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THE CORONA THEOREM FOR THE DRURY–ARVESON HARDY SPACE AND
OTHER HOLOMORPHIC BESOV–SOBOLEV SPACES ON THE UNIT BALL IN Cn

S, ERBAN COSTEA, ERIC T. SAWYER AND BRETT D. WICK

We prove that the multiplier algebra of the Drury–Arveson Hardy space H 2
n on the unit ball in Cn has

no corona in its maximal ideal space, thus generalizing the corona theorem of L. Carleson to higher
dimensions. This result is obtained as a corollary of the Toeplitz corona theorem and a new Banach space
result: the Besov–Sobolev space B�

p has the “baby corona property” for all � � 0 and 1 < p <1. In
addition we obtain infinite generator and semi-infinite matrix versions of these theorems.
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1. Introduction

Lennart Carleson [1962] demonstrated the absence of a corona in the maximal ideal space of H1.D/ by
showing that if fgj g

N
jD1

is a finite set of functions in H1.D/ satisfying

NX
jD1

jgj .z/j � c > 0; z 2 D; (1-1)

then there are functions ffj g
N
jD1

in H1.D/ with

NX
jD1

fj .z/gj .z/D 1; z 2 D; (1-2)

Fuhrmann [1968] extended Carleson’s corona theorem to the finite matrix case. Rosenblum [1980] and
Tolokonnikov [1980] proved the corona theorem for infinitely many generators N D1. This was further
generalized to the one-sided infinite matrix setting by Vasyunin (see [Tolokonnikov 1981]). Finally Treil

Sawyer’s research was supported in part by a grant from the National Science and Engineering Research Council of Canada.
Wick’s research was supported in part by National Science Foundation DMS Grant # 0752703.
MSC2000: 30H05, 32A37.
Keywords: Besov–Sobolev Spaces, corona Theorem, several complex variables, Toeplitz corona theorem.
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500 S, ERBAN COSTEA, ERIC T. SAWYER AND BRETT D. WICK

[1988] showed that the generalizations stop there by producing a counterexample to the two-sided infinite
matrix case.

Hörmander noted a connection between the corona problem and the Koszul complex, and in the late
1970s Tom Wolff gave a simplified proof using the theory of the @ equation and Green’s theorem (see
[Garnett 1981]). This proof has since served as a model for proving corona type theorems for other
Banach algebras.

While there is a large literature on corona theorems in one complex dimension (see [Nikolski 2002], for
example), progress in higher dimensions has been limited. Indeed, apart from the simple cases in which
the maximal ideal space of the algebra can be identified with a compact subset of Cn, no corona theorem
has been proved until now in higher dimensions. Instead, partial results have been obtained, such as the
beautiful Toeplitz corona theorem for Hilbert function spaces with a complete Nevanlinna–Pick kernel, the
H p corona theorem on the ball and polydisk, and results restricting N to 2 generators in (1-1) (the case
N D 1 is trivial). In particular, N. Varopoulos [1977] published a lengthy classic paper in an unsuccessful
attempt to prove the corona theorem for the multiplier algebra H1.Bn/ of the classical Hardy space
H 2.Bn/ of holomorphic functions on the ball with square integrable boundary values. His BMO estimates
for solutions with N D 2 generators remain largely unimproved to this day (though see [Costea et al.
2010] for the extension to an infinite number of generators). A related result for N D 2 and H p.Bn/

with 1< p <1 was studied in [Amar 1991]. The case N D 2 is easier compared to N > 2 because of
certain algebraic simplifications that arise. We will discuss these partial results in more detail below.

In many ways H 2
n , and not the more familiar space H 2.Bn/, is the natural generalization to higher

dimensions of the classical Hardy space on the disk. For example, H 2
n is universal among Hilbert function

spaces with the complete Pick property, and its multiplier algebra MH 2
n

is the correct home for the
multivariate von Neumann inequality (see [Agler and McCarthy 2002], for instance). See [Arveson 1998]
for more on the space H 2

n , including the model theory of n-contractions. Because of the connections the
space H 2

n has with operator theory, there is current interest in understanding the related function theory
of this space.

Our main result is that the corona theorem, namely the absence of a corona in the maximal ideal space,
holds for the multiplier algebra MH 2

n
of the Hilbert space H 2

n , the celebrated Drury–Arveson Hardy space
on the ball in n dimensions. This result provides yet more evidence that the space H 2

n is the “correct”
generalization to several variables.

Theorem 1. If fgj g
N
jD1

is a finite set of functions in MH 2
n

satisfying

1�

NX
jD1

jgj .z/j
2
� ı2 > 0 for all z 2 Bn;

then there are functions ffj g
N
jD1

in MH 2
n

satisfying

(i)
PN

jD1 fj .z/gj .z/D 1; z 2 Bn;

(ii) kfjkM
H 2

n

� Cn;ı;N for all j D 1; : : : ;N .
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There is a close relationship between the corona problem as stated and a related “baby” corona problem.
In the case when p D 2, thanks to the Toeplitz corona Theorem, as explained in the next section, this
connection in fact becomes an equivalence in certain situations and an application of the Toeplitz corona
Theorem then will give the statement in Theorem 1. Because of this close connection between the corona
problem and the “baby” corona problem, in this paper we will actually prove that the Besov–Sobolev
space B�p has the “baby corona property” for all � � 0 and 1< p <1. The precise statements for the
“baby corona property” are given below in Theorem 2. In addition, when formulated appropriately, we
will obtain infinite generator and semi-infinite matrix versions of these results, see Corollary 4.

More generally, Theorem 1 holds for the multiplier algebras MB�
2
.Bn/ of the Besov–Sobolev spaces

B�
2
.Bn/, 0� � � 1

2
, on the unit ball Bn in Cn. These function spaces will be defined later, but the space

B�
2
.Bn/ consists roughly of those holomorphic functions f whose derivatives of order n

2
� � lie in the

classical Hardy space H 2.Bn/D B
n=2
2
.Bn/. In particular H 2

n D B
1=2
2
.Bn/. Again, we will study these

more general corona problems by studying the easier “baby” corona problem.

1.1. The Toeplitz corona problem in Cn. In this section we connect the corona problem to the “baby”
corona problem, and then formulate the analogous “baby” corona problems in the Besov–Sobolev spaces
B�p when 1< p <1 and 0� � <1.

Let X be a Hilbert space of holomorphic functions in an open set � in Cn that is a reproducing kernel
Hilbert space with a complete irreducible Nevanlinna–Pick kernel (see [Agler and McCarthy 2002] for
the definition). The following Toeplitz corona theorem is due to Ball, Trent and Vinnikov [Ball et al.
2001] (see also [Ambrozie and Timotin 2002; Agler and McCarthy 2002, Theorem 8.57]).

For f D .f˛/N˛D1
2
LN

X and h 2X , define

Mf hD .f˛h/N˛D1 and kf kMult.X ;˚N X / D kMf kX!˚NX D sup
khkX�1

kMf hk˚N X :

Note that

max
1�˛�N

kMf˛kMX
� kf kMult.X ;˚N X / �

qPN
˛D1 kMf˛ k

2
MX

:

Toeplitz corona theorem. Let X be a Hilbert function space in an open set � in Cn with an irreducible
complete Nevanlinna–Pick kernel. Let ı > 0 and N 2 N. For g1; : : : ;gN

2MX , there is equivalence
between:

� (“baby corona property”) For every h 2X , there are f1; : : : ; fN
2X such that

kf1k
2
X C � � �C kfN k

2
X �

1

ı
khk2X ; g1.z/f1.z/C � � �CgN .z/fN .z/D h.z/ for z 2�: (1-3)

� (“multiplier corona property”) There are '1; : : : ; 'N 2MX such that

k'kMult.X ;˚NX / � 1; g1.z/'1.z/C � � �CgN .z/'N .z/D
p
ı for z 2�: (1-4)

The baby corona theorem is said to hold for X if, whenever g1; : : : ;gN
2MX satisfy

jg1.z/j
2
C � � �C jgN .z/j

2
� c > 0 for z 2�; (1-5)
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then g1; : : : ;gN
satisfy the baby corona property (1-3). The Toeplitz corona theorem thus provides a

useful tool for reducing the multiplier corona property (1-4) to the more tractable, but still very difficult,
baby corona property (1-3) for multiplier algebras MB�p .Bn/ of certain of the Besov–Sobolev spaces
B�p .Bn/ when p D 2: see below. The case of MB�p .Bn/ when p ¤ 2 must be handled by more classical
methods and remains largely unsolved.

Remark. A standard abstract argument applies to show that the absence of a corona for the multiplier
algebra MX , i.e., the density of the linear span of point evaluations in the maximal ideal space of MX , is
equivalent to the following assertion: for each finite set fgj g

N
jD1
�MX such that (1-5) holds for some

c > 0, there are f'j g
N
jD1
�MX and ı > 0 such that condition (1-4) holds. See for example Lemma 9.2.6

in [Nikolski 2002] or the proof of Criterion 3.5 on page 39 of [Sawyer 2009].

1.2. The baby corona theorem.

Notation. For sequences f .z/D .fi.z//
1
iD1 2 `

2 we will write

jf .z/j D

qP1
iD1 jfi.z/j

2:

When considering sequences of vectors such as rmf .z/D .rmfi.z//
1
iD1, the same notation jrmf .z/j DpP1

iD1 jr
mfi.z/j

2 will be used with jrmfi.z/j denoting the Euclidean length of the vector rmfi.z/.
Thus the symbol j � j is used in at least three different ways: to denote the absolute value of a complex
number, the length of a finite vector in CN and the norm of a sequence in `2. Later it will also be used to
denote the Hilbert–Schmidt norm of a tensor, namely the square root of the sum of the squares of the
coefficients in the standard basis. In all cases the meaning should be clear from the context.

Recall that B�p .BnI `
2/ consists of all f D .fi/

1
iD1
2H.BnI `

2/ such that

kf kB�p .BnI`2/ �

m�1X
kD0

jr
kf .0/jC

�Z
Bn

ˇ̌
.1� jzj2/mC�rmf .z/

ˇ̌p
d�n.z/

�1=p

<1; (1-6)

for some m> n
p
� � . By a result in [Beatrous 1986] the right side is finite for some m> n

p
� � if and

only if it is finite for all m> n
p
� � . As usual we will write B�p .Bn/ for the scalar-valued space.

We now state our baby corona theorem for the `2-valued Banach spaces B�p .BnI `
2/, � � 0, 1<p<1.

Observe that for � < 0, MB�p .Bn/ DB�p .Bn/ is a subalgebra of C.Bn/ and so has no corona. The N D 2

generator case of Theorem 2 when � 2
�
0; 1

p

�
[
�

n
p
;1

�
and 1 < p <1 is due to Ortega and Fàbrega

[2000], who also obtained the N D 2 generator case when � D n
p

and 1< p � 2. See Theorem A in that
reference. Ortega and Fàbrega [2006] prove analogous results with scalar-valued Hardy–Sobolev spaces
in place of the Besov–Sobolev spaces.

Let
kMgkB�p .Bn/!B�p .BnI`2/

denote the norm of the multiplication operator Mg from B�p .Bn/ to the `2-valued Besov–Sobolev space
B�p .BnI `

2/.
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Theorem 2. Let ı > 0, � � 0 and 1< p <1. There is a constant Cn;�;p;ı such that, given a sequence
g D .gi/

1
iD1
2MB�p .Bn/!B�p .BnI`2/ satisfying

kMgkB�p .Bn/!B�p .BnI`2/ � 1;

1X
jD1

jgj .z/j
2
� ı2 > 0 for z 2 Bn;

there is for each h 2 B�p .Bn/ a vector-valued function f 2 B�p .BnI `
2/ satisfying

kf kB�p .BnI`2/ � Cn;�;p;ı khkB�p .Bn/;

1X
jD1

gj .z/fj .z/D h.z/ for z 2 Bn: (1-7)

Corollary 3. Let 0 � � � 1
2

. Then the Banach algebra MB�
2
.Bn/ has no corona; that is, the analogue

of Theorem 1 holds. As particular cases we obtain that the multiplier algebra of the Drury–Arveson
space H 2

n D B
1=2
2
.Bn/ has no corona (Theorem 1) and that the multiplier algebra of the n-dimensional

Dirichlet space D.Bn/D B0
2
.Bn/ has no corona.

The corollary follows immediately from the finite generator case p D 2 of Theorem 2 and the Toeplitz
corona theorem (and the remark on page 502) since the spaces B�

2
.Bn/ have an irreducible complete

Nevanlinna–Pick kernel when 0� � � 1
2

; see for example [Arcozzi et al. 2008].
Note that in dimension nD 1 and � D 1

2
, Corollary 3 gives a new proof of Carleson’s classical corona

theorem, similar to that in [Andersson and Carlsson 2001]. Of course it is the Toeplitz corona theorem that
yields the difficult L1 estimate there. Additionally, when nD 1 and � D 0, we have that the multiplier
algebra of the Dirichlet space has no corona, recovering a result from [Tolokonnikov 1991]. See also
[Xiao 1998] for the case of nD 1 and 0� � < 1

2
.

We also have a semi-infinite matricial corona theorem.

Corollary 4. Let 0 � � � 1
2

. Let H1 be a finite m-dimensional Hilbert space and let H2 be an infinite-
dimensional separable Hilbert space. Suppose that F 2MB�

2
.Bn/.H1!H2/ satisfies

ı2Im � F�.z/F.z/� Im:

Then there is G 2MB�
2
.Bn/.H2!H1/ such that

G.z/F.z/D Im; kGkMB�
2
.Bn/.H2!H1/

� C�;n;ı;m:

This corollary follows immediately from the case pD 2 of Theorem 2 and the Toeplitz corona theorem
together with Theorem (MCT) in [Trent and Zhang 2006]. We follow the notation in that reference. We
already commented above on the special case of this corollary for the Hardy space B

1=2
2
.B1/DH 2.D/

on the disk. The case mD 1 of this corollary for the classical Dirichlet space B0
2
.B1/D D.D/ on the

disk is due to Trent [2004a]. Our method yields information about the dependence of the constants on
the parameters ı, � , p and n in Theorem 2. However, this information is not sharp and more precise
information would be desirable.

Remark. It is an open question [Trent 2004a] for the Dirichlet space B0
2
.B1/ in one dimension whether

or not in Theorem 2 the boundedness condition on the column operator, kMgkB0
2
.B1/!B0

2
.B1I`2/ � 1, can
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be replaced by a similar (but weaker — see Lemma 1 in [Trent 2004a]) boundedness condition for the
row operator, kMgkB0

2
.B1I`2/!B0

2
.B1/
� 1. The question also appears to be open for the Besov–Sobolev

spaces B�
2
.Bn/, with 0� � < n

2
. (The two operators are not dual to one another for these spaces.)

Prior results. The baby corona problem for H 2.Bn/ was first formulated and proved via L2 methods
by Mats Andersson [1994b]. It is noteworthy that the approach used in that work allowed for one to
obtain estimates independent of the number of generators N. The case of two generators in H p.Bn/,
1< p <1, was handled by Éric Amar [1991]. His proof could be extended to handle more generators
but doing so will result in a constant that depends upon the number of generators N . Andersson and
Carlsson [2000] solved the baby corona problem for H 2.Bn/ and obtained the analogous (baby) H p

corona theorem on the ball Bn for 1<p<1 and with constants independent of the number of generators
and sharp information in terms of the estimates in terms of ı and the dimension n. The interested reader
can also see [Andersson 1994a; Andersson and Carlsson 2001; 1994; Krantz and Li 1995], where the
problem is studied.

Partial results on the corona problem restricted to N D 2 generators and BMO in place of L1 estimates
have been obtained for H1.Bn/ (the multiplier algebra of H 2.Bn/D B

n=2
2
.Bn/) by Varopoulos [1977].

Note that the techniques used in this paper also yield BMO estimates for the H1.Bn/ corona problem,
which appear in [Costea et al. 2010]. This classical corona problem remains open (Problem 19.3.7 in
[Rudin 1980]), along with the corona problems for the multiplier algebras of B�

2
.Bn/, 1

2
< � < n

2
.

More recently, J. M. Ortega and J. Fàbrega [2000] obtained partial results with N D 2 generators in
(1-3) for the algebras MB�

2
.Bn/ when 0 � � < 1

2
, i.e., from the Dirichlet space B0

2
.Bn/ up to but not

including the Drury–Arveson Hardy space H 2
n D B

1=2
2
.Bn/. To handle N D 2 generators they exploit

the fact that a 2� 2 antisymmetric matrix consists of just one entry up to sign, so that as a consequence
the form �2

1
in the Koszul complex below is @-closed. Ortega and Fàbrega’s paper has proved to be of

enormous influence in our work, as the basic groundwork and approach we use are set out there.
In [Treil and Wick 2005] the H p corona theorem on the polydisk Dn is obtained (see also [Lin 1994;

Trent 2004b]). The Hardy space H 2.Dn/ on the polydisk fails to have the complete Nevanlinna–Pick
property, and consequently the Toeplitz corona theorem only holds in a more complicated sense that a
family of kernels must be checked for positivity instead of just one (see [Amar 2003; Trent and Wick
2009]). As a result the corona theorem for the algebra H1.Dn/ on the polydisk remains open for n� 2.
Finally, even the baby corona problems, apart from that for H p, remain open on the polydisk.

1.3. Plan of the paper. We will prove Theorem 2 using the Koszul complex and a factorization of
Andersson and Carlsson, an explicit calculation of Charpentier’s solution operators, and generalizations
of the integration by parts formulas of Ortega and Fàbrega, together with new estimates for boundedness
of operators on certain real-variable analogues of the holomorphic Besov–Sobolev spaces.

More precisely, to treat N > 2 generators in (1-7), it is just as easy to treat the case N D1, and this
has the advantage of not requiring bookkeeping of constants depending on N . We will

(1) use the Koszul complex for infinitely many generators,

(2) invert higher order forms in the @ equation, and
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(3) devise new estimates for the Charpentier solution operators for these equations, including

(a) the use of sharp estimates — (5-7), (5-8), and (5-9) — on Euclidean expressions
ˇ̌̌
.w�z/

@

@w
f
ˇ̌̌

in terms of the invariant derivative j zrf j,
(b) the use of the exterior calculus together with the explicit form of Charpentier’s solution kernels

in Theorems 8 and 10 to handle “rogue” Euclidean factors wj�zj (see Section 7), and
(c) the application of generalized operator estimates of Schur type in Lemma 24 to obtain appropriate

boundedness of solution operators.

Remark. We emphasize that the crucial new ingredient in our approach, as compared to previous work,
is the use of the Besov–Sobolev norms

kf kB�p;m.BnI`2/ �

m�1X
jD0

jr
jf .0/jC

�Z
Bn

ˇ̌
.1� jzj2/�Dmf .z/

ˇ̌p
d�n.z/

�1=p

given by Arcozzi, Rochberg and Sawyer [Arcozzi et al. 2006] in terms of the almost invariant holomorphic
derivative

Daf .z/D�f
0.z/

�
.1� jaj2/PaC .1� jaj

2/1=2Qa

�
;

given in (5-1) below. This derivative neatly separates the normal and tangential components of the
Euclidean derivative, and permits a key exchange between Charpentier’s solution kernel in (2-6),

C0;q
n .w; z/�

.1�wz/n�1�q.1� jwj2/q

4.w; z/n
.zk �wk/:

and appropriate derivatives Da of the forms F in the Koszul complex. The point is that the Euclidean
portion zk � wk of the kernel C

0;q
n .w; z/ is generally not dominated by the corresponding invariant

portion (see (2-1)) p
4.w; z/D

ˇ̌
Pw.z�w/C

p
1� jwj2Qw.z�w/

ˇ̌
appearing in the denominator. However, this complication is offset by the fact that the almost invariant
derivative Daf .z/ is correspondingly larger than the Euclidean derivative .1� jaj2/f 0.z/, and this is
exploited in the following exchange formula (5-7):ˇ̌̌̌

.z�w/˛
@m

@w˛
F.w/

ˇ̌̌̌
� C

�p
4.w; z/

1� jwj2

�mˇ̌
DmF.w/

ˇ̌
;

which permits control of the solution by the B�p;m norm using the larger derivative DmF . It is likely
that the Charpentier kernel can be replaced in these arguments by more general kernels with appropriate
estimates, and this would be key to extending our baby corona theorem to strictly pseudoconvex domains
�. This extension will be pursued in subsequent work.

In addition to these novel elements in the proof, we make crucial use of the beautiful integration by
parts formula of [Ortega and Fàbrega 2000], and in order to obtain `2-valued results, we use the clever
factorization of the Koszul complex in [Andersson and Carlsson 2000] but adapted to `2.
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Here is a brief outline of the approach of the proof.
We are given an infinite vector of multipliers g D .gi/

1
iD1
2MB�p .Bn/!B�p .BnI`2/ that satisfy

kMgkB�p .Bn/!B�p .BnI`2/ � 1 and inf
Bn

jgj � ı > 0;

and an element h 2 B�p .Bn/. We wish to find f D .fi/
1
iD1
2 B�p .BnI `

2/ such that

(1) Mgf D g �f D h, (2) @f D 0, (3) kf kB�p .BnI`2/ � Cn;�;p;ı khkB�p .Bn/.

An obvious first attempt at a solution is f D
g

jgj2
h, which clearly satisfies (1), can be shown to

satisfy (3), but fails to satisfy (2) in general.
To rectify this we use the Koszul complex in Section 4, which employs any solution to the @ problem

on forms of bidegree .0; q/, 1� q � n, to produce a correction term ƒg�
2
0

so that

f D
g

jgj2
h�ƒg�

2
0

now satisfies (1) and (2); but (3) is now in doubt without specifying the exact nature of the correction
term ƒg�

2
0

.
In Section 2 we explicitly calculate Charpentier’s solution operators to the @ equation for use in solving

the @ problems arising in the Koszul complex. These solution operators are remarkably simple in form and
moreover are superbly adapted for obtaining estimates in real-variable analogues of the Besov–Sobolev
spaces in the ball. In particular, the kernels K.w; z/ of these solution operators involve expressions like

.1�wz/n�1�q.1� jwj2/q.w� z/

4.w; z/n
; (1-8)

where p
4.w; z/D

ˇ̌
Pz.w� z/C

p
1� jzj2Qz.w� z/

ˇ̌
is the length of the vector w� z shortened by multiplying by

p
1� jzj2 its projection Qz.w� z/ onto

the orthogonal complement of the complex line through z. Also useful is the identityp
4.w; z/D j1�wzj j'z.w/j;

where 'z is the involutive automorphism of the ball that interchanges z and 0; in particular this shows
that d.w; z/D

p
4.w; z/ is a quasimetric on the ball.

In Section 5.1 we introduce real-variable analogues ƒ�p;m.Bn/ of the Besov–Sobolev spaces B�p .Bn/

along with `2-valued variants, that are based on the geometry inherent in the complex structure of the
ball and reflected in the solution kernels in (1-8). In particular these norms involve modifications D of
the invariant derivative zr in the ball:

Df .w/D .1� jwj2/Pwrf C
p

1� jwj2Qwrf:
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Three crucial inequalities are then developed to facilitate the boundedness of the Charpentier solution
operators, most notablyˇ̌̌

.z�w/˛
@m

@w˛
F.w/

ˇ̌̌
� C4.w; z/m=2

ˇ̌
.1� jwj2/�mDmF.w/

ˇ̌
; (1-9)

for F 2H1.BnI `
2/, which controls the product of Euclidean lengths with Euclidean derivatives on the

left, in terms of the product of the smaller length
p
4.w; z/ and the larger derivative .1� jwj2/�1D on

the right. We caution the reader that our definition of Dm is not simply the composition of m copies
of D; see Definition 18 below.

In Section 3 we recall the clever integration by parts formulas of Ortega and Fàbrega involving the
left side of (1-9), and extend them to the Charpentier solution operators for higher degree forms. If we
differentiate (1-8), the power of 4.w; z/ in the denominator can increase and the integration by parts in
Lemma 14 below will temper this singularity on the diagonal. On the other hand the radial integration by
parts in Corollary 16 below will temper singularities on the boundary of the ball.

In Section 6 we use Schur’s test to establish the boundedness of positive operators with kernels of the
form

.1� jzj2/a.1� jwj2/b
p
4.w; z/

c

j1�wzjaCbCcCnC1
:

The case c D 0 is standard (see [Zhu 2005], for example) and the extension to the general case follows
from an automorphic change of variables. These results are surprisingly effective in dealing with the
ameliorated solution operators of Charpentier.

Finally in Section 7 we put these pieces together to prove Theorem 2.
An Electronic Supplement collects many of the technical modifications of existing proofs in the

literature mentioned below that would otherwise interrupt the main flow of this paper.

2. Charpentier’s solution kernels for .0; q/-forms on the ball

Charpentier proved the following formula for .0; q/-forms:

Theorem 5 [Charpentier 1980, Theorem I.1, page 127]. For q� 0 and all forms f .�/2C 1.Bn/ of degree
.0; qC 1/, we have, for z 2 Bn,

f .z/D Cq

Z
Bn

@f .�/^C0;qC1
n .�; z/C cq@z

�Z
Bn

f .�/^C0;q
n .�; z/

�
:

Here C
0;q
n .�; z/ is a .n; n�q�1/-form in � on the ball and a .0; q/-form in z on the ball that is defined

in Definition 7 below. Using Theorem 5, we can solve @zu D f for a @-closed .0; qC1/-form f as
follows. Set

u.z/� cq

Z
Bn

f .�/^C0;q
n .�; z/:

Taking @z of this we see from Theorem 5 and @f D 0 that

@zuD cq@z

�Z
Bn

f .�/^C0;q
n .�; z/

�
D f .z/:
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It is essential for our proof to explicitly compute the kernels C
0;q
n when 0� q � n� 1. The case q D 0

is given in [Charpentier 1980] and we briefly recall the setup. Denote by 4 W Cn �Cn! Œ0;1/ the map

4.w; z/� j1�wzj2� .1� jwj2/.1� jzj2/:

It is convenient to record the many faces of 4.w; z/:

4.w; z/D j1�wzj2� .1� jwj2/.1� jzj2/

D .1� jzj2/jw� zj2Cjz.w� z/j2

D .1� jwj2/jw� zj2Cjw.w� z/j2

D j1�wzj2j'w.z/j
2

D j1�wzj2j'z.w/j
2

D
ˇ̌
Pw.z�w/C

p
1� jwj2Qw.z�w/

ˇ̌2
D
ˇ̌
Pz.z�w/C

p
1� jzj2Qz.z�w/

ˇ̌2
: (2-1)

To compute the kernels C
0;q
n we start with the closed Cauchy–Leray form (see [Rudin 1980, 16.4.5],

for example)

�.�;w; z/�
1

.�.w� z//n

nX
iD1

.�1/i�1�i
�V

j¤id�j
�V

n
iD1d.wi � zi/:

One then lifts the form � via a section s to give a closed form on Cn�Cn. Namely, for s WCn�Cn!Cn

one defines

s��.w; z/�
1�

s.w; z/.w� z/
�n nX

iD1

.�1/i�1si.w; z/
�V

j¤i dsj

�V
n
iD1d.wi � zi/:

Now we fix s to be the following section used by Charpentier:

s.w; z/� w.1�wz/� z.1� jwj2/: (2-2)

Simple computations [Ortega and Fàbrega 2000] demonstrate that

s.w; z/.w� z/D4.w; z/: (2-3)

Definition 6. We define the Cauchy kernel on Bn �Bn to be

Cn.w; z/� s��.w; z/ (2-4)

for the section s given in (2-2).

Definition 7. For 0 � p � n and 0 � q � n � 1 we let C
p;q
n be the component of Cn.w; z/ that has

bidegree .p; q/ in z and bidegree .n�p; n� q� 1/ in w.

Thus if � is a .p; qC1/-form in w, then C
p;q
n ^ � is a .p; q/-form in z and a multiple of the volume

form in w. We now prepare to give explicit formulas for Charpentier’s solution kernels C
0;q
n .w; z/. First

we introduce some notation.
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Notation. Let !n.z/D
Vn

jD1 dzj . For n a positive integer and 0� q � n�1 let P
q
n denote the collection

of all permutations � on f1; : : : ; ng that map to fi� ;J� ;L�g where J� is an increasing multi-index
with card.J�/ D n� q � 1 and card.L�/ D q. Let �� � sgn.�/ 2 f�1; 1g denote the signature of the
permutation �.

Note that the number of increasing multi-indices of length n�q�1 is n!
.qC1/!.n�q�1/!

, while the number
of increasing multi-indices of length q are n!

q!.n�q/!
. Since we are only allowed certain combinations

of J� and L� (they must have disjoint intersection and they must be increasing multi-indices), it is
straightforward to see that the total number of permutations in P

q
n that we are considering is n!

.n�q�1/!q!
.

From [Øvrelid 1971] we obtain that Charpentier’s kernel takes the (abstract) form

C0;q
n .w; z/D

1

4.w; z/n

X
�2P

q
n

sgn.�/si�

^
j2J�

@wsj

^
l2L�

@zsl ^!n.w/:

Fundamental for us will be the explicit formula for Charpentier’s kernel given in the next theorem. It is
convenient to isolate the following factor common to all summands in the formula:

ˆq
n.w; z/�

.1�wz/n�1�q.1� jwj2/q

4.w; z/n
; 0� q � n� 1: (2-5)

Theorem 8. Let n be a positive integer and suppose that 0� q � n� 1. Then

C0;q
n .w; z/D

X
�2P

q
n

.�1/qˆq
n.w; z/ sgn.�/.wi� � zi� /

^
j2J�

dwj

^
l2L�

dzl ^!n.w/: (2-6)

Remark. We can rewrite the formula for C
0;q
n .w; z/ in (2-6) as

C0;q
n .w; z/Dˆq

n.w; z/
X
jJ jDq

X
k…J

.�1/�.k;J /.zk �wk/dzJ
^ dw.J[fkg/

c

^!n.w/; (2-7)

where J [fkg denotes the increasing multi-index obtained by rearranging the integers fk; j1; : : : jqg as

J [fkg D fj1; : : : j�.k;J /�1; k; j�.k;J /; : : : jqg:

Thus k occupies the �.k;J /-th position in J [ fkg. The notation .J [ fkg/c refers to the increasing
multi-index obtained by rearranging the integers in f1; 2; : : : ; ngn .J [fkg/. To see (2-7), we note that in
(2-6) the permutation � takes the n-tuple .1; 2; : : : n/ to .i� ;J� ;L�/. In (2-7) the n-tuple

�
k; .J[fkg/c ;J

�
corresponds to .i� ;J� ;L�/, and so sgn.�/ becomes in (2-7) the signature of the permutation that takes
.1; 2; : : : ; n/ to .k; .J [fkg/c ;J /. This in turn equals .�1/�.k;J / with �.k;J / as above.

We observe at this point that the functional coefficient in the summands in (2-6) looks like

.�1/qˆq
n.w; z/.wi�� zi� /D .�1/q

.1�wz/n�q�1.1� jwj2/q

4.w; z/n
.wi�� zi� /;

which behaves like a fractional integral operator of order 1 in the Bergman metric on the diagonal relative
to invariant measure.

Finally, we will adopt the usual convention of writing

C0;q
n f .z/D

Z
Bn

f .w/^C0;q
n .w; z/;
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when we wish to view C
0;q
n as an operator taking .0; qC1/-forms f in w to .0; q/-forms C

0;q
n f in z. The

proof of Theorem 8 is carried out in the Electronic Supplement. Here we present a relatively short and
elegant proof pointed out to us by a referee. It is helpful to make the following elementary observation.

Remark. If a form � has odd degree, then any power �` with `�2 necessarily vanishes, by the alternating
property. On the other hand, if one of the forms �1; �2 has even degree, then the binomial theorem holds
for the sum:

.�1C�2/
`
D

X̀
jD0

�
`

j

�
.�1/

j .�2/
`�j :

Note that the wedge power
V`

iD1

� 1P
kiD1

@gki

jgj2
eki

�
above doesn’t vanish since the form

@gki

jgj2
eki

has
degree 2.

Proof of Theorem 8. Consider the section s.w; z/ in (2-2) and the associated .1; 0/-form s � dw DPn
jD1 sj dwj and the .1; 1/-form @.s � dw/. We claim that

4.w; z/�n.s � dw/^
�
@.s � dw/

�n�1 (2-8)

is the term K.w; z/ of total bidegree .n; n� 1/ in the Cauchy kernel Cn.w; z/D s��.w; z/. To see this
we first recall formula (2.2) in [Øvrelid 1971], which reads

K.w; z/D cn4.w; z/
�n

nX
iD1

.�1/i�1si

�^
j¤i

.@sj /

�
^!.w/;

where !.w/ D dw1 ^ � � � ^ dwn and the product over j ¤ i is taken with increasing j . Now we
note that each term in the expansion of the product in (2-8) must contain a permutation of the product
dw1 ^ � � � ^ dwn. Thus by factoring out the term !.w/ we compute

4.w; z/�n.s � dw/^
�
@.s � dw/

�n�1
D4.w; z/�n

� nX
iD1

sidwi

�
^

� nX
jD1

.@sj /^ dwj

�n�1

D4.w; z/�n
nX

iD1

.�1/i�1si

�^
j¤i

.@sj /

�
^!.w/DK.w; z/;

where the factor .�1/i�1 arises since the terms .@sj /^ dwj of total degree 2 commute, while the term
dwi anticommutes, with terms of degree 1.

Now we analyze (2-8) with the aid of the forms

ˇ D @@jwj2 D @

nX
iD1

.dwi/wi D dw � dw D

nX
iD1

dwi ^ dwi ; �D dw � dz D

nX
iD1

dwi ^ dzi ;

where ı is the interior product, given by

ı˛ D ˛y .w � dw/D ˛y
� nX

kD1

wkdwk

�
:
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We have both

ıˇ D .dw � dw/ y .w � dw/D
� nX

iD1

dwi ^ dwi

�
y
� nX

jD1

wj dwj

�
D�

nX
iD1

wi dwi D�w � dw

and

ı�D .dw � dz/ y .w � dw/D
� nX

iD1

dwi ^ dzi

�
y
� nX

jD1

wj dwj

�
D

nX
iD1

wi dzi D w � dz:

Now we compute, using

s.w; z/ � dw � .1�wz/.w � dw/� .1� jwj2/.z � dw/; (2-9)

that
�� @.s �dw/D� .w �dz/^ .w �dw/C .1�jwj2/.dw �dz/C .1�wz/.dw �dw/C .w �dw/^ .z �dw/

D .w �dw/^ ı�C .z �dw/^ ıˇC .1�jwj2/�C .1�wz/ˇ:

Consider the form .s � dw/^ �n�1. Since � has degree two, the remark on page 510 shows that the
power �n�1 can be expanded by the binomial theorem. Let �DACB, where

AD .w � dw/^ ı�C .z � dw/^ ıˇ; B D .1� jwj2/�C .1�wz/ˇ:

We claim the formula

.s � dw/^�n�1
D .s � dw/^Bn�1

C .n� 1/.s � dw/^A^Bn�2: (2-10)

To see this we expand the left-hand side using the binomial theorem to get

.s � dw/^ .ACB/n�1
D .s � dw/^

�
An�1

C .n�1/An�2
^BC � � �C .n�1/A^Bn�2

CBn�1
�
:

We want this to equal
.s � dw/^Bn�1

C .n� 1/.s � dw/^A^Bn�2;

which will be the case if
.s � dw/^Ak

D 0 for all k � 2;

which in turn follows from .s � dw/^A2 D 0. However, using

ıˇ D�w � dw and ı�D w � dz; (2-11)

we obtain
AD .w � dw/^ .w � dz/� .z � dw/^ .w � dw/: (2-12)

Hence we can write
A2
DA1CA2CA3CA4

with
A1 D .w �dw/^.w �dz/^.w �dw/^.w �dz/; A2 D�.w �dw/^.w �dz/^.z �dw/^.w �dw/;

A3 D�.z �dw/^.w �dw/^.w �dw/^.w �dz/; A4 D .z �dw/^.w �dw/^.z �dw/^.w �dw/:
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Now

A1 D .w � dw/^w � dz ^ .w � dw/^ .w � dz/D�
�
.w � dw/^w � dw

�
^
�
.w � dz/^ .w � dz/

�
D 0;

and similarly A4 D 0. We also compute that

A2 D�.w � dw/^w � dz ^ .z � dw/^ .w � dw/D�.z � dw/^w � dw^ .w � dw/^ .w � dz/DA3;

so that
A2
D�2A2:

Now we note, using (2-9), that

.s � dw/^A2 D .1�wz/
�
.w � dw/^A2

�
� .1� jwj2/

�
.z � dw/^A2

�
vanishes, since .w � dw/^A2 contains two factors w � dw, and since .z � dw/^A2 contains two factors
z � dw. Thus we have proved that

.s � dw/^A2
D�.s � dw/^ 2A2 D 0:

This completes the proof of (2-10).

Now we continue by using (2-9), (2-11) and (2-12) to obtain

.s � dw/^AD .1�wz/
�
.w � dw/^A

�
� .1� jwj2/

�
.z � dw/^A

�
D�.1�wz/

�
.w � dw/^ .z � dw/^ .w � dw/

�
� .1� jwj2/

�
.z � dw/^ .w � dw/^ .w � dz/

�
D�.z � dw/^ .w � dw/^

�
.1� jwj2/ ı�C .1�wz/ ıˇ

�
:

We can now simplify the second term on the right side of (2-10) to obtain

.s �dw/^�n�1
D .s �dw/^Bn�1

C .n� 1/.s �dw/^A^Bn�2

D .s �dw/^Bn�1
� .z �dw/^ .w �dw/^

�
.1�jwj2/ ı�C .1�wz/ ıˇ

�
^ .n� 1/Bn�2

D .s �dw/^Bn�1
� .z �dw/^ .w �dw/^ .ıBn�1/:

(2-13)
Now we note that

.z � dw/^ .w � dw/^ .ıBn�1/C ı
�
.z � dw/^ .w � dw/

�
^Bn�1

D ı
�
.z � dw/^ .w � dw/^Bn�1

�
D 0;

since the left side has full degree in dw and the form .z �dw/^.w �dw/ has even degree. As a consequence
we obtain the formula

.s � dw/^�n�1
D
�
.s � dw/C ı

�
.z � dw/^ .w � dw/

��
^Bn�1:

Now the simple computation

.s � dw/C ı
�
.z � dw/^ .w � dw/

�
D .1�wz/.w � dw/� .1� jwj2/.z � dw/C .z �w/.w � dw/� .z � dw/.w �w/

D w � dw� z � dw



THE CORONA THEOREM IN Cn 513

shows that
.s � dw/^�n�1

D .w� z/ � dw^Bn�1: (2-14)

Now the product rule in the remark on page 510 gives

Bn�1
D
�
.1� jwj2/�C .1�wz/ˇ

�n�1
D

n�1X
qD0

�
n�1

q

��
.1� jwj2/�

�q
^
�
.1�wz/ˇ

�n�1�q
;

and so taking the terms of bidegree .0; q/ in z in the formula (2-14) we obtain

C0;q
n D

�
n�1

q

�
.1� jwj2/q.1�wz/n�1�q

4.w� z/n
.w� z/ � dw^�q

^ˇn�1�q: (2-15)

Finally we note that this coincides with our formula

C0;q
n .w; z/Dˆq

n.w; z/
X
jJ jDq

X
k…J

.�1/�.k;J /.zk �wk/dzJ
^ dw.J[fkg/

c

^!n.w/: (2-16)

This can be seen by writing

.w� z/ � dw D

nX
kD1

.wk � zk/dwk and �q
D .dw � dz/q D

X
J

.�1/�dwJ
^ dzJ ;

with jJ j D q, and then noting that in order to have a nonzero term in (2-15), we must have k … J and the
summand from ˇn�1�q D .dw � dw/n�1�q must be

.�1/!dw.J[fkg/
c

^ dw.J[fkg/
c

:

One then checks that the powers of �1 work out correctly. �

Remark. One might wonder if the special form of the right hand side of the recursion formula (2-10)
can be put to good use in estimating the Besov–Sobolev norms of solutions to the @-equation. This
formula neatly exhibits a factoring of the solution operator that may be helpful, but we are unable to take
advantage of this at this point, and must revert instead to the use of the explicit Charpentier formula (2-6)
together with the exchange formula (5-7).

2.1. Ameliorated kernels. We now wish to define right inverses with improved behavior at the boundary.
We consider the case when the right side f of the @ equation is a .p; qC1/-form in Bn.

As usual for a positive integer s > n we will “project” the formula @C
p;q
s f D f in Bs for a @-closed

form f in Bs to a formula @C
p;q
n;s f D f in Bn for a @-closed form f in Bn. To accomplish this we define

ameliorated operators C
p;q
n;s by

Cp;q
n;s D RnCp;q

s Es;

where, for n< s, Es (Rn) is the extension (restriction) operator that takes forms �D
P
�I;J dwI^ dwJ

in Bn (Bs) and extends (restricts) them to Bs (Bn) by

Es

�X
�I;J dwI

^ dwJ
�
�

X
.�I;J ıR/ dwI

^ dwJ ;

Rn

�X
�I;J dwI

^ dwJ
�
�

X
I;J�f1;2;:::;ng

.�I;J ıE/ dwI
^ dwJ :



514 S, ERBAN COSTEA, ERIC T. SAWYER AND BRETT D. WICK

Here R is the natural orthogonal projection from Cs to Cn and E is the natural embedding of Cn into
Cs . In other words, we extend a form by taking the coefficients to be constant in the extra variables,
and we restrict a form by discarding all wedge products of differentials involving the extra variables and
restricting the coefficients accordingly.

For s > n we observe that the operator C
p;q
n;s has integral kernel

Cp;q
n;s .w; z/�

Z
p

1�jwj2Bs�n

Cp;q
s

�
.w;w0/; .z; 0/

�
dV .w0/; z; w 2 Bn; (2-17)

where Bs�n denotes the unit ball in Cs�n with respect to the orthogonal decomposition Cs D Cn˚Cs�n,
and dV denotes Lebesgue measure. If f .w/ is a @-closed form on Bn then f .w;w0/Df .w/ is a @-closed
form on Bs and we have for z 2 Bn,

f .z/D f .z; 0/D @

Z
Bs

Cp;q
s

�
.w;w0/; .z; 0/

�
f .w/ dV .w/ dV .w0/

D @

Z
Bn

�Z
p

1�jwj2Bs�n

Cp;q
s

�
.w;w0/; .z;0/

�
dV .w0/

�
f .w/ dV .w/D @

Z
Bn

Cp;q
n;s .w;z/f .w/ dV .w/:

We have proved the following:

Theorem 9. For all s > n and @-closed forms f in Bn, we have

@Cp;q
n;s f D f in Bn:

We will use only the case p D 0 of this theorem and from now on we restrict our attention to this case.
The operators C0;0

n;s have been computed in [Ortega and Fàbrega 2000] and are given by

C0;0
n;sf .z/D

Z
Bn

n�1X
jD0

cn;j ;s
.1� jwj2/s�nCj .1� jzj2/j

.1�wz/s�nCj .1�wz/j
C0;0

n .w; z/^f .w/; (2-18)

where

C0;0
n .w; z/D c0

.1�wz/n�1�
j1�wzj2� .1�jwj2/.1�jzj2/

�n nX
jD1

.�1/j�1.wj � zj /
^
k¤j

dwk

n̂

`D1

dw`:

A similar result holds for the operators C
0;q
n;s . Define

ˆq
n;s.w; z/Dˆ

q
n.w; z/

�
1� jwj2

1�wz

�s�n n�q�1X
jD0

cj ;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

D
.1�wz/n�1�q.1� jwj2/q

4.w; z/n

�
1� jwj2

1�wz

�s�n n�q�1X
jD0

cj ;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

D

n�q�1X
jD0

cj ;n;s
.1�wz/n�1�q�j .1� jwj2/s�nCqCj .1� jzj2/j

.1�wz/s�nCj4.w; z/n
:

Note that the numerator and denominator are balanced in the sense that the sum of the exponents
in the denominator minus the corresponding sum in the numerator (counting 4.w; z/ double) equals
sC nC j � .sC j � 1/D nC 1, the exponent of the invariant measure of the ball Bn.
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Theorem 10. Suppose that s > n and 0� q � n� 1. Then

C0;q
n;s .w; z/D C0;q

n .w; z/

�
1� jwj2

1�wz

�s�n n�q�1X
jD0

cj ;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

Dˆq
n;s.w; z/

X
jJ jDq

X
k…J

.�1/�.k;J /.zk �wk/ dzJ
^ dw.J[fkg/

c

^!n.w/:

Proof. For s > n recall that the kernels of the ameliorated operators C
0;q
n;s are given in (2-17). For ease of

notation, we will set k D s � n, so we have Cs D Cn˚Ck . Suppose that 0 � q � n� 1. Recall from
(2-6) that

C0;q
s .w; z/D .�1/q

.1�wz/s�q�1.1� jwj2/q

4.w; z/s

X
�2P

q
s

sgn.�/.wi� � zi� /
^

j2J�

dwj

^
l2L�

dzl ^!s.w/

D

X
�2P

q
s

±
q
s;i�
.w; z/

^
j2J�

dwj

^
l2L�

dzl ^!s.w/;

where

±
q
s;i�
.w; z/Dˆq

s .w; z/.wi� � zi� /D
.1�wz/s�q�1.1� jwj2/q

4.w; z/s
.wi�� zi� /:

To compute the ameliorations of these kernels, we need only focus on the functional coefficient
±

q
s;i�
.w; z/ of the kernel. It is easy to see that the ameliorated kernel can only give a contribution in the

variables when 1 � i� � n, since when nC 1 � i� � s the functional kernel becomes radial in certain
variables and thus reduces to zero upon integration.

Then for any 1� i � n the corresponding functional coefficient ±q
s;i.w; z/ has amelioration ±q

n;s;i.w; z/

given by

±
q
n;s;i.w; z/D

Z
p

1�jwj2Bs�n

±
q
s;i..w;w

0/; .z; 0// dV .w0/

D

Z
p

1�jwj2Bk

.1�wz/s�q�1.1� jwj2� jw0j2/q.zi �wi/

4
�
.w;w0/; .z; 0/

�s dV .w0/

D .zi �wi/.1�wz/s�q�1

Z
p

1�jwj2Bk

.1� jwj2� jw0j2/q

4
�
.w;w0/; .z; 0/

�s dV .w0/:

Theorem 10 is a thus a consequence of the following elementary formula, which will find application in
the next section as well:

.1�wz/s�q�1

Z
p

1�jwj2Bs�n

.1� jwj2� jw0j2/q

4
�
.w;w0/; .z; 0/

�s dV .w0/

�

D
�s�n

.s� n/!
ˆq

n.w; z/

�
1� jwj2

1�wz

�s�n n�q�1X
jD0

cj ;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

: (2-19)
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3. Integration by parts

We begin with an integration by parts formula involving a covariant derivative in [Ortega and Fàbrega
2000, Lemma 2.1, page 57] that reduces the singularity of the solution kernel on the diagonal at the
expense of differentiating the form. However, in order to prepare for a generalization to higher order
forms, we replace the covariant derivative with the notion of Zz;w-derivative defined in (3-2) below.

Recall Charpentier’s explicit solution C0;0
n � to the @ equation @C0;0

n �D � in the ball Bn when � is a
@-closed .0; 1/-form with coefficients in C.Bn/: the kernel is given by

C0;0
n .w; z/D c0

.1�wz/n�1

4.w; z/n

nX
jD1

.�1/j�1.wj � zj /
^
k¤j

dwk

n̂

`D1

dw`;

for .w; z/ 2 Bn �Bn, where

4.w; z/D j1�wzj2� .1� jwj2/.1� jzj2/:

Define the Cauchy operator Sn on @Bn �Bn with kernel

Sn.�; z/D c1

1

.1� �z/n
d�.�/; .�; z/ 2 @Bn �Bn:

Let �D
Pn

jD1 �j dwj be a .0; 1/-form with smooth coefficients. Define a vector field acting in the
variable w D .w1; : : : ; wn/ and parametrized by z D .z1; : : : ; zn/ by

ZD Zz;w D

nX
jD1

.wj � zj /
@

@wj
: (3-1)

It will usually be understood from the context what the acting variable w and the parameter variable z are
in Zz;w and we will then omit the subscripts and simply write Z for Zz;w.

Definition 11. For m� 0, define the m-th order derivative Zm� of a .0; 1/-form �D
Pn

kD1 �k.w/ dwk

to be the .0; 1/-form obtained by componentwise differentiation holding monomials in w� z fixed:

Zm�.w/D

nX
kD1

.Zm�k/.w/dwk D

nX
kD1

� nX
j˛jDm

.w�z/˛
@m�k

@w˛
.w/

�
dwk : (3-2)

Lemma 12 (compare [Ortega and Fàbrega 2000, Lemma 2.1]). For all m� 0 and smooth .0; 1/-forms
�D

Pn
kD1 �k.w/ dwk , we have

C0;0
n �.z/�

Z
Bn

C0;0
n .w; z/^ �.w/

D

m�1X
jD0

cj

Z
@Bn

Sn.w; z/.Z
j�/

�
Z
�
.w/ d�.w/C cm

Z
Bn

C0;0
n .w; z/^Zm�.w/: (3-3)



THE CORONA THEOREM IN Cn 517

Here the .0; 1/-form Zj� acts on the vector field Z in the usual way:

.Zj�/
�
Z
�
D

� nX
kD1

Zj�k.w/ dwk

�� nX
iD1

.wi � zi/
@

@wi

�
D

nX
kD1

.wk � zk/Z
j�k.w/:

We can also rewrite the final integral in (3-3) asZ
Bn

C0;0
n .w; z/^Zm�.w/D

Z
Bn

ˆ0
n.w; z/.Z

m�/
�
Z
�
.w/ dV .w/:

Lemma 12 is proved by following verbatim the proof of Lemma 2.1 of [Ortega and Fàbrega 2000].

We now extend Lemma 12 to .0; qC 1/-forms. Let

�D
X

jI jDqC1

�I .w/ dwI

be a .0; qC1/-form with smooth coefficients. Given a .0; qC1/-form � D
P
jI jDqC1 �I dwI and an

increasing sequence J of length jJ j D q, we define the interior product � y dwJ of � and dwJ by

� y dwJ
D

X
jI jDqC1

�I dwIy dwJ
D

X
k…J

.�1/�.k;J /�J[fkg dwk ; (3-4)

since dwIy dwJ D .�1/�.k;J /dwk if k 2 I n J is the �.k;J /-th index in I , and 0 otherwise. Recall
the vector field Z defined in (3-1). The key connection between it and � y dwJ is

.� y dwJ /.Z/D

� nX
kD1

.�1/�.k;J /�J[fkgdwk

�� nX
jD1

.wj � zj /
@

@wj

�

D

nX
kD1

.wk � zk/.�1/�.k;J /�J[fkg: (3-5)

We now define an m-th order derivative Dm� of a .0; qC1/-form � using the interior product. In the
case q D 0 we will have Dm�D .Zm�/

�
Z
�

for a .0; 1/-form �.

Remark. We are motivated by the fact that the Charpentier kernel C
0;q
n .w; z/ takes .0; qC1/-forms in w

to .0; q/-forms in z. Thus in order to express the solution operator C
0;q
n in terms of a volume integral

rather than the integration of a form in w and z, our definition of Dm�, even when mD 0, must include
an appropriate exchange of w-differentials for z-differentials.

Definition 13. Let m � 0. For a .0; qC1/-form � D
P
jI jDqC1 �I dwI in the variable w, define the

.0; q/-form Dm� in the variable z by

Dm�.w/D
X
jJ jDq

Zm.� y dwJ /
�
Z
�
.w/dzJ :

Again it is usually understood what the acting and parameter variables are in Dm, but we will write
Dm

z;w�.w/ when this may not be the case. Note that for a .0; qC1/-form �D
P
jI jDqC1 �I dwI , we have

�D
X
jJ jDq

.� y dwJ /^ dwJ ;
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and using (3-2) the preceding definition yields

Dm�.w/D
X
jJ jDq

Zm.� y dwJ /
�
Z
�
.w/ dzJ

D

X
jJ jDq

nX
kD1

.wk � zk/.�1/�.k;J /.Zm�J[fkg/.w/dzJ

D

X
jJ jDq

nX
kD1

.wk � zk/.�1/�.k;J /
� X
j˛jDm

.w�z/˛
@m�J[fkg

@w˛
.w/

�
dzJ : (3-6)

Thus the effect of Dm on a basis element �I dwI is to replace a differential dwk from dwI (I D J [fkg)
with the factor .�1/�.k;J /.wk � zk/ (and this is accomplished by acting a .0; 1/-form on Z), replace the
remaining differential dwJ with dzJ , and then to apply the differential operator Zm to the coefficient �I .
We will refer to the factor .wk � zk/ introduced above as a rogue factor since it is not associated with a
derivative @=@wk in the way that .w�z/˛ is associated with @m=@w˛ . The point of this distinction will
be explained in Section 7 on estimates for solution operators.

The following lemma expresses C
0;q
n �.z/ in terms of integrals involving Dj� for 0 � j �m. Note

that the overall effect is to reduce the singularity of the kernel on the diagonal by m factors of
p
4.w; z/,

at the cost of increasing by m the number of derivatives hitting the form �. Recall from (2-5) that

ˆ`n.w; z/�
.1�wz/n�1�`.1� jwj2/`

4.w; z/n
:

We define the operator ˆ`n on forms � by

ˆ`n�.z/D

Z
Bn

ˆ`n.w; z/�.w/ dV .w/:

Lemma 14. Let q � 0. For all m� 0 we have

C0;q
n �.z/D

m�1X
kD0

ckSn.D
j�/.z/C

qX
`D0

c`ˆ
`
n.D

m�/.z/: (3-7)

The proof is simply a reprise of that of Lemma 12 (see the proof of Lemma 2.1 of [Ortega and Fàbrega
2000]) complicated by the algebra that reduces matters to .0; 1/-forms.

3.1. The radial derivative. Recall the radial derivative R D
Pn

jD1wj
@

@wj
. The following lemma is

essentially Lemma 2.2 on page 58 of [Ortega and Fàbrega 2000].

Lemma 15. Let b > �1. For ‰ 2 C.Bn/\C1.Bn/ we haveZ
Bn

.1� jwj2/b‰.w/ dV .w/D

Z
Bn

.1� jwj2/bC1
�

nCbC1

bC1
I C

1

bC1
R
�
‰.w/ dV .w/:

Remark. Typically this lemma is applied with

‰.w/D
1

.1�wz/s
 .w; z/;
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where z is a parameter in the ball Bn and

R‰.w/D
1

.1�wz/s
R .w; z/

since 1

.1�wz/s
is antiholomorphic in w.

We will also need to iterate Lemma 15, and for this purpose it is convenient to introduce for m� 1 the
notation

Rb DRb;n D
nC bC 1

bC 1
I C

1

bC 1
R; Rm

b DRbCm�1RbCm�2 : : :Rb D

mY
kD1

RbCm�k :

Corollary 16. Let b > �1. For ‰ 2 C.Bn/\C1.Bn/ we haveZ
Bn

.1� jwj2/b‰.w/ dV .w/D

Z
Bn

.1� jwj2/bCmRm
b ‰.w/ dV .w/:

Remark. The important point in Corollary 16 is that combinations of radial derivatives R and the identity
I are played off against powers of 1� jwj2. It will sometimes be convenient to write this identity asZ

Bn

F.w/ dV .w/D

Z
Bn

Rm
b F.w/ dV .w/;

where
Rm

b � .1� jwj
2/bCmRm

b .1� jwj
2/�b: (3-8)

In this form the identity is valid for F such that ‰.w/D .1� jwj2/�bF.w/ lies in C.Bn/\C1.Bn/.

3.2. Integration by parts in ameliorated kernels. We must now extend Lemma 14 and Corollary 16 to
the ameliorated kernels C

0;q
n;s given by

C0;q
n;s D RnC0;q

s Es:

Since Corollary 16 already applies to very general functions ‰.w/, we need only consider an extension
of Lemma 14. The procedure for doing this is to apply Lemma 14 to C

0;q
s in s dimensions, and then

integrate out the additional variables using (2-19).

Lemma 17. Suppose that s > n and 0� q � n�1. For all m� 0 and smooth .0; qC1/-forms � in Bn we
have the formula

C0;q
n;s �.z/D

m�1X
kD0

c0k;n;sSn;s.D
k�/

�
Z
�
.z/C

qX
`D0

c`;n;sˆ
`
n;s.D

m�/.z/;

where the ameliorated operators Sn;s and ˆ`n;s have kernels given by

Sn;s.w; z/D cn;s
.1� jwj2/s�n�1

.1�wz/s
D cn;s

�
1� jwj2

1�wz

�s�n�1
1

.1�wz/nC1
;

ˆ`n;s.w; z/Dˆ
`
n.w; z/

�
1� jwj2

1�wz

�s�n n�`�1X
jD0

cj ;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

:
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Proof. Recall that for a smooth .0; qC1/-form �.w/D
P
jI jDqC1 �I dwI in Bn, the .0; q/-form DmEs�

is given by

DmEs�.w/D
X
jJ jDq

Dm.� y dwJ / dzJ
D

X
jJ jDq

Dm

�X
k…J

.�1/�.k;J /�J[fkg.w/ dwk

�
dzJ

D

X
jJ jDq

Dm

�X
k…J

.�1/�.k;J /�J[fkg.w/ dwk

�
dzJ

D

X
jJ jDq

X
k…J

.�1/�.k;J /
� X
j˛jDm

.wk�zk/.w�z/˛
@m

@w˛
�J[fkg.w/

�
;

where J [fkg is a multi-index with entries in In � f1; 2; : : : ; ng since the coefficient �I vanishes if I is
not contained in In. Moreover, the multi-index ˛ lies in .In/

m since the coefficients �I are constant in
the variable w0 D .wnC1; : : : ; ws/. Thus

Dm
.z;0/;.w;w0/Es�D Dm

z;w�D Dm�;

and we compute

Rnˆ
`
s

�
Dm
.z;0/;.w;w0/Es�

�
.z/

Dˆ`s .D
m�/..z; 0//

D

X
jJ jDq

X
k2InnJ

.�1/�.k;J /
X
j˛jDm

ˆ`s

�
.wk�zk/.w�z/˛

@m

@w˛
�J[fkg..w;w

0//

�
..z; 0//;

where J [fkg � In and ˛ 2 .In/
m and

ˆ`s

�
.wk�zk/.w�z/˛

@m

@w˛
�J[fkg.w/

�
..z; 0//

D

Z
Bs

.1�wz/s�1�`.1� jwj2� jw0j2/`

4..w;w0/; .z; 0//s
.wk�zk/.w�z/˛

@m

@w˛
�J[fkg.w/ dV ..w;w0//

D

Z
Bn

�
.1�wz/s�`�1

Z
Bs�n

.1�jwj2�jw0j2/`

4..w;w0/; .z; 0//s
dV .w0/

�
.wk�zk/.w�z/˛

@m

@w˛
�J[fkg.w/ dV .w/:

By (2-19) the term in braces on the previous line equals

�s�n

.s� n/!
ˆ`n.w; z/

�
1� jwj2

1�wz

�s�n n�`�1X
jD0

cj ;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

;

and now performing the sum
P
jJ jDq

P
k2InnJ

.�1/�.k;J /
P
j˛jDm

yields

Rnˆ
`
s

�
Dm
.z;0/Es�

�
.z/Dˆ`s .D

m
z �/..z; 0//Dˆ`n;s.D

m
z �/.z/: (3-9)

An even easier calculation using formula (1) in 1.4.4 on page 14 of [Rudin 1980] shows that

RnSs.EsDk
z �/..z; 0//D Ss.D

k
z �/..z; 0//D Sn;s.D

k
z �/.z/; (3-10)
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and now the conclusion of Lemma 17 follows from (3-9), (3-10), the definition C
0;q
n;s D RnC

0;q
s Es , and

Lemma 14. �

4. The Koszul complex

Here we briefly review the algebra behind the Koszul complex as presented for example in [Lin 1994] in
the finite-dimensional setting. A more detailed treatment in that setting can be found in Section 5.5.3 of
[Sawyer 2009]. Fix h holomorphic as in (1-7). Now if gD .gj /

1
jD1

satisfies jgj2D
P1

jD1 jgj j
2 � ı2 > 0,

define

�1
0 D

g

jgj2
D

�
gj

jgj2

�1
jD1

D
�
�1

0.j /
�1
jD1

;

which we view as a 1-tensor (in `2 D C1) of .0; 0/-forms with components �1
0
.j / D gj=jgj

2. Then
f D�1

0
h satisfies Mgf D f �gD h, but in general fails to be holomorphic. The Koszul complex provides

a scheme which we now recall for solving a sequence of @ equations that result in a correction term ƒg�
2
0

that, when subtracted from f above, yields a holomorphic solution to the equality in (1-7). See below.
The 1-tensor of .0; 1/-forms

@�0 D

�
@

gj

jgj2

�1
jD1

D
�
@�1

0.j /
�1
jD1

is given by

@�1
0.j /D @

gj

jgj2
D
jgj2@gj �gj@jgj

2

jgj4
D

1

jgj4

1X
kD1

gk.gk@gj �gj@gk/;

and can be written as

@�1
0 Dƒg�

2
1 �

� 1X
kD1

�2
1.j ; k/gk

�1
jD1

;

where the antisymmetric 2-tensor �2
1

of .0; 1/-forms is given by

�2
1 D

�
�2

1.j ; k/
�1
j ;kD1

D

"
gk@gj �gj@gk

jgj4

#1
j ;kD1

:

and ƒg�
2
1

denotes its contraction by the vector g in the final variable.
We can repeat this process and by induction we have

@�qC1
q Dƒg�

qC2
qC1

; 0� q � n; (4-1)

where �qC1
q is an alternating .qC 1/-tensor of .0; q/-forms. Recall that h is holomorphic. When q D n

we have that �nC1
n h is @-closed and this allows us to solve a chain of @ equations

@�
q
q�2
D�

q
q�1

h�ƒg�
qC1
q�1

;
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for alternating q-tensors �q
q�2

of .0; q�2/-forms, using the ameliorated Charpentier solution operators
C

0;q
n;s defined in (2-17). (Note that our notation suppresses the dependence of � on h.) With the convention

that �nC2
n � 0 we have

@
�
�qC1

q h�ƒg�
qC2
q

�
D 0; 0� q � n; (4-2)

and

@�
qC1
q�1
D�qC1

q h�ƒg�
qC2
q ; 1� q � n:

Now

f ��1
0h�ƒg�

2
0

is holomorphic by (4-2) with q D 0, and since �2
0

is antisymmetric, we compute that ƒg�
2
0
� g D

�2
0
.g;g/D 0 and

Mgf D f �g D�
1
0h �g�ƒg�

2
0 �g D h� 0D h:

Thus f D .fi/
1
iD1

is a vector of holomorphic functions satisfying the equality in (1-7). The inequality in
(1-7) is the subject of the remaining sections of the paper.

4.1. Wedge products and factorization of the Koszul complex. Here we record the remarkable factoriza-
tion of the Koszul complex in [Andersson and Carlsson 2000]. To describe the factorization we introduce
an exterior algebra structure on `2DC1. Let fe1; e2; : : : g be the usual basis in C1, and for an increasing
multiindex I D .i1; : : : ; i`/ of integers in N, define

eI D ei1
^ ei2

^ � � � ^ ei` ;

where we use ^ to denote the wedge product in the exterior algebra ƒ�.C1/ of C1, as well as for the
wedge product on forms in Cn. Note that fe

I
W jI j D rg is a basis for the alternating r -tensors on C1.

If f D
P
jI jDr fI

e
I

is an alternating r -tensor on C1 with values that are .0; k/-forms in Cn, which
may be viewed as a member of the exterior algebra of C1˝Cn, and if gD

P
jJ jDs g

J
e

J
is an alternating

s-tensor on C1 with values that are .0; `/-forms in Cn, then as in [Andersson and Carlsson 2000] we
define the wedge product f ^g in the exterior algebra of C1˝Cn to be the alternating .rCs/-tensor on
C1 with values that are .0; kC`/-forms in Cn given by

f ^g D

� X
jI jDr

fI eI

�
^

� X
jJ jDs

gJ eJ

�
D

X
jI jDr
jJ jDs

.fI ^gJ /.eI ^ eJ /

D

X
jK jDrCs

�
˙

X
ICJDK

fI ^gJ

�
eK : (4-3)

Note that we simply write the exterior product of an element from ƒ�.C1/ with an element from ƒ�.Cn/

as juxtaposition, without an explicit wedge symbol. This should cause no confusion since the basis we
use in ƒ�.C1/ is feig

1
iD1

, while the basis we use in ƒ�.Cn/ is fdzj ; dyzj g
n
jD1

, quite different in both
appearance and interpretation.
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In terms of this notation we then have the following factorization in Theorem 3.1 of [Andersson and
Carlsson 2000]:

�1
0 ^

`̂

iD1

z�1
0 D

� 1X
k0D1

gk0

jgj2
ek0

�
^

`̂

iD1

� 1X
kiD1

@gki

jgj2
eki

�
D�

1

`C 1
�`C1
`

; (4-4)

where

�1
0 D

�
gi

jgj2

�1
iD1

and z�1
0 D

�
@gi

jgj2

�1
iD1

:

The factorization in [Andersson and Carlsson 2000] is proved in the finite-dimensional case, but this
extends to the infinite-dimensional case by continuity. Since the `2 norm is quasimultiplicative on wedge
products by Lemma 5.1 in that reference we haveˇ̌

�`C1
`

ˇ̌2
� C`

ˇ̌
�1

0

ˇ̌2 ˇ̌ z�1
0

ˇ̌2`
; 0� `� n; (4-5)

where the constant C` depends only on the number of factors ` in the wedge product, and not on the
underlying dimension of the vector space (which is infinite for `2 D C1).

It will be useful in the next section to consider also tensor products

z�1
0˝
z�1

0 D

� 1X
iD1

@gi

jgj2
ei

�
˝

� 1X
jD1

@gj

jgj2
ej

�
D

1X
i;jD1

@gi ˝ @gj

jgj4
ei ˝ ej ; (4-6)

and more generally X˛ z�1
0
˝Xˇ z�1

0
, where Xm denotes the vector derivative defined in Definition 19

below. We will use the fact that the `2-norm is multiplicative on tensor products.

5. An almost invariant holomorphic derivative

We continue to consider `2-valued spaces. We refer the reader to [Arcozzi et al. 2006] for the definition
of the Bergman tree Tn and the corresponding pairwise disjoint decomposition of the ball Bn:

Bn D

�[
˛2Tn

K˛;

where the sets K˛ are comparable to balls of radius one in the Bergman metric ˇ on the ball Bn:

ˇ.z; w/D
1

2
ln

1Cj'z.w/j

1� j'z.w/j

(see Proposition 1.21 in [Zhu 2005]). This decomposition gives an analogue in Bn of the standard
decomposition of the upper half-plane CC into dyadic squares whose distance from the boundary @CC

equals their side length. We also recall from [Arcozzi et al. 2006] the differential operator Da which
on the Bergman kube K˛, and provided a 2K˛, is close to the invariant gradient zr, and which has the
additional property that Dm

af .z/ is holomorphic for m� 1 and z 2K˛ when f is holomorphic. For our
purposes the powers Dm

af , m� 1, are easier to work with than the corresponding powers zrmf , which
fail to be holomorphic. It is shown in the same paper that Dm

a can be used to define an equivalent norm on
the Besov space Bp.Bn/D B0

p.Bn/, and it is a routine matter to extend this result to the Besov–Sobolev
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space B�p .Bn/ when � � 0 and m > 2. n
p
� �/. The further extension to `2 -valued functions is also

routine.
We define

rz D

�
@

@z1

; : : : ;
@

@zn

�
and rz D

�
@

@z1

; : : : ;
@

@zn

�
;

so that the usual Euclidean gradient is given by the pair .rz;rz/. Fix ˛ 2Tn and let aD c˛ . Recall that
the gradient with invariant length given by

zrf .a/D .f ı'a/
0.0/D f 0.a/'0a.0/D�f

0.a/
�
.1� jaj2/PaC .1� jaj

2/1=2Qa

�
fails to be holomorphic in a. To rectify this, we define, as in [Arcozzi et al. 2006],

Daf .z/D f
0.z/'0a.0/D�f

0.z/
�
.1� jaj2/PaC .1� jaj

2/1=2Qa

�
; (5-1)

for z 2 Bn.
In order to deal with functions f on Bn that are not necessarily holomorphic, we use a notion of

higher-order derivative Dm introduced in [Arcozzi et al. 2006], based on iterating Da rather than zr.

Definition 18. For m 2 N and f 2 C1.BnI `
2/ smooth in Bn we define ‚mf .a; z/ D Dm

af .z/ for
a; z 2 Bn, and then set

Dmf .z/D‚mf .z; z/DDm
z f .z/; z 2 Bn:

Note that in this definition, we iterate the operator Dz holding z fixed, and then evaluate the result at
the same z. We obtain that for f 2H.BnI `

2/ (see [Arcozzi et al. 2006] and [Beatrous 1986]),

kf kB�p;m.BnI`2/ �

m�1X
jD0

jr
jf .0/jC

�Z
Bn

ˇ̌
.1� jzj2/�Dmf .z/

ˇ̌p
d�n.z/

�1=p

:

We remind the reader that jDm
af .z/j D

qP1
iD1 jD

m
afi.z/j2 if f D .fi/

1
iD1

.
We will also need to know that the pointwise multipliers in MB�p .Bn/!B�p .BnI`2/ are bounded. Indeed,

standard arguments show that

MB�p .Bn/!B�p .BnI`2/ �H1.BnI `
2/\B�p .BnI `

2/: (5-2)

5.1. Real variable analogues of Besov–Sobolev spaces. In order to handle the operators arising from
integration by parts formulas below, we will need yet more general equivalent norms on B�p;m.BnI `

2/.

Definition 19. We denote by Xm the vector of all differential operators of the form X1X2 : : :Xm where
each Xi is either 1� jzj2 times the identity operator I , the operator D, or the operator .1� jzj2/R. Just
as in Definition 18, we calculate the products X1X2 : : :Xm by composing Da and .1� jaj2/R and then
setting aD z at the end. Note that Da and .1� jaj2/R commute since the first is an antiholomorphic
derivative and the coefficient z in RD z �r is holomorphic. Similarly we denote by Ym the corresponding
products of .1� jzj2/I , D (instead of D) and .1� jzj2/R.
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In the iterated derivative Xm we are differentiating only with the antiholomorphic derivative D or the
holomorphic derivative R. When f is holomorphic, we thus have Xmf �

˚
.1� jzj2/mRkf

	m

kD0
. The

reason we allow 1� jzj2 times the identity I to occur in Xm is that this produces a norm (as opposed to
just a seminorm) without including the term

Pm�1
kD0 jr

kf .0/j. We define the norm k � kB�p;m.BnI`2/ for
smooth f on the ball Bn by

kf kB�p;m.BnI`2/ �

� mX
kD0

Z
Bn

ˇ̌
.1� jzj2/mC�Rkf .z/

ˇ̌p
d�n.z/

�1=p

;

and note that provided mC� > n
p

, this gives an equivalent norm for the Besov–Sobolev space B�p .BnI `
2/

of holomorphic functions on Bn (see [Beatrous 1986], for instance). These considerations motivate the
following two definitions of a real-variable analogue of the norm k � kB�p;m.BnI`2/.

Definition 20. We define the norms k � kƒ�p;m.BnI`2/ and k � kˆ�p;m.BnI`2/ for f D .fi/
1
iD1

smooth on the
ball Bn by

kf kƒ�p;m.BnI`2/ �

�Z
Bn

ˇ̌̌
.1� jzj2/�Xmf .z/

ˇ̌̌p
d�n.z/

�1=p

;

kf kˆ�p;m.BnI`2/ �

�Z
Bn

ˇ̌̌
.1� jzj2/�Ymf .z/

ˇ̌̌p
d�n.z/

�1=p

:

(5-3)

It is not true that either of the norms k � kƒ�p;m.BnI`2/ or k � kˆ�p;m.BnI`2/ are independent of m for large
m when acting on smooth functions. However, these norms are equivalent when restricted to holomorphic
vector functions (see [Arcozzi et al. 2006] and [Beatrous 1986]):

Lemma 21. Let 1< p <1, � � 0 and m> 2. n
p
� �/. If f is a holomorphic vector function, then

kf kB�p;m.BnI`2/ � kf kƒ�p;m.BnI`2/ � kf kˆ�p;m.BnI`2/: (5-4)

The norms k � kƒ�p;m.BnI`2/ arise in the integration by parts in iterated Charpentier kernels in Section 7,
while the norms k � kˆ�p;m.BnI`2/ are useful for estimating the holomorphic function g in the Koszul
complex. For this latter purpose we will use the following multilinear inequality whose scalar version is,
after translating notation, Theorem 3.5 in [Ortega and Fàbrega 2000].

Proposition 22. Suppose that 1< p<1, 0� � <1, M � 1, m> 2. n
p
� �/ and ˛ D .˛0; : : : ; ˛M / 2

ZMC1
C with j˛j Dm. For g 2MB�p .Bn/!B�p .BnI`2/ and h 2 B�p .Bn/ we haveZ
Bn

.1� jzj2/p�
ˇ̌
.Y˛1g/.z/

ˇ̌p
: : :
ˇ̌�

Y˛M g
�
.z/
ˇ̌p ˇ̌
.Y˛0h/.z/

ˇ̌p
d�n.z/

� Cn;M;�;p kMgk
Mp

B�p .Bn/!B�p .BnI`2/
khk

p

B�p .Bn/
:

Remark. The inequalities for M D 1 in Proposition 22 actually characterize multipliers g in the sense
that a function g 2 B�p .BnI `

2/\H1.BnI `
2/ is in MB�p .Bn/!B�p .BnI`2/ if and only if the inequalities

with M D 1 in Proposition 22 hold. This follows from noting that each term in the Leibniz expansion of
Ym.gh/ occurs on the left side of the display above with M D 1.
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Proposition 22 is proved by adapting the proof of Theorem 3.5 in [Ortega and Fàbrega 2000] to
`2-valued functions. This argument uses the complex interpolation theorem of Beatrous [1986] and
Ligocka [1987], which extends to Hilbert space valued functions with the same proof. In order to apply
this extension we will need the following operator norm inequality.

If ' 2MB�p .Bn/!B�p .BnI`2/ and f D
P
jI jD� fI

e
I
2 B�p .BnI˝

��1`2/, we define

M'f D '˝f D '˝

� X
jI jD��1

fI eI

�
D

X
jI jD��1

.'fI /˝ eI ;

where I D .i1; : : : ; i��1/ 2 N��1 and e
I
D ei1

˝ � � �˝ ei��1
.

Lemma 23. Suppose that � � 0, 1< p <1 and � � 1. There is a constant Cn;�;p;� such that

kMgkB�p .BnI˝
��1`2/!B�p .BnI˝

�`2/ � Cn;�;p;� kMgkB�p .BnI`2/!B�p .BnI`2/: (5-5)

In the case p D 2 we have equality:

kM'kB�
2
.BnI˝

��1`2/!B�
2
.BnI˝

�`2/ D kM'kB�
2
.Bn/!B�

2
.BnI`2/: (5-6)

The proof of Lemma 23 uses the well-known technique of extending bounded linear operators on Lp

to `2-valued Lp with the same norm (see, for instance, page 451 in [Stein 1993]). It turns out that in
order to prove (5-5) for p ¤ 2 we will need the case M D 1 of Proposition 22. Fortunately, the case
M D 1 does not require inequality (5-5), thus avoiding circularity. The proofs of Proposition 22 and
Lemma 23 reduce to modifying existing arguments in the literature and the details can be found in the
Electronic Supplement.

Three crucial inequalities. In order to establish appropriate inequalities for the Charpentier solution
operators, we will need to control terms of the form

.w�z/˛
@m

@w˛
F.w/; Dm

.z/4.w; z/; Dm
.z/

�
.1�wz/k

�
and Rm

.z/

�
.1�wz/k

�
inside the integral for T as given in the integration by parts formula in Lemma 14. Here we are using the
subscript .z/ in parentheses to indicate the variable being differentiated. This is to avoid confusion with
the notation Da introduced in (5-1). For z; w 2 Bn and m 2 N, we have the crucial estimatesˇ̌̌̌

.w�z/˛
@m

@w˛
F.w/

ˇ̌̌̌
� C

�p
4.w; z/

1� jwj2

�m

jDmF.w/j; F 2H.BnI `
2/; mD j˛j; (5-7)

� ˇ̌
D.z/4.w; z/

ˇ̌
� C

�
.1� jzj2/4.w; z/1=2C4.w; z/

�
;ˇ̌

.1� jzj2/R.z/4.w; z/
ˇ̌
� C.1� jzj2/

p
4.w; z/;

(5-8)

8̂<̂
:

ˇ̌
Dm
.z/

�
.1�wz/k

�ˇ̌
� C j1�wzjk

�
1� jzj2

j1�wzj

�m=2

;

ˇ̌
.1� jzj2/mRm

.z/

�
.1�wz/k

�ˇ̌
� C j1�wzjk

�
1� jzj2

j1�wzj

�m

:

(5-9)
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Proof of (5-7). We view Da as a differentiation operator in the variable w, so that

Da D�rw

�
.1� jaj2/PaC

p
1� jaj2Qa

�
:

A basic calculation is then:

.1� az/'a.z/ � .Da/
t
D
�
Pa.z� a/C

p
1� jaj2Qa.z� a/

��
.1� jaj2/ParwC

p
1� jaj2Qarw

�
D Pa.z� a/.1� jaj2/ParwC

p
1� jaj2Qa.z� a/

p
1� jaj2Qarw

D .1� jaj2/.z� a/ � rw:

From this we conclude the inequalityˇ̌̌̌
.zi � ai/

@

@wi
F.w/

ˇ̌̌̌
�
ˇ̌
.z� a/ � rF.w/

ˇ̌
�

ˇ̌̌̌
1� az

1� jaj2
'a.z/

ˇ̌̌̌
jDaF.w/j D

p
4.a; z/

1� jaj2
jDaF.w/j;

as well as its conjugate ˇ̌̌̌
.zi�ai/

@

@wi
F.w/

ˇ̌̌̌
�

p
4.a; z/

1� jaj2
jDaF.w/j:

Moreover, we can iterate this inequality to obtainˇ̌̌̌
.z�a/˛

@m

@w˛
F.w/

ˇ̌̌̌
� C

�p
4.a; z/

1� jaj2

�mˇ̌
.Da/

mF.w/
ˇ̌
;

for a multi-index of length m. With aD w this becomes the first estimate (5-7). �

Proof of (5-8). Recall from (5-1) that

Daf .z/D�
�
.1� jaj2/Parf .z/C .1� jaj

2/1=2Qarf .z/
�
:

We let aD z. By the unitary invariance of

4.w; z/D j1�wzj2� .1� jzj2/.1� jwj2/;

we may assume that z D .jzj; 0; : : : ; 0/. Then we have

@

@zj
4.w; z/D

@

@zj

�
.1�wz/.1� zw/� .1� zz/.1� jwj2/

�
D�wj .1� zw/C zj .1� jwj

2/D .zj �wj /Cwj .zw/� zj jwj
2

D .zj �wj /.1� jzj
2/C zj jzj

2
�wj jzj

2
Cwj .zw/� zj jwj

2

D .zj �wj /.1� jzj
2/C zj

�
jzj2� jwj2

�
Cwj

�
z.w� z/

�
:

Now Qzrf D .0; @f=@z2; : : : ; @f=@zn/, and thus a typical term in Qzr4 is @

@zj
4.w; z/ with j � 2.

From z D .jzj; 0; : : : ; 0/ and j � 2 we have zj D 0 and so

@

@zj
4.w; z/D .zj �wj /.1� jzj

2/� .zj �wj /z.w� z/; j � 2:

Now (2-1) implies

4.w; z/D .1� jzj2/jw� zj2Cjz.w� z/j2; (5-10)
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which together with the above shows thatp
1� jzj2

ˇ̌
Qzr4.w; z/

ˇ̌
� C jz�wj.1� jzj2/3=2CC

p
1� jzj2 jz�wj jz.w� z/j

� C.1� jzj2/4.w; z/1=2CC4.w; z/: (5-11)

As for PzrD D .@f=@z1; 0; : : : ; 0/ we use (5-10) to obtainˇ̌
Pzr4.w; z/

ˇ̌
D

ˇ̌̌
.z1�w1/.1� jzj

2/C z1

�
jzj2� jwj2

�
Cw1z.w� z/

ˇ̌̌
� jz�wj.1� jzj2/C

ˇ̌
jzj2� jwj2

ˇ̌
Cjz.w� z/j � C

p
4.w; z/C 2

ˇ̌
jzj � jwj

ˇ̌
:

However,
4.w; z/� .1� jwj jzj/2� .1� jzj2/.1� jwj2/

D 1� 2jwj jzjC jwj2jzj2�
�
1� jzj2� jwj2Cjzj2jwj2

�
D jzj2Cjwj2� 2jwj jzj D

�
jzj � jwj

�2
;

and so altogether we have the estimate

jPzr4.w; z/j � C
p
4.w; z/: (5-12)

Combining (5-11) and (5-12) with the definition (5-1) completes the proof of the first line in (5-8). The
second line in (5-8) follows from (5-12) since R.z/ D Pzr. �

Proof of (5-9). We compute

D.z/.1�wz/k D k.1�wz/k�1D.z/.1�wz/

D k.1�wz/k�1
�
.1� jzj2/Pzr C

q
1� jzj2Qzr

�
.1�wz/

D�k.1�wz/k�1
�
.1� jzj2/PzwC

p
1� jzj2Qzw

�
;

R.z/.1�wz/k D k.1�wz/k�1.�wz/:

Since jwj2Cjaj2 � 2 we have

jQzwj
2
D jQz.w� z/j2 � jw� zj2 D jwj2Cjzj2� 2 Re.wz/� 2 Re.1�wz/� 2j1�wzj;

which yields

ˇ̌
D.z/

�
.1�wz/k

�ˇ̌
� C j1�wzjk

.1� jzj2/C
p
.1� jzj2/j1�wzj

j1�wzj
� C j1�wzjk

s
1� jzj2

j1�wzj
:

Iteration then yields (5-9). �

6. Schur’s test

Here we characterize boundedness of the positive operators that arise as majorants of the solution operators
below. The case c D 0 of the following lemma is Theorem 2.10 in [Zhu 2005].
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Lemma 24. Let a; b; c; t 2 R. Then the operator

Ta;b;cf .z/D

Z
Bn

.1� jzj2/a.1� jwj2/b
�p
4.w; z/

�c
j1�wzjnC1CaCbCc

f .w/ dV .w/

is bounded on Lp
�
BnI .1� jwj

2/t dV .w/
�

if and only if c > �2n and

�pa< t C 1< p.bC 1/: (6-1)

The proof of Lemma 24 is a straightforward application of the argument in Theorem 2.10 of [Zhu 2005]
together with an automorphic change of variable. Details can be found in the Electronic Supplement.

Remark. We will also use the trivial consequence of Lemma 24 that the operator

Ta;b;c;df .z/D

Z
Bn

.1� jzj2/a.1� jwj2/b
p
4.w; z/ c

j1�wzjnC1CaCbCcCd
f .w/ dV .w/

is bounded on Lp.BnI .1� jwj
2/t dV .w// if c > �2n, d � 0 and (6-1) holds. This is simply because

j1�wzj � 2.

7. Operator estimates

We must show that f D�1
0
h�ƒg�

2
0
2B�p .BnI `

2/, where �2
0

is an antisymmetric 2-tensor of .0; 0/-forms
that solves

@�2
0 D�

2
1h�ƒg�;

3
1 ;

and inductively where �qC2
q is an alternating .qC 2/-tensor of .0; q/-forms that solves

@�qC2
q D�

qC2
qC1

h�ƒg�
qC3
qC1

;

up to q D n� 1 (since �nC2
n D 0 and the .0; n/-form �nC1

n is @-closed). Using the Charpentier solution
operators C

0;q
n;s on .0; qC1/-forms we can write

f D F0
CF1

C � � �CFn;

with

F0
D�1

0h�ƒg�
2
0 ;

F1
D�1

0h�ƒgC0;0
n;s1

�
�2

1h�ƒg�
3
1

�
;

F2
D�1

0h�ƒgC0;0
n;s1

�
�2

1h�ƒgC0;1
n;s2

.�3
2h�ƒg�

4
2 /
�
;

:::

Fn
D�1

0h�ƒgC0;0
n;s1

�2
1hCƒgC0;0

n;s1
ƒgC0;1

n;s2
�3

2h�ƒgC0;0
n;s1

ƒgC0;1
n;s2

ƒgC0;2
n;s3

�4
3h� � � �

C.�1/nƒgC0;0
n;s1

: : : ƒgC0;n�1
n;sn

�nC1
n h:

The goal is to establish
kf kB�p .BnI`2/ � Cn;�;p;ı.g/khkB�p .Bn/;
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which we accomplish by showing that

kF�kB�p;m1
.BnI`2/ � Cn;�;p;ı.g/khkƒ�p;m� .Bn/; 0� �� n; (7-1)

for a choice of integers m� satisfying

n

p
� � <m1 <m2 < � � �<m` < � � �<mn:

Recall that we defined both of the norms kFkB�p;m� .BnI`2/ and kFkƒ�p;m� .BnI`2/ for smooth vector
functions F in the ball Bn.

Note on constants. We often indicate via subscripts, such as n; �;p; ı, the important parameters on
which a given constant C depends, especially when the constant appears in a basic inequality. However,
at times in mid-argument, we will often revert to suppressing some or all of the subscripts in the interests
of readability.

The norms k � kƒ�p;m.BnI`2/ in (5-3) above will now be used to estimate the composition of Charpentier
solution operators in each function

F� DƒgC0;0
n;s1

: : : ƒgC0;��1
n;s�

��C1
� h

as follows. More precisely we will use the specialized variants of the seminorms given by

kFk
p

ƒ�
p;m0;m00

.BnI`2/
�

Z
Bn

ˇ̌
.1� jzj2/�

�
.1� jzj2/m

0

Rm0
�
Dm00F.z/

ˇ̌p
d�n.z/;

where we take m00 derivatives in D followed by m0 derivatives in the invariant radial operator .1�jzj2/R.
Recall from Definition 19 that Xm denotes the vector of all differential operators of the form X1X2 : : :Xm

where each Xi is either I , D, or .1�jzj2/R, and where by definition 1�jzj2 is held constant in composing
operators. It will also be convenient at times to use the notation

Rm
� .1� jzj2/m.Rk/mkD0; (7-2)

which should cause no confusion with the related operators Rm
b

introduced in (3-8). Note that Rm is
simply Xm when none of the operators D appear. We will make extensive use the multilinear estimate in
Proposition 22.

Let us fix our attention on the function F� D F
�
0

and write

F
�
0
DƒgC0;0

n;s1

�
ƒgC0;1

n;s2
: : : ƒgC0;��1

n;s�
��C1
� h

�
DƒgC0;0

n;s1
.F
�
1
/;

F
�
1
DƒgC0;1

n;s2

�
ƒgC0;2

n;s3
: : : ƒgC0;��1

n;s�
��C1
� h

�
DƒgC0;1

n;s2
.F
�
2
/;

F�q DƒgC0;q
n;sqC1

.F
�
qC1

/;

and so on, where F
�
q is a .0; q/-form. We now perform the integration by parts in Lemma 17 in each

iterated Charpentier operator F
�
q DƒgC

0;q
n;sqC1

.F
�
qC1

/ to obtain
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F�q DƒgC0;q
n;sqC1

F
�
qC1

D

m0
qC1
�1X

jD0

c0j ;n;sqC1
ƒgSn;sqC1

.Dj F
�
qC1

/.z/C

�X
`D0

c`;n;sqC1
ƒgˆ

`
n;sqC1

�
Dm0

qC1F
�
qC1

�
.z/:

(7-3)

Now we compose these formulas for F
�

k
to obtain an expression for F� that is a complicated sum

of compositions of the individual operators in (7-3) above. For now we will concentrate on the main
terms ƒgˆ

�
n;skC1

�
Dm0

kC1F
�

kC1

�
that arise in the second sum above when `D �. We will see that the

same considerations apply to any of the other terms in (7-3). Recall from Lemma 17 that the “boundary”
operators Sn;sqC1

are projections of operators on @Bsq
to the ball Bn and have (balanced) kernels even

simpler than those of the operators ˆ`n;sqC1
. The composition of these main terms is�

ƒgˆ
�
n;s1

Dm0
1

�
F
�
1
D
�
ƒgˆ

�
n;s1

Dm0
1

��
ƒgˆ

�
n;s2

Dm0
2

�
F
�
2

D
�
ƒgˆ

�
n;s1

Dm0
1

��
ƒgˆ

�
n;s2

Dm0
2

�
: : :
�
ƒgˆ

�
n;s�

Dm0�
�
��C1
� h: (7-4)

At this point we would like to take absolute values inside all of these integrals and use the crucial
inequalities (5-7)–(5-9) to obtain a composition of positive operators of the type considered in Lemma 24.
However, there is a difficulty in using inequality (5-7) to estimate the derivative Dm on .0; qC1/-forms �
given by (3-6):

Dm�.z/D
X
jJ jDq

X
k…J

X
j˛jDm

.�1/�.k;J /.wk�zk/.w�z/˛
@m

@w˛
�J[fkg.w/:

The problem is that the factor wk�zk has no derivative @=@wk naturally associated with it, as do the
other factors in .w�z/˛ . We refer to the factor wk�zk as a rogue factor, as it requires special treatment
in order to apply (5-7). Note that we cannot simply estimate wk�zk by jw � zj because this is much
larger in general than the estimate

p
4.w; z/ obtained in (5-7) (where the difference in size between

jw� zj and
p
4.w; z/ is compensated by the difference in size between @=@wk and D).

We now describe how to circumvent this difficulty in the composition of operators in (7-4). Let us
write each Dm0

qC1F
�
qC1

asX
jJ jDq

X
k…J

X
j˛jDm0

qC1

.�1/�.k;J /.wk�zk/.w�z/˛
@m

@w˛
.F
�
qC1

/J[fkg.w/;

where .F�
qC1

/J[fkg is the coefficient of the form F
�
qC1

with differential dwJ[fkg. We now replace each
of these sums with just one of the summands, say

.wk�zk/.w�z/˛
@m

@w˛
.F
�
qC1

/J[fkg.w/: (7-5)

Here the factor wk�zk is a rogue factor, not associated with a corresponding derivative @=@wk . We
will refer to k as the rogue index associated with the rogue factor when it is not convenient to explicitly
display the variables.
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The key fact in treating the rogue factor wk�zk is that its presence in (7-5) means that the coefficient
.F
�
qC1

/I of the form F
�
qC1

that multiplies it must have k in the multi-index I . Since

F
�
qC1
DƒgC0;qC1

n;sqC2
.F
�
qC2

/;

the form of the ameliorated Charpentier kernel C
0;qC1
n;sqC2

in Theorem 10 shows that the coefficients of
C

0;qC1
n;sqC2

.w; z/ that multiply the rogue factor must have the differential dzk in them. In turn, this means
that the differential dwk must be missing in the coefficient of C

0;qC1
n;sqC2

.w; z/, and hence finally that the
coefficients .F�

qC2
/H with multi-index H that survive the wedge products in the integration must have

k 2H . This observation can be repeated, and we now derive an important consequence.
Returning to (7-4), each summand in Dm0

qC1F
�
qC1

has a rogue factor with associated rogue index
kqC1. Thus the function in (7-4) is a sum of terms of the form�
ƒgˆ

�
n;s1

.wk1
�zk1

/Zm0
1

�
ı
�
ƒgˆ

�
n;s2

.wk2
�zk2

/Zm0
2

�
I1
ı � � � ı

�
ƒgˆ

�
n;s�

.wk��zk� /Zm0�
�
I��1

ı � � � ı
�
ƒgˆ

��1
n;s�

.wk��zk�/Zm0�
�
I��1
ı
�
��C1
� h

�
I�
;

where the subscript I� on the form ƒgˆ
�
n;s�

.wk��zk� /Zm0� indicates that we are composing with the
component of ƒgˆ

�
n;s�
.wk��zk� /Zm0� corresponding to the multi-index I��1, i.e., the component with

the differential dzI��1 . The notation will become exceedingly unwieldy if we attempt to identify the
different variables associated with each of the iterated integrals, so we refrain from this in general. The
considerations of the previous paragraph now show that we must have fk1g D I1, fk2g[ I1 D I2, and
more generally

fk�g[ I��1 D I� ; 1< � � �:

In particular we see that the associated rogue indices k1; k2; : : : k� are all distinct and that as sets

fk1; k2; : : : ; k�g D I�:

Denoting by � the variable in the final form �
�C1
� h, we can thus write each rogue factor wk��zk� as

wk��zk� D .wk���k� /.zk���k� /;

and since k� 2 I�, there is a factor of the form .@=@�k�
/.@jˇjgi=@�

ˇ
/ in each summand of the component

.�
�C1
� h/I� of ��C1

� h. So we are able to associate the rogue factor wk��zk� with derivatives of g as
follows: �

.wk��zk� /
@

@�k�

�
@jˇjgi

@�
ˇ
�

�
.zk���k� /

@

@�k�

�
@j
 jgj

@�

 : (7-6)

Thus it is indeed possible to

(1) apply the radial integration by parts in Corollary 16,

(2) then take absolute values and `2-norms inside all the integrals,

(3) and then apply the crucial inequalities (5-7)–(5-9).
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One of the difficulties remaining after this is that we are now left with additional factors of the formp
4.w; �/

1� jwj2
and

p
4.z; �/

1� jzj2
;

resulting from an application of (5-7) to the derivatives in (7-6). These factors are still rogue in the sense
that the variable pairs occurring in them, namely .w; �/ and .z; �/, do not consist of consecutive variables
in the iterated integrals of (7-4). This is rectified by using the fact that

d.w; z/D
p
4.w; z/

is a quasimetric, which in turn follows from the identityp
4.w; z/D j1�wzj j'z.w/j D ı.w; z/

2�.w; z/;

where �.w; z/D j'z.w/j is the invariant pseudohyperbolic metric on the ball (Corollary 1.22 in [Zhu
2005]) and where ı.w; z/D j1�wzj1=2 satisfies the triangle inequality on the ball (Proposition 5.1.2 in
[Rudin 1980]). Using the quasisubadditivity of d.w; z/ we can, with some care, redistribute appropriate
factors back to the iterated integrals where they can be favorably estimated using Lemma 24. It is simplest
to illustrate this procedure in specific cases, so we defer further discussion of this point until we treat in
detail the cases �D 0; 1; 2 below. We again emphasize that all these observations regarding rogue factors
in (7-4) apply equally well to the rogue factors in the other terms ˆ`n;sqC1

.Dm0q F
�
qC1

/.z/ in (7-3), as well
as to the boundary terms Sn;sqC1

.Dj F
�
qC1

/.z/ in (7-3).
The other difficulty remaining is that in order to obtain a favorable estimate using Lemma 24 for the

iterated integrals resulting from the bullet items above, it is necessary to generate additional powers of
1� jzj2 (we are using z as a generic variable in the iterated integrals here). This is accomplished by
applying the radial integrations by parts in Corollary 16 to the previous iterated integral. Of course such a
possibility is impossible for the first of the iterated integrals, but there we are only applying the radial
derivative R thanks to the fact that our candidate f from the Koszul complex is holomorphic. As a result,
we see from (5-8) that .1� jzj2/R, unlike D, generates positive powers of 1� jzj2 even when acting on
4.w; z/. This procedure is also best illustrated in specific cases and will be treated in the next subsection.

So ignoring these technical issues for the moment, the integrals that result from taking absolute values
and `2-norms inside (7-4) are now estimated using Lemma 24 and the remark following it. Note that
we only use scalar-valued Schur estimates since all the integrals to which that lemma and remark are
applied have positive integrands. Here is the rough idea. Suppose that fT1;T2; : : : ;T�g is a collection of
Charpentier solution operators and that for a sequence of large integers˚

m01;m
00
1;m

0
2; ;m

00
2 : : : ;m

0
�C1;m

00
�C1

	
;

we have the inequalities

kTj Fkƒ�
p;m0

j
;m00
j

.BnI`2/ � CjkFkƒ�
p;m0

jC1
;m00
jC1

.BnI`2/; 1� j � `C 1; (7-7)
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for the class of smooth functions F that arise as T G for some Charpentier solution operator T and some
smooth G. Then we can estimate kT1 ıT2 ı � � � ıT��kB�p;m.BnI`2/ by

kT1 ıT2 ı � � � ıT`�kƒ�
p;m0

1
;m00

1

.BnI`2/ � C1kT2 ı � � � ıT`�kƒ�
p;m0

2
;m00

2

.BnI`2/

� C1C2 kT3 ı � � � ıT`�kƒ�
p;m0

3
;m00

3

.BnI`2/

� C1C2 : : :C` k�kƒ�
p;m0

`C1
;m00
`C1

.BnI`2/:

Finally we will show that if � is one of the forms �qC1
q in the Koszul complex, then

k�kƒ�
p;m0

`C1
;m00
`C1

.BnI`2/ � k�kƒ�
p;m0

`C1
Cm00

`C1

.BnI`2/ � Cn;�;p;ı.g/khkB�p;m.Bn/;

and so altogether this proves that

kf kB�p .BnI`2/ � Cn;�;p;ı.g/khkB�p;m.Bn/:

We now make some brief comments on how to obtain the inequalities in (7-7). Complete details will
be given in the cases �D 0; 1; 2 below, and the general case 0� �� n is no different from these three
cases. We note that from (2-6) the kernel of C

0;q
n typically looks like a sum of terms

.1�wz/n�1�q.1� jwj2/q

4.w; z/n
.zj �wj / (7-8)

times a wedge product of differentials in which the differential dwj is missing. We again emphasize that
the rogue factor zj �wj cannot simply be estimated by jzj �wj j, as the formula (2-1) shows thatp

4.w; z/D
ˇ̌
Pz.z�w/C

p
1� jzj2Qz.z�w/

ˇ̌
can be much smaller than jz �wj. As we mentioned above, it is possible to exploit the fact that any
surviving term in the form �

�C1
� must then involve the derivative @=@wj hitting a component of g. This

permits us to absorb part of the complex tangential component of z�w into the almost invariant derivative
D which is larger than the usual gradient in the complex tangential directions. This results in a good
estimate for the rogue factor .zj �wj / in (7-8) based on the smaller quantity

p
4.w; z/. We have already

integrated by parts to write (7-8) as (recall that the factors zj �wj are already incorporated into Dm
z �.w/)Z

Bn

.1�wz/n�1�q.1� jwj2/q

4.w; z/n
Dm�.w/ dV .w/;

plus boundary terms which we ignore for the moment. Then we use the three crucial inequalities (5-7),
(5-8), and (5-9) to help show that the resulting iterated kernels can be factored (after accounting for all
rogue factors zj �wj ) into operators that satisfy the hypotheses of Lemma 24 or the subsequent remark.

Definition 25. The expression b�`C1
`

denotes the form �`C1
`

but with every occurrence of the derivative
@=@wj replaced by the derivative Dj .

We can rewrite (5-7) in the formˇ̌
.zj �wj /D

m
z;w�

`C1
`

.w/
ˇ̌
�

�p
4.w; z/

1� jwj2

�mC1ˇ̌
Dmb�`C1

`
.w/

ˇ̌
;
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Recall that each summand of �`C1
`

includes a product of exactly ` distinct derivatives @=@wj applied
to components of g. Thus the entries of Dmb�`C1

`
.w/ consist of mC ` derivatives distributed among

components of g. Using the factorization of �`C1
`

in (4-4), we obtain the corresponding factorization forb�`C1
`

:

�1
0 ^

`̂

iD1

b�1
0 D�

1

`C 1
b�`C1
`

; (7-9)

where

�1
0 D

�
gi

jgj2

�1
iD1

and b�1
0 D

�
Dgi

jgj2

�1
iD1

:

It is important for this purpose of using Lemma 24 and the subsequent remark to first apply the
integration by parts Lemma 14 to temper the singularity due to negative powers of4.w; z/, and to use the
integration by parts Corollary 16 to infuse enough powers of 1� jwj2 for use in the subsequent iterated
integral.

Finally it follows from Proposition 22 together with the factorization (4-4) that

.1� jzj2/�Xmb��C1
� h.z/




Lp.�nI`2/

� C kMgk
mC�

B�p .Bn/!B�p .BnI`2/
khkB�p .Bn/: (7-10)

We defer the proof of (7-10) until page 538 when further calculations are available.

Remark. At this point we observe from (7-1) that the exponent mC� in (7-10) is at most mnC n, and
thus we may take � DmnC n. We leave it to the interested reader to estimate the size of mn.

Taking into account all of the above, the conclusion is that with � DmnC n,

kf kB�p .BnI`2/ � Cn;�;p;ı kMgk
�
B�p .Bn/!B�p .BnI`2/

khkB�p .Bn/:

As the arguments described above are rather complicated we illustrate them by considering the three
cases �D 0; 1; 2 in complete detail in the next subsection before proceeding to the general case.

7.1. Estimates in special cases. Here we prove the estimates (7-1) for �D 0; 1; 2. Recall that

F0
D�1

0h; F1
DƒgC0;0

n;s1
�2

1h; F2
DƒgC0;0

n;s1
ƒgC0;1

n;s2
�3

2h:

To obtain the estimate for F0 we use the multilinear inequality in Proposition 22.
In estimating F1 we confront for the first time a rogue factor zk�wk

that we must associate with a
derivative @=@wk occurring in each surviving summand of the k-th component of the form �2

1
. After

applying the integration by parts formula in 17 as in [Ortega and Fàbrega 2000], we use the crucial
inequalities (5-7)–(5-9) and the Schur-type operator estimates in Lemma 24 with c D 0 to obtain the
desired estimates. Finally we must also deal with the boundary terms in the integration by parts formula
for ameliorated Charpentier kernels in Lemma 17. This requires using the radial derivative integration
by parts formula in Corollary 16 as in [Ortega and Fàbrega 2000], and also requires dealing with the
corresponding rogue factors.

The final trick in the proof arises in estimating F2. This time there are two iterated integrals each
with a rogue factor. The problematic rogue factor zk��k occurs in the first of the iterated integrals since
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there is no derivative @=@�k hitting the second iterated integral with which to associate the rogue factor
zk��k . Instead we decompose the factor as .wk�zk/� .�k�wk/ and associate each of these summands
with a derivative @=@wk already occurring in �3

2
. Then we can apply the crucial inequality (5-7) and

use the fact that
p
4.w; z/ is a quasimetric to redistribute the estimates appropriately. As a result of this

redistribution we are forced to use Lemma 24 with c D˙1 this time as well as c D 0. In applying the
Schur-type estimates in Lemma 24 to the second iterated integral, we require a sufficiently large power of
1�jwj2 to be carried over from the first iterated integral. To ensure this we again use the radial derivative
integration by parts formula in Corollary 16.

The estimate (7-1) for general � involves no new ideas. There are now � rogue terms and we need to
apply Lemma 24 with c D 0;˙1; : : : ;˙.�� 1/. With this noted the arguments needed are those used
above in the cases �D 0; 1; 2.

The estimate for F0. We begin with the estimate

kF0
kB�p;m.BnI`2/ D k�

1
0hkB�p;m.BnI`2/ � Cn;�;p;ı kMgk

m
B�p .Bn/!B�p .BnI`2/

khkB�p;m.Bn/;

for mC � > n
p

. However, for later use we prove instead the more general estimate with X in place of R,
except that m must then be chosen twice as large:Z

Bn

ˇ̌
.1� jzj2/�Xm.�1

0h/.z/
ˇ̌p

d�n.z/� Cn;�;p;ı kMgk
mp

B�p .Bn/!B�p .BnI`2/
khk

p

B�p .Bn/
; (7-11)

for m > 2. n
p
� �/. Recall that Xm is the differential operator of order m given in Definition 19 that is

adapted to the complex geometry of the unit ball Bn. It will be in estimating iterated Charpentier integrals
below that the derivatives Rm and Dm will arise from integration by parts in the previous iterated integral,
and this will require estimates using Xm.

By Leibniz’s rule for Xm we have

Xm.�1
0h/D

mX
kD0

ck.X
k�1

0/.X
m�kh/

and

Xk.�1
0/D Xk

�
g

jgj2

�
D

kX
`D0

c`.X
k�`g/.X`jgj�2/: (7-12)

It suffices to proveZ
Bn

ˇ̌̌̌
.1� jzj2/�

� mX
kD0

kX
`D0

ckc`.X
k�`g/.X`jgj�2/.Xm�kh/

�ˇ̌̌̌p
d�n

� Cn;�;p;ı kMgk
mp

B�p .Bn/!B�p .BnI`2/
khk

p

B�p .Bn/
;

and henceZ
Bn

.1� jzj2/p� jXk�`gjp
ˇ̌
Xjgj�2

ˇ̌p
jXm�khjpd�n

� Cn;�;p;ı kMgk
mp

B�p .Bn/!B�p .BnI`2/
khk

p

B�p .Bn/
; (7-13)

for each fixed 0� `� k �m.
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Now we can profitably estimate both jXm�khj and jXk�`gj as they are, but we must be more careful
with

ˇ̌
Xjgj�2

ˇ̌
. In the case `D 1, we assume for convenience that X annihilates gi (if not it will annihilate

gi unless XD I , and the estimates are similar) and obtain

ˇ̌
Xjgj�2

ˇ̌2
D

ˇ̌̌̌
�jgj�4

1X
iD1

giXgi

ˇ̌̌̌2
� jgj�8

� 1X
iD1

jgi j
2

�� 1X
iD1

jXgi j
2

�
� jgj�6

1X
iD1

jXgi j
2:

Similarly, when `D 2,

ˇ̌
X2
jgj�2

ˇ̌2
D

ˇ̌̌̌
�jgj�4

1X
iD1

giX
2gi C 2jgj�6

X
i¤j

.giXgi/.gj Xgj /

ˇ̌̌̌2
� 2jgj�6

1X
iD1

jX2gi j
2
C 4jgj�8

� 1X
iD1

jXgi j
2

�2

;

and the general case isˇ̌
X`jgj�2

ˇ̌2
�C`jgj

�6
1X

iD1

jX`gi j
2
CC`�1jgj

�8

� 1X
iD1

jX`�1gi j
2

�� 1X
iD1

jXgi j
2

�
C � � �CC0jgj

�4�2`

� 1X
iD1

jXgi j
2

�̀

D

X
1�˛1�˛2�����˛M

˛1C˛2C���C˛MD`

c˛jgj
�4�2`

MY
mD1

� 1X
iD1

jX˛mgi j
2

�
: (7-14)

We can ignore the powers of jgj since jgj is bounded above and below by (5-2) and the hypotheses of
Theorem 2. Fixing ˛ we see that the left side of (7-13) is thus at most

Cn;�;p;ı

Z
Bn

.1� jzj2/p� jXk�`gjp jYm�khjp
� MY

jD1

jX j̨ gjp
�

d�n:

Since

jXk�`gj2 D

1X
iD1

jXk�`gi j
2

and k � ` could vanish (unlike the exponents ˛`, which are positive), we see that altogether after
renumbering, it suffices to proveZ

Bn

.1�jzj2/p� jY˛1hjp jY˛2gjp: : : jY˛Mgjp d�n�Cn;�;p;ı kMgk
Mp

B�p .Bn/!B�p .BnI`2/
khk

p

B�p .Bn/
(7-15)

for each fixed ˛ D .˛1; ˛2; : : : ; ˛M / where M � 2, j˛j Dm and at most one of ˛2; : : : ; ˛M is zero. We
have used here that jDgj D jDgj. Now Proposition 22 yields (7-15) for each 0� k �m and j˛j Dm�k.
Summing these estimates completes the proof of (7-11).
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We can now prove the more general inequality (7-10). Indeed, using the factorization (4-4) of b��C1
�

together with the Leibniz formula gives

Xm
�b��C1

� h
�
D Xm

�
�1

0 ^ .
b�1

0/
�h
�
D

X
˛2Z

�C2
C

j˛jDm

.X˛0�1
0/^

�^
jD1

�
X j̨b�1

0

�
.X˛�C1h/

D

X
˛2Z

�C2
C

j˛jDm

�
.X˛0�1

0/^

�^
jD1

�
X j̨C1�1

0

��
.X˛�C1h/;

where we have used that b�1
0

already has an X derivative in each summand, and so X j̨b�1
0

can be written
as X j̨C1�1

0
. Now use (7-12) and (7-14) to see that

ˇ̌
Xm.b��C1

� h/
ˇ̌

is controlled by a tensor product of at
most mC� factors, and then apply Proposition 22 as above to complete the proof of (7-10).

The estimate for F1. The estimate in (7-1) with �D 1 will follow from (7-10) and the estimate

.1� jzj2/�Ym1
�
ƒgC0;0

n;s�
2
1h
�

p

Lp.�n/
� C

Z
Bn

ˇ̌
.1� jzj2/�Xm2.b�2

1h/.z/
ˇ̌p

d�n.z/; (7-16)

where, as in Definition 25, we define b�2
1

to be �2
1

with @ replaced by D throughout:

b�2
1 D

NX
j ;kD1

gkDgj �gj Dgk

jgj4
ej ^ ek ;

and where DhD
Pn

kD1.Dkh/ dzk and Dk is the k-th component of D. We are using here the following
observation regarding the interior product �2

1
h y dwk :

For each summand of �2
1
h y dwk , there is a unique 1� i �N

such that @gi=@wk occurs as a factor in the summand.
(7-17)

We rewrite (7-16) as

.1�jzj2/�Rm00
1 Dm0

1

�
ƒgC0;0

n;s�
2
1h
�

p

Lp
�
�n

� � C

Z
Bn

ˇ̌
.1�jzj2/�Rm00

2 Dm0
2

�b�2
1h
�
.z/
ˇ̌p

d�n.z/; (7-18)

where Rm D .1� jzj2/m.Rk/m
kD0

as in (7-2). As mentioned above, we only need to prove the case
m00

1
D 0 since (7-1) only requires that we estimate kF1kB�p;m.Bn/. However, when considering the estimate

for F2 in (7-1) we will no longer have the luxury of using the norm k � kB�p;m.Bn/ in the second iterated
integral occurring there, and so we will consider the more general case now in preparation for what comes
later. As we will see however, it is necessary to choose m0

1
sufficiently large in order to obtain (7-18). It

is useful to recall that the operator .1� jzj2/R is “smaller” than D in the sense that

D D .1� jzj2/Pzr C
p

1� jzj2Qzr;

.1� jzj2/RD .1� jzj2/Pzr:
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To prove (7-18) we will ignore the contraction ƒg since if derivatives hit g in the contraction, the
estimates are similar if not easier. Note also that jƒgF j � jgj jF j for the contractionƒgF of any tensor F .

We will also initially suppose that m00
1
D 0 and later take m00

1
sufficiently large. Now we apply Lemma 17

to C0;0
n;s�

2
1
h and obtain

C0;0
n;s�

2
1h.z/D c0C0;0

n;s

�
Dm0

2�2
1h
�
.z/C boundary terms

D

Z
Bn

ˆ0
n;s.w; z/D

m0
2.�2

1h/dV .w/C boundary terms:
(7-19)

A typical term above looks likeZ
Bn

�
1� jwj2

1�wz

�s�n
.1�wz/n�1

4.w; z/n
Dm0

2.�2
1h/ dV .w/ (7-20)

where we are discarding the sum of (balanced) factors�
.1� jwj2/.1� jzj2/

j1�wzj2

�j

for 1� j � n� 1 in Lemma 17, which turn out to only help with the estimates. This can be seen from
(5-9) and its trivial counterpartˇ̌

Dm
.z/.1� jzj

2/k
ˇ̌
C
ˇ̌
.1� jzj2/mRm

.z/.1� jzj
2/k
ˇ̌
� C.1� jzj2/k :

Recall from the general discussion above that in the integral (7-20) there are rogue factors wk�zk in
Dm0

2.�2
1
h/.w/ that must be associated with a @=@wk derivative that hits some factor of each summand in

the k-th component �2
1
y dwk of �2

1
� gi@gj �gj@gi . Thus we can apply (5-7) to the components of

�2
1
h.z/ to obtain ˇ̌

Dm0
2�2

1h.z/
ˇ̌
�

ˇ̌̌̌ nX
kD1

nX
j˛jDm0

2

.wk�zk/.w�z/˛
@m0

2

@w˛

�
�2

1h y dwk

�ˇ̌̌̌

� C

�p
4.w; z/

1� jwj2

�m0
2
C1ˇ̌

Dm0
2.b�2

1h/.w/
ˇ̌
: (7-21)

Thus we get

.1� jzj2/�
ˇ̌
Dm0

1C0;0
n;s�

2
1h.z/

ˇ̌
�

Z
Bn

.1� jzj2/�
ˇ̌̌̌
D

m0
1

.z/

�
.1�jwj2/s�n.1�wz/n�1

.1�wz/s�n4.w; z/n

�ˇ̌̌̌ �p
4.w; z/

1� jwj2

�m0
2
C1ˇ̌

Dm0
2.b�2

1h/.w/
ˇ̌
dV .w/

� S s
m0

1
;m0

2

f .z/; (7-22)

where

f .w/D .1� jwj2/�
ˇ̌
Dm0

2

�b�2
1h
�
.w/

ˇ̌
: (7-23)

Now we iterate the estimate (5-8),ˇ̌
D.z/4.w; z/

ˇ̌
� C.1� jzj2/4.w; z/1=2C4.w; z/;
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to obtainˇ̌̌̌
D

m0
1

.z/

�
.1� jwj2/s�n.1�wz/n�1

.1�wz/s�n4.w; z/n

�ˇ̌̌̌
�
.1� jzj2/m

0
1.1� jwj2/s�n4.w; z/m

0
1
=2

j1�wzjs�2nC14.w; z/nCm0
1

C � � �C
.1� jwj2/s�n

j1�wzjs�2nC14.w; z/n
COK; (7-24)

where the terms in OK are obtained when some of the derivatives D hit the factor .1�wz/s�n in the
denominator or factors D4.w; z/ already in the numerator. Leaving the OK terms for later, we combine
all the estimates above to get that if we plug the first term on the right in (7-24) into the left side of (7-18),
then the result is dominated byZ

Bn

.1� jzj2/m
0
1
C� .1� jwj2/s�n�m0

2
�1��4.w; z/m

0
1
Cm0

2
C1=2

j1�wzjs�2nC14.w; z/nCm0
1

f .w/ dV .w/

D

Z
Bn

.1� jzj2/m
0
1
C� .1� jwj2/s�n�1�m0

2
��

j1�wzjs�2nC1

p
4.w; z/

m0
2
�m0

1
�2nC1

f .w/ dV .w/:

Now for convenience choose m0
2
Dm0

1
C 2n� 1 so that the factor of

p
4.w; z/ disappears. We then get

.1� jzj2/�
ˇ̌
Dm0

1C0;0
n;s�

2
1h.z/

ˇ̌
�

Z
Bn

.1� jzj2/m
0
1
C� .1� jwj2/s�3n�m0

1
��

j1�wzjs�2nC1
f .w/ dV .w/: (7-25)

Lemma 24 shows that the operator

Ta;b;0f .z/D

Z
Bn

.1� jzj2/a.1� jwj2/b

j1�wzjnC1CaCb
f .w/ dV .w/

is bounded on Lp
�
BnI .1� jwj

2/t dV .w/
�

if and only if

�pa< t C 1< p.bC 1/:

We apply this lemma with t D �n� 1, a D m0
1
C � and b D s � 3n�m0

1
� � . Note that the sums of

the exponents in the numerator and denominator of (7-25) are equal if we write the integral in terms of
invariant measure d�n.w/D .1� jwj

2/�n�1 dV .w/. We conclude that S s
m0

1
;m0

2

is bounded on Lp.d�n/

provided T is, and that this latter happens if and only if

�p.m01C �/ < �n< p
�
s� 3nC 1�m01� �

�
:

This requires m0
1
C � > n

p
and s > 3n� 1Cm0

1
C � � n

p
.

Remark. Suppose instead that we choose m0
2

to be a positive integer satisfying c Dm0
2
�m0

1
�2nC1>

�2n. Then we would be dealing with the operator Ta;b;c , where aDm0
1
C � and

b D s� n� 1�m02� � D s� 3n� c �m01� �:

By Lemma 24, Ta;b;c is bounded on Lp.d�n/ if and only if

�p.m01C �/ < �n< p.s� 3nC 1� c �m01� �/;
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i.e., m0
1
C� > n

p
and s > cC 3n� 1Cm0

1
C� � n

p
. Thus we can use any value of c >�2n provided we

choose m0
2
�m0

1
and s large enough.

Now we turn to the second displayed term on the right side of (7-24), which leads to the operator Ta;b;0

with aD � , b D s� 3n� � . This time we will not in general have the required boundedness condition
� > n

p
. It is for this reason that we must return to (7-18) and insist that m00

1
be chosen sufficiently large

that m00
1
C � > n

p
. For convenience we let m0

1
D 0 for now. Indeed, it follows from the second line in the

crucial inequality (5-8) that the second displayed term on the right side of (7-24) is

.1� jzj2/m
00
1 .1� jwj2/s�n4.w; z/m

00
1
=2

j1�wzjs�2nC14.w; z/nCm00
1

C better terms:

Using this expression and choosing m0
2
Dm00

1
C 2n� 1 so that the term

p
4.w; z/ disappears from the

ensuing integral, we obtain the following analogue of (7-25):

.1� jzj2/� .1� jzj2/m
00
1

ˇ̌
Rm00

1 C0;0
n;s�

2
1h.z/

ˇ̌
�

Z
Bn

.1� jzj2/m
00
1
C� .1� jwj2/s�3n�m00

1
��

j1�wzjs�2nC1
f .w/ dV .w/:

The corresponding operator Ta;b;0 has aDm00
1
C � and b D s� 3n�m00

1
� � and is bounded on Lp.�n/

when �p.m00
1
C�/ <�n< p.s� 3nC 1�m00

1
��/. Thus there is no unnecessary restriction on � if m00

1

and s are chosen appropriately large. Note that the only difference between this operator Ta;b;0 and the
previous one is that m0

1
has been replaced by m00

1
.

The arguments above are easily modified to handle the general case of (7-18) provided m00
1
C � > n

p

and s is chosen sufficiently large.

Now we return to consider the OK terms in (7-24). For this we use the inequality (5-9):ˇ̌
Dm
.z/

˚
.1�wz/k

	ˇ̌
� C j1�wzjk

�
1� jzj2

j1�wzj

�m=2

:

We ignore the derivative .1�jzj2/R, since the second line in (5-9) shows that it satisfies a better estimate.
We also write m1 and m2 in place of m0

1
and m0

2
now. As a result, one of the extremal OK terms in

(7-24) is
.1� jzj2/m1=2.1� jwj2/s�n

j1�wzjs�2nC1C.m1=2/4.w; z/n
;

which when combined with the other estimates leads to the integral operatorZ
Bn

.1� jzj2/m1=2C� .1� jwj2/s�n�1�m2��

j1�wzjs�2nC1C.m1=2/

p
4.w; z/m2�2n�1f .w/ dV .w/:

This is Ta;b;c with a D m1

2
C � , b D s � n� 1�m2 � � , and c D m2 � 2n� 1. This is bounded on

Lp.�n/ provided m2 � 2 and

�p
�

m1

2
C �

�
< �n< p.s� n�m2� �/;

i.e., m1

2
C � > n

p
and s > nCm2C � �

n
p

. The intermediate OK terms are handled similarly. Note that
the crux of the matter is that all of the positive operators have the form Ta;b;c , and moreover, if s and the
m0s are chosen appropriately large, then Ta;b;c is bounded on Lp.�n/.
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Boundary terms for F1. Now we turn to estimating the boundary terms in (7-19). A typical term is

Sn;s

�
Dk.�2

1h/
��

Z
�
.z/D

Z
Bn

.1� jwj2/s�n�1

.1�wz/s
Dk.�2

1h/
�
Z
�
.w/ dV .w/; (7-26)

with 0� k �m� 1 upon appealing to Lemma 17.
We now apply the operator .1� jzj2/m1C�Rm1 to the integral on the right side of (7-26); using the

inequalities (5-7)–(5-9) we obtain that the absolute value of the result is dominated byZ
Bn

.1� jzj2/m1C� .1� jwj2/s�n�1

j1�wzjsCm1

�p
4.w; z/

1� jwj2

�kC1 ˇ̌
Dk.b�2

1h/
ˇ̌
dV .w/

D

Z
Bn

.1� jzj2/m1C� .1� jwj2/s�n�2�k��
p
4.w; z/ kC1

j1�wzjsCm1

ˇ̌
.1� jwj2/�Dk

�b�2
1h
�
.w/

ˇ̌
dV .w/:

The operator in question here is Ta;b;c with aDm1C � , b D s� n� 2� k � � , and c D kC 1, since

aC bC cC nC 1D sCm1:

Lemma 24 applies to prove the desired boundedness on Lp.�n/ provided m1C � >
n
p

.
However, if k fails to satisfy kC 1> 2

�
n
p
� �

�
, then the derivative DkC1� cannot be used to control

the norm k�kB�p .Bn/. To compensate for a small k, we must then apply Corollary 16 to the right side of
(7-26) (which for fixed z is in C.Bn/\C1.Bn/) before differentiating and taking absolute values inside
the integral. This then leads to operators of the form

.1� jzj2/m1C�Rm1

�Z
Bn

.1� jwj2/s�n�1

.1�wz/s
.1� jwj2/mRm

�
Dk.�2

1h/.w/
�

dV .w/

�
;

which are dominated byZ
Bn

.1� jzj2/m1C� .1� jwj2/s�n�1

j1�wzjsCm1

�p
4.w; z/

1� jwj2

�kC1ˇ̌
RmDk.b�2

1h/.w/
ˇ̌
dV .w/;

which isZ
Bn

.1� jzj2/m1C� .1� jwj2/s�n�2�k��
p
4.w; z/ kC1

j1�wzjsCm1

ˇ̌
.1� jwj2/�RmDk.b�2

1h/.w/
ˇ̌
dV .w/:

This latter operator is Ta;b;cH.z/, with

aDm1C �; b D s� n� 2� k � �; c D kC 1; and H.w/D
ˇ̌
.1� jwj2/�Rm

b0D
k.b�2

1h/.w/
ˇ̌
:

Note that for m> 2
�

n
p
� �

�
we do indeed now have kHkLp.�n/ � k

b�2
1
hkB�p .Bn/. The operator here is

the same as that above and so Lemma 24 applies to prove the desired boundedness on Lp.�n/.

The estimate for F2. Our next task is to obtain the estimate (7-1) for �D 2. For this we will show thatZ
Bn

ˇ̌
.1� jzj2/m1C�Rm1ƒgC0;0

n;s1
ƒgC0;1

n;s2
�3

2

ˇ̌p
d�n.z/

� C

Z
Bn

ˇ̌
.1� jzj2/� .1� jzj2/m

00
3 Rm00

3 Dm0
3.b�3

2h/.z/
ˇ̌p

d�n.z/: (7-27)
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Unlike the previous argument, this time we will have to deal with a rogue term z2� �2 where there is
no derivative @=@�2 to associate to it. Again we ignore the contractions ƒg. Then we use Lemma 17 to
perform integration by parts m0

2
times in the first iterated integral and m0

3
times in the second iterated

integral. We also use Corollary 16 to perform integration by parts in the radial derivative m00
2

times
in the first iterated integral (for fixed z, we have C0;1

n;s2
�3

2
2 C.Bn/\ C1.Bn/ by standard estimates

[Charpentier 1980]), so that the additional factor .1� j�j2/m
00
2 can be used crucially in the second iterated

integral, and also m00
3

times in the second iterated integral for use in acting on �3
2
.

Recall from Lemma 17 that

C0;q
n;s �.z/D boundary terms (depending on m)

C

qX
`D0

Z
Bn

.1�wz/n�1�`.1� jwj2/`

4.w; z/n

�
1� jwj2

1�wz

�s�n� n�`�1X
jD0

cj ;`;n;s

�
.1� jwj2/.1� jzj2/

j1�wzj2

�j�
Dm�.z/:

Recall also that Dm already has the rogue terms built in, as can be seen from (3-6). Now we use the right
side above with q D `D j D 0 to substitute for C0;0

n;s1
, and the right side above with q D `D 1 and j D 0

to substitute for C0;1
n;s2

. Then a typical part of the resulting kernel of the operator C0;0
n;s1

C0;1
n;s2

�3
2
.z/ isZ

Bn

.1� �z/n�1

4.�; z/n

�
1� j�j2

1� �z

�s1�n

.z2� �2/.1� j�j
2/m

0
2Rm0

2Dm00
2

�

Z
Bn

.1�w�/n�2.1� jwj2/

4.w; �/n

�
1� jwj2

1�w�

�k2�n

.w1� �1/.1� jwj
2/m

0
3Rm0

3Dm00
3 .�3

2h/.w/ dV .w/ dV .�/;

(7-28)

where we have arbitrarily chosen z2� �2 and w1� �1 as the rogue factors.

Remark. It is important to note that the differential operators Dm2

�
are conjugate in the variable z and

hence vanish on the kernels of the boundary terms Sn;s.D
k�3

2
h/.z/ in the integration by parts formula

(3-7) associated to the Charpentier solution operator C0;1
n;s2

, since these kernels are holomorphic. As a
result the operator Dm0

2 hits only the factor Dk�3
2
h and a typical term is

.zi��i/
@

@zi

�
.wi�zi/�

3
2h
�
D�.zi��i/�

3
2h;

where the derivative @=@wi must occur in each surviving term in�3
2
h, and this term which is then handled

like the rogue terms.

Now we recall the factorization (4-4) with `D 2,

�3
2 D�4�1

0 ^
z�1

0 ^
z�1

0;

and that �3
2
.w/ must have both derivatives @g=@w1 and @g=@w2 occurring in it, one surviving in each

of the factors z�1
0
, along with other harmless powers of g that we ignore. Thus we may replace z�1

0
^ z�1

0

with @=@w2�
1
0
^ @=@w1�

1
0
. If we use

z2� �2 D .z2�w2/� .�2�w2/;
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we can write the iterated integral above asZ
Bn

.1� �z/n�1

4.�; z/n

�
1� j�j2

1� �z

�s1�n

�

Z
Bn

.1� j�j2/m
00
2 Rm00

2 Dm0
2

�
.1�w�/n�2.1� jwj2/

4.w; �/n

�
1� jwj2

1�w�

�s2�n�
�

�
.1� jwj2/m

00
3 Rm00

3 .�2�w2/
@

@w2

Dm0
3
�`�1

0

�
^

�
.1� jwj2/m

00
3 Rm00

3 .�1�w1/
@

@w1

D`�1
0

�
� dV .w/ dV .�/

minus the same expression but with the rogue factor �2�w2 on the third line replaced by the rogue factor
z2�w2. We have temporarily ignored the wedge products with terms that do not include derivatives of
g, as these terms are bounded and so harmless.

Now we apply .1 � jzj2/� .1 � jzj2/m
00
1 Rm00

1 Dm0
1 to these operators. Using the crucial inequalities

(5-7)–(5-9), together with the factorization (7-9) with `D 2,

b�3
2 D�4�1

0 ^
b�1

0 ^
b�1

0;

the result of this application on the first integral is then dominated byZ
Bn

.1� jzj2/� j1� �zjn�1

4.�; z/m
0
1
Cm00

1
Cn

�
.1�jzj2/

p
4.�; z/

�m00
1

��
.1�jzj2/

p
4.�; z/

�m0
1C4.�; z/m

0
1

�ˇ̌̌̌1� j�j2
1� �z

ˇ̌̌̌s1�n

�

 Z
Bn

.1� j�j2/m
00
2 j1�w�jn�2.1� jwj2/

4.w; �/m
0
2
Cm00

2
Cn

�p
4.�; z/

1� j�j2

�m0
2�
.1� j�j2/

p
4.w; �/

�m00
2

�

��
.1� j�j2/

p
4.w; �/

�m0
2 C4.w; �/m

0
2

� ˇ̌̌̌1�jwj2
1�w�

ˇ̌̌̌s2�n�p
4.w; �/

1� jwj2

�m0
3
�p
4.w; �/

1� jwj2

�2

�
ˇ̌
.1� jwj2/m

00
3 Rm00

3 Dm0
3.b�3

2h/.w/
ˇ̌
dV .w/

!
dV .�/; (7-29)

and the result of this application on the second integral is dominated by exactly the same expression but
with one of the two factors

p
4.w; �/=.1�jwj2/ that occur at the end of the third line in (7-29) replaced

by the factor
p
4.w; z/=.1� jwj2/. The ignored wedge products have now been reinstated in b�3

2
.

Now for the iterated integral in (7-29), we can separate it into the composition of two operators of the
form treated previously. One factor is the operatorZ

Bn

.1� jzj2/� j1� �zjn�1

4.�; z/m
0
1
Cm00

1
Cn

�
.1� jzj2/

p
4.�; z/

�m00
1

��
.1� jzj2/

p
4.�; z/

�m0
1 C4.�; z/m

0
1

�
�

�p
4.�; z/

1� j�j2

�m0
2
ˇ̌̌̌
1� j�j2

1� �z

ˇ̌̌̌s1�n

.1� j�j2/��F.�/ dV .�/; (7-30)



THE CORONA THEOREM IN Cn 545

and the other factor is the operator F.�/ given byZ
Bn

.1� j�j2/� j1�w�jn�2.1� jwj2/

4.w; �/m
0
2
Cm00

2
Cn

�
.1�j�j2/

p
4.w; �/

�m00
2

��
.1�j�j2/

p
4.w; �/

�m0
2C4.w; �/m

0
2

�
�

�p
4.w; �/

1� jwj2

�m0
3
C2 ˇ̌̌̌

1� jwj2

1�w�

ˇ̌̌̌s2�n

.1� jwj2/��f .w/ dV .w/; (7-31)

where f .w/D .1� jwj2/�
ˇ̌
.1� jwj2/m

00
3 Rm00

3 Dm0
3.b�3

2
h/.w/

ˇ̌
. We now show how Lemma 24 applies to

obtain the appropriate boundedness.
We will in fact compare the corresponding kernels to that in (7-25). When we consider the summand

4.�; z/m
0
1 at the end of the first line of (7-30), the first operator has kernel

.1� jzj2/�Cm00
1 .1� j�j2/s1�n�m0

2
��

j1� �zjs1�2nC14.�; z/m
0
1
Cm00

1
Cn�.m00

1
C2m0

1
Cm0

2
/=2
D
.1� jzj2/�Cm00

1 .1� j�j2/s1�3n�m00
1
��

j1� �zjs1�2nC1
; (7-32)

if we choose m0
2
Dm00

1
C 2n so that the factor 4.�; z/ disappears. This is exactly the same as the kernel

of the operator in (7-25) in the previous alternative argument but with m00
1

in place of m0
1

there. When we
consider instead the summand

�
.1� jzj2/

p
4.�; z/

�m0
1 on the first line of (7-30), we obtain the kernel in

(7-32) but with m00
1
Cm0

1
in place of m00

1
.

When we consider the summand4.w; �/m
0
2 at the end of the second line of (7-31), the second operator

has kernel

.1� j�j2/m
00
2
C� .1� jwj2/1Cs2�n�m0

3
�2��

j1�w�js2�2nC24.w; �/m
0
2
Cm00

2
Cn�.m00

2
C2m0

2
Cm0

3
C2/=2

D
.1� j�j2/m

00
2
C� .1� jwj2/s2�3nC1�m00

2
��

j1�w�js2�2nC2
: (7-33)

if we choose m0
3
Dm00

2
C 2n� 2, and this is also bounded on Lp.d�n/ for m00

2
and s2 sufficiently large.

Remark. It is here in choosing m00
2

large that we are using the full force of Corollary 16 to perform
integration by parts in the radial derivative m00

2
times in the first iterated integral.

When we consider instead the summand
�
.1� jzj2/

p
4.�; z/

�m0
2 on the first line of (7-31), we obtain

the kernel in (7-33) but with m00
2
Cm0

2
in place of m00

2
.

To handle the case of (7-29) in which the factor
p
4.w; z/=.1� jwj2/ replaces one of the factorsp

4.w; �/=.1� jwj2/, we must first deal with the rogue factor
p
4.w; z/ whose variable pair .w; z/

doesn’t match that of either of the denominators 4.�; z/ or 4 .w; �/. For this we use the fact thatp
4.w; z/D j1�wzj j'z.w/j D ı.w; z/

2�.w; z/;

where �.w; z/D j'z.w/j is the invariant pseudohyperbolic metric on the ball (Corollary 1.22 in [Zhu
2005]) and where ı.w; z/D j1�wzj1=2 satisfies the triangle inequality on the ball (Proposition 5.1.2 in
[Rudin 1980]). Thus we have

�.w; z/� �.�; z/C �.w; �/; ı.w; z/� ı.�; z/C ı.w; �/;
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and so also p
4.w; z/� 2

�
ı
�
�; z

�2
C ı.w; �/2

��
j'z.�/jC j'�.w/j

�
D 2

�
1C
j1�w�j

j1� �zj

�p
4.�; z/C 2

�
1C
j1� �zj

j1�w�j

�p
4.w; �/:

Thus we can writep
4.w; z/

1� jwj2
. 1� j�j2

1� jwj2

p
4.�; z/

1� j�j2
C
j1�w�j

1� jwj2
1� j�j2

j1� �zj

p
4.�; z/

1� j�j2

C

p
4.w; �/

1� jwj2
C
j1� �zj

1� j�j2
1� j�j2

j1�w�j

p
4.w; �/

1� jwj2
: (7-34)

All of the terms on the right side of (7-34) are of an appropriate form to distribute throughout the iterated
integral, and again Lemma 24 applies to obtain the appropriate boundedness.

For example, the final two terms on the right side of (7-34) that involve
p
4.w; �/=.1� jwj2/ are

handled in the same way as the operator in (7-29) by taking m0
3
Dm00

2
C 2n� 2 and m0

2
Dm00

1
C 2n, and

taking s1 and s2 large as required by the extra factors

j1� �zj

1� j�j2
1� j�j2

j1�w�j
:

With these choices the first two terms on the right side of (7-34) that involve
p
4.�; z/=.1� j�j2/ are

then handled using Lemma 24 with c D˙1 as follows.
If we substitute the first term

1� j�j2

1� jwj2

p
4.�; z/

1� j�j2

on the right in (7-34) for the factor
p
4.w; z/=.1� jwj2/, we get a composition of two operators as in

(7-30) and (7-31) but with the kernel in (7-30) multiplied by
p
4.�; z/=.1�j�j2/ and the kernel in (7-31)

multiplied by .1� j�j2/=.1� jwj2/ and divided by
p
4.w; �/=.1� jwj2/. If we consider the summand

4.�; z/m
0
1 at the end of the first line of (7-30), and with the choice m0

2
Dm00

1
C2n already made, the first

operator then has kernelp
4.�; z/

1� j�j2
.1� jzj2/�Cm00

1 .1� j�j2/s1�3n�m00
1
��

j1� �zjs1�2nC1
D
.1� jzj2/m

00
1
C� .1� j�j2/s1�m00

1
�3n�1��

p
4.�; z/

j1� �zjs1�2nC1
;

and hence is of the form Ta;b;c with

aDm001C �; b D s1� 3n� 1�m001 � �; c D 1;

since aCbC cCnC1D s1�n�1. Now we apply Lemma 24 to conclude that this operator is bounded
on Lp.�n/ if and only if

�p.m001C �/ < �n< p.s1� 3n�m001 � �/;

i.e., m00
1
C � > n

p
and s1 >m00

1
C � C 3n� n

p
.
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Next we consider the summand 4.w; �/m
0
2 at the end of the first line of (7-31). With the choice

m0
3
Dm00

2
C 2n� 2 already made, the second operator has kernel

1� j�j2

1� jwj2

�p
4.w; �/

1� jwj2

��1
.1� j�j2/m

00
2
C� .1� jwj2/s2�3nC1�m00

2
��

j1�w�js2�2nC2

D
.1� j�j2/m

00
2
C�C1.1� jwj2/s2�3nC1�m00

2
��
p
4.w; �/�1

j1�w�js2�2nC2
;

and hence is of the form Ta;b;c with

aDm002C � C 1; b D s2� 3nC 1�m002 � �; c D�1:

This operator is bounded on Lp.�n/ if and only if

�p.m002C � C 1/ < �n< p.s2� 3nC 2�m002 � �/;

i.e., m00
2
C � > n

p
� 1 and s2 >m00

2
C � C 3n� 2� n

p
.

If we now substitute the second term

j1�w�j

1� jwj2
1� j�j2

j1� �zj

p
4.�; z/

1� j�j2

on the right in (7-34) for the factor
p
4.w; z/=.1�jwj2/ we similarly get a composition of two operators

that are each bounded on Lp.�n/ for mi and si chosen large enough.

Boundary terms for F2. Now we must address in F2 the boundary terms that arise in the integration by
parts formula (3-7). Suppose the first operator C0;0

n;s1
is replaced by a boundary term, but not the second. We

proceed by applying Corollary 16 to the boundary term. Since the differential operator .1�jzj2/m1C�Rm1

hits only the kernel of the boundary term, we can apply the remark following Lemma 24 to the first
iterated integral and the lemma itself to the second iterated integral in the manner indicated in the above
arguments. If the second operator C0;1

n;s2
is replaced by a boundary term, then as mentioned in the remark

on page 543, the operators Dm2 hit only the factors Dm3 , and this produces rogue terms that are handled
as above. If the first operator C0;0

n;s1
was also replaced by a boundary term, then in addition we would

have radial derivatives Rm hitting the second boundary term. Since radial derivatives are holomorphic,
they hit only the holomorphic kernel and not the antiholomorphic factors in Dm3 , and so these terms can
also be handled as above.

7.2. The estimates for general F�. In view of inequality (7-10), it suffices to establish the inequality

kF�k
p

B�p .Bn/
D

Z
Bn

ˇ̌
.1� jzj2/m1C�Rm1ƒgC0;0

n;s1
: : : ƒgC0;��1

n;s�
��C1
� h

ˇ̌p
d�n.z/

� C�;n;p;ı

Z
Bn

ˇ̌
.1� jzj2/�Xm�.b��C1

� h/.z/
ˇ̌p

d�n.z/: (7-35)

Recall that the absolute value jF j of an element F in the exterior algebra is the square root of the sum of
the squares of the coefficients of F in the standard basis.
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The case�>2 involves no new ideas, and is merely complicated by straightforward algebra. The reason
is that the solution operator ƒgC0;0

n;s1
: : : ƒgC

0;��1
n;s� acts separately in each entry of the form �

�C1
� h, an

element of the exterior algebra of C1˝Cn which we view as an alternating `2-tensor of .0; �/ forms in
Cn. These operators decompose as a sum of simpler operators with the basic property that their kernels
are identical, except that the rogue factors in each kernel differ according to the entry. Nevertheless, there
are always exactly � distinct rogue factors in each kernel and after splitting, the � rogue factors can be
associated in one-to-one fashion with each of the derivatives @=@wj in the corresponding entry of

��C1
� hD�.�C 1/

� 1X
k0D1

gk0

jgj2
ek0

�
^

�^
iD1

� 1X
kiD1

@gki

jgj2
eki

�
h:

After applying the crucial inequalities, this effectively results in replacing each derivative @=@wj by the
derivative Dj , and consequently we can write the resulting form as b��C1

� h.
This completes our proof of Theorem 2.
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[Costea et al. 2010] Ş. Costea, E. T. Sawyer, and B. D. Wick, “BMO estimates for the H1.Bn/ Corona problem”, J. Funct.
Anal. 258:11 (2010), 3818–3840. MR 2011e:32004 Zbl 1192.32004

[Fuhrmann 1968] P. A. Fuhrmann, “On the corona theorem and its application to spectral problems in Hilbert space”, Trans.
Amer. Math. Soc. 132 (1968), 55–66. MR 36 #5751 Zbl 0187.38002

[Garnett 1981] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics 96, Academic Press, New York, 1981.
MR 83g:30037 Zbl 0469.30024

[Krantz and Li 1995] S. G. Krantz and S.-Y. Li, “Some remarks on the corona problem on strongly pseudoconvex domains in
Cn”, Illinois J. Math. 39:2 (1995), 323–349. MR 96g:32014 Zbl 0920.32006

[Ligocka 1987] E. Ligocka, “Estimates in Sobolev norms k � ksp for harmonic and holomorphic functions and interpolation
between Sobolev and Hölder spaces of harmonic functions”, Studia Math. 86:3 (1987), 255–271. MR 88k:46034

[Lin 1994] K.-C. Lin, “The H p-corona theorem for the polydisc”, Trans. Amer. Math. Soc. 341:1 (1994), 371–375. MR 94c:
46106 Zbl 0798.32005

[Nikolski 2002] N. K. Nikolski, Operators, functions, and systems: an easy reading, vol. 1: Hardy, Hankel, and Toeplitz,
Mathematical Surveys and Monographs 92, American Mathematical Society, Providence, RI, 2002. MR 2003i:47001a
Zbl 1007.47001

[Ortega and Fàbrega 2000] J. M. Ortega and J. Fàbrega, “Pointwise multipliers and decomposition theorems in analytic Besov
spaces”, Math. Z. 235:1 (2000), 53–81. MR 2001i:46033 Zbl 0970.32006

[Ortega and Fàbrega 2006] J. Ortega and J. Fàbrega, “Multipliers in Hardy–Sobolev spaces”, Integral Equations Operator
Theory 55:4 (2006), 535–560. MR 2007f:46034 Zbl 1100.32002

[Øvrelid 1971] N. Øvrelid, “Integral representation formulas and Lp-estimates for the N@-equation”, Math. Scand. 29 (1971),
137–160. MR 48 #2425 Zbl 0227.35069

[Rosenblum 1980] M. Rosenblum, “A corona theorem for countably many functions”, Integral Equations Operator Theory 3:1
(1980), 125–137. MR 81e:46034 Zbl 0452.46032

[Rudin 1980] W. Rudin, Function theory in the unit ball of Cn, Grundlehren der Mathematischen Wissenschaften 241, Springer,
New York, 1980. MR 82i:32002 Zbl 0495.32001

[Sawyer 2009] E. T. Sawyer, Function theory: interpolation and corona problems, Fields Institute Monographs 25, American
Mathematical Society, Providence, RI, 2009. MR 2010c:30071 Zbl 1160.30001

[Stein 1993] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993. MR 95c:42002 Zbl 0821.42001

[Tolokonnikov 1980] V. A. Tolokonnikov, “Estimates in Carleson’s corona theorem and finitely generated ideals in an H1

algebra”, Funktsional. Anal. i Prilozhen. 14:4 (1980), 85–86. In Russian; translated in Funct. Anal. Appl. 14:4 (1981), 320–322.
MR 82a:46058 Zbl 0457.46041

[Tolokonnikov 1981] V. A. Tolokonnikov, “Estimates in the Carleson corona theorem, ideals of the algebra H1, a problem of
Szökefalvi-Nagy”, 113 (1981), 178–198. In Russian; translated in J. Sov. Math. 22:6 (1983), 1814–1828. ISSN 0090-4104.
MR 83d:46065 Zbl 0515.46032

[Tolokonnikov 1991] V. A. Tolokonnikov, “The corona theorem in algebras of bounded analytic functions”, pp. 61–93 in
Thirteen papers in algebra, functional analysis, topology, and probability, Amer. Math. Soc. Trans. 149, 1991. Zbl 0765.46041

[Treil’ 1988] S. R. Treil’, “Angles between co-invariant subspaces, and the operator corona problem: a question of Szőkefalvi-
Nagy”, Dokl. Akad. Nauk SSSR 302:5 (1988), 1063–1068. In Russian; translated in Soviet Math. Dokl. 38:2 (1989), 394-399.
MR 90b:47057 Zbl 0687.47004

[Treil and Wick 2005] S. Treil and B. D. Wick, “The matrix-valued H p corona problem in the disk and polydisk”, J. Funct.
Anal. 226:1 (2005), 138–172. MR 2006g:32010 Zbl 1076.30054



550 S, ERBAN COSTEA, ERIC T. SAWYER AND BRETT D. WICK

[Trent 2004a] T. T. Trent, “A corona theorem for multipliers on Dirichlet space”, Integral Equations Operator Theory 49:1
(2004), 123–139. MR 2005e:30090 Zbl 1055.30050

[Trent 2004b] T. T. Trent, “An H 2-corona theorem on the bidisk for infinitely many functions”, Linear Algebra Appl. 379
(2004), 213–227. MR 2005d:46108 Zbl 1069.30060

[Trent and Wick 2009] T. T. Trent and B. D. Wick, “Toeplitz corona theorems for the polydisk and the unit ball”, Complex Anal.
Oper. Theory 3:3 (2009), 729–738. MR 2010h:32004 Zbl 1210.32004

[Trent and Zhang 2006] T. Trent and X. Zhang, “A matricial corona theorem”, Proc. Amer. Math. Soc. 134:9 (2006), 2549–2558.
MR 2007b:46082 Zbl 1134.32301

[Varopoulos 1977] N. T. Varopoulos, “BMO functions and the @-equation”, Pacific J. Math. 71:1 (1977), 221–273. MR 58
#22639a Zbl 0371.35035

[Xiao 1998] J. Xiao, “The @-problem for multipliers of the Sobolev space”, Manuscripta Math. 97:2 (1998), 217–232. MR 99g:
46047 Zbl 1049.30025

[Zhu 2005] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics 226, Springer, New York,
2005. MR 2006d:46035 Zbl 1067.32005

Received 10 Mar 2010. Revised 25 May 2010. Accepted 23 Jun 2010.

S, ERBAN COSTEA: serban.costea@epfl.ch
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
Current address: École Polytechnique Fédérale de Lausanne, EPFL SB MATHGEOM, Station 8, CH-1015 Lausanne,
Switzerland

ERIC T. SAWYER: sawyer@mcmaster.ca
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

BRETT D. WICK: wick@math.gatech.edu
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, United States

mathematical sciences publishers msp



ANALYSIS AND PDE
Vol. 4, No. 4, 2011

msp

SOBOLEV SPACE ESTIMATES FOR A CLASS OF BILINEAR
PSEUDODIFFERENTIAL OPERATORS LACKING SYMBOLIC CALCULUS

FRÉDÉRIC BERNICOT AND RODOLFO H. TORRES

The reappearance of what is sometimes called exotic behavior for linear and multilinear pseudodifferential
operators is investigated. The phenomenon is shown to be present in a recently introduced class of bilinear
pseudodifferential operators which can be seen as more general variable coefficient counterparts of the
bilinear Hilbert transform and other singular bilinear multipliers operators. We prove that such operators
are unbounded on products of Lebesgue spaces but bounded on spaces of smooth functions (this is the
exotic behavior referred to). In addition, by introducing a new way to approximate the product of two
functions, estimates on a new paramultiplication are obtained.

1. Introduction

An anomalous yet recurrent phenomenon. This article is a continuation of recent work devoted to the
development of a theory of bilinear and multilinear pseudodifferential operators which are the x-dependent
counterparts of the singular multipliers modeled by the bilinear Hilbert transform. In particular we will
further study the class of bilinear pseudodifferential operators BS0

1;1I�=4
and show that it has a sometimes

called exotic or forbidden behavior regarding boundedness on function spaces.
By a bilinear pseudodifferential operator we mean an operator, defined a priori on test functions, of the

form
T� .f;g/.x/D

Z
R2n

�.x; �; �/ yf .�/yg.�/eix�.�C�/ d� d�:

Two main types of x-dependent classes of symbols have been studied in the literature. One is the
Coifman–Meyer type BSm

�;ı
.Rn/, 0� ı � � � 1, m 2 R, of symbols satisfying estimates of the form

j@˛x@
ˇ

�
@
��.x; �; �/j � C˛ˇ
 .1Cj�jC j�j/

mCıj˛j��.jˇjCj
 j/; (1-1)

for all multi-indices ˛; ˇ; 
 .
The other type corresponds to classes denoted by BSm

�;ıI �
.Rn/, 0� ı��� 1, m2R, ��=2<� ��=2,

and consisting of symbols satisfying

j@˛x@
ˇ

�
@
��.x; �; �/j � C˛ˇ
 I� .1Cj�� tan.�/�j/mCıj˛j��.jˇjCj
 j/ (1-2)

(where for � D �=2 the estimates are interpreted to decay in terms of 1Cj�j only). Both types can be

Torres’ research was supported in part by the National Science Foundation under grant DMS 0800492.
MSC2000: primary 47G30; secondary 42B15, 42C10, 35S99.
Keywords: bilinear pseudodifferential operators, exotic class, transposes, asymptotic expansion, elementary symbols,

Littlewood–Paley theory, Sobolev space estimates, T(1)-Theorem.
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seen as bilinear analogs of the classical Hörmander classes Sm
�;ı
.Rn/ of linear pseudodifferential operators

T� .f /.x/D

Z
Rn

�.x; �/ yf .�/eix��d�;

with symbols satisfying
j@˛x@

ˇ

�
�.x; �/j � C˛ˇ.1Cj�j/

mCıj˛j��jˇj: (1-3)

As the name indicates, the first type of bilinear classes was introduced by Coifman and Meyer [1975;
1978a; 1978b] at least in the case mD 0, �D 1 and ıD 0. It is now well understood that the operators in
BS0

1;0
are examples of certain singular integrals and fit within the general multilinear Calderón–Zygmund

theory developed in [Grafakos and Torres 2002]; see also [Christ and Journé 1987; Kenig and Stein 1999].
For other values of the parameters, the classes BSm

�;ı
were studied in [Bényi 2003; Bényi and Torres

2003; 2004; Bényi et al. 2006; 2010].
The general classes BSm

�;ıI �
with x-dependent symbols were first introduced in [Bényi et al. 2006]. A

connection to the bilinear Hilbert transform and the work of Lacey and Thiele [1997; 1999] is given by
the study in the x-independent case of singular multipliers in one dimension satisfying

j@
ˇ

�
@
��.�; �/j � Cˇ
 j�� tan.�/�j�jˇj�j
 j:

This type of multipliers was investigated in [Gilbert and Nahmod 2000; 2001; 2002; Muscalu et al. 2002].
We also recall that if for � in S0

1;0
.R/ we define

�.x; �; �/D �.x; � � �/; (1-4)

then � is in BS0
1;0I�=4

. These operators have a certain modulation invariance:

T� .e
iw�f; eiw�g/.x/D ei2wxT� .f;g/.x/

for all w 2 R. Such a T� fits then within the more general framework of modulation invariant bilinear
singular integrals of [Bényi et al. 2009]. Boundedness properties for symbols in the classes BS0

1;0I �
.R/,

not necessarily of the form (1-4), were obtained in [Bernicot 2008; 2010]. See [Torres 2009] for further
motivation and references.

In this article we want to discuss the reappearance of the exotic phenomenon for the parameters mD 0

and �D ıD 1. Namely, the unboundedness on Lp spaces of operators in BS0
1;0I �

, but their boundedness
on spaces of smooth functions.

In the linear case this phenomenon for S0
1;1

is by now well understood through works such as [Stein
1993; Meyer 1981a; Runst 1985; Bourdaud 1988; Hörmander 1988; Torres 1990]. It is intimately related
to the lack of calculus for the adjoints of operators in such class and, ultimately, this behavior has
been interpreted through the T .1/-Theorem of David and Journé [1984]. The class S0

1;1
is the largest

class of linear pseudodifferential operators with Calderón–Zygmund kernels but their exotic behavior
on Lp spaces is given by the fact that for T in the class S0

1;1
, the distribution T �.1/ is in general not

in BMO (though T .1/ is). Here T � is the formal transpose of T . Moreover, the boundedness of an
operator T in S0

1;1
on several other spaces of function is related to the action (properly defined) of T � on
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polynomials; see [Torres 1991] and the relation to the work of Hörmander [1989] found in [Torres 1990].
By comparison, the smaller classes S0

1;ı
with ı < 1 are closed by transposition and hence the operators in

such classes do satisfy the hypotheses of the T .1/-Theorem and are bounded on Lp for 1< p <1.
Likewise, in the bilinear case, the class BS0

1;1
is the largest class of pseudodifferential operators with

bilinear Calderón–Zygmund kernels. But again, T �1 and T �2, the two formal transposes of an operator
T in BS0

1;1
, may fail to satisfy the hypotheses of the T .1/-Theorem for bilinear Calderón–Zygmund

operators in [Grafakos and Torres 2002]. A symbolic calculus for the transposes hold in the smaller
classes BS0

1;ı
with ı < 1 [Bényi and Torres 2003; Bényi et al. 2010], rendering the boundedness of

operators in BS0
1;ı

. Though unbounded on product of Lp spaces, the class BS0
1;1

is still bounded on
product of Sobolev spaces [Bényi and Torres 2003]. For the Coifman–Meyer symbols there is then a
complete analogy with the linear situation.

For the newer more singular classes BS0
1;0I�

a symbolic calculus for the transposes was shown to exist
in [Bényi et al. 2006] and extended in [Bernicot 2010]. Hence, the boundedness on product of Lp spaces
of operators in such classes and of the form (1-4) can be easily obtained from the new T .1/-Theorem for
modulation invariant singular integrals in [Bényi et al. 2009]. The class BS0

1;0I�
also produced bounded

operators on Sobolev spaces of positive smoothness as shown in [Bernicot 2008]. All these developments
motivate us to look for exotic behavior in the larger classes BS0

1;1I�
.

New results. In this article, we show with an example that there exit modulation invariant operators in
the class BS0

1;1I�
that fail to be bounded on a product of Lp spaces (Proposition 2.1). This immediately

implies that an arbitrary operator T in BS0
1;1I�

may not have both T �1.1; 1/ and T �2.1; 1/ in BMO, as
defined in [Bényi et al. 2009]. It follows also that a symbolic calculus for the transposes in those classes
is not possible. Nevertheless, as the reader may expect after the above introduction, we shall show that
the classes are bounded on product of Sobolev spaces. For simplicity in the presentation we will only
consider the case BS0

1;1I�=4
. The corresponding results for other values of � in .��=2; �=2/ n f��=4g

(avoiding the degenerate directions) can be obtained in similar way.
In the case of modulation invariant operators, we obtained boundedness on product of Sobolev spaces

with positive smoothness (Theorem 3.1). Surprisingly if we do not assume modulation invariance we
can only obtain the corresponding result on Sobolev spaces of smoothness bigger than 1

2
(Theorem 3.3).

We do not know if the result is sharp, but a better result does not seem attainable with our techniques.
Table 1 summarizes the known results and the new ones and puts in evidence the parallel situation in
several classes of pseudodifferential operators.

As a byproduct of our results, we also improve on some known estimates on paramultiplication by
introducing a new way to approximate the pointwise product of two functions with errors better localized
in the frequency plane (see Section 4 for precise statements).

Further definitions and notation. We recall the maximal Hardy–Littlewood operator M defined for a
function f 2L1

loc.R/ by

M.f /.x/D sup
B ball
B3x

1

jBj

Z
B

jf .y/j dy:
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Class/symbol estimates Lebesgue spaces Sobolev spaces

(linear) S0
1;0

j@
ˇ
x@
˛
�
�.x; �/j � C˛ˇ.1Cj�j/

�j˛j

Lp!Lp

1< p <1

W s;p!W s;p

1< p <1; s > 0

(linear) S0
1;1

j@
ˇ
x@
˛
�
�.x; �/j � C˛ˇ.1Cj�j/

jˇj�j˛j unbounded
W s;p!W s;p

1< p <1; s > 0

(bilinear) BS0
1;0

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj�jC j�j/

�j˛j

Lp �Lq!Lt

1< p; q <1

1=pC 1=q D 1=t

W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;1

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj�jC j�j/

jˇj�j˛j unbounded
W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;0I�=4

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj� � �j/

�j˛j

Lp �Lq!Lt

1< p; q <1

1=pC 1=q D 1=t < 3
2

W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;1I�=4

j@
ˇ
x@
˛
�;�
�.x; � � �/j � C˛ˇ.1Cj� � �j/

jˇj�j˛j unbounded
W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;1I�=4

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj� � �j/

jˇj�j˛j unbounded
W s;p �W s;q!W s;t

1< p; q; t <1; s > 1
2

1=pC 1=q D 1=t

Table 1. Summary of the boundedness properties of pseudodifferential operators on
Lebesgue and Sobolev spaces.

We write M 2 DM ıM for the composition of the maximal operator with itself.
For a function f in the Schwartz space S of smooth and rapidly decreasing functions, we will define

the Fourier transform by
yf .�/D

Z
R

f .x/e�ix�� dx:

With this definition, the inverse Fourier transform is given by f _.�/D .2�/�1 yf .��/. Both the Fourier
transform and its inverse can be extended as usual to the dual space of tempered distributions S0.

For a bounded symbol � , the bilinear operator

T� .f;g/.x/D

Z
eix.�C�/ yf .�/yg.�/�.x; �; �/ d� d�

is well defined and gives a bounded function for each pair of functions f , g in S. Moreover, for �
in BS0

1;1I�=4
, the operator T� clearly maps S � S into S0 continuously. This justifies many limiting

arguments and computations that we will perform without further comment.
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The formal transposes, T �1 and T �2, of an operator T W S�S! S0 are defined by

hT �1.h;g/; f i D hT .f;g/; hi D hT �2.f; h/;gi;

where h � ; � i is the usual pairing between distributions and test functions.
We will use the notation ‰2�k for the L1-normalized function 2k‰.2k � / and consider the Littlewood–

Paley characterization of Sobolev spaces W s;p, 1< p <1, s � 0. That is, for a function ‰ in S with
spectrum contained in f� W 2�1 � j�j � 2g and another function ˆ also in S and with spectrum included
in fj�j � 1g, and such that

ŷ .�/C
X
k�0

y‰.2�k�/D 1 (1-5)

for all �, we have

kf kW s;p � kˆ�f kLp C





�X
k�0

22ks
j‰2�k �f j2

�1=2




Lp

: (1-6)

Here k � kLp denotes the usual norm of the Lebesgue space Lp.R/. For s D 0, the norm k � kW 0;p is
equivalent to k � kLp . Also, by BMO we mean as usual the classical John–Nirenberg space of functions of
bounded mean oscillation.

By homogeneity considerations, we will investigate boundedness properties of the form

T WW s;p
�W s;q

!W s;t ; (1-7)

where the exponents satisfy 1� p; q; t �1 and the Hölder relation

1

p
C

1

q
D

1

t
: (1-8)

2. Unboundedness on Lebesgue spaces

We first show that for s D 0 the bound (1-7) may fail for BS0
1;1I�=4

.R/.

Proposition 2.1. There exists a symbol � 2 S0
1;1

such that the operator T� with symbol �.x; �; �/ D
�.x; � � �/ is in BS0

1;1I�=4
and is not bounded from Lp �Lq into Lt for any exponents p; q; t satisfying

(1-8).

Proof. As in [Bényi and Torres 2003], we adapt to the bilinear situation a by now classical counterexample
in the linear setting; see [Bourdaud 1988]. Let  be a function in S satisfying y � 0, y .�/¤ 0 only for
5
7
< j�j< 5

3
, and y .�/D 1 for 5

6
� j�j< 4

3
. Consider the symbol

�.x; �/D
X
j�4

e�i2jx y .2�j�/;

which is easily seen to be in S0
1;1

. Select another function  1 in S satisfying supp . y 1/ � Œ0;
1
3
� and

define

f D

mX
jD4

aj ei2jx 1.x/;
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for arbitrarily coefficients aj . For �.x; �; �/D �.x; �� �/, we have

T� .f;  1/.x/D
X

j ;k�4

ake�i2jx

Z
R2

eix.�C�/ y .2�j .�� �// y 1.� � 2k/ y 1.�/ d� d�: (2-1)

For each k, the integration at most takes place where 0� �� 1
3

and 2k � � � 2k C
1
3

, which implies

�2k
�

1
3
� �� � � 1

3
� 2k ;

and then for each j ,
�2k�j

�
1
3
2�j
� 2�j .�� �/� 1

3
2�j
� 2k�j : (2-2)

Note that since j ; k � 4, if k > j we have

1
3
2�j
� 2k�j < �5

3
;

while if k < j

�2k�j
�

1
3
2�j > �5

7
:

It follows from (2-2) that the only nonzero term in (2-1) is the one with j D k and also

y .2�j .�� �//D 1

where the integrand is not zero. We obtain

T� .f;  1/.x/D

mX
jD4

aj e�i2jxei2jx 2
1 .x/D

� mX
jD4

aj

�
 2

1 .x/:

If we assume that the operator T� is bounded from Lp �Lq into Lt , we could conclude then thatˇ̌̌̌ mX
jD4

aj

ˇ̌̌̌
. kf kLp .

� mX
jD4

jaj j
2

�1=2

; (2-3)

where the last inequality follows from the Littlewood–Paley square function characterization of the Lp

norm of f and the constants involved depend on  1 but are independent of m. Since the aj are arbitrary
(2-3) is not possible. �

3. Sobolev space estimates

We will show that the class BS0
1;1I�=4

produces bounded operators on product of Sobolev spaces. The
situations in the modulation invariant and the general case are slightly different.

The modulation invariant case. We first consider the case of bilinear operators obtained from linear
ones as in the previous section. That is, the symbol � takes the form

�.x; �; �/D �.x; � � �/;

where � belongs to the linear class S0
1;1

.
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Theorem 3.1. Let � be a linear symbol in S0
1;1

and consider the bilinear operator T� , where �.x; �; �/D
�.x; � � �/. If s > 0 and 1 < p; q; t <1 satisfy the Hölder relation (1-8), then T� is bounded from
W s;p �W s;q into W s;t .

Proof. We begin by recalling the Coifman–Meyer reduction for symbols in S0
1;1

, which is by now a
standard technique. (For details see [Coifman and Meyer 1978b, Chapter II, Section 9] for example.) The
symbol � can be decomposed into an absolutely convergent sum of reduced symbols of the form

�.x; �/D

1X
jD0

mj .2
j x/ y .2�j�/;

where  is a smooth function whose Fourier transform is supported on f� W 2�1 � j�j � 2g and fmj gj�0

is a uniformly bounded collection of C r .R/ functions where r can be taken arbitrarily large. Due to this
reduction, we need only to study a symbol of the form

�.x; �; �/D
X
j�0

mj .2
j x/ y .2�j .� � �// WD

X
j�0

�j .x; �; �/:

We use the notation of [Bourdaud 1988]. We expand mj into an inhomogeneous Littlewood–Paley
decomposition using (1-5) so that

mj D

X
k�0

mj ;k (3-1)

with the spectrum of mj ;k contained in the dyadic annulus f� W 2k�1 � j�j � 2kC1g for k � 1, and in the
ball f�; j�j � 2g for k D 0. Then we define for h� j the function nj ;h.x/ WDmj ;h�j .2

j x/. Due to the
regularity of the function mj , we have the following properties for h� j C 1:

supp ynj ;h � f� W 2h�1
� j�j � 2hC1

g (3-2)

and
knj ;hkL1 � Cr 2.j�h/r ; (3-3)

where, we mention again, the number r can be chosen as large as we want. For hD j we have

supp ynj ;j � f� W j�j � 2jC1
g (3-4)

and
knj ;jkL1 � Cr : (3-5)

Note also that

mj .2
j x/Dmj ;k.2

j x/C
X

h�jC1

mj ;h�j .2
j x/D nj ;j .x/C

X
h�jC1

nj ;h.x/: (3-6)

Writing Tj for the bilinear operator with symbol y .2�j .� � �//, we get

T� .f;g/.x/D
X
j�0

mj .2
j x/Tj .f;g/.x/:
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To study the norm of T� .f;g/ in the Sobolev space W s;t , and with the functions ‰ and ˆ as in (1-6),
we need to estimate terms of the form ˆ�T� .f;g/ and, say for k � 2� 0,

‰2�k �T� .f;g/ WD
X
j�0

‰2�k �
�
mj .2

j
� /Tj .f;g/

�
D Ik.f;g/C IIk.f;g/;

where

Ik.f;g/ WD

k�2X
jD0

‰2�k �
�
mj .2

j
� /Tj .f;g/

�
;

IIk.f;g/ WD
X

j�k�2

‰2�k �
�
mj .2

j
� /Tj .f;g/

�
:

We treat only Ik and IIk . The estimate for the other terms can be achieved with the same arguments
(they are actually easier). For notational convenience, we identify ‰2�k with the convolution operator it
defines (and similarly with other functions).

Estimate for I . We further decompose mj .2
j � / and Tj .f;g/. Using (3-1), (3-6), and (1-5) we have

mj .2
j x/Dˆ2�k .mj .2

j
� //.x/C

X
l�k

nj ;l.x/:

We also decompose Tj .f;g/.x/ as ˆ2�k

�
Tj .f;g/

�
.x/C

P
p�k

‰2�p

�
Tj .f;g/

�
.x/. Then

Ik.f;g/D

k�2X
jD0

‰2�k

�
ˆ2�k .mj .2

j
� //ˆ2�k .Tj .f;g//

�
C

k�2X
jD0

X
l�k

‰2�k

�
nj ;lˆ2�k .Tj .f;g//

�

C

k�2X
jD0

X
p�k

‰2�k

�
ˆ2�k .mj .2

j
� //‰2�p .Tj .f;g//

�
C

k�2X
jD0

X
l;p�k

‰2�k

�
nj ;l‰2�p .Tj .f;g//

�
:

(3-7)

Using the notation z� for a generic smooth function with bounded spectrum and z for a generic smooth
function with a spectrum contained in an annulus around 0, we claim that we can write Ik as a sum of
terms of three different form:

Ik.f;g/D
X

0�j�k�2

‰2�k .T�j .f;g//� .1/k C .2/k C .3/k ;

where
.1/k WD

X
j�k�2

‰2�k

�
nj ;k
z�2�k .Tj .f;g//

�
;

.2/k WD
X

j�k�2

‰2�k

�
z�2�k .mj .2

j
� // z 2�k .Tj .f;g//

�
;

.3/k WD
X
l�k

X
j�k�2

‰2�k

�
nj ;l
z 2�l .Tj .f;g//

�
:
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Let us explain this reduction. The first sum in (3-7) can be written as a finite linear combination of terms
taking the form .1/k and .2/k . Indeed, consider one of the general terms

‰2�k

�
ˆ2�k .mj .2

j
� //ˆ2�k .Tj .f;g//

�
:

Denote by � the frequency variable of mj .2
j � / and by � that of Tj .f;g/. We have a nonvanishing

contribution if
j�j � 2k ; j�j � 2k and j�C �j ' 2k ;

where we have used that the spectrum of the product is included in Minkowski sum of spectra. Con-
sequently, this is possible only if j�j ' 2k , which corresponds to .1/k (recall that nj ;l has spectrum in
fj�j � 2lg), or j�j ' 2k , which corresponds to .2/k .

Concerning the second sum in (3-7), it can also be reduced to the sum for l � k (as the other terms
vanish) and it is a finite sum of terms like .1/k . Similar reasoning for the third term in (3-7) gives that it
is controlled by .2/k . Finally, the general term in the fourth sum in (3-7) is nonzero if

2p
˙ 2l

� 2k :

But, since the inner double sum has l;p � k, the general term is nonzero only for l � p. We see then
that the double sum (over l and p) reduces to one sum over only one parameter. It follows that the fourth
sum in (3-7) is similar to .3/k .

We now study each of the model sums .1/k , .2/k , .3/k .

The sum with .1/k . We use the estimate (3-3) for nj ;k with r > s and Young’s inequality to obtain

2ks.1/k




l2.k2N/
.




 X

jC2�k

2.j�k/r 2ksM
�
z�2�k .Tj .f;g//

�




l2.k2N/

.




 X

jC2�k

2js2.j�k/.r�s/M
�
z�2�k .Tj .f;g//

�




l2.k2N/

.


2jsM 2.Tj .f;g//




l2.j2N/

:

Therefore, 

k2ks.1/kkl2.k2N/




Lt .



k2jsM 2.Tj .f;g//kl2.j2N/




Lt (3-8)

and from the Fefferman–Stein vector-valued inequality [1971] for the maximal operator M , we deduce
that 

k2ks.1/kkl2.k2N/




Lt .



k2jsTj .f;g/kl2.j2N/




Lt :

We can use now a linearization argument. By writing rj .!/ for Rademacher functions (! 2 Œ0; 1�), we
know that (see, e.g., Appendix C in [Grafakos 2004]):

k2ks.1/kkl2.k2N/




Lt .








P
j

2jsrj .!/Tj .f;g/





Lt .!2Œ0;1�/






Lt

:

By Fubini’s Theorem, we have


k2ks.1/kkl2.k2N/





Lt
.







P

j

2jsrj .!/Tj .f;g/





Lt






Lt .!2Œ0;1�/

:
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Now for each ! 2 Œ0; 1�, the operator .f;g/!
P

j 2jsrj .!/Tj .f;g/ is the bilinear operator associated
to the symbol X

j

2jsrj .!/y‰.2
�j .� � �// 2 BS s

1;0I�=4:

It follows from [Bényi et al. 2006] and [Bernicot 2010] (since the symbol is x-independent) that these
bilinear operators are bounded from W s;p �W s;q into Lt (uniformly on ! 2 Œ0; 1�) and the proof in this
case is complete.

The sum with .2/k . This term is the most difficult to estimate. Using again the boundedness of the
functions mj in C r ,!L1, we can estimate

k2ks.2/kkl2.k2N/ .




 X

jC2�k

2ksM
�
z 2�k

�
Tj .f;g/

��
.x/






l2.k2N/

: (3-9)

We observe that

z 2�k

�
Tj .f;g/

�
.x/D

Z
z 2�k .x� z/

Z
y‰.2�j .� � �// yf .�/yg.�/eiz.�C�/ d� d� dz

D

Z
yz .2�k.�C �//y‰.2�j .� � �// yf .�/yg.�/eix.�C�/ d� d�:

We must have j�C�j � 2k and j� ��j � 2j . But we only have terms with 2j < 2k=4, so we deduce that
j�j � j�j � 2k . It follows that we can further localize in the frequency plane adding a new function  
(whose spectrum is contained in an annulus) such that

z 2�k .Tj .f;g//.x/D z 2�k

�
Tj . 2�kf; 2�k g/

�
.x/

Going back to (3-9) we obtain by the Cauchy–Schwartz inequality (there are k terms in the inner sum)

k2ks.2/kkl2.k2N/ .



2ksk1=2



M
�
z 2�k

�
Tj . 2�k .f /;  2�k .g//

��


l2.j2N/





l2.k2N/

:

We then obtain similarly as in the previous case



k2ks.2/kkl2.k2N/




Lt .











2ksk1=2




M 2
�
Tj . 2�k .f /;  2�k .g//

�



l2.j2N/






l2.k2N/







Lt

.










2ksk1=2




Tj . 2�k .f /;  2�k .g//





l2.j2N/






l2.k2N/







Lt

:

We linearize in j as before and use the fact that k1=2 . 2ks (as s > 0) to obtain



k2ks.2/kkl2.k/




Lt .














P

j

rj .!/Tj

�
2ks 2�k .f /; 2ks 2�k .g/

�



L1.!2Œ0;1�/






l2.k2N/







Lt

.













P

j

rj .!/Tj

�
2ks 2�k .f /; 2ks 2�k .g/

�



l2.k2N/






Lt







L1.!2Œ0;1�/

:
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For each ! 2 Œ0; 1�, we can invoke a vector-valued result for bilinear operators of [Grafakos and Martell
2004]. More precisely, as explained when we dealt with .1/k , for each ! 2 Œ0; 1� the bilinear operator
.f;g/!

P
j rj .!/Tj .2

ks 2�k .f /; 2ks 2�k .g// is bounded from Lp�Lq to Lt (since it is associated
to a symbol independent of x). Then, Theorem 9.1 in [Grafakos and Martell 2004] implies that the
operator admits an l2-valued bilinear extension, which yields


k2ks.2/kkl2.k2N/





Lt
.











2ks 2�k .f /





l2.k2N/






Lp








2ks 2�k .g/





l2.k2N/






Lq






L1.!/

;

with estimates uniformly in ! 2 Œ0; 1�. This concludes the proof of the case .2/k .

The sum with .3/k . The analysis in this case is entirely analogous as the case .1/k and so we leave the
details to the reader.

Estimate for II. In this case, we decompose the term IIk.f;g/ with quantities appearing as a linear
combination of terms of the form

.1/k D
X

j�k�2

‰2�k

�
nj ;j
z�2�j .Tj .f;g//

�
or .2/k D

X
j�k�2

X
l�j

‰2�j
�
nj ;l.x/ z 2�l .Tj .f;g//

�
:

Indeed with a similar reasoning as before and since j �k�2, the general quantity in IIk has a nonvanishing
contribution only if the frequency variables of mj .2

j � / or Tj .f;g/ are contained in fj�j. 2j g (which
corresponds to .1/k) or if the two frequency variables are contained in fj�j ' 2lg for some l � j (which
corresponds to .2/k).

The study of .2/k is similar to the one of .1/k with the help of fast decays in l (see (3-3)), so we only
write the proof for .1/k . By the estimates on nj ;j , we have

k2ks.1/kkl2.k2N/




Lt .











 X

j�k�2

2.k�j/s2jsM 2.Tj .f;g//






l2.k2N/







Lt

:

Using s > 0 and Young’s inequality for the l2-norm on k, we get the bound

k2jsM 2.Tj .f;g//kl2.j2N/




Lt :

We have already studied such quantities in the first case — see (3-8) — and proved the appropriate bounds.
�

Remark 3.2. Since �.x; �; �/ D �.x; � � �/ is bounded, the function T� .1; 1/ (rigorously defined in
[Bényi et al. 2009]) is given by

T� .1; 1/D �. � ; 0; 0/ 2L1 � BMO:

If the transposes of T� are also given by symbols in the classes BS0
1;1I�

or even by some bounded
functions, then we can use the bilinear T .1/-Theorem of [Bényi et al. 2009] (since T� is modulation
invariant) to conclude that T is bounded on the product of Lebesgue spaces. The counterexample of
the previous section shows that this is not always the case, so the classes BS0

1;1I�
cannot be closed by

transposition. As mentioned in the introduction the smaller classes BS0
1;0I�

are.
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The general case. In this subsection, we consider general symbols in the class BS0
1;1I�=4

. We obtain a
slightly less general result than the one in the previous case.

Theorem 3.3. If � 2 BS1;1I�=4 and s > 1
2

, then the bilinear operator T� is bounded from W s;p �W s;q

into W s;t for all exponents 1< p; q; t <1 satisfying the Hölder condition (1-8).

Proof. We want to adapt the proof of Theorem 3.1. We briefly indicate the extra difficulties faced.

Reduction to elementary symbols. We first reduce the problem to the study of elementary symbols taking
the following form

�.x; �; �/D
X
j�0
l2Z

mj ;l.2
j x/y‰

�
2�j .� � �/

�
y‰
�
l C 2�j .�C �/

�
: (3-10)

Let us give a sketch of such a reduction. Multiplying the symbol � by

y‰
�
2�j .� � �/

�
y‰
�
l C 2�j .�C �/

�
;

we localize it in frequency to the domain˚
.�; �/ W j� � �j ' 2j and j�C �C l 2j

j ' 2j ;
	

which can be compared to a ball of radius 2j . This compactly supported symbols �j ;l satisfy

j@˛x@
ˇ

�;�
�j ;l.x; �; �/j � C˛ˇ2j.˛�ˇ/:

As usually, we decompose this symbol into a Fourier series, obtaining

�j ;l.x; �; �/D
X

a;b2Z2


a;b.x/e
i.a�Cb�/ y‰

�
2�j .� � �/

�
y‰
�
l C 2�j .�C �/

�
:

The modulation term ei.a�Cb�/ does not play a role, as it corresponds to translation in physical space
(which does not modify the Lebesgue norms), it remains for us to check that the coefficients 
a;b are
fast decreasing in .a; b/ and satisfies the desired smoothness in x. To do so, we remark that, for ˛ 2 N,
integration by parts yieldsˇ̌
@˛x
a;b.2

�jx/
ˇ̌
. 2�j˛�2j

ˇ̌̌̌“
e�i.a�Cb�/@˛x�j ;l.2

�jx; �; �/ d� d�

ˇ̌̌̌
. 2�j˛�2j

�
1CjajC jbj

��M

ˇ̌̌̌“
e�i.a�Cb�/

�
1C@M

� C@
M
�

�
@˛x�j ;l.2

�jx; �; �/ d� d�

ˇ̌̌̌
.
�
1CjajC jbj

��M
;

where M is an integer that can be chosen as large as we wish. So we conclude that the functions

a;b.2

�j � / are uniformly bounded in C r (for r arbitrarily large) with fast decays in .a; b/. This operation
(expansion in Fourier series) allows us to reduce the study of � to reduced symbols taking the form (3-10).
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Study of elementary symbols. We adapt the proof of Theorem 3.1 and use the same notation. We have to
study the sum X

j�0
l2Z

mj ;l.2
j x/Tj ;l.f;g/; (3-11)

where Tj ;l is the bilinear operator associated to the x-independent symbol

y‰.2�j .� � �//y‰.l C 2�j .�C �//:

We can proceed as in the modulation invariant case and consider the different cases, eventually arriving to
the point where we need to linearize with respect to the parameter j . But now, we also have to linearize
according to the new parameter l . When we estimate the square function of Tj ;l , we have to study
‰2�k .Tj ;l.f;g// and we are interested only in the indices j ; l satisfying j�C �j � 2k with j� � �j � 2j

and j�C �C l 2j j � 2j . However, due to the use of the Cauchy–Schwartz inequality in l , we will have
an extra term bounded by 2.k�j/=2, which corresponds to the square root of the number of indices l

satisfying all these conditions. For the study of .1/k and .3/k there is no problem, since r can be chosen
satisfying r > sC 1

2
. However, for the study of .2/k we will need 2k.sC1=2/k1=2 � 2ks2ks and so we

need to assume that s > 1
2

. �

Remark 3.4. It is interesting to note that without the modulation invariance, an extra exponent 1
2

appears.
We do not know if our result is optimal or not. Moreover, unlike the modulation invariance case, we
also do not know whether a general operator T� with symbol � 2 BS1;1I�=4, and whose two adjoints
satisfy similar assumptions, is bounded on product of Lebesgue spaces. To address this question, it would
be interesting to obtained (if possible) a T .1/-Theorem as in [Bényi et al. 2009] but without assuming
modulation invariance.

4. An improvement on paramultiplication

In this section, we will use x-independent symbols in BS1;1I�=4 (and also in the smaller class BS1;0I�=4)
to describe a new paramultiplication operation. We will obtain an improvement over the classical
paramultiplication first studied in [Bony 1981] in the L2 setting and extended in [Meyer 1981a; 1981b] to
Lp norms. The classical paraproducts and their properties hold for multidimensional variables, however
our improvement works (at least at this moment) only in the one dimensional case.

We start with the classical definition.

Definition 4.1. Let f and b be two smooth functions and let ˆ and ‰ be as in (1-5) and (1-6). We
assume that for all � 2 supp ŷ and � 2 supp y‰ we have

j�j � 1
2
j�j:

Then paramultiplication by b is defined by

…b.f / WD
X
k2Z

ˆ2k .f /‰2k .b/:
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�

�

� D �

� D��

Figure 1. Support of the bilinear symbol associated to the paraproduct ….

The operator .b; f /!…b.f / can essentially be thought as a bilinear multiplier whose symbol is a
smooth decomposition of the characteristic function of the cone in Figure 1.

The following two propositions are well-known properties for paraproducts (see [Bony 1981, Theorems
2.1 and 2.5], for example, for the original results involving L2-Sobolev spaces and [Meyer 1981a; 1981b]
for extensions to other Sobolev spaces):

Proposition 4.2. For all s > 0 and p 2 .1;1/ the linear operator …b is bounded on the Sobolev space
W s;p, satisfies

k…bkW s;p!W s;p . kbkL1 ;

and the operation can be extended to an L1 function b.

The paramultiplication approximates pointwise multiplication in the following sense.

Proposition 4.3. Let 1< t <1 and s > 1=t . For f 2W s;t and g 2W s;t , we have

fg�…f .g/�…g.f /




W 2s�1=t;t . kf kW s;t kgkW s;t :

The exponent of regularity 2s� 1
t

is bigger than s for ts > 1. This gain is very important. The result is
essentially due to the fact that, in frequency space, the error term has only a contribution from f and g

when
fj�j � j�jg ;

i.e., in a cone along the two main diagonals.

Using the new bilinear operators (whose singularities are localized on a line in the frequency plane), we
can define a new paramultiplication operation z… such that the error term will be concentrated in the
frequency plane exactly in a strip (of fixed width) around the two diagonals. In this way, we will be able
to get a better gain for the exponent of regularity.
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�

�

� D �

� D��

Figure 2. Support of the bilinear symbol associated to the new paraproduct z….

Definition 4.4. Let ‚ be a smooth function on R whose Fourier transform y‚ satisfies

! � 2 H) y‚.!/D 1 and �1< ! � 1 H) y‚.!/D 0:

Then we define, for b; f 2 S.R/, the improved paramultiplication by b (written z…b.f /) by

z…b.f /.x/D

Z
R2

eix.�C�/yb.�/ yf .�/
�
y‚.� � �/y‚.�C �/C y‚.�� �/y‚.�� � �/

�
d� d�: (4-1)

The new bilinear multiplier .b; f /! z…b.f / is associated to a bilinear symbol, corresponding to a
smooth version of the characteristic function of the region in Figure 2. We remark that this new region
approximates the domain f.�; �/; j�j � j�jg better than the region in Figure 1.

This new operation satisfies a similar property to the one in Proposition 4.2.

Proposition 4.5. Let s � 0 and let 1 < p; q; t <1 be exponents satisfying (1-8). For every � > 0 and
b 2W �;p.R/, the improved paramultiplication by b is well defined and produce a bounded operation from
W s;q to W s;t . In fact, there exists a constant C D C.s; �;p; q; t/ such that for all functions f 2W s;q ,


 z…b.f /





W s;t
� CkbkW �;pkf kW s;q :

Moreover if s D 0, the exponent � D 0 is allowed.

Proof. The new paramultiplication is given by two terms, which can be studied by identical arguments.
We only deal with the first term but for simplicity in the notation we still write

z…f .b/.x/D

Z
R2

eix.�C�/yb.�/ yf .�/y‚.� � �/y‚.�C �/ d� d�:

We note that this function z…b.f / corresponds to the operator T� .b; f / associated to the bilinear symbol

�.�; �/D y‚.� � �/y‚.�C �/:

We need to show that T� is continuous from W �;p �W s;q to W s;r .
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The case s D 0. We compute the Fourier transform of T� .b; f /,

3T� .b; f /.!/D
Z
�C�D!

yb.�/ yf .�/y‚.� � �/y‚.�C �/ d� d�

D y‚.!/

Z
�C�D!

yb.�/ yf .�/y‚.� � �/ d� d�D y‚.!/3T� .b; f /.!/;

where � is given by �.�; �/ D y‚.� � �/. So in fact we can write T� .b; f / as the convolution product
between ‚ and T� .b; f /. Since the function ‚ in Definition 4.4 is smooth, the convolution operation by
‚ is bounded on Lt . We obtain also

kT� .b; f /kLt . kT� .b; f /kLt :

Now the bilinear operator T� is associated to the symbol � which satisfies the Hörmander multiplier
conditions related to the frequency line f� D �g. That is,ˇ̌

@˛� @
ˇ
��.�; �/

ˇ̌
. j� � �j�˛�ˇ

for all ˛ and ˇ. It follows from [Gilbert and Nahmod 2000] that this bilinear operator maps Lp �Lq to
Lt and we obtain the desired result

kT� .b; f /kLt . kbkLpkf kLq :

Note that for the case s D 0 no regularity on b is really needed.

The case s > 0. Let ˆ and ‰ be as in (1-5) and (1-6). We study first ˆ�T� .f;g/. We have

5ˆ�T� .b; f /.!/D ŷ .!/ y‚.!/3T� .b; f /.!/:
The spectral condition overˆ and‚ imply that !� 1. So for � and � (the frequency variables of b and f )
satisfying � � �� 1 and �C �D ! � 1, we deduce that either � is bounded or �� � �� 1. Therefore,
we can find a smooth function � and an other one z (whose spectrum is contained in an annulus around
0) such that

ˆ�T� .b; f /Dˆ�T� .b; � �f /C
X
l�0

ˆ�T�
�
z 2�l � b; z 2�l �f

�
:

Using 0< �, we get by the Cauchy–Schwartz inequalityˇ̌
ˆ�T� .b; f /

ˇ̌
�
ˇ̌
ˆ�T� .b; � �f /

ˇ̌
C

�X
l�0

22�l
ˇ̌
M
�
T� . z 2�l � b; z 2�l �f /

�ˇ̌2�1=2

: (4-2)

By the same reasoning for an integer k � 1, if � and � satisfy � � � C 1 and 1 < � C �D ! � 2k , we
deduce that either �� 2k or �� � �� 2k . So we can find a smooth function z (for convenience we
keep the same notation), whose spectrum is contained in an annulus around 0 such that for all integer k

large enough

‰2�k �T� .b; f /D‰2�k �T�
�
b; z 2�k �f

�
C

X
l�k

‰2�k �T�
�
z 2�l � b; z 2�l �f

�
:



SOBOLEV SPACE ESTIMATES FOR BILINEAR PSEUDODIFFERENTIAL OPERATORS 567

Using the same �, we get by the Minkowski and Cauchy–Schwartz inequalities�X
k

22ks
j‰2�k �T� .b; f /j

2

�1=2

.
�X

k

22ksM
�
T� .b; z 2�k �f /

�2�1=2

C

X
l�0

�X
k�l

22ks
ˇ̌̌
‰2�k �T� . z 2�l � b; z 2�l �f /

ˇ̌̌2�1=2

.
�X

k

22ksM
�
T� .b; z 2�k �f /

�2�1=2

C

X
l�0

2lsM
�
T� . z 2�l � b; z 2�l �f /

�
.
�X

k

22ksM
�
T� .b; z 2�k �f /

�2�1=2

C

�X
l�0

22l.sC�/
ˇ̌̌
M
�
T� . z 2�l � b; z 2�l �f /

�ˇ̌̌2�1=2

: (4-3)

From (4-2) and (4-3), using the Lq �Lt boundedness of T� .b; � / (proved in the first case), the vector-
valued Fefferman–Stein inequality, and its bilinear version [Grafakos and Martell 2004, Theorem 9.1],
we obtain the desired result:

kT� .b; f /kW s;t .




ˇ̌ˆ�T� .b; f /

ˇ̌
C

�X
k�0

22sk
ˇ̌
‰2�k �T� .b; f /

ˇ̌2�1=2




Lt

. kbkLp





 j� �f jC�X
k�0

22sk
ˇ̌
z 2�k �f

ˇ̌2�1=2




Lq

C





�X
l�0

22l�
ˇ̌
z 2�l � b

ˇ̌2�1=2




Lp





�X
k�0

22sk
ˇ̌
z 2�k �f

ˇ̌2�1=2




Lq

. kbkW �;pkf kW s;q : �

Remark 4.6. We note that our new bilinear operation needs an extra regularity assumption b 2W �;p to
keep the regularity of the function f (the case s > 0). This is due to the fact that the high frequencies of
b play a role in the high frequency of z…b.f / (which is natural) but in the low frequencies of z…b.f / too.
This last phenomenom does not appear in the classical paramultiplication operation. This point can be
observed in the Figures 1 and 2. Let ! be the frequency variable of the paraproduct. For small !, say
! ' 2, the contributions of b and f correspond to the intersection of the cone in Figures 1 and 2 and the
line f! D �C �g. In the first case (Figure 1) this intersection is bounded set, whereas in the second case
(Figure 2) it is not bounded and contains also high frequencies of b.

We now obtain an improvement on Proposition 4.3.

Proposition 4.7. Let t 2 .1;1/ and s � 1=t . If f 2W s;t and g 2W s;t , then

fg� z…f .g/� z…g.f /




W 2s;t . kf kW s;tkgkW s;t :

Remark 4.8. As already mentioned, in the classical paramultiplication calculus, the regularity result is
true for s � 1=t and the gain is only s� 1=t .
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Proof. Let us denote by D the difference operator

D.f;g/ WD fg� z…f .g/� z…g.f /:

It corresponds to the bilinear operator associated to the symbol � given by

�.�; �/ WD 1� y‚.�� �/y‚.�C �/� y‚.��C �/y‚.��� �/� y‚.� � �/y‚.�C �/� y‚.�� �/y‚.��� �/:

This symbol is supported in the complement of the cone drawn in Figure 2 and the one symmetric to it.
Consequently, it is supported in two strips (around the two diagonals)

supp.�/�
˚
.�; �/ W j� � �j � 3

	
[
˚
.�; �/ W j�C �j � 3

	
:

We can then reproduce a similar reasonning as used for Proposition 4.5. The symbol � can be decomposed
in two parts �1; �2; the first one supported in

˚
.�; �/ W j� C �j � 3

	
and the second one supported in˚

.�; �/ W j� � �j � 3
	
.

The bilinear multiplier associated to �1 has only low frequencies, hence

kT�1
.f;g/kW 2s;t . kT�1

.f;g/kLt :

Using Proposition 4.5 with exponents t;p; q 2 .1;1/ satisfying (1-8), it follows that

kT�1
.f;g/kW 2s;t . kf kLpkgkLq . kf kW s;tkgkW s;t ;

where we have used the Sobolev embeding W s;t �Lp since s � 1
t
> 1

t
�

1
p

(and similarly with q).
Concerning the second part �2, it is easy to check that, on its support, 1Cj�C �j, 1Cj�j and 1Cj�j

are comparable and in addition

max
˚
1Cj�C �j; 1Cj�j; 1Cj�j

	
�min

˚
1Cj�C �j; 1Cj�j; 1Cj�j

	
. 1: (4-4)

We claim that T�2
is bounded from Lt �Lt into Lt . Indeed, the symbol �2 is supported around the

diagonal � D � and it takes the form

�2.�; �/Dm.� � �/;

for a smooth function m supported on Œ�3; 3�. It follows that

T�2
.f;g/.x/D

Z
ym.y/f .x�y/g.xCy/ dy: (4-5)

Since m 2 S.R/ we have, in particular, that ym 2L1\L1, and using Minkowski’s inequality we easily
deduce that T�2

is bounded from L1 �L1 to L1 and from L1 �L1 to L1. By (complex) bilinear
interpolation, we conclude that T is bounded from Lt �Lt to Lt , for 1< t <1.

It remains to estimate T�2
in the Sobolev space. We let the reader verify that, as in similar previously

done computations (and using (4-4)), T�2
can be decomposed as

T�2
.f;g/D

X
k�0

‰2�k T�2
.‰1

2�kf;‰
2
2�k g/; (4-6)
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for some smooth frequency truncations ‰;‰1; ‰2. It follows that



�X
k�0

2k4s
ˇ̌
‰2�k T�2

.‰1
2�kf;‰

2
2�k g/

ˇ̌2�1=2




Lt

.




�X

k�0

2k4s
ˇ̌
T�2

.‰1
2�kf;‰

2
2�k g/

ˇ̌2�1=2




Lt

.




�X

k�0

2ks
j‰1

2�kf j
2

�1=2




Lt





�X
k�0

2k2s
j‰2

2�k gj2
�1=2





Lt

. kf kW s;tkgkW s;t ;

where we have used the Lt boundedness of the operator T�2
and its l2-vector-valued extension (given

again by Theorem 9.1 of [Grafakos and Martell 2004]). �

Remark 4.9. The previous proof relies on the boundedness from Lt �Lt to Lt of T�2
. This property

does not hold in the classical paraproduct situation.
We have given a proof by interpolation, where the specific form of �2 plays an important role. We

would like to describe now a direct proof of the boundedness for the simpler case t D 2. The arguments
are based on the geometric fact that the symbol �2 is supported on a strip around the diagonal with
bounded width.

We can use in the L2 case a partition of frequencies given by �k a smooth truncation on the interval
Œk � 4; kC 4�:

2�k.f /.�/D �.� � k/ yf .�/;

where � is a smooth function, supported on Œ�4; 4� and equal to 1 on Œ�3; 3�. Then, by Plancherel’s
equality, we have

kT�2
.f;g/kL2 .

�X
k2Z

k�k.T�2
.f;g/k2

L2

�1=2

:

By (4-4), it follows that with other similar truncation operators �1 and �2,

kT�2
.f;g/kL2 .

�X
k2Z



�k.T�2
.�1

k.f /;�
2
k.g///



2

L2

�1=2

.
�X

k2Z




1j��kj�4

Z ˇ̌̌2�1
k
.f /.�/1�2

k
.g/.� � �/

ˇ̌̌
d�



2

L2

�1=2

.
�X

k2Z




2�1
k
.f /




2

L2




1�2
k
.g/



2

L2

�1=2

;

where we have used that each interval Œk�4; kC4� has bounded length. Since the collection of intervals
.Œk�4; kC4�/k2Z is a bounded covering, we can conclude the boundedness of T�2

from L2�L2 into L2.
(Note that the same argument does not apply in Lp.)
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Remark 4.10. Our new definition of paramultiplication is based on bilinear operators associated to
x-independent symbols of the class BS1;0I�=4. We could use the Sobolev boundedness (proved in the
first sections of the current paper) in order to define other kind of paramultiplications with an x-dependent
symbol but we will not carry here such analysis any further.
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We consider the problem of existence and global behavior of solitons for generalized Korteweg–de Vries
equations (gKdV) with a slowly varying (in space) perturbation. We prove that such slowly varying media
induce on the soliton dynamics large dispersive effects at large times. We also prove that, unlike the
unperturbed case, there is no pure-soliton solution to the perturbed gKdV.
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1. Introduction and main results

In this work we consider the following generalized Korteweg–de Vries equation (gKdV) on the real line:

ut C .uxxCf .x;u//x D 0 in Rt �Rx : (1-1)

Here uD u.t;x/ is a real-valued function and f W R�R! R is a nonlinear function. This represents a
generalization of the Korteweg-de Vries equation (KdV), which is the case f .x; s/� s2:

ut C .uxxCu2/x D 0 in Rt �Rx : (1-2)

Another physically important case is the cubic one, f .x; s/� s3, when (1-1) is often called the (focusing)
modified KdV equation (mKdV), while the case of an arbitrary integer power is what mathematicians
generally refer to as the gKdV:

ut C .uxxCum/x D 0 in Rt �RxI m� 2 integer: (1-3)

The original KdV equation arises in physics as a model of propagation of dispersive long waves, as

Research supported in part by a CONICYT-Chile and an Allocation de Recherche grants.
MSC2000: primary 35Q51, 35Q53; secondary 37K10, 37K40.
Keywords: generalized KdV equations, soliton dynamics, slowly varying medium.
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pointed out by J. S. Russel in 1834 [Miura 1976]. The exact formulation of the KdV equation comes from
[Korteweg and de Vries 1895]. The equation was rediscovered decades later in a numerical study [Zabusky
and Kruskal 1965], after which a great amount of literature — physical, numerical and mathematical —
has emerged on the subject; see for example [Bona et al. 1980; Kalisch and Bona 2000; Shih 1980;
Mizumachi 2003; Miura 1976].

This continuing, focused research on the KdV (and gKdV) equation can be in part explained by
some striking algebraic properties. One of the first properties is the existence of localized, exponentially
decaying, stable smooth solutions called solitons. For (1-3), solitons are solutions of the form

u.t;x/ WDQc.x�x0� ct/; Qc.s/ WD c
1

m�1 Q.c1=2s/; (1-4)

where x0 and c > 0 are real numbers and Q is an explicit Schwartz function satisfying the second-order
nonlinear differential equation Q00�QCQm D 0:

Q.x/D

�
mC 1

2 cosh2
�

m�1
2

x
�� 1

m�1

: (1-5)

This solution represents a “solitary wave” defined for all time moving to the right without any change in
shape, velocity, or amplitude.

In addition, Equation (1-3) remains invariant under space and time translations. From Noether’s
theorem, these symmetries are related to conserved quantities, invariant under the gKdV flow, usually
called mass and energy:

M Œu�.t/ WD

Z
R

u2.t;x/ dx DM Œu�.0/ (mass), (1-6)

EŒu�.t/ WD
1

2

Z
R

u2
x.t;x/ dx�

1

mC 1

Z
R

umC1.t;x/ dx DEŒu�.0/ (energy): (1-7)

We now review some facts about the gKdV equation (1-3), with m� 2 an integer. The Cauchy problem
for Equation (1-1) (that is, the problem with initial condition uD u0 at t D 0) is locally well-posed for
u0 2H 1.R/ [Kenig et al. 1993]. In the case m< 5, any H 1.R/ solution is global in time, thanks to the
conservation equation (1-6), (1-7) and the Gagliardo–Nirenberg inequalityZ

R

upC1
�K.p/

�Z
R

u2

�pC3
4
�Z

R

u2
x

�p�1
4

: (1-8)

For m D 5, solitons are known to be unstable and the Cauchy problem for the corresponding gKdV
equation has finite-time blow-up solutions; see [Merle 2001; Martel and Merle 2002b; 2002a] and
references therein. It is believed that for m> 5 the situation is the same. Consequently, in this work, we
will discard high-order nonlinearities, at leading order.

In addition, there exists another conservation law, valid only for L1.R/ solutions:Z
R

u.t;x/ dx D constant: (1-9)
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The problem to be considered in this paper possesses a long and extensive physical literature. We now
briefly describe the main results concerning the propagation of solitons in a slowly varying medium.

Statement of the problem; historical review. The dynamical problem of soliton interaction with a slowly
varying medium is by now a classical problem in nonlinear wave propagation. By the soliton-medium
interaction we mean, loosely speaking, the following problem: In (1-1), consider a nonlinear function
f D f .t;x; s/, slowly varying in space and time, possibly of small amplitude, satisfying

f .t;x; s/� sm as x!˙1; for all time

(that is, (1-1) behaves like a gKdV equation at spatial infinity). Consider a soliton solution of the
corresponding variable-coefficient equation (1-1) with this nonlinearity, at some early time. We expect
that this solution does interact with the medium in space and time, here represented by the nonlinearity
f .t;x; s/. In a slowly varying medium this interaction, small locally in time, may be important in the
long-time behavior of the solution. The resulting solution after the interaction is precisely the object of
study. In particular, one considers whether changes in size, position, or shape may be present after some
large time, or even the creation or destruction of solitons.

We review some relevant works in this direction. The early works of Fermi, Pasta and Ulam [Fermi
et al. 1955] and of Zabusky and Kruskal [1965] established complete integrability for KdV and other
equations, leading to a new branch of research devoted to the study of the dynamics of KdV solitons in a
slowly varying (in time) medium. (See [Miura 1976] for a review.) In [Kaup and Newell 1978; Karpman
and Maslov 1977] the focus is on perturbations of integrable equations, and in particular the perturbed (in
time � ) gKdV equation

u� C .ˇ."�/uxxC˛."�/u
m/x D 0; mD 2; 3I ˛; ˇ > 0: (1-10)

This last equation models, for example, the propagation of a wave governed by the KdV equation along a
canal of varying depth, among many other physical situations [Karpman and Maslov 1977; Asano 1974].

Note that this equation leaves invariant (1-6) and (1-9), but the corresponding energy for this equation
is not conserved anymore. After the transformation

t WD

Z �

0

ˇ."s/ ds; Qu.t;x/ WD
�
˛

ˇ

� 1
m�1

."�/u.�;x/;

the preceding equation becomes

Qut C . QuxxC Qu
m/x D "
 ."t/ Qu; where "
 ."t/ WD

1

m� 1
@t

�
log
�˛
ˇ

�
"�.t/

�
: (1-11)

The authors performed a perturbative analysis using inverse scattering theory to describe the dynamics of
a soliton (for the integrable equation) in this variable regime. Of interest is the existence of a dispersive
shelf-like tail behind the soliton, a phenomenon related to the lack of energy conservation (1-7) for the
equation (1-11).

The problem was subsequently addressed in several other works and for different integrable models;
see, for example, [Ko and Kuehl 1978; Fernandez et al. 1979; Grimshaw 1979a; Grimshaw 1979b].
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Moreover, using inverse-scattering techniques, the production of a second (and small) solitary wave
was pointed out in [Wright 1980] — see also [Grimshaw and Pudjaprasetya 2004] — but a satisfactory
analytical proof of this phenomenon is still out of reach. See [Newell 1985, pp. 87–97] for a more detailed
account.

Another important motivation comes from Lochak’s interesting observation that, based in heuristic
conservation laws, well-modulated solitons of (1-11) are good candidates for adiabatically stable objects
for this infinite-dimensional dynamical system. See [Lochak 1984; Lochak and Meunier 1988] for details.

In this paper we address the problem of soliton dynamics in the case of an inhomogeneous medium,
slowly varying in space but constant in time. This model, from the mathematical point of view, introduces
several difficulties, as we will see below; but at the same time it reproduces the creation of a shelf-like tail
behind the soliton, as computationally attested by physicists. Our main result is that, as a consequence of
this tail, there is no pure soliton solution (unlike gKdV) for this regime. This result illustrates the lack of
pure solutions of nontrivial perturbations of gKdV equations.

Setting and hypotheses. We come back to the general equation (1-1), and consider a small parameter ">0.
Following (1-10), we will assume throughout that the nonlinearity f is a slowly varying x-dependent
function of the power cases, independent of time, plus a (possibly zero) linear term:�

f .x; s/ WD ��sC a".x/s
m; �� 0; mD 2; 3 and 4:

a".x/ WD a."x/ 2 C 3.R/:
(1-12)

We will suppose the parameter � fixed and independent of ". Concerning the function a we will assume
that there exist constants K; 
 > 0 such that8<:

1< a.r/ < 2; a0.r/ > 0 for r 2 R;

0< a.r/� 1�Ke
 r for r � 0;

0< 2� a.r/�Ke�
 r for r � 0:

(1-13)

Thus

lim
r!�1

a.r/D 1 and lim
r!C1

a.r/D 2I

however, the special choices (1 and 2) of these limits are irrelevant for the results of this paper. The only
necessary conditions are that

0< a�1 WD lim
r!�1

a.r/ < lim
r!C1

a.r/DW a1 <C1:

Finally, to deal with a special stability property of the mass in Theorems 3.1 and 6.1 (see also (6-22)),
we will need an additional, but not very restrictive, hypothesis: there exists K> 0 such that for mD 2; 3; 4,

j.a1=m/.3/.s/j �K.a1=m/0.s/ for all s 2 R: (1-14)

This condition is often satisfied (provided a0 is not be a compactly supported function).



SOLITON DYNAMICS FOR GENERALIZED KdV EQUATIONS IN A SLOWLY VARYING MEDIUM 577

Recapitulating, given 0� �< 1, "0 > 0, and a function a satisfying (1-13) and (1-14), we will consider
the following equation, for which we use the abbreviation “aKdV” (after the potential a):�

ut C .uxx ��uC a".x/u
m/x D 0 in Rt �Rx;

a".x/D a."x/; with mD 2; 3; 4 and 0< "� "0:
(1-15)

The main issue that we will study in this paper is the interaction problem between a soliton and a
slowly varying medium, here represented by the potential a". In other words, we intend to study for (1-15)
whether it is possible to generalize the well-known soliton-like solution Q of gKdV. It is well-known
that in the case f .t;x; s/D f .s/, and under reasonable assumptions (see for example [Berestycki and
Lions 1983]), there exist soliton-like solutions, constructed via ground states of the corresponding elliptic
equation for a bound state. However, in this paper our objective will be the study of soliton solutions for
a variable-coefficient equation, where there is no obvious ground state.

As a heuristic introduction to the results to be proved, consider that (1-15) has the form of a gKdV
equation at infinity: �

ut C .uxx ��uC 1um/x D 0 as x!�1;

ut C .uxx ��uC 2um/x D 0 as x!C1:
(1-16)

In particular, if Q is the soliton (1-5) of the standard gKdV equation, one should be able of to construct a
soliton-like solution u.t/ of (1-15) such that

u.t/�Q. � � .1��/t/ as t !�1;

in some sense to be defined. Indeed, Q. � � .1��/t/ is an actual solution for the first equation in (1-16)
on the whole real line, moving toward the left if � > 1, toward the right if � < 1, and stationary if �D 1.

On the other hand, after passing the interaction region, by stability properties, this solution should
behave, for small ", like

2�
1

m�1 Qc1

�
x� .c1��/t � �.t/

�
C smaller-order terms in " as t !C1; (1-17)

where c1 is a unknown positive number (a limiting scaling parameter) and �.t/ is small compared with
.c1��/t . In fact, note that if v D v.t/ is a solution of (1-3) then u.t/ WD 2�

1
m�1 v.t/ is a solution of

ut C .uxx ��uC 2um/x D 0 in Rt �Rx : (1-18)

In conclusion, this heuristic suggests that even if the potential varies slowly, the soliton will experience
nontrivial transformations on its scaling and shape, of the same order as that of the amplitude variation of
the potential a.

Before we state our results, some important facts are in order. First, Equation (1-15) is unfortunately
no longer invariant under scaling and space translations. Moreover, a nonzero solution of (1-15) might
lose or gain some mass, depending on the sign of u, in the sense that, in the case of rapidly decaying
functions, the quantity

M Œu�.t/D
1

2

Z
R

u2.t;x/ dx (1-19)



578 CLAUDIO MUÑOZ C.

satisfies the identity

@tM Œu�.t/D�
"

mC 1

Z
R

a0."x/umC1: (1-20)

Another key observation is the following: in the cubic case mD 3, with our choice of a", the mass is
always nonincreasing.

On the other hand, when �� 0, the novel energy

EaŒu�.t/ WD
1

2

Z
R

u2
x.t;x/ dxC

�

2

Z
R

u2.t;x/ dx�
1

mC 1

Z
R

a".x/u
mC1.t;x/ dx (1-21)

remains conserved for all time. Moreover, a simple energy balance at ˙1 allows one to determine
heuristically the limiting scaling in (1-17) in certain cases. For example, if �D 0, and we suppose that
the lower-order terms are of zero mass at infinity, we have from (1-17)

Ea�1Œu�.�1/DEŒQ�� 2�
2

m�1 c
2

m�1
C 1

2
1 EŒQ�DEa�2Œu�.C1/; EŒQ�¤ 0

(see Section A.6 in the Appendix). This implies that c1 � 2
4

mC3 > 1. These informal arguments suggest
the following definition.

Definition 1.0 (Pure generalized soliton solution for aKdV). Let 0� � < 1 be a fixed number. We will
say that (1-15) admits a pure generalized soliton-like solution (of scaling 1) if there exist a C 1 real valued
function �D �.t/ defined for all large times and a global in time H 1.R/ solution u.t/ of (1-15) such that

lim
t!�1

ku.t/�Q. � � .1��/t/kH 1.R/ D lim
t!C1



u.t/� 2�
1

m�1 Qc1. � � �.t//




H 1.R/
D 0;

with limt!C1 �.t/DC1, and where c1 D c1.�/ is the scaling suggested by the energy conservation
law (1-21).

Remark. Note that the existence of a translation parameter �.t/ is a necessary condition: it is even
present in the orbital stability of small perturbations of solitons for gKdV. See [Benjamin 1972; Bona et al.
1987; Cazenave and Lions 1982], for example. We have not included the case �.t/!�1 as t !C1,
corresponding to a reflected soliton, but we hope to consider this case elsewhere.

Previous analytic results on soliton dynamics in a slowly varying medium. The problem of describing
analytically the soliton dynamics of different integrable models in a slowly varying medium has received
some increasing attention during the last years. Concerning the KdV equation, our belief is that the
first result in this direction was given in [Dejak and Jonsson 2006; Dejak and Sigal 2006]. These works
considered the long time dynamics of solitary waves (solitons) over slowly varying perturbations of KdV
and modified KdV equations

ut C
�
uxx � b.t;x/uCum

�
x
D 0 on Rt �Rx; mD 2; 3; (1-22)

and where b is assumed having small size and small variation, in the sense that for " small,

j@n
t @

p
xbj � "nCpC1 for 0� nCp � 2:
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(Actually their conclusions hold in more generality, but for our purposes we state the closest version to
our approach; see [Dejak and Jonsson 2006] for the detailed version.) With these hypotheses the authors
showed that if mD 2 and the initial condition u0 satisfies the orbital stability condition

inf
0<c0<c<c1

a2R

ku0�Qc. � � a/kH 1.R/ � "
2s; s < 1

2
; c0; c1 given;

then for any for time t �K"�s the solution can be decomposed as

u.t;x/DQc.t/.x� �.t//Cw.t;x/;

where kw.t/kH 1.R/ �K"s and �.t/; c.t/ satisfies the following differential system

�0.t/D c.t/� b.t; a.t//CO."2s/; c0.t/DO."2s/I

during the interval of time considered. In the cubic case (mD 3) the results are slightly better; see [Dejak
and Jonsson 2006].

Our model can be written as a generalized, time-independent Dejak–Jonsson–Sigal equation of the
type (1-22), after writing v.t;x/ WD Qa."x/u.t;x/, with Qa."x/ WD a

1
m�1 ."x/. From these considerations

we expect to recover and to improve the results obtained by those authors.
Holmer [� 2011] has announced some improvements on the Dejak–Sigal results, by assuming b of

amplitude OL1.1/. He proves that

sup
t.ı"�1jlog "j

kw.t/kH 1.R/ . "1=2�ı; for some ı > 0.

In this paper we have preferred to avoid the inclusion of a time-dependent potential, and to treat the
infinite time prescribed and pure data, instead of the standard Cauchy problem. This choice will have
positive consequences for our main results, Theorems 1.1 and 1.2, where we will describe with accuracy
the dynamical problem, including its asymptotics as t !C1.

The soliton-potential interaction can be considered also in the case of the nonlinear Schrödinger equation

iut Cuxx �V ."x/uCjuj2uD 0 on Rt �RxI (1-23)

see [Muñoz � 2011b], for example. Results similar to the ones just mentioned were obtained in [Holmer
and Zworski 2008; Holmer et al. 2007a; 2007b; Jonsson et al. 2006; Fröhlich et al. 2004]. Finally we
point out the recent [Perelman 2009], concerning the critical quintic NLS equation.

Main results. Let

T" WD
1

1��
"�1� 1

100 > 0: (1-24)

This parameter can be understood as the interaction time between the soliton and the potential. In other
words, at time t D �T" the soliton should remain almost unperturbed, and at time t D T" the soliton
should have completely crossed the influence region of the potential. Note that the asymptotic �� 1 is a
degenerate case and it will not be considered in this work.
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In Theorems 1.1, 1.2, and 1.3 we will show that, under suitable assumptions, a pure soliton-like solution
as in Definition 1.0 does not exist, in the sense that the lower order terms appearing after the interaction
always have positive mass. This phenomenon will be a consequence of the dispersion produced during
the crossing of the soliton with the main core of the potential a".

We will from now on assume the validity of assumptions (1-12), (1-13), and (1-14). Our first result
describes the dynamics of the pure soliton-like solution for the aKdV equation (1-15).

Theorem 1.1 (Dynamics of interaction of solitons for gKdV equations in a variable medium). Let
mD 2; 3; 4, and let 0� �� �0 WD

5�m
mC3

be a fixed number. There exists a small constant "0 > 0 such that
for all 0< " < "0 the following statements hold.

(1) Existence of a soliton-like solution. There exists a solution u 2 C.R;H 1.R// of (1-15), global in
time, such that

lim
t!�1



u.t/�Q. � � .1��/t/




H 1.R/
D 0; (1-25)

with conserved energy EaŒu�.t/D .���0/M ŒQ�� 0. This solution is unique if mD 3, or if mD 2; 4

and � > 0.

(2) Soliton-potential interaction. There exist K > 0 and numbers c1.�/ � 1, �"; QT" 2 R such that the
solution u.t/ above satisfies

u. QT"/� 2�1=.m�1/Qc1.x� �"/




H 1.R/

�K"1=2: (1-26)

Moreover,

c1.�D 0/D 2
4

mC3 and c1.�D �0/D 1: (1-27)

Finally we have the bounds

jT"� QT"j �
T"

100
and .1��/T" � �" � .2c1.�/��� 1/T": (1-28)

Note that �0 D �0.m/ is always less than 1 for mD 2; 3; 4, while �0 D 0 for mD 5 (the L2-critical
case). Also, for �D �0 we have EaŒu�.t/D .���0/M ŒQ�D 0; and if � < �0 we have EaŒu�.t/ < 0 for
all t 2 R. For the consequences of this property and a detailed study of c1.�/, see Lemma 4.4.

Remark. The proof of Theorem 1.1 is based on the construction of an approximate solution of (1-15)
in the interaction region, satisfying certain symmetries. However, at some point we formally obtain an
infinite mass term (see [Martel and Merle 2011; 2010] for a similar problem). It turns out that to obtain a
localized solution we need to break the symmetry of this solution (see Proposition 4.7 for the details).
This lack of symmetry leads to the error "1=2 in the theorem. At this price we describe completely the
interaction, a completely new result.

The next step is understanding the long time behavior of our generalized soliton solution.

Theorem 1.2 (Long time behavior). Suppose, in addition to the assumptions of Theorem 1.1, that
0< �� �0 for the cases mD 2; 4, and 0� �� �0 if mD 3. Let 0< ˇ < 1

2
.c1.�/��/. There exists a
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constant "0 > 0 such that, for all 0 < " � "0, there exist K; cC > 0 and a C 1-function �2.t/ defined in
ŒT";C1/ such that the function

wC.t; � / WD u.t; � /� 2
�1

m�1 QcC. � � �2.t//

has the following properties:

(1) Stability. For any t � T",

kwC.t/kH 1.R/Cjc
C
� c1.�/jC j�

0
2.t/� .c1.�/��/j �K"1=2: (1-29)

(2) Asymptotic stability.

lim
t!C1

kwC.t/kH 1.x>ˇt/ D 0: (1-30)

(3) Bounds on the parameters. Define � WD 1
m�1
�

1
4
> 0. The limit

lim
t!C1

EaŒw
C�.t/DWEC (1-31)

exists and satisfies the identity

EC D
.cC/2�

22=.m�1/
.�0cC��/M ŒQ�C .���0/M ŒQ�; (1-32)

and for all mD 2; 3; 4 and 0< �� �0 there exists K.�/ > 0 such that

1

K
lim sup
t!C1

kwC.t/k2
H 1.R/

�EC �K": (1-33)

In the case mD 3, we have 3
2
EC D . cC

c1

�3=2
� 1 if �D 0, and

1

K
lim sup
t!C1

kwC.t/k2
H 1.R/

�

�
cC

c1

�2�
� 1�K" if � > 0: (1-34)

Remarks. (a) The stability and asymptotic stability of solitary waves for generalized KdV equations
have been widely studied since the 1980s. The main ideas in our proof of (1-29) and (1-30) appear
in the literature; see [Benjamin 1972; Cazenave and Lions 1982; Bona et al. 1987; Martel et al. 2002;
Pego and Weinstein 1994], for example.

(b) The sign of a0. � / is a sufficient condition to ensure stability, but it is conceivable that it can be
replaced by a weaker one, say a0.s/ > 0 for all s > s0.

Changes for decreasing potentials. Suppose the potential a. � / satisfies instead a0.s/ < 0 and

1D lim
s!�1

a.s/ > a.s/ > lim
t!C1

a.s/D 1
2
:

Statement (1) of Theorem 1.1 remains true, except that we do not know whether the solution is unique.
Part (2) holds true with the coefficient 2

1
m�1 in front of Qc1 , �

�0
< c1.�/ < 1, and c1 D 2�p for �D 0

(see Lemma 4.4 for this). Bounds similar to (1-28) hold true, with the obvious changes. By contrast, we
have no analog for Theorem 1.2: long-time stability for decreasing potentials remains an open question.
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A fundamental question arises from Theorems 1.1 and 1.2: Is the solution a pure soliton (Definition 1.0)
for the aKdV equation with a" � 2? This question is equivalent to deciding whether

lim sup
t!C1

kwC.t/kH 1.R/ D 0:

Our last result shows that this behavior cannot happen.

Theorem 1.3 (Nonexistence of pure soliton-like solutions for aKdV). With the assumptions and notation
of Theorems 1.1 and 1.2, suppose in addition that mD 2; 3; 4 with 0< �� �0. There exists "0 > 0 such
that, for all 0< " < "0,

lim sup
t!C1

kwC.t/kH 1.R/ > 0: (1-35)

Remark. In addition to the classical problem of extending the results to more general potentials a. � /,
several related questions arise naturally, which we are as yet unable to solve:

(1) Is every solution of (1-15) with H 1.R/ data globally bounded in time? In Proposition 2.2 we prove
that every solution is globally well defined for all positive times, and uniformly bounded if � > 0 or
mD 3. However, for the cases mD 2; 4 and �D 0 we only have been able to find an exponential
upper bound on the H 1-norm of the solution. Is every solution described in Theorem 1.1 globally
bounded?

(2) In the cases mD 2; 4 and �D 0, is the solution constructed in Theorem 1.1 unique? Is it stable for
large times? (Compare Theorem 6.1.)

(3) What is the behavior of the solution for a coefficient �0 < � < 1? We believe in this situation the
soliton still survives, but is reflected by the potential, propagating to the left for large t . (See [Muñoz
� 2011a].)

(4) [Added in proof] We have recently proved a quantitative lower bound on the defect [Muñoz 2011].

(5) Is there scattering modulo the soliton solution, at infinity?

The case of a time-dependent potential. As might be expected, our results are also valid, with easier
proofs, for the time-dependent gKdV equation

ut C .uxx ��uC a."t/um/x D 0 in Rt �Rx; (1-36)

where a satisfies (1-13)–(1-14), with the time variable in place of r . This equation is invariant under
scaling and space translations. In addition, the L1 integral and the mass M Œu� remain constants and the
energy

QEŒu�.t/ WD
1

2

Z
R

u2
xC

�

2

Z
R

u2
�

a."t/

mC 1

Z
R

umC1

satisfies
@t
QEŒu�.t/D�

"a0."t/

mC 1

Z
R

umC1:

Theorems 1.1 and 1.2 hold with c1.�D 0/D 24=.5�m/ (because of mass conservation), for any �� 0

and mD 2; 3; 4 (follow Lemma 4.4 to see this). We leave the details to the reader.
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Sketch of proofs. Our arguments combine techniques adapted from [Martel 2005; Martel et al. 2010;
Martel and Merle 2008; 2011; 2007; 2010] with some new computations. We separate the analysis into
three time intervals: t ��"�1, jt j � ", and "�1� t . On each interval the solution possesses a specific
behavior:

t ��"�1: In this interval of time we prove that u.t/ remains very close to a soliton solution, with no
change in the scaling and shift parameters (Theorem 3.1). This is possible for very large negative
times, where the soliton is still far from the interacting region jt j � "�1.

jt j � "�1: Here the soliton-potential interaction leads the dynamics of u.t/. The novelty here is the
construction of an approximate solution of (1-15) with high order of accuracy such that: (a) at time
t � �"�1 this solution is close to the soliton solution and therefore to u.t/; (b) it describes the
soliton-potential interaction inside this interval, in particular we show the existence of a dispersive
tail behind the soliton; and (c) it is close to u.t/ in the whole interval Œ�"�1; "�1�, uniformly on
time, apart from a modulation on a translation parameter (Theorem 4.1).

t � "�1: Here some stability properties (Theorem 6.1) are used to establish the convergence of the
solution u.t/ to a soliton-like solution with modified parameters.

Additionally, by using a contradiction argument, it will be possible to show that the residue of the
interaction at time t � "�1 is still present at infinity. This gives the conclusion of the main Theorems 1.1
and 1.3. Indeed, recall the L1 conserved quantity from (1-9). This expression is in general useless when
the equation is considered on the whole real line R, but it has some striking applications in the blow-up
theory (see [Merle 2001]). In our case, it will be useful in discarding the existence of a pure soliton-like
solution.

Accordingly, the paper is organized as follows. In Section 2 we introduce some basic tools to study the
interaction and asymptotic problems. Section 3 is devoted to the construction of the soliton like solution
for large negative time. Sections 4 and 5 deal with the proof of Theorem 1.1. In Section 6 we prove the
asymptotic behavior as t !C1, namely Theorem 1.2. Finally we prove Theorem 1.3 (Section 7).

Remark. We believe that the main results of this paper are also valid for general subcritical nonlinearities,
with stable solitons. In this case the scaling property of the soliton is no longer valid, so in order to
construct an approximate solution one should modify the main argument of the proof.

2. Preliminaries

Throughout this paper, C , K, and 
 > 0 will denote constants independent of ", possibly changing from
one line to another.

To treat the case � > 0 we need to extend the energy (1-7) by adding a mass term. We therefore
introduce a new energy function E1Œu�, the particular case of (1-21) when a� 1.

The Cauchy problem. First we develop a suitable local well-posedness theory for the Cauchy problem
associated to (1-15).
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Let u0 2H s.R/, s � 1, �� 0. We consider the initial value problem�
ut C .uxx ��uC a".x/u

m/x D 0 in Rt �Rx

u.t D 0/D u0;
(2-1)

where mD 2; 3; 4. The analogous problem for the standard gKdV equation (1-3) has been extensively
studied. For dealing with (2-1), we will follow closely the contraction method developed in [Kenig et al.
1993]. The following result is proved with standard techniques based on the Picard iteration procedure
and the tools developed in this last reference:

Proposition 2.1 (Local well-posedness in H s.R/). (See also [Kenig et al. 1993]). Suppose u0 2H s.R/,
s� 1. Then (2-1) has a unique (in a certain sense) solution u2C.I;H s.R// defined in a maximal interval
of existence I 3 0. Moreover:

(1) Blow-up alternative. If sup I <C1, then

lim
t"sup I

ku.t/kH s.R/ DC1: (2-2)

The same conclusion holds if inf I > �1.

(2) Energy conservation. For any t 2 I the energy EaŒu�.t/ from (1-21) remains constant.

(3) Mass variation. For all t 2 I the mass M Œu�.t/ defined in (1-19) satisfies (1-20).

(4) Suppose u0 2L1.R/\H 1.R/. Then (1-9) is well defined and remains constant for all t 2 I . �

Once local-in-time existence is established, the next step is to ask for the possibility of a global
well-posedness theorem. In many cases the proof reduces to the use of conservation laws to obtain bounds
on the norm of the solution for every time. In the case of gKdV equations (m � 4) this was proved
in [Kenig et al. 1993] using mass and energy conservation; however, in our case (1-20) is not enough
to control the L2 norm of the solution. As stated in the Introduction, global existence for cubic case
mD 3 follows from the mass decreasing property. However, to deal with the remaining cases, we will
modify our arguments by introducing a perturbed mass, almost decreasing in time, in order to prove
global existence. Indeed, define for each t 2 I and mD 2; 3; 4 the quantity

OM Œu�.t/ WD
1

2

Z
R

a1=m
" .x/u2.t;x/ dx: (2-3)

It is clear that OM Œu�.t/ is well defined, for any time t 2 I and solution u 2H 1.R/ of (2-1). For all t 2 I

we have the equivalence property

M Œu�.t/� OM Œu�.t/� 21=mM Œu�.t/: (2-4)

This modified mass enjoys a striking property:

Proposition 2.2 (Global existence in H 1.R/). Consider the solution u.t/ of the Cauchy problem (2-1)
with u.0/D u0 2H 1.R/ and maximal interval of existence I . Then u.t/ is continuously well defined in
H 1.R/ for any t � 0. More precisely:
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(1) Cubic case. Suppose m D 3, � � 0. Then I D .Qt0;C1/ for some �1 � Qt0 < 0 and there exists
K DK.ku0kH 1.R// > 0 such that

sup
t�0

ku.t/kH 1.R/ �K: (2-5)

(2) Almost monotonicity of the modified mass OM and global existence. For any mD 2; 3; 4 and for all
t 2 I we have

@t
OM Œu�.t/D�

3

2
"

Z
R

.a1=m/0."x/u2
x �

"

2

Z
R

Œ�.a1=m/0� "2.a1=m/.3/�."x/u2: (2-6)

In particular, (a) I is again of the form .Qt0;C1/; (b) item if � > 0 there exists "0 > 0 small such
that (2-5) holds; and (c) if �D 0 and mD 2; 4, there exists K DK.ku0kH 1.R// such that we have
for all t � 0 the exponential bound

ku.t/kH 1.R/ �KeK"3t : (2-7)

Proof of Proposition 2.2. First we consider the cubic case, mD 3. From (1-20) we have

M Œu�.t/�M Œu�.0/ for any t 2 I; t � 0:

This bound implies global existence for positive times. Indeed, the bound rules out a L2 blow-up in
(positive) finite and infinite time, namely (2-2). In order to control the H 1.R/ norm, we use energy
conservation, the Gagliardo–Nirenberg inequality (1-8), and the preceding bound on the mass. Indeed,
for any t 2 I , t � 0, and redefining the constant K if necessary, we have

1

2

Z
R

u2
x DEaŒu�.0/�

1

2
�

Z
R

u2
C

1

mC 1

Z
R

a"u
mC1

�EaŒu�.0/C�M Œu�.0/CKku.t/k
.mC3/=2

L2.R/
kux.t/k

.m�1/=2

L2.R/
:

Noticing that 1
4
.m� 1/ < 1 for mD 2; 3; 4, we haveZ

R

u2
x �K.�; ku0kH 1.R//I

for a large constant K. This implies the H 1.R/ global existence for all positive times and the uniform
bound in time (2-5).

To prove (2-6), we proceed by formally taking the time derivative. Every step can be rigorously justified
by introducing mollifiers. From (1-15) we have

@t
OM Œu�.t/D

Z
R

a1=m
" uut D

Z
R

.a1=m
" u/x.uxx ��uC a"u

m/

D "

Z
R

�
.a1=m/0."x/uuxx �

1
2
.a1=m/0."x/u2

x

�
�
�

2
"

Z
R

.a1=m/0."x/u2

C "

Z
R

a".a
1=m/0."x/umC1

�
"

mC 1

Z
R

.a1=mC1/0."x/umC1

D�
1

2
"

Z
R

Œ�.a1=m/0."x/� "2.a1=m/.3/."x/�u2
�

3

2
"

Z
R

.a1=m/0."x/u2
x :
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This proves (2-6). Now, in order to establish global H 1.R/ existence for positive times, we first control
the L2 norm using OM Œu�.t/. Let us consider the case � > 0. In this case, taking "0 small enough, and
thanks to (1-14), we have

@t
OM Œu�.t/� 0;

and thus OM Œu�.t/� OM Œu�.0/ for all t 2 I , t � 0. The rest of the proof is identical to the cubic case.
Now we consider the last case, namely m D 2; 4 and � D 0. Here the argument above is not valid

anymore; we have only the existence of K > 0 independent of " such that

@t
OM Œu�.t/�K"3 OM Œu�.t/:

This implies that, for any t 2 I with t � 0,

M Œu�.t/� OM Œu�.t/�K OM Œu�.0/eK"3t :

This bound rules out a L2 blow-up in finite time for positive times. To control the H 1.R/ norm, we use
the same argument from the preceding case. Indeed, for any t 2 I , redefining the constant K if necessary,
we have Z

R

u2
x �KeK"3t :

This implies the global H 1.R/ existence for positive times. �
Remark (Mass monotonicity). Consider a solution u.t/ 2H 1.R/ of (1-15) and define the modified mass

QM Œu�.t/ WD

�
M Œu�.t/ if mD 3;

OM Œu�.t/ if mD 2; 4 and � > 0:
(2-8)

Proposition 2.2 implies that there exists "0 > 0 such that QM Œu�.t/� QM Œu�.t0/� 0, for all 0< "� "0 and
all t 2 R with t � t0.

Spectral properties of the linearized gKdV operator. We next consider some important properties of the
linearized operator associated to (1-15). Fix c > 0 and mD 2; 3; 4, and let

Lw.y/ WD �wyy C cw�mQm�1
c .y/w; where Qc.y/ WD c

1
m�1 Q.

p
cy/: (2-9)

Here w D w.y/. We also denote L0 WD LcD1.

Lemma 2.3 (Spectral properties of L). (See [Martel and Merle 2009].) The operator L defined on L2.R/

by (2-9) has domain H 2.R/, is self-adjoint, and satisfies the following properties:

(1) First eigenvalue. There exists a unique �m > 0 such that LQ
mC1

2
c D��mQ

mC1
2

c .

(2) The kernel of L is spanned by Q0c , and we have L.ƒQc/D�Qc , where

ƒQc WD @c0Qc0
ˇ̌
c0Dc
D

1

c

�
1

m�1
Qc C

1

2
xQ0c

�
: (2-10)

The continuous spectrum of L is given by �cont.L/D Œc;C1/.

(3) Inverse. For all h 2 L2.R/ such that
R

R
hQ0c D 0, there exists a unique Oh 2 H 2.R/ such thatR

R
OhQ0c D 0 and L OhD h. Moreover, if h is even (resp. odd), then Oh is even (resp. odd).
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(4) Regularity in the Schwartz space S. For h 2H 2.R/, Lh 2 S implies h 2 S.

(5) Coercivity.

(a) There exist K; �c > 0 such, that for all w 2H 1.R/,

BŒw;w� WD

Z
R

.w2
xC cw2

�mQm�1
c w2/� �c

Z
R

w2
�K

ˇ̌̌̌Z
R

wQc

ˇ̌̌̌2
�K

ˇ̌̌̌Z
R

wQ0c

ˇ̌̌̌2
:

In particular, if
R

R
wQc D

R
R
wQ0c D 0, then the functional BŒw;w� is positive definite in

H 1.R/.
(b) The same conclusion holds if

R
R
wQc D

R
R
wxQc D 0,.

Now we introduce some notation, taken from [Martel and Merle 2007]. We denote by Y the set of
C1 functions f such that for all j 2 N there exist Kj ; rj > 0 such that for all x 2 R we have

jf .j/.x/j �Kj .1Cjxj/
rj e�jxj:

Now we recall a function used to describe the effect of dispersion on the solution. Set '.x/ WD�Q0.x/

Q.x/
;

then ' is an odd function and has the following properties (see [Martel and Merle 2009]):

(1) limx!�1 '.x/D�1 and limx!C1 '.x/D 1.

(2) For all x 2 R, we have j'0.x/jC j'00.x/jC j'.3/.x/j � Ce�jxj.

(3) '0 2 Y and 1�'2 2 Y.

For c > 0, we then set

'c.x/ WD �
Q0c
Qc
D
p

c'.
p

cx/: (2-11)

Remark. The same function ' has been used in [Martel and Merle 2007] to describe the main-order
nonlinearity effect on the phase of two colliding solitons for the quartic KdV equation. Here ' will
describe the dispersive tail behind the soliton produced by the interaction with the potential a". For details,
see Lemma 4.3.

We conclude the section with a result taken from [Martel and Merle 2007].

Lemma 2.4 (Nontrivial kernel). There exists a unique even solution of the problem

L0V0 DmQm�1; V0 2 Y:

This solution satisfies

.L0.1CV0//
0
D 0

and it is given, in the notation of Lemma 2.3, by

V0.y/D

8̂<̂
:
�

1
2
ƒQ.y/ for mD 2;

�Q2.y/ for mD 3;
1
3
ŒQ0.y/

R y
0 Q2� 2Q3.y/� for mD 4:
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3. Construction of a soliton-like solution

Following the plan on page 583, we deal first with large negative times, by finding a pure soliton-like
solution of (1-15) that agrees as t !�1, to exponential order in time, with Q. � � .1��/t/, where Q is
a soliton for the gKdV equation. Specifically:

Theorem 3.1 (Existence and uniqueness of a pure soliton-like solution). Suppose 0� � < 1. There exists
"0 > 0 small enough such that the following holds for any 0< " < "0.

(1) Existence. There exists a solution u 2 C.R;H 1.R// of (1-15) such that

lim
t!�1



u.t/�Q. � � .1��/t/




H 1.R/
D 0; (3-1)

and energy EaŒu�.t/D .�� �0/M ŒQ�. Moreover, there exist constants K; 
 > 0 such that for all
time t � �1

2
T" and s � 1,

u.t/�Q. � � .1��/t/




H s.R/

�K"�1e"
 t : (3-2)

In particular, 

u.�T"/�Q. � C .1��/T"/




H 1.R/
�K"�1e�
"

� 1
100
�K"10: (3-3)

(2) Uniqueness. This solution is unique if mD 3, or if mD 2; 4 and 0< � < 1.

The proof is outlined in Section A.1, and is closely modeled on [Martel 2005], where the existence of
a unique N-soliton solution for gKdV equations was established. Other proofs exist, but Martel’s method
has the advantage of giving an explicit uniform bound in time, (3-2). (This bound is a consequence of
compactness properties.) Basically, the result follows from the fact that inside the region x ��1

2
T" the

potential a" equals 1 to exponential order (see (1-13)). In other words, the aKdV equation (1-15) behaves
asymptotically as a gKdV equation, for which soliton solutions exist globally.

Remarks. (a) The energy identity in part (1) of the theorem follows from (3-1), the identities in
Section A.6, and the energy conservation law in Proposition 2.1.

(b) The uniqueness of u.t/ in the general case is an interesting open question.

(c) For the solution u.t/ given by Theorem 3.1, it follows easily from the negativity of the energy Ea

and the Gagliardo–Nirenberg inequality (1-8)

1

K
ku.t/kH 1.R/ � ku.t/kL2.R/ �Kku.t/kH 1.R/ for all t 2 R; (3-4)

for some constant K > 0. Moreover, if mD 3 or mD 2; 4 and � > 0, we have

sup
t2R

ku.t/kH 1.R/ �K


u
�
�

1
2
T"
�



H 1.R/
: (3-5)

This last estimate shows that, to understand the limiting behavior at large times of u.t/, it is enough
to consider the L2-norm.
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4. Description of the soliton-potential interaction

Once we have proven the existence (and uniqueness) of a pure soliton-like solution for early times, the
next step in the study of the soliton-potential interaction. This nonlinear interaction regime is essentially
limited to the region Œ�T";T"�, since a".�T"/� 1 and a".T"/� 2, by (1-12) and (1-13).

Here we have a stability result saying that the soliton survives the interaction, that the perturbation
induced by the potential a" is significant, of order one, and that it affects the scaling and shift parameters
(the scaling being predicted by conservation of energy). The soliton exits the interaction region as a
first-order solution of the aKdV equation (1-15) with a"� 2, plus a dispersive term of order "1=2 in H 1.R/.

Recall that we defined �0 WD
5�m
mC3

in Theorem 1.1. This parameter plays a crucial role in determining
the asymptotic behavior.

Theorem 4.1 (Dynamics of the soliton in the interaction region). Suppose 0 � � � �0. There exist
constants "0 > 0 and c1.�/ > 1 such that the following holds for any 0 < " < "0. Let u D u.t/ be a
globally defined H 1 solution of (1-15) such that

u.�T"/�Q. � C .1��/T"/




H 1.R/

�K"1=2: (4-1)

Then there exist K0 DK0.K/ > 0 and �.T"/; �1.T"/ 2 R such that

u.T"C �1.T"//� 2�1=.m�1/Qc1. � � �.T"//




H 1.R/
�K0"

1=2: (4-2)

In addition, c1.�D 0/D 2p , with p D 4
mC3

, and c1.�D �0/D 1. Finally, for "0 sufficiently small, we
have

j�1.T"/j �
T"

100
and .1��/T" � �.T"/� .2c1.�/��� 1/T": (4-3)

Remarks. (a) Though Theorem 3.1 ensures exponential decay for the error term at time t D�T" — see
(3-3) and (4-1) — we are unable to get a better estimate on the solution at time t D T". This is due
to the emergence of dispersive terms of order "1=2, hard to describe using soliton-based functions.
This new phenomenon is similar to a recent description obtained by Martel and Merle [2011; 2010]
for the collision of two solitons of similar sizes for the BBM and KdV equations.

(b) We do not know whether Theorem 4.1 is still valid in the range � > �0. Computations suggest that
in this regime the soliton might be reflected after the interaction. We hope to consider this regime in
a forthcoming publication. (See [Muñoz � 2011a].)

As mentioned in the Introduction, to prove this theorem we first construct an approximate solution of
(1-15) that describes the first-order interaction between the soliton and the potential on the interval of
time Œ�T";T"�. This requires several steps and will occupy us for the rest of this section, culminating in
Proposition 4.7. Then, in Section 5, we will prove that the actual solution describing the interaction of
the soliton and the potential a" is sufficiently close to our approximate solution.

Our first step is the introduction of suitable notation.
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Decomposition of the approximate solution. We look for Qu.t;x/, the approximate solution for (1-1), as
a suitable modulation of the soliton Q.x� .1��/t/, which solves the KdV equation

ut C .uxx ��uCum/x D 0: (4-4)

Let c D c."t/� 1 be a bounded function to be chosen later and set

y WD x� �.t/; R.t;x/ WD
Qc."t/.y/

Qa."�.t//
; (4-5)

where
Qa.s/ WD a

1
m�1 .s/; �.t/ WD �.1��/T"C

Z t

�T"

.c."s/��/ ds: (4-6)

The parameter Qa is intended to describe the shape variation of the soliton along the interaction.
The form of Qu.t;x/ will be the sum of the soliton plus a correction term:

Qu.t;x/ WDR.t;x/Cw.t;x/; (4-7)

w.t;x/ WD "Ac."t Iy/; (4-8)

where Ac WDAc."t/."t Iy/D c
1

m�1 A."t I
p

cy/ and A is a function to be determined.
We want to estimate the error produced by inserting Qu as defined in (4-8) into (1-1). For this, let

S Œ Qu�.t;x/ WD Qut C . Quxx �� QuC a" Qu
m/x : (4-9)

Proposition 4.2 (First decomposition of S Œ Qu�). Let L be the linear operator defined in (2-9). The following
nonlinear decomposition of the error term S Œ Qu� is valid for every t 2 Œ�T";T"�:

S Œ Qu�.t;x/D "
�
F1� .LAc/y

�
."t Iy/C "2

�
.Ac/t C c0."t/ƒAc

�
."t Iy/C "2E.t;x/;

where ƒAc.y/ WD
1
c

�
1

m�1
Ac.y/C

1
2
y.Ac/y.y/

�
(compare Lemma 2.3),

F1."t Iy/ WD
c0."t/

Qa."�.t//
ƒQc.y/C

a0."�.t//

Qam."�.t//

�
�

1

m�1
.c."t/��/Qc.y/C .yQm

c .y//y

�
(4-10)

and E.t;x/ is a bounded function in Œ�T";T"��R.

We prove this result in Section A.2.
Next, if we want to improve the approximation Qu, the unknown function Ac must be such that

.LAc/y."t Iy/D F1."t Iy/ for all y 2 R: (�)

Then the error term will be reduced to the second-order quantity

S Œ Qu�D "2
�
.Ac/t C c0."t/ƒAc

�
."t Iy/C "2E.t;x/:

We prove the solvability of (�), which is of independent interest, in the next few pages, concluding
with Lemma 4.5. However, we will see that it is not always possible to find a solution of finite mass. In
fact, we will look for solutions such that time and space variables are separated:

Ac.t;y/D b."t/'c.y/C d."t/C h."t/ OAc.y/I (4-11)
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where b.s/, d.s/ and h.s/ are exponentially decreasing in s, 'c is the bounded function defined in (2-11)
and OAc 2 Y (recall that lim˙1 'c D˙

p
c, and that c � 1).

This choice is motivated by the fact that a function Ac as in (4-11) satisfies this Important Property:

Property IP. Any spatial derivative of Ac."t; � / is a localized Y-function, and there exist K; 
 > 0 such
that kAc."t; � /kL1.R/ �Ke�
"jt j for all t 2 R.

Solution of a time-independent model problem. As a stepping stone to the solution of (�), we address
the following existence problem. Given a bounded, even function F D F.y/, we seek a bounded solution
ADA.y/ to the model problem

.L0A/0 D F; (4-12)

where L0 WD �@
2
yy C 1�mQm�1.y/ as in (2-9). In the spirit of [Martel and Merle 2007, Proposition

2.1] and [Muñoz 2010, Proposition 3.2], we have:

Lemma 4.3 (Existence theory for (4-12)). Let F 2 Y be even and satisfy the orthogonality conditionZ
R

FQD 0: (4-13)

Let ˇ D 1
2

R
R

F . For any ı 2 R, the problem (4-12) has a bounded solution A of the form

A.y/D ˇ'.y/C ıCA1.y/; with A1.y/ 2 Y: (4-14)

This solution is unique in L2.R/ up to the addition of a constant times Q0.

Proof. Write A WD ˇ'C ı.1CV0/CA1, where ˇ; ı 2 R and A1 2Y are to be determined. Inserting this
decomposition in (4-12), we have .L0A1/

0 D F �ˇ.L0'/
0, namely

L0A1 DH �ˇL0'C 
; H.y/ WD

Z y

�1

F.s/ ds; (4-15)

and where 
 WD L0A1.0/�
R 0
�1

H.s/ ds. Without loss of generality we can suppose the constant term

 equals �ˇ, because from Lemma 2.4 we have L0.1CV0/D 1, so any constant term can be associated
to the free parameter ı.

Now, from Lemma 2.3 the problem (4-12) is solvable if and only ifZ
R

.H �ˇ.L0'C 1//Q0 D

Z
R

HQ0 D

Z
R

FQD 0;

which is (4-13) (recall that L0Q0 D 0). Thus there exists a solution A1 of (4-15) satisfying
R

R
A1Q0 D 0.

Moreover, since

lim
y!�1

.H �ˇ.L0'C 1//.y/D 0 and lim
y!C1

.H �ˇ.L0'C 1//.y/D

Z
R

F � 2ˇ;

we get A1 2 Y provided ˇ D 1
2

R
R

F , by Lemma 2.3. This finishes the proof. �
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Existence of dynamical parameters. Now we show the existence of a dynamical system involving the
evolution of first-order scaling and translation parameters on the main interaction region. This system is
related to the orthogonality condition

R
R

F1Qc D 0; see proof of Lemma 4.5 below.

Lemma 4.4 (Existence of dynamical parameters). Let mD 2; 3; 4 and let �0;p; a. � / be as in Theorem 4.1
and (1-13). The system of of differential equations8<:c0."t/D p c."t/

�
c."t/�

�

�0

�
a0

a
."�.t//; c.�"T"/D 1;

�0.t/D c."t/��; �.�T"/D�.1��/T"

(4-16)

has a unique solution .�; c/ with c bounded, positive, monotone, defined for all t � �T", and having the
same regularity as a." � /. In addition:

(1) If �D �0, one has c � 1.

(2) If 0 � � < �0 then for all t � �T" one has c."t/ > 1 and limt!C1 c."t/D c1CO."10/, where
c1 D c1.�/ > 1 is the unique solution of the algebraic equation

c�0
1

�
c1�

�

�0

�1��0

D 2p
�
1�

�

�0

�1��0

; c1 > 1: (4-17)

Moreover, � 2 Œ0; �0� 7! c1.�/� 1 is a smooth decreasing function and c1.�D 0/D 2p.

In the case �D 0, there exists a simple implicit expression for c."t/:

�0.t/D c."t/D
ap."�.t//

ap.�"T"/
:

Using the strict monotonicity of a, from this identity we can find explicitly c."t/.

Remark. The critical value �0 can be seen as the exact value of � such that the solution u.t/ constructed
in Theorem 3.1 has zero energy. Indeed, Theorem 3.1 gives EaŒu�D .���0/M ŒQ�. Hence EaŒu� is zero,
positive or negative depending on whether �D �0, � > �0, or � < �0. Because of this the study of the
soliton dynamics for � > �0 is an open question.

Proof of Lemma 4.4. The local existence of a solution .c; �/ of (4-16) is a direct consequence of the
Cauchy–Lipschitz–Picard theorem.

Now we use (4-16) to prove a priori estimates on the solution c. Note that

c."t/��

c."t/
�
c."t/�

�

�0

�c0."t/D p.c."t/��/
a0

a
."�/D p�0.t/

a0

a
."�/:

In particular,

.1��0/@t log
�
c."t/�

�

�0

�
C�0@t log c."t/D p@t log a."�/:
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Integrating on Œ�T"; t � and using c.�"T"/D 1, we obtain

c�0."t/
�
c."t/�

�

�0

�1��0

D .1�
�

�0

/1��0
ap."�.t//

ap.�".1��/T"/
: (4-18)

Since 1� a� 2, the function c is bounded and � is bounded on compact sets; this yields global existence.
One proves in particular that c0 > 0 and

c�0."t/ < ap."�/; and thus 1� c."t/� 2
4

5�m : (4-19)

The limit limt!C1 c."t/ exists and is of the form c1CO."10/, where c1 is a solution of (4-17), after
passing to the limit in (4-18). To prove the uniqueness of the solution of (4-17), consider for �� 1 the
smooth function

g.�I�/ WD ��0

�
��

�

�0

�1��0

� 2p
�
1�

�

�0

�1��0

:

Note that in the case � < �0 we have g.1I�/ < 0 and

@�g.�I�/D ��0�1
�
��

�

�0

���0

.���/�
�
1�

�

�0

���0

> 0:

This implies that there exists a unique c1.�/ > 1 such that g.c1.�/I�/D 0. This proves uniqueness.
The smoothness of the application � 2 Œ0; �0� 7! c1.�/ is an easy consequence of the implicit function
theorem.

Finally we prove that � 7! c1.�/ is a decreasing map. To do this, we differentiate (4-17), obtaining

c1.�/
�0�1.c1.�/��/�

c1.�/�
�

�0

��0
c01.�/D

� 1

�0

� 1
� c

�0
1 .�/�

c1.�/�
�

�0

��0
�

2p�
1�

�

�0

��0

!

�

�
1

�0
� 1

��
1�

�

�0

���0

.1� 2p/ < 0: �

We can now state the promised result on the solvability of (�):

Lemma 4.5. Suppose 0� �� �0 and c."t/ is given by (4-16). There exists a solution Ac DAc."t Iy/ of

.LAc/
0."t Iy/D F1."t Iy/; (4-20)

satisfying Property IP and the following conditions:

(1) For every t 2 Œ�T";T"�,�
Ac."t I � / 2L1.R/; Ac."t Iy/D b."t/.'c.y/� c1=2/C h."t/ OAc.y/;

OAc 2 Y; jb."t/jC jh."t/j �Ke�
"jt j:
(4-21)

(2) limy!C1Ac.y/D 0.

Remark. The function Ac models, to first order in ", the shelf-like tail behind the soliton, a dispersive
effect of the soliton-potential interaction.
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Proof. Step 1: Reduction to a time-independent problem. We suppose c given as in Lemma 4.4. Note that
F1 in (4-10) can be written as

F1."t Iy/D
a0

Qam

�
pc.c �

�

�0

/ƒQc �
1

m� 1
.c ��/Qc C .yQm

c /
0
�
.y/:

Consider the functions

QF1.y/ WD pƒQ�
1

m� 1
QC .yQm/0 and OF1.y/ WD

1

m� 1
Q�

p

�0

ƒQD
1

m� 1
Q�

4

5�m
ƒQ:

We claim that if c."t/ satisfies (4-16) then every term in F1 has the correct scaling. More precisely:

Claim 4.6. Suppose QA.y/; OA.y/ solve the stationary problems

.L0
QA/0 D QF1; .L0

OA/0 D OF1: (4-22)

Then, for all t 2 R,

Ac."t Iy/ WD
a0."�/

Qam."�/
c

1
m�1
� 1

2 ."t/
�
QAC�c�1."t/ OA

�
.c1=2."t/y/

is a solution of (4-20).

Indeed, we have

.LAc/
0

D
a0."�/

Qam."�/
c

1
m�1
C1
�
� QA00C QA�mQm�1 QA

�0
.c1=2y/C�

a0."�/

Qam."�/
c

1
m�1

�
� OA00C OA�mQm�1 OA

�0
.c1=2y/

D
a0."�/

Qam."�/
c

1
m�1
C1 QF1.c

1=2y/C�
a0."�/

Qam."�/
c

1
m�1 OF1.c

1=2y/

D
a0."�/

Qam."�/

�
pc2ƒQc �

1

m�1
cQc C .yQm

c /
0
�
C�

a0."�/

Qam."�/

�
1

m�1
Qc �

p

�0

cƒQc

�
D F1."t Iy/:

This proves the claim, which in turn reduces the problem to the time-independent case.

Step 2: There exists solutions QA; OA of (4-22) satisfying (4-14). By Lemma 4.3, this follows once we verify
the orthogonality conditions Z

R

QF1QD

Z
R

OF1QD 0:

To this end, we use the identities in Section A.6:Z
R

QF1QD p

Z
R

ƒQQ�
1

m� 1

Z
R

Q2
C

Z
R

Q.yQm/y

D p

Z
R

ƒQQ�
1

m� 1

Z
R

Q2
C

1

mC 1

Z
R

QmC1
D

5�m

4.m� 1/

�
p�

4

mC3

� Z
R

Q2
D 0:

Similarly,Z
R

OF1QD�
4

5�m

Z
R

ƒQQC
1

m� 1

Z
R

Q2
D�

4

5�m
�

5�m

4.m� 1/

Z
R

Q2
C

1

m� 1

Z
R

Q2
D 0:
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Thus, by virtue of Lemma 4.3, there exist solutions QA, OA of (4-22) of the form(
QA.y/D Q̌'.y/C QıC QA1.y/; QA1 2 Y;

OA.y/D Ǒ'.y/C OıC OA1.y/; OA1 2 Y;

where Q̌; Ǒ; Qı; Oı 2 R. Moreover, Q̌; Ǒ are given by

Q̌ WD
1

2

Z
R

QF1 D
1

2

Z
R

�
pƒQ�

1

m�1
Q
�
D

1

2

�
p.

1

m�1
�

1

2
/�

1

m�1

� Z
R

QD�
3

2.mC3/

Z
R

Q< 0;

for each mD 2; 3; 4. On the other hand,

Ǒ WD
1

2

Z
R

OF1D
1

2

Z
R

�
1

m�1
Q�

4

5�m
ƒQ

�
D

1

2

�
1

m�1
�

4

5�m
�

3�m

2.m�1/

� Z
R

QD
1

2.5�m/

Z
R

Q>0;

for each mD 2; 3; 4.

Step 3: Conclusion. Finally, to get limy!C1
QA.y/ D limy!C1

OA.y/ D 0 we choose Qı D � Q̌ and
Oı D� Ǒ. This proves the last part of the lemma. With this choice we have

QA.y/D Q̌.'.y/� 1/C QA1.y/; OA.y/D Ǒ.'.y/� 1/C OA1.y/; QA1; OA1 2 Y:

Using Claim 4.6, an actual solution Ac."t Iy/ of (4-20) is obtained by considering

Ac."t Iy/ WD
a0."�/

Qam."�/
c

1
m�1 ."t/

�
QAC�c�1."t/ OA

�
.c1=2y/

DW b."t/.'c.y/� c1=2/C h."t/ OAc.y/; OAc 2 Y;

where

b."t/ WD
a0."�/c

1
m�1
�1

Qam."�/
. Q̌ C�c�1."t/ Ǒ/; h."t/ WD

a0."�/

Qam."�/
:

This finishes the proof of Lemma 4.5. �

Remark. We emphasize that Ac lies in L2.R/ in all cases, even if it is exponentially decreasing in time.
This nonsummable solution must be modified in order to obtain a finite-mass solution.

Before continuing with the construction of the approximate solution, we need some crucial estimates
on the parameter c."t/.

Remark (Bounds for c."t/). From the bound on c."t/ in (4-18) we conclude that, for all t 2 Œ�T";T"�,

1� c."t/� 2
4

5�m :

Correction to the solution of problem (�). Consider the cutoff function � 2 C1.R/ satisfying the
following properties: 8<:

0� �.s/� 1; 0� �0.s/� 1 for any s 2 RI

�.s/� 0 for s � �1;

�.s/� 1 for s � 1:

(4-23)

Define
�".y/ WD �."yC 2/; (4-24)
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and for the solution Ac DAc."t Iy/ of (4-20) constructed in Lemma 4.5, set

A#."t Iy/ WD �".y/Ac."t Iy/: (4-25)

Now redefine

Qu WDRCw DRC "A#: (4-26)

where R is the modulated soliton from (4-5).
The following proposition, which deals with the error associated to this cut-off function and the new

approximate solution Qu, is the principal result of this section.

Proposition 4.7 (Construction of an approximate solution for (1-15)). There exist constants "0;K > 0

such that for all 0< " < "0 the following holds.

(1) For the localized function A# of (4-25), we have:

(a) New behavior. For all t 2 Œ�T";T"�,�
A#."t;y/D 0 for all y � �3

"
;

A#."t;y/DAc."t;y/ for all y � �1
"
:

(4-27)

(b) Integrable solution. For all t 2 Œ�T";T"�, A#."t; � / 2H 1.R/ with

k"A#."t; � /kH 1.R/ �K"
1
2 e�
"jt j: (4-28)

(2) The error associated to the new function Qu satisfies

kS Œ Qu�.t/kH 2.R/ �K"
3
2 e�
"jt j; (4-29)

and the following integral estimate holds:Z
R

kS Œ Qu�.t/kH 2.R/dt �K"1=2:

Proof. The proof of (4-27) is direct from the definition. To prove (4-28) it is enough to recall that

k�0ckL2.R/ �K"�1=2:

For the proof of (4-29), see Section A.3. �

Recomposition of the solution. We now present some important estimates concerning our approximate
solution, showing that Qu at time ˙T" behaves as a modulated soliton with the scaling given by rough
computations at infinity. We start out with some model H 1-estimates.

Lemma 4.8 (First estimates on Qu).

(1) Decay away from zero. If f Df .y/2Y, there exist constants K; 
 >0 such that, for all t 2 Œ�T";T"�,



a0."x/f .y/




H 1.R/
�Ke�
"jt j: (4-30)
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(2) Almost-soliton solution. The following estimates hold for all t 2 Œ�T";T"�.

k Qut C .c ��/ QuxkH 1.R/ �K"e�
"jt j; k Qut C .c ��/ QuxkL1.R/ �K"e�
"jt j: (4-31)

Quxx �� QuC a" Qu
m
D .c ��/ QuCOL2.R/."e

�
"jt j/: (4-32)

k. Quxx � c QuC a" Qu
m/xkH 1.R/ �K"e�
"jt jCK"2: (4-33)

Proof. The proof of (4-30) is a direct consequence of (1-13) and the fact that �0.t/D c."t/��� 1��,
for all t 2 R.

Now let us prove (4-31). From (4-26) we obtain

QutC.c��/ QuxD"
c0

Qa
ƒQc�"

Qa0

Qa2
.c��/QcC"

�
.A#/tCc.A#/x

�
D"

�
.A#/tCc.A#/x

�
COH 1.R/."e

�
"jt j/:

Now, from (A-34) in the Appendix, we know that

"
�
.A#/t C c.A#/x

�
D "2.c ��/�0cAc COH 1.R/."

3
2 e�
"jt j/DOH 1.R/."

3
2 e�
"jt j/:

This completes the proof of the H 1-estimate. The L1-estimate then follows from the continuous Sobolev
embedding H 1.R/ ,!L1.R/.

Concerning (4-32), note that from (4-28) we have

Quxx �� QuC a" Qu
m
D .c ��/ QuC "

�
.A#/xxCma"R

m�1A#
�
COL2.R/."e

�
"jt j/CO."2
jA#j

2/

D .c ��/ QuCOL2.R/."e
�
"jt j/:

For (4-33), note that
�
Quxx � c QuC a" Qu

m
�
x
D S Œ Qu�� ..c � �/ Qux C Qut /. The conclusion now follows

from (4-29) and (4-31). �

The next result describes the behavior of the almost solution Qu at the endpoints t D�T";T".

Proposition 4.9 (Behavior at t D˙T"). There exist constants K; "0 > 0 such that for every 0< " < "0

the approximate solution Qu constructed in Proposition 4.7 has these properties:

(1) Closeness to Q at time t D�T".

k Qu.�T"/�Q. � C .1��/T"/kH 1.R/ �K"10: (4-34)

(2) Closeness to 2�1=.m�1/Qc1 at time t D T". Let c1.�/ > 1 be as defined in Lemma 4.4. Then

k Qu.T"/� 2�1=.m�1/Qc1. � � �.T"//kH 1.R/ �K"10: (4-35)

Proof. By definition,

Qu.�T"/�Q. � � �.�T"//DR.�T"/�Q. � C .1��/T"/Cw.�T"/:

From Proposition 4.7 we have

kw.˙T"/kH 1.R/ D k"A#.˙T"/kH 1.R/ �K"1=2e�
"
� 1

100
�K"10;
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for " small enough. On the other hand, from �.�T"/D�.1��/T" and using the monotonicity of a, we
have

1� c.�"T"/� a
4

5�m ."�.�T"//� 1C "10:

In conclusion we have

kR.�T"/�Q. � C .1��/T"/kH 1.R/ �K"10;

as desired. The estimate (4-35) is totally analogous, and we skip the details. �

To summarize this section: we have constructed and approximate solution Qu describing the soliton-
potential interaction in principle. In the next section we will show that the solution u constructed in
Theorem 3.1 actually behaves like Qu inside the interaction box Œ�T";T"�.

5. First stability results

Our next goal is to prove that the approximate solution Qu describes the actual dynamics of interaction in
the interval Œ�T";T"�. This is the principal result of this section:

Proposition 5.1 (Exact solution close to the approximate solution Qu). Let � > 1
100

. There exists "0 > 0

such that the following holds for any 0< " < "0. Suppose that

S Œ Qu�.t/




H 2.R/
�K"1C�e�
"jt j;

Z
R



S Œ Qu�.t/




H 2.R/
dt �K"� ; (5-1)

and 

u.�T"/� Qu.�T"/




H 1.R/
�K"� ; (5-2)

where u D u.t/ is an H 1.R/ solution of (1-15) in a vicinity of t D �T". Then u.t/ is defined for any
t 2 Œ�T";T"� and there exist K0 D K0.�;K/ and a C 1-function �1 W Œ�T";T"�! R such that, for all
t 2 Œ�T";T"�, 

u.t C �1.t//� Qu.t/




H 1.R/

�K0"
� ; j�01.t/j �K0"

� :

Remark. Note that u has to be modulated in order to get the correct result. However, in this case we
have not modulated on the scaling and spatial translation parameters because (1-15) is not invariant under
these transformations. Nevertheless, we still have another degeneracy, due to time translations, which
fortunately allows control of the dynamics of the solution u for every t 2 Œ�T";T"�. In this sense, the
new time s.t/ WD t C �1.t/ can be interpreted as a retarded or advanced time of the actual solution with
respect to the approximate solution. Moreover, for " small enough, we have

s0.t/D 1C �0.t/ >
99

100
> 0;

for all t 2 Œ�T";T"�. This means that we can invert s.t/ on s.Œ�T";T"�/�
99

100
Œ�T";T"�.

From the proof we do not know the sign of �0
1
.t/, so in particular we do not know if the solution u is

retarded or in advance with respect to the approximate solution Qu.
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Proof of Proposition 5.1. Let K� > 1 be a constant to be fixed later. Recall from Proposition 2.2 that
u.t/ is globally well defined in H 1.R/. Since ku.�T"/� Qu.�T"/kH 1.R/ �K"� , by continuity in time in
H 1.R/, we can define �T" < T � � T" by

T � WD sup
�

T 2 Œ�T";T"� W for all t 2 Œ�T";T �; there exists r.t/ 2 R

with ku.t C r.t//� Qu.t/kH 1.R/ �K�"�

�
:

The goal is to prove that T � D T" for K� large enough. To achieve this, we assume otherwise and reach
a contradiction with the definition of T � via some independent estimates for ku.t C r.t//� Qu.t/kH 1.R/

on Œ�T";T
��, for a special modulation parameter r.t/.

Modulation. By using the implicit function theorem we will construct a modulation parameter and to
estimate its variation in time:

Lemma 5.2 (Modulation in time). Assume 0 < " < "0.K
�/ small enough. There exists a unique C 1

function �1.t/ such that the function

z.t/D u.t C �1.t//� Qu.t/ (5-3)

satisfies, for all t 2 Œ�T";T
��, Z

R

z.t;x/Q0c.y/ dx D 0: (5-4)

For all t 2 Œ�T";T
��, we have

j�1.�T"/jC kz.�T"/kH 1.R/ �K"� ; kz.t/kH 1.R/ � 2K�"� : (5-5)

In addition, z.t/ satisfies the equation

zt C .1C �
0
1/
�
zxx ��zC a"Œ. QuC z/m� Qum�

�
x
� �01 Qut C .1C �

0
1/S Œ Qu�D 0: (5-6)

Finally, there exist K; 
 > 0 independent of K� such that for every t 2 Œ�T";T
��

j�01.t/j �
K

c."t/��

�
kzkL2.R/C "e

�
"jt j
kz.t/kL2.R/Ckz.t/k

2
L2.R/

CkS Œ Qu�kL2.R/

�
: (5-7)

Proof. The proof of (5-4) and (5-5) is a by now well-known consequence of the implicit function theorem;
see, e.g., [Martel and Merle 2007]. The proof of (5-6) follows after a simple calculation using (1-15).

To prove (5-7), we take the time derivative of (5-4) and substitute replace zt from (5-6) to obtain

0D .1C �01/

Z
R

˚
zxx � czC a"Œ. QuC z/m� Qum�

	
Q00c

C �01

Z
R

. Qut � .c ��/zx/Q
0
c � .1C �

0
1/

Z
R

S Œ Qu�Q0c C "c
0."t/

Z
R

zƒQ0c :

Now note that

�01

Z
R

. Qut � .c ��/zx/Q
0
c D�

�0
1

Qa

�
.c ��/

Z
R

Q02c CO."Ckz.t/kL2.R//

�
:

On the other hand,Z
R

�
zxx � czC a"Œ. QuC z/m� Qum�

�
Q00c D�

Z
R

zLQ00c CO."e�
"jt jkz.t/kL2.R//CO.kz.t/k2
L2.R/

/:
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Collecting these estimates and using the fact that kz.t/kH 1.R/ is small, we get desired result. �

Control in the Qc direction. We recall from (1-7) that the energy of the function u.tC�1.t// is conserved;
moreover, EaŒu.t C �1.t//�DEaŒu�.t/ for any t 2 Œ�T";T

��. In what follows, we will made use of this
identity to estimate z against the degenerate direction Qc . First we prove that the approximate solution Qu
has almost conserved energy.

Lemma 5.3 (Almost conservation of energy). For the approximate solution Qu from Proposition 4.7,

@tEaŒ Qu�.t/D�

Z
R

. Quxx �� QuC a" Qu
m/S Œ Qu�: (5-8)

In particular, there exists K > 0 independent of K� such thatˇ̌
EaŒ Qu�.t/�EaŒ Qu�.�T"/

ˇ̌
�K"� : (5-9)

Proof. From (4-9) we haveZ
R

S Œ Qu�. Quxx �� QuC a" Qu
m/D

Z
R

Qut . Quxx �� QuC a" Qu
m/

D�@t
1

2

Z
R

Qu2
x � @t

�

2

Z
R

Qu2
C

1

mC 1
@t

Z
R

a" Qu
mC1
D�@tEaŒ Qu�.t/;

which shows (5-8). For (5-9), we have, from the Cauchy–Schwarz inequality,ˇ̌
@tEaŒ Qu�.t/

ˇ̌
�K



S Œ Qu�.t/




L2.R/
;

for some constant K > 0. After integrating and considering (5-1), we get the result. �

Lemma 5.4 (Control in the Qc direction). There exist K; 
 > 0 independent of K� and such that, for
0< " < "0 small enough,ˇ̌̌̌Z

R

Qc.y/z

ˇ̌̌̌
�

K

c."t/��

�
"� C "1=2e�"
 jt jkz.t/kL2.R/Ckz.t/k

2
H 1.R/

�
:

Proof. We expand the expression of the conserved energy EaŒu.t C �1/� and make use of the identity
u.t C �1/D Qu.t/C z.t/ to obtain

EaŒ QuC z�.t/DEaŒ Qu�.t/�

Z
R

z. Quxx �� QuC a" Qu
m/C

1

2

Z
R

z2
xC

�

2

Z
R

z2

�
1

mC 1

Z
R

a"
�
. QuC z/mC1

� QumC1
� .mC 1/ Qumz

�
:

Note thatZ
R

z. Quxx�� QuCa" Qu
m/.t/D

Z
R

z. Quxx�� QuCa" Qu
m/.�T"/C

�
EaŒ Qu�.t/�EaŒ Qu�.�T"/

�
CO

�
kz.t/k2

H 1.R/

�
:

We now use (4-32):Z
R

z. Quxx ��uC a" Qu
m/D .c ��/

Z
R

QuzCO
�
"e�
"jt jkz.t/kL2.R/

�
:

The conclusion follows from this identity and (5-9). �
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Energy functional for z. Consider the functional

F.t/ WD
1

2

Z
R

.z2
xC c."t/z2/�

1

mC 1

Z
R

a"
�
. QuC z/mC1

� QumC1
� .mC 1/ Qumz

�
: (5-10)

Lemma 5.5 (Modified coercivity for F). There exist K; �0 > 0, independent of K� and ", such that, for
every t 2 Œ�T";T"�,

F.t/� �0kz.t/k
2
H 1.R/

�

ˇ̌̌̌Z
R

Qc.y/z

ˇ̌̌̌2
�K."e�
"jt jC "2/kz.t/k2

L2.R/
�Kkz.t/k3

L2.R/
:

Proof. We write F.t/ as the sum of

1

2

Z
R

.z2
xC cz2

�ma" Qu
m�1z2/ (5-11)

and

�
1

mC 1

Z
R

a"
�
. QuC z/mC1

� QumC1
� .mC 1/ Qumz�

1

2
m.mC 1/ Qum�1z2

�
: (5-12)

In the case mD 2 the term (5-12) is identically zero, and for mD 3; 4 we have j.5-12/j �Kkz.t/k3
L2.R/

.
The other summand is

.5-11/D
1

2

Z
R

.z2
xC c."t/z2

�mQm�1
c z2/� "

ma0."�/

2a."�/

Z
R

yQm�1
c z2

CO
�
"2
kz.t/k2

L2.R/

�
:

It is clear that ˇ̌̌̌
"

ma0."�/

2a."�/

Z
R

yQm�1
c z2

ˇ̌̌̌
�K"e�
"jt jkz.t/k2

L2.R/
:

Finally, by Lemma 2.3, there exist constants K; �0 > 0 such that, for all t 2 Œ�T";T
��,

1

2

Z
R

.z2
xC c."t/z2

�mQm�1
c z2/� �0kz.t/k

2
H 1.R/

�K

ˇ̌̌̌Z
R

Qcz

ˇ̌̌̌2
: �

Now we use a coercivity argument to obtain independent estimates for F.T �/.

Lemma 5.6 (Estimates on F.T �/). The following properties hold for any t 2 Œ�T";T
��.

(1) First time derivative.

F0.t/D�

Z
R

zt

�
zxx�czCa".. QuCz/m� Qum/

�
C

1
2
"c0."t/

Z
R

z2
�

Z
R

a" Qut

�
. QuCz/m� Qum

�m Qum�1z
�
:

(2) Integration in time. There exist constants K; 
 > 0 such that

F.t/�F.�T"/

�K.K�/4"4�� 1
100 CK.K�/3"3�� 1

100 CKK�"2�
CK

Z t

�T"

"e�"
 jt jkz.t/k2
H 1.R/

dt: (5-13)
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Proof. Statement (1) amounts to a simple computation. Let us consider (5-13). Substituting (5-6) into the
equality in (1) we can write F0.t/ as a sum of the four terms

.c."t/��/.1C �01/

Z
R

a"
�
. QuC z/m� Qum

�
zx; (5-14)

� �01

Z
R

Qut

�
zxx � czC a".. QuC z/m� Qum/

�
; (5-15)

.1C �01/

Z
R

S Œ Qu�
�
zxx � czC a".. QuC z/m� Qum/

�
; (5-16)

1
2
"c0."t/

Z
R

z2
�

Z
R

a" Qut

�
. QuC z/m� Qum

�m Qum�1z
�
: (5-17)

We consider first the case mD 2. After some simplifications, we get for (5-14) the value

.c ��/.1C �01/

Z
R

a"
�
2 QuzC z2

�
zx D�.c ��/.1C �

0
1/

Z
R

�
a" Quxz2

C "a0."x/ Quz2
C

1

3
"a0."x/z3

�
:

Hence ˇ̌̌̌
.5-14/C .c ��/.1C �01/

Z
R

a" Quxz2

ˇ̌̌̌
�K"e�
"jt jkz.t/k2

L2.R/
CK"kz.t/k3

H 1.R/
:

On the other hand,

.5-15/D��01

Z
R

. Qut C .c ��/ Qux/
�
zxx � czC a".2 QuzC z2/

�
C .c ��/�01

Z
R

a" Quxz2

C .c ��/�01

Z
R

z
�
Quxx � c QuC a" Qu

2
�
x
�.c ��/�01"

Z
R

a0."x/ Qu2z:

Using the estimates (4-30), (4-33) and (4-31) we then obtainˇ̌̌̌
.5-15/� .c ��/�01

Z
R

a" Quxz2

ˇ̌̌̌
�K"j�01je

�
"jt j
kz.t/kH 1.R/:

We also have
.5-16/D .1C �01/

Z
R

z
�
S Œ Qu�xx � cS Œ Qu�C 2a" QuS Œ Qu�C a"zS Œ Qu�

�
I

thus using (5-7)
j.5-16/j �Kkz.t/kL2.R/kS Œ Qu�.t/kH 2.R/:

Finally,

.5-17/D 1
2
"c0."t/

Z
R

z2
�

Z
R

a". Qut C .c ��/ Qux/z
2
C .c ��/

Z
R

a" Quxz2:

We get then from (4-31) ˇ̌̌̌
.5-17/� .c ��/

Z
R

a" Quxz2

ˇ̌̌̌
�K"e�
"jt jkz.t/k2

L2.R/
:

Collecting these estimates and (5-7), we obtain, after an integration,

jF.t/�F.�T"/j �K.K�/3"3�� 1
100 CKK�"2�

CK

Z t

�Tc

"e�
"jsjkz.s/k2
L2.R/

ds:
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The cases mD 3; 4 are similar, but more involved. From (5-14)–(5-17), and after some integration by
parts, we obtain for F0.t/ the expression

.c ��/.1C �01/

�Z
R

a"

�
. QuC z/m� Qum

�m Qum�1z�
m

2
.m� 1/ Qum�2z2

�
zx (5-18)

�
m

2
"

Z
R

a0."x/ Qum�1z2
�
"

6
m.m�1/

Z
R

a0."x/ Qum�2z3
�

m

2

Z
R

a". Qu
m�1/xz2

�
m

6
.m�1/

Z
R

a". Qu
m�2/xz3

�
(5-19)

� �01

Z
R

. QutC.c��/ Qux/
�
zxx�czCa".. QuCz/m� Qum/

�
C.c��/�01

�Z
R

z. Quxx�c QuCa" Qu
m/x�"

Z
R

a0."x/ Qumz

�
C .c ��/.1C �01/

Z
R

Quxa"

�
. QuC z/m� Qum

�m Qum�1z�
m

2
.m�1/ Qum�2z2

�
m

6
.m�1/.m�2/ Qum�3z3

�
(5-20)

C
m

2
.c ��/�01

�Z
R

a". Qu
m�1/xz2

C
m�1

3

Z
R

a". Qu
m�2/xz3

�
(5-21)

C .1C �01/

Z
R

z
�
S Œ Qu�xx � cS Œ Qu�Cma" Qu

m�1S Œ Qu�
�
C .1C �01/

Z
R

a"
�
. QuC z/m� Qum

�m Qum�1z
�
S Œ Qu�

C
"

2
c0
Z

R

z2
�

Z
R

a". Qut C .c ��/ Qux/
�
. QuC z/m� Qum

�m Qum�1z
�

C
m

2
.c ��/

�Z
R

a". Qu
m�1/xz2

C
m�1

3

Z
R

a". Qu
m�2/xz3

�
: (5-22)

Note that the last two terms in (5-19) disappear, as do (5-21) and (5-22). With (5-18) and (5-20), we
need a little more care. For mD 3,

j.5-18/C .5-20/j D

ˇ̌̌̌
1

4
".c ��/.1C �01/

Z
R

a0."x/z4

ˇ̌̌̌
� "kz.t/k4

L2.R/
:

In the case mD 4,

.5-18/C .5-20/D .c ��/.1C �01/

Z
R

a"Œzx.4 Quz3
C z4/C Quxz4�

D�".c ��/.1C �01/

Z
R

a0."x/. Quz4
C z5/:

Consequently we have

j.5-18/C .5-20/j �K"e�
"jt jkz.t/k4
L2.R/

CK"kz.t/k5
L2.R/

:

Finally, using (4-30), (4-33), (4-31) we obtain

F0.t/�K"kz.t/k4
H 1.R/

CK"e�
"jt jkz.t/k2
L2.R/

CK"kz.t/k3
H 1.R/

CKj�01.t/j"e
�
"jt j

kz.t/kH 1.R/CKkS Œ Qu�.t/kH 2.R/kz.t/kL2.R/:

Integrating and using (5-7), we obtain

F.t/�F.�T"/�K.K�/4"4�� 1
100 CK.K�/3"3�� 1

100 CKK�"2�
CK

Z t

�T"

"e�
"jsjkz.s/k2
H 1.R/

ds;

completing the proof. �
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We are finally in a position to show that T � < T" leads to a contradiction.

End of proof of Proposition 5.1. From Lemma 5.2, F.�T"/ � Kc2� , and from Lemmas 5.5, 5.4 and
(5-13) we get

kz.t/k2
L2.R/

�K

ˇ̌̌̌Z
R

zQc.y/

ˇ̌̌̌2
CK"2�

CK.K�/4"4�� 1
100

CK.K�/3"3�� 1
100 CKK�"2�

CK

Z t

�T"

"e�
"jt jkz.t/k2
L2.R/

dt

�K
ˇ̌̌
"� CK�"

1
2
C�e�
"jt jC .K�/2"2�

CkS Œ Qu�kL2.R/

ˇ̌̌2
CK"2�

CK.K�/4"4�� 1
100 CK.K�/3"3�� 1

100 CKK�"2�
CK

Z t

�T"

"e�
"jsjkz.s/k2
L2.R/

ds

�K"2�
CK.K�/4"4�� 1

100 CK.K�/3"3�� 1
100 CKK�"2�

CK

Z t

�T"

"e�
"jsjkz.s/k2
L2.R/

ds:

Using Gronwall’s inequality (see [Verhulst 2006], for instance) we conclude that, for some large
constant K > 0 independent of K� and ",

kz.t/k2
H 1.R/

�K"2�
CK.K�/4"4�� 1

100 CK.K�/3"3�� 1
100 CKK�"2� :

Taking " small and K� large enough, we then obtain that for all t 2 Œ�T";T
��,

kz.t/k2
H 1.R/

�
1
2
.K�/2"2� :

This contradicts the definition of T � and concludes the proof of Proposition 5.1. �

Proof of Theorem 4.1. We are now able to prove Theorem 4.1, showing that the solution u.t/ given by
Theorem 3.1 is close to the approximate solution Qu.t/ constructed in Proposition 4.7 at time t D�T".

Behavior at t D�T". From (3-3), Proposition 4.9, and more specifically (4-34) we have

u.�T"/� Qu.�T"/




H 1.R/
�K"10:

Behavior at t D T". Thanks to the above estimate and (4-29) we can invoke Proposition 5.1 with � WD 1
2

to obtain the existence of K0; "0 > 0 such that for all 0< " < "0

u.T"C �1.T"//� Qu.T"/




H 1.R/
�K0"

1=2; j�1.T"/j �K0"
� 1

2
� 1

100 �
T"

100
:

Therefore from (4-35) and the triangle inequality,

u.T"C �1.T"//� 2�1=.m�1/Qc1. � � �.T"//




H 1.R/
�K0"

1=2:

(see also (4-5).) Finally note that .1��/T" � �.T"/� .2c1.�/��� 1/T". This finishes the proof.

6. Asymptotics for large times

Recall that for large times (t � T") the soliton-like solution is expected to be far away from the region
where a" varies. Roughly speaking, the solution’s stability and asymptotic stability properties will follow
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from the fact that in this region (1-13) the equation behaves like the gKdV equation

ut C .uxx ��uC 2um/x D 0 in ft � T"g �Rx :

The purpose of this section is to lay out this argument in a rigorous way. We start by restating the
asymptotic behavior, already described in Theorem 1.2. Recall the parameters �0 and c1.�/ from
Theorems 1.1 and 4.1.

Theorem 6.1 (Stability and asymptotic stability in H 1). Suppose mD 2; 4 with 0 < � � �0, or mD 3

with 0 � � � �0. Let 0 < ˇ < 1
2
.c1.�/� �/. There exists "0 > 0 such that if 0 < " < "0 the following

statements hold. Suppose that for some time t1 �
1
2
T" with t1 �X0 � 2t1 we have

u.t1/� 2�1=.m�1/Qc1.x�X0/




H 1.R/

� "1=2; (6-1)

where u.t/ is an H 1-solution of (1-15). Then u.t/ is defined for every t � t1 and there exists K; cC > 0

and a C 1-function �2.t/ defined in Œt1;C1/ with these properties:

(1) Stability.

sup
t�t1



u.t/� 2�1=.m�1/Qc1. � � �2.t//




H 1.R/
�K"1=2; (6-2)

where

j�2.t1/�X0j �K"1=2 and j�02.t/� c1.�/C�j �K"1=2 for all t � t1:

(2) Asymptotic stability.

lim
t!C1



u.t/� 2�1=.m�1/QcC. � � �2.t//




H 1.x>ˇt/
D 0: (6-3)

In addition,

lim
t!C1

�02.t/D cC��; jcC� c1j �K"1=2: (6-4)

Remarks. (a) We do not know if the stability results are valid in the cases mD 2; 4 and �D 0. Clearly,
the stability property as stated above is false if lim supt!C1 ku.t/kL2.R/ DC1.

(b) For 0< � < �0 the asymptotic stability property (6-3) holds for any ˇ > ��, provided "0 is small
enough. We make use of this property in [Muñoz � 2011a], but we do not pursue it here.

Proof of Theorem 6.1(1): stability. The proof of stability is standard and similar to that of Proposition 5.1.
For this reason we omit many details, inviting the reader to consult [Benjamin 1972; Martel et al. 2002],
where the proof originates. Even then the argument will occupy us until page 613.

Assume that, for some fixed K > 0,

u.t1/� 2�1=.m�1/Qc1. � �X0/




H 1.R/
�K"1=2: (6-5)

From the local and global Cauchy theory exposed in Proposition 2.1 and Theorems 3.1 and 4.1, we know
that the solution u is well defined for all t � t1.
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To simplify the calculations, note that from (1-18) the function v WD 21=.m�1/u solves

vt C .vxx ��vC
1
2
a"v

m/x D 0 on Rt �Rx :

Then (6-5) becomes

kv.t1/�Qc1. � �X0/kH 1.R/ �
QK"1=2: (6-6)

With a slight abuse of notation we will rename v WD u and QK WDK, and we will assume the validity of
(6-6) for u. The parameters X0 and c1 remain unchanged.

Let D0 > 2K be a large number to be chosen later, and set

T � WD sup

(
t � t1 W 8 t 0 2 Œt1; t/ there is a smooth Q�2.t

0/ 2 R with j Q�02.t
0/� c1C�j �

1
100
;

j Q�2.t1/�X0j �
1

100
; and ku.t 0/�Qc1. � � Q�2.t

0//kH 1.R/ �D0"
1=2

)
: (6-7)

Observe that T � > t1 is well defined since D0 > 2K and because of (6-5) and the continuity of t 7! u.t/

in H 1.R/. The goal is to prove T � DC1, and thus (6-2).
Therefore, for the sake of contradiction, suppose T � < C1. Using modulation theory around the

soliton, we will decompose the solution on Œt1;T ��, and so find a special �2.t/ satisfying the hypotheses
in (6-7), but with

sup
t2Œt1;T ��



u.t/�Qc1. � � �2.t//




H 1.R/
�

1
2
D0"

1=2; (6-8)

in contradiction with the definition of T �.

Lemma 6.2 (Modulated decomposition). For " > 0 small enough, independent of T �, there exist C 1

functions �2; c2, defined on Œt1;T ��, with c2.t/ > 0, such that the function z.t/ given by

z.t;x/ WD u.t;x/�R.t;x/; (6-9)

where R.t;x/ WDQc2.t/.x� �2.t//, satisfies the following conditions for all t 2 Œt1;T
��:Z

R

R.t;x/z.t;x/ dx D

Z
R

.x� �2.t//R.t;x/z.t;x/ dx D 0 .orthogonality/; (6-10)

kz.t/kH 1.R/Cjc2.t/� c1j �KD0"
1=2; (6-11)

kz.t1/kH 1.R/Cj�2.t1/�X0jC jc2.t1/� c1j �K"1=2; (6-12)

where K does not depend on D0. In addition, z.t/ now satisfies the modified gKdV equation

zt C
�
zxx ��zC 1

2
a"..RC z/m�Rm/C .1

2
a".x/� 1/Qm

c2

�
x

Cc02.t/ƒQc2
C .c2��� �

0
2/.t/Q

0
c2
D 0: (6-13)

Furthermore, for some constant 
 > 0 independent of ", we have the improved estimates

j�02.t/C�� c2.t/j

�K.m� 3/

�Z
R

e�
 jx��2.t/jz2.t;x/ dx

�1
2

CK

Z
R

e�
 jx��2.t/jz2.t;x/ dxCKe�
"t (6-14)
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and
jc0

2
.t/j

c2.t/
�K

Z
R

e�
 jx��2.t/jz2.t;x/ dxCKe�
"tkz.t/kH 1.R/CK"e�"
 t : (6-15)

Remark. From (6-11) and taking " small enough we have an improved the bound on �2.t/. Indeed, for
all t 2 Œt1;T

��,

j�02.t/� c1C�jC j�2.t1/�X0j � 2D0"
1=2:

Thus, to reach a contradiction, we only need to show (6-8).

Proof of Lemma 6.2. As in Lemmas A.1.4 and 5.2, the proof of (6-9)–(6-12) is based in an application of
the implicit function theorem, and is very similar to the proof of [Martel and Merle 2008, Lemma A.1].

Equation (6-13) also follows from a simple computation, completely similar to (A-11) and (5-6).
Now we claim that from the definition of T � we can obtain an extra estimate on the parameter �2.t/:

�2.t/�
1

10
.c1.�/��/t1 for any t � t1: (6-16)

Indeed, from (6-7) and after integration between t1 and t 2 Œt1;T
�� we have the boundˇ̌

�2.t/� �2.t1/� .c1��/.t � t1/
ˇ̌
�

1
100
.t � t1/;

ˇ̌
�2.t1/�X0

ˇ̌
�

1
100
:

Thus we have ˇ̌
�2.t/� .c1��/t

ˇ̌
�

1
100
.t � t1C 1/C

ˇ̌
.c1��/t1�X0

ˇ̌
:

In particular, for any t 2 Œt1;T
�� (recall that �2.t1/�X0 > 0)

�2.t/� .c1��/t �
1

100
.t � t1C 1/� 1

10
c1t:

This implies that the soliton is far away from the potential interaction region.
Now we prove (6-14) and (6-15). Set y WDx��2.t/. Taking the time derivative in the first orthogonality

condition in (6-10) and using (6-13) we obtain

0D�c02.t/

Z
R

ƒQc2
.Qc2

� z/C .c2��� �
0
2/.t/

Z
R

Q0c2
z�

1

2

Z
R

Qm
c2

�
.a"� 2/z

�
x

�
"

2.mC 1/

Z
R

a0."x/QmC1
c2

.y/C
1

2

Z
R

Q0c2
a"
�
.RC z/m�Rm

�mRm�1z
�
:

By scaling arguments, Z
R

ƒQc2
Qc2
D �c2��1

2 .t/

Z
R

Q2: (6-17)

Then, by redefining 
 if necessary,ˇ̌̌̌
"

Z
R

a0."x/QmC1
c2

.y/

ˇ̌̌̌
�K"e�
"c2.t/�2.t/ �K"e�
"t :

Similarly, from (6-16) and following (A-13) we haveˇ̌̌̌Z
R

Qm
c2

�
.a"� 2/z

�
x

ˇ̌̌̌
�Kkz.t/kH 1.R/e

�
"t :
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Finally, note that for 
 > 0 independent of ",ˇ̌̌̌Z
R

Q0c2
a"
�
.RC z/m�Rm

�mRm�1z
�ˇ̌̌̌
�K

Z
R

e�
 jyjz2:

Collecting these estimates together, we have

jc0
2
.t/j

c2.t/
�K

Z
R

e�
 jyjz2
CK

ˇ̌
c2.t/��� �

0
2.t/

ˇ̌� Z
R

e�
 jyjz2

�1
2

CKe�
"tkz.t/kH 1.R/CK"e�
"t :

(6-18)
On the other hand, by using the second orthogonality condition in (6-10), we have

0D .c2��� �
0
2/.t/

Z
R

z.yR/xC c02.t/

Z
R

yƒQc2
zC

1

2
.c2��� �

0
2/.t/

Z
R

Q2
c2

C

Z
R

.yR/x

�
1
2
a"
�
.RC z/m�Rm

�mRm�1z
�
C
�

1
2
a".x/� 1

�
Qm

c2

�
C

Z
R

.yR/x.zxx � c2zCmRm�1z/C
m

2

Z
R

.yR/x.a"� 2/Rm�1z:

Note that by integration by parts,Z
R

.yR/x.zxx � c2zCmRm�1z/D

Z
R

z.2RC .m� 3/Rm/D .m� 3/

Z
R

zRm:

Using the same arguments as in the precedent computations, we have

ˇ̌
.c2��� �

0
2/.t/

ˇ̌
�K.m� 3/

�
1C
jc0

2
.t/j

c2.t/

��Z
R

z2e�
 jyj
�1

2

CK

Z
R

z2e�
 jyjC

ˇ̌̌̌Z
R

Qm
c2
.y/.a"� 2/:

ˇ̌̌̌
From (6-16) and following (A-13) we haveˇ̌̌̌Z

R

Qm
c2
.y/.a"� 2/

ˇ̌̌̌
�Ke�
"t :

Putting together (6-18) and the last estimates, we finally obtain the bounds in (6-11), and further we
obtain (6-14) and (6-15), as desired. �

Almost conserved quantities and monotonicity. We continue with a proof completely analogous to that of
Proposition A.1.1. Recall from (2-8) the definition of the modified mass QM .

Lemma 6.3 (Almost conservation of modified mass and energy). Consider QM D QM ŒR� and EaDEaŒR�,
the modified mass and energy of the soliton R of (6-9). For all t 2 Œt1;T

�� we have

QM ŒR�.t/D 1
2
c2�

2 .t/

Z
R

Q2
CO.e�"
 t /; (6-19)

EaŒR�.t/D
1
2
c2�

2 .t/.���0c2.t//

Z
R

Q2
CO.e�"
 t /: (6-20)

Furthermore, we have the boundˇ̌
EaŒR�.t1/�EaŒR�.t/C.c2.t1/��/

�
QM ŒR�.t1/� QM ŒR�.t/

�ˇ̌
�K

ˇ̌̌̌� c2.t/

c2.t1/

�2�
� 1

ˇ̌̌̌2
CKe�"
 t1 : (6-21)
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Proof. We start by showing (6-19). We consider the case mD 2; 4, the case mD 3 being easier. Note
that from (2-8) that

QM ŒR�.t/D OM ŒR�.t/D
1

2

Z
R

�
a"
2

�1=m
R2
D

1

2
c2�

2 .t/

Z
R

Q2
C

1

2

Z
R

��
a".x/

2

�1=m
� 1

�
R2:

From (6-16)-(6-17) and following the calculations in (A-13),ˇ̌̌̌Z
R

.a1=m
" .x/� 21=m/R2

ˇ̌̌̌
�Ke�
"t ;

for some constants K; 
 > 0. Now we consider (6-20). Here we have

EaŒR�.t/D
1

2

Z
R

R2
xC

�

2

Z
R

R2
�

1

2.mC 1/

Z
R

a"R
mC1

D c2�
2 .t/

�
c2.t/

�
1

2

Z
R

Q02�
1

mC 1

Z
R

QmC1

�
C
�

2

Z
R

Q2

�
C

1

mC 1

Z
R

�
1� 1

2
a"
�
RmC1:

Similarly to a recent computation, we haveˇ̌̌̌Z
R

.2� a".x//R
mC1

ˇ̌̌̌
�Ke�
"t ;

for some constants K; 
 > 0. On the other hand, from Section A.6 we have
1

2

Z
R

Q02�
1

mC 1

Z
R

QmC1
D�

�0

2

Z
R

Q2 and �0 D
5�m

mC 3
;

and thus
EaŒR�.t/D

1
2
c2�

2 .t/
�
���0c2.t/

� Z
R

Q2
CO.e�
"t /:

Combining both identities we have

EaŒR�.t/C
�
c2.t1/��

�
OM ŒR�.t/D c2�

2 .t/
�
c2.t1/��0c2.t/

�
M ŒQ�CO.e�"
 t /:

In particular,

EaŒR�.t1/�EaŒR�.t/C .c2.t1/��/. OM ŒR�.t1/� OM ŒR�.t//

D �0M ŒQ�

�
c2�C1

2
.t/� c2�C1

2
.t1/�

c2.t1/

�0

�
c2�

2 .t/� c2�
2 .t1/

��
CO.e�"
 t1/:

To obtain the last estimate (6-21) we perform a Taylor development up to the second order (around
y D y0) of the function g.y/ WD y

2�C1
2� ; and where y WD c2�

2
.t/ and y0 WD c2�

2
.t1/. Note that 2�C1

2�
D

1
�0

and y
1=2�
0
D c2.t1/. The conclusion follows at once. �

To establish some stability properties for the function u.t/ we recall the mass QM Œu� introduced in (2-8).
We have that for mD 3 and 0� �� �0; and for mD 2; 4 and 0< �� �0,

QM Œu�.t/� QM Œu�.t1/� 0: (6-22)

for any t 2 Œt1;T
��. This result is a consequence of the remark on page 586.

Now our objective is to estimate the quadratic term involved in (6-21). Following [Martel et al. 2002],
we should use a “mass conservation” identity. However, since the mass is not conserved, estimate (6-22)
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is not enough to obtain a satisfactory estimate. Instead we will introduce a virial-type identity in the next
lemma.

Let � 2 C.R/ be an even function satisfying8̂̂̂<̂
ˆ̂:
�0 � 0 on Œ0;C1/;
�.x/D 1 on Œ0; 1�;
�.x/D e�x on Œ2;C1/;
e�x � �.x/� 3e�x on Œ0;C1/:

(6-23)

Now, set  .x/ WD
R x

0 �. It is clear that  an odd function. Moreover, for jxj � 2,

 .C1/� .jxj/D e�jxj: (6-24)

Finally, for A> 0, set

 A.x/ WDA
�
 .C1/C .x=A/

�
> 0; e�jxj=A �  0A.x/� 3e�jxj=A: (6-25)

Note that limx!�1  .x/D 0.

Lemma 6.4 (Virial-type estimate). There exist K;A0; ı0 > 0 such that for all t 2 Œt1;T
�� and for some


 D 
 .c1;A0/ > 0,

@t

Z
R

z2.t;x/ A0
.x��2.t//��ı0

Z
R

.z2
xC z2/.t;x/e

� 1
A0
jx��2.t/j

CKA0kz.t/kH 1.R/e
�
"t : (6-26)

For the proof, see Section A.4.
We can improve the estimate (6-21):

Corollary 6.5 (Quadratic control of the variation of c2.t/).ˇ̌
EaŒR�.t1/�EaŒR�.t/C .c2.t1/��/

�
QM ŒR�.t1/� QM ŒR�.t/

�ˇ̌
�Kkz.t/k4

H 1.R/
CKkz.t1/k

4
H 1.R/

CKe�"
 t1 : (6-27)

Proof. From (6-15) and taking A0 large enough (but fixed and independent of ") in Lemma 6.4, we have
after an integration of (6-26) that

jc2.t/� c2.t1/j �KA0kz.t/k
2
L2.R/

CKA0kz.t1/k
2
L2.R/

CKA0D0"
�1=2e�
"t1 :

Substituting this in (6-21) and taking 
 even smaller, we get the conclusion. �

Energy estimates. Let us now introduce the second-order functional

F2.t/ WD
1

2

Z
R

�
z2

xC
�
�C.c2.t1/��/.

a"
2
/1=m

�
z2
�
�

1

2.mC1/

Z
R

a"
�
.RCz/mC1

�RmC1
�.mC1/Rmz

�
:

This functional, related to the Weinstein functional, have the following properties.

Lemma 6.6 (Energy expansion). Consider the energy EaŒu� and the mass QM Œu� defined in (1-21) and
(2-8). For all t 2 Œt1;T

��,

EaŒu�.t/C .c2.t1/��/ QM Œu�.t/DEaŒR�C .c2.t1/��/ QM ŒR�CF2.t/CO.e�
"tkz.t/kH 1.R//:
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Proof. Using the orthogonality condition (6-10), we have

EaŒu�.t/DEaŒR��

Z
R

z.a"�2/Rm
C

1

2

Z
R

z2
xC

�

2

Z
R

z2
�

1

mC1

Z
R

a"
�
.RCz/mC1

�RmC1
�.mC1/Rmz

�
:

Moreover, following (A-13), we easily getˇ̌̌̌Z
R

z.a"� 2/Rm

ˇ̌̌̌
�Ke�
"tkz.t/kH 1.R/:

Similarly,

OM Œu�.t/D OM ŒR�C OM Œz�C

Z
R

..a"
2
/1=m
� 1/Rz D OM ŒR�C OM Œz�CO.e�"
 t

kz.t/kH 1.R//:

Combining these estimates, we have

EaŒu�.t/C.c2.t1/��/ QM Œu�.t/DEaŒR�C.c2.t1/��/ QM ŒR�C
1

2

Z
R

�
z2

xC
�
.c2.t1/��/.

a"
2
/1=m
C�

�
z2
�

�
1

2.mC 1/

Z
R

a"
�
.RC z/mC1

�RmC1
� .mC 1/Rmz

�
CO.e�
"tkz.t/kH 1.R//:

This concludes the proof. �

Lemma 6.7 (Modified coercivity for F2). There exists "0 > 0 such that for all 0< " < "0 the following
hold. There exist K; Q�0 > 0, independent of K� such that for every t 2 Œt1;T

��

F2.t/� Q�0kz.t/k
2
H 1.R/

�K"e�
"tkz.t/k2
L2.R/

CO.kz.t/k3
L2.R/

/: (6-28)

Proof. Note that

F2.t/D
1

2

Z
R

�
z2

xC
�
.c2.t1/��/.

a"
2
/1=m
C�

�
z2
�

�
m

2

Z
R

Qm�1
c2

z2
CO.kz.t/k3

H 1.R/
/CO.e�
"tkz.t/k2

H 1.R/
/:

Now take R0 > 0 independent of ", to be fixed later. Consider the function

�R0
.t;x/ WD �

�
x��2.t/

R0

�
;

where � is defined in (6-23). We split the analysis according to the decomposition 1D �R0
C .1��R0

/.
Inside the region jx� �2.t/j �R0, we have, a consequence of (1-13),

2� a".x/�Ke�
"jxj �Ke
"R0e�
"�2.t/:

Outside this region, we have �R0
� e�R0 . ThusZ

R

�R0

�
.c2.t1/��/.

a"
2
/1=m
C�

�
z2
�
�
c2.t1/�Ke
"R0e�
"�2.t/

�Z
R

�R0
z2;

for fixed K; 
 > 0.
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On the other hand, j.1��R0
/Qc2
j �Ke�
R0 , and thusZ

R

.1��R0
/
�
.c2.t1/��/.

a"
2
/1=m
C�

�
z2
�

m

2

Z
R

.1��R0
/Qm�1

c2
z2

�
�
.c2.t1/��/.

1
2
/1=m
C��Ke�
R0

�Z
R

.1��R0
/z2; (6-29)

for fixed K; 
 > 0. Taking R0 DR0.m; �/ large enough, we have

.6-29/�
1

21=m
c2.t1/

Z
R

.1��R0
/z2:

Therefore,

F2.t/�
1

2

Z
R

�R0

�
z2

xC c2.t1/z
2
�mQm�1

c2
z2
�
C

1

2

Z
R

.1��R0
/
�
z2

xC .
1
2
/1=mc2.t1/z

2
�

�Ke
"R0e�
"�2.t/

Z
R

�R0
z2
CO

�
kz.t/k3

H 1.R/

�
CO

�
e�
"tkz.t/k2

H 1.R/

�
:

Taking R0 even larger if necessary (but independent of "), and using a localization argument as in [Martel
and Merle 2002b], we conclude that there exists Q�0 > 0 such that

F2.t/� Q�0

Z
R

.z2
xC z2/�Ke
"R0e�
"�2.t/

Z
R

�R0
z2
CO

�
kz.t/k3

H 1.R/

�
CO

�
e�
"tkz.t/k2

H 1.R/

�
:

Finally, taking "0 smaller if necessary, we have

F2.t/� Q�0

Z
R

.z2
xC z2/CO.kz.t/k3

H 1.R/
/CO.e�
"tkz.t/k2

H 1.R/
/;

for a new constant Q�0 > 0. �

Conclusion of the proof of Theorem 6.1(1). Now we prove that our assumption T � <C1 must lead to
a contradiction. Indeed, from Lemmas 6.6 and 6.7, we have for all t 2 Œt1;T

�� and for some constant
K > 0,

kz.t/k2
H 1.R/

�KF2.t1/CEaŒu�.t/�EaŒu�.t1/C .c2.t1/��/Œ QM Œu�.t/� QM Œu�.t1/�

CEaŒR�.t1/�EaŒR�.t/C .c2.t1/��/Œ QM ŒR�.t1/� QM ŒR�.t/�

CK" sup
t2Œt1;T ��

e�
"tkz.t/kL2.R/CK sup
t2Œt1;T ��

kz.t/k3
L2.R/

:

From Lemmas 6.2 and 6.3, Corollary 6.5 and the conservation we have

kz.t/k2
H 1.R/

�K"C .c2.t1/��/
�
QM Œu�.t/� QM Œu�.t1/

�
CK sup

t2Œt1;T ��

kz.t/k4
H 1.R/

CKe�"
 t1.1CD0"
1=2/CKD3

0"
3=2:

Finally, from (6-22) we have QM Œu�.t/� QM Œu�.t1/� 0. Collecting the preceding estimates we have for
" > 0 small and D0 DD0.K/ large enough

kz.t/k2
H 1.R/

�
1
4
D2

0";
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which contradicts the definition of T �. The conclusion is that

sup
t�t1



u.t/� 2�1=.m�1/Qc2.t/. � � �2.t//




H 1.R/
�K"1=2:

Using (6-11), we finally get (6-2). �

Proof of Theorem 6.1(2): asymptotic stability. Now we prove (6-3) in Theorem 6.1, following closely
[Martel and Merle 2005; 2008].

We continue with the notation introduced in the proof of the stability property (6-2). We have to show
the existence of K; cC > 0 such that

lim
t!C1

ku.t/�QcC. � � �2.t//kH 1.x> 1
10

c1t/ D 0 and jc1� cCj �K"1=2:

From the stability result above stated it is easy to check that the decomposition proved in Lemma 6.2 and
all its conclusions hold for any time t � t1.

Monotony for mass and energy. The next step is to prove some monotonicity formulae for local mass and
energy. Let K0 > 0 and set

�.x/ WD
2

�
arctan.ex=K0/: (6-30)

It is clear that lim
x!C1

�.x/D 1 and lim
x!�1

�.x/D 0. In addition, �.�x/D 1��.x/ for all x 2 R, and

0< �0.x/D
2

�K0

ex=K

1C e2x=K0
I �.3/.x/�

1

K2
0

�0.x/:

Moreover, we have 1��.x/�Ke�x=K0 as x!C1, and �.x/�Kex=K0 as x!�1.
Let �;x0 > 0. We define, for t; t0 � t1, and Qy.x0/ WD x� .�2.t0/C �.t � t0/Cx0/,

Ix0;t0
.t/ WD

Z
R

u2.t;x/�. Qy.x0// dx; QIx0;t0
.t/ WD

Z
R

u2.t;x/�. Qy.�x0// dx; (6-31)

and
Jx0;t0

WD

Z
R

�
u2

xCu2
�

2a"
mC1

umC1
�
.t;x/�. Qy.x0// dx:

Lemma 6.8 (Monotony formulae). Suppose 0<� < 1
2
.c1.�/��/ and K0>

q
2
�

. There exists K; "0> 0

small enough such that for all 0< " < "0 and for all t; t0 � t1 with t0 � t we have

Ix0;t0
.t0/� Ix0;t0

.t/�K
�
e�x0=K0 C "�1e�
"T"e�"
x0=K0

�
: (6-32)

On the other hand, if t � t0 and �2.t0/� t1Cx0,

QIx0;t0
.t/� QIx0;t0

.t0/�K
�
e�x0=K0 C "�1e�"
�2.t0/e"
x0=K0

�
; (6-33)

and finally if t0 � t ,

Jx0;t0
.t0/�Jx0;t0

.t/�K
�
e�x0=K0 C "�1e�
"T"e�"
x0=K0

�
: (6-34)

The proof is given in Section A.5.
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Conclusion of the proof of Theorem 6.1(2). Consider 0<"<"0 and u.t/ satisfying (6-1). From Lemma 6.2,
we can decompose u.t/ for all t � t1 such that u.t;x/D 2�1=.m�1/Qc2.t/.x� �2.t//C z.t;x/, where z

satisfies (6-10), (6-11), (6-12), (6-14) and (6-15). An application of Lemma 6.4 followed by integration
in time shows that there exists K DK.D0/ > 0 such thatZ C1

t1

Z
R

.z2
xC z/.t;x/e

� 1
A0
jx��2.t/j

�K.D0/": (6-35)

Now we claim that

cC WD lim
t!C1

c2.t/ <C1 and jcC� c1j �K"1=2: (6-36)

In fact, note that from (6-35) there exists a sequence tn " C1, tn 2 Œn; nC 1/ such that

lim
n!C1

Z
R

.z2
xC z/.tn;x/e

� 1
A0
jx��2.tn/j

D 0: (6-37)

From (6-37), (6-14), and (6-15), and taking A0 > 0 so large that 1=A0 < 
 , we getˇ̌
c02.t/

ˇ̌
�K

Z
R

z2.t;x/e
� 1

A0
jx��2.t/j

CKe�
"t :

This, combined with (6-35) and (6-12), allows us to conclude (6-36). This proves the first part of (6-4).
The next step is to prove that

lim sup
t!C1

Z
R

.z2
xC z2/.t;xC �2.t//�.x�x0/�Ke�x0=2K0 CK"�1e�"
T"e�"
x0=K0 :

This follows from the decay properties of R and the estimate

lim sup
t!C1

Z
R

.u2
xCu2/.t;xC �2.t//�.x�x0/�Ke�x0=2K0 CK"�1e�"
T"e�"
x0=K0 ; (6-38)

which we prove now. We start from (6-34): we have for t0 � t1,

Jx0;t0
.t0/� Jx0;t0

.t1/CKe�x0=K0 CK"�1e�"
T"e�"
x0=K0 :

From the equivalence between the energy and H 1-norm (we are in a subcritical case), we haveZ
R

.u2
xCu2/.t0;xC �2.t0//�.x�x0/�K

Z
R

.u2
xCu2/.t1;xC �2.t1//�.x�y0/

CKe�x0=2K
CK"�1e�"
T"e�"
x0=K0 ;

where y0 WD �2.t0/� �2.t1/C �.t1� t0/Cx0: Now we send t0!C1 noticing that y0!C1. This
gives (6-38), as desired.

We next prove that

lim
n!C1

Z
R

.z2
xC z2/.tn;x/�.x� �2.tn/Cx0/ dx D 0: (6-39)
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where .tn/n2N is the sequence from (6-39). Indeed, for any x1 > 0,Z
R

.z2
xC z2/.tn;xC �2.tn//�.xCx0/

�K.e
x0
A0 C e

x1
A0 /

Z
R

.z2
xC z2/.tn;xC �2.tn//e

�
jxj
A0 CK

Z
R

.z2
xC z2/.tn;xC �2.tn//�.x�x1/:

Using (6-39) we are able to take the limit n!C1 in this inequality, with x0;x1 fixed. Taking the limit
x1!C1 yields the conclusion.

We finally prove that the above result holds for any sequence tn!C1. Let ˇ < c1.�/� � to be
fixed. We want to prove that for " small enough,

lim
t!C1

Z
R

.z2
xC z2/.t;x/�.x�ˇt/ dx D 0:

First, we claim that for any t2; t3 > t1 with t2 < t3 and �2.t2/ > x0C t1, we haveZ
R

u2.t3;x/�.x�y3/ dx�

Z
R

u2.t2;x/�.x�y2/ dxCKe�x0=K0CK"�1e�
"�2.t2/e
"x0=K0 ; (6-40)

where y3 WD �2.t2/C
1
2
ˇ.t3� t2/�x0 and y2 WD �2.t2/�x0. In fact, the left-hand side of this inequality

corresponds to QIx0;t2
.t3/ and the right one is QIx0;t2

.t2/, with � WD 1
2
ˇ (see (6-31) for the definitions).

Thus (6-40) a consequence of Lemma 6.8, more specifically of (6-33).
Now the rest of the proof is similar to [Martel and Merle 2005]. Since

R
R

z.t;xC�2.t//R.x/D 0, we
have ˇ̌̌̌Z

R

z.t;xC �2.t//R.x/�.xCx0/

ˇ̌̌̌
�K"1=2e�x0=2K0 :

Second, we use the decomposition u.t;x/D 2�1=.m�1/Qc2.t/.x� �2.t//C z.t;x/ in (6-40) to getZ
R

z2.t3;x/�.x�y3/ dx

�

Z
R

z2.t2;x/�.x�y2/ dxCKe�x0=2K0 CK"�1e�
"�2.t2/e
"x0=K0 CKjc2.t2/� c2.t3/j: (6-41)

Third, consider t > t1 large, and define t 0 2 .t1; t/ such that ˇt WD �2.t
0/C ˇ

2
.t � t 0/� x0: Note that

t 0!C1 as t !C1. Since tn 2 Œn; nC 1/ there exists nD n.t/ such that 0< t � tn � 2, and then

ˇt WD �2.tn/C
1
2
ˇ.t � tn/� Qx0; with j Qx0�x0j � 10:

Now we apply (6-41) between t3 D t and t2 D tn. We getZ
R

z2.t;x/�.x�ˇt/ dx

�

Z
R

z2.tn;x/�.x� �2.tn/C Qx0/ dxCKe�x0=2K0 CK"�1e�
"�2.tn/e
"x0=K0 CKjc2.t/� c2.tn/j:

Since n.t/!C1 as t !C1, by (6-39) and (6-36) we obtain

lim sup
t!C1

Z
R

z2.t;x/�.x�ˇt/ dx �Ke�x0=2K0 ;
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and since x0 is arbitrary (because of limt!C1 �2.tn/DC1), we get the desired result. The same result
is still valid for zx . We have

lim sup
t!C1

Z
R

z2
x.t;x/�.x�ˇt/ dx �Ke�x0=2K0 :

Finally, let

wC.t;x/ WD u.t;x/� 2�1=.m�1/QcC.x� �2.t//

D z.t;x/C 2�1=.m�1/
�
Qc2.t/.x� �2.t//�QcC.x� �2.t//

�
:

From this and (6-36) we obtain (6-3). �

7. Proof of the main theorems

Proof of Theorem 1.1. We will combine Theorems 3.1 and 4.1 to obtain the global solution u.t/ with
the required properties. This method was employed earlier in [Martel and Merle 2007; Martel et al. 2010;
Muñoz 2010].

By Theorem 3.1 there exists a solution u of (1-15) satisfying u2C.R;H 1.R// and (3-1). This solution
also satisfies, from (3-3), 

u.�T"/�Q. � C .1��/T"/




H 1.R/

�K"10;

for " small enough. In addition, u is unique if mD 2; 4 and � > 0, or if mD 3 and �� 0. This proves
Theorem 1.1(1).

To obtain Theorem 1.1(2) we invoke (4-2) and (4-3) in Theorem 4.1. We define QT" WD T"C �1.T"/,
and �" WD �.T"/. Now (1-27) and (1-28) are straightforward.

Proof of Theorem 1.2. Suppose m D 2; 3; 4 with � > 0 for m D 2; 4. Define t1 WD T" C �1.T"/ and
X0 WD �.T"/. Then, from the preceding estimates and Theorem 6.1 we have stability and asymptotic
stability at infinity. In other words, there exist a constant cC > 0 and a C 1 function �2.t/ 2 R such that

wC.t/ WD u.t/� 2�1=.m�1/QcC. � � �2.t//

satisfies (6-2) and (6-3). This proves (1-29) and (1-30).
We finally prove (1-32) and (1-33). From the energy conservation, we have for all t � t1,

EaŒu�.�1/DEa

�
2�1=.m�1/QcC. � � �2.t//Cw

C.t/
�

In particular, from (6-3) and Section A.6 we have as t !C1

.���0/M ŒQ�D
.cC/2�

22=.m�1/
.���0cC/M ŒQ�CEC: (7-1)
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From this identity EC WD limt!C1EaŒw
C�.t/ is well defined. This proves (1-32). To deal with (1-33),

note that from the stability result (6-2) and the Morrey embedding we have, for any � > 0,

EŒwC�.t/D
1

2

Z
R

.wCx /
2.t/C

�

2

Z
R

.wC/2.t/�
1

mC 1

Z
R

a".w
C/mC1.t/

�
1

2

Z
R

.wCx /
2.t/C

�

2

Z
R

.wC/2.t/�K".m�1/=2

Z
R

a".w
C/2.t/� �kwC.t/k2

H 1.R/

for some �D �.�/ > 0. Passing to the limit we obtain (1-33).
Now we prove the bound (1-34). First, the treat the cubic case with �D 0. Here, from (7-1) we have

EC D �0

�
.cC/3=2

22=.m�1/
� 1

�
M ŒQ�:

Since in this case we have 22=.m�1/D 2D c
3=2
1 , M ŒQ�D 2 and �0D

1
3

, we obtain 3
2
ECD

�
cC

c1

�3=2
�1.

Now we deal with the case � > 0. After some algebraic manipulations, the equation for c1 in (4-17)
becomes

c2�
1

22=.m�1/
.�0c1��/M ŒQ�D .�0��/M ŒQ�:

On the other hand, from (7-1) and (1-33) we have

� lim sup
t!C1

kwC.t/k2
H 1.R/

�
.cC/2�

22=.m�1/
.�0cC��/M ŒQ�� .�0��/M ŒQ�:

Putting together both estimates, we get

Q� lim sup
t!C1

kwC.t/k2
H 1.R/

� .cC/2�C1
� c2�C1
1 �

�

�0

�
.cC/2� � c2�

1

�
;

for some Q� > 0. Arguing as in Lemma 6.3 we have

Q� lim sup
t!C1

kwC.t/k2
H 1.R/

�
1

�0

.c1��/
�
.cC/2� � c2�

1

�
CO

�ˇ̌
.cC/2� � c2�

1

ˇ̌2�
:

From this inequality and the bound jcC� c1j �K" we get�
cC

c1

�2�
� 1� Q� lim sup

t!C1

kwC.t/k2
H 1.R/

;

as desired.

Proof of Theorem 1.3. In this section we prove (1-35), which implies there is no pure soliton at infinity.
This will require several additional arguments, including the fundamental Lemma 7.5 and a monotonicity
formula that implies that any such soliton would have polynomial decay and be L1-integrable, in
contradiction with the change of scaling.

Suppose, for a contradiction, that (1-35) is false. Then

lim
t!C1

kwC.t/kH 1.R/ D 0:
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This, together with subcriticality, implies that EC D 0. Therefore, by using (7-1), and after some basic
algebraic manipulations we see that cC must satisfy the algebraic equation

.cC/�0

�
cC�

�

�0

�1��0

D 2p
�
1�

�

�0

�1��0

(compare with (4-17)). This relation and the uniqueness of c1 give

cC D c1.�/: (7-2)

In other words, the soliton solution is pure (cf. Definition 1.0).
Now consider the decomposition result for u.t/ from Lemma 6.2. We claim that z.t/ also vanishes at

infinity. Indeed, from Lemma 6.2, the fact that

u.t/DR.t/C z.t/D wC.t/C 2�1=.m�1/Qc1. � � �2.t// for t � t1;

and the estimates (6-11) and (6-36), we have

lim
t!C1

kz.t/kH 1.R/ D 0; (7-3)

limt!C1 u.t; � C �2.t//D 2�1=.m�1/Qc1 in H 1.R/, and limt!C1 �
0
2
.t/� .c1.�/��/D 0.

Lemma 7.1 (Monotony of mass backwards in time). Suppose u.t/ solution of (1-15) constructed in
Theorem 3.1, satisfying (6-2) and (6-3). Define

MŒu�.t/ WD

Z
R

u2.t;x/

a".x/
dx: (7-4)

Then, under the additional hypothesis � > 0 for mD 2; 3; 4, we have, for all t; t 0 � t1 with t 0 � t ,

MŒu�.t/�MŒu�.t 0/�Ke�"
 t : (7-5)

Proof. A simple computation tell us that the time derivative of MŒu�.t/ is given by

@t

Z
R

u2

a"
D 2"

Z
R

u2
x

a0"
a2
"

C "

Z
R

u2

�
�

a0"
a2
"

� "2
�a0"

a2
"

�00�
� 2"

Z
R

a0"
a"

umC1:

Replacing u by RC z (see Lemma 6.2) and using assumption (1-14) and estimates similar to (A-13),
plus the smallness of kz.t/kH 1.R/, we get

@t MŒu�.t/� �K"e�"
 t ;

for some K; 
 > 0. The result follows after integration. �

Remark. The estimate (7-5) is valid under the additional assumption 0< �� �0. This extra hypothesis
unfortunately does not hold in the case mD 3, �D 0.

Lemma 7.1 allows us to prove a version of Theorem 3.1 for positive times.
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Proposition 7.2 (Backward uniqueness). Suppose mD 2; 3; 4. Let ˇ 2 R and 0 < � � �0. There exist
constants K; 
; "0 > 0 and a unique solution v D vˇ 2 C.Œ1

2
T";C1/;H

1.R// of (1-15) such that

lim
t!C1



v.t/� 2�1=.m�1/Qc1. � � .c1.�/��/t �ˇ/




H 1.R/
D 0: (7-6)

Furthermore, for all t � 1
2
T" and s � 1 the function v.t/ satisfies

v.t/� 2�1=.m�1/Qc1. � � .c1.�/��/t �ˇ/




H s.R/

�K"�1e�"
 t : (7-7)

Finally, suppose that there exists Qv.t/ 2H 1.R/ solution of (1-15) such that

lim
t!C1



 Qv.t/� 2�1=.m�1/Qc1. � � �2.t//




H 1.R/
D 0: (7-8)

Then Qv � vˇ for some ˇ 2 R.

Proof. Given ˇ 2 R, the proof of existence and uniqueness of the solution vˇ satisfying (7-6) and (7-7)
is identical to the proof of Theorem 3.1 in Section 3 and Section A.1. First we construct a sequence of
functions vn as in (A-1) for times t � Tn. Next, we prove a decomposition lemma as in Lemma A.1.4.
This yields a version of (7-5) for MŒvn�.t/. The main difference is given in the estimates (A-14) and
(A-15), where now we introduce the modified mass MŒvn�.t/ defined in (7-4). The energy functional in
(A-18) is now given by EaŒvn�.t/C .c1.�/��/MŒvn�.t/. The rest of the proof, including the uniqueness,
adapts mutatis mutandis.

Now consider a solution Qv of (1-15) satisfying (7-8). Using monotonicity arguments, similar to the
proof of Proposition A.1.7, we show the existence of ˇ 2 R such that

 Qv.t/� 2�1=.m�1/Qc1. � � .c1.�/��/t �ˇ/




H 1.R/

�K"�1e�"
 t ;

for some K; 
 > 0. This implies that there exists ˇ 2R such that Qv satisfies (7-6). The conclusion follows
from the uniqueness of v.t/. �

As a consequence of this result together with (7-3), the solution u.t/ constructed in Theorem 3.1
satisfies the following exponential decay at infinity: there exist K; 
 > 0 and ˇ 2 R such that, for all
t � t1, if Q�2.t/ WD .c1.�/��/t Cˇ, then

Qz.t/ WD u.t/� 2�1=.m�1/Qc1. � � Q�2.t//; satisfies kQz.t/kH 2.R/ �K"�1e�"
 t : (7-9)

Now we prove that this strong H 1-convergence gives rise to strange localization properties.

Lemma 7.3 (L2-exponential decay on the left). There exist K; Qx0 > 0 large enough such that for all
t � T0 and for all x0 � Qx0

ku.t; � C Q�2.t//k
2
L2.x��x0/

�Ke�x0=K : (7-10)

Proof. Suppose x0 > 0, t; t0 � t1 and � > 0 from (6-3). Consider the modified mass

QIt0;x0
.t/ WD

1

2

Z
R

u2.t;x/

a".x/
.1��.y// dx;
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with y WD x � . Q�2.t0/C �.t � t0/� x0/ and � defined in (6-30). For this quantity we claim that for
x0 > Qx0 and for all t � t0,

QIt0;x0
.t0/� QIt0;x0

.t/�Ke�x0=K
�
1C e�

1
2
�.t�t0/=K

�
: (7-11)

Let us assume this result for a moment. After taking the limit t ! C1 and using (6-3), we have
limt!C1

QIt0;x0
.t/D 0 and thus

QIt0;x0
.t0/�Ke�x0=K :

Now (7-10) follows from the fact that t0 � t1 is arbitrary.
Finally, let us prove (7-11). A direct calculation tell us that

1

2
@t

Z
R

.1��.y//

a"
u2
D

3

2

Z
R

�0

a"
u2

xC
3

2
"

Z
R

a0"
a2
"

.1��/u2
x �

m

mC 1

Z
R

�0umC1

C
1

2

Z
R

u2

�
.� C�/

�0

a"
�
�.3/

a"
C 3"�00

a0"
a2
"

C 3"2�0
�a0"

a2
"

�0�
C
"

2

Z
R

u2

�
�

a0"
a2
"

� "2
�a0"

a2
"

�00�
.1��/� "

Z
R

a0"
a"

umC1.1��/:

Using (7-9), we have ˇ̌̌̌Z
R

�0umC1

ˇ̌̌̌
�K".m�1/=2

Z
R

�0 Qz2
CKe�

1
2
�.t�t0/e�x0=K ;ˇ̌̌̌Z

R

a0"
a"

umC1.1��/

ˇ̌̌̌
�Ke�

1
2
�.t�t0/e�x0=K CK".m�1/=2

Z
R

a0"
a"
Qz2.1��/:

After this, it is easy to conclude that

1

2
@t

Z
R

.1��.y//

a"
u2
� �Ke�

1
2
�.t�t0/e�x0=K :

The conclusion follows after integration in time. �

The proof of decay on the right-hand side of the soliton requires more care, and is valid under the
assumption lim supt!C1 kw

C.t/kH 1.R/ D 0 and � > 0. We do not expect to have exponential decay in
a general situation, but for our purposes we only need a polynomial decay. The following result is due to
Y. Martel.

Lemma 7.4 (L2-polynomial decay on the right the soliton solution). There exist K; Qx0 > 0 large enough
but independent of ", such that for all t � T0 and for all x0 � Qx0Z

R

.x�x0/
2
C Qz

2.t;xC Q�2.t// dx �K;

where xC WDmaxfx; 0g.

Proof. Take x0 > 0, t0; t � t1 and define

OIt0;x0
.t/ WD

Z
R

Qz2.t;x/�. Qy/ dxI Qy WD x� . Q�2.t0/C Q�.t � t0/Cx0/;
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and
OJt0;x0

.t/ WD

Z
R

Qz2
x.t;x/�. Qy/ dx:

Here � is the cut-off function defined in (6-30), and Q� is a fixed constant satisfying Q� > 2.c1.�/��/.
We claim that there exists K > 0 such that (for simplicity we omit the dependence if no confusion is
present)

j@t
OIt0;x0

.t/j �K

Z
R

.Qz2
xC Qz

2/Œ�0C "a0."x/��dxCKkQz.t/kH 1.R/e
�".t�t0/=K e�"x0=K ; (7-12)

and

j@t
OJt0;x0

.t/j �K

Z
R

.Qz2
xxC Qz

2
xC Qz

2/Œ�0C "a0."x/��dxCKkQz.t/kH 2.R/e
�".t�t0/=K e�"x0=K : (7-13)

Indeed, these estimates are proved in the same way as in Lemma 6.4 and Section A.4. For the sake of
brevity we skip the details.

From Proposition 7.2 and the exponential decay of z we have that both right-hand sides in (7-12)-(7-13)
are integrable between t0 and C1. We get

OIt0;x0
.t0/�K

Z C1
t0

Z
R

.Qz2
xC Qz

2/Œ�0C "a0."x/��dx dt CK"�1 sup
t�t0

kQz.t/kH 1.R/e
�"x0=K : (7-14)

In the same line, we have

OJt0;x0
.t0/�K

Z C1
t0

Z
R

.Qz2
xxC Qz

2
xC Qz

2/Œ�0C"a0."x/��dx dtCK"�1 sup
t�t0

kQz.t/kH 2.R/e
�"x0=K : (7-15)

Note that both quantities above are integrable with respect to x0.
Set �0. Qy/ WD �. Qy/ and �j . Qy/ WD

R Qy
�1

�j�1.s/ ds, for j D 1; 2. Recall that the �j are positive and
increasing functions on R, with �j . Qy/! 0 as Qy!�1, and �j . Qy/� Qyj ! 0 as Qy!C1. Integrating
(7-14) from x0 to C1 and using Fubini’s theorem we obtainZ

R

�1. Qy.t0//Qz
2.t0/�K

Z C1
t0

Z
R

.Qz2
xC Qz

2/Œ�0C "a
0."x/�1�CK"�2 sup

t�t0

kQz.t/kH 1.R/e
�"x0=K : (7-16)

Similarly, from (7-15),Z
R

�1. Qy.t0//Qz
2
x.t0;x/ dx �K"�3e�2"
 t0 CK"�2 sup

t�t0

kQz.t/kH 2.R/e
�"x0=K : (7-17)

In conclusion, thanks to the exponential decay of Qz and (7-16)–(7-17), we haveZ C1
t0

Z
R

�1.x� Q�2.t/�x0/.Qz
2
xC Qz

2/.t;x/ dx dt <C1:

Furthermore, Q�2.t/� Q�2.t0/C �.t � t0/ for all t � t0. ThusZ C1
t0

Z
R

�1. Qy.t//.Qz
2
xC Qz

2/.t;x/ dx dt <C1: (7-18)
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In addition, an easier calculation givesZ C1
t0

Z
R

a0."x/�2. Qy.t//.Qz
2
xC Qz

2/.t;x/ dx dt <C1: (7-19)

From (7-18) and (7-19), we can perform a second integration with respect to x0 in (7-16) to obtainZ
R

�2. Qy.t0//Qz
2.t0;x/ dx �K."/;

uniformly for x0 large. Since t0 is arbitrary, this last estimate gives the conclusion. �

Lemma 7.5 (L1-integrability and smallness). Assume (7-3) holds. There exist K;T0 > 0 large enough
such that u.t; � C Q�2.t// 2L1.R/ for all t � T0. Moreover,ˇ̌̌̌Z

R

z.t/

ˇ̌̌̌
�

1

100
: (7-20)

Finally, from the L1 conservation law (1-9), we have u.t/ 2L1.R/ for all t 2 R andZ
R

u.t/D

Z
R

Q: (7-21)

Proof. Let x0 � Qx0 to be fixed below. If jxj � x0 we have 2�1=.m�1/Qc1.x/ � Ke�
p

c1jxj. Since
Qz.t;xC Q�2.t//D u.t;xC Q�2.t//�2�1=.m�1/Qc1.x/, by using Lemma 7.3 and the stability bound (6-2),
in addition to a Gagliardo–Nirenberg type inequality, we then get, for all x � �x0,

jQz.t;xC Q�2.t//j �KkQz.t; � C Q�2.t//k
1
2

L2.y�x/
kQzy.t; � C Q�2.t//k

1
2

L2.R/
�K"1=4ex=K ;

For x 2 Œ�x0;x0� one hasZ
Œ�x0;x0�

Qz.t;xC Q�2.t//�Kx
1=2
0
kQz.t;xC Q�2.t//k

1=2

L2.R/
�Kx

1=2
0
"1=4:

The case x � x0 requires more care. From Lemma 7.4 and the Cauchy–Schwarz inequality, we have (for
clarity we drop the dependence on xC Q�2.t/)ˇ̌̌̌Z

x�x0

z.t/

ˇ̌̌̌
�

K

.x0� Qx0/1=2�

�Z
x�x0

.1C .x� Qx0/
2/z2.t/

�1=2

�
K

x
1=2�
0

;

for x0 large enough, independent of ". From these estimates we obtain the smallness condition (7-20).
That u.t/ is in L1.R/ for all t 2 R is a consequence of Proposition 2.1. It is clear that from this last

fact (1-9) remains constant for all time and (7-21) holds. �

Conclusion of the proof. From (7-2) and Section A.6 we have

lim
t!C1

Z
R

z.t/D

�
1�

.cC/��
1
4

21=.m�1/

�Z
R

QD .1� �m/

Z
R

Q¤ 0; with �m WD
c

3�m
2.m�1/

1

21=.m�1/
;
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For mD 3; 4 it is easy to see that 1��m >
1

10
. For mD 2 we have �2D

1
2
c

1=2
1 ; but from (4-19) we know

that c1 � 2
4
3 . In any case, then, we have 1� �m >

1
10

. Thusˇ̌̌̌
lim

t!C1

Z
R

z.t/

ˇ̌̌̌
�

1

10

Z
R

Q;

in contradiction with (7-20). This finishes the proof of (1-35). �

Appendix: Proofs of auxiliary results

A.1. Sketch of the proof of Theorem 3.1. We follow [Martel 2005], to which we refer the reader for all
the details omitted here.

Let .Tn/n2N � R be an increasing sequence with Tn �
1
2
T" for all n and limn!C1 Tn DC1. For

notational simplicity we denote by QTn the sequence .1��/Tn. Consider the solution un.t/ of the Cauchy
problem �

.un/t C
�
.un/xx ��unC a"u

m
n

�
x
D 0 in Rt �Rx;

un.�Tn/DQ. � � QTn/:
(A-1)

Thus un is a solution of (aKdV) that at time t D �Tn corresponds to the soliton Q. � � QTn/. Clearly,
Q. � � QTn/ 2H s.R/ for every s � 0; moreover, there exists a uniform constant C D C.s/ > 0 such that

kQ. � � QTn/kH s.R/ � C:

According to Propositions 2.1 and 2.2, un is locally well defined in time, and global for positive times in
H 1.R/. Let In be its maximal interval of existence.

The next step is to establish uniform estimates starting from a fixed time t D�1
2
T" < 0 so negative that

the soliton is not influenced by the perturbation in the potential. That is the content of this proposition,
proved in the next section:

Proposition A.1.1 (Uniform estimates in H s for large times). There exist constants K; 
 > 0 and "0 > 0

such that, for all 0<"<"0 and for all n2N we have Œ�Tn;�
1
2
T"��In (so un2C.Œ�Tn;�

1
2
T"�;H

s.R//)
and, for all t 2 Œ�Tn;�

1
2
T"�,

kun.t/�Q. � � .1��/t/kH s.R/ �K"�1e
"t : (A-2)

In particular, there exists a constant Cs > 0 such that, for all t 2 Œ�Tn;�
1
2
T"�,

kun.t/kH s.R/ � Cs: (A-3)

Using this result we will obtain the existence of a critical element u0;� 2H s.R/, with good compact
properties, nondispersive, and uniformly close to the desired soliton.

Indeed, consider the sequence .un.�
1
2
T"//n2N �H s.R/. A standard argument shows that, given any

ı > 0, there exist "0 > 0 and K0 > 0 such thatZ
jxj>K0

u2
n.�

1
2
T"/ < ı for all 0< " < "0 and n 2 N: (A-4)
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To use this in the proof of Theorem 3.1, note first that (A-3) implies that

kun.�T"=2/kH 1.R/ � C0;

independently of n. Thus, up to a subsequence we may suppose that un.�
1
2
T"/ * u�;0 in the H 1.R/

weak sense, and un.�
1
2
T"/! u�;0 in L2

loc
.R/, as n!C1. In addition, from (A-4) we have strong

convergence in L2.R/. From interpolation and the bound (A-3) we have strong convergence in H s.R/

for any s � 1.
Let u� D u�.t/ be the solution of (1-1) with initial data u�.�

1
2
T"/D u�;0. From Proposition 2.1 we

have u� 2 C.I;H s.R//, where �1
2
T" 2 I , the corresponding maximal interval of existence. Thus, using

the continuous dependence of un and u�, we obtain un.t/! u�.t/ in H s.R/ for every t � �1
2
T" � I .

Passing to the limit in (A-2) we obtain, for all t � �1
2
T",

ku�.t/�Q. � � .1��/t/kH s.R/ �K"�1e"
 t ;

as desired. This completes the proof of the existence part of Theorem 3.1, assuming Proposition A.1.1.

A.1.2. Uniform H 1 estimates. Next we outline the proof of Proposition A.1.1. We consider only the H 1

case. The first step in the proof is the following bootstrap property:

Proposition A.1.3 (Uniform estimates with and without decay assumption). Let mD 2; 3; 4 and 0� ��

�0 < 1. There exist constants K; 
; "0 > 0 such that for all 0< " < "0 the following is true.

(1) Suppose mD 3, or mD 2; 4 with � > 0. Then there exists ˛0 > 0 such that, for all 0 < ˛ < ˛0, if
for some �Tn;� 2 Œ�Tn;�

1
2
T"� and for all t 2 Œ�Tn;�Tn;�� we have

kun.t/�Q. � � .1��/t/kH 1.R/ � 2˛; (A-5)

then, for all t 2 Œ�Tn;�Tn;��,

kun.t/�Q. � � .1��/t/kH 1.R/ �K"�1e"
 t : (A-6)

(2) Now suppose mD 2; 4 and �D 0. Then (A-6) holds if for some �Tn;� 2 Œ�Tn;�
1
2
T"� and for all

t 2 Œ�Tn;�Tn;�� one has

kun.t/�Q. � � .1��/t/kH 1.R/ � 2K"�1e"
 t : (A-7)

Proof of Proposition A.1.1, assuming the validity of Proposition A.1.3. We assume item (1) of the
proposition. The case in which we assume item (2) is similar. From (A-1) we have

kun.�Tn/�Q.�.1��/Tn/kH 1.R/ D 0;

so there exists t0 D t0.n; ˛/ > 0 such that (A-5) holds true for all t 2 Œ�Tn;�TnC t0�. Now consider (we
adopt the convention T�;n > 0)

� QT�;n WD sup
˚
t 2 Œ�Tn;�

1
2
T"� W kun.t

0/�Q. � t � .1��/t 0/kH 1.R/ � 2˛ for all t 0 2 Œ�Tn; t �
	
:
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Assume, for a contradiction, that � QT�;n < �1
2
T". From Proposition A.1.3, we have

un.t

0/�Q. � t � .1��/t 0/




H 1.R/
�K"�1e
"t � ˛;

for " small enough (recall that t ��1
2
T" D�

1
2.1��/

"�1� 1
100 ). This contradicts the definition of QT�;n. �

We turn to the proof of Proposition A.1.3. The first step is to decompose the solution preserving a
standard orthogonality condition. To obtain this, we suppose (without loss of generality, by taking Tn;�

even larger) that, for all t 2 Œ�Tn;�Tn;��,

un.t/�Q. � � .1��/t � rn.t//




H 1.R/
� 2˛; (A-8)

for all smooth rn D rn.t/ satisfying rn.�Tn/D 0 and jr 0n.t/j � 1=t2. A posteriori we will prove that this
condition can be improved and extended to any time t 2 Œ�Tn;�

1
2
T"�.

In what follows we drop the index n in �T�;n and un, if no confusion can arise.

Lemma A.1.4 (Modulation). There exist K; 
; "0 > 0 and a unique C 1 function �0 W Œ�Tn;�T��! R

such that for all 0< " < "0 the function z defined by

z.t;x/ WD u.t;x/�R.t;x/I R.t;x/ WDQ.x� .1��/t � �0.t// (A-9)

satisfies, for all t 2 Œ�Tn;�T��,Z
R

z.t;x/Rx.t;x/ dx D 0; kz.t/kH 1.R/ �K˛; �0.�Tn/D 0: (A-10)

Moreover, z satisfies the modified gKdV equation

zt C
�
zxx ��zC a"..RC z/m�Rm/C .1� a"/R

m
�
x
� �00.t/Rx D 0; (A-11)

and

j�00.t/j �K
�
e"
 t
Ckz.t/kH 1.R/Ckz.t/k

2
L2.R/

�
: (A-12)

Proof of Lemma A.1.4. The proof of (A-10) is a standard consequence of the implicit function theorem,
the definition of T� .D T�;n/, and the definition of un.�Tn/ given in (A-1). Similarly, the proof of (A-11)
follows after a simple computation.

Now we deal with (A-12). Taking the time derivative of (A-9) and using (A-11), we get

0D

Z
R

ztRx � .1��C �
0
0/

Z
R

zRxx

D

Z
R

�
zxx � zC a"..RC z/m�Rm/C .1� a"/R

m
�
RxxC �

0
0

Z
R

Rx.RxC zx/:

Note that Z
R

Rx.RxC zx/D

Z
R

Q02CO.kz.t/kL2.R//:
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On the other hand, from (1-13), (A-10), the uniform bound on �0
0
.t/ in the definition of T�, and the

exponential decay of R, we have ˇ̌̌̌Z
R

.1� a"/R
mRxx

ˇ̌̌̌
�Ke"
 t : (A-13)

Indeed, first note that from (A-8), by integrating between �Tn and t and using (A-10) we get

�0.t/� �
1

Tn
�

1

t
�

2

T"
�K"1C 1

100 :

Thus t C �0.t/� t CK"1C 1
100 �

9
10

t . Therefore, by possibly redefining 
 , we have from (1-13)ˇ̌̌̌Z
R

.1� a"/R
mRxx

ˇ̌̌̌
�K

Z 0

�1

e
"xe�.mC1/jx�.tC�0.t//jdxCKe.mC1/.tC�0.t//

Z 1
0

e�.mC1/xdx

�K exp
�

".t C �0.t//

�
CK exp

�

 .mC 1/.t C �0.t//

�
�Ke
"t :

Finally, Z
R

Rxx

�
zxx � zC a"..RC z/m�Rm/

�
DO

�
kz.t/kL2.R/Ckz.t/k

2
L2.R/

�
:

Collecting the estimates above we obtain (A-12). �

A.1.5. Almost conservation of mass and energy. Recall that from the remark on page 586 that the modified
mass defined in (2-8) satisfies

QM Œu�.t/� QM Œu�.�Tn/: (A-14)

for all �Tn � t � �1
2
T". Moreover, in the case mD 2; 4 and �D 0, since (1-20) and (A-7) hold, there

exist K; 
 > 0 such that
M Œu�.t/�M Œu�.�Tn/CK"e
"t ; (A-15)

for " small enough. By extending the definition of QM Œu� to the latter case, we have almost conservation
of mass, with exponential loss for all cases.

Similarly, in the region considered the soliton R.t/ is an almost solution of (1-15); in particular it must
conserve mass QM (2-8) and the energy Ea (1-21), at least for large negative time. Indeed, an argument
as in Lemma 6.3 (but easier) gives

EaŒR�.�Tn/�EaŒR�.t/C .1��/
�
QM ŒR�.�Tn/� QM ŒR�.t/

�
�Ke
"t : (A-16)

for some constant K > 0 and all time t 2 Œ�Tn;T��

The next step is the use conservation of energy to provide control in the R.t/ direction (which is
essential in order to obtain certain coercivity properties; see Lemma 2.3). Following Lemma 5.4, one hasˇ̌̌̌Z

R

Rz.t/

ˇ̌̌̌
�

K

1��

�
e
"t Ckz.t/k2

L2.R/
C e
"tkz.t/kL2.R/

�
: (A-17)

for constants K; 
 > 0 independent of ".
Now, consider the energy EaŒu� and the mass QM Œu� defined in (1-21) and (2-8). One has

EaŒu�.t/C .1��/ QM Œu�.t/DEaŒR�.t/C .1��/ QM ŒR�.t/�

Z
R

z.a"� 1/Rm
CF0.t/; (A-18)
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where F0 is the quadratic functional

F0.t/ WD
1

2

Z
R

.z2
xC�z2/C .1��/ QM Œz��

1

mC 1

Z
R

a"
�
.RC z/mC1

�RmC1
� .mC 1/Rmz

�
:

In addition, for any t 2 Œ�Tn;�T��,ˇ̌̌̌Z
R

z.a"� 1/Rm

ˇ̌̌̌
�Ke
"tkz.t/kL2.R/: (A-19)

The proof of (A-18) is essentially an expansion of the energy-mass functional using the relation u.t/D

R.t/C z.t/. The proof of (A-19) is similar to (A-13).
The functional F0.t/ just defined enjoys the following coercivity property: there exist K; �0 > 0

independent of " such that for every t 2 Œ�Tn;�T��

F0.t/� �0kz.t/k
2
H 1.R/

�

ˇ̌̌̌Z
R

R.t/z.t/

ˇ̌̌̌2
�Ke
"tkz.t/k2

L2.R/
�Kkz.t/k3

L2.R/
: (A-20)

This bound is simply a consequence of the inequality �C .1��/a1=m
" .x/� 1, (A-10) and Lemma 2.3.

A.1.6. End of proof of Proposition A.1.3. Now by using (A-18), (A-20), and the estimates (A-14), (A-15),
and (A-17) we finally get (A-6). Indeed, note that

EaŒu�.t/�EaŒu�.�Tn/C .1��/Œ QM Œu�.t/� QM Œu�.�Tn/��Ke"
 t :

On the other hand, from (A-18) and (A-10),

EaŒu�.t/�EaŒu�.�Tn/C .1��/Œ QM Œu�.t/� QM Œu�.�Tn/�

� F0.t/�Ke
"t �Ke
"tkz.t/kL2.R/;

since z.�Tn/D 0 and F0.�Tn/D 0. Finally, from (A-20) and (A-17) we get

kz.t/kH 1.R/ �Ke
"t :

Plugging this estimate into (A-12), we obtain that
ˇ̌
�0

0
.t/
ˇ̌
�Ke
"t , and thus after integration we get the

final uniform estimate (A-6) for the H 1-case. Note that we have also improved the estimate on �0
0
.t/

assumed in (A-8). �
We now address the uniqueness part of Theorem 3.1. Recall that the solution u constructed above is in

C.R;H s.R// for any s � 1, and satisfies the exponential decay condition (3-2). Moreover, every solution
converging to a soliton satisfies this property:

Proposition A.1.7 (Exponential decay). Let m D 3, or m D 2; 4 with 0 < � � �0. Let v D v.t/ be a
C.R;H 1.R// solution of (1-1) satisfying

lim
t!�1

kv.t/�Q. � � .1��/t/kH 1.R/ D 0:

Then there exist K; 
; "0 > 0 such that for every t � �T" we have

kv.t/�Q. � � .1��/t/kH 1.R/ �K"�1e
"t :
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Proof. Fix ˛ > 0 small. Let "0 D "0.˛/ > 0 be small enough such that for all "� "0 and t � �T"

kv.t/�Q. � � .1��/t/kH 1.R/ � ˛:

Possibly choosing "0 even smaller, we can apply earlier arguments to the function v.t/ on the interval
.�1;�1

2
T"� to obtain the desired result. We follow part (1) of Proposition A.1.3: Lemma A.1.4 holds

for z.t/ WD v.t/�Q. � � .1��/t � �0.t// and t � �1
2
T", but now we have, by hypothesis,

lim
t!�1

j�0.t/jC kz.t/kH 1.R/ D 0I

and therefore limt!�1F0.t/D 0. (This can be made rigorous by taking a sequence tn!�1 large
enough and such that kv.tn/ � Q. � � .1��/tn/kH 1.R/ �

1
n

. With this choice one has j�0;n.tn/j C

kzn.tn/kH 1.R/! 0, independently of ". Rerunning as usual the proof in the interval Œtn; t � and finally
taking the limit n!C1, we obtain the conclusion.) The rest of the proof is easy. �

Note that monotonicity of mass was a key ingredient in this proof. This property apparently does not
hold when �D 0 and mD 2; 4.

A.1.8. Uniqueness of the solution. Let w.t/ WD v.t/�u.t/. Then w.t/2H 1.R/ and satisfies the equation�
wt C .wxx ��wC a"Œ.uCw/

m�um�/x D 0 in Rt �Rx;

kw.t/kH 1.R/ �K"�1e
"t for all t � �1
2
T":

(A-21)

We must show that w.t/� 0. Define the second-order functional

F0.t/ WD
1

2

Z
R

w2
xC

1

2

Z
R

w2
�

1

mC 1

Z
R

a".x/Œ.uCw/
mC1
�umC1

� .mC 1/umw�:

Reasoning as in the proof of Lemma 5.6, it is easy to verify the following properties:

(1) Lower bound. There exists K > 0 such that for all t � �1
2
T",

F0.t/�
1

2

Z
R

.w2
xCw

2
�mQm�1w2/.t/�K"�1e
"t sup

t 0�t

kw.t 0/k2
H 1.R/

:

(2) Upper bound. There exists K; 
 > 0 such that

F0.t/�K"�2e
"t sup
t 0�t

kw.t 0/k2
H 1.R/

:

However, this functional is not coercive, so in order to obtain a satisfactory lower bound, one has to
modify the function w in .�1;�1

2
T"� by setting

Qw.t/ WD w.t/C b.t/Q0. � � t/; b.t/ WD

R
R
w.t/Q0. � � t/R

R
Q02

;

This modified function enjoys several properties:

(1) Orthogonality to the Q0 direction:
Z

R

Qw.t/Q0. � � t/D 0:
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(2) Equivalence. There exists C1;C2 > 0 independent of " such that

C1kw.t/kH 1.R/ � k Qw.t/kH 1.R/Cjb.t/j � C2kw.t/kH 1.R/:

Moreover,
1

2

Z
R

.w2
xCw

2
�mQm�1w2/.t/D

1

2

Z
R

. Qw2
xC Qw

2
�mQm�1

Qw2/.t/CO.e�"
 jt j/:

(3) Control in the Q direction:ˇ̌̌̌Z
R

Qw.t/Q. � � t/

ˇ̌̌̌
�K"�1e"
 t sup

t 0�t

kw.t 0/kH 1.R/:

This property is proved similarly to the proof of (6-15): We use the fact that variation in time of the
above quantity is of quadratic order on Qw.

(4) Coercivity. There exists � > 0 independent of t such that

1

2

Z
R

. Qw2
xC Qw

2
�mQm�1

Qw2/.t/� �k Qw.t/k2
H 1.R/

�K

ˇ̌̌̌Z
R

Qw.t/Q. � � t/

ˇ̌̌̌2
:

(5) Sharp control. From the equivalence between w and Qw and the coercivity property we obtain

k Qw.t/kH 1.R/C "jb.t/j �K"�2e"
 t=2 sup
t 0�t

kw.t 0/kH 1.R/: (A-22)

The bound on b.t/ is proved similarly to (6-14).

Finally, from (A-22) we obtain, for " small enough and t � �1
2
T",

kw.t/kH 1.R/ �K"�2e"
 t sup
t 0�t

kw.t 0/kH 1.R/ <
1
2

sup
t 0�t

kw.t 0/kH 1.R/:

This implies w � 0, proving uniqueness. �

A.2. Proof of Proposition 4.2. The proof is similar to that of [Martel and Merle 2009, Proposition 2.2]
(see also and [Martel and Merle 2007, Appendix]). We start by writing the error term S Œ Qu� of (4-9) as

S Œ Qu�D IC IIC III; (A-23)

with

I WD S ŒR�; (A-24)

II WD wt C .wxx ��wCm a"R
m�1w/x; (A-25)

III WD
�
a"..RCw/

m
�Rm

�mRm�1w/
�
x
: (A-26)

Recall that mD 2; 3; 4.

Lemma A.2.1. We have

I D "F1."t Iy/C
"2a00

2 Qam
.y2Qm

c /y C "
3fI ."t/F

I
c .y/; (A-27)
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where
F1."t Iy/ WD

c0

Qa
ƒQc �

Qa0

Qa2
.c ��/Qc C

a0

Qam
.yQm

c /y 2 Y;

and jfI ."t/j �K, FI
c 2 Y. Finally, for every t 2 Œ�T";T"�,

k"3fI ."t/F
I
c .y/kH 2.R/ �K"3: (A-28)

Proof of Lemma A.2.1. Recall that Qa WD a
1

m�1 and

R.t;x/D
Qc."t/.y/

Qa."�.t//
; y D x� �.t/; @t�.t/D c."t/��:

Thus

IDRtC.Rxx��RCa"R
m/xD

"c0

Qa
ƒQc�

c��

Qa
Q0c�"

Qa0.c��/

Qa2
QcC

1

Qa
Q.3/

c �
�

Qa
Q0cC

1

Qam
.a."x/Qm

c /x :

A Taylor expansion gives

.a."x/Qm
c /x D a."�/.Qm

c /xC "a
0."�/.yQm

c /xC
1
2
"2a00."�/.y2Qm

c /xCOH 2.R/."
3/:

Therefore,

I D "c0

Qa
ƒQc �

.c��/

Qa
Q0c �

"

m�1

a0.c��/

Qam
Qc C

1

Qa
Q.3/

c �
�

Qa
Q0c C

1

Qa
.Qm

c /
0
C
"a0

Qam
.yQm

c /x

C
"2a00

2 Qam
.y2Qm

c /xC "
3fI ."t/F

I
c .y/

D
1

Qa
.Q00c�cQcCQm

c /
0
C
"c0

Qa
ƒQc�"

Qa0

Qa2
.c��/QcC

"a0

Qam
.yQm

c /yC
"2a00

2 Qam
.y2Qm

c /yC"
3fI ."t/F

I
c .y/

D "

�
c0

Qa
ƒQc �

Qa0

Qa2
.c ��/Qc C

a0

Qam
.yQm

c /y

�
C
"2a00

2 Qam
.y2Qm

c /y C "
3fI ."t/F

I
c .y/:

Moreover jfI ."t/j �K, FI
c .y/ 2 Y, and (A-28) is satisfied. �

Lemma A.2.2. The quantity II is given by

�".LAc/y."t Iy/C"
2
�
.Ac/tCc0."t/ƒAc

�
."t Iy/Cm"2 a0."�/

a."�/

�
yQm�1

c .y/Ac."t Iy/
�
y
C"3F II

c ."t Iy/:

with F II
c ."t I � / 2 Y, uniformly in time. If , in addition, Property IP holds for Ac , then

k"3F II
c ."t Iy/kH 2.R/ �K"3e�
"jt j: (A-29)

Proof. We compute

II D ".Ac."t Iy//t C "
�
.Ac/yy."t Iy/��Ac."t Iy/C

a"

a."�/
mQm�1

c .y/Ac."t Iy/
�
x

D�".LAc/y."t Iy/C "
2.Ac/t ."t Iy/C "

2c0."t/ƒAc."t;y/

Cm"2 a0."�/

a."�/
.yQm�1

c .y/Ac."t Iy//y C "
3F II

c ."t Iy/;

where F II
c ."t Iy/DO

�
y2Qm�1

c .y/Ac."t Iy/
�
y
2 Y. Now (A-29) follows from Property IP. �
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Lemma A.2.3. Suppose Property IP holds for Ac . Then we have

III D "3a0."x/Œ"m�2Am
c ."t Iy/C

QF III
c ."t Iy/�C "

2a"G
III
c ."t Iy/;

with QF III
c ."t I � /;G

III
c ."t I �/ 2 Y, uniformly for every t 2 Œ�T";T"�. Moreover, we have the estimate

kIIIkH 2.R/ �K"2e�
"jt j; (A-30)

for every t 2 Œ�T";T"�.

Proof. Define yIII WD a"
�
.RCw/m�Rm�mRm�1w

�
.

Suppose first that mD 2. Then yIII D a"w
2 D "2a"A

2
c , and taking the derivative, III D "3a0."x/A2

c C

"2a".A
2
c /
0. Here .A2

c /
0 2 Y because of Property IP.

Now suppose mD 3. We have yIII D "2a"
�
3QcA2

c C "A
3
c

�
. From this we get

III D "3a0."x/
�
3QcA2

c C "A
3
c

�
C"2a"

�
3.QcA2

c /
0
C ".A3

c /
0
�
:

Finally, for the case mD 4,

III D
�
a""

2.6Q2
cA2

c C 4"QcA3
c C "

2A4
c /
�
x

D "3a0."x/.6Q2
cA2

c C 4"2QcA3
c C "

2A4
c /C "

2a"
�
6.Q2

cA2
c /
0
C 4".QcA3

c /
0
C "2.A4

c /
0
�
:

Thus (A-30) holds in each case, assuming Property IP. �

Now we collect the estimates from Lemmas A.2.1, A.2.2 and A.2.3. We finally get

S Œ Qu�D IC IIC III D "
�
F1� .LAc/y

�
."t Iy/C "2

�
.Ac/t C c0."t/ƒAc

�
."t Iy/CO."2e�
"jt j/;

provided Property IP holds for Ac .

A.3. End of proof of Proposition 4.7. In this section we will show that for all t 2 Œ�T";T"� (cf. (4-29))

kS Œ Qu�.t/kH 2.R/ �K"
3
2 e�
"jt j; (A-31)

where Qu is the modified approximate solution defined in (4-26). We do this by writing a decomposition

S Œ Qu�D IC zIIC zIII;

similar to that in Section A.2 (see (A-23)–(A-26)). Lemma A.2.1 applies, so the term I is given by (A-27)
with no change. The term zIII can be written as

zIII D "3a0."x/
�
"m�2�m

c Am
c ."t Iy/C

QF III
c ."t Iy/

�
C"2a"

�
GIII

c ."t Iy/C "
m�1.�m

c /
0Am

c

�
;

with QF III
c ."t I � /;G

III
c ."t I � /2Y, uniformly for every t 2 Œ�T";T"�. This is proved exactly like Lemma A.2.3,

the only novelty being the appearance of the term

"mC1a".�
m
c /
0Am

c ; with k"mC1a".�
m
c /
0Am

c kH 2.R/ �K"mC 1
2 e�
"jt j:

We thus get the estimate

k zIIIkH 2.R/ �K"2e�
"jt j for all t 2 Œ�T";T"�: (A-32)
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Finally, for the term zII, we show that

zII D�"�c.y/.LAc/y."t Iy/COH 2.R/."
3
2 e�
"jt j/: (A-33)

This is done along the lines of the proof of Lemma A.2.2, as follows. We have

."A#."t Iy//t

D�.c ��/"2�0"Ac."t Iy/� .c ��/"�".Ac/y."t Iy/C "
2�".Ac/t ."t Iy/C "

2c0."t/�"ƒAc."t Iy/:

We use Lemma 4.5 and (4-28) to estimate this expression, obtaining

."A#."t Iy//t D�.c ��/"�".y/.Ac/y."t Iy/COH 2.R/."
3
2 e�
"jt j/: (A-34)

On the other hand,

"
�
.A#/xx ��A#C

a"
a."�/

mQm�1
c .y/A#

�
x

D "

�
�"

�
.Ac/yy ��Ac C

a"

a."�/
mQm�1

c .y/Ac

�
C2"�0".Ac/y C "

2�00"Ac

�
x

D "�"

�
.Ac/yy ��Ac C

a"

a."�/
mQm�1

c .y/Ac

�
x

C "2
�
3�0".Ac/yy ���

0
"Ac C a"m�

0
"Q

m�1
c Ac C 3"�00" .Ac/y C "

2�.3/" Ac

�
D "�"

�
.Ac/yy ��Ac CmQm�1

c .y/Ac

�
y
C"2�"m

a0."�/

a."�/
.yQm�1

c Ac/y

C"2
�
3�0".Ac/yy���

0
"AcCa"m�

0
"Q

m�1
c AcC3"�00" .Ac/yC"

2�.3/" Ac

�
CO

�
"3�".y

2Qm�1
c Ac/y

�
:

We now use Lemma 4.5 and Property IP to get the estimates

m"2

ˇ̌̌̌
a0."�/

a."�/

ˇ̌̌̌ 

�".yQm�1
c Ac/y




H 2.R/

�K"2e�
"jt j;

O."3�".y
2Qm�1

c Ac/y/




H 2.R/
�K"3;

"4


�.3/c Ac




H 2.R/

� "
7
2 e�
"jt j;

"2��0"Ac




H 2.R/

�K�"
3
2 e�
"jt j;

"2


3�0".Ac/yy C a"m�

0
"Q

m�1
c Ac C 3"�00" .Ac/y




H 2.R/

�K"2e�
"jt j:

Therefore

"
�
.A#/xx ��A#C

a"
a."�/

mQm�1
c .y/A#

�
x

D "�"
�
.Ac/yy ��Ac CmQm�1

c .y/Ac

�
y
COH 2.R/."

2e�
"jt jC "3/: (A-35)

Now (A-33) follows from (A-34) and (A-35).
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We return to the global estimate on S Œ Qu�. From (A-27), (A-32), (A-33), and Lemma 4.5 we get

S Œ Qu�D "
�
F1."t;y/� �c.y/.LAc/y

�
."t;y/COH 2.R/."

3
2 e�
"jt j/

D ".1� �c.y//F1."t Iy/COH 2.R/."
3
2 e�
"jt j/:

The final conclusion of this appendix is a straightforward consequence of the following fact: For every
t 2 Œ�T";T"� we have

k".1� �c.y//F1."t Iy/kH 2.R/ �K"e�
1
"
�
"jt j

�K"10:

for " small enough. Indeed, note that supp.1� �c. � //� .�1;�
1
"
�. From (A-27),

jF1."t Iy/j �Ke�
 jyj�
"jt j:

Now the desired estimate follows directly.

A.4. Proof of Lemma 6.4. Our proof of the virial inequality (6-26) follows closely that of [Martel and
Merle 2005, Lemma 2]. Take t 2 Œt1;T

�� and set y WD x� �2.t/. We have

@t

Z
R

z2 A0
.y/D 2

Z
R

zzt A0
.y/� �02.t/

Z
R

z2 0A0
.y/:

Substituting the value of zt given by (6-13), we can express the right-hand side as a sum of terms:

2

Z
R

.z A0
.y//x.zxx ��zCmQm�1

c2
.y/z/ (A-36)

� .c2.t/��/

Z
R

z2 0A0
.y/� 2.c2.t/��� �

0
2/.t/

Z
R

zQ0c2
 A0

.y/ (A-37)

2

Z
R

.z A0
.y//x Œ.RC z/m�Rm

�mRm�1z� (A-38)

� 2c02.t/

Z
R

zƒQc2
 A0

.y/C .c2��� �
0
2/.t/

Z
R

z2 0A0
.y/ (A-39)Z

R

.z A0
.y//x.a"� 2/.RC z/m: (A-40)

Following [Martel and Merle 2005] and using (6-14) and (6-15) it is easy to check that, for A0 large
enough and for some constants ı0; "0 small,

j(A-38)C (A-39)j �
ı0

100

Z
R

.z2
xC z2/.t/e

� 1
A0
jyj
:

Estimating (A-36) and (A-37) is done as for B1 and B2 in [Martel and Merle 2005, Appendix B]. We get

(A-36)C (A-37)� �
ı0

10

Z
R

.z2
xC z2/.t/e

� 1
A0
jyj
:

Finally, (A-40) can be estimated as follows. From (6-11) and (6-12) we have for t � t1

c2.t/D c1CO."1=2/; �2.t/D .c1��/t CO."1=2.t � t1//;
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and then
9

10
c1 � c2.t/�

11
10

c1I �2.t/�
9

10
.c1��/t: (A-41)

On the other hand, we can write

(A-40)D
Z
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Z
R
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C
m

mC 1

Z
R

. A0
/x.a"� 2/zmC1

�
"

mC 1

Z
R

 A0
a0."x/zmC1:

Then, from (1-13), (6-25) and by using that t � t1 �
1
2
T", we getˇ̌̌̌Z

R

. A0
/x.a"� 2/Œ.RC z/m� zm�z

ˇ̌̌̌
�KA0e�"�2.t/=A0kz.t/kH 1.R/ �KA0e�
"tkz.t/kH 1.R/

for some 
 D 
 .A0; c1; �/ > 0 independent of " and D0. (See (A-13) for a similar computation.)
Similarly, ˇ̌̌̌Z

R

 A0
.a"� 2/

�
.RC z/m� zm

�
zx

ˇ̌̌̌
�KA0e�
"tkz.t/kH 1.R/;ˇ̌̌̌Z

R

. A0
/x.a"� 2/zmC1

ˇ̌̌̌
�KA0e�
"tkz.t/kmC1

H 1.R/
:

Finally, from (6-24) and (A-41),ˇ̌̌̌
"

Z
R

 A0
.y/a0."x/zmC1

ˇ̌̌̌
�KA0e�
"tkz.t/kmC1

H 1.R/
:

In conclusion, (A-40)DO.A0e�
"tkz.t/kH 1.R//, for " small enough.
From (A-41) we obtain the second term in (6-26). Collecting the estimates above we conclude the

proof. �

A.5. Proof of Lemma 6.8. This is very similar to [Martel and Merle 2005, Lemma 3]. Recall that
� D �. Qy.x0//, with Qy.x0/D x� .�2.t0/C �.t � t0/Cx0/. Therefore
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Z
R
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mC1�0I (A-42)

see for example [Martel and Merle 2005, Appendix C]. The conclusion follows from the arguments in the
same reference, after we estimate the single new different term. In particular, we have

�
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R

�
3u2

xC .� C�/u
2
�

2ma".x/

mC1
umC1

�
�0C

Z
R

u2�.3/ �Ke�.t0�t/=2K0e�x0=K0 : (A-43)
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Indeed, using that 1=K2
0
� �=2, we have (discarding the term with �)

�

Z
R

�
3u2

xC �u2
�

2ma".x/

mC1
umC1

�
�0C

Z
R

u2 .3/ � �

Z
R

�
3u2

xC
�

2
u2
�

2ma".x/

mC 1
umC1

�
�0:

Now we estimate the nonlinear term. Let R0 > 0, to be chosen later. Consider the region defined by
t � t1, jx� �2.t/j �R0. In this region we have, from the stability and Morrey’s embedding,

ju.t;x/j � ku.t/�R.t/kL1.R/CR.t;x/�K"1=2
CKe�
R0 ;

with 
 >0 a constant. Taking 0<"� "0 sufficiently small and R0 large enough, we have jma".x/u
m�1j�

�=4 in the region considered. For the complementary region, jx� �2.t/j �R0, we see from (6-11) and
the hypothesis � < 1

2
.1��0/ that

j Qy.x0/j �
ˇ̌
�2.t0/� �2.t/� �.t0� t/Cx0

ˇ̌
�
ˇ̌
x� �2.t/

ˇ̌
�

1
2
�.t0� t/Cx0�R0: (A-44)

Thus j�0. Qy/j �Ke�
.t0�t/=K0e�x0=K0 . Collecting the estimates above we obtain (A-43).
Now we claim thatˇ̌̌̌

2"

mC 1

Z
R

a0."x/umC1�

ˇ̌̌̌
�Ke�"
T"e�"
.t0�t/=K0e�
"x0=K0 : (A-45)

Indeed, set Qx.t/ WD �2.t0/C �.t � t0/Cx0. Then from � < 1
2
.1��0/ and (6-11) we have
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1
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2
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T"Cx0;

and thus for " small,ˇ̌̌̌
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e�"
x
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"T"e�
".t0�t/=K0e�
"x0=K0 :

This last estimate proves (A-45). Integrating between t and t0 we get (6-32).
Next, by following the same kind of calculations (see [Martel and Merle 2005]), we have
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�
� �Ke�
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After integration we get (6-34).
Now we prove (6-33). The procedure is analogous to (6-32); the main differences are in (A-44) and

(A-45). For the first case we have Qy.�x0/D x�
�
�2.t0/C �.t � t0/�x0

�
satisfies

j Qyj �
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�
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2
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From the hypothesis we have Ox.t/ WD �2.t0/C �.t � t0/� x0 > t1 �
1
2
T". Therefore (A-45) can be

bounded as follows:ˇ̌̌̌
2"
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".t�t0/=K0e
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Collecting the estimates above and integrating between t0 and t , we obtain the conclusion. �

A.6. Some identities related to the soliton Q. The following identities can be found in [Martel and
Merle 2007, Appendix C]. Recall that Qc WD c

1
m�1 Q.

p
cx/ denotes the scaled soliton (m> 1). Recall

also that � D 1
m�1
�

1
4

.
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