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EXISTENCE OF EXTREMALS FOR A FOURIER RESTRICTION INEQUALITY

MICHAEL CHRIST AND SHUANGLIN SHAO

The adjoint Fourier restriction inequality of Tomas and Stein states that the mapping f 7→ f̂ σ is bounded
from L2(S2) to L4(R3). We prove that there exist functions that extremize this inequality, and that any
extremizing sequence of nonnegative functions has a subsequence that converges to an extremizer.
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1. Introduction

Let S2 denote the unit sphere in R3, equipped with surface measure σ . The adjoint Fourier restriction
inequality of Tomas and Stein, for S2, states that there exists C <∞ such that

‖ f̂ σ‖L4(R3) ≤ C‖ f ‖L2(S2,σ ) (1-1)
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for all f ∈ L2(S2). With the Fourier transform defined to be ĝ(ξ)=
∫

e−i x ·ξg(x) dx , denote by

R= sup
06= f ∈L2(S2)

‖ f̂ σ‖L4(R3)

/
‖ f ‖L2(S2,σ )

the optimal constant in the inequality (1-1).

Definition 1.1. An extremizing sequence for the inequality (1-1) is a sequence { fν} of functions in
L2(S2) satisfying ‖ fν‖2 ≤ 1, such that ‖ f̂νσ‖L4(R3)→R as ν→∞.

An extremizer for the inequality (1-1) is a function f 6= 0 that satisfies ‖ f̂ σ‖4 =R‖ f ‖2.

The main result of this paper is this:

Theorem 1.2. There exists an extremizer in L2(S2) for the inequality (1-1).

The inequality dual to (1-1) is ‖ĥ‖L2(S2,σ ) ≤ C‖h‖L4/3(R3). If f extremizes (1-1), then f̂ σ · | f̂ σ |2

extremizes the dual inequality.
Our inequality is one of endpoint type. That is, it becomes false if either of the exponents 2, 4 is

decreased. An analogue of Theorem 1.2 has more recently been obtained by Fanelli, Vega, and Visciglia
[Fanelli et al. 2011], for adjoint restriction inequalities not of endpoint type.

Definition 1.3. A sequence of functions in L2(S2) is precompact if any subsequence has a sub-sub-
sequence that is Cauchy in L2(S2).

Nonnegative functions play a special role in our analysis, because

‖̂| f |σ‖4 ≥ ‖ f̂ σ‖4 for all f ∈ L2(S2).

Therefore if { fν} is an extremizing sequence, so is {| fν |}. Any limit, in the L2 norm, of an extremizing
sequence is of course an extremizer. Thus the following implies Theorem 1.2.

Theorem 1.4. Any extremizing sequence of nonnegative functions in L2(S2) for the inequality (1-1) is
precompact.

In particular, the set of all nonnegative extremizers is itself compact. We do not know whether non-
negative extremizers are unique modulo rotations of S2 and multiplication by constants. They do possess
the following symmetry, which will be useful in our analysis.

Theorem 1.5. Every extremizer satisfies | f (−x)| = | f (x)| for almost every x ∈ S2.

Proposition 2.7 below states that more generally, the quantity ‖ f̂ σ‖4 never decreases under L2 norm-
preserving symmetrization of f with respect to the map x 7→ −x .

For complex-valued extremizers and near extremizers, the situation regarding precompactness of
extremizing sequences is different, due to the presence of a noncompact group of symmetries of the
inequality. For ξ ∈ C3, define eξ (x) = ex ·ξ . Then ‖ f̂ eiξσ‖4 = ‖ f̂ σ‖4 for arbitrary ξ ∈ R3, where
f ∈ L2(S2). Consequently complex-valued extremizing sequences need not be precompact. However,
we show in a sequel [Christ and Shao 2012] that this simple obstruction is the only one; if { fν} is any
complex-valued extremizing sequence, then there exists a sequence {ξν} ⊂ R3 such that e−i x ·ξν fν(x) is
precompact.
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The symmetries f 7→ f · ei x ·ξ merit further discussion. Matters are clearer for the paraboloid P2
=

{(y1, y2, y3) : y3 =
1
2 y2

1 +
1
2 y2

2} than for S2. For P2, the analogues of these unimodular exponentials are
quadratic exponentials ei x ·η+iτ |x |2 with (η, τ )∈R2+1; compare with S2, where ξ ∈R3 also ranges over a
three-dimensional space. To see the analogy, consider a small neighborhood of (0, 0, 1) ∈ S2, equipped
with coordinates x ′ ∈ R2 such that x = (x ′, (1 − |x ′|2)1/2). Then for ξ = (0, 0, λ), we have ei x ·ξ

=

exp(iλ(1− 1
2 |x
′
|
2
+O(|x ′|4)) for small x ′; thus for small x ′ one has essentially quadratic oscillation. The

presence of these symmetries among the extremizers for P2 implies that, in the language of concentration
compactness theory [Kunze 2003], an extremizer f can be tight at a scale r , and f̂ can simultaneously
be tight at a scale r̂ , with the product r · r̂ arbitrarily large.

Define

S := sup
06= f ∈L2(S2,σ )

‖ f σ ∗ f σ‖1/2L2(R3)

‖ f ‖L2(S2,σ )

.

Then R = (2π)3/4S by Plancherel’s theorem and the connection between the Fourier transform and
convolution.

S is the supremum of a functional, whose critical points are characterized by the generalized Euler–
Lagrange equation

( f σ ∗ f σ ∗ f̃ σ)|S2 = λ f almost everywhere on S2, (1-2)

where f̃ (x) = f (−x) and λ is a Lagrange multiplier determined by f . This follows from a routine
variational argument; see for instance [Christ and Quilodrán 2010], where more general results of this
type are justified. Equation (1-2) will be used in a forthcoming paper [Christ and Shao 2012] to prove that
all critical points are infinitely differentiable. By taking the L2(S2) inner product of both sides with f ,
one obtains an alternative characterization of extremizers.

Proposition 1.6. A complex-valued function f ∈ L2(S2) is an extremizer if and only if

( f σ ∗ f σ ∗ f̃ σ)|S2 = S4
‖ f ‖22 f almost everywhere on S2,

where f̃ (x)= f (−x).

Since the numerical value of S has not been determined, this equation is not entirely explicit and provides
only a negative test for extremizers.

Fundamental questions remain open, among them these:

Questions 1.7. Are extremizers unique modulo rotations and multiplication by constants? Are constant
functions extremizers?

In this context, it is interesting to observe that constant functions are local maxima. Let 1 denote the
constant function f (x)≡ 1.

Theorem 1.8. There exists δ > 0 such that whenever ‖ f − 1‖L2(S2) < δ,

‖ f̂ σ‖44
‖ f ‖42

≤
‖σ̂‖44

‖1‖42
,
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with equality only if f is constant.

Let P2 be the paraboloid introduced above. Let σP be the measure dσP = dx1 dx2 on P2.1 Then
the mapping f 7→ f̂ σP is likewise bounded from L2(P2, σP) to L4(R3). Denote by RP2 the optimal
constant in the inequality

‖ f̂ σP‖L4(R3) ≤RP2‖ f ‖L2(P2,σP ). (1-3)

Foschi [2007] has proved that extremals exist for this inequality, and moreover, that every radial Gaussian
f (x ′, x3) = e−c|x ′|2 is an extremal, where x ′ = (x1, x2), and that RP2 = 23/4π . Alternative proofs were
given by Hundertmark and Zharnitsky [2006] and by Bennett, Bez, Carbery, and Hundertmark [Bennett
et al. 2009]. The simple relation R ≥ RP2 is of significance for our discussion. This relation follows
from examination of a suitable sequence of trial functions fν , such that fν(x)2 converges weakly to a
Dirac mass on S2, and fν is approximately a Gaussian in suitably rescaled coordinates, depending on ν.
It is essential for this comparison that P2 has the same curvature at 0 as S2, which explains the factors
of 1

2 in the definition of P2.
The first author to discuss existence of extremizers for Strichartz/Fourier restriction inequalities was

apparently Kunze [2003], who proved the existence of extremizers for the parabola in R2, and showed
that (in our notation) any nonnegative extremizing sequence is precompact modulo the action of the
natural symmetry group of the inequality. Several papers have subsequently dealt with related problems,
in some cases determining all extremizers explicitly [Foschi 2007; Hundertmark and Zharnitsky 2006;
Bennett et al. 2009; Carneiro 2009], in other cases merely proving existence [Shao 2009]. A powerful
result [Shao 2009] that leads easily to existence of extremizers is the profile decomposition; see [Bégout
and Vargas 2007]. Of these works, the one most closely related to ours is that of Kunze. One difficulty
that we face is the lack of exact scaling symmetries. In some facets of the analysis this is merely a
technical obstacle, but it is bound up with the most essential obstacle, which is the possibility that the
optimal constant might be achieved only in a limit where | fν |2 tends to a Dirac mass, or a sum of two
Dirac masses.

Our analysis follows the general concentration compactness framework developed by Lions [1984a;
1984b; 1985a; 1985b]. We have elected to make the exposition self-contained in this respect, not drawing
on that theory; to do so would apparently not dramatically shorten the exposition, since most of our labor
is lavished on specific issues raised by the character of a particular nonlocal operator.

Existence of extremals for another scale-invariant convolution inequality in which curvature plays an
essential role, as it does here, was proved in [Christ 2011a]. There the underlying geometry is more
subtle, but the operator analyzed is merely linear, while the analysis of this paper is bilinear. Despite
differences in details, that analysis and the method of this paper have much in common. The role of an
inequality of Moyua, Vargas, and Vega [Moyua et al. 1999] used here was played in [Christ 2011a] by
[Christ 2011b].

1See [Christ 2011a] for a brief discussion of the naturality of this measure from a geometric perspective.
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2. Outline of the proof and definitions

The following overview of the proof includes notations, definitions, and statements of intermediate results
that are not repeated subsequently, and thus is an integral part of the presentation.

Step 1. The first step is quite simple, but in it a critical distinction appears between our problem for S2,
and for higher-dimensional spheres. The inequality ‖ f̂ σ‖L4(R3) ≤R‖ f ‖L2(S2,σ ) is equivalent, by squar-
ing and Plancherel’s theorem, to

‖ f σ ∗ f σ‖L2(R3) ≤ S2
‖ f ‖2L2(S2)

, (2-1)

where

R= (2π)3/4S

and ∗ denotes convolution of measures. This has been exploited in [Kunze 2003; Foschi 2007; Hundert-
mark and Zharnitsky 2006; Bennett et al. 2009]. In higher dimensions, the exponent 4 is replaced by an
exponent that is no longer an even integer, and no such equivalence is available.

Now the pointwise inequality | f σ ∗ f σ | ≤ | f |σ ∗ | f |σ , the relation µ̂ ∗ ν = µ̂ν̂, and Plancherel’s
theorem imply this:

Lemma 2.1. For any complex-valued function f ∈ L2(S2),

‖ f̂ σ‖L4(R3) ≤ ‖
̂| f |σ‖L4(R3).

Therefore if f is an extremizer for inequality (1-1), then so is | f |; if { fν} is an extremizing sequence, so
is {| fν |}.

This permits us to work with nonnegative functions throughout the analysis. For much of our analysis
this makes no difference, but nonnegativity will be useful in Step 7, allowing an elementary approach to
a step whose analogue in higher dimensions seems to require more sophisticated techniques.

Step 2. A potential obstruction to the existence of extremizers, and certainly to the precompactness of
arbitrary extremizing sequences, is the possibility that for an extremizing sequence satisfying ‖ fν‖2= 1,
| fν |2 could conceivably converge weakly to a Dirac mass at a point of S2. Straightforward analysis of
a sequence { fν} chosen so that | fν |2 converges in this way, disregarding the question of whether { fν} is
extremizing, reveals that R ≥ RP2 ; see Lemma 3.1. Now if R were to equal RP2 , any such sequence
would be extremizing, yet would not be precompact. Therefore an unavoidable step in our analysis is to
demonstrate a strict inequality R>RP2 .

In fact, as will be explained below, this is true in two distinct ways. The more superficial is this:

Lemma 2.2. Let g ∈ L2(S2) be supported in {x ∈S2
: x3 >

1
2}. Define f (x)= 2−1/2g(x)+2−1/2g(−x).

Then ‖ f ‖2 = ‖g‖2, and

‖ f σ ∗ f σ‖L2(R3) = (3/2)
1/2
‖gσ ∗ gσ‖L2(R3).
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Define the optimal constant in the corresponding inequality for the paraboloid to be

P= sup
06=g∈L2(P2,σP )

‖gσP ∗ gσP‖
1/2
L2(R3)

‖g‖L2(P2,σP )

.

By Lemma 2.2, the optimal constants for S2 and P2 satisfy the following.

Corollary 2.3. S≥ (3/2)1/4P.

Step 3. The simplest possibility left open by Step 2 is that an extremizing sequence might concentrate
at a pair of antipodal points, that is, | fν |2 might converge weakly to a linear combination of two Dirac
masses, at antipodal points z and −z. This scenario is indeed the crux of the problem. The crucial
ingredient in excluding it is an improved inequality S> (3/2)1/4P. We will give two independent proofs
of this inequality. The first gives a precise improvement:

Lemma 2.4. S≥ 21/4P.

Equivalently, R ≥ 21/4RP2 . This is proved by an exact computation of ‖ f σ ∗ f σ‖2 for f ≡ 1. We do
not know whether constant functions are in fact extremal for (1-1), or equivalently, whether S = 21/4P.
Constants are indeed critical points of the associated functional, and thus satisfy a (possibly) modified
Euler–Lagrange equation (1-2), in which S is replaced by 21/4P.

An alternative proof that S> (3/2)1/4P, along perturbative lines, is given in Section 17.

Step 4. Definition 2.5. A complex-valued function f ∈ L2(S2) is said to be even if f (−x)= f (x) for
almost every x ∈ S2.

We will be working almost exclusively with nonnegative functions, for which this condition becomes
f (−x)≡ f (x).

Definition 2.6. Let f ∈ L2(S2) be nonnegative. The antipodally symmetric rearrangement f? is the
unique nonnegative element of L2(S2) that satisfies

f?(−x)= f?(x) for all x ∈ S2,

f?(x)2+ f?(−x)2 = f (x)2+ f (−x)2 for all x ∈ S2.

In other words, f?(x)=
√
( f (x)2+ f (−x)2)/2 for all x ∈ S2.

Proposition 2.7. For any nonnegative f ∈ L2(S2),

‖ f σ ∗ f σ‖L2(R3) ≤ ‖ f? σ ∗ f? σ‖L2(R3),

with strict inequality unless f = f? almost everywhere. Consequently any extremizer for the inequality
(1-1) satisfies | f (−x)| = | f (x)| for almost every x ∈ S2.

An equivalent formulation is that ‖ f̂ σ‖4 ≤ ‖ f̂? σ‖4.
This allows us to restrict attention from nonnegative functions to even nonnegative functions through-

out the discussion. This simplification is more convenient than essential.
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Step 5. A first key step towards gaining control of near-extremals has already been essentially accom-
plished by Moyua, Vargas, and Vega [Moyua et al. 1999].

Definition 2.8. The cap C = C(z, r) with center z ∈ S2 and radius r ∈ (0, 1] is the set of all points
y ∈S2 that lie in the same hemisphere, centered at z, as z itself, and that satisfy |πHz (y)|< r , where the
subspace Hz ⊂R3 is the orthogonal complement of z and πHz denotes the orthogonal projection onto Hz .

Lemma 2.9. For any δ > 0 there exist Cδ <∞ and ηδ > 0 with the following property. If f ∈ L2(S2)

satisfies ‖ f σ ∗ f σ‖2 ≥ δ2S2
‖ f ‖22, then there exist a decomposition f = g+ h and a cap C satisfying

0≤ |g|, |h| ≤ | f |,

g and h have disjoint supports,

|g(x)| ≤ Cδ‖ f ‖2|C|−1/2χC(x) for all x,

‖g‖2 ≥ ηδ‖ f ‖2.

The first conclusion is of course redundant. If f ≥ 0 then it follows that g, h ≥ 0 almost everywhere.
Lemma 2.9 is a corollary [Moyua et al. 1999, Theorem 4.2]. It can also be proved via arguments

closely related to those in [Christ 2011b].

Step 6. This step is related to the techniques used in [Christ 2011a].

Definition 2.10. Let C = C(z, r) be a cap. For z ∈ S2, define ψz(x) = r−1L(πHz (x)) for x in the
hemisphere {x : x · z > 0}, where πHz is the orthogonal projection onto Hz , and L = L z : Hz→ R2 is an
arbitrary linear isometry. The rescaling map associated with C is defined by φC(z,r) = ψ

−1
z .

The map φC(z,r) is a bijection from B(0, r−1) ⊂ R2 to the indicated hemisphere. For z = (0, 0, 1),
φC(z,r)(y1, y2)= (r y1, r y2, (1− r2

|y|2)1/2) for y ∈ B(0, r−1).

Definition 2.11. Let C= C(z, r) be a cap. For f ∈ L2(S2), define the pullback of f by

φ∗C f (y)= r · ( f ◦φC)(y).

These pullbacks preserve norms up to uniformly bounded factors provided that r ≤ r0 < 1; we have
‖φ∗C f ‖L2(R2) � ‖ f ‖L2(S2,σ ), with the ratio of these norms bounded above and below by positive, finite
constants, uniformly in f, r, z. For the sake of definiteness only, we will sometimes set r0 =

1
2 .

Definition 2.12. Let 2 : [1,∞)→ (0,∞) satisfy 2(R)→ 0 as R→∞, and C=C(z, r)⊂S2 be a cap
of radius r and center z. A function f ∈ L2(S2) is said to be upper normalized, with gauge function 2,
with respect to C, if

‖ f ‖2 ≤ C <∞, (2-2)∫
| f (x)|≥Rr−1

| f (x)|2 dσ(x)≤2(R) for all R ≥ 1, (2-3)∫
|x−z|≥Rr

| f (x)|2 dσ(x)≤2(R) for all R ≥ 1. (2-4)
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An even function f is said to be upper even-normalized with respect to 2,C(z, r) if, when f is de-
composed as f = f++ f−, where f+ is the restriction of f to the hemisphere {x ∈ S2

: x · z > 0}, the
summand f+ is upper normalized with respect to 2,C(z, r).

A function f ∈ L2(R2) is said to be upper normalized with respect to the unit ball in R2 if ‖ f ‖2 ≤
C <∞,

∫
| f (x)|≥R| f (x)|

2 dx ≤2(R) for all R ≥ 1, and
∫
|x |≥R| f (x)|

2 dx ≤2(R) for all R ≥ 1.

For an even function f , we have f−(x) ≡ f+(−x), for almost every x ∈ S2. We will usually omit
the phrase “with gauge function 2”, and will say that a function is upper normalized if it satisfies the
required inequalities with respect to some appropriate function 2 which has been, in principle, specified
earlier in the discussion.

Definition 2.13. A nonzero function f ∈ L2(S2) is said to be δ-nearly extremal for the inequality (2-1)
if

‖ f σ ∗ f σ‖L2(R3) ≥ (1− δ)
2S2
‖ f ‖22.

Proposition 2.14. There exists a function2 : [1,∞)→ (0,∞) satisfying2(R)→ 0 as R→∞ with the
following property. For any ε > 0 there exists δ > 0 such that any nonnegative even function f ∈ L2(S2)

satisfying ‖ f ‖2 = 1 that is δ-nearly extremal may be decomposed as f = F + G, where F and G are
even and nonnegative with disjoint supports, ‖G‖2 < ε, and there exists a cap C such that F is upper
even-normalized with respect to C.

The proof is a largely formal argument that rests on two inputs: Lemma 2.9, and the observation that
‖χCσ ∗ χC′σ‖2 � |C|

1/2
|C′|1/2 for two caps C and C′, unless they have comparable radii and nearby

centers.

Step 7. In this step we establish a priori bounds for extremizing sequences, which include a limited but
uniform smoothness after suitable rescaling. Step 7 and the closely related Step 9 are the only ones that
require nonnegative extremizing sequences.

Proposition 2.15. Let { fν} ⊂ L2(S2) be an extremizing sequence of nonnegative even functions for the
inequality (2-1), satisfying ‖ fν‖2 ≡ 1. Suppose that each fν is upper even-normalized with respect to a
cap Cν = C(zν, rν), with constants uniform in ν. Assume that limν→∞ rν = 0. Then for any ε > 0 there
exists Cε <∞ such that each φ∗ν ( fν) may be decomposed as φ∗ν ( fν)= Gν + Hν where

‖Hν‖2 < ε,

Gν is supported where |x | ≤ Cε,

‖Gν‖C1 ≤ Cε.

Here φ∗ν = φ
∗

Cν
.

Proposition 2.15 expresses a weak form of equicontinuity, after rescaling. In outline: If g ∈ L2(R2)

satisfies ‖g‖2 ∼ 1, if g is upper normalized with respect to the unit ball, and if g is nonnegative, then∫
|ξ |≤1|ĝ(ξ)|

2 dξ is bounded below by a universal strictly positive constant. If the conclusions of the
proposition were to fail, then gν = φ∗ν ( fν) would have to satisfy

∫
|ξ |
≥3ν |ĝν(ξ)|2 dξ ≥ η > 0, with
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lim sup3ν =∞. Thus in an appropriately rescaled sense, for some subsequence, fν would be a super-
position of a slowly varying part and a highly oscillatory part, with perhaps some intermediate portion
of arbitrarily small norm for large ν. For the bilinear expression f σ ∗ f σ , we show that the cross term
resulting from the high and low frequency parts is small, and that this contradicts extremality.

Step 8. Proposition 2.16. Let { fν} ⊂ L2(S2) be an extremizing sequence of nonnegative even functions
for the inequality (2-1), satisfying ‖ fν‖2≡1. Suppose that each fν is upper even-normalized with respect
to a cap Cν = C(zν, rν), with constants uniform in ν. Then infν rν > 0.

Thus the situation considered in the hypotheses of Proposition 2.15 cannot arise. The proof of
Proposition 2.16 proceeds by contradiction. One can assume that rν → 0. A natural rescaling and
transference procedure constructs a corresponding sequence of functions { f +ν } on P2, which possesses
a weak form of equicontinuity, as a consequence of Proposition 2.15. In coordinates rescaled according
to rν , each f +ν is acted upon by an adjoint Fourier restriction operator associated to a hypersurface that
depends on rν , and that approaches P2 as rν→ 0. The weak equicontinuity of { f +ν }, combined with the
convergence of these hypersurfaces, can be used to construct a new sequence Fν ∈ L2(P2) that satisfies
lim supν→∞ ‖F̂νσP‖4/‖Fν‖2 ≥ (3/2)−1/4 limν→∞ ‖ f̂νσ‖4/‖ fν‖2. It follows that RP2 ≥ (3/2)−1/4R.
But this contradicts the inequality R≥ 21/4RP2 of Step 3.

Step 9. The following variant of Proposition 2.15 is proved by essentially the same reasoning, with one
small modification.

Proposition 2.17. Let { fν} ⊂ L2(S2) be an extremizing sequence of nonnegative even functions for the
inequality (2-1), satisfying ‖ fν‖2 ≡ 1. Suppose that each fν is upper even-normalized with respect to a
cap Cν = C(zν, rν), with constants uniform in ν. Let ρ > 0, and suppose that rν ≥ ρ for every ν. Then
after passing to some subsequence of {rν}, each fν may be decomposed as fν = gν+hν , where ‖hν‖2<ε
and ‖gν‖C1 ≤ Cε,ρ , where Cε,ρ depends only on ε, ρ, not on ν.

An application of Rellich’s lemma yields precompactness:

Corollary 2.18. Let { fν} ⊂ L2(S2) be an extremizing sequence of even nonnegative functions for the
inequality (2-1), which are upper even-normalized with respect to a sequence of caps {Cν = C(zν, rν)}.
Then { fν} is precompact in L2(S2).

Conclusion. Extremizing sequences exist. We have shown that there exists an extremizing sequence
that consists of even, nonnegative functions. Such a sequence is upper even-normalized with respect to
a sequence of caps. By Proposition 2.16, the radii of these caps cannot tend to zero. By Corollary 2.18,
such a sequence has a subsequence that converges in L2(S2). The limit of such a subsequence is an
extremal. �

Not a Step. As explained above in Step 2, the fundamental potential obstruction to the precompactness
of (nonnegative) extremizing sequences was the possibility that | fν |2 could converge weakly to a Dirac
mass, or to a sum of two Dirac masses at a pair of antipodal points. Exclusion of this possibility relied
on a suitable lower bound for S relative to P. The following result examines a natural one-parameter
family of candidate trial functions, which provide an alternative source for a lower bound for S.
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Proposition 2.19. For all ξ ∈ R3 with |ξ | sufficiently large,

‖êξσ‖L4(R3) >RP2‖eξ‖L2(S2).

If ξ = (0, 0, λ), then e2
ξ/‖eξ‖

2
2 does converge weakly as λ→+∞ to a constant multiple of a Dirac

mass at (0, 0, 1). Proposition 2.19 is proved in Section 17 via a perturbative calculation.
By taking the considerations of Step 2 involving even functions into account, Proposition 2.19 pro-

vides an alternative route to the essential comparison S > (3/2)1/4P. Although Proposition 2.19 is not
strictly necessary for the main lines of our proof, the calculation that underlies it is a natural tool for the
investigation of manifolds more general than S2. However, both routes rely on specific properties of the
sphere and paraboloid, whose generalization to related problems is not certain.

3. Step 2: S≥ (3/2)1/4P

We begin by establishing the comparison S ≥ P. This is based directly on the fact that a sphere is
osculated to second order by an appropriate paraboloid.

Lemma 3.1. The optimal constants S and P, for S2 and P2 respectively, satisfy S ≥ P. Moreover, for
any r, ε > 0 and any z ∈ S2, there exists a function g supported in a cap C(z, r)⊂ S2 satisfying

‖gσ ∗ gσ‖L2(R3) ≥ (P− ε)2‖g‖2L2(σ )
,

where L2(σ ) denotes L2(S2, σ ).

Proof. Rotations are symmetries of the inequality (2-1). That is, for any rotation A of R3 and any g ∈
L2(σ ), the function gA = g◦ A satisfies ‖gA‖L2(σ )=‖g‖L2(σ ) and ‖gAσ ∗gAσ‖L2(R3)=‖gσ ∗gσ‖L2(R3).
Therefore it is no loss of generality to assume that z = (0, 0, 1).

Write x = (x ′, x3) ∈ R2
× R as coordinates for R3. Each of the two convolution inequalities under

consideration here (one for S2, one for P2) is equivalent to a corresponding adjoint Fourier restriction
inequality, with optimal constants R and RP2 respectively. It suffices to prove that for each ε > 0, there
exists fε supported in the set of all (x ′, x3)∈S2 such that |x ′|<ε and x3> 0, such that ‖ fε‖L2(σ )≤ 1+ε
and ‖ f̂εσ‖L4(R3) ≥ (RP2 − ε

)
.

By definition of RP2 , for any ε > 0 there exists a compactly supported C∞ function Fε : R2
→ R

satisfying ∫
R2
|Fε(x1, x2)|

2 dx1 dx2 = 1 and
∫

R3
|F̂εσP |

4
≥ (RP2 − ε)4.

Here we have mildly abused notation in that the domain of Fε is not P2; by F̂εσP(y′, y3) we mean∫
R2 Fε(x ′)e−i x ′·y′e−iy3|x ′|2/2 dx ′.

Suppose that Fε is supported in {x ′ ∈R2
: |x ′| ≤ ρε}, where ρε ≥ 1. For δ ∈ (0, ερ−1

ε ] and (x ′, x3)∈S2,
define

fε,δ(x ′, x3)= δ
−1 Fε(δ−1x ′).

Then fε,δ is supported in C((0, 0, 1), δρε) ⊂ C((0, 0, 1), ε). Because dσ(x) = (1 + O(ε2))dx ′ in
C((0, 0, 1), ε), we have ‖ fε,δ‖L2(σ ) = (1+ O(ε)).
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Now

f̂ε,δσ(y)=
∫

R2
fε,δ(x ′,

√
1− |x ′|2)e−iy′·x ′e−iy3

√
1−|x ′|2h(x ′) dx ′

=

∫
R2
δ−1 Fε(δ−1x ′)e−iy′·x ′e−iy3

√
1−|x ′|2h(x ′) dx ′

= δe−iy3

∫
R2

Fε(x ′)e−iδy′·x ′e−iy3

(√
1−δ2|x ′|2−1

)
h(δx ′) dx ′,

where h = dσ/dx ′ satisfies h(x ′) = 1+ O(|x ′|2). Substitute (u′, u3) = (δy′,−δ2 y3) and let gε,δ(u) =
δ−1eiy3 f̂ε,δσ(y). Then ‖ f̂ε,δσ‖L4(R3, dy) = ‖gε,δ‖L4(R3 du), and

gε,δ(u)=
∫

R2
Fε(x ′)e−iu′·x ′eiδ−2u3(

√
1−δ2|x ′|2−1)h(δx ′) dx ′.

Expanding as

δ−2(√1− δ2|x ′|2− 1
)
=−

1
2 |x
′
|
2
+ O(δ2

|x ′|4)

gives

gε,δ(u)=
∫

R2
Fε(x ′)e−iu′·x ′e−iu3|x ′|2/2

(
1+ O(δ2

|x ′|2+ δ2
|x ′|4)

)
dx ′.

Let λ <∞ be another parameter. Then uniformly for all u satisfying |u| ≤ λ,

gε,δ(u)= F̂εσP(u)+ O(δ2ρ4
ε ).

Therefore with ε, λ fixed,

lim sup
δ→0

‖ f̂ε,δσ‖4L4(R3)
≥

∫
|u|≤λ
|F̂εσP(u)|4 du.

Therefore

lim sup
δ→0

‖ f̂ε,δσ‖L4(R3) ≥ ‖F̂εσP‖L4(R3) ≥ (RP2 − ε),

while

‖ fε,δ‖L2(σ ) = 1+ O(ε). �

Improvement by the factor (3/2)1/4 is based on the reflection symmetry x 7→ −x of S2. Recall
f̃ (x) = f (−x), which simplifies to f̃ (x) = f (−x) for real-valued functions. Denote by 〈F,G〉 the
pairing of two functions in L2(R3), that is, 〈F,G〉 =

∫
R3 FGdx .

Lemma 3.2. For any four real-valued functions f j ∈ L2(S2),

〈 f1σ ∗ f2σ, f3σ ∗ f4σ 〉 = 〈 f1σ ∗ f̃3σ, f̃2σ ∗ f4σ 〉 (3-1)

and

‖ f1σ ∗ f2σ‖L2(R3) = ‖ f1σ ∗ f̃2σ‖L2(R3). (3-2)
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Proof. The inequality ‖ f σ ∗ gσ‖L2(R3) ≤ S2
‖ f ‖L2(σ )‖g‖L2(σ ) ensures that these quantities are well

defined, and that the first identity holds for all L2 functions provided that it holds for all nonnegative
continuous functions f j . In that case f3σ ∗ f4σ(x) ≤ C |x |−1 for all x ∈ R3, where C <∞ depends
on f3, f4, and f3σ ∗ f4σ is continuous except at x = 0. For real-valued functions F ∈ C0(R3) and
f j ∈ C0(S2),

〈 f1σ ∗ f2σ, F〉 =
∫
( f̃2σ ∗ F) f1 dσ,

a consequence of the definition of convolution of measures and Fubini’s theorem. Limiting arguments
then lead to (3-1).

Equation (3-2) now follows:

‖ f1σ ∗ f2σ‖
2
L2(R3)

= 〈 f1σ ∗ f2σ, f1σ ∗ f2σ 〉 = 〈 f1σ ∗ f2σ, f2σ ∗ f1σ 〉

= 〈 f1σ ∗ f̃2σ, f̃2σ ∗ f1σ 〉 = 〈 f1σ ∗ f̃2σ, f1σ ∗ f̃2σ 〉 = ‖ f1σ ∗ f̃2σ‖
2
L2 . �

Proof of Lemma 2.2. Let g ∈ L2(S2) be supported in {x : x3 >
1
2}. Set dµ = g dσ . Let f (x) =

2−1/2
(
g(x)+ g(−x)

)
and dν = f dσ = 2−1/2

(
µ+ µ̃

)
. The two terms g(x) and g(−x) have disjoint

supports, so

‖ f ‖2L2(S2)
= ‖g‖2L2(S2)

.

Now

ν ∗ ν = 1
2(µ+ µ̃) ∗ (µ+ µ̃)=

1
2((µ ∗µ)+ (µ̃ ∗ µ̃)+ 2(µ ∗ µ̃)).

The three summands on the right side have pairwise disjoint supports; the first is supported where x3> 1,
the second where x3 <−1, and the third where |x3|< 1. Therefore

‖ν ∗ ν‖2L2(R3)
=

1
4(‖µ ∗µ‖

2
L2 +‖µ̃ ∗ µ̃‖

2
L2 + 4‖µ ∗ µ̃‖2L2).

There holds ‖µ ∗ µ‖L2 = ‖µ̃ ∗ µ̃‖L2 , since one is the reflection about the origin of the other. By
Lemma 3.2, it is also the case that ‖µ ∗ µ̃‖2L2 = ‖µ ∗µ‖

2
L2 . Thus

‖ν ∗ ν‖2L2(R3)
=

3
2‖µ ∗µ‖

2
L2,

establishing Lemma 2.2. �

Proof of Corollary 2.3. Let ε > 0. Choose g ∈ L2(S2), supported in {x ∈ S2
: x3 >

1
2}, satisfying

‖gσ ∗ gσ‖22 ≥ (P− ε)
4
‖g‖4L2(S2)

. By replacing g by |g|, we may assume that g ≥ 0.
Consider once more f (x)= 2−1/2

(
g(x)+ g(−x)

)
. By Lemma 2.2,

‖ f σ ∗ f σ‖2L2(R3)
=

3
2‖gσ ∗ gσ‖2L2(R3)

≥
3
2(P− ε)

4
‖g‖4L2(S2)

=
3
2(P− ε)

4
‖ f ‖4L2(S2)

.

Letting ε→ 0 yields Corollary 2.3. �
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4. Step 3: S≥ 21/4P

Proof of Lemma 2.4. We will obtain a lower bound for S by calculating ‖ f σ ∗ f σ‖22 for f ≡ 1. The
following facts are well known: The unit ball in R3 has volume 4π/3, σ(S2)= 4π , and the volume form
in R3 in polar coordinates is r2 dr dσ(θ).

One calculates that
σ ∗ σ(x)= a|x |−1χ

|x |≤2 (4-1)

for a certain constant a > 0. We will not need to evaluate a, which will cancel out at the end of the
calculation. Let σP denote the measure dx ′ on the paraboloid P2

= {x ∈ R3
: x3 =

1
2 |x
′
|
2
}. What we do

need to know is that
σP ∗ σP(z)≡ 1

2aχ�

where � denotes the support of σP ∗ σP and this constant a is the same as that in (4-1). This factor of
1
2 in the definition of P2 is required to make the curvature of P2 equal to the curvature of S2; one sees
that they are equal by writing the equation for S2 near the north pole as x3− 1= (1− |x ′|2)1/2− 1 and
Taylor expanding the right side. Note that the factor a/2 in the formula for σP ∗ σP agrees with the
limit as |x | → 2 of the function a/|x |, which appears in the formula for σ ∗σ . This asymptotic equality
must hold since the two surfaces have equal curvatures; hence the two convolutions must agree on the
diagonal of the maps (x, y) 7→ x + y. We will not prove that σP ∗ σP is constant on its support; this is
a reflection of the symmetry of the paraboloid (including appropriate dilation symmetry) and invariance
of curvature under mappings of the form (x ′, x3) 7→ (x ′, x3− L(x ′)) where L : R2

→ R1 is linear.
The support of σP ∗ σP is

�= {z : z3 >
1
4 |z
′
|
2
}.

It is known [Foschi 2007; Hundertmark and Zharnitsky 2006] that any Gaussian is an extremizer for
the paraboloid, and conversely. Another proof that Gaussians extremize the inequality is in [Bennett
et al. 2009]. Set F(x ′, x3)= e−|x

′
|
2/2
≡ e−x3 on the paraboloid. Observe that if x + y = z ∈ R3, then

F(x)F(y)= e−x3−y3 = e−z3 .

Therefore
(FσP ∗ FσP)(z)= 1

2ae−z3χz3>|z′|2/4.

Consequently

‖FσP ∗ FσP‖
2
2 =

1
4a2

∫
z′∈R2

∫
z3>|z′|2/4

e−2z3 dz

=
1
4a2

∫
∞

0
2π
∫
∞

r2/4
e−2s ds r dr = 1

4a22π
∫
∞

0

1
2 e−r2/2 r dr = 1

4πa2.

On the other hand,

‖σ ∗ σ‖2L2(R3)
=

∫
|x |≤2

a2
|x |−2 dx = a2

∫ 2

0
r−2 4πr2 dr = 4πa2

∫ 2

0
dr = 8πa2.
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Meanwhile
‖1‖2L2(σ )

= σ(S2)= 4π,

and

‖F‖2L2(σP )
=

∫
R2

e−2|x |2/2 dx =
∫
∞

0
e−r2

2πr dr = π.

Putting this all together,
‖FσP ∗ FσP‖

2
2

‖F‖4L2(σP )

=
a2π/4
π2 =

a2

4π
,

while
‖1σ ∗ 1σ‖22
‖1‖4L2(σ )

=
8πa2

(4π)2
=

a2

2π
.

The second ratio is equal to twice the first, as claimed. �

5. Step 4: Symmetrization

Proposition 2.7 states that ‖ f σ∗ f σ‖L2(R3)≤‖ f? σ∗ f? σ‖L2(R3) for any nonnegative function f ∈ L2(S2),
where f? denotes the antipodally symmetric rearrangement of f , defined in Definition 2.6.

Proof of Proposition 2.7. Let σ denote surface measure on S2. For h ≥ 0,

‖hσ ∗ hσ‖2L2 =

∫
h(a)h(b)h(c)h(d) dλ(a, b, c, d) (5-1)

for a certain nonnegative measure λ that is supported on the set where a+b= c+d , and that is invariant
under the transformations

(a, b, c, d) 7→ (b, a, c, d), (a, b, c, d) 7→ (a,−c,−b, d)

(a, b, c, d) 7→ (c, d, a, b), (a, b, c, d) 7→ (−a,−b,−c,−d).

This invariance, which is essential to the discussion, follows from the identities

f σ ∗ gσ = gσ ∗ f σ,

〈 f σ ∗ gσ, hσ ∗ kσ 〉 = 〈hσ ∗ kσ, f σ ∗ gσ 〉,

〈 f σ ∗ gσ, hσ ∗ kσ 〉 = 〈 f σ ∗ h̃σ, g̃σ ∗ kσ 〉

for arbitrary real-valued functions, where F̃(x)= F(−x).
Denote by G the finite group of symmetries of (R3)4 that these generate. G has cardinality 48. Indeed,

exactly one of a and −a appears; suppose that a appears. There are 4 places in which it can go. Then
±b can go into any of 3 slots, but whether it is +b or −b is determined by which slot. There remain
two slots into which ±c can go; again, the ± sign is determined by the slot. Then ±d goes into the
remaining slot, with the ± sign again determined. The analysis is parallel if −a appears. Thus there are
2× 4× 3× 2= 48 possibilities.
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By the orbit of a point we mean its image under G; by a generic point we mean one whose orbit
has cardinality 48. In (5-1), it suffices to integrate only over all generic 4-tuples (a, b, c, d) satisfying
a+ b = c+ d , since these form a set of full λ-measure.

To the orbit O we associate the functions

F(O)=
∑

(a,b,c,d)∈O

f (a) f (b) f (c) f (d) and F?(O)=
∑

(a,b,c,d)∈O

f?(a) f?(b) f?(c) f?(d).

Let � denote the set of all orbits of generic points. We can write

‖ f ∗ f ‖2L2 =

∫
�

F(O) dλ̃(O) and ‖ f? ∗ f?‖2L2 =

∫
�

F?(O) dλ̃(O)

for a certain nonnegative measure λ̃. Therefore it suffices to prove that for any generic orbit O,∑
(a,b,c,d)∈O

f (a) f (b) f (c) f (d)≤
∑

(a,b,c,d)∈O

f?(a) f?(b) f?(c) f?(d). (5-2)

Fix any generic ordered 4-tuple (a, b, c, d) satisfying a + b = c + d . We prove (5-2) for its orbit.
By homogeneity, it is no loss of generality to assume that f 2(a)+ f 2(−a)= 1 and that the same holds
simultaneously for b, c, d . Thus we may write

f (a)= cos(ϕ), f (b)= cos(ψ), f (c)= cos(α), f (d)= cos(β)

for some ϕ,ψ, α, β ∈ [0, π/2] with f (−a)= sin(ϕ), . . . , f (−d)= sin(β). This means that

f?(x)= 2−1/2 for each x ∈ {±a,±b,±c,±d}.

Now

1
8

∑
(a′,b′,c′,d ′)∈O

f (a′) f (b′) f (c′) f (d ′)= cos(ϕ) cos(ψ) cos(α) cos(β)+ sin(ϕ) sin(ψ) sin(α) sin(β)

+ cos(ϕ) sin(ψ) cos(α) sin(β)+ cos(ϕ) sin(ψ) sin(α) cos(β)

+ sin(ϕ) cos(ψ) cos(α) sin(β)+ sin(ϕ) cos(ψ) sin(α) cos(β)

= 0(ϕ,ψ, α, β),

where

0(ϕ,ψ, α, β)= cos(ϕ) cos(ψ) cos(α) cos(β)+ sin(ϕ) sin(ψ) sin(α) sin(β)+ sin(ϕ+ψ) sin(α+β).

Therefore the following lemma will complete the proof of Proposition 2.7. �

Lemma 5.1. maxϕ,ψ,α,β∈[0,π/2] 0(ϕ,ψ, α, β) = 3
2 . Moreover, this maximum value is attained only at

(π4 ,
π
4 ,

π
4 ,

π
4 ).

Since

0(π4 ,
π
4 ,

π
4 ,

π
4 )= 1+ (1/

√
2)4+ (1/

√
2)4 = 3

2 ,
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the maximum value of 0 is at least 3
2 . This point corresponds to the values taken by f?. Compare this

with 0(0, 0, 0, 0)=1, which represents the extreme case when f vanishes at one of each pair of antipodal
points; this ratio (3/2)/1 is the same 3/2 that appears in Corollary 2.3.

Proof. We write 0 as

0 = cos(φ+ψ) cos(α+β)+ sin(φ+ψ) sin(α+β)+ cosφ cosψ sinα sinβ + sinφ sinψ cosα cosβ

= cos((φ+ψ)− (α+β))+ cosφ cosψ sinα sinβ + sinφ sinψ cosα cosβ.

Now

cosφ cosψ =
cos(φ+ψ)+ cos(φ−ψ)

2
≤

1+ cos(φ+ψ)
2

,

sinα sinβ =
− cos(α+β)+ cos(α−β)

2
≤

1− cos(α+β)
2

with equality only if φ = ψ and α = β, and there are similar identities for sinφ sinψ and cosα cosβ.
Therefore

0 ≤ cos((φ+ψ)− (α+β))+ 1
4(1+ cos(φ+ψ))(1− cos(α+β))

+
1
4(1− cos(φ+ψ))(1+ cos(α+β))

= cos((φ+ψ)− (α+β))+ 1
2(1− cos(φ+ψ) cos(α+β))

= cos((φ+ψ)− (α+β))− 1
2

(
cos((φ+ψ)+ (α+β))+ cos((φ+ψ)− (α+β))

)
+

1
2

=
1
2

(
cos((φ+ψ)− (α+β))− cos((φ+ψ)+ (α+β))

)
+

1
2 ≤

3
2 .

The value 3
2 can only be attained if all inequalities in this derivation are equalities. Equality in the

final inequality forces φ+ψ +α+ β = π and φ+ψ = α+ β. Together with the equalities φ = ψ and
α = β already noted, these force φ = ψ = α = β = π/4. �

6. Step 5: Big pieces of caps

In this section we prove Lemma 2.9. While we are ultimately interested in establishing strong structural
control of near-extremal functions, here we establish a weak connection between functions satisfying
modest lower bounds ‖ f̂ σ‖4 ≥ δ‖ f ‖2, with δ > 0 arbitrarily small, and characteristic functions of caps.

For each integer k ≥ 0 choose a maximal subset {z j
k } ⊂ S2 satisfying |z j

k − zi
k | ≥ 2−k for all i 6= j .

Then for any x ∈ S2 there exists zi
k such that |x − zi

k | ≤ 2−k ; otherwise x could be adjoined to {z j
k },

contradicting maximality. Therefore the caps C
j
k = C(z j

k , 2−k+1) cover S2 for each k, and there exists
C <∞ such that for any k, no point of S2 belongs to more than C of the caps C

j
k . The constant C is

independent of k.
For p ∈ [1,∞), the X p norm is defined by

‖ f ‖4X p
=

∞∑
k=0

∑
j

2−4k
(
|C

j
k |
−1
∫

C
j
k

| f |p
)4/p

.

The factor 2−4k can alternatively be written as |C j
k |

2.
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Define also
3k, j ( f )=

(
|C

j
k |
−1
∫

C
j
k

| f |
)(
|C

j
k |
−1
∫

S2
| f |2

)−1/2
.

By Hölder’s inequality,

3k, j ( f )≤
(
|C

j
k |
−1
∫

C
j
k

| f |2
)1/2(

|C
j
k |
−1
∫

S2
| f |2

)−1/2
= ‖ f ‖L2(C

j
k )
/‖ f ‖L2(S2) ≤ 1.

It is shown in [Moyua et al. 1999, Lemma 4.4] that L2
⊂ X p for any p < 2. We will exploit the

following refinement, which is very closely related to a result in Bégout and Vargas [2007], and whose
somewhat tedious proof is deferred to Section 18.

Lemma 6.1. For any p ∈ [1, 2), there exist C <∞ and γ > 0 such that for any f ∈ L2(S2),

‖ f ‖X p ≤ C‖ f ‖2 sup
k, j
(3k, j ( f ))γ .

Thus ‖ f ‖X p ≤C p‖ f ‖2 for any f ∈ L2(S2). Moreover, when the X p norm is not significantly smaller
than the L2 norm, supk, j 3k, j ( f ) cannot be small.

Proposition 6.2 (Moyua, Vargas, and Vega [1999]). There exist C <∞ and p ∈ (1, 2) such that for any
f ∈ L2(S2),

‖ f̂ σ‖L4(R3) ≤ C‖ f ‖X p .

This result contains Lemma 2.9 by an elementary argument, but we give the details for the sake of
completeness.

Proof of Lemma 2.9. Let δ > 0. Let 0 6= f ∈ L2(S2) and suppose that ‖ f̂ σ‖L4(R3) ≥ δ‖ f ‖2. For
convenience, normalize so that ‖ f ‖2= 1. The hypothesis, combined with the proposition and the lemma
above, yields

sup
k, j
3k, j ( f )≥ cδ1/γ .

Fix k and j such that 3k, j ( f )≥ 1
2 cδ1/γ . Henceforth write C= C

j
k . Thus∫

C
| f | ≥ c0δ

1/γ
|C|1/2,

where c0 > 0 is a constant independent of f .
Let R ≥ 1. Define E = {x ∈ C : | f (x)| ≤ R}. Set g = f χE and h = f − f χE . Then g and h have

disjoint supports, g + h = f , g is supported on C, and ‖g‖∞ ≤ R. Now |h(x)| ≥ R for almost every
x ∈ C for which h(x) 6= 0, so ∫

C
|h| ≤ R−1

∫
C
|h|2 ≤ R−1

‖ f ‖22 = R−1.

Define R by R−1
=

1
2 c0δ

1/γ
|C|1/2. Then∫

C
|g| =

∫
C
| f | −

∫
C
|h| ≥ 1

2 c0δ
1/γ
|C|1/2.
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By Hölder’s inequality, since g is supported on C,

‖g‖2 ≥ |C|−1+1/2
‖g‖L1(C) ≥ cδ1/γ

= cδ1/γ
‖ f ‖2.

Thus the decomposition f = g+h satisfies the conclusions of Lemma 2.9, with ηδ proportional to δ1/γ ,
and Cδ proportional to δ−1/γ . �

7. Analytic preliminaries

On near-extremals.

Lemma 7.1. Let f = g+ h ∈ L2(S2). Suppose that g ⊥ h, g 6= 0, and that f is δ-nearly extremal for
some δ ∈ (0, 1

4 ]. Then

‖h‖2
‖ f ‖2

≤ C max
(
‖hσ ∗ hσ‖1/22

‖h‖2
, δ1/2

)
. (7-1)

Here C <∞ is a constant independent of g and h.

Proof. The inequality is invariant under multiplication of f by a positive constant, so we may assume
without loss of generality that ‖g‖2 = 1. We may assume that ‖h‖2 > 0, since otherwise the conclusion
is trivial. Define y = ‖h‖2 and

η = ‖hσ ∗ hσ‖1/22 /S‖h‖2.

If η > 1
2 , then (7-1) holds trivially with C = 2/S, for the left side cannot exceed 1 since f = g+ h with

g ⊥ h.
Since ‖ f σ ∗ f σ‖1/22 is a constant multiple of ‖ f̂ σ‖4, the functional f 7→ ‖ f σ ∗ f σ‖1/22 satisfies the

triangle inequality. Therefore

(1− δ)4S4
‖ f ‖42 ≤ ‖ f σ ∗ f σ‖22 ≤

(
‖gσ ∗ gσ‖1/22 +‖hσ ∗ hσ‖1/22

)4
≤ S4(1+ ηy)4.

Since g ⊥ h, ‖ f ‖22 = 1+ y2 and therefore

(1− δ)(1+ y2)1/2 ≤ 1+ ηy.

Squaring gives

(1− 2δ)(1+ y2)≤ 1+ 2ηy+ η2 y2.

Since δ ∈ (0, 1
4 ] and η ≤ 1

2 ,

1
2 y2
≤ 2δ+ 2ηy+ η2 y2

≤ 2δ+ 2ηy+ 1
4 y2,

whence either y2
≤ 16δ or y ≤ 16η.

Substituting the definitions of y and η and majorizing ‖h‖2/‖ f ‖2 by ‖h‖2/‖g‖2 yields the stated
conclusion. �
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Simple bilinear convolution estimates.

Lemma 7.2. Let f ∈ L2(S2) be nonnegative and satisfy ‖ f ‖2 ≤ 1. Let z ∈ S2 and ε > 0. Let R ≥ 1 and
0< ρ ≤ 1. Then

‖ f σ ∗ f σ‖L2({|x |>2−ε}) ≤ C R2ε1/2ρ+C
(∫

f (x)≥R
f 2(x) dσ(x)

)1/2
+C

(∫
|x−z|≥ρ

f 2(x) dσ(x)
)1/2

.

Proof. Decompose f = g+ h where g and h are nonnegative,

‖h‖2 ≤
(∫

f (x)≥R
f 2(x) dσ(x)

)1/2
+

(∫
|x−z|≥ρ

f 2(x) dσ(x)
)1/2

and ‖g‖2 ≤ 1 and ‖g‖∞ ≤ R, and g is supported on {x ∈ S2
: |x − z| ≤ ρ}. Then

gσ ∗ gσ(x)≤ R2σ ∗ σ(x)≤ C R2
|x |−1

for |x |< 2, and equals 0 otherwise. Moreover, gσ ∗ gσ is supported in {x : |x − 2z|< 2ρ}. The L2(R3)

norm of |x |−11|x |≤2 over the intersection of this region with {x : |x |> 2−ε} is ≤Cρε1/2. This gives the
bound C R2ρε1/2 for ‖gσ ∗ gσ‖2. Since ‖g‖2 ≤ 1, the general inequality

‖Fσ ∗Gσ‖L2(R3) ≤ C‖F‖2‖G‖2

gives the required bound for both gσ ∗ hσ and hσ ∗ hσ . �

Corollary 7.3. Let { fν} be a sequence of real-valued functions that are upper even-normalized above
with respect to a sequence of caps Cν of radii rν . If

δν/r2
ν → 0,

then ∫
|x |>2−δν

(| fν |σ ∗ | fν |σ)2 dx→ 0 as ν→∞.

Lemma 7.4. Let f ∈ L2(S2) be a function that is upper even-normalized with respect to a cap C of
radius r . Then for all R ≥ 1, ∫

R1/2r≤|x |≤2−Rr2
|( f σ ∗ f σ)(x)|2 dx ≤9(R),

where 9(R)→ 0 as R→∞, and 9 depends only on the function 2 in the normalization inequalities
(2-3) and(2-4), not on r.

Proof. It suffices to prove this for r small, R large, and Rr2 uniformly bounded. Let C = C(z, r) have
center z ∈ S2. Let A ∈ [1,∞) and decompose f = g+ + h+ + g− + h−, where g+, g− are supported
respectively in C(z, Ar) and C(−z, Ar), ‖h+‖2 ≤ 2(A) and ‖h−‖2 ≤ 2(A), where 2(A) → 0 as
A→∞.

Expand f σ ∗ f σ as a sum of the resulting 16 terms. The terms g+σ ∗ g+σ and g−σ ∗ g−σ are
supported where |x |> 2−C A2r2. If we choose A so that C A2 < R, then these vanish identically in the
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region |x | ≤ 2− Rr2. The (two) terms g+σ ∗ g−σ are supported where |x | ≤ C Ar . Therefore they also
contribute nothing, provided that C Ar ≤ R1/2r .

Each of the remaining terms involves at least one factor of h+ or of h−. Since ‖Fσ ∗ Gσ‖L2(R3) ≤

C‖F‖2‖G‖2 for all F,G ∈ L2(S2), and since g±, h± = O(1) in L2(S2) norm, each of these terms is
O(‖h±‖2). Therefore ∫

R1/2r≤|x |≤2−Rr2
| f σ ∗ f σ(x)|2 dx ≤ C2(A)2

for any A that satisfies C A2 < R. This completes the proof, provided that Rr2
= O(1). �

The set of all caps can be made into a metric space. Define the distance ρ from C(y, r) to C(y′, r ′) to
be the Euclidean distance from (y/r, log(1/r)) to (y′/r ′, log(1/r ′)) in R3

×R+. Note that for instance
when r = r ′, the distance is r−1

|y − y′|, so this distance has the natural scaling. If y = y′, then the
distance is |log(r/r ′)|; this has the natural property that it depends only on the ratio of the two radii. The
definition ensures that this is truly a metric.

For any metric space (X, ρ) and any equivalence relation ≡ on X , the function

%([x], [y])= inf
x ′∈[x],y′∈[y]

ρ(x ′, y′)

is a metric on the set of equivalence classes X/≡. Let M be the set of all caps C ⊂ S2 modulo the
equivalence relation C≡−C, where −C= {−z : z ∈ C}. Then the following defines a metric on M.

Definition 7.5. For any two caps C,C′ ⊂ S2,

%([C], [C′])=min(ρ(C,C′), ρ(−C,C′)),

where [C] denotes the equivalence class [C] = {C,−C} ∈M.

We will also write %(C,C′)= %([C], [C′]).

Lemma 7.6. For any ε > 0 there exists ρ <∞ such that

‖χCσ ∗χC′σ‖L2(R3) < ε|C|
1/2
|C′|1/2, whenever %(C,C′) > ρ.

Proof. Let C=C(z, r) and C′=C(z′, r ′). Set f =|C|−1/2χC≤Cr−1χC and f ′=|C′|−1/2χC′≤Cr ′−1
χC′ .

Without loss of generality, r ′ ≤ r . We may suppose that r ′� 1; otherwise the caps are not far apart. We
will also assume at first that no points are nearly antipodal, that is, that |x + x ′| ≥ δ for all x ∈ C and
x ′ ∈ C′, for some fixed constant δ > 0; we will return to this point later.

Consider first the case where r ∼ r ′. Then we may assume that |z − z′| ≥ 10r , say. Then f σ ∗ f ′σ
has L∞ norm ≤Cr−2

·r/|z− z′|, and is supported in a three-dimensional cylinder whose base has radius
Cr and whose height is ≤ Cr2

+Cr |z− z′| ≤ Cr |z− z′|. The volume of this cylinder is ≤ Cr3
|z− z′|.

In all,
‖ f σ ∗ f ′σ‖L2(R3) ≤ Cr−1

|z− z′|−1
· r3/2
|z− z′|1/2 = C(r/|z− z′|)1/2,

which is small precisely when the caps are far apart.
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Consider next the case where r ′ � r , and still |z − z′| ≥ 10r . Then the L∞ norm is no more than
Cr−1r ′−1

· r ′|z − z′|−1. The support is contained in a tubular neighborhood of a (translated) cap of
radius Cr ; this tubular neighborhood has width ≤ Cr ′|z − z′|. Hence the volume of the support is
≤ Cr2r ′|z− z′|. Consequently

‖ f σ ∗ f ′σ‖L2(R3) ≤ Cr−1r ′−1
|z− z′|−1

· rr ′1/2|z− z′|1/2 = C(r ′/|z− z′|)1/2 ≤ C(r ′/r)1/2.

Consider next the case where r ′� r and |z− z′| ≤ 10r . It suffices to replace f by its restriction F to
the complement of the cap C′? centered at z′ of radius 10r3/4r ′1/4, since

‖ f − F‖2 ≤ Cr−1r3/4r ′1/4 = C(r ′/r)1/4� 1.

Fσ ∗ f ′σ is supported in a region of volume ≤ Cr3r ′, and as is easily verified,

‖Fσ ∗ f ′σ‖∞ ≤ Cr−1r ′−1
· (r ′/r3/4r ′1/4)= Cr−7/4r ′−1/4

.

Therefore
‖Fσ ∗ f ′σ‖2 ≤ Cr−7/4r ′−1/4

· (r3r ′)1/2 = Cr−1/4r ′1/4� 1.

It only remains to handle caps that are nearly antipodal. But this follows from the nonantipodal case
by the identity

‖ f σ ∗ gσ‖2 = ‖ f̃ σ ∗ gσ‖2, where f̃ (x)≡ f (−x). �

Fourier integral operators. Here we discuss another ingredient required for the proof of Lemma 12.2,
certain estimates that rely on cancellation, in contrast to those in the preceding section.

For 0< ρ . 1, define Tρ : L2(S2)→ L2(S2) by

Tρ f (x)=
∫

f (y) dµx,ρ(y),

where µx,ρ is arc-length measure on the circle {y ∈ S2
: |y − x | = ρ}, normalized to be a probability

measure.
Let 1 denote the spherical Laplacian.

Lemma 7.7. We have
‖Tρ f ‖L2(S2) ≤ C‖(I − ρ21)−1/4 f ‖L2(S2) (7-2)

uniformly for all ρ > 0 and all f ∈ L2(S2).

Sketch of proof. There are three elements in the proof of (7-2).

(i) Consider any fixed ρ ∈ (0, 2). Define 8ρ(x, y)= |x − y|2− ρ2. Then the 3× 3 matrix(
0 ∂8ρ/∂x

∂8ρ/∂y ∂28ρ/∂x∂y

)
(7-3)

is nonsingular for any (x, y) satisfying 8ρ(x, y) = 0. This is a straightforward computation, easily
done by taking advantage of rotational symmetry to reduce to a computation of Taylor expansions about
x = (0, 0, 1) and y = (cos(θ), 0, sin(θ)).



282 MICHAEL CHRIST AND SHUANGLIN SHAO

(ii) Tρ is defined by integration against a smooth density on {(x, y) ∈ S2
× S2

: 8ρ(x, y) = 0}. As
discussed on [Sogge 1993, pages 188–9], the nonsingularity of the matrix (7-3) implies that Tρ is a
Fourier integral operator of order −(n− 1)/2 = −1/2 on Sn

= S2. Any such operator is smoothing of
order 1/2 in the scale of L2 Sobolev spaces [Sogge 1993].

(iii) If Tρ is rewritten with appropriate normalizations in coordinates adapted to any cap C(z, ρ), then
the inequality holds uniformly in ρ. The only issue here is as ρ→ 0, but plainly in that situation there
is a limiting operator on R2, f 7→

∫
S1 f (x − y) dµ(y), where µ is arc length measure on S1

⊂ R2.
This limiting operator is again a Fourier integral operator of order −1/2. It follows that the bounds are
uniform after rescaling. Reversal of the rescaling introduces the factor ρ2 to 1 in the inequality. �

The operators Tρ are related to our bilinear convolutions: For f ∈ L2(S2) and x ∈ R3 satisfying
0< |x |< 2,

( f σ ∗ σ)(x)= c|x |−1Tρ f (x/|x |),

where ρ2
+ |x/2|2 = 1. Define eξ (x)= ex ·ξ , for x ∈ R3 and ξ ∈ C (and in particular for x ∈ S2). There

is the more general identity

( f σ ∗ eiξσ)(x)= eiξ (x)(e−iξ f σ ∗ σ)(x)= c|x |−1eiξ (x)Tρ(e−iξ f )(x). (7-4)

Suppose that g ∈ L2(S2) takes the form g(x) =
∫

H a(ξ)eiξ (x) dν(ξ), where H ⊂ R3 is a two-
dimensional subspace, ν is Lebesgue measure on H , and a ∈ L2(H). Then

( f σ ∗ gσ)(x)= c|x |−1
∫

H
a(ξ)eiξ (x)Tρ(e−iξ f )(x) dν(ξ).

For t ∈ (0, 2), define ρ(t) > 0 by
ρ(t)2+ (t/2)2 = 1.

Then for any interval I ⊂ (0, 2),∫
|x |∈I
|( f σ ∗ gσ)(x)|2 dx ≤ C

∫
I

t−2
∥∥∥∫

H
|a(ζ )| · |Tρ(t)(e−iζ f )| dζ

∥∥∥2

L2(S2)
t2 dt

= C
∫

I

∥∥∥∫
H
|a(ζ )| · |Tρ(t)(e−iζ f )| dζ

∥∥∥2

L2(S2)
dt.

(7-5)

Fourier coefficient estimates in terms of the spherical Laplacian. The following routine lemma is con-
venient because it provides an intrinsic characterization of expressions that arise in the analysis. The
proof relies on the machinery of pseudodifferential operators, and is left to the reader.

Lemma 7.8. Let C be a cap of radius % ≤ 1
2 . Let φ be the rescaling map associated with C. Let f be

supported in C∪ (−C). Then for any t ∈ R and 0< r ≤ %,

C−1
‖(I − r21)t/2 f ‖2L2(S2)

≤

∫
R2
|φ̂∗ f (ξ)|2(1+ |r%−1ξ |2)t dξ ≤ C‖(I − r21)t/2 f ‖2L2(S2)

.

Here C ∈ (0,∞) depends on t but not on f, r, %,C.
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8. Step 6A: A decomposition algorithm

The following iterative procedure may be applied to any nonnegative function f ∈ L2(S2) of positive
norm.

Decomposition algorithm. Initialize by setting G0 = f , and ε0 = 1/2.

Step ν. The inputs for Step ν are a nonnegative function Gν ∈ L2(S2) and a positive number εν . Its
outputs are functions fν and Gν+1 and nonnegative numbers ε?ν and εν+1. If ‖Gνσ ∗Gνσ‖2 = 0, then
Gν = 0 almost everywhere. The algorithm then terminates, and we define ε?ν = 0 and fν = 0, and
Gµ = fµ = 0 and εµ = 0 for all µ > ν.

If 0 < ‖Gνσ ∗ Gνσ‖2 < ε2
νS2
‖ f ‖22, then replace εν by εν/2, and repeat until the first time that

‖Gνσ ∗Gνσ‖2 ≥ ε
2
νS2
‖ f ‖22. Define ε?ν to be this value of εν . Then

(ε?ν)
2S2
‖ f ‖22 ≤ ‖Gνσ ∗Gνσ‖2 ≤ 4(ε?ν)

2S2
‖ f ‖22.

Apply Lemma 2.9 to obtain a cap Cν and a decomposition Gν = fν+Gν+1 with disjointly supported
nonnegative summands satisfying fν ≤ Cν‖ f ‖2|Cν |−1/2χCν , and ‖ fν‖2 ≥ ην‖ f ‖2. Here Cν, ην are
bounded above and below, respectively, by quantities that depend only on ‖Gνσ ∗Gνσ‖

1/2
2 /‖Gν‖2 ≥ ε

?
ν .

Define εν+1 = ε
?
ν , and move on to step ν+ 1. �

It is important for our application to observe that if f is even then at every step, fν may likewise be
chosen to be even. The upper bound for fν then becomes

fν ≤ Cν |Cν |−1/2χCν∪−Cν .

Henceforth the algorithm will be applied only to even functions, and we will always choose all fν to be
even.

If the algorithm terminates at some finite step ν, then a finite decomposition f =
∑ν

k=0 fk results.

Lemma 8.1. Let f ∈ L2(S2) be a nonnegative function with positive norm. If the decomposition algo-
rithm never terminates for f , then ε?ν→ 0 as ν→∞, and

∑N
ν=0 fν→ f in L2 as N →∞.

Proof. Assume without loss of generality that ‖ f ‖2 = 1. The functions fν have disjoint supports
and hence are pairwise orthogonal, and

∑
ν fν ≤ f , so

∑
ν ‖ fν‖22 ≤ ‖ f ‖22. Since the sequence ε?ν is

nonincreasing and ‖ fν‖2/‖ f ‖2 is bounded below by a function of ε?ν , this forces ε?ν→ 0.
The second conclusion is equivalent to ‖G N‖2 → 0. According to Lemma 2.9, ‖ fν‖2 is bounded

below by a function of ‖Gνσ ∗ Gνσ‖2. Since
∑

ν ‖ fν‖22 < ∞, we have ‖ fν‖2 → 0 and therefore
‖Gνσ ∗ Gνσ‖2→ 0. By construction, Gν+1(x) ≤ Gν(x) for every x ∈ S2, so G(x) = limν→∞ Gν(x)
exists and ‖Gσ ∗Gσ‖2≤‖Gνσ ∗Gνσ‖2 for all ν. Thus Gσ ∗Gσ ≡ 0, so G≡ 0. This forces ‖Gν‖2→ 0,
by the dominated convergence theorem. �

For general f , this decomposition may be highly inefficient. But if f is nearly extremal for the
inequality (2-1), then more useful properties hold.
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Lemma 8.2. There exists a continuous function θ : (0, 1] → (0,∞) such that for any ε > 0 there exists
δ > 0 such that for any δ-nearly extremal nonnegative function f ∈ L2(S2) satisfying ‖ f ‖2 = 1, the
functions fν and Gν associated by the decomposition algorithm to f satisfy

‖ fν‖2 ≥ θ(‖Gν‖2) for any index ν such that ‖Gν‖2 ≥ ε.

This is a direct consequence of Lemmas 2.9 and 7.1. It is essential for applications below that θ be
independent of ε.

If f is nearly extremal, then the norms of fν and Gν enjoy upper bounds independent of f , for all
except very large ν.

Lemma 8.3. There exist a sequence of positive constants γν → 0 and a function N : (0, 1
2 ] → Z+

satisfying N (δ)→∞ as δ→ 0 such that for any nonnegative f ∈ L2(S2), if f is δ-nearly extremal then
the quantities ε?ν obtained when the decomposition algorithm is applied to f satisfy

ε?ν ≤ γν for all ν ≤ N (δ),

‖Gν‖2 ≤ γν‖ f ‖2 for all ν ≤ N (δ),

‖ fν‖2 ≤ γν‖ f ‖2 for all ν ≤ N (δ).

This holds whether or not the algorithm terminates for f .

Proof. S2
‖Gν‖

2
2 ≥ ‖Gνσ ∗Gνσ‖2 ≥ ε

?
ν

2S2
‖ f ‖22 = (ε

?
ν

2
‖ f ‖22/‖Gν‖

2
2)S

2
‖Gν‖

2
2,

so ε?ν ≤‖Gν‖2/‖ f ‖2. Thus the second conclusion implies the first. Since ‖ fν‖2≤‖Gν‖2, it also implies
the third.

We recall two facts. First, Lemma 7.1, applied to h=Gν and g= f0+· · ·+ fν−1, asserts that there are
constants c0,C1 ∈ R+ such that if f ∈ L2 is δ-nearly extremal, either ‖Gνσ ∗Gνσ‖2 ≥ c0‖Gν‖

4
2‖ f ‖−2

2
or ‖Gν‖2 ≤ C1δ

1/2
‖ f ‖2. Second, according to Lemma 2.9, there exists a nondecreasing function ρ :

(0,∞) → (0,∞) satisfying ρ(t) → 0 as t → 0 such that for every nonzero f ∈ L2 and any ν, if
‖Gνσ ∗Gνσ‖2 ≥ t‖Gν‖

2
2, then ‖ fν‖22 ≥ ρ(t)‖Gν‖

2
2.

Choose a sequence {γν} of positive numbers that tends monotonically to zero, but does so sufficiently
slowly to satisfy

νγ 2
ν ρ(c0γ

2
ν ) > 1 for all ν.

Define N (δ) to be the largest integer satisfying γN (δ)≥C1δ
1/2. This N (δ)→∞ as δ→ 0 because γν > 0

for all ν.
Let f and δ be given. Suppose that ν ≤ N (δ). We argue by contradiction, supposing that ‖Gν‖2 >

γν‖ f ‖2. Then ‖Gν‖2 > C1δ
1/2
‖ f ‖2 by definition of N (δ). By the dichotomy above,

‖Gνσ ∗Gνσ‖2 ≥ c0‖Gν‖
4
2‖ f ‖−2

2 ≥ c0γ
2
ν ‖Gν‖

2
2.

By the second fact reviewed above,

‖ fν‖22 ≥ ρ(c0γ
2
ν )‖Gν‖

2
2 ≥ γ

2
ν ρ(c0γ

2
ν )‖ f ‖22.
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Since ‖Gµ‖2 ≥ ‖Gν‖2 for all µ ≤ ν, the same lower bound follows for ‖ fν‖22 for all µ ≤ ν. Since
the functions fµ are pairwise orthogonal,

∑
µ≤ν ‖ fµ‖22 ≤ ‖ f ‖22, and consequently νγ 2

ν ρ(c0γ
2
ν ) ≤ 1, a

contradiction. �

The next lemma also follows directly from the decomposition algorithm coupled with Lemma 2.9.

Lemma 8.4. For any ε > 0 there exist δε > 0 and Cε < ∞ such that for every δε-nearly extremal
nonnegative function f ∈ L2, the functions fν and Gν associated to f by the decomposition algorithm
satisfy

(i) For any ν, if ‖Gν‖2 ≥ ε‖ f ‖2, then there exists a cap Cν ⊂ S2 such that

fν ≤ Cε‖ f ‖2|Cν |−1/2χCν∪−Cν .

(ii) If ‖Gν‖2 ≥ ε‖ f ‖2, then ‖ fν‖2 ≥ δε‖ f ‖2.

9. Step 6B: A geometric property of the decomposition

We have established inequalities concerning the L2 norms of the functions fν and Gν that the decomposi-
tion algorithm yields, based on quite general principles and a single analytic fact, Lemma 2.9, concerning
the particular inequality that we are studying. We next establish an additional inequality of a geometric
nature, based on a single additional fact, the weak interaction of distant caps in the sense of Lemma 7.6.

Lemma 9.1. In any metric space, for any N and r , any finite set S of cardinality N and diameter equal
to r may be partitioned into two disjoint nonempty subsets S= S′∪S′′ such that distance(S′, S′′)≥ r/2N.
Moreover, given two points s ′, s ′′ ∈ S satisfying distance(s ′, s ′′)= r , this partition can be constructed so
that s ′ ∈ S′ and s ′′ ∈ S′′.

Proof. Consider the metric balls Bk centered at s ′ of radii kr/2N for k=1, 2, . . . , 2N . By the pigeonhole
principle, there exists k such that (Bk+1 \ Bk)∩ S = ∅. Set S′ = Bk ∩ S and S′′ = S \ S′. The triangle
inequality yields the conclusion. �

Lemma 9.2. For any ε > 0 there exist δ > 0 and λ<∞ such that for any 0≤ f ∈ L2(S2) that is δ-nearly
extremal, the summands fν produced by the decomposition algorithm and the associated caps Cν satisfy

%(C j ,Ck)≤ λ whenever ‖ f j‖2 ≥ ε‖ f ‖2 and ‖ fk‖2 ≥ ε‖ f ‖2.

Here % is the distance between C j ∪−C j and Ck ∪−Ck , as defined in Definition 7.5.

Proof. It suffices to prove this for all sufficiently small ε. Let f be a nonnegative L2 function that satisfies
‖ f ‖2 = 1 and is δ-nearly extremal for a sufficiently small δ = δ(ε), and let {Gν, fν} be associated to f
via the decomposition algorithm. Set F =

∑N
ν=0 fν .

Suppose that ‖ f j0‖2≥ ε and ‖ fk0‖2≥ ε. Let N be the smallest integer such that ‖G N+1‖2 <ε
3. Since

‖Gν‖2 is a nonincreasing function of ν, and since ‖ fν‖2 ≤ ‖Gν‖2, necessarily j0, k0 ≤ N . Moreover, by
Lemma 8.3, there exists Mε<∞ depending only on ε such that N ≤Mε. By Lemma 8.4, if δ is chosen to
be a sufficiently small function of ε, then since ‖Gν‖2≥ ε

3 for all ν≤ N , we have fν ≤ θ(ε)|C|−1/2χC∪−C

for all such ν, where θ is a continuous, strictly positive function on (0, 1].
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Now let λ<∞ be a large quantity to be specified. It suffices to show that if δ(ε) is sufficiently small,
an assumption that %(C j ,Ck) > λ implies an upper bound, which depends only on ε, for λ.

Lemma 9.1 yields a decomposition F = F1 + F2 =
∑

ν∈S1
fν +

∑
ν∈S2

fν , where [0, N ] = S1 ∪ S2

is a partition of [0, N ], j0 ∈ S1, k0 ∈ S2, and %(C j ,Ck) ≥ λ/2N ≥ λ/2Mε for all j ∈ S1 and k ∈ S2.
Certainly ‖F1‖2 ≥ ‖ f j0‖2 ≥ ε and similarly ‖F2‖2 ≥ ε. The convolution cross term satisfies

‖F1σ ∗ F2σ‖2 ≤
∑
j∈S1

∑
k∈S2

‖ f jσ ∗ fkσ‖2 ≤ M2
ε γ (λ/2Mε)θ(ε)

2,

where γ (λ)→ 0 as λ→∞ by Lemma 7.6. Therefore

‖Fσ ∗ Fσ‖22 ≤ ‖F1σ ∗ F1σ‖
2
2+‖F2σ ∗ F2σ‖

2
2+C‖ f ‖22‖F1σ ∗ F2σ‖2

≤ S4
‖F1‖

4
2+S4

‖F2‖
4
2+M2

ε γ (λ/2Mε)θ(ε)
2.

Since F1 and F2 have disjoint supports, ‖F1‖
2
2+‖F2‖

2
2 ≤ ‖ f ‖22 = 1 and consequently

‖F1‖
4
2+‖F2‖

4
2 ≤max

(
‖F1‖

2
2, ‖F2‖

2
2
)
·
(
‖F1‖

2
2+‖F2‖

2
2
)
≤ (1− ε2) · 1≤ 1− ε2.

Thus

‖Fσ ∗ Fσ‖22 ≤ S4(1− ε2)+M2
ε γ (λ/2Mε)θ(ε)

2.

Therefore

(1− δ)2S2
≤ ‖ f σ ∗ f σ‖2 ≤ ‖Fσ ∗ Fσ‖2+C‖ f ‖2‖ f − F‖2

≤ ‖Fσ ∗ Fσ‖2+Cε3,

so by transitivity

(1− δ)4S4
≤ Cε3

+S4(1− ε2)+M2
ε γ (λ/2Mε)θ(ε)

2.

Since γ (t)→ 0 as t →∞, for all sufficiently small ε > 0 this implies an upper bound, which depends
only on ε, for λ, as was to be proved. �

10. Step 6C: Upper bounds for extremizing sequences

Proposition 2.14 states that any nearly extremal function satisfies appropriately scaled upper bounds
relative to some cap. It is convenient for the proof to first observe that a superficially weaker statement
implies the version stated.

Lemma 10.1. There exists a function 2 : [1,∞)→ (0,∞) satisfying 2(R)→ 0 as R→∞ with the
following property. For any ε > 0 and R ∈ [1,∞) there exists δ > 0 such that any nonnegative even
function f that has ‖ f ‖2 = 1 and is δ-nearly extremal may be decomposed as f = F + G, where F
and G are even and nonnegative with disjoint supports, ‖G‖2 < ε, and there exists a cap C = C(z, r)
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such that for any R ∈ [1, R], ∫
min(|x−z|,|x+z|)≥Rr

F2(x) dσ(x)≤2(R), (10-1)∫
F(x)≥Rr−1

F2(x) dσ(x)≤2(R). (10-2)

Proof that Lemma 10.1 implies Proposition 2.14. Let 2 be the function promised by the lemma. Let
ε and f be given, and assume without loss of generality that ε is small. Assuming as we may that
2 is a continuous, strictly decreasing function, define R = R(ε) by the equation 2(R) = ε2/2. Let
C = C(z, r) and suppose δ = δ(ε, R(ε)) along with F and G satisfy the conclusions of the lemma
relative to ε and R(ε). Define χ to be the characteristic function of the set of all x ∈S2 that satisfy either
min(|x − z|, |x + z|) ≥ Rr or F(x) > R|C|−1/2. Redecompose f = F̃ + G̃, where F̃ = (1− χ)F and
G̃ = G+χF . Then ‖G̃‖2 < 2ε, while F̃ satisfies the required inequalities. For instance, if R ≤ R then∫

F̃(x)≥R|C|−1/2
F̃(x)2 dσ(x)≤

∫
F(x)≥R|C|−1/2

F(x)2 dσ(x)≤2(R),

while the integrand vanishes if R > R. �

Proof of Lemma 10.1. Let η : [1,∞)→ (0,∞) be a function to be chosen below, satisfying η(t)→ 0 as
t→∞. This function will not depend on the quantity R.

Let R ≥ 1, R ∈ [1, R], and ε > 0 be given. Let δ = δ(ε, R) > 0 be a small quantity to be chosen
below. Let 0≤ f ∈ L2(S2) be even and δ-nearly extremal. It is no loss of generality in normalizing such
that ‖ f ‖2 = 1.

Let { fν} be the sequence of functions obtained by applying the decomposition algorithm to f . Choose
δ = δ(ε) > 0 sufficiently small and M = M(ε) sufficiently large to guarantee that ‖G M+1‖2 < ε/2 and
that fν and Gν satisfy all conclusions of Lemma 8.4 and Lemma 8.3 for ν ≤M . Set F =

∑M
ν=0 fν . Then

‖ f − F‖2 = ‖G M+1‖2 < ε/2.
Let N ∈ {0, 1, 2, . . . } be the minimum of M and the smallest number such that ‖ fN+1‖2 < η. N is

majorized by a quantity that depends only on η. Set F=FN =
∑N

k=0 fk . It follows from Lemma 8.4(ii)
that

‖F −F‖2 < γ (η), where γ (η)→ 0 as η→ 0. (10-3)

This function γ is independent of ε and R.
To prove the lemma, we must produce an appropriate cap C = C(z, r), and must establish the

existence of 2. To do the former is simple: To f0 is associated a cap C0 = C(z0, r0) such that
f0 ≤ C |C0|

−1/2(χC0∪−C0). Then C = C0 is the required cap. Note that by Lemma 2.9, ‖ f0‖2 ≥ c
for some positive universal constant c.

Suppose that functions R 7→ η(R) and R 7→2(R) are chosen so that

η(R)→ 0 as R→∞ and γ (η(R))≤2(R) for all R.
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Then by (10-3), F −F already satisfies the desired inequalities in L2(S2), so it suffices to show that
F(x)≡ 0 whenever min(|x − z|, |x + z|) > Rr0, and that ‖F‖∞ ≤ R|C0|

−1/2.
Each summand satisfies fk ≤ C(η)|Ck |

−1/2χCk∪−Ck
, where C(η) < ∞ depends only on η, and in

particular, fk is supported in Ck ∪−Ck . Now ‖ fk‖2 ≥ η for all k ≤ N by definition of N . Therefore by
Lemma 9.2, there exists a function η 7→ λ(η) <∞ such that if δ is sufficiently small as a function of η,
then %(Ck,C0) ≤ λ(η) for all k ≤ N . This is needed for η = η(R) for all R in the compact set [1, R],
so such a δ may be chosen as a function of R alone; conditions already imposed on δ above make it a
function of both ε and R.

In the region of all x ∈ S2 satisfying min(|x − z0|, |x + z0|) > Rr0, either fk ≡ 0, or Ck has radius
no less than 1

4 Rr0, or the center zk of Ck satisfies max(|zk − z0|, |zk + z0|) ≥
1
4 Rr0. Choose a function

R 7→ η(R) that tends to 0 sufficiently slowly as R→∞ to ensure that λ(η(R))→∞ sufficiently slowly
that the latter two cases would contradict the inequality %(Ck,C0)≤ λ, and therefore cannot arise. Then
F(x)≡ 0 when min(|x − z0|, |x + z0|) > Rr0.

With the function η specified, 2 can be defined by

2(R)= γ (η(R)). (10-4)

Then (10-1) holds for all R ∈ [1, R].
We claim next that ‖F‖∞ < R|C0|

−1/2 if R is sufficiently large as a function of η. Indeed, be-
cause the summands fk have pairwise disjoint supports, it suffices to control maxk≤N ‖ fk‖∞. Again, by
Lemma 8.4, ‖ fk‖∞ ≤ C(η)|Ck |

−1/2. If η(R) is chosen to tend to zero sufficiently slowly as R→∞ to
ensure that C(η(R))λ(η(R)) < R for all k ≤ N , then inequality (10-2) holds provided that 2 is defined
by (10-4).

The final function η must be chosen to tend to zero slowly enough to satisfy the requirements of the
proofs of both (10-1) and (10-2). �

11. Preliminaries for Step 7

Lemma 11.1. Let2 : [1,∞)→ (0,∞) satisfy2(R)→ 0 as R→∞. Let δ > 0. Then there exists c> 0
such that any nonnegative function g ∈ L2(R2) satisfying ‖g‖2 = 1 and the upper bounds∫

|x |≥R
g(x)2 dx +

∫
g(x)≥R

g(x)2 dx ≤ 2(R) for all R ≥ 1,

has Fourier transform satisfying the lower bound∫
|ξ |≤δ

|ĝ(ξ)|2 dξ ≥ c.

Proof. Let g ∈ L2(R2) satisfy the hypotheses. For t > 0, let ϕt(y)= e−t |y|2/2. Then∫
gϕt dy = (2π)−2

∫
ĝ(ξ)ϕ̂t(ξ) dξ = (2π)−1t−1

∫
ĝ(ξ)e−|ξ |

2/2t dξ.
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For any R, ρ ≥ 1, let S= {y : |y| ≤ R and g(y)≤ ρ}. Provided that R and ρ are chosen to be sufficiently
large that 2(R)+2(ρ)≤ 1

2 ,∫
R2

gϕt dy ≥ e−t R2/2
∫

S
g(y) dy ≥ e−t R2/2ρ−1

∫
S

g2(y) dy

= e−t R2/2ρ−1
(
‖g‖22−

∫
R2\S

g2(y) dy
)
≥

1
2 e−t R2/2ρ−1

for any t > 0. On the other hand, by the Cauchy–Schwarz inequality∫
|ξ |≥δ

|ĝ(ξ)| t−1e−|ξ |
2/2t dξ ≤ π1/2t−1

‖ĝ‖2
(∫ ∞

r=δ
e−r2/t 2r dr

)1/2

= π1/2t−1
(

t
∫
∞

s=δ2/t
e−s ds

)1/2
= π1/2t−1/2e−δ

2/2t .

The Cauchy–Schwarz inequality also gives∫
|ξ |≤δ

|ĝ(ξ)| t−1e−|ξ |
2/2t dξ ≤

(∫
|ξ |≤δ

|ĝ(ξ)|2 dξ
)1/2

(2π)1/2
(∫ ∞

0
t−2e−r2/t r dr

)1/2

= π1/2t−1/2
(∫
|ξ |≤δ

|ĝ(ξ)|2 dξ
)1/2

.

Therefore

π1/2t−1/2
( ∫
|ξ |≤δ

|ĝ(ξ)|2 dξ
)1/2
≥

∫
R2

ĝ(ξ)t−1e−|ξ |
2/2t dξ −

∫
|ξ |≥δ

|ĝ(ξ)| t−1e−|ξ |
2/2t dξ

≥ πe−t R2/2ρ−1
−π1/2t−1/2e−δ

2/2t .

Now substitute t = δ2/γ , where γ = γ (δ)≥ 1, to obtain

π1/2γ 1/2δ−1
(∫
|ξ |≤δ

|ĝ(ξ)|2 dξ
)1/2
≥ πe−δ

2 R2/2γρ−1
−π1/2γ 1/2δ−1e−γ /2.

The quantities R and ρ have already been fixed, independent of δ. As δ also remains fixed while γ→∞,
this last lower bound tends to πρ−1

−0> 0. Thus choosing γ sufficiently large yields the desired lower
bound. �

Lemma 11.2. Let c0 > 0. Let {gν} be any sequence of functions in L2(R2) satisfying ‖gν‖L2 = 1 and∫
|ξ |≤1 |ĝν(ξ)|

2 dξ ≥ c0. Then either there exists a function θ : [1,∞)→ (0,∞) satisfying

θ(s)→ 0 as s→∞

such that ∫
|ξ |≥s
|ĝν(ξ)|2 dξ ≤ θ(s) for all s ∈ [1,∞) and all ν,
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or there exist a subsequence νk→∞ and real constants δ > 0, εk > 0, and Sk ≥ sk ≥ 1 such that sk→∞,
εk→ 0, Sk = s3

k ,∫
|ξ |≤sk

|ĝνk (ξ)|
2 dξ ≥ δ,

∫
|ξ |≥Sk

|ĝνk (ξ)|
2 dξ ≥ δ,

∫
sk≤|ξ |≤Sk

|ĝνk (ξ)|
2 dξ < εk .

In this lemma, δ is permitted, in principle, to depend on {gν}, and εk and sk are permitted to depend on
{gν} and on k in an arbitrary manner, provided only that they satisfy the stated conditions. The relation
Sk = s3

k is chosen simply because it is convenient for the proof of Lemma 12.2 below; one could arrange
to have Sk equal to any function of sk that might be desired.

Proof. Define a sequence ρ1, ρ2, . . . by ρ1 = 2 and by induction, ρ j+1 = ρ
3
j . If the first conclusion does

not hold, then after passing to a subsequence and renumbering, we have∫
|ξ |≥ρν

|ĝν(ξ)|2 dξ ≥ δ for all ν.

Consider a large ν. Since

ν−1∑
j=1

∫
ρ j≤|ξ |≤ρ j+1

|ĝν(ξ)|2 dξ ≤ (2π)2‖gν‖22 ≤ (2π)
2

and there are ν− 1 summands, there must exist j (ν) satisfying∫
ρ j≤|ξ |≤ρ j+1

|ĝν(ξ)|2 dξ ≤ Cν−1.

It suffices to set sν = ρ j (ν), Sν = ρ j (ν)+1 = s3
ν , and εν = Cν−1. �

12. Step 7: Precompactness after rescaling

We begin the proof of Proposition 2.15. Let { fν} be as in Proposition 2.15. Set gν = φ∗ν ( fν), where φν
is the rescaling map associated to Cν . Let rν→ 0. Then by definition of gν ,

‖gν‖2L2(R2)
→

1
2 as ν→∞,

so the results of the preceding section apply to 21/2gν , and hence to gν itself, uniformly in ν.
If the first alternative in the conclusion of Lemma 11.2 holds, then we obtain the conclusion of

Proposition 2.15. Therefore we may assume, by passing to a subsequence, that {gν} satisfies the conclu-
sions of the second alternative of Lemma 11.2.

Split

gν = g0
ν + g∞ν + g[ν,
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where

‖g0
ν‖2 ≥ δ, ĝ0

ν(ξ) is supported where |ξ | ≤ 2sν,

‖g∞ν ‖2 ≥ δ, ĝ∞ν (ξ) is supported where |ξ | ≥ 1
2 Sν,

‖g[ν‖2 < εν,

g0
ν , g∞ν are upper normalized with respect to B, and εν→ 0 as ν→∞.

Here δ > 0 is a certain constant independent of ν, and B denotes the unit ball in R2. This splitting is
accomplished via an appropriate C∞ three term partition of unity in the Fourier space R2

ξ .
Write Cν =C(zν, rν). The decomposition above of gν = φ∗ν ( fν) induces a corresponding decomposi-

tion

fν = F0
ν + F∞ν + F[ν ,

where all three summands are real-valued and even and for all sufficiently large ν,

F0
ν , F∞ν , F[ν are upper even-normalized with respect to Cν ,

‖F[ν‖2→ 0 as ν→∞, ‖F0
ν ‖2 ≥ δ/2, ‖F

∞

ν ‖2 ≥ δ/2,

F0
ν and F∞ν are supported in C(zν, 1

2)∪−C(zν, 1
2).

 (12-1)

Moreover:

Lemma 12.1. The decomposition fν= F0
ν +F∞ν +F[ν may be carried out so that the conditions above are

satisfied, and moreover, for certain constants C,CN <∞, the summands F0
ν and F∞ν are real-valued,

even, and admit representations

F0
ν (y)=

∫
Hν

a0,±
ν (ξ)eiy·ξ dξ, and F∞ν (y)=

∫
Hν

a∞,±ν (ξ)eiy·ξ dξ, (12-2)

where the representations with plus signs are valid for y ∈C(zν, 1
2), and those with minus signs are valid

for y ∈ −C(zν, 1
2), with Fourier coefficients a0,±

ν and a∞,±ν satisfying∫
rν |ξ |≤Sν/4

|a∞,±ν (ξ)|2 dξ ≤ C S−1
ν for all ν, (12-3)∫

rν |ξ |≥4sν
|a0,±
ν (ξ)|2 dξ ≤ CN s−N

ν for all ν, for any N <∞. (12-4)

Proof. By rotational symmetry, it suffices to prove this under the assumption that zν = (0, 0, 1) for all ν.
Then φ∗ν ( fν)(x ′)= rν fν(rνx ′, (1− r2

ν |x
′
|
2)1/2) for x ′ ∈ R2, and Hν = {x = (x ′, 0) ∈ R2

×R1
}.

Once a representation of the required form is established for the restriction of fν to the hemisphere
S2
+
= {y ∈ S2

: y3 > 0}, the symmetry fν(−y)≡ fν(y) leads immediately to the desired representation
for y3 < 0. So we restrict attention to S2

+
. For the remainder of this proof, we identify (ξ ′, 0) ∈ R2+1

with ξ ′ ∈ R2, and denote elements of R2 by ξ rather than by ξ ′.
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Fix a compactly supported C∞ function ζ : R2
→ R that is supported in {y′ : |y′| < 1

2} and is ≡ 1 in
{y′ : |y′| ≤ 1

4}. For y′ ∈ R2, define

G0
ν(y
′)= (2π)−1ζ(y′)r−1

ν

∫
R2

eir−1
ν y′·ξ ĝ0

ν(ξ) dξ, (12-5)

G∞ν (y
′)= (2π)−1ζ(y′)r−1

ν

∫
R2

eir−1
ν y′·ξ ĝ∞ν (ξ) dξ. (12-6)

Then from the fact that g0
ν and g∞ν are upper normalized with respect to B, it follows that

‖r−1
ν g0

ν(r
−1
ν · )−G0

ν( · )‖L2(R2)→ 0 as ν→∞,

and likewise

‖r−1
ν g∞ν (r

−1
ν · )−G∞ν ( · )‖L2(R2) as ν→∞,

using the hypothesis that rν→ 0 coupled with the fact that the support of ζ is independent of rν . It can
of course be arranged that G0

ν and G∞ν are real-valued.
Define

F[ν |S2
+
(y′, y3)= fν(y′, y3)−G0

ν(y
′)−G∞ν (y

′).

where y3 =
√

1− |y′|2. The function F[ν |S2
+

is upper normalized with respect to Cν because all three
summands in its definition are upper normalized. Since φ∗ν ( fν) = g0

ν + g∞ν + g[ν , since ‖g[ν‖L2(R2)→ 0
as ν→∞, since fν is upper normalized with respect to Cν and rν → 0, and since φ∗ν is essentially an
isometry from L2(S2

+
) to L2(R2) for large ν (again because rν→ 0), it follows that

‖F[ν‖L2(S2
+)
→ 0 as ν→∞.

When regarded in this way as functions of y = (y′, y3) ∈ S2
+

, the summands G0
ν(y
′) and G∞ν (y

′)

are each upper normalized with respect to the caps Cν , because g0
ν and g∞ν are upper normalized with

respect to B. It remains only to show that G0
ν(y
′) can be represented in the form

∫
R2 eiy′·ξa0,+

ν (ξ) dξ ,
where a0,+

ν satisfies the required bound (12-4), and likewise for G∞ν . To prove this for G0
ν , it suffices to

rewrite the product of ζ(y′) with the inverse Fourier transform in (12-5) as the inverse Fourier transform
of a convolution, and to combine the bound |̂ζ (ξ)| ≤CN (1+|ξ |)−N for all N with the fact that ĝ0

ν(ξ)≡ 0
for {ξ : |ξ | > 2sν}. The analysis of G∞ν is essentially identical, using the given fact that ĝ∞ν (ξ) ≡ 0 for
{ξ : |ξ |< 1

2 Sν}. �

As ν→∞,

‖ fνσ ∗ fνσ‖2 ≤
∥∥(F0

ν σ ∗ F0
ν σ)+ (F

∞

ν σ ∗ F∞ν σ)
∥∥

2+ 2‖F0
ν σ ∗ F∞ν σ‖2+ o(1)
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where o(1) denotes a function that tends to zero as ν→∞. Applying the triangle inequality to the first
term does not lead to a useful bound. Instead,∥∥(F0

ν σ ∗ F0
ν σ)+ (F

∞

ν σ ∗ F∞ν σ)
∥∥2

2

≤ ‖F0
ν σ ∗ F0

ν σ‖
2
2+‖F

∞

ν σ ∗ F∞ν σ‖
2
2+ 2|〈F0

ν σ ∗ F0
ν σ, F∞ν σ ∗ F∞ν σ 〉|

= ‖F0
ν σ ∗ F0

ν σ‖
2
2+‖F

∞

ν σ ∗ F∞ν σ‖
2
2+ 2|〈F0

ν σ ∗ F∞ν σ, F0
ν σ ∗ F∞ν σ 〉|

since F0
ν and F∞ν are real and even. Thereforeand since F0

ν , F∞ν have uniformly bounded L2 norms,

‖ fνσ ∗ fνσ‖22 ≤ ‖F
0
ν σ ∗ F0

ν σ‖
2
2+‖F

∞

ν σ ∗ F∞ν σ‖
2
2+C‖F0

ν σ ∗ F∞ν σ‖
2
2+ o(1). (12-7)

The following key lemma will be proved below, in Section 14.

Lemma 12.2. Let F0
ν and F∞ν be upper even-normalized with respect to a sequence of caps of radii

rν → 0. Assume that F0
ν and F∞ν admit Fourier representations satisfying the inequalities specified in

Lemma 12.1. Then

‖F0
ν σ ∗ F∞ν σ‖L2(R3)→ 0.

Corollary 12.3. The second alternative in the conclusion of Lemma 11.2 cannot hold.

Proof. Assume Lemma 12.2. Then by (12-7),

‖ fνσ ∗ fνσ‖22 ≤ ‖F
0
ν σ ∗ F0

ν σ‖
2
2+‖F

∞

ν σ ∗ F∞ν σ‖
2
2+ o(1)≤ S4

‖F0
ν ‖

4
2+S4

‖F∞ν ‖
4
2+ o(1).

Since Sν/sν→∞ and ‖F[ν‖2→ 0, it follows easily from (12-3) and (12-4) that

‖F0
ν ‖

2
2+‖F

∞

ν ‖
2
2 ≤ (1+ o(1))‖ fν‖22 = 1+ o(1).

Since min(‖F0
ν ‖2, ‖F

∞
ν ‖2)≥ δ/2, this forces

max(‖F0
ν ‖

2
2, ‖F

∞

ν ‖
2
2)≤ 1− ρ

for all sufficiently large ν, for some ρ > 0 independent of ν. It follows that

S4
‖F0

ν ‖
4
L2(σ )
+S4
‖F∞ν ‖

4
L2(σ )
≤ S4(

‖F0
ν ‖

2
L2(σ )
+‖F∞ν ‖

2
L2(σ )

)
max(‖F0

ν ‖
2
2, ‖F

∞

ν ‖
2
2)

≤ S4(1+ o(1))(1− ρ).

We conclude that

lim sup
ν→∞

‖ fνσ ∗ fνσ‖2L2(R3)
< S4,

contradicting the assumption that { fν} was an extremizing sequence. �

Combining the results above, the proof of Proposition 2.15 is complete except for the proof of
Lemma 12.2.
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13. Step 8: Excluding small caps

In this section we prove Proposition 2.16, which asserts that the radii rν of the caps Cν associated to an
extremizing sequence { fν} of positive even functions cannot tend to zero.

Lemma 13.1. Let { fν} be any sequence of real-valued, even functions on S2 satisfying ‖ fν‖L2 = 1.
Suppose that fν is upper even-normalized with respect to a cap Cν = C(zν, rν), uniformly in ν. Suppose
that the sequence of pullbacks φ∗ν ( fν) satisfies the first alternative in the conclusion of Lemma 11.2.
Suppose that rν→ 0. Then there exists a sequence of functions Fν : P2

→ R satisfying ‖Fν‖2→ 1 such
that

lim sup
ν→∞

‖FνσP ∗ FνσP‖2 ≥ (3/2)−1/2 lim sup
ν→∞

‖ fνσ ∗ fνσ‖2.

Proof of Proposition 2.16. Let { fν} be an extremizing sequence of nonnegative even functions for the
inequality (2-1) satisfying ‖ fν‖2 = 1. There exists a sequence of caps Cν = C(zν, rν) such that each fν
is upper even-normalized with respect to Cν . We must prove that infν rν > 0.

If not, then by passing to a subsequence we may assume that rν → 0. By Proposition 2.15, the
sequence of pullbacks gν = φ∗ν ( fν) is precompact in L2(R2). Thus the hypotheses of Lemma 13.1 are
satisfied, so there exists a sequence of functions Fν ∈ L2(P2) satisfying its conclusions.

Now ‖FνσP ∗ FνσP‖2 ≤ P2
‖Fν‖2L2(P2)

by the definition of P. Consequently

lim sup
ν→∞

‖ fνσ ∗ fνσ‖2 ≤ (3/2)1/2P2.

The left side tends to S2 since { fν} is an extremizing sequence for (2-1), so S2
≤ (3/2)1/2P2, contradicting

the inequality S≥ 21/4P of Lemma 2.4. �

Proof of Lemma 13.1. Write Cν = C(zν, rν). Decompose 21/2 fν(x) = f +ν (x) + f +ν (−x) + f [ν (x),
where f +ν is real, f +ν is supported in C(zν, r

1/2
ν ), ‖ f [ν ‖2→ 0, and the functions φ∗ν ( f +ν ) satisfy the first

alternative of the conclusions of Lemma 11.2, uniformly in ν.
Since fν is even and ‖ fν‖2= 1, we have ‖ f +ν ‖2→ 1 as ν→∞. Moreover gν(x)= f +ν (x)+ f +ν (−x)

satisfies
‖gνσ ∗ gνσ‖22/‖gν‖

4
2 ≡

3
2

∥∥ f +ν σ ∗ f +ν σ
∥∥2

2

/ ∥∥ f +ν
∥∥4

2,

and therefore
lim sup
ν→∞

‖ f +ν σ ∗ f +ν σ‖
2
2 = (3/2)

−1 lim sup
ν→∞

‖ fνσ ∗ fνσ‖22.

By rotation symmetry, we may suppose that zν = (0, 0, 1) for all ν. Define Fν : P2
→ [0,∞) by

Fν(y, |y|2/2)= rν f +ν
(
rν y, (1− r2

ν |y|
2)1/2

)
for y ∈R2. The function Fν will also be regarded as an element of L2(R2, dy) by Fν(y)= Fν(y, |y|2/2).
Then ‖Fν‖L2(P2,σP ) = ‖Fν‖L2(R2)→ 1 as ν→∞.

It remains to prove that

lim sup
ν→∞

‖F̂νσP‖
4
L4(R3)

≥ lim sup
ν→∞

‖ f̂ +ν σ‖4L4(R3)
.
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We have ∫
|y|≥R

Fν(y)2 dy+
∫

Fν(y)≥R
Fν(y)2 dy+

∫
|ξ |≥R
|F̂ν(ξ)|2 dξ → 0 (13-1)

as R→∞, uniformly in ν.
Thus we must compare F̂νσP(x, t)=

∫
e−i x ·y−i t |y|2/2 Fν(y) dy with

f̂ +ν σ(x, t)=
∫

R2
e−i x ·v−i t (1−|v|2)1/2 f +ν (v, (1− |v|

2)1/2) dσ(v, (1− |v|2)1/2)

=

∫
R2

e−i x ·v−i t (1−|v|2)1/2 f +ν (v, (1− |v|
2)1/2) (1− |v|2)−1/2 dv.

In the latter integral, substitute v = rν y to obtain

r−1
ν f̂ +ν σ(r−1

ν x,−r−2
ν t)

= r−1
ν r2

ν

∫
R2

e−i x ·y+i tr−2
ν (1−r2

ν |y|
2)1/2 f +ν (rν y, (1− r2

ν |y|
2)1/2) (1− r2

ν |y|
2)−1/2 dy

=

∫
R2

e−i x ·y+i tr−2
ν (1−r2

ν |y|
2)1/2 Fν(y)(1− r2

ν |y|
2)−1/2 dy

= ei tr−2
ν

∫
R2

e−i x ·y−i t |y|2/2 Fν(y)hν(t, y) dy,

where

hν(t, y)= ei tψν(y)(1− r2
ν |y|

2)−1/2 and ψν(y)=−r−2
ν + |y|

2/2+ r−2
ν (1− r2

ν |y|
2)1/2.

Thus

‖ f̂ +ν σ‖44 =
∫

R

∫
R2

∣∣r−1
ν f̂ +ν σ(r−1

ν x,−r−2
ν t)

∣∣4 dx dt =
∥∥∥∫

R2
e−i x ·y−i t |y|2/2 Fν(y)hν(t, y) dy

∥∥∥4

L4(R3)
.

It will be important that on any compact subset of R1
t ×R2

y ,

hν(t, y)→ 1 in the C N norm as ν→∞, for all N <∞. (13-2)

Define

uν(x, t)=
∫

R2
e−i x ·y−i t |y|2/2 Fν(y)hν(t, y) dy and ũν(x, t)=

∫
e−i x ·y−i t |y|2/2 Fν(y) dy.

Lemma 13.2. We have∫
|(x,t)|≥R|

uν(x, t)|4 dx dt→ 0 as R→∞, uniformly in ν,∫
|(x,t)|≥R

|ũν(x, t)|4 dx dt→ 0 as R→∞, uniformly in ν.

Proof. Define operators Tν and T from L2(R2) to L4(R3) by

Tνg(x, t)=
∫

R2
e−i x ·y−i t |y|2/2g(y)χr−1

ν |y|≤1/2(y)hν(t, y) dy, T g(x, t)=
∫

e−i x ·y−i t |y|2/2g(y) dy.
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The operator T : L2(R2)→ L4(R3) is bounded. Although the operators Tν are written in coordinates
that disguise this fact, they are bounded from L2(R2) to L4(R3) uniformly in ν, being obtained via
norm-preserving changes of variables from the single bounded operator L2(S2, σ ) 3 h 7→ ĥσ .

If g ∈ C2(R2) has compact support, then |Tνg(x, t)| ≤ Cg|(x, t)|−1, where Cg depends only on the
C1 norm of g and on the diameter of its support, provided that ν is sufficiently large that the support of
g is contained in B(0, r−1

ν ). This follows from (13-2) together with the method of stationary phase; the
phase functions appearing in the definition of Tν have uniformly nondegenerate critical points (if any),
uniformly in ν.

These two facts, together with the three uniform inequalities (13-1), lead directly to the stated con-
clusion for uν by a routine argument.

A slightly simpler application of the same reasoning applies to ũν . �

Therefore it suffices to prove that for any R <∞,∫
|(x,t)|≤R

∣∣uν(x, t)− ũν(x, t)
∣∣4 dx dt→ 0 as ν→∞. (13-3)

If g ∈ L1 has compact support, then

|Tν(g)(x, t)− T (g)(x, t)| → 0, uniformly for all |(x, t)| ≤ R. (13-4)

Since Tν and T are uniformly bounded operators from L2 to L4, and since the class of all compactly
supported g ∈ L1 is dense in L2, (13-3) follows from (13-4). �

14. Estimation of the cross term ‖F0
ν σ ∗ F∞ν σ‖2

2

To prove Lemma 12.2, let fν , F0
ν and F∞ν be as above. Let fν be upper even-normalized with respect to

a cap Cν of radius rν . Since the inequality in question is invariant under rotations of R3, we may suppose
without loss of generality that Cν is centered at the north pole z0 = (0, 0, 1).

Decompose F0
ν = F0,+

ν + F0,−
ν , where both summands are real-valued, F0,+

ν is supported in C(z0,
1
2),

F0,−
ν (x) = F0,+

ν (−x), F0,±
ν is upper normalized with respect to C(±z0, rν), and F0,±

ν have the same
Fourier representations (12-2) as F0

ν . There is a parallel decomposition F∞ν = F∞,+ν + F∞,−ν . By
Lemma 3.2,

‖F0,+
ν σ ∗ F∞,+ν σ‖2 = ‖F0,−

ν σ ∗ F∞,−ν σ‖2 = ‖F0,−
ν σ ∗ F∞,+ν σ‖2 = ‖F0,+

ν σ ∗ F∞,−ν σ‖2.

Therefore it suffices to bound ‖F0,+
ν σ ∗ F∞,+ν σ‖2.

Lemma 14.1. Let δν, δ∗ν > 0 be sequences of positive numbers that satisfy

δν/r2
ν → 0 and δ∗ν/r2

ν →∞.

Then, with A := {x ∈ R3
: |x |> 2− δν or |x |< 2− δ∗ν },

‖F0,+
ν σ ∗ F∞,+ν σ‖L2(A)→ 0 as ν→∞.
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Proof. Since F0,+
ν and F∞,+ν are upper normalized with respect to Cν , Corollary 7.3 asserts that the

region |x | > 2− δν makes a small contribution for large ν. To handle the region |x | < 2− δ∗ν , choose a
sequence tν ≥ 1 tending slowly to infinity. Decompose F0,+

ν = F0,+
ν χC(z0,tνrν) + F0,+

ν χS2\C(z0,tνrν), and
decompose F∞,+ν in the same way. If tν→∞ sufficiently slowly, then the main term F0,+

ν χC(z0,tνrν)σ ∗

F∞,+ν χC(z0,tνrν)σ is supported where |x | > 2 − δ∗ν . Expanding F0,+
ν σ ∗ F∞,+ν σ according to this de-

composition leaves three more terms. Each of these has small norm in L2(R3) for large ν, because
‖F0,+

ν ‖L2(S2\C(z0,tνrν))→ 0 and ‖F∞,+ν ‖L2(S2\C(z0,tνrν))→ 0. �

If h1 and h2 are supported in C(z0, r), then h1σ ∗h2σ is supported in {x ∈R3
: |x−2z0| ≤Cr}. Since

F0,+
ν and F∞,+ν are upper normalized with respect to C(zν, rν), and since rν → 0, it follows from the

inequality ‖h1σ ∗ h2σ‖L2(R3) ≤ C‖h1‖2‖h2‖2 that∫
|x−2z0|≥1/100

|(F0,+
ν σ ∗ F∞,+ν σ)(x)|2 dx→ 0 as ν→∞.

On the other hand, if |x − 2z0| ≤ 1/100, then for all sufficiently large ν, (F0,+
ν σ ∗ F∞,+ν σ)(x) depends

only on the restrictions of F0,+
ν and F∞,+ν to C(z0, 1/10). This has the following significance in terms

of the Fourier representations (12-3), (12-4) of Lemma 12.1:

F0,+
ν (x)=

∫
rν |ζ |≤4sν

ei xζa0,+
ν (ζ ) dζ + o(1) in L2(C(z0, 1/10)) as ν→∞ (14-1)

by virtue of (12-4); this does not follow for L2(S2) because surface measure on S2 is not approximately
equivalent to Lebesgue measure on {(x1, x2, 0)} near the equator {x ∈S2

: x3 = 0}. Likewise, by (12-3),

F∞,+ν (x)=
∫

rν |ζ |≥Sν/4
ei xζa∞,+ν (ζ ) dζ + o(1) in L2(C(z0, 1/10)) as ν→∞. (14-2)

Henceforth we simplify notation by writing a0
ν in place of a0,+

ν and a∞ν in place of a∞,+ν , and we will
take these functions to be supported in the sets rν |ζ | ≤ 4sν and rν |ζ | ≥ Sν/4, respectively.

Set H = {ξ ∈ R3
: ξ3 = 0}, and identify (ξ1, ξ2, 0) ∈ H with (ξ1, ξ2) ∈ R2. Denote a region Aν and an

interval Iν by

Aν = {x ∈ R3
: 2− δ∗ν ≤ |x | ≤ 2− δν and |x − 2z0|< 1/100} and Iν = [2− δ∗ν , 2− δν].

It remains only to estimate ‖F∞,+ν σ ∗ F0,+
ν σ‖L2(Aν)

. For x ∈ Aν and for all sufficiently large ν,
(F0,+
ν σ ∗ F∞,+ν σ)(x) depends only on the restrictions of F0,+

ν , F∞,+ν to C(z0, 1/10). Therefore in
majorizing ‖F∞,+ν σ ∗ F0,+

ν σ‖L2(Aν)
, we may replace F0,+

ν (x) by
∫

rν |ζ |≤4sν
ei xζa0

ν(ζ ) dζ and F∞,+ν (x)
by
∫

rν |ζ |≥Sν/4
ei xζa∞ν (ζ ) dζ , at the expense of additional terms that are o(1) as ν→∞. We will continue

to denote these modified functions by F0,+
ν , F∞,+ν .

Set hζ = e−iζ F∞,+ν for rν |ζ | ≤ 4sν . Let

H∗ = {ζ ∈ H : rν |ζ | ≤ 4sν}.
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By (7-4), (7-5), (14-1), and (14-2),

‖F∞,+ν σ ∗ F0,+
ν σ‖2L2(Aν)

≤ C
∫

Iν

∥∥∥∫
H∗
|a0
ν(ζ )| · |Tρ(t)hζ | dζ

∥∥∥2

L2(S2)
dt + o(1)

≤ C
∫

Iν

(∫
H∗
|a0
ν(ζ )| · ‖Tρ(t)hζ‖L2(S2) dζ

)2
dt + o(1)

≤ C‖a0
ν‖

2
2

∫
H∗

∫
Iν
‖Tρ(t)hζ‖2L2(S2)

dt dζ + o(1)

≤ C
∫

H∗

∫
Iν
‖Tρ(t)hζ‖2L2(S2)

dt dζ + o(1)

by the Minkowski and Cauchy–Schwarz inequalities. Inserting the Fourier integral operator bound
‖Tρ(hζ )‖22 ≤ C‖(I − ρ21)−1/4hζ‖22 yields

‖F∞,+ν σ ∗ F0,+
ν σ‖2L2(Aν)

≤ C
∫
ζ∈H∗

∫
Iν

∫
ξ∈H

(1+ ρ(t)|ξ |)−1
|ĥζ (ξ)|2 dξ dt dζ + o(1)

= C
∫
ζ∈H∗

∫
Iν

∫
ξ∈H

(1+ ρ(t)|ξ |)−1
|a∞ν (ξ − ζ )|

2 dξ dt dζ

∼ s2
νr−2
ν

∫
Iν

∫
H
(1+ ρ(t)|ξ |)−1

|a∞ν (ξ)|
2 dξ dt + o(1), (14-3)

since |ξ | � |ζ | for ζ in the support of a0
ν and ξ in the support of a∞ν . Next,∫

H
(1+ ρ|ξ |)−1

|a∞ν (ξ)|
2 dξ ≤ C

∫
rν |ξ |≤c0 Sν

|a∞ν (ξ)|
2 dξ +C

∫
rν |ξ |≥c0 Sν

(1+ ρ|ξ |)−1
|a∞ν (ξ)|

2 dξ

≤ C S−1
ν ‖F

∞,+
ν ‖

2
2+C max

rν |ξ |≥c0 Sν
(1+ ρ|ξ |)−1

· ‖F∞,+ν ‖
2
2

≤ C S−1
ν +Cρ−1rνS−1

ν .

The first term after the first inequality was estimated using (12-3). Inserting the final line into (14-3)
yields

‖F∞,+ν σ ∗ F0,+
ν σ‖2L2(Aν)

≤ Cs2
νr−2
ν

∫
Iν

(
S−1
ν + ρ(t)

−1rνS−1
ν

)
dt

≤ Cs2
νr−2
ν

∫
Iν
(S−1
ν + (2− t)−1/2rνS−1

ν ) dt

since (t/2)2+ ρ(t)2 = 1 implies ρ(t)≥ C(2− t)1/2

= Cs2
ν S−1
ν r−2

ν

∫
Iν
(1+ rν(2− t)−1/2) dt

≤ Cs2
ν S−1
ν r−2

ν |Iν |
(
1+max

t∈Iν
rν(2− t)−1/2)

≤ Cs2
ν S−1
ν (r−2

ν δ∗ν )(1+ δ
−1/2
ν rν)≤ Cs−1

ν (r−2
ν δ∗ν )(1+ δ

−1/2
ν rν)

since Sν ≥ s3
ν .
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Combining all terms, we have shown that

‖F0,+
ν σ ∗ F∞,+ν σ‖22 ≤ o(1)+Cs−1

ν (r−2
ν δ∗ν )(1+ δ

−1/2
ν rν)

as ν→∞, provided that δν/r2
ν → 0 and δ∗ν/r2

ν →∞. Since sν→∞, it is possible to choose δν and δ∗ν
to satisfy the additional constraint

s−1
ν (r−2

ν δ∗ν )
(
1+ δ−1/2

ν rν
)
→ 0 as ν→∞.

With such a choice, we obtain

‖F0,+
ν σ ∗ F∞,+ν σ‖22→ 0 as ν→∞,

completing the proof of Lemma 12.2. �

15. Step 9: Large caps

We now prove Proposition 2.17. The proof is quite similar to that of Proposition 2.15, without the
complication of ensuring uniformity of bounds as rν → 0. However, the proof of Proposition 2.15 also
exploited the condition rν→ 0 in a positive way, and substantive modification is therefore required here.
Matters here that are essentially identical to corresponding matters in the earlier proof will be treated
sketchily.

There is given an extremizing sequence { fν} of even nonnegative functions satisfying ‖ fν‖L2(S2) = 1,
each of which is upper even-normalized with respect to a certain cap C(zν, rν). It is given that r∗= infν rν
is strictly positive.

Introduce a C∞ partition of unity of S2 by nonnegative functions η j , each of which is supported in a
cap C(z j ,

1
2). The points z j and functions η j are to be chosen independent of ν. Let φ j : R

2
→ S2 and

φ∗j : L
2(S2)→ L2(R2) be the associated mappings.

Since r∗ ≤ rν ≤ 1, the uniform upper normalization of fν means simply that ‖ fν‖L2(S2) ≤ 1, and there
exists a function 2 that is independent of ν and satisfies 2(R)→∞ as R→∞, such that∫

| fν(x)|≥R
| fν(x)|2 dσ(x)≤2(R) for all ν.

Thus the radii rν no longer enter into the discussion.
Decompose fν =

∑
j fν, j , where fν, j = η j fν . By identifying the plane tangent to S2 at z j with

a fixed copy of R2, we may regard each gν, j = φ
∗

j ( fν, j ) as an element of L2(R2); thus the functions
gν, j , and hence their Fourier transforms, have a common domain. The functions gν, j are supported in
{y ∈ R2

: |y| ≤ 1
2}, and again

∫
|gν, j (y)|≥R |gν, j (y)|2 dy ≤2(R), where 2(R)→ 0 as R→∞.

The analogue of Lemma 11.2 in this simplified situation is the following dichotomy: Either there
exists a function θ : [1,∞)→ (0,∞) satisfying θ(s)→ 0 as s→∞ such that∫

|ξ |≥s

∑
j

|ĝν, j (ξ)|
2 dξ ≤ θ(s) for all s ∈ [1,∞) and all ν, (15-1)
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or there exist δ, εν, sν, Sν as in Lemma 11.2 such that the conclusions in the second case of that lemma
hold, with |ĝν |2 replaced by

∑
j |ĝν, j |

2. The proof of this dichotomy is essentially identical to the proof
of Lemma 11.2 itself.

If (15-1) holds, then the conclusion of Proposition 2.17 is simply a reformulation of the conjunction
of the upper normalization bounds for fν with (15-1); the desired decomposition of fν is obtained by
expressing each gν, j as an inverse Fourier transform, splitting the resulting integral with respect to ξ into
large |ξ | and smaller |ξ | regions, and reversing the mapping φ∗j to transplant both summands to S2. The
contribution of sufficiently large |ξ | will have small L2(S2) norm, while the contribution of smaller |ξ |
will satisfy an adequate C1 norm bound.

It remains only to demonstrate that the second case of the dichotomy cannot arise; there cannot exist
δ, εν, sν, Sν satisfying all conclusions of the second case of Lemma 11.2. Suppose to the contrary that
this situation were to arise. Denote by φ−1

j,∗ the left inverse of φ∗j , mapping functions supported in
{y ∈ R2

: |y| ≤ 3
4} to functions supported in C(z j ,

3
4)⊂ S2. By summing over j , one would obtain as in

(12-1) a decomposition
fν = F0

ν + F∞ν + F[ν , (15-2)

where limν→∞ ‖F
[
ν‖2 = 0, F∞ν is highly oscillatory, and F0

ν is slowly varying in comparison with F∞ν .
Here for instance

F∞ν =
∑

j

φ−1
j,∗(ζ · g

∞

ν, j ), where ĝ∞ν, j (ξ)= (1−m(ξ/Sν))ĝν, j (ξ)

and where the C∞ cutoff functions ζ and m have the following properties: ζ ∈ C∞(R2) is ≡ 1 on the
ball B(0, 5

8), and is supported on B(0, 3
4), while m(ξ) ≡ 0 for |ξ | ≥ 3

8 and m(ξ) ≡ 1 for |ξ | ≤ 1
4 . F0

ν is
defined in the same way, with 1−m(ξ/Sν) replaced by m(ξ/8sν).

The decomposition (15-2) can be modified so that F0
ν , F∞ν and F[ν remain real-valued and even,

without sacrificing any of its desired properties. First replace each summand by its real part. Then
replace F0

ν (x) by 1
2 F0

ν (x)+
1
2 F0

ν (−x), and similarly for F∞ν and F[ν .
The remainder (1− ζ )g∞ν, j , which is neglected in the construction of F∞ν , gives rise to one of several

summands which contribute to F[ν . Because Sν→∞, and because the cutoff function m is smooth and
compactly supported, ‖(1− ζ )g∞ν, j‖L2(R2)→ 0 as ν→∞.

From the fact that sν→∞ and the relation Sν ≥ s3
ν , it follows easily that 〈F0

ν , F∞ν 〉 → 0 as ν→∞.
Therefore since ‖F[ν‖2→ 0,

‖ fν‖22−‖F
0
ν ‖

2
2−‖F

∞

ν ‖
2
2→ 0

‖F0
ν ‖

2
2+‖F

∞

ν ‖
2
2→ 1= ‖ fν‖22.

As in Section 14, the relation Sν ≥ s3
ν →∞ also leads to

‖F0
ν σ ∗ F∞ν σ‖L2(R3)→ 0. (15-3)

This requires several substeps. These are entirely parallel to those in Section 12 and Section 14, so the
details are omitted.
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We need to know that
lim inf
ν→∞

‖F∞ν ‖2 > 0.

This is less apparent than was the analogous statement in the proof of Proposition 2.15, because F∞ν is
defined here as a sum over j that recombines different terms resulting from our partition of unity, and
it must be shown that this summation does not introduce unwanted cancellation. Indeed, suppose to the
contrary that ‖F∞ν ‖2→ 0 for a subsequence of values of ν. Then there must exist an index i such that
for a certain sub-subsequence, ∫

|ξ |≥Sν
|ĝν,i (ξ)|2 dξ & 1. (15-4)

Pass to such a sub-subsequence, substitute the representation fν = F0
ν + F∞ν + F[ν into the definition

gν,i = φ∗i (ηi fν), and consider ĝν,i (ξ) for |ξ | & Sν . The contribution of F0
ν to this Fourier transform in

this regime tends to zero in L2(dξ) norm, because Sν/sν→∞. The contribution of F[ν tends to zero in
L2 norm, because F[ν itself does so. Therefore the contribution of F∞ν to the integral (15-4) cannot tend
to zero. Therefore ‖F∞ν ‖L2(S2) cannot tend to zero.

Since the L2(S2) norms of both F∞ν and F0
ν enjoy strictly positive lower bounds, the small cross-term

bound (15-3) implies as in the proof of Lemma 12.2 that

lim sup
ν→∞

‖ fνσ ∗ fνσ‖22 < S4,

contradicting the assumption that { fν} is an extremizing sequence.

16. Constants are local maxima

Theorem 1.8 asserts that constant functions are local maxima. Define

9( f )= ‖ f σ ∗ f σ‖2L2(R3)
and 8( f )=

9( f )
‖ f ‖4L2(S2)

.

Denote by 1 the constant function 1(x)= 1 for all x ∈ S2.

Proof of Theorem 1.8. Since 8( f ) = 8(t f ) for all t > 0, and since 8( f ) ≤ 8(| f |), we may restrict
attention to functions of the form f = 1+εg where 0≤ ε≤ δ, g⊥ 1, g is real-valued, and ‖g‖L2(S2)= 1.
We may further assume that g(−x)= g(x), by Proposition 2.7.

The constant function 1 is a critical point for 8. Indeed, by rotation symmetry, f = 1 satisfies the
generalized Euler–Lagrange equation f = λ( f σ ∗ f σ ∗ f̃ σ)

∣∣
S2 that characterizes critical points.

A straightforward calculation gives the Taylor expansion

8(1+ εg)=8(1)+ ε2
‖1‖−4

L2(S2)

(
6〈gσ ∗ gσ, σ ∗ σ 〉− 29(1)‖1‖−2

2 ‖g‖
2
2
)
+ O(ε3),

where O(ε3) denotes a quantity whose absolute value is majorized by Cε3, uniformly for g ∈ L2(S2)

satisfying ‖g‖2 ≤ 1. Thus it suffices to show that

sup
‖g‖2=1

6〈gσ ∗ gσ, σ ∗ σ 〉< 29(1)‖1‖−2
2 .
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The quantities 9(1) and ‖1‖2 can be evaluated explicitly. Firstly, ‖1‖22 = σ(S
2)= 4π . Secondly,

(σ ∗ σ)(x)= 2π |x |−1χ|x |≤2.

Indeed, it follows from trigonometry that σ ∗σ(x)= a|x |−1χ|x |≤2 for some a> 0, and a can be evaluated
by

(4π)2 = σ(S2)2 =

∫
R3
(σ ∗ σ)(x) dx =

∫ 2

0
ar−1
· 4πr2 dr = 8πa.

Therefore

9(1)=
∫

R3

(
σ ∗ σ(x)

)2 dx =
∫

R3
4π2
|x |−2 dx = 4π2

∫ 2

0
r−2
· 4πr2 dr = 4π2

· 4π · 2= 32π3.

Therefore it suffices to prove that

sup
‖g‖2=1

〈gσ ∗ gσ, σ ∗ σ 〉< 1
3 · 32π3

· (4π)−1
=

8
3π

2,

where the supremum is taken over all real-valued, even g ∈ L2(S2) satisfying ‖g‖2 = 1 and
∫

g dσ = 0.
The following key bound will be established below.

Lemma 16.1. For all real-valued even functions g ∈ L2(S2) satisfying
∫

g dσ = 0,∣∣∣ ∫∫
S2×S2

g(x)g(y)|x − y|−1 dσ(x) dσ(y)
∣∣∣≤ 4

5π‖g‖
2
L2(S2)

.

The factor 4
5π is optimal, and is attained if and only if g is a spherical harmonic of degree 2.

Now for such g satisfying ‖g‖2 = 1,

〈gσ ∗ gσ, σ ∗ σ 〉 = 〈gσ ∗ (σ ∗ σ), g〉

= 2π
∫∫

S2×S2
g(x)g(y)|x − y|−1 dσ(x) dσ(y)≤ 2π · 4

5π =
8
5π

2 < 8
3π

2,

completing the proof of Theorem 1.8. �

Proof of Lemma 16.1. We first recall the Funk–Hecke formula in the theory of spherical harmonics, see
e.g., [Müller 1998, page 29] or [Xu 2000, Theorem A].

Theorem 16.2 (Funk–Hecke formula). Let d ≥ 2 and k ≥ 0 be integers. Let f be a continuous function
on [−1, 1] and Yk be a spherical harmonic of degree k, on the sphere Sd . Then for any x ∈ Sd ,∫

Sd
f (x · y)Yk(y)dσ(y)= λkYk(x),

where x · y is the usual inner product in Rd+1, and

λk =
ωd
∫ 1
−1 f (t)C (d−1)/2

k (t)(1− t2)(d−2)/2dt

C (d−1)/2
k (1)

∫ 1
−1(1− t2)(d−2)/2dt

,
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where ωd := 2π (d+1)/2/0((d + 1)/2) denotes the surface area of the unit sphere Sd and Cν
k (t) is the

Gegenbauer polynomial defined by the generating function

(1− 2r t + r2)−ν =

∞∑
k=0

Cν
k r k (16-1)

for 0≤ r < 1 and −1≤ t ≤ 1 and ν > 0.

For ν = 1/2 and t = 1, the generating formula becomes (1− r)−2/2
=
∑
∞

k=0 C1/2
k r k , so

C1/2
k = 1 for all k ≥ 0.

For d = 2, (d − 2)/2= 0 and ωd = 4π , and the relevant index ν is ν = (d − 1)/2= 1/2. Therefore for
d = 2,

λk = 2π
∫ 1

−1
f (t)C1/2

k (t)dt. (16-2)

Choosing ν = 1/2 and setting r = 1 in the generating function (16-1), we obtain

(2− 2t)−1/2
=

∞∑
k=0

C1/2
k (t).

This formula is not entirely valid, since (16-1) only applies for r < 1; but all calculations below can be
justified by writing the corresponding formulas for r < 1 and then passing to the limit r = 1. We will
omit these details, and work directly with r = 1.

We also recall the following fact in [Stein and Weiss 1971, Chapter 4, Corollary 2.16]: For S2,
the polynomials C1/2

k (t) for k = 0, 1, . . . are mutually orthogonal with respect to the inner product
〈 f, g〉 =

∫ 1
−1 f (t)g(t)dt . So for f = (2− 2t)−1/2 in (16-2) and for any k ≥ 0, by orthogonality,

λk = 2π
∫ 1

−1
(2− 2t)−1/2C1/2

k (t)dt = 2π
∫ 1

−1

∞∑
m=0

C1/2
m (t)C1/2

k (t)dt

= 2π
∫ 1

−1
(C1/2

k (t))2dt = 4π
2k+1

,

where the last identity follows from the normalized value of C1/2
k (t) over (−1, 1), see e.g., [Andrews

et al. 1999, page 461] or [Müller 1998, 10.15, page 54]. Hence for f (t)= (2− 2t)−1/2, for x ∈ S2,∫
S2

f (x · y)Yk(y)dσ(y)=
4π

2k+1
Yk(x) for all k ≥ 0.

Now return to
∫∫

g(x)g(y)|x− y|−1 dσ(x) dσ(y). Here |x− y|−1
= (2−2x · y)−1/2

= f (x · y), where
f (t) = (2− 2t)−1/2. Since all spherical harmonics of odd degrees are odd, and since g ⊥ 1, g may be
expanded as g =

∑
∞

k=1 Y2k , where each Y2k is a spherical harmonic of degree 2k. These are of course
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pairwise orthogonal in L2(S2). Therefore∫∫
g(x)g(y)|x − y|−1 dσ(x) dσ(y)=

∞∑
k=1

〈λ2kY2k, Y2k〉

=

∞∑
k=1

〈 4π
2(2k)+1

Y2k, Y2k

〉
≤

4π
5

∞∑
k=1

‖Y2k‖
2
2 =

4π
5
‖g‖22.

This completes the proof of Lemma 16.1. �

Remark 16.3. Consider inequalities of the modified form∫
R3

∣∣( f σ ∗ f σ)(x)
∣∣2w(x) dx ≤ C‖ f ‖4L4(S2)

, (16-3)

where w ≥ 0 is any radial weight. The modification consists in placing the L4 norm on the right side of
the inequality instead of the L2 norm.

If the inequality holds for some C <∞, and if w satisfies |λk(w)| ≤ λ0(w), where

λk(w)= 2π
∫ 1

−1
w((2+ 2t)1/2)(2+ 2t)−1/2 C1/2

k (t) dt,

then constant functions are (global) extremals. This holds in particular for w ≡ 1.

This is proved as follows, in the spirit of Foschi [2007]. We may assume that f ≥ 0.∫
R3
( f σ ∗ f σ)(x)2w(x) dx ≤

∫
R3

(
( f 2σ ∗ σ)(x)

)2
w(x) dx

= 2π
∫∫

S2×S2
f 2(x) f 2(y)|x + y|−1w(|x + y|) dσ(x) dσ(y).

The first inequality follows from the Cauchy–Schwarz inequality, and is an equality if f is constant
modulo null sets on almost every circle (that is, the intersection of S2 with an affine plane) in S2; thus
if and only if f is constant modulo σ -null sets. Expand f 2

=
∑
∞

k=0 Yk in spherical harmonics. Then

2π
∫∫

S2×S2
f 2(x) f 2(y)|x + y|−1w(|x + y|) dσ(x) dσ(y)= 2π

∞∑
k=0

λk‖Yk‖
2
2 ≤ 2π sup

k
λk‖ f ‖44,

for certain coefficients λk that depend only on w. If there is a valid inequality (16-3) with C <∞, then
λ0 <∞. Thus constant functions are extremizers. If maxk 6=0 |λk(w)| < λ0(w), then f is an extremizer
if and only if f 2 has a spherical harmonic expansion with Yk = 0 for all k ≥ 1, that is, if and only if f 2

is constant. For f ≥ 0, this forces f to be constant. �

17. A variational calculation

Recall the notation eξ (x)= ex ·ξ . It is natural to study ‖ f̂ σ‖4/‖ f ‖2 for f (x)= eξ (x), for several reasons.
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(i) Extremizers for the paraboloid P2
= {x : x3 =

1
2 |x
′
|
2
}, where x ′ = (x1, x2), are Gaussian functions

of x ′; but these are simply restrictions to P2 of simple exponentials ex ·ξ for ξ ∈ C3 satisfying
Re(ξ3) < 0.

(ii) ( f σ ∗ f σ)(x) is expressed for each x as an integral of a product of two factors. When f = eξ , the
integrand becomes a constant for each x , and hence the Cauchy–Schwarz inequality becomes an
equality when applied to each such integral in an appropriate way. Such equalities are the key to
one proof [Foschi 2007] that Gaussians are extremal for P2.

(iii) The functional ‖eξσ ∗ eξσ‖2/‖eξ‖22 is susceptible to a perturbative analysis for large |ξ |.

(iv) This analysis appears more likely to be generalizable to other manifolds than S2 than does the
calculation of Lemma 2.4 for f ≡ 1.

For these reasons, we carry out in this section a perturbative analysis of ‖eξσ ∗ eξσ‖2/‖eξ‖22, thereby
establishing Proposition 2.19.

We will work with functions concentrated principally in a very small neighborhood of the north pole
(0, 0, 1). A point z ≈ (0, 0, 1) in S2 can be written as

(y, (1− |y|2)1/2)= (y, 1− 1
2 |y|

2
−

1
8 |y|

4
+ O(|y|6)),

where y ∈ R2 and |y|< 1. Let σ denote surface measure on S2;

dσ = (1+ 1
2 |y|

2
+ O(|y|4)) dy.

For z ∈ S2 and ε > 0 define

fε(z)= ε−1/2e(z3−1)/εχ
|(z1,z2)|<

1
2
χz3>0.

Within the domain of fε, the mapping (z1, z2, z3)↔ (z1, z2) is a one-to-one correspondence between S2

and a ball in R2.
We observe that fε is essentially ε−1/2e−1/εeξ , where ξ = (0, 0, ε−1); the two functions differ by

O(e−c/ε) in L2 norm for some c> 0. The cutoff functions are inserted for convenience in the calculation.
For (t, x) ∈ R1+2, define

uε(t, x)=
∫

S2
fε(z)e−i(x,t)·z dσ(z),

where of course (x, t) · z = x1z1+ x2z2+ t z3. Then

uε(t, x)= ε−1/2
∫

S2
e(z3−1)/εe−i x ·(z1,z2)e−i t z3 χ̃(z) dσ(z)

= ε−1/2e−i t
∫

R2
e(−|y|

2/2−|y|4/8+O(|y|6))ε−1

· e−i x ·ye−i t (−|y|2/2−|y|4/8+O(|y|6))(1+ |y|2/2+ O(|y|4))χ(y) dy,
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where χ̃ and χ denote disks centered respectively at (0, 0, 1) ∈ S2 and 0 ∈ R2, which are independent
of ε. A change of variables gives

uε(t, x)= ε1/2e−i t
∫

R2
e−iε1/2x ·ye−(1−iεt)(|y|2/2+ε|y|4/8+O(ε−1

|ε1/2 y|6))

· (1+ ε|y|2/2+ O(|ε1/2 y|4))χ(ε1/2 y) dy.

Setting

vε(t, x)= e−i t/εε−1/2uε(−ε−1t, ε−1/2x)

=

∫
R2

e−i x ·ye−(1+i t)(|y|2/2+ε|y|4/8+O(ε−1
|ε1/2 y|6)(1+ ε|y|2/2+ O(|ε1/2 y|4))χ(ε1/2 y) dy,

we have
‖vε‖

4
L4(R3)

= ‖uε‖4L4(R3)
. (17-1)

Set

wε(t, x)=
∫

R2
e−i x ·ye−(1+i t)(|y|2/2+ε|y|4/8)(1+ 1

2ε|y|
2) dy for ε ≥ 0.

Using the exact definition of fε rather than the approximate expressions above, it is routine to verify that

‖wε‖
4
4 = ‖vε‖

4
4+ O(ε2) as ε→ 0+.

Since we are interested in first variations with respect to ε of the L4 norm at ε = 0, it will suffice to
analyze ‖wε‖44. Also introduce

gε(y)= e−|y|
2/2−ε|y|4/8 and dσε(y)= (1+ ε|y|2/2) dy.

Then
‖ fε‖2L2(σ )

= ‖gε‖2L2(σε)
+ O(ε2).

Although fε is not well defined in the limit ε= 0, the limit limε→0+ ‖ fε‖22 > 0 does exist, and we will
abuse notation by writing ‖ f0‖

2
2 to denote this quantity. We have

‖ f0‖
2
2 =

∫
R2

e−|y|
2

dy.

It is a routine exercise to verify that ε 7→ ‖vε‖44 is a C∞ function on [0,∞); hence the same goes for
‖wε‖

4
4, and for ‖uε‖44 by (17-1). Similarly, ε 7→ ‖ fε‖22 is C∞ on [0,∞).

Consider the functional

9(ε)= log
‖uε‖4L4

‖ fε‖4L2

,

which is initially defined for ε > 0 but extends continuously and differentiably to ε= 0. Its derivative is

∂ε
∣∣
ε=09(ε)=

∂ε‖wε‖
4
4

∣∣
ε=0

‖w0‖
4
4
− 2

∂ε
∣∣
ε=0‖gε‖

2
2

‖g0‖
2
2

, (17-2)



EXISTENCE OF EXTREMALS FOR A FOURIER RESTRICTION INEQUALITY 307

and of course 9(0)= log(R4
P2), where RP2 from (1-3) is the optimal constant for the adjoint restriction

inequality for the paraboloid.

Lemma 17.1.
∂9

∂ε

∣∣∣∣
ε=0

> 0.

Proposition 2.19 follows, since by radial symmetry, ‖eξσ ∗ eξσ‖2/‖eξ‖22 depends only on |ξ |.
The most involved calculation is that of the numerator in the first term of (17-2). To begin that

calculation,

∂ε
∣∣
ε=0wε(t, x)=

∫ (
−

1
8(1+ i t)|y|4+ 1

2 |y|
2)e−i x ·ye−(1+i t)|y|2/2 dy

=
(
−

1
8(1+ i t)(−i/2)−2∂2

t +
1
2(−i/2)−1∂t

) ∫
e−i x ·ye−(1+i t)|y|2/2 dy

=
( 1

2(1+ i t)∂2
t + i∂t

) ∫
e−i x ·ye−(1+i t)|y|2/2 dy

=
( 1

2(1+ i t)∂2
t + i∂t

)
w0(t, x)

=
( 1

2(1+ i t)∂2
t + i∂t

)
c0(1+ i t)−1e−|x |

2/2(1+i t),

where c0 is a positive constant whose precise value will play no role, since it will ultimately appear in
both the numerator and denominator of a certain ratio.

Define

φ(t, x)=− 1
2 |x |

2(1+ i t)−1
− log(1+ i t),

so that w0 = c0eφ . The last quantity above may be written as

c0
( 1

2(1+ i t)∂2
t + i∂t

)
eφ = 1

2 c0(1+ i t)(φ2
t +φt t)eφ + c0iφt eφ

=
( 1

2(1+ i t)(φ2
t +φt t)+ iφt

)
w0,

where φt and φt t denote respectively the first and second partial derivatives of φ with respect to t .
Now

φt =
i
2 |x |

2(1+ i t)−2
− i(1+ i t)−1,

φt t =
i
2(−2i)|x |2(1+ i t)−3

− i(−i)(1+ i t)−2
= |x |2(1+ i t)−3

− (1+ i t)−2,

φ2
t =−

1
4 |x |

4(1+ i t)−4
+ |x |2(1+ i t)−3

− (1+ i t)−2,

so

φ2
t +φt t =−

1
4 |x |

4(1+ i t)−4
+ 2|x |2(1+ i t)−3

− 2(1+ i t)−2.

Consequently

1
2(1+ i t)(φ2

t +φt t)+ iφt

=−
1
8 |x |

4(1+ i t)−3
+ |x |2(1+ i t)−2

− (1+ i t)−1
−

1
2 |x |

2(1+ i t)−2
+ (1+ i t)−1

=−
1
8 |x |

4(1+ t2)−3(1− i t)3+ 1
2 |x |

2(1+ t2)−2(1− i t)2,
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whose real part is

Re
( 1

2(1+ i t)
(
φ2

t +φt t
)
+ iφt

)
=−

1
8 |x |

4(1+ t2)−3(1− 3t2)+ 1
2 |x |

2(1+ t2)−2(1− t2).

Now ∂ε‖wε‖
4
4 = 4

∫
|wε|

4 Re(∂εwε/wε), and therefore

∂ε‖wε‖
4
4

∣∣
ε=0 = 4

∫∫
Re
( 1

2(1+ i t)(φ2
t +φt t)+ iφt

)
|w0(t, x)|4 dx dt

= c4
0

∫
R

∫
R2

(
−

1
2 |x |

4(1+ t2)−3(1− 3t2)+ 2|x |2(1+ t2)−2(1− t2)
)

· (1+ t2)−2
|e−|x |

2/2(1+i t)
|
4 dx dt

= c4
0

∫
R

∫
R2

(
−

1
2 |x |

4(1+ t2)−3(1− 3t2)+ 2|x |2(1+ t2)−2(1− t2)
)

· (1+ t2)−2 e−2|x |2/(1+t2) dx dt.

Substituting x = (1+ t2)1/2 x̃ and then replacing x̃ by x gives

∂ε‖wε‖
4
4

∣∣
ε=0 = c4

0

∫
R

∫
R2

(
−

1
2 |x |

4(1− 3t2)+ 2|x |2(1− t2)
)
(1+ t2)−2e−2|x |2 dx dt.

By substituting x = 2−1/2 y in R2 and then r = s1/2 in (0,∞), we derive the identities∫
R2

e−2|x |2 dx = 1
2

∫
R2

e−|y|
2

dy = π
∫
∞

0
e−r2

r dr = 1
2π

∫
∞

0
e−s ds = π

2
,∫

R2
|x |2e−2|x |2 dx = π

4

∫
∞

0
se−s ds = π

4
,∫

R2
|x |4e−2|x |2 dx = π

8

∫
∞

0
s2e−s ds = π

4
.

Recall also that ∫
R

(1+ t2)−1 dt = π and
∫

R

(1+ t2)−2 dt = π
2
.

Using these formulas we obtain

∂ε‖wε‖
4
4

∣∣
ε=0 = c4

0

∫
R

(
−

1
2(1− 3t2)

π

4
+ 2(1− t2)

π

4

)
(1+ t2)−2 dt

=
π
4 c4

0

∫
R

(− 1
2 t2
+

3
2)(1+ t2)−2 dt

=
π
4 c4

0

∫
R

(
−

1
2(1+ t2)−1

+ 2(1+ t2)−2) dt = π
4 c4

0

(
−
π

2
+ 2π

2

)
= c4

0
π2

8
.

On the other hand,

‖w0‖
4
4 = c4

0

∫
R

∫
R2
(1+ t2)−2e−2|x |2/(1+t2) dx dt = c4

0

∫
R

∫
R2
(1+ t2)−1e−2|y|2 dy dt = c4

0
1
2π

2.

Therefore
∂ε‖wε‖

4
4

∣∣
ε=0

‖w0‖
4
4
=
π2c4

0/8

π2c4
0/2
=

1
4
.
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The variation of ‖gε‖22 must also be taken into account:

∂ε

∫
R2

gε(y)2 dσε(y)
∣∣∣
ε=0
= ∂ε

∫
R2

e−|y|
2
−ε

1
4 |y|

4
(1+ ε 1

2 |y|
2) dy

∣∣∣
ε=0

=

∫
R2
(− 1

4 |y|
4
+

1
2 |y|

2)e−|y|
2

dy =−2π
4
+
π

2
= 0.

Therefore 2∂ε‖gε‖2L2(σε)

∣∣
ε=0

/
‖g0‖

2
2 = 0. Putting it all together, ∂ε9(ε)

∣∣
ε=0 =

1
4 − 0> 0.

18. Proof of Lemma 6.1

Proof of Lemma 6.1. Suppose that f = χE is the characteristic function of a set E . We will begin by
showing that there exist C <∞ and exponents s, t > 0 such that for any set E and any index k,∑

j

|C
j
k |

2
(
|C

j
k |
−1
∫

C
j
k

|χE |
p
)4/p
≤ C |E |2 ·min

(
2−2k
|E |−1, 22k

|E |
)t
·max

i

(
|E ∩Ci

k |

|E | + |Ci
k |

)s
. (18-1)

Indeed, ∑
j

|C
j
k |

2
(
|C

j
k |
−1
∫

C
j
k

χ
p
E

)4/p
=

∑
j

|C
j
k |

2
|E ∩C

j
k |

4/p
|C

j
k |
−4/p

≤

∑
j

|E ∩C
j
k | ·max

i

(
|E ∩Ci

k |
4/p−1
|Ci

k |
2−4/p)

= |E |max
i

(
|E ∩Ci

k |
4/p−1
|Ci

k |
2−4/p).

The analysis now splits into two cases. Note that |C j
k | ∼ 2−2k uniformly for all indices j and k. If

2−2k
≥ |E |, then

|E |max
i

(
|E ∩Ci

k |
4/p−1
|Ci

k |
2−4/p)

≤ |E |2 max
i

(
|E ∩Ci

k |

|Ci
k |

)4/p−2

≤ |E |2(22k
|E |)2/p−1 max

i

(
|E ∩Ci

k |

|Ci
k |

)2/p−1
.

Since 1≤ p < 2, we have 2/p− 1> 0 and hence this is a bound of the required form (18-1). If instead
2−2k < |E |, then since 4/p− 1> 1≥ 1

2 ,

|E |max
i

(
|E ∩Ci

k |
4/p−1
|Ci

k |
2−4/p)

= |E |2(22k
|E |)−1 max

i

(
|E ∩Ci

k |

|Ci
k |

)4/p−1

≤ |E |2(22k
|E |)−1 max

i

(
|E ∩Ci

k |

|Ci
k |

)1/2

= |E |2(22k
|E |)−1/2 max

i

(
|E ∩Ci

k |

|E |

)1/2
,

which again is a bound of the desired form. Thus (18-1) is proved.
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Next consider a general function f ∈ L2(S2). By sacrificing a constant factor in the inequality, we
may assume that f takes the form f =

∑
∞

α=−∞ 2αχEα , where the sets Eα are pairwise disjoint and
|Eα| <∞. Invoking the preceding analysis for each summand together with the triangle inequality for
the sum with respect to α yields

‖ f ‖4X p
≤ C

∑
k

(∑
α

2α|Eα|1/2 ·min
(
2−2k
|Eα|−1, 22k

|Eα|
)t/4
·max

i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

)s/4)4
(18-2)

≤ C
(∑

α

24α
|Eα|2 max

k,i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

)s)1/2
‖ f ‖22. (18-3)

The second inequality in (18-3) is deduced as follows. For each integer r define

ar =
∑

β:|Eβ |∈[2r ,2r+1)

2β |Eβ |1/2 max
m,i

(
|Eβ ∩Ci

m |

|Eβ | + |Ci
m |

)s/4
and bk,r =min

(
2−(r+2k)t/4, 2(r+2k)t/4).

Then by (18-2),

‖ f ‖X p ≤ C
( ∞∑

k=0

(

∞∑
r=−∞

ar bk,r )
4
)1/4

≤ C
( ∞∑

k=0

(
∑

r

a4
r bk,r )(

∑
r

bk,r )
3
)1/4
≤ C

( ∞∑
k=0

∑
r

a4
r bk,r

)1/4
≤ C

( ∞∑
r

a4
r

)1/4
. (18-4)

Finally for each r , an application of Hölder’s inequality with exponents 8 and 8
7 gives

ar =
∑

β:|Eβ |∼2r

2β |Eβ |1/2 max
m,i

(
|Eβ ∩Ci

m |

|Eβ | + |Ci
m |

)s/4
,

≤ C2r/2
( ∑
β:|Eβ |∼2r

24β max
m,i

(
|Eβ ∩Ci

m |

|Eβ | + |Ci
m |

)2s)1/8( ∑
β:|Eβ |∼2r

24β/7
)7/8

≤ C
( ∑
β:|Eβ |∼2r

24β
|Eβ |2 max

m,i

(
|Eβ ∩Ci

m |

|Eβ | + |Ci
m |

)s)1/8
‖ f ‖1/22 ,

since the sum of the finite series
∑

β:|Eβ |∼2r 24β/7 is comparable to its largest term.
Continuing now from (18-4), we have

‖ f ‖8X p
‖ f ‖−4

2 ≤ C
∑
α

22α
|Eα| · sup

α

22α
|Eα|max

k,i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

)s

= C‖ f ‖42 · sup
α

((
22α
|Eα|‖ f ‖−2

2

)
max

k,i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

)s)

≤ C‖ f ‖42 · sup
α

((
22α
|Eα|‖ f ‖−2

2

)s max
k,i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

)s)
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for some 0< s ≤ 1.
It remains to show that

X := sup
α

((
22α
|Eα|‖ f ‖−2

2

)
max

k,i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

))
≤ C sup

m, j
3m, j ( f )r

for some positive exponent r . Choose an index α for which the supremum is attained up to a factor of at
most 2. Then

1
2 X ≤

(
22α
|Eα| · ‖ f ‖−2

2

)
max

k,i

(
|Eα ∩Ci

k |

|Eα| + |Ci
k |

)
.

The right side is a product of two nonnegative factors, neither of which can exceed 1, so

22α
|Eα|/‖ f ‖22 ≥ X/2 and there exist k and i such that

|Eα ∩Ci
k |

|Eα| + |Ci
k |
≥ X/4.

Set C= Ci
k . We have |Eα| ≥ 2−2α−1 X‖ f ‖22, and since |Eα ∩C| ≤ 2−α

∫
C| f |,

|C|−1
∫

C
| f | ≥ 2α

|Eα ∩C|

|C|
≥ 2α

|Eα ∩C|

|Eα| + |C|
≥ c2αX.

Also

|C|−1
∫

C
| f | ≥ 2α

|Eα ∩C|

|Eα|
·
|Eα|
|C|
≥ 2α

|Eα ∩C|

|Eα| + |C|
|C|−1

|Eα| ≥ c2αX |C|−1
|Eα|

≥ c2αX |C|−1
· 2−2α

‖ f ‖22 X = c2−α‖ f ‖22 X2.

Taking the geometric mean of these two bounds yields

|C|−1
∫

C | f |
|C|−1/2‖ f ‖2

≥ cX3/2,

which by the definitions of X and 3k,i ( f ) is a bound of the desired form. �
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