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Here we collect proofs of formulas and modifications of arguments already in the literature that would otherwise
interrupt the main flow of the paper. All references not starting in ES are to results and equations in the main paper:
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Charpentier’s solution kernels. Here we prove Theorem 8. In the computation of the Cauchy kernel €, (w, z), we
need to compute the full exterior derivative of the section s(w, z). By definition one has,

si(w, 2) = Wi (1 —wz) —Z (1 — |[w]?),
ds,-(w, Z) = (aw +§w + 0, +§z)Si(U),Z)

Straightforward computations show that

dysi (w,z) = Z (ijj —E,-Ej) dw; (ES-1)
=1

n
ngi (w,z) = (1 —wz)dw; + Z wjfidwj
i=1

n
Vosi (w.2) == Y wiw;dz; — (1 — |w|2) dz;
j=1
925 (w,z) =0,
as well as
Qwsk = (1 —wZ)d Wy + Zx 0w |w|?
05 = —(1 — |w|*)dZ) — Wy 0 (wZ).

We also have the following representations of sz, again following by simple computation. Recall from the
Notation on page 509 that {1, 2, ...,n} = {i,} U J, U L, where J,, and L, are increasing multi-indices of lengths
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n—q —1 and g. We will use the following with k = i,,.

sk = Wk —Zx) + Y _ w (WZx —WkZ))

1k
= (Wg —Zk) + Z w; (W Zg —WiZj) + Z wy (W Zg —WgZ;)
Jjedy leL,
= Wk —Z) +Zk ) lwilP =k Y wiZ 2k Y lwilP—we Y wiz
jeJv jedy leL, leL,

Remark. Since A A A = 0 for any form, we have in particular that d,, |w|* Ady, |w|* =0 and 3, (WZ) AD (wWZ) = 0.

Using this remark we next compute /\jeJu 5wsj. We identify J,, as j; < j» <--- < ju—g—1 and define a map
1(j,) = r, namely 1 says where j, occurs in the multi-index. We will frequently abuse notation and simply write
1(j). Because 0y |w|? A dy|w|? = 0 it is easy to conclude that we can not have any term in d,,|w|? of degree greater
than one when expanding the wedge product of the dy,s;.

A Busi = N\ {1 =wDdm; + 53, [w]

JE€Jy Jjedy

=(1-wD)" " N dw;+(1—w2)" 072 Y (~D)'D50,wPA N\ dwy
J€Jy Jj€Jv Jj'ev\{j}
= (1—wz)"4?

1—wz+ Z W;Zj /\ dw; + Z(—l)l(j)_lfj Z wrdwy /\ dwjs

jeJv jeJv Jje€Jy keLy Uiy} Jj'ev\{j}

The last line follows by direct computation using

O lw =Y widw; + > wedwy.

jedy keLy,U{iy}
A similar computation yields that
A B
leL,
= =07 N\ (A= wP)dz + w5

leLy

=D [ A=fwP? N dz+0=wH Y ) O wa.wn A N\ dzEp
leLy leLy 'eL,\{l}
= (=71 —Jw[*)?

L=wl+ Y Jwl* | N\ dzi+ Y 0P w0 wedzme )\ dzEp

leL, leL, leL, kedy Uiy} 'eL,\{l}

An important remark at this point is that the multi-index J,, or L, can only appear in the first term of the last line

above. The terms after the plus sign have multi-indices that are related to J,, and L, but differ by one element. This
fact will play a role later.



THE CORONA THEOREM IN C” — ELECTRONIC SUPPLEMENT 103

Combining things, we see that
N\ Bwsi N\ Bzsi = (DTA w2 A= [w Ly + Ly + 1T + V).
jeJy leL,

where

L= [1-wz+ Y wz | [1=wlP+ ) jw* | A\ dw; N dz.

jedy leL, jedy leL,
y=1-wz+ Y wz | N\dw | Y 0O 'w > wedze )\ dzy |,
jedv jedy leL, kedy Uiy} 'eLy\{l}
i, = >0z Y wdwe N\ dwp | [ 1=|wl+ > lwl* | A\ 4z,
jedy keL,U{i,} j’eu\{j} leLy leLy

1V, = Z(—l)l(j)_lfj Z wrdwy, /\ dwj

JE€JY keLy,Uiiv} j'ev\{j}
X Z (—1)’(’)‘1w, Z wrdZy /\ dzyp
leL, kedyU{iv} I'eLy\{l}

We next introduce a little more notation to aid in the computation of the kernel 6! (w,z). For 1 <k <n welet
Pl(k) ={v e Pl :v(l) =i, = k}. This divides the set P, into n classes with % elements. At this point,
with the notation introduced in the Notation on page 509 and computations performed above, we have reduced the

calculation of 6y (w,z) to

1

(Gg’q(wy Z) = m Z €vSiy /\ 51‘)5] /\ 525'1 /\(U(w)
’ ve P! Jjely leLy
_ (DI w2 (1 — |w?)e!

n
Yosk Y e+ 1L+ +1V,)
k=1 vepP!(k)

A(w, z)"

n

— —wz) 42 - !
=( DI(1 —wz)"97*(1 — |w|*)? Zsk(l(k)+Il(k)+111(k)+lv(k))

A(w, z)" fa
_ DA —w) A - wP) $
= AT ;; sk C (k).

Here we have defined C(k) = I(k)+ II(k)+ I111(k)+ IV (k), and
I(k) = Z e, II(k)= Z ell,

ve Pl (k) ve Pl (k)
Hitky= > elll, IV(k)= > &IV,
vePd (k) ve P (k)

For a fixed T € P,/ we will compute the coefficient of /\ jes, AW \jep, dz;. We will ignore the functional
T T
coefficient in front of the sum since it only needs to be taken into consideration at the final stage. We will show
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that for this fixed r the sum on k of s times I(k), I1(k), I11(k) and IV (k) can be replaced by €,(1 —wz)(1 —
lw|?) Wi, —Zi) A\ jes, AWj /\jer, dZ;. There will also be other terms that appear in this expression that arise
from multi-indices J and [ that are not disjoint. Using the computations below it can be seen that these terms
actually vanish and hence provide no contribution for (62"1 (w, z). Since 7 is an arbitrary element of P, this will
then complete the computation of the kernel.

Note that when k = i; then we have the following contributions. It is easy to see that I I(i;) = I[11(i;) = 0. Itis
also easy to see that

I =e [1—wz+ > wiz; | [1=[wP+ Y [w* | N\ dw; N\ dz

jeJr leL, jeJr leL,
=e(1-wo)(1-|wP) N dw; )\ dz
jeJr leLs
FA=wD) Y Jw P+ A= w?) Y wizi+ Y wil Y wiE | N dw; N dzn
leL, jeJr leL, jeJr jeJr leL;

We also receive a contribution from term 7 V(i) is this case. This happens by interchanging an index in the multi-
index J; with one in L. Namely, we consider the permutations v: {1, ..., n} — {ir, (J\{F DU}, (L\{{HU{j}}-
This permutation contributes the term Z;w; wjw;. After summing over all these possible permutations, we arrive at
the simplified formula,

V@) =—e | Y |wil* | [ D wz | N\ dw; )\ dzi.

jeJ¢ leL+ jeJr leL,

Collecting all these terms, when k = i, we have that the coefficient of €; \;c;, dw; \jep, dZ1 is:

Clir) =1 -wd)(—[w)+ (1 —wZ+ > wiz) Y |wl?
jeJr leL;

FA=fwP+ 7wl D wiEi = Y fwil? Y wiEi— > wiP Y wiE

leL; jelJr leL; jelJr jelJr leL;

Next note that when k # i, one can still have terms which contribute to the coefficient of /\;c ;. dw; /\;ep, dZ1.
To see this we further split the conditions on k into the situations where k € J; and k € L. First, observe in this
situation that if k # i, then term I (k) can never contribute. So all contributions must come from terms 77(k),
111(k), and IV (k). In these terms it is possible to obtain the term /\;c; dw; /\;c;, dZ; by replacing some index
in v. Namely, it is possible to have v and 7 differ by one index from each other, or one by replacing an index with i;.

Next, observe that when k € L there exists a unique v € Pl (k) such that J,, = J;. Namely, we have that
v:{l,...,n} > {k,Jr, (L \ {k}) Ui.}. Here, we used that i, = k. Terms of this type will contribute to term
11(k) but will give no contribution to term /11 (k). However, they will give a contribution to term / V (k).

Similarly, when k € J; there will exist a unique u € P! (k) with L, = L. This happens with w: {1,...,n} —
{k,(J:\{k}) Ui, L;}. Here we used that i, = k. Again, we get a contribution to term ///(k) and IV (k) and
they give no contribution to the term 717(k).
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Using these observations when k € L, we arrive at the following for I(k), I1(k), I11(k),and IV (k):
I(k)=0

H(k)=—e | 1—wZ+ Y wZ |wiwe /\ dw; )\ dZ

jeJr jeJr leL¢
I1I(k) =0
1V(k) = eZipwe | D lwi* | N\ dw; N dz.
Jj€JT JjeJz leL,

Similarly, when k € J; we arrive at the following for I(k), I1(k), I11(k), and IV (k):

I(k)=0
11(k)=0

(k) =—e [ 1=|wf+ > |lw* | Zi,we N dw; N dz
leLy jeJr leL;

V() = ewiwe | Y wiz | N dw; N dz.

leL jeJr leL,

Collecting these terms, we see the following for the coefficient of €z A\ ;¢ dw; N\jep, dZr:
Ck) = —wi Fie (1= [ + Xyer, wi?) =Wie (Tier, wiz1)) Yk € T,
Ck) = —wi (Wi, (1= wE+ Eyes, %) = Fir (Zjes, i) ke Lo
This then implies that the otal coefficient of €; /\ ;¢ ;. dW; /\;cy, dZ1 is given by

sip Clir)+ > sk Chk)+ Y sk C(k).

keJ; keL,

At this point the remainder of the proof of the Theorem 8 reduces to tedious algebra. The term s;, C(i;) will
contribute the term (1 —wZ)(1 — |w|?)(W;, —Z;,) and a remainder term. The remainder term will cancel with the

terms D 4 ;S C (k).
We first compute the term s C (k) for k € J;. Note that in this case, we have that

Clky=wy | Wi | D wiz | =%, [ 1= wl>+ ) |wl?
leL, leL:

= wg | Wi, Zlel —Zip 1—Z|w1|2 +wkEi,|wi,|2.
leL; leJr
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Multiplying this by sz we see that

skC(k) = (1=w2) Wi, [ D wizy | =Zi [ 1= i | | Jwxl?
leL, leJ:

—( =) (i, | D wiz | =2 [ 1= (wil? | | wiczx
leL: leJz

+(1—w2)z;, |wi, |2|wk|2 —(1—- |w|2)E,-T |w;, |2wkEk.

Upon summing in k& € J; we find that

Y skl = —wa) [wi, | Y wiz | =z [ 1= i | ] Y fwnl?

kelJr leL, jeJr ke,
—(=lwP) (Wi, | D wiz | =Zi [ 1= Twi P | | D wazk
leL, jeJr kelJ;
+(1 = wD)Zi wip [* D Jwe> = (1= [z, [wir [* Y wiZ.
kedr keJzr

Performing similar computations for k € L, we find,

D skCley = —wa) [z | D0 fwilP | =wi [1= D] wiz | | D2 lwil?

keL, keJ; leL, keL;
—(I=w) [ Zeg | D0 lwil? | =wie [ 1= D wiz || D wZa
kel leL, keL¢
(= wD)Zi fwie [ Y Jwel® = (U= [w )z [wie [P ) wiZ
keLy keL,

Putting this all together we find that

> sikClk)

k#ic
=wi, (1—w2) [ | D0 wiz || D0 fwel? | = 1= D0 waze—wi Zep || D lwnl?
keL, ke, keL; keL,
+Z (A=) [ [ 1= D0 lwelP = fwi, P | D weze | = D2 lwi P || D2 wezx
ke, keJ; kelJ; keL,

~Zi, (1=wD) (= [w) | D |wil* | + i, 1 —wE) (1= w*) [ D wiZx

kel keLr
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We next compute the term s;, C(i;). Using the properties of sz we have that s;, C(i;) is
(Wi, —Zi,) (1= wI)(1—[w]?)

+Zi (1= w) (A= |w) | Y wil® | —wi A —w2) (1= w?) | D wiZx

keJr keL;
Wi, (1= w2) S (A =w2) [ D Jwel |+ | D fwel | [ D wezk
keL, keLy kelJ;
SolweP | DD wezk
kelJ; keL,
2 (=) T == w) | D weze | = D Twel* | | D wiZe
kel keLy keJr
Dolwel || DD wezk
kelJ; keL,

From this point on it is simple to see that the remainder of the term s;, C(i;) cancels with Zk# s C(k). One
simply adds and subtracts a common term in parts of Zk?él sk C (k). The only term that remains is (w;, —Zi¢)(1 —
wZ)(1 —|w|?). Thus, we see that the term corresponding to 7 in the sum <€ (w, z) is

(=D7(1 —w2)" 12 (1 — [w[>)?"!

T

(1= w2 (1 = W) @i, —Z,) [\ dB; [\ dZ Aow).

n
A(w’ Z) jeJr leL+
Since t was arbitrary we conclude that @1 (w, z) equals
q
(1 — wz)"4~1 (1 - |w|2)
A (w,z)"

times

> e, —%,) /\ dw; J\ dZiAow).

veP! jedy leL,

which completes the proof of Theorem 8.

Explicit formulas for kernels in n = 2 and 3 dimensions . Using the above computations and simplifying algebra
we obtain the formulas

(ngo(w 2 (ES-2)
(1( wz))2 [Z2 —w2)dwy Adwy Adwy — (Z1 —wi)dWa Adwy Adw],

and
0’1 .2 (ES-3)
(1 lw|?)

[(W2 —Ez)dzl /\dw1 /\dUIz — (wl —Zl)dzz /\dw1 /\dLUz] s

Aw,2)?
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and

€7 (w,z) (ES-4)
- .,
(1—wz)*™ (1 - IWIZ) (Zo(h) = Won) —
=Y sgn(o) 5 dlo2) Ny Aws ().
0'693 A (w Z)

where ¥3 denotes the group of permutations on {1, 2, 3} and g determines the number of dz; in the form d {5 (2) A
d8o3):
dwsy ANdwgeay if ¢g=0
dé’a(z) A\ d§0(3) = dzg(z) N dwa(3) if q= 1.
dzg(z) A dZG(3) if q = 2

Integrating in higher dimensions. Here we give the proof of (2-19). Let

(1-1F) —
B “—_zandRE l—IUJ|2,

wz|

so that
L—[w]?) (1]
s = | ll_)ule ) ol
Then with the change of variable p = Br? we obtain
1— 2 1.,/12\q
(l_wz)s—q—l/ ( |w|/ |w | ) dV(w/)
vV 1_|w|2Bk A((w’ w ) ) (Zv 0))s
q
(I —w2)* 1 l/ <l—|w|2—|w’|2) av ()
=5, w
1—wz™ S/l (1 — Uiy (1- |w|2—|w’|2))s

IS oy oy
= r r
1-wz|* Jo (1-BR2+ Br?)’

(1—wp) " /BRZ (BR=p)" ¢,
2Bk+a |1 —wz|?* (1— BR? +,o)sp P
which with
(1 - t) t-p) -

0 (1—t+p)"+k
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we rewrite as

1D B
2Bk |1 —wz* gy ()" "
—\s—q—1 2 k
(1—w?) (1—|w|) 1wz
= . — (BR2>
2(1—|z|2) —wz)®  lew@" "

k
=y —q—1 _ 2 iy
L ) e
2(1—|z|2)q A (w, z)" n.k

1 1—|w|2 ke l—wz 1
— q
_qun(w,z)(1 z) (1 |z|2) \Ilnk<BR>

. (1—wz)" 19 (1-|w|? ’
since ® (w,z) = A(w,zgn )

At this point we claim that

(l—t) (t—r)?
()_ 0 (1_ n+kr

is a polynomial in

t=BR*=1—|pu(2)|?

of degree n — 1 that vanishes to order ¢ at ¢t = 0, so that

1= [wP) (1-12P) )’
WL (1) =3 ¢ (( ) (_ : )\
i=q

[1—wZ|

With this claim established, the proof of (2-19) is complete.
To see that \IJ;)’Z vanishes of order g at t = 0 is easy since for ¢ small (ES-5) yields

t 14
‘\112,3 (t)‘ < Ct‘k/O Er"‘lalr <Cr.

109

(ES-5)

To see that‘IJ;)’Z is a polynomial of degree n — 1 we prove two recursion formulas valid for 0 <¢ < 1 (we lett — 1

at the end of the argument):

HOE W*‘() (1—r)wn1k(t),
k
PO= -0+ ).

The first formula follows from

t—r)!—@t-r) T =-rT(—t+r),

(ES-6)
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while the second is an integration by parts:

t k—1 k
1
o (1—t4r)"* k@Q—t+r)"*

n+k ! rk
e
k Jo (1—t+47r)"
1, n+k (! rk
= —t d
k + k 0 (1_t+r)n+k+1 r

If we multiply this equality through by a-n% t) we obtain the second formula in (ES-6).

The recursion formulas in (ES-6) reduce matters to proving that \IJ 1s a polynomial of degree n — 1. Indeed,
once we know that lIJ %isa polynomial of degree n — 1, then the second formula in (ES 6) and induction on k
shows that W k is as well Then the first formula and induction on ¢ then shows that v k is also. To see that ‘IJO 0
isa polynomlal of degree n — 1 we compute

1—0)" ! 1
w0 (1 =( / dr
n,1 ( ) t 0 (1—t+r)n+1

(=" 1 /
Tt {_n(l—l+r)"}|o

C1=(—)
n nt

’

which is a polynomial of degree n — 1. This finishes the proof of the claim, and hence that of (2-19) as well.

Integration by parts formulas in the ball. We begin by proving the generalized analogue of the integration by
parts formula of [Ortega and Fabrega 2000] as given in Lemma 14. For this we will use the following identities.

Lemma ES.1. For { € Z, we have

@{A(w,z)@} — A (w,2)t, (ES-7)
@{(1 — wf)e} =

@{(1—|w|2)e} -y (1—|w|2)e—z (1—|w|2)[_1 (1—7w).

Proof of Lemma ES. 1. The computation

2 o (1-1wr) 1)

=wz—-1)z; + (1 - |z|2) wj,
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shows that ZA = A:

S

FA(w,z)= ij—z] 8j {|1—w2|2—(1—|w|2)(1—|z|2)}

j=1

=Y @7 -3) jwz =Dz + (1- =) wy

Jj=1

- (m— |z|2) (wF—1)+ (1 - |z|2) (|w|2 —Zw)

=—wz + |z* + |[wz]* — 2> wZ + |w]* —wZ — |z]* |w|]* + |z|* wZ
= —2Rewz + |z|* + |wZ|* + |w|* — |z]* |w|?

= lw—z* + |wz|* — |z lw* = A (w, 2)

S

by the second line in (2-1) above. Iteration then gives the first line in (ES-7). The second line is trivial since 1 —wZz
is holomorphic in w. The third line follows by iterating

@(1—|w|2)=zw—|w|2=(1—|w|2)—(1—zw). O

Proof of Lemma 14. We use the general formula (2-7) for the solution kernels %S’q to prove by induction on . For
m = 0 we obtain

€ (z) = co / o (w.2){ > @(mdwf ) Az L dV (w) = co®d (@n) (), (ES-8)

B J1=q
from (3-5) and the following calculation using (2-6):

€290 (2)
z[ €09 (w.2) Ay (w)

/ Z o7 (w, Z)Z( HHED (z ) dz? A dwTIED L ) (w) A Z nrdwy
B

" 1J1=q k] Il=g+1

- [B o1 (w,2) | 3 (1M (o~ o dz’ | dV ()

|J1=q k¢J

Now we consider the case m = 1. First we note that for each J with |J| = ¢,

F50 (anwf ) — g0 (anwJ ) =gl (mdw’ ) : (ES-9)
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Indeed, we compute

n

J— o ) L
90y 0 (7’]_Idu)‘]) — (w] —Zj) 8: Z (wk _ Zk) Z (_l)pb(k,.f) n
j=1 wj oy N

=YY 0 - 5) () o
J

Jj=1k¢J I\J={k}

+Y k-2 ». (),

k¢J I\J={k}

so that

Fp0 (anwJ) — g0 (T)_ldﬁ")

=YY Y 0 (w5 5) -7 oy = T (naw?).
wj

Jj=1k¢J I\J={k}

For |J| = ¢ and 0 < { < g define

{
n 9 (1- wf)n_l_K (1 - |w|2) == — —
” Ejgié”55§ A(w,z)" (77 -37) 5 (1dw” ) p o @ Ao ).

By (3) and (4) of Proposition 16.4.4 in [Rudin 1980] we have

ST @ -5) N\ dw Ao () Jas, = ¢ (1 -Zw) do (w)

j=1 k#j

and Stokes’ theorem then yields

et _ 2
Ti=c /8Bn - wZ)A (w,(i)" “ ) 2° <anwJ) do (w) =0,
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since £ > 1 and 1 — |w|? vanishes on dB,,. Moreover, from Lemma ES.1 we obtain

_ En—l—é _ 2 ¢
syen ] T S e o

w3 —L _ ¢
pTECIeCTER, H P

:/ (1—wz)"! (<1 |w|2> 2?@(77_‘6[%]) 4V ()
Bn

A (z,w)"
=1 ¢
of (1 wZ)ALz,zE)I" wl?) 3 (st ) 0
oty -1
- ( wz)A (Z(}w),,'w'Z) @(ww’) dv (w).

Combining this with (ES-9) and (ES-8) yields

! (@n) =3 / ot (w,z)@(mdwl)dlf(w) dz’
g YBn
:Z/ &, (.20 (nadw?’ ) dV (w) dz’
J VBn
_Z,:/B ot (w,z)@(mdmf) dv (w)dz’
:_Z/ @ (w,2)3 (ndw” ) dV (w) d=’

_52/

o (w,z) 30 anw )dV(w)dEJ
B"l

+ey / o (w,2) O (anwJ) 4V (w)dz’
7 YBn

= _(sz (@n) (z) - E@f, (@n) (z)+ ECDf,_l (@n) (2).

Thus we have

@ (3) @) =~ % (T) O+ - 04 (3) .

113

(ES-10)
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From (ES-8) and then iterating (ES-10) we obtain

c@SIO,q)n (z) (ES-11)
= 04 (%) ) =~ 04 (T) )+ 00 (3%) @

sy e G o o

q
= R Z CID‘Z (le ) (z) + boundary term.

Thus we have obtained the second sum in with ¢, = _ﬁ for 1 <{ <gqinthecase m = 1.

We have included boundary term in (ES-11) since when we use Stokes’ theorem on ®9 (@n) the boundary
integral no longer vanishes. In fact when £ = 0 the boundary term in Stokes’ theorem is

ﬁgzc[mn (Al(_;z; (n dw )do(é‘)
1 — _
since from (2-1) we have

(1-w2)" (1—-wz)" _ 1

= = —— .,  weiB,.
AGzw)" 1 —wE o )" (1—w2)" !

Thus the boundary term in (ES-11) is

¢ 2,: [3 . @@ (anw’ ) do (&) dz = ¢, (@n) ().

This completes the proof of in the case 1 = 1. Now we proceed by induction on m to complete the proof of Lemma
14. O

Finally here is the simple proof of the integration by parts formula for the radial derivative in Lemma 15.

b+1
Proof of Lemma 15. Since (1 — |w|2) vanishes on the boundary for » > —1, and since

n

R(1=ll) " = g (1=w) " = =) (1= )
j=1
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the divergence theorem yields
b+1
o:/ (1—|w|2) W (w) w-ndo (w)
By
"9 b+1
=/ Z_{wj(1—|w|2) \If(w)}dV(w)
an=l aw]
b+1
:n/ (1—|w|2) W (w)dV (w)
Bn
b
+b+1/ 1—|wl? —w?) ¥ (w)dV (w
Gn) | (1=wl) (= lwl) ¥ @)V w)
b+1
+/ (1—|w|2> RY (w)dV (w),
Bn
which after rearranging becomes
’ b+1
(n+b+1) (1—|w|) W (w)dV (w)
Bn
b+1
+/ (1—|w|2) RY (w)dV (w).
Bn

—(b+1) (1—|w|2>b‘ll(w)dV(w).
Bn

We now recall the invertible “radial” operators RY"' : H (B,) — H (B,,) given in [Zhu 2005] by

(o]

RV f(2)=)

k=0

Tm+1+)T+1+k+y+1)
Fm+1+y+0D)Tm+1+k+vy)

Ji (),

provided neither n + y nor n + y + 1 is a negative integer, and where f (z) = Y g, f () is the homogeneous
expansion of f. This definition is easily extended to f € H (Bn; Ez). If the inverse of R is denoted R, , then
Proposition 1.14 of [Zhu 2005] yields

1 1
vt - -
R <(1 _wz)n+l+y) - (l_wz)n+1+y+t’ (ES-12)

1 1
Ry <(1 _wz)n+1+y+t) - (1 —wz) 1+

for all w € B,,. Thus for any y, RY" is approximately differentiation of order 7.

Equivalent seminorms on Besov—-Sobolev spaces. 1t is a routine matter to take known scalar-valued proofs of the
results in this section and replace the scalars with vectors in £? to obtain proofs for the £?-valued versions. We begin
illustrating this process by proving the equivalence of certain norms:
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Proposition ES.2. Suppose that 6 > 0,0 < p < 0o, n + y is not a negative integer, and f € H (Bn; 62). Then the
following four conditions are equivalent:

(1 - |z|2)m+a V" f(z)e L? (dk,,;@z) for some m > %—o,m eN,

m+

1—|Z|2 Ume(z)eLp (dkn;ﬁz) forallm>£—0,meN,
P

m-+o

(1-14F)
(1 — |z|2)m+a RV f(z)e L? (d)»,,;fz) for some m > %—U,m +n+y €-N,
(-4

R¥M [ (2) € L7 (dhs ) forallm > = —,m +n+y ¢ —N.
P

Moreover, with y (z) = 1 —|z|?, we have for 1 < p < oo,

Cc-! ”wml—wRy’mlf||LP(dAn;£2)

“E ol ([ Jo-ry e

=C ||Wml+aRy’mlf“Lp(dAn;eZ)

forall my,my > % —o,my+n+y €—N, my €N, and where the constant C depends only on o, my, my, n, y
and p.

p ¥
dhn (Z))

Proof. First we note the equivalence of the following two conditions (the case o = 0 is Theorem 6.1 of [Zhu 2005]):
(1) The functions
o\ kl+o glkl
(1-1:3)" " S r @), k=N
are in L? (dkn; 62) for some N > % —o,
(2) The functions
o\ kl+o glkl
(1-1P)" " s @, k=N
are in L? (dk,,; 62) for every N > % —o0.

‘kH’O’ B""
dzk

Indeed, L? (dAy;€?) = L? (v_p—1;£?) and (1 — |z|2)

() € L? (v_p—y; £?) if and only if

okl
@f (z2)eL? (vp(\k|+a)—n—1;€2).

l <
Provided p (|k|+0) —n —1 > —1, Theorem 2.17 of [Zhu 2005] shows that (1 — |z|2) % (%f) (z) €
L? (vp(|k|+,,)_,,_1 ; 52), which shows that (2) follows from (1).
From the equivalence of (1) and (2) we obtain the equivalence of the first two conditions in Proposition ES.2.
The equivalence with the next two conditions follows from the corresponding generalization to ¢ > 0 of Theorem
6.4 in [Zhu 2005], which in turn is achieved by arguing as in the previous paragraph. |

Next we prove a lemma whose case scalar 0 = 0 is Lemma 6.4 in [Arcozzi et al. 2006]. Our prove is an adaptation
of the one in that reference.
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Lemma ES.3. Let 1 < p <o00,0 > 0andm > 2 (% - U). Denote by Bg (c, C) the ball center ¢ radius C in the
Bergman metric B. Then for f € H (Bn; 52),

m—1

1/ g, @2y T 2 [V S O] (ES-13)
j=0

21 /Bﬂ (casC2)

a€d,

(L.

Proof of Lemma ES.3. We have

1
p

m—1
(1=1R) o2 @) din )| + 3V 5 )]
j=0

(1-1=2)""" RO 1 (o)

2

)4 5 mol .
dhn (z)) LV SO =17 g, @) -
j=0

|Daf ()] = =|(1-1a?) /')

, (ES-14)

/') {(1 —laP) Pu+ (1-1aP)* Qa}

and iterating with f replaced by (the components of) D, f in (ES-14), we obtain

D2/ @)

= (1= 1al?) (Paf)' )

Applying (ES-14) once more with f replaced by (the components of) f”/, we get

(1-1aP) arY @) = |(1=1aP) Da (1) @] = |(1-1aP) 5" )

’

which when combined with the previous inequality yields

D27 @] z|(1-1aP) 1" ).

Continuing by induction we have

|D f (=) = ‘(1—Ialz)m AR (2)(, m> 1. (ES-15)



118 SERBAN COSTEA, ERIC T. SAWYER AND BRETT D. WICK

Proposition ES.2 and (ES-15) now show that

(/.
SC(An

(1 _ |z|2)m+° RO™ £ (2) ", (z)) "

1 m—1

m+o p .
(1-1=1)"" 1 o) sz)) + Y|V S0
Jj=0

p

=c| X / (1—|z|2)m+a ol an, @ +m§ V7 7 0)]
— \acz, /Bs(eaC2) ' j=0
B ,\Mto (. D . P o1 ‘
=¢ a;:n /BB(Ca,Cz) (1 |Ca ) S (2)| din(2) —l—j;o W]f(o)|
2\ r P om—1 )
=¢ 1—|zI7) Dg f (@) din(z)| + V7 £ (0)
a;,, /BB(CmCz) ( ) jgo ’ |

m—1
=C S I3g ,0@m T 2 IV /O]
j=0

For the opposite inequality, just as in [Arcozzi et al. 2006], we employ some of the ideas in the proofs of Theorem
6.11 and Lemma 3.3 in [Zhu 2005], where the casec =0and m = 1 > 27" is proved. Suppose f € H (B,) and that
the right side of (ES-13) is finite. By Proposition ES.2 and the proof of Theorem 6.7 of [Zhu 2005] we have

f(Z) = C/Bn (l_gi%dv (U)) y z eB,, (ES-16)

for some g € L? (A,) where

m—1
leliran ~ S|V £ O] + (/
j=0

m+o P
(1—|z|2) RO [ (2) dx,,(z)) . (ES-17)

Bn

Indeed, Proposition ES.2 shows that

2 m+o
feBy@y e (1-17)" R/ ()€ L7 ()
< RO"f(z)e L (Vp(m+cr)—n—1) NH (B,
o
where as in [Zhu 2005] we write dvy (z) = (l - |z|2) dV (z). Now Lemma 24 above (see also Proposition 2.11

in [Zhu 2005]) shows that

TopoLl? (vy) =L? (vy) N H (B,)
ifandonlyif p(8+1) >y + 1. Choosingf=m+ocandy =p(m+o)—n—1weseethat p(B+1)>y +1
and so f € B] (By) if and only if

(1 _ |w|2)m+0 h(w)

(1 _ wz)n+1+m+o

RO™ f (z) = c/ dVv (w)

Bn
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m+o
for some h € L? (vp(m+a)_,,_1). If we set g (w) = (1 — |w|2) h (w) we obtain

RO f (z) = c[ g W) dV (w) (ES-18)

Bn (1 _ wz)n+1+m+a

with g € L? (A,). Now apply the inverse operator Ry, = (R%™)~! to both sides of (ES-18) and use (ES-12),

1 1
Rom ((1 _wz)n+1+m+a> = (1 —wz) 1o’

to obtain (ES-16) and (ES-17).
Fix @ € 9, and let a = ¢, € B,,. We claim that

m 2 % |g(w)|
1D f (2)] < G (1—|a| ) [R |1—wz|”+1+%+“dv(w)’ m=>1z€Bg(a.C). (ES-19)

To see this we compute D f (z) for z € Bg (a, C), beginning with the case m = 1. Since

D, (@2) = (@2)' ¢}, (0) = " {(1 —lal) Pa+(1- |a|2)% Qa}

- _{(1 —laf?) Paw + (1- |a|2)% Qaw}b,

we have
D, f (2) (ES-20)

=cy | Do (1=wz) " g (w) dV (w)
Bn

— 6 / (1 —w2)~ 24 D (w2) g (w) dV (w)
Br

(Sl

_ _ —_\—(nt+2+0) R _1g4l? d .
o |, (=) {(1 af?) Paw + (1~1al?) Qaw}g(w) V()

Taking absolute values inside, we obtain

1
o (1-1aP) 7 1Pl + [ Qaw]
|Daf(z>|sc(1—|a|2)2[Bn( |2wz|n+z+g lg @)l dV (). (ES-2D)

From the following elementary inequalities

10wl = Q4 (w—a))* < |w—al|*, (ES-22)
= |w|?® + |a|* — 2 Re (wa)
<2Re(l —wa) <2|1 —wd|,
we obtain that |Q,w| < C |1 —mﬁ. Now
1

|1—wﬁ|:\z|1—wi|25(l—|z|2)w(l—|a|2), z€By(a.C)
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shows that

N=

+1-Wal2 <C|1-Wz|2, zeBg(a.C),

(1)

1
(1= 1) [Paw] +]Qaw| c
n+2 =

and so we see that

> zeBg(a, C).

|1 —wz] 1 —wz|"t2

Plugging this estimate into (ES-21) yields

|Daf(z)|SC(1—|a|2)5/ 8@y ).

which is the case m = 1 of (ES-19).
To obtain the case m = 2 of (ES-19), we differentiate (ES-20) again to get

DXf(z)=c ; (1 —wz)" "D WW' o (w)dV (w).

1
where we have written W = {(1 — |a|2) Paw + (1 — |a|2) : Qaw} for convenience. Again taking absolute values

inside, we obtain

2
((1 o) 1 Pawl + IQaw|>

=c(1-lf) [ T g )| dV w).

D2/ (@)

(S

Once again, using |Q,w| < C |1 —wa|% and (1 — |a|2) + 1 —Waﬁ <C|l —wzﬁ for z € Bg (a, C), we see

that
1 2
(1-1a*)* 1Paw] +|Qaw|
- C

n+3+o

n+2+o’ z& B'B (Cl, C) ’

|1 —wz] T 1 —wz|

which yields the case m = 2 of (ES-19). The ge%eral case of (ES-19) follows by induction on m.
The inequality (ES-19) shows that (1 — |z|2) |D2’;f (z)| < CnS |g|(z) for z € Bg (cq, C), where

_1212) %
Sg(z)=/B (1) ¢ w)dV (w).

. |1 _wz|n+l+%+a

We will now use the symbol «a differently than before. The operator S' is the operator T, . in Lemma 24 above
(see also Theorem 2.10 of [Zhu 2005]) with parameters a = % 4+oand b =c=0. Now witht = —n—1, our

assumption that m > 2 (% —o) yields —p (2 4+0) <—n<p(0+1),ie.

—pa<t+1l<p®b+1).
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Thus the bounded overlap property of the balls Bg (cq, C2) together with Lemma 24 above yields

1
p

(1-1=P) o2 £ @) i )

”f”};g,m(Bn) = Z /

ac, * Bp(ca:C2)
<C, ( [ sz d (z))
<, (/B 1 ()17 dA, (z))é
e/,

by (ES-17). This completes the proof of Lemma ES.3. O

Sl

1
(1- |z|2)m+0 ko s @) dng (z)) ’

Multilinear inequalities. Proposition 22 is proved by adapting the proof of Theorem 3.5 in [Ortega and Fabrega
2000] to £2-valued functions. This argument uses the complex interpolation theorem of [Beatrous 1986] and
[Ligocka 1987], which extends to Hilbert space valued functions with the same proof. In order to apply this
extension we will need the following operator norm inequality.

Ifg e MBg(Bn)—»Bg(Bn;ZZ) and f = Z‘“:K frer € By ([EB,,; ®"_1€2), we define

Mef=0®[=9¢® Z Jrer | = Z (pfn) ®er,

[I|=k—1 |T|l=k—1
where I = (i1, ....ix—1) EN*"lande; = ¢;, ®...Q¢;,_,.

Proof of Proposition 22 and Lemma 23. We begin with the proof of the case M = 1 of Proposition 22. We will
show that form = £ + k,

/Bn ‘(1 . |z|2>0 (oyﬁg) (oyk@‘p D (2) = Corp M | g oy 55 (o2 g oy (ES-23)

Following the proof of Theorem 3.1 in [Ortega and Fabrega 2000] we first convert the Leibniz formula
oy
L k _ oyt kp\ _ o k+l—a
(w'g) (vhn) =" (gv*h) X;)(a)(oy 2) (v+en)
a=

to "divergence form"

(o) ()= S, i (o).

This is easily established by induction on £ with k held fixed and can be stated as

(') (849) = 3" el (g=on). (520
a=0
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Next we note that for s > %, Bls, (B,,; 32) is a Bergman space, hence MB;(BI‘I)_)B;; (Bnst?) = H® (B,,; 62). Thus
using (5-2) we have for s > %,
Lp2)
8 € Mpo,)—Bg (By3¢2) 1 H* ([B,,, ¢ ) = Mgg ) BZ (B1:62) " MBs @)~ B (B1:02)-

Then, still following the argument in [Ortega and Fabrega 2000], we use the complex interpolation theorem of
[Beatrous 1986] and [Ligocka 1987], !

n (1-0)o+6( 2%+
(Bg B, Bpp e (Bn)) =By i (p 8) By, 0=6=I,
0

n (1-0)o+6( 2%+
(B; CHAN: (B,,;ﬁ)) _ gl i) (B:e?). o0=6=<1,
0

to conclude that g € M B3 (Bn)— B (Bu:t2) for all s > o, and with multiplier norm H M

2) bounded
by || Mg ||B3(Bn)—>Bg (Buit2)- Recall now that

g “Bf,([B,ﬁ—)Bﬁ (Bn

o p
g0 = [ |(1=127) )| @i,
and similarly for || f||§(, (Bni2)’ provided m satisfies
p (Bn;

(a n %) p>n, (ES-25)

=

where 7 appears in the inequality since the derivatives D that can appear in %" only contribute (1 —z|? ) to the

power of 1 —|z|? in the integral (see Section 5).

Remark. At this point we recall the convention established in Definitions Definition 18 and Definition 19 that the
factors of 1 —|z|* that are embedded in the notation for the derivative ¥* are treated as constants relative to the
actual differentiations. In the calculations below, we will adopt the same convention for the factors (1 —z)?
that we introduce into the integrals. Alternatively, the reader may wish to write out all the derivatives explicitly with
the appropriate power of 1 — |z|? set aside as is done in [Ortega and Fabrega 2000].

So we have, keeping in mind the remark,

/B ‘(1 - |2|2)(7 y“ (g (z) yk+t ), (Z))‘pdkn
N /B Kl - |Z|2>qu“ {g (2) (1 — |z|2>a_s ayk+t—a), (Z)}‘I’ i,

o—s§ P
_ 1 — 2) qyk+i—a )
lg ) (1= L

Here the function s
H(z) = (1 - |z|2) ak+t=ap (2
is not holomorphic, but we have defined the norm ||-|| B o (Bas2) OD smooth functions anyway. Now we would

like to apply a multiplier property of g, and for this we must be acting on a Besov—Sobolev space of holomorphic

Tn those references only the scalar-valued version of the theorem is proved, but the Hilbert space valued version has the
same proof
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functions, since that is what we get from the complex interpolation of Beatrous and Ligocka. Precisely, we get that
My is a bounded operator from B} (B,) to B;, (B,,, 152) forall s > o.

Now we express Yx+t—op (Z) as a sum of terms that are products of a power of 1 — |z|* and a derivative
R’ L/h(z) where i + j =k + £ —« and R is the radial derivative and L denotes a complex tangential derivative
32 —Z; R as in [Ortega and Fabrega 2000]. However, the operators R L/ have different weights in the sense that

i+4
the power of 1 — |z|? that is associated with R L/ is (1 —z| ) ,l.e.

i+
Y ) = 30 (1 _ |z|2)l ZRLIN().
NTE o . . . .
It turns out that to handle the term <1 —z] ) R'L7h (z) we will use that g is a multiplier on B}, (B,) with

o
s=0+i+=,
+i+3

an exponent that depends on i + % andnotoni + j =k +{—a.
Indeed, we have using our "convention" that

p

g(z)(1—|z|2)H l—|z|2)i+£ RILIK(z)

:/Bn
Z/Bn

= le O RLRG| 5 @) -

By o (Bn3t2)

(1 — |z|2>s e {g ) (1 - |z|2)H (1 — |z|2)i+£ RIL/ I (z)}

p

p

(1 - |z|2)”+i+17 Y (g () RILIK (2))

Now the function g (z) R* L’ h (z) is holomorphic and s = o +i + % > ¢ so that we can use that g is a multiplier
on By (B,) = Bj , (By,) (this latter equality holds because (s 4+ %) p > n by (ES-25)). The result is that

le @ R'L/A(2) ||§;; (Bn3t2)

2) [R'LIh @)

= ”Mg Hf}f,([ﬁsn)ﬁBf,(Bn; B} «(Bn)

otit+d o
< [ M, HBS(B,,)_>B 5 (Bnit2) / (1 - |Z|2) QRILIN(2)

= ”Mg Hg};(Bn)—’Bf;(Bn;fz) /Bn (1 — |z )G [( 2) R]i |: /1 B |Z|2L:|j o
< ”Mé’ }|§1§(Bn)—>B,§(Bn;£2) / (1 — |Z|2>" yatitip, (z)
)

= M 35 e 55 (W)/ (1-1=2) v )| i,

= ”Mg }|Bg(Bn)—>Bg(Bn;[2) “h“Bg(Bn) ’

p
dhy

p

and the case M = 1 of Proposition 22 is proved.
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Now we turn to the proof of the operator norm inequality (5-5) in Lemma 23. The case p = 2 is particularly easy:

M g oneny = [, (V=) 3 ool

[I|=k—1

2
= Z ”M«Jﬁ”Bg(Bn;ez)

|I|l=k—1

< Mol 3y @nong iy 2= 1/ilBgcen
|I|l=k—1

20
= Melligeosg ey [ (1715F)° X i an,
n |I|=k—1

— 2 2
= “ M‘/’ HBg(Bn)%Bg ([Bn ;ZZ) ”f ”Bg (Bn;®K_1[2) s

and from this we easily obtain (5-6).
For p # 2 it suffices to show that

< Cuo,p [My (ES-26)

” Mw ” By (By;CV)— BY (Bn;CHQCY) H Bf (Bn)— By (By;CH)

for all 44, v > 1 where the constant Cy g, , is independent of j, v. Indeed, both £ and ®*~1¢? are separable
Hilbert spaces and so can be appropriately approximated by C* and C" respectively. For each z € B,, we will view
¢ (z) € C* as a column vector and f (z) € C¥ as a row vector so that (M,p f ) (z) is the rank one p X v matrix

(1/1) @) -+ (/) (2)
(M /) (2) = S =¢()0 /().
(Qou,fl) (z) - (@ufv) (2)
where we have inserted the symbol © simply to remind the reader that this is not the dot product ¢ (z) - f (z) =

f (2) ¢ (2) of the vectors ¢ (z) and [ (2).
Now we consider a single component X™ of the vector differential operator Y™ for some m > 2 ()f — 0), which

can be chosen independent of p and v. The main point in the proof of the lemma is that the matrix X (M(p f ) (2)
has rank at most m + 1 independent of j and v. Indeed, the Leibniz formula yields

m
X" (M) () =X" (@O f ()= cmX" 90X [(2).
£=0
where each matrix X" ¢¢ (z) © X* f (z) is rank one, and where the Hilbert Schmidt norm is multiplicative:
Xt exts o) = X" )| X ¢).
Momentarily fix 0 < £ < m and define
T'h(z) = X" Yo (2)h(z), h(z)eC,
T’ (2)=X""9()08(2). g()eC.
For x € 0B, which we view as a row vector, define

Tig(:)=xT'e () =x (X" “9) () 0 (2).


http://msp.berkeley.edu/apde/2011/4-4/apde-v4-n4-p01-s.pdf#page=29
http://msp.berkeley.edu/apde/2011/4-4/apde-v4-n4-p01-s.pdf#page=29
http://msp.berkeley.edu/apde/2011/4-4/apde-v4-n4-p01-s.pdf#page=29

THE CORONA THEOREM IN C” — ELECTRONIC SUPPLEMENT 125

Now choose x (z) € 9B, such that x (z) (X’"_K(p) (z) = \X’"‘eq) (z)| so that

Ting () =x () (X" ) ) 0g () = [x" 0 ()| g ().

and hence

=[x o)

Xt

=[xt 0 X1 ()

- ‘T‘ (X‘ f) ).

Tiw ( ef) (2)

Now we follow the well known argument on page 451 of [Stein 1993]. For y € dB,, which we view as a column
vector, and g (z) € C" define the scalars

gy () =g @)y,
(Téne), O =Tz @r=x@ (X" ) @02 ().

and note that

Tl (K1) @y =x0) (x"0) @0 (X)) @y =T, (X)) G,

Thus we have with do, surface measure on 0B,

/("Bu

y Tl N@ [
o (vr)e| [ R

Tio (X7) @ o] doy (1) =

as well as
. p PN, xre |
L, |en), @ ao=|xtral [ 575 dom.
The crucial observation now is that
i, (XN @ | Xt/ )
x(z) . d v = T d v = v
/(;Bu ‘T)f(z) (le) (Z)‘ Y oy () /BBU ‘Xéf (Z)| y oy (¥) = Vp,

is independent of the row vector in dB,, that is dotted with y. Thus we have

Tl (xr) @l = y,,vf .

VYo /8[31, (X( f)y @

r(x4s) o -

(X‘f (2)‘

Tl (X)) @ 3| doy ().

dav ).
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po
So with dwps (z) = (1 — |z|2) d\y (2), we conclude that
/B X (wa)|p dwps (2)

<CMMZ/ 7 (xtr) (z)‘ dwpe (2)

— Coopm Y. — [ [ o) (xs)el

(=0 VP

= OVpVABUAn

da@a(z)dav(y)

Xm ~ )(z) (X4 f) () dwpa (z)do, ()

<:Chapnz§:
‘<C%apn1§:

(=0 VP

/a Mol 5g 6,1 5 @500 / @™ 1), (2)]” dayo (2) doy ()

by the case M = 1 of Proposition 22, where 2 there is replaced by C”, g by ¢ and / by Jy. Now we use the
equality

fa 1@, @I doy () = v B S
to obtain

/B |X™ (Mg f)|” dwpo (2) < Cuo,pm |My ||§g([3n)—>3g(Bn;CM) /B %™ £ (2)|? dewpe (2)

)4 D
= Cuopm Mo | 5 @)~ Bg @iy 1/ 1 3g @s0my -

Since m depends only on n, o and p, this completes the proof of (ES-26), and hence that of Lemma 23.

Finally we return to complete the proof of Proposition 22. We have already proved the case M = 1. Now we
sketch a proof of the case M = 2 using the multiplier norm inequality (5-5) with ¥ = 2. By multiplicativity of |-| on
tensors, it suffices to show that for m = £; + ¢, + k,

/Bn (1- 2P)” (vhg) ® (v2¢) (oykh)‘p dh, () (ES-27)

p
< Cuop [Mg ”BO(B,,)»BO(B,, 2) 1y ) -
This time we write using the divergence form of Leibniz’ formula on tensor products (c.f. (ES-24)),
£
(315) & (422) (3) = (12) o | 5= o (st
a=0
12
- Bt () ol ()
a=0

41

_ f: cﬁz Z Céloyﬂ (g Queti—B <g6yk+z2—ah))

a=0 B=0
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We first use the Hilbert space valued interpolation theorem together with the case k = 2 of Lemma 23 to show
that g € Mle (Bnst2)—BS! (Bn:02012) and g € MB;Z Bn)— B2 (Bnit?) for appropriate values of 51 and s,. Assuming

for convenience that Y = (1 — |z|2) R, and keeping in mind Remark , we obtain

o2\ el —B k+lr—a ‘p
”g(z)@(l g ) v (gﬁy h) B, (Bn:t20¢(2)

‘(1 _ |Z|2)6_S1 qetli—pB <goyk+62—ah) ’ P

< D
- ”Mg HBf,l B;l (Bn3t2)

(Bn:£2)— By (Bn;020€2)

- P
= ”Mg H;;l (Bn;ﬁz)%Bgl (Bn§52®£2)/[3 )(1 — |Z|2>sl b (] — |Z|2)J 51 qa+ti—B (ggyk+€2—ah>‘ dhn,

which by (5-5) is at most

p 2\°2 g+t 2\ 72 perta—ap\ | P
Crop HMg”Bg(Bn)QBg(BMz)/B ((1—|Z|) Qe l(g(1—|z|> qyk+2 ah)‘ dhn

o—s p
2 ka+(2—olh

B2 (Bnst?)

o—s p
(1-1212) " Fekrtamen)
B, (Bn)

= Cuo.p | Mg ”;,(,’(Bn)eBg(Bn;Zz) Hg (1 - |Z|2)

=Gy

,0,D ” Mg ||§g([3n)~>3g (Bn ;42) ” Mg ||Z;2 (Bn)—>B;2 (Bngﬁz)

2

P p
= G [Me| 59 @, 57 (8:02) 1155 @) -

Summing up over « and 8 gives (ES-27).
Repeating this procedure for M > 3 and using (5-5) with x = M finishes the proof of Proposition 22. a

Schur’s test. We prove Lemma 24 using Schur’s Test as given in Theorem 2.9 on page 51 of [Zhu 2005].

Lemma ES.4. Let (X, u) be a measure space and H (x, y) be a nonnegative kernel. Let 1 < p < oo and % + é =1.
Define

17 )= [ H ) £ 0 i),
Wﬂw=Lwaumway
If there is a positive function h on X and a positive constant A such that
TW@&=L}HLwh@VwNWSAh@V,;kwexex
T 0)= [ HO b du () < AhGY . p—aey e X

then T is bounded on L? () with |T|| < A.

Now we turn to the proof of Lemma 24. The case ¢ = 0 of Lemma 24 is Lemma 2.10 in [Zhu 2005]. To minimize
the clutter of indices, we first consider the proof for the case ¢ # 0 when p =2 and 1 = —n — 1. Recall that

VA (w,z) =1 —w3| ez W)l
ve @ =(1-17) .
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and

(1 _|Z|2)a (1_|w|2>b+n+l ( —A (w’z)>c

n+1+a+b+c

Tupef (2) = / (W) i ().

Bn [T —wz|

We will compute conditions on a, b, ¢ and ¢ such that we have
Tap,cVe (z) < Cye () and Ta*,b,CWa (w) =Cye (w), z,weBy,,
where 77,  denotes the dual relative to L? (Ay). For this we take ¢ € R and compute

(1-12)" (1= wP)" " e

n+1+a+b

Ta,b,cl//e (z) = / dA, (w).

Bn |1 —wZ|

(ES-28)

Note that the integral is finite if and only if ¢ > —b — 1. Now make the change of variable w = ¢, ({) and use

that A, is invariant to obtain

a n+1+b+e
(1=122)" (1= 1wl?) 9= ()|

Tunctte @)= [ n R o ()
— [ P = [ Fe@ @
By Bn
a n+1+b+e
(1=12P)" (1= le: ©)?) e
:A —_ntitath a1 av(g).
1w ©| (1-152)
From the identity (Theorem 2.2.2 in [Rudin 1980]),
(1_(a’a)) (1_<:3? y))
1 —{@aq s Pa = ,
(0a (B) . ¢a (v)) A= (B.a) (1 —(a.7)
we obtain the identities
1— 2
=0 )7 =1~ {p: €). 0 O) = T
1=1z17) (111
1—|<pz(§)|2=1—(<ﬂz(§),<pz(§)>=( )(_2 )
|1 -8z
Plugging these identities into the formula for 7, 5 . s (z) we obtain
) (1612 n+1+b+e
(1= () e
Tap.cVe = av
st = [ T (©

2 b+e ¢
(1-1eP) " 1el .

By |1 _ €E|n+l+b—a+2a

= W& (Z)

(ES-29)
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Now from Theorem 1.12 in [Zhu 2005] we obtain that

p/ wdv(§)<o@

zeBy J By, |1—§E|ﬁ

if and only if 8 —a < n 4+ 1. Provided ¢ > —2n it is now easy to see that we also have

(1-1¢P) " ere
zseu[él [Bn WdV(é’) <00

if and only if 8 —a < n + 1. It now follows from the above that
TabcVe (2)=Cvy¥e(z), zebB,,

if and only if
—-b—l<e<a.

Now we turn to the adjoint Ta’i be = Thtn+1.a-n—1, With respect to the space L? (A,). With the change of
variable z = ¢y, ({) we have

(-1=2) " (1= tl) ™ e O

Ty Ve (w):/Bn s dhy (2) (ES-30)
= [ G@dn @ = [ Geo@raine
Br By
a+te b+n
(1=low @) (1=1wP) " fere
- eV ©

‘n+1+a+b (

1= e @ 1-1¢%)
ate
(1—|w|2)(1—|§2)) (1 — |u)|2>b-'_n-"_1 |§.|c

_ ( l1—¢wl? v
- Bn w2 [PH1Fath NG ©
B (1-1e7)

(1-1eP)™ " e

| 1 _ zw'a—b+2£—n—l

= Ve (W)

dv(g).

Bn

Arguing as above and provided ¢ > —2n, we obtain

Tafb,cws (w) = CW@ (w) s w e B,,

if and only if
—a+n<e<b+n+1.

Altogether then there is ¢ € R such that # = /1, is a Schur function for 7, . on L? (A,) in Lemma ES 4 if

and only if
max {—a+n,—b—1} <min{a,b+n+1}.

This is equivalent to —2a < —n < 2 (b + 1), which is (6-1) in the case p = 2, ¢t = —n — 1. Thus Lemma ES.4
completes the proof that this case of (6-1) implies the boundedness of 7} 5 . on L? (A,). The converse is easy - see
for example the argument for the case ¢ = 0 on page 52 of [Zhu 2005].
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We now turn to the general case. The adjoint 7", . relative to the Banach space L? (v;) is easily computed to be

T¥, = Tp—tq+t,c (see page 52 of [Zhu 2005] for the case ¢ = 0). Then from (ES-29) and (ES-30) we have

a,b,c
b+e
(1-1e1) " el
Tupete () = Ve (2) /B ,, |1 eV ©)

+t+e
(1-1 e
T2y Ve () = i () / —|)“ e dV (©).

Let % + é = 1. We apply Schur’s Lemma ES.4 with £ ({) = <1 — |§|2) and

e(——bH,‘—l)m(——aHH,—b_l). (ES-31)
7 q ) )

Using Theorem 1.12 in [Zhu 2005] we obtain for & with s as in (ES-31) that
Tapch? < Ch? and T, h? < Ch?.

Lemma ES.4 now shows that T, p . is bounded on L? (v;). Again, the converse follows from the argument for the
case ¢ = 0 on page 52 of [Zhu 2005].
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