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PERIODIC SOLUTIONS OF NONLINEAR SCHRÖDINGER EQUATIONS:
A PARADIFFERENTIAL APPROACH

JEAN-MARC DELORT

This paper is devoted to the construction of periodic solutions of nonlinear Schrödinger equations on the
torus, for a large set of frequencies. Usual proofs of such results rely on the use of Nash–Moser methods.
Our approach avoids this, exploiting the possibility of reducing, through paradifferential conjugation, the
equation under study to an equivalent form for which periodic solutions may be constructed by a classical
iteration scheme.

Introduction

This paper is devoted to the existence of families of periodic solutions of Hamiltonian nonlinear
Schrödinger equations on the torus Td . Our goal is to show that such results may be proved without
using Nash–Moser methods, replacing them by a technically simpler conjugation idea.

We consider equations of type

.�i@t ��C�/uD �
@F

@ Nu
.!t;x;u; Nu; �/C �f .!t;x/;

where t 2R, x 2Td , F is a smooth function, vanishing at order 3 at .u; Nu/D 0, f is a smooth function
on R�Td , 2�-periodic in time, ! a frequency parameter, � a real parameter and � > 0 a small number.
One wants to show that for � small and ! in a Cantor set whose complement has small measure, the
equation has time periodic solutions.

Let us recall known results for that type of problems. The first periodic solutions for nonlinear wave
or Schrödinger equations were constructed in [Kuksin 1993; Wayne 1990], which deal with one space di-
mension, with x staying in a compact interval, and imposing on the extremities of this interval convenient
boundary conditions. Later on, Craig and Wayne [1993; 1994] treated the same problem for time-periodic
solutions defined on R�S1. Periodic solutions of nonlinear wave equations in higher space dimensions
(on R� Td , d � 2) were obtained in [Bourgain 1994]. These results concern nonlinearities which are
analytic. More recently, some work has been devoted to the same problem when the nonlinearity is a
smooth function: Berti and Bolle [2010] have proved in this setting existence of time-periodic solutions
for the nonlinear wave equation on R�Td . We refer also to the paper of Berti, Bolle and Procesi [Berti
et al. 2010], where the case of equations on Zoll manifolds is treated. Very recently, Berti and Procesi
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[2011] have studied the same problem, for wave or Schrödinger equations, on a homogeneous space. We
refer also to [Craig 2000; Kuksin 2000] for more references.

The proofs of all these results rely on the use of the Nash–Moser theorem, to overcome unavoidable
losses of derivatives coming from the small divisors appearing when inverting the linear part of the
equation. Our goal here is to show that one may construct periodic solutions of nonlinear Schrödinger
equations (for large sets of frequencies), using just a standard iterative scheme instead of the quadratic
scheme of the Nash–Moser method. This approach allows one to separate on the one hand the treatment
of losses of derivatives coming from small divisors, and on the other hand the question of convergence
of the sequence of approximations, while in a Nash–Moser scheme, both problems have to be treated at
the same time. The basic idea is inspired by our work in [Delort 2010] concerning linear Schrödinger
equations with smooth time dependent potential. It is shown in that paper that a linear equation of type
.i@t ��CV .t;x//uD 0 may be reduced by conjugation to an equation of type .i@t ��CVD/vDRv,
where R is a smoothing operator and VD a block diagonal operator of order zero. We aim at applying a
similar method when the linear potential V is replaced by a nonlinear one, so that, in the reduced equation,
the block-diagonal operator VD depends on v itself, and R sends essentially H s to H 2s�a (where a is a
fixed constant, and H s the Sobolev scale). It is pretty clear that such a reduced equation will be solvable
by a standard iterative scheme, even if the inversion of i@t ��CVD loses derivatives because of small
divisors, since such losses are recovered by the smoothing properties of R on the right side.

Before describing the different sections of the paper, let us give some more references and add some
comments. There are actually a few results concerning existence of periodic solutions which do not
appeal to Nash–Moser theorem. Bambusi and Paleari [2001; 2002] constructed such solutions without
making use of Nash–Moser or KAM methods, but only for a family of frequency parameters of measure
zero (instead of a set of parameters whose complement has small measure). Related results, concerning
the case of rational frequencies, may be found in [Berti 2007, Chapter 5]. Recently, Gentile and Procesi
[2009] found, for analytic nonlinearities, an alternative approach to Nash–Moser using expansions in
terms of Lindsted series.

Let us also mention that we restrict in this paper to one of the many variants that may be considered
when constructing periodic solutions. Most of the known results we cited so far concern the case of
periodic solutions of the nonlinear equation, whose frequency is close to the frequency of a periodic
solution of the linear equation obtained for � D 0. The problem may be written, using a Liapunov–
Schmidt decomposition, as a coupling between a non-resonant equation (the .P / equation) and a resonant
one (the .Q/ equation). In most works, the resonant equation is a finite-dimensional equation, while .P /
is infinite-dimensional. One uses Nash–Moser to solve .P /, getting a solution depending on finitely many
parameters. Plugging this solution in .Q/, one gets for these finitely many parameters an equation in
closed form, that may be solved using implicit functions-like theorems. Actually, Berti and Bolle [2006]
have shown that such a strategy may be also adapted to the case when .Q/ is completely resonant, i.e.,
infinite-dimensional.

Since our objective here is to show that one may avoid the use of Nash–Moser theorems, we lim-
ited ourselves to the forced oscillations equation written at the beginning of the introduction, which
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corresponds to a .P / equation for which there is no associated .Q/ equation. Berti and Bolle [2010]
have studied similar forced oscillations for the wave equation. It is very likely that our method could
be adapted to recover as well known results for resonant periodic Schrödinger equations, even if one
would have to write a detailed proof. In the same way, since the results in [Delort 2010] concerning the
Schrödinger equation hold not only on Td , but also on Zoll manifolds or on some surfaces of revolution,
we conjecture that the analogue of the main theorem of this paper extends to this setting, or even to the
case of a product of several Zoll manifolds.

Organization of the paper. Section 1 states the main theorem and introduces notation.
Section 2 is devoted to the paralinearization of the equation. After defining convenient classes of

paradifferential operators, we perform a first reduction, localizing the unknown of the problem close to
the characteristic variety of the linear Schrödinger operator. This is done using the standard implicit
function theorem. Next, we paralinearize the equation, reducing it to

.�i!@t ��CV /v DR.v/vC �f

where V is a paradifferential operator of order zero, depending on v, and R.v/ is a smoothing operator
(Actually, we shall have to consider a system in .v; Nv/ instead of a scalar equation). A consequence of
the fact that our starting equation is Hamiltonian will be that V is self-adjoint.

Section 3 is the heart of the paper. We construct a paradifferential conjugation of the preceding
equation to transform it into

.�i!@t ��CVD.w//w DR.w/wC �f

where R.w/ is still a smoothing operator, and VD is block diagonal relatively to an orthogonal decom-
position of L2.Td / in a sum of finite-dimensional subspaces introduced in [Bourgain 1999].

Section 4 is devoted to the construction of the solution to the block diagonal equation by a standard
iteration scheme. We first show that on each block �i!@t ��C VD.w/ is invertible for ! outside a
convenient small subset. This is done by the usual argument, exploiting that the !-derivative of the
eigenvalues of �i!@t �� is large. In order that the set of excluded parameters remain small, we have
to allow small divisors when inverting �i!@t ��C VD.w/. As the right-hand side of the equation
involves a smoothing operator R.w/, we may compensate the losses of derivatives coming from such
small divisors, and construct a sequence of approximations of the solution.

Let us conclude this introduction with a few words concerning the limitations of our method. First,
it does not seem that it could be adapted to find periodic solutions of nonlinear wave equations, as the
construction of Section 3 relies on a specific separation property for the eigenvalues of �� on Td . On
the other hand, it might be applied to equations where one has a nice separation of eigenvalues, like
KdV or one-dimensional water wave equations with surface tension. Second, we do not know if our
method could be modified to construct quasi-periodic solutions. Recall that such solutions have been
obtained for the equation set on an interval [Kuksin 1993; Kuksin 2000; Kuksin and Pöschel 1996]. The
case of solutions on S1 has been treated in [Bourgain 1994]. In higher dimensions, Bourgain [1998]
constructed such periodic solutions on T2. The case of general Td has been treated in [Bourgain 2005;
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Eliasson and Kuksin 2010]. One of the difficulties of the quasi-periodic case versus the periodic one
lies in the fact that, even close to the characteristic variety, time frequencies might be much larger than
space frequencies. In our proof below, the fact that these frequencies are of the same magnitude plays
an important role. We do not know whether the multiscale methods of Bourgain, Eliasson, and Kuksin
could be combined to the arguments we use in the periodic case to construct quasi-periodic solutions
without making appeal to a Newton scheme.

1. Periodic solutions of semi-linear Schrödinger equations

1.1. Statement of the main theorem. Let Td (d � 1) be the standard torus, S1 the unit circle. Consider
a C1 function

F W .t;x;u; Nu; �/ ����! F.t;x;u; Nu; �/

R�Td
�C2

� Œ0; 1�! R
(1.1.1)

which is 2�-periodic in t , and satisfies @˛u; NuF.t;x; 0; 0; �/� 0 for j˛j � 2. We study the equation

.Dt ��C�/uD �
@F

@ Nu
.!t;x;u; Nu; �/C �f .!t;x/ (1.1.2)

where� is the Laplace operator on Td , Dt D
1
i
@
@t

, � 2 Œ0; 1�, �2R, ! 2R�C, f is a smooth function on
R�Td , 2�-periodic in t , with values in C, and where we look for 2�

!
-periodic solutions of the equation

when � is small. Changing t to t=!, we have to find solutions on S1 �Td to the equivalent equation

.!Dt ��C�/uD �
@F

@ Nu
.t;x;u; Nu; �/C �f .t;x/ (1.1.3)

for small enough � and for ! outside a subset of small measure. To fix ideas, we shall take ! inside a
fixed compact subinterval of �0;C1Œ, say ! 2 Œ1; 2�.

Let us define the Sobolev space in which we shall look for solutions. If u 2 D0.S1 �Td /, we set for
.j ; n/ 2 Z�Zd

Ou.j ; n/D
1

.2�/
dC1

2

Z
S1�Td

e�itj�in�xu.t;x/ dt dx:

For s 2 R, define zHs.S1 �Td IC/ to be the space of those u 2 D0.S1 �Td / such that

kuk2
zHs

def
D

X
j2Z

X
n2Zd

.1Cjj jC jnj2/sj Ou.j ; n/j2 <C1: (1.1.4)

We shall use the similar notation zHs.S1 �Td IC2/, zHs.S1 �Td IR2/ for C2 or R2-valued functions.
Let us state our main theorem.

Theorem 1.1.1. Let � 2 R � Z�. There are s0 > 0; � > 0 and for any s � s0, any q0 > 0, there are
constants ı0 2 �0; 1�;B > 0 and for any f 2 zHsC�.S1 � Td IC/ with kf kzHsC� � q0, there is a subset
O� Œ1; 2�� �0; 1� such that:
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� For any ı 2 �0; ı0� and � 2 Œ0; ı2�

measf! 2 Œ1; 2� W .!; �/ 2 Og � Bı: (1.1.5)

� For any ı 2 �0; ı0�, any � 2 Œ0; ı2�, and any ! 2 Œ1; 2� such that .!; �/ 62 O, (1.1.3) has a solution
u 2 zHs.S1 �Td IC/ satisfying kukzHs � B�ı�1.

Remark. As mentioned in the introduction, this theorem is a version, for Schrödinger equations, of
[Berti and Bolle 2010, Theorem 1.1], which concerns wave equations. Our point will be to give a proof
that does not appeal to Nash–Moser methods.

1.2. Spaces of functions and notations. For n2Zd , u2D0.Td /, we denote by…n the spectral projector

…nuD Ou.n/
ein�x

.2�/d=2
D

Z
Td

e�in�xu.x/
dx

.2�/d=2

ein�x

.2�/d=2
: (1.2.1)

When u.t;x/ is in D0.S1�Td /, we use the same notation, considering t as a parameter. We shall make
use of the following “separation property” result attributed by Bourgain to Granville and Spencer (see
[Bourgain 1999, Lemma 8.1]; for the proof see also [Bourgain 2005, Lemma 19.10]).

Lemma 1.2.1. For any ˇ 2 �0; 1
10
Œ, there are � 2 �0; ˇŒ, � > 0 and a partition .�˛/˛2A of Zd such that

jn� n0jC
ˇ̌
jnj2� jn0j2

ˇ̌
< � Cjnjˇ for all ˛ 2A; n 2�˛; n0 2�˛;

jn� n0jC
ˇ̌
jnj2� jn0j2

ˇ̌
> jnj� for all ˛; ˛0 2A .˛ ¤ ˛0/; n 2�˛; n0 2�˛0 :

(1.2.2)

For each ˛ 2 A, we choose some n.˛/ 2 �˛. There is a constant ‚0 > 0 such that, if we set
hni D .1Cjnj2/1=2 for n 2 Zd , then

‚�1
0 hn.˛/i � hni �‚0hn.˛/i (1.2.3)

for any ˛ 2A, any n 2�˛. It also follows from (1.2.2) that, for some uniform constant ‚1 > 0,

#�˛ �‚1hn.˛/i
ˇd : (1.2.4)

For any ˛ 2A, we set
z…˛ D

X
n2�˛

…n: (1.2.5)

We define a closed subspace Hs.S1 �Td IC/ of zHs.S1 �Td IC/ by

Hs.S1
�Td
IC/D

\
˛2A

˚
u 2 zHs.S1

�Td
IC/ W Ou.j ; n/D 0 for all n 2�˛ and all j such that

jj j>K0hn.˛/i
2 or jj j<K�1

0 hn.˛/i
2
	
; (1.2.6)

where K0 DK0.�/ will be chosen later on.
In other words, non vanishing modes .j ; n/ of an element u of Hs.S1 � Td IC/ have to satisfy

K�1
0
hn.˛/i2 � jj j � K0hn.˛/i

2 if n 2 �˛. This shows that the restriction to Hs of the zHs-norm
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given by (1.1.4) is equivalent to the square root ofX
j2Z

X
n2Zd

hni2s
j Ou.j ; n/j2 (1.2.7)

and to the square root of X
˛2A

hn.˛/i2s
k z…˛uk2

L2.S1�Td ;C/
: (1.2.8)

We use similar notation for spaces Hs.S1 �Td IC2/, Hs.S1 �Td IR2/, and so on.

2. Paralinearization of the equation

The goal of this section is to rewrite (1.1.3) as a paradifferential equation in the sense of [Bony 1981],
on spaces of form (1.2.6). We first define the classes of operators we shall use.

2.1. Spaces of operators. We fix from now on some real number �0 >
d
2
C1. If s 2R; q > 0, we denote

by Bq.H
s/ the open ball with center 0, radius q in Hs.S1 �Td IC/, Hs.S1 �Td IC2/,. . .

Definition 2.1.1. Let m2R, q > 0, N 2N, � 2R, � � �0C2N CdC1. One denotes by ‰m.N; �; q/

the space of maps U ! a.U / defined on the open ball of center 0, radius q in H� .S1 �Td IC2/, with
values in the space of linear maps from C1.S1�Td IC/ to D0.S1�Td IC/, such that, for any n; n0 2Zd ,
the map U ! …na.U /…n0 is smooth with values in L.H0.S1 � Td IC// and satisfies for any M 2 N

with d C 1 �M � � � �0 � 2N , any U 2 Bq.H
� /, any j 2 N, any W1; : : : ;Wj 2 H� .S1 � Td IC2/,

any n; n0 2 Zd ,

k…n.@
j
U

a.U / � .W1; : : : ;Wj //…n0kL.H0/

� C.1CjnjC jn0j/mhn� n0i�M
1
jn�n0j� 1

10
.jnjCjn0j/

jY
`D1

kW`kH�0C2NCM : (2.1.1)

Remarks. � In (2.1.1), the decay hn � n0i�M reflects the available x-smoothness of the symbol of
a pseudo-differential or paradifferential operator. This smoothness is controlled by the upper bound
� ��0�2N that we assume for M . The cut-off jn�n0j � 1

10
.jnjC jn0j/ means that we are considering

paradifferential operators. The integer N measures some loss of smoothness, relatively to the index � ,
that will appear in some expansions of operators.

� Definition 2.1.1 implies that if a 2‰m.N; �; q/, then @t Œa.U /� belongs to ‰m.N C 1; �; q/. Actually,
@ta.U /D @U a.U / � @tU , so (2.1.1) allows us to estimate

…n.@

j
U
.@t Œa.U /�/ � .W1; : : : ;Wj //…n0




L.H0/

from k@tU kH�0C2NCM

Qj

`D1
kW`kH�0C2NCM , and by the definition (1.2.6) of Hs ,

k@tU kH�0C2NCM �K0kU kH�0C2.NC1/CM �K0kU kH�

if we assume M � � � 2.N C 1/� �0.

The definition implies boundedness properties for the operators.
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Lemma 2.1.2. Let �;m;N; q be as in the definition. Assume that � � �0C 2N C d C 1. Then for any
U 2 Bq.H

� /, for any s 2 R, a.U / is a bounded operator from Hs.S1 � Td IC/ to Hs�m.S1 � Td IC/.
Moreover, U ! a.U / is a smooth map from Bq.H

� / to the space L.Hs;Hs�m/, and for any j 2 N,
there is C > 0, such that, for any U 2 Bq.H

� / and any W1; : : : ;Wj 2H� .S1 �Td IC/,



@j
U

a.U / � .W1; : : : ;Wj /




L.Hs ;Hs�m/
� C

jY
`D1

kW`kH�0C2NCdC1 : (2.1.2)

Proof. One has just to apply (2.1.1) with M D dC1 and use the fact that, by (1.2.7), kvk2Hs is equivalent
to
P

n2Zd hni2sk…nvk
2
L2 . �

We define a class of smoothing operators as well.

Definition 2.1.3. Let � 2 R, N 2 N, and � 2 N, with � � �0 C 2N C d C 1, q > 0, r 2 RC. One
denotes by Rr

�.N; �; q/ the space of smooth maps U ! R.U / defined on Bq.H
� /, with values in

L.Hs.S1�Td IC/;HsCr .S1�Td IC// for any s � �0C�, such that there is for any j , any s � �0C�,
a constant C > 0 with



@j
U

R.U / � .W1; : : : ;Wj /




L.Hs ;HsCr /
� C

jY
`D1

kW`kH� (2.1.3)

for any U 2 Bq.H
� /, W1; : : : ;Wj 2H� .

Remark. Lemma 2.1.2 shows that if r �0 and � ��0C2NCdC1, the space‰�r .N; �; q/ is contained
in Rr

0
.N; �; q/.

Proposition 2.1.4. (i) Let � � �0C 2N C d C 1, a 2‰m.N; �; q/. Then a� 2‰m.N; �; q/.

(ii) Let m1;m2 2 R. Assume � � �0C 2N C d C 1C .m1Cm2/C. Set

r D � � �0� 2N � .d C 1/� .m1Cm2/� 0: (2.1.4)

If a 2 ‰m1.N; �; q/ and b 2 ‰m2.N; �; q/, there are c 2 ‰m1Cm2.N; �; q/ and R 2 Rr
0
.N; �; q/

such that

a.U / ı b.U /D c.U /CR.U /: (2.1.5)

Proof. Part (i) follows immediately from the definition. For (ii), define

c.U /D
X

n

X
n0

…nŒa.U / ı b.U /�…n01jn�n0j� 1
10
.jnjCjn0j/:

To check that (2.1.1) is satisfied by c when j D 0 we write

k…nc.U /…n0kL.H0/ �

X
k

k…na.U /…kkL.H0/ k…kb.U /…n0kL.H0/



646 JEAN-MARC DELORT

for n; n0 with jn�n0j � 1
10
.jnjC jn0j/. Applying (2.1.1) to a; b with d C 1�M � � ��0� 2N , we get

the bound

C.1CjnjC jn0j/m1Cm2

X
k

hn� ki�M
hk � n0i�M

� C.1CjnjC jn0j/m1Cm2hn� n0i�M :

One estimates @j
U

c.U / in the same way.
The remainder R.U /D a.U / ı b.U /� c.U / will satisfy by definition of c:

k…nR.U /…n0kL.H0/ �

X
k

k…na.U /…kkL.H0/ k…kb.U /…n0kL.H0/1jn�n0j> 1
10
.jnjCjn0j/;

and so will be bounded using (2.1.1) for a; b by

C.1CjnjCjn0j/m1Cm2
P
k

hn�ki�M
hk�n0i�M

1
jk�nj� 1

10
.jnjCjkj/ 1jk�n0j� 1

10
.jn0jCjkj/ 1jn�n0j> 1

10
.jnjCjn0j/

for any M between d C 1 and � � �0 � 2N . Since on the summation, either jn � kj � 1
2
jn � n0j or

jn0� kj � 1
2
jn� n0j, and jn� n0j � 1

2
.jnjC jn0j/, we get the bound

k…nR.U /…n0kL.H0/ � C.1CjnjC jn0j/m1Cm2�M
1
jn�n0j� 1

2
.jnjCjn0j/

for any M between d C 1 and � � �0� 2N . Reasoning as in the proof of Lemma 2.1.2, we obtain that
R.U / sends Hs to HsCr for any s and r given by (2.1.4). The estimates of @j

U
R.U / � .W1; : : : ;Wj / are

obtained in the same way. �

In the rest of this paper, we shall use several variants of these classes. We shall denote by‰m
R .N; �; q/

the subspace of ‰m.N; �; q/ made of those operators a.U / sending real-valued functions to real-valued
functions, i.e., satisfying a.U / D a.U /. We define Rr

�;R.N; �; q/ from Rr
�.N; �; q/ analogously. We

denote by

‰m.N; �; q/˝M2.R/ and Rr
�.N; �; q/˝M2.R/

the space of 2� 2 matrices with entries in ‰m.N; �; q/ and in Rr
�.N; �; q/ respectively. We use similar

notation for ‰m
R .N; �; q/ and Rr

�;R.N; �; q/.
Finally, we shall consider operators a.U; !; �/, R.U; !; �/ depending on .!; �/ staying in a bounded

domain of R2. We say a.U; !; �/ is C 1 in .!; �/ if .!; �/!…na.U; !; �/…n0 is C 1 in .!; �/with values
in L.H0/ and if (2.1.1) is satisfied also by @!a; @�a. Likewise, R.U; !; �/ is C 1 if .!; �/!R.U; !; �/

is C 1 in .!; �/ with values in L.Hs;HsCr / and if (2.1.3) is satisfied by @!R; @�R.

2.2. Equivalent formulation of the equation. The goal of this subsection is to reduce (1.1.3) to an
equivalent equation for a new unknown belonging to the space Hs defined by (1.2.6) instead of zHs .
Recall that we fixed some �0 >

d
2
C 1.

For � 2R, we consider the space H� .S1�Td IR2/� zH� .S1�Td IR2/ and denote by F� .S1�Td IR2/

the orthogonal complement of the first space in the second one.
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Definition 2.2.1. Let � � �0. Denote by H�
1
;H�

2
any of the preceding spaces. Let X be an open subset

of H�
1

, k 2 Z. One denotes by ˆ1;k.X;H��k
2

/ the space of C1 maps G W X ! H��k
2

such that, for
any s � � and u 2X \Hs

1
:

� G.u/ 2Hs�k
2

.

� The linear map DG.u/2L.H�
1
;H��k

2
/ extends as an element of L.H� 0

1
;H� 0�k

2
/ for any � 02 Œ�s; s�.

Moreover, v!DG.v/ is smooth from X \Hs
1

to the preceding space.

� The bilinear map D2G.u/2L2.H
�
1
�H�

1
IH��k

2
/ extends as an element of L2.H

�1

1
�H�2

1
IH��3�k

2
/

for any triple f�1; �2; �3g D f�
0;�� 0;max.�0; �

0/g with � 0 2 Œ0; s�. Moreover, v ! D2G.v/ is
smooth from X \Hs

1
to the preceding space.

Let us give an example of an element of ˆ1;0.zH� ; zH� /. Consider F WS1�Td �R2!R2, a smooth
function satisfying F.t;x; 0/ � 0, @uF.t;x; 0/ � 0. By Lemma A.1 of the appendix, for � > d

2
C 1

and u 2 zH� .S1 �Td IR2/, we have F. � ;u/ 2 zH� .S1 �Td IR2/, and by Corollary A.2, u! F. � ;u/ is
smooth. If we define G.u/ D F. � ;u/, then DG.u/ � h D @uF. � ;u/h, which, by Lemma A.3, extends
as a linear map from zH� 0 to itself for any � 0 2 Œ�s; s�, when u 2 zHs and s > d

2
C 1. In the same

way, D2G.u/ � .h1; h2/D @
2
uF. � ;u/ � .h1; h2/ extends from zH�1 � zH�2 to zH��3 for �1; �2; �3 as in the

statement of the definition, by Lemma A.3.

Definition 2.2.2. Let � � �0, X an open subset of H�
1

, k 2 Z. One denotes by C1;k.X IR/ the space
of C 1 functions ˆ W X ! R, such that for any s � � and u 2 X \Hs

1
, we have rˆ.u/ 2 Hs�k

1
and

u!rˆ.u/ belongs to ˆ1;k.X;H��k
1

/.

If F WS1�Td�R2!R is a smooth function, with F.t;x; 0/� 0, @uF.t;x; 0/� 0, @2
uF.t;x; 0/� 0,

and if ˆ.u/ D
R

S1�Td F.t;x;u.t;x// dt dx, then rˆ.u/ D @uF. � ;u/ 2 zHs if u 2 zHs and s > d
2
C 1

(see Lemma A.1), and the example following Definition 2.2.1 shows that ˆ 2 C1;0.zH� ;R/ for � � �0.

Remark. In the sequel we shall have to consider elements G.u; !; �/,ˆ.u; !; �/ of the preceding spaces
depending on the real parameters .!; �/. We shall say that G; ˆ are C 1 in .!; �/ if the conditions of
Definition 2.2.1 (resp. Definition 2.2.2) are satisfied by G; @!G; @�G (resp. ˆ; @!ˆ; @�ˆ).

Lemma 2.2.3. Let � � �0, k 2 N, X an open subset of H�
1

, G 2ˆ1;�k.X;H�Ck
2

/, Y an open subset
of H�Ck

2
containing G.X /, ˆ 2 C1;k.Y;R/. Then ˆ ıG 2 C1;0.X;R/.

Proof. The assumption on G implies that for v 2X \Hs
1
, s � � and for � 0 with j� 0j � s,

DG.v/ 2 L.H� 0

1 ;H
� 0Ck
2

/� L.H� 0

1 ;H
� 0

2 /: (2.2.1)

Moreover, since rˆ 2 ˆ1;k.Y;H�
2
/, we have G.v/ 2 Y \HsCk

2
for v 2 X \Hs

1
, so rˆ.G.v// 2 Hs

2

and for any � 00 with j� 00j � sC k, .D.rˆ//.G.v// is in L.H� 00

2
;H� 00�k

2
/. In particular, for any � 0 with

j� 0j � s,
D.rˆ/.G.v// 2 L.H� 0Ck

2
;H� 0

2 /: (2.2.2)

We deduce from (2.2.1) that r.ˆıG/.v/D tDG.v/ � .rˆ/.G.v// belongs to Hs
1

when v 2X \Hs
1
. Let

us check that r.ˆ ıG/ belongs to ˆ1;0.X;H�
1
/. If u 2X \Hs

1
.s � �/ and h 2H� 0

1
with � 0 2 Œ�s; s�,
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we write

DŒr.ˆ ıG/.v/� � hD tDG.v/ �
�
.Drˆ/.G.v// �DG.v/ � h

�
C .D. tDG/.v/ � h/ � rˆ.G.v//: (2.2.3)

By (2.2.1) and (2.2.2), the first term on the right belongs to H� 0

1
. To check that the last term in (2.2.3)

belongs to the same space, we integrate it against h0 2H��
0

1
. We getZ

Œ.D.tDG/.v/ � h/ � rˆ.G.v//�h0 dt dx D

Z
.rˆ/.G.v//D2G.v/ � .h; h0/ dt dx: (2.2.4)

By Definition 2.2.1,
D2G.v/ � .h; h0/ 2H

�max.�0;�
0/Ck

2
�H

�max.�0;�
0/

2
:

Since rˆ.G.v// 2Hs
2
�H

max.�0;�
0/

2
, this shows that the right side of (2.2.4) defines a continuous linear

form in h0 2H��
0

1
.

We now study D2Œr.ˆ ıG/.v/� � .h1; h2/, with .h1; h2/ 2H�1

1
�H�2

1
. To prove that

D2Œr.ˆ ıG/.v/� � .h1; h2/ 2H��3

1
;

we compute, for h3 2H�3

1
,

D2

Z
r.ˆ ıG/.v/h3 dt dx DD2

Z
Œ.rˆ/.G.v//�ŒDG.v/ � h3� dt dx:

We get the following contributions (up to symmetries) for the action on .h1; h2/ 2H�1

1
�H�2

1
:Z

Œ.rˆ/.G.v//�ŒD3G.v/ � .h1; h2; h3/� dt dx; (2.2.5a)Z
ŒD..rˆ/.G.v/// � h1� ŒD

2G.v/ � .h2; h3/� dt dx; (2.2.5b)Z
Œ.Drˆ/.G.v// �D2G.v/ � .h1; h2/� ŒDG.v/ � h3� dt dx; (2.2.5c)Z
Œ.D2
rˆ/.G.v// � .DG.v/ � h1;DG.v/ � h2/� ŒDG.v/ � h3� dt dx: (2.2.5d)

In (2.2.5a), we may assume for instance h1 2H� 0

1
, h2 2H��

0

1
, h3 2H

max.�0;�
0/

1
. Since u!D2G.u/

is C 1 on X \ H
max.�0;�

0/
1

with values in L2.H
� 0

1
� H��

0

1
IH2
�max.�0;�

0/Ck/, the second factor in the
integrand belongs to H

�max.�0;�
0/Ck

2
, so may be integrated against rˆ.G.v// 2 Hs

2
� H

max.�0;�
0/

2
for

s � � 0 � 0 and s � � .
In (2.2.5b), D2G.v/ � .h2; h3/ 2H��1Ck

2
. On the other hand D..rˆ/.G.v/// �h1 is in H�1

2
by (2.2.1)

and (2.2.2), which allows one to integrate the product of the two factors.
In (2.2.5c), DG.v/ � h3 lies in H�3Ck

2
. The other factor is given by the action of .Drˆ/.G.v// on

D2G.v/ � .h1; h2/ 2H��3Ck
2

, whence again the wanted duality in the integral, using (2.2.2).
Finally, in (2.2.5d), we integrate DG.v/�h3 2H�3Ck

2
against the action of .D2rˆ/.G.v// on a couple

belonging to H�1Ck
2

�H�2Ck
2

�H�1

2
�H�2

2
. Since this vector is in H��3�k

2
by definition of C1;k.Y;R/,

we get the conclusion. �
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Let us write an equivalent form of (1.1.3) using the classes of functions above. Since the Hamiltonian
F in (1.1.2) is real-valued, we may write (1.1.3) as a 2� 2 system

.!Dt ��C�/uD �f .t;x/C �
@F

@ Nu
.t;x;u; Nu; �/;

.�!Dt ��C�/ NuD � Nf .t;x/C �
@F

@u
.t;x;u; Nu; �/:

(2.2.6)

We identify uD v1C iv2 with v D
�
v1
v2

�
and f D f1C if2 with f D

� f1

f2

�
. If we set

rF.v/D

�
@F=@v1

@F=@v2

�
and

L! D

�
��� �!@t

!@t ���

�
; (2.2.7)

Equation (2.2.6) is equivalent to

L!v D��f � �rvF.t;x; v/: (2.2.8)

Define, for v 2 zHs.S1 �Td IR2/,

ˆ1.v; f; !; �/D
1

2

Z
S1�Td

.L!v/v dt dxC �

Z
S1�Td

f .t;x/v.t;x/ dt dx (2.2.9)

and

ˆ2.v; �/D

Z
S1�Td

F.t;x; v.t;x/; �/ dt dx: (2.2.10)

Thenrˆ1.v/DL!vC�f , soˆ12C
1;2.zH��zH�;R/ if ���0, since, by the definition of zH� .S1�Td IR2/,

L! is bounded from zH� to zH��2. By the statement following Definition 2.2.2, ˆ2 2 C1;0.zH� ;R)
(� � �0). Moreover (2.2.8) may be written

rv Œˆ1.v; f; !; �/C �ˆ2.v; �/�D 0: (2.2.11)

Using the notation introduced at the bottom of page 646, we decompose any v 2 zHs.S1 � Td IR2/ as
v D v0C v00 on the decomposition

zHs.S1
�Td
IR2/DHs.S1

�Td
IR2/˚Fs.S1

�Td
IR2/:

We denote for q > 0 by Bq.zH
s/, Bq.H

s/, Bq.F
s/ the ball of center 0 and radius q in these spaces. By

(1.2.6), if v 2 Fs.S1 � Td IR2/, .j ; n/ 2 Z ��˛ � Z � Zd and Ov.j ; n/ ¤ 0, then jj j > K0hn.˛/i
2

or jj j < K�1
0
hn.˛/i2. Moreover, since � 2 R � Z�,

ˇ̌
jnj2 C �

ˇ̌
� c.�/hn.˛/i2 when n 2 �˛, for

some constant c.�/ > 0. If we fix K0 large enough, and use that ! stays in Œ1; 2�, we conclude that the
eigenvalues of L! satisfy the boundsˇ̌

!j Cjnj2C�
ˇ̌
� c.jj jC hn.˛/i2/ for j 2 Z; n 2�˛; ˛ 2A:
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This shows that the restriction of L! to FsC2 is an invertible operator from FsC2 to Fs (uniformly in
! 2 Œ1; 2�).

Let us reduce (2.2.11) to an equation on the space Hs.S1 �Td IR2/.

Proposition 2.2.4. Let � � �0; q > 0, f 0 2 Bq.H
� /. There are 
0 2 �0; 1�,

� an element .v0; f 00/ !  2.v
0; f 00; !; �/ of C1;0.WqIR/, where Wq D Bq.H

� .S1 � Td IR2// �

Bq.F
� .S1 �Td IR2//, with C 1 dependence in .!; �/ 2 Œ1; 2�� Œ0; 
0�, and

� an element .v0; f 00/!G.v0; f 00; !; �/ of ˆ1;�2.Wq;F
�C2/, with C 1 dependence in .!; �/,

such that, for any given subset A� Œ1; 2�� Œ0; 
0�, the following two conditions are equivalent:

(i) The function v D .v0;G.v0; f 00; !; �// satisfies for any .!; �/ 2A

L!vC �f C �rvˆ2.v; �/D 0; (2.2.12)

where f D f 0Cf 00.

(ii) The function v0 satisfies for any .!; �/ 2A

L!v
0
C �f 0C �rv0 2.v

0; f 00; !; �/D 0: (2.2.13)

Proof. Write (2.2.12) as

L!v
0
C �f 0C �rv0ˆ2.v

0; v00; �/D 0; (2.2.14a)

L!v
00
C �f 00C �rv00ˆ2.v

0; v00; �/D 0: (2.2.14b)

We are looking for a solution of the second equation under the form v00 D ��L�1
! f 00C �w00. The new

unknown w00 satisfies
w00 D�L�1

! rv00ˆ2.v
0;��L�1

! f 00C �w00; �/: (2.2.15)

Let q0 > 0 be such that kL�1
! rv00ˆ2.v

0; h; �/kF�C2 � q0=2 for any .v0; h/ 2 Bq.H
� / �Bq.F

� /, any
� 2 Œ0; 1�, any ! 2 Œ1; 2�. The fixed point theorem with parameters shows that there is 
0 2 �0; 1� such that
for any .v0; f 00/ 2 Wq , any � 2 Œ0; 
0�, Equation (2.2.15) has a unique solution w00 2 Bq0

.F�C2/. We
denote this solution by G.v0; f 00; !; �/. This is a smooth function of .v0; f 00/2Wq , with C 1 dependence
in .!; �/. If moreover .v0; f 00/ 2 zHs for some s � � , it follows from (2.2.15) that w00 2FsC2 (using that
L�1
! gains two derivatives in the Fs scale). Let us show that G belongs to ˆ1;�2.Wq;F

�C2/. By the
definition of G

Dv0G.v
0; f 00; !; �/D�L�1

! .Id� �M 00.v0; f 00; !; �/L�1
! /�1M 0.v0; f 00; !; �/;

Df 00G.v
0; f 00; !; �/D �L�1

! .Id� �M 00.v0; f 00; !; �/L�1
! /�1M 00.v0; f 00; !; �/L�1

! ;
(2.2.16)

with
M 0.v0; f 00; !; �/D .Dv0rv00ˆ2/.v

0;��L�1
! f 00C �G; �/;

M 00.v0; f 00; !; �/D�.Dv00rv00ˆ2/.v
0;��L�1

! f 00C �G; �/:
(2.2.17)

Since ˆ2 2 C1;0.Wq;R/, when .v0; f 00/ 2Wq \
zHs for some s � � , one can extend M 00.v0; f 00; !; �/

into an element of L.F�
0

;F�
0

/ for any � 0 2 Œ�s; s�; similarly, M 0.v0; f 00; !; �/ extends as an element
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of L.H� 0 ;F�
0

/. We choose 
0 small enough that for � 2 Œ0; 
0�, �kM 00.v0; f 00; !; �/L�1
! kL.F� ;F� / is

smaller than 1
2

. Let us check that G satisfies the first condition in Definition 2.1.1. We may write the
first equation in (2.2.16) as

Dv0G.v
0; f 00; !; �/

D�

2N�1X
kD0

L�1
! .�M 00L�1

! /kM 0
�L�1

! .�M 00L�1
! /N .Id� �M 00L�1

! /�1.�M 00L�1
! /N M 0; (2.2.18)

and a similar formula holds for Df 00G. If N is chosen large enough relatively to s, and � 0 2 Œ�s; s�,
.�M 00L�1

! /N M 0 sends H� 0 to F� , over which .Id� �M 00L�1
! /�1 is bounded. Consequently, the last

contribution in (2.2.18) is in FsC2 � F�
0C2. The sum on the right side being bounded from H� 0 to

F�
0C2 for any � 0 2 Œ�s; s�, we get the same property for Dv0G. We argue in the same way for Df 00G.

To check the second condition in Definition 2.1.1, we compute from (2.2.16), for .h1; h2/ 2H�1 �H�2

D2
v0G.v

0; f 00; !; �/ � .h1; h2/D�L�1
! .Id� �M 00L�1

! /�1Œ.Dv0M
0
� h1/ � h2�

�L�1
! .Id� �M 00L�1

! /�1.�Dv0M
00L�1

! � h1/.Id� �M 00L�1
! /�1M 0

� h2:

If f�1; �2; �3g D f�
0;�� 0;max.�0; �

0/g, the assumption on ˆ2 implies that Dv0M
0 sends H�1 �H�2

to F��3 , and Dv0M
00 sends H�1 �F�2 to F��3 . Using expansions as in (2.2.18), we conclude that if

.h1; h2/ 2H�1 �H�2 , D2
v0G.v

0; f 00; !; �/ � .h1; h2/ 2F��3C2. One studies Dv0Df 00G and D2
f 00

G in the
same way. It is clear that DG;D2G are smooth in .v0; f 00/ 2 Wq \

zHs and have a C 1 dependence in
.!; �/; hence G 2ˆ1;�2.Wq;F

�C2/.
Let us obtain the equivalent form (2.2.13) of (2.2.12) or (2.2.11). By (2.2.9), (2.2.10)

ˆ1.v
0; v00; !; �/C �ˆ2.v

0; v00; �/D
1

2

Z
.L!v

0/v0 dt dxC �

Z
f 0v0 dt dx

C
1

2

Z
.L!v

00/v00 dt dxC �

Z
f 00v00 dt dxC �ˆ2.v

0; v00; �/:

We plug into this expression the solution v00 D��L�1
! f 00C �G.v0; f 00; !; �/ of (2.2.14b). We get after

simplification the function

‰.v0; f 00; !; �/D
1

2

Z
.L!v

0/v0 dt dxC�

Z
f 0v0 dt dx�

�2

2

Z
.L�1
! f 00/f 00 dt dxC� 2.v

0; f 00; !; �/;

where

 2.v
0; f 00; !; �/D

�

2

Z
G.L!G/ dt dxCˆ2.v

0;��L�1
! f 00C �G; �/: (2.2.19)

The integral in (2.2.19) is the composition of the function defined on F� by w00!
R
w00.L!w

00/ dt dx,
which is an element of C1;2.F� ;R/, with the map

.v0; f 00/!G.v0; f 00; !; �/;

zH�
! F�C2;

which is an element of ˆ1;�2.Wq;F
�C2/. By Lemma 2.2.3, we conclude that  2 2 C1;0.Wq;R/.
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Since G is defined as the critical point (up to an affine change of variables) of the map

v00! .ˆ1C �ˆ2/.v
0; v00; !; �/;

and since ‰ is the corresponding critical value, v0 solves (2.2.14a) if and only of rv0‰.v0; f 00; !; �/D 0.
This gives (2.2.13). �

We finish this subsection with a lemma that will be useful in the sequel. Let X be an open subset of
H�0.S1 �Td IR2/,  an element of C1;0.X IR/. For v 2X \HC1, w1; w2 2HC1, we set

L.vIw1; w2/DD2 .v/ � .w1; w2/: (2.2.20)

This is a continuous bilinear form in .w1; w2/2H0�H0, by the definition of C1;0.X IR/. By the Riesz
theorem, we write it

L.vIw1; w2/D

Z
S1�Td

.W .v/w1/w2 dt dx

for some symmetric H0-bounded operator W .v/. Since Definition 2.2.2 implies that v ! D2 .v/ is
a smooth map on X with values in the space of continuous bilinear forms on H0 �H0, we know that
v!W .v/ is smooth with values in L.H0;H0/. Thus we may write, for j D 1; : : : ; d ,

L.vI @xjw1; w2/CL.vIw1; @xjw2/D�

Z
S1�Td

..@xjW .v//w1/w2 dt dx

D�.@vL/.vIw1; w2/ � .@xj v/; (2.2.21)

for any v 2X \HC1 and w1; w2 2HC1.
We denote by CŒX˛I˛ 2Nd � the space of polynomials in indeterminates X˛, indexed by elements of

Nd . If X
k1
˛1
� � �X

k`
˛` is a monomial, its weight will be defined as k1j˛1j C � � � C k`j˛`j. The weight of

any polynomial is then defined in the natural way.

Lemma 2.2.5. For any N 2 N and ` 2 N, there is a polynomial Q`
N
2 CŒX˛I˛ 2 Nd �, of weight less

or equal to N , and for any q > 0 a constant C > 0 such that, for any v 2 Bq.H
�0/\HC1 \X , any

h1; : : : ; h` in HC1, any n; n0 2 Zd

…n@
`
vW .v/ � .h1; : : : ; h`/…n0




L.H0/

� C hn� n0i�N
X

N0C���CN`DN

Q`
N0
..k@˛vkH�0 /˛/

Ỳ
`0D1

kh`0kH�0CN`0
: (2.2.22)

Proof. Since t…n D…�n, we may write, for any w1; w2 2HC1,

.nj � n0j /

Z
.…nW .v/…n0w1/w2 dt dx D .nj � n0j /L.vI…n0w1;…�nw2/

D i ŒL.vI @xj…n0w1;…�nw2/CL.vI…n0w1; @xj…�nw2/�

D�i.@vL/.vI…n0w1;…�nw2/ � .@xj v/;
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by (2.2.21). Iterating the computation, we get for

hn� n0iN
ˇ̌̌̌Z
.…nW .v/…n0w1/w2 dt dx

ˇ̌̌̌
an estimate in terms of quantitiesˇ̌

.@p
vL/.vI…n0w1;…�nw2/ � .@

˛1v; : : : ; @˛pv/
ˇ̌
;

with j˛1jC � � �C j p̨j �N . By the properties of L, this is bounded from above by

Ck…n0w1kL2k…�nw2kL2

pY
p0D1

k@˛p0vkH�0

when v stays in a fixed H�0-ball. This implies (2.2.22) for `D 0. The proof for general ` is similar, up
to notation. �

2.3. Reduction to a paradifferential equation. We want to construct, under the conditions of the state-
ment of Theorem 1.1.1, periodic solutions to (2.2.6). We have rewritten this equation under the real
form (2.2.8) (or (2.2.11)). By Proposition 2.2.4, if we find a periodic solution v0 for (2.2.13), we get a
periodic solution v for (2.2.12), which is a rewriting of (2.2.11). We are thus reduced to finding a solution
v0 2H� .S1 �Td IR2/ to (2.2.13). Since the force term f D f 0C f 00 will be fixed, we no longer write
the f 00 dependence in the function  2 defined in Proposition 2.2.4. Moreover, since, in the rest of the
paper, we will study only the equivalent formulation (2.2.13) of our initial problem, we drop the primes;
that is, we study

L!vC �f C �rv 2.v; !; �/D 0; (2.3.1)

where v 2Bq.H
� .S1�Td IR2//, f 2Hs.S1�Td IR2/,  2 is in C1;0.Bq.H

� /;R/ for some � 2 Œ�0; s�,
q > 0 and for � 2 Œ0; 
0�, with 
0 2 �0; 1� small enough. We shall use the equivalent norms (1.2.7) and
(1.2.8) on the spaces we consider.

Our objective in this subsection is to rewrite the nonlinearity in (2.3.1) using paradifferential operators.

Proposition 2.3.1. Let q > 0, � � �0C d C 1 be given. Set

r D � � �0� d � 1: (2.3.2)

There is a symmetric element zV 2‰0
R.0; �; q/˝M2.R/ and an element zR 2Rr

0;R
.0; �; q/˝M2.R/, with

C 1 dependence in .!; �/, such that, for any v 2 Bq.H
� /, � 2 Œ0; 
0�, and ! 2 Œ1; 2�,

rv 2.v; !; �/D zV .v; !; �/vC zR.v; !; �/v: (2.3.3)

Let us comment about the interest of this decomposition of rv 2. It allows us to express the nonlin-
earity in (2.3.1) as the sum of a remainder and of the action of the paradifferential potential zV .v; !; �/
on v. In that way, the main contribution to the nonlinearity is expressed in terms of a class of operators
enjoying a nice calculus. This will be exploited below to perform a block diagonalization.
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We introduce some notation for the proof. For p 2 N, v 2H0.S1 �Td IR2/, we set

�0v D…0v; �pv D
X

n2Zd

2p�1�jnj<2p

…nv for p � 1;

S0v D 0; Spv D

p�1X
p0D0

�p0v D
X

n2Zd

jnj<2p�1

…nv for p � 1:

(2.3.4)

We also consider the frequency cut-offs defined for n; n0 2 Zd by

S.n; n0/D
X

jn00j�2.1Cmin.jnj;jn0j//

…n00 : (2.3.5)

Lemma 2.3.2. Let � � �0CdC1, q> 0. There is a map .v; !; �/!W .v; !; �/ defined for v 2Bq.H
� /,

�2 Œ0; 
0�, ! 2 Œ1; 2�, with values in the space of bounded symmetric operators on H0.S1�Td IR2/, which
is C1 in v and has C 1 dependence in .!; �/, such that for any .v; !; �/

 2.v; !; �/D

Z
S1�Td

ŒW .v; !; �/v�v dt dx (2.3.6)

and such that the following estimate holds: For .`;N /2N�N, there are polynomials Q`
N
2CŒX˛I˛2N�,

of weight at most N , and there is for any M 2 N and ` 2 N a constant C , depending only on `; q;M ,
such that for any v 2 Bq.H

� /, any � 2 Œ0; 
0�, any ! 2 Œ1; 2�, any .a0; a1/ 2 N2 with a0C a1 � 1, any
.h1; : : : ; h`/ 2 .H

� /`, and any n; n0 2 Zd ,

…n@
a0
! @

a1
� D`

vW .v; !; �/ � .h1; : : : ; h`/…n0




L.H0/

� C hn� n0i�M
X

N0C���CN`DM

Q`
N0

�
.k@˛S.n; n0/vkH�0 /˛

� Ỳ
`0D1

kS.n; n0/h`0kH�0CN`0
: (2.3.7)

Proof. We do not write !; �, which play the role of parameters. Since  2 vanishes at order 3 at v D 0,
and Spv! v in H� when p!C1, we write

 2.v/D

C1X
p1D0

. 2.Sp1C1v/� 2.Sp1
v//D

C1X
p1D0

Z 1

0

.@ 2/.Sp1
vC �1�p1

v/ d�1 ��p1
v:

Repeating the process, we get

 2.v/D

C1X
p1D0

C1X
p2D0

Z 1

0

Z 1

0

.@2 2/.�p1;p2
.�1; �2/v/ d�2 � .�p2

.Sp1
C �1�p1

/v;�p1
v/ d�1;

where�p1;p2
.�1; �2/D

Q2
`D1.Sp`C�`�p`/. By the discussion before Lemma 2.2.5, there is a symmetric

operator zW .v/ satisfying (2.2.22), such that

@2 2.v/ � .w1; w2/D

Z
Œ zW .v/w1�w2 dt dx:
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We set

W .v/D
1

2

X
p1

X
p2

Z 1

0

Z 1

0

�p1
Œ zW .�p1;p2

.�1; �2/v/�p2
.Sp1
C �1�p1

/� d�1d�2

C
1

2

X
p1

X
p2

Z 1

0

Z 1

0

�p2
.Sp1
C �1�p1

/Œ zW .�p1;p2
.�1; �2/v/�p1

� d�1d�2: (2.3.8)

This is a symmetric operator. We apply (2.2.22) to zW . Because of the cut-offs in the argument of zW
in (2.3.8), we may write …nW .v/…n0 D …nW .S.n; n0/v/…n0 . Consequently, (2.2.22) implies (2.3.7).
Note that since � � �0C d C 1, we may take some integer M > d , such that �0CM � � , so that for
v; h`0 in H� , the right side of (2.3.7) is bounded from above by C hn� n0i�M . This shows that W .v/ is
indeed bounded on H0. �

Proof of Proposition 2.3.1. Let h1 be in HC1.S1 �Td IR2/ and write

D 2.v; !; �/ � h1 D 2

Z
S1�Td

.W .v; !; �/v/h1 dt dxC

Z
S1�Td

..DW .v; !; �/ � h1/v/v dt dx: (2.3.9)

Define
zV D 2

X
n;n0

1
jn�n0j� 1

10
.jnjCjn0j/…nW .v; !; �/…n0 :

In (2.3.7), we can bound k@˛S.n; n0/vkH�0 by CkvkH� when j˛j �M � � � �0, and we can control
kS.n; n0/h`0kH�0CN`0

by Ckh`0kH�0CM . We obtain that zV satisfies (2.1.1), and is thus an element of
‰0.0; �; q/. We show that the remaining terms in (2.3.9) give contributions to the last term in (2.3.3). Set

R1.v; !; �/D 2
X

n

X
n0

…nW .v; !; �/…n01jn�n0j> 1
10
.jnjCjn0j/:

We estimate 

…n@
a0
! @

a1
� @

`
vR1.v; !; �/ � .h1; : : : ; h`/…n0




L.H0/

(2.3.10)

using (2.3.7) with M > � � �0. Since kS.n; n0/wkH�0Cˇ � C.1C inf.jnj; jn0j//.ˇC�0��/CkwkH� , we
get for (2.3.10) the upper bound

C.1CjnjC jn0j/�M .1C inf.jnj; jn0j//MC�0��
Ỳ
`0D1

kh`0kH� :

Taking M large enough, we deduce the boundedness of R1.v; !; �/ and of its derivatives from Hs to
HsC.���0�d�1/, for any s � �0; thus R1 2Rr

0;R
.0; �; q/.

We treat next the last contribution to (2.3.9), defining an operator R2.v; !; �/ byZ
Œ.DW .v; !; �/ � h/v�w dt dx D

Z
ŒR2.v; !; �/w�h dt dx (2.3.11)
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for any h; w 2 HC1. On the left side, we decompose the last v as
P

n0…n0v and w as
P

n…nw. We
bound the modulus of (2.3.11) byX

n

X
n0



…nDW .v; !; �/ � h…n0




L.H0/
k…n0vkH0 k…nwkH0 : (2.3.12)

To show that R2.v; !; �/ is bounded from Hs to HsCr , we bound k…nwkH0 � cnhni
�skwkHs , for a

`2-sequence .cn/n and take h 2H�s�r . We use (2.3.7) with `D 1. We have the bound

Q1
N0

�
.k@˛S.n; n0/vkH�0 /˛

�
kS.n; n0/hkH�0CN1 � C.1C inf.jnj; jn0j//MCsCrC�0khkH�s�r

since v is bounded in H� . Consequently, the general term of (2.3.12) is smaller than

C hn� n0i�M .1C inf.jnj; jn0j//MCsCrC�0hni�scnkwkHskhkH�s�r hn0i��c0n0kvkH� (2.3.13)

for some `2-sequence .c0n0/n0 . Taking M D d C 1, and using the value (2.3.2) of r and s � 0, � � 0,
one checks that the sum in n; n0 of (2.3.13) converges. This shows the boundedness of R2.v; !; �/ from
Hs to HsCr . One treats in the same way @a0

! @
a1
� @

`
vR2.v; !; �/. Consequently R2 2 Rr

0;R
.0; �; q/. This

concludes the proof of the proposition. �

Let us conclude this section writing in complex coordinates the equation we are interested in. By
Proposition 2.3.1, Equation (2.3.1) may be written

L!vC �f C � zV .v; !; �/vC � zR.v; !; �/v D 0: (2.3.14)

We write v D
�
v1
v2

�
2 R2 and set uD v1C iv2, U D

�
u
Nu

�
, I 0 D

�
1 0
0 �1

�
.

Corollary 2.3.3. Let q > 0, � � �0 C d C 1, r given by (2.3.2). There is an element V .U; !; �/ in
‰0.0; �; q/˝M2.R/ with V .U; !; �/� D V .U; !; �/, there is R.U; !; �/ in Rr

0
.0; �; q/˝M2.R/ such

that (2.3.14) is equivalent to

Œ.!I 0Dt C .��C�/I/C �V .U; !; �/�U D �R.U; !; �/U C �f (2.3.15)

(where, abusing notation, we write f for
� f1Cif2

f1�if2

�
).

Proof. Write zV .v; !; �/ D . zVi;j .v; !; �//1�i;j�2, zR.v; !; �/ D . zRi;j .v; !; �//1�i;j�2 and note that
(2.3.14) implies

.!Dt ��C�/u

D �.f1C if2/� �V11.U; !; �/u� �V12.U; !; �/ NuC �R11.U; !; �/uC �R12.U; !; �/ Nu; (2.3.16)

where we have set

V11 D�
1
2
Œ zV11C

zV22C i. zV21�
zV12/�; V12 D�

1
2
Œ zV11�

zV22C i. zV21C
zV12/�;

R11 D
1
2
Œ zR11C

zR22C i. zR21�
zR12/�; R12 D

1
2
Œ zR11�

zR22C i. zR21C
zR12/�:

(2.3.17)

We define V21DV 12;V22DV 11;R21DR12;R22DR11, V D .Vij /1�i;j�2, RD .Rij /1�i;j�2. Since
t zV D zV and zV D zV , we see that V �DV and (2.3.16), (2.3.17) imply (2.3.15). This concludes the proof.

�
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3. Diagonalization of the problem

The goal of this section is to deduce from (2.3.15) a new equation where, up to remainders, V .U; !; �/

will be replaced by a block diagonal operator relatively to the decomposition H0 D
L
˛ Range. z…˛/

coming from (1.2.5). This is the key point that will allow us to avoid using Nash–Moser methods in the
construction of the solution performed in Section 4.

3.1. Spaces of diagonal and non diagonal operators.

Definition 3.1.1. Let � 2 R, N 2 N, � � �0C d C 1C 2N , m 2 R, q > 0.

(i) One denotes by †m.N; �; q/ the space ‰m.N; �; q/˝M2.R/. Abusing notation, we also write
Rr
�.N; �; q/ for Rr

�.N; �; q/˝M2.R/.

(ii) One denotes by †m
D .N; �; q/ the subspace of †m.N; �; q/ consisting of elements A.U; !; �/ D

.Aij .U; !; �//1�i;j�2 such that A12 DA21 D 0 and, for any ˛; ˛0 2A with ˛ ¤ ˛0,

z…˛A11.U; !; �/ z…˛0 � 0; z…˛A22.U; !; �/ z…˛0 � 0: (3.1.1)

(iii) One denotes by †m
ND.N; �; q/ the subspace of †m.N; �; q/ made up of elements A.U; !; �/ such

that, for any ˛ 2A,

z…˛A11.U; !; �/ z…˛ � 0; z…˛A22.U; !; �/ z…˛ � 0: (3.1.2)

Clearly, we get a direct sum decomposition †m.N; �; q/D†m
D .N; �; q/˚†

m
ND.N; �; q/.

Definition 3.1.2. Let � 2 �0; 1�.

(i) Lm
� .N; �; q/ denotes the subspace of †m��.N; �; q/ consisting of elements .Aij .U; !; �//1�i;j�2

that satisfy
A11;A22 2‰

m��.N; �; q/; A12;A21 2‰
m�2.N; �; q/: (3.1.3)

(ii) L0�
m.N; �; q/ denotes the subspace of †m��.N; �; q/ consisting of elements .Aij .U; !; �//1�i;j�2

that satisfy (3.1.3) and

A�11 D�A11; A�22 D�A22; A�12 DA21: (3.1.4)

Remark. It follows from the definition and from Proposition 2.1.4(ii) that, if A 2 Lm1
� .N; �; q/, B 2

Lm2
� .N; �; q/ with � � �0 C 2N C d C 1C .m1 Cm2 � 2�/C, then AB is the sum of an element of

L
m1Cm2��
� .N; �; q/ and an element of Rr

0
.N; �; q/ with

r D � � �0� .d C 1/�m1�m2C 2�� 2N:

Proposition 3.1.3. Let A.U; !; �/ be a self-adjoint element of †m
ND.N; �; q/. There exist B.U; !; �/ in

L0�
m.N; �; q/ and R.U; !; �/ in R

r.�;N /�m
0

.N; �; q/, with r.�;N /D �.� ��0�2N �d �1/, such that

B.U; !; �/�.���/C .���/B.U; !; �/DA.U; !; �/CR.U; !; �/ (3.1.5)

(where � is given by Lemma 1.2.1, for a given ˇ 2 �0; 1
10
Œ). Moreover Œ�;B� is in †m.N; �; q/.
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Proof. By assumption, we may write

A.U; !; �/D

�
a.U; !; �/ b.U; !; �/

b.U; !; �/� c.U; !; �/

�
;

with a� D a, c� D c, and z…˛a z…˛0 D 0D z…˛c z…˛0 if ˛; ˛0 2A with ˛ ¤ ˛0. Write aD a0C a00, with

a0 D
X
n;n0

1jn�n0j�c.jnjCjn0j/�…na…n0 ; a00 D
X
n;n0

1jn�n0j>c.jnjCjn0j/�…na…n0 ;

where c is a small positive constant. Applying (2.1.1) with M D � � �0� 2N � d � 1, we get

k…n@
j
U

a00.U /.W1; : : : ;Wj /…n0kL.H0/

� C.1CjnjC jn0j/m�r.�;N /
hn� n0i�d�1

1
jn�n0j� 1

10
.jnjCjn0j/

jY
`D1

kW`kH� ;

which implies a bound of type (2.1.3) for any s � �0, with r replaced by r.�;N /�m. Consequently, a00

gives a contribution to R in (3.1.5) and, changing notation, we may assume that aD a0. We do the same
for the c-contribution, so that we reduce ourselves to a; c verifying that

…na…n0 D 0 and …nc…n0 D 0 if jn� n0j> c.jnjC jn0j/�: (3.1.6)

We look for

B.U; !; �/D

�
a1.U; !; �/ b1.U; !; �/

b1.U; !; �/
� c1.U; !; �/

�
;

for some a1; b1; c1 satisfying a�
1
D �a1, c�

1
D �c1 such that A.U; !; �/ equals the left side of (3.1.5).

The latter may be written as�
Œ�; a1� .���/b1Cb1.���/

b�
1
.���/C.���/b�

1
Œ�; c1�

�
: (3.1.7)

Consequently, we have to solve the equations

Œ�; a1�D a; .���/b1C b1.���/D b; Œ�; c1�D c: (3.1.8)

The first of these is equivalent to

.jn0j2� jnj2/…na1…n0 D…na…n0 for any n; n0 2 Zd : (3.1.9)

Since A 2†m
ND.N; �; q/, Definition 3.1.1(ii) implies that the right side in (3.1.9) vanishes if n; n0 belong

to a same �˛ of the partition of Lemma 1.2.1. Consequently, we may define

a1.U; !; �/D
X
˛;˛02A
˛¤˛0

X
n2�˛

X
n02�;˛0

.jn0j2� jnj2/�1…na.U; !; �/…n0 : (3.1.10)

If we use the second lower bound in (1.2.2), Definition 2.1.1, and (3.1.6) with a small enough c > 0, we
see that a1 satisfies (2.1.1) with m replaced by m� �. Thus a1 2 ‰

m��.N; �; q/, and by (3.1.10) and
the fact that a� D a, we get a�

1
D�a1. The last equation (3.1.8) is solved in the same way.
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We are left with finding b1.U; !; �/. The equation giving it is equivalent to

�.jnj2Cjn0j2C 2�/…nb1…n0 D…nb…n0 : (3.1.11)

Since � 62Z� by assumption, we may always define b1 by division. Coming back to Definition 2.1.1, we
see that we get an element of ‰m�2.N; �; q/, which is moreover self-adjoint. This concludes the proof
since (3.1.7) shows that by construction Œ�; a1�; Œ�; c1� belong to ‰m.N; �; q/, and since �b1; b1� and
their adjoints are in ‰m.N; �; q/. �

3.2. Diagonalization theorem. The main result of this subsection is the following one, which gives a
reduction for the left side of (2.3.15).

Proposition 3.2.1. Let r be a given positive number and fix an integer N such that .N C 1/� � r C 2.
Let � 2 R satisfy

� � �0C 2.N C 1/C d C 1C r=�: (3.2.1)

Let q > 0 be given. One may find elements Qj .U; !; �/ in L
�j�
� .j ; �; q/, 0 � j � N , elements

VD;j .U; !; �/ in†�j�
D .j ; �; q/, 0� j �N �1, and an element R1.U; !; �/ in Rr

2
.N C 1; �; q/, with C 1

dependence in .!; �/, such that if one denotes

Q.U; !; �/D

NX
jD0

Qj .U; !; �/; VD.U; !; �/D

N�1X
jD0

VD;j .U; !; �/; I 0 D

�
1 0

0 �1

�
; (3.2.2)

one gets, for any U 2 Bq.H
� .S1 �Td IC2//,

.IdC �Q.U; !; �//�.!I 0Dt C .��C�/I C �V .U; !; �//.IdC �Q.U; !; �//

D !I 0Dt C .��C�/I C �VD.U; !; �/� �R1.U; !; �/: (3.2.3)

We shall prove Proposition 3.2.1 by constructing recursively Qj , 0� j �N so that Qj may be written
Qj DQ0j CQ00j with

Q0j 2 L0�
�j�.j ; �; q/; Œ�;Q0j � 2†

�j�.j ; �; q/; j D 0; : : : ;N;

Q00j 2 L�.jC1/�
� .j ; �; q/; Œ�;Q00j � 2†

�.jC1/�.j ; �; q/; j D 0; : : : ;N � 1;

Q00N D 0:

(3.2.4)

We compute first the left side of (3.2.3).

Proposition 3.2.2. Let r; �;N satisfy .N C 1/� � r C 2 and � � �0 C 2.N C 1/C d C 1C r . Let
Q.U; !; �/D

PN
jD0 Qj .U; !; �/ be given, with Qj DQ0j CQ00j satisfying (3.2.4).

� There are elements

Sj .U; !; �/ 2 L�.jC1/�
� .j ; �; q/; 0� j �N � 1; (3.2.5)

with Œ�;Sj �2†
�.jC1/�.j ; �; q/, and Sj depending only on Q0

`
(0� `� j ) and Q00

`
(0� `� j �1).
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� There are elements

Vj .U; !; �/ 2†
�j�.j ; �; q/; 0� j �N

with .Vj /
� D Vj , Vj depending only on Q` (`� j � 1).

� There is an element R 2Rr
2
.N C 1; �; q/ such that, if we set

V N .U; !; �/D

NX
jD0

Vj .U; !; �/; SN .U; !; �/D

N�1X
jD0

Sj .U; !; �/;

Q0 D

NX
jD0

Q0j ; Q00 D

NX
jD0

Q00j ;
zL! D !I 0Dt C .��C�/I;

then

.IdC �Q/�Œ zL! C �V �.IdC �Q/D zL! C �V N
C �Œ.SN /� zL! C zL!.S

N /�

C�ŒQ0�.��C�/C .��C�/Q0�C �ŒQ00� zL! C zL!Q00�C �R: (3.2.6)

Before starting the proof, we compute some commutators.

Lemma 3.2.3. (i) One can find Aj 2†
�j�.j � 1; �; q/ (1� j �N ) depending only on Q` (`� j �1)

and satisfying A�j D Aj , one can find Bj 2 L
�.jC1/�
� .j ; �; q/ (0 � j � N � 1) depending only

on Q0
`

(` � j ) and Q00
`

(` � j � 1) and satisfying Œ�;Bj � 2 †
�.jC1/�.j ; �; q/, and one can find

R 2Rr
2
.N C 1; �; q/, such that, if one sets AD

PN
jD1 Aj , B D

PN�1
jD0 Bj , then

ŒQ�; zL! �QCQ�Œ zL! ;Q�DACB� zL! C zL!BCR: (3.2.7)

(ii) One can find Aj as above .1 � j � N /, one can find Bj 2 L
�.jC1/�
� .j ; �; q/ .0 � j � N � 1/,

satisfying Œ�;Bj � 2†
�.jC1/�.j ; �; q/ and depending only on Q0

`
(`� j ) and Q00

`
(`� j � 1), and

one can find R 2Rr
2
.N C 1; �; q/ such that, with the same notation as in (i),

Q� zL!QDACB� zL! C zL!BCR: (3.2.8)

Proof. (i) Write

Œ zL! ;Q�D�Œ�;Q�C!ŒI
0Dt ;Q�D�Œ�;Q�C!I 0ŒDt ;Q�C!ŒI

0;Q�Dt

D�Œ�;Q�C!I 0ŒDt ;Q�C ŒI
0;Q�I 0.���/C ŒI 0;Q�I 0 zL! :

The left side of (3.2.7) may be written

�Q�Œ�;Q�C!Q�I 0ŒDt ;Q�CQ�ŒI 0;Q�I 0.���/�ŒQ�;��QC!ŒQ�;Dt �I
0QC.���/I 0ŒQ�;I 0�Q

CQ�ŒI 0;Q�I 0 zL! C zL!I 0ŒQ�;I 0�Q: (3.2.9)
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Denote by QA the first line of (3.2.9). Then QA is self-adjoint and may be written as
P2NC2

jD1
QAj , where

QAj is the sum of the following terms:X
j1Cj2Dj�1
0�j1;j2�N

�
� ŒQ�j1

; ��Qj2
�Q�j2

Œ�;Qj1
�
�

.j � 1/; (3.2.10)

!
X

j1Cj2Dj�2
0�j1;j2�N

�
Q�j1

I 0ŒDt ;Qj2
�C ŒQ�j2

;Dt �I
0Qj1

/
�

.j � 2/; (3.2.11)

X
j1Cj2Dj�1
0�j1;j2�N

�
Q�j1

ŒI 0;Qj2
�I 0.���/C .���/I 0ŒQ�j2

; I 0�Qj1

�
.j � 1/: (3.2.12)

Let us check that we may write QAj DAj CR1;j with Aj in †�j�.min.N C 1; j � 1/; �; q/ and R1;j in
Rr

0
.min.N C 1; j � 1/; �; q/. Since L

�j`�
� .j`; �; q/ � †

�.j`C1/�.j`; �; q/, it follows from (3.2.4) and
from (ii) of Proposition 2.1.4 that the general term in (3.2.10) may be written as a contribution to Aj

plus a remainder belonging to Rr1

0
.min.N; j � 1/; �; q/ with

r1 D � � �0� 2N � .d C 1/C .j1C j2C 1/� � r:

Moreover these contributions depend only on Q` (`� j � 1).
Consider the general term of (3.2.11). The second remark following Definition 2.1.1 implies that

ŒDt ;Qj2
� 2 †�.j2C1/�.j2C 1; �; q/. Consequently, using again (ii) of Proposition 2.1.4, we may write

(3.2.11) as a contribution to Aj , plus a remainder belonging to Rr1

0
.min.N C 1; j � 1/; �; q/, depending

only on Q` (`� j � 2).
Finally, consider (3.2.12). If C D .Cij .U; !; �//1�i;j�2 is an element of Lm

� .N; �; q/, it follows from
(3.1.3) that ŒI 0;C �D

�
0 2c12

�2c21 0

�
belongs to †m�2.N; �; q/. Hence, the first term in the sum (3.2.12)

is given by the composition of an element in †�.j1C1/�.j1; �; q/ and of an element in †�j2�.j2; �; q/.
By applying Proposition 2.1.4 once more, we may write this as a contribution to Aj plus a remainder in
Rr

0
.min.N; j � 1/; �; q/, depending only on Q` (`� j �1). The second term in the argument of the sum

(3.2.12) is treated in the same way. This shows that the sum of the first two lines in (3.2.9) contributes
to ACR on the right side of (3.2.7), since for j � N C 1, Aj is in †�.NC1/�.N C 1; �; q/, hence in
Rr

0
.N C 1; �; q/ by the inequality .N C 1/� � r and the remark after the statement of Definition 2.1.3.

Let us show that the last line in (3.2.9) contributes to B� zL!C zL!BCR in (3.2.7). We have seen above
that the fact that Q0j 2 L

�j�
� .j ; �; q/ implies ŒQ0j ; I

0� D
�

0 e1

e2 0

�
with e` 2 ‰

�j��2.j ; �; q/; similarly,
Q00j 2 L

�.jC1/�
� .j ; �; q/ implies ŒQ00j ; I

0�D
�

0 e1

e2 0

�
with e` 2‰

�.jC1/��2.j ; �; q/). We set

QBj D

X
j1Cj2Dj

0�j1;j2�N

I 0ŒQ0j1

�; I 0�Q0j2
C

X
j1Cj2Dj�1
0�j1;j2�N

I 0.ŒQ0j1

�; I 0�Q00j2
C ŒQ00j1

�; I 0�Q0j2
/C

X
j1Cj2Dj�2
0�j1;j2�N

I 0ŒQ00j1

�; I 0�Q00j2
:

Applying Proposition 2.1.4, we again have a decomposition QBj D Bj CRj , where Bj belongs to the
class L

�.jC1/�
� .min.N; j /; �; q/ (actually, Bj is in †�.jC1/��2.min.N; j /; �; q/) and Rj belongs to
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RrC2
0

.min.j ;N /; �; q/ because of (3.2.1). Moreover, Bj depends only on Q0
`

(`�j ) and Q00
`

(`�j�1),
and by construction, Œ�;Bj � 2 †

�.jC1/�.min.N; j /; �; q/. For j � N � 1, we get contributions to B

and R in (3.2.8), noting that Rj
zL! ; zL!Rj are in Rr

2
.N; �; q/. For j �N , Bj as well as Rj contribute

to the remainder in (3.2.7) since .N C 1/� � r . This concludes the proof of (i).

(ii) We write

Q� zL!QD 1
2
ŒQ�Q zL! C zL!Q�Q�C

1

2
ŒQ�Œ zL! ;Q�C ŒQ

�; zL! �Q�:

By (i), the last term may be written as a contribution to the right side of (3.2.8). Let us write the first
term on the right side under the form B� zL! C zL!BCR. We write Q�Q as the sum in j ofX

j1Cj2Dj
0�j1;j2�N

Q0j1

�Q0j2
C

X
j1Cj2Dj�1
0�j1;j2�N

.Q0j1

�Q00j2
CQ00j1

�Q0j2
/C

X
j1Cj2Dj�2
0�j1;j2�N

Q00j1

�Q00j2
:

By (3.2.4) and the remark following Definition 3.1.2, this expression may be written as Bj CRj , where
Bj 2 L

�.jC1/�
� .min.N; j /; �; q/ depends only on Q0

`
(` � j ) and Q00

`
(` � j � 1), ŒBj ; �� belongs to

†�.jC1/�.min.N; j /; �; q/, and Rj belongs to Rr2

0
.min.N; j /; �; q/, with

r2 D � � �0� .d C 1/C .j C 2/�� 2 min.j ;N /� r C 2:

We obtain contributions to the right side of (3.2.8) when j �N �1, and to the remainder R when j �N

since .N C 1/� � r C 2. This concludes the proof. �

Proof of Proposition 3.2.2. We write the left side of (3.2.6) as

zL! C �V .U; !; �/C �ŒQ
0�.��C�/C .��C�/Q0�C �ŒQ00� zL! C zL!Q00�

C�ŒQ0�I 0!Dt C!I 0DtQ
0�C �2Q� zL!QC �2ŒQ�V CVQ�C �3Q�VQ: (3.2.13)

The term V in (3.2.13) contributes to the V0 component of V N on the right side of (3.2.6). The first
two brackets in (3.2.13) give rise to the last two in (3.2.6). To study the contribution of Q� zL!Q, we
use (3.2.8). The Bj component of B on the right side of (3.2.8) contributes to the Sj component of
SN in (3.2.6). Let us study the third bracket in (3.2.13). By (3.2.4) and Definition 3.1.2, we may write
Q0

j�1
D
�

a b
b� c

�
with a; c 2 ‰�j�.j � 1; �; q/, b 2 ‰�.j�1/��2.j � 1; �; q/, a� D �a, and c� D �c.

This implies that

Q0j�1
�I 0Dt C I 0DtQ

0
j�1 D

�
ŒDt ; a� ŒDt ; b�

�ŒDt ; b
�� �ŒDt ; c�

�
is a self-adjoint operator belonging to †�j�.j ; �; q/, 1� j �N , by the second remark at the bottom of
page 644. We thus get a contribution to Vj in (3.2.6).

Finally, let us check that the last two terms in (3.2.13) may be written as contributions to V N and to
R on the right side of (3.2.6). Actually, we may write Q�V CVQC �Q�VQ as the sum in j of

Q0j�1
�V CVQ0j�1CQ00j�2

�V CVQ00j�2

C�
X

j1Cj2Dj�2

Q0j1

�VQ0j2
C �

X
j1Cj2Dj�3

.Q00j1

�VQ0j2
CQ0j1

�VQ00j2
/C �

X
j1Cj2Dj�4

Q00j1

�VQ00j2
: (3.2.14)
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Using that Q0j 2 †
�.jC1/�.j ; �; q/, Q00j 2 †

�.jC2/�.j ; �; q/, V 2 †0.0; �; q/, we write (3.2.14) as
VjCRj , where Vj depends only on Q0

`
(`�j�1) and Q00

`
(`�j�2) and is in†�j�.min.N; j � 1/; �; q/

and Rj 2Rr
0
.N; �; q/. This concludes the proof. �

Proof of Proposition 3.2.1. Let us construct recursively Q0j (0 � j � N ) and Q00j (0 � j � N� 1) so
that the right side of (3.2.6) may be written as the right side of (3.2.3). Assume that Q0; : : : ;Qj�1 have
been already determined in such a way that the right side of (3.2.6) may be written

zL! C �

j�1X
j 0D0

VD;j 0 C �

N�1X
j 0Dj

ŒS�j 0
zL! C zL!Sj 0 �C �

NX
j 0Dj

ŒQ0j 0
�.��C�/C .��C�/Q0j 0 �

C �

N�1X
j 0Dj

ŒQ00j 0
� zL! C zL!Q00j 0 �C �

NX
j 0Dj

Vj 0 C �R: (3.2.15)

Write Vj D
�

a b
b� c

�
with a; b; c 2‰�j�.j ; �; q/, a� D a, c� D c, and define

VD;j D
X
˛2A

z…˛
�

a 0
0 c

�
z…˛; VND;j D Vj �VD;j :

Then VD;j 2†
�j�
D .j ; �; q/, .VD;j /

�DVD;j and VND;j is in†�j�
ND .j ; �; q/, .VND;j /

�DVND;j . Moreover
VND;j depends only on Q` (` � j � 1). We apply Proposition 3.1.3 to find Q0j 2 L0�

�j�.j ; �; q/ and
Rj 2 R

r.�;j/Cj�
0

.j ; �; q/ such that Q0j
�.��C �/C .��C �/Q0j D VND;j CRj and Œ�;Q0j � is in

†�j�.j ; �; q/. The assumption (3.2.1) on � shows that Rj contributes to R1 in (3.2.3). Moreover
condition (3.2.4) is satisfied by Q0j , so that we have eliminated the j -th component in the fourth and
sixth terms of (3.2.15). To eliminate the j -th component of the third and fifth terms, we set Q00j D�Sj ,
j �N � 1, Q00

N
D 0. Then condition (3.2.4) is satisfied by Q00j , and the definition is consistent since Sj

depends only on Q0
`

(`� j ) and Q00
`

(`� j � 1). This concludes the proof. �

4. Iterative scheme

This section will be devoted to the proof of Theorem 1.1.1. We shall construct a solution to (2.3.15) —
which is equivalent to (1.1.3) — writing this equation under an equivalent form involving the right side
of (3.2.3). The first subsection will be devoted to the study of the restriction of the operator zL! C
�VD.U; !; �/ to the range of one of the projectors z…˛. We shall show that, for .!; �/ outside a subset of
small measure, this restriction is invertible. As usual in these problems, the inverse we construct loses
derivatives. This will not cause much trouble, since Proposition 3.2.1 allows us to write the equation
essentially under the form . zL!C �VD.U; !; �//W D �R1.U; !; �/W for a new unknown W . Since R1

is smoothing, it gains enough derivatives to compensate the losses coming from . zL!C�VD/
�1. Because

of that, we may construct the solution using a standard iterative scheme.

4.1. Lower bounds for eigenvalues. Let 
0 2 �0; 1�; � 2 R;N 2 N; � 2 RC such that

� � �0C
�

�
C 2.N C 1/C d C 1:
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We denote by E� .�/ the space of functions from S1 �Td � Œ1; 2�� Œ0; 
0� to C2,

.t;x; !; �/ ��! U.t;x; !; �/; (4.1.1)

which are continuous functions of ! with values in H� .S1�Td IC2/ and C 1 functions of ! with values
in H����2.S1 �Td IC2/, uniformly in � 2 Œ0; 
0�. We set

kU kE� .�/ D sup
.!;�/2Œ1;2��Œ0;
0�

kU. � ; !; �/kH� C sup
.!;�/2Œ1;2��Œ0;
0�

k@!U. � ; !; �/kH����2 : (4.1.2)

If z…˛ is the projector of H0 given by (1.2.5), we set F˛ D Range. z…˛/, D˛ D dim F˛. By (1.2.4) and
(1.2.6), D˛ � C1hn.˛/i

ˇdC2 for some C1 > 0. We define for U 2 E� .�/, ! 2 Œ1; 2�, � 2 Œ0; 
0�

A˛.!IU; �/D z…˛. zL! C �VD.U; !; �// z…˛: (4.1.3)

This is a self-adjoint operator on F˛, with C 1 dependence in !, since it follows from the expression
(3.2.2) of VD, condition (2.1.1) in the definition of ‰m.N; �; q/, the fact that @!U 2 H����2, and the
assumption made on � , that !! z…˛VD.U.t;x; !; �/; !; �/ z…˛ is C 1. The main result of this subsection
is the following:

Proposition 4.1.1. For any � 2 R�Z� and q > 0, there are 
0 2 �0; 1�, C0 > 0, A0 �A a finite subset,
and for any U 2E� .�/ with kU kE� .�/ < q, any � 2 Œ0; 
0�, any ˛ 2A, the eigenvalues of A˛ form a finite
family of C 1 real valued functions of !, depending on .U; �/,

!! �˛` .!IU; �/; 1� `�D˛ (4.1.4)

satisfying the following properties:

(i) For any ˛ 2A, any U;U 0 2H� with kU kH� < q, kU 0kH� < q, any ` 2 f1; : : : ;D˛g, any � 2 Œ0; 
0�,
and any ! 2 Œ1; 2�, there is `0 2 f1; : : : ;D˛g such that

j�˛` .!IU; �/��
˛
`0.!IU

0; �/j � C0�kU �U 0kH� : (4.1.5)

(ii) For any a 2 A�A0, any U 2 E� .�/ with kU kE� .�/ < q, any � 2 Œ0; 
0�, and any ` 2 f1; : : : ;D˛g,
either

C�1
0 hn.˛/i

2
�
@�˛
`

@!
.!IU; �/� C0hn.˛/i

2 for any ! in Œ1; 2� (4.1.6)

or

�C0hn.˛/i
2
�
@�˛
`

@!
.!IU; �/� �C�1

0 hn.˛/i
2 for any ! in Œ1; 2�: (4.1.7)

(iii) For ı 2 �0; 1�, � 2 Œ0; 
0�, ˛ 2A, and U 2 E� .�/ with kU kE� .�/ < q, set

I.˛;U; �; ı/D f! 2 Œ1; 2� W 8` 2 f1; : : : ;D˛g; j�
˛
` .!IU; �/j � ıhn.˛/i

��
g: (4.1.8)

Then there is a constant E0, depending only on the dimension, such that for any ! 2 I.˛;U; �; ı/,
A˛.!IU; �/ is invertible and

kA˛.!IU; �/
�1
kL.H0/ �E0ı

�1
hn.˛/i� ; k@!A˛.!IU; �/

�1
kL.H0/ �E0ı

�2
hn.˛/i2�C2: (4.1.9)
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Proof. The proof of this result is quite classical, and may be found in the references given in the intro-
duction. For completeness, we give it in detail.

(i) By construction, A˛ is a self-adjoint operator, acting on a space of finite dimension D˛. Moreover,
A˛ is a C 1 function of ! if U 2 E� .�/. By a theorem of Rellich (see [Kato 1976, Theorem 6.8], for
instance), we know that we may index the eigenvalues of that matrix so that they are C 1 functions of !:
�˛
`
.!IU; �/, for 1� `�D˛. Moreover, if B and B0 are self-adjoint matrices of the same dimension, for

any eigenvalue �`.B/ of B there is an eigenvalue �`0.B0/ of B0 such that j�`.B/��`0.B0/j � kB�B0k.
Combining this with the fact that U ! A˛.!IU; �/ is lipschitz with values in L.H0/, with lipschitz
constant C�, we get (4.1.5).

(ii) Set

ƒ0
˙.˛/D f˙j!Cjnj2C� W j 2 N; n 2�˛;K

�1
0 hn.˛/i

2
� j �K0hn.˛/i

2
g;

so that the spectrum of z…˛ zL! z…˛ is ƒ0
C.˛/[ƒ

0
�.˛/. The difference between an eigenvalue in ƒ0

C.˛/,
parametrized by .j ; n/, and an eigenvalue in ƒ0

�.˛/, parametrized by .j 0; n0/ (j > 0; j 0 < 0) is bounded
from below by

!.j � j 0/Cjnj2� jn0j2 � 2K�1
0 hn.˛/i

2
� � �C hn.˛/iˇ;

by the first estimate (1.2.2), for some C > 0; ˇ 2 �0; 1
10
Œ. If we take the subset A0 large enough, we

get that when ˛ 2 A � A0, the difference between two such eigenvalues is bounded from below by
K�1

0
hn.˛/i2. Consequently, if 0� � < 
0 small enough, the spectrum of A˛ may be split in two subsets

ƒC.˛/[ƒ�.˛/ whose distance is bounded from below by 1
2
K�1

0
hn.˛/i2. Let � be a contour in the

complex plane turning once around ƒ0
C.˛/, of length O.hn.˛/i2/, such that the distance between � and

the spectrum of zL˛! D z…˛ zL! z…˛ is bounded from below by chn.˛/i2, and such thatƒ0
�.˛/ is outside � .

If 
0 is small enough, this contour satisfies the same conditions with ƒ0
˙
.˛/ replaced by ƒ˙.˛/ and

zL˛! replaced by A˛. The spectral projectors z…C˛ .!/ and z…C;0˛ associated to the eigenvalues ƒC.˛/ and
ƒ0
C.˛/ of A˛ and zL˛! , respectively, are given by

z…C˛ .!/D
1

2i�

Z
�

.�Id�A˛/
�1 d�; z…C;0˛ D

1

2i�

Z
�

.�Id� zL˛!/
�1 d�: (4.1.10)

Note that the second projector is just the orthogonal projector on

Vect fei.jtCn�x/
W n 2�˛;K

�1
0 hn.˛/i

2
� j �K0hn.˛/i

2
g;

so it is independent of !. Write

z…C˛ .!/�
z…C;0˛ D

1

2i�

Z
�

.�Id�A˛/
�1.A˛ � zL

˛
!/.�Id� zL˛!/

�1 d�: (4.1.11)

Using (4.1.3) and the definition of zL˛! we get

kA˛ � zL
˛
!kL.F˛/Ck@!.A˛ �

zL˛!/kL.F˛/ � C�; k@!A˛kL.F˛/Ck@!
zL˛!kL.F˛/ � C hn.˛/i2:
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Consequently (4.1.11) implies

k z…C˛ .!/�
z…C;0˛ kL.F˛/ � C�hn.˛/i�2;

k@! z…
C
˛ .!/kL.F˛/ D k@!.

z…C˛ .!/�
z…C;0˛ /kL.F˛/ � C�hn.˛/i�2:

Writing

z…C˛ .!/A˛
z…C˛ .!/D .

z…C˛ .!/�
z…C;0˛ /A˛ z…

C
˛ .!/C

z…C;0˛ .A˛ � zL
˛
!/
z…C˛ .!/

Cz…C;0˛
zL˛!.
z…C˛ .!/�

z…C;0˛ /C z…C;0˛
zL˛!
z…C;0˛

we obtain
k@! Œ z…

C
˛ .!/A˛

z…C˛ .!/�
z…C;0˛

zL˛!
z…C;0˛ �kL.F˛/ � C�: (4.1.12)

Let I be an interval contained in Œ1; 2� over which one of the eigenvalues �˛
`
.!IU; �/ of the matrix

z…C˛ .!/A˛.!IU; �/
z…C˛ .!/ has constant multiplicity m, and denote by P .!/ the associated spectral

projector. Then P .!/ is C 1 in ! 2 I and satisfies P .!/2 D P .!/, whence P .!/P 0.!/P .!/D 0. We
get therefore for

�˛` .!IU; �/D
1

m
trŒP .!/ z…C˛ .!/A˛.!IU; �/ z…

C
˛ .!/P .!/�

the equality

@!�
˛
` .!IU; �/D

1

m
trŒP .!/@!. z…C˛ .!/A˛.!IU; �/ z…

C
˛ .!//P .!/�:

By (4.1.12), we obtain

@!�
˛
` .!IU; �/D

1

m
trŒP .!/@!. z…C;0˛

zL˛!
z…C;0˛ /P .!/�CO.�/: (4.1.13)

Since z…C;0˛
zL˛!
z…
C;0
˛ is by definition of zL˛! a diagonal matrix with entries j! C jnj2 C �, n 2 �˛,

K�1
0
hn.˛/i2 � j �K0hn.˛/i

2, we see that (4.1.13) stays between K�1
0
hn.˛/i2�C� and K0hn.˛/i

2C

C�. This implies (4.1.6) if � 2 Œ0; 
0� with 
0 small enough. The case of eigenvalues corresponding to
ƒ�.˛/ is treated in a similar way, and gives (4.1.7).

(iii) The first estimate in (4.1.9) follows from the fact that the eigenvalues �˛
`
.!IU; �/ of A˛ satisfy the

lower bound given by the definition of (4.1.8). The second estimate is a consequence of the first one and
of the fact that k@!A˛.!IU; �/kL.H0/ � C hn.˛/i2 by definition of A˛. This concludes the proof. �

4.2. Iterative scheme. This subsection will be devoted to the proof of Theorem 1.1.1, constructing the
solution as the limit of an iterative scheme. We fix indices s; �;N; �; r; ı satisfying the inequalities:

� � �0C 2.N C 1/C d C 1C r=�; r D �;

.N C 1/� � r C 2; s � � C �C 2; ı 2 �0; ı0�;
(4.2.1)

where ı0 > 0 will be chosen small enough. We also assume that the parameter � is in R � Z�. We
shall solve (2.3.15) when its force term f is given in HsC�.S1 � Td IC2/. To achieve this goal, the
main task will be to construct a sequence .Gk ;Ok ;  k ;Uk ;Wk/, k � 0, where Gk ;Ok will be subsets of
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Œ1; 2�� Œ0; ı2�,  k will be a real valued function defined on Œ1; 2�� Œ0; ı2�, Uk ;Wk will be functions of
.t;x; !; �/ 2 S1 �Td � Œ1; 2�� Œ0; ı2� with values in C2. At order k D 0, we define

U0 DW0 D 0;

O0 D
˚
.!; �/ 2 Œ1; 2�� Œ0; 
0� W 9˛ 2A0; 9` 2 f1; : : : ;D˛g with j�`˛.!I 0; �/j< 2ı

	
;

(4.2.2)

using the notation of Proposition 4.1.1. For any � 2 Œ0; 
0�, we denote by O0;� the �-section of O0 and set

G0 D

�
.!; �/ 2 Œ1; 2�� Œ0; 
0� W d.!;R�O0;�/�

ı

8C 0
0

�
;

where C 0
0
> 0 is a constant such that j@!�˛` .!I 0; �/j � C 0

0
for any ˛ 2 A0, any ` 2 f1; : : : ;D˛g, and

any .!; �/ 2 Œ1; 2�� Œ0; 
0�. Then O0 is an open subset of Œ1; 2�� Œ0; 
0� and for any � 2 Œ0; 
0�, G0;� is a
closed subset of Œ1; 2�, contained in the open subset O0;�. By Urysohn’s lemma, we may for each fixed
� construct a C 1 function !!  0.!; �/, compactly supported in O0;�, equal to one on G0;�, such that
for any ! and � with 0 �  0.!; �/ � 1, we have j@! 0.!; �/j � C1ı

�1 for some uniform constant C1

depending only on C 0
0
.

We set
zSk D

X
˛2A

hn.˛/i<2k

z…˛; k � 1: (4.2.3)

Proposition 4.2.1. There are ı0 2 �0;
p

0�, positive constants C1;B1;B2 and, for any k � 1 and ı 2

�0; ı0�, a 5-uple .Gk ;Ok ;  k ;Uk ;Wk/ satisfying the following conditions:

� Ok D

�
.!; �/ 2 Œ1; 2�� Œ0; ı2� W

9˛ 2A�A0 and ` 2 f1; : : : ;D˛g such that

2k�1
�hn.˛/i<2k ; j�`˛.!IUk�1; �/j<2ı2�k�

�
;

Gk D

�
.!; �/ 2 Œ1; 2�� Œ0; ı2� W d.!;R�Ok;�/�

ı

8C0

2�k.�C2/

�
;

(4.2.4)

where C0 is the constant in (4.1.6), (4.1.7);

�  k W Œ1; 2�� Œ0; ı
2�! Œ0; 1� is supported in Ok ; equal to 1 on Gk ;

C 1 in !; and satisfies j@! k.!; �/j �
C1

ı
2k.�C2/ for all .!; �/I (4.2.5)

� for any � 2 Œ0; ı2�, the function .t;x; !/!Wk.t;x; !; �/ is a continuous function of ! with values in
Hs.S1 �Td IC2/, which is a C 1 function of ! with values in Hs���2.S1 �Td IC2/ satisfying

kWk. � ; !; �/kHs C ık@!Wk. � ; !; �/kHs���2 � B1

�

ı
I (4.2.6)

moreover, for any .!; �/ 2 Œ1; 2�� Œ0; ı2��
Sk

k0D0 Ok0 , Wk satisfies

. zL! C �VD.Uk�1; !; �//Wk D � zSk.IdC �Q.Uk�1; !; �//
�R.Uk�1; !; �/Uk�1

C � zSk ŒR1.Uk�1; !; �/Wk�1�C � zSk.IdC �Q.Uk�1; !; �//
�f; (4.2.7)

where R is defined by (2.3.15) and Q;VD;R1 are defined in (3.2.2), (3.2.3);
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� the function Uk is defined from Wk by

Uk.t;x; !; �/D .IdC �Q.Uk�1; !; �//Wk (4.2.8)

and it satisfies

kUk �Uk�1kH� � 2B2

�

ı
2�k� ; kUk. � ; !; �/kHs C ık@!Uk. � ; !; �/kHs���2 � B2

�

ı
I (4.2.9)

moreover,
kWk �Wk�1kH� � B2

�

ı
2�k� : (4.2.10)

Remark. Since we assume �� ı2, the second inequality in (4.2.9) implies, with the notation introduced
in (4.1.2), the uniform bound

kUkkE� .�/ < q (4.2.11)

for some q.

Let us write the equation for Uk following from (4.2.8) and (4.2.7). Because of the uniform estimate
(4.2.11) for Uk�1, if 0 � ı � ı0 with ı0 small enough, .IdC �Q.Uk�1; !; �//

� is invertible for any
.!; �/ 2 Œ1; 2�� Œ0; ı2�. If we write

. zL! C �V .Uk�1; !; �//Uk D . zL! C �V .Uk�1; !; �//.IdC �Q.Uk�1; !; �//Wk

and use (3.2.3) multiplied on the left by .IdC �Q.Uk�1; !; �/
�/�1 and (4.2.7), we get

. zL!C�V .Uk�1;!;�//UkD�.IdC�Q.Uk�1;!;�/
�/�1Œ zSk.IdC�Q.Uk�1;!;�/

�/R.Uk�1;!;�/Uk�1

C zSkR1.Uk�1;!;�/Wk�1C
zSk.IdC �Q.Uk�1;!;�/

�/f �R1.Uk�1;!;�/Wk � (4.2.12)

for any .!; �/ 2 Œ1; 2�� Œ0; ı2��
Sk

k0D0 Ok0 , ı 2 Œ0; ı0�.

Proof of Proposition 4.2.1. We assume that .Gk ;Ok ;  k ;Uk ;Wk/ have been constructed satisfying
(4.2.4) to (4.2.9), and shall construct these data at rank k C 1, if ı0 is small enough and the constants
C1;B1;B2 are large enough.

The sets OkC1;GkC1 are defined by (4.2.4) at rank k C 1 as soon as Uk is given. Then for fixed
�, GkC1;� is a compact subset of the open set OkC1;�, whose distance to the complement of OkC1;� is
bounded from below by ı

8C0
2�.kC1/.�C2/. We may construct by Urysohn’s lemma a function  kC1

satisfying (4.2.5) at rank k C 1. Let us construct WkC1 for .!; �/ 2 Œ1; 2�� Œ0; ı2��
SkC1

k0D0 Gk0 . Since
VD.Uk ; !; �/ is by construction a block-diagonal operator, we may write (4.2.7) at rank k C 1 as the
system of equations

. zL! C �VD.Uk ; !; �// z…˛WkC1 D � z…˛ zSkC1.IdC �Q.Uk ; !; �/
�/R.Uk ; !; �/Uk

C � z…˛ zSkC1R1.Uk ; !; �/Wk C � z…˛ zSkC1.IdC �Q.Uk ; !; �/
�/f (4.2.13)

for any ˛ 2A. If hn.˛/i� 2kC1, the right side of (4.2.13) vanishes by definition of zSkC1, so that we may
set in this case z…˛WkC1 D 0 by definition. Let us solve (4.2.13) for those ˛ satisfying hn.˛/i < 2kC1.
We shall apply Proposition 4.1.1, using the following lemma:
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Lemma 4.2.2. There is ı0 2 �0; 1�, depending only on the constants B1;B2, such that for any k � 0, any
k 0 2 f1; : : : ; kC 1g, any ı 2 Œ0; ı0�, any � 2 Œ0; ı2�, and any ˛ 2A�A0 with 2k0 � hn.˛/i< 2k0C1,

Œ1; 2��Gk0;� � I.˛;Uk ; �; ı/; (4.2.14)

where I. � / is defined by (4.1.8). The same conclusion holds when k 0 D 0, ˛ 2A0.

Proof. Consider first the case k 0 ¤ 0. Let ! 2 Œ1; 2� � Ok0;�. Take ` 2 f1; : : : ;D˛g. By (i) of
Proposition 4.1.1 applied to .U;U 0/D .Uk ;Uk0�1/, there is `0 2 f1; : : : ;D˛g such that

j�˛` .!IUk ; �/j � j�
˛
`0.!IUk0�1; �/j �C0�kUk �Uk0�1kH�� 2ı2�k0�

� 2C0B2

�2

ı

2�k0�

1� 2��
; (4.2.15)

where the second lower bound follows from the definition (4.2.4) of Ok0 and from (4.2.9). Since � � ı2,
we obtain the lower bound

j�˛` .!IUk ; �/j �
3

2
ı2�k0� (4.2.16)

if ! 2 Œ1; 2��Ok0;� and ı 2 Œ0; ı0� with ı0 small enough. If ! 2 Ok0;� �Gk0;�, we take Q! 2 Œ1; 2��Ok0;�

with j! � Q!j< ı
8C0

2�k0.�C2/. By (4.1.6), (4.1.7), we know that for any U 2 E� .�/ with kU kE� .�/ < q,
any ˛ 2A�A0, any ` 2 f1; : : : ;D˛g,

sup
!02Œ1;2�

j@!�
˛
` .!
0
IU; �/j � C0hn.˛/i

2:

Enlarging C0, we may assume that this inequality is also valid when ˛ 2A0. By condition (4.2.11), we
may apply it when U D Uk . Using (4.2.16), we get since 22k0 � hn.˛/i2 < 22.k0C1/

j�˛` .!IUk ; �/j � j�
˛
` . Q!IUk ; �/j �C0hn.˛/i

2
j! � Q!j � ı2�k0�

� ıhn.˛/i�� :

When k 0 D 0, we argue in the same way, taking in (4.2.15) Uk0�1 D 0. This shows that ! belongs to
I.˛;Uk ; �; ı/. �

To solve (4.2.13), we shall need, in addition to the preceding lemma, estimates for its right side. Set

HkC1.Uk ;Wk/D zSkC1.IdC �Q.Uk ; !; �/
�/R.Uk ; !; �/Uk

CzSkC1R1.Uk ; !; �/Wk C
zSkC1.IdC �Q.Uk ; !; �/

�/f: (4.2.17)

Lemma 4.2.3. There is a constant C > 0, depending on q in (4.2.11) but independent of k, such that for
any ! 2 Œ1; 2�, any � 2 Œ0; ı2�, and any ı 2 �0; ı0�,

kHkC1.Uk ;Wk/kHsC� � C ŒkUk. � ; !; �/kHs CkWk. � ; !; �/kHs �C .1CC�/kf kHsC� ; (4.2.18)

k@!HkC1.Uk ;Wk/kHs�2 � C ŒkUk. � ; !; �/kHs Ck@!Uk. � ; !; �/kHs���2

CkWk. � ; !; �/kHs Ck@!Wk. � ; !; �/kHs���2 C �kf kHs�2 �; (4.2.19)

kHkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/kH�C� � C ŒkUk �Uk�1kH� CkWk �Wk�1kH� �

C 2�k� ŒC.kUkkH�C� CkWkkH�C� /C .1CC�/kf kH�C2� �: (4.2.20)
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Proof. The operators R and R1 belong to Rr
2
.N C 1; �; q/ with r D �. By Definition 2.1.3, and because

of the assumption (4.2.1) on the indices, they are bounded from Hs to HsC� . Moreover, Q.Uk ; !; �/
�

is in ‰0.N; �; q/˝M2.R/, so is bounded on any Hs-space by Lemma 2.1.2. This gives (4.2.18).
To obtain (4.2.19), one has to study the boundedness properties of

@! ŒQ.Uk ; !; �/�D @U Q. � ; !; �/ � .@!Uk/C @!Q.Uk ; !; �/; (4.2.21a)

@! ŒR.Uk ; !; �/�D @U R. � ; !; �/ � .@!Uk/C @!R.Uk ; !; �/; (4.2.21b)

@! ŒR1.Uk ; !; �/�D @U R1. � ; !; �/ � .@!Uk/C @!R1.Uk ; !; �/: (4.2.21c)

By (2.1.2), the inequalities in (4.2.1), and the fact that, by (4.2.11), @!Uk is uniformly bounded in
Hs���2 � H� , we see that the operator in (4.2.21a) is bounded on any space Hs0 . By (2.1.3), and the
assumption s � � C �C 2 in (4.2.1), we see in the same way that (4.2.21b) and (4.2.21c) give bounded
operators from Hs���2 to Hs�2 and from Hs to HsC� . This gives estimate (4.2.19).

To prove (4.2.20), let us write the difference HkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/ from the quantities

. zSkC1�
zSk/.IdC �Q.Uk ; !; �/

�/R.Uk ; !; �/Uk ;

. zSkC1�
zSk/R1.Uk ; !; �/Wk ;

. zSkC1�
zSk/.IdC �Q.Uk ; !; �/

�/f;

9>=>; (4.2.22)

� zSk ŒQ.Uk ; !; �/
�
�Q.Uk�1; !; �/

��R.Uk ; !; �/Uk ;

zSk.IdC �Q.Uk�1; !; �/
�/ŒR.Uk ; !; �/�R.Uk�1; !; �/�Uk ;

zSk ŒR1.Uk ; !; �/�R1.Uk�1; !; �/�Wk ;

� zSk ŒQ.Uk ; !; �/
�
�Q.Uk�1; !; �/

��f;

9>>>>=>>>>; (4.2.23)

zSk.IdC �Q.Uk�1; !; �/
�/R.Uk�1; !; �/.Uk �Uk�1/;

zSkR1.Uk ; !; �/.Wk �Wk�1/:

)
(4.2.24)

By (4.2.6) and (4.2.9), Uk and Wk stay in a bounded subset of H� and R;R1 act from H�C� to H�C2� .
Using the cut-off zSkC1�

zSk , we see that the H�C� norm of (4.2.22) is bounded from above by the last
term in the right side of (4.2.20).

By (2.1.3), the L.H� ;H�C�/ operator norm of R.Uk ; !; �/�R.Uk�1; !; �/ and of R1.Uk ; !; �/�

R1.Uk�1; !; �/ is bounded from above by CkUk �Uk�1kH� . By (2.1.2), the L.H�C� ;H�C�/-norm of
Q.Uk ; !; �/

� �Q.Uk�1; !; �/
� is bounded by the same quantity. This shows that the H�C� norm of

(4.2.23) is bounded from above by the right side of (4.2.20).
Finally, (4.2.24) is trivially estimated. This concludes the proof. �

We continue with the proof of Proposition 4.2.1. We have seen that z…˛WkC1 is a solution to (4.2.13).
Let k 0 2 f1; : : : ; k C 1g and ˛ 2 A � A0 such that 2k0 � hn.˛/i < 2k0C1, or k 0 D 0; ˛ 2 A0. Let
! 2 Œ1; 2��Gk0;�. By Lemma 4.2.2 and Proposition 4.1.1, the operator A˛.!IUk ; �/ is invertible, ant its
inverse satisfies estimates (4.1.9). For such !, we may write (4.2.13) as

z…˛WkC1 D �A˛.!IUk ; �/
�1 z…˛HkC1.Uk ;Wk/: (4.2.25)
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Applying (4.1.9) we obtain, for any k 0 2 f1; : : : ; kC1g, any ˛ 2A�A0 with 2k0 � hn.˛/i< 2k0C1, and
any .!; �/ 2 Œ1; 2�� Œ0; ı2��Gk0 (and also any ˛ 2A0 and .!; �/ 2 Œ1; 2�� Œ0; ı2��G0), the bound

k z…˛WkC1. � ; !; �/kHs �E0

�

ı
k z…˛HkC1.Uk ;Wk/. � ; !; �/kHsC� : (4.2.26)

In the same way, one gets the estimate

k z…˛@!WkC1. � ; !; �/kHs���2

�E0

�

ı
k z…˛@!HkC1.Uk ;Wk/. � ; !; �/kHs�2 CE0

�

ı2
k z…˛HkC1.Uk ;Wk/. � ; !; �/kHsC� : (4.2.27)

We define WkC1.t;x; !; �/ for any value of .!; �/ in Œ1; 2�� Œ0; ı2� from (4.2.25) by setting

WkC1.t;x; !; �/D

kC1X
k0D1

X
˛2A�A0

2k0�hn.˛/i<2k0C1

.1� k0.!; �// z…˛WkC1.t;x; !; �/

C

X
˛2A0

.1� 0/.!; �/ z…˛WkC1.t;x; !; �/: (4.2.28)

Note that the right side is well defined since (4.2.25) determines z…˛WkC1. � ; !; �/ on the support of
1� k0 when .˛; k 0/ satisfy the conditions in the summation.

We combine (4.2.28), (4.2.26) and (4.2.18). Taking into account (4.2.6) and (4.2.9), we get

kWkC1. � ; !; �/kHs �E0

�

ı

�
C.B1CB2/

�

ı
Ckf kHsC� .1CC�/

�
: (4.2.29)

To bound the @!-derivative, we use that by (4.2.5)

k@! k0
z…˛WkC1kHs���2 �

C1

ı
k z…˛WkC1kHs

when 2k0 � hn.˛/i< 2k0C1, ˛ 2A�A0 if k 0¤ 0, and when ˛ 2A0 if k 0D 0. We apply this inequality
together with (4.2.28), (4.2.27), (4.2.18), (4.2.19) and the uniform bounds (4.2.6), (4.2.9), to get

k@!WkC1. � ; !; �/kHs���2 �E0

�

ı

�
C.B1CB2/

�

ı2
CC�kf kHs�2

�
CE0

�

ı2

�
C.B1CB2/

�

ı
C.1CC�/kf kHsC�

�
CE0C1

�

ı2

�
C.B1CB2/

�

ı
C.1CC�/kf kHsC�

�
: (4.2.30)

In (4.2.29) and (4.2.30), C depends on the a priori bound given by (4.2.11), while E0;C1 are uniform
constants. Consequently, if we take B1 large enough relatively to kf kHsC� , E0;C1 and then �� ı2� ı2

0
,

with ı0 small enough, we deduce from (4.2.29) and (4.2.30) that (4.2.6) holds at rank kC1. The second
estimate in (4.2.9) at rank kC1 follows, with for instance B2 D 2B1, if ı0 is small enough. We are left
with establishing the first estimate in (4.2.9) at rank kC 1 and (4.2.10).

First let us bound WkC1�Wk . By (4.2.25), for any k 0 2 f1; : : : ; kg, any .!; �/ 2 Œ1; 2�� Œ0; ı2��Gk0 ,
˛ 2A�A0, and any 2k0 � hn.˛/i< 2k0C1 (or any .!; �/ 2 Œ1; 2�� Œ0; ı2��G0 and ˛ 2A0), we have

. zL! C �VD.Uk ; !; �// z…˛WkC1 D � z…˛HkC1.Uk ;Wk/;

. zL! C �VD.Uk�1; !; �// z…˛Wk D � z…˛Hk.Uk�1;Wk�1/;
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whence the equation

. zL! C �VD.Uk ; !; �// z…˛.WkC1�Wk/D � z…˛ ŒVD.Uk�1; !; �/�VD.Uk ; !; �/�Wk

C � z…˛ ŒHkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/�: (4.2.31)

We make act A˛.!IUk ; �/
�1 on both sides as in (4.2.25). Applying inequality (4.1.9) we get

k z…˛.WkC1�Wk/kH� �
E0�

ı

�
k z…˛ ŒVD.Uk�1; !; �/�VD.Uk ; !; �/�WkkH�C�

Ck z…˛ ŒHkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/�kH�C�
�
: (4.2.32)

This estimate holds outside Gk0 when k 0 ¤ 0, ˛ 2A�A0, 2k0 � hn.˛/i< 2k0C1, and outside G0 when
˛ 2A0. By (4.2.28), we may write

.WkC1�Wk/.t;x; !; �/D
X
˛2A0

.1� 0/ z…˛.WkC1�Wk/

C

kX
k0D1

X
˛2A�A0

2k0�hn.˛/i<2k0C1

.1� k0/ z…˛.WkC1�Wk/C
X

˛2A�A0

2kC1�hn.˛/i<2kC2

.1� kC1/ z…˛WkC1: (4.2.33)

The H� norm of the last term is bounded by C22�k.s��/kWkC1kHs � C2B1
�
ı
2�k.s��/ by (4.2.6), for

some universal constant C2. The H� -norm of the k 0-sum in (4.2.33) may be estimated using (4.2.32),
(4.2.20) and the bound

k.VD.Uk�1; !; �/�VD.Uk ; !; �//WkkH�C� � CkUk �Uk�1kH�kWkkHs

which follows from (2.1.2), and where we used s � � C �. Using the induction hypothesis (4.2.9),
(4.2.10), we get

kWkC1�WkkH�

�E0

�

ı

�
CB1

�

ı
2B2

�

ı
2�k�

C3CB2

�

ı
2�k�

CC 2�k�.B1CB2/
�

ı
C.1CC�/kf kH�C2�2�k�

�
CC2B1

�

ı
2�k.s��/: (4.2.34)

Since s��C�, we may take B1 large enough relatively to E0, kf kHsC� , and B2 large enough relatively
to C2;B1, and �=ı � ı � ı0 small enough, so that (4.2.34) is smaller than B2.�=ı/2

�.kC1/� , whence
(4.2.10) at rank kC 1. Writing

UkC1�Uk D .IdC �Q.Uk ; !; �//.WkC1�Wk/C �.Q.Uk ; !; �/�Q.Uk�1; !; �//Wk ;

we deduce from that the first inequality in (4.2.9) at rank kC 1, for small enough �. This concludes the
proof of the proposition. �

Proof of Theorem 1.1.1. By (4.2.9), the series
P
.Uk�Uk�1/ converges in H� .S1�Td IC2/ and its sum

U satisfies U 2Hs.S1 �Td IC2/ with

kU. � ; !; �/kHs C ık@!U. � ; !; �/kHs���2 � B2

�

ı
:
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We have to check that U gives a solution to our problem outside a set of parameters of small measure.
Let

.!; �/ 2 Œ1; 2�� Œ0; ı2��
1S

k0D0

Ok0

and ı 2 �0; ı0�. Then (4.2.12) is satisfied for any k. We make k ! C1. Since we have uniform Hs

bounds for Uk , Wk and H� convergence for these quantities, the limit U satisfies

. zL! C �V .U; !; �//U D �R.U; !; �/U C �f;

which is (2.3.15). We have seen that this equation is equivalent to (2.3.14), which is, by Proposition 2.3.1,
the same as (2.2.13). Since Proposition 2.2.4 shows that, up to a change of notation, this equation
is equivalent to the formulation (2.2.6) of (1.1.3), we obtain a solution satisfying the requirements of
Theorem 1.1.1. We still have to check that (1.1.5) holds with OD

S1
k0D0 Ok0 . According to (4.2.2), the

set O0 is included in the set of those .!; �/ such that there are .j ; n/ in a given finite subset of Z2 such
that

ˇ̌
j!C jnj2C�

ˇ̌
< 2ı. The !-measure of this set is O.ı/, ı! 0 (Note that since � 62 Z�, we may

always assume j ¤ 0). For k 0 > 0, Ok0 is the union for ˛ 2 A �A0 with 2k0�1 � hn.˛/i < 2k0 and
` 2 f1; : : : ;D˛g of the set of those .!; �/ satisfying

j�`˛.!IUk0�1; �/j< 2ı2�k0� :

By (4.1.6), (4.1.7) the !-measure of each of these sets in bounded by C hn.˛/i�2ı2�k0� �C 2�.k
0C2/�ı.

Since D˛ � C12k0.ˇdC2/ by (1.2.4), (1.2.6), we obtain for the measure of the �-section of O the bound

C

C1X
k0D0

2�.k
0C2/�Ck0.ˇdC2/Ck0dı:

If we take � > .ˇC 1/d C 2, we obtain the wanted O.ı/ bound. This concludes the proof. �

Appendix

We gather here some elementary results used throughout the paper.

Lemma A.1. Let s > d
2
C 1. Then zHs.S1 � Td IC/ � L1. Moreover, if F is a smooth function on

S1 � Td �C, satisfying F.t;x; 0/ � 0, there is some continuous function � ! C.�/ such that, for any
u 2 zHs , we have F. � ;u/ 2 zHs with the estimate

kF. � ;u/kzHs � C.kukL1/kukzHs :

Proof. Let ' 2 C1
0
.�0;C1Œ/ , ' � 0, ' � 1 on Œ1; 2� be such that

PC1
`D�1 '.2

�`�/ � 1 for � 2 R�C,
and define  .�/D

P0
�1 '.2

�`�/. Consider, for .j ; n/ 2 Z�Zd ,

ˆk.j ; n/D '.2
�2k.j 2

Cjnj4/1=2/; k � 1;

ˆ0.j ; n/D  ..j
2
Cjnj4/1=2/:

(A.1)
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Define for u 2 zH0 and k 2 N,

�kuD
X
j ;n

ˆk.j ; n/ Ou.j ; n/
ei.tjCk�n/

.2�/.dC1/=2
; Kk.t;x/D

1

.2�/dC1

X
j ;n

ˆk.j ; n/e
i.tjCk�n/: (A.2)

Then, for any N 2 N,

jKk.t;x/j � CN 22k.1Cd=2/.1C 22k
jeit
� 1jC 2k

jeix
� 1j/�N (A.3)

and u 2 zHs if and only if .2ksk�kukL2/k is in `2.
The first statement of the lemma follows from the inequality k�kukL1 � C 2k.1Cd=2/k�kukL2 ,

which is a consequence of (A.3) (for the kernel corresponding to an enlarged ˆk). To get the second
statement, we consider first the case of a function F that does not depend on .t;x/. We set Sk DP

k0�k�1�k0 when k � 1, S0 D 0 and write

F.u/D

C1X
kD0

.F.SkC1u/�F.Sku//D

C1X
kD0

mk.u/�ku

where mk.u/D
R 1

0 F 0.SkuC ��ku/ d� . It follows from the definition of Sk that this operator is given
by a convolution kernel obeying the same estimates as in (A.3). Consequently, for any .˛; ˇ/ 2N�Nd ,

k@˛t @
ˇ
xmk.u/kL1 � C 22k˛Ckjˇj (A.4)

with a constant depending only on kukL1 . One writes for some N0 2 N to be chosen

�j ŒF.u/�D

j�1�N0X
kD0

�j Œmk.u/�ku�C

C1X
kDj�N0

�j Œmk.u/�ku�: (A.5)

The L2-norm of the second sum is bounded by Ccj 2�jskukzHs for some sequence .cj /j in the unit ball
of `2, and some C depending only on kukL1 . If N0 is fixed large enough, because of the support
properties of the Fourier transforms,

�j Œmk.u/�ku�D�j

�
Œ.Id�Sj�N0

/mk.u/��ku
�

when k � j � 1�N0. We estimate the L2-norm of this quantity by

k.Id�Sj�N0
/mkkL1k�kukL2 (A.6)

and use that, for any N , we have k.Id�Sj�N0
/mkkL1�CN 2�4jN kPN mkkL1 where PD@2

tC�
2C1.

It follows from (A.4) that (A.6) is bounded from above by CN 2�4.j�k/N k�kukL2 , from which we
deduce that the L2-norm of the first sum in (A.5) is also smaller than C 2�jscjkukzHs . This concludes
the proof for functions F independent of .t;x/. In the general case, we note that since u is bounded, we
may always assume that F is compactly supported, and we write

F.t;x;u/D
1

2�

Z
R

F1.u; �/b.t;x; �/ d�;
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where F1.u; �/D eiu��1 and b.t;x; �/ is the Fourier transform of u!F.t;x;u/. Then it follows from
the preceding proof that F1.u; �/ is in zHs with a bound kF1.u; �/kzHs � C h�iN.s/, for some exponent
N.s/. Moreover, for any N , kb. � ; �/kzHs � CN h�i

�N . We get the conclusion by superposition. �

Corollary A.2. Let F W S1 �Td �C! C be a smooth function with F.t;x; 0/� 0. Then u! F. � ;u/

is a smooth map from zH� to itself , for any � > d
2
C 1.

Proof. We write

F.t;x;uC h/�F.t;x;u/� @uF.t;x;u/hD

Z 1

0

Z 1

0

.D2F /.t;x;uC �1�2h/�1 � h
2 d�1d�2

and we apply the lemma to D2F.t;x;u/�D2F.t;x; 0/. �

Lemma A.3. � Let s > d
2
C 1. If u 2 zHs and v 2 zH� 0 for some � 0 2 Œ�s; s�, then uv 2 zH� 0 .

� For any � 2 R and �0 >
d
2
C 1, zH� � zH�� � zH�max.�;�0/.
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STANDING RING BLOWUP SOLUTIONS FOR CUBIC NONLINEAR
SCHRÖDINGER EQUATIONS

IAN ZWIERS

For all dimensions N � 3 we prove there exist solutions to the focusing cubic nonlinear Schrödinger
equations that blow up on a set of codimension two. The blowup set is identified both as the site of L2

concentration and by a bounded supercritical norm outside any neighborhood of the set. In all cases, the
global H 1 norm grows at the log-log rate.

1. Introduction

Consider the cubic focusing nonlinear Schrödinger equation in dimension N � 3:�
iut C�uCu juj2 D 0;

u.0;x/D u0 W R
N ! C:

(1-1)

This is a canonical model equation arising in physics and engineering [Sulem and Sulem 1999]. This
equation, and other closely related equations, have been the subject of many recent mathematical studies.

Equation (1-1) is locally wellposed for data

u0 2H s.RN /

for any s 2
�

N
2
� 1; N

2

�
or integer s > N

2
; see [Cazenave 2003]. In these cases we have the classic

blowup alternative: either TmaxDC1 or ku.t/kH s !1 as t! Tmax. Higher regularity persists under
local-in-time dynamics and the maximal time Tmax > 0 for which u belongs to C .Œ0;Tmax/;H

s/ is the
same for all s > N

2
� 1. Evolution under (1-1) preservesZ

R3

ju.t;x/j2 dx D

Z
ju0j

2 dx DM Œu0� (mass); (1-2)Z
jrxu.t;x/j2 dx�

1

2

Z
ju.t;x/j4 dx DEŒu.t;x/�DEŒu0� (energy); (1-3)

Im
�Z
Nu.t;x/ru.t;x/ dx

�
D Im

�Z
u0ru0 dx

�
(momentum): (1-4)

MSC2000: primary 35Q55; secondary 35B40.
Keywords: focusing, nonlinear Schrödinger equation, supercritical, collapse, blowup rate, blowup set, codimension, regularity,

log-log rate.
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There are corresponding symmetries. If u.t;x/ satisfies (1-1), so do the following:

u.t;xCx0/ 8x0 2 RN (spatial translation invariance)

u.t C t0;x/ 8 t0 2 R (time translation invariance)

u.t;x/ei
0 8 
0 2 R (phase invariance)

u.t;x�ˇ0t/ei
ˇ0
2
�.x�ˇ0

2
t/
8ˇ0 2 RN (Galilean invariance)

�0u.�2
0t; �0x/ 8�0 > 0 (scaling invariance)

Scaling invariance leaves the PH
N
2
�1.RN / norm of data unchanged and for this reason Equation (1-1)

is deemed H
N
2
�1-critical. Local wellposedness for s > N

2
� 1 and the scaling symmetry prove that all

solutions that blow up in finite time Tmax <C1 must obey the scaling lower bounds

ku.t/kH s &
1

.Tmax� t/
s
2
�N�2

4

:

Equation (1-1) has standing wave solutions. The ansatz u.t;x/D eitW .x/ leads to the elliptic PDE�
�W �W CW jW j2 D 0;

W .jxj/ > 0 for x 2 RN :
(1-5)

The unique positive radial solution1 to (1-5) is the ground-state solution of (1-1). We reserve the notation
Q for the ground-state solution of the two-dimensional problem,�

�R2Q�QCQ jQj2 D 0;

Q.jyj/ > 0 for y 2 R2:
(1-6)

Classification of dynamics. In the case N D 2, if M Œu0� < M ŒQ� solutions to (1-1) exist for all time
[Weinstein 1983] and scatter [Killip et al. 2009]. Negative-energy data u0 2 H 1 lead to blowup in
finite time if it is radially symmetric or has finite variance, u0 2 † D H 1 \ ff W jxjf .x/ 2 L2g; see
[Ogawa and Tsutsumi 1991]. By adjusting the quadratic phase of negative-energy data, one can produce
examples of blowup solutions with arbitrary energy [Cazenave 2003, Remark 6.5.9].2 At the threshold
M Œu0�DM ŒQ� there is, up to symmetries, a unique explicit blowup solution [Merle 1993].

In the cases N D 3 and N D 4 the situation is more complicated. Assume that

M Œu0�
4�N EŒu0�

N�2 <M ŒW �4�N EŒW �N�2: (1-7)

The following classification is independent of time:

ku.t/k4�N
L2 kru.t/kN�2

L2 < kW k4�N
L2 krW kN�2

L2 ; with global existence and scattering, or

ku.t/k4�N
L2 kru.t/kN�2

L2 > kW k4�N
L2 krW kN�2

L2 ; with unbounded H 1 norm growth.

1The classic proof in the case N D 3 is in [Coffman 1972]. For other dimensions, see [Weinstein 1983; Berestycki and
Lions 1983; Kwong 1989]. For a concise overview of these results, see [Tao 2006, Appendix B].

2These arguments also apply to the other energy-subcritical case, N D 3. Further sufficient conditions for blowup based on
the virial identity in N D 3 are known; see [Holmer et al. 2010].
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This was shown in [Kenig and Merle 2006] in the case N D 4 with radial symmetry and in [Duyckaerts
et al. 2008; Holmer and Roudenko 2008; 2010] in the case N D 3. Again, the data at the threshold of
(1-7) may be classified in terms of three special solutions, up to symmetries; see [Duyckaerts and Merle
2009; Duyckaerts and Roudenko 2010]. One of these solutions blows up in finite time, but the exact
dynamic is unknown.

In all cases, the description of behavior above the threshold is an ongoing challenge.
In the case of N D 2, Merle and Raphaël have completely described the dynamic of an open class of

data with M ŒQ� < M Œu0� < M ŒQ�C ı. This open class includes all data with negative energy and is
thought to describe the generic behavior. See Theorem 1.1, below, for references. Their work follows
the earlier simulation [Landman et al. 1988] and construction [Perelman 2001] of solutions in H 1 that
blow up at the rate of the scaling lower bound with a log-log correction.

Recently, in the case of N D 3, data with M ŒW �EŒW � <M Œu0�EŒu0� <M ŒW �EŒW �C ı has been
shown in [Nakanishi and Schlag 2010] to satisfy one of nine scenarios involving scattering, finite-time
blowup, or trapping in the neighborhood of a manifold of solitons.

Known blowup regimes. There remain, in all cases, very few examples of explicit blowup regimes. We
have already alluded to Merle and Raphaël’s results in the case N D 2:

Theorem 1.1 (log-log blowup of L2-critical NLS [Merle and Raphaël 2003; 2004; 2005a; 2006; Raphaël
2005]). Consider the focusing L2-critical NLS in dimension 1� d � 5,

iut C�uCu juj
4
d D 0:

There exists an open set of data in H 1.Rd /, with mass a little larger than the groundstate, that blow up
at the log-log rate:

ku.t/kH 1 �

�
log jlog .Tmax� t/j

Tmax� t

� 1
2

: (1-8)

These solutions concentrate exactly the groundstate profile in L2 at a point. That is, the remainder
of the solution has a strong limit in L2 as t ! Tmax. Moreover, data in the same range of mass that
do not belong to the log-log class give solutions that either exist for all time, or blow up at the rate
ku.t/kH 1 & .Tmax� t/�1.

Theorem 1.1 gives a precise understanding of the stable blowup regime of the one-dimensional quintic
NLS. To prove the next theorem, Raphaël demonstrated a reduction of the two-dimensional quintic
problem (which is H

1
2 -critical) to this one-dimensional log-log regime.

Theorem 1.2 (standing ring blowups for quintic NLS in 2D [Raphaël 2006]). There exists an open set
of radially symmetric data in H 1.R2/ for which the corresponding solution to iut C�uC u juj4 D 0

exhibits blowup at the log-log rate, (1-8), and concentration in L2 at a ring of fixed radius.

The argument was extended to reduce the energy critical and supercritical quintic equations to the
same one-dimensional log-log regime:
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Theorem 1.3 (codimension-one blowups for quintic NLS [Raphaël and Szeftel 2009]). For all N � 3,
there exists an open set of radially symmetric data in H N .RN / for which the corresponding solution to
iut C�uCu juj4 D 0 exhibits blowup at the log-log rate and concentration in L2 at a fixed radius.

Our aim is to implement this approach for the cubic problem, and, under cylindrical symmetry, reduce
the N -dimensional problem (1-1) to the two-dimensional problem, which we understand by Theorem 1.1.
The following result and our main result, Theorem 1.6, were developed simultaneously.3

Theorem 1.4 (standing ring blowups for cubic NLS in 3D [Holmer and Roudenko 2011]). There exists
an open set of cylindrically symmetric data in H 1.R3/ for which the corresponding solution to (1-1)
exhibits blowup at the log-log rate and concentration in L2 at a ring of fixed radius.

The stability proven in Theorem 1.4 is at the level of H 1 regularity, which allows for a different
approach and a larger class of data than our main result in the case N D 3. The new techniques of
Theorem 1.4 are not directly applicable for the energy critical and supercritical cases, N > 3.

It is anticipated that the L2-supercritical NLS will demonstrate further unique blowup behavior not
described by Theorems 1.2, 1.3, 1.4 or our Theorem 1.6. In particular, due to the asymptotic analysis of
Fibich, Gavish, and Wang [Fibich et al. 2007], all supercritical problems with subquintic nonlinearities
are expected to admit radially symmetric blowup solutions that focus onto a shell whose radius collapses
to zero. In the case of cubic nonlinearity and dimension N , the shell is expected to have radius �
.Tmax � t/N=.N�1/2 . In the case N D 3, the H 1 norm is expected to grow at the scaling lower bound.
See also [Holmer and Roudenko 2007]. The existence and uniqueness of these radial blowup solutions
remain important problems.

Notation 1.5. We use f . g, f & g and f � g to denote that there exist constants C1;C2 > 0 such
that f � C1g, f � C2g, and C2g � f � C1g, respectively. The notation f � g is used in more casual
discussion to say that f and g are of the same order. We will use ı.˛/ to denote any function of ˛ with
the property ı.˛/! 0 as ˛! 0. The exact form of ı will depend on the context. Frequently, we use the
operator

ƒD 1Cy � ry ; where y is a two-dimensional variable.

For f;g 2L2.R2/ we have .ƒf;g/D� .f;ƒg/.

Statement of result. For all N �3 we introduce cylindrical coordinates xD .r; z; �/2 Œ0;1/�R�SN�2

for x 2 RN . We refer to functions that are symmetric with respect to � as cylindrically symmetric, and
we let H s

cyl.R
N / denote the cylindrically symmetric subset of H s .

Theorem 1.6 (main result). For all N � 3, there exists a set of cylindrically symmetric data u0 2 P,
open in H N

cyl.R
N /, for which the corresponding solution u.t/ of (1-1) has maximum (forward) lifetime

0< Tmax <C1 and exhibits the following properties:

3After Theorem 1.2, the idea of considering other H
1
2 -critical problems was first suggested to the author’s thesis advisor by

Justin Holmer and Svetlana Roudenko in private conversation.
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Concentration. There exist parameters �.t/ > 0, r.t/ > 0, z.t/ 2RN�2, and 
 .t/ 2R, with convergence

.r.t/; z.t// �! .rmax; zmax/ as t ! Tmax; with rmax � 1; (1-9)

such that there is the following strong convergence in L2.RN /:

u.t; r; z; �/�
1

�.t/
Q

�
.r; z/� .r.t/; z.t//

�.t/

�
e�i
.t/

�! u�.r; z; �/ as t ! Tmax: (1-10)

Persistent regularity away from singular ring. For any R> 0,

u� 2H
N
2
� 1

2 .j.r; z/� .rmax; zmax/j>R/ : (1-11)

Log-log blowup rate. The solution leaves H 1 at the log-log rate:�
log jlog Tmax� t j

Tmax� t

�1
2

ku.t/kH 1.R3/

�!

p
2�

kQkL2.R2/

as t ! Tmax: (1-12)

Moreover, the higher-order norm behaves appropriately:

ku.t/kH N

ku.t/kN
H 1 log ku.t/kH 1

�! 0 as t ! Tmax: (1-13)

Remark 1.7 (nature of u�). For the L2-critical problem, Theorem 1.1, it is known that the residual
profile u� is not in H 1 [Merle and Raphaël 2005b]. Indeed, (1-11) fails for RD 0. See also Remark 5.1.

Brief heuristic. In cylindrical coordinates the Laplacian is written as

�x D @
2
r C @

2
z C .N � 2/

@r

r
: (1-14)

Suppose that a solution to (1-1) is cylindrically symmetric and concentrated near the ring .r; z/� .r0; z0/.
Then for an appropriately small �0 > 0 we may write

u.t;x/D
1

�0

v

�
t

�2
0

;
.r; z/� .r0; z0/

�0

�
; (1-15)

where the function v is supported on the half-plane .r; z/2 Œ�r0=�0;1/�R. Neglect that our parameters
may vary in time. After changing coordinates, v satisfies

i@svC�yvC .N � 2/
�0

r
@y1
vC v jvj2 D 0; where s D

t

�2
0

; y D
.r; z/� .r0; z0/

�0

: (1-16)

For a solution u.t;x/ tightly concentrated near .r0; z0/, we might choose �0 � 1 as the width of the
window of concentration. Then, .N � 2/.�0=r/@y1

v can be taken as a lower-order correction, and the
evolution of v is essentially that of the two-dimensional cubic NLS. If v.s;y/ falls within the robust
log-log blowup dynamic, we would expect the concentration near .r0; z0/ to increase, and for the lower-
order correction in (1-16) to become less relevant.
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We can identify our main challenge: to ensure persistence of sufficient decay in the original variables
near r D 0 such that conditions there mimic those at infinity during a log-log blowup of two-dimensional
cubic NLS.

2. Setting of the bootstrap

In this section we identify data concentrated near the set .r; z/ � .1; 0/, according to properties we
will later show persist. Our subsequent arguments are based on the two-dimensional L2-critical log-log
blowup dynamic, which has been comprehensively investigated in [Merle and Raphaël 2003; 2004;
2005a; 2005b; 2006; Raphaël 2005]. This work stems from those detailed studies.

Definition 2.1 (fundamental properties of almost self-similar profiles). For all b > 0 sufficiently small,
there exists a solution zQb 2H 1.R2/ of

� zQb �
zQbC ibƒ zQbC

zQb j
zQbj

2
D�‰b

that is supported on the ball of radius 2=jbj and converges to Q in C 3.R2/ as b! 0. The profiles zQb

have mass of the order of b2 larger than Q, and energy of the order e�C=b . The truncation error ‰b acts
as the source of the linear radiation,

��b � �bC ibƒ�b D‰b:

The radiation �b is not in L2, with the precise decay rate �b D limjyj!C1 jyj j�bj
2. It is known that

�b� e��=b , and it is this decay property linked to the central profile zQb that is responsible for the log-log
rate of the two-dimensional L2-critical problem. For our analysis, we will truncate �b near jyj � eCa=b

for a small fixed parameter a. See page 694 for details.

Lemma 2.2 (smoothness of zQb). The almost self-similar profiles zQb are smooth. For any s � 3,

lim sup
b!0

k zQbkC s.R2/ <C1 and lim sup
b!0

k zQbkH s.R2/ <C1: (2-17)

Geometric decomposition. In place of .r; z; �/ 2RN we change coordinates to the rescaled half-plane:

y D
.r; z/� .r0; z0/

�0

2 Œ�r0=�0;C1/�R: (2-18)

The fixed parameters r0, z0, �0 will later be replaced by r.t/, z.t/, and �.t/. This will be clear from the
context. Note the measure due to cylindrical symmetry, dx D �0��0;r0

.y/ dy is given by

��0;r0
.y/D jSN�2

j.�0y1C r0/
N�2

1y1��r0=�0
: (2-19)

We will shortly hypothesize parameters of the decomposition in such a way that the support of both
zQb and Q�b are well away from the boundary of domain (2-18). For convenience we will omit the constant

factor jSN�2j and approximate �.y/ � 1 on this region; see (2-55). Integrals in y can then be seen as
taken over all of R2, and regular integration by parts applies. Any integral that cannot be localized in
this way will be treated separately, and very carefully.

To begin, we modulate suitable cylindrically symmetric data as if it were two-dimensional:
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Lemma 2.3 (existence of geometric decomposition at a fixed time [Raphaël 2006, Lemma 2]). Suppose
that v 2H 1

cyl.R
N / may be written in the form

v.r; z; �/D
1

�v
. zQbv C �v/

�
.r; z/� .rv; zv/

�

�
e�i
v (2-20)

for some parameters �v; bv; rv > 0 and 
v; zv 2 R such thatZ ˇ̌
ry�v

ˇ̌2
��v;rv .y/ dyC

Z
jyj�10=bv

j�vj
2 e�jyj dy < �

1
2

bv
; (2-21)

j.rv; zv/� .1; 0/j<
1
3

and 10�v < bv < ˛
�: (2-22)

Then there are nearby parameters �0; b0; r0 > 0 and 
0; z0 2 R with

jb0� bvjC

ˇ̌̌̌
�0

�v
� 1

ˇ̌̌̌
C
j.r0; z0/� .rv; zv/j

�v
� �

1
5

b0
; (2-23)

such that the corresponding �0,

�0.y/D �0 v .�0yC .r0; z0// ei
0 � zQb0
; (2-24)

satisfies the two-dimensional orthogonality conditions4

Re.�0; jyj
2 zQb0

/D Re.�0;y zQb0
/D Im.�0; ƒ

2 zQb0
/D Im.�0; ƒ zQb0

/D 0: (2-25)

We now identify a neighborhood of the singular set, the complement of which is contiguous and
includes both the origin and infinity. In the case of N D 3, the singular set is a ring and the neighborhood
a toroid. Define two smooth cutoff functions,

�.r; z; �/D

�
1 for j.r; z/� .1; 0/j � 2

3
;

0 for j.r; z/� .1; 0/j � 1
3
;

�0.r; z; �/D

�
1 for j.r; z/� .1; 0/j � 1

7
;

0 for j.r; z/� .1; 0/j � 1
8
:

(2-26)

In Section 4 we will define a further series of cutoff functions  and ', supported on bounded regions
where �0 � 1. We now describe the initial data for our bootstrap procedure.

Definition 2.4 (description of initial data P). For ˛� > 0 a constant to be determined, let P.˛�/ be the
set of cylindrically symmetric u0 2H N

cyl.R
N / that can be written in the form

u0.r; z/D
1

�0

. zQb0
C �0/

�
.r; z/� .r0; z0/

�0

�
e�i
0

D
1

�0

. zQb0
/

�
.r; z/� .r0; z0/

�0

�
e�i
0 C Qu0.r; z/; (2-27)

in a way that satisfies the following two sets of conditions:

4The decomposition of [Merle and Raphaël 2003] used slightly different orthogonality conditions. Equation (2-25) is the
decomposition introduced [Merle and Raphaël 2004, Lemma 6], which leads to a better estimate on the phase parameter than
was achieved in the former paper.
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Singularity of a log-log nature:

C1.1. Radial profile is focused near a singular ring:

j.r0; z0/� .1; 0/j< ˛
�: (2-28)

C1.2. Radial profile is close to Q near the singular ring: The profiles zQb have nearly the mass of Q

and account for nearly all mass globally:

0< b0Ck Qu0kL2.RN / < ˛
�
I (2-29)

�0.y/ satisfies both the orthogonality conditions

Re.�0; jyj
2 zQb0

/D Re.�0;y zQb0
/D Im.�0; ƒ

2 zQb0
/D Im.�0; ƒ zQb0

/D 0 (2-30)

and the smallness conditionZ ˇ̌
ry�0.y/

ˇ̌2
��0;r0

.y/ dyC

Z
jyj� 10

b0

j�0.y/j
2 e�jyj dy < �

6
7

b0
: (2-31)

C1.3. Conformal and scaling parameters are consistent with log-log blowup speed:

e�e
2�
b0
< �0 < e�e

�
2

1
b0
: (2-32)

C1.4. Energy and localized momentum are normalized:

�2
0 jE0jC�0

ˇ̌̌̌
Im
�Z
rx 

.x/
� rxu0 Nu0

�ˇ̌̌̌
< �10

b0
; (2-33)

where  .x/ is a cylindrically symmetric smooth cutoff function given by

 .x/.r; z; �/D

�
r C z for j.r; z/� .1; 0/j � 1

2
;

0 for j.r; z/� .1; 0/j � 3
4
:

(2-34)

Regularity away from the singularity:

C2.1. Scaling-consistent PH N norm:

ku0kH N .RN / <
C zQ

�N
0

; (2-35)

where C zQ is a universal constant due to Lemma 2.2.

C2.2. Strong hierarchy of regularity away from the singular ring:

k�0u0kH N��.RN / <
1

�N�2�
0

; (2-36)

for each half-integer 1
2
� � � N

2
.

C2.3. Vanishing lower-order norms away from the singular ring:

k�0u0k
H

N
2
� 1

2 1.RN /
< .˛�/

1
2 : (2-37)
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Lemma 2.3 guarantees that P.˛�/ is open in H 1
cyl\H N

cyl. See the Appendix for a proof that P.˛�/ is
nonempty.

For the remainder of this paper, fix an arbitrary u0 2P.˛�/. Let u.t/ denote the evolution under (1-1),
with maximum (forward) lifetime Tmax > 0, possibly infinite.

Continuous evolution in H N .RN / implies the same in H 1.RN /, so by Lemma 2.3 there is some Tgeo2

.0;Tmax�— which may be assumed maximal — for which the geometric decomposition of Lemma 2.3
can be applied on Œ0;Tgeo/. There exist unique continuous functions �.t/; b.t/; r.t/ W Œ0;Tgeo/! .0;1/

and 
 .t/; z.t/ W Œ0;Tgeo/! R, with the expected initial values, where

u.t; r; z; �/D
1

�.t/

�
zQb.t/C �.t/

� �.r; z/� .r.t/; z.t//
�

�
e�i
.t/

D
1

�.t/

�
zQb.t/

� �.r; z/� .r.t/; z.t//
�

�
e�i
.t/

C Qu.t; r; z; �/; (2-38)

such that �.t;y/ satisfies the two-dimensional orthogonality conditions

Re
�
�.t/; jyj2 zQb.t/

�
D 0; (2-39)

Re
�
�.t/;y zQb.t/

�
D 0; (2-40)

Im
�
�.t/;ƒ2 zQb.t/

�
D 0; (2-41)

Im
�
�.t/;ƒ zQb.t/

�
D 0: (2-42)

We may now define the rescaled time,

s.t/D

Z t

0

1

�2.�/
d� C s0; where s0 D e

3�
4b0 : (2-43)

The choice of s0 will prove convenient in the proof of Lemma 3.15 (page 699).
Also set s1 D s.Thyp/, for Thyp as in Definition 2.6 below.

Notation 2.5 (fixed parameters). To aid the reader, we provide a brief summary of the various parameters
that will be introduced, in the order one might ultimately determine them:

� � and a are parameters that determine the cutoff shape of zQb and Q�b; see (3-80) and (3-104). The
value of a> 0 is assumed sufficiently small for the proof of Lemma 3.22, relative to some universal
constant. Before that, the proof of Lemma 3.19 is conditioned on the choice of � < a=C0, for
another universal constant C0 > 0; see (3-196). These choices affect the class of initial data P, both
by setting the profiles zQb and by forcing an upper bound on the value of ˛�.

� �1, �2 and �3: parameters in the statements of Lemma 4.1, Lemma 4.3, and Corollary 4.4. Their
value is chosen (repeatedly) according to circumstance.

� �4: an arbitrary universal constant, 0< �4� 1, used in the proof of Lemma 4.8.

� �5: defined for Lemma 4.8. Its value depends on �4, and is uniform over all m> 0 small enough.

� m0: existence of m0 < m with particular properties in a key assertion of Proposition 2.8. Some
particular value m0 2 .m� �5=2;m/ is chosen for the proof of Lemma 4.10.
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� �6: parameter in the statement of Lemma 4.11. Its value is fixed for the proof of Lemma 4.13.

� �7: defined for Lemma 4.17. Its value is uniform over all m> 0 small enough.

� m: a fixed constant m>0 that features in the bootstrap hypotheses of Definition 2.6. For the purpose
of various proofs in Section 4, m will be assumed sufficiently small. The exact value of m may be
determined apriori, and will affect the class of initial data P by forcing an upper bound on the value
of ˛�.

� ˛�: A fixed positive constant to be determined last. For the purpose of various proofs throughout
this paper, ˛� will be assumed sufficiently small.

The following bootstrap hypotheses are possible due to our choice of data in P.

Definition 2.6 (time Thyp > 0 and bootstrap hypotheses). Let 0 < Thyp � Tmax be the maximum time
such that for all t 2 Œ0;Thyp/ the following two sets of conditions hold:

Singularity remains of a log-log nature:

H1.1. Profile remains focused near a singular ring:ˇ̌
.r.t/; z.t//� .1; 0/

ˇ̌
< .˛�/

1
2 : (2-44)

H1.2. Profile remains close to Q near the singular ring:

0< b.t/CkQu.t/kL2.RN / < .˛
�/

1
10 ; (2-45)Z ˇ̌

ry�.t/
ˇ̌2
��.t/;r.t/.y/ dyC

Z
jyj� 10

b.t/

j�.t/j2 e�jyj dy � �
3
4

b.t/
: (2-46)

H1.3. Conformal and scaling parameters remain consistent with log-log blowup speed:

�

10

1

log s
< b.s/ <

10�

log s
; e�e

10�
b.s/

< �.s/ < e�e
�
10

1
b.s/
: (2-47)

H1.4. Energy and localized momentum remain normalized:

�2.t/ jE0jC�.t/

ˇ̌̌̌
Im
�Z
r .x/ � ru.t/ Nu.t/

�ˇ̌̌̌
< �2

b.t/: (2-48)

H1.5. Norm growths are almost monotonic:

�.sb/� 3�.sa/ for all sa � sb 2 Œs0; s1�: (2-49)

Regularity away from the singularity persists:

H2.1. Growth of PH N is near scaling:

ku.t/kH N .RN / <
eC

m
b.t/

�N .t/
: (2-50)
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H2.2. Strong hierarchy of regularity away from the singular ring persists:

k�u.t/kH N�� <
eC.1C�/

m
b.t/

�N�2�.t/
; (2-51)

for each half-integer 1
2
� � < N

2
, and

k�u.t/k
H

N
2
< eC

2mC�
b.t/ : (2-52)

H2.3. Lower-order norms away from the singular ring remain bounded:

k�u.t/k
H

N
2
� 1

2
< .˛�/

1
10 : (2-53)

An important consequence of H1.2, H1.3, and the forthcoming estimate on �b , (3-103), is that

�.t/ < e�e
�

10b.t/
< �10

b.t/: (2-54)

Therefore as a consequence of H1.1 and the definition of A in (3-104) below,

2
3
� �.y/� 3

2
for all jyj � 5A.t/: (2-55)

The region jyj � 5A.t/ is exceptionally wide, encompassing the support of both the central profile zQb

and the associated radiation Q�b .

Remark 2.7 (geometric decomposition is well defined). Hypotheses H1.1–H1.5 easily satisfy the con-
ditions of Lemma 2.3, ensuring that Thyp � Tgeo and the unique geometric decomposition (2-38) is
available.

Proposition 2.8 (bootstrap conclusion). For ˛� > 0 sufficiently small, hypotheses (2-44)–(2-53) are not
sharp. There exists m0 <m such that, for all t 2 Œ0;Thyp/:

I1.1.
ˇ̌
.r.t/; z.t//� .1; 0/

ˇ̌
< .˛�/

2
3 : (2-56)

I1.2. 0< b.t/CkQu.t/kL2.RN / < .˛
�/

1
5 ; (2-57)Z ˇ̌

ry�.t/
ˇ̌2
��.t/;r.t/.y/ dyC

Z
jyj� 10

b.t/

j�.t/j2 e�jyj dy � �
4
5

b.t/
: (2-58)

I1.3.
�

5

1

log s
< b.s/ <

5�

log s
; e�e

5�
b.t/

< �.t/ < e�e
�
5

1
b.t/
: (2-59)

I1.4. �2.t/ jE0jC�.t/

ˇ̌̌̌
Im
�Z
r .x/ � ru.t/ Nu.t/

�ˇ̌̌̌
< �4

b.t/: (2-60)

I1.5. �.sb/� 2�.sa/ for all sa � sb 2 Œs0; s1�: (2-61)

I2.1. ku.t/kH N .RN / <
eC

m0

b.t/

�N .t/
: (2-62)
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I2.2. k�u.t/kH N�� <
eC.1C�/

m0

b.t/

�N�2�.t/
(2-63)

for each half-integer 1
2
� � < N

2
, and

k�u.t/k
H

N
2
< eC

2m0C�
b.t/ : (2-64)

I2.3. k�u.t/k
H

N
2
� 1

2
< .˛�/

1
5 : (2-65)

As a consequence, Thyp D Tmax.

Strategy of proof: the log-log argument. We will establish statements I1.1–I1.5 in Section 3 using the
arguments of [Merle and Raphaël 2003; 2006]. Here we identify the main challenge in maintaining the
log-log dynamics. As with all modulation arguments, we seek to reduce the question of blowup to a
finite-dimensional ODE dynamic for the parameters. This is only possible due to the algebraic structure
associated with Q. Recall the operator ƒ D 1C y � ry , which one might recognize from either the
argument E.Q/D 0:

.0; ƒ.Q//D
�
�Q�QCQ jQj2 ; ƒ.Q/

�
D�2E.Q/; (2-66)

or from the Pohozaev identity:

.0; ƒ.v//D Re
�
ivsC�yvC v jvj

2 ; ƒ.v/
�
D�

1

2

d

ds
Im
Z
v y � r Nv dy � 2E.v/; (2-67)

which is also a consequence of formally calculating the virial identity’s term

d2

d2s

Z
jyj2 jvj2 dy:

Substitution of (2-38) into (1-1) will produce an equation for �. Ignoring the distinction between Q and
zQb , the terms linear in � are i@s�CL.�/, where L is the linearized propagator near Q. As a matrix on

real and imaginary parts,

L.�/D

�
0 L�

�LC 0

� �
�re

i �im

�
with

�
LC D��C 1� 3Q2;

L� D��C 1�Q2:
(2-68)

Weinstein [1985] noted that

L�.jyj
2 Q/D�2ƒQ; L�.yQ/D�2rQ; and LC.ƒQ/D�2Q: (2-69)

These algebraic properties are the inspiration for the orthogonality conditions, so that, by taking appro-
priate inner products of the �-equation, linear terms cancel. For example, the imaginary part of the inner
product with jyj2 Q has no linear terms due to conditions (2-39) and (2-42). The imaginary part of the
inner product with yQ is controlled by the momentum.

The most fruitful calculation is when we take the real part of an inner product of the �-equation with
ƒQ. This is of course a localized version of (2-67). We substitute conservation of energy to eliminate
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the linear term, 2 Re.�;Q/, which is due to the third identity of (2-69). The remaining terms quadratic
in � form the following,

H.�; �/D

�
Lre 0

0 Lim

� �
�re

i �im

�
�

�
�re

�i �im

�
with

�
Lre D��C 3Qy � rQ;

Lim D��CQy � rQ:
(2-70)

The operator H.�; �/ is the derivative with respect to scaling of the conserved energy of the linear flow.
It has coercivity properties that mirror the stability of Q:

Proposition 2.9 (spectral property). There exists a universal constant ı0 > 0 such that, for any v 2H 1,

H.v; v/� ı0

�Z
y2R2

ˇ̌
ryv

ˇ̌2
C

Z
y2R2

jv2
je�jyj

�
�

1

ı0
��

.Re.v;Q//2C.Re.v;ƒQ//2C.Re.v;yQ//2C.Im.v;ƒQ//2C.Im.v;ƒ2Q//2C.Im.v;rQ//2
�
: (2-71)

The two-dimensional spectral property as stated here has a numerical proof [Fibich et al. 2006].5

Assuming we can ensure H is coercive, the goal is to prove the local virial identity

bs � ı1 jjj�jjj ��
1�C�

b
; (2-72)

where we have defined

jjj�jjj D

Z ˇ̌
ry�

ˇ̌2
� dyC

Z
jyj� 10

b

j�j2 e�jyj dy: (2-73)

To prove (2-72) using the spectral property requires that we control the contribution from all other terms
of the conservation of energy. In particular, we must establish nonlocal control:Z

R2

j�.y/j4 �.y/�

Z
R2

ˇ̌
ry�

ˇ̌2
�.y/: (2-74)

This is our main challenge.
The local virial identity (2-72) is a satisfactory control for � at times where bs < 0. However, our

argument is based on approximating the central profile of the solution; therefore we cannot expect
monotinicity in our modulation parameters. Including the radiation Q� to better approximate the central
profile, repeating the local virial calculation, and taking into account the mass flux leaving the support
of the radiation, Merle and Raphaël [2006] discovered a Lyapunov functional. It is remarkable that we
can approximate the Lyapunov functional very precisely in terms of a positive multiple of a norm of �.
The functional is then used to bridge the control of � between times where bs < 0. The approximation
here is achieved through the conservation of energy, and involves (2-74) a second time.

Regarding (2-74), change variables to getZ
R2

j�.y/j4 �.y/D �2

Z
RN

j Quj4 D �2

Z
RN

j� Quj4C�2

Z
RN

.1��4/ j Quj4:

5The numerical proof is given for the L2-critical nonlinearities of Theorem 1.1 in dimensions d D 2; 3; 4, and in d D 5 with
a slight change of orthogonality conditions. In dimension d D 1 the proof is explicit [Merle and Raphaël 2005a, Proposition 2].
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Since the support of � includes the origin, we must apply N -dimensional Sobolev to that term:

k� Quk4
L4.RN /

. k�uk2

H
N
2
�1
.RN /
k�uk2

H 1.RN /
:

Change variables again and observe that to achieve (2-74) requires at least that k�uk
H

N
2
�1
.RN /
� 1.

Strategy of proof: persistence of regularity. Once we have established the log-log nature of our blowup,
we expect powers of 1=� to be as integrable in time as powers ofs

log jlog.Tmax� t/j

Tmax� t
:

Indeed, as noted in [Raphaël and Szeftel 2009],Z t

0

d�

��.�/
� C.ı/

1

���2Cı.t/
; (2-75)

for any ı > 0 and � > 2. Our argument cannot allow any loss of scaling. At all times we must be cautious
to account for all factors of e

1
b . We prove thatZ t

0

e
��

b.�/

��.�/
d� � C.��; �; �/

e
��C�

b.t/

���2.t/
; (2-76)

for any �� < �� C � of either sign and � > 2. The arguments of Section 4, to establish statements
I2.1–I2.3, proceed in three stages.

Control of kukH N . We explicitly calculate d
dt
krN uk2

L2 and seek to estimate the resulting error terms
separately in two regions of space. First, away from the singularity, on the truly N -dimensional region
that includes the origin, the estimates are simpler, due to hypotheses H2.2 and H2.3. Second, on a
neighborhood of the singular set, things are more delicate, and we split the solution into the rescaled
almost self-similar profile and Qu, defined in (2-38). Since zQb is smooth, the higher-order norms scale
exactly with 1=�. In particular, 



1

�
zQb.y/






H N .RN /

�
C. zQb/

�N .t/
; (2-77)

where the constant is uniform for all b sufficiently small; see Lemma 2.2. Note that (2-77) is better than
H2.1. For terms in Qu, the H 1 norm is better than 1=�, due to H1.3. By assuming m> 0 is small enough,
we use this superior H 1 control to offset the logarithmic loss due to our use of H2.1. We prove thatˇ̌̌̌

d

dt
kuk2

H N

ˇ̌̌̌
. 1

�2NC2
C

e�
�5
b

�2
kuk2

H N :

To prove I2.1, we integrate carefully with (2-76).

Remark 2.10. The exact scaling of the smooth central profile was not needed by Raphaël and Szeftel
[2009] to control a higher order norm. With the Strauss radial embedding, those authors prove an estimate
analogous to d

dt
kuk2

H N . kuk2�ıH N kuk
NıC2
H 1 , which is compatible with (2-75) and a hypothesis of the

form kukH N . 1=�NCC.ı/.
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Initial regularity improvement. Let  A be a smooth cutoff function that covers the support of r�—
this includes the boundary of a neighborhood of the singular set that acts as an interface between the
singular dynamics and the truly N -dimensional dynamics. We hope for any control of k AukH � that
is better than an interpolation of H2.1. Calculate d

dt
k Auk2

H � directly from (1-1) and integrate in time.
The result is effectively Kato’s smoothing effect and a Strichartz estimate,

 Au



2

L1t H � .


 Bu



2

L2
t H

�C 1
2
C

Z t

0

ˇ̌̌̌Z
D�. Au juj2/D�. A

Nu/

ˇ̌̌̌
; (2-78)

where  B is some other cutoff function with slightly larger support.
Due to (2-76), we see that the term in H �C 1

2 is in fact of the order 1=�2.�� 1
2
/. This is exactly the sort

of control we want, but the nonlinear term of (2-78) is uncooperative.
To estimate the nonlinear term of (2-78) we prove a modified Brezis–Gallouët estimate that does

not break scaling too badly, the proof of which requires hypothesis H2.1 to be scaling consistent up
to a sufficiently small power of e

1
b . See Remark 4.15. This delicacy is not required in the radial case

[Raphaël 2006; Raphaël and Szeftel 2009] as Strauss’s radial embedding is already scaling consistent.
In place of a Brezis–Gallouët estimate, Holmer and Roudenko [2011] use an elegant microlocal estimate
to smooth the nonlocal part of the nonlinearity.

Iterated smoothing. The next stage is to prove I2.2 and I2.3 hold on the support of r�. We iterate the
argument of (2-78), in half-integer steps, beginning with � DN � 1

2
, and introducing a new cutoff with

smaller support each time. Due to the initial regularity improvement, it is possible to handle the nonlinear
term of (2-78) systematically, and at the same order as the term in H �C 1

2 . Due to integration (2-76), at
each stage we may smooth (almost) a half-derivative farther, relative to scaling, than was proved in the
previous stage. After N iterates, we find that k C uk

H
N
2

is (almost) order-zero in 1
�

. The final iterate
proves k Duk

H
N
2
� 1

2
is constant.

To complete the proof of I2.2 and I2.3, we repeat the iteration scheme for �u. The combination of
hypotheses H2.2 and H2.3 with the results of the first iteration make the second iteration substantially
simpler.

3. Proof of log-log singular behavior

In this section we will prove that properties I1.1–I1.5 are a consequence of hypotheses H1.1–H1.5 and
the bound

k�u.t/k
H

N
2
�1
< .˛�/

1
10 ; (3-79)

which is a particular consequence of H2.3.

Almost self-similar profiles. The parameter � > 0 about to be used is universal, sufficiently small, and
will be determined later on (see after (3-183) and after (3-196)). For b ¤ 0, let

Rb D
2

b

p
1� � and R�b DRb

p
1� �; (3-80)
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and let �b denote a radially symmetric cutoff function with

�b.y/D

�
1 for jyj �R�

b
;

0 for jyj �Rb;
and jr�bjL1 Cj��bjL1 ! 0 as jbj ! 0: (3-81)

The following result was originally shown in [Merle and Raphaël 2003, Proposition 1]. The refined
cutoff, with parameter �, is introduced in [Merle and Raphaël 2004, Propositions 8 and 9].

Proposition 3.1 (localized self-similar profiles). For all � > 0 sufficiently small there exists positive
b�.�/ and ı.�/ such that for all jbj< b�.�/ there exists a unique radial solution Qb to,8̂̂<̂

:̂
�Qb �QbC ibƒQbCQb jQbj

2 D 0;

Pb DQbei b jyj2

4 > 0 for y 2 Œ0;Rb/;

jQb.0/�Q.0/j< ı.�/; Qb.Rb/D 0:

(3-82)

The truncation to jyj< 2
b

, zQb.y/DQb.y/�b.y/, satisfies

� zQb �
zQbC ibƒ zQbC

zQb j
zQbj

2
D�‰b; (3-83)

with the explicit error term

�‰b DQb��bC 2r�b � rQbC ibQby � r�bC .�
3
b ��b/Qb jQbj

2: (3-84)

Moreover, zQb satisfies the following properties:

� Uniform closeness to the ground state:

eC jyj. zQb �Q/




C 3 ! 0 as b! 0: (3-85)

� Derivative with respect to b:



eC jyj

�
@

@b
zQbC i

jyj2

4
Q

�




C 2

! 0 as b! 0: (3-86)

� Supercritical mass:

d

d.b2/

�Z ˇ̌̌
zQb

ˇ̌̌2�ˇ̌̌̌
b2D0

D d0 with 0< d0 <C1: (3-87)

As a consequence of (3-85), for any polynomial P .y/ and k D 0; 1,ˇ̌
P .y/rk‰b

ˇ̌
L1
� e�

C.P/
jbj : (3-88)

In particular, energy and momentum are degenerate:ˇ̌
E. zQb/

ˇ̌
� e�.1�C�/ �

jbj and Im
�Z
ry
zQb
zQb

�
D 0: (3-89)
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The linearized Schrödinger operator near zQb is, M
�
v

iw

�
DMC.v; w/C iM�.v; w/, with,

MC.v; w/D��yvC v�

�
zQ2

bˇ̌
zQb

ˇ̌2 C 2

�ˇ̌
zQb

ˇ̌2
v� Im. zQ2

b/ w; (3-90)

M�.v; w/D��ywCw�

�
2�

zQ2
bˇ̌
zQb

ˇ̌2�ˇ̌ zQb

ˇ̌2
w� Im. zQ2

b/ v: (3-91)

As with L from (2-68), there is an associated bilinear operator

Hb.�; �/DH.�; �/C zHb.�; �/; (3-92)

where H.�; �/ is the usual form (2-70) associated with L. The correction term may be written as

zHb.�; �/D

Z
V11�re

2
C

Z
V12�re�imC

Z
V22�im

2; (3-93)

for well-localized potentials built on zQb , Q and y � r; see [Merle and Raphaël 2004, Appendix C]. Due
to proximity with Q — see (3-85) — there is universal constant C with

eC jyjVij




L1
! 0 as b! 0: (3-94)

The following variation of H is of a different nature. Set

zH .�; �/DH.�; �/�
1

kƒQk2
L2

.�re;LCƒ
2Q/ .�re; ƒQ/ ; (3-95)

which simply alters the definition of LC given in (2-70). The following is a consequence of (2-69) and
the spectral property:

Lemma 3.2 (alternative spectral property [Merle and Raphaël 2004, page 616]). There exists a universal
positive constant Qı0 < ı0 such that, for all � 2H 1,

zH .�; �/� Qı0

�Z
y2R2

ˇ̌
ry�

ˇ̌2
C

Z
y2R2

j�2
je�jyj

�
�

1

ı0
��

.Re.�;Q//2C.Re.�;jyj2Q//2C.Re.�;yQ//2C.Im.�;ƒQ//2C.Im.�;ƒ2Q//2C.Im.�;rQ//2
�
: (3-96)

In Lemma 3.17 and Remark 3.18 we will find that the study of linear radiation gives an accurate
description of mass ejection from the singular regime. Here is a background result:

Lemma 3.3 (linear radiation [Merle and Raphaël 2004, Lemma 15]). There are universal constants
C > 0 and �� > 0 such that for all 0 < � < �� there is b�.�/ > 0 such that for all 0 < b < b�.�/ there
exists a unique radial solution �b to �

��b � �bC ibƒ�b D‰b;R
jr�bj

2 <C1;
(3-97)

where‰b is the truncation error given by (3-83); moreover, the solution satisfies the following properties,
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where we have set
�b D lim

jyj!C1
jyj j�b.y/j

2
W (3-98)

� Decay past the support of ‰b:

jyjj�bjC jyj2 jr�bj

L1.jyj�Rb/
� �

1
2
�C�

b
<C1: (3-99)

� Smallness in PH 1: Z ˇ̌
ry�b

ˇ̌2
� �

1�C�

b
: (3-100)

� Derivative with respect to b: 



@�b@b






C 1

� �
1
2
�C�

b
: (3-101)

� Stronger decay for larger jyj: 

jyj2 jr�bj

L1.jyj�R2
b
/
� C

�
1
2

b

jbj
; (3-102)

e�.1CC�/�
b �

4
5
�b �



jyj2 j�bj2

L1.jyj�R2
b
/
� e�.1�C�/�

b : (3-103)

(As an estimate on �b , (3-103) will be indispensable.)

The small universal parameter a > 0 in the next equation will be introduced later, via (3-165), and
determined on page 706, in the proof of Lemma 3.22. It influences the choice of �. We set

A.t/D ea �
b.t/ ; so that �

�a
2

b
�A� �

� 3a
2

b
; (3-104)

and we let �A denote a radially symmetric cutoff function with

�A.y/D

�
1 for jyj �A;

0 for jyj � 2A:
(3-105)

The truncated radiation Q�b.y/D �A.y/�b satisfies

� Q�b � Q�bC ibƒ Q�b D‰bCF; (3-106)

where the error term F is explicit:

F D �b��AC 2r�A � r�bC ib�by � r�A: (3-107)

In particular, by (3-102) and (3-103),

jF jL1 Cjy � rF jL1 � C
�

1
2

b

A
: (3-108)

Remark 3.4. For smaller values of � the central profiles zQb approximate the mass of the singular region
more closely — see (3-80) — at the cost that estimates (3-85)–(3-89) are only known for ever smaller
values of b. When � is larger, to compensate for the imperfection of our central profile we require more
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of the radiative tail to get an accurate picture of mass transport, requiring a larger choice of a. See [Merle
and Raphaël 2006, page 53] for similar remarks on the optimality in choice of A.t/.

Estimates directly due to geometric decomposition. The next lemma explains our choice of norm for �.

Lemma 3.5 (weighted and local L2 estimates). For any � > 0 and for all v 2H 1.R2/,Z
y2R2

jv.y/j2 e��jyj � C.�/

�Z
jrv.y/j2C

Z
jyj�1

jv.y/j2 e�jyj
�
; (3-109)Z

jyj��

jv.y/j2 � C �2 log �
�Z
jrv.y/j2C

Z
jyj�1

jv.y/j2 e�jyj
�
: (3-110)

Equation (3-110) is found in [Merle and Raphaël 2006, (4.11)]. While the original proof of (3-109)
in [Merle and Raphaël 2004, Lemma 5] has a flaw, the methods of [Merle and Raphaël 2006] give an
alternate proof.

Remark 3.6 (nonconcern for �). In practice, we apply these lemmas and the interaction estimates below
only on regions within fjyj.A.t/g. That is, (2-55) always applies and we may choose to include measure
�.y/ as appropriate.

Lemma 3.7 (estimates on interaction terms [Merle and Raphaël 2003, Section 5.3(C)]). Let s 2 Œs0; s1/,
and recall from (2-73) that jjj�jjj stands for

R ˇ̌
ry�

ˇ̌2
� dyC

R
jyj� 10

b
j�j2 e�jyj dy.

� Estimate of first-order terms:ˇ̌̌̌�
�.y/;P .y/

dk

dyk
zQb.y/

�ˇ̌̌̌
� C.P /jjj�jjj

1
2 ; (3-111)

where P .y/ is any polynomial and 0� k � 3.

� Estimate of second-order terms:ˇ̌̌̌�
R.�/;P .y/

dk

dyk
zQb.y/

�ˇ̌̌̌
� C.P /jjj�jjj; (3-112)

where P .y/ is any polynomial, 0 � k � 3, and R.�/ is the terms of .�C zQb/j�C zQbj
2 formally

quadratic in �— see Equation (3-131).

� Estimate of localized higher-order terms:Z ˇ̌
J.�/� j�j4

ˇ̌
�.y/ dy � ı.˛�/jjj�jjj; (3-113)

where J.�/� j�j4 D 4 Re
�
� j�j2 ; zQb

�
is the term of j�C zQbj

4 formally cubic in � and localized to
the support of zQb . Similarly, �

zR.�/;ƒ zQb

�
� ı.˛�/jjj�jjj; (3-114)

where zR.�/D � j�j2 is the term of .�C zQb/j�C zQbj
2 formally cubic in �.
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The following estimate is our first nontrivial departure from the L2-critical argument.

Lemma 3.8 (complete estimate on J.�/). For all s 2 Œs0; s1/,Z
j�.y/j4 �.y/ dy � ı.˛�/jjj�jjj: (3-115)

With (3-113), this gives a complete estimate for J.�/.

Proof. Partition the support of � into two- and three- dimensional regions:Z
j�.y/j4 �.y/ dy D

Z
.1��4/ j�.y/j4 �.y/ dyC

Z ˇ̌
� .�yC .r; z/.s// �.y/

ˇ̌4
�.y/ dy: (3-116)

The first term on the right is supported away from r D 0, and due to H1.1 the support of 1 � �4 is
approximately

˚
jyj < 2

3
1
�

	
, so that 1

3
. �.y/ . 5

3
. We estimate this term by two-dimensional Sobolev

embedding and the small mass assumption H1.2. Regarding the second term, the support of �4 excludes
the support of zQb by the same reasons. Changing variables, we obtainZ

j� .x.y// �.y/j4 �.y/ dy D �2

Z
x2RN

j�.x/u.x/j4 dx: (3-117)

By the N -dimensional Sobolev embedding, PH
N
4 ,!L4.RN /, and interpolation,

�2

Z
x2RN

j�.x/u.x/j4 dx . k�uk2
PH

N
2
�1
�2
k�uk2

PH 1.RN /

. k�uk2

H
N
2
�1

�Z ˇ̌
ry�

ˇ̌2
� dy

�
: (3-118)

To complete the proof, we use the assumed control H2.3 for the first and only time. �

Lemma 3.9 (estimates due to conservation laws). For all s 2 Œs0; s1/ the following are true:

(a) Due to conservation of mass:

b2
C

Z
j Quj2 . .˛�/

1
2 : (3-119)

(b) Due to conservation of energy:

2 Re.�; zQb/�

Z
jr�j2 �.y/ dyC 3

Z
jyj� 10

b

Q2�re
2
C

Z
jyj� 10

b

Q2�im
2

� �
1�C�

b
C ı.˛�/jjj�jjj: (3-120)

(c) Due to localized momentum (2-48):ˇ̌
Im.�;r zQ/

ˇ̌
� �2

b C ı.˛
�/jjj�jjj

1
2 : (3-121)

In particular, (3-121) also holds for
ˇ̌
.�im;Re.r zQb//

ˇ̌
, by Hölder and (3-85).
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Proof. (a) Conservation of mass gives
R

RN ju.t/j
2 dx D

R
ju0j

2. From the geometric decomposition,
expand and change some variables, obtainingZ ˇ̌

zQb.y/
ˇ̌2
�.y/ dyC 2 Re

�Z
� zQb�.y/ dy

�
C

Z
j Qu.t/j2 D

Z
ju0j

2: (3-122)

Expand the measure �. Due to the bound on � in (2-54), together with hypotheses H1.1 and H1.2 and
the supercritical mass of zQb ,Z ˇ̌

zQb

ˇ̌2
�.y/ dy �

Z
Q2
D

�Z ˇ̌
zQb

ˇ̌2
�

Z
Q2

�
C .rN�2.t/� 1/

Z ˇ̌
zQb

ˇ̌2
C

Z
O .�y1/

ˇ̌
zQb

ˇ̌2
dy

& b2
�
p
˛�: (3-123)

Due to the smallness of b0 and the small mass of �0 (see C1.2), we have
ˇ̌R

RN ju0j
2
�
R

R2 Q2
ˇ̌
. C˛�.

Due to local support and hypothesis H1.2,
ˇ̌R
� zQb�

ˇ̌
. ˛�:

(b) Conservation of energy gives
R

RN jru.t/j2 dx� 1
2

R
juj4D2E0. From the geometric decomposition,

2�2E0 D

Z ˇ̌
ry. zQbC �/

ˇ̌2
�.y/ dy �

1

2

Z
j zQbC �j

4�.y/ dy (3-124)

Partially expand the measure �:Z ˇ̌
ry. zQbC �/

ˇ̌2
�.y/ dy D rN�2.t/

Z ˇ̌
ry
zQb

ˇ̌2
C

Z
O .�y1/

�ˇ̌
ry
zQb

ˇ̌2
C 2 Re.� zQb/

�
dy

C 2N�2r.t/Re
�Z
ry� � ry

zQb

�
C

Z
jry�j

2�.y/ dy: (3-125)

Due to the support of zQb , the second line is of order �, and thus inconsequential. Via a similar approach,

�
1

2

Z ˇ̌
zQbC �

ˇ̌4
�.y/ dy

D�rN�2.t/

 
1

2

Z ˇ̌
zQb

ˇ̌4
C 2 Re

�Z
� zQb

ˇ̌
zQb

ˇ̌2�
C

Z
j�j2

ˇ̌
zQb

ˇ̌2
CRe

�Z
�2 zQb

2
�!

C�O
�ˇ̌
zQb

ˇ̌2�
�

1

2

Z
J.�/�.y/ dy: (3-126)

Now proceed as in the L2-critical argument. Integrate
R
ry� � ry

zQb by parts and substitute the equa-
tion for zQb (3-83); this cancels the term of (3-126) linear in �. Recall the bound for ‰b (3-88), the
degenerate energy of zQb (3-89), proximity to Q (3-85), that r.t/� 1, and the non-trivial estimate on J ,
Equation (3-115).

(c) Our starting point is (2-48). In cylindrical coordinates, rxf � rxg D @rf @r gC @zf @zf . For this
proof we denote r by x1 and z by x2. Fix either j D 1 or j D 2. From the geometric decomposition,

� Im
�Z

RN

@xj 
.x/@xj u Nu dx

�
D Im

�Z
@xj 

.x/@yj

�
zQbC �

� �
zQbC �

�
�.y/ dy

�
: (3-127)
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Directly from definition (2-34), we have @xj 
.x/ D 1 on the support of zQb . Expand the measure �

as rN�2.t/C O .�y1/. Integrate by parts the interaction term in rN�2.t/@yj �
zQb . With the degenerate

momentum of zQb — see (3-89) — we have

2rN�2.t/ Im
�
�; @yj

zQb

�
D Im

�Z
O .�y1/

�
@yj �
zQbC @yj

zQb�C @yj
zQb
zQb

�
dy

�
C Im

�Z
@xj 

.x/@yj ���.y/ dy

�
��.t/ Im

�Z
RN

@xj 
.x/@xj u Nu dx

�
: (3-128)

The first term on the right is of order �, and thus negligible. For the next term we apply Hölder and the
small mass assumption H1.2. The final term is controlled by H1.4. �

Remark 3.10 (role of momentum conservation). The estimate analogous to (3-121) in the L2-critical
context is proven with the conservation of momentum in place of H1.4; see [Merle and Raphaël 2003,
Appendix A]. As might be expected, the proof of I1.4 will resemble the proof of momentum conservation.
See (3-149).

Definition 3.11 (NLS reformulated for �). For s 2 Œs0; s1/, y 2 Œ�r.t/=�.t/;C1/� R, and a suitable
boundary condition at y1 D�r.t/=�.t/, the function � satisfies

ibs
@ zQb

@b
C i�s�M.�/C

N � 2

r.y1/
�@y1

�C ibƒ�D i

�
�s

�
C b

�
ƒ zQbC Q
s

zQbC i
.rs; zs/

�
�ry
zQb

Ci

�
�s

�
C b

�
ƒ�C Q
s�C i

.rs; zs/

�
� ry�C‰b �R.�/; (3-129)

where we have introduced the new variable

Q
 .s/D�s� 
 .s/: (3-130)

Note the single new term due to cylindrical symmetry. As already mentioned, the term R.�/ corresponds
to those terms formally quadratic in �:

R.�/D
�
�C zQb

�ˇ̌
�C zQb

ˇ̌2
� zQb

ˇ̌
zQb

ˇ̌2
� 2

ˇ̌
zQb

ˇ̌2
��

�
2 zQ2

b �Re. zQ2
b/
�
�: (3-131)

Lemma 3.12 (estimates due to orthogonality conditions). For all s 2 Œs0; s1/,ˇ̌̌̌
�s

�
C b

ˇ̌̌̌
Cjbsj. �1�C�

b
Cjjj�jjj (3-132)

andˇ̌̌̌
ˇ Q
s �

1

jƒQj2
L2

�
�re;LC.ƒ

2Q/
�ˇ̌̌̌ˇC ˇ̌̌rs

�

ˇ̌̌
C

ˇ̌̌zs

�

ˇ̌̌
� �

1�C�

b
C ı.˛�/jjj�jjj

1
2 : (3-133)

Estimates (3-132) and (3-133) are a direct result of orthogonality conditions (2-39), (2-40), (2-41)
and (2-42) by taking the respective inner products with �; see (3-129). Due to (2-54), terms resulting
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from N�2
r.y1/

�@y1
� are inconsequential. The estimates due to energy and momentum, (3-120) and (3-121),

are involved in the estimates of jbsj and jrs=�j C jzs=�j respectively. Otherwise, all calculations are
localized to the support of zQb and are identical to the L2-critical argument. See [Merle and Raphaël
2004, Appendix C] or [Raphaël 2005, Appendix A] for the complete calculations.

Lemma 3.13 (local virial identity). For all s 2 Œs0; s1/,

bs � ı1jjj�jjj ��
1�C�

b
; (3-134)

where ı1 > 0 is a universal constant and jjj�jjj D
R ˇ̌
ry�

ˇ̌2
� dyC

R
jyj� 10

b
j�j2 e�jyj dy as in (2-73).

Brief proof. Begin with the method used to prove preliminary estimate (3-132). Take the real part of
the inner product of � in (3-129) with ƒ zQb . Recognize that @s Im

�
�;ƒ zQb

�
D 0 due to orthogonality

condition (2-42). An adapted version of the algebraic property LC.ƒQ/ D �2Q is applied [Merle
and Raphaël 2004, equation (101)]. After recognizing the equation of zQb , injecting the conservation of
energy cancels the remaining terms linear in �. The resulting terms quadratic in � are the bilinear operator
Hb.�; �/ of (3-92). The remaining terms cubic in � (due to the original inner product) were estimated as
part of Lemma 3.7. See [Merle and Raphaël 2004, Appendix C] for the complete calculation. Controlling
the auxiliary terms of the conservation of energy with (3-120) we have

�bs Im
�
@

@b
zQb; ƒ zQb

�
& Hb.�; �/C bs Im

�
�;ƒ

@

@b
zQb

�
�

�
�s

�
C b

�
Im
�
�;ƒ2 zQb

�
� Q
s Re

�
�;ƒ zQb

�
�
.rs; zs/

�
� Im

�
�;r zQb

�
��

1�C�

b
� ı.˛�/jjj�jjj: (3-135)

Recall that @b
zQb � �

1
4
i jyj2 Q, make the correction (3-94) for zHb , and apply the preliminary esti-

mates (3-132) and (3-133). With the proximity to Q we can write

bs
1
4
kyQk2

L2 &H.�; �/� Q
s.�re; ƒQ/��
1�C�

b
� ı.˛�/jjj�jjj: (3-136)

Identify the alternate form Equation (3-95) of zH , apply the preliminary estimate for Q
s , Equation (3-133),
and apply the adapted version of the spectral property, Lemma 3.2. �

Remark 3.14 (progress in proving Proposition 2.8). We have already proven the first half of I1.2 as
the preliminary estimate (3-119). The local virial identity with preliminary estimate (3-132) produce a
closed expression for � and b, which we treat with simple arguments to prove the following lemma. In
particular, (3-138) implies the first lower bound of I1.3. Following similar methods, we will then prove
the second upper bound of I1.3, I1.4, I1.5, and I1.1.

Lemma 3.15 (upper bound on blowup rate). For all s 2 Œs0; s1/,

b.s/�
3�

4 log s
(3-137)

and

�.s/�
p
�0e
��

3
s

log s : (3-138)



700 IAN ZWIERS

Proof. Inject hypothesis H1.2 into the local virial identity (3-134) and carefully integrate in time. From
b > 0 and the bound on �b (3-103), we have

@seC
3�
4b D�

bs

b2

3�

4
eC

3�
4b � 1; which implies eC

3�
4b � s� s0C e

C 3�
4b0 : (3-139)

Now (3-137) follows from our clever choice of s0 in (2-43).
Next we view the preliminary estimate (3-132) and hypothesis H1.2 as the approximate dynamics of �:ˇ̌̌̌

�s

�
C b

ˇ̌̌̌
Cjbsj< �

1
2

b
: (3-140)

In particular, as b > 0 is small, ��s

�
�

2b

3
, which we integrate with (3-137) to get

� log�� � log�0C

Z s

s0

�

2 log �
d�: (3-141)

Assume s0 is sufficiently large through the choice of data (2-29) with ˛� sufficiently small, then,Z s

s0

�

2 log �
d� �

�

3

�
s

log s
�

s0

log s0

�
: (3-142)

From the choice of data C1.3, and (2-43), � log�0 � e
�

2b0 D s
3
2

0
. Thus

� log�� �1
2

log�0C
�

3

s

log s
;

and we have proved (3-138). �

A simple change of variables in (3-138) and the choice of data (2-29) and (2-32) yield a corollary:

Thyp D

Z s1

s0

�2.�/ d� � �0

Z C1
2

e
� 2�

3
s

log s ds < ˛�: (3-143)

Proof of second upper bound in I1.3. As a direct consequence of (3-138), again assuming s0 > 0 suffi-
ciently large,

� log.s�.s//�
�

3

s

log s
� log s �

s

log s
: (3-144)

Taking the logarithm and applying (3-137),

log
ˇ̌
� log .s�.s//

ˇ̌
� log

s

log s
�

4

15
log s �

�

5b.s/
; (3-145)

which leads successively to s�.s/� e�e
�
5b and �� e�e

�
5b , the second upper bound of I1.3. �

Proof of I1.4. Recall the approximate dynamic (3-140), which was due to the preliminary estimate
(3-132) and the hypothesized control on �. As a consequence, for s 2 Œs0; s1/,

d

ds

�
�2e

5�
b

�
D 2�2e

5�
b

�
�s

�
C b� b�

5�bs

2b2

�
� ��2be5�b < 0; (3-146)
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which implies

�2.t/e
5�

b.t/ � �2
0e

5�
b0 : (3-147)

Then, with the estimate (3-103) on �b , the choice of data (2-33), and the estimate on �b again, we obtain
the energy-normalization part of I1.4:

�2.t/ jE0j< �
4
b.t/ e

5�
b0 �2

0 jE0j< �
4
b.t/ e

5�
b0 �10

b0
� �4

b.t/; (3-148)

Regarding the localized momentum, calculate directly from (1-1) that,

d

dt
Im
�Z
r .x/ � ru Nu

�
D Re

�Z
@xj @xk

 .x/@xk
u@xj Nu

�
�

1

2

Z
� .x/ juj4�

1

4

Z
�2 .x/ juj2: (3-149)

This is a special case of the general Morawetz calculation; see, for instance, [Tao 2006, equation (3.36)].
Recall from definition (2-34) that the support of .x/ is well away from rD0. Apply the two-dimensional
Sobolev embedding H

1
2 ,!L4 to estimateˇ̌̌̌

d

dt
Im
�Z
r .x/ � ru Nu

�ˇ̌̌̌
� C. .x// ku.t/k2

H 1 .
1

�2
; (3-150)

where the final inequality is due to hypothesized control on � and the small excess mass H1.2. Note thatR t
0

d�
�2.�/

D
R s

s0
d� � s, so we have proven

�.t/
ˇ̌
Im
�
r .x/ � ru.t/ Nu.t/

�ˇ̌
� �.t/

ˇ̌
Im
�
r .x/ � ru0 Nu0

�ˇ̌
CC�.t/s.t/:

From the estimate (3-103) on �b and (3-145) from the previous proof, we have C�.t/s.t/�C�10
b.t/
��4

b
.

Using virtually the same calculation that gave us (3-146)–(3-148) we obtain, for s 2 Œs0; s1/,

d

ds

�
�e

6�
b

�
� �

1
2
�be

6�
b < 0; (3-151)

and hence

�.t/e
6�

b.t/ � �0e
6�
b0 :

By the estimate on �b and choice of data (2-33), we obtain the localized-momentum part of I1.4:

�.t/
ˇ̌
Im
�
r .x/ � ru0 Nu0

�ˇ̌
� �5

b.t/ e
6�
b0 �10

b0
� �4

b.t/: �

Proof of I1.5. We follow the argument found in the proof of [Raphaël 2005, Lemma 7]. Fix some
s2 � s3 2 Œs0; s1/. Substitute the local virial identity (3-134) into the preliminary estimate (3-132) to
control the norm of �. With a crude bound for �b ,ˇ̌̌�s

�
C b

ˇ̌̌
� C.bsC b2/; (3-152)
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From hypothesis H1.2, 0< b2 < ı.˛�/b where ı.˛�/! 0 as ˛�! 0. Then,

� log
�.s2/

�.s3/
D

Z s3

s2

��s

�
C b

�
�

Z s3

s2

b � ı.˛�/�
1

2

Z s3

s2

b � ı.˛�/: (3-153)

In particular, we may assume that ˛� is such that ı.˛�/ < log 2, which proves I1.5. �

Proof of H1.1. The preliminary estimate (3-133) can be crudely simplified toˇ̌̌rs

�

ˇ̌̌
C

ˇ̌̌zs

�

ˇ̌̌
� 1: (3-154)

Then we have for all s 2 Œs0; s1/

jr.s/� r0jC jz.s/� z0j �

Z s

s0

jrsjC jzsj �

Z s

s0

�.�/ d� �
p
�0

Z C1
2

e
��

3
�

log� d� < ˛�; (3-155)

where we applied (3-138), the choice of data (2-32) and the smallness of b0 (2-29). With our choice of
r0,z0 (2-28), this proves I1.1. �

3.1. Lyapunov functional. To begin this section, we repeat the calculation of the local virial identity,
this time including the linear radiation Q�b as part of the central profile. That is, we write

Q� D �� Q�b H) u.t;x/D
1

�.t/

�
zQb.t/C

Q�b.t/C Q�.t/
� �.r; z/� .r.t/; z.t//

�

�
e�i
.t/; (3-156)

where the parameters of the geometric decomposition are unchanged. The equation for Q� may then be
written analogously to (3-129), with a new linearized evolution operator analogous to M , (3-90).

Lemma 3.16 (radiative virial identity [Merle and Raphaël 2006]). For all s 2 Œs0; s1/,

@sf1 � ı2 jjjQ�jjjC�b �
1

ı2

Z
A�jyj�2A

j�j2 dy; (3-157)

where jjjQ�jjjD
R ˇ̌
ry Q�

ˇ̌2
�.y/ dyC

R
jyj� 10

b
jQ�j2 e�jyj dy (cf. (2-73)), ı2; c> 0 are universal constants, and

f1.s/D
b

4

ˇ̌
y zQb

ˇ̌2
L2 C

1

2
Im
�Z

y � r Q�b Q�b

�
C Im.�;ƒ Q�b/: (3-158)

Compared with the local virial identity, the radiative virial identity is useless to control � in PH 1 due to
the presence of mass term

R
A�jyj�2A j�j

2. See (3-110) for further discouragement. Nevertheless, we will
link this term to the ejection of mass from the singularity, through the radiation, into the dispersive regime
(Lemma 3.17). Then, we will show this mass ejection is more or less uninterrupted by demonstrating
the Lyapunov functional (Lemma 3.19). Finally, through conservation of energy we will prove precise
bounds on the Lyapunov functional in terms of the excess mass at the singularity and j�j PH 1 (Lemma 3.20).
These bounds will allow us to bridge between times where bs � 0 (times where the local virial identity
is useful) to control � pointwise in time (Lemma 3.22).
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Let �1 be a smooth radial cutoff function on R2 satisfying

�1.y/D

�
0 for jyj � 1

2
;

1 for jyj � 3;
(3-159)

1
4
� �01 �

1
2

for 1� jyj � 2; 0� �01 for all y: (3-160)

The following lemma is proved on page 707:

Lemma 3.17 (mass ejection from singular and radiative regimes).

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

�
�

b

400

Z
A�jyj�2A

j�j2 dy ��
a
2

b

Z ˇ̌
ry�

ˇ̌2
�.y/ dy ��2

b :

Remark 3.18 (interpretation of Lemma 3.17). Assume for the sake of heuristics that �� �b in the region
jyj�A. With the definition of �b in (3-98) and the control on � afforded by hypothesis H1.2, the lemma’s
inequality suggests continuous ejection of mass from the region jyj < A=2, regardless of whether that
region is growing or contracting.

Lemma 3.19 (Lyapunov functional). For all s 2 Œs0; s1/,

@sJ� �Cb

�
�bCjjjQ�jjjC

Z
A�jyj�2A

j�j2
�
; (3-161)

where C > 0 is a universal constant and

J.s/D

Z
j zQbj

2
�

Z
jQj2C 2 Re.�; zQb/C

1

rN�2.s/

Z �
1��1

� y

A

��
j�j2 �.y/ dy

�
ı2

800

�
b Qf1.b/�

Z b

0

Qf1.v/ dvC b Im.�;ƒ Q�b/
�
; (3-162)

Qf1 being is the principal part of f1 from (3-158):

Qf1.b/D
b

4

ˇ̌
y zQb

ˇ̌2
L2 C

1
2

Im
�Z

y � r Q�b Q�b

�
: (3-163)

The proof, which we defer until page 708, involves the radiative virial estimate (3-157), the mass
dispersion estimate in Lemma 3.17, and conservation of mass.

Now let us discuss what J is.

Lemma 3.20 (estimates on Lyapunov functional). For all s 2 Œs0; s1/ we have the crude estimate

jJ� d0b2
j< ı3b2; (3-164)

where 0< ı3� 1 is a universal constant and d0b2 is the approximate excess mass of the profile zQb (see
(3-87)). There also holds a more refined estimate:

��1�Ca
b C

1

C
jjj�jjj � J.s/�f2.b.s//� �

1�Ca
b CCA2

jjj�jjj; (3-165)
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where f2 is the principal part of J concerned with the mass of the profile:

f2.b/D

Z ˇ̌̌
zQb

ˇ̌̌2
�

Z
jQj2�

ı2

800

�
b Qf1.b/�

Z b

0

Qf1.v/ dv

�
: (3-166)

Proof. To prove (3-164) we will approximate each term of (3-162). To estimate the term in j�j2, recall
from (3-159) the support of �1, and derive the consequence for �.y/ similar to Equation (2-55). One
obtains Z �

1��1

� y

A

��
j�j2 �.y/ dy .

Z
jyj�3A

j�j2 .A2 log Ajjj�jjj � �
1
2

b
; (3-167)

where the second inequality is due to Lemma 3.5 and the final inequality is from the definition (3-104) of
A and the hypothesized control of �. Estimate .�; zQb/ by the same control, and the terms in Q�b by (3-100).
Equation (3-164) then follows from (3-87) by noting that the constant ı2 due to the radiative virial identity
(3-157) can be assumed small with respect to universal constant d0, so that 0< .@f2=@b

2/
ˇ̌
b2D0

<1.
Next we prove the refined estimate. Note that

J.s/�f2.b.s//D 2 Re.�; zQb/C
1

rN�2.t/

Z
.1��1/ j�j

2 �.y/�
ı2

800
b Im.�;ƒ Q�b/: (3-168)

By the bounds for Q�b in Lemma 3.5 and the choice of A, we have

ˇ̌
Im.�;ƒ Q�b/

ˇ̌
� �

1
2
�C�

b

�Z
jyj�A

j�j2
� 1

2

. �
1
2
�C�

b
A.log A/

1
2 jjj�jjj

1
2 . �1�Ca

b Cjjj�jjj: (3-169)

Since b is small, the contribution of (3-169) is a factor of ˛� smaller than the desired bound. Similar
terms will be omitted for the remainder of the proof.

Regarding the two other terms in (3-168), the term linear in � we recognize from the conservation of
energy (3-120). Indeed, the upper bound for (3-168) follows from (3-120) with (3-109) andZ

.1��1/ j�j
2 �.y/ dy .A2 log Ajjj�jjj; (3-170)

which is due to (3-110).
To establish a lower bound for (3-168) we will need the following lemma, whose proof is based on

a spectral result due to [Martel and Merle 2001], with additional properties proven in [Mariş 2002] and
[McLeod 1993]. See [Merle and Raphaël 2006, Lemma 8] for that spectral property, and Appendix D
of the same reference for a proof of the lemma.

Lemma 3.21 (elliptic estimate for L). Recall the linearized Schrödinger operator L from (2-68). There
exists a universal constant ı4 > 0 such that, for all v 2H 1.R2/,

Re .L.v/; v/�
Z
�1 jvj

2

� ı4

�Z
jrvj2C

Z
jvj2 e�jyj

�
�

1

ı4

�
Re.v;Q/CRe.v; jyj2 Q/CRe.v;yQ/CIm.v;ƒ2Q/

�2
: (3-171)
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Introduce a new radially symmetric cutoff function, analogous to �A (3-105) but with larger support,
such that .1��B.y//.1��1.y=A//D 0:

�B.y/D

�
1 for jyj � 3A;

0 for jyj � 4A:
(3-172)

By (2-55), we can rewrite the principal part of the conservation of energy estimate (3-120) as

2 Re.�; zQb/�

Z
.1��2

B/ jr�j
2 �.y/ dyC

Z
�2

B jr�j
2 dy � 3

Z
Q2.�B�re/

2
�

Z
Q2.�B�im/

2;

(3-173)
where we used the exponential spatial decay of Q and the lower bound for �b (3-98) to control the excess
in Q2�2 on jyj> 10

b
. With integration by parts,Z

�2
B jr�j

2 dy D

Z
jr.�B�/j

2 dyC

Z
��B �B j�j

2 dy: (3-174)

The principal part of (3-168) is then

2 Re.�; zQb/C
1

rN�2.t/

Z
.1��1/ j�j

2 �.y/ dy �

Z
.1��2

B/ jr�j
2 �.y/ dy

C

�
Re.L.�B�/; �B�/�

Z
�1 j�B�j

2

�
C

Z
��B �B j�j

2
C

Z
.1��1/

�
�

rN�2.t/
��2

B

�
j�j2: (3-175)

The final term can be neglected, since .1� �1/.�=rN�2.t/� �2
B
/ is of order �y1, and supported on

jyj< 4A. The lower bound for (3-168) then follows from Lemma 3.21, an integration by parts, and the
straightforward comparison,Z

�2
B jr�j

2
C

Z
j�B�j

2 e�jyj &
Z
�2

B jr�j
2 �.y/C

Z
jyj� 10

b

j�j2 e�jyj; (3-176)

again due to the support of �B and the bound on �. This completes the proof of (3-165). �

Lemma 3.22 (lower bound on blowup rate). For all s 2 Œs0; s1/,

b.s/�
4�

3 log s
(3-177)

and Z s

s0

.�b.�/Cjjj�jjj/ d� � C˛�; (3-178)

where C > 0 is a universal constant and

jjj�jjj � �
4
5

b
: (3-179)

(This is (2-58), the remaining part of I1.2.)

Note that (3-177) is the first upper bound of I1.3. The only estimate still required in order to establish
Proposition 2.8 follows as a corollary.
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Proof of the second lower bound I1.3. Recall from (3-140) the approximate dynamics of �. Since b > 0

is small, we have ��s

�
� 3b, which we integrate with (3-177),

� log�.s/� � log�0C 4�

Z s

s0

1

log �
d� � � log�0C 4�.s� s0/: (3-180)

Use (3-177) again, and recall the definition of s0 (2-43) and choice of data (2-32), to obtain

�.s/� �0e4�s0 e�4�e
4�

3b.s/
> e�e

5�
b.s/
: �

Proof of Lemma 3.22. First, in view of the crude estimate (3-164), we may divide the Lyapunov inequality
(3-161) by

p
J and integrate in time, leavingZ s

s0

�
�b.�/Cjjj�jjj

�
d� � C

�p
J.s0/�

p
J.s/

�
� Cb0: (3-181)

The choice of data (2-29) then proves (3-178). Alternately, we may view the crude estimate (3-164) and
the Lyapunov inequality (3-161) as giving a differential inequality for J:

@se
C 5�

4

q
d0
J & b

J
�be

5�
4

q
d0
J � 1; (3-182)

which implies

e
C 5�

4

q
d0

J.s/ � e
C 5�

4

q
d0

J.s0/ C s� s0: (3-183)

Here we applied the bound (3-103) on �b , for which it is essential that 5
4
> 1CC�; see Remark 4.15.

By the crude estimate (3-164) and the definition of s0 in (2-43), we have

e
C 5�

4

r
d0

J.s0/ > e
�
b0 > s0; (3-184)

which, again with estimate (3-164), proves (3-177) from (3-183).
It remains to establish the pointwise control of �. Fix s 2 Œs0; s1/.

1. If @sb.s/� 0, then (3-179) follows from the local virial identity, Lemma 3.13.

2. If @sb.s/ > 0, there exists a largest interval .sC; s/, with s0 � sC, on which @sb > 0. This implies
b.sC/ < b.s/ and either

sC D s0 or @sb.sC/D 0:

In the first case we use the choice of small �0 and in the second the local virial identity, to obtain in either
case Z ˇ̌

ry�.sC;y/
ˇ̌2
�.y/ dyC

Z
jyj� 10

b.sC/

j�.sC;y/j
2 e�jyj dy � �

6
7

b.sC/
:

From the upper bound of the refined estimate (3-165), and assuming a> 0 is sufficiently small,

J.sC/�f2.b.sC//� �
5
6

b.sC/
< �

5
6

b.s/
: (3-185)
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Since J is non-increasing, and from the lower bound of refined estimate (3-165), we get

�
5
6

b.s/
� J.s/�f2.b.sC//

&
�Z ˇ̌

ry�.s;y/
ˇ̌2
�.y/ dyC

Z
jyj� 10

b.s/

j�.s;y/j2 e�jyj dy

�
��1�Ca

b.s/ C
�
f2.b.s//�f2.b.sC//

�
:

(3-186)

As noted in the proof of the crude estimate (3-164), we may assume the constant ı2 of (3-157) is small
enough relative to d0 so that 0<@f2=@b2

ˇ̌
b2D0

<1, proving that
�
f2.b.s//�f2.b.sC//

�
> 0. Assuming

a> 0 is sufficiently small, this proves (3-179). �

Proof of Lemma 3.17. Directly from (1-1) we obtain

1
2
@s

�Z
�1

�
.r; z/� .r.t/; z.t//

�A

�
juj2 dx

�
D

1

�A
Im
�Z
rx�1

� y

A

�
� rxu Nu dx

�
�

1

2�2A

Z ��
�s

�
C

As

A

�
yC

@s.r; z/

�

�
� rx�1

� y

A

�
juj2 dx: (3-187)

By the choice of A in (3-104) and the properties of �1 in (3-159), the support of zQb and �1.y=A/ are
disjoint. With the geometric decomposition and a change of variables we can rewrite (3-187) in terms
of j�j2:

1

2

d

ds

Z
�1

� y

A

�
j�j2 �.y/ dy

D
1

A
Im
�Z
rx�1

� y

A

�
� ry� ��.y/ dy

�
C

b

2

Z
y

A
� rx�1

� y

A

�
j�j2 �.y/ dy

�
1

2A

Z ��
�s

�
C bC

As

A

�
yC

@s.r; z/

�

�
� rx�1

� y

A

�
j�j2 �.y/ dy: (3-188)

By Cauchy–Schwarz, the definition of A in (3-104) and the lower bound on �b in (3-103),ˇ̌̌̌
1

A
Im
�Z
rx�1

� y

A

�
� ry� ��.y/ dy

�ˇ̌̌̌

�
1

A

�Z
jr�j2 �.y/ dy

� 1
2
�Z ˇ̌̌

rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy

� 1
2

�
1

2
�

a
2

b

Z
jr�j2 �.y/ dyC

b

40

Z ˇ̌̌
rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy: (3-189)

The factor b
40

is arbitrary by assuming b is sufficiently small. The following term is the principal part of
(3-188). From Equation (3-160) we know the support of �01 and that �01 � 0, so

b

2

Z
y

A
� rx�1

� y

A

�
j�j2 �.y/ dy �

b

5

Z ˇ̌̌
rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy: (3-190)
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Regarding the last line of (3-188), apply preliminary estimates (3-132) and (3-133), the support of �01,
and the definition of A to estimate

1

2A

ˇ̌̌̌�
�s

�
C bC

As

A

�
yC

@s.r; z/

�

ˇ̌̌̌
�

b

40
: (3-191)

Due to the bounds for �01.y=A/ on A� jyj � 2A, and lower bounds for � similar to (2-55), we haveZ ˇ̌̌
rx�1

� y

A

�ˇ̌̌
j�j2 �.y/ dy �

1

6

Z
A�jyj�2A

j�j2 dy: (3-192)

From (3-188) we have proven,

d

ds

Z
�1

� y

A

�
j�j2 �.y/ dy �

b

20

Z
A�jyj�2A

j�j2 dy ��
a
2

b

Z
jr�j2 �.y/ dy: (3-193)

Finally note that by the preliminary estimate (3-133), the fact that r.t/ � 1 from H1.1, a change of
variables, and the log-log relationship (2-54), we have the easy estimateˇ̌̌̌

rs

rN�1.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

ˇ̌̌̌
� �

Z
j Quj2� �2

b : (3-194)

This completes the proof of Lemma 3.17. �

Proof of Lemma 3.19. We multiply the radiative virial identity (3-157) by ı2b

800
and sum with the mass

ejection estimate in Lemma 3.17 to cancel the bad sign of
R
A�jyj�2A j�j

2:

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

�
C
ı2b

800
@sf1

�
ı2

2
b

800
jjjQ�jjjC

b

800

Z
A�jyj�2A

j�j2 dyC
ı2b

1000
�b ��

a
2

b

Z ˇ̌
ry�

ˇ̌2
�.y/ dy: (3-195)

The final term of (3-195) has the bad sign. Recall from (3-156) that � D Q�C Q�b , and from (3-100) that
Q�b is small in PH 1, on the support of which we can estimate �, so that

�
a
2

b

Z ˇ̌
ry�

ˇ̌2
�.y/ dy . �

a
2

b

�
�

1�C�

b
C

Z
jr Q�j2 �.y/ dy

�
� �

1Ca
4

b
C�

a
2

b

Z
jr Q�j2 �.y/ dy; (3-196)

where for the second inequality we require a> 4C�; see Remark 3.4. To rewrite ı2b

800
@sf1, note that

b@sf1 D @s

�
b Qf1.b/�

Z b

0

Qf1.v/ dvC b Im.�;ƒ Q�b/
�
� @sb Im.�;ƒ Q�b/; (3-197)

where Qf1 is the principal part of f1; see (3-163) and (3-158), respectively. Estimate the final term
of (3-197) with a combination of the preliminary estimate (3-132), Hölder, Lemma 3.5, and H1.2.
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Equation (3-195) is transformed into

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dyC

ı2

800

�
b Qf1.b/�

Z b

0

Qf1.v/ dvC b Im
�
�;ƒ Q�b

���
�
ı2

2
b

800

�
jjjQ�jjjC

Z
A�jyj�2A

j�j2 dy

�
C
ı2b

2000
�b: (3-198)

To identify the left-hand side of (3-198) with �@sJ, inject the conservation of mass,
R

RN ju.t/j
2
DR

ju0j
2. As we did for Equation (3-122), rewrite u.t/ with the geometric decomposition, expand the

product, change variables, expand the measure �, divide by rN�2.t/, and take the derivative @s:

@s

�
1

rN�2.t/

Z
�1

� y

A

�
j�j2 �.y/ dy

�
D�@s

�Z ˇ̌
zQb

ˇ̌2
�

Z
jQj2C 2 Re

�
�; zQb

��
� @s

�
1

rN�2.t/

Z
O .�y1/

�ˇ̌
zQb

ˇ̌2
C 2 Re

�
� zQb

���
�

@sr

rN�1.t/

Z
ju0j

2: (3-199)

Through a combination of the preliminary estimates (3-132) and (3-133), the �-equation (3-129), and the
log-log rate (2-54), we obtainˇ̌̌̌

�@s

�
1

rN�2.t/

Z
O .�y1/

�ˇ̌
zQb

ˇ̌2
C 2 Re

�
� zQb

���ˇ̌̌̌
. � < �2

b :

Likewise, ˇ̌̌̌
@sr

r2.t/

ˇ̌̌̌ Z
ju0j

2 . �
Z
ju0j

2 < �2
b :

Inserting (3-199) into (3-198) completes the proof of Lemma 3.19. �

4. Proof of global behavior

In this section we prove that the properties I2.1–I2.3 follow from hypotheses H1.1–H2.3. The follow-
ing properties of the singular dynamic proven in Section 3 will be used: the specific log-log rate, the
geometric decomposition and resulting control on bs , and the integrability of k QukL2

t H 1
x

.

Growth of kukH N . It is left until Section 5 to show that 1=� follows the log-log rate (1-12). Here, we
use the log-log rate in the form H1.3, and the control of bs , to prove directly that ��1.t/ has the same
integrability in time as r

log jlog.T � t/j

T � t
:

Lemma 4.1 (Integrability due to log-log rate[Raphaël and Szeftel 2009, (51)]). Let 0��<2 and �12R.
Then, Z t

0

e
�1

b.�/

��.�/
d� . C.�; �1; ˛

�/; (4-200)

where for fixed � and �1, C.�; �1; ˛
�/ decays much faster than e�

1
˛� as ˛�! 0.
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Proof. The log-log rate, H1.3, gives e
�

10b < jlog�j and �

10b
>

1

100
log s; hence

1

�
> eCe

�
10b

> es
1

100
:

By a change of variables and the almost-monotony of �, H1.5,Z t

0

e
�1

b.�/

��.�/
d� <

Z s

s0

jlog�j
10�1
�

���2.� 0/
d� 0 .

jlog�.t/j
10�1
�

���2.t/
.s.t/� s0/. e.��2/s

1
100 .t/:

Finally, to prove the behavior of C.�; �1; ˛
�/, recall that s.t/� s0 D e

3�
4b0 and b0 < ˛

�. �

Remark 4.2 (Lemma 4.1 for � � 2). From the log-log rate, H1.3, s.t/� s0 . e
10
�

1
b.t/ , so by the same

proof, Z t

0

1

��
. e

10
�

1
b.t/

���2
: (4-201)

This is the primary integrability tool of [Raphaël and Szeftel 2009]. The following improvement will be
crucial.

Lemma 4.3 (refined integrability due to control of bs). Let �> 2 and �� be arbitrary and assume ˛�> 0

is sufficiently small. Then for any �2 > 0 and all t 2 Œ0;Thyp/,Z t

0

e�
��

b.�/

��.�/
d� � C.�; �2; ˛

�/
e�

��

b.t/ eC
�2

b.t/

���2.t/
; (4-202)

where, for fixed � and �2, C.�; �2; ˛
�/! 0 as ˛�! 0.

Proof. To begin, we prove the case �� D 0. By direct calculation,

d

ds

�
1

b

1

���2

�
D

1

���2

�
.�� 2/�

bs

b2
� .�� 2/

�s

�
C b

b

�
:

For ˛� sufficiently small relative to �, from H1.2 and the control of bs , (3-132),

1

��
� C.�/

1

�2

d

ds

�
1

b

1

���2

�
D C.�/

d

dt

�
1

b

1

���2

�
: (4-203)

After integration, we estimate

C.�/
1

b

1

���2
� C.�; �2; ˛

�/
eC

�2
b

���2
:

For those cases where �� ¤ 0, integrate by parts:Z t

0

e�
��

b.�/

��.�/
d� D e�

��

b.�/

Z �

0

1

��.� 0/
d� 0

ˇ̌̌̌t
0

�

Z t

0

��
�

b�

b2
e�

��

b.�/

Z �

0

1

��.� 0/
d� 0

�
d�: (4-204)

Apply the previous case to the first term on the right. For the second term, make the change of variable
b� D bs.�/=�

2.�/ and apply the previous case for some �2�
1
2

. Use (3-132) to approximate bs , and we
have bounded the second term by a small multiple of the left-hand side. �
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Lemma 4.3 is not true for � D 2. As a substitute, we prove a corollary of the integrated Lyapunov
inequality, (3-178).

Corollary 4.4. Let �3 � 0. For all t 2 Œ0;Thyp/,Z t

0

e
�3

b.�/

�
k Qu.�/k2

H 1 C
�b.�/

�2.�/

�
d� . C.˛�/e

�3
b.t/ : (4-205)

Proof. By change of variables and integration by parts,Z t

0

e
�3

b.�/

�
k Qu.�/k2

H 1 C
�b.�/

�2.�/

�
d�

D e
�3

b.�/

Z �

0

�2.� 0/


 Qu.� 0/

2

H 1
x
C�b.� 0/ d� 0

ˇ̌̌̌s.t/
s0

C �3

Z s.t/

s0

bs

b2
e
�3

b.�/

�Z �

0

�2
k Quk2

H 1
x
C�b

�
d�:

Then observe the control on bs in (3-132) and the estimate (3-178). �

Remark 4.5 (optimality of (4-205)). Corollary 4.4 is the best possible integrability of e
ı
b =�2 for constant

ı. As a heuristic, assume that ��
p

T � t and e
1
b � jlog�j � jlog.T � t/j, motivated by the log-log rate

H1.3. The integral
R T jlog.T�t/jı

T�t
dt is only finite for values of ı sufficiently negative. In our case, the

maximum threshold for ı is given dynamically by (3-178).

Next, we translate hypotheses H2.1–H2.3 into a gain of derivative during particular N -dimensional
Sobolev embeddings. Consider a smooth cutoff function with support on ��1.f1g/:

Q�.r; z; �/D

�
1 for j.r; z/� .1; 0/j � 3

4
;

0 for j.r; z/� .1; 0/j � 2
3
:

(4-206)

Lemma 4.6 (consequences of bootstrap hypotheses). Let v D Q�u. Then,Z ˇ̌
r

N�1v
ˇ̌2
jvj2 � C

�
Q�; ˛�

�
kvk2

H N ; (4-207)

where C . Q�; ˛�/! 0 as ˛�! 0. Furthermore, suppose that

N � 1� l1 � l2 � l3 � 0 with l1 C l2 C l3 DN;

k1 � k2 � k3 � 0 with k1C k2C k3 DN � 2:

ThenZ ˇ̌
r

N v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
C

Z ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌

C

Z ˇ̌
r

N�1v
ˇ̌2�
jrvj2Cjvj4

�
� C. Q�/

1

�2NC1
: (4-208)

Proof. For (4-207), apply the N -dimensional Sobolev embeddings H 1 ,!L
2N

N�2 and H
N
2
�1 ,!LN :Z ˇ̌

r
N�1v

ˇ̌2
jvj2 � krN�2vk2

L
2N

N�2

kvk2
LN . kvk2H N kvk

2

H
N
2
�1
:

Then recall hypothesis H2.3.
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We consider in turn the three integrals in (4-208), applying Hölder and N -dimensional Sobolev em-
beddings in each case. For the first,Z ˇ̌

r
N v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
. kvk PH N

Y
jD1;2;3



rlj v




L
2N
lj

. kvk PH N

Y
jD1;2;3

kvk
H

N
2
C

lj
2
Cı
; (4-209)

where 1
2
� ı > 0 is only necessary if l3 D 0. Apply hypotheses H2.1 and H2.2, interpolating if ı ¤ 0.

The resulting bound is of the order 1=�2N .

To deal with the second integral in (4-208), choose rj D 2N
N �2

N �2

1

kj
and qj D 2N

N

NC1

1

lj
, so

X 1

rj
D

N � 1

2N
and

X 1

qj
D

N C 1

2N
:

ThenZ ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
.

Y
jD1;2;3



rkj v




L
rj



rlj v




L
qj

.
Y

jD1;2;3

kvk
H

N
2
C

kj
2

N�3
N�2

Cı
kvk

H
N
2
C

lj
2

N�1
N
Cı
; (4-210)

where, again, 1
2
� ı>0 is only necessary if k2; k3 or l3D0. Apply hypotheses H2.1–H2.3, interpolating

where necessary. The resulting bound is of the order 1=�2N�4.
For the third integral, we writeZ ˇ̌

r
N�1v

ˇ̌2�
jrvj2Cjvj4

�
.


rN�1v



2

L
2N

N�2

�
krvk2

LN Ckvk
4
L2N

�
. kvk2

H N

�
kvk2

H
N
2

Ckvk4

H
N
2
�1

�
: (4-211)

Apply hypotheses H2.1 and H2.3. The resulting bound is of the order 1=�2N .
Finally, use hypothesis H1.3 to estimate the neglected factors of e

1
b by a single factor of 1=�. �

Near the singular ring, and in particular on the support of r�, we do not have the luxury of bootstrap
hypotheses. However, under cylindrical symmetry this region is essentially two-dimensional. Indeed,
two-dimensional type Sobolev embeddings may be applied to functions supported on this region, as we
remark in the next paragraph. Coupled to the geometric decomposition, these embeddings will achieve
precisely the weakest usable bounds.

Remark 4.7 (comparison of H �.R2/ and H �.RN /). Consider �N � f0 < R < r < 2R <1g � RN ,
a fixed cylindrical symmetric compact domain away from the origin, as is, in particular, the support of
r�. Let �2 � R2 denote the obvious projection, and let f denote any cylindrically symmetric function
supported on �N . For � � 0 we claim that

kf kH �.R2/ �R;N;� kf kH �.RN / whenever f 2H
d�e
0
.�N /:
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The canonical linear mapping T W f .x 2 RN / ! f ..r; z/ 2 R2/ is seen, by explicit computation, to
be continuous as a map L2

0
.�N /! L2

0
.�2/ or H

d�e
0
.�N /! H

d�e
0
.�2/. Moreover, the mapping is

compact (see [Lions 1982]), so the same map between the interpolation spaces H �
0
.�N /, H �

0
.�2/ of

the interpolation pairs L2.�N /;H
d�e.�N / and L2.�2/;H

d�e.�2/ is also compact [Persson 1964].

Lemma 4.8 (two-dimensional version of Lemma 4.6). Let v D .1� Q�/u. There exists �5 > 0 such thatZ ˇ̌
r

N�1v
ˇ̌2
jvj2 � C. Q�; zQb/

�
1

�2N
C e�

�5
b kuk2

H N

�
; (4-212)

and thatZ ˇ̌
r

N v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
C

Z ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌

C

Z ˇ̌
r

N�1v
ˇ̌2�ˇ̌
rv
ˇ̌2
Cjvj4

�
� C. Q�; zQb/

�
1

�2NC2
C

e�
�5
b

�2
kuk2

H N

�
; (4-213)

where kj and lj are as in Lemma 4.6. The value of �5 > 0 is uniform over all m> 0 sufficiently small.

Proof. Due to the concentrated support of zQb — see (2-55) — we have

.1� Q�/u.r; z; �/D
1

�
zQb

�
.r; z/� .r0; z0/

�

�
e�i


C .1� Q�/ Qu.r; z/; (4-214)

which we denote by W Cw. Due to Lemma 2.2, the various norms of W are explicit. For example,

rN W




L1
� C. zQb/=�

NC1, where the constant is uniform over all b sufficiently small. To prove
(4-212) and (4-213), we substitute vDW Cw and consider two cases: all factors are W , or, at least one
factor is w. The first case is explicit and trivial. In the second case we will extract a factor that is a power
of kwkH 1 . Assuming m> 0 is sufficiently small, H1.2 will then yield the factor of e��5=b . Throughout
this proof, we preserve the correct multiplicity of 1=� and kukH N by avoiding the Sobolev embedding
into L1.

Make the substitution v DW Cw. To prove (4-212) we need to show the same bound for,Z ˇ̌
r

N�1w
ˇ̌ ˇ̌
r

N�1v
ˇ̌ ˇ̌
v
ˇ̌2
C

Z ˇ̌
r

N�1v
ˇ̌2 ˇ̌
v
ˇ̌
jwj: (4-215)

In the first case, apply the two-dimensional embedding H
1
2 ,!L4, and interpolate:Z ˇ̌

r
N�1w

ˇ̌ ˇ̌
r

N�1v
ˇ̌
jvj2 �



rN�1w




L4



rN�1v




L4 kvk
2
L4

. kwk
H

N� 1
2
kvk

H
N� 1

2
kvk2

H
1
2

.
�
kwk

1� 1
2.N�1/

H N kwk
1

2.N�1/

H 1

�
kvk

H
N� 1

2
kvk2

H
1
2

: (4-216)

Interpolate the norms in v between kukL2 and kukH N . The factor of kwkH 1 provides a factor of
e�

�5
b for some �5> 0, assuming that the constant m> 0 of hypothesis H2.1 is sufficiently small. For the
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second term of (4-215) follow the same strategy, except use the interpolation kwk
H

1
2
. kwk

1
2

H 1 kwk
1
2

L2 .
This completes the proof of (4-212).

Now consider the three left-hand side terms of (4-213) in turn. In each case make the substitution
v DW Cw and assume at least one factor is w.

1. We need to show the same bound forZ ˇ̌
r

Nw
ˇ̌ ˇ̌
r

laW
ˇ̌ ˇ̌
r

lb W
ˇ̌ ˇ̌
r

lc W
ˇ̌
C

Z ˇ̌
r

N v
ˇ̌ ˇ̌
r

lav
ˇ̌ ˇ̌
r

lbv
ˇ̌ ˇ̌
r

lcw
ˇ̌
; (4-217)

where N � 1 � la; lb; lc � 0, with laC lbC lc DN , is some permutation of l1; l2; l3. Integrate the first
term of (4-217) by parts, use Hölder and interpolate:

rN�1w




L2



rlaW rlb W rlc W




H 1 . kwk
1� 1

N�1

H N kwk
1

N�1

H 1



rlaW rlb W rlc W




H 1 :

The norms of W have explicit scaling-consistent bounds of the order .1=�/.2ClaClbClc/. Again, kwkH 1

provides a factor of e�
�5
b for some �5 > 0 and the resulting bound is of the order 1=�2NC1.

The remaining term of (4-217) is more difficult. Choose qa; qb; qc > 0 such thatX
jDa;b;c

1

qj
D

1

2
with

1

qj
<

lj

2
if lj ¤ 0 and

1

qj
< �4 if lj D 0; (4-218)

where 0 < �4� 1 is an arbitrary universal constant. Apply Hölder and two-dimensional Sobolev em-
beddingsZ ˇ̌

r
N v
ˇ̌ ˇ̌
r

lav
ˇ̌ ˇ̌
r

lbv
ˇ̌ ˇ̌
r

lcw
ˇ̌
� kvkH N



rlav




Lqa



rlbv




Lqb



rlcw




Lqc

. kvkH N

Y
jDa;b

kvk
H

2. 1
2
� 1

qj
/Clj
kwk

H
2. 1

2
� 1

qc /Clc
: (4-219)

Due to the choice in (4-218), the final three norms of (4-219) may be interpolated strictly between H N

and H 1, or strictly between H 1 and L2, if lj D 0. We are guaranteed a factor in kwkH 1 ,

.4-219/.

8<:kuk
2
H N kuk

2�C.lc/

H 1 kwk
C.lc/

H 1 if all the lj are nonzero;

kuk
2CC.�4/

H N kuk
2�NC.�4/�C.lc/

H 1 kwk
C.lc/

H 1 if some lj is zero:
(4-220)

For m> 0 sufficiently small (relative to �4), there is a spare factor of e�
�5
b , for some �5> 0. This proves

the bound for the first term on the left in (4-213).

2. Choose r1; r2; r3 > 0 and q1; q2; q3 > 0 according to the rules of (4-218). Then,Z ˇ̌
r

k1v
ˇ̌ ˇ̌
r

k2v
ˇ̌ ˇ̌
r

k3v
ˇ̌ ˇ̌
r

l1v
ˇ̌ ˇ̌
r

l2v
ˇ̌ ˇ̌
r

l3v
ˇ̌
.

Y
jD1;2;3



rkj v




L
rj



rlj v




L
qj : (4-221)

Recall that at least one factor of v in (4-221) is in fact w. Continue with two-dimensional Sobolev
embeddings and interpolation as we did at Equation (4-219). This proves the bound for the second term
on the left in (4-213).
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3. Apply Hölder and two-dimensional Sobolev to getZ ˇ̌
r

N�1w
ˇ̌ ˇ̌
r

N�1v
ˇ̌
jrvj2 �



rN�1w




L4



rN�1v




L4 krvk
2
L4

. kwk
H

N� 1
2
kvk

H
N� 1

2
kvk2

H
3
2

; (4-222)Z ˇ̌
r

N�1w
ˇ̌ ˇ̌
r

N�1v
ˇ̌
jvj4 �



rN�1w




L4



rN�1v




L4 kvk
4
L8

. kwk
H

N� 1
2
kvk

H
N� 1

2
kvk4

H
3
4

: (4-223)

The bound for the third term on the left-hand side of (4-213) follows from interpolation. �

Lemma 4.9 (H N energy identity). Denote the N -th order energy by

EN .u/D

Z ˇ̌
r

N u
ˇ̌2
�

�
2

Z ˇ̌
r

N�1u
ˇ̌2
juj2CRe

Z
.rN�1

Nu/2u2

�
: (4-224)

Then

1

C

ˇ̌̌̌
d

dt
EN .u/

ˇ̌̌̌
�

Z
jr

N ujjrl1ujjrl2ujjrl3ujC

Z
jr

k1ujjrk2ujjrk3ujjrl1ujjrl2ujjrl3uj

C

Z
jr

N�1uj2
�
jruj2Cjuj4

�
; (4-225)

where the right-hand side is implicitly summed over N �1� l1 � l2 � l3 � 0 with l1C l2C l3 DN and
k1 � k2 � k3 � 0 with k1C k2C k3 DN � 2.

Proof. We refer to the right-hand side of (4-225) as error terms of type I, II, and III respectively. By
direct calculation,

1

2

d

dt

�Z ˇ̌̌
r

N u
ˇ̌̌2�
D� Im

Z
r

N .�uCu juj2/rN
Nu

D�2 Im
Z
r.rN�1u juj2/rN

Nu� Im
Z
r.rN�1

Nuu2/rN
Nu

C terms of the form
Z
r

N�2 .ruru u/rN
Nu: (4-226)

The final terms here are errors of type I. Regarding the first term on the right in (4-226),

�2 Im
Z
r.rN�1u juj2/rN

NuD 2 Im
Z
r

N�1u juj2 rN�1� Nu

D

Z
d

dt

�ˇ̌
r

N�1u
ˇ̌2�
juj2� 2 Im

Z
r

N�1u juj2 rN�1. Nu juj2/: (4-227)

Recognize the last term of (4-227) as error of type II and III. Regarding the other term,Z
d

dt

�ˇ̌
r

N�1u
ˇ̌2�
juj2 D

d

dt

�Z ˇ̌
r

N�1u
ˇ̌2
juj2

�
C 2 Im

Z ˇ̌
r

N�1u
ˇ̌2�
�uCu juj2

�
Nu: (4-228)
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After integration by parts, we recognize the final term of (4-228) as being of type I and III. We have
shown that

�2 Im
Z
r
�
r

N�1u juj2
�
r

N
NuD

1

2

d

dt

�Z ˇ̌
r

N�1u
ˇ̌2
juj2

�
;

up to error terms. It is virtually the same calculation to show that,

� Im
Z
r
�
r

N�1
Nuu2

�
r

N
NuD

1

2

d

dt

�
Re
Z
.rN�1

Nu/2u2

�
;

also up to error terms of type I, II, and III. This completes the proof of (4-225). �

Now we simply combine the previous three Lemmas. Equations (4-207) and (4-212) prove that EN �

kukH N . Equations (4-208) and (4-213) control dEN =dt . Integrate the bound on dEN =dtEN using
Lemma 4.3, with �2 < min.�5; 2m/. Choose m0 > 0 to be any value, m� �5=2 < m0 < m. Assuming
˛� is sufficiently small (depending on the choice of m0), we have proved statement I2.1:

Lemma 4.10 (controlled growth of H N ). For all t 2 Œ0;Thyp/,

ku.t/kH N .RN / <
e

m0

b.t/

�N .t/
: (4-229)

Behavior away from both infinity and the singularity. In this section we concentrate on the interface
between the singular set and the truly N -dimensional region that contains the origin. On this interface,
away from r D 0, the dynamics remains essentially two-dimensional and L2-critical

Lemma 4.11 (Two-dimensional endpoint Sobolev control away from the singularity). If �6 > 0 and '
is a smooth cutoff function compactly supported away from both the singular set and the origin,

k'u.t/kL1.RN / � C.�6; '/e
C
�5

b.t/

�
k Qu.t/kH 1.RN /C

�
1
2

b.t/

�.t/

�
: (4-230)

(This is a two-dimensional type of estimate due to the support of '.)

The key feature of Lemma 4.11 is that it lets us avoid the Sobolev embedding H 1C�.R2/ ,!L1.R2/.
At the order of the blowup parameter �, Equation (4-230) is consistent with scaling. The analogue in
the case of radial symmetry, given in [Raphaël 2006; Raphaël and Szeftel 2009], is Strauss’s radial
embedding.

Proof of Lemma 4.11. We adapt an argument of Brezis and Gallouët. Our estimate is for a fixed time
t 2 Œ0;Thyp/. Choose

RD kQu.t/kH 1 C
�

1
2

b.t/

�.t/
� 0:

Consider vD'u as a compactly supported function of two variables, and partition phase space as follows:

jvj � k OvkL1.R2/ D

Z
j�j�R

j Ov.�/j d�C

Z
j�j>R

j Ov.�/j d�
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Let h�i denote
p

1Cj�j2 and rewrite the low frequencies:Z
j�j�R

j Ovj d� D

Z
j�j�R

�
h�i

1
2 j Ovj

1
2
��
j Ovj

1
2
��
h�i�

1
2

�
d� � kvk

1
2

H 1 kvk
1
2

L2

�Z
j�j�R

1

h�i
d�

� 1
2

; (4-231)

Estimate the final integral of (4-231) as
R
j�j�R

1
h�i

d� �
R R

0
1
�
� d� D R: Apply a similar argument for

high frequencies, with parameter �.�6;m/ > 1 to be determined:Z
j�j>R

j Ovj d� D

Z
j�j>R

�
h�i� j Ovj

� 1

h�i�
d� . kvkH �

�Z C1
R

1

h�i2�
� d�

� 1
2

�
1

2.� � 1/
kvkH �

1

R��1
. 1

2.� � 1/

�
kvk2��

H 1 R��1
�� kvk��1

H 2

R2.��1/

�
: (4-232)

Due to hypothesis H2.1 and the �b-estimate (3-103), the final term of (4-232) is bounded by eC
�6

b.t/ for
any choice of � > 1 sufficiently small. �

Definition 4.12 (cutoffs to cover Suppr�). Fix N C4 smooth cylindrically symmetric cutoff functions
 .0/,  .

1
2
/,  .1/, '.N�

1
2
/, '.N�1/, . . . , '.

N
2
/, '.

N
2
� 1

2
/ with the following properties:

1. They cover the support of r�: Each function is 1 on
˚

1
3
< j.r; z/� .1; 0/j< 2

3

	
.

2. The tails do not overlap: The support of each cutoff is contained where the previous cutoff is 1.

3. They are supported away from both the singularity and the origin: The largest support, that of  .0/,
is contained in

˚
1
7
< j.r; z/� .1; 0/j< 6

7

	
.

Lemma 4.13 (annular H
1
2 control: the crucial first step). For all t 2 Œ0;Thyp/,

 . 1

2
/u




H
1
2
. 1

�C.˛�/.t/
; (4-233)

where C.˛�/! 0 as ˛�! 0.

This is the first proof that any behavior better than scaling extends beyond the support of hypotheses
H2.2 and H2.3.

Remark 4.14 (analogue in [Raphaël 2006; Raphaël and Szeftel 2009]). In radial cases, one proves
Lemma 4.13 for H � , � < 1

2
. The subsequent H

1
2 bound — see, for example, [Raphaël 2006, Lemma

10] — should be seen as comparable to the forthcoming Lemma 4.17.

Proof of Lemma 4.13. By direct calculation,

1

2

d

dt



 . 1
2
/u


2

PH
1
2
D Im

�Z
D

1
2

�
u� .

1
2
/
C 2r .

1
2
/
� ru� .

1
2
/u juj2

�
D

1
2

�
 .

1
2
/
Nu
��
: (4-234)

Estimate the first and second terms on the right in (4-234):

D
1
2

�
u� .

1
2
/
�



L2



 . 1
2
/u




H
1
2
� C

�
 .

1
2
/
�

 .0/u



H
1
2



 . 1
2
/u




H
1
2
;

r . 1

2
/
� ru




L2



 . 1
2
/u




H 1 � C
�
 .

1
2
/
�

 .0/u

2

H 1 :
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The nonlinear term of (4-234) does not enjoy any real-valued cancellations, as the operator D does
not have an exact Leibniz property. Apply standard commutation estimates:

D

1
2

�
 .

1
2
/u juj2

�


L2 .



 . 1
2
/u




H
1
2



 .0/u

2

L1.R2/
C


 . 1

2
/u




L4



 .0/u


W

1
2
;4



 .0/u


L1.R2/

.


 . 1

2
/u




H
1
2

�

 .0/u

2

L1.R2/
C


 .0/u



H 1



 .0/u


L1.R2/

�
: (4-235)

From support away from the singularity,  .0/u D  .0/ Qu, and we may apply the endpoint estimate of
Lemma 4.11. Denote



 . 1
2
/u.t/




PH

1
2

by f . We have the simple ODE

1

2

d

dt
.f 2/�C

�
 .

1
2
/
��
f k Qu.t/k

1
2

H 1k Qu.t/k
1
2

L2CkQu.t/k
2
H 1

�
CC

�
�6;  

.0/
�
f 2eC

�6
b.t/

�
k Qu.t/k2

H 1C
�b.t/

�2.t/

�
:

The final term is dominant. After integration, by Corollary 4.4,

 . 1
2
/u.t/




H

1
2
. e

�
C.˛�/C.�6; 

.0//e
C
�6

b.t/

�
: (4-236)

To complete the proof, choose �6 D
�
10

and recall the log-log rate H1.3. �

Remark 4.15 (justification for Lemma 4.11). The open nature of hypothesis H1.3 is an essential feature
of any modulation argument. It is for this reason that we must be free to choose �6. The standard
Brezis–Gallouët estimate, kvkL1.R2/ . kvkH 1

p
log .kvkH 2/; would not suffice to prove Lemma 4.13.

We now reformulate the calculation of (4-234) for repeated application.

Lemma 4.16 (standard Gronwall argument). Let  A be supported where  B � 1, let I be any subin-
terval of Œ0;Thyp/, and let � � 0. Then

 Au




L1

I
H � � C. A/

�

 Bu0




H � CjI jC



 Bu




L2
I

H
�C 1

2
C


 Au juj2




L1

I
H �

�
: (4-237)

Lemma 4.17 (annular H 1 control: propagation of Lemma 4.13). There exists �7 > 0, universal for all
m> 0 sufficiently small, such that for, all t 2 Œ0;Thyp/,



 .1/u.t/


H 1 < C.˛�/

e�
�7

b.t/

�
1
2 .t/

; (4-238)

where C.˛�/! 0 as ˛�! 0.

Proof. Apply (4-237) for �D1, ID Œ0; t <Thyp�,  AD .1/, and BD .
1
2
/. Note that .1/uD .1/ Qu.

Through interpolation and hypotheses H1.2 and H2.1,



 .1/u


L2

I
H

1C 1
2
.
�Z
k Quk

2� 1
N�1

H 1 k Quk
1

N�1

H N

� 1
2

.
�Z

e�.
1
4
� m

N�1/
1
b

1

�N

� 1
2

: (4-239)

Assuming m>0 is sufficiently small, apply integrability Lemma 4.3 for �2>0, also sufficiently small.
Regarding the final term of (4-237), apply Hölder, two-dimensional Sobolev embedding, and interpolate:
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 .1/u juj2


H 1 .



r� . 1
2
/u
� �
 .

1
2
/u
�2



L2 .


r� . 1

2
/u
�



L4



 . 1
2
/u


2

L8 .


 . 1

2
/u




H
3
2



 . 1
2
/u


2

H
3
4

. kuk
3
2

1

N� 1
2

H N



 . 1
2
/u


3� 3

2
1

N� 1
2

H
1
2

. 1

�
3
2

N

N� 1
2

CC.˛�/
.t/

; (4-240)

where the final inequality is due to hypothesis H2.1 and Lemma 4.13. The final exponent is less than 2

for ˛� > 0 sufficiently small and N � 3. Apply Lemma 4.1. �

Remark 4.18 (scheme for the remainder of Section 4). The proof of Lemma 4.17 may be repeated, with
a shrunken cutoff and H

3
2 in place of H 1. However, due to the new version of Equation (4-239), iteration

to higher norms will not yield more than the same 1
2

-derivative improvement over scaling.
Instead, we switch direction. Starting with I2.1, at each stage the previous iterate will give progres-

sively better control on the equivalent of (4-239). Lemma 4.17 will be used to help control the equivalent
of Equation (4-240).

Lemma 4.19 (Moser-type product estimate). Let v 2 H �C 1
2 .Rd / for some � � d

2
�

1
2

, not necessarily
an integer. Then, 

v3




H � . kvk

H
�C 1

2
kvk2

H
d
2

: (4-241)

Lemma 4.20 (I2.2 and I2.3 on the support of r�). For any t 2 Œ0;Thyp/ and any half-integer 1
2
� � < N

2
,

we have 

'.N��/u


H N�� < C.˛�/

e.1C�/
m0

b.t/

�N�2�
; (4-242)

'.N

2
/u.t/




H

N
2
< C.˛�/eC

2m0C�
b.t/ ; (4-243)

'.N

2
� 1

2
/u




H
N
2
� 1

2
< C.˛�/.˛�/

1
5 ; (4-244)

where in each case C.˛�/! 0 as ˛�! 0.

Proof. We prove (4-242) by induction in �. The base case � D 0 is Lemma 4.10. Hypothesize that
(4-242) holds for � � 1

2
, some � � 1

2
. Set � D N � � and apply the standard Gronwall argument for

I D Œ0; t < Thyp�,  A D �.�/ and  B D �.�C
1
2
/,

'.�/u



H � . k�0u0kH � C


'.�C 1

2
/u




L2
t H

�C 1
2
C


'.�/u juj2



L1
t H � : (4-245)

Apply our induction hypothesis to the second term on the right in (4-245):




'.�C 1
2
/u





L2
t H

�C 1
2
.
�Z

I

�
e.1C.��

1
2
// m0

b.�/

�N�2.�� 1
2
/.�/

�2

d�

� 1
2

. e.1C�/
m0

b.t/

�N�2�.t/

�
e
�2�m0

b.t/
� 1

2 : (4-246)

where, since � < N
2

, we applied Lemma 4.3 for some �2 <m0. Examine the final term of (4-245). Note
that, '.�/uD '.�/

�
'.�C

1
2
/u
�
. Recall Remark 4.7, apply Lemma 4.19 in the two-dimensional case, and
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inject both the induction hypothesis and the H 1 control of Lemma 4.17,

'.�/u juj2


H � .



'.�C 1
2
/u




H
�C 1

2



'.�C 1
2
/u


2

H 1

. eC
.1C.�� 1

2
//m0

b

�N�2.�� 1
2
/

e�
2�7

b

�
D

e
.neg/

b

�2

1

�N�2�
; (4-247)

where we made the assumption that m> 0 is sufficiently small relative to �7. Finally, apply Lemma 4.3
for some �2 less than the negative exponent. This completes the proof of (4-242).

To prove (4-243) let � D N
2

. We proceed exactly as above, using (4-242) in place of the induction
hypothesis, and applying Corollary 4.4 in place of Lemma 4.3.

To prove (4-244), let �D N
2
C

1
2

. We proceed exactly as above using (4-243) in place of the induction
hypothesis, and applying Lemma 4.1 in place of Lemma 4.3. �

Improved behavior at infinity. With Lemma 4.20 covering the support of r�, we prove the correspond-
ing result for � by similar methods. Note the argument is now in three dimensions.

Proof of I2.2 and I2.3. We revisit the proof of the standard Gronwall argument. Let I D Œ0; t < Thyp�,
� � 0, and set v D �u. With (1-1), we get

ivt C�vC v jvj
2
D u��C 2r� � ruC .�2

� 1/�u juj2 : (4-248)

Note that the terms on the right-hand side of (4-248) are localized to the support of r�, a region of
two-dimensional character where '.

N
2
� 1

2
/
� 1. By direct calculation,

1
2
k�ukL1

I
H � � k�u0kH � C



�u j�uj2




L1
I

H �

CC.�/
�

'.1/u0




H � CjI jC



'.1/u


L2

I
H
�C 1

2
C


'.1/uj'.1/uj2



L1
I

H �

�
: (4-249)

Consider �DN�� for some �2
�

1
2
; N

2
C

1
2

�
. Due to Definition 4.12, all the conclusions of Lemma 4.20

apply to '.
N
2
� 1

2
/u, which we use in place of an induction hypothesis to control the second line of (4-249),

exactly as we did Equation (4-245). These terms will give the largest contribution.
Finally, examine the term nonlinear in �u. Apply the Moser-type estimate of Lemma 4.19, interpolate,

and inject hypotheses H2.2,

�u j�uj2




L1
I

H N�� .




k�uk

H
N�.�� 1

2
/
k�uk2

H
N
2






L1

I

.

8̂̂̂<̂
ˆ̂:
Z

I

e.1C.��
1
2
// m

b.�/

�N�2.�� 1
2
/.�/

e
2
�

2mC�
b.�/

�
d� for � � N

2
;Z

I

e
3
�

2mC�
b.�/

�
d� for � D N

2
C

1
2
:

(4-250)

Apply Lemma 4.1 for � � N
2

, Corollary 4.4 for � D N
2
�

1
2

, and Lemma 4.3 for N
2
�1� � � 1

2
. Note

that the result of Equation (4-250) is an entire order better than necessary. �
This completes all the deferred proofs necessary to establish Proposition 2.8.
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5. Proof of Theorem 1.6

Proof of norm growth (1-12), (1-13). From Proposition 2.8 we have that Thyp D Tmax, and from (3-143)
we have blowup in finite time. By the failure of local wellposedness we have that �.t/! 0 as t! Tmax.
Recall the approximate dynamics of �, Equation (3-140), which with the control on b implies in particular
that j�s=�j< 1 on Œs0; smax/, which easily integrates to

jlog�.s/j. 1C s: (5-251)

Therefore smax DC1. By direct calculation and a change of variable,

�@t

�
�2 log jlog�j

�
D�

�s

�
log jlog�j

�
2C

1

jlog�j log jlog�j

�
:

The approximate dynamics (3-140) gives

b

2
� �

�s

�
� 2b;

so with the log-log rate H1.3 we have proven that, for some universal constant C > 0 and all t 2 Œ0;Tmax/,

1

C
� �@t

�
�2 log jlog�j

�
� C: (5-252)

For all t 2 Œ0;Tmax/, integrate Equation (5-252). Since � is very small we can estimate

1

C

�
Tmax� t

log jlog.Tmax� t/j

� 1
2

� �.t/� C

�
Tmax� t

log jlog.Tmax� t/j

� 1
2

: (5-253)

We do not prove the exact value of the constant in (1-12); see [Merle and Raphaël 2006, Proposition 6].
Finally, we conclude that (1-13) follows from the log-log relationship H1.3, higher-order norm control
H2.1, and from m> 0 small. As an aside, recall that ds=dt D 1=�2, so with (5-253) one would conclude

1

C
jlog.Tmax� t/j � s.t/� C jlog.Tmax� t/j : (5-254)

Then from the explicit lower and upper bounds for b in (3-137) and (3-177) we obtain

1

C log jlog.Tmax� t/j
� b.t/�

C

log jlog.Tmax� t/j
: �

Proof of stable locus of concentration, (1-9). The preliminary estimate (3-133) implies in particular thatˇ̌̌̌
@s.r; z/

�

ˇ̌̌̌
< 1 (5-255)

on Œs0; s1/. Then by a change of variable, (5-253) and the bound (3-143) on Tmax,Z Tmax

0

j@t .r; z/j dt <

Z Tmax

0

1

�.t/
dt < ı.˛�/: (5-256)

Equation (1-9) follows from choice of initial data C1.1. �
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Proof of regularity away from singular ring, (1-11). Given R> 0, define �
R

to be a suitable modification
of � (2-26), equal to 1 for j.r; z/� .rmax; zmax/j>R. Choose some t.R/ 2 Œ0;Tmax/ such that

A.t/�.t/Cj.r.t/; z.t//� .rmax; zmax/j �R for all t 2 Œt.R/;Tmax/; (5-257)

and hence �
R

uD �
R
Qu for all t 2 Œt.R/;Tmax/. Let t3 2 .t.R/;Tmax� be the largest value such that

�Ru.t/




H 1 < 2



�Ru.t.R//




H 1 for all t 2 Œt.R/; t3/: (5-258)

This choice of t3 > t.R/ is possible since u.t/ is strongly continuous in H 1 at time t.R/ < Tmax. With
interpolation, (5-258) replaces the bootstrap hypotheses H2.2 and H2.3. Repeating the arguments of
Section 4 proves that t3 D Tmax and

k Qu.t/kH 1.j.r;z/�.rmax;zmax/j>R/ < C.R/ for all t 2 Œ0;Tmax/: (5-259)

This yields (1-11). �

Proof of mass concentration, (1-10). Let R> 0. To begin we will prove there exists a residual profile in
L2 away from the singular ring:

Qu.t/! u� in L2
x

�
j.r; z/� .rmax; zmax/j �R

�
as t ! Tmax: (5-260)

Then to establish (1-10) we will prove

u� 2L2.RN / and
Z ˇ̌

u�
ˇ̌2
D lim

t!Tmax

Z
j Qu.t/j2: (5-261)

Let �0 > 0 be arbitrary. Due to (3-178), we may choose t.R/ < Tmax such that

Tmax� t.R/ <
�0

1CC.R=4/
and

Z Tmax

t.R/

Z
jr Quj2 dx dt < �0; (5-262)

where C.R=4/ is the constant from Equation (5-259). We may assume that, for t 2 Œt.R/;Tmax/, u.t/D Qu

on
˚
j.r; z/� .rmax; zmax/j>R=4

	
. Let � > 0 be a parameter to be fixed later, and define

v� .t;x/D u.t C �;x/�u.t;x/: (5-263)

Since t.R/ < Tmax, u.t/ is strongly continuous in L2 at time t.R/. Thus, there exists �0 such thatZ ˇ̌
v� .t.R//

ˇ̌2
dx < �0 for all � 2 Œ0; �0�: (5-264)

Denote a smooth cutoff function �R analogous to �1 (see (3-159) and (3-160)):

�R.r; z/D �
4
1

�
.r; z/� .rmax; zmax/

R

�
: (5-265)

By direct calculation,

1
2
@t

�Z
�Rjv

�
j
2

�
D Im

�Z
r�R �rv

�v� dx

�
C Im

�Z
�Rv

�
�
u juj2.tC�/�u juj2.t/

�
dx

�
: (5-266)
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Regarding the first term on the right in (5-266), from Hölder and our choice of t.R/ we haveZ Tmax

t.R/

ˇ̌̌̌
Im
�Z
r�R � rv

�v� dx

�
dt

ˇ̌̌̌
� C

�Z Tmax

t.R/

12 dt

� 1
2

�
1
2

0
< C�0: (5-267)

Regarding the second term on the right in (5-266), by homogeneity,ˇ̌
�Rv

�
�
u juj2 .t C �/�u juj2 .t/

�ˇ̌
� C

�ˇ̌
�

1
4

R
u.t C �/

ˇ̌4
C
ˇ̌
�

1
4

R
u.t/

ˇ̌4�
: (5-268)

Then, as we did in proving estimate (3-115), apply the Sobolev embedding H
N
4 ,!L4.RN / and inter-

polate, obtaining Z ˇ̌
�

1
4

R
u
ˇ̌4
� C



� 1
4

R
u


2

H
N
2
�1



� 1
4

R
u


2

H 1 :

By (5-259), the uniform control of H
N
2
�1, and our choice of t.R/,Z Tmax

t.R/

ˇ̌
�Rv

�
�
u juj2 .t C �/�u juj2 .t/

�ˇ̌
dt � C�0: (5-269)

Through the integration of (5-266) we have proved thatZ
�R

ˇ̌
v� .t/

ˇ̌2
dx < C�0 for all � 2 Œ0; �0� and t 2 Œt.R/;Tmax� �/: (5-270)

This shows that Qu is Cauchy, which proves (5-260).
We turn to (5-261). Denote the thickness of the toroidal support of the singular profile and radiation

by

R.t/DA.t/�.t/: (5-271)

Recall the definition of A.t/ in (3-104). By the log-log rate H1.3, we have A.t/� jlog.Tmax� t/jC ; in
particular, R.t/! 0 with the bound R.t/� .Tmax� t/

1
2
�ı. Now consider

�R.t/;� D �
4
1

�
.r; z/� .r.�/; z.�//

R.t/

�
;

a family of time-variable cutoffs similar to �R.t/. For fixed time t < Tmax we calculate directly that

1

2
@�

�Z
�R.t/;� ju.�/j

2 dx

�
D

1

R.t/
Im
�Z
rx�R.t/;� � rxu.�/u.�/ dx

�
�

1

2R.t/

Z
@� .r.�/; z.�// �rx�R.t/;� ju.�/j

2 dx; (5-272)

where we use rx�R.t/;� to denote

ry�
4
1.y/

ˇ̌̌
yD

.r;z/�.r.�/;z.�//
R.t/

:
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Regarding the first term on the right in (5-272),ˇ̌̌̌
1

R.t/
Im
�Z
rx�R.t/;� � rxu.�/u.�/ dx

�ˇ̌̌̌
. 1

R.t/
ku.�/kH 1 .

1

A.t/�.t/�.�/
:

Regarding the last term of (5-272), apply the preliminary estimate (3-133),ˇ̌̌̌
1

2R.t/

Z
@� .r.�/; z.�// � rx�R.t/;� ju.�/j

2 dx

ˇ̌̌̌
. 1

A.t/�.t/�.�/

Z
ju0j

2:

Integrate (5-272) in � , and apply the bounds for A and � to obtainˇ̌̌̌Z
�R.t/;Tmax

ˇ̌
u�
ˇ̌2

dx�

Z
�R.t/;t ju.t/j

2 dx

ˇ̌̌̌
� C

1

A.t/�.t/

Z Tmax

t

1

�.�/
d�

�
C

jlog.Tmax� t/jC

�
log jlog.Tmax� t/j

Tmax� t

� 1
2
Z Tmax

t

�
log jlog.Tmax� �/j

Tmax� �

� 1
2

d�

�
1

jlog.Tmax� t/j
C
2

:

(5-273)

The final inequality relied upon Tmax � t < Tmax < ˛�, Equation (3-143), both to approximate the
integral and then to approximate C log jlog.Tmax� t/j < jlog.Tmax� t/j

C
2 . Taking the limit t ! Tmax

we see that Z ˇ̌
u�
ˇ̌2
D lim

t!Tmax

Z
�R.t/;t ju.t/j

2: (5-274)

From the definition of A.t/ and (3-110) we can bound
R
.1��R.t// j Qu.t/j

2 to prove that

lim
t!Tmax

Z
�R.t/;t ju.t/j

2
D lim

t!Tmax

Z
�R.t/;t j Qu.t/j

2
D lim

t!Tmax

Z
j Qu.t/j2I

this shows that the limit in (5-274) exists and establishes (5-261). This completes the proof of (1-10). �

Remark 5.1 (consistency with u� … H 1). By repeating the proof of I2.3, we expect that following the
proof of (5-260) it could be shown that Qu.t/! u� in H 1

�
j.r; z/� .rmax; zmax/j � R

�
. Nevertheless, an

attempt to prove a version of (5-261) in H 1 will fail. Indeed, the last term in (5-272) would require a
bound for jru.�/j on the support of r�, with nothing to take the role of mass conservation.

Appendix

Proof that P is nonempty. Choose r0 D 1, z0 D 0, b0 > 0 small enough to satisfy (2-29), and �0 in the
range of C1.3. Fix some smooth real-valued radially symmetric function f .y/, with support in jyj � 2

and such that kf kH N .R2/� 1, .f;Q/D 1 and, for any � 2C to be determined, such that �0.y/D �f .y/

satisfies the orthogonality conditions (2-30). One can explicitly calculate such an f from zQb0
. With


0 D 0, we now find � D �.b0/ to satisfy C1.4 and the small-mass requirement of C1.2.
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By the choice of �0, we have j.r; z/� .1; 0/j< 1
3

on the support of zQb0
.y/, which includes the support

of f .y/. After a change of variables, we will expand ��0;1.y/ as .1C�0y1/
N�2 so that

�2
0 jE0j D

ˇ̌̌̌
1

2

Z ˇ̌
ry. zQb0

C �f /
ˇ̌2
��0;1.y/ dy �

1

4

Z ˇ̌
zQb0
C �f

ˇ̌4
��0;1.y/ dy

ˇ̌̌̌
.
ˇ̌̌̌
1

2

Z ˇ̌
ry. zQb0

C �f /
ˇ̌2

dy �
1

4

Z ˇ̌
zQb0
C �f

ˇ̌4
dy

ˇ̌̌̌
CO .�0/ ; (5-275)

which is a small correction from the two-dimensional energy. Directly from (1-6) we get

d

dw

�
1

2

Z ˇ̌
ry .QCwf /

ˇ̌2
dy �

1

4

Z
jQCwf j4 dy

� ˇ̌̌̌
wD0

D�Re.f;Q/D�1; (5-276)

so the left-hand side does not depend on the imaginary component of �. By the degenerate energy of
zQb0

we may choose the real part of � of the order j�j ��1�C�

b0
such that E0D 0. Note the choice �D 0

is impossible as the energy of zQb0
alone is too large to satisfy C1.4.

Next we show the momentum requirement of C1.4 is satisfied. Again from the choice of �0, the
support of zQb0

C�f lies well within j.r; z/� .1; 0/j � 1
2

, a region where rx 
.x/ is constant; see (2-34).

With the radial symmetry of zQb and f we have

�0 Im
�Z
rx 

.x/
� rxu0 Nu0

�
D .1; 1/ � Im

�Z
ry

�
zQb0
C �f

��
zQb0
C �f

�
��0;1.y/ dy

�
D 2 Im

Z
�f zQb0

dyCO .�0/ ; (5-277)

and there is a O .�0/ choice of the imaginary part of � such that (5-277) is zero. Finally, we note that
C1.4 is satisfied,

k Qu0kL2.RN / D j�j

�Z
jf .y/j2 ��0;1.y/ dy

� 1
2

< ˛�: (5-278)

The requirements C2.2 and C2.3 are automatic from the support of f . The constant C in C2.1 is due to
Lemma 2.2 and the choice of �. �

Relationship with the classic virial argument. For data u0 2H 1 with finite variance, due to the classic
virial identity, a sufficient condition for blowup is�

Im
�Z

xru0u0

��2

> 2 kxu0k
2
L2 E.u0/: (5-279)

We remark that there exists u0 2 P for which condition (5-279) fails.
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NON-WEYL RESONANCE ASYMPTOTICS FOR QUANTUM GRAPHS

E. BRIAN DAVIES AND ALEXANDER PUSHNITSKI

We consider the resonances of a quantum graph G that consists of a compact part with one or more
infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances
of G in a disc of a large radius. We call G a Weyl graph if the coefficient in front of this leading term
coincides with the volume of the compact part of G. We give an explicit topological criterion for a
graph to be Weyl. In the final section we analyze a particular example in some detail to explain how the
transition from the Weyl to the non-Weyl case occurs.

1. Introduction

Quantum graphs. Let G0 be a finite compact metric graph. That is, G0 has finitely many edges and each
edge is equipped with coordinates (denoted x) that identify this edge with a bounded interval of the real
line. We choose some subset of vertices of G0, to be called external vertices, and attach one or more
copies of Œ0;1/, to be called leads, to each external vertex; the point 0 in a lead is thus identified with
the relevant external vertex. We call the thus extended graph G. We assume that G has no “tadpoles”,
i.e., no edge starts and ends at the same vertex; this can always be achieved by introducing additional
vertices, if necessary. In order to distinguish the edges of G0 from the leads, we will call the former the
internal edges of G.

In L2.G/ we consider the self-adjoint operator H D�d2=dx2 with the continuity condition and the
Kirchhoff boundary condition at each vertex of G; see Section 2 for the precise definitions. The metric
graph G equipped with the self-adjoint operator H in L2.G/ is called the quantum graph. We refer
to the surveys [Kuchment 2004; 2008] for a general exposition of quantum graph theory. Important
earlier work on resonances of quantum graphs has been carried out by Kottos and Smilansky [2003] and
Kostrykin and Schrader [1999] (see also [Kostrykin and Schrader 2006; Kostrykin et al. 2007]), but their
results have little overlap with ours. For more recent progress see [Exner and Lipovský 2010; Davies
et al. 2010].

If the set of leads is nonempty, it is easy to show by standard techniques (see [Ong 2006, Lemma 1],
for example) that the spectrum of H is Œ0;1/. The operator H may have embedded eigenvalues.

Resonances of H . The “classical” definition of resonances is this:

MSC2000: primary 34B45; secondary 35B34, 47E05.
Keywords: quantum graph, resonance, Weyl asymptotics.
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Definition 1.1. We will say that k 2C, k 6D 0, is a resonance of H (or, by a slight abuse of terminology, a
resonance of G) if there exists a resonance eigenfunction f 2L2

loc.G/, f 6� 0, which satisfies the equation

�f 00.x/D k2f .x/; x 2 G; (1-1)

on each edge and lead of G, is continuous on G, satisfies the Kirchhoff boundary condition at each vertex
of G and the radiation condition

f .x/D f .0/eikx

on each lead of G. We denote the set of all resonances of H by R.

Any solution to (1-1) on a lead `D Œ0;1/ satisfies

f .x/D 
`e
ikx
C 
 0`e

�ikx
I

Definition 1.1 requires that there exists a nonzero solution with all coefficients 
 0
`

vanishing. It is easy
to see that all resonances must satisfy Im k � 0; indeed, if k0 with Im k0 > 0 is a resonance then the
corresponding resonance eigenfunction is in L2.G/, so k2

0
is an eigenvalue of H , which is impossible

since k2
0
… Œ0;1/. As we will only be interested in the asymptotics of the number of resonances in large

disks, we exclude the case k D 0 from further consideration. In the absence of leads, the spectrum of H

consists of nonnegative eigenvalues and k 6D 0 is a resonance if and only if k 2R and k2 is an eigenvalue
of H .

It is well known (see [Exner and Lipovský 2007; 2010], for example) that this “classical” definition of
a resonance coincides with the definition via exterior complex scaling (see [Aguilar and Combes 1971;
Simon 1973; Sjöstrand and Zworski 1991]). In the complex scaling approach, the resonances of H are
identified with the eigenvalues of an auxiliary nonselfadjoint operator H.i�/, � 2 .0; �/. The algebraic
multiplicity of a resonance is then defined as the algebraic multiplicity of the corresponding eigenvalue
of H.i�/. We discuss this in more detail in Section 2, where we show that the multiplicity is independent
of � . In particular, we show (in Theorem 2.3) that any k 2 R, k 6D 0, is a resonance if and only if k2 is
an eigenvalue of H and in this case the corresponding multiplicities coincide.

We define the resonance counting function by

N.R/D #fk W k 2R; jkj �Rg; R> 0;

with the convention that each resonance is counted with its algebraic multiplicity taken into account.
Note that the set R of resonances is invariant under the symmetry k!�k, so this method of counting
yields, roughly speaking, twice as many resonances as one would obtain if one imposed an additional
condition Re.k/� 0. In particular, in the absence of leads, N.R/ equals twice the number of eigenvalues
� 6D 0 of H (counting multiplicities) with ��R2.

Main result. This paper is concerned with the asymptotics of the resonance counting function N.R/ as
R!1. We say that G is a Weyl graph if

N.R/D
2

�
vol.G0/RC o.R/; as R!1, (1-2)
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where vol.G0/ is the sum of the lengths of the edges of G0. If there are no leads then H has pure
point spectrum, resonances are identified with eigenvalues of H and Weyl’s law (1-2) may be proved by
Dirichlet–Neumann bracketing. Thus, every compact quantum graph is Weyl in our sense. As we show
below, in the presence of leads this may not be the case.

We call an external vertex v of G balanced if the number of leads attached to v equals the number of
internal edges attached to v. If v is not balanced, we call it unbalanced. Our main result is this:

Theorem 1.2. One has

N.R/D
2

�
WRCO.1/; as R!1, (1-3)

where the coefficient W satisfies 0 �W � vol.G0/. One has W D vol.G0/ if and only if every external
vertex of G is unbalanced.

This theorem shows, in particular, that as the graph becomes larger and more complex the failure of
Weyl’s law becomes increasingly likely in an obvious sense.

Discussion. The simplest example of a graph G with a balanced external vertex occurs when exactly one
lead ` and exactly one internal edge e meet at a vertex. In this case, one can merge e and ` into a new
lead; this will not affect the resonances of G but will reduce vol G0. This already shows that G cannot be
Weyl. Section 6 discusses the another simple example.

Our proof of Theorem 1.2 consists of two steps. The first step is to identify the set R of resonances with
the set of zeros of det A.k/, where A.k/ is a certain analytic matrix-valued function. This identification
is straightforward, but it has a subtle aspect: this is to show that the algebraic multiplicity of a resonance
coincides with the order of the zero of det A.k/. This is done in Sections 4 and 5 by employing a
range of rather standard techniques of spectral theory, including a resolvent identity which involves the
Dirichlet-to-Neumann map.

The function det A.k/ turns out to be an exponential polynomial. By a classical result (Theorem 3.2),
the asymptotics of the zeros of an exponential polynomial can be explicitly expressed in terms of the
coefficients of this polynomial. Thus, the second step of our proof is a direct and completely elementary
analysis of the matrix A.k/ which allows us to relate the required information about the coefficients of
the polynomial det A.k/ to the question of whether the external vertices of G are balanced. This is done
in Section 3.

Resonance asymptotics of Weyl type have been established for compactly supported potentials on the
real line, a class of superexponentially decaying potentials on the real line, compactly supported potentials
on cylinders and Laplace operators on surfaces with finite volume hyperbolic cusps in [Zworski 1987;
Froese 1997; Christiansen 2004; Parnovski 1995] respectively. The proofs rely upon theorems about
the zeros of certain classes of entire functions. Likewise, our analysis uses a simple classical result
(Theorem 3.2) about zeros of exponential polynomials.

The situation with resonance asymptotics for potential and obstacle scattering in Euclidean space in
dimensions greater than one and in hyperbolic space is more complicated and still not fully understood;
the current state of knowledge is described in [Stefanov 2006; Borthwick 2010]. Here we remark only
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that generically the resonance asymptotics in the multidimensional case is not given by the Weyl formula.
We hope that Theorem 1.2 can provide some insight to the multidimensional case.

One may approach the resonances of quantum graphs by studying the scattering matrix. A detailed
account of resonance scattering for quantum graphs from the physics perspective and some associated
numerical calculations can be found in [Kottos and Smilansky 2003]. The graphs considered in that
reference have no balanced external vertices, so the non-Weyl phenomenon does not occur there. Reso-
nances for quantum graphs have also been discussed in [Exner and Lipovský 2010]. Our paper has little
technical content in common with either of those articles, in spite of their common themes.

After this paper was written the main results were extended in [Davies et al. 2010] to graphs with
general self-adjoint boundary conditions at the vertices; the results there emphasise the exceptional nature
of non-Weyl resonance asymptotics.

Example. In Section 6 we consider the resonances of a particularly simple quantum graph which can
be described as a circle with two leads attached to it. Theorem 1.2 says that if the leads are attached at
different points on the circle, the corresponding quantum graph is Weyl, and if they are attached at the
same point, we have a non-Weyl graph. When the two points where the leads are attached move closer
to each other and eventually coalesce, one observes the transition from the Weyl to the non-Weyl case.
We study this transition in much detail. We show that as the two external vertices get closer, “half” of
the resonances move off to infinity. In the course of this analysis, we also obtain bounds on the positions
of individual resonances for this model.

The same example was recently considered by Exner and Lipovský [Exner and Lipovský 2010] subject
to general boundary conditions that include the Kirchhoff’s boundary condition case as a singular limit.
Although some of their results are broadly similar to ours, none of our theorems may be found in [Exner
and Lipovský 2010].

2. Resonances via complex scaling

Here we introduce the necessary notation, recall the definition of resonances via the complex scaling
procedure and show that the resonances on the real axis coincide with the eigenvalues of H .

Notation. Let Eint be the set of all internal edges of G (i.e., the set of all edges of G0) and let Eext be
the set of all leads; we also denote E DEint [Eext. The term “edge” without an adjective will refer to
any element of E. For e 2 Eint, we denote by �.e/ the length of e; i.e., an edge e 2 Eint is identified
with the interval Œ0; �.e/�.

Let V be the set of all vertices of G, let V ext be the set of all external vertices, and let V intD V nV ext;
the elements of V int will be called internal vertices. The degree of a vertex v is denoted by d.v/. The
number of leads attached to an external vertex v is denoted by q.v/; we also set q.v/D 0 for v 2 V int.

If an edge or a lead e is attached to a vertex v, we write v 2 e. If two vertices u; v are connected by
one or more edges, we write u� v.

We denote by G1 the graph G with all the internal edges and vertices removed. We let �0 and �1 be
the characteristic functions of G0 and G1.
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Let f WG!C be a function such that the restriction of f onto every edge is continuously differentiable.
Then for v 2 V , we denote by Nvf the sum of the outgoing derivatives of f at v over all edges attached
to v. If v is an external vertex, we denote by N int

v f (resp. N ext
v f ) the sum of all outgoing derivatives of

f at v over all internal edges (resp. leads) attached to v.
Let zC .G/ be the class of functions f W G!C which are continuous on GnV ext and such that for each

external vertex v the function f .x/ approaches a limiting value (to be denoted by Dint
v f ) as x approaches

v along any internal edge and f .x/ approaches another limiting value (to be denoted by Dext
v f ) as x

approaches v along any lead.
For any finite set A, we denote by jAj the number of elements of A. We will use the identityX

v2V

d.v/D 2jEint
jC jEext

j: (2-1)

Finally, we use the notation CC D fz 2 C W Im z > 0g.

The operator H.~/. The domain of the self-adjoint operator H consists of all continuous functions
f WG!C such that the restriction of f onto any e 2E lies in the Sobolev space W 2

2
.e/, and f satisfies

the Kirchhoff boundary condition Nvf D 0 on every vertex v of G.
For ~ 2 R, let U.~/ W L2.G/! L2.G/ be the unitary operator which acts as identity on L2.G0/ and

as a dilation on all leads `D Œ0;1/:

.U.~/f /.x/D e~=2f .e~x/; x 2 `: (2-2)

Note that U.~/� D U.�~/ for any ~ 2 R. Consider the operator

H.~/D U.~/H U.�~/: (2-3)

It admits an analytic continuation to ~ 2 C, which we describe below.

Definition 2.1. For ~ 2 C, the operator H.~/ in L2.G/ acts according to the formula

.H.~/f /.x/D

�
�f 00.x/ if x 2 G0;

�e�2~f 00.x/ if x 2 G1.
(2-4)

The domain of H.~/ is defined to be the set of all f W G! C which satisfy the following conditions:

(i) The restriction of f onto any e 2E lies in the Sobolev space W 2
2
.e/.

(ii) f 2 zC .G/.

(iii) f satisfies the condition Nvf D 0 at every internal vertex v.

(iv) For any v 2 V ext, one has

Dint
v f � e�~=2Dext

v f D 0; (2-5)

N int
v f C e�3~=2N ext

v f D 0: (2-6)
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In particular, H.0/ is the operator called H so far. For complex ~, the operator H.~/ is in general
nonselfadjoint. A standard straightforward computation shows that for any ~ 2 C the operator H.~/ is
closed and

H.~/� DH.~/: (2-7)

Resonances via complex scaling. The following theorem is standard in the method of complex scaling;
see [Aguilar and Combes 1971; Simon 1973; Sjöstrand and Zworski 1991; Exner and Lipovský 2007]:

Theorem 2.2. The family of operators H.~/, ~ 2 C, is analytic in the sense of Kato (see, for example,
[Reed and Simon 1978, Section XII.2]), and

H.~C ~0/D U.~0/H.~/U.�~0/ for all ~ 2 C and all ~0 2 R: (2-8)

The essential spectrum of H.~/ coincides with the half-line e�2~ Œ0;1/. Let � 2 .0; �/; then the sector
0 < arg� < 2� � 2� , � 6D 0, contains no eigenvalues of H.i�/, and any � 6D 0 in the sector 2� � 2� <

arg�� 2� is an eigenvalue of H.i�/ if and only if �D k2 with k 2R.

For completeness, we give the proof in Section 5.
As � 2 .0; �/ increases monotonically, the essential spectrum e�2i� Œ0;1/ of H.i�/ rotates clockwise,

uncovering more and more eigenvalues �. These eigenvalues are identified with the resonances k of H via
�D k2. If � 6D 0 is an eigenvalue of H.i�/, � 2 .0; �/, 2� �2� < arg�� 2� , Kato’s theory of analytic
perturbations implies that the eigenvalue and associated Riesz spectral projection depend analytically
on � . Noting (2-8) and using analytic continuation it follows that the algebraic multiplicity of � is
independent of � . It is easy to see directly that the geometric multiplicity of � is also independent of � .
The algebraic (resp. geometric) multiplicity of a resonance k is defined as the algebraic (resp. geometric)
multiplicity of the corresponding eigenvalue �D k2 of H.i�/.

Resonances on the real line. The geometric multiplicities of resonances will not play any role in our
analysis. However, we note that for the Schrödinger operator on the real line, resonances can have
arbitrary large algebraic multiplicity [Korotyaev 2005], while their geometric multiplicity is always equal
to one. This gives an example of resonances with distinct algebraic and geometric multiplicities. It
would be interesting to see if one can have distinct algebraic and geometric multiplicities of resonances
for quantum graphs in the situation we are discussing. We have nothing to say about this except for the
case of the resonances on the real line:

Theorem 2.3. (i) If k 2 R, k 6D 0, is a resonance of H then the algebraic and geometric multiplicities
of k coincide.

(ii) Any k 2 R, k 6D 0, is a resonance of H if and only if k2 is an eigenvalue of H and the multiplicity
of the resonance k coincides with the multiplicity of the eigenvalue k2.

Proof. 1. Let � > 0 be an eigenvalue of H with the eigenfunction f . If ` D Œ0;1/ is a lead, then
f .x/D 
`e

ikxC
 0
`
e�ikx , x 2 `, where k2D �. Since f 2L2.`/, we conclude that 
`D 
 0`D 0 and so
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f � 0 on all leads. It follows that f 2 Dom H.i�/ for all � and H.i�/f D �f . This argument proves
that

dim Ker.H.i�/��I/� dim Ker.H ��I/: (2-9)

2. Let f 2 Ker.H.i�/� �I/, � > 0, � 2 .0; �/. Let us prove that f vanishes identically on all leads.
Let �D k2, k > 0. On every lead, we have

f .x/D f .0/ exp.iei�kx/: (2-10)

Consider the difference

!.f /D

Z
G0

jf 0.x/j
2
dx��

Z
G0

jf .x/j2dx D

Z
G0

jf 0.x/j
2
dxC

Z
G0

f 00.x/f .x/dx: (2-11)

Integrating by parts, we get

!.f /D�
X
v2V ext

.N int
v f /D

int
v f :

Using the boundary condition (2-5) and formula (2-10), we obtain

!.f /D ik
X
v2V ext

jDext
v f j

2
q.v/:

By the definition (2-11) of !.f /, we have Im!.f / D 0. This yields that jDext
v f j D 0 on all external

vertices v. By (2-10), it follows that f vanishes identically on all leads.

3. By combining the previous step of the proof with (2-5) and (2-6) we obtain Dint
v f D N int

v f D 0. It
follows that for any f 2Ker.H.i�/��I/, � > 0, � 2 .0; �/, we have f 2Dom H and Hf D �f . This
argument also proves that

dim Ker.H ��I/� dim Ker.H.i�/��I/: (2-12)

4. It remains to prove that if �> 0 is an eigenvalue of H.i�/, � 2 .0; �/, then its algebraic and geometric
multiplicities coincide. Suppose this is not the case. Then there exist nonzero elements f;g2Dom H.i�/

such that H.i�/g D �g and .H.i�/��I/f D g.
By step 2 of the proof, g vanishes on all leads. It follows that on all leads the function f satisfies

(2-10). Next, since g.x/D�f 00.x/��f .x/ on G0, we have

0<

Z
G0

jg.x/j2dx D�

Z
G0

.f 00.x/C�f .x//g.x/ dx: (2-13)

Integrating by parts, we get

�

Z
G0

.f 00.x/C�f .x//g.x/ dx

D�

Z
G0

f .x/
�
g00.x/C�g.x/

�
dxC

X
v2V ext

.N int
v f /.D

int
v g/�

X
v2V ext

.Dint
v f /.N

int
v g/: (2-14)
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Consider the three terms in the right-hand side of (2-14). The first term vanishes since H.i�/g D �g.
Next, since g�0 on G1, we have Dext

v gDN ext
v gD0 for any v 2V ext. By the boundary conditions (2-5)

and (2-6) for g it follows that Dint
v g D N int

v g D 0. Thus, the second and third terms in the right-hand
side of (2-14) also vanish. This contradicts (2-13). �

3. Proof of Theorem 1.2

Here we describe the resonances as zeros of det A.k/, where A.k/ is certain entire matrix-valued func-
tion. Using this characterisation, we prove our main result.

Definition of A.k/. Fix k 2 CC. Let L.k/ denote the space of all solutions f 2L2.G/ to �f 00 D k2f

on G without any boundary conditions. The restriction of f 2 L.k/ to any internal edge e has the form
fe.x/D ˛eeikx Cˇee�ikx , and the restriction of f to any lead ` has the form f`.x/D 
`e

ikx . Thus,
dim L.k/D 2jEintjC jEextj.

Let us describe in detail the set of all conditions on f 2L.k/ required to ensure that f is a resonance
eigenfunction. If fe denotes the restriction of f to an edge e, then we can write the continuity conditions
at the vertex v as

fe.v/D �v for all e 3 v; (3-1)

where �v 2 C is an auxiliary variable. We also have the condition

Nvf D 0; v 2 V: (3-2)

Writing down conditions (3-1), (3-2) for every vertex v 2 V , we obtain

N D
X
v2V

d.v/CjV j D 2jEint
jC jEext

jC jV j

conditions. Our variables are �v, ˛e, ˇe, 
`; altogether we have

jV jC dim L.k/D jV jC 2jEint
jC jEext

j DN

variables. Let �, ˛, ˇ, 
 be the sequences of coordinates �v, ˛e, ˇe, 
` of length jV j, jEintj, jEintj,
jEextj respectively, and let � D .�; ˛; ˇ; 
 /> 2 CN . We may write the constraints (3-1), (3-2) in the
form A� D 0, where A is an N �N matrix. Each row of A relates to one of the constraints, and each
constraint is of the form

y � �C a �˛C b �ˇCg � 
 D 0: (3-3)

If the constraint is of the form (3-2), then y D 0 and a; b;g all contain a multiplicative factor ik which
we eliminate before proceeding. The coefficient ae is 0, ˙1, or ˙eik�.e/, and the coefficient be is 0,
˙1, or ˙e�ik�.e/. The coefficient g` is 0 or 1, and the coefficient yv is 0 or �1.

We have not specified the order of the rows or columns of A.k/. However, the object of importance
in the sequel is the set of zeros of det A.k/, and the choice of the order of rows or columns of A.k/ will
not affect this set.
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Example. As an example, let us display the matrix A.k/ for a graph which consists of two vertices v1

and v2, two edges e1 and e2 of length �1 and �2 and a lead attached at v1. In this case we have, with
zj D eik�j ,

A.k/D

0BBBBBBBBB@

0 0 z1 z2 –z�1
1

–z�1
2

0

0 0 1 1 –1 –1 1

–1 0 0 0 0 0 1

–1 0 1 0 1 0 0

–1 0 0 1 0 1 0

0 –1 z1 0 z�1
1

0 0

0 –1 0 z2 0 z�1
2

0

1CCCCCCCCCA
: (3-4)

Resonances as zeros of det A.k/. Although A.k/ was defined for k 2 CC, we see that all elements of
A.k/ are entire functions of k 2C. Thus, we will consider A.k/ as an entire matrix-valued function of k.

In Sections 4 and 5 we prove:

Theorem 3.1. Any k0 6D 0 is a resonance of H if and only if det A.k0/D 0. In this case, the algebraic
multiplicity of the resonance k0 coincides with the order of k0 as a zero of det A.k/.

The first part of this theorem is obvious: by the construction of the matrix A, we have det A.k0/D 0

iff there exists a nonzero resonance eigenfunction f 2 L.k0/. The part concerning multiplicity is less
obvious. Unfortunately, we were not able to find a completely elementary proof of this part. The proof
we give in Sections 4–5 involves a standard set of techniques from the spectral theory of quantum graphs:
a resolvent identity involving the Dirichlet-to-Neumann map and a certain trace formula.

By Theorem 3.1, the question reduces to counting the total multiplicity of zeros of the entire function
det A.k/ in large discs. As is clear from the structure of the matrix A.k/, its determinant is an exponential
polynomial, i.e., a linear combination of the terms of the type ei�k , � 2R. Thus, we need to discuss the
zeros of exponential polynomials.

Zeros of exponential polynomials. Exponential polynomials are entire functions F.k/, k 2 C, of the
form

F.k/D

nX
rD1

ar ei�r k ; (3-5)

where ar ; �r 2 C are constants. The study of the zeros of such polynomials has a long history; see,
e.g., [Langer 1931] and references therein. For more recent literature see [Moreno 1973]. Some of these
results were rediscovered in [Davies 2003; Davies and Incani 2010; Incani 2009], where they were used
to analyze the spectra of nonselfadjoint systems of ODEs and directed finite graphs. The asymptotic
distribution of the zeros of F depends heavily on the location of the extreme points of the convex hull
of the set [n

rD1
f�r g.

We are only interested in the case in which �r are distinct real numbers. We set ��Dminf�1; : : : ; �ng

and �CDmaxf�1; : : : ; �ng. For R> 0 we denote the number of zeros of F (counting their orders) in the
disc fk 2C W jkj<Rg by N.RIF / . The following classical statement is from [Langer 1931, Theorem 3].
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Theorem 3.2. Let F be a function of the form (3-5), where ar are nonzero complex numbers and �r are
distinct real numbers. Then there exists a constant K <1 such that all the zeros of F lie within a strip
of the form fk W j Im.z/j �Kg. The counting function N.RIF / satisfies

N.RIF /D
�C� ��

�
RCO.1/ as R!C1:

Estimate for N.RI F /. Here we prove the first part of the main Theorem 1.2. Let F.k/ D det A.k/.
From the structure of A.k/ it is clear that F.k/ is given by (3-5) where ar ; �r are real coefficients. By
Theorem 3.2, it suffices to prove that in the representation (3-5) we have

�C � vol.G0/; �� � � vol.G0/: (3-6)

In order to prove (3-6), let us discuss the entries of A.k/ in detail. For simplicity of notation we will not
draw attention in our equations to the fact that all of the matrices below depend on k.

The matrix A has some constant terms and some terms that are exponential in k. The term eik�.e/ can
only appear in the column associated with the variable ˛e and the term e�ik�.e/ can only appear in the
column associated with the variable ˇe. The columns associated with the variables � and 
 contain only
constant terms. Since the determinant is formed from the products of entries of A where every column
contributes one entry to each product, we see that the maximum possible value for the coefficient �r in
(3-5) is attained when every column corresponding to the variable ˛e contributes the term eik�.e/ and
every column corresponding to ˇe contributes a constant term to the product. The maximal value of �r

thus attained will be exactly
P

e2Eint �.e/D vol G0. This proves the first inequality in (3-6). The second
one is proven in the same way by considering the minimal possible value for �r .

Of course, the coefficients a˙ of the terms e˙ik vol.G0/ in the representation (3-5) for det A may well
happen to be zero. Theorem 1.2 will be proven if we show that these coefficients do not vanish if and
only if every external vertex of G is unbalanced. In what follows, for an exponential polynomial F with
the representation (3-5) we denote by a˙.F / the coefficient ar of the term ei�r k , �r D˙ vol.G0/.

Invariance of resonances with respect to a change of orientation. Before proceeding with the proof,
we need to discuss a minor technical point. Our definition of the matrix A.k/ assumes that a certain
orientation of all internal edges of G is fixed. Suppose we have changed the parametrization of an internal
edge e by reversing its orientation. In other words, suppose that instead of the variable x 2 Œ0; �.e/� we
decided to use the variable x0D �.e/�x. We claim that this change will not affect the zeros of det A.k/.

Indeed, let A0.k/ be the matrix corresponding to the new parametrization. The matrix A0.k/ corre-
sponds to the parametrization of solutions f 2 L.k/ on e by f .x/ D ˛0eeikx0

C ˇ0ee�ikx0

instead of
˛eeikxCˇee�ikx . We have�

˛0e
ˇ0e

�
D

�
0 e�ik�.e/

eik�.e/ 0

��
˛e

ˇe

�
; det

�
0 e�ik�.e/

eik�.e/ 0

�
D�1;

and thus det A0.k/D� det A.k/.
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Proof of Theorem 1.2: the balanced case. Assume that a particular external vertex v of G is balanced.
Below we prove that the coefficient aC.det A/ vanishes.

Let us reorder the rows and columns of A by reference to the vertex v. We assume that q internal
edges and q leads are attached to v, q� 2. (The case qD 1 is trivial because one may then merge the lead
with the edge to which it is connected.) Using the invariance of resonances with respect to a change of
orientation (page 738), we can choose an orientation of these internal edges so that they all end at v (i.e.,
v is identified with the point �.e/ of the intervals Œ0; �.e/�). Let the first 2q rows of A be those relating to
the conditions (3-1) for the vertex v and let the .2qC1/-st row be the one relating to the condition (3-2)
for the vertex v. The ordering of the remaining rows does not matter. Let the first 2q columns be related
to the variables 
1; : : : ; 
q; ˛1; : : : ; ˛q and let the .2qC1/-st column be related to the variable �v; see
the definition of the matrix A.k/ in Section 3. The ordering of the remaining columns does not matter.

We write A in the block form

AD

�
B C

D E

�
(3-7)

where B is a .2qC 1/� .2qC 1/ matrix. For example, in the case q D 2 we have

B D

0BBBB@
1 0 0 0 –1

0 1 0 0 –1

0 0 z1 0 –1

0 0 0 z2 –1

1 1 –z1 –z2 0

1CCCCA ; (3-8)

where zr D eik�.er /.
The determinant is the sum of the products of entries of A where every column contributes one entry

to each product. In order for the product to be of the type aCeik vol.G0/, each column corresponding to a
variable ˛e must contribute the entry eik�.e/. Thus, the constant entries of the columns corresponding to
the variables ˛e are irrelevant to our question and can be replaced by zeros; this will not affect the value
of aC.det A/. Noticing that the columns of D corresponding to the variables 
1; : : : ; 
q and �v are all
zeros, we conclude that

aC.det A/D aC.det A0/; where A0 D

�
B C

0 E

�
:

By a general matrix identity, det A0D det B det E. Finally, a simple row reduction shows that det BD 0;
this is easy to see in the case of (3-8). Thus, the coefficient aC.det A/ vanishes. By (3-6), it follows that
�C < vol G0, as claimed.

We note (although this is not needed for our proof) that �� D � vol G0 both in the balanced and in
the unbalanced case; this will be clear from the next part of the proof.

Proof of Theorem 1.2: the unbalanced case. Assume that all external vertices are unbalanced. We will
prove that

�C D vol.G0/; �� D� vol.G0/: (3-9)
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The proof uses the same reduction as (3-7), but the details are somewhat more complicated, since now
we have to consider all external vertices.

We label the external vertices by v1; : : : ; vm, where m D jV extj. For r D 1; 2; : : : ;m, let Gr denote
the graph obtained from G0 by adding all the leads of G that have ends in the set fv1; : : : ; vr g, so that
GmDG. Let Ar denote the constraint matrix A corresponding to the graph Gr and let a˙r D a˙.det Ar /.

By the previous reasoning, the graph Gr is Weyl if and only if aCr 6D 0 and a�r 6D 0. Our claim (3-9)
follows inductively from the following statements:

1. The graph G0 is Weyl.

2. The coefficient a�r is nonzero for all r .

3. For all r , if aC
r�1
6D 0 then aCr 6D 0.

Item 1 holds because the operator H on G0 has discrete spectrum and no other resonances. The
eigenvalues obey the Weyl law by a standard variational argument using Dirichlet–Neumann bracketing.

Let us prove item 3. We reorder the rows and columns of Ar with reference to vr as in the balanced
case (see previous page). We assume that p internal edges e1; : : : ; ep and q leads `1,. . . , `q are attached
to vr , and q 6D p. The first q C p C 1 columns of Ar are those relating to the variables 
1, . . . , 
q

(associated with `1; : : : ; `q), ˛1; : : : ; p̨ (associated with e1; : : : ; ep), and �r . The first qCpC 1 rows
of Ar are those relating to the conditions (3-1) and (3-2) for the vertex vr . As in the balanced case, this
allows us to write

Ar D

�
Br Cr

Dr Er

�
(3-10)

where Br is a .qCpC1/�.qCpC1/ matrix. Writing the matrix Ar�1 in the same way with reference
to the same vertex vr , we obtain

Ar�1 D

�
zBr�1

zCr�1

zDr�1 Er

�
; (3-11)

where zBr�1 is a .p C 1/ � .p C 1/ matrix. In other words, zBr�1, zCr�1, zDr�1 are the matrices Br ,
Cr , Dr with relevant q rows and q columns deleted. The deleted columns correspond to the variables

1; : : : ; 
q , and the deleted rows correspond to the conditions (3-1) associated with the leads `1, . . . , `q .
Note that the matrix Er is the same in (3-10) and (3-11).

Next, just as in the argument used in the balanced case, we notice that

aCr D aC.det Br det Er / and aC
r�1
D aC.det zBr�1 det Er /:

Finally, by a simple row reduction we obtain

det Br D .q�p/z1 : : : zp; (3-12)

det zBr�1 D .�p/z1 : : : zp; (3-13)

where zj D eik�.ej /. It follows that aCr and aC
r�1

differ by a nonzero coefficient .p�q/=p. This proves
item 3.
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Let us prove item 2. Here the argument follows that of the proof of item 3, only instead of keeping
track of the coefficient of eik vol.G0/ we need to keep track of the coefficient of e�ik vol.G0/, and instead
of the variables ˛1; : : : ; p̨ we consider the variables ˇ1; : : : ; p̌. Instead of the coefficient .q � p/ in
(3-12) we get .qCp/, which never vanishes (even if vr is balanced). This proves our claim.

4. A resolvent identity and its consequences

To complete the proof of Theorem 1.2, it remains to provide the proof of Theorem 3.1. Theorem 4.2
below provides an explicit formula for the difference of the resolvents of H.~/ and an auxiliary operator
HD.~/; this formula is given in terms of the Dirichlet-to-Neumann map. This leads immediately to the
trace formula (4-13), which is the key to our proof of Theorem 3.1 in Section 5. The formulae obtained in
this section are “complex-scaled” versions of resolvent identities well known in the theory of boundary
value problems; see, for example, [Gesztesy et al. 2009; 2007]

Dirichlet-to-Neumann map. Throughout this section, we assume that the parameter k 2 CC is fixed.
Let L.k/ be as defined on page 736 and let M.k/D L.k/\C.G/. Each f 2M.k/ determines a vector
� 2 CjV j by restriction to V . Conversely, every � 2 CjV j arises from a function f 2 M.k/; this can be
seen by comparing dim L.k/ with the number of constraints imposed by writing

f .v/D �v; v 2 V:

Finally, the assumption k 2 CC implies that only one function f 2 M.k/ corresponds to each set of
values � 2CjV j (otherwise we would have a complex eigenvalue of the operator with Dirichlet boundary
conditions on all vertices). This shows that we may define the Dirichlet-to-Neumann map

ƒ.k/ W CjV j! CjV j

by
.ƒ.k/�/v DNvf;

where f corresponds to � as described above and Nv was defined in Section 2. This map is a well known
tool in the spectral theory of boundary value problems and has also been used in quantum graph theory
[Ong 2006; Kuchment 2005].

The functions 'v and formulae for ƒ. Given v 2 V , let 'v be the function in M.k/ that satisfies

'v.u/D ıuv for all u; v 2 V:

The functions 'v are given by the following explicit expressions. Let v 2 e, e 2Eint and identify e with
Œ0; �� where v corresponds to the point 0. Then

'v.x/D
sin k.��x/

sin k�
; x 2 Œ0; ��D e: (4-1)

In the same way, if e 2Eext and v is identified with the point 0, then

'v.x/D eikx; x 2 Œ0;1/D e: (4-2)
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If the dependence on k needs to be emphasized, we will write 'v.xI k/ instead of 'v.x/.

Lemma 4.1. If k 2 CC then the map ƒ.k/ is invertible. Its matrix entries are given by

ƒuv D 0 if u 6D v, u 6� v; (4-3)

ƒuv D

X
e2Eint

u;v2e

k

sin k�.e/
if u 6D v, u� v; (4-4)

ƒvv D ikq.v/� k
X

e2Eint

v2e

cot k�.e/ for any v 2 V ; (4-5)

where q.v/ was defined in Section 2.

Proof. Ifƒ.k/�D0, then the corresponding function f 2M.k/�L2.G/ satisfies the Kirchhoff boundary
condition at every vertex, which implies that f 2Dom H and Hf D k2f . Since Spec.H /D Œ0;1/ and
Im k > 0, this implies that f D 0. Therefore ƒ.k/ is invertible.

By the definition of 'v, we have
ƒuv DNu'v:

The formulae for the matrix entries are obtained by combining this with (4-1) and (4-2). �

It follows from Lemma 4.1 that ƒ.k/ can be extended to a meromorphic function of k 2 C whose
poles are all on the real axis, and that for any u; v 2 V one has

ƒuv.k/Dƒvu.k/ and ƒuv.k/Dƒuv.�k/; k 2 C: (4-6)

In the calculations below the expressions ƒ�1
uv will denote the matrix entries of .ƒ.k//�1.

The complex-scaled version of 'v . We will need a version of the functions 'v pertaining to the complex-
scaled operator H.~/. Let k 2 CC and ~ 2 C be such that ke~ 2 CC. Given v 2 V , we define '~v by

'~v .xI k/D

�
'v.xI k/ if x 2 G0;
'v.0I k/e

~=2 exp.ike~x/ if x 2 `D Œ0;1/, ` 2Eext.

Clearly, '~v is a solution to the equation H.~/'~v Dk2'~v on every edge of G. It is also straightforward to
see that '~v 2 zC .G/ and '~v satisfies the boundary condition (2-5) on every external vertex. For f 2 zC .G/,
let us denote

N ~
v f D

�
Nvf if v 2 V int,
N int
v f C e�3~=2N ext

v f if v 2 V ext.

It is straightforward to see that

ƒuv DN ~
u '

~
v for all u; v 2 V; (4-7)

where the left-hand side depends on k but not on ~. Moreover,

'~v .xI k/D '
~
v .xI �k/: (4-8)
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The resolvent identity. Let HD be the self-adjoint operator in L2.G/ defined by HDf D �f
00 with a

Dirichlet boundary condition at every vertex of G. Given ~ 2C, we define the “complex-scaled” version
of HD as follows; HD.~/ is the operator acting in L2.G/ defined by

.HD.~/f /.x/D

�
�f 00.x/ if x 2 G0;

�e�2~f 00.x/ if x 2 G1,

with a Dirichlet boundary condition at every vertex of G. Of course, HD.~/ splits into an orthogonal sum
of operators acting on L2.e/ for all e 2E. We see immediately that in addition to its essential spectrum
e�2~ Œ0;1/, the operator HD.~/ has a discrete set of positive eigenvalues with finite multiplicities.

We set
R~

D.k/D .HD.~/� k2I/�1; R~.k/D .H.~/� k2I/�1;

whenever the inverse operators exist. We denote by R~.kIx;y/, where x;y 2 G, the integral kernel of
the resolvent R~.k/; we define R~

D
.kIx;y/ from R~

D
.k/ analogously.

The fact that HD.~/ and H.~/ coincide except for different boundary conditions at each of the jV j
vertices indicates that the difference of the two resolvents should have rank jV j. Our next theorem
makes this explicit. Formulae of this type are well known in the theory of boundary value problems; see
[Gesztesy et al. 2009; 2007], for example. In the context of graphs, similar considerations have been
used in [Kostrykin and Schrader 1999; 2006; Kostrykin et al. 2007; Ong 2006].

Theorem 4.2. For any k 2 CC and any ~ 2 C, such that ke~ 2 CC, we have

R~.kIx;y/�R~
D.kIx;y/D�

X
u;v2V

ƒ�1
uv .k/'

~
v .xI k/'

~
u .yI k/; (4-9)

for any x;y 2 G.

Proof. 1. Let zR~.k/ be the operator in L2.G/ with the integral kernel given by

zR~.kIx;y/DR~
D.kIx;y/�

X
u;v2V

ƒ�1
uv .k/'

~
v .xI k/'

~
u .yI k/:

We need to prove that zR~.k/ is a bounded operator, that it maps L2.G/ into Dom H.~/ and that the
identities

.H.~/� k2I/ zR~.k/D I (4-10)

zR~.k/.H.~/� k2I/D I (4-11)

hold true. First note that since '~v decays exponentially on all leads, the boundedness of zR~.k/ is obvious.
Next, using (4-6), (4-8) one obtains zR~.k/� D zR~.�k/. From here and (2-7) by taking adjoints we see
that (4-11) is equivalent to

.H.~/� .�k/2/ zR~.�k/D I

which is (4-10) with �k, ~ instead of k, ~. We note that k 2 CC, ke~ 2 CC if and only if �k 2 CC,
�ke~ 2 CC. Thus, (4-11) follows from (4-10).
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2. It suffices to prove that for a dense set of elements f 2 L2.G/, the inclusion zR~.k/f 2 Dom H.~/

and the identity

.H.~/� k2I/ zR~.k/f D f (4-12)

hold true. Let f be from the dense set of all continuous functions compactly supported on G and vanishing
near all vertices of G. Let us check that the function gD zR~.k/f belongs to Dom H.~/. It is clear that
the restriction of g onto any edge e of G belongs to the Sobolev space W 2

2
.e/. Thus, it suffices to check

that g belongs to zC .G/ and satisfies the boundary conditions (2-5) and (2-6).
Denote g0 D R~

D
.k/f . Since g0 2 Dom HD.~/, g0 vanishes on all vertices. Therefore g0 lies in

zC .G/ and satisfies (2-5) at every external vertex v. As mentioned on page 742, the functions '~v also
belong to zC .G/ and satisfy (2-5) at every external vertex v. Thus, g also has these properties.

Our next task is to prove that the boundary condition (2-6) is satisfied for the function g. Suppose
that f is supported on a single edge, which we identify with Œ0; ��. Then the integral kernel of R~

D
.k/

can be explicitly calculated, which gives

g00.0/D

Z �

0

sin k.��x/

sin k�
f .x/ dx:

Similarly, if f is supported on a lead Œ0;1/, then a direct calculation shows that

g00.0/D e2~

Z 1
0

exp.ike~x/f .x/ dx:

Combining this, we see that for any w 2 V ext we have

N ~
wg0 D

Z
G
f .x/'~w.x/ dx:

Using the last identity and (4-7), for any w 2 V ext we get:

N ~
wg D

Z
G
f .x/'~w.x/ dx�

X
u;v2V

ƒ�1
uvƒwv

Z
G
f .x/'~u .x/ dx D 0;

and so the boundary condition (2-6) is satisfied for g. Thus, g 2 Dom H.~/, as required.

3. It remains to note that the identity (4-12) follows from the fact that R~
D

is the resolvent of HD.~/ and
the fact that '~v satisfies the equation H.~/'~v D k2'~v on every edge and lead of G. �

A trace formula. The trace formula (4-13) below results by calculating the traces of both sides of (4-9).
Since the right-hand side of (4-9) is a finite rank operator, the trace is well defined; the fact that the value
of (4-13) does not depend on ~ can be proved by complex scaling, but the direct proof is almost as easy.

The identity (4-13) below can be rephrased by saying that the (modified) perturbation determinant of
the pair of operators H.~/, HD.~/ equals detƒ.k/. Statements of this nature (for ~D 0) are well known
in the theory of boundary value problems; see e.g. [Carron 2002] and references therein. The key to our
proof of Theorem 3.1 will be (4-13) and Lemma 5.1, in which det A.k/ and detƒ.k/ are related.
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Theorem 4.3. For any k 2 CC and any ~ 2 C, such that ke~ 2 CC, we have

Tr.R~.k/�R~
D.k//D�

d
dk

detƒ.k/
2k detƒ.k/

: (4-13)

In particular, the left-hand side is independent of ~.

Proof. 1. Theorem 4.2 yields

Tr.R~.k/�R~
D.k//D�

X
u;v2V

ƒ�1
uv .k/�

~
uv.k/; (4-14)

where

�~uv.k/D

Z
G
'~u .xI k/'

~
v .xI k/dx: (4-15)

We next compute the coefficients �uv explicitly. If v 6D u and v 6� u then supp'~v \ supp'~u D¿ and so
�uv D 0. If v 6D u and v � u then by (4-1)

�uv D

X
e2Eint

u;v2e

Z �

0

sin kx

sin k�.e/

sin k.�.e/�x/

sin k�.e/
dx D

1

2k

X
e2Eint

u;v2e

sin k�.e/� k�.e/ cos k�.e/

.sin k�.e//2
;

and finally,

�vv D
X

e2Eint

v2e

Z �.e/

0

�
sin kx

sin k�.e/

�2

dxC q.v/

Z 1
0

.e~=2 exp.ike~x//2dx

D
1

2k

X
e2Eint

v2e

k�.e/� cos k�.e/ sin k�.e/

.sin k�.e//2
C

i

2k
q.v/:

2. Noting that �uv depend on k but not on ~, a direct calculation using (4-3)–(4-5) yields

1

2k

d

dk
ƒuv.k/D �uv.k/:

It follows that

Tr.R~.k/�R~
D.k//D�

X
u;v2V

ƒ�1
uv .k/

1

2k

d

dk
ƒuv.k/D�

1

2k
Tr.ƒ�1.k/

d

dk
ƒ.k//D�

d
dk

detƒ.k/
2k detƒ.k/

;

as required. �

5. Proof of Theorems 3.1 and 2.2

Calculation of det A.k/. Given k 2 C, we define

ı.k/D
Y

e2Eint

.k sin k�.e//: (5-1)

Let A.k/ be the matrix defined on page 736.



746 E. BRIAN DAVIES AND ALEXANDER PUSHNITSKI

Lemma 5.1. For any k 2 CC, we have the identity

det A.k/D˙
2jE

intji jE
intj�jV j

k jE
intjCjV j

ı.k/ detƒ.k/; (5-2)

where the sign˙ depends on the ordering of the rows and columns of the matrix A.k/.

Proof. 1. Let us order the rows and the columns of A.k/ in such a way that the first jV j rows correspond
to the conditions Nv.u/D 0, and the first jV j columns correspond to the variables �. Then A.k/ can be
written in the block form as

AD

�
0 M

�N P

�
(5-3)

where 0 is the jV j�jV j zero matrix and P is a .2jEintjCjEextj/�.2jEintjCjEextj/matrix. The elements
of N are 0 or 1, the elements of M are 0, ˙1, ˙e˙ik�, and the elements of P are 0, ˙1, or e˙ik�. For
example, the matrix (3-4) is written in this form.

2. Let us reorder the rows of P in such a way that any two constraints associated with the continuity
conditions at the two endpoints of the same edge follow one another. Let us also reorder the columns
of P such that each variable ˇe follows the corresponding variable ˛e. For example, the block P of the
matrix (3-4) after such reordering will be0BBBB@

1 1 0 0 0

z1 z�1
1

0 0 0

0 0 1 1 0

0 0 z2 z�1
2

0

0 0 0 0 1

1CCCCA :
In general, after this reordering, P assumes a block-diagonal structure with blocks either of size 2� 2

with elements �
1 1

eik� e�ik�

�
or of size 1� 1 with the element 1. From here it follows that

det P D˙
Y

e2Eint

.2i sin.k�.e///D˙.2i/jE
intjk�jE

intjı.k/: (5-4)

In particular, since k 2 CC, the matrix P is invertible.

3. By applying the Schur complement method to (5-3) one obtains

det AD det P det.MP�1N /: (5-5)

Let us prove that
ikMP�1N Dƒ.k/: (5-6)

Let � 2 CjV j and let aD P�1N �. The vector a represents a set of parameters ˛, ˇ, 
 . Let f 2L.k/ be
the solution with this set of parameters. The equation PaDN � implies that the solution f is continuous
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on G and satisfies f .v/D �v for any vertex v. Next, the coordinates of the vector ikMP�1N �D ikMa

are given by
ik.Ma/v DNvf:

This shows that ikMaDƒ.k/�, as required.

4. By combining (5-4)–(5-6) one obtains

det A.k/D det P .k/ det.M.k/P�1.k/N.k//D˙.2i/jE
intjk�jE

intjı.k/ det..ik/�1ƒ.k//;

which yields (5-2) immediately. �

Proof of Theorem 3.1. 1. Let k 2CC and let �0 and �1 be defined as in Section 2. Clearly, �0RD.k/�0

is an orthogonal sum of resolvents of the operators �d2=dx2 on the intervals .0; �.e//, e 2 Eint, with
Dirichlet boundary conditions. For each such operator we have that .�d2=dx2 � k2/�1 is trace class
and

Tr.�d2=dx2
� k2/�1

D

1X
nD0

�
.�n=�/2� k2

��1
D�

1

2k2
�

1

2k

1X
nD�1

1

k ��n=�

D�
1

2k2
�
�

2k
cot.k�/D�

d
dk
.k sin.k�//

2k.k sin.k�//
:

Summing over all edges, a direct calculation shows that �0RD.k/�0 is a trace class operator and

Tr.�0RD.k/�0/D�

d
dk
ı.k/

2kı.k/
: (5-7)

2. Let k 2 CC, ke~ 2 CC. It is easy to see that the resolvent R~
D
.k/ commutes with �0, �1 and that

�0R~
D.k/�0 D �0RD.k/�0:

Therefore we have

R~.k/��1R~
D.k/�1 DR~.k/�R~

D.k/C�0RD.k/�0: (5-8)

By combining Theorem 4.3 and (5-8), we obtain

Tr.R~.k/��1R~
D.k/�1/D�

d
dk

detƒ.k/
2k detƒ.k/

�

d
dk
ı.k/

2kı.k/
D�

d
dk
.ı.k/ detƒ.k//

2kı.k/ detƒ.k/
: (5-9)

Using Lemma 5.1, we then obtain

Tr.R~.k/��1R~
D.k/�1/D

jEintjC jV j

2k2
�

d
dk

det A.k/

2k det A.k/
; (5-10)

for all k 2 CC and ke~ 2 CC.

3. The right-hand side of (5-10) is a single-valued meromorphic function of k 2 C. Let �~.k/ be the
left-hand side of (5-10). For each fixed ~ 2C, the function �~.k/ is meromorphic in C with the cut along
the line determined by the condition k2 2 �ess.H.~//D e�2~ Œ0;1/. In other words, �~ is meromorphic
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and single-valued in each of the two half-planes Im ke~ > 0 and Im ke~ < 0. By the uniqueness of
analytic continuation, for each ~ the identity (5-10) extends to all k such that Im ke~ > 0.

4. Let k0 2R with the algebraic multiplicity m.k0/ � 1 and let � 2 .0; �/ with �� < arg k0 � 0. Then
Im k0ei� > 0 and so the identity (5-10) with ~ D i� holds for all k near k0. If 
 is a sufficiently small
circle with centre at k0, then the multiplicity m.k0/ equals the rank, or equivalently the trace, of the
Riesz spectral projection

P � .k0/D�
1

2� i

Z



Ri� .k/2k dk: (5-11)

Next, since the operator HD.i�/ restricted to L2.G1/ has no eigenvalues, the operator valued function
�1Ri�

D
.k/�1 is analytic for Im kei� 6D 0. It follows that

�
1

2� i

Z



�1Ri�
D .k/�12k dk D 0:

By taking the trace of the difference of the last two equations and using (5-10) we obtain

m.k0/D�
1

2� i

Z



Tr.Ri� .k/��1Ri�
D .k/�1/2k dk D

1

2� i

Z



d
dk

det A.k/

det A.k/
dk:

Therefore m.k0/ equals the order of the zero of det A.k/ at k D k0, as required. �

Proof of Theorem 2.2. This theorem is well known but we give its proof for completeness.

1. First note that by Theorem 4.2, the difference of the resolvents of H.~/ and HD.~/ is a finite rank
operator. By Weyl’s theorem on the invariance of the essential spectrum under a relatively compact
perturbation we obtain

�ess.H.~//D �ess.HD.~//D e�2~ Œ0;1/:

2. The fact that the family H.~/ is analytic in the sense of Kato follows again from Theorem 4.2, since
HD.~/ is analytic in the sense of Kato and each of the functions '~v is analytic in ~.

3. The identity (2-8) can be checked by a direct calculation.

4. Let k 2R and let f be the corresponding eigenfunction. For any � 2 .0; �/ with �� < arg k � 0, let
f� be the function defined formally by f� D U.i�/f . More precisely, we set f� D f on G0 and

f� .x/D f .0/e
i�=2 exp.ikei�x/ (5-12)

for x on any lead ` D Œ0;1/. By the choice of � , we have Im kei� > 0 and so f� 2 L2.G/. A
straightforward inspection shows that f� 2 Dom H.i�/ and H.i�/f� D k2f� .

5. Conversely, let � 62 e�2i� Œ0;1/ be an eigenvalue of H.i�/ for � 2 .0; �/. Write � D k2 with
Im kei� > 0. Then, for the corresponding eigenfunction g of H.i�/ we have g.x/D g.0/ exp.ikei�x/

on any lead of G. A direct inspection shows that g D f� in the same sense as (5-12), where f is a
resonance eigenfunction. Thus, k 2R and in particular, Im k � 0. It follows that 2��2� < arg k2� 2� .

�
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6. An example

Here we consider resonances of a particular simple graph G.c/, where c 2 Œ0; 1� is a certain geometric
parameter. The graph G.c/ was also considered in [Exner and Lipovský 2010, Section 4], but with
different boundary conditions at the vertices. The graph G.c/ is Weyl for c < 1 and non-Weyl for c D 1.
This section has two goals. The first one is to discuss the transition between the Weyl and the non-
Weyl cases in order to throw new light on the failure of the Weyl law. Our second goal is to obtain
rigorous bounds on the locations of individual resonances of G.c/, which was not addressed by Exner
and Lipovský.

Definition of G.c/. Given c 2 Œ0; 1/, we consider the graph G0.c/ which consists of two vertices v1 and
v2 and two edges e1D Œ0; �1�, �1D .1�c/� , and e2D Œ0; �2�, �2D .1Cc/� . The vertex v2 is identified
with the point 0 of e1 and with the point 0 of e2, and the vertex v1 is identified with the point �1 of e1 and
with the point �2 of e2. Thus, the graph G0.c/ is simply a circle with the circumference vol G0.c/D 2�

for all c. We attach a lead `1 at v1 and a lead `2 at v2 and denote the thus extended graph by G.c/.
Geometrically, G.c/ is a circle with two leads attached to it. Finally, for c D 1, let G.c/ be the circle of
length 2� with two leads attached at the same point.

We will denote by H.c/ the operator �d2=dx2 acting in L2.G.c// subject to the usual continuity and
Kirchhoff boundary conditions at the vertices v1 and v2. By Theorem 1.2, the graph G.c/ is Weyl if and
only if c < 1. At the same time, the graph G.1/ can be regarded as the limit of G.c/ as c ! 1 in an
obvious geometric sense, so we need to explain what happens to resonances as c! 1. As we will see,
roughly speaking, a half of the resonances of H.c/ move off to infinity as c! 1. We will obtain bounds
on the curves along which the resonances move as c increases from 0 to 1.

The matrix A.k; c/ for G.c/. Let us display the constraints (3-3) corresponding to the graph G.c/; the
matrix A.k; c/ will be built up of the rows corresponding to these constraints. We denote zj D eik�j =2,
j D 1; 2. The constraints corresponding to the vertex v1 are

˛1z2
1 Cˇ1z�2

1 � �1 D 0; (R1)

˛2z2
2 Cˇ2z�2

2 � �1 D 0; (R2)


1� �1 D 0; (R3)

�˛1z2
1 Cˇ1z�2

1 �˛2z2
2 Cˇ2z�2

2 C 
1 D 0: (R4)

The first three lines are the continuity conditions, and the last is the requirement that the sum of the
outgoing derivatives vanishes. Similarly, the constraints corresponding to the vertex v2 are

˛1Cˇ1� �2 D 0; (R5)

˛2Cˇ2� �2 D 0; (R6)


2� �2 D 0; (R7)

˛1�ˇ1C˛2�ˇ2C 
2 D 0: (R8)
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We list these constraints in the order R1, R5, R2, R6, R3, R7, R4, R8, and order the variables as ˛1,
ˇ1, ˛2, ˇ2, 
1, 
2, �1, �2. This leads to the matrix

A.k; c/D

0BBBBBBBBBBB@

z2
1

z�2
1

0 0 0 0 –1 0

1 1 0 0 0 0 0 –1

0 0 z2
2

z�2
2

0 0 –1 0

0 0 1 1 0 0 0 –1

0 0 0 0 1 0 –1 0

0 0 0 0 0 1 0 –1

–z2
1

z�2
1

–z2
2

z�2
2

1 0 0 0

1 –1 1 –1 0 1 0 0

1CCCCCCCCCCCA
:

Calculation of det A.k; c/. The graph G.c/ has a reflection symmetry with respect to the midpoints of
e1 and e2. This allows to decompose the space L.k/ into the direct sum of the subspaces corresponding
to even and odd functions with respect to this symmetry. We use this decomposition to represent the
matrix A.k; c/ in a block-diagonal form where the blocks correspond to the even and odd solutions.
More precisely, let

T1 D

0BBBBBBBBBBB@

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 –1 0 0 0 0 0 0

0 0 1 –1 0 0 0 0

0 0 0 0 1 –1 0 0

0 0 0 0 0 0 1 –1

1CCCCCCCCCCCA
; T2 D

0BBBBBBBBBBB@

z�1
1

0 0 0 z�1
1

0 0 0

z1 0 0 0 –z1 0 0 0

0 z�1
2

0 0 0 z�1
2

0 0

0 z2 0 0 0 –z2 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 –1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 –1

1CCCCCCCCCCCA
:

A straightforward calculation shows that det T1 D det T2 D 16. Next, let zA.k; c/ D T1A.k; c/T2; the
reader is invited to check that the matrix zA.k/ can be written as

zAD 2

�
zAeven 0

0 zAodd

�
;

with blocks

zAeven D

0BB@
2C1 0 0 �1

0 2C2 0 �1

0 0 1 �1

�2iS1 �2iS2 1 0

1CCA ; zAodd D

0BB@
2iS1 0 0 �1

0 2iS2 0 �1

0 0 1 �1

�2C1 �2C2 1 0

1CCA ;
where we have used the notation Cj D cos.k�j=2/, Sj D sin.k�j=2/, j D 1; 2. Straightforward calcu-
lations of det. zAeven/ and det. zAodd/ now yield

Theorem 6.1. For all k 2 C and all c 2 Œ0; 1/ one has

det A.k; c/D 4Feven.k; c/Fodd.k; c/;
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where

Feven.k; c/D i cos.kc�/C i cos.k�/C 2 sin.k�/;

Fodd.k; c/D i cos.kc�/� i cos.k�/� 2 sin.k�/:

We will call the zeros of Feven.�; c/ (resp. of Fodd.�; c/) the even (resp. odd) resonances. It is not difficult
to check that the resonance eigenfunctions which correspond to even/odd resonances are even/odd with
respect to the symmetry of the graph G.c/. By Theorem 2.3, the real even/odd resonances are actually
eigenvalues of H.c/ and therefore we will call them even/odd eigenvalues.

Finally, it is not difficult to check that the resonances of H.1/ are given, as expected, by the zeros of
det A.k; 1/. In fact, in this case we have Fodd.k; 1/D�2 sin.k�/ and

Feven.k; 1/D 2ie�ik�
6D 0 for all k 2 C: (6-1)

Thus, the resonances of H.1/ coincide with the solutions to sin.k�/D 0, i.e., they are given by k 2 Z.
By Theorem 2.3, these resonances (for k 6D 0) coincide with the eigenvalues of H.1/ and all of them
have multiplicity one. This shows that for c D 1 we have the asymptotics (1-3) with W D � D 1

2
vol G0.

Locating the odd resonances.

Theorem 6.2. (i) For any c 2 Œ0; 1� , any n 2 Z and any y � 0 one has Fodd.nC
1
2
� iy; c/ 6D 0.

(ii) For any c 2 Œ0; 1� and any k D x� iy with y > jxj=
p

3 one has Fodd.k; c/ 6D 0.

Proof. (i) By an explicit calculation,

Fodd.nC
1
2
� iy; c/D i cos..nC 1

2
� iy/�c/C .�1/n sinh.y�/� 2.�1/n cosh.y�/DACB;

where

jAj D jcos..nC 1
2
� iy/�c/j

D jcos..nC 1
2
/�c/ cosh.y�c/C i sin..nC 1

2
/�c/ sinh.y�c/j

� cosh.y�c/� cosh.y�/

and
jBj D 2 cosh.y�/� sinh.y�/D cosh.y�/C e�y� :

We deduce that
jFodd.nC

1
2
� iy; c/j � jBj � jAj � e�y� > 0:

(ii) We start by observing that jFodd.k; c/j � 2A�B where

AD jsin.k�/j; B D jcos.k�/� cos.k�c/j D

ˇ̌̌̌Z 1

c

k� sin.k�s/ ds

ˇ̌̌̌
:

If u 2 R and v � 0 then

sin.u� iv/D sin.u/ cosh.v/� i cos.u/ sinh.v/:
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Therefore
sinh.v/� jsin.u� iv/j � cosh.v/:

We deduce that A� sinh.y�/ and

B �

Z 1

c

jkj� cosh.y�s/ ds D
jkj

y
.sinh.y�/� sinh.y�s//�

jkj

y
sinh.y�/:

These bounds imply that 2A�B > 0 if 2y > jkj, which yields the theorem immediately. �

It follows that all odd resonances are located in the rectangles

…odd
n D

�
x� iy W jx� nj< 1

2
; 0� y �

2jnjC1

2
p

3

�
; n 2 Z:

The following statement, in combination with Rouche’s theorem, shows that each of the rectangles …odd
n

contains exactly one odd resonance of algebraic multiplicity one for all c 2 Œ0; 1�.

Theorem 6.3. If c D 0 there is a resonance of algebraic multiplicity one at k D n� i log.3/=� for every
odd n 2 Z and an eigenvalue of multiplicity one at k D n for every nonzero even n 2 Z. There is also a
resonance of algebraic multiplicity one at k D 0. No other odd resonances or eigenvalues exist if c D 0.

The proof follows from the explicit formula

Fodd.k; 0/D
i

2
.eik�

C 3/.1� e�ik�/:

By the implicit function theorem, we obtain that each of the zeros of Fodd.�I c/ is a real analytic function
of c 2 Œ0; 1� with values in …odd

n . The set of all odd resonances for all such c is therefore the union of a
sequence of bounded real analytic curves.

It is interesting to note that each of these resonance curves intersects the real axis, thereby (by
Theorem 2.3) giving rise to embedded eigenvalues. This happens at rational values of c. More precisely,
a direct computation shows that Fodd.k; c/D 0 for k 2 R if and only if

k DmC n and c D
m� n

mC n
for some m; n 2 N.

Figure 1 plots a typical odd resonance curve as c increases from 0 to 1. It starts at 7� i log.3/=� ,
when c D 0. The curve then passes through 7 when c D 1

7
; 3

7
; 5

7
; 1.

Locating the even resonances.

Theorem 6.4. (i) For any c 2 Œ0; 1�, any n 2 Z and any y � 0 one has Feven.nC
1
2
� iy; c/ 6D 0.

(ii) For any c 2 Œ0; 1/ and any k D x� iy with y >
log 3

�.1�jcj/
, one has Fodd.k; c/ 6D 0.

Proof. (i) We have
Feven.nC

1
2
� iy; c/DA�B;

where A, B are as in the proof of Theorem 6.2(i). The rest of the proof is the same as in Theorem 6.2(i).
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6.7 6.8 6.9 7 7.1 7.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

Resonance curve

Figure 1. The odd resonance curve in …odd
7

.

(ii) For any k D x� iy we have

1
2

ey�jcj
C

1
2
� cosh.y�c/� jcos.x�c/ cosh.y�c/C i sin.x�c/ cosh.y�c/j

� jcos.x�c/ cosh.y�c/C i sin.x�c/ sinh.y�c/j D jcos.k�c/j (6-2)

and

ji cos.k�/C 2 sin.k�/j � 1
2
jeik�

j �
3
2
je�ik�

j D
1
2

ey�
�

3
2

e�y� : (6-3)

Now suppose Feven.k; c/D 0; then cos.k�c/D�i cos.k�/�2 sin.k�/ and therefore, combining (6-2)
and (6-3), we obtain

ey�
� ey�jcj

C 1C 3e�y� :

If y � log.3/=� or equivalently ey� � 3 then

ey�
� ey�jcj

C 2� ey�jcj
C

2
3

ey� :

A simple manipulation then yields that y �
log 3

�.1�jcj/
, and the required result follows. �

It follows that for c 2 Œ0; 1/ the even resonances are located in the rectangles

…even
n .c/D

�
xC iy W jx� nj< 1

2
; 0� y �

log 3

�.1�jcj/

�
:
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3.5 4 4.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Figure 2. The even resonance curve in …even
4

.

Just as in the odd case, the following statement shows that for each n 2 Z and c 2 Œ0; 1/, the rectangle
…even

n .c/ contains exactly one resonance.

Theorem 6.5. If cD 0 there is an even resonance of the algebraic multiplicity one at k D n� i log.3/=�
for every even n 2 Z and an even eigenvalue of multiplicity one at k D n for every nonzero odd n 2 Z.
There are no other even resonances.

The proof follows from the explicit formula

Feven.k; 0/D�
1
2
i.eik�

� 3/.1C e�ik�/:

Just as in the odd case, we obtain that the resonances are given by branches of real analytic functions of
c 2 Œ0; 1/ with values in …even

n .c/. However, in contrast with the odd case, the height of the rectangles
…even

n .c/ is not uniformly bounded in c. Moreover:

Theorem 6.6. Let n 2 Z and let kn D kn.c/ be the unique solution to Feven.k; c/ D 0 with kn.c/ 2

…even
n .c/. Then Im kn.c/!�1 as c! 1.

Proof. Suppose that the conclusion of the theorem is false. Then there exists a sequence cm! 1 such that
Im kn.cm/ is bounded. By passing to a subsequence we can assume that kn.cm/! k1n 2 C as m!1.
This would imply that Feven.k

1
n ; 1/D 0 by the joint continuity of the function Feven. This is impossible

by (6-1). �
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Therefore, all even resonances move off to infinity and this explains the failure of the Weyl law for
c D 1. Formal calculations and numerical analysis suggest that the rate of divergence of Im kn.c/ as
c! 1 is logarithmic.

As in the odd case, the even resonance curves intersect the real axis for some rational values of k. A
direct computation shows that Feven.k; c/D 0 for k 2 R if and only if

k DmC n� 1 and c D
m� n

mC n� 1
for some n;m 2 N.

Figure 2 plots a typical even resonance curve as c increases from 0 to 1. It starts at 4� i log.3/=�
when c D 0. The curve then passes through 4 when c D 1

5
; 3

5
and diverges to1 as c! 1.
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IMPROVED LOWER BOUNDS FOR GINZBURG–LANDAU ENERGIES
VIA MASS DISPLACEMENT

ÉTIENNE SANDIER AND SYLVIA SERFATY

We prove some improved estimates for the Ginzburg–Landau energy (with or without a magnetic field)
in two dimensions, relating the asymptotic energy of an arbitrary configuration to its vortices and their
degrees, with possibly unbounded numbers of vortices. The method is based on a localization of the “ball
construction method” combined with a mass displacement idea which allows to compensate for negative
errors in the ball construction estimates by energy “displaced” from close by. Under good conditions,
our main estimate allows to get a lower bound on the energy which includes a finite order “renormalized
energy” of vortex interaction, up to the best possible precision, i.e., with only a o.1/ error per vortex,
and is complemented by local compactness results on the vortices. Besides being used crucially in a
forthcoming paper, our result can serve to provide lower bounds for weighted Ginzburg–Landau energies.

Introduction

We are interested in proving lower bounds and compactness results for Ginzburg–Landau type energies
of the form

G".u;A/D
1

2

Z
�"

jrAuj2C .curl A/2C
.1� juj2/2

2"2

where " is a small parameter, u is a complex-valued function called the order parameter, A is R2-valued
and is the vector potential of the magnetic field h WD curl A, and rA D r � iA. Here the domain
of integration �" is a smooth bounded domain in R2, which can depend on ". We are interested in
particular in the case where �" gets large as "! 0. Note that one may set A� 0 to recover the simpler
Ginzburg–Landau energy

E".u/D
1

2

Z
�"

jruj2C
.1� juj2/2

2"2

without a magnetic field. Our results apply to this energy functional by making this trivial choice of A.
The Ginzburg–Landau energy is a famous model for superconductivity. In this model the order-

parameter u often has quantized vortices, which are the zeroes of u with nonzero topological degree.
Obtaining ansatz-free lower bounds for G" in terms of the vortices of u has proven to be crucial in
studying the asymptotics of minimizers of G", in particular via �-convergence methods.

The first study establishing lower bounds for Ginzburg–Landau was the work of Bethuel, Brezis,
and Hélein [Bethuel et al. 1994] for solutions to the Ginzburg–Landau equations without magnetic field

Sandier was supported by the Institut Universitaire de France, and Serfaty by an NSF CAREER award and a EURYI award.
MSC2000: 35B25, 82D55, 35Q99, 35J20.
Keywords: Ginzburg–Landau, vortices, vortex balls construction, renormalized energy,

757



758 ÉTIENNE SANDIER AND SYLVIA SERFATY

with energy E" bounded by C jlog "j. Such an energy bound ensures that the total number of vortices
remains bounded as "! 0. This was later improved and extended in two different directions in [Han
and Shafrir 1995] and [Almeida and Bethuel 1998] for arbitrary configurations, still with a number
of vortices that remains bounded. The main limitation of such estimates is that the error terms blow
up as the number of vortices gets large. Then, Jerrard [1999] and Sandier [1998] introduced the “ball
construction method”, which provides lower bounds in terms of vortices for arbitrary configurations,
allowing unbounded numbers of vortices and much larger energies. This is crucial for many applications,
since energy minimizers of the functional with applied magnetic field do not always satisfy a C jlog "j
bound on their energy. Subsequent refinements of the ball construction method were given (see for
example [Sandier and Serfaty 2007, Chapter 4] for a recent result). The lower bound provided by the
ball construction method also provides a crucial compactness result on the vorticity (roughly the sum
of Dirac masses at the vortex centers, weighted by their degrees). These are the so-called “Jacobian
estimates”; see [Jerrard and Soner 2002] and [Sandier and Serfaty 2007, Chapter 6]. They say roughly
that the vorticity is controlled by jlog "j�1 times the energy. For other subsequent works refining those
results in a slightly different direction, see also [Sandier and Serfaty 2004; Jerrard and Spirn 2008; Serfaty
and Tice 2008].

In a way our objective here can be seen as obtaining next order terms (order 1 as opposed to order
jlog "j) in such estimates, both energy estimates and compactness results.

For a given .u;A/, let us define the energy density

e".u;A/D
1

2

 
jrAuj2C .curl A/2C

.1� juj2/2

2"2

!
:

If .u;A/ is clear from the context and defined on a set E, we will often use the abbreviation e".E/ forR
E e".u;A/, and e" for the density e".u;A/. We then introduce the measure

f" WD e"��jlog "j
X
B

dBıaB
;

where the aB are the centers of the vortex balls constructed via Jerrard’s and Sandier’s ball construction,
the dB are the degrees of the balls and ı is the Dirac mass. Calculating

R
f" corresponds to subtracting

off the cost of all vortices from the total energy: what remains should then correspond to the interaction
energy between the vortices, which we can call “renormalized energy” by analogy with [Bethuel et al.
1994]. In order to obtain next order estimates of the energy G", we show here lower bounds on the
energy

R
f", as well as coerciveness properties of f", which say, roughly, that f", or in other words, the

renormalized energy, suffices to control the vorticity. (This is again to be compared with the previous
ball construction and Jacobian estimate, where the vorticity is controlled by e"=jlog "j).

The motivation for this is our joint paper [Sandier and Serfaty 2010], where we establish a next-
order �-convergence result for the Ginzburg–Landau energy with applied magnetic field, and derive a
limiting interaction energy between points in the plane, thus making the link to the question of the famous
Abrikosov lattice (the Abrikosov lattice is a triangular lattice of vortices in superconductors observed in
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experiments and predicted by Abrikosov). More precisely, we show there an asymptotic expansion for
the minimal energy of the form

min G" DGN
" CN min W C o.N /

where N �1 is the optimal number of vortices (determined by the intensity of the applied field), GN
" is a

constant of order N 2 (the leading order estimate) and W is a renormalized energy governing the pattern
formed by the vortices after blow-up at the scale

p
N . Moreover, we show that the patterns formed by

the vortices of minimizers after this blow-up minimize W (almost surely, in some sense). We prove in
addition that among lattice configurations (of fixed volume), W is uniquely minimized by the triangular
lattice. The natural conjecture is that this lattice is also a minimizer among all point configurations, and
if this were proved, it would completely justify the emergence of the Abrikosov triangular lattice.

To achieve this, with an error only o.N /, we needed lower bounds on the cost of vortices with a
precision o.1/ per vortex (with still a possibly infinite number of vortices), which is finer than was
available in the literature. We also needed to control the (local number of) vortices by the renormalized
energy. In fact the energy density we end up having to analyze in [Sandier and Serfaty 2010] is exactly
f", and we need to be able to control the vortices through it.

The other problem we need to overcome in that paper is that f" is obviously not positive or even
bounded below, and this prevents from applying standard lower semicontinuity ideas, and the abstract
scheme for �-convergence of 2-scale energies which we introduce there. This reflects the fact that
the energy e" is not exactly where the vortices are, as we will explain below. The remedy which we
implement here, is that we can “deform” f" into an energy density g" which is bounded below and
enjoys nice coerciveness properties. To accomplish this we show that we can transport the positive mass
in f" into the support of the negative mass in f", with mass traveling at most at fixed finite distances
(say distance 1), and so that the result of the operation, g", is bounded below. This is done by using the
following rather elementary transport lemma:

Lemma 3.1. Assume f is a finite Radon measure on a compact set A, that � is open and that for any
positive Lipschitz function � in Lip�.A/, i.e., vanishing on � nA,Z

� df � �C0jr�jL1.A/:

Then there exists a Radon measure g on A such that 0� g � fC and such that

kf �gkLip�.A/� � C0:

Thus what is needed is a control on the negative part of f", which will be provided by the ball
construction lower bounds and additional improvements of it.

The norm kf" � g"kLip�.�/� will measure how far mass has been displaced in the process. This
control appears in Theorem 1.1 below and more particularly Corollary 1.2. Since

R
g" will be close toR

f", it also can be seen as a renormalized energy. Since g" is bounded below, we can then hope that it
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enjoys nice coerciveness properties, we can in fact obtain the desired compactness results which allow
to control the vorticity locally by g". This will be the object of Theorem 1.5 below.

Finally, let us point out that our results can in principle serve to obtain lower bounds for weighted
Ginzburg–Landau energies, see Remark 1.7.

We now describe briefly the method that we use, which allows us to control the negative part of f".
The best vortex ball construction lower bound on e" available (such as that in [Sandier and Serfaty

2007, Chapter 4]) is of the following type: given .u";A"/ and any (small) number r , there exists a family
of disjoint closed balls B covering all the zeros of u", the sum of the radii of the balls being bounded
above by r , and such that Z

S
B2B B

e".u";A"/� �D
�

log
r

"D
�C

�
; (0-1)

where D D
P

B2B jdBj with dB D deg.u"; @B/ if B � � and 0 otherwise. We shall reprove here in
Proposition 2.1 a version of this result using Jerrard’s ball construction.

This above estimate says that a vortex of degree d costs an energy at least ' �jd jjlog "j, but this is
only really true when the vortex is well isolated from other vortices and from the boundary, and if there
are not too many of them locally, as the factor r=D in the logarithm above somewhat reflects: an ideal
lower bound would be

e".B/� �jdBj

�
log

r

"
�C

�
;

and compared to this, the lower bound above contains a negative error ��D log D which tends to �1
if the total number of vortices becomes large when "! 0. In truth, this ideal lower bound cannot hold
in general as can be seen in the case of n vortices of degree 1 all positioned regularly near the boundary
of the domain, a case where (0-1) is optimal.

Moreover the energy density e" is not localized exactly where the vortices are: vortices can be viewed
as points, while their energy is spread over annular regions around these points. The ball construction
lower bounds such as (0-1) capture well the energy which lies very near the vortices, but some energy
is missing from it, in particular when vortices accumulate locally around a point. The missing energy in
that case can be recovered by the method of “lower bounds on annuli” which we introduced in [Sandier
and Serfaty 2003] and used again in [Sandier and Serfaty 2007, Chapter 9]. It is based on the following:
Let B.x0; r1/nB.x0; r0/ be an annulus that contains no zeros of u. Roughly speaking we have

e"
�
B.x0; r1/nB.x0; r0/

�
� �D2 log

r1

r0

;

where D D deg.u; @B.x0; r1// D deg.u; @B.x0; r0//. In other words, if a fixed size ball in the domain
contains some large degree D of vorticity, then there is an energy of order D2 lying not in that ball, but
in a thick enough annulus around that ball. This energy of order D2 should suffice to “neutralize” the
error term ��D log D found above through the ball construction. However, it lies at a certain (finite)
distance from the center of the vortices. The main technique is then to combine in a systematic way the
ball construction lower bounds and the “lower bounds on annuli”, in order to recover enough energy.
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Let us finally emphasize a technical difficulty. Since we want a local control on the vortices, the lower
bound (0-1) provided by the ball construction is not quite sufficient because it cannot be localized in
general, i.e., we cannot deduce a bound for

R
B e" for each B 2 B. It is only possible to do so when a

matching upper bound on the total in (0-1) is known. See Proposition 2.1 for more details.
The idea for remedying this difficulty is to “localize” the construction, splitting the domain into pieces

on which one expects to have a bounded vorticity, then apply the ball construction on each piece, and paste
together the constructions and lower bounds obtained this way, whose error terms will now be bounded
below by a constant. However, this is not completely easy: one needs to localize the construction and
still get a global covering of the vortices by balls while preserving the disjointness of the balls. In
applications, trying to split the domain into pieces where the vorticity is expected to be bounded leads us
to splitting the domain into very small (as "! 0) pieces. Equivalently after rescaling one can consider
very large domains cut into bounded size pieces. In other words, in order to be able to treat the case
where the vortex density becomes large, we need to be able to treat the case of unbounded domains as
"! 0.

This is precisely what we do in this paper: we consider possibly large domains. This way we may in
practice rescale our domains as much as needed until the local density of vortices remains bounded as
"! 0. We consider vortex ball constructions obtained over coverings of �" by domains of fixed size,
and we work at pasting together these lower bounds while combining them with the method of lower
bounds on annuli, as explained above, and finally retrieving “finite numbers of vortices” estimates (of
the type in [Bethuel et al. 1994]) which bound from below the energy f" or g" by the exact renormalized
energy, up to only o.1/ errors.

1. Statement of the main results

In this paper we will deal with families .u";A"/" defined on domains f�"g" in R2 which become large
as "! 0. The example we have in mind is �" D �"� where � is a fixed bounded smooth domain and
�"!C1 as "! 0, but we don’t need to make any particular hypothesis on f�"g", which could even
be a fixed bounded domain.

Next we introduce some notation.
For E � R2 we let

yE D fx 2�"; dist.x;E/� 1g:

We also define, for any real-valued or vector-valued function f in �",

Of .x/D supfjf .y/j;y 2 B.x; 1/\�"g:

Note that both Of and yE depend on ", but the value of " will be clear from the context. The choice of 1

in the definitions is arbitrary but constrains the choice of other constants below.
In all the paper, fC and f� will denote the positive and negative parts of a function or measure, both

being positive functions or measures, and kf k is the total variation of f . If f and g are two measures
then f � g means that g�f is a nonnegative measure.
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Given a family f.u";A"/g", where u" W�"!C and A" W�"!R2 we define the currents and vorticities
to be

j" D .iu";rA"u"/; �" D curl j"C h";

where .a; b/D 1
2
.a NbC Nab/ and h" D curl A" is the induced magnetic field.

We denote by Lip�.A/ the set of Lipschitz functions on A which are 0 on�nA, and let kf kLip�.A/�D

sup
R
� df , the supremum being taken over functions � 2 Lip�.A/ such that jr�jL1.A/ � 1.

We say a family ff˛g˛ is subordinate to a cover fA˛g˛ if Supp.f˛/�A˛ for every ˛.
Despite the slightly confusing notation, the covering A˛ will have nothing to do with the magnetic

gauge A". Also, the densities f˛ and g˛, as well as n˛ and �˛ will implicitly depend on ", and should
be really f";˛ and g";˛, etc, but for simplicity we do not indicate this dependence.

Theorem 1.1. Let f�"g">0 be a family of bounded open sets in R2. Assume that f.u";A"/g", where
.u";A"/ is defined over �", satisfies for some 0< ˇ < 1 small enough

G".u";A"/� "
�ˇ: (1-1)

Then the following holds, for " small enough:

(1) (vortices). There exists a measure �", depending only on u" (and not on A") of the form 2�
P

i diıai

for some points ai 2�" and some integers di such that, C denoting a generic constant independent
of ",

k�"� �"k.C 0;1

0
.�"//�

� C
p
"G".u";A"/; (1-2)

and for any measurable set E

j�"j.E/� C
e". yE/

jlog "j
:

(2) (covering). There exists a cover fA˛g˛ of �" by open sets with diameter and overlap number
bounded by a universal constant, and measures ff˛g˛, f�˛g˛ subordinate to this cover such that,
letting f" WD e"�

1
2
jlog "j�",

f" �
X
˛

f˛; �" D
X
˛

�˛; �˛1
? �˛2

for ˛1 ¤ ˛2:

(3) (energy transport). Letting n˛ WD k�˛k=2� , for each ˛ the following holds: If dist.A˛; �"c/ > "

there exists a measure g˛ � �C such that either

kf˛ �g˛kLip�.A˛/� � C n˛.1Cˇjlog "j/ and g˛.A˛/� cn˛jlog "j; (1-3)

or
kf˛ �g˛kLip�.A˛/� � C n˛.1C log n˛/ and g˛.A˛/� cn˛

2
�C n˛; (1-4)

where and c;C > 0 are universal positive constants.
If dist.A˛; �"c/� ", there exists g˛ � 0 such that for any function �Z

� d.f˛ �g˛/� C n˛
�
jr�jL1.A˛/Cˇjlog "jj�jL1.A˛/

�
: (1-5)
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(4) (properties of g"). Letting g" D f"C
P
˛.g˛ �f˛/, we have

�C � g" � e"C
1
2
jlog "j.�"/�; (1-6)

and for any measurable set E ��",

.g"/�.E/� C
e". yE/

jlog "j
; .g"/C.E/� Ce". yE/: (1-7)

Moreover, assuming ju"j � 1 in�" and that ECB.0;C /��", for some C > 0 large enough, then
for every p < 2, Z

E

jj"j
p
� Cp

�
.g"/C.ECB.0;C //CjEj

�
: (1-8)

The third item admits, or rather implies the following form, from which the covering fA˛g˛ is hidden.

Corollary 1.2. Under the hypothesis above and using the same notation, for every 0 < � � 1 we have if
" > 0 is small enough: First, for every Lipschitz function � vanishing on @�"Z

�"

� d.g"�f"/� C

Z
�"

cr� "d j�"jC .ˇC �/ d.g"/CC
jlog �j2

�
dx

#
CCˇ

Z
b@�"
O�e": (1-9)

Second, if d.E; @�"/ > C then

j�"j.E/� C

 
�.g"/C.

yE/C
1

�
j yEjC

e". yE \b@�"/
jlog "j

!
: (1-10)

The point in introducing the extra parameter � is that we want to be able to use only a small �-fraction of
the “remaining” energy g" to control the error f"�g" between the original energy and the displaced one.
This corollary is obtained by simply summing the relations (1-3)–(1-5) and controlling n˛ and n˛ log n˛

by a small fraction of n˛
2 through the elementary relations

x log x � �x2
CC

log2 �

�
2x � �x2

C
1

�

and then controlling n˛
2 by g˛.A˛/ via (1-3) or (1-4).

Remark 1.3. If we let �D 1 and if E and the support of � are at distance at least 1 from @�, then (1-9)
and (1-10) reduce to Z

� d.f"�g"/� C

Z
�"

cr� �d.g"/CC d j�"j
�

(1-11)

and
j�"j.E/� C

�
.g"/C. yE/Cj yEj

�
:

If one takes � D �
R

to be a positive cut-off function supported in B.0;R/ and � 1 in B.0;R�1/ then
the right-hand side in (1-11) scales like a boundary term (i.e., like R) as R gets large, while the left-hand
side scales like an interior term.
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Remark 1.4. Assume we have proved Theorem 1.1 and Corollary 1.2. Given f.u";A"/g" and f�"g"
satisfying the hypothesis, we may consider for some fixed � >0 the rescaled quantities Q"D "=� , QxDx=�

and let

Qu". Qx/D u".x/; zA". Qx/D �A".x/; z�" D�"=�:

Then, letting hD curl A and QhD curl zA, we have

e�" .u;A/ WD �
2

�
1

2
jrAuj2C

�2

2
h2
C

1

4"2
.1� juj2/2

�
D

1
2
jrzA
Quj2C 1

2
Qh2
C

1

4Q"2
.1� j Quj2/2:

We may then apply the theorem to the tilded quantities, yielding a measure Qg". Then if we let g".x/D

Qg". Qx/, the measure g" will satisfy the properties stated in Theorem 1.1 and Corollary 1.2, with e" replaced
by e�" (and with a different C ) provided we modify the definition of yE to

yE D fx j dist. Qx; zE/ < 1g D fx j dist.x;E/ < �g;

(note that we can keep the original definition provided � � 1).
Then we may add to both e" and g" the quantity

�
1
2
�

1
2
�2
�
h"

2 and obtain in this manner a new g"

satisfying the listed properties and — for the particular choice �2 D
1
2

— the lower bound

g" �
h"

2

4
�C: (1-12)

We will then usually assume when applying Theorem 1.1 that this lower bound holds as well as the other
conclusions of the theorem.

The next result shows how g" has the desired coerciveness properties, and behaves like the renormal-
ized energy. Indeed, under the assumption that the family fg"g" is bounded on compact sets (recall that
the domains become increasingly large as "! 0) we have compactness results for the vorticities and
currents, and lower bounds on

R
g" (hence

R
f" via (1-9)) in terms of the renormalized energy W .

Before stating that result, we introduce some additional notation. We denote by fURgR>0 a family of
sets in R2 such that, for some constant C > 0 independent of R,

URCB.0; 1/�URCC and URC1 �URCB.0;C /: (1-13)

For example, fURgR>0 can be the family fBRgR>0 of balls centered at 0 of radius R.
Then we use the notation �

UR
for cutoff functions satisfying, for some C independent of R,

jr�UR
j � C; Supp.�UR

/�UR; �UR
.x/D 1 if dist.x;U c

R/� 1: (1-14)

Finally, given a vector field j W R2! R2 such that curl j D 2�
P

p2ƒ ıp C h with ƒ, where h is in
L2

loc and ƒ a discrete set, we define the renormalized energy of j by

W .j /D lim sup
R!1

W .j ; �
BR
/

jBRj
;
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where for any �

W .j ; �/D lim inf
�!0

�
1

2

Z
R2n

S
p2ƒB.p;�/

�jj j2C� log �
X
p2ƒ

�.p/

�
: (1-15)

Various results on W , in particular on its minimizers, are proved in [Sandier and Serfaty 2010]. Note in
particular that if we assume div j D 0, then the lim inf in (1-15) is in fact a limit, because in this case
j D r?H with �H D 2�ıp C h in a neighborhood of p, and thus H D log j � �pj C f with f 2H 1

in this neighborhood.

Theorem 1.5. Let the hypothesis of Theorem 1.1 hold, and assume ju"j � 1 in �".

(1) Assume that dist.0; @�"/!C1 as "! 0 and that, for any R> 0,

lim sup
"!0

g".UR/ dx <C1; (1-16)

where fURgR satisfies (1-13). Then, up to extraction of a subsequence, the vorticities f�"g" converge
in W

�1;p
loc .R2/ to a measure � of the form 2�

P
p2ƒ ıp, where ƒ is a discrete subset of R2, the

currents fj"g" converge weakly in L
p
loc.R

2;R2/ for any p < 2 to j , and the induced fields fh"g"
converge weakly in L2

loc.R
2/ to h which are such that

curl j D � � h in R2:

(2) If we replace the assumption (1-16) by the stronger assumption

lim sup
"!0

g".UR/ < CR2; (1-17)

where C is independent of R, then the limit j of the currents satisfies, for any p < 2,

lim sup
R!C1

Z
�

UR

jj jp dx <C1: (1-18)

Moreover for every family �
UR

satisfying (1-14) we have

lim inf
"!0

Z
R2

�
UR

jURj
dg" �

�
W .j ; �

UR
/

jURj
C

1

2

Z
�

UR

h2
C



2�

Z
�

UR

h

�
C oR.1/; (1-19)

where 
 is a constant defined below and oR.1/ is a function tending to 0 as R!C1.

Remark 1.6. The constant 
 in (1-19) was introduced in [Bethuel et al. 1994] and may be defined by


 D lim
R!1

�
1

2

Z
BR

jru0j
2
C
.1� ju0j

2/2

2
�� log R

�
;

where u0.r; �/ D f .r/e
i� is the unique (up to translation and rotation) radially symmetric degree-one

vortex. See [Bethuel et al. 1994; Mironescu 1996].
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Remark 1.7. Lower bounds immediately follow from this theorem. Indeed f" is the energy density
minus the energetic cost of a vortex, and f" � g" is controlled by Theorem 1.1; see also Remark 1.3.
This, combined with the lower bound (1-19) shows that in good cases the averages over large balls of f"
are bounded below by W plus explicit constants, which proves a sharp lower bound for the energy with
a o.1/ order error, à la [Bethuel et al. 1994].

The bound (1-9) may also be interpreted as a lower bound for the Ginzburg–Landau energy with
weight. Assuming a fixed domain� and G".u";A"/<C jlog "j for instance, and that�"!2�

Pn
iD1 ıai

,
where ai 2�, then by blowing up by a factor independent of " we may assume the points are at distance
2, say, from the boundary and then if � is a fixed positive weight we may multiply it by a cutoff 0��� 1

equal to zero on c@� and equal to 1 at each ai . Then (1-9) becomesZ
�

�e" � �jlog "j
nX

iD1

�.ai/C

Z
�� dg"�C

Z
1r.��/

�
d j�"jC .ˇC �/ d.g"/CC

jlog �j2

�
dx

�
:

Typically, there will be an upper bound for the energy which implies that .g"/C.�/ < C and since also
g" � �C , the integrals on the right-hand side may be bounded below by a constant independent of ".

The paper is organized as follows: In Section 2 we state without proof the result on lower bounds via
Jerrard’s ball construction (the proof is postponed to Section 5) which we adapt for our purposes, and
explain how we use it on a covering of �" by a collection U˛ of balls of finite size. In Section 3, we
present the tool used to transport the negative part of f" to absorb it into the positive part, and deduce
Theorem 1.1. In Section 4, we prove Theorem 1.5. Finally in Section 5, we prove the ball-construction
lower bound.

2. Use of the ball construction and coverings of the domain

The first step consists in performing a ball construction in �" in order to obtain lower bounds. This
follows essentially the method of [Jerrard 1999], the difficulty being that we are not allowed more than
an error of order one per vortex. This is hopeless if the total number of vortices diverges when "! 0,
hence we need to localize the construction in pieces of �" small enough for the number of vortices in
each piece to remain bounded as "! 0.

The ball construction lower bound. We start by stating the result of Jerrard’s ball construction in a
version adapted to our situation, in particular including the magnetic field. The proof is postponed to
Section 5. In all what follows, if B is a collection of balls, r.B/ denotes the sum of the radii of the
balls in the collection. In all the sequel we will sometimes abuse notation by writing B for

S
B2B B,

identifying the collection of balls with the set it covers.

Proposition 2.1. There exist "0;C > 0 such that if U � R2, " 2 .0; "0/, and .u";A"/ defined on U are
such that G".u";A"/ � "

�ˇ, where ˇ 2 .0; 1/, the following holds. For every r 2 .C "1�ˇ; 1
2
/, there

exists a collection of disjoint closed balls B depending only on u" (and not on A") such that, letting
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U" D fx j d.x;U
c/ > "g, we have

(1) fx 2 U" j ju".x/j<
1
2
g �B,

(2) r.B/� r , and

(3) for any 2� C � .r="/1=2, either e".B\U /� C log r

"
or

e".B/� �jdBj

�
log

r

"C
�C

�
for all B 2B such that B � U";

where dB D deg.u"; @B/.

A natural choice of C above is �D, where DD
P

B2B jdBj and we have let dB D 0 if B 6�U". With
this choice we find in all cases

e".B\U /� �D

�
log

r

"D
�C

�
i.e., we recover the same lower bound as in [Sandier and Serfaty 2007, Theorem 4.1], mentioned in the
introduction as (0-1). The reason why we don’t simply use that theorem directly is that we need to keep
the dichotomy above, and thus a lower bound localized in each ball.

Localizing the ball construction. For any "> 0 we construct an open cover fU˛g˛ of�" as follows: We
consider the collection B of balls of radius `0 — where `0 2 .0;

1
8
/ is to be chosen below, small enough

but independent of "— centered at the points of `0Z2. The cover consists of the open sets �" \B, for
B 2B.

This cover depends on ", but the maximal number of neighbors of a given ˛— defined as the indices
ˇ such that U˛ \ Uˇ ¤ ¿— is bounded independently of " by an integer we denote by m (in fact
mD 9). Note that m also bounds the overlap number of the cover, that is, the maximal number of U˛’s
to which a given x can belong. There is also ` > 0 independent of " which is a Lebesgue number of
the cover, i.e., such that for every x 2 �", there exists ˛ such that B.x; `/\�" � U˛ or, equivalently,
dist.x; �"\U c

˛ /� `.
Assuming ˇ < 1

4
, and applying Proposition 2.1 to .u";A"/ in U˛ for every ˛ we obtain, since

p
" >

C "1�ˇ if " is small enough, a collection B˛;r
" for every

p
"� r � 1

2
.

If � is chosen small enough depending on ` and m only, thus less than a universal constant, we may
extract from

S
˛ B

˛;�
" a subcollection B" such that any two balls B, B0 in B" satisfy �"\B\B0D¿.

We will say B" is disjoint in �":

Proposition 2.2. Assume � � `=.8m/. Then, writing in short B˛
" instead of B

˛;�
" , there exists a subcol-

lection of
S
˛ B˛

" — call it B" — which is disjoint in �" and such that

fju"j �
1
2
g\ fx j dist.x; �"c/ > "g �

[
B2B"

B: (2-1)

Moreover, for every B 2B"\B˛
" we have B \�" D B \U˛ and

dist.B; �"c/ > " () dist.B;U˛c/ > ":
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Proof. Assume C D �" \ .B1 [ � � � [Bk/ is a connected component of �" \
�S

˛ B˛
"

�
. Reordering if

necessary, we may assume that Bi\.B1[� � �[Bi�1/¤¿ for every 1� i � k. There exists x 2�"\B1

and ˛ such that dist.x; �"\U c
˛ /� `. Then dist.B1; �"\U c

˛ / > 3`=4. Assume

dist.B1[ � � � [Bi�1; �"\U c
˛ /�

3`

4
:

Then dist.Bi ; �" \ U c
˛ / > `=2 hence for every 1 � j � i the ball Bj belongs to B

ˇ
" , where ˇ is a

neighbor of ˛. It follows that r1C� � �C ri �m�� `=8, where ri is the radius of Bi , and we deduce that
B1[ � � � [Bi � B.x; `=4/ and then

dist.B1[ � � � [Bi ; �"\U c
˛ /�

3`

4
:

We have thus proved by induction that C � U˛ and even that dist.C; �"\U c
˛ /� 3`=4 for every i .

We delete from fB1; : : : ;Bkg the balls which do not belong to B˛
" and call C 0 the union of the

remaining balls. If y belongs to

C \fju"j �
1
2
g\ fx j dist.x; �"c/ > "g

then, since dist.C; �"\U c
˛ /�3`=4 and dist.y; �"c/>", provided "<3`=4 we have that dist.y;U˛c/>"

hence y belongs to some ball B 2 B˛
" (since B˛

" covers the set fju"j � 1
2
g \ fdist.x;U c

˛ / > "g), thus
y 2 C 0. The balls in C 0 are disjoint in �" since they belong to the collection B˛

" which is itself disjoint
in �".

Performing this operation on each connected component of�"\
�S

˛ B˛
"

�
we thus obtain a collection

B" which covers fju"j � 1
2
g \ fx j dist.x; �"c/ > "g and is disjoint in �". Moreover, if B 2 B" \B˛

"

then dist.B; �"\U c
˛ /� 3`=4 hence B \�" D B \U˛ and

dist.B; �"c/ > " () dist.B;U˛c/ > ": �

The value of �will be fixed smaller than `=8m and independent of ", as specified below. Proposition 2.2
provides us for any " > 0 small enough with collections of balls B" and B˛

" .

Definition 2.3. For any
p
" � r � � and any B 2 B˛

" , we let BB;r
" be the collection of balls in B˛;r

"

which are included in B. Then we let
Br
" D

[
B2B"

BB;r
" :

It is disjoint in �" and covers the set fju"j � 1
2
g\fx j dist.x; �"c/ > "g and of course if B 2Br

" \B˛;r
" ,

then B \�" D B \U˛ and

dist.B; �"c/ > " () dist.B;U˛c/ > ":

In other words, the disjoint collection B" permits us to construct disjoint collections of smaller radius
by discarding from B˛;r

" those balls which are inside a ball discarded from B
˛;�
" . The collection B

p
"

"

should be seen as the collection of “small balls” and B" (obtained from B
˛;�
" ) as the collection of “large

balls”. We will sometimes also use the collection of the intermediate size balls Br
" with

p
"� r � �.
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Finally we let
�" D

X
B2B

p
"

"

dist.B;�"c/>"

2�dBıaB
; j�"j D

X
B2B

p
"

"

dist.B;�"c/>"

2�jdBjıaB
; (2-2)

where aB is the center of B, and dB denotes the winding number of u"=ju"j restricted to @B. This is
the �" given by the conclusion of the theorem. Note that since the balls only depend on u" (and not
on A"), �" satisfies the same. If B is any ball which does not cross the boundary of balls in B

p
"

" and
dist.B; �"c/ > " then �".B/ D 2�dB . From the Jacobian estimate (see [Jerrard and Soner 2002] or
[Sandier and Serfaty 2007, Theorem 6.1]) we have that (1-2) is satisfied.

Lemma 2.4. There exists "0 > 0 such that if ˇ < 1
4

in (1-1) and " < "0 then

j�"j.E/� 16
e".�"\ yE/

jlog "j

for any measurable set E, so that choosing E D�" and taking logarithms,

log k�"k � ˇjlog "jCC; (2-3)

where k � k denotes the total variation of a measure.

Proof. We use the properties of B
˛;
p
"

" . Letting C D .
p
"="/1=2D "�1=4, it is impossible when " is small

enough that e".�"\B
˛;
p
"

" /�C log.
p
"="/ since we assumed that e".�"/� "

�ˇ. Thus Proposition 2.1
implies that, for every B 2B

˛;
p
"

" such that dist.B;U˛c/ > ",

e".B/� �jdBj.log "�1=4
�C /�

�

8
jdBjjlog "j;

if " is small enough. If, moreover, B 2 B
p
"

" , then Definition 2.3 implies that dist.B;U˛c/ > " if and
only if dist.B; �"c/ > ". Hence, using (2-2) and the fact that balls in B

p
"

" have radius smaller than 1
2

if
" is small enough, we obtain for any set E

j�"j.E/�
X
j�"j.B/� 16

e".�"\ yE/

jlog "j
;

where the sum is over all B intersecting E and satisfying B 2B
p
"

" and dist.B; �"c/ > ". �

Definition 2.5. For any ˛, let �˛ denote the restriction of �" to the balls in B"\B˛
" and n˛ Dk�˛k=2� ,

so that

�" D
X
˛

�˛; n˛ D
X

B2B"\B˛"

j�"j.B/

2�
; k�"k D 2�

X
˛

n˛:

We also define

C ˛ D

(
max

�
M n˛;

3e˛
jlog "j

�
if n˛ ¤ 0;

2 otherwise,
(2-4)

where M is a large universal constant to be chosen later and e˛ D
P

B2B˛"

e".B \U˛/.
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Note that n˛ is the sum of the absolute values of the degrees of the small balls included in the large
balls of B˛

" .

Proposition 2.6. There exist "0;C0 > 0 such that if ˇ < 1
4

in (1-1) and " < "0, "1=2 < r < � then
2� C ˛ � .r="/

1=2 and for any B 2Br
" \B˛;r

" such that dist.B; �"c/ > " we have

e".B/� 2�jdBjƒ
˛;r
" ; where ƒ˛;r" D

1

2

�
log

r

"C ˛

�C0

�
: (2-5)

Moreover, 0�ƒ
˛;r
" �

1
2
jlog "j and

0� 1
2
jlog "j �ƒ˛;r" �

1
2
.ˇjlog "jC jlog r jCC0/: (2-6)

Proof. From the definition (2-4), from (1-1) and Lemma 2.4 we have for " small enough that 2� C ˛ �

"�ˇ. It follows that if "1=2< r < 1 then 2�C ˛ � .r="/
1=2, since ˇ < 1

4
. Also, from the definition of C ˛

it is impossible that e".B
˛;r
" \U˛/�C ˛ log.r="/ since for

p
"� r �� we have C ˛ � 3e".B

˛;r
" /=jlog "j.

Then from Proposition 2.1, letting C DC ˛, we deduce (2-5) for any B 2B˛;r
" with dist.B;U˛c/ > ",

which is equivalent to dist.B; �"c > "/ if B 2Br
" \B˛;r

" .
Finally, r=."C ˛/� "

�1=4 using C ˛ � .r="/
1=2 and r �

p
", which easily implies that ƒ˛;r" > 0 if " is

small enough, and ƒ˛;r" � 1
2
jlog "j is clear from the definition. The last inequality in (2-6) then follows

from 1
2
jlog "j �ƒ˛;r" D 1

2

�
log.C ˛=r/CC0

�
, since C ˛ � "

�ˇ. �

3. Mass transport

We proceed to study the displacement of the negative part of

f" D e"�
1
2
jlog "j�":

Abstract lemmas. For the displacements we will use two lemmas. The first one was already stated in
the introduction and uses optimal transportation for the 1-Wasserstein distance (or minimal connection
cost).

Lemma 3.1. Assume f is a finite Radon measure on a compact set A, that � is open, and that for any
positive Lipschitz function � in Lip�.A/, i.e., vanishing on � nA,Z

� df � �C0jr�jL1.A/:

Then there exists a Radon measure g on A such that 0� g � fC and such that

kf �gkLip�.A/� � C0:

Proof. The proof uses convex analysis. Let X D C.A/ denotes the space of continuous functions and
for � 2X let

'.�/D

Z
�C dfC and  .�/D

�
C1 if jr�jL1.A/ > 1 or � … Lip�.A/;
�
R
�df otherwise:
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Then  is lower semicontinuous because f� 2 Lip�.A/ j jr�jL1 � 1g is closed under uniform conver-
gence, and ' is continuous. Both functions are convex, and finite for �D 0. Then the theorem of Fenchel
and Rockafellar (see for instance [Ekeland and Témam 1999]) yields

inf
X
.'C /D max

�2X �

�
�'�.��/� �.�/

�
;

where X � is the dual of X (i.e., the space of Radon measures on A) and

'�.�/D sup
�2X

Z
� d��

Z
�C dfC D

�
0 if 0� �� fC;

C1 otherwise;

 �.�/D sup
�2Lip�
jr�j1�1

Z
� d�C

Z
� df D k�Cf kLip�

�
:

We deduce that

inf
�2Lip�
jr�jL1�1

Z
�C dfC�

Z
� df D max

0����fC

�
�k�Cf kLip�

�

�
and then the existence of a Radon measure g such that �g maximizes the right-hand side, i.e., such that
0� g � fC and

�kf �gkLip�
�
D inf

�2Lip�
jr�jL1�1

Z
�C dfC�

Z
� df:

But

inf
�2Lip�
jr�jL1�1

Z
�C dfC�

Z
� df D� sup

�2Lip�
jr�jL1�1

�Z
� df �

Z
�C dfC

�

D� sup
�2Lip�
jr�jL1�1

�Z
�C d.f �fC/�

Z
�� df

�

D� sup
�2Lip�
jr�jL1�1

�
�

Z
�� df

�
D inf

�2Lip�
jr�jL1�1

Z
�� df:

The assumption of the lemma implies that this last right-hand side is at least �C0; therefore

kf �gkLip�.A/� � C0: �

Lemma 3.2. Assume f is a finite Radon measure supported in � and such that f .�/ � 0. Then there
exists 0� g � fC such that for any Lipschitz function �Z

�

� d.f �g/� 2 diam.�/jr�jL1.�/f�.�/:
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Proof. This follows from the previous lemma but can be proved directly by letting

g D fC

�
1�

f�.�/

fC.�/

�
(assuming f is nonzero; otherwise g D 0 is the answer). Then g is positive because f .�/ � 0 implies
f�.�/� fC.�/ andZ

� d.f �g/D

Z
� d

�
fC

f�.�/

fC.�/
�f�

�
D

Z
.� � N�/ d

�
fC

f�.�/

fC.�/
�f�

�
;

where N� is the average of � over �, and the right-hand side is clearly bounded above by

2 diam.�/jr�j1f�.�/: �

Mass displacement in the balls.

Definition 3.3. For B 2B"\B˛
" , we let

f B
" D .e"�ƒ

˛
" �"/1B\�" :

where ƒ˛;r" is defined in (2-5) and we have set ƒ˛" Dƒ
˛;�
" .

This corresponds to the excess energy in the balls, i.e., the energy remaining after subtracting off the
expected value from the ball construction. There is a difference of order j�"j.B/ log C ˛ between f".B/
and f B

" .B/, which will be dealt with later.

Proposition 3.4. There exists "0;C > 0 such that for any " < "0, and any B 2 B" \B˛
" , there exists a

positive measure gB
" defined in B \�" and such that

gB
" � e"Cƒ

˛
" .�"/� and

Z
B\�"

� d.f B
" �gB

" /� C jr�jL1.B\�"/j�"j.B/; (3-1)

for any Lipschitz function � vanishing on �" nB.

Proof. To prove the existence of gB
" , in view of Lemma 3.1 and since .f B

" /C D e"Cƒ
˛
" .�"/� on B it

suffices to prove that for any positive function � defined on B and vanishing on B n�" we haveZ
� df B

" � �C jr�jL1.B/j�"j.B/: (3-2)

We turn to the proof of (3-2). Let B 2B"\B˛
" and � be as above. ThenZ

� df B
" D

Z C1
0

f B
" .Et \B/ dt; (3-3)

where we have set Et D fx 2 B j �.x/� tg and f B
" .A/D

R
A f

B
" .

We will divide the integral (3-3) into
R t"

0 C
RC1

t"
, with t"D "jr�jL1 . The first integral is straightfor-

ward to bound from below. Indeed, .f B
" /�.B/� C jlog "jj�"j.B/; henceZ t"

0

f B
" .Et / dt � �C "jlog "jjr�jL1 j�"j.B/� �C jr�jL1 j�"j.B/: (3-4)
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On the other hand, if t > t" — and this motivated our choice of t" — then since � D 0 in B n�" we
have dist.Et ; �"

c/ > ". So let t > t", and let a 2Et be a point in the support of �". For any r 2 Œ
p
"; ��,

there exists a ball Ba;r 2Br
" containing a. Since fBr

"g is monotonic with respect to r , Ba;r � B. Put

r.a; t/D supfr 2 Œ
p
"; �/;Ba;r �Etg

if the set on the right is nonempty, and r.a; t/D 0 otherwise. Then let

Bt
a D Ba;r.a;t/:

If 0 < r.a; t/ < � then r.a; t/ bounds from above the distance of a to the complement of Et . In
particular,

�.a/� t � r.a; t/jr�jL1 : (3-5)

Indeed for any r.a; t/< s<� we have Ba;s�B and Ba;s\.Et /
c¤¿; hence there exists b 2Ba;s\@Et .

Then �.a/� �.b/� sjr�jL1 and since @Et � f� D tg we deduce �.a/� t � sjr�jL1 , proving (3-5) by
making s tend to r.a; t/ from above.

A second fact is that if r.a; t/D 0, then Ba;
p
" intersects B nEt , and as above we deduce

�.a/� t �
p
" jr�jL1.B/: (3-6)

The third fact is that the collection fBt
aga, where a ranges over Et and the a’s for which r.a; t/D 0

have been excluded, is disjoint. Indeed take a; b 2 Et and assume that r.a; t/ � r.b; t/. Then, since
Br.a;t/ is disjoint, the balls Ba;r.a;t/ and Bb;r.a;t/ are either equal or disjoint. If they are disjoint we note
that r.a; t/ � r.b; t/ implies that Bb;r.b;t/ � Bb;r.a;t/ and therefore Bt

b
D Bb;r.b;t/ and Bt

a D Ba;r.a;t/

are disjoint. If they are equal, then Bb;r.a;t/�Et and therefore r.b; t/� r.a; t/, which implies r.b; t/D

r.a; t/ and then Bt
b
D Bt

a.
Now, for any B0 2 fBt

aga we have B0 �Et and dist.Et ; �"
c/ > ", hence dist.B0; �"c/ > ". Now let

r be the common value of r.a; t/ for all a 2 B0 in the support of �". From Proposition 2.6, we have

e".B
0/� j�".B

0/j
�
ƒ˛" �

1

2
log

�

r

�
C
;

since ƒ˛;r" Dƒ
˛;�
" �

1
2

log.�=r/. We can rewrite this as

e".B
0/ �

ˇ̌̌̌ X
a2B0\Supp �"

�".a/

�
ƒ˛" �

1

2
log

�

r.a; t/

�
C

ˇ̌̌̌
;

and summing over B0 2 fBt
aga we deduce

e".Et \B/ �

ˇ̌̌̌X
a2Pt

�
ƒ˛" �

1

2
log

�

r.a; t/

�
C

�".a/

ˇ̌̌̌
;

where Pt is the set of points in Et \Supp �" such that r.a; t/ > 0. We will let Qt be the set of points in
Et \Supp �" such that r.a; t/D 0.
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Since �".Et /D �".Pt /C �".Qt /, subtracting from ƒ˛" �".Et / the above we find

f B
" .Et /� �

X
a2Qt

j�"j.a/ƒ
˛
" �

1

2

X
a2Pt

j�"j.a/ log
�

r.a; t/
:

From (3-6), a given a 2 Supp �" \ B can belong to Qt only if jt � �.a/j �
p
" jr�jL1 . Therefore

integrating the above with respect to t yields, using the fact that t � �.a/ if a 2Et , thatZ 1
t"

f B
" .Et / dt � �

X
a2Supp �"\B

j�"j.a/

 Z �.a/C
p
"jr�jL1

�.a/�
p
"jr�jL1

ƒ˛" dt C
1

2

Z �.a/

0

�
log

�

r.a; t/

�
C

dt

!
I

henceZ 1
t"

f B
" .Et / dt � �2ƒ˛"

p
"jr�jL1 j�"j.B/�

1

2

X
a2Supp �"\B

j�"j.a/

Z �.a/

0

�
log

�

r.a; t/

�
C

dt:

We now note that — since ƒ˛" �
1
2
jlog "j—

p
"ƒ˛" is bounded independently of " � 1 and, using the

inequality (3-5), we getZ �.a/

0

�
log

�

r.a; t/

�
C

dt �

Z �.a/

0

�
log

�jr�jL1

�.a/� t

�
C

dt D

Z �.a/

�.a/��jr�jL1

log
�jr�jL1

�.a/� t
dt;

and the rightmost integral is equal, via the change of variables uD
�.a/�t

�jr�jL1
, to �jr�jL1 . ThereforeZ C1

t"

f B
" .Et / dt � �C j�"j.B/jr�jL1 :

In view of (3-3), adding (3-4) yields the result. �

Remark 3.5. In the proof of (3-2), the final radius � may be replaced by any r 2 .
p
"; �/. This yields

the following result: Assume that r 2 .
p
"; �/ and that B 2 Br

" is included in some ball in B" \B˛
" .

Then, for any positive function � vanishing on B n�",Z
B

.e"�ƒ
˛;r
" �"/� � �C jr�jL1.B/j�"j.B/: (3-7)

We record the following lower bounds:

Proposition 3.6. For " small enough and B 2B"\B˛
" :

e".�"\B/�
�

1
8
jlog "j �C

�
j�"j.B/: (3-8)

For " small enough and B 2B"\B˛
" such that dist.B; �c

"/ > ", we have

gB
" .�"\B/�

�
1
8
jlog "j �C

�
j�"j.B/�

1
2
jlog "jj�".B/j: (3-9)

If in addition dB < 0, then

gB
" .�"\B/�

�
1
2
jlog "j �ƒ˛"

�
�".B/�

�
1
8
jlog "j �C

�
j�"j.B/: (3-10)
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The meaning of this lower bound is that e".B/ is not only bounded below by ƒ˛" j�".B/j, which to
leading order is 1

2
jlog "jj�".B/j— this is the positivity of gB

" in the proposition above — but also by
some constant times jlog "jj�"j.B/, even though the constant is no longer guaranteed to be the (optimal)
value 1

2
. This information is valuable in the case where j�".B/j is much smaller than j�"j.B/. The

precise value of the constants is unimportant.

Proof. As we noticed, C ˛ < .
p
"="/1=2 implies

p
"=."C ˛/� "

�1=4. Thus, using Proposition 2.6,

e".B \�"/�
X

e".B
0/�

X
�jdB0 j.log "�1=4

�C /D j�"j.B/
�

1
8
jlog "j � 1

2
C
�
;

where the sums are over B0 2B
p
"

" such that B0�B and dist.B0; �"c/>". This proves the first assertion.
Secondly, note that from (3-1), if dist.B; �c

"/ > ", choosing � compactly supported in�" such that �D 1

in B, we have
f B
" .B \�"/D gB

" .B \�"/:

Since ƒ˛" �
1
2
jlog "j we deduce (3-9) in view of

gB
" .B \�"/D f

B
" .B \�"/� j�"j.B/

�
1
8
jlog "j �C

�
�

1
2
jlog "jj�".B/j:

For the last assertion, since �".B/D 2�dB < 0, we write

gB
" .B \�"/�

�
1
2
jlog "j �ƒ˛"

�
�".B/D e".B \�"/�

1
2
jlog "j�".B/� e".B \�"/;

and this is bounded below using (3-8). �

Mass displacement of the remainder. Proposition 3.4 will allow us to replace f B
" by the positive gB

" ,
and we have

f"�
X

B2B"

f B
" D e"1Bc

"
C

X
˛

�
1
2
jlog "j �ƒ˛"

�
�˛: (3-11)

We now proceed to absorb the negative part of f" �
P
f B
" , which is

�
1
2
jlog "j �ƒ˛"

�
.�˛/C. This will

be easy if C ˛ D 3e˛=jlog "j; and if not, in view of (2-5), we have

0� 1
2
jlog "j �ƒ˛" �

1
2

log n˛CC;

which allows to bound the mass of the negative part by C
P
˛ n˛.log n˛C 1/. Following the method in

[Sandier and Serfaty 2003] (see also [Sandier and Serfaty 2007, Chapter 9]), this will be balanced by a
lower bound by cŒn˛ �

2 for the energy on annuli surrounding U˛.
Recall that U˛ D B.x˛; `0/\�". We set

r0 D `0; r1 D 3`0; A˛ D B.x˛; r1/:

Choosing `0 small enough, we can require that

diam.A˛/ < 1 and
�
A˛ \�"

c
¤¿ H) A˛ �

˚
x j dist.x; @�"/ < 1

2

	�
:

We will denote below by m0 a bound, uniform in ", for the overlap number of the fA˛g˛.
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Now we choose � such that jT ˛
" j � `0 for any " > 0, where

T ˛
" D

˚
t 2 .r0; r1/ j fjx�x˛j D tg\B" D¿

	
:

Indeed, the number of Uˇ’s that intersect B.x˛; r1/ is bounded by a certain number N , independent of "
and ˛. Choosing �D `0=N , the sum of the radii of balls in

S
ˇ B

ˇ
" which intersect B.x˛; r1/ is bounded

above by `0, hence jT ˛
" j � .r1� r0/� `0 D `0.

Lower bounds on annuli. For any ˛ let

. Qg˛" /C D
1

4m0

�
e"1Bc

"
C

X
B2B"

gB
"

�
1A˛ ; . Qg˛" /� D

�
1
2
jlog "j �ƒ˛"

�
.�"/C1B"\B˛" ; (3-12)

and Qg˛" D . Qg
˛
" /C� . Qg

˛
" /�. We have

Qg"�
X
˛

Qg˛" �
3

4

�
e"1Bc

"
C

X
B2B"

gB
"

�
C

X
˛

�
1
2
jlog "j �ƒ˛"

�
.�"/�1B"\B˛" :

In particular,

. Qg˛" /C.A˛/�
1

3m0

�
Qg"�

X
ˇ

Qgˇ"

�
.A˛/:

Proposition 3.7. There exist "0;C; c > 0 such that if ˇ < 1
4

in (1-1), then for any " < "0 and any index ˛

. Qg˛" /�.A˛/� �n˛ .ˇjlog "jCC / : (3-13)

If moreover dist.A˛; �"c/ > " then at least one of the following is true:

. Qg˛" /�.A˛/� �n˛ .ˇjlog "jCC / ; . Qg˛" /C.A˛/� cn˛jlog "j (3-14)

or
. Qg˛" /�.A˛/� �n˛ .log n˛CC / ; . Qg˛" /C.A˛/� cn˛

2: (3-15)

Proof. The bound (3-13) follows from (3-12), (2-6). Now assume dist.A˛; �"c/ > ".
First, if n˛ D 0 then . Qg˛" /� D 0, . Qg˛" /C � 0; hence (3-14) is true.
Second, if 3e˛=jlog "j �M n˛ then, since for B�A˛, we have gB

" .B/Df
B
" .B/D e".B/�ƒ

˛
" �".B/

and ƒ˛" �
1
2
jlog "j it follows that

. Qg˛" /C.A˛/�
1

4m0

Z
A˛

e"�
1

4m0
ƒ˛"

X
B2B"\A˛

jdBj �
1

4m0

Z
U˛

e"�
1

4m0
ƒ˛"

X
B2B"\A˛

jdBj

�
M

12m0
n˛jlog "j ��n˛jlog "j �

�
M

12m0
��

�
n˛jlog "j:

Together with (3-13), this implies (3-14) if M was chosen strictly greater than 12m0� . The last case is
that where C ˛ DM n˛. Then 1

2
jlog "j �ƒ˛" D

1
2

log n˛CC and therefore, using (2-3),

. Qg˛" /�.A˛/� 2�n˛
�

1
2

log n˛CC
�
� n˛.�ˇjlog "jCC /: (3-16)
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We define

DC
0
D

X
B2B";dB>0
B�B.x˛;r0/

dB; D�1 D
X

B2B";dB<0
B�B.x˛;r1/

jdBj;

and again we distinguish several cases.
First from (3-16) we will have proven (3-14) if we prove that

. Qg˛" /C.A˛/� cn˛jlog "j; (3-17)

for some c > 0. This inequality holds in the following two cases.

First case: D�
1
> n˛=20. This means there is a significant proportion of balls with negative degrees. For

each such negative ball we have from (3-10), and since j�"j.B/� j�".B/j,

gB
" .B/� gB

" .B/�
�

1
2
jlog "j �ƒ˛"

�
�".B/�

�
1
8
jlog "j �C

�
2�jdBj:

This implies that

. Qg˛" /C.A˛/�
1

4m0

�
1
8
jlog "j �C

�
2�D�1 I

hence (3-17) is satisfied when D�
1
> n˛=20.

Second case: DC
0
� n˛=10 and D�

1
� n˛=20. Then for each B 2B"\B˛

" , Proposition 3.6 yields

gB
" .B/�

(�
1
8
jlog "j �C

�
j�"j.B/�

1
2
jlog "jj�".B/j if jdBj> 0�

1
8
jlog "j �C

�
j�"j.B/ if jdBj< 0.

Summing with respect to B we find, since B 2B"\B˛
" implies B � B.x˛; r0/, that

. Qg˛" /C.A˛/�
1

4m0

�
1
8
jlog "j �C

�
n˛ �

1

4m0
DC

0
1
2
jlog "j;

which again yields (3-17) when DC
0
� n˛=10.

We are left with the complementary case, when DC
0
>n˛=10 and D�

1
�n˛=20. In this case (3-17) and

then (3-14) do not necessarily hold. We need to prove (3-15) instead, which in view of (3-16) reduces
to proving

. Qg˛" /C.A˛/� cn˛
2:

For this we really need to use the lower bounds on annuli of the type first introduced in [Sandier and
Serfaty 2003]. We set

C˛" D B.x˛; r1/ n .B.x˛; r0/[B"/ :

For any t 2 T ˛
" we let Bt D B.x˛; t/ and 
t D @Bt ; recall that 
t does not intersect B". If t 2 T ˛

" then
ju"j �

1
2

on 
t because of (2-1) and the fact that dist.A˛; �"c/ > ".
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It follows (see for instance [Sandier and Serfaty 2007, Lemma 4.4], or (5-4) below) that for some
constant c > 0 we haveZ


t

�
1

2
jrAuj2C

.1� juj2/2

4"2

�
C

1

2

Z
Bt

.curl A/2 � c
jd t
" j

2

t
; (3-18)

where d t
" is the degree of u"=ju"j on 
t . Integrating (3-18) with respect to t 2T ˛

" , which has measure less
than 1, the left-hand side will be bounded above by e".A˛/. In view of the lower bound d t

" � .D
C

0
�D�

1
/,

which is valid for any t 2 T ˛
" , since jT ˛

" j � `0, and from the assumption on DC
0

and D�
1

we deduce that

e".A˛ nB"/� c.DC
0
�D�1 /

2
� cn˛

2:

Then, since . Qg˛" /C D
1

4m0
e" on .B"/

c we deduce . Qg˛" /C.A˛/� cn˛
2 and (3-15) is proved. �

Proof of Theorem 1.1 and Corollary 1.2. (1) The estimate (1-2) was already mentioned after the defini-
tion (2-2) of �", and the bound j�"j.E/� Ce". yE/=jlog "j was proved in Lemma 2.4.

(2) We define
f˛ D

X
B2B"\B˛"

.f B
" �gB

" /C . Qg
˛
" /C� . Qg

˛
" /�:

Then clearly f˛ is supported in A˛. Moreover, using the fact (see (3-11)) that

f"�
X

B2B"

f B
" D e"1Bc

"
�

X
˛

�
1
2
jlog "j �ƒ˛"

�
�˛

and since
P
˛ 1A˛ �m0 we easily obtain

f"�
X
˛

f˛ D
X
˛

�
1
2
jlog "j �ƒ˛"

�
.�˛/�C

�
e"1Bc

"
C

X
B2B"

gB
"

��
1�

1

4m0

X
˛

1A˛

�
: (3-19)

Since
P
˛ 1A˛ �m0 we find

f"�
X
˛

f˛ �
X
˛

�
1
2
jlog "j �ƒ˛"

�
.�˛/�C

3

4

�
e"1Bc

"
C

X
B2B"

gB
"

�
� 0: (3-20)

(3) We define g˛. In the case dist.A˛; �"c/� " we let g˛ D . Qg
˛
" /C. ThenZ

� d.f˛ �g˛/D
X

B2B"\B˛"

Z
� d.f B

" �gB
" /�

Z
� d. Qg˛" /�:

This implies (1-5), summing (3-1) over B 2B"\B˛
" and using (3-13).

In the case dist.A˛; �"c/ > " we let

c˛ D

�
Qg˛" .A˛/

jA˛j

�
�

:

We deduce easily from (3-14), (3-15) and if ˇ is small enough that c˛ � C and applying Lemma 3.2 in
A˛ to Qg˛" C c˛ we obtain '˛ defined on A˛ and such that 0 � '˛ � . Qg

˛
" /CC c˛ and, for any Lipschitz
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function � , Z
A˛

� d
�
Qg˛" �g˛

�
� C jr�jL1.A˛/. Qg

˛
" /�.A˛/; where g˛ WD '˛ � c˛.

Moreover �C � �c˛ � g˛ � . Qg
˛
" /C.

Then Z
A˛

� d.f˛ �g˛/D

Z
A˛

� d.f˛ � Qg
˛
" /C

Z
A˛

� d. Qg˛" �g˛/

D

X
B2B"\B˛"

Z
� d.f B

" �gB
" /C

Z
A˛

� d. Qg˛" �g˛/

� C jr�jL1.A˛/
�
n˛C . Qg

˛
" /�.A˛/

�
; (3-21)

where we have used (3-1) to bound the integral involving f B
" �gB

" . Moreover, g˛.A˛/D Qg
˛
" .A˛/.

If (3-14) holds, then (1-3) follows immediately from (3-21) when �ˇ < c=2, with c the constant in
(3-14). If (3-15) holds we deduce (1-4) from (3-21) by noting that cn˛

2�C n˛.log n˛C1/� c
2
n˛

2�C 0n˛

if C 0 is chosen large enough depending on c;C .

(4) To prove (1-8), we adapt an argument from [Struwe 1994].
First, g"�

P
˛ g˛ D f"�

P
˛ f˛ thus from (3-20) and since

P
˛ g˛ � �C we find

g" �
3

4

�
e"1Bc

"
C

X
B2B"

gB
"

�
�C: (3-22)

Then, assuming U˛��", denote by Br;˛
" the set of balls in Br

" which are included in some ball belonging
to B˛

" \B", so that �˛.B"/ D �".B
˛
" \B"/ D �".B

r;˛
" /. Applying Remark 3.5 for some r 2 .

p
"; �/

with � D 1 and summing (3-7) over B 2Br;˛
" we find e".B

r;˛
" /�ƒ

˛;r
" �".B

r;˛
" / and then

e".B"\B˛
" nBr;˛

" /� e".B"\B˛
" /�ƒ

˛
" �˛.B"/C

�
ƒ˛" �ƒ

˛;r
"

�
�˛.B"/

D

X
B2B"\B˛"

gB
" .B/C

1
2

log 1

r
�˛.B"/;

where we have used that f B
" .B/D gB

" .B/. It follows using (3-22) that

e".B"\B˛
" nBr;˛

" /� C
�
.g"/C.U˛/C n˛ log 1

r
C 1

�
: (3-23)

Then comes the argument in [Struwe 1994]: For any integer k, let rk D 2�k�, and let Ck be the
intersection of Brk

" nB
rkC1
" and B˛

" . Then jCk j � C 2�2k�2, since �2�k bounds the total radius of the
balls in Brk

" \B˛
" . Moreover j" D .iu";ru" � iA"/ and thus assuming ju"j � 1 we have jj"j2 � 2e".

Then using Hölder’s inequality in Ck and (3-23) we find for p < 2Z
Ck

jj"j
p
� jCk j

1�p=2
�
e".Ck/

�p=2
� jCk j

1�p=2
�
e".B"\B˛

" nB
rkC1
" /

�p=2
� Cp2�.2�p/k

�
e".B"\B˛

" nB
rkC1
" /

�p=2
� Cp2�.2�p/k

�
.g"/C.U˛/C kn˛ log 2C 1

�p=2
:
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Using (1-10) we findZ
Ck

jj"j
p
� Cp2�.2�p/k.1C k log 2/p=2

�
.g"/C.U˛/C 1

�p=2
:

Summing these inequalities for k ranging from 0 to the largest integer K such that rK �
p
"— so that

in particular rK � 2
p
"— we findZ

B"\B˛" nB
2
p
"

"

jj"j
p
� Cp

�
.g"/C.U˛/C 1

�p=2
;

where Cp is a constant times the sum of the convergent series
P

k 2�.2�p/k.1Ck log 2� log �/p=2. To
this inequality we add Z

B˛"\B
2
p
"

"

jj"j
p
� C "1�p=2e".U˛/

p=2;

which follows from Hölder’s inequality after estimating
ˇ̌
B

2
p
"

" \B˛
"

ˇ̌
by C ", as above. But since e" D

f"C
1
2
jlog "j�" we may write using (1-9), (1-10),

e".U˛/� C .g"/C.
yU˛/CC j�"j. yU˛/.1Cjlog "j/� C jlog "j

�
.g"/C.U˛CB.0; 2//C 1

�
: (3-24)

ThusZ
B˛"\B

2
p
"

"

jj"j
p
� C "1�p

2 jlog "jp=2
�
.g"/C.U˛CB.0; 2//p=2C 1

�
� C

�
.g"/C.U˛CB.0; 2//p=2C 1

�
:

We also add Z
U˛nB"

jj"j
p
� C

�
.g"/C.U˛/C 1

�
which follows from (3-22). Finally we obtainZ

U˛

jj"j
p
� Cp

�
.g"/C.U˛CB.0; 2//C 1

�
:

Summing with respect to the ˛’s such that E \U˛ ¤ ¿, this proves (1-8) and concludes the proof of
Theorem 1.1. �

Proof of Corollary 1.2. Note thatZ
� d.f"�g"/D

X
˛

Z
� d.f˛ �g˛/:

Three types of indices occur.
First we consider indices ˛ such that dist.A˛; �"c/ > " and (1-3) holds. Since

g˛ � g"�
X
ˇ¤˛

gˇ � g"CC; (3-25)

we deduce from (1-3) that if n˛ � 1 and " is small enough, g".A˛/ � cn˛jlog "j and then using (1-3)
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again that Z
� d.f˛ �g˛/� C jr�jL1.A˛/

�
n˛Cˇ.g"/C.A˛/

�
: (3-26)

If n˛ D 0 the same inequality holds since from (1-3) the left-hand side is zero.
Second we consider indices ˛ such that dist.A˛; �"c/ > " and (1-4) holds. We note that if C is large

enough then x log x � �x2CC log2 �=� holds for every x > 0 and �� 1, for instance by distinguishing
the cases � > .log x/=x and � � .log x/=x. We use this and (3-25), together with (1-4) to find that if
n˛ � 1 then Z

� d.f˛ �g˛/� C jr�jL1.A˛/

�
n˛C �.g"/C.A˛/C

log2 �

�

�
: (3-27)

Again the inequality is true if n˛ D 0 since from (1-4) the left-hand side is zero in this case.
Finally we consider indices ˛ such that dist.A˛; �"c/ � ". In this case, noting that from Lemma 2.4

we have n˛jlog "j � Ce".A˛/, we rewrite (1-5) asZ
� d.f˛ �g˛/� C

�
jr�jL1.A˛/n˛Cˇj�jL1.A˛/e".A˛/

�
: (3-28)

To conclude we sum either (3-26), (3-27) or (3-28) according to the type of index ˛, noting that since
diam.A˛/ � 1, we have jf jL1.A˛/ � Of on A˛ for any function f . Since the overlap number of the
A˛’s is bounded by a universal constant, we deduce (1-9).

We prove (1-10). We start by proving that when dist.A˛; �"c/ > " we have

min
�
n˛

2; n˛jlog "j
�
� C

�
.g"/C.A˛/C 1

�
: (3-29)

If n˛ D 0 this is trivial, if not then it follows from either (1-3) or (1-4) using (3-25).
Assume ˛ is such that dist.A˛; �"c/ > ", then since 2x � �x2 C 1=� and since x � �xjlog "j is

trivially true if 1=jlog "j< �, we deduce from (3-29) that

n˛ � C
�
�.g"/C.A˛/C 1=�

�
: (3-30)

On the other hand Lemma 2.4 implies that for any ˛

n˛ � C
e".A˛ \�"/

jlog "j
: (3-31)

Summing (3-30) or (3-31) according to whether dist.A˛; �"c/ is > " or � " we deduce (1-10). �

4. Proof of Theorem 1.5

Convergence. We study the consequences of the hypothesis

MR WD lim sup
"!0

Z
UR

g".x/ dx <C1 for all R> 0: (4-1)

and prove that it implies the convergence of the vorticities and currents in the appropriate sense.
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Note that we assume dist.0; @�"/!C1 so that for every R, UR � �" for " small enough. From
(1-13) there exists C > 0 such that for any R large enough

BR=C �UR � BCR;
1

C
�
jURj

R2
� C:

We now gather several easy consequences of Theorem 1.1 and (4-1).

Proposition 4.1. Assume (4-1) holds, and let g" be as in Theorem 1.1. Then for any R and " small
enough depending on R we haveX

˛ jA˛�UR

min.n˛2; n˛jlog "j/� C.MRCC CR2/; (4-2)

j�"j.UR/� C.MRCC CR2/; (4-3)Z
.f"�g"/�UR

� C
X

˛ jA˛�URCC nUR�C

n˛.log n˛C 1/� C.MRCC CR2/; (4-4)

where f�
UR
gR are any functions satisfying (1-14).

For any 1� p < 2 there exists Cp > 0 such that for any R> 0, and " small enoughZ
UR

jj"j
p
� Cp.MRCC CR2/: (4-5)

Up to extraction of a subsequence, fj"g" converges weakly in L
p
loc.R

2/, p < 2 to some j W R2 ! R2;
f�"g" converges in the weak sense of measures to a measure � on R2 of the form 2�

P
p2ƒ dpıp, where

ƒ is a discrete set and dp 2 Z; f�"g" converges to the same � in W
�1;p

loc .R2/ for any p < 2; and fh"g
converges weakly in L2

loc.R
2/ to h. Moreover,

curl j D � � h: (4-6)

Proof. Assertions (4-2), (4-3) and (4-5) are direct consequences of (3-29), (1-10) and (1-8), respectively.
We prove (4-4). As a consequence of (4-1), for every R > 0, if " > 0 is small enough and A˛ � UR

then (1-4) holds. Indeed if (1-3) is true with n˛ � 1 (note that if n˛D 0 then (1-3) and (1-4) are identical)
then g".A˛/� cjlog "j �C , using (3-25), which contradicts (4-1) if " is small enough.

Then we use (1-3) with �D�
UR

. Since �
UR

is supported in URCC and since dist.URCC ; @�"/!C1

we have, if " is small enough and A˛ \URCC ¤¿, that dist.A˛; @�"/ > ". Then summing (1-3) over
all such ˛ we find Z

�UR
d.f"�g"/� C

X
˛ jA˛�URCC nUR�C

n˛ .log n˛C 1/ ;

which is the first inequality in (4-4). The second one then easily follows from (3-29).
We now turn to the convergence results. The weak local convergence of j" follows from a bound forR

UR
jj"j

p valid for any " small enough, depending on R, which is implied by (4-1) and (4-5). From
(4-3), f�"g" is bounded on any compact subset of R2, hence converges (up to extraction) to a measure �,
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which by (2-2) has to be of the form 2�
P

p2ƒ dpıp where ƒ is a discrete set and dp 2 Z for every
p 2ƒ (we will prove below that dp D 1).

The weak local convergence of h" follows from (1-12) combined with the bound (4-1).
The convergence of f�"g" in W

�1;p
loc uses the Jacobian estimate (see [Jerrard and Soner 2002] or

[Sandier and Serfaty 2007, Theorem 6.2]) from which we deduce that for any R> 0 and any 
 2 .0; 1/,
and since r.B

p
"

" \BR/� C
p
",

k�"� �"k.C 0;


0
.BR//�

� C.
p
"/
 .e".BR/C 1/ ; (4-7)

where C depends on R but not on ".
But f�"g" is bounded in BR as measures, hence in .C 0;


0
/�, and arguing again as in (3-24),

e".BR/� .g"/C.BRC1/C
1
2
jlog "jj�"j.BRCC /� C jlog "j:

Therefore the right-hand side in (4-7) tends to 0 as "! 0 and f�"g" is bounded in .C 0;

0
.BR//

�. We
deduce that �" ! � in W

�1;p
loc by noting that for any 1 < p < 2 there exists 0 < 
 < 1 such that

W
1;p0

0
.BR/ ,!C

0;

0

with compact imbedding — where 1=pC1=p0D 1 — which implies by duality that
.C

0;

0
/� ,!W

�1;p
0

with compact imbedding.
Finally (4-6) is obtained by passing to the limit in �"D curl j"Ccurl A" since by Remark 1.4 we may

assume (up to extraction) that curl A"! h weakly locally in L2 as "! 0. �

Remark 4.2. From the above results, it is easy to deduce (1-18) under the stronger assumption (1-17).
In this case we have MR � CR2 and therefore (4-3), (4-5) and Remark 1.4 imply that

j�"j.UR/� CR2;

Z
UR

jj"j
p
� CR2;

Z
UR

jh"j
2
� CR2 (4-8)

which in turn implies (1-18).

Lower bound by the renormalized energy. We turn to the proof of the remaining statement in Theorem
1.5, namely that � is of the form 2�

P
p2ƒ ıp (we already know it is of the form 2�

P
p2ƒ dpıp,

where the dp’s are nonzero integers) and that under assumption (1-17) the lower bound (1-19) holds.
Both are related to a lower bound of

R
�

R
g" by the renormalized energy, where �

R
WD �

UR
. This

reproduces more or less arguments present in [Bethuel et al. 1994] and [Bethuel and Rivière 1995].
Throughout this subsection we assume that (1-17) holds, and begin by bounding from below the integral
of .e"� 1

2
jlog "j�"/�R

.
Choose R> 0. From (4-3) we have that j�"j is bounded independently of " on the support of �

R
, thus

a subsequence of fj�"j1Supp�
R
g" converges to a positive measure Q� of the form 2�

Pk
iD1 kiıai

, where
ki is a positive integer for every i (the ai’s are a subset of ƒ).
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From the weak convergence of j" to j in L
p
loc and using the inequality jrA"u"j � jj"j (following from

the assumption ju"j � 1) we have for any r > 0

lim inf
"!0

Z
R2n

S
p2ƒB.p;r/

�RjrA"u"j
2
� lim inf

"!0

Z
R2n

S
p2ƒB.p;r/

�Rjj"j
2

�

Z
R2n

S
p2ƒB.p;r/

�Rjj j
2: (4-9)

Indeed either the left-hand side is equal toC1 and the statement is true, or there is weak L2 convergence
of the currents on the complement of

S
p B.p; r/ and (4-9) follows by weak lower semicontinuity of the

integrand. Similarly, by weak convergence of h" to h we have

lim inf
"!0

Z
R2n

S
p2ƒB.p;r/

�Rh"
2
�

Z
R2n

S
p2ƒB.p;r/

�Rh2: (4-10)

Then consider any � 2 .0; 1/ small enough so that the balls B.ai ; 2�/ are disjoint. Note that since the
limit of j�"j on the support of �

R
is a sum of Dirac masses concentrated at the points faigi we have for

" small enough
j�"j.Supp�R n

[
i

B.ai ; �//D 0; �".B.ai ; �//D 2�di ;

where 2�di D �.ai/.
We use two distinct lower bounds for the integral of �

R
.e"�

1
2
jlog "j�"/ on balls. We distinguish the

set I of indices such that B.ai ; 2�/ � f�R
D 1g and the remaining indices J . Note that if i 2 J then

B.ai ; 2�/ intersects the set where �
R
¤ 1 and the support of �

R
, thus B.ai ; 2�/ � URCC nUR�C for

some C > 0 independent of R> 0, � 2 .0; 1/ and i .
In the case i 2 I we use Z

B.ai ;�/

e" � �jdi jlog
�

"
CCjdi j

C o�;".1/; (4-11)

where Cd is a constant depending only on d such that C1 D 
 , (where 
 is defined after Theorem 1),
where C0 D 0, and where

lim
�!0

lim sup
"!0

o�;".1/D 0:

We postpone the proof of this well-known statement. It is very similar to analogous ones found in
[Bethuel et al. 1994] or [Bethuel and Rivière 1995]. Then we deduce from (4-11) that for any i 2 I and
letting Cdi

DC1 if di < 0,

lim inf
"!0

Z
B.ai ;�/

�
e"�

1
2
jlog "j d�"

�
� �di log � CCdi

C o�.1/; (4-12)

where lim�!0 o�.1/D 0.
In the case i 2 J we have to introduce the weight �

R
that is no longer constant on the ball. Then

we resort to Remark 3.5. Consider the family of balls C" consisting of the balls B in B
�=2
" which

intersect the support of �
RC1

, and such that j�"j.B/ ¤ ¿. For any B 2 C", since j�"j.B/ ¤ 0 and
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j�"j ! 2�
P

i kiıai
, and since r.B/ � �=2, we have for " small enough depending on R that there is

some index i for which B � B.ai ; �/. Let Ci
" denote the balls included in B.ai ; �/ and partition Ci

" asS
˛ Ci;˛

" and C" as
S
˛ C˛" where the superscript ˛ corresponds to the balls which are included in a ball

B 2B˛
" (we assume �=2< �).

From (3-7), for every B 2 Ci;˛
"Z

B

�R

�
e"�ƒ

˛;�=2
" d�"

�
� �C jr�Rj1j�"j.B/� �C j�"j.B/: (4-13)

Now we note that since (1-17) holds, then for " small enough C ˛ DM n˛, for otherwise we would have
e".B

˛
" /� .M=3/n˛jlog "j and thenX
B2B˛"

gB
" .B/D

X
B2B˛"

f B
" .B/D

X
B2B˛"

.e"�ƒ
˛
" �"/.B/�

�
M

3
��

�
n˛jlog "j

"!0
���! C1;

if we choose M > 3� and since n˛ � 1. This is a contradiction with (1-16) since g" �
P

B gB
" �C by

(1-6), proving that C ˛ DM n˛.
Then we have from (2-5) that

ƒ˛;�=2" �
1
2
jlog "j D 1

2
log �C�; where j�j � C .log n˛C 1/

and ˇ̌̌̌Z
B

�
�R ��R.ai/

�
d�"

ˇ̌̌̌
� C�j�"j.B/:

Hence with (4-13)Z
B

�R

�
e"�

1
2
jlog "j d�"

�
D

Z
B

�R

�
e"�ƒ

˛;�=2
" d�"

�
C
�1
2

log �C�
� Z

B

�R d�"

� �C j�"j.B/C
log �

2
�R.ai/�".B/�

�

2
log �j�"j.B/� j�j j�"j.B/

�
log �

2
�".B/�R.ai/�C j�"j.B/

�
1C log n˛

�
:

Summing over B 2 Ci;˛
" and then over ˛ and i 2 J we find, sinceX

B2Ci
"

�".B/D �".B.ai ; �//! �.B.ai ; �//D 2�di ;

that

lim inf
"!0

Z
S

i2J B.ai ;�/

�R

�
e"�

1
2
jlog "j d�"

�
� �

X
i2J

di�R.ai/ log ��C�.R/;

where

�.R/D lim sup
"!0

X
˛ jU˛�URCC nUR�C

n˛ .log n˛C 1/ :
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Summing (4-12) over i 2 I and adding the above and (4-9)–(4-10), we deduce

lim inf
"!0

Z
�R.e"�

1
2
jlog "j d�"/�

1

2

Z
R2n

S
p2ƒB.p;�/

�R.jj j
2
C h2/

C

X
i2I

�R.ai/
�
�di log �CCdi

�
C

X
i2J

�R.ai/�di log ��C�.R/� o�.1/: (4-14)

We will now take the limit �!0 on the right-hand side. For that we use a Hodge decomposition of j in
B.ai ; �0/, writing j D�r?HCrK, with H D0 on @B.ai ; �0/. Then since��H D��hD2�diıai

�1

we have H.x/Ddi log jx�ai jCF , where F is in H 2 in the neighborhood of ai , in particular H 2W 1;p

for any p < 2, and since j 2Lp, this implies that K 2W 1;p also. Then an easy computation shows that

lim
�!0

1

2

Z
B.ai ;�0/nB.ai ;�/

�Rjr
?H j2C�.log �/di

2�R.ai/

exists and is finite, whileZ
B.ai ;�0/nB.ai ;�/

�Rjj j
2
�

Z
B.ai ;�0/nB.ai ;�/

�R

�
jr
?H j2Cr?H � rK

�
:

Decomposing H and integrating by parts we have, writing Ci;� D B.ai ; �0/ nB.ai ; �/,Z
Ci;�

r
?H � .�RrK/D

Z
Ci;�

r
?F � .�RrK/� di

Z
Ci;�

Kr? log �r�R;

and this remains bounded as �! 0, using the regularity of �
R

, F , and the boundedness of H , K, log in
W 1;p. We may then deduce that

lim inf
�!0

1

2

Z
B.ai ;�0/nB.ai ;�/

�Rjj j
2
C�.log �/di

2�R.p/

is not equal to �1.
As a consequence, writing di D di

2
� .di

2
� di/ in the right-hand side of (4-14), and this right-hand

side being bounded above independently of �, we have that
P

i.di
2
�di/�R

.ai/ log 1
�

is bounded above
as �! 0. Thus we have di 2 f0; 1g for any i such that �

R
.ai/¤ 0 and then di D 1 since di was assumed

to be nonzero. In view of this, (4-14) can be rewritten as

lim inf
"!0

Z
�R.e"�

1
2
jlog "j d�"/�

1

2

Z
R2n

S
p2ƒB.p;�/

�R.jj j
2
C h2/

C

X
p2ƒ

�R.p/ .� log �C 
 /�C�.R/� o�.1/;

where we recall that 
 D C1 and we have absorbed C1

P
i2J �R

.ai/ in C�.R/.
Letting �! 0 we thus find (see (1-15))

lim inf
"!0

Z
�R.e"�

1
2
jlog "j d�"/�W .j ; �R/C

1

2

Z
�Rh2

C

X
p2ƒ

�R.p/
 �C�.R/:
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From (4-4) we may replace e"�
1
2
jlog "j�" by g", with an error term which may be absorbed in C�.R/

hence

lim inf
"!0

Z
�R dg" �W .j ; �R/C

1

2

Z
�Rh2

C

X
p2ƒ

�R.p/
 �C�.R/: (4-15)

Now, under hypothesis (1-17) and using (4-2), we have lim sup
"!0

P
˛ jA˛�UR

n˛
2 � CR2, and thus

lim sup
R!1

lim sup
"!0

1

R2

X
˛jA˛�URCC nUR�C

n˛" jlog n˛" j D 0:

Indeed, using Hölder’s inequality, and bounding the number of ˛’s involved in the above sum by CR,
we find X

˛jA˛�URCC nUR�C

Œn˛" �
3=2
� .CR/1=4

� X
˛ jA˛�URCC

n˛
2

�3=4

� CR1=4C3=2:

It follows, since U˛ �A˛, that

lim sup
R!C1

�.R/

R2
D 0 (4-16)

and in particular �.URCC nUR�C /D o.R2/. Then we write, using � D curl j C h,X
p2ƒ

�R.p/D
1

2�

Z
�R d� D

1

2�

Z
�Rh�

1

2�

Z
r
?�R � j:

Let ER D f0<�R
< 1g. Then since ER �URCC nUR�C we have jERj �CR and using (4-8) together

with Hölder’s inequality we findZ
ER

�Rh� jERj
1=2

�Z
ER

h2

�1=2

� CR3=2;

and a similar bound for
R
r?�

R
� j using (4-8) again, since it is equal to

R
ER
r?�

R
� j . ThereforeX

p2ƒ

�R.p/D
1

2�

Z
f�

R
D1g

hC o.R2/D
1

2�

Z
UR

hC o.R2/;

the second equality being proved again with the help of (4-8) and Hölder’s inequality. Together with
(4-16) and (4-15), this proves (1-19).

There remains to prove (4-11). For this it is convenient to blow-up B.ai ; �/ to the unit ball B1. Then
(4-11) becomes

1

2

Z
B1

�
jrBvj

2
C

ˇ̌̌̌
curl B

�

ˇ̌̌̌2
C
.1� jvj2/2

2"02

�
� �jdi j log

1

"0
CCdi

C o�;".1/; (4-17)

where v.x/ D u".�x/, B.x/ D �A".�x/ and �"0 D ", so that "0 tends to 0 with ". Note that .v;B/
depends on " but we omit this in the notation for the rest of the proof.
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Since curl A"! h weakly in L2
loc, it follows that kcurl BkL2.B1/

� 2�kcurl A"kL2.B�/
� C�. Then,

choosing to work in the gauge div B D 0, B � � D constant on @B1, we have kBkH 1.B1/
� C�. Since

j .u";A"/ is bounded in L
p
loc.R

2/ for any p < 2, we deduce immediately that kj .v;B/kLp.B1/ �

C�1�2=p. But by Sobolev embedding, kBkLq.B1/DO.�/ for any q> 1 hence the integral of B �j .v;B/

on B1 is o�.1/. Then, since

jrBvj
2
D jrvj2� 2B � j .v;B/CjBj2jvj2;

(4-17) will follow if we show that

1

2

Z
B1

�
jrvj2C

.1� jvj2/2

2"02

�
� �jdi j log

1

"0
CCdi

C o�;".1/: (4-18)

To prove (4-18) we modify B in order for the current to be divergence-free: As before we use the
Hodge decomposition j .v/ WD .iv;rv/D�r?H CrK with H D 0 on @B1, and let QvD ve�iK . Then
denoting e.v/ the integrand in (4-18) we have

e. Qv/D e.v/�rK � j .v/C
jvj2

2
jrKj2:

We replace j .v/D�r?H CrK and note that, integrating by parts, rK � r?H integrates to 0 on B1.
Therefore Z

B1

e. Qv/D

Z
B1

�
e.v/C

�
jvj2

2
� 1

�
jrKj2

�
�

Z
B1

e.v/:

Thus if we show the lower bound (4-18) for Qv, then we are done. For this we may assume, without loss
of generality, that the upper bound

1

2

Z
B1

�
jr Qvj2C

.1� j Qvj2/2

2"02

�
� �jdi j log

1

"0
CCdi

(4-19)

holds.
The advantage is that now we have

j . Qv/D�r?H C .1� jvj2/rK:

But lim"!0.1 � jvj
2/ D 0 in Lq.B1/ for any q > 1, being bounded in L1 and tending to 0 in L2.

Moreover, we have seen that kj .v;B/kLp.B1/ � C�1�2=p, and that B DO.�/ in every Lp, so

j .v;B/� j .v/D jvj2B DO.�/ (4-20)

and therefore j .v/DO.�1�2=p/ in Lp, which implies that H and K are O.�1�2=p/ in W 1;p. It follows
from the above that

j . Qv/Cr?H D o�;".1/: (4-21)

in Lp.B1/, for every p < 2.
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Moreover, since curl j .u";A"/C h" ! 2�diıai
in W �1;p as " ! 0, we have that curl j .v;B/C

� curl B ! 2�diı0. Hence using (4-20) we deduce ��H D curl j .v/! 2�diı0C o�.1/ as "! 0 in
W �1;p. Since H D 0 on @B1 we then have

H.x/D�2�di log jxjC o�.1/ (4-22)

in W 1;p.
From (4-21), (4-22) we may find radii fr"g" such that

(i) lim
"!0

r" D 1; (ii) kj . Qv/Cr?HkLp.@Br" /
D o�;".1/; (iii) kH C 2�di log kW 1;p.@Br" /

D o�.1/:

We may further require that � WD j Qvj ! 1 uniformly as "! 0 on @Br" . Indeed from (4-19) we have

1

2

Z
B1

jr�j2C
1

2"02
.1� �2/2 � C log "0

thus a mean value argument easily implies that r" may be chosen such that

1

2

Z
@Br"

jr�j2C
1

2"02
.1� �2/2 � C.log "0/2:

This in turn implies using (5-1) that k�� 1kL1.@Br" /
! 0 as "! 0.

Then, writing Qv D �ei' , we have j . Qv/D �2r', and the above implies that

Qv D .1C Q�/ei.�0Cdi�CQ'/ for some �0 2 R;

where

k Q'kW 1;p.@B1/
D o�;".1/ and k Q�kL1.@B1/ D o".1/:

Without going into further detail (see [Bethuel et al. 1994, Chapter VIII], for instance), this implies that

1

2

Z
B1

�
jr Qvj2C

.1� j Qvj2/2

2"02

�
�min

�
1

2

Z
B1

�
jruj2C

1

2"02
.1� juj2/2

� ˇ̌̌̌
uD eidi� on @B1

�
Co�;".1/:

From [Bethuel et al. 1994], the right-hand side is precisely equal to �jdi j log.1="0/CCjdi j
Co".1/, where

the constant Cd is equal to 
 if d D 1. Thus we have proved (4-18), and then (4-11).

5. Proof of Proposition 2.1

The proof of Proposition 2.1 is based on the ball construction of R. Jerrard [1999], hence we will only
emphasize the points which need some modification, mostly to take into account the presence of the
magnetic potential A the way we do in [Sandier and Serfaty 2007]. We will denote by c, C , respectively,
a small and a large generic universal constant. We will number the constants we need to keep track of.
Throughout this section U is a bounded domain in R2 and .u;A/ are defined on U .

The first ingredient is a lower bound for the energy of juj on a circle [Jerrard 1999, Lemma 2.3]. It is
valid for any " > 0.
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Lemma 5.1. Assuming 2r � " > 0 and x are such that the closed ball B.x; r/� U , we have

1

2

Z
@B.x;r/

ˇ̌
rjuj

ˇ̌2
C
.1� juj2/2

2"2
� c0

.1�m/2

"
; (5-1)

where mDmin@B.x;r/ juj.

In contrast to [Jerrard 1999] and because we wish to work with constants independent of U we intro-
duce

U" D fx 2 U j dist.x;U c/ > "g:

Then u W U ! C being given we introduce, following Jerrard, S D fx 2 U" j juj �
1
2
g. Assuming u is

continuous the connected components of S which are included in U" are compact, and u=juj has a well
defined degree, or winding number on their boundary. Then we let

SE D union of the components of S with nonzero boundary degree:

Still following Jerrard, for any compact K � U such that @K\SE D¿ we let

degE.u; @K/D
X

Si component of SE

deg.u; @Si/:

This degree is defined even if juj vanishes on @K, provided the points where it vanishes are not in SE .
The previous lemma implies (see [Jerrard 1999, Proposition 3.3]):

Lemma 5.2. There exists a collection of disjoint closed balls B1; : : : ;Bk of radii r1; : : : ; rk such that
for all i we have ri � " and e".U \Bi/� c1ri=", and that

SE \U" �

k[
iD1

Bi :

Proof. We only sketch the proof. If x 2SE then either @Br .x/ intersects fjuj � 1
2
g for every "=2� r � ",

in which case Lemma 5.1 implies that e".U \B.x; "//� c, or there exists "=2� r � " such that juj> 1
2

on @Br .x/, and then the connected component of x in SE , which has nonzero degree, is included in
B.x; r/. The nonzero degree implies again (see [Jerrard 1999]) that e".U \B.x; "//� c. We thus have
a cover of SE by balls that satisfy e".B/� cr.B/=".

From Besicovitch’s lemma, there exists a disjoint subcollection fBkgk such that f zBkgk covers SE ,
where zBk D CBk with C a universal constant. These balls still satisfy e".B/� cr.B/=", though with a
smaller constant. Then, grouping the balls which intersect in larger ones as in [Jerrard 1999] (see also
[Sandier and Serfaty 2000]) we can obtain a disjoint cover of SE with the same property. The condition
ri � " is trivially verified since the balls we started with had radius ". Note also that the balls obtained
here only depend on SE , hence on u. �

Still following Jerrard, we have:
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Proposition 5.3. Choose c2 2 .0; c1/ small enough and let

�".x/Dmin

 
c2

"
;
�

x

1

1C x
2
C

�"
c0x

!
:

Then, assuming that Br � U", that @Br \SE D¿ and that " � r � jd j=2, where d D degE.u; @Br /

is assumed to be different from 0, we have

1

2

Z
@Br

jrAuj2C
1

2

Z
Br

jcurl Aj2C
1

4"2

Z
@Br

�
1� juj2

�2
� �"

�
r

jd j

�
: (5-2)

Moreover, the primitive function ƒ".x/D
R x

0 �" is increasing, s 7!ƒ".s/=s is decreasing,

lim
s&0

ƒ".s/

s
D

min.c0; c2/

"
<

c1

"
;

ƒ"."/

"
�

c3

"

and finally, for any "� s � 1
2

, and for some C0 > 0,

ƒ".s/� � log
s

"
�C0: (5-3)

Proof. First, in the case where @Br intersects fjuj � 1
2
g we deduce from (5-1) that (5-2) is satisfied with

c2 D c0=4.
When on the contrary juj > 1

2
on @Br we have degE.u; @Br / D deg.u; @Br /. Then we bound from

below 1

2

R
@Br
juj2jr' � Aj2, where u D jujei' as follows: Still denoting m D min@Br

juj, using the
Cauchy–Schwarz inequality we have

1

2

Z
@Br

juj2jr' �Aj2 �
m2

2

1

2�r

�Z
@Br

@'

@�
�A � �

�2

D
m2

4�r
.2�d �X /2

where we write X WD
R

Br
curl AD

R
@Br

A � � . On the other hand, by Cauchy–Schwarz again

1

2

Z
Br

jcurl Aj2 �
1

2�r2

�Z
Br

curl A

�2

D
X 2

2�r2

Adding the two relations we obtain

1

2

Z
@Br

juj2jr' �Aj2C
1

2

Z
Br

jcurl Aj2 �
1

2�r

�
m2

2
.2�d �X /2C

1

r
X 2

�
:

Minimizing the right-hand side with respect to X yields

1

2

Z
@Br

juj2jr' �Aj2C
1

2

Z
Br

jcurl Aj2 �
�d2

r

m2

1C m2r
2

: (5-4)

Adding (5-1) we deduce for r � " that

e".@Br /�
�jd j

r

jd j
1

m2 C
r
2

C c0

.1�m/2

"
: (5-5)
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If jd j> 1, then either m2 < 2=3 and we find e" > c=" for a well chosen c > 0 or m2 � 2=3 and, since
r=2< jd j=4, we have m�2C r=2� 3=2Cjd j=4� jd j implying e" � �jd j=r . Thus, if jd j> 1, (5-2) is
satisfied. If jd j D 1 then minimizing the right-hand side of (5-5) with respect to m yields

e".@Br /�
�

r

1

1C r
2
C

�"
c0r

;

so that in every case we have e".@Br /� �".r=jd j/, if c2 is chosen small enough.
We now turn to the properties of ƒ". Since �" is positive, decreasing, then ƒ" is increasing and

ƒ".s/=s is decreasing. It is clear that as s! 0, we have �".s/ � min.c0; c2/=" � ƒ".s/=s. Moreover,
if x > c", with c D �=c2, then

�".x/D
�

x

1

1C x
2
C

�"
c0x

I

hence, if s � c",

ƒ".s/�

Z s

c"

�

x

1

1C x
2
C

�"
c0x

dx �

Z s

c"

�

x

�
1�

x

2
�
�"

c0x

�
dx � � log

s

"
�C0;

for some constant C0. If s < c" then the inequality remains true if C0 is chosen large enough, since
ƒ".s/� 0.

Finally, ƒ"."/� "�"."/� c3, if c3 > 0 is chosen small enough. �

From there, the ball construction procedure (growing and merging of balls) from [Jerrard 1999] (or
see [Sandier and Serfaty 2000, Proposition 3.1]) allows one to deduce this:

Proposition 5.4. For any 0 < s < 1
2

there exists a family of disjoint closed balls B.s/ (depending only
on u") such that:

(1) The family of balls is monotonic; that is, if s< t , we have B.s/�B.t/. Moreover, denoting by r.B/

the radius of B, the function s!
P

B2B.s/ r.B/ is continuous.

(2) For any s we have SE �B.s/.

(3) For any B 2B.s/,

e".U \B/� r.B/
ƒ".s/

s
:

(4) If B 2B.s/ and B � U" then, letting dB D degE.u"; @B/, we have r.B/� sjdBj.

Proof. We let B.s0/ be the family of balls given by Lemma 5.2, where we choose s0 small enough so
that items 3 and 4 are satisfied (item 2 obviously is). We let B.s/DB.s0/ for every s � s0. For s � s0

we apply the method of growing and merging of [Jerrard 1999] which we sketch briefly: It consists in
continuously increasing the parameter s and at the same time making those balls included in U" such that
r.B/D sjdBj grow so that the equality remains satisfied. When balls touch, the parameter s is stopped
and the balls are merged into a larger ball with radius the sum of the radii of the merged balls, and this
is repeated if the resulting family is still not disjoint. This does not change the total radius and when it
is done — that is, when the family is disjoint again — the increasing of s is resumed, and the process is
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repeated This yields a family of disjoint closed balls which is monotonic, such that s!
P

B2B.s/ r.B/

is continuous and such that r.B/� sjdBj for every ball included in U". Obviously SE \U" �B.s/ for
every s. Also the growing and merging process depends only on the initial balls and the degrees of u",
hence on u".

The lower bound e".U \B/ � r.B/ƒ".s/=s is true initially and is preserved through the merging
process, it is also preserved through the growing process as long as (5-2) remains valid, i.e., r.B/ <

jdBj=2 for every B �U" such that dB ¤ 0. This results from the properties of ƒ", as detailed in [Jerrard
1999]. Then for the process to stop, there must be a ball B for which r.B/D sjdBj, i.e., a growing ball,
with r.B/� jdBj=2, hence we must have s � 1

2
. �

Proof of Proposition 2.1. We first construct a family B0.s/ containing SE instead of fx 2 U" j juj �
1
2
g

but satisfying items (2) and (3) in the conclusion of the proposition.
Under the hypotheses, Proposition 5.4 applies, and yields for every 0< s < 1

2
a family of balls B0.s/

satisfying the four items stated. Choosing s0 small enough we have ƒ.s0/=s0 � c=". Hence, letting r0

denote the total radius of the balls in B0.s0/,

"�ˇ �G".u;A/�
cr0

"

and therefore r0 � C "1�ˇ.
Let r 2 .C "1�ˇ; 1

2
/, and let r1 be the total radius of the balls in B0.1

2
/. If r > r1 then B0.1

2
/ satisfies

item (2) trivially and moreover for any B 2B0.1
2
/ we have from Proposition 5.4 and using (5-3) that

e".B/� jdBjƒ"
�

1
2

�
� �jdBj

�
log

1

2"
�C

�
� �jdBj

�
log

r

C ˛"
�C 0

�
;

for any r � 1
2

and any C ˛ � 2, proving item (3) in this case.
If r < r1 then there exists s 2 .s0;

1
2
/ such that B0 WD B0.s/ satisfies r.B0/ D r . Then item 2 of the

proposition is satisfied for this collection. Let us check item 3.
Assume then e".B

0/ � C log.r="/; with 2 � C � .r="/1=2. We show by contradiction that if M is
chosen large enough, then

s �
r

M C
:

Since e".B
0/� rƒ".s/=s and since ƒ".s/=s is decreasing, if s < r=.M C / and r=.M C /� 1

2
then

C log
r

"
�M Cƒ"

�
r

M C

�
� �M C log

�
r

"M C

�
�C0M C :

It follows that
.1��M / log

r

"
C�M log C C�M log M �C0M � 0;

which yields a contradiction for M D 3=� and r �C ", with C large enough, recalling that C � .r="/1=2.
Therefore s � �r=.3C / and then for every B 2B0 such that B � U" we have

e".B/� r.B/
ƒ".s/

s
� jdBjƒ".s/� jdBjƒ"

�
�r

3C

�
;
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which in view of (5-3) yields, for all B 2B0 such that B � U",

e".B/� �jdBj

�
log

r

"C
�C

�
;

if C is chosen large enough.
It remains to modify B0.s/ so that S WD fx 2 U" j juj �

1
2
g � B.r/. First we note that a well known

application of the coarea formula yields rather easily (see [Sandier and Serfaty 2007, Proposition 4.8])
that S can be covered by a collection of disjoint closed balls C such that r.C/� C "G" � C "1�ˇ. Then
for every s we do the merging of the balls in C[B0.s/ as in the proof of Proposition 5.4 to obtain B.s/.
If we chose s such that r.B0.s//D r=2 with C "1�ˇ < r < 1 and C large enough, then r.B.s//� r since
r.C/� C "1�ˇ. Moreover, if B 2B.s/ is such that B � U" then deg.u; @B/ is the sum of degE.u; @B

0/

for B0 2 B0.s/ and B0 � B. Then, if e".B/ � C log.r=2"/ the same bound holds for the B0’s and
summing the above lower bounds we find

e".B/� �jdBj

�
log

r

2"C
�C

�
:

Changing the constant C we can get rid of the factor 2 and B.s/ has all the desired properties. �
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