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A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR
MAXIMAL SINGULAR INTEGRALS WITH ONE DOUBLING MEASURE

MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Let 0 and w be positive Borel measures on R with o doubling. Suppose first that 1 < p < 2. We
characterize boundedness of certain maximal truncations of the Hilbert transform 7, from L (o) to
L?(w) in terms of the strengthened A, condition

([ 5007 dow) ([ o dow) " <ciol

where 5o (x) =1Q|/(|Q] +|x —x¢|), and two testing conditions. The first applies to a restricted class of
functions and is a strong-type testing condition,

/ T,(xgo)(x)? dw(x) < C) / do(x) forall E C Q,
o (Y]

and the second is a weak-type or dual interval testing condition,

1/
| mirosorm do = ca( [ 11w ao) ([ dow)
Q Q 0

for all intervals Q in R and all functions f € L? (o). In the case p > 2 the same result holds if we include
an additional necessary condition, the Poisson condition

ad ’ > 2_6 p ad ’
f(ngu,V’—lZW|X<,,><e><y)) do(y) <C Y L1517,
R = =0 N7 r=1

for all pairwise disjoint decompositions Q = | J°Z, I, of the dyadic interval Q into dyadic intervals /,.
We prove that analogues of these conditions are sufficient for boundedness of certain maximal singular
integrals in R” when o is doubling and 1 < p < oo. Finally, we characterize the weak-type two weight
inequality for certain maximal singular integrals 7; in R” when 1 < p < oo, without the doubling
assumption on o, in terms of analogues of the second testing condition and the A, condition.

1/p'

1. Introduction

Sawyer [1984; 1982; 1988] characterized two weight inequalities for maximal functions and other pos-
itive operators, in terms of the obviously necessary conditions that the operators be uniformly bounded
on a restricted class of functions, namely indicators of intervals and cubes. Thus, these characterizations
have a form reminiscent of the 71 theorem of David and Journé.
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Corresponding results for even the Hilbert transform have only recently been obtained [Nazarov et al.
2010; Lacey et al. 2011] and even then only for p = 2; evidently these are much harder to obtain. We
comment in more detail on prior results below, including the innovative work of Nazarov, Treil and
Volberg [1999; 2008; 2010; 2003].

Our focus is on providing characterizations of the boundedness of certain maximal truncations of a
fixed operator of singular integral type. The singular integrals will be of the usual type, for example the
Hilbert transform or paraproducts. Only size and smoothness conditions on the kernel are assumed; see
(1-9). The characterizations are in terms of certain obviously necessary conditions, in which the class
of functions being tested is simplified. For such examples, we prove unconditional characterizations of
both strong-type and weak-type two weight inequalities for certain maximal truncations of the Hilbert
transform, but with the additional assumption that o is doubling for the strong-type inequality. A major
point of our characterizations is that they hold for all 1 < p < oo. The methods in [Lacey et al. 2011] and
those of Nazarov, Treil and Volberg apply only to the case p = 2, where the orthogonality of measure-
adapted Haar bases prove critical. The doubling hypothesis on ¢ may not be needed in our theorems,
but is required by the use of Calderén—Zygmund decompositions in our method.

As the precise statements of our general results are somewhat complicated, we illustrate them with an
important case here. Let

Tf(x) = lim Lre—yay
e—0 R\(—¢,¢) y

denote the Hilbert transform, let

O<e<oo

1
o= sw [[ ey
R\(—¢,8) Y
denote the usual maximal singular integral associated with 7', and finally let

niw= s [[ - Lrena

0<ep,80<00
1/4<er/e1<4

denote the new strongly (or noncentered) maximal singular integral associated with 7' that is defined
more precisely below. Suppose o and w are two locally finite positive Borel measures on R that have
no point masses in common. Then we have the following weak and strong-type characterizations, which
we emphasize hold for all 1 < p < oo.

o The operator 7, is weak type (p, p) with respect to (o, w), that is,

IT(fo)llrew = ClfllLre) (1-1)

for all f bounded with compact support if and only if the two weight A, condition

1 1 p=l
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holds for all intervals Q and the dual 7} interval testing condition

fQTb(XQfo)dwsC(/Qlfl”do)l/p(/g dw)l/p,, (1-2)

holds for all intervals Q and f € L’é(a) (part 4 of Theorem 1.8). The same is true for 7;. It is easy
to see that (1-2) is equivalent to the more familiar dual interval testing condition

/|L*(XQw)|l”da§Cf do, (1-3)
(@) (@)

for all intervals Q and linearizations L of the maximal singular integral 7, (see (2-10)).

 Suppose in addition that o is doubling and 1 < p < oo. Then the operator 7j is strong-type (p, p)
with respect to (o, w), that is,

IT,(fo)llLrw <CIlfllLre)

for all f bounded with compact support if and only if these four conditions hold: (1) the strengthened

A, condition
1/ , 1/p
(/ 50 ()" doo(x)) p(/SQ(X)p do) " =clol
0 i

10|
[Ql+1x—xg|”

[ rasoras=c([ 117a0) ([ aw)”.

holds for all intervals Q and f € L’é(a); (3) the forward 7} testing condition

where sp(x) = holds for all intervals Q; (2) the dual 7} interval testing condition

/TJ(XEO’)pdC()§C/ do, (1-4)
0 Qg

holds for all intervals Q and all compact subsets £ of Q; and (4) the Poisson condition

o0 5t » o0
[ (el > ko) dot) =€ Yl
R =1 =0 T r=1

for all pairwise disjoint decompositions Q = | J°2, I, of the dyadic interval Q into dyadic inter-
vals I, for any fixed dyadic grid. In the case 1 < p <2, only the first three conditions are needed
(Theorem 1.10). Note that in (1-4) we are required to test over all compact subsets £ of Q on the
left side, but retain the upper bound over the (larger) cube Q on the right side.

As these results indicate, the imposition of the weight o on both sides of (1-1) is a standard part of
weighted theory, and is in general necessary for the testing conditions to be sufficient. Compare to the
characterization of the two weight maximal function inequalities in Theorem 1.2 below.
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Problem 1.1. In (1-4), our testing condition is more complicated than one would like, in that one must
test over all compact E C Q in (1-4). There is a corresponding feature of (1-2), seen after one unwinds
the definition of the linearization L*. We do not know if these testing conditions can be further simplified.
The form of these testing conditions is dictated by our use of what we call the “maximum principle”;
see Lemma 2.6.

We now recall the two weight inequalities for the maximal function as they are central to the new
results of this paper. Define the maximal function

Mv(x) = sup Lf lv|] for x € R,
er |Q| Q
where the supremum is taken over all cubes Q (by which we mean cubes with sides parallel to the

coordinate axes) containing x.

Theorem 1.2 (maximal function inequalities). Suppose that o and w are positive locally finite Borel
measures on R", and that 1 < p < oo. The maximal operator M satisfies the two weight norm inequality
[Sawyer 1982]

M folLr@ = CllfllLr@) for f€LP(o), 1-5)

if and only if for all cubes Q C R",

f M(x00)(x)? do(x) §C1/ do(x). (1-6)
0 o
The maximal operator M satisfies the weak-type two weight norm inequality [Muckenhoupt 1972]
IMCf o)l Lo (@) = sup AM(fo) > AYo/P < Cll fllLry for f€LP(o), (1-7)
>0

if and only if the two weight A, condition holds for all cubes Q C R":

(o f, )" Gar o) =

The necessary and sufficient condition (1-6) for the strong-type inequality (1-5) states that one need
only test the strong-type inequality for functions of the form xpo. Not only that, but the full L? (w) norm
of M(x o) need not be evaluated. There is a corresponding weak-type interpretation of the A, condition
(1-8). Finally, the proofs given in [Sawyer 1982] and [Muckenhoupt 1972] for absolutely continuous
weights carry over without difficulty for the locally finite measures considered here.

1.3. Two weight inequalities for singular integrals. Let us set notation for our theorems. Consider a
kernel function K (x, y) defined on R" x R" satisfying the size and smoothness conditions

IK(x, )| <Clx—y|[™",
(1-9)

— y/ oy
|K(x,y)—K(x/,y)|§C8(|x x|)|x—y|_”, =xl_ 1
lx =yl lx —y] — 2

IA
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where § is a Dini modulus of continuity, that is, a nondecreasing function on [0, 1] with §(0) = 0 and
fol §(s)s~'ds < oo.
Next we describe the truncations we consider. Let ¢, n be fixed smooth functions on the real line
satisfying
t(@)=0 fort<i and ¢@)=1 forr>1,
nit)=0 fort>2 and n()=1 fort<l,

¢ is nondecreasing and 7 is nonincreasing.

Given0 <& < R <00, set £ (t) =¢(t/¢e) and ng(t) =n(t/R) and define the smoothly truncated operator
T; r on Llloc(IR”) by the absolutely convergent integrals

Ts,Rf(X)=/K(x,y)é“s(lx—yl)nR(IX—yl)f(y)dy for f € L (R").

Define the maximal singular integral operator 7, on LIIOC(R”) by

T,f(x)= sup |Terf(x)| for x eR".
O<e<R<o0
We also define a corresponding new notion of strongly maximal singular integral operator 7} as follows.
In dimension n = 1, we set

Tfx)= sup |Torf(0)] for xeR,
O<gi<R<o0
1/4<e1/e2<4

where & = (g1, &) and

Terf(x) = / K (x, y){Ge, (x = y) + 8, (v = )Inr(Ix =y f(y) dy.

Thus the local singularity has been removed by a noncentered smooth cutoff —e¢; to the left of x and
&2 to the right of x, but with controlled eccentricity 1/¢,. There is a similar definition of T} f in higher
dimensions involving in place of ¢.(|x — y|), a product of smooth cutoffs,

e(x =) =1 = [ [ = {Zery 0ok = 31 + oy 0k — X)),

k=1

satisfying 1/4 <epr_1/&2x <4 for 1 <k <n. The advantage of this larger operator 7} is that in many cases
boundedness of T} (or collections thereof) implies boundedness of the maximal operator Jit. Our method
of proving boundedness of 7, and 7, requires boundedness of the maximal operator Jl anyway, and as a
result we can in some cases give necessary and sufficient conditions for strong boundedness of T;. As for
weak-type boundedness, we can in many more cases give necessary and sufficient conditions for weak
boundedness of the usual truncations 7.
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Definition 1.4. We say that T is a standard singular integral operator with kernel K if T is a bounded
linear operator on L7 (R") for some fixed 1 < g < oo, that is

ITfllLa@n < Cllf Loy for f e LR, (1-10)

if K(x, y) is defined on R" x R" and satisfies both (1-9) and the Hormander condition,
| K@= KGyOldr=C for v € By e).e 20 (1-11)
B(y,26)¢
and finally if T and K are related by

Tf(x)= / K(x,y)f(y)dy for a.e.-x ¢ supp f, (1-12)
whenever f € L9(R") has compact support in R”. We call a kernel K (x, y) standard if it satisfies (1-9)
and (1-11).

For standard singular integral operators, we have this classical result. (See the appendix on truncation
of singular integrals on [Stein 1993, page 30] for the case R = 00; the case R < oo is similar.)

Theorem 1.5. Suppose that T is a standard singular integral operator. Then the map f — T, f is of
weak type (1, 1), and bounded on L? (R) for 1 < p < 0o. There exist sequences £; — 0 and R; — o0
such that for f € LP(R) with 1 < p < oo,

lim T;, g, f(x) = Toeof (x)
]—>00

exists for a.e. x € R. Moreover, there is a bounded measurable function a(x) (depending on the se-
quences) satisfying
Tf(x)=Tocf(x)+alx)f(x) forxeR"

We state a conjecture, so that the overarching goals of this subject are clear.

Conjecture 1.6. Suppose that o and w are positive Borel measures on R", let 1 < p < 0o, and suppose
T is a standard singular integral operator on R". Then the following two statements are equivalent:

/IT(fG)I”w < c/|f|f’o for fece,

B A R e
<|Q| 0 ) (|Q| 0 )

/|TXQU|p Sc/f o, for all cubes Q.
o 0

/|T*XQ0)|[J/U < C”/ ,
0 0

Remark 1.7. The first of the three testing conditions above is the two-weight A, condition. We expect

that this condition can be strengthened to a “Poisson two-weight A, condition”. See [Nazarov et al.
2010; Volberg 2003].
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The most important instances of this conjecture occur when 7 is one of a few canonical singular
integral operators, such as the Hilbert transform, the Beurling transform, or the Riesz transforms. This
question occurs in different instances, such as the Sarason conjecture concerning the composition of
Hankel operators, or the semicommutator of Toeplitz operators [Cruz-Uribe et al. 2007; Zheng 1996],
mathematical physics [Peherstorfer et al. 2007], as well as perturbation theory of some self-adjoint op-
erators. See references in [Volberg 2003].

To date, this has only been verified for positive operators, such as Poisson integrals and fractional
integral operators [Sawyer 1984; 1982; 1988]. Recently the authors have used the methods of Nazarov,
Treil and Volberg to prove a special case of the conjecture for the Hilbert transform when p =2 and an
energy hypothesis is assumed [Lacey et al. 2011]. Earlier in [2010] Nazarov, Treil and Volberg used a
stronger pivotal condition in place of the energy hypothesis, but neither of these conditions are necessary
[Lacey et al. 2011]. The two weight Helson—Szeg6 theorem was proved many years earlier by Cotlar
and Sadosky [1979; 1983]; thus the L? case for the Hilbert transform is completely settled.

Nazarov, Treil and Volberg [1999; 2010] have characterized those weights for which the class of Haar
multipliers is bounded when p = 2. They also have a result for an important special class of singular
integral operators, the “well-localized” operators of [2008]. Citing the specific result here would carry
us too far afield, but this class includes the important Haar shift examples, such as the one found by
S. Petermichl [2000], and generalized in [2002]. Consequently, characterizations are given in [Volberg
2003] and [Nazarov et al. 2010] for the Hilbert transform and Riesz transforms in weighted L? spaces
under various additional hypotheses. In particular they obtain an analogue of the case p = 2 of the
strong-type theorem below. Our results can be reformulated in the context there, a theme we do not
pursue further here.

We now characterize the weak-type two weight norm inequality for both maximal singular integrals
and strongly maximal singular integrals.

Theorem 1.8 (maximal singular integral weak-type inequalities). Suppose that o and w are positive
locally finite Borel measures on R", let 1 < p < 0o, and let T}, and T, be the maximal singular integral
operators as above with kernel K (x, y) satisfying (1-9).

(1) Suppose that the maximal operator M satisfies (1-7). Then T, satisfies the weak-type two weight
norm inequality

IT:(fo)llLrew < CllflliLre) for f€LP(o), (1-13)

if and only if

1/p 1/p'
| Txesorwdom e [ 1reordew) ([ dom)”". (1-14)
Q Q Q

for all cubes Q C R" and all functions f € L? (o).
(2) The same characterization as above holds for T, in place of T, everywhere.

(3) Suppose that o and w are absolutely continuous with respect to Lebesgue measure, that the maximal
operator M satisfies (1-7), and that T is a standard singular integral operator with kernel K as
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above. If (1-13) holds for T; or T, then it also holds for T':
IT(fo)llLr=w <ClfllLr@w) for f € LP(o), fo € L™ with supp fo compact. (1-15)

(4) Suppose ¢ > 0 and that {K j}]J‘:1 is a collection of standard kernels such that for each unit vector u
there is j satisfying
|Kj(x,x+tu)|>=ct™ forteR. (1-16)

Suppose also that o and w have no common point masses, that is, o ({x})-w({x}) =0 for all x € R".
Then

I(To(follLrew < ClfliLr@) for f€LP(o), withl <j<J,
if and only if the two weight A, condition (1-8) holds and

1/p 1/p'
[ @nixosawdow e [ 1rerdew) ([ dom)”".
Qo Qo Q

feL?(o), cubes QCR", 1<j <.

While in (1)-(3), we assume that the maximal function inequality holds, in point (4), we obtain an
unconditional characterization of the weak-type inequality for a large class of families of (centered)
maximal singular integral operators 7,. This class includes the individual maximal Hilbert transform
in one dimension, the individual maximal Beurling transform in two dimensions, and the families of
maximal Riesz transforms in higher dimensions; see Lemma 2.11.

Note that in (1) above, there is only size and smoothness assumptions placed on the kernel, so that
it could for instance be a degenerate fractional integral operator, and therefore unbounded on L?(dx).
But, the characterization still has content in this case, if w and o are not of full dimension.

In (3), we deduce a two weight inequality for standard singular integrals 7" without truncations when
the measures are absolutely continuous. The proof of this is easy. From (1-13) and the pointwise in-
equality Ty fo(x) < Ty fo(x) < T;fo(x), we obtain that for any limiting operator Tj », the map
f — Tp.oofo is bounded from L? (o) to LP*°(w). By (1-7) f — M fo is bounded; hence f — fo
is bounded, and so Theorem 1.5 shows that f — T fo = Tp o fo + afo is also bounded, provided we
initially restrict attention to functions f for which fo is bounded with compact support.

The characterizing condition (1-14) is a weak-type condition, with the restriction that one only needs
to test the weak-type condition for functions supported on a given cube, and test the weak-type norm
over that given cube. It also has an interpretation as a dual inequality |, Q|L*( Xch)l”’ do <C, | 0 dw,
which we return to below; see (2-10) and (2-11).

We now consider the two weight norm inequality for a strongly maximal singular integral T}, but
assuming that the measure o is doubling.

Theorem 1.9 (maximal singular integral strong-type inequalities). Suppose that o and w are positive
locally finite Borel measures on R" with o doubling, let 1 < p < oo, and let T, and T, be the maximal
singular integral operators as above with kernel K (x, y) satisfying (1-9).
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(1) Suppose that the maximal operator M satisfies (1-5) and also the “dual” inequality
MG (o) < Cllgll ) for g€ L7 (@). (1-17)

Then T, satisfies the two weight norm inequality

/ Tu(fa)(X)”dw(X)SC/ | f ()P do (x), (1-18)
R7 R7

forall f € L?(o) that are bounded with compact support in R", if and only if both the dual cube
testing condition (1-14) and the condition

fTu(ngd)(x)”dw(X)SCl/ do (x), (1-19)
0 0

holds for all cubes Q C R" and all functions |g| < 1.

(2) The same characterization as above holds for T, in place of T, everywhere. In fact
Ty fo(x) =T, fo(x)| = CM(fo)(x).

(3) Suppose that o and w are absolutely continuous with respect to Lebesgue measure, that the maximal
operator M satisfies (1-5), and that T is a standard singular integral operator. If (1-18) holds for T
or Ty, then it also holds for T

/ IT(fo)(x)|P dw(x) < Cf | f(x)|Pdo(x) for felL?(o), fo€L™, with supp(fo) compact.
Rll Rn
(4) Suppose that {K j};le is a collection of standard kernels satisfying for some ¢ > 0,

tReK;(x,y) >
/ x — y|

for £ (yj—xj) = glx—yl, (1-20)

where x = (xj)1<j<n. If both w and o are doubling, then (1-18) holds for (T;)y and (T;‘)u for all
1 < j <nifand only if both (1-19) and (1-14) hold for (T;), and (TJ.*)Jfor alll < j<n.

Note that the second condition (1-19) is a stronger condition than we would like: it is the L? inequality,
applied to functions bounded by 1 and supported on a cube Q, but with the L” (o) norm of 1y on the
right side. It is easy to see that the bounded function g in (1-19) can be replaced by x g for every compact
subset E of Q. Indeed if L ranges over all linearizations of 7}, then with

8gh.0.L = L*(xohw)/IL*(xghw)|
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we have
sup/ Ty(x080) w = sup sup  sup /L(XQgJ)ha)‘
gl=1Jo gI=t L Il <110
=sup sup sup / L*(XQha))go|
Lol <l lgl=1'V o

=sup sup /AL*()(Qhw)gh,Q,L(7
1Jo

Ll =

= sup sup/ L(xo8n 0,1)hwo
0

WAl 51 L

< sup SUP/ Ty (x08n0..0)" w.
] =<l L JQ

LV (@)
Since gj,o,1 takes on only the values £1, it is easy to see that we can take g = xg. Point (3) is again
easy, just as in the previous weak-type theorem.

And in (4), we note that the truncations, in the way that we formulate them, dominate the maximal
function, so that our assumption on Jl in (1)—(3) is not unreasonable. The main result of [Nazarov et al.
2010] assumes p = 2 and that T is the Hilbert transform, and makes similar kinds of assumptions. In
fact it is essentially the same as our result in the case p = 2, but without doubling on o and only for T
and not 7;, or 7. Finally, we observe that by our definition of the truncation 7;, we obtain in point (4) a
characterization for doubling measures of the strong-type inequality for appropriate families of standard
singular integrals and their adjoints, including the Hilbert and Riesz transforms; see Lemma 2.12.

We don’t know if the bounded function g in condition (1-19) can be replaced by the constant function 1.

We now give a characterization of the strong-type weighted norm inequality for the individual strongly
maximal Hilbert transform 7; when 1 < p < oo and the measure o is doubling. If p > 2 we use an extra
necessary condition (see (1-24)) that involves a “dyadic” Poisson function ZﬁO(Z_e JITON X0,
where I is a dyadic interval and 7© denotes its £-th ancestor in the dyadic grid, that is, the unique
dyadic interval containing I with |/ ©| = 24I|. This condition is a variant of the pivotal condition of
Nazarov, Treil and Volberg in [2010]; when 1 < p <2 it is a consequence of the A, condition (1-8).

Theorem 1.10. Suppose that o and w are positive locally finite Borel measures on R with o doubling,
let1 < p < 00, and let T, be the strongly maximal Hilbert transform. Then T, is strong type (p, p) with
respect to (o, w), that is,

IT:(fo)llLrw = ClfllLr),

for all f bounded with compact support if and only if the following four conditions hold. In the case
I < p <2, the fourth condition (1-24) is implied by the A, condition (1-8), and so in this case we only

need the first three conditions below:
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(1) The dual T, interval testing condition

[ roeroao=c(f 1ra0) ([ as)”

holds for all intervals Q and f € Lg(o).

(2) The forward T, testing condition

/TJ(XEo)pda)SC/ do
0 o

holds for all intervals Q and all compact subsets E of Q.

(3) The strengthened A, condition

([ Gareie =) @) ([grie =) #re0) " = c1a

holds for all intervals Q.

(4) The Poisson condition

00 o] y—t » 00
/(Z|1r|a|1r|”—‘ me(mm)) do(y) <C Y Lo 1|7
R =0 "M

r=1

11

(1-21)

(1-22)

(1-23)

(1-24)

holds for all pairwise disjoint decompositions Q = \J72 | I, of the dyadic interval Q into dyadic

intervals I, for any fixed dyadic grid.

Remark 1.11. The strengthened A, condition (1-23) can be replaced with the weaker “half” condition
where the first factor on the left is replaced by ( f 0 dw)'/?. We do not know if the first three conditions

suffice when p > 2.

2. Overview of the proofs and general principles

If Q is acube, then £(Q) is its side length, | Q| is its Lebesgue measure and for a positive Borel measure v,

|0ly = [, dvis its v-measure.

2.1. Calderon-Zygmund decompositions. Our starting place is the argument in [Sawyer 1988] used to

prove a two weight norm inequality for fractional integral operators on Euclidean space. Of course the

fractional integral is a positive operator with a monotone kernel, properties we do not have in the current

setting.

A central tool arises from the observation that for any positive Borel measure p, one has the bound-

edness of a maximal function associated with . Define the dyadic u-maximal operator ./i/tﬁy by

) 1
A £ (x) = sup flflu,
a oea 19l Jo
xeQ

2-1
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with the supremum taken over all dyadic cubes Q € 9 containing x. It is immediate to check that ./l/Lﬁy
satisfies the weak-type (1, 1) inequality, and the L°°(u) bound is obvious. Hence we have

/(A/L,‘iyf)‘”,qu/.fpu for f > 0onR". 2-2)

This observation places certain Calderén—Zygmund decompositions at our disposal. Exploitation of this
brings in the testing condition (1-19) involving the bounded function g on a cube Q, and indeed, g turns
out to be the “good” function in a Calderén—Zygmund decomposition of f on Q. The associated “bad”
function requires the dual testing condition (1-14) as well.

2.2. Edge effects of dyadic grids. Our operators are not dyadic operators, nor —in contrast to the frac-
tional integral operators — can they be easily obtained from dyadic operators. This leads to the necessity
of considering for instance triples of dyadic cubes, which are not dyadic.

Also, dyadic grids distinguish points by for instance making some points on the boundary of many
cubes. As our measures are arbitrary, they could conspire to assign extra mass to some of these points.
To address this point, Nazarov, Treil and Volberg [2010; 2003; 1997] use a random shift of the grid.

A random approach would likely work for us as well, though the argument would be different from
those in the cited papers above. Instead, we will use a nonrandom technique of shifted dyadic grid from
[Muscalu et al. 2002], which goes back to P. Jones and J. Garnett. Define a shifted dyadic grid to be the
collection of cubes

3 ={27(k+[0, )"+ (-D/a): j€Z keZ"}, where a € {0, 1, 3}". (2-3)

The basic properties of these collections are these: In the first place, each %* is a grid, that is, for
0,0 €9* wehave QN Q' € {&, O, O} and Q is a union of 2" elements of ¥* of equal volume. In
the second place (and this is the novel property for us), for any cube Q C R” there is a choice of some
a and some Q' € 9, such that Q C (9/10)Q’ and |Q’| < C|Q|.

We define the analogues of the dyadic maximal operator in (2-1), namely

1
M = . 2.4
wJ (%) ngga |Q|M/Q|f|l/« (2-4)
xeQ

These operators clearly satisfy (2-2). Shifted dyadic grids will return in Section 4.5.

2.3. A maximum principle. A second central tool is a “maximum principle” (or good X inequality) that
will permit one to localize large values of a singular integral, provided the maximal function is bounded.
It is convenient for us to describe this in conjunction with another fundamental tool of this paper, a family
of Whitney decompositions.

We begin with the Whitney decompositions. Fix a finite measure v with compact support on R"* and
fork e Z, let

Qi ={x eR": Tv(x) > 2~}. (2-5)
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Note that €2; # R" has compact closure for such v. Fix an integer N > 3. We can choose Ry > 3
sufficiently large, depending only on the dimension and N, such that there is a collection of cubes {Q’;} j
that satisfy the following properties:

(disjoint cover) € =J; Q’; and Q’; NoY=oifi # j,
(Whitney condition) Rw Qlj‘- C @ and 3Ry Q'; N, # @ forallk, j,
(bounded overlap) > X N Ok < Cxgq, forallk, (2-6)
(crowd control)  #{Qf: Q¥ NN QY # @) < C forallk, j,
(nested property) Q’]‘. & Qf implies k > £.

Indeed, one should choose the {Q’J‘.} ; satisfying the Whitney condition, and then show that the other
properties hold. The different combinatorial properties above are fundamental to the proof. And alternate
Whitney decompositions are constructed in Section 4.9.1 below.

Remark 2.4. Our use of the Whitney decomposition and the maximum principle are derived from the
two weight fractional integral argument of Sawyer; see [1988, Section 2]. In particular, the properties
above are as Sawyer’s, aside from the crowd control property above, which is N = 3 there.

Remark 2.5. In our notation for the Whitney cubes, the superscript indicates a “height” and the sub-
script an arbitrary enumeration of the cubes. We will use super- and subscripts below in this manner
consistently throughout the paper. It is important to note that a fixed cube Q can arise in many Whitney
decompositions: There are integers K_(Q) < K4 (Q) with Q = Q’; ) for some choice of j (k) for all
K_(Q) <k < Ki(Q). (The last point follows from the nested property.) There is no a priori upper
bound on K (Q) — K_(Q).

Lemma 2.6 (maximum principle). Let v be a finite (signed) measure with compact support. For any
cube Q';. as above, we have the pointwise inequality

sup Tt(X(3Qk)Cv)(x)<2k+CP(Qk v) <28 MO, v), (2-7)
er

where P(Q, v) and M(Q, v) are defined by

8279
P E d 2-
(Q.v) = IQI/ divi+ |2‘+1Q| 26410\2tQ vl )
M = d|v].
(Q,v)= quDpQ|Q| o [v]

The bound in terms of P(Q, v) should be regarded as one in terms of a modified Poisson integral. It
is both slightly sharper than that of M (Q, v), and a linear expression in |v|, a fact will be used in the
proof of the strong-type estimates.
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Proof. To see this, take x € Ql; and note that for each n > 0 there is € with Z(Q/;) <maxj<j<, & <R <00
and 6 € [0, 27) such that

T:(Xaghy ) < (11| f( o, KOV st =)
=1+ ﬂ)eieTs,R(X@Q’;)cV)(x)-

For convenience we take n = 0 in the sequel. By the Whitney condition in (2-6), there is a point
z € 3Ry Qlj‘. N €2; and it now follows that (remember that E(Q’J‘.) <maxXi<j<u &)

|Ta,R(X(3Q1;)cV)(x) —Te rv(2)|

1
< |6RWQ,;|/6RWQ§ V14 175 8 Oty 0819 () — Tk (K 01 V) Q)

c;k/ |
[6Rw Q| Jory 0

+f |K (x, y)Ee(x — yI)nr(x — ¥) = K (2, )e(z — y)nr(z — Y)|d|v|(y)
(6Rw Q%)¢

X =z
- CW /6RWQ_’; W +Cf(6RwQ_‘,i>f 5(||x —y||) Ix—lyl”dh)'(y)
<CP(0%,v).
Thus
T.(Xot V) () < |Tv(@)| + CP(Qf. v) <2+ CP (0, v),
which yields (2-7) since P(Q,v) < CM(Q, v). 0

2.7. Linearizations. We now make comments on the linearizations of our maximal singular integral
operators. We would like, at different points, to treat 7} as a linear operator, which of course it is
not. Nevertheless 7} is a pointwise supremum of the linear truncation operators T; g, and as such, the
supremum can be linearized with measurable selection of the parameters & and R, as was just done in
the previous proof. We make this a definition.

Definition 2.8. We say that L is a linearization of 7} if there are measurable functions e(x) € (0, co)”"
and R(x) € (0, 00) with 1/4 <¢;/e; <4, maxi<;<, & < R(x) < oo and 0(x) € [0, 27r) such that

Lf(x) = €T, reo f(x)  for x € R (2-9)

For fixed f and 6 > 0, we can always choose a linearization L so that T, f(x) < (1 +6)Lf (x) for
all x. In a typical application of this lemma, one takes § to be one.

Note that condition (1-19) is obtained from inequality (1-18) by testing over f of the form f = xpg
with |g| < 1, and then restricting integration on the left to Q. By passing to linearizations L, we can
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“dualize” (1-14) to the testing conditions
[ 1L oo do < ¢: [ o, -10)
Q Q
or equivalently (note that in (1-19) the presence of g makes a difference, but not here),
/ IL*(x0gw) ()| do(x) < C; / do(x) for |g| <1, (2-11)
0 0

with the requirement that these inequalities hold uniformly in all linearizations L of 7.

While the smooth truncation operators 7, r are essentially self-adjoint, the dual of a linearization L
is generally complicated. Nevertheless, the dual L* does satisfy one important property, which plays a
crucial role in the proof of Theorem 1.9, the L”-norm inequalities.

Lemma 2.9. L*u is §-Holder continuous (where § is the Dini modulus of continuity of the kernel K)

with constant C P(Q, 1) on any cube Q satisfying f3 0 d|u| =0, that is,

ly =l
4¢9)]

Here, recall the definition (2-8) and that P(Q, u) < CM(Q, ).

L) = L] < CPQ. w3(5=2) for v,y € 0. 2-12)

Proof. Suppose L is as in (2-9). Then for any finite measure v,

Lu(x) = @) f Loty (F = Myt = MK (6, 1)V ().

Fubini’s theorem shows that the dual operator L* is given on a finite measure u by
L1100 = [ oo (6 = a5 = DK . )"V o), 2-13)
For y, y' € Q and |u|(3Q) = 0, we thus have

L*u(y) — L*u(y’) = / {(e)NR()) (X — ¥) — (Ce@yNRe) (X — Y)IK (x, )€ ©du(x)

+ f (LeoyNR) (X — Y (K (x, y) — K (x, y))e?Pdp(x),

from which (2-12) follows easily if we split the two integrals in x over dyadic annuli centered at the
center of Q. U

2.10. Control of maximal functions. Next we record the facts that 7 and 7} control Jl for many (sets
of) standard singular integrals 7', including the Hilbert transform, the Beurling transform and the sets of
Riesz transforms in higher dimensions.

jJ-:1 is a collection
of standard kernels satisfying (1-9) and (1-16). If the corresponding operators T; given by (1-12) satisfy

Lemma 2.11. Suppose that o and w have no point masses in common, and that {K ;}

IxeTi(fo)llLrow) < Cl fliLr@) where E =R"\supp f,
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for 1 < j < J, then the two weight A, condition (1-8) holds, and hence also the weak-type two weight
inequality (1-7).

Proof. Part of the “one weight” argument of [Stein and Shakarchi 2005, page 21] yields the asymmetric
two weight A, condition

10l,1Q'127" < ClQ”, (2-14)

where Q and Q' are cubes of equal side length r and distance approximately Cor apart for some fixed
large positive constant Cy (for this argument we choose the unit vector # in (1-16) to point in the direction
from the center of Q to the center of Q’, and then with j as in (1-16), Cy is chosen large enough by (1-9)
that (1-16) holds for all unit vectors u pointing from a point in Q to a point in Q’). In the one weight
case treated in [Stein and Shakarchi 2005], it is easy to obtain from this (even for a single direction u)
the usual (symmetric) A, condition (1-8). Here we will instead use our assumption that o and w have
no point masses in common for this purpose.
So fix an open dyadic cube Qg in R”, say with side length 1, let Qo = Q¢ x Qq and set

={Q = Q x Q' dyadic: Q C Qo and (2-14) holds for Q and Q'}.
Note that with Q = Q x Q’, inequality (2-14) can be written
sy, 03 Q) < ClQIP2, (2-15)

where

slp(@,0; Q) =10,10'77".

Here 4 (w, 0; Q) = |Qloxs, Where w x o denotes product measure on R” x R". For 1 < p < oo we easily
see that if Qo = |, Qq is a pairwise disjoint union of cubes Qq, then the Lebesgue measures satisfy

D 1Qul?? < C1Qo x Qol""? = C1Qol”.
o

Suppose first that 1 < p < 2. Divide Qg into 2" x 2" = 4" congruent subcubes QO, .. Q4" of side
length and set aside those QO e (those for which (2-14) holds) mto a collectlon of stopping cubes I.
Contlnue to divide the remalnlng Q0 into 4" congruent subcubes Q .. QO of side length 1, and
again, set aside those Qo € Q into I', and continue subdividing those that remain. We continue with
such subdivisions for N generations so that all the cubes not set aside into I'" have side length 2=V . The
important property these cubes have is that they all lie within distance 72" of the diagonal & = {(x, x) :
(x,x) € Qo} in Qo = Qo x Qy since (2-14) holds for all pairs of cubes Q and Q' of equal side length r
having distance approximately Cor apart. Enumerate the cubes in I" as {Q}, and those remaining that
are not in I' as {Pg}g. Thus we have the pairwise disjoint decomposition

o= (a)u (o)
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In the case p = 2, the countable additivity of the product measure w x o shows that

(@, 0: Qo) =Y sla(@,0:Qu) + Y _ sa(e, 0 Pp).
o B

For the more general case 1 < p < 2, note that at each division described above, we have using 0 <
p—1<1
2” 2)1

(@, 05 Qo) = (imém)(iméu)”l = (X21edl.) (Yo 1edis) = Sty (0,0 Q.
i=1 i=1 i=1 i=1 Jj=1

47!
sp(@,05Q)) <Y slp(w,0:Q)") for Q)¢ T,

i=1

and so on. It follows that

Ap(w, 03 Qo) < Z&ip(w, 0; Qy) + Z&ip(w, o; Pg)
o B

<CY QP+ ) sy, 05Pp) < ClQoI" + ) ddy(w, 03 Pp).
o B B

Since w and o have no point masses in common, it is not hard to show, using that the side length of
Ps = Pg x Pjis 27" and dist(Pg, %) < C27", that we have the limit

Zsﬂp(w,a; Pg) — 0 as N — oc.
B

Indeed, if o has no point masses at all, then

Y dp(@,0:Pg) =Y | PglolPl2
B B

= (Y1) sup| Py 157" = C1Qoly supl P17~ — 0 as N > oo.
B

If o contains a point mass c§,, then

> sy, 0Pp) = (2 1Pgle) sup 1P4ET < C(( Y IPslo) >0 as N oo

xeP,
pxeP; pxeP; B:xePy pxeP;

since w has no point mass at x. The argument in the general case is technical, but involves no new ideas,
and we leave it to the reader. We thus conclude that

Ap(w, 035 Qo) < ClQol”,
which is (1-8). The case 2 < p < oo is proved in the same way using that (2-14) can be written

(0, 0; Qo) < C'|Qq|”72. O
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Lemma 2.12. If{Tj};?zl satisfies (1-20), then

n
Mv(x) <C Z(Tj)nv(x) for x € R", with v > 0 a finite measure with compact support.
j=1

Proof. We prove the case n = 1, the general case being similar. Then with 7 = T} and r > 0 we have

Re(T5 /4,100 v(x) — Ty 4r, 1000V (X)) = f((r/4(y —x) =84 (y —x))Re K (x, y)dv(y)

> € / dv(y).
r [x+r/2,x4+2r]
Thus
c
Tv(x) = max{|T; /4,100-V(X)|, | Tr.4r,100- v (X) [} = —/ dv(y),
[x4r/2,x4+2r]

and similarly

Tov(x) > 5/ dv(y).
r Jix—2rx—r/2]

It follows that

My (x) < sup 1 dv(y)
r>0 7 [x—2r,x+42r]

1

—k
=sup) 27 5

r>0 k=0

/ dv(y) < CT,v(x). O
[x—21=kp x =2~ 1=kp]U[x+2~1-kr x4+21-kr]

Finally, we will use the following covering lemma of Besicovitch type for multiples of dyadic cubes
(the case of triples of dyadic cubes arises in (4-50) below).

Lemma 2.13. Let M be an odd positive integer, and suppose that ® is a collection of cubes P with
bounded diameters and having the form P = M Q, where Q is dyadic (a product of clopen dyadic
intervals). If ®* is the collection of maximal cubes in ®, that is, P* € ®* provided there is no strictly
larger P in © that contains P*, then the cubes in ®* have finite overlap at most M".

Proof. Let Qo = [0, 1)" and assign labels 1, 2, 3, ..., M" to the dyadic subcubes of side length one of
M Q. We say that the subcube labeled & is of type k, and we extend this definition by translation and
dilation to the subcubes of M Q having side length that of Q. Now we simply observe that if {P*}; is a
set of cubes in ®* containing the point x, then for a given k, there is at most one P that contains x in
its subcube of type k. The reason is that if PJ’." is another such cube and Z(P]’.k) < £(P}), we must have
P;‘ C P/ (draw a picture in the plane for example). (]

2.14. Preliminary precaution. Given a positive locally finite Borel measure p on R", there exists a
rotation such that all boundaries of rotated dyadic cubes have p-measure zero (see [Mateu et al. 2000]
where they actually prove a stronger assertion when p has no point masses, but our conclusion is obvious
for a sum of point mass measures). We will assume that such a rotation has been made so that all
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boundaries of rotated dyadic cubes have (w + o)-measure zero, where w and o are the positive Borel
measures appearing in the theorems above (of course o doubling implies that o cannot contain any
point masses, but this argument works as well for general o as in the weak type theorem). While this
assumption is not essential for the proof, it relieves the reader of having to consider the possibility that
boundaries of dyadic cubes have positive measure at each step of the argument below.

Recall also (see for example [Rudin 1987, Theorem 2.18]) that any positive locally finite Borel measure
on R" is both inner and outer regular.

3. The proof of Theorem 1.8: Weak-type inequalities

We begin with the necessity of condition (1-14):

/Q T.(xo fo)o = f min{[Qlo: {Tx(xof0) > A}l }dA

0

A 00
=< + i w,C)»p/ Pdotdxr
([ + [ )minfiel |£17 do )
SAIQIw—i—CAl"’/IfI”dG =<C+1>|Q|;/P’(/|f|f’da)”p,

if we choose A = ([|f17do/|Ql,)"P.
Now we turn to proving (1-13), assuming both (1-14) and (1-7), and moreover that f is bounded with
compact support. We will prove the quantitative estimate

1Ty follLrew < CEA+THfllLre), (3-1
A=sup sup supAr|{M(fo)>A}/7, (3-2)
O fllzr@)=1+>0
T,= sup supIQla_)l/”,/ Ty(xo fo)(x)dw(x). (3-3)
Ifllerey=1 Q o

We should emphasize that the term (3-2) is comparable to the two weight A, condition (1-8).
Standard considerations [Sawyer 1984, Section 2] show that it suffices to prove the following good-A
inequality: There is a positive constant C such that for 8 > 0 sufficiently small, and provided

sup MP{x eR": Ty fo(x) > Ay, <00 for A < o0, (3-4)
O<Ai<A

we have this inequality:
l{x e R": Ty fo(x) >2x and Mfo(x) < BA} e

<CBEL|{x eR": Ty fo(x) > A}|p +CBPA™P /|f|” do. (3-5)
Our presumption (3-4) holds due to the A, condition (1-8) and the fact that

{x eR": T, fo(x) > A} C B(0,cA™"/")  for A > 0 small,
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Hence it is enough to prove (3-5).

To prove (3-5) we choose A = 2% and apply the decomposition in (2-6). In this argument, we can take
k to be fixed, so that we can suppress its appearance as a superscript in this section. (When we come to
L? estimates, we will not have this luxury.)

Define

Ei={xeQ;:Tyfo(x)>2xand Mfo(x) < BA}.
Then for x € E;, we can apply Lemma 2.6 to deduce
T;(x3o) fo)(x) = (1+CP)A. (3-6)
If we take B > 0 so small that 1 + CB < 2, then (3-6) implies that for x € E;
20 < Tyfo(x) < Toxag, fo (X) + Tixao,r fo (x) < Tyxagr fo () + 2.

Integrating this inequality with respect to w over E; we obtain
)»IEjleZ/ (Tyx3p; fo)w. (3-7)
j
The disjoint cover condition in (2-6) shows that the sets E; are disjoint, and this suggests we should

sum their w-measures. We split this sum into two parts, according to the size of |E||,/|3Q j|». The left
side of (3-5) satisfies

Vigl<h Y B+’ Y E1(F g [, T, foo)"

J1Ejlo=B13Qjlo J1Ejlo>B13Qjlw

Call the added pieces of this / and II. Now

<8 1304, < CBI.,
J

by the finite overlap condition in (2-6). From (1-14) with Q =3Q; we have

n=(Z) X Elo(pr /(qu»Q]fO')w)

1
()= i o PO /3Q 17 do

=c()'s /(ngk)lflpda ()= [irrae

by the finite overlap condition in (2-6) again. This completes the proof of the good-A inequality (3-5).
The proof of assertion 2 regarding 7}, is similar. Assertion 3 was discussed earlier and assertion 4
follows readily from assertion 2 and Lemma 2.11. U
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4. The proof of Theorem 1.9: Strong-type inequalities

Since conditions (1-19) and (1-14) are obviously necessary for (1-18), we turn to proving the weighted
inequality (1-18) for the strongly maximal singular integral 7}.

4.1. The quantitative estimate. In particular, we will prove

1Ty follLrw < COR+ D + 12T+ T fllLr o) (4-1)
M= sup [M(fo)Lriw), (4-2)
1 fllLp@y=1
M= sup MG,y () (4-3)
Hr
T=sup sup [QI;"PllxoT:(x0fo)lLrw), (4-4)
O Nfllpee=1
T, = sup sup|Q|;\/" / Ty(xofo)(x)dw(x), (4-5)
I fllep=1 Q@ 0

where y > 2 is a doubling constant for the measure o; see (4-19) below. Note that y appears only in
conjunction with ¥ and 91,.. The norm estimates on the maximal function (4-2) and (4-3) are equivalent
to the testing conditions in (1-6) and its dual formulation. The term ‘T, also appeared in (3-3).

4.2. The initial construction. We suppose that both (1-19) and (1-14) hold, that is, (4-4) and (4-5) are
finite, and that f is bounded with compact support on R". Moreover, in the case (1-20) holds, we see
that (1-19) (the finiteness of (4-4)) implies (1-6) by Lemma 2.12, and so by Theorem 1.2 we may also
assume that the maximal operator Jl satisfies the two weight norm inequality (1-5). It now follows that
(T, fo)’w < oo for f bounded with compact support. Indeed, T; fo < CAlfo far away from the
support of f, while T, fo is controlled by the finiteness of the testing condition (4-4) near the support
of f.

Let {Qlj} be the cubes as in (2-5) and (2-6), with the measure v that appears in there being v = fo.
We will use Lemma 2.6 with this choice of v as well. Now define an “exceptional set” associated to Q’J‘.
to be

EX = 040 (Qug1 \ Qug).

See Figure 4.1. One might anticipate the definition of the exceptional set to be more simply Q’; N Qpt1-
We are guided to this choice by the work on fractional integrals [Sawyer 1988]. And indeed, the choice
of exceptional set above enters in a decisive way in the analysis of the bad function at the end of the
proof.

We estimate the left side of (1-18) in terms of this family of dyadic cubes {Q’]‘.}k, j by

[ @sorown < S riann 2l (4-6)

keZ

<> @HP|E,.

k.j



22 MICHAEL LACEY, ERIC T. SAWYER AND IGNACIO URIARTE-TUERO

Q

Figure 4.1. The set Ef(Q).

Choose a linearization L of T} as in (2-9) so that (recall R(x) is the upper limit of truncation)
R(x) < 3£(Q%) for x € E, 4-7)

1
and Tu(x3szfo)(x) < 2L(X3Q§f0)(x) +C@ /3Qk|f|a for x € Ei‘
J j

Forx € E f, the maximum principle (2-7) yields
Toxagr fo () 2 Tofo (1) = Toxggrye fo () > 21— 2k —CP(Qh, fo)=2"-CP(Q%. fo).
From (4-7) we conclude that
Lz fo(x) 227 = CP(Qj. fo).

Thus either 2° < 4infgx Lyt fo or 28 <4CP(Q%, fo) <4CM(Q%, fo). So we obtain either
J J

Bl = €27 [ (Lsgy fora(dn, (4-8)
E"
J

or

Bl = C2MENLM(QS, for < €2 [ (itfoyradx) (4-9)
o

Now consider the following decomposition of the set of indices (k, j):
E={(k j):|Eflo < BINQSL),
F = {(k, j) : (4-9) holds},
G = {(k. j) : |E§lo > BIN Q%|, and (4-8) holds}, (4-10)
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where 0 < 8 < 1 will be chosen sufficiently small at the end of the argument. (It will be of the order of
c? for a small constant c.) By the “bounded overlap” condition of (2-6), we have

> Xngr <C for keZ. (4-11)
J
j

We then have the corresponding decomposition:

[@roro=( X + 3+ ¥ )@ g, (4-12)

(k,j)eE  (k,j)eF  (k,j)eG

<8 ¥ @rwolec Y |

k(M fo)Pw
(k.j)eE (k, j)eF Y Ej

1 p
+C > |E§|w(MN—%L§(LX3Q§fo)w)

(k.))eG
=J)+J2)+J@3)

<cofp [@soror s [if10) @13

where Co < C(ON + yz,‘)ﬁ* + )/ZT + T4)P. The last line is the claim that we take up in the remainder of
the proof. Once it is proved, note that if we take 0 < Cof < % and use the fact that [(7} fo)’ @ < oo for
f bounded with compact support, we have proved assertion (1) of Theorem 1.9, and in particular (4-1).

The proof of the strong-type inequality requires a complicated series of decompositions of the domi-
nating sums, which are illustrated for the reader’s convenience as a schematic tree in Figure 4.2.

4.3. Two easy estimates. Note that the first term J(1) in (4-12) satisfies

Jy=p Y @*INQK|, <CB / (T; fo) o,

(k,j)eE

by the finite overlap condition (4-11). The second term J(2) is dominated by

¢ 3 [ trore < cmIfIfg,
(k,j)eF V Ej
by our assumption (1-5). It is useful to note that this is the only time in the proof that we use the maximal
function inequality (1-5) — from now on we use the dual maximal function inequality (1-17).

Remark 4.4. In the arguments below we can use [Sawyer 1988, Theorem 2] to replace the dual maximal
function assumption 9, < oo with two assumptions, namely a “Poisson two weight A, condition”
and the analogue of the dual pivotal condition of Nazarov, Treil and Volberg [2010]. The Poisson two
weight A, condition is in fact necessary for the two weight inequality, but the pivotal conditions are
not necessary for the Hilbert transform two weight inequality [Lacey et al. 2011]. On the other hand,
the assumption 91 < oo cannot be weakened here, reflecting that our method requires the maximum
principle in Lemma 2.6.
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Figure 4.2. This is a schematic tree of how the integral [ (7} fo)” has been, and will
continue to be, decomposed. We have suppressed superscripts, subscripts and sums in
the tree. Terms in diamonds are further decomposed, while terms in rectangles are final
estimates. The edges leading into rectangles are labeled by 9, 9., J or J, whose
finiteness is used to control that term. Those terms controlled by the doubling constant
y are also indicated. Equation references are to where the final estimates on the term
is obtained. The word “absorb” leading into J(1) indicates that this term is a small
multiple of [ (7} fo)”w and can be absorbed into the left-hand side of the inequality. As
most of the terms involve the maximal theorem (Equation (2-2)), we do not indicate its
use in the schematic tree.
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It is the third term J (3) that is the most involved; see Figure 4.2. The remainder of the proof is taken
up with the proof of

P
> R§| / (Lxzgefo)w| < Cly* ML +y* T+ T F L o) (4-14)
(k, ))eG Ej
where
|EX o
k J
_ e (4-15)
LOINQAG

Once this is done, the proof of (4-12) is complete, and the proof of assertion (1) is finished.

4.5. The Calderon-Zygmund decompositions. To carry out this proof, we make Calderén—Zygmund
decompositions relative to the measure o. These decompositions will be done at all heights simultane-
ously. We will use the shifted dyadic grids; see (2-3). Suppose that y > 2 is a doubling constant for the
measure o'

30|, <y|Q|, for all cubes Q. (4-16)

For « € {0, 1, 3}", let

1
MEFG) = sup / \f1do,
xeQeI” |Q|a 0

If={xeR: M2 f(x) >y} =[G (4-17)
N
where {G%'}(; 5)e1« are the maximal @* cubes in I'%, and L is the set of pairs we use to label the cubes.
This implies that we have the nested property: If G/ g G‘;;t/ then ¢t > t’. Moreover, if t > t’ there
is some s" with G¢' C G?,’t/. These are the cubes used to make a Calder6n—Zygmund decomposition
at height y’ for the grid 2* with respect to the measure o. We will refer to the cubes {G%"}(; s)e1« as
principal cubes.
Of course we have from the maximal inequality in (2-2)

> PG o < Y- (4-18)
(t,s)el“

The point of these next several definitions is to associate to each dyadic cube Q, a good shifted dyadic
grid, and an appropriate height, at which we will build our Calder6n—Zygmund decomposition.
We now use a consequence of the doubling condition (4-16) for the measure o, that

|P(G)|ys <y|Gl|, for G e 9", (4-19)

The average |G%| ! /. cor | f1 do is thus at most y'*! by (4-19) and the maximality of the cubes in (4-17):

t 1 / |P(Ga’[)|a 1 t t+1
V < —ai— |fldo < . |fldo <yy' =y (4-20)
IG5 Jgon IGS" e |P(GYDo Jpe
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Select a shifted grid: Leta:% — {0, %, %}” be a map such that for Q € 9, there is a Q € 99D guch
that 30 C Q and |Q| < C|Q|. Here, C is an appropriate constant depending only on dimension.
Thus, a(Q) picks a “good” shifted dyadic grid for Q. Moreover we will assume that Q is the
smallest such cube. Note that we are discarding the extra requirement that 3Q C % Q since this
property will not be used. Also we have
0cMQ, (4-21)
for some positive dimensional constant M. The cubes Q’J‘ will play a critical role below. See
Figure 4.3

Select a principal cube: Define s{(Q) to be the smallest cube from the collection {Gf’(Q)’t | (¢, 5)el”}
that contains 3Q; such «(Q) is uniquely determined by Q and the choice of function &. Define

g A ky ,
H?"_{(k,]).&d(Qj)_G?’} for (s, 1) € L. (4-22)
This is an important definition for us. The combinatorial structure this places on the corresponding

cubes is essential for this proof to work. Note that 3Q]; C Qlj‘ C &Q(Q'J‘. ).

Parents: For any of the shifted dyadic grids 9%, a Q € 9“ has a unique parent denoted as P (Q), the
smallest member of 9% that strictly contains Q. We suppress the dependence upon « here.

Indices: Let
He = (r | G2 GO, (4-23)
We use a calligraphic font J{ for sets of indices related to the grid {G¢ '}, and a blackboard font H
for sets of indices related to the grid {QIJ‘.}.

The good and bad functions: Let A a1 = [GZ ! [0ii1 fo be the o-average of f on G*'+1.
Define functions g%’ and h%' satisfying f = g%' + h%’ on G’ by

At G with r € K,

I WA (424)
fx)  forx e G¥ \|J{G®'T! 1 r e H@1Y,

Bt () = { &) =Agan forx € G with r elf]{?*’, 4-25)
0 for x € G\ (G r € K1),

We extend both g%’ and h%’ to all of R” by defining them to vanish outside G%'.

Now |AG;¥,¢+1| < pitl by (4-20). Thus Lebesgue’s differentiation theorem shows that (any of the
standard proofs can be adapted to the dyadic setting for positive locally finite Borel measures on R")

g% (x)| <y < / |flo for o-ae. x € G*' and (z, s) € L. (4-26)
Ga,/

s

v
1G5 |
That is, g% is the “good” function and 2%’ is the “bad” function.

We can now refine the final sum on the left side of (4-14) according to the decomposition of JLY f.

12

We carry this out in three steps. In the first step, we fix an o € {0, 3 5}”, and for the remainder of the
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proof, we only consider Q’;. for which &(Ql;) = «. Namely, we will modify the important definition of G
in (4-10) to
G* = {(k. j):a(Q%) =a. |E}|, > BIN Q| and (4-8) holds}, (4-27)

In the second step, we partition the indices (k, j) into the sets H® in (4-22) for (¢, s) € L*. In the third
step, for (k, j) € H®’, we split f into the corresponding good and bad parts, yielding the decomposition

p
> R(;’f (LXSngG)w‘ <C(+1D), (4-28)
(k.j)eGe Ej ’
=Y 1 m= ) I, (4-29)
(t,5)el” (t,5)el@
p
1= % #|f wogeon].
(k. j)ens’ Ej
p
m= Y R / (Lasghoro| (431)
(k. j)ens’ Ej
' =GNH. (4-32)

Recall the definition of le? in (4-15). In the definitions of 7, I! and 11, II%, we will suppress the dependence

onuo € {0,%,

although we usually retain the superscript « in the quantities arising in the estimates. In particular, the

%}”. The same will be done for the subsequent decompositions of the (difficult) term /1,

combinatorial properties of the cubes associated with [%' are essential to completing this proof.

Term I requires only the forward testing condition (1-19) and the maximal theorem (2-2), while term
1I requires only the dual testing condition (1-14), along with the dual maximal function inequality (1-17)
and the maximal theorem (2-2). The reader is again directed to Figure 4.2 for a map of the various
decompositions of the terms and the conditions used to control them.

4.6. The analysis of the good function. We claim that
I<Cy* TP f 1] (4-33)

Proof. We use boundedness of the “good” function g&’, as defined in (4-24), the testing condition (1-19)
for T, (see also (4-4)), and finally the universal maximal function bound (2-2) with u = w. Here are the
details. For x € Ei?, (4-7) implies that L x5t g¥'o(x) = Lg®"o (x) and so

J

=Y r=cy ¥ R]]‘-‘/Ek(Lgf”o)w‘p

(1,5) €l (t,9)€L* (k, j)eGeNHY!
<C > flMiy(XG?"ng’tU)lpr c > /W|ng,tg|pw
(t,5)€lL” (t.s)ele Y O5

o,t

2 8 P 2 ,
cor 3o [ (B ezerre T ymics,
(t,5)el* s (t,5)el”
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where we have used (4-26) and (1-19) with g = g%’/ y'*? in the final inequality. This last sum is
controlled by (4-18), and completes the proof of the claim. (I

4.7. The analysis of the bad function: Part 1. It remains to estimate term /I, as in (4-31), but this is in
fact the harder term. Recall the definition of #%' in (4-23). We now write

W'=Y (f = Agu)xguni = Y br, (4-34)

rex®! rexe!

where the “bad” functions b, are supported in the cube Gﬁ‘*’“ and have o-mean zero, ng,IJrlbrO' =0.
To take advantage of this, we will pass to the dual L* below.
But first we must address the fact that the triples of the %% cubes G%'*! do not form a grid. Fix
(t,s) € L* and let
er = (B3GY e U (4-35)

be the collection of triples of the 9% cubes G*'*! with r € H*. We select the maximal triples
(BG, N egrr =Ttk pegss (4-36)

from the collection €%/, and assign to each r € ¥, the maximal triple 7; = T, containing 3G‘;‘”+1
with least £. Note that Tj, extends outside G*' if G*'*! and G* share a face. By Lemma 2.13 applied
to 9% the maximal triples {7}, gt have finite overlap 3", and this will prove crucial in (4-49), (4-82)
and (4-50) below.

We will pass to the dual of the linearization.

/ L oyw =3 / (Lhoyw=Y / L Wrpobo (437)

k
%a t %a t n3 Qj

Note that (4-7) implies L*v is supported in 3 Q’;. if vis supported in £ f , explaining the range of integration
above. Continuing, we have for fixed (k, j) € [%'

1(4-37)] < Z /W

(L XEf;nTg(,)w)br‘7|+C Z P(G?’Z+I,XE§\3G‘,’"““)) /G‘“Hlfla. (4-38)
63{011‘ r

k
n30j reHe!

To see the inequality above, note that for r € %" we are splitting the set EX into E§ Ty and E5\ Ty,
On the latter set, the hypotheses of Lemma 2.9 are in force, namely the set E j‘ \ Ty does not intersect
3G%'*1 whence we have an estimate on the §-Holder modulus of continuity of L* x z« \ Ty(ryw. Combine
this with the fact that b, has o-mean zero on G%*! to derive the estimate below, in which yi*lis the
center of the cube G%'*1.

* _ * _T* t+1
| /G g e = fG R P A SR ACE)

+1
i1 M)
< /G g CPGE ey, (e, ) b0 o)
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Jg+1
< CP(GE™, Kt sgerni) /G _Mldo.
We have after application of (4-38),

)4
m= 3 R’;(/Ek(th»fa)w) <I'(1) +1I.(2),

(k. j)ely! J
where
k
mw= 3 "y / W, @bl (4-39)
(k, j)eu“’ rex?
me= Y R (Z P(G* f“,XEkw)/ |f|0
(k, jel®! rex®!

Note that we may further restrict the integration in (4-39) to G%'*! N 3Qk since L*x £t NTyryw is
supported in 3Qk

4.7.1. Analysis of 11(2). Recalling the definition of 91, in (4-3), we claim that
Z I'(2) < Cy*rome /|f|pa. (4-40)
(t.5)el”

Proof. We begin by defining a linear operator by
Pl =) P(GI™! xpum)xger- (4-41)
redy’
In this notation, we have for (k, j) € [¢7 (see (4-22) and (4-31)),

g1 _ 41 1
Z P(G(rx ’ XEfa)( dX)) La,t+l |f|6 - Z P(Gg ’ XEfw) La,t+l o ( |Ga’t+l| \/(‘;Ct,H»l |f|0>
r r o r

rex®! 4 rexs!

<y'* / P (w)o =y'*? / (P (xguro)w.
¢ Ej

By assumption, the maximal function M(w-) maps LY (w) to LY (0), and we now note a particular
consequence of this. In the definition (4-41) we were careful to insert x « on the right hand side. These
J
sets are pairwise disjoint, whence we have the inequality below for measures u.

X 527YH
L Pws T8 3ot e e

(k. jen! (k, j)el®t rex®! £=0

8§27
= Z Z |2¢GY 2LGE* (/2ec‘:"*‘mcg¥.r M>XG»C-”H(X) = CXG?’IM(XG?JM)(X)'

=0 pexd!

(4-42)
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Thus the inequality

Pt(glw H < CM, |l xeaigll, 4-43
|6 (k;ﬂw gl = CMllgy 8llir (4-43)
,J)Els”

follows immediately. By duality we then have
k%
ez X Pano)] < CMlxggrhllre. (4-44)
(k, jely’!

Note that it was the linearity that we wanted in (4-41), so that we could appeal to the dual maximal
function assumption.
We thus obtain

p
112(2) =< Vp(t+2) E Rf (/;Qk(P];)*(XGZHO') dw) .
J

(k, jely”
Summing in (¢, s) and using (P]]‘.)* < Z(Li)eu;x,t(Pf)* for (k, j) € %', we obtain

Y@ =cy* Y oyt > Rk(/ (Ph)* (cha)dw) (4-45)

(t,s) €l (t,5)el” (k, jel®!

—ert 5 v T el [0 o)

(t,5)el? (k, e’

2 ’”/ M@(Xca, > ph (cha))) (4-46)

(t,5)el” el
p
v / (X @) o (4-47)
(t,5)el” Cs el

scyraml Yo y"IG .
(t,s)el”

which is bounded by Cy??OM% [|f|Po. In the last line we are applying (4-44) with h = 1. [l
y pplying

4.7.2. Decomposition of II(1). We note that the term II%(1) is dominated by I’ (1) < III' + IV, where

r_ k % p
IIIS ,R ‘ Zt/arﬂ (L XEi‘.ﬂTg(,)a))er s
(k, jHely redty
P
IV = Rk‘ 3 (L*X gty a))bra‘ . (4-48)
’ t t wHﬂQk-;—z / o
(k, j)ely redty

The term IIT". includes that part of b, supported on G%'+1\ ©;,, and the term IV’ includes that part of
b, supported on G +1'N Q42, which is the more delicate case.

Remark 4.8. The key difference between the terms /I and IV" is the range of integration: G*'+1\ Q.
for ITT". and G*' T N4, for IV'. Just as for the fractional integral case, it is the latter case that is harder,
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requiring combinatorial facts, which we come to at the end of the argument. An additional fact that we
return to in different forms is that the set G%'*! N ©Q;, can be further decomposed using Whitney
decompositions of €2 in the grid %,

Recall the definition of €, in (4-5). We claim
D < CTf’flflf’a (4-49)
(t,5)el“

Proof. Let EX =30\ Q42 (note that EX is much larger than EX). We will use the definition of R% in
(4-15), and the fact that

Y <3 (4-50)

LePe!
provided N > 9. We will apply the form (2-11) of (1-14) with g = x g7, —also see (4-5) —and with
J
QETgﬂQ]; and QET@

in the cases T, N Q’]‘ is a cube and is not a cube, respectively (the latter is possible since Ty is the triple
of a 9%-cube). In each case we claim that

0cC Tgﬂ3Qk~.

Indeed, recall that Qk is the cube in the shifted grid 9@* that is selected by Qk as in the definition “Select
a shifted grid” above and satisfies 3Qk cM Qk CN Qk where N is as in Remark 2.4, by choosing Ry
sufficiently large in (2-6). Now Ty is a triple of a cube in the grid 9* and Qk is a cube in 9*. Thus if
T, N Qk is not a cube, then we must have 7, C 3Qk and this proves the clalm We then have

z k - a,t|p
s ¥ OR(Y X [ Wamenere)” e
J

(k, jyel! LT ref =L(r)
’ pf
= X RS [ waeele)” [
t t ZQSQ]‘ / Ek
(k, el 123 j
-1
k Ak ) ,
<z Y Rj(Z|Tm3Qj|w) /Ekmgqu
(k, j)eld! Zef.f"‘" j
|E
Ssﬁ Z - |p 1/ |h01t
wpeter 1V Q |“’
scz Y [ mero<cw / (Uf17 + 148 17
Tk
(k. Hely! Ej (k, J)e@amH‘“

Using

> > xm=) xm=C (4-51)

(t,8)EL® (k, j)eGenH! allk,j
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we thus obtain (4-49). [l

4.9. The analysis of the bad function: Part 2. This is the most intricate and final case. We will prove

> vi=cwrs gy [ iy (4-52)
(t,s)el>

where T, T, and 901, are defined in (4-4), (4-5) and (4-3), respectively. The estimates (4-33), (4-40),
(4-49), (4-52) prove (4-12), and so complete the proof of assertion 1 of the strong-type characterization
in Theorem 1.9. Assertions 2 and 3 of Theorem 1.9 follow as in the weak-type Theorem 1.8. Finally,
to prove assertion 4 we note that Lemma 2.12 and condition (1-19) imply (1-6), which by Theorem 1.2
yields (1-5).

4.9.1. Whitney decompositions with shifted grids. We now use the shifted grid @ in place of the dyadic
grid 9 to form a Whitney decomposition of €2; in the spirit of (2-6). However, in order to fit the %%-
cubes Q’J‘ defined above in “Select a shifted grid”, it will be necessary to use a smaller constant than the
constant Ry already used for the Whitney decomposition of ; into %-cubes. Recall the dimensional
constant M defined in (4-21): it satisfies Q C M Q. Define the new constant

R, .
LY

We now use the decomposition of ; in (2-6), but with @ replaced by % and with Ry replaced by Ry,
We have thus decomposed
& =| | B}
m

into a Whitney decomposition of pairwise disjoint cubes B,’;l in ¥¢ satisfying
Ry BY c (4-53)
3Ry BE NQ #£ 2,
and the following analogue of the nested property in (2-6):
BY & Bf  implies k > £. (4-54)

Now we introduce yet another construction. For every pair (k, j) let @1‘ be the unique ¥“-cube B,’;
containing Q’; Note that such a cube élj‘ = Bfn exists since Q’; cM Qlj‘. by (4-21) and Ry Q’j‘- C Q by
(2-6) implies that Ry, Qlj‘ C 2. Of course the cube élj = B,’; satisfies

R}, 0% c . (4-55)

Moreover, we can arrange to have
30% c NO¥, (4-56)

where N is as in Remark 2.4, by choosing Ry sufficiently large in (2-6). See Figure 4.3.
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197

Figure 4.3. The relative positions of the cubes Q’J‘-, Qk., and é’]‘ inside a set 2.

We will use this decomposition for the set Q21 =L1,, B,’jfz in our arguments below. The corresponding
cubes Qf” that arise as certain of the BX+? satisfy the conditions

3Qi_c+2 c ’Q\f;+2 c éi_c+2 c 3§i_c+z c NQf;Jrz C Qsin. 4-57)

Note that the set of indices m arising in the decomposition of 4, into 9 cubes B,’fj’z is not the same
k+2

as the set of indices i arising in the decomposition of €2 > into % cubes Q; ", but this should not cause
confusion. So we will usually write B{‘” with dummy index i unless it is important to distinguish the
cubes Bf‘ + 2 from the cubes Qf*z. This distinction will be important in the proof of the “bounded
occurrence of cubes” property in Section 4.14.7 below.

Now use Q42 =J B;‘H to split the term 7V’ in (4-48) into two pieces as follows:

t k * P
s = Z RJ" Z Z/G?”HOBHZ(L XE’}”TMw)b’U‘

(k. ely’  rexny’ieds
k » ]
+ Z Rj‘ Z Z/MH kH(L*XEj?mTw)w)er‘ (4-58)
(k, jely”! refy’ i€y G NB;
=1V (1) +1V.(2),
where
Jr={i A >y and gl =i A <y, (4-59)
and where
1
A= g / do 4-60)
1 |B;(+2|O- B[_k+2|f| (

denotes the o-average of | f| on the cube B;“Lz. Thus 1V (1) corresponds to the case where the averages
are “big” and IV (2) where the averages are “small”. The analysis of IV (1) in (4-58) is the hard case,
taken up later.
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4.9.2. A first combinatorial argument.

Lemma 4.10 (bounded occurrence of cubes). A given cube B € 9% can occur only a bounded number
of times as Bl-k+2, where
k2 — 3k . .
B C Q% with (k, j) e G*.

Specifically, let (ki, j1), ..., (ky, ju) € G%, as defined in (4-27), be such that B = Bi"+2 for some i,
and B C éfz for 1 <o < M. It follows that M < CB~", where B is the small constant chosen in the
definition of G*. The constant C here depends only on dimension.

The Whitney structure (see (2-6)) is decisive here, as well as the fact that |E'j?|(,J > BIN Q’;lw for
(k, j) € G*. For this proof it will be useful to use m to index the cubes B,’; + 2 and to use i to index
the cubes Qf”. The following lemma captures the main essence of the Whitney structure, and will be

k+2 satisfying (2-6).

applied to cubes BX+2 satisfying (4-53) and cubes 0;
Lemma 4.11. Suppose that Q is a member of the Whitney decomposition of Q2 with respect to the grid
%9 and with Whitney constant Ry. Suppose also that a cube B is a member of a Whitney decomposition
of the same open set Q2 but with respect to the grid 9% and with Whitney constant Ry,. If N < %RW and

B C N Q, then the side lengths of Q and B are comparable:
£(Q) =~ £(B).

Proof of Lemma 4.11. Since N < %RW and Q is a Whitney cube we have

0(Q) ~dist(Q, ) ~ sup dist(x, dQ) ~ inf dist(x, IR).
xeNQ xeNQ

Then since B C NQ and B is a Whitney cube (for the other decomposition) we have
£(Q) ~ dist(B, 0R2) ~ £(B). O

Proof of Lemma 4.10. So suppose that (k1. j1). ... (k. ju) € G* and B = B{"** c Q% for 1 <o < M,
with the pairs of indices (k,, j,) being distinct. Observe that the finite overlap property in (2-6) applies
to the cubes é’;z in the Whitney decomposition (4-53) of Q; with grid %* and Whitney constant Ry, .
Thus for fixed k, the number of (k, j,) with k, = k is bounded by the finite overlap constant since B is
inside each QIJ‘: This gives us the observation that a single integer k can occur only a bounded number
C) of times among the &y, ..., ky.

After a relabeling, we can assume that all the k, for 1 <o < M’ are distinct, listed in increasing order,
and that the number M’ of k,, satisfies M < C,M’. The nested property of (2-6) assures us that B is an
element of the Whitney decomposition (4-53) of € for all ky <k <kyyp.

Remark 4.12. Note that the k, are not necessarily consecutive since we require that (k,, j;) € G“.

Nevertheless, the cube B does occur among the Bl“z for any k that lies between k, and k,;. These
latter occurrences of B may be unbounded, but we are only concerned with bounding those for which

(ks, jo) € G*, and it is these occurrences that our argument is treating.
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Thus for 3 <o < M’, we have k| < k, —2 < kjp, and it follows from Remark 4.12 that the cube
B is a member of the Whitney decomposition (4-53) of the open set €2, with grid 9% and Whitney
constant R},. But we also have that Q];: is a member of the Whitney decomposition (2-6) of €2,
with grid 9@ and Whitney constant Ry . Thus Lemma 4.11 gives us the equivalence of side lengths
E(Qk“) ~ L(B). Combmlng this with the containment N Qk‘r D B, we see that the number of possible
locatlons for the cubes Q € 9 is bounded by a constant Cb dependlng only on dimension.

Apply the pigeonhole pr1n01ple to the possible locations of the Q . After a relabeling, we can ar-
gue under the assumption that all Q equal the same cube Q’ for all choices of 1 <o < M”, where
M' < C;M". Now comes the crux of the argument where the condition that the indices (k,, j,) lie in G%,
as given in (4-27), proves critical. In particular we have |E “|o > BIN Q’|, where N is as in Remark 2.4.
The k, are distinct, and the sets EY” ko Q' are pairwise dlS_]Olnt hence

M//
M'BINQ'lo <Y |EN |, <10, implies M" < g~

o=1
Thus M < C,C,, B~ and our proof of the claim is complete. (Il

4.12.1. Replace bad functions by averages. The first task in the analysis of the terms 7V’ (1) and IV (2)
will be to replace part of the “bad functions” b, by their averages over Bik + 2, or more exactly the

averages Ak+2 We again appeal to the Holder continuity of L*x pt~7,@. By construction, 3)BkJr2 does
J

not meet Ek so that Lemma 2.9 applies. If Bk+2 C G%'*! for some r, then there is a constant ck+2

satisfying |ck+2| < 1 such that

‘/Bk+z(L*XE§”T4<»->w)b’G B <C’H2 fBHz(L*XE_'?ﬁTaww)G) A7+ Afﬁ)‘
k+2
< CPBI™, Aging,, @) /B L lbrlo. (@-61)
Indeed, if z¥ 7 is the center of the cube B¥*2, we have
/B,kﬂ (L*XEk”Tu \@)bro
= L*(Xgterr,, @)@ ) f byo + O (PBI2, iy, ) / lbrlo)

—1 k
- (/l;k+2(L XEfmTw)w)O_) |Bk+2| /I;k b o+ O(P(B i ’ XEkﬂTu) )/ |b |0)
i i o ;

Now, the functions b, are given in (4-34), and by construction, we note that

1 ‘f 1 1 t+1 k+2
S bro‘f‘— fcr‘—l—— | flo = A%+ | 4 AK+2,
L GF o Jazen DL B, St ’ ’

So with

K2 1 1 b.o
l |Aol I+1|+Ak+2 |Bk+2| B;(+2 rY,
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k42

we have |¢;""| < 1 and

k+2 RES TN =)
/B_A'+2(L*XE§”T£<r>w)b’G - (ci+ /B_A'+2(L*XE§”Tl<r>w)a>(|Ag AT
k2
+0(PBE, xgio,, ) /I;m|b,|a).

In the special case where Bf“ is equal to G‘r’"t“, we have f gtz bro = f b,o = 0 and the proof above

shows that

41
| fG o X @br0] < CPGE™ gt ) /G alflo (4-62)

since [art11brlo = [perni|f — A% o <2 femn| flo.
Our next task is to organize the sum over the cubes Bl.kJr2 relative to the cubes G%/*1. This is needed

because the cubes BZ‘” are not pairwise disjoint in k, and we thank Tuomas Hytonen for bringing this

point to our attention. The cube Bl.kJr2 must intersect | J, cgar G *+1 gince otherwise

* _ a,t
/G“ " BHZ(L XEfmTl(,)w)er =0 for r e .
Thus Bl.kJr2 satisfies exactly one of the following two cases which we indicate by writing i € Case(a) or
i € Case(b)
Case(a) BXT? strictly contains at least one of the cubes G/*! for r € K%'
Case(b) B{‘H C G for some r € H%!.

Note that the cubes BikJr2 with i € $ can only satisfy Case(b), while the cubes Bg‘” with i € $ can
satisfy either of the two cases above. However, we have the following claim.

Claim 4.13. For each fixed r € ‘s”, we have

Z )(B_k+2 S Ca
(k+2,i,j) admissible
where the sum is taken over all admissible index triples (k + 2, i, j), that is, those for which the cube

Bt arises in term IV'. with both Bft* ¢ G%'*! and BI* élj‘

But we first establish a containment that will be useful later as well. Recall that 2;,, decomposes as

a pairwise disjoint union of cubes BIHZ, and thus we have
* — E *
/‘““ (L XE%TZ(”w)er N /k+2(L XE];”Tz(r)w)b’U’
Gy an+2 k2 k ! ¥
i:B7’nQ* £ o

since the support of L* X BT @ is contained in 2Qk - Qk C Qk by (4-7). Since both Bk+2 and Qk lie
in the grid ¢ and have nonempty intersection, one of these cubes is contained in the other. Now Bk+2
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cannot strictly contain élj‘ since élj‘ = Béf for some ¢ and the cubes {Bf Jk,j satisfy the nested property
(4-54). It follows that we must have

B{‘” C @IJ‘ whenever B;‘” N élj‘ £ . (4-63)

Now we return to Claim 4.13, and note that for a fixed index pair (k + 2, i), the bounded overlap
condition in (2-6) shows that there are only a bounded number of indices j such that Bf *2c élj CN Q/; —
see (4-56). We record this observation here:

#{j: Bl.kJr2 C él;} < C foreach pair (k+2,i). (4-64)
Thus Claim 4.13 is reduced to this one:
Claim 4.14. ) “{x 2 : BI72 € G2 for some (k, j) € 12" with Bf "> € X} < C for each r € K2,

As is the case with similar assertions in this argument, a central obstacle is that a given cube B can arise
in many different ways as a Bl.k+2.

Proof of Claim 4.14. We will appeal to the “bounded occurrence of cubes” in Section 4.9.2 above. This
principle relies upon the definition of G* in (4-27), and applies in this setting due to the definition of 1%
in (4-28). We also appeal to the following fact:

i ~k k 2 s ~k . . N
Gy c 0% whenever Bf*? c G N QY with (k, j) € 17 (4-63)

To see (4-65), we note that both of the cubes G*'*! and é’; lie in the grid 9* and have nonempty
intersection (they contain B!‘H), so that one of these cubes must be contained in the other. However, if
é? C G%'*1 then 3Q’J‘- C Qlj‘ C é’]‘ implies &Q(Q’;) C G*'1 which contradicts (k, j) € 1%, Therefore
we must have G‘j"t“ C @’J‘ as asserted in (4-65).

So to see that Claim 4.14 holds, suppose that &Q(Q/;) = G%" and Bl-k+2 C G*'*! with an associated

cube é’; as in (4-65). Then by (4-65) and (4-57) the side length E(Q’;.) of Q’; satisfies
1 1, ~ 1
UQY = FUN QS = Q) = G, (4-66)
Also, if Béf is any Whitney cube at level £ that is contained in G‘,’”“, then by (4-65) and (4-57) we have
k , 3 k
By c Gy c 0k c NO,
so that Lemma 4.11 shows that Béf and Qlj‘. have comparable side lengths:
L(By) ~ £(Q"). (4-67)

Moreover, if Béf,/ is any Whitney cube at level kX’ < k that is contained in G*'*!, then there is some
Whitney cube BY at level k such that B C Béf,/. Thus we have the containments B¥ C Bé‘,/ C NQ*, and
it follows from (4-67) that

U(Bf) ~ €(2). (4-68)
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Now momentarily fix ko such that there is a cube Bf ot2 satisfying the conditions in Claim 4.14. Then
all of the cubes Béf*z that arise in Claim 4.14 with k < ko — 2 satisfy

1
LB A 0(Q) = (G,

Thus all of the cubes Béf” with k < ko, except perhaps those with k € {ko — 1, ko}, have side lengths
bounded below by ¢ £(G%'!), which bounds the number of possible locations for these cubes by a
dimensional constant. However, those cubes Bl{( o at level ko + 1 are pairwise disjoint, as are those

cubes Bk0+2

at level kg +2. Consequently, we can apply the “bounded occurrence of cubes” to show that
the sum in Claim 4.14, when restricted to k < kg, is bounded by a constant C independent of ky. Since

ko is arbitrary, this completes the proof of Claim 4.14. (I

As a result of Claim 4.14, for those i in either $% or $! that satisfy Case(b), we will be able to apply
below the Poisson argument used to estimate term /7%(2) in (4-40) above.

We now further split the sum over i € $! in term IV’ (2) into two sums according to Case(a) and
Case(b) above:

P
(L XEfng(r)w)er‘

ORI DD /W

(k, jel! rexyt  ieg 03“2
ieCase(a)
k P (4-69)
* Z R; ‘ Z Z /al+lmBk+2 (L XEI/{QTZ(’)w)brO“
(k. jels’ red®t  iegl
ieCase(b)
= IV(2)[a] + IV (2)[b]
We apply the definition of Case(b) and (4-61), to decompose IV’ (2)[b] as follows:
Vo= Y RY ¥ / (L Xpto, @beo |
k. j)el® ‘“ req! ieg,
Bk+2CGoc t+1
k k+2 g+l k+2+ |7
< TR X ([ @amn,0m) xdEaan - al)
Ut (4-70)
+ X BT T e, [, el
(k, jHely’ rexd! iegl
BL+2CGa t+1
= V(1) + V().

4.14.1. The bound for V(2). We claim that

D VI = CyPMEN LN b0y 4-71)
(t,s)el“

Here, 91, is defined in (4-3), and V/(2) is defined in (4-70).
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Proof. The estimate for term V/(2) is similar to that of I} (2) above (see (4-40)), except that this time
we use Claim 4.13 to handle a complication arising from the extra sum in the cubes Bl.k+2. We define

Pj(u) = Z Y. > PGB xpanmxgee. 4-72)

reje! iegt
2r)=¢ BHZCG” 1+1

We observe that by Claim 4.14 the sum of these operators satisfies

> PR < Cxgert(xge ), (4-73)
(k. el

and hence the analogue of (4-44) holds with P’;. defined as above:

[xore 3 @Y i), = CMlxgy il (4-74)
(k, jyely”

For our use below, we note that this conclusion holds independent of the assumption, imposed in (4-72),
that i € $i.
With this notation, the summands in the definition of V{(2), as given in (4-70), are

DY re o[, o) g f)

reye! iegt
2(r)=¢ Bk+2 G+

’+22 / >y p@T?  Xptrr,@)Xgho  (since i € ;) (4-75)

rex®! ieg!
g(r) ¢ Bk+2cGa 141

<y'*? / Pi(w)o =y'*? / (P5)*(xgei0)o.
a,t Ek N
s J
We then have from (4-70) and (4-75) by the argument for term I7%(2),

S viescyr Y v Y R / (PYY (rgee ) |

(t,8)€l® (t,s)el” (k, jHel®!

2P Z ptf‘Mw(XG“’ Z (PH* (XGatU)))

(t,s) €l (,iel!

y2P Z ypt/ ,< Z (Pf)*(Xng,tG))pa)

(t,s)el> Gs el

<cyrrmr 3y DG% < Cyromy /Ifl”

(t,s)el”

In last lines we are using the boundedness (1-17) of the maximal operator. ([l
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We will use the same method to treat term V(1) and term VI(1) below, and we postpone the argument
for now.

4.14.2. The bound for IV(2)[a]. We turn to the term defined in (4-69). In Case(a) the cubes BIHZ satisfy
, k+2 , k+2
G*' ¢ Bf™*  whenever G*'T' N BT £ 2.

and so recalling that i € $! and i € Case(a), we obtain from (4-62) that

Vi@lal= ) Rf-‘ > > meHl(L*XEfw)b,o‘p

(k, j)el®! i€§,  rGr't'cBit?
ieCase(a)
p
k o,t+1
e YR Y Y PG e [ fle]
kel i€Case@) .G+ o pit? or

14
2 41 Jt+1
scyr 3R Y PGET xpe)GEt,
kel rGrticaok

But this last sum is identical to the estimate for the term /7% (2) used in (4-45) above. The estimate there
thus gives

Y. Vi@lal <Cy*ame Y~ yP|GP|, < Cy* Py f 1o, (4-76)
(t,5)el” (t,s)el”

which is the desired estimate.

4.14.3. The decomposition of IV(1). This term is the first term on the right hand side of (4-58). Recall
that for i € $! we have i € Case(b) and so Bl-kJr2 C G‘r"’”rl C Ty for some r € H¢'. From (4-63) we
also have Bf” C é’; To estimate [V (1) in (4-58), we again apply (4-61) to be able to write

p
mwse B RS X ([ kmmeio)t”)

(k. el ied! '

Bf2cTn Q¥
p 4-77
+C Z R];(Z Z P(Blkﬂv XE’;nTgw)/k+2|f|0> ( )
(k, j)el®! 1 ieg! ' B;
Bf 21N 0¥
=VIL() + VI§(2).

We can dominate the averages on BX 2 of the bad function b, by A2 4| A%/+1| < 2AFF2 since in this
case i € §. (see (4-59)), and this implies that the average of |b,| = | f — A‘;"t+1| over the cube Bl.k+2 is
dominated by

Af+2+ |Ag,l+1| < Af+2+)/t+2 < 2Af+2.
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4.14.4. The bound for VI(2). We claim that

s,t,9
VILQ2) < CME Y T BI (ATTH. (4-78)
k,i

Here, the sum on the right is over all pairs of integers k, i € $ such that BIHZ cT,n Q’J‘ for some ¢, j
with (k, j) € 197, (Below, we will need a similar sum, with the condition i € ! replaced by i € !
and i € Case(b).) This is a provisional bound, one that requires additional combinatorial arguments in
Section 4.14.7.

Proof. The term VI%(2) can be handled the same way as the term V/(2) (see (4-71)), with these two
changes. First, in the definition of P’J‘., we replace géi, by Sﬁi, and second, we use the function

s,t,9
_ sk k42
h= E A; X pr+2
k,i

in (4-74). That argument then obtains

k P R N
“XG?M Z(pj)*(XGg,ho)H”(w) <comp Z | B2, (Ak2)P (4-79)
k)] k,l
Here we are using the bounded overlap of the cubes Bl.k+2 given in Claim 4.13, along with the fact

recorded in (4-64) that for fixed (k + 2, i), only a bounded number of j satisfy BZ‘“ C é’]‘ Claim 4.13
applies in this setting, as we are in a subcase of the analysis of /V. We then use the universal maximal
function bound (2-2).

k k42 k+2\?
e = Y Rj(z D 201 ’XEﬁﬂTe”)<Lk+2°)Ai+ )
Y2 i

(k. el iefy

Bf?cTinQ¥
_ k ks P
—c Y Rj|/Qk(Pj) (ho)a)|

(k. jyels’ j
p

<C f (o (e Yo PH (xgseho))) e

(k, pely’

p
< Cf(XG?,, Z (P’;)*(XG?,tho)> w.
(k, j)ely”’
In view of (4-79), this completes the proof of the provisional estimate (4-78). O

4.14.5. The bound for VI(1). Recall the definition of VI(1) from (4-77), and also from (4-63) the fact
that BXT2 é’j‘ whenever Bf 2N Q’]‘ #+ &. We claim that

s,t,9
VIL(1) < CTLY T BI (AFT)P (4-80)
k,i
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The notation here is as in (4-78), but since i € $% implies i belongs to Case(b), the sum over the right is
over k,i € 9. such that BS™ € G*'*1 € Ty N Q’;, for some integers j, r, with (k, j) € [¢7. As with
(4-78), this is a provisional estimate.

Proof. We first estimate the sum in i inside term VI’ (1). Recall that the sum in i is over those i such
that Bl-kJr2 C Gﬁ‘”“ C T, for some r with £ = €(r), and where {T,}, is the set of maximal cubes in the
collection {3G‘r"’“rl :r € K"}, See the discussion at (4-35), and (4-50). We will write £(i) = £(r) when
BIHZ C G%'*1 Tt is also important to note that the sum in i deriving from term IV* is also restricted to
those i such that BIHZ - élj‘ by (4-63), so that altogether, Bl-kJr2 cTynN élj‘ We have

* k+2|?
52 K o)A
i i
k42, pk+2 k21— p/ Pyl
< B W (B ([ 1 g 0le) )
i i i
—1
k+2, pak+24p * 7 \F
§Z|Bi |‘7(Ai ) (Z ﬁ."”lL XE;‘.ﬂTz(i)wI U)
' p—1
e LW (L Y [ s, ee)

0 i@i)=¢L

Now we will apply the form (2-11) of (1-14) with g = x 40T, and Q chosen to be either 7, or Qk
depending on the relative positions of 7, and Qk Since Ty is a triple of a cube in the grid 9* and Qk is
a cube in the grid 9%, we must have either

ék cT, or T;C 3ék

If Qk C T; we choose Q in (2-11) to be Qk and note that by bounded overlap of Whitney cubes, there
are only a bounded number of such cases. If on the other hand 7, C 3Q then we choose Q to be Ty
and note that the cubes 7; have bounded overlap. This gives

3 / L Kptri @l 0 S T,
0 il(i)=¢L

and hence
p =
2 f I K, 010 )A T < 02 Y 1B, (A IN QA
i VB ;
since 30% C N Q% by (4-56). With this we obtain

VIL(D) <CT2 Y REY B (AP IN @ b (4-81)
(k, j)els ieds

* s,t,9
e k+2 k+2
<CTL Y B (AP,
k,i
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where we are using lef |N Q’J‘- 5)—1 <1 and (4-64) in the final line. O

4.14.6. The bound for V(1). We will use the same method as in the estimate for term VI(1) above to
obtain

> VI = CTYI I b (4-82)
(t,s)el“

Recall from (4-70) that V/ (1) is given by

P
Z Rﬂ Z Z </Bk+z(L*XEfﬂTar>w)0>cf+2(|A;"”H|—I—Ai-‘“) ‘

k, j)et! rey! i€y,
B[k+2CG(rx.t+1
The main difference here, as opposed to the previous estimate, is that i € $! rather than in $%; see (4-59).
As a result, we have the estimate

|A(;.l’t+1| +Af'<+2 5 yt+2, (4'83)
instead of |A%/*+!| 4+ A2 < AFF2 which holds when i € 9.

Proof of (4-82). We follow the argument leading up to and including (4-81) in the estimate for term
VI(1) above, but using instead (4-83). The result is as below, where we are using the notation of (4-78),
with the condition i € $% replaced by i € ! and i € Case(b), and so we use an asterisk and ¢ in the
notation below.
Vi = cst S B ey,
k,i

Now we collect those cubes BIHZ

* s,t,$ k42
(Igy(t-i-l)p Z Z |Bi+ |y = ‘If)/(H—Z)I) Z g;ix,}f

rexet ki reds!

that lie in a given cube G*'*! and write the right hand side above as
a constant times

By Claim 4.13, which applies as we are in a subcase of IV, we have Sf’f‘r’ <C |G‘;"“rl |s», and it follows
that

Vi) =Ty N |G|, < CTLy PG,

refy’
and hence from (4-18) that
SO VI =Ty Y yPIGY e < CTYI LI b O
(t,5)ele (t,8)el”

4.14.7. The final combinatorial arguments. Our final estimate in the proof of (4-52) is to dominate by
(& f | f|? do the sum of the right hand sides of (4-78) and (4-80) over (¢, s) € L%, namely

3 Z”’y <C / | f|? do. (4-84)

(t,s)el* k,i
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The proof of (4-84) will require combinatorial facts related to the principal cubes, and the definition of
the collection G* in (4-27). Also essential is the implementation of the shifted dyadic grids. We now
detail the arguments.

Definition 4.15. We say that a cube Bf” satisfying the defining condition in VI{(1), namely

there is (k, j) € [¥" = G* NH%' such that
B;‘” C Q]; and Bf*? C some G%'*! C G satisfying Af” > p!*2,

is a final type cube for the pair (¢, s) € L* generated from Q';.

The collection ¥ of cubes Bik+2 such that B{‘H is a final type cube generated from some Q’; with
(k, j) €17 for some pair (z, s) € L satisfies the following three properties:

Property 1. F is a nested grid in the sense that given any two distinct cubes in F, either one is strictly

contained in the other, or they are disjoint (ignoring boundaries).

Property 2. If Ble and Bl.k,/+2 are two distinct cubes in F with Bl.k,/Jr2 ; Bl.k+2, and k and k' have the
same parity, then
kK42 k+2
AT >y AT

Property 3. A given cube Bl-kJr2 can occur at most a bounded number of times in the grid %.

Proof of Properties 1, 2 and 3. Property 1 is obvious from the properties of the dyadic shifted grid %“.
Property 3 follows from the “bounded occurrence of cubes” noted above. So we turn to Property 2. It is
this property that prompted the use of the shifted dyadic grids.

Indeed, since Bl.k,ur2 g Bl.k+2, it follows from the nested property (4-54) that k€’ > k. By Definition 4.15
there are cubes

K k o K+2 — 3K k+2 — 3k
Q% and Q) satisfying B, " C Q) and B; " CQj,

and also cubes G%' C G®' such that (K, j') € 1" and (k, j) € 1! with (7', s'), (¢, 5) € L%, so that in
particular,
éljl, C G?,’t/ and élj C G

Now k' > k 4+ 2 and in the extreme case where k' = k + 2, it follows that the %%*-cube @’J‘: is one of the

cubes Béf”, so in fact it must be B;‘H since Bl.k,/+2 C B;‘H. Thus we have
k' +2 k' pk+2
Bi/ C Qj/ — Bl .
In the general case k' > k + 2 we have instead
K42 — 3K k+2
B, CQ, CBT.
Now Af*z > y'*2 by Definition 4.15, and so there is #y > t + 2 determined by the condition
A{'(+2

y < <yt (4-85)
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and also s( such that
Bf? C G%" c G¥',

where the label (#y, s9) need not be principal. Combining inclusions we have
0% c BF? c G&P,

and since (K, j/) € 1%, we obtain G%" C G%". Since (¢, s") € L* is a principal label, we have the key

X/

property that
t'>1. (4-86)

Indeed, if G‘S”,’t/ = G‘s)‘o”0 then (4-86) holds because (¢/,s") € L% is a principal label, and otherwise the
maximality of G?,’t/ shows that

1
1G5"1o

S0

Yy < / |fldo <y"*! thatis, fo<t +1.
Dt,[o

S0

Thus using (4-86) and (4-85) we obtain Property 2:
A{'C,/"rz - yt,+2 Z ,J/t0+2 Z VAZ'CJ’_Z- ‘:,

Proof of (4-84). Now for Q = B/ ™ € F set

_ 1 k21
MO =g [ 17l =K"= fBiMIflo.

i

With the three properties above we can now prove (4-84) as follows. Recall that in term /V(1) we
have i € ${ which implies Bl.k+2 satisfies Case(b). In the display below by > 7 we mean the sum over i
such that B¥*2 is contained in some G%/*! € G%', and also in some Q? with (k, j) € 17, and satisfying
AKFZ 5 2142 The left side of (4-84) is dominated by

D Z*|BZ‘+2|0<A§+2>I’:Z|Q|UA<Q>P=DQL;(@/QW)”

. 9)eL” (k, jHyel®' i QeF QcF

= [ X xe(igp; [ 1110) " doco
0T g

1 p
d
SC/R" XEZ?SE%(|Q|J /Q|f|0> O(X)

<C [ MZf()Po(dx)<C [ [f()Ido(x),
R R

where the second to last line follows since for fixed x € R”, the sum

1 P
QXE;;XQ(X)(@/QUW)
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is supergeometric by Properties 1, 2 and 3 above, that is, for any two distinct cubes Q and Q' in ¥ each
containing x, the ratio of the corresponding values is bounded away from 1, more precisely,

o= ol flo)”
((||QQ+G §2/|f|o))P ¢ [y_p’ yp) for y > 2.

This completes the proof of (4-84). (Il

5. The proof of Theorem 1.10 on the strongly maximal Hilbert transform

To prove Theorem 1.10 we first show that in the proof of Theorem 1.9 above, we can replace the use
of the dual maximal function inequality (1-17) with the dual weighted Poisson inequality (5-5) defined
below. After that we will show that in the case of standard kernels satisfying (1-9) with §(s) = s in
dimension n = 1, the dual weighted Poisson inequality (5-5) is implied by the half-strengthened A,

condition
O] r 1/p’ 1/p
(/R<|Q|+|X—XQ|> do () (/Q do) " = sl y(.0)10). (5-1)

for all intervals Q, together with the dual pivotal condition (5-2) of Nazarov, Treil and Volberg [2010],
namely that

> 10:15P(Qr. x00®)” < € [Qolos (5-2)

r=1

holds for all decompositions of an interval Qg into a union of pairwise disjoint intervals Qo =72, O,
We will assume 1 < p < 2 for this latter implication. Finally, for p > 2, we show that (5-5) is implied
by (5-1), (5-2) and the Poisson condition (1-24).

It follows from work in [Nazarov et al. 2010] and [Lacey et al. 2011] that the strengthened A, condition
(5-16) is necessary for the two weight ineq