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IMPROVED LOWER BOUNDS FOR GINZBURG–LANDAU ENERGIES
VIA MASS DISPLACEMENT

ÉTIENNE SANDIER AND SYLVIA SERFATY

We prove some improved estimates for the Ginzburg–Landau energy (with or without a magnetic field)
in two dimensions, relating the asymptotic energy of an arbitrary configuration to its vortices and their
degrees, with possibly unbounded numbers of vortices. The method is based on a localization of the “ball
construction method” combined with a mass displacement idea which allows to compensate for negative
errors in the ball construction estimates by energy “displaced” from close by. Under good conditions,
our main estimate allows to get a lower bound on the energy which includes a finite order “renormalized
energy” of vortex interaction, up to the best possible precision, i.e., with only a o.1/ error per vortex,
and is complemented by local compactness results on the vortices. Besides being used crucially in a
forthcoming paper, our result can serve to provide lower bounds for weighted Ginzburg–Landau energies.

Introduction

We are interested in proving lower bounds and compactness results for Ginzburg–Landau type energies
of the form

G".u;A/D
1

2

Z
�"

jrAuj2C .curl A/2C
.1� juj2/2

2"2

where " is a small parameter, u is a complex-valued function called the order parameter, A is R2-valued
and is the vector potential of the magnetic field h WD curl A, and rA D r � iA. Here the domain
of integration �" is a smooth bounded domain in R2, which can depend on ". We are interested in
particular in the case where �" gets large as "! 0. Note that one may set A� 0 to recover the simpler
Ginzburg–Landau energy

E".u/D
1

2

Z
�"

jruj2C
.1� juj2/2

2"2

without a magnetic field. Our results apply to this energy functional by making this trivial choice of A.
The Ginzburg–Landau energy is a famous model for superconductivity. In this model the order-

parameter u often has quantized vortices, which are the zeroes of u with nonzero topological degree.
Obtaining ansatz-free lower bounds for G" in terms of the vortices of u has proven to be crucial in
studying the asymptotics of minimizers of G", in particular via �-convergence methods.

The first study establishing lower bounds for Ginzburg–Landau was the work of Bethuel, Brezis,
and Hélein [Bethuel et al. 1994] for solutions to the Ginzburg–Landau equations without magnetic field
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with energy E" bounded by C jlog "j. Such an energy bound ensures that the total number of vortices
remains bounded as "! 0. This was later improved and extended in two different directions in [Han
and Shafrir 1995] and [Almeida and Bethuel 1998] for arbitrary configurations, still with a number
of vortices that remains bounded. The main limitation of such estimates is that the error terms blow
up as the number of vortices gets large. Then, Jerrard [1999] and Sandier [1998] introduced the “ball
construction method”, which provides lower bounds in terms of vortices for arbitrary configurations,
allowing unbounded numbers of vortices and much larger energies. This is crucial for many applications,
since energy minimizers of the functional with applied magnetic field do not always satisfy a C jlog "j
bound on their energy. Subsequent refinements of the ball construction method were given (see for
example [Sandier and Serfaty 2007, Chapter 4] for a recent result). The lower bound provided by the
ball construction method also provides a crucial compactness result on the vorticity (roughly the sum
of Dirac masses at the vortex centers, weighted by their degrees). These are the so-called “Jacobian
estimates”; see [Jerrard and Soner 2002] and [Sandier and Serfaty 2007, Chapter 6]. They say roughly
that the vorticity is controlled by jlog "j�1 times the energy. For other subsequent works refining those
results in a slightly different direction, see also [Sandier and Serfaty 2004; Jerrard and Spirn 2008; Serfaty
and Tice 2008].

In a way our objective here can be seen as obtaining next order terms (order 1 as opposed to order
jlog "j) in such estimates, both energy estimates and compactness results.

For a given .u;A/, let us define the energy density

e".u;A/D
1

2

 
jrAuj2C .curl A/2C

.1� juj2/2

2"2

!
:

If .u;A/ is clear from the context and defined on a set E, we will often use the abbreviation e".E/ forR
E e".u;A/, and e" for the density e".u;A/. We then introduce the measure

f" WD e"��jlog "j
X
B

dBıaB
;

where the aB are the centers of the vortex balls constructed via Jerrard’s and Sandier’s ball construction,
the dB are the degrees of the balls and ı is the Dirac mass. Calculating

R
f" corresponds to subtracting

off the cost of all vortices from the total energy: what remains should then correspond to the interaction
energy between the vortices, which we can call “renormalized energy” by analogy with [Bethuel et al.
1994]. In order to obtain next order estimates of the energy G", we show here lower bounds on the
energy

R
f", as well as coerciveness properties of f", which say, roughly, that f", or in other words, the

renormalized energy, suffices to control the vorticity. (This is again to be compared with the previous
ball construction and Jacobian estimate, where the vorticity is controlled by e"=jlog "j).

The motivation for this is our joint paper [Sandier and Serfaty 2010], where we establish a next-
order �-convergence result for the Ginzburg–Landau energy with applied magnetic field, and derive a
limiting interaction energy between points in the plane, thus making the link to the question of the famous
Abrikosov lattice (the Abrikosov lattice is a triangular lattice of vortices in superconductors observed in
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experiments and predicted by Abrikosov). More precisely, we show there an asymptotic expansion for
the minimal energy of the form

min G" DGN
" CN min W C o.N /

where N �1 is the optimal number of vortices (determined by the intensity of the applied field), GN
" is a

constant of order N 2 (the leading order estimate) and W is a renormalized energy governing the pattern
formed by the vortices after blow-up at the scale

p
N . Moreover, we show that the patterns formed by

the vortices of minimizers after this blow-up minimize W (almost surely, in some sense). We prove in
addition that among lattice configurations (of fixed volume), W is uniquely minimized by the triangular
lattice. The natural conjecture is that this lattice is also a minimizer among all point configurations, and
if this were proved, it would completely justify the emergence of the Abrikosov triangular lattice.

To achieve this, with an error only o.N /, we needed lower bounds on the cost of vortices with a
precision o.1/ per vortex (with still a possibly infinite number of vortices), which is finer than was
available in the literature. We also needed to control the (local number of) vortices by the renormalized
energy. In fact the energy density we end up having to analyze in [Sandier and Serfaty 2010] is exactly
f", and we need to be able to control the vortices through it.

The other problem we need to overcome in that paper is that f" is obviously not positive or even
bounded below, and this prevents from applying standard lower semicontinuity ideas, and the abstract
scheme for �-convergence of 2-scale energies which we introduce there. This reflects the fact that
the energy e" is not exactly where the vortices are, as we will explain below. The remedy which we
implement here, is that we can “deform” f" into an energy density g" which is bounded below and
enjoys nice coerciveness properties. To accomplish this we show that we can transport the positive mass
in f" into the support of the negative mass in f", with mass traveling at most at fixed finite distances
(say distance 1), and so that the result of the operation, g", is bounded below. This is done by using the
following rather elementary transport lemma:

Lemma 3.1. Assume f is a finite Radon measure on a compact set A, that � is open and that for any
positive Lipschitz function � in Lip�.A/, i.e., vanishing on � nA,Z

� df � �C0jr�jL1.A/:

Then there exists a Radon measure g on A such that 0� g � fC and such that

kf �gkLip�.A/� � C0:

Thus what is needed is a control on the negative part of f", which will be provided by the ball
construction lower bounds and additional improvements of it.

The norm kf" � g"kLip�.�/� will measure how far mass has been displaced in the process. This
control appears in Theorem 1.1 below and more particularly Corollary 1.2. Since

R
g" will be close toR

f", it also can be seen as a renormalized energy. Since g" is bounded below, we can then hope that it
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enjoys nice coerciveness properties, we can in fact obtain the desired compactness results which allow
to control the vorticity locally by g". This will be the object of Theorem 1.5 below.

Finally, let us point out that our results can in principle serve to obtain lower bounds for weighted
Ginzburg–Landau energies, see Remark 1.7.

We now describe briefly the method that we use, which allows us to control the negative part of f".
The best vortex ball construction lower bound on e" available (such as that in [Sandier and Serfaty

2007, Chapter 4]) is of the following type: given .u";A"/ and any (small) number r , there exists a family
of disjoint closed balls B covering all the zeros of u", the sum of the radii of the balls being bounded
above by r , and such that Z

S
B2B B

e".u";A"/� �D
�

log
r

"D
�C

�
; (0-1)

where D D
P

B2B jdBj with dB D deg.u"; @B/ if B � � and 0 otherwise. We shall reprove here in
Proposition 2.1 a version of this result using Jerrard’s ball construction.

This above estimate says that a vortex of degree d costs an energy at least ' �jd jjlog "j, but this is
only really true when the vortex is well isolated from other vortices and from the boundary, and if there
are not too many of them locally, as the factor r=D in the logarithm above somewhat reflects: an ideal
lower bound would be

e".B/� �jdBj

�
log

r

"
�C

�
;

and compared to this, the lower bound above contains a negative error ��D log D which tends to �1
if the total number of vortices becomes large when "! 0. In truth, this ideal lower bound cannot hold
in general as can be seen in the case of n vortices of degree 1 all positioned regularly near the boundary
of the domain, a case where (0-1) is optimal.

Moreover the energy density e" is not localized exactly where the vortices are: vortices can be viewed
as points, while their energy is spread over annular regions around these points. The ball construction
lower bounds such as (0-1) capture well the energy which lies very near the vortices, but some energy
is missing from it, in particular when vortices accumulate locally around a point. The missing energy in
that case can be recovered by the method of “lower bounds on annuli” which we introduced in [Sandier
and Serfaty 2003] and used again in [Sandier and Serfaty 2007, Chapter 9]. It is based on the following:
Let B.x0; r1/nB.x0; r0/ be an annulus that contains no zeros of u. Roughly speaking we have

e"
�
B.x0; r1/nB.x0; r0/

�
� �D2 log

r1

r0

;

where D D deg.u; @B.x0; r1// D deg.u; @B.x0; r0//. In other words, if a fixed size ball in the domain
contains some large degree D of vorticity, then there is an energy of order D2 lying not in that ball, but
in a thick enough annulus around that ball. This energy of order D2 should suffice to “neutralize” the
error term ��D log D found above through the ball construction. However, it lies at a certain (finite)
distance from the center of the vortices. The main technique is then to combine in a systematic way the
ball construction lower bounds and the “lower bounds on annuli”, in order to recover enough energy.
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Let us finally emphasize a technical difficulty. Since we want a local control on the vortices, the lower
bound (0-1) provided by the ball construction is not quite sufficient because it cannot be localized in
general, i.e., we cannot deduce a bound for

R
B e" for each B 2 B. It is only possible to do so when a

matching upper bound on the total in (0-1) is known. See Proposition 2.1 for more details.
The idea for remedying this difficulty is to “localize” the construction, splitting the domain into pieces

on which one expects to have a bounded vorticity, then apply the ball construction on each piece, and paste
together the constructions and lower bounds obtained this way, whose error terms will now be bounded
below by a constant. However, this is not completely easy: one needs to localize the construction and
still get a global covering of the vortices by balls while preserving the disjointness of the balls. In
applications, trying to split the domain into pieces where the vorticity is expected to be bounded leads us
to splitting the domain into very small (as "! 0) pieces. Equivalently after rescaling one can consider
very large domains cut into bounded size pieces. In other words, in order to be able to treat the case
where the vortex density becomes large, we need to be able to treat the case of unbounded domains as
"! 0.

This is precisely what we do in this paper: we consider possibly large domains. This way we may in
practice rescale our domains as much as needed until the local density of vortices remains bounded as
"! 0. We consider vortex ball constructions obtained over coverings of �" by domains of fixed size,
and we work at pasting together these lower bounds while combining them with the method of lower
bounds on annuli, as explained above, and finally retrieving “finite numbers of vortices” estimates (of
the type in [Bethuel et al. 1994]) which bound from below the energy f" or g" by the exact renormalized
energy, up to only o.1/ errors.

1. Statement of the main results

In this paper we will deal with families .u";A"/" defined on domains f�"g" in R2 which become large
as "! 0. The example we have in mind is �" D �"� where � is a fixed bounded smooth domain and
�"!C1 as "! 0, but we don’t need to make any particular hypothesis on f�"g", which could even
be a fixed bounded domain.

Next we introduce some notation.
For E � R2 we let

yE D fx 2�"; dist.x;E/� 1g:

We also define, for any real-valued or vector-valued function f in �",

Of .x/D supfjf .y/j;y 2 B.x; 1/\�"g:

Note that both Of and yE depend on ", but the value of " will be clear from the context. The choice of 1

in the definitions is arbitrary but constrains the choice of other constants below.
In all the paper, fC and f� will denote the positive and negative parts of a function or measure, both

being positive functions or measures, and kf k is the total variation of f . If f and g are two measures
then f � g means that g�f is a nonnegative measure.
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Given a family f.u";A"/g", where u" W�"!C and A" W�"!R2 we define the currents and vorticities
to be

j" D .iu";rA"u"/; �" D curl j"C h";

where .a; b/D 1
2
.a NbC Nab/ and h" D curl A" is the induced magnetic field.

We denote by Lip�.A/ the set of Lipschitz functions on A which are 0 on�nA, and let kf kLip�.A/�D

sup
R
� df , the supremum being taken over functions � 2 Lip�.A/ such that jr�jL1.A/ � 1.

We say a family ff˛g˛ is subordinate to a cover fA˛g˛ if Supp.f˛/�A˛ for every ˛.
Despite the slightly confusing notation, the covering A˛ will have nothing to do with the magnetic

gauge A". Also, the densities f˛ and g˛, as well as n˛ and �˛ will implicitly depend on ", and should
be really f";˛ and g";˛, etc, but for simplicity we do not indicate this dependence.

Theorem 1.1. Let f�"g">0 be a family of bounded open sets in R2. Assume that f.u";A"/g", where
.u";A"/ is defined over �", satisfies for some 0< ˇ < 1 small enough

G".u";A"/� "
�ˇ: (1-1)

Then the following holds, for " small enough:

(1) (vortices). There exists a measure �", depending only on u" (and not on A") of the form 2�
P

i diıai

for some points ai 2�" and some integers di such that, C denoting a generic constant independent
of ",

k�"� �"k.C 0;1

0
.�"//�

� C
p
"G".u";A"/; (1-2)

and for any measurable set E

j�"j.E/� C
e". yE/

jlog "j
:

(2) (covering). There exists a cover fA˛g˛ of �" by open sets with diameter and overlap number
bounded by a universal constant, and measures ff˛g˛, f�˛g˛ subordinate to this cover such that,
letting f" WD e"�

1
2
jlog "j�",

f" �
X
˛

f˛; �" D
X
˛

�˛; �˛1
? �˛2

for ˛1 ¤ ˛2:

(3) (energy transport). Letting n˛ WD k�˛k=2� , for each ˛ the following holds: If dist.A˛; �"c/ > "

there exists a measure g˛ � �C such that either

kf˛ �g˛kLip�.A˛/� � C n˛.1Cˇjlog "j/ and g˛.A˛/� cn˛jlog "j; (1-3)

or
kf˛ �g˛kLip�.A˛/� � C n˛.1C log n˛/ and g˛.A˛/� cn˛

2
�C n˛; (1-4)

where and c;C > 0 are universal positive constants.
If dist.A˛; �"c/� ", there exists g˛ � 0 such that for any function �Z

� d.f˛ �g˛/� C n˛
�
jr�jL1.A˛/Cˇjlog "jj�jL1.A˛/

�
: (1-5)
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(4) (properties of g"). Letting g" D f"C
P
˛.g˛ �f˛/, we have

�C � g" � e"C
1
2
jlog "j.�"/�; (1-6)

and for any measurable set E ��",

.g"/�.E/� C
e". yE/

jlog "j
; .g"/C.E/� Ce". yE/: (1-7)

Moreover, assuming ju"j � 1 in�" and that ECB.0;C /��", for some C > 0 large enough, then
for every p < 2, Z

E

jj"j
p
� Cp

�
.g"/C.ECB.0;C //CjEj

�
: (1-8)

The third item admits, or rather implies the following form, from which the covering fA˛g˛ is hidden.

Corollary 1.2. Under the hypothesis above and using the same notation, for every 0 < � � 1 we have if
" > 0 is small enough: First, for every Lipschitz function � vanishing on @�"Z

�"

� d.g"�f"/� C

Z
�"

cr� "d j�"jC .ˇC �/ d.g"/CC
jlog �j2

�
dx

#
CCˇ

Z
b@�"
O�e": (1-9)

Second, if d.E; @�"/ > C then

j�"j.E/� C

 
�.g"/C.

yE/C
1

�
j yEjC

e". yE \b@�"/
jlog "j

!
: (1-10)

The point in introducing the extra parameter � is that we want to be able to use only a small �-fraction of
the “remaining” energy g" to control the error f"�g" between the original energy and the displaced one.
This corollary is obtained by simply summing the relations (1-3)–(1-5) and controlling n˛ and n˛ log n˛

by a small fraction of n˛
2 through the elementary relations

x log x � �x2
CC

log2 �

�
2x � �x2

C
1

�

and then controlling n˛
2 by g˛.A˛/ via (1-3) or (1-4).

Remark 1.3. If we let �D 1 and if E and the support of � are at distance at least 1 from @�, then (1-9)
and (1-10) reduce to Z

� d.f"�g"/� C

Z
�"

cr� �d.g"/CC d j�"j
�

(1-11)

and
j�"j.E/� C

�
.g"/C. yE/Cj yEj

�
:

If one takes � D �
R

to be a positive cut-off function supported in B.0;R/ and � 1 in B.0;R�1/ then
the right-hand side in (1-11) scales like a boundary term (i.e., like R) as R gets large, while the left-hand
side scales like an interior term.
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Remark 1.4. Assume we have proved Theorem 1.1 and Corollary 1.2. Given f.u";A"/g" and f�"g"
satisfying the hypothesis, we may consider for some fixed � >0 the rescaled quantities Q"D "=� , QxDx=�

and let

Qu". Qx/D u".x/; zA". Qx/D �A".x/; z�" D�"=�:

Then, letting hD curl A and QhD curl zA, we have

e�" .u;A/ WD �
2

�
1

2
jrAuj2C

�2

2
h2
C

1

4"2
.1� juj2/2

�
D

1
2
jrzA
Quj2C 1

2
Qh2
C

1

4Q"2
.1� j Quj2/2:

We may then apply the theorem to the tilded quantities, yielding a measure Qg". Then if we let g".x/D

Qg". Qx/, the measure g" will satisfy the properties stated in Theorem 1.1 and Corollary 1.2, with e" replaced
by e�" (and with a different C ) provided we modify the definition of yE to

yE D fx j dist. Qx; zE/ < 1g D fx j dist.x;E/ < �g;

(note that we can keep the original definition provided � � 1).
Then we may add to both e" and g" the quantity

�
1
2
�

1
2
�2
�
h"

2 and obtain in this manner a new g"

satisfying the listed properties and — for the particular choice �2 D
1
2

— the lower bound

g" �
h"

2

4
�C: (1-12)

We will then usually assume when applying Theorem 1.1 that this lower bound holds as well as the other
conclusions of the theorem.

The next result shows how g" has the desired coerciveness properties, and behaves like the renormal-
ized energy. Indeed, under the assumption that the family fg"g" is bounded on compact sets (recall that
the domains become increasingly large as "! 0) we have compactness results for the vorticities and
currents, and lower bounds on

R
g" (hence

R
f" via (1-9)) in terms of the renormalized energy W .

Before stating that result, we introduce some additional notation. We denote by fURgR>0 a family of
sets in R2 such that, for some constant C > 0 independent of R,

URCB.0; 1/�URCC and URC1 �URCB.0;C /: (1-13)

For example, fURgR>0 can be the family fBRgR>0 of balls centered at 0 of radius R.
Then we use the notation �

UR
for cutoff functions satisfying, for some C independent of R,

jr�UR
j � C; Supp.�UR

/�UR; �UR
.x/D 1 if dist.x;U c

R/� 1: (1-14)

Finally, given a vector field j W R2! R2 such that curl j D 2�
P

p2ƒ ıp C h with ƒ, where h is in
L2

loc and ƒ a discrete set, we define the renormalized energy of j by

W .j /D lim sup
R!1

W .j ; �
BR
/

jBRj
;
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where for any �

W .j ; �/D lim inf
�!0

�
1

2

Z
R2n

S
p2ƒB.p;�/

�jj j2C� log �
X
p2ƒ

�.p/

�
: (1-15)

Various results on W , in particular on its minimizers, are proved in [Sandier and Serfaty 2010]. Note in
particular that if we assume div j D 0, then the lim inf in (1-15) is in fact a limit, because in this case
j D r?H with �H D 2�ıp C h in a neighborhood of p, and thus H D log j � �pj C f with f 2H 1

in this neighborhood.

Theorem 1.5. Let the hypothesis of Theorem 1.1 hold, and assume ju"j � 1 in �".

(1) Assume that dist.0; @�"/!C1 as "! 0 and that, for any R> 0,

lim sup
"!0

g".UR/ dx <C1; (1-16)

where fURgR satisfies (1-13). Then, up to extraction of a subsequence, the vorticities f�"g" converge
in W

�1;p
loc .R2/ to a measure � of the form 2�

P
p2ƒ ıp, where ƒ is a discrete subset of R2, the

currents fj"g" converge weakly in L
p
loc.R

2;R2/ for any p < 2 to j , and the induced fields fh"g"
converge weakly in L2

loc.R
2/ to h which are such that

curl j D � � h in R2:

(2) If we replace the assumption (1-16) by the stronger assumption

lim sup
"!0

g".UR/ < CR2; (1-17)

where C is independent of R, then the limit j of the currents satisfies, for any p < 2,

lim sup
R!C1

Z
�

UR

jj jp dx <C1: (1-18)

Moreover for every family �
UR

satisfying (1-14) we have

lim inf
"!0

Z
R2

�
UR

jURj
dg" �

�
W .j ; �

UR
/

jURj
C

1

2

Z
�

UR

h2
C


2�

Z
�

UR

h

�
C oR.1/; (1-19)

where  is a constant defined below and oR.1/ is a function tending to 0 as R!C1.

Remark 1.6. The constant  in (1-19) was introduced in [Bethuel et al. 1994] and may be defined by

 D lim
R!1

�
1

2

Z
BR

jru0j
2
C
.1� ju0j

2/2

2
�� log R

�
;

where u0.r; �/ D f .r/e
i� is the unique (up to translation and rotation) radially symmetric degree-one

vortex. See [Bethuel et al. 1994; Mironescu 1996].
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Remark 1.7. Lower bounds immediately follow from this theorem. Indeed f" is the energy density
minus the energetic cost of a vortex, and f" � g" is controlled by Theorem 1.1; see also Remark 1.3.
This, combined with the lower bound (1-19) shows that in good cases the averages over large balls of f"
are bounded below by W plus explicit constants, which proves a sharp lower bound for the energy with
a o.1/ order error, à la [Bethuel et al. 1994].

The bound (1-9) may also be interpreted as a lower bound for the Ginzburg–Landau energy with
weight. Assuming a fixed domain� and G".u";A"/<C jlog "j for instance, and that�"!2�

Pn
iD1 ıai

,
where ai 2�, then by blowing up by a factor independent of " we may assume the points are at distance
2, say, from the boundary and then if � is a fixed positive weight we may multiply it by a cutoff 0��� 1

equal to zero on c@� and equal to 1 at each ai . Then (1-9) becomesZ
�

�e" � �jlog "j
nX

iD1

�.ai/C

Z
�� dg"�C

Z
1r.��/

�
d j�"jC .ˇC �/ d.g"/CC

jlog �j2

�
dx

�
:

Typically, there will be an upper bound for the energy which implies that .g"/C.�/ < C and since also
g" � �C , the integrals on the right-hand side may be bounded below by a constant independent of ".

The paper is organized as follows: In Section 2 we state without proof the result on lower bounds via
Jerrard’s ball construction (the proof is postponed to Section 5) which we adapt for our purposes, and
explain how we use it on a covering of �" by a collection U˛ of balls of finite size. In Section 3, we
present the tool used to transport the negative part of f" to absorb it into the positive part, and deduce
Theorem 1.1. In Section 4, we prove Theorem 1.5. Finally in Section 5, we prove the ball-construction
lower bound.

2. Use of the ball construction and coverings of the domain

The first step consists in performing a ball construction in �" in order to obtain lower bounds. This
follows essentially the method of [Jerrard 1999], the difficulty being that we are not allowed more than
an error of order one per vortex. This is hopeless if the total number of vortices diverges when "! 0,
hence we need to localize the construction in pieces of �" small enough for the number of vortices in
each piece to remain bounded as "! 0.

The ball construction lower bound. We start by stating the result of Jerrard’s ball construction in a
version adapted to our situation, in particular including the magnetic field. The proof is postponed to
Section 5. In all what follows, if B is a collection of balls, r.B/ denotes the sum of the radii of the
balls in the collection. In all the sequel we will sometimes abuse notation by writing B for

S
B2B B,

identifying the collection of balls with the set it covers.

Proposition 2.1. There exist "0;C > 0 such that if U � R2, " 2 .0; "0/, and .u";A"/ defined on U are
such that G".u";A"/ � "

�ˇ, where ˇ 2 .0; 1/, the following holds. For every r 2 .C "1�ˇ; 1
2
/, there

exists a collection of disjoint closed balls B depending only on u" (and not on A") such that, letting
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U" D fx j d.x;U
c/ > "g, we have

(1) fx 2 U" j ju".x/j<
1
2
g �B,

(2) r.B/� r , and

(3) for any 2� C � .r="/1=2, either e".B\U /� C log r

"
or

e".B/� �jdBj

�
log

r

"C
�C

�
for all B 2B such that B � U";

where dB D deg.u"; @B/.

A natural choice of C above is �D, where DD
P

B2B jdBj and we have let dB D 0 if B 6�U". With
this choice we find in all cases

e".B\U /� �D

�
log

r

"D
�C

�
i.e., we recover the same lower bound as in [Sandier and Serfaty 2007, Theorem 4.1], mentioned in the
introduction as (0-1). The reason why we don’t simply use that theorem directly is that we need to keep
the dichotomy above, and thus a lower bound localized in each ball.

Localizing the ball construction. For any "> 0 we construct an open cover fU˛g˛ of�" as follows: We
consider the collection B of balls of radius `0 — where `0 2 .0;

1
8
/ is to be chosen below, small enough

but independent of "— centered at the points of `0Z2. The cover consists of the open sets �" \B, for
B 2B.

This cover depends on ", but the maximal number of neighbors of a given ˛— defined as the indices
ˇ such that U˛ \ Uˇ ¤ ¿— is bounded independently of " by an integer we denote by m (in fact
mD 9). Note that m also bounds the overlap number of the cover, that is, the maximal number of U˛’s
to which a given x can belong. There is also ` > 0 independent of " which is a Lebesgue number of
the cover, i.e., such that for every x 2 �", there exists ˛ such that B.x; `/\�" � U˛ or, equivalently,
dist.x; �"\U c

˛ /� `.
Assuming ˇ < 1

4
, and applying Proposition 2.1 to .u";A"/ in U˛ for every ˛ we obtain, since

p
" >

C "1�ˇ if " is small enough, a collection B˛;r
" for every

p
"� r � 1

2
.

If � is chosen small enough depending on ` and m only, thus less than a universal constant, we may
extract from

S
˛ B

˛;�
" a subcollection B" such that any two balls B, B0 in B" satisfy �"\B\B0D¿.

We will say B" is disjoint in �":

Proposition 2.2. Assume � � `=.8m/. Then, writing in short B˛
" instead of B

˛;�
" , there exists a subcol-

lection of
S
˛ B˛

" — call it B" — which is disjoint in �" and such that

fju"j �
1
2
g\ fx j dist.x; �"c/ > "g �

[
B2B"

B: (2-1)

Moreover, for every B 2B"\B˛
" we have B \�" D B \U˛ and

dist.B; �"c/ > " () dist.B;U˛c/ > ":
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Proof. Assume C D �" \ .B1 [ � � � [Bk/ is a connected component of �" \
�S

˛ B˛
"

�
. Reordering if

necessary, we may assume that Bi\.B1[� � �[Bi�1/¤¿ for every 1� i � k. There exists x 2�"\B1

and ˛ such that dist.x; �"\U c
˛ /� `. Then dist.B1; �"\U c

˛ / > 3`=4. Assume

dist.B1[ � � � [Bi�1; �"\U c
˛ /�

3`

4
:

Then dist.Bi ; �" \ U c
˛ / > `=2 hence for every 1 � j � i the ball Bj belongs to B

ˇ
" , where ˇ is a

neighbor of ˛. It follows that r1C� � �C ri �m�� `=8, where ri is the radius of Bi , and we deduce that
B1[ � � � [Bi � B.x; `=4/ and then

dist.B1[ � � � [Bi ; �"\U c
˛ /�

3`

4
:

We have thus proved by induction that C � U˛ and even that dist.C; �"\U c
˛ /� 3`=4 for every i .

We delete from fB1; : : : ;Bkg the balls which do not belong to B˛
" and call C 0 the union of the

remaining balls. If y belongs to

C \fju"j �
1
2
g\ fx j dist.x; �"c/ > "g

then, since dist.C; �"\U c
˛ /�3`=4 and dist.y; �"c/>", provided "<3`=4 we have that dist.y;U˛c/>"

hence y belongs to some ball B 2 B˛
" (since B˛

" covers the set fju"j � 1
2
g \ fdist.x;U c

˛ / > "g), thus
y 2 C 0. The balls in C 0 are disjoint in �" since they belong to the collection B˛

" which is itself disjoint
in �".

Performing this operation on each connected component of�"\
�S

˛ B˛
"

�
we thus obtain a collection

B" which covers fju"j � 1
2
g \ fx j dist.x; �"c/ > "g and is disjoint in �". Moreover, if B 2 B" \B˛

"

then dist.B; �"\U c
˛ /� 3`=4 hence B \�" D B \U˛ and

dist.B; �"c/ > " () dist.B;U˛c/ > ": �

The value of �will be fixed smaller than `=8m and independent of ", as specified below. Proposition 2.2
provides us for any " > 0 small enough with collections of balls B" and B˛

" .

Definition 2.3. For any
p
" � r � � and any B 2 B˛

" , we let BB;r
" be the collection of balls in B˛;r

"

which are included in B. Then we let
Br
" D

[
B2B"

BB;r
" :

It is disjoint in �" and covers the set fju"j � 1
2
g\fx j dist.x; �"c/ > "g and of course if B 2Br

" \B˛;r
" ,

then B \�" D B \U˛ and

dist.B; �"c/ > " () dist.B;U˛c/ > ":

In other words, the disjoint collection B" permits us to construct disjoint collections of smaller radius
by discarding from B˛;r

" those balls which are inside a ball discarded from B
˛;�
" . The collection B

p
"

"

should be seen as the collection of “small balls” and B" (obtained from B
˛;�
" ) as the collection of “large

balls”. We will sometimes also use the collection of the intermediate size balls Br
" with

p
"� r � �.
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Finally we let
�" D

X
B2B

p
"

"

dist.B;�"c/>"

2�dBıaB
; j�"j D

X
B2B

p
"

"

dist.B;�"c/>"

2�jdBjıaB
; (2-2)

where aB is the center of B, and dB denotes the winding number of u"=ju"j restricted to @B. This is
the �" given by the conclusion of the theorem. Note that since the balls only depend on u" (and not
on A"), �" satisfies the same. If B is any ball which does not cross the boundary of balls in B

p
"

" and
dist.B; �"c/ > " then �".B/ D 2�dB . From the Jacobian estimate (see [Jerrard and Soner 2002] or
[Sandier and Serfaty 2007, Theorem 6.1]) we have that (1-2) is satisfied.

Lemma 2.4. There exists "0 > 0 such that if ˇ < 1
4

in (1-1) and " < "0 then

j�"j.E/� 16
e".�"\ yE/

jlog "j

for any measurable set E, so that choosing E D�" and taking logarithms,

log k�"k � ˇjlog "jCC; (2-3)

where k � k denotes the total variation of a measure.

Proof. We use the properties of B
˛;
p
"

" . Letting C D .
p
"="/1=2D "�1=4, it is impossible when " is small

enough that e".�"\B
˛;
p
"

" /�C log.
p
"="/ since we assumed that e".�"/� "

�ˇ. Thus Proposition 2.1
implies that, for every B 2B

˛;
p
"

" such that dist.B;U˛c/ > ",

e".B/� �jdBj.log "�1=4
�C /�

�

8
jdBjjlog "j;

if " is small enough. If, moreover, B 2 B
p
"

" , then Definition 2.3 implies that dist.B;U˛c/ > " if and
only if dist.B; �"c/ > ". Hence, using (2-2) and the fact that balls in B

p
"

" have radius smaller than 1
2

if
" is small enough, we obtain for any set E

j�"j.E/�
X
j�"j.B/� 16

e".�"\ yE/

jlog "j
;

where the sum is over all B intersecting E and satisfying B 2B
p
"

" and dist.B; �"c/ > ". �

Definition 2.5. For any ˛, let �˛ denote the restriction of �" to the balls in B"\B˛
" and n˛ Dk�˛k=2� ,

so that

�" D
X
˛

�˛; n˛ D
X

B2B"\B˛"

j�"j.B/

2�
; k�"k D 2�

X
˛

n˛:

We also define

C ˛ D

(
max

�
M n˛;

3e˛
jlog "j

�
if n˛ ¤ 0;

2 otherwise,
(2-4)

where M is a large universal constant to be chosen later and e˛ D
P

B2B˛"

e".B \U˛/.
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Note that n˛ is the sum of the absolute values of the degrees of the small balls included in the large
balls of B˛

" .

Proposition 2.6. There exist "0;C0 > 0 such that if ˇ < 1
4

in (1-1) and " < "0, "1=2 < r < � then
2� C ˛ � .r="/

1=2 and for any B 2Br
" \B˛;r

" such that dist.B; �"c/ > " we have

e".B/� 2�jdBjƒ
˛;r
" ; where ƒ˛;r" D

1

2

�
log

r

"C ˛

�C0

�
: (2-5)

Moreover, 0�ƒ
˛;r
" �

1
2
jlog "j and

0� 1
2
jlog "j �ƒ˛;r" �

1
2
.ˇjlog "jC jlog r jCC0/: (2-6)

Proof. From the definition (2-4), from (1-1) and Lemma 2.4 we have for " small enough that 2� C ˛ �

"�ˇ. It follows that if "1=2< r < 1 then 2�C ˛ � .r="/
1=2, since ˇ < 1

4
. Also, from the definition of C ˛

it is impossible that e".B
˛;r
" \U˛/�C ˛ log.r="/ since for

p
"� r �� we have C ˛ � 3e".B

˛;r
" /=jlog "j.

Then from Proposition 2.1, letting C DC ˛, we deduce (2-5) for any B 2B˛;r
" with dist.B;U˛c/ > ",

which is equivalent to dist.B; �"c > "/ if B 2Br
" \B˛;r

" .
Finally, r=."C ˛/� "

�1=4 using C ˛ � .r="/
1=2 and r �

p
", which easily implies that ƒ˛;r" > 0 if " is

small enough, and ƒ˛;r" � 1
2
jlog "j is clear from the definition. The last inequality in (2-6) then follows

from 1
2
jlog "j �ƒ˛;r" D 1

2

�
log.C ˛=r/CC0

�
, since C ˛ � "

�ˇ. �

3. Mass transport

We proceed to study the displacement of the negative part of

f" D e"�
1
2
jlog "j�":

Abstract lemmas. For the displacements we will use two lemmas. The first one was already stated in
the introduction and uses optimal transportation for the 1-Wasserstein distance (or minimal connection
cost).

Lemma 3.1. Assume f is a finite Radon measure on a compact set A, that � is open, and that for any
positive Lipschitz function � in Lip�.A/, i.e., vanishing on � nA,Z

� df � �C0jr�jL1.A/:

Then there exists a Radon measure g on A such that 0� g � fC and such that

kf �gkLip�.A/� � C0:

Proof. The proof uses convex analysis. Let X D C.A/ denotes the space of continuous functions and
for � 2X let

'.�/D

Z
�C dfC and  .�/D

�
C1 if jr�jL1.A/ > 1 or � … Lip�.A/;
�
R
�df otherwise:
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Then  is lower semicontinuous because f� 2 Lip�.A/ j jr�jL1 � 1g is closed under uniform conver-
gence, and ' is continuous. Both functions are convex, and finite for �D 0. Then the theorem of Fenchel
and Rockafellar (see for instance [Ekeland and Témam 1999]) yields

inf
X
.'C /D max

�2X �

�
�'�.��/� �.�/

�
;

where X � is the dual of X (i.e., the space of Radon measures on A) and

'�.�/D sup
�2X

Z
� d��

Z
�C dfC D

�
0 if 0� �� fC;

C1 otherwise;

 �.�/D sup
�2Lip�
jr�j1�1

Z
� d�C

Z
� df D k�Cf kLip�

�
:

We deduce that

inf
�2Lip�
jr�jL1�1

Z
�C dfC�

Z
� df D max

0����fC

�
�k�Cf kLip�

�

�
and then the existence of a Radon measure g such that �g maximizes the right-hand side, i.e., such that
0� g � fC and

�kf �gkLip�
�
D inf

�2Lip�
jr�jL1�1

Z
�C dfC�

Z
� df:

But

inf
�2Lip�
jr�jL1�1

Z
�C dfC�

Z
� df D� sup

�2Lip�
jr�jL1�1

�Z
� df �

Z
�C dfC

�

D� sup
�2Lip�
jr�jL1�1

�Z
�C d.f �fC/�

Z
�� df

�

D� sup
�2Lip�
jr�jL1�1

�
�

Z
�� df

�
D inf

�2Lip�
jr�jL1�1

Z
�� df:

The assumption of the lemma implies that this last right-hand side is at least �C0; therefore

kf �gkLip�.A/� � C0: �

Lemma 3.2. Assume f is a finite Radon measure supported in � and such that f .�/ � 0. Then there
exists 0� g � fC such that for any Lipschitz function �Z

�

� d.f �g/� 2 diam.�/jr�jL1.�/f�.�/:
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Proof. This follows from the previous lemma but can be proved directly by letting

g D fC

�
1�

f�.�/

fC.�/

�
(assuming f is nonzero; otherwise g D 0 is the answer). Then g is positive because f .�/ � 0 implies
f�.�/� fC.�/ andZ

� d.f �g/D

Z
� d

�
fC

f�.�/

fC.�/
�f�

�
D

Z
.� � N�/ d

�
fC

f�.�/

fC.�/
�f�

�
;

where N� is the average of � over �, and the right-hand side is clearly bounded above by

2 diam.�/jr�j1f�.�/: �

Mass displacement in the balls.

Definition 3.3. For B 2B"\B˛
" , we let

f B
" D .e"�ƒ

˛
" �"/1B\�" :

where ƒ˛;r" is defined in (2-5) and we have set ƒ˛" Dƒ
˛;�
" .

This corresponds to the excess energy in the balls, i.e., the energy remaining after subtracting off the
expected value from the ball construction. There is a difference of order j�"j.B/ log C ˛ between f".B/
and f B

" .B/, which will be dealt with later.

Proposition 3.4. There exists "0;C > 0 such that for any " < "0, and any B 2 B" \B˛
" , there exists a

positive measure gB
" defined in B \�" and such that

gB
" � e"Cƒ

˛
" .�"/� and

Z
B\�"

� d.f B
" �gB

" /� C jr�jL1.B\�"/j�"j.B/; (3-1)

for any Lipschitz function � vanishing on �" nB.

Proof. To prove the existence of gB
" , in view of Lemma 3.1 and since .f B

" /C D e"Cƒ
˛
" .�"/� on B it

suffices to prove that for any positive function � defined on B and vanishing on B n�" we haveZ
� df B

" � �C jr�jL1.B/j�"j.B/: (3-2)

We turn to the proof of (3-2). Let B 2B"\B˛
" and � be as above. ThenZ

� df B
" D

Z C1
0

f B
" .Et \B/ dt; (3-3)

where we have set Et D fx 2 B j �.x/� tg and f B
" .A/D

R
A f

B
" .

We will divide the integral (3-3) into
R t"

0 C
RC1

t"
, with t"D "jr�jL1 . The first integral is straightfor-

ward to bound from below. Indeed, .f B
" /�.B/� C jlog "jj�"j.B/; henceZ t"

0

f B
" .Et / dt � �C "jlog "jjr�jL1 j�"j.B/� �C jr�jL1 j�"j.B/: (3-4)



IMPROVED LOWER BOUNDS FOR GINZBURG–LANDAU ENERGIES VIA MASS DISPLACEMENT 773

On the other hand, if t > t" — and this motivated our choice of t" — then since � D 0 in B n�" we
have dist.Et ; �"

c/ > ". So let t > t", and let a 2Et be a point in the support of �". For any r 2 Œ
p
"; ��,

there exists a ball Ba;r 2Br
" containing a. Since fBr

"g is monotonic with respect to r , Ba;r � B. Put

r.a; t/D supfr 2 Œ
p
"; �/;Ba;r �Etg

if the set on the right is nonempty, and r.a; t/D 0 otherwise. Then let

Bt
a D Ba;r.a;t/:

If 0 < r.a; t/ < � then r.a; t/ bounds from above the distance of a to the complement of Et . In
particular,

�.a/� t � r.a; t/jr�jL1 : (3-5)

Indeed for any r.a; t/< s<� we have Ba;s�B and Ba;s\.Et /
c¤¿; hence there exists b 2Ba;s\@Et .

Then �.a/� �.b/� sjr�jL1 and since @Et � f� D tg we deduce �.a/� t � sjr�jL1 , proving (3-5) by
making s tend to r.a; t/ from above.

A second fact is that if r.a; t/D 0, then Ba;
p
" intersects B nEt , and as above we deduce

�.a/� t �
p
" jr�jL1.B/: (3-6)

The third fact is that the collection fBt
aga, where a ranges over Et and the a’s for which r.a; t/D 0

have been excluded, is disjoint. Indeed take a; b 2 Et and assume that r.a; t/ � r.b; t/. Then, since
Br.a;t/ is disjoint, the balls Ba;r.a;t/ and Bb;r.a;t/ are either equal or disjoint. If they are disjoint we note
that r.a; t/ � r.b; t/ implies that Bb;r.b;t/ � Bb;r.a;t/ and therefore Bt

b
D Bb;r.b;t/ and Bt

a D Ba;r.a;t/

are disjoint. If they are equal, then Bb;r.a;t/�Et and therefore r.b; t/� r.a; t/, which implies r.b; t/D

r.a; t/ and then Bt
b
D Bt

a.
Now, for any B0 2 fBt

aga we have B0 �Et and dist.Et ; �"
c/ > ", hence dist.B0; �"c/ > ". Now let

r be the common value of r.a; t/ for all a 2 B0 in the support of �". From Proposition 2.6, we have

e".B
0/� j�".B

0/j
�
ƒ˛" �

1

2
log

�

r

�
C
;

since ƒ˛;r" Dƒ
˛;�
" �

1
2

log.�=r/. We can rewrite this as

e".B
0/ �

ˇ̌̌̌ X
a2B0\Supp �"

�".a/

�
ƒ˛" �

1

2
log

�

r.a; t/

�
C

ˇ̌̌̌
;

and summing over B0 2 fBt
aga we deduce

e".Et \B/ �

ˇ̌̌̌X
a2Pt

�
ƒ˛" �

1

2
log

�

r.a; t/

�
C

�".a/

ˇ̌̌̌
;

where Pt is the set of points in Et \Supp �" such that r.a; t/ > 0. We will let Qt be the set of points in
Et \Supp �" such that r.a; t/D 0.
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Since �".Et /D �".Pt /C �".Qt /, subtracting from ƒ˛" �".Et / the above we find

f B
" .Et /� �

X
a2Qt

j�"j.a/ƒ
˛
" �

1

2

X
a2Pt

j�"j.a/ log
�

r.a; t/
:

From (3-6), a given a 2 Supp �" \ B can belong to Qt only if jt � �.a/j �
p
" jr�jL1 . Therefore

integrating the above with respect to t yields, using the fact that t � �.a/ if a 2Et , thatZ 1
t"

f B
" .Et / dt � �

X
a2Supp �"\B

j�"j.a/

 Z �.a/C
p
"jr�jL1

�.a/�
p
"jr�jL1

ƒ˛" dt C
1

2

Z �.a/

0

�
log

�

r.a; t/

�
C

dt

!
I

henceZ 1
t"

f B
" .Et / dt � �2ƒ˛"

p
"jr�jL1 j�"j.B/�

1

2

X
a2Supp �"\B

j�"j.a/

Z �.a/

0

�
log

�

r.a; t/

�
C

dt:

We now note that — since ƒ˛" �
1
2
jlog "j—

p
"ƒ˛" is bounded independently of " � 1 and, using the

inequality (3-5), we getZ �.a/

0

�
log

�

r.a; t/

�
C

dt �

Z �.a/

0

�
log

�jr�jL1

�.a/� t

�
C

dt D

Z �.a/

�.a/��jr�jL1

log
�jr�jL1

�.a/� t
dt;

and the rightmost integral is equal, via the change of variables uD
�.a/�t

�jr�jL1
, to �jr�jL1 . ThereforeZ C1

t"

f B
" .Et / dt � �C j�"j.B/jr�jL1 :

In view of (3-3), adding (3-4) yields the result. �

Remark 3.5. In the proof of (3-2), the final radius � may be replaced by any r 2 .
p
"; �/. This yields

the following result: Assume that r 2 .
p
"; �/ and that B 2 Br

" is included in some ball in B" \B˛
" .

Then, for any positive function � vanishing on B n�",Z
B

.e"�ƒ
˛;r
" �"/� � �C jr�jL1.B/j�"j.B/: (3-7)

We record the following lower bounds:

Proposition 3.6. For " small enough and B 2B"\B˛
" :

e".�"\B/�
�

1
8
jlog "j �C

�
j�"j.B/: (3-8)

For " small enough and B 2B"\B˛
" such that dist.B; �c

"/ > ", we have

gB
" .�"\B/�

�
1
8
jlog "j �C

�
j�"j.B/�

1
2
jlog "jj�".B/j: (3-9)

If in addition dB < 0, then

gB
" .�"\B/�

�
1
2
jlog "j �ƒ˛"

�
�".B/�

�
1
8
jlog "j �C

�
j�"j.B/: (3-10)
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The meaning of this lower bound is that e".B/ is not only bounded below by ƒ˛" j�".B/j, which to
leading order is 1

2
jlog "jj�".B/j— this is the positivity of gB

" in the proposition above — but also by
some constant times jlog "jj�"j.B/, even though the constant is no longer guaranteed to be the (optimal)
value 1

2
. This information is valuable in the case where j�".B/j is much smaller than j�"j.B/. The

precise value of the constants is unimportant.

Proof. As we noticed, C ˛ < .
p
"="/1=2 implies

p
"=."C ˛/� "

�1=4. Thus, using Proposition 2.6,

e".B \�"/�
X

e".B
0/�

X
�jdB0 j.log "�1=4

�C /D j�"j.B/
�

1
8
jlog "j � 1

2
C
�
;

where the sums are over B0 2B
p
"

" such that B0�B and dist.B0; �"c/>". This proves the first assertion.
Secondly, note that from (3-1), if dist.B; �c

"/ > ", choosing � compactly supported in�" such that �D 1

in B, we have
f B
" .B \�"/D gB

" .B \�"/:

Since ƒ˛" �
1
2
jlog "j we deduce (3-9) in view of

gB
" .B \�"/D f

B
" .B \�"/� j�"j.B/

�
1
8
jlog "j �C

�
�

1
2
jlog "jj�".B/j:

For the last assertion, since �".B/D 2�dB < 0, we write

gB
" .B \�"/�

�
1
2
jlog "j �ƒ˛"

�
�".B/D e".B \�"/�

1
2
jlog "j�".B/� e".B \�"/;

and this is bounded below using (3-8). �

Mass displacement of the remainder. Proposition 3.4 will allow us to replace f B
" by the positive gB

" ,
and we have

f"�
X

B2B"

f B
" D e"1Bc

"
C

X
˛

�
1
2
jlog "j �ƒ˛"

�
�˛: (3-11)

We now proceed to absorb the negative part of f" �
P
f B
" , which is

�
1
2
jlog "j �ƒ˛"

�
.�˛/C. This will

be easy if C ˛ D 3e˛=jlog "j; and if not, in view of (2-5), we have

0� 1
2
jlog "j �ƒ˛" �

1
2

log n˛CC;

which allows to bound the mass of the negative part by C
P
˛ n˛.log n˛C 1/. Following the method in

[Sandier and Serfaty 2003] (see also [Sandier and Serfaty 2007, Chapter 9]), this will be balanced by a
lower bound by cŒn˛ �

2 for the energy on annuli surrounding U˛.
Recall that U˛ D B.x˛; `0/\�". We set

r0 D `0; r1 D 3`0; A˛ D B.x˛; r1/:

Choosing `0 small enough, we can require that

diam.A˛/ < 1 and
�
A˛ \�"

c
¤¿ H) A˛ �

˚
x j dist.x; @�"/ < 1

2

	�
:

We will denote below by m0 a bound, uniform in ", for the overlap number of the fA˛g˛.
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Now we choose � such that jT ˛
" j � `0 for any " > 0, where

T ˛
" D

˚
t 2 .r0; r1/ j fjx�x˛j D tg\B" D¿

	
:

Indeed, the number of Uˇ’s that intersect B.x˛; r1/ is bounded by a certain number N , independent of "
and ˛. Choosing �D `0=N , the sum of the radii of balls in

S
ˇ B

ˇ
" which intersect B.x˛; r1/ is bounded

above by `0, hence jT ˛
" j � .r1� r0/� `0 D `0.

Lower bounds on annuli. For any ˛ let

. Qg˛" /C D
1

4m0

�
e"1Bc

"
C

X
B2B"

gB
"

�
1A˛ ; . Qg˛" /� D

�
1
2
jlog "j �ƒ˛"

�
.�"/C1B"\B˛" ; (3-12)

and Qg˛" D . Qg
˛
" /C� . Qg

˛
" /�. We have

Qg"�
X
˛

Qg˛" �
3

4

�
e"1Bc

"
C

X
B2B"

gB
"

�
C

X
˛

�
1
2
jlog "j �ƒ˛"

�
.�"/�1B"\B˛" :

In particular,

. Qg˛" /C.A˛/�
1

3m0

�
Qg"�

X
ˇ

Qgˇ"

�
.A˛/:

Proposition 3.7. There exist "0;C; c > 0 such that if ˇ < 1
4

in (1-1), then for any " < "0 and any index ˛

. Qg˛" /�.A˛/� �n˛ .ˇjlog "jCC / : (3-13)

If moreover dist.A˛; �"c/ > " then at least one of the following is true:

. Qg˛" /�.A˛/� �n˛ .ˇjlog "jCC / ; . Qg˛" /C.A˛/� cn˛jlog "j (3-14)

or
. Qg˛" /�.A˛/� �n˛ .log n˛CC / ; . Qg˛" /C.A˛/� cn˛

2: (3-15)

Proof. The bound (3-13) follows from (3-12), (2-6). Now assume dist.A˛; �"c/ > ".
First, if n˛ D 0 then . Qg˛" /� D 0, . Qg˛" /C � 0; hence (3-14) is true.
Second, if 3e˛=jlog "j �M n˛ then, since for B�A˛, we have gB

" .B/Df
B
" .B/D e".B/�ƒ

˛
" �".B/

and ƒ˛" �
1
2
jlog "j it follows that

. Qg˛" /C.A˛/�
1

4m0

Z
A˛

e"�
1

4m0
ƒ˛"

X
B2B"\A˛

jdBj �
1

4m0

Z
U˛

e"�
1

4m0
ƒ˛"

X
B2B"\A˛

jdBj

�
M

12m0
n˛jlog "j ��n˛jlog "j �

�
M

12m0
��

�
n˛jlog "j:

Together with (3-13), this implies (3-14) if M was chosen strictly greater than 12m0� . The last case is
that where C ˛ DM n˛. Then 1

2
jlog "j �ƒ˛" D

1
2

log n˛CC and therefore, using (2-3),

. Qg˛" /�.A˛/� 2�n˛
�

1
2

log n˛CC
�
� n˛.�ˇjlog "jCC /: (3-16)
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We define

DC
0
D

X
B2B";dB>0
B�B.x˛;r0/

dB; D�1 D
X

B2B";dB<0
B�B.x˛;r1/

jdBj;

and again we distinguish several cases.
First from (3-16) we will have proven (3-14) if we prove that

. Qg˛" /C.A˛/� cn˛jlog "j; (3-17)

for some c > 0. This inequality holds in the following two cases.

First case: D�
1
> n˛=20. This means there is a significant proportion of balls with negative degrees. For

each such negative ball we have from (3-10), and since j�"j.B/� j�".B/j,

gB
" .B/� gB

" .B/�
�

1
2
jlog "j �ƒ˛"

�
�".B/�

�
1
8
jlog "j �C

�
2�jdBj:

This implies that

. Qg˛" /C.A˛/�
1

4m0

�
1
8
jlog "j �C

�
2�D�1 I

hence (3-17) is satisfied when D�
1
> n˛=20.

Second case: DC
0
� n˛=10 and D�

1
� n˛=20. Then for each B 2B"\B˛

" , Proposition 3.6 yields

gB
" .B/�

(�
1
8
jlog "j �C

�
j�"j.B/�

1
2
jlog "jj�".B/j if jdBj> 0�

1
8
jlog "j �C

�
j�"j.B/ if jdBj< 0.

Summing with respect to B we find, since B 2B"\B˛
" implies B � B.x˛; r0/, that

. Qg˛" /C.A˛/�
1

4m0

�
1
8
jlog "j �C

�
n˛ �

1

4m0
DC

0
1
2
jlog "j;

which again yields (3-17) when DC
0
� n˛=10.

We are left with the complementary case, when DC
0
>n˛=10 and D�

1
�n˛=20. In this case (3-17) and

then (3-14) do not necessarily hold. We need to prove (3-15) instead, which in view of (3-16) reduces
to proving

. Qg˛" /C.A˛/� cn˛
2:

For this we really need to use the lower bounds on annuli of the type first introduced in [Sandier and
Serfaty 2003]. We set

C˛" D B.x˛; r1/ n .B.x˛; r0/[B"/ :

For any t 2 T ˛
" we let Bt D B.x˛; t/ and t D @Bt ; recall that t does not intersect B". If t 2 T ˛

" then
ju"j �

1
2

on t because of (2-1) and the fact that dist.A˛; �"c/ > ".
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It follows (see for instance [Sandier and Serfaty 2007, Lemma 4.4], or (5-4) below) that for some
constant c > 0 we haveZ

t

�
1

2
jrAuj2C

.1� juj2/2

4"2

�
C

1

2

Z
Bt

.curl A/2 � c
jd t
" j

2

t
; (3-18)

where d t
" is the degree of u"=ju"j on t . Integrating (3-18) with respect to t 2T ˛

" , which has measure less
than 1, the left-hand side will be bounded above by e".A˛/. In view of the lower bound d t

" � .D
C

0
�D�

1
/,

which is valid for any t 2 T ˛
" , since jT ˛

" j � `0, and from the assumption on DC
0

and D�
1

we deduce that

e".A˛ nB"/� c.DC
0
�D�1 /

2
� cn˛

2:

Then, since . Qg˛" /C D
1

4m0
e" on .B"/

c we deduce . Qg˛" /C.A˛/� cn˛
2 and (3-15) is proved. �

Proof of Theorem 1.1 and Corollary 1.2. (1) The estimate (1-2) was already mentioned after the defini-
tion (2-2) of �", and the bound j�"j.E/� Ce". yE/=jlog "j was proved in Lemma 2.4.

(2) We define
f˛ D

X
B2B"\B˛"

.f B
" �gB

" /C . Qg
˛
" /C� . Qg

˛
" /�:

Then clearly f˛ is supported in A˛. Moreover, using the fact (see (3-11)) that

f"�
X

B2B"

f B
" D e"1Bc

"
�

X
˛

�
1
2
jlog "j �ƒ˛"

�
�˛

and since
P
˛ 1A˛ �m0 we easily obtain

f"�
X
˛

f˛ D
X
˛

�
1
2
jlog "j �ƒ˛"

�
.�˛/�C

�
e"1Bc

"
C

X
B2B"

gB
"

��
1�

1

4m0

X
˛

1A˛

�
: (3-19)

Since
P
˛ 1A˛ �m0 we find

f"�
X
˛

f˛ �
X
˛

�
1
2
jlog "j �ƒ˛"

�
.�˛/�C

3

4

�
e"1Bc

"
C

X
B2B"

gB
"

�
� 0: (3-20)

(3) We define g˛. In the case dist.A˛; �"c/� " we let g˛ D . Qg
˛
" /C. ThenZ

� d.f˛ �g˛/D
X

B2B"\B˛"

Z
� d.f B

" �gB
" /�

Z
� d. Qg˛" /�:

This implies (1-5), summing (3-1) over B 2B"\B˛
" and using (3-13).

In the case dist.A˛; �"c/ > " we let

c˛ D

�
Qg˛" .A˛/

jA˛j

�
�

:

We deduce easily from (3-14), (3-15) and if ˇ is small enough that c˛ � C and applying Lemma 3.2 in
A˛ to Qg˛" C c˛ we obtain '˛ defined on A˛ and such that 0 � '˛ � . Qg

˛
" /CC c˛ and, for any Lipschitz
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function � , Z
A˛

� d
�
Qg˛" �g˛

�
� C jr�jL1.A˛/. Qg

˛
" /�.A˛/; where g˛ WD '˛ � c˛.

Moreover �C � �c˛ � g˛ � . Qg
˛
" /C.

Then Z
A˛

� d.f˛ �g˛/D

Z
A˛

� d.f˛ � Qg
˛
" /C

Z
A˛

� d. Qg˛" �g˛/

D

X
B2B"\B˛"

Z
� d.f B

" �gB
" /C

Z
A˛

� d. Qg˛" �g˛/

� C jr�jL1.A˛/
�
n˛C . Qg

˛
" /�.A˛/

�
; (3-21)

where we have used (3-1) to bound the integral involving f B
" �gB

" . Moreover, g˛.A˛/D Qg
˛
" .A˛/.

If (3-14) holds, then (1-3) follows immediately from (3-21) when �ˇ < c=2, with c the constant in
(3-14). If (3-15) holds we deduce (1-4) from (3-21) by noting that cn˛

2�C n˛.log n˛C1/� c
2
n˛

2�C 0n˛

if C 0 is chosen large enough depending on c;C .

(4) To prove (1-8), we adapt an argument from [Struwe 1994].
First, g"�

P
˛ g˛ D f"�

P
˛ f˛ thus from (3-20) and since

P
˛ g˛ � �C we find

g" �
3

4

�
e"1Bc

"
C

X
B2B"

gB
"

�
�C: (3-22)

Then, assuming U˛��", denote by Br;˛
" the set of balls in Br

" which are included in some ball belonging
to B˛

" \B", so that �˛.B"/ D �".B
˛
" \B"/ D �".B

r;˛
" /. Applying Remark 3.5 for some r 2 .

p
"; �/

with � D 1 and summing (3-7) over B 2Br;˛
" we find e".B

r;˛
" /�ƒ

˛;r
" �".B

r;˛
" / and then

e".B"\B˛
" nBr;˛

" /� e".B"\B˛
" /�ƒ

˛
" �˛.B"/C

�
ƒ˛" �ƒ

˛;r
"

�
�˛.B"/

D

X
B2B"\B˛"

gB
" .B/C

1
2

log 1

r
�˛.B"/;

where we have used that f B
" .B/D gB

" .B/. It follows using (3-22) that

e".B"\B˛
" nBr;˛

" /� C
�
.g"/C.U˛/C n˛ log 1

r
C 1

�
: (3-23)

Then comes the argument in [Struwe 1994]: For any integer k, let rk D 2�k�, and let Ck be the
intersection of Brk

" nB
rkC1
" and B˛

" . Then jCk j � C 2�2k�2, since �2�k bounds the total radius of the
balls in Brk

" \B˛
" . Moreover j" D .iu";ru" � iA"/ and thus assuming ju"j � 1 we have jj"j2 � 2e".

Then using Hölder’s inequality in Ck and (3-23) we find for p < 2Z
Ck

jj"j
p
� jCk j

1�p=2
�
e".Ck/

�p=2
� jCk j

1�p=2
�
e".B"\B˛

" nB
rkC1
" /

�p=2
� Cp2�.2�p/k

�
e".B"\B˛

" nB
rkC1
" /

�p=2
� Cp2�.2�p/k

�
.g"/C.U˛/C kn˛ log 2C 1

�p=2
:
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Using (1-10) we findZ
Ck

jj"j
p
� Cp2�.2�p/k.1C k log 2/p=2

�
.g"/C.U˛/C 1

�p=2
:

Summing these inequalities for k ranging from 0 to the largest integer K such that rK �
p
"— so that

in particular rK � 2
p
"— we findZ

B"\B˛" nB
2
p
"

"

jj"j
p
� Cp

�
.g"/C.U˛/C 1

�p=2
;

where Cp is a constant times the sum of the convergent series
P

k 2�.2�p/k.1Ck log 2� log �/p=2. To
this inequality we add Z

B˛"\B
2
p
"

"

jj"j
p
� C "1�p=2e".U˛/

p=2;

which follows from Hölder’s inequality after estimating
ˇ̌
B

2
p
"

" \B˛
"

ˇ̌
by C ", as above. But since e" D

f"C
1
2
jlog "j�" we may write using (1-9), (1-10),

e".U˛/� C .g"/C.
yU˛/CC j�"j. yU˛/.1Cjlog "j/� C jlog "j

�
.g"/C.U˛CB.0; 2//C 1

�
: (3-24)

ThusZ
B˛"\B

2
p
"

"

jj"j
p
� C "1�p

2 jlog "jp=2
�
.g"/C.U˛CB.0; 2//p=2C 1

�
� C

�
.g"/C.U˛CB.0; 2//p=2C 1

�
:

We also add Z
U˛nB"

jj"j
p
� C

�
.g"/C.U˛/C 1

�
which follows from (3-22). Finally we obtainZ

U˛

jj"j
p
� Cp

�
.g"/C.U˛CB.0; 2//C 1

�
:

Summing with respect to the ˛’s such that E \U˛ ¤ ¿, this proves (1-8) and concludes the proof of
Theorem 1.1. �

Proof of Corollary 1.2. Note thatZ
� d.f"�g"/D

X
˛

Z
� d.f˛ �g˛/:

Three types of indices occur.
First we consider indices ˛ such that dist.A˛; �"c/ > " and (1-3) holds. Since

g˛ � g"�
X
ˇ¤˛

gˇ � g"CC; (3-25)

we deduce from (1-3) that if n˛ � 1 and " is small enough, g".A˛/ � cn˛jlog "j and then using (1-3)
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again that Z
� d.f˛ �g˛/� C jr�jL1.A˛/

�
n˛Cˇ.g"/C.A˛/

�
: (3-26)

If n˛ D 0 the same inequality holds since from (1-3) the left-hand side is zero.
Second we consider indices ˛ such that dist.A˛; �"c/ > " and (1-4) holds. We note that if C is large

enough then x log x � �x2CC log2 �=� holds for every x > 0 and �� 1, for instance by distinguishing
the cases � > .log x/=x and � � .log x/=x. We use this and (3-25), together with (1-4) to find that if
n˛ � 1 then Z

� d.f˛ �g˛/� C jr�jL1.A˛/

�
n˛C �.g"/C.A˛/C

log2 �

�

�
: (3-27)

Again the inequality is true if n˛ D 0 since from (1-4) the left-hand side is zero in this case.
Finally we consider indices ˛ such that dist.A˛; �"c/ � ". In this case, noting that from Lemma 2.4

we have n˛jlog "j � Ce".A˛/, we rewrite (1-5) asZ
� d.f˛ �g˛/� C

�
jr�jL1.A˛/n˛Cˇj�jL1.A˛/e".A˛/

�
: (3-28)

To conclude we sum either (3-26), (3-27) or (3-28) according to the type of index ˛, noting that since
diam.A˛/ � 1, we have jf jL1.A˛/ � Of on A˛ for any function f . Since the overlap number of the
A˛’s is bounded by a universal constant, we deduce (1-9).

We prove (1-10). We start by proving that when dist.A˛; �"c/ > " we have

min
�
n˛

2; n˛jlog "j
�
� C

�
.g"/C.A˛/C 1

�
: (3-29)

If n˛ D 0 this is trivial, if not then it follows from either (1-3) or (1-4) using (3-25).
Assume ˛ is such that dist.A˛; �"c/ > ", then since 2x � �x2 C 1=� and since x � �xjlog "j is

trivially true if 1=jlog "j< �, we deduce from (3-29) that

n˛ � C
�
�.g"/C.A˛/C 1=�

�
: (3-30)

On the other hand Lemma 2.4 implies that for any ˛

n˛ � C
e".A˛ \�"/

jlog "j
: (3-31)

Summing (3-30) or (3-31) according to whether dist.A˛; �"c/ is > " or � " we deduce (1-10). �

4. Proof of Theorem 1.5

Convergence. We study the consequences of the hypothesis

MR WD lim sup
"!0

Z
UR

g".x/ dx <C1 for all R> 0: (4-1)

and prove that it implies the convergence of the vorticities and currents in the appropriate sense.
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Note that we assume dist.0; @�"/!C1 so that for every R, UR � �" for " small enough. From
(1-13) there exists C > 0 such that for any R large enough

BR=C �UR � BCR;
1

C
�
jURj

R2
� C:

We now gather several easy consequences of Theorem 1.1 and (4-1).

Proposition 4.1. Assume (4-1) holds, and let g" be as in Theorem 1.1. Then for any R and " small
enough depending on R we haveX

˛ jA˛�UR

min.n˛2; n˛jlog "j/� C.MRCC CR2/; (4-2)

j�"j.UR/� C.MRCC CR2/; (4-3)Z
.f"�g"/�UR

� C
X

˛ jA˛�URCC nUR�C

n˛.log n˛C 1/� C.MRCC CR2/; (4-4)

where f�
UR
gR are any functions satisfying (1-14).

For any 1� p < 2 there exists Cp > 0 such that for any R> 0, and " small enoughZ
UR

jj"j
p
� Cp.MRCC CR2/: (4-5)

Up to extraction of a subsequence, fj"g" converges weakly in L
p
loc.R

2/, p < 2 to some j W R2 ! R2;
f�"g" converges in the weak sense of measures to a measure � on R2 of the form 2�

P
p2ƒ dpıp, where

ƒ is a discrete set and dp 2 Z; f�"g" converges to the same � in W
�1;p

loc .R2/ for any p < 2; and fh"g
converges weakly in L2

loc.R
2/ to h. Moreover,

curl j D � � h: (4-6)

Proof. Assertions (4-2), (4-3) and (4-5) are direct consequences of (3-29), (1-10) and (1-8), respectively.
We prove (4-4). As a consequence of (4-1), for every R > 0, if " > 0 is small enough and A˛ � UR

then (1-4) holds. Indeed if (1-3) is true with n˛ � 1 (note that if n˛D 0 then (1-3) and (1-4) are identical)
then g".A˛/� cjlog "j �C , using (3-25), which contradicts (4-1) if " is small enough.

Then we use (1-3) with �D�
UR

. Since �
UR

is supported in URCC and since dist.URCC ; @�"/!C1

we have, if " is small enough and A˛ \URCC ¤¿, that dist.A˛; @�"/ > ". Then summing (1-3) over
all such ˛ we find Z

�UR
d.f"�g"/� C

X
˛ jA˛�URCC nUR�C

n˛ .log n˛C 1/ ;

which is the first inequality in (4-4). The second one then easily follows from (3-29).
We now turn to the convergence results. The weak local convergence of j" follows from a bound forR

UR
jj"j

p valid for any " small enough, depending on R, which is implied by (4-1) and (4-5). From
(4-3), f�"g" is bounded on any compact subset of R2, hence converges (up to extraction) to a measure �,
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which by (2-2) has to be of the form 2�
P

p2ƒ dpıp where ƒ is a discrete set and dp 2 Z for every
p 2ƒ (we will prove below that dp D 1).

The weak local convergence of h" follows from (1-12) combined with the bound (4-1).
The convergence of f�"g" in W

�1;p
loc uses the Jacobian estimate (see [Jerrard and Soner 2002] or

[Sandier and Serfaty 2007, Theorem 6.2]) from which we deduce that for any R> 0 and any  2 .0; 1/,
and since r.B

p
"

" \BR/� C
p
",

k�"� �"k.C 0;

0
.BR//�

� C.
p
"/ .e".BR/C 1/ ; (4-7)

where C depends on R but not on ".
But f�"g" is bounded in BR as measures, hence in .C 0;

0
/�, and arguing again as in (3-24),

e".BR/� .g"/C.BRC1/C
1
2
jlog "jj�"j.BRCC /� C jlog "j:

Therefore the right-hand side in (4-7) tends to 0 as "! 0 and f�"g" is bounded in .C 0;
0
.BR//

�. We
deduce that �" ! � in W

�1;p
loc by noting that for any 1 < p < 2 there exists 0 <  < 1 such that

W
1;p0

0
.BR/ ,!C

0;
0

with compact imbedding — where 1=pC1=p0D 1 — which implies by duality that
.C

0;
0
/� ,!W

�1;p
0

with compact imbedding.
Finally (4-6) is obtained by passing to the limit in �"D curl j"Ccurl A" since by Remark 1.4 we may

assume (up to extraction) that curl A"! h weakly locally in L2 as "! 0. �

Remark 4.2. From the above results, it is easy to deduce (1-18) under the stronger assumption (1-17).
In this case we have MR � CR2 and therefore (4-3), (4-5) and Remark 1.4 imply that

j�"j.UR/� CR2;

Z
UR

jj"j
p
� CR2;

Z
UR

jh"j
2
� CR2 (4-8)

which in turn implies (1-18).

Lower bound by the renormalized energy. We turn to the proof of the remaining statement in Theorem
1.5, namely that � is of the form 2�

P
p2ƒ ıp (we already know it is of the form 2�

P
p2ƒ dpıp,

where the dp’s are nonzero integers) and that under assumption (1-17) the lower bound (1-19) holds.
Both are related to a lower bound of

R
�

R
g" by the renormalized energy, where �

R
WD �

UR
. This

reproduces more or less arguments present in [Bethuel et al. 1994] and [Bethuel and Rivière 1995].
Throughout this subsection we assume that (1-17) holds, and begin by bounding from below the integral
of .e"� 1

2
jlog "j�"/�R

.
Choose R> 0. From (4-3) we have that j�"j is bounded independently of " on the support of �

R
, thus

a subsequence of fj�"j1Supp�
R
g" converges to a positive measure Q� of the form 2�

Pk
iD1 kiıai

, where
ki is a positive integer for every i (the ai’s are a subset of ƒ).
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From the weak convergence of j" to j in L
p
loc and using the inequality jrA"u"j � jj"j (following from

the assumption ju"j � 1) we have for any r > 0

lim inf
"!0

Z
R2n

S
p2ƒB.p;r/

�RjrA"u"j
2
� lim inf

"!0

Z
R2n

S
p2ƒB.p;r/

�Rjj"j
2

�

Z
R2n

S
p2ƒB.p;r/

�Rjj j
2: (4-9)

Indeed either the left-hand side is equal toC1 and the statement is true, or there is weak L2 convergence
of the currents on the complement of

S
p B.p; r/ and (4-9) follows by weak lower semicontinuity of the

integrand. Similarly, by weak convergence of h" to h we have

lim inf
"!0

Z
R2n

S
p2ƒB.p;r/

�Rh"
2
�

Z
R2n

S
p2ƒB.p;r/

�Rh2: (4-10)

Then consider any � 2 .0; 1/ small enough so that the balls B.ai ; 2�/ are disjoint. Note that since the
limit of j�"j on the support of �

R
is a sum of Dirac masses concentrated at the points faigi we have for

" small enough
j�"j.Supp�R n

[
i

B.ai ; �//D 0; �".B.ai ; �//D 2�di ;

where 2�di D �.ai/.
We use two distinct lower bounds for the integral of �

R
.e"�

1
2
jlog "j�"/ on balls. We distinguish the

set I of indices such that B.ai ; 2�/ � f�R
D 1g and the remaining indices J . Note that if i 2 J then

B.ai ; 2�/ intersects the set where �
R
¤ 1 and the support of �

R
, thus B.ai ; 2�/ � URCC nUR�C for

some C > 0 independent of R> 0, � 2 .0; 1/ and i .
In the case i 2 I we use Z

B.ai ;�/

e" � �jdi jlog
�

"
CCjdi j

C o�;".1/; (4-11)

where Cd is a constant depending only on d such that C1 D  , (where  is defined after Theorem 1),
where C0 D 0, and where

lim
�!0

lim sup
"!0

o�;".1/D 0:

We postpone the proof of this well-known statement. It is very similar to analogous ones found in
[Bethuel et al. 1994] or [Bethuel and Rivière 1995]. Then we deduce from (4-11) that for any i 2 I and
letting Cdi

DC1 if di < 0,

lim inf
"!0

Z
B.ai ;�/

�
e"�

1
2
jlog "j d�"

�
� �di log � CCdi

C o�.1/; (4-12)

where lim�!0 o�.1/D 0.
In the case i 2 J we have to introduce the weight �

R
that is no longer constant on the ball. Then

we resort to Remark 3.5. Consider the family of balls C" consisting of the balls B in B
�=2
" which

intersect the support of �
RC1

, and such that j�"j.B/ ¤ ¿. For any B 2 C", since j�"j.B/ ¤ 0 and
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j�"j ! 2�
P

i kiıai
, and since r.B/ � �=2, we have for " small enough depending on R that there is

some index i for which B � B.ai ; �/. Let Ci
" denote the balls included in B.ai ; �/ and partition Ci

" asS
˛ Ci;˛

" and C" as
S
˛ C˛" where the superscript ˛ corresponds to the balls which are included in a ball

B 2B˛
" (we assume �=2< �).

From (3-7), for every B 2 Ci;˛
"Z

B

�R

�
e"�ƒ

˛;�=2
" d�"

�
� �C jr�Rj1j�"j.B/� �C j�"j.B/: (4-13)

Now we note that since (1-17) holds, then for " small enough C ˛ DM n˛, for otherwise we would have
e".B

˛
" /� .M=3/n˛jlog "j and thenX
B2B˛"

gB
" .B/D

X
B2B˛"

f B
" .B/D

X
B2B˛"

.e"�ƒ
˛
" �"/.B/�

�
M

3
��

�
n˛jlog "j

"!0
���! C1;

if we choose M > 3� and since n˛ � 1. This is a contradiction with (1-16) since g" �
P

B gB
" �C by

(1-6), proving that C ˛ DM n˛.
Then we have from (2-5) that

ƒ˛;�=2" �
1
2
jlog "j D 1

2
log �C�; where j�j � C .log n˛C 1/

and ˇ̌̌̌Z
B

�
�R ��R.ai/

�
d�"

ˇ̌̌̌
� C�j�"j.B/:

Hence with (4-13)Z
B

�R

�
e"�

1
2
jlog "j d�"

�
D

Z
B

�R

�
e"�ƒ

˛;�=2
" d�"

�
C
�1
2

log �C�
� Z

B

�R d�"

� �C j�"j.B/C
log �

2
�R.ai/�".B/�

�

2
log �j�"j.B/� j�j j�"j.B/

�
log �

2
�".B/�R.ai/�C j�"j.B/

�
1C log n˛

�
:

Summing over B 2 Ci;˛
" and then over ˛ and i 2 J we find, sinceX

B2Ci
"

�".B/D �".B.ai ; �//! �.B.ai ; �//D 2�di ;

that

lim inf
"!0

Z
S

i2J B.ai ;�/

�R

�
e"�

1
2
jlog "j d�"

�
� �

X
i2J

di�R.ai/ log ��C�.R/;

where

�.R/D lim sup
"!0

X
˛ jU˛�URCC nUR�C

n˛ .log n˛C 1/ :
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Summing (4-12) over i 2 I and adding the above and (4-9)–(4-10), we deduce

lim inf
"!0

Z
�R.e"�

1
2
jlog "j d�"/�

1

2

Z
R2n

S
p2ƒB.p;�/

�R.jj j
2
C h2/

C

X
i2I

�R.ai/
�
�di log �CCdi

�
C

X
i2J

�R.ai/�di log ��C�.R/� o�.1/: (4-14)

We will now take the limit �!0 on the right-hand side. For that we use a Hodge decomposition of j in
B.ai ; �0/, writing j D�r?HCrK, with H D0 on @B.ai ; �0/. Then since��H D��hD2�diıai

�1

we have H.x/Ddi log jx�ai jCF , where F is in H 2 in the neighborhood of ai , in particular H 2W 1;p

for any p < 2, and since j 2Lp, this implies that K 2W 1;p also. Then an easy computation shows that

lim
�!0

1

2

Z
B.ai ;�0/nB.ai ;�/

�Rjr
?H j2C�.log �/di

2�R.ai/

exists and is finite, whileZ
B.ai ;�0/nB.ai ;�/

�Rjj j
2
�

Z
B.ai ;�0/nB.ai ;�/

�R

�
jr
?H j2Cr?H � rK

�
:

Decomposing H and integrating by parts we have, writing Ci;� D B.ai ; �0/ nB.ai ; �/,Z
Ci;�

r
?H � .�RrK/D

Z
Ci;�

r
?F � .�RrK/� di

Z
Ci;�

Kr? log �r�R;

and this remains bounded as �! 0, using the regularity of �
R

, F , and the boundedness of H , K, log in
W 1;p. We may then deduce that

lim inf
�!0

1

2

Z
B.ai ;�0/nB.ai ;�/

�Rjj j
2
C�.log �/di

2�R.p/

is not equal to �1.
As a consequence, writing di D di

2
� .di

2
� di/ in the right-hand side of (4-14), and this right-hand

side being bounded above independently of �, we have that
P

i.di
2
�di/�R

.ai/ log 1
�

is bounded above
as �! 0. Thus we have di 2 f0; 1g for any i such that �

R
.ai/¤ 0 and then di D 1 since di was assumed

to be nonzero. In view of this, (4-14) can be rewritten as

lim inf
"!0

Z
�R.e"�

1
2
jlog "j d�"/�

1

2

Z
R2n

S
p2ƒB.p;�/

�R.jj j
2
C h2/

C

X
p2ƒ

�R.p/ .� log �C  /�C�.R/� o�.1/;

where we recall that  D C1 and we have absorbed C1

P
i2J �R

.ai/ in C�.R/.
Letting �! 0 we thus find (see (1-15))

lim inf
"!0

Z
�R.e"�

1
2
jlog "j d�"/�W .j ; �R/C

1

2

Z
�Rh2

C

X
p2ƒ

�R.p/ �C�.R/:



IMPROVED LOWER BOUNDS FOR GINZBURG–LANDAU ENERGIES VIA MASS DISPLACEMENT 787

From (4-4) we may replace e"�
1
2
jlog "j�" by g", with an error term which may be absorbed in C�.R/

hence

lim inf
"!0

Z
�R dg" �W .j ; �R/C

1

2

Z
�Rh2

C

X
p2ƒ

�R.p/ �C�.R/: (4-15)

Now, under hypothesis (1-17) and using (4-2), we have lim sup
"!0

P
˛ jA˛�UR

n˛
2 � CR2, and thus

lim sup
R!1

lim sup
"!0

1

R2

X
˛jA˛�URCC nUR�C

n˛" jlog n˛" j D 0:

Indeed, using Hölder’s inequality, and bounding the number of ˛’s involved in the above sum by CR,
we find X

˛jA˛�URCC nUR�C

Œn˛" �
3=2
� .CR/1=4

� X
˛ jA˛�URCC

n˛
2

�3=4

� CR1=4C3=2:

It follows, since U˛ �A˛, that

lim sup
R!C1

�.R/

R2
D 0 (4-16)

and in particular �.URCC nUR�C /D o.R2/. Then we write, using � D curl j C h,X
p2ƒ

�R.p/D
1

2�

Z
�R d� D

1

2�

Z
�Rh�

1

2�

Z
r
?�R � j:

Let ER D f0<�R
< 1g. Then since ER �URCC nUR�C we have jERj �CR and using (4-8) together

with Hölder’s inequality we findZ
ER

�Rh� jERj
1=2

�Z
ER

h2

�1=2

� CR3=2;

and a similar bound for
R
r?�

R
� j using (4-8) again, since it is equal to

R
ER
r?�

R
� j . ThereforeX

p2ƒ

�R.p/D
1

2�

Z
f�

R
D1g

hC o.R2/D
1

2�

Z
UR

hC o.R2/;

the second equality being proved again with the help of (4-8) and Hölder’s inequality. Together with
(4-16) and (4-15), this proves (1-19).

There remains to prove (4-11). For this it is convenient to blow-up B.ai ; �/ to the unit ball B1. Then
(4-11) becomes

1

2

Z
B1

�
jrBvj

2
C

ˇ̌̌̌
curl B

�

ˇ̌̌̌2
C
.1� jvj2/2

2"02

�
� �jdi j log

1

"0
CCdi

C o�;".1/; (4-17)

where v.x/ D u".�x/, B.x/ D �A".�x/ and �"0 D ", so that "0 tends to 0 with ". Note that .v;B/
depends on " but we omit this in the notation for the rest of the proof.
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Since curl A"! h weakly in L2
loc, it follows that kcurl BkL2.B1/

� 2�kcurl A"kL2.B�/
� C�. Then,

choosing to work in the gauge div B D 0, B � � D constant on @B1, we have kBkH 1.B1/
� C�. Since

j .u";A"/ is bounded in L
p
loc.R

2/ for any p < 2, we deduce immediately that kj .v;B/kLp.B1/ �

C�1�2=p. But by Sobolev embedding, kBkLq.B1/DO.�/ for any q> 1 hence the integral of B �j .v;B/

on B1 is o�.1/. Then, since

jrBvj
2
D jrvj2� 2B � j .v;B/CjBj2jvj2;

(4-17) will follow if we show that

1

2

Z
B1

�
jrvj2C

.1� jvj2/2

2"02

�
� �jdi j log

1

"0
CCdi

C o�;".1/: (4-18)

To prove (4-18) we modify B in order for the current to be divergence-free: As before we use the
Hodge decomposition j .v/ WD .iv;rv/D�r?H CrK with H D 0 on @B1, and let QvD ve�iK . Then
denoting e.v/ the integrand in (4-18) we have

e. Qv/D e.v/�rK � j .v/C
jvj2

2
jrKj2:

We replace j .v/D�r?H CrK and note that, integrating by parts, rK � r?H integrates to 0 on B1.
Therefore Z

B1

e. Qv/D

Z
B1

�
e.v/C

�
jvj2

2
� 1

�
jrKj2

�
�

Z
B1

e.v/:

Thus if we show the lower bound (4-18) for Qv, then we are done. For this we may assume, without loss
of generality, that the upper bound

1

2

Z
B1

�
jr Qvj2C

.1� j Qvj2/2

2"02

�
� �jdi j log

1

"0
CCdi

(4-19)

holds.
The advantage is that now we have

j . Qv/D�r?H C .1� jvj2/rK:

But lim"!0.1 � jvj
2/ D 0 in Lq.B1/ for any q > 1, being bounded in L1 and tending to 0 in L2.

Moreover, we have seen that kj .v;B/kLp.B1/ � C�1�2=p, and that B DO.�/ in every Lp, so

j .v;B/� j .v/D jvj2B DO.�/ (4-20)

and therefore j .v/DO.�1�2=p/ in Lp, which implies that H and K are O.�1�2=p/ in W 1;p. It follows
from the above that

j . Qv/Cr?H D o�;".1/: (4-21)

in Lp.B1/, for every p < 2.
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Moreover, since curl j .u";A"/C h" ! 2�diıai
in W �1;p as " ! 0, we have that curl j .v;B/C

� curl B ! 2�diı0. Hence using (4-20) we deduce ��H D curl j .v/! 2�diı0C o�.1/ as "! 0 in
W �1;p. Since H D 0 on @B1 we then have

H.x/D�2�di log jxjC o�.1/ (4-22)

in W 1;p.
From (4-21), (4-22) we may find radii fr"g" such that

(i) lim
"!0

r" D 1; (ii) kj . Qv/Cr?HkLp.@Br" /
D o�;".1/; (iii) kH C 2�di log kW 1;p.@Br" /

D o�.1/:

We may further require that � WD j Qvj ! 1 uniformly as "! 0 on @Br" . Indeed from (4-19) we have

1

2

Z
B1

jr�j2C
1

2"02
.1� �2/2 � C log "0

thus a mean value argument easily implies that r" may be chosen such that

1

2

Z
@Br"

jr�j2C
1

2"02
.1� �2/2 � C.log "0/2:

This in turn implies using (5-1) that k�� 1kL1.@Br" /
! 0 as "! 0.

Then, writing Qv D �ei' , we have j . Qv/D �2r', and the above implies that

Qv D .1C Q�/ei.�0Cdi�CQ'/ for some �0 2 R;

where

k Q'kW 1;p.@B1/
D o�;".1/ and k Q�kL1.@B1/ D o".1/:

Without going into further detail (see [Bethuel et al. 1994, Chapter VIII], for instance), this implies that

1

2

Z
B1

�
jr Qvj2C

.1� j Qvj2/2

2"02

�
�min

�
1

2

Z
B1

�
jruj2C

1

2"02
.1� juj2/2

� ˇ̌̌̌
uD eidi� on @B1

�
Co�;".1/:

From [Bethuel et al. 1994], the right-hand side is precisely equal to �jdi j log.1="0/CCjdi j
Co".1/, where

the constant Cd is equal to  if d D 1. Thus we have proved (4-18), and then (4-11).

5. Proof of Proposition 2.1

The proof of Proposition 2.1 is based on the ball construction of R. Jerrard [1999], hence we will only
emphasize the points which need some modification, mostly to take into account the presence of the
magnetic potential A the way we do in [Sandier and Serfaty 2007]. We will denote by c, C , respectively,
a small and a large generic universal constant. We will number the constants we need to keep track of.
Throughout this section U is a bounded domain in R2 and .u;A/ are defined on U .

The first ingredient is a lower bound for the energy of juj on a circle [Jerrard 1999, Lemma 2.3]. It is
valid for any " > 0.
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Lemma 5.1. Assuming 2r � " > 0 and x are such that the closed ball B.x; r/� U , we have

1

2

Z
@B.x;r/

ˇ̌
rjuj

ˇ̌2
C
.1� juj2/2

2"2
� c0

.1�m/2

"
; (5-1)

where mDmin@B.x;r/ juj.

In contrast to [Jerrard 1999] and because we wish to work with constants independent of U we intro-
duce

U" D fx 2 U j dist.x;U c/ > "g:

Then u W U ! C being given we introduce, following Jerrard, S D fx 2 U" j juj �
1
2
g. Assuming u is

continuous the connected components of S which are included in U" are compact, and u=juj has a well
defined degree, or winding number on their boundary. Then we let

SE D union of the components of S with nonzero boundary degree:

Still following Jerrard, for any compact K � U such that @K\SE D¿ we let

degE.u; @K/D
X

Si component of SE

deg.u; @Si/:

This degree is defined even if juj vanishes on @K, provided the points where it vanishes are not in SE .
The previous lemma implies (see [Jerrard 1999, Proposition 3.3]):

Lemma 5.2. There exists a collection of disjoint closed balls B1; : : : ;Bk of radii r1; : : : ; rk such that
for all i we have ri � " and e".U \Bi/� c1ri=", and that

SE \U" �

k[
iD1

Bi :

Proof. We only sketch the proof. If x 2SE then either @Br .x/ intersects fjuj � 1
2
g for every "=2� r � ",

in which case Lemma 5.1 implies that e".U \B.x; "//� c, or there exists "=2� r � " such that juj> 1
2

on @Br .x/, and then the connected component of x in SE , which has nonzero degree, is included in
B.x; r/. The nonzero degree implies again (see [Jerrard 1999]) that e".U \B.x; "//� c. We thus have
a cover of SE by balls that satisfy e".B/� cr.B/=".

From Besicovitch’s lemma, there exists a disjoint subcollection fBkgk such that f zBkgk covers SE ,
where zBk D CBk with C a universal constant. These balls still satisfy e".B/� cr.B/=", though with a
smaller constant. Then, grouping the balls which intersect in larger ones as in [Jerrard 1999] (see also
[Sandier and Serfaty 2000]) we can obtain a disjoint cover of SE with the same property. The condition
ri � " is trivially verified since the balls we started with had radius ". Note also that the balls obtained
here only depend on SE , hence on u. �

Still following Jerrard, we have:
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Proposition 5.3. Choose c2 2 .0; c1/ small enough and let

�".x/Dmin

 
c2

"
;
�

x

1

1C x
2
C

�"
c0x

!
:

Then, assuming that Br � U", that @Br \SE D¿ and that " � r � jd j=2, where d D degE.u; @Br /

is assumed to be different from 0, we have

1

2

Z
@Br

jrAuj2C
1

2

Z
Br

jcurl Aj2C
1

4"2

Z
@Br

�
1� juj2

�2
� �"

�
r

jd j

�
: (5-2)

Moreover, the primitive function ƒ".x/D
R x

0 �" is increasing, s 7!ƒ".s/=s is decreasing,

lim
s&0

ƒ".s/

s
D

min.c0; c2/

"
<

c1

"
;

ƒ"."/

"
�

c3

"

and finally, for any "� s � 1
2

, and for some C0 > 0,

ƒ".s/� � log
s

"
�C0: (5-3)

Proof. First, in the case where @Br intersects fjuj � 1
2
g we deduce from (5-1) that (5-2) is satisfied with

c2 D c0=4.
When on the contrary juj > 1

2
on @Br we have degE.u; @Br / D deg.u; @Br /. Then we bound from

below 1

2

R
@Br
juj2jr' � Aj2, where u D jujei' as follows: Still denoting m D min@Br

juj, using the
Cauchy–Schwarz inequality we have

1

2

Z
@Br

juj2jr' �Aj2 �
m2

2

1

2�r

�Z
@Br

@'

@�
�A � �

�2

D
m2

4�r
.2�d �X /2

where we write X WD
R

Br
curl AD

R
@Br

A � � . On the other hand, by Cauchy–Schwarz again

1

2

Z
Br

jcurl Aj2 �
1

2�r2

�Z
Br

curl A

�2

D
X 2

2�r2

Adding the two relations we obtain

1

2

Z
@Br

juj2jr' �Aj2C
1

2

Z
Br

jcurl Aj2 �
1

2�r

�
m2

2
.2�d �X /2C

1

r
X 2

�
:

Minimizing the right-hand side with respect to X yields

1

2

Z
@Br

juj2jr' �Aj2C
1

2

Z
Br

jcurl Aj2 �
�d2

r

m2

1C m2r
2

: (5-4)

Adding (5-1) we deduce for r � " that

e".@Br /�
�jd j

r

jd j
1

m2 C
r
2

C c0

.1�m/2

"
: (5-5)
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If jd j> 1, then either m2 < 2=3 and we find e" > c=" for a well chosen c > 0 or m2 � 2=3 and, since
r=2< jd j=4, we have m�2C r=2� 3=2Cjd j=4� jd j implying e" � �jd j=r . Thus, if jd j> 1, (5-2) is
satisfied. If jd j D 1 then minimizing the right-hand side of (5-5) with respect to m yields

e".@Br /�
�

r

1

1C r
2
C

�"
c0r

;

so that in every case we have e".@Br /� �".r=jd j/, if c2 is chosen small enough.
We now turn to the properties of ƒ". Since �" is positive, decreasing, then ƒ" is increasing and

ƒ".s/=s is decreasing. It is clear that as s! 0, we have �".s/ � min.c0; c2/=" � ƒ".s/=s. Moreover,
if x > c", with c D �=c2, then

�".x/D
�

x

1

1C x
2
C

�"
c0x

I

hence, if s � c",

ƒ".s/�

Z s

c"

�

x

1

1C x
2
C

�"
c0x

dx �

Z s

c"

�

x

�
1�

x

2
�
�"

c0x

�
dx � � log

s

"
�C0;

for some constant C0. If s < c" then the inequality remains true if C0 is chosen large enough, since
ƒ".s/� 0.

Finally, ƒ"."/� "�"."/� c3, if c3 > 0 is chosen small enough. �

From there, the ball construction procedure (growing and merging of balls) from [Jerrard 1999] (or
see [Sandier and Serfaty 2000, Proposition 3.1]) allows one to deduce this:

Proposition 5.4. For any 0 < s < 1
2

there exists a family of disjoint closed balls B.s/ (depending only
on u") such that:

(1) The family of balls is monotonic; that is, if s< t , we have B.s/�B.t/. Moreover, denoting by r.B/

the radius of B, the function s!
P

B2B.s/ r.B/ is continuous.

(2) For any s we have SE �B.s/.

(3) For any B 2B.s/,

e".U \B/� r.B/
ƒ".s/

s
:

(4) If B 2B.s/ and B � U" then, letting dB D degE.u"; @B/, we have r.B/� sjdBj.

Proof. We let B.s0/ be the family of balls given by Lemma 5.2, where we choose s0 small enough so
that items 3 and 4 are satisfied (item 2 obviously is). We let B.s/DB.s0/ for every s � s0. For s � s0

we apply the method of growing and merging of [Jerrard 1999] which we sketch briefly: It consists in
continuously increasing the parameter s and at the same time making those balls included in U" such that
r.B/D sjdBj grow so that the equality remains satisfied. When balls touch, the parameter s is stopped
and the balls are merged into a larger ball with radius the sum of the radii of the merged balls, and this
is repeated if the resulting family is still not disjoint. This does not change the total radius and when it
is done — that is, when the family is disjoint again — the increasing of s is resumed, and the process is
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repeated This yields a family of disjoint closed balls which is monotonic, such that s!
P

B2B.s/ r.B/

is continuous and such that r.B/� sjdBj for every ball included in U". Obviously SE \U" �B.s/ for
every s. Also the growing and merging process depends only on the initial balls and the degrees of u",
hence on u".

The lower bound e".U \B/ � r.B/ƒ".s/=s is true initially and is preserved through the merging
process, it is also preserved through the growing process as long as (5-2) remains valid, i.e., r.B/ <

jdBj=2 for every B �U" such that dB ¤ 0. This results from the properties of ƒ", as detailed in [Jerrard
1999]. Then for the process to stop, there must be a ball B for which r.B/D sjdBj, i.e., a growing ball,
with r.B/� jdBj=2, hence we must have s � 1

2
. �

Proof of Proposition 2.1. We first construct a family B0.s/ containing SE instead of fx 2 U" j juj �
1
2
g

but satisfying items (2) and (3) in the conclusion of the proposition.
Under the hypotheses, Proposition 5.4 applies, and yields for every 0< s < 1

2
a family of balls B0.s/

satisfying the four items stated. Choosing s0 small enough we have ƒ.s0/=s0 � c=". Hence, letting r0

denote the total radius of the balls in B0.s0/,

"�ˇ �G".u;A/�
cr0

"

and therefore r0 � C "1�ˇ.
Let r 2 .C "1�ˇ; 1

2
/, and let r1 be the total radius of the balls in B0.1

2
/. If r > r1 then B0.1

2
/ satisfies

item (2) trivially and moreover for any B 2B0.1
2
/ we have from Proposition 5.4 and using (5-3) that

e".B/� jdBjƒ"
�

1
2

�
� �jdBj

�
log

1

2"
�C

�
� �jdBj

�
log

r

C ˛"
�C 0

�
;

for any r � 1
2

and any C ˛ � 2, proving item (3) in this case.
If r < r1 then there exists s 2 .s0;

1
2
/ such that B0 WD B0.s/ satisfies r.B0/ D r . Then item 2 of the

proposition is satisfied for this collection. Let us check item 3.
Assume then e".B

0/ � C log.r="/; with 2 � C � .r="/1=2. We show by contradiction that if M is
chosen large enough, then

s �
r

M C
:

Since e".B
0/� rƒ".s/=s and since ƒ".s/=s is decreasing, if s < r=.M C / and r=.M C /� 1

2
then

C log
r

"
�M Cƒ"

�
r

M C

�
� �M C log

�
r

"M C

�
�C0M C :

It follows that
.1��M / log

r

"
C�M log C C�M log M �C0M � 0;

which yields a contradiction for M D 3=� and r �C ", with C large enough, recalling that C � .r="/1=2.
Therefore s � �r=.3C / and then for every B 2B0 such that B � U" we have

e".B/� r.B/
ƒ".s/

s
� jdBjƒ".s/� jdBjƒ"

�
�r

3C

�
;
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which in view of (5-3) yields, for all B 2B0 such that B � U",

e".B/� �jdBj

�
log

r

"C
�C

�
;

if C is chosen large enough.
It remains to modify B0.s/ so that S WD fx 2 U" j juj �

1
2
g � B.r/. First we note that a well known

application of the coarea formula yields rather easily (see [Sandier and Serfaty 2007, Proposition 4.8])
that S can be covered by a collection of disjoint closed balls C such that r.C/� C "G" � C "1�ˇ. Then
for every s we do the merging of the balls in C[B0.s/ as in the proof of Proposition 5.4 to obtain B.s/.
If we chose s such that r.B0.s//D r=2 with C "1�ˇ < r < 1 and C large enough, then r.B.s//� r since
r.C/� C "1�ˇ. Moreover, if B 2B.s/ is such that B � U" then deg.u; @B/ is the sum of degE.u; @B

0/

for B0 2 B0.s/ and B0 � B. Then, if e".B/ � C log.r=2"/ the same bound holds for the B0’s and
summing the above lower bounds we find

e".B/� �jdBj

�
log

r

2"C
�C

�
:

Changing the constant C we can get rid of the factor 2 and B.s/ has all the desired properties. �
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