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ON SOME MICROLOCAL PROPERTIES OF THE RANGE OF A
PSEUDODIFFERENTIAL OPERATOR OF PRINCIPAL TYPE

JENS WITTSTEN

We obtain microlocal analogues of results by L. Hörmander about inclusion relations between the ranges
of first order differential operators with coefficients in C∞ that fail to be locally solvable. Using similar
techniques, we study the properties of the range of classical pseudodifferential operators of principal
type that fail to satisfy condition (Ψ ).

1. Introduction

We shall study the properties of the range of a classical pseudodifferential operator P ∈ Ψ m
cl (X) that is

not locally solvable, where X is a C∞ manifold of dimension n. Here, classical means that the total
symbol of P is an asymptotic sum of homogeneous terms,

σP(x, ξ)= pm(x, ξ)+ pm−1(x, ξ)+ · · · ,

where pk is homogeneous of degree k in ξ and pm denotes the principal symbol of P . When no confusion
can occur we will simply refer to σP as the symbol of P . We shall restrict our study to operators of
principal type, which means that the Hamilton vector field Hpm and the radial vector field are linearly
independent when pm = 0. We shall also assume that all operators are properly supported, that is, both
projections from the support of the kernel in X × X to X are proper maps. For such operators, local
solvability at a compact set M ⊂ X means that for every f in a subspace of C∞(X) of finite codimension
there is a distribution u in X such that

Pu = f (1-1)

in a neighborhood of M . We can also define microlocal solvability at a set in the cosphere bundle, or
equivalently, at a conic set in T ∗(X)r 0, the cotangent bundle of X with the zero section removed. By
a conic set K ⊂ T ∗(X)r 0 we mean a set that is conic in the fiber, that is,

(x, ξ) ∈ K implies (x, λξ) ∈ K for all λ > 0.

If, in addition, πx(K ) is compact in X , where πx : T ∗(X)→ X is the projection, then K is said to be
compactly based. Thus, we say that P is solvable at the compactly based cone K ⊂ T ∗(X)r 0 if there
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is an integer N such that for every f ∈ H loc
(N )(X) there exists a u ∈ D′(X) with K ∩WF(Pu − f ) = ∅

(see Definition 2.1).
The famous example due to Hans Lewy [1957] of the existence of functions f ∈ C∞(R3) such that

the equation

∂x1u+ i∂x2u− 2i(x1+ i x2)∂x3u = f

does not have any solution u ∈ D′(Ω) in any open nonvoid subset Ω ⊂ R3 contradicted the assumption
that partial differential equations with smooth coefficients behave as analytic partial differential equa-
tions, for which existence of analytic solutions is guaranteed by the Cauchy–Kovalevsky theorem. This
example led to an extension due to Hörmander [1960b; 1960a] in the sense of a necessary condition
for a differential equation P(x, D)u = f to have a solution locally for every f ∈ C∞. In fact (see
[Hörmander 1963, Theorem 6.1.1]), if Ω is an open set in Rn , and P is a differential operator of order m
with coefficients in C∞(Ω) such that the differential equation P(x, D)u = f has a solution u ∈ D′(Ω)

for every f ∈C∞0 (Ω), then {pm, p̄m}must vanish at every point (x, ξ)∈Ω×Rn for which pm(x, ξ)= 0,
where

{a, b} =
n∑

j=1

∂ξ j a ∂x j b− ∂x j a ∂ξ j b

denotes the Poisson bracket.
In addition to his example, Lewy conjectured that differential operators that fail to have local solutions

are essentially uniquely determined by the range. Later Hörmander [1963, Chapter 6.2] proved that if P
and Q are two first order differential operators with coefficients in C∞(Ω) and in C1(Ω), respectively,
such that the equation P(x, D)u = Q(x, D) f has a solution u ∈D′(Ω) for every f ∈ C∞0 (Ω), and x is
a point in Ω such that

p1(x, ξ)= 0 and {p1, p̄1}(x, ξ) 6= 0 (1-2)

for some ξ ∈ Rn , then there is a constant µ such that (at the fixed point x)

tQ(x, D)= µ tP(x, D),

where tQ and tP are the formal adjoints of Q and P . If (1-2) holds for a dense set of points x in Ω and
if the coefficients of p1(x, D) do not vanish simultaneously in Ω , then there is a function µ ∈ C1(Ω)

such that

Q(x, D)u = P(x, D)(µu). (1-3)

Furthermore, for such an operator P and function µ, the equation P(x, D)u=µP(x, D) f has a solution
u ∈ D′(Ω) for every f ∈ C∞0 (Ω) if and only if p1(x, D)µ= 0.

Hörmander also showed that this result extends to operators of higher order in the following way (see
[1963, Theorem 6.2.4]). If P is a differential operator of order m with coefficients in C∞(Ω) and µ is
a function in Cm(Ω) such that the equation

P(x, D)u = µP(x, D) f
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has a solution u ∈ D′(Ω) for every f ∈ C∞0 (Ω), then it follows that

n∑
j=1

∂ξ j pm(x, ξ)∂x jµ(x)= 0

for all x ∈Ω and ξ ∈ Rn such that

{pm, p̄m}(x, ξ) 6= 0 and pm(x, ξ)= 0. (1-4)

This means that the derivative of µ must vanish along every bicharacteristic element with initial data
(x, ξ) satisfying (1-4), that is, giving rise to nonexistence of solutions.

If P is a pseudodifferential operator such that P is microlocally elliptic near (x0, ξ0), then there exists
a microlocal inverse, called a parametrix P−1 of P , such that in a conic neighborhood of (x0, ξ0) we
have P P−1

= P−1 P = Identity modulo smoothing operators. P is then trivially seen to be microlocally
solvable near (x0, ξ0), and for any pseudodifferential operator Q we can write Q = P P−1 Q + R =
P E + R, where R is a smoothing operator. When the range of Q is microlocally contained in the range
of P , we will show the existence of this type of representation for Q in the case when P is a nonsolvable
pseudodifferential operator of principal type, although we will have to content ourselves with a weaker
statement concerning the Taylor coefficients of the symbol of the operator R (see Theorem 2.19 for the
precise formulation of the result). Note that when P is solvable but nonelliptic we cannot hope to obtain
such a representation in general; see the remark on page 440.

For pseudodifferential operators of principal type, Hörmander [1985b] proved that local solvability in
the sense of (1-1) implies that M has an open neighborhood Y in X where pm satisfies condition (Ψ ),
which means that

Im apm does not change sign from − to + along the oriented bicharacteristics of Re apm (1-5)

over Y for any 0 6= a ∈ C∞(T ∗(Y )r 0). The oriented bicharacteristics are the positive flow-outs of the
Hamilton vector field HRe apm on Re apm = 0. The proof relies on an idea due to Moyer [1978], and
uses the fact that condition (1-5) is invariant under multiplication of pm with nonvanishing factors, and
conjugation of P with elliptic Fourier integral operators.

Rather recently Dencker [2006] proved that condition (Ψ ) is also sufficient for local and microlocal
solvability for operators of principal type. To get local solvability at a point x0, Dencker assumed the
strong form of the nontrapping condition at x0,

pm = 0 implies ∂ξ pm 6= 0. (1-6)

This was the original condition for principal type of Nirenberg and Treves [1970a; 1970b; 1971], which is
always obtainable microlocally after a canonical transformation. Thus, we shall study pseudodifferential
operators that fail to satisfy condition (Ψ ) in place of the condition given by (1-4), and show that such
operators are, in analogue with the inclusion relations between the ranges of differential operators that
fail to be locally solvable, essentially uniquely determined by the range. However, even though (1-4) is a
microlocal condition, we get the mentioned local results for differential operators because of analyticity
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in ξ of the corresponding symbol. Since this is not generally true for pseudodifferential operators, our
results will be inherently microlocal. We will combine the techniques used in [Hörmander 1963] to prove
the inclusion relations for differential operators with the approach used in [Hörmander 1985b] to prove
the necessity of condition (Ψ ) for local solvability of pseudodifferential operators of principal type.

It is possible to extend these results to certain systems of pseudodifferential operators, which will be
addressed in a forthcoming joint paper with Nils Dencker.

2. Nonsolvable operators of principal type

Let X be a C∞ manifold of dimension n. In what follows, C will be taken to be a new constant every
time unless stated otherwise. We let N= {0, 1, 2, . . . }, and if α ∈ Nn is a multiindex α = (α1, . . . , αn),
we let

Dα
x = Dα1

x1
· · · Dαn

xn
,

where Dx j = −i∂x j . We shall also employ the standard notation f (β)(α) (x, ξ) = ∂
α
x ∂

β
ξ f (x, ξ) for multi-

indices α, β.
In this section we will follow the outline of [Hörmander 1985b, Chapter 26, Section 4]. Recall that

the Sobolev space H(s)(X) for s ∈ R is a local space, that is, if ϕ ∈ C∞0 (X) and u ∈ H(s)(X), then
ϕu ∈ H(s)(X), and the corresponding operator of multiplication is continuous. Thus we can define

H loc
(s) (X)= {u ∈ D′(X) : ϕu ∈ H(s)(X) for all ϕ ∈ C∞0 (X)}.

This is a Fréchet space, and its dual with respect to the inner product on L2 is

H comp
(−s) (X)= H loc

(−s)(X)∩E′(X).

Definition 2.1. If K ⊂ T ∗(X)r0 is a compactly based cone, we shall say that the range of Q ∈Ψ m
cl (X)

is microlocally contained in the range of P ∈Ψ k
cl(X) at K if there exists an integer N such that for every

f ∈ H loc
(N )(X), there exists a u ∈ D′(X) with WF(Pu− Q f )∩ K =∅.

If I ∈Ψ 0
cl(X) is the identity on X , we obtain from Definition 2.1 the definition of microlocal solvability

for a pseudodifferential operator (see [Hörmander 1985b, Definition 26.4.3]) by setting Q = I . Thus,
the range of the identity is microlocally contained in the range of P at K if and only if P is microlocally
solvable at K . Note also that if P and Q satisfy Definition 2.1 for some integer N , then due to the
inclusion

H loc
(t) (X)⊂ H loc

(s) (X) if s < t,

the statement also holds for any integer N ′ ≥ N . Hence N can always be assumed to be positive.
Furthermore, the property is preserved if Q is composed with a properly supported pseudodifferential
operator Q1 ∈ Ψ

m′
cl (X) from the right. Indeed, let g be an arbitrary function in H loc

(N+m′)(X). Then
f = Q1g ∈ H loc

(N )(X) since the map

Q1 : H loc
(s) (X)→ H loc

(s−m′)(X)
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is continuous for every s ∈R, so by Definition 2.1 there exists a u ∈D′(X) with WF(Pu−Q f )∩K =∅.
Hence the range of Q Q1 is microlocally contained in the range of P at K with the integer N replaced
by N +m′.

The property given by Definition 2.1 is also preserved under composition of both P and Q with a
properly supported pseudodifferential operator from the left. This follows immediately from the fact that
properly supported pseudodifferential operators are microlocal, that is,

WF(Au)⊂WF(u)∩WF(A) for u ∈ D′(X).

Remark. In Definition 2.1 we may always assume that f ∈ H comp
(N ) (X) and u ∈ E′(X) when considering

a fixed cone K . In fact, assume

Q f = Pu+ g,

where f ∈ H loc
(N )(X) and u, g ∈D′(X) with WF(g)∩K =∅, and let Y b X satisfy K ⊂ T ∗(Y )r 0. (We

write Y b X when Y is compact and contained in X .) Since P and Q are properly supported we can find
Z1, Z2 ⊂ X such that Pv = 0 in Y if v = 0 in Z1, and Qv = 0 in Y if v = 0 in Z2. We may of course
assume that Y b Z j for j = 1, 2. Fix φ j ∈ C∞0 (X) with φ j = 1 on Z j . Then we have Pu = P(φ1u) and
Q f = Q(φ2 f ) in Y , so

∅=WF(Q f − Pu)∩ K =WF(Q(φ2 f )− P(φ1u))∩ K

where φ1u and φ2 f have compact support. Hence we may assume that u ∈ E′(X) and f ∈ H comp
(N ) (X)=

H loc
(N )(X)∩ E′(X) to begin with. Note that this also implies g = Q f − Pu ∈ E′(X) since P and Q are

properly supported.

The following easy example will prove useful when discussing inclusion relations between the ranges
of solvable but nonelliptic operators.

Example 2.2. If X ⊂ Rn is open, and K ⊂ T ∗(X)r 0 is a compactly based cone, then the range of
D1 =−i∂/∂x1 is microlocally contained in the range of D2 at K . In fact, this is trivially true since both
operators are surjective D′(X)→D′(X)/C∞(X). To see that for example D1 is surjective, we note that
by the remark on page 427 it suffices to show that there exists a number N ∈ Z such that the equation
D1u = f has a solution u ∈D′(X) for every f ∈ H comp

(N ) (X)= H loc
(N )(X)∩E′(X). By [Hörmander 1983b,

Theorem 10.3.1] this is satisfied for every N ∈ Z if u ∈ H loc
(N+1)(X) is given by E ∗ f , where E is the

regular fundamental solution of D1.

Just as the microlocal solvability of a pseudodifferential operator P gives an a priori estimate for the
adjoint P∗, we have the following result for operators satisfying Definition 2.1.

Lemma 2.3. Let K ⊂T ∗(X)r0 be a compactly based cone. Let Q ∈Ψ m
cl (X) and P ∈Ψ k

cl(X) be properly
supported pseudodifferential operators such that the range of Q is microlocally contained in the range
of P at K . If Y b X satisfies K ⊂ T ∗(Y ) and if N is the integer in Definition 2.1, then for every positive
integer κ we can find a constant C , a positive integer ν and a properly supported pseudodifferential
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operator A with WF(A)∩ K =∅ such that

‖Q∗v‖(−N ) ≤ C(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0)) (2-1)

for all v ∈ C∞0 (Y ).

Since (2-1) holds for any κ , it is actually superfluous to include the dimension n in the norm ‖v‖(−N−κ−n).
However, for our purposes, it turns out that this is the most convenient formulation.

Proof. We shall essentially adapt the proof of [Hörmander 1985b, Lemma 26.4.5]. Let ‖ · ‖(s) denote
a norm in H comp

(s) (X) that defines the topology in H c
(s)(M) = H loc

(s) (X) ∩ E′(M) for every compact set
M ⊂ X . (The reason we change notation from H comp

(s) (M) to H c
(s)(M) when M is compact is to signify

that H c
(s)(M) is a Hilbert space for each fixed compact set M .) Let Y b Z b X , and take χ ∈ C∞0 (X)

with suppχ = Z to be a real-valued cutoff function identically equal to 1 in a neighborhood of Y . Then
χQ f ∈ H c

(N−m)(Z) for all f ∈ H comp
(N ) (X) since Q is properly supported, and we claim that for fixed

f ∈ H comp
(N ) (X) we have for some C , ν and A as in the statement of the lemma

|(χQ f, v)| ≤ C(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0)) (2-2)

for all v ∈C∞0 (Y ). Indeed, by hypothesis and the remark on page 427 we can find u and g̃ in E′(X) with
WF(g̃)∩ K =∅ such that

χQ f = Q f − (1−χ)Q f = Pu+ g̃− (1−χ)Q f.

Since K ⊂ T ∗(Y ) and χ ≡ 1 near Y we get WF((1− χ)Q f ) ∩ K = ∅, so χQ f = Pu + g for some
g ∈ E′(X) with WF(g)∩ K =∅. Thus

(χQ f, v)= (u, P∗v)+ (g, v) for v ∈ C∞0 (Y ).

Now choose properly supported pseudodifferential operators B1 and B2 of order 0 with I = B1 + B2

and WF(B1) ∩WF(g) = ∅ and WF(B2) ∩ K = ∅, which is possible since WF(g) ∩ K = ∅. Since
g ∈ E′(X) and B1 : E

′(X)→ E′(X) is continuous and microlocal we get B1g ∈ C∞0 (X), so (B1g, v) can
be estimated by C‖v‖(−N−κ−n). Also, g ∈ H loc

(−µ)(X) for some µ > 0 so if B is properly supported and
elliptic of order µ, and B ′ ∈ Ψ−µcl (X) is a properly supported parametrix of B, then

B∗2v = B ′B B∗2v+ L B∗2v, (2-3)

where L ∈ Ψ−∞(X) and both B ′ and L are continuous H comp
(s) (X)→ H comp

(s+µ)(X). Hence

|(B2g, v)| ≤ C‖B∗2v‖(µ) ≤ C(‖B B∗2v‖(0)+‖B
∗

2v‖(0)),

and if we apply the identity (2-3) to ‖B∗2v‖(0), ‖B
∗

2v‖(−µ), . . . sufficiently many times, and then recall
that B∗2 is properly supported and of order 0, we obtain

|(B2g, v)| ≤ C(‖B B∗2v‖(0)+‖v‖(−N−κ−n)).

Since we chose B to be properly supported this gives (2-2) with A = B B∗2 .
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For fixed κ , suppose V is the space C∞0 (Y ) equipped with the topology defined by the seminorms
‖v‖(−N−κ−n), ‖P∗v‖(ν) for ν = 1, 2, . . . , and ‖Av‖(0), where A is a properly supported pseudodiffer-
ential operator with K ∩WF(A) = ∅. It suffices to use a countable sequence A1, A2, . . . , where Aν is
noncharacteristic of order ν in a set that increases to (T ∗(X)r0)r K as ν→∞. Thus V is a metrizable
space. The sesquilinear form (χQ f, v) in the product of the Hilbert space H c

(N−m)(Z) and the metrizable
space V is obviously continuous in χQ f for fixed v, and by (2-2) it is also continuous in v for fixed f .
Hence it is continuous, which means that for some ν and C

|(χQ f, v)| ≤ C‖Q f ‖(N−m)(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0))

for all f ∈ H comp
(N ) (X) and v ∈ C∞0 (Y ). Now Q is continuous from H comp

(N ) (X) to H comp
(N−m)(X) so we have

‖Q f ‖(N−m) ≤ C‖ f ‖(N ). Since χ ≡ 1 near Y and (χQ)∗ = Q∗χ , this yields the estimate

|( f, Q∗v)| ≤ C‖ f ‖(N )(‖P∗v‖(ν)+‖v‖(−N−κ−n)+‖Av‖(0)). (2-4)

For v ∈C∞0 (Y ) and Q∗ properly supported we have Q∗v ∈C∞0 (X), and therefore also Q∗v ∈ H loc
(−N )(X).

Viewing Q∗v as a functional on H comp
(N ) (X), the dual of H loc

(−N )(X) with respect to the standard inner
product on L2, we obtain (2-1) after taking the supremum over all f ∈ H comp

(N ) (X) with ‖ f ‖(N ) = 1. �

We will need the following analogue of [Hörmander 1985b, Proposition 26.4.4]. Recall that H :

T ∗(Y ) r 0 → T ∗(X) r 0 is a canonical transformation if and only if its graph CH in the product
(T ∗(X)r0)× (T ∗(Y )r0) is Lagrangian with respect to the difference σX −σY of the symplectic forms
of T ∗(X) and T ∗(Y ) lifted to T ∗(X)× T ∗(Y ) = T ∗(X × Y ). This differs in sign from the symplectic
form σX + σY of T ∗(X × Y ) so it is the twisted graph

C ′H = {(x, ξ, y,−η) : (x, ξ, y, η) ∈ CH},

which is Lagrangian with respect to the standard symplectic structure in T ∗(X × Y ).

Proposition 2.4. Let K ⊂ T ∗(X)r 0 and K ′ ⊂ T ∗(Y )r 0 be compactly based cones and let χ be a
homogeneous symplectomorphism from a conic neighborhood of K ′ to one of K such that χ(K ′) = K .
Let A ∈ I m′(X×Y, Γ ′) and B ∈ I m′′(Y × X, (Γ −1)′), where Γ is the graph of χ , and assume that A and
B are properly supported and noncharacteristic at the restriction of the graphs of χ and χ−1 to K ′ and to
K respectively, while WF′(A) and WF′(B) are contained in small conic neighborhoods. Then the range
of the pseudodifferential operator Q in X is microlocally contained in the range of the pseudodifferential
operator P in X at K if and only if the range of the pseudodifferential operator B Q A in Y is microlocally
contained in the range of the pseudodifferential operator B P A in Y at K ′.

Proof. Choose A1 ∈ I−m′′(X × Y, Γ ′) and B1 ∈ I−m′(Y × X, (Γ −1)′) properly supported such that

K ′ ∩WF(B A1− I )=∅, K ∩WF(A1 B− I )=∅,

K ′ ∩WF(B1 A− I )=∅, K ∩WF(AB1− I )=∅.

Assume that the range of Q is microlocally contained in the range of P at K and choose N as in
Definition 2.1. Let g ∈ H loc

(N+m′)(Y ) and set f = Ag ∈ H loc
(N )(X). Then we can find u ∈ D′(X) such that



430 JENS WITTSTEN

K ∩WF(Pu− Q f )=∅. Let v = B1u ∈ D′(Y ). Then

WF(Av− u)=WF((AB1− I )u)

does not meet K , so K ∩WF(P Av− Q f )=∅. Recalling that f = Ag this implies

K ′ ∩WF(B P Av− B Q Ag)=∅,

so the range of B Q A is microlocally contained in the range of B P A at K ′. Conversely, if the range of
B Q A is microlocally contained in the range of B P A at K ′, it follows that the range of A1 B Q AB1 is
microlocally contained in the range of A1 B P AB1 at K . Since

K ∩WF(A1 B P AB1u− A1 B Q AB1 f )= K ∩WF(Pu− Q f ),

this means that the range of Q is microlocally contained in the range of P at K , which proves the
proposition. �

Before we can state our main theorem, we need to study the geometric situation that occurs when p
fails to satisfy condition (Ψ ). Recall that by [Hörmander 1985b, Theorem 26.4.12] we may always
assume that the nonvanishing factor in condition (1-5) is a homogeneous function. We begin with a
lemma concerning a reduction of the general case.

Lemma 2.5. Let p and q be homogeneous smooth functions on T ∗(X)r0, and let t 7→γ(t), for a≤ t≤b,
be a bicharacteristic interval of Re qp such that q(γ(t)) 6= 0 for a ≤ t ≤ b. If

Im qp(γ(a)) < 0< Im qp(γ(b)), (2-5)

then there exists a proper subinterval [a′, b′] ⊂ [a, b], possibly reduced to a point, such that

(i) Im qp(γ(t))= 0 for a′ ≤ t ≤ b′,

(ii) for every ε > 0 there exist a′ − ε < s− < a′ and b′ < s+ < b′ + ε such that Im qp(γ(s−)) < 0 <
Im qp(γ(s+)).

If γ(t) is defined for a ≤ t ≤ b we shall in the sequel say that Im qp changes sign from − to + on
γ if (2-5) holds. If γ|[a′,b′] is the restriction of γ to [a′, b′] and (i) and (ii) hold we shall say that Im qp
strongly changes sign from − to + on γ|[a′,b′].

Proof. It suffices to regard the case that q = 1, X = Rn , p is homogeneous of degree 1 with Re p = ξ1,
and the bicharacteristic of Re p is given by

a ≤ x1 ≤ b, x ′ = (x2, . . . , xn)= 0, ξ = εn. (2-6)

Here εn = (0, . . . , 0, 1) ∈ Rn , and we shall in what follows write ξ 0 in place of ε′n . The proof of this
fact is taken from [Hörmander 1985b, page 97] and is given here for the purpose of reference later, in
particular in connection with Definition 2.11 below.

Choose a pseudodifferential operator Q with principal symbol q . If we let P1=Q P , then the principal
symbol of P1 is p1 = qp so Im p1 changes sign from − to + on the bicharacteristic γ of Re p1. Now
choose Q1 to be of order 1 − degree P1 with positive, homogeneous principal symbol. If p2 is the
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principal symbol of P2=Q1 P1, it follows that Re p1 and Re p2 have the same bicharacteristics, including
orientation, and since p2 is homogeneous of degree 1 these can be considered to be curves on the cosphere
bundle S∗(X). Moreover, Im p1 and Im p2 have the same sign, so Im p2 changes sign from − to + along
γ⊂ S∗(X). If γ is a closed curve on S∗(X)we can pick an arc that is not closed where the sign change still
occurs. If we assume this to be done, then [Hörmander 1985b, Proposition 26.1.6] states that there exists
a C∞ homogeneous canonical transformation χ from an open conic neighborhood of (2-6) to one of γ
such that χ(x1, 0, εn)= γ(x1) and χ∗(Re p2)= ξ1. Since the Hamilton field is symplectically invariant it
follows that the equations of a bicharacteristic are invariant under the action of canonical transformations,
that is, γ̃ is a bicharacteristic of χ∗(Re p2) if and only if χ(γ̃) is a bicharacteristic of Re p2. This proves
the claim.

In accordance with the notation in [Hörmander 1985b, page 97], let (x ′, ξ ′)= (0, ξ 0) and consider

L(0, ξ 0)= inf{t − s : a < s < t < b, Im p(s, 0, εn) < 0< Im p(t, 0, εn)}.

For every small δ > 0 there exist sδ and tδ such that a< sδ < tδ < b, Im p(sδ, 0, εn) < 0< Im p(tδ, 0, εn)

and tδ − sδ < L(0, ξ 0)+ δ. Choose a sequence δ j → 0 such that the limits a′ = lim sδ j and b′ = lim tδ j

exist. Then b′ − a′ = L(0, ξ 0) and in view of (2-5) we have a < a′ ≤ b′ < b by continuity. Moreover,
Im p(t, 0, εn) = 0 for a′ ≤ t ≤ b′. This is clear if a′ = b′. If on the other hand Im p(t, 0, εn) is, say,
strictly positive for some a′ < t < b′, then L(0, ξ 0) ≤ t − sδ j → t − a′ < b′− a′, a contradiction. Thus
(i) holds.

To prove (ii), let ε > 0. After possibly reducing to a subsequence we may assume that the sequences
{sδ j } and {tδ j } given above are monotone increasing and decreasing, respectively. It then follows by (i)
that sδ j < a′ ≤ b′ < tδ j for all j . Since sδ j → a′ and tδ j → b′ we can choose j so that a′− ε < sδ j < a′

and b′ < tδ j < b′ + ε. By construction we have Im p(sδ j , 0, εn) < 0 < Im p(tδ j , 0, εn). This completes
the proof. �

Although it will not be needed here, we note that if [a′, b′] is the interval given by Lemma 2.5 and
a′ < b′, then in addition to (i) and (ii) we also have

(iii) there exists a δ > 0 such that Im qp(γ(s))≤ 0≤ Im qp(γ(t)) for all a′−δ < s< a′ and b′< t < b′+δ.

Indeed, the infimum L(0, ξ 0)= b′− a′ would otherwise satisfy L(0, ξ 0) < δ for every δ in view of (ii),
which is a contradiction when a′ < b′.

We next recall the definition of a one-dimensional bicharacteristic.

Definition 2.6. A one-dimensional bicharacteristic of the pseudodifferential operator with homogeneous
principal symbol p is a C1 map γ : I → T ∗(X)r 0, where I is an interval on R, such that

(i) p(γ(t))= 0 for t ∈ I ,

(ii) 0 6= γ′(t)= c(t)Hp(γ(t)) if t ∈ I

for some continuous function c : I → C.

Let P be an operator of principal type on a C∞ manifold X with principal symbol p, and suppose p
fails to satisfy condition (Ψ ) in X . By (1-5) there is a function q in C∞(T ∗(X)r 0) such that Im qp
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changes sign from − to + on a bicharacteristic γ of Re qp, where q 6= 0. As can be seen in [Hörmander
1985b, pages 96–97], we can then find a compact one-dimensional bicharacteristic interval Γ ⊂ γ or a
characteristic point Γ ∈ γ such that the sign change occurs on bicharacteristics of Re qp arbitrarily close
to Γ . What we mean by this will be clear from the following discussion, although we will not use this
terminology in the sequel. By the proof of Lemma 2.5 it suffices to regard the case that q = 1, X = Rn ,
p is homogeneous of degree 1 with Re p = ξ1, and the bicharacteristic of Re p is given by (2-6).

We shall now study a slightly more general situation is some detail. If γ= I ×{w0}, where I = [a, b],
we shall by |γ| denote the usual arc length in R2n , so that |γ| = b − a. Furthermore, we will assume
that all curves are bicharacteristics of Re p = ξ1, that is, w0 = (x ′, 0, ξ ′) ∈ R2n−1. We owe parts of this
exposition to Nils Dencker.

Lemma 2.7. Assume that Im p strongly changes sign from − to + on γ = [a, b] × {w0}. Then for any
δ > 0 there exist ε > 0, a − δ < s− < a and b < s+ < b + δ such that ± Im p(s±, w) > 0 for any
|w−w0|< ε.

Proof. Since t 7→ Im p(t, w0) strongly changes sign on [a, b] we can find s± satisfying the conditions
so that ± Im p(s±, w0) > 0. By continuity we can find ε± > 0 so that ± Im p(s±, w) > 0 for any
|w−w0|< ε±. The lemma now follows if we take ε =min(ε−, ε+). �

Definition 2.8. Let γ=[a, b]×{w0} and γ j =[a j , b j ]×{w j }. If lim inf j→∞ a j ≥ a, lim sup j→∞ b j ≤ b
and lim j→∞w j = w0, then we shall write γ j 99K γ as j → ∞. If in addition lim j→∞ a j = a and
lim j→∞ b j = b then we shall write γ j → γ as j→∞.

Definition 2.9. If γ is a bicharacteristic of Re p= ξ1 and there exists a sequence {γ j } of bicharacteristics
of Re p such that Im p strongly changes sign from − to + on γ j for all j and γ j 99K γ as j →∞, we
set

L p(γ)= inf
{γ j }
{lim inf

j→∞
|γ j | : γ j 99K γ as j→∞}, (2-7)

where the infimum is taken over all such sequences. We shall write L p(γ) ≥ 0 to signify the existence
of such a sequence {γ j }.

Remark. The definition of L p(γ) corresponds to what is denoted by L0 in [Hörmander 1985b, page 97],
when γ = [a, b]× {w0} is given by (2-6) and

Im p(a, w0) < 0< Im p(b, w0). (2-8)

To prove this claim, we begin by showing that L p(γ) ≤ L0, after having properly defined L0. To this
end, let γ̃ = [ã, b̃] × {w̃} be a bicharacteristic of Re p such that Im p changes sign on γ̃. For w close to
w0 we set

Lp(γ̃, w)= inf{t − s : ã < s < t < b̃, Im p(ã, w) < 0< Im p(b̃, w)}.

(Using the notation in [Hörmander 1985b, page 97] we would have Lp(γ,w) = L(x ′, ξ ′) if w =
(x ′, 0, ξ ′).) Then

L0 = lim inf
w→w0

Lp(γ,w).
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By an adaptation of the arguments in [Hörmander 1985b, page 97] it follows from the definition of L0

that we can find a sequence {γ j } of bicharacteristics of Re p with γ j = [a j , b j ]× {w j } such that

Im p(a j , w j ) < 0< Im p(b j , w j ) for all j,

where limw j = w0 and the limits a0 = lim a j and b0 = lim b j exist, belong to the interval (a, b) and
satisfy b0− a0 = L0. If we for each j apply Lemma 2.5 to γ j we obtain a sequence of bicharacteristics
Γ j ⊂γ j of Re p such that Im p strongly changes sign from− to+ on Γ j , where |Γ j |=Lp(γ j , w j )< |γ j |.
Clearly Γ j 99K γ as j→∞. Since a < a j ≤ b j < b if j is sufficiently large it follows that for such j we
have Lp(γ,w j )≤ Lp(γ j , w j ) by definition. This implies

L0 = lim inf
w→w0

Lp(γ,w)≤ lim inf
j→∞

Lp(γ,w j )

≤ lim inf
j→∞

|Γ j | ≤ lim sup
j→∞

|Γ j | ≤ lim
j→∞
|γ j | = L0, (2-9)

so |Γ j | → L0 as j→∞. Thus L p(γ)≤ L0.
For the reversed inequality, suppose {γ̃ j } is any sequence satisfying the properties of Definition 2.9,

with γ̃ j = [ã j , b̃ j ] × {w̃ j }. By assumption we have Im p(ã j , w̃ j ) = Im p(b̃ j , w̃ j ) = 0 for all j , which
together with (2-8) and a continuity argument implies the existence of a positive integer j0 such that

a < ã j ≤ b̃ j < b for all j ≥ j0.

If γ̃ j,δ = [ã j − δ, b̃ j + δ]× {w̃ j }, this means that for small δ > 0 and sufficiently large j we have

Lp(γ, w̃ j )≤ Lp(γ̃ j,δ, w̃ j ).

Since Im p strongly changes sign from − to + on γ̃ j , the infimum in the right side exists for every δ > 0
and is bounded from above by b̃ j − ã j + 2δ. Taking the limit as δ→ 0 yields Lp(γ, w̃ j ) ≤ |γ̃ j |. Since
w̃ j → w0 as j→∞ the definition of L0 now gives

L0 ≤ lim inf
j→∞

Lp(γ, w̃ j )≤ lim inf
j→∞
|γ̃ j |, (2-10)

and since the sequence {γ̃ j } was arbitrary, we obtain L0 ≤ L p(γ) by Definition 2.9. This proves the
claim.

When no confusion can occur we will omit the dependence on p in Definition 2.9. We note that if
L p(γ) exists, then L p(γ)≤ |γ| by definition. Also, if Im p strongly changes sign from − to + on γ then
Lemma 2.7 implies that the conditions of Definition 2.9 are satisfied. This proves the first part of the
following result.

Corollary 2.10. Let γ = [a, b] × {w0} be a bicharacteristic of Re p = ξ1. If Im p strongly changes sign
from − to + on γ, then 0 ≤ L p(γ) ≤ |γ|. Moreover, for every δ, ε > 0 there exists a bicharacteristic
γ̃ = γ̃δ,ε of Re p with

γ̃ = [ã, b̃]× {w̃}, a− ε < ã ≤ b̃ < b+ ε, |w̃−w0|< ε,

such that Im p strongly changes sign from − to + on γ̃ and |γ̃|< L p(γ)+ δ.
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Proof. The existence of the sequence {Γ j } in the preceding remark can after some adjustments be used
to prove the second part of Corollary 2.10, but we prefer the following direct proof.

Given δ > 0 we can by Definition 2.9 find a sequence γ j = [a j , b j ]×{w j } of bicharacteristics of Re p
such that γ j 99K γ as j →∞, Im p strongly changes sign from − to + on γ j and lim inf j→∞|γ j | <

L(γ) + δ. After reducing to a subsequence we may assume |γ j | < L(γ) + δ for all j . We have
lim inf j→∞ a j ≥ a, so for every ε there exists a j1(ε) such that a j > a − ε for all j ≥ j1. Similarly
there exists a j2(ε) such that b j < b+ε for all j ≥ j2. Also, w j→w0 as j→∞, so there exists a j3(ε)
such that |w j −w0|< ε for all j ≥ j3. Hence we can take γ̃ = γ j0 , where j0 =max( j1, j2, j3). �

Consider now the general case when Im qp changes sign from − to + on a bicharacteristic γ ⊂
T ∗(X)r 0 of Re qp, where q 6= 0, that is, (2-5) holds. In view of the proof of Lemma 2.5 we can by
means of (2-7) define a minimality property of a subset of the curve γ in the following sense.

Definition 2.11. Let I ⊂R be a compact interval possibly reduced to a point and let γ̃ : I→ T ∗(X)r0 be
a characteristic point or a compact one-dimensional bicharacteristic interval of the homogeneous function
p ∈ C∞(T ∗(X)r 0). Suppose that there exists a function q ∈ C∞(T ∗(X)r 0) and a C∞ homogeneous
canonical transformation χ from an open conic neighborhood V of

Γ = {(x1, 0, εn) : x1 ∈ I } ⊂ T ∗(Rn)

to an open conic neighborhood χ(V )⊂ T ∗(X)r 0 of γ̃(I ) such that

(i) χ(x1, 0, εn)= γ̃(x1) and Reχ∗(qp)= ξ1 in V ,

(ii) Lχ∗(qp)(Γ )= |Γ |.

Then we say that γ̃(I ) is a minimal characteristic point or a minimal bicharacteristic interval if |I | = 0
or |I |> 0, respectively.

The definition of the arclength is of course dependent of the choice of Riemannian metric on T ∗(Rn).
However, since we are only using the arclength to compare curves where one is contained within the
other and both are parametrizable through condition (i), the results here and Definition 2.11 in particular
are independent of the chosen metric. By choosing a Riemannian metric on T ∗(X), one could therefore
define the minimality property given by Definition 2.11 through the corresponding arclength in T ∗(X)
directly, although there, the notion of convergence of curves is somewhat trickier. We shall not pursue
this any further.

Note that condition (i) implies that q 6= 0 and Re Hqp 6= 0 on γ̃, and that by definition, a mini-
mal bicharacteristic interval is a compact one-dimensional bicharacteristic interval. Moreover, if Im qp
changes sign from− to+ on a bicharacteristic γ⊂ T ∗(X)r0 of Re qp, where q 6= 0, then we can always
find a minimal characteristic point γ̃ ∈ γ or a minimal bicharacteristic interval γ̃⊂ γ. In view of the proof
of Lemma 2.5, this follows from the conclusion of the extensive remark beginning on page 432 together
with (2-9). The following proposition shows that this continues to hold even when the assumption (2-5)
is relaxed in the sense of Definition 2.9. We will state this result only in the (very weak) generality
needed here.
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Proposition 2.12. Let γ = [a, b] × {w0} be a bicharacteristic of Re p = ξ1, and assume that L(γ) ≥ 0.
Then there exists a minimal characteristic point Γ ∈ γ of p or a minimal bicharacteristic interval Γ ⊂ γ
of p of length L(γ) if L(γ) = 0 or L(γ) > 0, respectively. If Γ = [a0, b0] × {w0} and a0 < b0, that is,
L(γ) > 0, then

Im p(β)(α)(t, w0)= 0 (2-11)

for all α, β with β1 = 0 if a0 ≤ t ≤ b0. Conversely, if γ is a minimal characteristic point or a minimal
bicharacteristic interval then L(γ)= |γ|.

Lemma 2.13. Let γ and γ j for j ≥ 1 be bicharacteristics of Re p = ξ1, and assume that Im p strongly
changes sign from − to + on γ j for each j . If γ j 99K γ as j→∞ then L(γ)≤ lim inf j→∞ L(γ j ).

Proof. Let γ j = [a j , b j ] × {w j } and γ = [a, b] × {w0}. Since Im p strongly changes sign from − to +
on γ j we can by Corollary 2.10 for each j find a bicharacteristic γ̃ j = [ã j , b̃ j ]× {w̃ j } of Re p with

a j − 1/j < ã j ≤ b̃ j < b j + 1/j and |w̃ j −w j |< 1/j,

such that Im p strongly changes sign from − to + on γ̃ j and |γ̃ j | < L(γ j )+ 1/j . Now |w̃ j −w0| ≤

|w̃ j−w j |+|w j−w0|, and since lim inf j→∞ ã j ≥ lim inf j→∞(a j−1/j)≥ a and correspondingly for b̃ j ,
we find that γ̃ j 99K γ as j→∞. Thus

L(γ)≤ lim inf
j→∞

|γ̃ j | ≤ lim inf
j→∞

(L(γ j )+ 1/j). �

Proof of Proposition 2.12. We may without loss of generality assume that w0 = (0, εn) ∈ R2n−1. The
last statement is then an immediate consequence of Definition 2.11. To prove the theorem it then also
suffices to show that we can find a characteristic point Γ ∈ γ of p, or a compact one-dimensional
bicharacteristic interval Γ ⊂ γ of p of length L(γ), with the property that in any neighborhood of Γ
there is a bicharacteristic of Re p where Im p strongly changes sign from − to +. This is done by
adapting the arguments in [Hörmander 1985b, page 97], which also yields (2-11).

For small δ > 0 we can find ε(δ) with 0< ε < δ such that L(γ̃) > L(γ)− δ/2 for any bicharacteristic
γ̃ = [ã, b̃]×{w̃} with a−ε < ã ≤ b̃< b+ε and |w̃−w0|< ε such that Im p strongly changes sign from
− to + on γ̃. Indeed, otherwise there would exist a δ > 0 such that for each (sufficiently large) k we can
find a bicharacteristic γk = [ak, bk]×{wk} with a−1/k < ak ≤ bk < b+1/k and |wk−w0|< 1/k such
that Im p strongly changes sign from − to + on γk and L(γk)≤ L(γ)− δ/2. This implies that γk 99K γ
as k→∞, so by Lemma 2.13 we obtain

L(γ)≤ lim inf
k→∞

L(γk)≤ L(γ)− δ/2,

a contradiction. Since L(γ) ≥ 0 we have by Corollary 2.10 for some |wδ −w0| < ε and a − ε < aδ ≤
bδ < b + ε with wδ = (x ′δ, 0, ξ ′δ) that Im p strongly changes sign from − to + on the bicharacteristic
γδ = [aδ, bδ]× {wδ}, and |γδ|< L(γ)+ δ/4. Thus,

L(γ)− δ/2< |γδ|< L(γ)+ δ/4. (2-12)
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We claim that Im p and all derivatives with respect to x ′ and ξ ′ must vanish at (t, wδ) if aδ+δ < t<bδ−δ.
Indeed, by Lemma 2.7 we can find a ρ > 0, aδ − δ/4< s− < aδ and bδ < s+ < bδ + δ/4 such that

Im p(s−, w) < 0< Im p(s+, w) for all |w−wδ|< ρ.

If Im p and all derivatives with respect to x ′ and ξ ′ do not vanish at (t, wδ) if aδ + δ < t < bδ − δ,
then we can choose w = (x ′, 0, ξ ′) so that |w−wδ| < ρ, |w−w0| < ε and Im p(t, w) 6= 0 for some
aδ + δ < t < bδ − δ. It follows that the required sign change of Im p(x1, w) must occur on one of the
intervals (s−, t) and (t, s+), which are shorter than L(γ)− δ/2. This contradiction proves the claim.

Now choose a sequence δ j→ 0 as j→∞ such that lim aδ j and lim bδ j exist. If we denote these limits
by a0 and b0, respectively, then L(γ) = b0− a0 by (2-12), and (2-11) holds if a0 < b0. In particular, if
a0 < b0 then

Hp(γ(t))= (1+ i∂ Im p(γ(t))/∂ξ1)γ
′(t) for a0 ≤ t ≤ b0,

so if Γ = {(t, w0) : t ∈ [a0, b0]} then Γ is a compact one-dimensional bicharacteristic interval of p with
the function c in Definition 2.6 given by

c(t)= (1+ i∂ Im p(Γ (t))/∂ξ1)
−1. �

Proposition 2.12 allows us to make some additional comments on the implications of Definition 2.11.
With the notation in the definition, we note that condition (ii) implies that there exists a sequence {Γ j }

of bicharacteristics of Reχ∗(qp) on which Imχ∗(qp) strongly changes sign from − to +, such that
Γ j → Γ as j →∞. By our choice of terminology, the sequence {Γ j } may simply be a sequence of
points when L(Γ )= 0. Conversely, if {Γ j } is a point sequence then L(Γ )= 0. Also note that if γ̃(I ) is
minimal, and condition (i) in Definition 2.11 is satisfied for some other choice of maps q ′ and χ ′, then
condition (ii) also holds for q ′ and χ ′; in other words,

Lχ∗(qp)(Γ )= |Γ | = L(χ ′)∗(q ′ p)(Γ ).

This follows by an application of Proposition 2.12 together with [Hörmander 1985b, Lemma 26.4.10].
It is then also clear that γ̃(I ) is a minimal characteristic point or a minimal bicharacteristic interval of
the homogeneous function p ∈C∞(T ∗(X)r0) if and only if Γ (I ) is a minimal characteristic point or a
minimal bicharacteristic interval of χ∗(qp)∈C∞(T ∗(Rn)r0) for any maps q and χ satisfying condition
(i) in Definition 2.11.

The proof of [Hörmander 1985b, Theorem 26.4.7] stating that condition (Ψ ) is necessary for local
solvability relies on the imaginary part of the principal symbol satisfying (2-11). By Proposition 2.12,
it is clear that (2-11) holds on a minimal bicharacteristic interval Γ in the case q = 1 and Re p = ξ1.
However, we shall require that we can find bicharacteristics arbitrarily close to Γ for which the following
stronger result is applicable, at least if Im p does not depend on ξ1 as is the case for the standard normal
form. This will be made precise below.
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Proposition 2.14. Let p = ξ1 + i Im p. Assume that Im p strongly changes sign from − to + on γ =
[a, b]× {w} and that L(γ)≥ |γ|−% for some 0< % < |γ|/2. If Im p does not depend on ξ1 then for any
κ > % we find that Im p vanishes identically in a neighborhood of Iκ ×{w}, where Iκ = [a+ κ, b− κ].

The statement would of course be void if the hypotheses hold only for % ≥ |γ|/2, for then Iκ =∅.

Proof. If the statement is false, there exists a κ > 0 such that Im p 6≡ 0 near Iκ ×{w}. Thus there exists
a sequence (s j , w j ) 99K Iκ × {w} such that Im p(s j , w j ) 6= 0 for all j . Since Im p does not depend
on ξ1 we can choose w j to have ξ1 coordinate equal to zero for all j , so that (s j , w j ) is contained in a
bicharacteristic of Re p. We may choose a subsequence so that for some s ∈ Iκ we have |s j − s| → 0
and |w j −w| → 0 monotonically, and either Im p(s j , w j ) > 0 or − Im p(s j , w j ) > 0 for all j . We shall
consider the case with positive sign, the negative case works similarly.

Choose δ < (κ − %)/3 and use Lemma 2.7. We find that there exists a− δ < s− < a and ε > 0 such
that Im p(s−, v) < 0 for any |v−w|< ε. Choose k > 0 so that |s j−s|< δ and |w j−w|< ε when j > k.
Then t 7→ Im p(t, w j ) changes sign from − to + on I j = [s−, s j ], which has length

|I j | = s j − s− ≤ |s j − s| + s− a+ a− s− < |γ| − κ + 2δ < |γ| − %− δ.

If we for each j apply Lemma 2.5 to I j×{w j } and let j→∞ we obtain a contradiction to the hypothesis
L(γ)≥ |γ| − %. �

One could state Proposition 2.14 without the condition that the imaginary part is independent of ξ1.
The invariant statement would then be that the restriction of the imaginary part to the characteristic set
of the real part vanishes in a neighborhood of γ.

The fact that Proposition 2.14 assumes that Im p strongly changes sign from − to + on γ means that
the conditions are not in general satisfied when γ is a minimal bicharacteristic interval. As mentioned
above, we will instead show that arbitrarily close to a minimal bicharacteristic interval one can always
find bicharacteristics for which Proposition 2.14 is applicable. Before we state the results we introduce
a helpful definition together with some (perhaps contrived but illustrative) examples.

Definition 2.15. A minimal bicharacteristic interval Γ = [a0, b0] × {w0} ⊂ T ∗(Rn)r 0 of the homoge-
neous function p = ξ1+ i Im p of degree 1 is said to be %-minimal if there exists a % ≥ 0 such that Im p
vanishes in a neighborhood of [a0+ κ, b0− κ]× {w0} for any κ > %.

By a 0-minimal bicharacteristic interval Γ we thus mean a minimal bicharacteristic interval such that
the imaginary part vanishes in a neighborhood of any proper closed subset of Γ . Note that this does not
hold for minimal bicharacteristic intervals in general.

Example 2.16. Let f ∈ C∞(R) be given by

f (t)=


−e−1/t2

if t < 0,
0 if 0≤ t ≤ 2,
e−1/(t−2)2 if t > 2

(2-13)
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and let φ ∈ C∞(R) be a smooth cutoff function with suppφ = [0, 2] such that φ > 0 on (0, 2). If
ξ = (ξ1, ξ

′) then
p1(x, ξ)= ξ1+ i |ξ ′|( f (x1)+ x2φ(x1))

is homogeneous of degree 1. If we write x = (x1, x2, x ′′) then for any fixed (x ′′, ξ ′) ∈ Rn−2
× Rn−1

with ξ ′ 6= 0 we find that {(x1, x2, x ′′, 0, ξ ′) : x1 = a, x2 = c} is a minimal characteristic point of p1 if
c ≥ 0 and a = 0 or if c ≤ 0 and a = 2. Note that if ξ ′ 6= 0 then Im p1 changes sign from − to + on the
bicharacteristic γ(x1)= {(x1, 0, x ′′, 0, ξ ′)} of Re p1, but that none of the points {γ(x1) : 0< x1 < 2} are
minimal characteristic points.1 On the other hand, if f is given by (2-13) let

h(x, ξ ′)=


|ξ ′| f (x1− 1)e1/x2 if x2 < 0,
0 if x2 = 0,
|ξ ′| f (x1)e−1/x2 if x2 > 0

be the imaginary part of p2(x, ξ). If Re p2 = ξ1 then p2 is homogeneous of degree 1 and

Γc = {(x1, x2, x ′′, 0, ξ ′) : x2 = c, x1 ∈ Ic}

is a minimal bicharacteristic interval of p2 for any (x ′′, ξ ′)∈Rn−2
×Rn−1 with ξ ′ 6=0 if c≥0 and Ic=[0, 2]

or if c ≤ 0 and Ic = [1, 3]. Moreover, if c≶ 0 then Γc is a 0-minimal bicharacteristic interval. However,
there is no % > 0 such that the minimal bicharacteristic interval Γ = {(x1, 0, x ′′, 0, ξ ′) : 0 ≤ x1 ≤ 2} is
%-minimal. The same holds for the minimal bicharacteristic interval Γ̃ = {(x1, 0, x ′′, 0, ξ ′) : 1≤ x1 ≤ 3}.
Figure 1 shows a cross-section of the characteristic sets of Im p1 and Im p2.

Lemma 2.17. Let p= ξ1+ i Im p, and assume that L(γ) > 0 and that Im p does not depend on ξ1. Then
one can find γ̃ j ⊂ γ j 99K γ such that |γ̃ j | → L(γ), Im p strongly changes sign from − to + on γ j and
Im p vanishes in a neighborhood of γ̃ j .

1If the factor x2 in Im p1 is raised to the power 3 for example, then it turns out that {γ(x1) : 0< x1 < 2} is a one-dimensional
bicharacteristic interval of p1, and not only a bicharacteristic of the real part. It is obviously not minimal though, nor does it
contain any minimal characteristic points.
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Figure 1. Cross-sections of the characteristic sets of Im p1 and Im p2, respectively.
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Note that the conditions imply that γ̃ j 99K γ as j→∞.

Proof. Choose γ j 99K γ when j→∞ as in the proof of Proposition 2.12, so that Im p strongly changes
sign from − to + on γ j and L(γ)= lim j→∞ |γ j |. By Lemma 2.13 and Corollary 2.10 we have

L(γ)≤ lim inf
j→∞

L(γ j )≤ lim inf
j→∞

|γ j | = L(γ).

Thus we can for every ε > 0 choose j so that |L(γ)− |γ j || < ε and |L(γ j )− |γ j || < ε. If we choose
ε < L(γ)/5 then

2ε < (L(γ)− ε)/2< |γ j |/2.

Hence, if γ j = [a j , b j ]×w j then by using Proposition 2.14 on γ j we find that Im p vanishes identically
in a neighborhood of γ̃ j = [a j + 2ε, b j − 2ε]× {w j }. Now choose a sequence εk→ 0 as k→∞. Then
γ̃ j (k) ⊂ γ j (k) and assuming as we may that j (k) > j (k ′) if k > k ′ we obtain |γ̃ j (k)| → L(γ) as k→∞,
which completes the proof. �

If Γ ⊂ γ is a minimal bicharacteristic interval in T ∗(Rn) r 0 of the homogeneous function p =
ξ1 + i Im p of degree 1, where the imaginary part is independent of ξ1, then by Definition 2.11 and
Proposition 2.12 we have 0< |Γ |= L(Γ ). By the proof of Lemma 2.17 there exists a sequence γ j→Γ of
bicharacteristics of Re p such that Im p strongly changes sign from− to+ on γ j and vanishes identically
in a neighborhood of a subinterval γ̃ j ⊂ γ j . Moreover, γ̃ j → Γ as j →∞. By Lemma 2.13 we have
L(γ j )> 0 for sufficiently large j , so according to Proposition 2.12 we can for each such j find a minimal
bicharacteristic interval Γ j ⊂ γ j . We have γ j → Γ as j→∞ and since

|Γ |= L(γ)≤ lim inf
j→∞

L(γ j )= lim inf
j→∞
|Γ j | ≤ lim sup

j→∞
|Γ j | ≤ lim

j→∞
|γ j | = |Γ |,

it follows that Γ j → Γ as j→∞. Since also γ̃ j ⊂ γ j and γ̃ j → Γ as j→∞, the intersection γ̃ j ∩Γ j

must be nonempty for large j . For such j it follows that γ̃ j must be a proper subinterval of Γ j , for if
not, this would contradict the fact that Γ j is a minimal bicharacteristic interval. Hence we can find a
sequence {% j } of positive numbers with % j→ 0 as j→∞, such that Γ j is a % j -minimal bicharacteristic
interval. We have thus proved the following theorem, which concludes our study of the bicharacteristics.

Theorem 2.18. If Γ is a minimal bicharacteristic interval in T ∗(Rn)r 0 of the homogeneous function
p = ξ1+ i Im p of degree 1, where the imaginary part is independent of ξ1, then there exists a sequence
{Γ j } of % j -minimal bicharacteristic intervals of p such that Γ j → Γ and % j → 0 as j→∞.

We can now state our main theorem, which yields necessary conditions for inclusion relations between
the ranges of operators that fail to be microlocally solvable.

Theorem 2.19. Let K ⊂ T ∗(X)r 0 be a compactly based cone. Let P ∈ Ψ k
cl(X) and Q ∈ Ψ k′

cl (X) be
properly supported pseudodifferential operators such that the range of Q is microlocally contained in
the range of P at K , where P is an operator of principal type in a conic neighborhood of K . Let pk be
the homogeneous principal symbol of P , and let I = [a0, b0] ⊂R be a compact interval possibly reduced
to a point. Suppose that K contains a conic neighborhood of γ(I ), where γ : I → T ∗(X)r 0 is either
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(a) a minimal characteristic point of pk , or

(b) a minimal bicharacteristic interval of pk with injective regular projection in S∗(X).

Then there exists a pseudodifferential operator E ∈ Ψ k′−k
cl (X) such that the terms in the asymptotic sum

of the symbol of Q− P E have vanishing Taylor coefficients at γ(I ).

The hypotheses of Theorem 2.19 imply that P is not solvable at the cone K . Indeed, solvability at
K ⊂ T ∗(X)r0 implies solvability at any smaller closed cone, and in view of Definition 2.11 it follows by
[Hörmander 1985b, Theorem 26.4.7′] together with [Hörmander 1985b, Proposition 26.4.4] that P is not
solvable at the cone generated by γ(I ). Conversely, suppose that P is an operator of principal type that is
not microlocally solvable in any neighborhood of a point (x0, ξ0)∈ T ∗(X)r0. Then the principal symbol
pk fails to satisfy condition (1-5) in every neighborhood of (x0, ξ0) by [Dencker 2006, Theorem 1.1].
In view of the alternative version of condition (1-5) given by [Hörmander 1985b, Theorem 26.4.12], it
is then easy to see using [Hörmander 1985a, Theorem 21.3.6] and [Hörmander 1985b, Lemma 26.4.10]
that (x0, ξ0) is a minimal characteristic point of pk , so Theorem 2.19 applies there.

We also mention that if P is of principal type and γ is a minimal bicharacteristic interval of the
principal symbol pk contained in a curve along which pk fails to satisfy condition (1-5), then γ has
injective regular projection in S∗(X) by the proof of [Hörmander 1985b, Theorem 26.4.12].

Remark. As pointed out in the introduction, we cannot hope to obtain a result such as Theorem 2.19
for solvable nonelliptic operators in general. Indeed, Example 2.2 shows that if X ⊂ Rn is open, and
K ⊂ T ∗(X)r 0 is a compactly based cone, then the range of D2 is microlocally contained in the range
of D1 at K . If there were to exist a pseudodifferential operator e(x, D) ∈ Ψ 0

cl(X) such that all the terms
in the symbol of R(x, D)= D2−D1 ◦e(x, D) have vanishing Taylor coefficients at a point (x0, ξ0) ∈ K
contained in a bicharacteristic of the principal symbol σ(D1) = ξ1 of D1, then in particular this would
hold for the principal symbol

σ(R)(x, ξ)= ξ2− ξ1e0(x, ξ),

if e0 denotes the principal symbol of e(x, D). However, taking the ξ2 derivative of the equation above
and evaluating at (x0, ξ0) then immediately yields the contradiction 0 = 1 since (x0, ξ0) belongs to the
hypersurface ξ1 = 0.

In the proof of the theorem we may assume that P and Q are operators of order 1. In fact, the discussion
following Definition 2.1 shows that if the conditions of Theorem 2.19 hold and Q1 ∈ Ψ

k−k′
cl (X) and

Q2 ∈ Ψ
1−k
cl (X) are properly supported, then the range of Q2 Q Q1 ∈ Ψ

1
cl(X) is microlocally contained in

the range of Q2 P ∈Ψ 1
cl(X) at K . If the theorem holds for operators of the same order k then there exists

an operator E ∈Ψ 0
cl(X) such that all the terms in the asymptotic expansion of the symbol of Q Q1− P E

have vanishing Taylor coefficients at γ(I ). If we choose Q1 to be elliptic, then we can find a parametrix
Q−1

1 of Q1 such that

Q− P E Q−1
1 ≡ (Q Q1− P E) ◦ Q−1

1 mod Ψ−∞(X)
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has symbol

σA◦Q−1
1
(x, ξ)∼

∑
∂αξ σA(x, ξ)Dα

x σQ−1
1
(x, ξ)/α! (2-14)

with A= Q Q1− P E . Clearly, all the terms in the asymptotic expansion of the symbol of Q− P E Q−1
1

then have vanishing Taylor coefficients at γ(I ), and E1= E Q−1
1 ∈Ψ

k′−k
cl (X), so the theorem holds with E

replaced by E1. If the theorem holds for operators of order 1 we can choose Q2 elliptic and use the same
argument to show that if all the terms in the asymptotic expansion of the symbol of Q2 Q Q1 − Q2 P E
have vanishing Taylor coefficients at γ(I ), then the same holds for

Q− P E Q−1
1 ≡ Q−1

2 ◦ (Q2 Q Q1− Q2 P E) ◦ Q−1
1 mod Ψ−∞(X),

where Q−1
2 is a parametrix of Q2. Here we use the fact that if γ(I ) is a minimal characteristic point or

a minimal bicharacteristic interval of the principal symbol of P , then this also holds for the principal
symbol of Q2 P by Definition 2.11.

For pseudodifferential operators, the property that all terms in the asymptotic expansion of the total
symbol have vanishing Taylor coefficients is preserved under conjugation with Fourier integral operators
associated with a canonical transformation (see Lemma A.1). Thus we will be able to prove Theorem 2.19
by local arguments and an application of Proposition 2.4.

Let γ : I→T ∗(X)r0, with I =[a0, b0]⊂R, be the map given by Theorem 2.19. By using [Hörmander
1985a, Theorem 21.3.6] or [Hörmander 1985b, Theorem 26.4.13], when γ is a characteristic point or a
one-dimensional bicharacteristic, respectively, we can find a C∞ canonical transformation χ from a conic
neighborhood of Γ ={(x, εn) : x1∈ I, x ′=0} in T ∗(Rn)r0 to a conic neighborhood of γ(I ) in T ∗(X)r0
and a C∞ homogeneous function b of degree 0 with no zero on γ(I ) such that χ(x1, 0, εn)= γ(x1) for
x1 ∈ I and

χ∗(bp1)= ξ1+ i f (x, ξ ′), (2-15)

where f is real-valued, homogeneous of degree 1 and independent of ξ1. Thus, by the hypotheses of
Theorem 2.19 one can in any neighborhood of Γ find an interval in the x1 direction where f changes
sign from − to + for increasing x1. Also, if I is an interval then f vanishes of infinite order on Γ by
(2-11), and by Theorem 2.18 there exists a sequence {Γ j } of % j -minimal bicharacteristics of χ∗(bp1)

such that % j → 0 and Γ j → Γ as j→∞.
The existence of the canonical transformation χ together with Proposition 2.4 implies that we can find

Fourier integral operators A and B such that the range of B Q A is microlocally contained in the range
of B P A at a cone K ′ containing Γ , where the principal symbol of B P A is given by (2-15). In view of
Lemma A.1 we may therefore reduce the proof to the case that P, Q ∈Ψ 1

cl(R
n) and the principal symbol

p of P is given by (2-15). In accordance with the notation in Proposition 2.4 we will assume that the
range of Q is microlocally contained in the range of P at a cone K containing Γ , thus renaming K ′

to K . If

σQ = q1+ q0+ · · ·
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is the asymptotic sum of homogeneous terms of the symbol of Q, we can then use the Malgrange
preparation theorem (see [Hörmander 1983a, Theorem 7.5.6]) to find e0, r1 ∈ C∞ near Γ such that

q1(x, ξ)= (ξ1+ i f (x, ξ ′))e0(x, ξ)+ r1(x, ξ ′),

where r1 is independent of ξ1. Restricting to |ξ | = 1 and extending by homogeneity we can make e0 and
r1 homogeneous of degree 0 and 1, respectively. The term of degree 1 in the symbol of Q− P ◦e0(x, D)
is r1(x, ξ ′). Again, by Malgrange’s preparation theorem we can find e−1, r0 ∈ C∞ near Γ such that

q0(x, ξ)− σ0(P ◦ e0(x, D))(x, ξ)= (ξ1+ i f (x, ξ ′))e−1(x, ξ)+ r0(x, ξ ′),

where e−1 and r0 are homogeneous of degree −1 and 0, respectively, and r0 is independent of ξ1. The
term of degree 0 in the symbol of

Q− P ◦ e0(x, D)− P ◦ e−1(x, D)

is r0(x, ξ ′). Repetition of the argument allows us to write

Q = P ◦ E + R(x, Dx ′) (2-16)

where σR(x, ξ ′)= r1(x, ξ ′)+r0(x, ξ ′)+· · · is an asymptotic sum of homogeneous terms, all independent
of ξ1. Thus R(x, Dx ′) is a pseudodifferential operator in the n − 1 variables x ′ depending on x1 as a
parameter. Furthermore, the range of R(x, Dx ′) is microlocally contained in the range of P at K . Indeed,
suppose N is the integer given by Definition 2.1. If g ∈ H loc

(N )(R
n), then Rg = P Eg− Qg = Pv− Qg

for some v ∈ D′(Rn), and there exists a u ∈ D′(Rn) such that

K ∩WF(Qg− Pu)=∅.

Hence, WF(P(v− u)− Rg) does not meet K , so the range of R is microlocally contained in the range
of P at K . We claim that under the assumptions of Theorem 2.19, this implies that all terms in the
asymptotic sum of the symbol of the operator R(x, Dx ′) in (2-16) have vanishing Taylor coefficients
at Γ , thus proving Theorem 2.19. The proof of this claim will be based on the two theorems stated
below. As we have seen, the principal symbol p of P may be assumed to have the normal form given
by (2-15). By means of Theorem 2.20 below, we shall also use the fact that an even simpler normal
form exists near a point where p = 0 and {Re p, Im p} 6= 0. To prove these two theorems, we will use
techniques that actually require the lower order terms of P to be independent of ξ1 near Γ . However,
we claim that this may always be assumed. In fact, Malgrange’s preparation theorem implies that

p0(x, ξ)= a(x, ξ)(ξ1+ i f (x, ξ ′))+ b(x, ξ ′)

where a is homogeneous of degree −1 and b homogeneous of degree 0, as demonstrated in the con-
struction of the operators E and R above. The term of degree 0 in the symbol of (I − a(x, D))P is
equal to b(x, ξ ′). Repetition of the argument implies that there exists a classical operator ã(x, D) of
order −1 such that (I − ã(x, D))P has principal symbol ξ1 + i f (x, ξ ′) and all lower order terms are
independent of ξ1. The microlocal property of pseudodifferential operators immediately implies that the
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range of (I − ã(x, D))Q is microlocally contained in the range of (I − ã(x, D))P at K . Hence, if there
are operators E and R with

R = (I − ã(x, D))Q− (I − ã(x, D))P E

such that all terms in the asymptotic expansion of the symbol of R have vanishing Taylor coefficients
at Γ , then this also holds for the symbol of Q− P E ≡ (I − ã(x, D))−1 R mod Ψ−∞, since this property
is preserved under composition with elliptic pseudodifferential operators by (2-14).

Theorem 2.20. Suppose that in a conic neighborhood Ω of

Γ ′ = {(0, εn)} ⊂ T ∗(Rn)r 0

P has the form P = D1+ i x1 Dn and the symbol of R(x, Dx ′) is given by the asymptotic sum

σR =

∞∑
j=0

r1− j (x, ξ ′),

with r1− j homogeneous of degree 1− j and independent of ξ1. If there exists a compactly based cone
K ⊂ T ∗(Rn)r0 containingΩ such that the range of R is microlocally contained in the range of P at K ,
then all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients at Γ ′.

Theorem 2.21. Suppose that in a conic neighborhood Ω of

Γ ′ = {(x1, x ′, 0, ξ ′) : a ≤ x1 ≤ b} ⊂ T ∗(Rn)r 0

the principal symbol of P has the form

p(x, ξ)= ξ1+ i f (x, ξ ′),

where f is real-valued and homogeneous of degree 1, and suppose that if b>a then f vanishes of infinite
order on Γ ′ and there exists a % ≥ 0 such that for any ε > % one can find a neighborhood of

Γ ′ε = {(x1, x ′, 0, ξ ′) : a+ ε ≤ x1 ≤ b− ε}, (2-17)

where f vanishes identically. Suppose also that

f (x, ξ ′)= 0 implies ∂ f (x, ξ ′)/∂x1 ≤ 0 (2-18)

in Ω and that in any neighborhood of Γ ′ one can find an interval in the x1 direction where f changes
sign from − to + for increasing x1. Furthermore, suppose that in Ω the symbol of R(x, Dx ′) is given by
the asymptotic sum

σR =

∞∑
j=0

r1− j (x, ξ ′)

with r1− j homogeneous of degree 1− j and independent of ξ1. If the lower order terms p0, p−1, . . . in
the symbol of P are independent of ξ1 near Γ ′, and there exists a compactly based cone K ⊂ T ∗(Rn)r0
containing Ω such that the range of R is microlocally contained in the range of P at K , then all the
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terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients on Γ ′% if a < b, and at
Γ ′ if a = b.

Assuming these results for the moment, we can now show how Theorem 2.19 follows.

End of proof of Theorem 2.19. Recall that

Γ = {(x1, 0, εn) : a0 ≤ x1 ≤ b0} ⊂ T ∗(Rn)r 0.

By what we have shown, it suffices to regard the case Q = P E + R, where we may assume that the
conditions of Theorem 2.21 are all satisfied in a conic neighborhoodΩ of Γ , with the exception of (2-18)
and the condition concerning the existence of a neighborhood of (2-17) in which f vanishes identically
when a0 < b0. We consider three cases.

(i) Γ is an interval. We then claim that condition (2-18) imposes no restriction. Indeed, if there is no
neighborhood of Γ in which (2-18) holds, then there exists a sequence {γ j } = {(t j , x ′j , 0, ξ ′j )} such that
a0 ≤ lim inf t j ≤ lim sup t j ≤ b0, (x ′j , ξ

′

j )→ (0, ξ 0) ∈ R2n−2,

f (t j , x ′j , ξ
′

j )= 0 and ∂ f (t j , x ′j , ξ
′

j )/∂x1 > 0 (2-19)

for each j . By (2-19) we can choose a sequence 0< δ j → 0 such that

f (t j − δ j , x ′j , ξ
′

j ) < 0< f (t j + δ j , x ′j , ξ
′

j ).

In view of Definition 2.9 we must therefore have L(Γ )=0. Since Γ is minimal, this implies that |Γ |=0,
so γ j→Γ . Thus, if there is no neighborhood of Γ in which (2-18) holds, then Γ is a point, and we will
in this case use the existence of the sequence {γ j } satisfying (2-19) to reduce the proof of Theorem 2.19
to Theorem 2.20, as demonstrated in case (iii) below. In the present case however, Γ is assumed to be
an interval, so there exists a neighborhood U of Γ in which (2-18) holds. We may assume that U ⊂Ω

and since f is homogeneous of degree 1 we may also assume that U is conic.
By Theorem 2.18, there exists a sequence {Γ j } of % j -minimal bicharacteristic intervals such that

% j → 0 and Γ j → Γ as j→∞. For sufficiently large j we have Γ j ⊂U. Hence, if

Γ j = {(x1, x ′j , 0, ξ ′j ) : a j ≤ x1 ≤ b j }

then all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients on

Γ% j = {(x1, x ′j , 0, ξ ′j ) : a j + % j ≤ x1 ≤ b j − % j }

by Theorem 2.21. Since Γ% j → Γ as j →∞, and all the terms in the asymptotic sum of the symbol
of R are smooth functions, it follows that all the terms in the asymptotic sum of the symbol of R have
vanishing Taylor coefficients on Γ . This proves Theorem 2.19 in this case.

(ii) Γ is a point and condition (2-18) holds. Then all the terms in the asymptotic sum of the symbol of
R have vanishing Taylor coefficients on Γ by Theorem 2.21, so Theorem 2.19 follows.

(iii) Γ is a point and (2-18) is false. Let {γ j } be the sequence satisfying (2-19). Then {Re p, Im p}(γ j )>0
and p(γ j )= 0 for each j since γ j = (t j , x ′j , 0, ξ ′j ). For fixed j we may assume that γ j = (0, η) and use
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[Hörmander 1985a, Theorem 21.3.3] to find a canonical transformation χ together with Fourier integral
operators A, B, A1 and B1 as in Proposition 2.4 such that χ(0, εn) = γ j , and B P A = D1+ i x1 Dn in a
conic neighborhood Ω of {(0, εn)}. Repetition of the arguments above allows us to write

B Q A = B P AE + R(x, Dx ′), (2-20)

where the range of R is microlocally contained in the range of B P A at some compactly based cone K ′

containing Ω with χ(K ′) = K . As before, E and R have classical symbols. Then all the terms in the
asymptotic expansion of the symbol of R have vanishing Taylor coefficients at {(0, εn)} by Theorem 2.20,
and therefore all the terms in the asymptotic expansion of the symbol of A1 RB1 have vanishing Taylor
coefficients at γ j by Lemma A.1 in the appendix. Since the Fourier integral operators are chosen so that

K ∩WF(A1 B− I )=∅ and K ∩WF(AB1− I )=∅,

we have

∅= K ∩WF(A1 B Q AB1− A1 B P AE B1− A1 RB1)= K ∩WF(Q− P AE B1− A1 RB1)

in view of (2-20). Hence, all the terms in the asymptotic expansion of the symbol of

Q− P E1 = A1 RB1+ S, where WF(S)∩ K =∅, (2-21)

have vanishing Taylor coefficients at γ j if E1 = AE B1. (Strictly speaking, the change of base variables
γ j 7→ (0, η) should be represented in (2-21) by conjugation of a linear transformation κ : Rn

→ Rn , but
this could be integrated in the Fourier integral operators A1 and B1 so it has been left out since it will
not affect the arguments below.) It is clear that E1 ∈ Ψ

0
cl(R

n).
We have now shown that for each j there exists an operator E j ∈Ψ

0
cl(R

n) such that all the terms in the
asymptotic expansion of the symbol of Q− P E j have vanishing Taylor coefficients at γ j . To construct
the operator E in Theorem 2.19, we do the following. For each j , denote the symbol of E j by

e j (x, ξ)∼
∞∑

l=0

e j
−l(x, ξ)

where e j
0(x, ξ) is the principal part, and e j

−l(x, ξ) is homogeneous of degree −l. If q is the principal
symbol of Q, then by Proposition A.3 there exists a function e0 ∈ C∞(T ∗(Rn)r 0), homogeneous of
degree 0, such that q − pe0 has vanishing Taylor coefficients at Γ .

This argument can be repeated for lower order terms. Indeed, if σQ = q + q0+ · · · , then the term of
degree 0 in σQ−P E j is

σ0(Q− P E j )= q̃ j − pe j
−1,

where (see (2-25) below)

q̃ j (x, ξ)= q0(x, ξ)− p0(x, ξ)e
j
0(x, ξ)−

∑
k

∂ξk p(x, ξ)Dxk e j
0(x, ξ).
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We can write
p(x, ξ)e j

−1(x, ξ)= p(x, ξ/|ξ |)e j
−1(x, ξ/|ξ |),

so that q̃ j (x, ξ), p(x, ξ/|ξ |) and e j
−1(x, ξ/|ξ |) are all homogeneous of degree 0. Since

∂αx ∂
β
ξ e0(Γ )= lim

j→∞
∂αx ∂

β
ξ e j

0(γ j )

it follows by Proposition A.3 that there is a function g ∈ C∞(T ∗(Rn)r 0), homogeneous of degree 0,
such that

q0(x, ξ)− p0(x, ξ)e0(x, ξ)−
∑

k

∂ξk p(x, ξ)Dxk e0(x, ξ)− p(x, ξ/|ξ |)g(x, ξ)

has vanishing Taylor coefficients at Γ . Putting e−1(x, ξ)= |ξ |−1g(x, ξ) we find that

∂αx ∂
β
ξ e−1(Γ )= lim

j→∞
∂αx ∂

β
ξ e j
−1(γ j ),

and that
σ0(Q− P ◦ e0(x, D)− P ◦ e−1(x, D))

has vanishing Taylor coefficients at Γ . Continuing this way we successively obtain functions em(x, ξ) ∈
C∞(T ∗(Rn)r 0), homogeneous of degree m for m ≤ 0, such that

σQ −

( M∑
m=0

e−m

)
σP mod S−M

cl

has vanishing Taylor coefficients at Γ . If we let E have symbol

σE(x, ξ)∼
∞∑

m=0

(1−φ(ξ))e−m(x, ξ)

with φ ∈ C∞0 equal to 1 for ξ close to 0, then E ∈ Ψ 0
cl(R

n) and all terms in the asymptotic expansion of
the symbol of Q− P E have vanishing Taylor coefficients at Γ . We have proved Theorem 2.19. �

Remark. Instead of reducing to the study of the normal form P = Dx1+ i x1 Dxn when condition (2-18)
does not hold, as in case (iii) above, one could show that the terms in the asymptotic expansion of
the operator R given by (2-16) has vanishing Taylor coefficients at every point in the sequence {γ j }

satisfying (2-19) using techniques very similar to those used to prove Theorem 2.21. Theorem 2.19
would then follow by continuity, but the proof of the analogue of Theorem 2.20 would be more involved.
In particular, we would have to construct a phase function w solving the eikonal equation

∂w/∂x1− i f (x, ∂w/∂x ′)= 0

approximately instead of explicitly (confer the proofs of Theorems 2.21 and 2.20, respectively). For
fixed j this could be accomplished by adapting the approach in [Hörmander 1963; Hörmander 1966]
(for a brief discussion, see [Hörmander 1981, p. 83]), where one has f = 0 and ∂ f/∂x1 > 0 at (0, ξ 0)

instead of at γ j .
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We shall now show how our results relate to the ones referred to in the introduction, beginning
with (1-3). There, it sufficed to have the coefficients of P and Q in C∞ and C1, respectively. However,
in order for Theorem 2.19 to qualify, we must require both P and Q to have smooth coefficients. On the
other hand, we shall only require the equation Pu = Q f to be microlocally solvable (at an appropriate
cone K ) as given by Definition 2.1. Note that if P is a first order differential operator on an open set
Ω ⊂ Rn , such that the principal symbol p of P satisfies condition (1-4) at a point (x, ξ) ∈ T ∗(Ω)r 0,
then either {Re p, Im p} > 0 at (x, ξ), or {Re p, Im p} > 0 at (x,−ξ). (The order of the operator is not
important; the statement is still true for a differential operator of order m, since the Poisson bracket is
then homogeneous of order 2m − 1.) Assuming the former, this implies that (x, ξ) satisfies condition
(a) in Theorem 2.19 by an application of [Hörmander 1985a, Theorem 21.3.3] and Lemma 2.7. In order
to keep the formulation of the following result as simple as possible, we will assume that there exists a
compactly based cone K ⊂ T ∗(Ω)r0 with nonempty interior such that K contains the appropriate point
(x,±ξ), and such that the equation Pu = Q f is microlocally solvable at K . This is clearly the case if
the equation Pu = Q f is locally solvable in Ω in the weak sense suggested by (1-1).

Corollary 2.22. Let Ω ⊂ Rn be open, and let P(x, D) and Q(x, D) be two first order differential
operators with coefficients in C∞(Ω). Let p be the principal symbol of P , and let x0 be a point in Ω
such that

p(x0, ξ0)= 0 and {Re p, Im p}(x0, ξ0) > 0 (2-22)

for some ξ0 ∈Rn . If K ⊂ T ∗(Ω)r0 is a compactly based cone containing (x0, ξ0) such that the range of
Q is microlocally contained in the range of P at K , then there exists a constant µ such that (at the fixed
point x0)

Q∗(x0, D)= µP∗(x0, D), (2-23)

where Q∗ and P∗ are the adjoints of Q and P.

Proof. By (2-22), P ∈ Ψ 1
cl(Ω) is an operator of principal type microlocally near (x0, ξ0). P and Q

therefore satisfy the hypotheses of Theorem 2.19, and in view of the discussion above regarding the
point (x, ξ) we find that there exists an operator E ∈ Ψ 0

cl(Ω) such that all the terms in the asymptotic
expansion of the symbol of Q − P E have vanishing Taylor coefficients at (x0, ξ0). By the discussion
following (3-7) on page 452 below, it follows that the same must hold for the adjoint Q∗− E∗P∗. If we
let Q∗ and P∗ have symbols σQ∗(x, ξ)= q1(x, ξ)+q0(x) and σP∗(x, ξ)= p1(x, ξ)+ p0(x), then E∗P∗

has principal symbol e0 p1 if σE∗ = e0+ e−1+ . . . denotes the symbol of E∗. Hence

∂q1(x0, ξ0)/∂ξk = e0(x0, ξ0)∂p1(x0, ξ0)/∂ξk for 1≤ k ≤ n

and p1(x0, ξ0)= p(x0, ξ0)= 0. Since q1 and p1 are polynomials in ξ of degree 1, this means that at the
fixed point x0 we have q1(x0, ξ)= µp1(x0, ξ) for ξ ∈ Rn , where the constant µ is given by the value of
e0 at (x0, ξ0). Moreover,

0= ∂ξ j ∂ξk q1(x0, ξ0)= ∂ξ j e0(x0, ξ0)∂ξk p1(x0, ξ0)+ ∂ξk e0(x0, ξ0)∂ξ j p1(x0, ξ0). (2-24)
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By assumption, the coefficients of p(x, D) do not vanish simultaneously, so the same is true for p1(x, D).
Hence ∂ξ j p1(x0, ξ0) 6= 0 for some j . Assuming this holds for j = 1, we find by choosing j = k = 1 in
(2-24) that ∂ξ1e0(x0, ξ0)= 0. But this immediately yields

∂ξk e0(x0, ξ0)=−∂ξ1e0(x0, ξ0)∂ξk p1(x0, ξ0)/∂ξ1 p1(x0, ξ0)= 0

for 2≤ k ≤ n. Now

σE∗P∗(x, ξ)∼
∑ 1

α!
∂αξ σE∗ Dα

x (p1(x, ξ)+ p0(x)),

and since we have a bilinear map

Sm′
cl /S−∞× Sm′′

cl /S−∞ 3 (a, b) 7→ a # b ∈ Sm′+m′′
cl /S−∞

with
(a # b)(x, ξ)∼

∑ 1
α!
∂αξ a(x, ξ) Dα

x b(x, ξ),

we find that the term of order 0 in the symbol of E∗P∗ is

σ0(E∗P∗)(x, ξ)= e−1(x, ξ)p1(x, ξ)+ e0(x, ξ)p0(x)+
n∑

k=1

∂ξk e0(x, ξ) Dk p1(x, ξ). (2-25)

Since ∂ξk e0 and p1 vanish at (x0, ξ0) we find that q0(x0)=µp0(x0) at the fixed point x0, which completes
the proof. �

Having proved this result, we immediately obtain the following after making the obvious adjustments to
[Hörmander 1963, Theorem 6.2.2]. The fact that we require higher regularity on the coefficients of Q
then yields higher regularity on the propertionality factor. Since the proof remains the same, it is omitted.

Corollary 2.23. Let Ω ⊂ Rn be open, and let P(x, D) and Q(x, D) be two first order differential oper-
ators with coefficients in C∞(Ω). Let p be the principal symbol of P , and assume that the coefficients of
p(x, D) do not vanish simultaneously in Ω . If for a dense set of points x in Ω one can find ξ ∈ Rn such
that (2-22) is fulfilled, and if for each (x, ξ) there is a compactly based cone K ⊂ T ∗(Ω)r 0 containing
(x, ξ) such that the range of Q is microlocally contained in the range of P at K , then there exists a
function e ∈ C∞(Ω) such that

Q(x, D)u ≡ P(x, D)(eu). (2-26)

In stating Corollary 2.23 we could replace the assumption that the coefficients of p(x, D) do not
vanish simultaneously in Ω with the condition that P is of principal type. Indeed, if dp 6= 0 then by a
canonical transformation we find that condition (1-6) holds. Since p 6= 0 implies ∂ξ p 6= 0 by the Euler
homogeneity equation we then have ∂ξ p 6= 0 everywhere, that is, the coefficients of p(x, D) do not
vanish simultaneously in Ω . The converse is obvious.

As shown in Example 2.25 below, we also recover the result for higher order differential operators
mentioned in the introduction as a special case of the following corollary to Theorem 2.19, although we
again need to assume higher regularity in order to apply our results.
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Proposition 2.24. Let X be a smooth manifold, and let P ∈ Ψ k
cl(X) and Q ∈ Ψ k′

cl (X) be properly sup-
ported such that the range of Q ◦ P is microlocally contained in the range of P at a compactly based
cone K ⊂ T ∗(X)r 0. Let p and q be the principal symbols of P and Q, respectively, and assume that
P is of principal type microlocally near K . If γ : I → T ∗(X)r 0 is a minimal characteristic point or a
minimal bicharacteristic interval of p contained in K then it follows that

H m
p (q)= 0 for all (x, ξ) ∈ γ(I ) and m ≥ 1.

Here H m
p (q) is defined recursively by Hp(q)= {p, q} and H m

p (q)= {p, H m−1
p (q)} for m ≥ 2.

Proof. First note that if the range of Q ∈ Ψ k′
cl (X) is microlocally contained in the range of P ∈ Ψ k

cl(X)
at K and both operators are properly supported, then it follows that the range of Q ◦ P is microlocally
contained in the range of P at K . (The converse is not true in general.) Indeed, let N be the integer
given by Definition 2.1, and let f ∈ H loc

(N+k)(X). Since P : H loc
(N+k)(X)→ H loc

(N )(X) is continuous, we
have g = P f ∈ H loc

(N )(X). Thus, there exists a u ∈ D′(X) such that

∅= K ∩WF(Qg− Pu)= K ∩WF(Q P f − Pu),

so the conditions of Definition 2.1 are satisfied with N replaced with N + k.
Let (x, ξ) ∈ γ(I ). The range of P Q is easily seen to be microlocally contained in the range of P

for any properly supported pseudodifferential operator Q. The assumptions of the proposition therefore
imply that the range of the commutator

R1 = P ◦ Q− Q ◦ P ∈ Ψ k+k′−1
cl (X) (2-27)

is microlocally contained in the range of P at K . Hence, by Theorem 2.19 there exists an operator
E ∈ Ψ k′−1

cl (X) such that, in particular, the principal symbol of R1 − P E vanishes at (x, ξ). If e is
the principal symbol of E , homogeneous of degree k ′ − 1, then the principal symbol of P E satisfies
p(x, ξ)e(x, ξ)= 0 since p ◦ γ = 0. Since the principal symbol of R1 is

σk+k′−1(R1)=
1
i
{p, q},

the result follows for m = 1.
Let Rm be defined recursively by Rm = [P, Rm−1] for m ≥ 2 with R1 given by (2-27). Arguing by

induction, we conclude in view of the first paragraph of the proof that the range of Rm is microlocally
contained in the range of P at K for m= 1, 2 . . . since this holds for R1. Assuming the proposition holds
for some m ≥ 1, we can repeat the arguments above to show that the principal symbol of Rm+1 must
vanish at (x, ξ). Since the principal symbol of Rm+1 equals −i{p, H m

p (q)}, this completes the proof. �

Example 2.25. Let Ω ⊂ Rn be open, P(x, D) be a differential operator of order m with coefficients in
C∞(Ω), and let µ be a function in C∞(Ω) such that the equation

P(x, D)u = µP(x, D) f
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has a solution u ∈ D′(Ω) for every f ∈ C∞0 (Ω). If p is the principal symbol of P then it follows that

n∑
j=1

∂ξ j p(x, ξ)Dx jµ(x)= 0 (2-28)

for all x ∈Ω and ξ ∈ Rn such that

{p, p̄}(x, ξ) 6= 0 and p(x, ξ)= 0. (2-29)

Indeed, if (x, ξ) satisfies (2-29) then we may assume that

{Re p, Im p}(x, ξ)=− 1
2i
{p, p̄}(x, ξ) > 0

since otherwise we just regard (x,−ξ) instead, as per the remarks preceding Corollary 2.22. By the same
discussion it is also clear that (x, ξ) is a minimal characteristic point of p. Now the conditions above
imply that there exists a compactly based cone K ⊂ T ∗(Ω)r 0 containing (x, ξ) such that the range of
µP is microlocally contained in the range of P at K . By condition (2-29), P is of principal type near
(x, ξ), so Proposition 2.24 implies that {p, µ} = 0 at (x, ξ), that is,

n∑
j=1

∂ξ j p(x, ξ)∂x jµ(x)− ∂x j p(x, ξ)∂ξ jµ(x)= 0.

Since µ is independent of ξ we find that (2-28) holds at (x, ξ). By homogeneity it then also holds at
(x,−ξ).

3. Proof of Theorem 2.20

Throughout this section we assume that the hypotheses of Theorem 2.20 hold. We shall prove the theorem
by using Lemma 2.3 on approximate solutions of the equation P∗v= 0 concentrated near Γ ′= {(0, εn)}.
We take as starting point the construction on [Hörmander 1985b, page 103], but some modifications need
to be made in particular to the amplitude function φ, so the results there concerning the estimates for the
right side of (2-1) cannot be used immediately. To obtain the desired estimates we will instead have to
use [Hörmander 1985b, Lemma 26.4.15]. Set

vτ (x)= φ(x)eiτw(x), (3-1)

where

w(x)= xn + i(x2
1 + x2

2 + · · ·+ x2
n−1+ (xn + i x2

1/2)
2)/2

satisfies P∗w=0 and φ ∈C∞0 (R
n). By the Cauchy–Kovalevsky theorem we can solve D1φ−i x1 Dnφ=0

in a neighborhood of 0 for any analytic initial data φ(0, x ′) = f (x ′) ∈ Cω(Rn−1); in particular we are
free to specify the Taylor coefficients of f (x ′) at x ′ = 0. We take φ to be such a solution. If need be
we can reduce the support of φ by multiplying by a smooth cutoff function χ , where χ is equal to 1 in
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some smaller neighborhood of 0 so that χφ solves the equation there. We assume this to be done and
note that if suppφ is small enough then

Imw(x)≥ |x |2/4 for x ∈ suppφ. (3-2)

Since

d Rew(x)=−x1xndx1+ (1− x2
1/2)dxn,

we may similarly assume that d Rew(x) 6= 0 in the support of φ. We then have the following result.

Lemma 3.1. Suppose P = D1+ i x1 Dn and let vτ be defined by (3-1). Then φ and w can be chosen so
that for any f ∈Cω(Rn−1) and any positive integers k and m we have φ(0, x ′)= f (x ′) in a neighborhood
of (0, 0), τ k

‖P∗vτ‖(m)→ 0 as τ →∞, and

‖vτ‖(−m) ≤ Cmτ
−m . (3-3)

If Γ̃ is the cone generated by

{(x, w′(x)) : x ∈ suppφ, Imw(x)= 0},

then τ kvτ→ 0 in D′Γ̃ as τ→∞; hence τ k Avτ→ 0 in C∞(Rn) if A is a pseudodifferential operator with
WF(A)∩ Γ̃ =∅.

Here D′Γ̃ (X) = {u ∈ D′(X) : WF(u) ⊂ Γ̃ }, equipped with the topology given by all the seminorms on
D′(X) for the weak topology, together with all seminorms of the form

Pφ,V,N (u)= sup
ξ∈V
|φ̂u(ξ)|(1+ |ξ |)N

where N ≥ 0, φ ∈ C∞0 (X), and V ⊂ Rn is a closed cone with (suppφ × V ) ∩ Γ̃ = ∅. Note that
u j→ u in D′Γ̃ (X) is equivalent to u j→ u in D′(X) and Au j→ Au in C∞ for every properly supported
pseudodifferential operator A with Γ̃ ∩ WF(A) = ∅; see the remark following [Hörmander 1985a,
Theorem 18.1.28].

Proof. We observe that τ k P∗vτ = τ k(P∗φ)eiτw
→ 0 in C∞0 (R

n) for any k as τ →∞, if w and φ are
chosen in the way given above. Hence τ k

‖P∗vτ‖(m)→ 0 for any positive integers k and m. In view of
(3-2) and the fact that d Rew 6= 0 in the support of φ we can apply [Hörmander 1985b, Lemma 26.4.15]
to vτ . This immediately yields (3-3) and also that τ kvτ → 0 in D′

Γ̃
as τ →∞, proving the lemma. �

We are now ready to proceed with a tool that will be instrumental in proving Theorem 2.21. The idea
is based on techniques found in [Hörmander 1963].

Let R be the operator given by Theorem 2.20. By assumption there exists a compactly based cone
K ⊂ T ∗(Rn)r 0 such that the range of R is microlocally contained in the range of P at K . If N is the
integer given by Definition 2.1, let H(x) ∈ C∞0 (R

n) and set

hτ (x)= τ−N H(τ x). (3-4)
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Since ĥτ (ξ) = τ−N−n Ĥ(ξ/τ) it is clear that for τ ≥ 1 we have hτ ∈ H(N )(Rn) and ‖hτ‖(N ) ≤ Cτ−n/2.
In particular, ‖hτ‖(N ) ≤ C for τ ≥ 1, where the constant depends on H but not on τ . Now denote by Iτ
the integral

Iτ = τ n
∫

H(τ x)R∗vτ (x) dx = τ N+n(R∗vτ , hτ ), (3-5)

where R∗ is the adjoint of R. For any κ we then have by the second equality and Lemma 2.3 that

|Iτ | ≤ τ N+n
‖hτ‖(N )‖R∗vτ‖(−N ) ≤ Cκτ N+n(‖P∗vτ‖(ν)+‖vτ‖(−N−κ−n)+‖Avτ‖(0))

for some positive integer ν and properly supported pseudodifferential operator A with WF(A)∩K =∅.
By Lemma 3.1 this implies

|Iτ | ≤ Cκτ−κ (3-6)

for any positive integer κ if τ is sufficiently large.
Recall that R(x, Dx ′) is a pseudodifferential operator in x ′ depending on x1 as a parameter. Its symbol

is given by the asymptotic sum

σR(x, ξ ′)= r1(x, ξ ′)+ r0(x, ξ ′)+ · · · ,

where r− j (x, ξ ′) is homogeneous of degree − j in ξ ′. The symbol of R∗ has the asymptotic expansion

σR∗ =
∑

∂αξ Dα
x σR(x, ξ ′)/α!,

which shows that R∗ is also a pseudodifferential operator in x ′ depending on x1 as a parameter. If we
sort the terms above with respect to homogeneity we can write

σR∗ = q1(x, ξ ′)+ q0(x, ξ ′)+ · · · , (3-7)

where q− j is homogeneous of order − j , q1(x, ξ ′)= r1(x, ξ ′) and

q0(x, ξ ′)= r0(x, ξ ′)+
n∑

k=2

∂ξk Dxk r1(x, ξ ′).

A moment’s reflection shows that if all the terms in (3-7) have vanishing Taylor coefficients at some
point (x, ξ ′), then the same must hold for σR .

Our goal is to show that if q(β)
− j (α)(0, ξ

0) does not vanish for all j ≥−1 and all α, β ∈ Nn , then (3-6)
cannot hold. For this purpose, we introduce a total well-ordering >t on the Taylor coefficients by means
of an ordering of the indices ( j, α, β) as follows.

Definition 3.2. Let αi , βi ∈ Nn and ji ≥−1 for i = 1, 2. We say that

q(β1)

− j1 (α1)
(0, ξ 0) >t q(β2)

− j2 (α2)
(0, ξ 0) if j1+ |α1| + |β1|> j2+ |α2| + |β2|.

To “break ties”, we say that if j1+ |α1| + |β1| = j2+ |α2| + |β2|, then

q(β1)

− j1 (α1)
(0, ξ 0) >t q(β2)

− j2 (α2)
(0, ξ 0) if |β2|> |β1|.
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Note the reversed order. If also |β1| = |β2|, then we use a monomial ordering on the β index to break
ties. Recall that this is any relation > on Nn such that > is a total well-ordering on Nn and β1 > β2

and γ ∈ Nn implies β1+ γ > β2+ γ. Having come this far, the actual order turns out not to matter for
the proof of Theorem 2.20, but it will have bearing on the proof of Theorem 2.21. Which monomial
ordering we use on the β index will not be important, but for completeness let us choose lexicographic
order since this will be used at a later stage in the definition. Here we by lexicographic order refer to
the usual one, corresponding to the variables being ordered x1 > · · ·> xn . That is to say, if αi ∈ Nn for
i = 1, 2, then α1 >lex α2 if, in the vector difference α1−α2 ∈ Zn , the leftmost nonzero entry is positive.
Thus, if j1+ |α1| + |β1| = j2+ |α2| + |β2| and β1 = β2, then we first say that

q(β1)

− j1 (α1)
(0, ξ 0) >t q(β2)

− j2 (α2)
(0, ξ 0) if |α2|> |α1| (3-8)

and then use lexicographic order on the n-tuples α to break ties at this stage. Using the lexicographic
order on both multiindices (separately) we get

q1 <t q(εn)
1 <t · · ·<t q(ε1)

1 <t q1(εn) <t · · ·<t q1(ε1) <t q0 <t · · · .

As indicated above we will prove Theorem 2.20 by a contradiction argument, so in the sequel we let
κ denote an integer such that

j + |α| + |β|< κ (3-9)

if q(β)
− j (α)(0, ξ

0) is the first nonvanishing Taylor coefficient with respect to the ordering >t . Since j ≥−1
we will thus have κ ≥ 0.

To simplify notation, we shall in what follows write t instead of x1 and x instead of x ′. Then vτ takes
the form

vτ (t, x)= φ(t, x)eiτw(t,x),

where
w(t, x)= xn−1+ i(t2

+ x2
1 + · · ·+ x2

n−2+ (xn−1+ i t2/2)2)/2. (3-10)

We shall as before use the notation ξ 0
= (0, . . . , 0, 1) ∈ Rn−1 when in this context. To interpret the

integral Iτ we will need a formula for how R∗(t, x, D) acts on the functions vτ . This is given by the
following lemma, where the parameter t has been suppressed to simplify notation.

Lemma 3.3 [Hörmander 1985b, Lemma 26.4.16]. Let q(x, ξ) ∈ Sµ(Rn−1
×Rn−1), let φ ∈ C∞0 (R

n−1)

and w ∈ C∞(Rn−1), and assume that Imw > 0 except at a point y where w′(y) = η ∈ Rn−1 r 0 and
Imw′′ is positive definite. Then

|q(x, D)(φeiτw)−
∑
|α|<k

q(α)(x, τη)(D− τη)α(φeiτw)/α!| ≤ Ckτ
µ−k/2 (3-11)

for τ > 1 and k = 1, 2, . . ..

An inspection of the proof of [Hörmander 1985b, Lemma 26.4.16] shows that the result is still appli-
cable if Imw > 0 everwhere. This is also used without mention in [Hörmander 1985b] when proving
the necessity of condition (Ψ ). Thus the statement holds if Imw > 0 except possibly at a point y where
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w′(y) = η ∈ Rn−1 r 0 and Imw′′ is positive definite. We will also use this fact, but we have refrained
from altering the statement of the lemma.

If q is homogeneous of degree µ, then the sum in (3-11) consists (apart from the factor eiτw) of terms
that are homogeneous in τ of degree µ,µ− 1, . . . . The terms of degree µ are those in

φ
∑

q(α)(x, τη)(τw′(x)− τη)α/α!, (3-12)

which is the Taylor expansion at τη of q(x, τw′). In this way one can give meaning to the expression
q(x, τw′) even though q(x, ξ) may not be defined for complex ξ . The terms of degree µ−1 where φ is
differentiated are similarly

n−1∑
k=1

q(k)(x, τw′(x))Dkφ,

where q(k) should be replaced by the Taylor expansion at τη representing the value at τw′(x), as in (3-12).
In the present case we have

w′x(t, x)− ξ 0
= i x − (t2/2)ξ 0,

so the expression q− j (t, x, w′x(t, x)) is given meaning if it is replaced by a finite Taylor expansion∑
β

q(β)
− j (t, x, ξ 0)(w′x(t, x)− ξ 0)β/|β|!

of sufficiently high order.
Using the classicality of R∗ we have

σR∗(t, x, ξ)−
M∑

j=−1

q− j (t, x, ξ) ∈ Ψ−M−1
cl (Rn),

so there is a symbol a ∈ S−M−1
cl (Rn

×Rn−1) such that

a(t, x, D)= R∗(t, x, D)−
M∑

j=−1

q− j (t, x, D) mod Ψ−∞(Rn).

By (3-2) and (3-10) it is clear that w satisfies the conditions of Lemma 3.3, so

a(t, x, D)vτ = a(t, x, τξ 0)vτ +O(τ−M−3/2)= τ−M−1a(t, x, ξ 0)vτ +O(τ−M−3/2),

which implies that |a(t, x, D)vτ | ≤ Cτ−M−1. If we for each −1≤ j ≤ M write∣∣∣∣q− j (t, x, D)vτ −
∑
|α|<k j

q(α)
− j (t, x, τξ 0)(Dx − τξ

0)αvτ/α!

∣∣∣∣≤ Ck j τ
− j−k j/2

with k j = 2M − 2 j + 1, then

R∗(t, x, D)vτ =
M∑

j=−1

∑
|α|<k j

q(α)
− j (t, x, τξ 0)(Dx − τξ

0)αvτ/α! +O(τ−M−1/2).
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Now recall the discussion above regarding the homogeneity of the terms in (3-11), and choose M ≥ κ ,
where κ is an integer satisfying (3-9). Then

R∗(t, x, D)vτ = eiτw
M∑

j=−1

∑
|α|≤2M−2 j

q(α)
− j (t, x, τw′x(t, x))Dαφ

= eiτw
M∑

j=−1

∑
|α|≤2M−2 j

τ− j−|α|q(α)
− j (t, x, w′x(t, x))Dαφ

= eiτw
M∑

J=−1

τ−JλJ (t, x)

with an error of order O(τ−κ−1/2), where

λJ (t, x)=
∑

j+|α|=J

q(α)
− j (t, x, w′x(t, x))Dαφ for j ≥−1. (3-13)

As before, q(α)
− j (t, x, w′x(t, x)) should be replaced by a finite Taylor expansion at ξ 0 of sufficiently high

order representing the value at w′x(t, x). In view of (3-5), this yields

Iτ = τ n
∫

H(τ t, τ x)eiτw(t,x)
( κ∑

J=−1

τ−JλJ (t, x)+O(τ−κ−1/2)
)

dt dx .

After the change of variables (τ t, τ x) 7→ (t, x) we find that

Iτ =
∫

H(t, x)eiτw(t/τ,x/τ)
( κ∑

J=−1

τ−JλJ (t/τ, x/τ)+O(τ−κ−1/2)
)

dt dx . (3-14)

To illustrate how we will proceed to prove Theorem 2.20 by contradiction, let us for the moment assume
that q1(0, 0, ξ 0) 6= 0, where ξ 0

= (0, . . . , 0, 1) ∈ Rn−1. Since

λ−1(t/τ, x/τ)= φ(t/τ, x/τ)
∑
β

q(β)1 (t/τ, x/τ, ξ 0)(w′x(t/τ, x/τ)− ξ 0)β/|β|! (3-15)

where
w′x(t/τ, x/τ)− ξ 0

= i x/τ − (t2/(2τ 2))ξ 0
= O(τ−1), (3-16)

and (3-10) implies that τw(t/τ, x/τ)→ xn−1 as τ →∞, we obtain

lim
τ→∞

Iτ/τ =
∫

H(t, x)ei xn−1φ(0, 0)q1(0, 0, ξ 0)dt dx .

Since we may choose φ 6= 0 at the origin, the limit above will then not be equal to 0 for a suitable choice
of H . However, this contradicts (3-6).

Now assume that ∂k0
t q(β0)

− j0(α0)
(0, 0, ξ 0) is the first nonvanishing Taylor coefficient with respect to the

ordering >t , and let
m = j0+ k0+ |α0| + |β0| (3-17)
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so that m <κ by (3-9). Note that α0, β0 ∈Nn−1 and that the integer k0 accounts for derivatives in t while
there is no corresponding term for derivatives in the Fourier transform of t since the q− j are independent
of this variable. Note also that since j0 is permitted to be −1, we have 0≤ k0, |α0|, |β0| ≤ m+ 1.

To use our assumption we will need for each term q(β+γ)
− j (t/τ, x/τ, ξ 0) in the Taylor expansion of

q(γ)
− j (t/τ, x/τ,w′x(t/τ, x/τ)) (as it appears in (3-13)) at ξ 0 to consider Taylor expansions in t and x at

the origin. Note that for given j and γ, it suffices to consider finite Taylor expansions of q(γ)
− j of order

κ − j − |γ| by (3-14) and (3-16). For each j and γ we thus write

q(γ)
− j (t/τ, x/τ,w′x(t/τ, x/τ))

=

∑
k+|α|+|β|≤κ− j−|γ|

(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)τ−k−|α|tk xα(w′x(t/τ, x/τ)−ξ 0)β/(k!|α|!|β|!)+O(τ−κ−1+ j+|γ|),

where (w′x(t/τ, x/τ) − ξ 0)β should be interpreted by means of (3-16). As we shall see, the term
(t2/(2τ 2))ξ 0 will not pose any problem, since it is O(τ−2). We have

λJ (t/τ, x/τ)=
∑

j+|γ|=J

∑
k+|α|+|β|≤κ−J

(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)Dγφ(t/τ, x/τ)

× τ−k−|α|tk xα(w′x(t/τ, x/τ)− ξ 0)β/(k!|α|!|β|!)+O(τ−κ−1+J ),

where −1≤ j ≤ J . If we are only interested in terms of order τ−m in (3-14), we can use the assumption
that ∂k

t q(β+γ)
− j (α)(0, 0, ξ 0) = 0 for all −1 ≤ j + k + |α| + |β| + |γ| < m to let the term (t2/(2τ 2))ξ 0 from

(3-16) be absorbed by the error term in the expression above. This yields
m∑

J=−1

τ−JλJ (t/τ, x/τ)=
∑

j+k+|α|+|β|+|γ|=m

(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)

× Dγφ(t/τ, x/τ)τ−m tk xα(i x)β/(k!|α|!|β|!)+O(τ−m−1),

where we use J = j +|γ| together with the fact that we get a factor τ−|β| from (w′x(t/τ, x/τ)− ξ 0)β by
(3-16). Thus,

lim
τ→∞

τm Iτ =
∫

H(t, x)ei xn−1

×

( ∑
j+k+|α|+|β|+|γ|=m

tk xα(i x)β(∂k
t q(β+γ)
− j (α))(0, 0, ξ 0)Dγφ(0, 0)/(k!|α|!|β|!)

)
dt dx .

Now choose φ such that Dβ0φ(0, 0) = 1, but Dγφ(0, 0) = 0 for all other γ such that |γ| ≤ |β0|. This
is possible by the discussion following (3-1). By (3-17) and our choice of the ordering >t , we have
∂k

t q(β+β0)

− j (α) (0, 0, ξ 0)= 0 for all β such that |β|> 0 as long as j + k+ |α| + |β| + |β0| = m. Hence, with
this choice of φ, the last expression takes the form

lim
τ→∞

τm Iτ =
∫

H(t, x)ei xn−1
( ∑

j+k+|α|+|β0|=m

tk xα(∂k
t q(β0)

− j (α))(0, 0, ξ 0)/(k!|α|!)
)

dt dx, (3-18)

where as usual j is allowed to be −1 so that j ∈ [−1,m − |β0|] in (3-18). Now some of the Taylor
coefficients in (3-18) may be zero, in particular, the expression may well contain Taylor coefficients that
preceed ∂k0

t q(β0)

− j0 (α0)
(0, 0, ξ 0), and those are by assumption zero. However, we claim that if at least one of
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the Taylor coefficients above are nonzero, then we may choose H so that the limit is nonzero. Indeed, if
that were not the case then the expression within brackets in (3-18) would be a polynomial with infinitely
many zeros, and thus it would have to have vanishing coefficients. Since this violates our assumption,
we conclude that the limit is nonzero. However, this contradicts (3-6), which proves Theorem 2.20.

4. Proof of Theorem 2.21

In this section we shall give the proof of Theorem 2.21, using ideas taken from [Hörmander 1963]
together with the approach used to prove [Hörmander 1985b, Theorem 26.4.7′]. As in the previous
section, we aim to use Lemma 2.3 to estimate the operator R(x, Dx ′) on approximate solutions of the
equation P∗v = 0, concentrated near

Γ ′ = {(x1, x ′, 0, ξ ′) : x1 ∈ I ′} ⊂ T ∗(Rn)r 0. (4-1)

The proofs will be similar, but the situation is more complicated now, which will affect the construction
of the approximate solutions. We will also have to make some adjustments to the proof of [Hörmander
1985b, Theorem 26.4.7′] to make it work, so a lot of the details will have to be revisited. Our approximate
solutions will also differ slightly from the ones used to prove [Hörmander 1985b, Theorem 26.4.7′], so
although we will refer directly to results in [ibid.] whenever possible, the formulation of some of these
results will be affected. For a more complete description of the approximate solutions, we refer the
reader to [Hörmander 1981] or [Hörmander 1985b], where their construction is carried out in greater
detail. When proving Theorem 2.21 we may without loss of generality assume that x ′ = 0 and ξ ′ = ξ 0

in (4-1). In accordance with the notation in the proof of Theorem 2.19, we shall therefore throughout
this section refer to Γ ′ simply by Γ , and we will let I ′ = [a0, b0].

To simplify notation we shall in what follows write t instead of x1 and x instead of x ′. If N is the
integer given by Definition 2.1, and n is the dimension, the approximate solutions vτ will be taken of the
form

vτ (t, x)= τ N+neiτw(t,x)
M∑
0

φ j (t, x)τ− j . (4-2)

Here φ0, φ1, . . . are amplitude functions, andw is a phase function that should satisfy the eikonal equation

∂w/∂t − i f (t, x, ∂w/∂x)= 0 (4-3)

approximately, where f is the imaginary part of the principal symbol of P . We take w of the form

w(t, x)= w0(t)+〈x − y(t), η(t)〉+
∑

2≤|α|≤M

wα(t)(x − y(t))α/|α|!, (4-4)

where M is a large integer to be determined later and x = y(t) is a smooth real curve. When discussing
the functions wα we shall permit ourselves to use the notation α= (α1, . . . , αs) for a sequence of s = |α|
indices between 1 and the dimension n−1 of the x variable, and wα will be symmetric in these indices.
If we take η(t) to be real-valued and make sure the matrix (Imw jk) is positive definite, then Imw will
have a strict minimum when x = y(t) as a function of the x variables.
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On the curve x = y(t) the eikonal equation (4-3) is reduced to

w′0(t)= 〈y
′(t), η(t)〉+ i f (t, y(t), η(t)), (4-5)

which is the only equation where w0 occurs. Hence it can be used to determine w0 after y and η have
been chosen. In particular

d Imw0(t)/dt = f (t, y(t), η(t)). (4-6)

In the proof of Theorem 2.20 we could solve the corresponding eikonal equation explicitly. Here this
is not possible, so our goal will instead be to make (4-3) valid apart from an error of order M + 1 in
x − y(t). Note that f (t, x, ξ) is not defined for complex ξ , but since

∂w(t, x)/∂x j − η j (t)=
∑

wα, j (t)(x − y(t))α/|α|!,

(4-3) is given meaning if f (t, x, ∂w/∂x) is replaced by the finite Taylor expansion∑
|β|≤M

f (β)(t, x, η(t))(∂w(t, x)/∂x − η(t))β/|β|!. (4-7)

To compute the coefficient of (x− y(t))α in (4-7) we just have to consider the terms with |β| ≤ |α|. Since

∂w/∂t = w′0−〈y
′, η〉+ 〈x − y, η′〉

+

∑
2≤|α|≤M

w′α(t)(x − y)α/|α|! −
∑

k

∑
1≤|α|≤M−1

wα,k(t)(x − y)αdyk/dt/|α|!,

the first order terms in the equation (4-3) give

dη j/dt −
∑

k

w jk(t)dyk/dt = i( f( j)(t, y, η)+
∑

k

f (k)(t, y, η)w jk(t)). (4-8)

Note that this is a system of 2n equations

dη j/dt −
∑

k

Rew jk(t)dyk/dt =−
∑

k

Imw jk(t) f (k)(t, y, η), (4-8)′∑
k

Imw jk(t)dyk/dt =− f( j)(t, y, η)−
∑

k

Rew jk(t) f (k)(t, y, η), (4-8)′′

since y and η are real, and under the assumption that Imw jk is positive definite these equations can
be solved for dy/dt and dη/dt . We observe that at a point where f = d f = 0 they just mean that
dy/dt = dη/dt = 0.

When 2≤ |α| ≤ M we obtain a differential equation

dwα/dt −
∑

k

wα,kdyk/dt = Fα(t, y, η, {wβ}) (4-9)

from (4-3). Here Fα is a linear combination of the derivatives of f of order |α| or less, multiplied with
polynomials in wβ with 2 ≤ |β| ≤ |α| + 1. Of course, when |α| = M the sum on the left side of (4-9)
should be dropped, and β should satisfy |β| ≤ |α| instead. Altogether (4-8)′, (4-8)′′ and (4-9) form a
quasilinear system of differential equations with as many equations as unknowns. Hence we have local
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solutions with prescribed initial data. According to [Hörmander 1985b, pages 105–106] we can find a
c > 0 such that the equations (4-8) and (4-9) with initial data

w jk = iδ jk, wα = 0, when 2< |α| ≤ M and t = (a0+ b0)/2, (4-10)

y = x, η = ξ, when t = (a0+ b0)/2 (4-11)

have a unique solution in (a0−c, b0+c) for all x and ξ with |x |+|ξ−ξ 0
|< c. (Here δ jk is the Kronecker

delta.) Moreover,

(i) (Imw jk − δ jk/2) is positive definite,

(ii) the map

(x, ξ, t) 7→ (y, η, t), where |x | + |ξ − ξ 0
|< c, a0− c < t < b0+ c,

is a diffeomorphism.
In the range Xc of the map (ii) we let v denote the image of the vector field ∂/∂t under the map.

Thus v is the tangent vector field of the integral curves, and when f = d f = 0 we have v = ∂/∂t . By
assumption f = 0 implies ∂ f/∂t ≤ 0 in a neighborhood of Γ (see (2-18)), so if c is small enough this
also holds in Xc. An application of [Hörmander 1985b, Lemma 26.4.11] now yields that f must have
a change of sign from − to + along an integral curve of v in Xc, for otherwise there would be no such
sign change for increasing t and fixed (x, ξ), and that contradicts the hypothesis in Theorem 2.21. By
(4-6) this means that Imw0(t) will start decreasing and end increasing, so the minimum is attained at an
interior point. We can normalize the minimum value to zero and have then for a suitable interval of t that
Imw0 > 0 at the end points and Imw0 = 0 at some interior point. Since Rew0 is given by (4-5) we can
at this interior point also normalize the value of Rew0 to zero. This completes the proof of [Hörmander
1985b, Lemma 26.4.14]. However, in order to prove Theorem 2.21 when a0 < b0 we shall need the
following stronger result.

Lemma 4.1. Assume that the hypotheses of Theorem 2.21 are fulfilled, the variables being denoted (t, x)
now. Then given M ∈ N we can find

(i) a curve t 7→ (t, y(t), 0, η(t)) ∈ R2n , with a′ ≤ t ≤ b′ as close to Γ as desired,

(ii) C∞ functions wα(t) for 2≤ |α| ≤ M , with (Imw jk − δ jk/2) positive definite when a′ ≤ t ≤ b′,

(iii) a function w0(t) with Imw0(t)≥ 0 for a′ ≤ t ≤ b′, Imw0(a′) > 0, Imw0(b′) > 0 and Rew0(c′)=
Imw0(c′)= 0 for some c′ ∈ (a′, b′)

such that (4-4) is a formal solution to (4-3) with an error of order O(|x − y(t)|M+1). If a0 < b0 then (iii)
can be improved in the sense that if % ≥ 0 is the number given by Theorem 2.21, then we can for any
ε > % find

(iii)′ a function w0(t) with Imw0(t) ≥ 0, a′ ≤ t ≤ b′, Imw0(a′) > 0, Imw0(b′) > 0 and Rew0(t) =
Imw0(t)= 0 for all t ∈ [a0+ ε, b0− ε].
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Proof. In view of [Hörmander 1985b, Lemma 26.4.14] we only need to prove (iii)′.
Let ε > %, and let Iε = [a0+ ε, b0− ε]. By the hypotheses of Theorem 2.21, there is a neighborhood

U of

Γε = {(t, 0, 0, ξ 0) : t ∈ Iε}

where f vanishes identically. Take δ > 0 sufficiently small so that

t ∈ Iε, |x | + |ξ − ξ 0
|< δ implies (t, x, 0, ξ) ∈U.

As above we can find c > 0 such that the equations (4-8) and (4-9) with initial data (4-10) and (4-11)
have a unique solution in (a0− c, b0+ c) for all x and ξ with |x | + |ξ − ξ 0

|< c. Since the map

(x, ξ, t) 7→ (y, η, t), where |x | + |ξ − ξ 0
|< c, a0− c < t < b0+ c,

is a diffeomorphism, we can choose c small enough so that if (y, η, t) is in the range Xc of this map,
then |y| + |η− ξ 0

| < δ. As we have seen, f must change sign from − to + along an integral curve of
v in Xc if c is small enough, where in Xc we denote by v the image of the vector field ∂/∂t under the
map. Let this integral curve be given by

γ(t)= (t, y(t), 0, η(t)) ∈ R2n for a′ ≤ t ≤ b′,

for some choice of a′ and b′ such that a0− c < a′, b′ < b0+ c and

f (a′, y(a′), η(a′)) < 0< f (b′, y(b′), η(b′)).

Recall that at a point where f = d f = 0 the equations (4-8)′ and (4-8)′′ imply that dy/dt = dη/dt = 0.
Since f vanishes identically on γ for t ∈ Iε and the function w0 is determined by (4-5), this proves the
lemma after a suitable normalization. �

Note that if Γ is a point then by Lemma 4.1 we can obtain a sequence {γ j } of curves

γ j (t)= (t, y j (t), 0, η j (t)) for a′j ≤ t ≤ b′j

approaching Γ , which implies that at t = c′j we have

(c′j , y j (c′j ), 0, η j (c′j ))→ Γ as j→∞

in T ∗(Rn)r0, where c′j is the point where Rew0 j = Imw0 j = 0. Similarly, if Γ is an interval and %≥ 0
is the number given by Theorem 2.21, then for any point ω in the interior of Γ% we can use Lemma 4.1
to obtain a sequence {γ j } of curves approaching Γ and a sequence {w0 j } of functions such that for each
j there exists a point ω j ∈ γ j with ω j = γ j (t j ) that can be chosen so that Rew0 j (t j ) = Imw0 j (t j ) = 0
and ω j → ω as j →∞. This will be crucial in proving Theorem 2.21. Our strategy is to show that
all the terms in the asymptotic sum of the symbol of R have vanishing Taylor coefficients at ω j , or at
(c′j , y j (c′j ), 0, η j (c′j )) when Γ is a point. Theorem 2.21 will then follow by continuity. In what follows
we will suppress the index j to simplify notation.



MICROLOCAL PROPERTIES OF THE RANGE OF A PRINCIPAL PSEUDODIFFERENTIAL OPERATOR 461

Let K and Ω be the cones given by Theorem 2.21, and suppose that the function w given by (4-4) is
a formal solution to (4-3) with an error of order O(|x − y(t)|M+1) in a neighborhood Y of

{(t, 0) : a0 ≤ t ≤ b0} ⊂ Rn

with K ⊂ T ∗(Y ), such that Imw> 0 in Y except on a compact nonempty subset T of the curve x = y(t),
with (t0, y(t0)) ∈ T and w = 0 on T . We want to show that all the terms in the asymptotic sum of the
symbol of R have vanishing Taylor coefficients at (t0, y(t0), 0, η(t0)). By part (i) of Lemma 4.1 we can
choose w so that

Γ0 = {(t, x, ∂w(t, x)/∂t, ∂w(t, x)/∂x) : (t, x) ∈ T } (4-12)

is contained in Ω . This is done to ensure that if A is a given pseudodifferential operator with wavefront
set contained in the complement of K , then WF(A) does not meet the cone generated by Γ0.

We now turn our attention to the amplitude functions φ j . With the exception of φ0, which will be of
great interest to us, we will not be very thorough in describing them. Suffice it to say that these functions
can be chosen so that if P∗ is the adjoint of P then

‖P∗vτ‖(ν) ≤ Cτ N+n+ν+(1−M)/2, (4-13)

where M is the number given by (4-2). The procedure begins by setting

φ0(t, x)=
∑
|α|<M

φ0α(t)(x − y(t))α

with y(t) as above, and having φ0α satisfy the linear system of ordinary differential equations

Dtφ0α +
∑
|β|<M

aαβφ0β = 0. (4-14)

In the same way we then successively choose φ j and obtain (4-13). The precise details can be found
in [Hörmander 1981, pages 87–89], or in [Hörmander 1985b, pages 107–110]. Note that we for any
positive integer J < M can solve the equations that determine φ0 so that at the point (t0, y(t0)) ∈ T we
have Dα

x φ0(t0, y(t0))= 0 for all |α| ≤ J except for one index α, |α| = J . This will be important later on.
Note also that the estimate (4-13) is not affected if the functions φ j are multiplied by a cutoff function
in C∞0 (Y ) that is 1 in a neighborhood of T . Since the φ j will be irrelevant outside of Y for large τ by
construction, we can in this way choose them to be supported in Y so that vτ ∈ C∞0 (Y ).

Having completed the construction of the approximate solutions, we are now ready to start to follow
the proof of Theorem 2.20. To get the estimates for the right side of (2-1) when v is an approximate
solution, we shall need the following two results. The first, corresponding to Lemma 3.1, is taken from
[Hörmander 1985b]. Observe that here it is stated for our approximate solutions which differ from those
in [ibid.] by a factor of τ N+n , which explains the difference in appearance. Note also that although we
will not use the lower bound for the approximate solutions, that estimate is included so as not to alter
the statement.
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Lemma 4.2 [Hörmander 1985b, Lemma 26.4.15]. Let X ⊂ Rn be open, and let vτ be defined by (4-2),
where w ∈ C∞(X), φ j ∈ C∞0 (X), Imw ≥ 0 in X and d Rew 6= 0. For any positive integer m we then
have

‖vτ‖(−m) ≤ Cτ N+n−m for τ > 1. (4-15)

If Imw(t0, x0)= 0 and φ0(t0, x0) 6= 0 for some (t0, x0) ∈ X then

‖vτ‖(−m) ≥ cτ N+n/2−m for τ > 1

and for some c > 0. If Γ̃ is the cone generated by{
(t, x, ∂tw(t, x), ∂xw(t, x)) : (t, x) ∈

⋃
j suppφ j , Imw(t, x)= 0

}
,

then τ kvτ→ 0 in D′
Γ̃

as τ→∞; hence τ k Avτ→ 0 in C∞(Rn) if A is a pseudodifferential operator with

WF(A)∩ Γ̃ =∅ and k is any real number.

Proposition 4.3. Assume that the hypotheses of Theorem 2.21 are fulfilled, the variables being denoted
(t, x) now, and let vτ be given by (4-2), wherew ∈C∞(Y ), φ j ∈C∞0 (Y ), Imw≥ 0 in Y and d Rew 6= 0.
Here Y is a neighborhood of {(t, 0) : a0 ≤ t ≤ b0} such that K ⊂ T ∗(Y ). Let H(t, x) ∈ C∞0 (R×Rn−1)

and set

hτ (t, x)= τ−N H(τ (t − t0), τ (x − y(t))), (4-16)

where N is the positive integer given by Definition 2.1 for the operators R and P in Theorem 2.21.
Then hτ ∈ H(N )(Rn) for all τ ≥ 1 and ‖hτ‖(N ) ≤ C , where the constant depends on H but not on τ .
Furthermore, if M is the integer given by the definition of vτ in (4-2) so that (4-13) holds, and Iτ is the
integral

Iτ = (R∗vτ , hτ ), (4-17)

where R∗ is the adjoint of R(t, x, D), then for any positive integer κ there exists a constant C such that
|Iτ | ≤ Cτ−κ if M = M(κ) is sufficiently large.

Proof. In Section 3, one easily obtains a formula for the Fourier transform of the corresponding function
hτ (see (3-4)), which yields the estimates needed to show that hτ ∈ H(N ). Here we shall instead use the
equality ∫∫

|hτ (t, x)|2dt dx = τ−2N
∫∫
|H(τ (t − t0), τ (x − y(t)))|2dt dx

which shows that if τ ≥ 1 then D j
t Dα

x hτ ∈ L2(Rn) for all ( j, α)∈N×Nn−1 such that j+|α| ≤ N+[n/2].
Hence, by using the equivalent norm on H(N )(Rn) given by

‖hτ‖(N ) =
∑

j+|α|≤N

‖D j
t Dα

x hτ‖(0),

we find that {hτ }τ≥1 is a bounded one parameter family in H(N )(Rn), which proves the first assertion of
the proposition.
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To prove the second part, let κ be an arbitrary positive integer, and let ν be the positive integer given
by Lemma 2.3 (applied to the operator R instead of Q) so that (2-1) holds for the choice of seminorm
‖P∗v‖(ν) in the right side. If we choose

(1−M)/2≤−N − n− ν− κ, (4-18)

and recall (4-13), then

‖P∗vτ‖(ν) ≤ Cτ−κ . (4-19)

Since supp H is compact, we can find a bounded open ball containing supp hτ for all τ ≥ 1. Hence
hτ ∈ H(N )(Rn) has compact support and vτ ∈ C∞0 (Y ), so the result now follows by the estimate (2-4)
together with Lemma 4.2. �

To shorten the notation we will from now on assume that t0 = 0, so that w(0, y(0)) = 0. As in the
proof of Theorem 2.20 it suffices to show that all terms in the asymptotic expansion of the symbol of R∗,
given by

σR∗ = q1(t, x, ξ)+ q0(t, x, ξ)+ · · · ,

with q j homogeneous of degree j in ξ , have vanishing Taylor coefficients at (0, y(0), η(0)). The method
will be to argue by contradiction that if not, then Proposition 4.3 does not hold. Therefore, let us assume
that ∂k0

t q(β0)

− j0(α0)
(0, y(0), η(0)) is the first nonvanishing Taylor coefficient with respect to the ordering >t

given by Definition 3.2, and let

m = j0+ k0+ |α0| + |β0|. (4-20)

Now let κ be a positive integer such that m < κ , and sort the terms in Iτ , given by (4-17), with respect
to homogeneity degree in τ . We can use Lemma 3.3 and the classicality of the symbol σR∗ to write

R∗(t, x, D)vτ =
M ′∑

j=−1

q− j (t, x, D)vτ +O(τ N+n−M ′−1)

=

M ′∑
j=−1

M∑
l=0

τ N+n−lq− j (t, x, D)(eiτwφl)+O(τ N+n−M ′−1)

for some large number M ′. Note that (4-18) implies a lower bound on M , but as we shall see below,
we must also make sure to pick M > 2M ′+ 1. For each j we then estimate q− j (t, x, D)(eiτwφl) using
(3-11) with k = M − 1− 2 j , so that

q− j (t, x, D)(eiτwφl)=
∑

|α|<M−1−2 j

q(α)
− j (t, x, τη)(D− τη)α(φleiτw)/α!
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with an error of order O(τ (1−M)/2). Recalling (4-18) and the discussion following Lemma 3.3 regarding
the homogeneity of the terms in (3-11), this yields, for sufficiently large M ′,

R∗(t, x, D)vτ =
M ′∑

j=−1

M∑
l=0

τ N+n−leiτw
∑

|α|<M−1−2 j

q(α)
− j (t, x, τw′x)D

αφl +O(τ−κ−1)

= τ N+neiτw
M ′∑

j=−1

M∑
l=0

∑
|α|<M−1−2 j

τ− j−|α|−lq(α)
− j (t, x, w′x)D

αφl +O(τ−κ−1). (4-21)

Note that τ− j−|α|−lq(α)
− j (t, x, w′x)D

αφl is now homogeneous of order− j−|α|−l in τ , and that as before,
q(α)
− j (t, x, w′x) should be replaced by a finite Taylor expansion at η of sufficiently high order. For each
−1 ≤ J ≤ κ , collect all terms of the form τ− j−|α|−lq(α)

− j (t, x, w′x)D
αφl in (4-21) that are homogeneous

of order −J in τ , that is, all terms that satisfy j + |α| + l = J for j ≥−1, and |α|, l ≥ 0. If

λJ (t, x)=
∑

j+|α|+l=J

q(α)
− j (t, x, w′x(t, x))Dαφl(t, x)

for the permitted values of j and l, then

Iτ = τ n
∫∫

H(τ t, τ (x − y(t)))
(

eiτw(t,x)
κ∑

J=−1

τ−JλJ (t, x)+O(τ−κ−1)
)

dt dx .

After the change of variables (τ t, τ (x − y(t))) 7→ (t, x) we obtain

Iτ =
∫∫

H(t, x)
(

eiτw(t/τ,x/τ+y(t/τ))
κ∑

J=−1

τ−JλJ (t/τ, x/τ + y(t/τ))+O(τ−κ−1)
)

dt dx, (4-22)

where
λJ (t/τ, x/τ + y(t/τ))

=

∑
j+|α|+l=J

Dαφl(t/τ, x/τ + y(t/τ))q(α)
− j (t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ))). (4-23)

Recall that w0(0)= 0, which together with (4-4) implies

iτw(t/τ, x/τ + y(t/τ))= i tw′0(0)+ i〈x, η(t/τ)〉+O(τ−1).

Hence
lim
τ→∞

eiτw(t/τ,x/τ+y(t/τ))
= ei tw′0(0)+i〈x,η(0)〉. (4-24)

In the sequel we shall also need

∂w/∂x j (t/τ, x/τ + y(t/τ))− η j (t/τ)=
n−1∑
k=1

w j,k(t/τ)(xk/τ)+O(τ−2), (4-25)

which follows from the definition of w and the fact that wα is symmetric in these special indices α. In
particular, w j,k(t)= wk, j (t) for all j , k ∈ [1, n− 1].
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Recall that we chose the integer κ such that m < κ . By Proposition 4.3 there is a constant C such that

|Iτ | ≤ Cτ−κ , (4-26)

and we shall now show that if ∂k0
t q(β0)

− j0(α0)
(0, y(0), η(0)) is the first nonvanishing Taylor coefficient with

respect to the ordering >t , where m = j0 + k0 + |α0| + |β0|, then (4-26) cannot hold. (Since we
are denoting the variables by (t, x) now, the index α in Definition 3.2 will be replaced by the pair
(k, α) ∈N×Nn−1.) We will do this by determining the limit of τm Iτ as τ→∞. To see what is needed,
consider λ−1(t/τ, x/τ + y(t/τ)) and recall that this is

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))φ0(t/τ, x/τ + y(t/τ)),

which should be regarded as a Taylor expansion in ξ of q1 at η(t/τ) of finite order. The same applies to
all the other terms of the form q(α)

− j . For given j and α, we only ever need to consider Taylor expansions
of q(α)

− j of order κ − j − |α| in view of (4-22) and (4-25). To keep things simple, we shall first only
consider q1; it will be clear by symmetry what the corresponding expressions for the other terms should
be. Thus,

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

q(β)1 (t/τ, x/τ + y(t/τ), η(t/τ))(w′x(t/τ, x/τ + y(t/τ))−η(t/τ))β/|β|!+O(τ−κ−2), (4-27)

which shows that to use our assumption regarding the Taylor coefficient ∂k0
t q(β0)

− j0(α0)
(0, y(0), η(0)), we

have to for each β write q(β)1 (t/τ, x/τ + y(t/τ), η(t/τ)) as a Taylor series at η(0), in addition to having
to expand each term as a Taylor series in t and x . However, it is immediate from (4-25) that if β is an
(n−1)-tuple corresponding to a given differential operator Dβ

ξ , then there is a sequence β̃= (β̃1, . . . , β̃s)

of s = |β| indices between 1 and the dimension n− 1 of the x variable, such that

gβτ (t, x)= (w′x(t/τ, x/τ + y(t/τ))− η(t/τ))β, (4-28)

as it appears in (4-27), satisfies

gβτ (t, x)= cβ(t/τ, x/τ)+O(τ−|β|−1),

where

cβ(t/τ, x/τ)=
s∏

j=1

(n−1∑
k=1

wk,β̃ j
(t/τ)xk/τ

)
and cβ(0, x/τ)= τ−|β|cβ(0, x).

These expressions make sense if we choose the sequence β̃ to be increasing, for then it is uniquely
determined by β. If for instance Dβ

ξ = −∂
2/∂ξi∂ξ j , then β̃ = (i, j) if i ≤ j (see the indices α used in

connection with wα in (4-4)). Thus (4-27) takes the form

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

q(β)1 (t/τ, x/τ + y(t/τ), η(t/τ))gβτ (t, x)/|β|! +O(τ−κ−2),
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and if we expand each term in this expression as a Taylor series at η(0) we obtain

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

∑
|γ|≤κ+1−|β|

q(β+γ)1 (t/τ, x/τ + y(t/τ), η(0))gβτ (t, x)(η(t/τ)− η(0))γ/(|β|!|γ|!)

+O(τ−κ−2), (4-29)

where we regard η(t/τ)− η(0) as a finite Taylor series η′(0)t/τ + η′′(0)t2/(2τ 2)+ · · · of sufficiently
high order to maintain control of the error term in (4-29). If we for each multiindex β let Gβ

τ (t, x) be
given by

Gβ
τ (t, x)=

∑
γ1+γ2=β

(η(t/τ)− η(0))γ1 gγ2
τ (t, x)/(|γ1|!|γ2|!) for γ j ∈ Nn−1,

then the required order of the Taylor expansion η(t/τ)− η(0) will ultimately depend on β, so we can
write

q1(t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
|β|≤κ+1

q(β)1 (t/τ, x/τ + y(t/τ), η(0))Gβ
τ (t, x)+O(τ−κ−2) (4-30)

and we can always bound Gβ
τ (t, x) by a constant times τ−|β|. As will be evident in a moment, the

value of Gβ
τ (t, x) for |β| > 0 is not important. For notational purposes, denote by Gβ

0 (t, x) the limit of
τ |β|Gβ

τ (t, x) as τ →∞. Since Gβ
τ (t, x)= 1 when β = 0 it is clear that G0

0(t, x)= 1.
For each β we must now write q(β)1 (t/τ, x/τ + y(t/τ), η(0)) as a Taylor expansion in t and x at 0

and y(0), respectively. As before, for given j and α, we will only have to consider Taylor expansions of
q(α)
− j of order κ − j − |α|. By (4-23) and (4-30) we have

λ−1(t/τ, x/τ + y(t/τ))

=

∑
k+|α|+|β|≤κ+1

φ0(t/τ, x/τ + y(t/τ))
(
(t/τ)k(x/τ + y(t/τ)− y(0))αGβ

τ (t, x)

× ∂k
t q(β)1(α)(0, y(0), η(0))/(k!|α|!)+O(τ−κ−2)

)
, (4-31)

where we in (x/τ + y(t/τ)− y(0))α regard y(t/τ)− y(0) as a finite Taylor series of sufficiently high
order to maintain control of the error terms.

In the way that we expressed the term q1(t/τ, x/τ+ y(t/τ), w′x(t/τ, x/τ+ y(t/τ))) by (4-31), we can
get similar expressions of appropriate order for the terms q(γ)

− j (t/τ, x/τ+ y(t/τ), w′x(t/τ, x/τ+ y(t/τ)))
that appear in (4-23). For each j and γ we have

q(γ)
− j (t/τ, x/τ + y(t/τ), w′x(t/τ, x/τ + y(t/τ)))

=

∑
k+|α|+|β|≤κ− j−|γ|

(t/τ)k(x/τ + y(t/τ)− y(0))αGβ
τ (t, x)∂k

t q(β+γ)
− j (α) (0, y(0), η(0))/(k!|α|!)

+O(τ−κ−1+ j+|γ|). (4-32)
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This together with (4-23) gives

λJ (t/τ, x/τ + y(t/τ))=
∑

j+l+|γ|=J

∑
k+|α|+|β|≤κ− j−|γ|

(t/τ)k(x/τ + y(t/τ)− y(0))αGβ
τ (t, x)

× Dγ
xφl(t/τ, x/τ + y(t/τ))

∂k
t q(β+γ)
− j (α) (0, y(0), η(0))

k!|α|!

+O(τ−κ−1+ j+|γ|),

where −1 ≤ j ≤ J and l ≥ 0. Using that by assumption the Taylor coefficients ∂k
t q(β+γ)
− j (α) (0, y(0), η(0))

vanish for all−1≤ j+k+|α|+|β|+|γ|<m, and τ−J−k−|α|
=τ |β|τ− j−k−|α|−|β|−|γ|−l when J = j+l+|γ|,

the equation above yields
m∑

J=−1

τ−JλJ (t/τ, x/τ + y(t/τ))=
m∑

j+l+|γ|=−1

∑
j+k+|α|+|β|+|γ|=m

τ−m−l tk(x + y′(0)t)ατ |β|Gβ
τ (t, x)

× Dγ
xφl(t/τ, x/τ + y(t/τ))

∂k
t q(β+γ)
− j (α) (0, y(0), η(0))

k!|α|!

+O(τ−m−1−l),

where τ |β|Gβ
τ (t, x)→Gβ

0 (t, x) as τ→∞. As we can see, the expression above is O(τ−m−1) as soon as
l > 0, so in view of (4-22) and (4-24) we obtain

lim
τ→∞

τm Iτ =
∫∫

H(t, x)ei tw′0(0)+i〈x,η(0)〉

×

( ∑
j+k+|α|+|β|+|γ|=m

tk(x + y′(0)t)αGβ

0 (t, x)Dγ
xφ0(0, y(0))

× ∂k
t q(β+γ)
− j (α) (0, y(0), η(0))/(k!|α|!)

)
dt dx . (4-33)

Recall (4-20) and choose φ0 so that Dβ0
x φ0(0, y(0)) = 1, but so that Dγ

xφ0(0, y(0)) = 0 for all other γ
such that |γ| ≤ |β0| (see (4-14)). By the choice of our ordering >t we have ∂k

t q(β+β0)

− j (α) (0, y(0), η(0))= 0
for all β such that |β|> 0 as long as j+k+|α|+|β|+|β0| =m. Hence, with this choice of φ0, equation
(4-33) takes the form

lim
τ→∞

τm Iτ =
∫∫

H(t, x)ei tw′0(0)+i〈x,η(0)〉

×

( ∑
j+k+|α|+|β0|=m

tk(x + y′(0)t)α∂k
t q(β0)

− j (α)(0, y(0), η(0))/(k!|α|!)
)

dt dx, (4-34)

so as promised, the value of Gβ

0 (t, x) for |β| > 0 does not matter. (Note that G0
0(t, x) is present in

(4-34) as the constant factor 1.) As in the proof of Theorem 2.20, some of the Taylor coefficients in
(4-34) may be zero. In particular, the expression may well contain Taylor coefficients that preceed
∂

k0
t q(β0)

− j0 (α0)
(0, y(0), η(0)) in the ordering, and those are by assumption zero. In contrast to the proof

of Theorem 2.20 we shall have to exploit this fact, since the coefficients of most of the monomials in
(4-34) will be linear combinations of the Taylor coefficients due to the factor (x + y′(0)t)α. However,
the ordering >t was chosen so that there can be no nonzero Taylor coefficient ∂k

t q(β0)

− j (α)(0, y(0), η(0))
such that k + |α| > k0 + |α0|, or k + |α| = k0 + |α0| and k < k0. This follows immediately from the
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choice of lexicographic order on the n-tuple (k, α)∈Nn . (Recall that in the definition of the ordering>t ,
x denoted all the variables in Rn , while here we denote those variables by (t, x).) Hence, the only
coefficient of the monomial tk0 xα0 in (4-34) is ∂k0

t q(β0)

− j0 (α0)
(0, y(0), η(0)). We may therefore, as in the

proof of Theorem 2.20, choose H so that the limit in (4-34) is nonzero. Since this contradicts (4-26),
Theorem 2.21 follows in view of the discussion following Lemma 4.1.

Appendix A.

Here we prove a few results used in the main text, related to how the property that all terms in the asymp-
totic expansion of the total symbol have vanishing Taylor coefficients is affected by various operations.

Lemma A.1. Suppose X and Y are two C∞ manifolds of the same dimension n. Let K ⊂ T ∗(X)r 0
and K ′ ⊂ T ∗(Y )r 0 be compactly based cones and let χ be a homogeneous symplectomorphism from
a conic neighborhood of K ′ to one of K such that χ(K ′) = K . Let A ∈ I m′(X × Y, Γ ′) and B ∈
I m′′(Y × X, (Γ −1)′), where Γ is the graph of χ , and assume that A and B are properly supported
and noncharacteristic at the restriction of the graphs of χ and χ−1 to K ′ and to K respectively, while
WF′(A) and WF′(B) are contained in small conic neighborhoods. If R is a properly supported classical
pseudodifferential operator in Y , then each term in the asymptotic expansion of the total (left) symbol
of R has vanishing Taylor coefficients at a point (y, η) ∈ K ′ if and only if each term in the asymptotic
expansion of the total (left) symbol of the pseudodifferential operator ARB in X has vanishing Taylor
coefficients at χ(y, η) ∈ K .

Proof. We may assume that we have a homogeneous generating function ϕ ∈C∞ for the symplectomor-
phism χ ; see [Grigis and Sjöstrand 1994, pages 101–103]. Then χ is locally of the form

(∂ϕ(x, η)/∂η, η) 7→ (x, ∂ϕ(x, η)/∂x),

and A and B are given by

Au(x)=
1

(2π)n

∫∫
ei(ϕ(x,ζ )−z·ζ )a(x, z, ζ )u(z) dz dζ,

Bv(y)=
1

(2π)n

∫∫
ei(y·θ−ϕ(s,θ))b(y, s, θ)v(s) ds dθ.

Since R is properly supported we may assume that

Ru(z)= 1
(2π)n

∫
ei z·ηr(z, η)û(η) dη for u ∈ C∞0 (Y ), (A-1)

where r(z, η)= σR is the total symbol of R. Hence

ARBu(x)= 1
(2π)3n

∫
ei(ϕ(x,ζ )−z·ζ+(z−y)·σ+y·θ−ϕ(s,θ))a(x, z, ζ )r(z, σ )b(y, s, θ)u(s) ds dθ dy dσ dz dζ,

(A-2)
since B being properly supported implies that Bu ∈C∞0 (Y ) when u ∈C∞0 (Y ). Using integration by parts
in z, we see that we can insert a cutoff φ((ζ −σ)/|σ |) in the last integral without changing the operator
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ARB mod Ψ−∞. If we make the change of variables τ = ζ − σ , then (A-2) takes the form

ARBu(x)=
1

(2π)3n

∫
φ(τ/|σ |)ei(ϕ(x,τ+σ)−z·(τ+σ)+(z−y)·σ+y·θ−ϕ(s,θ))

× a(x, z, τ + σ)r(z, σ )b(y, s, θ)u(s) ds dθ dy dσ dz dτ + Lu,

with L ∈Ψ−∞. If Ω ⊂R2n is open and ϕ̃ ∈C∞(Ω,R) is a phase function with a nondegenerate critical
point x0 ∈Ω such that dϕ̃ 6= 0 everywhere else, then [Grigis and Sjöstrand 1994, Proposition 2.3] states,
in particular, that for every compact M ⊂Ω and every u ∈ C∞(Ω)∩E′(M) we have∣∣∣∫ eiλϕ̃(x)u(x)dx − eiλϕ̃(x0)A0u(x0)λ

−n
∣∣∣≤ CMλ

−n−1
∑

|α|≤2n+3

sup |∂αu(x)| for λ≥ 1, (A-3)

where

A0 =
(2π)n · eiπ sgn ϕ̃′′(x0)/4

| det ϕ̃′′(x0)|1/2
. (A-4)

It is clear that the result extends to the settingΩ = T ∗(N)r0, where N is a C∞ manifold of dimension n.
In order to apply the result, we put σ = λω, and make the change of variables τ = λτ̃ . After dropping
the tilde we obtain

ARBu(x)=
λ2n

(2π)3n

∫
φ(τ/|ω|)eiλ(ϕ(x,τ+ω)−z·(τ+ω)+y·θ/λ+(z−y)·ω−ϕ(s,θ)/λ)

× a(x, z, λ(τ +ω))r(z, λω)b(y, s, θ)u(s) ds dθ dy dω dz dτ + Lu,

where we have used the fact that ϕ is homogeneous of degree 1 in the fiber. For the z, τ -integration we
have the nondegenerate critical point given by τ =0, z=ϕ′ζ (x, τ+ω). Note that since ϕ′ζ is homogeneous
of degree 0 in the fiber we have ϕ′ζ (x, σ/λ) = ϕ

′

ζ (x, σ ), so this critical point corresponds to the critical
point for the z, ζ -integration given by ζ = σ, z = ϕ′ζ (x, σ ). Hence the expression above together with
(A-3) imply that

ARBu(x)= Cλ2n
∫

ei(ϕ(x,λω)+y·θ−y·λω−ϕ(s,θ))w(x, y, s, ω, θ)u(s) ds dθ dy dω+ Lu,

where

w(x, y, s, ω, θ)=
A0

λn a(x, z, λ(τ +ω))r(z, λω)b(y, s, θ)φ(τ/|ω|)
∣∣∣τ=0,
z=ϕ′ζ (x,ω)

=
A0

λn a(x, ϕ′ζ (x, ω), λω)r(ϕ
′

ζ (x, ω), λω)b(y, s, θ)

with an error of order O(λ−n−1). Note that A0 is now a function of x andω, since the matrix corresponding
to ϕ̃′′(x0) in (A-4) is given by the block matrix

F =
(

0 −Idn

−Idn ϕ′′ζ ζ (x, ω)

)
, (A-5)

where Idn is the identity matrix on Rn . Clearly the determinant of F is either 1 or−1, so F is nonsingular.
Furthermore, F depends smoothly on the parameters x and ω since ϕ ∈ C∞, so the eigenvalues of F
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are continuous in x and ω. Hence it follows that the signature of F is constant, for if not there has to
exist an eigenvalue vanishing at some point (x, ω), contradicting the nonsingularity of F . Reverting to
the variable σ = λω we thus obtain

ARBu(x)= C
∫

ei(ϕ(x,σ )+y·(θ−σ)−ϕ(s,θ))w̃(x, y, s, σ, θ)u(s) ds dθ dy dσ + Lu,

where
w̃(x, y, s, σ, θ)= a(x, ϕ′ζ (x, σ ), σ )r(ϕ

′

ζ (x, σ ), σ )b(y, s, θ)

with an error of order O(λ−1). Taking the limit as λ→∞ yields

ARBu(x)=C
∫

ei(ϕ(x,σ )+y·(θ−σ)−ϕ(s,θ))a(x, ϕ′ζ (x, σ ), σ )r(ϕ
′

ζ (x, σ ), σ )b(y, s, θ)u(s)ds dθ dy dσ+Lu.

We can now repeat the procedure. Indeed, we can insert a cutoff φ((σ −θ)/|θ |) without changing the
operator mod Ψ−∞, and after making the corresponding changes of variables in order to apply [Grigis
and Sjöstrand 1994, Proposition 2.3] we find that for the y, σ -integration we have the nondegenerate
critical point given in the original variables by σ = θ, y = ϕ′σ (x, σ ). After taking the limit as λ→∞ we
obtain

ARBu(x)= C
∫

ei(ϕ(x,θ)−ϕ(s,θ))w1(x, s, θ)u(s) ds dθ + L1u,

where L1 ∈ Ψ
−∞ and

w1(x, s, θ)= a(x, ϕ′θ (x, θ), θ)r(ϕ
′

θ (x, θ), θ)b(ϕ
′

θ (x, θ), s, θ). (A-6)

As before we let the factor A0 from (A-4) be included in the constant C . In a conic neighborhood of
suppw1 we can write

ϕ(x, θ)−ϕ(s, θ)= (x − s)Ξ(x, s, θ).

ThenΞ(x, x, θ)=ϕ′x(x, θ) so ∂Ξ(x, x, θ)/∂θ =ϕ′′xθ (x, θ) is invertible, since ϕ′′xθ (x, θ) 6=0 is equivalent
to the fact that the graph of χ is (locally) the graph of a smooth map. Hence θ 7→ Ξ(x, s, θ) is C∞,
homogeneous of degree 1 and with an inverse having the same properties. For s close to x , the equation
Ξ(x, s, θ)= ξ then defines θ =Θ(x, s, ξ). After a change of variables, the last integral therefore takes
the form

ARBu(x)= C
∫

ei(x−s)·ξ w̃1(x, s, ξ)u(s) ds dξ + L1u, (A-7)

where w̃1(x, s, ξ) is justw1(x, s,Θ(x, s, ξ))multiplied by a Jacobian. We note in passing that evaluating
w̃1 at a point (x, x, ξ) where ξ is of the form ξ = ϕ′x(x, η) therefore involves evaluating w1 at the point
(x, x, η). The integral (A-7) defines a pseudodifferential operator with total symbol ρ(x, ξ) satisfying

ρ(x, ξ)∼
∑ i−|α|

α!
(∂αξ ∂

α
y w̃1(x, y, ξ))|y=x . (A-8)

If the total symbol r = σR of R has vanishing Taylor coefficients at a point (y, η) = (ϕ′η(x, η), η), then
by examining (A-8) in decreasing order of homogeneity we find that each term of ρ must have vanishing
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Taylor coefficients at (x, ξ)= (x, ϕ′x(x, η)), since by what we have shown this would involve evaluating
r(z, σ ) and its derivatives at (ϕ′η(x, η), η).

To prove the converse, choose A1∈ I−m′′(X×Y, Γ ′) and B1∈ I−m′(Y×X, (Γ −1)′) properly supported
such that

K ′ ∩WF(B A1− I )=∅, K ∩WF(A1 B− I )=∅,

K ′ ∩WF(B1 A− I )=∅, K ∩WF(AB1− I )=∅.

Then a repetition of the arguments above shows that all the terms in the asymptotic expansion of the
total symbol of B1 ARB A1 has vanishing Taylor coefficients at a point (y, η) = (ϕ′η(x, η), η) if all the
terms in the asymptotic expansion of the total symbol of ARB has vanishing Taylor coefficients at
(x, ξ) = (x, ϕ′x(x, η)). Since R and B1 ARB A1 have the same total symbol in K ′ mod Ψ−∞, the same
must hold for the total symbol of R. �

Let {ek : k = 1, . . . , n} be a basis for Rn , let (U, x) be local coordinates on a smooth manifold M of
dimension n, and let {

∂

∂xk
: k = 1, . . . , n

}
be the induced local frame for the tangent bundle T M . Since the local frame fields commute, we can
use standard multiindex notation to express the partial derivatives ∂αx f of f ∈ C∞(U ).

Lemma A.2. Let M be a smooth manifold of dimension n, and for j ≥ 1 let p, q j , g j ∈ C∞(M). Let
{γ j }

∞

j=1 be a sequence in M such that γ j → γ as j →∞, and assume that p(γ) = p(γ j ) = 0 for all j ,
and that dp(γ) 6= 0. Let (U, x) be local coordinates on M near γ, and suppose that there exists a smooth
function q ∈ C∞(M) such that

∂αx q(γ)= lim
j→∞

∂αx q j (γ j ) for all α ∈ Nn .

If q j − pg j vanishes of infinite order at γ j for all j , then there exists a smooth function g ∈C∞(M) such
that q − pg vanishes of infinite order at γ. Furthermore,

∂αx g(γ)= lim
j→∞

∂αx g j (γ j ) for all α ∈ Nn . (A-9)

Proof. We have stated the result for a manifold, but since the result is purely local we may assume that
M ⊂ Rn in the proof. It is also clear that we may assume that there exists an open neighborhood U of
γ such that γ j ∈ U for j ≥ 1, and that dp 6= 0 in U. By shrinking U if necessary, we can then find a
unit vector ν ∈ Rn such that ∂ν p(w) = 〈ν, dp(w)〉 6= 0 for w ∈ U. (We will identify a tangent vector
ν ∈ Rn at γ with ∂ν ∈ TγRn through the usual vector space isomorphism.) Hence ∂ν p(w) is invertible
in U, and we let (∂ν p(w))−1

∈ C∞(U) denote its inverse. By an orthonormal change of coordinates we
may even assume that ∂ν p(w) = ∂e1 p(w). In accordance with the notation used in the statement of the
lemma, we shall write ∂xk p(w) for the partial derivatives ∂ek p(w) and denote by (∂x1 p(w))−1 the inverse
of ∂ν p(w)= ∂x1 p(w) in U.

Now
0= ∂x1(q j − pg j )(γ j )= ∂x1q j (γ j )− ∂x1 p(γ j )g j (γ j ) (A-10)
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for all j since p(γ j )= 0. Since lim j ∂x1q j (γ j )= ∂x1q(γ) by assumption, equation (A-10) yields

lim
j→∞

g j (γ j )= (∂x1 p(γ))−1∂x1q(γ)= a ∈ C. (A-11)

We claim that we can in the same way determine

lim
j→∞

(∂αx g j )(γ j )= a(α) ∈ C for any α ∈ Nn .

We start by determining lim j→∞ ∂g j (γ j )/∂xk = a(k) for 1≤ k ≤ n. By the hypotheses of the lemma we
have

0= ∂xk∂xl (q j − pg j )(γ j )

= ∂xk∂xl q j (γ j )− ∂xk∂xl p(γ j )g j (γ j )− ∂xk p(γ j )∂xl g j (γ j )− ∂xl p(γ j )∂xk g j (γ j ) (A-12)

since p(γ j )= 0. For k = l = 1 we obtain from (A-11) and (A-12)

lim
j→∞

∂x1 g j (γ j )= (∂x1 p(γ))−1(∂2
x1

q(γ)− ∂2
x1

p(γ)a
)
/2. (A-13)

This allows us to solve for ∂xk g j (γ j ) in (A-12) by choosing l = 1. If b ∈ C denotes the limit in (A-13)
and a ∈ C is given by (A-11) we thus obtain

lim
j→∞

∂xk g j (γ j )= (∂x1 p(γ))−1(∂x1∂xk q(γ)− ∂x1∂xk p(γ)a− ∂xk p(γ)b
)

for 2≤ k ≤ n.

Now assume that for some m ≥ 3 we have in this way determined

lim
j→∞

∂xk1
. . . ∂xkm−2

g j (γ j ), for ki ∈ [1, n], with i ∈ [1,m− 2].

To shorten notation, we will use the (nonstandard) multiindex notation introduced on page 465; to every
α ∈ Nn with |α| = m corresponds precisely one m-tuple β = (k1, . . . , km) of nondecreasing numbers
1≤ k1 ≤ · · · ≤ km ≤ n such that ∂βx equals ∂αx . Throughout the rest of this proof we shall let β represent
such an m-tuple, and we let

β̂i = (k1, . . . , ki−1, ki+1, . . . , km).

As before we have

0= ∂βx (q j − pg j )(γ j )= ∂
β
x q j (γ j )− ∂

β
x p(γ j )g j (γ j )− · · ·−

m∑
i=1

∂xki
p(γ j )∂

β̂i
x g j (γ j ) (A-14)

by assumption. If we choose ki =1 for all 1≤ i ≤m, the last sum is just m∂x1 p(γ j )∂
m−1
x1

g j (γ j ), and since
the limit of all other terms on the right side are known by the induction hypothesis, we thus obtain the
value of the limit of ∂m−1

x1
g j (γ j ) from (A-14) by first multiplying by m−1(∂x1 p(γ j ))

−1 and then letting
j →∞. Denote this limit by c ∈ C. If we choose ki 6= 1 for precisely one i ∈ [1,m], say km = k, then
the last sum in (A-14) satisfies

m∑
i=1

∂xki
p(γ j )∂

β̂i
x g j (γ j )= ∂xk p(γ j )∂

m−1
x1

g j (γ j )+ (m− 1)∂x1 p(γ j )∂
m−2
x1

∂xk g j (γ j ),



MICROLOCAL PROPERTIES OF THE RANGE OF A PRINCIPAL PSEUDODIFFERENTIAL OPERATOR 473

so by the same argument as before we can obtain the value of lim j→∞ ∂
m−2
x1

∂xk g j (γ j ) for 2 ≤ k ≤ n by
multiplying by (m − 1)−1(∂x1 p(γ j ))

−1 and using ∂m−1
x1

g j (γ j )→ c when taking the limit as j →∞ in
(A-14). Continuing this way it is clear that we can successively determine

lim
j→∞

∂xk1
. . . ∂xkm−1

g j (γ j ) for any 1≤ k1 ≤ . . .≤ km−1 ≤ n,

which completely determines lim j→∞ ∂
α
x g j (γ j )= a(α) for α ∈ Nn with |α| = m− 1, proving the claim.

By Borel’s theorem there exists a smooth function g ∈ C∞(M) such that

∂αx g(γ)= a(α) = lim
j→∞

∂αx g j (γ j ) for all α ∈ Nn .

Since q − pg vanishes of infinite order at γ by construction, this completes the proof. �

The lemma will be used to prove the following result for homogeneous smooth functions on the
cotangent bundle.

Proposition A.3. For j ≥ 1 let p, q j , g j ∈ C∞(T ∗(Rn) r 0), where p and q j are homogeneous of
degree m and the g j are homogeneous of degree 0. Let {γ j }

∞

j=1 be a sequence in T ∗(Rn)r 0 such that
γ j → γ as j →∞, and assume that p(γ) = p(γ j ) = 0 for all j , and that dp(γ) 6= 0. If there exists a
smooth function q ∈ C∞(T ∗(R)n r 0), homogeneous of degree m, such that

∂αx ∂
β
ξ q(γ)= lim

j→∞
∂αx ∂

β
ξ q j (γ j ) for all (α, β) ∈ Nn

×Nn ,

and if q j − pg j vanishes of infinite order at γ j for all j , then there exists a g ∈ C∞(T ∗(Rn) r 0),
homogeneous of degree 0, such that q − pg vanishes of infinite order at γ. Furthermore,

∂αx ∂
β
ξ g(γ)= lim

j→∞
∂αx ∂

β
ξ g j (γ j ) for all (α, β) ∈ Nn

×Nn . (A-15)

Proof. Let π : T ∗(Rn)r 0→ S∗(Rn) be the projection. Since dp(γ) 6= 0 it follows from homogeneity
that dp(π(γ)) 6= 0. By using the homogeneity of q , q j and g j we may even assume that γ and γ j belong
to S∗(Rn) for j ≥ 1 to begin with.

Now, the radial vector field ξ∂ξ applied k times to a ∈C∞(T ∗(Rn)r0) equals lka if a is homogeneous
of degree l. For any point w ∈ S∗(Rn) with w = (wx , wξ ) in local coordinates on T ∗(Rn) it is easy to
see that

TwS∗(Rn)= {(u, v) ∈ Rn
×Rn

: 〈wξ , v〉 = 0}.

Therefore a basis for TwS∗(Rn) together with the radial vector field (ξ∂ξ )w at w constitutes a basis for
TwT ∗(Rn). This implies that if we can find a homogeneous function g such that q − pg vanishes of
infinite order in the directions TγS∗(Rn), then q − pg vanishes of infinite order at γ, for the derivatives
involving the radial direction are determined by lower order derivatives in the directions TγS∗(Rn).

By the hypotheses of the proposition together with an application of Lemma A.2, we find that there
exists a function g̃ ∈ C∞(T ∗(Rn)), not necessarily homogeneous, such that q − pg̃ vanishes of infinite
order at γ and (A-15) holds for g̃. The function g(x, ξ) = g̃(x, ξ/|ξ |) coincides with g̃ on S∗(Rn). In
particular, all derivatives of g and g̃ in the directions TγS∗(Rn) are equal at γ. Thus, by the arguments
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above we conclude that q − pg vanishes of infinite order at γ. Since g and g j are homogeneous of
degree 0, the same arguments also imply that (A-15) holds for g, which completes the proof. �

Acknowledgement

I am grateful to Professor Nils Dencker at Lund University for suggesting the problem that led to the
results presented here, and also for many helpful discussions on the subject.

References

[Dencker 2006] N. Dencker, “The resolution of the Nirenberg–Treves conjecture”, Ann. of Math. (2) 163:2 (2006), 405–444.
MR 2006i:35386 Zbl 1104.35080

[Grigis and Sjöstrand 1994] A. Grigis and J. Sjöstrand, Microlocal analysis for differential operators: An introduction, London
Mathematical Society Lecture Note Series 196, Cambridge University Press, 1994. MR 95d:35009 Zbl 0804.35001

[Hörmander 1960a] L. Hörmander, “Differential equations without solutions”, Math. Ann. 140 (1960), 169–173. MR 26 #5279
Zbl 0093.28903

[Hörmander 1960b] L. Hörmander, “Differential operators of principal type”, Math. Ann. 140 (1960), 124–146. MR 24 #A434
Zbl 0090.08101

[Hörmander 1963] L. Hörmander, Linear partial differential operators, Grundlehren der mathematischen Wissenschaften 116,
Springer, Berlin, 1963. Zbl 0108.09301

[Hörmander 1966] L. Hörmander, “Pseudo-differential operators and non-elliptic boundary problems”, Ann. of Math. (2) 83
(1966), 129–209. MR 38 #1387 Zbl 0132.07402

[Hörmander 1981] L. Hörmander, “Pseudo-differential operators of principal type”, pp. 69–96 in Singularities in boundary
value problems: Proc. NATO Adv. Study Inst., 1980 (Maratea, Italy: September 22–October 3, 1980), NATO Adv. Study Inst.,
Ser. C: Math. Phys. Sci. 65, Reidel, Dordrecht-Boston, MA, 1981. Zbl 0459.35096

[Hörmander 1983a] L. Hörmander, The analysis of linear partial differential operators, I: Distribution theory and Fourier
analysis, Grundlehren der Mathematischen Wissenschaften 256, Springer, Berlin, 1983. MR 85g:35002a

[Hörmander 1983b] L. Hörmander, The analysis of linear partial differential operators, II: Differential operators with constant
coefficients, Grundlehren der Mathematischen Wissenschaften 257, Springer, Berlin, 1983. MR 85g:35002b

[Hörmander 1985a] L. Hörmander, The analysis of linear partial differential operators, III: Pseudodifferential operators,
Grundlehren der Mathematischen Wissenschaften 274, Springer, Berlin, 1985. MR 87d:35002a Zbl 0601.35001

[Hörmander 1985b] L. Hörmander, The analysis of linear partial differential operators, IV: Fourier integral operators, Grund-
lehren der Mathematischen Wissenschaften 275, Springer, Berlin, 1985. MR 87d:35002b

[Lewy 1957] H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. of Math. (2) 66
(1957), 155–158. MR 19,551d Zbl 0078.08104

[Moyer 1978] R. D. Moyer, “Local solvability in two dimensions: Necessary conditions for the principal-type case”, mimeo-
graphed manuscript, University of Kansas, 1978.

[Nirenberg and Treves 1970a] L. Nirenberg and F. Treves, “On local solvability of linear partial differential equations, I:
Necessary conditions”, Communications on Pure and Applied Mathematics 23:1 (1970), 1–38. Zbl 0191.39103

[Nirenberg and Treves 1970b] L. Nirenberg and F. Treves, “On local solvability of linear partial differential equations, II:
Sufficient conditions”, Communications on Pure and Applied Mathematics 23:3 (1970), 459–509.

[Nirenberg and Treves 1971] L. Nirenberg and F. Treves, “Corrections to On local solvability of linear partial differential
equations”, Communications on Pure and Applied Mathematics 24:2 (1971), 279–288.

Received 14 Jul 2010. Revised 10 Dec 2010. Accepted 5 Feb 2011.

JENS WITTSTEN: jens.wittsten@math.lu.se
Center for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund, Sweden

mathematical sciences publishers msp

http://dx.doi.org/10.4007/annals.2006.163.405
http://www.ams.org/mathscinet-getitem?mr=2006i:35386
http://www.zentralblatt-math.org/zmath/en/search/?an=1104.35080
http://www.ams.org/mathscinet-getitem?mr=95d:35009
http://www.zentralblatt-math.org/zmath/en/search/?an=0804.35001
http://dx.doi.org/10.1007/BF01361142
http://www.ams.org/mathscinet-getitem?mr=26:5279
http://www.zentralblatt-math.org/zmath/en/search/?an=0093.28903
http://dx.doi.org/10.1007/BF01360085
http://www.ams.org/mathscinet-getitem?mr=24:A434
http://www.zentralblatt-math.org/zmath/en/search/?an=0090.08101
http://www.zentralblatt-math.org/zmath/en/search/?an=0108.09301
http://dx.doi.org/10.2307/1970473
http://www.ams.org/mathscinet-getitem?mr=38:1387
http://www.zentralblatt-math.org/zmath/en/search/?an=0132.07402
http://www.zentralblatt-math.org/zmath/en/search/?an=0459.35096
http://dx.doi.org/10.1007/978-3-642-96750-4
http://dx.doi.org/10.1007/978-3-642-96750-4
http://www.ams.org/mathscinet-getitem?mr=85g:35002a
http://dx.doi.org/10.1007/978-3-642-96750-4
http://dx.doi.org/10.1007/978-3-642-96750-4
http://www.ams.org/mathscinet-getitem?mr=85g:35002b
http://goo.gl/v93YG
http://www.ams.org/mathscinet-getitem?mr=87d:35002a
http://www.zentralblatt-math.org/zmath/en/search/?an=0601.35001
http://www.ams.org/mathscinet-getitem?mr=87d:35002b
http://dx.doi.org/10.2307/1970121
http://www.ams.org/mathscinet-getitem?mr=19,551d
http://www.zentralblatt-math.org/zmath/en/search/?an=0078.08104
http://dx.doi.org/10.1002/cpa.3160230102
http://dx.doi.org/10.1002/cpa.3160230102
http://www.zentralblatt-math.org/zmath/en/search/?an=0191.39103
http://dx.doi.org/10.1002/cpa.3160230314
http://dx.doi.org/10.1002/cpa.3160230314
mailto:jens.wittsten@math.lu.se
http://msp.org


Analysis & PDE
msp.berkeley.edu/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
University of California

Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
ilaba@math.ubc.ca lebeau@unice.fr

László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France William Minicozzi II Johns Hopkins University, USA
Frank.Merle@u-cergy.fr minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany Yuval Peres University of California, Berkeley, USA
mueller@math.uni-bonn.de peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6 Tristan Rivière ETH, Switzerland
pisier@math.tamu.edu riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA Wilhelm Schlag University of Chicago, USA
irod@math.princeton.edu schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA Yum-Tong Siu Harvard University, USA
serfaty@cims.nyu.edu siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
tao@math.ucla.edu met@math.unc.edu

Gunther Uhlmann University of Washington, USA András Vasy Stanford University, USA
gunther@math.washington.edu andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA Steven Zelditch Northwestern University, USA
dvv@math.berkeley.edu zelditch@math.northwestern.edu

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor

See inside back cover or msp.berkeley.edu/apde for submission instructions.

The subscription price for 2012 is US $140/year for the electronic version, and $240/year for print and electronic. Subscriptions, requests for
back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of
Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Analysis & PDE, at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is
published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:aizenman@math.princeton.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:caffarel@math.utexas.edu
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:higson@math.psu.edu
mailto:vfr@math.berkeley.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:contact@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 5 No. 3 2012

423On some microlocal properties of the range of a pseudodifferential operator of principal type
JENS WITTSTEN

475Blow-up solutions on a sphere for the 3D quintic NLS in the energy space
JUSTIN HOLMER and SVETLANA ROUDENKO

513Sharp geometric upper bounds on resonances for surfaces with hyperbolic ends
DAVID BORTHWICK

553A vector field method approach to improved decay for solutions to the wave equation on a
slowly rotating Kerr black hole

JONATHAN LUK

627On the Bogolyubov–Ruzsa lemma
TOM SANDERS

657Real analyticity away from the nucleus of pseudorelativistic Hartree–Fock orbitals
ANNA DALL’ACQUA, SØREN FOURNAIS, THOMAS ØSTERGAARD SØRENSEN and
EDGARDO STOCKMEYER

693Semiclassical trace formulas and heat expansions
YVES COLIN DE VERDIÈRE

A
N

A
LY

SIS
&

PD
E

Vol.5,
N

o.3
2012


	1. Introduction
	2. Nonsolvable operators of principal type
	3. Proof of 0=prop.581=Theorem 2.20
	4. Proof of 0=prop.591=Theorem 2.21
	Appendix A. 
	Acknowledgement
	References
	
	

