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A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR
MAXIMAL SINGULAR INTEGRALS WITH ONE DOUBLING MEASURE

MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Let σ and ω be positive Borel measures on R with σ doubling. Suppose first that 1 < p ≤ 2. We
characterize boundedness of certain maximal truncations of the Hilbert transform T\ from L p(σ ) to
L p(ω) in terms of the strengthened Ap condition(∫

R

sQ(x)p dω(x)
)1/p(∫

R

sQ(x)p′ dσ(x)
)1/p′

≤ C |Q|,

where sQ(x)= |Q|/(|Q|+ |x− xQ |), and two testing conditions. The first applies to a restricted class of
functions and is a strong-type testing condition,∫

Q
T\(χEσ)(x)p dω(x)≤ C1

∫
Q

dσ(x) for all E ⊂ Q,

and the second is a weak-type or dual interval testing condition,∫
Q

T\(χQ f σ)(x) dω(x)≤ C2

(∫
Q
| f (x)|p dσ(x)

)1/p(∫
Q

dω(x)
)1/p′

for all intervals Q in R and all functions f ∈ L p(σ ). In the case p> 2 the same result holds if we include
an additional necessary condition, the Poisson condition∫

R

( ∞∑
r=1

|Ir |σ |Ir |
p′−1

∞∑
`=0

2−`

|(Ir )(`)
|χ(Ir )(`)(y)

)p
dω(y)≤ C

∞∑
r=1

|Ir |σ |Ir |
p′ ,

for all pairwise disjoint decompositions Q =
⋃
∞

r=1 Ir of the dyadic interval Q into dyadic intervals Ir .
We prove that analogues of these conditions are sufficient for boundedness of certain maximal singular
integrals in Rn when σ is doubling and 1 < p <∞. Finally, we characterize the weak-type two weight
inequality for certain maximal singular integrals T\ in Rn when 1 < p < ∞, without the doubling
assumption on σ , in terms of analogues of the second testing condition and the Ap condition.

1. Introduction

Sawyer [1984; 1982; 1988] characterized two weight inequalities for maximal functions and other pos-
itive operators, in terms of the obviously necessary conditions that the operators be uniformly bounded
on a restricted class of functions, namely indicators of intervals and cubes. Thus, these characterizations
have a form reminiscent of the T 1 theorem of David and Journé.

Lacey is supported in part by the NSF, through grant DMS-0456538. Sawyer is supported in part by NSERC. Uriarte-Tuero is
supported in part by the NSF, through grant DMS-0901524.
MSC2000: 42B20.
Keywords: two weight, singular integral, maximal function, maximal truncation.
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2 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Corresponding results for even the Hilbert transform have only recently been obtained [Nazarov et al.
2010; Lacey et al. 2011] and even then only for p = 2; evidently these are much harder to obtain. We
comment in more detail on prior results below, including the innovative work of Nazarov, Treil and
Volberg [1999; 2008; 2010; 2003].

Our focus is on providing characterizations of the boundedness of certain maximal truncations of a
fixed operator of singular integral type. The singular integrals will be of the usual type, for example the
Hilbert transform or paraproducts. Only size and smoothness conditions on the kernel are assumed; see
(1-9). The characterizations are in terms of certain obviously necessary conditions, in which the class
of functions being tested is simplified. For such examples, we prove unconditional characterizations of
both strong-type and weak-type two weight inequalities for certain maximal truncations of the Hilbert
transform, but with the additional assumption that σ is doubling for the strong-type inequality. A major
point of our characterizations is that they hold for all 1< p<∞. The methods in [Lacey et al. 2011] and
those of Nazarov, Treil and Volberg apply only to the case p = 2, where the orthogonality of measure-
adapted Haar bases prove critical. The doubling hypothesis on σ may not be needed in our theorems,
but is required by the use of Calderón–Zygmund decompositions in our method.

As the precise statements of our general results are somewhat complicated, we illustrate them with an
important case here. Let

T f (x)= lim
ε→0

∫
R\(−ε,ε)

1
y

f (x − y) dy

denote the Hilbert transform, let

T[ f (x)= sup
0<ε<∞

∣∣∣∫
R\(−ε,ε)

1
y

f (x − y) dy
∣∣∣

denote the usual maximal singular integral associated with T , and finally let

T\ f (x)= sup
0<ε1,ε2<∞

1/4<ε2/ε1<4

∣∣∣∫
R\(−ε1,ε2)

1
y

f (x − y) dy
∣∣∣

denote the new strongly (or noncentered) maximal singular integral associated with T that is defined
more precisely below. Suppose σ and ω are two locally finite positive Borel measures on R that have
no point masses in common. Then we have the following weak and strong-type characterizations, which
we emphasize hold for all 1< p <∞.

• The operator T[ is weak type (p, p) with respect to (σ, ω), that is,

‖T[( f σ)‖L p,∞(ω) ≤ C‖ f ‖L p(σ ) (1-1)

for all f bounded with compact support if and only if the two weight Ap condition

1
|Q|

∫
Q

dω
( 1
|Q|

∫
Q

dσ
)p−1

≤ C,
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holds for all intervals Q and the dual T[ interval testing condition∫
Q

T[(χQ f σ) dω ≤ C
(∫

Q
| f |p dσ

)1/p(∫
Q

dω
)1/p′

, (1-2)

holds for all intervals Q and f ∈ L p
Q(σ ) (part 4 of Theorem 1.8). The same is true for T\. It is easy

to see that (1-2) is equivalent to the more familiar dual interval testing condition∫
Q
|L∗(χQω)|

p′ dσ ≤ C
∫

Q
dω, (1-3)

for all intervals Q and linearizations L of the maximal singular integral T[ (see (2-10)).

• Suppose in addition that σ is doubling and 1< p <∞. Then the operator T\ is strong-type (p, p)
with respect to (σ, ω), that is,

‖T\( f σ)‖L p(ω) ≤ C‖ f ‖L p(σ )

for all f bounded with compact support if and only if these four conditions hold: (1) the strengthened
Ap condition (∫

Q
sQ(x)p dω(x)

)1/p(∫
I

sQ(x)p′ dσ(x)
)1/p′

≤ C |Q|,

where sQ(x)=
|Q|

|Q|+|x−xQ |
, holds for all intervals Q; (2) the dual T\ interval testing condition∫

Q
T\(χQ f σ) dω ≤ C

(∫
Q
| f |p dσ

)1/p(∫
Q

dω
)1/p′

,

holds for all intervals Q and f ∈ L p
Q(σ ); (3) the forward T\ testing condition∫

Q
T\(χEσ)

p dω ≤ C
∫

Q
dσ, (1-4)

holds for all intervals Q and all compact subsets E of Q; and (4) the Poisson condition∫
R

( ∞∑
r=1

|Ir |σ |Ir |
p′−1

∞∑
`=0

2−`

|(Ir )(`)|
χ(Ir )(`)

(y)
)p

dω(y)≤ C
∞∑

r=1

|Ir |σ |Ir |
p′,

for all pairwise disjoint decompositions Q =
⋃
∞

r=1 Ir of the dyadic interval Q into dyadic inter-
vals Ir for any fixed dyadic grid. In the case 1 < p ≤ 2, only the first three conditions are needed
(Theorem 1.10). Note that in (1-4) we are required to test over all compact subsets E of Q on the
left side, but retain the upper bound over the (larger) cube Q on the right side.

As these results indicate, the imposition of the weight σ on both sides of (1-1) is a standard part of
weighted theory, and is in general necessary for the testing conditions to be sufficient. Compare to the
characterization of the two weight maximal function inequalities in Theorem 1.2 below.



4 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Problem 1.1. In (1-4), our testing condition is more complicated than one would like, in that one must
test over all compact E ⊂ Q in (1-4). There is a corresponding feature of (1-2), seen after one unwinds
the definition of the linearization L∗. We do not know if these testing conditions can be further simplified.
The form of these testing conditions is dictated by our use of what we call the “maximum principle”;
see Lemma 2.6.

We now recall the two weight inequalities for the maximal function as they are central to the new
results of this paper. Define the maximal function

Mν(x)= sup
x∈Q

1
|Q|

∫
Q
|ν| for x ∈ R,

where the supremum is taken over all cubes Q (by which we mean cubes with sides parallel to the
coordinate axes) containing x .

Theorem 1.2 (maximal function inequalities). Suppose that σ and ω are positive locally finite Borel
measures on Rn , and that 1< p <∞. The maximal operator M satisfies the two weight norm inequality
[Sawyer 1982]

‖M( f σ)‖L p(ω) ≤ C‖ f ‖L p(σ ) for f ∈ L p(σ ), (1-5)

if and only if for all cubes Q ⊂ Rn ,∫
Q

M(χQσ)(x)p dω(x)≤ C1

∫
Q

dσ(x). (1-6)

The maximal operator M satisfies the weak-type two weight norm inequality [Muckenhoupt 1972]

‖M( f σ)‖L p,∞(ω) ≡ sup
λ>0

λ|{M( f σ) > λ}|1/p
ω ≤ C‖ f ‖L p(σ ) for f ∈ L p(σ ), (1-7)

if and only if the two weight Ap condition holds for all cubes Q ⊂ Rn:( 1
|Q|

∫
Q

dω
)1/p( 1

|Q|

∫
Q

dσ
)1/p′

≤ C2. (1-8)

The necessary and sufficient condition (1-6) for the strong-type inequality (1-5) states that one need
only test the strong-type inequality for functions of the form χQσ . Not only that, but the full L p(ω) norm
of M(χQσ) need not be evaluated. There is a corresponding weak-type interpretation of the Ap condition
(1-8). Finally, the proofs given in [Sawyer 1982] and [Muckenhoupt 1972] for absolutely continuous
weights carry over without difficulty for the locally finite measures considered here.

1.3. Two weight inequalities for singular integrals. Let us set notation for our theorems. Consider a
kernel function K (x, y) defined on Rn

×Rn satisfying the size and smoothness conditions

|K (x, y)| ≤ C |x − y|−n,

|K (x, y)− K (x ′, y)| ≤ Cδ
(
|x − x ′|
|x − y|

)
|x − y|−n,

|x − x ′|
|x − y|

≤
1
2
,

(1-9)



TWO WEIGHT NORM INEQUALITIES FOR MAXIMAL SINGULAR INTEGRALS 5

where δ is a Dini modulus of continuity, that is, a nondecreasing function on [0, 1] with δ(0) = 0 and∫ 1
0 δ(s)s

−1 ds <∞.
Next we describe the truncations we consider. Let ζ, η be fixed smooth functions on the real line

satisfying

ζ(t)= 0 for t ≤ 1
2 and ζ(t)= 1 for t ≥ 1,

η(t)= 0 for t ≥ 2 and η(t)= 1 for t ≤ 1,

ζ is nondecreasing and η is nonincreasing.

Given 0<ε< R<∞, set ζε(t)= ζ(t/ε) and ηR(t)= η(t/R) and define the smoothly truncated operator
Tε,R on L1

loc(R
n) by the absolutely convergent integrals

Tε,R f (x)=
∫

K (x, y)ζε(|x − y|)ηR(|x − y|) f (y) dy for f ∈ L1
loc(R

n).

Define the maximal singular integral operator T[ on L1
loc(R

n) by

T[ f (x)= sup
0<ε<R<∞

|Tε,R f (x)| for x ∈ Rn.

We also define a corresponding new notion of strongly maximal singular integral operator T\ as follows.
In dimension n = 1, we set

T\ f (x)= sup
0<εi<R<∞
1/4≤ε1/ε2≤4

|Tε,R f (x)| for x ∈ R,

where ε = (ε1, ε2) and

Tε,R f (x)=
∫

K (x, y){ζε1(x − y)+ ζε2(y− x)}ηR(|x − y|) f (y) dy.

Thus the local singularity has been removed by a noncentered smooth cutoff — ε1 to the left of x and
ε2 to the right of x , but with controlled eccentricity ε1/ε2. There is a similar definition of T\ f in higher
dimensions involving in place of ζε(|x − y|), a product of smooth cutoffs,

ζε(x − y)≡ 1−
n∏

k=1

(1−{ζε2k−1(xk − yk)+ ζε2k (yk − xk)}),

satisfying 1/4≤ ε2k−1/ε2k ≤4 for 1≤ k≤n. The advantage of this larger operator T\ is that in many cases
boundedness of T\ (or collections thereof) implies boundedness of the maximal operator M. Our method
of proving boundedness of T[ and T\ requires boundedness of the maximal operator M anyway, and as a
result we can in some cases give necessary and sufficient conditions for strong boundedness of T\. As for
weak-type boundedness, we can in many more cases give necessary and sufficient conditions for weak
boundedness of the usual truncations T[.
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Definition 1.4. We say that T is a standard singular integral operator with kernel K if T is a bounded
linear operator on Lq(Rn) for some fixed 1< q <∞, that is

‖T f ‖Lq (Rn) ≤ C‖ f ‖Lq (Rn) for f ∈ Lq(Rn), (1-10)

if K (x, y) is defined on Rn
×Rn and satisfies both (1-9) and the Hörmander condition,∫

B(y,2ε)c
|K (x, y)− K (x, y′)| dx ≤ C for y′ ∈ B(y, ε), ε > 0, (1-11)

and finally if T and K are related by

T f (x)=
∫

K (x, y) f (y) dy for a.e.-x /∈ supp f, (1-12)

whenever f ∈ Lq(Rn) has compact support in Rn . We call a kernel K (x, y) standard if it satisfies (1-9)
and (1-11).

For standard singular integral operators, we have this classical result. (See the appendix on truncation
of singular integrals on [Stein 1993, page 30] for the case R =∞; the case R <∞ is similar.)

Theorem 1.5. Suppose that T is a standard singular integral operator. Then the map f → T[ f is of
weak type (1, 1), and bounded on L p(R) for 1 < p <∞. There exist sequences ε j → 0 and R j →∞

such that for f ∈ L p(R) with 1≤ p <∞,

lim
j→∞

Tε j ,R j f (x)≡ T0,∞ f (x)

exists for a.e. x ∈ R. Moreover, there is a bounded measurable function a(x) (depending on the se-
quences) satisfying

T f (x)= T0,∞ f (x)+ a(x) f (x) for x ∈ Rn.

We state a conjecture, so that the overarching goals of this subject are clear.

Conjecture 1.6. Suppose that σ and ω are positive Borel measures on Rn , let 1< p <∞, and suppose
T is a standard singular integral operator on Rn . Then the following two statements are equivalent:∫

|T ( f σ)|pω ≤ C
∫
| f |pσ for f ∈ C∞0 ,( 1

|Q|

∫
Q

dω
)1/p( 1

|Q|

∫
Q

dσ
)1/p′

≤ C,∫
Q
|TχQσ |

p
≤ C ′

∫
Q
σ,∫

Q
|T ∗χQω|

p′σ ≤ C ′′
∫

Q
ω,


for all cubes Q.

Remark 1.7. The first of the three testing conditions above is the two-weight Ap condition. We expect
that this condition can be strengthened to a “Poisson two-weight Ap condition”. See [Nazarov et al.
2010; Volberg 2003].
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The most important instances of this conjecture occur when T is one of a few canonical singular
integral operators, such as the Hilbert transform, the Beurling transform, or the Riesz transforms. This
question occurs in different instances, such as the Sarason conjecture concerning the composition of
Hankel operators, or the semicommutator of Toeplitz operators [Cruz-Uribe et al. 2007; Zheng 1996],
mathematical physics [Peherstorfer et al. 2007], as well as perturbation theory of some self-adjoint op-
erators. See references in [Volberg 2003].

To date, this has only been verified for positive operators, such as Poisson integrals and fractional
integral operators [Sawyer 1984; 1982; 1988]. Recently the authors have used the methods of Nazarov,
Treil and Volberg to prove a special case of the conjecture for the Hilbert transform when p = 2 and an
energy hypothesis is assumed [Lacey et al. 2011]. Earlier in [2010] Nazarov, Treil and Volberg used a
stronger pivotal condition in place of the energy hypothesis, but neither of these conditions are necessary
[Lacey et al. 2011]. The two weight Helson–Szegö theorem was proved many years earlier by Cotlar
and Sadosky [1979; 1983]; thus the L2 case for the Hilbert transform is completely settled.

Nazarov, Treil and Volberg [1999; 2010] have characterized those weights for which the class of Haar
multipliers is bounded when p = 2. They also have a result for an important special class of singular
integral operators, the “well-localized” operators of [2008]. Citing the specific result here would carry
us too far afield, but this class includes the important Haar shift examples, such as the one found by
S. Petermichl [2000], and generalized in [2002]. Consequently, characterizations are given in [Volberg
2003] and [Nazarov et al. 2010] for the Hilbert transform and Riesz transforms in weighted L2 spaces
under various additional hypotheses. In particular they obtain an analogue of the case p = 2 of the
strong-type theorem below. Our results can be reformulated in the context there, a theme we do not
pursue further here.

We now characterize the weak-type two weight norm inequality for both maximal singular integrals
and strongly maximal singular integrals.

Theorem 1.8 (maximal singular integral weak-type inequalities). Suppose that σ and ω are positive
locally finite Borel measures on Rn , let 1 < p <∞, and let T[ and T\ be the maximal singular integral
operators as above with kernel K (x, y) satisfying (1-9).

(1) Suppose that the maximal operator M satisfies (1-7). Then T\ satisfies the weak-type two weight
norm inequality

‖T\( f σ)‖L p,∞(ω) ≤ C‖ f ‖L p(σ ) for f ∈ L p(σ ), (1-13)

if and only if∫
Q

T\(χQ f σ)(x) dω(x)≤ C2

(∫
Q
| f (x)|p dσ(x)

)1/p(∫
Q

dω(x)
)1/p′

, (1-14)

for all cubes Q ⊂ Rn and all functions f ∈ L p(σ ).

(2) The same characterization as above holds for T[ in place of T\ everywhere.

(3) Suppose that σ and ω are absolutely continuous with respect to Lebesgue measure, that the maximal
operator M satisfies (1-7), and that T is a standard singular integral operator with kernel K as
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above. If (1-13) holds for T\ or T[, then it also holds for T :

‖T ( f σ)‖L p,∞(ω) ≤ C‖ f ‖L p(σ ) for f ∈ L p(σ ), f σ ∈ L∞ with supp f σ compact. (1-15)

(4) Suppose c > 0 and that {K j }
J
j=1 is a collection of standard kernels such that for each unit vector u

there is j satisfying

|K j (x, x + tu)| ≥ ct−n for t ∈ R. (1-16)

Suppose also that σ and ω have no common point masses, that is, σ({x}) ·ω({x})= 0 for all x ∈Rn .
Then

‖(T j )[( f σ)‖L p,∞(ω) ≤ C‖ f ‖L p(σ ) for f ∈ L p(σ ), with 1≤ j ≤ J,

if and only if the two weight Ap condition (1-8) holds and∫
Q
(T j )[(χQ f σ)(x) dω(x)≤ C2

(∫
Q
| f (x)|p dσ(x)

)1/p(∫
Q

dω(x)
)1/p′

,

f ∈ L p(σ ), cubes Q ⊂ Rn, 1≤ j ≤ J.

While in (1)–(3), we assume that the maximal function inequality holds, in point (4), we obtain an
unconditional characterization of the weak-type inequality for a large class of families of (centered)
maximal singular integral operators T[. This class includes the individual maximal Hilbert transform
in one dimension, the individual maximal Beurling transform in two dimensions, and the families of
maximal Riesz transforms in higher dimensions; see Lemma 2.11.

Note that in (1) above, there is only size and smoothness assumptions placed on the kernel, so that
it could for instance be a degenerate fractional integral operator, and therefore unbounded on L2( dx).
But, the characterization still has content in this case, if ω and σ are not of full dimension.

In (3), we deduce a two weight inequality for standard singular integrals T without truncations when
the measures are absolutely continuous. The proof of this is easy. From (1-13) and the pointwise in-
equality T0,∞ f σ(x) ≤ T[ f σ(x) ≤ T\ f σ(x), we obtain that for any limiting operator T0,∞ the map
f → T0,∞ f σ is bounded from L p(σ ) to L p,∞(ω). By (1-7) f → M f σ is bounded; hence f → f σ
is bounded, and so Theorem 1.5 shows that f → T f σ = T0,∞ f σ + a f σ is also bounded, provided we
initially restrict attention to functions f for which f σ is bounded with compact support.

The characterizing condition (1-14) is a weak-type condition, with the restriction that one only needs
to test the weak-type condition for functions supported on a given cube, and test the weak-type norm
over that given cube. It also has an interpretation as a dual inequality

∫
Q |L
∗(χQω)|

p′ dσ ≤ C2
∫

Q dω,
which we return to below; see (2-10) and (2-11).

We now consider the two weight norm inequality for a strongly maximal singular integral T\, but
assuming that the measure σ is doubling.

Theorem 1.9 (maximal singular integral strong-type inequalities). Suppose that σ and ω are positive
locally finite Borel measures on Rn with σ doubling, let 1 < p <∞, and let T[ and T\ be the maximal
singular integral operators as above with kernel K (x, y) satisfying (1-9).
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(1) Suppose that the maximal operator M satisfies (1-5) and also the “dual” inequality

‖M(gω)‖L p′ (σ ) ≤ C‖g‖L p′ (ω) for g ∈ L p′(ω). (1-17)

Then T\ satisfies the two weight norm inequality∫
Rn

T\( f σ)(x)p dω(x)≤ C
∫

Rn
| f (x)|p dσ(x), (1-18)

for all f ∈ L p(σ ) that are bounded with compact support in Rn , if and only if both the dual cube
testing condition (1-14) and the condition∫

Q
T\(χQgσ)(x)p dω(x)≤ C1

∫
Q

dσ(x), (1-19)

holds for all cubes Q ⊂ Rn and all functions |g| ≤ 1.

(2) The same characterization as above holds for T[ in place of T\ everywhere. In fact

|T\ f σ(x)− T[ f σ(x)| ≤ CM( f σ)(x).

(3) Suppose that σ and ω are absolutely continuous with respect to Lebesgue measure, that the maximal
operator M satisfies (1-5), and that T is a standard singular integral operator. If (1-18) holds for T\
or T[, then it also holds for T :∫

Rn
|T ( f σ)(x)|p dω(x)≤ C

∫
Rn
| f (x)|p dσ(x) for f ∈ L p(σ ), f σ ∈ L∞, with supp( f σ) compact.

(4) Suppose that {K j }
n
j=1 is a collection of standard kernels satisfying for some c > 0,

±Re K j (x, y)≥
c

|x − y|n
for ± (y j − x j )≥

1
4 |x − y|, (1-20)

where x = (x j )1≤ j≤n . If both ω and σ are doubling, then (1-18) holds for (T j )\ and (T ∗j )\ for all
1≤ j ≤ n if and only if both (1-19) and (1-14) hold for (T j )\ and (T ∗j )\ for all 1≤ j ≤ n.

Note that the second condition (1-19) is a stronger condition than we would like: it is the L p inequality,
applied to functions bounded by 1 and supported on a cube Q, but with the L p(σ ) norm of 1Q on the
right side. It is easy to see that the bounded function g in (1-19) can be replaced by χE for every compact
subset E of Q. Indeed if L ranges over all linearizations of T\, then with

gh,Q,L = L∗(χQhω)/|L∗(χQhω)|
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we have

sup
|g|≤1

∫
Q

T\(χQgσ)pω = sup
|g|≤1

sup
L

sup
‖h‖

L p′ (ω)
≤1

∣∣∣∫
Q

L(χQgσ)hω
∣∣∣

= sup
L

sup
‖h‖

L p′ (ω)
≤1

sup
|g|≤1

∣∣∣∫
Q

L∗(χQhω)gσ
∣∣∣

= sup
L

sup
‖h‖

L p′ (ω)
≤1

∫
Q

L∗(χQhω)gh,Q,Lσ

= sup
‖h‖

L p′ (ω)
≤1

sup
L

∫
Q

L(χQgh,Q,L)hωσ

≤ sup
‖h‖

L p′ (ω)
≤1

sup
L

∫
Q

T\(χQgh,Q,Lσ)
pω.

Since gh,Q,L takes on only the values ±1, it is easy to see that we can take g = χE . Point (3) is again
easy, just as in the previous weak-type theorem.

And in (4), we note that the truncations, in the way that we formulate them, dominate the maximal
function, so that our assumption on M in (1)–(3) is not unreasonable. The main result of [Nazarov et al.
2010] assumes p = 2 and that T is the Hilbert transform, and makes similar kinds of assumptions. In
fact it is essentially the same as our result in the case p = 2, but without doubling on σ and only for T
and not T[ or T\. Finally, we observe that by our definition of the truncation T\, we obtain in point (4) a
characterization for doubling measures of the strong-type inequality for appropriate families of standard
singular integrals and their adjoints, including the Hilbert and Riesz transforms; see Lemma 2.12.

We don’t know if the bounded function g in condition (1-19) can be replaced by the constant function 1.
We now give a characterization of the strong-type weighted norm inequality for the individual strongly

maximal Hilbert transform T\ when 1< p<∞ and the measure σ is doubling. If p> 2 we use an extra
necessary condition (see (1-24)) that involves a “dyadic” Poisson function

∑
∞

`=0(2
−`/|I (`)|)χI (`)(y),

where I is a dyadic interval and I (`) denotes its `-th ancestor in the dyadic grid, that is, the unique
dyadic interval containing I with |I (`)| = 2`|I |. This condition is a variant of the pivotal condition of
Nazarov, Treil and Volberg in [2010]; when 1< p ≤ 2 it is a consequence of the Ap condition (1-8).

Theorem 1.10. Suppose that σ and ω are positive locally finite Borel measures on R with σ doubling ,
let 1< p <∞, and let T\ be the strongly maximal Hilbert transform. Then T\ is strong type (p, p) with
respect to (σ, ω), that is,

‖T\( f σ)‖L p(ω) ≤ C‖ f ‖L p(σ ),

for all f bounded with compact support if and only if the following four conditions hold. In the case
1 < p ≤ 2, the fourth condition (1-24) is implied by the Ap condition (1-8), and so in this case we only
need the first three conditions below:
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(1) The dual T\ interval testing condition∫
Q

T\(χQ f σ) dω ≤ C
(∫

Q
| f |p dσ

)1/p(∫
Q

dω
)1/p′

(1-21)

holds for all intervals Q and f ∈ L p
Q(σ ).

(2) The forward T\ testing condition∫
Q

T\(χEσ)
p dω ≤ C

∫
Q

dσ (1-22)

holds for all intervals Q and all compact subsets E of Q.

(3) The strengthened Ap condition(∫
R

(
|Q|

|Q| + |x − xQ|

)p
dω(x)

)1/p(∫
R

(
|Q|

|Q| + |x − xQ |

)p′

dσ(x)
)1/p′

≤ C |Q| (1-23)

holds for all intervals Q.

(4) The Poisson condition∫
R

( ∞∑
r=1

|Ir |σ |Ir |
p′−1

∞∑
`=0

2−`

|(Ir )(`)|
χ(Ir )(`)

(y)
)p

dω(y)≤ C
∞∑

r=1

|Ir |σ |Ir |
p′ (1-24)

holds for all pairwise disjoint decompositions Q =
⋃
∞

r=1 Ir of the dyadic interval Q into dyadic
intervals Ir , for any fixed dyadic grid.

Remark 1.11. The strengthened Ap condition (1-23) can be replaced with the weaker “half” condition
where the first factor on the left is replaced by (

∫
Q dω)1/p. We do not know if the first three conditions

suffice when p > 2.

2. Overview of the proofs and general principles

If Q is a cube, then `(Q) is its side length, |Q| is its Lebesgue measure and for a positive Borel measure ν,
|Q|ν =

∫
Q dν is its ν-measure.

2.1. Calderón–Zygmund decompositions. Our starting place is the argument in [Sawyer 1988] used to
prove a two weight norm inequality for fractional integral operators on Euclidean space. Of course the
fractional integral is a positive operator with a monotone kernel, properties we do not have in the current
setting.

A central tool arises from the observation that for any positive Borel measure µ, one has the bound-
edness of a maximal function associated with µ. Define the dyadic µ-maximal operator M

dy
µ by

Mdy
µ f (x)= sup

Q∈D
x∈Q

1
|Q|µ

∫
Q
| f |µ, (2-1)
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with the supremum taken over all dyadic cubes Q ∈ D containing x . It is immediate to check that M
dy
µ

satisfies the weak-type (1, 1) inequality, and the L∞(µ) bound is obvious. Hence we have∫
(Mdy

µ f )pµ≤ C
∫

f pµ for f ≥ 0 on Rn. (2-2)

This observation places certain Calderón–Zygmund decompositions at our disposal. Exploitation of this
brings in the testing condition (1-19) involving the bounded function g on a cube Q, and indeed, g turns
out to be the “good” function in a Calderón–Zygmund decomposition of f on Q. The associated “bad”
function requires the dual testing condition (1-14) as well.

2.2. Edge effects of dyadic grids. Our operators are not dyadic operators, nor — in contrast to the frac-
tional integral operators — can they be easily obtained from dyadic operators. This leads to the necessity
of considering for instance triples of dyadic cubes, which are not dyadic.

Also, dyadic grids distinguish points by for instance making some points on the boundary of many
cubes. As our measures are arbitrary, they could conspire to assign extra mass to some of these points.
To address this point, Nazarov, Treil and Volberg [2010; 2003; 1997] use a random shift of the grid.

A random approach would likely work for us as well, though the argument would be different from
those in the cited papers above. Instead, we will use a nonrandom technique of shifted dyadic grid from
[Muscalu et al. 2002], which goes back to P. Jones and J. Garnett. Define a shifted dyadic grid to be the
collection of cubes

Dα
=
{
2 j (k+ [0, 1)n + (−1) jα) : j ∈ Z, k ∈ Zn}, where α ∈ {0, 1

3 ,
2
3}

n. (2-3)

The basic properties of these collections are these: In the first place, each Dα is a grid, that is, for
Q, Q′ ∈ Dα we have Q ∩ Q′ ∈ {∅, Q, Q′} and Q is a union of 2n elements of Dα of equal volume. In
the second place (and this is the novel property for us), for any cube Q ⊂ Rn there is a choice of some
α and some Q′ ∈ Dα such that Q ⊂ (9/10)Q′ and |Q′| ≤ C |Q|.

We define the analogues of the dyadic maximal operator in (2-1), namely

Mα
µ f (x)= sup

Q∈Dα

x∈Q

1
|Q|µ

∫
Q
| f |µ. (2-4)

These operators clearly satisfy (2-2). Shifted dyadic grids will return in Section 4.5.

2.3. A maximum principle. A second central tool is a “maximum principle” (or good λ inequality) that
will permit one to localize large values of a singular integral, provided the maximal function is bounded.
It is convenient for us to describe this in conjunction with another fundamental tool of this paper, a family
of Whitney decompositions.

We begin with the Whitney decompositions. Fix a finite measure ν with compact support on Rn and
for k ∈ Z, let

�k = {x ∈ Rn
: T\ν(x) > 2k

}. (2-5)
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Note that �k 6= Rn has compact closure for such ν. Fix an integer N ≥ 3. We can choose RW ≥ 3
sufficiently large, depending only on the dimension and N , such that there is a collection of cubes {Qk

j } j

that satisfy the following properties:

(disjoint cover) �k =
⋃

j Qk
j and Qk

j ∩ Qk
i =∅ if i 6= j,

(Whitney condition) RW Qk
j ⊂�k and 3RW Qk

j ∩�
c
k 6=∅ for all k, j,

(bounded overlap)
∑

j χN Qk
j
≤ Cχ�k for all k,

(crowd control) #{Qk
s : Q

k
s ∩ N Qk

j 6=∅} ≤ C for all k, j,

(nested property) Qk
j & Q`

i implies k > `.

(2-6)

Indeed, one should choose the {Qk
j } j satisfying the Whitney condition, and then show that the other

properties hold. The different combinatorial properties above are fundamental to the proof. And alternate
Whitney decompositions are constructed in Section 4.9.1 below.

Remark 2.4. Our use of the Whitney decomposition and the maximum principle are derived from the
two weight fractional integral argument of Sawyer; see [1988, Section 2]. In particular, the properties
above are as Sawyer’s, aside from the crowd control property above, which is N = 3 there.

Remark 2.5. In our notation for the Whitney cubes, the superscript indicates a “height” and the sub-
script an arbitrary enumeration of the cubes. We will use super- and subscripts below in this manner
consistently throughout the paper. It is important to note that a fixed cube Q can arise in many Whitney
decompositions: There are integers K−(Q) ≤ K+(Q) with Q = Qk

j (k) for some choice of j (k) for all
K−(Q) ≤ k ≤ K+(Q). (The last point follows from the nested property.) There is no a priori upper
bound on K+(Q)− K−(Q).

Lemma 2.6 (maximum principle). Let ν be a finite (signed) measure with compact support. For any
cube Qk

j as above, we have the pointwise inequality

sup
x∈Qk

j

T\(χ(3Qk
j )

cν)(x)≤ 2k
+C P(Qk

j , ν)≤ 2k
+C M(Qk

j , ν), (2-7)

where P(Q, ν) and M(Q, ν) are defined by

P(Q, ν)≡ 1
|Q|

∫
Q

d|ν| +
∞∑
`=0

δ(2−`)
|2`+1 Q|

∫
2`+1 Q\2`Q

d|ν|,

M(Q, ν)≡ sup
Q′⊃Q

1
|Q ′ |

∫
Q′

d|ν|.

(2-8)

The bound in terms of P(Q, ν) should be regarded as one in terms of a modified Poisson integral. It
is both slightly sharper than that of M(Q, ν), and a linear expression in |ν|, a fact will be used in the
proof of the strong-type estimates.
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Proof. To see this, take x ∈Qk
j and note that for each η>0 there is ε with `(Qk

j )<max1≤ j≤n ε j < R<∞
and θ ∈ [0, 2π) such that

T\(χ(3Qk
j )

cν)(x)≤ (1+ η)
∣∣∣∫
(3Qk

j )
c

K (x, y)ζε(x − y)ηR(x − y)dν(y)
∣∣∣

= (1+ η)eiθTε,R(χ(3Qk
j )

cν)(x).

For convenience we take η = 0 in the sequel. By the Whitney condition in (2-6), there is a point
z ∈ 3RW Qk

j ∩�
c
k and it now follows that (remember that `(Qk

j ) <max1≤ j≤n ε j )

|Tε,R(χ(3Qk
j )

cν)(x)− Tε,Rν(z)|

≤ C 1
|6RW Qk

j |

∫
6RW Qk

j

d|ν| + |Tε,R(χ(6RW Qk
j )

cν)(x)− Tε,R(χ(6RW Qk
j )

cν)(z)|

= C 1
|6RW Qk

j |

∫
6RW Qk

j

d|ν|

+

∫
(6RW Qk

j )
c
|K (x, y)ζε(x − y)ηR(x − y)− K (z, y)ζε(z− y)ηR(z− y)|d|ν|(y)

≤ C 1
|6RW Qk

j |

∫
6RW Qk

j

d|ν| +C
∫
(6RW Qk

j )
c
δ(
|x − z|
|x − y|

)
1

|x−y|n
d|ν|(y)

≤ C P(Qk
j , ν).

Thus

T\(χ(3Qk
j )

cν)(x)≤ |T\ν(z)| +C P(Qk
j , ν)≤ 2k

+C P(Qk
j , ν),

which yields (2-7) since P(Q, ν)≤ C M(Q, ν). �

2.7. Linearizations. We now make comments on the linearizations of our maximal singular integral
operators. We would like, at different points, to treat T\ as a linear operator, which of course it is
not. Nevertheless T\ is a pointwise supremum of the linear truncation operators Tε,R , and as such, the
supremum can be linearized with measurable selection of the parameters ε and R, as was just done in
the previous proof. We make this a definition.

Definition 2.8. We say that L is a linearization of T\ if there are measurable functions ε(x) ∈ (0,∞)n

and R(x) ∈ (0,∞) with 1/4≤ εi/ε j ≤ 4, max1≤i≤n εi < R(x) <∞ and θ(x) ∈ [0, 2π) such that

L f (x)= eiθ(x)Tε(x),R(x) f (x) for x ∈ Rn. (2-9)

For fixed f and δ > 0, we can always choose a linearization L so that T\ f (x) ≤ (1+ δ)L f (x) for
all x . In a typical application of this lemma, one takes δ to be one.

Note that condition (1-19) is obtained from inequality (1-18) by testing over f of the form f = χQg
with |g| ≤ 1, and then restricting integration on the left to Q. By passing to linearizations L , we can
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“dualize” (1-14) to the testing conditions∫
Q
|L∗(χQω)(x)|p

′

dσ(x)≤ C2

∫
Q

dω(x), (2-10)

or equivalently (note that in (1-19) the presence of g makes a difference, but not here),∫
Q
|L∗(χQgω)(x)|p

′

dσ(x)≤ C2

∫
Q

dω(x) for |g| ≤ 1, (2-11)

with the requirement that these inequalities hold uniformly in all linearizations L of T\.
While the smooth truncation operators Tε,R are essentially self-adjoint, the dual of a linearization L

is generally complicated. Nevertheless, the dual L∗ does satisfy one important property, which plays a
crucial role in the proof of Theorem 1.9, the L p-norm inequalities.

Lemma 2.9. L∗µ is δ-Hölder continuous (where δ is the Dini modulus of continuity of the kernel K )
with constant C P(Q, µ) on any cube Q satisfying

∫
3Q d|µ| = 0, that is,

|L∗µ(y)− L∗µ(y′)| ≤ C P(Q, µ)δ
(
|y− y′|
`(Q)

)
for y, y′ ∈ Q. (2-12)

Here, recall the definition (2-8) and that P(Q, µ)≤ C M(Q, µ).

Proof. Suppose L is as in (2-9). Then for any finite measure ν,

Lν(x)= eiθ(x)
∫
ζε(x)(x − y)ηR(x)(x − y)K (x, y)dν(y).

Fubini’s theorem shows that the dual operator L∗ is given on a finite measure µ by

L∗µ(y)=
∫
ζε(x)(x − y)ηR(x)(x − y)K (x, y)eiθ(x)dµ(x). (2-13)

For y, y′ ∈ Q and |µ|(3Q)= 0, we thus have

L∗µ(y)− L∗µ(y′)=
∫
{(ζε(x)ηR(x))(x − y)− (ζε(x)ηR(x))(x − y′)}K (x, y)eiθ(x)dµ(x)

+

∫
(ζε(x)ηR(x))(x − y′)(K (x, y)− K (x, y′))eiθ(x)dµ(x),

from which (2-12) follows easily if we split the two integrals in x over dyadic annuli centered at the
center of Q. �

2.10. Control of maximal functions. Next we record the facts that T and T\ control M for many (sets
of) standard singular integrals T , including the Hilbert transform, the Beurling transform and the sets of
Riesz transforms in higher dimensions.

Lemma 2.11. Suppose that σ and ω have no point masses in common, and that {K j }
J
j=1 is a collection

of standard kernels satisfying (1-9) and (1-16). If the corresponding operators T j given by (1-12) satisfy

‖χE T j ( f σ)‖L p,∞(ω) ≤ C‖ f ‖L p(σ ) where E = Rn
\ supp f,
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for 1 ≤ j ≤ J , then the two weight Ap condition (1-8) holds, and hence also the weak-type two weight
inequality (1-7).

Proof. Part of the “one weight” argument of [Stein and Shakarchi 2005, page 21] yields the asymmetric
two weight Ap condition

|Q|ω|Q′|p−1
σ ≤ C |Q|p, (2-14)

where Q and Q′ are cubes of equal side length r and distance approximately C0r apart for some fixed
large positive constant C0 (for this argument we choose the unit vector u in (1-16) to point in the direction
from the center of Q to the center of Q′, and then with j as in (1-16), C0 is chosen large enough by (1-9)
that (1-16) holds for all unit vectors u pointing from a point in Q to a point in Q′). In the one weight
case treated in [Stein and Shakarchi 2005], it is easy to obtain from this (even for a single direction u)
the usual (symmetric) Ap condition (1-8). Here we will instead use our assumption that σ and ω have
no point masses in common for this purpose.

So fix an open dyadic cube Q0 in Rn , say with side length 1, let Q0 = Q0× Q0 and set

�= {Q= Q× Q′ dyadic : Q⊂ Q0 and (2-14) holds for Q and Q′}.

Note that with Q= Q× Q′, inequality (2-14) can be written

Ap(ω, σ ;Q)≤ C |Q|p/2, (2-15)

where

Ap(ω, σ ;Q)= |Q|ω|Q′|p−1
σ .

Here A2(ω, σ ;Q)=|Q|ω×σ , where ω×σ denotes product measure on Rn
×Rn . For 1< p<∞we easily

see that if Q0 =
⋃
α Qα is a pairwise disjoint union of cubes Qα, then the Lebesgue measures satisfy∑

α

|Qα|
p/2
≤ C |Q0× Q0|

p/2
= C |Q0|

p.

Suppose first that 1 < p ≤ 2. Divide Q0 into 2n
× 2n
= 4n congruent subcubes Q1

0, . . . ,Q
4n

0 of side
length 1

2 , and set aside those Q
j
0 ∈� (those for which (2-14) holds) into a collection of stopping cubes 0.

Continue to divide the remaining Q
j
0 into 4n congruent subcubes Q

j,1
0 , . . . ,Q

j,4n

0 of side length 1
4 , and

again, set aside those Q
j,i
0 ∈ � into 0, and continue subdividing those that remain. We continue with

such subdivisions for N generations so that all the cubes not set aside into 0 have side length 2−N . The
important property these cubes have is that they all lie within distance r2−N of the diagonal D={(x, x) :
(x, x) ∈ Q0} in Q0 = Q0× Q0 since (2-14) holds for all pairs of cubes Q and Q′ of equal side length r
having distance approximately C0r apart. Enumerate the cubes in 0 as {Qα}α and those remaining that
are not in 0 as {Pβ}β . Thus we have the pairwise disjoint decomposition

Q0 =

(⋃
α

Qα

)
∪

(⋃
β

Qβ

)
.
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In the case p = 2, the countable additivity of the product measure ω× σ shows that

A2(ω, σ ;Q0)=
∑
α

A2(ω, σ ;Qα)+
∑
β

A2(ω, σ ;Pβ).

For the more general case 1 < p ≤ 2, note that at each division described above, we have using 0 <
p− 1≤ 1

Ap(ω, σ ;Q0)=
( 2n∑

i=1

|Q
j
0|ω

)( 2n∑
i=1

|Q
j
0|σ

)p−1
≤

( 2n∑
i=1

|Q
j
0|ω

)( 2n∑
i=1

|Q
j
0|

p−1
σ

)
=

4n∑
j=1

Ap(ω, σ ;Q
j
0),

Ap(ω, σ ;Q
j
0)≤

4n∑
i=1

Ap(ω, σ ;Q
j,i
0 ) for Q

j
0 /∈ 0,

and so on. It follows that

Ap(ω, σ ;Q0)≤
∑
α

Ap(ω, σ ;Qα)+
∑
β

Ap(ω, σ ;Pβ)

≤ C
∑
α

|Qα|
p/2
+

∑
β

Ap(ω, σ ;Pβ)≤ C |Q0|
p
+

∑
β

Ap(ω, σ ;Pβ).

Since ω and σ have no point masses in common, it is not hard to show, using that the side length of
Pβ = Pβ × P ′β is 2−N and dist(Pβ,D)≤ C2−N , that we have the limit∑

β

Ap(ω, σ ;Pβ)→ 0 as N →∞.

Indeed, if σ has no point masses at all, then∑
β

Ap(ω, σ ;Pβ)=
∑
β

|Pβ |ω|P ′β |
p−1
σ

≤

(∑
β

|Pβ |ω
)

sup
β

|P ′β |
p−1
σ ≤ C |Q0|ω sup

β

|P ′β |
p−1
σ → 0 as N →∞.

If σ contains a point mass cδx , then∑
β:x∈P ′β

Ap(ω, σ ;Pβ)≤
( ∑
β:x∈P ′β

|Pβ |ω
)

sup
β:x∈P ′β

|P ′β |
p−1
σ ≤ C

( ∑
β:x∈P ′β

|Pβ |ω
)
→ 0 as N →∞

since ω has no point mass at x . The argument in the general case is technical, but involves no new ideas,
and we leave it to the reader. We thus conclude that

Ap(ω, σ ;Q0)≤ C |Q0|
p,

which is (1-8). The case 2≤ p <∞ is proved in the same way using that (2-14) can be written

Ap′(σ, ω;Qα)≤ C ′|Qα|p
′/2. �
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Lemma 2.12. If {T j }
n
j=1 satisfies (1-20), then

Mν(x)≤ C
n∑

j=1

(T j )\ν(x) for x ∈ Rn , with ν ≥ 0 a finite measure with compact support.

Proof. We prove the case n = 1, the general case being similar. Then with T = T1 and r > 0 we have

Re(Tr,r/4,100rν(x)− Tr,4r,100rν(x))=
∫
(ζr/4(y− x)− ζ4r (y− x))Re K (x, y)dν(y)

≥
c
r

∫
[x+r/2,x+2r ]

dν(y).

Thus

T\ν(x)≥max{|Tr,r/4,100rν(x)|, |Tr,4r,100rν(x)|} ≥
c
r

∫
[x+r/2,x+2r ]

dν(y),

and similarly

T\ν(x)≥
c
r

∫
[x−2r,x−r/2]

dν(y).

It follows that

Mν(x)≤ sup
r>0

1
4r

∫
[x−2r,x+2r ]

dν(y)

= sup
r>0

∞∑
k=0

2−k 1
22−kr

∫
[x−21−kr,x−2−1−kr ]∪[x+2−1−kr,x+21−kr ]

dν(y)≤ CT\ν(x). �

Finally, we will use the following covering lemma of Besicovitch type for multiples of dyadic cubes
(the case of triples of dyadic cubes arises in (4-50) below).

Lemma 2.13. Let M be an odd positive integer, and suppose that 8 is a collection of cubes P with
bounded diameters and having the form P = M Q, where Q is dyadic (a product of clopen dyadic
intervals). If 8∗ is the collection of maximal cubes in 8, that is, P∗ ∈ 8∗ provided there is no strictly
larger P in 8 that contains P∗, then the cubes in 8∗ have finite overlap at most Mn .

Proof. Let Q0 = [0, 1)n and assign labels 1, 2, 3, . . . ,Mn to the dyadic subcubes of side length one of
M Q0. We say that the subcube labeled k is of type k, and we extend this definition by translation and
dilation to the subcubes of M Q having side length that of Q. Now we simply observe that if {P∗i }i is a
set of cubes in 8∗ containing the point x , then for a given k, there is at most one P∗i that contains x in
its subcube of type k. The reason is that if P∗j is another such cube and `(P∗j ) ≤ `(P

∗

i ), we must have
P∗j ⊂ P∗i (draw a picture in the plane for example). �

2.14. Preliminary precaution. Given a positive locally finite Borel measure µ on Rn , there exists a
rotation such that all boundaries of rotated dyadic cubes have µ-measure zero (see [Mateu et al. 2000]
where they actually prove a stronger assertion when µ has no point masses, but our conclusion is obvious
for a sum of point mass measures). We will assume that such a rotation has been made so that all
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boundaries of rotated dyadic cubes have (ω+ σ)-measure zero, where ω and σ are the positive Borel
measures appearing in the theorems above (of course σ doubling implies that σ cannot contain any
point masses, but this argument works as well for general σ as in the weak type theorem). While this
assumption is not essential for the proof, it relieves the reader of having to consider the possibility that
boundaries of dyadic cubes have positive measure at each step of the argument below.

Recall also (see for example [Rudin 1987, Theorem 2.18]) that any positive locally finite Borel measure
on Rn is both inner and outer regular.

3. The proof of Theorem 1.8: Weak-type inequalities

We begin with the necessity of condition (1-14):∫
Q

T\(χQ f σ)ω =
∫
∞

0
min

{
|Q|ω, |{T\(χQ f σ) > λ}|ω

}
dλ

≤

(∫ A

0
+

∫
∞

A

)
min

{
|Q|ω,Cλ−p

∫
| f |p dσ

}
dλ

≤ A|Q|ω+C A1−p
∫
| f |p dσ = (C + 1)|Q|1/p′

ω

(∫
| f |p dσ

)1/p
,

if we choose A = (
∫
| f |p dσ/|Q|ω)1/p.

Now we turn to proving (1-13), assuming both (1-14) and (1-7), and moreover that f is bounded with
compact support. We will prove the quantitative estimate

‖T\ f σ‖L p,∞(ω) ≤ C{A+T∗}‖ f ‖L p(σ ), (3-1)

A= sup
Q

sup
‖ f ‖L p (σ )=1

sup
λ>0

λ|{M( f σ) > λ}|1/p
ω , (3-2)

T∗ = sup
‖ f ‖L p (σ )=1

sup
Q
|Q|−1/p′

ω

∫
Q

T\(χQ f σ)(x) dω(x). (3-3)

We should emphasize that the term (3-2) is comparable to the two weight Ap condition (1-8).
Standard considerations [Sawyer 1984, Section 2] show that it suffices to prove the following good-λ

inequality: There is a positive constant C such that for β > 0 sufficiently small, and provided

sup
0<λ<3

λp
|{x ∈ Rn

: T\ f σ(x) > λ}|ω <∞ for 3<∞, (3-4)

we have this inequality:

|{x ∈ Rn
: T\ f σ(x) > 2λ and M f σ(x)≤ βλ}|ω

≤ CβTp
∗
|{x ∈ Rn

: T\ f σ(x) > λ}|ω+Cβ−pλ−p
∫
| f |p dσ. (3-5)

Our presumption (3-4) holds due to the Ap condition (1-8) and the fact that

{x ∈ Rn
: T\ f σ(x) > λ} ⊂ B(0, cλ−1/n) for λ > 0 small,
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Hence it is enough to prove (3-5).
To prove (3-5) we choose λ= 2k and apply the decomposition in (2-6). In this argument, we can take

k to be fixed, so that we can suppress its appearance as a superscript in this section. (When we come to
L p estimates, we will not have this luxury.)

Define

E j = {x ∈ Q j : T\ f σ(x) > 2λ and M f σ(x)≤ βλ}.

Then for x ∈ E j , we can apply Lemma 2.6 to deduce

T\(χ(3Q j )c f σ)(x)≤ (1+Cβ)λ. (3-6)

If we take β > 0 so small that 1+Cβ ≤ 3
2 , then (3-6) implies that for x ∈ E j

2λ < T\ f σ(x)≤ T\χ3Q j f σ(x)+ T\χ(3Q j )c f σ(x)≤ T\χ3Qk
j

f σ(x)+ 3
2λ.

Integrating this inequality with respect to ω over E j we obtain

λ|E j |ω ≤ 2
∫

E j

(T\χ3Q j f σ)ω. (3-7)

The disjoint cover condition in (2-6) shows that the sets E j are disjoint, and this suggests we should
sum their ω-measures. We split this sum into two parts, according to the size of |E j |ω/|3Q j |ω. The left
side of (3-5) satisfies∑

j

|E j |ω ≤ β
∑

j :|E j |ω≤β|3Q j |ω

|3Q j |ω+β
−p

∑
j :|E j |ω>β|3Q j |ω

|E j |ω

(2
λ

1
|3Q j |ω

∫
E j

(T\χ3Q j f σ)ω
)p
.

Call the added pieces of this I and II. Now

I ≤ β
∑

j

|3Qk
j |ω ≤ Cβ|�|ω,

by the finite overlap condition in (2-6). From (1-14) with Q = 3Q j we have

II ≤
( 2
βλ

)p ∑
j

|E j |ω

( 1
|3Q j |ω

∫
Ek

j

(T\χ3Q j f σ)ω
)p

≤ C
( 2
βλ

)p
Tp
∗

∑
j

|E j |ω
1

|3Q j |
p
ω

|3Q j |
p−1
ω

∫
3Q j

| f |p dσ

≤ C
( 2
βλ

)p
Tp
∗

∫ (∑
j

χ3Qk
j

)
| f |p dσ ≤ C

( 2
βλ

)p
Tp
∗

∫
| f |p dσ,

by the finite overlap condition in (2-6) again. This completes the proof of the good-λ inequality (3-5).
The proof of assertion 2 regarding T[ is similar. Assertion 3 was discussed earlier and assertion 4

follows readily from assertion 2 and Lemma 2.11. �
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4. The proof of Theorem 1.9: Strong-type inequalities

Since conditions (1-19) and (1-14) are obviously necessary for (1-18), we turn to proving the weighted
inequality (1-18) for the strongly maximal singular integral T\.

4.1. The quantitative estimate. In particular, we will prove

‖T\ f σ‖L p(ω) ≤ C
(
M+ γ 2M∗+ γ

2T+T∗
)
‖ f ‖L p(σ ), (4-1)

M= sup
‖ f ‖L p (σ )=1

‖M( f σ)‖L p(ω), (4-2)

M∗ = sup
‖g‖

L p′ (ω)
=1
‖M(gω)‖L p′ (σ ), (4-3)

T= sup
Q

sup
‖ f ‖L∞≤1

|Q|−1/p
σ ‖χQ T\(χQ f σ)‖L p(ω), (4-4)

T∗ = sup
‖ f ‖L p (σ )=1

sup
Q
|Q|−1/p′

ω

∫
Q

T\(χQ f σ)(x) dω(x), (4-5)

where γ ≥ 2 is a doubling constant for the measure σ ; see (4-19) below. Note that γ appears only in
conjunction with T and M∗. The norm estimates on the maximal function (4-2) and (4-3) are equivalent
to the testing conditions in (1-6) and its dual formulation. The term T∗ also appeared in (3-3).

4.2. The initial construction. We suppose that both (1-19) and (1-14) hold, that is, (4-4) and (4-5) are
finite, and that f is bounded with compact support on Rn . Moreover, in the case (1-20) holds, we see
that (1-19) (the finiteness of (4-4)) implies (1-6) by Lemma 2.12, and so by Theorem 1.2 we may also
assume that the maximal operator M satisfies the two weight norm inequality (1-5). It now follows that∫
(T\ f σ)pω < ∞ for f bounded with compact support. Indeed, T\ f σ ≤ CM f σ far away from the

support of f , while T\ f σ is controlled by the finiteness of the testing condition (4-4) near the support
of f .

Let {Qk
j } be the cubes as in (2-5) and (2-6), with the measure ν that appears in there being ν = f σ .

We will use Lemma 2.6 with this choice of ν as well. Now define an “exceptional set” associated to Qk
j

to be
Ek

j = Qk
j ∩ (�k+1 \�k+2).

See Figure 4.1. One might anticipate the definition of the exceptional set to be more simply Qk
j ∩�k+1.

We are guided to this choice by the work on fractional integrals [Sawyer 1988]. And indeed, the choice
of exceptional set above enters in a decisive way in the analysis of the bad function at the end of the
proof.

We estimate the left side of (1-18) in terms of this family of dyadic cubes {Qk
j }k, j by∫

(T\ f σ)pω( dx)≤
∑
k∈Z

(2k+2)p
|�k+1 \�k+2|ω

≤

∑
k, j

(2k+2)p
|Ek

j |ω.

(4-6)
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�k

�k+1

�k+2

Qk
j

Ek
j

Figure 4.1. The set Ek
j (Q).

Choose a linearization L of T\ as in (2-9) so that (recall R(x) is the upper limit of truncation)

R(x)≤ 1
2`(Q

k
j ) for x ∈ Ek

j ,

and T\(χ3Qk
j

f σ)(x)≤ 2L(χ3Qk
j

f σ)(x)+C 1
|3Qk

j |

∫
3Qk

j

| f |σ for x ∈ Ek
j .

(4-7)

For x ∈ Ek
j , the maximum principle (2-7) yields

T\χ3Qk
j

f σ(x)≥ T\ f σ(x)− T\χ(3Qk
j )

c f σ(x) > 2k+1
− 2k
−C P(Qk

j , f σ)= 2k
−C P(Qk

j , f σ).

From (4-7) we conclude that

Lχ3Qk
j

f σ(x)≥ 2k−1
−C P(Qk

j , f σ).

Thus either 2k
≤ 4 infEk

j
Lχ3Qk

j
f σ or 2k

≤ 4C P(Qk
j , f σ)≤ 4C M(Qk

j , f σ). So we obtain either

|Ek
j |ω ≤ C2−k

∫
Ek

j

(Lχ3Qk
j

f σ)ω( dx), (4-8)

or

|Ek
j |ω ≤ C2−pk

|Ek
j |ωM(Qk

j , f σ)p
≤ C2−pk

∫
Ek

j

(M f σ)pω( dx). (4-9)

Now consider the following decomposition of the set of indices (k, j):

E= {(k, j) : |Ek
j |ω ≤ β|N Qk

j |ω},

F= {(k, j) : (4-9) holds},

G= {(k, j) : |Ek
j |ω > β|N Qk

j |ω and (4-8) holds}, (4-10)
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where 0< β < 1 will be chosen sufficiently small at the end of the argument. (It will be of the order of
cp for a small constant c.) By the “bounded overlap” condition of (2-6), we have∑

j

χN Qk
j
≤ C for k ∈ Z. (4-11)

We then have the corresponding decomposition:∫
(T\ f σ)pω ≤

( ∑
(k, j)∈E

+

∑
(k, j)∈F

+

∑
(k, j)∈G

)
(2k+2)p

|Ek
j |ω (4-12)

≤ β
∑
(k, j)∈E

(2k+2)p
|N Qk

j |ω+C
∑
(k, j)∈F

∫
Ek

j

(M f σ)pω

+C
∑

(k, j)∈G

|Ek
j |ω

( 1
β|N Qk

j |ω

∫
Ek

j

(Lχ3Qk
j

f σ)ω
)p

= J (1)+ J (2)+ J (3)

≤ C0

(
β

∫
(T\ f σ)pω+β−p

∫
| f |pσ

)
, (4-13)

where C0 ≤ C(M+ γ 2M∗+ γ
2T+T∗)

p. The last line is the claim that we take up in the remainder of
the proof. Once it is proved, note that if we take 0<C0β <

1
2 and use the fact that

∫
(T\ f σ)pω <∞ for

f bounded with compact support, we have proved assertion (1) of Theorem 1.9, and in particular (4-1).
The proof of the strong-type inequality requires a complicated series of decompositions of the domi-

nating sums, which are illustrated for the reader’s convenience as a schematic tree in Figure 4.2.

4.3. Two easy estimates. Note that the first term J (1) in (4-12) satisfies

J (1)= β
∑
(k, j)∈E

(2k+2)p
|N Qk

j |ω ≤ Cβ
∫
(T\ f σ)pω,

by the finite overlap condition (4-11). The second term J (2) is dominated by

C
∑
(k, j)∈F

∫
Ek

j

(M f σ)pω ≤ CMp
‖ f ‖p

L p(σ ),

by our assumption (1-5). It is useful to note that this is the only time in the proof that we use the maximal
function inequality (1-5) — from now on we use the dual maximal function inequality (1-17).

Remark 4.4. In the arguments below we can use [Sawyer 1988, Theorem 2] to replace the dual maximal
function assumption M∗ < ∞ with two assumptions, namely a “Poisson two weight Ap condition”
and the analogue of the dual pivotal condition of Nazarov, Treil and Volberg [2010]. The Poisson two
weight Ap condition is in fact necessary for the two weight inequality, but the pivotal conditions are
not necessary for the Hilbert transform two weight inequality [Lacey et al. 2011]. On the other hand,
the assumption M < ∞ cannot be weakened here, reflecting that our method requires the maximum
principle in Lemma 2.6.



24 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

∫
(T\ f σ)pω

J (3)

I

γ 2T

(4
-3

3)

II

II(1)

III

T∗

(4
-4

9)

IV

IV(1)

VI(1)

T∗

(4
-8

0)

VI(2)

M∗

(4-78)

IV(2)

IV(2)[a]

γ 2M∗
(4-

76
)

IV(2)[b]

V(1)

γ 2T∗

(4
-8

2)

V(2)

γ 2M∗

(4-71)

II(2)

γ 2M∗

(4-40)

J (2)

M

J (1)

absorb

Figure 4.2. This is a schematic tree of how the integral
∫
(T\ f σ)pω has been, and will

continue to be, decomposed. We have suppressed superscripts, subscripts and sums in
the tree. Terms in diamonds are further decomposed, while terms in rectangles are final
estimates. The edges leading into rectangles are labeled by M, M∗, I or I∗ whose
finiteness is used to control that term. Those terms controlled by the doubling constant
γ are also indicated. Equation references are to where the final estimates on the term
is obtained. The word “absorb” leading into J (1) indicates that this term is a small
multiple of

∫
(T\ f σ)pω and can be absorbed into the left-hand side of the inequality. As

most of the terms involve the maximal theorem (Equation (2-2)), we do not indicate its
use in the schematic tree.
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It is the third term J (3) that is the most involved; see Figure 4.2. The remainder of the proof is taken
up with the proof of∑

(k, j)∈G

Rk
j

∣∣∣∫
Ek

j

(Lχ3Qk
j

f σ)ω
∣∣∣p
≤ C{γ 2pMp

∗
+ γ 2pTp

+Tp
∗
}‖ f ‖p

L pσ( dx), (4-14)

where

Rk
j =
|Ek

j |ω

|N Qk
j |

p
ω

. (4-15)

Once this is done, the proof of (4-12) is complete, and the proof of assertion (1) is finished.

4.5. The Calderón–Zygmund decompositions. To carry out this proof, we make Calderón–Zygmund
decompositions relative to the measure σ . These decompositions will be done at all heights simultane-
ously. We will use the shifted dyadic grids; see (2-3). Suppose that γ ≥ 2 is a doubling constant for the
measure σ :

|3Q|σ ≤ γ |Q|σ for all cubes Q. (4-16)

For α ∈ {0, 1
3 ,

2
3}

n , let

Mα
σ f (x)= sup

x∈Q∈Dα

1
|Q|σ

∫
Q
| f | dσ,

0αt = {x ∈ R :Mα
σ f (x) > γ t

} =

⋃
s

Gα,t
s , (4-17)

where {Gα,t
s }(t,s)∈Lα are the maximal Dα cubes in 0αt , and Lα is the set of pairs we use to label the cubes.

This implies that we have the nested property: If Gα,t
s $ Gα,t ′

s′ then t > t ′. Moreover, if t > t ′ there
is some s ′ with Gα,t

s ⊂ Gα,t ′
s′ . These are the cubes used to make a Calderón–Zygmund decomposition

at height γ t for the grid Dα with respect to the measure σ . We will refer to the cubes {Gα,t
s }(t,s)∈Lα as

principal cubes.
Of course we have from the maximal inequality in (2-2)∑

(t,s)∈Lα

γ pt
|Gα,t

s |σ ≤ C‖ f ‖p
L p(σ ). (4-18)

The point of these next several definitions is to associate to each dyadic cube Q, a good shifted dyadic
grid, and an appropriate height, at which we will build our Calderón–Zygmund decomposition.

We now use a consequence of the doubling condition (4-16) for the measure σ , that

|P(G)|σ ≤ γ |G|σ for G ∈ Dα. (4-19)

The average |Gα,t
s |
−1
σ

∫
Gα,t

s
| f | dσ is thus at most γ t+1 by (4-19) and the maximality of the cubes in (4-17):

γ t <
1

|Gα,t
s |σ

∫
Gα,t1

s

| f | dσ ≤
|P(Gα,t

s )|σ

|Gα,t
s |σ

1
|P(Gα,t

s )|σ

∫
P(Gα,t

s )

| f | dσ ≤ γ γ t
= γ t+1. (4-20)
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Select a shifted grid: Let Eα :D−→{0, 1
3 ,

2
3}

n be a map such that for Q ∈D, there is a Q̂ ∈DEα(Q) such
that 3Q ⊂ Q̂ and |Q̂| ≤ C |Q|. Here, C is an appropriate constant depending only on dimension.
Thus, Eα(Q) picks a “good” shifted dyadic grid for Q. Moreover we will assume that Q̂ is the
smallest such cube. Note that we are discarding the extra requirement that 3Q ⊂ 9

10 Q̂ since this
property will not be used. Also we have

Q̂ ⊂ M Q, (4-21)

for some positive dimensional constant M . The cubes Q̂k
j will play a critical role below. See

Figure 4.3

Select a principal cube: Define A(Q) to be the smallest cube from the collection {G Eα(Q),ts | (t, s)∈Lα}

that contains 3Q; such A(Q) is uniquely determined by Q and the choice of function Eα. Define

Hα,t
s = {(k, j) :A(Qk

j )= Gα,t
s } for (s, t) ∈ Lα. (4-22)

This is an important definition for us. The combinatorial structure this places on the corresponding
cubes is essential for this proof to work. Note that 3Qk

j ⊂ Q̂k
j ⊂A(Qk

j ).

Parents: For any of the shifted dyadic grids Dα, a Q ∈Dα has a unique parent denoted as P(Q), the
smallest member of Dα that strictly contains Q. We suppress the dependence upon α here.

Indices: Let

Kα,t
s = {r | G

α,t+1
r ⊂ Gα,t

s }. (4-23)

We use a calligraphic font K for sets of indices related to the grid {Gα,t
s }, and a blackboard font H

for sets of indices related to the grid {Qk
j }.

The good and bad functions: Let AGα,t+1
r
= |Gα,t+1

r |
−1
σ

∫
Gα,t+1

r
f σ be the σ -average of f on Gα,t+1

r .
Define functions gα,ts and hα,ts satisfying f = gα,ts + hα,ts on Gα,t

s by

gα,ts (x)=
{

AGα,t+1
r

for x ∈ Gα,t+1
r with r ∈ Kα,t

s ,

f (x) for x ∈ Gα,t
s \

⋃
{Gα,t+1

r : r ∈ Kα,t
s },

(4-24)

hα,ts (x)=
{

f (x)− AGα,t+1
r

for x ∈ Gα,t+1
r with r ∈ Kα,t

s ,

0 for x ∈ Gα,t
s \

⋃
{Gα,t+1

r : r ∈ Kα,t
s }.

(4-25)

We extend both gα,ts and hα,ts to all of Rn by defining them to vanish outside Gα,t
s .

Now |AGα,t+1
r
| ≤ γ t+1 by (4-20). Thus Lebesgue’s differentiation theorem shows that (any of the

standard proofs can be adapted to the dyadic setting for positive locally finite Borel measures on Rn)

|gα,ts (x)| ≤ γ t+1 <
γ

|Gα,t
s |σ

∫
Gα,t

s

| f |σ for σ -a.e. x ∈ Gα,t
s and (t, s) ∈ Lα. (4-26)

That is, gα,ts is the “good” function and hα,ts is the “bad” function.
We can now refine the final sum on the left side of (4-14) according to the decomposition of Mα

σ f .
We carry this out in three steps. In the first step, we fix an α ∈ {0, 1

3 ,
2
3}

n , and for the remainder of the
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proof, we only consider Qk
j for which Eα(Qk

j )= α. Namely, we will modify the important definition of G

in (4-10) to
Gα
=
{
(k, j) : Eα(Qk

j )= α, |E
k
j |ω > β|N Qk

j |ω and (4-8) holds
}
, (4-27)

In the second step, we partition the indices (k, j) into the sets Hα,t
s in (4-22) for (t, s) ∈ Lα. In the third

step, for (k, j) ∈Hα,t
s , we split f into the corresponding good and bad parts, yielding the decomposition∑

(k, j)∈Gα

Rk
j

∣∣∣∫
Ek

j

(Lχ3Qk
j

f σ)ω
∣∣∣p
≤ C(I + II), (4-28)

I =
∑

(t,s)∈Lα

I t
s , II =

∑
(t,s)∈Lα

IIt
s, (4-29)

I t
s =

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣∫
Ek

j

(Lχ3Qk
j
gα,ts σ)ω

∣∣∣p
, (4-30)

IIt
s =

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣∫
Ek

j

(Lχ3Qk
j
hα,ts σ)ω

∣∣∣p
, (4-31)

Iα,ts = G∩Hα,t
s . (4-32)

Recall the definition of Rk
j in (4-15). In the definitions of I , I t

s and II, IIt
s , we will suppress the dependence

on α ∈ {0, 1
3 ,

2
3}

n . The same will be done for the subsequent decompositions of the (difficult) term II,
although we usually retain the superscript α in the quantities arising in the estimates. In particular, the
combinatorial properties of the cubes associated with Iα,ts are essential to completing this proof.

Term I requires only the forward testing condition (1-19) and the maximal theorem (2-2), while term
II requires only the dual testing condition (1-14), along with the dual maximal function inequality (1-17)
and the maximal theorem (2-2). The reader is again directed to Figure 4.2 for a map of the various
decompositions of the terms and the conditions used to control them.

4.6. The analysis of the good function. We claim that

I ≤ Cγ 2pTp
‖ f ‖p

L p(σ ). (4-33)

Proof. We use boundedness of the “good” function gα,ts , as defined in (4-24), the testing condition (1-19)
for T\ (see also (4-4)), and finally the universal maximal function bound (2-2) with µ= ω. Here are the
details. For x ∈ Ek

j , (4-7) implies that Lχ3Qk
j
gα,ts σ(x)= Lgα,ts σ(x) and so

I =
∑

(t,s)∈Lα

I t
s = C

∑
(t,s)∈Lα

∑
(k, j)∈Gα∩H

α,t
s

Rk
j

∣∣∣∫
Ek

j

(Lgα,ts σ)ω

∣∣∣p

≤ C
∑

(t,s)∈Lα

∫
|Mdy

ω (χGα,t
s

Lgα,ts σ)|pω ≤ C
∑

(t,s)∈Lα

∫
Gα,t

s

|Lgα,ts σ |pω

≤ Cγ 2p
∑

(t,s)∈Lα

γ pt
∫

Gα,t
s

(
T\

gα,ts

γ t+2σ
)p
ω ≤ Cγ 2pTp

∑
(t,s)∈Lα

γ pt
|Gα,t

s |σ ,
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where we have used (4-26) and (1-19) with g = gα,ts /γ t+2 in the final inequality. This last sum is
controlled by (4-18), and completes the proof of the claim. �

4.7. The analysis of the bad function: Part 1. It remains to estimate term II, as in (4-31), but this is in
fact the harder term. Recall the definition of Kα,t

s in (4-23). We now write

hα,ts =
∑

r∈Kα,t
s

( f − AGα,t+1
r

)χGα,t+1
r
≡

∑
r∈Kα,t

s

br , (4-34)

where the “bad” functions br are supported in the cube Gα,t+1
r and have σ -mean zero,

∫
Gα,t+1

r
brσ = 0.

To take advantage of this, we will pass to the dual L∗ below.
But first we must address the fact that the triples of the Dα cubes Gα,t+1

r do not form a grid. Fix
(t, s) ∈ Lα and let

Cα,ts = {3Gα,t+1
r : r ∈ Kα,t

s } (4-35)

be the collection of triples of the Dα cubes Gα,t+1
r with r ∈ Kα,t

s . We select the maximal triples

{3G t+1
r` }`∈Lα,t

s
≡ {T`}`∈Lα,t

s
(4-36)

from the collection Cα,ts , and assign to each r ∈ Kα,t
s , the maximal triple T` = T`(r) containing 3Gα,t+1

r

with least `. Note that T`(r) extends outside Gα,t
s if Gα,t+1

r and Gα,t
s share a face. By Lemma 2.13 applied

to Dα the maximal triples {T`}`∈Lα,t
s

have finite overlap 3n , and this will prove crucial in (4-49), (4-82)
and (4-50) below.

We will pass to the dual of the linearization.∫
Ek

j

(Lhα,ts σ)ω =
∑

r∈Kα,t
s

∫
Ek

j

(Lbrσ)ω =
∑

r∈Kα,t
s

∫
Gα,t+1

r ∩3Qk
j

(L∗χEk
j
ω)brσ (4-37)

Note that (4-7) implies L∗ν is supported in 3Qk
j if ν is supported in Ek

j , explaining the range of integration
above. Continuing, we have for fixed (k, j) ∈ Iα,ts ,

|(4-37)| ≤
∣∣∣ ∑
r∈Kα,t

s

∫
Gα,t+1

r ∩3Qk
j

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣+C
∑

r∈Kα,t
s

P(Gα,t+1
r , χEk

j \3Gα,t+1
r

ω)

∫
Gα,t+1

r

| f |σ. (4-38)

To see the inequality above, note that for r ∈Kα,t
s we are splitting the set Ek

j into Ek
j ∩T`(r) and Ek

j \T`(r).
On the latter set, the hypotheses of Lemma 2.9 are in force, namely the set Ek

j \ T`(r) does not intersect
3Gα,t+1

r , whence we have an estimate on the δ-Hölder modulus of continuity of L∗χEk
j
\ T`(r)ω. Combine

this with the fact that br has σ -mean zero on Gα,t+1
r to derive the estimate below, in which yt+1

r is the
center of the cube Gα,t+1

r .∣∣∣∫
Gα,t+1

r

(L∗χEk
j \T`(r)

ω)brσ

∣∣∣= ∣∣∣∫
Gα,t+1

r

(L∗χEk
j \T`(r)

ω(y)− L∗χEk
j \T`(r)

ω(yt+1
r ))(brσ)

∣∣∣
≤

∫
Gα,t+1

r ∩3Qk
j

C P(Gα,t+1
r , χEk

j \T`(r)
ω)δ

(
|y− yt+1

r |

`(Gα,t+1
r )

)
|br (y)| dσ(y)
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≤ C P(Gα,t+1
r , χEk

j \3Gα,t+1
r

ω)

∫
Gα,t+1

r

| f | dσ.

We have after application of (4-38),

IIt
s =

∑
(k, j)∈I

α,t
s

Rk
j

(∫
Ek

j

(Lhα,ts σ)ω
)p
≤ IIt

s(1)+ IIt
s(2),

where

IIt
s(1)=

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∫
Gα,t+1

r

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p
,

IIt
s(2)=

∑
(k, j)∈I

α,t
s

Rk
j

( ∑
r∈Kα,t

s

P(Gα,t+1
r , χEk

j
ω)

∫
Gα,t+1

r

| f |σ
)p
.

(4-39)

Note that we may further restrict the integration in (4-39) to Gα,t+1
r ∩ 3Qk

j since L∗χEk
j
∩ T`(r)ω is

supported in 3Qk
j .

4.7.1. Analysis of II(2). Recalling the definition of M∗ in (4-3), we claim that∑
(t,s)∈Lα

IIt
s(2)≤ Cγ 2pMp

∗

∫
| f |pσ. (4-40)

Proof. We begin by defining a linear operator by

Pk
j (µ)≡

∑
r∈Kα,t

s

P(Gα,t+1
r , χEk

j
µ)χGα,t+1

r
. (4-41)

In this notation, we have for (k, j) ∈ Iα,ts (see (4-22) and (4-31)),∑
r∈Kα,t

s

P
(
Gα,t+1

r , χEk
j
ω( dx)

) ∫
Gα,t+1

r

| f |σ =
∑

r∈Kα,t
s

P
(
Gα,t+1

r , χEk
j
ω
) ∫

Gα,t+1
r

σ
( 1
|Gα,t+1

r |σ

∫
Gα,t+1

r

| f |σ
)

≤ γ t+2
∫

Gα,t
s

Pk
j (ω)σ = γ

t+2
∫

Ek
j

(Pk
j )
∗(χGα,t

s
σ)ω.

By assumption, the maximal function M(ω·) maps L p′(ω) to L p′(σ ), and we now note a particular
consequence of this. In the definition (4-41) we were careful to insert χEk

j
on the right hand side. These

sets are pairwise disjoint, whence we have the inequality below for measures µ.

∑
(k, j)∈I

α,t
s

Pk
j (µ)(x)≤

∑
(k, j)∈I

α,t
s

∑
r∈Kα,t

s

∞∑
`=0

δ(2−`)

|2`Gα,t+1
r |

(∫
2`Gα,t+1

r

χEk
j
µ
)
χGα,t+1

r
(x)

≤

∞∑
`=0

∑
r∈Kα,t

s

δ(2−`)

|2`Gα,t+1
r |

(∫
2`Gα,t+1

r ∩Gα,t
s

µ
)
χGα,t+1

r
(x)≤ CχGα,t

s
M(χGα,t

s
µ)(x).

(4-42)
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Thus the inequality ∥∥∥χGα,t
s

∑
(k, j)∈I

α,t
s

Pk
j (|g|ω)

∥∥∥
L p′ (σ )

≤ CM∗‖χGα,t
s

g‖L p′ (ω) (4-43)

follows immediately. By duality we then have∥∥∥χGα,t
s

∑
(k, j)∈I

α,t
s

(Pk
j )
∗(|h|σ)

∥∥∥
L p(w)

≤ CM∗‖χGα,t
s

h‖L p(σ ). (4-44)

Note that it was the linearity that we wanted in (4-41), so that we could appeal to the dual maximal
function assumption.

We thus obtain

IIt
s(2)≤ γ

p(t+2)
∑

(k, j)∈I
α,t
s

Rk
j

(∫
Qk

j

(Pk
j )
∗(χGα,t

s
σ) dω

)p
.

Summing in (t, s) and using (Pk
j )
∗
≤
∑

(`,i)∈I
α,t
s
(P`i )

∗ for (k, j) ∈ Iα,ts , we obtain∑
(t,s)∈Lα

IIt
s(2)≤ Cγ 2p

∑
(t,s)∈Lα

γ pt
∑

(k, j)∈I
α,t
s

Rk
j

(∫
Qk

j

(Pk
j )
∗(χGα,t

s
σ) dω

)p
(4-45)

= Cγ 2p
∑

(t,s)∈Lα

γ pt
∑

(k, j)∈I
α,t
s

|Ek
j |ω

( 1
|N Qk

j |w

∫
Qk

j

(Pk
j )
∗(χGα,t

s
σ)ω

)p

≤ Cγ 2p
∑

(t,s)∈Lα

γ pt
∫ (

Mdy
ω (χGα,t

s

∑
(`,i)∈I

α,t
s

(P`i )
∗(χGα,t

s
σ))

)p
ω (4-46)

≤ Cγ 2p
∑

(t,s)∈Lα

γ pt
∫

Gα,t
s

( ∑
(`,i)∈I

α,t
s

(P`i )
∗(χGα,t

s
σ)
)p
ω (4-47)

≤ Cγ 2pMp
∗

∑
(t,s)∈Lα

γ pt
|Gα,t

s |σ ,

which is bounded by Cγ 2pM
p
∗

∫
| f |pσ . In the last line we are applying (4-44) with h ≡ 1. �

4.7.2. Decomposition of II(1). We note that the term IIt
s(1) is dominated by IIt

s(1)≤ IIIt
s + IV t

s , where

IIIt
s =

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∫
Gα,t+1

r \�k+2

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p
,

IV t
s =

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∫
Gα,t+1

r ∩�k+2

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p
. (4-48)

The term IIIt
s includes that part of br supported on Gα,t+1

r \�k+2, and the term IV t
s includes that part of

br supported on Gα,t+1
r ∩�k+2, which is the more delicate case.

Remark 4.8. The key difference between the terms IIIt
s and IV t

s is the range of integration: Gα,t+1
r \�k+2

for IIIt
s and Gα,t+1

r ∩�k+2 for IV t
s . Just as for the fractional integral case, it is the latter case that is harder,
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requiring combinatorial facts, which we come to at the end of the argument. An additional fact that we
return to in different forms is that the set Gα,t+1

r ∩ �k+2 can be further decomposed using Whitney
decompositions of �k+2 in the grid Dα.

Recall the definition of T∗ in (4-5). We claim∑
(t,s)∈Lα

IIIt
s ≤ CTp

∗

∫
| f |pσ. (4-49)

Proof. Let Ẽk
j = 3Qk

j \�k+2 (note that Ẽk
j is much larger than Ek

j ). We will use the definition of Rk
j in

(4-15), and the fact that ∑
`∈Lα,t

s

χT` ≤ 3n (4-50)

provided N ≥ 9. We will apply the form (2-11) of (1-14) with g = χEk
j∩T` — also see (4-5) — and with

Q ≡ T` ∩ Q̂k
j and Q ≡ T`

in the cases T` ∩ Q̂k
j is a cube and is not a cube, respectively (the latter is possible since T` is the triple

of a Dα-cube). In each case we claim that

Q ⊂ T` ∩ 3Q̂k
j .

Indeed, recall that Q̂k
j is the cube in the shifted grid Dα that is selected by Qk

j as in the definition “Select
a shifted grid” above and satisfies 3Q̂k

j ⊂ M Qk
j ⊂ N Qk

j , where N is as in Remark 2.4, by choosing RW

sufficiently large in (2-6). Now T` is a triple of a cube in the grid Dα and Q̂k
j is a cube in Dα. Thus if

T` ∩ Q̂k
j is not a cube, then we must have T` ⊂ 3Q̃k

j and this proves the claim. We then have

IIIt
s ≤

∑
(k, j)∈I

α,t
s

Rk
j

( ∑
`∈Lα,t

s

∑
r∈Kα,t

s :`=`(r)

∫
Gα,t+1

r ∩Ẽk
j

|L∗χEk
j∩T`(r)ω|

p′σ
)p−1

∫
Ẽk

j

|hα,ts |
pσ

≤

∑
(k, j)∈I

α,t
s

Rk
j

( ∑
`∈Lα,t

s

∫
T`∩3Q̂k

j

|L∗χEk
j∩T`ω|

p′σ
)p−1

∫
Ẽk

j

|hα,ts |
pσ

≤ Tp
∗

∑
(k, j)∈I

α,t
s

Rk
j

( ∑
`∈Lα,t

s

|T` ∩ 3Q̂k
j |ω

)p−1
∫

Ẽk
j

|hα,ts |
pσ

≤ Tp
∗

∑
(k, j)∈I

α,t
s

|Ek
j |ω

|N Qk
j |ω
|N Qk

j |
p−1
ω

∫
Ẽk

j

|hα,ts |
pσ

≤ CTp
∗

∑
(k, j)∈I

α,t
s

∫
Ẽk

j

|hα,ts |
pσ ≤ CTp

∗

∑
(k, j)∈Gα∩H

α,t
s

∫
Ẽk

j

(| f |p + |Mα
σ f |p)σ.

Using ∑
(t,s)∈Lα

∑
(k, j)∈Gα∩H

α,t
s

χẼk
j
=

∑
all k, j

χẼk
j
≤ C, (4-51)
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we thus obtain (4-49). �

4.9. The analysis of the bad function: Part 2. This is the most intricate and final case. We will prove∑
(t,s)∈Lα

IV t
s ≤ C(γ 2pTp

+Tp
∗
+ γ 2pMp

∗
)

∫
| f |pσ, (4-52)

where T, T∗ and M∗ are defined in (4-4), (4-5) and (4-3), respectively. The estimates (4-33), (4-40),
(4-49), (4-52) prove (4-12), and so complete the proof of assertion 1 of the strong-type characterization
in Theorem 1.9. Assertions 2 and 3 of Theorem 1.9 follow as in the weak-type Theorem 1.8. Finally,
to prove assertion 4 we note that Lemma 2.12 and condition (1-19) imply (1-6), which by Theorem 1.2
yields (1-5).

4.9.1. Whitney decompositions with shifted grids. We now use the shifted grid Dα in place of the dyadic
grid D to form a Whitney decomposition of �k in the spirit of (2-6). However, in order to fit the Dα-
cubes Q̂k

j defined above in “Select a shifted grid”, it will be necessary to use a smaller constant than the
constant RW already used for the Whitney decomposition of �k into D-cubes. Recall the dimensional
constant M defined in (4-21): it satisfies Q̂ ⊂ M Q. Define the new constant

R′W =
RW

M
.

We now use the decomposition of �k in (2-6), but with D replaced by Dα and with RW replaced by R′W .
We have thus decomposed

�k =
⊔
m

Bk
m

into a Whitney decomposition of pairwise disjoint cubes Bk
m in Dα satisfying

R′W Bk
m ⊂�k,

3R′W Bk
m ∩�

c
k 6=∅,

(4-53)

and the following analogue of the nested property in (2-6):

Bk
j & B`i implies k > `. (4-54)

Now we introduce yet another construction. For every pair (k, j) let Q̃k
j be the unique Dα-cube Bk

m

containing Q̂k
j . Note that such a cube Q̃k

j = Bk
m exists since Q̂k

j ⊂ M Qk
j by (4-21) and RW Qk

j ⊂�k by
(2-6) implies that R′W Q̂k

j ⊂�k . Of course the cube Q̃k
j = Bk

m satisfies

R′W Q̃k
j ⊂�k . (4-55)

Moreover, we can arrange to have

3Q̃k
j ⊂ N Qk

j , (4-56)

where N is as in Remark 2.4, by choosing RW sufficiently large in (2-6). See Figure 4.3.
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�k

Qk
j

Q̂k
j

Q̃k
j

Figure 4.3. The relative positions of the cubes Qk
j , Q̂k

j , and Q̃k
j inside a set �k .

We will use this decomposition for the set�k+2=tm Bk+2
m in our arguments below. The corresponding

cubes Q̃k+2
i that arise as certain of the Bk+2

m satisfy the conditions

3Qk+2
i ⊂ Q̂k+2

i ⊂ Q̃k+2
i ⊂ 3Q̃k+2

i ⊂ N Qk+2
i ⊂�k+2. (4-57)

Note that the set of indices m arising in the decomposition of �k+2 into Dα cubes Bk+2
m is not the same

as the set of indices i arising in the decomposition of �k+2 into D cubes Qk+2
i , but this should not cause

confusion. So we will usually write Bk+2
i with dummy index i unless it is important to distinguish the

cubes Bk
i + 2 from the cubes Qk+2

i . This distinction will be important in the proof of the “bounded
occurrence of cubes” property in Section 4.14.7 below.

Now use �k+2 =
⋃

Bk+2
i to split the term IV t

s in (4-48) into two pieces as follows:

IV t
s ≤

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈It

s

∫
Gα,t+1

r ∩Bk+2
i

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p

+

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s

∫
Gα,t+1

r ∩Bk+2
i

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p

= IV t
s(1)+ IV t

s(2),

(4-58)

where
It

s = {i : A
k+2
i > γ t+2

} and Jt
s = {i : A

k+2
i ≤ γ t+2

}, (4-59)

and where

Ak+2
i =

1
|Bk+2

i |σ

∫
Bk+2

i

| f | dσ (4-60)

denotes the σ -average of | f | on the cube Bk+2
i . Thus IV(1) corresponds to the case where the averages

are “big” and IV(2) where the averages are “small”. The analysis of IV t
s(1) in (4-58) is the hard case,

taken up later.
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4.9.2. A first combinatorial argument.

Lemma 4.10 (bounded occurrence of cubes). A given cube B ∈ Dα can occur only a bounded number
of times as Bk+2

i , where
Bk+2

i ⊂ Q̃k
j with (k, j) ∈ Gα.

Specifically, let (k1, j1), . . . , (kM , jM) ∈ Gα, as defined in (4-27), be such that B = Bkσ+2
iσ for some iσ

and B ⊂ Q̃kσ
jσ for 1 ≤ σ ≤ M. It follows that M ≤ Cβ−1, where β is the small constant chosen in the

definition of Gα. The constant C here depends only on dimension.

The Whitney structure (see (2-6)) is decisive here, as well as the fact that |Ek
j |ω ≥ β|N Qk

j |ω for
(k, j) ∈ Gα. For this proof it will be useful to use m to index the cubes Bk

m + 2 and to use i to index
the cubes Qk+2

i . The following lemma captures the main essence of the Whitney structure, and will be
applied to cubes Bk+2

m satisfying (4-53) and cubes Qk+2
i satisfying (2-6).

Lemma 4.11. Suppose that Q is a member of the Whitney decomposition of � with respect to the grid
D and with Whitney constant RW . Suppose also that a cube B is a member of a Whitney decomposition
of the same open set � but with respect to the grid Dα and with Whitney constant R′W . If N < 1

2 RW and
B ⊂ N Q, then the side lengths of Q and B are comparable:

`(Q)≈ `(B).

Proof of Lemma 4.11. Since N < 1
2 RW and Q is a Whitney cube we have

`(Q)≈ dist(Q, ∂�)≈ sup
x∈N Q

dist(x, ∂�)≈ inf
x∈N Q

dist(x, ∂�).

Then since B ⊂ N Q and B is a Whitney cube (for the other decomposition) we have

`(Q)≈ dist(B, ∂�)≈ `(B). �

Proof of Lemma 4.10. So suppose that (k1, j1), . . . , (kM , jM)∈Gα and B= Bkσ+2
iσ ⊂ Q̃kσ

jσ for 1≤ σ ≤M ,
with the pairs of indices (kσ , jσ ) being distinct. Observe that the finite overlap property in (2-6) applies
to the cubes Q̃kσ

jσ in the Whitney decomposition (4-53) of �kσ with grid Dα and Whitney constant R′W .
Thus for fixed k, the number of (kσ , jσ ) with kσ = k is bounded by the finite overlap constant since B is
inside each Q̃kσ

jσ . This gives us the observation that a single integer k can occur only a bounded number
Cb of times among the k1, . . . , kM .

After a relabeling, we can assume that all the kσ for 1≤ σ ≤M ′ are distinct, listed in increasing order,
and that the number M ′ of kσ satisfies M ≤ Cb M ′. The nested property of (2-6) assures us that B is an
element of the Whitney decomposition (4-53) of �k for all k1 ≤ k ≤ kM ′ .

Remark 4.12. Note that the kσ are not necessarily consecutive since we require that (kσ , jσ ) ∈ Gα.
Nevertheless, the cube B does occur among the Bk+2

i for any k that lies between kσ and kσ+1. These
latter occurrences of B may be unbounded, but we are only concerned with bounding those for which
(kσ , jσ ) ∈ Gα, and it is these occurrences that our argument is treating.
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Thus for 3 ≤ σ ≤ M ′, we have k1 ≤ kσ − 2 ≤ kM ′ , and it follows from Remark 4.12 that the cube
B is a member of the Whitney decomposition (4-53) of the open set �kσ with grid Dα and Whitney
constant R′W . But we also have that Qkσ

jσ is a member of the Whitney decomposition (2-6) of �kσ

with grid D and Whitney constant RW . Thus Lemma 4.11 gives us the equivalence of side lengths
`(Qkσ

jσ ) ≈ `(B). Combining this with the containment N Qkσ
jσ ⊃ B, we see that the number of possible

locations for the cubes Qkσ
jσ ∈ D is bounded by a constant C ′b depending only on dimension.

Apply the pigeonhole principle to the possible locations of the Qkσ
jσ . After a relabeling, we can ar-

gue under the assumption that all Qkσ
jσ equal the same cube Q′ for all choices of 1 ≤ σ ≤ M ′′, where

M ′≤C ′b M ′′. Now comes the crux of the argument where the condition that the indices (kσ , jσ ) lie in Gα,
as given in (4-27), proves critical. In particular we have |Ekσ

jσ |ω ≥ β|N Q′|ω where N is as in Remark 2.4.
The kσ are distinct, and the sets Ekσ

jσ ⊂ Q′ are pairwise disjoint; hence

M ′′β|N Q′|ω ≤
M ′′∑
σ=1

|Ekσ
jσ |ω ≤ |Q

′
|ω implies M ′′ ≤ β−1.

Thus M ≤ CbC ′bβ
−1 and our proof of the claim is complete. �

4.12.1. Replace bad functions by averages. The first task in the analysis of the terms IV t
s(1) and IV t

s(2)
will be to replace part of the “bad functions” br by their averages over Bk

i + 2, or more exactly the
averages Ak+2

i . We again appeal to the Hölder continuity of L∗χEk
j∩T`ω. By construction, 3Bk+2

i does
not meet Ek

j , so that Lemma 2.9 applies. If Bk+2
i ⊂ Gα,t+1

r for some r , then there is a constant ck+2
i

satisfying |ck+2
i | ≤ 1 such that∣∣∣∫

Bk+2
i

(L∗χEk
j∩T`(r)ω)brσ −

(
ck+2

i

∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)σ

)
(|Aα,t+1

r | +Ak+2
i )

∣∣∣
≤ C P(Bk+2

i , χEk
j∩T`(r)ω)

∫
Bk+2

i

|br |σ. (4-61)

Indeed, if zk+2
i is the center of the cube Bk+2

i , we have∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)brσ

= L∗(χEk
j∩T`(r)ω)(z

k+2
i )

∫
Bk+2

i

brσ + O
(

P(Bk+2
i , χEk

j∩T`(r)ω)

∫
Bk+2

i

|br |σ
)

=

(∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)σ

) 1
|Bk+2

i |σ

∫
Bk+2

i

brσ + O
(

P(Bk+2
i , χEk

j∩T`(r)ω)

∫
Bk+2

i

|br |σ
)
.

Now, the functions br are given in (4-34), and by construction, we note that

1
|Bk+2

i |σ

∣∣∣∫
Bk+2

i

brσ

∣∣∣≤ ∣∣∣ 1
|Gα,t+1

r |σ

∫
Gα,t+1

r

f σ
∣∣∣+ 1
|Bk+2

i |σ

∫
Bk+2

i

| f |σ = |Aα,t+1
r | +Ak+2

i .

So with

ck+2
i =

1
|Aα,t+1

r |+Ak+2
i

1
|Bk+2

i |σ

∫
Bk+2

i

brσ,
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we have |ck+2
i | ≤ 1 and∫

Bk+2
i

(L∗χEk
j∩T`(r)ω)brσ =

(
ck+2

i

∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)σ

)
(|Aα,t+1

r | +Ak+2
i )

+ O
(

P(Bk+2
i , χEk

j∩T`(r)ω)

∫
Bk+2

i

|br |σ
)
.

In the special case where Bk+2
i is equal to Gα,t+1

r , we have
∫

Bk+2
i

brσ =
∫

brσ = 0 and the proof above
shows that ∣∣∣∫

Gα,t+1
r

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣≤ C P(Gα,t+1
r , χEk

j∩T`(r)ω)

∫
Gα,t+1

r

| f |σ , (4-62)

since
∫

Gα,t+1
r
|br |σ =

∫
Gα,t+1

r
| f − Aα,t+1

r |σ ≤ 2
∫

Gα,t+1
r
| f |σ .

Our next task is to organize the sum over the cubes Bk+2
i relative to the cubes Gα,t+1

r . This is needed
because the cubes Bk+2

i are not pairwise disjoint in k, and we thank Tuomas Hytonen for bringing this
point to our attention. The cube Bk+2

i must intersect
⋃

r∈Kα,t
s

Gα,t+1
r since otherwise∫

Gα,t+1
r ∩Bk+2

i

(L∗χEk
j∩T`(r)ω)brσ = 0 for r ∈ Kα,t

s .

Thus Bk+2
i satisfies exactly one of the following two cases which we indicate by writing i ∈ Case(a) or

i ∈ Case(b)

Case(a) Bk+2
i strictly contains at least one of the cubes Gα,t+1

r for r ∈ Kα,t
s .

Case(b) Bk+2
i ⊂ Gα,t+1

r for some r ∈ Kα,t
s .

Note that the cubes Bk+2
i with i ∈ It

s can only satisfy Case(b), while the cubes Bk+2
i with i ∈ Jt

s can
satisfy either of the two cases above. However, we have the following claim.

Claim 4.13. For each fixed r ∈ Kα,t
s , we have∑

(k+2,i, j) admissible

χBk+2
i
≤ C,

where the sum is taken over all admissible index triples (k + 2, i, j), that is, those for which the cube
Bk+2

i arises in term IV t
s with both Bk+2

i ⊂ Gα,t+1
r and Bk+2

i ⊂ Q̃k
j .

But we first establish a containment that will be useful later as well. Recall that �k+2 decomposes as
a pairwise disjoint union of cubes Bk+2

i , and thus we have∫
Gα,t+1

r ∩�k+2

(L∗χEk
j∩T`(r)ω)brσ =

∑
i :Bk+2

i ∩Q̃k
j 6=∅

∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)brσ,

since the support of L∗χEk
j∩T`(r)ω is contained in 2Qk

j ⊂ Q̂k
j ⊂ Q̃k

j by (4-7). Since both Bk+2
i and Q̃k

j lie
in the grid Dα and have nonempty intersection, one of these cubes is contained in the other. Now Bk+2

i
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cannot strictly contain Q̃k
j since Q̃k

j = Bk
` for some ` and the cubes {Bk

j }k, j satisfy the nested property
(4-54). It follows that we must have

Bk+2
i ⊂ Q̃k

j whenever Bk+2
i ∩ Q̃k

j 6=∅. (4-63)

Now we return to Claim 4.13, and note that for a fixed index pair (k + 2, i), the bounded overlap
condition in (2-6) shows that there are only a bounded number of indices j such that Bk+2

i ⊂ Q̃k
j⊂N Qk

j —
see (4-56). We record this observation here:

#{ j : Bk+2
i ⊂ Q̃k

j } ≤ C for each pair (k+ 2, i). (4-64)

Thus Claim 4.13 is reduced to this one:

Claim 4.14.
∑
{χBk+2

i
: Bk+2

i ⊂ Gα,t+1
r for some (k, j) ∈ Iα,ts with Bk+2

i ⊂ Q̃k
j } ≤ C for each r ∈ Kα,t

s .

As is the case with similar assertions in this argument, a central obstacle is that a given cube B can arise
in many different ways as a Bk+2

i .

Proof of Claim 4.14. We will appeal to the “bounded occurrence of cubes” in Section 4.9.2 above. This
principle relies upon the definition of Gα in (4-27), and applies in this setting due to the definition of Iα,ts

in (4-28). We also appeal to the following fact:

Gα,t+1
r ⊂ Q̃k

j whenever Bk+2
i ⊂ Gα,t+1

r ∩ Q̃k
j with (k, j) ∈ Iα,ts . (4-65)

To see (4-65), we note that both of the cubes Gα,t+1
r and Q̃k

j lie in the grid Dα and have nonempty
intersection (they contain Bk+2

i ), so that one of these cubes must be contained in the other. However, if
Q̃k

j ⊂ Gα,t+1
r , then 3Qk

j ⊂ Q̂k
j ⊂ Q̃k

j implies A(Qk
j )⊂ Gα,t+1

r , which contradicts (k, j) ∈ Iα,ts . Therefore
we must have Gα,t+1

r ⊂ Q̃k
j as asserted in (4-65).

So to see that Claim 4.14 holds, suppose that A(Qk
j ) = Gα,t

s and Bk+2
i ⊂ Gα,t+1

r with an associated
cube Q̃k

j as in (4-65). Then by (4-65) and (4-57) the side length `(Qk
j ) of Qk

j satisfies

`(Qk
j )=

1
N
`(N Qk

j )≥
1
N
`(Q̃k

j )≥
1
N
`(Gα,t+1

r ). (4-66)

Also, if Bk
` is any Whitney cube at level k that is contained in Gα,t+1

r , then by (4-65) and (4-57) we have

Bk
` ⊂ Gα,t+1

r ⊂ Q̃k
j ⊂ N Qk

j ,

so that Lemma 4.11 shows that Bk
` and Qk

j have comparable side lengths:

`(Bk
` )≈ `(Q

k
j ). (4-67)

Moreover, if Bk′
`′ is any Whitney cube at level k ′ < k that is contained in Gα,t+1

r , then there is some
Whitney cube Bk

` at level k such that Bk
` ⊂ Bk′

`′ . Thus we have the containments Bk
` ⊂ Bk′

`′ ⊂ N Qk
j , and

it follows from (4-67) that

`(Bk′
`′ )≈ `(Q

k
j ). (4-68)
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Now momentarily fix k0 such that there is a cube Bk0+2
i satisfying the conditions in Claim 4.14. Then

all of the cubes Bk+2
` that arise in Claim 4.14 with k ≤ k0− 2 satisfy

`(Bk+2
` )≈ `(Qk0

j )≥
1
N
`(Gα,t+1

r ).

Thus all of the cubes Bk+2
` with k ≤ k0, except perhaps those with k ∈ {k0 − 1, k0}, have side lengths

bounded below by c `(Gα,t+1
r ), which bounds the number of possible locations for these cubes by a

dimensional constant. However, those cubes Bk0+1
i at level k0 + 1 are pairwise disjoint, as are those

cubes Bk0+2
i at level k0+2. Consequently, we can apply the “bounded occurrence of cubes” to show that

the sum in Claim 4.14, when restricted to k ≤ k0, is bounded by a constant C independent of k0. Since
k0 is arbitrary, this completes the proof of Claim 4.14. �

As a result of Claim 4.14, for those i in either It
s or Jt

s that satisfy Case(b), we will be able to apply
below the Poisson argument used to estimate term IIt

s(2) in (4-40) above.
We now further split the sum over i ∈ Jt

s in term IV t
s(2) into two sums according to Case(a) and

Case(b) above:

IV t
s(2)≤

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s
i∈Case(a)

∫
Gα,t+1

r ∩Bk+2
i

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p

+

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s
i∈Case(b)

∫
Gα,t+1

r ∩Bk+2
i

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p

≡ IV t
s(2)[a] + IV t

s(2)[b].

(4-69)

We apply the definition of Case(b) and (4-61), to decompose IV t
s(2)[b] as follows:

IV t
s(2)[b] =

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)brσ

∣∣∣p

≤

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

(∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)σ

)
× ck+2

i (|Aα,t+1
r | +Ak+2

i )

∣∣∣p

+

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

P(Bk+2
i , χEk

j∩T`(r)ω)

∫
Bk+2

i

|br |σ

∣∣∣p

= V t
s (1)+ V t

s (2).

(4-70)

4.14.1. The bound for V(2). We claim that∑
(t,s)∈Lα

V t
s (2)≤ Cγ 2pMp

∗
‖ f ‖p

L p(σ ). (4-71)

Here, M∗ is defined in (4-3), and V t
s (2) is defined in (4-70).
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Proof. The estimate for term V t
s (2) is similar to that of IIt

s(2) above (see (4-40)), except that this time
we use Claim 4.13 to handle a complication arising from the extra sum in the cubes Bk+2

i . We define

Pk
j (µ)≡

∑
`

∑
r∈Kα,t

s
`(r)=`

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

P(Bk+2
i , χEk

j∩T`µ)χBk+2
i
. (4-72)

We observe that by Claim 4.14 the sum of these operators satisfies∑
(k, j)∈I

α,t
s

Pk
j (µ)≤ CχGα,t

s
M(χGα,t

s
µ), (4-73)

and hence the analogue of (4-44) holds with Pk
j defined as above:∥∥∥χGα,t

s

∑
(k, j)∈I

α,t
s

(Pk
j )
∗(|h|σ)

∥∥∥
L p(w)

≤ CM∗‖χGα,t
s

h‖L p(σ ). (4-74)

For our use below, we note that this conclusion holds independent of the assumption, imposed in (4-72),
that i ∈ Jt

s .
With this notation, the summands in the definition of V t

s (2), as given in (4-70), are∑
`

∑
r∈Kα,t

s
`(r)=`

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

P(Bk+2
i , χEk

j∩T`ω)
(∫

Bk+2
i

σ
)( 1
|Bk+2

i |σ

∫
Bk+2

i

| f |σ
)

≤ γ t+2
∑
`

∫ ∑
r∈Kα,t

s
`(r)=`

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

P(Bk+2
i , χEk

j∩T`ω)χBk+2
i
σ (since i ∈ Jt

s)

≤ γ t+2
∫

Gα,t
s

Pk
j (ω)σ = γ

t+2
∫

Ek
j

(Pk
j )
∗(χGα,t

s
σ)ω.

(4-75)

We then have from (4-70) and (4-75) by the argument for term IIt
s(2),∑

(t,s)∈Lα

V t
s (2)≤ Cγ 2p

∑
(t,s)∈Lα

γ pt
∑

(k, j)∈I
α,t
s

Rk
j

∣∣∣∫
Qk

j

(Pk
j )
∗(χGα,t

s
σ) ω

∣∣∣p

≤ Cγ 2p
∑

(t,s)∈Lα

γ pt
∫ ∣∣∣Mω(χGα,t

s

∑
(`,i)∈I

α,t
s

(P`i )
∗(χGα,t

s
σ))

∣∣∣p
ω

≤ Cγ 2p
∑

(t,s)∈Lα

γ pt
∫

Gα,t
s

( ∑
(`,i)∈I

α,t
s

(P`i )
∗(χGα,t

s
σ)
)p
ω

≤ Cγ 2pMp
∗

∑
(t,s)∈Lα

γ pt
∑
`

|Gα,t
s |σ ≤ Cγ 2pMp

∗

∫
| f |p σ.

In last lines we are using the boundedness (1-17) of the maximal operator. �
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We will use the same method to treat term V(1) and term VI(1) below, and we postpone the argument
for now.

4.14.2. The bound for IV(2)[a]. We turn to the term defined in (4-69). In Case(a) the cubes Bk+2
i satisfy

Gα,t+1
r ⊂ Bk+2

i whenever Gα,t+1
r ∩ Bk+2

i 6=∅.

and so recalling that i ∈ Jt
s and i ∈ Case(a), we obtain from (4-62) that

IV t
s(2)[a] =

∑
(k, j)∈I

α,t
s

Rk
j

∣∣∣ ∑
i∈Jt

s
i∈Case(a)

∑
r :Gα,t+1

r ⊂Bk+2
i

∫
Gα,t+1

r

(L∗χEk
j
ω)brσ

∣∣∣p

≤ C
∑

(k, j)∈I
α,t
s

Rk
j

∣∣∣ ∑
i∈Case(a)

∑
r :Gα,t+1

r ⊂Bk+2
i

P(Gα,t+1
r , χEk

j
ω)

∫
Gα,t+1

r

| f |σ
∣∣∣p

≤ Cγ p(t+2)
∑

(k, j)∈I
α,t
s

Rk
j

∣∣∣ ∑
r :Gα,t+1

r ⊂3Qk
j

P(Gα,t+1
r , χEk

j
ω)|Gα,t+1

r |σ

∣∣∣p
.

But this last sum is identical to the estimate for the term IIt
s(2) used in (4-45) above. The estimate there

thus gives ∑
(t,s)∈Lα

IV t
s(2)[a] ≤ Cγ 2pMp

∗

∑
(t,s)∈Lα

γ pt
|Gα,t

s |σ ≤ Cγ 2pMp
∗

∫
| f |pσ, (4-76)

which is the desired estimate.

4.14.3. The decomposition of IV(1). This term is the first term on the right hand side of (4-58). Recall
that for i ∈ It

s we have i ∈ Case(b) and so Bk+2
i ⊂ Gα,t+1

r ⊂ T`(r) for some r ∈ Kα,t
s . From (4-63) we

also have Bk+2
i ⊂ Q̃k

j . To estimate IV t
s(1) in (4-58), we again apply (4-61) to be able to write

IV t
s(1)≤ C

∑
(k, j)∈I

α,t
s

Rk
j

(∑
`

∑
i∈It

s
Bk+2

i ⊂T`∩Q̃k
j

(∫
Bk+2

i

|L∗χEk
j∩T`ω|σ

)
Ak+2

i

)p

+C
∑

(k, j)∈I
α,t
s

Rk
j

(∑
`

∑
i∈It

s
Bk+2

i ⊂T`∩Q̃k
j

P(Bk+2
i , χEk

j∩T`ω)

∫
Bk+2

i

| f |σ
)p

= VIt
s(1)+VIt

s(2).

(4-77)

We can dominate the averages on Bk+2
i of the bad function br by Ak+2

i +|Aα,t+1
r | ≤ 2Ak+2

i , since in this
case i ∈ It

s (see (4-59)), and this implies that the average of |br | = | f − Aα,t+1
r | over the cube Bk+2

i is
dominated by

Ak+2
i + |Aα,t+1

r | ≤ Ak+2
i + γ t+2 < 2Ak+2

i .
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4.14.4. The bound for VI(2). We claim that

VIt
s(2)≤ CMp

∗

∑s,t,I

k,i

|Bk+2
i |σ (A

k+2
i )p. (4-78)

Here, the sum on the right is over all pairs of integers k, i ∈ It
s such that Bk+2

i ⊂ T` ∩ Q̃k
j for some `, j

with (k, j) ∈ Iα,ts . (Below, we will need a similar sum, with the condition i ∈ It
s replaced by i ∈ Jt

s

and i ∈ Case(b).) This is a provisional bound, one that requires additional combinatorial arguments in
Section 4.14.7.

Proof. The term VIt
s(2) can be handled the same way as the term V t

s (2) (see (4-71)), with these two
changes. First, in the definition of Pk

j , we replace Jt
s by It

s , and second, we use the function

h =
∑s,t,I

k,i

Ak+2
i χBk+2

i

in (4-74). That argument then obtains∥∥∥χGα,t
s

∑
k, j

(Pk
j )
∗(χGα,t

s
hσ)

∥∥∥p

L p(ω)
≤ CMp

∗

∑s,t,I

k,i

|Bk+2
i |σ (A

k+2
i )p. (4-79)

Here we are using the bounded overlap of the cubes Bk+2
i given in Claim 4.13, along with the fact

recorded in (4-64) that for fixed (k+ 2, i), only a bounded number of j satisfy Bk+2
i ⊂ Q̃k

j . Claim 4.13
applies in this setting, as we are in a subcase of the analysis of IV . We then use the universal maximal
function bound (2-2).

VIt
s(2)=

∑
(k, j)∈I

α,t
s

Rk
j

(∑
`

∑
i∈It

s
Bk+2

i ⊂T`∩Q̃k
j

P(Bk+2
i , χEk

j∩T`ω)
(∫

Bk+2
i

σ
)
Ak+2

i

)p

= C
∑

(k, j)∈I
α,t
s

Rk
j

∣∣∣∫
Qk

j

(Pk
j )
∗(hσ)ω

∣∣∣p

≤ C
∫ (

Mω

(
χGα,t

s

∑
(k, j)∈I

α,t
s

(Pk
j )
∗(χGα,t

s
hσ)

))p
ω

≤ C
∫ (

χGα,t
s

∑
(k, j)∈I

α,t
s

(Pk
j )
∗(χGα,t

s
hσ)

)p
ω.

In view of (4-79), this completes the proof of the provisional estimate (4-78). �

4.14.5. The bound for VI(1). Recall the definition of VI(1) from (4-77), and also from (4-63) the fact
that Bk+2

i ⊂ Q̃k
j whenever Bk+2

i ∩ Q̃k
j 6=∅. We claim that

VIt
s(1)≤ CTp

∗

∑s,t,I

k,i

|Bk+2
i |σ (A

k+2
i )p. (4-80)
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The notation here is as in (4-78), but since i ∈ It
s implies i belongs to Case(b), the sum over the right is

over k, i ∈ It
s such that Bk+2

i ⊂ Gα,t+1
r ⊂ T`(r) ∩ Q̃k

j , for some integers j, r , with (k, j) ∈ Iα,ts . As with
(4-78), this is a provisional estimate.

Proof. We first estimate the sum in i inside term VIt
s(1). Recall that the sum in i is over those i such

that Bk+2
i ⊂ Gα,t+1

r ⊂ T` for some r with ` = `(r), and where {T`}` is the set of maximal cubes in the
collection {3Gα,t+1

r : r ∈Kα,t
s }. See the discussion at (4-35), and (4-50). We will write `(i)= `(r) when

Bk+2
i ⊂ Gα,t+1

r . It is also important to note that the sum in i deriving from term IV t
s is also restricted to

those i such that Bk+2
i ⊂ Q̃k

j by (4-63), so that altogether, Bk+2
i ⊂ T` ∩ Q̃k

j . We have∣∣∣∑
i

(∫
Bk+2

i

|L∗χEk
j∩T`(i)ω|σ

)
Ak+2

i

∣∣∣p

≤

∑
i

|Bk+2
i |σ (A

k+2
i )p

(∑
i

|Bk+2
i |

1−p′
σ

(∫
Bk+2

i

|L∗χEk
j∩T`(i)ω|σ

)p′)p−1

≤

∑
i

|Bk+2
i |σ (A

k+2
i )p

(∑
i

∫
Bk+2

i

|L∗χEk
j∩T`(i)ω|

p′σ
)p−1

≤ C
∑

i

|Bk+2
i |σ (A

k+2
i )p

(∑
`

∑
i :`(i)=`

∫
Bk+2

i

|L∗χEk
j∩T`(i)ω|

p′σ
)p−1

.

Now we will apply the form (2-11) of (1-14) with g = χEk
j∩T` and Q chosen to be either T` or Q̃k

j
depending on the relative positions of T` and Q̃k

j . Since T` is a triple of a cube in the grid Dα and Q̃k
j is

a cube in the grid Dα, we must have either

Q̃k
j ⊂ T` or T` ⊂ 3Q̃k

j .

If Q̃k
j ⊂ T` we choose Q in (2-11) to be Q̃k

j and note that by bounded overlap of Whitney cubes, there
are only a bounded number of such cases. If on the other hand T` ⊂ 3Q̃k

j , then we choose Q to be T`
and note that the cubes T` have bounded overlap. This gives∑

`

∑
i :`(i)=`

∫
Bk+2

i

|L∗χEk
j∩T`(i)ω|

p′σ . Tp
∗
|3Q̃k

j |ω,

and hence ∣∣∣∑
i

(∫
Bk+2

i

|L∗χEk
j∩T`(i)ω|σ

)
Ak+2

i

∣∣∣p
≤ CTp

∗

∑
i

|Bk+2
i |σ (A

k+2
i )p

|N Qk
j |

p−1
ω ,

since 3Q̃k
j ⊂ N Qk

j by (4-56). With this we obtain

VIt
s(1)≤ CTp

∗

∑
(k, j)∈I

α,t
s

Rk
j

∑
i∈It

s

|Bk+2
i |σ (A

k+2
i )p

|N Qk
j |

p−1
ω

≤ CTp
∗

∗∑s,t,I

k,i

|Bk+2
i |σ (A

k+2
i )p,

(4-81)
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where we are using Rk
j |N Qk

j |
p−1
ω ≤ 1 and (4-64) in the final line. �

4.14.6. The bound for V(1). We will use the same method as in the estimate for term VI(1) above to
obtain ∑

(t,s)∈Lα

V t
s (1)≤ CTp

∗
γ 2p
‖ f ‖p

L p(σ ). (4-82)

Recall from (4-70) that V t
s (1) is given by∑

(k, j)∈I
α,t
s

Rk
j

∣∣∣ ∑
r∈Kα,t

s

∑
i∈Jt

s
Bk+2

i ⊂Gα,t+1
r

(∫
Bk+2

i

(L∗χEk
j∩T`(r)ω)σ

)
ck+2

i (|Aα,t+1
r | +Ak+2

i )

∣∣∣p
.

The main difference here, as opposed to the previous estimate, is that i ∈Jt
s rather than in It

s ; see (4-59).
As a result, we have the estimate

|Aα,t+1
r | +Ak+2

i . γ t+2, (4-83)

instead of |Aα,t+1
r | +Ak+2

i . Ak+2
i , which holds when i ∈ It

s .

Proof of (4-82). We follow the argument leading up to and including (4-81) in the estimate for term
VI(1) above, but using instead (4-83). The result is as below, where we are using the notation of (4-78),
with the condition i ∈ It

s replaced by i ∈ Jt
s and i ∈ Case(b), and so we use an asterisk and J in the

notation below.
V t

s (1)≤ CTp
∗

∗∑s,t,J

k,i

|Bk+2
i |σ (γ

t+2)p.

Now we collect those cubes Bk+2
i that lie in a given cube Gα,t+1

r and write the right hand side above as
a constant times

Tp
∗
γ (t+2)p

∑
r∈Kα,t

s

∗∑s,t,J

k,i

|Bk+2
i |σ := Tp

∗
γ (t+2)p

∑
r∈Kα,t

s

Sα,ts,r .

By Claim 4.13, which applies as we are in a subcase of IV , we have Sα,ts,r ≤ C |Gα,t+1
r |σ , and it follows

that
V t

s (1)≤ CTp
∗
γ (t+2)p

∑
r∈Kα,t

s

|Gα,t+1
r |σ ≤ CTp

∗
γ (t+2)p

|Gα,t
s |σ ,

and hence from (4-18) that∑
(t,s)∈Lα

V t
s (1)≤ CTp

∗
γ 2p

∑
(t,s)∈Lα

γ tp
|Gα,t

s |σ ≤ CTp
∗
γ 2p
‖ f ‖p

L p(σ ). �

4.14.7. The final combinatorial arguments. Our final estimate in the proof of (4-52) is to dominate by
C
∫
| f |p dσ the sum of the right hand sides of (4-78) and (4-80) over (t, s) ∈ Lα, namely∑

(t,s)∈Lα

∑s,t,I

k,i

≤ C
∫
| f |p dσ. (4-84)
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The proof of (4-84) will require combinatorial facts related to the principal cubes, and the definition of
the collection Gα in (4-27). Also essential is the implementation of the shifted dyadic grids. We now
detail the arguments.

Definition 4.15. We say that a cube Bk+2
i satisfying the defining condition in VIt

s(1), namely

there is (k, j) ∈ Iα,ts = Gα
∩Hα,t

s such that
Bk+2

i ⊂ Q̃k
j and Bk+2

i ⊂ some Gα,t+1
r ⊂ Gα,t

s satisfying Ak+2
i > γ t+2,

is a final type cube for the pair (t, s) ∈ Lα generated from Qk
j .

The collection F of cubes Bk+2
i such that Bk+2

i is a final type cube generated from some Qk
j with

(k, j) ∈ Iα,ts for some pair (t, s) ∈ Lα satisfies the following three properties:

Property 1. F is a nested grid in the sense that given any two distinct cubes in F, either one is strictly
contained in the other, or they are disjoint (ignoring boundaries).

Property 2. If Bk+2
i and Bk′+2

i ′ are two distinct cubes in F with Bk′+2
i ′ $ Bk+2

i , and k and k ′ have the
same parity, then

Ak′+2
i ′ > γAk+2

i .

Property 3. A given cube Bk+2
i can occur at most a bounded number of times in the grid F.

Proof of Properties 1, 2 and 3. Property 1 is obvious from the properties of the dyadic shifted grid Dα.
Property 3 follows from the “bounded occurrence of cubes” noted above. So we turn to Property 2. It is
this property that prompted the use of the shifted dyadic grids.

Indeed, since Bk′+2
i ′ $ Bk+2

i , it follows from the nested property (4-54) that k ′> k. By Definition 4.15
there are cubes

Qk′
j ′ and Qk

j satisfying Bk′+2
i ′ ⊂ Q̃k′

j ′ and Bk+2
i ⊂ Q̃k

j ,

and also cubes Gα,t ′
s′ ⊂ Gα,t

s such that (k ′, j ′) ∈ I
α,t ′
s′ and (k, j) ∈ Iα,ts with (t ′, s ′), (t, s) ∈ Lα, so that in

particular,

Q̃k′
j ′ ⊂ Gα,t ′

s′ and Q̃k
j ⊂ Gα,t

s .

Now k ′ ≥ k+ 2 and in the extreme case where k ′ = k+ 2, it follows that the Dα-cube Q̃k′
j ′ is one of the

cubes Bk+2
` , so in fact it must be Bk+2

i since Bk′+2
i ′ ⊂ Bk+2

i . Thus we have

Bk′+2
i ′ ⊂ Q̃k′

j ′ = Bk+2
i .

In the general case k ′ ≥ k+ 2 we have instead

Bk′+2
i ′ ⊂ Q̃k′

j ′ ⊂ Bk+2
i .

Now Ak+2
i > γ t+2 by Definition 4.15, and so there is t0 ≥ t + 2 determined by the condition

γ t0 < Ak+2
i ≤ γ t0+1, (4-85)
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and also s0 such that

Bk+2
i ⊂ Gα,t0

s0
⊂ Gα,t

s ,

where the label (t0, s0) need not be principal. Combining inclusions we have

Q̃k′
j ′ ⊂ Bk+2

i ⊂ Gα,t0
s0
,

and since (k ′, j ′) ∈ I
α,t ′
s′ , we obtain Gα,t ′

s′ ⊂ Gα,t0
s0 . Since (t ′, s ′) ∈ Lα is a principal label, we have the key

property that

t ′ ≥ t0. (4-86)

Indeed, if Gα,t ′
s′ = Gα,t0

s0 then (4-86) holds because (t ′, s ′) ∈ Lα is a principal label, and otherwise the
maximality of Gα,t ′

s′ shows that

γ t0 <
1

|Gα,t0
s0 |σ

∫
G
α,t0
s0

| f | dσ ≤ γ t ′+1 that is, t0 < t ′+ 1.

Thus using (4-86) and (4-85) we obtain Property 2:

Ak′+2
i ′ > γ t ′+2

≥ γ t0+2
≥ γAk+2

i . �

Proof of (4-84). Now for Q = Bk+2
i ∈ F set

A(Q)= 1
|Q|σ

∫
Q
| f |σ = Ak+2

i =
1

|Bk+2
i |σ

∫
Bk+2

i

| f |σ.

With the three properties above we can now prove (4-84) as follows. Recall that in term IV(1) we
have i ∈ It

s which implies Bk+2
i satisfies Case(b). In the display below by

∑
∗

i we mean the sum over i
such that Bk+2

i is contained in some Gα,t+1
r ⊂Gα,t

s , and also in some Q̃k
j with (k, j)∈ Iα,ts , and satisfying

Ak+2
i > 2t+2. The left side of (4-84) is dominated by∑

(t,s)∈Lα

∑
(k, j)∈I

α,t
s

∑∗

i

|Bk+2
i |σ (A

k+2
i )p

=

∑
Q∈F

|Q|σA(Q)p
=

∑
Q∈F

|Q|σ
( 1
|Q|σ

∫
Q
| f |σ

)p

=

∫
Rn

∑
Q∈F

χQ(x)
( 1
|Q|σ

∫
Q
| f |σ

)p
dσ(x)

≤ C
∫

Rn
sup

x∈Q:Q∈F

( 1
|Q|σ

∫
Q
| f |σ

)p
dσ(x)

≤ C
∫

Rn
Mα
σ f (x)pσ( dx)≤ C

∫
Rn
| f (x)|p dσ(x),

where the second to last line follows since for fixed x ∈ Rn , the sum∑
Q∈F

χQ(x)
( 1
|Q|σ

∫
Q
| f |σ

)p
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is supergeometric by Properties 1, 2 and 3 above, that is, for any two distinct cubes Q and Q′ in F each
containing x , the ratio of the corresponding values is bounded away from 1, more precisely,( 1

|Q|σ

∫
Q | f |σ

)p( 1
|Q′|σ

∫
Q′ | f |σ

)p /∈ [γ
−p, γ p) for γ ≥ 2.

This completes the proof of (4-84). �

5. The proof of Theorem 1.10 on the strongly maximal Hilbert transform

To prove Theorem 1.10 we first show that in the proof of Theorem 1.9 above, we can replace the use
of the dual maximal function inequality (1-17) with the dual weighted Poisson inequality (5-5) defined
below. After that we will show that in the case of standard kernels satisfying (1-9) with δ(s) = s in
dimension n = 1, the dual weighted Poisson inequality (5-5) is implied by the half-strengthened Ap

condition (∫
R

(
|Q|

|Q| + |x − xQ |

)p′

dσ(x)
)1/p′(∫

Q
dω(x)

)1/p
≤Ap(ω, σ )|Q|, (5-1)

for all intervals Q, together with the dual pivotal condition (5-2) of Nazarov, Treil and Volberg [2010],
namely that

∞∑
r=1

|Qr |σP(Qr , χQ0ω)
p′
≤ Cp′
∗
|Q0|ω, (5-2)

holds for all decompositions of an interval Q0 into a union of pairwise disjoint intervals Q0 =
⋃
∞

r=1 Qr .
We will assume 1 < p ≤ 2 for this latter implication. Finally, for p > 2, we show that (5-5) is implied
by (5-1), (5-2) and the Poisson condition (1-24).

It follows from work in [Nazarov et al. 2010] and [Lacey et al. 2011] that the strengthened A2 condition
(5-16) is necessary for the two weight inequality for the Hilbert transform, and also from [Lacey et al.
2011] that the dual pivotal condition (5-2) is necessary for the dual testing condition∫

Q
T (χQω)

2 dσ ≤ C
∫

Q
dω,

for T when p= 2 and σ is doubling. We show below that these results extend to 1< p<∞. A slightly
weaker result was known earlier from work of Nazarov, Treil and Volberg — namely that the pivotal
conditions are necessary for the Hilbert transform H when both of the weights ω and σ are doubling and
p = 2. However, [Lacey et al. 2011] gives an example that shows that (5-2) is not in general necessary
for boundedness of the Hilbert transform T when p = 2.

Finally, we show below that when σ is doubling, the dual weighted Poisson inequality (5-5) is implied
by the two weight inequality for the Hilbert transform. Since the Poisson condition (1-24) is a special
case of the inequality dual to (5-5), we obtain the necessity of (1-24) for the two weight inequality for
the Hilbert transform.
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5.1. The Poisson inequalities. We begin working in Rn with 1 < p <∞. Recall the definition of the
Poisson integral P(Q, ν) of a measure ν relative to a cube Q, given by

P(Q, ν)≡
∞∑
`=0

δ(2−`)
|2`Q|

∫
2`Q

d|ν|. (5-3)

We will consider here only the standard Poisson integral with δ(s)= s in (5-3), and so we also suppose
that δ(s) = s in (1-9) above. We now fix a cube Q0 and a collection of pairwise disjoint subcubes
{Qr }

∞

r=1. Corresponding to these cubes we define a positive linear operator

Pν(x)=
∞∑

r=1

P(Qr , ν)χQr (x). (5-4)

We wish to obtain sufficient conditions for the following “dual” weighted Poisson inequality,∫
Rn

P( f ω)(x)p′ dσ(x)≤ C
∫

Rn
f p′ dω(x) for f ≥ 0. (5-5)

uniformly in Q0 and pairwise disjoint subcubes {Qr }
∞

r=1. As we will see below, this inequality is neces-
sary for the two weight Hilbert transform inequality when σ is doubling.

The reason for wanting the dual Poisson inequality (5-5) is that in Theorem 1.9 above, we can replace
the assumption (1-17) on dual boundedness of the maximal operator M by the dual Poisson inequality
(5-5). Indeed, this will be revealed by simple modifications of the proof of Theorem 1.9 above. In fact
(5-5) can replace (1-17) in estimating term IIt

s(2), as well as in the similar estimates for terms V t
s (2)

and VIt
s(2). We turn now to the proofs of these assertions before addressing the question of sufficient

conditions for the dual Poisson inequality (5-5).

5.1.1. Sufficiency of the dual Poisson inequality. We begin by demonstrating that the term IIt
s(2) in

(4-40) can be handled using the “dual” Poisson inequality (5-5) in place of the maximal inequality
(1-17). We are working here in Rn with 1< p <∞. In fact we claim that∑

(t,s)∈Lα

IIt
s(2)≤ Cγ 2pPp

∗

∫
| f |pσ, (5-6)

where P∗ is the norm of the dual Poisson inequality (5-5) if we take Q0 and its collection of pairwise
disjoint subcubes {Qr }

∞

r=1 to be Gα,t
s and {Gα,t+1

r }r∈Kα,t
s

. Now the maximal inequality (1-17) was used
in the proof of (4-40) only in establishing (4-43), which says∥∥∥χGα,t

s

∑
(k, j)∈I

α,t
s

Pk
j (|g|ω)

∥∥∥
L p′ (σ )

≤ CM∗‖χGα,t
s

g‖L p′ (ω),

where

Pk
j (µ)≡

∑
r∈Kα,t

s

P(Gα,t+1
r , χEk

j
µ)χGα,t+1

r
.
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We now note that∑
(k, j)∈I

α,t
s

Pk
j (|g|ω)=

∑
(k, j)∈I

α,t
s

∑
r∈Kα,t

s

P(Gα,t+1
r , χEk

j
|g|ω)χGα,t+1

r

≤

∑
r∈Kα,t

s

P(Gα,t+1
r , χGα,t

s
|g|ω)χGα,t+1

r
= P(χGα,t

s
|g|ω)(x),

which proves ∥∥∥χGα,t
s

∑
k, j

Pk
j (|g|ω)

∥∥∥
L p′ (σ )

≤ CP∗‖χGα,t
s

g‖L p′ (ω),

which yields (5-6) as before.
The terms V(2) and VI(2) are handled similarly. Indeed, Claim 4.14 yields the following analogue of

(4-73): ∑
(k, j)∈I

α,t
s

Pk
j (µ)≤ CχGα,t

s
P(χGα,t

s
µ),

from which the arguments above yield both (4-71) and (4-78) with M∗ replaced by P∗.

5.1.2. Sufficient conditions for Poisson inequalities. We continue to work in Rn with 1 < p <∞. We
note that (5-5) can be rewritten

∞∑
r=1

|Qr |σP(Qr , f ω)p′
≤ C

∫
Rn

f p′ dω for f ≥ 0,

and this latter inequality can then be expressed in terms of the Poisson operator P+ in the upper half
space Rn+1

+ given by

P+( f ω)(x, t)=
∫

Rn
Pt(x − y) f (y) dω(y).

Indeed, let Zr = (xQr , `(Qr )) be the point in Rn+1
+ that lies above the center xQr of Qr at a height equal

to the side length `(Qr ) of Qr . Define an atomic measure ds in Rn+1
+ by

ds(x, t)=
∞∑

r=1

|Qr |σ δZr (x, t). (5-7)

Then (5-5) is equivalent to the inequality (this is where we use δ(s)= s),∫
Rn+1
+

P+( f ω)(x, t)p′ ds(x, t)≤ C
∫

Rn
f p′ dω(x) for f ≥ 0. (5-8)

We can use [Sawyer 1988, Theorem 2] to characterize this latter inequality in terms of testing condi-
tions over P+ and its dual P∗

+
given by

P∗
+
(gw)(x, t)=

∫
Rn+1
+

Pt(y− x)g(x, t)dw(x, t).

Let Q̂ denote the cube in Rn+1
+ with Q as a face. Then [ibid., Theorem 2] yields the following.
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Theorem 5.2. The Poisson inequality (5-5) holds for given data Q0 and {Qr }
∞

r=1 if and only if the
measure s in (5-7) satisfies∫

Rn+1
+

P+(χQω)
p′ ds ≤ C

∫
Q

dω for all cubes Q ∈ D,∫
Rn

P∗
+
(t p′−1χQ̂ ds)p dω ≤ C

∫
Q̂

t p′ ds for all cubes Q ∈ D.

Note that ∫
Rn+1
+

P+(χQω)
p′ ds ≈

∞∑
r=1

|Qr |σP(Qr , χQω)
p′ .

Claim 5.3. Let n= 1 and suppose that σ is doubling. First assume that 1< p<∞. Then for the special
measure s in (5-7), inequality (5-8) follows from the dual pivotal condition (5-2), the Poisson condition
(1-24), and the half-strengthened Ap condition (5-1). Now assume that 1 < p ≤ 2. Then for the special
measure s in (5-7), inequality (5-8) follows from (5-2) and (5-1) without (1-24).

With Claim 5.3 proved, the discussion above yields the following result.

Theorem 5.4. Let n = 1 and suppose that σ is doubling. First assume that 1 < p < ∞. Then the
dual Poisson inequality (5-5) holds uniformly in Q0 and {Qr }

∞

r=1 satisfying
⋃
∞

r=1 Qr ⊂ Q0 provided
the half-strengthened Ap condition (5-1), the dual pivotal condition (5-2), and the Poisson condition
(1-24) all hold. Now assume that 1 < p ≤ 2. Then (5-5) holds uniformly in Q0 and {Qr }

∞

r=1 satisfying⋃
∞

r=1 Qr ⊂ Q0 provided (5-1) and (5-2) both hold.

Remark 5.5. We do not know if Claim 5.3 and Theorem 5.4 hold without the assumption that σ is
doubling, nor do we know if the Poisson condition (1-24) is implied by (5-1) and (5-2) when p > 2.

We work exclusively in dimension n = 1 from now on.

5.5.1. Proof of Claim 5.3. Instead of applying Theorem 5.2 directly, we first reduce matters to proving
that certain Dα-dyadic analogues hold of the two conditions in Theorem 5.2. For α ∈ {0, 1

3 ,
2
3} we use

the following atomic measures dsα on R2
+

, along with the following Dα-dyadic analogues of the Poisson
operators P and P+ (with δ(s)= s),

Pdy
α ν(x)=

∞∑
r=1

Pdy
α (I

α
r , ν)χI αr (x), P

dy
+,αν(x, t)=

∑
Q∈Dα

x∈Q and `(Q)≥t

t
`(Q)

1
|Q|

∫
Q

dν,

dsα(x, t)=
∞∑

r=1

|I αr |σ δZαr (x, t),

(5-9)

where

(1) the interval I αr is chosen to be a maximal Dα-interval contained in Qr with maximum length (there
can be at most two such intervals, in which case we choose the leftmost one),
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(2) the Dα-Poisson integral P
dy
α (Q, ν) is given by

Pdy
α (Q, ν)≡

∞∑
`=0

2−`

|Q(`)|

∫
Q(`)

dν for Q ∈ Dα,

where Q(`) denotes the `-th dyadic parent of Q in Dα, and

(3) the point Zαr = (x I αr , `(I
α
r )) in R2

+
lies above the center x I αr of I αr at a height equal to the side length

`(I αr ) of I αr .

We will use the following dyadic analogue of Theorem 5.2, whose proof is the obvious dyadic analogue
of the proof of Theorem 5.2 as given in [Sawyer 1988].

Theorem 5.6. The Dα-Poisson inequality∫
R2
+

P
dy
+,α( f ω)p′ dsα ≤ C

∫
Q

f p′ dω for f ≥ 0,

holds if and only if ∫
R2
+

P
dy
+,α(χQω)

p′ dsα ≤ C
∫

Q
dω for all intervals Q ∈ Dα,∫

R

(P
dy
+,α)

∗(t p′−1χQ̂ dsα)p dω ≤ C
∫

Q̂
t p′ dsα for all intervals Q ∈ Dα.

(5-10)

We claim that for any positive measure ν, the set of shifted dyadic grids {Dα
}α∈{0,1/3,2/3} satisfies

P(Qr , ν)=

∞∑
`=0

2−`

|2`Qr |

∫
2`Qr

dν ≈
∑

α∈{0,1/3,2/3}

∞∑
`=0

2−`

|(I αr )(`)|

∫
(I αr )(`)

dν =
∑

α∈{0,1/3,2/3}

Pdy
α (I

α
r , ν)

for all r . Indeed, for each interval 2`Qr , there is α ∈ {0, 1/3, 2/3} and an interval Q ∈ Dα containing
2`Qr whose length is comparable to that of 2`Qr . Thus Q = (I αr )

(`+c) for some universal positive
integer c. Now

P+(ν)(xQr , `(Qr ))=

∫
R

P`(Qr )(xQr − y)dν(y)≈
∞∑
`=0

2−`
1
|2`Qr |

∫
2`Qr

dν = P(Qr , ν).

Since σ is doubling and I αr is a maximal Dα-interval in Qr with maximum length, we have |Qr |σ . |I αr |σ
and ∫

Rn+1
+

P+ν(x, t)p ds =
∞∑

r=1

|Qr |σP+ν(xQr , `(Qr ))
p
≈

∞∑
r=1

|Qr |σP(Qr , ν)
p

≈

∑
α∈{0,1/3,2/3}

∞∑
r=1

|I αr |σPdy
α (I

α
r , ν)

p
=

∑
α∈{0,1/3,2/3}

∫
R2
+

P
dy
+,αν(x, t)p dsα.

This together with Theorem 5.6 reduces the proof of Claim 5.3 to showing that (5-10) holds for all
α ∈ {0, 1/3, 2/3}.
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Now the definition of sα in (5-9) shows that the left side of the first line in (5-10) is∫
R2
+

P
dy
+,α(χQω)

p′ dsα =
∞∑

r=1

|I αr |σPdy
α (I

α
r , χQω)

p′ .

Recall that I αr , Q ∈ Dα. Now if Q ⊂ I αr for some r , then the sum above consists of just one term that
satisfies

|I αr |σPdy
α (I

α
r , χQω)

p′
≤ C
|I αr |σ |Q|

p′−1
ω

|I αr |p
′
|Q|ω ≤ CAp(ω, σ )

p′
|Q|ω.

Otherwise we have∫
R2
+

P
dy
+,α(χQω)

p′ dsα .
∑

I αr ⊂Q

|I αr |σPdy
α (I

α
r , χQω)

p′
+

∑
I αr ∩Q=∅

|I αr |σPdy
α (I

α
r , χQω)

p′

≤ Cp′
∗

∫
Q

dω+
∑

I αr ∩Q=∅
|I αr |σ

( ∞∑
`=0

2−`

|(I αr )(`)|

∫
Q∩(I αr )(`)

dω
)p′

,

where the local term has been estimated by the dual pivotal condition (5-2) applied to Q.
Now if I αr ⊂ Q(m)

\ Q(m−1), then Q ∩ Q(`)
r 6=∅ only if Q(m)

⊂ (I αr )
(`). Thus the second term on the

right can be estimated by
∞∑

m=1

∑
I αr ⊂Q(m)\Q(m−1)

|I αr |σ
( ∞∑
`=0

2−`

|(I αr )(`)|

∫
Q∩(I αr )(`)

dω
)p′

≤

∞∑
m=1

∑
I αr ⊂Q(m)\Q(m−1)

|I αr |σ
∞∑
`=0

2−`
(∫

Q∩(I αr )(`)
dω

|(I αr )(`)|

)p′

≤ C
∞∑

m=1

∑
I αr ⊂Q(m)\Q(m−1)

|I αr |σ
∞∑
`=0

2−`
(∫

Q dω

|Q(m)|

)p′

≤

( ∞∑
m=1

|Q(m)
|σ

|Q(m)|p
′

)
|Q|p

′
−1

ω

∫
Q

dω

=

( 1
|Q|p′

(∫
sdy

Q,α(x)
p′ dσ(x)

)
|Q|p

′
−1

ω

) ∫
Q

dω ≤ CAp(ω, σ )
p′
∫

Q
dω,

where we have used

sdy
Q,α(x)≡

∞∑
m=0

|Q|
|Q(m)|

χQ(m)(x). sQ(x),

and the half-strengthened Ap condition (5-1) in the final inequality.
Now we turn to showing that the second line in (5-10) holds using only the Ap condition (1-8). First

we compute the dual operator (Pdy
+,α)

∗. Since the kernel of P
dy
+,α is

P
dy
+,α[(x, t), y] ≡

∑
I∈Dα :`(I )≥t

χI (x)
t
`(I )

1
|I |
χI (y),
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we have for any positive measure µ(x, t) on the upper half space R2
+

,

(P
dy
+,α)

∗µ(y)=
∫

R2
+

( ∑
I∈Dα :`(I )≥t

χI (x)
t
`(I )

1
|I |
χI (y)

)
dµ(x, t)=

∑
I∈Dα :y∈I

1
|I |

∫
Î

t
`(I )

dµ(x, t).

Using the third line in (5-9) we compute that∫
Q̂

t p′ dsα =
∑

I αr ⊂Q

|I αr |σ |I
α
r |

p′,

and

(P
dy
+,α)

∗(t p′−1χQ̂ dsα)(y)=
∑

I∈Dα :y∈I

1
|I |

∫
Î∩Q̂

t
`(I )

t p′−1 dsα(x, t)

=

∑
I αr ⊂Q

|I αr |σ |I
α
r |

p′−1
∞∑
`=0

2−`

|(I αr )(`)|
χ(I αr )(`)(y).

Thus we must prove∫
R

(∑
I αr ⊂Q

|I αr |σ |I
α
r |

p′−1
∞∑
`=0

2−`

|(I αr )(`)|
χ(I αr )(`)(y)

)p
dω(y)≤ CAp(ω, σ )

p
∑

I αr ⊂Q

|I αr |σ |I
α
r |

p′
; (5-11)

but this is the Poisson condition (1-24) in Theorem 1.10 for the shifted dyadic grid Dα. This completes
the proof of the first assertion in Claim 5.3 regarding the case 1< p<∞. We now assume that 1< p≤ 2
for the remainder of the proof.

To obtain (5-11) it suffices to show that for each `≥ 0∫
R

(∑
I αr ⊂Q

|I αr |σ |I
α
r |

p′−22−2`χ(I αr )(`)(y)
)p

dω(y)≤ C2−p`Ap(ω, σ )
p
∑

I αr ⊂Q

|I αr |σ |I
α
r |

p′ . (5-12)

Indeed, with this in hand, Minkowski’s inequality yields

‖(P
dy
+,α)

∗(tχQ̂ dsα)‖L p(ω) =

∥∥∥ ∞∑
`=0

∑
I αr ⊂Q

|I αr |σ |I
α
r |

p′−22−2`χ(I αr )(`)

∥∥∥
L p(ω)

≤

∞∑
`=0

∥∥∥∑
I αr ⊂Q

|I αr |σ |I
α
r |

p′−22−2`χ(I αr )(`)

∥∥∥
L p(ω)

≤ C
∞∑
`=0

2−`Ap(ω, σ )
(∑

I αr ⊂Q

|I αr |σ |I
α
r |

p′
)1/p

,

(5-13)

as required.
Note that for a > 0 and p > 1,

h(x)≡ (a+ x)p
− a p
− p(a+ x)p−1x,
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is decreasing on [0,∞) since h′(x) = −p(p− 1)(a + x)p−2x < 0 for x > 0. Since h(0) = 0 we have
h(x)≤ 0 for x ≥ 0, that is,

(a+ x)p
− a p

≤ p(a+ x)p−1x for a, x > 0 and p > 1. (5-14)

Now fix an interval Q in (5-12) and arrange the intervals I αr that are contained in Q into a sequence
{I αr }

N
r=1 in which the lengths |I αr | are increasing (we may suppose without loss of generality that N is

finite). Recall we are now assuming 1 < p ≤ 2. Integrate by parts and apply (5-14) to estimate the left
side of (5-12) by

2−2p`
∫

R

( N∑
r=1

|I αr |σ |I
α
r |

p′−2χ(I αr )(`)(y)
)p

dω(y)

= 2−2p`
∫

R

N∑
n=1

(( n∑
r=1

|I αr |σ |I
α
r |

p′−2χ(I αr )(`)(y)
)p
−

(n−1∑
r=1

|I αr |σ |I
α
r |

p′−2χ(I αr )(`)(y)
)p)

dω(y)

≤ 2−2p`
∫

R

N∑
n=1

(
p
( n∑

r=1

|I αr |σ |I
α
r |

p′−2χ(I αr )(`)(y)
)p−1
|I αn |σ |I

α
n |

p′−2χ(I αn )(`)(y)
)

dω(y)

≤ 2−2p` p
N∑

n=1

∫
R

(( n∑
r=1

|I αr |σχ(I αr )(`)(y)
)p−1
|I αn |σ |I

α
n |

p′−2
|I αn |

(p′−2)(p−1)χ(I αn )(`)(y)
)

dω(y),

where we have used (5-14) with

a =
n−1∑
r=1

|I αr |σ |I
α
r |

p′−2χ(I αr )(`)(y) and x = |I αn |σ |I
α
n |

p′−2χ(I αn )(`)(y),

and then used |I αr |
p′−2
≤ |I αn |

p′−2 for 1 ≤ r ≤ n, which follows from |I αr | ≤ |I
α
n | and p′ ≥ 2. If

(I αr )
(`)
∩ (I αn )

(`)
6=∅ and 1≤ r ≤ n, then I αr ⊂ (I

α
n )
(`) and so∫

R

(∑
I αr ⊂Q

|I αr |σ |I
α
r |

p′−22−2`χ(I αr )(`)(y)
)p

dω(y)

≤ 2−2p` p
N∑

n=1

|I αn |σ |I
α
n |

p′ p−2p
∫

R

(∑n
1≤r≤n

I αr ⊂(I
α
n )
(`)

|I αr |σ
)p−1

χ(I αn )(`)(y) dω(y)

≤ 2−2p` p
N∑

n=1

|I αn |σ |I
α
n |

p′ p−2p
|(I αn )

(`)
|

p−1
σ |(I

α
n )
(`)
|ω

≤ 2−2p` pAp(ω, σ )
p

N∑
n=1

|I αn |σ |I
α
n |

p′ p−2p
|(I αn )

(`)
|

p

= 2−p` pAp(ω, σ )
p

N∑
n=1

|I αn |σ |I
α
n |

p′
= 2−p` pAp(ω, σ )

p
∑

I αr ⊂Q

|I αn |σ |I
α
n |

p′ .
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Thus we have proved (5-12) for p ∈ (1, 2], which completes the proof of (5-10). This finishes the
proof of Claim 5.3, and hence also that of Theorem 5.4.

5.7. Necessity of the conditions. Here we consider the two weight Hilbert transform inequality for
1< p <∞. We show the necessity of the strengthened Ap condition for general weights, as well as the
necessity of the dual pivotal condition for the dual testing condition, and the dual Poisson inequality for
the dual Hilbert transform inequality, when σ is doubling.

5.7.1. The strengthened Ap condition. Here we derive a necessary condition for the weighted inequality
(1-18) but with the Hilbert transform T in place of T\, that is,∫

R\supp f
T ( f σ)(x)p dω(x)≤ C

∫
Rn
| f (x)|p dσ(x). (5-15)

The condition,(∫
R

(
|Q|

|Q| + |x − xQ|

)p
dω(x)

)1/p(∫
R

(
|Q|

|Q| + |x − xQ |

)p′

dσ(x)
)1/p′

≤ C |Q| (5-16)

for all intervals Q, is stronger than the two weight Ap condition (1-8), and we call it the strengthened
Ap condition.

Preliminary results in this direction were obtained by Muckenhoupt and Wheeden, and in the setting of
fractional integrals by Gabidzashvili and Kokilashvili, and here we follow the argument proving [Sawyer
and Wheeden 1992, (1.9)], where “two-tailed” inequalities of the type (5-16) originated in the fractional
integral setting. A somewhat different approach to this for the conjugate operator in the disk when p= 2
uses conformal invariance and appears in [Nazarov et al. 2010], and provides the first instance of a
strengthened A2 condition being proved necessary for a two weight inequality for a singular integral.

Fix an interval Q and for a ∈ R and r > 0, let

sQ(x)=
|Q|

|Q| + |x − xQ |
and fa,r (y)= χ(a−r,a)(y)sQ(y)p′−1,

where xQ is the center of the interval Q. For convenience we assume that neither ω nor σ have any point
masses — see [Lacey et al. 2011] for the modifications necessary when point masses are present. For
y < x we have

|Q|(x − y)=|Q|(x − xQ)+ |Q|(xQ − y)≤(|Q| + |x − xQ |)(|Q| + |xQ − y|),

and so
1

x−y
≥ |Q|−1sQ(x)sQ(y) for y < x .

Thus for x > a we obtain that

H( fa,rσ)(x)=
∫ a

a−r

1
x−y

sQ(y)p′−1 dσ(y)≥ |Q|−1sQ(x)
∫ a

a−r
sQ(y)p′ dσ(y),
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and hence by (5-15) for the Hilbert transform H ,

|Q|−p
∫
∞

a
sQ(x)p

(∫ a

a−r
sQ(y)p′ dσ(y)

)p
dω(x)

≤

∫
|H( fa,rσ)(x)|p dω(x)≤ C

∫
| fa,r (y)|p dσ(y)= C

∫ a

a−r
sQ(y)p′ dσ(y).

From this we obtain

|Q|−p
(∫ ∞

a
sQ(x)p dω(x)

)(∫ a

a−r
sQ(y)p′ dσ(y)

)p−1
≤ C,

and upon letting r→∞ and taking p-th roots, we get(∫ ∞
a

sQ(x)p dω(x)
)1/p(∫ a

−∞

sQ(y)p′ dσ(y)
)1/p′

≤ C |Q|.

Similarly we have (∫ a

−∞

sQ(x)p dω(x)
)1/p(∫ ∞

a
sQ(y)p′ dσ(y)

)1/p′

≤ C |Q|.

Now we choose a so that∫ a

−∞

sQ(y)p′ dσ(y)=
∫
∞

a
sQ(y)p′ dσ(y)= 1

2

∫
sQ(y)p′ dσ(y),

and conclude that(∫
sQ(x)p dω(x)

)1/p(∫
sQ(y)p′dσ(y)

)1/p′

≤

(∫ a

−∞

sQ(x)p dω(x)
)1/p(∫

sQ(y)p′dσ(y)
)1/p′

+

(∫ ∞
a

sQ(x)p dω(x)
)1/p(∫

sQ(y)p′dσ(y)
)1/p′

≤ 21/p′
(∫ a

−∞

sQ(x)p dω(x)
)1/p(∫ ∞

a
sQ(y)p′dσ(y)

)1/p′

+ 21/p′
(∫ ∞

a
sQ(x)p dω(x)

)1/p(∫ a

−∞

sQ(y)p′dσ(y)
)1/p′

≤ 21+1/p′C |Q|.

5.7.2. Necessity of the dual pivotal condition and the dual Poisson inequality for a doubling measure.
Here we show first that if σ is a doubling measure, then the dual pivotal condition (5-2) with δ(s)= s is
implied by the Ap condition (1-8) and the dual testing condition for the Hilbert transform H , that is,∫

I
|H(χIω)(x)|p

′

dσ(x)≤ Cω,σ,p|I |ω for all intervals I. (5-17)

After this we show that the dual Poisson inequality (5-5) is implied by the Ap condition (1-8) and the
dual Hilbert transform inequality,∫

I
|H(χI gω)(x)|p

′

dσ(x)≤ Cω,σ,p

∫
I

g(x)p′ dω(x) for all g ≥ 0 and intervals I. (5-18)
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Lemma 5.8. Suppose that σ is doubling and T = H is the Hilbert transform. Then the dual pivotal
condition (5-2) is implied by the Ap condition (1-8) and the dual testing condition (5-17).

Proof. We begin by proving that for any interval I and any positive measure ν supported in R \ I , we
have

P(I ; ν)≤ 1
|I |

∫
I

dν+ 2|I | inf
x,y∈I

H(χI cν)(x)− H(χI cν)(y)
x − y

, (5-19)

where we here redefine

P(I ; ν)≡ 1
|I |

∫
I

dν+
|I |
2

∫
R\I

1
|z−z I |

2 dν(z), (5-20)

with z I the center of I . Note that this definition of P(I ; ν) is comparable to that in (5-3) with δ(s)= s.
Note also that H(χI cν) is defined by (5-15) on I , and increasing on I when ν is positive, so that the
infimum in (5-19) is nonnegative.

To see (5-19), we suppose without loss of generality that I = (−a, a), and a calculation then shows
that for −a ≤ x < y ≤ a,

H(χI cν)(y)− H(χI cν)(x)

=

∫
R\I

( 1
z−y
−

1
z−x

)
dν(z)= (y− x)

∫
R\I

1
(z−y)(z−x)

dν(z)≥ 1
4(y− x)

∫
R\I

1
z2 dν(z),

since ((z− y)(z− x))−1 is positive and satisfies

1
(z− y)(z− x)

≥
1

4z2

on each interval (−∞,−a) and (a,∞) in R \ I when −a ≤ x < y ≤ a. Thus we have from (5-20)

P(I ; ν)= 1
|I |

∫
I

dν+
|I |
2

∫
R\I

1
z2 dν(z)≤ 1

|I |

∫
I

dν+ 2|I | inf
x,y∈I

H(χI cν)(y)− H(χI cν)(x)
y− x

.

Now we return to the dual pivotal condition (5-2), and let Cω,σ,p be the best constant in the dual testing
condition (5-17) for H . Let Q0 =

⋃
∞

r=1 Qr be a pairwise disjoint decomposition of Q0 and consider
ε, δ > 0, which will be chosen at the end of the proof (we will take δ = 1

2 and ε > 0 very small). For
each interval Qr , let αr ∈ Qr minimize |H(χQc

r
ω)| on Qr , that is,

|H(χQc
r
ω)(αr )| =min

x∈I
|H(χQc

r
ω)(x)|,

and set
Jr,ε ≡ (αr − ε|Qr |, αr + ε|Qr |)∩ Qr .

Now for each interval Qr , consider the following three mutually exclusive and exhaustive cases:

Case 1: 1
|Qr |

∫
Qr

dω >
|Qr |

4

∫
R\Qr

1
|z− zQr |

2 dω(z),

Case 2: 1
|Qr |

∫
Qr

dω ≤ |Qr |

4

∫
R\Qr

1
|z− zQr |

2 dω(z) and |Qr \ Jr,ε|σ ≥ δ|Qr |σ ,
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Case 3: 1
|Qr |

∫
Qr

dω ≤
|Qr |

4

∫
R\Qr

1
|z− zQr |

2 dω(z) and |Jr,ε|σ > (1− δ)|Qr |σ .

If Qr is a Case 1 interval we have P(Qr , χQ0ω)≤ 3|Qr |
−1
∫

Qr
dω and so

∑
Qr satisfies Case 1

|Qr |σP(Qr , χQ0ω)
p′
≤ 3p

∞∑
r=1

|Qr |σ

( 1
|Qr |

∫
Qr

dω
)p′

≤ C p

∞∑
r=1

|Qr |σ |Qr |
p′−1
ω

|Qr |
p′

∫
Qr

dω ≤ C p‖(ω, σ )‖
p′
Ap

∫
Q0

dω.

If Qr is a Case 2 or Case 3 interval we have from (5-19) with ν = χQ0ω that for all x ∈ Qr \ Jr,ε,

P(Qr ;χQ0ω)≤ 6|Qr |
H(χQ0∩Qc

r
ω)(x)− H(χQ0∩Qc

r
ω)(αr )

x −αr

≤ 6|Qr |
1

ε|Qr |

(
|H(χQ0∩Qc

r
ω)(x)| + |H(χQ0∩Qc

r
ω)(αr )|

)
≤

12
ε
|H(χQ0∩Qc

r
ω)(x)|.

If now Qr is a Case 2 interval, we also have |Qr |σ ≤ δ
−1
|Qr \ Jr,ε|σ and so∑

Qr satisfies Case 2

|Qr |σP(Qr , χQ0ω)
p′

≤
1
δ

∑
Qr satisfies Case 2

|Qr \ Jr,ε|σP(Qr , χQ0ω)
p′

≤
1
δ

∞∑
r=1

(12
ε

)p′
∫

Qr\Jr,ε

|H(χQ0∩Qc
r
ω)(x)|p

′

dσ(x)

≤ Cε,δ,p
∞∑

r=1

∫
Qr\Jr,ε

(
|H(χQ0ω)(x)|

p′
+ |H(χQrω)(x)|

p′) dσ(x)

≤ Cε,δ,p
(∫

Q0

|H(χQ0ω)(x)|
p′ dσ(x)+

∞∑
r=1

∫
Qr

|H(χQrω)(x)|
p′ dσ(x)

)
≤ Cε,δ,p

(
C |Q0|ω+

∞∑
r=1

C |Qr |ω

)
= Cε,δ,p|Q0|ω,

where the final inequality follows from (5-17) with I = Q0 and then I = Qr .
Now we use our assumption that σ is doubling. There are C, η > 0 such that

|J |σ ≤ C
(
|J |
|Q|

)η
|Q|σ

whenever J is a subinterval of an interval Q. If Qr is a Case 3 interval we have both

|Jr,ε|

|Qr |
≤ 2ε and |Jr,ε|σ > (1− δ)|Qr |σ ,
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which altogether yields

(1− δ)|Qr |σ < |Jr,ε|σ ≤ C
(
|Jr,ε|

|Qr |

)η
|Qr |σ ≤ C(2ε)η|Qr |σ ,

which is a contradiction if δ = 1/2 and ε > 0 is chosen sufficiently small, so that ε < 1/2(1/(2C))1/η.
With this choice, there are no Case 3 intervals, and so we are done. �

Lemma 5.9. Suppose that σ is doubling and T = H is the Hilbert transform. Then the dual Poisson
inequality (5-5) is implied by the Ap condition (1-8) and the dual Hilbert transform inequality (5-18).

Proof. The proof is virtually identical to that of Lemma 5.8 but with dν = χQ0 g dω in place of χQ0 dω
where g ≥ 0. Indeed, if Qr is a Case 1 interval we then have P(Qr , χQ0 gω)≤ 3|Qr |

−1
∫

Qr
g dω and so

∑
Qr satisfies Case 1

|Qr |σP(Qr , χQ0 gω)p′
≤ 3p

∞∑
r=1

|Qr |σ

( 1
|Qr |

∫
Qr

g dω
)p′

≤ C p

∞∑
r=1

|Qr |σ |Qr |
p′−1
ω

|Qr |
p′

∫
Qr

g p′ dω ≤ C p‖(ω, σ )‖
p′
Ap

∫
Q0

g p′ dω.

If Qr is a Case 2 interval, then |Qr |σ ≤ δ
−1
|Qr \ Jr,ε|σ and∑

Qr satisfies Case 2

|Qr |σP(Qr , χQ0 gω)p′

≤
1
δ

∑
Qr satisfies Case 2

|Qr \ Jr,ε|σP(Qr , χQ0 gω)p′

≤
1
δ

∞∑
r=1

(12
ε

)p′
∫

Qr\Jr,ε

|H(χQ0∩Qc
r
gω)(x)|p

′

dσ(x)

≤ Cε,δ,p
∞∑

r=1

∫
Qr\Jr,ε

(|H(χQ0 gω)(x)|p
′

+ |H(χQr gω)(x)|p
′

) dσ(x)

≤ Cε,δ,p
(∫

Q0

|H(χQ0 gω)(x)|p
′

dσ(x)+
∞∑

r=1

∫
Qr

|H(χQr gω)(x)|p
′

dσ(x)
)

≤ Cε,δ,p
(

C
∫

Q0

g p′ dω+
∞∑

r=1

C
∫

Qr

g p′ dω
)
= Cε,δ,p

∫
Q0

g p′ dω,

upon using (5-18) with Q0 and Qr , which is (5-5). As before, Case 3 intervals don’t exist if σ is doubling
and ε > 0 is sufficiently small. �

Proof of Theorem 1.10. Theorem 5.4 shows that the dual Poisson inequality (5-5) holds uniformly in
Q0 and pairwise disjoint {Qr }

∞

r=1 satisfying
⋃
∞

r=1 Qr ⊂ Q0, provided both the half-strengthened Ap

condition (5-1) and the dual pivotal condition (5-2) hold when 1 < p ≤ 2 — and provided (5-1), (5-2)
and the Poisson condition (1-24) hold when p > 2. Since σ is doubling, Lemma 5.8 shows that the dual
pivotal condition (5-2) follows from the dual testing condition (1-21) — and Lemma 5.9 shows that the
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dual Poisson inequality (5-5), and hence also the Poisson condition (1-24), follows from the dual Hilbert
transform inequality (5-18). Thus Theorem 1.10 now follows from the claim proved in Section 5.1.1 that
(5-5) can be substituted for (1-17) in the proof of Theorem 1.9. �

Acknowledgment

We began this work during research stays at the Fields Institute in Toronto, Canada, and continued at
the Centre de Recerca Matemàtica in Barcelona, Spain. We thank these institutions for their generous
hospitality. In addition, this paper has been substantially improved by the careful attention of the referee,
for which we are particularly grateful.

References

[Cotlar and Sadosky 1979] M. Cotlar and C. Sadosky, “On the Helson–Szegő theorem and a related class of modified Toeplitz
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Conference on harmonic analysis in honor of Antoni Zygmund (Chicago, 1981), vol. 1, edited by W. Beckner et al., Wadsworth,
Belmont, CA, 1983. MR 85i:42015

[Cruz-Uribe et al. 2007] D. Cruz-Uribe, J. M. Martell, and C. Pérez, “Sharp two-weight inequalities for singular integrals,
with applications to the Hilbert transform and the Sarason conjecture”, Adv. Math. 216:2 (2007), 647–676. MR 2008k:42029
Zbl 1129.42007

[Lacey et al. 2011] M. T. Lacey, E. T. Sawyer, and I. Uriarte-Tuero, “A two weight inequality for the Hilbert transform assuming
an energy hypothesis”, preprint, version 7, 2011. arXiv 1001.4043v7

[Mateu et al. 2000] J. Mateu, P. Mattila, A. Nicolau, and J. Orobitg, “BMO for nondoubling measures”, Duke Math. J. 102:3
(2000), 533–565. MR 2001e:26019 Zbl 0964.42009

[Muckenhoupt 1972] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc.
165 (1972), 207–226. MR 45 #2461 Zbl 0236.26016

[Muscalu et al. 2002] C. Muscalu, T. Tao, and C. Thiele, “Multi-linear operators given by singular multipliers”, J. Amer. Math.
Soc. 15:2 (2002), 469–496. MR 2003b:42017 Zbl 0994.42015

[Nazarov et al. 1997] F. Nazarov, S. Treil, and A. Volberg, “Cauchy integral and Calderón–Zygmund operators on nonhomo-
geneous spaces”, Internat. Math. Res. Notices 15 (1997), 703–726. MR 99e:42028 Zbl 0889.42013

[Nazarov et al. 1999] F. Nazarov, S. Treil, and A. Volberg, “The Bellman functions and two-weight inequalities for Haar
multipliers”, J. Amer. Math. Soc. 12:4 (1999), 909–928. MR 2000k:42009 Zbl 0951.42007

[Nazarov et al. 2003] F. Nazarov, S. Treil, and A. Volberg, “The T b-theorem on non-homogeneous spaces”, Acta Math. 190:2
(2003), 151–239. MR 2005d:30053 Zbl 1065.42014

[Nazarov et al. 2008] F. Nazarov, S. Treil, and A. Volberg, “Two weight inequalities for individual Haar multipliers and other
well localized operators”, Math. Res. Lett. 15:3 (2008), 583–597. MR 2009e:42031 Zbl 05310656

[Nazarov et al. 2010] F. Nazarov, S. Treil, and A. Volberg, “Two weight estimate for the Hilbert transform and corona decom-
position for non-doubling measures”, preprint, 2005 and arXiv, 2010. arXiv 1003.1596

[Peherstorfer et al. 2007] F. Peherstorfer, A. Volberg, and P. Yuditskii, “Two-weight Hilbert transform and Lipschitz property of
Jacobi matrices associated to hyperbolic polynomials”, J. Funct. Anal. 246:1 (2007), 1–30. MR 2008j:47024 Zbl 1125.47023

[Petermichl 2000] S. Petermichl, “Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol”, C. R.
Acad. Sci. Paris Sér. I Math. 330:6 (2000), 455–460. MR 2000m:42016 Zbl 0991.42003

[Petermichl et al. 2002] S. Petermichl, S. Treil, and A. Volberg, “Why the Riesz transforms are averages of the dyadic shifts?”,
pp. 209–228 in Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El
Escorial, 2000), vol. extra, 2002. MR 2003m:42028 Zbl 1031.47021



60 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

[Rudin 1987] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987. MR 88k:00002 Zbl 0925.00005

[Sawyer 1982] E. T. Sawyer, “A characterization of a two-weight norm inequality for maximal operators”, Studia Math. 75:1
(1982), 1–11. MR 84i:42032 Zbl 0508.42023

[Sawyer 1984] E. Sawyer, “A two weight weak type inequality for fractional integrals”, Trans. Amer. Math. Soc. 281:1 (1984),
339–345. MR 85j:26010 Zbl 0539.42008

[Sawyer 1988] E. T. Sawyer, “A characterization of two weight norm inequalities for fractional and Poisson integrals”, Trans.
Amer. Math. Soc. 308:2 (1988), 533–545. MR 89d:26009 Zbl 0665.42023

[Sawyer and Wheeden 1992] E. Sawyer and R. L. Wheeden, “Weighted inequalities for fractional integrals on Euclidean and
homogeneous spaces”, Amer. J. Math. 114:4 (1992), 813–874. MR 94i:42024 Zbl 0783.42011

[Stein 1993] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math-
ematical Series 43, Princeton University Press, 1993. MR 95c:42002 Zbl 0821.42001

[Stein and Shakarchi 2005] E. M. Stein and R. Shakarchi, Real analysis: Measure theory, integration, and Hilbert spaces,
Princeton Lectures in Analysis 3, Princeton University Press, 2005. MR 2005k:28024 Zbl 1081.28001

[Volberg 2003] A. Volberg, Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Con-
ference Series in Mathematics 100, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2003.
MR 2005c:42015 Zbl 1053.42022

[Zheng 1996] D. Zheng, “The distribution function inequality and products of Toeplitz operators and Hankel operators”, J.
Funct. Anal. 138:2 (1996), 477–501. MR 97e:47040 Zbl 0865.47019

Received 7 Oct 2009. Revised 2 Feb 2011. Accepted 2 Mar 2011.

MICHAEL LACEY: lacey@math.gatech.edu
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street NW, Atlanta, GA 30332-0160, United States
http://www.math.gatech.edu/~lacey

ERIC T. SAWYER: sawyer@mcmaster.ca
Department of Mathematics and Statistics, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
http://www.math.mcmaster.ca/~sawyer/

IGNACIO URIARTE-TUERO: ignacio@math.msu.edu
Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States

mathematical sciences publishers msp



ANALYSIS AND PDE
Vol. 5, No. 1, 2012

dx.doi.org/10.2140/apde.2012.5.61 msp

ENERGY IDENTITY FOR INTRINSICALLY BIHARMONIC MAPS IN FOUR
DIMENSIONS

PETER HORNUNG AND ROGER MOSER

Let u be a mapping from a bounded domain S⊂R4 into a compact Riemannian manifold N . Its intrinsic
biharmonic energy E2(u) is given by the squared L2-norm of the intrinsic Hessian of u. We consider
weakly converging sequences of critical points of E2. Our main result is that the energy dissipation along
such a sequence is fully due to energy concentration on a finite set and that the dissipated energy equals
a sum over the energies of finitely many entire critical points of E2.

1. Introduction and main result

Let S ⊂ R4 be a bounded Lipschitz domain and let N be a compact Riemannian manifold without
boundary. For convenience we assume that N is embedded in Rn for some n ≥ 2. We denote the second
fundamental form of this embedding by A and we denote the Riemannian curvature tensor of N by R.
For u ∈C∞(S, N ) define the pull-back vector bundle u−1T N in the usual way and denote the norm on it
and on related bundles by | · |. Together with the Levi-Cività connection on the tangent bundle T N , the
mapping u induces a covariant derivative ∇u on u−1T N . We extend this covariant derivative to tensor
fields in the usual way. Denote by πN the nearest point projection from a neighborhood of N onto N
and set Pu(x) = DπN (u(x)). Then Pu(x) is the orthogonal projection from R4 onto the tangent space
Tu(x)N to N at u(x). Let X ∈ L2(S,Rn) be a section of u−1T N . Following [Moser 2008] we define

∇
u X = (Pu∂αX)⊗ dxα

Denote the derivative of u by Du = (∂αu)⊗ dxα. The intrinsic Hessian ∇u Du is a section of (T S)∗⊗
(T S)∗⊗ u−1T N . By a standard fact about DπN , it is given by

∇
u Du = (Pu∂α∂βu)⊗ dxα ⊗ dxβ

=
(
∂α∂βu+ A(u)(∂αu, ∂βu)

)
⊗ dxα ⊗ dxβ .

We define the Sobolev spaces

W k,p(S, N )= {u ∈W k,p(S,Rn) : u(x) ∈ N for almost all x ∈ S}

Supported by EPSRC grant EP/F048769/1. Part of this work was carried out while Hornung held a postdoc position in the
group of Sergio Conti in Bonn.
Hornung is the corresponding author.
MSC2000: 58E20, 35J35.
Keywords: biharmonic map, energy identity, bubbling.
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and we introduce the energy functional E2 :W 2,2(S, N )→ R+ given by

E2(u)=
1
4

∫
S
|∇

u Du|2.

Critical points of E2 are called intrinsically biharmonic mappings. There are also other kinds of second
order functionals whose critical points are called “biharmonic” mappings. The functional E2 is defined
intrinsically, that is, it does not depend on the embedding of N into Rn . Another intrinsically defined sec-
ond order functional that is naturally associated with u is F2(u)= 1

4

∫
S|τ(u)|

2, where τ(u) := trace∇u Du
denotes the tension field of u. Critical points of F2 are usually called intrinsically biharmonic mappings.
Another functional that can be associated with u is the energy Ẽ2(u)= 1

4

∫
S|D

2u|2. Its critical points are
usually called extrinsically biharmonic mappings. The functional Ẽ2 enjoys better analytical properties
than E2 and F2, but it has the drawback of depending on the particular embedding of N into Rn .

Biharmonic mappings, being the next higher order equivalent of harmonic mappings, have attracted a
lot of attention in the differential geometry literature; see [Montaldo and Oniciuc 2006] for an overview.
Analytic aspects of the problem are less well understood, and on questions other than regularity (see
[Chang et al. 1999; Wang 2004b; Wang 2004a; Wang 2004c; Lamm and Rivière 2008; Struwe 2008])
not much work has been done. This is the case in particular for intrinsic biharmonic mappings, because
the problem is difficult due to a lack of coercivity of the corresponding functions in the Sobolev spaces
traditionally used. Thus despite the fact that the intrinsic case is geometrically more interesting, the
problem has not widely been studied from the analysis point of view.

Recent progress has been made, however, based on the observation that the lack of coercivity can be
removed for one type of intrinsic biharmonic mappings (the type studied in the present paper), provided
that one works in a geometrically motivated variant of Sobolev spaces [Moser 2008; Scheven 2009]. This
approach permits methods analogous to what has been used for harmonic mappings. But since we have a
fourth order equation for biharmonic mappings (in contrast to second order for harmonic mappings), and
since we have to work in different spaces, such an approach still requires additional ideas and arguments.
In this paper, we develop the theory a step further.

The existence of minimizers of E2 under given boundary conditions on the mapping itself and on its
first derivatives was established in [Moser 2008] using the direct method of the calculus of variations.
For simplicity, from now on we will omit the adverb “intrinsically”:

In the present paper, a mapping u ∈W 2,2(S, N ) will be called biharmonic if it is critical for E2 under
outer variations, that is,

d
dt

∣∣∣
t=0

E2(πN (u+ tφ))= 0 for all φ ∈ C∞0 (S,Rn);

see [Scheven 2009; Moser 2008]. In [Scheven 2009] it is shown that a mapping u ∈ W 2,2(S, N ) is
biharmonic precisely if it satisfies∫

S
∇α∂βu ·

(
∇α∇βφ+ R(u)(φ, ∂αu)∂βu

)
= 0 (1)

for every section φ ∈W 2,2
0 (S,Rn)∩ L∞(S,Rn) of u−1T N .
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We will study sequences of biharmonic mappings (uk)⊂W 2,2(S, N ) with uniformly bounded energy,
that is, lim supk→∞ E2(uk) <∞. Since our results are analogous to known facts about harmonic map-
pings, we describe the situation encountered in that context: Let �⊂R2 be a bounded Lipschitz domain
in R2. A mapping u ∈W 1,2(�, N ) is said to be (weakly) harmonic if it is a critical point for the Dirichlet
energy

E1(u)=
1
2

∫
�

|Du|2.

A given sequence (uk) ⊂ W 1,2(�, N ) of harmonic mappings with uniformly bounded Dirichlet energy
has a subsequence that converges weakly in W 1,2 to some mapping u ∈ W 1,2(�, N ). This convergence
in general fails to be strong, that is, in general lim infk→∞ E1(uk) > E1(u). The only reason for this
loss is that the energy can concentrate on a lower dimensional subset 60 ⊂ �. In particular, uk → u in
C1

loc(� \60,Rn). By the results in [Hélein 1991; Hélein 1990], the mappings uk and u are smooth. In
addition, the set 60 is finite. Moreover, for each point x ∈ 60 there exist Mx ∈ N and entire harmonic
mappings vx

1 , . . . , v
x
Mx
∈ C∞(R2, N ) such that, after passing to a subsequence,

lim
k→∞

∫
�

|Duk |
2
≥

∫
�

|Du|2+
∑
x∈60

Mx∑
j=1

∫
R2
|vx

j |
2.

Later the converse inequality was shown to hold as well [Jost 1991; Parker 1996; Ding and Tian 1995].
Our main result is the analogue of these facts for critical points of the functional E2. It is summarized
in the following theorem:

Theorem 1.1. Let S ⊂ R4 be a bounded Lipschitz domain and let N be a smooth compact manifold
without boundary embedded in Rn . Let (uk) ⊂ W 2,2(S, N ) be a sequence of biharmonic mappings and
assume that

lim sup
k→∞

∫
S
|∇

uk Duk |
2
+ |Duk |

4 <∞. (2)

Then uk ∈ C∞(S, N ) and we may pass to a subsequence in k (again called (uk)) and find a biharmonic
map u ∈ C∞(S, N ) and a finite set 60 ⊂ S such that

(i) uk ⇀ u weakly in (W 2,2
∩W 1,4)(S,Rn),

(ii) uk→ u in C2
loc(S \60,Rn).

Moreover, for each x ∈60 there exist Mx ∈N and biharmonic mappings vx
1 , . . . , v

x
Mx
∈C∞(R4, N ) such

that

lim
k→∞

∫
S
|∇

uk Duk |
2
=

∫
S
|∇

u Du|2+
∑
x∈60

Mx∑
j=1

∫
R4
|∇

vx
j Dvx

j |
2,

lim
k→∞

∫
S
|Duk |

4
=

∫
S
|Du|4+

∑
x∈60

Mx∑
j=1

∫
R4
|Dvx

j |
4.

(3)
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Remarks. (i) By [Moser 2008, Theorem 2.1] the hypothesis (2) is equivalent to the seemingly weaker
hypothesis lim supk→∞

∫
S|∇

uk Duk |
2
+ |Duk |

2 <∞ and also to the seemingly stronger hypothesis

lim sup
k→∞

‖uk‖W 2,2(S,N ) <∞.

(ii) Moser [2008] showed that every biharmonic mapping v∈W 2,2(S, N ) in fact satisfies v∈C∞(S, N ).

(iii) To obtain smoothness of the limiting mapping u as well, one needs a removability result for isolated
singularities of biharmonic mappings. This is derived in Lemma 2.3 below. Another auxiliary result
is the existence of a uniform lower bound on the energy of entire nonconstant biharmonic mappings,
given in Lemma 2.6 below. Analogues of these facts are well known for harmonic mappings and
also for critical points of other higher order functionals; see for example [Wang 2004b].

(iv) The main contribution of Theorem 1.1 are the energy identities of (3). To obtain an equality (and not
just a lower bound for the left hand sides), one has to show that no energy concentrates in a “neck”
region around a concentration point x ∈ 60. This is proven in Section 3 below. Similar results are
known in the context of harmonic mappings; see for example [Jost 1991; Parker 1996; Ding and
Tian 1995; Lin and Rivière 2002]. They are also known for other kinds of biharmonic mappings,
but only if the target manifold is a round sphere, since then the Euler–Lagrange equations enjoy a
special structure [Wang 2004b]. Under the general hypotheses of Theorem 1.1 no such structure
seems available, so a different approach is needed.

Notation. By e1, . . . , e4 we denote the standard basis of R4. We also set er (x) = x/|x | for all x ∈ R4.
By Br (x) we denote the open ball in R4 with center x and radius r . We set Br = Br (0). If A and B
are tensors of the same type, then A · B denotes their scalar product. We will often write ∇Du instead
of ∇u Du, and we identify Rk with its dual (Rk)∗, writing, for example, eα instead of dxα.

2. Proof of Theorem 1.1

We define the energy densities

e1(u)= |Du|4 and e2(u)= |∇Du|2.

(These should not be confused with the unit vectors in R4.) We also set e(u)= e1(u)+e2(u). For U ⊂ S
we define Ei (u;U )=

∫
U ei (u), where i = 1, 2, and we define E(u;U )= E1(u;U )+E2(u;U ).

Theorem 1.1 is a consequence of the following two propositions.

Proposition 2.1. There exists an ε1 > 0 such that the following holds: Let (uk) ⊂ W 2,2(S, N ) be a
sequence of biharmonic mappings (so uk ∈ C∞(S, N )) and assume that u ∈W 2,2(S, N ) is such that

uk ⇀ u weakly in (W 2,2
∩W 1,4)(S,Rn). (4)

Define

60 = {x ∈ S : lim inf
k→∞

E(uk; Br (x))≥ ε1/2 for all r > 0}.
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Then u ∈ C∞(S, N ) is biharmonic and uk → u in C2
loc(S \60, N ). Moreover, there exist functions θ1,

θ2 :60→ (0,∞) such that θ1(x)≥ ε1 for all x ∈60 and

L4
bei (uk)

∗

⇀ L4
bei (u)+

∑
x∈60

θi (x)δ{x} for i = 1, 2 (5)

weakly-∗ in the dual space of C0
0(S).

Remarks. (i) By Remark (i) following Theorem 1.1, the hypothesis (2) implies (4) for a subsequence.

(ii) The measures
∑

x∈60
θi (x)δ{x} are called defect measures. Their common support 60 is empty if

and only if the convergence (4) is strong. In that case the last sum in (5) is defined to be zero.

Proposition 2.2. Let uk , u,60 and θi be as in Proposition 2.1. Then, for each x ∈60, there exists Mx ∈N

and biharmonic mappings vx
1 , . . . , v

x
Mx
∈ C∞(R4, N ) such that θi (x)=

∑Mx
j=1 Ei (v

x
j ;R

4). In particular,

lim
k→∞

Ei (uk; S)= Ei (u; S)+
∑
x∈60

Mx∑
j=1

Ei (v
x
j ;R

4) for i = 1, 2.

For the proof of Proposition 2.1 we need three auxiliary results. The following lemma is a simple
consequence of [Moser 2008, Theorem 2.1]:

Lemma 2.1. There exists a universal constant C such that the following holds: Let r > 0, let u ∈
W 2,2(Br , N ) and let X ∈ L2(Br ,Rn) be a section of u−1T N. If ∇u X ∈ L2(Br ) then X ∈ L4(Br ), and

‖X‖L4(Br ) ≤ C(‖∇u X‖L2(Br )+ r−1
‖X‖L2(Br )).

For u ∈ Ck we introduce the notation [u]Ck (x) =
∑k

j=1|D
j u(x)|1/j . An obvious consequence of

[Scheven 2009, Lemma 5.3] is the following:

Lemma 2.2. There exists ε1> 0 such that, for all r > 0 and for all biharmonic u ∈C∞(Br , N ) satisfying∫
Br

|Du|4 ≤ ε1 we have sup
x∈Br/2

|x |[u]C3(x)≤ 1.

The following lemma shows that isolated singularities of biharmonic mappings are removable.

Lemma 2.3. Let 6 ⊂ S be finite and let u ∈ W 2,2(S, N ) be biharmonic on S \6. Then u is biharmonic
on S. In particular, u ∈ C∞(S, N ).

Proof. This proof closely follows that of [Jost 2005, Lemma 8.5.3]. We assume without loss of generality
that S = B1 and that 6 = {0}. Then (1) is equivalent to∫

B1

∇α∂βu · ∇α∇βφ =
∫

B1

f (u, Du⊗ Du⊗ D2u) ·φ (6)

for some Rn-valued mapping f that is smooth in the first argument and linear in the second argument.
Since u is biharmonic on B1 \{0}, Equation (6) is satisfied for all φ ∈ (L∞∩W 2,2

0 )(B1 \{0},Rn) that are
sections of u−1T N . From the properties of f we deduce that

| f (u, Du⊗ Du⊗ D2u)| ≤ C(|D2u|2+ |Du|4). (7)
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Hence f (u, Du⊗ Du⊗ D2u) ∈ L1(B1,Rn). For small R ∈ (0, 1) we set

τR(t)=


0 for t ∈ [0, R2

],

1− log(t/R)/|log R| for t ∈ [R2, R],
1 for t ∈ [R, 1).

One readily checks that

lim
R→0

∫
B1

|D2τR(|x |)|2+ |DτR(|x |)|4 dx = 0. (8)

Now let φ ∈ (L∞ ∩W 2,2)(B,Rn) be a section of u−1T N . Then, for all R ∈ (0, 1),

φR(x)= τ(|x |)φ(x)

is still a section of u−1T N , and φR ∈ (L∞∩W 2,2
0 )(B1 \ {0},Rn). Hence it is an admissible test function

for (6). Using (7) and (8) it is easy to check that (6) holds for all φ as above, that is, u is biharmonic.
Since u ∈W 2,2(S, N ), Remark (ii) to Theorem 1.1 implies that u ∈ C∞(S, N ). �

Proof of Proposition 2.1. Clearly (4) implies lim supk→∞ E(uk; S) <∞. Hence 60 is finite whatever the
choice of ε1. We choose ε1 as in the statement of Lemma 2.2. Then the Arzèla–Ascoli theorem implies
that uk → u in C2

loc(S \60, N ). Hence u is biharmonic on S \60. Lemma 2.3 therefore implies that
u ∈ C∞(S, N ) and that u is biharmonic on S.

Weak lower semicontinuity of the L2-norm and (4) imply the existence of (positive) Radon measures
µ1 and µ2 on S such that

L4
bei (uk)

∗

⇀ L4
bei (u)+µi for i = 1, 2. (9)

We claim that
µ1({x})≥ ε1 for all x ∈ sptµ1. (10)

In fact, let x ∈ S be such that µ1({x}) < ε1. Then by (9) there exists r > 0 such that

lim sup
k→∞

∫
Br (x)

e1(uk)≤

∫
Br (x)

e1(u)+µ1(Br (x)) < ε1.

Thus uk → u in C2(Br/2(x)) by Lemma 2.2 and the Arzèla–Ascoli theorem. (First only for a subse-
quence, but all subsequences must converge to the same limit u because uk ⇀ u in W 2,2(S,Rn).) Thus
µ1(Br/2(x)) = 0, so x /∈ sptµ1. This proves (10), which in turn implies that sptµ1 is finite and that
µ1 =

∑
x∈sptµ1

θ1(x)δ{x} for a function θ1 : sptµ1→ [ε1,∞).
If x /∈ sptµ1, then (9) implies that

inf
r>0

lim
k→∞

∫
Br (x)

e1(uk)= inf
r>0

∫
Br (x)

e1(u)= 0. (11)

On the other hand, if x ∈ sptµ1 then there exists r > 0 such that B2r (x)∩ sptµ1 = {x} because sptµ1 is
finite. Thus µ(∂Br (x))= 0, and so (9) implies

lim
k→∞

∫
Br (x)

e1(uk)=

∫
Br (x)

e1(u)+µ1({x}).
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We conclude that

inf
r>0

lim
k→∞

∫
Br (x)

e1(uk)= µ1({x}) for all x ∈ S. (12)

Now (12) together with (10) imply that sptµ1 ⊂ 60. On the other hand, if x /∈ sptµ1 then (11) and
Lemma 2.2 imply that there is r>0 such that uk→u on C2(Br (x), N ); hence x /∈ sptµ2 and x /∈60. Thus
sptµ2⊂ sptµ1=60. It remains to check that sptµ1⊂ sptµ2. But (9) implies that, for r ∈ (0, dist∂S(x)),

lim sup
k→∞

∫
Br (x)

(
|Duk |

2

r2 + e2(uk)

)
≤

∫
Br (x)

(
|Du|2

r2 + e2(u)
)
+µ2(Br (x)), (13)

because by Sobolev embedding we have Duk→ Du strongly in L2. If x /∈ sptµ2, then the infimum over
r > 0 of the right side of (13) is zero, since Du ∈ L4. Hence Lemma 2.1 implies that x /∈60. �

For the proof of Proposition 2.2 we will need the following three lemmas:

Lemma 2.4. There exists a modulus of continuity ω (that is, ω ∈ C0([0,∞)) is nondecreasing and
ω(0)= 0) such that, whenever r > 0 and u ∈W 2,2(Br , N ) is biharmonic, then

dist∂Br (x)[u]C3(x)≤ ω
(∫

Br

|Du|4
)

for all x ∈ Br .

Proof. Notice that u ∈ C∞(Br , N ) by Remark (ii) to Theorem 1.1. The claim follows from a scaled
version of [Scheven 2009, Lemma 5.3] and from the fact that, by Jensen’s inequality,(

ρ−2
∫

Bρ(a)
|Du|2

)2
≤

∫
Bρ(a)
|Du|4. �

We will also need the following crucial estimate.

Lemma 2.5. There exists a constant C3 such that the following holds: For all R ∈ (0, 3/8) and for all
biharmonic u ∈ C∞(B1, N ) satisfying

ε := sup
ρ∈(R,1/2)

E(u; B2ρ \ Bρ)≤ C−1
3

we have

E(u; B1 \ BR)≤ C3ω(ε)+ 2ε. (14)

Here, ω is as in the conclusion of Lemma 2.4.

The proof of Lemma 2.5 will be given in Section 3.
Finally, we will need the existence of a uniform lower bound on the energy of nonconstant entire

biharmonic mappings. An analogous fact is well known for harmonic mappings and also for other kinds
of biharmonic mappings; see for example [Wang 2004b].

Lemma 2.6. There exists a constant α > 0 such that E(u;R4) ≥ α for every nonconstant biharmonic
mapping u ∈ C∞(R4, N ).



68 PETER HORNUNG AND ROGER MOSER

Proof. If the claim were false then there would exist nonconstant biharmonic um ∈ C∞(R4, N ) such
that limm→∞ E(um;R

4) = 0. After passing to a subsequence we have Dum → 0 pointwise almost
everywhere. Therefore, since um is nonconstant and since Dum is continuous, there exist xm ∈ R4

such that rm := |Dum(xm)| are nonzero but limm→∞ rm = 0. Define ũm(x) = um(xm + x/rm). Then
E(ũm;R

4) = E(um;R
4) converges to zero as m →∞. By Lemma 2.2 this implies the existence of a

constant mapping u such that ũm→ u in C2
loc(R

4, N ). But on the other hand, |Dũm(0)| = 1 for all m, so
|Du(0)| = 1. This contradiction finishes the proof. �

Proof of Proposition 2.2. By Proposition 2.1 we have uk , u ∈ C∞(S, N ). Since the case 60 = ∅ is
trivial, we assume that 60 is nonempty. After translating, rescaling (the energy E is scaling invariant)
and restricting, we may assume that 60 = {0} and that S = B1. By Proposition 2.1 we have uk ⇀ u
weakly in (W 2,2

∩W 1,4)(B1,Rn) and uk→ u in C2
loc(B1 \ {0}, N ). Moreover, there is some

θ ≥ ε1 (15)

such that

L4
be(uk)

∗

⇀ L4
be(u)+ θδ{0}. (16)

Let ε ∈ (0, 1) be such that C3ω(ε)+ 3ε ≤ min{α/4, ε1/4}, where ω is as in Lemma 2.4, C3 is as in
Lemma 2.5 and ε1 is as in Lemma 2.2. Since u ∈W 2,2(B1,Rn), there exists Q ∈ (0, 1) such that∫

BQ

e(u)≤ ε/2. (17)

We claim that there exists a sequence Rk→ 0 such that, for all k large enough,

E(uk; B2ρ \ Bρ)≤ ε for all ρ ∈ [Rk, Q/2], (18)

E(uk; B2Rk \ BRk )= ε. (19)

In fact, set

Rk = {r ∈ (0, Q/2) : E(uk; B2r \ Br ) > ε}.

If infinitely many of the Rk were empty, Lemma 2.5 would imply that there exists ki →∞ such that
E(uki ; BQ \ Bri ) ≤ C3ω(ε)+ 2ε for any sequence ri → 0. Choosing this sequence in such a way that
E(uki ; Bri )≤ ε for all i , we would conclude that E(uki ; BQ)≤ C3ω(ε)+ 3ε ≤ ε1/4, contradicting (15).

Thus, for k large, Rk 6= ∅ and we can define Rk = sup Rk . Clearly Rk > 0 because
∫

B2r\Br
e(uk) ≤∫

B2r
e(uk)→ 0 as r → 0. On the other hand, Rk → 0, since otherwise ρ = 1

2 lim infk→∞ Rk is positive,
so

lim sup
k→0

∫
B2Rk \BRk

e(uk)≤ lim
k→0

∫
BQ\Bρ

e(uk)=

∫
BQ\Bρ

e(u)≤ ε/2

by (17). This contradicts the fact that Rk is contained in the closure of Rk , which by continuity of
r 7→

∫
B2r\Br

e(uk) implies that
∫

B2Rk \BRk
e(uk) ≥ ε. This also proves (19). Then (18) follows from the

definition of Rk .
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Combining (18) with (a scaled version of) Lemma 2.5, we conclude that

E(uk; BQ \ BRk )≤ C3ω(ε)+ 2ε ≤ α/4. (20)

Set vk(x)= uk(Rk x). Then by (16)

lim sup
k→∞

E(vk; BR)= lim sup
k→∞

E(uk; BR Rk )≤ inf
ρ>0

lim sup
k→∞

E(uk; Bρ)= θ (21)

for all R > 0. Set

6(1) = {x ∈ R4
: lim inf

k→∞
E(vk; Br (x))≥ ε1/2 for all r > 0}.

By (21) we can apply Proposition 2.1 to each BR . We conclude that 6(1) is locally finite and that there
exists a biharmonic mapping v ∈ C∞(R4, N ) such that, after passing to a subsequence, vk ⇀ v weakly
in (W 1,4

loc ∩W 2,2
loc )(R

4,Rn) and

vk→ v in C2
loc(R

4
\6(1),Rn), (22)

and we find that there are a functions θ (1)1 , θ (1)2 :6
(1)
→ (0,∞) such that

L4
bei (vk)

∗

⇀ L4
bei (v)+

∑
x∈6(1)

θ
(1)
i (x)δ{x} for i = 1, 2. (23)

On the other hand, the bound (20) implies that

lim sup
k→∞

E(vk; BR \ B1)≤ C3ω(ε)+ 2ε for all R > 1.

Thus 6(1) ⊂ B1 (so 6(1) is finite) and therefore

vk→ v in C2
loc(R

4
\ B1,Rn)

by (22). From this and since E(vk; B2 \ B1)= E(uk; B2Rk \ B Rk )= ε for all k by (19), we conclude that
E(v;R4)≥ ε. Hence Lemma 2.6 implies that E(v;R4)≥ α.

Claim #1. For all η > 0, there exist R > 1 and ρ ∈ (0, 1) such that

lim inf
k→∞

E(uk; Bρ \ BR Rk )≤ η.

To prove this claim, let us first show that for all δ > 0 there exist R and ρ and a sequence ki →∞

such that

E(uki ; B2r \ Br )≤ δ for all i ∈ N and all r ∈ [R Rki , ρ/2]. (24)

In fact, assume that this were not the case. Then there would exist δ ∈ (0, ε) such that for all R and ρ,
the set

R̂k = {r ∈ [R Rk, ρ/2] : E(uk; B2r \ Br ) > δ}
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is nonempty for all k large enough. We choose R > 2 so large and ρ ∈ (0, Q) so small that

E(v; B4R̂ \ BR̂/2)≤ δ/4 for all R̂ ≥ R, and (25)

E(u; Bρ)≤ δ/4. (26)

This is clearly possible because e(v) ∈ L1(R4). Let R̂k = sup R̂k , hence R̂k ∈ [R Rk, ρ/2]. Arguing as
above for Rk , using (26) one readily checks that R̂k→ 0. We claim that

R̂k/Rk→∞. (27)

Indeed, if this were not the case then (after passing to a subsequence) there would exist R̂ ∈ [R,∞)
such that R̂k/Rk ∈ [R̂/2, 2R̂] for k large enough. Thus by the definition of R̂k and since R̂ ≥ R > 2 and
6(1) ⊂ B1,

δ ≤ lim sup
k→∞

E(uk; B2R̂k
\ BR̂k

)≤ lim sup
k→∞

E(vk; B4R̂ \ BR̂/2).

This contradiction to (25) shows that (27) must be true.
Now define v̂k(x)= uk(R̂k x). As done above for Rk and vk , using the fact that δ ≤ ε, one shows that

there exists a nontrivial biharmonic mapping v̂ ∈ C∞(R4, N ) such that, after passing to a subsequence,
v̂k ⇀ v in (W 2,2

loc ∩W 1,4
loc )(R

4,Rn). Since v̂ is nontrivial, Lemma 2.6 implies that E(v̂;R4) ≥ α. Hence
by (27) and since R̂k→ 0, for all R̂ > 1 we have

lim inf
k→∞

E(uk; Bρ \ BR Rk )≥ lim inf
k→∞

E(uk; BR̂ R̂k
\ BR Rk )

= lim inf
k→∞

E(v̂k; BR̂ \ BR(Rk/R̂k)
)

≥ sup
r>0

lim inf
k→∞

E(v̂k; BR̂ \ Br )≥ E(v̂; BR̂)

because v̂k ⇀v̂ on BR̂ . Taking the supremum over all R̂>1 and recalling that E(v̂;R4)≥α, we conclude
that lim infk→∞ E(uk; Bρ \ BR Rk )≥ α. This contradiction to (20) concludes the proof of (24).

Combining Lemma 2.5 with (24) and choosing δ small enough shows that Claim #1 is true.
The results obtained so far apply to any θ > 0. Now we argue by induction: Assume that m ∈ N

is such that θ ∈ ((m − 1)α,mα]. If m ≥ 2 then assume, in addition, that Proposition 2.2 is true for all
θ ∈ (0, (m− 1)α]. On one hand, for i = 1, 2, for all R ∈ (1,∞) and for all ρ ∈ (0, 1) we have

θi +Ei (u; Bρ)= lim
k→∞

(
Ei (uk; Bρ \ BR Rk )+Ei (uk; BR Rk )

)
≥ lim

k→∞
Ei (vk; BR)

= Ei (v; BR)+
∑

x∈6(1)

θ
(1)
i (x).

(First we used (5) and that µi (∂Bρ) = 0 for all ρ ∈ (0, 1), and then we used (23) together with the fact
that 6(1) ⊂ B1.) Taking ρ→ 0 and R→∞ we conclude

θi ≥ Ei (v;R
4)+

∑
x∈6(1)

θ
(1)
i (x) for both i = 1, 2. (28)
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Hence

θ ≥ E(v;R4)+
∑

x∈6(1)

θ (1)(x). (29)

Since E(v;R4) ≥ α this implies that θ (1)(x) ≤ θ − α for all x ∈ 6(1). If m ≥ 2 we can thus apply the
induction hypothesis to conclude that

θ
(1)
i (x)=

Mx∑
j=1

Ei (v
j
x ;R

4) for both i = 1, 2. (30)

Here v1
x , . . . , v

Mx
x ∈C∞(R4, N ) are biharmonic and Mx ∈ (0,m−1] is a natural number. (If m = 1, then

(29) implies that 6(1) =∅ and that θ = α = E(v;R4). This concludes the proof of the case m = 1.)
On the other hand, for all ρ ∈ (0, 1) and all R > 1,

θ ≤ lim
k→∞

(
E(uk; Bρ \ BR Rk )+E(uk; BR Rk )

)
≤ lim inf

k→∞
E(uk; Bρ \ BR Rk )+ lim

k→∞
E(vk; BR)

= lim inf
k→∞

E(uk; Bρ \ BR Rk )+E(v; BR)+
∑

x∈6(1)

θ (1)(x)δ{x}. (31)

We used that 6(1) ⊂ B1, so limk→∞ E(vk; BR) = E(v; BR)+
∑

x∈6(1) θ
(1)(x)δ{x}. Now let ρ→ 0 and

R→∞ in (31) using Claim #1. We conclude that θ ≤E(v;R4)+
∑

x∈6(1) θ
(1)(x). Thus by (29) and (30),

θ = E(v;R4)+
∑

x∈6(1)

Mx∑
j=1

E(v j
x ;R

4).

Combining this with the inequalities (28) immediately implies that

θi = E(v;R4)+
∑

x∈6(1)

Mx∑
j=1

Ei (v
j
x ;R

4) for both i = 1, 2. �

3. Energy estimates on the “neck” region

The purpose of this section is to prove the following proposition.

Proposition 3.1. There exists a constant C1 such that the following holds: For all R ∈ (0, 1/2) and for
all biharmonic u ∈ C∞(B1, N ) satisfying

ε := sup
x∈B1\B R

|x |[u]C3(x) < 1, (32)

we have ∫
B1\BR

|∇
u Du|2 ≤ C1(ε+E(u; B1 \ BR))ε. (33)
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Corollary 3.1. There exists a constant C2 such that the following holds: For all R ∈ (0, 1/2) and for all
biharmonic u ∈ C∞(B1, N ) satisfying (32), we have∫

B1\BR

|Du|2

|x |2
≤ C2(ε+E(u; B1 \ BR))ε. (34)

If , in addition, ε ≤ 1/(2(C1+C2)), then

E(u; B1 \ BR)≤ 2(C1+C2)ε
2. (35)

Proof. Set ε = supx∈B1\B R
|x |[u]C3(x). By (33) and by (63) from Lemma 5.2, we have∫

B1\B R

|Du|2

|x |2
≤ C1(ε+E(u; B1 \ B R))ε+ 2H3(∂B1)ε

2.

This implies (34) because ε < 1. We clearly have∫
B1\B R

|Du|4 ≤ ε2
∫

B1\B R

|Du|2

|x |2
.

Thus (34) implies that ∫
B1\B R

|Du|4 ≤ C2(ε+E(u; B1 \ B R))ε
3.

Adding this to (33) yields

E(u; B1 \ B R)≤ (C1+C2)ε
2
+ (C1+C2)E(u; B1 \ B R)ε,

because ε < 1. Since ε ≤ 1/(2(C1+C2)), we can absorb the second term into the left hand side. This
yields (35). �

As a consequence of Corollary 3.1 we obtain Lemma 2.5:

Proof of Lemma 2.5. Set ε = supρ∈(R,1/2) E(u; B2ρ \ Bρ). We claim that

|x |[u]C3(x)≤ 4ω(ε) for all x ∈ B1/2 \ B4R/3. (36)

In fact, let x ∈ B1/2 \ B4R/3 and apply Lemma 2.4 to the ball B|x |/4(x). This yields

dist∂B|x |/4(x)(x)[u]C3(x)≤ ω
(∫

B|x |/4(x)
|Du|4

)
.

Since B|x |/4(x)⊂ B3|x |/2 \ B3|x |/4, this implies (36).
Applying (35) (with B1/2 instead of B1 and B4R/3 instead of BR) to (36) implies

E(u; B1/2 \ B4R/3)≤ Cω2(ε) (37)

for some constant C , provided that ε is small enough (since then ω(ε) is small, and so |x |[u]C3(x) is
small by (36)). Finally, note that by definition of ε we have E(u; B1 \ B1/2)+ E(u; B2R \ BR) ≤ 2ε.
Together with (37) and smallness of ω(ε) this implies (14). �
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The rest of this section will be devoted to the proof of Proposition 3.1. We will use the notation

∂r u = eαr ∂αu, Dr u = ∂r u⊗ er , DS3u = Du− Dr u, D2u = (∂α∂βu)⊗ eα ⊗ eβ .

Above and in what follows we tacitly sum over repeated indices. A short calculation shows that

DS3u =
(
|x |∂∂αer u

)
⊗ eα. (38)

Proof of Proposition 3.1. Since u∈C∞(B1, N ), [Scheven 2009, Lemma 4.2] implies that (1) is equivalent
to

12u =−∂αEα[u] +G[u], (39)

where Eα[u] = −∂β(A(u)(∂αu, ∂βu))+ Fα[u], and Fα[u] : S→ (R4)∗⊗Rn and G[u] : S→ Rn are as
in [Scheven 2009, Lemma 4.2], that is, Fα[u] = fα(u,∇Du⊗ Du) for functions fα that are smooth in
the first and linear in the second argument, and G[u] = g1(u,∇Du⊗∇Du)+ g2(u,∇Du⊗ Du⊗ Du)
for functions g1 and g2 that again are smooth in the first and linear in the second argument. Therefore,

|G[u]| ≤ C(|D2u|2+ |Du|4), (40)

|Eα[u]| ≤ C(|D2u||Du| + |Du|3). (41)

For r1 < r2 define the open annulus A(r1, r2) = Br2 \ Br1 and set A = A(R, 1). (This should not be
confused with the second fundamental form of N .) As we will show at the end of this proof, we may
assume without loss of generality that R = 2−L for some integer L > 1.

Define Rk = 2k R and set Ak = A(Rk, Rk+1). Set

ε = sup
x∈B1\B R

|x |[u]C3(x). (42)

Following an idea used in [Sacks and Uhlenbeck 1981] and [Ding and Tian 1995] in the context of
harmonic mappings, we introduce the unique radial mapping q : A→Rn solving the following boundary
value problem for all k = 0, . . . , L:

12q = 0 on Ak, (43)

q(Rk)=
1

H3(∂BRk )

∫
∂BRk

u and q ′(Rk)=
1

H3(∂BRk )

∫
∂BRk

∂r u. (44)

(For a radial function of the form q(x)= q̃(|x |), we often write q instead of q̃.) Notice that q is indeed
well and uniquely defined on each Ak by (43) and (44) because (43) is simply a fourth order ordinary
differential equation on (Rk, Rk+1), since q is radial. (See Lemma 5.1 below for details.) The rest of
this proof is divided into Lemma 3.1 and Lemma 3.2 below. Combining their conclusions one obtains
that of Proposition 3.1.

Let us finally check that the case of arbitrary R ∈ (0, 1) follows from the case when R = 2−L . In fact,
for general R let L be such that 2L R ∈ [ 12 , 1). The definition of ε implies that∫

A(2L R,1)
|∇Du|2 ≤ ε2

∫
A(2L R,1)

|x |−4
≤ ε2H3(∂B1) log 2.
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Applying Proposition 3.1 with B2L R instead of B1, the estimate (33) follows. �

Lemma 3.1. For u, q and R as in the proof of Proposition 3.1 we have∫
A
|D2(u− q)|2 ≤ C

(
ε+

∫
A
|∇

u Du|2+ |Du|4
)
ε, (45)∫

A

|D(u− q)|2

|x |2
≤ C

(
ε+

∫
A
|∇

u Du|2+ |Du|4
)
ε. (46)

Proof. Since q|Ak is a solution of a linear ordinary differential equation with smooth coefficients, it is
C∞ up to the boundary of Ak . Moreover, for r ∈ (Rk, Rk+1), by Lemma 5.1 there exists a universal
constant C such that

|q ′(r)| ≤ C(|q ′(Rk)| + |q ′(Rk+1)| + R−1
k |q(Rk+1)− q(Rk)|). (47)

By (44) and by (42) this implies that |u(x)−q(Rk)| ≤ ‖Du‖L∞(∂BRk )
· diam(∂BRk ) for all x ∈ ∂BRk and

all k. Therefore,
|q(Rk+1)− q(Rk)| ≤ ‖Du‖L∞(Ak) diam Ak ≤ Cε (48)

by (42) and because diam Ak ≤C Rk . Since |x | is comparable to Rk on Ak and since k was arbitrary, we
conclude from (47) and (48) and from (44) and (42) that |x ||Dq(x)| ≤ Cε for all x ∈ A. By (44) and by
(42) this implies that |u− q| ≤ Cε. Summarizing, we have shown that

|(u− q)(x)| + |x ||D(u− q)(x)| ≤ Cε for all x ∈ A. (49)

Notice that while (44) implies that q ∈ C1(A,Rn) and that q|Ak ∈ C∞( Āk,Rn) for all k, in general
q /∈ C2(A;Rn).

By partial integration one obtains, for arbitrary v ∈ C2( Āk,Rn),∫
Ak

|D2v|2 =

∫
Ak

(∂α∂βv) · (∂α∂βv)=

∫
Ak

(12v) · v+

[∫
∂Ak

(∂r∂βv) · ∂βv− (∂r1v) · v

]Rk+1

r=Rk

.

Here and below we use the notation [
f (r)

]t2
r=t1
:= f (t2)− f (t1)

for functions f ∈ C0([t1, t2]). Inserting v = u− q and summing over k = 0, . . . , L yields∫
A
|D2(u− q)|2 =

∫
A
(12u) · (u− q)

+

L∑
k=0

[∫
∂Bρ
(∂r∂β(u− q)) · ∂β(u− q)− (∂r1(u− q)) · (u− q)

]Rk+1

ρ=Rk

=

∫
A
(12u) · (u− q)+

[∫
∂Bρ

∂r∂βu · ∂β(u− q)− ∂r1u · (u− q)
]1

ρ=R

−

L∑
k=0

[∫
∂Bρ
(∂r∂r q)(ρ) · ∂r (u− q)(x)− (∂r1q)(ρ) · (u− q)(x) dH3(x)

]Rk+1

ρ=Rk

. (50)
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In the first step we used that 12q = 0 on Ak . In the last step we used that the boundary integrals with
continuous integrands cancel successively, and we used that q is radial. Since q is radial, the same is
true for ∂r∂r q and ∂r1q; see (60). The choice of boundary conditions (44) implies that

(∂r∂r q)(ρ) ·
∫
∂Bρ

∂r (u− q)(x) dH3(x)= 0 and (∂r1q)(ρ) ·
∫
∂Bρ
(u− q)(x) dH3(x)= 0

for all ρ ∈ {R0, R1, . . . , RL}. So the sum in the last term in (50) is zero. (The discontinuous expressions
q ′′ = ∂r∂r q and q ′′′ occurring in ∂r1q must be understood in the trace sense: If ∂BRk belongs to ∂Ak

then q ′′(Rk) = limr↑Rk q ′′(r) and if ∂BRk belongs to ∂Ak+1 then q ′′(Rk) = limr↓Rk q ′′(r). These limits
exists because, as noted above, q|Ak is smooth up to the boundary of Ak .)

To estimate the second term in (50) we use (49) and (42). This gives∫
∂Br

|∂r∂βu||∂β(u− q)| ≤ CH3(∂Br )
ε

r2
ε

r
≤ Cε2.

Similarly,
∫
∂Br
|∂r1u||u− q| ≤ Cε2. Thus (50) implies∫

A
|D2(u− q)|2 ≤

∣∣∣∫
A
(12u) · (u− q)

∣∣∣+Cε2. (51)

To estimate the term
∣∣∫

A(1
2u) · (u− q)

∣∣ in (51), we use (39) to replace 12u. We obtain∫
A
(12u) · (u− q)=

∫
A
(−∂αEα[u]) · (u− q)+G[u] · (u− q)

=

∫
A

Eα[u] · ∂α(u− q)+
∫

A
G[u] · (u− q)−

[∫
∂Br

xα
|x |

Eα[u] · (u− q)
]1

r=R
. (52)

To estimate the last term in (52) we simply use that |Eα[u]| ≤ |D2u||Du|+ |Du|3 ≤Cε2/|x |3 pointwise
by (41). Thus ∫

∂Br

|Eα[u]||u− q| ≤ Cε3H3(∂Br )r−3
≤ Cε3

for both r = 1 and r = R.
To estimate the second term in (52), we use (40) and (49) to find∫

A
|G[u]||u− q| ≤ Cε

∫
A
(|D2u|2+ |Du|4).

To estimate the first term in (52) notice that by (41) and by (49) we have∫
A
|Eα[u]||D(u− q)| ≤ Cε

∫
A
|D2u|

|Du|
|x |
+
|Du|3

|x |
≤ Cε

∫
A

(
|D2u|2+ |Du|4+

|Du|2

|x |2

)
. (53)

Applying Lemma 5.2 to v = u with r1 = R and r2 = 1, we have∫
A

|Du|2

|x |2
≤

∫
A
|D2u|2+

[
1
r

∫
∂Br

|Du|2
]1

r=R
.
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The boundary terms can be estimated as above using the definition of ε, Thus∫
A

|Du|2

|x |2
≤

∫
A
|D2u|2+Cε2.

So (53) implies ∫
A
|Eα[u]||D(u− q)| ≤ Cε

(
ε2
+

∫
A
|D2u|2+ |Du|4

)
.

Since |D2u|2 ≤ C(N )(|∇Du|2 + |Du|4) for some constant C(N ) depending only on the immersion
N ↪→ Rn , this concludes the proof of (45).

To prove (46) we apply Lemma 5.2 to each restriction (u− q)|Ak . This yields∫
Ak

|D(u− q)|2

|x |2
≤

∫
Ak

|D2(u− q)|2+
[

1
r

∫
∂Br

|D(u− q)|2
]Rk+1

r=Rk

.

When we sum over k = 0, . . . , L , the terms in square brackets cancel successively because D(u− q) is
continuous. After estimating the boundary terms on ∂B1 and on ∂BR using (42), this yields (46). �

Lemma 3.2. For u, q and R as in the proof of Proposition 3.1 we have∫
A(R,1)

|D2(u− q)|2 ≥
(1

2
−

√
2

3

) ∫
A(R,1)

|∇
u Du|2−C

(
ε+

∫
A
|∇

u Du|2+ |Du|4
)
ε.

Proof. For v ∈ C∞(S,Rn) we have

D2v = DDS3v+ DDrv,

where DS3v = Dv− Drv. Thus

|D2v|2 ≥ |DDS3v|2+ 2D(Dv− Drv) · DDrv. (54)

Now D(Dv− Drv) · DDrv equals

∂α((∂βv)⊗ (eβ − eβr er )) · ∂α(∂γ v⊗ eγr er )

=
(
(∂α∂βv)⊗ (eβ − eβr er )− (∂βv)⊗ ∂α(eβr er )

)
·
(
(∂α∂γ v)⊗ eγr er + (∂γ v)⊗ ∂α(eγr er )

)
=
(
(∂α∂βv)⊗ (eβ − eβr er )

)
·
(
(∂γ v)⊗ ∂α(eγr er )

)
− |(∂βv)⊗ ∂α(eβr er )|

2
− (∂βv)⊗ ∂α(eβr er ) · (∂α∂γ v)⊗ eγr er

=
(
(∂α∂βv)⊗ (eβ − eβr er )

)
·
(
(∂rv)⊗ (∂αer )

)
− |(∂βv)⊗ ∂α(eβr er )|

2
− (∂βv)⊗ (∂αeβr )er · (∂α∂γ v)⊗ eγr er

= (∂∂αer ∂αv) · (∂rv)− |∂βv|
2
|∂α(eβr er )|

2
− ∂∂αer v · (∂r∂αv).

This shows that

D(Dv− Drv) · DDrv ≥−2|Der ||D2v||Dv| − 2|Dv|2|Der |
2

≥−(|D2v|2+C |Der |
2
|Dv|2) (55)
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for some universal constant C > 0. Since |Der (x)|2 = 3/|x |2, inserting (55) into the estimate (54) yields

3|D2v|2 ≥ |DDS3v|2−C |Dv|2/|x |2.

Inserting v = u− q , integrating and using that DS3q = 0 gives

3
∫
|D2(u− q)|2 ≥

∫
|DDS3u|2−C

∫
|D(u− q)|2

|x |2

≥

∫
|∇Du−∇Dr u|2−C

∫
|D(u− q)|2

|x |2

≥

(
1− 1
√

2

) ∫
|∇Du|2+ (1−

√
2)
∫
|∇Dr u|2−C

∫
|D(u− q)|2

|x |2
.

In the second step we used that
Du = DS3u+ Dr u

and the trivial estimate |D f | ≥ |∇u f |. By (58) the last line equals( 3
2 −
√

2
) ∫
|∇Du|2+ (

√
2− 1)

∫
|∇

u(|x |∂r u)|2

|x |2
−C

∫
|D(u− q)|2

|x |2

+
1−
√

2
2

[∫
∂Br

(
3
r
|Du|2+ 2(∇u

r ∂r u) · ∂r u− 2
r
|∂r u|2

)
dH3

]1

r=R
.

The claim follows by dropping the second term, which is nonnegative, and noticing that the fourth term
is dominated by ε2 by (42) while, by (46), the third term is dominated by

ε(ε+

∫
A
|∇Du|2+ |Du|4). �

4. An equality for stationary biharmonic mappings

The following lemma is true for mappings that are stationary with respect to the energy E2 in the sense of
[Moser 2008]. We do not need the precise definition here. We only remark that every smooth biharmonic
mapping is also stationary. Therefore by Remark (ii) to Theorem 1.1, every u ∈ W 2,2(S, N ) that is
biharmonic is also stationary. To recall the monotonicity formula from [Moser 2008], for u∈W 2,2(B1, N )
we define

F(r)= 1
4

∫
Br

|∇Du|2+ 1
4

∫
∂Br

(
3
r
|Du|2+ 2(Dr∂r u · ∂r u)

)
dH3.

Theorem 3.1 in [Moser 2008] (see also [Hornung and Moser 2012]) then states that, if u ∈ W 2,2(S, N )
is stationary, then

F(r2)−F(r1)=

∫
Br2\Br1

(
|∇

u
|x |∂r u(x)|2

|x |2
+ 2
|∂r u(x)|2

|x |2
dx
)

(56)

for almost all r1, r2 with 0< r1 ≤ r2 ≤ 1. As a corollary to this fact we obtain the following lemma:
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Lemma 4.1. Let u ∈W 2,2(B1, N ) be stationary and let R ∈ (0, 1). Then∫
B1\BR

|∇
u Dr u|2 =

∫
B1\BR

(1
4
|∇

u Du|2+ 2
|∂r u|2

|x |2

)

+
1
4

[∫
∂Br

(
3
r
|Du|2− 4

r
|∂r u|2+ 2(∇u

r ∂r u) · ∂r u
)

dH3
]1

r=R
(57)

=

∫
B1\BR

(
1
2
|∇

u Du|2−
|∇

u(|x |∂r u)|2

|x |2

)

+
1
2

[∫
∂Br

(3
r
|Du|2+ 2(∇u

r ∂r u) · ∂r u− 2
r
|∂r u|2

)
dH3

]1

r=R
. (58)

We remark that Lemma 4.1 can be regarded as a biharmonic counterpart of [Sacks and Uhlenbeck
1981, Lemma 3.5].

Proof. First notice that |∇Dr u|2 = |∇∂r u|2+ |Der |
2
|∂r u|2 and that |Der |

2
= 3/|x |2. Moreover, a short

calculation using (38) shows that |x |∇∂r u =∇(|x |∂r u)− Dr u. Using these facts we calculate

|∇Dr u|2 =
∣∣∣∇(|x |∂r u)
|x |

−
Dr u
|x |

∣∣∣2+ |Der |
2
|∂r u|2

=
|∇(|x |∂r u)|2

|x |2
+ 4
|∂r u|2

|x |2
−

2
|x |2

D(|x |∂r u) · Dr u

=
|∇(|x |∂r u)|2

|x |2
+ 4
|∂r u|2

|x |2
− div

(
|∂r u|2

|x |2
x
)
. (59)

Integrating over B1 \ BR and using (56) we obtain (57). On the other hand, (59) clearly equals

2
(
|∇(|x |∂r u)|2

|x |2
+ 2
|∂r u|2

|x |2

)
−
|∇(|x |∂r u)|2

|x |2
− div

(
|∂r u|2

|x |2
x
)
.

Integrating this over B1 \ BR and using (56) we obtain (58). �

5. Appendix

Lemma 5.1. There exists a universal constant C4 such that for all R > 0 and for all radial solutions
q ∈ C∞(B2R \ B R,Rn) of the equation 12q = 0 on B2R \ B R , the following estimate holds:

‖q ′‖C0(B2R\B R,Rn) ≤ C4
(
|q ′(R)| + |q ′(2R)| + R−1

|q(2R)− q(R)|
)
.

Proof. After rescaling we may assume without loss of generality that R = 1. Since

1q(x)= 3
q ′(|x |)
|x |
+ q ′′(|x |), (60)

we see that 12q = 0 is equivalent to q ′ being a solution of the third order system

3
t

(3 f (t)
t
+ f ′(t)

)′
+

(3 f (t)
t
+ f ′(t)

)′′
= 0. (61)
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Denote by X ⊂ C∞(B2 \ B1,Rn) the (at most three dimensional) subspace of solutions to (61). Denote
by L : X→ R3 the functional given by L f = ( f (1), f (2),

∫ 2
1 f ). We claim that L is surjective.

In fact, let a ∈ R3. By the direct method it is easy to see that the functional v 7→
∫

B2\B1
|∇

2v|2 has a
minimizer in the class of all radial v ∈ W 2,2 satisfying v′(1)= a1 and v′(2)= a2 and v(2)− v(1)= a3.
This minimizer q satisfies the Euler–Lagrange equation 12q = 0, so its radial derivative q ′ solves the
ODE (61). Thus q ′ ∈ X and Lq ′ = a. This proves surjectivity of L .

Hence X is three dimensional and L is in fact bijective. Since all norms on X are equivalent and since
the inverse of L is of course bounded, we conclude that ‖ f ‖C0((1,2),Rn) ≤ C |L f | for all f ∈ X . This
implies the claim. �

Lemma 5.2. Let 0< r1 < r2 ≤ 1 and assume that v ∈W 2,2(Br2 \ Br1,Rn). Then∫
Br2\Br1

|Dv|2

|x |2
≤

∫
Br2\Br1

|D2v|2+

[
1
r

∫
∂Br

|Dv|2
]r2

r=r1

. (62)

If v ∈W 2,2(Br2 \ Br1, N ) then∫
Br2\Br1

|Dv|2

|x |2
≤

∫
Br2\Br1

|∇
vDv|2+

[
1
r

∫
∂Br

|Dv|2
]r2

r=r1

. (63)

Proof. For v ∈ C2(A(r1, r2),Rn) we have

2
|Dv|2

|x |2
= div

(
|Dv|2

|x |2
x
)
−
∂r |Dv|2

|x |
.

Hence if Dv is continuous up to the boundary of A(r1, r2) then

2
∫

A(r1,r2)

|Dv|2

|x |2
=−

∫
A(r1,r2)

∂r |Dv|2

|x |
+

[∫
∂Br

|Dv|2

|x |2
x ·

x
|x |

]r2

r=r1

=−2
∫

A(r1,r2)

(∂r∂αv) ·
∂αv

|x |
+

[
1
r

∫
∂Br

|Dv|2
]r2

r=r1

. (64)

By density and by continuity of the trace operator, this equality remains true for v ∈W 2,2(A(r1, r2),Rn).
We conclude that

2
∫

A(r1,r2)

|Dv|2

|x |2
≤

∫
A(r1,r2)

|D2v|2+

∫
A(r1,r2)

|Dv|2

|x |2
+

[
1
r

∫
∂Br

|Dv|2
]r2

r=r1

.

Absorbing the second term on the right into the left hand side yields (62).
If v takes values in N then the first term on the right hand side of (64) equals

−2
∫

A(r1,r2)

(∇vr ∂αv) ·
∂αv

|x |

because ∂αv(x) ∈ Tv(x)N for all x . Estimating as above yields (63). �
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THE WAVE EQUATION ON ASYMPTOTICALLY
ANTI DE SITTER SPACES

ANDRÁS VASY

In this paper we describe the behavior of solutions of the Klein–Gordon equation, (�g + λ)u = f ,
on Lorentzian manifolds (X◦, g) that are anti de Sitter-like (AdS-like) at infinity. Such manifolds are
Lorentzian analogues of the so-called Riemannian conformally compact (or asymptotically hyperbolic)
spaces, in the sense that the metric is conformal to a smooth Lorentzian metric ĝ on X , where X has a
nontrivial boundary, in the sense that g = x−2ĝ, with x a boundary defining function. The boundary is
conformally timelike for these spaces, unlike asymptotically de Sitter spaces studied before by Vasy and
Baskin, which are similar but with the boundary being conformally spacelike.

Here we show local well-posedness for the Klein–Gordon equation, and also global well-posedness
under global assumptions on the (null)bicharacteristic flow, for λ below the Breitenlohner–Freedman
bound, (n−1)2/4. These have been known before under additional assumptions. Further, we describe the
propagation of singularities of solutions and obtain the asymptotic behavior (at ∂X ) of regular solutions.
We also define the scattering operator, which in this case is an analogue of the hyperbolic Dirichlet-
to-Neumann map. Thus, it is shown that below the Breitenlohner–Freedman bound, the Klein–Gordon
equation behaves much like it would for the conformally related metric, ĝ, with Dirichlet boundary
conditions, for which propagation of singularities was shown by Melrose, Sjöstrand and Taylor, though
the precise form of the asymptotics is different.

1. Introduction

In this paper we consider asymptotically anti de Sitter (AdS) type metrics on n-dimensional manifolds
with boundary X for n ≥ 2. We recall the actual definition of AdS space below, but for our purposes
the most important feature is the asymptotic form of the metric on these spaces, so we start by making
a bold general definition. Thus, an asymptotically AdS type space is a manifold with boundary X such
that X◦ is equipped with a pseudo-Riemannian metric g of signature (1, n−1) that near the boundary Y
of X is of the form

g = −dx2
+h

x2 , (1-1)

where h is a smooth symmetric 2-cotensor on X such that X = Y ×[0, ε)x with respect to some product
decomposition of X near Y , and h|Y is a section of T ∗Y⊗T ∗Y (rather than merely1 T ∗Y X⊗T ∗Y X ) and is a

This work is partially supported by the National Science Foundation under grant DMS-0801226, and a Chambers Fellowship
from Stanford University.
MSC2000: 35L05, 58J45.
Keywords: asymptotics, wave equation, anti de Sitter space, propagation of singularities.

1In fact, even this most general setting would necessitate only minor changes, except that the “smooth asymptotics” of
Proposition 8.10 would have variable order, and the restrictions on λ that arise here, λ< (n−1)2/4, would have to be modified.
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Lorentzian metric on Y (with signature (1, n−2)). Note that Y is timelike with respect to the conformal
metric

ĝ = x2g, so ĝ =−dx2
+ h near Y,

that is, the dual metric Ĝ of ĝ is negative definite on N ∗Y , that is, on span{dx}, in contrast with the
asymptotically de Sitter-like setting studied in [Vasy 2010b] when the boundary is spacelike. Moreover,
Y is not assumed to be compact; indeed, under the assumption (TF) below, which is useful for global
well-posedness of the wave equation, it never is. Let the wave operator �=�g be the Laplace–Beltrami
operator associated to this metric, and let

P = P(λ)=�g + λ

be the Klein–Gordon operator, where λ ∈ C. The convention with the positive sign for the “spectral
parameter” λ preserves the sign of λ relative to the dx2 component of the metric in both the Riemannian
conformally compact and the Lorentzian de Sitter-like cases, and hence is convenient when describing
the asymptotics. We remark that if n = 2 then up to a change of the (overall) sign of the metric, these
spaces are asymptotically de Sitter, and hence the results of [Vasy 2010b] apply. However, some of the
results are different even then, since in the two settings the role of the time variable is reversed, so the
formulation of the results differs as the role of “initial” and “boundary” conditions changes.

These asymptotically AdS metrics are also analogues of the Riemannian ‘conformally compact’, or
asymptotically hyperbolic, metrics, introduced by Mazzeo and Melrose [1987] in this form, which are
of the form x−2(dx2

+ h) with dx2
+ h smooth Riemannian on X , and h|Y a section of T ∗Y ⊗ T ∗Y .

These have been studied extensively, in part due to the connection to AdS metrics (so some phenomena
might be expected to be similar for AdS and asymptotically hyperbolic metrics) and their Riemannian
signature, which makes the analysis of related PDE easier. We point out that hyperbolic space actually
solves the Riemannian version of Einstein’s equations, while de Sitter and anti de Sitter space satisfy
the actual hyperbolic Einstein equations. We refer to [Fefferman and Graham 1985; Graham and Lee
1991; Anderson 2008] among others for analysis on conformally compact spaces. We also refer to
[Witten 1998; Graham and Witten 1999; Graham and Zworski 2003] and references therein for results
in the Riemannian setting that are of physical relevance. There is also a large body of literature on
asymptotically de Sitter spaces. Among others, Anderson and Chruściel studied the geometry of asymp-
totically de Sitter spaces [Anderson 2004; 2005; Anderson and Chruściel 2005], while in [Vasy 2010b]
the asymptotics of solutions of the Klein–Gordon equation were obtained, and in [Baskin 2010] the
forward fundamental solution was constructed as a Fourier integral operator. It should be pointed out that
the de Sitter–Schwarzschild metric in fact has many similar features with asymptotically de Sitter spaces
(in an appropriate sense, it simply has two de Sitter-like ends). A weaker version of the asymptotics in
this case is contained in the works of Dafermos and Rodnianski [2005; 2009; 2007] (they also study a
nonlinear problem), and local energy decay was studied by Bony and Häfner [2008], in part based on
the stationary resonance analysis of Sá Barreto and Zworski [1997]; stronger asymptotics (exponential
decay to constants) was shown in a series of papers with Antônio Sá Barreto, Richard Melrose and the
author [Melrose et al. 2011; 2008].
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For the universal cover of AdS space itself, the Klein–Gordon equation was studied by Breitenlohner
and Freedman [1982a; 1982b], who showed its solvability for λ < (n − 1)2/4, n = 4, and uniqueness
for λ < 5/4, in our normalization. Analogues of these results were extended to the Dirac equation by
Bachelot [2008]; and on exact AdS space there is an explicit solution due to Yagdjian and Galstian
[2009]. Finally, for a class of perturbations of the universal cover of AdS, which still possess a suitable
Killing vector field, Holzegel [2010] showed well-posedness for λ< (n−1)2/4 by imposing a boundary
condition; see [Holzegel 2010, Definition 3.1]. He also obtained certain estimates on the derivatives of
the solution, as well as pointwise bounds.

Below we consider solutions of Pu=0, or indeed Pu= f with f given. Before describing our results,
first we recall a formulation of the conformal problem, namely ĝ = x2g, so ĝ is Lorentzian smooth on
X , and Y is timelike — at the end of the introduction we give a full summary of basic results in the
“compact” and “conformally compact” Riemannian and Lorentzian settings, with spacelike as well as
timelike boundaries in the latter case. Let

P̂ =�ĝ;

adding λ to the operator makes no difference in this case (unlike for P). Suppose that S is a spacelike
hypersurface in X intersecting Y (automatically transversally). Then the Cauchy problem for the Dirichlet
boundary condition,

P̂u = f, u|Y = 0, u|S = ψ0, V u|S = ψ1,

with f , ψ0, ψ1 given, V a vector field transversal to S, is locally well-posed (in appropriate function
spaces) near S. Moreover, under a global condition on the generalized broken bicharacteristic (or GBB)
flow and S, which we recall below in Definition 1.1, the equation is globally well-posed.

Namely, the global geometric assumption is that

there exists t ∈ C∞(X) such that for every GBB γ, the map t ◦ ρ ◦ γ : R→ R

is either strictly increasing or strictly decreasing and has range R,
(TF)

where ρ : T ∗X→ X is the bundle projection. In the formulation above of the problem, we would assume
that S is a level set, t = t0; note that locally this is always true in view of the Lorentzian nature of the
metric and the conditions on Y and S. As is often the case in the presence of boundaries — see for
example [Hörmander 1985, Theorem 24.1.1] and the subsequent remark — it is convenient to consider
the special case of the Cauchy problem with vanishing initial data and f supported to one side of S, say
in t ≥ t0; one can phrase this as solving

P̂u = f, u|Y = 0, supp u ⊂ {t ≥ t0}.

This forward Cauchy problem is globally well-posed for f ∈ L2
loc(X) and u ∈ Ḣ 1

loc(X), and the analogous
statement also holds for the backward Cauchy problem. Here we use Hörmander’s notation Ḣ 1(X) [1985,
Appendix B] to avoid confusion with the “zero Sobolev spaces” H s

0 (X), which we recall momentarily.
In addition, (without any global assumptions) singularities of solutions, as measured by the b-wave
front set, WFb, relative to either L2

loc(X) or Ḣ 1
loc(X), propagate along GBB as was shown by Melrose,
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Sjöstrand and Taylor [Melrose and Sjöstrand 1978; 1982; Taylor 1976; Melrose and Taylor 1985]; see
also [Sjöstrand 1980] in the analytic setting. Here recall that in X◦, bicharacteristics are integral curves
of the Hamilton vector field Hp (on T ∗X◦\o) of the principal symbol p̂= σ2(P̂) inside the characteristic
set,

6 = p̂−1({0}).

We also recall that the notion of a C∞ and an analytic GBB is somewhat different due to the behavior at
diffractive points, with the analytic definition being more permissive (that is, weaker). Throughout this
paper we use the analytic definition, which we now recall.

First, we need the notion of the compressed characteristic set 6̇ of P̂ . This can be obtained by replacing
T ∗Y X in T ∗X by its quotient T ∗Y X/N ∗Y , where N ∗Y is the conormal bundle of Y in X . One denotes then
by 6̇ the image π̂(6) of 6 in this quotient. One can give a topology to 6̇, making a set O open if and
only if π̂−1(O) is open in 6. This notion of the compressed characteristic set is rather intuitive, since
working with the quotient encodes the law of reflection: Points with the same tangential but different
normal momentum at Y are identified, which, when combined with the conservation of kinetic energy
(that is, working on the characteristic set) gives the standard law of reflection. However, it is very useful
to introduce another (equivalent) definition already at this point since it arises from structures that we
also need.

The alternative point of view (which is what one needs in the proofs) is that the analysis of solutions of
the wave equation takes place on the b-cotangent bundle, bT ∗X (‘b’ stands for boundary), introduced by
Melrose. See [Melrose 1993] for a very detailed description, and [Vasy 2008c] for a concise discussion.
Invariantly one can define bT ∗X as follows. First, let Vb(X) be the set of all C∞ vector fields on X tangent
to the boundary. If (x, y1, . . . , yn−1) are local coordinates on X , with x defining Y , then elements of
Vb(X) have the form

a x∂x +

n−1∑
j=1

b j ∂y j , (1-2)

with a and b j smooth. It follows immediately that Vb(X) is the set of all smooth sections of a vector
bundle bT X , and x, y j , a, b j for j = 1, . . . , n−1 give local coordinates in terms of (1-2). Then bT ∗X is
defined as the dual bundle of bT X . Thus, points in the b-cotangent bundle, bT ∗X , of X are of the form

ξ
dx
x
+

n−1∑
j=1

ζ j dy j ,

so (x, y, ξ , ζ ) give coordinates on bT ∗X . There is a natural map π : T ∗X → bT ∗X induced by the
corresponding map between sections,

ξ dx +
n−1∑
j=1

ζ j dy j = (xξ)
dx
x
+

n−1∑
j=1

ζ j dy j .
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Thus
π(x, y, ξ, ζ )= (x, y, xξ, ζ ), (1-3)

that is, ξ = xξ and ζ = ζ . Over the interior of X we can identify T ∗X◦X with bT ∗X◦X , but this identification
π becomes singular (no longer a diffeomorphism) at Y . We denote the image of 6 under π by

6̇ = π(6),

called the compressed characteristic set. Thus, 6̇ is a subset of the vector bundle bT ∗X , and hence is
equipped with a topology that is equivalent to the one define by the quotient; see [Vasy 2008c, Section 5].
The definition of analytic GBB is then as follows:

Definition 1.1. Generalized broken bicharacteristics, or GBB, are continuous maps γ : I → 6̇, where I
is an interval, satisfying that for all f ∈ C∞(bT ∗X) real valued,

lim inf
s→s0

( f ◦ γ)(s)− ( f ◦ γ)(s0)

s− s0
≥ inf{Hp(π

∗ f )(q) : q ∈ π−1(γ(s0))∩6}.

Since the map p 7→Hp is a derivation, Hap= aHp at6, so bicharacteristics are merely reparametrized
if p is replaced by a conformal multiple. In particular, if P is the Klein–Gordon operator �g +λ for an
asymptotically AdS-metric g, the bicharacteristics over X◦ are, up to reparametrization, those of ĝ. We
make this into our definition of GBB.

Definition 1.2. The compressed characteristic set 6̇ of P is that of �ĝ.
Generalized broken bicharacteristics, or GBB, of P are GBB in the analytic sense of the smooth

Lorentzian metric ĝ.

We now give a formulation for the global problem. For this purpose we need to recall one more
class of differential operators in addition to Vb(X) (which is the set of C∞ vector fields tangent to the
boundary). Namely, we denote the set of C∞ vector fields vanishing at the boundary by V0(X). In local
coordinates (x, y), these have the form

a x∂x +

n∑
j=1

b j (x∂y j ), with a, b j ∈ C∞(X); (1-4)

see (1-2). Again, V0(X) is the set of all C∞ sections of a vector bundle 0T X , which over X◦ can be
naturally identified with TX◦X ; see [Mazzeo and Melrose 1987] for a detailed discussion of 0-geometry
and analysis and [Vasy 2010b] for a summary. We then let Diffb(X) and Diff0(X) be the set of differential
operators generated by Vb(X) and V0(X), respectively, that is, they are locally finite sums of products
of these vector fields with C∞(X)-coefficients. In particular,

P =�g + λ ∈ Diff2
0(X),

which explains the relevance of Diff0(X). This can be seen easily from g being in fact a nondegenerate
smooth symmetric bilinear form on 0T X ; the conformal factor x−2 compensates for the vanishing factors
of x in (1-4), so in fact this is exactly the same statement as ĝ being Lorentzian on T X .
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Let H k
0 (X) denote the zero-Sobolev space relative to

L2(X)= L2
0(X)= L2(X, dg)= L2(X, x−ndĝ);

so if k ≥ 0 is an integer then

u ∈ H k
0 (X) if and only if Lu ∈ L2(X) for all L ∈ Diffk

0(X);

negative values of k give Sobolev spaces by dualization. For our problem, we need a space of “very nice”
functions corresponding to Diffb(X). We obtain this by replacing C∞(X) with the space of conormal
functions to the boundary relative to a fixed space of functions, in this case H k

0 (X), that is, functions
v ∈ H k

0,loc(X) such that Qv ∈ H k
0,loc(X) for every Q ∈Diffb(X) (of any order). The finite order regularity

version of this is H k,m
0,b (X), which is given for m ≥ 0 integer by

u ∈ H k,m
0,b (X) if and only if u ∈ H k

0 (X) and Qu ∈ H k
0 (X) for all Q ∈ Diffm

b (X),

while for m < 0 integer, u ∈ H k,m
0,b (X) if u =

∑
Q j u j , u j ∈ H k,0

0,b (X), and Q j ∈ Diffm
b (X). Thus,

H−k,−m
0,b (X) is the dual space of H k,m

0,b (X), relative to L2
0(X). Note that in X◦, there is no distinction

between Vb(X), V0(X), or indeed simply V(X) (smooth vector fields on X ), so over compact subsets
K of X◦, H k,m

0,b (X) is the same as H k+m(K ). On the other hand, at Y = ∂X , H k,m
0,b (X) distinguishes

precisely between regularity relative to V0(X) and Vb(X).
Although the finite speed of propagation means that the wave equation has a local character in X , and

thus compactness of the slices t = t0 is immaterial, it is convenient to assume that

the map t : X→ R is proper. (PT)

Even as stated, the propagation of singularities results (which form the heart of the paper) do not assume
this, and the assumption is made elsewhere merely to make the formulation and proof of the energy
estimates and existence slightly simpler, in that one does not have to localize in spatial slices this way.

Suppose λ < (n− 1)2/4. Suppose

f ∈ H−1,1
0,b,loc(X) and supp f ⊂ {t ≥ t0}. (1-5)

We want to find u ∈ H 1
0,loc(X) such that

Pu = f and supp u ⊂ {t ≥ t0}. (1-6)

We show that this is locally well-posed near S. Moreover, under the previous global assumption on GBB,
this problem is globally well-posed:

Theorem 1.3 (see Theorem 4.16). Assume that (TF) and (PT) hold. Suppose λ < (n − 1)2/4. The
forward Dirichlet problem (1-6) has a unique global solution u ∈ H 1

0,loc(X), and for all compact K ⊂ X
there exists a compact K ′⊂ X and a constant C > 0 such that for all f as in (1-5), the solution u satisfies

‖u‖H1
0 (K )
≤ C‖ f ‖H−1,1

0,b (K ′).
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Remark 1.4. In fact, one can be quite explicit about K ′ in view of (PT), since u|t∈[t0,t1] can be estimated
by f |t∈I , with I open and containing [t0, t1].

We also prove microlocal elliptic regularity and describe the propagation of singularities of solutions,
as measured by WFb relative to H 1

0,loc(X). We define this notion in Definition 5.9 and discuss it there in
more detail. However, we recall the definition of the standard wave front set WF on manifolds without
boundary X that immediately generalizes to the b-wave front set WFb. Thus, one says that q ∈ T ∗X \ o
is not in the wave front set of a distribution u if there exists A ∈ 90(X) such σ0(A)(q) is invertible
and Q Au ∈ L2(X) for all Q ∈ Diff(X)— this is equivalent to Au ∈ C∞(X) by the Sobolev embedding
theorem. Here L2(X) can be replaced by H m(X) instead, with m arbitrary. Moreover, WFm can also be
defined analogously, by requiring Au ∈ L2(X) for A ∈9m(X) elliptic at q . Thus, q /∈WF(u) means that
u is ‘microlocally C∞ at q’, while q /∈WFm(u) means that u is ‘microlocally H m at q’.

In order to microlocalize H k,m
0,b (X), we need pseudodifferential operators, here extending Diffb(X) (as

that is how we measure regularity). These are the b-pseudodifferential operators A ∈9m
b (X) introduced

by Melrose; their principal symbol σb,m(A) is a homogeneous degree m function on bT ∗X \o. See again
[Melrose 1993; Vasy 2008c]. Then we say that q ∈ bT ∗X \o is not in WFk,∞

b (u) if there exists A∈90
b (X)

with σb,0(A)(q) invertible and such that Au is H k
0 -conormal to the boundary. One also defines WFk,m

b (u):
We say q /∈WFm

b (u) if there exists A ∈9m
b (X) with σb,0(A)(q) invertible and such that Au ∈ H k

0,loc(X).
One can also extend these definitions to m < 0.

With this definition we have the following theorem:

Theorem 1.5 (see Proposition 7.7 and Theorem 8.8). Suppose that P =�g + λ, where λ < (n− 1)2/4.
Let m ∈ R or m =∞. Suppose u ∈ H 1,k

0,b,loc(X) for some k ∈ R. Then

WF1,m
b (u) \ 6̇ ⊂WF−1,m

b (Pu).

Moreover,

(WF1,m
b (u)∩ 6̇) \WF−1,m+1

b (Pu)

is a union of maximally extended generalized broken bicharacteristics of the conformal metric ĝ in

6̇ \WF−1,m+1
b (Pu).

In particular, if Pu = 0, then WF1,∞
b (u) ⊂ 6̇ is a union of maximally extended generalized broken

bicharacteristics of ĝ.

As a consequence of this theorem, we get a more general, and precise, well-posedness result:

Theorem 1.6 (see Theorem 8.12). Assume that (TF) and (PT) hold. Suppose that P = �g + λ, where
λ < (n − 1)2/4. Let m ∈ R and suppose m′ ≤ m. Suppose f ∈ H−1,m+1

0,b,loc (X). Then (1-6) has a unique
solution in H 1,m′

0,b,loc(X), which in fact lies in H 1,m
0,b,loc(X), and for all compact K ⊂ X there exists a compact

K ′ ⊂ X and a constant C > 0 such that

‖u‖H1,m
0 (K ) ≤ C‖ f ‖H−1,m+1

0,b (K ′).
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While we prove this result using the relatively sophisticated technique of propagation of singularities,
it could also be derived without full microlocalization, that is, without localizing the propagation of
energy in phase space.

We also generalize propagation of singularities to the case Im λ 6= 0 (Re λ arbitrary), in which case we
prove one-sided propagation depending on the sign of Im λ. Namely, if Im λ > 0 respectively Im λ < 0,
then

(WF1,m
b (u)∩ 6̇) \WF−1,m+1

b (Pu)

is a union of maximally forward respectively maximally backward extended generalized broken bicharac-
teristics of the conformal metric ĝ. There is no difference between the case Im λ=0 and Re λ<(n−1)2/4,
respectively Im λ 6= 0, at the elliptic set, that is, the statement

WF1,m
b (u) \ 6̇ ⊂WF−1,m

b (Pu).

holds even if Im λ 6= 0. We refer to Proposition 7.7 and Theorem 8.9 for details.
These results indicate already that for Im λ 6= 0 there are many interesting questions to answer, and in

particular that one cannot think of λ as ‘small’; this will be the focus of future work.
In particular, if f is conormal relative to H 1

0 (X) then WF1,∞
b (u)=∅. Let

√
· denote the branch square

root function on C \ (−∞, 0] chosen so that takes positive values on (0,∞). The simplest conormal
functions are those in C∞(X) that vanish to infinite order (that is, with all derivatives) at the boundary;
the set of these is denoted by Ċ∞(X). If we assume f ∈ Ċ∞(X) then

u = x s+(λ)v, v ∈ C∞(X), s+(λ)= 1
2(n− 1)+

√
1
4(n− 1)2− λ,

as we show in Proposition 8.10. Since the indicial roots of �g + λ are

s±(λ)= 1
2(n− 1)±

√
1
4(n− 1)2− λ, (1-7)

this explains the interpretation of this problem as a “Dirichlet problem”, much like it was done in the
Riemannian conformally compact case by Mazzeo and Melrose [1987]: Asymptotics x s−(λ)v−, with
v− ∈ C∞(X), corresponding to the growing indicial root s−(λ) is ruled out.

For λ < (n−1)2/4, one can then easily solve the problem with inhomogeneous “Dirichlet” boundary
condition, that is, given v0 ∈ C∞(Y ) and f ∈ Ċ∞(X), both supported in {t ≥ t0},

Pu = f, u|t<t0 = 0, u = x s−(λ)v−+ x s+(λ)v+, v± ∈ C∞(X), v−|Y = v0

if s+(λ)−s−(λ)= 2
√
(n− 1)2/4− λ is not an integer. If s+(λ)−s−(λ) is an integer, the same conclusion

holds if we replace v− ∈ C∞(X) by v− ∈ C∞(X)+ x s+(λ)−s−(λ) log x C∞(X); see Theorem 8.11.
The operator v−|Y→v+|Y is the analogue of the Dirichlet-to-Neumann map, or the scattering operator.

In the De Sitter setting the setup is somewhat different as both pieces of scattering data are specified either
at past or future infinity; see [Vasy 2010b]. Nonetheless, one expects that the result of [ibid., Section 7],
that the scattering operator is a Fourier integral operator associated to the GBB relation, can be extended
to the present setting, at least if the boundary is totally geodesic with respect to the conformal metric ĝ
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and the metric is even with respect to the boundary in an appropriate sense. Indeed, in an ongoing project,
Baskin and the author are extending Baskin’s construction [2010] of the forward fundamental solution
on asymptotically De Sitter spaces to the even totally geodesic asymptotically AdS setting. In addition,
it is interesting to ask what the “best” problem to pose is when Im λ 6= 0; the results of this paper suggest
that the global problem (rather than local, Cauchy data versions) is the best behaved. One virtue of the
parametrix construction is that we expect to be able answer Lorentzian analogues of questions related to
[Mazzeo and Melrose 1987], which would bring the Lorentzian world of AdS spaces significantly closer
(in terms of results) to the Riemannian world of conformally compact spaces. We singled out the totally
geodesic condition and evenness since they hold on actual AdS space, which we now discuss.

We now recall the structure of the actual AdS space to justify our terminology. Consider Rn+1 with
the pseudo-Riemannian metric of signature (2, n− 1) given by

− dz2
1− · · ·− dz2

n−1+ dz2
n + dz2

n+1,

with (z1, . . . , zn+1) denoting coordinates on Rn+1, and the hyperboloid

z2
1+ · · ·+ z2

n−1− z2
n − z2

n+1 =−1

inside it. Note that z2
n + z2

n+1 ≥ 1 on the hyperboloid, so we can (diffeomorphically) introduce polar
coordinates in these two variables, that is, we let (zn, zn+1) = Rθ , with R ≥ 1 and θ ∈ S1. Then the
hyperboloid is of the form

z2
1+ · · ·+ z2

n−1− R2
=−1

inside Rn−1
×(0,∞)R×S1

θ . Since dz j for j = 1, . . . , n−1, dθ and d(z2
1+· · ·+ z2

n−1− R2) are linearly
independent at the hyperboloid,

z1, . . . , zn−1, θ

give local coordinates on it, and indeed these are global in the sense that the hyperboloid X◦ is identified
with Rn−1

×S1 via these. A straightforward calculation shows that the metric on Rn+1 restricts to give
a Lorentzian metric g on the hyperboloid. Indeed, away from {0}×S1, we obtain a convenient form of
the metric by using polar coordinates (r, ω) in Rn−1, so R2

= r2
+ 1:

g =−(dr)2− r2 dω2
+ (d R)2+ R2 dθ2

=−(1+ r2)−1 dr2
− r2 dω2

+ (1+ r2) dθ2,

where dω2 is the standard round metric; a similar description is easily obtained near {0} ×S1 by using
the standard Euclidean variables.

We can compactify the hyperboloid by compactifying Rn−1 to a ball Bn−1 via inverse polar coordinates
(x, ω), where x = r−1,

(z1, . . . , zn−1)= x−1ω, 0< x <∞, ω ∈ Sn−2.

Thus, the interior of Bn−1 is identified with Rn−1, and the boundary Sn−2 of Bn−1 is added at x = 0 to
compactify Rn−1. We let

X = Bn−1×S1
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be this compactification of X◦; a collar neighborhood of ∂X is identified with

[0, 1)x ×Sn−2
ω ×S1

θ .

In this collar neighborhood, the Lorentzian metric takes the form

g = 1
x2

(
−(1+ x2)−1 dx2

− dω2
+ (1+ x2) dθ2),

which is of the desired form, and the conformal metric is

ĝ =−(1+ x2)−1 dx2
− dω2

+ (1+ x2) dθ2

with respect to which the boundary {x = 0} is indeed timelike. Note that the induced metric on the
boundary is −dω2

+ dθ2 up to a conformal multiple.
As already remarked, ĝ has the special feature that Y is totally geodesic, unlike for example the case

of Bn−1
× S1 equipped with a product Lorentzian metric, with Bn−1 carrying the standard Euclidean

metric.
For global results, it is useful to work on the universal cover X̃ = Bn−1 ×Rt of X , where Rt is the

universal cover of S1
θ ; we use t to emphasize the timelike nature of this coordinate. The local geometry

is unchanged, but now t provides a global parameter along generalized broken bicharacteristics, and
satisfies the assumptions (TF) and (PT) for our theorems.

We use this opportunity to summarize the results, already referred to earlier, for analysis on confor-
mally compact Riemannian or Lorentzian spaces, including a comparison with the conformally related
problem, that is, for 1ĝ or �ĝ. We assume Dirichlet boundary conditions (DBC) when relevant for the
sake of definiteness, and global hyperbolicity for the hyperbolic equations, and do not state the function
spaces or optimal forms of regularity results.

(i) Riemannian: (1ĝ−λ)u = f with DBC is well-posed for λ ∈ C \ [0,∞); moreover, if f ∈ Ċ∞(X),
then u ∈ C∞(X). (This also works outside a discrete set of poles λ in [0,∞).)

(ii) Lorentzian, ∂X = Y+ ∪Y− is spacelike, f is supported in t ≥ t0, and λ ∈ C: (�ĝ − λ)u = f , for u
supported in t ≥ t0, is well-posed. If f ∈ Ċ∞(X), the solution is C∞ up to Y±.

(iii) Lorentzian, ∂X is timelike, f is supported in t ≥ t0, and λ ∈ C: (�ĝ − λ)u = f , with DBC at Y
and u supported in t ≥ t0, is well-posed. If f ∈ Ċ∞(X), the solution is C∞ up to Y±.

We now go through the original problems. Let s±(λ) be as in (1-7).

(i) Asymptotically hyperbolic, λ ∈ C \ [0,+∞): There is a unique solution of (1g − λ)u = f , with
f ∈ Ċ∞(X), such that u = x s+(λ)v, v ∈ C∞(X). (Analogue of DBC [Mazzeo and Melrose 1987].)
(Indeed, u = (1g−λ)

−1 f , and this can be extended to λ∈ [0,+∞), apart from finitely many poles
in [0, (n− 1)2/4], and analytically continued further.)

(ii) Asymptotically de Sitter, λ∈C: For f supported in t≥ t0, there is a unique solution of (�g−λ)u= f
supported in t ≥ t0. Moreover, for f ∈ Ċ∞(X),

u = x s+(λ)v++ x s−(λ)v−, v± ∈ C∞(X), and v±|Y− is specified,
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Figure 1. On the left, a Riemannian example, B2. In the middle, an example of spacelike
boundary, [0, 1]x × S1

y with x timelike. On the right, the case of timelike boundary,
B2

x,y′ ×Ry′′ , with y′′ timelike.

provided that s+(λ)− s−(λ) /∈ Z. (See [Vasy 2010b].)

(iii) Asymptotically anti de Sitter, λ ∈ R \ [(n− 1)2/4,+∞): For f ∈ Ċ∞(X) supported in t ≥ t0, there
is a unique solution of (�g − λ)u = f such that u = x s+(λ)v, v ∈ C∞(X) and supp u ⊂ {t ≥ t0}.

The structure of this paper is as follows. In Section 2 we prove a Poincaré inequality that we use to
allow the sharp range λ < (n − 1)2/4 for λ real. Then in Section 3 we recall the structure of energy
estimates on manifolds without boundary as these are then adapted to our “zero geometry” in Section 4.
In Section 5 we introduce microlocal tools to study operators such as P , namely the zero-differential-
b-pseudodifferential calculus, Diff09b(X). In Section 6 the structure of GBB is recalled. In Section 7
we study the Dirichlet form and prove microlocal elliptic regularity. Finally, in Section 8, we prove the
propagation of singularities for P .

2. Poincaré inequality

Let h be a conformally compact Riemannian metric, that is, a positive definite inner product on 0T X
and hence by duality on 0T ∗X ; we denote the latter by H . We denote the corresponding space of L2

sections of 0T ∗X by L2(X; 0T ∗X) = L2
0(X;

0T ∗X). While the inner product on L2(X; 0T ∗X) depends
on the choice of h, the corresponding norms are independent of h, at least over compact subsets K of X .
We first prove a Hardy-type inequality:

Lemma 2.1. Suppose V0 ∈ V(X) is real with V0x |x=0 = 1, and let V ∈ Vb(X) be given by V = xV0.
Given any compact subset K of X and C̃ < (n − 1)/2, there exists x0 > 0 such that if u ∈ Ċ∞(X) is
supported in K , then for ψ ∈ C∞(X) supported in x < x0,

C̃‖ψu‖L2
0(X)
≤ ‖ψV u‖L2

0(X)
. (2-1)
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Recall here that Ċ∞(X) denotes elements of C∞(X) that vanish at Y = ∂X to infinite order, and the
subscript comp on Ċ∞comp(X) below indicates that in addition the support of the function under consider-
ation is compact.

Proof. For any V ∈ Vb(X) real, and χ ∈ C∞comp(X), u ∈ Ċ∞comp(X), we have, using V ∗ =−V − div V ,

〈(Vχ)u, u〉 = 〈[V, χ]u, u〉 = 〈χu, V ∗u〉− 〈V u, χu〉 = −〈χu, V u〉− 〈V u, χu〉− 〈χu, (div V )u〉.

Now, if V = xV0, with V0 ∈ V(X) transversal to ∂X , and if we write dg = x−ndĝ for dĝ a smooth
nondegenerate density, then in local coordinates z j such that dĝ = J |dz| and V0 =

∑
V j

0 ∂ j ,

div V = xn J−1
∑

∂ j (x−n J xV j
0 )

=−(n− 1)
∑

j

V j
0 (∂ j x)+ x J−1

∑
∂ j (J V j

0 )=−(n− 1)(V0x)+ x divĝ V0,

where the subscript ĝ in divĝ V0 denotes that the divergence is with respect to ĝ. Thus, assuming that
V0 ∈ V(X) with V0x |x=0 = 1, we have

div V =−(n− 1)+ xa, where a ∈ C∞(X).

Let x ′0 > 0 be such that V0x > 1/2 in x ≤ x ′0. Thus, if 0≤ χ0 ≤ 1, χ0≡ 1 near 0, χ ′0 ≤ 0, χ0 is supported
in x ≤ x ′0, and χ = χ0 ◦ x , then

Vχ = x(V0x)(χ ′0 ◦ x)≤ 0;

hence 〈(Vχ)u, u〉 ≤ 0 and

〈χ((n− 1)+ xa)u, u〉 ≤ 2‖χ1/2u‖‖χ1/2V u‖.

Thus given any C̃ < (n− 1)/2, there is x0 > 0 such that for u supported in K ,

C̃‖χ1/2u‖ ≤ ‖χ1/2V u‖;

namely we take x0 < x ′0/2 such that (n − 1)/2− C̃ > (supK |a|)x0, and choose χ0 ≡ 1 on [0, x0] and
supported in [0, 2x0). This completes the proof of the lemma. �

The basic Poincaré estimate is this:

Proposition 2.2. Suppose K ⊂ X compact, K∩∂X 6=∅, O is open with K ⊂O , O is arcwise connected
to ∂X , and K ′ = O compact. There exists C > 0 such that for u ∈ H 1

0,loc(X), one has

‖u‖L2
0(K )
≤ C‖du‖L2

0(O;
0T ∗X), (2-2)

where the norms are relative to the metric h.

Proof. It suffices to prove the estimate for u ∈ Ċ∞(X), for then the proposition follows by the density of
Ċ∞(X) in H 1

0,loc(X) and the continuity of both sides in the H 1
0,loc(X) topology.

Let V0 and V be as in Lemma 2.1, and let φ0 ∈C∞comp(Y ) be identically 1 on a neighborhood of K ∩Y ,
supported in O , and let x0 > 0 be as in the lemma with K replaced by K ′. We pull back φ0 to a function
φ defined on a neighborhood of Y by the V0 flow; thus, V0φ = 0. By decreasing x0 if needed, we may
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assume that φ is defined and is C∞ in x < x0, and suppφ ∩ {x < x0} ⊂ O . Now, let ψ ∈ C∞(X) be
identically 1 where x < x0/2, supported where x < 3x0/4, and let ψ0 ∈ C∞(X) be identically 1 where
x < 3x0/4, supported in x < x0; thus ψ0φ ∈ C∞comp(X). Then, by Lemma 2.1 applied to ψ0φu,

C̃‖ψφu‖L2
0(X)
= C̃‖ψψ0φu‖L2

0(X)
≤ ‖ψV (ψ0φu)‖L2

0(X)
= ‖ψφV u‖L2

0(X)
. (2-3)

The proposition follows by the standard Poincaré estimate and arcwise connectedness of K to Y (hence
to x < x0/2), since one can estimate u|x>x0/2 in L2 in terms of du|x>x0/2 in L2 and u|x0/4<x<x0/2. �

We can get a more precise estimate of the constants if we restrict to a neighborhood of a spacelike
hypersurface S; it is convenient to state the result under our global assumptions. Thus, (TF) and (PT)
are assumed to hold from here on in this section.

Proposition 2.3. Suppose V0 ∈ V(X) is real with V0x |x=0 = 1 and V0t ≡ 0 near Y and let V ∈ Vb(X)
be given by V = xV0. Let I be a compact interval. Let C < (n− 1)/2 and γ > 0. Then there exist ε > 0,
x0 > 0 and C ′ > 0 such that the following holds.

For t0 ∈ I , 0< δ < ε and for u ∈ H 1
0,loc(X), one has

‖u‖L2
0({p:t (p)∈[t0,t0+ε])}

≤ C−1
‖V u‖L2

0({p:t (p)∈[t0−δ,t0+ε], x(p)≤x0})

+ γ‖du‖L2
0({p:t (p)∈[t0−δ,t0+ε]})

+C ′‖u‖L2
0({p:t (p)∈[t0−δ,t0]})

, (2-4)

where the norms are relative to the metric h.

Proof. We proceed as in the proof of Proposition 2.2, using that the t-preimage of the enlargement of the
interval by distance ≤ 1 points is still compact by (PT); we always use ε < 1 correspondingly. We simply
let φ = φ̃ ◦ t , where φ̃ is the characteristic function of [t0, t0+ ε]. Thus V0φ vanishes near Y ; at the cost
of possibly decreasing x0, we may assume that it vanishes in x < x0. By (2-3), with C = C̃ < (n−1)/2,
if ψ is identically 1 on [0, x0/4) and is supported in [0, x0/2), then

‖ψφu‖L2
0(X)
≤ C−1

‖ψVφu‖ = C−1
‖ψφV u‖. (2-5)

Thus, it remains to give a bound for ‖(1−ψ)u‖L2
0({p:t (p)∈[t0,t0+ε])}

.
Let S be the spacelike hypersurface in X given by t= t0, with t0∈ I . Now let W ∈Vb(X) be transversal

to S. The standard Poincaré estimate (whose weighted version we prove below in Lemma 2.4) obtained
by integrating from t = t0− δ yields that for u ∈ Ċ∞(X) with u|t=t0−δ = 0,

‖u‖L2
0({p:t (p)∈[t0−δ,t0+ε]})

≤ C ′(ε+ δ)1/2‖W u‖L2
0({p:t (p)∈[t0−δ,t0+ε]})

, (2-6)

with C ′(ε+ δ)→ 0 as ε+ δ→ 0. Applying this with u supported where x ∈ (x0/8,∞), we have

‖u‖L2
0({p:t (p)∈[t0−δ,t0+ε]})

≤ C ′′(ε+ δ)1/2‖xW u‖L2
0({p:t (p)∈[t0−δ,t0+ε]})

, (2-7)

with C ′′(ε+ δ)→ 0 as ε+ δ→ 0. As we want 0< δ < ε, we choose ε > 0 so that

C ′′(2ε)1/2 < γ.
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Let χ ∈ C∞comp(R; [0, 1]) be identically 1 on [t0,∞) and be supported in (t0− δ,∞). Applying (2-6) to
χ(t)u, we have

‖u‖L2
0({p: t (p)∈[t0,t0+ε]})

≤ C ′′(ε+ δ)1/2‖xW u‖L2
0({p: t (p)∈[t0−δ,t0+ε]})

+C ′′(ε+ δ)1/2‖xχ ′(t)(W t)u‖L2
0({p: t (p)∈[t0−δ,t0]})

.

In particular, this can be applied with u replaced by (1−ψ)u. �

We also need a weighted version of this result. We first recall a Poincaré inequality with weights.

Lemma 2.4. Let C0 > 0. Suppose that W ∈ Vb(X) real, |div W | ≤ C0, 0 ≤ χ ∈ C∞comp(X), and
χ ≤−γ(Wχ) for t ≥ t0, with 0< γ < 1/(2C0). Then there exists C > 0 such that for u ∈ H 1

0,loc(X) with
t ≥ t0 on supp u, ∫

|Wχ ||u|2 dg ≤ Cγ
∫
χ |W u|2 dg.

Proof. We compute, using W ∗ =−W − div W ,

〈(Wχ)u, u〉 = 〈[W, χ]u, u〉 = 〈χu,W ∗u〉− 〈W u, χu〉 = −〈χu,W u〉− 〈W u, χu〉− 〈χu, (div W )u〉,

so ∫
|Wχ ||u|2 dg =−〈(Wχ)u, u〉 ≤ 2‖χ1/2u‖L2‖χ1/2W u‖L2 +C0‖χ

1/2u‖2L2

≤ 2
(∫

γ|Wχ ||u|2 dg
)1/2
‖χ1/2W u‖L2 +C0

∫
γ|Wχ ||u|2 dg.

Dividing through by (
∫
|Wχ ||u|2 dg)1/2 and rearranging yields

(1−C0γ)
(∫
|Wχ ||u|2 dg

)1/2
≤ 2γ1/2

‖χ1/2W u‖L2;

hence the claim follows. �

Our Poincaré inequality (which could also be named Hardy, in view of the relationship of (2-1) to the
Hardy inequality) is then as follows:

Proposition 2.5. Suppose V0 ∈ V(X) is real with V0x |x=0 = 1 and V0t ≡ 0 near Y , and let V ∈ Vb(X)
be given by V = xV0. Let I be a compact interval. Let C < (n− 1)/2. Then there exist ε > 0, x0 > 0,
C ′ > 0 and γ0 > 0 such that the following holds.

Suppose t0 ∈ I and 0< γ < γ0. Let χ0 ∈C∞comp(R), χ = χ0 ◦ t and 0≤ χ0 ≤−γχ
′

0 on [t0, t0+ε], with
χ0 supported in (−∞, t0+ ε] and δ < ε. For u ∈ H 1

0,loc(X), one has

‖|χ ′|1/2u‖L2
0({p: t (p)∈[t0,t0+ε])}

≤ C−1
‖|χ ′|1/2V u‖L2

0({p: t (p)∈[t0−δ,t0+ε], x(p)≤x0})

+C ′γ‖χ1/2du‖L2
0({p: t (p)∈[t0−δ,t0+ε]})

+C ′‖u‖L2
0({p: t (p)∈[t0−δ,t0]})

, (2-8)

where the norms are relative to the metric h.
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Proof. Let S be the spacelike hypersurface in X given by t = t0, where t0 ∈ I . We apply Lemma 2.4
with W ∈ Vb(X) transversal to S as follows.

One has from (2-5) applied with φ replaced by |χ ′|1/2 that

‖ψ |χ ′|1/2u‖L2
0(X)
≤ C̃−1

‖ψ |χ ′|1/2V u‖.

We now use Lemma 2.4 with χ replaced by χρ2, with ρ ≡ 1 on supp(1− ψ) and ρ ∈ C∞comp(X
◦), to

estimate ‖(1−ψ)|Wχ |1/2u‖L2
0(X)

. We choose ρ so that in addition Wρ = 0; this can be done by pulling
back a function ρ0 from S under the W -flow. We may also assume that ρ is supported where x ≥ x0/8
in view of x ≥ x0/4 on supp(1−ψ) (we might need to shorten the time interval we consider, that is,
ε > 0, to accomplish this). Thus, W (ρ2χ)= ρ2Wχ , and hence∫

ρ2
|Wχ ||u|2 dg ≤ Cγ

∫
ρ2χ |W u|2 dg.

Since x ≥ x0/8 on supp ρ, one can estimate
∫
χρ2
|W u|2 dg in terms of

∫
χ |du|2H dg (even though h is

a Riemannian 0-metric!), giving the desired result. �

3. Energy estimates

We recall energy estimates on manifolds without boundary in a form that will be particularly convenient
in the next sections. Thus, we work on X◦, equipped with a Lorentz metric g and dual metric G; let
� = �g be the d’Alembertian, so σ2(�) = G. We consider a “twisted commutator” with a vector field
V =−ı Z , where Z is a real vector field, typically of the form Z = χW , with χ a cutoff function. Thus,
we compute 〈−ı(V ∗�−�V )u, u〉— the point being that the use of V ∗ eliminates zeroth order terms
and hence is useful when we work not merely modulo lower order terms.

Note that−ı(V ∗�−�V ) is a second order, real, self-adjoint operator, so if its principal symbol agrees
with that of d∗Cd for some real self-adjoint bundle endomorphism C , then in fact both operators are the
same as the difference is zeroth order and vanishes on constants. Correspondingly, there are no zeroth
order terms to estimate, which is useful as the latter tend to involve higher derivatives of χ , which in
turn tend to be large relative to dχ . The principal symbol in turn is easy to calculate, for the operator is

−ı(V ∗�−�V )=−ı(V ∗− V )�+ ı[�, V ], (3-1)

whose principal symbol is

−ıσ0(V ∗− V )G+ HGσ1(V ).

In fact, it is easy to perform this calculation explicitly in local coordinates z j and dual coordinates ζ j .
Let dg = J |dz|, so J = |det g|1/2. We write the components of the metric tensors as gi j and Gi j , and
∂ j = ∂z j when this does not cause confusion. We also write Z = χW =

∑
j Z j∂ j . In the remainder of

this section only, we adopt the standard summation convention. Then

(−ı Z)∗ = ı Z∗ =−ı J−1∂ j J Z j and −�= J−1∂i J Gi j∂ j ,
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so
−ı(V ∗− V )u =−ı((−ı Z)∗+ ı Z)u = (Z∗+ Z)u = (−J−1∂ j J Z j

+ Z j∂ j )u

=−J−1(∂ j J Z j )u =−(div Z)u,

HG = Gi jζi∂z j +Gi jζ j∂zi − (∂zk Gi j )ζiζ j∂ζk ,

(the first two terms of HG are the same after summation, but it is convenient to keep them separate);
hence

HGσ1(V )= Gi j (∂z j Z k)ζiζk +Gi j (∂zi Z k)ζ jζk − Z k(∂zk Gi j )ζiζ j .

Relabeling the indices, we deduce that

−ıσ0(V ∗− V )G+ HGσ1(V )= (−J−1(∂k J Z k)Gi j
+Gik(∂k Z j )+G jk(∂k Z i )− Z k∂k Gi j )ζiζ j ,

with the first and fourth terms combining into −J−1∂k(J Z k Gi j )ζiζ j , so

− ı(V ∗�−�V )= d∗Cd, Ci j = gi`B`j

Bi j =−J−1∂k(J Z k Gi j )+Gik(∂k Z j )+G jk(∂k Z i ),
(3-2)

where Ci j are the matrix entries of C relative to the basis {dzs} of the fibers of the cotangent bundle.
We now want to expand B using Z = χW , and separate the terms with χ derivatives, with the idea

being that we choose the derivative of χ large enough relative to χ to dominate the other terms. Thus,

Bi j = Gik(∂k Z j )+G jk(∂k Z i )− J−1∂k(J Z k Gi j )

= (∂kχ)(Gik W j
+G jk W i

−Gi j W k)+χ(Gik(∂k Z j )+G jk(∂k Z i )− J−1∂k(J Z k Gi j ))
(3-3)

and multiplying the first term on the right hand side by ∂i u∂ j u (and summing over i, j) gives

EW,dχ (du)= (∂kχ)(Gik W j
+G jk W i

−Gi j W k)∂i u∂ j u

= (du, dχ)G du(W )+ du(W )(dχ, du)G − dχ(W )(du, du)G,
(3-4)

which is twice the sesquilinear stress-energy tensor associated to the wave u. This is well known to
be positive definite in du, that is, for covectors α, EW,dχ (α) ≥ 0 and vanishing if and only if α = 0,
when W and dχ are both forward timelike for smooth Lorentz metrics, see for example [Taylor 1996,
Section 2.7] or [Hörmander 1985, Lemma 24.1.2]. In the present setting, the metric is degenerate at the
boundary, but the analogous result still holds, as we show below.

If we replace the wave operator by the Klein–Gordon operator P = � + λ, λ ∈ C, we obtain an
additional term

−ıλ(V ∗− V )+ 2 Im λV =−ı Re λ(V ∗− V )+ Im λ(V + V ∗)=−ı Re λ div V + Im λ(V + V ∗)

in −ı(V ∗P − P∗V ) as compared to (3-1). With V = −ı Z , Z = χW , as above, this contributes
−Re λ(Wχ) in terms containing derivatives of χ to −ı(V ∗P − P∗V ). In particular, we have

〈−ı(V ∗P − P∗V )u, u〉 =
∫

EW,dχ (du) dg−Re λ〈(Wχ)u, u〉

+ Im λ(〈χW u, u〉+ 〈u, χW u〉)+〈χR du, du〉+ 〈χR′u, u〉, (3-5)
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where R ∈ C∞(X◦;End(T ∗X◦)) and R′ ∈ C∞(X◦).
Now suppose that W and dχ are both timelike (either forward or backward; this merely changes an

overall sign). The point of (3-5) is that one controls the left side if one controls Pu (in the extreme case,
when Pu= 0, it simply vanishes), and one can regard all terms on the right side after EW,dχ (du) as terms
one can control by a small multiple of the positive definite quantity

∫
EW,dχ (du) dg due to the Poincaré

inequality if one arranges that χ ′ is large relative to χ , and thus one can control
∫

EW,dχ (du) dg in terms
of Pu.

In fact, one does not expect that dχ will be nondegenerate timelike everywhere: Then one decomposes
the energy terms into a region �+ where one has the desired definiteness, and a region �− where this
need not hold, and then one can estimate

∫
EW,dχ̃ (du) dg in �+ in terms of its behavior in �− and Pu.

Thus one propagates energy estimates (from �− to �+), provided one controls Pu. Of course, if u
is supported in �+, then one automatically controls u in �−, so we are back to the setting that u is
controlled by Pu. This easily gives uniqueness of solutions, and a standard functional analytic argument
by duality gives solvability.

It turns out that in the asymptotically AdS case one can proceed similarly, except that the term
Re λ〈(Wχ)u, u〉 is not negligible any more at ∂X , and neither is Im λ(〈χW u, u〉 + 〈u, χW u〉). In fact,
the Re λ term is the “same size” as the stress energy tensor at ∂X ; hence the need for an upper bound for
it. Meanwhile the Im λ term is even larger; hence the need for the assumption Im λ= 0 because although
χ is not differentiated (hence in some sense ‘small’), W is a vector field that is too large compared to
the vector fields the stress energy tensor can estimate at ∂X . It is a b-vector field, rather than a 0-vector
field. We explain these concepts now.

4. Zero-differential operators and b-differential operators

We start by recalling that Vb(X) is the Lie algebra of C∞ vector fields on X tangent to ∂X , while V0(X)
is the Lie algebra of C∞ vector fields vanishing at ∂X . Thus, V0(X) is a Lie subalgebra of Vb(X). Note
also that both V0(X) and Vb(X) are C∞(X)-modules under multiplication from the left, and they act on
xkC∞(X), in the case of V0(X) in addition mapping C∞(X) into xC∞(X). The Lie subalgebra property
can be strengthened as follows.

Lemma 4.1. V0(X) is an ideal in Vb(X).

Proof. Suppose V ∈V0(X) and W ∈Vb(X). Then, since V vanishes at ∂X , there exists V ′ ∈V(X) such
that V = xV ′. Thus,

[V,W ] = [xV ′,W ] = [x,W ]V ′+ x[V ′,W ].

Now, [x,W ] = −W x ∈ xC∞(X) since W is tangent to Y , and [V ′,W ] ∈V(X) since V ′,W ∈V(X); so
[V,W ] ∈ xV(X)= V0(X). �

As usual, Diff0(X) is the algebra generated by V0(X), while Diffb(X) is the algebra generated
by Vb(X). We combine these in the following definition, originally introduced in [Vasy 2010b] (indeed,
even weights xr were allowed there).
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Definition 4.2. Let Diffk
0 Diffm

b (X) be the (complex) vector space of operators on Ċ∞(X) of the form∑
Pj Q j , Pj ∈ Diffk

0(X), Q j ∈ Diffk
b(X),

where the sum is locally finite, and let

Diff0 Diffb(X)=
∞⋃

k=0

∞⋃
m=0

Diffk
0 Diffm

b (X).

We recall that this space is closed under composition, and that commutators have one lower order in
the 0-sense than products [Vasy 2010b, Lemma 4.5]:

Lemma 4.3. Diff0 Diffb(X) is a filtered ring under composition with

AB ∈ Diffk+k′
0 Diffm+m′

b (X) if A ∈ Diffk
0 Diffm

b (X) and B ∈ Diffk′
0 Diffm′

b (X)

Composition is commutative to leading order in Diff0, that is, for A and B as above, with k+ k ′ ≥ 1,

[A, B] ∈ Diffk+k′−1
0 Diffm+m′

b (X).

Here we need an improved property regarding commutators with Diffb(X) (which would a priori only
gain in the 0-sense by the preceding lemma). It is this lemma that necessitates the lack of weights on the
Diffb(X)-commutant.

Lemma 4.4. For A ∈ Diffs
b(X) and B ∈ Diffk

0 Diffm
b (X), with s ≥ 1,

[A, B] ∈ Diffk
0 Diffs+m−1

b (X).

Proof. Only the leading terms in terms of Diffb order in both commutants matter for the conclusion, for
otherwise the composition result Lemma 4.3 gives the desired conclusion. We again write elements of
Diff0 Diffb(X) as locally finite sums of products of vector fields and functions, and then, using Lemma 4.3
and expanding the commutators, we are reduced to checking that

(i) [W, V ] = −[V,W ] ∈ Diff1
0(X) for V ∈ V0(X) and W ∈ Vb(X), which follows from Lemma 4.1,

and

(ii) [W, f ] =W f ∈ C∞(X)= Diff0
b(X) for W ∈ Vb(X) and f ∈ C∞(X).

In both cases thus, the commutator drops b-order by 1 as compared to the product. �

Lemma 4.5. For each nonnegative integer l with l ≤ m,

x l Diffk
0 Diffm

b (X)⊂ Diffk+l
0 Diffm−l

b (X).

Proof. This result is an immediate consequence of xVb(X)⊂ xV(X)= V0(X). �

Integer ordered Sobolev spaces, H k,m
0,b (X) were defined in the introduction. It is immediate from our

definitions that for P ∈ Diffr
0 Diffs

b(X),

P : H k,m
0,b (X)→ H k−r,s−m

0,b (X)
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is continuous.
A particular consequence of Lemma 4.4 is that if V ∈Vb(X), P ∈Diffm

0 (X), then [P, V ] ∈Diffm
0 (X).

We also note that for Q ∈ Vb(X), with Q = −ı Z and Z real, we have Q∗− Q ∈ C∞(X), where the
adjoint is taken with respect to the L2

= L2
0(X) inner product. Namely:

Lemma 4.6. Suppose Q ∈ Vb(X), with Q =−ı Z and Z real. Then Q∗− Q ∈ C∞(X), and with

Q = a0(x Dx)+
∑

a j Dy j ,

we have

Q∗− Q = div Q = J−1(Dx(xa0 J )+
∑

Dy j (a j J )).

with the metric density given by J |dx dy|, where J ∈ x−nC∞(X).

Proposition 4.7. Suppose Q ∈ Vb(X), with Q =−ı Z and Z real. Then

−ı(Q∗�−�Q)= d∗Cd, (4-1)

where C ∈ C∞(X;End(0T ∗X)). In the basis {dx/x, dy1/x, . . . , dyn−1/x}, we have

Ci j =
∑
`

gi`

∑
k

(−J−1∂k(Jak Ĝ`j )+ Ĝ`k(∂ka j )+ Ĝ jk(∂ka`)).

Proof. We write

−ı(Q∗�−�Q)=−ı(Q∗− Q)�− ı[Q,�] ∈ Diff2
0(X),

and compute the principal symbol, which we check agrees with that of d∗Cd. One way of achieving this
is to do the computation over X◦; by continuity if the symbols agree here, they agree on 0T ∗X . But over
the interior this is the standard computation leading to (3-2); in coordinates z j , with dual coordinates ζ j ,
writing Z =

∑
Z j∂z j and G =

∑
Gi j∂zi ∂z j , we find both sides have principal symbol∑

i j

Bi jζiζ j , Bi j =
∑

k

(−J−1∂k(J Z k Gi j )+Gik(∂k Z j )+G jk(∂k Z i )).

Now both sides of (4-1) are elements of Diff2
0(X), are formally self-adjoint, real, and have the same

principal symbol. Thus, their difference is a first order, self-adjoint and real operator; it follows that its
principal symbol vanishes, so in fact this difference is zeroth order. Since it annihilates constants (as
both sides do), it actually vanishes. �

We particularly care about the terms in which the coefficients a j are differentiated, with the idea being
that we write Z = χW , and choose the derivative of χ large enough relative to χ to dominate the other
terms. Thus, as in (3-4),

Bi j =
∑

k

(∂kχ)(Gik W j
+G jk W i

−Gi j W k)+χ
∑

k

(Gik(∂k Z j )+G jk(∂k Z i )−J−1∂k(J Z k Gi j )) (4-2)
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and multiplying the first term on the right hand side by ∂i u ∂ j u (and summing over i, j) gives∑
i, j,k

(∂kχ)(Gik W j
+G jk W i

−Gi j W k)∂i u∂ j u,

which is twice the sesquilinear stress-energy tensor 1
2 EW,dχ (du) associated to the wave u. As we men-

tioned before, this is positive definite when W and dχ are both forward timelike for smooth Lorentz
metrics. In the present setting, the metric is degenerate at the boundary, but the analogous result still
holds since

EW,dχ (du)=
∑
i, j,k

(∂kχ)(Ĝik W j
+ Ĝ jk W i

− Ĝi j W k)(x∂i u)x∂ j u

= (x du, dχ)Ĝ x du(W )+ x du(W )(dχ, x du)Ĝ − dχ(W )(x du, x du)Ĝ,
(4-3)

so the Lorentzian nondegenerate nature of Ĝ proves the (uniform) positive definiteness in x du, consid-
ered as an element of T ∗q X , and hence in du, regarded as an element of 0T ∗q X . Indeed, we recall the
quick proof here since we need to improve on this statement to get an optimal result below.

Thus, we wish to show that for α ∈ T ∗q X , W ∈ Tq X , α and W forward timelike,

ÊW,α(β)= (β, α)Ĝ β(W )+β(W )(α, β)Ĝ −α(W )(β, β)Ĝ

is positive definite as a quadratic form in β. Since replacing W by a positive multiple does not change
the positive definiteness, we may assume, as below, that (W,W )Ĝ = 1. Then we may choose local
coordinates (z1, . . . , zn) such that W = ∂zn and ĝ|q = dz2

n − (dz2
1 + · · · + dz2

n−1); thus Ĝ|q = ∂2
zn
−

(∂2
z1
+· · ·+∂2

zn−1
). Then α=

∑
α j dz j being forward timelike means that αn>0 and α2

n >α
2
1+· · ·+α

2
n−1.

Thus,

ÊW,α(β)=
(
βnαn −

n−1∑
j=1

β jα j

)
βn +βn

(
αnβn −

n−1∑
j=1

α jβ j

)
−αn

(
|βn|

2
−

n−1∑
j=1

|β j |
2
)

= αn

n∑
j=1

|β j |
2
−βn

n−1∑
j=1

α jβ j −

n−1∑
j=1

β jα jβn

≥ αn

n∑
j=1

|β j |
2
− 2|βn|

(n−1∑
j=1

α2
j

)1/2(n−1∑
j=1

|β j |
2
)1/2

≥ αn

n∑
j=1

|β j |
2
− 2|βn|αn

(n−1∑
j=1

|β j |
2
)1/2
= αn

(
|βn| −

(n−1∑
j=1

|β j |
2
)1/2)2

≥ 0,

(4-4)

with the last inequality strict if |βn| 6= (
∑n−1

j=1|β j |
2)1/2, and the preceding one (by the strict forward

timelike character of α) strict if βn 6= 0 and
∑n−1

j=1|β j |
2
6= 0. It is then immediate that at least one of

these inequalities is strict unless β = 0, which is the claimed positive definiteness.
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We claim that we can make a stronger statement if U ∈ Tq X and α(U )= 0 and (U,W )ĝ = 0 (thus U
is necessarily spacelike, that is, (U,U )ĝ < 0):

ÊW,α(β)+ c
α(W )

(U,U )ĝ
|β(U )|2 for c < 1

is positive definite in β. Indeed, in this case (again assuming (W,W )ĝ = 1) we can choose coordinates
as above so that W = ∂zn , and so that U is a multiple of ∂z1 , namely U = (−(U,U )ĝ)1/2∂z1 , where
ĝ|q = dz2

n − (dz2
1 + · · · + dz2

n−1). To achieve this, we complete en = W and e1 = (−(U,U )ĝ)−1/2U
(which are orthogonal by assumption) to a ĝ normalized orthogonal basis (e1, e2, . . . , en) of Tq X , and
then choose coordinates so that the coordinate vector fields are given by the e j at q. Then α forward
timelike means that αn > 0 and α2

n >α
2
1+· · ·+α

2
n−1, and α(U )= 0 means that α1= 0. Thus, with c< 1,

ÊW,α(β)+ c
α(W )

(U,U )ĝ
|β(U )|2

=

(
βnαn −

n−1∑
j=2

β jα j

)
βn +βn

(
αnβn −

n−1∑
j=2

α jβ j

)
−αn

(
|βn|

2
−

n−1∑
j=1

|β j |
2
)
− cαn|β1|

2

≥ (1− c)αn|β1|
2
+

((
βnαn −

n−1∑
j=2

β jα j

)
βn +βn

(
αnβn −

n−1∑
j=2

α jβ j

)
−αn

(
|βn|

2
−

n−1∑
j=2

|β j |
2
))
.

On the right hand side the term in the large parentheses is the same kind of expression as in (4-4), with
the terms with j = 1 dropped, and is thus positive definite in (β2, . . . , βn), For c < 1, the first term is
positive definite in β1, so the left hand side is indeed positive definite as claimed. Rewriting this in terms
of G in our setting, we obtain that for c < 1

EW,dχ (du)− c(Wχ)|xUu|2

is positive definite in du, considered an element of 0T ∗q X , when q ∈ ∂X , and hence is positive definite
sufficiently close to ∂X .

We restate the result:

Lemma 4.8. Suppose q ∈ ∂X , U,W ∈ Tq X , α ∈ T ∗q X , α(U )= 0 and (U,W )ĝ = 0. Then

EW,α(β)+ c
α(W )

(U,U )ĝ
|β(xU )|2 for c < 1

is positive definite in β ∈ 0T ∗q X.

At this point we modify the choice of our time function t so that we can construct U and W satisfying
the requirements of the lemma.

Lemma 4.9. Assume (TF) and (PT). Given δ0 > 0 and a compact interval I , there exists a function
τ ∈ C∞(X) such that |t − τ | < δ0 for t ∈ I , dτ is timelike in the same component of the timelike cone
as dt , and Ĝ(dτ, dx)= 0 at x = 0.
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Proof. Let χ ∈C∞comp([0,∞)) be identically 1 near 0, with 0≤ χ ≤ 1 and χ ′ ≤ 0, and supported in [0, 1].
For ε, δ > 0 to be specified, let

τ = t − xχ(xδ/ε)
Ĝ(dt, dx)

Ĝ(dx, dx)
.

Note that x ≤ ε1/δ on the support of χ(xδ/ε), so if ε1/δ is sufficiently small, then Ĝ(dx, dx) is negative
and bounded away from 0, in view of (PT) and because Ĝ(dx, dx) < 0 at Y .

At x = 0,

dτ = dt −
Ĝ(dt, dx)

Ĝ(dx, dx)
dx,

so Ĝ(dτ, dx) = 0. As already noted, x ≤ ε1/δ on the support of χ(xδ/ε), so for t ∈ I with I compact,
we have in view of (PT)

|τ − t | ≤ Cε1/δ, (4-5)

with C independent of ε and δ. Next,

dτ = dt −αγ dx − α̃γ dx −βµ,

where

α = χ
( xδ

ε

)
, γ =

Ĝ(dt, dx)

Ĝ(dx, dx)
, α̃ = δ

xδ

ε
χ ′
( xδ

ε

)
, β = xχ

( xδ

ε

)
, µ= d

( Ĝ(dt, dx)

Ĝ(dx, dx)

)
.

Now,
Ĝ(dt −αγdx, dt −αγdx)= Ĝ(dt, dt)− 2αγĜ(dt, dx)+α2γ2Ĝ(dx, dx)

= Ĝ(dt, dt)− (2α−α2)
Ĝ(dt, dx)2

Ĝ(dx, dx)
,

which is ≥ Ĝ(dt, dt) if 2α−α2
≥ 0, that is, if α ∈ [0, 2]. But 0≤ α ≤ 1, so

Ĝ(dt −αγdx, dt −αγdx)≥ Ĝ(dt, dt) > 0

that is, dt − αγdx is timelike. Since dt − ραγ dx is still timelike for 0 ≤ ρ ≤ 1, dt − αγdx is in
the same component of timelike covectors as dt , that is, it is forward oriented. Next, observe that with
C ′ = sup s|χ ′(s)|,

|α̃| ≤ C ′δ, and |β| ≤ ε1/δ,

so over compact sets, α̃γ dx+βµ can be made arbitrarily small by first choosing δ > 0 sufficiently small
and then ε > 0 sufficiently small. Thus, Ĝ(dτ, dτ) is forward timelike as well. Reducing ε > 0 further
if needed, (4-5) completes the proof. �

This lemma can easily be made global.

Lemma 4.10. Assume (TF) and (PT). Given δ0>0 there exists a function τ ∈C∞(X) such that |t−τ |<δ0

for t ∈ R, dτ is timelike in the same component of the timelike cone as dt , and Ĝ(dτ, dx)= 0 at x = 0.
In particular, τ also satisfies (TF) and (PT).
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Proof. We proceed as above, but let

τ = t − xχ
( xδ(t)

ε(t)

) Ĝ(dt, dx)

Ĝ(dx, dx)
.

We then have two additional terms,

−x1−δ(t)δ′(t) log x xδ(t)

ε(t)
χ ′
( xδ(t)
ε(t)

) Ĝ(dt, dx)

Ĝ(dx, dx)
dt and x ε

′(t)
ε(t)

xδ(t)

ε(t)
χ ′
( xδ(t)

ε(t)

) Ĝ(dt, dx)

Ĝ(dx, dx)
dt

in dτ . Note that x ≤ ε(t)1/δ(t) on the support of both terms, while (xδ(t)/ε(t))χ ′(xδ(t)/ε(t)) is uniformly
bounded. Thus, if δ(t) < 1/3, |δ′(t)| ≤ 1, and |ε′(t)| ≤ 1, the factor in front of dt in both terms is
bounded in absolute value by Cε(t)Ĝ(dt, dx)/Ĝ(dx, dx). Now for any k there are δk, εk > 0, which we
may assume are in (0, 1/3) and are decreasing with k, such that τ so defined satisfies on I = [−k, k] all
the requirements if 0 < ε(t) < εk , 0 < δ(t) < δk on I , |ε′(t)| ≤ 1 and |δ′(t)| ≤ 1. But now in view of
the bounds on εk and δk it is straightforward to write down ε(t) and δ(t) with the desired properties, for
example, by approximating the piecewise linear function that takes the value εk at ±(k−1) for k ≥ 2, to
get ε(t), and similarly with δ, finishing the proof. �

From the remainder of this section, we assume that (TF) and (PT) hold. From now on we simply
replace t by τ . We let W = Ĝ(dt, · ) and U0 = Ĝ(dx, · ). Thus, at x = 0,

dt (U0)= Ĝ(dx, dt)= 0 and (U0,W )ĝ = Ĝ(dx, dt)= 0.

We extend U0|Y to a vector field U such that Ut = 0, that is, U is tangent to the level surfaces of t . Then
we have on all of X ,

W (dt)= Ĝ(dt, dt) > 0 and U (dx)= Ĝ(dx, dx) < 0 (4-6)

on a neighborhood of Y , with uniform upper and lower bounds (bounding away from 0) for both bounds
(4-6) on compact subsets of X .

Using Lemma 4.8 and the equations just above, we thus deduce for χ = χ̃ ◦ t and c < 1, for ρ in
C∞(X) identically 1 near Y , and supported sufficiently close to Y , for Q =−ı Z and Z = χW ,

〈−ı(Q∗P − P∗Q)u, u〉 =
∫

EW,dχ (du) dg−Re λ〈(Wχ)u, u〉

+ Im λ(〈χW u, u〉+ 〈u, χW u〉)+〈χRdu, du〉+ 〈χR′u, u〉

= 〈(χ ′A+χR)du, du〉+ 〈cρ(Wχ)xUu, xUu〉−Re λ〈(Wχ)u, u〉

+ Im λ(〈χW u, u〉+ 〈u, χW u〉)+〈χR′u, u〉 (4-7)

with A, R ∈ C∞(X;End(0T ∗X)), R′ ∈ C∞(X) and A positive definite, all independent of χ . Here ρ is
used since EW,dχ (du)− c(Wχ)|xUu|2 is only positive definite near Y .

Fix t0 < t0 + ε < t1. Let χ0(s) = e−1/s for s > 0 and χ0(s) = 0 for s < 0. Let χ1 be in C∞(R), be
identically 1 on [1,∞), and vanish on (−∞, 0]. Thus, s2χ ′0(s)= χ0(s) for s ∈ R. Now consider

χ̃(s)= χ0(−z−1(s− t1))χ1((s− t0)/ε),
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so supp χ̃ ⊂ [t0, t1], and for s ∈ [t0+ ε, t1] we have

χ̃ ′ =−z−1χ ′0(−z−1(s− t1)), so

χ̃ =−z−1(s− t1)2χ̃ ′.

For z> 0 sufficiently large, this is bounded by a small multiple of χ̃ ′, namely on [t0+ ε, t1]

χ̃ =−γχ̃ ′ where γ = (t1− t0)2z−1. (4-8)

In particular, for sufficiently large z, we have on [t0+ ε, t1]

−(χ ′A+χR)≥−χ ′A/2.

In addition, by (2-8) and (4-8), for Re λ < (n− 1)2/4 and c′ > 0 sufficiently close to 1

−〈Re λ(Wχ)u, u〉 ≤ c′〈ρ(−Wχ)xUu, xUu〉+C ′z−1
‖χ1/2du‖2,

while

|〈χR′u, u〉| ≤ C ′‖χ1/2u‖2 and

‖χ1/2u‖2 ≤ C ′z−1
〈(−Wχ)u, u〉 ≤ C ′′z−1

〈(−Wχ)xUu, xUu〉+C ′′z−2
‖χ1/2du‖2. (4-9)

However, Im λ(〈χW u, u〉+ 〈u, χW u〉) is too large to be controlled by the stress energy tensor since W
is a b-vector field, but not a 0-vector field. Thus, to control the Im λ term for t ∈ [t0+ ε, t1], we need to
assume that Im λ = 0. Then, writing Qu = Q∗u+ (Q− Q∗)u and choosing z > 0 sufficiently large to
absorb the first term on the right hand side of (4-9), we have

〈−χ ′Adu, du〉/2≤−〈−ı Pu, Qu〉+ 〈ı Pu, Qu〉+ γ〈(−χ ′)du, du〉

≤ 2C‖χ1/2W Pu‖H−1
0 (X)‖χ

1/2u‖H1
0 (X)

+ 2C‖(−χ ′)1/2 Pu‖L2
0(X)
‖(−χ ′)1/2u‖L2

0(X)
+Cγ‖(−χ ′)1/2du‖2

≤ 2Cδ−1(
‖W Pu‖2

H−1
0 (X)
+‖Pu‖2L2

0(X)

)
+ 2Cδ

(
‖χ1/2u‖2H1

0 (X)
+‖(−χ ′)1/2u‖2L2(X)

)
+Cz−1

‖(−χ ′)1/2du‖2. (4-10)

For sufficiently small δ > 0 and sufficiently large z> 0 we absorb all but the first parenthesized term on
the right hand side into the left hand side by the positive definiteness of A and the Poincaré inequality,
Proposition 2.5, to conclude that for u supported in [t0+ ε, t1],

‖(−χ ′)1/2du‖L2
0(X;

0T ∗X) ≤ C‖Pu‖H−1,1
0,b (X). (4-11)

In view of the Poincaré inequality, we have this result:

Lemma 4.11. Suppose λ < (n−1)2/4, t0 < t0+ ε < t1 and χ is as above. For u ∈ Ċ∞(X) supported in
[t0+ ε, t1], one has

‖(−χ ′)1/2u‖H1
0 (X)
≤ C‖Pu‖H−1,1

0,b (X). (4-12)
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Remark 4.12. If I is compact then there is T > 0 such that for t0 ∈ I we can take any t1 ∈ (t0, t0+ T ],
that is, the time interval over which we can make the estimate is uniform over such compact intervals I .

This lemma gives local in time uniqueness immediately; hence iterative application of the lemma,
together with Remark 4.12, yields this:

Corollary 4.13. Suppose λ < (n− 1)2/4. For f ∈ H−1,1
0,b,loc(X) supported in t > t0, there is at most one

u ∈ H 1
0,loc(X) such that supp u ⊂ {p : t (p)≥ t0} and Pu = f .

Estimate (4-11) has another consequence via the standard functional analytic argument.

Lemma 4.14. Suppose λ < (n− 1)2/4 and I is a compact interval. There is σ > 0 such that for t0 ∈ I ,
and for f ∈ H−1

0,loc(X) supported in t > t0, there exists u ∈ H 1,−1
0,b,loc(X), such that

supp u ⊂ {p : t (p)≥ t0} and Pu = f in t < t0+ σ.

Proof. For any subspace X of C−∞(X), let X|[τ0,τ1] consist of elements of X restricted to t ∈ [τ0, τ1], and
let X•

[τ0,τ1]
consist of elements of X supported in t ∈ [τ0, τ1]. In particular, an element of Ċ∞comp(X)

•

[τ0,τ1]

vanishes to infinite order at t = τ0, τ1. Thus, the dot over C∞ denotes the infinite order vanishing at ∂X ,
while the • denotes the infinite order vanishing at the time boundaries we artificially imposed.

We assume that f is supported in t > t0+ δ0. We use Lemma 4.11, with the role of t0 and t1 reversed
(backward in time propagation), and our requirement on σ is that it is small enough that the backward
version of the lemma is valid with t1 = t0+ 2σ . (This can be done uniformly over I by Remark 4.12.)
Let T1 = t1− ε and t1 be such that t0+σ = T ′1 < T1 < t1 < t0+2σ . Applying the estimate (4-11), using
P = P∗, with u replaced by φ ∈ Ċ∞comp(X)

•

[t0,T1]
with t1 in the role of t0 there (backward estimate), and

with τ0 ∈ [t0, T1) in the role of t0, we obtain

‖(χ ′)1/2φ‖H1
0 (X)|[τ0,T1]

≤ C‖P∗φ‖H−1,1
0,b (X)|[τ0,T1]

for φ ∈ Ċ∞comp(X)
•

[τ0,T1]
. (4-13)

It is also useful to rephrase this as

‖φ‖H1
0 (X)|[τ ′0,T1]

≤ C‖P∗φ‖H−1,1
0,b (X)|[τ0,T1]

for φ ∈ Ċ∞comp(X)
•

[τ0,T1]
, (4-14)

when τ ′0 > τ0. By (4-13), P∗ : Ċ∞comp(X)
•

[t0,T1]
→ Ċ∞comp(X)

•

[t0,T1]
is injective. Define

(P∗)−1
: RanĊ∞comp(X)

•

[t0,T1]
P∗→ Ċ∞comp(X)

•

[t0,T1]

by (P∗)−1ψ being the unique φ ∈ Ċ∞comp(X)
•

[t0,T1]
such that P∗φ=ψ . Now consider the conjugate linear

functional on RanĊ∞comp(X)
•

[t0,T1]
P∗ given by

` : ψ 7→ 〈 f, (P∗)−1ψ〉. (4-15)
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In view of (4-13) and the support condition on f (namely, the support is in t > t0+δ0) and ψ (the support
is in t ≤ T1),2

|〈 f, (P∗)−1ψ〉| ≤ ‖ f ‖H−1
0 (X)|[t0+δ0,T1]

‖(P∗)−1ψ‖H1
0 (X)|[t0+δ0,T1]

≤ C‖ f ‖H−1
0 (X)|[t0+δ0,T1]

‖ψ‖H−1,1
0,b (X)|[t0,T1]

,

so ` is a continuous conjugate linear functional if we equip RanĊ∞comp(X)
•

[t0,T1]
P∗ with the H−1,1

0,b (X)|[t0,T1]

norm.
If we did not care about the solution vanishing in t < t0+ δ0, we could simply use Hahn–Banach to

extend this to a continuous conjugate linear functional u on H−1,1
0,b (X)•

[t0,T1]
, which can thus be identified

with an element of H 1,−1
0,b (X)|[t0,T1]. This would give

Pu(φ)= 〈Pu, φ〉 = 〈u, P∗φ〉 = `(P∗φ)= 〈 f, (P∗)−1 P∗φ〉 = 〈 f, φ〉

for φ ∈ Ċ∞comp(X)
•

[t0,T1]
, so Pu = f .

We do want the vanishing of u in (t0, t0+ δ0), that is, when applied to φ supported in this region. As
a first step in this direction, let δ′0 ∈ (0, δ0), and note that if

φ ∈ Ċ∞comp(X)
•

[t0,t0+δ′0)
∩RanĊ∞comp(X)

•

[t0,T1]
P∗,

then `(φ) = 0 directly by (4-15), namely, the right hand side vanishes by the support condition on f .
Correspondingly, the conjugate linear map L is well defined on the algebraic sum

Ċ∞comp(X)
•

[t0,t0+δ′0)
+RanĊ∞comp(X)

•

[t0,T1]
P∗ (4-16)

by
L(φ+ψ)= `(ψ) for φ ∈ Ċ∞comp(X)

•

[t0,t0+δ′0)
and ψ ∈ RanĊ∞comp(X)

•

[t0,T1]
P∗.

We claim that the functional L is actually continuous when (4-16) is equipped with the H−1,1
0,b (X)|[t0,T1]

norm. This follows from

|〈 f, (P∗)−1ψ〉| ≤ C‖ f ‖H−1
0 (X)|[t0+δ0,T1]

‖ψ‖H−1,1
0,b (X)|

[t0+δ
′
0,T1]

together with
‖ψ‖H−1,1

0,b (X)|
[t0+δ

′
0,T1]
≤ ‖φ+ψ‖H−1,1

0,b (X)|[t0,T1]

since φ vanishes on [t0+ δ′0, T1]. Correspondingly, by the Hahn–Banach theorem, we can extend L to a
continuous conjugate linear map

u : H−1,1
0,b (X)•

[t0,T1]
→ C,

which can thus by identified with an element of H 1,−1
0,b (X)|[t0,T1]. This gives

Pu(φ)= 〈Pu, φ〉 = 〈u, P∗φ〉 = `(P∗φ)= 〈 f, (P∗)−1 P∗φ〉 = 〈 f, φ〉

2We use below that we can regard f as an element of H−1
0 (X)•

[t0+δ0,∞)
and (P∗)−1ψ as an element of H1

0 (X)
•

(−∞,T1]
,

so these can be naturally paired, with the pairing bounded in the appropriate norms. We then write these norms as
H−1

0 (X)|[t0+δ0,T1] and H1
0 (X)|[t0+δ0,T1].
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for φ ∈ Ċ∞comp(X)
•

[t0,T1]
supported in (t0, T1), so Pu = f , and in addition

u(φ)= 0 for φ ∈ Ċ∞comp(X)
•

[t0,t0+δ′0]
,

so

t ≥ t0+ δ′0 on supp u. (4-17)

In particular, extending u to vanish on (−∞, t0 + δ′0), which is compatible with the existing definition
in view of (4-17), we have a distribution solving the PDE, defined on t < T1, with the desired support
condition. In particular, we use a cutoff function χ that is identically 1 for t ∈ (−∞, T ′1] and supported
on t ∈ (−∞, T1], one has that χu ∈ H 1,−1

0,b (X) and χu vanishes for t < t0 + δ′0 and for t ≥ T1. Then
Pu = f on (−∞, T ′1), thus completing the proof. �

Proposition 4.15. Suppose λ < (n − 1)2/4. For f ∈ H−1
0,loc(X) supported in t > t0, there exists u in

H 1,−1
0,b,loc(X) such that supp u ⊂ {p : t (p)≥ t0} and Pu = f .

Proof. We subdivide the timeline into intervals [t j , t j+1], each of which is sufficiently short so that energy
estimates hold even on [t j−2, t j+3]; this can be done in view of the uniform estimates on the length of
such intervals over compact subsets. Using a partition of unity, we may assume that f is supported
in [tk−1, tk+2], and we need to construct a global solution of Pu = f with u supported in [tk−1,∞).
First we obtain uk as above solving the PDE on (−∞, tk+2] (that is, Puk− f is supported in (tk+2,∞))
and supported in [tk−1, tk+3]. Let fk+1 = Puk − f ; this is thus supported in [tk+2, tk+3]. We next solve
Puk+1=− fk+1 on (−∞, tk+3]with a result supported in [tk+1, tk+4]. Then P(uk+uk+1)− f is supported
in [tk+3, tk+4], etc. Proceeding inductively and noting that the resulting sum is locally finite, we obtain
the solution on all of X . �

Well-posedness of the solution will follow once we show that for solutions u ∈ H 1,s′
0,b,loc(X) of Pu= f ,

with f ∈ H−1,s
0,b,loc(X) supported in t > t0, we in fact have u ∈ H 1,s−1

0,b,loc(X); indeed, this is a consequence
of the propagation of singularities. We state this as a theorem now, recalling the standing assumptions
as well:

Theorem 4.16. Assume that (TF) and (PT) hold. Suppose λ< (n−1)2/4. For f ∈ H−1,1
0,b,loc(X) supported

in t > t0, there exists a unique u ∈ H 1
0,loc(X) such that supp u ⊂ {p : t (p) ≥ t0} and Pu = f . Moreover,

for K ⊂ X compact there is K ′ ⊂ X compact, depending on K and t0 only, such that

‖u|K‖H1
0 (X)
≤ ‖ f |K ′‖H−1,1

0,b (X). (4-18)

Remark 4.17. While we used τ of Lemma 4.10 instead of t throughout, the conclusion of this theorem
is invariant under this change (since δ0 > 0 is arbitrary in Lemma 4.10), and thus is actually valid for the
original t as well.

Proof. Uniqueness and (4-18) follow from Corollary 4.13 and the estimate (4-12). By Proposition 4.15,
this problem has a solution u ∈ H 1,−1

0,b,loc(X) with the desired support property. By the propagation of
singularities, Theorem 8.8, we know u ∈ H 1

0,loc(X) since u vanishes for t < t0. �
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5. Zero-differential operators and b-pseudodifferential operators

To microlocalize, we need to replace Diffb(X) by 9b(X) and 9bc(X). We refer to [Melrose 1993] for
a thorough discussion and [Vasy 2008c, Section 2] for a concise introduction to these operator algebras
including all the facts that are required here. In particular, the distinction between 9b(X) and 9bc(X)
is the same as between 9cl(R

n) and 9(Rn) of classical, or one step polyhomogeneneous, respectively
standard, pseudodifferential operators, that is, elements of the former (9b(X), respectively 9cl(R

n)) are
(locally) quantizations of symbols with a full one-step polyhomogeneous asymptotic expansion (also
called classical symbols), while those of the latter (9bc(X), respectively 9(Rn)) are (locally) quanti-
zations of symbols that merely satisfy symbolic estimates. While the former are convenient since they
have homogeneous principal symbols, the latter are more useful when one must use approximations (for
example, by smoothing operators), as is often the case below. Before proceeding, we recall that points
in the b-cotangent bundle bT ∗X of X are of the form

ξ
dx
x
+

n−1∑
j=1

ζ j dy j .

Thus, (x, y, ξ , ζ ) give coordinates on bT ∗X . If (x, y, ξ, ζ ) are the standard coordinates on T ∗X induced
by local coordinates on X , that is, if one-forms are written as ξ dx+ζ dy, then the map π : T ∗X→ bT ∗X
is given by π(x, y, ξ, ζ )= (x, y, xξ, ζ ).

To be a bit more concrete (but again we refer to [Melrose 1993] and [Vasy 2008c, Section 2] for
more detail), we can define a large subspace (which in fact is sufficient for our purposes here) of 9m

bc(X)
and 9m

b (X) locally by explicit quantization maps; these can be combined to a global quantization map
by a partition of unity as usual. Thus, we have q = qm : Sm(bT ∗X) → 9m

bc(X), which restrict to
q : Sm

cl (
bT ∗X)→ 9m

b (X), with cl denoting classical symbols. Namely, over a local coordinate chart U
with coordinates (x, y), where y = (y1, . . . , yn−1), and with a supported in bT ∗K X with K ⊂U compact,
we may take

q(a)u(x, y)= (2π)−n
∫

eı((x−x ′)ξ+(y−y′)·ζ )φ
( x−x ′

x

)
a(x, y, xξ, ζ )u(x ′, y′)dx ′dy′dξ dζ,

understood as an oscillatory integral, where φ ∈ C∞comp((−1/2, 1/2)) is identically 1 near 0, and the
integral in x ′ is over [0,∞). Note that φ is irrelevant as far as the behavior of Schwartz kernels near the
diagonal is concerned (it is identically 1 there); it simply localizes to a neighborhood of the diagonal.
Somewhat inaccurately, one may write q(a) as a(x, y, x Dx , Dy), so a is symbolic in b-vector fields; a
more accurate way of reflecting this is to change variables, writing ξ = xξ and ζ = ζ , so

q(a)u(x, y)= (2π)−n
∫

eı
( x−x ′

x ξ+(y−y′)·ζ
)
φ
( x−x ′

x

)
a(x, y, ξ , ζ )u(x ′, y′) dx ′

x
dy′dξ dζ . (5-1)

With this explicit quantization, the principal symbol σb,m(A) of A = q(a) is the class [a] of a in
Sm(bT ∗X)/Sm−1(bT ∗X). If a is classical, this class can be further identified with a homogeneous symbol
of degree m, that is, an element of Sm

hom(
bT ∗X\o). On the other hand, the operator wave front set WF′b(A)
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of A= q(a) can be defined by saying that p ∈ bT ∗X \o is not in WF′b(A) if p has a conic neighborhood
0 in bT ∗X \ o such that a = a(x, y, ξ , ζ ) is rapidly decreasing (that is, is an order −∞ symbol) in 0.
Thus, A is microlocally order −∞ on the complement of WF′b(A).

A somewhat better definition of 9bc(X) and 9b(X) is directly in terms of the Schwartz kernels. The
Schwartz kernels are well behaved on the b-double space X2

b = [X
2
; (∂X)2] created by blowing up the

corner (∂X)2 in the product space X2
= X × X ; in particular they are smooth away from the diagonal

and vanish to infinite order off the front face. In these terms φ above localizes to a neighborhood of
the diagonal that only intersects the boundary of X2

b in the front face of the blow-up. The equivalence
of the two descriptions can be read off directly from (5-1), which shows that the Schwartz kernel is a
right b-density valued (this is the factor (dx ′/x)dy′ in (5-1)) distribution conormal to (x−x ′)/x = 0 and
y− y′ = 0, that is, the lift of the diagonal to X2

b .
The space 9bc(X) forms a filtered algebra, so AB ∈9m+m′

bc (X) for A ∈9m
bc(X) and B ∈9m′

bc (X). In
addition, the commutator satisfies [A, B] ∈ 9m+m′−1

bc (X), that is, it is one order lower than the product,
but there is no gain of decay at ∂X . We also recall a crucial lemma from [Vasy 2008c, Section 2]:

Lemma 5.1. For A ∈9m
bc(X) and A ∈9m

b (X), one has [x Dx , A] ∈ x9m
bc(X) and [x Dx , A] ∈ x9m

b (X),
respectively.

Proof. The lemma is an immediate consequence of x Dx having a commutative normal operator; see
[Melrose 1993] for a detailed discussion and [Vasy 2008c, Section 2] for a brief explanation. �

For simplicity of notation we state the results from here through Lemma 5.5 for 9b(X); they work
equally well if one replaces 9b(X) by 9bc(X) throughout.

Lemma 4.4 still holds with Diffb(X) replaced by 9b(X), but without the awkward restriction on
positivity of b-orders (which is simply due to the lack of nontrivial negative order differential operators).

Definition 5.2. Let Diffk
09

m
b (X) be the (complex) vector space of operators on Ċ∞(X) of the form∑

Pj Q j , with Pj ∈ Diffk
0(X) and Q j ∈9

m
b (X),

where the sum is locally finite, and let

Diff09b(X)=
∞⋃

k=0

∞⋃
m∈R

Diffk
09

m
b (X).

We define Diffk
09

m
bc(X) similarly, by replacing 9b(X) by 9bc(X) throughout the definition.

The ring structure (even with a weight xr ) of Diff09b(X) was proved in [Vasy 2010b, Corollary 4.4
and Lemma 4.5], which we recall here. We add to the statements of these results that Diff09b(X) is
also closed under adjoints with respect to any weighted nondegenerate b-density, and in particular with
respect to a nondegenerate 0-density such as |dg|, since both Diff0(X) and 9b(X) are closed under these
adjoints and (AB)∗ = B∗A∗.

Lemma 5.3. Diff09b(X) is a filtered *-ring under composition (and adjoints) with

AB ∈ Diffk+k′
0 9m+m′

b (X) if A ∈ Diffk
09

m
b (X) and B ∈ Diffk′

0 9
m′
b (X)
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and
A∗ ∈ Diffk

09
m
b (X) if A ∈ Diffk

09
m
b (X)

where the adjoint is taken with respect to a (that is, any fixed ) nondegenerate 0-density. Moreover,
composition is commutative to leading order in Diff0, that is, for A and B as above and k+ k ′ ≥ 1,

[A, B] ∈ Diffk+k′−1
0 9m+m′

b (X).

Just like for differential operators, we again have a lemma that improves the b-order (rather than
merely the 0-order) of the commutator provided one of the commutants is in 9b(X). Again, it is crucial
here that there are no weights on 9b(X).

Lemma 5.4. [A, B] ∈ Diffk
09

s+m−1
b (X) if A ∈9s

b(X) and B ∈ Diffk
09

m
b (X),

Proof. Expanding elements of Diffk
0(X) as finite sums of products of vector fields and functions, and using

that 9b(X) is commutative to leading order, we need to consider commutators [ f, A] for f ∈ C∞(X)
and A ∈9s

b(X) and show that this is in 9s−1
b (X), which is automatic as C∞(X)⊂90

b (X). We also need
to consider [V, A] for V ∈ V0(X) and A ∈9s

b(X) and show that this is in Diff1
09

s−1
b (X), that is,

[V, A] =
∑

j

W j B j +C j for some B j ,C j ∈9
s−1
b (X) and W j ∈ V0(X).

But V = xV ′, where V ′ ∈ V(X), and

[V ′, A] =
∑

j

W ′j B ′j +C ′j for some W ′j ∈ V(X) and B ′j ,C ′j ∈9
s−1
b (X);

see [Vasy 2008c, Lemma 2.2]. Meanwhile B ′′ = [x, A]x−1
∈9s−1

b (X), so

[V, A] = [x, A]V ′+ x[V ′, A] = B ′′(xV ′)+
∑

j

(xW ′j )B
′

j + xC ′j ,

which is of the desired form once the first term is rearranged using Lemma 5.3. That is, explicitly
B ′′(xV ′)= (xV ′)B ′′+ [B ′′, xV ′], with the last term being an element of 9s−1

b (X). �

We also have an analogue of Lemma 4.5.

Lemma 5.5. For any integer l ≥ 0,

x l Diffk
09

m
b (X)⊂ Diffk+l

0 9m−l
b (X).

Proof. It suffices to show that x9m
b (X) ⊂ Diff1

09
m−1
b (X); the rest follows by induction. Also, we may

localize and assume that A is supported in a coordinate patch; note that

9−∞b (X)⊂ Diff1
09
−∞

b (X)

since C∞(X)⊂ Diff1
0(X). Thus, let A ∈9m

b (X). Then there exist A j ∈9
m−1
b (X) for j = 0, . . . , n− 1,

and R ∈9−∞b (X) such that
A = (x Dx)A0+

∑
j

Dy j A j + R;
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to achieve this, one simply needs to use the ellipticity of L= (x Dx)
2
+
∑

D2
y j

by constructing a parametrix
G ∈ 9−2

b (X) to it, and writing A = LG A+ E A, with E ∈ 9−∞b (X). As x(x Dx), x Dy j ∈ V0(X), the
conclusion follows. �

As a consequence of our results thus far, we deduce that 90
b (X) is bounded on H m

0 (X), as stated
already in [Vasy 2010b, Lemma 4.7].

Proposition 5.6. Suppose m ∈ Z. Any A ∈ 90
bc(X) with compact support defines a bounded operator

on H m
0 (X), with operator norm bounded by a seminorm of A in 90

bc(X).

Proof. For m ≥ 0 this is a special case of [Vasy 2010b, Lemma 4.7]. The fact that the operator norm is
bounded by a seminorm of A in 90

bc(X) was not explicitly stated there, though follows from the proof.
The case m < 0 follows by duality.

For the convenience of the reader we recall the proof in the case we actually use in this paper, namely
m = 1 (then m = −1 follows by duality). Any A as in the statement of the proposition is bounded on
L2(X) with the stated properties. Thus, we need to show that if V ∈V0(X), then V A : H 1

0 (X)→ L2(X).
But V A = AV + [V, A] and [V, A] ∈ Diff1

09
−1
b (X) ⊂ 90

b (X). Hence AV : H 1
0 (X) → L2(X) and

[V, A] : L2(X)→ L2(X), with the claimed norm behavior. �

If q is a homogeneous function on bT ∗X \ o, then we again consider the Hamilton vector field Hq

associated to it on T ∗X◦ \ o. A calculation with change of coordinates shows that in the b-canonical
coordinates given above

Hq = (∂ξq)x∂x − (x∂xq)∂ξ + (∂ζq)∂y − (∂yq)∂ζ ,

so Hq extends to a C∞ vector field on bT ∗X \o that is tangent to bT ∗∂X X . If Q ∈9m′
b (X) and P ∈9m

b (X),
then [Q, P] ∈9m+m′−1

b (X) has principal symbol

σb,m+m′−1([Q, P])= 1
ı
Hq p.

Using Proposition 5.6 we can define a meaningful WFb relative to H 1
0 (X). First we recall the definition

of the corresponding global function space from [Vasy 2010b, Section 4]:
For k ≥ 0 the b-Sobolev spaces relative to H r

0 (X) are given by3

H r,k
0,b,comp(X)= {u ∈ H r

0,comp(X) : Au ∈ H r
0,comp(X) for all A ∈9k

b (X)}.

These can be normed by taking any properly supported elliptic A ∈9k
b (X) and letting

‖u‖2
H r,k

0,b,comp(X)
= ‖u‖2H r

0 (X)
+‖Au‖2H r

0 (X)
.

Although the norm depends on the choice of A, for u supported in a fixed compact set, different choices
give equivalent norms; see [Vasy 2010b, Section 4] for details in the 0-setting (where supports are not

3We do not need weighted spaces, unlike in [Vasy 2010b], so we only state the definition in the special case when the weight
is identically 1. On the other hand, we are working on a noncompact space, so we must consider local spaces and spaces of
compactly supported functions as in [Vasy 2008c, Section 3]. Note also that we reversed the index convention (which index
comes first) relative to [Vasy 2010b], to match the notation for the wave front sets.
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an issue), and [Vasy 2008c, Section 3] for an analysis involving supports. We also let H r,k
0,b,loc(X) be the

subspace of H r
0,loc(X) consisting of u ∈ H r

0,loc(X) such that φu ∈ H r,k
0,b,comp(X) for any φ ∈ C∞comp(X).

Here it is also useful to have Sobolev spaces with a negative amount of b-regularity, in a manner
completely analogous to [Vasy 2008c, Definition 3.15]:

Definition 5.7. Let r be an integer, k < 0, and A ∈9−k
b (X) be elliptic on bS∗X with proper support. Let

H r,k
0,b,comp(X) be the space of all u ∈ C−∞(X) of the form u = u1+ Au2 with u1, u2 ∈ H r

0,comp(X). Let

‖u‖H r,k
0,b,comp(X)

= inf{‖u1‖H r
0 (X)+‖u2‖H r

0 (X) : u = u1+ Au2}.

We also let H r,k
0,b,loc(X) be the space of all u ∈C−∞(X) such that φu ∈ H r,k

0,b,comp(X) for all φ ∈C∞comp(X).

As discussed for analogous spaces following [Vasy 2008c, Definition 3.15], this definition is indepen-
dent of the particular A chosen, and different A give equivalent norms for distributions u supported in a
fixed compact set K . Moreover:

Lemma 5.8. Suppose r ∈ Z and k ∈ R. Any B ∈ 90
bc(X) with compact support defines a bounded

operator on H r,k
0,b(X), with operator norm bounded by a seminorm of B in 90

bc(X).

Proof. Suppose k ≥ 0 first. Then for an A ∈9k
b (X) as in the definition above,

‖Bu‖2
H r,k

0,b,comp(X)
= ‖Bu‖2H r

0 (X)
+‖ABu‖2H r

0 (X)
.

The first term on the right side is bounded in the desired way due to Proposition 5.6. Letting G ∈9−k
b (X)

be a properly supported parametrix for A such that G A = Id+E for E ∈ 9−∞b (X), we have ABu =
AB(G A− E)u = (ABG)Au− (AB E)u, with ABG ∈90

bc(X) and AB E ∈9−∞bc (X)⊂90
bc(X). Thus

‖ABu‖H r
0 (X) ≤ C‖Au‖H r

0 (X)+C‖u‖H r
0 (X)

by Proposition 5.6, with C bounded by a seminorm of B. This completes the proof if k ≥ 0.
For k < 0, let A ∈ 9−k

b (X) be as in the definition. If u = u1+ Au2, and G ∈ 9k
b (X) is a parametrix

for A such that AG = Id+F for F ∈9−∞b (X), then

Bu = Bu1+ B Au2 = Bu1+ (AG− F)B Au2 = Bu1+ A(G B A)u2− (F B A)u2.

Now, B, F B A,G B A ∈90
b (X) so Bu ∈ H r,k

0,b,comp(X). Choosing u1 and u2 so that

‖u1‖H r
0 (X)+‖u2‖H r

0 (X) ≤ 2‖u‖H r,k
0,b,comp(X)

shows the desired continuity, and that the operator norm of B is bounded by a 90
bc(X)-seminorm. �

Now we define the wave front set relative to H r
0,loc(X). We also allow negative a priori b-regularity

relative to this space.

Definition 5.9. Suppose u ∈ H r,k
0,loc(X), r ∈ Z and k ∈R. Then q ∈ bT ∗X \o is not in WFr,∞

b (u) if there
is an A ∈90

b (X) such that σb,0(A)(q) is invertible and Q Au ∈ H r
0,loc(X) for all Q ∈Diffb(X), that is, if

Au ∈ H r,∞
0,b,loc(X).
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Moreover, q ∈ bT ∗X \o is not in WFr,m
b (u) if there is an A ∈9m

b (X) such that σb,0(A)(q) is invertible
and Au ∈ H r

0,loc(X).

Proposition 5.6 implies that 9bc(X) acts microlocally, that is, it preserves WFb; see [Vasy 2008c,
Section 3] for a similar argument. In particular, the proofs for both the qualitative and quantitative
version of microlocality go through without any significant changes; one simply replaces the use of
[Vasy 2008c, Lemma 3.2] by Proposition 5.6.

Lemma 5.10 (see [Vasy 2008c, Lemma 3.9]). Suppose that u ∈ H r,k′
0,b,loc(X) and B ∈ 9k

bc(X). Then
WFr,m−k

b (Bu)⊂WFr,m
b (u)∩WF′b(B).

As in [Vasy 2008c, Section 3], the wave front set microlocalizes the “b-singular support relative to
H r

0,loc(X)”, meaning this:

Lemma 5.11 (see [Vasy 2008c, Lemma 3.10]). Suppose u ∈H r,k
0,b,loc(X), p∈ X. If bS∗p X∩WF1,m

b (u)=∅,
then in a neighborhood of p, u lies in H 1,m

0,b (X), that is, there is φ ∈ C∞comp(X) with φ ≡ 1 near p such
that φu ∈ H 1,m

0,b (X).

Corollary 5.12 (see [Vasy 2008c, Corollary 3.11]). Suppose u ∈ H r,k
0,b,loc(X) and WFr,m

b (u) = ∅. Then
u ∈ H r,m

0,b,loc(X).
In particular, if u∈H r,k

0,b,loc(X) and WFr,m
b (u)=∅ for all m, then u∈H r,∞

0,b,loc(X), that is, u is conormal
in that Au ∈ H r

0,loc(X) for all A ∈ Diffb(X) (or indeed A ∈9b(X)).

Finally, we have the following quantitative bound for which we recall the definition of the wave front
set of bounded subsets of 9k

bc(X):

Definition 5.13 (see [Vasy 2008c, Definition 3.12]). Suppose that B is a bounded subset of 9k
bc(X), and

q ∈ bS∗X . We say that q /∈WF′b(B) if there is some A∈9b(X) that is elliptic at q such that {AB : B ∈B}

is a bounded subset of 9−∞b (X).

Lemma 5.14 (see [Vasy 2008c, Lemmas 3.13 and 3.18]). Suppose that K ⊂ bS∗X is compact and U is
a neighborhood of K in bS∗X. Let K̃ ⊂ X compact, and Ũ be a neighborhood of K̃ in X with compact
closure. Let Q ∈9k

b (X) be elliptic on K with WF′b(Q)⊂U , with Schwartz kernel supported in K̃ × K̃ .
Let B be a bounded subset of 9k

bc(X) with WF′b(B)⊂ K and Schwartz kernel supported in K̃ × K̃ . Then
for any s ≤ 0 there is a constant C > 0 such that for B ∈B and u ∈ H r,s

0,b,loc(X) with WFr,k
b (u)∩U =∅,

we have
‖Bu‖H r

0 (X) ≤ C(‖u‖H r,s
0,b(Ũ )
+‖Qu‖H r

0 (X)).

We can use this lemma to obtain uniform bounds for pairings. We call a subset B of Diffm
0 9

2k
bc (X)

bounded if its elements are locally finite linear combinations of a fixed, locally finite set of elements of
Diffm

0 (X) with coefficients that lie in a bounded subset of 92k
bc (X).

Corollary 5.15. Suppose that K ⊂ bS∗X is compact and U is a neighborhood of K in bS∗X. Let K̃ ⊂ X
be compact, and Ũ be a neighborhood of K̃ in X with compact closure. Let Q ∈9k

b (X) be elliptic on K
with WF′b(Q)⊂U , with Schwartz kernel supported in K̃× K̃ . Let B be a bounded subset of Diff2

09
2k
bc (X)
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with WF′b(B) ⊂ K and Schwartz kernel supported in K̃ × K̃ . Then there is a constant C > 0 such that
for B ∈B and u ∈ H 1,s

0,b,loc(X) with WF1,k
b (u)∩U =∅, we have

|〈Bu, u〉| ≤ C(‖u‖H1
0 (Ũ )
+‖Qu‖H1

0 (X)
)2.

Proof. Using Lemma 5.3 we can write B as
∑

B ′i j P∗i R j3, where Pi , R j ∈Diff1
0(X), 3∈9

k
b (X) (which

we take to be elliptic on K , but such that Q is elliptic on WF′b(3)), B ′i j lies in a bounded subset B′

of 9k
b (X) and the sum is finite. Then

|〈Bu, u〉| ≤
∑

i j

|〈R j3u, Pi (B ′i j )
∗u〉| ≤

∑
i j

‖R j3u‖L2(X) ‖Pi (B ′i j )
∗u‖L2(X)

≤

∑
i j

‖3u‖H1
0 (X)
‖Pi (B ′i j )

∗u‖H1
0 (X)
≤

∑
C(‖u‖H1,s

0,b (Ũ )
+‖Qu‖H1

0 (X)
)2,

where in the last step we used Lemma 5.14. �

It is useful to note that infinite order b-regularity relative to L2
0(X) and H 1

0 (X) are the same.

Lemma 5.16. WF1,∞
b (u)=WF0,∞

b (u) for u ∈ H 1
0,loc(X).

Proof. The complements of the two sides are the set of points q ∈ bS∗X for which there exist A ∈90
b (X)

(with compactly supported Schwartz kernel, as one may assume) such that σb,0(A)(q) is invertible and
L Au ∈ H 1

0 (X), respectively L Au ∈ L2
0(X). Since H 1

0 (X)⊂ L2
0(X), that WF0,∞

b (u)⊂WF1,∞
b (u) follows

immediately. For the converse, if L Au∈ L2
0(X) for all L ∈Diffb(X), then Diff0(X)⊂Diffb(X) shows that

QL Au ∈ L2
0(X) for Q ∈Diff1

0(X) and L ∈Diffb(X), so L Au ∈ H 1
0 (X), that is, WF1,∞

b (u)⊂WF0,∞
b (u),

completing the proof. �

We finally recall that u ∈ Ak(X), that is, that u is conormal relative to xk L2
b(X), which means that

Lu ∈ xk L2
b(X) for all L ∈ Diffb(X), so in particular u ∈ xk L2

b(X). Thus,

WF0,∞
b (u)=∅ if and only if u ∈A(n−1)/2(X),

in view of L2
0(X)= x (n−1)/2L2

b(X).

6. Generalized broken bicharacteristics

We recall the structure of the compressed characteristic set and GBB from [Vasy 2010a, Sections 1 and 2].
In that paper X is a manifold with corners and k is the codimension of the highest codimension corner in
the local coordinate chart. Thus, for application to this paper, the reader should take k= 1 when referring
to [Vasy 2010a, Sections 1 and 2]. It is often convenient to work on the cosphere bundle, here bS∗X ,
which is equivalent to working on conic subsets of bT ∗X \ o. In a region where, say,

|ξ |< C |ζ n−1| and |ζ j |< C |ζ n−1| for j = 1, . . . , n− 2, (6-1)

with C > 0 fixed, we can take

x, y1, . . . , yn−1, ξ̂ , ζ̂ 1, . . . , ζ̂ n−2, |ζ n−1| where ξ̂ = ξ/|ζ n−1| and ζ̂ j = ζ j/|ζ n−1|,
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as (projective) local coordinates on bT ∗X \ o, and hence take

x, y1, . . . , yn−1, ξ̂ , ζ̂ 1, . . . , ζ̂ n−2

as local coordinates on the image of this region under the quotient map in bS∗X ; see [Vasy 2010a,
Equation (1.4)].

First, we choose local coordinates more carefully. In arbitrary local coordinates (x, y1, . . . , yn−1) on
a neighborhood U0 of a point on Y = ∂X , so that Y is given by x = 0 inside x ≥ 0, any symmetric bilinear
form on T ∗X can be written as

Ĝ(x, y)= A(x, y) ∂x ∂x +
∑

j

2C j (x, y) ∂x ∂y j +

∑
i, j

Bi j (x, y) ∂yi ∂y j (6-2)

with A, B,C smooth. In view of (1-1), using x given there and coordinates y j on Y pulled by to a collar
neighborhood of Y by the product structure, we have in addition

A(0, y)=−1 and C j (0, y)= 0 for all y,

and B(0, y)= (Bi j (0, y)) is Lorentzian for all y. Below we write covectors as

α = ξ dx +
n−1∑
i=1

ζi dyi . (6-3)

Thus,

Ĝ|x=0 =−∂
2
x +

n−1∑
i, j=1

Bi j (0, y) ∂yi ∂y j , (6-4)

and hence the metric function, p(q)= Ĝ(q, q) for q ∈ T ∗X, is

p|x=0 =−ξ
2
+ ζ · B(y)ζ. (6-5)

Since A(0, y)=−1< 0, we see Y is indeed timelike in that the restriction of the dual metric Ĝ to N ∗Y
is negative definite, for locally the conormal bundle N ∗Y is given by

{(x, y, ξ, ζ ) : x = 0, ζ = 0}.

We write h = ζ · B(y)ζ for the metric function on the boundary. Also, from (6-5),

Hp =−2ξ · ∂x +Hh +β∂ξ + xV, (6-6)

where V is a C∞ vector field in U0 = T ∗U0 and β is a C∞ function on U0.
It is sometimes convenient to improve the form of B near a particular point p0, around which the

coordinate system is centered. Namely, since B is Lorentzian, we can further arrange it by adjusting the
y j coordinates so that ∑

Bi j (0, 0)∂yi ∂y j = ∂
2
yn−1
−

∑
i<n−1

∂2
yi
. (6-7)
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We now recall from the introduction that π : T ∗X → bT ∗X is the natural map corresponding to the
identification of a section of T ∗X as a section of bT ∗X , and in local coordinates π is given by

π(x, y, ξ, ζ )= (x, y, xξ, ζ ).

Moreover, the image under π of the characteristic set 6 ⊂ T ∗X \ o, given by

6 = {q ∈ T ∗X : p(q)= 0},

is the compressed characteristic set 6̇ = π(6). Note that (6-5) gives that

6̇ ∩U0 ∩
bT ∗Y X = {(0, y, 0, ζ ) : 0≤ ζ · B(y)ζ , ζ 6= 0}. (6-8)

In particular, in view of (6-7), 6̇∩U0 lies in the region (6-1), at least after we possibly shrink U0 (recall
that U0 = T ∗U0), as we assume from now. We also remark that, using (6-6),

π∗|(x,y,ξ,ζ )Hp =−2ξ · (∂x + ξ∂ξ )+Hh + xβ∂ξ + xπ∗V, (6-9)

and correspondingly

Hpπ
∗ξ
∣∣
x=0 =−2ξ 2

= 2(p− ζ · B(y)ζ )=−2ζ · B(y)ζ, where (0, y, ξ, ζ ) ∈6. (6-10)

As we already noted, ζ n−1 cannot vanish on 6̇ ∩U0, so

Hpπ
∗(ξ/|ζ n−1|)

∣∣
x=0 =−2|ζn−1|

−1ξ 2
− xξ |ζn−1|

−2(Hh|ζn−1|)
∣∣
x=0

=−2|ζn−1|
−1ζ · B(y)ζ, (0, y, ξ, ζ ) ∈6.

(6-11)

To better understand the generalized broken bicharacteristics for �, we divide 6̇ into two subsets.
We thus define the glancing set G as the set of points in 6̇ whose preimage under π̂ = π |6 consists of
a single point, and define the hyperbolic set H as its complement in 6̇. Thus, bT ∗X◦X ∩ 6̇ ⊂ G since π
is a diffeomorphism on T ∗X◦X , while q ∈ 6̇ ∩ bT ∗Y X lies in G if and only if on π̂−1({q}), ξ = 0. More
explicitly, with the notation of (6-8),

G∩U0 ∩
bT ∗Y X = {(0, y, 0, ζ ) : ζ · B(y)ζ = 0, ζ 6= 0},

H∩U0 ∩
bT ∗Y X = {(0, y, 0, ζ ) : ζ · B(y)ζ > 0, ζ 6= 0}.

(6-12)

Thus, G corresponds to generalized broken bicharacteristics that are tangent to Y in view of the vanishing
of ξ at π̂−1(G) (recall that the ∂x component of Hp is −2ξ ), while H corresponds to generalized broken
bicharacteristics that are normal to Y . Note that if Y is one-dimensional (hence X is 2-dimensional),
then ζ · B(y)ζ = 0 necessarily implies ζ = 0, so in fact G∩ bT ∗Y X =∅, and hence there are no glancing
rays.

We next make the role of G and H more explicit, which explains the relevant phenomena better. A
characterization of GBB, which is equivalent to Definition 1.1, is this:

Lemma 6.1 (see the discussion in [Vasy 2005, Section 1] after the statement of Definition 1.1). A con-
tinuous map γ : I → 6̇, where I ⊂ R is an interval, is a GBB (in the analytic sense that we use here) if
and only if it satisfies the following requirements:
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(i) If q0 = γ(s0) ∈ G, then for all f ∈ C∞(bT ∗X),

d
ds
( f ◦ γ)(s0)= Hp(π

∗ f )(q̃0) where q̃0 = π̂
−1(q0). (6-13)

(ii) If q0 = γ(s0) ∈H, then there exists ε > 0 such that

γ(t) /∈ bT ∗Y X if 0< |s− s0|< ε for s ∈ I. (6-14)

The idea of the proof of this lemma is that at G, the requirement in (i) is equivalent to Definition 1.1
since π̂−1(q0) contains a single point. On the other hand, at H, the requirement in (ii) follows from
Definition 1.1 applied to the functions f =±ξ , using (6-10), to conclude that ξ is strictly decreasing at
H along GBB. Since one has ξ = 0 on 6̇ ∩ {x = 0}, we have for a GBB γ through γ(s0) = q0 ∈ H, on
a punctured neighborhood of s0, that ξ(γ(s)) 6= 0, so γ(s) /∈ bT ∗Y X (since γ(s) ∈ 6̇). For the converse
direction at H we refer to [Lebeau 1997]; see [Vasy 2005, Section 1] for details.

7. Microlocal elliptic regularity

We first note the form of � with commutator calculations in mind. Rather than thinking of the tangential
terms x Dy as “too degenerate”, we think of x Dx as “too singular” in that it causes the failure of � to lie
in x2 Diff2

b(X). This makes the calculations rather analogous to the conformal case, and also it facilitates
the use of the symbolic machinery for b-pseudodifferential operators (b-PsDOs).

Proposition 7.1. On a collar neighborhood of Y , the form of � is

−(x Dx)
∗α(x Dx)+ (x Dx)

∗M ′+M ′′(x Dx)+ P̃, (7-1)

with
α− 1 ∈ xC∞(X), M ′,M ′′ ∈ x2 Diff1

b(X)⊂ x Diff1
0(X),

P̃ ∈ x2 Diff2
b(X), P̃ − x2�h ∈ x3 Diff2

b(X)⊂ x Diff2
0(X),

where �h is the d’Alembertian of the conformal metric on the boundary (extended to a neighborhood of
Y using the collar structure).

Proof. Writing the coordinates as (z1, . . . , zn), the operator �g is given by

�g =
∑

i j

D∗zi
Gi j Dz j ,

with adjoints taken with respect to dg = |det g|1/2|dz1 · · · dzn|. With z j = y j for j = 1, . . . , n− 1 and
zn = x , this can be rewritten as

�g =
∑

i j

(x Dzi )
∗Ĝi j (x Dz j )

= (x Dx)
∗Ĝnn(x Dx)+

n−1∑
j=1

(x Dx)
∗Ĝnj (x Dy j )+

n−1∑
j=1

(x Dy j )
∗Ĝ jn(x Dy j )+

n−1∑
i, j=1

(x Dyi )
∗Ĝi j (x Dy j ).



118 ANDRÁS VASY

Since Ĝnn+1∈ xC∞(X), we find that α−1∈ xC∞(X) by taking α=−Ĝnn . Since Ĝ jn, Ĝnj ∈ xC∞(X),
we find M ′,M ′′ ∈ x2 Diff1

b(X) by taking M ′ =
∑n−1

j=1 Ĝnj (x Dy j ) and M ′′ =
∑n−1

j=1(x Dy j )
∗Ĝ jn . Finally,

P̃ =
n−1∑
i j=1

(x Dyi )
∗Ĝi j (x Dy j ) ∈ x2 Diff2

b(X).

Modulo x3 Diff2
b(X), we can pull out the factors of x and restrict Ĝi j to Y . Therefore P̃ differs from

x2�h = x2∑ D∗yi
hi j Dy j by an element of x3 Diff2

b(X), completing the proof. �

We next state the lemma regarding Dirichlet form that is of fundamental use in both the elliptic and
hyperbolic/glancing estimates. Below the main assumption is that P =�g+λ, with �g as in (7-1). We
first recall the notation for local norms:

Remark 7.2. Since X is noncompact and our results are microlocal, we may always fix a compact set
K̃ ⊂ X and assume that all PsDOs have Schwartz kernel supported in K̃ × K̃ . We also let Ũ be a
neighborhood of K̃ in X such that Ũ has compact closure, and use the H 1

0 (Ũ ) norm in place of the
H 1

0 (X) norm to accommodate u ∈ H 1
0,loc(X). (We may instead take φ ∈ C∞comp(Ũ ) identically 1 in a

neighborhood of K̃ , and use ‖φu‖H1
0 (X)

.) Below we use the notation ‖ · ‖H1
0,loc(X)

for ‖ · ‖H1
0 (Ũ )

to avoid
having to specify Ũ . We also use ‖v‖H−1

0,loc(X)
for ‖φv‖H−1

0 (X).

Lemma 7.3 (see [Vasy 2008c, Lemma 4.2]). Suppose that K ⊂ bS∗X is compact, U ⊂ bS∗X is open, and
K ⊂U. Suppose that A= {Ar : r ∈ (0, 1]} is a bounded family of PsDOs in 9s

bc(X) with WF′b(A)⊂ K ,
and with Ar ∈ 9

s−1
b (X) for r ∈ (0, 1]. Then there are G ∈ 9s−1/2

b (X) and G̃ ∈ 9s+1/2
b (X) with

WF′b(G),WF′b(G̃) ⊂ U and C0 > 0 such that for r ∈ (0, 1] and u ∈ H 1,k
0,b,loc(X) (here k ≤ 0) with

neither WF1,s−1/2
b (u) nor WF−1,s+1/2

b (Pu) intersecting U , we have

|〈d Ar u, d Ar u〉G + λ‖Ar u‖2| ≤ C0(‖u‖2H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)
).

Remark 7.4. The point of this lemma is G is 1/2 order lower (s− 1/2 versus s) than the family A. We
will later take the limit r→ 0 to gain control of the Dirichlet form evaluated on A0u, where A0 ∈9

s
bc(X),

in terms of lower order information.
The role of Ar for r > 0 is to regularize such an argument, that is, to make sure various terms in a

formal computation, in which one uses A0 directly, actually make sense.
The main difference with [Vasy 2008c, Lemma 4.2] is that λ is not negligible.

Proof. We have Ar u ∈ H 1
0 (X) for r ∈ (0, 1], so

〈d Ar u, d Ar u〉+ λ‖Ar u‖2 = 〈P Ar u, Ar u〉.

Here the right side is the pairing of H−1
0 (X) with H 1

0 (X), so by writing P Ar = Ar P + [P, Ar ], it can
be estimated by

|〈Ar Pu, Ar u〉| + |〈[P, Ar ]u, Ar u〉|. (7-2)
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The lemma is thus proved if we show that the first term of (7-2) is bounded by

C ′0
(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)

)
, (7-3)

the second term is bounded by C ′′0 (‖u‖
2
H1,k

0,b,loc(X)
+ ‖Gu‖2

H1
0 (X)

). (Recall that the “local” norms were
defined in Remark 7.2.)

The first term is straightforward to estimate. Let 3 ∈ 9−1/2
b (X) be elliptic with 3− ∈ 91/2

b (X) a
parametrix, so that

E =33−− Id and E ′ =3−3− Id ∈9−∞b (X).

Then

〈Ar Pu, Ar u〉 = 〈(33−− E)Ar Pu, Ar u〉 = 〈3−Ar Pu,3∗Ar u〉− 〈Ar Pu, E∗Ar u〉.

Since 3−Ar is uniformly bounded in 9s+1/2
bc (X) and 3∗Ar is uniformly bounded in 9s−1/2

bc (X), we
have 〈3−Ar Pu,3∗Ar 〉 is uniformly bounded, with a bound like (7-3) using Cauchy–Schwartz and
Lemma 5.14. Indeed, by Lemma 5.14, if we choose any G ∈9s−1/2

b (X) that is elliptic on K , there is a
constant C1 > 0 such that

‖3∗Ar u‖2H1
0 (X)
≤ C1

(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)

)
.

Similarly, by Lemma 5.14 and its analogue for WF−1,s
b , if we choose any G̃ ∈9s+1/2

b (X) that is elliptic
on K , there is a constant C ′1 > 0 such that

‖3−Ar Pu‖2
H−1

0 (X)
≤ C ′1

(
‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)

)
.

Combining these gives, with C ′0 = C1+C ′1, the desired result:

|〈3−Ar Pu,3∗Ar u〉| ≤ ‖3−Ar Pu‖ ‖3∗Ar u‖ ≤ ‖3−Ar Pu‖2+‖3∗Ar u‖2

≤ C ′0(‖u‖
2
H1,k

0,b,loc(X)
+‖Gu‖2H1

0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)
).

A similar argument, using that Ar is uniformly bounded in9s+1/2
bc (X) (in fact in9s

bc(X)), and E∗Ar is
uniformly bounded in9s−1/2

bc (X) (in fact in9−∞bc (X)), shows that 〈Ar Pu, E∗Ar u〉 is uniformly bounded.
Now we turn to the second term in (7-2), whose uniform boundedness is a direct consequence of

Lemma 5.4 and Corollary 5.15. Indeed, by Lemma 5.4, [P, Ar ] is a bounded family in Diff2
09

s−1
bc (X);

hence A∗r [P, Ar ] is a bounded family in Diff2
09

2s−1
bc (X). Then one can apply Corollary 5.15 to conclude

that

〈A∗r [P, Ar ]u, u〉 ≤ C ′
(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1(X)

)
. �

A more precise version, in terms of requirements on Pu, is the following. Here, as in Section 2, we
fix a positive definite inner product on the fibers of 0T ∗X (that is, a Riemannian 0-metric) to compute
‖dv‖2L2(X;0T ∗X); since v has support in a compact set below, the choice of the inner product is irrelevant.
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Lemma 7.5 (see [Vasy 2008c, Lemma 4.4]). Suppose that K ⊂ bS∗X is compact, U ⊂ bS∗X is open,
and K ⊂ U. Suppose that A = {Ar : r ∈ (0, 1]} is a bounded family of PsDOs in 9s

bc(X) with
WF′b(A)⊂ K and with Ar ∈9

s−1
b (X) for r ∈ (0, 1]. Then there are G ∈9s−1/2

b (X) and G̃ ∈9s
b(X) with

WF′b(G),WF′b(G̃) ⊂ U and C0 > 0 such that for ε > 0, r ∈ (0, 1], u ∈ H 1,k
0,b,loc(X) (where k ≤ 0) with

neither WF1,s−1/2
b (u) nor WF−1,s

b (Pu) intersecting U , we have∣∣〈d Ar u, d Ar u〉G + λ‖Ar u‖2
∣∣

≤ ε‖d Ar u‖2L2(X;0T ∗X)+C0(‖u‖2H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+ ε−1

‖Pu‖2
H−1,k

0,b,loc(X)
+ ε−1

‖G̃ Pu‖2
H−1

0 (X)
).

Remark 7.6. The point of this lemma is that on the one hand the new term ε‖d Ar u‖2 can be absorbed
in the left hand side in the elliptic region and hence is negligible; on the other hand, there is a gain in the
order of G̃ (s versus s+ 1/2 in the previous lemma).

Proof. We need only modify the previous proof slightly, by estimating the term |〈Ar Pu, Ar u〉| in (7-2)
differently, namely

|〈Ar Pu, Ar u〉| ≤ ‖Ar Pu‖H−1
0 (X)‖Ar u‖H1

0 (X)
≤ ε̃‖Ar u‖2H1

0 (X)
+ ε̃−1

‖Ar Pu‖2
H−1

0 (X)
.

Now the lemma follows by using Lemma 5.14 and the remark following it: Choosing any G̃ ∈ 9s
b(X)

that is elliptic on K gives a constant C ′1 > 0 such that

‖Ar Pu‖2
H−1

0 (X)
≤ C ′1(‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)
).

We then use the Poincaré inequality to estimate ‖Ar u‖H1
0 (X)

by C2‖d Ar u‖L2(X), and finish the proof
exactly as for Lemma 7.3. �

We next state microlocal elliptic regularity. For this result the restrictions on λ ∈ C are weak (only a
half-line is disallowed), but on the other hand, a solution u satisfying our hypotheses may not exist for
values of λ when λ /∈ (−∞, (n− 1)2/4).

Proposition 7.7 (microlocal elliptic regularity). Suppose that P =�+ λ, λ ∈ C \ [(n− 1)2/4,∞) and
m ∈ R or m =∞. Suppose u ∈ H 1,k

0,b,loc(X) for some k ≤ 0. Then

WF1,m
b (u) \ 6̇ ⊂WF−1,m

b (Pu).

Proof. We first prove a slightly weaker result in which WF−1,m
b (Pu) is replaced by WF−1,m+1/2

b (Pu)—
we rely on Lemma 7.3. We then prove the original statement using Lemma 7.5.

Suppose that q ∈ bT ∗Y X \ 6̇. We may assume iteratively that q /∈ WF1,s−1/2
b (u); we need to prove

then that q /∈WF1,s
b (u) provided s ≤ m + 1/2 (note that the inductive hypothesis holds for s = k + 1/2

since u ∈ H 1,k
0,b,loc(X)). We use local coordinates (x, y) as in Section 6, centered so that q ∈ bT ∗(0,0)X and

arranging that (6-7) holds. We further group the variables as y = (y′, yn−1), with corresponding b-dual
variables (ζ ′, ζ n−1). We denote the Euclidean norm by |ζ ′|.

Let A ∈9s
b(X) be such that

WF′b(A)∩WF1,s−1/2
b (u)=∅ and WF′b(A)∩WF1,s+1/2

b (Pu)=∅
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and that WF′b(A) in a small conic neighborhood U of q, with U such that for a suitable C > 0 or ε > 0,

(i) ζ 2
n−1 < Cξ 2 if ξ(q) 6= 0,

(ii) |ξ |< ε|ζ | for all j , and |ζ ′|/|ζ n−1|> 1+ ε if ξ(q)= 0 and ζ (q) · B(y(q))ζ (q) < 0.

Let 3r ∈9
−2
b (X) for r > 0, such that L= {3r : r ∈ (0, 1]} is a bounded family in 90

b (X), and 3r → Id
as r → 0 in 9 ε̃

b(X) for ε̃ > 0. For example, the symbol of 3r could be taken as (1+ r(|ζ |2+ |ξ |2))−1.
Let Ar =3r A. Let a be the symbol of A, and let Ar have symbol (1+ r(|ζ |2+ |ξ |2))−1a for r > 0, so
Ar ∈9

s−2
b (X) for r > 0, and Ar is uniformly bounded in 9s

bc(X), and Ar → A in 9s+ε̃
bc (X).

By Lemma 7.3,
〈d Ar u, d Ar u〉G + λ‖Ar u‖2

is uniformly bounded for r ∈ (0, 1], so

〈d Ar u, d Ar u〉G +Re λ‖Ar u‖2 and Im λ‖Ar u‖2

are uniformly bounded. If Im λ 6= 0, then taking the imaginary part at once shows that ‖Ar u‖ is in fact
uniformly bounded. On the other hand, whether Im λ= 0 or not,

〈d Ar u, d Ar u〉G =
∫

X
A(x, y)x Dx Ar u x Dx Ar u dg+

∫
X

∑
Bi j (x, y)x Dyi Ar u x Dy j Ar u dg

+

∫
X

∑
C j (x, y)x Dx Ar u x Dy j Ar u dg+

∫
X

∑
C j (x, y)x Dy j Ar u x Dx Ar u dg.

Using that A(x, y) = −1+ x A′(x, y)+
∑
(y j − y j (q))A j (x, y), we see that if Ar is supported where

x < δ and |y j − y j (q)|< δ for all j , then for some C > 0 (independent of Ar ),∣∣∣∫
X

A(x, y) x Dx Ar u x Dx Ar u dg−
∫

X
A(0, y(q)) x Dx Ar u x Dx Ar u dg

∣∣∣≤ Cδ‖x Dx Ar u‖2, (7-4)

with analogous estimates4 for Bi j (x, y)− Bi j (0, y(q)) and for C j (x, y). Thus, there exists C̃ > 0 and
δ0 > 0 such that if δ < δ0 and A is supported where |x |< δ and |y− y(q)|< δ, then∫

X

(
(1− C̃δ)|x Dx Ar u|2−Re λ|Ar u|2

)
dg+

n−2∑
j=1

∫
X

(
(1− C̃δ)

∑
j

x Dy j Ar u x Dy j Ar u
)

dg

−

∫
X

(
(1+ C̃δ)

∑
j

x Dyn−1 Ar u x Dyn−1 Ar u
)

dg

≤ |〈d Ar u, d Ar u〉G +Re λ‖Ar u‖2|. (7-5)

Now we distinguish the cases ξ(q) = 0 and ξ(q) 6= 0. If ξ(q) = 0, we choose δ ∈ (0, 1/(2C̃)) with
δ < δ0, so that

(1− C̃δ)(|ζ ′|2/ζ 2
n−1) > 1+ 2C̃δ

4Recall that C j (0, y) = 0 and Bi j (0, y(q)) = 0 if i 6= j and Bi j (0, y(q)) = 1 if i = j = n − 1 and Bi j (0, y(q)) = −1 if
i = j 6= n− 1.
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on a neighborhood of WF′b(A), which is possible in view of (ii) at the beginning of the proof. Then the
second integral on the left side of (7-5) can be written as ‖Bx Ar u‖2, with the symbol of B given by(

(1− C̃δ)|ζ ′|2− (1+ C̃δ)ζ 2
n−1
)1/2

(which is ≥ δ|ζ n−1|), modulo a term∫
X

Fx Ar u x Ar u dg for F ∈91
b (X).

But A∗r x Fx Ar is uniformly bounded in x292s+1
bc (X)⊂ Diff2

09
2s−1
bc (X), so this expression is uniformly

bounded as r→ 0 by Corollary 5.15. We thus deduce that∫
X

(
(1− C̃δ)|x Dx Ar u|2−Re λ|Ar u|2

)
dg+‖Bx Ar u‖2

is uniformly bounded as r→ 0.
If ξ(q) 6= 0, and A is supported in |x |< δ, then

C̃δ
∫

X
δ−2
|x2 Dx Ar u|2 dg ≤ C̃δ

∫
X
|x Dx Ar u|2 dg.

On the other hand, near {q ′ : ξ(q ′)= 0}, for δ > 0 sufficiently small,∫
X

( C̃δ
δ2 |x

2 Dx Ar u|2− |x Dyn−1 Ar u|2
)

dg = ‖Bx Ar u‖2+
∫

X
Fx Ar u x Ar u dg,

with the symbol of B given by ((C̃/δ)ξ 2
−ζ 2

n−1)
1/2 (which does not vanish on U for δ > 0 small), while

F ∈91
b (X), so the second term on the right side is uniformly bounded as r→ 0 just as above. We thus

deduce in this case that∫
X
((1− 2C̃δ)|x Dx Ar u|2 dg−Re λ|Ar u|2)+‖Bx Ar u‖2

is uniformly bounded as r→ 0.
If Im λ 6= 0 then we already saw that ‖Ar u‖L2 is uniformly bounded, so we deduce that

Ar u, x Dx Ar u and Bx Ar u are uniformly bounded in L2(X). (7-6)

If Im λ = 0 but λ < (n − 1)2/4, then the Poincaré inequality allows us to reach the same conclusion,
since on the one hand in case (ii)

(1− C̃δ)‖x Dx Ar u‖2−Re λ‖Ar u‖2,

and in case (i)

(1− 2C̃δ)‖x Dx Ar u‖2−Re λ‖Ar u‖2,
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are uniformly bounded; on the other hand by Proposition 2.3, for δ > 0 sufficiently small there exists
c > 0 such that

(1− 2C̃δ)‖x Dx Ar u‖2−Re λ‖Ar u‖2 ≥ c(‖x Dx Ar u‖2+‖Ar u‖2).

Correspondingly there are sequences Ark u, x Dx Ark u and Bx Ark u, weakly convergent in L2(X), and
such that rk → 0, as k→∞. Since they respectively converge to Au, x Dx Au and Bx Au in C−∞(X),
we deduce that the weak limits are Au, x Dx Au and Bx Au, which therefore lie in L2(X). Consequently,
q /∈WF1,s

b (u), hence proving the proposition with WF−1,m
b (Pu) replaced by WF−1,m+1/2

b (Pu).
To obtain the optimal result, we note that due to Lemma 7.5 we still have, for any ε > 0, that

〈d Ar u, d Ar u〉G − ε‖d Ar u‖2

is uniformly bounded above for r ∈ (0, 1]. By arguing just as above, with B as above, for sufficiently
small ε > 0, the right side gives an upper bound for∫

X

(
(1− 2C̃δ− ε)|x Dx Ar u|2−Re λ|Ar u|2

)
dg+‖Bx Ar u‖2,

which is thus uniformly bounded as r→ 0. The proof is then finished exactly as above. �

The analogous argument works for the conformally compact elliptic problem, that is, on asymptotically
hyperbolic spaces, to give that for λ ∈ C \ [(n − 1)2/4,∞), local solutions of (1g − λ)u are actually
conormal to Y provided they lie in H 1

0 (X) locally, or indeed in H 1,−∞
0,b (X).

8. Propagation of singularities

In this section we prove propagation of singularities for P by positive commutator estimates. We do
so by first performing a general commutator calculation in Proposition 8.1, then using it to prove rough
propagation estimates first at hyperbolic, then at glancing points, in Propositions 8.2 and 8.6, respec-
tively. An argument originally due to Melrose and Sjöstrand [1978] then proves the main theorems,
Theorems 8.8 and 8.9. Finally we discuss consequences of these results.

We first describe the form of commutators of P with 9b(X). We state this as an analogue of [Vasy
2010a, Proposition 3.10], and later in the section we follow the structure of [Vasy 2010a] as well. Given
Proposition 8.1 below, the proof of propagation of singularities proceeds with the same commutant con-
struction as in [Vasy 2008c]; see also [Vasy 2008a]. Although it is in a setting that is more complicated in
some ways, since it deals with the equation on differentials forms, we follow the structure of [Vasy 2010a]
since it was written in a more systematic way than [Vasy 2008c]. Recall from the introduction that ξ is
the variable b-dual to x , and ξ̂ = ξ/|ζ n−1|.

Proposition 8.1. Suppose A= {Ar : r ∈ (0, 1]} is a family of operators Ar ∈9
0
b (X) uniformly bounded

in 9s+1/2
bc (X), of the form Ar = A3r , with A ∈90

b (X), a = σb,0(A) and wr = σb,s+1/2(3r ). Then

ı[A∗r Ar ,�] = (x Dx)
∗C]

r (x Dx)+ (x Dx)
∗xC ′r + xC ′′r (x Dx)+ x2C[

r , (8-1)
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where

C]
r ∈ L∞((0, 1];92s

bc (X)), C ′r ,C ′′r ∈ L∞((0, 1];92s+1
bc (X)), C[

r ∈9
2s+2
bc (X),

and
σb,2s(C]

r )= 2w2
r a(V ]a+ ac̃]r ),

σb,2s+1(C ′r )= σb,2s+1(C ′′r )= 2w2
r a(V ′a+ ac̃′r ),

σb,2s+2(C[
r )= 2w2

r a(V [a+ ac̃[r ),

with c̃]r , c̃′r , c̃[r uniformly bounded in S−1, S0, S1, respectively, V ], V ′, V [ smooth and homogeneous of
degree −1, 0, 1 respectively on bT ∗X \ o, and where V ]

|Y and V ′|Y annihilate ξ and

V [
|Y = 2h∂ξ −Hh . (8-2)

Proof. In Proposition 7.1, � is decomposed into a sum of products of weighted b-operators, so analo-
gously expanding the commutator, all calculations can be done in x l9b(X) for various values of l. In
particular, keeping in mind Lemma 5.1 (which gives the additional order of decay),

ı[A∗r Ar , x Dx ], ı[A∗r Ar , (x Dx)
∗
] ∈ L∞((0, 1]r , x92s+1

b (X)),

with principal symbol −2w2
r ax∂xa− 2a2wr (x∂xwr ). By this observation, all commutators with factors

of x Dx or (x Dx)
∗ in (7-1) can be absorbed into the “next term” of (8-1), so [A∗r Ar , (x Dx)

∗
]α(x Dx)

is absorbed into xC ′′r (x Dx), (x Dx)α[A∗r Ar , x Dx ] is absorbed into (x Dx)
∗xC ′r , and [A∗r Ar , (x Dx)

∗
]M ′

and M ′′[A∗r Ar , (x Dx)] are absorbed into x2C[
r . The principal symbols of these terms are of the desired

form, that is, after factoring out 2w2
r a, they are the result of a vector field applied to a plus a multiple of

a, and this vector field is−α∂x in the case of the first two terms (thus annihilating ξ ), and is−mx−1∂x in
the case of the last two terms, which in view of m = σb,1(M ′)= σb,1(M ′′) ∈ x2S1, shows that it actually
does not affect V [

|Y .
Next, ı(x Dx)

∗
[A∗r Ar , α](x Dx) can be absorbed into (and can be taken equal to) (x Dx)

∗C]
r (x Dx) with

principal symbol of C]
r given by

−(∂yα)∂ζ (a2w2
r )− (x∂xα)∂ξ (a2w2

r )

in local coordinates; thus again is of the desired form since the ∂ξ term has a vanishing factor of x
preceding it.

Since [A∗r Ar ,M ′] and [A∗r Ar ,M ′′] are uniformly bounded in x292s+1
b (X), the corresponding com-

mutators can be absorbed into (x Dx)
∗xC ′r and xC ′′r (x Dx), respectively, without affecting the principal

symbols of C ′r and C ′′r at Y , and possessing the desired form.
Next, P̃ = x2�h+ R, with R ∈ x3 Diff2

b(X), so [A∗r Ar , R] is uniformly bounded in x392s+2
b (X), and

thus can be absorbed into C[
r without affecting its principal symbol at Y , and it has the desired form.

Finally, ı[A∗r Ar , x2�h] ∈ x292s+2
b (X) has principal symbol ∂ξ (a2w2

r )2x2h− x2Hh(a2w2
r ), and can thus

be absorbed into C[
r , yielding the stated principal symbol at Y . �

We start our propagation results with the propagation estimate at hyperbolic points.
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Proposition 8.2 (normal, or hyperbolic, propagation). Suppose P=�g+λ, with λ∈C\[(n−1)2/4,∞).
Let q0 = (0, y0, 0, ζ 0) ∈H∩ bT ∗Y X , and let

η =−ξ̂

be the function defined in the local coordinates discussed above, and suppose that u ∈ H 1,k
0,b,loc(X) for

some k ≤ 0, q0 /∈WF−1,∞
b ( f ) and f = Pu. If Im λ ≤ 0 and there exists a conic neighborhood U of q0

in bT ∗X \ o such that
q /∈WF1,∞

b (u) if q ∈U and η(q) < 0, (8-3)

then q0 /∈WF1,∞
b (u).

In fact, if the wave front set assumptions are relaxed to q0 /∈ WF−1,s+1
b ( f ) (with f = Pu) and the

existence of a conic neighborhood U of q0 in bT ∗X \ o such that

q /∈WF1,s
b (u) if q ∈U and η(q) < 0, (8-4)

then we can still conclude that q0 /∈WF1,s
b (u).

Remark 8.3. As follows immediately from the proof given below, in (8-3) and (8-4), one can replace
η(q) < 0 by η(q) > 0, that is, one has the conclusion for either direction (backward or forward) of
propagation, provided one also switches the sign of Im λ when it is nonzero that is, the assumption
should be Im λ ≥ 0. In particular, if Im λ = 0, one obtains propagation estimates both along increasing
and along decreasing η.

Note that η is increasing along the GBB of �ĝ by (6-11). Thus, the hypothesis region {q ∈U :η(q)<0}
on the left side of (8-3) is backwards from q0, so this proposition, roughly speaking, propagates regularity
forwards.

Moreover, every neighborhood U of q0 = (y0, ζ 0) ∈H∩ bT ∗Y X in 6̇ contains an open set of the form

{q : |x(q)|2+ |y(q)− y0|
2
+ |ζ̂ (q)− ζ̂ 0|

2 < δ}, (8-5)

see [Vasy 2008c, Equation (5.1)]. Note also that (8-3) implies the same statement with U replaced by
any smaller neighborhood of q0 and in particular for the set (8-5), provided that δ is sufficiently small.
We can also assume by the same observation that WF−1,s+1

b (Pu)∩U = ∅. Furthermore, we can also
arrange that h(x, y, ξ , ζ ) > |(ξ , ζ )|2|ζ 0|

−2h(q0)/2 on U since ζ 0 · B(y0)ζ 0 = h(0, y0, 0, ζ 0) > 0. We
write

ĥ = |ζ n−1|
−2h = |ζ n−1|

−2ζ · B(y)ζ

for the rehomogenized version of h, which is thus homogeneous of degree zero and bounded below by
a positive constant on U .

Proof. This proposition is the analogue of [Vasy 2008c, Proposition 6.2], and since the argument is
similar, we mainly emphasize the differences. These enter by virtue of λ not being negligible and the
use of the Poincaré inequality. In [Vasy 2008c], one uses a commutant A ∈ 90

b (X) and weights 3r ∈

90
b (X) for r ∈ (0, 1), which are uniformly bounded in 9s+1/2

bc (X), with Ar = A3r , in order to obtain
the propagation of WF1,s

b (u) with the notation of that paper, whose analogue is WF1,s
b (u) here (the
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difference is the space relative to which one obtains b-regularity: H 1(X) in the previous paper, the
zero-Sobolev space H 1

0 (X) here). One can use exactly the same commutant as in [Vasy 2008c]. Then
Proposition 8.1 lets one calculate ı[A∗r Ar , P] to obtain an expression completely analogous to [Vasy
2008c, Equation (6.18)] in the hyperbolic case. We also refer to [Vasy 2010a] because, although it
studies a more delicate problem, namely natural boundary conditions (which are not scalar), the main
ingredient of the proof, the commutator calculation, is written up exactly as above in Proposition 8.1;
see [Vasy 2010a, Proposition 3.10] and the way it is used subsequently in Proposition 5.1 there.

As in the proof of [Vasy 2010a, Proposition 5.1], we first construct a commutant by defining its scalar
principal symbol a. This completely follows the scalar case; see the proof [Vasy 2008c, Proposition 6.2].
Next we show how to obtain the desired estimate.

So, as in the proof [Vasy 2008c, Proposition 6.2], let

ω(q)= |x(q)|2+ |y(q)− y0|
2
+ |ζ̂ (q)− ζ̂ 0|

2, (8-6)

with | · | denoting the Euclidean norm. For ε > 0 and δ > 0, with other restrictions to be imposed later
on, let

φ = η+
1
ε2δ

ω, (8-7)

Let χ0 ∈ C∞(R) be equal to 0 on (−∞, 0] and χ0(t) = exp(−1/t) for t > 0. Thus, t2χ ′0(t) = χ0(t) for
t ∈ R. Let χ1 ∈ C∞(R) be 0 on (−∞, 0] and 1 on [1,∞), with χ ′1 ≥ 0 satisfying χ ′1 ∈ C∞comp((0, 1)).
Finally, let χ2 ∈ C∞comp(R) be supported in [−2c1, 2c1] and identically 1 on [−c1, c1], where c1 satisfies
|ξ̂ |2< c1/2 in 6̇∩U . Thus, χ2(|ξ̂ |

2) is a cutoff in |ξ̂ |, with its support properties ensuring that dχ2(|ξ̂ |
2) is

supported in |ξ̂ |2 ∈ [c1, 2c1] and hence outside 6̇— it should be thought of as a factor that microlocalizes
near the characteristic set but effectively commutes with P (since we already have the microlocal elliptic
result). Then, for z> 0 large, to be determined, let

a = χ0(z−1(2−φ/δ))χ1(η/δ+ 2)χ2(|ξ̂ |
2); (8-8)

so a is a homogeneous degree zero C∞ function on a conic neighborhood of q0 in bT ∗X \ o. Indeed as
we will see momentarily, a has for any ε > 0 compact support inside this neighborhood (regarded as a
subset of bS∗X , that is, quotienting out by the R+-action) for δ sufficiently small, so in fact it is globally
well defined. In fact, on supp a we have φ ≤ 2δ and η≥−2δ. Since ω≥ 0, the first of these inequalities
implies that η ≤ 2δ, so on supp a

|η| ≤ 2δ. (8-9)

Hence,
ω ≤ ε2δ(2δ− η)≤ 4δ2ε2. (8-10)

In view of (8-6) and (8-5), this shows that given any ε0 > 0 there exists δ0 > 0 such that a is supported
in U for any ε ∈ (0, ε0) and δ ∈ (0, δ0). The role that z large plays (in the definition of a) is that it
increases the size of the first derivatives of a relative to the size of a; hence it allows us to give a bound
for a in terms of a small multiple of its derivative along the Hamilton vector field, much like the stress
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energy tensor was used to bound other terms by making χ ′ large relative to χ in the (nonmicrolocal)
energy estimate.

Now let A0 ∈9
0
b (X) with σb,0(A0)= a, supported in the coordinate chart. Also let 3r be scalar and

have symbol
|ζ n−1|

s+1/2(1+ r |ζ n−1|
2)−s Id for r ∈ [0, 1), (8-11)

so Ar = A3r ∈9
0
b (X) for r > 0 and it is uniformly bounded in 9s+1/2

bc (X). Then, for r > 0,

〈ı A∗r Ar Pu, u〉− 〈ı A∗r Ar u, Pu〉 = 〈ı[A∗r Ar , P]u, u〉+ 〈ı(P − P∗)A∗r Ar u, u〉

= 〈ı[A∗r Ar , P]u, u〉− 2 Im λ‖Ar u‖2.
(8-12)

We can compute this using Proposition 8.1. We arrange the terms of the proposition so that the terms in
which a vector field differentiates χ1 and χ2 are included in Er and E ′r , respectively. Thus, we have

ı A∗r Ar P − ı P A∗r Ar = (x Dx)
∗C]

r (x Dx)+ (x Dx)
∗xC ′r + xC ′′r (x Dx)+ x2C[

r + Er + E ′r + Fr , (8-13)

with
σb,2s(C]

r )= w
2
r
(
z−1δ−1a|ζ n−1|

−1( f̂ ]+ ε−2δ−1 f ])χ ′0χ1χ2+ a2c̃]r
)
,

σb,2s+1(C ′r )= w
2
r
(
z−1δ−1a( f̂ ′+ δ−1ε−2 f ′)χ ′0χ1χ2+ a2c̃′r

)
,

σb,2s+1(C ′′r )= w
2
r
(
z−1δ−1a( f̂ ′′+ δ−1ε−2 f ′′)χ ′0χ1χ2+ a2c̃′′r

)
,

σb,2s+2(Cr )= w
2
r
(
z−1δ−1

|ζ n−1|a(4ĥ+ f̂ [+ δ−1ε−2 f [)χ ′0χ1χ2+ a2c̃[r
)
,

(8-14)

where f ], f ′, f ′′ and f [ as well as f̂ ], f̂ ′, f̂ ′′ and f̂ [ are all smooth functions on bT ∗X \o, homogeneous
of degree 0 (independent of ε and δ), and ĥ = |ζ n−1|

−2h is the rehomogenized version of h. Moreover,
f ], f ′, f ′′ and f [ arise from when ω is differentiated in χ(z−1(2−φ/δ)), and thus vanish when ω= 0,
while f̂ ], f̂ ′, f̂ ′′ and f̂ [ arise when η is differentiated in χ(z−1(2−φ/δ)), and comprise all such terms
with the exception of those arising from the ∂ξ component of V [

|Y (which gives 4ĥ = 4|ζn−1|
−2h on

the last line above) and hence are the sums of functions vanishing at x = 0 (corresponding to us only
specifying the restrictions of the vector fields in (8-2) at Y ) and functions vanishing at ξ̂ = 0 (when
|ζ n−1|

−1 in η =−ξ |ζ n−1|
−1 is differentiated).5

In this formula we think of
4z−1δ−1w2

r a|ζ n−1|ĥχ ′0χ1χ2 (8-15)

as the main term; note that ĥ is positive near q0. Compared to this, the terms with a2 are negligible, for
they can all be bounded by

cz−1(z−1δ−1w2
r a|ζ n−1|

−1χ ′0χ1χ2)

(see (8-15)), that is, by a small multiple of z−1δ−1w2
r a|ζ n−1|

−1χ ′0χ1χ2 when z is taken large, using
that 2−φ/δ ≤ 4 on supp a and

χ0(z−1t)= (z−1t)2χ ′0(z
−1t)≤ 16z−2χ ′0(z

−1t) for t ≤ 4; (8-16)

5Terms of the latter kind did not occur in [Vasy 2008c] since time-translation invariance was assumed, but it does occur in
[Vasy 2008b] and [Vasy 2010a], where the Lorentzian scalar setting is considered.
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see the discussion in [Vasy 2008b, Section 6] and following [Vasy 2008c, Equation (6.19)].
The vanishing condition on the f ], f ′, f ′′, f [ ensures that, on supp a,

| f ]|, | f ′|, | f ′′|, | f [| ≤ Cω1/2
≤ 2Cεδ, (8-17)

so the corresponding terms can thus be estimated using w2
r z−1δ−1a|ζ n−1|

−1χ ′0χ1χ2 provided ε−1 is not
too large; that is, there exists ε̃0 > 0 such that if ε > ε̃0, the terms with f ], f ′, f ′′, f [ can be treated as
error terms.

On the other hand, we have

| f̂ ]|, | f̂ ′|, | f̂ ′′|, | f̂ [| ≤ C |x | +C |ξ̂ | ≤ Cω1/2
+C |ξ̂ | ≤ 2Cεδ+C |ξ̂ |. (8-18)

Now, |ξ̂ | ≤ 2|x | on 6̇ (for |ξ | = x |ξ | ≤ 2|x ||ζ n−1| with U sufficiently small). Therefore we can write
f̂ ] = f̂ ]] + f̂ ][ with f̂ ][ supported away from 6̇ and f̂ ]] satisfying

| f̂ ]] | ≤ C |x | +C |ξ̂ | ≤ C ′|x | ≤ C ′ω1/2
≤ 2C ′εδ; (8-19)

we can also obtain a similar decomposition for f̂ ′, f̂ ′′ and f̂ [.
Indeed, using (8-16) it is useful to rewrite (8-14) as

σb,2s(C]
r )= w

2
r z−1δ−1a|ζ n−1|

−1( f̂ ]+ ε−2δ−1 f ]+z−1δĉ]r )χ
′

0χ1χ2,

σb,2s+1(C ′r )= w
2
r δ
−1z−1a( f̂ ′+ δ−1ε−2 f ′+z−1δĉ′r )χ

′

0χ1χ2,

σb,2s+1(C ′′r )= w
2
r δ
−1z−1a( f̂ ′′+ δ−1ε−2 f ′′+z−1δĉ′′r )χ

′

0χ1χ2,

σb,2s+2(C[
r )= w

2
r δ
−1z−1a|ζ n−1|(4ĥ+ f̂ [+ δ−1ε−2 f [+z−1ĉ[r )χ

′

0χ1χ2,

(8-20)

where

• f ], f ′, f ′′ and f [ are smooth functions on bT ∗X \ o that are homogeneous of degree 0 and satisfy
(8-17) (and are independent of z, ε, δ, r );

• f̂ ], f̂ ′, f̂ ′′ and f̂ [ are smooth functions on bT ∗X \o, homogeneous of degree 0, with f̂ ]= f̂ ]] + f̂ ][ ,
where f̂ ]] , f̂ ′], f̂ ′′] , f̂ [] satisfy (8-19) (and are independent of z, ε, δ, r ), while f̂ ][ , f̂ ′[ , f̂ ′′[ , f̂ [[ are
supported away from 6̇; and

• ĉ]r , ĉ′r , ĉ′′r and ĉ[r are smooth functions on bT ∗X \o that are homogeneous of degree 0 and uniformly
bounded in ε, δ, r,z.

Let
br = 2wr |ζ n−1|

1/2(zδ)−1/2(χ0χ
′

0)
1/2χ1χ2,

and let B̃r ∈9
s+1
b (X) with principal symbol br . Then let

C ∈90
b (X) and σb,0(C)= |ζ n−1|

−1h1/2ψ = ĥ1/2ψ,

where ψ ∈ S0
hom(

bT ∗X \o) is identically 1 on U considered as a subset of bS∗X ; recall from Remark 8.3
that ĥ is bounded below by a positive quantity here.
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If C̃r ∈9
2s
b (X) with principal symbol

σb,2s(C̃r )=−4w2
r z−1δ−1a|ζ n−1|

−1χ ′0χ1χ2 =−|ζ n−1|
−2b2

r ,

then we deduce from (8-13)–(8-20) that6

ı A∗r Ar P − ı P A∗r Ar

= B̃∗r
(
C∗x2C + x R[x + (x Dx)

∗ R̃′x + x R̃′′(x Dx)+ (x Dx)
∗R](x Dx)

)
B̃r + R′′r + Er + E ′r (8-21)

with

R[ ∈90
b (X), R̃′, R̃′′ ∈9−1

b (X), R] ∈9−2
b (X),

R′′r ∈ L∞((0, 1);Diff2
09

2s−1
b (X)), Er , E ′r ∈ L∞((0, 1);Diff2

09
2s
b (X)),

with WF′b(E) ⊂ η
−1((−∞,−δ])∩U and WF′b(E

′)∩ 6̇ = ∅, and with r [ = σb,0(R[), r̃ ′ = σb,−1(R̃′),
r̃ ′′ = σb,−1(R̃′′), r ] ∈ σb,−2(R]), and

|r [| ≤ C2(δε+ ε
−1
+ δz−1), |ζ n−1r̃ ′| ≤ C2(δε+ ε

−1
+ δz−1),

|ζ n−1r̃ ′′| ≤ C2(δε+ ε
−1
+ δz−1), |ζ 2

n−1r ]| ≤ C2(δε+ ε
−1
+ δz−1).

This is almost completely analogous to [Vasy 2008c, Equation (6.18)] with the understanding that each
term therein inside the parentheses attains an additional factor of x2 (corresponding to � being in
Diff2

0(X) rather than Diff2(X)), which we partially include in x Dx (vs. Dx ). The only difference is
the presence of the δz−1 term, which however is treated like the εδ term for z sufficiently large; hence
the rest of the proof proceeds very similarly to that paper. We go through this argument to show the role
that λ and the Poincaré inequality play, and in particular how the restrictions on λ arise.

Having calculated the commutator, we proceed to estimate the “error terms” R[, R̃′, R̃′′ and R] as
operators. We start with R[. By the standard square root construction to prove the boundedness of PsDOs
on L2, see e.g. the discussion after [Vasy 2008c, Remark 2.1], there exists R[[ ∈9

−1
b (X) such that

‖R[v‖ ≤ 2 sup|r [| ‖v‖+‖R[[v‖ for all v ∈ L2(X).

Here ‖ · ‖ is the L2(X) norm, as usual. Thus, we can estimate, for any γ > 0,

|〈R[v, v〉| ≤ ‖R[v‖ ‖v‖ ≤ 2 sup|r [| ‖v‖2+‖R[[v‖ ‖v‖

≤ 2C2(δε+ ε
−1
+ δz−1)‖v‖2+ γ−1

‖R[[v‖
2
+ γ‖v‖2.

Now we turn to R̃′. Let T ∈ 9−1
b (X) be elliptic (which we use to shift the orders of PsDOs at our

convenience), with symbol |ζ n−1|
−1 on supp a, and with T− ∈ 91

b (X) a parametrix, so T−T = Id+F

6The f ]] terms are included in R], while the f ][ terms are included in E ′, and similarly for the other analogous terms
in f ′, f ′′, f [. Moreover, in view of Lemma 5.4, we can freely rearrange factors, e.g., writing C∗x2C as xC∗Cx if we
wish, with the exception of commuting powers of x with x Dx or (x Dx )

∗ since we need to regard the latter as elements
of Diff1

0(X) rather than Diff1
b(X). Indeed, the difference between rearrangements has lower b-order than the product, in

this case being in x29−1
b (X), which in view of Lemma 5.5, at the cost of dropping powers of x , can be translated into

a gain in 0-order, that is, x29−1
b (X) ⊂ Diff2

09
−3
b (X), with the result that these terms can be moved to the “error term”

R′′ ∈ L∞((0, 1);Diff2
09

2s−1
b (X)).
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with F ∈9−∞b (X). Then there exists R̃′[ ∈9
−1
b (X) such that

‖(R̃′)∗w‖ = ‖(R̃′)∗(T−T − F)w‖ ≤ ‖((R̃′)∗T−)(Tw)‖+‖(R̃′)∗Fw‖

≤ 2C2(δε+ ε
−1
+ δz−1)‖Tw‖+‖R̃′[Tw‖+‖(R̃

′)∗Fw‖

for all w with Tw ∈ L2(X), and similarly, there exists R̃′′[ ∈9
−1
b (X) such that

‖R̃′′w‖ ≤ 2C2(δε+ ε
−1
+ δz−1)‖Tw‖+‖R̃′′[ Tw‖+‖R̃′′Fw‖.

Finally, there exists R][ ∈9
−1
b (X) such that

‖(T−)∗R]w‖ ≤ 2C2(δε+ ε
−1
+ δz−1)‖Tw‖+‖R][Tw‖+‖(T

−)∗R]Fw‖

for all w with Tw ∈ L2(X). Thus,

|〈xv, (R̃′)∗(x Dx)v〉| ≤ 2C2(δε+ ε
−1
+ δz−1)‖T x Dxv‖ ‖xv‖

+ 2γ‖xv‖2+ γ−1
‖R̃′[T x Dxv‖

2
+ γ−1

‖F ′x Dxv‖
2,

|〈R̃′′x Dxv, xv〉| ≤ 2C2(δε+ ε
−1
+ δz−1)‖T x Dxv‖ ‖xv‖

+ 2γ‖xv‖2+ γ−1
‖R̃′′[ T x Dxv‖

2
+ γ−1

‖F ′′x Dxv‖
2,

and, writing x Dxv = T−T (x Dxv)− F(x Dxv) in the right factor, and taking the adjoint of T−,

|〈R]x Dxv, x Dxv〉| ≤ 2C2(δε+ ε
−1
+ δz−1)‖T (x Dx)v‖ ‖T (x Dx)v‖+ 2γ‖T (x Dx)v‖

2

+ γ−1
‖R][T (x Dx)v‖

2
+ γ−1

‖F(x Dx)v‖
2
+‖R](x Dx)v‖ ‖F](x Dxv)‖,

with F ′, F ′′, F] ∈9−∞b (X).
Now, by (8-21),

〈ı[A∗r Ar , P]u, u〉 = ‖Cx B̃r u‖2+〈R[x B̃r u, x B̃r u〉+ 〈R̃′′x Dx B̃r u, x B̃r u〉

+ 〈x B̃r u, (R̃′)∗x Dx B̃r u〉+ 〈R]x Dx B̃r u, x Dx B̃r u〉

+ 〈R′′r u, u〉+ 〈(Er + E ′r )u, u〉 (8-22)

On the other hand, this commutator can be expressed as in (8-12), so

〈ı A∗r Ar Pu, u〉− 〈ı A∗r Ar u, Pu〉

= −2 Im λ‖Ar u‖2+‖Cx B̃r u‖2+〈R[x B̃r u, x B̃r u〉+ 〈R̃′′x Dx B̃r u, x B̃r u〉

+ 〈x B̃r u, (R̃′)∗x Dx B̃r u〉+ 〈R]x Dx B̃r u, x Dx B̃r u〉+ 〈R′′r u, u〉+ 〈(Er + E ′r )u, u〉, (8-23)

so the signs of the first two terms agree if Im λ < 0, and the Im λ term vanishes if λ is real.
Assume for the moment that WF−1,s+3/2

b (Pu) ∩U = ∅ — this is certainly the case in our setup if
q0 /∈WF−1,∞

b (Pu), but this assumption is a little stronger than q0 /∈WF−1,s+1
b (Pu), which is what we

need to assume for the second paragraph in the statement of the proposition. We deal with the weakened
hypothesis q0 /∈WF−1,s+1

b (Pu) at the end of the proof. Returning to (8-23), the utility of the commutator
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calculation is that we have good information about Pu (this is where we use that we have a microlocal
solution of the PDE!). Namely, we estimate the left hand side as

|〈Ar Pu, Ar u〉| ≤ |〈(T−)∗Ar Pu, T Ar u〉| + |〈Ar Pu, F Ar u〉|

≤ ‖(T−)∗Ar Pu‖H−1
0 (X)‖T Ar u‖H1

0 (X)
+‖Ar Pu‖H−1

0 (X)‖F Ar u‖H1
0 (X)

.
(8-24)

Since (T−)∗Ar is uniformly bounded in 9s+3/2
bc (X) and T Ar is uniformly bounded in 9s−1/2

bc (X), both
with WF′b in U , with WF−1,s+3/2

b (Pu) and WF1,s−1/2
b (u), respectively, disjoint from them, we deduce

(using Lemma 5.14 and its H−1
0 analogue) that |〈(T−)∗Ar Pu, T Ar u〉| is uniformly bounded. Similarly,

taking into account that F Ar is uniformly bounded in 9−∞b (X), we see that |〈Ar Pu, F Ar u〉| is also
uniformly bounded, so |〈Ar Pu, Ar u〉| is uniformly bounded for r ∈ (0, 1].

Thus,

‖Cx B̃r u‖2− Im λ‖Ar u‖2

≤2|〈Ar Pu, Ar u〉|+|〈(Er+E ′r )u, u〉|+
(
2C2(δε+ε

−1
+δz−1)+γ

)
‖x B̃r u‖2+γ−1

‖R[[x B̃r u‖2

+ 4C2(δε+ ε
−1
+ δz−1)‖x B̃r u‖‖T (x Dx)B̃r u‖+ γ−1

‖R̃′[T (x Dx)B̃r u‖2+ γ−1
‖R̃′′[ T (x Dx)B̃r u‖2

+ 4γ‖x B̃r u‖2+
(
2C2(δε+ ε

−1
+ δz−1)+ 2γ

)
‖T (x Dx)B̃r u‖2

+ γ−1
‖R][T (x Dx)B̃r u‖2+‖R](x Dx)B̃r u‖ ‖F(x Dx)B̃r u‖

+ γ−1
‖F(x Dx)B̃r u‖2+ γ−1

‖F ′(x Dx)B̃r u‖2+ γ−1
‖F ′′(x Dx)B̃r u‖2. (8-25)

All terms but the ones involving C2 or γ (not γ−1) remain bounded as r→ 0. The C2 and γ terms can be
estimated by writing T (x Dx)= (x Dx)T ′+T ′′ for some T ′, T ′′ ∈9−1

b (X), and using Lemma 7.3 and the
Poincaré lemma where necessary. Namely, we use either Im λ 6= 0 or λ< (n−1)2/4 to control x Dx L B̃r u
and L B̃r u in L2(X) in terms of ‖x B̃r u‖L2 where L ∈9−1

b (X); this is possible by factoring Dyn−1 (which is
elliptic on WF′(B̃r )) out of B̃r modulo an error F̃r bounded in9s

bc(X), which in turn can be incorporated
into the “error” given by the right hand side of Lemma 7.3. Thus, there exists C3 > 0, G ∈ 9s−1/2

b (X)
and G̃ ∈9s+1/2

b (X) as in Lemma 7.3 such that

‖x Dx L B̃r u‖2+‖L B̃r u‖ ≤C3
(
‖x B̃r u‖2+‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)

)
.

We further estimate ‖x B̃r u‖ in terms of ‖Cx B̃r u‖ and ‖u‖H1
0,loc(X) using that C is elliptic on WF′b(B)

and Lemma 5.14. We conclude, using Im λ ≤ 0, taking ε sufficiently large, then γ and δ0 sufficiently
small, and finally z sufficiently large, that there exist γ > 0, ε > 0, δ0 > 0 and C4 > 0 and C5 > 0 such
that for δ ∈ (0, δ0),

C4‖x B̃r u‖2 ≤ 2|〈Ar Pu, Ar u〉| + |〈(Er + E ′r )u, u〉|

+C5
(
‖Gu‖2H1

0 (X)
+‖G̃ Pu‖2

H−1
0 (X)

)
+C5

(
‖u‖H1,k

0,b,loc(X)
+‖Pu‖H−1,k

0,b,loc(X)

)
.

Letting r → 0 now keeps the right hand side bounded, proving that ‖x B̃r u‖ is uniformly bounded as
r→ 0; hence x B̃0u ∈ L2(X) (see the proof of Proposition 7.7). In view of Lemma 7.3 and the Poincaré
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inequality (as in the proof of Proposition 7.7), this proves that q0 /∈WF1,s
b (u), and hence proves the first

statement of the proposition.
In fact, recalling that we needed q0 /∈ WF−1,s+3/2

b (Pu) for the uniform boundedness in (8-24), this
proves a slightly weaker version of the second statement of the proposition with WF−1,s+1

b (Pu) replaced
by WF−1,s+3/2

b (Pu). For the more precise statement we modify (8-24) — this is the only term in (8-25)
that needs modification to prove the optimal statement. Let T̃ ∈ 9−1/2

b (X) be elliptic, T̃− ∈ 91/2
b (X) a

parametrix, with F̃ = T̃−T̃ − Id ∈9−∞b (X). Then, similarly to (8-24), we have for any γ > 0,

|〈Ar Pu, Ar u〉| ≤ |〈(T̃−)∗Ar Pu, T̃ Ar u〉| + |〈Ar Pu, F̃ Ar u〉|

≤ γ−1
‖(T̃−)∗Ar Pu‖2

H−1
0 (X)
+ γ‖T̃ Ar u‖2H1(X)+‖Ar Pu‖H−1(X)‖F̃ Ar u‖H1

0 (X)
.

(8-26)

The last term on the right hand side can be estimated as before. As (T̃−)∗Ar is bounded in9s+1
bc (X) with

WF′b disjoint from U , we see that ‖(T̃−)∗Ar Pu‖H−1
0 (X) is uniformly bounded. Moreover, ‖T̃ A3r u‖2H1

0 (X)

can be estimated, using Lemma 7.3 and the Poincaré inequality, by ‖x Dyn−1 T̃ A3r u‖2L2(X) modulo terms
that are uniformly bounded as r → 0. The principal symbol of Dyn−1 T̃ A is ζ n−1σb,−1/2(T̃ )a, with
a = χ0χ1χ2, where χ0 stands for χ0(A−1

0 (2−φ/δ)), etc., so we can write

|ζ n−1|
1/2a = |ζ n−1|

1/2χ0χ1χ2 = A−1
0 (2−φ/δ)|ζ n−1|

1/2(χ0χ
′

0)
1/2χ1χ2 =z−1/2δ1/2(2−φ/δ)b̃,

where we used that

χ ′0(z
−1(2−φ/δ))=z2(2−φ/δ)−2χ0(z−1(2−φ/δ))

when 2− φ/δ > 0, while a and b̃ vanish otherwise. Correspondingly, using that |ζ n−1|
1/2σb,−1/2(T̃ ) is

C∞ and homogeneous degree zero near the support of a in bT ∗X \o, we can write Dyn−1 T̃ A=G B̃+ F ,
with G ∈ 90

b (X) and F ∈ 9−1/2
b (X). Thus, modulo terms that are bounded as r → 0, we can estimate

‖x Dyn−1 T̃ A3r u‖2 (and hence ‖T̃ A3r u‖2H1
0 (X)

) from above by C6‖x B̃r u‖2. Therefore, modulo terms
that are bounded as r→ 0, for γ > 0 sufficiently small, γ‖T̃ Ar u‖2H1

0 (X)
can be absorbed into ‖Cx B̃r u‖2.

As the treatment of the other terms on the right hand side of (8-25) requires no change, we deduce as
above that x B̃0u ∈ L2(X), which (in view of Lemma 7.3) proves that q0 /∈ WF1,s

b (u), completing the
proof of the iterative step.

We need to make one more remark to prove the proposition for WF1,∞
b (u); namely we need to show

that the neighborhoods of q0 that are disjoint from WF1,s
b (u) do not shrink uncontrollably to {q0} as

s→∞. This argument parallels the last paragraph of the proof of [Hörmander 1985, Proposition 24.5.1].
In fact, note that above we have proved that the elliptic set of B̃ = B̃s is disjoint from WF1,s

b (u). In the
next step, when we are proving q0 /∈ WF1,s+1/2

b (u), we decrease δ > 0 slightly (by an arbitrary small
amount), thus decreasing the support of a = as+1/2 in (8-8), to make sure that supp as+1/2 is a subset
of the elliptic set of the union of B̃s with the region η < 0, and hence that WF1,s

b (u)∩ supp as+1/2 =∅.
Each iterative step thus shrinks the elliptic set of B̃s by an arbitrarily small amount, which allows us
to conclude that q0 has a neighborhood U ′ such that WF1,s

b (u) ∩ U ′ = ∅ for all s. This proves that
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q0 /∈ WF1,∞
b (u), and indeed that WF1,∞

b (u) ∩ U ′ = ∅, for if A ∈ 9m
b (X) with WF′b(A) ⊂ U ′, then

Au ∈ H 1
0 (X) by Lemma 5.10 and Corollary 5.12. �

Before turning to tangential propagation we need a technical lemma, which roughly states that when
applied to solutions of Pu = 0 with u ∈ H 1

0 (X), the operators x Dx and Id are not merely bounded by
x Dyn−1 microlocally, but are small compared to it, provided that λ ∈ C \ [(n− 1)2/4,∞). This result is
the analogue of [Vasy 2008c, Lemma 7.1], and is proved as there, with the only difference being that
the term 〈λAr u, Ar u〉 cannot be dropped; instead it is treated just as in Proposition 7.7 above. Below
a δ-neighborhood refers to a δ-neighborhood with respect to the metric associated to any Riemannian
metric on the manifold bT ∗X , and we identify bS∗X as the unit ball bundle with respect to some fiber
metric on bT ∗X .

Lemma 8.4 (see [Vasy 2008c, Lemma 7.1]). Suppose that P = �g + λ, with λ ∈ C \ [(n − 1)2/4,∞).
Suppose u ∈ H 1,k

0,b,loc(X), and suppose that we are given K ⊂ bS∗X compact satisfying

K ⊂ G∩ T ∗Y \WF−1,s+1/2
b (Pu).

Then there exist δ0 > 0 and C0 > 0 with the following property. Let δ < δ0. Let U ⊂ bS∗X be open in
a δ-neighborhood of K , and let A = {Ar : r ∈ (0, 1]} be a bounded family of PsDOs in 9s

bc(X) with
WF′b(A)⊂U , and with Ar ∈9

s−1
b (X) for r ∈ (0, 1].

Then there exist G ∈9s−1/2
b (X) and G̃ ∈9s+1/2

b (X) with WF′b(G),WF′b(G̃)⊂U and C̃0= C̃0(δ) > 0
such that for all r > 0,

‖x Dx Ar u‖2+‖Ar u‖2

≤ C0δ‖x Dyn−1 Ar u‖2+ C̃0
(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)

)
. (8-27)

The meaning of ‖u‖H1,k
0,b,loc(X)

and ‖Pu‖2
H−1,k

0,b,loc(X)
is stated in Remark 7.2.

Remark 8.5. Since K is compact, this is essentially a local result. In particular, we may assume that
K is a subset of bT ∗X over a suitable local coordinate patch. Moreover, we may assume that δ0 > 0 is
sufficiently small so that Dyn−1 is elliptic on U .

Proof. By Lemma 7.3 applied with K replaced by WF′b(A) in the hypothesis (note that the latter is
compact), we already know that

|〈d Ar u, d Ar u〉G+λ‖Ar u‖2|≤C ′0
(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2
H−1

0 (X)

)
. (8-28)

for some C ′0 > 0 and for some G and G̃ as in the statement of the lemma. Freezing the coefficients at Y ,
as in the proof of Proposition 7.7 — see [Vasy 2008c, Lemma 7.1] for details — we deduce that∣∣‖x Dx Ar u‖2− λ‖Ar u‖2

∣∣
≤

∫
X

(
Bi j (0, y)(x Dyi )Ar u (x Dy j )Ar u

)
|dg| +C1δ‖x Dyn−1 Ar u‖2

+C ′′0
(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)
+‖Pu‖2

H−1,k
0,b,loc(X)

+‖G̃ Pu‖2H−1(X)

)
. (8-29)



134 ANDRÁS VASY

Now, one can show that∣∣∣∫
X

(∑
(D∗yi

Bi j (0, y)Dy j )x Ar u x Ar u
)
|dg|

∣∣∣
≤ C2δ‖Dyn−1 Ar u‖2+ C̃2(δ)

(
‖u‖2

H1,k
0,b,loc(X)

+‖Gu‖2H1
0 (X)

)
(8-30)

precisely as in the proof of [Vasy 2008c, Lemma 7.1]. Equations (8-29)–(8-30) imply (8-27) with the
left side replaced by |‖x Dx Ar u‖2 − λ‖Ar u‖2|. If Im λ 6= 0, we get the desired bound for ‖Ar u‖2 by
taking the imaginary part of ‖x Dx Ar u‖2−λ‖Ar u‖2; hence taking the real part gives the desired bound
for ‖x Dx Ar u‖2 as well. If Im λ= 0 but λ< (n−1)2/4, we finish the proof using the Poincaré inequality;
see the proof of Proposition 7.7. �

We finally state the tangential, or glancing, propagation result.

Proposition 8.6 (tangential, or glancing, propagation). Suppose P=�g+λ with λ∈C\[(n−1)2/4,∞).
Let U0 be a coordinate chart in X , and let U be open with U ⊂ U0. Let u ∈ H 1,k

0,b,loc(X) for some k ≤ 0,
and let π̃ : T ∗X→ T ∗Y be the coordinate projection

π̃ : (x, y, ξ, ζ ) 7→ (y, ζ ).

Given K ⊂ bS∗U X compact with

K ⊂ (G∩ bT ∗Y X) \WF−1,∞
b ( f ), where f = Pu, (8-31)

there exist constants C0 > 0 and δ0 > 0 such that the following holds. If Im λ ≤ 0, q0 = (y0, ζ 0) ∈ K ,
α0= π̂

−1(q0) and W0= π̃∗|α0Hp considered as a constant vector field in local coordinates, and for some
0< δ < δ0, C0δ ≤ ε < 1 and for all α = (x, y, ξ, ζ ) ∈6, there holds

π(α) /∈WF1,∞
b (u) if α ∈ T ∗X and |π̃(α− (α0− δW0))| ≤ εδ and |x(α)| ≤ εδ, (8-32)

then q0 /∈WF1,∞
b (u).

In addition, WF−1,∞
b ( f ) may be replaced by WF−1,s+1

b ( f ), and WF1,∞
b (u) may be replaced by

WF1,s
b (u), s ∈ R.

Remark 8.7. Just like Proposition 8.2, this result gives regularity propagation in the forward direction
along W0, that is, to conclude regularity at q0, one needs to know regularity in the backward W0-direction
from q0.

One can again change the direction of propagation, that is, replace δ by−δ in α−(α0−δW0), provided
one also changes the sign of Im λ to Im λ≥0. In particular, if Im λ=0, one obtains propagation estimates
in both the forward and backward directions.

Proof. The proof follows closely that of [Vasy 2008c, Proposition 7.3], which is corrected at a point
in [Vasy 2008a], so we merely point out the main steps. Again, one uses a commutant A ∈ 90

b (X)
and weights 3r ∈ 9

0
b (X) for r ∈ (0, 1), uniformly bounded in 9s+1/2

bc (X), with Ar = A3r , in order to
obtain the propagation of WF1,s

b (u) with the notation of that paper, whose analogue is WF1,s
b (u) here (the

difference is the space relative to which one obtains b-regularity: it is H 1(X) in the previous paper, but
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the zero-Sobolev space H 1
0 (X) here). One can use exactly the same commutants as in [Vasy 2008c], with

a small correction given in [Vasy 2008a]. Then Proposition 8.1 lets one calculate ı[A∗r Ar , P] to obtain
a completely analogous expression to the formulas below [Vasy 2008c, Equation (7.16)], as corrected.
The rest of the argument is completely analogous as well. Again, we refer the reader to [Vasy 2010a]
because the commutator calculation is written up exactly as above in Proposition 8.1 (see [Vasy 2010a,
Proposition 3.10]) and it is used subsequently in 6.1 there the same way it needs to be used here — any
modifications are analogous to those in Proposition 8.2 and arise due to the nonnegligible nature of λ.

Again, we first construct the symbol a of our commutator following the (corrected) proof [Vasy 2008c,
Proposition 7.3]. Note that (with p̃ = x−2σb,2(P̃)= h)

W0(q0)= H p̃(q0),

and let
W = |ζ n−1|

−1W0,

so W is homogeneous of degree zero (with respect to the R+-action on the fibers of T ∗Y \ o). We use

η̃ = (sgn(ζ n−1)0)(yn−1− (yn−1)0)

now to measure propagation, since ζ−1
n−1H p̃(yn−1) = 2 > 0 at q0 by (6-7), so H p̃η̃ is 2|ζ n−1| > 0 at q0.

Note that η̃ is thus increasing along GBB of ĝ.
First, we require

ρ1 = p̃(y, ζ̂ )= |ζ n−1|
−2 p̃(y, ζ );

note that dρ1 6= 0 at q0 for ζ 6= 0 there, but H p̃ p̃ ≡ 0, so

Wρ1(q0)= 0.

Next, dim T ∗Y = 2n−2 since dim Y = n−1; hence dim S∗Y = 2n−3. With a slight abuse of notation,
we also regard q0 as a point in S∗Y — recall that S∗Y = (T ∗Y \ o)/R+. We can also regard W as a
vector field on S∗Y in view of its homogeneity. Since W does not vanish as a vector in Tq0 S∗Y in
view of W η̃(q0) 6= 0 since η̃ is homogeneous degree zero and hence a function on S∗Y , the kernel
of W in T ∗q0

S∗Y has dimension 2n − 4. Thus there exist homogeneous degree zero functions ρ j for
j = 2, . . . , 2n− 4 on T ∗Y (and hence functions on S∗Y ) such that

ρ j (q0)= 0 for j = 2, . . . , 2n− 4,

Wρ j (q0)= 0 for j = 2, . . . , 2n− 4,

dρ j (q0) for j = 1, . . . , 2n− 4 are linearly independent at q0.

(8-33)

By dimensional considerations, the dρ j (q0) for j = 1, . . . , 2n− 4, together with dη̃, span the cotangent
space of S∗Y at q0, that is, of the quotient of T ∗Y by the R+-action, so the ρ j , together with η̃, can be
used as local coordinates on a chart Ũ0 ⊂ S∗Y near q0. We also let Ũ be a neighborhood of q0 in bS∗X
such that ρ j , together with η̃, x and ξ̂ , are local coordinates on Ũ; this holds if Ũ0 is identified with a
subset of G∩ bS∗Y X and Ũ is a product neighborhood of this in bS∗X in terms of the coordinates (6-1).
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Note that since ξ̂ = 0 on 6̇∩bS∗Y X , for points q in 6̇ one can ensure that ξ̂ is small by ensuring that π̃(q)
is close to q0 and x(q) is small; see the discussion around (8-5) and after (8-7). By reducing Ũ if needed
(this keeps all previously discussed properties), we may also assume that it is disjoint from WF−1,∞

b ( f ).
Hence,

|ζ n−1|
−1W0ρ j =

2n−4∑
i=1

F̃ j iρi + F̃ j,2n−3η̃ for j = 2, . . . , 2n− 4,

with F̃ j i smooth for i = 1, . . . , 2n − 3 and j = 2, . . . , 2n − 4. Then we extend ρ j to a function on
bT ∗X \ o (using the coordinates (x, y, ξ , ζ )), and conclude that

|ζ n−1|
−1H p̃ρ j =

2n−4∑
l=1

F̃ jlρl + F̃ j,2n−3η̃+ F̃ j0x for j = 2, . . . , 2n− 4, (8-34)

with F̃ jl smooth. Similarly, with F̌l smooth,

|ζ n−1|
−1H p̃η̃ = 2+

2n−4∑
l=1

F̌lρl + F̌2n−3η̃+ F̌0x . (8-35)

Let

ω = |x |2+
2n−4∑
j=1

ρ2
j . (8-36)

Finally, we let
φ = η̃+ω/(ε2δ), (8-37)

and define a by
a = χ0(z−1(2−φ/δ))χ1((η̃δ)/εδ+ 1)χ2(|ξ |

2/ζ 2
n−1), (8-38)

with χ0, χ1 and χ2 as in the case of the normal propagation estimate, stated after (8-7). We always
assume ε < 1, so we have

φ ≤ 2δ and η̃ ≥−εδ− δ ≥−2δ on supp a.

Since ω ≥ 0, the first of these inequalities implies that η̃ ≤ 2δ, so

|η̃| ≤ 2δ on supp a. (8-39)

Hence,
ω ≤ ε2δ(2δ− η̃)≤ 4δ2ε2. (8-40)

Thus, supp a lies in Ũ for δ > 0 sufficiently small. Moreover,

η̃ ∈ [−δ− εδ,−δ] and ω1/2
≤ 2εδ on supp dχ1, (8-41)

so this region lies in (8-32) after ε and δ are both replaced by appropriate constant multiples, namely the
present δ should be replaced by δ/(2|(ζ n−1)0|).
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We proceed as in the case of hyperbolic points, letting A0 ∈ 9
0
b (X) with σb,0(A0) = a, supported in

the coordinate chart. Also let 3r be scalar, with symbol

|ζ n−1|
s+1/2(1+ r |ζ n−1|

2)−s Id for r ∈ [0, 1), (8-42)

so Ar = A3r ∈9
0
b (X) for r > 0 and it is uniformly bounded in 9s+1/2

bc (X). Then, for r > 0,

〈ı A∗r Ar Pu, u〉− 〈ı A∗r Ar u, Pu〉 = 〈ı[A∗r Ar , P]u, u〉+ 〈ı(P − P∗)A∗r Ar u, u〉

= 〈ı[A∗r Ar , P]u, u〉− 2 Im λ‖Ar u‖2.
(8-43)

and we compute the commutator here using Proposition 8.1. We arrange the terms of the proposition so
that the terms in which a vector field differentiates χ1 are included in Er and the terms in which a vector
fields differentiates χ2 are included in E ′r . Thus, we have

ı A∗r Ar P − ı P A∗r Ar = (x Dx)
∗C]

r (x Dx)+ (x Dx)
∗xC ′r + xC ′′r (x Dx)+ x2C[

r + Er + E ′r + Fr , (8-44)

with
σb,2s(C]

r )= w
2
r
(
z−1δ−1a|ζ n−1|

−1( f̂ ]+ ε−2δ−1 f ])χ ′0χ1χ2+ a2c̃]r
)
,

σb,2s+1(C ′r )= w
2
r
(
z−1δ−1a( f̂ ′+ δ−1ε−2 f ′)χ ′0χ1χ2+ a2c̃′r

)
,

σb,2s+1(C ′′r )= w
2
r
(
z−1δ−1a( f̂ ′′+ δ−1ε−2 f ′′)χ ′0χ1χ2+ a2c̃′′r

)
,

σb,2s+2(C[
r )= w

2
r
(
z−1δ−1

|ζ n−1|a(4+ f̂ [+ δ−1ε−2 f [)χ ′0χ1χ2+ a2c̃[r
)
,

(8-45)

where f ], f ′, f ′′ and f [ as well as f̂ ], f̂ ′, f̂ ′′ and f̂ [ are all smooth functions on bT ∗X \o, homogeneous
of degree 0 (and independent of ε and δ). Moreover, f ], f ′, f ′′, f [ arise when ω is differentiated in
χ0(z−1(2− φ/δ)), while f̂ ], f̂ ′, f̂ ′′ and f̂ [ arise when η̃ is differentiated in χ0(z−1(2− φ/δ)), and
comprise all such terms with the exception of part of that arising from the −Hh component of V [

|Y

(which gives the 4 on the last line above, modulo a term included in f̂ [ and vanishing ω = 0). In
addition, since V •ρ2

= 2ρV •ρ for any function ρ, the terms f • for •= ], ′, ′′, [ have vanishing factors of
ρl and x , with the structure of the remaining factor dictated by the form of V •ρl and V •x , respectively.
Thus, using (8-34) to compute f [, (8-35) to compute f̂ [, we have

f ] =
∑

k

ρk f ]k + x f ]0 , f [ =
∑

kl

ρkρl f [kl +
∑

k

ρk x f [k + x2 f0+
∑

k

ρk η̃ f [k+,

f • =
∑

k

ρk f •k + x f •0 for •= ′,′′ , f̂ [ = x f̂ [0 +
∑

k

ρk f̂ [k + η̃ f̂ [+,

with f ]k etc. smooth. We deduce that

ε−2δ−1
| f ]| ≤ Cε−1, | f̂ ]| ≤ C, (8-46)

ε−2δ−1
| f •| ≤ Cε−1, | f̂ •| ≤ C for •= ′, ′′, (8-47)

ε−2δ−1
| f [| ≤ Cε−1δ, | f̂ [| ≤ Cδ. (8-48)

We remark that although thus far we worked with a single q0 ∈ K , the same construction works with
q0 in a neighborhood Uq ′0 of a fixed q ′0 ∈ K , with a uniform constant C . In view of the compactness
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of K , this suffices (by the rest of the argument we present below) to give the uniform estimate of the
proposition.

Since (8-46)–(8-48) are exactly the same (with slightly different notation) as (6.16)–(6.18) of [Vasy
2010a], the rest of the proof is analogous, except that [Vasy 2010a, Lemma 4.6] is replaced by Lemma 8.4
here. Thus, for a small constant c0 > 0 to be determined, which we may assume to be less than C , we
demand below that the expressions on the right sides of (8-46) are bounded by c0(εδ)

−1, those on the
right sides of (8-47) are bounded by c0(εδ)

−1/2, and those on the right sides of (8-48) are bounded by c0.
This demand is due to the appearance of two, one, and zero, respectively, factors of x Dx in (8-44) for the
terms whose principal symbols are affected by these, taking into account that in view of Lemma 8.4 we
can estimate ‖Qiv‖ by CG,K (εδ)

1/2
‖Dyn−1v‖ if v is microlocalized to a εδ-neighborhood of G, which is

the case for us with v = Ar u in terms of support properties of a.
Thus, recalling that c0 > 0 is to be determined, we require that

(C/c0)
2δ ≤ ε ≤ 1, (8-49)

and

δ < (c0/C)2; (8-50)

see [Vasy 2010a, Proposition 6.1] for motivation. Then with ε, δ satisfying (8-49) and (8-50) and hence
δ−1 > (C/c0)

2 > C/c0, the bounds (8-46)–(8-48) give that

ε−2δ−1
| f ]| ≤ c0δ

−1ε−1, | f̂ ]| ≤ c0δ
−1ε−1, (8-51)

ε−2δ−1
| f •| ≤ c0δ

−1/2ε−1/2, | f̂ •| ≤ c0δ
−1/2ε−1/2 for •= ′, ′′ (8-52)

ε−2δ−1
| f [| ≤ c0, | f̂ [| ≤ c0, (8-53)

as desired. One deduces that

ı A∗r Ar P − ı P A∗r Ar

= B̃∗r
(
C∗x2C + x R[x + (x Dx)

∗ R̃′x + x R̃′′(x Dx)+ (x Dx)
∗R](x Dx)

)
B̃r + R′′r + Er + E ′r (8-54)

with

R[ ∈90
b (X), R̃′, R̃′′ ∈9−1

b (X), R] ∈9−2
b (X),

R′′r ∈ L∞((0, 1);Diff2
09

2s−1
b (X)), Er , E ′r ∈ L∞((0, 1);Diff2

09
2s
b (X)),

with

WF′b(E)⊂ η̃
−1((−δ− εδ,−δ])∩ω−1([0, 4δ2ε2))⊂ Ũ

(see (8-41)), WF′b(E
′)∩6̇=∅, and with r [=σb,0(R[), r̃ ′=σb,−1(R̃′), r̃ ′′=σb,−1(R̃′′), r ] ∈σb,−2(R]),

|r [| ≤ 2c0+C2δz−1, |ζ n−1r̃ ′| ≤ 2c0δ
−1/2ε−1/2

+C2δz−1,

|ζ n−1r̃ ′′| ≤ 2c0δ
−1/2ε−1/2

+C2δz−1, |ζ 2
n−1r ]| ≤ 2c0δ

−1ε−1
+C2δz−1.
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These are analogues of the result of the second displayed equation after [Vasy 2008c, Equation (7.16)],
as corrected in [Vasy 2008a], with the small (at this point arbitrary) constant c0 replacing some constants
given there in terms of ε and δ; see [Vasy 2010a, Equation (6.25)] for estimates stated in exactly the
same form in the form-valued setting. The rest of the argument proceeds as in the proof of [Vasy 2008c,
Proposition 7.3], taking into account [Vasy 2008a], and using Lemma 8.4 in place of [Vasy 2008c,
Lemma 7.1]. �

Since for λ real, λ < (n − 1)2/4, both forward and backward propagation are covered by these two
results (see Remarks 8.3 and 8.7), we deduce our main result on the propagation of singularities:

Theorem 8.8. Suppose that P=�+λ, with λ<(n−1)2/4, for m ∈R or m=∞. Suppose u∈H 1,k
0,b,loc(X)

for some k ≤ 0. Then
(WF1,m

b (u)∩ 6̇) \WF−1,m+1
b (Pu)

is a union of maximally extended generalized broken bicharacteristics of the conformal metric ĝ in

6̇ \WF−1,m+1
b (Pu).

In particular, if Pu = 0, then WF1,∞
b (u) ⊂ 6̇ is a union of maximally extended generalized broken

bicharacteristics of ĝ.

Proof. The proof proceeds as that of [Vasy 2008c, Theorem 8.1], since Propositions 8.2 and 8.6 are
complete analogues of [Vasy 2008c, Propositions 6.2 and 7.3]. Given the results of the preceding sections
of [Vasy 2008c], the argument proving [Vasy 2008c, Theorem 8.1] is itself only a slight modification of
an argument originally due to Melrose and Sjöstrand [1978], as presented by Lebeau [1997] (although
we do not need Lebeau’s treatment of corners here).

For the convenience of the reader we give a very sketchy version of the proof. To start with, propaga-
tion of singularities has already been proved in X◦; this is the theorem of Duistermaat and Hörmander
[Hörmander 1971]. Now, the theorem can easily be localized — the global version follows by a Zorn’s
lemma argument; see [Vasy 2008c, proof of Theorem 8.1] for details. Indeed, in view of the Duistermaat
and Hörmander’s result, it suffices to show that if

q0 ∈WF1,m
b (u) \WF−1,m+1

b (Pu) and q0 ∈
bT ∗Y X, (8-55)

then

there exists a generalized broken bicharacteristic γ : [−ε0, 0] → 6̇,

with ε0 > 0, γ(0)= q0, γ(s) ∈WF1,m
b (u) \WF−1,m+1

b (Pu), s ∈ [−ε0, 0],
(8-56)

for the existence of a GBB on [0, ε0] can be demonstrated similarly by replacing the forward propagation
estimates by backward ones, and, directly from Definition 1.1, piecing together the two GBBs gives
one defined on [−ε0, ε0]. Note that (8-55) implies that q0 ∈ G ∪ H by microlocal elliptic regularity,
Proposition 7.7.

Now suppose q0 ∈ (WF1,m
b (u)\WF−1,m+1

b (Pu))∩ bT ∗Y X ∩H. We use the notation of Proposition 8.2.
Then γ in (8-55) is constructed by taking a sequence qn→ q0, where qn ∈ T ∗X◦ and η(qn)=−ξ̂ (qn)< 0
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and GBB γn : [−ε0, 0]→ 6̇ with γn(0)= qn and with γn(s) ∈ (WF1,m
b (u)\WF−1,m+1

b (Pu))∩T ∗X◦ for
s ∈ [−ε0, 0]. Once this is done, by compactness of GBB with image in a compact set (see [Vasy 2008c,
Proposition 5.5] and [Lebeau 1997, Proposition 6]), one can extract a uniformly convergent subsequence,
converging to some γ, giving (8-56). Now, the qn arise directly from Proposition 8.2, by shrinking U
(via shrinking δ in (8-5)); namely under our assumption on q0, for each such U there must exist a
q ∈ WF1,m

b (u) in U ∩ {η < 0}. The γn then arise from the theorem of Duistermaat and Hörmander,
using that η(qn) < 0 implies that the backward GBB from qn cannot meet Y for some time ε0, uniform
in n — this is essentially due to η being strictly increasing along GBB microlocally, and η vanishing at
6̇∩ bT ∗Y X : So as long as η is negative, the GBB cannot hit the boundary. For more details, see the proof
of [Vasy 2008c, Theorem 8.1].

Finally, suppose q0 ∈ (WF1,m
b (u)\WF−1,m+1

b (Pu))∩bT ∗Y X∩G, which is the more technical case. This
part of the argument is present in essentially the same form in [Melrose and Sjöstrand 1978]. Lebeau
[1997, Proposition VII.1] gives a very nice presentation; see the proof of [Vasy 2008c, Theorem 8.1]
for an overview with more details. The rough idea for constructing the GBB γ for (8-56) is to define
approximations to it using Proposition 8.6. First, recall that in Proposition 8.6, applied at q0, W0 is the
coordinate projection (push forward) of Hp, evaluated at π̂−1(q0), to T ∗Y . Thus, one should think of the
point π̃(q0)− δW0 in T ∗Y as an O(δ2) approximation of where a backward GBB should be after “time”
(that is, parameter value) δ. This is used as follows: Given δ > 0, Proposition 8.6 gives the existence of
a point q1 in WF1,m

b (u) that is, roughly speaking, O(δ2) from π̃(q1)− (π̃(q0)− δW0), with x(q1) being
O(δ2) as well. Then, from q1, one can repeat this procedure (replacing q0 by q1 in Proposition 8.6) —
there are some technical issues corresponding to q1 being in the boundary or not, and also whether in the
former case the backward GBB hits the boundary in time δ. Taking δ = 2−Nε0, this gives 2N

+ 1 points
q j corresponding to the dyadic points on the parameter interval [−ε0, 0]. It is helpful to consider this as
analogous to a discrete approximation of solving an ODE without the presence of the boundary by taking
steps of size 2−Nε0. Defining γN (s) for only these dyadic values, one can then get a subsequence γNk

that converges, as k→∞, at s=2−n jε0 for all n≥1 and 0≤ j ≤2n integers. (Note that γNk (s) is defined
for these values of s for k sufficiently large!) One then checks as in Lebeau’s proof that the result is the
restriction of a GBB to dyadic parameter values. Again, we refer to [Lebeau 1997, Proposition VII.1]
and the proof of [Vasy 2008c, Theorem 8.1] for more details. �

In fact, even if Im λ 6= 0, we get one-sided statements:

Theorem 8.9. Suppose that P = �+ λ and Im λ > 0, and m ∈ R or m =∞. Suppose u ∈ H 1,k
0,b,loc(X)

for some k ≤ 0. Then

(WF1,m
b (u)∩ 6̇) \WF−1,m+1

b (Pu)

is a union of maximally forward extended (and in the case Im λ < 0 backward extended ) generalized
broken bicharacteristics of the conformal metric ĝ in

6̇ \WF−1,m+1
b (Pu).
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In particular, if Pu = 0, then WF1,∞
b (u) ⊂ 6̇ is a union of maximally extended generalized broken

bicharacteristics of ĝ.

Proof. The proof proceeds again as for Theorem 8.8, but now Propositions 8.2 and 8.6 only allow
propagation in one direction. Thus, if Im λ < 0, they allow one to conclude that if a point in 6̇ \
WF−1,m+1

b (Pu) is in WF1,m
b (u), then there is another point in WF1,m

b (u) that is roughly along a backward
GBB segment emanating from it. Then an actual backward GBB can be constructed as in [Melrose and
Sjöstrand 1978; Lebeau 1997]. �

In the absence of b-wave front set we can easily read off the actual expansion at the boundary as well.

Proposition 8.10. Suppose that P =�+ λ, where λ ∈ C. Let

s±(λ)= 1
2(n− 1)±

√
1
4(n− 1)2− λ.

Suppose u ∈ H 1
0,loc(X), WF1,∞

b (u)=∅ and Pu ∈ Ċ∞(X). Then

u = x s+(λ)v+ and v+ ∈ C∞(X). (8-57)

Conversely, if λ < (n− 1)2/4, given any g+ ∈ C∞(Y ), there exists v+ ∈ C∞(X) and v+|Y = g+ such
that u = x s+(λ)v+ satisfies Pu ∈ Ċ∞(X); in particular u ∈ H 1

0,loc(X) and WF1,∞
b (u)=∅.

This proposition reiterates the importance of the constraint on λ in that

x (n−1)/2+iα /∈ H 1
0,loc(X) for α ∈ R;

for λ ≥ (n − 1)2/4, the growth or decay relative to H 1
0,loc(X) does not distinguish between the two

approximate solutions x s±(λ)v± having v± ∈ C∞(X).

Proof. For the first part of the lemma, by Lemma 5.16 and the remark after, we have u ∈ A(n−1)/2(X)
under our assumptions. By (7-1),

P +
(
(x Dx + ı(n− 1))(x Dx)− λ

)
∈ x Diff2

b(X). (8-58)

This is, up to a change in overall the sign of the second summand,

(x Dx + ı(n− 1))(x Dx)− λ,

the same as the analogous expression in the de Sitter setting; see the first line of the proof of [Vasy 2010b,
Lemma 4.13]. Thus, the proof of that lemma goes through without changes — the reader needs to keep
in mind that u ∈ A(n−1)/2(X) excludes one of the indicial roots from appearing in the argument of that
lemma. (In the de Sitter setting, in [Vasy 2010b, Lemma 4.13] there was no a priori weight, relative to
which one has conormality, specified.)

The converse again works as in [Vasy 2010b, Lemma 4.13] using (8-58). �

We can now state the “inhomogeneous Dirichlet problem”:
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Theorem 8.11. Assume (TF) and (PT). Suppose λ< (n−1)2/4, and s+(λ)−s−(λ)= 2
√
(n− 1)2/4− λ

is not an integer, and P = P(λ)=�g + λ.
Given v0 ∈ C∞(Y ) and f ∈ Ċ∞(X), both supported in {t ≥ t0}, the problem

Pu = f, u|t<t0 = 0, u = x s−(λ)v−+ x s+(λ)v+, v± ∈ C∞(X), v−|Y = v0,

has a unique solution
If s+(λ)− s−(λ) is an integer, the same conclusion holds if we replace the condition v− ∈ C∞(X) by

v− ∈ C∞(X)+ x s+(λ)−s−(λ) log x C∞(X).

Proof. The proof of [Vasy 2010b, Lemma 4.13] shows that there exists ũ, supported in t ≥ t0, such that
ũ = x s−(λ)v−, v− is as in the statement of the theorem, and Pũ ∈ Ċ∞(X). Now let u′ be the solution
of Pu′ = f − Pũ supported in {t ≥ t0}, whose existence follows from Theorem 4.16, and which is of
the form x s+(λ)v+ by Theorem 8.8 and Proposition 8.10. Then u = ũ + u′ solves the PDE as stated.
Uniqueness follows from the basic well-posedness theorem, Theorem 4.16. �

Finally we add well-posedness of possibly rough initial data:

Theorem 8.12. Assume (TF) and (PT). Suppose f ∈ H−1,m+1
0,b,loc (X) for some m ∈R, and let m′≤m. Then

(1-6) has a unique solution in H 1,m′
0,b,loc(X), which in fact lies in H 1,m

0,b,loc(X), and for all compact K ⊂ X
there exists a compact K ′ ⊂ X and a constant C > 0 such that

‖u‖H1,m
0 (K ) ≤ C‖ f ‖H−1,m+1

0,b (K ′).

Remark 8.13. It should be emphasized that if one only wants to prove this result, without microlocal
propagation, one could use more elementary energy estimates.

Proof. If m ≥ 0, then by Theorem 4.16, (1-6) has a unique solution in H 1
0,loc(X), and by propagation

of singularities it lies in H 1,m
0,b,loc(X), with the desired estimate. Moreover, again by the propagation of

singularities, any solution of (1-6) in H 1,m′
0,b,loc(X) lies in H 1,m

0,b,loc(X), so the solution is indeed unique even
in H 1,m′

0,b,loc(X).
If m < 0, uniqueness and the stability estimate follow as above. To see existence, let T0 < t0, and let

f j→ f such that f j ∈ H−1,1
0,b,loc and supp f j ⊂{t> T0}. This can be achieved by taking Ar ∈9

−∞

bc (X)with
properly supported Schwartz kernel (of sufficiently small support) such that {Ar : r ∈ (0, 1]} is a bounded
family in 90

bc(X), converging to Id in 9ε
bc(X) for ε > 0; then with f j = Ar j f , r j → 0, we have the

desired properties. By Theorem 4.16, (1-6) with f replaced by f j has a unique solution u j ∈ H 1
0,loc(X).

Moreover, by the propagation of singularities, one has a uniform estimate

‖uk − u j‖H1,m
0 (K ) ≤ C‖ fk − f j‖H−1,m+1

0,b (K ′),

with C independent of j and k. In view of the convergence of the f j in H−1,m+1
0,b (K ′), we deduce the

convergence of the u j in H 1,m
0,b (K ) to some u ∈ H 1,m

0,b (K ); hence (by uniqueness) we deduce the existence
of u ∈ H 1,m

0,b,loc(X) solving Pu = f with support in {t ≥ T0}. However, as supp f ⊂ {t ≥ t0}, uniqueness
shows the vanishing of u on {t < t0}, proving the theorem. �
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SMALL DATA SCATTERING AND SOLITON STABILITY IN Ḣ−1/6 FOR THE
QUARTIC KDV EQUATION

HERBERT KOCH AND JEREMY L. MARZUOLA

We prove scattering for perturbations of solitons in the scaling space appropriate for the quartic non-
linearity, namely Ḣ−1/6. The article relies strongly on refined estimates for a KdV equation linearized
at the soliton. In contrast to the work of Tao, we are able to work purely in the scaling space without
additional regularity assumptions, allowing us to construct wave operators and a weak version of inverse
wave operators.

1. Introduction and statement of results

The generalized Korteweg–de Vries (KdV) equation{
∂tψ + ∂x(∂

2
xψ +ψ

p)= 0 for t, x ∈ R,

ψ(0, x)= ψ0(x)
(1-1)

has an explicit soliton solution

ψc(x, t)= Q p,c,c2t+x0(x) := c2/(p−1)Q p(c(x − (x0+ c2t)))

with c > 0, x0 ∈ R and

Q p =

( p+ 1
2

)1/(p−1)
sech2/(p−1)

( p− 1
2

x
)
. (1-2)

Well-posedness of the generalized KdV equation was established by Kenig, Ponce and Vega [Kenig
et al. 1993] in H s for some s depending on p. The case p = 4 (quartic KdV) is particularly interesting
as it is the only subcritical power nonlinearity that does not lead to a completely integrable system. The
critical space for the quartic KdV equation is H−1/6. Grünrock [2005] obtained local wellposedness in
H s for s > −1/6 and the endpoint Ḣ−1/6 was reached by Tao [2007]. Though wellposedness is not
the main focus of this note, we will return to this question in Section 7 and use spaces of bounded p
variation and their predual (see the appendix and [Hadac et al. 2009]) to simplify and strengthen Tao’s
wellposedness result in the critical space.

The solutions Qc,y are called traveling waves or solitons. These are minimizers of the constrained
variational problem

min{E(w) : w ∈ H 1, ‖w‖L2 = µ > 0}, (1-3)

Marzuola was funded by a Hausdorff Center postdoc at the University of Bonn and by a National Science Foundation postdoc-
toral fellowship. Koch was partially supported by the DFG through Sonderforschungsbereich 611.
MSC2000: 35K40, 35Q51, 35Q53.
Keywords: Korteweg–de-Vries, solitons, scattering.
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where

E(u)=
∫ (

1
2 u2

x −
1

p+1
u p+1

)
dx .

Minimizers also are extremals of the Lagrangian

S(u)= E(u)+ λ
2

∫
u2 dx, (1-4)

where λ is a Lagrangian multiplier. Existence of the minimizer has been shown by Berestycki and Lions
[1983] using the constrained minimization problem

min{T (w) : w ∈ H 1, V (w)= µ̃},

where

T (w)=
∫
w2

x dx and V (w)= λ
2

∫
w2 dx − 1

p+1

∫
w p+1 dx .

The function Q in (1-2) is the unique positive even solution to the Euler–Lagrange equation

−Qxx − Q p
+ Q = 0 (1-5)

to (1-4) with λ = 1. It is a critical point of S(u) again with λ = 1, a minimizer of E with constraint
‖u‖L2 = µ, where

µ2
= ‖Q p(x)‖2L2 =

( p+ 1
2

)2/(p−1)0
( p+1

p−1

)√
π

0
( p+3

2(p−1)

) (1-6)

and hence the quadratic form

K (ψ) :=
∫

1
2w
′2
+

1
2w

2
−

1
2 pQ p−1w2 dx ≥ 0 for 〈w, Q〉 = 0 (1-7)

is nonnegative on the tangent space that is, the functions orthogonal to Q.
The stability of solitons for generic KdV equations has been studied in several seminal works. Orbital

stability was first effectively established in the work of Weinstein [1985]. Then asymptotic stability of
solitons for KdV was first observed by Pego and Weinstein [1994], who proved that solitons for KdV
are stable under perturbations in exponentially weighted spaces. Later, Martel and Merle [2001a; 2005;
2001b] and Martel [2006] refined this result to observe that solitons for generalized KdV equations are
indeed stable under perturbations in the energy space, but measured within a moving reference frame. As
mentioned above, for the case p = 4, building on the multilinear estimates of Grünrock [2005] and the
work of Martel and Merle, Tao [2007] assumes smallness in H 1

∩ Ḣ−1/6 and obtains scattering in Ḣ−1/6.
We will give a more thorough introduction to previous stability results including rigorous definitions of
stability in Section 2.

In the sequel we will focus on the case p = 4 and omit p in the notation. It seems that any further
progress is tied to an understanding of the linearization, or more precisely of the linear equation

ut + ∂x Lu = 0 (1-8)
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and its adjoint
vt +L∂xv = 0, (1-9)

which have the explicit solutions (with ∼Q = c∂c Qc|c=1)

u = a( ∼Q+ 2t Q′)+ bQ′ and v = cQ,

where
∼Q := c d

dc
c2/(p−1)Q p(cx)

∣∣∣
c=1
=

2
p−1

Q p + x Q′p, (1-10)

usually evaluated at c = 1.
Thus both equations (1-8) and (1-9) have linearly growing solutions. It is one of the first contributions

of this paper that both equations are uniformly L2 bounded once we take into account these modes, and,
moreover, there are local energy estimates global in time once we remove these modes. In particular the
assumption of Pego and Weinstein on the absence of embedded eigenvalues holds.

Our goal is to build on the arguments of Weinstein [1985] and Martel and Merle [2001a; 2005] to
establish some type of asymptotic soliton stability for generalized KdV equations by a direct analysis
of the equation itself. We apply a variant of Weinstein’s and Martel and Merle’s arguments to the linear
equations (1-8) and (1-9) and their relatives with variable scale and velocity, and control nonlinear terms
through estimates for linear equations.

Specifically, we define projection operators related to the spectrum of L:

P⊥Q′ψ = ψ −
〈ψ, Q′〉
〈Q′, Q′〉

Q′, P̃ψ = ψ −
〈ψ, Q〉

〈Q, ∼Q〉
∼Q. (1-11)

We obtain the main linear estimates, which in their simplest form can be written as follows.

Theorem 1. Let S be the solution operator for (1-8) and S∗ the solution operator for (1-9). Then, we
have

sup
t
‖S(t)P̃∗u0‖L2 +‖sech(x)∂x P⊥Q′S(t)P̃

∗u0‖L2(R2) . ‖u0‖L2, (1-12)

sup
t
‖S∗(t)P⊥Q′v(t)‖L2 +‖sech(x)∂x P̃ S∗(t)P⊥‖L2(R2) . ‖v0‖L2 . (1-13)

The linear estimates presented in the sequel may be generalized to any subcritical power p < 5. We
provide variants of Theorem 1 for linearization at solitons with variable scale and velocity as well as
estimates in scales of Banach spaces similar to estimates for the Airy equation.

Even near the trivial solution dominating the nonlinear part globally by the linear parts requires to work
in a scale invariant space similar to Ḣ−1/6. On the positive side it will lead to scattering for perturbations
of a soliton in Ḣ−1/6, without the smallness condition of Tao in the energy space (2-4). The study of the
linear equation will lead to a fairly precise understanding of its properties, which seems to be new — we
hope that it will provide a model for many other questions on the stability of solitons.

As is standard in the study of stability, we take

ψ(x, t)= Qc(t)(x − y(t))+w(x, t).
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Then, we have

∂tw+ ∂x(∂
2
xw+ 4Q3

cw)=−ċ(∂c Qc)(x − y)+ ẏ(Q′c)(x − y)

− ∂x(∂
2
x Qc− c2 Qc+ Q4

c)− c2(Q′c(x − y))

− ∂x(6Q2
c(x − y)w2

+ 4Qc(x − y)w3
+w4). (1-14)

The standard choice of ċ and ẏ ensures orthogonality conditions for w. Due to low time regularity we
are forced to relax the orthogonality conditions to

ċ
c
〈Qc,

∼Qc〉 = 〈w, Qc〉, (1-15)

(ẏ− c2)〈Q′c, Q′c〉 = −κ〈w, Q′c〉, (1-16)

where κ � 1.
From an implicit function theorem argument similar to that in the proof of [Martel and Merle 2001b,

Proposition 1], there exist unique c(0) and y(0) so that w( · , 0) is orthogonal to Qc(0)( · − y(0)) and
Q′c(0)( · − y(0)) provided the distance of ψ to the set of solitons is small in a suitable norm.

We consider the equations above as ordinary differential equations for c and y, coupled with the partial
differential equation.

Using the decomposition and linear estimates, in Sections 8.2 and 8.3 we can prove (referring to later
sections for the definition of the function spaces, with Ḃ−1/6,2

∞ slightly larger than Ḣ−1/6) the following
global result:

Theorem 2. There exists ε > 0 and c > 0 such that given (1-1) with initial data of the form

min
c0,y0
‖ψ0− Qc0(x − y0)‖Ḃ−1/6,2

∞

≤ ε,

there exist unique functions c and y with

〈w(0), Qc(0)〉 = 〈w(0), Q′c(0)〉 = 0, ċ ∈ L1
∩C0, ẏ− c2

∈ L2
∩C0,

and a function w(x, t) ∈ Ẋ−1/6
∞ such that

ψ(x, t)= Qc(t),y(t)(x)+w(x, t)

satisfies the quartic KdV equation, and w, c and y satisfy (1-15), (1-16) and (1-14). Moreover,

‖ċ‖L1∩C0 +‖ẏ− c2
‖L2∩C0 +‖w‖Ẋ−1/6

∞

≤ c‖w0‖Ḃ−1/6,2
∞

.

In addition, there exists a function z0 ∈ Ḃ−1/6,2
∞ such that

‖w(t)− e−t∂3
x z0‖Ḃ−1/6,2

∞

→ 0

and
‖w( · )− e− · ∂

3
x z0‖X−1/6

∞ ((t,∞))→ 0 as t→∞

if w(0) is in the closure of C∞0 .
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In fact, we prove a far stronger result than this, though Theorem 2 captures the main ideas. Finally, in
Section 8.4 we show for a function v, there exists a quantity J (v) defined in (8-8) such that we have the
following:

Theorem 3. Let v0 be in the closure of C∞0 in Ḃ−1/6,2
∞ , let c∞ > 0, and let y0 ∈ R. Let v be the solution

to the linear homogeneous K dV equation. Assume that

J (v)≤ δ for some δ = δ(‖v0‖Ḃ−1/6,2
∞

).

Then there exists a solution 9 to the quartic KdV equation, a function y ∈ C1([0,∞)), a function
c ∈ C1([0,∞), (0,∞)) such that w = 9 − Qc,y , where c and y satisfy equations (1-15), (1-16), (1-14),
and

〈w(0), Qc(0)( · − y(0))〉 = 〈w(0), Q′c(0)( · − y(0))〉 = 0,

c(t)→ c∞, y(0)= y0, w(t)− v(t)→ 0 in Ḃ−1/6,2
∞

as t→∞.

Moreover, if in addition v0 ∈ L2, then 9 ∈ C(R, L2(R)) and

‖v0‖
2
L2 +‖Qc∞,0‖

2
L2 = ‖9(t)‖L2 .

There exists ε > 0 such that the assumptions are satisfied if ‖v0‖Ḃ−1/6,2
∞

≤ ε.

Remark 1.1. The conclusions in Theorems 2 and 3 hold as well in the spaces Ḃ−1/6,2
∞ ∩ Ḣ s

∩ Hσ

for any −1 < s ≤ 0 and σ ≥ 0, allowing one to prove uniform bounds in higher Sobolev norms; see
Section 7.1. In particular, given initial data in Ḃ−1/6,2

∞ ∩ Ḣ s
∩ Hσ , J small will imply stability and

scattering in Ḃ−1/6,2
∞ ∩ Ḣ s

∩ Hσ . Specifically, we note one can prove boundedness and scattering in the
energy space H 1 intersected with Ḃ−1/6,2

∞ .

To motivate the construction of our nonlinear iteration spaces, in Section 3 we first derive some refined
estimates for the linear KdV equation {

∂t u+ ∂3
x u = f,

u(0, x)= u0(x).
(1-17)

Then, in Section 4 we discuss the spectral and mapping properties of the operator L and derive linear
estimates for the systems (1-8) and (1-9) and their relatives

ut + uxxx + (Qc(t)(x − x(t))u)x = f.

In Section 5, we combine local smoothing estimates as for (1-17), where we treat the Q terms as error
terms with the virial identity and energy conservation for (1-8) to prove uniform bounds for a projection
of the solution v assuming orthogonality of the initial data to Q′.

With this first result at hand we pursue a standard though nontrivial path and employ pseudodifferential
techniques and duality to derive similar estimates in a full scale of function spaces. The Littlewood–Paley
decomposition at low frequencies is severely affected by the term containing Q. This is done in Section 6
with main result Proposition 6.7.
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Theorems 2 and 3 are proven in the final two sections by combining the wellposedness arguments and
the linear estimates.

2. Review of previous soliton stability results

To begin, we consider the linearized operator

Lψ =−ψ ′′− pQ p−1ψ +ψ

associated to the Euler–Lagrange equation (1-5) of (1-4) with λ=1, respectively the constraint variational
problem (1-3) with Lagrange multiplier 1. It is one of the remarkable operators for which almost every-
thing is known about the spectrum and scattering; see [Lamb 1980, Section 2.4 and 2.5], and [Titchmarsh
1962, Section 4.19]. The operator

LMψ =−ψxx −Msech2(x)ψ

has the continuous spectrum [0,∞) and the ground state ψ0(x)= sechα(x) with eigenvalue α2 provided
M = α(α + 1), with α > 0. The other eigenvalues are (α − j)2 for 1 ≤ j < α together with the
eigenfunctions can be obtained as follows: Let ψ0,M be the ground state with the constant M . Then,

ψ j,(α+ j)(α+ j+1)(x)=
j∏

l=1

( d
dx
− (α+ l) tanh(x)

)
sechα(x)

is the j eigenfunction to the potential with M = (α+ j)(α+ j+1). We consider this information useful,
and we will use these results, even if the arguments could easily be adapted to a much larger class of
nonlinearities.

Clearly LQ′ = 0 and a short calculation or a comparison with the results above shows that Q(p+1)/2

is the ground state with eigenvalue 1− (p + 1)2/4. There is no other eigenvalue if p ≥ 3, but there
are other eigenvalues in (0, 1) if p < 3. As an immediate consequence K (ψ) ≥ ‖ψ‖2L2 if 〈ψ, Q′〉 =
〈ψ, Q(p+1)/2

〉 = 0.
We recall that K is positive definite on the orthogonal complement of Q. We follow [Weinstein 1985]

and use this bound to establish a lower bound on a different codimension 2 subspace if p < 5. There
exists δ > 0 such that

K (ψ)≥ δ‖ψ‖2H1 for all ψ with 〈ψ, Q p−1 Q′〉 = 〈ψ, Q〉 = 0. (2-1)

It suffices to verify this statement independently for odd and even functions. For odd functions the quad-
ratic form is nonnegative, with a null space spanned by Q′. Positivity follows from 〈Q′, Q p−1 Q′〉 6= 0.
The argument for even functions is harder, but again the quadratic form is nonnegative since Q is a local
minimizer of the constraint variational problem.

Let ψ j be a minimizing sequence with ‖ψ j‖H1 = 1. Suppose that the left hand side of (2-1) con-
verges to 0. The sequence maximizes

∫
Q p−1ψ2

j dx . There exists a weakly converging subsequence
which convergences against a nontrivial even limit ψ since ψ →

∫
Q p−1ψ2 dx > 0 is weakly lower

semicontinuous. Moreover 〈ψ, Q〉 = 0 and ‖ψ‖H1 ≤ 1. Rescaling if necessary we see that ‖ψ‖H1 = 1.
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We want to show that K (ψ) > 0 and argue by contradiction. Suppose that K (ψ)= 0. Then by (1-7)
ψ is a minimizer of K under the sole constraint 〈Q, ψ〉 = 0 and hence it satisfies the Euler–Lagrange
equations

Lψ = λQ.

But then ψ is a multiple of ∼Q since

L
∼Q =−2Q

is the unique symmetric function with this property. However 〈Q, Q̃〉 6= 0 if p 6= 5, and hence ψ = 0,
which contradicts our construction and thus implies the existence of δ > 0 with

K (ψ)≥ δ‖ψ‖H1 .

Observe that here the subcriticality condition p < 5 enters crucially.
Given ψ we define the parameters c0 and x0 by the variational problem

‖ψ − Qc0,x0‖
2
H1 = inf

c,x
‖ψ − Qc,x‖

2
H1 .

Following Weinstein [1985] we claim

‖ψ − Qc0,x0‖
2
H1 ≤ c(E(ψ)− E(Qc)), (2-2)

provided the left hand side is sufficiently small. This is a consequence of the lower bound for the quadratic
form (2-1).

Lyapunov stability of solitons has been shown in the seminal work of Weinstein.

Theorem [Weinstein 1985, Theorem 4]. Let ε > 0. There exists δ > 0 such that

inf
x0
‖ψ(t)− Q1(x − x0)‖H1 ≤ ε if ‖ψ0− Q1‖H1 ≤ δ.

This is a direct consequence of the conservation of the L2 norm and the energy, plus (2-2).
The study of asymptotic stability began with Pego and Weinstein [1994] in spaces with growing

exponential weights. The effect of the weight is twofold. First, there is not much the soliton could
interact with on its path to the right. Secondly, small solitons that are slow and prevent asymptotic
stability in L2 carry a weight that makes them exponentially decreasing in time. A key assumption is
the absence of embedded eigenvalues of ∂x L, other than 0 with eigenfunction Q′ and the generalized
eigenfunction ∼Q. Pego and Weinstein verify this assumption for p= 2 and p= 3 and show that it fails at
at most a finite number of values for p between 2 and 5. It is a consequence of the virial identity below
that there are no nonzero purely imaginary eigenvalues of ∂x L.

The exponential weight pushes the continuous spectrum of ∂x L to the left, makes the problem more
parabolic, and allows the use of techniques from smooth dynamical systems, in particular of a center
manifold reduction that is a restriction of the flow to a two dimensional manifold.
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Martel and Merle [2001a; 2005] and Martel [2006] introduced a virial identity or monotonicity formula
for the adjoint problem (1-9) as well as for nonlinear problems. Let

η(x)=−
p+ 1
p− 1

Q′

Q
=

p+ 1
2

tanh
p− 1

2
x

and suppose that v satisfies the Equation (1-9). By direct computation we have

−
d
dt

∫
ηv2 dx = 〈(3(L+ 1

4(p+ 1)2− 1)Q(p−1)/2v, Q(p−1)/2v〉, (2-3)

where the quadratic form is nonnegative and it has by the spectral theory of Schrödinger operators
with sech2(x) potentials a one-dimensional null space spanned by Q. There are two consequences: the
quantity on the left hand side is monotonically decreasing, and the right hand side controls the H 1 norm
of Q(p−1)/2v provided v is orthogonal to a vector Q with 〈Q, Q〉 6= 0. Hence, if v(0) is orthogonal to
Q′ and ∼Q, which is preserved under the evolution,

‖Q(p−1)/2v‖H1 ≤ c sup
t
‖v(t)‖L2 .

The left hand side is controlled provided we obtain a bound on supt‖v(t)‖L2 . Martel and Merle [2001a;
2005] use this and related observations together with the a priori control on the deviation of the solution
to the set of solitons in ingenious ways for indirect arguments: The existence of a solution H 1 close
to solitons, but not asymptotically converging to the soliton “on the right” leads to the existence of
impossible objects.

Later, Côte [2006] constructed solutions with specific asymptotic conditions including many soliton
solutions for positive time. This shows that L2 convergence to a soliton will not be true without restricting
the set where convergence is studied.

Already L2 conservation precludes asymptotic stability of the trivial solution. The relevant notion
instead of asymptotic stability is for unitary problems the notion of scattering. Suppose that ψ(0) is
close to a soliton. We seek a function w satisfying the Airy equation as well as c(t) and y(t) and a
Banach space X such that ‖ψ−Qc(t)(x− y(t))−w(t)‖X → 0 as t→∞. Tao [2007] verifies scattering
in the following sense: Suppose that

‖ψ(0)− Q(0)‖H1 +‖ψ(0)− Q‖Ḣ−1/6 � 1. (2-4)

Then scattering holds with X = Ḣ−1/6. Tao relies on the work of Martel and Merle, and in particular on
Weinstein’s a priori estimate of the difference to the soliton.

3. The Airy equation

For purposes of understanding and motivating dispersive estimates for the linearized KdV equation, here
we study and collect results for the Airy equation{

vt + vxxx = 0,
v(x, 0)= v0(x).

(3-1)
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The solution operator defines a unitary group S(t) with the kernel

K (t, x)= t−1/3 Ai(xt−1/3),

where as x→∞ the Airy function is roughly x−1/4e−x3/2
, and as x→−∞ the Airy function is roughly

Re(x−1/4e−i x3/2
). Strichartz estimates for solutions,

‖u‖L p Lq ≤ c‖|D|−1/pu0‖L2 (3-2)

where L p Lq is the standard space time norm such that the L p norm in time of the Lq norm in space and

2
p
+

1
q
=

1
2
,

follow as an immediate consequence. Of particular interest for this work are the homogeneous Strichartz
pair (p, q) = (6, 6) as well as the endpoint Strichartz pair (p, q) = (4,∞). For an overview of Airy
function asymptotics, see [Fedoryuk 1993].

Local smoothing estimates for (3-1) go back to [Kato 1983]. Here we are interested in a more general
version of them. Let γ (t, x)≥ 1 be a smooth bounded increasing function. We calculate

d
dt

∫
γ u2 dx =

∫
(γt + γ

(3))u2
− 3γ ′u2

x dx (3-3)

and search for conditions ensuring that the right hand side is nonpositive. We assume

∂3
xγ ≤−

2
3∂tγ (3-4)

with the easiest case being γ (t, x)= γ0(x − t), for which we assume

γ
(3)
0 ≤

2
3γ
′

0. (3-5)

We get
d
dt

∫
γ u2 dx +

∫
γ ′(u2

x +
1
3 u2) dx ≤ 0. (3-6)

Let us fix a particular example,

γ0(x)= 1+
∫ x

−∞

(1+ |y|2)−(1+ε)/2dy. (3-7)

It satisfies the criteria and, provided ε is sufficiently small, a straightforward calculation gives (3-5).
Next, it is instructive to consider a scaling. For µ > 0 and γ0 as above we define

γµ(t, x)= γ0(µ
−1(x −µ−2t)).

Then,
d
dt

∫
γµu2 dx +

∫
γ ′µ(u

2
x +

1
3µ2 u2) dx ≤ 0. (3-8)

One may easily generalize this inequality by choosing t → y(t) with ẏ ≥ 1
8µ
−2, and setting γ (t, x) =

γ0(µ
−1(x − y(t))). In the sequel we will always restrict ourselves to µ= 1.
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The virial identity clearly generalizes to functions spaces with different regularity. To see this, we first
define the space H s

ρ (and similarly L2
ρ) by the norm

‖u‖2H s
ρ
=

∫
|〈D〉su|2ρ2(x) dx <∞,

where ρ > 0 with uniformly bounded derivatives of order up to k for some k ≥ |s| and 〈D〉s is defined
through the Fourier multiplication (1+ |ξ |2)s/2. Similarly we define ρH s where u ∈ ρH s if and only if

u = ρ f for f ∈ H s and ‖u‖ρH s = inf
u=ρ f
‖ f ‖H s .

The function ρ will often depend on t . Given a Banach space X , we denote the space of X -valued L2

functions by L2 X , and give the obvious meaning to L2ρH s and L2 H s
ρ . Such spaces will be explored

further in Section 4.

Remark 3.1. We note that ρH s
= H s

ρ−1 , if ρ is nonnegative, up to equivalent norms. However as we
wish to highlight the use of duality throughout the linear analysis and construction of iteration spaces,
we adopt the ρH s convention.

If γ satisfies the assumptions above and{
ut − uxxx = f, where f ∈ L2√γ ′H−1,

u(0, x)= u0(x), where u0 ∈ L2,
(3-9)

we obtain by an obvious modification of the argument above

‖u‖L∞L2 +‖u‖L2 H1√
γ ′
≤ c

(
‖u(0)‖L2 +‖ f ‖L2

√
γ ′H−1

)
. (3-10)

We turn to a useful technical result.

Lemma 3.1. Let m ∈C∞(R) satisfy |m( j)(ξ)|≤c j 〈ξ〉
s− j for j ≥1 and let m(D) be the Fourier multiplier

defined by m. Suppose that γ ∈ C∞,

|γ ( j)(x)|. γ (x) for j ≥ 0, and

|1− γ (x)/γ (y)|. c(|x − y| + |x − y|N ) for some N .

For any a ∈ R we have

‖γ−a
[m(D), γ a

]〈D〉1−s f ‖L2 +‖[m(D), γ a
]γ−a
〈D〉1−s f ‖L2 ≤ cs,a‖ f ‖L2

and
‖〈D〉1−s

[m(D), γ a
]γ−a f ‖L2 +‖〈D〉1−sγ−a

[m(D), γ a
] f ‖L2 ≤ cs,a‖ f ‖L2 .

The most important example of m is the Fourier multiplier 〈D〉s defined by the function (1+|ξ |2)s/2.

Proof. We begin with the estimate of the first term in the first inequality, the second term being similar.
We decompose m(D)=m0(D)+m1(D), where the convolution kernel m0(x) of m0(D) is supported in
|x | ≤ 2, and the one for m1(D) is supported in |x | ≥ 1. The convolution kernel m1(x) together with its
derivatives decays exponentially.
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The integral kernel of γ−a
[m1(D), γ a

] is

K1(x, y)= m1(x − y)
(

1−
(
γ (x)
γ (y)

)a)
.

The kernel and its derivatives decay like 〈x − y〉−N , which implies

‖γ−a
[m1(D), γ a

] f ‖H N ≤ cN‖ f ‖H−N

for all N > 0 by Schur’s lemma. It remains to prove

‖γ−a
[m0(D), γ a

]〈D〉1−s f ‖L2 ≤ cs,a‖ f ‖L2 .

We decompose 〈D〉s = D0 + D1. The bound for γ−a
[m0(D), γ a

]D0 follows from standard pseudo-
differential calculus. The bound for the term with D1 follows from

‖γ−a
[m0(D), γ a

] f ‖L2 ≤ cN‖ f ‖H N ,

which again follows easily by standard pseudodifferential calculus. �

Lemma 3.2. Suppose that {
ut + uxxx = f, where f ∈

√
γ ′H s−1,

u(0, x)= u0(x), where u0 ∈ H s .
(3-11)

Then
‖u‖L∞H s +‖u‖L2 H s+1√

γ ′

≤ c
(
‖u(0)‖H s +‖ f ‖L2

√
γ ′H s−1

)
. (3-12)

Moreover, if {
ut + uxxx = (sech2(x − x(t)) f )x + ∂x g,
u(0, x)= u0(x),

(3-13)

with ẋ ≥ δ, then

‖u‖L∞ Ḣ−1 +‖u‖L2 H0√
γ ′
. ‖u(0)‖Ḣ−1 +‖ f ‖L2 H−1 +‖g‖L1 L2 . (3-14)

Proof. We set v = 〈D〉su, where u satisfies (3-11); hence

vt + vxxx = 〈D〉s f,

and
‖u‖L∞H s +‖u‖L2 H s+1√

γ ′

= ‖v‖L∞L2 +‖v‖L2 H1√
γ ′
≤ c(‖v(0)‖L2 +‖〈D〉s f ‖L2γ H−1),

where the first term is equal to ‖u(0)‖H s and

‖〈D〉s f ‖L2
√
γ ′H−1 = ‖〈D〉−1(γ ′)−1/2

〈D〉s f ‖L2 L2

≤ ‖ f ‖L2
√
γ ′H s−1 +‖[〈D〉−1, (γ ′)−1/2

]〈D〉s f ‖L2 L2

≤ ‖ f ‖L2
√
γ ′H s−1 +‖(γ

′)−1/2
〈D〉s−2 f ‖L2 L2 .
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The last inequality follows from Lemma 3.1 applied with γ ′ for γ , a = 1/2, and −1 for s. This implies
the desired estimate (3-12). Now suppose that u satisfies (3-13) and let v be the antiderivative of u with
respect to x . It satisfies {

vt + vxxx = sech2(x − x(t)) f + g,
v(0, x)= v0(x);

(3-15)

hence
‖u‖L∞ Ḣ−1 +‖u‖L2 H0√

γ ′
≤ c‖g‖L1 L2 +‖ f ‖L2 H−1 . �

4. Properties of the Schrödinger operator

We briefly recall notions from the introduction. Given p> 1, solitons of the form Q p(x− t) satisfy (1-5)
and it is not hard to verify that all bounded solutions are translates of ±Q p in Equation (1-2). Similarly
Q p,c = c2/(p−1)Q p(cx) satisfies

∂2
x (Q p)c− c2(Q p)c+ (Q p)

p
c = 0. (4-1)

We will focus on p = 4 and omit again p from the notation. Let ′ denote differentiation with respect to
x and · differentiation with respect to time. We recall the definition of ∼Q from (1-10) and ∼Qc = c∂c Qc

respectively
∼∼Qc= c∂cc∂c Qc, the corresponding differentiation at c. There are many explicit calculations,

and we collect some of them here. Using the properties of Qc(x)= c2/3 Q(cx), it follows that

‖Qc‖L2 = c1/6
‖Q1‖L2, 〈

∼Qc, Qc〉 =
1
2 c∂c‖Qc‖

2
L2 =

1
6‖Qc‖

2
L2, (4-2)

where the L2 norm is given by (1-6), and

‖Q′c‖L2 = c7/6
‖Q′1‖L2 . (4-3)

In addition,

∂x Qc = c5/3 Q′(cx) and c∂c Qc =
( 2

3 Qc+ x Q′c
)
=
∼Qc = c2/3 ∼Q(cx).

The operator Lc is defined by

Lcu =−uxx + c2u− 4Q3
cu, (4-4)

where we mostly omit y and c if c= 1. We recall that virtually everything is known about the spectrum
of L; see [Andrews et al. 1999; Lamb 1980; Titchmarsh 1962]. We summarize the findings below. We
also refer to [Martel 2006; Weinstein 1985] and the references therein for extensive discussions of these
properties for more general operators of type similar to L.

By direct differentiation in x of (1-5), we see LQ′ = 0. Hence, the null space of L consists at least
of the space αQ′ for all α ∈ R. Similarly, by differentiation in c of (4-1), we see L(

∼Q)=−2Q, so ∂x L

has at least a 2-dimensional generalized null space. Also, since Q′ = 0 only at x = 0, we know from
the Sturm oscillation theorem that there exists some λ0 > 0 and Q0 > 0 such that LQ0 = −λ0Q0, the
unique negative eigenstate of L. Note, because L is a sech2 potential perturbation of the Laplacian, it is
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possible to exactly construct Q0 = Q5/2 and λ0 = 21/4 using standard techniques. The analysis above
summarizes the entire discrete spectral decomposition for L.

Following the analysis in [Weinstein 1985, Propositions 2.7 and 2.9], if

〈ũ, Q〉 = 0 and 〈ũ, Q′〉 = 0,

then there exists k0 > 0 such that

〈ũ,Lũ〉 ≥ k0‖ũ‖2L2 . (4-5)

Here k0 depends only on the power p = 4 in (1-1).
We will consider ρ = eν with ν ∈ C |s|+1 with

|ν( j)(x)| ≤ ε (4-6)

for 0 ≤ j ≤ |s| + 1 and a small constant ε to be chosen later. Clearly we may regularize ν and hence
ρ = eν without changing the spaces. Then

u ∈ H s
ρ ⇐⇒ ρu ∈ H s

⇐⇒ u ∈ ρ−1 H s .

It is quite obvious that the dual space of H s
ρ is ρH−s with isometric norms, and this statement does not

depend on the regularity of ρ. We recall the definition of the projectors (1-11).

Lemma 4.1. For all s ∈ R, there exists C > 0 such that

‖P⊥Q′u‖H s+2 ≤ C‖Lu‖H s , ‖P⊥Q′u‖ρH s+2 ≤ C‖Lu‖ρH s , ‖P⊥Q′u‖H s+2
ρ
≤ C‖Lu‖H s

ρ
.

Proof. The first inequality is an immediate consequence of the nature of the spectrum described above
along with ellipticity. The second and the third statement are equivalent because H s

ρ = ρ
−1 H s , with

equivalent norms.
Fix µ= 1− (p+1)2/4, where p= 4. For λ= λ0+ iλ1 in the complex half plane left of µ, we obtain

the resolvent estimate
|λ−µ|‖u‖L2 ≤ ‖(L− λ)u‖L2

and also for some 1> κ > 0, we have

Re
∫

u(L− λ)u dx ≥ |λ−µ|‖u‖2L2 +〈(L−µ)u, u〉

≥
1
2 |λ−mu|‖u‖2L2 + κ‖ux‖

2
L2 + (1− κ)〈(L−µ)u, u〉

+
( 1

2 |λ−µ| + κ(1−µ)− 4κ‖Q‖3L∞
)
‖u‖2L2

≥
1
2 |µ− λ0|‖u‖2L2 +min

{
|µ− λ0|

8‖Q‖3L∞
,

1
2

}
‖ux‖

2
L2

by the obvious choice of κ .
We obtain the estimate for λ with real part at most µ:

|µ− λ|‖u‖L2 +min{|λ−µ|, 1}‖ux‖L2 ≤ C Re〈(L− λ)u, u〉 ≤ C‖〈(L− λ)u‖H−1‖u‖H1 .
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These estimates imply that the resolvent (L− λ)−1 defines a continuous uniformly bounded map (for
Re λ≤ λ0 < µ) from H−1 to H 1. Moreover,

‖u‖L2 ≤ |λ−µ|−1
‖Lu‖L2 and ‖ux‖

2
L2 ≤ |λ−µ|

−1 max
{1

2
,

8‖Q‖L∞

|λ−µ|

}
‖(L− λ)u‖2L2 .

We turn to the weighted estimates and calculate formally

eν(L− λ)e−ν = L− λ− |ν ′|2+ ∂xν
′
+ ν ′∂x ,

and hence, since ∂xν
′
+ ν ′∂x is antisymmetric,

Re
∫

ueν(L− λ)e−νu) dx = Re
∫

u(L− λ)u dx −‖ν ′u‖2L2 ≥
1
2 |λ0−µ|‖u‖2L2

if ε ≤
√
|λ0−µ|/2, which we assume in the sequel. As above we obtain with an explicit constant C

‖u‖H1 ≤ C‖eν(L− λ)e−νu‖H−1 . (4-7)

It follows from these estimates that given δ > 0 there is a single resolvent family (for Re λ < µ− δ)
mapping ρH−1

→ ρH 1 and from H−1
ρ → H 1

ρ , provided ε is sufficiently small.
Recall that L has a zero eigenvalue with eigenfunction Q′ and a single negative eigenvalue −λ0

with a ground state Q0. Let P be the orthogonal projection to the orthogonal complement of these two
eigenfunctions. The remaining spectrum is contained in [ρ,∞), where ρ > 0 is either 1 (if p≥ 3), or the
next positive eigenvalue, which can be easily be calculated. Moreover, L is selfadjoint. The resolvent
R(λ)= (L−λ)−1 is a holomorphic map in C\(1,∞) with simple poles in µ, 0, and possibly some other
eigenvalues in (0, 1). In addition, R0(λ)= R(λ)P has a continuous and hence holomorphic extension to
λ= 0 and λ=−λ0, which is uniformly bounded in each half plane strictly left of ρ.

By Equation (4-7) the resolvent is uniformly bounded on the weighted spaces if λ is in the half plane
left of −µ. Decreasing ε if necessary (so that the orthogonal projection P⊥Q′ along Q′ is bounded in the
weighted space), we obtain the same statement for R0(λ). Now complex interpolation implies

‖L−1 P f ‖H1
ρ
≤ C‖P f ‖H−1

ρ
.

This implies the desired estimates for s =−1.
Standard elliptic theory extends this estimate to

‖u‖H s+2
ρ
≤ C‖(L− λ)u‖H s

ρ
, (4-8)

‖u‖ρH s+2 ≤ C‖(L− λ)u‖ρH s (4-9)

first to all s ≥−1, and then, by duality, to all s ∈ R. The first estimate is the special situation when ν is
constant.

We conclude with the trivial observation that we may replace (4-6) by limx→∈∞ ν
j
= 0, which holds

for ρ(x)= (1+ |x |2)a for all real numbers a, since in that case we may choose an equivalent norm that
satisfies (4-6). �
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5. Energy methods for the linearized equation

We turn to a study of what we call the linear u-problem

{
ut = ∂x(Lu),
u(0, x)= u0,

(5-1)

where

Lu = (−∂2
x + 1− 4Q3)u =

(
−∂2

x + 1− 10sech2( 3
2 x
))

u.

We note here that L is the operator that results from linearization of the KdV equation about Q when
we work in a moving reference frame or in other words make the change of variables x→ x− t . Indeed,
setting ψ(x, t)= Q(x − t)+ u(x − t, t) and plugging into (1-1), we get

∂t u =−∂x(∂
2
x u− u+ (Q+ u)4− Q4

+ ∂2
x Q− Q+ Q4)= ∂x(Lu)− ∂x(6Q2u2

+ 4Qu3
+ u4).

For reasons that will become clear in the sequel, we also consider the linear v-problem{
vt = L(∂xv),

v(0, x)= v0.
(5-2)

The two equations (5-2) and (5-1) are related in many ways.

(1) They are dual to each other.

(2) If u satisfies the u equation, then v = ∂x u satisfies the v equation.

(3) If v satisfies the v equation, then u = Lv satisfies the u equation.

We observe that u = Q′ is a solution to the u equation, and hence 〈v, Q′〉 is preserved by the flow
for v. In particular orthogonality is preserved by the evolution. Similarly, v = Q is a solution to the
v equation and 〈u, Q〉 is preserved by the u flow. Moreover, u = aQ′ + b( ∼Q + 2t Q′) satisfies the u
equation for all coefficients a and b. As a consequence both equations admit solutions that grow linearly
with time. Moreover, if v satisfies the v equation, then

d
dt
〈v,

∼Q〉+ 2t〈v, Q′〉 = 0

and v is orthogonal to ∼Q and Q′ provided it is initially.
Inspired by a set of ideas collected from [Martel and Merle 2008] and the references therein, let us

look at a virial identity for (5-2), namely

Iη(v)=−
∫
η(x)v2 dx,
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where η(x) will be defined in the sequel. We have

−
d
dt

Iη(v)=−2
∫
η(x)v(Lvx) dx

=−2
∫
η(x)v((−∂2

x + 1− 4Q3)vx) dx

= 2
∫
ηv∂3

x v dx − 2
∫
ηv∂xv dx + 8

∫
ηQ3v∂xv dx

=−2
∫
η′v∂2

x v dx − 2
∫
η∂xv∂

2
x v dx +

∫
ηxv

2 dx

− 4
∫
η′Q3v2 dx − 4

∫
η∂x

(
sech2(3

2
x
))
v2 dx

= 3
∫
η′v2

x dx + 2
∫
η′′v∂xv dx +

∫
η′v2 dx − 4

∫
η′Q3v2 dx − 12

∫
ηQ2 Q′v2 dx .

As in [Martel 2006], we take

η(x)=−
5
3

Q′

Q
=

5
3 tanh

(3
2 x
)
, (5-3)

which is similar to x near 0 and bounded at∞. Note, the sign convention here is chosen to match that
of [Martel and Merle 2008]. By direct computation we have

η′(x)= Q3(x), (Q3η)′ =−5Q3
+ 3Q6,

η′′′(x)
η′(x)

= 9
(
1− 3

5 Q3(x)
)
, η2(x)=

( 5
3

)2(1− 2
5 Q3(x)

)
,(

η′′(x)
η′(x)

)2
= 9

(
1− 2

3 Q3(x)
)
, |η| ≤ 5

3 .

Proposition 5.1. If v satisfies the v-KdV equation and v is orthogonal to ∼Q and Q′, then there exists
some C > 0 such that given η as in (5-3), we have

d
dt

Iη(v)+C‖sech
( 3

2 x
)
v‖2H1 ≤ 0.

Proof of Proposition 5.1. Following the formalism presented above, we see

−
d
dt

Iη(v)=−2
∫

L(∂xv)vη dx = 3
∫
(∂xv)

2η′ dx +
∫
v2(−η′′′+ η′− 4(Q3η)′) dx .

Selecting

w̃(t, x)= v(t, x)
√
η′(x)

we see

−
d
dt

Iη(v)= 3
∫
(∂x w̃)

2 dx +
∫

A(x)w̃2 dx,
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where

A(x)= 1+ 1
2
η′′′

η′
−

3
4

(
η′′

η′

)2

− 4
(Q3η)′

η′
=

75
4
− 12Q3.

Hence,

−
d
dt

Iη(v)= 3
(
〈Lw̃, w̃〉+

21
4

∫
w̃2 dx

)
.

Since L∂x Q = 0, we know that given v = Q, we have

−
d
dt

Iη(v)= 0.

However, v = Q corresponds directly to w̃ = Q5/2, which is the ground state or L, which has exact
eigenvalue −21/4. Then, since 〈Q, ∼Q〉 6= 0, our orthogonality condition v ⊥ ∼Q is enough to guarantee
that there exists C > 0 such that

B̃(w̃, w̃)≥ C‖w̃‖2H1 = C‖
√
η′v‖2H1,

which is the desired result. �

We note in the case of more general weight functions η, virial identity methods are still applicable
even if perhaps analytic proofs of the virial identities are more challenging.

By choosing the multiplier γ (v− vxx) with γ = γ0(x − t) for γ0 as in (3-7), we see

d
dt

∫
γ (v2
+ v2

x) dx =−3
∫
γ ′v2

x dx +
∫
γ (3)v2 dx −

∫
γ ′v2 dx

+ 4
∫
γ ′Q3v2 dx + 12

∫
γ Q2 Q′v2 dx

−

∫
(3γ ′v2

xx + γ
′v2

x − γ
(3)v2

x) dx +
∫

4γ ′Q3v2
x dx, (5-4)

which consists of a number of negative semidefinite terms. All nonnegative semidefinite terms are easily
dominated by a multiple of ‖v‖2

H1
sech(3x/2)

, the term in Proposition 5.1.

Finally, note that by direct computation

∂t 〈L
−1v, v〉 = 0. (5-5)

Now, let us define an energy for the solution v of (5-2) to be

E(v)=
∫
γ (x)(v2

+ v2
x) dx + λE

∫
η(x)v2 dx +3E 〈L

−1v, v〉, (5-6)

where η(x) is chosen as in (5-3).
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Proposition 5.2. Let us assume v satisfies the v-KdV equation and v is orthogonal to ∼Q and Q′. There
exist λE ,3E , δ > 0 such that

E(v)∼ ‖v‖2H1 (5-7)

d
dt

E(v)+ δ‖v‖2H2√
γ ′

≤ 0. (5-8)

Proof. From (5-4) and the proof of Proposition 5.1, we see easily one may choose a λE that depends only
on δ and C so that (5-8) holds for all 32 > 0. We choose 3E large to achieve E(v) ≥ C ′′‖v‖2H1 . There
exists some constant C ′ such that E(v) ≤ C ′‖v‖2H1 . Thus the estimate follows given the orthogonality
conditions on v. �

The assertions of Proposition 5.2 are robust under suitable perturbations. We turn to the analysis of
the time dependent problem

vt − (−∂
2
x − 4Q3

c(t),y(t))∂xv = α(t)Qc(t),y(t)+β(t)Q′c(t),y(t), (5-9)

where

α(t)=−
(ċ/c)〈v, ∼̃Qc(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′c(t),y(t)〉

〈Qc(t),y(t),
∼Qc(t),y(t)〉

, (5-10)

β(t)=−
(ċ/c)〈v, ∼Q′c(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′′c(t),y(t)〉

〈Q′c(t),y(t), Q′c(t),y(t)〉
. (5-11)

Here,
∼̃Qc(t),y(t) =

2
3
∼Qc(t),y(t)+ x ∼Q′c(t),y(t) = c(t)∂c

∼Qc(t),y(t). (5-12)

For simplicity of exposition, in the sequel we suppress the t and y dependence and instead write simply
Qc(t),y(t) = Qc unless we want to stress the dependence on y(t) and t . Similarly we recall

Lcv = Lc,yv =−vxx + c2v− 4Q3
c,yv. (5-13)

The terms on the right hand side ensure that 〈v(0), Q′c(0),y(0)〉 = 0 implies 〈v(t), Q′c(t),y(t)〉 = 0, and,
in addition, 〈v(0), ∼Qc(0),y(0)〉 = 0 implies 〈v(t), ∼Qc(t),y(t)〉 = 0. We choose γ (x, t) = γ0(x − y(t)) and
we prove the following:

Proposition 5.3. There exists a δ, λ,3 > 0 such that the following is true: Suppose that

|c(t)− 1| + |ċ(t)| + |ẏ(t)− c2(t)|< δ (5-14)

for all t ≥ 0 and define

E(v)=
∫
γ (x, t)(v2

+ v2
x) dx + λ

∫
η1,y(t)(x)v2 dx +3〈L−1

1,y(t)v, v〉, (5-15)

where we suppress the dependence of E and v on t. Then

E(v)∼ ‖v‖2H1, (5-16)
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for all t > 0 provided

〈v, Q′c〉 = 〈v,
∼Qc〉 = 0. (5-17)

Moreover, if v satisfies the system consisting of (5-9), (5-10) and (5-11) and v( · , 0) is orthogonal to
∼Qc(0),y(0) and Q′c(0),y(0) (which implies the orthogonality for all t) we have

d
dt

E(v)+ δ‖v‖2H2√
γ ′

≤ 0. (5-18)

Proof. Since 〈v(t), Q′c(t),y(t)〉 = 0, we have

〈L−1
c(t),y(t)v, v〉 ≥ C‖v‖2H−1

for some C>0, as seen in (4-5). Here and in the remaining part of this section we use the Moore–Penrose
inverse, which is by an abuse of notation given by the orthogonal projection to the complement of Q′,
followed by an inversion of L on this orthogonal subspace. Let us look at a slightly different quantity
(where we replace c by 1) given by 〈L−1

1,y(t)v, v〉. Then, since 〈v, Q′c〉 = 〈v,
∼Qc〉 = 0, for |c− 1| small

enough we have

〈L−1
1,y(t)v, v〉 ≥ 2C‖P⊥Q′1,y(t)v‖

2
H−1 ≥ 2C‖v‖2H−1 −C ′|c− 1|‖v‖2H−1 ≥ C‖v‖2H−1

for some constants C,C ′ > 0 and δ ≤ C/C ′. The properties are similar to the previous proposition,
but the calculations are more tedious. We consider them to be important for the understanding of the
linearization. We recall that we suppress the dependence of Q and L on y in the notation below. Then
we have

d
dt
〈L−1

1 v, v〉 = 2〈vt ,L−1
1 v〉− 12ẏ〈Q2

1 Q′1L−1
1 v,L−1

1 v〉+ 2ẏ
〈v, Q′1〉
〈Q′1, Q′1〉

〈Q′′1,y,L−1
1 v〉

= 2I1− 12I2+ 2I3,

where I2 originates from the differentiation of the inverse and I3 from the dependence of the implicit
projection on time. We have

I1 = 〈Lc∂xv,L−1
1 v〉− c2

〈∂xv,L−1
1 v〉+α〈Q′c,L−1

1 v〉+β〈Qc,L−1
1 v〉,

〈Lc∂xv,L−1
1 v〉 = 〈(Lc−L1)∂xv,L−1

1 v〉 = (c2
− 1)〈∂xv,L−1

1 v〉+ 4〈(Q3
c − Q3

1)∂xv,L−1v〉,

[L−1
1 , ∂x ] = −L−1

1 [L1, ∂x ]L
−1
1 = 12L−1

1 Q2
1 Q′1L−1

1 +L−1
1 [∂x , PQ′1] + [∂x , PQ′1]L

−1
1 ,

[∂x , PQ′1]v =−
〈v, Q′1〉
〈Q′1, Q′1〉

Q′′1 +
〈v, Q′′1〉
〈Q′1, Q′1〉

Q′1,

〈∂xv,L−1
1 v〉 = 1

2〈v, [L
−1
1 , ∂x ]v〉 = 6〈Q2

1 Q′1L−1
1 v,L−1

1 v〉,

〈v, Q′1〉 = 〈v, Q′1− Q′c〉

by the orthogonality conditions and

〈L−1
1 v, Q′c〉 = 〈L

−1
1 v, Q′c− Q′1〉 and 〈L−1

1 v, Qc〉 = 〈L
−1
1 v, (L−1

1 −L−1
c )Qc〉
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because of the orthogonality conditions and since L−1
c Qc =

∼Qc.
Altogether, and applying Lemma 4.1, we have∣∣∣ d

dt
〈L−1

1 v, v〉

∣∣∣≤ O(|c2
− 1| + |ẏ− 1| + |ċ|)‖v‖2

H−1/2
√
γ ′

, (5-19)

which we will control by the virial identity below.
We now look at virial weights of the form

η(x, t)=−
5
3

Q′1(x − y(t))
Q1(x − y(t))

=
5
3 tanh

( 3
2(x − y(t))

)
,

which has properties similar to those of η(x) with appropriate changes for the unit scaling.
We have defined v such that

v(x, t)⊥ ∼Qc(t),y(t) and v(x, t)⊥ Q′c(t),y(t) for all t ≥ 0.

Following the formalism presented above and in [Martel 2006], select

w̃(t, x)= v(t, x)
√
η′(x).

Then,

−
d
dt

Iη(v)= 3
∫
(∂x w̃)

2 dx +
∫

A(x)w̃2 dx − 2
∫
η1,y

(
β(t)Q′c,y +α(t)Qc,y

)
v dx

+
3
2 c2(ẏ− c2)

∫
sech2( 3

2 c(x − y(t))
)
v2 dx + 3

2 c4
∫

sech2( 3
2 c(x − y(t))

)
v2 dx,

where

A(x, t)= 1+ 1
2
η′′′

η′
−

3
4

(η′′
η′

)2
− 4

(Q3η)′

η′
=

75
4
− 12Q3.

Hence,

−
d
dt

Iη(v) > 3
(
〈Lw̃, w̃〉+ 21

4 c2
∫
w̃2 dx

)
+O(|12

− c2
| + |ẏ− c2

|)‖v‖2L2√
γ ′

.

From above, we know that 3
(
〈Lw̃, w̃〉+ 21

4

∫
w̃2 dx

)
=0 for v=Q1,y(t). This corresponds to w̃=Q5/2

1,y(t),
which is the ground state or L1,y(t). Hence, v = Q is the ground state of the quadratic form

3
(
〈Lw̃, w̃〉+ 21

4

∫
w2 dx

)
.

From Lemma 4.1, our orthogonality condition v ⊥ ∼Qc(t),y(t) is enough to guarantee there exists δ > 0
such that

d
dt

Iη(v)+‖v‖2H1√
γ ′

≤ 0

provided |c2
− 12
| + |ẏ − c2

| is small for all t ≥ 0, which follows from our assumptions on the initial
perturbation.
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The time-dependent version of
d
dt

∫
γ (x, t)(v2

+ v2
x) dx

is done in full generality in the analysis of (3-13) in Section 3 for the Airy equation. The terms that we
have to control are the same as for constant c and ẏ, plus the terms coming from the right hand side.
Those are easy to control. Namely,

2
∣∣∣∫ [

(αQ+βQ′)γ − ∂x(γ (αQ′+βQ′′))
]
v dx

∣∣∣. (|ċ| + |ẏ− c2
|)‖|v|2‖L2√

γ ′

for γ as in Section 3. �

Note, above we have always assumed the proper orthogonality conditions, but without them we easily
obtain the following estimate for solutions of the v equation:

‖v‖L∞H1∩L2 H2√
γ ′
≤ C

(
‖v(0)‖H1 + sup

t
|〈v( · , t), Q′1,y(t)〉| + ‖〈v( · , t), ∼Q1,y(t)〉‖L2([0,∞)

)
. (5-20)

6. Function spaces and projection operators

In this section we construct the function spaces for our nonlinear analysis using properties of the linear
evolution we studied in Sections 3–5. Based on the energy functional (5-6) for the v-equation, it seems
natural to look at

v ∈ X1
= L∞H 1

∩ L2 H 2√
γ ′
,

where γ = γ0(x) is as in (3-5), and again by convention we set L p X to be the L p norm in time of the X
norm in space.

Then, as follows naturally from the equation, we define Y 1
= L1 H 1

+ L2√γ ′L2.
Generically, we define

X s
= L∞H s

∩ L2 H s+1
√
γ ′

and Y s
= L1 H s

+ L2
√
γ ′H s−1,

where we note (Y s)∗ = X−s .

6.1. The scale of energy spaces. Let us study the v-equation{
(∂t −L∂x)v = f0+

√
γ ′ f1 = f,

v(0, x)= v0,
(6-1)

where f0 ∈ L1 H s , f1 ∈ L2Ls−1 and v0 ∈ H s . We assume that the orthogonality conditions

v0 ⊥ Q′, v0 ⊥
∼Q (6-2)

and

( f0+
√
γ ′ f1)⊥

∼Q, ( f0+
√
γ ′ f1)⊥ Q′ for all t (6-3)

hold.
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Proposition 6.1. There exists a unique solution v ∈ X s that satisfies

‖v‖X s ≤ c(‖v0‖H s +‖ f0+
√
γ ′ f1‖Y s ).

Moreover, v(t) is orthogonal to Q′ and ∼Q.

Note, Theorem 1 is an immediate consequence.

Proof. We begin by considering the case s = 1. The previous section implies the estimate

‖v‖X s ≤ c(‖v0‖H s +‖ f0‖L1(H s)).

if f1 = 0 by a variation of constants argument. We retrace the steps and its modifications needed for f1.
Using the multipliers from the energy inequalities, we need the obvious estimates∣∣∣∫ f0γ (v− vxx) dx dt

∣∣∣+ ∣∣∣∫ f0ηvdx dt
∣∣∣+ ∣∣∣∫ f0L−1v dx dt

∣∣∣≤ c‖v‖L∞H1‖ f0‖L1 H1

and, using Lemma 4.1,∣∣∣∫ √
γ ′ f1(γ (v− vxx) dx dt

∣∣∣+ ∣∣∣∫ √
γ ′ f1ηv dx dt

∣∣∣+ ∣∣∣∫ √
γ ′ f1L−1v dx dt

∣∣∣≤ c‖ f1‖L2‖v‖L2 H2√
γ ′
.

It is not hard to see that v(t) remains orthogonal to Q′ and ∼Q so that we can close the argument as in
the previous section. We obtain the desired estimate for s = 1:

‖v‖X1 ≤ c(‖v0‖H1 +‖ f0+
√
γ ′ f1‖Y 1).

We denote the solution operator for the inhomogeneous v-problem (u-problem) by Sv (Su) and we write

‖Sv f ‖X1 ≤ c‖ f ‖Y 1 . (6-4)

The role of the two orthogonality conditions are different: The equation is invariant under the addition
of a multiple of Q to v, and orthogonality to Q′ is conserved. Orthogonality to ∼Q was needed for the
virial identity of Martel and Merle, whereas orthogonality of v and Q′ entered the control of the H−1

norm by the Moore–Penrose inverse of L. Without orthogonality one still obtains (5-20).
Suppose now that v satisfies {

vt −L∂xv = f,
v(x, 0)= v0.

(6-5)

Let ε be a small constant. We apply (1 + ε2 D2)(s−1)/2 to both sides of the equation and denote
vs
= (1+ ε2 D2)(s−1)/2v. It satisfies

vs
t −L∂xv

s
= (1+ ε2 D2)(s−1)/2 f + [(1+ ε2 D2)(s−1)/2, 4Q3

]∂xv.

Hence, applying (5-20)

‖v‖X s ≤ c1‖v
s
‖X1

≤ c2
(
‖(1+ε2 D2)(s−1)/2 f ‖Y 1+‖[(1+ε2 D2)(s−1)/2, 4Q3

]∂xv‖Y 1+sup
t
|〈vs, Q′〉|+‖〈vs,

∼Q〉‖L2
)
.
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and we turn to the commutator term.

Lemma 6.2. Let φ ∈ C∞(R) satisfy |φ| + |φ′| ≤ Ce−|x |. Let k(x, y) be the kernel of the operator

[(1+ ε2 D2)s/2, φ](1+ ε2 D2)−s/2.

Then,

|k(x, y)| ≤ cε|s|e−(|x |+|y|)/4−|x−y|/(4ε).

We postpone its proof. By Lemma 6.2 (with φ = 4Q3 and s− 1) and Schur’s Lemma

‖[(1+ε2 D2)(s−1)/2, 4Q3
]∂xv‖Y 1 ≤ ‖(γ ′)−1/2

[(1+ε2 D2)(s−1)/2, 4Q3
](1+ε2 D2)(1−s)/2∂xvs‖L2

≤ cε‖(γ ′)1/2∂xv
s
‖L2,

(6-6)

and by Lemma 3.1, after rescaling, as for the constant coefficient equation, we have

‖(1+ ε2 D2)(s−1)/2 f ‖Y 1 ≤ c‖ f ‖Y s .

For all Schwartz functions,∥∥(1+ |x |2)N ((1+ ε2 D2)s/2φ−φ
)∥∥

L2 ≤ Cε.

If 〈v, ∼Q〉 = 〈v, Q′〉 = 0, then

|〈vs,
∼Q〉| =

∣∣〈v, ∼Q〉− 〈vs,
∼Q− (1+ ε2 D2)−

s
2
∼Q〉
∣∣≤ Cε‖γ ′1/2vs

‖L2, (6-7)

|〈vs, Q′〉| =
∣∣〈v, Q′〉− 〈vs, Q′− (1+ ε2 D2)−

s
2 Q′〉

∣∣≤ Cε‖vs
‖L2 . (6-8)

Suppose that 〈 f, Q′〉 = 〈 f, ∼Q〉 = 0. Then we obtain for all s ∈ R from (6-6), (6-7) and (6-8)

‖vs
‖X s ≤ c(‖ f ‖Y s + ε‖vs

‖X s )

and hence

‖v‖X s . ‖ f ‖Y s , (6-9)

which again implies for solutions v to vt −L∂xv = PQ′ f , given by the variation of constants formula,
the bound ‖P̃∗v‖X s ≤ C‖ f ‖Y s or equivalently (recall (1-11))

‖P̃∗SvP⊥Q′‖Y s→X s . 1. (6-10)

Using spacetime duality, we consider {
(∂t − ∂x L)u = g,
u(0, x)= 0.

The estimate adjoint to (6-10) is

‖P⊥Q′Su P̃‖Y s→X s . 1, (6-11)

which completes the proof. �
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Proof. We turn to the proof of Lemma 6.2.
Let φ̂ be the Fourier transform of φ, which, because of the exponential decay extends to a holomorphic

function φ̂ in the strip {z : |Im z|< 1}. Moreover there exists C such that∫
|φ̂(ξ + iσ)| dξ ≤ C if |σ | ≤ 1

2 .

This estimate in turn implies exponential decay. Let k(x, y) be the integral kernel of

[(1+ ε2 D2)s/2, φ](1+ ε2 D2)−s/2.

We claim
|k(x, y)| ≤ cNε|s|e−δ(|x |+|y|)e−δ|x−y|/ε, (6-12)

which implies Lemma 6.2.
The symplectic Fourier transform

k̂(ξ, η)= 1
2π

∫
e−iξ x+iyηk(x, y) dx dy

satisfies

k̂(ξ, η)=
((1+ ε2ξ 2

1+ ε2η2

)s/2
− 1

)
φ̂(ξ − η).

We set a = ε(ξ + η)/2 and b = (ξ − η)/2. Then k̂(ξ, η)= ĝ(a, b), where

ĝ(a, b)=
((1+ (εb+ a)2

1+ (εb− a)2

)s/2
− 1

)
φ̂(2b)

and
k(x, y)= (2π)−1

∫
ei(xξ−yη)ĝ(ε(ξ + η)/2, (ξ − η)/2)) dξ dη

= 2ε(2π)−1
∫

ei( x−y
ε

a+b(x+y))ĝ(a, b) da db =: 2εg((x − y)/ε, x + y).

The function ĝ expands to a holomorphic function in a to the strip {z : |Im z| < 1/2} if ε| Im b| < 1/2.
Clearly,

1+ (a+ εb)2

1+ (a− εb)2
= 1+

4(εb)2

1+ (a− εb)2
+ 4εb

a− εb
1+ (a− εb)2

,

and hence we define the error term h by the right hand side of(1+ (εb+ a)2

1+ (εb− a)2

)s/2
− 1= 2sεb

a− εb
1+ (εb− a)2

+ h(εb, a).

It satisfies
|h(εb, a)| ≤ cs2ε2

|b|2(1+ |εb− a|)−2 if |ε Im b+ a| ≤ 1/2.

Hence, ∣∣∣∫ ei(av+bw)h(εb, a)φ̂(2b) da db
∣∣∣≤ cs2ε2e−(|v|+|w|)/4
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by the extension of a and b to a suitable complex strip. The leading term contributing to g can be
calculated:

g0(v,w)= (2π)−1
∫

ei(av+bw) a− εb
1+ (a− εb)2

bφ̂(2b) da db

= i v
|v|

e−|v|
∫

ei(b(w+εv))bφ̂(2b) db =
√
π2i v
|v|

e−|v|φ′((w+ εv)/2)).

The leading term for k is

k0(x, y)=
√
π2iε

x − y
|x − y|

e−|x−y|/εφ′(x). �

6.2. U and V space estimates. In this section, we generalize and improve Theorem 1 using the U p and
V p spaces as defined in [Hadac et al. 2009] and in the appendix. For notational simplicity, let us define

U p
=U p

K dV and V p
= V p

K dV .

We begin with a number of estimates that we will use often in the sequel.
Let c, y ∈ C1 satisfy (5-14) and let γ (x, t)= γ0(x − y(t)). Then,

‖aQ′c(t),y(t)+ b ∼Qc(t),y(t)‖Y 0 . ‖a‖L2+L1 +‖b‖L2+L1;

hence
‖P⊥Q′ P̃ f ‖DU 2+L2

√
γ ′H−1 . ‖ f ‖DU 2 +‖〈 f, Q〉‖L2+L1 +‖〈 f, Q′〉‖L2+L1 .

We consider
wt +wxxx = f, with w(0)= u0.

Then,
‖w‖U 2 . ‖u0‖L2 +‖ f ‖DU 2

and, since U 2
⊂ L2 H 1√

γ ′
,

‖〈w, Q〉‖L2 +‖〈w,
∼Q〉‖L2 . ‖ f ‖DU 2 +‖u0‖L2 .

Hence, with v = P̃ P⊥w, we have

‖v‖L2 H1√
γ ′
. ‖ f ‖DU 2 +‖u0‖L2 .

We calculate

(∂t + c2
− ∂x L)

(
〈w, Q〉

〈Q, ∼Q〉
∼Q+
〈w, Q′〉

〈Q′, ∼Q′〉
Q′
)
=

ċ
c
〈w, Q〉

〈Q, Q̃〉

∼∼Q+ (ẏ− c2)
〈w, Q′〉

〈Q′, ∼Q′〉
Q′′

+

(
(ẏ− c2)

〈w, Q〉

〈Q, ∼Q〉
+

ċ
c
〈w, Q′〉

〈Q′, ∼Q′〉

)
∼Q′− α̃ ∼Q− β̃Q′,

where α̃ and β̃ are the time derivatives of the coefficients of ∼Q and Q′ and
∼∼Q = (x − y) ∼Q′+ 2

3
∼Q.
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Hence, assuming that u0 satisfies the orthogonality conditions, that w and v are as above, and with g
defined through the previous calculations,

∂tv+ c2vx − ∂x Lc,yv = α̃
∼Q+ β̃Q′+ g+ f, with v(0)= u0, (6-13)

where we collect the properties of v and g in the following.

Lemma 6.3. Assuming (5-14), we have 〈v(t), Q〉 = 〈v(t), Q′〉 = 0 and

‖v‖V 2∩L2 H1√
γ ′
+‖g‖L2

√
γ ′H−1 . ‖u0‖L2 +‖ f ‖DU 2 +‖〈 f, Q〉‖L2+L1 +‖〈 f, Q′〉‖L2+L1 . (6-14)

Proof. We claim that
‖α̃‖L1+L2 +‖β̃‖L1+L2 ≤ c(‖w0‖L2 +‖ f ‖DU 2),

the proof of which we postpone. Assuming its validity we put the term 4∂x Qv in (6-13) on the right
hand side. We bound ‖v‖V 2 in terms of ‖w0‖L2 and the right hand side in DV 2. Since DU 2

⊂ DV 2 and
L2√γ ′H−1

⊂ DV 2, we can control all terms on the right hand side.
The only missing piece is the L2

+ L1 bound for α and β. There are two different arguments: Either
we can follow the calculation above and calculate α̃ and β̃ above, or we can test by Q and Q′ and use
orthogonality to obtain the standard equations for α and β. We use the first approach and recall the
calculations after (1-10). Then

d
dt
〈w, Q〉 = 〈 f, Q〉+ ẏ〈w, Q′〉+ ċ

c
〈w,

∼Q〉,

d
dt
〈w, Q′〉 = 〈 f, Q′〉+ ẏ〈w, Q′′〉+ ċ

c
〈w,

∼Q′〉.
(6-15)

There is one more term entering the coefficient of Q′ coming from applying the linear operator to ∼Q,
which gives

−2
〈w, Q〉

〈Q, ∼Q〉
c2 Q′.

All these terms are easily controlled. �

We return to the analysis of the time dependent v-problem

vt + c2cx −L∂xv = α(t)Qc(t),y(t)+β(t)Q′c(t),y(t)+ f, (6-16)

where

α(t)=−
(ċ/c)〈v, ∼̃Qc(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′c(t),y(t)〉

〈Qc(t),y(t),
∼Qc(t),y(t)〉

−
〈
∼Q, f 〉

〈Q, ∼Q〉
, (6-17)

β(t)=−
(ċ/c)〈v, ∼Q′c(t),y(t)〉+ (ẏ− c2)〈v,

∼Q′′c(t),y(t)〉

〈Q′c(t),y(t), Q′c(t),y(t)〉
−
〈Q′, f 〉
〈Q′, Q′〉

, (6-18)

with the initial data v(x, 0)= v0(x) orthogonal to ∼Q and Q′. Then also v(t) satisfies these orthogonality
conditions. We combine the arguments of the previous subsection with those of Proposition 5.3:
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Lemma 6.4. Suppose that (5-14) holds. There exists a unique solution v to (6-16) and (6-17) and (6-18)
that satisfies

‖〈D〉sv‖X0∩V 2 ≤ c(‖v0‖H s +‖〈D〉s f ‖Y 0+DV 2).

Moreover v(t) is orthogonal to Q′ and ∼Q.

Proof. We begin with s = 0. We write f = fU + fY with fU ∈ DU 2 and fY ∈ Y 0. Let ṽ be defined with
f = fU as in Lemma 6.3. It satisfies

‖ṽ‖V 2∩X0 ≤ C(‖ fU‖DU 2 +‖u0‖L2).

Let us take v = ṽ+w, where w satisfies

wt +wx − ∂x Lw = α
∼Q+βQ′+ fY + g, with w(0)= 0,

with g as in Lemma 6.3 and by Lemma 6.4

‖w‖X0 . ‖ fY‖Y 0 +‖g‖Y 0 . ‖ f ‖DU 2+Y 0 +‖u0‖L2 .

We put the term 4∂x(Q3w) to the right hand side, which we easily control in Y 0 as well as α and β and
we arrive at

‖v‖V 2∩X0 ≤ C
(
‖v0‖L2 +‖ f ‖Y 0+DU 2 +‖〈 f, Q〉‖L2+L1 +‖〈 f, Q′〉‖L2+L1

)
. (6-19)

The case of general s follows by the same arguments as above. �

Our main interest will be in similar estimates for the u problem below.
We consider the u equations

ut + c2ux − ∂x(Lc,yu)= α ∼Q+βQ′+ f, (6-20)

with initial data u(0)= u0 that satisfies 〈u0, Q〉 = 〈u0, Q′〉 = 0, together with the modal equations

α(t)=−
(ċ/c)〈u, ∼Q〉+ 〈 f, Q〉

〈Q, ∼Q〉
, (6-21)

β(t)=−
(ẏ− c2)〈u, Q′′〉+ (ċ/c)〈u, ∼Q′〉+ 〈u,LQxx 〉+ 〈 f, Q′〉

〈Q′, Q′〉
, (6-22)

which again ensures the orthogonality of u(t) with Q and Q′.
We obtain first the analog of Lemma 6.4.

Lemma 6.5. Suppose that (5-14) holds. There exists a unique solution u to (6-20), (6-21) and (6-22)
that satisfies

‖u‖X0∩U 2 ≤ c(‖u0‖L2 +‖ f ‖Y 0+DV 2).

Moreover, u(t) is orthogonal to Q′ and Q.
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It is not difficult to construct solutions; however we are interested in global estimates. Moreover we
may restrict to a finite time interval and assume that all the data as well as u are smooth and decay at
infinity.

We set v = Lu. It satisfies the orthogonality conditions

〈v, Q′〉 = 0= 〈u, Q〉 = 〈L−1v, Q〉 = 〈v, ∼Q〉.

Moreover, v satisfies

vt + c2vx −L∂xv =−2c2αQ+ 12Q2((ċ/c) ∼Q+ (ẏ− c2)Q′)u+L f

and we may apply Lemma 6.4 with s =−2:

‖v‖X−2 . ‖Lu(0)‖H−2 +‖L f ‖Y−2 + (|ċ/c| + |ẏ− c2
|)‖u‖L2(H−3√

γ ′
).

We apply Lemma 4.1 several times to get

‖u‖X0 . ‖Lv‖X−2 . ‖u0‖L2 +‖ f ‖Y 0 + sup
t
(|ċ/c| + |ẏ− c2

|)‖u‖X−1 .

To complete the proof we observe that by (5-14) we may subtract the last term on the right hand side
from both sides to arrive at the desired estimate. The inclusion of V 2 and DU 2 works now exactly as
for the v equation.

We collect the results for the case s = 0, which is the only estimate we will need later on.

Proposition 6.6. Suppose that (5-14) holds. There exists a unique solution v to (6-16), (6-17) and (6-18)
that satisfies

‖v‖V 2∩X0 ≤ c(‖v0‖L2 +‖ f ‖DU 2+Y 0).

Moreover, v(t) is orthogonal to Q′ and ∼Q. Similarly there is a unique solution u to (6-20), (6-21) and
(6-22) that satisfies

‖u‖V 2∩X0 ≤ c(‖u0‖L2 +‖ f ‖DU 2+Y 0).

Moreover, u(t) is orthogonal to Q′ and Q.

6.3. Littlewood–Paley decomposition. We consider functions c and y satisfying (5-14) We set λ∈30=

1.01N and let Pλ be the Littlewood–Paley decomposition with Fourier multipliers supported in the set
{ξ : 1.01−1λ≤ |ξ | ≤ 1.01λ} if λ > 1 and {ξ : |ξ | ≤ 1} if λ= 0. Then, we denote

uλ = Pλu.

The Besov spaces are defined as the set of all tempered distributions for which the norm

‖v‖Bs,p
q
= ‖λs

‖vλ‖L p‖lq (30)

is finite. Here s ∈ R and 1 ≤ p, q ≤ ∞. Similarly we define the homogeneous spaces Ḃs,p
q with the

summation over 3 = 1.01Z, where the frequency λ = 1 plays no special role. There is an ambiguity
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about the meaning of v0, which differs depending on whether we consider Bs,p
q or the homogeneous

space Ḃs,p
q .

We define the spaces X s
∞

and Y s
∞

using the norms

‖u‖X s
∞
= sup
λ∈30

λs
‖uλ‖V 2∩X0 and ‖ f ‖Y s

∞
= sup
λ∈30

λs
‖ fλ‖DU 2+Y 0 .

The homogeneous spaces Ẋ s
∞

and Ẏ s
∞

are defined in the same way as the homogeneous Besov space
Ḃs,p

q with 3= 1.01Z, though with a slight modification for s < 0 in the Y spaces due to the ρ multiplier.
Namely, we take

‖u‖Ẋ s
∞
= sup
λ∈3

(
λs
‖uλ‖V 2∩X0

)
,

‖F‖Ẏ s
∞
= inf

F= f+g

(
sup
λ∈3

λs
‖ fλ‖DU 2 + sup

λ∈30

λs
‖gλ‖Y 0

)
,

(6-23)

where there is a slight abuse of notation since the operators in f0 and g0 are taking on two different
meanings, the homogeneous projection for f0 and the inhomogeneous projection for g0.

We study {
ut + ux + ∂x Lu = α ∼Q+βQx + f + ∂x(ρg),
u(x, 0)= 0,

(6-24)

where α is given by (6-21) and β by (6-22). As a first step we obtain a weighted L2 bound for u in (6-25)
below.

Let f = f ++ f − and g= g++g− be a decomposition into high (|ξ |>1) and low (|ξ |≤1) frequencies.
We define {

vt + c2vx −Lvx = α+Q+β+Q′+ (∂−1
x f ++ ρg+),

v(x, 0)= 0,

where
〈Q, ∼Q〉α+ = (c2

− ẏ)〈v, Q̃′〉− (ċ/c)〈v,
∼∼Q〉− 〈∂−1

x f ++ ρg+, ∼Q〉,

〈Q′, Q′〉β+ = (c2
− ẏ)〈v, Q′′〉− (ċ/c)〈v, ∼Q′〉+ 〈 f ++ ∂x(ρg+), Q〉

ensure P̃∗P⊥Q′v = 0. Then by Proposition 6.6

‖v‖X0 . ‖∂−1
x f ++ ρg+‖DU 2+Y 0 . ‖F+‖Ẏ s

∞
. ‖F‖Ẏ s

∞
,

where the second inequality holds for all s >−1.
As a simple consequence, we obtain

‖PQ′∂xv‖L2 L2
ρ
. ‖F‖Ẏ s

and compute similar to arguments above

(∂t − c2∂x + ∂x L)(PQ′∂xv)

=

(
α+−

d
dt
〈v, Q′′〉
〈Q′, Q′〉

)
Q′+

(
β++

〈v, Q′′〉
〈Q′, Q′〉

(ẏ− c2)

)
Q′′+

〈v, Q′′〉
〈Q′, Q′〉

ċ
c
∼Q′+ f++ ∂x(ρg+).
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We make the ansatz u = PQ′∂xv+ u− and observe that 〈∂xv, Q〉 = 0 by construction. Then,

∂t u−+ c2∂x u−− ∂x Lu−

= α
∼Q+βQ′+ f−+ ∂x(ρg−)+

( ċ
c
〈v,

∼Q′〉
〈Q′, Q′〉

−
〈 f ++ ∂x(ρg+), Q〉

〈Q′, Q′〉

)
Q′′−

〈v, Q′′〉
〈Q′, Q′〉

ċ
c
∼Q′,

where α and β ensure orthogonality. Later we will need the obvious identity (integrate by parts in the
second term) 〈

f−+ ∂x(ρg−)−
(
〈 f ++ ∂x(ρg+), Q〉

〈Q′, Q′〉

)
Q′′, Q

〉
= 〈F, Q〉.

Then, u = ∂x P⊥Q′v+ u− and hence with F+ = f ++ ∂xρg+ we have

‖u‖L2 L2
ρ
. ‖F‖Y s +‖〈F, Q〉‖L2+L1 +‖〈F+, Q〉‖L2+L1 . (6-25)

By (6-21) we see

‖α‖L1 . ‖ċ‖L2∩L∞(‖F‖Y s +‖〈F, Q〉‖L2+L1)+‖〈F, Q〉‖L1 (6-26)

and, using (5-14)
‖α‖L2 . ‖F‖Y s +‖〈F, Q〉‖L2 (6-27)

and by (6-22)
‖β‖L2 . ‖F‖Y s +‖〈F, Q′〉‖L2 . (6-28)

We turn to the frequency localized equation{
(uλ)t + (uλ)xxx =−Pλ∂x(4Q3u)+αPλ

∼Q+βPλQx + Pλ f + Pλ∂x(ρg),
uλ(x, 0)= 0.

Observe that by using first the boundedness of Fourier multipliers on U 2, DV 2 and the dual of the
embedding U 2

⊂ L2 H 1
ρ , we have

‖Pλ∂x(4Q3u)‖DV 2 . λ‖Q3u‖DV 2 . λ‖Q2u‖L2 L2 . λ
(
‖F‖Ẏ s

∞
+‖〈F, Q〉‖L2+L1

)
.

If λ > 1, then by Lemma 3.1
‖[Pλ∂x , Q3

]u‖L2 L2
ρ
. ‖u‖L2 L2

ρ
.

Repeating these estimates for the term containing g and using the estimates of the previous section we
obtain for λ≤ 1,

‖uλ‖V 2∩L2 H1
ρ
. ‖Pλ f ‖DU 2 + λ

(
‖F‖Y s +‖〈F, Q〉‖L2+L1 +‖〈F+, Q〉‖L2+L1

)
+ λ1/2

‖α‖L1,

since
‖α
∼Q‖L1 Ḃ−1/2,2

∞

. ‖α‖L1

and, for λ > 1,

‖uλ‖V 2∩L2 H1
ρ
. ‖ fλ‖DU 2 +‖gλ‖L2 +‖F‖Y s +‖〈F, Q〉‖L2+L1 +‖〈F+, Q〉‖L2+L1 +‖〈F, Q′〉‖L2+L1 .
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As a result, we arrive at the following key fact.

Proposition 6.7. Suppose (5-14) holds for some small δ, that −1/2< s < 0, F ∈ Y s and{
ut + uxxx + 4∂x(Q3u)= α ∼Q+βQx + F,
u(x, 0)= 0,

where α and β are defined in (6-21) and (6-22). Then,

‖u‖Ẋ s
∞
. ‖F‖Ẏ s

∞
+‖〈F, Q〉‖L1 +‖〈F, Q′〉‖L2+L1 +‖〈F, Q+〉‖L2+L1 .

This result will play a large role in the nonlinear analysis required to prove asymptotic stability.
For future use, we denote by L p

I , Ẋ−1/6
∞,I , etc. the function spaces on the space time set I × R, and

specifically we set L p
T , Ẋ−1/6

∞,T for I = (0, T ). All previous constructions carry over to finite time intervals.

7. Local wellposedness for the quartic KdV equation

In this section we study local wellposedness for the quartic generalized KdV equation{
∂tψ − ∂xxxψ − (ψ

4)x = 0,
ψ(0, x)= ψ0(x).

(7-1)

Let v be the solution to the Airy equation with the same initial data, that is,{
vt + vxxx = 0,
v(0, x)= ψ0(x).

(7-2)

The main local wellposedness is the next result.

Theorem 4. Let r0 > 0. There exist ε0, δ0 > 0 such that, if 0< T ≤∞,

‖ψ0‖Ḃ−1/6,2
∞

≤ r0 (7-3)

and
sup
λ

‖vλ‖L6([0,T ],R) ≤ δ0, (7-4)

then there is a unique solution ψ = v+w with ‖w‖Ẋ−1/6
∞,T
≤ ε0. Moreover, the function w (and hence ψ)

depends analytically on the initial data.

By the Strichartz estimates for linear KdV (see also (7-5) and (7-6) below), given v as in (7-2) we
have

sup
λ

‖vλ‖L6 ≤ κ0‖v‖Ẋ−1/6
∞,T
,

and by the definition of the spaces

‖v‖Ẋ−1/6
∞,T
≤ κ1

(
‖ψ(0)‖Ḃ−1/6,2

∞

+‖∂tv+ ∂xxxv‖Ẏ−1/6
∞,T

)
.

Hence, we obtain global existence from Theorem 4 for (7-1) if

‖ψ‖Ḃ−1/6,2
∞

≤min
{

1,
δ(1)
(κ0κ1)

}
,
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where δ(1) is the δ (which depends on r0) evaluated at r0 = 1.
In any case, if condition (7-4) is satisfied for T =∞, then, since ψλ ∈ V 2, the function et∂xxxψλ is of

bounded 2-variation with values in L2 (see the appendix), and hence it has a limit in L2 as t→∞. This
implies that

∑
λ limt→∞ et∂xxxψλ =: S(ψ0) exists and is the scattering state. If in addition ψ0 is in the

closure of C∞0 in Ḃ−1/6,2
∞ , then we may exchange the summation and limit.

Under the same assumptions we can solve the initial value problem with initial dataψ0(T )=e−T ∂xxxψ0,
which, by an easy limit as T→∞, gives the inverse of the map S. We will later see similar constructions
for perturbation of the soliton.

It is not hard to see that ifψ0 is in the closure of C∞0 in Ḃ−1/6,2
∞ , then we can achieve condition (7-4) by

choosing T small. This implies local existence with smooth dependence on initial data. Moreover, since
we obtain smooth dependence on the initial data, if we have any global solution ψ(t) in the closure of
C∞0 and perturb the initial data by an amount ε, we obtain a solution at least with a life span T =−c ln ε
by easy perturbation arguments. In particular, if the initial datum lies in an ε neighborhood of a soliton,
then the solution exists at least until time ∼ |ln ε| and remains in a small neighborhood until that time.

Before turning to the proof we remark that in this section we work with the weaker norms

‖u‖Ẋ−1/6 = sup
λ

λ−1/6
‖uλ‖V 2 and ‖ f ‖Ẏ−1/6 = sup

λ

λ−1/6
‖ fλ‖DU 2 .

On the other hand, since the results remain trivially true for the original definition of the spaces we keep
the notation.

Proof. First, we recall some estimates for u ∈U 2
K dV . Let m(ξ, ξ1)= m(ξ, ξ − ξ1). Then

‖u‖L6
t L6

x
. ‖|D|−1/6u(0)‖L2 (L6 Strichartz estimate), (7-5)∥∥∥∫

R

m(ξ, ξ1)|ξ
2
1 − (ξ − ξ1)

2
|
1/2û1(ξ1)û2(ξ − ξ1) dξ1

∥∥∥
L2(R2)

. sup
|m(ξ, ξ1)|

2

|ξ 2
1 − (ξ − ξ1)2|

1
2

‖u1(0)‖L2‖u2(0)‖L2 (bilinear estimate). (7-6)

The bilinear estimate is a variant of standard estimates as in [Grünrock 2005]. The most important
choice is m = |ξ 2

1 − (ξ − ξ1)
2
|
1/2.

Let m(ξ, ξ1) be a function that satisfies m(ξ, ξ − ξ1)= m(ξ, ξ1). Then,∥∥∥∫ m(ξ, ξ1)ei t (ξ3
1+(ξ−ξ1)

3)û1(0, ξ1)û2(0, ξ − ξ1) dξ1

∥∥∥2

L2

=

∫
m(ξ, ξ1)m(ξ, η1)e3i t (ξ2

1−ξξ1−η
2
1+ξη1)û1(ξ1)û2(ξ − ξ1)û2(ξ − η1)û1(η1) dt dξ1 dη1 dξ

=

∫
|m(ξ, η1)|

2

|η2
1− (ξ − η1)2|

|u1(η1)|
2
|u2(ξ − η1)|

2 dξ dη1

≤ sup
|m(ξ, ξ1)|

2

|ξ 2
1 − (ξ − ξ1)2|

‖u1‖L22
‖u2‖L22
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since
φ(ξ1)= ξξ

2
1 − ξ

2ξ1− ξη
2
1+ ξ

2η1 = ξ(ξ1− η1)(ξ1+ η1− ξ)

vanishes if ξ1 = η1 or ξ1 = ξ − η1 and

φ′(η1)= ξ(2η1− ξ)= ξ(η1− (ξ − η1)) and φ′(ξ − η1)= ξ((ξ − η1)− ξ1).

These results immediately imply (see the appendix for more information) for λ≥ 1.1µ the estimates

‖uλ‖L6
T
. λ−1/6

‖uλ‖U 2
T
, (7-7)

‖uλuµ‖L2
T
. λ−1

‖uλ‖U 2
T
‖uµ‖U 2

T
. (7-8)

By interpolating the bilinear estimate and the Strichartz estimate, if 2< p ≤ 3,

‖uλuµ‖L p
T
. λ−1(µ−1/6λ5/6)(3p−6)/p

‖uλ‖U 2
T
‖uµ‖U 2

T
(7-9)

and, if ρ� µ∼ λ,
‖(uλuµ)ρ‖L2

T
. λ−1/2ρ−1/2

‖uλ‖U 2
T
‖uµ‖U 2

T
. (7-10)

Interpolating once again, we have

‖(uλuµ)ρ‖L p
T
. λ−1/2ρ−1/2(λ1/6ρ1/2)(3p−6)/p

‖uλ‖U p
T
‖uµ‖U p

T
. (7-11)

We proceed with a standard fixed point argument, which requires bounds on the nonlinearity. The
solution ψ = v+w is constructed by studying{

wt +wxxx + (v+w)
4
x = 0,

w(0)= 0,
(7-12)

where again {
vt + vxxx = 0,
v(0)= ψ0.

Then, the key estimate is contained in the following.

Lemma 7.1. There exists r > 0 independent of T such that given vk ∈ Ẋ−1/6
∞,T for k = 1, 2, 3, 4 we have

‖∂x(v1v2v3v4)‖Ẏ−1/6
∞,T
≤ r

4∏
k=1

‖vk‖Ẋ−1/6
∞,T
, (7-13)

and, with v and w defined by (7-2) and (7-12), respectively,

‖∂x(v
3w)‖Ẏ−1/6

∞,T
≤ r sup

λ

‖vλ‖L6‖ψ0‖
2
B−1/6,2
∞

‖w‖X−1/6
∞,T
. (7-14)

We apply these estimates to v4
+4v3w+6v2w2

+4vw3
+w4. Either we may choose to estimate one

factor v in L6 or the dependence on w is at least quadratic. Suppose that ‖w‖Ẋ−1/6
∞,T
≤ µ. We obtain

‖∂x(v+w)
4
‖Ẏ−1/6
∞,T
≤ 6r(κ3

1δr
3
0 + κ

2
1δµr2

0 + κ
2
1r2

0µ
2
+ κ1r0µ

3
+µ4).
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If µ≤ κ1r0, then the right hand side is bounded by

20r(κ3
1δr

3
0 + κ

2
1µ

2r2
0 ).

Suppose that

µ≤min
{
κ1r0,

1
40rκ2

1r2
0

}
and δ ≤

µ

40rκ4
1r3

0

.

If w solves {
wt +wxxx + (v+W )4x = 0,
w(0)= 0

and ‖W‖Ẋ−1/6
∞,T
≤ µ, then w exists and satisfies ‖w‖Ẋ−1/6

∞,T
≤ µ.

Standard arguments then allow one to construct a unique solution satisfying the contraction assump-
tion, possibly after decreasing µ by an absolute multiplicative factor. �

It remains to prove Lemma 7.1. By duality, it suffices to verify that

λ

∣∣∣∫ v1v2v3v4uλ dx dt
∣∣∣≤ Cλ1/6

‖uλ‖V 2

4∏
k=1

‖vk‖Ẋ−1/6
∞,T

and

λ

∣∣∣∫ v3wuλ dx dt
∣∣∣≤ Cλ1/6

‖uλ‖V 2 sup
µ

‖vµ‖L6

(
sup
µ

µ−1/6
‖vµ‖U 2

)2
‖w‖Ẋ−1/6

∞,T
,

where uλ ∈ V 2 is frequency localized at frequency λ.
By summation, the statement of the lemma holds provided we can prove the following.

Lemma 7.2. We have for λ1 ≤ λ2 ∼ λ3 ∼ λ4 ∼ λ5 and ε > 0

λ5

∫
v1,λ1v2,λ2v3,λ3v4,λ4v5,λ5 dx dt . λ−1/3

min λ
−

1
6

5

(
λmax

λmin

)ε 5∏
k=1

‖vk,λk‖V 2 (7-15)

and

λmax

∫
vλ1vλ2vλ3uλ4wλ5 dx dt .

(
λmin

λmax

)1/6(λmax

λmin

)ε
× sup

µ

‖vµ‖L6

(
sup
µ

µ−1/6
‖vµ‖U 2

)2
‖uλ4‖V 2‖wλ5‖V 2, (7-16)

where λmax and λmin respectively are the maximal and minimal λ j .

Proof. We claim that∣∣∣∫ v1,λ1v2,λ2v3,λ3v4,λ4v5,λ5 dx dt
∣∣∣≤ Cλ−1

max‖v1,λ1‖U 2‖v2,λ2‖U 2‖v3,λ3‖L6‖v4,λ4‖L6‖v5,λ5‖L6 (7-17)

provided
|λ1− λ2| ≥

1
10λmax. (7-18)
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This estimate is a consequence of Hölder’s inequality and the bilinear estimate (7-6). We recall that

‖vλ‖L6 . λ−1/6
‖vλ‖U 6 . λ−1/6

‖vλ‖V 2 .

To obtain a nontrivial integral there have to be elements in the support of the Fourier transforms that
add up to zero. Unless there is at least one pair of (λ j , λk) satisfying (7-18), the integral is zero. Hence,
we would obtain (7-15) if we were allowed to replace the V 2 norms there by U 2 norms for the first two
factors. Observe that we may reorganize the factors as we wish.

Let us assume λ1. λ2. λ3. λ4. λ5. We consider first the case when λ4≤ 1.05λ1. Then, if there are
elements in the support of the truncations on the Fourier side adding up to zero — otherwise the integral
vanishes — either

0.8
λ5

4
≤ λ1 ≤ λ4 ≤ 1.1λ1 ≤ 1.2

λ5

4
or 0.6

λ5

2
≤ λ1 ≤ λ4 ≤ 1.1λ1 ≤ 1.4

λ5

2
.

In this case we can replace the U 2 norms by V 2 norms as follows. We decompose into low and high
modulation as

v j,λ j = v
l
j,λ j
+ vh

j,λ j
,

where vl
j is defined by the Fourier multiplier projecting to |τ − ξ 3

| ≤ λ3
5/1000. Then, we have

‖vl
j,λ j
‖V 2 +‖vh

j,λ j
‖V 2 ≤ ‖v j,λ j‖V 2 and ‖vh

j,λ j
‖L2 . λ

−
3
2

5 ‖v j,λ j‖V 2 .

We refer to the appendix and [Hadac et al. 2009] for more information.
We expand the product. The integral over the product of the five vl

j,λ vanishes because of the support
of the Fourier transforms. Hence at least one term has high modulation. We estimate it in L2, put another
term into L∞ and the others into L6 using Hölder’s inequality. We estimate the L∞ norm through energy
and Bernstein’s inequality.

Hence ∣∣∣∫ v1,λ1v2,λ2v3,λ3v4,λ4v5,λ5 dx dt
∣∣∣. λ−3/2

5

5∏
j=1

‖v j,λ j‖V 2, (7-19)

which implies the desired estimate.
It remains to study λ1 . λ2 . λ3 . λ4 . λ5, λ4 ≥ 1.05λ1. The most difficult case is λ5 ≤ 1.02λ2

since otherwise we apply two stronger bilinear estimates. For simplicity we consider λ1 � λ where
λ2 = λ5 = λ. We have to bound ∫

∑
ξ j=0

∏
û j,λ j (ξ j ) dξ2 dξ5 dt

with ξ1 = −
∑5

j=2 ξ j . We may restrict the integration to
∑5

j=2 ξ j ∼ λ1 and ξ j ∼ λ. By symmetry it
suffices to consider ∫

∑
ξ j=0

χ||ξ3|−|ξ2||∼λ1

∏
v̂ j,λ j (ξ j ) dξ2 dξ5 dt.
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We choose ε > 0 small, p, q so that 1/p= (1−ε)/2+ε/3, 1/q= ε/2+(1−ε)/3. By Hölder’s inequality∣∣∣∫ v1,λ1(v2,λv3,λ)λ1v4,λv5,λ dx dt
∣∣∣. λ−1(λ5/6λ

−1/6
1 )ελ−1/2λ

−1/2
1 (λ1/6λ

1/2
1 )1−ελ

−1/6
3

∏
j

‖v j,λ j‖U 12/5 .

. λ−3/2(λ2/3λ
−2/3
1 )ε

∏
j

‖v j,λ j‖U 12/5 .

For the second part we would like to put one v term into L6, and up to two into U 2. This can be easily
be done if there are two frequencies of v that differ by a small constant times λmax. If not it is not hard
to see that in the argument above we can put one term into L6. �

7.1. Variants and extensions of wellposedness for the quartic KdV equation. The arguments of the
last sections have implications for wellposedness questions in other function spaces. Given 1≤ p ≤∞,
ω ∈C1((0,∞), (0,∞)) and T ∈ (0,∞], we define the function space Xω

p,T as the set of all distributions
for which the norm

‖u‖p
Xωp,T
=

∑
λ

(ω(λ)‖uλ‖V 2)p, (7-20)

with obvious modifications if p =∞ is finite. We will always assume that

sup|ω′|/ω <∞, (7-21)

infω′/ω >−1. (7-22)

This is a Banach space provided for some C > 0 we have

lim inf
λ→0

ω(λ)λ1/2 > C; (7-23)

otherwise we obtain a Banach space of equivalence classes of functions. Similarly, we define the Banach
space

‖ f ‖p
Yωp,T
=

∑
λ

(ω(λ)‖ fλ‖DU 2)p. (7-24)

The definition of Bω,pq follows the same pattern. It is not hard to see that∫
u f dx dt . ‖u‖Xωp,T ‖ f ‖

Yω−1
p′,T

and ‖ f ‖
Yω−1

p′,T
. sup
‖u‖Xωp,T

≤1

∫
u f dx dt.

Moreover, we may expand the inner product into dyadic pieces and apply uniformly elliptic pseudo-
differential operators to the pieces. In particular, we may replace differentiation by multiplication on the
dyadic pieces and vice versa.

Proposition 7.3. The following estimate holds:

‖∂x(u4)‖Yωp,T ≤ C sup
λ

‖uλ‖L6‖u‖2
Ẋ−1/6
∞,T
‖u‖Xωp,T .
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Proof. Given v ∈ Xω−1

p′,T , we expand
∫
∂x(u4)v dx dt into dyadic pieces, to which we apply the arguments

and estimate (7-16) from the previous section. By symmetry∑
λ j

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣. ∑

λ1≤λ2≤λ3≤λ4,λ5

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣.

If λ5 ∼ λ4 we obtain∑
λ1≤λ2≤λ3≤λ4∼λ5

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣

. sup
µ

‖uµ‖L6

(
sup
µ

µ−1/6
‖uµ‖U 2

)2
×

∑
λ1≤λ2≤λ3≤λ4∼λ5

λ
1/6
1 λ

−1/6
5

(
λ5

λ1

)ε
‖uλ4‖V 2‖vλ5‖V 2,

which is bounded by

sup
µ

‖uµ‖L6

(
sup
µ

µ−1/6
‖uµ‖U 2

)2
‖u‖Xωp,T ‖v‖Xω−1

p′,T
.

The other extreme is∑
λ5≤λ1≤λ2≤λ3∼λ4

λ5

∣∣∣∫ uλ1uλ2uλ3uλ4vλ5 dx dt
∣∣∣

≤ sup
µ

‖uµ‖L6

(
sup
µ

µ−1/6
‖uµ‖U 2

)2
×

∑
λ5≤λ1≤λ2≤λ3∼λ4

λ5λ
−1
4

(
λ4

λ5

)ε
‖uλ4‖V 2‖vλ5‖V 2,

which satisfies the same estimate provided
∑

λ≤µ λω(λ) . µωµ. However, this is ensured by (7-22).
The remaining cases are similar and the result follows. �

From Proposition 7.3, we can prove the following corollary to Theorem 4.

Corollary 7.4. Suppose that ω satisfies (7-21), (7-22) and (7-23). If ψ0 ∈ Ḃ−1/6,2
∞ ∩ Bω,2p is the initial

data for a solution of (7-1) and v satisfies (7-4), then the solution ψ of Theorem 4 is in Xω
p,T and satisfies

‖ψ‖Xωp,T ≤ C‖ψ0‖Bω,2p
.

In addition:

Corollary 7.5. Suppose that ψ0 lies in the closure of C∞0 in Ḃ−1/6
∞,T . Then, it follows that

(t→ ψ(t)) ∈ C([0, T ], Ḃ−1/6,2
∞

).

If T =∞, then et∂3
xxxψ converges to the scattering data as t→∞ in Ḃ−1/6

∞,T . If in addition ψ0 ∈ L2, then

(t→ ψ(t)) ∈ C([0, T ], L2)

and et∂3
xxxψ converges also in L2.

There exists ω satisfying the assumptions above, with ω(λ)λ−1/6
→∞ as λ→∞ and λ→ 0 and

‖ψ0‖Bω,2∞
<∞. By Corollary 7.4 the Xω

∞,T is controlled by the initial data. Hence

λ−1/6
‖vλ‖DV 2∩X0 → 0as λ→∞ or λ→ 0.
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By the previous argument the deviation of the solution to the linear solution tends to zero as the considered
interval shrinks to zero. This implies continuity. Continuity at infinity always holds in V p.

The second part requires an obvious specialization of Corollary 7.4 to the case ω= 1, plus a repetition
of the argument for scattering.

Particular examples for ω are 〈λ〉s for s ≥−1/6 and λs
+λσ for −1/2≤ s ≤−1/6≤ σ . It is not hard

to see that we can replace the homogeneous spaces by inhomogeneous ones if we restrict to finite T and
allow the constants to depend on T .

8. Stability and scattering for perturbations of the soliton

8.1. Setup and main result. We return now to the full nonlinear problem (7-1). Let us take

ψ(x, t)= Qc(t)(x − y(t))+w(x, t).

Then, we have

∂tw+ ∂x(∂
2
xw+4Q3

cw)=−ċ(∂c Qc)(x − y)+ ẏ(Q′c)(x − y)− ∂x(∂
2
x Qc− c2 Qc+ Q4

c)− c2(Q′c(x − y))

− ∂x(6Q2
c(x − y)w2

+ 4Qc(x − y)w3
+w4).

Hence,

∂tw+ ∂x(∂
2
xxw+ 4Q3

cw)=−(ċ/c)
∼Qc(x − y)+ (ẏ− c2)Q′c(x − y)

− ∂x(6Q2
c(x − y)w2

+ 4Qc(x − y)w3
+w4). (8-1)

To use the dispersive estimates proved in Section 6, we wish to have

w ⊥ Qc(x − y) and w ⊥ Q′c(x − y). (8-2)

To get more regularity for y and c, we ask for (8-2) only asymptotically and hence take as in (1-15)
and (1-16) the modal equations

(ċ/c)〈Qc,
∼Qc〉 = 〈w, Qc〉, (8-3)

(ẏ− c2)〈Q′c, Q′c〉 = −κ〈w, Q′c〉, (8-4)

where κ > 0 is taken to be large.
We calculate

d
dt
〈w, Q〉 = 〈wt , Q〉+ ẏ〈w, Q′〉+ (ċ/c)〈w, ∼Q〉

= 〈w,LQ′〉− (ċ/c)〈Q, ∼Q〉+ 〈6Q2w2
+ 4Qw3

+w4, Q′〉+ (ẏ− c2)〈w, Q′〉+ (ċ/c)〈w, ∼Q〉

and
d
dt
〈w, Q′〉 = 〈wt , Q′〉+ ẏ〈w, Q′′〉+ (ċ/c)〈w, ∼Q′〉

= 〈w,LQ′′〉+ (ẏ− c2)〈Q′, Q′〉+ 〈6Q2w2
+ 4Qw3

+w4, Q′′〉

+ (ẏ− c2)〈w, Q′′〉+ (ċ/c)〈w, ∼Q′〉.
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Hence,

d
dt
〈w, Q〉+ 〈w, Q〉 = −κ

〈w, Q′〉2

〈Q′, Q′〉
−
〈w, Q〉〈w, ∼Q〉

〈Q, ∼Q〉
+ 〈6Q2w2

+ 4Qw3
+w4, Q′〉 (8-5)

and
d
dt
〈w, Q′〉+ κ〈w, Q′〉− 〈w,LQ′′〉

= −κ
〈w, Q′〉〈w, Q′′〉
〈Q′, Q′〉

+
〈w, Q〉〈w, ∼Q′〉

〈Q, ∼Q〉
+ 〈6Q2w2

+ 4Qw3
+w4, Q′′〉. (8-6)

The right hand sides are at least quadratic inw, and, as we shall see, small compared to ‖w0‖ in a suitable
sense. As a consequence the orthogonality conditions are approximately satisfied for large t . In addition,
ċ and ẏ− c2 are small and continuous.

We study the initial value problem w(0)= w0. Let again v be the solution to the linear problem. We
will prove scattering for small perturbations of the soliton in Ḃ−1/6,2

∞ . It will be important for the reverse
problem that we will achieve something slightly stronger.

Using the notation
0 =

{
y ∈ C([0,∞)) : y(0)= 0, |ẏ− 1| ≤ 1

10

}
, (8-7)

we define for any interval I the quantity

JI (v)= sup
λ

(
‖vλ‖L6

I
+ λ1/4−1/6

‖vλ‖L4
I L∞ + sup

y∈0
λ−1/6

∫
R×I

γ ′0(x − y(t))(v2
λ+ (∂xvλ)

2) dx dt
)
. (8-8)

Proposition 8.1. Let v be a solution of (3-1) with initial data v0 ∈ Ḃ−1/6,2
∞ . Then,

J[0,∞)(v). ‖v0‖Ḃ−1/6,2
∞

.

Moreover, if v0 is in the closure of C∞0 in Ḃ−1/6,2
∞ , then

lim
t→∞

J[t,∞)(v)= 0.

Proof. The first statement is an immediate consequence of the Strichartz estimate and local smoothing.
For the second statement we fix ε > 0. There are at most finitely many v0,λ of norm larger than ε/c.
Hence it suffices to verify the statement for a single λ. Since vλ ∈ L6L6 and L4L∞, we have

lim
t→∞
‖vλ‖L6(R×(t,∞)) = lim

t→∞
‖vλ‖L4

[t,∞)L
∞ = 0.

Let I be a bounded interval. Then the map

0→ λ−1/6
∫

R×I
γ ′0(x − y(t))(v2

λ+ (∂xvλ)
2) dx dt

is continuous with respect to uniform convergence, hence it assumes its maximum. Given j ≥ 1, let
y j : [2 j , 2 j+1

]→R be the path for which this quantity is maximal. We choose two paths yo and ye with
γ (0)= 0 and the difference between 1 and the derivative at most 0.2, one which coincides with y j for j
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even on the corresponding intervals, and one which does so for j odd. For both paths we have the local
smoothing estimate. But this implies the claim. �

Let y ∈ 0. The function spaces Ẋ s
∞;T and Ẏ s

∞;T depend on y but not on c. This dependence is not
reflected in the notation. In addition, let c ∈ C1([0,∞)). We assume (5-14), ċ ∈ L2 and ẏ− c2

∈ L2 in
this section, which we have to verify for the solutions we study, and turn to a study of a priori estimates
for solutions to (8-1), (8-3) and (8-4), and we recall (8-5) and (8-6). Because of translation and scaling
invariance we may restrict ourselves to a study for y(0) = 0 and c(0) = 1. Moreover, we may and do
assume that the orthogonality conditions hold at time 0, that is,

〈w0, Q〉 = 〈w0, Q′〉 = 0.

The main result is the following sharpened version of Theorem 2.

Proposition 8.2. Let C > 0. There exist ε > 0 and K > 0 such that for ‖w0‖Ḃ−1/6,2
∞

<C and J[0,T )(v)≤ ε
and for v a solution of (3-1) with initial data w0, the solution w in the system of equations (1-15)–(1-14)
satisfies (5-14),

‖w‖Ẋ−1/6
∞,T
≤ K J 1/2

[0,T )(v),

with K depending on C but not on time. Moreover, if J(0,∞)(v)≤ ε, then there exists a unique η∈ Ḃ−1/6,2
∞

such that
lim

t→∞
et∂3

xxxwλ(t)= ηλ,

with convergence in L2. In addition

lim
t→∞
‖w(t)‖Ḃ−1/6

∞,T
= ‖9‖Ḃ−1/6,2

∞

.

Remark 8.1. Variants in the spirit of Corollary 7.4 can be easily obtained by including the arguments
there, which will establish Theorems 2 and 3 with higher Sobolev regularity as stated in Remark 1.1.

The proof consists of three step,s a preliminary part consisting of an important initialization, multi-
linear estimates that are less critical variants of those of the last section, and a priori estimates for the
nonlinear equation using the multilinear estimates and the linearized equation.

We recall that v satisfies vt + vxxx = 0 with initial data v(0)= w0. We want to control the difference
between v and the solution ν to νt + c2∂xν− ∂x Lν = α

∼Q+βQ′ with initial data ν(0)=w0 with α and
β ensuring 〈ν, Q〉 = 〈ν, Q′〉 = 0, which we assume to hold initially. We recall that (5-14) is a standing
assumption.

For simplicity, let us define J = J[0,∞)(v). The following result is the first step of the proof.

Lemma 8.3. Suppose that w0 ∈ B−1/6,2
∞ satisfies the orthogonality conditions. Then

‖ν‖Ẋ−1/6
∞

. ‖w0‖Ḃ−1/6,2
∞

and
‖ν− P̃ P⊥Q′v‖Ẋ−1/6

∞

+‖α‖L1∩L2 +‖β‖L2 . J. (8-9)
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Proof. The first bound on ν is an immediate consequence of Proposition 6.7. The second statement is
more delicate. As a first step we consider u = P̃ P⊥v. It satisfies

sup
λ

(
‖uλ‖L6 + λ−1/6+1/4

‖uλ‖L4 L∞ + λ
−1/6
‖uλ‖L2 H1

ρ

)
. J, (8-10)

since ‖〈v, Q〉‖L2∩L6 +‖〈v, Q′〉‖L2∩L6 . J . We calculate

∂t u+ c2ux − ∂x Lc,yu = G, with u(0)= w0, (8-11)

where

G =−4∂x(Q3u)−
( d

dt
〈v, Q〉

〈Q, ∼Q〉

)
∼Q−

( d
dt
〈v, Q′〉
〈Q′, Q′〉

)
Q′

−
〈v, Q〉

〈Q, ∼Q〉
(∂t + c2∂x − ∂x L)Q̃−

〈v, Q′〉
〈Q′, Q′〉

(∂t + c2∂x − ∂x L)Q̃′.

We consider the terms separately. Any derivative falling on 〈Q, ∼Q〉 or 〈Q′, Q′〉 can be computed using
(4-2) and (4-3), yielding a factor ċ/c. Next,

d
dt
〈v, Q〉 = 〈∂tv+c2v′, Q〉+ (c2

− ẏ)〈v, Q′〉+ (ċ/c)〈v, ∼Q〉 =−〈Q4
x , v〉+ (c

2
− ẏ)〈v, Q′〉+ (ċ/c)〈v, ∼Q〉

and
d
dt
〈v, Q′〉 = 〈v̇+ c2v′, Q′〉+ (c2

− ẏ)〈v, Q′′〉+ (ċ/c)〈v, Q̃′〉

= −〈v,LQ′′〉− 4〈Q3 Q′′, v〉+ (c2
− ẏ)〈v, Q′′〉+ (ċ/c)〈v, ∼Q′〉.

Moreover,
(∂t + c2∂x − ∂x L)

∼Q = (ċ/c)
∼∼Q+ (c2

− ẏ) ∼Q′+ 2c2 Q′,

(∂t + c2∂x − ∂x L)Q′ = (ċ/c) ∼Q′+ (c2
− ẏ)Q′′.

We write G = α ∼Q+βQ′+ g, where, using again (4-2) and (4-3),

〈Q, ∼Q〉α =−(ċ/c)〈v, ∼Q〉−(c2
− ẏ)〈v, Q′〉+ 1

3(ċ/c)〈v, Q〉+〈v, (Q4)x 〉,

〈Q′, Q′〉β =−(ċ/c)〈v, ∼Q′〉−(c2
− ẏ)〈v, Q′′〉+ 10

3 (ċ/c)〈v, Q′〉+4〈v, Q3 Q′′〉+〈v,Lc Q′′c 〉−2c2
〈v, Q′〉,

g =−4∂x(Q3v)−
〈v, Q〉

〈Q, ∼Q〉
((ċ/c)

∼∼Q+(c2
− ẏ) ∼Q′)−(〈v, Q′〉/〈Q′, Q′〉)(

ċ
c
∼Q′+(c2

− ẏ)Q′′).

By Lemma 6.3, we have ‖g‖Y 0 . J . The difference w= ν−u satisfies (abusing the notation slightly by
denoting by α and β new quantities)

wt + c2wx − ∂x Lw = α
∼Q+βQ′− g

with initial data w(0)= 0, and again by Lemma 6.3

‖w‖X0∩V 2 . ‖g‖Y 0 . J.
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We rewrite the equation for ν as

νt + νxxx =−∂x(4Qν)+α ∼Q+βQ′ =: F.

Decompose ν = u+w. We recall that

〈Q, ∼Q〉α =−(ċ/c)〈ν, ∼Q〉; (8-12)

hence
‖α‖L1 +‖F‖Ẏ−1/6

∞

. (‖ċ/c‖L2 +‖ẏ− c2
‖L2)J.

The L2 bound for β is simpler. The estimates for the linear equation imply now (8-9). �

As it will be used in the sequel, we note the following simple consequence of Lemma 8.3. Namely,
we have

Jc,y(ν). J (v), (8-13)

where we denote by Jc,y the quantity analogous to J , but for the given path dictated by the c and y mod-
ulation parameters. After this nontrivial preliminary step, we continue with the proof of Proposition 8.2.
The strategy is to write the equation in terms of

u =9 − Qc(t),y(t)− ν

and expand the nonlinearity. In the next step we study multilinear estimates, which in the last step are
combined with Proposition 6.7 to obtain the a priori estimates.

8.2. Multilinear estimates. We proceed as for the initial value problem and bound multilinear expres-
sions. In this section we collect nonlinear estimates in terms of the V 2 spaces to prove Proposition 8.2.

Lemma 8.4. Let u be a tempered distribution and uλ its frequency localization. Let φ be a Schwartz
function. Then,

‖φuλ‖L2 .min{λ1/2−ε, λ−1
}
(
‖uλ‖L2(γ ′)+‖∂x uλ‖L2(γ ′)

)
.

Here ε is the constant of (3-7).

Proof. We begin with the case λ ≥ 1, in which case we prove the stronger estimate where we replace φ
by γ ′ as defined in Section 3. Let χ ∈ C∞0 be supported in {ξ : 1

2 ≤ |ξ | ≤ 2}. Then,√
γ ′uλ =

√
γ ′∂−1

x χ

(
∂x

λ

)
∂x uλ = λ−1

√
γ ′
(
∂x

λ

)−1
χ

(
∂x

λ

)
∂x uλ

= λ−1
(
∂x

λ

)−1
χ

(
∂x

λ

)√
γ ′∂x uλ+ λ−1

(√
γ ′,

(
∂x

λ

)−1
χ

(
∂x

λ

))
∂x uλ,

where (∂x/λ)
−1χ(∂x/λ) is an L2 bounded Fourier multiplier. As a result,∥∥∥λ−1

(
∂x

λ

)−1
χ

(
∂x

λ

)√
γ ′∂x uλ

∥∥∥
L2
. λ−1

‖uλ‖L2(γ ′).
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We estimate the second term on the right hand side using the adjoint of Lemma 3.1 with a= 1 and s= 0:∥∥∥λ−1
(√

γ ′,

(
∂x

λ

)−1
χ

(
∂x

λ

))
(γ ′)−1/2

√
γ ′∂x uλ

∥∥∥
L2
. λ−1

‖uλ‖L2(γ ′).

We turn to λ < 1. Clearly,

‖φuλ‖L2 ≤ ‖φ(γ ′)−1/2
‖L2‖

√
γ ′uλ‖L∞ .

Let χ̃ = sin(x)/x , which is the inverse Fourier transform (up to a constant factor) of the characteristic
function of the interval [−1, 1]. Let x0 ∈ R. We define

gλ(x)= uλ(x)χ̃(λ(x − x0)/100).

Then, gλ satisfies roughly the same frequency localization as vλ, and it coincides with uλ at x0. Thus,
by Bernstein’s inequalities,

|
√
γ ′(x0)uλ(x0)| ≤ cλ1/2

√
γ ′(x0)‖gλ‖L2 ≤ cλ1/2 sup

x,x0

√
γ ′(x0)χ̃(λ(x − x0)/100)

√
γ ′(x)

‖
√
γ ′uλ‖L2 .

Now the elementary estimate

sup
x,x0

√
γ ′(x0)

|χ̃(λ(x − x0)/100)|
√
γ ′(x)

≤ cλ−ε

completes the proof. �

We proceed to prove the necessary multilinear estimates.

Lemma 8.5. Let c, y satisfy (5-14), u ∈ Ẋ−1/6
∞ and let ν and Q be as in Proposition 8.2. Then, the

following estimates hold:

‖∂x(u1u2u3 Q)‖Ẏ−1/6
∞

.
3∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-14)

‖∂x(u1u2 Q2)‖Ẏ−1/6
∞

.
2∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-15)

‖∂x(ν
2uQ)‖Ẏ−1/6

∞

. J 1/2
‖ν‖

3/2
Ẋ−1/6
∞

‖u‖Ẋ−1/6
∞

(8-16)

‖∂x(νuQ2)‖Ẏ−1/6
∞

. J 1/2
‖ν‖

1/2
Ẋ−1/6
∞

‖u‖Ẋ−1/6
∞

. (8-17)

Proof. We begin with the dual Strichartz estimate

‖ fλ‖DV 2 . λ−1/4
‖ fλ‖L4/3 L1 .

By construction, spatial Fourier multipliers in V p, U p, DU p and DV p are bounded by the supremum
of the multiplier; hence

‖Pλ∂x(Q2u1,λ1u2,λ2)‖DU 2 . λ3/4
‖Q2u1,λ1u2,λ2‖L

4
3 L1
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and
‖Q2u1,λ1u2,λ2‖L

4
3 L1
≤ ‖Qu1,λ1‖L2 L2‖Qu2,λ2‖

1
L2 L2/2‖u2,λ2‖

1/2
L∞L2

.min{1, λ−1
1 }min{1, λ−1/2

2 }λ
1/6
1 λ

1/6
2 ‖u1‖Ẋ−1/6

∞

‖u2‖Ẋ−1/6
∞

.

This is summable for λ j ∈ 0 and we obtain the desired estimate for λ ≤ 1. Assume now that λ ≥ 1.
Then, using Hölder and Bernstein and |Q′|. Q

λ−1/6
‖Pλ∂x Q2u1,λ1u2,λ2‖L2γ H−1 . λ−1/6

‖Qu1,λ1‖
1/2
L∞‖Qu2,λ2‖

1/2
L∞‖Qu1,λ1‖

1/2
L2 ‖Qu2,λ2‖

1/2
L2

. λ−1/6λ
5/12
1 min{1, λ−1/2

1 }λ
5/12
2 min{1, λ−1/2

2 }‖u1‖Ẋ−1/6
∞

‖u2‖Ẋ−1/6
∞

,

which can easily be summed over λ1 and λ2 if λ≥ 1. This implies (8-15) and also (8-17).
We approach estimate (8-14) similarly: We expand u j and observe that the expressions are symmetric;

hence it suffices to sum over λ1≤λ2≤λ3. If λ1.1 we argue as above and estimate u1,λ1 in L∞, followed
by Bernstein’s inequality. So we restrict to the case λ1� 1.

Then, using that Q is integrable,

λ‖PλQu1,λ1u2,λ2u3,λ3‖DU 2 . λ3/4
3∏

j=1

‖u j,λ j‖L4 L∞ . λ
3/4(λ1λ2λ3)

−1/12
3∏

j=1

‖u j,λ j‖Ẋ−1/6
∞,T
,

which is easily summable if λ. 1. λ1, λ2, λ3. If λ> 1, we argue differently. To simplify the argument
we assume that the Fourier transform of Q is supported in [−1, 1]— handling the tail is straightforward
but technical. Instead of bounding λ‖PλQu1,λ1u2,λ2u3,λ3‖DU 2 , we employ duality and study

I =
∣∣∣∫ Qu1,λ1u2,λ2u3,λ3u4,λ4 dx dt

∣∣∣
assuming that 1� λ1 ≤ λ2 ≤ λ3. Then, we have

I ≤ ‖Qu3,λ3‖L2‖u1,λ1‖L6‖u2,λ2‖L6‖u4,λ4‖L6 . λ−5/6
3 λ

−1/6
4

3∏
j=1

‖u j,λ j‖Ẋ−1/6
∞,T
‖u4,λ4‖V 2 .

The factor λ−5/6
3 λ

5/6
4 is summable for fixed λ4 over 1≤ λ1 ≤ λ2 ≤ λ3, 1≤ λ4 . λ3 — this suffices since

I = 0 if λ4 is much larger than λ3. As a result, we have proven estimate (8-14) and, after checking the
proof, (8-16). �

We turn to bounds for inner products occurring as inner products of the right hand side of (8-1) with
Q and Q′, and at the right hand side of (8-5) and (8-6).

Lemma 8.6. Let u ∈ Ẋ−1/6
∞ , and let v and Q be as in Proposition 8.2. In addition, let ψ0(t) be a

one parameter family of Schwartz functions parametrized by t with uniformly bounded seminorms and
ψ(x, t)= ψ0(t, x − y(t)). Then for all 1≤ p < 3/2

‖〈∂x(u1u2u3u4), ψ〉‖L p .
4∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-18)
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where we consider the L p norm with respect to time and

‖〈∂x(v
3u), ψ〉‖L p . J‖v‖2

Ẋ−1/6
∞

‖u‖Ẋ−1/6
∞

. (8-19)

For all 1≤ p < 2, we have

‖〈∂x(u1u2u3 Q), ψ〉‖L p .
3∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-20)

‖〈∂x(v
2uQ), ψ〉‖L p . J‖v‖Ẋ−1/6

∞

‖u‖Ẋ−1/6
∞

. (8-21)

For all 1≤ p < 3, we have

‖〈∂x(u1u2 Q2), ψ〉‖L p .
2∏

j=1

‖u j‖Ẋ−1/6
∞

, (8-22)

‖〈∂x(vuQ2), ψ〉‖L p . J‖u‖Ẋ−1/6
∞

. (8-23)

Proof. We expand the terms in (8-18) and we consider

Ip := ‖〈u1,λ1u2,λ2u3,λ3u4,λ4, ψ〉‖L p .

By symmetry it suffices to look at the case λ1 ≤ λ2 ≤ λ3 ≤ λ4. If p = 1 we bound the terms using
Hölder’s and Bernstein’s inequalities as above:

I1 . ‖u1,λ1‖L∞‖u2,λ2‖L∞‖|ψ |
1/2u3,λ3‖L2‖|ψ |1/2u4,λ4‖L2

. λ2/3
1 λ

2/3
2 min{λ1/6

3 , λ
−5/6
3 }min{λ1/6

4 , λ
−5/6
4 }

4∏
j=1

‖u j‖Ẋ−1/6
∞

,

which is easily summable. We obtain by Hölder’s inequality

I3/2 .
4∏

j=1

‖u j,λ j‖L6 .
4∏

j=1

‖u j‖Ẋ−1/6
∞

,

which we use if 1 ≤ λ1 ≤ λ4. If λ1 ≤ 1, we estimate the corresponding term in L∞, apply Bernstein’s
inequality, and argue as in the next case. Interpolation with the L1 estimate yields a summable expression
as long as p < 3/2.

We turn to estimate (8-20), denote again the p-norms by Ip and expand again

I1 . ‖u1,λ1‖L∞‖Qu2,λ2‖L2‖(∂xψ)u3,λ3‖L2 . λ2/3
1 min{λ1/6

2 , λ
−5/6
2 }min{λ1/6

3 , λ
−5/6
3 }

∏
‖u j‖Ẋ−1/6

∞

,

which again is easily summable over λ1 ≤ λ2 ≤ λ3. Also

I2 .
3∏

j=1

‖u j,λ j‖L6 .
3∏

j=1

‖u j,λ j‖Ẋ−1/6
∞

,

which is almost summable, and by interpolation we obtain the bounds for any p < 2.
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The estimate (8-22) with p= 1 follows by the same arguments as above. It is even simpler. Again we
may restrict ourselves to λ1 ≤ λ2. For p = 3 we put estimate u j,λ j into L6 and again the full statement
follows by interpolation. A simple check of the proof reveals that the arguments above imply (8-23),
(8-21) and (8-19). �

The right hand sides of (8-5) and (8-6) are functions of t , for which we have bounds in L p for
1 ≤ p < 3/2 in terms of ‖w‖Ẋ−1/6

∞,T
. In the second equation, (8-6), the term 〈w,LQxx 〉 plays a special

role: It is in Lq for 2 ≤ q ≤∞, but not in L p for any p < 2 in general. In particular we cannot control
the deviation of y from the linear movement.

Equation (8-5) and (8-6) can be considered as scalar linear ordinary differential equations for 〈w, Q〉
and 〈w, Q′〉. The kernel for the fundamental solution is uniformly bounded in L p in the first case for all
p, and in the second case it is bounded in L1 by 1/κ , whereas the L∞ norm is 1.

We collect the consequences as follows.

Lemma 8.7. Suppose that w solves (8-1) with 〈w(0), Q〉 = 〈w(0), Q′〉 = 0 and w = v + u, where v
solves (7-2) with initial data w(0). Then,

sup
t
|〈w(t), Q〉|. (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2, (8-24)

sup
t
|〈w(t), Q′〉|. (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2+ κ−1/2
‖w‖Ẋ−1/6

∞,T
. (8-25)

Moreover, if 1≤ p < 3/2, then∥∥∥ d
dt
〈w(t), Q〉

∥∥∥
L p(0,∞)

. (J +‖u‖Ẋ−1/6
∞

)2(1+‖w‖Ẋ−1/6
∞

)2.

We may write d
dt 〈w(t), Q′〉 = γ1+ γ2 such that

‖γ1‖L p(0,∞) . (J +‖u‖Ẋ−1/6
∞

)2(1+‖w‖Ẋ−1/6
∞

)2 and ‖γ2‖L2(0,∞) . (J +‖u‖Ẋ−1/6
∞

).

Finally, it follows that

sup
t
(|c(t)− 1| + |ċ|)+‖ċ‖L1 . (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2,

sup
t
|ẏ− 1|. (J +‖u‖Ẋ−1/6

∞

)2(1+‖w‖Ẋ−1/6
∞

)2+ κ−1/2(J +‖u‖Ẋ1/6
∞

),

‖ẏ− c2
‖L2 . (J +‖u‖Ẋ−1/6

∞

)(1+‖w‖Ẋ−1/6
∞

)3. (8-26)

Proof. This is an immediate consequence of Lemma 8.5 and basic properties of the simple ordinary
differential equations. �

The estimates of this subsection remain true if we consider a time integral instead of (0,∞).

8.3. Global bounds and scattering near the soliton. We now complete the proof of Proposition 8.2.

Proof. By the local existence result there exists a local solution in a neighborhood of the soliton.
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The decomposition ψ = Qc(t),y(t) + w together with the modal equations (8-3) and (8-4) implies
existence of C1 functions c(t) and y(t) that satisfy (8-1), (8-3) and (8-4) up to fixed time. We recall that
after rescaling and shifting, 〈w0, Q〉 = 〈w0, Q′〉 = 0, c(0)= 1 and y(0)= 0.

As in the first step we denote the solution to the linear equation with initial data w(0) by ν. It satisfies
the estimates of Lemma 8.3 and (8-13) provided (5-14) is satisfied.

We suppose that (ψ, c, y) is a solution up to time T , such that u =ψ−Qc(t),y(t)−ν satisfies for some
k1, k2 to be chosen later the conditions

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ 2k1 J 1/2 and ‖u‖Ẋ−1/6

∞,T
≤ 2k2 J 1/2. (8-27)

We shall see that there exist δ, k1 and k2 such that if in addition J ≤ δ, then

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ k1 J 1/2 and ‖u‖Ẋ−1/6

∞,T
≤ k2 J 1/2. (8-28)

This implies the estimate conditionally depending on (8-27). Observe that by Lemma 8.7 control of
the norms implies validity of (5-14) if δ is sufficiently small. In particular, the estimates on the linear
equations hold.

On the other hand, if we fix C and δ we can apply a continuity argument with the initial data τw0.
The estimate clearly holds for small τ and the norms depend (for finite time) continuously on τ . This
implies the a priori estimate uniformly for all T . The scattering statement is an immediate consequence:
Combine the fact that functions in V 2 are left-continuous at infinity with a frequency envelope argument
as above. It remains to derive (8-28) from (8-27) for suitably chosen k1, k2 and δ.

We formulate the crucial estimate in the following.

Lemma 8.8. Let C be given and let v and Q be as in Proposition 8.2. There exist k1, k2 and δ such that,
if (8-27) holds, and ‖w0‖Ḃ−1/6,2

∞

≤ C and J(0,T )(v)≤ δ hold, then

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ c3

(
‖u‖2

Ẋ−1/6
∞,T
+ J 1/2

(0,T )(v)‖w0‖
3/2
Ḃ−1/6,2
∞

+ J(0,T )(v)
)
.

We postpone the proof of Lemma 8.8. Clearly 〈u, Q′〉=〈w, Q′〉 and the same is true for its derivatives.
By Lemma 8.7 and simple properties of ODEs, we have with implicit constants depending on the size
of the initial data that∥∥∥〈u, Q′〉

∥∥∥
L1+L2

+

∥∥∥ d
dt
〈u, Q′〉

∥∥∥
L1+L2

. ‖u‖2
Ẋ−1/6
∞

+ J +‖〈w, Q′′〉‖L2

and
‖〈w, Q′′〉‖L2 ≤ ‖〈ν, Q′′〉‖L2 +‖〈P⊥Q′u, Q′′〉‖L2 .

Hence,
‖〈u, Q′〉‖L1+L2 +

∥∥∥ d
dt
〈u, Q′〉

∥∥∥
L1+L2

. ‖u‖2
Ẋ−1/6
∞

+ J +‖P⊥Q′u‖Ẋ−1/6
∞

.

The crucial point is that the right hand side only contains the projection of u, not u itself. We obtain
easily

‖(∂t + ∂
3
x )γ (t)Q

′
‖Ẏ−1/6
∞,T
. ‖γ ‖L2 +‖γ ′‖L1+L2 .
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As a result, using estimates similar to those in Lemma 8.7 we have∥∥∥ 〈u, Q′〉
〈Q′, Q′〉

Q′
∥∥∥

X−1/6
∞,T

≤ k4
(
‖u‖2

Ẋ−1/6
∞,T
+ J +‖P⊥u‖Ẋ−1/6

∞,T

)
. (8-29)

By Lemma 8.8 and (8-27),

‖P⊥Q′u‖Ẋ−1/6
∞,T
≤ c3(‖u‖2Ẋ−1/6

∞,T
+ J 1/2

(0,T )(v)+ J )≤ c3(4k2
2 + 1)J + c3 J 1/2

using, as we may, ‖u‖Ẋ−1/6
∞,T
≤ 1 and, by the estimate (8-29) and (8-27), we have

‖u‖Ẋ−1/6
∞,T
≤ k4

(
J + c3(8k2

2 + 1)J (v)+ c3 J 1/2).
We choose first k1, then k2 and finally δ small to complete the proof. �

Proof of Lemma 8.8. We write the equation for u = w− ν, with ut + c2ux − ∂x Lc,yu =: G. We have

G = (ċ/c+α1)
∼Q+ (ẏ− c2

+β1)Q′− ∂x
(
6Q2

c(u+ ν)
2
+ 4Q′c(u+ ν)

3
+ (u+ ν)4

)
,

where α1 and β1 ensure the orthogonality conditions for ν, that is, (8-12). We recall that they satisfy

‖α1‖L1 . ‖ċ‖L2 J and ‖α1‖L2 +‖β1‖L2 . J.

To apply Proposition 6.7 we have to project u. This leads to a calculation similar to Lemma 8.3. Let
µ= P⊥Q′ P̃u and µt + c2∂xµ− ∂x Lµ=: H . Then, using 〈u, Q〉 = 〈w, Q〉 and 〈u, Q′〉 = 〈w, Q′〉,

H = G−
( d

dt
〈w, Q〉

〈Q, ∼Q〉

)
∼Q−

( d
dt
〈w, Q′〉
〈Q′, Q′〉

)
Q′

−
〈w, Q〉

〈Q, ∼Q〉

( ċ
c
∼̃Q+ (c2

− ẏ) ∼Q′+ 2Q′
)
−
〈w, Q′〉
〈Q′, Q′〉

(
(ċ/c) ∼Q′+ (c2

− ẏ)Q′′
)

= α
∼Q+βQ′+ g,

where

−g = ∂x
(
6Q2

c(u+ ν)
2
+ 4Q′c(u+ ν)

3
+ (u+ ν)4

)
+
〈w, Q〉

〈Q, ∼Q〉

ċ
c
∼̃Q

+

(
〈w, Q〉

〈Q, ∼Q〉
(c2
− ẏ)+

〈w, Q′〉
〈Q′, Q′〉

ċ
c

)
∼Q′+

〈w, Q′〉
〈Q′, Q′〉

(c2
− ẏ)Q′′.

By construction u(0)= 0. We apply Proposition 6.7 to get

‖u‖Ẋ s
∞,T
. ‖g‖Ẏ−1/6

∞,T
+‖〈g, Q〉‖L1 +‖〈g+, Q〉‖L2 +‖〈g, Q′〉‖L2 .

By Lemma 7.1, Lemma 8.5 and Lemma 8.6, we get

‖g‖Ẏ−1/6
∞

. ‖u‖2
Ẋ−1/6
∞

+ J‖w0‖Ḃ−1/6,2
∞

,

and by Lemma 8.7

‖〈g, Q〉‖L1 +‖〈g+, Q〉‖L2 +‖〈g, Q〉‖L2 . ‖u‖2
Ẋ−1/6
∞

+ J 1/2
‖w0‖

3/2
Ḃ−1/6,2
∞

.
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Together, we have
‖P̃∗P⊥u‖Ẋ−1/6

∞,T
. ‖u‖2

Ẋ−1/6
∞,T
+ J 1/2

‖w0‖
3/2
Ḃ−1/6,2
∞

. �

Proposition 8.2 generalizes straightforwardly to smaller function spaces in the style of Section 7.1.

8.4. An almost inverse wave operator result. In this section we will construct solutions with given
asymptotic behavior, proving Theorem 3. This is a partial converse statement to Proposition 8.2.

Remark 8.2. Theorem 3 is quite satisfactory in several respects. It shows which asymptotic properties
may characterize a solution. The main missing piece is uniqueness of the solution9. It implies existence
of a solution for small scattering data, and, for arbitrary scattering states, existence of a solution with
given scattering data for large t .

Proof. We turn to the time-reversed equation

∂tw+ ∂x(∂
2
xw+ 4Q3

cw)= (ẏ− c2)〈w, Qxx 〉+ (ċ/c)〈w,
∼Q′〉+ 〈6Q2w2

+ 4Qw3
+w4, Qxx 〉 (8-30)

with
(ċ/c)〈Qc,

∼Qc〉 = −〈w, Qc〉 and (ẏ− c2)〈Q′c, Q′c〉 = κ〈w, Q′c〉.

Let v be the solution to the Airy equation with initial data v0. We may and do assume that y0 = 0. By
Proposition 8.1 we know that limt→∞ J[t,∞)(v)= 0. Given S> 0 and yS satisfying |yS(S)−c2

∞
S|< δ̂S,

we solve the backwards initial value problem

9(S)= v(S)+ Qc∞,yS .

We choose 1� δ̂� δ to ensure that |ẏ− c∞| ≤ δ̂ for the solutions under consideration. The arguments
of the previous section allow one to do that down to a largest time t S,yS

for which

|y(t S,yS
)− c2

∞
t S,yS
| = δ̂t S,yS

.

We want to show that the infimum of the t S,yS
as a function of yS is attained for some yS and it is equal to

zero if δ̂ is sufficiently small. Suppose not, and denote the infimum by τ > 0. By continuous dependence
on yS , given ε > 0, there exists an interval [a, b] such that the solution exists down to a time smaller
than (1+ ε)τ , and yS,a((1+ ε)τ ) = (c2

∞
− δ)(1+ ε)τ and yS,b((1+ ε)τ ) = (c2

∞
+ δ)(1+ ε)τ . Hence,

there exists yS,ε with
yS,a((1+ ε)τ )= c2

∞
(1+ ε)τ.

But then, if δ̂ is sufficiently small, we see that a positive infimum is not possible, and moreover this
construction gives a limit that is a solution denoted again by (9S, yS) with yS(0)= 0.

We consider the limit S→∞. Since ẏS
−c2
∞

and ċS are small there exists a converging subsequence
yS j , cS j , S j →∞ that converges to c and y. There are corresponding solutions 9 j , u j and w j of the
corresponding equation. We extend w j beyond S j by v. By the stability result, given δ > 0 we find T > 0
such that

‖w j − v‖Ẋ−1/6
∞,[T,∞)

≤ δ.



194 HERBERT KOCH AND JEREMY L. MARZUOLA

Using a frequency envelope there exists 3 such that

λ−1/6
‖(w j )λ‖V 2(T,∞) . δ

whenever λ > 3 or λ−1 >3.
In particular,

‖(w j −wl)(t)‖Ḃ−1/6,2
∞

≤ δ

for t ≥ T (δ) and j and l sufficiently big. Again, using J small we are able to deduce that (w j ) is a
Cauchy sequence in Ẋ−1/6

T and the limit is the desired solution. �
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Appendix: Setup and properties of the U p, V p spaces for the linear KdV equation

To define the function spaces U 2, V 2, we summarize [Hadac et al. 2009, Section 2], where we suggest
the reader look for further details. Let Z be the set of finite partitions −∞ < t0 < t1 < . . . < tK =∞.
In the following, we consider functions taking values in L2

:= L2(Rd
;C), but in the general part of this

section L2 may be replaced by an arbitrary Hilbert space.

Definition A.1. Let 1 ≤ p <∞. For {tk}Kk=0 ∈ Z and {φk}
K−1
k=0 ⊂ L2 with

∑K−1
k=0 ‖φk‖

p
L2 = 1 we call the

function a : R→ L2 given by

a =
K∑

k=1

χ[tk−1,tk)φk−1

a U p-atom, where χI is the standard cutoff function to interval I . Furthermore, we define the atomic
space

U p
:=

{
u =

∞∑
j=1

λ j a j

∣∣∣ a j a U p-atom,, λ j ∈ C such that
∞∑
j=1

|λ j |<∞
}

with norm

‖u‖U p := inf
{ ∞∑

j=1

|λ j |

∣∣∣ u =
∞∑
j=1

λ j a j , λ j ∈ C, a j a U p-atom
}
. (A-1)

Atoms are bounded in the supremum norm, and hence every convergence here implies uniform con-
vergence.

Proposition A.2. Let 1≤ p < q <∞.

(1) The expression ‖ · ‖U p is a norm. The space U p is complete and hence a Banach space.

(2) The embeddings U p
⊂U q have norm 1.
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(3) For u ∈ U p, all one sided limits exist, including at ±∞, u is continuous from the right, and the
limit at −∞ is zero.

(4) The subspace of continuous functions U p
c is closed.

Definition A.3. Let 1 ≤ p <∞. We define V p as the normed space of all functions v : R→ L2 for
which the norm

‖v‖V p := sup
{tk}Kk=0∈Z

( K∑
k=1

‖v(tk)− v(tk−1)‖
p
L2

)1/p
(A-2)

is finite. Here we understand v(∞) as zero. Let V p
− denote the subspace of all right-continuous functions

with limit 0 at −∞.

Taking the partition {t,∞}, one sees that the supremum norm is not larger than the V p norm.

Proposition A.4. Let 1≤ p < q <∞.

(1) The expression ‖ · ‖V p is a norm and V p is complete.

(2) For v ∈ V p, all one sided limits including at ±∞ exist.

(3) The subspace V p
− is closed.

(4) The embedding U p
⊂ V p

− is continuous and ‖u‖V p ≤ 21/p
‖u‖U p .

(5) The embeddings V p
⊂ V q are continuous and ‖v‖V q ≤ ‖v‖V p .

From the proof of [Hadac et al. 2009, Proposition 2.17], we have the following:

Lemma A.5. Let f ∈ V p
− , with q > p. Then, given δ > 0 and m > 1, there exist f1 ∈ U p and f2 ∈ U q

such that f = f1+ f2 and
m−1
‖ f1‖U p + eδm‖ f2‖U q . ‖ f ‖V p .

The following corollary is obvious.

Corollary A.6. The space V p
− is continuously embedded in U q for q > p.

There is a bilinear map, B, which for 1/p+ 1/q = 1 and 1< p, q <∞ can formally be written as

B( f, g)=−
∫

ft g dt, for f ∈ V p, g ∈U q .

It satisfies |B( f, g)| ≤ ‖ f ‖V p‖g‖U q , which is natural if we replace g by an atom. The map

V p
3 f → (g→ B( f, g)) ∈ (U q)∗

is an isometric bijection. Moreover,

‖u‖U p = sup{B(u, v) : v ∈ C(R), ‖v‖V p = 1}.

If v ∈ V p
− , then

‖v‖V q = sup{B(u, v) : u ∈ C(R), ‖u‖U p = 1}.
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If the distributional derivative of u is in L1 and v ∈ V p, then

B(u, v)=−
∫

utv dt.

If f ∈ L1, then F(t) =
∫ t
−∞

f ds ∈ V p for all p ≥ 1, and hence F ∈ U p. Moreover, ‖ f ‖DU p :=

‖F‖U p ≤ ‖ f ‖L1 . We denote by DU p the metric completion of L1 in the norm given by the duality
pairing. Similarly we define DV q .

There is a close relation to Besov spaces, namely

B1/p,p
1 ⊂U p

⊂ V p
⊂ B1/p,p

∞
(A-3)

with continuous embeddings. These embeddings clarify the relation to X s,b spaces below.
We claim that the convolution with an L1 function η defines a bounded operator on U p and V p with

norm≤‖η‖L1 . Because of the duality statement it suffices to verify boundedness on U p. We approximate
the characteristic function by a sum of Dirac measures. The convolution with an atom clearly has norm
at most 1. Convergence in U 1 to the convolution with the characteristic function is immediate. The full
statement is an immediate consequence, as well as the boundedness of the convolution by a Schwarz
function on U p and V p. In particular smooth projections on high and low frequencies are bounded.

Following Bourgain’s strategy for the Fourier restriction spaces, we define the adapted function spaces

U p
K dV = S(−t)U p and V p

K dV = S(−t)V p

and similarly DU p and DV p.
Again, we define a bilinear map BK dV such that for u ∈ V p

K dV and v ∈U q
K dV , we have for a function

u with (∂t + ∂
3
x )u ∈ L1L2

BK dV (u, v)=−
∫
〈(∂t + ∂

3
x )u, v〉 dt.

Note, this bilinear map is well defined and gives a duality relation. Hence,

‖u‖DV p
K dV
= sup
‖ f ‖Uq

K dV
≤1

∫
u f dx dt and ‖u‖DU p

K dV
= sup
‖ f ‖V q

K dV
≤1

∫
u f dx dt.

Moreover, we may restrict f to suitable subspaces. More details on how the construction of such atomic
spaces allows us to put ut in the dual space are included in [Hadac et al. 2009].

By the construction of our spaces, we obtain for a solution u of the linear KdV equation{
ut + uxxx = f,
u(0, x)= u0(x),

(A-4)

the estimates

‖u‖V 2
K dV
. ‖u0‖L2 +‖ f ‖DV 2

K dV
, (A-5)

‖u‖U 2
K dV
. ‖u0‖L2 +‖ f ‖DU 2

K dV
, (A-6)

which follow trivially from the construction of the V 2
K dV , DV 2

K dV and U 2
K dV , DU 2

K dV spaces.
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Spatial Fourier multipliers act on U p, V q , DU p, DV q in the obvious way and their operator norm is
bounded by the supremum of the multiplier.

Let (p, q) be a Strichartz pair. Then,

‖u‖L p Lq ≤ c‖|D|−1/pu‖U p

and the dual estimate
‖ f ‖DV p′ ≤ c‖|D|−1/p f ‖L p′ Lq′

hold. The first estimate is not hard to check on atoms. Since convergence in U p and in L p Lq both imply
pointwise convergence for subsequences we obtain the full estimate. The second estimate follows by
duality.

Similarly the local smoothing estimates carry over to U p spaces and to DV q . Let c(t) and y(t) satisfy
(5-14). Then

‖u‖L2 H1√
γ ′
) ≤ c‖u‖U 2 and ‖ f ‖DV 2 ≤ c‖ f ‖L2

√
γ ′H−1 .

In the same fashion the bilinear estimates for solutions to the free equation imply bilinear estimates for
functions in U 2.

The smooth decomposition into high and low modulation (that is, the smooth projection of the fre-
quencies to τ − ξ 3 large and respectively small) is bounded in U 2 and V 2, and the L2 norm of the high
modulation part gains the inverse of square root of the truncation as a factor by the embeddings (A-3).
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A REMARK ON BARELY Ḣ sp-SUPERCRITICAL WAVE EQUATIONS

TRISTAN ROY

We prove that a good Ḣ sp critical theory for the 3D wave equation ∂t t u − 4u = −|u|p−1u can be
extended to prove global well-posedness of smooth solutions of at least one 3D barely Ḣ sp -supercritical
wave equation ∂t t u −4u = −|u|p−1ug(|u|), with g growing slowly to infinity, provided that a Kenig-
Merle type condition is satisfied. This result is related to those obtained by Tao and the author for the
particular case sp = 1, showing global regularity for g growing logarithmically with radial data and for
g growing doubly logarithmically with general data.

1. Introduction

For fixed p > 3, let H̃ 2
:= Ḣ 2(R3)∩ Ḣ sp(R3) and H̃ 1

:= Ḣ 1(R3)∩ Ḣ sp−1(R3), where sp :=
3
2
−

2
p−1

.
We consider the wave equation 

∂t t u−4u =−|u|p−1ug(|u|),
u(0) := u0 ∈ H̃ 2,

∂t u(0) := u1 ∈ H̃ 1,

(1-1)

where u : R×R3
→ C is a complex-valued scalar field and g is a smooth, real-valued positive function

defined on the set of nonnegative numbers and satisfying

0≤ g′(x).
1
x
. (1-2)

This condition says that g grows more slowly than any positive power of u.
We shall see that (1-1) has many connections with the defocusing power-type wave equation

∂t t u−4u =−|u|p−1u,
u(0) := u0 ∈ Ḣ sp(R3),

∂t u(0) := u1 ∈ Ḣ sp−1(R3).

(1-3)

It is known that if u satisfies (1-3), then uλ defined by

uλ(t, x) :=
1

λ2/(p−1) u
( t
λ
,

x
λ

)
, (1-4)

satisfies the same equation, but with data

uλ(0, x)=
1

λ2/(p−1) u0

( x
λ

)
and ∂t uλ(0, x)=

1
λ2/(p−1)+1 u1

( x
λ

)
.

MSC2000: 35Q55.
Keywords: wave equation, global existence, barely supercritical.
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Notice that (1-3) is Ḣ sp(R3) critical, which means that the Ḣ sp(R3)× Ḣ sp−1(R3)-norm of (u(0), ∂t u(0))
is invariant under the scaling defined above.

We recall the local existence theory. From [Ginibre and Velo 1989; Lindblad and Sogge 1995], we
know that there exists a positive constant δ := δ

(
‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3)

)
> 0 and a time of local

existence Tl > 0 such that if∥∥∥∥cos (t D)u0+
sin (t D)

D

∥∥∥∥
L2(p−1)

t L2(p−1)
x ([0,Tl ]×R3)

≤ δ (1-5)

then there exists a unique solution (u, ∂t u) in

C
(
[0, Tl], Ḣ sp(R3)

)
∩L2(p−1)

t L2(p−1)
x ([0, Tl]×R3)∩D

1
2−sp L4

t L4
x([0, Tl]×R3)×C

(
[0, Tl], Ḣ sp−1(R3)

)
of (1-3)1 in the integral equation sense, i.e., u satisfies the Duhamel formula

u(t) := cos (t D)u0+
sin (t D)

D
u1−

∫ t

0

sin (t − t ′)D
D

(
|u|p−1u

)
(t ′) dt ′. (1-6)

It follows that we can define a maximal time interval of existence Imax = (−T−, T+). Moreover,

‖u‖L2(p−1)
t L2(p−1)

x (J ) <∞, ‖D
sp−

1
2 u‖L4

t L4
x (J )

<∞, and ‖(u, ∂t u)‖L∞t Ḣ sp×L∞t Ḣ sp−1(J ) <∞

for any compact subinterval J ⊂ Imax. See [Kenig and Merle 2006] or [Tao 2006a] for more explanations.
Now we turn to the global well-posedness theory of “(1-3)”. In view of the local well-posedness

theory, one can prove (see [Kenig and Merle 2011] and references), after some effort, that it is enough
to find a finite upper bound of ‖u‖L2(p−1)

t L2(p−1)
x (I×R3)

on arbitrary long time intervals I , and, if this is the
case, then the solution scatters to a solution of the linear wave equation. No blow-up has been observed
for (1-3). Therefore it is believed that the following scattering conjecture is true:

Conjecture 1.1 (scattering conjecture). Assume that u is the solution of (1-3) with data (u0, u1) ∈

Ḣ sp(R3)× Ḣ sp−1(R3). Then u exists for all time t and there exists C1 :=C1
(
‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3)

)
such that

‖u‖L2(p−1)
t L2(p−1)

x (R×R3)
≤ C1. (1-7)

The case sp = 1 (equivalently, p = 5) is particular. Indeed the solution

(u, ∂t u) ∈ C
(
[0, Tl], Ḣ 1(R3)

)
×C

(
[0, Tl], L2(R3)

)
satisfies the conservation of the energy E(t) defined by

E(t) :=
1
2

∫
R3
|∂t u(t, x)|2 dx +

1
2

∫
R3
|∇u(t, x)|2 dx +

1
6

∫
R3
|u|6(t, x) dx . (1-8)

1The L2(p−1)
t L2(p−1)

x (R× R3)-norm of u is invariant under the scaling (1-4). The choice of the space L2(p−1)
t L2(p−1)

x
in which we place the solution u is not unique. There exists an infinite number of spaces of the form Lq

t Lr
x scale invariant in

which we can establish a local well-posedness theory.
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In other words, E(t) = E(0). This is why this equation is often called energy-critical: the exponent
sp = 1 corresponds precisely to the minimal regularity required for (1-8) to be defined. The global well-
posedness of (1-8) in the energy class and in higher regularity spaces is now understood. Rauch [1981]
proved the global existence of smooth solutions of this equation with small data. Struwe [1988] showed
that the result still holds for large data but with the additional assumption of spherical symmetry of the
data. The general case (large data, no symmetry assumption) was finally settled by Grillakis [1990; 1992].
Shatah and Struwe [1994] and independently Kapitanski [1994] proved global existence of solutions in
the energy class. Bahouri and Gérard [1999] reproved this result by using a compactness method and
results from Bahouri and Shatah [1998]. In particular, they showed that the L2(5−1)

t L2(5−1)
x (R×R3)-norm

of the solution is bounded by an unspecified finite quantity. Lately Tao [2006b] found an exponential
tower type bound of this norm. All these proofs of global existence of solutions of the energy-critical
wave equation have as a common key point the conservation of energy, which leads, in particular, to the
control of the Ḣ 1

× L2-norm of the solution (∂t u(t), u(t)).
If sp < 1, or equivalently, p < 5, we are in the energy-subcritical equation. The scattering conjecture

is an open problem. Nevertheless, some partial results are known if we consider the same problem (1-3),
but with data (u0, u1) ∈ H s

×H s−1, sp < s. More precisely, it is proved in [Kenig et al. 2000; Gallagher
and Planchon 2003; Bahouri and Chemin 2006; Roy 2007; Roy 2009a] that there exists s0 := s0(p) such
that sp < s0 < 1 and such that (1-3) is globally well-posed in H s

× H s−1, for s > s0.
If sp > 1, or, equivalently, p > 5, we are in the energy-supercritical regime. The global behavior of

the solution is, in this regime, very poorly understood. Indeed, following the theory of the energy-critical
wave equation, the first step would be to prove that the Ḣ sp× Ḣ sp−1-norm of the solution is bounded for
all time by a finite quantity depending only on the Ḣ sp × Ḣ sp−1-norm of the initial data. Unfortunately,
the control of this norm is a very challenging problem, since there are no known conservation laws in
high regularity Sobolev spaces. Kenig and Merle [2011] recently proved, at least for radial data, that this
step would be the last, by using their concentration compactness/rigidity theorem method [Kenig and
Merle 2006]. More precisely, they showed that if supt∈Imax

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3) <∞, then
Conjecture 1.1 is true.

As mentioned before, the energy supercritical regime is almost terra incognita. Nevertheless, Tao
[2007] observed that the technology used to prove global well-posedness of smooth solutions of (1-3)
can be extended, after some effort, to some equations of the type (1-1), with p= 5 and radial data. More
precisely, he proved global regularity of (1-1) with g(x) := log (2+ x2). This phenomenon, in fact, does
not depend on the symmetry of the data: it was proved in [Roy 2009b] that there exists a unique global
smooth solution of (1-1) with g(x) := logc log (10+ x2) and 0< c < 8

225 .
Equations of the type (1-1) are called barely Ḣ sp -supercritical wave equations. Indeed, the condition

(1-2) basically says that for every ε > 0, there exist two constants c1 := c1(p) and c2 := c2(p, ε) such
that

c1(p)≤ g(|u|)≤ c2(p, ε)|u|ε for |u| large. (1-9)

Since the critical exponent of the equation ∂t t u−4u=−|u|p−1+εu is sp+ε = sp+O(ε), the nonlinearity
of (1-1) is barely Ḣ sp -supercritical.
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The goal of this paper is to check that this phenomenon, observed for sp=1, still holds for other values
of sp. The standard local well-posedness theory shows us that it is enough to control the pointwise-in-
time H̃ 2

× H̃ 1-norm of the solution. In this paper, we will use an alternative local well-posedness theory.
We shall prove:

Proposition 1.2 (local existence for barely Ḣ sp -supercritical wave equation). Assume that g satisfies
(1-2) and

g′′(x)= O
(

1
x2

)
. (1-10)

Let M be such that ‖(u0, u1)‖H̃2×H̃1 ≤M. Then there exists δ := δ(M) > 0 small such that, if Tl satisfies∥∥∥∥cos (t D)u0+
sin t D

D
u1

∥∥∥∥
L2(p−1)

t L2(p−1)
x ([0,Tl ]×R3)

≤ δ, (1-11)

then there exists a unique (u, ∂t u) in

C
(
[0, Tl], H̃ 2)

∩L2(p−1)
t L2(p−1)

x
(
[0, Tl]

)
∩D

1
2−sp L4

t L4
x
(
[0, Tl]

)
∩D

1
2−2L4

t L4
x
(
[0, Tl]

)
×C

(
[0, Tl], H̃ 1)

that solves (1-1) in the integral equation sense; i.e., u satisfies the Duhamel formula

u(t) := cos (t D)u0+
sin t D

D
u1−

∫ t

0

sin(t − t ′)D
D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′. (1-12)

Notice the many similarities between Proposition 1.2 and the local well-posedness theory for (1-3).
This allows us to define a maximum time interval of existence Imax,g = [−T−,g, T+,g] such that, for

any compact subinterval J ⊂ Imax,g, the quantities

‖u‖L2(p−1)
t L2(p−1)

x (J ), ‖D
sp−

1
2 u‖L4

t L4
x (J )

, ‖D2− 1
2 u‖L4

t L4
x (J )

, ‖(u, ∂t u)‖L∞t H̃2(J )×L∞t H̃1(J )

are all finite. Again, see [Kenig and Merle 2006] or [Tao 2006a] for more explanations.
Now we set up the problem. In view of the comments above for sp = 1, we need to make two assump-

tions. First we will work with a “good” Ḣ sp(R3) theory: therefore we will assume that Conjecture 1.1
is true. Then, we also would like to work with Ḣ sp(R3)× Ḣ sp−1(R3) bounded solutions (u(t), ∂t u(t));
more precisely, we will assume this:

Condition 1.3 (of Kenig–Merle type). Let g be a function that satisfies (1-2) and that is constant for x
large. Then there exists C2 := C2

(
‖(u0, u1)‖H̃2×H̃1, g

)
such that

sup
t∈Imax,g

‖ (u(t), ∂t u(t)) ‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ C2. (1-13)

Remark 1.4. In the particular case sp = 1, it is not difficult to see that Condition 1.3 is satisfied. Indeed,
u satisfies the energy conservation law

Eb(t) :=
1
2

∫
R3

(
∂t u(t, x)

)2 dx + 1
2

∫
R3
|∇u(t, x)|2 dx +

∫
R3

F(u(t, x), ū(t, x)) dx, (1-14)
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with

F(z, z̄)= |z|5+1
∫ 1

0
t5 Re (g(t |z|)) dt = |z|5+1

∫ 1

0
t5 g(t |z|) dt. (1-15)

Since g is bounded, we have |F(z, z̄)| . |z|6. By using the Sobolev embeddings ‖u0‖L6
x
. ‖u0‖H̃2

and ‖u(t)‖L6
x
. ‖u(t)‖H̃2 , we easily conclude that Condition 1.3 holds. The energy conservation law

was often in [Tao 2007; Roy 2009b].

Here is the main result of this paper:

Theorem 1.5. Let p be fixed.

(1) There exists a function g̃ satisfying (1-2) and

lim
x→∞

g̃(x)=∞ (1-16)

and such that the solution of (1-1) (with g := g̃) exists for all time, provided that the scattering
conjecture and Condition 1.3 are satisfied.

(2) There exists a function f depending on T and ‖(u0, u1)‖H̃2×H̃1 such that

‖u‖L∞t H̃2([−T,T ])+‖∂t u‖L∞t H̃1([−T,T ]) ≤ f
(
T, ‖(u0, u1‖)H̃2×H̃1

)
. (1-17)

Theorem 1.5 shows that a “good” Ḣ sp(R3) theory for (1-3) can be extended, at least, to one barely
Ḣ sp(R3)-supercritical equation, with g̃ going to infinity.

Remark 1.6. Apart from its dependence on p, the function g̃ is universal: it does not depend on an
upper bound of the initial data. Moreover, g̃ is unbounded: it goes to infinity with as x .

Remark 1.7. In fact, Theorem 1.5 holds for a weaker version of Condition 1.3: there exists a function
C2 such that for all subinterval I ⊂ Imax,g

sup
t∈I

∥∥(u(t), ∂t u(t))
∥∥

Ḣ sp (R3)×Ḣ sp−1(R3)
≤ C2, (1-18)

with C2 :=C2
(
‖(u0, u1)‖H̃2×H̃1, g, |I |

)
. See the proof of Theorem 1.5 and, in particular, (5-21), (5-33)

and (5-48).

We recall some basic properties and estimates. If t0 ∈ [t1, t2], if F ∈ L q̃
t L r̃

x([t1, t2]) and if (u, ∂t u) ∈
C
(
[t1, t2], Ḣ m(R3)

)
×C

(
[t1, t2], Ḣ m−1(R3)

)
satisfy

u(t) : cos (t D)u0+
sin t D

D
u1−

∫ t

t0

sin (t − t ′)D
D

F(t ′) dt ′, (1-19)

with data (u(t0), ∂t u(t0)) ∈ Ḣ m(R3)× Ḣ m−1(R3), then we have the Strichartz estimates [Ginibre and
Velo 1995; Lindblad and Sogge 1995]

‖u‖Lq
t Lr

x ([t1, t2])+‖u‖L∞t Ḣm(R3)([t1, t2])+‖∂t u‖L∞t Ḣm−1(R3)([t1, t2])

. ‖(u(t0), ∂t u(t0))‖Ḣm(R3)×Ḣm−1(R3)+‖F‖L q̃
t L r̃

x ([t1, t2])
. (1-20)
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Here (q, r) is m-wave admissible, i.e.,

(q, r) ∈ (2,∞]× [2,∞] and 1
q
+

3
r
=

3
2
−m; (1-21)

moreover,
1
q
+

3
r
=

1
q̃
+

3
r̃
− 2. (1-22)

We set some notation that will appear throughout the paper.
We write A . B if there exists a universal nonnegative constant C ′ > 0 such that A ≤ C ′B. The

notation A = O(B) means A . B. More generally, we write A .a1,...,an B if there exists a nonnegative
constant C ′ = C(a1, . . . , an) such that A ≤ C ′B. We say that C ′′ is the constant determined by . in
A.a1,...,an B if C ′′ is the smallest possible C ′ such that A ≤ C ′B. We write A�a1,...,an B if there exists
a universal small nonnegative constant c= c(a1, . . . , an) such that A≤ cB. Following [Kenig and Merle
2011], we define, on an interval I ,

‖u‖S(I ) := ‖u‖L2(p−1)
t L2(p−1)

x (I ), ‖u‖W (I ) := ‖u‖L4
t L4

x (I )
, ‖u‖W̃ (I ) := ‖u‖

L
4
3
t L

4
3
x (I )

. (1-23)

We also define the quantity

Q(I, u) := ‖Dsp−
1
2 u‖W (I )+‖D2− 1

2 u‖W (I )+‖u‖L∞t H̃2(I )+‖∂t u‖L∞t H̃1(I ) (1-24)

Let X be a Banach space and r ≥ 0. Then

B(X, r) := { f ∈ X : ‖ f ‖X ≤ r} (1-25)

We recall also the well-known Sobolev embeddings. We have

‖h‖L∞(R3) . ‖h‖H̃2, (1-26)

‖h‖S(I ) . ‖Dsp−
1
2 h‖

L2(p−1)
t L

6(p−1)
2p−3

x (I )
. (1-27)

We shall combine (1-27) with the Strichartz estimates, since
(
2(p− 1), 6(p−1)

2p−3

)
is 1

2 - wave admissible.
We also recall some Leibnitz rules [Christ and Weinstein 1991; Kenig et al. 1993]. We have

‖DαF(u)‖Lq
t Lr

x (I )
. ‖F ′(u)‖L

q1
t L

r1
x (I )
‖Dαu‖L

q2
t L

r2
x (I )

, (1-28)

with α > 0, r , r1, r2 lying in [1,∞], 1
q =

1
q1
+

1
q2

, and 1
r =

1
r1
+

1
r2

.
The Leibnitz rule for products is

‖Dα(uv)‖Lq
t Lr

x (I )
. ‖Dαu‖L

q1
t L

r1
x (I )
‖v‖L

q2
t L

r2
x (I )
+‖Dαu‖L

q3
t L

r3
x (I )
‖v‖L

q4
t L

r4
x (I )

, (1-29)

with α > 0, r , r1, r2 lying in [1,∞], 1
q =

1
q1
+

1
q2

, 1
q =

1
q3
+

1
q4

, 1
r =

1
r1
+

1
r2

, and 1
r =

1
r3
+

1
r4

.
If F ∈ C2, we can write

F(x)− F(y)=
∫ 1

0
F ′
(
t x + (1− t)y

)
(x − y) dt. (1-30)
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By using (1-28) and (1-29) the Leibnitz rule for differences can be formulated as

‖Dα(F(u)− F(v))‖Lq
t Lr

x (I )
. sup

t∈[0,1]
‖F ′(tu+ (1− t)v)‖L

q1
t L

r1
x (I )
‖Dα(u− v)‖L

q2
t L

r2
x (I )

+ sup
t∈[0,1]

‖F ′′(tu+ (1− t)v)‖
L

q′1
t L

r ′1
x (I )

(
‖Dαu‖

L
q′2
t L

r ′2
x (I )
+‖Dαv‖

L
q′2
t L

r ′2
x (I )

)
‖u− v‖

L
q′3
t L

r ′3
x (I )

, (1-31)

with α>0, r1, r2, r ′1, r ′2, r ′3 lying in [1, ∞], 1
q =

1
q1
+

1
q2

, 1
r =

1
r1
+

1
r2

, 1
q =

1
q ′1
+

1
q ′2
+

1
q ′3

, and 1
r =

1
r ′1
+

1
r ′2
+

1
r ′3

.

We shall apply these formulas to several formulas of F(u), and, in particular, to F(u) := |u|p−1ug(|u|).
Notice that, by (1-2) and (1-10), we have F ′(x) ∼ |x |p−1g(|x |) and F ′′(x) ∼ |x |p−2g(|x |). Notice also
that, by (1-2) again, we have, for t ∈ [0, 1],

g (|t x + (1− t)y|)≤ g (2 max (|x |, |y|))≤ g
(
max (|x |, |y|)+ log 2

)
. g(|x |)+ g(|y|). (1-32)

This will allow us to estimate easily

sup
t∈[0,1]

‖F ′(tu+ (1− t)v)‖L
q1
t L

r1
x (I )

and sup
t∈[0,1]

‖F ′′(tu+ (1− t)v)‖L
q1
t L

r1
x (I )

.

Now we explain the main ideas of this paper. We shall prove, in Section 3, that very many values
functions g, a special property for the solution of (1-1) holds.

Proposition 1.8 (control of S(I )-norm and of norm of initial data imply control of L∞t H̃ 2(I )×L∞t H̃ 1(I )
norm). Let I be a compact subinterval of Imax,g (so ‖u‖S(I ) <∞) and assume that 0 ∈ I . Assume that g
satisfies (1-2), (1-10) and2 ∫

∞

1

1
yg2(y)

dy =∞. (1-33)

Let A ≥ 0 such that ‖(u0, u1)‖H̃2×H̃1 ≤ A. Let u be the solution of (1-1). There exists a constant C > 0
such that

‖(u, ∂t u)‖L∞t H̃2(I )×L∞t H̃1(I ) ≤ (2C)N A, (1-34)

with N := N (I ), such that ∫ (2C)N A

2C A

1
yg2(y)

dy�‖u‖2(p−1)
S(I ) . (1-35)

Moreover we shall give a criterion of global well-posedness (proved in Section 4):

Proposition 1.9 (criterion of global well-posedness). Assume that |Imax,g|<∞. Assume that g satisfies
(1-2), (1-10) and (1-33). Then

‖u‖S(Imax,g) =∞. (1-36)

The first step is to prove global well-posedness of (1-1), with g := g1 a nondecreasing function that is
constant for x large (say x ≥ C ′1, with C ′1 to be determined). By Proposition 1.9, it is enough to find an
upper bound of the S([−T, T ])-norm of the solution u[1] for T arbitrarily large. This can indeed be done,
by proving that g1 can be considered as a subcritical perturbation of the nonlinearity. In other words,
g1(|u|)|u|p−1u will play the same role as that of |u|p−1u(1−|u|−α) for some α>0. Once we have noticed

2Condition (1-33) basically says that g grows slowly on average.
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that this comparison is possible, we shall estimate the relevant norms (in particular, ‖u[1]‖S([−T,T ]))) using
perturbation theory, Conjecture 1.1 and Condition 1.3, in the spirit of [Zhang 2006]. We expect to find
a bound of the form

‖u[1]‖S([−T,T ]) ≤ C3
(
‖(u0, u1)‖H̃2×H̃1, T

)
, (1-37)

with C3 increasing as T or ‖(u0, u1)‖H̃2×H̃1 grows. Notice that if we restrict [−T, T ] to the interval
[−1, 1] and if the H̃ 2

× H̃ 1-norm of the initial data (u0, u1) is bounded by 1, then we can prove, using
(1-37), (1-26) and Proposition 1.8, that the L∞t L∞x ([−T, T ])-norm of the solution u[1] is bounded by
a constant (denoted by C1) on [−1, 1]. Therefore, if h is a smooth extension of g1 outside [0,C1],
and if u is the solution of (1-1) (with g := h), we expect to prove that u = u[1] on [−1, 1] and for data
‖(u0, u1)‖H̃2×H̃1 ≤ 1. This implies in particular, by (1-37), that we have a finite upper bound ‖u‖S([−1,1]).

We are not done yet. There are two problems. First, g1 does not go to infinity. Second, we only
control ‖u‖S([−1,1]) for data ‖(u0, u1)‖H̃2×H̃1 ≤ 1: we would like to control ‖u‖S(R) for arbitrary data.
In order to overcome these difficulties we iterate the procedure described above. More precisely, given a
function gi−1 that is constant for x ≥Ci−1 and such that u[i−1], a solution of (1-1) with g= gi−1, satisfies
‖u[i−1]‖S([−(i−1),i−1]) <∞, we construct a function gi that

• is an extension of gi−1 outside [0,Ci−1], and

• is increasing and constant (say equal to i + 1) for x ≥ C ′i , with C ′i to be determined.

Again, we shall prove that the gi may be regarded as a subcritical perturbation of the nonlinearity
(i+1)|u|p−1u. This allow us to control ‖u[i]‖S([−i,i]), by using perturbation theory, Conjecture 1.1, and
Condition 1.3. Using Proposition 1.8 and (1-26), we can find a finite upper bound for ‖u[i]‖L∞t L∞x ([−i,i]).
We assign the value of this upper bound to Ci . To conclude the argument we let g̃ = limi→∞ gi . Given
T > 0, we can find a j such that [−T, T ] ⊂ [− j, j] and ‖(u0, u1)‖H̃2×H̃1 ≤ j . We prove that u = u

[ j] on
[− j, j], where u is a solution of (1-1) with g := g̃. Since we have a finite upper bound of ‖u

[ j]‖S([− j, j]),
we also control ‖u‖S([− j, j]) and ‖u‖S([−T,T ]). Theorem 1.5 follows from Proposition 1.9.

2. Proof of Proposition 1.2

In this section we prove Proposition 1.2 for barely Ḣ sp(R3)-supercritical wave equations (1-1). The
proof is based upon standard arguments. Here we have chosen to modify an argument in [Kenig and
Merle 2011].

For δ, Tl , C , M to be chosen and such that (1-11) holds we define

B1 := B
(
C([0, Tl], H̃ 2)∩ D

1
2−sp W ([0, Tl])∩ D

1
2−2W ([0, Tl]), 2C M

)
,

B2 := B
(
S([0, Tl]), 2δ

)
,

B ′ := B
(
C([0, Tl], H̃ 1), 2C M

)
,

(2-1)

and

X :=
{
(u, ∂t u) : u ∈ B1 ∩ B2, ∂t u ∈ B ′

}
. (2-2)
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Let

9(u, ∂t u) :=

 cos (t D)u0+
sin (t D)

D
u1−

∫ t

0

sin (t − t ′)D
D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′

−D sin (t D)u0+ cos (t D)u1−

∫ t

0
cos (t−t ′)D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′

 . (2-3)

9 maps X to X. Indeed, in view of (1-11), (1-20), and the fractional Leibnitz rule (1-28) applied to
α ∈

{
sp −

1
2 , 2− 1

2

}
and

F(u) := |u|p−1ug(|u|)

and by applying the multipliers D2− 1
2 and Dsp−

1
2 to the Strichartz estimates with m = 1

2 , we have

Q([0, Tl])

.
∥∥(u0, u1)

∥∥
H̃2(R3)×H̃1(R3)

+
∥∥Dsp−

1
2
(
|u|p−1ug(|u|)

)∥∥
W̃ ([0,Tl ])

+
∥∥D2− 1

2
(
|u|p−1ug(|u|)

)∥∥
W̃ ([0,Tl ])

≤ C M +C
(
‖Dsp−

1
2 u‖W ([0,Tl ])+‖D

2− 1
2 u‖W ([0,Tl ])

)
‖u‖p−1

S([0,Tl ])
g(‖u‖L∞t L∞x ([0,Tl ]))

≤ C M + (2δ)p−1C(2C M)g(2C M) (2-4)

for some C > 0 and

‖u‖S([0,Tl ])− δ .
∥∥Dsp−

1
2
(
|u|p−1ug(|u|)

)∥∥
W̃ ([0,Tl ])

. ‖u‖p−1
S([0,Tl ])

‖Dsp−
1
2 u‖W ([0,Tl ]) g(‖u‖L∞t L∞x ([0,Tl ])). (2δ)

p−1(2C M)g(2C M). (2-5)

Choosing δ = δ(M) > 0 small enough we see that 9(X)⊂ X .

9 is a contraction. Indeed we have

‖9(u)−9(v)‖X

.
∥∥Dsp−

1
2 (|u|p−1ug(|u|)−|v|p−1vg(|v|))

∥∥
W̃ ([0,Tl ])

+
∥∥D2− 1

2 (|u|p−1ug(|u|)−|v|p−1vg(|v|))
∥∥

W̃ ([0,Tl ])

.
(
g(‖u‖L∞t L∞x ([0,Tl ]))+ g(‖v‖L∞t L∞x ([0,Tl ]))

)
×

((
‖u‖p−1

S([0,Tl ])
+‖v‖

p−1
S([0,Tl ])

)(
‖Dsp−

1
2 (u− v)‖W ([0,Tl ])+‖D

2− 1
2 (u− v)‖W ([0,Tl ])

)
+
(
‖u‖p−2

S([0,Tl ])
+‖v‖

p−2
S([0,Tl ])

)
‖u− v‖S([0,Tl ])

×
(
‖Dsp−

1
2 u‖W ([0,Tl ])+‖D

2− 1
2 u‖W ([0,Tl ])+‖D

sp−
1
2 v‖W ([0,Tl ])+‖D

2− 1
2 v‖W ([0,Tl ])

))
.
(
g(2C M)(2δ)p−1

+ (2δ)p−2(2C M)
)
‖u− v‖X . (2-6)

In these computations, we applied the Leibnitz rule for differences to α ∈
{
sp −

1
2 , 2− 1

2

}
and

F(u) := |u|p−1ug(|u|).

Therefore, if δ = δ(M) > 0 is small enough, 9 is a contraction.
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3. Proof of Proposition 1.8

To show Proposition 1.8, it is enough to prove that Q(I ) <∞. Without loss of generality we can assume
that A� 1. Then we divide I into subintervals (Ii )1≤i≤N such that

‖u‖S(Ii ) =
η

g1/(p−1)((2C)i A)
(3-1)

for some C & 1 and η > 0 constants to be chosen later, except maybe the last one. Notice that such a
partition always exists since by (1-33) we get, for N := N (I ) large enough,

N∑
i=1

1
g2((2C)i A)

≥

∫ N

1

1
g2((2C)x A)

dx &
∫ (2C)N A

2C A

1
yg2(y)

dy�‖u‖2(p−1)
S(I ) . (3-2)

We get, by a similar reasoning as used in Section 2

Q(I1, u). ‖(u0, u1)‖H̃2(R3)×H̃1(R3)+
∥∥Dsp−

1
2
(
|u|p−1ug(|u|)

)∥∥
W̃ (I1)
+
∥∥D2− 1

2
(
|u|p−1ug(|u|)

)∥∥
W̃ (I1)

. A+
(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)

)
‖u‖p−1

S(I1)
g(‖u‖L∞t L∞x (I1))

. A+‖u‖p−1
S(I1)

Q(I1, u)g(Q(I1, u)). (3-3)

We choose C to be equal to the constant determined by . in (3-3). Without loss of generality we can
assume that C > 1. By a continuity argument, iteration on i , we get, for η� 1, (1-34).

4. Proof of Proposition 1.9

To prove Proposition 1.9, we argue as follows: by time reversal symmetry it is enough to prove that
T+,g < ∞. If ‖u‖S(Imax,g) < ∞ then we have Q([0, T+,g], u) < ∞: this follows by slightly adapting
the proof of Proposition 1.8. Consequently, by the dominated convergence theorem, there would exist a
sequence tn→ T+,g such that ‖u‖S([tn,T+,g])� δ and ‖Dsp−

1
2 u‖W ([tn,T+,g])� δ if n is large enough, with

δ defined in Proposition 1.2. But, by (1-19) and (1-20),

‖ cos ((t − tn)D)u(tn)+
sin (t − tn)D

D
u1‖S([tn,T+,g])

. ‖u‖S([tn,T+,g])+‖u‖
p−1
S([tn,T+,g])‖D

sp−
1
2 u‖W ([tn,T+,g])g(Q([0, T+,g, u]))� δ, (4-1)

and consequently, by continuity, there would exist T̃ > T+,g such that∥∥∥∥cos ((t − tn)D)u(tn)+
sin (t − tn)D

D
∂t u(tn)

∥∥∥∥
S([tn,T̃ ])

≤ δ, (4-2)

which would contradict the definition of T+,g.

Remark 4.1. Notice that if we have the stronger bound ‖u‖S(Imax,g)≤C with C :=C
(
‖(u0, u1)‖H̃2×H̃1

)
<

∞, then not only Imax,g = (−∞,+∞) but also u scatters as t → ±∞. Indeed, by Proposition 1.9,
Imax,g=R. Then by time reversal symmetry it is enough to assume that t→∞. Let v(t) := (u(t), ∂t u(t)).



A REMARK ON BARELY Ḣ sp -SUPERCRITICAL WAVE EQUATIONS 209

We are looking for v+,0 :=
(
u+,0, u+,1

)
such that∥∥v(t)− K (t)v+,0

∥∥
H̃2×H̃1 → 0 (4-3)

as t→∞. Here

K (t) :=
(

cos t D (sin t D)/D
−D sin t D cos t D

)
(4-4)

We have

K−1(t)=
(

cos t D −(sin t D)/D
D sin t D cos t D

)
. (4-5)

Notice that K−1(t) and K (t) are bounded in H̃ 2
× H̃ 1. Therefore it is enough to prove that K−1(t)v(t)

has a limit as t→∞. But since K−1(t)v(t)= (u0, u1)− K−1(t) (unl(t), ∂t unl(t))— where

unl(t) := −
∫ t

0

sin (t − t ′)D
D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′

denotes the nonlinear part of the solution (1-12) — it suffices to prove that K−1(t) (unl(t), ∂t unl(t)) has
a limit. But∥∥K−1(t1)unl(t1)− K−1(t2)unl(t2)

∥∥
H̃2×H̃1

.
∥∥(unl, ∂t unl)

∥∥
L∞t H̃2([t1,t2])×L∞t H̃1([t1,t2])

.
(∥∥Dsp−

1
2 (|u|p−1ug(|u|))‖W̃ ([t1,t2])+‖D

2− 1
2 (|u|p−1ug(|u|))

∥∥
W̃ ([t1,t2])

)
.
(∥∥Dsp−

1
2 u‖W ([t1,t2])+‖D

2− 1
2 u
∥∥

W ([t1,t2])

)
‖u‖p−1

S([t1,t2])g
(
‖u‖L∞t L∞x (R)

)
.

(4-6)

It remains to prove that Q(R)<∞ in order to conclude that the Cauchy criterion is satisfied, which would
imply scattering. This follows from ‖u‖S(R)<∞ and a slight modification of the proof of Proposition 1.8.

5. Construction of the function g

In this section we prove Theorem 1.5. Let

Up(i) :=
{
(T, (u0, u1)) : 0≤ T ≤ i, ‖(u0, u1)‖H̃2×H̃1 ≤ i

}
(5-1)

As i ranges over {1, 2, . . . } we construct, for each set Up(i), a function gi satisfying (1-2) and (1-10).
Moreover it is constant for large values of |x |. The function gi+1 depends on gi ; the construction of gi

is made by induction on i . More precisely:

Lemma 5.1. Let A � 1. There exist two sequences of numbers {Ci }i≥0, {C ′i }i≥0 and a sequence of
functions {gi }i≥0 such that, for all (T, (u0, u1)) ∈ Up(i), we have

• g0 := 1, C0 := 0, C ′0 = 0;

• {Ci }i≥0 and {C ′i }i≥0 are positive, nondecreasing, and satisfy

ACi−1 < C ′i < ACi (5-2)
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for i ≥ 1 and
Ci ≥ i; (5-3)

• gi is smooth, nondecreasing, and satisfies (1-2), (1-10),∫ C ′i

1

1
tg2

i (t)
dt→∞ as i→∞, (5-4)

and

gi (|x |)=
{

gi−1(|x |) if |x | ≤ ACi−1,

i + 1 if |x | ≥ C ′i ;
(5-5)

• the solution u[i] of the wave equation
∂t t u[i]−4u[i] =−|u[i]|p−1u[i]gi (|u[i]|),
u[i](0)= u0 ∈ H̃ 2,

∂t u[i](0)= u1 ∈ H̃ 1
(5-6)

satisfies
max

(
‖u[i]‖S([−i,i]),

∥∥(u[i], ∂t u[i])
∥∥

L∞t H̃2([−T,T ])×L∞t H̃1([−T,T ])

)
≤ Ci . (5-7)

We postpone the proof until page 212. Assume the lemma is true and let g̃ = limi→∞ gi . Clearly
g̃ is smooth; it satisfies (1-2) and (1-10). It also goes to infinity. Moreover let u be the solution of
(1-1) with g := g̃. We want to prove that the solution u exists for all time. Let T0 ≥ 0 be a fixed time.
Let j := j (T0, ‖u0‖H̃2, ‖u1‖H̃1) > 0 be the smallest positive integer such that [−T0, T0] ⊂ [− j, j] and
‖(u0, u1)‖H̃2×H̃1 ≤ j . We claim that

‖(u, ∂t u)‖L∞t H̃2([−T0,T0])×L∞t H̃1([−T0,T0])
≤ C j and ‖u‖S([−T0,T0]) ≤ C j .

Indeed, let

F j :=
{
t ∈ [0, j] : ‖(u, ∂t u)‖L∞t H̃2([−t,t])×L∞t H̃1([−t,t]) ≤ C j and ‖u‖S([−t,t]) ≤ C j

}
. (5-8)

We must show that F j coincides with [0, j]. Certainly F j is nonempty, since it contains 0; see (5-3).

F j is closed. Indeed, let t̃ ∈ F j . There exists a sequence (tn)n≥1 in [0, j] such that tn→ t̃ , ‖u‖S([−tn,tn])≤

C j , and ‖(u, ∂t u)‖L∞t H̃2([−tn,tn])×L∞t H̃1([−tn,tn]) ≤ C j . It is enough to prove that ‖u‖S([−t̃,t̃]) is finite and
then apply dominated convergence. There are two cases:

• If card{tn : tn ≤ t̃}<∞, there exists n0 large enough such that tn ≥ t̃ for n ≥ n0 and

‖u‖S([−t̃,t̃]) ≤ ‖u‖S([−tn,tn]) <∞. (5-9)

• If card{tn : tn ≤ t̃} =∞, we can assume by passing to a subsequence that tn ≤ t̃ . Let n0 ≥ 1 be fixed.
Since∥∥∥∥cos (t − tn0)Du(tn0)+

sin (t−tn0)D
D

∂t u(tn0)

∥∥∥∥
S([tn0 ,t̃])

.
∥∥(u(tn0), ∂t u(tn0))

∥∥
H̃2×H̃1 . C j , (5-10)

we conclude from the dominated convergence theorem that there is n1 := n1(n0) large enough that

‖ cos (t − tn0)Du(tn0)+
sin (t − tn0)D

D
∂t u(tn0)‖S([tn1 ,t̃])

≤ δ, (5-11)



A REMARK ON BARELY Ḣ sp -SUPERCRITICAL WAVE EQUATIONS 211

with δ := δ(C j ) defined in Proposition 1.2. Therefore, by Proposition 1.2, we have ‖u‖S([tn1 ,t̃])
<∞.

Similarly, ‖u‖S([−t̃,−tn1 ])
<∞. Combining these inequalities with ‖u‖S([−tn1 ,tn1 ])

≤C j , we eventually
get ‖u‖S([−t̃,t̃]) <∞, as desired.

F j is open. Indeed, let t̄ ∈ F j . By Proposition 1.2 there exists α>0 such that if t ∈ (t̄−α, t̄+α)∩[0, j] then
[−t, t] ⊂ Imax,g̃ and ‖u‖L∞t L∞x ([−t,t]). ‖u‖L∞t H̃2([−t,t]).C j . Also, by (5-7), [−t, t] ⊂ Imax,g j . In view of
these remarks, we conclude, after slightly adapting the proof of Proposition 1.8, that Q([−t, t], u). j 1
and Q([−t, t], u

[ j]). j 1. We divide [−t, t] into a finite number of subintervals (Ii )i≤k = ([ai , bi ])1≤i≤k

that satisfy, for η� 1 to be defined later, the following properties:

(1) 1≤ i ≤ k: ‖u
[ j]‖S(Ii )≤η, ‖u‖S(Ii )≤η, ‖Dsp−

1
2 u
[ j]‖W (Ii )≤η, ‖Dsp−

1
2 u‖W (Ii )≤η, ‖D2− 1

2 u‖W (Ii )≤η,

and ‖D2− 1
2 u
[ j]‖W (Ii ) ≤ η.

(2) 1 ≤ i < k: ‖u
[ j]‖S(Ii ) = η or ‖u‖S(Ii ) = η or ‖Dsp−

1
2 u
[ j]‖W (Ii ) = η or ‖Dsp−

1
2 u‖W (Ii ) = η or

‖D2− 1
2 u‖W (Ii ) = η, or ‖D2− 1

2 u
[ j]‖W (Ii ) = η.

Notice that, by (1-2), we have

‖g j (|u|)− g j (|u[ j]|)‖L∞t L∞x (Ii ) . ‖u− u
[ j]‖L∞t L∞x (Ii ) . ‖u− u

[ j]‖L∞t H̃2(Ii )
. (5-12)

Consider w = u− u
[ j]. Applying the Leibnitz rules (1-28), (1-31), and (1-29), together with (5-12), we

have

Q(I1, w)

.
∥∥Dsp−

1
2 (|u|p−1u(g̃− g j )(|u|))

∥∥
W̃ (I1)
+
∥∥D2− 1

2 (|u|p−1u(g̃− g j )(|u|))
∥∥

W̃ (I1)

+
∥∥Dsp−

1
2 (|u|p−1u− |u

[ j]|
p−1u

[ j])g j (|u|)
∥∥

W̃ (I1)
+
∥∥D2− 1

2 (|u|p−1u− |u
[ j]|

p−1u
[ j])g j (|u|)

∥∥
W̃ (I1)

+
∥∥Dsp−

1
2 (|u

[ j]|
p−1u

[ j](g j (|u|)−g j (|u[ j]|)))
∥∥

W̃ (I1)
+
∥∥D2− 1

2 (|u
[ j]|

p−1u
[ j](g j (|u|)−g j (|u[ j]|)))

∥∥
W̃ (I1)

. (g̃− g j )(‖u‖L∞t H̃2(I1)
)
(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)

)
‖u‖p−1

S(I1)

+ g j
(
‖u‖L∞t H̃2(I1)

)((
‖u
[ j]‖

p−1
S(I1)
+‖u‖p−1

S(I1)

)(
‖Dsp−

1
2w‖W (I1)+‖D

2− 1
2w‖W (I1)

)
+
(
‖u
[ j]‖

p−2
S(I1)
+‖u‖p−2

S(I1)

)
‖w‖S(I1)

×
(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)+‖D

sp−
1
2 u
[ j]‖W (I1)+‖D

2− 1
2 u
[ j]‖W (I1)

))
+‖g′j (|u|)‖L∞t L∞x (I1)

(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)

)(
‖u‖p−2

S(I1)
+‖u

[ j]‖
p−2
S(I1)

)
‖w‖S(I1)

+
∥∥g j (|u|)− g j (|u[ j]|)

∥∥
L∞t L∞x (I1)

‖Dsp−
1
2 u
[ j]‖W (I1) ‖u[ j]‖

p−1
S(I1)

+‖u
[ j]‖

p−1
S(I1)
‖u
[ j]‖L∞t H̃2(I1)

(
‖w‖L∞t H̃2(I1)

(
‖Dsp−

1
2 u‖W (I1)+‖D

sp−
1
2 u
[ j]‖W (I1)

)
+‖Dsp−

1
2w‖W (I1)

)
. g j (C j )η

p−1 Q(I1, w)+ η
p−1 Q(I1, w)+ η

p Q(I1, w)+C jη
p−1(ηQ(I1, w)+ Q(I1, w)

)
, (5-13)

since, by choosing A large enough and by the construction of g̃, we have

(g̃− g j )(‖u‖L∞t H̃2(I1)
)= 0. (5-14)
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We conclude via a continuity argument that Q(I1, w)=0, so u=u
[ j] on I1. In particular, u(b1)=u

[ j](b1).
By iteration on i , it is not difficult to see that u = u

[ j] on [−t, t]. Hence (t̄ −α, t̄ +α)∩ [0, j] ⊂ F j , by
(5-7). Thus F j is open.

The upshot is that F j = [0, j], so ‖u‖S([−T0,T0]) ≤ C j . This proves global well-posedness. Moreover,
since j depends on T0 and ‖(u0, u1)‖H̃2×H̃1 , we get (1-17).

Proof of Lemma 5.1. The proof extends to the end of the paper. We must establish a priori bounds.

Step 1: Construction of g1.
Basically, g1 is a nonnegative function that increases and is equal to 2 for x large. Recall that [−T, T ]⊂
[−1, 1] and ‖(u0, u1)‖H̃2×H̃1 ≤ 1. Let I ⊂ [−T, T ].

Observe that the point (∞−, 3+) :=
( 3+ε
ε
, 3+ ε

)
with ε� 1 is 1

2 -wave admissible.
We would like to chop I (satisfying ‖ · ‖L∞t L3

x (I ) <∞) into subintervals I j such that ‖ · ‖L∞t L3
x (I j ) is as

small as wanted. Unfortunately this is impossible because the L∞t -norm is pathological. Instead we will
apply this process to ‖ · ‖L∞−t L3+

x
. This creates slight variations almost everywhere in the process of the

construction of gi . Details with respect to these slight perturbations have been omitted for the sake of
readability: they are left to the reader, who should ignore the + and − signs at the first reading.

We define

X (I ) := D
1
2−sp L∞−t L3+

x (I )∩ D
1
2−sp W (I )∩ S(I )∩ L∞t Ḣ sp(I )× L∞t Ḣ sp−1(I ). (5-15)

Let g1 be a smooth function, defined on the set of nonnegative real numbers, nondecreasing, and such
that h1 := g1 − 2 satisfies the following properties: h1(0) = −1, h is nondecreasing, and h1(x) = 0 if
|x | ≥ 1. It is not difficult to see that (1-2) and (1-10) are satisfied.

Observe that
|h1(x)|.

1

|x |
p−1

2 −
(5-16)

and
|h′1(x)|.

1

|x |
p+1

2 −
. (5-17)

Let u[1] and v[1] be solutions to the equations
∂t t u[1]−4u[1] =−|u[1]|p−1u[1]g1(|u[1]|),
u[1](0)= u0 ∈ H̃ 2,

∂t u[1](0)= u1 ∈ H̃ 1
(5-18)

and 
∂t tv[1]−4v[1] =−2

∣∣v[1]∣∣p−1
v[1],

v[1](0)= u0,

∂tv[1](0)= u1.

(5-19)

Step 1a. We claim that ‖v[1]‖X (R) <∞. Indeed, since we assumed that Conjecture 1.1 is true, we can
divide R into subintervals (I j = [t j , t j+1])1≤ j≤l such that

‖v[1]‖S(I j ) = η and ‖v[1]‖S(Il ) ≤ η,
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with η� 1. Then

‖v[1]‖X (I j+1) .
∥∥(v[1](t j ), ∂tv[1](t j ))

∥∥
Ḣ sp (R3)×Ḣ sp−1(R3)

+
∥∥Dsp−

1
2 (|v[1]|

p−1v[1])
∥∥

W̃ (I j+1)

.
∥∥(v[1](t j ), ∂tv[1](t j ))

∥∥
Ḣ sp (R3)×Ḣ sp−1(R3)

+
∥∥Dsp−

1
2 v[1]

∥∥
W (I j+1)

‖v[1]‖
p−1
S(I j+1)

. ‖v[1]‖X (I j )+ η
p−1
‖v[1]‖X (I j+1). (5-20)

Notice that l . 1: this follows from Conjecture 1.1, Condition 1.3 and the inequality

‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ sup
t∈Imax,g1

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ C2
(
‖(u0, u1)‖H̃2×H̃1

)
. 1, (5-21)

following from Condition 1.3 and the assumption ‖(u0, u1)‖H̃2×H̃1 ≤ 1. (At this stage, we only need
to know that ‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ ‖(u0, u1)‖H̃2×H̃1 ≤ 1 and apply Conjecture 1.1. Therefore
the introduction of supt∈Imax,g1

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3) in (5-21) is redundant. This is done on
purpose. Indeed, we will use Condition 1.3 in other parts of the argument: see (5-33).)

Now by a standard continuity argument and iteration on j we have

‖v[1]‖X (R) . 1 (5-22)

Step 1b. We control ‖u[1] − v[1]‖X ([−t̃,t̃]), for t̃ � 1 to be chosen later. By time reversal symmetry it is
enough to control ‖u[1]− v[1]‖X ([0,t̃]). To this end we consider w[1] := u[1]− v[1]. We get

∂t tw[1]−4w[1] =−|w[1]+ v[1]|
p−1(v[1]+w[1])g1(v[1]+w[1])+ 2|v[1]|p−1v[1].

Let η′� 1. By (5-22), we can divide [0, t̃] into subintervals (Jk = [t ′k, t ′k+1])1≤k≤m that satisfy

‖Dsp−
1
2 v[1]‖L∞−t L3+

x (Jk)
= η′ or ‖Dsp−

1
2 v[1]‖W (Jk) = η

′ for 1≤ k < m, (5-23)

‖Dsp−
1
2 v[1]‖W (Jk) ≤ η

′ and ‖Dsp−
1
2 v[1]‖L∞−t L3+

x (Jk)
≤ η′ for 1≤ k ≤ m. (5-24)

We have

‖w[1]‖X (Jk+1) .
∥∥(w[1](t ′k), ∂tw[1](t ′k)

)∥∥
Ḣ sp (R3)×Ḣ sp−1(R3)

+ A1+ A2,

where

A1 := ‖Dsp−
1
2
(
2|v[1]|p−1v[1]− 2|v[1]+w[1]|p−1(v[1]+w[1])

)
‖W̃ (Jk+1)

,

A2 := ‖Dsp−
1
2
(
h1(|v[1]+w[1]|)|v[1]+w[1]|

p−1(v[1]+w[1])
)∥∥

L1
t L

3
2
x (Jk+1)

.
(5-25)
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By the fractional Leibnitz rule applied to q(x) := |x |p−1xh(x), (5-16), (5-17), Sobolev embedding and
Hölder in time we have

A2 .
∥∥|v[1]+w[1]| p−1

2 +
∥∥

L1+
t L3−

x (Jk+1)

∥∥Dsp−
1
2 (v[1]+w[1])

∥∥
L∞−t L3+

x (Jk+1)

. ‖v[1]+w[1]‖
p−1

2 +

L
p−1

2 +
t L

3(p−1)+
2

x (Jk+1)

∥∥Dsp−
1
2 (v[1]+w[1])

∥∥
L∞−t L3+

x (Jk+1)

. t̃
∥∥Dsp−

1
2 (v[1]+w[1])

∥∥ p+1
2 +

L∞−t L3+
x (Jk+1)

. t̃(η′)
p+1

2 ++ t̃
∥∥Dsp−

1
2w[1]

∥∥ p+1
2 +

L∞−t L3+
x (Jk+1)

. t̃(η′)
p+1

2 ++ t̃ ‖w[1]‖
p+1

2 +

X (Jk+1)
. (5-26)

For A1 we follow [Kenig and Merle 2011, p. 9]:

A1 .
(
‖v[1]‖

p−1
S(Jk+1)

+
∥∥w[1]‖p−1

S(Jk+1)

)∥∥Dsp−
1
2w[1]‖W (Jk+1)

+
(∥∥v[1]‖p−2

S(Jk+1)
+‖w[1]

∥∥p−2
S(Jk+1)

)(∥∥Dsp−
1
2 v[1]

∥∥
W (Jk+1)

+
∥∥Dsp−

1
2w[1]

∥∥
W (Jk+1)

)
‖w[1]‖S(Jk+1)

. (η′)p−1
‖w[1]‖X (Jk+1)+‖w[1]‖

p
X (Jk+1)

+ (η′)p−2
‖w[1]‖

2
X (Jk+1)

+ η′‖w[1]‖
p−1
X (Jk+1)

. (5-27)

This follows from (1-31) and (1-27). Therefore we have

‖w[1]‖X (Jk+1) . ‖w[1]‖X (Jk)+ (η
′)

p+1
2 + t̃ + t̃ ‖w[1]‖

p+1
2 +

X (Jk+1)

+ (η′)p−1
‖w[1]‖X (Jk+1)+‖w[1]‖

p
X (Jk+1)

+ (η′)p−2
‖w[1]‖

2
Y (Jk+1)

+ η′‖w[1]‖
p−1
X (Jk+1)

. (5-28)

Let C be the constant determined by (5-28). By induction, we have

‖w[1]‖X (Jk) ≤ (2C)k t̃, (5-29)

provided that for 1≤ k ≤ m− 1 we have

C(η′)
p+1

2 t̃ � C(2C)k t̃,

Ct̃
(
(2C)k t̃

) p+1
2 +� (2C)k t̃,

C(η′)p−1(2C)k+1 t̃ � C(2C)k t̃,

C
(
(2C)k t̃

)p
� C(2C)k t̃,

C(η′)p−2 ((2C)k+1 t̃
)2
� C(2C)k t̃,

η′
(
(2C)k+1 t̃

)p−1
� C(2C)k .

(5-30)

These inequalities are satisfied if η′� 1 and

t̃ � 1 (5-31)

since k ≤ m− 1 and, by (5-22), m . 1. We conclude that

‖w[1]‖X ([0,t̃]) . 1. (5-32)
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Step 1c. We control ‖u[1]‖X ([−T,T ]). By time reversal symmetry, it is enough to control ‖u[1]‖X ([0,T ]).
Recall that T ≤1. We chop T ≤1 into subintervals (Jk′=[ak′, bk′])1≤k′≤l ′ such that |Jk′ |= t̃ for 1≤ k ′< l ′

and |Jl ′ | ≤ t̃ . Notice that, by Condition 1.3, we have

‖(u(ak′), ∂t u(ak′))‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ sup
t∈Imax,g1

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3)

≤ C2
(
‖(u0, u1)‖H̃2×H̃1

)
. 1, (5-33)

taking advantage of the assumption ‖(u0, u1)‖H̃2×H̃1 ≤ 1. For each k ′ let v[1,k′] be the solution of
∂t tv[1,k′]−4v[1,k′] =−|v[1,k′]|

p−1v[1,k′],

v[1,k′](ak′)= u[1](ak′),

∂tv[1,k′](ak′)= ∂t u[1](ak′);

(5-34)

in particular, v[1,k′] = v[1]. By slightly modifying the proof of Step 1b and letting v[1,k′] play the role of
v[1], this leads, by (5-33), to

‖v[1,k′]‖X (R) . 1 (5-35)

and
‖w[1,k′]‖X (Jk′ )

. 1, (5-36)

with w[1,k′] := u[1]− v[1,k′]. Therefore ‖u[1]‖X (Jk′ )
. 1, and summing over Jk′ we have

‖u[1]‖X ([0,T ]) . 1. (5-37)

Step 1d. We control ‖(u[1], ∂t u[1])‖L∞t H̃2([−1,1])×L∞t H̃1([−1,1]) and ‖u[1]‖S([−1,1]). We get from (5-37)

‖u[1]‖S([−1,1]) . 1. (5-38)

To conclude Step 1: By Proposition 1.8 and (5-38) we have

‖(u[1], ∂t u[1])‖L∞t H̃2([−1,1])×L∞t H̃1([−1,1]) . 1. (5-39)

Therefore
max

(
‖u[1]‖S([−1,1]), ‖(u[1], ∂t u[1])‖L∞t H̃2([−1,1])×L∞t H̃1([−1,1])

)
. 1. (5-40)

We let C ′1 in the statement of Lemma 5.1 be equal to 1. We can assume without the loss of generality
that the constant implicit in . in (5-40) is larger than 1; let C1 in the statement of Lemma 5.1 be this
constant. Then C ′1 and C1 satisfy (5-2) and (5-3).

Step 2: Construction of gi from gi−1.
Recall that [−T, T ] ⊂ [−i, i] and ‖(u0, u1)‖H̃2×H̃1 ≤ i . In view of (5-5) it is enough to construct gi

for |x |> ACi−1. It is clear that, by choosing C ′i large enough, we can construct find a function g̃i defined
on [ACi−1, C ′i ] such that gi , defined by

gi (x) :=


gi−1(x) if |x | ≤ ACi−1,

g̃i (x) if C ′i ≥ |x | ≥ ACi−1,

i + 1 if |x | ≥ C ′i

(5-41)
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is smooth and slowly increasing; also it satisfies (1-2), (1-10), and∫ C ′i

ACi−1

1
yg2

i (y)
dy ≥ i. (5-42)

It remains to determine Ci in the statement of Lemma 5.1. To do that we slightly modify the reasoning
in Step 1.

We sketch the argument. Let hi (x) := gi (x)− (i+1). Then hi (x)= 0 if |x |> C ′i . It is not difficult to
see that

|hi (x)|.i
1

|x |
p−1

2 +
, (5-43)

|h′i (x)|.i
1

|x |
p+1

2 +
. (5-44)

Let u[i] and v[i] be the solutions of the equations
∂t t u[i]−4u[i] =−|u[i]|p−1u[i]gi (|u[i]|),
u[i](0) := u0,

∂t u[i](0) := u1

(5-45)

and 
∂t tv[i]−4v[i] =−(i + 1)|v[i]|p−1v[i],

v[i](0) := u0,

∂tv[i](0) := u1

(5-46)

Step 2a. We have
‖v[i]‖X (R) .i 1, (5-47)

by adapting the proof of Step 1a. Notice, in particular, that we can use Conjecture 1.1 and control
‖v[i]‖S(R) since w[i] := (i + 1)

1
p−1 v[i] satisfies ∂t tw[i]−4w[i] =−|w[i]|

p−1w[i].

Step 2b. We have ‖u[i]− v[i]‖X ([0,t̃]) .i 1 for t̃ �i 1, by adapting the proof of Step 1b. The dependance
on i basically comes from (5-43), (5-44) and (5-46).

Step 2c. We prove that ‖u[i]‖X ([−T,T ]) .i,p 1. By time reversal symmetry, it is enough to control
‖u[i]‖X ([0,T ]). Recall that T ≤ i . We chop [0, T ] into subintervals (Jk′ = [ak′, bk′])1≤k′≤l ′ such that
|Jk′ | = t̃ for 1 ≤ k ′ < l ′ and |Jl ′ | ≤ t̃ (with t̃ defined in Step 2b). By Condition 1.3 and the assumption
‖(u0, u1)‖H̃2×H̃1 ≤ i , we have

‖(u[i](ak′), ∂t u[i](ak′))‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ sup
t∈Imax,gi

∥∥(u[i](t), ∂t u[i](t))
∥∥

Ḣ sp (R3)×Ḣ sp−1(R3)
.i 1. (5-48)

We introduce 
∂t tv[i,k′]−4v[i,k′] =−(i + 1)|v[i,k′]|p−1v[i,k′],

v[i,k′](ak′)= u[i](ak′),

∂tv[i,k′](ak′)= ∂t u[i](ak′)

(5-49)
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and, by using (5-48), we can prove that

‖u[i]‖S([−i,i]) .i 1. (5-50)

Step 2d. By using Proposition 1.8 and (5-50) we get

max
(
‖u[i]‖S([−i,i]), ‖(u[i], ∂t u[i])‖L∞t H̃2([−i,i])×L∞t H̃1([−i,i])

)
.i 1. (5-51)

We can assume without loss of generality that the constant implicit in . is larger than i and C ′i . Let Ci

be this constant; (5-2) and (5-3) are satisfied.
This concludes Step 2, and the proof of Lemma 5.1. �
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HERBERT KOCH and JEREMY L. MARZUOLA
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