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ON THE GLOBAL WELL-POSEDNESS OF ENERGY-CRITICAL SCHRÖDINGER
EQUATIONS IN CURVED SPACES

ALEXANDRU D. IONESCU, BENOIT PAUSADER AND GIGLIOLA STAFFILANI

In this paper we present a method to study global regularity properties of solutions of large-data critical
Schrödinger equations on certain noncompact Riemannian manifolds. We rely on concentration compact-
ness arguments and a global Morawetz inequality adapted to the geometry of the manifold (in other words
we adapt the method of Kenig and Merle to the variable coefficient case), and a good understanding of the
corresponding Euclidean problem (a theorem of Colliander, Keel, Staffilani, Takaoka and Tao).

As an application we prove global well-posedness and scattering in H 1 for the energy-critical defocus-
ing initial-value problem

.i@t C�g/uD ujuj4; u.0/D �;

on hyperbolic space H3.
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1. Introduction

The goal of this paper is to present a somewhat general method to prove global well-posedness of critical1

nonlinear Schrödinger initial-value problems of the form

.i@t C�g/uD N.u/; u.0/D �; (1-1)

on certain noncompact Riemannian manifolds .M;g/. Here �g D gij .@ij � �
k
ij@k/ is the (negative)

Laplace–Beltrami operator of .M;g/. In Euclidean spaces, the subcritical theory of such nonlinear
Schrödinger equations is well established; see for example the books [Cazenave 2003; Tao 2006] for
many references. Many of the subcritical methods extend also to the study of critical equations with small

Ionescu was supported in part by a Packard Fellowship, and Staffilani by NSF Grant DMS 0602678. Pausader and Staffilani
thank the MIT/France program during which this work was initiated.
MSC2000: 35Q55.
Keywords: global well-posedness, energy-critical defocusing NLS, nonlinear Schrödinger equation, induction on energy.

1Here critical refers to the fact that when .M;g/D .R3; ıij /, the equation and the control (here the energy) are invariant
under the rescaling u.x; t/! �1=2u.�x; �2t/.
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706 ALEXANDRU D. IONESCU, BENOIT PAUSADER AND GIGLIOLA STAFFILANI

data. The case of large-data critical Schrödinger equations is more delicate, and was first considered in
[Bourgain 1999] and [Grillakis 2000] for defocusing Schrödinger equations with pure power nonlinearities
and spherically symmetric data. The spherical symmetry assumption was removed in dimension d D 3

in [Colliander et al. 2008]; global well-posedness was then extended to higher dimensions d � 4 in
[Ryckman and Visan 2007; Visan 2007].

A key development in the theory of large-data critical dispersive problems was the article [Kenig and
Merle 2006], on spherically symmetric solutions of the energy-critical focusing NLS in R3. The methods
developed in this paper found applications in many other large-data critical dispersive problems, leading
to complete solutions or partial results. We adapt this point of view in our variable coefficient setting as
well.

To keep things as simple as possible on a technical level, in this paper we consider only the energy-
critical defocusing Schrödinger equation

.i@t C�g/uD ujuj4 (1-2)

in hyperbolic space H3. Suitable solutions of (1-2) on the time interval .T1;T2/ satisfy mass and energy
conservation, in the sense that the functions

E0.u/.t/ WD

Z
H3

ju.t/j2 d�; E1.u/.t/ WD
1

2

Z
H3

jrgu.t/j2 d�C
1

6

Z
H3

ju.t/j6 d� (1-3)

are constant on the interval .T1;T2/. Our main theorem concerns global well-posedness and scattering in
H 1.H3/ for the initial-value problem associated to (1-2).

Theorem 1.1. (a) (Global well-posedness.) If � 2H 1.H3/2 then there exists a unique global solution
u 2 C.R WH 1.H3// of the initial-value problem

.i@t C�g/uD ujuj4; u.0/D �: (1-4)

In addition, the mapping �! u is a continuous mapping from H 1.H3/ to C.R WH 1.H3//, and the
quantities E0.u/ and E1.u/ defined in (1-3) are conserved.

(b) (Scattering.) We have the bound

kukL10.H3�R/ � C.k�kH 1.H3//: (1-5)

As a consequence, there exist unique u˙ 2H 1.H3/ such that

ku.t/� eit�g u˙kH 1.H3/ D 0 as t !˙1: (1-6)

It was observed by Banica [2007] that hyperbolic geometry cooperates well with the dispersive nature
of Schrödinger equations, at least in the case of subcritical problems. In fact the long time dispersion of
solutions is stronger in hyperbolic geometry than in Euclidean geometry. Intuitively, this is due to the
fact that the volume of a ball of radius RC 1 in hyperbolic spaces is about twice as large as the volume

2Unlike in Euclidean spaces, in hyperbolic spaces Hd one has the uniform inequality
R

Hd jf j
2 d�.

R
Hd jrf j

2 d� for any
f 2 C1

0
.Hd /. In other words PH 1.Hd / ,!L2.Hd /.
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of a ball of radius R, if R� 1; therefore, as outgoing waves advance one unit in the geodesic direction
they have about twice as much volume to disperse into. This heuristic can be made precise; see [Anker
and Pierfelice 2009; Banica 2007; Banica et al. 2008; 2009; Banica and Duyckaerts 2007; Bouclet 2011;
Christianson and Marzuola 2010; Ionescu and Staffilani 2009; Pierfelice 2008] for theorems concerning
subcritical nonlinear Schrödinger equations in hyperbolic spaces (or other spaces that interpolate between
Euclidean and hyperbolic spaces). The theorems proved in these papers are stronger than the corresponding
theorems in Euclidean spaces, in the sense that one obtains better scattering and dispersive properties of
the nonlinear solutions.

We remark, however, that the global geometry of the manifold cannot bring any improvements in the
case of critical problems. To see this, consider only the case of data of the form

�N .x/DN 1=2 .N‰�1.x//; (1-7)

where  2 C1
0
.R3/ and ‰ WR3!H3 is a suitable local system of coordinates. Assuming that  is fixed

and letting N !1, the functions �N 2 C1
0
.H3/ have uniformly bounded H 1 norm. For any T � 0 and

 fixed, one can prove that the nonlinear solution of (1-4) corresponding to data �N is well approximated
by

N 1=2v.N‰�1.x/;N 2t/

on the time interval .�TN�2;TN�2/, for N sufficiently large (depending on T and  ), where v is the
solution on the time interval .�T;T / of the Euclidean nonlinear Schrödinger equation

.i@t C�/v D vjvj
4; v.0/D  : (1-8)

See Section 4 for precise statements. In other words, the solution of the hyperbolic NLS (1-4) with data
�N can be regular on the time interval .�TN�2;TN�2/ only if the solution of the Euclidean NLS (1-8)
is regular on the interval .�T;T /. This shows that understanding the Euclidean scale invariant problem
is a prerequisite for understanding the problem on any other manifold. Fortunately, we are able to use the
main theorem of Colliander et al. [2008] as a black box (see the proof of Lemma 4.2).

The previous heuristic shows that understanding the scaling limit problem (1-8) is part of understanding
the full nonlinear evolution (1-4), at least if one is looking for uniform control on all solutions below
a certain energy level. This approach was already used in the study of elliptic equations, first in the
subcritical case (where the scaling limits are easier) by Gidas and Spruck [1981] and also in the H 1

critical setting, see for example Druet, Hebey and Robert [Druet et al. 2004], Hebey and Vaugon [1995],
Schoen [1989] and (many) references therein. Note however that in the dispersive case, we have to
contend with the fact that we are looking at perturbations of a linear operator i@t C�g whose kernel is
infinite dimensional.

Other critical dispersive models, such as large-data critical wave equations or the Klein–Gordon
equation have also been studied extensively, both in the case of the Minkowski space and in other Lorentz
manifolds. See, for example, [Bahouri and Gérard 1999; Bahouri and Shatah 1998; Burq et al. 2008;
Burq and Planchon 2009; Grillakis 1990; 1992; Ibrahim and Majdoub 2003; Ibrahim et al. 2009; 2011;
Kapitanski 1994; Kenig and Merle 2008; Killip et al. 2012; Laurent 2011; Shatah and Struwe 1993; 1994;
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Struwe 1988; Tao 2006] for further discussion and references. In the case of the wave equation, passing
to the variable coefficient setting is somewhat easier due the finite speed of propagation of solutions.

Nonlinear Schrödinger equations such as (1-1) have also been considered in the setting of compact
Riemannian manifolds .M;g/; see [Bourgain 1993a; 1993b; Burq et al. 2004; 2005; Colliander et al.
2010; Gérard and Pierfelice 2010]. In this case the conclusions are generally weaker than in Euclidean
spaces: there is no scattering to linear solutions, or some other type of asymptotic control of the nonlinear
evolution as t !1. We note however the recent result of Herr, Tataru and Tzvetkov [Herr et al. 2011]
on the global well-posedness of the energy critical NLS with small initial data in H 1.T3/.

To simplify the exposition, we use some of the structure of hyperbolic spaces; in particular we exploit
the existence of a large group of isometries that acts transitively on Hd . However the main ingredients in
the proof are more basic, and can probably be extended to more general settings3. These main ingredients
are:

(1) a dispersive estimate such as (2-24), which gives a good large-data local well-posedness/stability
theory (Propositions 3.1 and 3.2);

(2) a good Morawetz-type inequality (Proposition 3.3) to exploit the global defocusing character of the
equation;

(3) a good understanding of the Euclidean problem, provided in this case by a result of Colliander, Keel,
Staffilani, Takaoka and Tao [Colliander et al. 2008, Theorem 4.1];

(4) some uniform control of the geometry of the manifold at infinity.

The rest of the paper is organized as follows: in Section 2 we set up the notations, and record the main
dispersive estimates on the linear Schrödinger flow on hyperbolic spaces. We prove also several lemmas
that are used later.

In Section 3 we collect all the necessary ingredients described above, and outline the proof of the main
theorem. The only component of the proof that is not known is Proposition 3.4 on the existence of a
suitable minimal energy blow-up solution.

In Section 4 we consider nonlinear solutions of (1-4) corresponding to data that contract at a point,
as in (1-7). Using the main theorem in [Colliander et al. 2008] we prove that such nonlinear solutions
extend globally in time and satisfy suitable dispersive bounds.

In Section 5 we prove our main profile decomposition of H 1-bounded sequences of functions in
hyperbolic spaces. This is the analogue of Keraani’s theorem [2001] in Euclidean spaces. In hyperbolic
spaces we have to distinguish between two types of profiles: Euclidean profiles which may contract at a
point, after time and space translations, and hyperbolic profiles which live essentially at frequency4 N D 1.
Hyperbolic geometry guarantees that profiles of low frequency N � 1 can be treated as perturbations.

3Two of the authors have applied a similar strategy to prove global regularity of the defocusing energy-critical NLS in other
settings, such as T3 [Ionescu and Pausader 2012a] and R�T3 [Ionescu and Pausader 2012b], where other issues arise due to the
presence of trapped geodesics or the lower power in the nonlinearity.

4Here we define the notion of frequency through the heat kernel, see (2-28).
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Finally, in Section 6 we use our profile decomposition and orthogonality arguments to complete the proof
of Proposition 3.4.

2. Preliminaries

In this subsection we review some aspects of the harmonic analysis and the geometry of hyperbolic spaces,
and summarize our notations. For simplicity, we will use the conventions in [Bray 1994], but one should
keep in mind that hyperbolic spaces are the simplest examples of symmetric spaces of the noncompact
type, and most of the analysis on hyperbolic spaces can be generalized to this setting (see, for example,
[Helgason 1994]).

Hyperbolic spaces: Riemannian structure and isometries. For integers d�2 we consider the Minkowski
space RdC1 with the standard Minkowski metric �.dx0/2C.dx1/2C: : :C.dxd /2 and define the bilinear
form on RdC1 �RdC1,

Œx;y�D x0y0
�x1y1

� � � � �xdyd :

Hyperbolic space Hd is defined as

Hd
D fx 2 RdC1

W Œx;x�D 1 and x0 > 0g:

Let 0D .1; 0; : : : ; 0/ denote the origin of Hd . The Minkowski metric on RdC1 induces a Riemannian
metric g on Hd , with covariant derivative D and induced measure d�.

We define G WD SO.d; 1/D SOe.d; 1/ as the connected Lie group of .d C 1/� .d C 1/ matrices that
leave the form Œ � ; � � invariant. Clearly, X 2 SO.d; 1/ if and only if

trX � Id;1 �X D Id;1; det X D 1; X00 > 0;

where Id;1 is the diagonal matrix diagŒ�1; 1; : : : ; 1� (since Œx;y�D�tx �Id;1 �y). Let KD SO.d/ denote
the subgroup of SO.d; 1/ that fixes the origin 0. Clearly, SO.d/ is the compact rotation group acting on
the variables .x1; : : : ;xd /. We define also the commutative subgroup A of G,

A WD

8<:as D

24 ch s sh s 0

sh s ch s 0

0 0 Id�1

35 W s 2 R

9=; ; (2-1)

and recall the Cartan decomposition

GD KACK; AC WD fas W s 2 Œ0;1/g: (2-2)

The semisimple Lie group G acts transitively on Hd and hyperbolic space Hd can be identified
with the homogeneous space G=K D SO.d; 1/=SO.d/. Moreover, for any h 2 SO.d; 1/ the mapping
Lh W Hd ! Hd , Lh.x/ D h � x, defines an isometry of Hd . Therefore, for any h 2 G, we define the
isometries

�h WL
2.Hd /!L2.Hd /; �h.f /.x/D f .h

�1
�x/: (2-3)
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We fix normalized coordinate charts which allow us to pass in a suitable way between functions defined
on hyperbolic spaces and functions defined on Euclidean spaces. More precisely, for any h 2 SO.d; 1/
we define the diffeomorphism

‰h W R
d
! Hd ; ‰h.v

1; : : : ; vd /D h � .
p

1Cjvj2; v1; : : : ; vd /: (2-4)

Using these diffeomorphisms we define, for any h 2 G,

z�h W C.R
d /! C.Hd /; z�h.f /.x/D f .‰

�1
h .x//: (2-5)

We will use the diffeomorphism ‰I as a global coordinate chart on Hd , where I is the identity element
of G. We record the integration formulaZ

Hd

f .x/ d�.x/D

Z
Rd

f .‰I .v//.1Cjvj
2/�1=2 dv (2-6)

for any f 2 C0.H
d /.

The Fourier transform on hyperbolic spaces. The Fourier transform (as defined by Helgason [1965] in
the more general setting of symmetric spaces) takes suitable functions defined on Hd to functions defined
on R�Sd�1. For ! 2 Sd�1 and � 2 C, let b.!/D .1; !/ 2 RdC1 and

h�;! W H
d
! C; h�;!.x/D Œx; b.!/�

i���;

where
�D .d � 1/=2:

It is known that
�gh�;! D�.�

2
C �2/h�;! ; (2-7)

where �g is the Laplace–Beltrami operator on Hd . The Fourier transform of f 2 C0.H
d / is defined by

the formula
Qf .�; !/D

Z
Hd

f .x/h�;!.x/ d�D

Z
Hd

f .x/Œx; b.!/�i��� d�: (2-8)

This transformation admits a Fourier inversion formula: if f 2 C1
0
.Hd / then

f .x/D

Z 1
0

Z
Sd�1

Qf .�; !/Œx; b.!/��i���
jc.�/j�2 d� d!; (2-9)

where, for a suitable constant C ,

c.�/D C
�.i�/

�.�C i�/

is the Harish-Chandra c-function corresponding to Hd , and the invariant measure of Sd�1 is normalized
to 1. It follows from (2-7) that

A�gf .�; !/D�.�
2
C �2/ Qf .�; !/: (2-10)
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We record also the nontrivial identityZ
Sd�1

Qf .�; !/Œx; b.!/��i���d! D

Z
Sd�1

Qf .��; !/Œx; b.!/�i���d!

for any f 2 C1
0
.Hd /, � 2 C, and x 2 Hd .

According to the Plancherel theorem, the Fourier transform f ! Qf extends to an isometry of L2.Hd /

onto L2.RC �Sd�1; jc.�/j�2d� d!/; moreoverZ
Hd

f1.x/f2.x/ d�D
1

2

Z
R�Sd�1

zf1.�; !/ zf2.�; !/jc.�/j
�2 d� d!; (2-11)

for any f1; f2 2 L2.Hd /. As a consequence, any bounded multiplier m W RC! C defines a bounded
operator Tm on L2.Hd / by the formula

BTm.f /.�; !/Dm.�/ � Qf .�; !/: (2-12)

The question of Lp boundedness of operators defined by multipliers as in (2-12) is more delicate if
p ¤ 2. A necessary condition for boundedness on Lp.Hd / of the operator Tm is that the multiplier m

extends to an even analytic function in the interior of the region Tp D f� 2 C W j=�j< j2=p�1j�g [Clerc
and Stein 1974]. Conversely, if p 2 .1;1/ and m W Tp! C is an even analytic function which satisfies
the symbol-type bounds

j@˛m.�/j � C.1Cj�j/�˛ for any ˛ 2 Œ0; d C 2�\Z and � 2 Tp; (2-13)

then Tm extends to a bounded operator on Lp.Hd / [Stanton and Tomas 1978].
As in Euclidean spaces, there is a connection between convolution operators in hyperbolic spaces and

multiplication operators in the Fourier space. To state this connection precisely, we normalize first the
Haar measures on K and G such that

R
K

1 dk D 1 andZ
G

f .g � 0/ dg D

Z
Hd

f .x/ d�

for any f 2 C0.H
d /. Given two functions f1; f2 2 C0.G/ we define the convolution

.f1 �f2/.h/D

Z
G

f1.g/f2.g
�1h/ dg: (2-14)

A function K W G! C is called K-biinvariant if

K.k1gk2/DK.g/ for any k1; k2 2 K: (2-15)

Similarly, a function K W Hd ! C is called K-invariant (or radial) if

K.k �x/DK.x/ for any k 2 K and x 2 Hd : (2-16)

If f;K 2 C0.H
d / and K is K-invariant then we define (compare to (2-14))

.f �K/.x/D

Z
G

f .g � 0/K.g�1
�x/ dg: (2-17)
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If K is K-invariant then the Fourier transform formula (2-8) becomes

zK.�; !/D zK.�/D

Z
Hd

K.x/ˆ��.x/ d�; (2-18)

where

ˆ�.x/D

Z
Sd�1

Œx; b.!/��i��� d! (2-19)

is the elementary spherical function. The Fourier inversion formula (2-9) becomes

K.x/D

Z 1
0

zK.�/ˆ�.x/jc.�/j
�2 d�; (2-20)

for any K-invariant function K 2 C1
0
.Hd /. With the convolution defined as in (2-17), we have the

important identity
B.f �K/.�; !/D Qf .�; !/ � zK.�/ (2-21)

for any f;K 2 C0.H
d /, provided that K is K-invariant5.

We define now the inhomogeneous Sobolev spaces on Hd . There are two possible definitions: using
the Riemannian structure g or using the Fourier transform. These two definitions agree. In view of (2-10),
for s 2 C we define the operator .��/s=2 as given by the Fourier multiplier �! .�2 C �2/s=2. For
p 2 .1;1/ and s 2 R we define the Sobolev space W p;s.Hd / as the closure of C1

0
.Hd / under the norm

kf kW p;s.Hd / D k.��/
s=2f kLp.Hd /:

For s 2 R let H s D W 2;s . This definition is equivalent to the usual definition of the Sobolev spaces
on Riemannian manifolds (this is a consequence of the fact that the operator .��g/

s=2 is bounded on
Lp.Hd / for any s 2C, <s � 0, since its symbol satisfies the differential inequalities (2-13)). In particular,
for s D 1 and p 2 .1;1/,

kf kW p;1.Hd / D k.��/
1=2f kLp.Hd / �p

�Z
Hd

jrgf j
p d�

�1=p

; (2-22)

where
jrgf j WD jD

˛fD˛
Nf j1=2:

We record also the Sobolev embedding theorem

W p;s ,!Lq if 1< p � q <1 and s D d=p� d=q: (2-23)

Dispersive estimates. Most of our perturbative analysis in the paper is based on the Strichartz estimates
for the linear Schrödinger flow. For any � 2H s.Hd /, s 2 R, let eit�g� 2 C.R WH s.Hd // denote the
solution of the free Schrödinger evolution with data �, i.e.,

Beit�g�.�; !/D z�.�; !/ � e�it.�2C�2/:

5Unlike in Euclidean Fourier analysis, there is no simple identity of this type without the assumption that K is K-invariant.
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The main inequality we need is the dispersive estimate6 (see [Anker and Pierfelice 2009; Banica 2007;
Banica et al. 2008; Ionescu and Staffilani 2009; Pierfelice 2008])

keit�gkLp!Lp0 . jt j�d.1=p�1=2/; p 2 Œ2d=.d C 2/; 2�; p0 D p=.p� 1/; (2-24)

for any t 2 R n f0g. The Strichartz estimates below then follow from a general theorem from [Keel and
Tao 1998].

Proposition 2.1 (Strichartz estimates). Assume that d � 3 and I D .a; b/�R is a bounded open interval.

(i) If � 2L2.Hd / then

keit�g�k
.L1t L2

x\L2
t L

2d=.d�2/
x /.Hd�I /

. k�kL2 : (2-25)

(ii) If F 2 .L1
t L2

xCL2
t L

2d=.dC2/
x /.Hd � I/ then Z t

a

ei.t�s/�g F.s/ ds


.L1t L2

x\L2
t L

2d=.d�2/
x /.Hd�I /

. kFk
.L1

t L2
xCL2

t L
2d=.dC2/
x /.Hd�I /

: (2-26)

To exploit these estimates in dimension d D 3, for any interval I � R and f 2 C.I WH�1.H3// we
define

kf kZ.I / WD kf kL10
t;x.H

3�I /;

kf kSk.I / WD k.��/
k=2f k.L1t L2

x\L2
t L6

x/.H3�I /; k 2 Œ0;1/;

kf kN k.I / WD k.��/
k=2f k

.L1
t L2

xCL2
t L

6=5
x /.H3�I /

; k 2 Œ0;1/:

(2-27)

We use the S1 norms to estimate solutions of linear and nonlinear Schrödinger equations. Nonlinearities
are estimated using the N 1 norms. The L10 norm is the “scattering” norm, which controls the existence
of strong solutions of the nonlinear Schrödinger equation, see Proposition 3.1 and Proposition 3.2 below.

Some lemmas. In this subsection we collect and prove several lemmas that will be used later in the paper.
For N > 0 we define the operator PN WL

2.H3/!L2.H3/,

PN WDN�2�geN�2�g ;

APNf .�; !/D�N�2.�2
C 1/e�N�2.�2C1/ Qf .�; !/:

(2-28)

One should think of PN as a substitute for the usual Littlewood–Paley projection operator in Euclidean
spaces that restricts to frequencies of size�N ; this substitution is necessary in order to have a suitable Lp

theory for these operators, since only real-analytic multipliers can define bounded operators on Lp.H3/

[Clerc and Stein 1974]. In view of the Fourier inversion formula we have

PNf .x/D

Z
H3

f .y/PN .d.x;y// d�.y/;

6In fact this estimate can be improved if jt j � 1, see [Ionescu and Staffilani 2009, Lemma 3.3]. This leads to better control
of the longtime behavior of solutions of subcritical Schrödinger equations in hyperbolic spaces, compared to the behavior of
solutions of the same equations in Euclidean spaces (see [Banica 2007; Banica et al. 2008; Ionescu and Staffilani 2009; Anker
and Pierfelice 2009]).
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where
jPN .r/j.N 3.1CN r/�5e�4r : (2-29)

The estimates in the following lemma will be used in Section 5.

Lemma 2.2. (i) Given � 2 .0; 1� there is R� � 1 such that for any x 2 H3, N � 1, and f 2H 1.H3/,

jPNf .x/j.N 1=2.kf � 1B.x;R�N�1/kL6.H3/C �kf kL6.H3//

where B.x; r/ denotes the ball B.x; r/D fy 2 H3 W d.x;y/ < rg.

(ii) For any f 2H 1.H3/,

kf kL6.H3/ . krf k
1=3

L2.H3/
sup
N�1
x2H3

�
N�1=2

jPNf .x/j
�2=3

:

Proof. (i) The inequality follows directly from (2-29):

jPNf .x/j.
Z

B.x;R�N�1/

jf .y/j jPN .d.x;y//j d�.y/C

Z
cB.x;R�N�1/

jf .y/j jPN .d.x;y//j d�.y/

. kf � 1B.x;R�N�1/kL6.H3/ �AN;0;6=5Ckf kL6.H3/ �AN;R�;6=5;

where, for R 2 Œ0;1/, N 2 Œ1;1/ and p 2 Œ1; 2�

AN;R;p WD

�Z
d.0;y/�RN�1

jPN .d.0;y//j
p d�.y/

�1=p

.
�Z 1

RN�1

jPN .r/j
p.sh r/2 dr

�1=p

.N 3

�Z 1
RN�1

.1CN r/�5pr2 dr

�1=p

.N 3�3=p.1CR/�1:

The inequality follows if R� D 1=�.

(ii) Such improved Sobolev embeddings in various settings have been used before, for example, in
[Bahouri and Gérard 1999; Keraani 2001]. For any f 2H 1.H3/ we have the identity

f D c

Z 1
ND0

N�1PN .f / dN: (2-30)

Thus, with A WD supN�0 kN
�1=2PNf kL1.H3/Z

H3

jf j6 d�.
Z

H3

Z
0�N1�:::�N6

jPN1
f j � : : : � jPN6

f j
dN1

N1

: : :
dN6

N6

d�

.A4

Z
H3

Z
0�N5�N6

N 2
5 jPN5

f jjPN6
f j

dN5

N5

dN6

N6

d�

.A4

Z
H3

Z 1
0

N jPNf j
2 dNd�;

where the last inequality follows by Schur’s lemma. The claim follows sinceZ
H3

Z 1
0

N jPNf j
2 dNd�D ck.��/1=2f k2

L2.H3/
;
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as a consequence of the Plancherel theorem and the definition of the operators PN , and, for any N 2 Œ0; 1/,

kN�1=2PNf kL1.H3/ . kP2f kL1.H3/: (2-31)
�

We will also need the following technical estimate:

Lemma 2.3. Assume  2H 1.H3/ satisfies

k kH 1.H3/ � 1; sup
K�1
t2R

x2H3

K�1=2
jPK eit�g .x/j � ı; (2-32)

for some ı 2 .0; 1�. Then, for any R> 0 there is C.R/� 1 such that

N 1=2
krgeit�g k

L5
t L

15=8
x .B.x0;RN�1/�.t0�R2N�2;t0CR2N�2//

� C.R/ı1=20 (2-33)

for any N � 1, any t0 2 R, and any x0 2 H3.

Proof. We may assume RD 1, x0 D 0, t0 D 0. It follows from (2-32) that for any K > 0 and t 2 R

kPK eit�g kL1.H3/ . ıK1=2; kPK eit�g kL6.H3/ . 1I

therefore, by interpolation,
kPK eit�g kL12.H3/ . ı1=2K1=4:

Thus, for any K > 0 and t 2 R,

krg.PK eit�g /kL12.H3/ . ı1=2K1=4.KC 1/;

which shows that, for any K > 0 and N � 1,

N 1=2
krg.PK eit�g /k

L5
t L

15=8
x .B.0;N�1/�.�N�2;N�2//

. ı1=2K1=4.KC 1/N�5=4: (2-34)

We will prove below that, for any N � 1 and K �N ,

krg.PK eit�g /kL2
x;t .B.0;N�1/�.�N�2;N�2// . .NK/�1=2: (2-35)

Assuming this and using the energy estimate

krg.PK eit�g /kL1t L2
x.H3�R/ . 1;

we have, by interpolation,

krg.PK eit�g /kL5
t L2

x.B.0;N�1/�.�N�2;N�2// . .NK/�1=5:

Therefore, for any N � 1 and K �N

N 1=2
krg.PK eit�g /k

L5
t L

15=8
x .B.0;N�1/�.�N�2;N�2//

.N 1=5K�1=5: (2-36)

The desired bound (2-33) follows from (2-34), (2-36), and the identity (2-30).
It remains to prove the local smoothing bound (2-35). Many such estimates are known in more general

settings; see, for example, [Doi 1996]. We provide below a simple self-contained proof specialized to
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our case. Assuming N � 1 fixed, we will construct a real-valued function aD aN 2 C1.H3/ with the
properties

jD˛aD˛aj. 1 in H3;

j�g.�ga/j.N 3 in H3;

X ˛X˛ �N 1B.0;N�1/ .X ˛X ˇD˛Dˇa in H3 for any vector-field X 2 T .H3/:

(2-37)

Assuming such a function is constructed, we define the Morawetz action

Ma.t/D 2=

Z
H3

D˛a.x/ � Nu.x/D˛u.x/ d�.x/;

where u WD PK eit�g . A formal computation (see [Ionescu and Staffilani 2009, Proposition 4.1] for a
complete justification) shows that

@tMa.t/D 4<

Z
H3

D˛Dˇa �D˛uDˇ Nu d��

Z
H3

�g.�ga/ � juj2 d�:

Therefore, by integrating on the time interval Œ�N�2;N�2� and using the first two properties in (2-37),

4

Z N�2

�N�2

Z
H3

<.D˛Dˇa �D˛uDˇ Nu/ d� dt

� 2 sup
jt j�N�2

jMa.t/jC

Z N�2

�N�2

Z
H3

j�g.�ga/j � juj2 d� dt

. sup
jt j�N�2

ku.t/kL2.H3/ku.t/kH 1.H3/CN 3

Z N�2

�N�2

ku.t/k2
L2.H3/

dt .K�1
CNK�2:

The desired bound (2-35) follows, in view of the inequality in the last line of (2-37) and the assumption
K �N since a is real valued.

Finally, it remains to construct a real-valued function a 2 C1.H3/ satisfying (2-37). We are looking
for a function of the form

a.x/ WD Qa.ch r.x//; r D d.0;x/; Qa 2 C1.Œ1;1//: (2-38)

To prove the inequalities in (2-37) it is convenient to use coordinates induced by the Iwasawa decomposition
of the group G: we define the global diffeomorphism

ˆ W R2
�R! H3; ˆ.v1; v2; s/D tr.ch sC e�s

jvj2=2; sh sC e�s
jvj2=2; e�sv1; e�sv2/;

and fix the global orthonormal frame

e3 WD @s; e1 WD es@v1 ; e2 WD es@v2 :

With respect to this frame, the covariant derivatives are

De˛eˇ D ı˛ˇe3; De˛e3 D�e˛; De3
e˛ DDe3

e3 D 0 for ˛; ˇ D 1; 2:
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See [Ionescu and Staffilani 2009, Section 2] for these calculations. In this system of coordinates we have

ch r D ch sC e�s
jvj2=2: (2-39)

Therefore, for a as in (2-38), we have

D3aD .sh s� e�s
jvj2=2/ � Qa0.ch r/; D1aD v1

� Qa0.ch r/; D2aD v2
� Qa0.ch r/:

Using the formula

D˛DˇaD e˛.eˇ.a//� .De˛eˇ/.a/; ˛; ˇ D 1; 2; 3;

we compute the Hessian:

D1D1aD .v1/2 Qa00.ch r/C ch r Qa0.ch r/; D2D2aD .v2/2 Qa00.ch r/C ch r Qa0.ch r/;

D1D2aDD2D1aD v1v2
Qa00.ch r/; D3D3f D .sh s� e�s

jvj2=2/2 Qa00.ch r/C ch r Qa0.ch r/;

D1D3aDD3D1aD v1.sh s� e�s
jvj2=2/ Qa00.ch r/;

D2D3aDD3D2aD v2.sh s� e�s
jvj2=2/ Qa00.ch r/:

Therefore, using again (2-39),

D˛aD˛aD .sh r/2. Qa0.ch r//2; �gaD ..ch r/2� 1/ Qa00.ch r/C 3.ch r/ Qa0.ch r/; (2-40)

and

X ˛X ˇD˛DˇaD ch r Qa0.ch r/jX j2C Qa00.ch r/.X 1v1
CX 2v2

CX 3.sh s� e�s
jvj2=2//2: (2-41)

We fix now Qa such that

Qa0.y/ WD .y2
� 1CN�2/�1=2; y 2 Œ1;1/:

The first identity in (2-37) follows easily from (2-40). To prove the second identity in (2-37), we use
again (2-40) to derive

�gaD b.ch r/; where b.y/D 3y.y2
� 1CN�2/�1=2

�y.y2
� 1/.y2

� 1CN�2/�3=2:

Using (2-40) again, it follows that

j�g.�ga/j. y2.y2
� 1CN�2/�3=2 where y D ch r;

which proves the second inequality in (2-37). Finally, using (2-41),

X ˛X ˇD˛Dˇa� ch r Qa0.ch r/jX j2� ..ch r/2� 1/j Qa00.ch r/j jX j2

DN�2 ch r..ch r/2� 1CN�2/�3=2
jX j2;

which proves the last inequality in (2-37). This completes the proof of the lemma. �
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3. Proof of the main theorem

In this section we outline the proof of Theorem 1.1. The main ingredients are a local well-posedness and
stability theory for the initial-value problem, which in our case relies only on the Strichartz estimates in
Proposition 2.1, a global Morawetz inequality, which exploits the defocusing nature of the problem, and a
compactness argument, which depends on the Euclidean analogue of Theorem 1.1 proved in [Colliander
et al. 2008].

We start with the local well-posedness theory. Let

PD f.I;u/ W I � R is an open interval and u 2 C.I WH 1.H3//g

with the natural partial order

.I;u/� .I 0;u0/ if and only if I � I 0 and u0.t/D u.t/ for any t 2 I:

Proposition 3.1 (local well-posedness). Assume � 2H 1.H3/. Then there is a unique maximal solution
.I;u/D .I.�/;u.�// 2 P, 0 2 I , of the initial-value problem

.i@t C�g/uD ujuj4; u.0/D � (3-1)

on H3� I . The mass E0.u/ and the energy E1.u/ defined in (1-3) are constant on I , and kukS1.J / <1

for any compact interval J � I . In addition,

kukZ.IC/ D1 if IC WD I \ Œ0;1/ is bounded;

kukZ.I�/ D1 if I� WD I \ .�1; 0� is bounded:
(3-2)

In other words, local-in-time solutions of the equation exist and extend as strong solutions as long as
their spacetime L10

x;t norm does not blow up. We complement this with a stability result.

Proposition 3.2 (stability). Assume I is an open interval, � 2 Œ�1; 1�, and Qu 2 C.I WH 1.H3// satisfies
the approximate Schrödinger equation

.i@t C�g/ QuD � Quj Quj
4
C e on H3

� I:

Assume in addition that
k QukL10

t;x.H
3�I /C sup

t2I

k Qu.t/kH 1.H3/ �M; (3-3)

for some M 2 Œ1;1/. Assume t0 2 I and u.t0/ 2H 1.H3/ is such that the smallness condition

ku.t0/� Qu.t0/kH 1.H3/CkekN 1.I / � � (3-4)

holds for some 0< � < �1, where �1 � 1 is a small constant �1 D �1.M / > 0.
Then there exists a solution u 2 C.I WH 1.H3// of the Schrödinger equation

.i@t C�g/uD �ujuj4 on H3
� I;

and
kukS1.H3�I /CkQukS1.H3�I / � C.M /; ku� QukS1.H3�I / � C.M /�: (3-5)
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Both Proposition 3.1 and Proposition 3.2 are standard consequences of the Strichartz estimates and
Sobolev embedding theorem (2-23); see, for example, [Colliander et al. 2008, Section 3]. We will use
Proposition 3.2 with �D 0 and with �D 1 to estimate linear and nonlinear solutions on hyperbolic spaces.

We next state the global Morawetz estimate:

Proposition 3.3 [Ionescu and Staffilani 2009, Proposition 4.1]. Assume that I � R is an open interval,
and u 2 C.I WH 1.H3// is a solution of the equation

.i@t C�g/uD ujuj4 on H3
� I:

Then, for any t1; t2 2 I ,

kuk6
L6.H3�Œt1;t2�/

. sup
t2Œt1;t2�

ku.t/kL2.H3/ku.t/kH 1.H3/: (3-6)

Next, recall the conserved energy E1.u/ defined in (1-3). For any E 2 Œ0;1/ let S.E/ be defined by

S.E/D supfkukZ.I /;E
1.u/�Eg;

where the supremum is taken over all solutions u 2C.I WH 1.H3// defined on an interval I and of energy
less than E. We also define

Emax D supfE;S.E/ <1g:

Using Proposition 3.2 with Qu� 0; e � 0, I D R, M D 1, �� 1, one checks that Emax > 0. It follows
from Proposition 3.1 that if u is a solution of (1-2) and E.u/ <Emax, then u can be extended to a globally
defined solution which scatters.

If Emax D C1, then Theorem 1.1 is proved, as a consequence of Propositions 3.1 and 3.2. If we
assume that Emax < C1, then, there exists a sequence of solutions satisfying the hypothesis of the
following key proposition, to be proved later.

Proposition 3.4. Let uk 2 C..�Tk ;T
k/ WH 1.H3//, k D 1; 2; : : : , be a sequence of nonlinear solutions

of the equation
.i@t C�g/uD ujuj4;

defined on open intervals .�Tk ;T
k/ such that E.uk/! Emax. Let tk 2 .�Tk ;T

k/ be a sequence of
times with

lim
k!1

kukkZ.�Tk ;tk/ D lim
k!1

kukkZ.tk ;T k/ DC1: (3-7)

Then there exists w0 2 H 1.H3/ and a sequence of isometries hk 2 G such that, up to passing to a
subsequence, uk.tk ; h

�1
k
�x/! w0.x/ 2H 1 strongly.

Using these propositions we can now prove our main theorem.

Proof of Theorem 1.1. Assume for contradiction that Emax <C1. Then, we first claim that there exists a
solution u 2 C..�T�;T

�/ WH 1/ of (1-2) such that

E.u/DEmax and kukZ.�T�;0/ D kukZ.0;T �/ DC1: (3-8)
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Indeed, by hypothesis, there exists a sequence of solutions uk defined on intervals Ik D .�Tk ;T
k/

satisfying E.uk/�Emax and

kukkZ.Ik/!C1:

But this is exactly the hypothesis of Proposition 3.4, for suitable points tk 2 .�Tk ;T
k/. Hence, up to

a subsequence, we get that there exists a sequence of isometries hk 2 G such that �hk
.uk.tk//! w0

strongly in H 1. Now, let u 2 C..�T�;T
�/ W H 1.H3// be the maximal solution of (3-1) with initial

data w0, in the sense of Proposition 3.1. By the stability theory Proposition 3.2, if kukZ.0;T �/ <C1,
then T � D C1 and kukkZ.tk ;C1/ � C.kukZ.0;C1// which is impossible. Similarly, we see that
kukZ.�T�;0/ DC1, which completes the proof of (3-8).

We now claim that the solution u obtained in the previous step can be extended to a global solution.
Indeed, using Proposition 3.1, it suffices to see that there exists ı > 0 such that, for all times t 2 .�T�;T

�/,

kukZ..t�ı;tCı/\.�T�;T �// � 1:

If this were not true, there would exist a sequence ık!0 and a sequence of times tk 2 .�T�Cık ;T
��ık/

such that

kukZ.tk�ık ;tkCık/ � 1: (3-9)

Applying Proposition 3.4 with uk D u, we see that, up to a subsequence, �hk
.uk.tk//! w strongly in

H 1 for some translations hk 2G. We consider z the maximal nonlinear solution with initial data w, then
by the local theory Proposition 3.1, there exists ı > 0 such that

kzkZ.�ı;ı/ �
1
2
:

Proposition 3.2 gives that kukZ.tk�ı;tkCı/ � 1=2C ok.1/, which again contradicts our hypothesis (3-9).
In other words, we proved that if Emax <1 then there is a global solution u 2 C.R WH 1/ of (1-2) such
that

E.u/DEmax and kukZ.�1;0/ D kukZ.0;1/ DC1:

We claim now that there exists ı > 0 such that for all times,

ku.t/kL6 � ı: (3-10)

Indeed, otherwise, we can find a sequence of times tk 2 .0;1/ such that u.tk/! 0 in L6. Applying
again Proposition 3.4 to this sequence, we see that, up to a subsequence, there exist hk 2 G such that
�hk

.u.tk//! w in H 1 with w D 0. But this contradicts conservation of energy.
But now we have a contradiction with the Morawetz estimate (3-6), which shows that Emax DC1 as

desired. �

Propositions 3.1 and 3.2 are standard consequences of the Strichartz estimates, while Proposition 3.3
was proved in [Ionescu and Staffilani 2009]. Therefore it only remains to prove Proposition 3.4. We collect
the main ingredients in the next two sections and complete the proof of Proposition 3.4 in Section 6.
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4. Euclidean approximations

In this section we prove precise estimates showing how to compare Euclidean and hyperbolic solutions of
both linear and nonlinear Schrödinger equations. Since the global Euclidean geometry and the global
hyperbolic geometry are quite different, such a comparison is meaningful only in the case of rescaled
data that concentrate at a point.

We fix a spherically symmetric function � 2 C1
0
.R3/ supported in the ball of radius 2 and equal to 1

in the ball of radius 1. Given � 2 PH 1.R3/ and a real number N � 1 we define

QN� 2 C10 .R3/; .QN�/.x/D �.x=N
1=2/ � .e�=N�/.x/;

�N 2 C10 .R3/; �N .x/DN 1=2.QN�/.N x/;

fN 2 C10 .H3/; fN .y/D �N .‰
�1
I .y//;

(4-1)

where ‰I is defined in (2-4). Thus QN� is a regularized, compactly supported7 modification of the
profile �, �N is an PH 1-invariant rescaling of QN�, and fN is the function obtained by transferring �N

to a neighborhood of 0 in H3. We define also

E1
R3.�/D

1

2

Z
R3

jr�j2 dxC
1

6

Z
R3

j�j6 dx:

We will use the main theorem of [Colliander et al. 2008], in the following form.

Theorem 4.1. Assume  2 PH 1.R3/. Then there is a unique global solution v 2 C.R W PH 1.R3// of the
initial-value problem

.i@t C�/v D vjvj
4; v.0/D  ; (4-2)

and jrvj
L1t L2

x\L2
t L6

x.R3�R/
� zC .E1

R3. //: (4-3)

This solution scatters in the sense that there exists  ˙1 2 PH 1.R3/ such that

kv.t/� eit� ˙1k PH 1.R3/
! 0 (4-4)

as t !˙1. If  2H 5.R3/, then v 2 C.R WH 5.R3// and sup
t2R

kv.t/kH 5.R3/ .k kH 5.R3/
1:

The main result in this section is the following lemma:

Lemma 4.2. Assume � 2 PH 1.R3/, T0 2 .0;1/, and � 2 f0; 1g are given, and define fN as in (4-1).

(i) There is N0 D N0.�;T0/ sufficiently large such that for any N � N0 there is a unique solution
UN 2 C..�T0N�2;T0N�2/ WH 1.H3// of the initial-value problem

.i@t C�g/UN D �UN jUN j
4; UN .0/D fN : (4-5)

7This modification is useful to avoid the contribution of � coming from the Euclidean infinity, in a uniform way depending
on the scale N .
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Moreover, for any N �N0,

kUN kS1.�T0N�2;T0N�2/ .E1

R3
.�/ 1: (4-6)

(ii) Assume "1 2 .0; 1� is sufficiently small (depending only on E1
R3.�/), and let �0 2 H 5.R3/ satisfy

k� ��0k PH 1.R3/
� "1. Let v0 2 C.R WH 5/ denote the solution of the initial-value problem

.i@t C�/v
0
D �v0jv0j4; v0.0/D �0:

For R;N � 1 we define

v0R.x; t/D �.x=R/v
0.x; t/; .x; t/ 2 R3

� .�T0;T0/;

v0R;N .x; t/DN 1=2v0R.N x;N 2t/; .x; t/ 2 R3
� .�T0N�2;T0N�2/;

VR;N .y; t/D v
0
R;N .‰

�1
I .y/; t/ .y; t/ 2 H3

� .�T0N�2;T0N�2/:

(4-7)

Then there is R0 � 1 (depending on T0 and �0 and "1) such that, for any R�R0,

lim sup
N!1

kUN �VR;N kS1.�T0N�2;T0N�2/ .E1

R3
.�/ "1: (4-8)

Proof. All of the constants in this proof are allowed to depend on E1
R3.�/; for simplicity of notation we

will not track this dependence explicitly. Using Theorem 4.1 we have

krv0k.L1t L2
x\L2

t L6
x/.R3�R/ . 1; sup

t2R

kv0.t/kH 5.R3/ .k�0kH 5.R3/
1: (4-9)

We will prove that for any R0 sufficiently large there is N0 such that VR0;N is an almost-solution of
(4-5), for any N � N0. We will then apply Proposition 3.2 to upgrade this to an exact solution of the
initial-value problem (4-5) and prove the lemma.

Let

eR.x; t/ WD
�
.i@t C�/v

0
R � �v

0
Rjv
0
Rj

4
�
.x; t/D �

�
�
�

x

R

�
� �

�
x

R

�5�
v0.x; t/jv0.x; t/j4

CR�2v0.x; t/.��/
�

x

R

�
C 2R�1

3X
jD1

@jv
0.x; t/@j�

�
x

R

�
:

Since jv0.x; t/j.k�0k
H 5.R3/

1, see (4-9), it follows that

3X
kD1

j@keR.x; t/j.k�0k
H 3.R3/

1ŒR;2R�.jxj/ �

�
jv0.x; t/jC

3X
kD1

j@kv
0.x; t/jC

3X
k;jD1

j@k@jv
0.x; t/j

�
:

Therefore
lim

R!1

jreRj


L2
t L2

x.R3�.�T0;T0//
D 0: (4-10)

Letting
eR;N .x; t/ WD

�
.i@t C�/v

0
R;N � �v

0
R;N jv

0
R;N j

4
�
.x; t/DN 5=2eR.N x;N 2t/;
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it follows from (4-10) that there is R0 � 1 such that, for any R�R0 and N � 1,jreR;N j


L1
t L2

x.R3�.�T0N�2;T0N�2//
� "1: (4-11)

With VR;N .y; t/D v
0
R;N

.‰�1
I
.y/; t/ as in (4-7), let

ER;N .y; t/ W D
�
.i@t C�g/VR;N � �VR;N jVR;N j

4
�
.y; t/

D eR;N .‰
�1
I .y/; t/C�gVR;N .y; t/� .�v

0
R;N /.‰

�1
I .y/; t/:

(4-12)

To estimate the difference in the formula above, let @j , j D 1; 2; 3, denote the standard vector-fields on
R3 and z@j WD .‰I /�.@j / and induced vector-fields on H3. Using the definition (2-4) we compute

gij .y/ WD gy.z@i ; z@j /D ıij �
vivj

1Cjvj2
; y D‰I .v/:

Using the standard formula for the Laplace–Beltrami operator in local coordinates

�gf D jgj
�1=2z@i.jgj

1=2gijz@jf /

we derive the pointwise bound

ˇ̌
zr

1
�
�gf .y/��.f ı‰I /.‰

�1
I .y//

�ˇ̌
.

3X
kD1

j‰�1
I .y/jk�1

j zr
kf .y/j;

for any C 3 function f W H3! C supported in the ball of radius 1 around 0, where, by definition, for
k D 1; 2; 3

j zr
kh.y/j WD

X
k1Ck2Ck3Dk

ˇ̌
z@

k1

1
z@

k2

2
z@

k3

3
h.y/

ˇ̌
:

Therefore the identity (4-12) gives the pointwise bound

j zr
1ER;N .y; t/j. jreR;N j.‰

�1
I .y/; t/C

3X
kD1

X
k1Ck2Ck3Dk

j‰�1
I .y/jk�1

ˇ̌
@

k1

1
@

k2

2
@

k3

3
v0R;N .‰

�1
I .y/; t/

ˇ̌
. jreR;N j.‰

�1
I .y/; t/CR3N 3=2

X
k1Ck2Ck32f1;2;3g

ˇ̌
@

k1

1
@

k2

2
@

k3

3
v0R.N.‰

�1
I .y/; t/

ˇ̌
:

Using also (4-11), it follows that for any R0 sufficiently large there is N0 such that for any N �N0jrgER0;N j


L1
t L2

x.H3�.�T0N�2;T0N�2//
� 2"1: (4-13)
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To verify the hypothesis (3-3) of Proposition 3.2, we use (4-9) and the integral formula (2-6) to estimate,
for N large enough,

kVR0;N kL10
x;t .H

3�.�T0N�2;T0N�2//C sup
t2.�T0N�2;T0N�2/

kVR0;N .t/kH 1.H3/

. kv0R0;N
kL10

x;t .R
3�.�T0N�2;T0N�2//C sup

t2.�T0N�2;T0N�2/

krv0R0;N
.t/kL2.R3/

D kv0R0
kL10

x;t .R
3�.�T0;T0//

C sup
t2.�T0;T0/

krv0R0
.t/kL2.R3/

. 1:

(4-14)

Finally, to verify the inequality on the first term in (3-4) we estimate, for R0;N large enough,

kfN �VR0;N .0/kH 1.H3/ . k�N � v
0
R0;N

.0/k PH 1.R3/
D kQN� � v

0
R0
.0/k PH 1.R3/

� kQN� ��k PH 1.R3/
Ck� ��0k PH 1.R3/

Ck�0� v0R0
.0/k PH 1 � 3"1:

(4-15)

The conclusion of the lemma follows from Proposition 3.2, provided that "1 is fixed sufficiently small
depending on E1

R3.�/. �

As a consequence, we have:

Corollary 4.3. Assume  2 PH 1.R3/, " > 0, I � R is an interval, andjr.eit� /j


L
p
t L

q
x.R3�I /

� "; (4-16)

where 2=pC 3=q D 3=2, q 2 .2; 6�. For N � 1 we define, as before,

.QN /.x/D �.x=N
1=2/ � .e�=N /.x/;  N .x/DN 1=2.QN /.N x/; z N .y/D  N .‰

�1
I .y//:

Then there is N1 DN1. ; "/ such that, for any N �N1,jrg.e
it�g z N /j


L

p
t L

q
x.H3�N�2I /

.q ": (4-17)

Proof. As before, the implicit constants may depend on E1
R3. /. We may assume that  2 C1

0
.R3/.

Using the dispersive estimate (2-24), for any t ¤ 0,

k.��g/
1=2.eit�g z N /kLq

x.H3/ . jt j3=q�3=2
k.��g/

1=2 z N kLq0

x .H3/
. jt j3=q�3=2

jr N j


L
q0

x .R3/

. jt j3=q�3=2N 3=q�3=2:

Thus, for T1 > 0, jrg.e
it�g z N /j


L

p
t L

q
x.H3�ŒRn.�T1N�2;T1N�2/�/

. T
�1=p
1

:

Therefore we can fix T1 D T1. ; "/ such that, for any N � 1,jrg.e
it�g z N /j


L

p
t L

q
x.H3�ŒRn.�T1N�2;T1N�2/�/

.q ":

The desired bound on the remaining interval N�2I \ .�T1N�2;T1N�2/ follows from Lemma 4.2(ii)
with �D 0. �
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5. Profile decomposition in hyperbolic spaces

In this section we show that given a bounded sequence of functions fk 2H 1.H3/ we can construct certain
profiles and express the functions fk in terms of these profiles. In other words, we prove the analogue of
Keraani’s theorem [2001] in hyperbolic geometry.

Given .f; t0; h0/ 2L2.H3/�R�G we define

…t0;h0
f .x/D .e�it0�gf /.h�1

0 x/D .�h0
e�it0�gf /.x/: (5-1)

As in Section 4 — see (4-1) — given � 2 PH 1.R3/ and N � 1, we define

TN�.x/ WDN 1=2 z�.N‰�1
I .x//; where z�.y/ WD �.y=N 1=2/ � .e�=N�/.y/; (5-2)

and observe that

TN W
PH 1.R3/!H 1.H3/ is a bounded linear operator with kTN�kH 1.H3/ . k�k PH 1.R3/

: (5-3)

Definition 5.1. (1) We define a frame to be a sequence Ok D .Nk ; tk ; hk/2 Œ1;1/�R�G, kD 1; 2; : : : ,
where Nk � 1 is a scale, tk 2 R is a time, and hk 2 G is a translation element. We also assume that
either Nk D 1 for all k (in which case we call fOkgk�1 a hyperbolic frame) or that Nk %1 (in
which case we call fOkgk�1 a Euclidean frame). Let Fe denote the set of Euclidean frames,

Fe D
˚
OD f.Nk ; tk ; hk/gk�1 W Nk 2 Œ1;1/; tk 2 R; hk 2 G; Nk %1

	
;

and let Fh denote the set of hyperbolic frames,

Fh D
˚
zOD f.1; tk ; hk/gk�1 W tk 2 R; hk 2 G

	
:

(2) We say that two frames f.Nk ; tk ; hk/gk�1 and f.N 0
k
; t 0

k
; h0

k
/gk�1 are orthogonal if

lim
k!1

�
j ln.Nk=Nk0/jCN 2

k jtk � t 0k jCNkd.hk � 0; h0k � 0/
�
DC1: (5-4)

Two frames that are not orthogonal are called equivalent.

(3) Given � 2 PH 1.R3/ and a Euclidean frame OD fOkgk�1 D f.Nk ; tk ; hk/gk�1 2 Fe, we define the
Euclidean profile associated with .�;O/ as the sequence z�Ok

, where

z�Ok
WD…tk ;hk

.TNk
�/; (5-5)

The operators … and T are defined in (5-1) and (5-2).

(4) Given  2 H 1.H3/ and a hyperbolic frame zO D fzOkgk�1 D f.1; tk ; hk/gk�1 2 Fh we define the
hyperbolic profile associated with . ; zO/ as the sequence z zOk

, where

z zOk
WD…tk ;hk

 : (5-6)
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Definition 5.2. We say a sequence .fk/k bounded in H 1.H3/ is absent from a frame ODf.Nk ; tk ; hk/gk

if its localization to O converges weakly to 0, i.e., if for all profiles z�Ok
associated to O, we have

lim
k!1

hfk ; z�Ok
iH 1�H 1.H3/ D 0: (5-7)

Remark 5.3. (i) If OD .1; tk ; hk/k is a hyperbolic frame, this is equivalent to saying that

…
�tk ;h

�1
k
fk * 0

as k!1 in H 1.H3/.

(ii) If O is a Euclidean frame, this is equivalent to saying that for all R> 0

gR
k .v/D �.v=R/N

�1=2

k

�
…
�tk ;h

�1
k
fk

�
.‰I .v=Nk// * 0

as k!1 in PH 1.R3/.

We prove first some basic properties of profiles associated to equivalent/orthogonal frames.

Lemma 5.4. (i) Assume fOkgk�1 D f.Nk ; tk ; hk/gk�1 and fO0
k
gk�1 D f.N

0
k
; t 0

k
; h0

k
/gk�1 are two

equivalent Euclidean frames (or hyperbolic frames), and � 2 PH 1.R3/ (or � 2 H 1.H3/). Then
there is �0 2 PH 1.R3/ (or �0 2H 1.H3/) such that, up to a subsequence,

lim
k!1

kz�Ok
� z�0O0

k

kH 1.H3/ D 0; (5-8)

where z�Ok
; z�0

O0
k

are as in Definition 5.1.

(ii) Assume fOkgk�1D f.Nk ; tk ; hk/gk�1 and fO0
k
gk�1D f.N

0
k
; t 0

k
; h0

k
/gk�1 are two orthogonal frames

(either Euclidean or hyperbolic) and z�Ok
; z O0

k
are associated profiles. Then

lim
k!1

ˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
C lim

k!1

z�Ok
z O0

k


L3.H3/

D 0: (5-9)

(iii) If z�Ok
and z Ok

are two Euclidean profiles associated to the same frame, then

lim
k!1

hrg
z�Ok
;rg
z Ok
iL2�L2.H3/ D lim

k!1

Z
H3

D˛ z�Ok
D˛
z Ok

d�

D

Z
R3

r�.x/ � r .x/dx D hr�;r iL2�L2.R3/

Proof. (i) The proof follows from the definitions if fOkgk�1; fO
0
k
gk�1 are hyperbolic frames: by passing

to a subsequence we may assume limk!1�t 0
k
C tk D Nt and limk!1 h0

k
�1

hk D
Nh, and define

�0 WD…Nt ; Nh�:

To prove the claim if fOkgk�1; fO
0
k
gk�1 are equivalent Euclidean frames, we decompose first, using

the Cartan decomposition (2-2)

h0k
�1

hk Dmkask
nk ; mk ; nk 2 K; sk 2 Œ0;1/: (5-10)
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Therefore, using the compactness of the subgroup K and the definition (5-4), after passing to a subsequence,
we may assume that

lim
k!1

Nk=N
0
k DN ; lim

k!1
N 2

k .tk � t 0k/D Nt ; lim
k!1

mk Dm; lim
k!1

nk D n; lim
k!1

Nksk D Ns: (5-11)

We observe that for any N � 1,  2 PH 1.R3/, t 2 R, g 2 G, and q 2 K

…t;gq.TN /D…t;g.TN q/; where  q.x/D  .q
�1
�x/:

Therefore, in (5-10) we may assume that

mk D nk D I; h0k
�1

hk D ask
:

With Nx D .Ns; 0; 0/, we define

�0.x/ WDN 1=2.e�i Nt��/.N x� Nx/; �0 2 PH 1.R3/;

and define z�0, z�0
N 0

k

, and z�0
O0

k

as in (5-5). The identity (5-8) is equivalent to

lim
k!1

kTN 0
k
�0��

h0
k

�1
hk

ei.t 0
k
�tk/�g .TNk

�/kH 1.H3/ D 0: (5-12)

To prove (5-12) we may assume that �0 2C1
0
.R3/, � 2H 5.R3/, and apply Lemma 4.2(ii) with �D 0.

Let v.x; t/D .eit��/.x/ and, for R� 1,

vR.x; t/D �.x=R/v.x; t/; vR;Nk
.x; t/DN

1=2

k
vR.Nkx;N 2

k t/; VR;Nk
.y; t/D vR;Nk

.‰�1
I .y/; t/:

It follows from Lemma 4.2(ii) that for any " > 0 sufficiently small there is R0 sufficiently large such that,
for any R�R0,

lim sup
k!1

ei.t 0
k
�tk/�g .TNk

�/�VR;Nk
.t 0k � tk/


H 1.H3/

� ": (5-13)

Therefore, to prove (5-12) it suffices to show that, for R large enough,

lim sup
k!1

�
hk
�1h0

k

.TN 0
k
�0/�VR;Nk

.t 0k � tk/


H 1.H3/
. ";

which, after examining the definitions and recalling that �0 2 C1
0
.R3/, is equivalent to

lim sup
k!1

N 0k
1=2
�0.N 0k‰

�1
I .h0k

�1
hk �y//�N

1=2

k
vR.Nk‰

�1
I .y/;N 2

k .t
0
k � tk//


H 1

y .H3/
. ":

After changing variables y D‰I .x/ this is equivalent to

lim sup
k!1

N 0k
1=2
�0.N 0k‰

�1
I .h0k

�1
hk �‰I .x///�N

1=2

k
vR.Nkx;N 2

k .t
0
k � tk//


PH 1

x .R3/
. ":

Since, by definition, �0.z/DN 1=2v.N z� Nx;�Nt/, this follows provided that

lim
k!1

Nk‰
�1
I .h0k

�1
hk �‰I .x=Nk//�x D Nx for any x 2 R3:

This last claim follows by explicit computations using (5-11) and the definition (2-4).
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(ii) It suffices to prove that one can extract a subsequence such that (5-9) holds. We analyze three cases:

Case 1: O;O0 2 Fh. We may assume that �; 2 C1
0
.H3/ and select a subsequence such that either

lim
k!1

jtk � t 0k j D1 (5-14)

or
lim

k!1
tk � t 0k D Nt 2 R; lim

k!1
d.hk � 0; h0k � 0/D1: (5-15)

Using (2-24) it follows that

k…t;h�kL6.H3/ C k…t;h.�g�/kL6.H3/ .� .1Cjt j/�1

k…t;h kL6.H3/Ck…t;h.�g /kL6.H3/ . .1Cjt j/�1;

for any t 2 R and h 2 G. Thusz�Ok
z O0

k


L3.H3/

� k…tk ;hk
�kL6.H3/ k…t 0

k
;h0

k
 kL6.H3/ .�; .1Cjtk j/�1.1Cjt 0k j/

�1; (5-16)

andˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�g
z�Ok
� z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�
h0

k

�1
hk

e�i.tk�t 0
k
/�g .�g�/ � d�

ˇ̌̌̌
. k�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .�g�/kL6.H3/k kL6=5.H3/ .�; .1Cjtk � t 0k j/

�1:

The claim (5-9) follows if the selected subsequence satisfies (5-14).
If the selected subsequence satisfies (5-15) then, as before,ˇ̌̌̌ Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�
h0

k

�1
hk

e�i.tk�t 0
k
/�g� ��g d�

ˇ̌̌̌
. k�g kL2.H3/ � ke

�i Nt�g� � e�i.tk�t 0
k
/�g�kL2.H3/C

Z
H3

je�i Nt�g�j � j�h�1
k

h0
k
�g j d�:

The first limit in (5-9) follows. Using the bound (5-16), the second limit in (5-9) also follows, up to a
subsequence, if lim supk!1 jtk j D1. Otherwise, we may assume that limk!1 tk D T , limk!1 t 0

k
D

T 0 D T � Nt and estimatez�Ok
z O0

k


L3.H3/

D ke�itk�g�hk
� � e�it 0

k
�g�h0

k
 kL3.H3/

.�; ke�itk�g� � e�iT�g�kL6.H3/

Cke�it 0
k
�g � e�iT 0�g kL6.H3/Cke

�iT�g� ��h�1
k

h0
k
.e�iT 0�g /kL3.H3/:

The second limit in (5-9) follows in this case as well.

Case 2: O 2 Fh, O0 2 Fe. We may assume that � 2 C1
0
.H3/ and  2 C1

0
.R3/. We estimateˇ̌̌̌ Z

H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

…tk ;hk
.�g�/ �…t 0

k
;h0

k
.TN 0

k
 / d�

ˇ̌̌̌
.� kTN 0

k
 kL2.H3/ .�; N 0k

�1
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and z�Ok
z O0

k


L3.H3/

� k…tk ;hk
�kL1.H3/

…t 0
k
;h0

k
.TN 0

k
 /


L3.H3/

. k�g�kL2.H3/

.��g/
1=4.TN 0

k
 /


L2.H3/
.�; N 0k

�1=2
:

The limits in (5-9) follow.

Case 3: O;O0 2 Fe. We may assume that �; 2 C1
0
.R3/ and select a subsequence such that either

lim
k!1

Nk=N
0
k D 0; (5-17)

or
lim

k!1
Nk=N

0
k DN 2 .0;1/; lim

k!1
N 2

k jtk � t 0k j D1; (5-18)

or

lim
k!1

Nk=N
0
k DN 2 .0;1/; lim

k!1
N 2

k .tk � t 0k/D Nt 2 R; lim
k!1

Nkd.hk � 0; h0k � 0/D1: (5-19)

Assuming (5-17) we estimate, as in Case 2,ˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

…tk ;hk
.�g.TNk

�// �…t 0
k
;h0

k
.TN 0

k
 / d�

ˇ̌̌̌
. k�g.TNk

�/kL2.H3/kTN 0
k
 kL2.H3/ .�; NkN 0k

�1

andz�Ok
z O0

k


L3.H3/

�
…tk ;hk

.TNk
�/


L9.H3/
�
…t 0

k
;h0

k
.TN 0

k
 /


L9=2.H3/

.
.��g/

7=12.TNk
�/


L2.H3/
�
.��g/

5=12.TN 0
k
 /


L2.H3/
.�; N

1=6

k
N 0k
�1=6

:

The limits in (5-9) follow in this case.
To prove the limit (5-9) assuming (5-18), we estimate first, using (2-24),

k…t;h.TNf /kL6.H3/ .f .1CN 2
jt j/�1; (5-20)

for any t 2 R, h 2 G, N 2 Œ0;1/, and f 2 C1
0
.R3/. Thusz�Ok

z O0
k


L3.H3/

�
…tk ;hk

.TNk
�/


L6.H3/

…t 0
k
;h0

k
.TN 0

k
 /


L6.H3/

.�; .1CN 2
k jtk j/

�1.1CN 0k
2
jt 0k j/

�1;

and ˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

z�Ok
��g
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

�
h0

k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/ ��g.TN 0
k
 / d�

ˇ̌̌̌
.
�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/


L6.H3/

�g.TN 0
k
 /


L6=5.H3/

.�; .1CN 2
k jtk � t 0k j/

�1:
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The claim (5-9) follows if the selected subsequence verifies (5-18).
Finally, it remains to prove the limit (5-9) if the selected subsequence verifies (5-19). For this we will

use the following claim: if .gk ;Mk/k�1 2G� Œ1;1/, limk!1Mk D1, limk!1Mkd.gk �0; 0/D1,
and f;g 2 PH 1.R3/ then

lim
k!1

ˇ̌̌̌Z
H3

�gk
.��g/

1=2.TMk
f /�.��g/

1=2.TMk
g/ d�

ˇ̌̌̌
Ck�gk

.TMk
f /�.TMk

g/kL3.H3/D 0: (5-21)

Assuming this, we can complete the proof of (5-9). It follows from (5-12) that if f 2 PH 1.R3/ and
fskgk�1 is a sequence with the property that limk!1N 2

k
sk D Ns 2 R then

lim
k!1

ke�isk�g .TNk
f /�TN 0

k
f 0kH 1.H3/ D 0; (5-22)

where f 0.x/DN 1=2.e�i Ns�f /.N x/. We estimateˇ̌̌̌Z
H3

D˛ z�Ok
D˛
z O0

k
d�

ˇ̌̌̌
D

ˇ̌̌̌Z
H3

.��g/
1=2�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/ � .��g/1=2.TN 0
k
 / d�

ˇ̌̌̌
.
ˇ̌̌̌Z

H3

.��g/
1=2�

h0
k

�1
hk
.TN 0

k
�0/ � .��g/1=2.TN 0

k
 / d�

ˇ̌̌̌
Ck k PH 1.R3/

�
�

h0
k

�1
hk

e�i.tk�t 0
k
/�g .TNk

�/��
h0

k

�1
hk
.TN 0

k
�0/


H 1.H3/
:

In view of (5-21) and (5-22), both terms in the expression above converge to 0 as k!1, as desired. If
limk!1N 2

k
jtk j D1 then, using (5-20), we estimate

kz�Ok
z O0

k
kL3.H3/ � k…tk ;hk

.TNk
�/kL6.H3/k…t 0

k
;h0

k
.TN 0

k
 /kL6.H3/ .�; .1CN 2

k jtk j/
�1;

which converges to 0 as k!1. Otherwise, up to a subsequence, we may assume that limk!1N 2
k

tk D

T 2 R, limk!1 and writez�Ok
z O0

k


L3.H3/

D
�

h0
k

�1
hk

e�itk�g.TNk
�/ � e�it 0

k
�g.TN 0

k
 /


L3.H3/
:

This converges to 0 as k!1, using (5-21) and (5-22), as desired.
It remains to prove the claim (5-21). In view of the PH 1.R3/!H 1.H3/ boundedness of the operators

TN , we may assume that f;g 2 C1
0
.R3/ and replace TMk

f and TMk
g by M

1=2

k
f .Mk‰

�1
I
.x// and

M
1=2

k
g.Mk‰

�1
I
.x// respectively, up to small errors. Then we notice that the supports of these functions

become disjoint for k sufficiently large (due to the assumption limk!1Mkd.gk � 0; 0/D1). The limit
(5-21) follows.

(iii) By the boundedness of TNk
, it suffices to consider the case when �; 2 C1

0
.R3/. In this case, we

have rg

�
TNk

� �N
1=2

k
�.Nk‰

�1
I � /

�
L2.H3/

! 0

as k!1. Hence, by the unitarity of …tk ;hk
, it suffices to compute

lim
k!1

Nk

˝
rg

�
�.Nk‰

�1
� /
�
;rg

�
 .Nk‰

�1
I � /

�˛
L2�L2.H3/

D

Z
R3

r�.x/ � r .x/dx;

which follows after a change of variables and use of the dominated convergence theorem. �
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Our main result in this section is the following.

Proposition 5.5. Assume that .fk/k�1 is a bounded sequence in H 1.H3/. Then there are sequences
of pairs .��;O�/ 2 PH 1.R3/ �Fe and . � ; zO�/ 2 H 1.H3/ �Fh, �; � D 1; 2; : : : , such that, up to a
subsequence, for any J � 1,

fk D

X
1���J

z�
�

O
�

k

C

X
1���J

z �
zO�

k

C rJ
k ; (5-23)

where z��
O
�

k

and z �
zO�

k

are the associated profiles in Definition 5.1, and8

lim
J!1

lim sup
k!1

sup
N�1
t2R

x2H3

N�1=2
jPN eit�g rJ

k j.x/D 0: (5-24)

Moreover the frames fO�g��1 and fzO�g��1 are pairwise orthogonal. Finally, the decomposition is
asymptotically orthogonal in the sense that

lim
J!1

lim sup
k!1

ˇ̌̌̌
E1.fk/�

X
1���J

E1.z�
�

O
�

k

/�
X

1���J

E1. z �
zO�

k

/�E1.rJ
k /

ˇ̌̌̌
D 0; (5-25)

where E1 is the energy defined in (1-3).

The profile decomposition in Proposition 5.5 is a consequence of the following finitary decomposition.

Lemma 5.6. Let .fk/k�1 be a bounded sequence of functions in H 1.H3/ and let ı 2 .0; ı0� be sufficiently
small. Up to passing to a subsequence, the sequence .fk/k�1 can be decomposed into 2J C 1DO.ı�2/

terms
fk D

X
1���J

z�
�

O
�

k

C

X
1���J

z �
zO�

k

C rk ; (5-26)

where z��
O
�

k

and z �
zO�

k

are Euclidean and hyperbolic profiles, respectively, associated to the sequences

.��;O�/ 2 PH 1.R3/�Fe and . � ; zO�/ 2H 1.H3/�Fh as in Definition 5.1.
Moreover the remainder rk is absent from all the frames O�, zO� , 1� �; � � J and

lim sup
k!1

sup
N�1
t2R

x2H3

N�1=2
jeit�g PN rk j.x/� ı: (5-27)

In addition, the frames O� and zO� are pairwise orthogonal, and the decomposition is asymptotically
orthogonal in the sense that

krgfkk
2
L2 D

X
1���J

krg
z�
�

O
�

k

k
2
L2 C

X
1���J

krg
z �
zO�

k

k
2
L2 Ckrgrkk

2
L2 C ok.1/ (5-28)

where ok.1/! 0 as k!1.

8It is convenient to use the critical norm kN�1=2PN eit�gf kL1
N;x;t

to measure smallness of the remainder in (5-24), as it
already selects the parameters of the frames. Other critical norms have been used as well; see, for example, [Keraani 2001] and
[Laurent 2011]. In any case, by Sobolev and Strichartz estimates, one obtains full control of the Z norm of the remainders, see
(6-1).
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We show first how to prove Proposition 5.5 assuming the finitary decomposition of Lemma 5.6.

Proof of Proposition 5.5. We apply Lemma 5.6 repeatedly for ı D 2�l , l D 1; 2; : : : and we obtain the
result except for (5-25). To prove this, it suffices from (5-28) to prove the addition of the L6-norms. But
from Lemma 2.2 and (5-24), we see that

lim sup
J!1

lim sup
k!1

krJ
k kL6.H3/ D 0

so that
lim sup
J!1

lim sup
k!1

�ˇ̌
kfkk

6
L6 �kfk � rJ

k k
6
L6

ˇ̌
CkrJ

k k
6
L6

�
D 0: (5-29)

Now, for fixed J , we see thatˇ̌̌̌ˇ̌
fk � rJ

k

ˇ̌6
�

X
1���J

ˇ̌
z�
�

O
�

k

ˇ̌6
�

X
1���J

ˇ̌
z �
zO�

k

ˇ̌6 ˇ̌̌̌
.J

X
1�˛¤ˇ�J

ˇ̌
z�˛O˛

k

ˇ̌ ˇ̌
z�
ˇ

O
ˇ

k

ˇ̌5
C

X
1�˛¤ˇ�J

ˇ̌
z ˛
zO˛

k

ˇ̌ ˇ̌
z 
ˇ

zO
ˇ

k

ˇ̌5
C

X
1��;��J

�ˇ̌
z�
�

O
�

k

ˇ̌ ˇ̌
z �
zO�

k

ˇ̌5
C
ˇ̌
z�
�

O
�

k

ˇ̌5ˇ̌ z �
zO�

k

ˇ̌�
so that ˇ̌̌̌fk � rJ

k

6

L6 �

X
1���J

z��
O
�

k

6

L6 �

X
1���J

 z �
zO�

k

6

L6

ˇ̌̌̌
.J

X
˛;ˇ

f ˛k f ˇk L3

where the summation ranges over all pairs .f ˛
k
; f

ˇ

k
/ of profiles such that f ˛

k
¤ f

ˇ

k
and where we have

used the fact that the L6 norm of each profile is bounded uniformly. From Lemma 5.4(ii), we see that
this converges to 0 as k!1. The identity (5-25) follows using also (5-29). �

Proof of Lemma 5.6. For .gk/k a bounded sequence in H 1.H3/, we let

ı..gk/k/D lim sup
k!1

sup
N�1
t2R
h2G

N�
1
2

ˇ̌
PN

�
eit�g gk.h � 0//

ˇ̌
: (5-30)

If ı..fk/k/� ı, then we let J D 0 and fk D rk and Lemma 5.6 follows. Otherwise, we use inductively
the following:

Claim. Assume .gk/k is a bounded sequence in H 1.H3/ which is absent from a family of frames .O˛/˛�A

and such that ı..gk/k/� ı. Then, after passing to a subsequence, there exists a new frame O0 which is
orthogonal to O˛ for all ˛ �A and a profile z�O0

k
of free energy

lim
k!1

krg
z�O0

k
kL2 & ı (5-31)

such that gk �
z�O0

k
is absent from the frames O0 and O˛, ˛ �A.

Once we have proved the claim, Lemma 5.6 follows by applying repeatedly the above procedure.
Indeed, we let .f ˛

k
/k be defined as follows: .f 0

k
/k D .fk/k and if ı..f ˛

k
/k/� ı, then apply the above
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claim to .f ˛
k
/k to get a new sequence

f ˛C1
k
D f ˛k �

z�
O˛C1

k

:

By induction, .f ˛
k
/k is absent from all the frames Oˇ , ˇ � ˛. This procedure stops after a finite number

(O.ı�2/) of steps. Indeed, since f ˛
k
D f ˛�1

k
� z�O˛

k
is absent from O˛

k
, we get from (5-7) that

krgf
˛�1

k k
2
L2 D krgf

˛
k k

2
L2 Ckrg

z�O˛
k
k

2
L2 C 2hf ˛k ;

z�O˛
k
iH 1�H 1.H3/

D krgf
˛

k k
2
L2 Ckrg

z�O˛
k
k

2
L2 C ok.1/

and therefore by induction,

krgfkk
2
L2 D

X
1�˛�A

krg
z�O˛k

2
L2 Ckrgf

A
k k

2
L2 C ok.1/:

Since each profile has a free energy & ı, this is a finite process and Lemma 5.6 follows.

Now we prove the claim. By hypothesis, there exists a sequence zOk D .Nk ; tk ; hk/k such that the
lim supk!1 in (5-30) is greater than ı=2. If lim supk!1Nk D1, then, up to passing to a subsequence,
we may assume that fzOkgk�1 D O0 is a Euclidean frame. Otherwise, up to passing to a subsequence, we
may assume that Nk !N � 1 and we let O0 D f.1; tk ; hk/kgk�1 be a hyperbolic frame. In all cases, we
get a frame O0 D f.Mk ; tk ; hk/kgk�1 such that

ı=2� lim
k!1

N
� 1

2

k

ˇ̌
PNk

.eitk�g /gk

ˇ̌
.hk � 0/D lim

k!1

ˇ̌˝
…
�tk ;h

�1
k

gk ;N
� 1

2

k
PNk

.ı0/
˛
L2�L2.H3/

ˇ̌
(5-32)

for some sequence Nk comparable to Mk .
Now, we claim that there exists a profile QfO0

k
associated to the frame O0 such that

lim sup
k!1

krg
QfO0

k
kL2 . 1

and

…
�tk ;h

�1
k

QfO0
k
�N

� 5
2

k
eN�2

k
�g .ı0/! 0

strongly in H 1.H3/. Indeed, if O0 is a hyperbolic frame, then f WDN�
5
2 eN�2�gı0. If Nk !1, we let

f .x/ WD .4�/�
3
2 e�jxj

2=4 D e�ı0. By the unitarity of … it suffices to see that

kN
� 5

2

k
eN�2

k
�gı0�TNk

f kH 1.H3/! 0 (5-33)

which follows by inspection of the explicit formula

.ez�gı0/.P /D
1

.4�z/
3
2

e�z r

sinh r
e�

r 2

4z

for r D dg.0;P /.
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Since gk is absent from the frames O˛ , ˛ �A, and we have a nonzero scalar product in (5-32), we see
from the discussion after Definition 5.2 that O0 is orthogonal to these frames.

Now, in the case O0 is a hyperbolic frame, we let  2H 1.H3/ be any weak limit of …
�tk ;h

�1
k

gk . Then,
passing to a subsequence, we may assume that for any ' 2H 1.H3/,˝

rg.…�tk ;h
�1
k

gk � /;rg'
˛
L2�L2 D

˝
rg.gk �…tk ;hk

 /;rg…tk ;hk
'
˛
L2�L2 ! 0;

so that g0
k
D gk �…tk ;hk

 is absent from O0. In particular, we see from (5-32) that

ı=2�
ˇ̌

lim
k!1

˝
…
�tk ;h

�1
k

gk ; �gN�
5
2 .eN�2�gı0/

˛
L2�L2

ˇ̌
�
ˇ̌˝
 ;�gN�

5
2 .eN�2�gı0/

˛
L2�L2

ˇ̌
. krg kL2.H3/

so that (5-31) holds. Finally, to prove that g0
k

is also absent from the frames O˛ , 1� ˛ �A it suffices by
hypothesis to prove this for z O0

k
, but this follows from Lemma 5.4(ii).

In the case Nk !1, we first choose R> 0 and we define

�R
k .v/D �.v=R/N

� 1
2

k
.…
�tk ;h

�1
k

gk/.‰I .v=Nk//; (5-34)

where � is a smooth cut-off function as in (4-1). This sequence satisfies

lim sup
k!1

kr�R
k kL2.R3/ . lim sup

k!1

krggkkL2.H3/

and therefore has a subsequence which is bounded in PH 1.R3/ uniformly in R > 0. Passing to a
subsequence, we can find a weak limit �R 2 PH 1.R3/. Since the bound is uniform in R> 0, we can let
R!1 and find a weak limit � such that

�R *�

in H 1
loc and � 2 PH 1.R3/. Now, for ' 2 C1

0
.R3/, we haveTNk

' �N
1
2

k
'.Nk‰

�1
I /


H 1.H3/

! 0

as k!1 and with Lemma 5.4(iii), we compute that

hgk ; �g z'O0
k
iL2�L2.H3/ D h…�tk ;h

�1
k

gk ; �gTNk
'iL2�L2.H3/

D
˝
…
�tk ;h

�1
k

gk ; �gN
1
2

k
'.Nk‰

�1
I � /

˛
L2�L2.H3/

C ok.1/

D h�;�'iL2�L2.R3/C ok.1/

D�hz�O0
k
; z'O0

k
iH 1�H 1.H3/C ok.1/:

(5-35)

In particular, g0
k
D gk �

z�O0
k

is absent from O0 and from (5-32), we see that (5-31) holds. Finally, from
Lemma 5.4(ii) again, g0

k
is absent from all the previous frames.

This finishes the proof of the claim and hence the proof of the finitary statement.
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6. Proof of Proposition 3.4

In this section, we first give the proof of Proposition 3.4 assuming a few lemmas that we prove at the end.

Proof of Proposition 3.4. Using the time translation symmetry, we may assume that tk D 0 for all k � 1.
We apply Proposition 5.5 to the sequence .uk.0//k which is bounded in H 1.H3/ and we get sequences of
pairs .��;O�/ 2 PH 1.R3/�Fe and . � ; zO�/ 2H 1.H3/�Fh, �; � D 1; 2; : : : , such that the conclusion
of Proposition 5.5 holds. Up to using Lemma 5.4(i), we may assume that for all �, either t

�

k
D 0 for all k

or .N �

k
/2jt

�

k
j !1 and similarly, for all �, either t�

k
D 0 for all k or jt�

k
j !1.

Case I: all profiles are trivial, �� D 0,  � D 0 for all �; �. In this case, we get from Strichartz estimates,
(5-24) and Lemma 2.2(ii) that uk.0/D rJ

k
satisfies

keit�g .uk.0//kZ.R/ . keit�g .uk.0//k
3
5

L6
t L18

x

keit�g .uk.0//k
2
5

L1t L6
x

. kruk.0/k
11
15

L2

�
sup

N�1;t;x

N�
1
2 jeit�g PN .uk.0//j.x/

� 4
15
! 0

(6-1)

as k!1. Applying Lemma 6.1, we see that

kukkZ.R/ � ke
it�g uk.0/kL10

t;x.H
3�R/Ckuk � eit�g uk.0/kS1.R/! 0

as k!1, which contradicts (3-7).

Now, for every linear profile z��
O
�

k

(resp. z �
zO�

k

), define the associated nonlinear profile U
�

e;k
(resp. U �

h;k
)

as the maximal solution of (1-2) with initial data U
�

e;k
.0/D z�

�

O
�

k

(resp. U �
h;k
.0/D z �

zO�
k

). We may write

U


k
if we do not want to discriminate between Euclidean and hyperbolic profiles.

We can give a more precise description of each nonlinear profile.

(1) If O� 2 Fe is a Euclidean frame, this is given in Lemma 6.2.

(2) If t�
k
D 0, letting .I� ;W �/ be the maximal solution of (1-2) with initial data W �.0/D  � , we see

that for any interval J b I� ,

kU �
h;k.t/��h�

k
W �.t � t�k /kS1.J /! 0 (6-2)

as k!1 (indeed, this is identically 0 in this case).

(3) If t�
k
!C1, then we define .I� ;W �/ to be the maximal solution of (1-2) satisfying9

kW �.t/� eit�g �kH 1.H3/! 0

as t !�1. Then, applying Proposition 3.2, we see that on any interval J D .�1;T /b I� , we
have (6-2). Using the time reversal symmetry u.t;x/! Nu.�t;x/, we obtain a similar description
when t�

k
!�1.

9Note that .I� ;W �/ exists by Strichartz estimates and Lemma 6.1.
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Case IIa: there is only one Euclidean profile, i.e., there exists � such that uk.0/D z�
�

O
�

k

Cok.1/ in H 1.H3/.

Applying Lemma 6.2, we see that U
�

e;k
is global with uniformly bounded S1-norm for k large enough.

Then, using the stability Proposition 3.2 with QuD U
�

e;k
, we see that for all k large enough,

kukkZ.I / .Emax 1

which contradicts (3-7).

Case IIb: there is only one hyperbolic profile, i.e., there is � such that uk.0/D z 
�
zO�

k

C ok.1/ in H 1.H3/.
If t�

k
!C1, then, using Strichartz estimates, we see that

krgeit�g…t�
k
;h�

k
 �k

L10
t L

30
13
x .H3�.�1;0//

D krgeit�g �k
L10

t L
30
13
x .H3�.�1;�t�

k
//
! 0

as k!1, which implies that keit�g uk.0/kZ.�1;0/! 0 as k!1. Using again Lemma 6.1, we see
that, for k large enough, uk is defined on .�1; 0/ and kukkZ.�1;0/! 0 as k!1, which contradicts
(3-7). Similarly, t�

k
!�1 yields a contradiction. Finally, if t�

k
D 0, we get that

�.h�
k
/�1uk.0/!  �

converges strongly in H 1.H3/, which is the desired conclusion of the proposition.

Case III: there exists � or � and � > 0 such that

2� < lim sup
k!1

E1.z�
�

O
�

k

/; lim sup
k!1

E1. z �
zO�

k

/ <Emax� 2�: (6-3)

Taking k sufficiently large and maybe replacing � by �=2, we may assume that (6-3) holds for all k. In
this case, we claim that, for J sufficiently large,

U
app
k
D

X
1���J

U
�

e;k
C

X
1���J

U �
h;k C eit�g rJ

k D U J
prof;k C eit�g rJ

k

is a global approximate solution with bounded Z norm for all k sufficiently large.
First, by Lemma 6.2, all the Euclidean profiles are global. Using (5-25), we see that for all � and all k

sufficiently large, E1.U �
h;k
/ <Emax� �. By (6-2), this implies that E1.W �/ <Emax� � so that by the

definition of Emax, W � is global and by Proposition 3.2, U �
h;k

is global for k large enough and

kU �
h;k.t/��hk

W �.t � t�k /kS1.R/! 0 (6-4)

as k!1.

Now we claim that
lim sup
k!1

krgU
app
k
kL1t L2

x
� 4E

1
2
max (6-5)

is bounded uniformly in J . Indeed, we first observe using (5-25) that

krgU
app
k
kL1t L2

x
� krgU J

prof;kkL1t L2
x
CkrgrJ

k kL2
x

� krgU J
prof;kkL1t L2

x
C .2Emax/

1
2 :
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Using Lemma 6.3, we get that for fixed t and J ,

krgU J
prof;k.t/k

2

L2
x
�

X
1��2J

krgU


k
k

2

L1t L2
x
C 2

X
¤ 0

hrgU


k
.t/;rgU

 0

k
.t/iL2�L2

� 2
X

1��2J

E1.U


k
/C ok.1/� 2EmaxC ok.1/;

where ok.1/! 0 as k!1 for fixed J .
We also have

lim sup
k!1

krgU
app
k
k

L10
t L

30
13
x

.Emax;� 1 (6-6)

is bounded uniformly in J . Indeed, from (6-3) and (5-25), we see that for all  and all k sufficiently large
(depending maybe on J ), E1.U



k
/ <Emax� � and from the definition of Emax, we conclude that

sup

kU



k
kZ.R/ .Emax;� 1:

Using Proposition 3.2, we see that this implies that

sup

krgU



k
k

L
10
3

t;x

.Emax;� 1:

Besides, using Lemma 6.1, we obtain that

krgU


k
k

2

L
10
3

t;x

.E1.U


k
/

if E1.U


k
/� ı0 is sufficiently small. Hence there exists a constant C D C.Emax; �/ such that, for all  ,

and all k large enough (depending on  ),

krgU


k
k

2

L
10
3

t;x

� CE1.U


k
/.Emax;� 1;

kU


k
k

2

L10
t;x

. krgU


k
k

2

L10
t L

30
13
x

� CE1.U


k
/.Emax;� 1;

(6-7)

the second inequality following from Hölder’s inequality between the first and the trivial bound

krgU


k
kL1t L2

x
� 2E1.U



k
/:

Now, using (6-7) and Lemma 6.3, we see thatˇ̌̌̌
krgU J

prof;kk
10
3

L
10
3

t;x

�

X
1�˛�2J

krgU ˛
k k

10
3

L
10
3

t;x

ˇ̌̌̌
�

X
1�˛¤ˇ�2J

k.rgU ˛
k /

7
3rgU

ˇ

k
kL1

t;x

.Emax;�

X
1�˛¤ˇ�2J

k.rgU ˛
k /rgU

ˇ

k
k

L
5
3
t;x

.Emax;� ok.1/:

Consequently,

krgU J
prof;kk

10
3

L
10
3

t;x

�

X
1�˛�2J

krgU ˛
k k

10
3

L
10
3

t;x

C ok.1/

.Emax;� C
X

1�˛�2J

E1.U ˛
k /C ok.1/.Emax;� 1
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and using Hölder’s inequality and (6-5), we get (6-6).
Using (6-5) and (6-6) we can apply Proposition 3.2 to get ı>0 such that the conclusion of Proposition 3.2

holds.
Now, for F.x/D jxj4x, we have

eD
�
i@t C�g

�
U

app
k
�U

app
k
jU

app
k
j
4
D

X
1�˛�2J

�
.i@t C�g/U

˛
k �F.U ˛

k /
�
C

X
1�˛�2J

F.U ˛
k /�F.U

app
k
/:

The first term is identically 0, while using Lemma 6.4, we see that taking J large enough, we can ensure
that the second is smaller than ı given above in L2

t H
1; 6

5
x -norm for all k large enough. Then, since

uk.0/D U
app
k
.0/, Sobolev’s inequality and the conclusion of Proposition 3.2 imply that for all k large,

and all interval J

kukkZ.J / . kukkS1.J / � kuk �U
app
k
kS1.J /CkU

app
k
kS1.R/ .Emax;� 1

where we have used (6-6). Then, we see that uk is global for all k large enough and that uk has uniformly
bounded Z-norm, which contradicts (3-7). This ends the proof.

Criterion for linear evolution.

Lemma 6.1. For any M > 0, there exists ı > 0 such that for any interval J � R, if

krg�kL2.H3/ �M and keit�g�kZ.J / � ı;

then for any t0 2 J , the maximal solution .I;u/ of (1-2) satisfying u.t0/D eit0�g� satisfies J � I and

ku� eit�g�kS1.J / � ı
3;

kukS1.J / � C.M; ı/:
(6-8)

Besides, if J D .�1;T /, then there exists a unique maximal solution .I;u/, J � I of (1-2) such that

lim
t!�1

krg.u.t/� eit�g�/kL2.H3/ D 0 (6-9)

and (6-8) holds in this case too. The same statement holds in the Euclidean case when .H3;g/ is replaced
by .R3; ıij /.

Proof of Lemma 6.1. The first part is a direct consequence of Proposition 3.2. Indeed, let v D eit�g�.
Then clearly (3-3) is satisfied while using Strichartz estimates,

krgvjvj
4
k

L2
t L

6
5
x .J�H3/

� kvk4Z.J /krgeit�g�k
L10

t L
30
13
x .J�H3/

.M ı4;

thus we get (3-4). Then we can apply Proposition 3.2 with � D 1 to conclude. The second claim is
classical and follows from a fixed point argument. �
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Description of a Euclidean nonlinear profile. Let

zFe D
˚
.Nk ; tk ; hk/k 2 Fe W tk D 0 for all k or lim

k!1
N 2

k jtk j D1
	
;

zFh D
˚
.1; tk ; hk/k 2 Fh W tk D 0 for all k or lim

k!1
jtk j D1

	
:

Lemma 6.2. Assume � 2 PH 1.R3/ and .Nk ; tk ; hk/k 2 zFe. Let Uk be the solution of (1-2) such that
Uk.0/D…tk ;hk

.TNk
�/.

(i) For k large enough, Uk 2 C.R WH 1/ is globally defined, and

kUkkZ.R/ � 2 QC .E1
R3.�//: (6-10)

(ii) There exists a Euclidean solution u 2 C.R W PH 1.R3// of

.i@t C�/uD ujuj4 (6-11)

with scattering data �˙1 defined as in (4-4) such that the following holds, up to a subsequence: for
any " > 0, there exists T .�; "/ such that for all T � T .�; "/ there exists R.�; ";T / such that for all
R�R.�; ";T /, we have

kUk � QukkS1.jt�tk j�TN�2
k
/ � "; (6-12)

for k large enough, where

.�h�1
k
Quk/.t;x/DN

1=2

k
�.Nk‰

�1
I .x/=R/u.Nk‰

�1
I .x/;N 2

k .t � tk//:

In addition, up to a subsequence,

kUkk
L10

t H
1; 30

13
x \L

10
3

t H
1; 10

3
x .H3�fN 2

k
jt�tk j�T g/

� " (6-13)

and for any˙.t � tk/� TN�2
k

,

krg

�
Uk.t/�…tk�t;hk

TNk
�˙1

�
kL2 � "; (6-14)

for k large enough (depending on �; ";T;R).

Proof. We may assume that hk D I for any k.
If tk D 0 for any k then the lemma follows from Lemma 4.2 and Corollary 4.3: we let u be the

nonlinear Euclidean solution of (6-11) with u.0/D � and notice that for any ı > 0 there is T .�; ı/ such
that

kruk
L

10=3
x;t .R3�fjt j�T .�;ı/g/

� ı:

The bound (6-12) follows for any fixed T � T .�; ı/ from Lemma 4.2. Assuming ı is sufficiently small
and T is sufficiently large (both depending on � and "), the bounds (6-13) and (6-14) then follow from
Corollary 4.3 (which guarantees smallness of 1˙.t/ �eit�g Uk.˙N�2

k
T .�; ı// in L

10=3
t H

1;10=3
x .H3�R/)

and Lemma 6.1.
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Otherwise, if limk!1N 2
k
jtk j D1, we may assume by symmetry that N 2

k
tk !C1. Then we let u

be the solution of (6-11) such that r.u.t/� eit��/


L2.R3/
! 0

as t ! �1 (thus ��1 D �). We let Q� D u.0/ and apply the conclusions of the lemma to the frame
.Nk ; 0; hk/k 2 Fe and Vk.s/, the solution of (1-2) with initial data Vk.0/D �hk

TNk
Q�. In particular, we

see from the fact that N 2
k

tk !C1 and (6-14) that

kVk.�tk/�…tk ;hk
TNk

�kH 1.H3/! 0

as k!1. Then, using Proposition 3.2, we see that

kUk �Vk. � � tk/kS1.R/! 0

as k!1, and we can conclude by inspecting the behavior of Vk . This ends the proof. �

Noninteraction of nonlinear profiles.

Lemma 6.3. Let z�Ok
and z O0

k
be two profiles associated to orthogonal frames O and O0 in zFe [ zFh. Let

Uk and U 0
k

be the solutions of the nonlinear equation (1-2) such that Uk.0/ D z�Ok
and U 0

k
.0/ D z O0

k
.

Suppose also that E1.z�Ok
/ <Emax� � (resp. E1. z O0

k
/ <Emax� �) if O 2 Fh (resp. O0 2 Fh). Then

sup
T2R

ˇ̌
hrgUk.T /;rgU 0k.T /iL2�L2.H3/

ˇ̌
CkUkrgU 0kk

L5
t L

15
8

x .H3�R/
Ck.rgUk/rgU 0kk

L
5
3
t;x.H

3�R/

! 0 (6-15)

as k!1.

Proof. It suffices to prove (6-15) up to extracting a subsequence, and fix " > 0 sufficiently small.
We only provide the proof that the second norm in (6-15) decays; the other two claims are similar.

Applying Lemma 6.2 if Uk is a profile associated to a Euclidean frame (respectively (6-4) if Uk is a
profile associated to a hyperbolic frame), we see that

kUkkS1 CkU 0kkS1 �M <C1

and that there exist R and ı such that

krgUkkL10
t L

30=13
x \L

10=3
x;t ..H3�R/nSR

Nk ;tk ;hk
/
CkUkkL10

x;t ..H
3�R/nSR

Nk ;tk ;hk
/ � ";

sup
S;h

�
krgUkkL10

t L
30=13
x \L

10=3
x;t .Sı

Nk ;S;h
/
CkUkkL10

x;t .S
ı
Nk ;S;h

/

�
� ";

(6-16)

where

Sa
N;T;h WD

˚
.x; t/ 2 H3

�R W dg.h
�1
�x; 0/� aN�1 and jt �T j � a2N�2

	
: (6-17)

A similar claim holds for U 0
k

with the same values of R, ı.
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If Nk=N
0
k
!1, then for k large enough we estimate

kUkrgU 0kk
L5

t L
30
16
x

� kUkrgU 0kk
L5

t L
30
16
x .SR

Nk ;tk ;hk
/
CkUkrgU 0kk

L5
t L

30
16
x ..H3�R/nSR

Nk ;tk ;hk
/

� kUkkL10
t;x
krgU 0kkL10

t L
30
13 .Sı

N 0
k
;tk ;hk

/
CkUkkL10

t;x..H
3�R/nSR

Nk ;tk ;hk
/krgU 0kk

L10
t L

30
13
x

.M ":

The case when N 0
k
=Nk !1 is similar.

Otherwise, we can assume that C�1 �Nk=N
0
k
� C for all k, and then find k sufficiently large that

SR
Nk ;tk ;hk

\SR
N 0

k
;t 0

k
;h0

k

D∅. Using (6-16) it follows as before that

kUkrgU 0kk
L5

t L
30
16
x

.M ":

Hence, in all cases,

lim sup
k!1

kUkrgU 0kk
L5

t L
15
8

x

.M ":

The convergence to 0 of the second term in (6-15) follows. �

Control of the error term.

Lemma 6.4. With the notations in the proof of Proposition 3.4,

lim
J!1

lim sup
k!1

rg

�
F.U

app
k
/�

X
1�˛�2J

F.U ˛
k /
�

L2
t L

6
5
x

D 0: (6-18)

Proof. Fix "0 > 0. For fixed J , we let

U J
prof;k D

X
1���J

U
�

e;k
C

X
1���J

U �
h;k D

X
1��2J

U


k

be the sum of the profiles. Then we separaterg

�
F.U

app
k
/�

X
1�˛�2J

F.U ˛
k /
�

L2
t L

6
5
x

�

rg

�
F.U

app
k
/�F.U J

prof;k/
�

L2
t L

6
5
x

C

rg

�
F.U J

prof;k/�
X

1�˛�2J

F.U ˛
k /
�

L2
t L

6
5
x

:

We first claim that, for fixed J ,

lim sup
k!1

rg.F.U
J
prof;k/�

X
1�˛�2J

F.U ˛
k //


L2

t L
6
5
x

D 0: (6-19)

Indeed, using thatˇ̌̌̌
rg

�
F

� X
1�˛�2J

U ˛
k

�
�

X
1�˛�2J

F.U ˛
k /

�ˇ̌̌̌
.

X
˛¤ˇ;

jU


k
j
3
jU ˛

k rgU
ˇ

k
j;
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we see thatrg

�
F.U J

prof;k/�
X

1�˛�2J

F.U ˛
k /

�
L2

t L
6
5
x

.
X
˛¤ˇ;

kU


k
k

3

L10
t;x

kU ˛
k rgU

ˇ

k
k

L5
t L

15
8

x

:

Therefore (6-19) follows from (6-15) since the sum is over a finite set and each profile is bounded in L10
t;x

by (6-7).
Now we prove that, for any given "0 > 0,

lim sup
J!1

lim sup
k!1

rg

�
F.U

app
k
/�F.U J

prof;k/
�

L2
t L

6
5
x

. "0: (6-20)

This would complete the proof of (6-18). We first remark that, from (6-6), U J
prof;k has bounded L10

t H
1; 30

13
x -

norm, uniformly in J for k sufficiently large. We also let j0 D j0."0/ independent of J be such that10

sup
˛�j0

lim sup
k!1

kU ˛
k kL10

t;x
. "0: (6-21)

Now we compute

rg.F.U
J
prof;k C eit�g rJ

k /�F.U J
prof;k//


L2

t L
6
5
x

.
5X

jD1

1X
pD0

rp
g .e

it�g rJ
k /

j
r

1�p
g .U J

prof;k/
5�j


L2

t L
6
5
x

:

Since both U J
prof;k and eit�g rJ

k
are bounded in L10

t H
1; 30

13
x uniformly in J , if there is at least one term

eit�g rJ
k

with no derivative, we can bound the norm in the expression above byrp
g .e

it�g rJ
k /

j
r

1�p
g .U J

prof;k/
5�j


L2

t L
6
5
x

.Emax;� ke
it�g rJ

k kL10
t;x

uniformly in J , so that taking the limit k!1 and then J !1, we get 0. Hence we need only consider
the term .U J

prof;k/
4
rg.e

it�g rJ
k /


L2
t L

6
5
x

:

Expanding further .U J
prof;k/

4 and using Lemma 6.3 and (6-7), we see that

lim sup
k!1

k.U J
prof;k/

4
rg.e

it�g rJ
k /k

L2
t L

6
5
x

D lim sup
k!1

X
1�˛�J

k.U ˛
k /

4
rg.e

it�g rJ
k /k

L2
t L

6
5
x

. lim sup
k!1

X
1�˛�J

kU ˛
k k

3

L10
t;x

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x

.Emax;� lim sup
k!1

X
1�˛�j0

E1.U ˛
k /kU

˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x

C lim sup
k!1

X
j0�˛�J

E1.U ˛
k /kU

˛
k kL10

t;x
krg.e

it�g rJ
k /k

L10
t L

30
13
x

10The fact that j0 exists follows from (5-25) and (6-7).
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where j0 is chosen in (6-21). Consequently, using the summation formula for the energies (5-25), we get

lim sup
k!1

.U J
prof;k/

4
rg.e

it�g rJ
k /


L2
t L

6
5
t

.Emax;� "0C sup
1�˛�j0

lim sup
k!1

U ˛
k rg.e

it�g rJ
k /


L5
t L

15
8

x

:

Finally, we obtain from Lemma 2.3 that for any profile U ˛
k

,

lim
J!1

lim sup
k!1

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x .H3�R/
D 0: (6-22)

This would imply (6-20) and hence complete the proof of Lemma 6.4. To prove (6-22), fix " > 0. For U ˛
k

given, we consider the sets Sa
N;T;h

as defined in (6-17). For R large enough we have, using (6-16),

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x ..H3�R/nSR
Nk ;tk ;hk

/

� kU ˛
k kL10

x;t ..H
3�R/nSR

Nk ;tk ;hk
/krg.e

it�g rJ
k /k

L10
t L

30
13
x

.Emax;� ":

Now in the case of a hyperbolic profile U �
h;k

, we know that W � as in (6-2) satisfies W � 2L10
x;t .H

3�R/.
We choose W �;0 2 C1c .H3 �R/ such that

kW �
�W �;0

kL10
x;t .H

3�R/ � ":

Using (6-4) we see that there exists a constant C�;" such that

kU �
h;k
rg.e

it�g rJ
k
/k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
� k.U �

h;k ��h�
k
W �;0. � � t�k //rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/

CkW �;0
kL1t;x

krg.e
it�g rJ

k /k
L5

t L
15
8

x .SR
Nk ;tk ;hk

/

.Emax;� "CC�;"krg.e
it�g rJ

k /k
L5

t L
15
8

x .SR
Nk ;tk ;hk

/
:

In the case of a Euclidean profile, we choose v 2 C1c .R3 �R/ such that

ku� vkL10
t;x.R

3�R/ � ";

for u given in Lemma 6.2. Then, using (6-12), we estimate as before

kU
�

e;k
rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
.Emax;� "CC�;".N

�

k
/

1
2 krg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
:

Therefore, we conclude that in all cases,

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
.Emax;� "CC˛;".N

˛
k /

1
2 krg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
:

Finally we use Lemma 2.3 and (5-24) to conclude that

lim
J!1

lim sup
k!1

kU ˛
k rg.e

it�g rJ
k /k

L5
t L

15
8

x .SR
Nk ;tk ;hk

/
.Emax;� ":

Since " was arbitrary, we obtain (6-22) and hence finish the proof. �
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1. Introduction

Throughout this paper manifolds always mean smooth and closed (compact and without boundary)
manifolds. Let Met.M / denote the space of smooth metrics on a manifold M , and C1.M / the set of
all smooth functions on M . We denote by C the universal constants depending only on the dimension of
M , which may take different values at different places.

An important and natural problem in differential geometry is to find a canonical metric on a given
manifold. A classical example is the uniformization theorem (e.g., [Chow and Knopf 2004]), which says
that every smooth surface admits a unique conformal metric of constant curvature. To generalize to higher
dimensional manifolds, Hamilton [1982] introduced a system of equations

@gij

@t
D�2Rij ; (1-1)

now called the Ricci flow, an analogue of the heat equation for metrics.
There are two ways to understand the Ricci flow: one way comes from the two-dimensional sigma

model (see [Bakas 2007]), while another comes from Perelman’s energy functional [Perelman 2002]
defined by

F.g; f /D

Z
M

�
RCjrf j2

�
e�f dVg; .g; f / 2Met.M /�C1.M /; (1-2)

MSC2010: 53C44, 35K55.
Keywords: Ricci flow, Generalized Ricci flow, BBS derivative estimates, compactness theorems, energy functionals.

747



748 YI LI

where R, r, and dVg, is the scalar curvature, Levi-Civita connection, and volume form of g, respectively.
He showed that the Ricci flow is the gradient flow of (1-2) and the functional F is monotonic along this
gradient flow. Precisely, under the following system

@gij

@t
D�2Rij ;

@f

@t
D�R��f Cjrf j2; (1-3)

we have
d

dt
F.g; f /D 2

Z
M

ˇ̌
Rij Crirjf

ˇ̌2
e�f dVg � 0: (1-4)

Perelman’s energy functional plays an essential role in determining the structures of singularities of the
Ricci flow and then the proof of Poincaré conjecture and Thurston’s generalization conjecture; for more
details we refer readers to [Cao and Zhu 2006; Chow et al. 2006; 2007; 2008; 2010; Kleiner and Lott
2008; Morgan and Tian 2007; Perelman 2002].

Ricci flow coupled with a one-form or a two-form. If we consider the two-dimensional nonlinear sigma
model [Bakas 2007; Oliynyk et al. 2006], then we obtain a generalized Ricci flow that is the Ricci flow
coupled with the evolution equation for a two-form. This flow can be also obtained from the point of
view of Perelman-type energy functional.

Denoting by Ap.M / the space of p-forms on M , we consider the energy functional

F.1/ WMet.M /�A2.M /�C1.M /! R

defined by

F.1/.g;B; f /D

Z
M

�
RCjrf j2� 1

12
jH j2

�
e�f dVg; (1-5)

where H D dB. As showed in [Oliynyk et al. 2006], the gradient flow of F.1/ satisfies

@gij

@t
D�2Rij � 2rirjf C

1
2
Hi

k`Hjk`; (1-6)

@Bij

@t
D 3rkH k

ij � 3H k
ijrkf; (1-7)

@f

@t
D�R��f C 1

4
jH j2; (1-8)

and under a family of diffeomorphisms the system (1-6)–(1-8) is equivalent to

@gij

@t
D�2Rij C

1
2
Hi

k`Hjk`; (1-9)

@Bij

@t
D 3rkH k

ij ; (1-10)

@f

@t
D�R��f Cjrf j2C 1

4
jH j2: (1-11)

Using the adjoint operator d�, Equation (1-10) can be written as

@Bij

@t
D�.d�H /ij ; (1-12)
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and therefore (because of H D dB)

@H

@t
D�dd�H D�HLH; (1-13)

where �HL D�.dd�C d�d/ denotes the Hodge–Laplace operator.
The flow (1-9)–(1-10) can be interpreted as the connection Ricci flow [Streets 2008]. If we replace

H D dB by F D dA, i.e., replace a two-form by a one-form, then the flow (1-6)–(1-7) or (1-9)–(1-10) is
exactly the Ricci Yang–Mills flow studied by Streets [2007] and Young [2008].

Ricci flow coupled with a one-form and a two-form. There is another generalized Ricci flow which
connects to Thurston’s conjecture — roughly stating that a three-dimensional manifold with a given
topology has a canonical decomposition into simple three-dimensional manifolds, each of which admits
one, and only one, of eight homogeneous geometries: S3, the round three-sphere; R3, the Euclidean
space; H3, the standard hyperbolic space; S2�R; H2�R; Nil, the three-dimensional nilpotent Heisenberg
group; fSL.2;R/; Sol, the three -dimensional solvable Lie group. The proof of Thurston’s conjecture can
be found in [Cao and Zhu 2006; Kleiner and Lott 2008; Morgan and Tian 2007; Perelman 2002].

To better understanding Thurston’s conjecture, Gegenberg and Kunstatter [2004] proposed a generalized
flow by considering the modified 3D stringy theory. This flow is the Ricci flow coupled with evolution
equations for a one-form and a two-form. As in (1-5), we define an energy functional

F.2/ WMet.M /�A1.M /�A2.M /�C1.M /! R

by

F.2/.g;A;B; f /D

Z
M

�
RCjrf j2� 1

12
jH j2� 1

2
jF j2

�
e�f dVg; (1-14)

where H D dB, and F D dA. In [He et al. 2008], the authors showed that the gradient flow of F.2/

satisfies
@gij

@t
D�2Rij � 2rirjf C

1
2
Hi

k`Hjk`C 2Fi
kFjk ; (1-15)

@Ai

@t
D 2rj Fj

i � 2Fj
irjf; (1-16)

@Bij

@t
D 3rkH k

ij � 3H k
ijrkf; (1-17)

@f

@t
D�R��f C 1

4
jH j2CjF j2; (1-18)

and under a family of diffeomorphisms the system (1-15)–(1-18) is equivalent to

@gij

@t
D�2Rij C

1
2
Hi

k`Hjk`C 2Fi
kFjk ; (1-19)

@Ai

@t
D 2rj Fj

i ; (1-20)

@Bij

@t
D 3rkH k

ij ; (1-21)
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@f

@t
D�R��f Cjrf j2C 1

4
jH j2CjF j2: (1-22)

Using again the adjoint operator d�, we have

@F

@t
D�HLF;

@H

@t
D�HLH: (1-23)

The flow (1-19)–(1-21) clearly contains the Ricci flow, the flow (1-9)–(1-10) or the connection Ricci
flow, and the Ricci Yang–Mills flow; we expect this flow can give another proof of the Poincaré conjecture
and Thurston’s generalization conjecture, with less analysis on singularities.

Main results. For convenience, we refer to GRF the generalized Ricci flow and RF.A;B/ the Ricci flow
coupled with a one-form A and a two-form B.

Let .M;g/ denote an n-dimensional closed Riemannian manifold with a three-form H D fHijkg. In
the first part of this paper we consider the following GRF on M :

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
Hik`.x; t/Hj

k`.x; t/; (1-24)

@

@t
H.x; t/D�HL;g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/: (1-25)

It is clearly from (1-9) and (1-13) that the gradient flow of the energy functional F.1/ is a special case
of (1-24)–(1-25). The corresponding case that H is closed is called the refined generalized Ricci flow
(RGRF):

@

@t
gij .x; t/D�2Rij .x; t/C

1

2
Hik`.x; t/Hj

k`.x; t/; (1-26)

@

@t
H.x; t/D�dd�g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/: (1-27)

Here d�
g.x;t/

is the dual operator of d with respect to the metric g.x; t/.

Lemma 1.1. Under RGRF, H.x; t/ is closed if the initial value H.x/ is closed.

Proof. Since the exterior derivative d is independent of the metric, we have

@

@t
dH.x; t/D d

@

@t
H.x; t/D d

�
�dd�g.x;t/H.x; t/

�
D 0:

so dH.x; t/D dH.x/D 0. �
The closedness of H is very important and has physical interpretation [Bakas 2007; Oliynyk et al.

2006]. Streets [2008] considered the connection Ricci flow in which H is the geometric torsion of
connection.

Proposition 1.2. If .g.x; t/;H.x; t// is a solution of RGRF and the initial value H.x/ is closed, then it
is also a solution of GRF.

Proof. From Lemma 1.1 and the assumption we know that H.x; t/ are all closed. Hence

�HL;g.x;t/H.x; t/D�dd�g.x;t/H.x; t/: �
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For GRF, a basic and natural question is the existence. The short-time existence for RGRF has been
established in [He et al. 2008], where the authors have already showed the short-time existence for
RF.A;B/ obviously including RGRF. In this paper, we prove the short- time existence for RGF.

Theorem 1.3. There is a unique solution to GRF for a short time. More precisely, let .M;gij .x// be an
n-dimensional closed Riemannian manifold with a three-form H D fHijkg, then there exists a constant
T D T .n/ > 0 depending only on n such that the evolution system

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
gkp.x; t/g`q.x; t/Hik`.x; t/Hjpq.x; t/;

@

@t
H.x; t/D�HL;g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/;

has a unique solution .gij .x; t/;Hijk.x; t// for a short time 0� t � T .

After establishing the local existence, we are able to prove the higher derivatives estimates for GRF.
Precisely, we have the following

Theorem 1.4. Suppose that .g.x; t/;H.x; t// is a solution to GRF on a closed manifold M n and K is
an arbitrary given positive constant. Then for each ˛ > 0 and each integer m� 1 there exists a constant
Cm depending on m; n;maxf˛; 1g, and K such that if

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K

for all x 2M and t 2 Œ0; ˛=K�, then

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/ �
Cm

tm=2
(1-28)

for all x 2M and t 2 .0; ˛=K�.

As an application, we can prove the compactness theorem for GRF.

Theorem 1.5 (compactness for GRF). Let f.Mk ;gk.t/;Hk.t/;Ok/gk2N be a sequence of complete
pointed solutions to GRF for t 2 Œ˛; !/ 3 0 such that:

(i) There is a constant C0 <1 independent of k such that

sup
.x;t/2Mk�.˛;!/

ˇ̌
Rmgk.x;t/

ˇ̌
gk.x;t/

� C0; sup
x2Mk

jHk.x; ˛/jgk.x;˛/ � C0:

(ii) There exists a constant �0 > 0 satisfies

injgk.0/
.Ok/� �0:

Then there exists a subsequence fjkgk2N such that

.Mjk
;gjk

.t/;Hjk
.t/;Ojk

/! .M1;g1.t/;H1.t/;O1/;

converges to a complete pointed solution .M1;g1.t/;H1.t/;O1/; t 2 Œ˛; !/ to GRF as k!1.
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In the second part of this paper, we consider the Ricci flow coupled with a one-form and a two-form.
This flow is the gradient flow of F.2/ and takes the form

@

@t
gij .x; t/D�2Rij C

1
2
Hi

k`.x; t/Hjk`.x; t/C 2Fi
k.x; t/Fjk.x; t/; (1-29)

@

@t
Ai.x; t/D 2rj Fj

i.x; t/; Ai.x; 0/DAi.x/; gij .x; 0/D gij .x/; (1-30)

@

@t
Bij .x; t/D 3rkH k

ij .x; t/; Bij .x; 0/D Bij .x/: (1-31)

Here AD fAig and B D fBij g is a one-form and a two-form on M , respectively, and F D dA;H D dB.
For this flow, we can also prove the short-time existence, higher derivative estimates, and the compactness
theorem.

The rest of this paper is organized as follows. In Section 2, we prove the short-time existence and
uniqueness of the GRF for any given three-form H . In Section 3, we compute the evolution equations for
the Levi-Civita connections, Riemann, Ricci, and scalar curvatures of a solution to the GRF. In Section 4,
we establish higher derivative estimates for GRF, called Bernstein–Bando–Shi (BBS) derivative estimates
(e.g., [Cao and Zhu 2006; Chow and Knopf 2004; Chow et al. 2007; 2008; 2010; Morgan and Tian
2007; Shi 1989]). In Section 5, we prove the compactness theorem for GRF by using BBS estimates. In
Section 6, based on the work of [He et al. 2008], the similar results are established for RF.A;B/.

2. Short-time existence of GRF

In this section we establish the short-time existence for GRF. Our method is standard: we use the DeTurck
trick in Ricci flow to prove its short-time existence. We assume that M is an n-dimensional closed
Riemannian manifold with metric

dzs2
D zgij .x/ dxi dxj (2-1)

and with Riemannian curvature tensor f zRijk`g. We also assume that zH D f zHijkg is a fixed three-form
on M . In the following we put

hij WDHik`Hj
k`: (2-2)

Suppose the metrics
dys2

t D
1
2
ygij .x; t/ dxi dxj (2-3)

are the solutions of1

@

@t
ygij .x; t/D�2 yRij .x; t/C yhij .x; t/; ygij .x; 0/D zgij .x/ (2-4)

for a short time 0� t � T . Consider a family of smooth diffeomorphisms 't WM !M.0� t � T / of
M . Let

ds2
t WD '

�
t dys2

t ; 0� t � T (2-5)

1In the following computations we don’t need to use the evolution equation for H.x; t/, hence we only consider the evolution
equation for metrics.
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be the pull-back metrics of dys2
t . For coordinates system x D fx1; : : : ;xng on M , let

ds2
t D gij .x; t/ dxi dxj (2-6)

and
y.x; t/D 't .x/D fy

1.x; t/; : : : ;yn.x; t/g: (2-7)

Then we have

gij .x; t/D
@y˛

@xi

@yˇ

@xj
yg˛ˇ.y; t/: (2-8)

By the assumption yg˛ˇ.x; t/ are the solutions of

@

@t
yg˛ˇ.x; t/D�2 yR˛ˇ.x; t/C yh˛ˇ.x; t/; yg˛ˇ.x; 0/D zg˛ˇ.x/: (2-9)

We use Rij ; yRij ; zRij ; �k
ij ;
y�k

ij ;
z�k

ij ; r; yr; zr; hij ; yhij ; zhij to denote the Ricci curvatures, Christoffel
symbols, covariant derivatives, and products of the three-form H with respect to zgij ; ygij ;gij respectively.
Then

@

@t
gij .x; t/D

@y˛

@xi

@yˇ

@xj

�
@

@t
yg˛ˇ.y; t/

�
C

@

@xi

�
@y˛

@t

�
@yˇ

@xj
yg˛ˇ.y; t/C

@y˛

@xi

@

@xj

�
@yˇ

@t

�
yg˛ˇ.y; t/:

From (2-9) we have

@

@t
yg˛ˇ.y; t/D�2 yR˛ˇ.y; t/C yh˛ˇ.y; t/C

@yg˛ˇ

@y
@y

@t
;

and

@

@t
gij .x; t/D�2

@y˛

@xi

@yˇ

@xj
yR˛ˇ.y; t/C

@y˛

@xi

@yˇ

@xj
yh˛ˇ.y; t/

C
@y˛

@xi

@yˇ

@xj

@yg˛ˇ

@y
@y

@t
C

@

@xi

�
@y˛

@t

�
@yˇ

@xj
yg˛ˇ.y; t/C

@y˛

@xi

@

@xj

�
@yˇ

@t

�
yg˛ˇ.y; t/:

Since

Rij .x; t/D
@y˛

@xi

@yˇ

@xj
yR˛ˇ.y; t/; hij .x; t/D

@y˛

@xi

@yˇ

@xj
yh˛ˇ.y; t/;

using [Shi 1989, §2, (29)], we obtain

@

@t
gij .x; t/D�2Rij .x; t/C hij .x; t/C ri

�
@y˛

@t

@xk

@y˛
gjk

�
Crj

�
@y˛

@t

@xk

@y˛
gik

�
: (2-10)

According to DeTurck trick, we define y.x; t/D 't .x/ by the equation

@y˛

@t
D
@y˛

@xk
gˇ .�k

ˇ �
z�k
ˇ /; y˛.x; 0/D x˛; (2-11)

then (2-10) becomes
@

@t
gij .x; t/D�2Rij .x; t/C hij .x; t/CriVj Crj Vi ; gij .x; 0/D zgij .x/; (2-12)
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where

Vi D gikgˇ .�k
ˇ �

z�k
ˇ /: (2-13)

Lemma 2.1. The evolution equation (2-12) is a strictly parabolic system. Moreover,

@

@t
gij D g˛ˇ zr˛ zrˇgij �g˛ˇgip zg

pq zRj˛qˇ �g˛ˇgjp zg
pq zRi˛qˇ

C
1
2
g˛ˇgpq

�
zrigp˛ � zrj gqˇC 2zrgjp � zrqgiˇ � 2zr˛gjp � zrˇgiq � 2zrj gp˛ � zrˇgiq � 2zrigp˛ � zrˇgjq

�
C

1
2
g˛ˇgpqHi˛pHjˇq:

Proof. It is an immediate consequence of Lemma 2.1 of [Shi 1989]. �

Now we can prove the short-time existence of GRF.

Theorem 2.2. There is a unique solution to GRF for a short time. More precisely, let .M;gij .x// be an
n-dimensional closed Riemannian manifold with a three-form H D fHijkg, then there exists a constant
T D T .n/ > 0 depending only on n such that the evolution system

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
gkp.x; t/g`q.x; t/Hik`.x; t/Hjpq.x; t/;

@

@t
H.x; t/D�HL;g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/;

has a unique solution .gij .x; t/;Hijk.x; t// for a short time 0� t � T .

Proof. We proved that the first evolution equation is strictly parabolic by Lemma 2.1. Form the Ricci
identity, we have �HL;g.x;t/H D �LB;g.x;t/H CRm�H which is also strictly parabolic. Hence from
the standard theory of parabolic systems, the evolution system has a unique solution. �

3. Evolution of curvatures

The evolution equation for the Riemann curvature tensors to the usual Ricci flow (e.g., [Cao and Zhu
2006; Chow and Knopf 2004; Chow et al. 2007, 2008; 2010; Hamilton 1982; Morgan and Tian 2007; Shi
1989]) is given by

@

@t
Rijk` D�Rijk`C ijk`; (3-1)

where

 ijk` D 2.Bijk` �Bij`k �Bi j̀k CBikj`/�gpq.Rpjk`Rq`CRipk`Rqj CRijp`Rqk CRijkpRq`/;

and Bijk`D gpr gqsRpiqj Rrks`. From this we can easily deduce the evolution equation for the Riemann
curvature tensors to GRF.

Let vij .x; t/ be any symmetric 2-tensor, we consider the flow

@

@t
gij .x; t/D vij .x; t/: (3-2)
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Applying a formula in [Chow and Knopf 2004] to our case vij WD �2Rij C
1
2
hij with hij DHik`Hj

k`,
we obtain
@

@t
Rijk` D�

1
2

�
�2rirkRj`C

1
2
rirkhj`C 2rir`Rjk �

1
2
rir`hjk

C 2rjrkRi` �
1
2
rjrkhi` � 2rjr`Rik C

1
2
rjr`hik

�
C

1
2
gpq

�
Rijkp.�2Rq`C

1
2
hq`/CRijp`.�2Rqk C

1
2
hqk/

�
DrirkRj` �rir`Rjk �rjrkRi`Crjr`Rik �gpq.RijkpRq`CRijp`Rqk/

C
1
4

�
�rirkhj`Crir`hjk Crjrkhi` �rjr`hik

�
C

1
4
gpq

�
Rijkphq`CRijp`hqk

�
D�Rijk`C 2

�
Bijk` �Bij`k �Biljk CBikj`

�
� gpq.Rpjk`Rq`CRipk`Rqj CRijp`Rqk CRijkpRq`/

C
1
4

�
�rirkhj`Crir`hjk Crjrkhi` �rjr`hik

�
C

1
4
gpq

�
Rijkphq`CRijp`hqk

�
:

Proposition 3.1. For GRF we have

@

@t
Rijk` D�Rijk`C 2 .Bijk` �Bij`k �Bi j̀k CBikj`/

� gpq.Rpjk`Rq`CRipk`Rqj CRijp`Rqk CRijkpRq`/

C
1
4
.�rirkhj`Crir`hjk Crjrkhi` �rjr`hik/C

1
4
gpq

�
Rijkphq`CRijp`hqk

�
:

In particular:

Corollary 3.2. For GRF we have

@

@t
RmD�RmCRm�RmCH �H �RmC

2X
iD0

r
iH �r2�iH: (3-3)

Proof. From Proposition 3.1, we obtain

@

@t
RmD�RmCRm�RmCr2hC h�Rm :

On the other hand, hDH �H and

r
2hDr.r.H �H //Dr.rH �H /Dr2H �H CrH �rH:

Combining these terms, we obtain the result. �

Proposition 3.3. For GRF we have

@

@t
Rik D�Rik C 2hRpiqk ;Rpqi � 2hRpi ;RpkiC

1
4

�
hh`q;Ri`kqiC hRip; hkpi

�
C

1
4

�
�rirk jH j

2
Cgj`

rir`hjk Cgj`
rjrkhi` ��hik

�
:

Proof. Since
@

@t
Rik D gj` @

@t
Rijk`C 2gjpg`qRijk`Rpq



756 YI LI

and

gij hij D gij HipqHj
pq
D gij gpr gqsHipqHjrs D jH j

2;

it follows that

gj`Œ�rirkhj`Crir`hjk Crjrkhi` �rjr`hik Cgpqhq`RijkpCgpqhqkRijp`�

D�rirk jH j
2
Cgj`

rir`hjk Cgj`
rjrkhi` ��hik Cgj`gpqhq`RijkpCgpqhqkRip:

From these identities, we get the result. �

As a consequence, we obtain the evolution equation for scalar curvature.

Proposition 3.4. For GRF we have

@

@t
RD�RC 2 jRic j2� 1

2
�jH j2C 1

2
hhij ;Rij iC

1
2
gikgj`

rirj hk`:

Proof. From the usual evolution equation for scalar curvature under the Ricci flow, we have

@

@t
RD�RC 2 jRic j2C 1

4
gik Œhh`q;Ri`kqiC hRip; hkpi�

C
1
4
gik

�
�rirk jH j

2
Cgj`

rir`hjk Cgj`
rjrkhi` ��hik

�
D�RC 2 jRic j2C 1

4
hhij ;Rij iC

1
4
hRip; hipi

�
1
4
�jH j2C 1

4
gikgj`

rir`hjk C
1
4
gikgj`

rjrkhi` �
1
4
�jH j2:

Simplifying the terms, we obtain the required result. �

4. Derivative estimates

In this section we are going to prove BBS estimates. At first we review several basic identities of
commutators Œ�;r� and Œ@=@t ;r�. If A D A.t/ is a t-dependency tensor, and @gij=@t D vij , then
applying the well-known formulas stated in [Chow and Knopf 2004] on GRF we have

@

@t
r RmDr

@

@t
RmCRm�r.RmCH �H /

Dr.�RmCRm�RmCH �H �RmCr2H �HCrH �rH /CRm�r RmCH �rH �Rm

D�.r Rm/C
X

iCjD0

r
i Rm�rj RmC

X
iCjCkD0

r
iH �rjH �rk RmC

X
iCjD0C2

r
iH �rjH:

(4-1)
More generally:

Proposition 4.1. For GRF and any nonnegative integer ` we have

@

@t
r
` RmD�.r` Rm/C

X
iCjD`

r
i Rm�rj RmC

X
iCjCkD`

r
iH �rjH �rk RmC

X
iCjD`C2

r
iH �rjH:

(4-2)
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Proof. For `D 1, this is (4-1). Suppose (4-2) holds for 1; : : : ; `. By induction on `, for `C 1 we have

@

@t
r
`C1 Rm

D
@

@t
r.r` Rm/

Dr
@

@t
.r` Rm/Cr` Rm�r.RmCH �H /

Dr

�
�.r` Rm/C

X
iCjD`

r
i Rm�rj RmC

X
iCjCkD`

r
iH �rjH �rk RmC

X
iCjD`C2

r
iH �rjH

�
Cr

` Rm�r RmCH �rH �r` Rm

D�.r`C1 Rm/Cr Rm�r` RmCRm�r`C1 Rm

C

X
iCjD`

�
r

iC1 Rm�rj RmCri Rm�rjC1 Rm
�

C

X
iCjCkD`

�
r

iC1H �rjH �rk RmCr iH �rjC1H �rk RmCr iH �rjH �rkC1 Rm
�

C

X
iCjD`C2

.riC1H �rjH Cr iH �rjC1H /CH �rH �rl Rm :

Simplifying these terms, we obtain the required result. �

As an immediate consequence, we have an evolution inequality for jrl Rm j2.

Corollary 4.2. For GRF and any nonnegative integer ` we have

@

@t
jr
` Rm j2 ��jrl Rm j2� 2 jr`C1 Rm j2C C

X
iCjD`

jr
i Rm j � jrj Rm j � jr` Rm j

CC
X

iCjCkD`

jr
iH j � jrjH j � jrk Rm j � jr` Rm jC C

X
iCjD`C2

jr
iH j � jrjH j � jr` Rm j; (4-3)

where C represents universal constants depending only on the dimension of M .

Next we derive the evolution equations for the covariant derivatives of H .

Proposition 4.3. For GRF and any positive integer ` we have

@

@t
r
`H D�.r`H /C

X
iCjD`

r
iH �rj RmC

X
iCjCkD`

r
iH �rjH �rkH: (4-4)

Proof. From the Bochner formula, the evolution equation for H can be rewritten as

@

@t
H D�H CRm�H: (4-5)
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For `D 1, we have

@

@t
rH Dr

@

@t
H CH �r.RmCH �H /

Dr.�H CRm�H /CH �r RmCH �H �rH

Dr.�H /CH �r RmCrH �RmCH �H �rH

D�.rH /Cr Rm�H CrH �RmCH �H �rH:

Using (4-2) and the same argument, we can prove the evolution equation for higher covariant derivatives.
�

Similarly, we have an evolution inequality for jr`H j2.

Corollary 4.4. For GRF and for any positive integer l we have

@

@t
jr

lH j2 ��jr`H j2� 2 jr`C1H j2

CC
X

iCjD`

jr
iH j � jrj Rm j � jr`H jCC

X
iCjCkD`

jr
iH j � jrj H j � jrkH j � jr lH j; (4-6)

while
@

@t
jH j2 ��jH j2� 2 jrH j2CC � jRm j � jH j2: (4-7)

Theorem 4.5. Suppose that .g.x; t/;H.x; t// is a solution to GRF on a closed manifold M n for a short
time 0� t � T and K1;K2 are arbitrary given nonnegative constants. Then there exists a constant Cn

depending only on n such that if

jRm.x; t/jg.x;t/ �K1; jH.x/jg.x/ �K2

for all x 2M and t 2 Œ0;T �, then

jH.x; t/jg.x;t/ �K2eCnK1t (4-8)

for all x 2M and t 2 Œ0;T �.

Proof. Since
@

@t
jH j2 ��jH j2CCnjRm j � jH j2 ��jH j2CCnK1jH j

2;

using the maximum principle, we obtain u.t/� u.0/eCnK1t , where u.t/D jH j2. �

The main result in this section is the following estimates for higher derivatives of Riemann curvature
tensors and three-forms. Some special cases were proved in [Streets 2007; 2008; Young 2008].

Theorem 4.6. Suppose that .g.x; t/;H.x; t// is a solution to GRF on a compact manifold M n and K is
an arbitrary given positive constant. Then for each ˛ > 0 and each integer m� 1 there exists a constant
Cm depending on m; n;maxf˛; 1g, and K such that if

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K
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for all x 2M and t 2 Œ0; ˛=K�, then

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/ �
Cm

tm=2
(4-9)

for all x 2M and t 2 .0; ˛=K�.

Proof. In the following computations we always let C be any constants depending on n;m;maxf˛; 1g,and
K, which may take different values at different places. From the evolution equations and Theorem 4.5,
we have

@

@t
jRm j2 ��jRm j2� 2 jr Rm j2CC CC jr2H jCC jrH j2;

@

@t
jH j2 ��jH j2� 2 jrH j2CC;

@

@t
jrH j2 ��jrH j2� 2 jr2H j2CC jr Rm j � jrH jCC jrH j2:

Consider the function uD t jrH j2C  jH j2C t jRm j2. Directly computing, we obtain

@

@t
u��u� 2t jr2H j2CC t jr2H jC .C � 2 /jrH j2CC CC � 2t jr Rm j2CC t � jr Rm j � jrH j

��uC 2.C �  / � jrH j2CC.1C  /:

If we choose  DC , then @
@t

u��uCC which implies that u�CeC t since u.0/�C . With this estimate
we are able to bound the first covariant derivative of Rm and the second covariant derivative of H . In
order to control the term jr Rm j2, we should use the evolution equations of jH j2, jrH j2 and jr2H j2 to
cancel with the bad terms, i.e., jr2 Rm j2, jr2H j2, and jr3H j2, in the evolution equation of jr Rm j2:

@

@t
jr Rm j2

��jr Rm j2�2 jr2 Rm j2CC jr Rm j2C
C

t1=2
jr Rm jCC � jr Rm j � jr3H jC

C

t1=2
jr

2H j � jr Rm j;

@

@t
jr

2H j2��jr2H j2�2 jr3H j2CC �jr2 Rm j�jr2H jC
C

t1=2
jr Rm j�jr2H jCC jr2H j2C

C

t
jr

2H j:

As above, we define

u WD t2.jr2H j2Cjr Rm j2/C tˇ.jrH j2CjRm j2/C  jH j2;

and therefore, @u
@t
��uCC . Motivated by cases for mD 1 and mD 2, for general m, we can define a

function

u WD tm.jrmH j2Cjrm�1 Rm j2/C
m�1X
iD1

ˇi t
i.jr iH j2Cjri�1 Rm j2/C  jH j2;

where ˇi and  are positive constants determined later. In the following, we always assume m � 3.
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Suppose that jri�1 Rm j C jriH j �
Ci

t i=2
, for i D 1; 2; : : : ;m� 1. For such i , from Corollary 4.4, we

have

@

@t
jr

iH j2 ��jr iH j2� 2 jriC1H j2CC

iX
jD0

jr
jH j � jri�j Rm j � jr iH j

CC

iX
jD0

i�jX
`D0

jr
jH j � jri�j�`H j � jr`H j � jr iH j

��jr iH j2�2 jriC1H j2CC � jr iH j

iX
jD0

Cj

t
j
2

�
Ci�jC1

t
i�jC1

2

CC � jr iH j

iX
jD0

i�jX
`D0

Cj

t
j
2

�
Ci�j�`

t
i�j�1

2

�
C`

t
l
2

��jr iH j2� 2 jriC1H j2C
Ci

t
iC1

2

jr
iH jC

Ci

t
i
2

jr
iH j:

Similarly, from Corollary 4.2 we also have

@

@t
jr

i�1 Rm j2 ��jri�1 Rm j2� 2 jri Rm j2CC

i�1X
jD0

jr
j Rm jjri�1�j Rm jjri�1 Rm j

CC

i�1X
jD0

i�1�jX
`D0

jr
jH j � jri�1�j�`H j � jr` Rm j � jri�1 Rm j

CC

iC1X
jD0

jr
jH j � jriC1�j H j � jri�1 Rm j

��jri�1 Rm j2� 2 jri Rm j2CC � jri�1 Rm j
i�1X
jD0

CjC1

t
jC1

2

�
Ci�j

t
i�j

2

CC � jri�1 Rm j
i�1X
jD0

i�1�jX
`D0

Cj

t
j
2

�
Ci�1�j�`

t
i�1�j�`

2

�
C`C1

t
`C1

2

CC � jri�1 Rm j
iX

jD1

Cj

t
j
2

�
CiC1�j

t
iC1�j

2

CC � jriC1H j �
Ci

t
i
2

��jri�1 Rm j2� 2 jri Rm j2C
Ci

t
iC1

2

� jr
i�1 Rm jC

Ci

t
i
2

jr
iC1H jC

Ci

t
i
2

jr
i�1 Rm j:

The evolution inequality for u is now given by

@u

@t
�mtm�1.jrmH j2Cjrm�1 Rm j2/C

m�1X
iD1

iˇi t
i�1.jr iH j2Cjri�1 Rm j2/

Ctm

�
@

@t
jr

mH j2C
@

@t
jr

m�1 Rm j2
�
C

m�1X
iD1

ˇi t
i

�
@

@t
jr

iH j2C
@

@t
jr

i�1 Rm j2
�
C  �

@

@t
jH j2:
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It’s easy to see that the second term is bounded by

m�1X
iD1

iˇi t
i�1 Ci

t i
D

m�1X
iD1

iˇiCi t
�1;

but this bound depends on t and approaches to infinity when t goes to zero. Hence we use the last
second term to control this bad term. The evolution inequality for the third term is the combination of the
inequalities

@

@t
jr

mH j2

��jrmH j2� 2 jrmC1H j2CC

mX
iD0

jr
iH j � jrm�i Rm j � jrmH j

CC

mX
iD0

m�iX
jD0

jr
jH j � jrm�i�j H j � jr iH j � jrmH j

��jrmH j2� 2 jrmC1H j2CC jrmH j2CC � jrm Rm j � jrmH jC
Cm

t
mC1

2

jr
mH jC

Cm

t
m
2

jr
mH j

and

@

@t
jr

m�1 Rm j2 ��jrm�1 Rm j2� 2 jrm Rm j2CC

m�1X
iD0

jr
i Rm j � jrm�1�i Rm j � jrm�1 Rm j

CC

m�1X
iD0

m�1�iX
jD0

jr
jH j � jrm�1�i�j H j � jri Rm j � jrm�1 Rm j

CC

mC1X
iD0

jr
iH j � jrmC1�iH j � jrm�1 Rm j

��jrm�1 Rm j2� 2 jrm Rm j2CC jrm�1 Rm j2C
C

t
1
2

� jr
mH j � jrm�1 Rm j

CC jrmC1H jjrm�1 Rm jC
Cm

t
mC1

2

jr
m�1 Rm jC

Cm

t
m
2

jr
m�1 Rm j:

Therefore we have

@u

@t
�mtm�1.jrmH j2Cjrm�1 Rm j2/C

m�1X
iD1

iˇi t
i�1.jr iH j2Cjri�1 Rm j2/

C tm

�
�jrmH j2� 2 jrmC1H j2C

C

t
mC1

2

jr
mH jCC jrmH j2

C C jrm Rm j � jrmH jC�jrm�1 Rm j2

� 2 jrm Rm j2C
C

t
mC1

2

jr
m�1 Rm jCC jrm�1 Rm j2

C
C

t1=2
jr

mH j � jrm�1 Rm jCC jrmC1H j � jrm�1 Rm j
�
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C

m�1X
iD1

ˇi t
i

�
Ci

t
iC1

2

jr
i�1 Rm jC�jr iH j2� 2 jriC1H j2

C�jri�1 Rm j2C
Ci

t
iC1

2

jr
iH jC

Ci

t
i
2

jr
iC1H j � 2 jri Rm j2

�
C  .�jH j2� 2 jrH j2CC /

��u� 2tm
jr

mC1H j2CC tm
jr

mC1H j � jrm�1 Rm j

� 2tm
jr

m Rm j2CC tm
jr

m Rm j � jrmH jC

m�2X
iD0

.i C 1/ˇiC1t i.jriC1H j2Cjri Rm j2/

� 2

m�1X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/� 2 jrH j2C C

CC tm�1
jr

mH j2CC tm�1
jr

m�1 Rm j2C j t
m�1

2 jr
mH jCC t

m�1
2 jr

m�1 Rm j

CC tm� 1
2 jr

mH j � jrm�1 Rm jCC tm
jr

mC1H j � jrm�1 Rm j

C

m�1X
iD1

ˇiCi t
i
2 jr

iC1H jC

m�1X
iD1

ˇiCi t
i�1

2 .jr iH j2Cjri�1 Rm j/:

Choosing

.i C 1/ˇiC1 D ˇi ; ˇi D
A

i!
; i � 0;

where A is constant which is determined later, and noting that

m�1X
iD1

ˇiCi t
i=2
jr

iC1H j �
1

2

m�1X
iD1

ˇi t
i
jr

iC1H j2C
1

2

m�1X
iD1

ˇiC
2
i

and

m�1X
iD1

ˇiCi t
i�1

2 .jr iH jC jri�1 Rm j/

� ˇ1C1.jrH jC jRm j/C
m�2X
iD1

ˇiC1CiC1t
i
2 .jriC1H jC jri Rm j/

� ˇ1C1.jrH jC jRm j/C
m�2X
iD1

ˇiC1CiC1

�
t i jriC1H j2C t i jri Rm j2

2ˇiC1CiC1=ˇi
C
ˇiC1CiC1

ˇi

�

� ˇ1C1.jrH jC jRm j/C 1

2

m�2X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/C

m�2X
iD1

ˇ2
iC1

C 2
iC1

ˇi
;



GENERALIZED RICCI FLOW, I 763

we obtain
@

@t
u��u� 2tm

jr
mC1H j2CC tm

jr
mC1H j � jrm�1 Rm j

� 2tm
jr

m Rm j2CC tm
jr

mH j � jrm Rm jCC tm�1
jr

mH j2CC tm�1
jr

m�1 Rm j2

CC tm� 1
2 jr

mH j � jrm�1 Rm jCˇ0.jrH j2CjRm j2/

�

m�1X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/C

m�2X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/

C
1
2
ˇm�1tm�1

jr
mH j2Cˇ1C1jrH j � 2 jrH j2CC CC

��uCC tm�1
jr

m�1 Rm j2CC tm�1
jr

mH j2C tm� 1
2 .jrmH j2Cjrm�1 Rm j2/Cˇ0jrH j2

Cˇ1C1jrH j � 2 jrH j2CC CC � 1
2
ˇm�1tm�1

jr
mH j2�ˇm�1tm�1

jr
m Rm j2

��uC 1
2
.C
p

t CC �ˇm�1/t
m�1.jrm�1 Rm j2CjrmH j2/

C .ˇ0Cˇ1C1� 2 /jrH j2CC CC Cˇ1C1:

When we chose A and  sufficiently large, we obtain @u
@t
��uCC , which implies that u.t/� C since

u.0/ is bounded. �
Finally we give an estimate that plays a crucial role in the next section.

Corollary 4.7. Let .g.x; t/;H.x; t// be a solution of the generalized Ricci flow on a closed manifold M .
If there are ˇ > 0 and K > 0 such that

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K

for all x 2M and t 2 Œ0;T �, where T > ˇ=K, then there exists for each m 2N a constant Cm depending
on m; n;minfˇ; 1g, and K such that

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/ � CmKm=2

for all x 2M and t 2 Œminfˇ; 1g=K;T �.

Proof. The proof is the same as in [Chow et al. 2007]; we just copy it here. Let ˇ1 WDminfˇ; 1g. For any
fixed point t0 2 Œˇ1=K;T � we set T0 WD t0�ˇ1=K. For Nt WD t �T0 we let . Ng.Nt/; NH .Nt// be the solution
of the system

@ Ng

@Nt
D�2RicC 1

2
Nh;

@ NH

@Nt
D�HL; NgH ; Ng.0/D g.T0/; H .0/DH.T0/:

The uniqueness of solution implies that Ng.Nt/D g.Nt CT0/D g.t/ for Nt 2 Œ0; ˇ1=K�. By the assumption
we have

jRm.x; Nt/j Ng.x;Nt/ �K; jH .x/j Ng.x/ �K

for all x 2M and Nt 2 Œ0; ˇ1=K�. Applying Theorem 4.5 with ˛ D ˇ1, we have

jr
m�1

Rm.x; Nt/j Ng.x;Nt/Cjr
m

H.x; Nt/j Ng.x;Nt/ �
C m

Ntm=2
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for all x 2M and Nt 2 .0; ˇ1=K�. We have Ntm=2 � ˇ
m=2
1

2�m=2K�m=2 if Nt 2 Œˇ1=2K; ˇ1=K�. Taking
Nt D ˇ1=K, we obtain

jr
m�1 Rm.x; t0/jg.x;t0/Cjr

mH.x; t0/jg.x;t0/ �
2m=2C mKm=2

ˇ
m=2
1

for all x 2M . Since t0 2 Œˇ=K;T � was arbitrary, the result follows. �

5. Compactness theorem

In this section we prove the compactness theorem for our generalized Ricci flow. We follow [Hamilton
1995] on the compactness theorem for the usual Ricci flow.

We review several definitions from [Chow et al. 2007]. Throughout this section, all Riemannian
manifolds are smooth manifolds of dimensions n. The covariant derivative with respect to a metric g will
be denoted by gr.

Definition 5.1. Let K �M be a compact set and let fgkgk2N;g1, and g be Riemannian metrics on M .
For p 2 f0g [N we say that gk converges in C p to g1 uniformly on K with respect to g if for every
� > 0 there exists k0 D k0.�/ > 0 such that for k � k0,

kgk �g1kC pIK ;g WD sup
0�˛�p

sup
x2K

j
g
r
˛.gk �g1/.x/jg < �: (5-1)

Since we consider a compact set, the choice of background metric g does not change the convergence.
Hence we may choose g D g1.

Definition 5.2. Suppose fUkgk2N is an exhaustion2 of a smooth manifold M by open sets and gk are
Riemannian metrics on Uk . We say that .Uk ;gk/ converges in C1 to .M;g1/ uniformly on compact
sets in M if for any compact set K �M and any p > 0 there exists k0 D k0.K;p/ such that fgkgk�k0

converges in C p to g1 uniformly on K.

A pointed Riemannian manifold is a 3-tuple .M;g;O/, where .M;g/ is a Riemannian manifold and
O 2M is a basepoint. If the metric g is complete, the 3-tuple is called a complete pointed Riemannian
manifold. We say .M;g.t/;H.t/;O/; t 2 .˛; !/, is a pointed solution to the generalized Ricci flow if
.M;g.t/;H.t// is a solution to the generalized Ricci flow.

The so-called Cheeger–Gromov convergence in C1 is defined as follows:

Definition 5.3. A given sequence f.Mk ;gk ;Ok/gk2N of complete pointed Riemannian manifolds con-
verges to a complete pointed Riemannian manifold .M1;g1;O1/ if there exist

(i) an exhaustion fUkgk2N of M1 by open sets with O1 2 Uk , and

(ii) a sequence of diffeomorphisms ˆk WM1 3 Uk ! Vk WDˆk.Uk/�Mk with ˆk.O1/DOk

such that .Uk ; ˆ
�
k
.gk jVk

// converges in C1 to .M1;g1/ uniformly on compact sets in M1.

2If for any compact set K �M there exists k0 2 N such that Uk �K for all k � k0
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The corresponding convergence for the generalized Ricci flow is similar to the convergence for the
usual Ricci flow introduced by Hamilton [1995].

Definition 5.4. A given sequence f.Mk ;gk.t/;Hk.t/;Ok/gk2N of complete pointed solutions to the
GRF converges to a complete pointed solution to the GRF

.M1;g1.t/;H1.t/;O1/; t 2 .˛; !/;

if there exist

(i) an exhaustion fUkgk2N of M1 by open sets with O1 2 Uk ,

(ii) a sequence of diffeomorphisms ˆk WM1 3 Uk ! Vk WDˆk.Uk/�Mk with ˆk.O1/DOk

such that
�
Uk � .˛; !/;ˆ

�
k
.gk.t/jVk

/C dt2; ˆ�
k
.Hk.t/jVk

/
�

converges in C1 to�
M1 � .˛; !/;g1.t/C dt2;H1.t/

�
uniformly on compact sets in M1 � .˛; !/. Here we denote by dt2 the standard metric on .˛; !/.

Let injg.O/ be the injectivity radius of the metric g at the point O . The following compactness theorem
is due to Cheeger and Gromov.

Theorem 5.5 (compactness for metrics). Let f.Mk ;gk ;Ok/gk2N be a sequence of complete pointed
Riemannian manifolds satisfying these conditions:

(i) For all p � 0 and k 2 N, there is a sequence of constants Cp <1 independent of k such that

j
gkr

p Rm.gk/jgk
� Cp

on Mk .

(ii) There exists some constant �0 > 0 such that

injgk
.Ok/� �0

for all k 2 N.

Then there exists a subsequence fjkgk2N such that f.Mjk
;gjk

;Ojk
/gk2N converges to a complete pointed

Riemannaian manifold .M n
1;g1;O1/ as k!1.

As a consequence of Theorem 5.5, we state our compactness theorem for GRF.

Theorem 5.6 (compactness for GRF). Let f.Mk ;gk.t/;Hk.t/;Ok/gk2N be a sequence of complete
pointed solutions to GRF for t 2 Œ˛; !/ 3 0 satisfying these conditions:

(i) There is a constant C0 <1 independent of k such that

sup
.x;t/2Mk�.˛;!/

jRm.gk.x; t//jgk.x;t/ � C0; sup
x2Mk

jHk.x; ˛/jgk.x;˛/ � C0:

(ii) There exists a constant �0 > 0 satisfying

injgk.0/
.Ok/� �0:
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Then there exists a subsequence fjkgk2N such that

.Mjk
;gjk

.t/;Hjk
.t/;Ojk

/! .M1;g1.t/;H1.t/;O1/;

converges to a complete pointed solution .M1;g1.t/;H1.t/;O1/; t 2 Œ˛; !/, to GRF as k!1.

To prove Theorem 5.6 we extend a lemma for Ricci flow to GRF. After establishing this lemma, the
proof of Theorem 5.6 is similar to that of Theorem 3.10 in [Chow et al. 2007].

Lemma 5.7. Let .M;g/ be a Riemannian manifold with a background metric g, let K be a compact
subset of M , and let .gk.x; t/;Hk.x; t// be a collection of solutions to the generalized Ricci flow defined
on neighborhoods of K � Œˇ;  �, where t0 2 Œˇ;  � is a fixed time. Suppose that:

(i) The metrics gk.x; t0/ are all uniformly equivalent to g.x/ on K, i.e., for all V 2TxM; k, and x 2K,

C�1g.x/.V;V /� gk.x; t0/.V;V /� Cg.x/.V;V /;

where C <1 is a constant independent of V; k, and x.

(ii) The covariant derivatives of the metrics gk.x; t0/ with respect to the metric g.x/ are all uniformly
bounded on K, i.e., for all k and p � 1,

j
g
r

pgk.x; t0/jg.x/Cj
g
r

p�1Hk.x; t0/jg.x/ � Cp

where Cp <1 is a sequence of constants independent of k.

(iii) The covariant derivatives of the curvature tensors Rm.gk.x; t// and of the forms Hk.x; t/ are
uniformly bounded with respect to the metric gk.x; t/ on K � Œˇ;  �, i.e., for all k and p � 0,

j
gkr

p Rm.gk.x; t//jgk.x;t/Cj
gkr

pHk.x; t/jgk.x;t/ � C 0p

where C 0p is a sequence of constants independent of k.

Then the metrics gk.x; t/ are uniformly equivalent to g.x/ on K � Œˇ;  �, i.e.,

B.t; t0/
�1g.x/.V;V /� gk.x; t/.V;V /� B.t; t0/g.x/.V;V /;

where B.t; t0/D CeC 0
0
jt�t0j (here the constant C 0

0
may not be equal to the previous one), and the time-

derivatives and covariant derivatives of the metrics gk.x; t/ with respect to the metric g.x/ are uniformly
bounded on K � Œˇ;  �, i.e., for each .p; q/ there is a constant zCp;q independent of k such thatˇ̌̌̌

@q

@tq
g
r

pgk.x; t/

ˇ̌̌̌
g.x/

C

ˇ̌̌̌
@q

@tq
g
r

p�1Hk.x; t/

ˇ̌̌̌
g.x/

� zCp;q

for all k.

Proof. We use [Chow et al. 2007, Lemma 3.13]: Suppose that the metrics g1 and g2 are equivalent, i.e.,
C�1g1 � g2 � Cg1. Then for any .p; q/-tensor T we have jT jg2

� C .pCq/=2jT jg1
. We denote by h
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the tensor hij WD gkpglqHiklHjpq . In the following we denote by C a constant depending only on n; ˇ,
and  , which may take different values at different places. For any tangent vector V 2 TxM we have

@

@t
gk.x; t/.V;V /D�2 Ric.gk.x; t//.V;V /C

1
2
hk.x; t/.V;V /;

and therefore ˇ̌̌̌
@

@t
log gk.x; t/.V;V /

ˇ̌̌̌
D

ˇ̌̌̌
ˇ�2 Ric.gk.x; t//.V;V /C

1
2
hk.x; t/.V;V /

gk.x; t/.V;V /

ˇ̌̌̌
ˇ

� C 00CC jHk.x; t/j
2
gk.x;t/

� C 00CC C 020 DW C ;

since

jRic.gk.x; t//.V;V /j � C 00gk.x; t/.V;V /; jhk.x; t/.V;V /j � C jHk.x; t/j
2
gk.x;t/

gk.x; t/.V;V /:

Integrating on both sides, we have

C jt1� t0j �

Z t1

t0

ˇ̌̌̌
@

@t
log gk.x; t/.V;V /

ˇ̌̌̌
dt �

ˇ̌̌̌Z t1

t0

@

@t
log gk.t/.V;V / dt

ˇ̌̌̌
D

ˇ̌̌̌
log

gk.x; t1/.V;V /

gk.x; t0/.V;V /

ˇ̌̌̌
;

and hence we conclude that

e�C jt1�t0jgk.x; t0/.V;V /� gk.x; t1/.V;V /� eC jt1�t0jgk.x; t0/.V;V /:

From the assumption (i), it immediately deduces from above that

C�1e�C jt1�t0jg.x/.V;V /� gk.x; t1/.V;V /� CeC jt1�t0jg.x/.V;V /:

Since t1 was arbitrary, the first part is proved. From the definition (or see [Chow et al. 2007, p. 134, (37)]),
we have

.gk/
ec.gra.gk/bc C

g
rb.gk/ac �

g
rc.gk/ab/D 2.gk�/eab � 2.g�/eab:

Thus jgk�.x; t/� g�.x/jg.x/ � C jgrgk.x; t/jgk.x/. On the other hand,

g
ra.gk/bc D .gk/eb Œ.

gk�/eac � .
g�/eac �C .gk/ec Œ.

gk�/eab � .
g�/eab �;

it follows that jgrgk.x; t/jgk.x;t/ � C jgk�.x; t/� g�.x/jgk.x;t/ and therefore

g
rgk is equivalent to gk� � g� D gkr �

g
r: (5-2)

The evolution equation for g� is

@

@t
.gk�/cab D�.gk/

cd Œ.gkr/a.Ric.gk//bd C .
gkr/b.Ric.gk//ad

�.gkr/d .Ric.gk//ab �C
1
4
.gk/

cd
�
.gkr/a.hk/bd C .

gkr/b.hk/ad � .
gkr/d .hk/ab

�
:
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Since g� does not depend on t , it follows from the assumptions thatˇ̌̌̌
@

@t
.gk� � g�/

ˇ̌̌̌
gk

� C
ˇ̌
gkr.Ric.gk//

ˇ̌
gk
CC jgkr.hk/jgk

� C C 01CC jgkrHk jgk
� jHk jgk

� C 01:

Integrating on both sides,

C 01jt1� t0j �

ˇ̌̌̌Z t1

t0

@

@t
.gk�.t/� g�/ dt

ˇ̌̌̌
gk

� j
gk�.t1/�

g�jgk
� j

gk�.t0/�
g�jgk

:

Hence we obtain

j
gk�.t/� g�jgk

� C 01jt1� t0jC j
gk�.t0/�

g�jgk

� C 01jt1� t0jCC jgrgk.t0/jgk

� C 01jt � t0jCC jgrgk.t0/jg

� C 01jt � t0jCC1:

The equivalency of metrics tells us that

j
g
rgk.t/jg � B.t; t0/

3=2
j
g
rgk.t/jgk

� B.t; t0/
3=2
�C jgk�.t/� g�jgk

� B.t; t0/
3=2.C 01jt � t0jCC 0/:

Since jt � t0j �  � ˇ, it follows that jgrgk.t/jg � zC1;0 for some constant zC1;0. But g and gk are
equivalent, we have

jHk.t/jg � C jHk.t/jgk
� C C 01 D

zC1;0:

From the assumptions, we also have

j
g
rHk jg � j.

g
r �

gkr/Hk C
gkrHk jg

� C jgrgk jg � jHk jgCC jgkrHk jgk

� C C 01CC zC1;0
zC1;0 WD

zC2;0:

Moreover,

@

@t
g
rHk D

g
r.�gk

Hk CRm.gk/�Hk/

D .gr � gkr/�gk
Hk C

gkr�gk
Hk C

g
r Rm.gk/�Hk CRm.gk/�

g
rHk

where �gk
is the Laplace operator associated to gk . Henceˇ̌̌̌

@

@t
g
rHk

ˇ̌̌̌
g

� C jgrgk jg � j�gk
Hk jgk

CC jgkr�gk
Hk jgC C jgr Rm.gk/jg � jHk jgCC jRm.gk/jg � j

g
rHk jg

� zC2;1:
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For higher derivatives we claim that

j
g
r

p Ric.gk/jg � C 00p j
g
r

pgk jgCC 000p ; j
g
r

pgk jgCj
g
r

p�1Hk jg �
zCp;0; (5-3)

for all p � 1, where C 00p ;C
000

p , and zCp;0 are constants independent of k. For p D 1, we have proved the
second inequality, so we suffice to prove the first one with p D 1. Indeed,

j
g
r Ric.gk/jg � C j.gr � gkr/Ric.gk/C

gkr Ric.gk/jgk

� C jg� � gk�jg � jRic.gk/jgk
CC jgkr Ric.gk/jgk

� C 001 j
g
rgk jgCC 0001 :

Suppose the claim holds for all p <N (N � 2), we shall show that it also holds for p DN . From

j
g
r

N Ric.gk/jg D

ˇ̌̌̌
ˇ

NX
iD1

g
r

N�i.gr � gkr/gkr
i�1 Ric.gk/C

gkr
N Ric.gk/

ˇ̌̌̌
ˇ
g

�

NX
iD1

ˇ̌̌
g
r

N�i.gr � gkr/gkr
i�1 Ric.gk/

ˇ̌̌
g
Cj

gkr
N Ric.gk/jg

we estimate each term. For i D 1, by induction and the assumptions we have

j
g
r

N�1.gr � gkr/Ric.gk/jg

� C jgrN�1.grgk �Ric.gk//jg

� C

ˇ̌̌̌N�1X
jD0

�
N�1

j

�
g
r

N�1�j .grgk/ �
g
r

j .Ric.gk//

ˇ̌̌̌
g

� C

N�1X
jD0

�
N�1

j

�
j
g
r

N�j gk jg � j
g
r

j Ric.gk/jg

� C

N�1X
iD0

�
N�1

j

�
.C 00j j

g
r

j gk jgCC 000j /j
g
r

N�j gk jg

� C

N�1X
jD0

�
N�1

j

�
.C 00j
zCj ;0CC 000j /j

g
r

N�j gk jg

D C.N � 1/.C 000
zCj ;0CC 0000 /j

g
r

N gk jgCC

N�1X
jD1

�
N�1

j

�
.C 00j
zCj ;0CC 000j /

zCN�j ;0

� C 00N j
g
r

N gk jgCC 000N :
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For i � 2, we haveˇ̌
g
r

N�i.gr � gkr/gkr
i�1 Ric.gk/

ˇ̌
g
� C

ˇ̌
g
r

N�i.grgk �
gkr

i�1 Ric.gk//
ˇ̌
g

� C

N�iX
jD0

�
N�i

j

�
j
g
r

N�i�jC1gk jg � j
g
r

j
�
gkr

i�1 Ric.gk/jg:

If j D 0, then

j
gkr

i�1 Ric.gk/jg � C 00i�1j
g
r

i�1gk jgCC 000i�1 � C 00i�1
zCi�1;0CC 000i�1:

Suppose in the following that j � 1. Henceˇ̌
g
r

j
�
gkr

i�1 Ric.gk/
ˇ̌
g
D
ˇ̌
..gr � gkr/C gkr/j � gkr

i�1 Ric.gk/
ˇ̌
g

� C

jX
lD0

�
j
l

�
j
g
r

lgk jg � j
gkr

j�lCi�1 Ric.gk/jg

� C

jX
lD0

�
j
l

�
zCl;0.C

00
j�lCi�1

zCj�lCi�1;0CC 000j�lCi�1/;

where we make use of (5-2) from first line to second line. Combining these inequalities, we get

j
g
r

N Ric.gk/jg � C 00N j
g
r

N gk jgCC 000N :

Similarly, we have
j
g
r

N hk jg � C 00N j
g
r

N gk jgCC 000N :

Since @

@t
gk D�2 Ric.gk/C

1
2
hk , it follows that

@

@t
g
r

N gk D
g
r

N .�2 Ric.gk/C
1
2
hk/;

@

@t
j
g
r

N gk j
2
g �

ˇ̌̌̌
@

@t
g
r

N gk

ˇ̌̌̌2
g

Cj
g
r

N gk j
2
g

� 8 jgrN Ric.gk/j
2
gC

1

2
j
g
r

N hk j
2
gCj

g
r

N gk j
2
g

� .1C 18.C 00N /
2/jgrN gk j

2
gC 18.C 00N /

2:

Integrating the above inequality, we get jgrgk jg �
zCN;0 and therefore jgrN hk jg �

zCNC1;0. We have
proved lemma for q D 0. When g � 1, then

@q

@tq
g
r

pgk.t/D grp @
q�1

@tq�1

�
�2 Ric.gk.t//C

1
2
hk.t/

�
:

Using the evolution equations for Rm.gk.t// and hk.t/, combining the induction to q and using the above
method, we have ˇ̌̌

@q

@tq
g
r

pgk.t/
ˇ̌̌
g
C

ˇ̌̌
@q

@tq
g
r

p�1hk.t/
ˇ̌̌
g
� zCp;q: �
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6. Generalization

In this section, we generalize the main results in Sections 4 and 5 to a kind of generalized Ricci flow for
which local existence has been established [He et al. 2008].

Let .M;gij .x// be an n-dimensional closed Riemannian manifold and let AD fAig and B D fBij g

denote a one-form and a two-form respectively. Set F D dA and H D dB. The authors in [He et al.
2008] proved that there exists a constant T > 0 such that the evolution equations

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
hij .x; t/C 2fjk.x; t/; gij .x; 0/D gij .x/;

@

@t
Ai.x; t/D�2rkFi

k.x; t/; Ai.x; 0/DAi.x/;

@

@t
Bij .x; t/D 3rkH k

ij .x; t/; Bij .x; 0/D Bij .x/

has a unique smooth solution on m � Œ0;T /, where hij D HiklHj
kl and fij D Fi

kFjk . We call it
RF.A;B/. According to the definition of the adjoint operator d�, we have

.d�F /i D 2rkFi
k ; .d�H /ij D�3rkH k

ij ; (6-1)

and hence

@

@t
F.x; t/D�dd�g.x;t/F D �HL;g.x;t/F D �F CRm�F; (6-2)

@

@t
H.x; t/D�dd�g.x;t/H D �HL;g.x;t/H D �H CRm�H: (6-3)

They also derived the evolution equations of curvatures:

@

@t
Rijk` D�Rijk`C 2.Bijk` �Bij`k �Bi j̀k CBikj`/

�gpq.Rpjk`Rqi CRipk`Rqj CRijp`Rqk CRijkpRq`/

C
1
4

�
rir`.HkpqHj

pq/�rirk.HjpqH`
pq/�rjr`.HkpqHi

pq/Crjrk.HipqH`
pq/

�
C

1
4
grs.HkpqH pq

r Rijs`CHrpqH`
pqRijks/

Crir`.Fk
pFjp/�rirk.Fj

pF`p/�rjr`.Fk
pFip/Crjrk.Fi

pF`p/

Cgrs.Fk
pFrpRijs`CFr

pF`pRijks/:

Under our notation, it can be rewritten as

@

@t
RmD�RmC

X
iCjD0

r
i Rm�rj RmC

X
iCjD0C2

r
iH �rjH C

X
iCjD0C2

r
iF �rjF

C

X
iCjCkD0

r
iH �rjH �rk RmC

X
iCjCkD0

!!r iF �rjF �rk Rm : (6-4)

As before, we have:
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Proposition 6.1. For RF.A;B/ and any nonnegative integer ` we have

@

@t
r
` RmD�.rl Rm/C

X
iCjD`

r
i Rm�rj RmC

X
iCjD`C2

r
iH �rjH C

X
iCjD`C2

r
iF �rjF

C

X
iCjCkD`

r
iH �rjH �rk RmC

X
iCjCkD`

r
iF �rjF �rk Rm : (6-5)

In particular,

@

@t
jr

l Rm j2 ��jrl Rm j2� 2 jr`C1 Rm j2CC
X

iCjD`

jr
i Rm j � jrj Rm j � jr` Rm j

CC
X

iCjD`C2

jr
iH j � jrjH j � jr` Rm jCC

X
iCjD`C2

jr
iF j � jrjF j � jr` Rm j

CC
X

iCjCkD`

jr
iH j � jrjH j � jrk Rm j � jr` Rm jCC

X
iCjCkD`

jr
iF j � jrjF j � jrk Rm j � jr` Rm j:

Since @

@t
F D�F CRm�F it follows that

@

@t
rF Dr

@

@t
F CF �r.RmCH �H CF �F /

Dr.�F CRm�F /CF �r RmCF �H �rH CF �F �rF

D�.rF /Cr Rm�F CRm�rF CF �H �rH CF �F �rF:

It can be expressed as

@

@t
rF D�.rF /C

X
iCjD1

r
iF �rj Rm

C

X
iCjCkD1

r
iF �rjF �rkF C

1�1X
iD0

1�iX
jD0

r
iF �rjH �r1�i�j H:

More generally, we can show:

Proposition 6.2. For RF.A;B/ and any positive integer ` we have

@

@t
r
`F D�.r`F /C

X
iCjD`

r
iF �rj Rm

C

X
iCjCkD`

r
iF �rjF �rkF C

`�1X
iD0

`�iX
jD0

r
iF �rjH �r`�i�j H:

In particular,

@

@t
jr
`F j2 ��jr`F j2� 2 jr`C1F j2CC

X
iCjD`

jr
iF j � jrj Rm j � jr`F j

CC
X

iCjCkD`

jr
iF j � jrjF j � jrkF j � jr lF jCC

`�1X
iD0

`�iX
jD0

jr
iF j � jrjH j � jr`�i�j H j � jr`F j:
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Similarly, we obtain:

Proposition 6.3. For RF.A;B/ and any positive integer l we have

@

@t
r
`H D�.r`H /C

X
iCjD`

r
iH �rj Rm

C

X
iCjCkD`

r
iH �rjH �rkH C

`�1X
iD0

`�iX
jD0

r
iH �rj F �r`�i�j F:

In particular,

@

@t
jr
`H j2 ��jr`H j2� 2 jr`C1H j2CC

X
iCjD`

jr
iH j � jrj Rm j � jr`H j

CC
X

iCjCkD`

jr
iH j � jrjH j � jrkH j � jr`H jCC

`�1X
iD0

`�iX
jD0

jr
iH j � jrjF j � jr`�i�j F j � jr`H j:

From the evolution inequalities

@

@t
jH j2 ��jH j2� 2 jrH j2CC � jRm j � jH j2;

@

@t
jF j2 ��jF j2� 2 jrF j2CC � jRm j � jF j2;

the following theorem is obvious.

Theorem 6.4. Suppose that .g.x; t/;H.x; t/;F.x; t// is a solution to RF.A;B/ on a compact manifold
M n for a short time 0� t � T and K1;K2;K3 are arbitrary given nonnegative constants. Then there
exists a constant Cn depending only on n such that if

jRm.x; t/jg.x;t/ �K1; jH.x/jg.x/ �K2; jF.x/jg.x/ �K3

for all x 2M and t 2 Œ0;T �, then

jH.x; t/jg.x;t/ �K2eCnK1t ; jF.x; t/jg.x;t/ �K3eCnK1t ; (6-6)

for all x 2M and t 2 Œ0;T �.

Parallel to Theorem 4.6, we can prove:

Theorem 6.5. Suppose that .g.x; t/;H.x; t/;F.x; t// is a solution to RF.A;B/ on a compact manifold
M n and K is an arbitrary given positive constant. Then for each ˛ > 0 and each integer m � 1 there
exists a constant Cm depending on m; n;maxf˛; 1g, and K such that if

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K; jF.x/jg.x/ �K

for all x 2M and t 2 Œ0; ˛=K�, then

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/Cjr
mF.x; t/jg.x;t/ �

Cm

t
m
2

; (6-7)

for all x 2M and t 2 .0; ˛=K�.
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We can also establish the corresponding compactness theorem for RF.A;B/. We omit the detail since
the proof is close to the proof in Section 5. In the forthcoming paper, we will consider the BBS estimates
for complete noncompact Riemannian manifolds.

Acknowledgment

The author thanks his advisor, Professor Shing-Tung Yau, for helpful discussions. The author expresses his
gratitude to Professor Kefeng Liu for his interest in this work and for his numerous help in mathematics.
He also thanks Valentino Tosatti and Jeff Streets for several useful conversations.

References

[Bakas 2007] I. Bakas, “Renormalization group equations and geometric flows”, preprint, 2007. arXiv hep-th/0702034v1

[Cao and Zhu 2006] H.-D. Cao and X.-P. Zhu, “A complete proof of the Poincaré and geometrization conjectures: application of
the Hamilton–Perelman theory of the Ricci flow”, Asian J. Math. 10:2 (2006), 165–492. MR 2008d:53090 Zbl 1200.53057

[Chow and Knopf 2004] B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs 110,
American Mathematical Society, Providence, RI, 2004. MR 2005e:53101 Zbl 1086.53085

[Chow et al. 2006] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics 77, American
Mathematical Society, Providence, RI, 2006. MR 2008a:53068 Zbl 1118.53001

[Chow et al. 2007] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni,
The Ricci flow: techniques and applications, I: Geometric aspects, Mathematical Surveys and Monographs 135, American
Mathematical Society, Providence, RI, 2007. MR 2008f:53088 Zbl 1157.53034

[Chow et al. 2008] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L.
Ni, The Ricci flow: techniques and applications, II: Analytic aspects, Mathematical Surveys and Monographs 144, American
Mathematical Society, Providence, RI, 2008. MR 2008j:53114 Zbl 1157.53035

[Chow et al. 2010] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni,
The Ricci flow: techniques and applications, III: Geometric-analytic aspects, Mathematical Surveys and Monographs 163,
American Mathematical Society, Providence, RI, 2010. MR 2011g:53142 Zbl 1216.53057

[Gegenberg and Kunstatter 2004] J. Gegenberg and G. Kunstatter, “Using 3D string-inspired gravity to understand the Thurston
conjecture”, Classical Quantum Gravity 21:4 (2004), 1197–1207. MR 2004j:53083 Zbl 1046.83024

[Hamilton 1982] R. S. Hamilton, “Three-manifolds with positive Ricci curvature”, J. Differential Geom. 17:2 (1982), 255–306.
MR 84a:53050 Zbl 0504.53034

[Hamilton 1995] R. S. Hamilton, “A compactness property for solutions of the Ricci flow”, Amer. J. Math. 117:3 (1995),
545–572. MR 96c:53056 Zbl 0840.53029

[He et al. 2008] C.-L. He, S. Hu, D.-X. Kong, and K. Liu, “Generalized Ricci flow, I: Local existence and uniqueness”, pp.
151–171 in Topology and physics, edited by K. Lin et al., Nankai Tracts Math. 12, World Scientific, Hackensack, NJ, 2008.
MR 2010k:53098 Zbl 1182.35145

[Kleiner and Lott 2008] B. Kleiner and J. Lott, “Notes on Perelman’s papers”, Geom. Topol. 12:5 (2008), 2587–2855.
MR 2010h:53098 Zbl 1204.53033

[Morgan and Tian 2007] J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3,
American Mathematical Society, Providence, RI, 2007. MR 2008d:57020 Zbl 1179.57045

[Oliynyk et al. 2006] T. Oliynyk, V. Suneeta, and E. Woolgar, “A gradient flow for worldsheet nonlinear sigma models”, Nuclear
Phys. B 739:3 (2006), 441–458. MR 2006m:81185 Zbl 1109.81058

[Perelman 2002] G. Perelman, “The entropy formula for the Ricci flow and its geometric applications”, preprint, 2002.
Zbl 1130.53001 arXiv math.DG/0211159

[Shi 1989] W.-X. Shi, “Deforming the metric on complete Riemannian manifolds”, J. Differential Geom. 30:1 (1989), 223–301.
MR 90i:58202 Zbl 0676.53044



GENERALIZED RICCI FLOW, I 775

[Streets 2007] J. D. Streets, Ricci Yang–Mills flow, thesis, Duke University, Durham, NC, 2007, Available at http://tinyurl.com/
Streets-JD-2007-thesis. MR 2709943

[Streets 2008] J. D. Streets, “Regularity and expanding entropy for connection Ricci flow”, J. Geom. Phys. 58:7 (2008), 900–912.
MR 2009f:53105 Zbl 1144.53326

[Young 2008] A. N. Young, Modified Ricci flow on a principal bundle, thesis, University of Texas, Austin, TX, 2008, Available
at http://tinyurl.com/Young-AN-2008-thesis. MR 2712036

Received 22 Sep 2010. Revised 4 Aug 2011. Accepted 27 Sep 2011.

YI LI: yli@math.jhu.edu
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States

mathematical sciences publishers msp





ANALYSIS AND PDE
Vol. 5, No. 4, 2012

dx.doi.org/10.2140/apde.2012.5.777 msp

SMOOTH TYPE II BLOW-UP SOLUTIONS TO THE
FOUR-DIMENSIONAL ENERGY-CRITICAL WAVE EQUATION

MATTHIEU HILLAIRET AND PIERRE RAPHAËL

We exhibit C∞ type II blow-up solutions to the focusing energy-critical wave equation in dimension
N = 4. These solutions admit near blow-up time a decomposition

u(t, x)=
1

λ(N−2)/2(t)
(Q+ ε(t))

( x
λ(t)

)
, with ‖ε(t), ∂tε(t)‖Ḣ1×L2 � 1,

where Q is the extremizing profile of the Sobolev embedding Ḣ 1
→ L2∗ , and a blow-up speed

λ(t)= (T − t)e−
√
|log(T−t)|(1+o(1)) as t→ T .

1. Introduction

Setting of the problem. We deal in this paper with the energy-critical focusing wave equation{
∂t t u−1u− f (u)= 0
(u, ∂t u)|t=0 = (u0, u1),

with f (t)= t (N+2)/(N−2),

(t, x) ∈ R×RN .
(1-1)

in dimension N = 4. This is a special case of the nonlinear wave equation

∂t t u−1u− f (u)= 0, (1-2)

which, since the pioneering [Jörgens 1961], has been the subject of a considerable amount of work. For
the energy-critical nonlinearity f (u)=±t (N+2)/(N−2), the Cauchy problem is locally well posed in the
energy space Ḣ 1

× L2 and the solution propagates regularity; see [Sogge 1995] and references therein.
Recall that in this case, (1-2) admits a conserved energy

E(u(t))= E(u0, u1)=
1
2

∫
(∂t u)2+

1
2

∫
|∇u|2∓ N−2

2N

∫
u2N/(N−2)

that is left invariant by the scaling symmetry of the flow,

uλ(t, x)= 1
λ(N−2)/2 u

( t
λ
,

x
λ

)
.

Global existence in the defocusing case was proved by Struwe [1988] for radial data and Grillakis [1990]
for general data. For focusing nonlinearities, a sharp threshold criterion of global existence and scattering

MSC2010: 35Q51.
Keywords: wave equation, blow-up.
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or finite time blow-up is obtained by Kenig and Merle [2008] based on the soliton solution to (1-1),

Q(r)=
(

1
1+ r2/(N (N − 2))

)(N−2)/2

, (1-3)

which is the extremizing profile of the Sobolev embedding Ḣ 1
→ L2∗ . Indeed, for initial data (u0, u1)

such that E(u0, u1) < E(Q, 0), those with ‖∇u0‖L2 < ‖∇Q‖L2 have global solutions and scatter, while
those with ‖∇u0‖L2 > ‖∇Q‖L2 lead to finite time blow-up.

Note that like in the works of Levine [1974] (see also [Strauss 1989]) and as is standard in a nonlinear
dispersive setting, blow-up is derived through obstructive convexity arguments; see also [Karageorgis and
Strauss 2007] for refined statements near the soliton Q. However, this approach gives very little insight
into the description of the blow-up mechanism and the description of the flow even just near the ground
state soliton Q is still only at its beginning.

On the energy-critical wave map problem. There is an important literature devoted to the construction
of blow-up solutions for nonlinear wave equations; see [Alinhac 1995; Merle and Zaag 2003; 2008] for
the study of the ODE-type of blow-up for subcritical nonlinearities. For energy-critical problems like
(1-1), recent important progress has been made through the study of the two-dimensional energy-critical
corotational wave map to the 2-sphere,

∂t t u− ∂rr u− ∂r u
r
−

k2 sin 2u
2r2 = 0, (1-4)

where k ∈ N∗ is the homotopy number. The ground state is given there by

Q(r)= 2 tan−1(r k).

After the pioneering works of Christodoulou and Tahvildar-Zadeh [1993], Shatah and Tahvildar-Zadeh
[1994] and Struwe [2003] and their detailed study of the concentration of energy scenario, the first explicit
description of singularity formation for the k = 1 case was derived by Krieger, Schlag and Tataru [2008]
who constructed finite energy finite time blow-up solutions of the form

u(t, x)= (Q+ ε)
(

t,
x
λ(t)

)
, with ‖ε(t), ∂tε(t)‖Ḣ1×L2 � 1, (1-5)

with a blow-up speed given by
λ(t)= (T − t)ν,

for any ν > 3
2 ; see also [Krieger et al. 2009a]. The spectacular feature of this result is that it exhibits

arbitrarily slow blow-up regimes further and further from self-similarity which would correspond to the
(forbidden; see [Struwe 2003]) self-similar law

λ(t)∼ T − t. (1-6)

Numerics suggest that this blow-up scenario is nongeneric and corresponds to finite-codimensional
manifolds [Bizoń et al. 2001]. After the pioneering work [Rodnianski and Sterbenz 2010] for large
homotopy number k ≥ 4, Raphaël and Rodnianski [2012] gave a complete description of stable blow-up
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dynamics that originate from smooth data for all homotopy numbers k ≥ 1. The blow-up speed obeys in
this regime a universal law that depends in an essential way on the rate of convergence of the ground
state Q to its asymptotic value,

π − Q ∼ 1
r k as r→∞,

and indeed the stable blow-up regime corresponds to a decomposition (1-5) with blow-up speed

λ(t)∼

ck
T − t

|log(T − t)|1/(2k−2) for k ≥ 2,

(T − t)e−
√
|log(T−t)| for k = 1.

(1-7)

Note that this work draws an important analogy with another critical problem, the L2 critical nonlinear
Schrödinger equation, where a similar universality of the stable singularity formation near the ground
state was proved in [Merle and Raphael 2003; 2004; 2005a; 2005b; 2006; Raphael 2005].

Statement of the result. For the power nonlinearity energy-critical problem (1-1), there has been recent
progress towards the understanding of the flow near the solitary wave Q. Krieger and Schlag [2007]
constructed in dimension N = 3 a codimension one manifold of initial data near Q that yield global
solutions asymptotically converging to the soliton manifold. The strategy developed by Krieger et al.
[2008] for the wave map problem has been adapted in [Krieger et al. 2009b] to show in dimension N = 3
the existence of finite energy finite time blow-up solutions of the form

u(t, x)=
1

λ(N−2)/2(t)
(Q+ ε)

(
t,

x
λ(t)

)
, with ‖ε(t), ∂tε(t)‖Ḣ1×L2 � 1,

and with a blow-up speed given by
λ(t)= (T − t)ν, (1-8)

for any ν > 3
2 . The quantization of the energy at blow-up for small type II blow-up solutions in dimension

N ∈ {3, 5} is proved in [Duyckaerts et al. 2011; 2012] in the radial and nonradial cases. In particular, for
radial data, if T <+∞ and

sup
t∈[0,T ]

[
|∇u(t)|2L2 + ∂t u|2L2

]
≤ |∇Q|2L2 +α

∗, α∗� 1,

then there exists a dilation parameter λ(t)→ 0 as t→ T and asymptotic profiles (u∗, v∗) ∈ H 1
× L2 such

that (
u(t, x)−

1
λ(N−2)/2(t)

Q
(

x
λ(t)

)
, ∂t u(t)

)
→ (u∗, v∗) in Ḣ 1

× L2 as t→ T ;

see [Merle and Raphael 2005b] for related classification results for the L2 critical (NLS).
These works however leave open the question of the existence of smooth type II blow-up solutions. We

claim that such smooth type II blow-up solutions can be constructed in dimension N = 4 as the formal
analogue of the singular dynamics exhibited by Raphaël and Rodnianski [2012] for the wave map problem
in the least homotopy number class k = 1. The following theorem is the main result of this paper:
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Theorem 1.1 (existence of smooth type II blow-up solutions in dimension N = 4). Let N = 4. Then for
all α∗ > 0, there exist C∞ initial data (u0, u1) with

E(u0, u1) < E(Q, 0)+α∗

such that the corresponding solution to the energy-critical focusing wave equation (1-1) blows up in
finite time T = T (u0, u1) < +∞ in a type II regime according to the following dynamics: there exist
(u∗, v∗) ∈ Ḣ 1

× L2 such that(
u(t, x)− 1

λ(N−2)/2(t)
Q
(

x
λ(t)

)
, ∂t u(t)

)
→ (u∗, v∗) in Ḣ 1

× L2 as t→ T, (1-9)

with a blow-up speed given by

λ(t)= (T − t)e−
√
|log(T−t)|(1+o(1)) as t→ T . (1-10)

Comments on the result. 1. On the smoothness of the initial data. An important feature of Theorem 1.1 is
to exhibit a new blow-up speed which is valid for C∞ solutions. Indeed, while the Krieger et al. [2009b]
approach provides a continuum of blow-up speeds, the exact regularity of the obtained solutions is not
known, which is an unpleasant consequence of their construction scheme. In fact, it is expected that C∞

initial data should lead to quantized blow-up rates hence breaking the continuum of blow-up speeds (1-8),
we refer to [van den Berg et al. 2003] for a related discussion in the context of the energy-critical harmonic
heat flow. Hence we expect the blow-up rate (1-10) to correspond to the minimal type II blow-up speed
of smooth solutions with small supercritical energy. Such a general lower bound on the blow-up rate in
the spirit of the one obtained by Merle and Raphael [2006; Raphael 2005] for the L2 critical NLS is an
open problem. The construction of excited blow-up solutions with other speeds and C∞ regularity also
remains to be done. This problematic is related to the understanding of the structure of the flow near Q,
which is still in its infancy.

2. On the codimension one manifold. The proof of Theorem 1.1 involves a detailed description of the set
of initial data leading to the type II blow-up with speed (1-10). Indeed, given a small enough parameter
b0 > 0 and a suitable deformation Qb0 of the soliton with

Qb0 → Q as b0→ 0

in some strong sense, we show that for any smooth and radially symmetric excess of energy

‖η0, η1‖H2×H1 .
b2

0

|log(b0)|
,

we can find d+(b0, η0, η1) ∈ R such that the solution to (1-1) with initial data

u0 = Qb0 + η0+ d+ψ, u1 = b0

(N−2
2

Qb0 + y · ∇Qb0

)
+ η1,

blows up in finite time in the regime described by Theorem 1.1. Here ψ is the bound state of the linearized
operator close to Q and generates the unstable mode, we refer to Definition 3.4 and Proposition 3.5
for precise statements. Hence the set of blow-up solutions we construct lives on a codimension one
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manifold in the radial class in some weak sense. Following [Krieger and Schlag 2007; Krieger and Schlag
2009], the proof that this set is indeed a codimension one manifold relies on proving some Lipschitz
regularity of the map (b0, η0, η1)→ d+(b0, η0, η1), and in particular some local uniqueness to begin
with. The analysis in [Krieger and Schlag 2009] shows that this may be a delicate step in some cases.
Our solution is constructed using a soft continuous topological argument of Brouwer-type coupled with
suitable monotonicity properties in the spirit of Cote, Marte and Merle [2009]. In other related settings
(see [Martel 2005; Raphaël and Szeftel 2011]) this strategy has proved to be quite powerful for eventually
achieving strong uniqueness results. This interesting question in our setting will require additional efforts
and needs to be addressed separately in detail.

3. Extension to higher dimensions. We focus on the case of dimension N = 4 for the sake of simplicity.
Our main objective is to provide a robust framework to construct C∞ type II blow-up solutions. However,
following the heuristic developed in [Raphaël and Rodnianski 2012], the blow-up speed (1-10) corresponds
to the k = 1 case in (1-7), and we similarly conjecture in dimension N ≥ 5 the existence of type II finite
time blow-up solutions close to Q with blow-up speed

λ(t)∼ cN
T − t

|log(T − t)|1/(N−4) .

Note from (1-3) that the higher the dimension, the fastest the decay of the ground state Q, and that this
should help avoid some difficulties that occur only in low dimension like in [Raphaël and Rodnianski
2012] for large homotopy number k ≥ 4. We expect the strategy developed in this paper to carry over
to the cases N = 5 and 6, but the extension to large dimension will be confronted in particular with the
difficulty of the lack of smoothness of the nonlinearity. Let us also insist on the fact that the case N = 4
is in many ways the more delicate one in terms of the strong coupling of the main part of the solution and
the outgoing tail due to the slow decay of Q, which results in the somewhat pathological blow-up speed
(1-10). This comment becomes even more dramatic in dimension N = 3, where we expect our analysis to
be applicable to the construction of C∞ type II blow-up solutions, but this seems to require a slightly
different approach.

Strategy of the proof of Theorem 1.1.

Step 1: Approximate self-similar solution. Let D,3 denote the differential operators in (1-18). Exact
self-similar solutions to (1-1) of the form

u(t, x)=
1

λ(N−2)/2(t)
Qb

(
x
λ(t)

)
, with b =−λt ,

where Qb satisfies the self-similar equation

1Qb− b2 D3Qb+ Q3
b = 0, (1-11)

are known to develop a singularity on the light cone y = (T − t)/λ(t)= 1/b leading to an unbounded
Dirichlet energy ‖∇Qb‖L2 =+∞; see [Kavian and Weissler 1990]. We therefore assume 0< b� 1 and
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consider a one term expansion approximation

Qb = Q+ b2T1,

which injected into (1-11) yields, at the order b2,

H T1 =−D3Q. (1-12)

Here H is the linearized operator close to Q given by

H =−1− N+2
N−2

Q4/(N−2). (1-13)

The spectral structure of H is well known in connection to the fact that Q is an extremizer of the Sobolev
embedding Ḣ 1

→ L2∗ , and in the radial sector H admits one nonpositive eigenvalue with well localized
eigenvector ψ ,

Hψ =−ζψ, ζ > 0, (1-14)

and a resonance at the boundary of the continuum spectrum generated by the scaling invariance of (1-1),

H(3Q)= 0, 3Q(r)∼ C
r N−2 as r→+∞. (1-15)

In order to solve (1-12), we first remove the leading-order growth in the exact solution T1 =
1
4 |y|

2 Q
which is consequence of the flux computation

(D3Q,3Q)= 1
2 lim

y→+∞
y4
|3Q|2 > 0 (1-16)

due to the slow decay of Q in dimension N = 4 from (1-3). For this, we solve

H T1 =−D3Q+ cb3Q1y≤1/b, with cb =
(D3Q,3Q)∫

y≤1/b |3Q|2
∼

1
2 |log b|

as b→ 0.

The purpose of this construction is to yield after a suitable localization process an o(b2) approximate
solution to the self-similar equation (1-11) whose dominant term near and past the light cone is still given
by Q itself in the sense that

b2
|T1| � Q for y ≥ 1/b.

This identifies Q as the leading-order radiation term.1

Step 2: Bootstrap estimates. We now roughly consider initial data of the form

u0 = Qb0 + d+ψ + η0, u1 = b03Qb0 + η1, with |d+| + ‖η0, η1‖H2×H1 � b2
0, (1-17)

and introduce a modulated decomposition of the flow

u(t, x)= 1
λ(N−2)/2(t)

(Qb(t)+ ε)

(
t,

x
λ(t)

)
, b(t)=−λt .

1See [Raphaël and Rodnianski 2012] for a further discussion on this issue and the role played by the nonvanishing Pohozaev
integration (1-16).
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Here we face the major difference between the power nonlinearity wave equation (1-1) and the critical
wave map problem (1-4), which is the presence of a negative eigenvalue in the first case (1-14) for the
linearized operator H close to Q. This induces an instability in the modulation equations for b, λ that is
absent in the wave map case, leading to stable blow-up dynamics. However, we claim that the ODE-type
instability generated by (1-14) is the only instability mechanism.

The situation is conceptually similar to the one studied in [Cote et al. 2009] where multisolitary wave
solutions are constructed in the supercritical regime despite the presence of exponentially growing modes
for the linearized operator which are absent in the subcritical regime. We adapt a similar scheme of
proof that does not rely on a fixed point argument to solve the problem from infinity in time,2 but by
directly following the flow for any initial data of the form (1-17). This reduces the full problem to a
one-dimensional dynamical system for which a clever classical continuity argument yields the existence
of d+(b0, η0, η1) such that the unstable mode is extinct, see Section 5.

The key is hence to control the flow under the a priori control of the unstable mode, and here we adapt
the technology developed in [Raphaël and Rodnianski 2012] which relies on monotonicity properties of
the linearized Hamiltonian at the H 2 level of regularity. However, the analysis in [Raphaël and Rodnianski
2012] heavily relies on the existence of a decomposition of the Hamiltonian,

H = A∗A, A =−∂y + V (y),

which is central to the proof of the main monotonicity property and is lost in our setting. This forces us to
revisit the approach in several ways, and to rely in particular on fine algebraic properties of the flow3 near
Q and coercivity properties of suitable quadratic forms in the spirit of [Martel and Merle 2002; Merle and
Raphael 2005a] (see Lemma 4.7) which remarkably turn out to be almost explicit thanks to the formula
(1-3). We are eventually able to find d+(b0, η0, η1) for which, to leading order,

bs ∼−cbb2
∼−

b2

2 |log b|
, b =−λt ,

ds
dt
=

1
λ
, |d+| + ‖∂yyε‖L2 � b2,

and whose reintegration in time yields finite time blow-up in the regime described by Theorem 1.1.

Notation. We define differential operators

3 f = N−2
2

f + y · ∇ f (Ḣ 1 scaling), D f = N
2

f + y · ∇ f (L2 scaling). (1-18)

Denoting by

( f, g)=
∫

f g =
∫
+∞

0
f (r)g(r)r N−1dr

the L2(RN ) radial inner product, we observe the integration by parts formulas

(D f, g)=−( f, Dg) and (3 f, g)+ (3g, f )=−2( f, g). (1-19)

2After renormalization of the time.
3See in particular (4-23), (4-38).
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Given f and λ > 0, we shall write

fλ(t, r)=
1

λ(N−2)/2 f
(

t, r
λ

)
,

and the rescaled space variable will always be denoted by

y = r
λ
.

We let χ be a smooth positive radial cut off function, χ(r)= 1 for r ≤ 1 and χ(r)= 0 for r ≥ 2. For a
given parameter B > 0, we let

χB(r)= χ
( r

B

)
. (1-20)

Given b > 0, we set

B0 =
2
b
, B1 =

|log b|
b

. (1-21)

To clarify the exposition we use the notation a . b for when there exists a constant C with no relevant
dependency on (a, b) such that a ≤ Cb. In particular, we do not allow constants C to depend on the
parameter M except in Appendix A.

2. Computation of the modified self-similar profile

This section is devoted to the construction of an approximate self-similar solution Qb which describes
the dominant part of the blow-up profile inside the backward light cone from the singular point (0, T )
and displays a slow decay at infinity which is eventually responsible for the modifications to the blow-up
speed with respect to the self-similar law. The key to this construction is the fact that the structure of the
linearized operator H close to Q is completely explicit in the radial sector thanks to the explicit formulas
at hand for the elements of the kernel.

We introduce the direction
8= D3Q, (2-1)

which displays the cancellation

|8(y)|. 1
1+y4 (2-2)

and the crucial nondegeneracy which follows from the Pohozaev integration by parts formula,

(8,3Q)= lim
y→+∞

( 1
2 y4
|3Q|2

)
= 32> 0. (2-3)

Proposition 2.1 (approximate self-similar solution). Let M denote a large enough constant. Then there
exists b∗(M) > 0 small enough such that for all 0< b < b∗(M), there exists a smooth radially symmetric
profile T1 satisfying the orthogonality condition

(T1, χM8)= 0 (2-4)

such that
PB1 = Q+χB1b2T1 (2-5)
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is an approximate self-similar solution in the following sense. Let

9B1 =−1PB1 + b2 D3PB1 − f (PB1), (2-6)

then for all k ≥ 0, 0≤ y ≤ 1/b2,∣∣∣∣dk T1
dyk (y)

∣∣∣∣. 1
1+ yk

[
1+ |log(by)|
|log b|

12≤y≤ B0
2
+

1
b2 y2|log b|

1y≥ B0
2
+

log(M)+ |log(1+ y)|
1+ y2

]
, (2-7)∣∣∣∣ dk

dyk
∂PB1

∂b

∣∣∣∣. b1y≤2B1

1+ yk

[
1+ |log(by)|
|log b|

12≤y≤ B0
2
+

1
b2 y2|log b|

1y≥ B0
2
+

log(M)+ |log(1+ y)|
1+ y2

]
, (2-8)

and, for all k ≥ 0, y ≥ 0,∣∣∣∣ dk

dyk (9B1 − cbb2χB0/43Q)
∣∣∣∣

. b4

1+yk

[
1+ |log(by)|
|log b|

12≤y≤B0/2+
1

b2 y2|log b|
12B1≥y≥B0/2+

log(M)+ |log(1+ y)|
1+ y2 1y≤2B1

]
+

b2

(1+y4+k)
1y≥B1/2 (2-9)

for some constant

cb =
1

2 |log b|

(
1+ O

(
1
|log b|

))
. (2-10)

Proof.

Step 1: Inversion of H. The first Green’s function of H is given from scaling invariance by

3Q(y)=
N − 2

2
(
1+ y2/(N (N − 2))

)N/2

(
1−

y2

N (N − 2)

)
, (2-11)

which admits the asymptotics

∀ k ≥ 0, dk(3Q)
dyk (y)=

{
O(1) as y→ 0,
O(y−(N−2+k)) as y→∞.

(2-12)

Now let

0(y)=−3Q(y)
∫ y

1

ds
s N−1(3Q)2(s)

be another (singular at the origin4) element of the kernel of H , which can be found from the Wronskian
relation

0′3Q−0(3Q)′ =
−1

yN−1 .

From this we easily find the asymptotics of 0(k) for any integer k:

dk0

dyk (y)=
{

O(y−(N−2+k)) as y→ 0,
O(y−k) as y→∞.

(2-13)

4Note that 0 must be smooth at y =
√

N (N − 2), where 3Q vanishes, because of the radial ODE H0 = 0.
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A smooth solution to Hw = F is

w(y)= 0(y)
∫ y

0
F(s)3Q(s)s N−1ds−3Q(y)

∫ y

0
F(s)0(s)s N−1ds. (2-14)

We now look for a solution to the self-similar equation in the form Q+ b2T1. This yields

9b =−1Qb+ b2 D3Qb− f (Qb)

= b2(H T1+ D3Q)+ b4 D3T1−
[

f (Q+ b2T1)− f (Q)− b2 f ′(Q)T1
]
. (2-15)

Step 2: Computation of T1. Thanks to the anomalous decay (2-2), we choose T1 to be a solution of{
H T1 = F =−D3Q+ cbχB0/43Q,
(T1, χM8)= 0,

(2-16)

with cb chosen such that

(F,3Q)= 0. (2-17)

That is, from the Pohozaev integration by parts formula — see (1-21) and (2-3) —

cb =
(D3Q,3Q)
(χB0/43Q,3Q)

=
1
2

limy→+∞ y4
|3Q(y)|2∫

χB0/4|3Q|2

=
1

2 |log b|

(
1+ O

(
1
|log b|

))
as b→ 0.

This yields (2-10). Following (2-14), we first consider

T̃1(y)= 0(y)
∫ y

0
F(s)3Q(s)s3ds−3Q(y)

∫ y

0
F(s)0(s)s3ds. (2-18)

The smoothness of T̃1 at the origin follows from (2-18) together with elliptic regularity from (2-16). We
now examine the behavior of T̃1 at large y.

We first observe that, from the orthogonality (2-17),

T̃1(y)=−
[
0(y)

∫
+∞

y
F(s)3Q(s)s3ds+3Q(y)

∫ y

0
F(s)0(s)s3ds

]
.

Hence, from the degeneracy |D3Q| = O(y−4), this yields that for B0/2≤ y ≤ 1/b2,

|T̃1(y)|.
∫
+∞

y

s3

(1+ s4)(1+ s2)
ds+

1
y2

[∫ y

0

1+ s3

1+ s4 ds+ |cb|

∫ B0

0

s3

1+ s2 ds
]

.
|log(1+ y)|

1+ y2 +
1

b2 y2|log b|
. (2-19)
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Similarly, for 1≤ y ≤ B0/2,

|T̃1(y)| =
∣∣∣∣0(y) ∫ +∞

y
F(s)3Q(s)s3ds+3Q(y)

∫ y

0
F(s)0(s)s3ds

∣∣∣∣
.
∫
+∞

y

s3

(1+ s4)(1+ s2)
ds+ |cb|

∫ B0

y

s3

(1+ s2)2
ds+

1
1+ y2

[∫ y

0

s3

1+ s4 ds+ |cb|

∫ y

0

s3

1+ s2 ds
]

.
1+ |log(by)|
|log b|

+
|log(1+ y)|

1+ y2 . (2-20)

We now choose, thanks to (2-3),

T1(y)= T̃1(y)− c3Q with c =
(T̃1, χM8)

(χM8,3Q)
,

so that the orthogonality condition (2-4) is fulfilled. We note that the bounds (2-19) and (2-20) ensure
that c remains bounded by log(M) uniformly in M and b, provided b is chosen sufficiently small with
respect to M .

This yields (2-7) for k = 0; the other cases follow similarly.

Step 3: Estimate on 9B1 and ∂b9B1 . We now cut off the slow decaying tail T1 according to (2-5) and
estimate the corresponding error to self-similarity 9B1 given by (2-6).

We compute

9B1 = b2χB1(H T1+ D3Q)+ b2[
−2χ ′B1

T ′1 − T11χB1 + (1−χB1)D3Q+ b2 D3(χB1 T1)
]

−
[

f (Q+ b2χB1 T1)− f (Q)−χB1 f ′(Q)T1
]
.

Outside the support of χB1 we have thus 9B1 = b2 D3Q. On the other hand, in dimension N = 4, we
have the Taylor expansion

f (Q+ b2χB1 T1)− f (Q)−χB1 f ′(Q)T1 = b4χ2
B1

T 2
1 (y)

∫ 1

0
(1− τ)(Q(y)+ τb2χB1 T1(y)) dτ.

We thus estimate from (2-7), (2-15), (2-16) and the degeneracy (2-2) for y ≤ 2B1 that

∣∣9B1 − b2cbχB0/43Q
∣∣. b21y≥B1/2

(
T ′1

1+ y
+

T1

1+ y2 +
1

1+ y4

)
+ b4
|D3(χB1 T1)| + b4

|T 2
1 (y)|

∫ 1

0
(1− τ)|Q(y)+ τb2T1(y)| dτ.

(2-7) now yields (2-9) for k = 0. Further derivatives are estimated similarly thanks to the smoothness of
the nonlinearity. We emphasize here that, given B > 0 large, we have 1/(1+ y). 1/B . 1/(1+ y) on
the support of χ ′B , so that differentiating χB acts as multiplication by 1/(1+ y). Furthermore, we have
1/B1 = o(b) so that we can always dominate 1/(1+ y) by b on the support of χ ′B1

.
Finally, we compute ∂b PB1 from (2-5).
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To this end, we note that ∂bcb = O
( 1

b|log(b)|2

)
when b→ 0, so that the source term for T1 in (2-16)

satisfies

∂b F =
[

O
(

1
b |log b|

)
χB0/4+ O

(
1

b |log b|

)
ρB0/4

]
3Q,

where ρ(z) = zχ ′(z) ∈ C∞c (0,∞) and we keep the convention for function dilation. Hence, the same
arguments as for T1 enable us to show first that ∂bT̃1, and then ∂bT1, satisfy the estimates∣∣∣∣dk∂bT1

dyk (y)
∣∣∣∣. 1

b(1+ yk)

[
1+ |log(by)|
|log b|

12≤y≤B0/2+
1

b2 y2|log b|
1y≥B0/2+

1+ |log(1+ y)|
1+ y2

]
. (2-21)

Finally, we compute from (2-5) that

∂b PB1 = 2bχB1 T1+ b2∂b log(B1)ρB1 T1+ b2χB1∂bT1. (2-22)

This decomposition, together with (2-7) and the previous computation, yield (2-8), which concludes the
proof of Proposition 2.1. �

3. Description of the trapped regime

We display in this section the regime which leads to the blow-up dynamics described by Theorem 1.1.

Modulation of solutions to (1-1). Let us start by describing the set of solutions among which the finite
time blow-up scenario described by Theorem 1.1 is likely to arise. We recall from (1-14) that ψ denotes
the bound state of H with eigenvalue −ζ < 0. The following lemma is a standard consequence of the
implicit function theorem and the smoothness of the flow; see Appendix A.

Lemma 3.1 (modulation theory). Let M be a large constant to be chosen later and 0< b0 < b∗0(M) small
enough. Let (η0, η1, d+) satisfy the smallness condition

|d+| +
∥∥η0,∇η0, η1+ b0(1−χB1(b0))3Q,∇η1

∥∥
Ḣ1×Ḣ1×L2×L2 .

b2
0

|log b0|
, (3-1)

then there exists a time T0 such that the unique solution u ∈ C2([0, T0]; L2(RN ))∩C([0, T0]; H 2(RN )) to
(1-1) with initial data

u0 = PB1(b0)+ η0+ d+ψ, u1 = b03PB1(b0)+ η1, (3-2)

admits on [0, T0] a unique decomposition

u(t)= (PB1(b(t))+ ε(t))λ(t) (3-3)

with λ ∈ C2([0, T0],R∗
+
) such that

(ε(t), χM8)= 0 and b(t)=−λt for all t ∈ [0, T0], (3-4)

and the following smallness condition is satisfied:

‖∇ε(t)‖L2 . b0|log b0|, |b(t)− b0| + |λ(t)− 1| + ‖∇2ε(t)‖L2 .
b2

0

|log b0|
for all t ∈ [0, T0]. (3-5)
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Remark 3.2. Recall that the slow decay of Q and the choice of PB1 induces an unbounded tail of 3PB1

in the energy norm, and more specifically ‖3Q‖L2 =+∞, hence the need for the compensation in the
norm of the time derivative in (3-1).

Decomposition of the flow and modulation equations. Considering initial data satisfying the assumption
of the above lemma, we now write the evolution equation induced by (1-1) in terms of the decomposition
(3-3). Let

u(t, r)=
1

[λ(t)]N/2−1

(
PB1(b(t))+ ε

)(
t,

r
λ(t)

)
=
(
PB1(b(t))

)
λ(t)+w(t, r), (3-6)

where b =−λt . Let us derive the equations for w and ε. Let

s(t)=
∫ t

0

dτ
λ(τ)

(3-7)

be the rescaled time. We shall make an intensive use of the rescaling formulas

u(t, r)=
1

λN/2−1 v(s, y), y =
r
λ
,

ds
dt
=

1
λ
, (3-8)

∂t u =
1
λ
(∂sv+ b3v)λ, (3-9)

∂t t u =
1
λ2

[
∂2

s v+ b(∂sv+ 23∂sv)+ b2 D3v+ bs3v
]
λ
. (3-10)

In particular, we derive from (1-1) the equation for ε,

∂2
s ε+HB1ε=−9B1−bs3PB1−b(∂s PB1+23∂s PB1)−∂

2
s PB1−b(∂sε+23∂sε)−bs3ε+N (ε), (3-11)

where, implicitly, B1 = B1(b(t)) and HB1 is the linear operator associated to the profile PB1 ,

HB1ε =−1ε+ b2 D3ε− f ′(PB1)ε, (3-12)

and the nonlinearity

N (ε)= f (PB1 + ε)− f (PB1)− f ′(PB1)ε. (3-13)

Alternatively, the equation for w takes the form

∂2
t w+ H̃B1w =−

[
∂2

t (PB1)λ−1(PB1)λ− f ((PB1)λ)
]
+ Nλ(w),

with

H̃B1w =−1w− f ′((PB1)λ)w, (3-14)

Nλ(w)= f ((PB1)λ+w)− f ((PB1)λ)− f ′((PB1)λ)w. (3-15)
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We then expand using (3-9), (3-10), obtaining

∂2
t (PB1)λ−1(PB1)λ− f ((PB1)λ)=

1
λ2

[
∂ss PB1 + b(∂s PB1 + 23∂s PB1)+ bs3PB1 +9B1

]
λ

=
1
λ2

[
b3∂s PB1 + bs3PB1 +9B1

]
λ
+ ∂t

[
1
λ
(∂s PB1)λ

]
,

and rewrite the equation for w as

∂2
t w+ H̃B1w =−

1
λ2

[
b3∂s PB1 + bs3PB1 +9B1

]
λ
− ∂t

[
1
λ
(∂s PB1)λ

]
+ Nλ(w). (3-16)

For most of our arguments we prefer to view the linear operator HB1 acting onw in (3-16) as a perturbation
of the linear operator Hλ associated to Qλ. Then

∂2
t w+Hλw = FB1

=−
1
λ2

[
b3∂s PB1+bs3PB1+9B1

]
λ
−∂t

[
1
λ
(∂s PB1)λ

]
−
[

f ′(Qλ)− f ′((PB1)λ)
]
w+Nλ(w),

(3-17)

with
Hλw =−1w+ f ′(Qλ)w. (3-18)

The set of bootstrap estimates. First we fix some notations. We introduce the energy E(t) associated to
the Hamiltonian Hλ,

E(t)= λ2
∫ [

(Hλ∂tw, ∂tw)+ (Hλw)2
]
. (3-19)

Given the unstable eigenvalue ζ ∈ (0,∞), we set

V+ =
∣∣∣∣ 1
√
ζ
, V− =

∣∣∣∣ 1
−
√
ζ
, (3-20)

and introduce the decomposition of the unstable direction,∣∣∣∣ (ε, ψ)(∂sε, ψ)
= ã+(s)V++ ã−(s)V−. (3-21)

Let us write

κ+(s)= ã+(s)+
bs

2
√
ζ
(∂b PB1, ψ), κ−(s)= ã−(s)−

bs

2
√
ζ
(∂b PB1, ψ). (3-22)

We note that the vectors V+, V− given by (3-20) yield an eigenbasis of(
0 1
ζ 0

)
and hence correspond respectively to the unstable and stable mode of the two dimensional dynamical
system

dY
ds
=

(
0 1
ζ 0

)
Y,
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which, to first order in b, is verified by the projection onto the unstable mode (ε, ψ); see (4-57). The
deformation term bs(∂b PB1, ψ) in (3-22) is present to handle some possible time oscillations induced by
the ∂2

s PB1 term in the right-hand side of (3-11), which cannot be estimated in absolute value but will be
proved to be of lower order.

With these conventions, we may now parametrize the set of initial data described by Lemma 3.1 by
a+ = κ+(0), and then reformulate the initial smallness properties in terms of suitable initial bounds for ε;
see Appendix A for the proof, which is standard.

Lemma 3.3 (initial parametrization of the unstable mode and initial bounds). Let M and b0 be given as
in Lemma 3.1 and denote by C(M) a sufficiently large constant. Then, given (η0, η1, a+) satisfying

|a+| + ‖η0,∇η0, η1+ b0(1−χB1(b0))3Q,∇η1‖Ḣ1×Ḣ1×L2×L2 ≤
b2

0

|log b0|
, (3-23)

there exists a unique d+ with |d+|. b2
0/|log(b0)| and T0 > 0 such that the unique decomposition

u(t)= (PB1(b(t))+ ε)λ(t) = (PB1(b(t)))λ(t)+w(t)

of the unique smooth solution u to (1-1) on [0, T0] with initial data (3-2) satisfies the initialization

κ+(0)= a+ (3-24)

and the following smallness conditions on [0, T0]:

• Smallness and positivity of b:
0< b(t) < 5b0. (3-25)

• Pointwise bound on bs :

|bs(t)|2 ≤ C(M)
[b(t)]4

|log b(t)|2
. (3-26)

• Smallness of the energy norm:∥∥∥∥∇w(t), ∂tw(t)+
b(t)
λ(t)

(
(1−χB1(b(t)))3Q

)
λ(t)

∥∥∥∥
L2×L2

≤

√
b0. (3-27)

• Global Ḣ 2 bound:

|E(t)| ≤ C(M)
[b(t)]4

|log b(t)|2
. (3-28)

• A priori bound on the stable mode:

|κ−(t)| ≤ (C(M))1/8
[b(t)]2

|log b(t)|
. (3-29)

• A priori bound of the unstable mode:

|κ+(t)| ≤ 2
[b(t)]2

|log b(t)|
. (3-30)

We can now describe the bootstrap regime.
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Definition 3.4 (exit time). Let K (M) be a large constant. Given a+ ∈ [−b2
0/|log b0|, b2

0/|log b0|], we let
T (a+) be the life time of the solution to (1-1) with initial data (3-2), and T1(a+) > 0 be the supremum of
T ∈ (0, T (a+)) such that for all t ∈ [0, T ], the following estimates hold:

• Smallness and positivity of b:
0< b(t) < 5b0. (3-31)

• Pointwise bound on bs :

|bs |
2
≤ K (M)

[b(t)]4

|log b(t)|2
. (3-32)

• Smallness of the energy norm:∥∥∥∥∇w(t), ∂tw(t)+
b(t)
λ(t)

(
(1−χB1(b(t)))3Q

)
λ(t)

∥∥∥∥
L2×L2

≤

√
b0. (3-33)

• Global Ḣ 2 bound:

|E(t)| ≤ K (M)
[b(t)]4

|log b(t)|2
. (3-34)

• A priori bound on the stable and unstable modes:

|κ+(t)| ≤ 2
[b(t)]2

|log b(t)|
, |κ−(t)| ≤ (K (M))1/8

[b(t)]2

|log b(t)|
. (3-35)

The existence of blow-up solutions in the regime described by Theorem 1.1 now follows from the
following proposition:

Proposition 3.5. There exists a+ ∈ [−b2
0/|log b0|, b2

0/|log b0|] such that

T1(a+)= T (a+).

Then the corresponding solution to (1-1) blows up in finite time in the regime described by Theorem 1.1.

The proof of Proposition 3.5 relies on a monotonicity argument applied to the energy E, which is the
core of the analysis (see Proposition 4.6), and the strictly outgoing behavior of the unstable mode induced
by the nontrivial eigenvalue −ζ < 0 of H (see Lemma 4.10). The fact that the regime described by the
bootstrap bounds (3-31)–(3-35) corresponds to a finite blow-up solution with a specific blow-up speed
will then follow from the modulation equations and the sharp derivation of the blow speed as in [Raphaël
and Rodnianski 2012].

4. Improved bounds

This section is devoted to the derivation of the main dynamical properties of the flow in the bootstrap
regime described by Definition 3.4. The three main steps are first the derivation of a monotonicity property
on E, which allows us to improve the bounds (3-31)–(3-34) in [0, T1(a+)], second the derivation of the
dynamics of the eigenmode and the outgoing behavior of the unstable direction, and third the derivation
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of the sharp law for the parameter b, which allows to bootstrap its smallness (3-31) and will eventually
allow us to derive the sharp blow-up speed.

Remark 4.1. Throughout the proof, we will introduce various constants C(M), δ(M) > 0 that do not
depend on the bootstrap constant K (M). An important feature of all these constants is that, up to a
smaller choice of b∗(M) or a larger choice of K (M), we assume that any product of the form C(M) f (b),
where limb→0 f (b)= 0, or that any ratio δ(M)/K (M) is small in the trapped regime. This will be used
implicitly in this section.

Coercivity of E. Let us start by showing that the linearized energy E yields a control of suitable weighted
norms of (w, ε) in the regime t ∈ [0, T1(a+)].

Lemma 4.2 (coercivity of E). There exists M0 ≥ 1 such that for all M ≥ M0, there exists5 δ(M) > 0 and
C(M) <∞ such that in the interval [0, T1(a+)),

E≥ 1
2λ

2
∫
(Hλw)2+ δ(M)λ2

[∫
(∇∂tw)

2
+

∫
(∂rw)

2

r2

]
−C(M)[K (M)]1/4

b4

|log b|2
. (4-1)

Proof of Lemma 4.2. This is a consequence of the explicit distribution of the negative eigenvalues of H
and the a priori bound on the unstable mode (3-35). Indeed, let t ∈ [0, T1(a+)), then first observe from
(3-21), (3-22), (3-35) that

|(ε, ψ)|2+ |(∂sε, ψ)|
2 . |κ+|

2
+ |κ−|

2
+ |bs |

2(∂b PB1, ψ)
2

. [K (M)]1/4
b4

|log b|2
+C(M)b2

|bs |
2 . [K (M)]1/4b4/|log b|2, (4-2)

where we used the estimates of Proposition 2.1 and the fact that ψ is well localized. This yields

1
λ4 (w,ψλ)

2
+

1
λ2 (∂tw,ψλ)

2
= (ε, ψ)2+ (∂sε+ b3ε,ψ)2

. [K (M)]1/4
b4

|log b|2
+ b2

[∫
ε2

y4(1+ |log(y)|)2
+

∫
|∇ε|2

y2

]
, (4-3)

and similarly, using the orthogonality condition (3-4),

1
λ4 (w, (χM8)λ)

2
+

1
λ2 (∂tw, (χM8)λ)

2
= (b3ε, χM8)

2

. b2 MC
[∫

ε2

y4(1+ |log(y)|)2
+

∫
|∇ε|2

y2

]
. (4-4)

Applying Lemma C.3 yields

λ2
∫
|Hλw|2 =

∫
|Hε|2 ≥ δ(M)

[∫
|∇ε|2

y2 +
ε2

y4(1+ |log(y)|)2

]
.

5Recall Remark 4.1.
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Introducing the rescaled version (C-13) of Lemma C.3, we then conclude that

E≥
1
2

∫
λ2(Hλw)2+ δ1(M)

[
λ2
∫
(∇∂tw)

2
+

∫
|∇ε|2

y2 +

∫
ε2

y4(1+ |log(y)|)2

]
− b2 MC

[∫
ε2

y4(1+ |log(y)|)2
+

∫
|∇ε|2

y2

]
−C(M)[K (M)]1/4

b4

|log b|2

≥
1
2

∫
λ2(Hλw)2+ δ(M)λ2

[∫
(∇∂tw)

2
+

∫
(∂rw)

2

r2

]
−C(M)[K (M)]1/4

b4

|log b|2
,

where we used the Hardy bound (C-3), and (4-1) is proved. �

Remark 4.3. Note that (4-1) together with the Hardy estimate (C-1), the coercivity estimate (C-9) and
(4-4) yield the following weighted bound on ε which will be extensively used in the paper: Let

η(s, y)= λ(N−2)/2+1∂tw(t, λy)= ∂sε(s, y)+ b3ε(s, y), (4-5)

then ∫
ε2

y4(1+ |log y|2)
+

∫
η2

y2 +

∫
|∇ε|2

y2 +

∫
|∇η|2 . c(M)

[
|E| + [K (M)]1/4

b4

|log b|2

]
, (4-6)

. c(M)|E| +
√

K (M)
b4

|log b|2
. (4-7)

First bound on bs. We now derive a crude bound on bs which appears as an order-one forcing term in
the right-hand side of the equation (3-11) for ε. This bound is a simple consequence of the construction
of the profile Qb and the choice of the orthogonality condition (3-4).

Lemma 4.4 (rough pointwise bound on bs). We have the bound6(
bs +

(ε, H8)
(3Q,8)

)2

.
1
M
|E| +

√
K (M)

b4

|log b|2
. (4-8)

Remark 4.5. This is in contrast with [Raphaël and Rodnianski 2012], where the bs term could be treated
as degenerate with respect to ε thanks to a specific choice of orthogonality conditions and the factorization
of the operator H in the wave map case. This difficulty in our case will be treated using a specific algebra
generated by our choice of orthogonality condition (3-4) which gives the right sign to the leading-order
terms involving bs in the energy identity of Proposition 4.6; see (4-24), (4-38).

Proof of Lemma 4.4. Let us recall that the equation for ε in rescaled variables is given by (3-11)–(3-13).
Observe also that from (1-19), the adjoint of HB with respect to the L2(RN ) inner product is

H∗B1
= HB1 + 2b2 D. (4-9)

To compute bs we take the scalar product of (3-11) with χM8. Using the orthogonality relations

(∂m
s ε, χM8)= (∂

m
s (PB1 − Q), χM8)= 0 for all m ≥ 0,

6Recall Remark 4.1.
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we integrate by parts to get the algebraic identity

bs
[
(3PB1, χM8)+ 2b(3∂b PB1, χM8)+ (3ε, χM8)

]
=−(9B1, χM8)− (ε, H∗B1

(χM8))+ 2b(∂sε,3(χM8))+ (N (ε), χM8). (4-10)

We first derive from the estimates of Proposition 2.1 that

(9B1, χM8)
2 .

b4

|log b|2
. (4-11)

Similarly, using (4-6) yields

(∂sε,3(χM8))
2 . C(M)

[
c(M)|E| +

√
K (M)

b4

|log b|2

]
(4-12)

and

(ε, H∗B1
(χM8))= (ε, H8)− (Hε, (1−χM)8)+ O

(
MC b2

√
c(M)|E| +

√
K (M)b4/|log b|2

)
.

We then use the improved decay (2-2) and (4-7) to estimate

(Hε, (1−χM)8)
2 .

(∫
y≥M

|Hε|
1+ yN

)2

.
|E|

M
+

√
K (M)

b4

|log b|2
.

Thus ∣∣(ε, H∗B1
(χM8))− (ε, H8)

∣∣2 . 1
M
|E| +

√
K (M)

b4

|log b|2
. (4-13)

Similarly,

(3PB1, χM8)+ 2b(3∂b PB1, χM8)+ (3ε, χM8)

= (3Q,8)+ O
(

b
|log b|

+MC
√
|E| +

√
K (M)b4/|log b|2

)
= (3Q,8)+ O

(
b
|log b|

)
, (4-14)

where we have used that in the trapped regime we have E≤ K (M)b4/[log(b)]2. Finally, on the support of
χM and for b < b∗0(M) small enough, the term Q dominates in Qb = Q+ b2T1. Hence, for the nonlinear
term, we have from the Sobolev inequality and (4-7) that

|(N (ε), χM8)|.
∫ (

ε2

1+ y6 +
ε3

1+ y4

)
.
∫
|ε|2

(1+ y5)
[1+‖yε‖L∞]. C(M)

[
E+

√
K (M)

b4

|log b|2

]
.

Injecting this, together with (4-11)–(4-14), into (4-10) yields (4-8).7 �

7Recall Remark 4.1.



796 MATTHIEU HILLAIRET AND PIERRE RAPHAËL

Global Ḣ2 bound. We derive in this section a monotonicity statement for the energy E that provides a
global Ḣ 2 estimate for the solution. The monotonicity statement involves suitable repulsive properties of
the rescaled Hamiltonian Hλ in the focusing regime under the orthogonality condition (3-11) and the a
priori control of the unstable mode (3-35), which themselves rely on the positivity of an explicit quadratic
form; see Lemma 4.7.

Proposition 4.6 (H 2 control of the radiation). In the trapped regime, there exists a function F satisfying

F.
E

M
+

√
K (M)

b4

|log b|2
(4-15)

such that, for some 0< α < 1 close enough to 1, we have

d
dt

{
E+F

λ2(1−α)

}
≤

b
λ3−2α

[√
K (M)

b4

|log b|2

]
. (4-16)

Proof.

Step 1: Energy identity. Let

Ṽ (t, r)=
N + 2
N − 2

Q4/(N−2)
λ (r)=

1
λ2 V

(
r
λ

)
, V (y)=

N + 2
N − 2

Q4/(N−2)(y).

We first have an algebraic energy identity that follows by integrating by parts from (3-17),

1
2

d
dt

{∫
(∂trw)

2
−

∫
Ṽ (∂tw)

2
+

∫
(Hλw)2

}
=−

∫
∂t Ṽ

[
(∂tw)

2

2
+wHλw

]
+

∫
∂twHλFB1 . (4-17)

We now use the w equation and integration by parts to compute

−

∫
∂t ṼwHλw =−

∫
∂t Ṽw(FB1 − ∂t tw) (4-18)

=
d
dt

{∫
∂t Ṽw∂tw

}
−

∫
∂t ṼwFB1 −

∫
∂t Ṽ (∂tw)

2
−

∫
∂t t Ṽw∂tw. (4-19)

We next pick 0< α < 1 close enough to 1 and combine the above identities to get

1
2λ2α

d
dt

{
λ2α

[∫
(∂trw)

2
−

∫
Ṽ (∂tw)

2
+

∫
(Hλw)2− 2

∫
∂t Ṽw∂tw

]}
=−R1+ R2+

2αb
λ

∫
∂t Ṽw∂tw−

∫
∂t t Ṽw∂tw, (4-20)

where R1 collects the quadratic terms

R1 =
αb
λ

[∫
(∂trw)

2
−

∫
Ṽ (∂tw)

2
+

∫
(Hλw)2

]
+

3
2

∫
∂t Ṽ (∂tw)

2
−

bs

λ2

∫
∂t Ṽ (3Q)λw

=
b
λ3

[
α

∫
(∂yη)

2
−α

∫
Vη2
+α

∫
(Hε)2+

3
2

∫
(2V + y · ∇V )η2

−bs

∫
ε(2V + y · ∇V )3Q

]
(4-21)
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and R2 collects the nonlinear higher-order terms

R2 =

∫
∂twHλFB1 −

∫
∂t Ṽw

[
FB1 +

bs

λ2 (3Q)λ

]
. (4-22)

Step 2: Derivation of the quadratic terms and treatment of the bs term. Let us now obtain a suitable
lower bound for the quadratic term R1. The main enemy is the bs term which is of order one in ε and
will be treated by using a specific algebra generated by the choice of the orthogonality condition (3-4).

Observe from H(3Q)= 0 that (3Q/λ)λ(y)= (1/λ)N/2(3Q)(y/λ) satisfies

−1(3Q/λ)λ(y)− (1/λ)2V (y/λ)(3Q/λ)λ(y)= 0.

Differentiating this relation at λ= 1 yields

H8= H(D3Q)= (2V + y · ∇V )3Q.

We inject this into the modulation equation (4-8) to get

−bs

∫
ε(2V + y · ∇V )3Q = b2

s (8,3Q)+ |bs |O
(
|E|

M
+

√
K (M)

b4

|log b|2

)1/2

. (4-23)

We thus conclude using the sign

(8,3Q) > 0

and (4-8), (4-21) that

R1 ≥
b
λ3

[
α

∫
(∂yη)

2
+

∫
[(3−α)V + 3

2 y · ∇V ]η2
+α

∫
(Hε)2 + c1(bs)

2

+ O
(
|E|

M
+

√
K (M)

b4

|log b|2

)]
(4-24)

for some universal constant c1 > 0 independent of M .

Step 3: Coercivity of the quadratic form. We now claim the following coercivity property of the quadratic
form in η appearing on the right-hand side of (4-24) in the limit case α = 1. The proof is given in
Appendix B.

Lemma 4.7. There exists a universal constant c0 > 0 such that for all η ∈ Ḣ 1
rad we have∫

(∂yη)
2
+

∫ [
2V + 3

2 y · ∇V
]
η2
≥ c0

∫
(∂yη)

2
−

1
c0

[
(η, ψ)2+ (η,8)2

]
.

From a simple continuity argument, there exists 0< α∗ < 1 such that given 0< α∗ < α ≤ 1, for all
η ∈ Ḣ 1

rad, we have

α

∫
(∂yη)

2
+

∫ [
(3−α)V + 3

2 y · ∇V
]
η2
≥

c0

2

∫
(∂yη)

2
−

2
c0

[
(η, ψ)2+ (η,8)2

]
.

We now pick once and for all such an α < 1 and control the negative directions.
Using (4-3) and (4-7) yields

(η, ψ)2 . b|E| +
√

K (M)
b4

|log b|2
.
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Similarly, we compute (η,8)= (η, χM8)+ (η, (1−χM)8) for which (4-4) and (4-7) yield

(η, χM8)
2 . b|E| +

√
K (M)

b4

|log b|2
,

and applying (C-1) we have

(η, (1−χM)8)
2
≤ ‖yη‖2L∞

[∫
y≥M/2

|8|

y

]2

.
1
M

∫
|∂yη|

2.

This, together with (4-24), yields the lower bound on quadratic terms,

R1 ≥
b
λ3

[
c1((bs)

2
+ |E|)+ O

(√
K (M)

b4

|log b|2

)]
(4-25)

for some universal constant c1 > 0. Indeed, a straightforward integration by parts in (3-19) yields

E.
∫
|∂yη|

2
+

∫
|Hε|2.

Step 4: Control of lower-order quadratic terms. The lower-order quadratic terms in (4-20) are controlled
similarly, ∣∣∣∣∫ ∂t Ṽw∂tw

∣∣∣∣. b
λ2

[∫
ε2

1+ y6 +

∫
η2

y2

]
.

1
λ2

(
bC(M)|E| +

√
K (M)

b4

|log b|2

)
.

1
λ2

(
|E|

M
+

√
K (M)

b4

|log b|2

)
, (4-26)

and, with the help of (3-32),∣∣∣∣∫ ∂t t Ṽw∂tw

∣∣∣∣. (b2

λ3 +
|bs |

λ3

)[∫
ε2

1+ y6 +

∫
η2

y2

]
.

b
λ3

(
bC(M)|E| +

√
K (M)

b4

|log b|2

)
.

Remark 4.8. We note here that (4-26) is sufficient for the proof of our theorem. Indeed, the estimated term∫
∂t Ṽw∂tw has been integrated by parts with respect to time, so that it becomes a part of F. Furthermore,

we note that to compute (4-16), we multiply F by λ2α . Consequently, the commutator bα/λ
∫
∂t Ṽw∂tw

appears on the right-hand side. However, (4-26) yields that, in the trapped regime, this supplementary
term is controlled by b/λ3√K (M)b4/|log b|2. Similar arguments will be repeated implicitly below for
the terms that require an integration by parts with respect to time.

Step 5: Rewriting the nonlinear R2 terms. It remains to control the nonlinear R2 terms in (4-20) given by
(4-22). According to (3-17), this term contains bss-types of terms which cannot be estimated in absolute
value and require a further integration by parts in time. Let

FB1 = F1− ∂t F2, with F2 =
1
λ
(∂s PB1)λ, (4-27)

and write

R2 =

∫
∂twHλF1−

∫
∂t Ṽw

[
F1+

bs

λ2 (3Q)λ

]
−

∫
∂twHλ∂t F2+

∫
∂t Ṽw∂t F2.
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We now integrate by parts in time to treat the F2 term,

−

∫
∂twHλ∂t F2+

∫
∂t Ṽw∂t F2

=−
d
dt

{∫
∂twHλF2−

∫
∂t ṼwF2

}
−

∫
(∂t t Ṽw+ 2∂t Ṽ ∂tw)F2+

∫
∂t twHλF2.

The last term is rewritten using (3-17) and integration by parts,∫
∂t twHλF2 =

∫
[F1− ∂t F2− Hλw]HλF2

=−
1
2

d
dt

{∫
|∇F2|

2
−

∫
Ṽ F2

2

}
−

1
2

∫
∂t Ṽ F2

2 +

∫
[F1− Hλw]HλF2.

Eventually we arrive at a manageable expression for R2,

R2 =−
d
dt

{∫
∂twHλF2−

∫
∂t ṼwF2+

1
2

∫
|∇F2|

2
−

1
2

∫
Ṽ F2

2

}
−

∫
∂t Ṽw

[
F1+

bs

λ2 (3Q)λ

]
+

∫
∂twHλF1−

∫
(∂t t Ṽw+ 2∂t Ṽ ∂tw)F2

−
1
2

∫
∂t Ṽ F2

2 +

∫
[F1− Hλw]HλF2. (4-28)

We now aim at estimating all the terms in the right-hand side of (4-28). According to (3-17), we split F1

into four terms

F1+
bs

λ2 (3Q)λ =−
1
λ2

[
9B1 + F1,1+ F1,2+ N (ε)

]
λ
, (4-29)

with
F1,1 = b3∂s PB1 + bs(3PB1 −3Q), F1,2 =

[
f ′(Q)− f ′(PB1)

]
ε. (4-30)

Step 6: F1 terms. These are the leading-order terms.

• 9B1 terms. We first extract from (2-9) the rough bound

|9B1 |.
b2

|log b|(1+ y2)
+C(M)b41y≤2B1, (4-31)

which yields ∫
1+ |log y|2

1+ y4 |9B1 |
2 .

b4

|log b|2
,

and thus, from (4-7),∣∣∣∣∫ ∂t Ṽw
1
λ2 (9B1)λ

∣∣∣∣. b
λ3

∫
|ε||9B1 |

(1+ y4)

.
b
λ3

b2

|log b|
C(M)

√
|E| +

√
K (M)b4/|log b|2

.
b
λ3

√
K (M)

b4

|log b|2
.
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Next we use the fundamental cancellation H(3Q)= 0 and (2-9) to estimate

|H9B1 |.
b4

1+ y2

[
1+|log(by)|
|log b|

12≤y≤2B0 +
1

b2 y2|log b|
1B0/2≤y≤2B1 +

log(M)+ |log(1+y)|
1+ y2 1y≤2B1

]
+

b2

(1+ y4)|log b|
1y≥B1/2,

and thus get ∫
(1+ y2)|H(9B1)|

2 .
b6

|log b|2
. (4-32)

Hence∣∣∣∣∫ ∂twHλ

(
1
λ2 (9B1)λ

)∣∣∣∣. b
λ3 ‖η/y‖L2

[∫
1
b2 (1+ y)2|H(9B1)|

2
]1/2

.
b
λ3

√
K (M)

b4

|log b|2
.

• F1,1 terms. From (2-7) and (2-8) we obtain

|F1,1|. |bs |b2
[

1+ |log(by)|
|log b|

12≤y≤B0/2+
1

b2 y2|log b|
1B0/2≤y≤2B1 +

log(M)+ |log y|
1+ y2

]
,

and, recalling that differentiation with respect to y acts as a multiplication by 1/(1+ y),∣∣H F1,1
∣∣ . C(M)

|bs |b2

1+ y2

[
1+ |log(by)|
|log b|

12≤y≤B0/2+
1

b2 y2|log b|
1B0/2≤y≤2B1 +

log(M)+ |log y|
1+ y2

]
,

from which ∫
(1+ y2)|H(F1,1)|

2 . |bs |
2 b2

|log b|2
,

∫
(1+ |log y|2)
(1+ y4)

|F1,1|
2 . |bs |

2b2. (4-33)

Hence similar arguments as with the 9B1 terms yield∣∣∣∣∫ ∂t ṼwF1,1

∣∣∣∣. b
λ3 b|bs |C(M)

√
|E| +

√
K (M)b4/|log b|2 .

b
λ3

√
K (M)

b4

|log b|2
,

and ∣∣∣∣∫ ∂twHλF1,1

∣∣∣∣. C(M)b
λ3

|bs |

|log b|

√
|E| +

√
K (M)b4/|log b|2

.
b
λ3

[
|bs |

2

|log b|
+

E

|log b|
+

√
K (M)

b4

|log b|2

]
.

b
λ3

√
K (M)

b4

|log b|2
.

• F1,2 terms. The explicit expansion of the cubic nonlinearity and the bound (2-7) yield

|F1,2|.
C(M)b2

1+ y2 |ε| and |∇F1,2|.
C(M)b2

1+ y3 |ε| +
C(M)b2

1+ y2 |∇ε|, (4-34)

from which

1
λ2

∣∣∣∣∫ ∂t Ṽw(F1,2)λ

∣∣∣∣. C(M)b3

λ3

∫
ε2

1+ y6 .
b
λ3

(
b|E| +

√
K (M)

b4

|log b|2

)
,
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and, after integration by parts of the Laplacian term,

1
λ2

∣∣∣∣∫ ∂twHλ(F1,2)λ

∣∣∣∣. C(M)
λ3

[∫
|η|

1+ y4

b2

1+ y2 |ε| +

∫
|∇η|

(
b2

1+ y3 |ε| +
b2

1+ y2 |∇ε|

)]
.

b
λ3

[
|E|

M
+

√
K (M)

b4

|log b|2

]
.

• Nonlinear term N (ε). We expand the nonlinearity as

N (ε)= 3PB1ε
2
+ ε3.

This yields, using (3-27) and (C-1), the rough bound

|N (ε)|.
ε2

1+ y
.

In what follows, we will use the following bound on η, which follows from (4-6), (C-1):

‖yη‖L∞ . ‖∇η‖L2 .

(
c(M)|E| +

√
K (M)

b4

|log b|2

)1/2

.

We then estimate∣∣∣∣ 1
λ2

∫
∂t Ṽw(N (ε))λ

∣∣∣∣. b
λ3

∫
|ε|3

1+y5 .
b
λ3 ‖∇ε‖L2

(
c(M)|E| +

√
K (M)

b4

|log b|2

)
.

b
λ3

√
K (M)

b4

|log b|2

for b0 < b∗(M) small enough. We split the second term into∫
∂twHλ

(
(N (ε))λ
λ2

)
=

∫
∇∂tw · ∇

(
(N (ε))λ
λ2

)
−

∫
Ṽ ∂tw

(
(N (ε))λ
λ2

)
. (4-35)

The second of these terms is estimated by brute force:∣∣∣∣∫ Ṽ ∂tw

(
(N (ε))λ
λ2

)∣∣∣∣. 1
λ3

∫
|η||ε|2

1+ y5 .
1
λ3 ‖yη‖L∞

∫
|ε|2

1+ y6

.
1
λ3

(
c(M)|E| +

√
K (M)

b4

|log b|2

)3/2

.
b
λ3

b4

|log b|2
.

The first term in (4-35) is split into two parts:∫
∇∂tw · ∇

(
(N (ε))λ
λ2

)
=

∫
∇∂tw ·

[
∇(w3)+ 3(PB1)λ∇(w

2)
]
+

3
λ3

∫
ε2
∇η · ∇PB1 .

The second term is integrated by parts in space and then estimated by brute force:
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λ3

∫
ε2
∇η · ∇PB1

∣∣∣∣= 3
λ3

∣∣∣∣∫ η
[
ε21PB1 + 2ε∇PB1 · ∇ε

]∣∣∣∣
.

1
λ3

∫
|η|

[
ε2

1+ y4 +
|ε||∇ε|

1+ y3

]
.

1
λ3 ‖yη‖L∞

[∫
ε2

1+ y5 +

∫
|∇ε|2

y2

]
.

1
λ3

(
c(M)|E| +

√
K (M)

b4

|log b|2

)3/2

.
b
λ3

b4

|log b|2
.

The first term is more delicate and requires first a time integration by parts,∫
∇∂tw ·

[
∇(w3)+ 3(PB1)λ∇(w

2)
]
=

d
dt

{∫
|∇w|2

[
3
2
w2
+ 3(PB1)λw

]}
− 3

∫
w∂tw|∇w|

2
− 3

∫
|∇w|2

[
w∂t(PB1)λ+ (PB1)λ∂tw

]
.

We may now estimate all terms by brute force. First,∣∣∣∣∫ |∇w|2[3
2
w2
+ 3(PB1)λw

]∣∣∣∣. 1
λ2 [‖yε‖L∞ +‖y PB1‖L∞]‖yε‖L∞

∫
|∇ε|2

y2 .
1
λ2

b4

|log b|2
,

second,∣∣∣∣∫ w∂tw|∇w|
2
∣∣∣∣. 1

λ2 ‖yε‖L∞‖yη‖L∞

∫
|∇ε|2

y2 .

(
c(M)|E| +

√
K (M)

b4

|log b|2

)3/2

.
b
λ3

b4

|log b|2
,

and third, ∣∣∣∣∫ |∇w|2w∂t(PB1)λ

∣∣∣∣. ‖yw‖L∞

λ3

∫
|∇w|2

y

[
b

1+ y2 +C(M)b|bs |1y≤B1

]
.

b
λ3 |∇ε|L2

(
1+C(M)|bs |

|log b|
b

)∫
|∇ε|2

y2 .
b
λ3

b4

|log b|2
,

where we used the rough bound extracted from (2-8), |∂b PB1 |. C(M)b1y≤B1 . Finally,∣∣∣∣∫ |∇w|2(PB1)λ∂tw

∣∣∣∣. 1
λ3 ‖yη‖L∞

∫
|∇ε|2

1+ y3 .

(
C(M)E+

√
K (M)

b4

|log b|2

)3/2

.
b
λ3

b4

|log b|2
,

for b0 < b∗(M) small enough. The above chain of estimates together with Remark 4.8, achieves the
control of the nonlinear term N (ε).

Step 7: F2 terms. We estimate from (2-8),∫ ∣∣∣∣ ∂b PB1

(1+ y)

∣∣∣∣2+ ∫ ∣∣∇∂b PB1

∣∣2 . 1
|log b|2

and
∫

1
1+ y3

∣∣∂b PB1

∣∣2 . b
|log b|2

. (4-36)
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Hence, first, ∣∣∣∣∫ ∂twHλF2

∣∣∣∣. |bs |

λ2

[∫
|η||∂b PB1 |

(1+ y4)
+

∫
|∇η||∇∂b PB1 |

]
.

1
λ2

|bs |

|log b|

√
c(M)|E| +

√
K (M)b4/|log b|2

.
1
λ2

[
|E|

M
+

√
K (M)

b4

|log b|2

]
,

second, ∣∣∣∣∫ ∂t ṼwF2

∣∣∣∣. |bs |b
λ2

∫
|∂b PB1 ||ε|

(1+ y4)
.
|bs |b

λ2|log b|

[
c(M)|E| +

√
K (M)

b4

|log b|2

] 1
2

.
1
λ2

[
|E|

M
+

√
K (M)

b4

|log b|2

]
,

and third,∫
|∇F2|

2
+

∣∣∣∣∫ V F2
2

∣∣∣∣. |bs |
2

λ2

[∫
|∂b PB1 |

2

(1+ y4)
+

∫
|∇∂b PB1 |

2
]
.

1
λ2

(bs)
2

|log b|2
.

1
λ2

b4

|log b|2
.

Similarly,∣∣∣∣∫ (∂t t Ṽw+ 2∂t Ṽ ∂tw)F2

∣∣∣∣+ ∣∣∣∣∫ ∂t Ṽ F2
2

∣∣∣∣
.
|bs |

λ3

[∫
((|bs | + b2)|ε| + b|η|)|∂b PB1 |

(1+ y4)
+ |bs |b

∫
|∂b PB1 |

2

1+ y4

]
.
|bs |

λ3

[
(|bs | + b)
|log b|

√
c(M)|E| +

√
K (M)b4/|log b|2+

b2

|log b|2
|bs |

]
.

b
λ3

[
|E|

M
+

√
K (M)

b4

|log b|2

]
.

Eventually, (4-32) and (4-33) ensure that∫
(1+ y2)|H(9B1 + F1,1)|

2 .

[
b6

|log b|2
+

b2
|bs |

2

|log b|2

]
.

b6

|log b|2
,

which together with (4-36) yields∣∣∣∣∫ 1
λ2 (9B1 + F1,1)λHλF2

∣∣∣∣. 1
λ3

b3
|bs |

|log b|2
.

b
λ3

b4

|log b|2
.

We similarly estimate from (4-34), after integration by parts, that∣∣∣∣∫ 1
λ2 (F1,2)λHλF2

∣∣∣∣. |bs |

λ3

[∫
b2
|ε||∂b PB1 |

1+ y6 +

∫
|∇∂b PB1 |

(
b2
|ε|

1+ y3 +
b2
|∇ε|

1+ y2

)]
. C(M)

b4

λ3|log b|

(∫
ε2

1+ y6 +

∫
|∇ε|2

1+ y4

)1/2

.
b
λ3

b4

|log b|2
.
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For the nonlinear term, we extract from (2-8) the rough bound

|H(∂b PB1)|. [C(M)+ log(b)]
b

1+ y2 1y≤B1,

which together with (C-1) ensures that∣∣∣∣∫ 1
λ2 (N (ε))λHλF2

∣∣∣∣. [C(M)+ log(b)]
λ3 |bs |

∫
b

1+ y2

ε2

1+ y
1y≤B1

. C(M)
|bs ||log b|4

λ3

∫
ε2

(1+ y4)|log y|2

.
b
λ3

√
b
(

c(M)|E| +
√

K (M)
b4

|log b|2

)
.

b
λ3

b4

|log b|2
.

Step 10: The remaining F2 term has the right sign. It remains to estimate the term

−

∫
HλwHλF2

on the right-hand side of (4-28). Let us stress the fact that this term is a priori no better O(E/λ3) due to
the bs contribution and the bound (4-8); recall Remark 4.5.

We now claim that the main contribution has the right sign again. Indeed, we first compute from the
T1 equation (2-16) that

H T1 =−8+ cbχB0/43Q and H∂bT1 = O
(

1
b |log b|

12≤y≤B0/2

(1+ y2)

)
. (4-37)

We then apply the decomposition (2-22),

H(∂b PB1)= H
(
2bT1+ 2b(χB1 − 1)T1+ b2∂b log(B1)ρB1 T1+ b2χB1∂bT1

)
=−2b8+6,

and estimate using (2-8), (2-21), (4-37) that

|6|.
b

1+ y2

[
1
|log b|

12≤y≤B0/2+
1

b2 y2|log b|
1B0/2≤y

]
.

In particular,
∫
62 . b2/|log b|, and thus using the modulation equation (4-8) gives

−

∫
HλwHλF2 =−

bs

λ3

∫
(Hε)H(∂b PB1)

=−
bs

λ3

∫
Hε (−2b8+6)

= 2
b
λ3 bs(ε, H8)+

b
λ3 O

(
|bs |√
|log b|

√
|E| +

√
K (M)b4/|log b|2

)
= 2

b
λ3

[
−
(ε, H8)
(3Q,8)

+ O
(√
|E|/M +

√
K (M)b4/|log b|2

)]
(ε, H8)+

b
λ3 O

(
b4

|log b|2

)
=−

2b
λ3

(ε, H8)2

(3Q,8)
+ O

(
|E|

M
+

√
K (M)

b4

|log b|2

)
+

b
λ3 O

(
b4

|log b|2

)
(4-38)
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≤ O
(
|E|

M
+

√
K (M)

b4

|log b|2

)
. (4-39)

Collecting all the above estimates yields (4-16) and concludes the proof of Proposition 4.6. �

Improved bound. We now claim that the a priori bound on the unstable direction (3-35), coupled with
the monotonicity property of Proposition 4.6, implies the following:

Lemma 4.9 (improved bounds under the a priori control (3-35)). In [0, T1(a+)] we have∥∥∥∥∇w(t), ∂tw(t)+
b(t)
λ(t)

((
1−χB1(b(t))

)
3Q

)
λ(t)

∥∥∥∥
L2×L2

. b0|log b0|, (4-40)

b4(t)
|log b(t)|2λ2(1−α)(t)

≥
b4(0)

|log b(0)|2λ2(1−α)(0)
, (4-41)

|bs |
2
≤

K (M)
2

b4

|log b|2
, (4-42)

|E(t)| ≤
K (M)

2
b4

(log b)2
. (4-43)

Proof.

Step 1: Energy bound. The energy bound (4-40) is a consequence of the conservation of energy. Indeed,
conservation of energy and the initial bounds of Lemma 3.1 ensure that

E(u, ∂t u)= E(u0, u1)= E(Q)+ O(b0
√
|log b0|),

(see Appendix A) and thus give

E(Q)+O(b0|log b0|)=
1
2

∫ [
∂t(PB1)λ+ ∂tw

]2
+

1
2

∫ ∣∣∇(PB1)λ+∇w
∣∣2− 1

4

∫ [
(PB1)λ+w

]4
. (4-44)

We lower bound the first term by expanding

∂t(PB1)λ+ ∂tw = ∂tw+
b
λ
((1−χB1)3Q)λ+

b
λ
(χB13Q)λ+

b3

λ
(3[χB1 T1])λ+

bs

λ
(∂b PB1)λ

= ∂tw+
b
λ
((1−χB1)3Q)λ+6,

with ∫
62 . b2

0|log b0|,

where we used the bootstrap bounds (3-31) and (3-32). Finally,∫ [
∂t(PB1)λ+ ∂tw

]2
≥

1
2

∫ [
b
λ
((1−χB1)3Q)λ+ ∂tw

]2

− O(b2
0|log b0|). (4-45)
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We then expand the second term as

1
2

∫ [
∇(PB1)λ+∇w

]2
−

1
4

∫ [
(PB1)λ+w

]4
=

1
2

∫ [
∇PB1 +∇ε

]2
−

1
4

∫ [
PB1 + ε

]4
=

1
2

∫ ∣∣∇PB1

∣∣2− 1
4

∫ ∣∣PB1

∣∣4− (ε,1PB1 + P3
B1
)+

1
2

(∫
|∇ε|2− 3

∫
P2

B1
ε2
)
−

1
4
(
4PB1ε

3
+ ε4) .

From the construction of PB1 ,

1
2

∫ ∣∣∇PB1

∣∣2− 1
4

∫ ∣∣PB1

∣∣4 = E(Q)+ O(b2
|log b|). (4-46)

The linear term is treated using (2-9), the improved decay (2-2) and (4-31). We get∣∣(ε,1PB1 + P3
B1
)
∣∣= ∣∣(ε, b2 D3PB1 −9B1)

∣∣. ‖ε/y‖L2‖y(b2 D3PB1 −9B1)‖L2 . b|∇ε|L2 . (4-47)

We now rewrite the quadratic term as a small deformation of H and use the coercivity bound (C-8) to
ensure that ∫

|∇ε|2− 3
∫

P2
B1
ε2
≥ c0

∫
|∇ε|2+Def , (4-48)

with

Def := 3
∫
(Q2
− P2

B1
)ε2
−
(ε, ψ)2

c0
.

Collecting (2-7) and (C-1), on the one hand, and (4-2) on the other hand, we compute∣∣∣∣∫ (Q2
− P2

B1
)ε2
∣∣∣∣≤ ‖y2(Q2

− P2
B1
)‖L∞‖∇ε‖

2
L2 . b‖∇ε‖2L2 and |(ε, ψ)|2 . b2

|log b|. (4-49)

The nonlinear term is easily estimated by the Sobolev inequality:∫ ∣∣(3PB1 + ε)ε
3∣∣≤ ‖y PB1‖L∞‖yε‖L∞‖∇ε‖

2
L2 .

√
b0‖∇ε‖

2
L2 . (4-50)

Injecting (4-45), (4-47), (4-46), (4-49), (4-48), (4-50) into (4-44) now yields (4-40).

Step 2: Lower bound on b. We now turn to the proof of (4-41). First observe from the bootstrap estimate
(3-32) that

|bs | ≤
√

K (M)
b2

|log b|
≤

1−α
10

b2. (4-51)

This implies

d
ds

(
b4

(log b)2λ2(1−α)

)
=

4b3

λ2(1−α)(log b)2

[
bs

(
1−

1
2 log b

)
+

1−α
2

b2
]
> 0

and (4-41) follows.
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Step 3: Improved Ḣ 2 bound. We now turn to the proof of (4-43). We integrate (4-16) in time and
conclude from (4-1) and (4-15) that

|E(t)|.
(
λ(t)
λ(0)

)2(1−α)

|E(0)|

+ (K (M))1/2
[

b4(t)
|log b(t)|2

+ [λ(t)]2(1−α)
∫ t

0

b(τ )
[λ(τ)]3−2α

b4(τ )

|log b(τ )|2
dτ
]
. (4-52)

We then derive from (4-51) that∫ t

0

b(τ )
[λ(τ)]3−2α

b4(τ )

|log b(τ )|2
dτ

=−

∫ t

0

λt

λ3−2α

b4

|log b|2
dτ

≤
1

2(1−α)
b4(t)

λ2(1−α)(t)|log b(t)|2
−

1
2(1−α)

∫ t

0

bs

λ3−2α

b3

|log b|2

[
1−

2
|log b|2

]
.

b4(t)
λ2(1−α)(t)|log b(t)|2

+

√
K (M)

∫ t

0

b(τ )
[λ(τ)]3−2α

b4(τ )

|log b(τ )|2
1

|log b(τ )|
dτ,

and hence obtain the bound

λ2(1−α)(t)
∫ t

0

b(τ )
[λ(τ)]3−2α

b4(τ )

|log b(τ )|2
dτ .

b4(t)
|log b(t)|2

.

Injecting this into (4-52) and using the initial bounds (A-12), (A-17) and the monotonicity (4-41) yields

E(t).
(
λ(t)
λ(0)

)2(1−α) b4(0)
|log b(0)|2

+ (K (M))1/2
b4(t)
|log b(t)|2

.
√

K (M)
b4(t)
|log b(t)|2

(4-53)

and (4-43) follows. The bound (4-42) now follows from Lemma 4.4 and (4-53). This concludes the proof
of Lemma 4.9. �

Dynamic of the unstable mode. We now focus onto the dynamic of the unstable mode. We recall the
decomposition

Y (t)=
∣∣∣∣ (ε, ψ)(∂sε, ψ)

= ã+(t)V++ ã−(t)V−, (4-54)

and the variables given by (3-22),

κ+(s)= ã+(s)+
bs

2
√
ζ
(∂b PB1, ψ), κ−(s)= ã−(s)−

bs

2
√
ζ
(∂b PB1, ψ).

Lemma 4.10 (control of the unstable mode). For all t ∈ [0, T1(a+)] we have

|κ−(t)| ≤ 1
2(K (M))

1/8 b2

|log b|
, (4-55)

and κ+ is strictly outgoing, ∣∣∣∣dκ+ds
−
√
ζκ+

∣∣∣∣≤√b
b2

|log b|
. (4-56)
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Proof. We compute the equation satisfied by the unstable direction (ε, ψ) by taking the inner product of
(3-11) with the well localized direction ψ and get

d2

ds2 (ε, ψ)− ζ(ε, ψ)= E(ε)− (∂2
s PB1, ψ), (4-57)

with
E(ε)=−(9B1, ψ)− bs(3PB1, ψ)− b(∂s PB1 + 23∂s PB1, ψ)− b(∂sε+ 23∂sε, ψ)

− bs(3ε,ψ)+ (N (ε), ψ)+ b2(3ε, Dψ)+ (( f ′(PB1)− f ′(Q))ε, ψ). (4-58)

Simple algebraic manipulations using (4-54) and (3-22) and the initial condition yield the equivalent
system

d
ds
κ+ =

√
ζκ+(s)+

E+(s)
2
√
ζ
,

d
ds
κ− =−

√
ζκ−(s)−

E−(s)
2
√
ζ
κ−(0), (4-59)

with

E+(s)= E(s)−
bs

2
(∂b PB1, ψ), E−(s)= E(s)+

bs

2
(∂b PB1, ψ). (4-60)

We now have from the explicit formula (4-58) and (4-60), the exponential localization of ψ , the orthogo-
nality

(ψ,3Q)= 0,

the estimates of Proposition 2.1 and the bootstrap estimate (3-32) the bound

1
√
ζ
|E±|. |b|

(
|bs | +

√
|E| +

√
K (M)

b2

|log b|

)
≤
√

b
b2

|log b|
, (4-61)

which together with (4-59) yields (4-56). Let then

G= κ2
−

|log b|2

b4 ,

then from (4-59), (4-61), (3-32), we estimate that

dG

ds
= 2κ−

dκ−
ds
|log b|2

b4 + κ2
−

bs

[
−

4|log b|2

b5 +
2 log b

b5

]
= 2
|log b|2

b4

[
κ−

(
−
√
ζκ−−

E−
√
ζ

)]
+ κ2
−

|log b|2

b4 O
(
|bs |

b

)
≤ −

√
ζ

2
|log b|2

b4 κ2
−
+
|log b|2

b4 κ−
√

b
b2

|log b|
.−

√
ζ

2
G+ 1.

We integrate this in time and get

G(s)≤ G(0)e−
√
ζ

2 s
+

∫ s

0
e−

(s−σ)
2
√
ζdσ . 1,

where we used the initial inequality (A-18) yielding that G(0). 1. This concludes the proof of (4-55)
and of Lemma 4.10. �
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Derivation of the sharp law for b. We now turn to the derivation of the sharp law for b, which will
yield the monotonicity statement on b needed to obtain the smallness bootstrap estimate (3-31), and will
eventually lead to the derivation of the sharp blow-up speed (1-10).

Lemma 4.11 (sharp law for b). Let

P̃B0 = χB0/4 Q, (4-62)

G(b)= b|3P̃B0 |
2
L2 +

∫ b

0
b̃(∂b P̃B0,3P̃B0) db̃, (4-63)

I(s)= (∂sε,3P̃B0)+ b(ε+ 23ε,3P̃B0)+ bs(∂b P̃B0,3P̃B0)− bs
(
∂b(PB1 − P̃B0),3P̃B0

)
. (4-64)

Then

G(b)= 64b |log b| + O(b), |I|. K (M)b, (4-65)∣∣∣∣ d
ds
{G(b)+I(s)}+ 32b2

∣∣∣∣. K (M)
b2√
|log b|

. (4-66)

Remark 4.12. Observe that (4-65) and (4-66) essentially yield a pointwise differential equation

bs ∼−
b2

2|log b|
,

which will allow us to derive the sharp scaling law via the relationship −λs/λ= b.

Proof of Lemma 4.11. The proof is inspired by the one in [Raphaël and Rodnianski 2012]. We multiply
(3-11) by 3P̃B0 and compute

(bs3PB1 + b(∂s PB1 + 23∂s PB1)+ ∂
2
s PB1,3P̃B0)

=−(9B1,3P̃B0)− (HB1ε,3P̃B0)−
(
∂2

s ε+ b(∂sε+ 23∂sε)+ bs3ε,3P̃B0

)
+ (N (ε),3P̃B0).

We further rewrite this as(
bs3P̃B0 + b(∂s P̃B0 + 23∂s P̃B0)+ ∂

2
s P̃B0,3P̃B0

)
=−(9B1,3P̃B0)−

(
bs3(PB1 − P̃B0)+ b(∂s(PB1 − P̃B0)+ 23∂s(PB1 − P̃B0))+ ∂

2
s (PB1 − P̃B0),3P̃B0

)
− (HB1ε,3P̃B0)−

(
∂2

s ε+ b(∂sε+ 23∂sε)+ bs3ε,3P̃B0

)
+ (N (ε),3P̃B0). (4-67)

We now estimate all terms in this identity.

Step 1: b terms. An integration by parts in time allows us to rewrite the left-hand side of (4-67) as

(
bs3P̃B0+b(∂s P̃B0+23∂s P̃B0)+∂

2
s P̃B0,3P̃B0

)
=

d
ds

[
G(b)+bs(∂b P̃B0,3P̃B0)

]
+|bs |

2
‖∂b P̃B0‖

2
L2, (4-68)

with G given by (4-63). Observe from (3-32) the bound

|bs |
2
‖∂b P̃B0‖

2
L2 .
|bs |

2

b2 . (K (M))
2 b2

|log b|2
.

b2√
|log b|

.
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We now turn to the key step in the derivation of the sharp b law which corresponds to the following
outgoing flux computation:8

(9B1,3P̃B0)= 32b2
(

1+ O
(

1
|log b|

))
as b→ 0. (4-69)

Indeed, we first estimate from (2-9) that

∣∣(9B1 − cbb2χB0/43Q,3P̃B0)
∣∣. b4

∫
y≤B0/2

[
1+ |log(by)|
|log b|(1+ y2)

+
1+ |log(1+ y)|
(1+ y2)2

]
.

b2

|log b|
.

The remainder term is computed from (2-10) and the explicit formula for Q (1-3),

(cbb2χB0/43Q,3P̃B0)=
b2

2|log b|

(
1+O

(
1
|log b|

))[∫
y≤1/2b

(3Q)2+O(1)
]
=32b2

(
1+O

(
1
|log b|

))
,

and (4-69) follows.
We now estimate the lower-order terms in b that correspond to the second line of (4-67). One term is

reintegrated by parts in time,

−(∂2
s (PB1 − P̃B0),3P̃B0)=−

d
ds

{
bs(∂b(PB1 − P̃B0),3P̃B0)

}
+ b2

s
(
∂b(PB1 − P̃B0), ∂b3P̃B0

)
.

The remaining terms are estimated in brute force using (2-8) and (3-32), which yield∣∣(bs3(PB1 − P̃B0)+ b(∂s(PB1 − P̃B0)+ 23∂s(PB1 − P̃B0)),3P̃B0

)∣∣+ b2
s

∣∣(∂b(PB1 − P̃B0), ∂b3P̃B0)
∣∣

. |bs | +
|bs |

2

b2 . K (M)
b2

|log b|
.

Step 2: ε terms. We are left with estimating the third line on the right-hand side of (4-67). We first treat
the linear term from (4-1), (4-7) and (3-34) and get

|(HB1ε,3P̃B0)|. |(Hε,3P̃B0)| +

∫
|ε||P2

B1
− Q2

||3P̃B0 | + b2
|(D3ε,3P̃B0)|. (4-70)

On the one hand, (4-7) together with bootstrap estimates yields

∫
|ε||P2

B1
− Q2

||3P̃B0 |. b2
∫

y≤B0

|ε|

(1+ y2)2
≤ b3/2

(∫
|ε|2

(1+ y)5

)1/2

.
b2

|log(b)|
.

On the other hand, after integration by parts, we repeat the same arguments as before and apply (C-4).

8See again [Raphaël and Rodnianski 2012] for more details about the flux computation statement and its connection to the
Pohozaev integration by parts formula.



SMOOTH SOLUTIONS TO THE FOUR-DIMENSIONAL ENERGY-CRITICAL WAVE EQUATION 811

This yields

b2
∣∣∣(D3ε,3P̃B0)

∣∣∣ ≤ b2
∫

y≤B0

|ε|

(1+ y4)
+ b2

∫
B0/4≤y≤B0/2

|ε|

(1+ y2)
+ b2

∫
y≤B0

|∇ε|
y

1+ y2

. b3/2
(∫

|ε|2

(1+ y5)

)1/2

+

(∫
B0/4≤y≤B0/2

|ε|2

(1+ y4)

)1/2

+

(∫
y≤B0

|∇ε|2

1+ y2

)1/2

.
√
|log(b)|

(
c(M)|E| +

√
K (M)

b4

|log b|2

)1/2

.
√

K (M)
b2√
| log(b)|

.

Finally,

|(Hε,3P̃B0)|. ‖Hε‖L2

√
|log b| +

√
K (M)

b2√
log(b)

.
√
|log b|

√
|E| +

√
K (M) b4/|log b|2 .

√
K (M)

b2√
|log b|

.

We further integrate by parts in time to obtain(
∂2

s ε+ b(∂sε+ 23∂sε)+ bs3ε,3P̃B0

)
=

d
ds

[
(∂sε,3P̃B0)+ b(ε+ 23ε,3P̃B0)

]
− bs

[
(∂sε+ b3ε,3∂b P̃B0)+ (ε,8b)

]
,

with
8b =−3P̃B0 −3

2 P̃B0 − b3∂b P̃B0 − b32∂b P̃B0 .

We thus estimate from (4-1), (4-5), (4-7), (3-32) and (3-34) that

|bs ||(∂sε+ b3ε,3∂b P̃B0)+ (ε,8b)|. |bs |

[∫
B0/4≤y≤B0

|η|

y
+

∫
y≤B0

|ε|

1+ y2

]
.
|bs ||log b|

b2 C(M)
√
|E| +

√
K (M) b4/|log b|2 . K (M)

b2√
|log b|

.

The nonlinear term is estimated as before. Indeed, we have

|(N (ε),3P̃B0)|.
∫
(|PB1 | + |ε|)ε

2
|3P̃B0 |

.
1
b2 ‖y(|PB1 | + |ε|)‖L∞‖(1+ y2)3P̃B0‖L∞

∫ B0

0

|ε|2

y(1+ y4)

.
C(M)

b2

[
E+ K (M)

b4

|log b|2

]
. K (M)

b2√
|log b|

.

Step 3: Control of G(b) and I. Injecting the estimates of Steps 1 and 2 into (4-67) yields (4-66). It
remains to prove (4-65). The estimate for G(b) is a straightforward consequence of the choice (4-62) and
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the explicit formula (1-3). It remains to control I. We integrate by parts in space in (4-64) and get

I(s)= (∂sε+ b3ε,3P̃B0)− b(ε,3P̃B0 +3
2 P̃B0)+ bs(∂b P̃B0,3P̃B0)− bs

(
∂b(PB1 − P̃B0),3P̃B0

)
.

The b terms are estimated as in Step 1,

|bs |
∣∣(∂b P̃B0,3P̃B0)− (∂b(PB1 − P̃B0),3P̃B0)

∣∣. |bs |

b
. b.

The linear term is estimated using (4-1), (4-5), (4-7), (3-32) and (3-34),∣∣(∂sε+ b3ε,3P̃B0)− b(ε,3P̃B0 +3
2 P̃B0)

∣∣
.
∫

y≤B0

|η|

y2 + b
∫

y≤B0

|ε|

y2 .
1
b

(∫
|η|2

y2

)1/2

+
|log b|

b2

(∫
y≤B0

|ε|2

y4(1+ |log y|2)

)1/2

. K (M)b,

and (4-65) is proved. This concludes the proof of Lemma 4.11. �

5. Sharp description of the singularity formation

We are now in position to conclude the proofs of Proposition 3.5 and Theorem 1.1 as simple consequences
of the a priori bounds obtained in the previous section. The proofs rely on a topological argument that
finishes the bootstrap argument, and then the sharp description of the blow-up dynamic is a consequence
of the a priori bounds obtained on the solution and in particular the modulation equation (4-66).

Proof of Proposition 3.5. We argue by contradiction and assume that for all

a+ ∈
[
−

b2
0

|log b0|
,

b2
0

|log b0|

]
, T1(a+) < T (a+).

In view of what Lemma 4.9 says about the bootstrap regime and the improved bounds of Lemmas 4.9
and 4.10, a simple continuity argument ensures that T1(a+) is attained at the first time t where

|κ+(t)| =
|b(t)|2

2|log(b(t))|
. (5-1)

The fundamental fact used now is the outgoing behavior (4-56), which together with (5-1), ensures that∣∣∣∣dκ+dt
(T1(a+))

∣∣∣∣> 0.

Thus from a standard argument,9 the map[
−

b2
0

|log b0|
,

b2
0

|log b0|

]
→ R∗+, a+ 7→ T1(a+),

is continuous. We may thus consider the continuous map

8 :

[
−

b2
0

|log b0|
,

b2
0

|log b0|

]
→ R, a+→ κ+(T1(a+))

2|log b(T1(a+))|
b2(T1(a+))

.

9See [Cote et al. 2009, Lemma 6] for a complete exposition.
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On the one hand, (5-1) implies

8

([
−

b2
0

|log b0|
,

b2
0

|log b0|

])
⊂ {−1, 1}.

On the other hand, the outgoing behavior (4-56) together with the initialization κ+(0)= a+ ensure that

8

(
−

b2
0

|log b0|

)
=−1 and 8

(
b2

0

|log b0|

)
= 1,

and a contradiction follows.10 This concludes the proof of Proposition 3.5. �

Proof of Theorem 1.1.

Step 1: Finite time blow-up and derivation of the blow-up speed. Choose from Proposition 3.5 initial
data with T1(a+)= T (a+). We first claim that u blows up in finite time,

T = T (a+) <+∞. (5-2)

Indeed, from (4-41),

λ2(1−α) . b3 and thus λ2/3 . λ2(1−α)/3 . b =−λt .

Integrating this differential inequality yields

t . λ1/3(0)− λ1/3(t). 1

and (5-2) follows. The (Ḣ 1
∩ Ḣ 2)×(L2

∩ Ḣ 1) bounds (3-33) and (3-34) on (ε, ∂tε), and hence on (u, ∂t u)
in the bootstrap regime, and standard H 2 local well posedness theory ensures that blow-up corresponds to

λ(t)→ 0 as t→ T (a+).

We now derive the blow-up speed by reintegrating the ODE (4-66) and briefly sketch the proof which
follows as in [Raphaël and Rodnianski 2012].

First recall the standard scaling lower bound

λ(t)≤ C(u0)(T − t),

which implies that the rescaled time is global,

s(t)=
∫ t

0

dτ
λ(τ)
→+∞ as t→ T .

Let
J= G+I

so that from (4-65) we get

J= 64b |log b|
(

1+ O
(

1
|log b|

))
and b =

J

64|log J|

(
1+ O

(
1√
|log J|

))
, (5-3)

10This topological argument is the one-dimensional version of Brouwer’s fixed-point argument used in [Cote et al. 2009].
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and J satisfies from (4-66) the ODE

Js +
J2

128|log J|2

(
1+ O

(
1√
|log J|

))
= 0.

We multiply the above by |log J|2/J2, integrate in time and obtain to leading order that

J=
128(log s)2

s

(
1+ O

(
1√
|log s|

))
that is, −

λs

λ
= b =

2 log s
s

(
1+ O

(
1√
|log s|

))
,

where we used (5-3). Integrating this once more in time yields

− log λ= (log s)2
(

1+ O
(

1√
|log s|

))
and thus

b =−λt = exp
(
−
√
|log λ|

(
1+ O

(
1

|log λ|1/4

)))
.

Integrating this from t to T where λ(T )= 0 yields the asymptotic

λ(t)= (T − t) exp
(
−
√
|log λ(t)|

(
1+ O

(
1

|log λ(t)|1/4

)))
,

which yields (1-10).

Step 2: Energy quantization. It remains to prove (1-9), which can be derived exactly as in [Raphaël and
Rodnianski 2012]; this is left to the reader. This concludes the proof of Theorem 1.1. �

Appendix A: Modulation theory

This appendix is devoted to the proof of Lemmas 3.1 and 3.3. The arguments are standard in the framework
of modulation theory and we briefly sketch the main computations.

Proof of Lemma 3.1. First note that the bounds

‖∇(PB1 − Q)‖L2 + b ‖3PB1 − b(1−χB1)3Q‖L2 . b |log b|

ensure that our initial data are of the form

u0 = Q+ η̃0, u1 = η̃1,

for a small excess of energy in the sense that

‖∇η̃0, η̃1‖L2×L2 . b0|log b0|, ‖∇
2η̃0,∇η̃1‖L2×L2 . b0. (A-1)

Hence the continuity of the flow associated to (1-1) ensures the existence of a time T0 > 0 (uniform in
η̃0, η̃1) for which the solution u to (1-1) with initial data (u0, u1) satisfies on [0, T0] that

sup
[0,T0]

‖∇(u− Q), ∂t u‖L2×L2 . b0|log b0|. (A-2)
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Step 1: Modulation near Q. The nondegeneracy (3Q,8) 6= 0 ensures11 that u admits on [0, T0] a
decomposition

u(t)= (Q+ ε̃(t))λ(t), (A-3)

with
(ε̃(t), χM8)= 0. (A-4)

Moreover, λ ∈ C2([0, T0];R
∗
+
), and noting that η̃0 satisfies

|(η̃0, χM8)|.
b2

0

|log b0|
,

we obtain the bound

|λ(0)− 1|.
b2

0

|log b0|
. (A-5)

We then let b(t)=−λt(t) on [0, T0].

Step 2: Positivity of b. Straightforward computations yield

∂t ε̃(t)=
(
∂t u−

b(t)
λ(t)

3u
)

1/λ(t)
.

Taking the scalar product with χM8, we obtain at the initial time

b(0)= λ(0)

(
(u1)1/λ(0), χM8

)(
(3u0)1/λ(0), χM8

) , (A-6)

where (2-5) together with (A-5) imply(
(u1)1/λ(0), χM8

)
= b0(3Q, χM8)+ O

(
b2

0

|log(b0)|

)
, (A-7)(

(3u0)1/λ(0), χM8
)
= (3Q, χM8)+ O

(
b2

0|log(b0)|
)
. (A-8)

This yields the positivity of b(0) and the positivity of b(t) for small time, together with

b(t)= b0+ O
(

b2
0

|log(b0)|

)
. (A-9)

As b > 0, we may introduce the decomposition

u(t)= (Q+ ε̃)λ(t) = (PB1(b(t))+ ε)λ(t), where ε(t)= ε̃(t)− (PB1(b(t))− Q). (A-10)

Observe from (2-4) and (A-4) that

∀ t ∈ [0, T0], (ε(t), χM8)= 0. (A-11)

The uniqueness of such a decomposition is guaranteed by the (local) uniqueness of (λ, ε̃).

11This is a direct consequence of the implicit function theorem and the smoothness of the flow (1-1).
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Step 3: Smallness of ε. To complete the proof, we obtain smallness of ε in Ḣ 1 and Ḣ 2. To this end, we
note that

ε(0)= (u0)1/λ(0)− PB1(b(0)) =
[(

PB1(b0)

)
1/λ(0)− PB1(b(0))

]
+ (η0+ d+ψ)1/λ(0).

Simple computations based on the estimates of Proposition 2.1 yield the expected result,

‖∇ε(0)‖L2 . b0|log(b0)| and
∥∥∥∥ ε(0)

1+ y4

∥∥∥∥
L2
+ ‖∇

2ε(0)‖L2 .
b2

0

|log(b0)|
. (A-12)

This concludes the proof. �

Proof of Lemma 3.3. The proof of this lemma is divided into two steps. First, given (η0, η1, d+) satisfying
the smallness condition (3-1) for small b0, we prove that b, bs and w satisfy (3-31)–(3-34). Then, we
show that given (b0, η0, η1), we can apply the inverse mapping theorem to d+ 7→ κ+(0) close to 0. The
arguments used are standard and we refer to [Cote et al. 2009] for a detailed proof in a similar setting.

Step 1: Smallness of initial modulation. Given (η0, η1, d+) satisfying the smallness condition (3-1), we
can apply Lemma 3.1. This yields T0 and b, ε, w such that (3-31) holds and

‖∇w(t)‖L2 . b0|log(b0)|, ‖∇
2w(t)‖L2 .

b2
0

|log(b0)|2
. (A-13)

We emphasize that Lemma 3.1 implies in particular that b0/2< b(0) < 2b0 for sufficiently small b0.
As before, we focus now on bounds satisfied initially. We first compute bs(0) using (1-1) and the

orthogonality condition (A-11). Recalling that (∂k
b PB1, χM8)= (∂

k−1
s ε, χM8)= 0 for any integer k, we

get, like for (4-10),

bs[(3PB1, χM8)+ 2b(3∂b PB1, χM8)+ (3ε, χM8)]

= −(9B1, χM8)− (ε, H∗B1
(χM8))+ b(∂sε,3(χM8))+ (N (ε), χM8),

where, denoting by LHS and RHS the two sides at initial time, we compute, for b0 small enough with
respect to M that

|RHS| ≤ C(M)
(

b2
0

|log(b0)|
+ ‖∂sε‖L2(y<M)

)
,
|bs(0)|

2
(3Q, χM8)≤ |LHS|. (A-14)

At the same time, after time-differentiation, we obtain

∂sε(0)= λ(0)∂tε(0)=−bs(0)∂b PB1(b(0))− b(0)3u0+ λ(0)
(
b03PB1(b0)

)
1/λ(0). (A-15)

Observe now from (2-8) that ∥∥∂b PB1(b0)

∥∥
L2(y≤2M) . C(M)b0 ≤

√
b0,

which together with (A-5), (A-9) and (3-1) yields

‖∂sε(0)‖L2(y≤2M) = λ(0)‖∂tε(0)‖L2(y≤2M) .
b2

0

|log b0|
+ |bs(0)|

√
b0, (A-16)
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which together with (A-14) concludes the proof of the initial bound (3-26) on bs .
Then we compute

∂tw(0)= u1−

(
bs(0)
λ(0)

∂b PB1(b(0))+
b(0)
λ(0)

3PB1(b(0))

)
λ(0)
,

so that, introducing (A-15) and previous estimates on b(0), we get∥∥∥∥∂tw(0)+
b(0)
λ(0)

(
(1−χB1(b(0)))3Q

)
λ(0)

∥∥∥∥
L2
. b0| ln(b0)| ≤

√
b0,

and

‖∇∂tw(0)‖L2 .
b2

0

|log b0|
. (A-17)

Together with (A-13), this yields (3-27) and (3-28).
Finally, straightforward computations yield

κ− =
1
2
(ε, ψ)−

1
ζ
(∂sε, ψ)−

bs

2ζ
(∂b PB1, ψ).

Consequently, we apply (3-28), noting that w(t)= (ε(t))λ(t), and (A-15) because of the exponential decay
of ψ to get

|κ−(0)|.
b2

0

|log b0|
. (A-18)

Step 2: Computation of d+. We now claim from an explicit computation that given a+, the initialization
(3-24) can be reformulated in the form

F(d+)= a+, with
∂F
∂d+

∣∣∣∣
d+=0
=

1
2‖ψ‖

2
L2 + O(b0), (A-19)

from which the implicit function theorem concludes the proof of Lemma 3.3.
Let us briefly justify (A-19). We want to study the mapping

V→ R4, d+ 7→ [b(t), bs(t), (ε(0), ψ), (∂sε(t), ψ)],

where V is a neighborhood of 0. To this end, it is necessary to study the dependencies of all initial
parameters on d+. For conciseness, we denote by d differentiation with respect to d+ in what follows.

Computation of (λ(0), ε̃(0)). As a first step in modulation theory, we proved that (λ(0), ε̃(0))=8(u0),
where 8 is a smooth mapping Ḣ 1(RN )→ R× Ḣ 1(RN ) defined on a neighborhood of Q. Due to the
exponential decay of ψ ∈ C∞(RN ) we thus have that λ(0) is a smooth function of d+ with differential
dλ(0)= dλ ∈ R. We have the same result for ε with differential d ε̃(0)= d ε̃ ∈ Ḣ 1(RN ). By definition,
we have

ε̃(0)= u0− Q1/λ,
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so that

d ε̃ = ψ +
dλ
λ(0)

(3Q)1/λ(0).

Computation of b(0). From (A-6), b(0) is a C1 mapping with

db(0)= dλ

[ (
(u1)1/λ(0), χM8

)(
(3u0)1/λ(0), χM8

) + ((32u0)1/λ(0), χM8
)
−
(
(3u1)1/λ(0), χM8

)(
(3u0)1/λ(0), χM8

)2

]

−λ(0)

(
(u1)1/λ(0), χM8

)(
(3ψ)1/λ(0), χM8

)(
(3u0)1/λ(0), χM8

)2 ,

where (A-6) and (A-7) ensure that, for some db ∈ R, we have

db(0)= db+ O(b0).

Computation of ε(0). Next,

ε(0)= ε̃(0)− (PB1(b(0))− Q).

Consequently, (ε(0), ψ) is also a smooth function of d+ with derivative dps1(0) satisfying

dps1(0)= (d ε̃, ψ)− db(0)(∂b PB1(b(0)), ψ).

Replacing d ε̃ by its values, and applying that (3Q, ψ)= 0 together with |λ(0)− 1|. b2
0/|log(b0)|, we

get

(d ε̃, ψ)= ‖ψ‖2L2 + O(b0),

so that

dps1(0)= ‖ψ‖2L2 + O(b0).

Computation of ∂sε(0)+ bs(0)∂b PB1(b(0)). From (A-15),

∂sε(0)=−bs(0)∂b PB1(b(0))− b(0)3u0+ λ(0)
(
b03PB1(b0)

)
1/λ(0) ,

so that (∂sε(0)+ bs(0)∂b PB1(b(0)), ψ) is a smooth function of d+ with derivative

dps2(0)=−db(0)(3u0, ψ)+ dλ
([(

b03PB1(b0)

)
1/λ(0)+

(
b03

2 PB1(b0)

)
1/λ(0)

]
, ψ
)
− b(0)(3ψ,ψ),

where, for the same orthogonality reason (3Q, ψ)= 0, we have

(3u0, ψ)= (3Q, ψ)+ O(b0)= O(b0).

Consequently dps2(0)= O(b0).
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Conclusion. Finally, we have

κ+(0)=
1
2

[
(ε(0), ψ)+

1
√
ζ
(∂sε(0)+ bs(0)∂b PB1(b(0)), ψ)

]
,

and κ+(0) = a+ reduces to a simple one-dimensional equation F(d+) = a+, with F computed as
combination of the above functions so that it is smooth in a neighborhood of 0. Moreover,

dF =
1
2

[
dps1(0)+

1
√
ζ

dps2(0)
]
=

1
2‖ψ‖

2
L2 + O(b0),

and (A-19) is proved. This concludes the proof of Lemma 3.3. �

Appendix B: Coercivity estimates

The aim of this section is to prove the coercivity properties of the quadratic form

B(η, η)= (Bv, v)=
∫

R4
|∂rη|

2
+

∫
R4

Wη2,

where

W (r)= 2V + 3
2 r V ′ =

6
(1+ r2/8)2

−
9
4

r2

(1+ r2/8)3
.

We use the elementary method developed in [Fibich et al. 2006]. The coercivity property of Lemma 4.7
is a consequence of the two following facts. First the index of B on

Ḣ 1
r =

{
u radial

∣∣∣∣ ∫ |∇u|2+
∫

u2

r2 <+∞

}
is at most 2. From standard Sturm–Liouville oscillation theorems, see Theorem XIII.8 [Reed and Simon
1978], this is equivalent to counting the number of zeroes of the solution to{

BU = 0,
U (0)= 1, U ′(0)= 0,

(B-1)

on (0,∞), and this can be analytically reduced to counting the number of zeroes of a Bessel function.
Then we need to show that the orthogonality conditions (η, ψ) = (η,8) = 0 are enough to treat the
two negative directions. Arguing exactly as in [Fibich et al. 2006] — see also [Marzuola and Simpson
2011] — this is equivalent to first inverting the operator B on Ḣ 1

rad, and then showing that B restricted to
Span{B−1ψ,B−18} is negative definite, which is an elementary numerical check. We shall check these
two facts below and refer to [Fibich et al. 2006] for the proofs that this implies the claimed coercivity
property. The proofs there are given for exponentially decaying functions and potentials, but one checks
easily that the decay of the potential |W (r)| ∼ 1/r4 at infinity and |8(r)| ∼ 1/r4 are more than enough
to have all proofs go through.
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Computation of the index of B. We first show that the index of B on Ḣ 1
r is at most 2. We start by noting

that W (r)≥ Ŵ (r), where

Ŵ (r)=−
3
2

r2

(1+ r2/8)3
.

Hence, classical Sturm–Liouville theory ensures that U has less zeros than Û , the unique solution to

−
1
r3

d
dr

[
r3 d

dr
Û
]
+ ŴÛ = 0, Û (0)= 1, Û ′(0)= 0, (B-2)

on (0,∞). Second, we look for Û of the form Û (r) = (2/r2)U (r2/2), with U a sufficiently smooth
function. Denoting by s the new variable r2/2, straightforward calculations yield that U is a solution to

−
d2

ds2 U +W U = 0, U (0)= 0, U ′(0)= 1, (B-3)

on (0,∞), where

W (s)=−
3
2

1
(1+ s/4)3

.

Setting then U (s)=
√

1+ s/4 Ũ (1/
√

1+ s/4), we obtain that U is a solution to (B-3) if and only if Ũ
is a solution to

τ 2 d2

dτ 2 Ũ + τ
d

dτ
Ũ + (96τ 2

− 1)Ũ = 0, Ũ (1)= 0, Ũ ′(1)=−8,

on (0, 1). Hence, Ũ is a combination of Bessel functions: Ũ (τ )= C1 J (1, 4
√

6τ)+C2Y (1, 4
√

6τ).
We compute (C1,C2) and draw the explicit combination with Maple (Figure 1). The computed solution

Ũ has two zeros on (0, 1). Moreover, it diverges at 0 so that Ũ (τ )∼ K/τ close to 0 with K 6= 0, As a

Figure 1. Solution to (B-3) computed by Maple.
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Figure 2. Solution to (B-1) computed by MAPLE.

consequence.

Û (r)∼ 1
4 K 6= 0 when r→∞,

and thus the index of −1+ Ŵ on Ḣ 1
rad is exactly two. Hence the index of B is at most 2.

Choice of the orthogonality conditions. We now invert B. We first check numerically that the solution
U does not vanish at infinity, that is,

lim
r→+∞

U (r) > 0;

see Figure 2.
Hence U is not a resonance — note that if U had been a resonance, we could have removed the

resonance by diminishing a bit the potential and getting a potential with index 2 and no resonance — and
thus from standard ODE arguments [Fibich et al. 2006] there exists unique smooth solution in Ḣ 1rad of

BU =−
1
r3

d
dr

[
r3 d

dr
U
]
+WU = ψ, U ′(0)= 0, (B-4)

on (0,∞), with (1+ r2)U ∈ L∞, and

BU =−
1
r3

d
dr

[
r3 d

dr
U
]
+WU =8, U ′(0)= 0, (B-5)

on (0,∞), with (1+ r2/log r)U ∈ L∞. We denote by B−1ψ and B−18 the respective solutions to these
systems. We recall the explicit formula

8(r)= D3Q(r)=
2− 3r2/4
(1+ r2/8)3

.
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In the remainder of this section we check numerically that the restriction of B to Span(B−1ψ,B−18) is
negative definite, or equivalently:

Lemma. The symmetric matrix B=

[
(B−1ψ,ψ) (B−18,ψ)

(B−18,ψ) (B−18,8)

]
satisfies

(B−1ψ,ψ) < 0 and det B> 0, (B-6)

and is thus negative definite.

Numerical proof. We use standard MATLAB routines for the computation of solutions to (B-4) and
(B-5). We note that we only fixed the initial value for U ′(0). The value U (0) is left open in order to
achieve the expected decay at infinity that characterizes the inverse. To obtain B−1ψ , we first compute
ψ . We obtain that the corresponding eigenvalue is approximately l = −0.5860808922. Because ψ
decays exponentially, we only need to obtain an approximation on a short time-range. We computed
our solutions until Tψ,max = 30. We emphasize here that we use an explicit scheme. As a drawback, the
accumulation of errors tends to make the numerical solution become negative when the exact solution
is exponentially small. Hence, our scheme becomes unstable after time T̃ψ,max = 18. Nevertheless,
we extend our numerical solution by 0 after this time. This induces an exponentially small error. The
pictures in Figure 3 illustrate this computation. On the left-hand side we draw the obtained solution. On
the right-hand side, we draw ψtest(r)= ψ(r) exp(

√
−lr). We observe here that our solution enters the

exponential asymptotic regime before the instability comes into play.
The solution B−1ψ is computed with the extension of ψ . Straightforward ODE analysis shows that

the unique solution decaying fast at infinity behaves like 1/r2 asymptotically. The choice of U (0) is
made with respect to this criterion. Figure 4 illustrates that we obtained a solution with the suitable decay.
As previously, on the left-hand side is a picture of the numerical solution. On the right-hand side we
plot B−1ψtest(r) = r2B−1ψ(r). In the latter computations, this solution is involved in scalar products

Figure 3. Numerical simulations for ψ .
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Figure 4. Numerical simulations for B−1ψ .

with ψ . Hence even if drawn until Tmax = 300, we only need a precise computation of this solution until
TB−1ψ,max = 18.

The last solution B−18 is computed with the same method. In this second case, the expected decay of
the solution is log(r)/r2. Figure 5 illustrates that we obtained a solution with the suitable decay. The
picture on the right-hand side restricts to the time-interval r = 0 . . . 100 because this is the significant
region. In the latter computations, this solution is involved in integrals which converge slowly. Hence, we
compute this solution until TB−18,max = 1000.

We now compute numerically the entries of the matrix B. We first compute (B−18,ψ)= (B−1ψ,8).
The exponential decay of ψ implies that we need to compute the first integral (B−18,ψ) on a shorter
time-interval. Hence, we prefer this computation to the second one. We compute the L2 scalar products
with a standard trapezoidal method. Changing the time-interval and the time-step, the computations are

Figure 5. Numerical simulations for B−18.
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Figure 6. Computations for (B−18,8).

stable up to an error of 10−2. We get the following approximations for the integrals involving ψ :

(B−1ψ,ψ)=−4.63± 10−2 and (B−18,ψ)= 32.65± 10−2.

The last integral is a more involved computation. Indeed, standard real analysis implies that

I (M) :=
∫ M

0
B−18Q(r)8(r)r3dr = (B−18,8)+ err(M),

with a remainder satisfying err(M) = (K + o(1)) ln(M)/M2 for some constant K . This remainder
goes to 0 slowly; we see numerically that our computations have not converged even after integrating
until TB−18,max = 1000 (see Figure 6, red crosses). To improve the rate of convergence we compute an
approximation of coefficient K and subtract the estimated error term of our computations. This yields the
blue circles in Figure 6. In this second computation we obtain a very good rate of convergence. Hence,
we get the approximation (B−18,8)=−574.25± 10−2, which leads to

det(B)= 1591± 10,

concluding the numerical proof of the lemma. �

Appendix C: Some linear estimates

We start by recalling some obvious integration-by-part results:

Lemma C.1. For any N ≥ 3, there exists a constant C for which there holds, for any v ∈ H 1
rad(R

N ),[∫
RN

|v(y)|2

|y|2

]1/2

+ sup
y∈RN

(
|y|(N−2)/2

|v(y)|
)
≤ C

[∫
Rn
|∇v(y)|2

]1/2

. (C-1)

Looking for control on further derivatives, we prove a lemma.
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Lemma C.2 (Hardy inequalities). Let N = 4. Then for all R > 2 and v ∈ H 2
rad(R

N ), we have

∫
|∂yv|

2

y2 .
∫
(1v)2, (C-2)∫

y≤R

|v|2

y4(1+ |log y|)2
.
∫

y≤R

|∂yv|
2

y2 +

∫
y≤2
|v|2, (C-3)∫

R≤y≤2R

|v|2

y4 . log R
∫

y≤R

|∂yv|
2

y2 +

∫
y≤2
|v|2. (C-4)

Proof. Let v be smooth. (C-2) follows from the explicit formula after integration by parts,

∫
(1v)2 =

∫ (
∂yyv+

N − 1
y

∂yv

)2

=

∫
(∂yyv)

2
+ (N − 1)

∫
|∂yv|

2

y2 .

To prove (C-3), let a ∈ [1, 2] be such that

|v(a)|2 ≤
∫

1≤y≤2
|v|2. (C-5)

Let f (y)=−(1/y3(1+ log(y))) ey so that ∇ · f = 1/(y4(1+ |log y|)2), and integrate by parts to get

∫
a≤y≤R

|v|2

y4(1+ log y)2
=

∫
a≤y≤R

|v|2∇ · f

=−

[
|v|2

1+ log(y)

]R

a
+ 2

∫
y≤R

v∂yv

y3(1+ log y)

. |v(a)|2+
(∫

y≤R

|v|2

y4(1+ |log y|)2

)1/2(∫
y≤R

|∂yv|
2

y2

)1/2

. (C-6)

similarly, using f̃ (y)= (1/y3(1− log(y))) ey , we get

∫
ε≤y≤a

|v|2

y4(1− log y)2
=

∫
a≤y≤R

|v|2∇ · f̃

=

[
|v|2

1− log(y)

]a

ε

+ 2
∫

y≤a
v∂yv

1
y3(1− log y)

. |v(a)|2+
(∫

y≤R

|v|2

y4(1+ |log y|)2

)1/2(∫
y≤R

|∂yv|
2

y2

)1/2

. (C-7)

(C-5)–(C-7) now yield (C-3). The last inequality (C-4) is a straightforward variant of [Raphaël and
Rodnianski 2012, Lemma B.1, (B.4)] and is left to the reader. �
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Lemma C.3 (coercivity estimates with H ). Let ψ be the first eigenvector of H. Then there exist c > 0
and M0 ≥ 1 such that for M ≥ M0, there exists δ(M) > 0 such that given u ∈ H 1

rad(R
N ), we have

(Hu, u)≥ c
∫
(∂yu)2−

1
c

[
(u, ψ)2+ (u, χM8)

2], (C-8)∫
(Hu)2 ≥ δ(M)

[∫
(∂yu)2

y2 +

∫
u2

y4(1+ |log y|)2

]
−

1
δ(M)

(u, χM8)
2. (C-9)

Proof. (C-8) is a standard consequence of the coercivity of the linearized energy which admits exactly ψ
as bound state and 3Q as resonance at the origin, the good enough localization of 8 from (2-1) and the
nondegeneracy from (2-2). The detailed proof is left to the reader.

To prove (C-9), we first observe the key subcoercivity property∫
(Hu)2 =

∫
(1u+ V u)2 =

∫
(1u)2− 2

∫
V (∂yu)2+

∫
(1V + V 2)u2

≥ c
[∫

(1u)2+
∫

u2

1+ y6

]
−

1
c

[∫
(∂yu)2

1+ y4 +

∫
u2

1+ y8

]
, (C-10)

where we used the asymptotic value

V (y)=
N (N + 2)(N − 2)

y4

[
1+ O

(
1
y2

)]
as y→+∞.

(C-9) now follows by contradiction. Let M > 0 fixed and consider a sequence un such that∫
(∂yun)

2

y2 +

∫
u2

n

y4(1+ |log y|)2
= 1 (C-11)

and ∫
(Hun)

2
≤

1
n
, (un, χM8)= 0. (C-12)

Then by semicontinuity of the norm, a subsequence of un weakly converges to a solution u∞ ∈ H 1
loc of

Hu∞ = 0. The solution u∞ is smooth away from the origin and hence the explicit integration of the ODE
and the regularity assumption at the origin u∞ ∈ H 1

loc imply that

u∞ = α3Q.

On one hand, the uniform bound (C-11) together with the local compactness of Sobolev embeddings
ensure that, up to a subsequence,∫

(∂yun)
2

1+ y4 +

∫
|un|

2

1+ y8 →

∫
(∂yu∞)2

1+ y4 +

∫
|u∞|2

1+ y8 and (un, χM8)→ (u∞, χM8),

thanks to the χM localization. We thus conclude that

α(3Q, χM8)= (u∞, χM8)= 0

and thus α = 0. On the other hand, the subcoercivity property (C-10), the Hardy control (C-2), (C-3) and
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(C-11), (C-12) ensure that ∫
(∂yun)

2

1+ y4 +

∫
u2

n

1+ y8 ≥ C > 0,

from which

α2
[∫

(∂y3Q)2

1+ y4 +

∫
|3Q|2

1+ y8

]
=

∫
(∂yu∞)2

1+ y4 +

∫
|u∞|2

1+ y8 ≥ C > 0,

and thus α 6= 0. A contradiction follows. This concludes the proof of (C-9) and of Lemma C.3. �

Straightforward computations show that the coercivity estimates with H can be adapted to any of the
operators Hλ yielding, for any λ > 0 and u ∈ H 1

rad(R
N ),

(Hλu, u)≥ c
∫
(∂yu)2−

1
cλ4

[
(u, (ψ)λ)2+ (u, (χM8)λ)

2] (C-13)

for the same c and δ(M) as in Lemma C.3.
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NONCONCENTRATION IN PARTIALLY RECTANGULAR BILLIARDS

LUC HILLAIRET AND JEREMY L. MARZUOLA

In specific types of partially rectangular billiards we estimate the mass of an eigenfunction of energy E in
the region outside the rectangular set in the high-energy limit. We use the adiabatic ansatz to compare
the Dirichlet energy form with a second quadratic form for which separation of variables applies. This
allows us to use sharp one-dimensional control estimates and to derive the bound assuming that E is not
resonating with the Dirichlet spectrum of the rectangular part.

1. Introduction

We study concentration and nonconcentration of eigenfunctions of the Laplace operator in stadium-like
billiards. As predicted by the quantum/classical correspondence, such concentration is deeply linked with
the classical underlying dynamics. In particular, the celebrated quantum ergodicity theorem roughly states
that when the corresponding classical dynamics is ergodic then almost every sequence of eigenfunctions
equidistributes in the high energy limit (see [Schnirelman 1974; Colin de Verdière 1985; Zelditch 1987]
and [Gérard and Leichtnam 1993; Zelditch and Zworski 1996] in the billiard setting for a more precise
statement). In strongly chaotic systems such as negatively curved manifolds, it is expected that every
sequence of eigenfunctions equidistributes. This statement is the quantum unique ergodicity conjecture
(Q.U.E.) and remains open in most cases despite several recent striking results (see for instance [Faure
et al. 2003; Lindenstrauss 2006; Anantharaman 2008; Anantharaman and Nonnenmacher 2007]). On
the other extreme, the Bunimovich stadium, although ergodic, is expected to violate Q.U.E. Indeed, it is
expected that there exist bouncing ball modes, i.e., exceptional sequences of eigenfunctions concentrating
on the cylinder of bouncing ball periodic orbits that sweep out the rectangular region (see [Bäcker et al.
1997] for instance). The existence of such bouncing ball modes is still open and only recently did Hassell
prove that the generic Bunimovich stadium billiard indeed fails to be Q.U.E. (see [Hassell 2010]).

Our work is closely related to the search for bouncing ball modes but proceeds loosely speaking in
the other direction. We actually aim at understanding how strong concentration of eigenfunctions in
the rectangular part cannot be. We thus follow [Burq and Zworski 2005], where it is proved that even
bouncing ball modes couldn’t concentrate strictly inside the rectangular region. This was made precise by

Marzuola was supported in part by a Hausdorff Center Postdoctoral Fellowship at the University of Bonn, in part by an NSF
Postdoctoral Fellowship at Columbia University. He also thanks the MATPYL program, which supported his coming to the
University of Nantes, where this research began. Hillairet was partly supported by the ANR programs NONaa and Methchaos.
MSC2010: primary 35P20; secondary 35Q40, 58J51.
Keywords: eigenfunctions, billiards, nonconcentration.
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Burq, Hassell and Wunsch in [Burq et al. 2007], where the following estimate was proved:

kukL2.W / �E�1
kukL2.�/;

in which kukL2.W / and kukL2.�/ denote the L2 norm of the eigenfunction u in the wings and in the
billiard, respectively.

Our main result for the Bunimovich stadium is the following:

Theorem 1. Let � be a Bunimovich stadium with rectangular part R WD Œ�B0; 0� � Œ0;L0�. We set
W D� nR and denote by † the Dirichlet spectrum of R, i.e.,

† D

�
k2�2

L2
0

C
l2�2

B2
0

; k; l 2 N

�
:

For any "� 0 there exists E0 and C such that if u is an eigenfunction of energy E such that E >E0 and
dist.E; †/ >E�" then the following estimates holds:

kukL2.�/ � CE
5C8"

6 kukL2.W /;

This bound improves on the Burq–Hassell–Wunsch bound provided that " < 1
8

. It is natural that the
smaller " is the better the bound is. Indeed, the condition on the distance between E and † is comparable
to a nonresonance condition and should imply heuristically that u must have some mass in the wing
region. It is quite interesting to have a quantitative statement confirming this heuristics. We will actually
give a more general statement concerning more general billiards (see Theorem 2). In particular we will
consider billiards with smoother boundaries (see Section 2) disregarding the fact that these may not
be ergodic. Here again we expect the bound to be better when the billiard becomes smoother and this
statement is made quantitative in Theorem 2.

The method we propose relies on comparing the Dirichlet energy quadratic form with another quadratic
form arising from the adiabatic ansatz presented in the numerical study of eigenfunctions by Bäcker,
Schubert and Stifter [1997]. This adiabatic quadratic form has also appeared recently in [Hillairet and
Judge 2009] in the study of the spectrum of the Laplacian on triangles. These two quadratic forms are
close provided we do not enter too deeply into the wing region so that the nonconcentration estimate
really takes place in a neighborhood of the rectangle that becomes smaller and smaller when the energy
goes to infinity (see Sections 4.3.3 and 4.6.1). Since the new quadratic form may be addressed using
separation of variables, we will show precise one-dimensional control estimates and then use them to
prove our results. We have separated these one dimensional estimates in an appendix since they may be
of independent interest. Finally, we remark that the method can be applied to quasimodes with some
caution (see Remark 5.2) but there are no reasons to think that the bound we obtain is optimal.

2. The setting

Let L be a function defined on Œ�B0;B1� with the following properties:

- For nonpositive x, L.x/ D L0 > 0.
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W

.�B0; 0/

.�B0;L0/

.B1; 0/

R

�
L.x/

.b0; 0/

Figure 1. An example of a billiard �.

- On .0;B1/, L is smooth, nonnegative and nonincreasing.

- When x goes to B1, L0 has a negative limit (either finite or �1).

- For small positive x, we have the asymptotic expansions

L.x/DL0� cLx C o.x /; L0.x/D�cLx�1
C o.x�1/ (2-1)

for some positive cL and  � 3
2

.

The billiard � is then defined by

� D f.x;y/ j �B0 � x � B1; 0� y �L.x/ g :

See Figure 1 for an example of an applicable billiard. For any b < B1, we will denote by �b WD

�\fx � bg and by Wb WD�\f0� x � bg.
We study eigenfunctions of the positive Dirichlet Laplacian, �, on �. Namely, we study solutions uE

such that
�uE D �

�
@2

x C @2
y

�
uE D EuE and uEj@� D 0;

where E > 0.
We may formulate this equation using quadratic forms. We thus introduce q defined on H 1.�/ by

q.u/ D

Z
�

jruj2dx dy:

The Euclidean Laplacian with Dirichlet boundary condition in � is the unique self-adjoint operator
associated with q defined on H 1

0
.�/. We denote by qb the restriction of q to H 1.�b/ and by �b the

Dirichlet Laplace operator on �b . We will also denote by Db the set of smooth functions with compact
support in �b .

3. Adiabatic approximation

Motivated by the well-known eigenvalue problem on a rectangular billiard and computational results in
[Bäcker et al. 1997], we introduce a second family of quadratic forms ab and compare it to qb .
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For any b < B1 and any u 2 Db , Fourier decomposition in y implies that

u.x;y/D
X

k

uk.x/ sin
�
�k

L.x/
y

�
: (3-1)

Since Z L.x/

0

ˇ̌̌̌
sin
�

k�
y

L.x/

�ˇ̌̌̌2
dy D

L.x/

2

each Fourier coefficient uk is given by

uk.x/ D
2

L.x/

Z L.x/

0

u.x;y/ sin
�
�k

L.x/
y

�
dy:

For such u, we define

ab.u/ D
X
k2N

Z b

�B0

�
ju0k.x/j

2
C

k2�2

L2.x/
juk.x/j

2

�
L.x/

2
dx;

Nb.u/ D
X
k2N

Z b

�B0

juk.x/j
2 L.x/

2
dx:

Observe that for each fixed x, Plancherel’s formula readsX
k2N

juk.x/j
2 L.x/

2
D

Z L.x/

0

ju.x;y/j2 dy;

so that we get Nb.u/D kuk
2
L2.�b/

by integration with respect to x.
Fixing some 0< b0 < B1, and using that L is uniformly bounded above and below on Œ�B0; b0� we

find a constant C such that for any b � b0 and u 2L2.�b/:

C�1
kuk2�b

�

1X
kD1

kukk
2
L2.�B0;b/

� Ckuk2�b
: (3-2)

The quadratic form ab appears as the direct sum of the following quadratic forms ab;k (that can be
defined on the whole function space H 1.�B0; b/):

ab;k.u/ WD

Z b

�B0

�
ju0j2C

k2�2

L2.x/
juj2

�
L.x/

2
dx: (3-3)

Recall that, on an interval I , the standard H 1 norm is defined by

kukH 1 WD
�
ku0k2

L2.I /
Ckuk2

L2.I /

� 1
2 ; (3-4)

so that, for any k and b < B1 and any u 2 C1
0
.�B0; b/ we have

min
�

L.b/ ;
k2�2

L0

�
kuk2

H 1 � ab;k.u/ � max
�

L0 ;
k2�2

L.b/

�
kuk2

H 1 : (3-5)
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The norm a
1
2
b;k

thus defines on H 1.�B0; b/ a norm that is equivalent to the standard H 1 norm.

3.1. Comparing ab and qb. To compare ab and qb , we introduce the following operators D and R

defined on Db by

Ru D
yL0.x/

L.x/
@yu;

Du D @xuCRu:

Using the Plancherel formula for each fixed x and then integrating, we obtain

ab.u/ D

Z
�b

jDuj2Cj@yuj2 dx dy:

from which the following holds for any u; v 2 Db:

ab.u; v/� qb.u; v/D hDu;Dvi � h@xu; @xvi

D h@xu;RviC hRu;Dvi; (3-6)

D h@xu;Rvi C hRu; @xvi C hRu;Rvi: (3-7)

We thus obtain the following lemma.

Lemma 3.1. Let ı be the function defined by

ı.b/ D sup
.0;b�

jL0.x/j C sup
.0;b�

jL0.x/j2:

Then for all u; v 2 Db

jab.u; v/� qb.u; v/j � ı.b/ � q
1
2

b
.u/ � q

1
2

b
.v/:

Remark 3.1. The function ı is continuous on .0;B1/ and ı.b/DO.b�1/ when b goes to 0.

Proof. In (3-7), we use the Cauchy–Schwarz inequality, max.kDuk; k@yuk/� a
1
2

b
.u/, and the fact that

y=L.x/ is uniformly bounded by 1 on �. �

The following corollary is then straightforward.

Corollary 3.2. For any 0 < b < B1 and any u 2 H 1.�/, the linear functional ƒ defined by ƒ.v/ WD
ab.u; v/� qb.u; v/ belongs to H�1.�b/. Moreover

kƒkH�1.�b/
� ı.b/kukH 1.�b/

:

4. Nonconcentration

4.1. Preliminary reduction. Let u be an eigenfunction of q with eigenvalue E. And define the associated
linear functional ƒ using Corollary 3.2.

Integration by parts shows that for any v 2H 1
0
.�b/ we have

qb.u; v/ D E � hu; viL2.�/;
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so that

ab.u; v/�E �Nb.u; v/ D ƒ.v/: (4-1)

We now deal with this equation using the adiabatic decomposition. We thus defineƒk as the distribution
over Db such that, for any v 2 Db ,

ƒk.v/ WDƒ

�
v.x/ sin

�
k�

y

L.x/

��
: (4-2)

Remark 4.1. From now on, u will always denote the eigenfunction that we are dealing with. We will
denote by uk the functions entering in the adiabatic decomposition of u, by ƒ the linear functional
associated with u and by ƒk the one-dimensional linear functionals that are associated with ƒ.

A straightforward computation yields, that for any v 2 Db we have

ab;k.uk ; v/�E �

Z b

�B0

uk.x/v.x/
L.x/

2
dx D ƒk.v/;

where ab;k is the quadratic form defined in (3-3).
An integration by parts then shows that, in the distributional sense in .�B0; b/, we have

�
1

L

d

dx
.Lu0k/ C

�
k2�2

L2
�E

�
uk D

Qƒk ; (4-3)

where the linear functional Qƒk is defined by

Qƒk.v/ WDƒk

�
2

L
� v
�
: (4-4)

Remark 4.2. Since L is not smooth, this definition of Qƒk doesn’t make sense as a distribution. However,
in the next section, we will prove that ƒk actually is in H�1 and, since multiplication by 2=L is a
bounded operator from H 1.�B0; b/ into itself, we thus get that Qƒk is a perfectly legitimate element of
H�1. Moreover, for any b0 there exists C.b0/ such that for any b � b0, and v 2 Db , we have 2

L
v


H 1.�B0;b/
� C.b0/kvkH 1.�B0;b/

:

We denote by Pk the operator that is defined by

Pk.u/ D �
1

L

d

dx
.Lu0/ C

�
k2�2

L2
�E

�
u;

and we try to analyze the way a solution to equation (4-3) on .�B0; b/ may be controlled by its behavior
on .0; b/.

The strategy will depend upon whether k is large or not, but first we have to get a bound on ƒk in
some reasonable functional space of distributions.
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4.2. Bounding ƒk. In this section, we prove that each ƒk is actually in H�1.�B0; b/ and provide a
bound for its H�1 norm.

We first note that, using (3-4), for any F 2H�1.�B0; b/:

kFkH�1.�B0;b/
WD sup

�2Db

jF.�/j

k�kH 1

� sup
�2Db

jF.�/j

k�0kL2

: (4-5)

Using (3-6) in the definition of ƒk — see (4-2) — we obtain

ƒk.v/ D

�
@xu;R

�
v.x/ sin

�
k�

y

L.x/

���
C

�
Ru;D

�
v.x/ sin

�
k�

y

L.x/

���
:

Denote by Ak.v/ the first term on the right and Bk.v/ the second term. By inspection, we have

Ak.v/ WD
k�

2

Z b

0

v.x/
L0.x/

L.x/
Fk.x/ dx and Bk.v/ WD

1

2

Z b

0

v0.x/L0.x/Gk.x/ dx;

where we have set

Fk.x/ WD
2

L.x/

Z L.x/

0

1W �y@xu.x;y/ � cos
�

k�
y

L.x/

�
dy; (4-6)

Gk.x/ WD
2

L.x/

Z L.x/

0

1W �y@yu.x;y/ � sin
�

k�
y

L.x/

�
dy (4-7)

Since u 2H 1.�/, Fk and Gk are L2.0; b/ and we can estimate the H�1 norm of ƒk using them.

Lemma 4.1. For any b0 < B1, and given ƒk and Fk ; Gk defined as above, there exists C D C.�b0
/

such that
kƒkkH�1 � C.kbkFkkL2.0;b/C b�1

kGkkL2.0;b//: (4-8)

Proof. We estimate Ak.v/, using first an integration by parts

Ak.v/ WD �
k�

2

Z b

�B0

v0.x/

�Z x

0

L0.�/

L.�/
Fk.�/ d�

�
dx:

Using the Cauchy–Schwarz inequality and the fact that L0.�/DO.��1/ we haveˇ̌̌̌Z x

0

L0.�/

L.�/
Fk.�/ d�

ˇ̌̌̌
� Cx

� 1
2

C kFkkL2.0;b/:

Inserting into Ak.v/ and using the Cauchy–Schwarz inequality again we get

jAk.v/j � C � .kb /kFkkL2.0;b/ � kv
0
kL2.�B0;b/

;

which gives the claimed bound using (4-5).
Next, the second term is estimated using directly the Cauchy–Schwarz estimate and the fact that

supŒ0;b� jL
0.x/j � Cb�1. We get

jBk.v/j � C � b�1
kGkkL2.0;b/ � kv

0
kL2.�B0;b/

:

That gives the claimed bound using again (4-5). �
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Define F WD 1W @xu and G WD 1W @yu. By definition, Fk.x/ is the Fourier coefficient of the function
F.x; �/ with respect to the Fourier basis�

y 7! cos
�

k�
y

L.x/

��
k2N[f0g

:

Using the Plancherel formula we getX
k�1

Fk.x/
2 L.x/

2
�

Z L.x/

0

jF.x;y/j2dy:

For the same reason, but using this time the sin basis, we haveX
k�1

Gk.x/
2 L.x/

2
D

Z L.x/

0

jG.x;y/j2dy:

Integrating with respect to x and bounding y from above and L.x/ from below uniformly we get:

Lemma 4.2. For any b0 there exists C depending only on the billiard and b0 such that, for any b < b0,X
k�1

kFkk
2
L2.0;b/

� Ck@xuk2
L2.Wb/

; (4-9)

X
k�1

kGkk
2
L2.0;b/

� Ck@yuk2
L2.Wb/

: (4-10)

We now switch to the control estimate. We begin by dealing with the modes for which
k2�2

L2
0

�E �E.

4.3. Large modes.

4.3.1. A control estimate. Equation (4-3) may be rewritten as

�u00k C

�
k2�2

L2.x/
�E

�
uk D hk ; (4-11)

where hk is the element of H�1 defined by

hk WD
Qƒk C

L0

L
u0k (4-12)

The H�1 norm of hk is now estimated as follows:

Lemma 4.3. There exists a constant C WDC.b0/ such that for any b � b0 and any k with k2�2

L2
0

�E �E

the following estimate holds:

khkkH�1.�B0;b/
� C.b0/

�
kbkFkkL2.0;b/C b�1

kGkkL2.0;b/ C b�1
kukkL2.0;b/

�
: (4-13)

Proof. Using Remark 4.2, the norm of Qƒk is uniformly controlled by the norm of ƒk and the latter is
estimated using Lemma 4.1. To estimate the H�1 norm of .L0=L/u0

k
, we first set v D .L0=L/u0

k
and

remark that

v D

�
L0

L
uk

�0
�

�
L00

L
�
.L0/2

L2

�
uk :
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We choose a test function � and estimate

I1 D

Z b

�B0

�
L0

L
uk

�0
� dx:

We perform an integration by parts, use that L0.x/=L.x/�Cb�11x>0, then apply the Cauchy–Schwarz
inequality to getˇ̌̌̌ Z b

�B0

�
L0

L
uk

�0
� dx

ˇ̌̌̌
D

ˇ̌̌̌ Z b

�B0

L0.x/

L.x/
uk.x/�

0.x/ dx

ˇ̌̌̌
� Cb�1

kukkL2.0;b/k�
0
kL2.�B0;b/

:

We then estimate

I2 D

ˇ̌̌̌Z b

�B0

�
L00.x/

L.x/
�
.L0.x//2

L2.x/

�
u.x/�.x/ dx

ˇ̌̌̌
:

We perform an integration by parts, use thatˇ̌̌̌
L00.x/

L.x/
�
.L0.x//2

L2.x/

ˇ̌̌̌
� Cx

�2
C ;

then twice apply the Cauchy–Schwarz inequality to get

I2 � C

Z b

�B0

�Z x

0

�
�2
C ju.�/j d�

�
j�0.x/j dx � Cb�1

kukL2.0;b/k�
0
kL2.0;b/:

The claim follows using (4-5). �

The variational formulation of equation (4-11) is given byZ b

�B0

u0kv
0 dx C

Z b

�B0

�
k2�2

L2.x/
�E

�
ukv dx D hk.v/: (4-14)

Since k2�2=L2
0
�E �E, the left-hand side is a continuous quadratic form on H 1

0
.�B0; b/, so that,

by Lax–Milgram theory, there is a unique vk in H 1
0
.�B0; b/ satisfying (4-11) in the distributional sense.

The following lemma allows us to estimate the L2 norm of this vk .

Lemma 4.4. There exists a constant C depending only on b0 but not on b < b0, k, or E such that, if
E � 1 and k2�2=L2

0
�E �E, the variational solution vk in H 1

0
.�B0; b/ to equation (4-11) satisfies

kvkkL2.�B0;b/
� C.b0/

�
bkFkkL2.0;b/CE�

1
2 b�1

kGkkL2.0;b/CE�
1
2 b�1

kukkL2.0;b/

�
: (4-15)

Proof. Since vk is a variational solution, putting v D vk in (4-14) we getZ b

�B0

jv0k.x/j
2dx C

Z b

�B0

�
k2�2

L2.x/
�E

�
jvk.x/j

2dx D hk.vk/: (4-16)

In the regime we are considering the second integral on the left is positive, so that we obtainZ b

�B0

jv0k.x/j
2dx � jhk.vk/j � khkkH�1kvkkH 1 :
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Since vk is in H 1
0
.�B0; b/, Poincaré’s inequality gives c.b/, a positive continuous function of b defined

for b > �B0 and satisfying Z b

�B0

jv0k.x/j
2dx � c.b/kvkk

2
H 1 :

This gives a constant C depending only on b0 such that, for any 0< b < b0, we have

kvkkH 1 � CkhkkH�1 :

We now use (4-16) again to obtain�
k2�2

L2
0

�E

�Z b

�B0

jvk.x/j
2dx � khkkH�1kvkkH 1 � Ckhkk

2
H�1

with the preceding bound. Using the estimate (4-13) we obtain�
k2�2

L2
0

�E

�1
2

kvkkL2.�B0;b/
� C

�
kbkFkkL2.0;b/C b�1

kGkkL2.0;b/C b�1
kukkL2.0;b/

�
:

We divide both sides by .k2�2=L2
0
�E/

1
2 . The coefficient in front of bkFkkL2.0;b/ is bounded by a

constant that is uniform in k, using the fact that

sup
k2�2=L2

0
�E�E

k2

k2�2=L2
0
�E
D sup

Z�E

L2
0

�2

�
1C

E

Z

�
D

L2
0

�2

�
1C

E

E

�
:

For the two other terms, we use simply that k2�2=L2
0
�E �E. This gives the lemma. �

We can now let wk D uk � vk . By construction, wk is a solution to the homogeneous equation

�w00C

�
k2�2

L2.x/
�E

�
w D 0: (4-17)

Moreover, since both uk and vk satisfy Dirichlet boundary condition at�B0 we have thatwk.�B0/D0.
Since the “potential” part in equation (4-17) is bounded below by E, concentration properties of

solutions may be obtained using convexity estimates.

Lemma 4.5. For any b � b0, any solution w to (4-17) such that w.�B0/D 0 satisfies

b

Z b

�B0

jwj2.x/ dx � .B0C b0/

Z b

0

jwj2.x/ dx:

Proof. Multiplying the equation by w we find

�w00wC

�
k2�2

L2.x/
�E

�
w2
D 0:

It follows that .w2/00 � ˇ2w2; for some positive ˇ (here ˇ2 D 2E).
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Since w.�B0/D 0, using the maximum principle on Œ�B0; ��, we obtain for all �B0 � x � � � b0

w2.x/� w2.�/
sinh.ˇ.xCB0//

sinh.ˇ.�CB0//
:

For any t 2 Œ0; 1�, define x.t/ D �B0C t.B0Cb/ and �.t/D tb. Since for any t we have �B0 � x.t/�

�.t/� b0, we may integrate the preceding relation:Z 1

0

w2.x.t// dt �

Z 1

0

w2.�.t//
sinh.ˇ.x.t/CB0//

sinh.ˇ.�.t/CB0//
dt:

Since sinh is increasing the quotient of sinh is bounded above by 1 and we obtain

b

Z b

�B0

w2.x/ dx � .B0C b/

Z b

0

w2.x/ dx: �

Putting these two lemmas together we obtain:

Proposition 4.6. There exists a constant C depending only on b0 such that for any b � b0, for any k and
E such that k2�2=L2

0
�E �E and E � 1,

kukkL2.�B0;b/
� C

�
b�

1
2 kFkkL2.0;b/CE�

1
2 b�

3
2 kGkkL2.0;b/C b�

1
2 kukkL2.0;b/

�
(4-18)

for C D C.b0/.

Proof. According to Lemma 4.5 we have

kwkkL2.�B0;b/
� Cb�

1
2 kwkkL2.0;b/;

where wk D uk � vk and vk is the variational solution constructed above. Using the reverse triangle
inequality, we obtain

kukkL2.�B0;b/
� Cb�

1
2 kukkL2.0;b/C .C C b

1
2
0 /b
� 1

2 kvkkL2.�B0;b/
:

The claim will follow using estimate (4-15) of Lemma 4.4. Observe that the prefactor of kukkL2.0;b/ is
at first (up to a constant prefactor)

b�
1
2 C b�

1
2 E�

1
2 b�1:

Since E�
1
2 b�1 is uniformly bounded we obtain the given estimate. �

4.3.2. Summing over k. We will now sum the preceding estimates over k. We thus introduce

uC.x;y/ D
X

k2�2=L0�E�E

uk.x/ sin
k�y

L.x/

and prove the following proposition.

Proposition 4.7. There exist b0 and E0 and a constant C depending only on E0 and b0 such that, if u is
an eigenfunction with energy E > E0 and b < b0, then

kuCk
2
L2.R/

� C
�
b2�1

k@xuk2Wb
C E�1b2�3

k@yuk2
L2.Wb/

C b�1
kuk2

L2.Wb/

�
:
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Proof. We square estimate (4-18), sum over k, and use (3-2) and Lemma 4.2. �

Observe that the controlling term in the preceding estimate is supported in the wing region. However,
compared to the usual bounds (as in [Burq et al. 2007]) there is a loss of derivatives since we need @xu

and @yu in the wings.

Corollary 4.8. Let b0 and E0 be fixed. There exists C depending on the billiard b0 and E0 but not on
the eigenfunction nor on b < b0 such that

kuCk
2
L2.R/

� C
�
.b2�1E C b2�3/kuk2

L2.�/
C b�1

kuk2
L2.W /

�
:

Proof. We bound k@xuk2
L2.Wb/

and k@yuk2
L2.Wb/

by Ekuk2
L2.�/

and use the fact that the norm over Wb

is less than the norm over W . �

It remains to choose b in a clever way to obtain the desired bound.

4.3.3. Optimizing b. We will choose b to be of the form M�1E�˛ for some constants M and ˛ to be
chosen. As long as ˛ is positive, there is some large E0 such that for any E �E0 then b DME�˛ < b0

so that we can use the preceding proposition.
We obtain

kuCk
2
L2.R/

� C
�
.M 1�2E1�˛.2�1/

C E�˛.2�3//kuk2
L2.�/

C ME˛
kuk2

L2.W /

�
: (4-19)

It remains to make good choices to obtain the following proposition.

Proposition 4.9. There exists E0 and C depending only on the billiard such that for any u eigenfunction
with energy E >E0 the following holds:

kuCk
2
L2.R/

�
1
4
kuk2

L2.�/
C CE

1
2�1 kuk2

L2.W /
(4-20)

Proof. We choose ˛ WD 1=.2 � 1/ and M such that CM 1�2 D
1
8

. For E large enough, E�˛.2�3/

goes to zero. It is thus bounded by 1=.8C / for E large enough. Substituting in (4-19) we get (4-20). �

4.4. Small modes. We now consider modes for which k2�2=L2
0
�E �E, and this time we rewrite the

equation Pk.uk/Dƒk in the form
�u00k � zkuk D hk ; (4-21)

in which we have set zk WDE � k2�2=L2
0

and

hk WD
Qƒk C

L0

L
u0k C

k2

�2

�
1

L2
0

�
1

L2

�
uk :

4.4.1. The control estimate. Since zk ��E we can use the results of the Appendix to control the term
kukkL2.�B0;b/

. To do so, we need to estimate the norm of hk in H�1.�B0; b/.

Lemma 4.10. There exists some constant C depending only on b0 such that, for any b � b0 and any k

such that k2�2=L2
0
�E �E, the following holds:

khkkH�1.�B0;b/
�C

�
kbkFkkL2.0;b/Cb�1

kGkkL2.0;b/C .b
�1
C k2bC1/kukkL2.0;b/

�
: (4-22)
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Proof. From the definition,

hk D
Qƒk C

L0

L
u0k C

k2

�2

�
1

L2
0

�
1

L2

�
uk

and estimate each term separately. The first term is estimated using Lemma 4.1 and Remark 4.2. The
second is estimated as in the proof of Lemma 4.3. The same method applies to estimate the third term.
We introduce

I3 D

ˇ̌̌̌Z b

�B0

�
1

L2
0

�
1

L2.x/

�
uk.x/�.x/ dx

ˇ̌̌̌
;

and observe that the quantity in parentheses is O.x

C/. Integrating by parts and using the Cauchy–Schwarz

inequality twice gives
I3 � CbC1

k�0kL2.0;b/kukkL2.0;b/:

Using the definition of the H�1 norm (see (4-5)) and putting these estimates together yields the
lemma. �

For any E 2 R, define

�.E/ WDmin
�ˇ̌̌̌

E �
k2�2

L2
0

�
l2�2

B2
0

ˇ̌̌̌
; .k; l/ 2 N�N

�
:

Remark 4.3. Taking l D 1 in the definition shows that, for E large, we have

�.E/ < c
p

E (4-23)

for some constant c.

Lemma 4.11. For any ˇ > 0, there exists some c such that the following holds. For any k such that
zk D E � k2�2=L2

0
� ˇ2,

jsin.B0
p

zk/j � c �
�.E/
p

zk

:

Proof. First we use that there exists some c such that

jsin xj � c dist.x; �Z/ for all x 2 R:

We denote by lk the integer such that

dist
�
p

zk ;
�

B0

Z

�
D

ˇ̌̌̌
p

zk �
lk�

B0

ˇ̌̌̌
;

so that we have

ˇ̌
sin.B0

p
zk/
ˇ̌
� c

ˇ̌̌̌
p

zk �
lk�

B0

ˇ̌̌̌
� c

zk � l2
k
�2=B2

0
p

zk C lk�=B0

� c

E �
k2�2

L2
0

�
l2
k
�2

B2
0

p
zk

;

where, for the last bound, we have used the Lemma 4.12 below.
The claim follows by the definition of �.E/. �
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Lemma 4.12. Fix ˛ > 0 and denote by l the (step-like) function on Œ0;1/ defined by

j�� l.�/˛j D dist.�; ˛Z/

Then there exists some C such that

�C l.�/˛ � C�: for all � 2 Œ0;1/:

Proof. Define f by

f .�/ D
�C l.�/˛

�
:

Since l vanishes on Œ0; ˛=2�, we have f .�/D 1 on this interval. Next, f tends to the limit 2 when � goes
to infinity. Finally, on Œ˛=2;M � we have

f .�/ D 1C
l.�/

�
˛ � 1C

2M C 1

˛
: �

Putting these estimates together, we get:

Proposition 4.13. There exists b0 and E0 and a constant C WD C.b0;E0/ such that the following holds.
For any E >E0, for any k such that k2�2=L2

0
�E �E and for any b < b0, we have the estimate

kukkL2.�B0;b/
�C

E
1
2

�.E/

�
E

1
2 bC

1
2 kFkkL2.0;b/Cb�

1
2 kGkkL2.0;b/C.1 C EbC2/b�

1
2 kukkL2.0;b/

�
:

(4-24)

Proof. For any k we let zk DE � k2�2=L2
0

and use the estimates of the appendix combined with the
bound on hk given by Lemma 4.10. For k such that zk corresponds to estimates (A-10) and (A-12) of
Theorem 3 we obtain

kukkL2.�B0;b/
� C

�
b

1
2 khkkH�1.�B0;b/

C b�
1
2 kukkL2.0;b/

�
� C

�
kbC

1
2 kFkkL2.0;b/C b�

1
2 kGkkL2.0;b/C .b


C k2bC2

C 1/b�
1
2 kukkL2.0;b/

�
:

We now use that k DO.E
1
2 / in the regime we are considering. We also remark that b Ck2bC2C1D

O.1CEbC2/.
In the opposite case (for k such that zk corresponds to estimate (A-11)), we have to add a global

jsin.B0
p

zk/j
�1 prefactor. Using Lemma 4.11, we have

jsin.B0
p

zk/j
�1
� C

p
zk

�.E/
� C

E
1
2

�.E/
:

We thus obtain that, for any k,

kukkL2.�B0;b/

� C �max
�

1;
E

1
2

�.E/

� �
E

1
2 bC

1
2 kFkkL2.0;b/C b�

1
2 kGkkL2.0;b/C .1CEbC2/b�

1
2 kukL2.0;b/

�
:

Using (4-23), for large E we have E1=2=�.E/ bounded from below, so that the claim follows. �
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4.5. Summing over k. We use the estimates of the preceding sections to obtain a control on ku�k2L2.R/

in which we have set

u�.x;y/ D
X

k2�2=L0�E�E

uk.x/ sin
�

k�y

L.x/

�
:

Proposition 4.14. There exists b0 and E0 and a constant C depending only on E0 and b0 such that if u

is an eigenfunction with energy E > E0 and b < b0, then

ku�k
2
L2.R/

� C
E

�.E/2

�
Eb2C1

k@xuk2
L2.W /

C b2�1
k@yuk2

L2.W /
C .1CEbC2/2b�1

kuk2
L2.W /

�
:

Proof. We square (4-24) and sum with respect to k. The Lemma 4.2 controls
P
kFkk

2 and
P
kGkk

2.
Plancherel formula takes care of

P
kukk

2. We also use as before that the norm over Wb is smaller than
the norm over W . �

As for the large mode case, we get a corollary using the fact that k@xuk2 and k@yuk2 are bounded
above by Ekuk2

L2.�/
.

Corollary 4.15. There exists b0 and E0 and a constant C depending only on E0 and b0 such that if u is
an eigenfunction with energy E > E0 and b < b0, then

ku�k
2
L2.R/

� C

��
E3

�.E/2
b2C1

C
E2

�.E/2
b2�1

�
kuk2

L2.�/
C .1CEbC2/2

Eb�1

�.E/2
kuk2

L2.W /

�
:

4.6. A nonresonance condition. We now want to make the previous estimates explicit with respect to
E and b so that we can use a similar optimization procedure as for the large modes case. We thus impose
some condition on �.E/. Namely, for any "� 0, we introduce the set

Z" WD
˚
E 2 R j �.E/� c0E�"

	
D

�
E 2 R

ˇ̌̌ ˇ̌̌̌
E �

k2�2

L2
0

�
l2�2

B2
0

ˇ̌̌̌
� c0E�" for k; l 2 N

�
:

In other words, the set Z" consists in energies that are far from the Dirichlet spectrum of the rectangle
Œ�B0; 0� � Œ0;L0�. It is natural to say that such energies are not resonating with the rectangle. The
coefficient c0 which is irrelevant when " > 0 has been chosen in such a way that Weyl’s law for the
rectangle implies that Z0 is not empty. Note however that, although expected, it is not clear that there
actually are eigenvalues in Z0, nor for that matter in Z".

Once " is fixed, the estimate of the Corollary 4.15 becomes

ku�k
2
L2.R/

� C
�
.b2C1E3C2"

C b2�1E2C2"/ kuk2
L2.�/

C .1CEbC2/2b�1E1C2"
kuk2

L2.W /

�
:

(4-25)

4.6.1. Optimizing b. As before we let b D ME�˛ for some positive ˛ and try to optimize the bound.

Proposition 4.16. Define ˛ by

˛ Dmax
�

3C 2"

2 C 1
;

2C 2"

2 � 1

�
:
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There exists E0 and C such that for any u eigenfunction with energy E in Z" such that E > E0, the
following holds:

ku�k
2
L2.R/

�
1
4
kuk2

L2.�/
C C �E1C2"C˛

� kuk2
L2.W /

: (4-26)

Proof. With the given choice of ˛ it is possible to choose M so that the prefactor of kuk2
L2.�/

is 1
4

for E

large enough. The claim follows remarking that the definition of ˛ implies

˛ �
3

2 C 1
>

1

 C 2
;

so that the prefactor .1CEbC2/2 is uniformly bounded above. �

5. Nonconcentration estimate

We now put all the estimates together to obtain the following theorem.

Theorem 2. Fix ", and define � by

� WDmax
�

2C  C 2. C 1/"

2 C 1
;
1C 2 C 4"

4 � 2

�
:

There exists E0 and C such that any eigenfunction u of � with energy E in Z" such that E >E0 satisfies:

kukL2.�/ � C �E�
kukL2.W /:

Proof. We first remark that whatever the exponent ˛ is we always have 1 C 2" C ˛ � 1> 1
2�1

so that
the exponent for the small modes is always larger than the exponent for the large modes. Thus, adding
the estimates from propositions 4.9 and 4.16, we obtain

kuk2
L2.R/

�
1
2
kuk2

L2.�/
C CE1C2"C˛

kuk2
L2.W /

:

Since kuk2
L2.R/

D kuk2
L2.�/

�kuk2
L2.W /

we get

1
2
kuk2

L2.�/
� .1CCE1C2"C˛/kuk2

L2.W /

When E is large the constant 1 can be absorbed in the term with a power of E. The claim follows by
computing 1C 2"C˛ for both possible choices of ˛ and taking square roots. �

We state as a corollary the corresponding statement for the Bunimovich billiard (see Theorem 1).

Corollary 5.1. In the Bunimovich stadium, for any " � 0 there exists E0 and C such that if u is an
eigenfunction of energy E in Z" such that E >E0 then the following estimate holds:

kukL2.�/ � CE
5C8"

6 kukL2.W /:

Proof. We let  D 2, so ˛ D max
�

4C6"

5
;
5C8"

6

�
. Since 4C6"

5
�

5C8"

6
for any nonnegative ", the

proof is complete. �
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Remark 5.1. The bounds in [Burq et al. 2007] gives a similar control with 1 as the exponent of E. Our
bound thus gives a better estimate as long as " < 1

8
. As it has been recalled in the introduction, it is quite

natural that the nonresonance condition allows to get better bounds.

Remark 5.2. We could deal with quasimodes by adding an error term to ƒ that is controlled by some
negative power of E. There will be mainly two differences in the analysis. First the second term ƒ will
not have support away from the rectangle anymore and second, in the optimization process, we will have
to take care of the new error term (which will possibly change the range of applicable exponents).

Remark 5.3. By adding the estimates in propositions 4.7 and 4.14, we get a different control estimate,
where the control still is in the wings but now with a loss in derivatives. We haven’t tried to optimize this
bound.

Appendix: One-dimensional control estimates

The aim of this appendix is to provide a control estimate for the equation

�u00� z �u D h

on Œ�B0; b� of the form

kukL2.�B0;0/
� C1khkH�1.�B0;b/

C C2kukL2.0;b/;

in which we want an explicit dependence of the constants C1 and C2 on z and b. It is now standard (see
[Burq and Zworski 2005]) that if b is fixed then we can choose C1 and C2 to be independent of z but
what we need is an estimate when b goes to 0.

We first need a few preparatory lemmas.

Lemma A.2. For any " > 0, there exists a constant C WD C."/ such that for any b, for any h 2

H�1.�B0; b/ and any z such that z � .1� "/�2=b2, there exists a solution vp 2H 1
0
.0; b/ to

�v00p � zvp D h;

in D0.0; b/ and
kvpkL2.0;b/ � CbkhkH�1.�B0;b/

: (A-1)

Proof. First we note that h, when restricted to .0; b/ also belongs to H�1.0; b/ and that khkH�1.0;b/ �

khkH�1.�B0;b/
. The proof follows from a standard resolvent estimate since, on .0; b/, the bottom of the

spectrum of the self-adjoint operator v 7! �v00 with Dirichlet boundary condition is �2=b2. We include
it for the convenience of the reader. We decompose vp in Fourier series:

vp.x/ D
X
k�1

ak sin
�

k�

b
x
�
:

We have

h.x/ D
X
k�1

�
k2�2

b2
� z

�
ak sin

�
k�

b
x
�
I
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hence

khk2
H�1.0;b/

D

X
k�1

�
k2�2=b2� z

�2
k2�2=b2

ja2
k j

or

khk2
H�1.0;b/

� �2b�2

 
inf
k�1

�
1�

zb2

k2�2

�2

�2k2

!
kvpk

2
H 1.0;b/

� c�2b�2
kvpk

2
L2.0;b/

:

The claim follows since the inf is bounded away from zero in the regime we are considering. �

Lemma A.3. Given z � .1� "/�2=b2, let w 2H 1
0
.�B0; b/ be a solution to

�w00� zw D 0

in D0 ..�B0; b/ n f0g/. Then there exists a constant A such that w D AG, in which the function G is
defined by

G.x/ D

8̂̂<̂
:̂

sin.
p

z.xCB0//
p

z

sin.
p

zb/
p

z
if x < 0;

sin.
p

z.b�x//
p

z

sin.
p

zB0/
p

z
if x > 0:

(A-2)

Proof. Let w be such a function then necessarily there exist two constants A˙ such that

w.x/ D

8̂̂<̂
:̂

A�
sin.
p

z.xCB0//
p

z
if x < 0;

AC
sin.
p

z.b�x//
p

z
if x > 0:

By assumption w 2H 1 and hence is continuous at 0, so

A�
sin.
p

zB0/
p

z
D AC

sin.
p

zb/
p

z
:

In the regime we are considering sin.
p

zb/=
p

z ¤ 0, hence we can divide by this expression and express
A� in terms of AC. The claim follows. �

We finish these preparatory lemmas by establishing the control estimate for multiples of G.

Lemma A.4. (1) For ˇ such that 0 < ˇ � �=B0, there exists B1 D B1.ˇ/ and C WD C.ˇ/ such that,
for any z � ˇ2 and any b < B1, the following estimate holds:

kGkL2.�B0;0/
� Cb�

1
2 kGkL2.0;b/: (A-3)

(2) For any ˇ; " > 0 there exists B1 WD B1.ˇ/ and C WD C.ˇ; "/ such that, for any b � B1 and
ˇ2 � z � .1� "/�2=b2, the following estimate holds:

kGkL2.�B0;0/
� C

b�
1
2

sin.
p

zB0/
kGkL2.0;b/: (A-4)
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Proof. (1) We first assume that z < �Z2
0

for some positive Z0. We set z D�!2 and computeZ 0

�B0

jG.x/j2 dx D
sinh2.!b/

!2

Z 0

�B0

sinh2.!.B0Cx// dx;

Z b

0

jG.x/j2 dx D
sinh2.!B0/

!2

Z b

0

sinh2.!.b�x// dx:

By a straightforward change of variables we getZ 0

�B0

jG.x/j2 dx D
sinh2.!b/

!3

Z !B0

0

sinh2.�/ d�;

Z b

0

jG.x/j2 dx D
sinh2.!B0/

!3

Z b

0

sinh2.�/ d�:

We set F.X / WD

R X
0 sinh2.�/ d�

sinh2.X /
, so that we finally obtain

Z 0

�B0

jG.x/j2 dx D
F.!B0/

F.!b/
�

Z b

0

jG.x/j2 dx:

It is straightforward that F.X / is positive, tends to 1 at infinity and that F.X /=X tends to 1
3

at 0. As a
consequence, there exists some C.Z0/ such that, for any z < �Z2

0
,Z 0

�B0

jG.x/j2 dx � C max.1; .!b/�1/

Z b

0

jG.x/j2 dx;

For b < B1 and ! > Z0, we have max.1; .!b/�1/ � max.1; !�1/b�1 � Cb�1 which gives the claim
for this range of parameters.

We now assume that we have �Z2
0
< z < ˇ2. We haveZ 0

�B0

jG.x/j2 dx D

ˇ̌̌̌
sin.
p

zb/
p

z

ˇ̌̌̌2 Z 0

�B0

ˇ̌̌̌
sin.
p

z.xCB0//
p

z

ˇ̌̌̌2
dx

D b2

ˇ̌̌̌
sin.
p

zb/
p

zb

ˇ̌̌̌2 Z 0

�B0

ˇ̌̌̌
sin.
p

z.xCB0//
p

z.xCB0/

ˇ̌̌̌2
.xCB0/

2 dx � Cb2;

where the constant C comes from the fact that the function sin.w/=w is continuous and its argument
belongs to a fixed compact set. On the other hand, by a simple change or variables we haveZ b

0

jG.x/j2 dx D

ˇ̌̌̌
sin.
p

zB0/
p

z

ˇ̌̌̌2 Z b

0

ˇ̌̌̌
sin.
p

zx/
p

z

ˇ̌̌̌2
dx � cB2

0

b3

3
;

in which c is given by

c D

ˇ̌̌̌
sin.
p

zB0/
p

zB0

ˇ̌̌̌2
inf

0�x�B1

ˇ̌̌̌
sin.
p

zx/
p

zx

ˇ̌̌̌2
:
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Using that sin.w/=w is continuous and does not vanish on .�1; �/ and choosing B1 accordingly we
obtain the first bound.

(2) We first use homogeneity and prove the bound for QG WD zG. We haveZ 0

�B0

ˇ̌
QG.x/

ˇ̌2
dx D

ˇ̌
sin.
p

zb/
ˇ̌2 Z 0

�B0

ˇ̌
sin.
p

z.xCB0//
ˇ̌2

dx � B0 jsin.X /j2 ;

in which we have set X WD
p

zb. On the other hand we haveZ b

0

ˇ̌
QG.x/

ˇ̌2
dx D

ˇ̌
sin.
p

zB0/
ˇ̌2 Z b

0

ˇ̌
sin.
p

zx/
ˇ̌2

dx D b �
ˇ̌
sin.
p

zB0/
ˇ̌2
�

1

X

Z X

0

jsin.�/j2d�;

with the same X . Under the assumptions, X belongs to a compact subinterval of Œ0; �/. Since on this
interval the function

X 7!
1

X jsin.X /j2

Z X

0

jsin.�/j2d�

is continuous, the claim follows. �
Proposition A.5. There exist ˇ and B1 WD B1.ˇ/, such that if b � B1 and v 2H 1

0
.�B0; b/ satisfies

�v00� zv D h;

with h that vanishes on .�B0; 0/, then the following estimates hold:

(1) If z � ˇ2, then

kvkL2.�B0;0/
� C1

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kvkL2.0;b/

�
; (A-5)

(2) If ˇ2 � z �
1

b2
,

kvkL2.�B0;0/
� C1

�
b

1
2

jsin.B0

p
z/j
khkH�1.�B0;b/

C
b�

1
2

jsin.B0

p
z/j
kvkL2.0;b/

�
; (A-6)

(3) If 1

b2
� z then

kvkL2.�B0;0/
� C3

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kvkL2.0;b/

�
: (A-7)

Proof. In the first two cases, we have z � 1
b2 <

�2

b2 . We may thus consider vp as given by Lemma A.2 and
define Qvp by extending vp by 0 for negative x. Observe that w WD v� Qvp is in H 1

0
.�B0; b/ and satisfies

�w00� zw D 0

in D..�B0; b/ n f0g/ so that v� Qvp DAG for some A according to Lemma A.3. Using Lemma A.4 we
obtain in the first case

kv� QvpkL2.�B0;0/
� Cb�

1
2 kv� QvpkL2.0;b/:

We use the triangle inequality on the right-hand side and the fact that Qvp is 0 for negative x and coincide
with vp for positive v. We obtain

kvkL2.�b0;0/
� Cb�

1
2

�
kvkL2.0;b/ C kvpkL2.0;b/

�
:
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The claim then follows from the estimate on kvpkL2.0;b/ in Lemma A.2. We prove the second case by
following the same argument, inserting the corresponding bound for G.

The third case will follow the same lines but we will introduce a different particular solution vp,
following then even more closely the proof of [Burq and Zworski 2005]. We set �D

p
z.

Denote by H the unique L2 function on .�B0; b/ that vanishes on .�B0; 0/ and such that H 0 D h in
the distributional sense. The L2 norm of H is related to the H�1 norm of h by the relation

kH �

�Z b

0

H.y/ dy

�
kL2.�B0;b/

D khkH�1.�B0;b/
:

The Cauchy–Schwarz inequality then implies that

kHkL2.�B0;b/
� .1C b

1
2 /�1
khkH�1.�B0;b/

: (A-8)

Set

vp.x/ D

Z x

�B0

sin.�.x�y//

�
H 0.y/ dy:

Then vp satisfies
�v00p ��

2vp D H 0

in D0.�B0; b/ and vp.�B0/D 0 but the boundary condition need not be satisfied at b. We thus have

v.x/ D vp.x/� vp.b/
sin.�.xCB0//

sin.�.B0C b//
:

The function v� vp is thus a multiple of sin.�.xCB0//.
We have Z 0

�B0

ˇ̌
sin.�.xCB0//

ˇ̌2
dx � B0

and Z b

0

jsin.�.xCB0//j
2 dx �

1

2

�
b�

1

2�

�
:

Hence, in the regime under consideration we have

kv� vpkL2.�B0;b/
� Cb�

1
2 kv� vpkL2.0;b/: (A-9)

We perform an integration by parts in vp and observe that the boundary contributions vanish because
H vanishes near �B0 and sin.�.y �x// vanishes at y D x.

Finally, we obtain

vp.x/ D

Z x

�B0

cos.�.x�y//H.y/ dy:

It follows that vp is identically 0 on .�B0; 0/ and that, on .0; b/, it satisfies

jvp.x/j � kHkL2.�B0;b/

p
x:
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Squaring and integrating, we get

kvpkL2.0;b/ � bkHkL2.�B0;b/
:

Using the triangle inequality in (A-9) and inserting this bound, the result follows for b� 1
2

using (A-8). �

In the paper, we will need to relax the condition that v.b/ D 0. This can be done using a standard
construction related to a commutator method. We will get the following

Theorem 3. There exist ˇ and four constants B1;C1;C2;C3 depending only on ˇ such that the following
holds. For any b � B1, for any function u in H 1.�B0; b/ that satisfies

�u00� zu D h;

with h 2 H�1.�B0; b/ and such that u.�B0/ D 0 and h vanishes on .�B0; 0/. Then, the following
estimates hold:

(1) If z � ˇ2, then

kukL2.�B0;0/
� C1

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kukL2.0;b/

�
: (A-10)

(2) If ˇ2 � z �
1

b2
, then

kukL2.�B0;0/
� C1

�
b

1
2

jsin.B0

p
z/j
khkH�1.�B0;b/

C
b�

1
2

jsin.B0

p
z/j
kukL2.0;b/

�
: (A-11)

(3) If 1

b2
� z, then

kukL2.�B0;0/
� C3

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kukL2.0;b/

�
: (A-12)

Proof. Define a smooth cutoff function �1 such that �1.x/ is identically 1 if x � 1
2

and identically 0 if
x � 1 and let �b be the function x 7! �1.x=b/. Define v WD �bu then v 2H 1

0
.�B0; b/ and satisfies

�v00� zv D h C 2.�0bu/0� �00bu:

The right-hand side vanishes on .�B0; 0/ so that, in order to use Proposition A.5, we have to estimate its
H�1 norm. The strategy is the same as in the proofs of Lemmas 4.3 and 4.10.

An integration by parts followed by the use of the Cauchy–Schwarz inequality givesˇ̌̌̌Z B1

�B0

.�0bu/0�

ˇ̌̌̌
� k�0ukL2.0;b/k�

0
kL2 �

C

b
kukL2.0;b/k�

0
kL2 :

Thus,

k.�0bu/0kH�1 �
C

b
kukL2.0;b/:

The third term can be estimated using the same method. Indeed,ˇ̌̌̌Z
�00bu�

ˇ̌̌̌
D

ˇ̌̌̌Z b

0

�Z x

0

�00b.y/u.y/ dy

�
�0.x/ dx

ˇ̌̌̌
� k

Z x

0

�00b.y/u.y/ dykL2.0;b/k�
0
kL2 :
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Using again Cauchy–Schwarz inequality and the fact that j�00
b
.y/j � Cb�2 we getˇ̌̌̌Z x

0

�00b.y/u.y/ dy

ˇ̌̌̌
� Cb�2

kukL2.0;b/

p
x:

We obtainZ x

0

�00b.y/u.y/ dy


L2.0;b/

� Cb�2
kukL2.0;b/k

p
xkL2.0;b/ � Cb�1

kukL2.0;b/:

It follows that

kh C 2.�0bu/0� �00bukH�1.�B0;b/
� khkH�1.�B0;b/

C Cb�1
kukL2.0;b/:

We obtain the theorem by plugging this bound into the estimates of the Proposition A.5. �
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GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING
QUINTIC NLS IN THREE DIMENSIONS

ROWAN KILLIP AND MONICA VIS, AN

We revisit the proof of global well-posedness and scattering for the defocusing energy-critical NLS in
three space dimensions in light of recent developments. This result was obtained previously by Collian-
der, Keel, Staffilani, Takaoka, and Tao.

1. Introduction

The defocusing quintic nonlinear Schrödinger equation,

iut +1u = |u|4u, (1-1)

describes the evolution of a complex-valued function u(t, x) of spacetime Rt × R3
x . This evolution

conserves energy:

E(u(t)) :=
∫

R3

1
2 |∇u(t, x)|2+ 1

6 |u(t, x)|6 dx . (1-2)

By Sobolev embedding, u(0) has finite energy if and only if u(0) ∈ Ḣ 1
x (R

3), which is the space of
initial data that we consider. This is also a scale-invariant space; both the class of solutions to (1-1) and
the energy are invariant under the scaling symmetry

u(t, x) 7→ uλ(t, x) := λ1/2u(λ2t, λx). (1-3)

For this reason, the equation is termed energy-critical.
A function u : I ×R3

→ C on a nonempty time interval I 3 0 is called a strong solution to (1-1) if it
lies in the class C0

t Ḣ 1
x (K ×R3)∩ L10

t,x(K ×R3) for all compact K ⊂ I , and obeys the Duhamel formula

u(t)= ei t1u(0)− i
∫ t

0
ei(t−s)1

|u(s)|4u(s) ds, (1-4)

for all t ∈ I . We say that u is a maximal-lifespan solution if the solution cannot be extended (in this
class) to any strictly larger interval.

Our main result is a new proof of the following:

The first author was partially supported by NSF grant DMS-1001531. The second author was partially supported by the Sloan
Foundation and NSF grant DMS-0901166. This work was completed while the second author was a Harrington Faculty Fellow
at the University of Texas at Austin.
MSC2010: 35Q55.
Keywords: energy critical, nonlinear Schrödinger.
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Theorem 1.1 (global well-posedness and scattering). Let u0 ∈ Ḣ 1
x (R

3). Then there exists a unique
global strong solution u ∈ C0

t Ḣ 1
x (R×R3) to (1-1) with initial data u(0) = u0. Moreover, this solution

satisfies ∫
R

∫
R3
|u(t, x)|10 dx dt ≤ C

(
‖u0‖Ḣ1

x

)
. (1-5)

Further, scattering occurs: (i) there exist asymptotic states u± ∈ Ḣ 1
x such that∥∥u(t)− ei t1u±

∥∥
Ḣ1

x
→ 0 as t→±∞ (1-6)

and (ii) for any u+ ∈ Ḣ 1
x (or u− ∈ Ḣ 1

x ) there exists a unique global solution u to (1-1) such that (1-6)
holds.

Theorem 1.1 was proved by Colliander, Keel, Staffilani, Takaoka, and Tao in the ground-breaking
paper [Colliander et al. 2008]. The key point is to prove the spacetime bound (1-5); scattering is an easy
consequence of this. Note also that the solution described in Theorem 1.1 is in fact unique in the larger
class of C0

t Ḣ 1
x functions obeying (1-4); this unconditional uniqueness statement is proved in [Colliander

et al. 2008, §16] by adapting earlier work.
The paper [Colliander et al. 2008] advanced the induction on energy technique, introduced by Bourgain

in [1999], and presaged many recent developments in dispersive PDE at critical regularity. The argument
may be outlined as follows: (i) If a bound of the form (1-5) does not hold, then there must be a minimal
almost-counterexample, that is, a minimal-energy solution with (prespecified) enormous spacetime norm.
(ii) By virtue of its minimality, such a solution must have good tightness and equi-continuity properties.
(iii) To be consistent with the interaction Morawetz identity such a solution must undergo a dramatic
change of (spatial) scale in a short span of time. (iv) Such a rapid change is inconsistent with simultaneous
conservation of mass and energy.

As just described, the argument appears to be by contradiction, but this is not the case. In fact, it is
entirely quantitative, showing that in order to achieve such a large spacetime norm, the solution must
have at least a certain amount of energy. The energy requirement diverges as the spacetime norm diverges
and so yields an effective bound for the function C appearing in (1-5). This style of argument adapts
also to other equations and dimensions; see, for example, [Nakanishi 1999; Ryckman and Vis,an 2007;
Tao 2005; Vis,an 2007].

The downside to the induction on energy argument is its complexity. It is monolithic, as opposed to
modular; the value of a small parameter introduced at the very beginning of the proof is not determined
until the very end. In recent years, the induction on energy argument has been supplanted by a related
contradiction argument that is completely modular and is much easier to understand; it is not quantitative.

The genesis of this new method comes from the discovery of Keraani [2006] that the estimates underly-
ing the proof that minimal almost-counterexamples have good tightness/equicontinuity properties can be
pushed further to show that failure of Theorem 1.1 guarantees the existence of a minimal counterexample.
This insight was first applied to the well-posedness problem in an important paper of Kenig and Merle
[2006], which considered the focusing equation with radial data in dimensions three, four, and five.
Subsequent papers (by a wide array of authors) have greatly refined and expanded this methodology.
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In this paper, we revisit the proof of Theorem 1.1 using this “minimal criminal” approach, which, we
believe, results in significant expository simplification. We will also endeavor to convey that much of the
original argument lives on, both in spirit and in the technical details, by explicit reference to [Colliander
et al. 2008] as well as by maintaining their notations, as much as possible.

In some very striking recent work [Dodson 2012; 2011b; 2011a], Dodson has proved the analogue
of Theorem 1.1 for the mass-critical nonlinear Schrödinger equation in arbitrary dimension. The most
significant difference between [Colliander et al. 2008] and the argument presented here comes from the
adaptation of some of his ideas (present already in the first paper [Dodson 2012]) to the problem (1-1).
We postpone a fuller discussion of these matters until we have described some of the key steps in the
proof.

Outline of the proof. We argue by contradiction. Simple contraction mapping arguments show that
Theorem 1.1 holds for solutions with small energy; thus, if the theorem were not to hold there must be
a transition energy above which the energy no longer controls the spacetime norm. The first step in the
argument is to show that there is a minimal counterexample and that, by virtue of its minimality, this
counterexample has good compactness properties.

Definition 1.2 (almost periodicity). A solution u ∈ L∞t Ḣ 1
x (I ×R3) to (1-1) is said to be almost periodic

(modulo symmetries) if there exist functions N : I → R+, x : I → R3, and C : R+→ R+ such that for
all t ∈ I and η > 0,∫

|x−x(t)|≥C(η)/N (t)

∣∣∇u(t, x)
∣∣2 dx +

∫
|ξ |≥C(η)N (t)

|ξ |2 |û(t, ξ)|2 dξ ≤ η. (1-7)

We refer to the function N (t) as the frequency scale function for the solution u, to x(t) as the spatial
center function, and to C(η) as the modulus of compactness.

Remark 1.3. Together with boundedness in Ḣ 1
x , the tightness plus equicontinuity statement (1-7) illus-

trates that almost periodicity is equivalent to the (co)compactness of the orbit modulo translation and
dilation symmetries. In particular, from compactness we see that for each η > 0 there exists c(η) > 0 so
that for all t ∈ I , ∫

|x−x(t)|≤c(η)/N (t)

∣∣∇u(t, x)
∣∣2 dx +

∫
|ξ |≤c(η)N (t)

|ξ |2 |û(t, ξ)|2 dξ ≤ η.

Similarly, compactness implies ∫
R3
|∇u(t, x)|2 dx .u

∫
R3
|u(t, x)|6 dx

uniformly for t ∈ I . This last observation plays the role of Proposition 4.8 in [Colliander et al. 2008].

With these preliminaries out of the way, we can now describe the first major milestone in the proof of
Theorem 1.1:

Theorem 1.4 (reduction to almost periodic solutions [Kenig and Merle 2006; Killip and Vis,an 2010]).
Suppose Theorem 1.1 fails. Then there exists a maximal-lifespan solution u : I ×R3

→ C to (1-1) which
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is almost periodic and blows up both forward and backward in time in the sense that for all t0 ∈ I ,∫ sup I

t0

∫
R3
|u(t, x)|10 dx dt =

∫ t0

inf I

∫
R3
|u(t, x)|10 dx dt =∞.

The theorem does not explicitly claim that u is a minimal counterexample; nevertheless, this is how it
is constructed and, more importantly, how it is shown to be almost periodic. In [Colliander et al. 2008],
the role of this theorem is played by Corollary 4.4 (equicontinuity) and Proposition 4.6 (tightness).

A précis of the proof of Theorem 1.4 can be found in [Kenig and Merle 2006], building on Keraani’s
method [2006]; for complete details see [Killip and Vis,an 2010] or [Killip and Vis,an 2008]. Just as for
the results from [Colliander et al. 2008] mentioned above, the key ingredients in the proof are improved
Strichartz inequalities, which show that concentration occurs, and perturbation theory, which shows that
multiple simultaneous concentrations are inconsistent with minimality.

Continuity of the flow prevents rapid changes in the modulation parameters x(t) and N (t). In partic-
ular, from [Killip et al. 2009, Corollary 3.6] or [Killip and Vis,an 2008, Lemma 5.18] we have

Lemma 1.5 (local constancy property). Let u : I × R3
→ C be a maximal-lifespan almost periodic

solution to (1-1). Then there exists a small number δ, depending only on u, such that if t0 ∈ I then[
t0− δN (t0)−2, t0+ δN (t0)−2]

⊂ I

and
N (t)∼u N (t0) whenever |t − t0| ≤ δN (t0)−2.

We recall next a consequence of the local constancy property; see [Killip et al. 2009, Corollary 3.7;
Killip and Vis,an 2008, Corollary 5.19].

Corollary 1.6 (N (t) at blowup). Let u : I ×R3
→ C be a maximal-lifespan almost periodic solution to

(1-1). If T is any finite endpoint of I , then N (t)&u |T − t |−1/2; in particular, limt→T N (t)=∞.

Finally, we will need the following result linking the frequency scale function N (t) of an almost
periodic solution u and its Strichartz norms:

Lemma 1.7 (spacetime bounds). Let u be an almost periodic solution to (1-1) on a time interval I . Then∫
I

N (t)2 dt .u ‖∇u‖q
Lq

t Lr
x (I×R3)

.u 1+
∫

I
N (t)2 dt (1-8)

for all 2
q +

3
r =

3
2 with 2≤ q <∞.

Proof. We recall that Lemma 5.21 in [Killip and Vis,an 2008] shows that∫
I

N (t)2 dt .u

∫
I

∫
R3
|u(t, x)|10 dx dt .u 1+

∫
I

N (t)2 dt. (1-9)

The second inequality in (1-8) follows from the second inequality above and an application of the
Strichartz inequality. The first inequality follows by the same method used to prove the corresponding
result in (1-9): The fact that u 6≡ 0 ensures that N (t)−2/q

‖∇u(t)‖Lr
x

never vanishes. Almost periodicity
then implies that it is bounded away from zero and the inequality follows. �
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Let u : I ×R3
→C be an almost periodic maximal-lifespan solution to (1-1). As a direct consequence

of the preceding three results, we can tile the interval I with infinitely many characteristic intervals Jk ,
which have the following properties:

• N (t)≡ Nk is constant on each Jk .

• |Jk | ∼u N−2
k , uniformly in k.

• ‖∇u‖Lq
t Lr

x (Jk×R3) ∼u 1, for each 2
q +

3
r =

3
2 with 2≤ q ≤∞ and uniformly in k.

Note that the redefinition of N (t) may necessitate a mild increase in the modulus of compactness. We
may further assume that 0 marks a boundary between characteristic intervals, which we do, for expository
reasons.

Returning to Theorem 1.4, a simple rescaling argument (see, for example, the proof of Theorem 3.3
in [Tao et al. 2007]) allows us to additionally assume that N (t) ≥ 1 at least on half of the interval I ,
say, on [0, Tmax). Inspired by [Dodson 2012], we further subdivide into two cases dictated by the control
given by the interaction Morawetz inequality. Putting everything together, we obtain

Theorem 1.8 (two special scenarios for blowup). Suppose Theorem 1.1 failed. Then there exists an
almost periodic solution u : [0, Tmax)×R3

→ C, such that

‖u‖L10
t,x ([0,Tmax)×R4) =+∞

and [0, Tmax)= ∪k Jk where Jk are characteristic intervals on which N (t)≡ Nk ≥ 1. Furthermore,

either
∫ Tmax

0
N (t)−1 dt <∞ or

∫ Tmax

0
N (t)−1 dt =∞.

Thus, in order to prove Theorem 1.1 we just need to preclude the existence of the two types of almost
periodic solution described in Theorem 1.8. By analogy with the trichotomies appearing in [Killip et al.
2009; Killip and Vis,an 2010], we refer to the first type of solution as a rapid low-to-high frequency
cascade and the second as a quasisoliton.

In each case, the key to showing that such solutions do not exist is a fundamentally nonlinear relation
obeyed by the equation. In the cascade case, it is the conservation of mass; in the quasisoliton case, it is
the interaction Morawetz identity (a monotonicity formula introduced in [Colliander et al. 2004]). Un-
fortunately, both of these relations have energy-subcritical scaling and so are not immediately applicable
to L∞t Ḣ 1

x solutions; additional control on the low frequencies is required. It is in how this control is
achieved that we deviate most from [Colliander et al. 2008].

The argument in [Colliander et al. 2008] relies heavily on the interaction Morawetz identity. To cope
with the noncritical scaling, a frequency localization is introduced. This produces error terms which are
then controlled by means of a highly entangled bootstrap argument. Dodson’s paper [2012] also uses a
frequency-localized interaction Morawetz identity; however, the error terms are handled via spacetime
estimates that are proved independently of this identity. Indeed, the proof of these estimates does not
even rely on the defocusing nature of the nonlinearity.
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In this paper, we adopt Dodson’s strategy (see also [Vis,an 2012]). The requisite estimates on the low-
frequency part of the solution appear in Theorem 4.1. It seems to us that this theorem represents the limit
of what can be achieved without the use of intrinsically nonlinear tools such as monotonicity formulae.
The rationale for this assertion comes from consideration of the focusing equation and is discussed in
Remark 4.3. Nevertheless, Theorem 4.1 does just suffice to treat the error terms in the frequency-localized
interaction Morawetz identity (see Section 6), which is then used to preclude quasisolitons in Section 7.

The proof of Theorem 4.1 relies on a type of Strichartz estimate that we have not seen previously. This
estimate, Proposition 3.1, has the flavor of a maximal function in that it controls the worst Littlewood–
Paley piece at each moment of time. The necessity of considering a supremum over frequency projections
(as opposed to a sum) is borne out by an examination of the ground-state solution to the focusing equation;
see Remark 4.3. The proof of this proposition is adapted from the double Duhamel trick first introduced
in [Colliander et al. 2008, §14]. The original application of this trick also appears here, namely, as
Proposition 3.2.

The nonexistence of cascade solutions is proved in Section 5. The argument combines the following
proposition and Theorem 4.1 to prove first that the mass is finite and then (to reach a contradiction) that
it is zero. It is equally valid in the focusing case.

Proposition 1.9 (no-waste Duhamel formula, [Killip and Vis,an 2008; Tao et al. 2008]). Let u : [0, Tmax)×

R3
→ C be a solution as in Theorem 1.8. Then for all t ∈ [0, Tmax),

u(t)= i lim
T→ Tmax

∫ T

t
ei(t−s)1

|u(s)|4u(s) ds,

where the limit is to be understood in the weak Ḣ 1
x topology.

2. Notation and useful lemmas

We use the notation X . Y to indicate that there exists some constant C so that X ≤ CY . Similarly, we
write X ∼ Y if X . Y . X . We use subscripts to indicate the dependence of C on additional parameters.
For example, X .u Y denotes the assertion that X ≤ CuY for some Cu depending on u.

We will make frequent use of the fractional differential/integral operators |∇|s together with the cor-
responding homogeneous Sobolev norms:

‖ f ‖Ḣ s
x
:= ‖|∇|

s f ‖L2
x

where |̂∇|s f (ξ) := |ξ |s f̂ (ξ).

We will also need some Littlewood–Paley theory. Specifically, let ϕ(ξ) be a smooth bump supported
in the ball |ξ | ≤ 2 and equaling one on the ball |ξ | ≤ 1. For each dyadic number N ∈ 2Z we define the
Littlewood–Paley operators

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ), P̂>N f (ξ) := (1−ϕ(ξ/N )) f̂ (ξ), P̂N f (ξ) := (ϕ(ξ/N )−ϕ(2ξ/N )) f̂ (ξ).

Similarly, we can define P<N , P≥N , and PM<·≤N := P≤N−P≤M , whenever M and N are dyadic numbers.
We will frequently write f≤N for P≤N f and similarly for the other operators.
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The Littlewood–Paley operators commute with derivative operators, the free propagator, and complex
conjugation. They are self-adjoint and bounded on every L p

x and Ḣ s
x space for 1 ≤ p ≤ ∞ and s ≥ 0.

They also obey the following Sobolev and Bernstein estimates:

‖|∇|
±s PN f ‖L p

x
∼s N±s

‖PN f ‖L p
x
, ‖PN f ‖Lq

x
.s N

3
p−

3
q ‖PN f ‖L p

x
,

whenever s ≥ 0 and 1≤ p ≤ q ≤∞.
We will frequently denote the nonlinearity in (1-1) by F(u), that is, F(u) := |u|4u. We will use the

notation Ø(X) to denote a quantity that resembles X , that is, a finite linear combination of terms that look
like those in X , but possibly with some factors replaced by their complex conjugates and/or restricted to
various frequencies. For example,

F(u+ v)=
5∑

j=0

Ø(u jv5− j ) and F(u)= F(u>N )+Ø(u≤N u4) for any N > 0.

We use Lq
t Lr

x to denote the spacetime norm

‖u‖Lq
t Lr

x
:=

(∫
R

(∫
R3
|u(t, x)|r dx

)q/r

dt
)1/q

,

with the usual modifications when q or r is infinity, or when the domain R× R3 is replaced by some
smaller spacetime region. When q = r we abbreviate Lq

t Lr
x by Lq

t,x .
Let ei t1 be the free Schrödinger propagator. In physical space this is given by the formula

ei t1 f (x)=
1

(4π i t)3/2

∫
R3

ei |x−y|2/4t f (y)dy.

In particular, the propagator obeys the dispersive inequality

‖ei t1 f ‖L∞x (R3) . |t |
−3/2
‖ f ‖L1

x (R
3) (2-1)

for all times t 6= 0. As a consequence of this dispersive estimate, one obtains the Strichartz estimates;
see, for example, [Ginibre and Velo 1992; Keel and Tao 1998; Strichartz 1977]. The particular version
we need is from [Colliander et al. 2008].

Lemma 2.1 (Strichartz inequality). Let I be a compact time interval and let u : I×R3
→C be a solution

to the forced Schrödinger equation
iut +1u = G

for some function G. Then we have{∑
N∈2Z

‖∇uN‖
2
Lq

t Lr
x (I×R3)

}1/2
. ‖u(t0)‖Ḣ1

x (R
3)+‖∇G‖

L q̃′
t L r̃ ′

x (I×R3)
(2-2)

for any time t0 ∈ I and any exponents (q, r) and (q̃, r̃) obeying 2
q +

3
r =

2
q̃ +

3
r̃ =

3
2 and 2 ≤ q, q̃ ≤∞.

Here, as usual, p′ denotes the dual exponent to p, that is, 1/p+ 1/p′ = 1.
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Elementary Littlewood–Paley theory shows that (2-2) implies

‖∇u‖Lq
t Lr

x (I×R3) . ‖u(t0)‖Ḣ1
x (R

3)+‖∇G‖
L q̃′

t L r̃ ′
x (I×R3)

,

which corresponds to the usual Strichartz inequality; however, the Besov variant given above allows us
to “Sobolev embed” into L∞x :

Lemma 2.2 (an endpoint estimate). For any u : I ×R3
→ R we have

‖u‖L4
t L∞x (I×R3) . ‖∇u‖1/2L∞t L2

x

{∑
N∈2Z

‖∇uN‖
2
L2

t L6
x (I×R3)

}1/4
.

In particular, for any frequency N > 0,

‖u≤N‖L4
t L∞x (I×R3) . ‖∇u≤N‖

1/2
L∞t L2

x

{∑
M≤N

‖∇uM‖
2
L2

t L6
x (I×R3)

}1/4
.

Proof. Using Bernstein’s inequality we have,

‖u‖4L4
t L∞x (I×R3)

.
∫

I

{∑
N∈2Z

‖uN (t)‖L∞x

}4
dt

.
∑

N1≤N2≤N3≤N4

‖uN1‖L∞t L∞x ‖uN2‖L∞t L∞x ‖uN3‖L2
t L∞x
‖uN4‖L2

t L∞x

.
∑

N1≤···≤N4

[
N1 N2
N3 N4

] 1
2
‖∇uN1‖L∞t L2

x
‖∇uN2‖L∞t L2

x
‖∇uN3‖L2

t L6
x
‖∇uN4‖L2

t L6
x

. ‖∇u‖2L∞t L2
x

∑
N3≤N4

[
N3
N4

] 1
2
‖∇uN3‖L2

t L6
x
‖∇uN4‖L2

t L6
x
.

All spacetime norms above are over I ×R3. The claim now follows from Schur’s test. �

3. Maximal Strichartz estimates

Proposition 3.1. Let (i∂t +1)v = F +G on a compact interval [0, T ]. Then for each 6< q ≤∞,∥∥M(t)
3
q−1
‖PM(t)v(t)‖Lq

x

∥∥
L2

t
.
∥∥|∇|− 1

2 v
∥∥

L∞t L2
x
+
∥∥|∇|− 1

2 G
∥∥

L2
t L6/5

x
+‖F‖L2

t L1
x

uniformly for all functions M : [0, T ] → 2Z. All spacetime norms are over [0, T ]×R3.

It is not difficult to see that the conclusion is weaker than (and has the same scaling as) |∇|−1/2v ∈

L2
t L6

x . In fact, if F ≡ 0, this stronger result can be deduced immediately from the Strichartz inequality.
However, this argument does not extend to give a proof of the proposition because F ∈ L1

x does not imply
|∇|
−1/2 F ∈ L6/5

x . Indeed, the whole theory of the energy-critical NLS in three dimensions is dogged by
the absence of endpoint estimates of this type.

The freedom of choosing an arbitrary function M(t) makes this a maximal function estimate; at each
time one can take the supremum over all choices of the parameter. Writing maximal functions in this
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way yields linear operators and so one may use the method of T T ∗; this is an old idea dating at least to
the work of Kolmogorov and Seliverstov in the 1920s (cf. [Zygmund 2002, Chapter XIII]). As we will
see, the double Duhamel trick, which underlies the proof of Proposition 3.1, is a variant of the T T ∗ idea.
Specifically, one takes the inner-product between two different representations of v(t).

The double Duhamel trick was introduced in [Colliander et al. 2008, §14]. There it was used for a
different purpose, namely, to obtain control over the mass on balls. This is then used to estimate error
terms in the (localized) interaction Morawetz identity. We will also need this information and for exactly
the same reasons; see (6-16). The following proposition captures the main thrust of [Colliander et al.
2008, §14]:

Proposition 3.2. Let (i∂t +1)v = F +G on a compact interval [0, T ] and let

[SRv](t, x) :=
(
(πR2)−3/2

∫
R3
|v(t, x + y)|2e−|y|

2/R2
dy
)1/2

. (3-1)

Then for each 0< R <∞ and 6< q ≤∞,

R
1
2−

3
q
∥∥SRv

∥∥
L2

t Lq
x
. ‖v‖L∞t L2

x
+‖G‖L2

t L6/5
x
+ R−

1
2 ‖F‖L2

t L1
x
, (3-2)

where all spacetime norms are over [0, T ]×R3.

We use the letter S for the operator appearing in (3-1) to signify both “smudging” and “square func-
tion”. It is easy to see that the Gaussian smudging used here could be replaced by other methods without
affecting the result; indeed, the analogous estimate in [Colliander et al. 2008] averages over balls. That
paper also sets q = 100 and sums over a lattice rather than integrating in x . As Sv is slowly varying,
summation and integration yield comparable norms.

To control SRv we need to estimate some complicated oscillatory (and nonoscillatory) integrals. By
choosing a Gaussian weight, some of the integrals can be done both quickly and exactly; see the proof of
Lemma 3.4. Before turning to that subject, we first show how the two propositions are interconnected.
The proof of the next lemma also demonstrates how bounds on SR can be used to deduce analogous
results with other weights.

Lemma 3.3. Fix 6< q ≤∞. Then

sup
M>0

M
3
q−1∥∥ fM

∥∥
Lq

x
. sup

M>0
M

3
q−1∥∥SM−1

(
fM
)∥∥

Lq
x
. (3-3)

Proof. Let P̃M = PM/2+ PM + P2M denote the fattened Littlewood–Paley projector. The basic relation
PM = P̃M PM reduces our goal to showing that

sup
M>0

M
3
q−1∥∥P̃M g

∥∥
Lq

x
. sup

M>0
M

3
q−1∥∥SM−1 g

∥∥
Lq

x
(3-4)

for general functions g : R3
→ C, say, g = fM .
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Recall that the convolution kernel for P̃M takes the form M3ψ(Mx) for some Schwartz function ψ .
By virtue of its rapid decay, we can write

|ψ(x)| ≤
∫
∞

0
π−3/2e−|x |

2/λ2
dµ(λ)

where µ is a positive measure with all moments finite. Indeed, since ψ is radial one can choose dµ(λ)=
20|ψ ′(λ)| dλ. Thus by the Cauchy–Schwarz inequality,∣∣[P̃M g](x)

∣∣2 ≤ ∫
R3
|g(x + y)|2 M3

|ψ(My)| dy ≤
∫
∞

0

∣∣[SλM−1 g](x)
∣∣2λ3 dµ(λ).

Applying Minkowski’s inequality in Lq/2
x (R3) then easily yields (3-4); indeed, one can take the constant

to be [
∫
λ1+6/q dµ(λ)]1/2. �

Lemma 3.4. For fixed 6< q ≤∞, the integral kernel

K R(τ, z; s, y; x) := (πR2)−3/2
〈δz, eiτ1e−| ·−x |2/R2

eis1δy〉

obeys

sup
R>0

∫
∞

0

∫
∞

0
R2− 6

q ‖K R(τ, z; s, y; x)‖L∞z,y Lq/2
x

f (t + τ) f (t − s) ds dτ .
∣∣[M f ](t)

∣∣2, (3-5)

where M denotes the Hardy–Littlewood maximal operator and f : R→ [0,∞).

Proof. From the exact formula for the propagator,

K R(t, z; s, y; x)=
∫

R3

exp{i |z− x ′|2/4τ − |x ′− x |2/R2
+ i |x ′− y|2/4s}

(4π iτ)3/2(4π is)3/2(πR2)3/2
dx ′. (3-6)

Completing the square and doing the Gaussian integral yields

|K R(t, z; s, y; x)| = (2π)−3[16s2τ 2
+ R4(s+ τ)2

]−3/4 exp
{
−

R2(s+ τ)2|x − x∗|2

16s2τ 2+ R4(s+ τ)2

}
where x∗ = (sz+ t y)/(s+ t). One more Gaussian integral then yields

‖K R(. . .)‖Lq/2
x
= (2π)−3(2π/q)3/q R−6/q

|s+ τ |−6/q
[16s2τ 2

+ R4(s+ τ)2]−3/4+3/q .

Notice that there is no dependence on z or y. This is due to simultaneous translation and Galilean
invariance. In this way, we deduce that

LHS(3-5). sup
R>0

∫
∞

0

∫
∞

0
K ∗q (α, β) f (t + R2α) f (t − R2β) dα dβ, (3-7)

where we have changed variables to α = R−2τ and β = R−2s and written

K ∗q (α, β) := [α+β]
−6/q[α2β2

+ (α+β)2
]−3/4+3/q

.
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To finish the proof, we just need to show that K ∗q can be majorized by a convex combination of (L1-
normalized) characteristic functions of rectangles of the form [0, `] × [0, w]. In fact, we can write it
exactly as a positive linear combination of such rectangles:

K ∗q (α, β)=
∫
∞

0

∫
∞

0

1
`
χ[0,`](α)

1
w
χ[0,w](β) ρ(`,w) d` dw =

∫
∞

α

∫
∞

β

ρ(`,w) d` dw
`w

where ρ(`,w) := `w∂`∂wK ∗q (`, w)≥ 0. Thus, we just need to check that ρ ∈ L1. With a little patience,
one finds that ρ(`,w).q K ∗q (`, w), which leaves us to integrate the latter over a quadrant. We use polar
coordinates, `+ iw = reiθ :∫

∞

0

∫
∞

0
K ∗q (`, w) d` dw .

∫
∞

0

∫ π/2

0
r−6/q

[r4 sin2(2θ)+ r2
]
−3/4+3/q r dθ dr

.
∫
∞

0
r−1/2(1+ r)−3/2+6/q dr . 1.

Notice that convergence of the r integral relies on q > 6. The estimate for the θ integral given above
is only valid in the range 6 < q < 12. When q > 12, the correct form is

∫
r−1/2(1+ r)−1 dr and when

q = 12, it is
∫

r−1/2 log(2+ r)(1+ r)−1 dr . Nevertheless, both of these integrals are also finite. �

We now have all the necessary ingredients to complete the proofs of Propositions 3.1 and 3.2. We
only provide the details for the former because the two arguments are so similar. Indeed, the proof of the
latter essentially follows by choosing M(t) ≡ R−1 and throwing away the Littlewood–Paley projector
PM(t) in the argument we are about to present.

Proof of Proposition 3.1. In view of Lemma 3.3 we need to show that

sup
M>0

M
3
q−1∥∥SM−1

(
PMv(t)

)∥∥
Lq

x
∈ L2

t ([0, T ])

(with suitable bounds), where the supremum is taken pointwise in time.
As noted earlier, we will use the double Duhamel trick, which relies on playing two Duhamel formulae

off against one another, one from each endpoint of [0, T ]:

v(t)= ei t1v(0)− i
∫ t

0
ei(t−s)1G(s) ds− i

∫ t

0
ei(t−s)1F(s) ds (3-8)

= e−i(T−t)1v(T )+ i
∫ T

t
e−i(τ−t)1G(τ ) dτ + i

∫ T

t
e−i(τ−t)1F(τ ) dτ. (3-9)

The idea is to compute the L2
x norm of PMv(t) with respect to the Gaussian measure that defines

[SM−1 PMv](t, x) by taking the inner product between these two representations. Actually, we deviate
slightly from this idea because it is not clear how to estimate a pair of cross-terms. Our trick for avoiding
this is the following simple fact about vectors in a Hilbert space:

v = a+ b = c+ d =⇒ ‖v‖2 ≤ 3‖a‖2+ 3‖c‖2+ 2|〈b, d〉|. (3-10)
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(The numbers are neither optimal nor important.) To prove this, write

‖v‖2 = 〈a, v〉+ 〈v, c〉− 〈a, c〉+ 〈b, d〉

and then use the Cauchy–Schwarz inequality.
Let us invoke (3-10) with a and c representing (PM applied to) the first two summands in (3-8) and

(3-9), respectively, while b and d represent the summands which involve F . In this way, we obtain the
pointwise statement

∣∣[SM−1(PMv)](t, x)
∣∣2 . ∣∣∣∣SM−1

(
ei t1vM(0)− i

∫ t

0
ei(t−s)1G M(s) ds

)
(x)
∣∣∣∣2

+

∣∣∣∣SM−1

(
e−i(T−t)1vM(T )+ i

∫ T

t
e−i(τ−t)1G M(τ ) dτ

)
(x)
∣∣∣∣2+ hM(t, x),

where hM is an abbreviation for

hM(t, x) := π−3/2 M3
∣∣∣∣〈∫ T

t
e−i(τ−t)1FM(τ ) dτ, e−M2

| · −x |2
∫ t

0
ei(t−s)1FM(s) ds

〉∣∣∣∣
The contributions of the first two summands are easily estimated: For any function w, Young’s and

Bernstein’s inequalities imply

M
3
q−1∥∥[SM−1(PMw)](t, x)

∥∥
Lq

x (R3)
. M−

1
2
∥∥PMw(t)

∥∥
L6

x (R
3)
.
∥∥|∇|− 1

2w(t)
∥∥

L6
x (R

3)
.

This can then be combined with Strichartz inequality, which shows∥∥∥∥|∇|− 1
2

(
ei t1v(0)− i

∫ t

0
ei(t−s)1G(s) ds

)∥∥∥∥
L2

t L6
x

.
∥∥|∇|− 1

2 v(0)
∥∥

L2
x
+
∥∥|∇|− 1

2 G
∥∥

L2
t L6/5

x

and similarly for the second summand.
The third summand, hM , is the crux of the matter. Using the notation from Lemma 3.4 and changing

variables, we have

hM(t, x)=
∣∣∣∣∫ T−t

0

∫ t

0

∫∫
F̄M(t + τ ′, z)KM−1(τ ′, z; s ′, y; x)FM(t − s ′, y) dy dz ds ′ dτ ′

∣∣∣∣.
Note also that by Bernstein’s inequality and the maximal inequality, the function f (t) := ‖F(t)‖L1

x
obeys

‖FM(t)‖L1
x
. f (t) and ‖M f ‖L2

t
. ‖F‖L2

t L1
x
.

Thus using Lemma 3.4 (with f as just defined), we obtain∥∥∥ sup
M>0

M
6
q−2
‖hM(t)‖Lq/2

x

∥∥∥
L1

t

. ‖F‖2L2
t L1

x
.

Recalling that hM appears in an upper bound on the square of the size of PMv, the proposition follows.
�
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4. Long-time Strichartz estimates

The main result of this section is a long-time Strichartz estimate. As will be evident from the proof, the
result is also valid for L∞t Ḣ 1

x (R
3) solutions to the focusing equation; see also Remark 4.3 at the end of

this section.

Theorem 4.1 (long-time Strichartz estimate). Let u : (Tmin, Tmax)×R3
→C be a maximal-lifespan almost

periodic solution to (1-1) and I ⊂ (Tmin, Tmax) a time interval that is tiled by finitely many characteristic
intervals Jk . Then for any fixed 6< q <∞ and any frequency N > 0,

A(N ) :=
{∑

M≤N

‖∇uM‖
2
L2

t L6
x (I×R3)

}1/2
(4-1)

and

Ãq(N ) := N 3/2 ∥∥sup
M≥N

M
3
q−1
‖uM(t)‖Lq

x (R3)

∥∥
L2

t (I )
(4-2)

obey

A(N )+ Ãq(N ).u 1+ N 3/2K 1/2, (4-3)

where K :=
∫

I N (t)−1 dt. The implicit constant is independent of the interval I .

The proof of this theorem will occupy the remainder of this section. Throughout, we consider a single
interval I and so the implicit dependence of A(N ), Ãq(N ), and K on the interval should not cause
confusion. Additionally, all spacetime norms will be on I ×R3, unless specified otherwise.

By Bernstein’s inequality, Ãq(N ) is monotone in q . Thus q =∞ is also allowed.
The analogue of Theorem 4.1 in [Colliander et al. 2008] is Proposition 12.1. Our proof is very different

and is inspired by Dodson’s work [2012] on the mass-critical NLS (see also [Vis,an 2012]). In [Colliander
et al. 2008], this estimate is derived on the assumption that u>N obeys certain L4

t,x spacetime bounds.
That the solution does admit these spacetime bounds is derived from the interaction Morawetz estimate,
using the analogue of (4-3) to control certain error terms. This results in a tangled bootstrap argument
across several sections of the paper. The argument that follows does not use the Morawetz identity,
merely Strichartz and maximal Strichartz estimates, and so is equally valid in the focusing case. We also
contend that it is simpler.

The attentive reader will discover that the implicit constant in (4-3) depends only on u through its
L∞t Ḣ 1

x norm and its modulus of compactness (cf. Definition 1.2). Indeed, the dependence on the latter
can be traced to the following: Let η > 0 be a small parameter to be chosen later. Then, by Remark 1.3
and Sobolev embedding, there exists c = c(η) such that

‖u≤cN (t)‖L∞t L6
x
+‖∇u≤cN (t)‖L∞t L2

x
≤ η. (4-4)

By elementary manipulations with the square function estimate and Lemma 2.2, respectively, we have

‖∇u≤N‖L2
t L6

x
. A(N ), ‖u≤N‖L4

t L∞x
. A(N )1/2‖∇u≤N‖

1/2
L∞t L2

x
.u A(N )1/2. (4-5)
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As noted earlier, the only reason for considering the Besov-type norm that appears in (4-1), rather than
the simpler L2

t L6
x norm, is that it allows us to deduce these L4

t L∞x bounds.
By combining the Strichartz inequality (Lemma 2.1) with Lemma 1.7 we have

A(N )2 .u 1+
∫

I
N (t)2 dt .u

∫
I

N (t)2 dt. (4-6)

Note that the second inequality relies on the fact that I contains at least one whole characteristic interval
Jk . Similarly, using Proposition 3.1 and then Bernstein’s inequality we find

Ãq(N ). N 3/2
{∥∥|∇|−1/2u≥N

∥∥
L∞t L2

x
+
∥∥|∇|−1/2 P≥N F(u)

∥∥
L2

t L6/5
x

}
. 1+‖∇u‖L2

t L6
x
‖u‖4L∞t L6

x

.u

(∫
I

N (t)2 dt
)1/2

.

Thus

A(N )+ Ãq(N ).u N 3/2K 1/2 whenever N ≥
( ∫

I N (t)2 dt∫
I N (t)−1 dt

)1/3

(4-7)

and so, in particular, when N ≥ Nmax := supt∈I N (t). This is the base step for the inductive proof of
Theorem 4.1. The passage to smaller values of N relies on the following:

Lemma 4.2 (recurrence relations for A(N ) and Ãq(N )). For η sufficiently small,

A(N ).u 1+ c−3/2 N 3/2K 1/2
+ η2 Ãq(2N ) (4-8)

Ãq(N ).u 1+ c−3/2 N 3/2K 1/2
+ ηA(N )+ η2 Ãq(2N ), (4-9)

uniformly in N ∈ 2Z. Here c = c(η) as in (4-4).

Proof. The recurrence relations for A(N ) and Ãq(N ) rely on Lemma 2.1 and Proposition 3.1, respec-
tively. To estimate the contribution of the nonlinearity, we decompose u(t) = u≤cN (t)(t)+ u>cN (t)(t)
and then selectively u = u≤N + u>N . Recalling that the Ø notation incorporates possible additional
Littlewood–Paley projections, we may write

F(u)= Ø
(
u2
>cN (t)u

3)
+Ø

(
u2
≤cN (t)u

3)
= Ø

(
u2
>cN (t)u

3)
+Ø

(
u2
≤cN (t)u

2
>N u

)
+Ø

(
u2
≤cN (t)u

2
≤N u

)
. (4-10)

Using this decomposition together with Lemma 2.1 and Bernstein’s inequality, we obtain

A(N ). ‖∇u≤N‖L∞t L2
x
+
∥∥∇P≤N Ø

(
u2
>cN (t)u

3)∥∥
L2

t L6/5
x

+
∥∥∇P≤N Ø

(
u2
≤cN (t)u

2
>N u

)∥∥
L2

t L6/5
x
+
∥∥∇P≤N Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x

.u 1+ N 3/2
‖u2

>cN (t)u
3
‖L2

t L1
x
+ N 3/2

‖u2
≤cN (t)u

2
>N u‖L2

t L1
x
+
∥∥∇Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x
. (4-11)
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Using instead Proposition 3.1 and Bernstein’s inequality, we find

Ãq(N ). N 3/2
{∥∥|∇|−1/2u≥N

∥∥
L∞t L2

x
+‖u2

>cN (t)u
3
‖L2

t L1
x
+‖u2

≤cN (t)u
2
>N u‖L2

t L1
x

+
∥∥|∇|−1/2 P≥N Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x

}
.u 1+ N 3/2

‖u2
>cN (t)u

3
‖L2

t L1
x
+ N 3/2

‖u2
≤cN (t)u

2
>N u‖L2

t L1
x
+
∥∥∇Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x
. (4-12)

Therefore, to obtain the desired recurrence relations it remains to estimate the (identical) last three terms
on the right-hand sides of (4-11) and (4-12). We will consider these terms individually, working from
left to right.

To treat the first term, we decompose the time interval I into characteristic subintervals Jk where
N (t)≡ Nk . On each of these subintervals, we apply Hölder’s inequality, Sobolev embedding, Bernstein’s
inequality, and Lemma 1.7 to obtain

‖u2
>cN (t)u

3
‖L2

t L1
x (Jk×R3) . ‖u>cNk‖

2
L4

t,x (Jk×R3)
‖u‖3L∞t L6

x

.u c−3/2 N−3/2
k ‖∇u>cNk‖

2
L4

t L3
x (Jk×R3)

.u c−3/2 N−3/2
k .

Squaring and summing the estimates above over the subintervals Jk , we find

N 3/2
‖u2

>cN (t)u
3
‖L2

t L1
x
.u c−3/2 N 3/2K 1/2, (4-13)

which is the origin of this term on the right-hand sides of (4-8) and (4-9).
To estimate the second term, we begin with a preliminary computation: Using Bernstein’s inequality

and Schur’s test (for the last step), we estimate∥∥Ø
(
u2
>N u

)∥∥
L2

t L3/2
x
.

∥∥∥∥ ∑
M1≥M2≥M3

M2>N

‖uM1(t)‖L2
x
‖uM2(t)‖Lq

x
‖uM3(t)‖

L
6q

q−6
x

∥∥∥∥
L2

t

.

∥∥∥∥ sup
M>N
‖M

3
q−1uM(t)‖Lq

x

∑
M1≥M3

(M3
M1

)3/q
‖∇uM1(t)‖L2

x
‖∇uM3(t)‖L2

x

∥∥∥∥
L2

t

.u N−3/2 Ãq(2N ). (4-14)

Using this, Hölder, and (4-4), we find

N 3/2
‖u2
≤cN (t)u

2
>N u‖L2

t L1
x
. N 3/2

‖u≤cN (t)‖
2
L∞t L6

x
‖Ø
(
u2
>N u

)
‖L2

t L3/2
x
.u η

2 Ãq(2N ). (4-15)

This is the origin of the last term on the right-hand sides of (4-8) and (4-9).
Finally, to estimate the contribution coming from the last term in (4-11) and (4-12), we distribute the

gradient, use Hölder’s inequality, and then (4-4) and (4-5):∥∥∇Ø
(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x
. ‖∇u≤N‖L2

t L6
x
‖u≤cN (t)‖L∞t L6

x
‖u‖3L∞t L6

x

+‖∇u‖L∞t L2
x
‖u≤cN (t)‖L∞t L6

x
‖u≤N‖

2
L4

t L∞x
‖u‖L∞t L6

x

.u ηA(N ). (4-16)



870 ROWAN KILLIP AND MONICA VIS, AN

As A(N ) is known to be finite (cf. (4-6)), this can be brought to the other side of (4-8); naturally, this
requires η to be sufficiently small depending on u and certain absolute constants, but not on I .

Collecting estimates (4-13) through (4-15) and choosing η sufficiently small, this completes the proof
of the lemma. �

We now have all the ingredients needed to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. With the base step (4-7) and Lemma 4.2 in place, Theorem 4.1 follows from a
straightforward induction argument, provided η is chosen sufficiently small depending on u. �

Remark 4.3. In the introduction it was asserted that the long-time Strichartz estimates in Theorem 4.1
are essentially best possible in the focusing case. We now elaborate that point. For the energy-critical
equation, the principal difficulty is to obtain control over the low frequencies, because all known con-
servation laws (with the exception of energy) and monotonicity formulae are energy-subcritical. If (by
some miracle) we knew our putative minimal counterexample u belonged to L∞t L2

x , the whole argument
could be brought to a swift conclusion, even in the focusing case (cf. [Killip and Vis,an 2010]). Thus any
potential improvement of Theorem 4.1 should be judged by whether it gives better control on the low
frequencies.

It is well-known that

W (x)=
(
1+ 1

3 |x |
2)−1/2 obeys 1W +W 5

= 0 (4-17)

and so is a static solution of the focusing energy-critical NLS. In particular, it is almost periodic with
parameters N (t)≡ 1 and x(t)≡ 0.

As
∫

W (x)5 dx = 4π
√

3, we can read off from (4-17) that

Ŵ (ξ)= 4π
√

3|ξ |−2
+ O

(
|ξ |ε

)
as ξ → 0 (4-18)

and so deduce ‖WM‖Lq ∼M1−3/q for M small and 6≤q≤∞. This shows that the supremum is essential
in (4-2); we cannot expect the bound (4-3) for the sum of the Littlewood–Paley pieces. It also shows that
the L2

t L6
x norm of ∇W≤N on long time intervals decays no faster than the N 3/2 rate proved for A(N ).

5. Impossibility of rapid frequency cascades

In this section, we show that the first type of almost periodic solution described in Theorem 1.8 (for which∫ Tmax
0 N (t)−1 dt <∞) cannot exist. We will show that its existence is inconsistent with the conservation

of mass, M(u) :=
∫

R3 |u(t, x)|2 dx . The argument does not utilize the defocusing nature of the equation
beyond the fact that the solution belongs to L∞t Ḣ 1

x .

Lemma 5.1 (finite mass). Let u : [0, Tmax) × R3
→ C be an almost periodic solution to (1-1) with

‖u‖L10
t,x ([0,Tmax)×R3) =+∞ and

K :=
∫ Tmax

0
N (t)−1 dt <∞. (5-1)



GLOBAL WELL-POSEDNESS FOR THE QUINTIC NLS IN 3D 871

(Note Tmax =∞ is allowed.) Then u ∈ L∞t L2
x ; indeed, for all 0< N < 1,

‖uN≤ ·≤1‖L∞t L2
x ([0,Tmax)×R3)+

1
N

{∑
M<N

‖∇uM‖
2
L2

t L6
x ([0,Tmax)×R3)

}1/2
.u 1. (5-2)

Proof. The key point is to prove (5-2); finiteness of the mass follows easily from this. Indeed, letting N→
0 in (5-2) to control the low frequencies and using ∇u ∈ L∞t L2

x and Bernstein for the high frequencies,
we obtain

‖u‖L∞t L2
x
≤ ‖u≤1‖L∞t L2

x
+‖u>1‖L∞t L2

x
.u 1. (5-3)

In the inequality above and for the remainder of the proof all spacetime norms are over [0, Tmax)×R3.
As K is finite, the conclusion (4-3) of Theorem 4.1 extends (by exhaustion) to the time interval
[0, Tmax). Observe that the second summand in (5-2) is N−1 A(N/2), in the notation of that theorem.

We will estimate the left-hand side of (5-2) by a small multiple of itself plus a constant. For this
statement to be meaningful, we need the left-hand side of (5-2) to be finite. This follows easily from
Theorem 4.1 and Bernstein’s inequality:

LHS(5-2). N−1
‖∇u‖L∞t L2

x
+ N−1 A(N/2).u N−1(1+ N 3K )1/2 <∞. (5-4)

The origin of the small constant lies with the almost periodicity of the solution. Indeed, by Remark 1.3
and Sobolev embedding, for η > 0 (a small parameter to be chosen later) there exists c= c(η) such that

‖u≤cN (t)‖L∞t L6
x
+‖∇u≤cN (t)‖L∞t L2

x
≤ η. (5-5)

To continue, fix 0 < N < 1. Using the Duhamel formula from Proposition 1.9 together with the
Strichartz inequality we obtain

LHS(5-2). 1
N ‖∇P<N F(u)‖L2

t L6/5
x
+‖PN≤ ·≤1 F(u)‖L2

t L6/5
x
. (5-6)

To estimate the nonlinearity, we decompose u(t)= u≤cN (t)(t)+u>cN (t)(t) and then u= u<N+uN≤ ·≤1+

u>1. As the Ø notation incorporates possible additional Littlewood–Paley projections, we may write

F(u)= Ø
(
u2
>cN (t)u

3)
+Ø

(
u≤cN (t)u2

<N u2)
+Ø

(
u≤cN (t)u2

≤1uN≤ ·≤1u
)

+Ø
(
u≤cN (t)u2

>1u2). (5-7)

Next, we estimate the contributions of each of these terms to (5-6), working from left to right.
Using Bernstein’s inequality and (4-13), we bound the contribution of the first term as follows:

1
N

∥∥∇P<N Ø
(
u2
>cN (t)u

3)∥∥
L2

t L6/5
x
+
∥∥PN≤ ·≤1Ø

(
u2
>cN (t)u

3)∥∥
L2

t L6/5
x

. (N 1/2
+ 1)‖Ø(u2

>cN (t)u
3)‖L2

t L1
x

.u c−3/2K 1/2.



872 ROWAN KILLIP AND MONICA VIS, AN

To estimate the contribution of the second term in (5-7) to (5-6), we use Bernstein’s inequality on the
second summand and distribute the gradient, followed by Hölder’s inequality, (4-5), and (5-5):

1
N

∥∥∇P<N Ø(u≤cN (t)u2
<N u2)

∥∥
L2

t L6/5
x
+
∥∥PN≤ ·≤1Ø(u≤cN (t)u2

<N u2)
∥∥

L2
t L6/5

x

. 1
N ‖∇u≤cN (t)‖L∞t L2

x
‖u<N‖

2
L4

t L∞x
‖u‖2L∞t L6

x
+

1
N ‖u≤cN (t)‖L∞t L6

x
‖∇u<N‖L2

t L6
x
‖u‖3L∞t L6

x

+
1
N ‖u≤cN (t)‖L∞t L6

x
‖u<N‖

2
L4

t L∞x
‖∇u‖L∞t L2

x
‖u‖L∞t L6

x

.u η LHS(5-2).

Using Bernstein’s inequality, Theorem 4.1, (4-5), and (5-5), we estimate the contribution of the third
term in (5-7) as follows:

1
N

∥∥∇P<N Ø
(
u≤cN (t)u2

≤1uN≤ ·≤1u
)∥∥

L2
t L6/5

x
+
∥∥PN≤ ·≤1Ø

(
u≤cN (t)u2

≤1uN≤ ·≤1u
)∥∥

L2
t L6/5

x

. ‖u≤cN (t)‖L∞t L6
x
‖u≤1‖

2
L4

t L∞x
‖uN≤ ·≤1‖L∞t L2

x
‖u‖L∞t L6

x

.u η(1+ K 1/2)LHS(5-2).

Finally, to estimate the contribution to (5-6) of the last term in (5-7) we use Bernstein’s inequality,
Theorem 4.1, (4-14), and (5-5):

1
N

∥∥∇P≤N/2Ø
(
u≤cN (t)u2

>1u2)∥∥
L2

t L6/5
x
+
∥∥PN≤ ·≤1Ø

(
u≤cN (t)u2

>1u2)∥∥
L2

t L6/5
x

. (N 1/2
+ 1)

∥∥Ø
(
u≤cN (t)u2

>1u2)∥∥
L2

t L1
x

. ‖u≤cN (t)‖L∞t L6
x
‖Ø(u2

>1u)‖L2
t L3/2

x
‖u‖L∞t L6

x

.u η(1+ K 1/2).

Collecting all the estimates above, (5-6) implies

LHS(5-2).u η(1+ K 1/2)LHS(5-2)+ 1+ c−3/2K 1/2.

Recalling (5-1) and (5-4) and taking η small enough depending on u and K yields (5-2). �

We are now ready to prove the main result of this section:

Theorem 5.2 (no rapid frequency-cascades). There are no almost periodic solutions u : [0, Tmax)×R3
→

C to (1-1) with ‖u‖L10
t,x ([0,Tmax)×R3) =+∞ and∫ Tmax

0
N (t)−1 dt <∞. (5-8)

Proof. We argue by contradiction. Let u be such a solution. By Corollary 1.6,

lim
t→Tmax

N (t)=∞, (5-9)

when Tmax is finite; this is also true when Tmax is infinite by virtue of (5-8).
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We will prove that the existence of such a solution u is inconsistent with the conservation of mass. In
Lemma 5.1 we found that the mass is finite; to derive the desired contradiction we will prove that the
mass is not only finite, but zero!

We first show that the mass at low frequencies is small. To do this, we use the Duhamel formula from
Proposition 1.9 together with the Strichartz inequality, followed by Bernstein’s inequality:

‖u≤N‖L∞t L2
x
. ‖P≤N F(u)‖L2

t L6/5
x
. N 1/2

‖F(u)‖L2
t L1

x
.

In the display above and for the remainder of the proof all spacetime norms are over [0, Tmax)×R3.
To estimate the nonlinearity we decompose it as follows:

F(u)= Ø(u3
≤1u2)+Ø(u3

>1u2).

By Theorem 4.1, (4-5), (5-8), Bernstein, and finiteness of the mass,

‖Ø(u3
≤1u2)‖L2

t L1
x
. ‖u≤1‖

2
L4

t L∞x
‖u≤1‖L∞t,x‖u‖

2
L∞t L2

x
.u 1,

while by Theorem 4.1, (4-14), and (5-8),

‖Ø(u3
>1u2)‖L2

t L1
x
. ‖u‖2L∞t L6

x
‖u3

>1‖L2
t L3/2

x
.u 1.

Thus,

‖u≤N‖L∞t L2
x
.u N 1/2.

By comparison, control over the mass at middle and high frequencies can be obtained with just Bern-
stein’s inequality and the fact that for any η > 0 there exists c = c(u, η) > 0 so that

‖∇u≤cN (t)(t)‖L2
x
≤ η,

which was noted in Remark 1.3. Altogether, we have that for any t ∈ [0, Tmax),

‖u(t)‖L2
x
. ‖u≤N (t)‖L2

x
+‖P>N u≤cN (t)(t)‖L2

x
+‖u>cN (t)(t)‖L2

x

.u N 1/2
+ N−1

‖∇u≤cN (t)(t)‖L2
x
+ c−1 N (t)−1

‖∇u‖L∞t L2
x

.u N 1/2
+ N−1η+ c−1 N (t)−1.

Using (5-9), we can make the right-hand side here as small as we wish. (Choose N small, then η small,
and then t close to Tmax.) Because mass is conserved under the flow, this allows us to conclude that
‖u‖L∞t L2

x
= 0 and thus u ≡ 0 in contradiction to the hypothesis ‖u‖L10

t,x ([0,Tmax)×R3) =+∞. �

6. The frequency-localized interaction Morawetz inequality

In this section, we prove a spacetime bound on the high-frequency portion of the solution:

Theorem 6.1 (a frequency-localized interaction Morawetz estimate). Suppose u : [0, Tmax)×R3
→C is

an almost periodic solution to (1-1) such that N (t) ≥ 1 and let I ⊂ [0, Tmax) be a union of contiguous
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characteristic intervals Jk . Fix 0< η0 ≤ 1. For N > 0 sufficiently small (depending on η0 but not on I ),∫
I

∫
R3
|u>N (t, x)|4 dx dt .u η0

(
N−3
+ K

)
, (6-1)

where K :=
∫

I N (t)−1 dt. Importantly, the implicit constant in the inequality above does not depend on
η0 or the interval I .

Unlike Theorem 4.1, the argument does not rely solely on estimates for the linear propagator and is
not indifferent to the sign of the nonlinearity. Instead, we use a special monotonicity formula associated
with (1-1), namely, the interaction Morawetz identity. This is a modification of the traditional Morawetz
identity (cf. [Lin and Strauss 1978; Morawetz 1975]) introduced in [Colliander et al. 2004]. We begin
with a general form of the identity:

Proposition 6.2. Suppose i∂tφ =−1φ+ |φ|
4φ+F and let

M(t) := 2
∫∫

R3×R3
|φ(y)|2ak(x − y) Im{φk(x)φ̄(x)} dx dy, (6-2)

for some weight a : Rd
→ R. Then

∂t M(t)=
∫

R3

∫
R3

{
4
3akk(x − y)|φ(x)|6|φ(y)|2 (6-3)

+ 2ak(x − y)|φ(y)|2 Re
[
φk(x)F̄(x)−Fk(x)φ̄(x)

]
(6-4)

+ 4ak(x − y)(Im F(y)φ̄(y))(Imφk(x)φ̄(x)) (6-5)

+ 4a jk(x − y)
[
|φ(y)|2φ̄ j (x)φk(x)− (Im φ̄(y)φ j (y))(Im φ̄(x)φk(x))

]
(6-6)

− a j jkk(x − y) |φ(y)|2|φ(x)|2
}

dx dy. (6-7)

Subscripts denote spatial derivatives and repeated indices are summed.

The significance of this identity to our problem is best seen by choosing a(x) = |x | and φ to be a
solution to (1-1). In this case, F= 0 and the fundamental theorem of calculus yields

8π
∫

I

∫
R3
|φ(t, x)|4 dx dt ≤ 2‖M(t)‖L∞t (I ) ≤ 4‖φ‖3L∞t L2

x (I×R3)
‖φ‖L∞t Ḣ1

x (I×R3).

The left-hand side originates from (6-7); the terms (6-6) and (6-3) are both positive.
Unfortunately for us, a minimal blowup solution need not have finite L2

x norm at any time. Thus
it is necessary to localize the identity to high frequencies, that is, choose φ = u>N . Naturally, this
produces myriad error terms; nevertheless, in spatial dimensions four and higher they can be controlled
(cf. [Ryckman and Vis,an 2007; Vis,an 2007; 2012]). In the three-dimensional case under consideration
here, there is one error term (originating from (6-5)) that cannot be satisfactorily controlled. (See also
Remark 6.9 at the end of this section.) This was observed already in [Colliander et al. 2008] and as there,
our solution is to truncate the function a. This truncation ruins the convexity properties of a that made
some of the terms in Proposition 6.2 positive, thus creating more error terms to control.
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For reasons we will explain in due course, it is important to perform the cutoff of a in a very careful
fashion. We choose a to be a smooth spherically symmetric function, which we regard interchangeably
as a function of x ∈ R3 or r = |x |. We specify it further in terms of its radial derivative:

a(0)= 0, ar ≥ 0, arr ≤ 0, ar =


1 if r ≤ R,

1− J−1 log(r/R) if eR ≤ r ≤ eJ−J0 R,

0 if eJ R ≤ r,

(6-8)

where J0 ≥ 1, J ≥ 2J0, and R are parameters that will be determined in due course. It is not difficult to
see that one may fill in the regions where ar is not yet defined so that the function obeys

|∂k
r ar |.k J−1r−k for each k ≥ 1, (6-9)

uniformly in r and in the choice of parameters.
When |x | ≤ R, we see that a(x)= |x |, while a is a constant when |x | ≥ eJ R. The key point about the

transition between these two regimes is that

2
r

ar ≥
2J0

Jr
but |arr | ≤

1
Jr

(6-10)

when eR ≤ r ≤ eJ−J0 R. Thus the Laplacian akk = arr +
2
r ar is dominated by the first derivative term

and so remains coercive at these radii. (This also appears implicitly in [Colliander et al. 2008, §11] and
is the key point behind the “averaging over R” argument there.)

As noted above, we will be applying Proposition 6.2 with

φ = uhi := u>N , and so F= Phi F(u)− F(uhi). (6-11)

(We will also write ulo := u≤N .) Here N is an additional parameter that will be chosen small (depending
on η0 and u). We require that N , R, and J are related via

eJ RN = 1. (6-12)

Actually, it is merely essential that eJ RN ≤ 1, but choosing equality makes the exposition simpler.
Our first restriction on these parameters is that N is small enough and R is large enough so that given
η = η(η0, u),∫

R3
|∇ulo(t, x)|2 dx +

∫
R3
|Nuhi(t, x)|2 dx +

∫
|x−x(t)|> R

2

|∇uhi(t, x)|2 dx < η2 (6-13)

uniformly for 0 ≤ t < Tmax. The possibility of doing this follows immediately from the fact that u is
almost periodic modulo symmetries and N (t)≥ 1.

Before moving on to estimating the terms in Proposition 6.2, we pause to review the tools at our
disposal. Besides using the norm ‖uhi‖L4

t,x
to estimate itself, we will also make recourse to Theorem 4.1

and Proposition 3.2. For ease of reference, we record these results in the forms we will use:
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Corollary 6.3 (a priori bounds). For all 2
q +

3
r =

3
2 with 2≤ q ≤∞ and any s < 1− 3

q ,

‖∇ulo‖Lq
t Lr

x
+
∥∥N 1−s

|∇|
suhi

∥∥
Lq

t Lr
x
.u

(
1+ N 3K

)1/q
. (6-14)

Under the hypothesis (6-13),

‖ulo‖L4
t L∞x
.u η

1/2(1+ N 3K )1/4. (6-15)

Furthermore, for any ρ ≤ ReJ
= N−1,∫

I
sup
x∈R3

∫
|x−y|≤ρ

|uhi(t, y)|2 dy dt .u ρ
(
K + N−3). (6-16)

Proof. Recall that Theorem 4.1 implies

A(M) :=
{ ∑

M ′≤M

‖∇uM ′‖
2
L2

t L6
x (I×R3)

}1/2
.u (1+M3K )1/2

uniformly in M . Setting M = N yields all the estimates on ulo stated in the corollary. More explicitly,
the q = 2 case of (6-14) as well as (6-15) follow from this statement and (4-5). The other values of q
can then be deduced by interpolation with the (conserved) energy.

Similarly, to estimate uhi we write

M1−s
‖|∇|

suM‖Lq
t Lr

x
. ‖∇uM‖Lq

t Lr
x
. A(M)2/q‖∇u‖(q−2)/q

L∞t L2
x
.u (1+M3K )1/q ,

multiply through by M s−1, and sum over M ≥ N . Notice that the condition 3
q + s < 1 guarantees the

convergence of this sum.
Claim (6-16) will follow by combining Proposition 3.2 and Theorem 4.1. First we write (i∂t +

1)u>N = F +G with F = P>N Ø(u2
>N u3) and G = P>N Ø(u4

≤N u) and then estimate these as follows:
By Theorem 4.1 and (4-14),

‖F‖L2
t L1

x
. ‖u‖2L∞t L6

x
‖Ø(u2

>N u)‖L2
t L3/2

x
.u N−3/2

+ K 1/2,

while by Bernstein, Theorem 4.1, and (4-5),

‖G‖L2
t L6/5

x
. N−1

‖∇Ø(u4
≤N u)‖L2

t L6/5
x
. N−1

‖∇u‖L∞t L2
x
‖u‖2L∞t L6

x
‖u≤N‖

2
L4

t L∞x

.u N−1
+ N 1/2K 1/2.

Putting these together with Proposition 3.2 yields

ρ1/2∥∥Su>N
∥∥

L2
t L∞x (I×R3)

.u N−1
+
(
N 1/2
+ ρ−1/2)(K + N−3)1/2

.

Noting from (3-1) that, modulo a factor of ρ−3/2, Su>N (t, x) controls the L2
x norm on the ball around

x , and recalling the restriction on ρ, we deduce the claim. �

We now will analyze the individual terms in Proposition 6.2, beginning with the most important one:
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Lemma 6.4 (mass-mass interactions).

8π‖uhi‖
4
L4

t,x (I×R3)
−

∫
I

∫∫
−a j jkk(x − y) |uhi(y)|2|uhi(x)|2 dx dy dt .u

η2e2J

J
(K + N−3).

Proof. In three dimensions, 1|x | = 2|x |−1 and −(4π |x |)−1 is the fundamental solution of Laplace’s
equation. In this way, we are left to estimate the error terms originating from the truncation of a at radii
|x − y| ≥ R. Combining (6-9) and (6-16) yields∫

I

∫∫
|x−y|≥R

∣∣a j jkk(x − y)
∣∣ |uhi(y)|2|uhi(x)|2 dx dy dt .u J−1

‖uhi‖
2
L∞t L2

x

J∑
j=0

(Re j )−3(Re j )(K + N−3).

To obtain the lemma, we simply invoke (6-13) as well as (6-12). �

The second most important term originates from (6-3). Its importance stems from the fact that it
contains additional coercivity that we will use to estimate other error terms below.

Lemma 6.5. We estimate (6-3) in two pieces:

BI :=

∫
I

∫∫
|x−y|≤eJ−J0 R

4
3akk(x − y)|uhi(x)|6|uhi(y)|2 dx dy dt ≥ 0, (6-17)

as akk ≥ 0 there, and on the complementary region,∫
I

∫∫
|x−y|≥eJ−J0 R

|akk(x − y)||uhi(x)|6|uhi(y)|2 dx dy dt . J 2
0
J

(
K + N−3). (6-18)

Proof. That akk≥0 and hence BI ≥0 is immediate from (6-10). Further, by construction, |akk |. J0(Jr)−1

when r ≥ eJ−J0 R. In this way, we see that (6-18) relies only on controlling∫
I

∫∫
eJ−J0 R≤|x−y|≤eJ R

J0|uhi(x)|6|uhi(y)|2

J |x − y|
dx dy dt,

which by (6-16) is

.u J0‖uhi‖
6
L∞t L6

x

J∑
j=J−J0

(Je j R)−1
· (e j R)

(
K + N−3) .u

J 2
0
J

(
K + N−3),

as needed. �

Now we come to the most dangerous-looking term, (6-6). Satisfactory control relies on the full strength
of (6-10).

Lemma 6.6. Let

8 jk(x, y) := |uhi(y)|2∂ j uhi(x)∂kuhi(x)− (Im uhi(y)∂ j uhi(y))(Im uhi(x)∂kuhi(x)).

Then
−

∫
I

∫∫
4a jk(x − y)8 jk(x, y)dx dy dt .u

(
η2
+

J0
J

)
(K + N−3)+ 1

J0
BI .

(For the BI notation, refer to (6-17).)
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Proof. As a jk(x − y) is invariant under x↔ y, we may replace 8 by the matrix

1
28 jk(x, y)+ 1

28 jk(y, x),

which is Hermitian-symmetric. Moreover, for each x, y this matrix defines a positive semidefinite qua-
dratic form on R3. To see this, notice that for any vector e ∈ R3 and any function φ,∣∣eke j (Im φ̄(y)φ j (y))(Im φ̄(x)φk(x))

∣∣≤ |φ(y)| |e · ∇φ(y)| |φ(x)| |e · ∇φ(x)|
≤

1
2 |φ(x)|

2
|e · ∇φ(y)|2+ 1

2 |φ(y)|
2
|e · ∇φ(x)|2.

As a jk is a real symmetric matrix (for any x and y), its eigenvectors are real. Thus, wherever a jk is
positive semidefinite (i.e., a is convex), the integrand has a favorable sign. In general, the eigenvalues
of the Hessian of a spherically symmetric function are arr and r−1ar with the latter having multiplicity
two (ambient dimension minus one). In our case ar ≥ 0 and |arr | . J−1r−1. Therefore, we are left to
estimate ∫

I

∫∫
R<|x−y|<eJ R

|∇uhi(x)|2|uhi(y)|2

J |x − y|
dx dy dt. (6-19)

To do this, we break the integral into two regions: |x− x(t)|> R/2 and |x− x(t)| ≤ R/2. In the former
case, we use (6-13) and (6-16) to obtain the bound

.u ‖∇uhi‖
2
L∞t L2

x (|x−x(t)|>R/2)

J∑
j=0

(Je j R)−1
· (e j R)

(
K + N−3).u η

2(K + N−3).
When |x− x(t)| ≤ R/2, we further subdivide into two regions. When additionally |x− y| ≥ ReJ−J0 , we
estimate in much the same manner as above to obtain the bound

.u ‖∇u‖2L∞t L2
x

J∑
j=J−J0

(Je j R)−1
· (e j R)

(
K + N−3).u

J0
J

(
K + N−3).

This leaves us to consider the integral (6-19) over the region where |x − x(t)| ≤ R/2 and |x − y| <
ReJ−J0 . Here we use the fact that by the almost periodicity of u (cf. also Remark 1.3 and (6-13)),∫

R3
|∇uhi(t, x)|2 dx .u

∫
R3
|uhi(t, x)|6 dx .u

∫
|x−x(t)|≤R/2

|uhi(t, x)|6 dx,

uniformly for t ∈ [0, Tmax). We also observe from (6-10) that J0(Jr)−1
≤ akk ; recall J0 ≥ 1. Therefore,

the remaining integral is .u
1
J0

BI . �

The terms appearing in (6-4) are referred to as momentum bracket terms on account of the notation

{F, φ}p := Re(F∇φ̄−φ∇F̄). (6-20)

Note that applying Proposition 6.2 with φ = u>N gives F = Phi F(u)− F(uhi). These error terms are
comparatively easy to control:
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Lemma 6.7 (Momentum bracket terms). For any ε ∈ (0, 1],∫
I

∫
R3

∫
R3
|uhi(t, y)|2∇a(x−y)·{F, φ}p dx dy dt.u εBI+η‖uhi‖

4
L4

t,x
+
(
ε−1η+ε

J 2
0
J

)
(N−3

+K ). (6-21)

Proof. We begin by expanding the momentum bracket into several terms. First, we note that {F(φ), φ}p=
−

2
3∇|φ|

6 and so

{F, uhi}p =−
2
3∇
(
|u|6− |ulo|

6
− |uhi|

6)
−{F(u)− F(ulo), ulo}p −{Plo F(u), uhi}p.

Then, using { f, g}p =∇( f g)+Ø( f∇g), we obtain

{F, uhi}p =

∇

5∑
j=1

O(u j
hiu

6− j
lo )+Ø(u2uhiu2

lo∇ulo)+Ø(u3u2
hi∇ulo)+∇Ø(uhi Plo F(u))+Ø(uhi∇Plo F(u)). (6-22)

We will treat each of these terms in succession. The presence of the gradient in front of a term is a signal
that we will integrate by parts in (6-21) before estimating its contribution.

We begin with the first term in (6-22). Integrating by parts and using

5∑
j=1

|uhi|
j
|ulo|

6− j . ε|uhi|
6
+ ε−1

|ulo|
2
|uhi|

[
|uhi| + |ulo|

]3
,

we find that we need to obtain satisfactory estimates for

ε

∫
I

∫∫
|akk(x − y)||uhi(t, y)|2|uhi(t, x)|6 dx dy dt, (6-23)

which follow already from Lemma 6.5, and for∫
I

∫∫
|uhi(t, y)|2|ulo(t, x)|2|uhi(t, x)|[|uhi(t, x)| + |ulo(t, x)|]3

ε|x − y|
dx dy dt. (6-24)

(To obtain this compact form, we use the fact that |akk(x − y)| . |x − y|−1.) To bound this second
integral, we use the Hölder and Hardy–Littlewood–Sobolev inequalities, as well as Corollary 6.3 and
(6-13):

(6-24). ε−1∥∥|x |−1
∗ |uhi|

2∥∥
L4

t L6
x
‖uhi‖L4

t L3
x
‖ulo‖

2
L4

t L∞x
‖u‖3L∞t L6

x

. ε−1
‖uhi‖L∞t L2

x
‖uhi‖

2
L4

t L3
x
‖ulo‖

2
L4

t L∞x
‖ulo‖

3
L∞t L6

x

.u ε
−1η(N−3

+ K ).

We now move on to estimating the contribution of the second term in (6-22). This is easily estimated
using Corollary 6.3:

‖Ø(u2uhiu2
lo∇ulo)‖L1

t,x
. ‖uhi‖L∞t L2

x
‖∇ulo‖L2

t L6
x
‖ulo‖

2
L4

t L∞x
‖u‖2L∞t L6

x
.u ηN−1(1+ N 3K ).
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This takes the desired form when multiplied by∫
R3
|uhi(t, y)|2 dy .u η

2 N−2. (6-25)

To control the third term in (6-22), we use Bernstein together with Corollary 6.3:

‖Ø(u3u2
hi∇ulo)‖L1

t,x
. ‖∇ulo‖L2

t L∞x
‖uhi‖

2
L4

t,x
‖u‖3L∞t L6

x

.u N 1/2
‖∇ulo‖L2

t L6
x
‖uhi‖

2
L4

t,x

.u N 2
‖uhi‖

4
L4

t,x
+ N−1(1+ N 3K ).

Next, we estimate the contribution from the fourth term in (6-22), which, after integration by parts,
this takes the form

−

∫
I

∫∫
|uhi(t, y)|2akk(x − y)Ø

(
uhi Plo F(u)

)
(t, x) dx dy dt.

To continue, we write uhi(t, x)= div(∇1−1uhi(t, x)) and integrate by parts once more. This breaks the
contribution into two parts; after applying Hölder’s inequality and the Mikhlin multiplier theorem, the
total contribution is bounded by∥∥|x |−1

∗ |uhi|
2∥∥

L4
t L12

x
‖|∇|

−1uhi‖L2
t L6

x
‖∇Plo F(u)‖L4

t L4/3
x

(6-26)

+
∥∥|x |−2

∗ |uhi|
2∥∥

L4
t L12/5

x
‖|∇|

−1uhi‖L2
t L6

x
‖Plo F(u)‖L4

t L12/5
x
. (6-27)

Applying the Hardy–Littlewood–Sobolev inequality to the first factor in each term and using Sobolev
embedding on the very last factor, yields

(6-26)+ (6-27).
∥∥|uhi|

2∥∥
L4

t L4/3
x

∥∥|∇|−1uhi
∥∥

L2
t L6

x
‖∇Plo F(u)‖L4

t L4/3
x
. (6-28)

To estimate ∇Plo F(u), we decompose F(u) = F(ulo) + Ø(uhiu4). Using Hölder, Bernstein, and
Corollary 6.3, we obtain

‖∇Plo F(ulo)‖L4
t L4/3

x
. N 3/4

‖∇F(ulo)‖L4
t L1

x
. N 3/4

‖∇ulo‖L4
t L3

x
‖ulo‖

4
L∞t L6

x
.u N 3/4(1+ N 3K )1/4,

‖∇PloØ(uhiu4)‖L4
t L4/3

x
. N 3/2

‖uhiu4
‖L4

t L12/11
x
. N 3/2

‖uhi‖L4
t,x
‖u‖4L∞t L6

x
.u N 3/2

‖uhi‖L4
t,x
,

Putting these together with Corollary 6.3 and (6-13) yields

(6-28). ‖uhi‖L∞t L2
x
‖uhi‖L4

t,x
‖|∇|

−1uhi‖L2
t L6

x

(
N 3/4(1+ N 3K )1/4+ N 3/2

‖uhi‖L4
t,x

)
.u ηN−1

‖uhi‖L4
t,x

N−2(1+ N 3K )1/2
(
N 3/4(1+ N 3K )1/4+ N 3/2

‖uhi‖L4
t,x

)
.u η

(
‖uhi‖

4
L4

t,x
+ (N−3

+ K )
)

For the fifth (and last) term in (6-22), we again write uhi = div(∇1−1uhi). After integrating by parts
once, the contribution splits into two pieces, one of which is controlled by (6-26) and another which we
bound by ∥∥(∇a) ∗ |uhi|

2∥∥
L∞t L∞x

∥∥|∇|−1uhi
∥∥

L2
t L6

x
‖1Plo F(u)‖L2

t L6/5
x
. (6-29)
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We now decompose F(u)= F(ulo)+Ø(uhiu2
lou2)+Ø(u2

hiu
3). Using the Hölder and Bernstein inequal-

ities, we deduce

‖1Plo F(ulo)‖L2
t L6/5

x
. N‖∇ulo‖L2

t L6
x
‖ulo‖

4
L∞t L6

x
.u N (1+ N 3K )1/2,

‖1PloØ(uhiu2
lou2)‖L2

t L6/5
x
. N 2

‖uhi‖L∞t L2
x
‖ulo‖

2
L4

t L∞x
‖u‖2L∞t L6

x
.u N (1+ N 3K )1/2,

and
‖1PloØ(u2

hiu
3)‖L2

t L6/5
x
. N 5/2

‖uhi‖
2
L4

t,x
‖u‖3L∞t L6

x
.u N 5/2

‖uhi‖
2
L4

t,x
.

Putting it all together we find

(6-29). ‖uhi‖
2
L∞t L2

x
N−2(1+ N 3K )1/2

(
N (1+ N 3K )1/2+ N 5/2

‖uhi‖
2
L4

t,x

)
.u η

2 (
‖uhi‖

4
L4

t,x
+ (N−3

+ K )
)
.

With the last term estimated satisfactorily, the proof of Lemma 6.7 is now complete. �

Looking back to Proposition 6.2, we are left with just one term in ∂t M(t) to estimate, namely, (6-5).
As in [Colliander et al. 2008], we call this the mass (Poisson) bracket term and use the notation

{F, φ}m := Im(Fφ̄).

Notice that {|φ|4φ, φ}m = 0 for any function φ.

Lemma 6.8 (mass bracket terms). For any ε > 0,∣∣∣∣Im ∫
I

∫
R3

∫
R3
{F, uhi}m(t, y)∇a(x − y) · ∇uhi(t, x)uhi(t, x) dx dy dt

∣∣∣∣. η1/4(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)
.

(6-30)

Proof. Exploiting the cancellation noted above and

F(u)− F(uhi)− F(ulo)= Ø
(
ulouhiu3),

we write

{F, uhi}m = {Phi F(u)− F(uhi), uhi}m

= {Phi[F(u)− F(uhi)− F(ulo)], uhi}m −{Plo F(uhi), uhi}m +{Phi F(ulo), uhi}m

= Ø
(
ulou2

hiu
3)
−{Plo F(uhi), uhi}m +{Phi F(ulo), uhi}m . (6-31)

We will treat their contributions in reverse order (right to left) since this corresponds to increasing com-
plexity.

The contribution of the third term is easily seen to be bounded by

‖uhi∇uhi‖L∞t L1
x
‖uhi Phi F(ulo)‖L1

t,x
. ‖∇uhi‖L∞t L2

x
‖uhi‖

2
L∞t L2

x
N−1
‖∇F(ulo)‖L1

t L2
x

.u η
2 N−3

‖∇ulo‖L2
t L6

x
‖ulo‖

2
L4

t L∞x
‖ulo‖

2
L∞t L6

x

.u η
2(N−3

+ K ).
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For the second term in (6-31) we write uhi = div(∇1−1uhi) and integrate by parts. This yields two
contributions to LHS(6-30), which we bound as follows:

‖uhi∇uhi‖L∞t L1
x

∥∥|∇|−1uhi
∥∥

L2
t L6

x

∥∥∇Plo F(uhi)
∥∥

L2
t L6/5

x
.u ‖uhi‖L∞t L2

x
N−2(1+ N 3K )1/2 N 3/2

‖F(uhi)‖L2
t L1

x

.u η(N−3
+ K )1/2‖uhi‖

2
L4

t,x
‖uhi‖

3
L∞t L6

x

.u η
(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)

and ∥∥|x |−1
∗ |uhi∇uhi|

∥∥
L4

t L12
x

∥∥|∇|−1uhi
∥∥

L2
t L6

x

∥∥Plo F(uhi)‖L4
t L4/3

x

. ‖∇uhi‖L∞t L2
x
‖uhi‖L4

t,x
N−2(1+ N 3K )1/2 N 3/4

‖F(uhi)‖L4
t L1

x

.u ‖uhi‖L4
t,x

N 1/4(N−3
+ K )1/2‖uhi‖L4

t,x
‖uhi‖

15/4
L∞t L6

x
‖uhi‖

1/4
L∞t L2

x

.u η
1/4(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)
.

We now move to the first term in (6-31). This term, or more precisely, the term Ø(ulou5
hi) contained

therein, is the reason we needed to introduce the spatial truncation on a. Using ReJ
= N−1, we estimate

this term via

‖∇uhi‖L∞t L2
x
‖uhi‖L4

t,x
‖∇a‖L∞t L4

x
‖uhi‖

2
L4

t,x
‖ulo‖L4

t L∞x
‖u‖3L∞t L6

x
.u ‖uhi‖

3
L4

t,x
(eJ R)3/4η1/2(1+ N 3K )1/4

.u η
1/2(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)
.

This completes the control of the mass bracket terms. �

Proof of Theorem 6.1. From Hölder’s inequality, we see that when φ = uhi and a is as above, the
interaction Morawetz quantity defined in (6-2) obeys

sup
t∈I
|M(t)| ≤ 2‖uhi‖

3
L∞t L2

x (I×R3)
‖∇uhi‖L∞t L2

x (I×R3) .u η
3 N−3,

provided, of course, that N is small enough so that (6-13) holds. Applying the fundamental theorem of
calculus to the identity in Proposition 6.2 and putting together all the lemmas in this section, we reach
the conclusion that

8π‖uhi‖
4
L4

t,x (I×R3)
+ BI .u

(
ε+

1
J0

)
BI + η

1
4 ‖uhi‖

4
L4

t,x (I×R3)
+

(
η

1
4 +

η

ε
+

J 2
0
J
+ η2 e2J

J

)
(N−3

+ K ).

We remind the reader that this estimate is uniform in ε, η ∈ (0, 1], but was derived under several overar-
ching hypotheses: (6-13), N ReJ

= 1, and J ≥ 2J0 ≥ 2.
We now choose our parameters as follows: First ε and J−1

0 are made small enough so that the BI

term on the RHS can be absorbed by that on the LHS. Next η and J−1 are chosen small enough both to
handle the L4

t,x on the RHS and to ensure that the prefactor in front of (N−3
+K ) is smaller than η0. We

now choose R and N−1 large enough so that (6-13) holds and then further increase N−1 or R so as to
ensure N ReJ

= 1.
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To fully justify bringing the two terms across the inequality, we need to verify that they are indeed
finite. This is easily done:

‖uhi‖
4
L4

t,x
. ‖|∇|1/4u≥N‖

4
L4

t L3
x
. N−3

‖∇uhi‖
4
L4

t L3
x
.u N−3

+ N−3
∫

I
N (t)2 dt,

by Sobolev embedding, Bernstein, and Lemma 1.7. Similarly,

BI .
∥∥|x |−1

∗ |uhi|
2∥∥

L4
t L12

x
‖uhi‖

5/4
L∞t L2

x
‖uhi‖

19/4
L19/3

t L114/7
x

. ‖uhi‖L4
t L4

x
‖uhi‖

9/4
L∞t L2

x
‖∇uhi‖

19/4
L19/3

t L38/15
x
.u N−3

+ N−3
∫

I
N (t)2 dt,

by also using the Hardy–Littlewood–Sobolev inequality. �

Remark 6.9. As noted in the course of the proof, the necessity of truncating a(x) stems from our inability
to estimate one term. It would be possible to give a much simpler proof if we could show (a priori) that

‖u5
hiulo‖L1

t,x
.u N−2

+ ηN K , (6-32)

for N sufficiently small. We will now describe what appears to be an intrinsic obstacle to doing this.
With current technology, proving (6-32) without using the interaction Morawetz identity seems to

require proving that it also holds for almost periodic solutions of the focusing equation; however, the
static solution W described in Remark 4.3 shows (6-32) does not hold in that setting. From (4-18) and
simple arguments,

lim
N→0

N−1
∫

R3

[
W>N (x)

]5W≤N (x) dx = lim
N→0

N−1
∫

R3
W (x)5W≤N (x) dx

= lim
N→0

N−1
∫

R3
|ξ |2|Ŵ (ξ)|2ϕ(ξ/N ) dξ ∼ 1.

As N (t)≡ 1, it follows that K = |I | and so ‖W 5
hiWlo‖L1

t,x
& N K for N small.

7. Impossibility of quasisolitons

In this section, we show that the second type of almost periodic solution described in Theorem 1.8,
namely, those with

∫ Tmax
0 N (t)−1 dt = ∞, cannot exist. This is because their existence is inconsistent

with the interaction Morawetz estimate obtained in the last section.

Theorem 7.1 (no quasisolitons). There are no almost periodic solutions u : [0, Tmax)×R3
→ C to (1-1)

with N (t)≡ Nk ≥ 1 on each characteristic interval Jk ⊂[0, Tmax) which satisfy ‖u‖L10
t,x ([0,Tmax)×R3)=+∞

and ∫ Tmax

0
N (t)−1 dt =∞. (7-1)

Proof. We argue by contradiction and assume there exists such a solution u.
First we observe that there exists C(u) > 0 such that

N (t)
∫
|x−x(t)|≤C(u)/N (t)

|u(t, x)|4 dx ≥ 1/C(u) (7-2)
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uniformly for t ∈ [0, Tmax). That this is true for a single time t follows from the fact that u(t) is not
identically zero. To upgrade this to a statement uniform in time, we use the fact that u is almost periodic.
More precisely, we note that the left-hand side of (7-2) is both scale- and translation-invariant and that
the map u(t) 7→ LHS(7-2) is continuous on L6

x and hence also on Ḣ 1
x .

Moreover, by Hölder’s inequality,

N (t)
∫
|x−x(t)|≤C(u)/N (t)

|u≤N (t, x)|4 dx .u ‖u≤N (t)‖4L6
x

for any N > 0,

uniformly for t ∈ [0, Tmax). Combining this with (7-2) and Theorem 6.1 shows that for each η0 > 0 there
exists some N = N (η0) sufficiently small so that∫

I
N (t)−1 dt .u η0 N−3

+ η0

∫
I

N (t)−1 dt

uniformly for time intervals I ⊂ [0, Tmax) that are a union of characteristic subintervals Jk . In particular,
we may choose η0 small enough to defeat the implicit constant in this inequality and so deduce that∫ Tmax

0
N (t)−1 dt = lim

T↗Tmax

∫ T

0
N (t)−1 dt .u 1,

which contradicts (7-1). �
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