1

Im z
.z�x/h.x/

jz�xj2
dx:

Note that the last integral is equal to Z 1
�1

Im z
h.x/

Nz�x
dx:

By the residue theorem and using the fact that the function h=.Nz �x/ is holomorphic on CC, we have
that this integral is zero and thus

zh.z/D
1

�

Z 1
�1

Im z
xh.x/

jz�xj2
dx:

Therefore, we can use the Poisson integral to extend �t to CC as a holomorphic function.

�t .z/D .zC i/h.z/D
1

�

Z 1
�1

Im z
.xC i/h.x/

jz�xj2
dx D

1

�

Z 1
�1

Im z
�t .x/

jz�xj2
dx: (4-6)

Moreover,

j�t .z/j �
1

�

Z 1
�1

Im z
1

jz�xj2
dx D 1;

for all z 2 CC. Hence �t is an inner function.
Since �ct .�/ and �e�i

R t

0 ju.s/j
2 ds are inner functions and

�e�i
R t

0 ju.s/j
2 dsL2

C D �ct .�/L
2
C;

Proposition 4.4 yields the existence of a real-valued function  such that  .0/D 0 and

�e�i
R t

0 ju.s/j
2 ds
D �ct .�/e

i.t/:

Taking the derivative with respect to t , we obtain that � satisfies the equation

cD�.x/D ju.t;xC ct/j2�.x/C P .t/�.x/:

for all t 2 R. Since u is a traveling wave, we have ju.t;xC ct/j D je�i!tu0.x/j D ju0.x/j. Then we
deduce that P .t/D k and hence  .t/D kt , for some k 2 R. Therefore,

cD� D .ju0j
2
C k/�: (4-7)



396 OANA POCOVNICU

We prove in the following that k D 0. First, note that k
c
� 0. The function �u0 2 Ker Hu0

and by
Lemma 4.2, we have ju0j

2�D u0.u0�/2L2
C. If k=c is negative, setting � WD 1

c
ju0j

2� 2L2
C and passing

into Fourier space, we have

O�.�/D
1

� � k=c
O�.�/ 1Œ0;1/.�/:

This implies that � 2L2
C, contradicting j�.x/j D 1 for all x 2 R.

Let us now prove that k=c D 0. Let h 2L2
C be regular. Then �h 2 Ker Hu0

, and by (4-7) we have

Au0
.�h/D

�
D�

1

c
ju0j

2
�
.�h/D �

�
D�

1

c
ju0j

2
�
.h/C hD� D �

�
DC

k

c

�
h:

Denoting by ��h.Au0
/ the spectral measure corresponding to �h, we haveZ

fd��h D .�h; f .Au0
/�h/D

�
�h; �f

�
DC

k

c

�
h
�
D

�
h; f

�
DC

k

c

�
h
�

D
1

2�

Z 1
0

f
�
�C

k

c

�
j Oh.�/j2 d� D

1

2�

Z 1
k=c

f .�/
ˇ̌̌
Oh
�
��

k

c

�ˇ̌̌2
d�:

Consequently, supp��h.Au0
/ � Œk=c;C1/. By Proposition 3.9, we have Hac.Au0

/ � Ker Hu0
, and

therefore

�ac.Au0
/D

[
 2Hac.Au0

/

supp� �
[

�h2Ker Hu0

supp��h �

h
k

c
;1

�
:

Since, by Corollary 3.4, �ac.Au0
/D Œ0;1/, this yields k D 0. �

Proposition 4.6. All traveling waves are rational functions.

Proof. We first prove that � is a Blaschke product.
Since � is an inner function in the sense of Beurling and Lax, it has the canonical decomposition

�.z/D �B.z/eiaz exp
�

i

Z
R

1C tz

t � z
d�.t/

�
; (4-8)

where z 2 CC, � is a complex number of absolute value 1, a� 0, B is a Blaschke product having exactly
the same zeroes as �, and � is a positive singular measure with respect to the Lebesgue measure.

Because � satisfies (4-4) and u0 2L1.R/, we obtain that � has bounded derivative on R and hence it
is uniformly continuous on R. Then, since � satisfies the Poisson formula (4-6), it follows that

�.xC i"/! �.x/; as "! 0;

uniformly for x 2 R. Since � is uniformly continuous on R and since j�.x/j D 1 for all x 2 R, we
deduce that the zeroes of �, and hence those of the Blaschke product B as well, lie outside a strip
fz 2 CI 0� Im z � "0g, for some "0 > 0. Therefore, we have

�.xC i"/

B.xC i"/
!

�.x/

B.x/
as "! 0
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uniformly for x in compact subsets of R. Taking the logarithm of the absolute value and noticing that
j�.x/=B.x/j D 1, we obtain Z

R

"

.x� t/2C "2
d�.t/! 0;

uniformly for x in compact subsets in R. In particular, for all ı > 0 there exists 0< "1 � "0 such that for
all 0< "� "1 and for all x 2 Œ0; 1�, we have

1

2"
�.Œx� ";xC "�/�

Z xC"

x�"

"

.x� t/2C "2
d�.t/�

Z
R

"

.x� t/2C "2
d�.t/� ı:

Taking "D 1

2N
� "1 with N 2 N�, we obtain

�.Œ0; 1�/D �

�N�1[
kD0

h
k

N
;
kC1

N

i�
�N ı

1

N
D ı:

In conclusion, �.Œ0; 1�/D 0, and one can prove similarly that the measure � of any compact interval in R

is zero. Hence � � 0.
Consequently, �.x/D �B.x/eiax for all x 2 R. On the other hand, because � satisfies (4-4), we have

�.x/D �.0/e.i=c/
R x

0 ju0j
2

and, in particular, limx!1 �.x/D �.0/e
.i=c/

R1
0 ju0j

2

. Since limx!1B.x/D

1, we conclude that aD 0. Substituting � D �B (4-4), we obtain

c

i

B0

B
D ju0j

2:

Then
1

i

Z 1
�1

B0.x/

B.x/
dx <1:

Computing this integral, we obtain that

1

i

Z 1
�1

B0.x/

B.x/
dx D 2

X
j

Z 1
�1

Im�j

jx��j j
2

dx D 2
X

j

�

and thus it is finite if and only if B is a finite Blaschke product, B.x/D
QN

jD1 "j
x��j

x��j

.
We prove that the traveling wave u is a rational function. We have

Ker Hu D �L2
C D BL2

C:

Set Y WD spanC

n
1

x��j

oN

jD1
I we show that BL2

C D Y ?. Indeed, f 2 Y ? if and only if

f .�j /D
1

2�

Z
R

ei��j bf .�/ d� D
1

2�

�
Of ; e�i�j �

�
D

�
f;

1

x��j

�
D 0;

if and only if there exists h 2 L2
C such that f D Bh. Hence Ker Hu D Y ?. This yields Ran H u D Y .

By Remark 2.2 it follows that u is a rational function. More precisely, u 2 Ran Hu D Y . �

Proposition 4.7. If u is a traveling wave, there exists � > 0 such that H 2
u uD �u.
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Proof. According to Remark 2.2, since u is a rational function, we have u 2 Ran Hu.
Secondly, u satisfies the equation of the traveling waves (1-4), which is equivalent to Au.u/D�

!
c

u.
Therefore, u is an eigenfunction of the operator Au for the eigenvalue �!=c. Applying the identity
(1-10),

AuHuCHuAuC
!

c
HuC

1

c
H 3

u D 0;

to u and then to Huu, one deduces that AuH 2
u uD�!

c
H 2

u u. Therefore, the conclusion of the proposition
follows once we prove all the eigenfunctions of the operator Au belonging to Ran Hu, corresponding to
the same eigenvalue, are linearly dependent.

Let a be en eigenvalue of the operator Au and let  1;  2 2Ker.Au�a/\Ran Hu. Since u is a rational
function, by the Kronecker type Theorem 2.1,  1 and  2 are also nonconstant rational functions. Then,
one can find ˛; ˇ 2 C, .˛; ˇ/¤ .0; 0/, such that  WD ˛ 1Cˇ 2 DO. 1

x2 / as x!1. Moreover, we
have  2L1.R/, x 2L2.R/, and thus we can compute Au.x /.

Passing into Fourier space we have

2….xf /.�/D i.@� Of /1��0 D i@�. Of 1��0/� i Of .�/ı�D0 D
1x…f .�/� i Of .0/ı�D0;

for all f 2L1.R/. Thus, we obtain ….xf /D x….f /C 1
2� i
Of .0/ for all f 2L1.R/. We then have

Au.x /D xAu. /C
1

i
 �

1

2c� i

Z
R

juj2 dx

and therefore, since Au D a ,

Au.x /D ax C
1

i
 �

1

2c� i

Z
R

juj2 dx: (4-9)

Since x 2 Ran Hu and Au.Ran Hu/� Ran Hu by Lemma 3.7, we have Au.x / 2 Ran Hu � L2.R/.
The constant in (4-9) is zero because all the other terms are in L2.R/. Then we have

.Au� a/.x /D
1

i
 : (4-10)

Applying the self-adjoint operator Au� a to both sides of (4-10), we obtain .Au� a/2.x /D 0 and

k.Au� a/.x /k2
L2 D

�
.Au� a/.x /; .Au� a/.x /

�
D
�
.Au� a/2.x /;x 

�
D 0:

Thus, .Au� a/.x /D 0. In conclusion, by (4-10),  D 0 and therefore all the eigenfunctions belonging
to Ran Hu, corresponding to the same eigenvalue a, are linearly dependent. �

Proof of Theorem 1.2. Since u 2Ran Hu, there exists a unique function g 2Ran Hu such that uDHu.g/.
By Proposition 4.7, it results that Hu.u/D �g. Applying the identity (1-10),

AuHuCHuAuC
!

c
HuC

1

c
H 3

u D 0;

to g and using AuuD�
!

c
u, one obtains

Hu

�
AugC

�

c
g
�
D 0:
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Since Au.Ran Hu/� Ran Hu, we have

AugC
�

c
g 2 Ran Hu\Ker Hu:

Therefore, AugC
�

c
g D 0, which is equivalent to

cDg�Tjuj2gC�g D 0:

We next find a simpler version of this equation, in order to determine the function g explicitly. Note
that Nu.1�g/ 2L2

C, since it is orthogonal to each complex conjugate of a holomorphic function f 2L2
C:

. Nu.1�g/; Nf /D .f .1�g/;u/D .f;u/� .f;Hu.g//D 0:

Thus,

Tjuj2.g/D….juj
2/�….juj2.1�g//DHu.u/� juj

2.1�g/D �g� juj2.1�g/:

Passing into Fourier space and using the fact that juj2 is a real-valued function, one can write

juj2 D

Z 1
0

eix�bjuj2.�/ d�C

Z 1
0

e�ix�bjuj2.�/ d� D….juj2/C….juj2/:

Therefore juj2DHu.u/CHu.u/D �.gC Ng/. Consequently, Tjuj2.g/D �.� NgCg2Cjgj2/ and g solves
the equation

cDg��g2
C�.gC Ng� jgj2/D 0: (4-11)

We prove that gC Ng� jgj2 D 0. First, note that Nu.1�g/ 2L2
C , also yields .1�g/f 2 Ker Hu, for all

f 2L2
C. Secondly, let us prove that gC Ng� jgj2 is orthogonal to the complex conjugate of all f 2L2

C:

.gC Ng� jgj2; Nf /D .g; Nf /� .f .1�g/;g/D�
�
f .1�g/;

1

�
Hu.u/

�
D�

1

�

�
u;Hu.f .1�g//

�
D 0:

In addition, since gC Ng� jgj2 is a real-valued function, we have

.gC Ng� jgj2; f /D .gC Ng� jgj2; Nf /D 0

for all f 2L2
C. Therefore, gC Ng�jgj2 is orthogonal to all the functions in L2.R/ and thus gC Ng�jgj2D0.

This is equivalent to j1�gj D 1 on R. Moreover, (4-11) gives the precise formula for g:

g.z/D
r

z�p
;

where r;p 2 C and Im.p/ < 0: Thus 1�g.x/D
x� Np

x�p
for all x 2 R and

Ker H 1
z�p
D

z� Np

z�p
L2
C D .1�g/L2

C � Ker Hu:

Consequently, u 2 Ran Hu � Ran H 1
z�p
D

C

z�p
. �
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5. Orbital stability of traveling waves

In order to prove the orbital stability of traveling waves, we first use the fact that they are minimizers of
the Gagliardo–Nirenberg inequality. We begin this section by proving this inequality:

Proof of Proposition 1.5, the Gagliardo–Nirenberg inequality. The proof is similar to that of the Gagliardo–
Nirenberg inequality for the circle, in [Gérard and Grellier 2010b]. The idea is to write all the norms in
the Fourier space, using Plancherel’s identity.

E D kuk4
L4 D ku

2
k

2
L2 D

1

2�

bu2
2

L2 D
1

2�

Z
R

jbu2.�/j2 d�:

Using the fact that u 2L2
C and Cauchy–Schwarz inequality, we have

jbu2.�/j2 D
1

4�2

ˇ̌̌̌ Z �

0

bu.�/bu.� � �/ d�

ˇ̌̌̌2
�

1

4�2
�

Z �

0

jbu.�/j2jbu.� � �/j2 d�

�
1

4�2

�Z �

0

�jbu.�/j2jbu.� � �/j2 d�C

Z �

0

.� � �/jbu.�/j2jbu.� � �/j2 d�

�
:

By the change of variables � � � 7! � in the second integral, we have

jbu2.�/j2 �
1

2�2

Z �

0

�jbu.�/j2jbu.� � �/j2 d�:

By Fubini’s theorem and change of variables � D � � � it results that

E �
1

4�3

Z
R

Z �

0

�jbu.�/j2jbu.� � �/j2 d�d� D
1

4�3

Z C1
0

�jbu.�/j2 d�

Z C1
0

jbu.�/j2 d� D
1

�
MQ:

Equality holds if and only if we have equality in Cauchy–Schwarz inequality, i.e.

bu.�/bu.�/Dbu.�C �/bu.0/;
for all �; �� 0. This is true if and only if

bu.�/D e�ip�bu.0/ for all � � 0:

Since u 2H
1=2
C , this yields Im.p/ < 0 and u.x/D C=.x�p/, for some constant C . �

The second argument we use in proving the stability of traveling waves is a profile decomposition
theorem. It states that bounded sequences in H

1=2
C can be written as superposition of translations of fixed

profiles and of a remainder term. The remainder is small in all the Lp-norms, 2< p <1. Moreover, the
superposition is almost orthogonal in the H

1=2
C -norm.

Proposition 5.1 (Profile decomposition theorem for bounded sequences in H
1=2
C ). Let fvngn2N be a

bounded sequence in H
1=2
C . There exist a subsequence of fvngn2N, still denoted by fvngn2N, a sequence

of fixed profiles in H
1=2
C , fV .j/gj2N, and a family of real sequences fx.j/gj2N such that for all ` 2N� we

have
vn
D

X̀
jD1

V .j/.x�x.j/n /C r .`/n ;
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where
lim
`!1

lim sup
n!1

kr .`/n kLp.R/ D 0

for all p 2 .2;1/, and

kvn
k

2
L2 D

X̀
jD1

kV .j/
k

2
L2 Ckr

.`/
n k

2
L2 C o.1/ as n!1;

kvn
k

2
PH

1=2
C

D

X̀
jD1

kV .j/
k

2
PH

1=2
C

Ckr .`/n k
2
PH

1=2
C

C o.1/ as n!1;

lim
n!1

kvn
k

4
L4 D

1X
jD1

kV .j/
k

4
L4 :

The proof of this proposition follows exactly the same lines as that of the profile decomposition theorem
for bounded sequences in H 1.R/; see [Hmidi and Keraani 2006, Proposition 2.1]. However, note that in
our case, the profiles V .j/ belong to the space H

1=2
C (not only to the space H 1=2.R/), as they are weak

limits of translations of the sequence fvngn2N.

Proof of Theorem 1.3. According to Proposition 1.5, C.a; r/ is the set of minimizers of the problem

inf
˚
M.u/Iu 2H

1=2
C ; Q.u/D q.a; r/; E.u/D e.a; r/

	
;

where

q.a; r/D
a2�

r
; e.a; r/D

a4�

2r3
:

We denote the infimum by m.a; r/. Since

inf
�2C.a;r/

kun
0 ��kH 1=2

C

! 0;

by the Sobolev embedding theorem, we deduce

Q.un
0/! q.a; r/; E.un

0/! e.a; r/; M.un
0/!m.a; r/:

Let ftngn2N be an arbitrary sequence of real numbers. The conservation laws yield

Q.un.tn//! q.a; r/; E.un.tn//! e.a; r/; M.un.tn//!m.a; r/:

We can choose two sequences of positive numbers fang and f�ng such that vn.x/ WD anun.tn; �nx/

satisfies kvnkL2.R/ D 1, kvnkL4.R/ D 1. Notice that

an! a1; �n! �1;

where a1 > 0, �1 > 0, and
�1

a4
1

D e.a; r/;
�1

a2
1

D q.a; r/:
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Then

kvn
k

1=2

PH
1=2
C

D

kvnk
1=2

L2 kv
nk

1=2

PH
1=2
C

kvnkL4

D

kun.tn/k
1=2

L2 ku
n.tn/k

1=2

PH
1=2
C

kun.tn/kL4

for all n 2 N:

In particular, as a consequence of the Gagliardo–Nirenberg inequality,

lim
n!1

kvn
k PH 1=2
C

D
p
�:

Thus the sequence fvngn2N is bounded in H
1=2
C . From the profile decomposition theorem (Proposition 5.1),

we obtain that there exist real sequences fx.j/gj2N depending on the sequence ftngn2N in the definition
of fvngn2N, such that for all ` 2 N� we have

vn
D

X̀
jD1

V .j/.x�x.j/n /C r .`/n ;

where

lim
`!1

lim sup
n!1

kr .`/n kLp.R/ D 0

for all p 2 .2;1/, and

kvn
k

2
L2 D

X̀
jD1

kV .j/
k

2
L2 Ckr

.`/
n k

2
L2 C o.1/ as n!1;

kvn
k

2
PH

1=2
C

D

X̀
jD1

kV .j/
k

2
PH

1=2
C

Ckr .`/n k
2
PH

1=2
C

C o.1/ as n!1;

lim
n!1

kvn
k

4
L4 D

1X
jD1

kV .j/
k

4
L4 :

Consequently,

1�

1X
jD1

kV .j/
k

2
L2 ; � �

1X
jD1

kV .j/
k

2
PH

1=2
C

; 1D

1X
jD1

kV .j/
k

4
L4 : (5-1)

Therefore, by the Gagliardo–Nirenberg inequality (1-12), we have

� �

� 1X
jD1

kV .j/
k

2
L2

�� 1X
jD1

kV .j/
k

2
PH

1=2
C

�
�

1X
jD1

kV .j/
k

2
L2kV

.j/
k

2
PH

1=2
C

� �

1X
jD1

kV .j/
k

4
L4 D �:

Thus, there exist only one profile V WD V .1/ and a sequence x D x.1/ such that

vn
DV .x�xn/C rn;

kvn
k

2
L2 DkV k

2
L2 Ckrnk

2
L2 C o.1/ as n!1; (5-2)

kvn
k

2
PH

1=2
C

DkV k2
PH

1=2
C

Ckrnk
2
PH

1=2
C

C o.1/ as n!1: (5-3)
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According to (5-1), V satisfies 1� kV k2
L2 , � � kV k2

PH
1=2
C

, and kV k4
L4 D 1. In conclusion,

� D �kV k4
L4 � kV k

2
L2kV k

2
PH

1=2
C

� �:

Hence, V is a minimizer in the Gagliardo–Nirenberg inequality. Moreover,

kV k2
L2 D 1D kvn

kL2 ; kV k2
PH

1=2
C

D � D lim
n!1

kvn
k

2
PH

1=2
C

:

By (5-2) and (5-3), we have rn! 0 in H
1=2
C as n!1. Consequently, vn. � Cxn/! V in H

1=2
C , or

equivalently,
lim

n!1

anun.tn; �nx/�V .x�xn/


H
1=2
C

D 0:

We then have

lim
n!1

un.tn;x/�
1

a1
V

�
x�xn�1

�1

�
H

1=2
C

D 0:

Notice that, since V is a minimizer in the Gagliardo–Nirenberg inequality, we have

Q�.x/ WD
1

a1
V

�
x

�1

�
D

˛

x�p
2 C.a; r/:

Then, since xn�1 2 R, we have �.x/D Q�.x�xn�1/D
˛

x� Qp
2 C.a; r/. Thus,

inf
�2C.a;r/

kun.tn;x/��.x/kH 1=2
C

! 0; as n!1: (5-4)

The conclusion follows by approximating the supremum in the statement by the sequence in (5-4) with
an appropriate ftngn2N. �
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761–810. MR 2721876 Zbl pre05939690

[Gérard and Grellier 2010b] P. Gérard and S. Grellier, “L’équation de Szegö cubique”, in Séminaire X Équations aux dérivées
partielles (Palaiseau, 2008), École Polytechnique, 2010. Zbl 1213.35397



404 OANA POCOVNICU

[Hmidi and Keraani 2006] T. Hmidi and S. Keraani, “Remarks on the blowup for the L2-critical nonlinear Schrödinger
equations”, SIAM J. Math. Anal. 38:4 (2006), 1035–1047. MR 2008e:35184 Zbl 1122.35135

[Holmer and Zworski 2008] J. Holmer and M. Zworski, “Soliton interaction with slowly varying potentials”, Int. Math. Res. Not.
2008:10 (2008), Art. ID rnn026. MR 2009i:37183 Zbl 1147.35084

[Hörmander 1990] L. Hörmander, The analysis of linear partial differential operators, I: Distribution theory and Fourier
analysis, 2nd ed., Grundlehren der Math. Wiss. 256, Springer, Berlin, 1990. MR 91m:35001a Zbl 0712.35001

[Lax 1959] P. D. Lax, “Translation invariant spaces”, Acta Math. 101 (1959), 163–178. MR 21 #4359 Zbl 0085.09102

[Nikolski 2002] N. K. Nikolski, Operators, functions, and systems: an easy reading, I: Hardy, Hankel, and Toeplitz, Mathematical
Surveys and Monographs 92, American Mathematical Society, Providence, RI, 2002. MR 2003i:47001a Zbl 1007.47001

[Peller 2003] V. V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer, New York,
2003. MR 2004e:47040 Zbl 1030.47002

[Perelman 2009] G. Perelman, “A remark on soliton-potential interactions for nonlinear Schrödinger equations”, Math. Res. Lett.
16:3 (2009), 477–486. MR 2010k:35468 Zbl 1172.81012

[Reed and Simon 1979] M. Reed and B. Simon, Methods of modern mathematical physics, III: Scattering theory, Academic
Press, New York, 1979. MR 58 #12429a Zbl 0405.47007

[Rudin 1974] W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974. MR 49 #8783 Zbl 0278.26001

[Weinstein 1982] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys.
87:4 (1982), 567–576. MR 84d:35140

Received 19 Jan 2010. Revised 28 Apr 2010. Accepted 29 May 2010.

OANA POCOVNICU: Oana.Pocovnicu@math.u-psud.fr
Laboratoire de Mathématiques d’Orsay, Université Paris-Sud (XI), Campus d’Orsay, bât. 430, 91405, Orsay, France

mathematical sciences publishers msp



Analysis & PDE
pjm.math.berkeley.edu/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
University of California

Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
ilaba@math.ubc.ca lebeau@unice.fr

László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France William Minicozzi II Johns Hopkins University, USA
Frank.Merle@u-cergy.fr minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany Yuval Peres University of California, Berkeley, USA
mueller@math.uni-bonn.de peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6 Tristan Rivière ETH, Switzerland
pisier@math.tamu.edu riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA Wilhelm Schlag University of Chicago, USA
irod@math.princeton.edu schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA Yum-Tong Siu Harvard University, USA
serfaty@cims.nyu.edu siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
tao@math.ucla.edu met@math.unc.edu

Gunther Uhlmann University of Washington, USA András Vasy Stanford University, USA
gunther@math.washington.edu andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA Steven Zelditch Northwestern University, USA
dvv@math.berkeley.edu zelditch@math.northwestern.edu

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor

See inside back cover or pjm.math.berkeley.edu/apde for submission instructions.

The subscription price for 2011 is US $120/year for the electronic version, and $180/year for print and electronic. Subscriptions, requests for
back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of
Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Analysis & PDE, at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is
published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/apde
mailto:aizenman@math.princeton.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:caffarel@math.utexas.edu
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:higson@math.psu.edu
mailto:vfr@math.berkeley.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:contact@msp.org
http://pjm.math.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 4 No. 3 2011

369Regularity of weak solutions of a complex Monge–Ampère equation
GÁBOR SZÉKELYHIDI and VALENTINO TOSATTI

379Traveling waves for the cubic Szegő equation on the real line
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