
ANALYSIS & PDE
Volume 5 No. 3 2012

mathematical sciences publishers



Analysis & PDE
msp.berkeley.edu/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
University of California

Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
ilaba@math.ubc.ca lebeau@unice.fr

László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France William Minicozzi II Johns Hopkins University, USA
Frank.Merle@u-cergy.fr minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany Yuval Peres University of California, Berkeley, USA
mueller@math.uni-bonn.de peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6 Tristan Rivière ETH, Switzerland
pisier@math.tamu.edu riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA Wilhelm Schlag University of Chicago, USA
irod@math.princeton.edu schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA Yum-Tong Siu Harvard University, USA
serfaty@cims.nyu.edu siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
tao@math.ucla.edu met@math.unc.edu

Gunther Uhlmann University of Washington, USA András Vasy Stanford University, USA
gunther@math.washington.edu andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA Steven Zelditch Northwestern University, USA
dvv@math.berkeley.edu zelditch@math.northwestern.edu

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor

See inside back cover or msp.berkeley.edu/apde for submission instructions.

The subscription price for 2012 is US $140/year for the electronic version, and $240/year for print and electronic. Subscriptions, requests for
back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of
Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Analysis & PDE, at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is
published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:aizenman@math.princeton.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:caffarel@math.utexas.edu
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:higson@math.psu.edu
mailto:vfr@math.berkeley.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:contact@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS AND PDE
Vol. 5, No. 3, 2012

dx.doi.org/10.2140/apde.2012.5.423 msp

ON SOME MICROLOCAL PROPERTIES OF THE RANGE OF A
PSEUDODIFFERENTIAL OPERATOR OF PRINCIPAL TYPE

JENS WITTSTEN

We obtain microlocal analogues of results by L. Hörmander about inclusion relations between the ranges
of first order differential operators with coefficients in C∞ that fail to be locally solvable. Using similar
techniques, we study the properties of the range of classical pseudodifferential operators of principal
type that fail to satisfy condition (Ψ ).

1. Introduction

We shall study the properties of the range of a classical pseudodifferential operator P ∈ Ψ m
cl (X) that is

not locally solvable, where X is a C∞ manifold of dimension n. Here, classical means that the total
symbol of P is an asymptotic sum of homogeneous terms,

σP(x, ξ)= pm(x, ξ)+ pm−1(x, ξ)+ · · · ,

where pk is homogeneous of degree k in ξ and pm denotes the principal symbol of P . When no confusion
can occur we will simply refer to σP as the symbol of P . We shall restrict our study to operators of
principal type, which means that the Hamilton vector field Hpm and the radial vector field are linearly
independent when pm = 0. We shall also assume that all operators are properly supported, that is, both
projections from the support of the kernel in X × X to X are proper maps. For such operators, local
solvability at a compact set M ⊂ X means that for every f in a subspace of C∞(X) of finite codimension
there is a distribution u in X such that

Pu = f (1-1)

in a neighborhood of M . We can also define microlocal solvability at a set in the cosphere bundle, or
equivalently, at a conic set in T ∗(X)r 0, the cotangent bundle of X with the zero section removed. By
a conic set K ⊂ T ∗(X)r 0 we mean a set that is conic in the fiber, that is,

(x, ξ) ∈ K implies (x, λξ) ∈ K for all λ > 0.

If, in addition, πx(K ) is compact in X , where πx : T ∗(X)→ X is the projection, then K is said to be
compactly based. Thus, we say that P is solvable at the compactly based cone K ⊂ T ∗(X)r 0 if there

Research supported in part by the Swedish Research Council.
MSC2000: primary 35S05; secondary 35A07, 58J40, 47G30.
Keywords: pseudodifferential operators, microlocal solvability, principal type, condition (Ψ ), inclusion relations,

bicharacteristics.
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424 JENS WITTSTEN

is an integer N such that for every f ∈ H loc
(N )(X) there exists a u ∈ D′(X) with K ∩WF(Pu − f ) = ∅

(see Definition 2.1).
The famous example due to Hans Lewy [1957] of the existence of functions f ∈ C∞(R3) such that

the equation

∂x1u+ i∂x2u− 2i(x1+ i x2)∂x3u = f

does not have any solution u ∈ D′(Ω) in any open nonvoid subset Ω ⊂ R3 contradicted the assumption
that partial differential equations with smooth coefficients behave as analytic partial differential equa-
tions, for which existence of analytic solutions is guaranteed by the Cauchy–Kovalevsky theorem. This
example led to an extension due to Hörmander [1960b; 1960a] in the sense of a necessary condition
for a differential equation P(x, D)u = f to have a solution locally for every f ∈ C∞. In fact (see
[Hörmander 1963, Theorem 6.1.1]), if Ω is an open set in Rn , and P is a differential operator of order m
with coefficients in C∞(Ω) such that the differential equation P(x, D)u = f has a solution u ∈ D′(Ω)

for every f ∈C∞0 (Ω), then {pm, p̄m}must vanish at every point (x, ξ)∈Ω×Rn for which pm(x, ξ)= 0,
where

{a, b} =
n∑

j=1

∂ξ j a ∂x j b− ∂x j a ∂ξ j b

denotes the Poisson bracket.
In addition to his example, Lewy conjectured that differential operators that fail to have local solutions

are essentially uniquely determined by the range. Later Hörmander [1963, Chapter 6.2] proved that if P
and Q are two first order differential operators with coefficients in C∞(Ω) and in C1(Ω), respectively,
such that the equation P(x, D)u = Q(x, D) f has a solution u ∈D′(Ω) for every f ∈ C∞0 (Ω), and x is
a point in Ω such that

p1(x, ξ)= 0 and {p1, p̄1}(x, ξ) 6= 0 (1-2)

for some ξ ∈ Rn , then there is a constant µ such that (at the fixed point x)

tQ(x, D)= µ tP(x, D),

where tQ and tP are the formal adjoints of Q and P . If (1-2) holds for a dense set of points x in Ω and
if the coefficients of p1(x, D) do not vanish simultaneously in Ω , then there is a function µ ∈ C1(Ω)

such that

Q(x, D)u = P(x, D)(µu). (1-3)

Furthermore, for such an operator P and function µ, the equation P(x, D)u=µP(x, D) f has a solution
u ∈ D′(Ω) for every f ∈ C∞0 (Ω) if and only if p1(x, D)µ= 0.

Hörmander also showed that this result extends to operators of higher order in the following way (see
[1963, Theorem 6.2.4]). If P is a differential operator of order m with coefficients in C∞(Ω) and µ is
a function in Cm(Ω) such that the equation

P(x, D)u = µP(x, D) f
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has a solution u ∈ D′(Ω) for every f ∈ C∞0 (Ω), then it follows that

n∑
j=1

∂ξ j pm(x, ξ)∂x jµ(x)= 0

for all x ∈Ω and ξ ∈ Rn such that

{pm, p̄m}(x, ξ) 6= 0 and pm(x, ξ)= 0. (1-4)

This means that the derivative of µ must vanish along every bicharacteristic element with initial data
(x, ξ) satisfying (1-4), that is, giving rise to nonexistence of solutions.

If P is a pseudodifferential operator such that P is microlocally elliptic near (x0, ξ0), then there exists
a microlocal inverse, called a parametrix P−1 of P , such that in a conic neighborhood of (x0, ξ0) we
have P P−1

= P−1 P = Identity modulo smoothing operators. P is then trivially seen to be microlocally
solvable near (x0, ξ0), and for any pseudodifferential operator Q we can write Q = P P−1 Q + R =
P E + R, where R is a smoothing operator. When the range of Q is microlocally contained in the range
of P , we will show the existence of this type of representation for Q in the case when P is a nonsolvable
pseudodifferential operator of principal type, although we will have to content ourselves with a weaker
statement concerning the Taylor coefficients of the symbol of the operator R (see Theorem 2.19 for the
precise formulation of the result). Note that when P is solvable but nonelliptic we cannot hope to obtain
such a representation in general; see the remark on page 440.

For pseudodifferential operators of principal type, Hörmander [1985b] proved that local solvability in
the sense of (1-1) implies that M has an open neighborhood Y in X where pm satisfies condition (Ψ ),
which means that

Im apm does not change sign from − to + along the oriented bicharacteristics of Re apm (1-5)

over Y for any 0 6= a ∈ C∞(T ∗(Y )r 0). The oriented bicharacteristics are the positive flow-outs of the
Hamilton vector field HRe apm on Re apm = 0. The proof relies on an idea due to Moyer [1978], and
uses the fact that condition (1-5) is invariant under multiplication of pm with nonvanishing factors, and
conjugation of P with elliptic Fourier integral operators.

Rather recently Dencker [2006] proved that condition (Ψ ) is also sufficient for local and microlocal
solvability for operators of principal type. To get local solvability at a point x0, Dencker assumed the
strong form of the nontrapping condition at x0,

pm = 0 implies ∂ξ pm 6= 0. (1-6)

This was the original condition for principal type of Nirenberg and Treves [1970a; 1970b; 1971], which is
always obtainable microlocally after a canonical transformation. Thus, we shall study pseudodifferential
operators that fail to satisfy condition (Ψ ) in place of the condition given by (1-4), and show that such
operators are, in analogue with the inclusion relations between the ranges of differential operators that
fail to be locally solvable, essentially uniquely determined by the range. However, even though (1-4) is a
microlocal condition, we get the mentioned local results for differential operators because of analyticity
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in ξ of the corresponding symbol. Since this is not generally true for pseudodifferential operators, our
results will be inherently microlocal. We will combine the techniques used in [Hörmander 1963] to prove
the inclusion relations for differential operators with the approach used in [Hörmander 1985b] to prove
the necessity of condition (Ψ ) for local solvability of pseudodifferential operators of principal type.

It is possible to extend these results to certain systems of pseudodifferential operators, which will be
addressed in a forthcoming joint paper with Nils Dencker.

2. Nonsolvable operators of principal type

Let X be a C∞ manifold of dimension n. In what follows, C will be taken to be a new constant every
time unless stated otherwise. We let N= {0, 1, 2, . . . }, and if α ∈ Nn is a multiindex α = (α1, . . . , αn),
we let

Dα
x = Dα1

x1
· · · Dαn

xn
,

where Dx j = −i∂x j . We shall also employ the standard notation f (β)(α) (x, ξ) = ∂
α
x ∂

β
ξ f (x, ξ) for multi-

indices α, β.
In this section we will follow the outline of [Hörmander 1985b, Chapter 26, Section 4]. Recall that

the Sobolev space H(s)(X) for s ∈ R is a local space, that is, if ϕ ∈ C∞0 (X) and u ∈ H(s)(X), then
ϕu ∈ H(s)(X), and the corresponding operator of multiplication is continuous. Thus we can define

H loc
(s) (X)= {u ∈ D′(X) : ϕu ∈ H(s)(X) for all ϕ ∈ C∞0 (X)}.

This is a Fréchet space, and its dual with respect to the inner product on L2 is

H comp
(−s) (X)= H loc

(−s)(X)∩E′(X).

Definition 2.1. If K ⊂ T ∗(X)r0 is a compactly based cone, we shall say that the range of Q ∈Ψ m
cl (X)

is microlocally contained in the range of P ∈Ψ k
cl(X) at K if there exists an integer N such that for every

f ∈ H loc
(N )(X), there exists a u ∈ D′(X) with WF(Pu− Q f )∩ K =∅.

If I ∈Ψ 0
cl(X) is the identity on X , we obtain from Definition 2.1 the definition of microlocal solvability

for a pseudodifferential operator (see [Hörmander 1985b, Definition 26.4.3]) by setting Q = I . Thus,
the range of the identity is microlocally contained in the range of P at K if and only if P is microlocally
solvable at K . Note also that if P and Q satisfy Definition 2.1 for some integer N , then due to the
inclusion

H loc
(t) (X)⊂ H loc

(s) (X) if s < t,

the statement also holds for any integer N ′ ≥ N . Hence N can always be assumed to be positive.
Furthermore, the property is preserved if Q is composed with a properly supported pseudodifferential
operator Q1 ∈ Ψ

m′
cl (X) from the right. Indeed, let g be an arbitrary function in H loc

(N+m′)(X). Then
f = Q1g ∈ H loc

(N )(X) since the map

Q1 : H loc
(s) (X)→ H loc

(s−m′)(X)
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is continuous for every s ∈R, so by Definition 2.1 there exists a u ∈D′(X) with WF(Pu−Q f )∩K =∅.
Hence the range of Q Q1 is microlocally contained in the range of P at K with the integer N replaced
by N +m′.

The property given by Definition 2.1 is also preserved under composition of both P and Q with a
properly supported pseudodifferential operator from the left. This follows immediately from the fact that
properly supported pseudodifferential operators are microlocal, that is,

WF(Au)⊂WF(u)∩WF(A) for u ∈ D′(X).

Remark. In Definition 2.1 we may always assume that f ∈ H comp
(N ) (X) and u ∈ E′(X) when considering

a fixed cone K . In fact, assume

Q f = Pu+ g,

where f ∈ H loc
(N )(X) and u, g ∈D′(X) with WF(g)∩K =∅, and let Y b X satisfy K ⊂ T ∗(Y )r 0. (We

write Y b X when Y is compact and contained in X .) Since P and Q are properly supported we can find
Z1, Z2 ⊂ X such that Pv = 0 in Y if v = 0 in Z1, and Qv = 0 in Y if v = 0 in Z2. We may of course
assume that Y b Z j for j = 1, 2. Fix φ j ∈ C∞0 (X) with φ j = 1 on Z j . Then we have Pu = P(φ1u) and
Q f = Q(φ2 f ) in Y , so

∅=WF(Q f − Pu)∩ K =WF(Q(φ2 f )− P(φ1u))∩ K

where φ1u and φ2 f have compact support. Hence we may assume that u ∈ E′(X) and f ∈ H comp
(N ) (X)=

H loc
(N )(X)∩ E′(X) to begin with. Note that this also implies g = Q f − Pu ∈ E′(X) since P and Q are

properly supported.

The following easy example will prove useful when discussing inclusion relations between the ranges
of solvable but nonelliptic operators.

Example 2.2. If X ⊂ Rn is open, and K ⊂ T ∗(X)r 0 is a compactly based cone, then the range of
D1 =−i∂/∂x1 is microlocally contained in the range of D2 at K . In fact, this is trivially true since both
operators are surjective D′(X)→D′(X)/C∞(X). To see that for example D1 is surjective, we note that
by the remark on page 427 it suffices to show that there exists a number N ∈ Z such that the equation
D1u = f has a solution u ∈D′(X) for every f ∈ H comp

(N ) (X)= H loc
(N )(X)∩E′(X). By [Hörmander 1983b,

Theorem 10.3.1] this is satisfied for every N ∈ Z if u ∈ H loc
(N+1)(X) is given by E ∗ f , where E is the

regular fundamental solution of D1.

Just as the microlocal solvability of a pseudodifferential operator P gives an a priori estimate for the
adjoint P∗, we have the following result for operators satisfying Definition 2.1.

Lemma 2.3. Let K ⊂T ∗(X)r0 be a compactly based cone. Let Q ∈Ψ m
cl (X) and P ∈Ψ k

cl(X) be properly
supported pseudodifferential operators such that the range of Q is microlocally contained in the range
of P at K . If Y b X satisfies K ⊂ T ∗(Y ) and if N is the integer in Definition 2.1, then for every positive
integer κ we can find a constant C , a positive integer ν and a properly supported pseudodifferential
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operator A with WF(A)∩ K =∅ such that

‖Q∗v‖(−N ) ≤ C(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0)) (2-1)

for all v ∈ C∞0 (Y ).

Since (2-1) holds for any κ , it is actually superfluous to include the dimension n in the norm ‖v‖(−N−κ−n).
However, for our purposes, it turns out that this is the most convenient formulation.

Proof. We shall essentially adapt the proof of [Hörmander 1985b, Lemma 26.4.5]. Let ‖ · ‖(s) denote
a norm in H comp

(s) (X) that defines the topology in H c
(s)(M) = H loc

(s) (X) ∩ E′(M) for every compact set
M ⊂ X . (The reason we change notation from H comp

(s) (M) to H c
(s)(M) when M is compact is to signify

that H c
(s)(M) is a Hilbert space for each fixed compact set M .) Let Y b Z b X , and take χ ∈ C∞0 (X)

with suppχ = Z to be a real-valued cutoff function identically equal to 1 in a neighborhood of Y . Then
χQ f ∈ H c

(N−m)(Z) for all f ∈ H comp
(N ) (X) since Q is properly supported, and we claim that for fixed

f ∈ H comp
(N ) (X) we have for some C , ν and A as in the statement of the lemma

|(χQ f, v)| ≤ C(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0)) (2-2)

for all v ∈C∞0 (Y ). Indeed, by hypothesis and the remark on page 427 we can find u and g̃ in E′(X) with
WF(g̃)∩ K =∅ such that

χQ f = Q f − (1−χ)Q f = Pu+ g̃− (1−χ)Q f.

Since K ⊂ T ∗(Y ) and χ ≡ 1 near Y we get WF((1− χ)Q f ) ∩ K = ∅, so χQ f = Pu + g for some
g ∈ E′(X) with WF(g)∩ K =∅. Thus

(χQ f, v)= (u, P∗v)+ (g, v) for v ∈ C∞0 (Y ).

Now choose properly supported pseudodifferential operators B1 and B2 of order 0 with I = B1 + B2

and WF(B1) ∩WF(g) = ∅ and WF(B2) ∩ K = ∅, which is possible since WF(g) ∩ K = ∅. Since
g ∈ E′(X) and B1 : E

′(X)→ E′(X) is continuous and microlocal we get B1g ∈ C∞0 (X), so (B1g, v) can
be estimated by C‖v‖(−N−κ−n). Also, g ∈ H loc

(−µ)(X) for some µ > 0 so if B is properly supported and
elliptic of order µ, and B ′ ∈ Ψ−µcl (X) is a properly supported parametrix of B, then

B∗2v = B ′B B∗2v+ L B∗2v, (2-3)

where L ∈ Ψ−∞(X) and both B ′ and L are continuous H comp
(s) (X)→ H comp

(s+µ)(X). Hence

|(B2g, v)| ≤ C‖B∗2v‖(µ) ≤ C(‖B B∗2v‖(0)+‖B
∗

2v‖(0)),

and if we apply the identity (2-3) to ‖B∗2v‖(0), ‖B
∗

2v‖(−µ), . . . sufficiently many times, and then recall
that B∗2 is properly supported and of order 0, we obtain

|(B2g, v)| ≤ C(‖B B∗2v‖(0)+‖v‖(−N−κ−n)).

Since we chose B to be properly supported this gives (2-2) with A = B B∗2 .
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For fixed κ , suppose V is the space C∞0 (Y ) equipped with the topology defined by the seminorms
‖v‖(−N−κ−n), ‖P∗v‖(ν) for ν = 1, 2, . . . , and ‖Av‖(0), where A is a properly supported pseudodiffer-
ential operator with K ∩WF(A) = ∅. It suffices to use a countable sequence A1, A2, . . . , where Aν is
noncharacteristic of order ν in a set that increases to (T ∗(X)r0)r K as ν→∞. Thus V is a metrizable
space. The sesquilinear form (χQ f, v) in the product of the Hilbert space H c

(N−m)(Z) and the metrizable
space V is obviously continuous in χQ f for fixed v, and by (2-2) it is also continuous in v for fixed f .
Hence it is continuous, which means that for some ν and C

|(χQ f, v)| ≤ C‖Q f ‖(N−m)(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0))

for all f ∈ H comp
(N ) (X) and v ∈ C∞0 (Y ). Now Q is continuous from H comp

(N ) (X) to H comp
(N−m)(X) so we have

‖Q f ‖(N−m) ≤ C‖ f ‖(N ). Since χ ≡ 1 near Y and (χQ)∗ = Q∗χ , this yields the estimate

|( f, Q∗v)| ≤ C‖ f ‖(N )(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0)). (2-4)

For v ∈C∞0 (Y ) and Q∗ properly supported we have Q∗v ∈C∞0 (X), and therefore also Q∗v ∈ H loc
(−N )(X).

Viewing Q∗v as a functional on H comp
(N ) (X), the dual of H loc

(−N )(X) with respect to the standard inner
product on L2, we obtain (2-1) after taking the supremum over all f ∈ H comp

(N ) (X) with ‖ f ‖(N ) = 1. �

We will need the following analogue of [Hörmander 1985b, Proposition 26.4.4]. Recall that H :

T ∗(Y ) r 0 → T ∗(X) r 0 is a canonical transformation if and only if its graph CH in the product
(T ∗(X)r0)× (T ∗(Y )r0) is Lagrangian with respect to the difference σX −σY of the symplectic forms
of T ∗(X) and T ∗(Y ) lifted to T ∗(X)× T ∗(Y ) = T ∗(X × Y ). This differs in sign from the symplectic
form σX + σY of T ∗(X × Y ) so it is the twisted graph

C ′H = {(x, ξ, y,−η) : (x, ξ, y, η) ∈ CH},

which is Lagrangian with respect to the standard symplectic structure in T ∗(X × Y ).

Proposition 2.4. Let K ⊂ T ∗(X)r 0 and K ′ ⊂ T ∗(Y )r 0 be compactly based cones and let χ be a
homogeneous symplectomorphism from a conic neighborhood of K ′ to one of K such that χ(K ′) = K .
Let A ∈ I m′(X×Y, Γ ′) and B ∈ I m′′(Y × X, (Γ −1)′), where Γ is the graph of χ , and assume that A and
B are properly supported and noncharacteristic at the restriction of the graphs of χ and χ−1 to K ′ and to
K respectively, while WF′(A) and WF′(B) are contained in small conic neighborhoods. Then the range
of the pseudodifferential operator Q in X is microlocally contained in the range of the pseudodifferential
operator P in X at K if and only if the range of the pseudodifferential operator B Q A in Y is microlocally
contained in the range of the pseudodifferential operator B P A in Y at K ′.

Proof. Choose A1 ∈ I−m′′(X × Y, Γ ′) and B1 ∈ I−m′(Y × X, (Γ −1)′) properly supported such that

K ′ ∩WF(B A1− I )=∅, K ∩WF(A1 B− I )=∅,

K ′ ∩WF(B1 A− I )=∅, K ∩WF(AB1− I )=∅.

Assume that the range of Q is microlocally contained in the range of P at K and choose N as in
Definition 2.1. Let g ∈ H loc

(N+m′)(Y ) and set f = Ag ∈ H loc
(N )(X). Then we can find u ∈ D′(X) such that
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K ∩WF(Pu− Q f )=∅. Let v = B1u ∈ D′(Y ). Then

WF(Av− u)=WF((AB1− I )u)

does not meet K , so K ∩WF(P Av− Q f )=∅. Recalling that f = Ag this implies

K ′ ∩WF(B P Av− B Q Ag)=∅,

so the range of B Q A is microlocally contained in the range of B P A at K ′. Conversely, if the range of
B Q A is microlocally contained in the range of B P A at K ′, it follows that the range of A1 B Q AB1 is
microlocally contained in the range of A1 B P AB1 at K . Since

K ∩WF(A1 B P AB1u− A1 B Q AB1 f )= K ∩WF(Pu− Q f ),

this means that the range of Q is microlocally contained in the range of P at K , which proves the
proposition. �

Before we can state our main theorem, we need to study the geometric situation that occurs when p
fails to satisfy condition (Ψ ). Recall that by [Hörmander 1985b, Theorem 26.4.12] we may always
assume that the nonvanishing factor in condition (1-5) is a homogeneous function. We begin with a
lemma concerning a reduction of the general case.

Lemma 2.5. Let p and q be homogeneous smooth functions on T ∗(X)r0, and let t 7→γ(t), for a≤ t≤b,
be a bicharacteristic interval of Re qp such that q(γ(t)) 6= 0 for a ≤ t ≤ b. If

Im qp(γ(a)) < 0< Im qp(γ(b)), (2-5)

then there exists a proper subinterval [a′, b′] ⊂ [a, b], possibly reduced to a point, such that

(i) Im qp(γ(t))= 0 for a′ ≤ t ≤ b′,

(ii) for every ε > 0 there exist a′ − ε < s− < a′ and b′ < s+ < b′ + ε such that Im qp(γ(s−)) < 0 <
Im qp(γ(s+)).

If γ(t) is defined for a ≤ t ≤ b we shall in the sequel say that Im qp changes sign from − to + on
γ if (2-5) holds. If γ|[a′,b′] is the restriction of γ to [a′, b′] and (i) and (ii) hold we shall say that Im qp
strongly changes sign from − to + on γ|[a′,b′].

Proof. It suffices to regard the case that q = 1, X = Rn , p is homogeneous of degree 1 with Re p = ξ1,
and the bicharacteristic of Re p is given by

a ≤ x1 ≤ b, x ′ = (x2, . . . , xn)= 0, ξ = εn. (2-6)

Here εn = (0, . . . , 0, 1) ∈ Rn , and we shall in what follows write ξ 0 in place of ε′n . The proof of this
fact is taken from [Hörmander 1985b, page 97] and is given here for the purpose of reference later, in
particular in connection with Definition 2.11 below.

Choose a pseudodifferential operator Q with principal symbol q . If we let P1=Q P , then the principal
symbol of P1 is p1 = qp so Im p1 changes sign from − to + on the bicharacteristic γ of Re p1. Now
choose Q1 to be of order 1 − degree P1 with positive, homogeneous principal symbol. If p2 is the
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principal symbol of P2=Q1 P1, it follows that Re p1 and Re p2 have the same bicharacteristics, including
orientation, and since p2 is homogeneous of degree 1 these can be considered to be curves on the cosphere
bundle S∗(X). Moreover, Im p1 and Im p2 have the same sign, so Im p2 changes sign from − to + along
γ⊂ S∗(X). If γ is a closed curve on S∗(X)we can pick an arc that is not closed where the sign change still
occurs. If we assume this to be done, then [Hörmander 1985b, Proposition 26.1.6] states that there exists
a C∞ homogeneous canonical transformation χ from an open conic neighborhood of (2-6) to one of γ
such that χ(x1, 0, εn)= γ(x1) and χ∗(Re p2)= ξ1. Since the Hamilton field is symplectically invariant it
follows that the equations of a bicharacteristic are invariant under the action of canonical transformations,
that is, γ̃ is a bicharacteristic of χ∗(Re p2) if and only if χ(γ̃) is a bicharacteristic of Re p2. This proves
the claim.

In accordance with the notation in [Hörmander 1985b, page 97], let (x ′, ξ ′)= (0, ξ 0) and consider

L(0, ξ 0)= inf{t − s : a < s < t < b, Im p(s, 0, εn) < 0< Im p(t, 0, εn)}.

For every small δ > 0 there exist sδ and tδ such that a< sδ < tδ < b, Im p(sδ, 0, εn) < 0< Im p(tδ, 0, εn)

and tδ − sδ < L(0, ξ 0)+ δ. Choose a sequence δ j → 0 such that the limits a′ = lim sδ j and b′ = lim tδ j

exist. Then b′ − a′ = L(0, ξ 0) and in view of (2-5) we have a < a′ ≤ b′ < b by continuity. Moreover,
Im p(t, 0, εn) = 0 for a′ ≤ t ≤ b′. This is clear if a′ = b′. If on the other hand Im p(t, 0, εn) is, say,
strictly positive for some a′ < t < b′, then L(0, ξ 0) ≤ t − sδ j → t − a′ < b′− a′, a contradiction. Thus
(i) holds.

To prove (ii), let ε > 0. After possibly reducing to a subsequence we may assume that the sequences
{sδ j } and {tδ j } given above are monotone increasing and decreasing, respectively. It then follows by (i)
that sδ j < a′ ≤ b′ < tδ j for all j . Since sδ j → a′ and tδ j → b′ we can choose j so that a′− ε < sδ j < a′

and b′ < tδ j < b′ + ε. By construction we have Im p(sδ j , 0, εn) < 0 < Im p(tδ j , 0, εn). This completes
the proof. �

Although it will not be needed here, we note that if [a′, b′] is the interval given by Lemma 2.5 and
a′ < b′, then in addition to (i) and (ii) we also have

(iii) there exists a δ > 0 such that Im qp(γ(s))≤ 0≤ Im qp(γ(t)) for all a′−δ < s< a′ and b′< t < b′+δ.

Indeed, the infimum L(0, ξ 0)= b′− a′ would otherwise satisfy L(0, ξ 0) < δ for every δ in view of (ii),
which is a contradiction when a′ < b′.

We next recall the definition of a one-dimensional bicharacteristic.

Definition 2.6. A one-dimensional bicharacteristic of the pseudodifferential operator with homogeneous
principal symbol p is a C1 map γ : I → T ∗(X)r 0, where I is an interval on R, such that

(i) p(γ(t))= 0 for t ∈ I ,

(ii) 0 6= γ′(t)= c(t)Hp(γ(t)) if t ∈ I

for some continuous function c : I → C.

Let P be an operator of principal type on a C∞ manifold X with principal symbol p, and suppose p
fails to satisfy condition (Ψ ) in X . By (1-5) there is a function q in C∞(T ∗(X)r 0) such that Im qp



432 JENS WITTSTEN

changes sign from − to + on a bicharacteristic γ of Re qp, where q 6= 0. As can be seen in [Hörmander
1985b, pages 96–97], we can then find a compact one-dimensional bicharacteristic interval Γ ⊂ γ or a
characteristic point Γ ∈ γ such that the sign change occurs on bicharacteristics of Re qp arbitrarily close
to Γ . What we mean by this will be clear from the following discussion, although we will not use this
terminology in the sequel. By the proof of Lemma 2.5 it suffices to regard the case that q = 1, X = Rn ,
p is homogeneous of degree 1 with Re p = ξ1, and the bicharacteristic of Re p is given by (2-6).

We shall now study a slightly more general situation is some detail. If γ= I ×{w0}, where I = [a, b],
we shall by |γ| denote the usual arc length in R2n , so that |γ| = b − a. Furthermore, we will assume
that all curves are bicharacteristics of Re p = ξ1, that is, w0 = (x ′, 0, ξ ′) ∈ R2n−1. We owe parts of this
exposition to Nils Dencker.

Lemma 2.7. Assume that Im p strongly changes sign from − to + on γ = [a, b] × {w0}. Then for any
δ > 0 there exist ε > 0, a − δ < s− < a and b < s+ < b + δ such that ± Im p(s±, w) > 0 for any
|w−w0|< ε.

Proof. Since t 7→ Im p(t, w0) strongly changes sign on [a, b] we can find s± satisfying the conditions
so that ± Im p(s±, w0) > 0. By continuity we can find ε± > 0 so that ± Im p(s±, w) > 0 for any
|w−w0|< ε±. The lemma now follows if we take ε =min(ε−, ε+). �

Definition 2.8. Let γ=[a, b]×{w0} and γ j =[a j , b j ]×{w j }. If lim inf j→∞ a j ≥ a, lim sup j→∞ b j ≤ b
and lim j→∞w j = w0, then we shall write γ j 99K γ as j → ∞. If in addition lim j→∞ a j = a and
lim j→∞ b j = b then we shall write γ j → γ as j→∞.

Definition 2.9. If γ is a bicharacteristic of Re p= ξ1 and there exists a sequence {γ j } of bicharacteristics
of Re p such that Im p strongly changes sign from − to + on γ j for all j and γ j 99K γ as j →∞, we
set

L p(γ)= inf
{γ j }
{lim inf

j→∞
|γ j | : γ j 99K γ as j→∞}, (2-7)

where the infimum is taken over all such sequences. We shall write L p(γ) ≥ 0 to signify the existence
of such a sequence {γ j }.

Remark. The definition of L p(γ) corresponds to what is denoted by L0 in [Hörmander 1985b, page 97],
when γ = [a, b]× {w0} is given by (2-6) and

Im p(a, w0) < 0< Im p(b, w0). (2-8)

To prove this claim, we begin by showing that L p(γ) ≤ L0, after having properly defined L0. To this
end, let γ̃ = [ã, b̃] × {w̃} be a bicharacteristic of Re p such that Im p changes sign on γ̃. For w close to
w0 we set

Lp(γ̃, w)= inf{t − s : ã < s < t < b̃, Im p(ã, w) < 0< Im p(b̃, w)}.

(Using the notation in [Hörmander 1985b, page 97] we would have Lp(γ,w) = L(x ′, ξ ′) if w =
(x ′, 0, ξ ′).) Then

L0 = lim inf
w→w0

Lp(γ,w).
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By an adaptation of the arguments in [Hörmander 1985b, page 97] it follows from the definition of L0

that we can find a sequence {γ j } of bicharacteristics of Re p with γ j = [a j , b j ]× {w j } such that

Im p(a j , w j ) < 0< Im p(b j , w j ) for all j,

where limw j = w0 and the limits a0 = lim a j and b0 = lim b j exist, belong to the interval (a, b) and
satisfy b0− a0 = L0. If we for each j apply Lemma 2.5 to γ j we obtain a sequence of bicharacteristics
Γ j ⊂γ j of Re p such that Im p strongly changes sign from− to+ on Γ j , where |Γ j |=Lp(γ j , w j )< |γ j |.
Clearly Γ j 99K γ as j→∞. Since a < a j ≤ b j < b if j is sufficiently large it follows that for such j we
have Lp(γ,w j )≤ Lp(γ j , w j ) by definition. This implies

L0 = lim inf
w→w0

Lp(γ,w)≤ lim inf
j→∞

Lp(γ,w j )

≤ lim inf
j→∞

|Γ j | ≤ lim sup
j→∞

|Γ j | ≤ lim
j→∞
|γ j | = L0, (2-9)

so |Γ j | → L0 as j→∞. Thus L p(γ)≤ L0.
For the reversed inequality, suppose {γ̃ j } is any sequence satisfying the properties of Definition 2.9,

with γ̃ j = [ã j , b̃ j ] × {w̃ j }. By assumption we have Im p(ã j , w̃ j ) = Im p(b̃ j , w̃ j ) = 0 for all j , which
together with (2-8) and a continuity argument implies the existence of a positive integer j0 such that

a < ã j ≤ b̃ j < b for all j ≥ j0.

If γ̃ j,δ = [ã j − δ, b̃ j + δ]× {w̃ j }, this means that for small δ > 0 and sufficiently large j we have

Lp(γ, w̃ j )≤ Lp(γ̃ j,δ, w̃ j ).

Since Im p strongly changes sign from − to + on γ̃ j , the infimum in the right side exists for every δ > 0
and is bounded from above by b̃ j − ã j + 2δ. Taking the limit as δ→ 0 yields Lp(γ, w̃ j ) ≤ |γ̃ j |. Since
w̃ j → w0 as j→∞ the definition of L0 now gives

L0 ≤ lim inf
j→∞

Lp(γ, w̃ j )≤ lim inf
j→∞
|γ̃ j |, (2-10)

and since the sequence {γ̃ j } was arbitrary, we obtain L0 ≤ L p(γ) by Definition 2.9. This proves the
claim.

When no confusion can occur we will omit the dependence on p in Definition 2.9. We note that if
L p(γ) exists, then L p(γ)≤ |γ| by definition. Also, if Im p strongly changes sign from − to + on γ then
Lemma 2.7 implies that the conditions of Definition 2.9 are satisfied. This proves the first part of the
following result.

Corollary 2.10. Let γ = [a, b] × {w0} be a bicharacteristic of Re p = ξ1. If Im p strongly changes sign
from − to + on γ, then 0 ≤ L p(γ) ≤ |γ|. Moreover, for every δ, ε > 0 there exists a bicharacteristic
γ̃ = γ̃δ,ε of Re p with

γ̃ = [ã, b̃]× {w̃}, a− ε < ã ≤ b̃ < b+ ε, |w̃−w0|< ε,

such that Im p strongly changes sign from − to + on γ̃ and |γ̃|< L p(γ)+ δ.
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Proof. The existence of the sequence {Γ j } in the preceding remark can after some adjustments be used
to prove the second part of Corollary 2.10, but we prefer the following direct proof.

Given δ > 0 we can by Definition 2.9 find a sequence γ j = [a j , b j ]×{w j } of bicharacteristics of Re p
such that γ j 99K γ as j →∞, Im p strongly changes sign from − to + on γ j and lim inf j→∞|γ j | <

L(γ) + δ. After reducing to a subsequence we may assume |γ j | < L(γ) + δ for all j . We have
lim inf j→∞ a j ≥ a, so for every ε there exists a j1(ε) such that a j > a − ε for all j ≥ j1. Similarly
there exists a j2(ε) such that b j < b+ε for all j ≥ j2. Also, w j→w0 as j→∞, so there exists a j3(ε)
such that |w j −w0|< ε for all j ≥ j3. Hence we can take γ̃ = γ j0 , where j0 =max( j1, j2, j3). �

Consider now the general case when Im qp changes sign from − to + on a bicharacteristic γ ⊂
T ∗(X)r 0 of Re qp, where q 6= 0, that is, (2-5) holds. In view of the proof of Lemma 2.5 we can by
means of (2-7) define a minimality property of a subset of the curve γ in the following sense.

Definition 2.11. Let I ⊂R be a compact interval possibly reduced to a point and let γ̃ : I→ T ∗(X)r0 be
a characteristic point or a compact one-dimensional bicharacteristic interval of the homogeneous function
p ∈ C∞(T ∗(X)r 0). Suppose that there exists a function q ∈ C∞(T ∗(X)r 0) and a C∞ homogeneous
canonical transformation χ from an open conic neighborhood V of

Γ = {(x1, 0, εn) : x1 ∈ I } ⊂ T ∗(Rn)

to an open conic neighborhood χ(V )⊂ T ∗(X)r 0 of γ̃(I ) such that

(i) χ(x1, 0, εn)= γ̃(x1) and Reχ∗(qp)= ξ1 in V ,

(ii) Lχ∗(qp)(Γ )= |Γ |.

Then we say that γ̃(I ) is a minimal characteristic point or a minimal bicharacteristic interval if |I | = 0
or |I |> 0, respectively.

The definition of the arclength is of course dependent of the choice of Riemannian metric on T ∗(Rn).
However, since we are only using the arclength to compare curves where one is contained within the
other and both are parametrizable through condition (i), the results here and Definition 2.11 in particular
are independent of the chosen metric. By choosing a Riemannian metric on T ∗(X), one could therefore
define the minimality property given by Definition 2.11 through the corresponding arclength in T ∗(X)
directly, although there, the notion of convergence of curves is somewhat trickier. We shall not pursue
this any further.

Note that condition (i) implies that q 6= 0 and Re Hqp 6= 0 on γ̃, and that by definition, a mini-
mal bicharacteristic interval is a compact one-dimensional bicharacteristic interval. Moreover, if Im qp
changes sign from− to+ on a bicharacteristic γ⊂ T ∗(X)r0 of Re qp, where q 6= 0, then we can always
find a minimal characteristic point γ̃ ∈ γ or a minimal bicharacteristic interval γ̃⊂ γ. In view of the proof
of Lemma 2.5, this follows from the conclusion of the extensive remark beginning on page 432 together
with (2-9). The following proposition shows that this continues to hold even when the assumption (2-5)
is relaxed in the sense of Definition 2.9. We will state this result only in the (very weak) generality
needed here.
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Proposition 2.12. Let γ = [a, b] × {w0} be a bicharacteristic of Re p = ξ1, and assume that L(γ) ≥ 0.
Then there exists a minimal characteristic point Γ ∈ γ of p or a minimal bicharacteristic interval Γ ⊂ γ
of p of length L(γ) if L(γ) = 0 or L(γ) > 0, respectively. If Γ = [a0, b0] × {w0} and a0 < b0, that is,
L(γ) > 0, then

Im p(β)(α)(t, w0)= 0 (2-11)

for all α, β with β1 = 0 if a0 ≤ t ≤ b0. Conversely, if γ is a minimal characteristic point or a minimal
bicharacteristic interval then L(γ)= |γ|.

Lemma 2.13. Let γ and γ j for j ≥ 1 be bicharacteristics of Re p = ξ1, and assume that Im p strongly
changes sign from − to + on γ j for each j . If γ j 99K γ as j→∞ then L(γ)≤ lim inf j→∞ L(γ j ).

Proof. Let γ j = [a j , b j ] × {w j } and γ = [a, b] × {w0}. Since Im p strongly changes sign from − to +
on γ j we can by Corollary 2.10 for each j find a bicharacteristic γ̃ j = [ã j , b̃ j ]× {w̃ j } of Re p with

a j − 1/j < ã j ≤ b̃ j < b j + 1/j and |w̃ j −w j |< 1/j,

such that Im p strongly changes sign from − to + on γ̃ j and |γ̃ j | < L(γ j )+ 1/j . Now |w̃ j −w0| ≤

|w̃ j−w j |+|w j−w0|, and since lim inf j→∞ ã j ≥ lim inf j→∞(a j−1/j)≥ a and correspondingly for b̃ j ,
we find that γ̃ j 99K γ as j→∞. Thus

L(γ)≤ lim inf
j→∞

|γ̃ j | ≤ lim inf
j→∞

(L(γ j )+ 1/j). �

Proof of Proposition 2.12. We may without loss of generality assume that w0 = (0, εn) ∈ R2n−1. The
last statement is then an immediate consequence of Definition 2.11. To prove the theorem it then also
suffices to show that we can find a characteristic point Γ ∈ γ of p, or a compact one-dimensional
bicharacteristic interval Γ ⊂ γ of p of length L(γ), with the property that in any neighborhood of Γ
there is a bicharacteristic of Re p where Im p strongly changes sign from − to +. This is done by
adapting the arguments in [Hörmander 1985b, page 97], which also yields (2-11).

For small δ > 0 we can find ε(δ) with 0< ε < δ such that L(γ̃) > L(γ)− δ/2 for any bicharacteristic
γ̃ = [ã, b̃]×{w̃} with a−ε < ã ≤ b̃< b+ε and |w̃−w0|< ε such that Im p strongly changes sign from
− to + on γ̃. Indeed, otherwise there would exist a δ > 0 such that for each (sufficiently large) k we can
find a bicharacteristic γk = [ak, bk]×{wk} with a−1/k < ak ≤ bk < b+1/k and |wk−w0|< 1/k such
that Im p strongly changes sign from − to + on γk and L(γk)≤ L(γ)− δ/2. This implies that γk 99K γ
as k→∞, so by Lemma 2.13 we obtain

L(γ)≤ lim inf
k→∞

L(γk)≤ L(γ)− δ/2,

a contradiction. Since L(γ) ≥ 0 we have by Corollary 2.10 for some |wδ −w0| < ε and a − ε < aδ ≤
bδ < b + ε with wδ = (x ′δ, 0, ξ ′δ) that Im p strongly changes sign from − to + on the bicharacteristic
γδ = [aδ, bδ]× {wδ}, and |γδ|< L(γ)+ δ/4. Thus,

L(γ)− δ/2< |γδ|< L(γ)+ δ/4. (2-12)
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We claim that Im p and all derivatives with respect to x ′ and ξ ′ must vanish at (t, wδ) if aδ+δ < t<bδ−δ.
Indeed, by Lemma 2.7 we can find a ρ > 0, aδ − δ/4< s− < aδ and bδ < s+ < bδ + δ/4 such that

Im p(s−, w) < 0< Im p(s+, w) for all |w−wδ|< ρ.

If Im p and all derivatives with respect to x ′ and ξ ′ do not vanish at (t, wδ) if aδ + δ < t < bδ − δ,
then we can choose w = (x ′, 0, ξ ′) so that |w−wδ| < ρ, |w−w0| < ε and Im p(t, w) 6= 0 for some
aδ + δ < t < bδ − δ. It follows that the required sign change of Im p(x1, w) must occur on one of the
intervals (s−, t) and (t, s+), which are shorter than L(γ)− δ/2. This contradiction proves the claim.

Now choose a sequence δ j→ 0 as j→∞ such that lim aδ j and lim bδ j exist. If we denote these limits
by a0 and b0, respectively, then L(γ) = b0− a0 by (2-12), and (2-11) holds if a0 < b0. In particular, if
a0 < b0 then

Hp(γ(t))= (1+ i∂ Im p(γ(t))/∂ξ1)γ
′(t) for a0 ≤ t ≤ b0,

so if Γ = {(t, w0) : t ∈ [a0, b0]} then Γ is a compact one-dimensional bicharacteristic interval of p with
the function c in Definition 2.6 given by

c(t)= (1+ i∂ Im p(Γ (t))/∂ξ1)
−1. �

Proposition 2.12 allows us to make some additional comments on the implications of Definition 2.11.
With the notation in the definition, we note that condition (ii) implies that there exists a sequence {Γ j }

of bicharacteristics of Reχ∗(qp) on which Imχ∗(qp) strongly changes sign from − to +, such that
Γ j → Γ as j →∞. By our choice of terminology, the sequence {Γ j } may simply be a sequence of
points when L(Γ )= 0. Conversely, if {Γ j } is a point sequence then L(Γ )= 0. Also note that if γ̃(I ) is
minimal, and condition (i) in Definition 2.11 is satisfied for some other choice of maps q ′ and χ ′, then
condition (ii) also holds for q ′ and χ ′; in other words,

Lχ∗(qp)(Γ )= |Γ | = L(χ ′)∗(q ′ p)(Γ ).

This follows by an application of Proposition 2.12 together with [Hörmander 1985b, Lemma 26.4.10].
It is then also clear that γ̃(I ) is a minimal characteristic point or a minimal bicharacteristic interval of
the homogeneous function p ∈C∞(T ∗(X)r0) if and only if Γ (I ) is a minimal characteristic point or a
minimal bicharacteristic interval of χ∗(qp)∈C∞(T ∗(Rn)r0) for any maps q and χ satisfying condition
(i) in Definition 2.11.

The proof of [Hörmander 1985b, Theorem 26.4.7] stating that condition (Ψ ) is necessary for local
solvability relies on the imaginary part of the principal symbol satisfying (2-11). By Proposition 2.12,
it is clear that (2-11) holds on a minimal bicharacteristic interval Γ in the case q = 1 and Re p = ξ1.
However, we shall require that we can find bicharacteristics arbitrarily close to Γ for which the following
stronger result is applicable, at least if Im p does not depend on ξ1 as is the case for the standard normal
form. This will be made precise below.
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Proposition 2.14. Let p = ξ1 + i Im p. Assume that Im p strongly changes sign from − to + on γ =
[a, b]× {w} and that L(γ)≥ |γ|−% for some 0< % < |γ|/2. If Im p does not depend on ξ1 then for any
κ > % we find that Im p vanishes identically in a neighborhood of Iκ ×{w}, where Iκ = [a+ κ, b− κ].

The statement would of course be void if the hypotheses hold only for % ≥ |γ|/2, for then Iκ =∅.

Proof. If the statement is false, there exists a κ > 0 such that Im p 6≡ 0 near Iκ ×{w}. Thus there exists
a sequence (s j , w j ) 99K Iκ × {w} such that Im p(s j , w j ) 6= 0 for all j . Since Im p does not depend
on ξ1 we can choose w j to have ξ1 coordinate equal to zero for all j , so that (s j , w j ) is contained in a
bicharacteristic of Re p. We may choose a subsequence so that for some s ∈ Iκ we have |s j − s| → 0
and |w j −w| → 0 monotonically, and either Im p(s j , w j ) > 0 or − Im p(s j , w j ) > 0 for all j . We shall
consider the case with positive sign, the negative case works similarly.

Choose δ < (κ − %)/3 and use Lemma 2.7. We find that there exists a− δ < s− < a and ε > 0 such
that Im p(s−, v) < 0 for any |v−w|< ε. Choose k > 0 so that |s j−s|< δ and |w j−w|< ε when j > k.
Then t 7→ Im p(t, w j ) changes sign from − to + on I j = [s−, s j ], which has length

|I j | = s j − s− ≤ |s j − s| + s− a+ a− s− < |γ| − κ + 2δ < |γ| − %− δ.

If we for each j apply Lemma 2.5 to I j×{w j } and let j→∞ we obtain a contradiction to the hypothesis
L(γ)≥ |γ| − %. �

One could state Proposition 2.14 without the condition that the imaginary part is independent of ξ1.
The invariant statement would then be that the restriction of the imaginary part to the characteristic set
of the real part vanishes in a neighborhood of γ.

The fact that Proposition 2.14 assumes that Im p strongly changes sign from − to + on γ means that
the conditions are not in general satisfied when γ is a minimal bicharacteristic interval. As mentioned
above, we will instead show that arbitrarily close to a minimal bicharacteristic interval one can always
find bicharacteristics for which Proposition 2.14 is applicable. Before we state the results we introduce
a helpful definition together with some (perhaps contrived but illustrative) examples.

Definition 2.15. A minimal bicharacteristic interval Γ = [a0, b0] × {w0} ⊂ T ∗(Rn)r 0 of the homoge-
neous function p = ξ1+ i Im p of degree 1 is said to be %-minimal if there exists a % ≥ 0 such that Im p
vanishes in a neighborhood of [a0+ κ, b0− κ]× {w0} for any κ > %.

By a 0-minimal bicharacteristic interval Γ we thus mean a minimal bicharacteristic interval such that
the imaginary part vanishes in a neighborhood of any proper closed subset of Γ . Note that this does not
hold for minimal bicharacteristic intervals in general.

Example 2.16. Let f ∈ C∞(R) be given by

f (t)=


−e−1/t2

if t < 0,
0 if 0≤ t ≤ 2,
e−1/(t−2)2 if t > 2

(2-13)
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and let φ ∈ C∞(R) be a smooth cutoff function with suppφ = [0, 2] such that φ > 0 on (0, 2). If
ξ = (ξ1, ξ

′) then
p1(x, ξ)= ξ1+ i |ξ ′|( f (x1)+ x2φ(x1))

is homogeneous of degree 1. If we write x = (x1, x2, x ′′) then for any fixed (x ′′, ξ ′) ∈ Rn−2
× Rn−1

with ξ ′ 6= 0 we find that {(x1, x2, x ′′, 0, ξ ′) : x1 = a, x2 = c} is a minimal characteristic point of p1 if
c ≥ 0 and a = 0 or if c ≤ 0 and a = 2. Note that if ξ ′ 6= 0 then Im p1 changes sign from − to + on the
bicharacteristic γ(x1)= {(x1, 0, x ′′, 0, ξ ′)} of Re p1, but that none of the points {γ(x1) : 0< x1 < 2} are
minimal characteristic points.1 On the other hand, if f is given by (2-13) let

h(x, ξ ′)=


|ξ ′| f (x1− 1)e1/x2 if x2 < 0,
0 if x2 = 0,
|ξ ′| f (x1)e−1/x2 if x2 > 0

be the imaginary part of p2(x, ξ). If Re p2 = ξ1 then p2 is homogeneous of degree 1 and

Γc = {(x1, x2, x ′′, 0, ξ ′) : x2 = c, x1 ∈ Ic}

is a minimal bicharacteristic interval of p2 for any (x ′′, ξ ′)∈Rn−2
×Rn−1 with ξ ′ 6=0 if c≥0 and Ic=[0, 2]

or if c ≤ 0 and Ic = [1, 3]. Moreover, if c≶ 0 then Γc is a 0-minimal bicharacteristic interval. However,
there is no % > 0 such that the minimal bicharacteristic interval Γ = {(x1, 0, x ′′, 0, ξ ′) : 0 ≤ x1 ≤ 2} is
%-minimal. The same holds for the minimal bicharacteristic interval Γ̃ = {(x1, 0, x ′′, 0, ξ ′) : 1≤ x1 ≤ 3}.
Figure 1 shows a cross-section of the characteristic sets of Im p1 and Im p2.

Lemma 2.17. Let p= ξ1+ i Im p, and assume that L(γ) > 0 and that Im p does not depend on ξ1. Then
one can find γ̃ j ⊂ γ j 99K γ such that |γ̃ j | → L(γ), Im p strongly changes sign from − to + on γ j and
Im p vanishes in a neighborhood of γ̃ j .

1If the factor x2 in Im p1 is raised to the power 3 for example, then it turns out that {γ(x1) : 0< x1 < 2} is a one-dimensional
bicharacteristic interval of p1, and not only a bicharacteristic of the real part. It is obviously not minimal though, nor does it
contain any minimal characteristic points.
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Figure 1. Cross-sections of the characteristic sets of Im p1 and Im p2, respectively.
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Note that the conditions imply that γ̃ j 99K γ as j→∞.

Proof. Choose γ j 99K γ when j→∞ as in the proof of Proposition 2.12, so that Im p strongly changes
sign from − to + on γ j and L(γ)= lim j→∞ |γ j |. By Lemma 2.13 and Corollary 2.10 we have

L(γ)≤ lim inf
j→∞

L(γ j )≤ lim inf
j→∞

|γ j | = L(γ).

Thus we can for every ε > 0 choose j so that |L(γ)− |γ j || < ε and |L(γ j )− |γ j || < ε. If we choose
ε < L(γ)/5 then

2ε < (L(γ)− ε)/2< |γ j |/2.

Hence, if γ j = [a j , b j ]×w j then by using Proposition 2.14 on γ j we find that Im p vanishes identically
in a neighborhood of γ̃ j = [a j + 2ε, b j − 2ε]× {w j }. Now choose a sequence εk→ 0 as k→∞. Then
γ̃ j (k) ⊂ γ j (k) and assuming as we may that j (k) > j (k ′) if k > k ′ we obtain |γ̃ j (k)| → L(γ) as k→∞,
which completes the proof. �

If Γ ⊂ γ is a minimal bicharacteristic interval in T ∗(Rn) r 0 of the homogeneous function p =
ξ1 + i Im p of degree 1, where the imaginary part is independent of ξ1, then by Definition 2.11 and
Proposition 2.12 we have 0< |Γ |= L(Γ ). By the proof of Lemma 2.17 there exists a sequence γ j→Γ of
bicharacteristics of Re p such that Im p strongly changes sign from− to+ on γ j and vanishes identically
in a neighborhood of a subinterval γ̃ j ⊂ γ j . Moreover, γ̃ j → Γ as j →∞. By Lemma 2.13 we have
L(γ j )> 0 for sufficiently large j , so according to Proposition 2.12 we can for each such j find a minimal
bicharacteristic interval Γ j ⊂ γ j . We have γ j → Γ as j→∞ and since

|Γ |= L(γ)≤ lim inf
j→∞

L(γ j )= lim inf
j→∞
|Γ j | ≤ lim sup

j→∞
|Γ j | ≤ lim

j→∞
|γ j | = |Γ |,

it follows that Γ j → Γ as j→∞. Since also γ̃ j ⊂ γ j and γ̃ j → Γ as j→∞, the intersection γ̃ j ∩Γ j

must be nonempty for large j . For such j it follows that γ̃ j must be a proper subinterval of Γ j , for if
not, this would contradict the fact that Γ j is a minimal bicharacteristic interval. Hence we can find a
sequence {% j } of positive numbers with % j→ 0 as j→∞, such that Γ j is a % j -minimal bicharacteristic
interval. We have thus proved the following theorem, which concludes our study of the bicharacteristics.

Theorem 2.18. If Γ is a minimal bicharacteristic interval in T ∗(Rn)r 0 of the homogeneous function
p = ξ1+ i Im p of degree 1, where the imaginary part is independent of ξ1, then there exists a sequence
{Γ j } of % j -minimal bicharacteristic intervals of p such that Γ j → Γ and % j → 0 as j→∞.

We can now state our main theorem, which yields necessary conditions for inclusion relations between
the ranges of operators that fail to be microlocally solvable.

Theorem 2.19. Let K ⊂ T ∗(X)r 0 be a compactly based cone. Let P ∈ Ψ k
cl(X) and Q ∈ Ψ k′

cl (X) be
properly supported pseudodifferential operators such that the range of Q is microlocally contained in
the range of P at K , where P is an operator of principal type in a conic neighborhood of K . Let pk be
the homogeneous principal symbol of P , and let I = [a0, b0] ⊂R be a compact interval possibly reduced
to a point. Suppose that K contains a conic neighborhood of γ(I ), where γ : I → T ∗(X)r 0 is either
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(a) a minimal characteristic point of pk , or

(b) a minimal bicharacteristic interval of pk with injective regular projection in S∗(X).

Then there exists a pseudodifferential operator E ∈ Ψ k′−k
cl (X) such that the terms in the asymptotic sum

of the symbol of Q− P E have vanishing Taylor coefficients at γ(I ).

The hypotheses of Theorem 2.19 imply that P is not solvable at the cone K . Indeed, solvability at
K ⊂ T ∗(X)r0 implies solvability at any smaller closed cone, and in view of Definition 2.11 it follows by
[Hörmander 1985b, Theorem 26.4.7′] together with [Hörmander 1985b, Proposition 26.4.4] that P is not
solvable at the cone generated by γ(I ). Conversely, suppose that P is an operator of principal type that is
not microlocally solvable in any neighborhood of a point (x0, ξ0)∈ T ∗(X)r0. Then the principal symbol
pk fails to satisfy condition (1-5) in every neighborhood of (x0, ξ0) by [Dencker 2006, Theorem 1.1].
In view of the alternative version of condition (1-5) given by [Hörmander 1985b, Theorem 26.4.12], it
is then easy to see using [Hörmander 1985a, Theorem 21.3.6] and [Hörmander 1985b, Lemma 26.4.10]
that (x0, ξ0) is a minimal characteristic point of pk , so Theorem 2.19 applies there.

We also mention that if P is of principal type and γ is a minimal bicharacteristic interval of the
principal symbol pk contained in a curve along which pk fails to satisfy condition (1-5), then γ has
injective regular projection in S∗(X) by the proof of [Hörmander 1985b, Theorem 26.4.12].

Remark. As pointed out in the introduction, we cannot hope to obtain a result such as Theorem 2.19
for solvable nonelliptic operators in general. Indeed, Example 2.2 shows that if X ⊂ Rn is open, and
K ⊂ T ∗(X)r 0 is a compactly based cone, then the range of D2 is microlocally contained in the range
of D1 at K . If there were to exist a pseudodifferential operator e(x, D) ∈ Ψ 0

cl(X) such that all the terms
in the symbol of R(x, D)= D2−D1 ◦e(x, D) have vanishing Taylor coefficients at a point (x0, ξ0) ∈ K
contained in a bicharacteristic of the principal symbol σ(D1) = ξ1 of D1, then in particular this would
hold for the principal symbol

σ(R)(x, ξ)= ξ2− ξ1e0(x, ξ),

if e0 denotes the principal symbol of e(x, D). However, taking the ξ2 derivative of the equation above
and evaluating at (x0, ξ0) then immediately yields the contradiction 0 = 1 since (x0, ξ0) belongs to the
hypersurface ξ1 = 0.

In the proof of the theorem we may assume that P and Q are operators of order 1. In fact, the discussion
following Definition 2.1 shows that if the conditions of Theorem 2.19 hold and Q1 ∈ Ψ

k−k′
cl (X) and

Q2 ∈ Ψ
1−k
cl (X) are properly supported, then the range of Q2 Q Q1 ∈ Ψ

1
cl(X) is microlocally contained in

the range of Q2 P ∈Ψ 1
cl(X) at K . If the theorem holds for operators of the same order k then there exists

an operator E ∈Ψ 0
cl(X) such that all the terms in the asymptotic expansion of the symbol of Q Q1− P E

have vanishing Taylor coefficients at γ(I ). If we choose Q1 to be elliptic, then we can find a parametrix
Q−1

1 of Q1 such that

Q− P E Q−1
1 ≡ (Q Q1− P E) ◦ Q−1

1 mod Ψ−∞(X)
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has symbol

σA◦Q−1
1
(x, ξ)∼

∑
∂αξ σA(x, ξ)Dα

x σQ−1
1
(x, ξ)/α! (2-14)

with A= Q Q1− P E . Clearly, all the terms in the asymptotic expansion of the symbol of Q− P E Q−1
1

then have vanishing Taylor coefficients at γ(I ), and E1= E Q−1
1 ∈Ψ

k′−k
cl (X), so the theorem holds with E

replaced by E1. If the theorem holds for operators of order 1 we can choose Q2 elliptic and use the same
argument to show that if all the terms in the asymptotic expansion of the symbol of Q2 Q Q1 − Q2 P E
have vanishing Taylor coefficients at γ(I ), then the same holds for

Q− P E Q−1
1 ≡ Q−1

2 ◦ (Q2 Q Q1− Q2 P E) ◦ Q−1
1 mod Ψ−∞(X),

where Q−1
2 is a parametrix of Q2. Here we use the fact that if γ(I ) is a minimal characteristic point or

a minimal bicharacteristic interval of the principal symbol of P , then this also holds for the principal
symbol of Q2 P by Definition 2.11.

For pseudodifferential operators, the property that all terms in the asymptotic expansion of the total
symbol have vanishing Taylor coefficients is preserved under conjugation with Fourier integral operators
associated with a canonical transformation (see Lemma A.1). Thus we will be able to prove Theorem 2.19
by local arguments and an application of Proposition 2.4.

Let γ : I→T ∗(X)r0, with I =[a0, b0]⊂R, be the map given by Theorem 2.19. By using [Hörmander
1985a, Theorem 21.3.6] or [Hörmander 1985b, Theorem 26.4.13], when γ is a characteristic point or a
one-dimensional bicharacteristic, respectively, we can find a C∞ canonical transformation χ from a conic
neighborhood of Γ ={(x, εn) : x1∈ I, x ′=0} in T ∗(Rn)r0 to a conic neighborhood of γ(I ) in T ∗(X)r0
and a C∞ homogeneous function b of degree 0 with no zero on γ(I ) such that χ(x1, 0, εn)= γ(x1) for
x1 ∈ I and

χ∗(bp1)= ξ1+ i f (x, ξ ′), (2-15)

where f is real-valued, homogeneous of degree 1 and independent of ξ1. Thus, by the hypotheses of
Theorem 2.19 one can in any neighborhood of Γ find an interval in the x1 direction where f changes
sign from − to + for increasing x1. Also, if I is an interval then f vanishes of infinite order on Γ by
(2-11), and by Theorem 2.18 there exists a sequence {Γ j } of % j -minimal bicharacteristics of χ∗(bp1)

such that % j → 0 and Γ j → Γ as j→∞.
The existence of the canonical transformation χ together with Proposition 2.4 implies that we can find

Fourier integral operators A and B such that the range of B Q A is microlocally contained in the range
of B P A at a cone K ′ containing Γ , where the principal symbol of B P A is given by (2-15). In view of
Lemma A.1 we may therefore reduce the proof to the case that P, Q ∈Ψ 1

cl(R
n) and the principal symbol

p of P is given by (2-15). In accordance with the notation in Proposition 2.4 we will assume that the
range of Q is microlocally contained in the range of P at a cone K containing Γ , thus renaming K ′

to K . If

σQ = q1+ q0+ · · ·
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is the asymptotic sum of homogeneous terms of the symbol of Q, we can then use the Malgrange
preparation theorem (see [Hörmander 1983a, Theorem 7.5.6]) to find e0, r1 ∈ C∞ near Γ such that

q1(x, ξ)= (ξ1+ i f (x, ξ ′))e0(x, ξ)+ r1(x, ξ ′),

where r1 is independent of ξ1. Restricting to |ξ | = 1 and extending by homogeneity we can make e0 and
r1 homogeneous of degree 0 and 1, respectively. The term of degree 1 in the symbol of Q− P ◦e0(x, D)
is r1(x, ξ ′). Again, by Malgrange’s preparation theorem we can find e−1, r0 ∈ C∞ near Γ such that

q0(x, ξ)− σ0(P ◦ e0(x, D))(x, ξ)= (ξ1+ i f (x, ξ ′))e−1(x, ξ)+ r0(x, ξ ′),

where e−1 and r0 are homogeneous of degree −1 and 0, respectively, and r0 is independent of ξ1. The
term of degree 0 in the symbol of

Q− P ◦ e0(x, D)− P ◦ e−1(x, D)

is r0(x, ξ ′). Repetition of the argument allows us to write

Q = P ◦ E + R(x, Dx ′) (2-16)

where σR(x, ξ ′)= r1(x, ξ ′)+r0(x, ξ ′)+· · · is an asymptotic sum of homogeneous terms, all independent
of ξ1. Thus R(x, Dx ′) is a pseudodifferential operator in the n − 1 variables x ′ depending on x1 as a
parameter. Furthermore, the range of R(x, Dx ′) is microlocally contained in the range of P at K . Indeed,
suppose N is the integer given by Definition 2.1. If g ∈ H loc

(N )(R
n), then Rg = P Eg− Qg = Pv− Qg

for some v ∈ D′(Rn), and there exists a u ∈ D′(Rn) such that

K ∩WF(Qg− Pu)=∅.

Hence, WF(P(v− u)− Rg) does not meet K , so the range of R is microlocally contained in the range
of P at K . We claim that under the assumptions of Theorem 2.19, this implies that all terms in the
asymptotic sum of the symbol of the operator R(x, Dx ′) in (2-16) have vanishing Taylor coefficients
at Γ , thus proving Theorem 2.19. The proof of this claim will be based on the two theorems stated
below. As we have seen, the principal symbol p of P may be assumed to have the normal form given
by (2-15). By means of Theorem 2.20 below, we shall also use the fact that an even simpler normal
form exists near a point where p = 0 and {Re p, Im p} 6= 0. To prove these two theorems, we will use
techniques that actually require the lower order terms of P to be independent of ξ1 near Γ . However,
we claim that this may always be assumed. In fact, Malgrange’s preparation theorem implies that

p0(x, ξ)= a(x, ξ)(ξ1+ i f (x, ξ ′))+ b(x, ξ ′)

where a is homogeneous of degree −1 and b homogeneous of degree 0, as demonstrated in the con-
struction of the operators E and R above. The term of degree 0 in the symbol of (I − a(x, D))P is
equal to b(x, ξ ′). Repetition of the argument implies that there exists a classical operator ã(x, D) of
order −1 such that (I − ã(x, D))P has principal symbol ξ1 + i f (x, ξ ′) and all lower order terms are
independent of ξ1. The microlocal property of pseudodifferential operators immediately implies that the
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range of (I − ã(x, D))Q is microlocally contained in the range of (I − ã(x, D))P at K . Hence, if there
are operators E and R with

R = (I − ã(x, D))Q− (I − ã(x, D))P E

such that all terms in the asymptotic expansion of the symbol of R have vanishing Taylor coefficients
at Γ , then this also holds for the symbol of Q− P E ≡ (I − ã(x, D))−1 R mod Ψ−∞, since this property
is preserved under composition with elliptic pseudodifferential operators by (2-14).

Theorem 2.20. Suppose that in a conic neighborhood Ω of

Γ ′ = {(0, εn)} ⊂ T ∗(Rn)r 0

P has the form P = D1+ i x1 Dn and the symbol of R(x, Dx ′) is given by the asymptotic sum

σR =

∞∑
j=0

r1− j (x, ξ ′),

with r1− j homogeneous of degree 1− j and independent of ξ1. If there exists a compactly based cone
K ⊂ T ∗(Rn)r0 containingΩ such that the range of R is microlocally contained in the range of P at K ,
then all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients at Γ ′.

Theorem 2.21. Suppose that in a conic neighborhood Ω of

Γ ′ = {(x1, x ′, 0, ξ ′) : a ≤ x1 ≤ b} ⊂ T ∗(Rn)r 0

the principal symbol of P has the form

p(x, ξ)= ξ1+ i f (x, ξ ′),

where f is real-valued and homogeneous of degree 1, and suppose that if b>a then f vanishes of infinite
order on Γ ′ and there exists a % ≥ 0 such that for any ε > % one can find a neighborhood of

Γ ′ε = {(x1, x ′, 0, ξ ′) : a+ ε ≤ x1 ≤ b− ε}, (2-17)

where f vanishes identically. Suppose also that

f (x, ξ ′)= 0 implies ∂ f (x, ξ ′)/∂x1 ≤ 0 (2-18)

in Ω and that in any neighborhood of Γ ′ one can find an interval in the x1 direction where f changes
sign from − to + for increasing x1. Furthermore, suppose that in Ω the symbol of R(x, Dx ′) is given by
the asymptotic sum

σR =

∞∑
j=0

r1− j (x, ξ ′)

with r1− j homogeneous of degree 1− j and independent of ξ1. If the lower order terms p0, p−1, . . . in
the symbol of P are independent of ξ1 near Γ ′, and there exists a compactly based cone K ⊂ T ∗(Rn)r0
containing Ω such that the range of R is microlocally contained in the range of P at K , then all the
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terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients on Γ ′% if a < b, and at
Γ ′ if a = b.

Assuming these results for the moment, we can now show how Theorem 2.19 follows.

End of proof of Theorem 2.19. Recall that

Γ = {(x1, 0, εn) : a0 ≤ x1 ≤ b0} ⊂ T ∗(Rn)r 0.

By what we have shown, it suffices to regard the case Q = P E + R, where we may assume that the
conditions of Theorem 2.21 are all satisfied in a conic neighborhoodΩ of Γ , with the exception of (2-18)
and the condition concerning the existence of a neighborhood of (2-17) in which f vanishes identically
when a0 < b0. We consider three cases.

(i) Γ is an interval. We then claim that condition (2-18) imposes no restriction. Indeed, if there is no
neighborhood of Γ in which (2-18) holds, then there exists a sequence {γ j } = {(t j , x ′j , 0, ξ ′j )} such that
a0 ≤ lim inf t j ≤ lim sup t j ≤ b0, (x ′j , ξ

′

j )→ (0, ξ 0) ∈ R2n−2,

f (t j , x ′j , ξ
′

j )= 0 and ∂ f (t j , x ′j , ξ
′

j )/∂x1 > 0 (2-19)

for each j . By (2-19) we can choose a sequence 0< δ j → 0 such that

f (t j − δ j , x ′j , ξ
′

j ) < 0< f (t j + δ j , x ′j , ξ
′

j ).

In view of Definition 2.9 we must therefore have L(Γ )=0. Since Γ is minimal, this implies that |Γ |=0,
so γ j→Γ . Thus, if there is no neighborhood of Γ in which (2-18) holds, then Γ is a point, and we will
in this case use the existence of the sequence {γ j } satisfying (2-19) to reduce the proof of Theorem 2.19
to Theorem 2.20, as demonstrated in case (iii) below. In the present case however, Γ is assumed to be
an interval, so there exists a neighborhood U of Γ in which (2-18) holds. We may assume that U ⊂Ω

and since f is homogeneous of degree 1 we may also assume that U is conic.
By Theorem 2.18, there exists a sequence {Γ j } of % j -minimal bicharacteristic intervals such that

% j → 0 and Γ j → Γ as j→∞. For sufficiently large j we have Γ j ⊂U. Hence, if

Γ j = {(x1, x ′j , 0, ξ ′j ) : a j ≤ x1 ≤ b j }

then all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients on

Γ% j = {(x1, x ′j , 0, ξ ′j ) : a j + % j ≤ x1 ≤ b j − % j }

by Theorem 2.21. Since Γ% j → Γ as j →∞, and all the terms in the asymptotic sum of the symbol
of R are smooth functions, it follows that all the terms in the asymptotic sum of the symbol of R have
vanishing Taylor coefficients on Γ . This proves Theorem 2.19 in this case.

(ii) Γ is a point and condition (2-18) holds. Then all the terms in the asymptotic sum of the symbol of
R have vanishing Taylor coefficients on Γ by Theorem 2.21, so Theorem 2.19 follows.

(iii) Γ is a point and (2-18) is false. Let {γ j } be the sequence satisfying (2-19). Then {Re p, Im p}(γ j )>0
and p(γ j )= 0 for each j since γ j = (t j , x ′j , 0, ξ ′j ). For fixed j we may assume that γ j = (0, η) and use



MICROLOCAL PROPERTIES OF THE RANGE OF A PRINCIPAL PSEUDODIFFERENTIAL OPERATOR 445

[Hörmander 1985a, Theorem 21.3.3] to find a canonical transformation χ together with Fourier integral
operators A, B, A1 and B1 as in Proposition 2.4 such that χ(0, εn) = γ j , and B P A = D1+ i x1 Dn in a
conic neighborhood Ω of {(0, εn)}. Repetition of the arguments above allows us to write

B Q A = B P AE + R(x, Dx ′), (2-20)

where the range of R is microlocally contained in the range of B P A at some compactly based cone K ′

containing Ω with χ(K ′) = K . As before, E and R have classical symbols. Then all the terms in the
asymptotic expansion of the symbol of R have vanishing Taylor coefficients at {(0, εn)} by Theorem 2.20,
and therefore all the terms in the asymptotic expansion of the symbol of A1 RB1 have vanishing Taylor
coefficients at γ j by Lemma A.1 in the appendix. Since the Fourier integral operators are chosen so that

K ∩WF(A1 B− I )=∅ and K ∩WF(AB1− I )=∅,

we have

∅= K ∩WF(A1 B Q AB1− A1 B P AE B1− A1 RB1)= K ∩WF(Q− P AE B1− A1 RB1)

in view of (2-20). Hence, all the terms in the asymptotic expansion of the symbol of

Q− P E1 = A1 RB1+ S, where WF(S)∩ K =∅, (2-21)

have vanishing Taylor coefficients at γ j if E1 = AE B1. (Strictly speaking, the change of base variables
γ j 7→ (0, η) should be represented in (2-21) by conjugation of a linear transformation κ : Rn

→ Rn , but
this could be integrated in the Fourier integral operators A1 and B1 so it has been left out since it will
not affect the arguments below.) It is clear that E1 ∈ Ψ

0
cl(R

n).
We have now shown that for each j there exists an operator E j ∈Ψ

0
cl(R

n) such that all the terms in the
asymptotic expansion of the symbol of Q− P E j have vanishing Taylor coefficients at γ j . To construct
the operator E in Theorem 2.19, we do the following. For each j , denote the symbol of E j by

e j (x, ξ)∼
∞∑

l=0

e j
−l(x, ξ)

where e j
0(x, ξ) is the principal part, and e j

−l(x, ξ) is homogeneous of degree −l. If q is the principal
symbol of Q, then by Proposition A.3 there exists a function e0 ∈ C∞(T ∗(Rn)r 0), homogeneous of
degree 0, such that q − pe0 has vanishing Taylor coefficients at Γ .

This argument can be repeated for lower order terms. Indeed, if σQ = q + q0+ · · · , then the term of
degree 0 in σQ−P E j is

σ0(Q− P E j )= q̃ j − pe j
−1,

where (see (2-25) below)

q̃ j (x, ξ)= q0(x, ξ)− p0(x, ξ)e
j
0(x, ξ)−

∑
k

∂ξk p(x, ξ)Dxk e j
0(x, ξ).



446 JENS WITTSTEN

We can write
p(x, ξ)e j

−1(x, ξ)= p(x, ξ/|ξ |)e j
−1(x, ξ/|ξ |),

so that q̃ j (x, ξ), p(x, ξ/|ξ |) and e j
−1(x, ξ/|ξ |) are all homogeneous of degree 0. Since

∂αx ∂
β
ξ e0(Γ )= lim

j→∞
∂αx ∂

β
ξ e j

0(γ j )

it follows by Proposition A.3 that there is a function g ∈ C∞(T ∗(Rn)r 0), homogeneous of degree 0,
such that

q0(x, ξ)− p0(x, ξ)e0(x, ξ)−
∑

k

∂ξk p(x, ξ)Dxk e0(x, ξ)− p(x, ξ/|ξ |)g(x, ξ)

has vanishing Taylor coefficients at Γ . Putting e−1(x, ξ)= |ξ |−1g(x, ξ) we find that

∂αx ∂
β
ξ e−1(Γ )= lim

j→∞
∂αx ∂

β
ξ e j
−1(γ j ),

and that
σ0(Q− P ◦ e0(x, D)− P ◦ e−1(x, D))

has vanishing Taylor coefficients at Γ . Continuing this way we successively obtain functions em(x, ξ) ∈
C∞(T ∗(Rn)r 0), homogeneous of degree m for m ≤ 0, such that

σQ −

( M∑
m=0

e−m

)
σP mod S−M

cl

has vanishing Taylor coefficients at Γ . If we let E have symbol

σE(x, ξ)∼
∞∑

m=0

(1−φ(ξ))e−m(x, ξ)

with φ ∈ C∞0 equal to 1 for ξ close to 0, then E ∈ Ψ 0
cl(R

n) and all terms in the asymptotic expansion of
the symbol of Q− P E have vanishing Taylor coefficients at Γ . We have proved Theorem 2.19. �

Remark. Instead of reducing to the study of the normal form P = Dx1+ i x1 Dxn when condition (2-18)
does not hold, as in case (iii) above, one could show that the terms in the asymptotic expansion of
the operator R given by (2-16) has vanishing Taylor coefficients at every point in the sequence {γ j }

satisfying (2-19) using techniques very similar to those used to prove Theorem 2.21. Theorem 2.19
would then follow by continuity, but the proof of the analogue of Theorem 2.20 would be more involved.
In particular, we would have to construct a phase function w solving the eikonal equation

∂w/∂x1− i f (x, ∂w/∂x ′)= 0

approximately instead of explicitly (confer the proofs of Theorems 2.21 and 2.20, respectively). For
fixed j this could be accomplished by adapting the approach in [Hörmander 1963; Hörmander 1966]
(for a brief discussion, see [Hörmander 1981, p. 83]), where one has f = 0 and ∂ f/∂x1 > 0 at (0, ξ 0)

instead of at γ j .
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We shall now show how our results relate to the ones referred to in the introduction, beginning
with (1-3). There, it sufficed to have the coefficients of P and Q in C∞ and C1, respectively. However,
in order for Theorem 2.19 to qualify, we must require both P and Q to have smooth coefficients. On the
other hand, we shall only require the equation Pu = Q f to be microlocally solvable (at an appropriate
cone K ) as given by Definition 2.1. Note that if P is a first order differential operator on an open set
Ω ⊂ Rn , such that the principal symbol p of P satisfies condition (1-4) at a point (x, ξ) ∈ T ∗(Ω)r 0,
then either {Re p, Im p} > 0 at (x, ξ), or {Re p, Im p} > 0 at (x,−ξ). (The order of the operator is not
important; the statement is still true for a differential operator of order m, since the Poisson bracket is
then homogeneous of order 2m − 1.) Assuming the former, this implies that (x, ξ) satisfies condition
(a) in Theorem 2.19 by an application of [Hörmander 1985a, Theorem 21.3.3] and Lemma 2.7. In order
to keep the formulation of the following result as simple as possible, we will assume that there exists a
compactly based cone K ⊂ T ∗(Ω)r0 with nonempty interior such that K contains the appropriate point
(x,±ξ), and such that the equation Pu = Q f is microlocally solvable at K . This is clearly the case if
the equation Pu = Q f is locally solvable in Ω in the weak sense suggested by (1-1).

Corollary 2.22. Let Ω ⊂ Rn be open, and let P(x, D) and Q(x, D) be two first order differential
operators with coefficients in C∞(Ω). Let p be the principal symbol of P , and let x0 be a point in Ω
such that

p(x0, ξ0)= 0 and {Re p, Im p}(x0, ξ0) > 0 (2-22)

for some ξ0 ∈Rn . If K ⊂ T ∗(Ω)r0 is a compactly based cone containing (x0, ξ0) such that the range of
Q is microlocally contained in the range of P at K , then there exists a constant µ such that (at the fixed
point x0)

Q∗(x0, D)= µP∗(x0, D), (2-23)

where Q∗ and P∗ are the adjoints of Q and P.

Proof. By (2-22), P ∈ Ψ 1
cl(Ω) is an operator of principal type microlocally near (x0, ξ0). P and Q

therefore satisfy the hypotheses of Theorem 2.19, and in view of the discussion above regarding the
point (x, ξ) we find that there exists an operator E ∈ Ψ 0

cl(Ω) such that all the terms in the asymptotic
expansion of the symbol of Q − P E have vanishing Taylor coefficients at (x0, ξ0). By the discussion
following (3-7) on page 452 below, it follows that the same must hold for the adjoint Q∗− E∗P∗. If we
let Q∗ and P∗ have symbols σQ∗(x, ξ)= q1(x, ξ)+q0(x) and σP∗(x, ξ)= p1(x, ξ)+ p0(x), then E∗P∗

has principal symbol e0 p1 if σE∗ = e0+ e−1+ . . . denotes the symbol of E∗. Hence

∂q1(x0, ξ0)/∂ξk = e0(x0, ξ0)∂p1(x0, ξ0)/∂ξk for 1≤ k ≤ n

and p1(x0, ξ0)= p(x0, ξ0)= 0. Since q1 and p1 are polynomials in ξ of degree 1, this means that at the
fixed point x0 we have q1(x0, ξ)= µp1(x0, ξ) for ξ ∈ Rn , where the constant µ is given by the value of
e0 at (x0, ξ0). Moreover,

0= ∂ξ j ∂ξk q1(x0, ξ0)= ∂ξ j e0(x0, ξ0)∂ξk p1(x0, ξ0)+ ∂ξk e0(x0, ξ0)∂ξ j p1(x0, ξ0). (2-24)
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By assumption, the coefficients of p(x, D) do not vanish simultaneously, so the same is true for p1(x, D).
Hence ∂ξ j p1(x0, ξ0) 6= 0 for some j . Assuming this holds for j = 1, we find by choosing j = k = 1 in
(2-24) that ∂ξ1e0(x0, ξ0)= 0. But this immediately yields

∂ξk e0(x0, ξ0)=−∂ξ1e0(x0, ξ0)∂ξk p1(x0, ξ0)/∂ξ1 p1(x0, ξ0)= 0

for 2≤ k ≤ n. Now

σE∗P∗(x, ξ)∼
∑ 1

α!
∂αξ σE∗ Dα

x (p1(x, ξ)+ p0(x)),

and since we have a bilinear map

Sm′
cl /S−∞× Sm′′

cl /S−∞ 3 (a, b) 7→ a # b ∈ Sm′+m′′
cl /S−∞

with
(a # b)(x, ξ)∼

∑ 1
α!
∂αξ a(x, ξ) Dα

x b(x, ξ),

we find that the term of order 0 in the symbol of E∗P∗ is

σ0(E∗P∗)(x, ξ)= e−1(x, ξ)p1(x, ξ)+ e0(x, ξ)p0(x)+
n∑

k=1

∂ξk e0(x, ξ) Dk p1(x, ξ). (2-25)

Since ∂ξk e0 and p1 vanish at (x0, ξ0) we find that q0(x0)=µp0(x0) at the fixed point x0, which completes
the proof. �

Having proved this result, we immediately obtain the following after making the obvious adjustments to
[Hörmander 1963, Theorem 6.2.2]. The fact that we require higher regularity on the coefficients of Q
then yields higher regularity on the propertionality factor. Since the proof remains the same, it is omitted.

Corollary 2.23. Let Ω ⊂ Rn be open, and let P(x, D) and Q(x, D) be two first order differential oper-
ators with coefficients in C∞(Ω). Let p be the principal symbol of P , and assume that the coefficients of
p(x, D) do not vanish simultaneously in Ω . If for a dense set of points x in Ω one can find ξ ∈ Rn such
that (2-22) is fulfilled, and if for each (x, ξ) there is a compactly based cone K ⊂ T ∗(Ω)r 0 containing
(x, ξ) such that the range of Q is microlocally contained in the range of P at K , then there exists a
function e ∈ C∞(Ω) such that

Q(x, D)u ≡ P(x, D)(eu). (2-26)

In stating Corollary 2.23 we could replace the assumption that the coefficients of p(x, D) do not
vanish simultaneously in Ω with the condition that P is of principal type. Indeed, if dp 6= 0 then by a
canonical transformation we find that condition (1-6) holds. Since p 6= 0 implies ∂ξ p 6= 0 by the Euler
homogeneity equation we then have ∂ξ p 6= 0 everywhere, that is, the coefficients of p(x, D) do not
vanish simultaneously in Ω . The converse is obvious.

As shown in Example 2.25 below, we also recover the result for higher order differential operators
mentioned in the introduction as a special case of the following corollary to Theorem 2.19, although we
again need to assume higher regularity in order to apply our results.
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Proposition 2.24. Let X be a smooth manifold, and let P ∈ Ψ k
cl(X) and Q ∈ Ψ k′

cl (X) be properly sup-
ported such that the range of Q ◦ P is microlocally contained in the range of P at a compactly based
cone K ⊂ T ∗(X)r 0. Let p and q be the principal symbols of P and Q, respectively, and assume that
P is of principal type microlocally near K . If γ : I → T ∗(X)r 0 is a minimal characteristic point or a
minimal bicharacteristic interval of p contained in K then it follows that

H m
p (q)= 0 for all (x, ξ) ∈ γ(I ) and m ≥ 1.

Here H m
p (q) is defined recursively by Hp(q)= {p, q} and H m

p (q)= {p, H m−1
p (q)} for m ≥ 2.

Proof. First note that if the range of Q ∈ Ψ k′
cl (X) is microlocally contained in the range of P ∈ Ψ k

cl(X)
at K and both operators are properly supported, then it follows that the range of Q ◦ P is microlocally
contained in the range of P at K . (The converse is not true in general.) Indeed, let N be the integer
given by Definition 2.1, and let f ∈ H loc

(N+k)(X). Since P : H loc
(N+k)(X)→ H loc

(N )(X) is continuous, we
have g = P f ∈ H loc

(N )(X). Thus, there exists a u ∈ D′(X) such that

∅= K ∩WF(Qg− Pu)= K ∩WF(Q P f − Pu),

so the conditions of Definition 2.1 are satisfied with N replaced with N + k.
Let (x, ξ) ∈ γ(I ). The range of P Q is easily seen to be microlocally contained in the range of P

for any properly supported pseudodifferential operator Q. The assumptions of the proposition therefore
imply that the range of the commutator

R1 = P ◦ Q− Q ◦ P ∈ Ψ k+k′−1
cl (X) (2-27)

is microlocally contained in the range of P at K . Hence, by Theorem 2.19 there exists an operator
E ∈ Ψ k′−1

cl (X) such that, in particular, the principal symbol of R1 − P E vanishes at (x, ξ). If e is
the principal symbol of E , homogeneous of degree k ′ − 1, then the principal symbol of P E satisfies
p(x, ξ)e(x, ξ)= 0 since p ◦ γ = 0. Since the principal symbol of R1 is

σk+k′−1(R1)=
1
i
{p, q},

the result follows for m = 1.
Let Rm be defined recursively by Rm = [P, Rm−1] for m ≥ 2 with R1 given by (2-27). Arguing by

induction, we conclude in view of the first paragraph of the proof that the range of Rm is microlocally
contained in the range of P at K for m= 1, 2 . . . since this holds for R1. Assuming the proposition holds
for some m ≥ 1, we can repeat the arguments above to show that the principal symbol of Rm+1 must
vanish at (x, ξ). Since the principal symbol of Rm+1 equals −i{p, H m

p (q)}, this completes the proof. �

Example 2.25. Let Ω ⊂ Rn be open, P(x, D) be a differential operator of order m with coefficients in
C∞(Ω), and let µ be a function in C∞(Ω) such that the equation

P(x, D)u = µP(x, D) f
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has a solution u ∈ D′(Ω) for every f ∈ C∞0 (Ω). If p is the principal symbol of P then it follows that

n∑
j=1

∂ξ j p(x, ξ)Dx jµ(x)= 0 (2-28)

for all x ∈Ω and ξ ∈ Rn such that

{p, p̄}(x, ξ) 6= 0 and p(x, ξ)= 0. (2-29)

Indeed, if (x, ξ) satisfies (2-29) then we may assume that

{Re p, Im p}(x, ξ)=− 1
2i
{p, p̄}(x, ξ) > 0

since otherwise we just regard (x,−ξ) instead, as per the remarks preceding Corollary 2.22. By the same
discussion it is also clear that (x, ξ) is a minimal characteristic point of p. Now the conditions above
imply that there exists a compactly based cone K ⊂ T ∗(Ω)r 0 containing (x, ξ) such that the range of
µP is microlocally contained in the range of P at K . By condition (2-29), P is of principal type near
(x, ξ), so Proposition 2.24 implies that {p, µ} = 0 at (x, ξ), that is,

n∑
j=1

∂ξ j p(x, ξ)∂x jµ(x)− ∂x j p(x, ξ)∂ξ jµ(x)= 0.

Since µ is independent of ξ we find that (2-28) holds at (x, ξ). By homogeneity it then also holds at
(x,−ξ).

3. Proof of Theorem 2.20

Throughout this section we assume that the hypotheses of Theorem 2.20 hold. We shall prove the theorem
by using Lemma 2.3 on approximate solutions of the equation P∗v= 0 concentrated near Γ ′= {(0, εn)}.
We take as starting point the construction on [Hörmander 1985b, page 103], but some modifications need
to be made in particular to the amplitude function φ, so the results there concerning the estimates for the
right side of (2-1) cannot be used immediately. To obtain the desired estimates we will instead have to
use [Hörmander 1985b, Lemma 26.4.15]. Set

vτ (x)= φ(x)eiτw(x), (3-1)

where

w(x)= xn + i(x2
1 + x2

2 + · · ·+ x2
n−1+ (xn + i x2

1/2)
2)/2

satisfies P∗w=0 and φ ∈C∞0 (R
n). By the Cauchy–Kovalevsky theorem we can solve D1φ−i x1 Dnφ=0

in a neighborhood of 0 for any analytic initial data φ(0, x ′) = f (x ′) ∈ Cω(Rn−1); in particular we are
free to specify the Taylor coefficients of f (x ′) at x ′ = 0. We take φ to be such a solution. If need be
we can reduce the support of φ by multiplying by a smooth cutoff function χ , where χ is equal to 1 in
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some smaller neighborhood of 0 so that χφ solves the equation there. We assume this to be done and
note that if suppφ is small enough then

Imw(x)≥ |x |2/4 for x ∈ suppφ. (3-2)

Since

d Rew(x)=−x1xndx1+ (1− x2
1/2)dxn,

we may similarly assume that d Rew(x) 6= 0 in the support of φ. We then have the following result.

Lemma 3.1. Suppose P = D1+ i x1 Dn and let vτ be defined by (3-1). Then φ and w can be chosen so
that for any f ∈Cω(Rn−1) and any positive integers k and m we have φ(0, x ′)= f (x ′) in a neighborhood
of (0, 0), τ k

‖P∗vτ‖(m)→ 0 as τ →∞, and

‖vτ‖(−m) ≤ Cmτ
−m . (3-3)

If Γ̃ is the cone generated by

{(x, w′(x)) : x ∈ suppφ, Imw(x)= 0},

then τ kvτ→ 0 in D′Γ̃ as τ→∞; hence τ k Avτ→ 0 in C∞(Rn) if A is a pseudodifferential operator with
WF(A)∩ Γ̃ =∅.

Here D′Γ̃ (X) = {u ∈ D′(X) : WF(u) ⊂ Γ̃ }, equipped with the topology given by all the seminorms on
D′(X) for the weak topology, together with all seminorms of the form

Pφ,V,N (u)= sup
ξ∈V
|φ̂u(ξ)|(1+ |ξ |)N

where N ≥ 0, φ ∈ C∞0 (X), and V ⊂ Rn is a closed cone with (suppφ × V ) ∩ Γ̃ = ∅. Note that
u j→ u in D′Γ̃ (X) is equivalent to u j→ u in D′(X) and Au j→ Au in C∞ for every properly supported
pseudodifferential operator A with Γ̃ ∩ WF(A) = ∅; see the remark following [Hörmander 1985a,
Theorem 18.1.28].

Proof. We observe that τ k P∗vτ = τ k(P∗φ)eiτw
→ 0 in C∞0 (R

n) for any k as τ →∞, if w and φ are
chosen in the way given above. Hence τ k

‖P∗vτ‖(m)→ 0 for any positive integers k and m. In view of
(3-2) and the fact that d Rew 6= 0 in the support of φ we can apply [Hörmander 1985b, Lemma 26.4.15]
to vτ . This immediately yields (3-3) and also that τ kvτ → 0 in D′

Γ̃
as τ →∞, proving the lemma. �

We are now ready to proceed with a tool that will be instrumental in proving Theorem 2.21. The idea
is based on techniques found in [Hörmander 1963].

Let R be the operator given by Theorem 2.20. By assumption there exists a compactly based cone
K ⊂ T ∗(Rn)r 0 such that the range of R is microlocally contained in the range of P at K . If N is the
integer given by Definition 2.1, let H(x) ∈ C∞0 (R

n) and set

hτ (x)= τ−N H(τ x). (3-4)
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Since ĥτ (ξ) = τ−N−n Ĥ(ξ/τ) it is clear that for τ ≥ 1 we have hτ ∈ H(N )(Rn) and ‖hτ‖(N ) ≤ Cτ−n/2.
In particular, ‖hτ‖(N ) ≤ C for τ ≥ 1, where the constant depends on H but not on τ . Now denote by Iτ
the integral

Iτ = τ n
∫

H(τ x)R∗vτ (x) dx = τ N+n(R∗vτ , hτ ), (3-5)

where R∗ is the adjoint of R. For any κ we then have by the second equality and Lemma 2.3 that

|Iτ | ≤ τ N+n
‖hτ‖(N )‖R∗vτ‖(−N ) ≤ Cκτ N+n(‖P∗vτ‖(ν)+‖vτ‖(−N−κ−n)+‖Avτ‖(0))

for some positive integer ν and properly supported pseudodifferential operator A with WF(A)∩K =∅.
By Lemma 3.1 this implies

|Iτ | ≤ Cκτ−κ (3-6)

for any positive integer κ if τ is sufficiently large.
Recall that R(x, Dx ′) is a pseudodifferential operator in x ′ depending on x1 as a parameter. Its symbol

is given by the asymptotic sum

σR(x, ξ ′)= r1(x, ξ ′)+ r0(x, ξ ′)+ · · · ,

where r− j (x, ξ ′) is homogeneous of degree − j in ξ ′. The symbol of R∗ has the asymptotic expansion

σR∗ =
∑

∂αξ Dα
x σR(x, ξ ′)/α!,

which shows that R∗ is also a pseudodifferential operator in x ′ depending on x1 as a parameter. If we
sort the terms above with respect to homogeneity we can write

σR∗ = q1(x, ξ ′)+ q0(x, ξ ′)+ · · · , (3-7)

where q− j is homogeneous of order − j , q1(x, ξ ′)= r1(x, ξ ′) and

q0(x, ξ ′)= r0(x, ξ ′)+
n∑

k=2

∂ξk Dxk r1(x, ξ ′).

A moment’s reflection shows that if all the terms in (3-7) have vanishing Taylor coefficients at some
point (x, ξ ′), then the same must hold for σR .

Our goal is to show that if q(β)
− j (α)(0, ξ

0) does not vanish for all j ≥−1 and all α, β ∈ Nn , then (3-6)
cannot hold. For this purpose, we introduce a total well-ordering >t on the Taylor coefficients by means
of an ordering of the indices ( j, α, β) as follows.

Definition 3.2. Let αi , βi ∈ Nn and ji ≥−1 for i = 1, 2. We say that

q(β1)

− j1 (α1)
(0, ξ 0) >t q(β2)

− j2 (α2)
(0, ξ 0) if j1+ |α1| + |β1|> j2+ |α2| + |β2|.

To “break ties”, we say that if j1+ |α1| + |β1| = j2+ |α2| + |β2|, then

q(β1)

− j1 (α1)
(0, ξ 0) >t q(β2)

− j2 (α2)
(0, ξ 0) if |β2|> |β1|.
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Note the reversed order. If also |β1| = |β2|, then we use a monomial ordering on the β index to break
ties. Recall that this is any relation > on Nn such that > is a total well-ordering on Nn and β1 > β2

and γ ∈ Nn implies β1+ γ > β2+ γ. Having come this far, the actual order turns out not to matter for
the proof of Theorem 2.20, but it will have bearing on the proof of Theorem 2.21. Which monomial
ordering we use on the β index will not be important, but for completeness let us choose lexicographic
order since this will be used at a later stage in the definition. Here we by lexicographic order refer to
the usual one, corresponding to the variables being ordered x1 > · · ·> xn . That is to say, if αi ∈ Nn for
i = 1, 2, then α1 >lex α2 if, in the vector difference α1−α2 ∈ Zn , the leftmost nonzero entry is positive.
Thus, if j1+ |α1| + |β1| = j2+ |α2| + |β2| and β1 = β2, then we first say that

q(β1)

− j1 (α1)
(0, ξ 0) >t q(β2)

− j2 (α2)
(0, ξ 0) if |α2|> |α1| (3-8)

and then use lexicographic order on the n-tuples α to break ties at this stage. Using the lexicographic
order on both multiindices (separately) we get

q1 <t q(εn)
1 <t · · ·<t q(ε1)

1 <t q1(εn) <t · · ·<t q1(ε1) <t q0 <t · · · .

As indicated above we will prove Theorem 2.20 by a contradiction argument, so in the sequel we let
κ denote an integer such that

j + |α| + |β|< κ (3-9)

if q(β)
− j (α)(0, ξ

0) is the first nonvanishing Taylor coefficient with respect to the ordering >t . Since j ≥−1
we will thus have κ ≥ 0.

To simplify notation, we shall in what follows write t instead of x1 and x instead of x ′. Then vτ takes
the form

vτ (t, x)= φ(t, x)eiτw(t,x),

where
w(t, x)= xn−1+ i(t2

+ x2
1 + · · ·+ x2

n−2+ (xn−1+ i t2/2)2)/2. (3-10)

We shall as before use the notation ξ 0
= (0, . . . , 0, 1) ∈ Rn−1 when in this context. To interpret the

integral Iτ we will need a formula for how R∗(t, x, D) acts on the functions vτ . This is given by the
following lemma, where the parameter t has been suppressed to simplify notation.

Lemma 3.3 [Hörmander 1985b, Lemma 26.4.16]. Let q(x, ξ) ∈ Sµ(Rn−1
×Rn−1), let φ ∈ C∞0 (R

n−1)

and w ∈ C∞(Rn−1), and assume that Imw > 0 except at a point y where w′(y) = η ∈ Rn−1 r 0 and
Imw′′ is positive definite. Then

|q(x, D)(φeiτw)−
∑
|α|<k

q(α)(x, τη)(D− τη)α(φeiτw)/α!| ≤ Ckτ
µ−k/2 (3-11)

for τ > 1 and k = 1, 2, . . ..

An inspection of the proof of [Hörmander 1985b, Lemma 26.4.16] shows that the result is still appli-
cable if Imw > 0 everwhere. This is also used without mention in [Hörmander 1985b] when proving
the necessity of condition (Ψ ). Thus the statement holds if Imw > 0 except possibly at a point y where
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w′(y) = η ∈ Rn−1 r 0 and Imw′′ is positive definite. We will also use this fact, but we have refrained
from altering the statement of the lemma.

If q is homogeneous of degree µ, then the sum in (3-11) consists (apart from the factor eiτw) of terms
that are homogeneous in τ of degree µ,µ− 1, . . . . The terms of degree µ are those in

φ
∑

q(α)(x, τη)(τw′(x)− τη)α/α!, (3-12)

which is the Taylor expansion at τη of q(x, τw′). In this way one can give meaning to the expression
q(x, τw′) even though q(x, ξ) may not be defined for complex ξ . The terms of degree µ−1 where φ is
differentiated are similarly

n−1∑
k=1

q(k)(x, τw′(x))Dkφ,

where q(k) should be replaced by the Taylor expansion at τη representing the value at τw′(x), as in (3-12).
In the present case we have

w′x(t, x)− ξ 0
= i x − (t2/2)ξ 0,

so the expression q− j (t, x, w′x(t, x)) is given meaning if it is replaced by a finite Taylor expansion∑
β

q(β)
− j (t, x, ξ 0)(w′x(t, x)− ξ 0)β/|β|!

of sufficiently high order.
Using the classicality of R∗ we have

σR∗(t, x, ξ)−
M∑

j=−1

q− j (t, x, ξ) ∈ Ψ−M−1
cl (Rn),

so there is a symbol a ∈ S−M−1
cl (Rn

×Rn−1) such that

a(t, x, D)= R∗(t, x, D)−
M∑

j=−1

q− j (t, x, D) mod Ψ−∞(Rn).

By (3-2) and (3-10) it is clear that w satisfies the conditions of Lemma 3.3, so

a(t, x, D)vτ = a(t, x, τξ 0)vτ +O(τ−M−3/2)= τ−M−1a(t, x, ξ 0)vτ +O(τ−M−3/2),

which implies that |a(t, x, D)vτ | ≤ Cτ−M−1. If we for each −1≤ j ≤ M write∣∣∣∣q− j (t, x, D)vτ −
∑
|α|<k j

q(α)
− j (t, x, τξ 0)(Dx − τξ

0)αvτ/α!

∣∣∣∣≤ Ck j τ
− j−k j/2

with k j = 2M − 2 j + 1, then

R∗(t, x, D)vτ =
M∑

j=−1

∑
|α|<k j

q(α)
− j (t, x, τξ 0)(Dx − τξ

0)αvτ/α! +O(τ−M−1/2).
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Now recall the discussion above regarding the homogeneity of the terms in (3-11), and choose M ≥ κ ,
where κ is an integer satisfying (3-9). Then

R∗(t, x, D)vτ = eiτw
M∑

j=−1

∑
|α|≤2M−2 j

q(α)
− j (t, x, τw′x(t, x))Dαφ

= eiτw
M∑

j=−1

∑
|α|≤2M−2 j

τ− j−|α|q(α)
− j (t, x, w′x(t, x))Dαφ

= eiτw
M∑

J=−1

τ−JλJ (t, x)

with an error of order O(τ−κ−1/2), where

λJ (t, x)=
∑

j+|α|=J

q(α)
− j (t, x, w′x(t, x))Dαφ for j ≥−1. (3-13)

As before, q(α)
− j (t, x, w′x(t, x)) should be replaced by a finite Taylor expansion at ξ 0 of sufficiently high

order representing the value at w′x(t, x). In view of (3-5), this yields

Iτ = τ n
∫

H(τ t, τ x)eiτw(t,x)
( κ∑

J=−1

τ−JλJ (t, x)+O(τ−κ−1/2)
)

dt dx .

After the change of variables (τ t, τ x) 7→ (t, x) we find that

Iτ =
∫

H(t, x)eiτw(t/τ,x/τ)
( κ∑

J=−1

τ−JλJ (t/τ, x/τ)+O(τ−κ−1/2)
)

dt dx . (3-14)

To illustrate how we will proceed to prove Theorem 2.20 by contradiction, let us for the moment assume
that q1(0, 0, ξ 0) 6= 0, where ξ 0

= (0, . . . , 0, 1) ∈ Rn−1. Since

λ−1(t/τ, x/τ)= φ(t/τ, x/τ)
∑
β

q(β)1 (t/τ, x/τ, ξ 0)(w′x(t/τ, x/τ)− ξ 0)β/|β|! (3-15)

where
w′x(t/τ, x/τ)− ξ 0

= i x/τ − (t2/(2τ 2))ξ 0
= O(τ−1), (3-16)

and (3-10) implies that τw(t/τ, x/τ)→ xn−1 as τ →∞, we obtain

lim
τ→∞

Iτ/τ =
∫

H(t, x)ei xn−1φ(0, 0)q1(0, 0, ξ 0)dt dx .

Since we may choose φ 6= 0 at the origin, the limit above will then not be equal to 0 for a suitable choice
of H . However, this contradicts (3-6).

Now assume that ∂k0
t q(β0)

− j0(α0)
(0, 0, ξ 0) is the first nonvanishing Taylor coefficient with respect to the

ordering >t , and let
m = j0+ k0+ |α0| + |β0| (3-17)
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so that m <κ by (3-9). Note that α0, β0 ∈Nn−1 and that the integer k0 accounts for derivatives in t while
there is no corresponding term for derivatives in the Fourier transform of t since the q− j are independent
of this variable. Note also that since j0 is permitted to be −1, we have 0≤ k0, |α0|, |β0| ≤ m+ 1.

To use our assumption we will need for each term q(β+γ)
− j (t/τ, x/τ, ξ 0) in the Taylor expansion of

q(γ)
− j (t/τ, x/τ,w′x(t/τ, x/τ)) (as it appears in (3-13)) at ξ 0 to consider Taylor expansions in t and x at

the origin. Note that for given j and γ, it suffices to consider finite Taylor expansions of q(γ)
− j of order

κ − j − |γ| by (3-14) and (3-16). For each j and γ we thus write

q(γ)
− j (t/τ, x/τ,w′x(t/τ, x/τ))

=

∑
k+|α|+|β|≤κ− j−|γ|

(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)τ−k−|α|tk xα(w′x(t/τ, x/τ)−ξ 0)β/(k!|α|!|β|!)+O(τ−κ−1+ j+|γ|),

where (w′x(t/τ, x/τ) − ξ 0)β should be interpreted by means of (3-16). As we shall see, the term
(t2/(2τ 2))ξ 0 will not pose any problem, since it is O(τ−2). We have

λJ (t/τ, x/τ)=
∑

j+|γ|=J

∑
k+|α|+|β|≤κ−J

(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)Dγφ(t/τ, x/τ)

× τ−k−|α|tk xα(w′x(t/τ, x/τ)− ξ 0)β/(k!|α|!|β|!)+O(τ−κ−1+J ),

where −1≤ j ≤ J . If we are only interested in terms of order τ−m in (3-14), we can use the assumption
that ∂k

t q(β+γ)
− j (α)(0, 0, ξ 0) = 0 for all −1 ≤ j + k + |α| + |β| + |γ| < m to let the term (t2/(2τ 2))ξ 0 from

(3-16) be absorbed by the error term in the expression above. This yields
m∑

J=−1

τ−JλJ (t/τ, x/τ)=
∑

j+k+|α|+|β|+|γ|=m

(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)

× Dγφ(t/τ, x/τ)τ−m tk xα(i x)β/(k!|α|!|β|!)+O(τ−m−1),

where we use J = j +|γ| together with the fact that we get a factor τ−|β| from (w′x(t/τ, x/τ)− ξ 0)β by
(3-16). Thus,

lim
τ→∞

τm Iτ =
∫

H(t, x)ei xn−1

×

( ∑
j+k+|α|+|β|+|γ|=m

tk xα(i x)β(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)Dγφ(0, 0)/(k!|α|!|β|!)

)
dt dx .

Now choose φ such that Dβ0φ(0, 0) = 1, but Dγφ(0, 0) = 0 for all other γ such that |γ| ≤ |β0|. This
is possible by the discussion following (3-1). By (3-17) and our choice of the ordering >t , we have
∂k

t q(β+β0)

− j (α) (0, 0, ξ 0)= 0 for all β such that |β|> 0 as long as j + k+ |α| + |β| + |β0| = m. Hence, with
this choice of φ, the last expression takes the form

lim
τ→∞

τm Iτ =
∫

H(t, x)ei xn−1
( ∑

j+k+|α|+|β0|=m

tk xα(∂k
t q(β0)

− j (α))(0, 0, ξ 0)/(k!|α|!)
)

dt dx, (3-18)

where as usual j is allowed to be −1 so that j ∈ [−1,m − |β0|] in (3-18). Now some of the Taylor
coefficients in (3-18) may be zero, in particular, the expression may well contain Taylor coefficients that
preceed ∂k0

t q(β0)

− j0 (α0)
(0, 0, ξ 0), and those are by assumption zero. However, we claim that if at least one of
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the Taylor coefficients above are nonzero, then we may choose H so that the limit is nonzero. Indeed, if
that were not the case then the expression within brackets in (3-18) would be a polynomial with infinitely
many zeros, and thus it would have to have vanishing coefficients. Since this violates our assumption,
we conclude that the limit is nonzero. However, this contradicts (3-6), which proves Theorem 2.20.

4. Proof of Theorem 2.21

In this section we shall give the proof of Theorem 2.21, using ideas taken from [Hörmander 1963]
together with the approach used to prove [Hörmander 1985b, Theorem 26.4.7′]. As in the previous
section, we aim to use Lemma 2.3 to estimate the operator R(x, Dx ′) on approximate solutions of the
equation P∗v = 0, concentrated near

Γ ′ = {(x1, x ′, 0, ξ ′) : x1 ∈ I ′} ⊂ T ∗(Rn)r 0. (4-1)

The proofs will be similar, but the situation is more complicated now, which will affect the construction
of the approximate solutions. We will also have to make some adjustments to the proof of [Hörmander
1985b, Theorem 26.4.7′] to make it work, so a lot of the details will have to be revisited. Our approximate
solutions will also differ slightly from the ones used to prove [Hörmander 1985b, Theorem 26.4.7′], so
although we will refer directly to results in [ibid.] whenever possible, the formulation of some of these
results will be affected. For a more complete description of the approximate solutions, we refer the
reader to [Hörmander 1981] or [Hörmander 1985b], where their construction is carried out in greater
detail. When proving Theorem 2.21 we may without loss of generality assume that x ′ = 0 and ξ ′ = ξ 0

in (4-1). In accordance with the notation in the proof of Theorem 2.19, we shall therefore throughout
this section refer to Γ ′ simply by Γ , and we will let I ′ = [a0, b0].

To simplify notation we shall in what follows write t instead of x1 and x instead of x ′. If N is the
integer given by Definition 2.1, and n is the dimension, the approximate solutions vτ will be taken of the
form

vτ (t, x)= τ N+neiτw(t,x)
M∑
0

φ j (t, x)τ− j . (4-2)

Here φ0, φ1, . . . are amplitude functions, andw is a phase function that should satisfy the eikonal equation

∂w/∂t − i f (t, x, ∂w/∂x)= 0 (4-3)

approximately, where f is the imaginary part of the principal symbol of P . We take w of the form

w(t, x)= w0(t)+〈x − y(t), η(t)〉+
∑

2≤|α|≤M

wα(t)(x − y(t))α/|α|!, (4-4)

where M is a large integer to be determined later and x = y(t) is a smooth real curve. When discussing
the functions wα we shall permit ourselves to use the notation α= (α1, . . . , αs) for a sequence of s = |α|
indices between 1 and the dimension n−1 of the x variable, and wα will be symmetric in these indices.
If we take η(t) to be real-valued and make sure the matrix (Imw jk) is positive definite, then Imw will
have a strict minimum when x = y(t) as a function of the x variables.
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On the curve x = y(t) the eikonal equation (4-3) is reduced to

w′0(t)= 〈y
′(t), η(t)〉+ i f (t, y(t), η(t)), (4-5)

which is the only equation where w0 occurs. Hence it can be used to determine w0 after y and η have
been chosen. In particular

d Imw0(t)/dt = f (t, y(t), η(t)). (4-6)

In the proof of Theorem 2.20 we could solve the corresponding eikonal equation explicitly. Here this
is not possible, so our goal will instead be to make (4-3) valid apart from an error of order M + 1 in
x − y(t). Note that f (t, x, ξ) is not defined for complex ξ , but since

∂w(t, x)/∂x j − η j (t)=
∑

wα, j (t)(x − y(t))α/|α|!,

(4-3) is given meaning if f (t, x, ∂w/∂x) is replaced by the finite Taylor expansion∑
|β|≤M

f (β)(t, x, η(t))(∂w(t, x)/∂x − η(t))β/|β|!. (4-7)

To compute the coefficient of (x− y(t))α in (4-7) we just have to consider the terms with |β| ≤ |α|. Since

∂w/∂t = w′0−〈y
′, η〉+ 〈x − y, η′〉

+

∑
2≤|α|≤M

w′α(t)(x − y)α/|α|! −
∑

k

∑
1≤|α|≤M−1

wα,k(t)(x − y)αdyk/dt/|α|!,

the first order terms in the equation (4-3) give

dη j/dt −
∑

k

w jk(t)dyk/dt = i( f( j)(t, y, η)+
∑

k

f (k)(t, y, η)w jk(t)). (4-8)

Note that this is a system of 2n equations

dη j/dt −
∑

k

Rew jk(t)dyk/dt =−
∑

k

Imw jk(t) f (k)(t, y, η), (4-8)′∑
k

Imw jk(t)dyk/dt =− f( j)(t, y, η)−
∑

k

Rew jk(t) f (k)(t, y, η), (4-8)′′

since y and η are real, and under the assumption that Imw jk is positive definite these equations can
be solved for dy/dt and dη/dt . We observe that at a point where f = d f = 0 they just mean that
dy/dt = dη/dt = 0.

When 2≤ |α| ≤ M we obtain a differential equation

dwα/dt −
∑

k

wα,kdyk/dt = Fα(t, y, η, {wβ}) (4-9)

from (4-3). Here Fα is a linear combination of the derivatives of f of order |α| or less, multiplied with
polynomials in wβ with 2 ≤ |β| ≤ |α| + 1. Of course, when |α| = M the sum on the left side of (4-9)
should be dropped, and β should satisfy |β| ≤ |α| instead. Altogether (4-8)′, (4-8)′′ and (4-9) form a
quasilinear system of differential equations with as many equations as unknowns. Hence we have local
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solutions with prescribed initial data. According to [Hörmander 1985b, pages 105–106] we can find a
c > 0 such that the equations (4-8) and (4-9) with initial data

w jk = iδ jk, wα = 0, when 2< |α| ≤ M and t = (a0+ b0)/2, (4-10)

y = x, η = ξ, when t = (a0+ b0)/2 (4-11)

have a unique solution in (a0−c, b0+c) for all x and ξ with |x |+|ξ−ξ 0
|< c. (Here δ jk is the Kronecker

delta.) Moreover,

(i) (Imw jk − δ jk/2) is positive definite,

(ii) the map

(x, ξ, t) 7→ (y, η, t), where |x | + |ξ − ξ 0
|< c, a0− c < t < b0+ c,

is a diffeomorphism.
In the range Xc of the map (ii) we let v denote the image of the vector field ∂/∂t under the map.

Thus v is the tangent vector field of the integral curves, and when f = d f = 0 we have v = ∂/∂t . By
assumption f = 0 implies ∂ f/∂t ≤ 0 in a neighborhood of Γ (see (2-18)), so if c is small enough this
also holds in Xc. An application of [Hörmander 1985b, Lemma 26.4.11] now yields that f must have
a change of sign from − to + along an integral curve of v in Xc, for otherwise there would be no such
sign change for increasing t and fixed (x, ξ), and that contradicts the hypothesis in Theorem 2.21. By
(4-6) this means that Imw0(t) will start decreasing and end increasing, so the minimum is attained at an
interior point. We can normalize the minimum value to zero and have then for a suitable interval of t that
Imw0 > 0 at the end points and Imw0 = 0 at some interior point. Since Rew0 is given by (4-5) we can
at this interior point also normalize the value of Rew0 to zero. This completes the proof of [Hörmander
1985b, Lemma 26.4.14]. However, in order to prove Theorem 2.21 when a0 < b0 we shall need the
following stronger result.

Lemma 4.1. Assume that the hypotheses of Theorem 2.21 are fulfilled, the variables being denoted (t, x)
now. Then given M ∈ N we can find

(i) a curve t 7→ (t, y(t), 0, η(t)) ∈ R2n , with a′ ≤ t ≤ b′ as close to Γ as desired,

(ii) C∞ functions wα(t) for 2≤ |α| ≤ M , with (Imw jk − δ jk/2) positive definite when a′ ≤ t ≤ b′,

(iii) a function w0(t) with Imw0(t)≥ 0 for a′ ≤ t ≤ b′, Imw0(a′) > 0, Imw0(b′) > 0 and Rew0(c′)=
Imw0(c′)= 0 for some c′ ∈ (a′, b′)

such that (4-4) is a formal solution to (4-3) with an error of order O(|x − y(t)|M+1). If a0 < b0 then (iii)
can be improved in the sense that if % ≥ 0 is the number given by Theorem 2.21, then we can for any
ε > % find

(iii)′ a function w0(t) with Imw0(t) ≥ 0, a′ ≤ t ≤ b′, Imw0(a′) > 0, Imw0(b′) > 0 and Rew0(t) =
Imw0(t)= 0 for all t ∈ [a0+ ε, b0− ε].
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Proof. In view of [Hörmander 1985b, Lemma 26.4.14] we only need to prove (iii)′.
Let ε > %, and let Iε = [a0+ ε, b0− ε]. By the hypotheses of Theorem 2.21, there is a neighborhood

U of

Γε = {(t, 0, 0, ξ 0) : t ∈ Iε}

where f vanishes identically. Take δ > 0 sufficiently small so that

t ∈ Iε, |x | + |ξ − ξ 0
|< δ implies (t, x, 0, ξ) ∈U.

As above we can find c > 0 such that the equations (4-8) and (4-9) with initial data (4-10) and (4-11)
have a unique solution in (a0− c, b0+ c) for all x and ξ with |x | + |ξ − ξ 0

|< c. Since the map

(x, ξ, t) 7→ (y, η, t), where |x | + |ξ − ξ 0
|< c, a0− c < t < b0+ c,

is a diffeomorphism, we can choose c small enough so that if (y, η, t) is in the range Xc of this map,
then |y| + |η− ξ 0

| < δ. As we have seen, f must change sign from − to + along an integral curve of
v in Xc if c is small enough, where in Xc we denote by v the image of the vector field ∂/∂t under the
map. Let this integral curve be given by

γ(t)= (t, y(t), 0, η(t)) ∈ R2n for a′ ≤ t ≤ b′,

for some choice of a′ and b′ such that a0− c < a′, b′ < b0+ c and

f (a′, y(a′), η(a′)) < 0< f (b′, y(b′), η(b′)).

Recall that at a point where f = d f = 0 the equations (4-8)′ and (4-8)′′ imply that dy/dt = dη/dt = 0.
Since f vanishes identically on γ for t ∈ Iε and the function w0 is determined by (4-5), this proves the
lemma after a suitable normalization. �

Note that if Γ is a point then by Lemma 4.1 we can obtain a sequence {γ j } of curves

γ j (t)= (t, y j (t), 0, η j (t)) for a′j ≤ t ≤ b′j

approaching Γ , which implies that at t = c′j we have

(c′j , y j (c′j ), 0, η j (c′j ))→ Γ as j→∞

in T ∗(Rn)r0, where c′j is the point where Rew0 j = Imw0 j = 0. Similarly, if Γ is an interval and %≥ 0
is the number given by Theorem 2.21, then for any point ω in the interior of Γ% we can use Lemma 4.1
to obtain a sequence {γ j } of curves approaching Γ and a sequence {w0 j } of functions such that for each
j there exists a point ω j ∈ γ j with ω j = γ j (t j ) that can be chosen so that Rew0 j (t j ) = Imw0 j (t j ) = 0
and ω j → ω as j →∞. This will be crucial in proving Theorem 2.21. Our strategy is to show that
all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients at ω j , or at
(c′j , y j (c′j ), 0, η j (c′j )) when Γ is a point. Theorem 2.21 will then follow by continuity. In what follows
we will suppress the index j to simplify notation.
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Let K and Ω be the cones given by Theorem 2.21, and suppose that the function w given by (4-4) is
a formal solution to (4-3) with an error of order O(|x − y(t)|M+1) in a neighborhood Y of

{(t, 0) : a0 ≤ t ≤ b0} ⊂ Rn

with K ⊂ T ∗(Y ), such that Imw> 0 in Y except on a compact nonempty subset T of the curve x = y(t),
with (t0, y(t0)) ∈ T and w = 0 on T . We want to show that all the terms in the asymptotic sum of the
symbol of R have vanishing Taylor coefficients at (t0, y(t0), 0, η(t0)). By part (i) of Lemma 4.1 we can
choose w so that

Γ0 = {(t, x, ∂w(t, x)/∂t, ∂w(t, x)/∂x) : (t, x) ∈ T } (4-12)

is contained in Ω . This is done to ensure that if A is a given pseudodifferential operator with wavefront
set contained in the complement of K , then WF(A) does not meet the cone generated by Γ0.

We now turn our attention to the amplitude functions φ j . With the exception of φ0, which will be of
great interest to us, we will not be very thorough in describing them. Suffice it to say that these functions
can be chosen so that if P∗ is the adjoint of P then

‖P∗vτ‖(ν) ≤ Cτ N+n+ν+(1−M)/2, (4-13)

where M is the number given by (4-2). The procedure begins by setting

φ0(t, x)=
∑
|α|<M

φ0α(t)(x − y(t))α

with y(t) as above, and having φ0α satisfy the linear system of ordinary differential equations

Dtφ0α +
∑
|β|<M

aαβφ0β = 0. (4-14)

In the same way we then successively choose φ j and obtain (4-13). The precise details can be found
in [Hörmander 1981, pages 87–89], or in [Hörmander 1985b, pages 107–110]. Note that we for any
positive integer J < M can solve the equations that determine φ0 so that at the point (t0, y(t0)) ∈ T we
have Dα

x φ0(t0, y(t0))= 0 for all |α| ≤ J except for one index α, |α| = J . This will be important later on.
Note also that the estimate (4-13) is not affected if the functions φ j are multiplied by a cutoff function
in C∞0 (Y ) that is 1 in a neighborhood of T . Since the φ j will be irrelevant outside of Y for large τ by
construction, we can in this way choose them to be supported in Y so that vτ ∈ C∞0 (Y ).

Having completed the construction of the approximate solutions, we are now ready to start to follow
the proof of Theorem 2.20. To get the estimates for the right side of (2-1) when v is an approximate
solution, we shall need the following two results. The first, corresponding to Lemma 3.1, is taken from
[Hörmander 1985b]. Observe that here it is stated for our approximate solutions which differ from those
in [ibid.] by a factor of τ N+n , which explains the difference in appearance. Note also that although we
will not use the lower bound for the approximate solutions, that estimate is included so as not to alter
the statement.
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Lemma 4.2 [Hörmander 1985b, Lemma 26.4.15]. Let X ⊂ Rn be open, and let vτ be defined by (4-2),
where w ∈ C∞(X), φ j ∈ C∞0 (X), Imw ≥ 0 in X and d Rew 6= 0. For any positive integer m we then
have

‖vτ‖(−m) ≤ Cτ N+n−m for τ > 1. (4-15)

If Imw(t0, x0)= 0 and φ0(t0, x0) 6= 0 for some (t0, x0) ∈ X then

‖vτ‖(−m) ≥ cτ N+n/2−m for τ > 1

and for some c > 0. If Γ̃ is the cone generated by{
(t, x, ∂tw(t, x), ∂xw(t, x)) : (t, x) ∈

⋃
j suppφ j , Imw(t, x)= 0

}
,

then τ kvτ→ 0 in D′
Γ̃

as τ→∞; hence τ k Avτ→ 0 in C∞(Rn) if A is a pseudodifferential operator with

WF(A)∩ Γ̃ =∅ and k is any real number.

Proposition 4.3. Assume that the hypotheses of Theorem 2.21 are fulfilled, the variables being denoted
(t, x) now, and let vτ be given by (4-2), wherew ∈C∞(Y ), φ j ∈C∞0 (Y ), Imw≥ 0 in Y and d Rew 6= 0.
Here Y is a neighborhood of {(t, 0) : a0 ≤ t ≤ b0} such that K ⊂ T ∗(Y ). Let H(t, x) ∈ C∞0 (R×Rn−1)

and set

hτ (t, x)= τ−N H(τ (t − t0), τ (x − y(t))), (4-16)

where N is the positive integer given by Definition 2.1 for the operators R and P in Theorem 2.21.
Then hτ ∈ H(N )(Rn) for all τ ≥ 1 and ‖hτ‖(N ) ≤ C , where the constant depends on H but not on τ .
Furthermore, if M is the integer given by the definition of vτ in (4-2) so that (4-13) holds, and Iτ is the
integral

Iτ = (R∗vτ , hτ ), (4-17)

where R∗ is the adjoint of R(t, x, D), then for any positive integer κ there exists a constant C such that
|Iτ | ≤ Cτ−κ if M = M(κ) is sufficiently large.

Proof. In Section 3, one easily obtains a formula for the Fourier transform of the corresponding function
hτ (see (3-4)), which yields the estimates needed to show that hτ ∈ H(N ). Here we shall instead use the
equality ∫∫

|hτ (t, x)|2dt dx = τ−2N
∫∫
|H(τ (t − t0), τ (x − y(t)))|2dt dx

which shows that if τ ≥ 1 then D j
t Dα

x hτ ∈ L2(Rn) for all ( j, α)∈N×Nn−1 such that j+|α| ≤ N+[n/2].
Hence, by using the equivalent norm on H(N )(Rn) given by

‖hτ‖(N ) =
∑

j+|α|≤N

‖D j
t Dα

x hτ‖(0),

we find that {hτ }τ≥1 is a bounded one parameter family in H(N )(Rn), which proves the first assertion of
the proposition.
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To prove the second part, let κ be an arbitrary positive integer, and let ν be the positive integer given
by Lemma 2.3 (applied to the operator R instead of Q) so that (2-1) holds for the choice of seminorm
‖P∗v‖(ν) in the right side. If we choose

(1−M)/2≤−N − n− ν− κ, (4-18)

and recall (4-13), then

‖P∗vτ‖(ν) ≤ Cτ−κ . (4-19)

Since supp H is compact, we can find a bounded open ball containing supp hτ for all τ ≥ 1. Hence
hτ ∈ H(N )(Rn) has compact support and vτ ∈ C∞0 (Y ), so the result now follows by the estimate (2-4)
together with Lemma 4.2. �

To shorten the notation we will from now on assume that t0 = 0, so that w(0, y(0)) = 0. As in the
proof of Theorem 2.20 it suffices to show that all terms in the asymptotic expansion of the symbol of R∗,
given by

σR∗ = q1(t, x, ξ)+ q0(t, x, ξ)+ · · · ,

with q j homogeneous of degree j in ξ , have vanishing Taylor coefficients at (0, y(0), η(0)). The method
will be to argue by contradiction that if not, then Proposition 4.3 does not hold. Therefore, let us assume
that ∂k0

t q(β0)

− j0(α0)
(0, y(0), η(0)) is the first nonvanishing Taylor coefficient with respect to the ordering >t

given by Definition 3.2, and let

m = j0+ k0+ |α0| + |β0|. (4-20)

Now let κ be a positive integer such that m < κ , and sort the terms in Iτ , given by (4-17), with respect
to homogeneity degree in τ . We can use Lemma 3.3 and the classicality of the symbol σR∗ to write

R∗(t, x, D)vτ =
M ′∑

j=−1

q− j (t, x, D)vτ +O(τ N+n−M ′−1)

=

M ′∑
j=−1

M∑
l=0

τ N+n−lq− j (t, x, D)(eiτwφl)+O(τ N+n−M ′−1)

for some large number M ′. Note that (4-18) implies a lower bound on M , but as we shall see below,
we must also make sure to pick M > 2M ′+ 1. For each j we then estimate q− j (t, x, D)(eiτwφl) using
(3-11) with k = M − 1− 2 j , so that

q− j (t, x, D)(eiτwφl)=
∑

|α|<M−1−2 j

q(α)
− j (t, x, τη)(D− τη)α(φleiτw)/α!
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with an error of order O(τ (1−M)/2). Recalling (4-18) and the discussion following Lemma 3.3 regarding
the homogeneity of the terms in (3-11), this yields, for sufficiently large M ′,

R∗(t, x, D)vτ =
M ′∑

j=−1

M∑
l=0

τ N+n−leiτw
∑

|α|<M−1−2 j

q(α)
− j (t, x, τw′x)D

αφl +O(τ−κ−1)

= τ N+neiτw
M ′∑

j=−1

M∑
l=0

∑
|α|<M−1−2 j

τ− j−|α|−lq(α)
− j (t, x, w′x)D

αφl +O(τ−κ−1). (4-21)

Note that τ− j−|α|−lq(α)
− j (t, x, w′x)D

αφl is now homogeneous of order− j−|α|−l in τ , and that as before,
q(α)
− j (t, x, w′x) should be replaced by a finite Taylor expansion at η of sufficiently high order. For each
−1 ≤ J ≤ κ , collect all terms of the form τ− j−|α|−lq(α)

− j (t, x, w′x)D
αφl in (4-21) that are homogeneous

of order −J in τ , that is, all terms that satisfy j + |α| + l = J for j ≥−1, and |α|, l ≥ 0. If

λJ (t, x)=
∑

j+|α|+l=J

q(α)
− j (t, x, w′x(t, x))Dαφl(t, x)

for the permitted values of j and l, then

Iτ = τ n
∫∫

H(τ t, τ (x − y(t)))
(

eiτw(t,x)
κ∑

J=−1

τ−JλJ (t, x)+O(τ−κ−1)
)

dt dx .

After the change of variables (τ t, τ (x − y(t))) 7→ (t, x) we obtain

Iτ =
∫∫

H(t, x)
(

eiτw(t/τ,x/τ+y(t/τ))
κ∑

J=−1

τ−JλJ (t/τ, x/τ + y(t/τ))+O(τ−κ−1)
)

dt dx, (4-22)

where
λJ (t/τ, x/τ + y(t/τ))

=

∑
j+|α|+l=J

Dαφl(t/τ, x/τ + y(t/τ))q(α)
− j (t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ))). (4-23)

Recall that w0(0)= 0, which together with (4-4) implies

iτw(t/τ, x/τ + y(t/τ))= i tw′0(0)+ i〈x, η(t/τ)〉+O(τ−1).

Hence
lim
τ→∞

eiτw(t/τ,x/τ+y(t/τ))
= ei tw′0(0)+i〈x,η(0)〉. (4-24)

In the sequel we shall also need

∂w/∂x j (t/τ, x/τ + y(t/τ))− η j (t/τ)=
n−1∑
k=1

w j,k(t/τ)(xk/τ)+O(τ−2), (4-25)

which follows from the definition of w and the fact that wα is symmetric in these special indices α. In
particular, w j,k(t)= wk, j (t) for all j , k ∈ [1, n− 1].
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Recall that we chose the integer κ such that m < κ . By Proposition 4.3 there is a constant C such that

|Iτ | ≤ Cτ−κ , (4-26)

and we shall now show that if ∂k0
t q(β0)

− j0(α0)
(0, y(0), η(0)) is the first nonvanishing Taylor coefficient with

respect to the ordering >t , where m = j0 + k0 + |α0| + |β0|, then (4-26) cannot hold. (Since we
are denoting the variables by (t, x) now, the index α in Definition 3.2 will be replaced by the pair
(k, α) ∈N×Nn−1.) We will do this by determining the limit of τm Iτ as τ→∞. To see what is needed,
consider λ−1(t/τ, x/τ + y(t/τ)) and recall that this is

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))φ0(t/τ, x/τ + y(t/τ)),

which should be regarded as a Taylor expansion in ξ of q1 at η(t/τ) of finite order. The same applies to
all the other terms of the form q(α)

− j . For given j and α, we only ever need to consider Taylor expansions
of q(α)

− j of order κ − j − |α| in view of (4-22) and (4-25). To keep things simple, we shall first only
consider q1; it will be clear by symmetry what the corresponding expressions for the other terms should
be. Thus,

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

q(β)1 (t/τ, x/τ + y(t/τ), η(t/τ))(w′x(t/τ, x/τ + y(t/τ))−η(t/τ))β/|β|!+O(τ−κ−2), (4-27)

which shows that to use our assumption regarding the Taylor coefficient ∂k0
t q(β0)

− j0(α0)
(0, y(0), η(0)), we

have to for each β write q(β)1 (t/τ, x/τ + y(t/τ), η(t/τ)) as a Taylor series at η(0), in addition to having
to expand each term as a Taylor series in t and x . However, it is immediate from (4-25) that if β is an
(n−1)-tuple corresponding to a given differential operator Dβ

ξ , then there is a sequence β̃= (β̃1, . . . , β̃s)

of s = |β| indices between 1 and the dimension n− 1 of the x variable, such that

gβτ (t, x)= (w′x(t/τ, x/τ + y(t/τ))− η(t/τ))β, (4-28)

as it appears in (4-27), satisfies

gβτ (t, x)= cβ(t/τ, x/τ)+O(τ−|β|−1),

where

cβ(t/τ, x/τ)=
s∏

j=1

(n−1∑
k=1

wk,β̃ j
(t/τ)xk/τ

)
and cβ(0, x/τ)= τ−|β|cβ(0, x).

These expressions make sense if we choose the sequence β̃ to be increasing, for then it is uniquely
determined by β. If for instance Dβ

ξ = −∂
2/∂ξi∂ξ j , then β̃ = (i, j) if i ≤ j (see the indices α used in

connection with wα in (4-4)). Thus (4-27) takes the form

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

q(β)1 (t/τ, x/τ + y(t/τ), η(t/τ))gβτ (t, x)/|β|! +O(τ−κ−2),
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and if we expand each term in this expression as a Taylor series at η(0) we obtain

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

∑
|γ|≤κ+1−|β|

q(β+γ)1 (t/τ, x/τ + y(t/τ), η(0))gβτ (t, x)(η(t/τ)− η(0))γ/(|β|!|γ|!)

+O(τ−κ−2), (4-29)

where we regard η(t/τ)− η(0) as a finite Taylor series η′(0)t/τ + η′′(0)t2/(2τ 2)+ · · · of sufficiently
high order to maintain control of the error term in (4-29). If we for each multiindex β let Gβ

τ (t, x) be
given by

Gβ
τ (t, x)=

∑
γ1+γ2=β

(η(t/τ)− η(0))γ1 gγ2
τ (t, x)/(|γ1|!|γ2|!) for γ j ∈ Nn−1,

then the required order of the Taylor expansion η(t/τ)− η(0) will ultimately depend on β, so we can
write

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

q(β)1 (t/τ, x/τ + y(t/τ), η(0))Gβ
τ (t, x)+O(τ−κ−2) (4-30)

and we can always bound Gβ
τ (t, x) by a constant times τ−|β|. As will be evident in a moment, the

value of Gβ
τ (t, x) for |β| > 0 is not important. For notational purposes, denote by Gβ

0 (t, x) the limit of
τ |β|Gβ

τ (t, x) as τ →∞. Since Gβ
τ (t, x)= 1 when β = 0 it is clear that G0

0(t, x)= 1.
For each β we must now write q(β)1 (t/τ, x/τ + y(t/τ), η(0)) as a Taylor expansion in t and x at 0

and y(0), respectively. As before, for given j and α, we will only have to consider Taylor expansions of
q(α)
− j of order κ − j − |α|. By (4-23) and (4-30) we have

λ−1(t/τ, x/τ + y(t/τ))

=

∑
k+|α|+|β|≤κ+1

φ0(t/τ, x/τ + y(t/τ))
(
(t/τ)k(x/τ + y(t/τ)− y(0))αGβ

τ (t, x)

× ∂k
t q(β)1(α)(0, y(0), η(0))/(k!|α|!)+O(τ−κ−2)

)
, (4-31)

where we in (x/τ + y(t/τ)− y(0))α regard y(t/τ)− y(0) as a finite Taylor series of sufficiently high
order to maintain control of the error terms.

In the way that we expressed the term q1(t/τ, x/τ+ y(t/τ), w′x(t/τ, x/τ+ y(t/τ))) by (4-31), we can
get similar expressions of appropriate order for the terms q(γ)

− j (t/τ, x/τ+ y(t/τ), w′x(t/τ, x/τ+ y(t/τ)))
that appear in (4-23). For each j and γ we have

q(γ)
− j (t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
k+|α|+|β|≤κ− j−|γ|

(t/τ)k(x/τ + y(t/τ)− y(0))αGβ
τ (t, x)∂k

t q(β+γ)
− j (α) (0, y(0), η(0))/(k!|α|!)

+O(τ−κ−1+ j+|γ|). (4-32)
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This together with (4-23) gives

λJ (t/τ, x/τ + y(t/τ))=
∑

j+l+|γ|=J

∑
k+|α|+|β|≤κ− j−|γ|

(t/τ)k(x/τ + y(t/τ)− y(0))αGβ
τ (t, x)

× Dγ
xφl(t/τ, x/τ + y(t/τ))

∂k
t q(β+γ)
− j (α) (0, y(0), η(0))

k!|α|!

+O(τ−κ−1+ j+|γ|),

where −1 ≤ j ≤ J and l ≥ 0. Using that by assumption the Taylor coefficients ∂k
t q(β+γ)
− j (α) (0, y(0), η(0))

vanish for all−1≤ j+k+|α|+|β|+|γ|<m, and τ−J−k−|α|
=τ |β|τ− j−k−|α|−|β|−|γ|−l when J = j+l+|γ|,

the equation above yields
m∑

J=−1

τ−JλJ (t/τ, x/τ + y(t/τ))=
m∑

j+l+|γ|=−1

∑
j+k+|α|+|β|+|γ|=m

τ−m−l tk(x + y′(0)t)ατ |β|Gβ
τ (t, x)

× Dγ
xφl(t/τ, x/τ + y(t/τ))

∂k
t q(β+γ)
− j (α) (0, y(0), η(0))

k!|α|!

+O(τ−m−1−l),

where τ |β|Gβ
τ (t, x)→Gβ

0 (t, x) as τ→∞. As we can see, the expression above is O(τ−m−1) as soon as
l > 0, so in view of (4-22) and (4-24) we obtain

lim
τ→∞

τm Iτ =
∫∫

H(t, x)ei tw′0(0)+i〈x,η(0)〉

×

( ∑
j+k+|α|+|β|+|γ|=m

tk(x + y′(0)t)αGβ

0 (t, x)Dγ
xφ0(0, y(0))

× ∂k
t q(β+γ)
− j (α) (0, y(0), η(0))/(k!|α|!)

)
dt dx . (4-33)

Recall (4-20) and choose φ0 so that Dβ0
x φ0(0, y(0)) = 1, but so that Dγ

xφ0(0, y(0)) = 0 for all other γ
such that |γ| ≤ |β0| (see (4-14)). By the choice of our ordering >t we have ∂k

t q(β+β0)

− j (α) (0, y(0), η(0))= 0
for all β such that |β|> 0 as long as j+k+|α|+|β|+|β0| =m. Hence, with this choice of φ0, equation
(4-33) takes the form

lim
τ→∞

τm Iτ =
∫∫

H(t, x)ei tw′0(0)+i〈x,η(0)〉

×

( ∑
j+k+|α|+|β0|=m

tk(x + y′(0)t)α∂k
t q(β0)

− j (α)(0, y(0), η(0))/(k!|α|!)
)

dt dx, (4-34)

so as promised, the value of Gβ

0 (t, x) for |β| > 0 does not matter. (Note that G0
0(t, x) is present in

(4-34) as the constant factor 1.) As in the proof of Theorem 2.20, some of the Taylor coefficients in
(4-34) may be zero. In particular, the expression may well contain Taylor coefficients that preceed
∂

k0
t q(β0)

− j0 (α0)
(0, y(0), η(0)) in the ordering, and those are by assumption zero. In contrast to the proof

of Theorem 2.20 we shall have to exploit this fact, since the coefficients of most of the monomials in
(4-34) will be linear combinations of the Taylor coefficients due to the factor (x + y′(0)t)α. However,
the ordering >t was chosen so that there can be no nonzero Taylor coefficient ∂k

t q(β0)

− j (α)(0, y(0), η(0))
such that k + |α| > k0 + |α0|, or k + |α| = k0 + |α0| and k < k0. This follows immediately from the
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choice of lexicographic order on the n-tuple (k, α)∈Nn . (Recall that in the definition of the ordering>t ,
x denoted all the variables in Rn , while here we denote those variables by (t, x).) Hence, the only
coefficient of the monomial tk0 xα0 in (4-34) is ∂k0

t q(β0)

− j0 (α0)
(0, y(0), η(0)). We may therefore, as in the

proof of Theorem 2.20, choose H so that the limit in (4-34) is nonzero. Since this contradicts (4-26),
Theorem 2.21 follows in view of the discussion following Lemma 4.1.

Appendix A.

Here we prove a few results used in the main text, related to how the property that all terms in the asymp-
totic expansion of the total symbol have vanishing Taylor coefficients is affected by various operations.

Lemma A.1. Suppose X and Y are two C∞ manifolds of the same dimension n. Let K ⊂ T ∗(X)r 0
and K ′ ⊂ T ∗(Y )r 0 be compactly based cones and let χ be a homogeneous symplectomorphism from
a conic neighborhood of K ′ to one of K such that χ(K ′) = K . Let A ∈ I m′(X × Y, Γ ′) and B ∈
I m′′(Y × X, (Γ −1)′), where Γ is the graph of χ , and assume that A and B are properly supported
and noncharacteristic at the restriction of the graphs of χ and χ−1 to K ′ and to K respectively, while
WF′(A) and WF′(B) are contained in small conic neighborhoods. If R is a properly supported classical
pseudodifferential operator in Y , then each term in the asymptotic expansion of the total (left) symbol
of R has vanishing Taylor coefficients at a point (y, η) ∈ K ′ if and only if each term in the asymptotic
expansion of the total (left) symbol of the pseudodifferential operator ARB in X has vanishing Taylor
coefficients at χ(y, η) ∈ K .

Proof. We may assume that we have a homogeneous generating function ϕ ∈C∞ for the symplectomor-
phism χ ; see [Grigis and Sjöstrand 1994, pages 101–103]. Then χ is locally of the form

(∂ϕ(x, η)/∂η, η) 7→ (x, ∂ϕ(x, η)/∂x),

and A and B are given by

Au(x)=
1

(2π)n

∫∫
ei(ϕ(x,ζ )−z·ζ )a(x, z, ζ )u(z) dz dζ,

Bv(y)=
1

(2π)n

∫∫
ei(y·θ−ϕ(s,θ))b(y, s, θ)v(s) ds dθ.

Since R is properly supported we may assume that

Ru(z)= 1
(2π)n

∫
ei z·ηr(z, η)û(η) dη for u ∈ C∞0 (Y ), (A-1)

where r(z, η)= σR is the total symbol of R. Hence

ARBu(x)= 1
(2π)3n

∫
ei(ϕ(x,ζ )−z·ζ+(z−y)·σ+y·θ−ϕ(s,θ))a(x, z, ζ )r(z, σ )b(y, s, θ)u(s) ds dθ dy dσ dz dζ,

(A-2)
since B being properly supported implies that Bu ∈C∞0 (Y ) when u ∈C∞0 (Y ). Using integration by parts
in z, we see that we can insert a cutoff φ((ζ −σ)/|σ |) in the last integral without changing the operator
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ARB mod Ψ−∞. If we make the change of variables τ = ζ − σ , then (A-2) takes the form

ARBu(x)=
1

(2π)3n

∫
φ(τ/|σ |)ei(ϕ(x,τ+σ)−z·(τ+σ)+(z−y)·σ+y·θ−ϕ(s,θ))

× a(x, z, τ + σ)r(z, σ )b(y, s, θ)u(s) ds dθ dy dσ dz dτ + Lu,

with L ∈Ψ−∞. If Ω ⊂R2n is open and ϕ̃ ∈C∞(Ω,R) is a phase function with a nondegenerate critical
point x0 ∈Ω such that dϕ̃ 6= 0 everywhere else, then [Grigis and Sjöstrand 1994, Proposition 2.3] states,
in particular, that for every compact M ⊂Ω and every u ∈ C∞(Ω)∩E′(M) we have∣∣∣∫ eiλϕ̃(x)u(x)dx − eiλϕ̃(x0)A0u(x0)λ

−n
∣∣∣≤ CMλ

−n−1
∑

|α|≤2n+3

sup |∂αu(x)| for λ≥ 1, (A-3)

where

A0 =
(2π)n · eiπ sgn ϕ̃′′(x0)/4

| det ϕ̃′′(x0)|1/2
. (A-4)

It is clear that the result extends to the settingΩ = T ∗(N)r0, where N is a C∞ manifold of dimension n.
In order to apply the result, we put σ = λω, and make the change of variables τ = λτ̃ . After dropping
the tilde we obtain

ARBu(x)=
λ2n

(2π)3n

∫
φ(τ/|ω|)eiλ(ϕ(x,τ+ω)−z·(τ+ω)+y·θ/λ+(z−y)·ω−ϕ(s,θ)/λ)

× a(x, z, λ(τ +ω))r(z, λω)b(y, s, θ)u(s) ds dθ dy dω dz dτ + Lu,

where we have used the fact that ϕ is homogeneous of degree 1 in the fiber. For the z, τ -integration we
have the nondegenerate critical point given by τ =0, z=ϕ′ζ (x, τ+ω). Note that since ϕ′ζ is homogeneous
of degree 0 in the fiber we have ϕ′ζ (x, σ/λ) = ϕ

′

ζ (x, σ ), so this critical point corresponds to the critical
point for the z, ζ -integration given by ζ = σ, z = ϕ′ζ (x, σ ). Hence the expression above together with
(A-3) imply that

ARBu(x)= Cλ2n
∫

ei(ϕ(x,λω)+y·θ−y·λω−ϕ(s,θ))w(x, y, s, ω, θ)u(s) ds dθ dy dω+ Lu,

where

w(x, y, s, ω, θ)=
A0

λn a(x, z, λ(τ +ω))r(z, λω)b(y, s, θ)φ(τ/|ω|)
∣∣∣τ=0,
z=ϕ′ζ (x,ω)

=
A0

λn a(x, ϕ′ζ (x, ω), λω)r(ϕ
′

ζ (x, ω), λω)b(y, s, θ)

with an error of order O(λ−n−1). Note that A0 is now a function of x andω, since the matrix corresponding
to ϕ̃′′(x0) in (A-4) is given by the block matrix

F =
(

0 −Idn

−Idn ϕ′′ζ ζ (x, ω)

)
, (A-5)

where Idn is the identity matrix on Rn . Clearly the determinant of F is either 1 or−1, so F is nonsingular.
Furthermore, F depends smoothly on the parameters x and ω since ϕ ∈ C∞, so the eigenvalues of F
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are continuous in x and ω. Hence it follows that the signature of F is constant, for if not there has to
exist an eigenvalue vanishing at some point (x, ω), contradicting the nonsingularity of F . Reverting to
the variable σ = λω we thus obtain

ARBu(x)= C
∫

ei(ϕ(x,σ )+y·(θ−σ)−ϕ(s,θ))w̃(x, y, s, σ, θ)u(s) ds dθ dy dσ + Lu,

where
w̃(x, y, s, σ, θ)= a(x, ϕ′ζ (x, σ ), σ )r(ϕ

′

ζ (x, σ ), σ )b(y, s, θ)

with an error of order O(λ−1). Taking the limit as λ→∞ yields

ARBu(x)=C
∫

ei(ϕ(x,σ )+y·(θ−σ)−ϕ(s,θ))a(x, ϕ′ζ (x, σ ), σ )r(ϕ
′

ζ (x, σ ), σ )b(y, s, θ)u(s)ds dθ dy dσ+Lu.

We can now repeat the procedure. Indeed, we can insert a cutoff φ((σ −θ)/|θ |) without changing the
operator mod Ψ−∞, and after making the corresponding changes of variables in order to apply [Grigis
and Sjöstrand 1994, Proposition 2.3] we find that for the y, σ -integration we have the nondegenerate
critical point given in the original variables by σ = θ, y = ϕ′σ (x, σ ). After taking the limit as λ→∞ we
obtain

ARBu(x)= C
∫

ei(ϕ(x,θ)−ϕ(s,θ))w1(x, s, θ)u(s) ds dθ + L1u,

where L1 ∈ Ψ
−∞ and

w1(x, s, θ)= a(x, ϕ′θ (x, θ), θ)r(ϕ
′

θ (x, θ), θ)b(ϕ
′

θ (x, θ), s, θ). (A-6)

As before we let the factor A0 from (A-4) be included in the constant C . In a conic neighborhood of
suppw1 we can write

ϕ(x, θ)−ϕ(s, θ)= (x − s)Ξ(x, s, θ).

ThenΞ(x, x, θ)=ϕ′x(x, θ) so ∂Ξ(x, x, θ)/∂θ =ϕ′′xθ (x, θ) is invertible, since ϕ′′xθ (x, θ) 6=0 is equivalent
to the fact that the graph of χ is (locally) the graph of a smooth map. Hence θ 7→ Ξ(x, s, θ) is C∞,
homogeneous of degree 1 and with an inverse having the same properties. For s close to x , the equation
Ξ(x, s, θ)= ξ then defines θ =Θ(x, s, ξ). After a change of variables, the last integral therefore takes
the form

ARBu(x)= C
∫

ei(x−s)·ξ w̃1(x, s, ξ)u(s) ds dξ + L1u, (A-7)

where w̃1(x, s, ξ) is justw1(x, s,Θ(x, s, ξ))multiplied by a Jacobian. We note in passing that evaluating
w̃1 at a point (x, x, ξ) where ξ is of the form ξ = ϕ′x(x, η) therefore involves evaluating w1 at the point
(x, x, η). The integral (A-7) defines a pseudodifferential operator with total symbol ρ(x, ξ) satisfying

ρ(x, ξ)∼
∑ i−|α|

α!
(∂αξ ∂

α
y w̃1(x, y, ξ))|y=x . (A-8)

If the total symbol r = σR of R has vanishing Taylor coefficients at a point (y, η) = (ϕ′η(x, η), η), then
by examining (A-8) in decreasing order of homogeneity we find that each term of ρ must have vanishing
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Taylor coefficients at (x, ξ)= (x, ϕ′x(x, η)), since by what we have shown this would involve evaluating
r(z, σ ) and its derivatives at (ϕ′η(x, η), η).

To prove the converse, choose A1∈ I−m′′(X×Y, Γ ′) and B1∈ I−m′(Y×X, (Γ −1)′) properly supported
such that

K ′ ∩WF(B A1− I )=∅, K ∩WF(A1 B− I )=∅,

K ′ ∩WF(B1 A− I )=∅, K ∩WF(AB1− I )=∅.

Then a repetition of the arguments above shows that all the terms in the asymptotic expansion of the
total symbol of B1 ARB A1 has vanishing Taylor coefficients at a point (y, η) = (ϕ′η(x, η), η) if all the
terms in the asymptotic expansion of the total symbol of ARB has vanishing Taylor coefficients at
(x, ξ) = (x, ϕ′x(x, η)). Since R and B1 ARB A1 have the same total symbol in K ′ mod Ψ−∞, the same
must hold for the total symbol of R. �

Let {ek : k = 1, . . . , n} be a basis for Rn , let (U, x) be local coordinates on a smooth manifold M of
dimension n, and let {

∂

∂xk
: k = 1, . . . , n

}
be the induced local frame for the tangent bundle T M . Since the local frame fields commute, we can
use standard multiindex notation to express the partial derivatives ∂αx f of f ∈ C∞(U ).

Lemma A.2. Let M be a smooth manifold of dimension n, and for j ≥ 1 let p, q j , g j ∈ C∞(M). Let
{γ j }

∞

j=1 be a sequence in M such that γ j → γ as j →∞, and assume that p(γ) = p(γ j ) = 0 for all j ,
and that dp(γ) 6= 0. Let (U, x) be local coordinates on M near γ, and suppose that there exists a smooth
function q ∈ C∞(M) such that

∂αx q(γ)= lim
j→∞

∂αx q j (γ j ) for all α ∈ Nn .

If q j − pg j vanishes of infinite order at γ j for all j , then there exists a smooth function g ∈C∞(M) such
that q − pg vanishes of infinite order at γ. Furthermore,

∂αx g(γ)= lim
j→∞

∂αx g j (γ j ) for all α ∈ Nn . (A-9)

Proof. We have stated the result for a manifold, but since the result is purely local we may assume that
M ⊂ Rn in the proof. It is also clear that we may assume that there exists an open neighborhood U of
γ such that γ j ∈ U for j ≥ 1, and that dp 6= 0 in U. By shrinking U if necessary, we can then find a
unit vector ν ∈ Rn such that ∂ν p(w) = 〈ν, dp(w)〉 6= 0 for w ∈ U. (We will identify a tangent vector
ν ∈ Rn at γ with ∂ν ∈ TγRn through the usual vector space isomorphism.) Hence ∂ν p(w) is invertible
in U, and we let (∂ν p(w))−1

∈ C∞(U) denote its inverse. By an orthonormal change of coordinates we
may even assume that ∂ν p(w) = ∂e1 p(w). In accordance with the notation used in the statement of the
lemma, we shall write ∂xk p(w) for the partial derivatives ∂ek p(w) and denote by (∂x1 p(w))−1 the inverse
of ∂ν p(w)= ∂x1 p(w) in U.

Now
0= ∂x1(q j − pg j )(γ j )= ∂x1q j (γ j )− ∂x1 p(γ j )g j (γ j ) (A-10)
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for all j since p(γ j )= 0. Since lim j ∂x1q j (γ j )= ∂x1q(γ) by assumption, equation (A-10) yields

lim
j→∞

g j (γ j )= (∂x1 p(γ))−1∂x1q(γ)= a ∈ C. (A-11)

We claim that we can in the same way determine

lim
j→∞

(∂αx g j )(γ j )= a(α) ∈ C for any α ∈ Nn .

We start by determining lim j→∞ ∂g j (γ j )/∂xk = a(k) for 1≤ k ≤ n. By the hypotheses of the lemma we
have

0= ∂xk∂xl (q j − pg j )(γ j )

= ∂xk∂xl q j (γ j )− ∂xk∂xl p(γ j )g j (γ j )− ∂xk p(γ j )∂xl g j (γ j )− ∂xl p(γ j )∂xk g j (γ j ) (A-12)

since p(γ j )= 0. For k = l = 1 we obtain from (A-11) and (A-12)

lim
j→∞

∂x1 g j (γ j )= (∂x1 p(γ))−1(∂2
x1

q(γ)− ∂2
x1

p(γ)a
)
/2. (A-13)

This allows us to solve for ∂xk g j (γ j ) in (A-12) by choosing l = 1. If b ∈ C denotes the limit in (A-13)
and a ∈ C is given by (A-11) we thus obtain

lim
j→∞

∂xk g j (γ j )= (∂x1 p(γ))−1(∂x1∂xk q(γ)− ∂x1∂xk p(γ)a− ∂xk p(γ)b
)

for 2≤ k ≤ n.

Now assume that for some m ≥ 3 we have in this way determined

lim
j→∞

∂xk1
. . . ∂xkm−2

g j (γ j ), for ki ∈ [1, n], with i ∈ [1,m− 2].

To shorten notation, we will use the (nonstandard) multiindex notation introduced on page 465; to every
α ∈ Nn with |α| = m corresponds precisely one m-tuple β = (k1, . . . , km) of nondecreasing numbers
1≤ k1 ≤ · · · ≤ km ≤ n such that ∂βx equals ∂αx . Throughout the rest of this proof we shall let β represent
such an m-tuple, and we let

β̂i = (k1, . . . , ki−1, ki+1, . . . , km).

As before we have

0= ∂βx (q j − pg j )(γ j )= ∂
β
x q j (γ j )− ∂

β
x p(γ j )g j (γ j )− · · ·−

m∑
i=1

∂xki
p(γ j )∂

β̂i
x g j (γ j ) (A-14)

by assumption. If we choose ki =1 for all 1≤ i ≤m, the last sum is just m∂x1 p(γ j )∂
m−1
x1

g j (γ j ), and since
the limit of all other terms on the right side are known by the induction hypothesis, we thus obtain the
value of the limit of ∂m−1

x1
g j (γ j ) from (A-14) by first multiplying by m−1(∂x1 p(γ j ))

−1 and then letting
j →∞. Denote this limit by c ∈ C. If we choose ki 6= 1 for precisely one i ∈ [1,m], say km = k, then
the last sum in (A-14) satisfies

m∑
i=1

∂xki
p(γ j )∂

β̂i
x g j (γ j )= ∂xk p(γ j )∂

m−1
x1

g j (γ j )+ (m− 1)∂x1 p(γ j )∂
m−2
x1

∂xk g j (γ j ),
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so by the same argument as before we can obtain the value of lim j→∞ ∂
m−2
x1

∂xk g j (γ j ) for 2 ≤ k ≤ n by
multiplying by (m − 1)−1(∂x1 p(γ j ))

−1 and using ∂m−1
x1

g j (γ j )→ c when taking the limit as j →∞ in
(A-14). Continuing this way it is clear that we can successively determine

lim
j→∞

∂xk1
. . . ∂xkm−1

g j (γ j ) for any 1≤ k1 ≤ . . .≤ km−1 ≤ n,

which completely determines lim j→∞ ∂
α
x g j (γ j )= a(α) for α ∈ Nn with |α| = m− 1, proving the claim.

By Borel’s theorem there exists a smooth function g ∈ C∞(M) such that

∂αx g(γ)= a(α) = lim
j→∞

∂αx g j (γ j ) for all α ∈ Nn .

Since q − pg vanishes of infinite order at γ by construction, this completes the proof. �

The lemma will be used to prove the following result for homogeneous smooth functions on the
cotangent bundle.

Proposition A.3. For j ≥ 1 let p, q j , g j ∈ C∞(T ∗(Rn) r 0), where p and q j are homogeneous of
degree m and the g j are homogeneous of degree 0. Let {γ j }

∞

j=1 be a sequence in T ∗(Rn)r 0 such that
γ j → γ as j →∞, and assume that p(γ) = p(γ j ) = 0 for all j , and that dp(γ) 6= 0. If there exists a
smooth function q ∈ C∞(T ∗(R)n r 0), homogeneous of degree m, such that

∂αx ∂
β
ξ q(γ)= lim

j→∞
∂αx ∂

β
ξ q j (γ j ) for all (α, β) ∈ Nn

×Nn ,

and if q j − pg j vanishes of infinite order at γ j for all j , then there exists a g ∈ C∞(T ∗(Rn) r 0),
homogeneous of degree 0, such that q − pg vanishes of infinite order at γ. Furthermore,

∂αx ∂
β
ξ g(γ)= lim

j→∞
∂αx ∂

β
ξ g j (γ j ) for all (α, β) ∈ Nn

×Nn . (A-15)

Proof. Let π : T ∗(Rn)r 0→ S∗(Rn) be the projection. Since dp(γ) 6= 0 it follows from homogeneity
that dp(π(γ)) 6= 0. By using the homogeneity of q , q j and g j we may even assume that γ and γ j belong
to S∗(Rn) for j ≥ 1 to begin with.

Now, the radial vector field ξ∂ξ applied k times to a ∈C∞(T ∗(Rn)r0) equals lka if a is homogeneous
of degree l. For any point w ∈ S∗(Rn) with w = (wx , wξ ) in local coordinates on T ∗(Rn) it is easy to
see that

TwS∗(Rn)= {(u, v) ∈ Rn
×Rn

: 〈wξ , v〉 = 0}.

Therefore a basis for TwS∗(Rn) together with the radial vector field (ξ∂ξ )w at w constitutes a basis for
TwT ∗(Rn). This implies that if we can find a homogeneous function g such that q − pg vanishes of
infinite order in the directions TγS∗(Rn), then q − pg vanishes of infinite order at γ, for the derivatives
involving the radial direction are determined by lower order derivatives in the directions TγS∗(Rn).

By the hypotheses of the proposition together with an application of Lemma A.2, we find that there
exists a function g̃ ∈ C∞(T ∗(Rn)), not necessarily homogeneous, such that q − pg̃ vanishes of infinite
order at γ and (A-15) holds for g̃. The function g(x, ξ) = g̃(x, ξ/|ξ |) coincides with g̃ on S∗(Rn). In
particular, all derivatives of g and g̃ in the directions TγS∗(Rn) are equal at γ. Thus, by the arguments
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above we conclude that q − pg vanishes of infinite order at γ. Since g and g j are homogeneous of
degree 0, the same arguments also imply that (A-15) holds for g, which completes the proof. �
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BLOW-UP SOLUTIONS ON A SPHERE FOR THE 3D QUINTIC NLS IN THE
ENERGY SPACE

JUSTIN HOLMER AND SVETLANA ROUDENKO

We prove that if u(t) is a log-log blow-up solution, of the type studied by Merle and Raphaël, to the
L2 critical focusing NLS equation i∂t u +1u + |u|4/du = 0 with initial data u0 ∈ H 1(Rd) in the cases
d = 1, 2, then u(t) remains bounded in H 1 away from the blow-up point. This is obtained without
assuming that the initial data u0 has any regularity beyond H 1(Rd). As an application of the d = 1
result, we construct an open subset of initial data in the radial energy space H 1

rad(R
3) with corresponding

solutions that blow up on a sphere at positive radius for the 3D quintic (Ḣ 1-critical) focusing NLS
equation i∂t u+1u+|u|4u = 0. This improves the results of Raphaël and Szeftel [2009], where an open
subset in H 3

rad(R
3) is obtained. The method of proof can be summarized as follows: On the whole space,

high frequencies above the blow-up scale are controlled by the bilinear Strichartz estimates. On the other
hand, outside the blow-up core, low frequencies are controlled by finite speed of propagation.

1. Introduction

Consider the L2 critical focusing nonlinear Schrödinger equation (NLS)

i∂t u+1u+ |u|4/du = 0, (1-1)

where u = u(x, t) ∈ C and x ∈ Rd , in dimensions d = 1 and d = 2. It is locally well-posed in H 1(Rd)

and its solutions satisfy conservation of mass M(u), momentum P(u), and energy E(u):

M(u)= ‖u‖2L2, P(u)= Im
∫

ū ∇u dx, E(u)= 1
2‖∇u‖2L2 −

1
4/d + 2

‖u‖4/d+2
L4/d+2; (1-2)

see [Tao 2006, Chapter 3] and [Cazenave 2003, Chapter 4] for exposition and references. The Galilean
identity (see [Tao 2006, Exercise 2.5]) transforms any solution to one with zero momentum, so there is
no loss in considering only solutions u(t) such that P(u)= 0.

The unique (up to translation) minimal mass H 1 solution of

−Q+1Q+ |Q|4/d Q = 0, with Q = Q(x), (1-3)

is called the ground state. It is smooth, radial, real-valued and positive, and exponentially decaying; see
[Tao 2006, Appendix B]. In the case d = 1, we have explicitly

Q(x)= 31/4 sech1/2(x). (1-4)

MSC2000: 35Q55.
Keywords: blow-up, nonlinear Schrödinger equation.
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Weinstein [1982] proved that solutions to (1-1) with M(u) < M(Q) necessarily satisfy E(u) > 0 and
remain bounded in H 1 globally in time (that is, they do not blow up in finite time).

Building upon the earlier heuristic and numerical result of Landman, Papanicolaou, Sulem and Sulem
[Landman et al. 1988] and the first analytical result of Perelman [2001], Merle and Raphaël in a series
of papers (see [Merle and Raphaël 2005] and references therein) studied H 1 solutions to (1-1) such that

E(u) < 0, P(u)= 0, M(Q) < M(u) < M(Q)+α∗ (1-5)

for some small absolute constant α∗ > 0. They showed that any such solution blows up in finite time at
the log-log rate — more precisely, they proved that there exists a threshold time T0(u0)> 0 and a blow-up
time T (u0) > T0(u0) such that

‖∇u(t)‖L2
x
∼

( log|log(T − t)|
T − t

)1/2
for T0 ≤ t < T, (1-6)

where the implicit constant in (1-6) is universal. Also, with scale parameter λ(t)=‖∇Q‖L2/‖∇u(t)‖L2 ,
there exist parameters of position x(t) ∈ Rd and phase γ(t) ∈ R such that if we define the blow-up core

ucore(x, t)=
eiγ(t)

λ(t)d/2
Q
( x − x(t)

λ(t)

)
, (1-7)

and remainder ũ = u− ucore, then ‖ũ‖L2 ≤ α∗ and

‖∇ũ(t)‖L2 .
(

1
|log(T−t)|C(T−t)

)1/2
(1-8)

for some C > 1. There is, in addition, a well-defined blow-up point x0 := limt↗T x(t). We refer to
the region of space {x ∈ Rd

| |x − x0| > R}, for any fixed R > 0, as the external region. While the
Merle–Raphaël analysis accurately describes the activity of the solution in the blow-up core, the only
information it directly yields about the external region is the bound (1-8).

However, it is a consequence of the analysis in [Raphaël 2006] that in the case d = 1, H 1 solutions
in the class (1-5) have bounded H 1/2 norm in the external region all the way up to the blow-up time T .
In [Holmer and Roudenko 2011], we extended this result to the case d = 2. Raphaël and Szeftel [2009]
established for d = 1 that solutions with regularity H N for N ≥ 3 satisfying (1-5) remain bounded in the
H (N−1)/2 norm in the external region, and Zwiers [2011] extended this result to the case d = 2. These
results leave open the possibility that there is a loss of roughly half the regularity in passing from the
initial data to the solution in the external region at blow-up time. The first main result of this paper is that
such a loss does not occur. Specifically, we prove that H 1 solutions in the class (1-5) remain bounded in
the H 1 norm in the external region all the way up to the blow-up time, resolving an open problem posed
in [Raphaël and Szeftel 2009, Comment 1 on page 976].

Theorem 1.1. Consider dimension d = 1 or d = 2. Suppose that u(t) is an H 1 solution to (1-1) in the
Merle–Raphaël class (1-5) (no higher regularity is assumed). Let T > 0 be the blow-up time and x0 ∈Rd
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the blow-up point. Then for any R > 0,

‖∇u(t)‖L∞
[0,T ]L

2
|x−x0|≥R

≤ C, where C depends on R, T0(u0), and ‖∇u0‖L2 .1

We remark that H 1, the energy space, is a natural space in which to study the equation (1-1) since
the conservation laws (1-2) are defined and Lyapunov–Hamiltonian type methods, such as those used by
Merle and Raphaël in their blow-up theory, naturally yield coercivity on H 1 quantities.

The retention of regularity in the external region has applications to the construction of new blow-
up solutions, with special geometry, for L2 supercritical NLS equations. Using their partial regularity
methods, Raphaël [2006] and Raphaël and Szeftel [2009] constructed spherically symmetric finite-time
blow-up solutions to the quintic NLS

i∂t u+1u+ |u|4u = 0 (1-9)

in dimension d ≥ 2 that contract toward a sphere |x | = r0 ∼ 1 following the one-dimensional quintic
blow-up dynamics (1-6)(1-7) in the radial variable near r = r0. Specifically, they showed there exists
an open subset of initial data in some radial function class with corresponding solutions adhering to the
blow-up dynamics described above. In [Raphaël 2006], for d = 2, an open subset of initial data in the
radial energy space H 1

rad(R
2) was obtained. For d = 3, in which case (1-9) is Ḣ 1 critical, Raphaël and

Szeftel [2009] obtained an open subset of initial data in a comparably “thin” subset H 3
rad(R

3) of the radial
energy space H 1

rad(R
3).

As an application of the techniques used to prove Theorem 1.1, we prove, for d = 3, the existence of
an open subset of initial data in the full radial energy space H 1

rad(R
3). For the statement, take Q to be the

solution to (1-3) in the case d = 1, explicitly given by (1-4). The following theorem follows the motif
of the d = 3 case of [Raphaël and Szeftel 2009, Theorem 1] except that P, the initial data, is an open
subset of H 1

rad(R
3) rather than H 3

rad(R
3).

Theorem 1.2. There exists an open subset P ⊂ H 1
rad(R

3) such that the following holds true. Let u0 ∈ P

and let u(t) denote the corresponding solution to (1-9) in the case d = 3. Then there exist a blow-up time
0< T <+∞ and parameters of scale λ(t) > 0, radial position r(t) > 0, and phase γ(t) ∈ R such that if
we take

ucore(t, r) :=
1

λ(t)1/2
Q
(r − r(t)

λ(t)

)
eiγ(t)

and the remainder ũ(t) := u(t)− ucore(t), then the following hold:

(1) The remainder converges in L2: ũ(t)→ u∗ in L2(R3) as t ↗ T .

(2) The position of the singular sphere converges: r(t)→ r0 > 0 as t ↗ T .

1We did not see in the Merle–Raphaël papers the threshold time T0(u0) or the blow-up time T (u0) estimated quantitatively
in terms of properties of the initial data (‖∇u0‖L2 , E(u0), etc.). If such dependence could be quantified, then the constant C in
Theorem 1.1 could be quantified.
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(3) The solution contracts toward the sphere at the log-log rate:

λ(t)
( log|log(T − t)|

T − t

)1/2
→

√
2π

‖Q‖L2
as t ↗ T .

(4) The solution remains H 1-small away from the singular sphere: For each R > 0,

‖u(t)‖H1
|r−r(T )|≥R(R

3) ≤ ε.

The 3D quintic NLS equation (1-9) is energy-critical, and the global well-posedness and scattering
problem is one of several critical regularity problems that has received a lot of attention in the last decade
[Bourgain 1999; Colliander et al. 2008; Kenig and Merle 2006]. The global well-posedness for small
data in Ḣ 1 is classical and follows from the Strichartz estimates. Our Theorem 1.2 takes a large, but
special “prefabricated” approximate blow-up solution, and installs it near radius r = 1 on top of a small
global H 1 background. The main difficulty, of course, is showing that the two different components —
the blow-up portion on the one hand, and the evolution of the small Ḣ 1 background on the other — have
limited interaction and can effectively evolve separately. Thus, it is not surprising that the techniques to
prove Theorem 1.1 are relevant to this analysis.

We now outline the method used to prove Theorem 1.1. We start with a given blow-up solution u(t)
in the Merle–Raphaël class, and by scaling and shifting this solution, it suffices to assume that the blow-
up point is x0 = 0 and the blow-up time is T = 1, and moreover, (1-6) holds over times 0 ≤ t < 1.
Since (1-1) is L2 critical, the size of the L2 norm is highly relevant. By mass conservation, we know
that ‖PN u(t)‖L2

x
. 1 for all N and all 0 ≤ t < 1, where PN denotes the Littlewood–Paley frequency

projection. However, (1-6) shows that for N� (1−t)−(1+δ)/2, we have ‖PN u(t)‖L2
x
.N−1(1−t)−(1+δ)/2,

which is a better estimate for these large frequencies N . In Section 3, we show that this smallness of
high frequencies reinforces itself and ultimately proves that for N � (1 − t)−(1+δ)/2, the solution is
H 1 bounded. This is achieved using dispersive estimates typically employed in local well-posedness
arguments — the Strichartz and Bourgain’s bilinear Strichartz estimates — after the equation has been
restricted to high frequencies. We note that this improvement of regularity at high frequencies is proved
globally in space.

For the Schrödinger equation, frequencies of size N propagate at speed N , and thus, travel a distance
O(1) over a time N−1. Therefore, at time t < 1, a component of the solution in the blow-up core at
frequency N will effectively only make it out of the blow-up core and into the external region before
the blow-up time, provided N & (1− t)−1. Thus, we expect that the blow-up action, which is taking
place at frequency ∼ (1− t)−1/2 log|log(1− t)| � (1− t)−1, will not be able to exit the blow-up core
before blow-up time. This is the philosophy behind the analysis in Section 4. Recall that in Section 3,
we have controlled the solution at frequencies above (1− t)−(1+δ)/2. In Section 4, we apply a spatial
localization to the external region, and then look to control the remaining low frequencies, i.e., those
frequencies below (1− t)−(1+δ)/2. We examine the equation solved by P≤(1−t)−3/4ψu(t), where ψ is a
spatial restriction to the external region. In estimating the inhomogeneous terms, we can make use of the
frequency restriction to exchange α-spatial derivatives for a time factor (1− t)−3α/4. This enables us to
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prove a low-frequency recurrence: The H s size of the solution in the external region is bounded by the
H s−1/8 size of the solution in a slightly larger external region. Iteration gives the H 1 boundedness.

The structure of the paper is as follows. Preliminaries on the Strichartz and bilinear Strichartz estimates
appear in Section 2. The proof of Theorem 1.1 is carried out in Sections Section 3 and 4. The proof of
Theorem 1.2 is carried out in Section 5.

2. Standard estimates

All of the estimates outlined in this section are now classical and well known. Let PN , P≤N , and P≥N

denote the Littlewood–Paley frequency projections.
We say that (q, p) is an admissible pair if 2≤ p ≤∞ and

2
q
+

d
p
=

d
2
,

excluding the case d = 2, q = 2, and p =∞.

Lemma 2.1 (Strichartz estimate). If (q, p) is an admissible pair, then

‖ei t1φ‖Lq
t L p

x
. ‖φ‖L2

x
.

Proof. See [Strichartz 1977] and [Keel and Tao 1998]. �

Lemma 2.2 (Bourgain bilinear Strichartz estimate). Suppose that N1� N2. Then

‖PN1ei t1φ1 PN2ei t1φ2‖L2
t L2

x
.
(N d−1

1

N2

)1/2
‖φ1‖L2

x
‖φ2‖L2

x
, (2-1)

‖PN1ei t1φ1 PN2ei t1φ2‖L2
t L2

x
.
(N d−1

1

N2

)1/2
‖φ1‖L2

x
‖φ2‖L2

x
. (2-2)

Proof. For the 2D estimate (2-1), see [Bourgain 1998, Lemma 111]; the 1D case appears in [Colliander
et al. 2001, Lemma 7.1]; another nice proof is given in [Koch and Tataru 2007, Proposition 3.5], the
other dimensions are analogous. We review the 1D proof to show that the second estimate (2-2) holds
as well.

Denote u = ei t1(PN1φ1) and v = e±i t1(PN2φ2). Then in the 1D case,

ûv(ξ, τ )=
∫
ξ1+ξ2=ξ

P̂N1φ1(ξ1)P̂N2φ2(ξ2)δ(τ − (ξ
2
1 ± ξ

2
2 )) dξ1 (2-3)

=
1

|g′ξ1
(ξ1, ξ2)|

P̂N1φ1 P̂N2φ2|(ξ1,ξ2), (2-4)

where g(ξ1, ξ2)= τ − (ξ
2
1 ± ξ

2
2 ), thus, |g′ξ1

| = 2|ξ1± ξ2|. To estimate the L2
ξ,τ norm of uv, we square the

expression above and integrate in τ and ξ . Changing variables (τ, ξ) to (ξ1, ξ2) with τ = ξ 2
1 ± ξ

2
2 and

ξ = ξ1+ ξ2, we obtain dτdξ = J dξ1dξ2 with the Jacobian J = 2|ξ1± ξ2|, which is of size N2 (note that
± does not matter here, since N2� N1). Bringing the square inside, we get

‖uv‖2L2
x
.
∫
|ξ1|∼N1,|ξ2|∼N2

|φ̂1(ξ1)|
2
|φ̂2(ξ2)|

2 dξ1 dξ2

|ξ1± ξ2|
. 1

N2
‖φ1‖

2
L2

x
‖φ2‖

2
L2

x
. �
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Now we introduce the Fourier restriction norms. For ũ ∈ S(R1+d),

‖ũ‖Xs,b =
∥∥〈Dt 〉

b
〈Dx 〉

se−i t1ũ( · , t)
∥∥

L2
t L2

x
=

(∫
ξ

∫
τ

|̂ũ(ξ, τ )|2〈ξ〉2s
〈τ + |ξ |2〉2b dξ dτ

)1/2
.

If I ⊂ R is an open subinterval and u ∈ D′(I ×Rd), define

‖u‖Xs,b(I ) = inf
ũ
‖ũ‖Xs,b ,

where the infimum is taken over all distributions ũ ∈ S′(R1+d) such that ũ|I = u.

Lemma 2.3. If θ is a function such that supp θ ⊂ I , then for all 0< b < 1,

‖θu‖Xs,b . (‖θ‖L∞ +‖D
max(1/2,b)
t θ‖L2)‖u‖Xs,b(I ). (2-5)

If 0≤ b < 1
2 and χI is the (sharp) characteristic function of the time interval I , then

‖χI u‖Xs,b ∼ ‖u‖Xs,b(I ). (2-6)

Proof. It suffices to take s = 0. The inequality (2-5) follows from the fractional Leibniz rule. To
address (2-6), we note that Jerison and Kenig [1995] prove that ‖χ(0,+∞) f ‖Hb

t
. ‖ f ‖Hb

t
for − 1

2 < b< 1
2 .

Consequently, ‖χI f ‖Hb
t
. ‖ f ‖Hb

t
for any time interval I . Let ũ be an extension of u (meaning ũ|I = u)

so that ‖ũ‖X0,b ≤ 2‖u‖X0,b(I ). Then

‖χI u‖X0,b = ‖〈Dt 〉
be−i t1χI ũ‖L2

t L2
x

=
∥∥‖χI e−i t1ũ‖Hb

t

∥∥
L2

x
.
∥∥‖e−i t1ũ‖Hb

t

∥∥
L2

x

= ‖ũ‖X0,b ≤ 2‖u‖X0,b(I ).

On the other hand, the inequality ‖u‖X0,b(I ) . ‖χI u‖X0,b is trivial, since χI u is an extension of u|I . �

Lemma 2.4. If i∂t u+1u = f on a time interval I = (a1, a2) with |I | = O(1), then

(1) For 1
2 < b ≤ 1, taking I ′ = (a1−ω, a2+ω), 0< ω ≤ 1, we have

‖u(t)− ei(t−a1)1u(a1)‖X0,b(I ) . ω
1/2−b
‖ f ‖X0,b−1(I ′). (2-7)

(2) For 0≤ b < 1
2 ,

‖u(t)− ei(t−a1)1u(a1)‖X0,b(I ) . ‖ f ‖L1
I L2

x
. (2-8)

Moreover, for all b,

‖ei(t−a1)1φ‖X0,b(I ) . ‖φ‖L2
x
.

Proof. Without loss, we take a1 = 0. First we consider (2-7). Since, for t ∈ I ,

e−i t1u( · , t)= u(0)− iθ(t)
∫ t

0
e−i t ′1θ(t ′) f ( · , t ′) dt ′,
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where θ is a cutoff function such that θ(t)= 1 on I and supp θ ⊂ I ′, the estimate reduces to the space-
independent estimate ∥∥∥θ(t) ∫ t

0
h(t ′) dt ′

∥∥∥
Hb

t

. ‖h‖Hb−1
t

for 1
2 < b ≤ 1 (2-9)

by (2-5). Now we prove estimate (2-9). Divide h = P≤1h+ P≥1h and use that∫ t

0
P≥1h(t ′)= 1

2

∫
(sgn(t − t ′)+ sgn(t ′))P≥1h(t ′) dt ′

to obtain the decomposition

θ(t)
∫ t

0
h(t ′) dt ′ = H1(t)+ H2(t)+ H3(t),

where

H1(t)= θ(t)
∫ t

0
P≤1h(t ′) dt ′,

H2(t)= 1
2θ(t)[sgn ∗P≥1h](t) dt ′,

H3(t)= 1
2θ(t)

∫
+∞

−∞

sgn(t ′)P≥1h(t ′) dt ′.

We begin by addressing term H1. By Sobolev embedding (recall 1
2<b≤1) and the L p

→ L p boundedness
of the Hilbert transform for 1< p <∞,

‖H1‖Hb
t
. ‖H1‖L2

t
+‖∂t H1‖L2/(3−2b)

t
.

Using that |I | = O(1) and ‖P≤1h‖L∞t . ‖h‖Hb−1
t

, we thus conclude

‖H1‖Hb
t
.
(
‖θ‖L2

t
+‖θ‖L2/(3−2b)

t
+‖θ ′‖L2/3−2b

t

)
‖h‖Hb−1

t
.

Next we address the term H2. By the fractional Leibniz rule,

‖H2‖Hb
t
. ‖〈Dt 〉

bθ‖L2
t
‖sgn ∗P≥1h‖L∞t +‖θ‖L∞t ‖〈Dt 〉

b(sgn ∗P≥1h)‖L2
t
.

However,

‖sgn ∗P≥1h‖L∞t . ‖〈τ 〉
−1ĥ(τ )‖L1

τ
. ‖h‖Hb−1

t
.

On the other hand,

‖〈Dt 〉
b sgn ∗P≥1h‖L2

t
. ‖〈τ 〉b〈τ 〉−1ĥ(τ )‖L2

τ
. ‖h‖Hb−1

t
.

Consequently,

‖H2‖Hb
t
. (‖〈Dt 〉

bθ‖L2
t
+‖θ‖L∞t )‖h‖Hb−1

t
.

For term H3, we have

‖H3‖Hb
t
. ‖θ‖Hb

t

∥∥∥∫ +∞
−∞

sgn(t ′)P≥1h(t ′) dt ′
∥∥∥

L∞t
.
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However, the second term is handled via Parseval’s identity∫
t ′

sgn(t ′)P≥1h(t ′) dt ′ =
∫
|τ |≥1

τ−1ĥ(τ ) dτ,

from which the appropriate bounds follow again by Cauchy–Schwarz. Collecting our estimates for H1,
H2, and H3, we have ∥∥∥∥θ(t) ∫ t

0
h(t ′) dt ′

∥∥∥∥
Hb

t

. Cθ‖h‖Hb−1
t
,

where
Cθ = ‖θ‖L2

t
+‖θ ′‖L2/(3−2b)

t
+‖〈Dt 〉

bθ‖L2
t
+‖θ‖L2/(3−2b)

t
+‖θ‖L∞t . ω

1/2−b.

This completes the proof of (2-7). Next, we prove (2-8). We have

e−i t1u( · , t)= u(0)− i
∫ t

0
e−i t ′1 f ( · , t ′) dt ′,

and thus, (2-8) reduces, by (2-6), to∥∥∥χI

∫ t

0
g(t ′) dt ′

∥∥∥
Hb

t

. ‖g‖L1
I
, for 0≤ b < 1

2 . (2-10)

To prove (2-10), note that

χI (t)
∫ t

0
g(t ′) dt ′ = χI (t)[χI ∗ (gχI )](t).

Hence,

‖χI

∫ t

0
g(t ′) dt ′‖Hb

t
. ‖〈D〉bχI‖L2

t
‖g‖L1

I
.

The Fourier transform of χI is smooth and decays like |τ |−1 as |τ | →∞, and hence, ‖〈D〉bχI‖L2
t
<∞

for 0≤ b < 1
2 . �

Lemma 2.5 (Strichartz estimate). If (q, r) is an admissible pair, then we have the embedding

‖u‖Lq
I L p

x
. ‖u‖X0,1/2+δ(I ).

Proof. We reproduce the well-known argument. Replace u by an extension to t ∈R such that ‖u‖X0,1/2+δ ≤

2‖u‖X0,1/2+δ(I ). Write

u(x, t)=
∫
ξ

∫
τ

ei tτ ei x ·ξ û(ξ, τ ) dτ dξ.

Change variables τ 7→ τ − |ξ |2 and apply Fubini to obtain

u(x, t)=
∫
τ

ei tτ
∫
ξ

e−i t |ξ |2ei x ·ξ û(ξ, τ − |ξ |2) dξ dτ.

Define fτ (x) by f̂τ (ξ)= û(ξ, τ − |ξ |2). Then the above reads

u(x, t)=
∫
τ

ei tτ ei t1 fτ (x) dτ,
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and hence,

|u(x, t)| ≤
∫
τ

|ei t1 fτ (x)| dτ.

Apply the Strichartz norm, the Minkowski integral inequality, appeal to Lemma 2.1, and invoke Plan-
cherel to obtain

‖u‖Lq
I L p

x
.
∫
τ

‖ f̂τ (ξ)‖L2
ξ

dτ.

The argument is completed using Cauchy–Schwarz in τ (note that we need b> 1
2 , since

∫
R
〈τ 〉−2b dτ has

to be finite). �

Lemma 2.6 (Bourgain bilinear Strichartz estimate). Let N1� N2. Then

‖PN1u1 PN2u2‖L2
I L2

x
.
(N d−1

1

N2

)1/2
‖u1‖X0,1/2+δ(I )‖u2‖X0,1/2+δ(I ),

‖PN1u1 PN2u2‖L2
I L2

x
.
(N d−1

1

N2

)1/2
‖u1‖X0,1/2+δ(I )‖u2‖X0,1/2+δ(I ).

Proof. We reproduce the well-known argument. As in the proof of Lemma 2.5, taking f j,τ (x) defined
by f̂ j,τ (ξ)= û1(ξ, τ − |ξ |

2), we have

u j (x, t)=
∫
τ

ei tτ ei t1 f j,τ (x) dτ.

Plug these into the expression ‖PN1u1 PN2u2‖L2
t L2

x
, and then estimate using Lemma 2.2. �

We need to take b = 1
2 − δ in some places. In those situations, we use this:

Lemma 2.7 (interpolated Strichartz). Take d = 1 or d = 2 and suppose that 0 ≤ b < 1
2 and 2 ≤ p ≤∞

and 2< q ≤∞ satisfy

2
q
+

d
p
>

d
2
+ (1− 2b), (2-11)

2
q
−

1
p
≤

1
2

in the case d = 1 only (2-12)

(see Figure 1). Then

‖u‖Lq
I L p

x
. ‖u‖X0,b(I ). (2-13)

with implicit constant dependent upon the size of the gap from equality in (2-11).

Proof. Let

α :=
1
2

(2
q
+

d
p
−

d
2
− (1− 2b)

)
> 0. (2-14)

Using 0≤ θ ≤ 1 as an interpolation parameter, we aim to deduce (2-13) by interpolation between

‖u‖L q̃
t L p̃

x
. ‖u‖X0,b/(2(b−α)), (2-15)
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Figure 1. The enclosed triangular region gives the values of (1/q, 1/p) meeting the
hypotheses of Lemma 2.7. The top frame is the case d = 1 and the bottom frame is the
case d = 2. The proof of Lemma 2.7 involves interpolating between a point on the line
2/q + d/p = d/2 and the point (1/2, 1/2).
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with weight θ , for some Strichartz admissible pair (q̃, p̃), and the trivial estimate (equality, in fact)

‖u‖L2
t L2

x
. ‖u‖X0,0, (2-16)

with weight 1− θ . The interpolation conditions read

1
q
=
θ

q̃
+

1−θ
2

and 1
p
=
θ

p̃
+

1−θ
2
. (2-17)

Multiplying the first of these relations by 2 and adding d times the second, and using the Strichartz
admissibility condition for (q̃, p̃), we obtain

2
q
+

d
p
=

d
2
+ (1− θ).

Combining this relation with (2-14), we get θ = 2b−2α. We can then solve for q̃ and p̃ using (2-17). �

Lemma 2.8 (interpolated bilinear Strichartz). Let d = 1 or d = 2 and N1� N2. Then

‖PN1u1 PN2u2‖L2
I L2

x
.

N (d−1)/2
1

N 1/2−δ′
2

‖u1‖X0,1/2−δ(I )‖u2‖X0,1/2−δ(I ).

Proof. First, observe that
‖PN1u1 PN2u2‖L2

I L2
x
. ‖u1‖L4

I L4
x
‖u2‖L4

I L4
x
. (2-18)

In the case d = 1, L4
I L4

x interpolates between L6
I L6

x and L2
I L2

x , and thus ‖u j‖L4
I L4

x
. ‖u j‖X0,3/8+δ(I ) by

Lemma 2.7. We conclude that

‖PN1u1 PN2u2‖L2
I L2

x
. ‖u1‖X0,3/8+δ(I )‖u2‖X0,3/8+δ(I ).

Interpolating this with the result of Lemma 2.6 completes the proof in the case d = 1.
In the case d = 2, we still begin with (2-18). Fix ε > 0 small. By Sobolev embedding,

‖PN j u j‖L4
I L4

x
. N ε

j ‖PN j u j‖L4
I L4/(1+2ε)

x
.

By Lemma 2.7, we have
‖PN j u j‖L4

I L4/(1+2ε)
x

. ‖u j‖X0,b

for any b > 1
2(1− ε). Plugging into (2-18), we obtain

‖PN1u1 PN2u2‖L2
I L2

x
. N 2ε

2 ‖u1‖X0,b‖u2‖X0,b for any b > 1
2(1− ε).

Interpolating this with the result of Lemma 2.6 completes the proof in the case d = 2. �

Remark 2.9. After this section we will adopt new notation: Instead of Xs,1/2+δ we will simply write
Xs,1/2+. If an expression has two different Bourgain spaces, it will mean that the delta’s will be different.
Similarly, if an expression involves δ in the estimate on the right side, it will mean that this δ will be
different from the one that would be chosen for spaces such as Xs,1/2+ or L p−.

The following is a simple consequence of the pseudodifferential calculus; see [Stein 1993, Theorem1
on page 234 and Theorem 2 on page 237]; see also [Evans and Zworski 2003].
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Lemma 2.10. Suppose that φ is a smooth function on R such that ‖∂αx φ‖L∞ ≤ cα for all α ≥ 0. Then

‖P≥N (φg)−φP≥N g‖L2 . N−1
‖g‖L2 for N ≥ 1.

Proof. Let χ(ξ) be a smooth function that is 1 for |ξ | ≥ 1 and is 0 for |ξ | ≤ 1
2 . P≥N is a pseudodifferential

operator with symbol χ(N−1ξ) and Mφ , the operator of multiplication by φ, is a pseudodifferential
operator with symbol φ(x). The commutator [PN ,Mφ] has symbol with top-order asymptotic term
N−1χ ′(N−1ξ)φ′(x). The result then follows from the L2

→ L2 boundedness of 0-order operators. �

3. Additional high-frequency regularity

In this section, we begin the proof of Theorem 1.1 by showing improved regularity at high frequencies,
above the blow-up scale, with no restriction in space — this appears as Proposition 3.4 below. In Section 4
below, we will complete the proof of Theorem 1.1 by appealing to a finite-speed of propagation argument
for lower frequencies after we have restricted in space to outside the blow-up core.

Consider a solution u(t) to (1-1) in the Merle–Raphaël class (1-5); let T0 > 0 be the threshold time,
T > T0 the blow-up time and x0 the blow-up point, as described in the introduction. Our analysis
focuses on the time interval [T0, T ) on which the log-log asymptotics (1-6) kick in. Apply a space-time
(rescaling) shift, in which x = x0 is sent to x = 0 and the time interval [T0, T ) is sent to [0, 1), to obtain
a transformed solution that we henceforth still denote by u(t). Now the blow-up time is T = 1, the
blow-up point is x = 0, and (1-6) becomes2

‖∇u(t)‖L2
x
∼

( log|log(1− t)|
1− t

)1/2
, (3-1)

which is now valid for all 0 ≤ t < 1. Note that now, however, the time t = 0 “initial data”, which we
henceforth denote u0, does not correspond to the original initial data u0 in Theorem 1.1. We remark that
the estimate (1-8) on the remainder ũ(t) becomes

‖∇ũ(t)‖L2
x
. 1
(1−t)1/2|log(1−t)|

. (3-2)

In our analysis, the norm L∞I L2
x for an interval I = [0, T ′], T ′ < T , will be replaced by the norm

X0,1/2+(I ). While we have, from Lemma 2.5, the bound

‖u‖L∞I L2
x
. ‖u‖X0,1/2+(I ),

the reverse bound does not in general hold. Nevertheless, (3-1) indicates that the solution is blowing
up close to the scale rate (1− t)−1/2. Thus, the local theory combined with (3-1) implies a bound on
‖u‖X1,1/2+(I ), where log|log(1− T ′)| is weakened to (1− T ′)−δ.

2 The rescaling is the following. If we take u(x, t) in the original frame (for T0 ≤ t < T ), and let

u(x, t)= µd/2v(µ(x − x0), µ
2(t − T0))

with µ = (T − T0)
−1/2, then v(y, s) is defined in the modified frame (for 0 ≤ s < 1). Moreover, we have ‖∇v(s)‖L2

x
∼

(log|logµ−2(1− s)|)1/2(1− s)−1/2, so now the implicit constant of comparability in (3-1) depends on T − T0.
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Lemma 3.1. For I = [0, T ′] with T ′ < T , for 0< s ≤ 1, we have

‖u‖Xs, 1
2+
(I ) ≤ cs(1− T ′)−s(1+δ)/2, with cs ↗+∞ as s↘ 0.

The fact that cs diverges as s ↘ 0 results from the fact that (1-1) is L2-critical, and thus, the local
theory estimates break down at s = 0. At the technical level, some slack is needed in applying the
Strichartz and bilinear Strichartz estimates; hence, we need to take b= 1/2− δ in place of b= 1/2+ δ′.

Proof. We just carry out the argument for s= 1. Let λ(t)=‖∇u(t)‖−1
L2 . Let sk be the increasing sequence

of times3 such that λ(sk)= 2−k , so that ‖∇u(t)‖L2 doubles over [sk, sk+1]. From (3-1), we compute that
sk = 1− 2−2k log k. Note that sk+1− sk ≈ 2−2k log k. Hence, we can rescale the cutoff solution u(t) on
the time interval [sk, sk+1] to a solution u′ on the time interval [0, log k] so that ‖u′‖L∞

[0,log k]H
1
x
∼ 1. We

invoke the local theory over ∼ log k time intervals J each of unit size to obtain ‖u′‖X1,1/2+(J ) ∼ 1, which
are square summed to obtain ‖u′‖X1,1/2+(0,log k)∼ (log k)1/2. Returning to the original frame of reference,
we conclude that

‖u‖X1,1/2+(sk ,sk+1) . 2k(1+δ),

where a δ-loss is incurred in part from the (log k)1/2 factor but also from the b = 1
2 + δ weight in the X

norm. Thus,

‖u‖X1,1/2+(0,sK ) =

(K−1∑
k=1

22k(1+δ)
)1/2
∼ 2K (1+δ). �

Now suppose that u(t) satisfies (3-1). Let tk = 1− 2−k and Ik = [0, tk]. Then from (3-1) and mass
conservation, we have

‖P≥N u(t)‖L∞Ik L2
x
.

{
2k(1+δ)/2 N−1 for N ≥ 2k(1+δ)/2,

1 for N ≤ 2k(1+δ)/2.
(3-3)

To refine (3-3), we will work with local-theory estimates and thus use the analogous bound on the
Bourgain norm X0,1/2+(Ik). From Lemma 3.1 we obtain

‖P≥N u‖X0,1/2+(Ik) . N−s
‖P≥N u‖Xs,1/2+(Ik) ≤ cs N−s2ks(1+δ)/2. (3-4)

We obtain from (3-4) that

‖P≥N u‖X0,1/2+(Ik) .

{
2k(1+δ)/2 N−1 for N ≥ 2k(1+δ)/2,

2kδ′ for N ≤ 2k(1+δ)/2.
(3-5)

The next step is to run local-theory estimates to improve (3-5) at high frequencies. Frequencies
N . 2k

∼ (1− tk)−1 on Ik effectively do not make it out of the blow-up core before blow-up time due
to the finite speed of propagation for such frequencies.4 Hence, these low frequencies can be controlled
by spatial location, which we address in Section 4. On the other hand, (3-5) shows that the solution at

3One of the conclusions of the Merle–Raphaël analysis is the almost monotonicity of the scale parameter λ(t)=‖∇u(t)‖−1
L2 :

λ(t2) < 2λ(t1) for all t2 ≥ t1.
4Recall that for the Schrödinger equation, frequencies of size N propagate at speed N and thus travel a distance O(1) in

time N−1.
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frequencies N & 2k(1+δ)/2 is small. Thus, for these high frequencies, dispersive estimates might be able,
upon iteration, to show that the solution is even smaller at these high frequencies.

To chose an intermediate dividing point between the high frequencies that are capable of exiting the
blow-up core before blow-up time (N & 2k) and the frequency scale at which the blow-up is taking place
(N ∼ 2k/2(log k)1/2), we consider frequencies ≥ 23k/4 to be high frequencies and frequencies ≤ 23k/4

to be low frequencies. The goal of this section is Proposition 3.4 below, which shows that the high
frequencies are bounded in H 1. In Section 4 below, we will localize in space to the external region and
then control the low frequencies.

We first address the dimension d = 1 case.

Lemma 3.2 (high frequency recurrence in one dimension). Take d = 1. Let tk = 1−2−k and Ik = [0, tk].
Let u(t) be a solution such that (3-1) holds, and define

α(k, N )= ‖P≥N u‖X0,1/2+(Ik). (3-6)

Then there exists an absolute constant 0< µ� 1 such that for N ≥ 2k(1+δ)/2,

‖P≥N (u− ei t∂2
x u0)‖X0,1/2+(Ik) . 2k(1+δ)/2 N−1+δα(k+ 1, µN )+ 2kδα(k+ 1, µN )2. (3-7)

In particular, by Lemma 2.4,

α(k, N ). ‖P≥N u0‖L2
x
+ 2k(1+δ)/2 N−1+δα(k+ 1, µN )+ 2kδα(k+ 1, µN )2. (3-8)

Proof. By (2-7) of Lemma 2.4 with ω = 2−k−1 and I = Ik ,

‖P≥N (u− ei t∂2
x u0)‖X0,1/2+(Ik) . 2kδ

‖P≥N (|u|4u)‖X0,−1/2+(Ik+1).

In the rest of the proof, we estimate the right side of the estimate above, and we will just write Ik instead
of Ik+1 for convenience. By duality,

‖P≥N (|u|4u)‖X0,−1/2+(Ik) = sup
‖w‖X0,1/2−(Ik )=1

∫
Ik

∫
x∈R

P≥N (|u|4u) w dx dt.

Fix w with ‖w‖X0,1/2−(Ik) = 1 and let

J :=
∫

Ik

∫
x∈R

P≥N (|u|4u) w dx dt.

Then J can be decomposed into a finite sum of terms Jα, each of the form (we have dropped complex
conjugates, since they are unimportant in the analysis)

Jα :=
∫ tk

0

∫
x∈R

P≥N (u1u2u3u4u5) w dx dt

such that each term (after a relabeling of the u j for 1≤ j ≤ 5) falls into exactly one of the following two
categories.5

5Indeed, decompose each u j as u j = u j,lo + u j,med + u j,hi, where u j,lo = P≤N/160u j , u j,med = PN/160≤ ·≤N/20, and
u j,hi = P≥N/20u j . Then in the expansion of u1u2u3u4u5, at least one term must be “hi”; without loss take this to be u5.
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Note that w is frequency supported in |ξ |& N .

Case 1 (exactly one high). Each u j for 1≤ j ≤ 4 is frequency supported in |ξ | ≤µN and u5 is frequency
supported in |ξ | ≥ 8µN . In this case, we estimate as

|Jα| ≤ ‖u1‖L∞Ik L∞x ‖u2‖L∞Ik L∞x ‖u3u5‖L2
Ik

L2
x
‖u4w‖L2

Ik
L2

x
. (3-9)

For j = 1, 2, Gagliardo–Nirenberg and (3-1) implies

‖u j‖L∞Ik L∞x . ‖u j‖
1/2
L∞Ik L2

x
‖∂x u j‖

1/2
L∞Ik L2

x
. 2k(1+δ)/4. (3-10)

The bilinear Strichartz estimate (Lemma 2.6) yields

‖u3u5‖L2
Ik

L2
x
. N−1/2

‖u3‖X0,1/2+(Ik)‖u5‖X0,1/2+(Ik) . N−1/22kδα(k, µN ). (3-11)

The interpolated bilinear Strichartz estimate (Lemma 2.8) yields

‖u4w‖L2
Ik

L2
x
. N−1/2+δ

‖u4‖X0,1/2+(Ik)‖w‖X0,1/2−(Ik) . N−1/2+δ2kδ. (3-12)

Substituting (3-10), (3-11), and (3-12) into (3-9), we obtain

|Jα|. 2k(1+δ)/2 N−1+δα(k, µN ).

Case 2 (at least two high). Both u4 and u5 are frequency supported in |ξ | ≥ µN (no restrictions on u j

for 1≤ j ≤ 3). Then we estimate as

|Jα| ≤ ‖u1‖L6
Ik

L6+δ
x
‖u2‖L6

Ik
L6

x
‖u3‖L6

Ik
L6

x
‖u4‖L6

Ik
L6

x
‖u5‖L6

Ik
L6

x
‖w‖L6

Ik
L6−δ′

x
. (3-13)

For 2≤ j ≤ 3 we invoke the Strichartz estimate (Lemma 2.5) and (3-5) to obtain

‖u j‖L6
Ik

L6
x
. ‖u j‖X0,1/2+(Ik) ≤ 2kδ. (3-14)

For 4≤ j ≤ 5 we invoke the Strichartz estimate (Lemma 2.5) and (3-6) to obtain

‖u j‖L6
Ik

L6
x
. ‖u j‖X0,1/2+ ≤ α(k, µN ). (3-15)

For j = 1, by Sobolev embedding, the Strichartz estimate (Lemma 2.5), and (3-5),

‖u1‖L6
Ik

L6+
x
. ‖Dδ

x u1‖L6
Ik

L6
x
. ‖u1‖Xδ,1/2+(Ik) . 2kδ. (3-16)

By the interpolated Strichartz estimate (Lemma 2.7), we have

‖w‖L6
t L6−

x
. ‖w‖X0,1/2−(Ik) = 1. (3-17)

Using (3-14)–(3-17) in (3-13),
|Jα|. 2kδα(k, µN )2. �

In the 2D case, we will just go ahead and assume that N ≥ 23k/4 to reduce confusion with deltas.

Case 1 corresponds to u1,lou2,lou3,lou4,lou5,hi and Case 2 corresponds to everything else (at least one u j for 1 ≤ j ≤ 4 must
be “med” or “hi”. Hence, we can take µ= 1/160.
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Lemma 3.3 (high frequency recurrence, 2D). Take d = 2. Let tk = 1− 2−k and Ik = [0, tk]. Let u(t) be
a solution such that (3-1) holds and define

α(k, N ) := ‖P≥N u‖X0,1/2+(Ik). (3-18)

Then there exists an absolute constant 0< µ� 1 such that for N & 23k/4,

‖P≥N (u− ei t1u0)‖X0,1/2+(Ik) . 2kδN−1/6+δα(k+ 1, µN ). (3-19)

In particular, by Lemma 2.4,

α(k, N ). ‖P≥N u‖L2
x
+ 2kδN−1/6+δα(k+ 1, µN ). (3-20)

Proof. By Lemma 2.4 (2-7) with I = Ik and ω = 2−k−1,

‖P≥N (u− ei t1u0)‖X0,1/2+(Ik) . 2kδ
‖P≥N (|u|2u)‖X0,−1/2+(Ik+1).

In the remainder of the proof, we estimate the right side, and for convenience take Ik+1 to be Ik . By
duality,

‖P≥N (|u|2u)‖X0,−1/2+(Ik) = sup
‖w‖X0,1/2−(Ik )=1

∫
Ik

∫
x∈R

P≥N (|u|2u) w dx dt.

Fix w with ‖w‖X0,1/2−(Ik) = 1 and let

J :=
∫

Ik

∫
x∈R

P≥N (|u|2u) w dx dt.

Then J can be decomposed into a finite sum of terms Jα, each of the form (we have dropped complex
conjugates, since they are unimportant in the analysis)

Jα :=
∫ tk

0

∫
x∈R

P≥N (u1u2u3) w dx dt

such that each term (after a relabeling of the u j for 1≤ j ≤ 3) falls into exactly one of the following two
categories.6 Note that w is frequency supported in |ξ |& N .

Case 1′ (exactly one high). Both u1 and u2 are frequency supported in |ξ | ≤ N 5/6 and u3 is frequency
supported in |ξ | ≥ N/12. In this case, we estimate as

|Jα|. ‖u1w‖L2
Ik

L2
x
‖u2u3‖L2

Ik
L2

x
.

By the interpolated bilinear Strichartz estimate (Lemma 2.8),

‖u1w‖L2
Ik

L2
x
. (N 5/6)1/2 N−1/2+δ

‖u1‖X0,1/2−(Ik)‖w‖X0,1/2−(Ik) . N−1/12+δ2kδ,

6Indeed, decompose u j =u j,lo+u j,med+u j,hi, where u j,lo= P
≤N 5/6 u j , u j,med= PN 5/6≤ ·≤N/12, and u j,hi= P≥N/12u j .

Then at least one term must be “hi”; take it to be u3. Case 1′ corresponds to u1,lou2,lou3,hi and Case 2′ corresponds to all other
possibilities. Hence, we can take µ= 1/12.
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and by Lemma 2.6 directly,

‖u2u3‖L2
Ik

L2
x
. (N 5/6)1/2 N−1/2+δ

‖u2‖X0,1/2+(Ik)‖u3‖X0,1/2+(Ik) . N−1/12+δ2kδα(k, µN ).

Combining yields
|Jα|. N−1/6+δ2kδα(k, µN ).

Case 2′ (at least two high). Here we suppose that u2 is frequency supported in |ξ | ≥ N 5/6 and u3 is
frequency supported in |ξ | ≥ µN ; we make no assumptions about u1. Then we estimate as

|Jα|. ‖u1‖L4
Ik

L4+δ
x
‖u2‖L4

Ik
L4

x
‖u3‖L4

Ik
L4

x
‖w‖L4

Ik
L4−δ

x
.

For u1, we use Sobolev embedding and (3-5) to obtain

‖u1‖L4
Ik

L4+δ
x
. ‖Dδ

x u1‖L4
Ik

L4
x
. ‖u1‖X

δ, 1
2+
(Ik) . 2kδ.

Since N & 23k/4, we have N 5/6 & 25k/8
� 2k(1+δ)/2, and thus by Lemma 2.5 and (3-5),

‖u2‖L4
Ik

L4
x
. 2k(1+δ)/2 N−5/6 . (2k(1+δ)N−2/3)N−1/6

. 2kαN−1/6, since N & 23k/4.

For u3, we use Lemma 2.5 and (3-18) to obtain

‖u3‖L4
Ik

L4
x
. α(k, µN ).

Combining, we obtain (changing deltas)

|Jα|. 2kδN−1/6α(k, µN ). �

The main result of this section is the following. It states that high frequencies (those strictly above
23k/4) are H 1 bounded on Ik . Moreover, if we subtract the linear flow, we obtain H 4/3−δ boundedness
for frequencies above 23k/4 in the case d = 1 and H 7/6−δ boundedness for frequencies above 23k/4 in the
case d = 2.7

Proposition 3.4. Let tk = 1− 2−k , Ik = [0, tk], and let u(t) be a solution to (1-1) such that (3-1) holds.
Then we have

‖P≥23k/4u(t)‖L∞Ik H1
x
. ‖P≥23k/4u(t)‖X1,1/2+(Ik) . 1.

Moreover, we have the following regularity above H 1 after the linear flow of the initial data is removed:
For any 0≤ s ≤ 4

3 − δ in the case d = 1 and for any 0≤ s ≤ 7
6 − δ in the case d = 2, we have

‖P≥23k/4(u(t)− ei t1u0)‖L∞Ik H s
x
. ‖P≥23k/4(u(t)− ei t1u0)‖Xs,1/2+δ(Ik) . 1. (3-21)

7 In fact, the threshold ≥ 23k/4, to obtain H1 boundedness (but not (3-21)), can be replaced by 2k(1+δ)/2 for any δ > 0; in
the d = 1 case, one can appeal to Lemma 3.2 with a strictly smaller choice of δ in order to obtain a nontrivial gain upon each
application of Lemma 3.2. The number of applications of Lemma 3.2 is still finite number but δ-dependent. In the 2D case,
Lemma 3.3 would first need to be rewritten. We have stated the proposition with threshold ≥ 23k/4 because this is all that is
needed in Section 4, and it allows us to avoid confusion with multiple small parameters.
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Proof. We carry out the d = 1 case in full, which is a consequence of Lemma 3.2. The d = 2 case follows
from Lemma 3.3 in a similar way.

By (3-5), we start with the knowledge that α(k, N ). 2k(1+δ)/2 N−1 for N ≥ 2k(1+δ)/2. Note

‖P≥N u0‖L2
x
. N−1

‖∇u0‖L2
x
. N−1.

By (3-8) in Lemma 3.2,

α(k, N ). N−1
+ 2k(1+δ)/2 N−1+δα(k+ 1, µN ). (3-22)

Application of (3-22) m times gives

α(k, N ). N−1
(m−1∑

j=0

(2k(1+δ)/2 N−1+δ) j
)
+ (2k(1+δ)/2 N−1+δ)mα(k+m, µm N ).

Since N ≥ 23k/4, we have 2k/2 N−1 . N−1/3. Taking m = 7 we obtain α(k, N ). N−1. Substituting this
into (3-7) of Lemma 3.2, we obtain

‖P≥N (u(t)− ei t∂2
x u0)‖X0,1/2+(Ik) . 2k(1+δ)/2 N−2+δ . N−4/3+δ. �

4. Finite speed of propagation

Recall that the main result of the last section was Proposition 3.4, which showed that the solution at
frequencies ≥ 23k/4 is H 1 bounded on Ik . This was achieved without applying any restriction in space.
In this section, we apply a spatial restriction to |x | ≥ R (outside the blow-up core), and study the low
frequencies ≤ 23k/4 on Ik . Since frequencies of size N propagate at speed N , and thus travel a distance
O(1) over a time N−1, we expect that frequencies of size . 2k involved in the blow-up dynamics will
be incapable of exiting the blow-up core |x | ≤ R before blow-up time.

Since Ik = [0, tk] and tk = 1− 2−k , restricting to frequencies ≤ 23k/4 on Ik for each k is effectively
equivalent to inserting a time-dependent spatial frequency projection P≤(1−t)−3/4 . The main technical
Lemma 4.3 below shows that, for 0 < r1 < r2 <∞, the H s size of the solution in the external region
|x | ≥ r2 is bounded by the H s−1/8 size of the solution in the slightly larger external region |x | ≥ r1.
This lemma is proved by studying the equation solved by P≤(1−t)−3/4ψu, where ψ is a spatial cutoff.
In estimating the inhomogeneous terms of this equation, we use that the presence of the P≤(1−t)−3/4

projection enables an exchange of α spatial derivatives for a factor of (1− t)−3α/4. This is the manner in
which finite speed of propagation is implemented. Lemma 4.3 is the main recurrence device for proving
Proposition 4.4, giving the H 1 boundedness of the solution in the external region, completing the proof
of Theorem 1.1.

Before getting to Lemma 4.3, we begin by using the method of Raphaël [2006], based on the use of
local smoothing and (3-2), to achieve a small gain of regularity.8

8In the d = 1 case, we obtain a gain of 2/5 derivatives in this first step, but in fact the proof could be rewritten to achieve a
gain of s < 1/2 derivatives. The reason s = 1/2 derivatives cannot be achieved in one step is the failure of the H1/2 ↪→ L∞

embedding needed to estimate the nonlinear term. One could achieve 1/2 derivatives by running the same argument twice, but
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Lemma 4.1 (a little regularity, d = 1 case). Suppose d = 1. Suppose that u(t) solving (1-1) with H 1

initial data satisfies (3-1). Fix R > 0. Then

‖〈Dx 〉
2/5ψRu‖L∞

[0,1)L
2
x
. 1,

where ψR(x) = ψ(x/R) and ψ(x) is a smooth cutoff with ψ(x) = 1 for |x | ≥ 1/2 and ψ(x) = 0 for
|x | ≤ 1/4.

Proof. Let w = ψRu and q = ψR/2u. Then w solves the equation

i∂tw+ ∂
2
xw =−|q|

4w+ 2∂x(ψ
′

R u)−ψ ′′R u= F1+ F2+ F3.

Apply 〈Dx 〉
2/5, and estimate with I = [T1, 1) using the (dual) local smoothing estimate for the F2 term:

‖〈Dx 〉
2/5w‖L∞I L2

x
. ‖〈Dx 〉

2/5w(T1)‖L2
x
+‖〈Dx 〉

2/5 F1‖L1
I L2

x

+‖〈Dx 〉
2/5
〈Dx 〉

−1/2 F2‖L2
I L2

x
+‖〈Dx 〉

2/5 F3‖L1
I L2

x
.

We begin by estimating term F1. By the fractional Leibniz rule,

‖D2/5
x F1‖L1

I L2
x
. ‖|q|4‖L1

I L∞x
‖D2/5

x w‖L∞I L2
x
+‖D2/5

x |q|
4
‖L1

I L5/2
x
‖w‖L∞I L10

x
.

.
(
‖|q|4‖L1

I L∞x
+‖D2/5

x |q|
4
‖L1

I L5/2
x

)
‖D2/5

x w‖L∞I L2
x
.

By Sobolev/Gagliardo–Nirenberg embedding and (3-2),

‖|q|4‖L∞x +‖D
2/5
x |q|

4
‖L5/2

x
. ‖q‖2L2

x
‖∂xq‖2L2

x
. (1− t)−1(log(1− t)−1)−2.

Applying the L1
I time norm, we obtain a bound by (log(1− T1)

−1)−1. Hence,

‖〈Dx 〉
2/5 F1‖L1

I L2
x
. (log(1− T1)

−1)−1
‖〈Dx 〉

2/5w‖L∞I L2
x
.

Next, we address term F2. We have

‖〈Dx 〉
2/5
〈Dx 〉

−1/2 F2‖L2
I L2

x
. ‖〈Dx 〉

9/10q‖L2
I L2

x
. ‖q‖1/10

L∞I L2
x
‖‖〈∂x 〉q‖

9/10
L2

x
‖L2

I
.

From (3-2), we have ‖∂xq‖L2
x
. (T − t)−1/2

|log(1− t)|−1 and hence

‖〈Dx 〉
2/5
〈Dx 〉

−1/2 F2‖L2
I L2

x
. (1− T1)

1/10.

Term F3 is comparatively straightforward. Indeed, we obtain

‖〈Dx 〉
2/5 F3‖L1

I L2
x
. ‖u‖3/5L∞I L2

x
‖‖〈∂x 〉ψ2u‖2/5L2

x
‖L1

I
. (1− T1)

4/5.

Collecting the estimates above, we obtain

‖〈Dx 〉
2/5w‖L∞I L2

x
. ‖〈Dx 〉

2/5w(T1)‖L2
x
+ (log(1− T1)

−1)−1
‖〈Dx 〉

2/5w‖L∞I L2
x
+ (1− T1)

1/10.

this is unnecessary since we only need a small gain of s > 0 to complete the proof of our main new Lemma 4.3/Proposition 4.4
below, which enables us to reach the full s = 1 gain. One cannot achieve a gain of s > 1/2 by the method employed in the proof
of Lemma 4.1 alone due to the term ∂x (ψ

′
R u).
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By taking T1 sufficiently close to 1 so that (log(1− T1)
−1)−1 beats out the (absolute) implicit constants

furnished by the estimates, we obtain

‖〈Dx 〉
2/5w‖L∞I L2

x
. ‖〈Dx 〉

2/5w(T1)‖L2
x
+ (1− T1)

1/10. �

Lemma 4.2 (a little regularity, d = 2 case). Suppose d = 2. Suppose that u(t) solving (1-1) with H 1

initial data satisfies (3-1). Fix R > 0. Then

‖〈Dx 〉
1/2ψRu‖L∞

[0,1)L
2
x
. 1,

where ψR(x)=ψ(x/R) and ψ(x) is a smooth cutoff with ψ(x)= 1 for |x | ≥ 1
2 and ψ(x)= 0 for |x | ≤ 1

4 .

Proof. Let w = ψRu and q = ψR/2u, and take ψ̃ =∇xψR and ˜̃ψ =1xψR . Then w solves the equation

i∂tw+1w =−|q|2w+ 2∇x · (ψ̃ u)− ˜̃ψ u = F1+ F2+ F3.

Apply 〈Dx 〉
1/2, and estimate with I = [T1, 1) using the (dual) local smoothing estimate for the term F2:

‖〈Dx 〉
1/2w‖L∞I L2

x
+‖〈Dx 〉

1/2w‖L4
I L4

x

. ‖〈Dx 〉
1/2w0‖L2

x
+‖〈Dx 〉

1/2 F1‖L4/3
I L4/3

x
+‖F2‖L2

I L2
x
+‖〈Dx 〉

1/2 F3‖L1
I L2

x
.

Before we begin treating term F1, let us note that by (3-2), ‖∇q‖L2
x
. (1− t)−1/2(log(1− t)−1)−1 and

hence ‖∇q‖L2
I L2

x
. (log(1−T1)

−1)−1/2. By the fractional Leibniz rule and Sobolev/Gagliardo–Nirenberg
embedding,

‖D1/2
x |q|

2
‖L2

x
. ‖D1/2

x q‖L4
x
‖q‖L4

x
. ‖q‖1/2L2

x
‖∇q‖3/2L2

x
.

Hence,
‖D1/2

x |q|
2
‖L4/3

I L2
x
. ‖q‖1/2L∞I L2

x
‖∇q‖3/2

L2
I L2

x
. (log(1− T1)

−1)−3/4. (4-1)

Also, we have
‖q‖L4

x
. ‖D1/2

x q‖L2
x
. ‖q‖1/2L2

x
‖∇q‖1/2L2

x
,

and hence
‖q‖2L4

I L4
x
. ‖q‖L∞I L2

x
‖∇q‖L2

I L2
x
. (log(1− T1)

−1)−1/2. (4-2)

Now we proceed with the estimates for term F1. By the fractional Leibniz rule (in x),

‖〈Dx 〉
1/2 F1‖L4/3

I L4/3
x
. ‖〈Dx 〉

1/2
|q|2‖L4/3

I L2
x
‖w‖L∞I L4

x
+‖|q|2‖L2

I L2
x
‖〈Dx 〉

1/2w‖L4
I L4

x
.

By (4-1) and (4-2), we obtain

‖〈Dx 〉
1/2 F1‖L4/3

I L4/3
x
. (log(1− T1)

−1)−1/2(‖〈Dx 〉
1/2w‖L∞I L2

x
+‖〈Dx 〉

1/2w‖L4
I L4

x
).

Next, we treat the F2 term. Again since ‖∇q‖L2
x
. (1− t)−1/2(log(1− t)−1)−1,

‖F2‖L2
I L2

x
. (log(1− T1)

−1)−1.

The F3 term is comparatively straightforward.
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Collecting the estimates above, we have

‖〈Dx 〉
1/2w‖L∞I L2

x
+‖〈Dx 〉

1/2w‖L4
I L4

x

. ‖〈Dx 〉
1/2w(T1)‖L2

x
+ (log(1− T1)

−1)−1

+ (log(1− T1)
−1)−1/2(‖〈Dx 〉

1/2w‖L∞I L2
x
+‖〈Dx 〉

1/2w‖L4
I L4

x
).

By taking T1 sufficiently close to 1, we obtain

‖〈Dx 〉
1/2w‖L∞I L2

x
. ‖〈Dx 〉

1/2w(T1)‖L2
x
+ (log(1− T1)

−1)−1. �

Lemma 4.3 (low frequency recurrence). Let d = 1 or d = 2, 0< R ≤ r1 < r2 and 1
8 ≤ s ≤ 1. Let ψ1(x)

and ψ2(x) be smooth radial cutoff functions such that

ψ1(x)=
{

0 on |x | ≤ r1,

1 on |x | ≥ 1
2(r1+ r2)

and ψ2(x)=
{

0 on |x | ≤ 1
2(r1+ r2),

1 on |x | ≥ r2.

Then
‖Ds

xψ2u‖L∞
[0,1)L

2
x
. 1+‖〈Dx 〉

s−1/8ψ1u‖L∞
[0,1)L

2
x
.

Proof. Let χ(ρ) be a smooth function such that χ(ρ) = 1 for |ρ| ≤ 1 for χ(ρ) = 0 for |ρ| ≥ 2. Let
P− = P≤(T−t)−3/4 be the time-dependent multiplier operator defined by P̂ f (ξ) = χ((T − t)3/4|ξ |) f̂ (ξ)
(where the Fourier transform is in space only). Note that the Fourier support of P at time tk = 1− 2−k

is . 23k/4. We further have that

∂t P− f = 3
4 i(1− t)−1/4 Q Dx f + P∂t f,

where Q = Q(1−t)−3/4 is the time-dependent multiplier

Q̂ f (ξ)= χ ′((1− t)3/4|ξ |) f̂ (ξ).

Note that the Fourier support of Q at time tk = 1− 2−k is ∼ 23k/4. Note also that if g = g(x) is any
function, then

‖P Dα
x g‖L2

x
≤ (1− t)−3α/4

‖g‖L2
x
. (4-3)

Let w = P−ψ2u. Taking ψ̃2 =∇xψ2 and ˜̃ψ2 =1xψ2, we have

i∂tw+1w =−i(1− t)−1/4 Q · ∇x w− P−ψ2|u|4/du+ 2P−∇x · [ψ̃2u] − P−˜̃ψ2u

= F1+ F2+ F3+ F4.

By the energy method,

‖Ds
xw‖

2
L∞
[0,1)L

2
x
. ‖Ds

xw(0)‖
2
L2

x
+

∫ 1

0
|〈Ds

x F1(s), Ds
xw(s)〉L2

x
| ds+ 10

4∑
j=2

‖Ds
x F j‖

2
L1
[0,1)L

2
x
.

For term F1, we argue as follows. Let Q̃ be a projection onto frequencies of size (1− t)−3/4. Then∫ 1

0
|〈Ds

x F1(s), Ds
xw(s)〉L2

x
| ds .

∫ 1

0
(1− s)−1/4

‖D1/2+s
x Q̃ψ2u(s)‖2L2

x
ds.
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Applying (4-3) with α = 1
2 , we can control the above by∫ 1

0
(1− s)−1

‖Ds
x Q̃ψ2u(s)‖2L2

x
ds.

Dividing the time interval [0, 1)=
⋃
∞

k=1[tk, tk+1), we bound the above by

+∞∑
k=1

2k
∫ tk+1

tk
‖Ds

x P23k/4ψ2u(s)‖2L2
x

ds .
+∞∑
k=1

‖Ds
x P23k/4ψ2u(s)‖2L∞

[tk ,tk+1)
L2

x
,

where P23k/4 is the projection onto frequencies of size ∼ 23k/4 (and not . 23k/4). However, writing
u(t)= ei t1u0+ (u(t)− ei t1u0), the above is controlled by (taking s = 1, the worst case)

∞∑
k=1

‖∇x P23k/4u0‖
2
L2

x
+

+∞∑
k=1

‖∇x P23k/4(u(t)− ei t1u0)‖
2
L2

x
.

By (3-21) of Proposition 3.4,

‖∇x u0‖
2
L2

x
+

+∞∑
k=1

2−k/8 . 1.

In conclusion, for term F1 we obtain∫ 1

0
|〈Ds

x F1(s), Ds
xw(s)〉L2

x
| ds . 1.

We next address term F2. Insert ψ2ψ
4/d+1
1 = ψ2, then apply (4-3) with α = s to obtain (in the worst

case s = 1),

‖Ds
x F2‖L1

[0,1)L
2
x
. ‖(1− t)−3/4ψ2|u|4/du‖L1

[0,1)L
2
x
. ‖(1− t)−3/4

‖ψ1u‖4/d+1
L2(4/d+1)

x
‖L1
[0,1)
.

We consider the cases d = 1 and d = 2 separately. When d = 1,

‖ψ1u‖L10
x
. ‖D2/5

x ψ1u‖L2
x
. 1,

by Lemma 4.1. Consequently,

‖Ds
x F2‖L1

[0,1)L
2
x
. ‖(1− t)−3/4

‖L1
[0,1)
. 1.

On the other hand, when d = 2, we have

‖ψ1u‖L6
x
. ‖D2/3

x ψ1u‖L2
x
. ‖D1/2

x ψ1u‖2/3L2
x
‖∇xψ1u‖1/3L2

x
. (1− t)−1/6

by Lemma 4.2 and (3-2). Consequently,

‖Ds
x F2‖L1

[0,1)L
2
x
. ‖(1− t)−3/4(1− t)−1/6

‖L1
[0,1)
. 1.

Next, we address term F3. By (4-3) with α = 9/8,

‖Ds
x F3‖L1

[0,1)L
2
x
. ‖(1− t)−27/32

‖L1
[0,1)
‖Ds−1/8

x (ψ̃2u)‖L∞
[0,1)L

2
x
.
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Since ‖(1− t)−27/32
‖L1
[0,1)
∼ 1 and the support of ψ̃2 is contained in the set where ψ1 = 1, we have

‖Ds
x F3‖L1

[0,1)L
2
x
. ‖〈Dx 〉

s−1/8ψ1u‖L∞
[0,1)L

2
x
.

Finally, we consider F4. We have

‖Ds
x F4‖L1

[0,1)L
2
x
. ‖〈∇x 〉P−ψ1u‖L1

[0,1)L
2
x
. ‖(1− t)−3/4

‖L1
[T1,1)
‖u‖L∞

[0,1)L
2
x
. 1

by (4-3) with α = 1. �

Proposition 4.4. Suppose that u(t) solving (1-1) with H 1 initial data satisfies (3-1). Fix R > 0. Then

‖u‖L∞
[0,1)H

1
|x |≥R
. 1.

Proof. Iterate Lemma 4.3 eight times on successively larger external regions. �

Proposition 4.4 completes the proof of Theorem 1.1.

5. Application to 3D standing sphere blow-up

We now outline the proof of Theorem 1.2 utilizing the techniques of Section 3 and 4. Theorem 1.2
pertains to radial solutions of (1-9). We define the initial data set P as in9 Raphaël and Szeftel [2009,
Definition 1, page 980–1], except that condition (v) is replaced by ‖ũ0‖H1(|r−1|≥1/10) ≤ ε

5. The goal
then becomes to complete the proof of the bootstrap Proposition 1 on page 982, where the “improved
regularity estimates” (35)–(37) are effectively replaced with

‖u(t)‖L∞
[0,t1]

H1
|x |≤1/2
≤ ε.

Let us formulate a more precise statement:

Proposition 5.1 (partial bootstrap argument). Let Q be the 1D ground state given by (1-4), and let ε > 0,
T > 0 be fixed with T ≤ ε200. Suppose that u(t) is a radial 3D solution to

i∂t u+1u+ |u|4u = 0

on an interval [0, T ′] ⊂ [0, T ) such that the following “bootstrap inputs” hold:

(1) There exist parameters λ(t) > 0, γ(t) ∈ R, and |r(t)− 1| ≤ 1/10, such that if we define

ũ(r, t)= u(r, t)− 1
λ(t)1/2

Q
(r − r(t)

λ(t)

)
, (5-1)

then, for 0≤ t ≤ T ′,

‖∇u(t)‖L2
x
= λ(t)−1

∼

( log|log(T − t)|
T − t

)1/2
, (5-2)

and
‖∇ũ(t)‖L2

x
. 1
|log(T−t)|1+(T−t)1/2

. (5-3)

9We are considering the case dimension d = 3 (in their notation N = 3).
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(2) Interior Strichartz control: ‖〈∇〉u(t)‖L5
[0,T ′]L

30/11
|x |≤1/2
≤ ε.

(3) Initial data remainder control: ‖〈∇〉ũ0‖L2
x
≤ ε5.

Then we have the following “bootstrap output”:

‖〈∇〉u(t)‖L∞
[0,T ′]L

2
|x |≤1/2
+‖〈∇〉u(t)‖L5

[0,T ′]L
30/11
|x |≤1/2

. ε5. (5-4)

The goal of this section is to prove Proposition 5.1, which shows that the bootstrap input (2) is rein-
forced. Proposition 5.1 is, however, an incomplete bootstrap and by itself does not establish Theorem 1.2.
The analysis which uses (5-4) to reinforce the bootstrap assumption (1) is rather elaborate but will be
omitted here as it follows the arguments in [Raphaël 2006] and [Raphaël and Szeftel 2009]. Moreover,
these papers demonstrate how the assertions in Theorem 1.2 follow.

The proof of Proposition 5.1 follows the methods developed in Section 3–4 used to prove Theorem 1.1.
We do not, however, rescale the solution so that T = 1 as was done in Section 3.

Remark 5.2. Let us list some notational conventions for the rest of the section. We take tk = T − 2−k

and denote Ik = [0, tk]. Let v(r, t)= ru(r, t), and consider v as a 1D function in r extended to r < 0 as
an odd function. Note that v solves

i∂tv+ ∂
2
r v =−r−4

|v|4v.

The frequency projection PN will always refer to the 1D frequency projection in the r -variable. The
Bourgain norm ‖v‖Xs,b refers to the 1D norm in the r -variable.

Let λ0 = λ(0) and take k0 ∈ N such that 2−k0/2(log k0)
−1/2
∼ λ0. We then have T ∼ 2−k0 . The

assumption T ≤ ε40 equates to 2−k0/8 ≤ ε5. Note that λ(tk)= 2−k/2(log k)−1/2.

Lemma 5.3 (smallness of initial data). Under the assumption (3) in Proposition 5.1 on the initial data,
and with v0 = ru0, we have

‖P
≥23k0/4∂rv0‖L2

r
+‖∂rv0‖L2

r≤1/2
. ε5.

Proof. Let ṽ0 = r ũ0. Since ∂r ṽ0 = ũ0+ r∂r ũ0, we have by Hardy’s inequality

‖∂r ṽ0‖L2
r
. ‖|x |−1ũ0‖L2

x
+‖∇ũ0‖L2

x
. ‖∇ũ0‖L2

x
. ε5.

Recalling the definition of ũ0 = ũ(0) in (5-1) (with t = 0), we have

v0 =
r
λ

1/2
0

Q
(r − r0

λ0

)
+ ṽ0.

The result then follows from the exponential localization and smoothness of Q. �

Lemma 5.4 (radial Strichartz). Suppose that u(t) is a 3D radial solution to

i∂t u+1u = f.

Let v(r, t)= ru(r, t) and g(r, t)= r f (r, t) and consider v as a 1D function in r (extended to be odd), so
that

i∂tv+ ∂
2
r v = g.
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Then for (q, r) and (q̃, r̃) satisfying the 3D admissibility condition,

‖r2/p−1v‖Lq
t L p

r
. ‖v0‖L2

r
+‖r2/p′−1g‖

L q̃′
t L p̃′

r
.

Proof. The left side is equivalent to ‖∇u‖Lq
t L p

x
and the right side is equivalent to ‖u0‖L2

x
+‖ f ‖

L q̃′
t L p̃

x
, so

it is just a restatement of the 3D Strichartz estimates. �

Lemma 5.5 (3D to 1D conversion). Suppose that u(x) is a 3D radial function, and write u(r) = u(x).
Let v(r)= ru(r). Then for 1< p < 3, we have

‖r2/p−1∂rv‖L p
r
. ‖∇x u‖L p

x
. (5-5)

Also for 3
2 < p <+∞, we have

‖∇x u‖L p
x
. ‖r2/p−1∂rv‖L p

r
. (5-6)

Consequently, for 3D admissible pairs (q, p) such that 2≤ p < 3, we have

‖∇u‖Lq
t L p

x
∼ ‖r2/p−1∂rv‖Lq

t L p
r
. (5-7)

We remark that q = 5 and p = 30
11 falls within the range of validity for (5-7).

Proof. The proof of (5-5) and (5-6) is a standard application of the Hardy inequality.
First, we prove (5-5). Using v = ru,

r2/p−1∂rv = r2/p∂r u+ r2/p−1u,

and thus,
‖r2/p−1∂rv‖L p

r
≤ ‖r2/p∂r u‖L p

r
+‖r2/p−1u‖L p

r
.

We have, for r > 0,

u(r)=−(u(+∞)− u(r))=
∫
+∞

s=1

d
ds
(u(sr)) ds =

∫
+∞

s=1
u′(sr)r ds.

By the Minkowski integral inequality,

‖r2/p−1u‖L p
r
≤

∫
+∞

s=1
‖u′(sr)r2/p

‖L p
r>0

ds.

Changing variable r 7→ s−1r , we obtain that the right-hand side is bounded by(∫ +∞
s=1

s−3/p ds
)
‖r2/pu′‖L p

r>0

and the s integral is finite provided p < 3.
Next, we prove (5-6). We have

r2/p∂r u = r2/p∂r (r−1v)=−r2/p−2v+ r2/p−1∂rv,

and hence,
‖r2/p∂r u‖L p

r
≤ ‖r2/p−2v‖L p

r
+‖r2/p−1∂rv‖L p

r
.
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We have

v(r)= v(r)− v(0)=
∫ 1

s=0

d
ds
(v(sr)) ds =

∫ 1

s=0
v′(sr)r ds.

By the Minkowski integral inequality,

‖r2/p−2v‖L p
r
≤

∫ 1

s=0
‖v′(sr)r2/p−1

‖L p
r

ds.

Changing variable r 7→ s−1r in the right side, we obtain

‖r2/p−2v‖L p
r
≤

(∫ 1

s=0
s−3/p+1ds

)
‖v′(r)r2/p−1

‖L p
r

and the s integral is finite provided p > 3
2 . �

The replacement for Lemma 3.1 is Lemma 5.6 below. The difference is that in Lemma 5.6, we only
use b < 1

2 when working at Ḣ 1 regularity.

Lemma 5.6. Suppose that the assumptions of Proposition 5.1 and Remark 5.2 hold. Then for 1
2 − δ ≤

b < 1
2 ,

‖∂rv‖X0,b(Ik) . 2kb(log k)b+1/2
= (T − t)−b(log|log(T − t)|)b+1/2. (5-8)

Also, for 1
2 − δ < b < 1

2 + δ,
‖v‖X0,b(Ik) .δ 2kδ

= (T − t)−δ. (5-9)

Proof. We will only carry out the proof of (5-8), which stems from (5-2).10 The proof of (5-9) is similar,
and stems from the bound on ‖u(t)‖H δ obtained from interpolation between (5-2) and mass conservation.

In the proof below, T has no relation to the T representing blow-up time in the rest of the article.
Let λ= λ(tk)= 2−k/2(log k)−1/2. Let r = λR, x = λX , and t = λ2T + tk . Define the functions

V (R, T )= λ1/2v(λR, λ2T + tk)= λ1/2v(r, t),

U (X, T )= λ1/2u(λX, λ2T + tk)= λ1/2u(x, t).

Note that the identity v(r)= ru(r) corresponds to V (R)= λRU (R).
We study V (R, T ) on T ∈ [0, log k], which corresponds to t ∈ [tk, tk+1]. We have ‖V ‖L2

R
= ‖v‖L2

r
∼

O(1) (by mass conservation) and ‖∂R V ‖L2
R
= λ‖∂rv‖L2

r
. Hence, ‖∂R V ‖L∞

[0,log k]L
2
R
= O(1). The equation

satisfied by V is
i∂T V + ∂2

R V =−λ−4 R−4
|V |4V .

Let J = [a, b] be a unit-sized time interval in [0, log k]. Then by Lemma 2.4,

‖∂R V ‖X0,b(J ) . ‖∂R V (a)‖L2 +‖∂R(λ
−4 R−4

|V |4V )‖L1
J L2

R
.

10The need to take b < 1/2 comes from Lemma 2.4, (2-7) versus (2-8); when working at Ḣ1 regularity near the origin, we
cannot suffer any loss of derivatives. The fact that ‖∂rv‖X0,b(Ik ) for b < 1/2 is only a Ḣ1 subcritical quantity is of no harm as
the only application of (5-8) in the subsequent arguments is to control the solution for r ≥ 1/2, where the equation is effectively
L2 critical.
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Let χ1(r) = 1 for r ≤ 1
4 and suppχ1 ⊂ B(0, 3

8). Let χ2 = 1− χ1. Let g1 = ∂R(λ
−4 R−4χ1(λR)|V |4V )

and g2 = ∂R(λ
−4 R−4χ2(λR)|V |4V ), so that the above becomes

‖∂R V ‖X0,b(J ) . ‖∂R V (a)‖L2 +‖g1‖L1
J L2

R
+‖g2‖L1

J L2
R
. (5-10)

We begin with estimating ‖g2‖L1
J L2

R
. We have

‖g2‖L1
J L2

R
. ‖V 5

‖L1
J L2

R
+‖V 4(∂R V )‖L1

J L2
R
. (5-11)

We now treat the first term in (5-11). Of course, ‖V 5
‖L1

J L2
R
=‖V ‖5

L5
J L10

R
. By Sobolev embedding ‖V ‖L10

R
.

‖D2/5
R V ‖L2

R
and by Hölder,

‖V ‖L5
J L10

R
. |J |1/10

‖D2/5
R V ‖L10

J L2
R
. |J |1/10(‖V ‖L10

J L2
R
+‖∂R V ‖L10

J L2
R
)

≤ |J |1/10(|J |1/10
‖V ‖L∞J L2

R
+‖∂R V ‖L10

J L2
R
).

Using that ‖V ‖L∞J L2
R
∼ 1, that |J | ∼ 1 and Lemma 2.7, provided 2

5 < b < 1
2 , we have

‖V ‖L5
J L10

R
. |J |1/10(1+‖∂R V ‖X0,b). (5-12)

We now treat the second term in (5-11), similarly estimating the term ‖V ‖L10
R

. We have

‖V 4∂R V ‖L1
J L2

R
. |J |7/20

‖V ‖4L10
J L10

R
‖∂R V ‖L4

J L10
R

. |J |7/20(1+‖∂R V ‖L10
J L2

R
)4‖∂R V ‖L4

J L10
R
.

Appealing to Lemma 2.7, provided 9
20 < b < 1

2 , we obtain

‖V 4∂R V ‖L1
J L2

R
. |J |7/20(1+‖∂R V ‖X0,b)

5. (5-13)

Combining (5-12) and (5-13), we have

‖g2‖L1
J L2

R
. |J |7/20(1+‖∂R V ‖X0,b)

5. (5-14)

Next we estimate ‖g1‖L1
J L2

R
. By rescaling,

‖g1‖L1
J L2

R
= λ‖∂r (χ1r−4

|v|4v)‖L1
[tk ,tk+1]

L2
r
.

Letw= χ̃1u, where χ̃1=1 on suppχ1 but supp χ̃1⊂ B(0, 1
2). Replacing u=r−1v, we obtain ∂r (rχ1u5)=

∂r (rχ1w
5), and hence,

‖g1‖L2
R
. λ(‖w‖5L10

r
+‖rw4∂rw‖L2

r
). λ(‖|x |−1/5w‖5L10

x
+‖w4

∇w‖L2
x
). (5-15)

By Hardy’s inequality and 3D Sobolev embedding,

‖|x |−1/5w‖L10
x
. ‖D1/5

x w‖L10
x
. ‖∇w‖L30/11

x
.

By Hölder’s inequality and 3D Sobolev embedding,

‖w4
∇w‖L2

x
≤ ‖w‖4L30

x
‖∇w‖L30/11

x
. ‖∇w‖5

L30/11
x

.
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Returning to (5-15) and invoking (2) of Proposition 5.1,

‖g1‖L1
Ik

L2
r
. λ‖∇w‖5

L5
Ik

L30/11
x
. λε5. (5-16)

By putting (5-14) and (5-16) into (5-10), we obtain

‖∂R V ‖X0,b(J ) . ‖∂R V (a)‖L2 + |J |7/20(1+‖∂R V ‖X0,b(J ))
5
+ λε5.

From this, we conclude that we can take |J | sufficiently small (but still “unit-sized”11) so that it follows
that

‖∂R V ‖X0,b(J ) ≤ O(1).

Square summing over unit-sized intervals J filling [0, log k],

‖∂R V ‖X0,b([0,log k]) . (log k)1/2.

This estimate scales back to

‖∂rv‖X0,b([tk ,tk+1]) . (log k)1/2λ(tk)−2b
= 2kb(log k)b+1/2.

Now square sum over k from k = 0 to k = K to obtain a bound of 2K b(log K )b+1/2 over the time interval
IK , which is the claimed estimate (5-8). �

The analogue of Lemma 3.2 will be Lemma 5.7 below. We note that as a consequence of Lemma 5.6,
the hypothesis of Lemma 5.7 below is satisfied with α(k, N )= 2−k/2 N−1.

Lemma 5.7 (high-frequency recurrence). Let the assumptions of Proposition 5.1 and Remark 5.2 hold,
and let12

β(k, N ) := ‖P≥N∂rv‖X0,1/2−(Ik).

Then there exists an absolute constant 0< µ� 1 such that for N ≥ 2k(1+δ)/2, we have

β(k, N )+‖r2/p−1 P≥N∂rv‖Lq
Ik

L p
r

. ‖P≥N∂rv0‖L2
r
+ 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ 2−kδ

+ ε5 (5-17)

for all 3D admissible (q, p).

Proof. Note that v solves
i∂tv+ ∂

2
r v =−r |u|4u =−r−4

|v|4v.

Let χ1(r) be a smooth function such that χ1(r) = 1 for |r | ≤ 1
4 and χ1 is supported in |r | ≤ 3

8 . Let
χ2 = 1−χ1. Apply P≥N∂r to obtain

(i∂t + ∂
2
r )P≥N∂rv = g1+ g2,

11Meaning: with size independent of any small parameters like ε or λ
12Note the inclusion of one derivative in the definition of β, in contrast to the choice of definition for α in Proposition 3.4.
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where
g j (r)=−P≥N∂r (χ j r−4

|v|4v) for j = 1, 2.

Then by Lemma 2.413 and Lemma 5.4,

‖P≥N∂rv‖X0,1/2−(Ik)+‖r
2/p−1 P≥N∂rv‖Lq

Ik
L p

r
. ‖P≥N∂rv0‖L2

r
+‖g1‖L1

Ik
L2

r
+‖g2‖L1

Ik
L2

r
.

The term ‖g2‖L1
t L2

r
is controlled in a manner similar to the analysis in the proof of Lemma 3.2. For this

term, χ2 r−4 and ∂r (χ2 r−4) are smooth bounded functions, with all derivatives bounded. By Lemma 2.10,

‖g2‖L2
r
. ‖P≥N 〈∂r 〉v

5
‖L2

r
+ N−1

‖〈∂r 〉v
5
‖L2

r
. (5-18)

By an analysis similar to the proof of Lemma 3.2, utilizing the bounds in Lemma 5.6, we obtain

‖P≥N 〈∂r 〉v
5
‖L1

Ik
L2

r
. 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2. (5-19)

Also by the Strichartz estimates, as in the proof of Lemma 5.6 above,

‖〈∂r 〉v
5
‖L1

Ik
L2

r
. ‖Dδv‖4X0,b

‖∂Rv‖X0,b . 2k(1+δ)/2. (5-20)

Inserting (5-19) and (5-20) into (5-18), we obtain

‖g2‖L1
Ik

L2
r
. 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ N−12k(1+δ)/2. (5-21)

The last term, N−12k(1+δ)/2, gives the contribution 2−kδ in (5-17) due to the restriction N ≥ 2k(1+δ)/2

(different deltas).
Next we address ‖g1‖L1

Ik
L2

r
. We estimate away P≥N by

‖g1‖L1
Ik

L2
r
. ‖g̃1‖L1

Ik
L2

r
, (5-22)

where (ignoring complex conjugates)
g̃1 = ∂r (r−4χ1v

5).

Let w = χ̃1u, where χ̃1 = 1 on suppχ1 but supp χ̃1 ⊂ B(0, 1
2). Replacing u = r−1v, we obtain g̃1 =

∂r (rχ1u5)= ∂r (rχ1w
5), and hence,

‖g̃1‖L2
r
. ‖w‖5L10

r
+‖rw4∂rw‖L2

r
. ‖|x |−1/5w‖5L10

x
+‖w4

∇w‖L2
x
.

By Hardy’s inequality and 3D Sobolev embedding,

‖|x |−1/5w‖L10
x
. ‖D1/5

x w‖L10
x
. ‖∇w‖L30/11

x
.

By Hölder’s inequality and 3D Sobolev embedding,

‖w4
∇w‖L2

x
≤ ‖w‖4L30

x
‖∇w‖L30/11

x
. ‖∇w‖5

L30/11
x

.

13We were able to obtain the L1
Ik

L2
r right side (without δ loss), because we took b < 1/2 in the Bourgain norm.
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Hence, ‖g̃1‖L2
r
. ‖∇w‖5

L30/11
x

. Returning to (5-22) and invoking (2) of Proposition 5.1,

‖g1‖L1
Ik

L2
r
. ‖∇w‖5

L5
Ik

L30/11
x
. ε5. �

The analogue of Proposition 3.4 is this:

Proposition 5.8 (high-frequency control). Let the assumptions of Proposition 5.1 and Remark 5.2 hold.
Then for any 3D Strichartz admissible pair (q, p), we have

‖P≥23k/4∂rv‖X0,1/2−(Ik)+‖r
2/p−1 P≥23k/4∂rv‖Lq

Ik
L p

r
. ε5.

Proof. Several applications of Lemma 5.7, just as Proposition 3.4 is deduced from Lemma 3.2. �

Due to the Ḣ 1 criticality of the problem, we do not have improved regularity of v(t)− ei t∂2
r v0 as was

the case in Proposition 3.4. As a substitute, we can use the methods of Lemma 5.7 to obtain the following
lemma:

Lemma 5.9 (additional high-frequency control). Suppose that the assumptions of Proposition 5.1 and
Remark 5.2 hold. Then (+∞∑

k=k0

‖P23k/4∂rv‖
2
L∞
[tk−1,tk ]

L2
r

)1/2

. ε5. (5-23)

Proof. It suffices to prove the estimate with the sum terminating at k = K , provided we obtain a bound
independent of K . For each k in k0 ≤ k ≤ K , write the integral equation on Ik . For t ∈ [tk−1, tk]

v(t)= ei t∂2
r v0− i

∫ t

0
ei(t−t ′)∂2

r (r−4
|v|4v(t ′)) dt ′.

Apply P23k/4∂r to obtain

P23k/4∂rv(t)= P23k/4ei t∂2
r ∂rv0− i

∫ t

0
ei(t−t ′)∂2

r P23k/4∂r (r−4
|v|4v(t ′)) dt ′.

Estimate

‖P23k/4∂rv‖L∞
[tk−1,tk ]

L2
r
≤ ‖P23k/4∂rv0‖L2

r
+‖P23k/4∂r (r−4

|v|4v)‖L1
Ik

L2
r
.

By the inequality (a+ b)2 ≤ 2a2
+ 2b2, this implies

‖P23k/4∂rv‖
2
L∞
[tk−1,tk ]

L2
r
. ‖P23k/4∂rv0‖

2
L2

r
+‖P23k/4∂r (r−4

|v|4v)‖2L1
Ik

L2
r
.

Let χ1(r) be a smooth function such that χ1(r) = 1 for |r | ≤ 1
4 and χ1 is supported in |r | ≤ 3

8 . Let
χ2 = 1−χ1. Let g j = P23k/4∂r (χ jr−4

|v|4v) for j = 1, 2.
Recall that in the proof of Lemma 5.7, we showed that

‖P≥N∂rχ2r−4
|v|4v‖L1

Ik
L2

r
. 2k(1+δ)/2 N−1+δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ N−12k(1+δ)/2,
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and Proposition 5.8 showed that β(k, 23k/4). 1. Combining gives ‖g2‖L1
Ik

L2
r
. 2−k/8, and hence,( K∑

k=k0

‖g2‖
2
L1

Ik
L2

r

)1/2

. 2−k0/8 ≤ ε5.

Now we address g1. Let w = χ̃1u. For each k, lengthen Ik to I := IK to obtain

K∑
k=k0

‖g1‖
2
L1

Ik
L2

r
. ‖P23k/4∂r (r−4χ1|w|

4w)‖2
`2

k L1
I L2

r
.

By the Minkowski inequality, for any space-time function F , we have

‖P23k/4 F‖`2
k L1

I L2
r
≤ ‖P23k/4 F‖L1

I `
2
k L2

r
. ‖F‖L1

I L2
r
.

Hence,
K∑

k=k0

‖g1‖
2
L1

Ik
L2

r
. ‖∂r (χ1r−4

|w|4w)‖2L1
I L2

r
.

At this point we proceed as in Lemma 5.7 to obtain a bound by ε5. �

Now we begin to insert spatial cutoffs away from the blow-up core and obtain the missing low fre-
quency bounds. The first step is to obtain a little regularity above L2, since it is needed in the proof of
Lemma 5.11.

Lemma 5.10 (small regularity gain). Suppose that the assumptions of Proposition 5.1 and Remark 5.2
hold. Let ψ3/4(r) be a smooth function such that ψ3/4(r) = 1 for |r | ≤ 3

4 and ψ3/4(r) = 0 for |r | ≥ 7
8 .

Then
‖〈Dr 〉

3/7ψ3/4v‖L∞
[0,T )L

2
r
. ε5.

Proof. Taking ψ = ψ3/4, let w = ψv. Then

i∂tw+ ∂
2
r w = ψ(i∂t + ∂

2
r )v+ 2∂r (ψ

′v)−ψ ′′v

=−r−4ψ |v|4v+ 2∂r (ψ
′v)−ψ ′′v = F1+ F2+ F3.

Local smoothing and energy estimates provide the estimate

‖D3/7
r w‖L∞

[0,T )L
2
r

. ‖D3/7
r w0‖L2

r
+‖D3/7

r F1‖L1
[0,T )L

2
r
+‖D−1/2

r D3/7
r F2‖L2

[0,T )L
2
r
+‖D3/7

r F3‖L1
[0,T )L

2
r
. (5-24)

We begin with the F1 estimate. Let ψ̃ be a smooth function such that

ψ̃(r)=


0 if r ≤ 1

4 ,

1 if 1
2 ≤ r ≤ 7

8 ,

0 if r ≥ 7
8 .

Let q = r−1ψ̃v. By writing 1= (1− ψ̃4)+ ψ̃4, we obtain

F1 =−(1− ψ̃4)ψr−4
|v|4v− |q|4w.
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Note that (1− ψ̃4)ψ is supported in |r | ≤ 1
2 and ψ̃4ψ is supported in 1

4 ≤ |r | ≤
15
16 .

For the term (1− ψ̃4)ψr−4
|v|4v, we appeal to the bootstrap hypothesis (2) in the same way we did in

the proof of Lemma 5.7 to obtain a bound by ε5. As for the term |q|4w, by the fractional Leibniz rule,

‖D3/7
r (|q|4w)‖L1

[0,T )L
2
r
. ‖D3/7

r |q|
4
‖L1
[0,T )L

7/3
r
‖w‖L∞

[0,T )L
14
r
+‖|q|4‖L1

[0,T )L
∞
r
‖D3/7

r w‖L∞
[0,T )L

2
r
.

By Sobolev embedding and Gagliardo–Nirenberg,

‖D3/7
r |q|

4
‖L7/3

r
+‖|q|4‖L∞r . ‖q‖

2
L2

r
‖∂r q‖2L2

r
and ‖w‖L14

r
. ‖D3/7

r w‖L2
r
.

Hence,

‖D3/7
r (|q|4w)‖L1

[0,T )L
2
r
. ‖q‖2L∞

[0,T )L
2
r
‖∂r q‖2L2

[0,T )L
2
r
‖D3/7

r w‖L∞
[0,T )L

2
r
.

By (5-3), ‖∂r q‖L2
[0,T )L

2
r
. (|log T |)−1 . (log ε−1)−1. Consequently, we obtain

‖D3/7
r F1‖L1

[0,T )L
2
r
. ε5
+ (log ε−1)−1

‖D3/7
r w‖L∞

[0,T )L
2
r
.

As for F2, we start by bounding

‖D−1/2
r D3/7

r F2‖L2
[0,T )L

2
r
. ‖D13/14

r (ψ ′ v)‖L2
[0,T )L

2
r
.

On the support of ψ ′, we have v = rq. Noting that on the support of ψ ′ we have r ∼ 1 and using the
interpolation, we get

‖D13/14
r (ψ ′rq)‖L2

r
. ‖q‖L2

r
+‖q‖1/14

L2
r
‖∂r q‖13/14

L2
r
.

By (5-3),

‖‖∂r q‖13/14
L2

r
‖L2
[0,T )
. T 1/28 . ε5.

Consequently,

‖D−1/2
r D3/7

r F2‖L2
[0,T )L

2
r
. T 1/2

+ T 1/28 . ε5.

Finally, for the term F3, we estimate

‖D3/7
r F3‖L1

[0,T )L
2
r
. ‖q‖L1

[0,T )L
2
r
+‖∂r q‖L1

[0,T )L
2
r
. T + T 1/2 . ε5.

Collecting the above estimates and inserting into (5-24), we obtain

‖D3/7
r w‖L2

[0,T )L
2
r
. ‖D3/7

r w0‖L2
r
+ (log ε−1)−1

‖D3/7
r w‖L∞

[0,T )L
2
r
+ ε5,

and the result follows (by bootstrap assumption (3), ‖D3/7
r w0‖L2

r
. ε5). �

We will need to apply the following lemma eight times in the proof of Proposition 5.12 below. As in
Section 4, the use of the frequency projection P.(T−t)−3/4 and the process of exchanging derivatives for
time factors via (5-25) is essentially an appeal to the finite speed of propagation for low frequencies.
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Lemma 5.11 (low frequency recurrence). Let the assumptions of Proposition 5.1 and Remark 5.2 hold.
Let 5

8 < r1 < r2 <
3
4 and 1

8 ≤ s ≤ 1. Let ψ1(r) and ψ2(r) be smooth cutoff functions such that

ψ1(r)=
{

1 on |r | ≤ r1,

0 on |r | ≥ 1
2(r1+ r2)

and ψ2(r)=
{

1 on |r | ≤ 1
2(r1+ r2),

0 on |r | ≥ r2.

Then

‖Ds
r (ψ1v)‖L∞

[0,T )L
2
r
. ‖Ds−1/8

r (ψ2v)‖L∞
[0,T )L

2
r
+ ε5.

Proof. Let χ(ξ)= 1 for |ξ | ≤ 1 and χ(ξ)= 0 for |ξ | ≥ 2 be a smooth function. Let P = P≤(T−t)−3/4 be the
time-dependent multiplier operator defined by P̂ f (ξ)= χ((T − t)3/4ξ) f̂ (ξ) (where Fourier transform is
in space only). Note that the Fourier support of P at time T − t = 2−k is . 23k/4. We further have that

∂t P f = 3
4 i(T − t)−1/4 Q∂r f + P∂t f,

where Q = Q(T−t)−3/4 is the time-dependent multiplier

Q̂h(ξ)= χ ′((T − t)3/4ξ) ĥ(ξ).

Note that the Fourier support of Q at time t = T − 2−k is ∼ 23k/4. Note also that if g = g(r) is any
function, then

‖P Dα
r g‖L2

r
≤ (T − t)−3α/4

‖g‖L2
r
. (5-25)

Let ψ̃ be a smooth function such that

ψ̃(r)=


0 if |r | ≤ 1

4 ,

1 if 1
2 ≤ |r | ≤

1
2(r1+ r2),

0 if |r | ≥ r2.

Let w = P≤(T−t)−3/4 Ds
r (ψ1v). By Proposition 5.8, it suffices to show that

‖w‖L∞
[0,T )L

2
r
. ‖Ds−1/8

r (ψ2v)‖L∞
[0,T )L

2
r
+ ε5.

Note that w solves

i∂tw+ ∂
2
r w =−

3
4(T − t)−1/4 Q∂r Ds

r (ψ1v)− P Ds
r (ψ1r−4

|v|4v)+ 2P∂r Ds
r (ψ
′

1v)− P Ds
r (ψ
′′

1 v)

= F1+ F2+ F3+ F4.

By the energy method, we obtain

‖w‖2L∞t L2
r
≤ ‖w0‖

2
L2

r
+

∫ T

0
|〈F1, w〉L2

r
| + 10

4∑
j=2

‖F j‖
2
L1
[0,T )L

2
r
.
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We estimate F1 using Lemma 5.9 as follows.14 Let Q̃ be a projection onto frequencies of size ∼
(T − t)−3/4 (importantly, not . (T − t)−3/4). Then∫ T

0
|〈F1, w〉L2

r
|.

∫ T

0
(T − t)−1/4

‖Q̃ D1/2+s
r (ψ1v)‖

2
L2

r
.

It suffices to take s = 1, the worst case. The presence of Q̃ allows for the exchange D1/2
r ∼ (T − t)−3/8,

which gives ∫ T

0
|〈F1, w〉L2

r
|.

∫ T

0
(T − t)−1

‖Q̃∂r (ψ1v)‖
2
L2

r
.

By decomposing [0, T )=
⋃
∞

k=k0
[tk, tk+1], and using that (T − t)−1

= 2k on [tk, tk+1], we have∫ T

0
(T − t)−1

‖Q̃∂r (ψ1v)‖
2
L2

r
=

∞∑
k=k0

∫
[tk ,tk+1]

2k
‖P23k/4∂r (ψ1v)‖

2
L2

r
.

Since |[tk, tk+1]| = 2−k , the above is controlled by
∑
∞

k=k0
‖P23k/4∂r (ψ1v)‖

2
L∞
[tk ,tk+1]

L2
r
, the square root of

which is bounded by ε5 (by Lemma 5.9).
For the nonlinear term F2, by writing 1= 1− ψ̃4

+ ψ̃4, we have

F2 =−P Ds
r (r
−4(1− ψ̃4)ψ1|v|

4v)− P Ds
r (r
−4ψ̃4ψ1|v|

4v)= F21+ F22.

The support of (1− ψ̃4)ψ1 is contained in |r | ≤ 1
2 , and we can use the bootstrap hypothesis (2) to obtain

‖F21‖L1
[0,T )L

2
r
. ε5,

as was done in the proof of Lemma 5.7 (for any s ≤ 1). For F22, taking ṽ = ψ2v and noting that
ψ1ψ2 = ψ1, we have F22 = P Ds

r (r
−4ψ̃4ψ1|ṽ|

4ṽ). By (5-25) with α = 1
8 ,

‖F22‖L1
[0,T )L

2
r
≤
∥∥(T − t)−3/32

‖Ds−1/8
r (r−4ψ̃4ψ1|ṽ|

4ṽ)‖L2
r

∥∥
L1
[0,T )
.

Since ψ̃ is supported in 1
4 ≤ |r | ≤ r2, the function ψ̃4ψ1r−4 is smooth and compactly supported. By the

fractional Leibniz rule,

‖Ds−1/8
r (r−4ψ̃4ψ1|ṽ|

4ṽ)‖L2
r
. ‖ṽ‖4L∞r ‖〈Dr 〉

s−1/8ṽ‖L2
r
. ‖D3/7

r ṽ‖
7/2
L2

r
‖∂r ṽ‖

1/2
L2

r
‖〈Dr 〉

s− 1
8 ṽ‖L2

r
.

Using the bound ‖∂r ṽ‖L2
r
≤ (T − t)−1/2 from (5-3) and the bound on ‖D3/7

r ṽ‖L∞
[0,T )L

2
r

from Lemma 5.10,
we obtain

‖F22‖L1
[0,T )L

2
r
. ‖(T − t)−3/32(T − t)−1/4

‖L1
[0,T )
‖〈Dr 〉

s−1/8ṽ‖L∞
[0,T )L

2
r
. ε5
‖〈Dr 〉

s−1/8ṽ‖L∞
[0,T )L

2
r
.

To bound F3, we use (5-25) with α = 9
8 to obtain

‖F3‖L1
[0,T )L

2
r
. ‖(T − t)−27/32

‖L1
[0,T )
‖Ds−1/8

r ṽ‖L∞
[0,T )L

2
r
.

14It seems that the energy method is needed here, since it furnishes
∫ T

0 |〈F1, w〉L2
r
|; we cannot see a way to estimate

‖F1‖L1
[0,T )L

2
r
. Indeed, by pursuing the method here, one ends up with a bound ‖F1‖L1

[0,T )L
2
r

.
∑
∞
k=k0
‖P23k/4ψ1v‖L2

r
, which

is not controlled by Lemma 5.9, since it is not a square sum.
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The F4 term is more straightforward than F3, since there is one fewer derivative. �

The H 1 control will complete part of the bootstrap estimate (5-4) in Proposition 5.1:

Proposition 5.12 (H 1 control). Suppose that the assumptions of Proposition 5.1 and Remark 5.2 hold.
Then

‖∂rv‖L∞
[0,T )L

2
|r |≤5/8

. ε5.

Proof. Let rk =
5
8 +

1
64(k − 1). Apply Lemma 5.11 on [rk, rk+1] for k = 1, . . . , 8 to obtain collectively

by Lemma 5.10 that

‖∂rv‖L∞
[0,T )L

2
|r |≤5/8

. ε5
+‖v‖L2

|r |≤3/4
≤ ε5. �

Proposition 5.13 (local smoothing control). Let the assumptions of Proposition 5.1 and Remark 5.2
hold. Let ψ9/16 be a smooth function such that ψ9/16(r) = 1 for |r | ≤ 9

16 and ψ9/16(r) = 0 for |r | ≥ 5
8 .

Then

‖D3/2
r (ψ9/16v)‖L2

[0,T )L
2
r
. ε5.

Proof. Let χ(ξ) = 1 for |ξ | ≤ 1 and χ(ξ) = 0 for |ξ | ≥ 2 be a smooth function. Let χ− = χ and
χ+ = 1 − χ . Let P− be the Fourier multiplier with symbol χ−((T − t)3/4ξ) and P+ be the Fourier
multiplier with symbol χ+((T − t)3/4ξ). Then I = P−+ P+ for each t , and P− projects onto frequencies
. (T − t)−3/4, while P+ projects onto frequencies & (T − t)−3/4. Letting Q be the Fourier multiplier
with symbol 3

4χ
′((T − t)3/4ξ), we have ∂t P± f =±i(T − t)−1/4 Q∂r f + P∂t f . Note that Q has Fourier

support in |ξ | ∼ (T − t)−3/4.
First, we can discard low frequencies. From Proposition 5.12 and (5-25) with α = 1

2 ,

‖D3/2
r P−ψ9/16v‖L2

[0,T )L
2
r
. ‖(T − t)−3/8∂rψ9/16v‖L2

[0,T )L
2
r
. T 1/8

‖∂rψ9/16v‖L∞
[0,T )L

2
r
. ε5.

For the high-frequency portion, D3/2
r P+ψ9/16v, we first need to dispose of the spatial cutoff. We have

D3/2
r P+ψ9/16 = ψ9/16 D3/2

r P++ [D3/2
r P+, ψ9/16].

The leading order term in the symbol of the commutator [D3/2
r P+, ψ9/16], by the pseudodifferential

calculus, is ξ 1/2χ+(ξ(T − t)3/4)ψ ′(r) + ξ 3/2(T − t)3/4χ ′
+
(ξ(T − t)3/4)ψ ′(r). Hence, we obtain the

bound

‖[D3/2
r P+, ψ9/16]〈Dr 〉

−1/2
‖L2

r→L2
r
. 1,

independently of t . Thus, ‖[D3/2
r P+, ψ9/16]v‖L2

[0,T )L
2
r

is easily bounded by Proposition 5.12.
It remains to show that ‖ψ9/16 D3/2

r P+v‖L2
[0,T )L

2
r
. ε5, the estimate for the high-frequency portion with

no spatial cutoff to the right of the frequency cut-off. To obtain local smoothing via the energy method,
we need to introduce the pseudodifferential operator A of order 0 with symbol exp(−(sgn ξ)(tan−1 r)),
where sgn ξ is a smoothed signum function. Note that by the sharp Gärding inequality, A is positive.
The key property of A is

∂2
r A f = A∂2

r f − 2i(1+ r2)−1 Dr A f + B f,
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where B is an order 0 pseudodifferential operator. The first-order term i(1+ r2)−1 Dr A f will generate
the local smoothing estimate.

Let w = AP+v. By the sharp Gärding inequality,

‖ψ9/16 D3/2
r P+v‖L2

[0,T )L
2
r
. ‖(1+ r2)−1/2 D3/2

r w‖L2
[0,T )L

2
r

and it suffices to prove that ‖(1+ r2)−1/2 D3/2
r w‖L2

[0,T )L
2
r
. ε5. The equation satisfied by w is

i∂tw+ ∂
2
r w+ 2i(1+ r2)−1 Drw = (T − t)−1/4 AQ∂rv− AP+r−4

|v|4v+ Bv = F1+ F2+ F3,

where B is a order 0 operator (satisfying bounds independent of t). By applying ∂r and pairing this
equation with ∂rw (energy method), we obtain, upon time integration,

‖∂rw‖
2
L∞
[0,T )L

2
r
+‖(1+ r2)−1/2 D3/2

r w‖2L2
[0,T )L

2
r
.
∫ T

0
|〈∂r F1, w〉| + 10‖∂r F2‖

2
L1
[0,T )L

2
r
+ 10‖∂r F3‖

2
L1
[0,T )L

2
r
.

The F3 term is easily controlled using Proposition 5.12.
The F1 term is controlled as in the proof of Lemma 5.11 (a similar first term). For the F2 term, let ψ

be a smooth function such that ψ(r)= 1 for |r | ≤ 1
4 and ψ(r)= 0 for |r | ≤ 1

2 . Writing 1=ψ5
+(1−ψ5),

we have

F2 = AP+ψ5r−4
|v|4v+ AP+(1−ψ5)r−4

|v|4v = F21+ F22.

We estimate ‖∂r F21‖L1
[0,T )L

2
r

as we did in the proof of Lemma 5.7. For the term F22, takeψ+= (1−ψ5)r−4,
and note that ψ+ is smooth and well localized. In the proof of Lemma 5.7 (see (5-18) and (5-21)), we
showed that

‖P≥N∂rψ+|v|
4v‖L1

Ik
L2

r
. 2k(1+δ)/2 N δβ(k, µN )+ N−1+δ2kδβ(k, µN )2+ N−12k(1+δ)/2.

Furthermore, Proposition 5.8 showed that β(k, 23k/4). 1. Combining with the above gives

‖P≥23k/4∂rψ+|v|
4v‖L1

Ik
L2

r
. 2−k/8.

Thus,

‖∂r F22‖L1
[0,T )L

2
r
.
∞∑

k=k0

‖P≥23k/4∂rψ+|v|
4v‖L1

Ik
L2

r
.
∞∑

k=k0

‖P≥23k/4∂rψ+|v|
4v‖L1

Ik
L2

r
. 2−k0/8 . ε5. �

Proposition 5.14 (Strichartz control). Suppose that the assumptions of Proposition 5.1 and Remark 5.2
hold. Then

‖r2/p−1∂rv‖Lq
[0,T )L

p
|r |≤1/2

. ε5.

Proof. Let ψ be a smooth function such that ψ(r)= 1 for |r | ≤ 1
2 and ψ(r)= 0 for |r | ≥ 9

16 . Let w=ψv.
Then w solves

i∂tw+ ∂
2
r w =−ψr−4

|v|4v+ 2∂r (ψ
′v)−ψ ′′v = F1+ F2+ F3.
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By the Strichartz estimate and dual local smoothing estimate, we obtain

‖r2/p−1∂rw‖Lq
[0,T )L

p
r
. ‖∂rw0‖L2

r
+‖∂r F1‖L1

[0,T )L
2
r
+‖D−1/2

r ∂r F2‖L2
[0,T )L

2
r
+‖∂r F3‖L1

[0,T )L
2
r
.

Let ψ̃ be a smooth function such that ψ̃(r) = 1 for |r | ≤ 1
4 and ψ̃(r) = 0 for |r | ≥ 1

2 . By writing
1= ψ̃5

+ (1− ψ̃5), we have

F1 =−ψψ̃
5r−4
|v|4v−ψ(1− ψ̃5)r−4

|v|4v = F11+ F12.

Since the support of ψψ̃5 is contained in |r | ≤ 1
2 , we can estimate the term ‖∂r F11‖L1

[0,T )L
2
r

by ε5 using
bootstrap assumption (2) as in the proof of Lemma 5.7. Since (1− ψ̃5)ψr−4 is a bounded and smooth
function,

‖∂r F12‖L1
[0,T )L

2
r
. ‖〈∂r 〉v

5
‖L1
[0,T )L

2
|r |≤5/8

. T ‖〈∂r 〉v‖
5
L∞
[0,T )L

2
|r |≤5/8

. ε5.

Also, by Proposition 5.13,

‖D1/2
r F2‖L2

[0,T )L
2
r
. ‖〈Dr 〉

3/2ψ9/16v‖L2
[0,T )L

2
r
. ε5.

Finally,
‖∂r F3‖L1

[0,T )L
2
r
. T ‖〈∂r 〉v‖L∞

[0,T )L
2
|r |≤5/8

. ε5

by Proposition 5.12. Collecting the estimates above, we obtain the claimed bound. �

This completes the proof of Proposition 5.1 (via Lemma 5.5).
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SHARP GEOMETRIC UPPER BOUNDS ON RESONANCES FOR SURFACES
WITH HYPERBOLIC ENDS

DAVID BORTHWICK

We establish a sharp geometric constant for the upper bound on the resonance counting function for
surfaces with hyperbolic ends. An arbitrary metric is allowed within some compact core, and the ends
may be of hyperbolic planar, funnel, or cusp type. The constant in the upper bound depends only on the
volume of the core and the length parameters associated to the funnel or hyperbolic planar ends. Our
estimate is sharp in that it reproduces the exact asymptotic constant in the case of finite-area surfaces
with hyperbolic cusp ends, and also in the case of funnel ends with Dirichlet boundary conditions.

1. Introduction

For a compact Riemannian surface, the Weyl law shows that the asymptotic distribution of eigenval-
ues is determined by global geometric quantities. In the compact hyperbolic case, Weyl asymptotics
follow easily from the Selberg trace formula; see, e.g, [McKean 1972], This approach extends also
to noncompact hyperbolic surfaces of finite area [Venkov 1990]. Some reinterpretation of the spectral
counting is needed for the noncompact case, however. One can either supplement the counting function
for the discrete spectrum by a term related to the scattering phase, or else use the counting function for
resonances instead of eigenvalues. Weyl asymptotics, in this extended sense, were established for general
finite-area surfaces with hyperbolic cusp ends by Müller [1992] and Parnovski [1995].

For infinite-area surfaces with hyperbolic ends, the discrete spectrum is finite and possibly empty, and
therefore plays no role in the spectral asymptotics. One could look for analogies to the finite-area results
in the asymptotics of either the scattering phase or the resonance counting function. For the scattering
phase of a surface with hyperbolic ends, Weyl asymptotics were proven by Guillopé and Zworski [1997].
One does not necessarily expect a corresponding result to hold for the resonance counting function — see
e.g., [Guillopé and Zworski 1997, Remark 1.6] — but neither can we rule out the possibility at this point.
Understanding the role that global geometric properties play in the distribution of resonances remains a
compelling problem.

In the context of infinite-area hyperbolic surfaces, only the order of growth of the resonance counting
function is currently well understood. Guillopé and Zworski [1995; 1997] showed the resonance counting
function for infinite-area surfaces with hyperbolic ends satisfies Ng(t)� t2 (with the caveat that the lower
bound is proportional to the 0-volume, which might be zero in exceptional cases). These results have been
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Keywords: resonances, hyperbolic surfaces, scattering theory.
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extended to higher-dimensional manifolds with hyperbolic ends in [Borthwick 2008]. Unfortunately,
the methods used in these proofs yield only an ineffective constant for the upper bound, with no clear
geometric content. Moreover, the derivation of the lower bound depends explicitly on the upper bound,
so the geometric dependence of the lower bound is likewise undetermined.

In this paper we present a geometric constant for the upper bound on the resonance counting function
for infinite-area surfaces with hyperbolic ends. This constant is sharp in the sense that it agrees with the
exact asymptotics in the cases of finite area surfaces or truncated funnels. Our approach is inspired by
Stefanov’s recent paper [2006] on compactly supported perturbations of the Laplacian on Rn for n odd,
and similar techniques were applied to compactly supported perturbations of Hn+1 in [Borthwick 2010].

We can state the cleanest result for a hyperbolic surface (X, g)∼=H2/0. Let Rg denote the associated
resonance set (poles of the meromorphic continuation of (1g − s(1− s))−1), with counting function

Ng(t) := #
{
ζ ∈Rg : |ζ −

1
2 | ≤ t

}
.

The sharp version of our bound involves a regularization of the counting function,

Ñg(a) :=
∫ a

0

2(Ng(t)− Ng(0))
t2 dt. (1-1)

This type of regularization is standard in the theory of zeros of entire functions, and there is a natural
connection to the asymptotics of Ng(t),

Ñg(a)∼ Ba2
⇐⇒ Ng(t)∼ Bt2

;

see [Stefanov 2006, Lemma 1]. If we have only the upper bound on Ñg, then we lose some sharpness in
the estimate of Ng:

Ñg(a)≤ Ba2
H⇒ Ng(t)≤ eBt2.

Theorem 1.1. Suppose (X, g) is a smooth geometrically finite hyperbolic surface with χ(X) < 0. Let
`1, . . . , `nf denote the diameters of the geodesic boundaries of the funnels of X. The regularized counting
function for the resonances of 1g satisfies

Ñg(a)
a2 ≤ |χ(X)| +

nf∑
j=1

` j

4
+ o(1). (1-2)

We can see that this result is sharp in two extreme cases. For a finite-area hyperbolic surface (that is, with
nf= 0), our upper bound agrees with the known asymptotic Ng(t)/t2

∼|χ(X)|. On the other hand, for an
isolated hyperbolic funnel F` of boundary length `, under Dirichlet boundary conditions, the resonances
form a half lattice. It is easy to see that NF`(t)/t2

∼ `/4, so the funnel portion of (1-2) is also sharp.
The restriction to χ(X) < 0 in Theorem 1.1 leaves out just a few cases. The complete (smooth)

hyperbolic surfaces for which χ(X) ≥ 0 are the hyperbolic plane H2, the hyperbolic cylinder C` :=
H2/〈z 7→ e`z〉, and the parabolic cylinder C∞ := H2/〈z 7→ z + 1〉. Resonance sets can be computed
explicitly in these cases (see [Borthwick 2007, Sections 4–5]), and exact asymptotics for the counting
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function are easily obtained:

NH2(t)∼ t2, NC`(t)∼
1
2`t

2, NC∞(t)= 1.

If we interpret C` as the union of 2 funnel ends, then (1-2) would also give a sharp estimate for this case.
Using Theorem 1.1 in conjunction with the argument of Guillopé and Zworski [1997] for the lower

bound, we can deduce the following:

Corollary 1.2. For k ∈ N there exists a constant ck such that for any geometrically finite hyperbolic
surface (X, g) with χ(X) < 0,

Ng(t)
t2 ≥ ck |χ(X)|

(
1+ 1
|χ(X)|

nf∑
j=1

` j

4

)−2/k
for t ≥ 1.

The constant ck obtained in this way (see Section 4 for the derivation) is rather ineffective; the point here
is just that there exists a lower bound that depends only on χ(X) and {` j }.

We will obtain Theorem 1.1 as a consequence of a somewhat more general estimate. Consider a
smooth Riemannian surface (X, g), possibly with boundary, that has finitely many ends that are assumed
to be of hyperbolic planar, funnel, or cusp type. That is, X admits the decomposition

X = K t Y1 t · · · t Ynf tCnf+1 t · · · tCnf+nc (1-3)

illustrated in Figure 1, where the core K is a smooth compact manifold with boundary. The metric in K
is arbitrary. The Y j are infinite-area ends: either hyperbolic planar,

Y j ∼= [b j ,∞)× S1, g|Y j = dr2
+ sinh2 r dθ2, where b j > 0, (1-4)

or hyperbolic funnels,

Y j ∼= [b j ,∞)× S1, g|Y j = dr2
+ `2

j cosh2 r
dθ2

(2π)2
, where b j ≥ 0 and ` j > 0. (1-5)

The C j are hyperbolic cusps,

C j ∼= [b j ,∞)× S1, g|C j = dr2
+ e−2r dθ2

(2π)2
, where b j ≥ 0. (1-6)

The finite-area portion of X consisting of the core plus the cusps is denoted by

Xc := K tCnf+1 t · · · tCnf+nc . (1-7)

Any geometrically finite hyperbolic surface, with the exception of the parabolic cylinder C∞, admits
a decomposition of the form (1-3). In such surfaces, aside from H2 itself, only funnel or cusp ends can
occur.

We let 1g denote the positive Laplacian on (X, g). In general we may consider the operator

P :=1g + V,
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K

∂K

C1

Y1

Y2

Xc

Figure 1. Surface X with boundary and hyperbolic ends.

where V ∈ C∞0 (X) with supp(V ) ⊂ K . We denote by RP the resonance set associated to P . These
resonances are the poles of the analytically continued resolvent

RP(s) := (P − s(1− s))−1,

counted according to multiplicity. The associated resonance counting function is

NP(t) := #
{
ζ ∈RP : |ζ −

1
2 | ≤ t

}
.

Our context is essentially that of Guillopé and Zworski [1995; 1997], and so we already know that
NP(t) � t2 (see Section 2 for details). It is thus natural to define the regularized counting function
ÑP(a) just as in (1-1).

Before stating the upper bound, we introduce the asymptotic constants associated to the resonance
count for isolated hyperbolic planar or funnel ends.

Theorem 1.3. For a hyperbolic planar or funnel end Y ∼= [b,∞)× S1, with metric as in (1-4) or (1-5),
the resonance counting function for the Laplacian with Dirichlet boundary conditions at r = b satisfies
an asymptotic as t→∞,

NY (t)∼ A(Y )t2.

We will write these constants A(Y ) explicitly in a moment. First let us state our main result.

Theorem 1.4. For (X, g) a surface with hyperbolic ends as in (1-3) and V ∈ C∞0 (X), the regularized
counting function for P =1g + V satisfies

ÑP(a)
a2 ≤

1
2π

vol
(
Xc, g

)
+

nf∑
j=1

A(Y j )+ o(1), (1-8)

where Xc is the subset (1-7).

If (X, g) is a finite-area surface with hyperbolic cusp ends (and arbitrary metric in the interior),
Parnovski [1995] proved that

Ng(t)∼
1

2π
vol(X, g)t2.
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This shows that Theorem 1.4 is sharp in the case nf = 0. It also suggests an intriguing interpretation
of the constants appearing in (1-8). Suppose we split X into a disjoint union Xc ∪ Y1 ∪ · · · ∪ Ynf at the
boundary of Xc and impose Dirichlet boundary conditions at the newly created boundaries. The constant
on the right side of (1-8) is the sum of the asymptotic constants for the resonance counting function of
the resulting components.

To obtain Theorem 1.1 from Theorem 1.4, we take the Y j to be standard funnels with boundaries at
b j = 0, in which case A(Y j ) = ` j/4. And under the assumptions that Xc has geodesic boundary and
hyperbolic interior, the Gauss–Bonnet theorem gives vol(Xc, g)=−2πχ(X).

As in Corollary 1.2, combining Theorem 1.4 with the Guillopé–Zworski argument gives a lower
bound on NP(t) with a constant that depends only on 0-vol(X, g) and the end parameters ` j and b j for
j = 1, . . . , nf, assuming that 0-vol(X, g) 6= 0.

The asymptotic constants A(Y ) appearing in Theorem 1.3 have a somewhat complicated form. Con-
sider first a model funnel end F`,r0 defined by

F`,r0
∼= [r0,∞)× S1 and ds2

= dr2
+ `2 cosh2 r dθ2

(2π)2
. (1-9)

The case r0 = 0, a standard funnel with geodesic boundary, is simply denoted by F`. The resonance set
for the Laplacian on F`,r0 with Dirichlet boundary conditions at r = r0 is denoted RF`,r0

.
In Section 7 we will show that for r0 ≥ 0,

A(F`,r0)=−
`

2π
sinh r0+

4
π

∫ π/2

0

∫
∞

0

[I (xeiθ , `, r0)]+

x3 dx dθ, (1-10)

where [ · ]+ denotes the positive part and, with ω := 2π/`,

I (α, `, r) := Re
(

2α log
(
α sinh r +

√
ω2+α2 cosh2 r

√
ω2+α2

))
+ω arg

(√
ω2+α2 cosh2 r − iω sinh r√
ω2+α2 cosh2 r + iω sinh r

)
+π(Imα−ω). (1-11)

(We will use the principal branch of log in all such formulas.) The integral in (1-10) is explicitly com-
putable in the case r0 = 0, since I (xeiθ , `, 0) = π(x sin θ −ω). In this case we recover the asymptotic
constant for the standard funnel, A(F`)= `/4.

It is interesting to compare the resonance sets of truncated funnels F`,r0 with r0 > 0 to extended
funnels with r0 < 0. The two cases are quite different in terms of the classical dynamics; an extended
funnel contains a trapped geodesic, while truncated funnels are nontrapping. Because of this change
in dynamics, we expect the distribution of resonances near the critical line to change dramatically as
r0 switches from positive to negative. Figure 2 illustrates these differences. In the nontrapping case at
left, the distance from the resonances to the critical line increases logarithmically as Im s→∞. For the
trapping case at right, the distance decreases exponentially. These behaviors are consistent with results
on resonance-free regions for asymptotically hyperbolic manifolds by Guillarmou [2005].
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r0 = 1 r0 = 0 r0 =−1

10 10 10

10 10 10

Figure 2. Resonance sets of the funnel F`,r0 with different boundary locations r0, shown
for `= 2π .

Of course, the asymptotics of the global counting function NP(t) are not expected to be sensitive to
the dynamics. Indeed, we will show in Section 8 that the formula (1-10) for the asymptotic constant of
NF`,r0

(t) remains valid for r0 < 0. This exact asymptotic can be compared to the upper bound obtained
for the extended funnel from Theorem 1.4, which is

ÑF`,r0
(a)

a2 ≤−
`

2π
sinh r0+

`

4
for r0 ≤ 0. (1-12)

Figure 3 illustrates the difference between the upper bound (1-12) and the sharp asymptotic in this
situation. Given this discrepancy, one might think that the bound in Theorem 1.4 could be improved
by moving the boundary of K further into the interior of the surface (that is, by allowing b j < 0 in the
definition (1-5)). Unfortunately, for reasons that we will explain in Section 4, it does not seem possible
to obtain any improvement this way.

In the hyperbolic planar case, the model problem for Y j is scattering by a spherical obstacle in H2, that
is, on the exterior Dirichlet domain �r0 := {r ≥ r0} ⊂ H2. The resonance asymptotics for this spherical
obstacles in Hn+1 were worked out in Borthwick [2010, Theorem 1.2]. In two dimensions the result is

A(�r0)= 2− cosh r0+
4
π

∫ π/2

0

∫
∞

0

[H(xeiθ , r0)]+

x3 dx dθ, (1-13)

where

H(α, r) := Re

(
2α log

(
α cosh r +

√
1+α2 sinh2 r

√
α2− 1

))
+ log

∣∣∣∣∣cosh r −
√

1+α2 sinh2 r

cosh r +
√

1+α2 sinh2 r

∣∣∣∣∣. (1-14)
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A(F`,r )

r

`/4

−
`

2π sinh r + `
4

1

2

4

−1

Figure 3. The exact asymptotic constant for F`,r as a function of boundary location r ,
shown for `= 2π . The dotted line shows the bound from Theorem 1.4.

The paper is organized as follows. The basic material on the resolvent and resonances of the operator
P is reviewed in Section 2. In Section 3 we present the factorization formula for the relative scattering
determinant and show that this leads to Weyl asymptotics for the scattering phase and a counting formula
for resonances based on contour integration. The growth estimates on the scattering determinant and the
resulting proof of Theorem 1.4 are given in Section 4, assuming certain estimates to be developed in
later sections. The derivation of Corollary 1.2 is also given in Section 4. In Section 5, we develop
the asymptotic analysis of Dirichlet eigenmodes on hyperbolic funnels. These asymptotics are applied
in Section 6 to prove the Poisson operator estimates needed for Section 4. Finally, in Section 7 and
Section 8 we establish the exact asymptotic constant (1-10) for the truncated and extended funnel cases,
respectively, and prove the funnel part of Theorem 1.3 in particular.

2. Resonances

The context introduced in Section 1 differs from that of Guillopé and Zworski [1995; 1997] in two
relatively minor ways: Hyperbolic planar ends are allowed in addition to funnels, and a compactly
supported potential V is possibly added to 1g. The latter addition really is trivial, but the inclusion of
hyperbolic planar ends requires a few extra estimates on model terms. In this section we will briefly
review the theory [Guillopé and Zworski 1995; 1997], in order to explain those additional estimates.

To define resonances we need analytic continuation of the resolvent, RP(s) := (P−s(1−s))−1, from
its original domain Re s> 1

2 . Each end Y j is isometric to a portion of either H or the model funnel F` j , and
we can use this identification to pullback model resolvents R0

Y j
(s). After appropriate cutoffs are applied,

we can treat these model terms as operators on X , whose kernels have support only in the corresponding
ends Y j . Similarly, we define R0

C j
(s) by pullback from the model cusp. Suppose that χ j

k ∈ C∞(X) are
cutoff functions for j = 1, . . . , nf+ nc and k = 0, 1, 2, such that

χ
j

k =


0 for r ≥ k+ 1 in end j,
1 for r ≤ k in end j,
1 outside of end j.

We also set χk :=
∏

j χ
j

k .
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For some s0 with Re s0 sufficiently large, so that RP(s0) is defined, we set

M(s) := χ2 RP(s0)χ1+

nf∑
j=1

(1−χ j
0 )R

0
Y j
(s)(1−χ j

1 )+

nf+nc∑
j=nf+1

(1−χ j
0 )R

0
C j
(s)(1−χ j

1 ).

This parametrix satisfies

(P − s(1− s))M(s)= I − L(s),

where

L(s) := −[1g, χ2]RP(s0)χ1+ (s(1− s)− s0(1− s0))χ2 RP(s0)χ1

+

nf∑
j=1

[1g, χ
j

0 ]R
0
Y j
(s)(1−χ j

1 )+

nf+nc∑
j=nf+1

[1g, χ
j

0 ]R
0
C j
(s)(1−χ j

1 ).

There are two differences here from the construction of [Guillopé and Zworski 1995]. First of all, some
of our model terms R0

Y j
(s) will be copies of RH(s) instead of the funnel resolvent. Second, we follow

the treatment in [Borthwick 2007] in using the model resolvent for a full cusp, rather than modifying the
original Hilbert space.

Let ρ ∈ C∞(X) be proportional to e−r in the ends Y j and C j , with respect to the coordinate systems
given in (1-4)–(1-6). The operator L(s) is compact on ρN L2(X, dg) for Re s > 1

2 − N and defines a
meromorphic family with poles of finite rank. (The structure of the kernel of R0

Y j
(s) at infinity is the same

whether Y j is a funnel or hyperbolic planar, so this part of the argument is unaffected by the addition of
hyperbolic planar ends.)

By choosing s and s0 appropriately we can insure that I − L(s) is invertible at some s, and then the
analytic Fredholm yields

RP(s)= M(s)(I − L(s))−1. (2-1)

This proves the following result, a slight generalization of [Guillopé and Zworski 1995, Theorem 1]:

Theorem 2.1 (Guillopé and Zworski). The formula (2-1) defines a meromorphic extension of RP(s) to
a bounded operator on ρN L2(X, dg) for Re s > 1

2 − N , with poles of finite rank.

Meromorphic continuation allows us to define RP as the set of poles of RP(s), listed according to
multiplicities given by

m P(ζ ) := rank Resζ RP(s).

The same parametrix construction also leads to an estimate of the order of growth of the resonance
counting function. The following is a slight generalization of [Guillopé and Zworski 1995, Theorem 2]:

Theorem 2.2 (Guillopé and Zworski). The resonance counting function satisfies a bound

NP(t)= O(t2).
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Our version requires just a few additional estimates. To obtain this bound on the counting function,
Guillopé and Zworski [1995] introduced a Fredholm determinant

D(s) := det(I − L3(s)3), where L3(s) := L(s)χ3.

Using the relation
RP(s)χ3 = M(s)χ3(I + L3(s)+ L3(s)2)(I − L3(s)3)−1,

and a result of Vodev [1994, Appendix], they showed that RP is included in the union of the set of poles
of D(s) with 3 copies of the union of the sets of poles of M(s) and L3(s).

The only change that the inclusion of hyperbolic planar ends requires in this argument is that for
each hyperbolic planar end we include a copy of RH among the possible poles of M(s) and L3(s). Since
NH(t)= O(t2), just as for funnels, the problem reduces as in [Guillopé and Zworski 1995] to an estimate
of the growth of D(s). Through Weyl’s inequality, the estimate of D(s) is broken up into estimates on
the singular values of various model terms. We must check that the relevant estimates are satisfied by
the hyperbolic planar model terms.

There are three estimates to consider. The first concerns the resolvent RH(s). If Q1 and Q2 are
compactly supported differential operators of orders q1 and q2, with disjoint supports, then for ε > 0,

‖Q1 RH(s)Q2‖ ≤ C(q j , ε)〈s〉q1+q2 for Re s > ε, (2-2)

and
‖Q1 RH(s)Q2‖ ≤ C(q j , ε)〈s〉q1+q2−1 for Re s > 1

2 + ε. (2-3)

To prove either of these, one can simply use the explicit formula

RH(s; z, z′)= 1
4π

∫ 1

0

(t (1− t))s−1

(t + sinh2 d(z, z′))s
dt,

and repeat the argument from [Guillopé and Zworski 1995, Lemma 3.2].
The next estimate is for the Poisson kernel EH(s). In the Poincaré ball model B, this kernel is given

by

EB(s; z, θ)=
1

4π
0(s)2

0(2s)
(1− |z|2)s

|eiθ − z|2s for z ∈ B, θ ∈ R/(2πZ).

Given a compact set K ⊂ B and ε > 0, we have∣∣∂k
θ EB(s; z, θ)

∣∣≤ C(K , ε)kk! ec〈s〉 for z ∈ K , k ∈ N. (2-4)

This is not difficult to prove directly by induction, or one can use an analyticity argument as in [Guillopé
and Zworski 1995, Lemma 3.1].

Finally, we must estimate the scattering matrix SH(s). We can write this explicitly in terms of Fourier
modes,

SH(s)=
∑
k∈Z

[SH(s)]keik(θ−θ ′), where [SH(s)]k = 21−2s 0(
1
2 − s)

0(s− 1
2)

0(s+ |k|)
0(1− s+ |k|)



522 DAVID BORTHWICK

Using Stirling’s formula, it is easy to use this expression for the eigenvalues to estimate the singular
values of SH(s). Assuming that Re s < 1

2 − ε and dist(s,−N0) > η, we have

µ j (SH(s))≤ exp(C(η) 〈s〉+Re(1− 2s) log(〈s〉/j)). (2-5)

This is the analog of [Guillopé and Zworski 1997, Lemma 4.2].
With these model estimates in place, one can simply apply Guillopé and Zworski’s original argument

(treating the cusp contributions as in [Borthwick 2007, Section 9.4]) to prove that

|g(s)D(s)| ≤ eC〈s〉2,

where g(s) is a entire function of order 2 and finite type, with zeros derived from RH and the model
resolvent sets for the funnels and cusps. This yields the proof of Theorem 2.2.

3. Relative scattering determinant

To define scattering matrices, we will fix a function ρ ∈ C∞(X) that serves as a boundary defining
function for a suitable compactification of X . We start with smooth positive functions ρf, ρc satisfying

ρf =

{
2e−r in each Y j ,

1 in each C j
and ρc =

{
1 in each Y j ,

e−r in each C j .

Then we set ρ = ρfρc for the global boundary defining function.
The ends Y j are conformally compact, and we distinguish between the internal boundary ∂Y j , and

the boundary at infinity ∂∞Y j induced by the conformal compactification. The funnel ends Y j come
equipped with a length parameter ` j , the length of the closed geodesic bounding the finite end. If we
assign length ` j = 2π to a hyperbolic planar end, for consistency, then the metric induced by ρ2g on the
boundary of Y j at infinity gives an isometry

∂∞Y j ∼= R/` j Z.

The cusp ends can be compactified naturally by lifting to H and invoking the Riemann-sphere topology,
as described in [Borthwick 2007, Section 6.1]. The resulting boundary ∂∞C j consists of a single point.

Despite the discrepancy in dimensions, it will be convenient to group all of the infinite boundaries
together as

∂∞X := ∂∞Y1 ∪ · · · ∪ ∂∞Ynf ∪ ∂∞Cnf+1 ∪ · · · ∪ ∂∞Cnf+nc .

Then we have
C∞(∂∞X) := C∞(R/`1Z)⊕ · · ·⊕C∞(R/`nfZ)⊕Cnc,

and similarly for L2(∂∞X).
In Section 2, R0

Y j
(s) denoted the pullback of the model resolvent in the parametrix construction.

Carrying on with this notation, we also define the model Poisson operators

E0
Y j
(s) : C∞(∂∞Y j )→ L2(Y j ),
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and scattering matrices
S0

Y j
(s) : C∞(∂∞Y j )→ C∞(∂∞Y j ).

Similarly, for the cusp ends we have the Poisson kernels

E0
C j
(s) : C→ L2(C j ).

There is no analog of the model scattering matrix for a cusp; see [Borthwick 2007, Section 7.5] for an
explanation of this.

The scattering matrix SP(s) is defined as a map on C∞(∂∞X), which we can write as

SP(s)=
(

Sff(s) Sfc(s)
Scf(s) Scc(s)

)
, (3-1)

where the blocks are split between the “funnel-type” ends Y j and the cusps C j . The block Sff(s) is a ma-
trix of pseudodifferential operators; all other blocks have finite rank. To define a scattering determinant,
we normalize using the background operator

S0(s)=
(

S0
Y (s) 0
0 I

)
, where S0

Y (s)= S0
Y1
(s)⊕ · · ·⊕ S0

Ynf
(s).

The relative scattering determinant is then defined by

τ(s)= det SP(s)S0(s)−1. (3-2)

The poles of the background scattering matrix S0(s) define a background resonance set

R0 =

nf⋃
j=1

{
RF` j

for a funnel end,

RH for a hyperbolic planar end.
(3-3)

For ∗ = 0 or P let H∗(s) denote the Hadamard product over R∗,

H∗(s) :=
∏
ζ∈R∗

(1− s/ζ )e s/ζ+s2/(2ζ 2).

Theorem 2.2 implies that the product for HP(s) converges, and for H0(s) this is clear from the definition
of R0.

Proposition 3.1. For P =1g + V , the relative scattering determinant admits a factorization

τ(s)= eq(s) HP(1− s)
HP(s)

H0(s)
H0(1− s)

,

where q(s) is a polynomial of degree at most 2.

Proof. If the ends Y j are all hyperbolic funnels, then Guillopé and Zworski [1997, Proposition 3.7] proved
the factorization formula of with q(s) a polynomial of degree at most 4. The first part of the proof, the
characterization of the divisor of τ(s) obtained in [Guillopé and Zworski 1997, Proposition 2.14], remains
valid if hyperbolic planar ends are included.
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To extend the more difficult part of the argument, which is the estimate that shows q(s) is polynomial,
we require only the extra estimates on model terms given in (2-2), (2-3), (2-4), and (2-5). With these
estimates one can easily extend the proof of [Guillopé and Zworski 1997, Proposition 3.7]. We refer the
reader also to [Borthwick 2007, Section 10.5], for an expository treatment of these details.

To see that the maximal order of q(s) is 2, we could prove an estimate analogous to [Borthwick 2008,
Lemma 5.2]. However, we will be proving a sharper version of this estimate later in this paper. From
(4-12) in the proof of Theorem 4.1, it will follow that for some sequence ai →∞,

log|τ(s)| ≤ O(a2
i ) for |s− 1

2 | = ai , |arg(s− 1
2)| ≤

1
2π − δ.

Because the Hadamard products H∗(s) have order 2, this implies a bound |q(s)|=O(|s|2+ε) in the sector
|arg(s− 1

2)| ≤
1
2π−δ. Hence q(s) has degree at most 2, since it is already known to be polynomial. (The

derivations leading to (4-12) require only that q(s) is polynomial, so this argument is not circular.) �

To apply the factorization of τ(s) to resonance counting we introduce the relative scattering phase
of P , defined as

σ(ξ) :=
i

2π
log τ(1

2 + iξ), (3-4)

with branches of the log chosen so that σ(ξ) is continuous and σ(0)= 0. By the properties of the relative
scattering matrix, σ(ξ) is real and σ(−ξ)=−σ(ξ).

To state the relative counting formula, we let N0 denote the counting function associated to R0,

N0(t) := #
{
ζ ∈R0 : |ζ −

1
2 | ≤ t

}
,

and Ñ0(a) the corresponding regularized counting function.

Corollary 3.2. As a→∞,

ÑP(a)− Ñ0(a)= 4
∫ a

0

σ(t)
t

dt + 2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ + O(log a). (3-5)

The proof is by contour integration of τ ′/τ(s) around a half-circle centered at s = 1
2 . See [Borthwick

2010, Proposition 3.2] for the details of the derivation of (3-5) from Proposition 3.1. This is the analog
of a formula developed by Froese [1998] for Schrödinger operators in the Euclidean setting.

The other consequence we need from Proposition 3.1 is essentially also already proven. To analyze the
first term on the right side of (3-5), we will invoke the Weyl-type asymptotics satisfied by the scattering
phase:

Theorem 3.3 (Guillopé and Zworski). As ξ →+∞,

σ(ξ)=
( 1

4π
0-vol(X, g)−

nhp

2

)
ξ 2
−

nc

π
ξ log ξ + O(ξ),

where nhp denotes the number of the Y j that are hyperbolic planar.

For surfaces with hyperbolic funnel or cusp ends, this result was established by Guillopé and Zworski
[1997, Theorem 1.5]. As in the other cases discussed above, the modifications needed to adapt the proof
to our slightly more general setting are fairly simple. The first point is that the addition of a compactly
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supported potential V does not change the argument at all, since it does not affect the leading term in
the wave trace asymptotics as derived in [Guillopé and Zworski 1997, Lemma 6.2]. The second issue
is that we allow hyperbolic planar ends in addition to funnels. However, for |t | < ` the restriction to
the diagonal of the wave kernel on a model funnel F` is identical to that of H2. This is the content of
[Guillopé and Zworski 1997, Equation (6.1)]. So hyperbolic planar ends may also be included without
modifying the argument. Such ends do affect the final calculation, however, because 0-vol(H2) = −2π
whereas the model funnels had 0-vol(F`)= 0. This difference accounts for the nhp term.

4. Scattering determinant asymptotics

To state the asymptotic estimate for the scattering determinant contribution to the resonance counting
formula (3-5), we introduce the following constants. If Y j is a funnel with parameters ` j , b j , then we set

B(Y j ) :=
4
π

∫ π/2

0

∫
∞

0

[I (xeiθ , ` j , b j )]+

x3 dx dθ −
` j

4
,

where I (α, `, r) was defined in (1-11). If Y j is a hyperbolic planar end with parameter b j , then

B(Y j ) :=
4
π

∫ π/2

0

∫
∞

0

[H(xeiθ , b j )]+

x3 dx dθ,

where H(α, `, r) was defined in (1-14). The cusps do not contribute to the asymptotics of τ(s) to leading
order, so we make no analogous definition for C j .

Theorem 4.1. For (X, g) a surface with hyperbolic ends as in (1-3), there exists an unbounded set
3⊂ [1,∞) such that

2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ ≤
nf∑

j=1

B(Y j )a2
+ o(a2) for all a ∈3.

Before undertaking the proof of Theorem 4.1, we will show how this theorem leads to the proof of
the main result stated in Section 1:

Proof of Theorem 1.4. Starting from the counting formula from Corollary 3.2, we apply Theorem 3.3 to
the scattering phase term and Theorem 4.1 to the scattering determinant contribution. This yields

ÑP(a)≤ Ñ0(a)+
1

2π
0-vol(X, g)a2

+

nf∑
j=1

B(Y j )a2
+ o(a2), (4-1)

as a→∞. From the explicit definition (3-3) of R0, we see that

N0(t)
t2 ∼

nf∑
j=1

{
1 for a hyperbolic planar end,
` j/4 for a funnel end,
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and so Ñ0(a) satisfies the same asymptotic. Also, we have

0-vol(X, g)= vol(Xc, g)+
nf∑

j=1

0-vol(Y j , g).

The 0-volumes of the Y j are easily computed. For a hyperbolic planar end,

0-vol(Y j , g)= 2π FP
ε→0

∫ log(2/ε)

b j

sinh r dr =−2π cosh b j ,

and for a funnel end,

0-vol(Y j , g)= ` j FP
ε→0

∫ log(2/ε)

b j

cosh r dr =−` j sinh b j .

By the formulas (1-13) and (1-10) for A(Y j ), we see that (4-1) is equivalent to the claimed estimate. �

The derivation of Theorem 1.1 from Theorem 1.4 was already explained in Section 1. To prove
Corollary 1.2 we simply recall a few details of the proof of the lower bound in Guillopé and Zworski
[1997, Theorem 1.3]. For a test function φ ∈ C∞0 (R+) with φ ≥ 0 and φ(1) > 0, we have estimates

|φ̂(ξ)| ≤ Ck(1+ |ξ |)−k−2 for k ∈ N and Im ξ ≤ 0.

Pairing the distributional Poisson formula [Guillopé and Zworski 1997, Theorem 5.7] with λφ(λ · ) yields

|0-vol(X, g)| λ2
≤ Ck

∫
∞

0
(1+ r)−k−3 NP(λr) dr.

If we have NP(t)≤ At2 for t ≥ 1, then splitting the integral at a gives

|0-vol(X, g)| λ2
≤ Ck

(
N (λa)+ Aλ2a−k).

Setting t = λa, we have
N (t)≥

(
ck |0-vol(X, g)| a−2

− Aa−2−k) t2,

and optimizing with respect to a then yields

N (t)≥ ck |0-vol(X, g)|1+k/2 A−k/2.

Corollary 1.2 is then proven by substituting the constant obtained in Theorem 1.1 for A.
The rest of this section is devoted to the proof of Theorem 4.1. To produce a formula convenient for

estimation, we introduce cutoff functions as follows. Fix some η ∈ (0, 1). For j = 1, . . . , nf + nc and
k = 1, 2, we define χ j

k ∈ C∞(X) so that χ j
k = 1 outside the j-th end (Y j or C j ), and inside the j-th end

we have

χ
j

k =

{
0 for r ≥ b j + (k+ 1)η,
1 for r ≤ b j + kη.

(4-2)

Note that χ j
2 = 1 on the support of χ j

1 , as illustrated in Figure 4.
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1

r
η

b j

χ
j

1
χ

j
2

Figure 4. The cutoff functions χ j
k in the j-th end.

Proposition 4.2. With cutoffs defined as in (4-2), we have

SX (s)S0(s)−1
= I + Q(s),

where the components of Q(s), in terms of the block decomposition introduced in (3-1), are

Qff
i j (s)= (2s− 1)E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(1− s),

Qcf
i j (s)= (2s− 1)E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(1− s),

Qfc
i j (s)=−(2s− 1)E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1C j , χ

j
1 ]E

0
C j
(s),

Qcf
i j (s)=−(2s− 1)E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1C j , χ

j
1 ]E

0
C j
(s),

Proof. One can characterize the scattering matrix SX (s) through the boundary behavior of solutions of
(1g − s(1− s))u = 0. For ψ ∈ C∞(∂∞X) and Re s ≥ 1

2 , with s 6= N/2, there is a unique generalized
eigenfunction u ∈ C∞(X) with the asymptotic behavior

u ∼ ρ1−s
f ρ−s

c ψ + ρs
f ρ

s−1
c SX (s)ψ. (4-3)

For hyperbolic surfaces with cusps, a proof is given in Borthwick [2007, Proposition 7.13]. The essential
analysis takes place in the ends, so including smooth metric or potential perturbations within K requires
only trivial modifications to the proof. Likewise, hyperbolic planar ends may be included without much
change to the argument.

Suppose f j ∈C∞(∂∞Y j ). Then we can use the model Poisson kernel E0
Y j
(s) to create a partial solution

(1−χ j
1 )E

0
Y j
(s) f j supported in Y j . As ρ→ 0 in Y j , this function has the asymptotic behavior

(1−χ j
1 )E

0
Y j
(s) f j ∼

1
2s−1

(ρ1−s
f f j + ρ

s
f S0

Y j
(s) f j ). (4-4)

To create a full solution, we will take the ansatz

u = (1−χ j
1 )E

0
Y j
(s) f j + u′

and then solve (1g − s(1− s))u = 0 for u′ by applying the resolvent. The result is

u′ = RP(s)[1Y j , χ
j

1 ]E
0
Y j
(s) f j .
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In the end Yi , we can use the fact that (1−χ i
2)[1Y j , χ

j
1 ] = 0 to deduce

(1Yi − s(1− s))(1−χ i
2)u
′
=−[1Yi , χ

i
2]u
′,

and hence that
(1−χ i

2)u
′
=−R0

Yi
(s)[1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j .

This gives the asymptotic behavior in Yi :

u′ ∼−ρs
f E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j . (4-5)

By comparing the asymptotics (4-4) and (4-5) to the general form (4-3), we see that

Sff
i j (s)= δi j S0

Y j
(s)− (2s− 1)E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s)

We then obtain Qff
i j (s) by noting that

E0
Y j
(s)S0

Y j
(s)−1

=−E0
Y j
(1− s).

To find Qcf
i j (s) we use the same setup starting from f j ∈C∞(∂∞Y j ), but then analyze u′ by restricting

to the cusp end Ci . This yields

(1−χ i
2)u
′
=−R0

Ci
(s)[1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j .

The asymptotic behavior in Ci is given by

(1−χ i
2)u
′
∼−ρs−1 E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j ,

so that
Scf

i j (s)=−(2s− 1)E0
Ci
(s)t [1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s).

Next take a j ∈ C∞(∂∞C j ) = C. Since E0
C j
(s; r) = ρ−s

c /(2s − 1), our ansatz for a generalized
eigenfunction satisfying (4-3) starts from

(1−χ j
1 )E

0
C j
(s)a j ∼

1
2s−1

ρ−s
c a j .

The corresponding generalized eigenfunction is

u = (1−χ j
1 )E

0
C j
(s)a j + u′, where u′ = RP(s)[1C∞, χ

j
1 ]E

0
C j
(s)a j .

arguing as above, we find that

u′ ∼−ρs
f E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1C∞, χ

j
1 ]E

0
C j
(s)a j

in the funnel Yi , and

u′ ∼−ρ1−s
c E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1C j , χ

j
1 ]E

0
C j
(s)a j

in the cusp Ci . We can then read off the matrix elements, Sfc
i j (s) and Scc

i j (s), as above. �
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In conjunction with the cutoffs defined in (4-2), we introduce projections 1 j
k on L2(X, dg), where

1
j
k f =

{
f for r ∈ [b j + kη, b j + (k+ 1)η] in end j,
0 otherwise.

(4-6)

As with the cutoffs, these projections depend on b j and also on the choice of η > 0. We then introduce
operators on L2(X, dg) given by

G j (s) := (2s− 1)1 j
1 E0

Y j
(1− s)E0

Y j
(s)t1 j

2 for j = 1, . . . , nf, (4-7)

G j (s) := −(2s− 1)1 j
1 E0

C j
(s)E0

C j
(s)t1 j

2 for j = nf+ 1, . . . , nf+ nc. (4-8)

Proposition 4.3. The relative scattering phase is bounded by

log|τ(s)| ≤
nf+nc∑

j=1

log det(I +C(η, ε)|G j (s)|)

for Re s ≥ 1
2 with dist(s(1− s), σ (P))≥ ε.

Proof. In the formula for the relative scattering matrix given in Proposition 4.2, we can write Q(s) as
the composition of three operators,

Q(s) : L2(∂∞X)
Q3
−→ L2(X, dg)

Q2
−→ L2(X, dg)

Q1
−→ L2(∂∞X),

where

Q1 :=

nf∑
j=1

E0
Y j
(s)t1 j

2 +

nf+nc∑
j=nf+1

E0
C j
(s)t1 j

2, Q2 :=

nf+nc∑
i, j=1

[1g, χ
i
2]RP(s)[1g, χ

j
1 ],

Q3
∣∣

L2(∂∞Y j )
:= 1

j
1 E0

Y j
(1− s), Q3

∣∣
L2(∂∞C j )

:= 1
j
1 E0

C j
(s).

By the cyclicity of the trace,

τ(s)= det(I + Q(s))= det(I + Q2 ◦ Q3 ◦ Q1).

Under the assumptions Re s ≥ 1
2 with dist(s(1− s), σ (P)) ≥ ε, we can apply the spectral theorem and

standard elliptic estimates to prove that ‖Q2‖ ≤ C(η, ε). By the Weyl estimate this then gives

|τ(s)| ≤
∞∏
j=1

(1+C(η, ε)µ j (Q3 ◦ Q1))= det(1+C(η, ε)|Q3 ◦ Q1|)

The result follows immediately from

Q3 ◦ Q1 = G1⊕ · · ·⊕Gnf+nc,

where the G j (s) are given by (4-7) and (4-8). �

The right side of the estimate from Proposition 4.3 is always positive. It is therefore impossible to
obtain a sharp estimate by this approach in cases where the leading asymptotic behavior of log|τ(s)| is



530 DAVID BORTHWICK

negative. The extended funnel, whose resonance asymptotics are studied in Section 8, gives an example
of this situation.

Proof of Theorem 4.1. Let R0 be the background resonance set as defined in (3-3). To avoid poles, we
will restrict our attention to radii in the set

3 :=
{
a ≥ 1 : dist

(
{|s− 1

2 | = a},R0 ∪RP
)
≥ a−3}.

Since N0(t) and NP(t) are O(t2), the density of 3 in [1, r) approaches 1 as r→∞.
If we assume that 0≤ θ ≤ π/2− εa−2, then s = 1

2 + aeiθ will satisfy the hypothesis that

dist(s(1− s), σ (P))≥ ε

for Proposition 4.3. We also assume a ∈ 3 throughout this argument. If Y j is a funnel end, then
Proposition 6.3 gives

log det(I +C(η, ε)|G j (
1
2 + aeiθ )|)≤ κ j (θ, b j + 4η)a2

+C(η, ε, b j )a log a, (4-9)

where

κ j (θ, r) := 2
∫
∞

0

[I (xeiθ , ` j , r)]+
x3 dx − 1

2` j sin2 θ,

If Y j is hyperbolic planar, the corresponding estimate follows from [Borthwick 2010, Proposition 5.4],
with

κ j (θ, r) := 2
∫
∞

0

[H(xeiθ , r)]+
x3 dx,

(A slight modification of the original proof is required, replacing the assumption a ∈N with an estimate
based on dist( 1

2 − aeiθ ,−N).)
For a cusp end C j , it is easy to estimate directly since

E0
C j
(s)= esr

2s−1
,

which gives

G j (s; r, θ, r ′, θ ′)=−
1

2s−1
1 j,1(r)es(r+r ′)

1 j,2(r ′).

This operator has rank one, so that

det(I + c|G j (s)|)= 1+ cµ1(G j (s)),

where the sole singular value is given by

µ1(G j (s))=
1

|2s−1|

(∫ b j+2η

b j+η

e2r Re se−r dr
)1/2(∫ b j+3η

b j+2η
e2r Re se−r dr

)1/2
.

Hence we have
det(I + c|G j (

1
2 + aeiθ )|)≤ 1+ c

2a
e2a(b j+3η).
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For a sufficiently large,

log det(I +C(η, ε)|G j (
1
2 + aeiθ )|)≤ C(η, ε, b j )a for all |θ | ≤ π/2. (4-10)

From (4-9) and (4-10) we conclude that

log|τ( 1
2 + aeiθ )|

a2 ≤

nf∑
j=1

κ j (θ, b j + 4η)+C(η, ε, b j )a−1 log a (4-11)

for a ∈3 and 0≤ θ ≤π/2−εa−2. Since the κ j (θ, r) are uniformly continuous on [0, π/2]×[b j , b j+1],
we can take η→ 0 in (4-11), to obtain

log|τ(1
2 + aeiθ )|

a2 ≤

nf∑
j=1

κ j (θ, b j )+ o(a2), (4-12)

uniformly for 0≤ θ ≤ π/2− εa−2.
By integrating the estimate (4-12) over θ , we obtain

2
π

∫ π/2−εa−2

0
log|τ( 1

2 + aeiθ )| dθ ≤
nf∑

j=1

B(Y j )a2
+ o(a2).

It remains to fill in the small gap where |θ | is close to π/2. The factorization given by Proposition 3.1,
together with the minimum modulus theorem [Boas 1954, Theorem 3.7.4], implies that for any η > 0,

|τ( 1
2 + aeiθ )| ≤ Cη exp(a2+η), (4-13)

provided a ∈3. (This was the reason that RP was included in the definition of 3.) Thus,

2
π

∫ π/2

π/2−εa−2
log|τ(1

2 + aeiθ )| dθ = O(aηε),

and so this term can be absorbed into the o(a2) error. �

To conclude this section, we’ll derive some uniform upper and lower bounds on the growth of τ(s)
for s ∈ C, refining the estimates that one could obtain directly from Proposition 3.1. These will prove
useful in Section 7 and Section 8, in particular.

Lemma 4.4. Let Q denote the joint set of zeros and poles of τ( 1
2 + z) and τ(1

2 − i z). Assuming |z| ≥ 1
and dist(z,Q) > |z|−β with β > 2, we have

−c(β)|z|2 ≤ log|τ( 1
2 + z)| ≤ C(β)|z|2.

Proof. Since τ(1
2 − z)= 1/τ( 1

2 + z) and τ(1
2 + z̄)= τ( 1

2 + z), it suffices to prove the bounds for z in the
first quadrant.

For Re z ≥ δ with δ > 0, the upper bound is given in (4-11). As long as δ < 1, the function τ(s) is
analytic in the strip Re z ∈ [0, δ]. And since log|τ(1

2 + z)| = 1 for Re z = 0, the bound log|τ(1
2 + z)| =

O(|z|2) extends to the strip Re z ∈ [0, δ] by (4-13) and the Phragmén–Lindelöf theorem.
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To prove the lower bound, consider the Hadamard products appearing in the factorization of τ(s) given
in Proposition 3.1. These products are of order 2 but not finite type, so applying the minimum modulus
theorem directly would give − log|τ(1

2 + z)| = O(|z|2+η), away from the zeros. However, Lindelöf’s
theorem (see e.g., [Boas 1954, Theorem 2.10.1]) shows that products of the form H∗( 1

2 + z)H∗( 1
2 ± i z)

are of finite type. In other words,

log|H∗(1
2 + z)H∗(1

2 ± i z)| ≤ C |z|2,

as |z| → ∞. Using these estimates, and their implications via the minimum modulus theorem, we can
prove a lower bound

log|τ(1
2 + z)| ≥ −c(β)|z|2− log|τ(1

2 ± i z)|, (4-14)

provided 1
2+z and 1

2± i z stay at least a distance |z|−β away from the sets 1−RF`,r0
and RF` , with β > 2.

Assuming arg z ∈ [0, π/2], we already know log|τ(1
2 − i z)| ≤ C(β)|z|2 from above, provided 1

2 − i z
stays at least a distance |z|−β away from the sets RF`,r0

and 1−RF` . The lower bound in the first quadrant
then follows from (4-14). �

5. Funnel eigenmodes

Let F` be a hyperbolic funnel of diameter `. In geodesic coordinates (r, θ) ∈ R+ × S1, defined with
respect to the closed geodesic neck, the metric is

g0 = dr2
+ cosh2 r dθ2

ω2 , where ω := 2π
`
. (5-1)

The Laplacian is given by

1F` =−∂
2
r − tanh r ∂r −

ω2

cosh2 r
∂2
θ . (5-2)

In this section we will consider asymptotic properties of the Fourier modes of generalized eigenfunctions
of 1F` .

The restriction of eigenvalue equation (1F` − s(1− s))u = 0 to the k-th Fourier mode, u =w(r)eikθ ,
yields the equation

−∂2
r w− tanh r ∂rw+

(
k2ω2

cosh2 r
− s(1− s)

)
w = 0. (5-3)

This is essentially a hypergeometric equation. With respect to the symmetry r 7→ −r , we have an even
solution,

w+k (s; r) := (cosh r)iωkF(1
2(s+ iωk), 1

2(1− s+ iωk); 1
2 ;− sinh2 r), (5-4)

and an odd solution,

w−k (s; r) := sinh r(cosh r)iωkF( 1
2(1+ s+ iωk), 1

2(2− s+ iωk); 3
2 ;− sinh2 r). (5-5)

(We follow Olver’s convention in using F(a, b; c; z) := F(a, b; c; z)/0(c), where F(a, b; c; z) is the
standard Gauss hypergeometric function.)
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By symmetry, we can and will assume that k ≥ 0. If we substitute w = (cosh r)−1/2U and introduce
the parameter α defined by s = 1

2 + kα, the coefficient equation (5-3) becomes

∂2
r U = (k2 f + g)U, (5-6)

where

f := ω
2
+α2 cosh2 r
cosh2 r

and g := 1
4 cosh2 r

.

This equation has turning points when α=±iω/ cosh r . We will restrict our attention to argα ∈ [0, 1
2π ],

so that we only consider the upper turning point. The Liouville transformation involves a new variable
ζ defined by integrating √

ζ dζ :=
√

f dr, (5-7)

on a contour that starts from the upper turning point. Integrating (5-7) yields

(2/3)ζ 3/2
= φ, (5-8)

where φ(α, r), the integral of
√

f dr from the turning point, is given explicitly by

φ(α, r) := α log

(
α sinh r +

√
ω2+α2 cosh2 r

√
ω2+α2

)

+
iω
2

log

(√
ω2+α2 cosh2 r − iω sinh r√
ω2+α2 cosh2 r + iω sinh r

)
+φ0(α) (5-9)

for α 6= iω, where
φ0(α)= φ(α; 0)=− 1

2π(iα+ω). (5-10)

By continuity, the definition of φ extends to α = iω, with

φ(iω, r)= iω log cosh r.

To complete the Liouville transformation, we set W = ( f/ζ )1/4U , so that (5-6) becomes an approxi-
mate Airy equation,

∂2
ζ W = (k2ζ +ψ)W, (5-11)

with the extra term given by

ψ =
ζ

4 f 2 ∂
2
r f −

5ζ
16 f 3 (∂r f )2+

ζg
f
+

5
16ζ 2 . (5-12)

The solutions of (5-11) are of the form

Wσ := Ai(k2/3e2π iσ/3ζ )+ hσ (k, α, r), (5-13)

where σ = 0 or ±1, and the error term satisfies the differential equation

∂2
ζ hσ − k2ζhσ = (hσ +Ai(k2/3e2π iσ/3ζ ))ψ. (5-14)
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Using methods from Olver [1974] we can control this error term.

Lemma 5.1. The error equation (5-14) admits solutions that satisfy limr→∞ hσ (r)= 0 and

|hσ | ≤ Ck−1
|α|−2/3(1+ |kφ|1/6)−1e(−1)σ+1k Reφ,

with C independent of r , k and α.

We will defer the rather technical proof of Lemma 5.1 to the end of this section, in order to concentrate
on the implications of (5-13). The asymptotics of the Airy function are well known; see for example
[Olver 1974, Section 11.8]. Uniformly for |arg z|< π − ε, we have

Ai(z)= 1
2π1/2 z−1/4 exp(− 2

3 z3/2)(1+ O(|z|−3/2)). (5-15)

And uniformly for |arg z| ≥ 1
3π + ε,

Ai(z)= 1
π1/2 (−z)−1/4 cos( 2

3(−z)3/2− 1
4π)(1+ O(|z|−3/2)). (5-16)

These asymptotics make it convenient to introduce a pair of solutions of the eigenvalue equation (5-3)
defined by

wσ = 2π1/2eiπσ/6k1/6ζ 1/4(ω2
+α2 cosh2 r)−1/4Wσ , (5-17)

where Wσ is the ansatz (5-13) for σ = 0 or 1.

Proposition 5.2. Consider the solutions of the equation

(1F` −
1
4 − k2α2)eikθwσ (r)= 0

given by (5-17) with σ = 0 or 1. Assuming k ≥ 1 and argα ∈ [0, 1
2π − ε], we have asymptotics

wσ = (ω
2
+α2 cosh2 r)−1/4 exp

(
(−1)σ+1kφ

)(
1+ O(|kα|−1)

)
, (5-18)

with constants that depend only on ε. In addition, for argα ∈ [0, π/2] and |kα| sufficiently large, we
have the upper bounds

|wσ | ≤ Ck1/6 exp((−1)σ+1k Reφ), (5-19)

and the lower bound
|w0| ≥ ce−k Reφ. (5-20)

Proof. The assumption that argα ∈ [0, π/2− ε] implies that arg ζ ∈ [−2π/3, π/3− ε], so that (5-15)
applies to both w0 and w1 in this case. It also implies that |φ| ≥ c(ε)(|α| + 1), so that the error
term O(|w|−3/2) from (5-15) becomes O(|kα|−1) when applied to |w| = k2/3

|ζ |. In combination with
Lemma 5.1, this proves (5-18), and also (5-19) and (5-20) in the case where argα is bounded away from
π/2.

If argα ∈ [π/2− ε, π/2], then (5-15) and (5-16), together with Lemma 5.1, give the estimates

|k1/6ζ 1/4Wσ | ≤ C exp
(
(−1)σ+1k Reφ

)
, (5-21)
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and
|k1/6ζ 1/4W0| ≥ ce−k Reφ, (5-22)

If |ω2
+ α2 cosh2 r | ≥ 1, which bounds φ away from 0, then this gives (5-19) immediately. This leaves

the case |ω2
+ α2 cosh2 r | ≤ 1, which puts φ close to zero. In this case, ζ � (ω2

+ α2 cosh2 r), so that
wσ � k1/6Wσ . Then if |kφ| ≥ 1 we can derive the estimates from (5-21) and (5-22), while for |kφ| ≤ 1
we simply note that Wσ is bounded and nonzero near the origin. �

Another detail we will need later is the asymptotic behavior of wσ as r→∞.

Lemma 5.3. For Reα ≥ 0, as r→∞,

w0 ∼ α
−1/2e−k(φ0(α)+γ (α))ρ1/2+kα,

and
w1 ∼ α

−1/2ek(φ0(α)+γ (α))(ρ1/2−kα
+ iρ1/2+kα)

where ρ := 2e−r , and

γ (α) := α log 2α
√
ω2+α2

+
iω
2

log α−iω
α+iω

. (5-23)

Proof. The results follow immediately from (5-15) and (5-16), in combination with the asymptotic

φ(α; r)= αr +φ0(α)+α log α
√
ω2+α2

+
iω
2

log α−iω
α+iω

+ O(r−1), (5-24)

as r→∞. �

We conclude the section with the proof of the error estimate that is the basis of Proposition 5.2 and
Lemma 5.3.

Proof of Lemma 5.1. The cases of different σ are all very similar, so we consider only σ = 0. In this
case combining the boundary condition with variation of parameters allows us to transform (5-14) into
an integral equation:

h0(k, α, r)=
2πe−iπ/6

k2/3

∫
∞

r
K0(r, r ′)ψ(r ′)

(
h0(k, α, r ′)+Ai(k2/3ζ(r ′))

) f (r ′)1/2

ζ(r ′)1/2
dr ′,

where

K0(r, r ′) := Ai(k2/3ζ(r ′))Ai(k2/3e−2π i/3ζ(r))−Ai(k2/3e−2π i/3ζ(r ′))Ai(k2/3ζ(r)).

Then, using the method of successive approximations as in [Olver 1974, Theorem 6.10.2], together with
the bounds on the Airy function and its derivatives developed in [Olver 1974, Section 11.8], we obtain
the bound

|h0| ≤ Ce−k Reφ(1+ k1/6
|ζ |1/4)−1(eck−19(r)

− 1), (5-25)

where

9(r) :=
∫
∞

r
|ψ f 1/2ζ−1/2

|dr ′. (5-26)
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From (5-12), we compute

ψ f 1/2ζ−1/2
=

(
α4 cosh2 r + 4α2ω2 sinh2 r −ω4

4(ω2+α2 cosh2 r)5/2

)
ζ 1/2 cosh r +

5
16
(ω2
+α2 cosh2 r)1/2

ζ 5/2 cosh r
. (5-27)

The estimate must be broken into various regions. Fix some c > 0.

Case 1. Assume |α| ≥ 1 and |ω2
+α2 cosh2(r)| ≥ c. Under these conditions, we can estimate

|φ| � |α|(r + 1).

Then from (5-27), we find

|ψ f 1/2ζ−1/2
| ≤ C1|α|

−2/3e−2r (r + 1)1/3+C2|α|
−2/3(r + 1)−5/3.

We easily conclude that for |α| ≥ 1,∫
|ω2+α2 cosh2(r)|≥c

|ψ f 1/2ζ−1/2
|dr = O(|α|−2/3). (5-28)

Case 2. Assume |α|≤ 1 and |ω2
+α2 cosh2(r)|≥ c. The behavior of φ is now slightly more complicated,

depending on the size of r relative to |α|,

|φ| �

{
|α| + e−r for |α| sinh r ≤ 1,
|α|(r + log|α|) for |α| sinh r ≥ 1.

In this case, we estimate (5-27) by

|ψ f 1/2ζ−1/2
| ≤

{
C1(|α| + e−r )1/3er

+C2e−r (|α| + e−r )−5/3 for |α| sinh r ≤ 1,
C1(1+ |α|er )−3

|α|1/3(r + log|α|)1/3er
+C2|α|

−5/2r−5/3e−r for |α| sinh r ≥ 1.

It is then straightforward to bound, for |α| ≤ 1,∫
|ω2+α2 cosh2(r)|≥c

|ψ f 1/2ζ−1/2
|dr = O(|α|−2/3). (5-29)

Case 3. Assume |ω2
+ α2 cosh2(r)| ≤ c. In this case we are near the turning point, where φ and ζ are

small. Since |ω2
+ α2 cosh2(r)| ≤ c implies |α|2 ≤ ω2

+ c, we are only concerned with small |α| here.
We proceed as in [Borthwick 2010, Appendix]. In the coordinate z = sinh r , the turning point occurs at

z0 =

√
−1− ω

2

α2 .

Set

p(z) :=
( f

z− z0

)1/2
=
α
√

z+ z0
√

z2+ 1
. (5-30)

Because |ω2
+α2 cosh2(r)| = |α2(z2

− z2
0)|, the assumption |ω2

+α2 cosh2(r)| ≤ c implies

z � z0 � |α|
−1, (5-31)
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with constants that depend only on c. This makes it easy to estimate

|∂k
z p(z)| � |α|3/2+k, (5-32)

with constants that depend only on c and k. If we define

q(z) :=
φ

(z− z0)3/2
,

then by writing

q(z)=
∫ 1

0
t1/2 p(z0+ t (z− z0))√

((1− t)z0+ t z)2+ 1
dt,

we can deduce from (5-32) that
|∂k

z q(z)| � |α|5/2+k . (5-33)

To apply these estimates, we note that f/ζ = p2( 3
2q)−2/3. We can use this identification to apply the

bounds (5-32) and (5-33) to the formula (5-31) for ψ , obtaining

|ψ f 1/2ζ−1/2
| � |α|−2/3 for |ω2

+α2 cosh2(r)| ≤ c.

The bound ∫
|ω2+α2 cosh2(r)|≤c

|ψ f 1/2ζ−1/2
|dr = O(|α|−2/3), (5-34)

follows immediately, since the range of integration for r is O(1).
Combining the bounds (5-28), (5-29), and (5-34) gives

8(0)= O(|α|−2/3),

and the claimed estimate follows from (5-25). �

6. Funnel determinant estimates

For the model funnel F`, fix r0 ≥ 0 and for some η > 0 set

rk = r0+ kη.

Let 1k denote the multiplication operator for the characteristic function of the interval r ∈ [rk, rk+1]

in L2(F`). The operator G j (s) defined in (4-7) can be represented in the model funnel case by

G(s) := (2s− 1)11 EF`(1− s)EF`(s)
t
12 (6-1)

Our goal in this section is to prove the sharp bound on log det(1 + c|G(s)|) used in the proof of
Theorem 4.1.

To proceed we must analyze the Fourier decomposition of EF`(s). Because of the circular symmetry,
the Poisson kernel on F` admits a diagonal expansion into Fourier modes:

EF`(s; r, θ, θ
′)=

1
`

∑
k∈Z

ak(s; r)eik(θ−θ ′) (6-2)
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The coefficients ak(s; r) satisfy (5-3) with the boundary condition ak(s; 0)= 0, so we must have

ak(s; r)= ck(s)w−k (s; r), (6-3)

where w−k is the odd solution (5-5). To compute the normalization constant ck(s), we use the fact that

(2s− 1)ak(s; r)∼ ρ1−s
+ [SF`(s)]kρ

s as ρ→ 0, (6-4)

where [SF`(s)]k is the k-th matrix element of the scattering matrix S`(s). Applying the appropriate
Kummer identity [Olver 1974, Equation (5.10.16)] to the hypergeometric function in (5-5) gives

ak(s; r)∼ ck(s)
(
0(1

2 − s)βk(2− s)ρs
+0(s− 1

2)βk(1+ s)ρ1−s),
where

βk(s) :=
1

0(1
2(s+ikω)))0(1

2(s−ikω)))
. (6-5)

By comparing this asymptotic to (6-4), we can read off the coefficient

ck(s)=
2s− 1

0(s− 1
2)βk(1+ s)

,

as well as the scattering matrix element

[SF`(s)]k =
0( 1

2 − s)βk(2− s)

0(s− 1
2)βk(1+ s)

. (6-6)

For future reference we note also that

ak(1− s; r)=−
ak(s; r)
[SF`(s)]k

. (6-7)

and
ak(s; r)= a−k(s; r) (6-8)

We can express the singular values of G(s) in terms of the coefficients ak(s; r). Up to reordering,
these singular values are given by

λk(s) := |2s− 1|
(∫ r2

r1

|ak(1− s; r)|2 cosh r dr
)1/2(∫ r3

r2

|ak(s; r)|2 cosh r dr
)1/2

for k ∈ Z. (6-9)

To prove this, we note that λk(s)2 is the eigenvalue of G∗G(s) corresponding to the eigenfunction
χ[r2,r3](r)ak(s; r)e−ikθ . Also, it is easy to see from (6-1) and (6-2) that these are the only nonzero
eigenvalues.

Using (6-7) to replace ak(1− s) by ak(s), and assuming η ≤ 1, we can estimate

λk(
1
2 + kα)≤

∣∣2kαak(
1
2 + kα; r3)

2
[SF`(

1
2 − kα)]k cosh r3

∣∣. (6-10)

We will first estimate the various components. Recall that the matrix elements of SF`(s) were expressed
in terms of the function βk defined in (6-5).
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Lemma 6.1. For k > 0 and argα ∈ [0, 1
2π ], if we assume dist(kα,N0)≥ δ then we have

log
∣∣[SF`(

1
2 − kα)]k

∣∣≥ 2k Re γ + 2k[Reφ0]−−C(δ),

where γ (α) was defined in (5-23). If instead we assume that dist(1
2 − kα,RF`)≤ |kα|

−β , then

log
∣∣[SF`(

1
2 − kα)]k

∣∣≤ 2k Re γ + 2k[Reφ0]−+C(β) log|kα|.

Proof. Consider the matrix element (6-6). For Reα ≥ 0, we can apply Stirling’s formula directly to
obtain

log0(kα)βk(
3
2 + kα)= kγ (α)− 1

2 logπk2α
√
ω2+α2+ O(|kα|−1),

To estimate the other term, we must avoid zeros and poles. For Re z ≤ 0, applying Stirling via the
reflection formula gives

log|0(z)| ≤ Re
(
(z− 1

2) log(−z)− z
)
−π |Im z| + log(1+ dist(z,−N0)

−1)+ O(1),

and
log|0(z)| ≥ Re

(
(z− 1

2) log(−z)− z
)
−π |Im z| + O(1).

If we assume that dist(kα,N0)≥ δ, then we obtain the upper bound

log
∣∣0(−kα)βk(

3
2 − kα)

∣∣≤−k Re γ (α)− 2k[Reφ0]−−
1
2 log k2α

√
ω2+α2+C(δ).

For a lower bound, we need to assume that dist(kα,RF`)≥ |kα|
−β , and then we find that

log
∣∣0(−kα)βk(

3
2 − kα)

∣∣≥−k Re γ (α)− 2k[Reφ0]−−
1
2 log k2α

√
ω2+α2−C(β) log|kα|. �

Lemma 6.2. Assuming that Reα ≥ 0, k > 0, and dist( 1
2 − kα,RF`)≤ |kα|

−β , we have

log λk(
1
2 + kα)≤ 2k Reφ(α; r3)− 2k[Reφ0(α)]++ O(log |kα|).

Proof. By conjugation we can assume argα ∈ [0, 1
2π ]. Then ak(

1
2 + kα; r) can be expressed in terms of

the solutions wσ from Proposition 5.2. To satisfy the Dirichlet boundary condition, it must be a constant
multiple of w0(0)w1(r)−w1(0)w0(r). Lemma 5.3 gives the asymptotic behavior of this expression as
r→∞, allowing us to deduce the constant. After comparing to (6-4), we find that

ak(
1
2 + kα; r)= 1

2kw0(0)
α−1/2e−k(φ0(α)+γ (α))

(
w0(0)w1(r)−w1(0)w0(r)

)
(6-11)

The estimate ∣∣ak(
1
2 + kα; r)

∣∣≤ Ck1/6ek Re(φ(α,r)−φ0(α)−γ (α)), (6-12)

for |kα| sufficiently large, then follows immediately from (5-19) and (5-20). The result now follows from
applying Lemma 6.1 and (6-12) in (6-10). �

Proposition 6.3. Assuming that η≤ 1, 0≤ θ ≤ π/2, and dist( 1
2−aeiθ ,RF`)≥ a−β for some fixed β > 1,

we have
log det

(
I + c|G(1

2 + aeiθ )|
)
≤ κ(θ, r4)a2

+C(c, r0, β)a log a,
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iω

iω
cosh2 r

Reφ0 > 0

Reφ > 0> Reφ0

Reφ < 0
α = %(θ)eiθ

Figure 5. Positive and negative regions for Reφ(α; r) and Reφ0(α), shown for r = 1.

where

κ(θ, r)= 2
∫
∞

0

[I (xeiθ , `, r)]+
x3 dx − 1

2` sin2 θ, (6-13)

with I (xeiθ , `, r) := 2 Reφ(xeiθ
; r), which agrees with the definition (1-11).

Proof. We start from the expression for the determinant in terms of the singular values,

det(I + c|G(1
2 + aeiθ )|)=

∏
k∈Z

(1+ cλk(
1
2 + aeiθ )).

By the conjugation symmetry, we can assume θ ∈ [0, 1
2π ]. Let %(θ) be the implicit solution of the

equation Reφ(%(θ)eiθ , r3)= 0, as illustrated in Figure 5.
Note that Reφ0(xeiθ )= 0 in a neighborhood of x = %(θ). For some δ > 0, we subdivide the sum in

log det
(
I + c|G( 1

2 + aeiθ )|
)
= 2

∞∑
k=1

log(1+ cλk(
1
2 + ai eiθ ))+ O(a log a)

at values where ai/k = %(θ) and (1− δ)%(θ). The dominant part of the sum is

6+ :=
∑

1≤k≤a/%(θ)

log(1+ cλk(
1
2 + aeiθ )).

Assuming that a ∈ {ai }, Lemma 6.2 gives the bound

6+ ≤
∑

1≤k≤a/%(θ)

2k
(
Reφ(aeiθ/k; r3)− [Reφ0(aeiθ/k)]+

)
+C(c, r0, β)a log a.

Because the summand is a decreasing function of k, we may estimate the sum by the integral

6+ ≤

∫ a/%(θ)

0
2k
(
Reφ(aeiθ/k; r3)− [Reφ0(aeiθ/k)]+

)
+C(c, r0, β)a log a
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Substituting x = a/k gives∫ a/%(θ)

0
2k Reφ(aeiθ/k; r3) dk = 2a2

∫
∞

%(θ)

Reφ(xeiθ
; r3)

x3 dx .

We can also compute that∫ a/%(θ)

0
2k[Reφ0(aeiθ/k)]+ dk = πa2

∫
∞

ω/ sin(θ)

x sin θ −ω
x3 dx =

πa2

2ω
sin θ.

Comparing to (6-13), we conclude that

6+ ≤ κ(θ, r3)a2
+C(c, r0, β)a log a.

The middle term is given by

60 :=
∑

a/%(θ)≤k≤a/(1−δ)%(θ)

log(1+ cλk(
1
2 + aeiθ )),

Since I (α, `, r3)= O(δ) for k in this range, the same integral estimate used for 6+ gives

|60| ≤ C(c, r0, β)δa2
+C(c, r0, β)a log a.

Finally, we set

6− :=
∑

k≥a/(1−δ)%(θ)

log(1+ cλk(
1
2 + aeiθ )).

For k in this range, I (α, `, r3)≤−Cδ and we can estimate

|6−| ≤ C(c, r0, β, δ)e−ca for some c > 0.

Adding together the estimates for 6+, 60, and 6− gives

log det
(
I +C |G( 1

2 + aeiθ )|
)
≤ κ(θ, r3)a2

+C(c, r0, β)(δa2
+ a log a)+C(c, r0, β, δ)e−ca

We can absorb the δa2 term into the first term by replacing r3 by r4, assuming that η = O(δ), since
κ(θ, · ) is strictly increasing. This yields the claimed estimate. �

7. Resonance asymptotics for truncated funnels

Inside the model funnel F`, with metric given by (5-1), we let F`,r0 denote the truncated region {r ≥
r0}, with the Laplacian defined by imposing Dirichlet boundary conditions at r = r0. To compute the
associated scattering matrix elements exactly, we consider the solutions of the Fourier mode equation
(5-3) given by (5-4) and (5-5). To impose the boundary condition at r = r0, we set

uk(s; r) := w+k (s; r0)w
−

k (s; r)−w
−

k (s; r0)w
+

k (s; r). (7-1)
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The scattering matrix element may be obtained from the asymptotics of uk(s; r) as r →∞ be noting
that for any generalized eigenmode we have

uk(s; r)∼ ck,s(ρ
1−s
+ [SF`,r0

(s)]kρs) (7-2)

as r→∞, where ρ := 2e−r as before. The solutions w±k have leading asymptotics,

w+k (s; r)∼ 0(s−
1
2)βk(s)ρ1−s

+0( 1
2 − s)βk(1− s)ρs,

w−k (s; r)∼ 0(s−
1
2)βk(1+ s)ρ1−s

+0( 1
2 − s)βk(2− s)ρs

(7-3)

as r→∞, where βk(s) was defined in (6-5).
If we set

fk(s; r) := 0(s− 1
2)
(
βk(1+ s)w+k (s; r)−βk(s)w−k (s; r)

)
, (7-4)

Then from (7-2) we can read off that

[SF`,r0
(s)]k =

fk(1− s; r0)

fk(s; r0)
. (7-5)

The k-th Fourier mode thus contributes scattering poles at the values of s for which

βk(1+ s)w+k (s; r0)−βk(s)w−k (s; r0)= 0.

This function can be written in terms of a single normalized hypergeometric function, via the standard
identities, yielding

RF`,r0
=

⋃
k∈Z

{
s : F( 1

2(1+ s+ iωk), 1
2(s+ iωk); 1

2 + s;− sinh−2 r0)= 0
}
.

A sample resonance counting function is shown in Figure 6.

Theorem 7.1. For the truncated funnel with Dirichlet boundary conditions,

NF`.r0
(t)∼ A(F`.r0)t

2,

where A(F`.r0) is given by (1-10).

In conjunction with [Borthwick 2010, Theorem 1.2] for the hyperbolic planar case, this will complete
the proof of Theorem 1.3. Before giving the proof, we need some estimates of scattering matrix elements.

Lemma 7.2. Assuming that argα ∈ [0, π/2− ε] with dist(kα,N0)≥ η, we can have

log
∣∣∣∣ [SF`,r0

(1
2 + kα)]k

[SF`(
1
2 + kα)]k

− 1
∣∣∣∣≥ 2k(Reφ(α; r0)− [Reφ0(α)]+)−C(η)

for |kα| sufficiently large.
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NF`,r0
(t)

2 4 6 8 10

90

200

300

Figure 6. The resonance counting function for F`,r0 , shown for `= 2π and r0 = 1.

Proof. To estimate [SF`,r0
(s)]k , as given in (7-5), we must connect fk to the solutions wσ introduced in

(5-17). Since fk(
1
2+kα; r) is recessive as r→∞, this solution must be proportional to w0. From (7-3),

we can use the reflection formula for the gamma function to see that

fk(
1
2 + kα; r)∼

ρs

πkα
as r→∞.

By comparing this to the asymptotic from Lemma 5.3, we find that

fk(
1
2 + kα; r)= A+0 w0(r). (7-6)

where
A+0 :=

1
πk
√
α

ek(φ0+γ ).

We may also express fk(
1
2 − kα; r) in terms of the wσ ,

fk(
1
2 − kα; r)= A−0 w0(r)+ A−1 w1(r), (7-7)

for some coefficients A−0 and A−1 that are independent of r but do depend on k and α. By (7-3),

fk(
1
2 − kα; r)∼−

ρ1−s

πkα
,

and so by Lemma 5.3 we have

A−1 =−π
−1k−1α−1/2e−k(φ0+γ ). (7-8)

The other coefficient can then be computed by comparing values at r = 0,

A−0 =
1

w0(0)
(

fk(
1
2 − kα; 0)− A−1 w1(0)

)
. (7-9)

Using (7-6) to relate w0(0) to fk(
1
2 + kα; 0), we can then deduce that

[SF`,r (
1
2 + kα)]k = [SF`(

1
2 + kα)]k − e−2k(φ0+γ )

(
w1(r)
w0(r)

−
w1(0)
w0(0)

)
. (7-10)
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4

−10

Reφ((1
2 − s)/k; r0)= 0

Figure 7. Using the equation Reφ= 0 to locate the resonances of F`,r0 occurring in the
k = 7 Fourier mode, shown for `= 2π and r0 = 1.

Hence
[SF`,r (

1
2 + kα)]k

[SF`(
1
2 + kα)]k

− 1=−e−2k(φ0+γ )

(
w1(r)
w0(r)

−
w1(0)
w0(0)

)
[SF`(

1
2 − kα)]k (7-11)

For argα ∈ [0, π/2− ε], we deduce from (5-18) (using also the fact that Re(φ−φ0) > c(ε, r)) that(
w1(r)
w0(r)

−
w1(0)
w0(0)

)
= e2kφ(1+ O(|kα|−1)). (7-12)

The result then follows from (7-11) and the lower bound on [SF`(
1
2 − kα)]k provided by Lemma 6.1. �

The estimates in Lemma 7.2 give approximate locations for the resonances in RF`,r0
arising from

the k-th Fourier mode. The zeros of (7-10) correspond to resonances at s = 1
2 − kα. This requires a

cancellation between the two terms on the right side of (7-10). If Reφ > 0, then the second term is larger
by approximately e2kφ and cancellation only occurs near the poles of [SF`(s)]k ; this explains the poles of
[SF`,r0

(s)]k on the negative real axis. For Reφ= 0, the two terms in (7-10) have the same magnitude; the
resonances off the real axis in RF`,r0

thus occur near the line Reφ((1
2−s)/k; r0)= 0 (and its conjugate).

Figure 7 illustrates this phenomenon. For Reφ < 0, the first term in (7-10) is always larger than the
second and no zeros occur.

Since [SF`,r (
1
2 + kα)]k may indeed have zeros near the line Reφ = 0, proving a lower bound is more

delicate in this region. By focusing on a relatively narrow strip, we can settle for a cruder estimate on
the matrix elements in the vicinity of the zeros.

Lemma 7.3. For k ≥ 0 and Re s ≥ 1
2 and assuming dist(1− s,RF`)≥ |s|

−β with β > 2,

log
∣∣∣∣ [SF`,r0

(s)]k
[SF`(s)]k

∣∣∣∣≤ C(r0, β)(k+ |s|) log|s|.

If dist(1− s,RF`,r0
)≥ |s|−β with β > 2, then we have

log
∣∣∣∣ [SF`,r0

(s)]k
[SF`(s)]k

∣∣∣∣≥−c(r0, β)(k+ |s|) log|s|.
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Proof. From (7-4), we note that fk(s; r0)/0(s− 1
2) is an entire function of s. By Stirling’s formula and

the estimate (5-19), we can estimate its growth for large |s| and k 6= 0 by

log
∣∣∣∣ fk(s; r0)

0(s− 1
2)

∣∣∣∣≤ C(r0)(k+ |s|) log|s|),

where C is independent of k. The same estimate holds for k=0, by the classical asymptotics of the hyper-
geometric function due to Watson [Erdélyi et al. 1953, Section 2.3.2]. Assuming that dist(s,RF`,r0

) ≥

|s|−β , where β > 2, the minimum modulus theorem gives

log
∣∣∣∣ fk(s; r0)

0(s− 1
2)

∣∣∣∣≥−c(r0, β)(k+ |s|) log|s| for large |s|.

The results follow from applying these estimates to

[SF`,r0
(s)]k

[SF`(s)]k
=

fk(1− s; r0)

fk(s; r0)

fk(s; 0)
fk(1− s; 0)

. �

Proof of Theorem 7.1. We note that

NF`(t)∼
1
4`t

2 and 0-vol(F`,r0)=−` sinh r0.

By Corollary 3.2 and Theorem 4.1, the claimed asymptotic will be proved if we can show that there
exists an unbounded set 3⊂ [1,∞) such that

2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ ≥ 4a2

π

∫ π/2

0

∫
∞

0

[I (xeiθ , `, r0)]+

x3 dx − 1
4`a

2
− o(a2) (7-13)

for all a ∈3. We take

3 :=
{
a ≥ 1 : dist

(
{|s− 1

2 | = a}, RF` ∪RF`,r0
∪N0

)
≥ a−3}. (7-14)

Using the symmetry of coefficients under k→−k, and estimating the k = 0 term by Lemma 7.3, we
have

log
∣∣τ(1

2 + aeiθ )
∣∣= 2

∞∑
k=1

log
∣∣∣∣ [SF`,r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣+ O(a log a). (7-15)

Define %(θ) by Reφ(%(θ)eiθ , r0) = 0, as in the proof of Proposition 6.3, and assume for now that
θ ≤ 1

2π−ε. For δ > 0, we will split the sum (7-15) at a/k = %(θ)(1±a−1/2). Let 6+ denote the portion
of the sum with a/k ≥ %(θ)(1+ a−1/2). Under this condition, we want to derive a lower bound from
Lemma 7.2 using the inequality

log|1+ λ| ≥ log|λ| − log 2 for |λ| ≥ 2.

For a sufficiently large, we will have Reφ(xeiθ , r0)≥ ca−1/2 for x ≥%(θ)(1+a−1/2). Thus, for k≥ c
√

a
we can deduce from Lemma 7.2 that

log
∣∣∣∣ [SF`,r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣≥ 2k
(
Reφ(aeiθ/k; r3)− [Reφ0(aeiθ/k)]+

)
+ O(1).
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Arguing as in the proof of Proposition 6.3, we can then obtain

∑
c
√

a≤k≤a/(%(θ)(1+a−1/2))

log
∣∣∣∣ [SF`,r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣
≥ 2a2

∫ C
√

a

%(θ)(1+a−1/2)

Reφ(xeiθ , r0)− [Reφ0(xeiθ )]+

x3 dx − O(a log a).

For k ≤ c
√

a, Lemma 7.3 gives the estimate

∑
1≤k≤c

√
a

log
∣∣∣∣ [SF`,r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣≥−O(a3/2 log a).

On the other hand, since |Reφ(α, r)| = O(|α|) for large |α|, we also have

2a2
∫
∞

C
√

a

Reφ(xeiθ , r0)− [Reφ0(xeiθ )]+

x3 dx = O(a3/2).

We can also estimate

2a2
∫ %(θ)(1+a−1/2)

%(θ)

Reφ(xeiθ , r0)− [Reφ0(xeiθ )]+

x3 dx = O(a3/2)

since Reφ(α, `, r0) is O(δ) in the range of integration. In combination, these estimates give

6+ ≥ 2a2
∫
∞

%(θ)

Reφ(xeiθ , r0)

x3 dx −
πa2

2ω
sin2 θ − O(a3/2 log a) for a ∈3. (7-16)

Let 60 denote the portion of the sum in (7-15) for which %(θ)(1− a−1/2) < a/k < %(θ)(1+ a−1/2).
Since there are O(a1/2) values of k in this range, Lemma 7.3 gives the estimate

60 ≥−O(a3/2 log a). (7-17)

Finally, we have 6−, defined as the portion of (7-15) with a/k ≤ %(θ)(1− a−1/2). Now we wish to
apply Lemma 7.2 using

log|1+ λ| ≥ −|λ| log 4 for |λ| ≤ 1
2 .

Note that I (xeiθ , `, r0) ≤ −ca−1/2 for x ≤ %(θ)(1− a−1/2) and a sufficiently large, and that k ≥ ca in
the range of 6−. Thus for large a Lemma 7.2 yields

log
∣∣∣∣ [SF`,r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣≥−O(e−cka−1/2
),

within the scope of 6−. We conclude that

6− ≥−O(e−ca1/2
). (7-18)



SHARP GEOMETRIC UPPER BOUNDS ON RESONANCES FOR SURFACES WITH HYPERBOLIC ENDS 547

Applying the estimates (7-16), (7-17), and (7-18) to the sum (7-15) now proves the lower bound

2
π

∫ π/2−ε

0
log|τ( 1

2+aeiθ )| dθ≥
4a2

π

∫ π/2−ε

0

∫
∞

0

[2 Reφ(xeiθ , r0)]+

x3 dx−
2a2

ω

∫ π/2−ε

0
sin2 θ dθ−o(a2),

For the missing sectors, we appeal to Lemma 4.4 to see that

2
π

∫ π/2

π/2−ε
log|τ(1

2 + aeiθ )| dθ ≥−cεa2.

We can thus take ε→ 0 to complete the proof of (7-13). �

Remark. In the proof of (1-13) given in [Borthwick 2010, Theorem 1.2], the 6− term was estimated
incorrectly. This term is not necessarily positive, so the upper bound O(e−ca) does not imply a corre-
sponding lower bound. Instead, one needs to argue as in the derivation of (7-18) above. The estimates
needed for the correct argument were given in [Borthwick 2010, Equations (6.8)–(6.10)].

8. Resonance asymptotics for extended funnels

Using the same notation as in Section 7, we now consider F`,−r0 , defined as the subset r ≥ −r0 in
a hyperbolic cylinder of diameter `, where r0 ≥ 0. The metric and Laplacian are still given by (5-1)
and (5-2), so that the scattering matrix elements are easily computed in terms of hypergeometric functions
as before.

With reference to the even/odd solutions w±k defined in (5-4) and (5-5), a solution uk(s; r) to the k-th
eigenmode equation (5-3) satisfying uk(s;−r0)= 0 can be written

uk(s; r)= w+k (s; r0)w
−

k (s; r)+w
−

k (s; r0)w
+(s; r),

where w±k (s; r) are the even/odd hypergeometric solutions defined in (5-4) and (5-5). Using the asymp-
totic expansions (7-3) as r→∞, we can read off the scattering matrix elements

[SF`,−r0
(s)]k =

0( 1
2 − s)

0(s− 1
2)

βk(2− s)w+k (s; r0)+βk(1− s)w−k (s; r0)

βk(1+ s)w+k (s; r0)+βk(s)w−k (s; r0)
, (8-1)

where βk(s) was defined in (6-5).
This shows in particular that

RF`,−r0
=

⋃
k∈Z

{
s : βk(1+ s)w+k (s; r0)+βk(s)w−k (s; r0)= 0

}
.

Theorem 8.1. For the extended funnel with Dirichlet boundary conditions imposed at r =−r0, for r0≥0,
we have

NF`,−r0
(t)∼ A(F`,−r0)t

2,

where

A(F`,−r0)=
`

2π
sinh r0+

4
π

∫ π/2

0

∫
∞

0

[I (xeiθ , `,−r0)]+

x3 dx dθ, (8-2)

and I (α, `, r) was defined in (1-11).
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Proof. Since NF`(t) ∼
1
4`t

2 and 0-vol(F`,−r0) = ` sinh r0, Theorem 8.1 will follow from Corollary 3.2
and Theorem 3.3, once we establish

2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ = 4a2

π

∫ π/2

0

∫
∞

0

[I (xeiθ , `,−r0)]+

x3 dx dθ − 1
4`a

2
− o(a2), (8-3)

where 3 is defined again by (7-14).
As in the proof of Theorem 7.1, we start with the Fourier decomposition of the scattering matrices

and use Lemma 7.3 to estimate the k = 0 term, leaving

log|τ(1
2 + aeiθ )| = 2

∞∑
k=1

log
∣∣∣∣ [SF`,−r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣+ O(a log a). (8-4)

If we define
gk(s; r) := 0(s− 1

2)
(
βk(1+ s)w+k (s; r)+βk(s)w−k (s; r)

)
,

then by (8-1),
[SF`,−r0

( 1
2 + aeiθ )]k = gk(

1
2 − aeiθ )/gk(

1
2 + aeiθ ).

Assuming k > 0, we set kα = aeiθ . Since gk(s; · ) solves (5-3), for Reα ≥ 0, we can write

gk(
1
2 ± kα; r)= B±0 w0(r)+ B±1 w1(r),

where wσ are the solutions given in (5-17).
As r→∞, the coefficient of ρ1−s in the expansion of gk(

1
2 + kα; r) is

20(kα)2βk(
1
2 + kα)βk(

3
2 + kα)= 1

πkα

(
1−

coshπkω
sinπkα

)
[SF`(

1
2 − kα)]k . (8-5)

The coefficient of ρ1−s in gk(
1
2 − kα; r) is

0(kα)0(−kα)
(
βk(

1
2 + kα)βk(

3
2 − kα)+βk(

1
2 − kα)βk(

3
2 + kα)

)
=−

1
πkα

coshπkω
sinπkα

. (8-6)

Comparing these to the asymptotics for wσ , as given in Lemma 5.3, we see that

B+1 =
e−k(φ0+γ )

πk
√
α

(
1−

coshπkω
sinπkα

)
[SF`(

1
2 − kα)]k, (8-7)

and

B−1 =−
e−k(φ0+γ )

πk
√
α

coshπkω
sinπkα

(8-8)

We then find the B0 coefficients by evaluating at r = 0,

B±0 =
1

w0(0)
(
gk(

1
2 ± kα; 0)− B±1 w1(0)

)
. (8-9)

Since fk and gk agree at r = 0, (7-6) shows that

w0(0)= A+0 gk(
1
2 + kα; 0), where A+0 :=

1
πk
√
α

ek(φ0+γ ).
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iω

Reφ0 < 0

0< Reφ0 < Re(φ−φ0)

Reφ0 > Re(φ−φ0)

α = %1(θ)eiθ

α = %2(θ)eiθ

Figure 8. Positive and negative regions for Re(φ(α; r)−φ0(α)), shown for r = 1.

Combining these formulas gives

gk(
1
2 + kα; r)= A+0 w0(r)+ B+1

(
w1(r)−

w1(0)
w0(0)

w0(r)
)
, (8-10)

and

gk(
1
2 − kα; r)= [SF`(

1
2 + kα)]k A+0 w0(r)+ B−1

(
w1(r)−

w1(0)
w0(0)

w0(r)
)
. (8-11)

The asymptotic analysis of (8-10) is straightforward. The B+1 w1(r) term always dominates for |kα|
large and argα ∈ [0, π/2− ε], by Proposition 5.2. By applying Stirling’s formula to (8-5) we find that

gk(
1
2 + kα; r)= 1

πk
√
α
(ω2
+α2 cosh2 r)−1/4ek(φ−φ0+γ )(1+ O(|kα|−1). (8-12)

The analysis of (8-11) more complicated. This term has both zeros and poles, and different terms can
dominate for α in different regions. For α = xeiθ , the borders between these regions will be denoted
x = % j (θ) for j = 1, 2, where

Reφ0(%1(θ)eiθ )= 0 and Re
(
φ(%2(θ)eiθ

; r)− 2φ0(%2(θ)eiθ
; r)
)
= 0.

For the first curve we can be explicit, with %1(θ)= ω csc θ .
Consider first the portion of the sum (8-4) with a/k ≥ %2(θ). In this region, Reφ0 > Re(φ−φ0) and

the first term in (8-11) dominates the asymptotics. In this case, provided |kα| ∈3,

log|gk(
1
2 − kα; r)| = k Re(−φ+φ0− γ )+ O(log|kα|).

For k ≤ a/%2(θ), we thus have

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣=−2k Re
(
φ
(aeiθ

k
; r0

)
−φ0

(aeiθ

k

))
+ O(log a).
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This gives the estimate∑
1≤k≤a/%2(θ)

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣= a2
∫
∞

%2(θ)

2 Re[φ0(xeiθ )−φ(xeiθ
; r0)]

x3 dx + O(a log a). (8-13)

The region %1(θ) < a/k < %2(θ) corresponds to 0 < Reφ0 < Re(φ− φ0). In this case, the B−1 w1(r)
term dominates the asymptotics of (8-11), and we have

log|gk(
1
2 − kα; r)| = k Re(φ− 3φ0− γ )+ O(log|kα|).

Using this along with (8-12) gives

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣=−2k Reφ0(aeiθ/k)+ O(log a) for k ≤ a/%2(θ).

We conclude that∑
a/%2(θ)≤k≤a/%1(θ)

log
∣∣∣∣ [SF`,−r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣=−a2
∫
∞

%2(θ)

2 Reφ0(xeiθ )

x3 dx + O(a log a). (8-14)

The terms with Reφ0 ≤ 0 make only lower order contributions. First of all, we can prove a general
estimate,

log
∣∣∣∣ [SF`,−r0

(s)]k
[SF`(s)]k

∣∣∣∣= O((k+ |s|) log|s|),

just as in Lemma 7.3, to show that∑
%1(θ)(1−a−1/2)≤a/k≤%1(θ)

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣= O(a3/2 log a). (8-15)

For the remaining terms, we use (8-10) and (8-11) to write

[SF`,−r (
1
2 + kα)]k

[SF`(
1
2 + kα)]k

= 1+
e−k(φ0+γ )

πk
√
α

[SF`(
1
2 − kα)]k

gk(
1
2 + kα; r)

(
w1(r)−

w1(0)
w0(0)

w0(r)
)
.

This gives the estimate

log
∣∣∣∣ [SF`,−r (

1
2 + kα)]k

[SF`(
1
2 + kα)]k

− 1
∣∣∣∣≤ 2k Reφ0(α)+ O(log|kα|).

For a sufficiently large, this gives∑
a/k≤%1(θ)(1−a−1/2)

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣= O(e−c
√

a). (8-16)

The estimates (8-14)–(8-16) cover all terms in the sum (8-4), and together yield

log|τ(1
2 + aeiθ )| = 2a2

∫
∞

%2(θ)

2 Re(2φ0(xeiθ )−φ(xeiθ
; r0))

x3 dx − πa2

ω
sin2 θ + O(a log a)
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for a ∈3 and 0≤ θ ≤ π/2− ε.
We now integrate over θ ∈ [0, 1

2π − ε] and use Lemma 4.4 to control the limit ε→ 0, as in the proof
of Theorem 7.1. This yields

2
π

∫ π/2

0
log|τ( 1

2 + aeiθ )| dθ =
4a2

π

∫ π/2

0

∫
∞

%2(θ)

2 Re(2φ0(xeiθ )−φ(xeiθ
; r0))

x3 dx dθ − 1
4`a

2
− o(a2).

To complete the proof of (8-3), recall the definition of φ(α; r) as the integral of
√

f dr in (5-7). Since
the function f occurring there is an even function of r , the function φ−φ0 will be odd in r . (This is not
readily apparent from the definition (5-9).) This parity implies that

I (α, `,−r0)= 2 Re(2φ0(α)−φ(α; r0)). �
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A VECTOR FIELD METHOD APPROACH TO IMPROVED DECAY FOR
SOLUTIONS TO THE WAVE EQUATION ON A SLOWLY ROTATING KERR

BLACK HOLE

JONATHAN LUK

We prove that sufficiently regular solutions to the wave equation �gK8 = 0 on the exterior of a suffi-
ciently slowly rotating Kerr black hole obey the estimates |8| ≤ C(t∗)−3/2+η on a compact region of r .
This is proved with the help of a new vector field commutator that is analogous to the scaling vector field
on Minkowski and Schwarzschild spacetime. This result improves the known robust decay rates that are
proved using the vector field method in the region of finite r and along the event horizon.
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1. Introduction

A major open problem in general relativity is that of the nonlinear stability of Kerr spacetimes. These
spacetimes are stationary axisymmetric asymptotically flat black hole solutions to the vacuum Einstein
equations

Rµν = 0
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Keywords: Kerr spacetime, wave equation, decay estimates.
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in 3+1 dimensions. They are parametrized by (M, a) representing respectively the mass and the specific
angular momentum of a black hole; see Section 2. It is conjectured that Kerr spacetimes are asymptoti-
cally stable. In the framework of the initial value problem, the stability of Kerr would mean that for any
solution to the vacuum Einstein equations with initial data close to the initial data of a Kerr spacetime,
its maximal Cauchy development has an exterior region that approaches a nearby, but possibly different,
Kerr spacetime.

To study the stability of Kerr spacetimes, it is important to first understand the corresponding linear
problem. One way to approach this is to study the linear scalar wave equation �gK8 = 0, where gK is
the metric on a fixed Kerr background and �gK is the Laplace–Beltrami operator. This can be compared
with the proofs of the nonlinear stability of the Minkowski spacetime in which a robust understanding
of the quantitative decay properties of solutions to the linear wave equation plays a fundamental role
[Christodoulou and Klainerman 1993; Lindblad and Rodnianski 2005].

The Kerr family of spacetimes contains a one-parameter subfamily known as the Schwarzschild space-
times for which a = 0. It is natural when studying the wave equation on Kerr spacetimes to begin by
focusing on the wave equation on Schwarzschild spacetimes. Pointwise boundedness and decay of the
solutions to the wave equation on Schwarzschild spacetimes has been proved in [Wald 1979; Kay and
Wald 1987; Machedon and Stalker 2002; Blue and Sterbenz 2006; Dafermos and Rodnianski 2009;
Kronthaler 2007; Blue and Soffer 2006; Donninger et al. 2011; Tataru 2009]. In particular, Dafermos
and Rodnianski used the vector field method to show that on the exterior region of the Schwarzschild
spacetimes, including along the event horizon, solutions to the linear wave equation satisfy |8|≤C(t∗)−1,
where t∗ is a regular coordinate (up to the event horizon) that approaches infinity towards null infinity.
In an earlier work [Luk 2010], we improved this decay rate. More precisely, we showed that sufficiently
regular solutions to the wave equation �g8 = 0 on the Schwarzschild black hole obey the estimates
|8| ≤Cη(t∗)−3/2+η for any η > 0 on a compact region of r , including along the event horizon and inside
the black hole.

This paper generalizes the result above to Kerr spacetimes where a � M . For Kerr spacetimes sat-
isfying this condition, Dafermos and Rodnianski [2011], and subsequently Andersson and Blue [2009],
have proved a decay rate in the exterior region of the Kerr spacetime, including along the event horizon,
of |8| ≤ C(t∗)−1+η, where t∗ is a regular coordinate to be defined later, and with t∗ we will define
a foliation of the exterior region of Kerr spacetime by the spacelike hypersurfaces 6t∗ . Extending the
methods in [Luk 2010], we are able to improve this decay rate using the vector field method.

Theorem 1. Suppose �gK8= 0. Then for all η > 0 and all M > 0 there exists a0 such that the following
estimates hold on Kerr spacetimes with (M, a) for which a ≤ a0.

(1) Improved decay of nondegenerate energy:

M∑
j=0

∫
6t∗∩{r≤R}

(D j8)2 ≤ CR EM(t∗)−3+η.
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(2) Improved pointwise decay:

M∑
j=0

|D j8| ≤ CR E ′M(t
∗)−3/2+η for r ≤ R.

Here, D denotes derivatives in a regular coordinate system (See Section 2). EM and E ′M depend only on
M and some weighted Sobolev norm of the initial data.

A more precise version of this theorem will be given in Section 6. Our proof relies on an analogue
of the scaling vector field on Minkowski spacetime. Recall that in Minkowski spacetime the vector field
S = t∂t + r∂r is conformally Killing and satisfies [�m, S] = 2�m . Hence any estimates that hold for
8 a solution to �m8 = 0 would also hold for S8. However, S has a weight that is increasing with t .
Hence one can hope to prove a better estimate for 8 using the estimates for S8. (See, for example,
[Klainerman and Sideris 1996]).

In [Luk 2010], we introduced an analogue of the scaling vector field on Schwarzschild spacetimes.
We defined, in the Regge–Wheeler tortoise coordinate (see Section 2), the vector field S= t∂t+r∗∂r∗ . In
[Luk 2010], we studied the commutator [�gS , S] and showed that all the error terms can be controlled.
Thus, up to a loss of tη (for η arbitrarily small), S8 obeys all the estimates of 8 that were proved in
[Dafermos and Rodnianski 2009]. In particular, we showed that S8, like8 itself, obeys a local integrated
decay estimate ∫ t

t ′

∫ r2

r1

(Dk8)2 dr dt ≤ C Ek(t ′)−2 for t ′ ≤ t ≤ (1.1)t ′,∫ t

t ′

∫ r2

r1

(SDk8)2 dr dt ≤ C Ek(t ′)−2+η for t ′ ≤ t ≤ (1.1)t ′.

From this we proved an improved decay of the L2 norm of Dk8. We will explain the main idea in the
case k = 0. Firstly, the local integrated decay for 8 would already imply on a sequence of ti slices, with
ti ≤ ti+1 ≤ (1.1)2ti , that 8 obeys a better decay rate, namely 8(ti )≤ Ct−3/2

i . We then introduced a new
method to use the estimates for S8, which can be explained heuristically as follows. Given any time t ,
we find the largest ti ≤ t that has a better decay rate. Then we integrated from ti to t using the vector
field S. At this point S has a weight that grows like t . Hence we have, at least schematically,∫ r2

r1

8(t)2dr ≤ C
(∫ r2

r1

8(ti )2dr + t−1
∣∣∣∫ t

ti

∫ r2

r1

S(82) dr dt
∣∣∣).

We then notice that the last term can be estimated by the local integrated decay estimates∣∣∣∫ t

ti

∫ r2

r1

S(82) dr dt
∣∣∣≤ C

(∫ t

ti

∫ r2

r1

82 dr dt +
∫ t

ti

∫ r2

r1

(S8)2 dr dt
)
≤ Ct−2+η.

Putting these together, we would get ∫ r2

r1

8(t)2dr ≤ Ct−3+η.
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Using this method, we also showed the improved decay for the L2 norm of higher derivatives. Pointwise
decay estimate thus followed from standard Sobolev embedding.

In this paper we would like to carry out a similar argument. We introduce a scaling vector field (which
we again call S) which is the same as in [Luk 2010] at the asymptotically flat end, but is smooth up to and
across the event horizon. We will prove a local integrated decay estimate for S8 and use the argument
in [ibid.] as outlined above to prove an improved decay rate. The most difficult part of the argument is
to control the error terms coming from the commutation of �gK and (the modified) S, that is, the term
[�gK , S]8. To control this, we need to use estimates for derivatives of 8, which in turn are provided
by the energy estimates for the homogeneous equation �gK8= 0 proved in [Dafermos and Rodnianski
2011; 2008]. This term schematically looks like

[�gK , S]8= O(1)�gK8+ O(r−2+δ)(D28+ D8+ r D /∇8), (1)

where /∇ is an angular derivative on the 2-sphere. The term O(1)�gK8 vanishes since we are considering
�gK8 = 0. The other terms have the two desirable features. First, although S has a weight in t∗, the
commutator is independent of t∗, which is a result of ∂t∗ being a Killing vector field. Second, these terms
decay as r →∞, which is a result of the asymptotic flatness of Kerr spacetimes. The last term would
appear to have less decay in r , which is also the case in Schwarzschild spacetimes. In that case, we
controlled this term in [Luk 2010] by commuting the equation with �, the generators of the spherical
symmetry of Schwarzschild spacetimes. The quantity�8would then give us control over an extra power
of r . One difficulty that arises in the case of Kerr spacetimes is that they are not spherically symmetric.
Nevertheless, following [Dafermos and Rodnianski 2008], we can construct an analog of �, call it �̃,
that is an asymptotic symmetry, that is, the commutator [�gK , �̃] would decay in r . The nondegenerate
energy of �̃8would then control the last term in the above expression. Moreover, it is sufficient to define
�̃ only when r is very large since otherwise the factor in r can be absorbed by constants. However, in a
finite region of r , the commutator [�gK , S] would in general be large.

To understand which quantities of S8 have to be controlled, we rederive the energy estimates in
[Dafermos and Rodnianski 2008] in the slightly more general case of the inhomogeneous equation
�gK8= G. This would also immediately imply that for the linear inhomogeneous equation �gK8= G
with sufficiently regular and sufficiently decaying (both in space and time) G, the solution 8, assuming
that the initial data is sufficiently regular, would decay with a rate of (t∗)−1+η, precisely as that in [ibid.].
We will then apply this to the equations for �̃8 and S8. To derive these energy estimates, we will
use the (non-Killing) vector field multipliers N and Z . Here N is a modification of ∂t∗ so that it is
timelike everywhere, including near the event horizon. The use of N tackles the issue of superradiance,
a difficulty that arises from the spacelike nature of ∂t∗ near the event horizon. Z is an analogue of the
conformal vector field u2∂u + v

2∂v in Minkowski spacetime and is used to prove decay.
Since we will use vector field multipliers that have weights in t∗ and r , to prove the energy estimates

at t∗ = τ for the inhomogeneous equation we would have to control the term (as well as other similar or
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more easily controlled terms) ∫∫
R(τ0,τ )

(t∗)2r1+δG2,

where the integration over space and the t∗ interval [τ0, τ ]. To prove the energy estimates for S8, we
need to show that for G as in (1), this is bounded by C(τ )η. We split this into two parts: r ≤ 1

2 t∗ and
r ≥ 1

2 t∗. For r ≤ 1
2 t∗, we can replace r1+δ by r−3+2δ since G decays in r . Then, we use the fact that

N∑
k=1

∫∫
R((1.1)−1τ,τ )∩{r≤ 1

2 t∗}
r−1+δ(Dk8)2 ≤ Cτ−2+η.

Hence if we sum up the whole integral by integrating in [τ0, (1.1)τ0], [(1.1)τ0, (1.1)2τ0] etc., we will get
a bound of

blog τc+1∑
i=0

(1.1)iτ0 ∼η τ
η.

For r ≥ 1
2 t∗, we do not have a decay estimate for the integrated in time estimate. However, we would

still have an almost boundedness estimate:

N∑
k=1

∫∫
R((1.1)−1τ,τ )∩{r≥ 1

2 t∗}
r−1+δ(Dk8)2 ≤ Cτ η.

Notice, moreover, that G2
∼ r−3+δ(Dk8)2 and this region we have r−3+δ

≤ (t∗)−2r−1+δ. Hence we
again have

N∑
k=1

∫∫
R((1.1)−1τ,τ )∩{r≥ 1

2 t∗}
G2
≤ Cτ−2+η,

and the required estimate followed in the same manner as in the case r ≤ 1
2 t∗.

With the modified S, which is smooth up to the event horizon (contrary to [Luk 2010]), we can prove
the improved decay estimates for the L2 norm of8 and D8 once these error terms are controlled. Using
the commutation with the Killing vector ∂t∗ , we would also have control for L2 norm of D∂k

t∗8. Away
from the event horizon, this is sufficient to control all other derivatives by elliptic estimates. However,
since near the event horizon, ∂t∗ is not Killing, we would not have control over other derivatives. Here,
we follow [Dafermos and Rodnianski 2008; 2011] and commute the equation with a version of the
red-shift vector field, Ŷ . Once we control DŶ k∂

j
t∗8 we can use the wave equation to control (any

derivatives of) /18, where /1 is the Laplace–Beltrami operator on the sphere, which is elliptic. We can
thus control derivatives of 8 in any directions. We will show, moreover, that the commutator [�gK , Ŷ ]
has the property that the inhomogeneous terms can be controlled once we have controlled the L2 norm
of D∂k

t∗8. This implies that Ŷ8 would decay in the same rate as ∂t∗8 for which we have already derived
an improved decay rate.
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We now turn to some history of this problem. We mention some results on Kerr spacetimes with a> 0
here and refer the readers to [Dafermos and Rodnianski 2008; Luk 2010] for references on the corre-
sponding problem on Schwarzschild spacetimes. There has been a large literature on the mode stability
and nonquantitative decay of azimuthal modes. See for example [Press and Teukolsky 1973; Hartle and
Wilkins 1974; Whiting 1989; Finster et al. 2008; 2006] and references in [Dafermos and Rodnianski
2008]. The first global result for the Cauchy problem was obtained by Dafermos and Rodnianski [2011],
who proved that for a class of small, axisymmetric, stationary perturbations of Schwarzschild spacetime,
which include Kerr spacetimes that rotate sufficiently slowly, solutions to the wave equation are uniformly
bounded. Similar results were obtained later using an integrated decay estimate on slowly rotating Kerr
spacetimes by Tataru and Tohaneanu [2011]. Using the integrated decay estimate, Tohaneanu [2012]
also proved Strichartz estimates.

Decay for general solutions to the wave equation on sufficiently slowly rotating Kerr spacetimes
was first proved by Dafermos and Rodnianski [2008] with a quantitative rate of |8| ≤ C(t∗)−1+Ca . A
similar result was later obtained by Andersson and Blue [2009] using a physical space construction to
obtain an integrated decay estimate. In all of [Tataru and Tohaneanu 2011; Dafermos and Rodnianski
2008; Andersson and Blue 2009], the integrated decay estimate is proved and plays an important role.
All proofs of such estimates rely heavily on the separability of the wave equation, or equivalently, the
existence of a Killing tensor on Kerr spacetime. In a recent work, Dafermos and Rodnianski [2010]
show that assuming the integrated decay estimate (nondegenerate up to the event horizon if it exists) and
boundedness for the wave equation on an asymptotically flat spacetime, the decay rate |8| ≤ C(t∗)−1

holds. This in particular improves the rates in [Dafermos and Rodnianski 2008; Andersson and Blue
2009]. In a similar framework, but assuming in addition exact stationarity, Tataru [2009] proved a local
decay rate of (t∗)−3 using Fourier-analytic methods. This applies in particular to sufficiently slowly
rotating Kerr spacetimes. Dafermos and Rodnianski have recently announced a proof for the decay of
solutions to the wave equation on the full range of subextremal Kerr spacetimes a < M .

In view of the nonlinear problem, it is important to understand decay in a robust manner. In particular,
past experience shows that refined decay estimates might not be stable in nonlinear problems. The
vector field method is known to be robust and culminated in the proof of the stability of the Minkowski
spacetime [Christodoulou and Klainerman 1993; Lindblad and Rodnianski 2005]. We prove our decay
result using the vector field method with the expectation that the method will be useful for studying
nonlinear problems. As a model problem, we will study the semilinear equation with a null condition on
a fixed slowly rotating Kerr background. In a forthcoming paper that we will show the global existence
of solutions with small initial data for this class of equations. We will also study the asymptotic behavior
of these solutions. The null condition, which is a special structure of the nonlinearity, has served as an
important model for the proofs of the nonlinear stability of Minkowski spacetime and we hope that it
will find relevance to the problem of the nonlinear stability of Kerr spacetime.

We end the introduction with an overview of the paper. In Section 2, we will introduce the Kerr
geometry, including a few different coordinate systems that we will find useful in the rest of the paper.
In Section 4, we introduce the (non-Killing) vector field commutators that will be used. These include
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the scaling vector field S, which is the main tool for obtaining improved decay rates. In Section 5, we
introduce the formalism for vector field multipliers. We then have all the notation necessary to state
the precise form of our main theorem in Section 6. In Sections 7, 8 and 9, we prove the main energy
estimates using the vector field multipliers N , X and Z . We write down the energy estimates in the most
general form, allowing for the possibility of controlling the inhomogeneous terms in different energy
norms. Such generality is unnecessary for the result in this paper, but will be useful in studying the
null condition. Starting from Section 10, we return to the homogeneous equation. In Section 10, we
write down the energy estimates proved in [Dafermos and Rodnianski 2008]. We then derive the energy
estimates after commuting with Ŷ , �̃ and S in Sections 11, 12 and 13 respectively. Finally, using the
estimates for S8, we prove the main theorem in Section 14.

2. Geometry of Kerr spacetime

2.1. Kerr coordinates. The Kerr metric in the Boyer–Lindquist coordinates takes the form

gK =−

(
1−

2M

r
(
1+ a2 cos2 θ

r2

)) dt2
+

1+ a2 cos2 θ
r2

1− 2M
r +

a2

r2

dr2
+ r2

(
1+

a2 cos2 θ

r2

)
dθ2

+ r2
(

1+
a2

r2 +
2M
r

a2 sin2 θ

r2
(
1+ a2 cos2 θ

r2

)) sin2 θ dφ2
− 4M

a sin2 θ

r
(
1+ a2 cos2 θ

r2

) dt dφ. (2)

In this paper, we will consider Kerr spacetimes with a small. It can then be thought of as a small
perturbation of Schwarzschild spacetimes because by setting a=0, we recover the Schwarzschild metric:

gS =−

(
1−

2M
rS

)
dt2

S +

(
1−

2M
rS

)−1
dr2

S + r2
S dθ2

+ r2
S sin2 θ dφ2.

The Cauchy development of Kerr spacetimes can be described schematically by taking a two-dimensional
slice as in Figure 1.

Notice that (2) represents the metric on the exterior region (the right side in the diagram). In the
coordinate system above, this is the region {r ≥ r+}, where r+ is the larger root of 1= r2

− 2Mr + a2.
This is the region that we will study. We foliate the exterior region of the Kerr spacetime by hypersurfaces
6τ as depicted in the diagram. A precise definition of the hypersurface 6τ will be given in Section 3.3.
The coordinates in (2) are not regular at the event horizon H+= {r = r+}. It will be helpful in the sequel
to use different coordinate systems on Kerr spacetimes. From now on we will call the coordinate system
on which the metric (2) is defined the Kerr (t, r, θ, φ) coordinates. We define a new coordinate system,
the Kerr (t, r∗, θ, φ) coordinates, by

dr∗

dr
=

r2
+ a2

1
,
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Στ

H
+

I
+

Figure 1. Kerr spacetime.

where 1= r2
− 2Mr + a2 is zero at the event horizon. In this coordinate system, the metric looks like

gK =−

(
1−

2M

r
(
1+ a2 cos2 θ

r2

)) dt2
+1(r2

+ a2)2(r2
+ a2 cos2 θ)dr∗2+ r2

(
1+

a2 cos2 θ

r2

)
dθ2

+ r2
(

1+
a2

r2 +
2M
r

a2 sin2 θ

r2
(
1+ a2 cos2 θ

r2

)) sin2 θ dφ2
− 4M

a sin2 θ

r
(
1+ a2 cos2 θ

r2

) dt dφ.

Since the definition of r∗ depends only on r , it is unambiguous to talk about the vector ∂t .

2.2. Schwarzschild coordinates. In order to compare calculations on Kerr spacetimes to calculations
on Schwarzschild spacetimes, it is helpful to exhibit a diffeomorphism between the two. We do so
by defining an explicit map between the coordinate functions (t, r, θ, φ) on a Kerr spacetime and the
coordinate functions (tS, rS, θS, φS) on a Schwarzschild spacetime with the same mass. These will be
defined differently near and away from the event horizon. Take

χ(r)=
{

1 if r ≤ r−Y −
1
2(r
−

Y − r+),
0 if r ≥ r−Y −

1
4(r
−

Y − r+),

where r+, as above, is the larger root of 1= r2
−2Mr +a2 and r−Y > r+ is a constant to be determined

later. With this χ(r), we can then define

r2
S − 2MrS = r2

− 2Mr + a2,

tS +χ(rS)2M log(rS − 2M)= t +χ(r)h(r), where
dh(r)

dr
=

2Mr
r2− 2Mr + a2 ,

θS = θ,

φS = φ+χ(r)P(r), where
d P(r)

dr
=

a
r2− 2Mr + a2 .
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Then, by identifying (tS, rS, θS, φS)with the corresponding coordinate functions on Schwarzschild space-
times, we have a diffeomorphism between Kerr spacetimes and Schwarzschild spacetimes. This coor-
dinate system will be used and will be called the Schwarzschild (tS, rS, θS, φS) coordinates on Kerr
spacetimes. Once we have this diffeomorphism, we can put any system of Schwarzschild coordi-
nates on Kerr spacetimes. These include the Schwarzschild (t∗S , rS, θS, φS) coordinates, where t∗S =
tS +χ(rS)2M log (rS − 2M) and rS, θS, φS are defined as above. We also define

t∗ = t∗S = tS +χ(rS)2M log(rS − 2M)

and use the Kerr (t∗, r, θ, φ∗) coordinates. Notice that ∂t∗ = ∂t∗S .
It is common to denote on Schwarzschild spacetimes µ= 2M/rS . We will take the same notation on

Kerr spacetimes, with the understanding that it is always defined with respect to the Schwarzschild rS

coordinates. In particular (1−µ) approaches 0 as r→ r+ (the event horizon).
Another system of Schwarzschild coordinates can be defined by considering two coordinate charts

on the standard unit 2-sphere and introducing a system of coordinates (x A
S , x B

S ) on each of them. We
then define the Schwarzschild (t∗S , rS, x A

S , x B
S ) coordinates in the obvious manner. Using this coordinate

system and the diffeomorphism as above, we have, for small a,

|(gK )αβ − (gS)αβ | ≤ εr−2. (3)

This smallness assumption will be used throughout this paper.

2.3. Null frame near event horizon. Some extra cancellations for the estimates near the event horizon
are best captured using a null frame. Hence we define a null frame {V̂ , Ŷ , E1, E2} in the region r ≤ r−Y ,
where r−Y is to be determined later. On the event horizon,

V = ∂t∗ +
a

2Mr+
∂φ∗

is the Killing null generator. A direct computation shows that it satisfies

∇V V = κV,

where κ is a strictly positive number on the event horizon. We want to extend V to a null frame. On
the event horizon, define Ŷ first on a 2-sphere given by a fixed t∗ to be null, orthogonal to the 2-sphere
and require that gK (V, Ŷ )=−2. Define also locally an orthonormal frame {E1, E2} tangent to the fixed
2-sphere. In the sequel, we will only need to work with a local null frame. We then extend this null
frame off the fixed 2-sphere on the event horizon (with V̂ |H = V ) by requiring

∇Ŷ Ŷ =∇Ŷ V̂ =∇Ŷ E A = 0, (4)

where A ∈ {1, 2}. Then extend this null frame using the isomorphisms generated by V . The equations
above hold everywhere. If we choose r−Y close enough to r+, we still have, by Taylor’s theorem,

∇V̂ V̂ = κ V̂ + bY Ŷ + b1 E1+ b2 E2, (5)
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where κ is a strictly positive function in r+ ≤ r ≤ r−Y bounded away from 0, and |bα| ≤ C (1−µ).
In Schwarzschild spacetime, consider the frame on S2 given by {(r2

S sin θS)
−1∂φS , r

−1
S ∂θS }. Then we

get

V̂ = (1+µ)∂t∗S + (1−µ)∂rS , Ŷ = ∂t∗S − ∂rS , E1 = r−1
S ∂θS , E2 = (rS sin θS)

−1∂φS

Since we consider Kerr spacetimes on which the metric is close to that on a Schwarzschild spacetime,
the null frame can be expressed in (t∗, r, θ, φ∗) coordinates as

V̂ = (1+µ)∂t∗ + (1−µ)∂r + O1(ε)∂, E1 = r−1∂θ + O1(ε)∂,

Ŷ = ∂t∗ − ∂r + O1(ε)∂, E2 = (r sin θ)−1∂φ∗ + O1(ε)∂.

Alternatively, if we write Eα, where α = 1, 2, 3, 4, for the null frame, we have

(1+µ)∂t∗ + (1−µ)∂r = V̂ + O1(ε)Eα, ∂θ = r E1+ O1(ε)Eα,

∂t∗ − ∂r = Ŷ + O1(ε)Eα, ∂φ∗ = r sin θE2+ O1(ε)Eα.

We also define the vector fields V̂ , Ŷ , E1, E2 outside {r ≤ r−Y } by requiring them to be compactly sup-
ported in {r ≤ r+Y } (for some r+Y to be determined) and invariant under the one-parameter families of
isometries generated by ∂t∗ and ∂φ∗ . Notice that in particular there is no requirement that the vector
fields form a null frame in the region {r−Y ≤ r ≤ r+Y }.

3. Notation

3.1. Constants. Throughout this paper, we will use C to denote a large constant and c to denote a small
constant. They can be different from line to line. We will also use A to denote bootstrap constants and
we think of A to be large, that is, A�C . We also use the notation Oi (1) and Oi (ε) to denote terms that
are bounded up to a constant by 1 and ε, with bounds that improve by r−1 for each derivative up to the
i-th derivative. We will also use the notation f ∼ g to denote c f ≤ g ≤ C f .

There are some constants that we will choose in the proof. The following are values of r in the Kerr
coordinates:

r+ < r−Y < r+Y <
11
4 M < R�.

We will fix r+Y and r−Y in Remarks and, respectively.
There are also smallness parameters that can be thought of as obeying

0< δ < ε� η� e.

We use ε to denote the smallness of the specific angular momentum a of the spacetimes that we are
working on. We use η ∼ Cε to denote the loss in the decay rate of the solutions to the wave equation
as compared to that on Schwarzschild spacetimes. We use e to construct the nondegenerate energy, and
use δ and δ′ as small parameters whenever they are needed. The parameters δ and δ′ need not be fixed
from line to line.
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3.2. Values of t∗. We will adopt the following as much as possible: We denote by t∗ a general value
of t∗. In particular, it will be used for integration variables. We denote by τ the t∗ value for which we
want an estimate and by τ0 the t∗ value where the initial data is posed. We will always assume τ0 ≥ 1
and the reader can think of τ0 = 1. When integrating, we will often denote the endpoints by τ ′ and τ .
Finally, at a few places we will need to choose a particular value of t∗ in an interval. This is usually done
to achieve the maximum or minimum of the energy quantities. We often denote such choices as τ̃ .

3.3. Integration.

Definition 1. Define the following sets:

• 6τ = {t∗ = τ }.

• R(τ ′, τ )= {τ ′ ≤ t∗ ≤ τ }.

• H(τ ′, τ )= {r = r+, τ ′ ≤ t∗ ≤ τ }.

When integrating on these sets, we will normally integrate with respect to the volume form, which we
suppress. On6τ the volume form is

√
det gK |6τ . On R(τ ′, τ ), the volume form is

√
det gK . However, on

the event horizon H(τ ′, τ ), the surface is null and the metric is degenerate. Nevertheless, on H(τ ′, τ ), the
integrand will always be of the form Jµnµ6H+

, where nµ6H+
is the normal to H(τ ′, τ ). We will hence take

the volume form corresponding to the (arbitrarily) chosen normal. Occasionally, we will also integrate
over the topological 2-spheres given by fixing t and r . We will denote the volume form by d A =√

det gK |S2 .
For some computations, however, it is more convenient to write down the volume form explicitly in

coordinates. In our notation, the following two expressions denote the same integral:∫
6τ

f =
∫
6τ

f
√

det gK |6τ drdθ dφ.

When we write the integrals, we will often use
∫∫

to denote an integral over a spacetime region and
use

∫
denote an integral over a spacelike or null hypersurface.

The volume form on 6t∗ can be compared with that on R(τ ′, τ ). In particular, we have∫∫
R(τ ′,τ )

f ∼
∫ τ

τ ′

(∫
6t∗

f
)

dt∗.

4. Vector field commutators

In this section, we discuss the vector field commutators that we will use in this article. One obvious such
vector field is the Killing vector field ∂t∗ , which satisfies

[�gK , ∂t∗] = 0.

In addition to ∂t∗ , we will use three non-Killing vector fields S, Ŷ and �i to control higher derivatives of
the solution 8. We introduce S, a new vector field, to obtain the improved decay rate for the solution 8.
We will follow [Dafermos and Rodnianski 2008; 2011], defining the commutator Ŷ to estimate 8 near
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the event horizon. We will use the vector fields�i , which are analogues of the angular momentum vector
fields in Schwarzschild spacetime, to control the error terms coming from the commutator [�gK , S].

4.1. Vector field commutators under metric perturbations. Some computations are easier in Schwarz-
schild spacetime than in Kerr spacetime. In the sequel, we will often consider a fixed vector field on
the differentiable structure of the Schwarzschild exterior. We now show that for such vector fields, the
commutators with �gS and �gK are close to each other as long as a is chosen to be sufficiently small:

Proposition 2. Consider either the Schwarzschild (t∗S , rS, x A
S , x B

S ) coordinates or (tS, rS ≥ r−Y , x A
S , x B

S )

coordinates. Suppose V is a vector field defined on either of these coordinates. Then

∣∣[�gK − �gS , V ]8
∣∣≤ Cεr−2

( 2∑
m=1

2∑
k=1

max
α
|∂m V α

||∂k8|
)
,

where ∂ is the coordinate derivative for the coordinate system on which V is defined.

Proof. We rewrite
�gS = gαβS ∂α∂β + η

α
S∂α and �gK = gαβK ∂α∂β + η

α
K ∂α.

Using |(gK )αβ−(gS)αβ | ≤ εr−2 and |∂γ ((gK )αβ−(gS)αβ)| ≤ εr−2, we have |
√
− det gK −

√
− det gS| ≤

εr−2 and |∂α(
√
− det gK −

√
− det gS)| ≤ εr−2. Therefore,

sup
α,β

|gαβS − gαβK | + sup
α

|ηαS − η
α
K | ≤ Cεr−2.

Therefore,∣∣[�gK − �gS , V ]8
∣∣≤ ∣∣(gαβK − gαβS )(∂α∂βV γ )∂γ8

∣∣+ 2
∣∣(gαβK − gαβS )∂αV γ ∂β∂γ8

∣∣
+
∣∣(ηαS − ηαK )(∂αV γ )∂γ8

∣∣
≤ Cεr−2

( 2∑
m=1

2∑
k=1

sup
α

|∂m V α
||∂k8|

)
. �

4.2. Commutator S. We construct a commuting vector field S on Schwarzschild that is different from
[Luk 2010] and is stable under perturbation.

Define S = t∗S∂t∗S + h(rS)∂rS , where

h(r)=
{

r − 2M if r ∼ 2M,
(r + 2M log(r − 2M)− 3M − 2M log M)(1−µ) if r ≥ R,

for some large R, and it is interpolated so that it is smooth and nonnegative. For r ≥ R, since t∗ = t , this
agrees with the definition in [Luk 2010]. Therefore we have

[�gS , S] =
(

2+
r∗µ

r

)
�gS +

2
r

(r∗

r
− 1−

2r∗µ
r

)
∂r∗ + 2

((r∗

r
− 1

)
−

3r∗µ
2r

)
/1, (6)

where /1 is the Laplace–Beltrami operator on the standard sphere. In the coordinates (t∗, r, θ, φ),

�gS =−α1 (r) ∂2
t +α2(r)∂2

r +α3(r)∂r∂t +α4(r)∂t +α5(r)∂r + /1.
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The crucial observation is that all αi are smooth and bounded and depend only on r . Noting that αi does
not depend on t , we have

[�gS , S] = β1 (r) ∂2
t +β2(r)∂2

r +β3(r)∂r∂t +β4(r)∂t +β5(r)∂r +β6(r) /1.

Again, it is important to note that all βi are smooth, bounded and depend only on r . The form of βi for
r ≥ R is given by (6).

We consider the same vector field S on Kerr. Using Proposition 2, and noting that ∂m Sα is bounded
for m ≥ 1, we have for r > R∣∣∣∣[�gK , S]8−

(
2+

r∗µ
r

)
�gK8−

2
r

(r∗

r
− 1−

2r∗µ
r

)
∂r∗8− 2

((r∗

r
− 1

)
−

3r∗µ
2r

)
/18

∣∣∣∣
≤ Cεr−2

( 2∑
k=1

|∂k8|
)
,

and for r ≤ R, ∣∣[�gK , S]8
∣∣≤ C

2∑
k=1

|Dk8|.

4.3. Commutator �̃i . Let �i be a basis of vector fields of rotations in Schwarzschild spacetimes. An
explicit realization can be

�=
{
∂φ, sinφ∂θ +

cosφ cos θ
sin θ

∂φ, cosφ∂θ −
sinφ cos θ

sin θ
∂φ

}
.

Define �̃i = χ(r)�i to be cutoff so that it is supported in {r > R�} and equals �i for r > R� + 1 for
some large R�. On Schwarzschild spacetimes, �i is Killing and therefore �̃i is Killing for r > R�+ 1.
Therefore,

[�gS , �̃i ] = χ̃(r)(∂2
+ ∂),

where χ̃ is some function that depends only on r and is supported in {R� < r < R�+ 1}.
Using Proposition 2, we have

|[�gK , �̃i ]8| ≤ Cr−2(|∂28| + |∂8|).

Moreover, since �̃i vanishes for r < R�, we have trivially

[�gK , �̃i ]8= 0 for r < R�.

From now on, we write �̃ to denote any one of the �i , while taking the norm to be |�̃8| =
∑

i |�i8|.
This commutator is useful for gaining powers of r near spatial infinity. In particular we have

|/∇8| ≤ Cr−1
|�̃8|.

This extra power of r is essential for controlling the error terms arising from the commutation of �gK

with S.



566 JONATHAN LUK

4.4. Commutator Ŷ . Let Ŷ , as in Section 2.3, be a vector field that is null near the event horizon, is
normalized with respect to another null vector V̂ and is cut off to be compactly supported in {r ≤ r+Y }.

Proposition 3. On Kerr spacetimes such that ε is small, we have∣∣[�gK , Ŷ ]8− κŶ 28
∣∣≤ C

(
|D∂t∗8| + ε|D28| + |D8|

)
for r ≤ r−Y ,

where κ > c > 0 is as in (5).

Proof. The principal term for the commutator [�gK , Ŷ ]8 is 2(Ŷ )πµνDµDν8, where (Ŷ )πµν is the defor-
mation tensor defined by (Ŷ )πµν =

1
2(DµŶν + Dν Ŷµ). We look at three terms that are useful in deriving

the estimates.
(Ŷ )πV̂ V̂ = g(DV̂ Ŷ , V̂ )=−g(Ŷ , DV̂ V̂ )= 2κ,∣∣(Ŷ )πV̂ E A

∣∣= ∣∣ 1
2

(
g(DV̂ Ŷ , E A)+ g(DE A Ŷ , V̂ )

)∣∣≤ Cε,∣∣(Ŷ )πE A EB

∣∣= ∣∣ 1
2

(
g(DEB Ŷ , E A)+ g(DE A Ŷ , EB)

)∣∣≤ Cε,

where the smallness in the second and third line come from the assumption that we are close to Schwarz-
schild. Notice also that for r ≤ r−Y , V̂ is C0 close to ∂t∗ . Therefore, in the commutator, the main term
is

κŶ 28.

All the other second order terms either have a ∂t∗ derivative or small. �

5. The basic identities for currents

5.1. Vector field multipliers. We consider the conservation laws for 8 satisfying �g8= 0. Define the
energy-momentum tensor

Tµν = ∂µ8∂ν8− 1
2 gµν∂α8∂α8.

We note that Tµν is symmetric and the wave equation implies that DµTµν = 0. Given a vector field V µ,
we define the associated currents

J V
µ (8)= V νTµν(8) and K V (8)= (V )πµνT µν(8),

where (V )πµν is the deformation tensor defined by

(V )πµν =
1
2(DµVν + DνVµ).

In particular, K V (8) = (V )πµν = 0 if V is Killing. Since the energy-momentum tensor is divergence
free,

Dµ J V
µ (8)= K V (8) .

We also define the modified currents

J V,w
µ (8)= J V

µ (8)+
1
8(w∂µ8

2
− ∂µw8

2),

K V,w(8)= K V (8)+ 1
4w∂

ν8∂ν8−
1
8 �gw8

2.
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Then

Dµ J V,w
µ (8)= K V,w (8) .

We integrate by parts with this in the region bounded by 6τ , 6τ ′ and H+(τ ′, τ ). We denote this region
as R(τ ′, τ ). We denote the future-directed normal to 6τ by nµ6τ .

Proposition 4. We have∫
6τ

J V
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J V
µ (8)n

µ

H+(τ ′,τ )+

∫∫
R(τ ′,τ )

K V (8)=

∫
6τ ′

J V
µ (8)n

µ
6τ ′
,∫

6τ

J V,wV

µ (8)nµ6τ +
∫

H+(τ ′,τ )
J V,wV

µ (8)nµH+(τ ′,τ )+
∫∫

R(τ ′,τ )
K V,wV

(8)=

∫
6τ ′

J V,wV

µ (8)nµ6τ ′ .

One can similarly define the quantities above for the inhomogeneous wave equation �g8 = F . In this
case, the energy-momentum is no longer divergence free. Instead, we have

DµTµν = F∂ν8.

In this case,

Dµ J V
µ (8)= K V (8)+ FV ν∂ν8.

For the modified current,

Dµ J V,w
µ (8)= K V,w(8)+ 1

4 Fw8+ FV ν∂ν8.

Proposition 5. We have∫
6τ

J V
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J V
µ (8)n

µ

H+(τ ′,τ )+

∫∫
R(τ ′,τ )

K V (8)=

∫
6τ ′

J V
µ (8)n

µ
6τ ′
−

∫∫
R(τ ′,τ )

FV ν∂ν8,∫
6τ

J V,wV

µ (8)nµ6τ +
∫

H(τ ′,τ )
J V,wV

µ (8)nµH+(τ ′,τ )+
∫∫

R(τ ′,τ )
K V,wV

(8)

=

∫
6τ ′

J V,wV

µ (8)nµ6τ ′ +
∫∫

R(τ ′,τ )

(
−

1
4 Fw8− FV ν∂ν8

)
.

5.2. Vector field multipliers under metric perturbations. If we consider Kerr spacetimes such that ε
is small, vector fields multipliers are stable if defined in the Schwarzschild coordinates (t∗, r, x A, x B)

or (t, r ≥ r−Y , x A, x B). We can consider a fixed vector field defined on the differentiable structure of a
Schwarzschild exterior and compare the currents obtained using the Schwarzschild metric and the Kerr
metric.

Proposition 6. Consider either the Schwarzschild (t∗S , rS, x A
S , x B

S ) coordinates or (tS, rS ≥ r−Y , x A
S , x B

S )

coordinates. Suppose V is a vector field defined on either of these coordinates. Then∣∣(J V,wV

S )µ(8)n
µ
6τ
− (J V,wV

K )µ(8)n
µ
6τ

∣∣≤ Cεr−2 max
α
|V α
|(∂8)2
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and ∣∣K V,wV

S (8)− K V,wV

K (8)
∣∣≤ Cεr−2

((∑
k=0,1

max
α
|∂k V α

| + |w|
)
(∂8)2+

∑
m=1,2

|∂mw|82
)
.

6. Statement of the main theorem

With the currents defined, we can state our main theorem.

Main Theorem. Suppose �gK8 = 0. Then for all η > 0, R > r+ and all M > 0 there exists a0 such
that the following estimates hold in the region {r+ ≤ r ≤ R} on Kerr spacetimes with (M, a) for which
a ≤ a0.

(1) Improved decay of nondegenerate energy:

∑̀
j=0

∫
6τ∩{r≤R}

(D j8)2

≤ CRτ
−3+η

( `+2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤`+5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
.

(2) Improved pointwise decay:

∑̀
j=0

|D j8|

≤ CRτ
−3/2+η

( `+4∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤`+7

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ k�̃ j8)nµ6τ0

)1/2

.

Here the vector field N will be defined in Section 7, and the vector field Z with the modifying function
wZ will be defined in Section 9.

Remark. We will show that although J Z ,wZ

µ (8) nµ6t∗
is not always nonnegative, J Z+C N ,wZ

µ (8) nµ6t∗
is

nonnegative for sufficiently large C . Hence all the energy quantities in the theorem are nonnegative.

Remark. Since we have the improved decay of the nondegenerate energy, the theorem above can be
extended beyond the event horizon. More precisely, for any rb ∈ (r−, r+), where r− is the smaller root
of 1 = r2

− 2Mr − a2, the theorem holds up to r ≥ rb for D understood as a regular derivative inside
the black hole, and with the constant depending also on rb. The proof is similar to that in [Luk 2010].

7. Vector field multiplier Ne and mild growth of nondegenerate energy

Kerr spacetime has a Killing vector field ∂t . The conservation law gives∫
6τ

J T
µ (8)n

µ
6τ
+

∫
H(τ0,τ )

J T
µ (8)n

µ
6τ
=

∫
6τ0

J T
µ (8)n

µ
6τ0
+

∫∫
R(τ0,τ )

∂t8G.

We add to the Killing vector field ∂t a red-shift vector field. Here, we use the “nonregular” red-shift
vector field as in [Dafermos and Rodnianski 2008]. Under this construction, Ne is C0 but not C1 at the
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event horizon H+. Compared to the smooth construction in [ibid.], this construction will provide extra
control for some derivatives near H+.

Define

Y = y1(r)Ŷ + y2(r)V̂ ,

where

y1(r)= 1− 1
(log(r−r+))3

and y2(r)=−
1

(log(r−r+))3
.

By this definition Y is compactly supported in {r ≤r+Y } and is invariant under the isomorphisms generated
by ∂t∗ and ∂φ∗ .

Proposition 7. Let Ne = ∂t∗ + eY . For any e, there is a corresponding choice of ε� e and r−Y such that
for every integer p, there exists cp > 0 such that

J Ne
µ (8)nµH+ ∼ (DV̂8)

2
+ e

∑
E A∈{E1,E2}

(DE A8)
2 on the event horizon,

J Ne
µ (8)nµ6τ ∼

∑
Eα∈{E1,E2,V̂ }

(DEα8)
2
+ e(DEŶ

8)2 for r ≤ r−Y ,

J Ne
µ (8)nµ6τ ∼

∑
(∂8)2 for r ≥ r−Y in the (t∗, r, x A, x B) coordinates,

K Ne(8)≥ cpe
(
|log(r − r+)|p

(
(DV̂8)

2
+

∑
A

(DE A8)
2
)
+ (DŶ8)

2
)

for r ≤ r−Y ,

K Ne(8)≤ CeJ Ne
µ (8)nµ6τ for r−Y ≤ r ≤ r+Y .

Proof. It is obvious that Y is timelike and future-oriented for r ≤ r−Y . Since ∂t∗ is casual in the exterior
region of Schwarzschild spacetime and is null only on the event horizon, for every small e > 0, there
exists sufficiently small ε > 0 such that Ne is timelike and future-directed on Kerr spacetimes up to the
event horizon. The first two estimates hold since in Kerr spacetime, ∂t∗ is ε-close to V̂ on the event
horizon. The third estimate holds because outside a small (depending on ε) neighborhood of the event
horizon, ∂t∗ is timelike.

To show that K Ne (8) has the required positivity near the event horizon, we compute the deformation
tensor. First, notice that

DŶ y1 = DŶ y2 =
3DŶ r

(r − r+)(log(r − r+))4
.

Using this we have

(Y )πV̂ V̂ = gK (DV̂ (y1Ŷ+y2V̂ ), V̂ )=−gK (y1Ŷ+y2V̂ , DV̂ V̂ )= 2y1κ+bY y2,

(Y )πŶ Ŷ = gK (DŶ (y1Ŷ+y2V̂ ), Ŷ )=−
6DŶ r

(r−r+)(log(r−r+))4
,

(Y )πV̂ Ŷ =
1
2 gK (DV̂ (y1Ŷ+y2V̂ ), Ŷ )+ 1

2 gK (DŶ (y1Ŷ+y2V̂ ), V̂ )=−
3DŶ r

(r−r+)(log(r−r+))4
+y1κ+y2bY ,



570 JONATHAN LUK

Moreover, we have
(Y )πV̂ E A

, (Y )πŶ E A
, (Y )πE A EB = O(1).

Notice that

TŶ Ŷ ∼ (DŶ8)
2, TV̂ V̂ ∼ (DV̂8)

2, TŶ V̂ ∼ |
/∇8|2,

and that (Y )πV̂ E A
, (Y )πŶ E A

and (Y )πE A EB have no terms of the form (DŶ8)
2. Hence we can choose r−Y

sufficiently close to r+ so that for r+ ≤ r ≤ r−Y ,

K Y (8)≥ cκ(DŶ8)
2
+

c
(r − r+)|log(r − r+)|4

(
(DV̂8)

2
+

∑
A

(DE A8)
2
)
.

Since ∂t∗ is Killing, and K Ne(8)= eK Y (8), we have

K Ne(8)≥ ce
(
κ(DŶ8)

2
+

1
(r−r+)|log(r−r+)|4

((DV̂8)
2
+

∑
A

(DE A8)
2)

)
for r ≤ r−Y ,

Finally, since J ∂t∗
µ nµ6t∗

controls all derivatives in the region r−Y ≤ r ≤ r+Y , we have

K Ne (8)≤ CeJ Ne
µ (8) nµ6τ for r−Y ≤ r ≤ r+Y . �

Definition 8. We call the positive quantity
∫
6τ

J Ne
µ (8) nµ6τ the nondegenerate energy.

The following identity determines how the nondegenerate energy changes with τ .

Proposition 9. Let 8 satisfy �gK8= G. Then∫
6τ

J Ne
µ (8)nµ6τ +

∫
H(τ0,τ )

J Ne
µ (8)nµ6τ +

∫∫
R(τ0,τ )∩{r≤r−Y }

K Ne
µ (8)

=

∫
6τ0

J Ne
µ (8)nµ6τ0 + e

∫∫
R(τ0,τ )∩{r−Y ≤r≤r+Y }

K Y (8)+

∫
R(τ0,τ )

(∂t∗8+ eY8)G.

The estimates given by the vector field N are sufficient to show that, modulo inhomogeneous terms,
the quantity

∫
6τ

J Ne
µ (8) nµ6τ cannot grow too much in a short time interval:

Proposition 10. Let 8 satisfy �gK8= G. For e sufficiently small, ε� e and 0≤ τ − τ ′ ≤ 1, we have∫
6τ

J Ne
µ (8)nµ6τ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+ ≤ 4

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +C

∫∫
R(τ ′,τ )

G2.

Proof. We first note that∫∫
R(τ ′,τ )∩{r−Y ≤r≤r+Y }

K Y (8)≤ C
∫ τ

τ ′

∫
6τ̄

J Ne
µ (8) nµ6τ̄ d τ̄ ,
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with C independent of e and ε whenever ε� e < 1. Then, by Proposition 9,∫
6τ

J Ne
µ (8)nµ6τ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K Ne
µ (8)

=

∫
6τ ′

J Ne
µ (8)nµ6τ ′ + e

∫∫
R(τ ′,τ )∩{r−Y ≤r≤r+Y }

K Y (8)+

∫
R(τ ′,τ )

(∂t∗8+ eY8)G

≤

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +Ce

∫ τ

τ ′

∫
6τ̄

J Ne
µ (8)nµ6τ̄ d τ̄ + δ

′

∫∫
R(τ ′,τ )

((∂t∗8+ eY8))2+ (δ′)−1
∫∫

R(τ ′,τ )
G2

≤

∫
6τ ′

J Ne
µ (8)nµ6τ ′ + (Cδ

′
+ 2Ce)

∫ τ

τ ′

∫
6τ̄

J Ne
µ (8)nµ6τ̄ d τ̄ + (δ

′)−1
∫∫

R(τ ′,τ )
G2.

By Gronwall’s inequality and absorbing (δ′)−1 into the constant C , we have∫
6τ

J Ne
µ (8)nµ6τ ≤ 2

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +C

∫∫
R(τ ′,τ )

G2.

Now the estimate for the term horizon follows from Proposition 9. �

8. Integrated decay estimates and boundedness of nondegenerate energy

In this section we would like to show an integrated decay estimate. We first follow [Luk 2010] to
construct a vector field and prove an integrated decay estimate for the terms near spatial infinity. That
construction is in turn inspired by [Sterbenz 2005]. In [Luk 2010], the decay rate in r of this integrated
decay estimate is crucial for controlling the error terms arising from the vector field commutator S. In
the sequel, such an estimate will also facilitate many computations as we prove the full integrated decay
estimate.

In view of the red shift, all derivatives of 8 can be controlled near the event horizon. However, we
would also like to prove an integrated decay estimate that controls 8 itself near the event horizon. This
is in contrast to the integrated decay estimate in [Dafermos and Rodnianski 2008], which degenerates
near the event horizon. This extra control is useful as we are considering the inhomogeneous problem.

The proof of the integrated decay estimate for a finite region of r away from the horizon follows that in
[Dafermos and Rodnianski 2008]. The one difference here is that we do not assume the boundedness of∫
6τ

J Ne
µ (8)nµ6τ (even after ignoring inhomogeneous terms). We would instead like to prove the bound-

edness of
∫
6τ

J Ne
µ (8)nµ6τ using the integrated decay estimates. We will, however, use Proposition 10.

The reader should think of this integrated decay estimates as analogous to the estimates associated to
the vector field X in [Dafermos and Rodnianski 2009; 2011; Luk 2010]. However, it is impossible to
obtain such estimates using a vector field in Kerr spacetimes and we therefore resort to a phase space
analysis; see [Alinhac 2009].

To perform the phase space analysis, we will take the Fourier transform in the variable t∗, take the
Fourier series in the variable φ∗ and express the dependence on the θ variable in oblate spheroidal
harmonics. Carter [1968] discovered that with this decomposition, the wave equation can be separated.
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However, to take the Fourier transform in the variable t∗, we need 8 to be at least in L2. To this end,
we perform a cutoff in the variable t∗.

8.1. Estimates near spatial infinity. In this subsection, we follow [Luk 2010] to construct a vector field
X̃ = f̃ (r∗)∂r∗ such that the spacetime integral that can be controlled with a good weight in r .

Proposition 11 [Luk 2010, Proposition 8]. In Schwarzschild spacetimes, using (t, r∗, x A, x B) coordi-
nates, there exists X̃ S = f̃ (r∗)∂r∗ and w X̃

S supported in r ≥ 13
4 M , such that

K X̃ ,w X̃
(8)≥ c(r−1−δ(∂r∗8)

2
+ r−1

|/∇8|2+ r−3−δ82) for r∗ ≥max{100, 100M}

and ∣∣∣∫
6τ

J X̃ ,w X̃

µ (8)nµ6τ

∣∣∣≤ C
∫
6τ

J Ne
µ (8)nµ6τ .

This implies via stability (since the vector field is supported away from the event horizon) the following:

Proposition 12. In Kerr spacetimes, using (t∗, r, x A, x B) coordinates, there exists X̃ and w X̃ supported
in r ≥ 25

8 M such that for some large R,

K X̃ ,w X̃
(8)≥ cX̃

(
r−1−δ(∂r∗8)

2
+ r−1

|/∇8|2+ r−3−δ82)
−C X̃εr

−2(∂t∗8)
2 for r∗ ≥ R

and ∣∣∣∫
6τ

J X̃ ,w X̃

µ (8)nµ6τ

∣∣∣≤ C
∫
6τ

J Ne
µ (8)nµ6τ .

Now it is easy to construct the following vector field on Schwarzschild spacetimes:

Proposition 13. In Schwarzschild spacetimes, in (t, r∗, x A, x B) coordinates, there exists X̌ S= f̌ (r∗) ∂r∗

supported in r ≥ 13
4 M such that

K X̌ (8)≥ cr−1−δ(∂t∗8)
2
−C(r−1−δ(∂r∗8)

2
+ r−1

|/∇8|2+ r−3−δ82) for r∗ ≥max{100, 100M}

and ∣∣∣∫
6τ

J X̌
µ (8)n

µ
6τ

∣∣∣≤ C
∫
6τ

J Ne
µ (8)nµ6τ .

Proof. Let f̌ be supported appropriately and let f̌ (r∗)= 1/(1+ r∗)δ whenever r∗ is large. �

As before, a stability argument gives this:

Proposition 14. In Kerr spacetimes, in (t∗, r, x A, x B) coordinates, there exists X̌ supported in r ≥ 25
8 M

such that for some large R,

K X̌ (8)≥ cr−1−δ(∂t∗8)
2
−C X̌ (r

−1−δ(∂r∗8)
2
+ r−1

|/∇8|2+ r−3−δ82) for r∗ ≥ R

and ∣∣∣∫
6τ

J X̌
µ (8)n

µ
6τ

∣∣∣≤ C
∫
6τ

J Ne
µ (8)nµ6τ .

Now using the vector field X̃+ 1
2(cX̃/C X̌ )X̌ and modifying functionw X̃ , we get the following estimate:
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Proposition 15. For ε sufficiently small,∫∫
R(τ0,τ )∩{r≥R}

(
r−1−δ J Ne

µ (8)nµ6t∗
+ r−3−δ82)

≤C
(∫
6τ

J Ne
µ (8)nµ6τ+

∫
6τ0

J N
µ (8)n

µ
6τ0
+

∫∫
R(τ0,τ )∩{

25
8 M≤r≤R}

(J Ne
µ (8) nµ6t∗

+82)+

∫∫
R(τ0,τ )

(|∂r8|+r−1
|8|)|G|

)
.

8.2. Estimates near the event horizon. The integrated decay estimates shown in [Dafermos and Rod-
nianski 2008] are degenerate around the event horizon. Here we will prove the corresponding estimates
near the event horizon. In view of the availability of the red-shift estimate K Ne , we will focus on the
zeroth order term 82. It turns out that we can use a construction in [Luk 2010].

Proposition 16. In Schwarzschild spacetimes, in (t, r∗, x A, x B) coordinates, there exists Xh = fh(r∗)∂r∗

and wXh supported in r ≤ 23
8 M such that

K Xh ,w
Xh
(8)≥ c((∂r∗8)

2
+ |/∇8|2+82) for r ≤ r−Y

and ∣∣∣∫
6τ

J Xh ,w
Xh

µ (8) nµ6τ

∣∣∣≤ C
∫
6τ

J Ne
µ (8) nµ6τ and |J Xh ,w

Xh
µ (8) nµH+ | ≤ C J Ne

µ (8) nµH+ .

Proof. Let

Xh = fh(r∗S)∂r∗S =−χ(r)
M3

(1+ 4µ−2)
∂r∗S =−χ(r)

µ3r3

8(1+ 4µ−2)
∂r∗S ,

where χ(r) is a cutoff function that is compactly supported in r ≤ 23
8 M and is identically 1 for r ≤ r−Y .

Also, let

wXh = 2 f ′h(r
∗)+

4(1−µ)
r

fh(r∗).

From now on, we will focus on the behavior when r ≤ r−Y and treat the terms in {r−Y ≤ r ≤ 23
8 M} as

errors. Recall that on Schwarzschild spacetime,

K Xh ,w
Xh
(8)=

f ′(r∗)
1−µ

(∂r∗8)
2
+
(2− 3µ) f (r∗)

2r
|/∇8|2

−
1
4

( 1
1−µ

f ′′′(r∗)+
4
r

f ′′(r∗)+
µ

r2 f ′(r∗)−
2µ
r3 (3− 4µ) f (r∗)

)
82.

We now look at the sign of this expression for r ≤ r−Y . It is easy to see that the coefficient for (∂r∗8)
2 is

positive:

f ′(r∗)= (1−µ)∂r f0(r)=
µr2(1−µ)
(1+ 4µ−2)2

≥
c(1−µ)

r3 ,
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The coefficient of |/∇8|2 is also clearly positive. A computation shows that

1
1−µ

f ′′′+
4
r

f ′′+
µ

r2 f ′−
2µ
r3 (3− 4µ) f

= −
µ6(192+µ(128+µ(−784+µ(464+µ(−28+µ(52+µ(−3+ 4µ)))))))

4(4+µ2)4

We want to show that P(µ)= 192+µ(128+µ(−784+µ(464+µ(−28+µ(52+µ(−3+4µ))))))≥ 1/7
for 16/23≤ µ≤ 1.

First, 192+ 128µ− 784µ2
+ 464µ3

= 16(−12− 20µ+ 29µ2)(µ− 1)≥ 0.
Now 52− 3µ+ 4µ2 reaches its minimum at 3/8. Hence, 52− 3µ+ 4µ2

≥ 823/16.
Finally −28+µ(52− 3µ+ 4µ2)≥−28+ 11/20 · 823/16≥ 93/320.
Therefore, P(µ)≥ 1023/6400≥ 1/7 for 16/23≤ µ≤ 1. Therefore, for r ≤ r−Y ,

K Xh ,w
Xh
(8)≥ c((∂r∗8)

2
+ |/∇8|2+82).

The second and third statements,∣∣∣∫
6τ

J Xh ,w
Xh

µ (8)nµ6τ

∣∣∣≤ C
∫
6τ

J Ne
µ (8)nµ6τ and |J Xh ,w

Xh
µ (8)nµH+ | ≤ C J Ne

µ (8)nµH+,

follow from the boundedness of fh and wXh and that on the Schwarzschild horizon ∂t = ∂r∗ . Hence in
both estimates, the constants are independent of e for e small. �

Because Xh andwXh are actually smooth up to the event horizon, we have this via a stability argument:

Proposition 17. In Kerr spacetimes, using (tS, rS, x1
S, x2

S) coordinates, there exists Xh and wXh sup-
ported in r ≤ 23

8 M such that

K Xh ,w
Xh
(8)≥ c82

−Cε(∂t∗8)
2
−Cε(∂r8)

2 for r ≤ r−Y

and ∣∣∣∫
6τ

J Xh ,w
Xh

µ (8)nµ6τ

∣∣∣≤ C
∫
6τ

J N
µ (8)n

µ
6τ

and
∣∣J Xh ,w

Xh
µ (8)nµH+

∣∣≤ C J Ne
µ (8)nµH+ .

Together with the red shift, we then have an integrated decay estimate near the event horizon:

Proposition 18.∫∫
R(τ0,τ )∩{r≤r−Y }

(82
+ K Ne(8))

≤ C
(∫

6τ

J Ne
µ (8)nµ6τ +

∫
6τ0

J Ne
µ (8)nµ6τ0 +

∫∫
R(τ0,τ )∩{r−Y ≤r≤ 23

8 M}
(82
+ J Ne

µ (8)nµ6t∗
)

+

∫∫
R(τ0,τ )∩{r≤ 23

8 M}
(|∂r∗8| + r−1

|8|)|G| +
∣∣∣∫∫

R(τ0,τ )∩{r≤ 23
8 M}

(∂t∗8+ eY8)G
∣∣∣).
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8.3. Cutoff, decomposition and separation. Following [Dafermos and Rodnianski 2008], we define the
cutoff 8ττ ′ = ξ8, where ξ = χ(t∗− 1− τ)χ(−t∗− 1+ τ ′), for some smooth cutoff function χ(x) that
is identically 1 for x ≤−1 and has support on {x ≤ 0}. Then

�g8
τ
τ ′ = ξG+ 2Dα8Dαξ +8�gξ =: F.

We then decompose in frequency. We decompose the Fourier transform in t of 8 into Fourier series in
φ and oblate spheroidal harmonics:

8̂ττ ′ =
∑
m,`

Rωm`(r)Sm`(aω, cos θ)eimφ.

We also decompose the inhomogeneous term F (which comes both from the original inhomogeneous
term G and the cutoff):

F̂ =
∑
m,`

Fωm`(r)Sm`(aω, cos θ)eimφ.

Letting ζ be a sharp cutoff with such that ζ = 1 for |x | ≤ 1 and ζ = 0 for |x |> 1, we define

8[ =

∫
∞

−∞

ζ(ω/ω1)
∑

m,l:λml (ω)≤λ1

Rωml(r)Sml(aω, cos θ)eimφeiωt dω,

8 [=

∫
∞

−∞

ζ(ω/ω1)
∑

m,l:λml (ω)>λ1

Rωml(r)Sml(aω, cos θ)eimφeiωt dω,

8\ =

∫
∞

−∞

(1− ζ(ω/ω1))
∑

m,l:λml (ω)≥λ2ω2

Rωml(r)Sml(aω, cos θ)eimφeiωt dω,

8] =

∫
∞

−∞

(1− ζ(ω/ω1))
∑

m,l:λml (ω)<λ2ω2

Rωml(r)Sml(aω, cos θ)eimφeiωt dω.

In this decomposition, we think of ω1 as large and λ2 as small.

8.4. The trapped frequencies. Trapping occurs for 8\. An integrated decay estimate is proved in de-
tail in [Dafermos and Rodnianski 2008, Section 5.3.3]. The first term on right side in the following
proposition is different from that in [ibid.], but the inequality still holds as a result of the proof of the
corresponding inequality there.

Proposition 19.∫∫
R(−∞,∞)

(χ82
\ +χ(∂r8\)

2
+χ1

{|r−3M |≥ 1
8 M} J

N
µ (8\)n

µ
6t∗
)

≤C
∫

H(−∞,∞)
(∂t∗8

τ
τ ′)

2
+Cε

∫
H(−∞,∞)

(∂φ∗8
τ
τ ′)

2
+

∫
∞

−∞

dt∗
∫

r≥R
(2 f (r2

+a2)1/2 F\∂r∗((r2
+a2)1/28ττ ′)

+ f ′(r2
+a2)F\8ττ ′)

1

r2+ a2 sin θ dφ dθ dr∗+δ′
∫∫

R∩{r≤R}
(8ττ ′)

2
+(∂r∗8

τ
τ ′)

2
+C(δ′)−1

∫∫
R∩{r≤R}

F2,
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where χ is a weight that degenerates at infinity and near the event horizon and f is increasing and
f = tan−1(r∗−α−

√
α)/α− tan−1(−1−α)−1/2 for r > R for some fixed α.

8.5. The untrapped frequencies. For each of the pieces that are untrapped, that is, 8• for • = [, [or ],
Dafermos and Rodnianski [2008] constructed a vector field X• such that∫∫

R(−∞,∞)
χ(J Ne

µ (8•)n
µ
6t∗
+82

•
)≤ C

∫∫
R(−∞,∞)

K X•(8•),

where χ is a weight function that both degenerates at infinity and vanishes around the event horizon.
Using this vector field and the conservation identity, they showed the following:

Proposition 20.∫∫
R(−∞,∞)

χ
(
(J Ne
µ (8[)+ J Ne

µ (8 [)+ J N
µ (8]))n

µ
6τ
+ (82

[ +8
2
[+8

2
])
)

≤ C
∫

H(−∞,∞)
J Ne
µ (8)nµH+ +C(δ′)−1

∫∫
R(−∞,∞)∩{r≤R}

F2

+Cδ′
∫∫

R(−∞,∞)∩{r≤R}
(8ττ ′)

2
+ (∂r∗8

τ
τ ′)

2
+1
{r≤ 23

8 M} J
N
µ (8

τ
τ ′)n

µ
6t∗

+

∫
∞

−∞

dt∗
∫
{r≥R}

(2 f (r2
+ a2)1/2(F[+ F [+ F])∂r∗((r2

+ a2)1/28ττ ′)

+ f ′(r2
+ a2)(F[+ F [+ F])8ττ ′)

1

r2+a2 sin θ dφ dθ dr∗,

where χ and f are exactly as in Proposition 19.

Proof. This inequality is essentially borrowed from Dafermos and Rodnianski [2008, Section 5.3.4]. The
only difference is the first term on it right side. They used the estimate∫

H(−∞,∞)
J X•
µ (8•)n

µ

H+ ≤ C
∫
6τ ′

J N
µ (8

τ
τ ′)n

µ
6τ ′
.

Here, we have not proved boundedness of the solution and hence we are content with the estimate∫
H(−∞,∞)

J X•
µ (8•)n

µ

H+ ≤ C
∫

H(−∞,∞)
J Ne
µ (8ττ ′)n

µ

H+ .

This estimate holds for C independent of e because X• is constructed as f ∂r∗ and, on the event horizon,
∂r∗ = O(1)V̂ + O(ε)E A. �

8.6. The integrated decay estimates. To add up the estimates in the previous sections, we need a Hardy-
type inequality:

Proposition 21. For R′ < R,∫
6τ∩{r≥R}

rα−282
≤ C

∫
6τ∩{r≥R′}

rα J Ne
µ (8)nµ6τ .
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Proof. Let k(r) be defined by solving k ′(r, θ, φ) = rα−2 vol, where vol = vol(r, θ, φ) is the volume
density on 6τ with r, θ, φ coordinates, with boundary condition k(R′, θ, φ)= 0. Now∫

6τ

rα−282
=

∫∫∫
∞

r+
k ′(r)82dr dθ dφ

=−2
∫∫∫

k(r)8∂r8dr dθ dφ

≤ 2
(∫∫∫

k(r)2

k ′(r)
(∂r8)

2dr dθ dφ
)1/2(∫∫∫

k ′(r)82dr dθ dφ
)1/2

.

Since vol∼ r2, k(r)∼ rα+1 and k ′(r)∼ rα, we have (1+ k(r)2)/(1+ k ′(r))∼ rα vol. �

We now add up the estimates for 8[, 8 [, 8\ and 8].

Proposition 22.∫∫
R(τ ′,τ )

(r−1−δ
1
{|r−3M |≥ 1

8 M} J
Ne
µ (8)nµ6τ + r−1−δ(∂r8)

2
+ r−3−δ82)

≤ C
(∫

6τ

J Ne
µ (8)nµ6τ +

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+

+

∫∫
R(τ ′−1,τ+1)

(|∂r∗8| + r−1
|8|)|G| +

∣∣∣∫∫
R(τ ′−1,τ+1)∩{r≤ 23

8 M}
(∂t∗8+ eY8)G

∣∣∣
+

∫∫
R(τ ′−1,τ+1)

G2
)
.

Proof. Since the function f appears identically in Propositions 19 and 20, we can add up the estimates
to obtain∫∫

R(−∞,∞)

(
χ(J Ne

µ (8[)+ J Ne
µ (8 [)+1{|r−3M |≥ 1

8 M} J
Ne
µ (8\)+ J Ne

µ (8]))n
µ
6τ
+χ(82

[ +8
2
[+8

2
\ +8

2
])
)

≤ C
∫

H(τ ′−1,τ+1)
J Ne
µ (8)nµH+ +C(δ′)−1

∫∫
R(−∞,∞)∩{r≤R}

F2

+Cδ′
∫∫

R(−∞,∞)∩{r≤R}
(8ττ ′)

2
+ (∂r∗8

τ
τ ′)

2
+1
{r≤ 23

8 M} J
Ne
µ (8ττ ′)n

µ
6t∗

+

∫
∞

−∞

dt∗
∫
{r≥R}

(2 f (r2
+ a2)1/2(F[+ F [+ F\+ F])∂r∗((r2

+ a2)1/28ττ ′)

+ f ′(r2
+ a2)(F[+ F [+ F\+ F])8ττ ′)

1

r2+a2 sin θ dφ dθ dr∗.

By the definition of the cutoff, we have the pointwise equalities

F = F[+ F [+ F\+ F].
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Therefore, we have∫∫
R(−∞,∞)

χ1
{|r−3M |≥ 1

8 M} J
Ne
µ (8ττ ′)n

µ
6t∗
+χ(8ττ ′)

2

≤ C
∫

H(τ ′−1,τ+1)
J Ne
µ (8)nµH+ +C(δ′)−1

∫∫
R(−∞,∞)∩{r≤R}

F2

+Cδ′
∫∫

R(−∞,∞)∩{r≤R}
(8ττ ′)

2
+ (∂r∗8

τ
τ ′)

2
+1
{r≤ 23

8 M} J
Ne
µ (8ττ ′)n

µ
6t∗

+

∫
∞

−∞

dt∗
∫
{r≥R}

(
2 f (r2

+ a2)1/2 F∂r∗((r2
+ a2)1/28ττ ′)+ f ′(r2

+ a2)F8ττ ′
) 1

r2+a2 sin θ dφ dθ dr∗.

First, by Proposition 10, we have∫
H(τ ′−1,τ+1)

J Ne
µ (8)nµH+ ≤ C

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +C

∫
6τ

J Ne
µ (8)nµ6τ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+ .

Recall that

F = ξG+ 2Dα8Dαξ +8�gK ξ.

By the definition of ξ , the last two terms are supported in the t∗ range (τ ′−1, τ ′)∪(τ, τ+1). Moreover,
since ξ depends only on t∗, the only terms involving D8 are ∂t∗8 and O(ε)∂φ∗8. Using this, we
immediately have the following with C independent of e as long as ε� e:

C(δ′)−1
∫∫

R(−∞,∞)∩{r≤R}
F2

≤ C(δ′)−1
(∫∫

R(τ ′−1,τ+1)∩{r≤R}
G2
+

∫∫
R(τ ′−1,τ ′)∪R(τ,τ+1)

(r−282
+ J Ne

µ (8)nµ6t∗
)

)
.

Similarly, we have∫
∞

−∞

dt∗
∫
{r≥R}

f ′(r2
+ a2)F8ττ ′

1

r2+a2 sin θ dφ dθ dr∗

≤ C
(∫∫

R(τ ′−1,τ+1)
r−1
|8||G| +

∫∫
R(τ ′−1,τ ′)∪R(τ,τ+1)

(r−282
+ J Ne

µ (8)nµ6t∗
)

)
.

The other term with F is more delicate to estimate. One of the terms in the expansion does not have
sufficient decay in r :∫
∞

−∞

dt∗
∫
{r≥R}

2 f (r2
+ a2)1/2 F∂r∗((r2

+ a2)1/28ττ ′)
1

r2+a2 sin θ dφ dθ dr∗

≤ C
(∫∫

R(τ ′−1,τ+1)
r−1
|8||G| +

∫∫
R(τ ′−1,τ ′)∪R(τ,τ+1)

(r−282
+ J Ne

µ (8)nµ6t∗
)

)
+

∫
∞

−∞

dt∗
∫
{r≥R}

2 f (r2
+ a2)1/28�gK ξ∂r∗((r2

+ a2)1/28)ξ
1

r2+a2 sin θ dφ dθ dr∗
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Nevertheless, noting that ξ is independent of r∗, an integration by parts in r∗ would give∫
∞

−∞

dt∗
∫
{r≥R}

2 f (r2
+ a2)1/28�gK ξ∂r∗((r2

+ a2)1/28)ξ
1

r2+a2 sin θ dφ dθ dr∗

=−

∫
∞

−∞

dt∗
∫
{r≥R}

(r2
+ a2)82ξ�gK ξ∂r∗

(
f 1

r2+a2

)
sin θ dφ dθ dr∗+ boundary terms

≤ C
∫∫

R(τ ′−1,τ ′)∪R(τ,τ+1)
r−282,

where the boundary terms can be controlled (after possibly changing R) by pigeonholing in r ∈[R, R+1].
By the mild growth estimate of Proposition 10, the estimate near the event horizon from Proposition 18
and the Hardy inequality of Proposition 21,∫∫

R(τ ′−1,τ ′)∪R(τ,τ+1)
(r−282

+ J Ne
µ (8)nµ6t∗

)

≤ C
(∫

6τ ′

J Ne
µ (8)nµ6τ ′ +

∫
6τ

J Ne
µ (8)nµ6τ ′ +

∫∫
R(τ ′−1,τ ′)∪R(τ,τ+1)

G2
)
.

Therefore, using all the estimates above and noticing the support of ξ , we have∫∫
R(τ ′,τ )

χ(1
{|r−3M |≥ 1

8 M} J
Ne
µ (8)nµ6t∗

+82)

≤ C(δ′)−1
∫
6τ ′

J Ne
µ (8)nµ6τ ′ +C(δ′)−1

∫
6τ

J Ne
µ (8)nµ6τ +C

∫
H(τ ′,τ )

J Ne
µ (8)nµH+

+C
∫∫

R(τ ′−1,τ+1)
r−1
|8||G| +C(δ′)−1

∫∫
R(τ ′−1,τ+1)

G2

+Cδ′
∫∫

R(τ ′,τ )∩{r≤R}
82
+ (∂r∗8)

2
+1
{r≤ 23

8 M} J
Ne
µ (8)nµ6t∗

.

We add to this the estimates near spatial infinity and the event horizon, that is, Propositions 15 and 18,
to get∫∫

R(τ ′,τ )
r−1−δ

1
{|r−3M |≥ 1

8 M} J
Ne
µ (8)nµ6t∗

+ r−1−δ(∂r8)
2
+ r−3−δ82

≤ C(δ′)−1
∫
6τ ′

J N
µ (8)n

µ
6τ ′
+C(δ′)−1

∫
6τ

J Ne
µ (8)nµ6τ +C

∫
H(τ ′,τ )

J Ne
µ (8)nµH+

+C
∫∫

R(τ ′−1,τ+1)
(|∂r∗8| + r−1

|8|)|G| +C
∣∣∣∫∫

R(τ ′−1,τ+1)∩{r≤ 23
8 M}

(∂t∗8+ eY8)G
∣∣∣

+C(δ′)−1
∫∫

R(τ ′−1,τ+1)
G2
+Cδ′

∫∫
R(τ ′−1,τ+1)∩{r≤R}

82
+ (∂r∗8)

2
+1
{r≤ 23

8 M} J
N
µ (8)n

µ
6t∗
.
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By choosing δ′ sufficiently small and absorbing (δ′)−1 into the constant C , we can absorb the last term:∫∫
R(τ ′,τ )

r−1−δ
1
{|r−3M |≥ 1

8 M} J
Ne
µ (8)nµ6t∗

+ r−1−δ(∂r8)
2
+ r−3−δ82

≤ C
∫
6τ ′

J Ne
µ (8)nµ6τ ′ +C

∫
6τ

J Ne
µ (8)nµ6τ +C

∫
H(τ ′,τ )

J Ne
µ (8)nµH+

+C
∫∫

R(τ ′−1,τ+1)∩{r≤ 23
8 M}

(|∂r∗8| + r−1
|8|)|G| +C

∣∣∣∫∫
R(τ ′−1,τ+1)∩{r≤ 23

8 M}
(∂t∗8+ eY8)G

∣∣∣
+C

∫∫
R(τ ′−1,τ+1)

G2.

using Proposition 10 and 21 at the last step. �

Definition 23. From now on, we write

K X0(8)= r−1−δ
1
{|r−3M |≥ 1

8 M} J
N
µ (8)n

µ
6τ
+ r−1−δ(∂r8)

2
+ r−3−δ82,

K X1(8)= r−1−δ J N
µ (8)n

µ
6τ
+ r−3−δ82.

This is a slight abuse of notation because these “currents” do not arise directly from a vector field.

8.7. Boundedness of the nondegenerate energy.

Proposition 24. Let 8 satisfy �gK8= G. For e sufficiently small and ε� e, we have∫
6τ

J Ne
µ (8)nµ6τ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K Ne
µ (8)

≤ C
(∫

6τ ′

J Ne
µ (8)nµ6τ ′ +

∣∣∣∫∫
R(τ ′−1,τ+1)

∂t∗8G
∣∣∣+ ∣∣∣∫∫

R(τ ′−1,τ+1)
eY8G

∣∣∣
+

∫∫
R(τ ′−1,τ+1)

(|∂r8| + r−1
|8|)|G| +

∫∫
R(τ ′−1,τ+1)

G2
)
.

Proof. We recall that ∫∫
R(τ ′,τ )∩{r−Y ≤r≤r+Y }

K Y (8)≤ C
∫ τ

τ ′

∫
6τ̄

J Ne
µ (8)nµ6t∗

dt∗,

with C independent of e and ε whenever ε� e< 1. At this point, we choose r+Y <
11
4 M < 23

8 M . Hence
this term can be controlled by the integrated decay estimates. Then, by Proposition 9,∫
6τ

J Ne
µ (8)nµ6τ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K Ne
µ (8)

=

∫
6τ ′

J Ne
µ (8)nµ6τ ′ + e

∫∫
R(τ ′,τ )∩{r−Y ≤r≤r+Y }

K Y (8)+

∫∫
R(τ ′,τ )

(∂t∗8+ eY8)G

≤

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +Ce

∫ τ

τ ′

∫
6τ̄∩{r−Y ≤r≤r+Y }

J Ne
µ (8)nµ6τ̄ d τ̄ +

∣∣∣∫∫
R(τ ′,τ )

(∂t∗8+ eY8)G
∣∣∣
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≤

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +Ce

(∫
6τ

J Ne
µ (8)nµ6τ +

∫
6τ ′

J Ne
µ (8)nµ6τ ′ +

∫
H(τ ′,τ )

J Ne
µ (8)nµH+

+

∫∫
R(τ ′−1,τ+1)

(|∂r8| + r−1
|8|)|G| +

∫∫
R(τ ′−1,τ+1)

G2
)

+

∣∣∣∫∫
R(τ ′,τ )

(∂t∗8+ eY8)G
∣∣∣.

Hence, the proposition holds if e is chosen to be sufficiently small. �

Remark. From this point on, we will consider r+Y and e to be fixed. After e is fixed, the vector field Ne

will be written simply as N .

We now estimate the inhomogeneous terms in Proposition 24:

Proposition 25.∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

G2
)1/2

dt∗
)2

+

∫∫
R(τ ′,τ )

G2
)
.

Proof. Adding the estimates in Propositions 22 and δ times the estimates in Proposition 24, we have∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+ δ

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

∫∫
R(τ ′−1,τ+1)

(|∂8| + r−1
|8|)|G| +

∫∫
R(τ ′−1,τ+1)

G2
)

+Cδ
(∫

6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+

)
≤ C

(∫
6τ ′

J N
µ (8)n

µ
6τ ′
+ sup

t∗∈[τ ′−1,τ+1]

(∫
6t∗

J N
µ (8)n

µ
6t∗

)1/2 ∫ τ+1

τ ′−1

(∫
6t∗

G2
)1/2

dt∗

+

∫∫
R(τ ′−1,τ+1)

G2
)
+Cδ

(∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+

)
,

where at the last step we have used Proposition 21. Choosing Cδ ≤ 1
2 , we can absorb the last term to the

left side to get∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+ δ

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+ sup

t∗∈[τ ′−1,τ+1]

(∫
6t∗

J N
µ (8)n

µ
6t∗

)1/2 ∫ τ+1

τ ′−1

(∫
6t∗

G2
)1/2

dt∗

+

∫∫
R(τ ′−1,τ+1)

G2
)
. (7)
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By considering the estimate above on [τ ′, τ̃ ], where τ̃ is when the supremum on the right-hand side is
achieved, and using Proposition 10, we get∫
6τ̃

J N
µ (8)n

µ
6τ̃
+

∫
H(τ ′,τ̃ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ̃ )∩{r≤r−Y }

K N (8)+ δ

∫∫
R(τ ′,τ̃ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

(∫ τ+1

τ ′−1
(

∫
6t∗

G2)1/2dt∗
)2)

.

We plug this into (7) and apply Cauchy–Schwarz to prove the proposition. �

We can also estimate the inhomogeneous terms not in L1L2 but in L2L2, provided that we allow
some extra factors of r and some loss of derivatives in G. This is especially useful for estimating the
commutator terms from S, which do not have sufficient decay in t∗ in the interior to be estimated in L1L2.
More precisely:

Proposition 26.
∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)
.

Proof. By Propositions 22 and 24,∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+ δ

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J Ne
µ (8)nµ6τ ′ +

∣∣∣∫∫
R(τ ′−1,τ+1)

∂t∗8G
∣∣∣

+

∣∣∣∫∫
R(τ ′−1,τ+1)

eY8G
∣∣∣+ ∫∫

R(τ ′−1,τ+1)
(|∂r8| + r−1

|8|)|G| +
∫∫

R(τ ′−1,τ+1)
G2
)

+Cδ′
(∫

6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+

)
.

Choosing Cδ′ ≤ 1
2 , we can absorb the last term into the left hand side to get∫

6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

∣∣∣∫∫
R(τ ′−1,τ+1)

∂t∗8G
∣∣∣+ ∣∣∣∫∫

R(τ ′−1,τ+1)
eY8G

∣∣∣
+

∫∫
R(τ ′−1,τ+1)

(|∂r8| + r−1
|8|)|G| +

∫∫
R(τ ′−1,τ+1)

G2
)
.
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For the bulk error term, we focus at the region {|r − 3M | ≤ 1
8 M} and integrate by parts.

∣∣∣∫∫
R(τ ′−1,τ+1)∩{|r−3M |≤ 1

8 M}
∂t∗8G

∣∣∣
≤ δ′

∫∫
R(τ ′−1,τ+1)∩{|r−3M |≤ 1

8 M}
82
+C(δ′)−1

∫∫
R(τ ′−1,τ+1)∩{|r−3M |≤ 1

8 M}
(∂t∗G)2

+

∣∣∣∫
6τ+1∩{|r−3M |≤ 1

8 M}
8G

∣∣∣+ ∣∣∣∫
6τ ′−1∩{|r−3M |≤ 1

8 M}
8G

∣∣∣
≤ δ′

∫∫
R(τ ′−1,τ+1)∩{|r−3M |≤ 1

8 M}
r−3−δ82

+C(δ′)−1
∫∫

R(τ ′−1,τ+1)∩{|r−3M |≤ 1
8 M}

(∂t∗G)2

+ sup
t∗∈[τ ′−1,τ+1]

(
δ

∫
6t∗∩{|r−3M |≤ 1

8 M}
r−282

+C(δ′)−1
∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)

≤ δ′
∫∫

R(τ ′−1,τ+1)∩{|r−3M |≤ 1
8 M}

r−3−δ82
+C(δ′)−1

∫∫
R(τ ′−1,τ+1)∩{|r−3M |≤ 1

8 M}
(∂t∗G)2

+ sup
t∗∈[τ ′−1,τ+1]

(
δ′
∫
6t∗

J N
µ (8)n

µ
6t∗
+C(δ′)−1

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)
,

where at the last step we used Proposition 21. Therefore,

∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

∣∣∣∫∫
R(τ ′−1,τ+1)

∂t∗8G
∣∣∣+ ∣∣∣∫∫

R(τ ′−1,τ+1)
eY8G

∣∣∣
+

∫∫
R(τ ′−1,τ+1)

(|∂r8| + r−1
|8|)|G| +

∫∫
R(τ ′−1,τ+1)

G2
)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

∣∣∣∫∫
R(τ ′−1,τ+1)∩{|r−3M |≤ 1

8 M}
∂t∗8G

∣∣∣)+C(δ′)−1
∫∫

R(τ ′−1,τ+1)
r1+δG2

+ δ′
∫∫

R(τ ′−1,τ+1)
(r−3−δ82

+ r−1−δ(∂r8)
2
+1
{r≤r+Y }

J N
µ (8)n

µ
6t∗
)

≤ C
∫
6τ ′

J N
µ (8)n

µ
6τ ′
+C(δ′)−1

1∑
m=0

∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2
+ δ′

∫∫
R(τ ′−1,τ+1)

K X0(8)

+ sup
t∗∈[τ ′−1,τ+1]

(
δ′
∫
6t∗

J N
µ (8)n

µ
6t∗
+C(δ′)−1

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)
. (8)
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where at the last step we have used Propositions 10 and 21. Suppose supt∗∈[τ ′−1,τ+1] δ
′
∫
6t∗

J N
µ (8)n

µ
6t∗

is achieved by t∗ = τ̃ . Applying (8) on [τ ′, τ̃ ], we get∫
6τ̃

J N
µ (8)n

µ
6τ̃
≤C

∫
6τ ′

J N
µ (8)n

µ
6τ ′
+C(δ′)−1

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2
+δ′

∫∫
R(τ ′−1,τ+1)

K X0(8)

+ δ′
∫
6τ̃

J N
µ (8)n

µ
6τ̃
+C sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2,

which, upon choosing δ′ ≤ 1
2 and subtracting the small term on both sides, gives∫

6τ̃

J N
µ (8)n

µ
6τ̃
≤C

∫
6τ ′

J N
µ (8)n

µ
6τ ′
+C(δ′)−1

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2
+δ′

∫∫
R(τ ′−1,τ+1)

K X0(8)

+C sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2,

Therefore, plugging this back into (8), we have∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
∫
6τ ′

J N
µ (8)n

µ
6τ ′
+ δ′

∫∫
R(τ ′,τ )

K X0(8)+ δ′
∫∫

R(τ ′−1,τ ′)∪R(τ,τ+1)
K X0(8)

+C
1∑

m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2
+C sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2

≤ C
∫
6τ ′

J N
µ (8)n

µ
6τ ′
+ δ′

∫∫
R(τ ′,τ )

K X0(8)+Cδ′
∫
6τ

J N
µ (8)n

µ
6τ

+C
1∑

m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2
+C sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2,

where at the last step we have used Proposition 10. Finally, by choosing Cδ ≤ 1
2 , we can absorb the

small terms into the left-hand side and achieve the conclusion of the proposition. �

In the proof of Proposition 26, there is a loss in derivative for G because we have to integrate by parts
in the region {|r − 3M | ≤ 1

8 M}. Therefore, if G is supported away from this region, we can repeat the
proof without this loss. In other words:

Proposition 27. Suppose G is supported away from {|r − 3M | ≤ 1
8 M}. Then∫

6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δG2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)
.
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This will be useful in Section 13.
In applications, it is useful to have both ways of estimating G.

Proposition 28. Let G = G1+G2 be any way to decompose the function G. Then

∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

G2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

G2
1

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G2)

2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2

2

)
.

In the estimates above, only the function8 and its ∂r derivative can be estimated without a loss around
the trapped set. To estimate the other derivatives, we need to commute with the Killing vector field ∂t∗ .

Proposition 29. We have

∫∫
R(τ ′,τ )

K X1(8)

≤ C
( 1∑

m=0

∫
6τ ′

J N
µ (∂

m
t∗8)n

µ
6τ ′
+

1∑
m=0

(∫ τ+1

τ ′−1

(∫
6t∗

(∂m
t∗G1)

2
)1/2

dt∗
)2

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

(∂m
t∗G1)

2

+

2∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G2)

2
+ sup

t∗∈[τ ′−1,τ+1]

1∑
m=0

∫
6t∗∩{|r−3M |≤ 1

8 M}
(∂m

t∗G2)
2
)
.

Proof. Using Proposition 28 and the fact that ∂t∗ is Killing, we immediately have the following estimate
for ∂t∗8:

∫∫
R(τ ′,τ )

r−3−δ(∂t∗8)
2

≤ C
(∫

6τ ′

J N
µ (∂t∗8)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

(∂t∗G1)
2
)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

(∂t∗G1)
2

+

2∑
m=1

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G2)

2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
(∂t∗G2)

2
)
.

This would allow us to estimate all derivatives of 8 except for the fact that the estimates for the angular
derivatives of 8 degenerate around r = 3M :
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R(τ ′,τ )

(r−1−δ
1
{|r−3M |≥ 1

8 M}|
/∇8|2+ r−1−δ(∂r8)

2
+ r−1−δ(∂t∗8)

2
+ r−3−δ82)

≤ C
( 1∑

m=0

∫
6τ ′

J N
µ (∂

m
t∗8)n

µ
6τ ′
+

1∑
m=0

(∫ τ+1

τ ′−1

(∫
6t∗

(∂m
t∗G1)

2
)1/2

dt∗
)2

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

(∂m
t∗G1)

2

+

2∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G2)

2
+ sup

t∗∈[τ ′−1,τ+1]

1∑
m=0

∫
6t∗∩{|r−3M |≤ 1

8 M}
(∂m

t∗G2)
2
)
.

We now use this known estimate and construct another vector field to control the angular derivatives in the
region r ∼ 3M . The argument is simple because the estimate is only local. Take fan(r) to be compactly
support in 3M− 1

4 M ≤ r ≤ 3M+ 1
4 M and identically equal to −1 in 3M− 1

8 M ≤ r ≤ 3M+ 1
8 M . If we

consider Xan = fan(r)∂r∗ in Schwarzschild spacetime, we get that the coefficient in front of the terms
with angular derivatives is µ/2r , which is bounded below in 3M− 1

8 M ≤ r ≤ 3M+ 1
8 M . In other words,

one gets an estimate of the form∫∫
R(τ ′,τ )

r−1−δ
1
{|r−3M |≤ 1

8 M}|
/∇8|2

≤ C
(∫∫

R(τ ′,τ )
(r−1−δ

1
{|r−3M |≥ 1

8 M}|
/∇8|2+ r−1−δ(∂r8)

2
+ r−1−δ(∂t∗8)

2
+ r−3−δ82)

+

∫
6τ

J N
µ (8)n

µ
6τ
+

∫
6τ ′

J N
µ (8)n

µ
6τ ′
+

∫∫
R(τ ′,τ )

(|∂r8| + |r−18|)|G| +
∫∫

R(τ ′,τ )
G2
)
. (9)

Using a stability argument, (9) would hold also on Kerr spacetimes. One easily checks that the terms
with G on the right-hand side can be estimated in the same manner as before. Hence, the proposition
can be proved by applying Proposition 28. �

9. Vector field multiplier Z and decay of nondegenerate energy

We follow the definition of Z in [Dafermos and Rodnianski 2008]. Let Z = u2L + v2L , where u and v
are the Schwarzschild coordinates u = 1

2(t − r∗S) and v = 1
2(t + r∗S), and L = ∂u and L = 2V − L , where

V = ∂t∗+χ(r)a/(2Mr+)∂φ∗ with χ being a cutoff function that is identically 1 for r ≤ r−Y −
1
2(r
−

Y −r+)
and is compactly supported in {r ≤ r−Y −

1
4(r
−

Y − r+)}. With this definition, V is Killing except in the set
{r−Y −

1
2(r
−

Y − r+) ≤ r ≤ r−Y −
1
4(r
−

Y − r+)}. Let wZ
= 4tr∗S(1−µ)/r . Notice that while u→∞ as one

approaches the event horizon, Z is continuous up to the event horizon due to the following (however, Z
is not C1 and hence its deformation tensor is not continuous up to the event horizon):

Proposition 30. In the Kerr (t∗, r, θ, φ∗) coordinates,

L = (1−µ)∂t∗ − (1−µ)
(2rs − 2M

2r − 2M

)
∂r .

In the null frame near the event horizon in Section 2.3, we can write

L = L V̂ V̂ + L Ŷ Ŷ + L A E A, where |Lα| ≤ C(1−µ).
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Heuristically, we want to show that in the region {r ≥ r−Y },∫
6τ∩{r≥r−Y }

J Z ,wZ

µ (8)nµ6τ ≥ 0.

Moreover, we would like to have∫
6τ∩{r≥r−Y }

J Z ,wZ

µ (8)nµ6τ ≥
∫
6τ∩{r≥r−Y }

u2(L8)2+ v2(L8)2+ (u2
+ v2)|/∇8|2+

(
u2
+ v2

r2

)
82

These are true modulo some error terms that can be controlled:

Proposition 31. We have∫
6τ∩{r≥r−Y }

u2(L8)2+ v2(L8)2+ (u2
+ v2)|/∇8|2+

(
u2
+ v2

r2

)
82

≤ C
∫
6τ

J Z ,wZ

µ (8)nµ6τ +C
∫
6τ

J N
µ (8)n

µ
6τ
+C2τ 2

∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ
.

Proof. The proof is analogous to that in Minkowski spacetime [Morawetz 1975] and Schwarzschild
spacetime [Dafermos and Rodnianski 2009]. Recall from the latter that on Schwarzschild spacetime, on
a t slice,

(J Z ,wZ

S )µ(8)n
µ
6t

=
1

√
1−µ

(
v2(L8)2+ u2(L8)2+ (u2

+ v2)|/∇8|2+
2tr∗(1−µ)

r
8∂t8−

r∗(1−µ)
r

82
)
.

Now, since t and r∗ are stable under perturbation on {r ≥ r−Y − (r
−

Y − r+)/4}, we have, on this set,

(J Z ,wZ

K )µ(8)n
µ
6τ
≥

1
√

1−µ

(
v2(L8)2+u2(L8)2+(u2

+v2)|/∇8|2+
2tr∗(1−µ)

r
8∂t∗8−

r∗(1−µ)
r

82
)

−Cεr−2((u2
+ v2)(∇8)2+ t∗82).

We now cut off8. Define 8̂ so that it is supported in {r ≥ r−Y −(r
−

Y −r+)/4} and equals8 in {r ≥ r−Y }.
All the error terms arising from the cutoff will be controlled using the red-shift vector field:∫
6τ

J Z ,wZ

µ (8̂)nµ6τ ≥
∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

1
√

1−µ

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2
)

+
2tr∗S(1−µ)

1/2

r
8̂∂t∗8̂−

r∗S(1−µ)
1/2

r
8̂2
−Cεr−2((u2

+ v2)(∇8̂)2+ t∗8̂2).

The term ∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

2tr∗S(1−µ)
1/2

r
8̂∂t∗8̂
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is to be handled by two different integrations by parts. Recall [Dafermos and Rodnianski 2009] that on
Schwarzschild spacetimes we have

t∂t8̂= vL8̂+ uL8̂− r∗S∂r∗S 8̂ and t∂t8̂=
t

r∗S
(vL8̂− uL8̂)− t2

r∗S
∂r∗S 8̂.

Therefore, upon integrating by parts, we have on Schwarzschild spacetimes that∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

tr∗S(1−µ)
1/2

r
8̂∂t∗8̂

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
(1−µ)r2 r∗S

r
(vL8̂+ uL8̂)8̂+ 1

2∂r∗S ((1−µ)r(r
∗)2)8̂2

)
dθ dφ dr∗

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
(1−µ)r2

(r∗S
r
(vL8̂+ uL8̂)8̂+

(1
2
(r∗S)

2

r2 +
r∗S
r

)
8̂2
)

dθ dφ dr∗.

Notice that in the equation above, we suppressed the volume form in our notation in the first line, while
when we write in coordinates as in the second and the third line, we write out the volume form explicitly.
Alternatively, we have∫

6τ∩{r≥r−Y −(r
−

Y −r+)/4}

tr∗S(1−µ)
1/2

r
8̂∂t∗8̂

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
(1−µ)r2 t∗

r
(vL8̂− uL8̂)8̂+ 1

2∂r∗((1−µ)r(t∗)2)8̂2
)

dθ dφ dr∗

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
(1−µ)r2

( t∗

r
(vL8̂− uL8̂)8̂+

1
2
(t∗)2

r2 8̂2
)

dθ dφ dr∗.

We would like to imitate this integration by parts on Kerr spacetimes. On the domain of integration, we
have

t∂t8̂= vL8̂+ uL8̂− r∗S∂r∗S 8̂, (10)

t∂t8̂=
t

r∗S
(vL8̂− uL8̂)−

t2

r∗S
∂r∗S 8̂. (11)

The volume form on a constant t∗ slice on a Kerr spacetime is close to that on a Schwarzschild spacetime,
including in the region being considered. In other words, for r ≥ r−Y − (r

−

Y − r+)/4,

d Vol6τ = (r
2(1−µ)−1/2

+ O1(ε)) dr dx Ad x B .

Moreover, for r ≥ r−Y − (r
−

Y − r+)/4,

∂r∗S = ((1−µ)+ O1(εr−2))∂r .
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Therefore, using (10), we have∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

tr∗S(1−µ)
1/2

r
8̂∂t∗8̂

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
((rr∗S+O(ε))(vL8̂+uL8̂)8̂+

( 1
2∂r ((1−µ)r(r∗S)

2)+O(ε)
)
8̂2) drdx Adx B

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
(1−µ)1/2

((r∗S
r
+O(εr−2)

)
(vL8̂+uL8̂)8̂+

(1
2
(r∗S)

2

r2 +
r∗S
r
+O(εr−2)

)
8̂2
)
.

Alternatively, we can integrate by parts after using (11):∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

tr∗S(1−µ)
1/2

r
8̂∂t∗8̂

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
((r t∗+ O(ε))(vL8̂− uL8̂)8̂+

( 1
2∂r ((1−µ)r(t∗)2)+ O(ε)

)
8̂2)

=

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
(1−µ)1/2

(( t∗

r
+ O(εr−2)

)
(vL8̂− uL8̂)8̂+

(1
2
(t∗)2

r2 + O(εr−2)
)
8̂2
)
.

Therefore, we have∫
6τ

J Z ,wZ

µ (8̂)nµ6τ

≥

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

1
√

1−µ
(v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2)

+
2tr∗S(1−µ)

1/2

r
8̂∂t∗8̂−

r∗S(1−µ)
1/2

r
8̂2
−Cεr−2((u2

+ v2)(D8̂)2+ t∗8̂2)

≥

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

1
√

1−µ
(v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2)

+
r∗S(1−µ)

1/2

r
(vL8̂+ uL8̂)8̂+

1
2
(r∗S)

2(1−µ)1/2

r2 8̂2

+
t∗(1−µ)1/2

r
(vL8̂− uL8̂)8̂+

1
2
(t∗)2

r2 8̂2
−Cεr−2((u2

+ v2)(D8̂)2+ t∗8̂2)

≥ c
(∫

6τ∩{r≥r−Y −(r
−

Y −r+)/4}
µ((vL8̂+ uL8̂)2+ (vL8̂− uL8̂)2)

+(1−µ)((vL8̂+ uL8̂+
r∗S
r
8̂)2+ (vL8̂− uL8̂+

t∗

r
8̂)2+ 2(u2

+ v2)|/∇8̂|2)

−Cεr−2((u2
+ v2)(D8̂)2+ t∗8̂2)

)
, (12)

where the last line is obtained by first completing the square and using c ≤ 1− µ ≤ C in this region
of r . Let us for now ignore the error term and look at the other terms (which are manifestly positive).
By exactly the same argument as in [Dafermos and Rodnianski 2009], these positive terms provide good
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estimates:∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
µ((vL8̂+ uL8̂)2+ (vL8̂− uL8̂)2)

+ (1−µ)
((
vL8̂+ uL8̂+

r∗S
r
8̂
)2
+ (vL8̂− uL8̂+

t∗

r
8̂)2+ 2(u2

+ v2)|/∇8̂|2
)

≥ c
∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2+
u2
+v2

r2 8̂2
)

+Cε
∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}
r−2((u2

+ v2)(D8̂)2+ t∗8̂2).

See [Dafermos and Rodnianski 2009] for the proof. This together with J N
µ (8̂)n

µ
6τ

bounds the error term
in (12):∫

6τ∩{r≥r−Y −(r
−

Y −r+)/4}
r−2((u2

+ v2)(D8̂)2+ τ82)

≤ C
∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2+
u2
+v2

r2 8̂2
)

+C
∫
6τ∩{r≥τ/4}

(L8̂)2

≤ C
∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2+
u2
+v2

r2 8̂2
)

+C
∫
6τ

J N
µ (8̂)n

µ
6τ

≤ C
(∫

6τ∩{r≥r−Y −(r
−

Y −r+)/4}
µ((vL8̂+ uL8̂)2+ (vL8̂− uL8̂)2)

+ (1−µ)
((
vL8̂+ uL8̂+

r∗S
r
8̂
)2
+

(
vL8̂− uL8̂+

t∗

r
8̂
)2
+ 2(u2

+ v2)|/∇8̂|2
))

+C
∫
6τ

J N
µ (8̂)n

µ
6τ
.

Therefore, if ε is chosen to be small enough, then (12) implies that∫
6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

≥ c
∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2+
u2
+ v2

r2 8̂2
)
. (13)

We note that c here is independent of the choice of r−Y . With this bound we would like to estimate∫
S2 8(τ, r)2. Using (13), there exists a r̃ ∈ [r−Y , r

−

Y + 1] such that∫
S2
8(τ, r̃)2 =

∫
S2
8̂(τ, r̃)2 ≤ Cτ−2

(∫
6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

)
.
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Then for every r ∈ [r+, r−Y ], since 8(τ, r̃)−8(τ, r)=
∫ r̃

r ∂r8dr , we have∫
S2
8(τ, r)2 ≤

∫
S2
8(τ, r̃)2+ (r̃ − r)

∫
6τ∩[r,r̃ ]

J N
µ (8)n

µ
6τ

≤ C
∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ
+Cτ−2

(∫
6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

) (14)

Now we need to obtain estimates for 8 from that for 8̂. It is obvious that∫
6τ∩{r≥r−Y }

(
v2(L8)2+ u2(L8)2+ (u2

+ v2)|/∇8|2+
u2
+ v2

r2 82
)

≤

∫
6τ∩{r≥r−Y }

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2+
u2
+ v2

r2 8̂2
)

≤

∫
6τ∩{r≥r−Y −(r

−

Y −r+)/4}

(
v2(L8̂)2+ u2(L8̂)2+ (u2

+ v2)|/∇8̂|2+
u2
+ v2

r2 8̂2
)
,

and∫
6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

≤

∫
6τ

J Z ,wZ

µ (8)nµ6τ +
∫
6τ

J N
µ (8)n

µ
6τ
+Cτ 2

∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ
+Cτ 2

∫
6τ∩{r≤r−Y }

82

(where we have used Proposition 30 to show that the u2 factor comes with a factor of 1−µ)

≤

∫
6τ

J Z ,wZ

µ (8)nµ6τ +
∫
6τ

J N
µ (8)n

µ
6τ
+Cτ 2

∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ

+C(r−Y − r+)
(∫

6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

)
≤

∫
6τ

J Z ,wZ

µ (8)nµ6τ +
∫
6τ

J N
µ (8)n

µ
6τ
+Cτ 2

∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ

+
1
2

(∫
6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

)
(15)

for r−Y chosen to be sufficiently close to r+. Then∫
6τ

J Z ,wZ

µ (8̂)nµ6τ +
∫
6τ

J N
µ (8̂)n

µ
6τ

≤

∫
6τ

J Z ,wZ

µ (8)nµ6τ +
∫
6τ

J N
µ (8)n

µ
6τ
+Cτ 2

∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ
. �

Remark. From this point onward, we consider r−Y to be fixed. We note again that r−Y is chosen so that
(5) and (15) hold.



592 JONATHAN LUK

Remark. The proof of the proposition above in particular shows that∫
6τ

J Z ,wZ

µ (8)nµ6τ +Cτ 2
∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ
≥ 0.

To use this proposition, it is helpful to have a localized version of 8. This follows [Dafermos and
Rodnianski 2008; 2009]. The idea is to use the finite speed of propagation and cutoff 8 outside the
domain of dependence. Focus now on the time interval [τ ′, τ ]. Take G̃ to be any smooth function
agreeing with G on the domain of dependence of the region (t∗ = τ, r ≤ τ/2). Let 8̃(τ ′)= χ8(τ ′) and
∂t∗8̃(τ

′) = χ∂t∗8(τ
′), where χ is a cutoff function identically equal to 1 for r ≤ 7

10τ
′ and compactly

supported in r ≤ 9
10τ
′. The region for which χ is one is inside the domain of dependence of the region

(t∗ = τ, r ≤ τ/2) if τ ′ ≤ τ ≤ (1.1)τ ′. We solve for �gK 8̃= G̃.
With this definition of 8̃, we have two ways to estimate the nondegenerate energy of 8̃:

Proposition 32. We have∫
6τ ′

J N
µ (8̃)n

µ
6τ ′
≤ C

∫
6τ ′

J N
µ (8)n

µ
6τ ′
,∫

6τ ′

J N
µ (8̃)n

µ
6τ ′
≤ C2

∫
6τ ′∩{r≤r−Y }

J N
µ (8)n

µ
6τ ′
+C(τ ′)−2

(∫
6τ ′

J N
µ (8)n

µ
6τ ′
+

∫
6τ ′

J Z ,wZ

µ (8)nµ6τ ′

)
.

Proof. The first part is an easy application of Proposition 21:∫
6τ ′

J N
µ (8̃)n

µ
6τ ′
≤ C

∫
6τ ′∩{R≤r≤ 9

10 τ
′}

((D8)2+ (τ ′)−282)

≤ C
∫
6τ ′∩{R≤r≤ 9

10 τ
′}

((D8)2+ r−282)≤ C
∫
6τ ′

J N
µ (8)n

µ
6τ ′
.

Following (14), we have∫
6τ ′∩{r≤r−Y }

82
≤ C

(∫
6τ ′∩{r≤r−Y }

J N
µ (8)n

µ
6τ ′
+

∫
6τ ′∩{r

−

Y ≤r≤r+Y }
82
)
.

Using this and Proposition 31, we have∫
6τ ′

J N
µ (8̃)n

µ
6τ ′

≤ C
∫
6τ ′∩{r≤

9
10 τ
′}

((D8)2+ (τ ′)−282)

≤ C
∫
6τ ′∩{r≤r−Y }

((D8)2+82)

+C(τ ′)−2
∫
6τ ′∩{r

−

Y ≤r≤ 9
10 τ
′}

(
u2(L8)2+ v2(L8)2+ (u2

+ v2)|/∇8|2+
(u2
+ v2

r2

)
82
)

≤ C2
∫
6τ ′∩{r≤r−Y }

J N
µ (8)n

µ
6τ ′
+C(τ ′)−2

(∫
6τ ′

J N
µ (8)n

µ
6τ ′
+

∫
6τ ′

J Z ,wZ

µ (8)nµ6τ ′

)
. �
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The cutoff procedure above will also allow us to localize the estimates for the bulk term:

Proposition 33. Let G = G1+G2 be any way to decompose the function G. Then for τ ′ ≤ τ ≤ (1.1)τ ′,
we have

(1) the localized boundedness estimate

∫
6τ∩{r≤τ/2}

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(8)

≤ C
(∫

6τ ′

J N
µ (8)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗∩{r≤

9
10 t∗}

G2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
G2

1+

1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G2)
2

+ sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
2
)
;

(2) the localized decay estimate

∫
6τ∩{r≤ 1

2 τ }

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(8)

≤ C
(
τ−2

∫
6τ ′

J Z+N ,wZ

µ (8)nµ6τ ′ +C
∫
6τ ′∩{r≤r−Y }

J N
µ (8)n

µ
6τ ′

)
+C

((∫ τ+1

τ ′−1

(∫
6t∗∩{r≤

9
10 t∗}

G2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
G2

1

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G2)
2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
2

)
.

Proof. Applying Proposition 28 to the equation �gK 8̃= G̃, we have

∫
6τ∩{r≤ 1

2 τ }

J N
µ (8̃)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8̃)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8̃)+

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(8̃)

≤ C
(∫

6τ ′

J N
µ (8̃)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

G̃2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

G̃2
1

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗ G̃2)

2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G̃2

2

)
.
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Since by the finite speed of propagation, 8̃=8 in {r ≤ 1
2 t∗}, we have∫

6τ∩{r≤ 1
2 τ }

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(8)

≤ C
(∫

6τ ′

J N
µ (8̃)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

G̃2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

G̃2
1

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗ G̃2)

2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G̃2

2

)
.

Now, we choose a particular G̃. Define G̃ to be G for r ≤ 7
10 t∗, and 0 for r ≥ 9

10 t∗. It can be easily
shown that one has the bounds

|∂m
t∗ G̃| ≤ C

m∑
k=0

∣∣∣( r∗

(t∗)2
)k
∂m−k

t∗ G
∣∣∣≤ C

m∑
k=0

|(t∗)−k∂m−k
t∗ G| for 7

10 t∗ ≤ r ≤ 9
10 t∗.

Therefore, we have∫
6τ∩{r≤ 1

2 τ }

J N
µ (8)n

µ
6τ
+

∫
H(τ ′,τ )

J N
µ (8)n

µ

H+ +

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(8)

≤ C
(∫

6τ ′

J N
µ (8̃)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗∩{r≤

9
10 t∗}

G2
1

)1/2
dt∗
)2
+

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
G2

1

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G2)
2
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2

2

)
.

We can now conclude the proposition using Proposition 32. �

We can remove the degeneracy around r ∼ 3M using an extra derivative.

Proposition 34. Let G = G1+G2 be any way to decompose the function G. Then for τ ′ ≤ τ ≤ (1.1)τ ′,
we have

(1) the localized boundedness estimate∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X1(8)

≤ C
( 1∑

m=0

∫
6τ ′

J N
µ (∂

m
t∗8)n

µ
6τ ′
+

1∑
m=0

(∫ τ+1

τ ′−1

(∫
6t∗∩{r≤

9
10 t∗}

(∂m
t∗G1)

2
)1/2

dt∗
)2

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
(∂m

t∗G1)
2
+

2∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G2)
2

+ sup
t∗∈[τ ′−1,τ+1]

1∑
m=0

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

(∂m
t∗G2)

2
)
;
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(2) the localized decay estimate∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X1(8)

≤ C
(
τ−2

1∑
m=0

∫
6τ ′

J Z+N ,wZ

µ (∂m
t∗8)n

µ
6τ ′
+C

1∑
m=0

∫
6τ ′∩{r≤r−Y }

J N
µ (∂

m
t∗8)n

µ
6τ ′

)

+C
( 1∑

m=0

(∫ τ+1

τ ′−1

(∫
6t∗∩{r≤

9
10 t∗}

(∂m
t∗G1)

2
)1/2

dt∗
)2
+

1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
(∂m

t∗G1)
2

+

2∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G2)
2
+ sup

t∗∈[τ ′−1,τ+1]

1∑
m=0

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

(∂m
t∗G2)

2
)
.

Proof. We repeat the argument in Proposition 33, using Proposition 29 instead of 28. �

When using the conservation law for Z , we can ignore the part of the bulk term that has a good sign.

Definition 35. Let K Z ,wZ

+ (8)=max{K Z ,wZ
(8), 0}.

Using the conservation law for the modified vector field, we have a one-sided bound:

Proposition 36.∫
6τ

J Z ,wZ

µ (8)nµ6τ +
∫

H(τ ′,τ )
J Z ,wZ

µ (8)nµH+

≤ C(τ ′)2
∫
6τ ′∩{r≤r−Y }

J N
µ (8)n

µ
6τ ′
+

∫
6τ ′

J Z ,wZ

µ (8)nµ6τ ′

+

∫∫
R(τ ′,τ )

K Z ,wZ

+ (8)+

∣∣∣∫∫
R(τ ′,τ )

(u2L8+ v2L8− 1
4w8)G

∣∣∣.
Remark. In the proposition, the left-hand side is not claimed to be positive. Note, however, that the
right-hand side is positive by the remark on page 591.

Remark. We note also that ∫
H(τ ′,τ )

J Z ,wZ

µ (8)nµH+ ≥ 0

because Z and nµH+ are both null and future directed and wZ
= 0 on the event horizon.

To show that
∫
6τ

J Z ,wZ

µ (8)nµ6τ is almost bounded, we will have to show that∫
6τ ′∩{r≤r−Y }

J N
µ (8)n

µ
6τ ′

in fact decays:
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Proposition 37.

∫
6τ∩{r≤ 1

2 t∗}
J N
µ (8)n

µ
6τ

≤ C2τ−2
∫
6
(1.1)−2τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−2τ

+Cτ−2
∫
6
(1.1)−2τ

J Z ,wZ

µ (8)nµ6
(1.1)−1τ

+Cτ−2
∫∫

R((1.1)−2τ,τ )

K Z ,wZ

+ (8)+Cτ−2
∣∣∣∫∫

R((1.1)−2τ,τ )

(u2L8+ v2L8− 1
4w8)G

∣∣∣
+C

((∫ τ+1

(1.1)−2τ−1

(∫
6t∗∩{r≤

9
10 t∗}

G2
1

)1/2
dt∗
)2
+

∫∫
R((1.1)−2τ−1,τ+1)∩{r≤ 9

10 t∗}
G2

1

)

+C
( 1∑

m=0

∫∫
R((1.1)−2τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G2)
2
+ sup

t∗∈[(1.1)−2τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
2

)
.

Proof. By Proposition 33(2) applied to the t∗ interval [(1.1)−1τ, τ ], we have

∫∫
R((1.1)−1τ,τ )∩{r≤r−Y }

K N (8)≤Cτ−2
∫
6
(1.1)−1τ

J Z+N ,wZ

µ (8)nµ6
(1.1)−1τ

+C2
∫
6
(1.1)−1τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−1τ

+C
( 1∑

m=0

∫∫
R((1.1)−1τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2
+ sup

t∗∈[(1.1)−1τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)
.

By taking the infimum there exists τ̃ ∈ [(1.1)−1τ, τ ] such that

∫
6τ̃∩{r≤r−Y }

J N
µ (8)n

µ
6τ̃
≤ Cτ−1

∫∫
R((1.1)−1τ,τ )∩{r≤r−Y }

K N (8).

Hence,

∫
6τ̃∩{r≤r−Y }

J N
µ (8)n

µ
6τ̃

≤ Cτ−2
∫
6
(1.1)−1τ

J Z+N ,wZ

µ (8)nµ6
(1.1)−1τ

+C2τ−1
∫
6
(1.1)−1τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−1τ

+Cτ−1
( 1∑

m=0

∫∫
R((1.1)−1τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2
+ sup

t∗∈[(1.1)−1τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
)
.

We apply Proposition 33(2) to the t∗ interval [τ̃ , τ ] and use Proposition 28 and 36, getting
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6τ∩{r≤ 1

2 t∗}
J N
µ (8)n

µ
6τ

≤ C(τ−2
∫
6τ̃

J Z+N ,wZ

µ (8)nµ6τ̃+C
∫
6τ̃∩{r≤r−Y }

J N
µ (8)n

µ
6τ̃
)

+C
( 1∑

m=0

∫∫
R((1.1)−1τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2
+ sup

t∗∈[(1.1)−1τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
)

≤ Cτ−2
(∫

6τ̃

J Z+N ,wZ

µ (8)nµ6τ̃+
∫
6
(1.1)−1τ

J Z+N ,wZ

µ (8)nµ6
(1.1)−1τ

)
+C2τ−1

∫
6
(1.1)−1τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−1τ

+C
( 1∑

m=0

∫∫
R((1.1)−1τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2
+ sup

t∗∈[(1.1)−1τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
)

≤ C2τ−1
∫
6
(1.1)−1τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−1τ

+Cτ−2
∫
6
(1.1)−1τ

J Z+N ,wZ

µ (8)nµ6
(1.1)−1τ

+Cτ−2
∫∫

R((1.1)−1τ,τ )

K Z ,wZ

+ (8)+Cτ−2
|

∫∫
R((1.1)−1τ,τ )

(u2L8+v2L8− 1
4w8)G|

+C
( 1∑

m=0

∫∫
R((1.1)−1τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2
+ sup

t∗∈[(1.1)−1τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
)
.

Replacing [(1.1)−1τ, τ ] with [(1.1)−2τ, (1.1)−1τ ], we get also

∫
6
(1.1)−1τ∩{r≤

1
2 t∗}

J N
µ (8)n

µ
6τ

≤ C2τ−1
∫
6
(1.1)−2τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−2τ

+Cτ−2
∫
6
(1.1)−2τ

J Z+N ,wZ

µ (8)nµ6
(1.1)−2τ

+Cτ−2
∫∫

R((1.1)−2τ,(1.1)−1τ)

K Z ,wZ

+ C(8)+Cτ−2
∣∣∣∫∫

R((1.1)−2τ,(1.1)−1τ)

(u2L8+v2L8− 1
4w8)G

∣∣∣
+C

( 1∑
m=0

∫∫
R((1.1)−2τ−1,(1.1)−1τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2

+ sup
t∗∈[(1.1)−2τ−1,(1.1)−1τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
)

Therefore, plugging this result into the previous, we get
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6τ∩{r≤ 1

2 t∗}
J N
µ (8)n

µ
6τ

≤ C2τ−2
∫
6
(1.1)−2τ∩{r≤r−Y }

J N
µ (8)n

µ
6
(1.1)−2τ

+Cτ−2
∫
6
(1.1)−2τ

J Z ,wZ

µ (8)nµ6
(1.1)−1τ

+Cτ−2
∫∫

R((1.1)−2τ,τ )

K Z ,wZ

+ (8)+Cτ−2
∣∣∣∫∫

R((1.1)−2τ,τ )

(u2L8+ v2L8− 1
4w8)G

∣∣∣
+C

( 1∑
m=0

∫∫
R((1.1)−2τ−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2

+ sup
t∗∈[(1.1)−2τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
)
. �

Proposition 37 immediately gives control over the nondegenerate energy and conformal energy using
Propositions 31 and 36, respectively:

Corollary 38. For any γ < 1,∫
6τ

J Z ,wZ

µ (8)nµ6τ +Cτ 2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ

≤ C
(∫

6τ0

J Z ,wZ

µ (8)nµ6τ0 +C
∫
6τ0

J N
µ (8)n

µ
6τ0

+

∫∫
R(τ0,τ )

K Z ,wZ

+ (8)+

∣∣∣∫∫
R(τ0,τ )

(u2L8+ v2L8− 1
4w8)G

∣∣∣)
+C

( 1∑
m=0

∫∫
R(τ0−1,τ+1)∩{r≤ 9

10 t∗}
(t∗)2r1+δ(∂m

t∗G)
2
+ sup

t∗∈[τ0−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

(t∗)2G2
)
.

Proof. By Proposition 31,

τ 2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ
≤ C

∫
6τ

J Z+N ,wZ

µ (8)nµ6τ +C2τ 2
∫
6τ∩{r≤r−Y }

J N
µ (8)n

µ
6τ
.

Therefore, by Propositions 36 and 37,∫
6τ

J Z ,wZ

µ (8)nµ6τ +Cτ 2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ

≤ C
(∫

6
(1.1)−2τ

J N
µ (8)n

µ
6
(1.1)−2τ

+

∫
6
(1.1)−2τ

J Z ,wZ

µ (8)nµ6
(1.1)−2τ

+

∫∫
R((1.1)−2τ,τ )

K Z ,wZ

+ (8)

+

∣∣∣∫∫
R((1.1)−2τ,τ )

(u2L8+ v2L8− 1
4w8)G

∣∣∣)
+Cτ 2

( 1∑
m=0

∫∫
R((1.1)−2τ−1,τ+1)

r1+δ(∂m
t∗G)

2
+ sup

t∗∈[(1.1)−2τ−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}∩{r≤ 9
10 t∗}

G2
)
.

We then use the same estimate for [(1.1)−4τ, (1.1)−2τ ], [(1.1)−6τ, (1.1)−4τ ], . . . . �



A VECTOR FIELD APPROACH TO IMPROVED DECAY FOR SOLUTIONS TO THE WAVE EQUATION 599

The term
∫∫

R(τ0,τ )
K Z ,wZ

+ (8) can be controlled. Here is where the control of the logarithmic diver-
gences from the red-shift vector field is crucially used.

Proposition 39. We have∫∫
R(τ ′,τ )

K Z ,wZ

+ (8)≤ C
∫∫

R(τ ′,τ )∩{r≥r−Y }
t∗(r−2 J N

µ (8)n
µ
6τ̄
+ r−48)+ ε

∫∫
R(τ ′,τ )∩{r≤r−Y }

(t∗)2K N (8).

Proof. See [Dafermos and Rodnianski 2008]. �

The bulk term arising from the inhomogeneous term G can also be controlled.

Proposition 40.∣∣∣∫∫
R(τ0,τ )

(u2L8+ v2L8− 1
4w8)G

∣∣∣
≤ δ′

∫∫
R(τ0,τ )∩{r≤ 1

2 t∗}
(t∗)2K X0(8)+ δ′

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2K N (8)

+ δ′ sup
t∗∈[τ0,τ ]

(∫
6t∗∩{r≥

1
2 t∗}

J Z+N ,wZ

µ (8)nµ6t∗
+ (t∗)2

∫
6t∗∩{r≤

23
8 M}

J N
µ (8)n

µ
6t∗

)
+C(δ′)−1

1∑
m=0

∫∫
R(τ0,τ )∩{r≤ 1

2 t∗}
(t∗)2r1+δ(∂m

t∗G)
2
+C(δ′)−1

(∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2G2
)1/2

dt∗
)2

+C(δ′)−1 sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

(t∗)2G2.

Proof. Two regions require particular care. The first is the region {r ≤ r−Y }, since the coefficients of the
vector field Z are not bounded as r → r+. The other is the region {|r − 3M | ≤ 1

8 M}. This is where
trapping occurs and where the integrated decay estimate degenerates or loses derivatives. We first look
at the region {r ≤ r+} using the null frame:∫∫

R(τ0,τ )∩{r≤r−Y }
(u2L8+ v2L8− 1

4w8)G

≤ C
∫∫

R(τ0,τ )∩{r≤r−Y }
((t∗)2+ (r∗S)

2)(|∇V̂8G| + (1−µ)|∇Ŷ8G| + (1−µ)
∑

A

|∇E A8G|)

(using Proposition 30)

≤ C
∫∫

R(τ0,τ )∩{r≤r−Y }
(t∗)2(|log|r − r+||2|∇V̂8G| + |∇Ŷ8G| +

∑
A

|∇E A8G|)

≤ δ′
∫∫

R(τ0,τ )∩{r≤r−Y }
(t∗)2(|log|r − r+||4(∇V̂8)

2
+ (∇Ŷ8)

2
+

∑
A

(∇E A8)
2)

+C(δ′)−1
∫∫

R(τ0,τ )∩{r≤r−Y }
(t∗)2G2

≤ δ′
∫∫

R(τ0,τ )∩{r≤r−Y }
(t∗)2K N (8)+C(δ′)−1

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2G2.
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For the region {r−Y ≤ r ≤ 25
8 M}, where trapping occurs, we integrate by parts in t∗ so that the bulk term

does not have ∂t∗8, which cannot be controlled by the integrated decay estimate.∣∣∣∫∫
R(τ0,τ )∩{r−Y ≤r≤ 25

8 M}
(u2L8+ v2L8− 1

4w8)G
∣∣∣

≤ C
∫∫

R(τ0,τ )∩{r−Y ≤r≤ 25
8 M}

(t∗)2|∂r8G| + (t∗)2|8∂t∗G| + t∗|8G| +
∫
6τ

τ 2
|8G| +

∫
6τ0

τ 2
0 |8G|

≤ C
(∫∫

R(τ0,τ )∩{r≤ 25
8 M}

(t∗)2(82
+ (∂r8)

2)

)1/2( 1∑
m=0

∫∫
R(τ0,τ )∩{r−Y ≤r≤ 25

8 M}
(t∗)2(∂m

t∗G)
2
)1/2

+ δ′
∫
6τ∩{r−Y ≤r≤r−Y ≤

25
8 M}

τ 2 J N
µ (8)n

µ
6τ
+ δ′

∫
6τ0∩{r

−

Y ≤r≤ 25
8 M}

τ 2
0 J N

µ (8)n
µ
6τ0

+C(δ′)−1 sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

(t∗)2G2,

using Proposition 21. We then move to the region { 25
8 M ≤ r ≤ 1

2 t∗}:∣∣∣∫∫
R(τ0,τ )∩{

25
8 M≤r≤ 1

2 t∗}
(u2L8+ v2L8− 1

4w8)G
∣∣∣

≤ C
∫∫

R(τ0,τ )∩{
25
8 M≤r≤ 1

2 t∗}
((t∗)2|∂8| + t∗|8|)|G|

≤ C
(∫∫

R(τ0,τ )∩{
25
8 M≤r≤ 1

2 t∗}
(t∗)2(r−3−δ82

+ r−1−δ J N
µ (8)n

µ
6t∗
)

)1/2

×

(∫∫
R(τ0,τ )∩{

25
8 M≤r≤ 1

2 t∗}
(r3+δ

+ (t∗)2r1+δ)G2
)1/2

≤ C
(∫∫

R(τ0,τ )∩{
25
8 M≤r≤ 1

2 t∗}
(t∗)2(r−3−δ82

+ r−1−δ J N
µ (8)n

µ
6t∗
)

)1/2

×

(∫∫
R(τ0,τ )∩{

25
8 M≤r≤ 1

2 t∗}
(t∗)2r1+δG2

)1/2

Finally, we estimate in the region {r ≥ 1
2 t∗}:∣∣∣∫∫

R(τ0,τ )∩{r≥ 1
2 t∗}
(u2L8+ v2L8− 1

4w8)G
∣∣∣

≤ C sup
t∗∈[τ0,τ ]

(∫
6t∗∩{r≥

1
2 t∗}

J Z ,wZ

µ (8)nµ6t∗
+ (t∗)2

∫
6t∗∩{r≤r−Y }

J N
µ (8)n

µ
6t∗

)1/2

×

∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2G2
)1/2

dt∗,

where we have used Proposition 31. The proposition follows from Cauchy–Schwarz. �

We have therefore proved the following decay result associated to the vector field Z .
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Proposition 41. For sufficiently small positive δ and δ′ and 0 ≤ γ < 1, there exist c = c(δ, γ ) and
C = C(δ, γ ) such that the following estimate holds for any solution to �gK8= G:

c
∫
6τ

J Z ,wZ

µ (8)nµ6τ + τ
2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ

≤ C
∫
6τ0

J Z+C N ,wZ

µ (8)nµ6τ0 +C
∫∫

R(τ0,τ )

t∗r−1+δK X1(8)

+Cδ′
∫∫

R(τ0,τ )∩{r≤ 1
2 t∗}
(t∗)2K X0(8)+C(δ′+ ε)

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2K N (8)

+C(δ′)−1
(∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2G2
)1/2

dt∗
)2

+C(δ′)−1
1∑

m=0

∫∫
R(τ0,τ )∩{r≤ 9

10 t∗}
(t∗)2r1+δ(∂m

t∗G)
2

+C(δ′)−1 sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

(t∗)2G2.

10. Estimates for solutions to �gK 8= 0

From this point on, we consider �gK8= 0. In this section, we write down the energy estimates derived
by Dafermos and Rodnianski [2008]. These will be used in later sections.

Proposition 42.

τ 2
∫
6τ∩{r≤ 1

2 τ }

J N
µ (8)n

µ
6τ
+ c

∫
6τ

J Z+N ,wZ

µ (8)nµ6τ

≤ Cτ η
2∑

m=0

(∫
6τ0

J Z ,wZ

µ (∂m
t∗8)n

µ
6τ0
+

∫
6τ0

J N
µ (∂

m
t∗8)n

µ
6τ0

)
.

Proof. We introduce the bootstrap assumptions:

τ 2
∫
6τ∩{r≤ 1

2 τ }

J N
µ (8)n

µ
6τ
+ c

∫
6τ

J Z+N ,wZ

µ (8)nµ6τ ≤ A2τ η
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
, (16)

τ 2
∫
6τ∩{r≤ 1

2 τ }

J N
µ (∂t∗8)n

µ
6τ
+ c

∫
6τ

J Z+N ,wZ

µ (8)nµ6τ ≤ Aτ 1+η
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
. (17)

Here we think of η as a small positive number. We divide the interval [τ0, τ ] dyadically into τ0 ≤ τ1 ≤

· · · ≤ τn−1 ≤ τn = τ with τi+1 ≤ (1.1)τi and n the smallest integer for doing such division. We then
have n ∼ log|τ − τ ′|. We can now apply Proposition 33 on the intervals [τi−1, τi ] and use the bootstrap
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assumption (16):∫∫
R(τi−1,τi )∩{r≤ 1

2 t∗}
K X0(8)+

∫∫
R(τi−1,τi )∩{r≤r−Y }

K N (8)

≤ C
(
τ−2

i

∫
6τi−1

J Z ,wZ

µ (8)nµ6τi−1
+C

∫
6τi−1∩{r≤r−Y }

J N
µ (8)n

µ
6τi−1

)

≤ C A2τ
−2+η
i

2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.

Similarly, we can apply Proposition 33 on the intervals [τi−1, τi ] for ∂t∗8 and use the bootstrap assump-
tion (17):∫∫

R(τi−1,τi )∩{r≤ 1
2 t∗}

K X0(∂t∗8)+

∫∫
R(τi−1,τi )∩{r≤r−Y }

K N (∂t∗8)

≤ C
(
τ−2

i

∫
6τi−1

J Z ,wZ

µ (∂t∗8)n
µ
6τi−1
+C

∫
6τi−1∩{r≤r−Y }

J N
µ (∂t∗8)n

µ
6τi−1

)

≤ C Aτ−1+η
i

2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.

By Proposition 29, we have∫∫
R(τi−1,τi )

r−1+δK X1(∂t∗8)≤ C
1∑

m=0

∫
6τ0

J N
µ (∂

m
t∗8)n

µ
6τ0
.

By Propositions 29 and 34, we have∫∫
R(τi−1,τi )

r−1+δK X1(8)≤ C
∫∫

R(τi−1,τi )∩{r≤ 1
2 t∗}

K X1(8)+Cτ−1+δ
i

∫∫
R(τi−1,τi )∩{r≥ 1

2 t∗}
K X1(8)

≤ C Aτ−1+η
i

2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.

Applying Proposition 41, we get

c
∫
6τ

J Z+N ,wZ

µ (8)nµ6τ + τ
2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ

≤ C
∫
6τ0

J Z+C N ,wZ

µ (8)nµ6τ0 +C
∫∫

R(τ0,τ )

t∗r−1+δK X1(8)

+Cδ′
∫∫

R(τ0,τ )∩{r≤ 1
2 t∗}
(t∗)2K X0(8)+C(δ′+ ε)

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2K N (8)

≤

(
C +

(
C +C A+C A2(2δ′+ ε)

) n−1∑
i=0

τ
η

i

) 2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
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≤ (C + η−1(C +C A+C A2(2δ′+ ε))τ η)
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.

Now take A large, ε = η/(4C) and δ′ = ε/2, we improve (16). Applying Proposition 41 again, this time
to ∂t∗8, we have

c
∫
6τ

J Z ,wZ

µ (∂t∗8)n
µ
6τ
+ τ 2

∫
6τ∩{r≤γ τ }

J N
µ (∂t∗8)n

µ
6τ

≤ C
∫
6τ0

J Z+C N ,wZ

µ (∂t∗8)n
µ
6τ0
+C

∫∫
R(τ0,τ )

t∗r−1+δK X1(∂t∗8)

+Cδ′
∫∫

R(τ0,τ )∩{r≤ 1
2 t∗}
(t∗)2K X0(∂t∗8)+C(δ′+ ε)

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2K N (∂t∗8)

≤

(
C +C

n−1∑
i=0

τi +C A(2δ′+ ε)
n−1∑
i=0

τ
1+η
i

) 2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0

≤ (C +Cτ +C A(2δ′+ ε)τ 1+η)

2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.

Now taking A large, δ′ = ε and ε sufficiently small, we also improve (17). �

In particular, the theorem of Dafermos and Rodnianski [2008] is retrieved.

Corollary 43 (Dafermos and Rodnianski). Suppose �gK8= 0. Then for all η > 0 and all M > 0 there
exists a0 such that the following estimates hold on Kerr spacetimes with (M, a) for which a ≤ a0:

(1) The boundedness of nondegenerate energy:∫
6τ

J N
µ (8)n

µ
6τ
+

∫
H(τ0,τ )

J N
µ (8)n

µ

H++

∫∫
R(τ0,τ )∩{r≤r−Y }

K N (8)+

∫∫
R(τ ′,τ )

K X0(8)≤C
∫
6τ0

J N
µ (8)n

µ
6τ0
;

(2) The decay of nondegenerate energy:

τ 2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ
+ c

∫
6τ

J Z+N ,wZ

µ (8)nµ6τ ≤ Cτ 1+η
1∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
,

τ 2
∫
6τ∩{r≤γ τ }

J N
µ (8)n

µ
6τ
+ c

∫
6τ

J Z+N ,wZ

µ (8)nµ6τ ≤ Cτ η
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.

(3) The decay of local integrated energy: For τ ′ ≤ τ ≤ (1.1)τ ′,∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(8)+

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (8)≤ Cτ−2+η
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
,

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X1(8)≤ Cτ−2+η

3∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗8)n

µ
6τ0
.
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Proof. Part 1 follows directly from Proposition 25. Part 2 contains two statements. The second is a
restatement of Proposition 42. The first is evident from the proof of Proposition 42. Part 3 again has
two statements. For the first, we revisit the proof of Proposition 42. The bootstrap assumptions are true;
hence it holds. For the second statement, we note by comparing Propositions 33 and 34 that K X1 can be
estimated in the same way as K X0 except for an extra derivative. The second statement in 3 can then be
proved by rerunning the argument in Proposition 42 with an extra derivative. �

11. Estimates for Ŷ8 and elliptic estimates

Away from the event horizon, we can control all higher order derivatives simply by commuting with ∂t∗

and using standard elliptic estimates. We write down a general version of the estimates in which we have
inhomogeneous terms.

Proposition 44. Suppose �gK8= G. For m ≥ 1 and for any α, we have

(1) the boundedness of weighted energy,∫
6τ∩{r≥r−Y }

rα(Dm8)2 ≤ Cα,m
(m−1∑

j=0

∫
6τ

rα J N
µ (∂

j
t∗8)n

µ
6τ
+

m−2∑
j=0

∫
6τ

rα(D j G)2
)
,

(2) and the boundedness of local energy, that is, for any 0< γ < γ ′,∫
6τ∩{r−Y ≤r≤γ t∗}

rα(Dm8)2 ≤ Cα,m,γ,γ ′
(m−1∑

j=0

∫
6τ∩{r≤γ ′t∗}

rα J N
µ (∂

j
t∗8)n

µ
6τ
+ τα−β−2

∫
6τ

rβ J N
µ (8)n

µ
6τ

+

m−2∑
j=0

∫
6τ∩{r≤γ ′t∗}

rα(D j G)2
)
.

Proof. This is obvious for m = 1 (even without the restriction r ≥ r−Y ). We will proceed by induction.
Take δ� (r−Y − r+)/4. Assume

m−1∑
j=1

∫
6τ∩{r≥r−Y −2δ}

rα(D j8)2 ≤ C
(m−2∑

j=0

∫
6τ

rα J N
µ (∂

j
t∗8)n

µ
6τ
+

m−3∑
j=0

∫
6τ

rα(D j G)2
)
.

We want to show∫
6τ∩{r≥r−Y −δ}

rα(Dm8)2 ≤ C
(m−1∑

j=0

∫
6τ

rα J N
µ (∂

j
t∗8)n

µ
6τ
+

m−2∑
j=0

∫
6τ

rα(D j G)2
)
,

which would then imply the conclusion. Denote by 1gK the Laplace–Beltrami operator for the metric
gK restricted on the spacelike hypersurface on which t∗ is constant. Since ∂t∗ is Killing, the operator is
defined independent of t∗. Then we have

∣∣[1gK , Dk
]8
∣∣≤ C

k+1∑
j=1

|D j8|.
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Denote by ∇ the spatial derivatives with respect to the spatial coordinate variables in the Schwarzschild
(t∗S , rS, x1

S, x2
S) coordinate system. On the set {r ≥ r−Y − (r

−

Y − r+)/4}, 1gK is elliptic and therefore
controls all spatial derivatives:∫

6τ∩{r≥r−Y −δ}
rα(Dm8)2

≤ C
∫
6τ∩{r≥r−Y −2δ}

rα((1gK Dm−28)2+ (Dm−18)2+ (∂m−1
t∗ ∇8)

2
+ (∂m

t∗8)
2)

≤ C
∫
6τ∩{r≥r−Y −2δ}

rα
(
(Dm−21gK8)

2
+

m−1∑
j=1

(D j8)2+ r−282
+ (∂m−1

t∗ ∇8)
2
+ (∂m

t∗8)
2
)

The last two terms are obviously bounded by C
∫
6τ

J N
µ (∂

m−1
t∗ 8)nµ6τ . The second term can be bounded us-

ing the induction hypothesis. The third term can be bounded using the Hardy inequality in Proposition 21.
Finally, to estimate the first term we use the equation �gK8= G. Then, by the form of the Kerr metric,
1gK8= G− gt∗t∗∂2

t∗8− 2gt∗φ∗∂t∗∂φ∗8. Therefore,∫
6τ∩{r≥r−Y −2δ}

rα(Dm−21gK8)
2

≤ C
∫
6τ∩{r≥r−Y −2δ}

rα((Dm−1∂t∗8)
2
+ (Dm−2G)2)

≤ C
(m−1∑

j=0

∫
6τ

rα J N
µ (∂

j
t∗8)n

µ
6τ
+

m−2∑
j=0

∫
6τ

rα(D j G)2
)
,

where at the last step we have used the induction hypothesis for ∂t∗8. We have thus proved the bounded-
ness of weighted energy. To prove the second part of the proposition, consider the function χ(r/τ)8(τ)
for a fixed time t∗ = τ , where χ : R≥0→ R≥0 is supported in {x ≤ γ ′} and is identically 1 in {x ≤ γ }.
Now

�gK8= χG+ τ−1χ̃∂r8+ τ
−2 ˜̃χ8,

where χ̃ and ˜̃χ are supported in {γ ≤ t∗/r ≤ γ ′}. Thus, by the estimate just proved,∫
6τ∩{r−Y ≤r≤γ t∗}

rα(Dm8)2

≤ Cα

(m−1∑
j=0

∫
6τ∩{r≤γ ′t∗}

rα J N
µ (∂

j
t∗8)n

µ
6τ
+

∫
6τ∩{γ t≤r≤γ ′t∗}

rατ−482
+

m−2∑
j=0

∫
6τ∩{r≤γ ′t∗}

rα(D j G)2
)

≤ Cα

(m−1∑
j=0

∫
6τ∩{r≤γ ′t∗}

rα J N
µ (∂

j
t∗8)n

µ
6τ
+ τα−β−2

∫
6τ

rβ J N
µ (8)n

µ
6τ
+

m−2∑
j=0

∫
6τ∩{r≤γ ′t∗}

rα(D j G)2
)
,

by the Hardy inequality in Proposition 21. �
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Remark. The boundedness of local energy should be seen as a decay result because for example for the
homogeneous equation, the right-hand side of the inequality decays.

Near the event horizon, higher order derivatives can be controlled by commuting with the red-shift
vector field as in [Dafermos and Rodnianski 2008; 2011]. The computation here will be completely
local, that is, only in the region {r ≤ r−Y }.

We have the following estimate for higher order derivatives:

Proposition 45. Suppose �gK8= G. For every m ≥ 1,∫
6τ∩{r≤r−Y }

(Dm8)2 ≤ C
( ∑

j+k≤m−1

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k8)nµ6τ +
m−2∑
j=0

∫
6τ∩{r≤r−Y }

(D j G)2
)
.

Proof. This is obvious for m = 1. We will proceed by induction. Suppose, for some m ≥ 2 that

m−1∑
j=0

∫
6τ∩{r≤r−Y }

(D j8)2 ≤ C
( ∑

j+k≤m−2

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k8)nµ6τ +
m−3∑
j=0

∫
6τ∩{r≤r−Y }

(D j G)2
)
. (18)

Since �gK (∂t∗8)= ∂t∗G, this immediately implies∫
6τ∩{r≤r−Y }

(∂t∗Dm−18)2 ≤ C
( ∑

j+k≤m−1

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k8)nµ6τ +
m−2∑
j=0

∫
6τ∩{r≤r−Y }

(D j G)2
)
. (19)

Since �gK8= G, we have �gK (Ŷ8)= Ŷ G+O(1)(D28+ D8). Then using the induction hypothesis
(18) (both on Ŷ8 and 8), we have

m−1∑
j=0

∫
6τ∩{r≤r−Y }

(D j Ŷ8)2

≤ C
( ∑

j+k≤m−2

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k+18)nµ6τ +
m−3∑
j=0

∫
6τ

(D j Ŷ G)2+
m−1∑
j=0

∫
6τ∩{r≤r−Y }

(D j8)2
)

≤ C
( ∑

j+k≤m−1

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k8)nµ6τ +
m−2∑
j=0

∫
6τ∩{r≤r−Y }

(D j G)2
)
. (20)

Using the null frame {V̂ , Ŷ , E1, E2},

�gK (D
m−28)=−4∇Ŷ∇V̂ Dm−28+ /1Dm−28+ P1 Dm−28,

where P1 denotes a first order differential operator. Notice that we also have

|�gK (D
m−28)| =

∣∣[�gK , Dm−2
]8+ Dm−2G

∣∣≤ C
(m−1∑

j=0

|D j8| + |Dm−2G|
)
.
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Now using a standard L2 elliptic estimate on the sphere, we have

∫
S2
|/∇2 Dm−28|2d A ≤ C

∫
S2

(
(Dm−2G)2+

m−1∑
j=0

(D j8)2+ (Dm−1
∇Ŷ8)

2
)

d A,

where we notice that the constant can be chosen uniformly because the metric on the sphere is everywhere
close to that of the standard metric. Therefore, after integrate over {r+ ≤ r ≤ r−Y } and applying (18)
and (20), we have

∫
6τ∩{r≤r−Y }

|/∇2 Dm−28|2 ≤ C
∫
6τ∩{r≤r−Y }

((Dm−2G)2+
m−1∑
j=0

(D j8)2+ (Dm−1
∇Ŷ8)

2)

≤ C
( ∑

j+k≤m−1

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k8)nµ6τ +
m−2∑
j=0

∫
6τ∩{r≤r−Y }

(D j G)2
)
. (21)

Combining (19), (20) and (21), we have

∫
6τ∩{r≤r−Y }

(Dm8)2 ≤ C
( ∑

j+k≤m

∫
6τ∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

k8)nµ6τ +
m−2∑
j=0

∫
6τ∩{r≤r−Y }

(D j G)2
)
. �

We show that the currents associated to Ŷ k8 can actually be controlled. Again, in view of the nonlinear
problem, we work in the setting of an inhomogeneous equation.

Proposition 46. Suppose �gK8= G. For every k ≥ 0,∫
6τ∩{r≤r+Y }

J N
µ (Ŷ

k8)nµ6τ +
∫

H(τ ′,τ )
J N
µ (Ŷ

k8)nµ6τ +
∫∫

R(τ ′,τ )∩{r≤r−Y }
K N (Ŷ k8)

≤ C
( ∑

j+m≤k

∫
6τ ′∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ ′ +
k∑

j=0

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗8)n

µ
6τ

+

k∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(82
+ J N

µ (∂
j

t∗8)n
µ
6t∗
)+

k∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(D j G)2

)
.

Proof. We prove the proposition by induction on k. The k = 0 case is trivial because the right-hand side
simply contains more terms than the left hand side. We suppose the proposition is true for k ≤ k0−1 for
some k0 ≥ 1. Commuting �gK with Ŷ for k0 times, we get

�gK Ŷ k08= κk0 Ŷ k0+18+ O(1)Ŷ k0∂t∗8+ O(ε)Dk0+18+ O(1)
k0∑

j=1

D j8+ Ŷ k0 G.
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We now use the energy identity for the vector field N , that is, Proposition 9 for Ŷ k8. Notice that Ŷ is
supported in {r ≤ r+Y } and therefore each term is supported in the same set. Then

∫
6τ∩{r≤r+Y }

J N
µ (Ŷ

k08)nµ6τ +
∫

H(τ0,τ )

J N
µ (Ŷ

k08)nµ6τ +
∫∫

R(τ0,τ )∩{r≤r−Y }
K N (Ŷ k08)

=

∫
6τ0

J N
µ (Ŷ

k08)nµ6τ0 + e
∫∫

R(τ0,τ )∩{r−Y ≤r≤r+Y }
K Y (Ŷ k08)

+

∫∫
R(τ0,τ )∩{r≤r+Y }

(∂t∗ Ŷ k08+ eŶ k0+18)

(
−κk0 Ŷ k0+18+ O(1)Ŷ k0∂t∗8

+O(ε)Dk0+18+ O(1)
k0∑

j=1

D j8+ Ŷ k G
)
.

The crucial observation in [Dafermos and Rodnianski 2011] is that one of the inhomogeneous terms has
a good sign and thus gives

∫
6τ

J N
µ (Ŷ

k08)nµ6τ +
∫

H(τ ′,τ )
J N
µ (Ŷ

k08)nµ6τ +
∫∫

R(τ ′,τ )∩{r≤r−Y }
K N (Ŷ k08)+

∫∫
R(τ ′,τ )

(Ŷ k0+18)2

≤ C
(∫

6τ ′∩{r≤r+Y }
J N
µ (Ŷ

k08)nµ6τ0 +
∫∫

R(τ ′,τ )∩{r−Y ≤r≤r+Y }
K N (Ŷ k08)+ ε

∫∫
R(τ ′,τ )∩{r≤r+Y }

(Dk0+18)2

+

∫∫
R(τ ′,τ )∩{r≤r+Y }

J N
µ (∂t∗ Ŷ k0−18)nµ6t∗

+

k0∑
j=1

∫∫
R(τ ′,τ )∩{r≤r+Y }

(D j8)2+

∫∫
R(τ ′,τ )∩{r≤r+Y }

(Ŷ k0 G)2
)

≤ C
(∫

6τ ′∩{r≤r+Y }
J N
µ (Ŷ

k08)nµ6τ0 +
k0+1∑
j=1

∫∫
R(τ ′,τ )∩{r−Y ≤r≤r+Y }

(D j8)2+ ε

∫∫
R(τ ′,τ )∩{r≤r−Y }

(Dk0+18)2

+

∫∫
R(τ ′,τ )∩{r≤r−Y }

J N
µ (∂t∗ Ŷ k0−18)nµ6t∗

+

k0∑
j=1

∫∫
R(τ ′,τ )∩{r≤r−Y }

(D j8)2+

∫∫
R(τ ′,τ )∩{r≤r+Y }

(Ŷ k0 G)2
)
.

Using Proposition 44 with an appropriate cutoff, we have

k0+1∑
j=1

∫∫
R(τ ′,τ )∩{r−Y ≤r≤r+Y }

(D j8)2

≤ C
( k0∑

j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(82
+ J N

µ (∂
j

t∗8)n
µ
6t∗
)+

k0−1∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(D j G)2

)
.
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Using Proposition 45, we get

k0∑
j=1

∫∫
R(τ ′,τ )∩{r≤r−Y }

(D j8)2

≤ C
( ∑

j+m≤k0−1

∫∫
R(τ ′,τ )∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6t∗
+

k0−2∑
j=0

∫∫
R(τ ′,τ )∩{r≤r−Y }

(D j G)2
)

≤ C
( ∑

j+m≤k0−1

∫
6τ ′∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ ′ +
k−1∑
j=0

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗8)n

µ
6τ

+

∑
j+m≤k0−1

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
J N
µ (∂

j
t∗ Ŷ

m8)nµ6t∗
+

k0−1∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(D j G)2

)
,

using the induction hypothesis (on ∂m
t∗8 instead of 8) at the last step. Similarly, using Proposition 45,

ε

∫∫
R(τ ′,τ )∩{r≤r−Y }

(Dk0+18)2

≤ Cε
( ∑

j+m≤k0

∫∫
R(τ ′,τ )∩{r≤r−Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6t∗
+

k−1∑
j=0

∫∫
R(τ ′,τ )∩{r≤r−Y }

(D j G)2
)

≤ Cε
(∫∫

R(τ ′,τ )∩{r≤r+Y }
J N
µ (Ŷ

k08)nµ6t∗
+

k0∑
j=0

∫
6τ ′∩{r≤r+Y }

J N
µ (∂

j
t∗8)n

µ
6τ ′

+

k0∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
J N
µ (∂

j
t∗8)n

µ
6t∗
+

k0∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(D j G)2

)
,

where again the induction hypotheses is used at the last step. All these together give∫
6τ

J N
µ (Ŷ

k08)nµ6τ +
∫

H(τ0,τ )

J N
µ (Ŷ

k08)nµ6τ +
∫∫

R(τ0,τ )∩{r≤r−Y }
K N (Ŷ k08)

≤ C
( ∑

j+m≤k0

∫
6τ ′∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ ′ +
k0∑

j=0

∫
6τ ′∩{r≤r+Y }

J N
µ (∂

j
t∗8)n

µ
6τ ′

+

k0∑
j=0

∫∫
R(τ ′,τ )∩{r≤ 23

8 M}
(82
+ J N

µ (∂
j

t∗8)n
µ
6t∗
)+

k0∑
j=0

∫
R(τ ′,τ )∩{r≤ 23

8 M}
(D j G)2

+ ε

∫∫
R(τ ′,τ )∩{r≤r−Y }

J N
µ (Ŷ

k08)nµ6t∗

)
.

The proposition can be proved by noticing that∫∫
R(τ ′,τ )∩{r≤r−Y }

J N
µ (Ŷ

k08)nµ6t∗
≤ C

∫∫
R(τ0,τ )∩{r≤r−Y }

K N (Ŷ k08).
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and absorbing the small term to the left-hand side. �

We now specialize to the case �gK8= 0. The proposition above implies that the behavior of Ŷ k8 is
determined by the behavior of ∂m

t∗8 in the region {r ≤ 23
8 M}.

Proposition 47. Fix k ≥ 0. Suppose �gK8= 0 and suppose for some constants α, B > 0 (independents
of τ ) that

k∑
j=0

∫
6τ∩{r≤ 23

8 M}
(82
+ J N

µ (∂
j

t∗8)n
µ
6τ
)≤ C Bτ−α.

Then ∑
j+m≤k

∫
6τ

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ ≤ Cτ−α
( ∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + B
)
,

and ∑
j+m≤k

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (∂
j

t∗ Ŷ
m8)≤ C(τ ′)−α

( ∑
j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + B
)
.

Remark. In the applications, we will apply this proposition with B being some energy quantity of the
initial condition.

Proof. We will proof this with a bootstrap argument. Suppose for all τ that

∑
j+m≤k

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ ≤ Aτ−α
( ∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + B
)
. (22)

This obviously holds initially for any A≥ 1 (and in particular independent of 8). By taking τ ′ = τ −K ,
for some (large and to be chosen) constant K and τ ≥ 2K , Proposition 46 implies

∑
j+m≤k

(∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ +
∫∫

R(τ−K ,τ )∩{r≤r−Y }
J N
µ (∂

j
t∗ Ŷ

m8)nµ6t∗

)

≤ C
( ∑

j+m≤k

∫
6τ−K∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ−K
+

k∑
j=0

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗8)n

µ
6τ

+

k∑
j=0

∫∫
R(τ−K ,τ )∩{r≤ 23

8 M}
(82
+ J N

µ (∂
j

t∗8)n
µ
6t∗
)

)

≤ C
( ∑

j+m≤k

∫
6τ−K∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ−K
+ K Bτ−α

)
,
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using the assumption of the proposition and using Proposition 44). Using the bootstrap assumption, we
further see that this expression satisfies the bound

≤ C
(

A(τ − K )−α
( ∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + B
)
+ K Bτ−α

)
≤ Cτ−α

( ∑
j+m≤k

A
∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + AB+ K B
)
.

Notice that C is independent of K . By selecting a t∗ slice, we have that for some τ̃ ,∫
6τ̃∩{r≤r−Y }

J N
µ (Ŷ

k8)nµ6τ̃ ≤ C K−1τ−α
( ∑

j+m≤k

A
∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + AB+ K B
)
.

Now apply Proposition 46 on [τ̃ , τ ] to get∑
j+m≤k

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ

≤ C
( ∑

j+m≤k

∫
6τ̃∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ̃ +
k∑

j=0

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗8)n

µ
6τ

+

k∑
j=0

∫∫
R(τ̃ ,τ )∩{r≤ 23

8 M}
(82
+ J N

µ (∂
j

t∗8)n
µ
6t∗
)

)

≤ C K−1τ−α
( ∑

j+m≤k

A
∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + AB+ BK
)
+C B(K + 1)τ−α

≤ C AK−1τ−α
∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + (C AK−1
+C K +C)Bτ−α.

This will improve (22) if we choose K = 4C and A sufficiently large. Hence we have proved∑
j+m≤k

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ ≤ Cτ−α
( ∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 + B
)
.

To prove the second statement, we simply use the first statement and Proposition 46. �

We can use Corollary 43 to show the decay of Ŷ k8.

Corollary 48. Suppose �gK8= 0. Then for τ ′ ≤ τ ≤ (1.1)τ ′,∑
j+m≤k

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ

≤ Cτ−2+η
( ∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 +
k+2∑
j=0

∫
6τ0

J Z+C N
µ (∂

j
t∗8)n

µ
6τ0

)
,
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and∑
j+m≤k

∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (∂
j

t∗ Ŷ
m8)

≤ Cτ−2+η
( ∑

j+m≤k

∫
6τ0

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ0 +
k+2∑
j=0

∫
6τ0

J Z+C N
µ (∂

j
t∗8)n

µ
6τ0

)
.

12. Estimates for �̃8

In this section, we would like to prove estimates for �̃`8. The estimates for �̃8 are useful to provide
an extra factor of r in the energy estimates.

Proposition 49. We have∫
6τ∩{r≥r−Y }

r2
|/∇28|2 ≤ C

∫
6τ

J N
µ (8, ∂t∗8, �̃8)n

µ
6τ
,∫∫

R(τ ′,τ )∩{r≥r−Y }
r1−δ
|/∇28|2 ≤ C

∫∫
R(τ ′,τ )

r−1−δ J N
µ (8, ∂t∗8, �̃8)n

µ
6t∗
,∫∫

R(τ ′,τ )∩{r≥r−Y }
r1−δ
|/∇28|2 ≤ C

∫∫
R(τ ′,τ )

K X1(8, ∂t∗8)+ K X0(�̃8).

To prove such estimates, we commute �gK with �̃. Recall from Section 4.3 that

|[�gK , �̃]8| ≤ Cr−2(|D28| + |D8|)

everywhere, and

[�gK , �̃]8= 0

for r < R�. Now suppose �gK8= 0. We have

�gK (�̃
`8)=

`−1∑
j=0

�̃ j
[�gK , �̃]�̃

`− j−18=: G�,`.

Since [D, �̃] = D, we have

|G�,`| ≤ Cr−2
(`−1∑

j=0

(|D2�̃ j8| + |D�̃ j8|)+

`+1∑
j=0

|D j8|

)
,

and G�,` is supported in {r ≥ R�}.

Definition 50. E�,` =
∫∫

R(τ ′−1,τ+1)
r1+δG2

�,`+ sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G�,`

2.

This is the error term for the energy estimates for �̃`8. We show that this can be controlled.
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Proposition 51. We have

E�,` ≤ C
1∑

m=0

`−1∑
j=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

K X0(∂m
t∗ �̃

j8)+C
∑̀
m=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

K X0(∂m
t∗8).

Proof.

∫∫
R(τ ′−1,τ+1)

r1+δG2
�,`

≤ C
`−1∑
j=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

r−3+δ((D2�̃ j8)2+ (D�̃ j8)2)+C
`+1∑
j=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

r−3+δ(D j8)2

≤ C
1∑

m=0

`−1∑
j=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

r−3+δ J N
µ (∂

m
t∗ �̃

j8)nµ6t∗ +C
∑̀
m=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

r−3+δ J N
µ (∂

m
t∗8)n

µ
6t∗

≤ C
1∑

m=0

`−1∑
j=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

K X0(∂m
t∗ �̃

j8)+C
∑̀
m=0

∫∫
R(τ ′−1,τ+1)∩{r≥R�}

K X0(∂m
t∗8).

By choosing R� sufficiently large, the second term of E�,` vanishes. �

We can show that the nondegenerate energy of �̃`8 is almost bounded.

Proposition 52. Suppose �gK8= 0. Then

∫
6τ

J N
µ (�̃

`8)nµ6τ +
∫

H(τ0,τ )

J N
µ (�̃

`8)nµH+ +
∫∫

R(τ0,τ )∩{r≤r−Y }
K N (�̃`8)+

∫∫
R(τ0,τ )

K X0(�̃`8)

≤ C
∑

i+ j≤`

∫
6τ0

J N
µ (∂

i
t∗�̃

j8)nµ6τ0 .

Proof. We prove this by induction on `. The ` = 0 case is true by setting G = 0 in Proposition 28. We
assume that the proposition is true for ` ≤ `0− 1. This in particular implies, after a commutations with
the Killing vector field ∂t∗ , that

`0−1∑
j=0

∫∫
R(τ0,τ )

K X0(∂m
t∗ �̃

j8)≤ C
∑

i+ j≤m+`0−1

∫
6τ0

J N
µ (∂

i
t∗�̃

j8)nµ6τ0 .
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By Propositions 27 and 51,∫
6τ

J N
µ (�̃

`08)nµ6τ +
∫

H(τ0,τ )

J N
µ (�̃

`08)nµH+ +
∫∫

R(τ0,τ )∩{r≤r−Y }
K N (�̃`08)+

∫∫
R(τ0,τ )

K X0(�̃`08)

≤ C
(∫

6τ0

J N
µ (�̃

`08)nµ6τ0 +
∫∫

R(τ ′−1,τ+1)
r1+δG2

�,`0
+ sup

t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M |≤ 1

8 M}
G2
�,`0

)

≤ C
(∫

6τ0

J N
µ (�̃

`08)nµ6τ0 +C
1∑

m=0

`0−1∑
j=0

∫∫
R(τ0−1,τ+1)∩{r≥R�}

K X0(∂m
t∗ �̃

j8)

+C
`0∑

m=0

∫∫
R(τ0−1,τ+1)∩{r≥R�}

K X0(∂m
t∗8)

)
≤ C

∑
i+ j≤`0

∫
6τ0

J N
µ (∂

i
t∗�̃

j8)nµ6τ0 .

�

Remark. Only the `= 1 case will be used.

13. Estimates for S8

We will now use the energy estimates that we have derived to control S8. In particular, we would like
to prove a local integrated decay estimate for S8. This will be used in the next section where we prove
our main theorem. Recall from Section 4.2 that for r large∣∣∣[�gK , S]8−

(
2+

r∗µ
r

)
�gK8−

2
r

(r∗

r
− 1−

2r∗µ
r

)
∂r∗8− 2

((r∗

r
− 1

)
−

3r∗µ
2r

)
/18

∣∣∣
≤ Cεr−2

( 2∑
k=1

|∂k8|

)
,

and that for r ≤ R, we have

|[�gK , S]8| ≤ C
( 2∑

k=1

|Dk8|

)
.

From now on we will prove estimates for S8 by considering the wave equation that it satisfies. We
will assume, as before, �gK8= 0 and let G denote the commutator term, that is, �gK (S8)= G. If we
look at our estimates in the previous sections, we will need to control G in three different norms. We
now consider them separately.

Proposition 53. Let τ ′ ≤ τ ≤ (1.1)τ ′. Then∑̀
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2

≤ Cτ−1+η
∑

m+k+ j≤`+3

(∫
6τ0

J Z ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0 +C
∫
6τ0

J N
µ (∂

m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
.
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and

∑̀
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2

≤ Cτ−2+η
∑

m+k+ j≤`+4

(∫
6τ0

J Z ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0 +C
∫
6τ0

J N
µ (∂

m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
.

In other words, we can get more decay if we localize and allow an extra derivative.

Proof.

∑̀
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂m
t∗G)

2

≤ C
∑̀
m=0

∫∫
R(τ ′−1,τ+1)

r−3+δ((∂m
t∗ D28)2+ (∂m

t∗ D8)2+ (r∂m
t∗ /18)

2)

(noting that the δ in the two lines are different)

≤ C
∑

m+k≤`+1

(∫∫
R(τ ′−1,τ+1)∩{r≤ 1

2 t∗}
r−1+δ J N

µ (∂
m
t∗ Ŷ

k8)nµ
6∗t

+

∫∫
R(τ ′−1,τ+1)∩{r≥ 1

2 t∗}
r−3+δ J N

µ (∂
m
t∗ �̃

k8)nµ
6∗t

)
(by Proposition 44, 45 and 49)

≤ C
∑

m+k≤`+3

τ−1+η
(∫

6τ0

J Z ,wZ

µ (∂m
t∗8)n

µ
6τ0
+C

∫
6τ0

J N
µ (∂

m
t∗ Ŷ

k8)nµ6τ0

)

+C
∑

m+k≤`+3

∫ τ+1

τ ′−1
(t∗)−3+δ

(∫
6τ0

J Z ,wZ

µ (∂m
t∗8)n

µ
6τ0
+C

∫
6τ0

J N
µ (∂

m
t∗ Ŷ

k8)nµ6τ0

)
dt∗

+C
∑

m≤`+1

∫ τ+1

τ ′−1
(t∗)−3+δ

(∫
6τ0

J N
µ (∂

m
t∗ �̃8)n

µ
6τ0

)
dt∗

(using Corollaries 43, 48 and Proposition 52)

≤ Cτ−1+η
∑

m+k+ j≤`+3

(∫
6τ0

J Z ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0 +C
∫
6τ0

J N
µ (∂

m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
.

We then move on to the localized version:

∑̀
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r1+δ(∂m

t∗G)
2

≤ C
∑̀
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤ 9

10 t∗}
r−3+δ((∂m

t∗ D28)2+ (∂m
t∗ D8)2+ (r∂m

t∗ /18)
2)
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≤ C
∑

m+k≤`+1

( ∫∫
R(τ ′−1,τ+1)∩{r≤ 1

2 t∗}

r−1+δ J N
µ (∂

m
t∗ Ŷ8)n

µ

6∗t
+

∫∫
R(τ ′−1,τ+1)∩{ 1

2 t∗≤r≤ 19t∗
20 }

r−3+δ J N
µ (∂

m
t∗ Ŷ8)n

µ

6∗t

)

+C
1∑

m=0

(∫∫
R(τ ′−1,τ+1)∩{ 1

2 t∗≤r≤ 19t∗
20 }

r−3+δ J N
µ (∂

m
t∗ �̃8)n

µ

6∗t

)
(by Proposition 44, 45 and 49)

≤ C
∑

m+k≤`+4

τ−2+η
(∫

6τ0

J Z ,wZ

µ (∂m
t∗8)n

µ
6τ0
+C

∫
6τ0

J N
µ (∂

m
t∗ Ŷ8)n

µ
6τ0

)

+C
∑

m+k≤`+3

∫ τ+1

τ ′−1
(t∗)−3+δ

(∫
6τ0

J Z ,wZ

µ (∂m
t∗8)n

µ
6τ0
+C

∫
6τ0

J N
µ (∂

m
t∗ Ŷ8)n

µ
6τ0

)
dt∗

+C
∑̀
m=0

∫ τ+1

τ ′−1
(t∗)−3+δ

(∫
6τ0

J N
µ (∂

m
t∗ �̃8)n

µ
6τ0

)
dt∗ (using Corollaries 43, 48 and Proposition 52)

≤ Cτ−2+η
∑

m+k+ j≤`+4

(∫
6τ0

J Z ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0 +C
∫
6τ0

J N
µ (∂

m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
. �

To estimate the inhomogeneous term in the region r ≤ 1
2 t∗, we will also need to estimate a term not

integrated over t∗, which arises from the integration by parts.

Proposition 54. For τ ′ ≤ τ ≤ (1.1)τ ′,

sup
t∗∈[τ ′−1,τ+1]

∑̀
m=0

∫
6t∗∩{|r−3M |≤ 1

8 M}
(∂m

t∗G)
2

≤ Cτ−2+η
∑

m+ j≤`+3

(∫
6τ0

J Z ,wZ

µ (∂m
t∗ �̃

j8)nµ6τ0 +C
∫
6τ0

J N
µ (∂

m
t∗ �̃

j8)nµ6τ0

)
.

Proof.

sup
t∗∈[τ ′−1,τ+1]

∑̀
m=0

∫
6t∗∩{|r−3M |≤ 1

8 M}
(∂m

t∗G)
2

≤ C sup
t∗∈[τ ′−1,τ+1]

∑̀
m=0

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

((D2∂m
t∗8)

2
+ (D∂m

t∗8)
2
+ (r /1∂m

t∗8)
2)

≤ C sup
t∗∈[τ ′−1,τ+1]

( `+1∑
m=0

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

J N
µ (∂

m
t∗8)n

µ

6∗t
+

∑̀
m=0

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

J N
µ (�̃∂

m
t∗8)n

µ

6∗t

)
(by Proposition 44 and 49)

≤ Cτ−2+η
∑

m+ j≤`+3

(∫
6τ0

J Z ,wZ

µ (∂m
t∗ �̃

j8)nµ6τ0 +C
∫
6τ0

J N
µ (∂

m
t∗ �̃

j8)nµ6τ0

)
,

(using Corollary 43 and Proposition 52). �
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Finally, we estimate the third norm:

Proposition 55.
∑̀
m=0

(∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2(∂m
t∗G)

2
)1/2

dt∗
)2

≤ Cτ η
∑

m+ j≤`+3

∫
6τ0

J N
µ (∂

m
t∗ �̃

j8)nµ6τ0 .

Proof.

∑̀
m=0

(∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2(∂m
t∗G)

2
)1/2

dt∗
)2

≤ C
∑̀
m=0

(∫ τ

τ0

(t∗)−1+δ
(∫

6t∗∩{r≥
1
2 t∗}
((D28)2+ (D∂m

t∗8)
2
+ (r /1∂m

t∗8)
2)

)1/2

dt∗
)2

≤ C
(∫ τ

τ0

(t∗)−1+δ
( `+1∑

m=0

∫
6t∗

J N
µ (∂

m
t∗8)n

µ
6t∗
+

∑̀
m=0

∫
6t∗

J N
µ (�̃∂

m
t∗8)n

µ
6t∗

)1/2

dt∗
)2

≤ Cτ η
∑

m+ j≤`+3

∫
6τ0

J N
µ (∂

m
t∗ �̃

j8)nµ6τ0 . �

Now that we have control of the inhomogeneous terms in the equation �gK8= G, we can prove the
decay of S8. To this end, we will introduce the bootstrap assumptions:

c
∫
6τ

J Z ,wZ

µ (∂t∗S8)n
µ
6τ
+ τ 2

∫
6τ∩{r≤γ τ }

J N
µ (∂t∗S8)n

µ
6τ

≤ Aτ
2∑

m=1

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 + Aτ 1+η

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0 , (23)

c
∫
6τ

J Z ,wZ

µ (S8)nµ6τ + τ
2
∫
6τ∩{r≤γ τ }

J N
µ (S8)n

µ
6τ

≤ A2τ η
( 2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
. (24)

We think of A as some large constant to be chosen. We will improve the constants A and A2 in the
assumptions above. Under these two assumptions, we will get the following three estimates for the bulk
terms:

Proposition 56.∫∫
R(τ0,τ )

K X1(∂t∗S8)≤ C
( 2∑

m=1

∫
6τ0

J N
µ (∂

m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0

)
.

Proof. The follows by Proposition 29 applied to the equation �gK (∂t∗S8)=∂t∗G, taking τ ′= τ0, G1=0,
and G2 = ∂t∗G. Then use Propositions 53 and 54 to estimate the terms with G. �



618 JONATHAN LUK

Proposition 57. For τ ′ ≤ τ ≤ (1.1)τ ′, we have∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (∂t∗S8)+
∫∫

R(τ ′,τ )∩{r≤ 1
2 t∗}

K X0(∂t∗S8)+
∫∫

R(τ0,τ )

r−1+δK X1(S8)

≤ C A
(
τ−2

∫
6τ ′

J Z ,wZ

µ (S8)nµ6τ ′ +C
∫
6τ ′∩{r≤r−Y }

J N
µ (S8)n

µ
6τ ′

)
+C Aτ−1+η

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0 .

Proof. By Propositions 33 and 34, taking G1 = 0 and G2 = G, and using Propositions 53 and 54 to
estimate the terms with G, we have∫∫

R(τ ′,τ )∩{r≤r−Y }
K N (∂t∗S8)+

∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X0(∂t∗S8)+

∫∫
R(τ0,τ )∩{r≤ 1

2 t∗}
K X1(S8)

≤ C A
(
τ−2

∫
6τ ′

J Z ,wZ

µ (S8)nµ6τ ′ +C
∫
6τ ′∩{r≤r−Y }

J N
µ (S8)n

µ
6τ ′

)
+C Aτ−1+η

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0 .

It remains to estimate r−1+δK X1 in the region r ≥ 1
2 t∗. Here, we will use crucially the decay in r . Clearly,∫∫

R(τ0,τ )∩{r≥ 1
2 t∗}

r−1+δK X1(S8)≤ Cτ−1+δ
∫∫

R(τ0,τ )

K X1(S8).

Then we can estimate the right-hand side by Proposition 29, taking τ ′ = τ0, G1 = 0 and G2 = ∂t∗G.
Then use Propositions 53 and 54 to estimate the terms with G. �

Proposition 58. For τ ′ ≤ τ ≤ (1.1)τ ′,∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (S8)+
∫∫

R(τ ′,τ )∩{r≤ 1
2 t∗}

K X0(S8)

≤ C A2
(
τ−2

∫
6τ ′

J Z ,wZ

µ (S8)nµ6τ ′ +C
∫
6τ ′∩{r≤r−Y }

J N
µ (S8)n

µ
6τ ′

)
+C A2τ−2+η

∑
m+k+ j≤4

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0 .

Proof. This follows from using Proposition 33, taking G1 = 0 and G2 = G, and using Propositions 53
and 54 to estimate the terms with G. �

We are now ready to retrieve the bootstrap assumptions. First, we retrieve the assumption (23):
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Proposition 59.

c
∫
6τ

J Z ,wZ

µ (∂t∗S8)n
µ
6τ
+ τ 2

∫
6τ∩{r≤γ τ }

J N
µ (∂t∗S8)n

µ
6τ

≤
1
2 Aτ

2∑
m=1

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

1
2 Aτ 1+η

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0 .

Proof. By Proposition 41,

c
∫
6τ

J Z ,wZ

µ (∂t∗S8)n
µ
6τ
+ τ 2

∫
6τ∩{r≤γ τ }

J N
µ (∂t∗S8)n

µ
6τ

≤ C
∫
6τ0

J Z+C N ,wZ

µ (∂t∗S8)n
µ
6τ0
+C

∫∫
R(τ0,τ )

t∗r−1+δK X1(∂t∗S8)

+Cδ′
∫∫

R(τ0,τ )∩{r≤ 1
2 t∗}
(t∗)2K X0(∂t∗S8)+C(δ′+ ε)

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2K N (∂t∗S8)

+C(δ′)−1
(∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2(∂t∗G)2
)1/2

dt∗
)2

+C(δ′)−1
2∑

m=1

∫∫
R(τ0,τ )∩{r≤ 9

10 t∗}
(t∗)2r1+δ(∂m

t∗G)
2

+C(δ′)−1 sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

(t∗)2(∂t∗G)2.

It suffices to check that by Propositions 53, 54 and 55, all terms are acceptable. �

We can now retrieve the bootstrap assumption (24).

Proposition 60.

c
∫
6τ

J Z ,wZ

µ (S8)nµ6τ + τ
2
∫
6τ∩{r≤γ τ }

J N
µ (S8)n

µ
6τ

≤ A2τ η
( 2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ

k�̃ j8)nµ6τ0

)
.
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Proof. By Proposition 41,

c
∫
6τ

J Z ,wZ

µ (S8)nµ6τ + τ
2
∫
6τ∩{r≤γ τ }

J N
µ (S8)n

µ
6τ

≤ C
∫
6τ0

J Z+C N ,wZ

µ (S8)nµ6τ0 +C
∫∫

R(τ0,τ )

t∗r−1+δK X1(S8)

+Cδ′
∫∫

R(τ0,τ )∩{r≤ 1
2 t∗}
(t∗)2K X0(S8)+C(δ′+ ε)

∫∫
R(τ0,τ )∩{r≤r−Y }

(t∗)2K N (S8)

+C(δ′)−1
(∫ τ

τ0

(∫
6t∗∩{r≥

1
2 t∗}

r2G2
)1/2

dt∗
)2

+C(δ′)−1
1∑

m=0

∫∫
R(τ0,τ )∩{r≤ 9

10 t∗}
(t∗)2r1+δ(∂m

t∗G)
2

+C(δ′)−1 sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤ 25
8 M}

(t∗)2G2.

It suffices to check that by Propositions 53, 54 and 55, all terms are acceptable. �

We have thus shown the following:

Proposition 61. For all η>0, there exists ε>0 small enough such that for Kerr spacetimes satisfying (3),
the following estimates hold:

c
∫
6τ

J Z ,wZ

µ (S8)nµ6τ + τ
2
∫
6τ∩{r≤γ τ }

J N
µ (S8)n

µ
6τ

≤ Cτ η
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +Cτ η

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0 .

Moreover, for τ ′ ≤ τ ≤ (1.1)τ ′,∫∫
R(τ ′,τ )∩{r≤r−Y }

K N (S8)+
∫∫

R(τ ′,τ )∩{r≤ 1
2 t∗}

K X0(S8)

≤ Cτ−2+η
2∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +Cτ−2+η

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0 .

and∫∫
R(τ ′,τ )∩{r≤ 1

2 t∗}
K X1(S8)

≤ Cτ−2+η
3∑

m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +Cτ−2+η

∑
m+k+ j≤6

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0 .

Proof. The first statement is proved by the bootstrap above. Since the bootstrap assumptions are true, the
conclusion in Proposition 58 is also true; hence the second statement is true. The third statement makes
use of the fact that K X1 can be estimated in the same way as K X0 with an extra derivative. �



A VECTOR FIELD APPROACH TO IMPROVED DECAY FOR SOLUTIONS TO THE WAVE EQUATION 621

14. Improved decay for the linear homogeneous wave equation

To use the estimates for S8, we need to integrate along integral curves of S. We first find the integral
curves by solving the ordinary differential equation

drS

dt∗S
=

h(rS)

t∗S

where h(rS) is as in the definition of S. Hence the integral curves are given by

ρ :=
exp

(∫ rS
(rS)0

dr ′S
h(r ′S)

)
t∗S

= constant,

where r0 > 2M can be chosen arbitrarily. Let σ = t∗, and consider (σ, ρ, x A, x B) as a new system of
coordinates. Notice that

∂σ =
h(rS)

t∗
∂rS + ∂t∗S =

1
t∗

S.

Now for each fixed ρ, we have

82(τ )≤82(τ ′)+

∣∣∣∫ τ

τ ′

1
σ

S(82) dσ
∣∣∣.

Integrating along a finite region of ρ, we get∫ ρ2

ρ1

82(τ ) dρ ≤
∫ ρ2

ρ1

82(τ ′) dρ+
∫ ρ2

ρ1

∫ τ

τ ′

∣∣∣ 2
σ
8S8

∣∣∣ dσ dρ.

We would like to change coordinates back to (t∗S , rS, x A
S , x B

S ). Since h(rS) is everywhere positive, (ρ, τ )
would correspond to a point with a larger value of r than (ρ, τ ′). Therefore,∫ r2

r+
82(τ )

exp
(∫ rS
(rS)0

dr ′S
h(r ′S)

)
τh(rS)

dr

≤

∫ r2

r+
82(τ ′)

exp
(∫ rS
(rS)0

dr ′S
h(r ′S)

)
τ ′h(rS)

dr +
∫ τ

τ ′

∫ r2

r+

∣∣∣ 2
σ
8S8

∣∣∣exp
(∫ rS
(rS)0

dr ′S
h(r ′S)

)
t∗S h(rS)

dr dt∗.

We have to compare exp
(∫ rS
(rS)0

dr ′S
h(r ′S)

)
/h(rS) with the volume form. Very close to the horizon, we have

h(rS)= rS − 2M . Hence

exp
(∫ rS
(rS)0

dr ′S
h(r ′S)

)
h(rS)

= e
∫ rS
(rS )0

dr ′S
h(r ′S )

( 1
rS−2M

)
∼ 1.

The corresponding expression on the compact set [r−Y , R] is obviously bounded. Hence we have∫
6τ∩{r<r2}

82(τ )

τ
≤ C

(∫
6τ ′∩{r<r2}

82(τ ′)

τ ′
+

∫∫
R(τ ′,τ )∩{r<r2}

|
2

(t∗)2
8S8|

)
. (25)

This easily implies the following improved decay for the nondegenerate energy:
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Proposition 62.
∫
6τ∩{r<R}

82
≤ CRτ

−1
(∫∫

R((1.1)−1τ,τ )∩{r<R}
82
+

∫∫
R((1.1)−1τ,τ )∩{r<R}

(S8)2
)

R.

Proof. By choosing an appropriate τ̃ ∈ [(1.1)−1τ, τ ], we have∫
6τ̃∩{r<R}

82
≤ Cτ−1

∫∫
R((1.1)−1τ,τ )∩{r<R}

82.

Now, apply (25) with τ ′ = τ̃ , we have∫
6τ∩{r<R}

82
≤ Cτ

(∫
6τ̃∩{r<R}

82

τ̃
+

∫∫
R(τ̃ ,τ )∩{r<R}

∣∣∣ 2
(t∗)2

8S8
∣∣∣)

≤ Cτ−1
(∫∫

R((1.1)−1τ,τ )∩{r<R}
82
+

∫∫
R((1.1)−1τ,τ )∩{r<R}

(S8)2
)
,

using Cauchy–Schwarz for the second term. �

We can now conclude with the improved decay for solutions to the homogeneous wave equation.

Proof of Main Theorem. By Corollaries 43, 62 and 61, we have∫
6τ∩{r<R}

82
≤ CRτ

−1
(∫∫

R((1.1)−1τ,τ )∩{r<R}
82
+

∫∫
R((1.1)−1τ,τ )∩{r<R}

(S8)2
)

≤ CRτ
−1
∫∫

R((1.1)−1τ,τ )∩{r<R}
(K X0(8)+ K X0(S8))

≤ CRτ
−3+η

( 2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0

)
Similarly we can use Proposition 62 for the derivatives of 8. By Corollary 43, 62 and 61, we have∫

6τ∩{r<R}
(D8)2

≤ CRτ
−1
(∫∫

R((1.1)−1τ,τ )∩{r<R}
(D8)2+

∫∫
R((1.1)−1τ,τ )∩{r<R}

(SD8)2
)

≤ CRτ
−1
∫∫

R((1.1)−1τ,τ )∩{r<R}
(K X1(8)+ K X1(S8))

(since we have the commutation [D, S] = D)

≤ CRτ
−3+η

( 3∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤6

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0

)
.

By commuting with ∂t∗ , we get∫
6τ∩{r<R}

(D∂`t∗8)
2

≤ CRτ
−3+η

( `+3∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤`+6

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0

)
.
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Without loss of generality, we can take R > 23
8 M . Then, by Proposition 47,∑

j+m≤`

∫
6τ∩{r≤r+Y }

J N
µ (∂

j
t∗ Ŷ

m8)nµ6τ

≤ CRτ
−3+η

( `+3∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤`+6

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0

)
.

Hence, by Proposition 44 and 45,

∑̀
j=0

∫
6τ∩{r≤R}

(D j8)2

≤ CRτ
−3+η

( `+2∑
m=0

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ S8)nµ6τ0 +

∑
m+k+ j≤`+5

∫
6τ0

J Z+C N ,wZ

µ (∂m
t∗ Ŷ �̃

j8)nµ6τ0

)
.

The pointwise decay statement follows from standard Sobolev embedding. �

15. Discussion

Out main paper holds in the set {r+ ≤ r ≤ R} for any fixed R. It is however interesting also to derive the
same estimates, for example, in the set {r+ ≤ r ≤ 1

2 t∗}. This can be achieved by proving the full decay
result when we commuted the equation with �̃`. Using this we can prove (with more loss in derivatives)
that

|8| ≤ C E(t∗)−3/2+ηrη and |D8| ≤ C E(t∗)−3/2+ηr−
1
2+η,

for r ≤ 1
2 t∗. This will be useful in studying nonlinear problems. This decay rate will be proved as a

corollary in our forthcoming paper on the null condition.

Acknowledgments

I thank my advisor Igor Rodnianski for continual support and encouragement and for many enlightening
discussions. I thank Gustav Holzegel for very helpful comments on the manuscript. I thank also an
anonymous referee for many suggestions to improve the manuscript.

References

[Alinhac 2009] S. Alinhac, “Energy multipliers for perturbations of the Schwarzschild metric”, Comm. Math. Phys. 288:1
(2009), 199–224. MR 2010b:58038 Zbl 1196.53053

[Andersson and Blue 2009] L. Andersson and P. Blue, “Hidden symmetries and decay for the wave equation on the Kerr
spacetime”, preprint, 2009. arXiv 0908.2265

[Blue and Soffer 2006] P. Blue and A. Soffer, “Improved decay rates with small regularity loss for the wave equation about a
Schwarzschild black hole”, preprint, 2006. arXiv math.AP/0612168

[Blue and Sterbenz 2006] P. Blue and J. Sterbenz, “Uniform decay of local energy and the semi-linear wave equation on
Schwarzschild space”, Comm. Math. Phys. 268:2 (2006), 481–504. MR 2007i:58037 Zbl 1123.58018



624 JONATHAN LUK

[Carter 1968] B. Carter, “Global structure of the Kerr family of gravitational fields”, Phys. Rev., II. Ser. 174:5 (1968), 1559–
1571. Zbl 0167.56301

[Christodoulou and Klainerman 1993] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski
space, Princeton Mathematical Series 41, Princeton University Press, Princeton, NJ, 1993. MR 95k:83006 Zbl 0827.53055

[Dafermos and Rodnianski 2008] M. Dafermos and I. Rodnianski, “Lectures on black holes and linear waves”, preprint, 2008.
arXiv 0811.0354

[Dafermos and Rodnianski 2009] M. Dafermos and I. Rodnianski, “The red-shift effect and radiation decay on black hole
spacetimes”, Comm. Pure Appl. Math. 62:7 (2009), 859–919. MR 2011b:83059 Zbl 1169.83008

[Dafermos and Rodnianski 2010] M. Dafermos and I. Rodnianski, “A new physical-space approach to decay for the wave
equation with applications to black hole spacetimes”, pp. 421–432 in XVIth International Congress on Mathematical Physics
(Prague, 2009), edited by P. Exner, World Scientific, Hackensack, NJ, 2010. MR 2012e:58051 Zbl 1211.83019

[Dafermos and Rodnianski 2011] M. Dafermos and I. Rodnianski, “A proof of the uniform boundedness of solutions to the
wave equation on slowly rotating Kerr backgrounds”, Invent. Math. 185:3 (2011), 467–559. MR 2827094 Zbl 1226.83029

[Donninger et al. 2011] R. Donninger, W. Schlag, and A. Soffer, “A proof of Price’s law on Schwarzschild black hole manifolds
for all angular momenta”, Adv. Math. 226:1 (2011), 484–540. MR 2012d:58043 Zbl 1205.83041 arXiv 0908.4292

[Finster et al. 2006] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, “Decay of solutions of the wave equation in the Kerr
geometry”, Comm. Math. Phys. 264:2 (2006), 465–503. MR 2007b:83019 Zbl 1194.83015

[Finster et al. 2008] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, “Erratum to [Finster et al. 2006]”, Comm. Math. Phys.
280:2 (2008), 563–573. MR 2009c:83008 Zbl 1194.83014

[Hartle and Wilkins 1974] J. B. Hartle and D. C. Wilkins, “Analytic properties of the Teukolsky equation”, Comm. Math. Phys.
38 (1974), 47–63. MR 50 #3848

[Kay and Wald 1987] B. S. Kay and R. M. Wald, “Linear stability of Schwarzschild under perturbations which are nonvanishing
on the bifurcation 2-sphere”, Classical Quantum Gravity 4:4 (1987), 893–898. MR 88m:83043 Zbl 0647.53065

[Klainerman and Sideris 1996] S. Klainerman and T. C. Sideris, “On almost global existence for nonrelativistic wave equations
in 3D”, Comm. Pure Appl. Math. 49:3 (1996), 307–321. MR 96m:35231 Zbl 0867.35064

[Kronthaler 2007] J. Kronthaler, “Decay rates for spherical scalar waves in the Schwarzschild geometry”, preprint, 2007.
arXiv 0709.3703

[Lindblad and Rodnianski 2005] H. Lindblad and I. Rodnianski, “Global existence for the Einstein vacuum equations in wave
coordinates”, Comm. Math. Phys. 256:1 (2005), 43–110. MR 2006b:83020 Zbl 1081.83003

[Luk 2010] J. Luk, “Improved decay for solutions to the linear wave equation on a Schwarzschild black hole”, Ann. Henri
Poincaré 11:5 (2010), 805–880. MR 2736525 Zbl 1208.83068

[Machedon and Stalker 2002] M. Machedon and J. Stalker, “Decay of solutions to the wave equation on a spherically symmetric
background”, preprint, 2002.

[Morawetz 1975] C. S. Morawetz, Notes on time decay and scattering for some hyperbolic problems, Regional Conference
Series in Applied Mathematics 19, Society for Industrial and Applied Mathematics, Philadelphia, 1975. MR 58 #11968
Zbl 0303.35002

[Press and Teukolsky 1973] W. H. Press and S. A. Teukolsky, “Pertubations of a rotating black hole, II: Dynamical stability of
the Kerr metric”, Astrophys. J. 185 (1973), 649–673.

[Sterbenz 2005] J. Sterbenz, “Angular regularity and Strichartz estimates for the wave equation”, Int. Math. Res. Not. 2005:4
(2005), 187–231. MR 2006i:35212 Zbl 1072.35048

[Tataru 2009] D. Tataru, “Local decay of waves on asymptotically flat stationary space-times”, preprint, 2009. arXiv 0910.5290

[Tataru and Tohaneanu 2011] D. Tataru and M. Tohaneanu, “A local energy estimate on Kerr black hole backgrounds”, Int.
Math. Res. Not. 2011:2 (2011), 248–292. MR 2012a:58050 Zbl 1209.83028 arXiv 0810.5766

[Tohaneanu 2012] M. Tohaneanu, “Strichartz estimates on Kerr black hole backgrounds”, Trans. Amer. Math. Soc. 364:2
(2012), 689–702. MR 2846348 Zbl 1234.35275 arXiv 0910.1545

[Wald 1979] R. M. Wald, “Note on the stability of the Schwarzschild metric”, J. Math. Phys. 20:6 (1979), 1056–1058.
MR 80c:83012a



A VECTOR FIELD APPROACH TO IMPROVED DECAY FOR SOLUTIONS TO THE WAVE EQUATION 625

[Whiting 1989] B. F. Whiting, “Mode stability of the Kerr black hole”, J. Math. Phys. 30:6 (1989), 1301–1305. MR 90m:83038
Zbl 0689.53041

Received 5 Oct 2010. Revised 25 Mar 2011. Accepted 21 Apr 2011.

JONATHAN LUK: jluk@math.princeton.edu
Department of Mathematics, Princeteon University, Fine Hall, Washington Road, Princeton, NJ 08544, United States

mathematical sciences publishers msp





ANALYSIS AND PDE
Vol. 5, No. 3, 2012

dx.doi.org/10.2140/apde.2012.5.627 msp

ON THE BOGOLYUBOV–RUZSA LEMMA

TOM SANDERS

Our main result is that if A is a finite subset of an abelian group with jACAj 6 KjAj, then 2A� 2A

contains an O.logO.1/ 2K/-dimensional coset progression M of size at least exp.�O.logO.1/ 2K//jAj.

1. Introduction

Croot and Sisask [2010] introduced a fundamental new method to additive combinatorics and, although
they have already given a number of applications, our present purpose is to give another. Specifically,
we shall prove the following.

Theorem 1.1 (Bogolyubov–Ruzsa lemma for abelian groups). Suppose that G is an (discrete) abelian
group and A;S�G are finite nonempty sets such that jACS j6K minfjAj; jS jg. Then .A�A/C.S�S/

contains a proper symmetric d.K/-dimensional coset progression M of size exp.�h.K//jACS j. More-
over, we may take d.K/DO.log6 2K/ and h.K/DO.log6 2K log 2 log 2K/.

We should take a moment to justify the name, which is slightly nonstandard. Bogolyubov’s lemma
(the idea for which originates in [Bogolyubov 1939]) is usually stated for sets of large density in the
ambient group, rather than small doubling, and asserts that the fourfold sumset of a thick set contains a
large Bohr set.

Ruzsa [1994], on his way to proving Freı̆man’s theorem, showed that a set with small doubling could
be sensibly embedded into a group where it is thick. He then applied Bogolyubov’s lemma and proceeded
to show that a Bohr set contains a large generalised arithmetic progression which could then be pulled
back. In doing all this he implicitly proved the first version of Theorem 1.1 in Z — although, with
different bounds — and this motivates the name.

This result has many variants (although the form given above seems to be a fairly useful one) and
in light of this the history is not completely transparent. Certainly most proofs of Freı̆man’s theorem
broadly following the model of [Ruzsa 1994] will implicitly prove a result of this shape. With this in
mind the extension from Z to arbitrary abelian groups is due to Green and Ruzsa [2007], and the first
good bounds to Schoen [2011] for certain classes of groups.

There are many applications of results of this type, particularly since their popularisation by Gowers
[1998], and we shall deal with a number of these in Section 11 at the end of the paper. To help explain
the main ideas we include a discursive sketch of the paper after the next section, which simply sets some
notation.

MSC2010: 11L07.
Keywords: Freiman, Fourier analysis, sumsets, generalised arithmetic progressions, coset progressions, small doubling.
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2. Notation

The main tool used in the paper is Fourier analysis on groups for which the classic reference is [Rudin
1990]. We deal almost exclusively with finite groups in the paper, but to be complete we shall need
slightly more generality.

Suppose that G is a locally compact topological group. We write C.G/ for the space of continuous
complex-valued functions on G. More generally if R�C we write C.G;R/ for the continuous R-valued
functions on G.

The group structure on G induces an action of G on C.G/ called translation. In particular if x 2 G

and f 2 C.G/ then we write

�x.f /.y/ WD f .yx/ for all y 2G: (2-1)

We also write M.G/ for the space of regular Borel measures on G and can extend � to these in the
natural way: for x 2G and � 2M.G/, �x.�/ is the measure induced by

C.G/! C.G/I f 7!

Z
f .x/ d�.yx/:

The group structure on G is reflected in M.G/ in a fairly natural way and we define the convolution of
two measures �; � 2M.G/ to be the measure �� � induced by

C.G/! C.G/I f 7!

Z
f .xy/ d�.x/ d�.y/:

There is a family of privileged measures on G called Haar measures. These are the translation-invariant
measures on G: � 2M.G/ is a Haar measure on G if �x.�/D � for all x 2G.

Given a Haar measure � on G we can extend � in the obvious way from (2-1) to define the right
regular representation � W G ! Aut.L2.�//. More than this we can define the convolution of two
functions f;g 2L1.�/ by

f �g.x/ WD

Z
f .y/g.y�1x/ d�.y/ for all x 2G:

There are two particularly useful instances of Haar measure depending on the topology on G: if G is
compact we write �G for the Haar probability measure on G, while if G is discrete we write ıG for the
Haar counting measure on G, which assigns mass 1 to each element of G.

Of course, if G is finite it is both discrete and compact so one has both probability measure and
counting measure to choose from. The measures are multiples of each other as �G is just the measure
assigning mass jGj�1 to each element of G. More generally given a finite set X we write �X for the
measure assigning mass jX j�1 to each x 2X .

When it is relevant we shall indicate whether we are taking a finite group G to be compact or discrete
by declaring the group either compact, so that �G is to be used, or discrete so that ıG is to be used. The
reader should be aware that this has the effect of changing the normalisations in convolutions.
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The above all works for general finite groups G, but when G is also abelian convolution operators can
be written in a particularly simple form with respect to the Fourier basis which we now recall.

We write yG for the dual group, that is the finite abelian group of homomorphisms  WG! S1, where
S1 WD fz 2 C W jzj D 1g. Given � 2M.G/ we define y� 2 `1. yG/ by

y�. / WD

Z
 d� for all  2 yG;

and extend this to f 2L1.�G/ by yf WD 1fd�G . It is easy to check that 1�� �D y� � y� for all �; � 2M.G/

and 1f �g D yf � yg for all f;g 2L1.�G/.

3. A sketch of the argument

Assuming the hypotheses of Theorem 1.1 our objective will be to show that there is a large, low-
dimensional coset progression M correlated with ACS , meaning such that

k1ACS ��Mk`1.G/ > 1� o.1/:

This is essentially the statement of Theorem 10.1 later, and Theorem 1.1 can be derived from it by a
simple pigeonholing argument.

A simplified argument: the case of good modelling. We shall assume that we have good modelling in
the sense of [Green and Ruzsa 2007], meaning that we shall assume that the sets A and S have density
K�O.1/ in the ambient group. This can actually be arranged in the two cases of greatest interest: Fn

2
and

Z and facilitates considerable simplifications.
A very useful observation in [López and Ross 1975] is that because the support of�A��S is contained

in ACS we have the identity

h1ACS ���S ; �Ai D 1:

Now, suppose we had a coset progression M over which 1ACS � ��S was in some sense invariant,
meaning

k1ACS ���S ��M � 1ACS ���Sk`p.G/ 6 �k1ACSk`p.G/: (3-1)

Then Hölder’s inequality and the López–Ross identity tell us that

jh1ACS ���S ��M ; �Ai � 1j6 �k1ACSk`p.G/k�Ak`p=.p�1/.G/ 6 �K1=p;

and it follows by averaging that ACS is correlated with M provided that � �K�1=p.
The traditional Fourier analytic approach to finding an M such that (3-1) holds is not particularly

efficient, but recently Croot and Sisask showed that there is, at least, a set Z such that we have (3-1)
with Z in place of M and

�G.Z/> exp.�O.��2p log K//�G.A/:
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Moreover, they noted by the triangle inequality that one can endow Z with the structure of a k-fold
sumset, so that we have (3-1) with kX in place of M and

�G.X /> exp.�O.k2��2p log K//�G.A/D exp.�O.k2 log2 K//�G.A/; (3-2)

where the third term is by optimising the choice of p � log K given that � �K�1=p.
What we actually end up with after all this is a set X with density as described in (3-2) such that

h1ACS ���S ��
.k/
X
; �Ai> 1� o.1/: (3-3)

Now, by the usual sorts of applications of Plancherel’s theorem and Cauchy–Schwarz we find that most
of the Fourier mass of the inner product is concentrated on those characters in Spec1=2.1X / provided
2k �K, and so we choose k � log K.

With most of the Fourier mass supported on Spec1=2.1X /, it follows that the integrand in (3-3) corre-
lates with any set which approximately annihilates Spec1=2.1X /. It remains to show that the approximate
annihilator of Spec1=2.1X /— that is the Bohr set B with Spec1=2.1X / as its frequency set — contains a
large coset progression.

We can now apply Chang’s theorem to get that B is low-dimensional and then the usual geometry of
numbers argument tells us that this Bohr set contains a large coset progression, and the result is proved.

Extending the argument: the case of bad modelling. We now drop the assumption of good modelling,
and the argument proceeds in essentially the same way up until the application of Chang’s theorem above.

In this case Chang’s theorem does not provide good bounds. Instead what we do is note that the set
X satisfies a relative polynomial growth condition

jnX j6 nO.log4 K /
jX j for all n> 1:

This lets us produce a Bohr set containing X which behaves enough like a group for a relative version
of Chang’s theorem to hold, whilst at the same time X is much denser in the Bohr set than it would be
in the modelling group.

Since we are not using modelling what we have just done does not actually give us a Bohr set of low
dimension, but rather a Bohr set of size comparable to X which has a lower order of polynomial growth
on a certain range. It turns out that the usual argument that shows a low-dimensional Bohr set contains
a large coset progression can be adapted relatively easily to this more general setting and this gives us
our final ingredient.

These arguments are spread over the paper as follows. The simplified argument up to (3-3) is es-
sentially contained in Section 4. Then, in Section 5, we record the basic properties of Bohr sets we
need before Section 6, which has the relative version of Chang’s theorem, and Section 7, which puts
the material together to take a set satisfying a relative polynomial growth condition and produce a large
Bohr superset.

After the material on Bohr sets we have Section 8 which records some standard covering lemmas and
then Section 9 where we show how to find a large coset progression in a Bohr set with relative polynomial
growth. Finally the argument is all put together in Section 10.
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4. Freı̆man-type theorems in arbitrary groups

In this section we are interested in Freı̆man-type theorems in arbitrary, possibly nonabelian, groups.
There has been considerable work towards such results, although often with restrictions on the type of
nonabelian groups considered, or rather weak bounds. We direct the reader to [Green 2009] for a survey,
but our interest is narrower, lying with a crucial result of Tao [2010, Proposition C.3] which inspires the
following.

Proposition 4.1. Suppose that G is a (discrete) group, A;S � G are finite nonempty sets such that
jAS j 6 K minfjAj; jS jg, and k 2 N is a parameter. Then A�1ASS�1 contains X k where X is a
symmetric neighbourhood of the identity with size ı.k;K/jAS j. Moreover, we may take ı.k;K/ >
exp.�O.k2 log2 2K//.

Note that this result is a very weak version of Theorem 1.1 but for any group, not just abelian groups,
and despite its weaknesses, its generality makes it useful in some situations.

Proposition 4.1 was essentially proved in [Croot and Sisask 2010, Theorem 1.6] with weaker K-
dependence in the bound, using the pD 2 version of their Lemma 4.3 below. It turns out that we shall be
able to show the above bound by coupling the large p case of their result with the López–Ross identity.

The key proposition of this section, then, is the following.

Proposition 4.2. Suppose that G is (discrete) a group, A;S;T � G are finite nonempty sets such that
jAS j 6 KjAj and jTS j 6 LjS j, and k 2 N and � 2 .0; 1� are a pair of parameters. Then there is a
symmetric neighbourhood of the identity X �G with

jX j> exp.�O.��2k2 log 2K log 2L//jT j

such that
j�A�1 � 1AS ��S�1.x/� 1j6 � for all x 2X k :

The main ingredient in the proof of this is the following result, which is essentially due to Croot and
Sisask [2010, Proposition 3.3]. To prove it they introduced the idea of sampling from physical space
rather than Fourier space — sampling in Fourier space can be seen as the main idea in Chang’s theorem.
Not only does this work in settings where the Fourier transform is less well behaved, but it also runs
much more efficiently, which leads to the superior bounds.

We include the proof since it is the pivotal ingredient of this paper, and we frame it in such a way as
to emphasise the parallels with Chang’s theorem.

Lemma 4.3 (Croot–Sisask). Suppose that G is a (discrete) group, f 2 `p.G/ for p > 2 and S;T � G

are nonempty with jST j6KjS j. Then there is a t 2T and a set X �T t�1 with jX j> .2K/�O.��2p/jT j

such that
k�x.f ��S / �f ��Sk`p.G/ 6 �kf k`p.G/ for all x 2X:

Proof. Let z1; : : : ; zk be independent uniformly distributed S -valued random variables, and for each
y 2G define Zi.y/ WD �z�1

i
.f /.y/�f ��S .y/. For fixed y, the variables Zi.y/ are independent and



632 TOM SANDERS

have mean zero, so it follows by the Marcinkiewicz–Zygmund inequality and Hölder’s inequality that kX
iD1

Zi.y/

p

Lp.�k
S
/

6O.p/p=2
Z � kX

iD1

jZi.y/j
2

�p=2

d�k
S6O.p/p=2kp=2�1

kX
iD1

Z
jZi.y/j

p d�k
S :

Summing over y and interchanging the order of summation we get

X
y2G

 kX
iD1

Zi.y/

p

Lp.�k
S
/

6O.p/p=2kp=2�1

Z kX
iD1

X
y2G

jZi.y/j
p d�k

S : (4-1)

On the other hand,�X
y2G

jZi.y/j
p

�1=p

D kZik`p.G/ 6 k�z�1
i
.f /k`p.G/Ckf ��Sk`p.G/ 6 2kf k`p.G/

by the triangle inequality. Dividing (4-1) by kp and inserting the above and the expression for the Zis
we get Z X

y2G

ˇ̌̌̌
1

k

kX
iD1

�z�1
i
.f /.y/ �f ��S .y/

ˇ̌̌̌p
d�k

S .z/DO.pk�1
kf k2`p.G//

p=2:

Pick k D O.��2p/ such that the right-hand side is at most .�kf k`p.G/=4/
p and write L for the set

of x 2 S � � � � � S (where the Cartesian product is k-fold) for which the integrand above is at most
.�kf k`p.G/=2/

p; by averaging �k
S
.Lc/6 2�p and so �k

S
.L/> 1� 2�p > 1

2
.

Now, � WD f.t; : : : ; t/ W t 2 T g has L�� ST � � � � �ST , whence jL�j6 2Kk jLj and so

h1� � 1��1 ; 1L�1 � 1Li`2.G�����G/ D k1L � 1�k
2
`2.G�����G/

> j�j2jLj=2Kk ;

by the Cauchy–Schwarz inequality since the adjoint of g 7! 1L � g is g 7! 1L�1 � g and similarly for
g 7! g � 1�.

By averaging it follows that at least j�j2=2Kk pairs .z;y/ 2��� have 1L�1 � 1L.zy�1/ > 0, and
hence there is some t 2 T such that there is a set X � T t�1 of size at least jT j=2Kk elements with
1L�1 � 1L.x; : : : ;x/ > 0 for all x 2X .

Thus for each x 2 X there is some z.x/ 2 L and y.x/ 2 L such that y.x/i D z.x/ix. But then by
the triangle inequality we get

k�x�1.f ��S / �f ��Sk`p.G/

6
�x�1

�
1

k

kX
iD1

�z.x/�1
i
.f /

�
�f ��S


`p.G/

C

�x�1

�
1

k

kX
iD1

�z.x/�1
i
.f / �f ��S

�
`p.G/

:

However, since �x is isometric on `p.G/ we see that�x.f ��S /�f ��S


`p.G/

6
 1

k

kX
iD1

�y.x/�1
i
.f /�f ��S


`p.G/

C

 1

k

kX
iD1

�z.x/�1
i
.f /�f ��S


`p.G/

;
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and we are done since z.x/;y.x/ 2L. �

The important thing to note about the Croot–Sisask lemma is that the p-dependence of the size of
the set X is very good. The natural Fourier analytic analogue (essentially given in [Bourgain 1990], and
clearly exposited in [Sisask 2009]) gives an exponentially worse bound. To make use of this strength we
use the aforementioned López–Ross identity.

Proof of Proposition 4.2. We apply Lemma 4.3 to the function f WD 1AS and with the set S�1 (so that
jS�1T �1j6LjS�1j) to get a set X with jX j> .2L/O.�

�2k2p/jT j such that

k�x.1AS ��S�1/� 1AS ��S�1k`p.G/ 6
�k1ASk`p.G/

ek
for all x 2X:

Since � is isometric on `p.G/ and �1G
is the identity we may certainly assume that X is a symmetric

neighbourhood of the identity. Furthermore, by the triangle inequality we have

k�x.1AS ��S�1/� 1AS ��S�1k`p.G/ 6 �e�1
k1ASk`p.G/ for all x 2X k :

Now for any (real) function g we have

�A�1 �g.x/��A�1 �g.1G/D �A�1 � .�x.g/�g/.1G/D h�A; �x.g/�gi:

Thus by Hölder’s inequality we have

j�A�1 �g.x/��A�1 �g.1G/j6 k�Ak`p0 .G/k�x.g/�gk`p.G/:

Putting g D 1AS ��S�1 we conclude that

j�A�1 � 1AS ��S�1.x/��A�1 � 1AS ��S�1.1G/j6
�k�Ak`p0 .G/k1ASk`p.G/

e

6 �jAj
1=p0 jAS j1=p

ejAj
6 �K

1=p

e

for all x 2X k . Putting p WD 2C log K we get the conclusion. �

Proof of Proposition 4.1. We simply take T DA, LDK and � D 1
2

in Proposition 4.2. �

5. Basic properties of Bohr sets

Following [Bourgain 2008] we use a slight generalisation of the traditional notion of Bohr set, letting
the width parameter vary according to the character. The advantage of this definition is that the meet of
two Bohr sets in the lattice of Bohr sets is then just their intersection.

Throughout the section we let G be a finite (compact) abelian group. A set B is called a Bohr set if
there is a frequency set � of characters on G, and a width function ı 2 .0; 2�� such that

B D fx 2G W j1�  .x/j6 ı for all  2 �g:
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Technically the same Bohr set can be defined by different frequency sets and width functions; we make
the standard abuse that when we introduce a Bohr set we are implicitly fixing a frequency set and width
function.

There is a natural way of dilating Bohr sets which will be of particular use to us. For a Bohr set B and
� 2RC we denote by B� the Bohr set with frequency set � and width function1 �ı so that, in particular,
B D B1 and more generally .B�/�0 D B��0 .

Given two Bohr sets B and B0 we define their intersection to be the Bohr set with frequency set �[� 0

and width function ı ^ ı0. A simple averaging argument (see [Tao and Vu 2006, Lemma 4.20] but also
the end of Lemma 4.3) can be used to see that the intersection of several Bohr sets is large.

Lemma 5.1 (intersections of Bohr sets). Suppose that .B.i//k
iD1

is a sequence of Bohr sets. Then

�G.
Vk

iD1B.i//>
Qk

iD1 �G.B
.i/

1=2
/:

Proof. Let � WD f.x; : : : ;x/ 2Gk W x 2Gg and S WD B
.1/

1=2
� � � � �B

.k/

1=2
. ThenZ

1� � 1��1S � 1�S d�Gk D

Z
.1� � 1S /

2d�Gk > �Gk .�/2�Gk .S/2 (5-1)

by Cauchy–Schwarz. The integrand on the left-hand side is at most �Gk .�/�Gk .S/ and it is supported
on the set of x 2���D� such that 1S � 1�S .x/ > 0. But if 1S � 1�S .y; : : : ;y/ > 0 then

y 2
Tk

iD1 .B
.i/

1=2
�B

.i/

1=2
/�

Tk
iD1 B

.i/
1
D .

Vk
iD1B.i//1:

Hence

�Gk .supp 1� � 1��1S � 1�S /6 �G..
Vk

iD1B.i//1/�Gk .�/;

and inserting this in (5-1) we get

�G..
Vk

iD1B.i//1/�Gk .�/2�Gk .S/> �Gk .�/2�Gk .S/2:

The result follows after some cancelation and noting that �Gk .S/ is just the right-hand side of the
inequality in the statement of the lemma. �

Note that if B is a Bohr set whose frequency set has one element, and whose width function is the
constant function 2 then there is an easy lower bound for �G.B�/ as the length of a certain arc on a
circle:

�G.B�/>
1

�
arccos.1� 2�2/> 1

�
minf�; 2g: (5-2)

From this we immediately recover the usual lower bound on the size of a Bohr set with a larger frequency
set from this and the preceding lemma.2

1Technically width function  7!minf�ı ; 2g.
2To recover the bound in [Tao and Vu 2006, Lemma 4.20] some adjustments need to be made as our definition of a Bohr set

is in terms of  .x/ being close to 1 rather than arg  .x/ being close to 0.
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Bourgain [1999] developed the idea of Bohr sets as approximate substitutes for groups, and since then
his techniques have become an essential tool in additive combinatorics. To begin with we define the
entropy of a Bohr set B to be

h.B/ WD log
�G.B2/

�G.B1=2/
:

A trivial covering argument shows that B2 can be covered by exp.h.B// translates of B, and if B is
actually a subgroup then h.B/ D 0. It is often desirable to have a uniform bound on h.Bı/ for all
ı 2 .0; 2�, and such a bound is called the dimension of B in other work. Here, however, it is crucial that
we do not insist on this.

We shall be particularly interested in Bohr sets which grow in a reasonably regular way because they
will function well as approximate groups. In light of the definition of entropy (which encodes growth
over a fixed range) we say that a Bohr set B is C -regular if

1

1CC h.B/j�j
6
�G.B1C�/

�G.B/
6 1CC h.B/j�j

for all � with j�j6 1=C h.B/. Crucially such Bohr sets are commonplace.

Lemma 5.2. There is an absolute constant CR such that if B is a Bohr set then there is some � 2 Œ1; 2�
such that B� is CR-regular.

The proof is by a covering argument and follows [Tao and Vu 2006, Lemma 4.24], for example. From
now on we say that a Bohr set B is regular if it is CR-regular.

Finally, we write ˇ� for the probability measure induced on B� by �G , and ˇ for ˇ1. These measures
function as approximate analogues for Haar measure, and the following useful lemma of Green and
Konyagin [2009] shows how they can used to describe a sensible version of the annihilator of a Bohr set.

Lemma 5.3. Suppose that B is a regular Bohr set. Then

f W j y̌. /j> �g � f W j1�  .x/j DO.h.B/��1�/ for all x 2 B�g:

Proof. First, suppose that j y̌. /j> � and y 2 B�. Then

j1�  .y/j� 6 j
Z
 .x/ dˇ.x/�

Z
 .xCy/ dˇ.x/j6

�G.B1C� nB1��/

�G.B1/
DO.h.B/�/

provided � 6 1=CRh.B/. The result is proved. �

6. The large spectrum and Chang’s theorem

Given a probability measure �, a function f 2L1.�/ and a parameter � 2 .0; 1� we define the �-spectrum
of f w.r.t. � to be the set

Spec�.f; �/ WD f 2 yG W j.fd�/^. /j> �kf kL1.�/g:

This definition extends the usual one from the case �D�G . We shall need a local version of a result of
Chang [2002] for estimating the “complexity” or “entropy” of the large spectrum.
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Given a set of characters ƒ and a function ! Wƒ!D WD fz 2 C W jzj6 1g we define

p!;ƒ WD
Y
�2ƒ

.1CRe!.�/�/;

and call such a function a Riesz product forƒ. It is easy to see that all Riesz products are real nonnegative
functions. They are at their most useful when they also have mass close to 1: the set ƒ is said to be
K-dissociated w.r.t. � if Z

p!;ƒ d�6 exp.K/ for all ! Wƒ!D:

In particular, being 0-dissociated w.r.t. �G is the usual definition of being dissociated. This relativised
version of dissociativity has a useful monotonicity property.

Lemma 6.1 (monotonicity of dissociativity). Suppose that �0 is another probability measure, ƒ is K-
dissociated w.r.t. �, ƒ0 �ƒ and K0 >K. Then ƒ0 is K0-dissociated w.r.t. �0 ��.

Conceptually the next definition is inspired by the discussion of quadratic rank Gowers and Wolf give
in [Gowers and Wolf 2011]. The .K; �/-relative entropy of a set � is the size of the largest subsetƒ��
such that ƒ is K-dissociated w.r.t. �.

Lemma 6.2 (Chang bound [Sanders 2012, Lemma 4.6]). Suppose that 0 6� f 2L2.�/ and write Lf WD

kf kL2.�/kf k
�1
L1.�/

. Then the set Spec�.f; �/ has .1; �/-relative entropy O.��2 log 2Lf /.

The proof of this goes by a Chernoff-type estimate, the argument for which follows [Green and Ruzsa
2007, Proposition 3.4], and then the usual argument from [Chang 2002].

Although Chang’s theorem cannot be significantly improved (see [Green 2003; 2004] for a discussion),
there are some small refinements and discussions of their limitations in [Shkredov 2006; 2007; 2008].

Low entropy sets of characters are majorised by large Bohr sets, a fact encoded in the following
lemma. The proof is a minor variant of [Sanders 2012, Lemma 6.3].

Lemma 6.3 (annihilating dissociated sets). Suppose that B is a regular Bohr set and � is a set of
characters with .�; ˇ/-relative entropy k. Then there is a set ƒ of size at most k and some

�D�.�=.1C h.B//.kC log 2��1//

such that for all  2� we have

j1�  .x/j DO.k�C �0��1h.B�// for all x 2 B�0 ^B0� ; �
0; � 2 RC

where B0 is the Bohr set with constant width function 2 and frequency set ƒ.

Proof. Let L WD dlog2 3k2.kC 1/��1e, the reason for which choice will become apparent, and define

ˇC WD ˇ1CL� �ˇ� � � � � �ˇ�;

where ˇ� occurs L times in the expression. By regularity (of B) we can pick � 2 .�.�=.1Ch.B//L/; 1�
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such that B� is regular and we have the pointwise inequality

ˇ 6
�G.B1CL�/

�G.B/
ˇC 6 .1C �=3/ˇC:

It follows that if ƒ is �=2-dissociated w.r.t. ˇC then ƒ is �-dissociated w.r.t. ˇ, and hence ƒ has size at
most k. From now on all dissociativity will be w.r.t. ˇC.

We put �i WD i�=2.kC 1/ and begin by defining a sequence of sets ƒ0; ƒ1; : : : iteratively such that
ƒi is �i-dissociated. We let ƒ0 WD ∅ which is easily seen to be 0-dissociated. Now, suppose that we
have defined ƒi as required. If there is some  2�nƒi such that ƒi [f g is �iC1-dissociated then let
ƒiC1 WDƒi [f g. Otherwise, terminate the iteration.

Note that for all i 6 kC1, if the set ƒi is defined then it is certainly �=2-dissociated and so jƒi j6 k.
However, if the iteration had continued for kC 1 steps then jƒkC1j> k. This contradiction means that
there is some i 6 k such that ƒ WD ƒi is �i-dissociated and ƒi [ f g is not �iC1-dissociated for any
 2� nƒi .

It follows that we have a set ƒ of at most k characters such that for all  2� nƒ there is a function
! Wƒ!D and � 2D such thatZ

p!;ƒ.1CRe � / dˇC > exp.�iC1/:

Now, suppose that  2�. If  2ƒ then the conclusion is immediate, so we may assume that  2�nƒ.
Then, since ƒ is �i-dissociated, we see thatˇ̌̌̌Z

p!;ƒ dˇC
ˇ̌̌̌
> exp.�iC1/� exp.�i/>

�

2.kC 1/
:

Applying Plancherel’s theorem we get

�

2.kC 1/
6
ˇ̌̌̌ X
�2Span.ƒ/

1p!;ƒ.�/ y̌C. ��/
ˇ̌̌̌
6 3k sup

�2Span.ƒ/
j y̌�. ��/j

L:

Given the choice of L there is some � 2 Span.ƒ/ such that j y̌�. ��/j> 1
2

. By Lemma 5.3 we see that

 �� 2 f 0 W j1�  0.x/j DO.�00h.B�// for all x 2 .B�/�00g:

On the other hand, by the triangle inequality if � 2 Span.ƒ/ then

� 2 f 0 W j1�  0.x/j6 k� for all x 2 B0�g;

and the result follows from a final application of the triangle inequality. �

7. Containment in a Bohr set

The object of this section is to show the following result.
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Proposition 7.1. Suppose that G is a finite (compact) abelian group, d > 1 and X is a finite subset of G

with �G.nX /6 nd�G.X / for all n> 1 and � 2 .0; 1� is a parameter. Then there is a regular Bohr set B

such that

X �X � B� and �G.B2/6 exp.O.d log 2d��1//�G.X /:

What is important here is that given a set of relative polynomial growth we have produced a Bohr
set which contains the original set, and which has controlled growth over a fixed range of dilations.
Extending this range down to zero can be done but involves considerable additional work as well as
being unnecessary for our arguments.

The next lemma is the key ingredient that provides us with an appropriate Bohr set. The idea originates
with [Green and Ruzsa 2007, Lemma 2.3], but the lemma we record is more obviously related to [Tao
and Vu 2006, Proposition 4.39].

Lemma 7.2. Suppose that G is a finite (compact) abelian group, A;S �G have

�G.ACS/6K�G.A/ and j11ACS . /j> .1� �/�G.ACS/:

Then j1�  .s/j6
p

23K� for all s 2 S �S .

Proof. By hypothesis there is a phase ! 2 S1 such thatZ
1ACS!d�G D j

11ACS . /j> .1� �/�G.ACS/:

It follows that Z
1ACS j1�! j

2d�G D 2

Z
1ACS .1�!/ d�G 6 2��G.ACS/;

and so if y0;y1 2 S thenZ
1Aj1�!.yi/ j

2d�G 6
Z

1ACS j1�! j
2d�G 6 2��G.ACS/:

However, the Cauchy–Schwarz inequality tells us that

j1�  .y0�y1/j
2 6 2.j1�!.y0/ .x/j

2
Cj1�!.y1/ .x/j

2/

for all x 2G, whence Z
1Aj1�  .y0�y1/j

2d�G 6 23��G.ACS/;

and the result follows. �

To prove the proposition we use an idea from [Schoen 2003], first introduced to Freı̆man-type problems
in [Green and Ruzsa 2007]. The essence is that if we have sub-exponential growth of a set then we
can apply the Cauchy–Schwarz inequality and Parseval’s theorem in a standard way to get a Fourier
coefficient of very close to maximal value.
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Proof of Proposition 7.1. By the pigeonhole principle there is some lDO.d log 2d/ such that �G.lX /6
2�G..l � 1/X /. We let B0 be the Bohr set with width function the constant function 1

2
and frequency

set � WD Spec1��.1lX / where we pick � WD 2�10�2.
It follows by Lemma 7.2 applied to AD .l � 1/X and S DX that

j1�  .x/j6
p

23:2:� D �=8 for all x 2X �X and  2 Spec1��.1lX /;

and hence that X �X � B0
�=4

.
It remains to show that the Bohr set is not too large. Begin by noting thatZ

.1
.k/

lX
/2d�G >

1

�G.k.lX //

�Z
1
.k/

lX
d�G

�2

> �G.lX /
2k�1

.kl/d
; (7-1)

where 1
.k/

lX
denotes the k-fold convolution of 1lX with itself, and the inequality is Cauchy–Schwarz and

then the hypothesis. On the other hand, by Parseval’s theoremX
 62Spec1��.1lX /

jb1lX . /j
2k 6 ..1� �/�G.lX //

2k�2
X
2 yG

jb1lX . /j
2

6 exp.��.k�//�G.lX /
2k�1 6 �G.lX /

2k�1

2.kl/d

for some k DO.d��1 log 2d��1/. In particular, from (7-1) we haveX
 62Spec1��.1lX /

jb1lX . /j
2k 6 1

2

Z
.1
.k/

lX
/2d�G :

It then follows from Parseval’s theorem and the triangle inequality thatX
2Spec1��.1lX /

jb1lX . /j
2k
D

X
2 yG

jb1lX . /j
2k
�

X
 62Spec1��.1lX /

jb1lX . /j
2k

>
Z
.1
.k/

lX
/2d�G �

1

2

Z
.1
.k/

lX
/2d�G D

1

2

Z
.1
.k/

lX
/2d�G :

On the other hand by the triangle inequality j y̌0. /j> 1
2

if  2 � since ı 6 1
2

, whence

X
2 yG

jb1lX . /j
2k
j y̌0. /j2 > 1

4

X
2Spec1��.1lX /

jb1lX . /j
2k > �G.lX /

2k�1

8.kl/d
:

But, by Parseval’s theorem and Hölder’s inequality we haveX
jb1lX . /j

2k
j y̌0. /j2 D

Z
.1
.k/

lX
�ˇ0/2d�G

6 k1.k/
lX
� 1

.k/

�lX
kL1.G/kˇ

0
�ˇ0kL1.G/ D

�G.lX /
2k

�G.B0/
;
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and so
�G.B

0/6 .kl/d�G.lX /6 exp.O.d log 2d��1//�G.X /:

Finally we apply Lemma 5.2 to get a regular Bohr set B with B2 � B0
1

and B� � B0
�=4

so the result is
proved. �

8. Covering and growth in abelian groups

Covering lemmas are a major tool in additive combinatorics and have been since their development in
[Ruzsa 1999]. This was further extended in [Green and Ruzsa 2006], and such lemmas play a pivotal
role in the nonabelian theory as was highlighted by Tao [2008a], where we do not have many other
techniques.

While the most basic form of covering lemmas do work in the nonabelian setting, there is a refined
argument due to Chang [2002] that does not port over so easily.

Lemma 8.1 (Chang’s covering lemma [Tao and Vu 2006, Lemma 5.31]). Suppose that G is an (discrete)
abelian group and A;S � G are finite sets with jnAj 6KnjAj for all n > 1 and jACS j 6 LjS j. Then
there is a set T with jT j DO.K log 2KL/ such that3

A� Span.T /CS �S:

We shall also need the following slight variant which provides a way in abelian groups to pass from
relative polynomial growth on one scale to all scales.

Lemma 8.2 (variant of Chang’s covering lemma). Suppose that G is an (discrete) abelian group and
A;S � G are finite sets with jkAC S j < 2k jS j. Then there is a set T � A with jT j < k such that
A� Span.T /CS �S .

Proof. Let T be a maximal S -dissociated subset of A, that is a maximal subset of A such that

.�:T CS/\ .� 0:T CS/D∅ for all � ¤ � 0 2 f0; 1gT :

Now suppose that x0 2AnT and write T 0 WDT [fx0g. By the maximality of T there are elements �; � 0 in
f0; 1gT

0

such that .�:T 0CS/\.� 0:T 0CS/¤∅. Now if �x0D�
0
x0 then .� jT :TCS/\.� 0jT :TCA/¤∅,

contradicting the fact that T is S -dissociated. Hence, without loss of generality, �x0 D 1 and � 0x0 D 0,
whence

x0 2 � 0jT :T � � jT :T CS �S � Span.T /CS �S:

We are done unless jT j> k; assume it is and let T 0 � T be a set of size k. Denote f�:T 0 W � 2 f0; 1gT
0

g

by P and note that P � kA, whence

2k
jS j D jP CS j6 jkACS j< 2k

jS j:

This contradiction completes the proof. �

3Recall that Span.T / WD f
P

t2T �t :t W � 2 f�1; 0; 1gt g.
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Although this is a result in abelian groups, it has many parallels with Milnor’s proof [1968] establishing
the dichotomy between polynomial growth and exponential growth in solvable groups.

The above lemma is particularly useful for controlling the order of relative polynomial growth through
the next result, an idea introduced in [Green and Ruzsa 2006].

Lemma 8.3. Suppose that G is an (discrete) abelian group, X � G and 2X �X � Span.T /CX �X

for some set T of size k. Then

j.nC 1/X �X j6 .2nC 1/k jX �X j for all n> 1:

Proof. By induction it is immediate that

.nC 1/X �X � n Span.T /CX �X;

and it is easy to see that jn Span.T /j6 .2nC 1/k from which the result follows. �

9. Lattices and coset progressions

The geometry of numbers seems to play a pivotal role in proofs of Freı̆man-type theorems, and we
direct the reader to [Tao and Vu 2006, Chapter 3.5] or [Green 2002b] for a much more comprehensive
discussion.

Recall that ƒ is a lattice in Rk if there are linearly independent vectors v1; : : : ; vk such that ƒ D
v1ZC � � � C vkZ; we call v1; : : : ; vk a basis for ƒ. Furthermore, a set K in Rk is called a convex body
if it is convex, open, nonempty and bounded.

We require the following application of John’s theorem and Minkowski’s second theorem, which
provides us with a way of producing a generalised arithmetic progression from some sort of “convex
progression”.4

Lemma 9.1 [Tao and Vu 2006, Lemma 3.33]. Suppose that K is a symmetric convex body and ƒ is
a lattice, both in Rd . Then there is a proper d -dimensional progression P in K \ƒ such that jP j >
exp.�O.d log 2d//jK\ƒj.

The exp.�O.d log d// factor should not come as a surprise: consider packing a d -dimensional cube
(playing the role of the generalised progression) inside a d -dimensional sphere.

The question remains of how to find a “convex progression”, and to do this Ruzsa [1994] introduced
an important embedding. Suppose that G is a (discrete) finite abelian group and � � yG. Then we define
a map

R� WG! C.�;R/

x 7!R�.x/ W �! RI  7!
1

2�
arg. .x//;

4A more formal notion of convex progression is introduced by Green [2002b], where a detailed discussion and literature
survey may be found.
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where the argument is taken to lie in .��; ��. Note that R� preserves inverses, meaning that R�.�x/D

�R�.x/, and furthermore if5

kR�.x1/kC.�;R/C � � �C kR�.xd /kC.�;R/ <
1
2
;

then
R�.x1C � � �Cxd /DR�.x1/C � � �CR�.xd /:

This essentially encodes the idea that R� behaves like a Freı̆man morphism.6 We shall use this embed-
ding to establish the following proposition.

Proposition 9.2. Suppose that G is a finite abelian group, d 2 N and B is a Bohr set such that

�G.B.3dC1/ı/ < 2d�G.Bı/ for some ı < 1
4
.3d C 1/:

Then Bı contains a proper coset progression M of dimension at most d satisfying the estimate ˇı.M /D

exp.�O.d log 2d//.

Proof. We write � for the frequency set of B and note that we may assume that L WD
T
fker  W  2 �g

is trivial. Indeed, if it is nontrivial we may quotient out by it without impacting the hypotheses of the
proposition; we call the quotiented Bohr set B0 and note that BıDB0

ı
CL from which the result follows.

To start with note that if x 2 B� then

kR�.x/kC.�;R/ 6
1

2�
arccos.1� �2=2/6 2�;

and so since 2.3d C 1/ı < 1
2

we have that if x1; : : : ;x3dC1 2 Bı then

R�.x1C � � �Cx3dC1/DR�.x1/C � � �CR�.x3dC1/: (9-1)

By hypothesis we then have

j.3d C 1/R�.Bı/j D jR�..3d C 1/Bı/j6 j.3d C 1/Bıj

6 jB.3dC1/ıj< 2d
jBıj D 2d

jR�.Bı/j:

Apply the variant of Chang’s covering lemma in Lemma 8.2 to the set R�.Bı/ (which is symmetric
since R� preserves inverses and Bı is symmetric) to get a set X �R�.Bı/ with jX j6 d such that

3R�.Bı/� Span.X /C 2R�.Bı/:

Writing V for the real subspace of C.�;R/ generated by X we see that dim V 6 d and (by induction)
that

nR�.Bı/� V C 2R�.Bı/

for all n. Now, suppose that v 2 2R�.Bı/. It follows that

n:v 2 2nR�.Bı/� V C 2R�.Bı/:

5Recall that if X is a normed space then k � kX denotes the norm on that space, so that kf kC.�;R/ D kf kL1.�/.
6We direct the unfamiliar reader to [Tao and Vu 2006, Chapter 5.3].
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for all naturals n. Since 2R�.Bı/ is finite we see that there are two distinct naturals n and n0 and some
element w 2 2R�.Bı/ such that n:v; n0:v 2 V Cw. It follows that .n� n0/:v 2 V whence v 2 V since
V is a vector space and n¤ n0. We conclude that R�.Bı/� V .

Let E be the group generated by Bı which is finite, and note that H WDR�.E/CC.�;Z/ is a closed
discrete subgroup of C.�;R/, where C.�;Z/ is the group of Z-valued functions on � . Since H is a
closed discrete subgroup of C.�;R/ contained in V , it is also a closed discrete subgroup of V . Since V

is certainly generated by R�.Bı/ and H � R�.Bı/ we see that ƒ WD H \ V has finite covolume and
so is a lattice in V .

Let � be the unique solution to j1� exp.2� i�/j D � in the range
�
0; 1

2

�
, and write Q� for the �-cube

in C.�;R/, which is a symmetric convex body in C.�;R/, and so K WD V \Q� is a symmetric convex
body in V . Now, by Lemma 9.1 the set K \ƒ contains a proper d -dimensional progression P of size
exp.�O.d log 2d//jK\ƒj.

To see this note that by (9-1), R� jBı is a Freı̆man 2-homomorphism. Now, if x1;x2;x3;x4 2 Bı

satisfy

R�.x1/CR�.x2/DR�.x3/CR�.x4/

then

R�.x1Cx2�x3�x4/DR�.x1/CR�.x2/CR�.�x3/CR�.�x4/D 0:

However, R�.x/D 0 if and only if  .x/D 1 for all  2� , which is to say if and only if x 2L. Since L is
trivial we conclude that x1Cx2Dx3Cx4 and hence that R� is injective on Bı, and R�1

�
WR�.Bı/!Bı

is a Freı̆man 2-homomorphism.
On the other hand, by (9-1) R� WBı!R�.Bı/ is a Freı̆man 2-homomorphism, and therefore also a

Freı̆man 2-isomorphism; hence its inverse R�1
�
WR�.Bı/! Bı is one as well.

Since Bı DR�1
�
.K \ƒ/, we are done by, for example, [Tao and Vu 2006, Proposition 5.24], which

simply says that the image of a proper coset progression under a Freı̆man isomorphism of order at least
2 is a proper coset progression of the same size and dimension; in particular R�1

�
.P / is a proper coset

progression of size exp.�O.d log 2d//jBıj and dimension at most d . �

10. Proof of the main theorem

The result driving Theorem 1.1 is the following which brings together all the ingredients of the paper.

Theorem 10.1. Suppose that G is a finite abelian group, A;S � G have jAC S j 6 K minfjAj; jS jg,
and � 2 .0; 1� is a parameter. Then there is a proper coset progression M with

dim M DO.��2 log6 2��1K/ and jM j>
�

�

2 log K

�O.��2 log6 2��1K /

jACS j;

such that for any probability measure � supported on M we have

k1ACS ��k`1.G/ > 1� � and k1A ��k`1.G/ > .1� �/
jAj

jACS j
:
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Proof. We start by thinking of G as discrete and using counting measure. By Plünnecke’s inequality
[Tao and Vu 2006, Corollary 6.28] there is a nonempty set S 0 � S such that

jACACS 0j6
�

K minfjAj; jS jg
jS j

�2

jS 0j6K2 jAjjS
0j

jS j
6K2

jAj:

Note, in particular, that since jACAC S 0j > jAj we have jS 0j > jS j=K2 from the second inequality.
Applying the inequality again we get a nonempty set A0 �A such that

jA0C .ACS 0/C .ACS 0/j6K4
jA0j;

and it follows that
j.ACS 0/C .ACS 0/j6K4

jACS 0j: (10-1)

Now we apply Proposition 4.2 with T D A to get a symmetric neighbourhood of the identity X such
that

jX j> exp.�O.��2k2 log2 2K//jACS j

since jAj> jACS j=K, and

j��A � 1ACS 0 ���S 0.x/� 1j6 �=4 for all x 2 kX: (10-2)

In the first instance it follows that kX � .ACS 0/�.ACS 0/. On the other hand, by the Plünnecke–Ruzsa
estimates [Tao and Vu 2006, Corollary 6.29] applied to (10-1) we have

j4l..ACS 0/� .ACS 0//j6K32l
jACS 0j D exp.O.l log KC ��2k2 log2 K//jX j;

and hence
j4lkX j6 exp.O.l log 2KC ��2k2 log2 2K//jX j:

We put l D d��2k2 log 2Ke, so that

j.3kl C 1/X j6 j4klX j6 2kl:O.k�1 log 2K /
jX j:

Hence we can pick k such that

1C log ��1K 6 k DO.log 2��1K/ and j.3kl C 1/X j< 2kl
jX j:

By the variant of Chang’s covering lemma in Lemma 8.2 there is some set T of size at most kl D

O.��2 log4 2��1K/ such that 3X � Span.T /C 2X , and hence (by Lemma 8.3)

j.nC 2/X /j6 nO.��2 log4 2��1K /
j2X j for all n> 1:

On the other hand j2X j6 2kl jX j, and so (rescaling the measure to think of G as compact) we have

�G.nX /6 nO.��2 log4 2��1K /�G.X / for all n> 1:

Now, by Proposition 7.1 applied to the set X there is a d D O.kl log 2kl��1/ (which we may also
assume is at least 1) and a regular Bohr set B such that

X �X � B�=2 and �G.B2/6 exp.d/�G.X /:
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Let c be the absolute constant in the following technical lemma and note that since X is a neighbourhood
of the identity, X � B and ˇ.X /> exp.�d/.

We apply Chang’s theorem relative to B to get that Specc.1X ; ˇ/ D Specc.�X / has .1; ˇ/-relative
entropy

r DO.c�2 log 2k1X kL2.ˇ/k1X k
�1
L1.ˇ/

/DO.d/:

It follows from Lemma 6.3 that there is a set of characters ƒ of size r and a �D�.1=.1Ch.B//r/ such
that for all  2 Specc.�X / we have

j1�  .x/j DO.�r C �0rh.B/h.B�// for all x 2 B�0 ^B0� ;

where B0 is the Bohr set with width function the constant function 2 and frequency set ƒ. Provided
� > � we see that

�G.X /6 �G.B�=2/6 �G.B1=2/ and �G.B2�/6 �G.B2/6 exp.d/�G.X /;

and so it follows that h.B/; h.B�/6 d . It follows that �D�.1=d2/ and

j1�  .x/j DO.�d C �0d3/ for all x 2 B�0 ^B0� and  2 Specc.�X /:

Pick �0 D�.�=d3K2/ and � D�.�=K2d/ such that B00 WD B�0 ^B0� has

j1�  .x/j6 �=4K2 for all x 2 B00 and  2 Specc.�X /:

In particular

�0; � D�.1=K2 dO.1//:

For each � 2 ƒ write B.�/ for the Bohr set with frequency set f�g and width function the constant
function 2, thus B0� D

V
�2ƒB

.�/
� . By Lemma 5.1 we see that

�G.B
00
�/> �G.B��0=2/

Y
�2ƒ

�G.B
.�/

��=2
/:

On the other hand, since B.�/ has a frequency set of size 1 we see (from (5-2)) that

�G.B
.�/
�0 />

1

�
minf�0; 2g:

Now, if ��0=2> � we have

�G.B
00
�/> .��=2�/r�G.X /;

and on the other we have �G.B/6 exp.d/�G.X /. Let t > 1 be a natural such that

.16�.3t C 1/��1/r exp.d/ < 2t and t DO.d log 2dK/:

Then if � 2
�

1
8
.3t C 1/; 1

4
.3t C 1/

�
we have

�G.B
00
.3tC1/�/ < 2t�G.B

00
�/:
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We now apply Proposition 9.2 to get that B00� contains a proper coset progression M of dimension at
most t and size .2t/�O.t/�G.X /. The result is proved on an application of the next lemma provided
such a choice of � is possible. This can be done if � can be chosen such that

�0

8.3t C 1/
> �;

which can be done with �D�.�O.1/K�O.1//, and working this back gives that t DO.��2 log6 2��1K/

and the result. �

The next lemma is here simply to avoid interrupting the flow of the previous argument, and the hy-
potheses are set up purely for that setting. The proof is simply a series of standard Fourier manipulations.

Lemma 10.2. There is an absolute constant c > 0 such that if G is a finite abelian group, A;S;X � G

have jAC S j 6 K minfjAj; jS jg, S 0 � S has jS 0j > jS j=K2, k > log ��1K is a natural number such
that

j��A � 1ACS 0 ���S 0.x/� 1j6 �=4 for all x 2 kX;

and M is a set such that

j1�  .x/j6 �=4K2 for all x 2M and  2 Specc.�X /; (10-3)

then for any probability measure � supported on M we have

k1ACS ��k`1.G/ > 1� � and k1A ��k`1.G/ > .1� �/
jAj

jACS j
:

Proof. Integrating the first hypothesis we get

jh��A � 1ACS 0 ���S 0 ; �
.k/
X
i � 1j6 �=4;

where �.k/
X

denotes the k-fold convolution of �X with itself. By Fourier inversion we haveˇ̌̌̌X
2 yG

11ACS 0. /c�A. /b�S 0. /c�X . /k � 1

ˇ̌̌̌
6 �=4: (10-4)

The triangle inequality, Cauchy–Schwarz and Parseval’s theorem in the usual way tell us thatX
2 yG

ˇ̌11ACS 0. /c�A. /b�S 0. /
ˇ̌
6�G.ACS 0/kc�Ak`2. yG/

kb�S 0k`2. yG/
D

�G.ACS 0/p
�G.A/�G.S 0/

6K2: (10-5)

Then, by the triangle inequality, for any probability measure � supported on M we have

jy�. /� 1j6 �=4K2 for all  2 Specc.�X /: (10-6)

We conclude that

E WD
ˇ̌
h1ACS 0 ��;�A ��S 0 ��

.k/
X
��i � 1

ˇ̌
D

ˇ̌̌̌X
2 yG

11ACS 0. /y�. /c�A. /b�S 0. /c�X . /k y�. /� 1

ˇ̌̌̌
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is at most S1CS2CS3, where

S1 WD

ˇ̌̌̌ X
 62Specc.�X /

11ACS 0. /c�A. /b�S 0. /c�X . /k.jy�. /j
2
� 1/

ˇ̌̌̌
;

S2 WD

ˇ̌̌̌ X
2Specc.�X /

11ACS 0. /c�A. /b�S 0. /c�X . /k.jy�. /j
2
� 1/

ˇ̌̌̌
;

S3 WD

ˇ̌̌̌X
2 yG

11ACS 0. /c�A. /b�S 0. /c�X . /k � 1

ˇ̌̌̌
:

By the triangle inequality and (10-5) we see that

S1 6 sup
 62Specc.�X /

jc�X . /j
k
�

X
2 yG

j11ACS 0. /c�A. /b�S 0. /j6 ckK2 6 �=4

for a suitable choice of c D�.1/, since k > log ��1K; by (10-5) and (10-6) we see that

S2 6 2 sup
2Specc.�X /

jy�. /� 1j �
X
2 yG

ˇ̌11ACS 0. /c�A. /b�S 0. /
ˇ̌
6 2.�=4K2/K2 6 �=2I

and finally by (10-4) we see that S3 6 �=4, so that E 6 �. It follows from this that

h1ACS 0 ��;�A ��S 0 ��
.k/
X
��i> 1� �;

and hence by averaging that

k1ACS 0 ��kL1.G/ > 1� � and k1A ��kL1.G/ > .1� �/
�G.A/

�G.ACS 0/
:

The lemma is proved. �

It is worth making a couple of remarks before continuing. First, Theorem 10.1 can be extended to
infinite abelian groups by embedding the sets there in a finite group via a sufficiently large Freı̆man
isomorphism. This is the finite modelling argument of [Green and Ruzsa 2007, Lemma 2.1], but we
shall not pursue it here.

The expected �-dependence in Theorem 10.1 may be less clear than the K-dependence. The argument
we have given works equally well for the so-called popular difference set in place of 1ACS , that is the
set

D.A;S/ WD fx 2G W 1A � 1S .x/> c�=Kg

for sufficiently small c. On the other hand Wolf [2010], developing the niveau set construction of Ruzsa
[1987; 1991], showed that even finding a large sumset in such popular difference sets is hard, and it
seems likely that her arguments can be adapted to cover the case of D.A;S/ containing a proportion
1� � of a sumset.
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Understanding this, even in the model setting of G D Fn
2
, would be of great interest since a better

�-dependence would probably yield better analysis of inner products of the form h1A � 1S ; 1T i which
are of importance in, for example, Roth’s theorem [Roth 1953; 1952].

We are now in a position to prove Theorem 1.1 by an easy pigeonhole argument.

Proof of Theorem 1.1. Freı̆man 2-embed the sets A and S into a finite group (via, for example, the
method of [Green and Ruzsa 2007, Lemma 2.1]); if we can prove the result there then it immediately
pulls back.

Apply Theorem 10.1 with � D 1
2
.1C
p

2/ to get a proper d -dimensional coset progression M . Note
that we may assume the progression is symmetric by translating it and possibly shrinking it by a factor
of exp.d/; this has no impact on the bounds. Thus we put

M DH Cfx1:l1C � � �Cxd :ld W jli j6Li for all 16 i 6 dg

where L1; : : : ;Ld 2 N, H 6G and x1; : : : ;xd 2G. Write

M� WDH Cfx1:l1C � � �Cxd :ld W jli j6 �Li for all 16 i 6 dg;

and note that jM1j6 exp.O.d//jM1=2j. On the other hand if j�6 1
2

we have

M1=2 �M1=2C� � � � � �M1=2Cj� DM1;

so it follows that there is some �D�.1=d/ and i 6 j DO.d/ such that jM1=2Ci�j6 21=2jM1=2C.i�1/�j.
Since � D �.1=d/ we easily have that jM�j D exp.�O.d log d//jM1j. On the other hand if we apply
the conclusion of Theorem 10.1 with

�D
1M1=2Ci�

C 1M1=2C.i�1/�

jM1=2Ci�jC jM1=2C.i�1/�j

we get an element x such that

j.xCACS/\M1=2Ci�jC j.xCACS/\M1=2C.i�1/�j

is at least
.1� �/.jM1=2Ci�jC jM1=2C.i�1/�j/:

But then if z 2M� we get

1ACS � 1�.ACS/.z/D 1xCACS � 1�.xCACS/.z/

> 1.xCACS/\M1=2Ci�
� 1�.xCACS/\M1=2C.i�1/�

.z/

>
ˇ̌
.xCACS/\M1=2Ci�

ˇ̌
C
ˇ̌
zC ..xCACS/\M1=2C.i�1/�/

ˇ̌
�
ˇ̌
..xCACS/\M1=2Ci�/[ .zC ..xCACS/\M1=2C.i�1/�//

ˇ̌
>
ˇ̌
.xCACS/\M1=2Ci�

ˇ̌
C
ˇ̌
.xCACS/\M1=2C.i�1/�

ˇ̌
� jM1=2Ci�j

> .1� .1C
p

2/�/jM1=2C.i�1/�j> 0;

and it follows that .A�A/C .S �S/ contains M�. Tracking through the bounds we get the result. �
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11. Concluding remarks and applications

To begin with we should remark that in the case when G has bounded exponent or is torsion-free, we can
get slightly better bounds and the argument is much simpler because of the presence of a good modelling
lemmas. In the first case we get the following result, a proof of which (in the case G D Fn

2
) is contained

in the Appendix as it is so short.

Theorem 11.1 (Bogolyubov–Ruzsa lemma for bounded exponent abelian groups). Suppose G is an
abelian group of exponent r and A;S �G are finite nonempty sets such that jACS j6K minfjAj; jS jg.
Then .A�A/C .S �S/ contains a subspace V of size exp.�Or .log4 2K//jACS j.

In the second, the material of Sections 5–9 can be replaced by similar but more standard arguments
because of the following modelling lemma.

Lemma 11.2 (modelling for torsion-free abelian groups [Ruzsa 2009, Theorem 3.5]). Suppose that G

is a torsion-free abelian group, A � G is a finite nonempty set and k > 2 is a natural. Then for every
q > jkA�kAj there is a set A0 �A with jA0j> jAj=k such that A0 is Freı̆man k-isomorphic to a subset
of Z=qZ.

Theorem 11.3 (Bogolyubov–Ruzsa lemma for torsion-free abelian groups). Suppose that G is a torsion-
free abelian group and A;S � G are finite nonempty sets such that jAC S j 6 K minfjAj; jS jg. Then
.A�A/C .S �S/ contains a proper symmetric d.K/-dimensional coset progression M of size

exp.�h.K//jACS j:

Moreover, we may take d.K/DO.log4 2K/ and h.K/DO.log4 2K log 2 log 2K/.

Returning to Theorem 1.1 it is easy to see that we must have d.K/; h.K/D�.log K/ by considering
a union of

p
K coset progressions of dimension log2

p
K, and even achieving this bound may be hard

without refining the definition of a coset progression. (See the comments of Green in [Tao 2008b] for a
discussion of this.)

The paper [Schoen 2011] was a major breakthrough in proving the first good bounds for (a slight
variant of) Theorem 1.1; it was essentially shown that one could take

d.K/; h.K/DO.exp.O.
p

log K///

for torsion-free or bounded-exponent abelian groups.
Indeed, it should be clear that while we do not use [Schoen 2011] directly in the proof of Theorem 1.1,

it has had a considerable influence on the present work and the applications which now follow are from
the end of that paper as well.

Freı̆man’s theorem. As an immediate corollary of Theorem 1.1 and Chang’s covering lemma we have
the following.

Theorem 11.4 (Freı̆man’s theorem for abelian groups). Suppose that G is an (discrete) abelian group
and A�G is finite with jA˙Aj6KjAj. Then A is contained in a d.K/-dimensional coset progression
M of size at most exp.h.K//jAj. Moreover, we may take d.K/; h.K/DO.K logO.1/ 2K/.
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By considering a union of K dissociated translates of a coset progression it is easy to see that we must
have d.K/; h.K/D�.K/, so the result is close to best possible.

Green and Ruzsa [2007] provided the first bounds of d.K/; h.K/DO.K4Co.1//, and the peppering
of their work throughout this paper should indicate the importance of their ideas.

Schoen [2011] improved the bounds to O.K3Co.1// and to O.K1Co.1// for certain classes of groups,
and in [Cwalina and Schoen 2010] the structure is further elucidated with particular emphasis on getting
good control on the dimension.

The U 3-inverse theorem. Theorem 1.1 can be inserted into the various U 3-inverse theorems of Tao and
Green [2008] for finite abelian groups of odd order, and Samorodnitsky [2007] (see also [Wolf 2009])
for Fn

2
to improve the bounds there. In particular one gets the following.

Theorem 11.5 (U 3.Fn
2
/-inverse theorem). Suppose that f 2 L1.Fn

2
/ has kf kU 3.Fn

2
/ > ıkf kL1.Fn

2
/.

Then there is a quadratic polynomial q W Fn
2
! F2 such that

jhf; .�1/qiL2.Fn
2
/j> exp.�O.logO.1/ 2ı�1//kf kL1.Fn

2
/:

In fact the connection between good bounds in results of this type and good bounds in Freı̆man-type
theorems is quite clearly developed by Green and Tao [2010] and Lovett [2010].

Long arithmetic progressions in sumsets. The question of finding long arithmetic progressions in sets
of integers is one of central interest in additive combinatorics. The basic question has the following form:
suppose that A1; : : : ;Ak � f1; : : : ;N g all have density at least ˛. How long an arithmetic progression
can we guarantee that A1C � � �CAk contain?

For one set this is addressed by the notoriously difficult Szemerédi’s theorem [1969; 1975], where
the best quantitative work is that of Gowers [1998; 2001]; for two sets the longest progression is much
longer with the state of the art due to Green [2002a]; for three sets or more the results get even stronger
with the work of Freı̆man, Halberstam and Ruzsa [Freı̆man et al. 1992]; and finally for eight sets or more,
longer again by the recent work of Schoen [2011].

Theorem 1.1 yields an immediate improvement for the case of four sets or more.

Theorem 11.6. Suppose that A1; : : : ;A4 � f1; : : : ;N g all have density at least ˛. Then A1C � � � CA4

contains an arithmetic progression of length N O.log�O.1/ 2˛�1/.

Proof. Since jAiCAj j6 2˛�1jAi j for all i; j we have, by averaging, that there is a symmetric set A of
density ˛O.1/ such that A1; : : : ;A4 each contains a translate of A. In particular, the longest progression
in A�ACA�A is contained in a translate of A1CA2CA3CA4.

Now, by Theorem 1.1 the set A�ACA�A contains an O.logO.1/ ˛�1/-dimensional coset progres-
sion M of size exp.�O.logO.1/ ˛�1//N . Since Z is torsion-free the progression is just a generalised
progression which certainly contains a 1-dimensional progression of length jM j1= dim M . The result is
proved. �

It is not clear that this result gives the best possible conclusion for k sets as k tends to infinity, but if one
were interested in this no doubt some improvement could be squeezed out by delving into the main proof.
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ƒ.4/-estimate for the squares. Inserting Theorem 1.1 into a result from [Chang 2004] (itself developed
from an argument of Bourgain in [Johnson and Lindenstrauss 2001]) yields the following ƒ.4/-estimate
for the squares.

Theorem 11.7. Suppose that n1; : : : ; nk are naturals. ThenZ ˇ̌̌̌ kX
iD1

exp.2� i n2
i �/

ˇ̌̌̌4
d� DO.k3 exp.��.log�.1/ 2k///:

This is essentially equivalent to inserting Theorem 1.1 into the proof of [Schoen 2011, Theorem 8]
and Gowers’ [1998] version of the Balog–Szemerédi lemma [1994]. In any case a conjecture of Rudin
[1960] suggests that the bound O.k2Co.1// is likely to be true, and the above is not even a power-type
improvement on the trivial upper bound of k3.

The Konyagin–Łaba theorem. Theorem 1.1 inserted into the argument at the end of [Schoen 2011]
yields the following quantitative improvement to a result from [Konyagin and Łaba 2006].

Theorem 11.8 (Konyagin–Łaba theorem). Suppose that A is a set of reals and ˛ 2 R is transcendental.
Then

jAC˛:Aj D exp.�.log�.1/ 2jAj//jAj:

What is particularly interesting here is that there is a simple construction which shows that there are
arbitrarily large sets A with jAC˛:Aj D exp.O.

p
log jAj//jAj.

Appendix: Proof of Theorem 11.1

Our objective in this appendix is to prove the following result.

Theorem A.1. Suppose that G WD Fn
2
, and A � G has density ˛ > 0. Then there is a subspace V 6 G

with cod V DO.log4 2˛�1/ such that V � 4A.

We have distilled this argument out because it is short and just uses the two ingredients of the Croot–
Sisask lemma and Chang’s theorem. For the reader interested in a little more motivation the sketch after
the introduction may be of more interest.

In the rather special setting of Fn
2

it is known from [Green and Ruzsa 2007, Proposition 6.1] that if
jACAj6KjAj then A is Freı̆man 8-isomorphic to a set A0 of density K�O.1/ in some Fm

2
, from which

we get the following corollary of Theorem A.1.

Corollary A.2. Suppose that G WD Fn
2
, and A�G has jACAj6KjAj. Then there is a subspace V 6G

with jV j> exp.�O.log4 2K//jAj such that V � 4A.

In this setting the result of Croot and Sisask is the following.

Lemma A.3 (Croot–Sisask). Suppose that G WD Fn
2
, f 2 Lp.G/ and A � G has density ˛ > 0. Then

there is an a 2A and a set T with �G.T /> .˛=2/O.�
�2p/ such that

k�t .f ��A/ �f ��AkLp.G/ 6 �kf kLp.G/ for all t 2 T:
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Additionally we have:

Lemma A.4 (Chang’s theorem). Suppose that G WD Fn
2

and A�G has density ˛ > 0. Then

cod Spec�.�A/
?
DO.��2 log 2˛�1/:

Proof of Theorem A.1. We begin by noting that

h12A � 1A; 1Ai D h12A; 1A � 1Ai D ˛
2: (A-1)

By the Croot–Sisask lemma applied with f WD 12A we get a set T � G with �G.T / > .˛=2/O.k
2p/

such that

k�t .12A � 1A/� 12A � 1AkLp.G/ 6 ˛=4ke for all t 2 T:

By the triangle inequality this gives

k�t .12A � 1A/� 12A � 1AkLp.G/ 6 ˛=4e for all t 2 kT;

and so on integrating (and applying the triangle inequality again) we have

k12A � 1A ��
.k/
T
� 12A � 1AkLp.G/ 6 ˛=4e:

By Hölder’s inequality we get

jh12A � 1A ��
.k/
T
; 1Ai � h12A � 1A; 1Aij6 ˛˛1C1=.p�1/=4e:

Choosing p D 1C log˛�1 and inserting (A-1) we have

jh12A � 1A ��
.k/
T
; 1Ai �˛

2
j6 ˛2=4;

and so by the triangle inequality

h12A � 1A ��
.k/
T
; 1AiLp.G/ > 3˛2=4:

Now, put V WD Spec1=2.�T /
? and g WD 12A � 1A ��

.k/
T

, so that

ˇ̌
hg; 1Ai � hg ��V ; 1Ai

ˇ̌
D

ˇ̌̌̌ X
 62V?

b12A. /jc1A. /j
2
y�T . /

k

ˇ̌̌̌
6 ˛2�k 6 ˛2=8;

by Parseval’s theorem, the definition of V and by taking k DO.log 2˛�1/ a sufficiently large natural. It
follows by the triangle inequality that

h12A � 1A ��
.k/
T
��V ; 1Ai> ˛

2=2;

and so, by averaging, that k12A ��V kL1.G/ >
1
2

. We conclude that 4A contains V by the pigeon-hole
principle and the result is proved on applying Chang’s theorem to see that

cod V DO.log 2�G.T /
�1/DO.log4 2˛�1/: �
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REAL ANALYTICITY AWAY FROM THE NUCLEUS OF PSEUDORELATIVISTIC
HARTREE–FOCK ORBITALS
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THOMAS ØSTERGAARD SØRENSEN AND EDGARDO STOCKMEYER

We prove that the Hartree–Fock orbitals of pseudorelativistic atoms, that is, atoms where the kinetic energy
of the electrons is given by the pseudorelativistic operator

√−1+ 1− 1, are real analytic away from the
origin. As a consequence, the quantum mechanical ground state of such atoms is never a Hartree–Fock
state.

Our proof is inspired by the classical proof of analyticity by nested balls of Morrey and Nirenberg.
However, the technique has to be adapted to take care of the nonlocal pseudodifferential operator, the
singularity of the potential at the origin, and the nonlinear terms in the equation.

1. Introduction and results

In [Dall’Acqua et al. 2008], three of the present authors studied the Hartree–Fock model for pseudorela-
tivistic atoms, and proved the existence of Hartree–Fock minimizers. Furthermore, they proved that the
corresponding Hartree–Fock orbitals (solutions to the associated Euler–Lagrange equation) are smooth
away from the nucleus, and that they decay exponentially. In this paper we prove that all of these orbitals
are, in fact, real analytic away from the origin. Apart from intrinsic mathematical interest, analyticity
of solutions has important consequences. For example, in the nonrelativistic case, the analyticity of the
orbitals was used in [Friesecke 2003; Lewin 2004a] to prove that the quantum mechanical ground state is
never a Hartree–Fock state (or, more generally, is never a finite linear combination of Slater determinants).
A direct consequence of our main regularity result is that this also holds in the pseudorelativistic case.
Our proof also shows that any H 1/2-solution ϕ : R3→ C to the nonlinear equation

(
√−1+ 1)ϕ− Z

| · |ϕ±
(|ϕ|2 ∗ | · |−1)ϕ = λϕ (1)

which is smooth away from x = 0, is in fact real analytic there. As will be clear from the proof, our
method yields the same result for solutions to equations of the form

(−1+m)sϕ+ Vϕ+ |ϕ|kϕ = λϕ, (2)
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2013)/ERC grant agreement no. 202859. Stockmeyer was partially supported by the DFG (SFB/TR12).
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Keywords: Hartree–Fock model, pseudorelativistic, regularity of wavefunctions, nonlocal operator, real analyticity.
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where V has a finite number of point singularities (but is analytic elsewhere), under certain conditions
on m, s, V , and k (see Remark 1.2 below). We believe this result is of independent interest, but stick
concretely to the case of pseudorelativistic Hartree–Fock orbitals, since this was the original motivation
for the present work.

We consider a model for an atom with N electrons and nuclear charge Z (fixed at the origin), where
the kinetic energy of the electrons is described by the expression

√
(| p|c)2+ (mc2)2−mc2. This model

takes into account some (kinematic) relativistic effects; in units where h̄ = e = m = 1, the Hamiltonian
becomes

H =
N∑

j=1

α−1{T (−i∇ j )− V (x j )
}+ ∑

1≤i< j≤N

1
|xi − x j | , (3)

with T ( p) = E( p)− α−1 = √| p|2+α−2 − α−1 and V (x) = Zα/|x|. Here, α is Sommerfeld’s fine
structure constant; physically, α ' 1/137.

The operator H acts on a dense subspace of the N -particle Hilbert space HF = ∧N
i=1L2(R3) of

antisymmetric functions. (We will not consider spin since it is irrelevant for our discussion.) It is bounded
from below on this subspace if and only if Zα ≤ 2/π (see [Lieb and Yau 1988]; for a number of other
works on this operator, see [Carmona et al. 1990; Daubechies and Lieb 1983; Fefferman and de la Llave
1986; Herbst 1977; Lewis et al. 1997; Nardini 1986; Weder 1975; Zhislin and Vugalter 2002]).

The (quantum) ground state energy is the infimum of the quadratic form q defined by H , over the
subset of elements of norm 1 of the corresponding form domain. Hence, it coincides with the infimum
of the spectrum of H considered as an operator acting in HF . A corresponding minimizer is called a
(quantum) ground state of H .

In the Hartree–Fock approximation, instead of minimizing the quadratic form q in the entire N -particle
space HF , one restricts to wavefunctions9 which are pure wedge products, also called Slater determinants:

9(x1, . . . , xN )= 1√
N ! det(ui (x j ))

N
i, j=1, (4)

with {ui }Ni=1 orthonormal in L2(R3) (called orbitals). Notice that this way, 9 ∈HF and ‖9‖L2(R3N ) = 1.
The Hartree–Fock ground state energy is the infimum of the quadratic form q defined by H over such

Slater determinants:

EHF(N , Z , α) := inf{ q(9,9) |9 Slater determinant }. (5)

Inserting 9 of the form in (4) into q formally yields

EHF(u1, . . . , uN ) := q(9,9)

= α−1
N∑

j=1

∫
R3

{
u j (x) [T (−i∇)u j ](x)− V (x)|u j (x)|2

}
dx

+ 1
2

∑
1≤i, j≤N

∫
R3

∫
R3

|ui (x)|2|u j ( y)|2
|x− y| dx d y− 1

2

∑
1≤i, j≤N

∫
R3

∫
R3

u j (x)ui (x)ui ( y)u j ( y)
|x− y| dx d y. (6)
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In fact, ui ∈ H 1/2(R3), 1 ≤ i ≤ N , is needed for this to be well-defined (see Section 3 for a detailed
discussion), and so (5)–(6) can be written

EHF(N , Z , α)= inf{EHF(u1, . . . , uN ) | (u1, . . . , uN ) ∈MN }, (7)

MN =
{
(u1, . . . , uN ) ∈ [H 1/2(R3)]N ∣∣ (ui , u j )= δi j

}
. (8)

Here ( , ) denotes the scalar product in L2(R3). The existence of minimizers for the problem (7)–(8)
was proved in [Dall’Acqua et al. 2008] when Z > N − 1 and Zα < 2/π . (Note that such minimizers are
generally not unique since EHF is not convex; see [Fournais et al. 2009]). The existence of infinitely many
distinct critical points of the functional EHF on MN was proved recently (under the same conditions) in
[Enstedt and Melgaard 2009].

The Euler–Lagrange equations of the problem (7)–(8) are the Hartree–Fock equations,

[(
T (−i∇)− V

)
ϕi
]
(x)+α

( N∑
j=1

∫
R3

|ϕ j ( y)|2
|x− y| d y

)
ϕi (x)

−α
N∑

j=1

( ∫
R3

ϕ j ( y)ϕi ( y)
|x− y| d y

)
ϕ j (x)= εiϕi (x), 1≤ i ≤ N . (9)

Here the εi are the Lagrange multipliers of the orthonormality constraints in (8). (The naive Euler–
Lagrange equations are more complicated than (9), but can be transformed to (9); see [Fournais et al.
2009].) Note that (9) can be reformulated as

hϕϕi = εiϕi , 1≤ i ≤ N , (10)

with hϕ the Hartree–Fock operator associated to ϕ = {ϕ1, . . . , ϕN }, formally given by

hϕu = [T (−i∇)− V ]u+αRϕu−αKϕu, (11)

where Rϕu is the direct interaction, given by the multiplication operator defined by

Rϕ(x) :=
N∑

j=1

∫
R3

|ϕ j ( y)|2
|x− y| d y (12)

and Kϕu is the exchange term, given by the integral operator

(Kϕu)(x)=
N∑

j=1

( ∫
R3

ϕ j ( y)u( y)
|x− y| d y

)
ϕ j (x). (13)

The equations (9) (or equivalently (10)) are called the self-consistent Hartree–Fock equations. One
has that σess(hϕ) = [0,∞) and that, when in addition N < Z , the operator hϕ has infinitely many
eigenvalues in [−α−1, 0) (see [Dall’Acqua et al. 2008, Lemma 2]; the argument given there holds for
any ϕ = {ϕ1, . . . , ϕN }, ϕi ∈ H 1/2(R3), as long as Zα < 2/π). If (ϕ1, . . . , ϕN ) ∈MN is a minimizer for
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the problem (7)–(8), then the ϕi solve (10) with ε1 ≤ ε2 ≤ · · · ≤ εN < 0 the N lowest eigenvalues of the
operator hϕ [Dall’Acqua et al. 2008].

In [Dall’Acqua et al. 2008] it was proved that solutions {ϕ1, . . . , ϕN } to (9) — and, more generally,
all eigenfunctions of the corresponding Hartree–Fock operator hϕ — are smooth away from x = 0 (the
singularity of V ), and that (for the ϕi for which εi < 0) they decay exponentially. (The solutions studied
in [Dall’Acqua et al. 2008] came from a minimizer of EHF, but the proof trivially extends to the solutions
{ϕn}n∈N =

{{ϕn
1 , . . . , ϕ

n
N }
}

n∈N
to (9) found in [Enstedt and Melgaard 2009], and to all the eigenfunctions

of the corresponding Hartree–Fock operators mentioned above). The main theorem of this paper is the
following, which completely settles the question of regularity away from the origin of solutions to the
equations (9).

Theorem 1.1. Let Zα < 2/π , and let N ≥ 2 be a positive integer such that N < Z + 1. Let ϕ =
{ϕ1, . . . , ϕN }, ϕi ∈ H 1/2(R3), i = 1, . . . , N , be solutions to the pseudorelativistic Hartree–Fock equations
in (9).

Then, for i = 1, . . . , N ,
ϕi ∈ Cω(R3 \ {0}), (14)

that is, the Hartree–Fock orbitals are real analytic away from the origin in R3.

Remark 1.2. (i) The restrictions Zα < 2/π , N < Z +1, and N ≥ 2 are only made to ensure existence of
H 1/2-solutions to (9). In fact, our proof proves analyticity away from x = 0 for H 1/2-solutions to (9) for
any Zα. For the case N = 1, (9) reduces to (T − V )ϕ = εϕ and our result also holds for H 1/2-solutions
to this equation (see also (iv) and (v) below about more general V for which the result also holds for
the linear equation). More interestingly, the result also holds for H 1/2-solutions to (1) (which, strictly
speaking, cannot be obtained from (9) by any choice of N ).

(ii) The statement also holds for any eigenfunction of the associated Hartree–Fock operator given by (11).

(iii) It is obvious from the proof that the theorem holds true if we include spin.

(iv) As will also be clear from the proof, the statement of Theorem 1.1 (appropriately modified) also
holds for molecules. More explicitly, for a molecule with K nuclei of charges Z1, . . . , Z K , fixed at
R1, . . . , RK ∈ R3, replace V in (9) by

∑K
k=1 Vk with Vk(x) = Zkα/|x − Rk |, Zkα < 2/π . Then, for

N < 1+∑K
k=1 Zk , Hartree–Fock minimizers exist (see [Dall’Acqua et al. 2008, Remark 1(viii)]), and the

corresponding Hartree–Fock orbitals are real analytic away from the positions of the nuclei, i.e., belong
to Cω(R3 \ {R1, . . . , RK }).
(v) Another approximation to the full quantum mechanical problem is the multiconfiguration self-consistent
field method (MC-SCF). Here one minimizes the quadratic form q defined by the operator H given in (3)
(or, more generally, with V from (iv)) over the set of finite sums of Slater determinants instead of only on
single Slater determinants as in Hartree–Fock theory. If minimizers exist they satisfy what is called the
multiconfiguration equations (MC equations). For more details, see [Fournais et al. 2009; Friesecke 2003;
Lewin 2004b]. As will be clear from the proof, the statement of Theorem 1.1 also holds for solutions to
these equations.
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(vi) In fact, for V we only need the analyticity of V away from finitely many points in R3, and certain
integrability properties of Vϕi in the vicinity of each of these points, and at infinity; for more details, see
Remark 4.1.

(vii) As will be clear from the proof, the statement of Theorem 1.1 also holds for other nonlinearities than
the Hartree–Fock term in (9), namely |ϕ|kϕ as in (2) (for k even; for k odd, one needs to take ϕk+1). The
L p-space in which one needs to study the problem (see Proposition 2.1 and the description of the proof
below for details) needs to be chosen depending on k in this case (the larger the k, the larger the p).

(viii) Also, as will be clear from the proof, the result holds if T (−i∇) = |∇| (i.e., T ( p) = | p|) in (9).
In (35) below, E( p)−1 should then be replaced by (| p| + 1)−1 (and 1 added to α−1 + εi ). The only
properties of E( p)−1 used are in Lemmas C.1 and C.2, which follow also for (| p| + 1)−1 from the same
methods with minor modifications. Similarly, one can replace T ( p) with (−1+α−2)s , s ∈ [1/2, 1].
(ix) The result of Theorem 1.1 in the nonrelativistic case (T (−i∇) replaced by −α1 in (3)) was proved
in [Friesecke 2003; Lewin 2004a]; see also the discussion below. In this case, it is furthermore known
[Fournais et al. 2009] that, for x ∈ Br (0) for some r > 0, ϕi (x)= ϕ(1)i (x)+ |x|ϕ(2)i (x) with ϕ(1)i , ϕ

(2)
i ∈

Cω(Br (0)).

Combining the argument in [Friesecke 2003; Lewin 2004a] with the analyticity away from the position
of the nucleus of solutions to the MC equations (see Remark 1.2(v)) we readily obtain the following
result.

Theorem 1.3. Let 9 be a (quantum) ground state of the operator H given in (3). Then 9 is not a finite
linear combination of Slater determinants.

Remark 1.4. The same holds with V as in Remark 1.2(iv).

Description of the proof of Theorem 1.1. The proof of Theorem 1.1 is inspired by the standard Morrey–
Nirenberg proof of analyticity of solutions to general (linear) elliptic partial differential equations with
real analytic coefficients by “nested balls” [Morrey and Nirenberg 1957]. A good presentation of this
technique can be found in [Hörmander 1969]. (Other proofs using a complexification of the coordinates
also exist and have been applied to both linear and nonlinear equations; see [Morrey 2008] and references
therein.)

In [Hörmander 1969] one proves L2-bounds on derivatives of order k of the solution in a ball Br (of
some radius r) around a given point. These bounds should behave suitably in k in order to make the
Taylor series of the solution converge locally, thereby proving analyticity.

The proof of these bounds is inductive. In fact, for some ball BR with R > r , one proves the bounds
on all balls Bρ with r ≤ ρ ≤ R, with the appropriate (with respect to k) behavior in R − ρ. The base
of induction is provided by standard elliptic estimates. In the induction step, one has to bound k + 1
derivatives of the solution in the ball Bρ . To do so, one divides the difference BR\Bρ into k+1 nested balls
using k+ 1 localization functions with successively larger supports. Commuting m of the k derivatives
(in the case of an operator of order m) with these localization functions produces (local) differential
operators of order m− 1, with support in a larger ball. These local commutator terms are controlled by
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the induction hypothesis, since they contain one derivative less. For the last term — the term where no
commutators occur — one then uses the equation.

This approach poses new technical difficulties in our case, due to the nonlocality of the kinetic energy
T ( p)=√−1+α−2−α−1 and the nonlinearity of the terms Rϕϕi and Kϕϕi .

The nonlocality of the operator
√−1+α−2 implies that, as opposed to the case of a differential

operator, the commutator of the kinetic energy with a localization function is not localized in the support
of the localization function. That is, when resorting to proving analyticity by differentiating the equation,
the localization argument described above introduces commutators which are (nonlocal) pseudodifferential
operators. Now the induction hypothesis does not provide control of these terms. Furthermore, it is
far from obvious that the singularity of the potential V outside BR does not influence the regularity in
BR of the solution through these operators (or rather, through the nonlocality of

√−1+α−2). Loosely
speaking, the singularity of the nuclear potential can be felt everywhere. (Note that if we would not have
a (singular) potential V one could proceed as in [Frank and Lenzmann 2010] and prove global analyticity
by showing exponential decay of the solutions in Fourier space.)

We overcome this problem by a new localization argument which enable us to capture in more detail the
action of high order derivatives on nested balls (manifested in Lemma B.1 in the appendix). This, together
with very explicit bounds on the (smoothing) operators φE( p)−1 Dβχ for χ and φ with disjoint supports
(see Lemma C.2), are the main ingredients in solving the problem of nonlocality. The estimates are on
φE( p)−1 Dβχ (not φE( p)Dβχ), since we invert E( p) (turning the equation into an integral operator
equation, see (35)). Our method of proof would also work in the nonrelativistic case, since the integral
operators (−1+ 1)−1 and E( p)−1 enjoy similar properties.

The second major obstacle is the (morally cubic) nonlinearity of the terms Rϕϕi and Kϕϕi .
To illustrate the problem, we discuss proving analyticity by the above method (local L2-estimates) for

solutions u to the equation 1u= u3. When differentiating this equation (and therefore u3), the application
of Leibniz’s rule introduces a sum of terms. After using Hölder’s inequality on each term (the product
of three factors, each a number of derivatives on u), one needs to use a Sobolev inequality to “get back
down to L2” in order to use the induction hypothesis. Summing the many terms, the needed estimate
does not come out (in fact, some Gevrey-regularity would follow, but not analyticity).

In the quadratic case this can be done (that is, for the equation 1u = u2 this problem does not occur),
but in the cubic case, one looses too many derivatives.

The second insight of our proof is that this problem of loss of derivatives may be overcome by
characterizing analyticity by growth of derivatives in some L p with p> 2. When working in L p for p> 2,
the loss of derivatives in the Sobolev inequality mentioned above is less (as seen in Theorem D.1). Choosing
p sufficiently large allows us to prove the needed estimate. The operator estimates on φE( p)−1 Dβχ

mentioned above therefore have to be L p-estimates. In fact, using L p − Lq estimates, one can also deal
with the problem that the singularity of the nuclear potential V can be felt everywhere.

Note that taking p =∞ would avoid using a Sobolev inequality altogether (L∞ being an algebra), but
the needed estimates on φE( p)−1 Dβχ cannot hold in this case. For local equations an approach to handle
the loss of derivatives (due to Sobolev inequalities) exists. This was carried out in [Friedman 1958],
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where analyticity of solutions to elliptic partial differential equations with general analytic nonlinearities
was proved. Friedman works in spaces of continuous functions. In this approach, one needs to have a
sufficiently high degree of regularity of the solution beforehand (it is not proved along the way). Also,
since the elliptic regularity in spaces of continuous functions have an inherent loss of derivative, one
needs to work on a sufficiently small domain in order for the method to work. We prefer to work in
Sobolev spaces since this is the natural setting for our equation and since the needed estimates on the
resolvent are readily obtained in these spaces.

For an alternative method of proof (one fixed localization function, to the power k, and estimating in a
higher order Sobolev space (instead of in L2) which is also an algebra), see [Kato 1996] (for the equation
1u = u2) and [Hashimoto 2006] (for general second order nonlinear analytic PDEs).

Additional technical difficulties occur due to the fact that the cubic terms, Rϕϕi and Kϕϕi , are actually
nonlocal.

Note that in the proof that nonrelativistic Hartree–Fock orbitals are analytic away from the positions of
the nuclei (see [Friesecke 2003; Lewin 2004b]), the nonlinearities are dealt with by cleverly rewriting the
Hartree–Fock equations as a system. One introduces new functions φi, j = [ϕiϕ j ] ∗ | · |−1, which satisfy
−1φi, j = 4πϕiϕ j . This eliminates the terms Rϕϕi , Kϕϕi , turning these into quadratic products in the
functions ϕi , φi, j , hence one obtains a (quadratic and local) nonlinear system of elliptic second order
equations with coefficients analytic away from the positions of the nuclei. The result now follows from
the results cited above [Kato 1996; Morrey 2008]. (In fact, this argument extends to solutions of the more
general multiconfiguration self-consistent field equations, see [Friesecke 2003; Lewin 2004b].)

This idea cannot readily be extended to our case. The operator E( p) is a pseudodifferential operator
of first order, so when rewriting the Hartree–Fock equations as described above, one obtains a system
of pseudodifferential equations. This system is, as before, of second (differential) order in the auxiliary
functions φi, j , but only of first (pseudodifferential) order in the original functions ϕi . Hence, the leading
(second) order matrix is singular elliptic. Hence (even if we ignore the fact that the square root is nonlocal)
the above argument does not apply.

To summarize, our approach is as follows. We invert the kinetic energy in the equation for the orbitals
thereby obtaining an integral equation to which we apply successive differentiations. The localization
argument of Lemma B.1 together with the smoothing estimates on φE( p)−1 Dβχ handle the nonlocality
of this equation. By working in L p for suitably large p one can afford the necessary loss of derivatives
from using Sobolev inequalities when treating the nonlinear terms.

2. Proof of analyticity

In order to prove that the ϕi are real analytic in R3 \ {0} it is sufficient, by [Krantz and Parks 2002,
Proposition 2.2.10], to prove that for every x0 ∈ R3 \ {0} there exists an open set U ⊆ R3 \ {0} containing
x0, and constants C,R> 0, such that (with N0 := N∪ {0})

|∂βϕi (x)| ≤ C
β!

R|β|
for all x ∈U and all β ∈ N3

0. (15)
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Let x0 ∈ R3 \ {0}, and let ω be the ball BR(x0) with center x0 and radius R := min{1, |x0|/4}. For
δ > 0 we denote by ωδ the set of points in ω at distance larger than δ from ∂ω, i.e.,

ωδ := {x ∈ ω | d(x, ∂ω) > δ}. (16)

By our choice of ω we have ωδ = BR−δ(x0). Therefore ωδ =∅ for δ ≥ R. In particular, by our choice of
R,

ωδ =∅ for δ ≥ 1. (17)

For�⊆Rn and p≥1 we let L p(�) denote the usual L p-space with norm ‖ f ‖L p(�)=
( ∫
�
| f (x)|p dx

)1/p.
We write ‖ f ‖p ≡ ‖ f ‖L p(R3). In the following we equip the Sobolev space W m,p(�), � ⊆ Rn , m ∈ N

and p ∈ [1,∞), with the norm

‖u‖W m,p(�) :=
∑
|σ |≤m

‖Dσu‖L p(�). (18)

Theorem 1.1 follows from the following proposition.

Proposition 2.1. Let Zα < 2/π , and let N ≥ 2 be a positive integer such that N < Z + 1. Let ϕ =
{ϕ1, . . . , ϕN }, ϕi ∈ H 1/2(R3), i = 1, . . . , N , be solutions to the pseudorelativistic Hartree–Fock equations
in (9). Let x0 ∈ R3 \ {0}, R =min{1, |x0|/4}, and ω = BR(x0). Define ωδ = BR−δ(x0) for δ > 0.

Then for all p ≥ 5 there exist constants C, B > 1 such that for all j ∈ N, for all ε > 0 such that
ε j ≤ R/2, and for all i ∈ {1, . . . , N } we have

ε|β|‖Dβϕi‖L p(ωε j ) ≤ C B |β| for all β ∈ N3
0 with |β| ≤ j. (19)

Given Proposition 2.1, the proof that the ϕi are real analytic is standard, using Sobolev embedding. We
give the argument here for completeness. We then give the proof of Proposition 2.1 in the next section.

Let U = BR/2(x0)= ωR/2 ⊆ ω. Using Theorem D.5 and (19) we have ϕi ∈C(U ). Therefore it suffices
to prove (15) for |β| ≥ 1. Fix i ∈ {1, . . . , N } and consider β ∈ N3

0 \ {0} an arbitrary multiindex. Setting
j = |β| and ε = (R/2)/j it follows from Proposition 2.1 (since ε j = R/2) that there exist constants
C, B > 1 such that

‖Dβϕi‖L p(ωR/2) ≤ C
( B
ε

)|β| = C
(2B

R

)|β||β||β|, (20)

with C, B independent of the choice of β. By Theorem D.5 (see also Remark D.6) there exists a constant
K4 = K4(p, x0) such that, for all β ′ ∈ N3

0 \ {0},

sup
x∈U
|Dβ ′ϕi (x)| ≤ K4

∑
|σ |≤1

‖Dβ ′+σϕi‖L p(ωR/2) ≤ K4
∑
|σ |≤1

C
(2B

R

)|σ |+|β ′|(|σ | + |β ′|)|σ |+|β ′|,
using (20). Using that R ≤ 1≤ B, that #{σ ∈ N3

0 | |σ | = 1} = 3, and that, from (A.7),(
1+ |β ′|)1+|β ′| ≤ e√

2π
e2|β ′| |β ′|!,
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this implies that for all β ′ ∈ N3
0 \ {0},

sup
x∈U
|Dβ ′ϕi (x)| ≤

(8eK4C B√
2πR

)(2e2 B
R

)|β ′||β ′|!. (21)

Since |σ |! ≤ 3|σ |σ ! for all σ ∈ N3
0 (see (A.4) in the appendix), this implies that

sup
x∈U
|Dβ ′ϕi (x)| ≤ C

β ′!
R|β ′|

, (22)

for some C,R > 0. This proves (15). Hence ϕi is real analytic in R3 \ {0}. This finishes the proof of
Theorem 1.1.

It therefore remains to prove Proposition 2.1.

Remark 2.2. We here give explicit choices for the constants C and B in Proposition 2.1.
Let

C1 := max
1≤a,b≤N

∥∥∥ ∫
R3

|ϕa( y)ϕb( y)|
| · − y| d y

∥∥∥∞. (23)

Note that by (29) below, this is finite since ϕi ∈ H 1/2(R3), i = 1, . . . , N .
Furthermore, let A = A(x0)≥ 1 be such that, for all σ ∈ N3

0,

sup
x∈ω
|DσV (x)| ≤ A|σ |+1|σ |!. (24)

The existence of A follows from the real analyticity in ω = BR(x0) (recall that R =min{1, |x0|/4}) of
V = Zα| · |−1 (see e.g. [Krantz and Parks 2002, Proposition 2.2.10]). Assume without restriction that
A ≥ α−1+max1≤i≤N |εi |.

Let K1 = K1(p), K2 = K2(p), and K3 = K3(p) be the constants in Lemma C.1, Corollary D.2, and
Corollary D.4, respectively (see Appendices C and D below). Then let

C2 =max
{

K1, 256
√

2/π
}
, (25)

C3 =max
{
4π(1+ 2C1/R2)K3, 160πK 2

2 K3
}
. (26)

Choose

C > max
i∈{1,...,N }

{
1, ‖ϕi‖W 1,p(ω), ‖ϕi‖L3p(B2R(x0)),

768
π
|x0|3(2−p)/(2p)‖ϕi‖2,[

48
√

2
π

A+ 48
√

2C1
N

Zπ
+ 1536

√
2

π2|x0|
]
‖ϕi‖3

}
. (27)

That C<∞ follows from the smoothness away from x=0 of the ϕi [Dall’Acqua et al. 2008, Theorem 1(ii)]
and the fact that, since ϕi ∈ H 1/2(R3), 1≤ i ≤ N , we have ϕi ∈ L3(R3), 1≤ i ≤ N , by Sobolev’s inequality.
Then choose

B >max
{

48AC2,C∗,
16
|x0| , 4C2

1 , (160C2K2C3)
2, (24NC2/Z)2, 16K3

}
, (28)

where C∗ is the constant (related to a smooth partition of unity) introduced in (B.3). In particular, B > 48.
We will prove Proposition 2.1 with these choices of C and B.
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3. Proof of the main estimate

We first make (6) more precise, thereby also explaining the choice of MN in (8). By Kato’s inequality
[Kato 1995, (5.33) p. 307],∫

R3

| f (x)|2
|x| dx ≤ π

2

∫
R3
| p|| f̂ ( p)|2 d p for f ∈ H 1/2(R3) (29)

(where f̂ ( p)= (2π)−3/2
∫

R3 e−ix· p f (x) dx denotes the Fourier transform of f ), and the KLMN theorem
[Reed and Simon 1975, Theorem X.17] the operator h0 given as

h0 = T (−i∇)− V (30)

is well-defined on H 1/2(R3) (and bounded below by −α−1) as a form sum when Zα < 2/π , that is,

(u, h0v)= (E( p)1/2u, E( p)1/2v)−α−1(u, v)− (V 1/2u, V 1/2v) for u, v ∈ H 1/2(R3). (31)

By abuse of notation, we write E( p) for the (strictly positive) operator E(−i∇) = √−1+α−2. For
(ϕ1, . . . , ϕN ) ∈MN , the function Rϕ given in (12) belongs to L∞(R3) (using Kato’s inequality above),
and the operator Kϕ given in (13) is Hilbert–Schmidt (see [Dall’Acqua et al. 2008, Lemma 2]). As
a consequence, when Zα < 2/π , the operator hϕ in (11) is a well-defined self-adjoint operator with
quadratic form domain H 1/2(R3) such that

(u, hϕv)= (u, h0v)+α(u, Rϕv)−α(u, Kϕv) for u, v ∈ H 1/2(R3). (32)

Since (u, Rϕu)− (u, Kϕu)≥ 0 for any u ∈ L2(R3), also hϕ is bounded from below by −α−1.
Then, for (u1, . . . , uN ) ∈MN , the precise version of (6) becomes

EHF(u1, . . . , uN )=
N∑

j=1

α−1(u j , h0u j )

+ 1
2

∑
1≤i, j≤N

∫
R3

∫
R3

|ui (x)|2|u j ( y)|2
|x− y| dx d y− 1

2

∑
1≤i, j≤N

∫
R3

∫
R3

u j (x)ui (x)ui ( y)u j ( y)
|x− y| dx d y. (33)

The considerations on Rϕ and Kϕ above imply that also the nonlinear terms in (33) are finite for
ui ∈ H 1/2(R3), 1≤ i ≤ N .

If (ϕ1, . . . , ϕN )∈MN is a critical point of EHF in (33), then ϕ={ϕ1, . . . , ϕN } satisfies the self-consistent
HF-equations (10) with the operator hϕ defined above.

Note that E( p) is a bounded operator from H 1/2(R3) to H−1/2(R3), and recall that (29) shows that
V also defines a bounded operator from H 1/2(R3) to H−1/2(R3) (for any Zα). As noted above, both
Rϕ and Kϕ are bounded operators on L2(R3) when (ϕ1, . . . , ϕN ) ∈MN . In particular, this shows that if
(ϕ1, . . . , ϕN ) ∈MN solves (10), then

E( p)ϕi −α−1ϕi − Vϕi +αRϕϕi −αKϕϕi = εiϕi , 1≤ i ≤ N , (34)
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hold as equations in H−1/2(R3). Using that E( p)−1 is a bounded operator from H−1/2(R3) to H 1/2(R3),
this implies that, as equalities in H 1/2(R3) (and therefore, in particular, in L2(R3)),

ϕi = E( p)−1Vϕi −αE( p)−1 Rϕϕi +αE( p)−1Kϕϕi + (α−1+ εi )E( p)−1ϕi , 1≤ i ≤ N . (35)

Proof of Proposition 2.1. The proof is by induction on j ∈ N0. More precisely:

Definition 3.1. For p ≥ 1 and j ∈ N0, let P(p, j) be the statement:
For all ε > 0 with ε j ≤ R/2, and all i ∈ {1, . . . , N } we have

ε|β|‖Dβϕi‖L p(ωε j ) ≤ C B|β| for all β ∈ N3
0 with |β| ≤ j, (36)

where C, B > 1 are the constants in Remark 2.2.

Then Proposition 2.1 is equivalent to the statement: For all p ≥ 5, P(p, j) holds for all j ∈ N0. This
is the statement we will prove by induction on j ∈ N0.

Base of induction. For convenience, we prove P(p, j) for both j = 0 and j = 1. Note that P(p, 0)
trivially holds since (see Remark 2.2)

C = C(p) > max
1≤i≤N

‖ϕi‖L p(ω). (37)

Also P(p, 1) holds by the choice of C , since

C = C(p) > max
1≤i≤N ,
ν∈{1,2,3}

‖Dνϕi‖L p(ω). (38)

Namely, since ωε ⊆ ω, (36) holds for |β| = 0 (and all ε > 0) using (37). For β ∈ N0 with |β| = 1= j
(i.e., β = eν for some ν ∈ {1, 2, 3}), and all ε > 0 with ε = ε j ≤ R/2< 1,

ε|β|‖Dβϕi‖L p(ωε j ) = ε‖Dνϕi‖L p(ωε) ≤ ‖Dνϕi‖L p(ω) ≤ C ≤ C B = C B |β|. (39)

Here we again used that ωε ⊆ ω, (38), and that B > 1 (see Remark 2.2).

Induction hypothesis:

Let p ≥ 5 and j ∈ N0, j ≥ 1. Then P(p, j̃) holds for all j̃ ≤ j . (40)

We now prove that P(p, j+1) holds. Note that to prove this, it suffices to study β ∈N3
0 with |β|= j+1.

Namely, assume ε > 0 is such that ε( j + 1) ≤ R/2 and let β ∈ N3
0 with |β|< j + 1. Then |β| ≤ j and

ε j ≤ R/2 so, by the definition of ωδ and the induction hypothesis,

ε|β|‖Dβϕi‖L p(ωε( j+1)) ≤ ε|β|‖Dβϕi‖L p(ωε j ) ≤ C B |β|. (41)

It therefore remains to prove that

ε|β|‖Dβϕi‖L p(ωε( j+1))≤C B|β| for all ε >0 with ε( j+1)≤ R/2 and all β ∈N3
0 with |β|= j+1. (42)
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Remark 3.2. To use the induction hypothesis in its full strength, it is convenient to write, for ` > 0, ε > 0
such that ε`≤ R/2, and σ ∈ N3

0 with 0< |σ | ≤ j ,

‖Dσϕi‖L p(ωε`) = ‖Dσϕi‖L p(ωε̃ j̃ )
with ε̃ = ε`

|σ | , j̃ = |σ |,

so that, by the induction hypothesis (applied on the term with ε̃ and j̃) we get that

‖Dσϕi‖L p(ωε`) ≤ C
( B
ε̃

)|σ | = C
( |σ |
`

)|σ |( B
ε

)|σ |
. (43)

Compare this with (36). With the convention that 00 = 1, (43) also holds for |σ | = 0.

We choose a function 8 (depending on j) satisfying

8 ∈ C∞0 (ωε( j+3/4)), 0≤8≤ 1, with 8≡ 1 on ωε( j+1). (44)

Then

‖Dβϕi‖L p(ωε( j+1)) ≤ ‖8Dβϕi‖p. (45)

The estimate (42) — and hence, by induction, the proof of Proposition 2.1 — now follows from the
equations (35) for the ϕi , (45) and the following two lemmas.

Lemma 3.3. Assume the induction hypothesis (40) holds. Let8 be as in (44). Then for all i ∈ {1, . . . , N },
all ε > 0 with ε( j+1)≤ R/2, and all β ∈N3

0 with |β| = j+1, both8DβE( p)−1Vϕi and8DβE( p)−1ϕi

belong to L p(R3), and

‖8DβE( p)−1Vϕi‖p ≤ C
4

( B
ε

)|β|
, (46)

‖(α−1+ εi )8DβE( p)−1ϕi‖p ≤ C
4

( B
ε

)|β|
, (47)

where C, B > 1 are the constants in (36) (see also Remark 2.2).

Lemma 3.4. Assume the induction hypothesis (40) holds. Let 8 be as in (44). Then for all i ∈
{1, . . . , N }, all ε > 0 with ε( j + 1)≤ R/2, and all β ∈ N3

0 with |β| = j + 1, both 8DβE( p)−1 Rϕϕi and
8DβE( p)−1Kϕϕi belong to L p(R3), and

‖α 8DβE( p)−1 Rϕϕi‖p ≤ C
4

( B
ε

)|β|
,

‖α 8DβE( p)−1Kϕϕi‖p ≤ C
4

( B
ε

)|β|
,

where C, B > 1 are the constants in (36) (see also Remark 2.2).

Remark 3.5. For a, b ∈ {1, . . . , N }, let Ua,b denote the function

Ua,b(x)=
∫

R3

ϕa( y)ϕb( y)
|x− y| d y, x ∈ R3. (48)
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In particular, ‖Ua,b‖∞ ≤ C1 for all a, b ∈ {1, . . . , N } (see (23)). Using (12) and (13), we can write

Rϕϕi =
N∑
`=1

U`,`ϕi , Kϕϕi =
N∑
`=1

Ui,`ϕ`. (49)

Hence Lemma 3.4 follows from the following lemma and the fact that Zα < 2/π < 1.

Lemma 3.6. Assume the induction hypothesis (40) holds. Let 8 be as in (44). For a, b ∈ {1, . . . , N }, let
Ua,b be given by (48). Then for all a, b, i ∈ {1, . . . , N }, all ε > 0 with ε( j + 1) ≤ R/2, and all β ∈ N3

0
with |β| = j + 1, 8DβE( p)−1Ua,bϕi belong to L p(R3), and

‖8DβE( p)−1Ua,bϕi‖p ≤ C Z
4N

( B
ε

)|β|
, (50)

where C, B > 1 are the constants in (36) (see also Remark 2.2).

It therefore remains to prove Lemmas 3.3 and 3.6. This will be done in the two following sections. �

4. Proof of Lemma 3.3

We prove Lemma 3.3 by proving (46) and (47) separately.

Proof of (46). Let σ ∈ N3
0 and ν ∈ {1, 2, 3} be such that β = σ + eν , so that Dβ = DνDσ . Notice that

|σ | = j . Choose localization functions {χk} jk=0 and {ηk} jk=0 as in Appendix B. Since Vϕi ∈ H−1/2(R3),
and E( p)−1 maps H s(R3) to H s+1(R3) for all s ∈ R, Lemma B.1 (with `= j) implies that

8DβE( p)−1[Vϕi ] =
j∑

k=0

8DνE( p)−1Dβkχk Dσ−βk [Vϕi ] +
j−1∑
k=0

8DνE( p)−1Dβk [ηk,Dµk ]Dσ−βk+1[Vϕi ]
+8DνE( p)−1 Dσ [η j Vϕi ], (51)

as an identity in H−|β|+1/2(R3) (we have also used that E( p)−1 commutes with derivatives on any
H s(R3)). Here, [ ·, · ] denotes the commutator. Also, |βk | = k, |µk | = 1, and 0 ≤ ηk, χk ≤ 1. (For the
support properties of ηk, χk , see Appendix B.) We will prove that each term on the right side of (51)
belong to L p(R3), and bound their norms. The proof of (46) will follow by summing these bounds.

The first sum in (51). Let θk be the characteristic function of the support of χk (which is contained in
ω). Since V is smooth on the closure of ω it follows from the induction hypothesis that the Dσ−βk [Vϕi ]
belong to L p(ω′) for any ω′ b ω. Also, the operator 8DνE( p)−1 Dβkχk is bounded on L p(R3) (as we
will observe below). Therefore we can estimate, for k ∈ {0, . . . , j},

‖8DνE( p)−1 Dβkχk Dσ−βk [Vϕi ]‖p = ‖(8E( p)−1 DνDβkχk)θk Dσ−βk [Vϕi ]‖p

≤ ‖8E( p)−1 DνDβkχk‖Bp ‖θk Dσ−βk [Vϕi ]‖p. (52)

Here, ‖ · ‖Bp is the operator norm on Bp := B(L p(R3)), the bounded operators on L p(R3).
For k = 0, the first factor on the right side of (52) can be estimated using Lemma C.1 (since |β0| = 0).

This way, since ‖χ0‖∞ = ‖8‖∞ = 1,

‖8E( p)−1 Dνχ0‖Bp ≤ K1, (53)
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with K1 = K1(p) the constant in (C.1).
For k > 0, the first factor on the right side of (52) can be estimated using (C.4) in Lemma C.2 (with

r= 1, q∗ = p= p). Since
dist(suppχk, supp8)≥ ε(k− 1+ 1/4)

and ‖χk‖∞ = ‖8‖∞ = 1, this gives (since (βk + eν)! ≤ (|βk | + 1)! = (k+ 1)!) that

‖8E( p)−1 DνDβkχk‖Bp ≤
32
√

2
π

(k+ 1)!
k

(
8

ε(k− 1+ 1/4)

)k

≤ 256
√

2
π

(8
ε

)k
. (54)

It follows from (53) and (54) that, for all k ∈ {0, . . . , j}, ν ∈ {1, 2, 3},

‖8E( p)−1 DνDβkχk‖Bp ≤ C2

(8
ε

)k
, (55)

with C2 as defined in (25).
It remains to estimate the second factor in (52). Recall the definition of the constant A in (24). It

follows from (24) and (17) that, for all ε > 0, ` ∈ N0, and σ ∈ N3
0,

ε|σ | sup
x∈ωε`
|DσV (x)| ≤ A|σ |+1|σ |! `−|σ |, (56)

with ωε` ⊆ ω as in defined in (16).
For k = j , since β j = σ , we find, by (56) and the choice of C (see Remark 2.2), that

‖θ j Vϕi‖p ≤ ‖V ‖L∞(ω)‖ϕi‖L p(ω) ≤ C A. (57)

The estimate for k ∈ {0, . . . , j − 1} is a bit more involved. We get, by Leibniz’s rule, that

‖θk Dσ−βk [Vϕi ]‖p ≤
∑

µ≤σ−βk

(
σ−βk
µ

)
‖θk DµV ‖∞ ‖θk Dσ−βk−µϕi‖p. (58)

Now, supp θk = suppχk ⊆ ωε( j−k+1/4), so by (56), for all µ≤ σ −βk ,

‖θk DµV ‖∞ ≤ sup
x∈ωε( j−k+1/4)

|DµV (x)| ≤ ε−|µ|A|µ|+1|µ|! ( j − k)−|µ|. (59)

By the induction hypothesis (in the form discussed in Remark 3.2),

‖θk Dσ−βk−µϕi‖p ≤ ‖Dσ−βk−µϕi‖L p(ωε( j−k)) ≤ C
( |σ −βk −µ|

j − k

)|σ−βk−µ|( B
ε

)|σ−βk−µ|
. (60)

It follows from (58), (59), and (60) that (using that |σ | = j, |βk | = k, and (A.6), summing over m = |µ|)

‖θk Dσ−βk [Vϕi ]‖p ≤ C A
( B
ε

) j−k
j−k∑

m=0

( j−k
m

)m! ( j − k−m) j−k−m

( j − k) j−k

( A
B

)m
. (61)

Note that, by (A.7), for 0< m < j − k,( j−k
m

)m! ( j − k−m) j−k−m

( j − k) j−k ≤ e1/12√ j − k√
j − k−m em

≤ 1. (62)
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To see the last inequality, look at the cases 0< m ≤ ( j − k)/2 and j − k > m ≥ ( j − k)/2 separately.
Hence (since B > 2A, see Remark 2.2), for any k ∈ {0, . . . , j − 1},

‖θk Dσ−βk [Vϕi ]‖p ≤ C A
( B
ε

) j−k
j−k∑

m=0

( A
B

)m ≤ 2C A
( B
ε

) j−k
. (63)

Note that, by (57), the same estimate holds true if k = j .
So, from (52), (55), (63), the fact that ε ≤ 1 (since ε( j + 1) ≤ R/2 ≤ 1/2), and the choice of B (in

particular, B > 16; see Remark 2.2), it follows that∥∥∥∥ j∑
k=0

8DνE( p)−1 Dβkχk Dσ−βk [Vϕi ]
∥∥∥∥

p
≤ 2C AC2

( B
ε

) j
j∑

k=0

( 8
B

)k

≤ C(4AC2)
( B
ε

) j ≤ C
12

( B
ε

) j+1
. (64)

The second sum in (51). Note first that [ηk, Dµk ] = −(Dµkηk) (recall that |µk | = 1; see Lemma B.1).
Comparing the second sum in (51) with the first sum in (51), one sees that the second sum is

the first one with j replaced by j − 1 and χk replaced by −Dµkηk . Having now a derivative on the
localization functions we have one derivative less falling on the term Vϕi . More precisely, the operator
Dσ−βk+1 contains |σ − βk+1| = j − (k + 1) = ( j − 1) − k derivatives instead of |σ − βk | = j − k
in Dσ−βk . Then, to control Dσ−βk+1[Vϕi ] (with the same method used above for Dσ−βk [Vϕi ]) we
need that supp Dµkηk is contained in ωε(( j−1)−k+1/4). Indeed we have much more: as for χk we have
supp Dµkηk ⊆ ωε( j−k+1/4) ⊆ ωε(( j−1)−k+1/4). Finally, ‖Dµkηk‖∞ ≤ C∗/ε, with C∗ > 0 the constant in
(B.3) in the appendix.

It follows that the second sum in (51) can be estimated as the first one, up to one extra factor of C∗/ε
and up to replacing j by j − 1 in the estimate (64). Hence, using that ε ≤ 1, and the choice of B (see
Remark 2.2), we get that∥∥∥∥ j−1∑

k=0

8DνE( p)−1 Dβk [ηk, Dµk ]Dσ−βk+1[Vϕi ]
∥∥∥∥

p
≤ C∗
ε

C(4AC2)
( B
ε

) j−1

≤ C(4AC2)
( B
ε

) j ≤ C
12

( B
ε

) j+1
. (65)

The last term in (51). It remains to study

8DβE( p)−1[η j Vϕi ]. (66)

We split V in two parts, one supported around x = 0, and one supported away from x = 0, and study the
two terms separately. We will prove below that this way, η j Vϕi is actually a function in L1(R3)+L3(R3).
Upon using suitable operator bounds on 8DβE( p)−1χ (for some suitable smooth χ ’s), combined with
bounds on the norms of the two parts of η j Vϕi , we will finish the proof.

Let ρ = |x0|/4, and let θρ and θρ/2 be the characteristic functions of the balls Bρ(0) and Bρ/2(0),
respectively. Choose χ̃ρ ∈ C∞0 (R

3) with supp χ̃ρ ⊆ Bρ(0), 0≤ χ̃ρ ≤ 1, and χ̃ρ = 1 on Bρ/2(0). Note that
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then

dist(supp8, supp χ̃ρ)≥ |x0|
2
= 2ρ, (67)

by the choice of ω = BR(x0), R =min{1, |x0|/4}, since supp8⊆ ωε( j+1) ⊆ ω.
Now,

8DβE( p)−1[η j Vϕi ] =8DβE( p)−1[η j V χ̃ρϕi ] +8DβE( p)−1[η j V (1− χ̃ρ)ϕi ]. (68)

For the first term in (68), we use Lemma C.2, with p= 1, q= p/(p−1), and r= p. Then p, r∈ [1,∞)
and q> 1, and q−1+ p−1 = 1. We get that (recall (67) and that χ̃ρθρ = χ̃ρ),

‖8DβE( p)−1[η j V χ̃ρϕi ]‖p ≤ ‖8DβE( p)−1χ̃ρ‖B1,p‖η j V θρϕi‖1
≤ 4
√

2
π
β!
( 8

2ρ

)|β|
(2ρ)3/r−2(r(|β| + 2)− 3

)−1/r‖V θρϕi‖1. (69)

Here we used that ‖8‖∞ = ‖χ̃ρ‖∞ = 1 and that η j ≡ 1 where θρ 6= 0. Note that j + 1≤ ε−1 (since, by
assumption, ε( j + 1)≤ R/2≤ 1/2). Therefore,

β! ≤ |β|! = ( j + 1)! ≤ ( j + 1) j+1 ≤ ε−( j+1) = ε−|β|. (70)

Note furthermore that since |β| = j + 1≥ 2 and r≥ 1,(
r(|β| + 2)− 3

)−1/r ≤ 1, (71)

independently of β. It follows that

‖8DβE( p)−1[η j V χ̃ρϕi ]‖p ≤ 4
√

2
π

( |x0|
2

)(3−2p)/p

‖V θρϕi‖1
(

16/|x0|
ε

)|β|
. (72)

Using Schwarz’s inequality and that Zα < 2/π ,

‖V θρϕi‖1 ≤ ‖V θρ‖2‖ϕi‖2 = Zα
√|x0|π‖ϕi‖2 ≤ 2√

π

√|x0|‖ϕi‖2. (73)

(Note that ‖V θρ‖t <∞⇔ t < 3.) It follows from (72), (73), and the choice of B and C (see Remark 2.2)
that ∥∥8DβE( p)−1[η j V χ̃ρϕi ]

∥∥
p ≤

32
π
|x0|3(2−p)/(2p)‖ϕi‖2

(
16/|x0|
ε

)|β|
≤ C

24

( B
ε

) j+1
. (74)

We now consider the second term in (68). Recall that 8 is supported in ωε( j+1) and

dist(supp8, supp η j )≥ ε( j + 1/4). (75)

Again, we use Lemma C.2, this time with p= 3, q= p/(p− 1), and r= 3p/(2p+ 3). Then

p−1+ q−1+ r−1 = 2, p ∈ [1,∞), q> 1, r ∈ [1, 3/2)

(since p > 3), and q−1+ p−1 = 1. This gives
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∥∥

p

≤ ∥∥8DβE( p)−1η j
∥∥

B3,p

∥∥V (1− χ̃ρ)ϕi
∥∥

3

≤ 4
√

2
π
β!
(

8
ε( j + 1/4)

)|β|(
ε( j + 1/4)

)3/r−2(
r(|β| + 2)− 3

)−1/r‖V (1− χ̃ρ)‖∞‖ϕi‖3.

As before, we used that ‖8‖∞ = ‖η j‖∞ = 1. Note that

β!
(

8
j + 1/4

)|β|
≤ 32|β|

|β|!
( j + 1)|β|

= 32|β|
( j + 1)!
( j + 1) j+1 ≤ 32|β|. (76)

Since ε( j + 1) ≤ R/2< 1 and r< 3/2 it follows that (ε( j + 1/4))3/r−2 ≤ 1. Also, by the choice of ρ,
the definition of V , and since Zα < 2/π ,∣∣((1− θρ/2)V )(x)∣∣≤ 8Zα

|x0| ≤
16
π |x0| , x ∈ R3. (77)

It follows from (77) (and that 0 ≤ 1 − χ̃ρ ≤ 1 − θρ/2), (71), (76), and the choice of C and B (see
Remark 2.2), that for all i = 1, . . . , N (recall that |β| = j + 1)

∥∥8DβE( p)−1[η j V (1− χ̃ρ)ϕi ]
∥∥

p ≤
4
√

2
π

16
π |x0|‖ϕi‖3

(32
ε

)|β| ≤ C
24

( B
ε

) j+1
. (78)

It follows from (68), (74), and (78) that∥∥8DβE( p)−1[η j Vϕi ]
∥∥

p ≤
C
12

( B
ε

) j+1
. (79)

The estimate (46) now follows from (51) and the estimates (64), (65), and (79). �

Proof of (47). The constant functions Wi (x)= α−1+ εi trivially satisfy the conditions on V (= Zα| · |−1)
needed in the proof above. In fact, having assumed A≥ α−1+max1≤i≤N |εi | (see Remark 2.2), (24) (and
therefore (56)) trivially holds for Wi . Also, for the term 8DβE( p)−1[η j Wiϕi ] we proceed directly as
for the term 8DβE( p)−1[η j V (1− χ̃ρ)ϕi ] above (but without any splitting in χ̃ρ and 1− χ̃ρ), using that
|Wi (x)| ≤ A, x ∈ R3. The proof of (47) therefore follows from the proof of (46) above, by the choice of
C and B (see Remark 2.2).

This finishes the proof of Lemma 3.3. �

Remark 4.1. In fact, with a simple modification the arguments above (the local L p-bound on the two
terms in (68)) can be made to work just assuming that, for all s > 0,

Vϕi ∈ L1(Bs(0)), Vϕi ∈ L3(R3 \ Bs(0)). (80)

5. Proof of Lemma 3.6

Proof of (50). Similarly to the case of the term with V in Lemma 3.3, we here use the localization
functions introduced in Appendix B. With the notation as in the previous section (in particular, β = σ +eν
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with |σ | = j), Lemma B.1 (with `= j) implies that

8DβE( p)−1[Ua,bϕi ]

=
j∑

k=0

8DνE( p)−1 Dβkχk Dσ−βk [Ua,bϕi ] +
j−1∑
k=0

8DνE( p)−1 Dβk [ηk, Dµk ]Dσ−βk+1[Ua,bϕi ]
+8DνE( p)−1 Dσ [η jUa,bϕi ], (81)

as an identity in H−|β|(R3). As in the proof of Lemma 3.3, [ · , · ] denotes the commutator, |βk | = k,
|µk | = 1, and 0≤ ηk, χk ≤ 1. (For the support properties of ηk, χk , see Appendix B.) As in the previous
section, we will prove that each term on the right side of (81) belong to L p(R3), and bound their norms.
The claim of the lemma will follow by summing these bounds.

The first sum in (81). We first proceed like for the similar sum in the proof of Lemma 3.3 (see (52), and
after). Let θk be the characteristic function of the support of χk . It follows from the induction hypothesis,
using that −1Ua,b = 4πϕaϕb, and Theorems D.5 and D.3, that the Dσ−βk [Ua,bϕi ] belong to L p(ω′) for
any ω′ b ω. As before, the operator 8DνE( p)−1 Dβkχk is bounded on L p(R3). Then, for k ∈ {0, . . . , j},∥∥8DνE( p)−1 Dβkχk Dσ−βk [Ua,bϕi ]

∥∥
p =

∥∥(8E( p)−1 DνDβkχk)θk Dσ−βk [Ua,bϕi ]
∥∥

p

≤ ∥∥8E( p)−1 DνDβkχk‖Bp‖θk Dσ−βk [Ua,bϕi ]
∥∥

p. (82)

The first factor on the right side of (82) was estimated in the proof of Lemma 3.3 (see (55)): For all
k ∈ {0, . . . , j}, ν ∈ {1, 2, 3},

‖8E( p)−1 DνDβkχk‖Bp ≤ C2

(8
ε

)k
, (83)

with C2 the constant in (25).
It remains to estimate the second factor in (82). For k = j , since β j = σ , we find that, by (23) and the

choice of C and B (see Remark 2.2),

‖θ jUa,bϕi‖p ≤ ‖Ua,b‖∞‖ϕi‖L p(ω) ≤ C1 C ≤ C
( B
ε

)1/2
. (84)

In the last inequality we also used that ε ≤ 1 (since ε( j + 1)≤ R/2< 1).
The estimate for k ∈ {0, . . . , j − 1} is more involved. We get, by Leibniz’s rule, that

‖θk Dσ−βk [Ua,bϕi ]‖p ≤
∑

µ≤σ−βk

(
σ−βk
µ

) ∥∥θk(DµUa,b)(Dσ−βk−µϕi )
∥∥

p. (85)

We estimate separately each term on the right side of (85).
We separate into two cases.
If µ= 0 then, using the induction hypothesis (i.e., P(p, j−k); recall that supp θk ⊆ωε( j−k)) and (23),

‖θkUa,b Dσ−βkϕi‖p ≤ C1C
( B
ε

) j−k ≤ C
2

( B
ε

) j−k+1/2
. (86)

In the last inequality we used the choice of B (see Remark 2.2) and that ε ≤ 1.
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If 0<µ≤σ−βk , then (since suppχk ⊆ωε( j−k+1/4)) Hölder’s inequality (with 1/p= 1/(3p)+2/(3p))
and Corollary D.2 give

‖θk(DµUa,b)(Dσ−βk−µϕi )‖p

≤ ‖θk DµUa,b‖3p/2 ‖θk Dσ−βk−µϕi‖3p

≤ K2‖DµUa,b‖L3p/2(ωε( j−k+1/4)) ‖Dσ−βk−µϕi‖θW 1,p(ωε( j−k+1/4))
‖Dσ−βk−µϕi‖1−θL p(ωε( j−k+1/4))

. (87)

Here, K2 is the constant in Corollary D.2, and θ = 2/p < 1. Note that ωε( j−k+1/4) = Br (x0) with
r ∈ [R/2, 1], since ε( j + 1)≤ R/2 and R =min{1, |x0|/4}

We will use Lemma 5.3 below to bound the first factor in (87). The last two factors we now bound
using the induction hypothesis.

If µ ∈ N3
0 is such that 0 < µ ≤ σ − βk , then the induction hypothesis (in the form discussed in

Remark 3.2) gives (recall here (18) and that |σ | = j, |βk | = k) that for the last two factors in (87) we have

‖Dσ−βk−µϕi‖1−θL p(ωε( j−k+1/4))
≤
[

C
(

j − k− |µ|
j − k+ 1/4

)j−k−|µ|( B
ε

) j−k−|µ|]1−θ
(88)

and (using that B > 1 (see Remark 2.2) and ε( j − k+ 1/4)≤ ε( j + 1)≤ R/2< 1)

‖Dσ−βk−µϕi‖θW 1,p(ωε( j−k+1/4))

≤
[

C
(

j−k−|µ|
j−k+1/4

)j−k−|µ|( B
ε

) j−k−|µ|+ 3C
(

j−k−|µ|+1
j−k+1/4

)j−k−|µ|+1( B
ε

) j−k−|µ|+1
]θ

≤
[

4C
(

j−k−|µ|+1
j−k+1/4

)j−k−|µ|+1( B
ε

) j−k−|µ|+1
]θ
. (89)

It follows from (88) and (89) that for all µ ∈ N3
0 with 0< µ≤ σ −βk ,

‖Dσ−βk−µϕi‖θW 1,p(ωε( j−k+1/4))
‖Dσ−βk−µϕi‖1−θL p(ωε( j−k+1/4))

≤C4θ
( B
ε

) j−k−|µ|+θ( j−k−|µ|+1
j−k+1/4

) j−k−|µ|+θ
.

(90)
From (87), Lemma 5.3, and (90) (using (A.6) in the appendix, summing over m = |µ|), it follows that∑

0<µ≤σ−βk

(
σ−βk
µ

)∥∥θk(DµUa,b)(Dσ−βk−µϕi )
∥∥

p

≤ C3C3K2

( B
ε

) j−k+θ j−k∑
m=1

4θ
( j−k

m

)( j−k−m+1) j−k−m+θ (m+1/4)m

( j−k+1/4) j−k+θ

×
[(

1√
B

)m

+√m
(

B(m+1/4)
ε( j−k+1/4)

)2θ−2]
. (91)

Here, C3 is the constant from (26). Recall also that θ = 2/p.
We prove that for m ∈ {1, . . . , j − k},

4θ
( j−k

m

)( j − k−m+ 1) j−k−m+θ (m+ 1/4)m

( j − k+ 1/4) j−k+θ ≤ 10ε−1/2+θ 1√
m
. (92)
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Note first that, since ε( j − k+ 1/4)≤ ε( j + 1)≤ 1,

( j − k+ 1/4)1/2−θ ≤ ε−1/2+θ . (93)

This shows that the inequality in (92) is true for m = j − k > 0, since θ < 1. For m < j − k, we use (A.8)
in the appendix, and (93), to get that (since (1+ 1/n)n ≤ e)

( j−k
m

)( j−k−m+1) j−k−m+θ (m+1/4)m

( j−k+1/4) j−k+θ ≤ e25/12
√

2π

( j−k−m+1)θ

( j−k−m)1/2
ε−1/2+θ 1√

m
. (94)

Since θ < 1/2 and m ≤ j − k− 1, we have that

( j−k−m+1)θ

( j−k−m)1/2
≤ 2θ ≤√2. (95)

The estimate (92) for m ∈ {1, . . . , j − k− 1} now follows from (94)–(95) (since 4θe25/12/
√
π ≤ 10).

Inserting (92) in (91) (and using again ε( j − k+ 1/4)≤ 1 and 2θ − 2< 0) we find that

∑
0<µ≤σ−βk

(
σ−βk
µ

)∥∥θk(DµUa,b)(Dσ−βk−µϕi )
∥∥

p

≤ 10C3C3K2

( B
ε

) j−k+θ
ε−1/2+θ

j−k∑
m=1

[(
1√
B

)m

+ 1
B2−2θ

1
m2−2θ

]
≤ 10C3C3K2

( B
ε

) j−k+1/2 1√
B
(2+ 6), (96)

where we used that θ ≤ 2/5, B ≥ 4 (see Remark 2.2), and
∞∑

m=1
m−6/5 ≤ 1+

∫ ∞
1

x−6/5 dx = 6 to estimate

∞∑
m=1

(
1√
B

)m

≤ 2√
B
,

1
B2−2θ

∞∑
m=1

1
m2−2θ ≤

6√
B
. (97)

This is the very essential reason for needing p ≥ 5.
By the choice of B (see Remark 2.2) it follows that

∑
0<µ≤σ−βk

(
σ−βk
µ

)∥∥θk(DµUa,b)(Dσ−βk−µϕi )
∥∥

p ≤
C
2

( B
ε

) j−k+1/2
. (98)

From (85), (86), and (98) it follows that for all k ∈ {0, . . . , j − 1},

‖θk Dσ−βk [Ua,bϕi ]‖p ≤ C
( B
ε

) j−k+1/2
. (99)

Using (82), (83), (84), and (99) it follows for the first sum in (81) that
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∥∥∥∥ j∑
k=0

8DνE( p)−1 Dβkχk Dσ−βk [Ua,bϕi ]
∥∥∥∥

p
≤ C2

j∑
k=0

8kε−k‖θk Dσ−βk [Ua,bϕi ]‖p

≤ C2C
( B
ε

) j+1/2
j∑

k=0

( 8
B

)k
. (100)

Since B > 16 (see Remark 2.2) the last sum is less than 2 and so for the first term in (81) we finally get,
by the choice of B (see Remark 2.2) that∥∥∥∥ j∑

k=0

8DνE( p)−1 Dβkχk Dσ−βk [Ua,bϕi ]
∥∥∥∥

p
≤ 2C2C

( B
ε

) j+1/2≤ C Z
12N

( B
ε

) j+1
. (101)

The second sum in (81). By the same arguments as for the second sum in (51) (see after (64)), it follows
that the second sum in (81) can be estimated as the first one, up to one extra factor of C∗/ε (with C∗ > 0
the constant in (B.3) in the appendix) and up to replacing j by j − 1 in the estimate (101). Hence, by the
choice of B (see Remark 2.2)∥∥∥∥ j−1∑

k=0

8DνE( p)−1 Dβk [ηk, Dµk ]Dσ−βk+1[Ua,bϕi ]
∥∥∥∥

p
≤ C∗
ε

C Z
12N

( B
ε

) j ≤ C Z
12N

( B
ε

) j+1
. (102)

The last term in (81). Since σ + eν = β, the last term in (81) equals

8DβE( p)−1[η jUa,bϕi ].
We proceed exactly as for the term 8DβE( p)−1[η j V (1− χ̃ρ)ϕi ] in (68) (but without any splitting in χ̃ρ
and 1− χ̃ρ), except that the estimate in (77) is replaced by ‖Ua,b‖∞ ≤ C1 (see (23)). It follows, from the
choice of B and C (see Remark 2.2) that (recall that |β| = j + 1)

‖8DβE( p)−1[η jUa,bϕi ]‖p ≤ ‖8DβE( p)−1η j‖B3,p ‖Ua,bϕi‖3

≤ 4
√

2
π

C1‖ϕi‖3
(32
ε

)|β| ≤ C Z
12N

( B
ε

) j+1
. (103)

The estimate (50) now follows from (81) and the estimates (101), (102), and (103).
This finishes the proof of Lemma 3.6. �

It remains to prove Lemma 5.3 below (L3p/2-bound on derivatives of the Newton potential Ua,b of
products of orbitals, ϕaϕb).

In the next lemma we first give an L3p/2-estimate on the derivatives of the product of the orbitals ϕi ,
needed for the proof of the bound in Lemma 5.3 below.

Lemma 5.1. Assume the induction hypothesis (40) holds. Then, for all a, b ∈ {1, . . . , N }, all β ∈N3
0 with

|β| ≤ j − 1, and all ε > 0 with ε(|β| + 1)≤ R/2,

‖Dβ(ϕaϕb)‖L3p/2(ωε(|β|+1)) ≤ 10K 2
2 C2(1+√|β|)( B

ε

)|β|+2θ
, (104)

with K2 from Corollary D.2, C from Remark 2.2, and θ = θ(p)= 2/p.
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Proof. By Leibniz’s rule and Schwarz’s inequality we get

‖Dβ(ϕaϕb)‖L3p/2(ωε(|β|+1)) ≤
∑
µ≤β

(
β
µ

)
‖Dµϕa‖L3p(ωε(|β|+1))‖Dβ−µϕb‖L3p(ωε(|β|+1)).

We use Corollary D.2 (with ωε(|β|+1) = Br (x0), r = R − ε(|β| + 1); note that r ∈ [R/2, 1], since
ε(|β| + 1)≤ R/2 and R =min{1, |x0|/4}). This gives, with K2 from Corollary D.2 and θ = 2/p,

‖Dβ(ϕaϕb)‖L3p/2(ωε(|β|+1)) ≤ K 2
2

∑
µ≤β

(
β
µ

)
‖Dµϕa‖θW 1,p(ωε(|β|+1))

‖Dµϕa‖1−θL p(ωε(|β|+1))

×‖Dβ−µϕb‖θW 1,p(ωε(|β|+1))
‖Dβ−µϕb‖1−θL p(ωε(|β|+1))

. (105)

We now use the induction hypothesis (in the form discussed in Remark 3.2) on each of the four factors in
the sum on the right side of (105). Note that, by assumption, ε(|β| + 1)≤ ε j ≤ R/2 and |µ|< |µ| + 1≤
|β| + 1≤ j (similarly, |β −µ|< |β −µ| + 1≤ j). Recalling (18), we therefore get, for all µ ∈ N3

0 such
that µ≤ β,

‖Dµϕa‖θW 1,p(ωε(|β|+1))
‖Dµϕa‖1−θL p(ωε(|β|+1))

≤
[

C
( |µ|
|β| + 1

)|µ|( B
ε

)|µ|]1−θ[
C
( |µ|
|β| + 1

)|µ|( B
ε

)|µ|+ 3C
( |µ| + 1
|β| + 1

)|µ|+1( B
ε

)|µ|+1
]θ

≤ 4θC
( B
ε

)|µ|+θ (|µ| + 1)θ(|µ|+1)|µ||µ|(1−θ)
(|β| + 1)|µ|+θ

,

since (recall that ε(|β| + 1)≤ R/2< 1 and B > 1)

|µ||µ|
(|µ| + 1)|µ|+1 ε(|β| + 1)B−1 ≤ 1.

Proceeding similarly for the other two factors in (105), we get (using (A.6) in the appendix and summing
over m = |µ|) that∑
µ≤β

(
β
µ

)
‖Dµϕa‖L3p(ωε(|β|+1))‖Dβ−µϕb‖L3p(ωε(|β|+1))

≤ 16θ (C K2)
2
( B
ε

)|β|+2θ
|β|∑

m=0

(|β|
m

)[(m+1)m+1(|β|−m+1)|β|−m+1
]θ [mm(|β|−m)|β|−m

]1−θ
(|β|+1)|β|+2θ . (106)

We simplify the sum in m. Note that for m = 0 and m = |β|, the summand is bounded by 1. Therefore,
for |β| ≤ 1 the estimate (104) follows from (106), since 2 · 16θ ≤ 7. It remains to consider |β| ≥ 2. For
m ≥ 1, m < |β|, we can use (A.8) in the appendix to get (since (1+ 1/n)n ≤ e) that∑
0<µ<β

(
β
µ

)
‖Dµϕa‖L3p(ωε(|β|+1))‖Dβ−µϕb‖L3p(ωε(|β|+1))

≤ e1/12
√

2π
(C K2)

2(16e2)θ
( B
ε

)|β|+2θ |β||β|+1/2

(|β|+1)|β|+2θ

|β|−1∑
m=1

[
(m+1)(|β|−m+1)

]θ
√

m
√|β|−m

.
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Since the function
f (x)= (x + 1)(|β| − x + 1), x ∈ [1, |β| − 1],

has its maximum (which is (|β|/2+ 1)2) at x = |β|/2, and since

|β|−1∑
m=1

1√
m
√|β|−m

≤
∫ |β|

0

1√
x
√|β|−x

dx = π,

we get∑
0<µ<β

(
β
µ

)
‖Dµϕa‖L3p(ωε(|β|+1))‖Dβ−µϕb‖L3p(ωε(|β|+1)) ≤ e1/12(16e2)θ

√
π

2
(C K2)

2
√|β|( B

ε

)|β|+2θ
. (107)

The estimate (104) now follows from (105), (106), and (107), since e1/12(16e2)θ
√
π/2≤ 10 and 2·16θ ≤ 7

(recall that p ≥ 5). This finishes the proof of Lemma 5.1. �

The next two lemmas, used in the proof above of Lemma 3.6, control the L3p/2-norm of derivatives of
Ua,b.

Lemma 5.2. Define Ua,b by (48). Then for all a, b ∈ {1, . . . , N }, and all µ ∈ N3
0 with |µ| ≤ 2,

‖DµUa,b‖L3p/2(ω) ≤ 4πK3(C2+ 2C1/R2), (108)

with K3 from Corollary D.4, C from Remark 2.2, C1 from (23), and R =min{1, |x0|/4}.
Proof. Recall that ω= BR(x0), R =min{1, |x0|/4}. Using (18), and Corollary D.4, we get, for all µ ∈N3

0
with |µ| ≤ 2,

‖DµUa,b‖L3p/2(ω) ≤ ‖Ua,b‖W 2,3p/2(BR(x0)) ≤ K3

{
‖1Ua,b‖L3p/2(B2R(x0))+ 1

R2 ‖Ua,b‖L3p/2(B2R(x0))

}
. (109)

By the definition of Ua,b (see (48)) we have

−1Ua,b(x)= 4π ϕa(x)ϕb(x) for x ∈ R3, (110)

and ‖Ua,b‖∞≤C1 (see (23)). Hence, from (109), Hölder’s inequality, and the choice of C (see Remark 2.2;
recall also that p ≥ 5)

‖DµUa,b‖L3p/2(ω) ≤ 4πK3

{
‖ϕa‖L3p(B2R(x0))‖ϕb‖L3p(B2R(x0))+ 1

R2 ‖Ua,b‖∞|B2R(x0)|2/3p
}

≤ 4πK3(C2+ 2C1/R2). �

Lemma 5.3. Assume the induction hypothesis (40) holds, and define Ua,b by (48). Then for all a, b ∈
{1, . . . , N }, all k ∈ {0, . . . , j − 1}, all µ ∈ N3

0 with |µ| ≤ j − k, and all ε > 0 with ε( j + 1)≤ R/2,

‖DµUa,b‖L3p/2(ωε( j−k+1/4))

≤ C3C2
(√

B
ε

)|µ|( |µ|+1/4
j−k+1/4

)|µ|
+ C3C2

√|µ|( B
ε

)|µ|+2θ−2
( |µ|+1/4

j−k+1/4

)|µ|+2θ−2

, (111)

with θ = θ(p)= 2/p, C and B from Remark 2.2, and C3 the constant in (26).
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Proof. If m :=|µ|≤2, (111) follows from Lemma 5.2 and the definition of C3 in (26), since ε( j−k+1/4)≤
ε( j + 1)≤ R/2< 1, and C, B > 1 (see Remark 2.2).

If m := |µ| ≥ 3 then we write µ=µm−2+eν1+eν2 with νi ∈ {1, 2, 3}, i = 1, 2, |µm−2| =m−2. Then
by the definition of the W 2,3p/2-norm (recall (18)) we find that

‖DµUa,b‖L3p/2(ωε( j−k+1/4)) ≤ ‖Dµm−2Ua,b‖W 2,3p/2(ωε( j−k+1/4))

= ‖Dµm−2Ua,b‖W 2,3p/2(ωε̃1(m−1+1/4))
, (112)

with ε̃1 such that
ε̃1(m− 1+ 1/4)= ε( j − k+ 1/4). (113)

To estimate the norm in (112) we will again use that Ua,b satisfies (110). Applying Dµm−2 to (110) and
using the elliptic a priori estimate in Corollary D.4 (with r = r1= R− ε̃1(m−1+1/4) and δ= δ1= ε̃1/4;
recall that ωρ = BR−ρ(x0)) we get

‖DµUa,b‖L3p/2(ωε( j−k+1/4))≤ 4πK3‖Dµm−2(ϕaϕb)‖L3p/2(ωε̃1(m−1))
+ 16K3

ε̃2
1
‖Dµm−2Ua,b‖L3p/2(ωε̃1(m−1))

, (114)

with K3 = K3(p) the constant in (D.9). Notice that for this estimate we needed to enlarge the domain,
taking the ball with a radius ε̃1/4 larger.

We now iterate the procedure (on the second term on the right side of (114)), with ε̃i (i = 2, . . . , bm
2 c)

such that
ε̃i (m− 2i + 1+ 1/4)= ε̃i−1(m− 2(i − 1)+ 1), (115)

and with r = ri = R− ε̃i (m− 2i + 1+ 1/4) and δ = δi = ε̃i/4. Note that (113) and (115) imply that

ε̃i ≥ ε̃i−1 ≥ · · · ≥ ε̃1 = ε j − k+ 1/4
m− 1+ 1/4

for i = 2, . . . ,
⌊m

2

⌋
(116)

and
ε̃i (m− 2i + 1)≤ ε̃i−1(m− 2(i − 1)+ 1)≤ . . .≤ ε̃1(m− 1)≤ ε( j − k+ 1/4). (117)

We get (with
∏0
`=1 ≡ 1 and |µm−2i | = m− 2i),

‖DµUa,b‖L3p/2(ωε( j−k+1/4)) ≤ 4πK3

bm
2 c∑

i=1

(
‖Dµm−2i (ϕaϕb)‖L3p/2(ωε̃i (m−2i+1))

i−1∏
`=1

16K3

ε̃2
`

)
+
( bm

2 c∏
`=1

16K3

ε̃2
`

)
‖Dµm−2bm

2 c Ua,b‖L3p/2(ωε̃bm
2 c
(m−2bm

2 c+1))
. (118)

Using (116), and Lemma 5.1 for each i = 1, . . . , bm
2 c fixed (note that ε̃i (m − 2i + 1) ≤ R/2 by (117)

since ε( j + 1)≤ R/2) we get that

‖Dµm−2i (ϕaϕb)‖L3p/2(ωε̃i (m−2i+1))

i−1∏
`=1

16K3

ε̃2
`

≤ 20K 2
2 C2√m

( B
ε

)m+2θ−2
(

m−1+1/4
j−k+1/4

)m+2θ−2(16K3

B2

)i−1

,

(119)
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with K2 from Corollary D.2, and θ = θ(p)= 2/p. Here we also used that 1+√m− 2i ≤ 2
√

m. Note
that

∑bm
2 c

i=1 (16K3/B2)i−1 < 2 since B2 > 32K3 (see Remark 2.2). It follows that

4πK3

bm
2 c∑

i=1

(
‖Dµm−2i (ϕaϕb)‖L3p/2(ωε̃i (m−2i+1))

i−1∏
`=1

16K3

ε̃2
`

)
≤ 160πK 2

2 K3C2√m
( B
ε

)m+2θ−2
(

m+1/4
j−k+1/4

)m+2θ−2

. (120)

We now estimate the last term in (118). Let δ = m− 2bm
2 c ∈ {0, 1} (depending on whether m is even

or odd). Then, using (116) and Lemma 5.2, we get that

( bm
2 c∏
`=1

16K3

ε̃2
`

)
‖Dµm−2bm

2 c Ua,b‖L3p/2(ωε̃bm
2 c
(m−2bm

2 c+1))

≤ 4πK3(C2+2C1/R2)

(√
16K3

ε

)m(m−1+1/4
j−k+1/4

)m(
ε( j−k+1/4)

m−1+1/4

)δ
≤ 4πK3(1+2C1/R2)C2

(√
B
ε

)m( m+1/4
j−k+1/4

)m

. (121)

Here we also used that m ≥ 3 and K3 ≥ 1 (see Corollary D.4), that C > 1 and B > 16K3 (see Remark 2.2),
and that ε( j − k+ 1/4)≤ 1.

Combining (118), (120), and (121) finishes the proof of (111) in the case m = |µ| ≥ 3.
This finishes the proof of Lemma 5.3. �

Appendix A: Multiindices and Stirling’s formula

For σ = (σ1, σ2, σ3) ∈ N3
0 we let |σ | := σ1+ σ2+ σ3, and

Dσ := Dσ1
1 Dσ2

2 Dσ3
3 , Dν := − i

∂

∂xν
=: − i ∂ν, ν = 1, 2, 3. (A.1)

This way,

∂σ := ∂ |σ |

∂xσ
:= ∂ |σ |

∂xσ1
1 xσ2

2 xσ3
3
= (−i)|σ |Dσ .

We let σ ! := σ1! σ2! σ3!, and, for n ∈ N0,(n
σ

)
:= n!
σ ! =

n!
σ1! σ2! σ3! . (A.2)

With this notation we have the multinomial formula, for x = (x1, x2, x3) ∈ R3 and n ∈ N0,

(x1+ x2+ x3)
n =

∑
µ∈N3

0|µ|=n

(n
µ

)
xµ. (A.3)
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Here, xµ := xµ1
1 xµ2

2 xµ3
3 . It follows that

|σ |! ≤ 3|σ |σ ! for all σ ∈ N3
0, (A.4)

since, using (A.2), that (1, 1, 1)µ = 1 for all µ ∈ N3
0, and (A.3),

|σ |!
σ ! =

(|σ |
σ

)
≤

∑
µ∈N3

0|µ|=|σ |

(|σ |
µ

)
(1, 1, 1)µ = (1+ 1+ 1)|σ | = 3|σ |.

We also define (
σ
µ

)
:= σ !
µ! (σ −µ)! (A.5)

for σ,µ ∈ N3
0 with µ ≤ σ , that is, µν ≤ σν , ν = 1, 2, 3. Note that for all σ ∈ N3

0 and k ∈ N0 (see [Kato
1996, Proposition 2.1]), ∑

µ≤σ,|µ|=k

(
σ
µ

)
=
(|σ |

k

)
. (A.6)

Finally, by [Abramowitz and Stegun 1992, 6.1.38], we have the following generalization of Stirling’s
formula: For m ∈ N,

m! = √2πmm+ 1
2 exp

(
−m+ ϑ

12m

)
for some ϑ = ϑ(m) ∈ (0, 1), (A.7)

and so for n,m ∈ N, m < n,(n
m

)
= 1√

2π

nn+1/2

mm+1/2(n−m)n−m+1/2 exp
(
ϑ(n)
12n
− ϑ(m)

12m
− ϑ(n−m)

12(n−m)

)
≤ e1/12
√

2π

nn+1/2

mm+1/2(n−m)n−m+1/2 . (A.8)

Appendix B: Choice of the localization

Recall that, for x0 ∈ R3 \ {0} and R = min{1, |x0|/4}, we have defined ω = BR(x0), ωδ = BR−δ(x0),
and that ε > 0 is such that ε( j + 1) ≤ R/2. Also, recall (see (44)) that we have chosen a function 8
(depending on j) satisfying

8 ∈ C∞0 (ωε( j+3/4)), 0≤8≤ 1, with 8≡ 1 on ωε( j+1). (B.1)

For j ∈N we choose functions {χk} jk=0, and {ηk} jk=0 (all depending on j ) with the following properties
(for an illustration, see Figures 1 and 2). The functions {χk} jk=0 are such that

χ0 ∈ C∞0 (ωε( j+1/4)) with χ0 ≡ 1 on ωε( j+1/2),

and, for k = 1, . . . , j ,

χk ∈ C∞0 (ωε( j−k+1/4)) with
{
χk ≡ 1 on ωε( j−k+1/2) \ωε( j−k+1+1/4),

χk ≡ 0 on R3 \ (ωε( j−k+1/4) \ωε( j−k+1+1/2)).
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2ǫ ǫx0 R/2 ǫ( j+1) · · ·

∂ω
ω = BR(x0) ωǫk = BR−ǫk(x0) ⊆ ω

Figure 1. The geometry of ω = BR(x0) and the ωεk = BR−εk(x0).

 

rag

8 χ0 χ1 χ j

ǫ( j+1)

ǫ( j+1)

ǫ j

ǫ j

ǫ( j−1)

ǫ( j−1) ǫ

ǫ ∂ω

∂ω

η0 η1 η j−1 η j

Figure 2. The localization functions.

Finally, the functions {ηk} jk=0 are such that for k = 0, . . . , j ,

ηk ∈ C∞(R3) with
{
ηk ≡ 1 on R3 \ωε( j−k+1/4),

ηk ≡ 0 on ωε( j−k+1/2).

Moreover we ask that

χ0+ η0 ≡ 1 on R3,

χk + ηk ≡ 1 on R3 \ωε( j−k+1+1/4) for k = 1, . . . , j,
ηk ≡ χk+1+ ηk+1 on R3 for k = 0, . . . , j − 1.

(B.2)

Furthermore, we choose these localization functions such that, for a constant C∗ > 0 (independent of
ε, k, j, β) and for all β ∈ N3

0 with |β| = 1, we have that

|Dβχk(x)| ≤ C∗
ε

and |Dβηk(x)| ≤ C∗
ε
, (B.3)

for k = 0, . . . , j , and all x ∈ R3.
The next lemma shows how to use these localization functions.
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Lemma B.1. For j ∈ N fixed, choose functions {χk} jk=0, and {ηk} jk=0 as above, and let σ ∈ N3
0 with

|σ | = j . For ` ∈ N with `≤ j , choose multiindices {βk}`k=0 such that

|βk | = k for k = 0, . . . , `, βk−1 < βk for k = 1, . . . , `, and β` ≤ σ.

Then for all g ∈ S′(R3),

Dσ g =
∑̀
k=0

Dβkχk Dσ−βk g+
`−1∑
k=0

Dβk [ηk, Dµk ]Dσ−βk+1 g+ Dβ`η`Dσ−β`g, (B.4)

with µk = βk+1−βk for k = 0, . . . , `− 1 (hence, |µk | = 1).

Proof. We use induction on ` from ` = 1 to ` = j . We start by proving the claim for ` = 1. By using
property (B.2) of the localization functions and that β1 = β0+µ0 = µ0 (since β0 = 0) we find that

Dσ g = χ0 Dσ g+ η0 Dσ g = χ0 Dσ g+ η0 Dσ−β1+µ0 g. (B.5)

The first term on the right side of (B.5) is the term corresponding to k = 0 in the first sum in (B.4). In the
second term in (B.5), commuting the derivative through η0, we find that

η0 Dσ−β1+µ0 g = Dµ0η0 Dσ−β1 g+ [η0, Dµ0]Dσ−β1 g.

Since η0 = χ1+ η1 by property (B.2), this implies that

η0 Dσ−β1+µ0 g = Dβ1χ1 Dσ−β1 g+ Dβ1η1 Dσ−β1 g+ [η0, Dµ0]Dσ−β1 g. (B.6)

The identity (B.4) for `= 1 follows from (B.5) and (B.6).
We now assume that (B.4) holds for `− 1 for some `≥ 2, i.e.,

Dσ g =
`−1∑
k=0

Dβkχk Dσ−βk g+
`−2∑
k=0

Dβk [ηk, Dµk ]Dσ−βk+1 g+ Dβ`−1η`−1 Dσ−β`−1 g, (B.7)

and prove it then holds for `. Since β`−1 = β`−µ`−1 we can rewrite the last term on the right side of
(B.7) as

Dβ`−1η`−1 Dσ−β`−1 g = Dβ`−1η`−1 Dσ−β`+µ`−1 g.

Again, commuting the µ`−1-derivative through η`−1 this implies that

Dβ`−1η`−1 Dσ−β`−1 g = Dβ`−1+µ`−1η`−1 Dσ−β`g+ Dβ`−1[η`−1, Dµ`−1]Dσ−β`g

= Dβ`(η`+χ`)Dσ−β`g+ Dβ`−1[η`−1, Dµ`−1]Dσ−β`g, (B.8)

using (B.2). Collecting together (B.7) and (B.8) proves that (B.4) holds for `.
The claim of the lemma then follows by induction. �
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Appendix C: Norms of some operators on L p(R3)

In this section we prove two lemmas on bounds on certain operators involving the operator E( p) =√−1+α−2.

Lemma C.1. Let the operators Sν = E( p)−1 Dν , ν ∈ {1, 2, 3}, be defined for f ∈ S(R3) by

(Sν f )(x)= (2π)−3/2
∫

R3
eix· p E( p)−1 pν f̂ ( p) d p,

with f̂ ( p)= (2π)−3/2
∫

R3 e−ix· p f (x) dx the Fourier transform of f . (Here, p= (p1, p2, p3).)
Then, for all p ∈ (1,∞), the Sν extend to bounded operators, Sν : Lp(R3)→ Lp(R3), ν ∈ {1, 2, 3}.

Clearly, ‖Sν‖Bp = ‖Sµ‖Bp , ν 6= µ. We let

K1 ≡ K1(p) := ‖S1‖Bp . (C.1)

Proof. This follows from [Sogge 1993, Theorem 0.2.6] and the Remarks right after it. In fact, since (by
induction),

Dγ
p
(

pνE( p)−1)= Pγ,ν( p)E( p)−1−2|γ |, γ ∈ N3
0,

for some polynomials Pγ,ν of degree |γ | + 1, the functions mν( p)= pνE( p)−1 are smooth and satisfy
the estimates

|Dγ
pmν( p)| ≤ Cγ,ν | p|−|γ |, γ ∈ N3

0,

for some constants Cγ,ν > 0, which is what is needed in the reference above. �

For p, q ∈ [1,∞], denote by ‖ · ‖Bp,q the operator norm on bounded operators from Lp(R3) to Lq(R3).

Lemma C.2. For all p, r ∈ [1,∞), q ∈ (1,∞), with p−1 + q−1 + r−1 = 2, all α > 0, all β ∈ N3
0 (with

|β|> 1 if r= 1), and all 8,χ ∈ C∞(R3)∩ L∞(R3) with

dist(supp(χ), supp(8))≥ d, (C.2)

the operator 8E( p)−1 Dβχ is bounded from Lp(R3) to (Lq(R3))′ = Lq∗(R3) (with q−1+q∗−1 = 1), and

‖8E( p)−1 Dβχ‖Bp,q∗ ≤
4
√

2
π
β!
(8

d

)|β|
d3/r−2(r(|β| + 2)− 3

)−1/r‖8‖∞‖χ‖∞. (C.3)

In particular, (when r= 1, i.e., q∗ = p),

‖8E( p)−1 Dβχ‖Bp ≤
32
√

2
π

β!
|β| − 1

(8
d

)|β|−1‖8‖∞‖χ‖∞, (C.4)

for all β ∈ N3
0 with |β|> 1.

Proof. We use duality. Let f, g ∈ S(R3). Note that, since 8 f, Dβ(χg) ∈ L2(R3), the spectral theorem,
and the formula

1√
x
= 1
π

∫ ∞
0

1
x + t

dt√
t
, x > 0, (C.5)
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imply that

( f,8E( p)−1 Dβχg)= 1
π

∫ ∞
0

dt√
t
( f,8(−1+α−2+ t)−1 Dβχg).

By using the formula for the kernel of the operator (−1+α−2+ t)−1 [Reed and Simon 1975, (IX.30)],
and integrating by parts, we get

( f,8E( p)−1 Dβχg)= 1
π

∫ ∞
0

∫
R3

f (x)8(x)
∫

R3

e−
√
α−2+t |x− y|

4π |x− y| [D
β(χg)]( y) dx d y

dt√
t

= (−1)|β|

π

∫ ∞
0

∫
R3

f (x)8(x)
∫

R3

(
Dβ

y
e−
√
α−2+t |x− y|

4π |x− y|
)
χ( y)g( y) dx d y

dt√
t
.

Notice that the integrand is different from zero only for |x− y| ≥ d , due to the assumption (C.2). Hence,
by Fubini’s theorem,

( f,8E( p)−1 Dβχg)=
∫

R3

∫
R3

F(x)H(x− y)G( y) dx d y, (C.6)

with F(x)= f (x)8(x), G( y)= χ( y)g( y), and

H(z)≡ Hα,β,d(z)= 1{| · |≥d}(z)
(−1)|β|

π

∫ ∞
0

(
Dβ

z
e−
√
α−2+t |z|

4π |z|
)

dt√
t
.

Now, by (C.8) in Lemma C.3 below, uniformly for α > 0,

|H(z)| ≤ 1{| · |≥d}(z)
√

2
4π2

β!
|z|
(

8
|z|
)|β| ∫ ∞

0
e−
√

t |z|/2 dt√
t
= 1{| · |≥d}(z)

√
2

π2

β!
|z|2

(
8
|z|
)|β|

,

and so, for all α > 0, r ∈ [1,∞), and all β ∈ N3
0 (with |β|> 1 if r= 1),

‖H‖r ≤ (4π)1/r
√

2
π2 β! 8|β|

(∫ ∞
d

(|z|−|β|−2)r |z|2 d|z|
)1/r

= (4π)1/r
√

2
π2 β!

(8
d

)|β|
d3/r−2(r(|β| + 2)− 3

)−1/r
.

From this, (C.6), and Young’s inequality [Lieb and Loss 2001, Theorem 4.2] (notice that CY ≤ 1), follows
that, with p, q, r ∈ [1,∞), p−1+ q−1+ r−1 = 2,

|( f,8E( p)−1 Dβχg)| ≤ ‖F‖q‖H‖r‖G‖p

≤ (4π)1/r
√

2
π2 β!

(8
d

)|β|
d3/r−2(r(|β| + 2)− 3

)−1/r‖F‖q‖G‖p

≤ 4
√

2
π
β!
(8

d

)|β|
d3/r−2(r(|β| + 2)− 3

)−1/r‖8‖∞‖χ‖∞‖ f ‖q‖g‖p.

Since S(R3) is dense in both Lp(R3) and Lq∗(R3), this finishes the proof of the lemma. �
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Lemma C.3. For all s > 0, x ∈ R3 \ {0}, and β ∈ N3
0,∣∣∣∂βx 1

|x|
∣∣∣≤ √2β!
|x|

( 8
|x|
)|β|

, (C.7)

∣∣∣∂βx e−s|x|

|x|
∣∣∣≤ √2β!
|x|

( 8
|x|
)|β|

e−s|x|/2. (C.8)

Proof. We will use the Cauchy inequalities [Hörmander 1973, Theorem 2.2.7]. To avoid confusion with
the Euclidean norm | · | (in R3 or in C3), we denote by | · |C the absolute value in C.

Let, for w = (w1, w2, w3) ∈ C3 and r > 0,

P3
r (w)= {z ∈ C3 | |zν −wν |C < r, ν = 1, 2, 3} (C.9)

be the polydisc with polyradius r = (r, r, r). The Cauchy inequalities then state that if u is analytic in
P3

r (w) and if supz∈P3
r (w)
|u(z)|C ≤ M , then

|∂βz u(w)|C ≤ Mβ! r−|β| for all β ∈ N3
0. (C.10)

We take w = x ∈ R3 \ {0} ⊆ C3 and choose r = |x|/8. We prove below that then we have (with
z2 :=∑3

ν=1 z2
ν ∈ C)

Re(z2)≥ 1
2 |x|2 for z ∈ P3

r (x). (C.11)

It follows that
√

z2 := exp( 1
2 Log z2) is well-defined and analytic on P3

r (x) with Log being the principal
branch of the logarithm.

We will also argue below that

Re(
√

z2)≥ 1
2 |x| for z ∈ P3

r (x). (C.12)

Then (by (C.11)) for all z ∈ P3
r (x),

|
√

z2|C =
√
|z2|C ≥

√
|Re z2| ≥ |x|/√2, (C.13)

and (by (C.12)), for all s ≥ 0 and all z ∈ P3
r (x),∣∣exp(−s

√
z2)
∣∣
C
= exp(−s Re(

√
z2))≤ exp(−s|x|/2). (C.14)

Therefore, (C.7) and (C.8) follow from (C.10), (C.13), and (C.14).
It remains to prove (C.11) and (C.12).
For z ∈ P3

r (x), write z = x+ a+ ib with a, b ∈ R3 satisfying |zν − xν |2C = a2
ν + b2

ν ≤ (|x|/8)2. Then

z2 = |x+ a|2− |b|2+ 2i(x+ a) · b,
so, with ε = 1/8,

Re(z2)= |x|2+ |a|2+ 2 x · a− |b|2
≥ (1− ε)|x|2+ (2− ε−1)|a|2− (|a|2+ |b|2)≥ 35

64 |x|2 > 1
2 |x|2.
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This establishes (C.11) .
It follows from (C.11) that, with Arg the principal branch of the argument,

− π
4
≤ 1

2
Arg(z2)≤ π

4
for z ∈ P3

r (x). (C.15)

Furthermore (still for z ∈ P3
r (x)), because of (C.15),

Re(
√

z2)= |z2|1/2
C

cos( 1
2 Arg(z2))≥ |z2|1/2

C
/
√

2. (C.16)

Combining with (C.11) we get (C.12).
This finishes the proof of the lemma. �

Appendix D: Needed results

In this section we gather some results from the literature which are needed in our proofs.

Theorem D.1 [Adams and Fournier 2003, Theorem 5.8]. Let � be a domain in Rn satisfying the cone
condition. Let m ∈ N, p ∈ (1,∞). If mp > n, let p ≤ q ≤∞; if mp = n, let p ≤ q <∞; if mp < n, let
p≤ q≤ p∗ = np/(n−mp). Then there exists a constant K depending on m, n, p, q and the dimensions of
the cone C providing the cone condition for �, such that for all u ∈W m,p(�),

‖u‖Lq(�) ≤ K‖u‖θW m,p(�)‖u‖1−θLp(�), (D.1)

where θ = (n/mp)− (n/mq).

We write K = K (m, n, p, q, �). We always use Theorem D.1 with n = 3, m = 1, and p= p, q= 3p for
some p > 3. Hence mp> n, p≤ q≤∞, and θ = θ(p)= 2/p < 1. Moreover, we always use it with �
being a ball, whose radius in all cases is bounded from above by 1 and from below by R/2 for some
R > 0 fixed.

Let K0 ≡ K0(p)≡ K (1, 3, p, 3p, B1(0)) with B1(0)⊆ R3 the unit ball (which does satisfy the cone
condition). Note that then, by scaling, (D.1) implies that for all r ≤ 1 and all x0 ∈ R3,

‖u‖L3p(Br (x0)) ≤ K0r−θ‖u‖θW 1,p(Br (x0))
‖u‖1−θL p(Br (x0))

, (D.2)

with θ = 2/p.
To summarize, we therefore have:

Corollary D.2. Let p > 3 and R ∈ (0, 1]. Then there exists a constant K2, depending only on p and R,
such that for all r ∈ [R/2, 1], x0 ∈ R3, and all u ∈W 1,p(Br (x0)),

‖u‖L3p(Br (x0)) ≤ K2‖u‖θW 1,p(Br (x0))
‖u‖1−θL p(Br (x0))

, (D.3)

with θ = 2/p.

Here,
K2 ≡ K2(p, R)= (2/R)2/p K0(p), (D.4)

where K0(p)= K (1, 3, p, 3p, B1(0)) in Theorem D.1 above.
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Theorem D.3 [Chen and Wu 1998, Theorem 4.2]. Let � be a bounded domain in Rn and let ai j ∈ C(�),
bi , c ∈ L∞(�) i, j ∈ {1, . . . , n}, with λ,3 > 0 such that

n∑
i, j=1

ai jξiξ j ≥ λ|ξ |2 for all x ∈�, ξ ∈ Rn, (D.5)

n∑
i, j=1

‖ai j‖L∞(�)+
n∑

i=1

‖bi‖L∞(�)+‖c‖L∞(�) ≤3. (D.6)

Suppose u ∈W 2,p
loc (�) satisfies

Lu =
n∑

i, j=1

− ai j Di D j u+
n∑

i=1

bi Di u+ cu = f. (D.7)

Then for any �′ b�,

‖u‖W 2,p(�′) ≤ C
{1
λ
‖ f ‖Lp(�)+‖u‖Lp(�)

}
, (D.8)

where C depends only on n, p,3/λ, dist{�′, ∂�}, and the modulus of continuity of the ai j ’s.

We use Theorem D.3 in the case where �′ and � are concentric balls (and with n = 3, p = 3p/2,
ai j = δi j , bi = c = 0; hence 3 = λ = 1). Reading the proof of the theorem above with this case in
mind (see [Chen and Wu 1998, Lemma 4.1] in particular), one can make the dependence on dist{�′, ∂�}
explicit. More precisely:

Corollary D.4. For all p > 1 there exists a constant K3 = K3(p)≥ 1 such that

‖u‖W 2,3p/2(Br (x0)) ≤ K3
{‖1u‖L3p/2(Br+δ(x0))+ δ−2‖u‖L3p/2(Br+δ(x0))

}
. (D.9)

for all u ∈W 2,3p/2(Br+δ(x0)) (with x0 ∈ R3, r, δ > 0).

Theorem D.5 [Evans 1998, Theorem 5, Section 5.6.2 (Morrey’s inequality)]. Let � be a bounded, open
subset in Rn , n ≥ 2, and suppose ∂� is C1. Assume n < p<∞, and u ∈W 1,p(�). Then u has a version
u∗ ∈ C0,γ (�), for γ = 1− n/p, with the estimate

‖u∗‖C0,γ (�) ≤ K4‖u‖W 1,p(�). (D.10)

The constant K4 depends only on p, n, and �.

Here, u∗ is a version of the given u if u = u∗ a.e. Above,

‖u‖C0,γ (�) := sup
x∈�
|u(x)| + sup

x, y∈�
x 6= y

|u(x)− u( y)|
|x− y|γ . (D.11)

Of course, supx∈� |u(x)| ≤ ‖u‖C0,γ (�).

Remark D.6. In [Evans 1998, p. 245] a definition of the W m,p-norm is used which is slightly different
from ours (see (18)), but which is an equivalent norm by the equivalence of norms in finite-dimensional
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vector spaces. Therefore, (D.10) holds with our definition of the norm, though the constant K4 is not the
same as the one in [Evans 1998, Theorem 5, Section 5.6.2].
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SEMICLASSICAL TRACE FORMULAS AND HEAT EXPANSIONS

YVES COLIN DE VERDIÈRE

In a recent paper (J. Phys. A 43:47 (2011), 474028), B. Helffer and R. Purice compute the second term of a
semiclassical trace formula for a Schrödinger operator with magnetic field. We show how to recover their
formula by using the methods developed by Riemannian geometers in the seventies for heat expansions.

Introduction

There is a strong similarity between the expansions of the heat kernel as worked out by people in
Riemannian geometry in the seventies, starting with the famous “Can one hear the shape of a drum?”
by Mark Kac [1966] and continuing with [Berger 1966; McKean and Singer 1967] (see also the books
[Berger et al. 1971; Gilkey 1975]), and the so-called semiclassical trace formulas developed by people
in semiclassical analysis, starting with [Helffer and Robert 1983]. In fact, this is not only a similarity,
but, as we will prove, each of these expansions, even if they differ when expressed numerically for some
example, can be deduced from the other one as formal expressions of the fields.

Let us look first at the heat expansion on a smooth closed Riemannian manifold of dimension d , .X;g/,
with the (negative) Laplacian �g

1. The heat kernel e.t;x;y/, with t > 0 and x;y 2X , is the Schwartz
kernel of exp.t�g/: the solution of the heat equation ut ��guD 0 with initial datum u0 is given by

u.t;x/D

Z
X

e.t;x;y/u0.y/ jdyjg:

The function e.t;x;x/ admits, as t ! 0C, the following asymptotic expansion:

e.t;x;x/� .4� t/�d=2
�
1C a1.x/t C � � �C al.x/t

l
C � � �

�
:

The al are given explicitly in [Gilkey 2004, p. 201] for l � 3, and are known for l � 5 [Avramidi 1990; Ven
1998]. See also the related works [Hitrik 2002; Hitrik and Polterovich 2003a; 2003b; Polterovich 2000].
They are universal polynomials in the components of the curvature tensor and its covariant derivatives.
For example, a0 D 1 and a1 D �g=6, where �g is the scalar curvature.

The previous asymptotic expansion gives the expansion of the trace by integration over X and has
been used as an important tool in spectral geometry:

trace.et�g/D

Z
X

e.t;x;x/ jdxjg D

1X
kD1

e�k t ;

MSC2010: 35P20, 35S05, 58J35.
Keywords: trace formula, magnetic fields, heat expansion, synchronous gauge.

1In this note, we will not follow the usual sign convention of geometers, but the convention of analysts
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where ��1D 0���2� � � � ���k � � � � is the sequence of eigenvalues of ��g with the usual convention
about multiplicities. If d D 2, this gives

trace.et�g/D
1

4� t

�
Area.X /C

2��.X /

6
t CO.t2/

�
;

where �.X / is the Euler characteristic of X .
There is an extension of the previous expansion in the case of Laplace type operators on fiber bundles:

the coefficients of the expansion are then polynomials in the covariant derivatives of the curvature of the
metric and of the connection on the fiber bundle. The heat expansion can be reinterpreted as an expansion
of the Schwartz kernel of f .�„2�g/ on the diagonal x D y in powers of „ with f .u/D exp.�u/ and
t D „2. This is a particular case of the semiclassical trace.

Let us describe the semiclassical setting in the flat case: yH„ is a self-adjoint „-pseudodifferential
operator with Weyl symbol H.x; �/ in some open domain X in Rd , or more generally on a Riemannian
manifold. Let f 2 S.R/ and look at f . yH„/. Under some suitable assumptions (ellipticity at infinity in �)
on H , f . yH„/ is a pseudodifferential operator whose Weyl symbol f ?.H / is a formal power series in
„, given, using the Moyal product denoted by ?, by the following formula (see [Gracia-Saz 2005] for
explicit formulas and Section 4.2 therein for a proof; see also [Charles 2003]) at the point z0 2 T ?X :

f ?.H /.z0/D .2�„/
�d
1X

lD0

1

l!
f .l/.H.z0// .H �H.z0//

? l .z0/: (1)

From the previous formula, we see that the symbol of f . yH„/ at the point z depends only of the Taylor
expansions of H at the point z and of f at the point H.z/. Helffer and Purice [2010] have studied the case
of the magnetic Schrödinger operator whose Weyl symbol is Ha;V .x; �/D

Pd
jD1.�j � aj .x//

2CV .x/

and show that the Schwartz kernel of f . yH„;a;V / at the point .x;x/ admits an asymptotic expansion of
the form

Œf . yH„;a;V /�.x;x/D .2�„/
�d
1X

jD0

„
2j

� kjX
lD0

Z
Rd

f .l/.k�k2CV .x//Q
a;V
j ;l

.x; �/ jd�j

�

where the Q
a;V
j ;l

.x; �/ are polynomials in � calculated from the Taylor expansions of the magnetic field
B D da and V at the point x. The proof in [Helffer and Purice 2010] uses a pseudodifferential calculus
adapted to the magnetic field.

We will give a simplified version of the expansion replacing the (non-unique) Q
a;V
j ;l

.x; �/ by functions
P

B;V
j ;l

.x/ which are uniquely defined and are given by universal O.d/-invariant polynomials of the Taylor
expansions of B and V at the point x. We present then two ways to compute the P

B;V
j ;l

:

� we can first use Weyl’s invariant theory (see [Gilkey 2004]) in order to reduce the problem to the
determination of a finite number of numerical coefficients; then simple examples, like harmonic
oscillator and constant magnetic field, allow to determine (part of) these coefficients.
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� The P
B;V
j ;l

are related in a very simple way to the coefficients of the heat expansion; it is possible to
compute the P

B;V
j ;l

from the knowledge of the al for j C 1� l � 3j . This is enough to recompute
the coefficient of „2 and also, in principle, the coefficients of „4 in the expansion, because the al are
known up to l D 6 in the case of a flat metric (see [Ven 1998]).

In this note, we will first describe precisely the semiclassical expansion for Schrödinger operators (in
the case of an Euclidean metric) and the properties of the functions P

B;V
j ;l

.x/. Then, we will show how
to compute the P

B;V
j ;l

.x/ using an adaptation of the method used for the heat kernel (Weyl’s theorem on
invariants and explicit examples). Finally, we will explain how the al are related to the P

B;V
j ;l

.x/. This
gives us two proofs of the main formula given in [Helffer and Purice 2010]; this paper was the initial
motivation to this work.

1. Semiclassical trace for Schrödinger operators

In what follows, X is an open domain in Rd , equipped with the canonical Euclidean metric, and �k.X /

will denote the space of smooth exterior differential forms in X . Let us give a Schrödinger operator,
with a smooth magnetic field B D

P
1�i<j�d bij dxi ^ dxj (a closed real 2-form) and a smooth electric

potential V (a real-valued smooth function) in X . We assume that V is bounded from below. We will
assume also that the 2-form B is exact and can be written B D da and we introduce the Schrödinger
operator defined by

H„;a;V D

dX
jD1

�
„

i

@

@xj
� aj .x/

�2

CV .x/:

The Weyl symbol of H„;a;V is Ha;V .x; �/D k� � a.x/k2CV .x/. We denote by yH„;a;V a self-adjoint
extension of H„;a;V in L2.X; jdxj/. Let us give f 2 S.R/ and � 2 C1o .X / and consider the trace of
�f . yH„;a;V / as a distribution on X �R (the density of states):

Trace.�f . yH„;a;V //D
Z

X

Z„;a;V .g/.x/�.x/ jdxj;

where Z„;a;V .g/.x/ is the value at the point .x;x/ of the Schwartz kernel of f . yH„;a;V /.

Theorem 1. We have the following asymptotic expansion in powers of „:

Z„;a;V .g/.x/�

.2�„/�d

� Z
Rd

f .k�k2CV .x// jd�jC

1X
jD1

„
2j

� lD3jX
lDjC1

P
B;V
j ;l

.x/

Z
Rd

f .l/.k�k2CV .x// jd�j

��
:

We have the explicit formulas

P
B;V
1;2
D�

1
6

�
�V CkBk2

�
; P

B;V
1;3
D�

1
12
krV k2;

P
B;V
2;3
D�

1
180

�
8krBk2Ckd?Bk2C 12h�BjBiC 3�2V

�
:
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Here kBk2 D
P

1�i<j�d b2
ij , d? W�2.X /!�1.X / is the formal adjoint of d used in the definition of

the Hodge Laplacian on exterior forms. If d D 3, kBk is the Euclidean norm of the vector field associated
to B.

The P
B;V
j ;l

.x/ are polynomials of the derivatives of B and V at the point x. Moreover, if �; �; c are
constants and we define �?.f /.x/D f .�x/, we have the following scaling properties:

(1) P
�:�?.B/;�?.V /

j ;l
.x/D �2j P

B;V
j ;l

.�x/. This will be used with x D 0.

(2) P
�B;�2V

j ;l
.x/D �2.l�j/P

B;V
j ;l

.x/.

(3) P
B;VCc
j ;l

.x/D P
B;V
j ;l

.x/.

(4) P
�B;V
j ;l

.x/D P
B;V
j ;l

.x/.

(5) The P
B;V
j ;l

are invariant by the natural action of the orthogonal group O.d/ on the Taylor expansions
of B and V at the point x.

Remark 1. From the statement of the theorem, we see that the expansion of the density of states is
independent of the chosen self-adjoint extension.

As a consequence, we can get the following full trace expansion under some more assumptions:

Corollary 1. Let us assume that E0 D inf V < E1 D lim infx!@X V .x/ and that we have chosen
the Dirichlet boundary conditions. Let f 2 C1o .��1;E1Œ/, then the trace of f . yH„;a;V / admits the
asymptotic expansion

Trace.f . yH„;a;V //� .2�„/
�d

Z
X

�Z
Rd

f .k�k2CV .x// jd�jC � � �

� � �

1X
jD1

„
2j

lD3jX
lDjC1

P
B;V
j ;l

.x/

Z
Rd

f .l/.k�k2CV .x// jd�j

�
jdxj:

The coefficient of „2 can be written as

�
1

12

Z
X�Rd

f .2/.k�k2CV .x//
�
�V .x/C 2kB.x/k2

�
jdx d�j:

The expansion follows from [Helffer and Robert 1983]. An integration by part in x givesZ
X

f .3/.k�k2CV .x//krV .x/k2 jdxj D �

Z
X

f .2/.k�k2CV .x//�V .x/ jdxj:

2. Existence of the „-expansion of Z„;a;V

Using Theorem 2 in the Appendix, we can work in Rd with a and V compactly supported. The existence
of the expansion is known in general from [Helffer and Robert 1983] and the calculus of the symbol of
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f . yH„;a;V /. We get

Z
X

Z„;a;V .f /.x/�.x/ jdxj D .2�„/�d
1X

jD0

„
2j

kjX
lD0

Z
�.x/f .l/.Ha;V .x; �//Qj ;l.x; �/ jdx d�j

where the Qj ;l.x; �/ are polynomials in the Taylor expansion of Ha;V at the point .x; �/. The previous
expansion is valid for any (admissible) pseudodifferential operator. In the case of Schrödinger operators
we can make integrations by part in the integrals

R
f .l/.Ha;V .x; �//Qj ;l.x; �/ jd�j which reduces to a

similar formula where we can replace the Qj ;l.x; �/ by the Pj ;l.x/. This is based on the expansion of
Qj ;l as a polynomial in � in powers of .� �a/: odd powers give 0 and even powers can be reduced using

d�
�
.�j � aj /f

.l/.Ha;V /�.@�j /d�
�
D 2k�j � ajk

2f .lC1/.Ha;V /d�Cf
.l/.Ha;V /d�:

We have only to check that the powers of � in Qj ;l.x; �/ are less than l : this is based on Equation (1).
The coefficients of the l-th Moyal power of Ha;V .z/�Ha;V .z0/ are homogeneous polynomials of degree
l in the derivatives of Ha;V .z/. At the point z D z0 only derivatives of order � 1 are involved. They are
all of degree � 1 in �. Using gauge invariance at the point x (Section 3), we can assume that a.x/D 0.

3. Gauge invariance

If S WX ! R is a smooth function, we have

Trace.�e�iS.x/=„f . yH„;a;V /e
iS.x/=„/D Trace.�f . yH„;a;V //

and

e�iS.x/=„f . yH„;a;V /e
iS.x/=„

D f . yHaCdS;V /:

Hence, we can chose any local gauge a in order to compute the expansion: using the synchronous
gauge (see Section 4), we get the individual termsZ

f .l/.H0;V /P
B;V
j ;l

.x/ jd�j

for the expansion, where the P
B;V
j ;l

.x/ depend only of the Taylor expansions of B and V at the point x.

4. The synchronous gauge

The main idea is to find an appropriate gauge a adapted to the point x0 where we want to make the
symbolic computation. In a geometric language, we use the trivialization of the bundle by parallel
transportation along the rays: the potential a vanishes on the radial vector field.2 Here, this is simply the
fact that, for any closed 2-form B on R2, there exists an unique 1-form aD

Pd
jD1 aj dxj so that daDB

and
Pd

jD1 xj aj D 0.

2This gauge is sometimes called the Fock–Schwinger gauge; in [Atiyah et al. 1973], it is called the synchronous framing.
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We will do that for the Taylor expansions degree by degree. In what follows we will use a decomposition
for 1-forms, but it works also for k-forms.

Let us denote by�k
N

the finite dimensional vector space of k-differential forms on Rd whose coefficients
are homogeneous polynomials of degree N and by W D

Pd
jD1 xj @=@xj the radial vector field. The

exterior differential induces a linear map from �k
N

into �kC1
N�1

and the inner product �.W / a map from
�k

N
into �k�1

NC1
. They define complexes which are exact except at k D N D 0. Moreover, we have a

situation similar to Hodge theory:

�k
N D d�k�1

NC1˚ �.W /�kC1
N�1

:

This is due to Cartan’s formula: the Lie derivative of a form ! 2�k
N

satisfies, from the direct calculation,
LW ! D .kCN /!, and, by Cartan’s formula, LW ! D d.�.W /!/C �.W /d!. So

! D
1

kCN
.d.�.W /!/C �.W /d!/ :

It remains to show that this is a direct sum: if ! D d˛ D �.W / , we have �.W /! D 0 and d! D 0; from
the previous decomposition, we see that ! D 0. Let us denote by J N!, where ! is a differential form of
degree k, the form in �k

N
which appears in the Taylor expansion of !.

We get:

Proposition 1. If P .J 0a;J 1a; � � � ;J N a/ is a polynomial in the Taylor expansion of the 1-form a at some
order N which is invariant by a! aC dS , P is independent of J 0a and

P .J 1a; � � � ;J N a/D P
�

1

2
J 1�.W /B; � � � ;

1

NC1
J N �.W /B

�
is a polynomial of the Taylor expansion of B to the order N � 1.

5. Properties of the Pj;l

5.1. Range of l for j fixed. From the scaling properties, we deduce that, in a monomial

D˛1Bi1;j1
� � �D˛k Bik ;jk

Dˇ1V � � �DˇmV;

belonging to Pj ;l , we have k C 2m D 2.l � j / and k C j˛1j C � � � C j˛k j C jˇ1j C � � � C jˇmj D 2j .
Moreover, for j � 1, kCm � 1 and j p̌j � 1. Hence j C 1 � l � 3j . The previous bounds are sharp:
take the monomials �j V and krV k2j which give l D j C 1 and l D 3j .

5.2. Invariance properties.

(1) Let us assume that we look at the point x D 0 and consider the operator D�.f /.x/D f .�x/. We
have

D� ı
yH„;A;V ıD1=� D

yH„=�;AıD�;V ıD� :
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The same relation is true for any function f . yH„;A;V / and then we have, looking at the Schwartz
kernels and using the Jacobian �d of D�:

P
B;V
j ;l

.0/

Z
Rd

f .l/.k�k2CV .0// jd�j D ��2j P
�:�?B;�?V

j ;l
.0/

Z
Rd

f .l/.k�k2CV .0// jd�j:

(2) We have bH„;�a;�2V D �
2 bH „

�
;a;V :

(3) Changing V into V C c gives a translation by c in the function f but does not change the P
B;V
j ;l

.

(4) Changing B into �B gives a complex conjugation in the computations. The final result is real-valued.

(5) Orthogonal invariance is clear: an orthogonal change of coordinates around the point x preserves
the density of states.

5.3. The case d D 2. We deduce from the scaling properties and invariance by the orthogonal group,
that there exists constants ad ; bd ; cd so that P

B;V
1;2

.x/D ad�V C bdkBk
2; P1;3.x/D cdkrV k2.

6. Explicit examples

The calculation for the harmonic oscillators and the constant magnetic fields allows to determine the
constants ad ; bd ; cd .

6.1. Harmonic oscillators. Let us consider �D�„2 d2

dx2
Cx2 with d D 1. The kernel of P .t;x;y/ of

exp.�t�/ is given by the Mehler formula:

P .t;x;y/D .2�„ sinh.2t„//�
1
2 exp

�
�

1

2„ sinh.2t„/

�
cosh.2t„/.x2

Cy2/� 2xy
��
:

Hence

P .t;x;x/� .2�„/�1e�tx2

�Z
R

e�t�2

d�

� �
1�„2.t2

� t3x2/=3CO.„4/
�
:

Hence P1;2.x/D�V 00.x/=6 and P1;3.x/D�V 0.x/2=12.
Similarly, in dimension d > 1, we get P1;2.x/D��V .x/=6 and P1;3.x/D�krV k2=12.

6.2. Constant magnetic field. Let us consider the case of a constant magnetic field B in the plane and
denote by Q.t;x;y/ the kernel of exp.�tHB;0/. We have (see [Avron et al. 1978])

Q.t;x;x/D
B

4�„ sinh Bt„
:

Hence the asymptotic expansion

Q.t;x;x/D .2�„/�2

Z
exp.�tk�k2/ jd�j

�
1� t2

„
2B2=6CO.„4/

�
I

hence P1;2.x/D�B2=6 and P1;3.x/D 0.
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Using the normal form B D b12dx1 ^ dx2C b34dx3 ^ dx4C � � � , we get in dimension d > 2 the
values P1;2.x/D�kBk

2=6 and P1;3.x/D 0.

7. Heat expansion from the semiclassical expansions

We have t yH1;a;V D
yHpt ;

p
ta;tV . Using the expansion of Theorem 1 with f .E/D e�E , we get easily

the point-wise expansion of the heat kernel on the diagonal as t ! 0C:

Œexp.�t yH1;a;V /�.x;x/�
1

.4� t/d=2
e�tV .x/

1X
lD0

� X
l=3�j�l�1

P
B;V
j ;l

.x/

�
.�t/l :

In particular, a1.x/D�V .x/ and the coefficient a2.x/ is given by

a2.x/D
1
2
V .x/2� 1

6
�V .x/� 1

6
kB.x/k2:

This formula agrees with Equation (3) of Theorem 3.3.1 in [Gilkey 2004].
This gives another way to compute the Pj ;l : if, as power series in t ,

1X
lD0

.�1/lbl.x/t
l
D etV .x/

1X
lD0

al.x/t
l ;

we have X
l=3�j�l�1

P
B;V
j ;l

.x/D bl.x/:

P
B;V
j ;l

is the sum of monomials homogeneous of degree 2.l � j / in bl where B and its derivatives have
weights 1 while V and its derivatives have weights 2.

The heat coefficients al on flat spaces are known for l � 6 from [Ven 1998]. This is enough to check the
term in „2 (uses a2 and a3) in [Helffer and Purice 2010] and to compute the term in „4 in the semiclassical
expansion (uses the al for 3� l � 6).

We have also a mixed expansion writing t bH„;a;V D bHpt„;
p

ta;tV , we get a power series expansion in

powers of „ and t valid in the domain „2t! 0 and 0< t � t0 for the point-wise trace of exp.�t bH„;a;V /:
Zt;„.x/�

1

.4� t/d=2
e�tV .x/

�
1C

X
j�1

jC1�l�3j

„
2j .�t/lP

B;V
j ;l

.x/

�
:

This shows that the integrals
R
X V .x/k jdxj and

R
X P

B;V
j ;l

.x/ jdxj are recoverable from the semiclassical
spectrum.

Appendix: functional calculus in domains and self-adjoint extensions (after Johannes Sjöstrand)

The content of this Appendix is due to Johannes Sjöstrand. I thank him very much for this contribution.

Let X � Rd be an open set. We say that a linear operator A is a ‰DO in X , with Weyl symbol a if,
for any compact K �X , A acts on functions supported in K as a ‰DO of Weyl symbol a.
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Theorem 2. Let H„;a;V be a Schrödinger operator with magnetic field given by

H„;a;V D

dX
jD1

�
„

i

@

@xj
� aj .x/

�2

CV .x/;

defined in some open domain X � Rd . We assume that a and V are smooth in X and that V is bounded
from below, so that H„;a;V admits some self-adjoint extensions on the Hilbert space L2.X; jdxj/. One of
them will be denoted by yH„;a;V . Then, for any f 2 S.R/, f . yH„;a;V /, given by the functional calculus,
is a semiclassical ‰DO in X whose symbol is given by Equation (1) and is independent of the chosen
extension.

The proof uses a multicommutator method already used by Helffer and Sjöstrand [1984].

Proof. We introduce, for s 2 R, the semiclassical („-dependent) Sobolev spaces

Hs
„
WD fu 2 S0.Rd / j kOp„.1Ck�k

2/s=2ukL2 <1 g

with the norm
kuks WD kOp„.1Ck�k

2/s=2ukL2 :

The („-dependent) norm kAks1;s2
is the norm of A as linear operator from Hs1

„
to Hs2

„
. A linear operator

K is smoothing if, for all s1; s2, kKks1;s2
D O.„1/. This implies that the Schwartz kernel of K is

smooth with all derivatives locally O.„1/. We have the

Lemma 1. Let Y be an open set in Rd . Let Pj DPj .„/; j D 0; 1 be two self-adjoint operators on Hilbert
spaces Hj DL2.Xj ; jdxj/ with Y b X0 � X1 � Rd and with domains Dj so that C1o .Y /� Dj �Hj .
Let us assume that, on C1o .Y /, P0 D P1 DH„;a;V .D P /.

Then, for any f 2 C1o .R/, f .P0/� f .P1/ is smoothing on Y . In particular, the densities of states
Œf .Pj /�.x;x/; j D 0; 1, coincide in Y modulo O.„1/.

Assuming Lemma 1, Theorem 2 follows by extending a and V smoothly outside Y so that they have
compact support in Rd . We take Y bX DX0 � Rd DX1. It follows that P1 is essentially self-adjoint
and the functional calculus for P1 follows then easily from [Helffer and Robert 1983]. The result is valid
even for f 2 S.R/ because C1o is dense in S and the result of [Helffer and Robert 1983] is valid for
f 2 S and the resulting formulas for the symbols are continuous w.r. to the topology of S. �

Proof. Proof of Lemma 1 If � 2 C1o .Y /, then, for z 62 R and j ; k 2 f0; 1g, we have on L2.Y /:

.Pj � z/�1
ı�D � ı .Pk � z/�1

� .Pj � z/�1ŒP; ��.Pk � z/�1 (2)

Let �0��1� � � � ��N with, for l D 0; � � � ;N , �l 2C1o .Y / and, for l D 0; � � � ;N �1, �l.1��lC1/� 0.
By iterating (2) and using �lC1ŒP; �l �D ŒP; �l �, we find:

.P1� z/�1
ı�0 D �1 ı .P0� z/�1�0��2 ı .P0� z/�1ŒP; �1�.P0� z/�1�0C � � �

˙�N .P0� z/�1ŒP; �N�1�.P0� z/�1ŒP; �N�2� � � � .P0� z/�1�0

� .P1� z/�1ŒP; �N �.P0� z/�1
� � � .P0� z/�1�0
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Let us give now �0;  2 C1o .Y / with disjoints supports. By choosing the �l for l > 0 with supports
disjoint from the support of  , we see, using Equation (2), that, for any N ,

k .P1� z/�1�0k0;2 DO
�
„

N
j=zj�.NC1/

�
:

The standard a priori elliptic estimates

kuksC2;�1
� C

�
k.P � z/uks;�2

Ckuks;�1

�
for z 2K b C and �1 b�2 b Rd , allow to prove that, for any N; s, there exists M.N; s/ so that

k .P1� z/�1�0ks;sCNC2 DO.„N
j=zj�M.N;s// (3)

Let � 2 C1o .Y / so that �� 1 on the support of �0. Let us apply multiplication by �0 to the right and to
the left in (2) and choose  with support disjoint from �0 so that ŒP; �� D ŒP; ��. Inserting  this way
in (2), we get, using (3),

�0.P1� z/�1�0��0.P0� z/�1�0 DK;

and, for any N , there exists M.N / so that kKk�N;N D O.„N=z�M.N //. We now apply the formula
(known to some people as the “Helffer–Sjöstrand formula”, proved for example in [Dimassi and Sjöstrand
1999, p. 94–95]), valid for f 2 C1o .R/ and Qf an almost holomorphic extension of f :

f .Pj /D
1

�

Z
C

@Nz Qf .z/.Pj � z/�1dL.z/;

where dL.z/ is the canonical Lebesgue measure in the complex plane. From this, we see that f .P0/�

f .P1/ is smoothing in Y . �
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