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We consider a generalized Ricci flow with a given (not necessarily closed) three-form and establish
higher-derivative estimates for compact manifolds. As an application, we prove the compactness theorem
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1. Introduction

Throughout this paper manifolds always mean smooth and closed (compact and without boundary)
manifolds. Let Met.M / denote the space of smooth metrics on a manifold M , and C1.M / the set of
all smooth functions on M . We denote by C the universal constants depending only on the dimension of
M , which may take different values at different places.

An important and natural problem in differential geometry is to find a canonical metric on a given
manifold. A classical example is the uniformization theorem (e.g., [Chow and Knopf 2004]), which says
that every smooth surface admits a unique conformal metric of constant curvature. To generalize to higher
dimensional manifolds, Hamilton [1982] introduced a system of equations

@gij

@t
D�2Rij ; (1-1)

now called the Ricci flow, an analogue of the heat equation for metrics.
There are two ways to understand the Ricci flow: one way comes from the two-dimensional sigma

model (see [Bakas 2007]), while another comes from Perelman’s energy functional [Perelman 2002]
defined by

F.g; f /D

Z
M

�
RCjrf j2

�
e�f dVg; .g; f / 2Met.M /�C1.M /; (1-2)
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where R, r, and dVg, is the scalar curvature, Levi-Civita connection, and volume form of g, respectively.
He showed that the Ricci flow is the gradient flow of (1-2) and the functional F is monotonic along this
gradient flow. Precisely, under the following system

@gij

@t
D�2Rij ;

@f

@t
D�R��f Cjrf j2; (1-3)

we have
d

dt
F.g; f /D 2

Z
M

ˇ̌
Rij Crirjf

ˇ̌2
e�f dVg � 0: (1-4)

Perelman’s energy functional plays an essential role in determining the structures of singularities of the
Ricci flow and then the proof of Poincaré conjecture and Thurston’s generalization conjecture; for more
details we refer readers to [Cao and Zhu 2006; Chow et al. 2006; 2007; 2008; 2010; Kleiner and Lott
2008; Morgan and Tian 2007; Perelman 2002].

Ricci flow coupled with a one-form or a two-form. If we consider the two-dimensional nonlinear sigma
model [Bakas 2007; Oliynyk et al. 2006], then we obtain a generalized Ricci flow that is the Ricci flow
coupled with the evolution equation for a two-form. This flow can be also obtained from the point of
view of Perelman-type energy functional.

Denoting by Ap.M / the space of p-forms on M , we consider the energy functional

F.1/ WMet.M /�A2.M /�C1.M /! R

defined by

F.1/.g;B; f /D

Z
M

�
RCjrf j2� 1

12
jH j2

�
e�f dVg; (1-5)

where H D dB. As showed in [Oliynyk et al. 2006], the gradient flow of F.1/ satisfies

@gij

@t
D�2Rij � 2rirjf C

1
2
Hi

k`Hjk`; (1-6)

@Bij

@t
D 3rkH k

ij � 3H k
ijrkf; (1-7)

@f

@t
D�R��f C 1

4
jH j2; (1-8)

and under a family of diffeomorphisms the system (1-6)–(1-8) is equivalent to

@gij

@t
D�2Rij C

1
2
Hi

k`Hjk`; (1-9)

@Bij

@t
D 3rkH k

ij ; (1-10)

@f

@t
D�R��f Cjrf j2C 1

4
jH j2: (1-11)

Using the adjoint operator d�, Equation (1-10) can be written as

@Bij

@t
D�.d�H /ij ; (1-12)
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and therefore (because of H D dB)

@H

@t
D�dd�H D�HLH; (1-13)

where �HL D�.dd�C d�d/ denotes the Hodge–Laplace operator.
The flow (1-9)–(1-10) can be interpreted as the connection Ricci flow [Streets 2008]. If we replace

H D dB by F D dA, i.e., replace a two-form by a one-form, then the flow (1-6)–(1-7) or (1-9)–(1-10) is
exactly the Ricci Yang–Mills flow studied by Streets [2007] and Young [2008].

Ricci flow coupled with a one-form and a two-form. There is another generalized Ricci flow which
connects to Thurston’s conjecture — roughly stating that a three-dimensional manifold with a given
topology has a canonical decomposition into simple three-dimensional manifolds, each of which admits
one, and only one, of eight homogeneous geometries: S3, the round three-sphere; R3, the Euclidean
space; H3, the standard hyperbolic space; S2�R; H2�R; Nil, the three-dimensional nilpotent Heisenberg
group; fSL.2;R/; Sol, the three -dimensional solvable Lie group. The proof of Thurston’s conjecture can
be found in [Cao and Zhu 2006; Kleiner and Lott 2008; Morgan and Tian 2007; Perelman 2002].

To better understanding Thurston’s conjecture, Gegenberg and Kunstatter [2004] proposed a generalized
flow by considering the modified 3D stringy theory. This flow is the Ricci flow coupled with evolution
equations for a one-form and a two-form. As in (1-5), we define an energy functional

F.2/ WMet.M /�A1.M /�A2.M /�C1.M /! R

by

F.2/.g;A;B; f /D

Z
M

�
RCjrf j2� 1

12
jH j2� 1

2
jF j2

�
e�f dVg; (1-14)

where H D dB, and F D dA. In [He et al. 2008], the authors showed that the gradient flow of F.2/

satisfies
@gij

@t
D�2Rij � 2rirjf C

1
2
Hi

k`Hjk`C 2Fi
kFjk ; (1-15)

@Ai

@t
D 2rj Fj

i � 2Fj
irjf; (1-16)

@Bij

@t
D 3rkH k

ij � 3H k
ijrkf; (1-17)

@f

@t
D�R��f C 1

4
jH j2CjF j2; (1-18)

and under a family of diffeomorphisms the system (1-15)–(1-18) is equivalent to

@gij

@t
D�2Rij C

1
2
Hi

k`Hjk`C 2Fi
kFjk ; (1-19)

@Ai

@t
D 2rj Fj

i ; (1-20)

@Bij

@t
D 3rkH k

ij ; (1-21)
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@f

@t
D�R��f Cjrf j2C 1

4
jH j2CjF j2: (1-22)

Using again the adjoint operator d�, we have

@F

@t
D�HLF;

@H

@t
D�HLH: (1-23)

The flow (1-19)–(1-21) clearly contains the Ricci flow, the flow (1-9)–(1-10) or the connection Ricci
flow, and the Ricci Yang–Mills flow; we expect this flow can give another proof of the Poincaré conjecture
and Thurston’s generalization conjecture, with less analysis on singularities.

Main results. For convenience, we refer to GRF the generalized Ricci flow and RF.A;B/ the Ricci flow
coupled with a one-form A and a two-form B.

Let .M;g/ denote an n-dimensional closed Riemannian manifold with a three-form H D fHijkg. In
the first part of this paper we consider the following GRF on M :

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
Hik`.x; t/Hj

k`.x; t/; (1-24)

@

@t
H.x; t/D�HL;g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/: (1-25)

It is clearly from (1-9) and (1-13) that the gradient flow of the energy functional F.1/ is a special case
of (1-24)–(1-25). The corresponding case that H is closed is called the refined generalized Ricci flow
(RGRF):

@

@t
gij .x; t/D�2Rij .x; t/C

1

2
Hik`.x; t/Hj

k`.x; t/; (1-26)

@

@t
H.x; t/D�dd�g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/: (1-27)

Here d�
g.x;t/

is the dual operator of d with respect to the metric g.x; t/.

Lemma 1.1. Under RGRF, H.x; t/ is closed if the initial value H.x/ is closed.

Proof. Since the exterior derivative d is independent of the metric, we have

@

@t
dH.x; t/D d

@

@t
H.x; t/D d

�
�dd�g.x;t/H.x; t/

�
D 0:

so dH.x; t/D dH.x/D 0. �
The closedness of H is very important and has physical interpretation [Bakas 2007; Oliynyk et al.

2006]. Streets [2008] considered the connection Ricci flow in which H is the geometric torsion of
connection.

Proposition 1.2. If .g.x; t/;H.x; t// is a solution of RGRF and the initial value H.x/ is closed, then it
is also a solution of GRF.

Proof. From Lemma 1.1 and the assumption we know that H.x; t/ are all closed. Hence

�HL;g.x;t/H.x; t/D�dd�g.x;t/H.x; t/: �
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For GRF, a basic and natural question is the existence. The short-time existence for RGRF has been
established in [He et al. 2008], where the authors have already showed the short-time existence for
RF.A;B/ obviously including RGRF. In this paper, we prove the short- time existence for RGF.

Theorem 1.3. There is a unique solution to GRF for a short time. More precisely, let .M;gij .x// be an
n-dimensional closed Riemannian manifold with a three-form H D fHijkg, then there exists a constant
T D T .n/ > 0 depending only on n such that the evolution system

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
gkp.x; t/g`q.x; t/Hik`.x; t/Hjpq.x; t/;

@

@t
H.x; t/D�HL;g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/;

has a unique solution .gij .x; t/;Hijk.x; t// for a short time 0� t � T .

After establishing the local existence, we are able to prove the higher derivatives estimates for GRF.
Precisely, we have the following

Theorem 1.4. Suppose that .g.x; t/;H.x; t// is a solution to GRF on a closed manifold M n and K is
an arbitrary given positive constant. Then for each ˛ > 0 and each integer m� 1 there exists a constant
Cm depending on m; n;maxf˛; 1g, and K such that if

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K

for all x 2M and t 2 Œ0; ˛=K�, then

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/ �
Cm

tm=2
(1-28)

for all x 2M and t 2 .0; ˛=K�.

As an application, we can prove the compactness theorem for GRF.

Theorem 1.5 (compactness for GRF). Let f.Mk ;gk.t/;Hk.t/;Ok/gk2N be a sequence of complete
pointed solutions to GRF for t 2 Œ˛; !/ 3 0 such that:

(i) There is a constant C0 <1 independent of k such that

sup
.x;t/2Mk�.˛;!/

ˇ̌
Rmgk.x;t/

ˇ̌
gk.x;t/

� C0; sup
x2Mk

jHk.x; ˛/jgk.x;˛/ � C0:

(ii) There exists a constant �0 > 0 satisfies

injgk.0/
.Ok/� �0:

Then there exists a subsequence fjkgk2N such that

.Mjk
;gjk

.t/;Hjk
.t/;Ojk

/! .M1;g1.t/;H1.t/;O1/;

converges to a complete pointed solution .M1;g1.t/;H1.t/;O1/; t 2 Œ˛; !/ to GRF as k!1.
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In the second part of this paper, we consider the Ricci flow coupled with a one-form and a two-form.
This flow is the gradient flow of F.2/ and takes the form

@

@t
gij .x; t/D�2Rij C

1
2
Hi

k`.x; t/Hjk`.x; t/C 2Fi
k.x; t/Fjk.x; t/; (1-29)

@

@t
Ai.x; t/D 2rj Fj

i.x; t/; Ai.x; 0/DAi.x/; gij .x; 0/D gij .x/; (1-30)

@

@t
Bij .x; t/D 3rkH k

ij .x; t/; Bij .x; 0/D Bij .x/: (1-31)

Here AD fAig and B D fBij g is a one-form and a two-form on M , respectively, and F D dA;H D dB.
For this flow, we can also prove the short-time existence, higher derivative estimates, and the compactness
theorem.

The rest of this paper is organized as follows. In Section 2, we prove the short-time existence and
uniqueness of the GRF for any given three-form H . In Section 3, we compute the evolution equations for
the Levi-Civita connections, Riemann, Ricci, and scalar curvatures of a solution to the GRF. In Section 4,
we establish higher derivative estimates for GRF, called Bernstein–Bando–Shi (BBS) derivative estimates
(e.g., [Cao and Zhu 2006; Chow and Knopf 2004; Chow et al. 2007; 2008; 2010; Morgan and Tian
2007; Shi 1989]). In Section 5, we prove the compactness theorem for GRF by using BBS estimates. In
Section 6, based on the work of [He et al. 2008], the similar results are established for RF.A;B/.

2. Short-time existence of GRF

In this section we establish the short-time existence for GRF. Our method is standard: we use the DeTurck
trick in Ricci flow to prove its short-time existence. We assume that M is an n-dimensional closed
Riemannian manifold with metric

dzs2
D zgij .x/ dxi dxj (2-1)

and with Riemannian curvature tensor f zRijk`g. We also assume that zH D f zHijkg is a fixed three-form
on M . In the following we put

hij WDHik`Hj
k`: (2-2)

Suppose the metrics
dys2

t D
1
2
ygij .x; t/ dxi dxj (2-3)

are the solutions of1

@

@t
ygij .x; t/D�2 yRij .x; t/C yhij .x; t/; ygij .x; 0/D zgij .x/ (2-4)

for a short time 0� t � T . Consider a family of smooth diffeomorphisms 't WM !M.0� t � T / of
M . Let

ds2
t WD '

�
t dys2

t ; 0� t � T (2-5)

1In the following computations we don’t need to use the evolution equation for H.x; t/, hence we only consider the evolution
equation for metrics.
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be the pull-back metrics of dys2
t . For coordinates system x D fx1; : : : ;xng on M , let

ds2
t D gij .x; t/ dxi dxj (2-6)

and
y.x; t/D 't .x/D fy

1.x; t/; : : : ;yn.x; t/g: (2-7)

Then we have

gij .x; t/D
@y˛

@xi

@yˇ

@xj
yg˛ˇ.y; t/: (2-8)

By the assumption yg˛ˇ.x; t/ are the solutions of

@

@t
yg˛ˇ.x; t/D�2 yR˛ˇ.x; t/C yh˛ˇ.x; t/; yg˛ˇ.x; 0/D zg˛ˇ.x/: (2-9)

We use Rij ; yRij ; zRij ; �k
ij ;
y�k

ij ;
z�k

ij ; r; yr; zr; hij ; yhij ; zhij to denote the Ricci curvatures, Christoffel
symbols, covariant derivatives, and products of the three-form H with respect to zgij ; ygij ;gij respectively.
Then

@

@t
gij .x; t/D

@y˛

@xi

@yˇ

@xj

�
@

@t
yg˛ˇ.y; t/

�
C

@

@xi

�
@y˛

@t

�
@yˇ

@xj
yg˛ˇ.y; t/C

@y˛

@xi

@

@xj

�
@yˇ

@t

�
yg˛ˇ.y; t/:

From (2-9) we have

@

@t
yg˛ˇ.y; t/D�2 yR˛ˇ.y; t/C yh˛ˇ.y; t/C

@yg˛ˇ

@y
@y

@t
;

and

@

@t
gij .x; t/D�2

@y˛

@xi

@yˇ

@xj
yR˛ˇ.y; t/C

@y˛

@xi

@yˇ

@xj
yh˛ˇ.y; t/

C
@y˛

@xi

@yˇ

@xj

@yg˛ˇ

@y
@y

@t
C

@

@xi

�
@y˛

@t

�
@yˇ

@xj
yg˛ˇ.y; t/C

@y˛

@xi

@

@xj

�
@yˇ

@t

�
yg˛ˇ.y; t/:

Since

Rij .x; t/D
@y˛

@xi

@yˇ

@xj
yR˛ˇ.y; t/; hij .x; t/D

@y˛

@xi

@yˇ

@xj
yh˛ˇ.y; t/;

using [Shi 1989, §2, (29)], we obtain

@

@t
gij .x; t/D�2Rij .x; t/C hij .x; t/C ri

�
@y˛

@t

@xk

@y˛
gjk

�
Crj

�
@y˛

@t

@xk

@y˛
gik

�
: (2-10)

According to DeTurck trick, we define y.x; t/D 't .x/ by the equation

@y˛

@t
D
@y˛

@xk
gˇ .�k

ˇ �
z�k
ˇ /; y˛.x; 0/D x˛; (2-11)

then (2-10) becomes
@

@t
gij .x; t/D�2Rij .x; t/C hij .x; t/CriVj Crj Vi ; gij .x; 0/D zgij .x/; (2-12)
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where

Vi D gikgˇ .�k
ˇ �

z�k
ˇ /: (2-13)

Lemma 2.1. The evolution equation (2-12) is a strictly parabolic system. Moreover,

@

@t
gij D g˛ˇ zr˛ zrˇgij �g˛ˇgip zg

pq zRj˛qˇ �g˛ˇgjp zg
pq zRi˛qˇ

C
1
2
g˛ˇgpq

�
zrigp˛ � zrj gqˇC 2zrgjp � zrqgiˇ � 2zr˛gjp � zrˇgiq � 2zrj gp˛ � zrˇgiq � 2zrigp˛ � zrˇgjq

�
C

1
2
g˛ˇgpqHi˛pHjˇq:

Proof. It is an immediate consequence of Lemma 2.1 of [Shi 1989]. �

Now we can prove the short-time existence of GRF.

Theorem 2.2. There is a unique solution to GRF for a short time. More precisely, let .M;gij .x// be an
n-dimensional closed Riemannian manifold with a three-form H D fHijkg, then there exists a constant
T D T .n/ > 0 depending only on n such that the evolution system

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
gkp.x; t/g`q.x; t/Hik`.x; t/Hjpq.x; t/;

@

@t
H.x; t/D�HL;g.x;t/H.x; t/; H.x; 0/DH.x/; g.x; 0/D g.x/;

has a unique solution .gij .x; t/;Hijk.x; t// for a short time 0� t � T .

Proof. We proved that the first evolution equation is strictly parabolic by Lemma 2.1. Form the Ricci
identity, we have �HL;g.x;t/H D �LB;g.x;t/H CRm�H which is also strictly parabolic. Hence from
the standard theory of parabolic systems, the evolution system has a unique solution. �

3. Evolution of curvatures

The evolution equation for the Riemann curvature tensors to the usual Ricci flow (e.g., [Cao and Zhu
2006; Chow and Knopf 2004; Chow et al. 2007, 2008; 2010; Hamilton 1982; Morgan and Tian 2007; Shi
1989]) is given by

@

@t
Rijk` D�Rijk`C ijk`; (3-1)

where

 ijk` D 2.Bijk` �Bij`k �Bi j̀k CBikj`/�gpq.Rpjk`Rq`CRipk`Rqj CRijp`Rqk CRijkpRq`/;

and Bijk`D gpr gqsRpiqj Rrks`. From this we can easily deduce the evolution equation for the Riemann
curvature tensors to GRF.

Let vij .x; t/ be any symmetric 2-tensor, we consider the flow

@

@t
gij .x; t/D vij .x; t/: (3-2)
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Applying a formula in [Chow and Knopf 2004] to our case vij WD �2Rij C
1
2
hij with hij DHik`Hj

k`,
we obtain
@

@t
Rijk` D�

1
2

�
�2rirkRj`C

1
2
rirkhj`C 2rir`Rjk �

1
2
rir`hjk

C 2rjrkRi` �
1
2
rjrkhi` � 2rjr`Rik C

1
2
rjr`hik

�
C

1
2
gpq

�
Rijkp.�2Rq`C

1
2
hq`/CRijp`.�2Rqk C

1
2
hqk/

�
DrirkRj` �rir`Rjk �rjrkRi`Crjr`Rik �gpq.RijkpRq`CRijp`Rqk/

C
1
4

�
�rirkhj`Crir`hjk Crjrkhi` �rjr`hik

�
C

1
4
gpq

�
Rijkphq`CRijp`hqk

�
D�Rijk`C 2

�
Bijk` �Bij`k �Biljk CBikj`

�
� gpq.Rpjk`Rq`CRipk`Rqj CRijp`Rqk CRijkpRq`/

C
1
4

�
�rirkhj`Crir`hjk Crjrkhi` �rjr`hik

�
C

1
4
gpq

�
Rijkphq`CRijp`hqk

�
:

Proposition 3.1. For GRF we have

@

@t
Rijk` D�Rijk`C 2 .Bijk` �Bij`k �Bi j̀k CBikj`/

� gpq.Rpjk`Rq`CRipk`Rqj CRijp`Rqk CRijkpRq`/

C
1
4
.�rirkhj`Crir`hjk Crjrkhi` �rjr`hik/C

1
4
gpq

�
Rijkphq`CRijp`hqk

�
:

In particular:

Corollary 3.2. For GRF we have

@

@t
RmD�RmCRm�RmCH �H �RmC

2X
iD0

r
iH �r2�iH: (3-3)

Proof. From Proposition 3.1, we obtain

@

@t
RmD�RmCRm�RmCr2hC h�Rm :

On the other hand, hDH �H and

r
2hDr.r.H �H //Dr.rH �H /Dr2H �H CrH �rH:

Combining these terms, we obtain the result. �

Proposition 3.3. For GRF we have

@

@t
Rik D�Rik C 2hRpiqk ;Rpqi � 2hRpi ;RpkiC

1
4

�
hh`q;Ri`kqiC hRip; hkpi

�
C

1
4

�
�rirk jH j

2
Cgj`

rir`hjk Cgj`
rjrkhi` ��hik

�
:

Proof. Since
@

@t
Rik D gj` @

@t
Rijk`C 2gjpg`qRijk`Rpq
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and

gij hij D gij HipqHj
pq
D gij gpr gqsHipqHjrs D jH j

2;

it follows that

gj`Œ�rirkhj`Crir`hjk Crjrkhi` �rjr`hik Cgpqhq`RijkpCgpqhqkRijp`�

D�rirk jH j
2
Cgj`

rir`hjk Cgj`
rjrkhi` ��hik Cgj`gpqhq`RijkpCgpqhqkRip:

From these identities, we get the result. �

As a consequence, we obtain the evolution equation for scalar curvature.

Proposition 3.4. For GRF we have

@

@t
RD�RC 2 jRic j2� 1

2
�jH j2C 1

2
hhij ;Rij iC

1
2
gikgj`

rirj hk`:

Proof. From the usual evolution equation for scalar curvature under the Ricci flow, we have

@

@t
RD�RC 2 jRic j2C 1

4
gik Œhh`q;Ri`kqiC hRip; hkpi�

C
1
4
gik

�
�rirk jH j

2
Cgj`

rir`hjk Cgj`
rjrkhi` ��hik

�
D�RC 2 jRic j2C 1

4
hhij ;Rij iC

1
4
hRip; hipi

�
1
4
�jH j2C 1

4
gikgj`

rir`hjk C
1
4
gikgj`

rjrkhi` �
1
4
�jH j2:

Simplifying the terms, we obtain the required result. �

4. Derivative estimates

In this section we are going to prove BBS estimates. At first we review several basic identities of
commutators Œ�;r� and Œ@=@t ;r�. If A D A.t/ is a t-dependency tensor, and @gij=@t D vij , then
applying the well-known formulas stated in [Chow and Knopf 2004] on GRF we have

@

@t
r RmDr

@

@t
RmCRm�r.RmCH �H /

Dr.�RmCRm�RmCH �H �RmCr2H �HCrH �rH /CRm�r RmCH �rH �Rm

D�.r Rm/C
X

iCjD0

r
i Rm�rj RmC

X
iCjCkD0

r
iH �rjH �rk RmC

X
iCjD0C2

r
iH �rjH:

(4-1)
More generally:

Proposition 4.1. For GRF and any nonnegative integer ` we have

@

@t
r
` RmD�.r` Rm/C

X
iCjD`

r
i Rm�rj RmC

X
iCjCkD`

r
iH �rjH �rk RmC

X
iCjD`C2

r
iH �rjH:

(4-2)
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Proof. For `D 1, this is (4-1). Suppose (4-2) holds for 1; : : : ; `. By induction on `, for `C 1 we have

@

@t
r
`C1 Rm

D
@

@t
r.r` Rm/

Dr
@

@t
.r` Rm/Cr` Rm�r.RmCH �H /

Dr

�
�.r` Rm/C

X
iCjD`

r
i Rm�rj RmC

X
iCjCkD`

r
iH �rjH �rk RmC

X
iCjD`C2

r
iH �rjH

�
Cr

` Rm�r RmCH �rH �r` Rm

D�.r`C1 Rm/Cr Rm�r` RmCRm�r`C1 Rm

C

X
iCjD`

�
r

iC1 Rm�rj RmCri Rm�rjC1 Rm
�

C

X
iCjCkD`

�
r

iC1H �rjH �rk RmCr iH �rjC1H �rk RmCr iH �rjH �rkC1 Rm
�

C

X
iCjD`C2

.riC1H �rjH Cr iH �rjC1H /CH �rH �rl Rm :

Simplifying these terms, we obtain the required result. �

As an immediate consequence, we have an evolution inequality for jrl Rm j2.

Corollary 4.2. For GRF and any nonnegative integer ` we have

@

@t
jr
` Rm j2 ��jrl Rm j2� 2 jr`C1 Rm j2C C

X
iCjD`

jr
i Rm j � jrj Rm j � jr` Rm j

CC
X

iCjCkD`

jr
iH j � jrjH j � jrk Rm j � jr` Rm jC C

X
iCjD`C2

jr
iH j � jrjH j � jr` Rm j; (4-3)

where C represents universal constants depending only on the dimension of M .

Next we derive the evolution equations for the covariant derivatives of H .

Proposition 4.3. For GRF and any positive integer ` we have

@

@t
r
`H D�.r`H /C

X
iCjD`

r
iH �rj RmC

X
iCjCkD`

r
iH �rjH �rkH: (4-4)

Proof. From the Bochner formula, the evolution equation for H can be rewritten as

@

@t
H D�H CRm�H: (4-5)
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For `D 1, we have

@

@t
rH Dr

@

@t
H CH �r.RmCH �H /

Dr.�H CRm�H /CH �r RmCH �H �rH

Dr.�H /CH �r RmCrH �RmCH �H �rH

D�.rH /Cr Rm�H CrH �RmCH �H �rH:

Using (4-2) and the same argument, we can prove the evolution equation for higher covariant derivatives.
�

Similarly, we have an evolution inequality for jr`H j2.

Corollary 4.4. For GRF and for any positive integer l we have

@

@t
jr

lH j2 ��jr`H j2� 2 jr`C1H j2

CC
X

iCjD`

jr
iH j � jrj Rm j � jr`H jCC

X
iCjCkD`

jr
iH j � jrj H j � jrkH j � jr lH j; (4-6)

while
@

@t
jH j2 ��jH j2� 2 jrH j2CC � jRm j � jH j2: (4-7)

Theorem 4.5. Suppose that .g.x; t/;H.x; t// is a solution to GRF on a closed manifold M n for a short
time 0� t � T and K1;K2 are arbitrary given nonnegative constants. Then there exists a constant Cn

depending only on n such that if

jRm.x; t/jg.x;t/ �K1; jH.x/jg.x/ �K2

for all x 2M and t 2 Œ0;T �, then

jH.x; t/jg.x;t/ �K2eCnK1t (4-8)

for all x 2M and t 2 Œ0;T �.

Proof. Since
@

@t
jH j2 ��jH j2CCnjRm j � jH j2 ��jH j2CCnK1jH j

2;

using the maximum principle, we obtain u.t/� u.0/eCnK1t , where u.t/D jH j2. �

The main result in this section is the following estimates for higher derivatives of Riemann curvature
tensors and three-forms. Some special cases were proved in [Streets 2007; 2008; Young 2008].

Theorem 4.6. Suppose that .g.x; t/;H.x; t// is a solution to GRF on a compact manifold M n and K is
an arbitrary given positive constant. Then for each ˛ > 0 and each integer m� 1 there exists a constant
Cm depending on m; n;maxf˛; 1g, and K such that if

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K
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for all x 2M and t 2 Œ0; ˛=K�, then

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/ �
Cm

tm=2
(4-9)

for all x 2M and t 2 .0; ˛=K�.

Proof. In the following computations we always let C be any constants depending on n;m;maxf˛; 1g,and
K, which may take different values at different places. From the evolution equations and Theorem 4.5,
we have

@

@t
jRm j2 ��jRm j2� 2 jr Rm j2CC CC jr2H jCC jrH j2;

@

@t
jH j2 ��jH j2� 2 jrH j2CC;

@

@t
jrH j2 ��jrH j2� 2 jr2H j2CC jr Rm j � jrH jCC jrH j2:

Consider the function uD t jrH j2C  jH j2C t jRm j2. Directly computing, we obtain

@

@t
u��u� 2t jr2H j2CC t jr2H jC .C � 2 /jrH j2CC CC � 2t jr Rm j2CC t � jr Rm j � jrH j

��uC 2.C �  / � jrH j2CC.1C  /:

If we choose  DC , then @
@t

u��uCC which implies that u�CeC t since u.0/�C . With this estimate
we are able to bound the first covariant derivative of Rm and the second covariant derivative of H . In
order to control the term jr Rm j2, we should use the evolution equations of jH j2, jrH j2 and jr2H j2 to
cancel with the bad terms, i.e., jr2 Rm j2, jr2H j2, and jr3H j2, in the evolution equation of jr Rm j2:

@

@t
jr Rm j2

��jr Rm j2�2 jr2 Rm j2CC jr Rm j2C
C

t1=2
jr Rm jCC � jr Rm j � jr3H jC

C

t1=2
jr

2H j � jr Rm j;

@

@t
jr

2H j2��jr2H j2�2 jr3H j2CC �jr2 Rm j�jr2H jC
C

t1=2
jr Rm j�jr2H jCC jr2H j2C

C

t
jr

2H j:

As above, we define

u WD t2.jr2H j2Cjr Rm j2/C tˇ.jrH j2CjRm j2/C  jH j2;

and therefore, @u
@t
��uCC . Motivated by cases for mD 1 and mD 2, for general m, we can define a

function

u WD tm.jrmH j2Cjrm�1 Rm j2/C
m�1X
iD1

ˇi t
i.jr iH j2Cjri�1 Rm j2/C  jH j2;

where ˇi and  are positive constants determined later. In the following, we always assume m � 3.
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Suppose that jri�1 Rm j C jriH j �
Ci

t i=2
, for i D 1; 2; : : : ;m� 1. For such i , from Corollary 4.4, we

have

@

@t
jr

iH j2 ��jr iH j2� 2 jriC1H j2CC

iX
jD0

jr
jH j � jri�j Rm j � jr iH j

CC

iX
jD0

i�jX
`D0

jr
jH j � jri�j�`H j � jr`H j � jr iH j

��jr iH j2�2 jriC1H j2CC � jr iH j

iX
jD0

Cj

t
j
2

�
Ci�jC1

t
i�jC1

2

CC � jr iH j

iX
jD0

i�jX
`D0

Cj

t
j
2

�
Ci�j�`

t
i�j�1

2

�
C`

t
l
2

��jr iH j2� 2 jriC1H j2C
Ci

t
iC1

2

jr
iH jC

Ci

t
i
2

jr
iH j:

Similarly, from Corollary 4.2 we also have

@

@t
jr

i�1 Rm j2 ��jri�1 Rm j2� 2 jri Rm j2CC

i�1X
jD0

jr
j Rm jjri�1�j Rm jjri�1 Rm j

CC

i�1X
jD0

i�1�jX
`D0

jr
jH j � jri�1�j�`H j � jr` Rm j � jri�1 Rm j

CC

iC1X
jD0

jr
jH j � jriC1�j H j � jri�1 Rm j

��jri�1 Rm j2� 2 jri Rm j2CC � jri�1 Rm j
i�1X
jD0

CjC1

t
jC1

2

�
Ci�j

t
i�j

2

CC � jri�1 Rm j
i�1X
jD0

i�1�jX
`D0

Cj

t
j
2

�
Ci�1�j�`

t
i�1�j�`

2

�
C`C1

t
`C1

2

CC � jri�1 Rm j
iX

jD1

Cj

t
j
2

�
CiC1�j

t
iC1�j

2

CC � jriC1H j �
Ci

t
i
2

��jri�1 Rm j2� 2 jri Rm j2C
Ci

t
iC1

2

� jr
i�1 Rm jC

Ci

t
i
2

jr
iC1H jC

Ci

t
i
2

jr
i�1 Rm j:

The evolution inequality for u is now given by

@u

@t
�mtm�1.jrmH j2Cjrm�1 Rm j2/C

m�1X
iD1

iˇi t
i�1.jr iH j2Cjri�1 Rm j2/

Ctm

�
@

@t
jr

mH j2C
@

@t
jr

m�1 Rm j2
�
C

m�1X
iD1

ˇi t
i

�
@

@t
jr

iH j2C
@

@t
jr

i�1 Rm j2
�
C  �

@

@t
jH j2:
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It’s easy to see that the second term is bounded by

m�1X
iD1

iˇi t
i�1 Ci

t i
D

m�1X
iD1

iˇiCi t
�1;

but this bound depends on t and approaches to infinity when t goes to zero. Hence we use the last
second term to control this bad term. The evolution inequality for the third term is the combination of the
inequalities

@

@t
jr

mH j2

��jrmH j2� 2 jrmC1H j2CC

mX
iD0

jr
iH j � jrm�i Rm j � jrmH j

CC

mX
iD0

m�iX
jD0

jr
jH j � jrm�i�j H j � jr iH j � jrmH j

��jrmH j2� 2 jrmC1H j2CC jrmH j2CC � jrm Rm j � jrmH jC
Cm

t
mC1

2

jr
mH jC

Cm

t
m
2

jr
mH j

and

@

@t
jr

m�1 Rm j2 ��jrm�1 Rm j2� 2 jrm Rm j2CC

m�1X
iD0

jr
i Rm j � jrm�1�i Rm j � jrm�1 Rm j

CC

m�1X
iD0

m�1�iX
jD0

jr
jH j � jrm�1�i�j H j � jri Rm j � jrm�1 Rm j

CC

mC1X
iD0

jr
iH j � jrmC1�iH j � jrm�1 Rm j

��jrm�1 Rm j2� 2 jrm Rm j2CC jrm�1 Rm j2C
C

t
1
2

� jr
mH j � jrm�1 Rm j

CC jrmC1H jjrm�1 Rm jC
Cm

t
mC1

2

jr
m�1 Rm jC

Cm

t
m
2

jr
m�1 Rm j:

Therefore we have

@u

@t
�mtm�1.jrmH j2Cjrm�1 Rm j2/C

m�1X
iD1

iˇi t
i�1.jr iH j2Cjri�1 Rm j2/

C tm

�
�jrmH j2� 2 jrmC1H j2C

C

t
mC1

2

jr
mH jCC jrmH j2

C C jrm Rm j � jrmH jC�jrm�1 Rm j2

� 2 jrm Rm j2C
C

t
mC1

2

jr
m�1 Rm jCC jrm�1 Rm j2

C
C

t1=2
jr

mH j � jrm�1 Rm jCC jrmC1H j � jrm�1 Rm j
�
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C

m�1X
iD1

ˇi t
i

�
Ci

t
iC1

2

jr
i�1 Rm jC�jr iH j2� 2 jriC1H j2

C�jri�1 Rm j2C
Ci

t
iC1

2

jr
iH jC

Ci

t
i
2

jr
iC1H j � 2 jri Rm j2

�
C  .�jH j2� 2 jrH j2CC /

��u� 2tm
jr

mC1H j2CC tm
jr

mC1H j � jrm�1 Rm j

� 2tm
jr

m Rm j2CC tm
jr

m Rm j � jrmH jC

m�2X
iD0

.i C 1/ˇiC1t i.jriC1H j2Cjri Rm j2/

� 2

m�1X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/� 2 jrH j2C C

CC tm�1
jr

mH j2CC tm�1
jr

m�1 Rm j2C j t
m�1

2 jr
mH jCC t

m�1
2 jr

m�1 Rm j

CC tm� 1
2 jr

mH j � jrm�1 Rm jCC tm
jr

mC1H j � jrm�1 Rm j

C

m�1X
iD1

ˇiCi t
i
2 jr

iC1H jC

m�1X
iD1

ˇiCi t
i�1

2 .jr iH j2Cjri�1 Rm j/:

Choosing

.i C 1/ˇiC1 D ˇi ; ˇi D
A

i!
; i � 0;

where A is constant which is determined later, and noting that

m�1X
iD1

ˇiCi t
i=2
jr

iC1H j �
1

2

m�1X
iD1

ˇi t
i
jr

iC1H j2C
1

2

m�1X
iD1

ˇiC
2
i

and

m�1X
iD1

ˇiCi t
i�1

2 .jr iH jC jri�1 Rm j/

� ˇ1C1.jrH jC jRm j/C
m�2X
iD1

ˇiC1CiC1t
i
2 .jriC1H jC jri Rm j/

� ˇ1C1.jrH jC jRm j/C
m�2X
iD1

ˇiC1CiC1

�
t i jriC1H j2C t i jri Rm j2

2ˇiC1CiC1=ˇi
C
ˇiC1CiC1

ˇi

�

� ˇ1C1.jrH jC jRm j/C 1

2

m�2X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/C

m�2X
iD1

ˇ2
iC1

C 2
iC1

ˇi
;
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we obtain
@

@t
u��u� 2tm

jr
mC1H j2CC tm

jr
mC1H j � jrm�1 Rm j

� 2tm
jr

m Rm j2CC tm
jr

mH j � jrm Rm jCC tm�1
jr

mH j2CC tm�1
jr

m�1 Rm j2

CC tm� 1
2 jr

mH j � jrm�1 Rm jCˇ0.jrH j2CjRm j2/

�

m�1X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/C

m�2X
iD1

ˇi t
i.jriC1H j2Cjri Rm j2/

C
1
2
ˇm�1tm�1

jr
mH j2Cˇ1C1jrH j � 2 jrH j2CC CC

��uCC tm�1
jr

m�1 Rm j2CC tm�1
jr

mH j2C tm� 1
2 .jrmH j2Cjrm�1 Rm j2/Cˇ0jrH j2

Cˇ1C1jrH j � 2 jrH j2CC CC � 1
2
ˇm�1tm�1

jr
mH j2�ˇm�1tm�1

jr
m Rm j2

��uC 1
2
.C
p

t CC �ˇm�1/t
m�1.jrm�1 Rm j2CjrmH j2/

C .ˇ0Cˇ1C1� 2 /jrH j2CC CC Cˇ1C1:

When we chose A and  sufficiently large, we obtain @u
@t
��uCC , which implies that u.t/� C since

u.0/ is bounded. �
Finally we give an estimate that plays a crucial role in the next section.

Corollary 4.7. Let .g.x; t/;H.x; t// be a solution of the generalized Ricci flow on a closed manifold M .
If there are ˇ > 0 and K > 0 such that

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K

for all x 2M and t 2 Œ0;T �, where T > ˇ=K, then there exists for each m 2N a constant Cm depending
on m; n;minfˇ; 1g, and K such that

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/ � CmKm=2

for all x 2M and t 2 Œminfˇ; 1g=K;T �.

Proof. The proof is the same as in [Chow et al. 2007]; we just copy it here. Let ˇ1 WDminfˇ; 1g. For any
fixed point t0 2 Œˇ1=K;T � we set T0 WD t0�ˇ1=K. For Nt WD t �T0 we let . Ng.Nt/; NH .Nt// be the solution
of the system

@ Ng

@Nt
D�2RicC 1

2
Nh;

@ NH

@Nt
D�HL; NgH ; Ng.0/D g.T0/; H .0/DH.T0/:

The uniqueness of solution implies that Ng.Nt/D g.Nt CT0/D g.t/ for Nt 2 Œ0; ˇ1=K�. By the assumption
we have

jRm.x; Nt/j Ng.x;Nt/ �K; jH .x/j Ng.x/ �K

for all x 2M and Nt 2 Œ0; ˇ1=K�. Applying Theorem 4.5 with ˛ D ˇ1, we have

jr
m�1

Rm.x; Nt/j Ng.x;Nt/Cjr
m

H.x; Nt/j Ng.x;Nt/ �
C m

Ntm=2
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for all x 2M and Nt 2 .0; ˇ1=K�. We have Ntm=2 � ˇ
m=2
1

2�m=2K�m=2 if Nt 2 Œˇ1=2K; ˇ1=K�. Taking
Nt D ˇ1=K, we obtain

jr
m�1 Rm.x; t0/jg.x;t0/Cjr

mH.x; t0/jg.x;t0/ �
2m=2C mKm=2

ˇ
m=2
1

for all x 2M . Since t0 2 Œˇ=K;T � was arbitrary, the result follows. �

5. Compactness theorem

In this section we prove the compactness theorem for our generalized Ricci flow. We follow [Hamilton
1995] on the compactness theorem for the usual Ricci flow.

We review several definitions from [Chow et al. 2007]. Throughout this section, all Riemannian
manifolds are smooth manifolds of dimensions n. The covariant derivative with respect to a metric g will
be denoted by gr.

Definition 5.1. Let K �M be a compact set and let fgkgk2N;g1, and g be Riemannian metrics on M .
For p 2 f0g [N we say that gk converges in C p to g1 uniformly on K with respect to g if for every
� > 0 there exists k0 D k0.�/ > 0 such that for k � k0,

kgk �g1kC pIK ;g WD sup
0�˛�p

sup
x2K

j
g
r
˛.gk �g1/.x/jg < �: (5-1)

Since we consider a compact set, the choice of background metric g does not change the convergence.
Hence we may choose g D g1.

Definition 5.2. Suppose fUkgk2N is an exhaustion2 of a smooth manifold M by open sets and gk are
Riemannian metrics on Uk . We say that .Uk ;gk/ converges in C1 to .M;g1/ uniformly on compact
sets in M if for any compact set K �M and any p > 0 there exists k0 D k0.K;p/ such that fgkgk�k0

converges in C p to g1 uniformly on K.

A pointed Riemannian manifold is a 3-tuple .M;g;O/, where .M;g/ is a Riemannian manifold and
O 2M is a basepoint. If the metric g is complete, the 3-tuple is called a complete pointed Riemannian
manifold. We say .M;g.t/;H.t/;O/; t 2 .˛; !/, is a pointed solution to the generalized Ricci flow if
.M;g.t/;H.t// is a solution to the generalized Ricci flow.

The so-called Cheeger–Gromov convergence in C1 is defined as follows:

Definition 5.3. A given sequence f.Mk ;gk ;Ok/gk2N of complete pointed Riemannian manifolds con-
verges to a complete pointed Riemannian manifold .M1;g1;O1/ if there exist

(i) an exhaustion fUkgk2N of M1 by open sets with O1 2 Uk , and

(ii) a sequence of diffeomorphisms ˆk WM1 3 Uk ! Vk WDˆk.Uk/�Mk with ˆk.O1/DOk

such that .Uk ; ˆ
�
k
.gk jVk

// converges in C1 to .M1;g1/ uniformly on compact sets in M1.

2If for any compact set K �M there exists k0 2 N such that Uk �K for all k � k0
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The corresponding convergence for the generalized Ricci flow is similar to the convergence for the
usual Ricci flow introduced by Hamilton [1995].

Definition 5.4. A given sequence f.Mk ;gk.t/;Hk.t/;Ok/gk2N of complete pointed solutions to the
GRF converges to a complete pointed solution to the GRF

.M1;g1.t/;H1.t/;O1/; t 2 .˛; !/;

if there exist

(i) an exhaustion fUkgk2N of M1 by open sets with O1 2 Uk ,

(ii) a sequence of diffeomorphisms ˆk WM1 3 Uk ! Vk WDˆk.Uk/�Mk with ˆk.O1/DOk

such that
�
Uk � .˛; !/;ˆ

�
k
.gk.t/jVk

/C dt2; ˆ�
k
.Hk.t/jVk

/
�

converges in C1 to�
M1 � .˛; !/;g1.t/C dt2;H1.t/

�
uniformly on compact sets in M1 � .˛; !/. Here we denote by dt2 the standard metric on .˛; !/.

Let injg.O/ be the injectivity radius of the metric g at the point O . The following compactness theorem
is due to Cheeger and Gromov.

Theorem 5.5 (compactness for metrics). Let f.Mk ;gk ;Ok/gk2N be a sequence of complete pointed
Riemannian manifolds satisfying these conditions:

(i) For all p � 0 and k 2 N, there is a sequence of constants Cp <1 independent of k such that

j
gkr

p Rm.gk/jgk
� Cp

on Mk .

(ii) There exists some constant �0 > 0 such that

injgk
.Ok/� �0

for all k 2 N.

Then there exists a subsequence fjkgk2N such that f.Mjk
;gjk

;Ojk
/gk2N converges to a complete pointed

Riemannaian manifold .M n
1;g1;O1/ as k!1.

As a consequence of Theorem 5.5, we state our compactness theorem for GRF.

Theorem 5.6 (compactness for GRF). Let f.Mk ;gk.t/;Hk.t/;Ok/gk2N be a sequence of complete
pointed solutions to GRF for t 2 Œ˛; !/ 3 0 satisfying these conditions:

(i) There is a constant C0 <1 independent of k such that

sup
.x;t/2Mk�.˛;!/

jRm.gk.x; t//jgk.x;t/ � C0; sup
x2Mk

jHk.x; ˛/jgk.x;˛/ � C0:

(ii) There exists a constant �0 > 0 satisfying

injgk.0/
.Ok/� �0:
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Then there exists a subsequence fjkgk2N such that

.Mjk
;gjk

.t/;Hjk
.t/;Ojk

/! .M1;g1.t/;H1.t/;O1/;

converges to a complete pointed solution .M1;g1.t/;H1.t/;O1/; t 2 Œ˛; !/, to GRF as k!1.

To prove Theorem 5.6 we extend a lemma for Ricci flow to GRF. After establishing this lemma, the
proof of Theorem 5.6 is similar to that of Theorem 3.10 in [Chow et al. 2007].

Lemma 5.7. Let .M;g/ be a Riemannian manifold with a background metric g, let K be a compact
subset of M , and let .gk.x; t/;Hk.x; t// be a collection of solutions to the generalized Ricci flow defined
on neighborhoods of K � Œˇ;  �, where t0 2 Œˇ;  � is a fixed time. Suppose that:

(i) The metrics gk.x; t0/ are all uniformly equivalent to g.x/ on K, i.e., for all V 2TxM; k, and x 2K,

C�1g.x/.V;V /� gk.x; t0/.V;V /� Cg.x/.V;V /;

where C <1 is a constant independent of V; k, and x.

(ii) The covariant derivatives of the metrics gk.x; t0/ with respect to the metric g.x/ are all uniformly
bounded on K, i.e., for all k and p � 1,

j
g
r

pgk.x; t0/jg.x/Cj
g
r

p�1Hk.x; t0/jg.x/ � Cp

where Cp <1 is a sequence of constants independent of k.

(iii) The covariant derivatives of the curvature tensors Rm.gk.x; t// and of the forms Hk.x; t/ are
uniformly bounded with respect to the metric gk.x; t/ on K � Œˇ;  �, i.e., for all k and p � 0,

j
gkr

p Rm.gk.x; t//jgk.x;t/Cj
gkr

pHk.x; t/jgk.x;t/ � C 0p

where C 0p is a sequence of constants independent of k.

Then the metrics gk.x; t/ are uniformly equivalent to g.x/ on K � Œˇ;  �, i.e.,

B.t; t0/
�1g.x/.V;V /� gk.x; t/.V;V /� B.t; t0/g.x/.V;V /;

where B.t; t0/D CeC 0
0
jt�t0j (here the constant C 0

0
may not be equal to the previous one), and the time-

derivatives and covariant derivatives of the metrics gk.x; t/ with respect to the metric g.x/ are uniformly
bounded on K � Œˇ;  �, i.e., for each .p; q/ there is a constant zCp;q independent of k such thatˇ̌̌̌

@q

@tq
g
r

pgk.x; t/

ˇ̌̌̌
g.x/

C

ˇ̌̌̌
@q

@tq
g
r

p�1Hk.x; t/

ˇ̌̌̌
g.x/

� zCp;q

for all k.

Proof. We use [Chow et al. 2007, Lemma 3.13]: Suppose that the metrics g1 and g2 are equivalent, i.e.,
C�1g1 � g2 � Cg1. Then for any .p; q/-tensor T we have jT jg2

� C .pCq/=2jT jg1
. We denote by h
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the tensor hij WD gkpglqHiklHjpq . In the following we denote by C a constant depending only on n; ˇ,
and  , which may take different values at different places. For any tangent vector V 2 TxM we have

@

@t
gk.x; t/.V;V /D�2 Ric.gk.x; t//.V;V /C

1
2
hk.x; t/.V;V /;

and therefore ˇ̌̌̌
@

@t
log gk.x; t/.V;V /

ˇ̌̌̌
D

ˇ̌̌̌
ˇ�2 Ric.gk.x; t//.V;V /C

1
2
hk.x; t/.V;V /

gk.x; t/.V;V /

ˇ̌̌̌
ˇ

� C 00CC jHk.x; t/j
2
gk.x;t/

� C 00CC C 020 DW C ;

since

jRic.gk.x; t//.V;V /j � C 00gk.x; t/.V;V /; jhk.x; t/.V;V /j � C jHk.x; t/j
2
gk.x;t/

gk.x; t/.V;V /:

Integrating on both sides, we have

C jt1� t0j �

Z t1

t0

ˇ̌̌̌
@

@t
log gk.x; t/.V;V /

ˇ̌̌̌
dt �

ˇ̌̌̌Z t1

t0

@

@t
log gk.t/.V;V / dt

ˇ̌̌̌
D

ˇ̌̌̌
log

gk.x; t1/.V;V /

gk.x; t0/.V;V /

ˇ̌̌̌
;

and hence we conclude that

e�C jt1�t0jgk.x; t0/.V;V /� gk.x; t1/.V;V /� eC jt1�t0jgk.x; t0/.V;V /:

From the assumption (i), it immediately deduces from above that

C�1e�C jt1�t0jg.x/.V;V /� gk.x; t1/.V;V /� CeC jt1�t0jg.x/.V;V /:

Since t1 was arbitrary, the first part is proved. From the definition (or see [Chow et al. 2007, p. 134, (37)]),
we have

.gk/
ec.gra.gk/bc C

g
rb.gk/ac �

g
rc.gk/ab/D 2.gk�/eab � 2.g�/eab:

Thus jgk�.x; t/� g�.x/jg.x/ � C jgrgk.x; t/jgk.x/. On the other hand,

g
ra.gk/bc D .gk/eb Œ.

gk�/eac � .
g�/eac �C .gk/ec Œ.

gk�/eab � .
g�/eab �;

it follows that jgrgk.x; t/jgk.x;t/ � C jgk�.x; t/� g�.x/jgk.x;t/ and therefore

g
rgk is equivalent to gk� � g� D gkr �

g
r: (5-2)

The evolution equation for g� is

@

@t
.gk�/cab D�.gk/

cd Œ.gkr/a.Ric.gk//bd C .
gkr/b.Ric.gk//ad

�.gkr/d .Ric.gk//ab �C
1
4
.gk/

cd
�
.gkr/a.hk/bd C .

gkr/b.hk/ad � .
gkr/d .hk/ab

�
:
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Since g� does not depend on t , it follows from the assumptions thatˇ̌̌̌
@

@t
.gk� � g�/

ˇ̌̌̌
gk

� C
ˇ̌
gkr.Ric.gk//

ˇ̌
gk
CC jgkr.hk/jgk

� C C 01CC jgkrHk jgk
� jHk jgk

� C 01:

Integrating on both sides,

C 01jt1� t0j �

ˇ̌̌̌Z t1

t0

@

@t
.gk�.t/� g�/ dt

ˇ̌̌̌
gk

� j
gk�.t1/�

g�jgk
� j

gk�.t0/�
g�jgk

:

Hence we obtain

j
gk�.t/� g�jgk

� C 01jt1� t0jC j
gk�.t0/�

g�jgk

� C 01jt1� t0jCC jgrgk.t0/jgk

� C 01jt � t0jCC jgrgk.t0/jg

� C 01jt � t0jCC1:

The equivalency of metrics tells us that

j
g
rgk.t/jg � B.t; t0/

3=2
j
g
rgk.t/jgk

� B.t; t0/
3=2
�C jgk�.t/� g�jgk

� B.t; t0/
3=2.C 01jt � t0jCC 0/:

Since jt � t0j �  � ˇ, it follows that jgrgk.t/jg � zC1;0 for some constant zC1;0. But g and gk are
equivalent, we have

jHk.t/jg � C jHk.t/jgk
� C C 01 D

zC1;0:

From the assumptions, we also have

j
g
rHk jg � j.

g
r �

gkr/Hk C
gkrHk jg

� C jgrgk jg � jHk jgCC jgkrHk jgk

� C C 01CC zC1;0
zC1;0 WD

zC2;0:

Moreover,

@

@t
g
rHk D

g
r.�gk

Hk CRm.gk/�Hk/

D .gr � gkr/�gk
Hk C

gkr�gk
Hk C

g
r Rm.gk/�Hk CRm.gk/�

g
rHk

where �gk
is the Laplace operator associated to gk . Henceˇ̌̌̌

@

@t
g
rHk

ˇ̌̌̌
g

� C jgrgk jg � j�gk
Hk jgk

CC jgkr�gk
Hk jgC C jgr Rm.gk/jg � jHk jgCC jRm.gk/jg � j

g
rHk jg

� zC2;1:
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For higher derivatives we claim that

j
g
r

p Ric.gk/jg � C 00p j
g
r

pgk jgCC 000p ; j
g
r

pgk jgCj
g
r

p�1Hk jg �
zCp;0; (5-3)

for all p � 1, where C 00p ;C
000

p , and zCp;0 are constants independent of k. For p D 1, we have proved the
second inequality, so we suffice to prove the first one with p D 1. Indeed,

j
g
r Ric.gk/jg � C j.gr � gkr/Ric.gk/C

gkr Ric.gk/jgk

� C jg� � gk�jg � jRic.gk/jgk
CC jgkr Ric.gk/jgk

� C 001 j
g
rgk jgCC 0001 :

Suppose the claim holds for all p <N (N � 2), we shall show that it also holds for p DN . From

j
g
r

N Ric.gk/jg D

ˇ̌̌̌
ˇ

NX
iD1

g
r

N�i.gr � gkr/gkr
i�1 Ric.gk/C

gkr
N Ric.gk/

ˇ̌̌̌
ˇ
g

�

NX
iD1

ˇ̌̌
g
r

N�i.gr � gkr/gkr
i�1 Ric.gk/

ˇ̌̌
g
Cj

gkr
N Ric.gk/jg

we estimate each term. For i D 1, by induction and the assumptions we have

j
g
r

N�1.gr � gkr/Ric.gk/jg

� C jgrN�1.grgk �Ric.gk//jg

� C

ˇ̌̌̌N�1X
jD0

�
N�1

j

�
g
r

N�1�j .grgk/ �
g
r

j .Ric.gk//

ˇ̌̌̌
g

� C

N�1X
jD0

�
N�1

j

�
j
g
r

N�j gk jg � j
g
r

j Ric.gk/jg

� C

N�1X
iD0

�
N�1

j

�
.C 00j j

g
r

j gk jgCC 000j /j
g
r

N�j gk jg

� C

N�1X
jD0

�
N�1

j

�
.C 00j
zCj ;0CC 000j /j

g
r

N�j gk jg

D C.N � 1/.C 000
zCj ;0CC 0000 /j

g
r

N gk jgCC

N�1X
jD1

�
N�1

j

�
.C 00j
zCj ;0CC 000j /

zCN�j ;0

� C 00N j
g
r

N gk jgCC 000N :
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For i � 2, we haveˇ̌
g
r

N�i.gr � gkr/gkr
i�1 Ric.gk/

ˇ̌
g
� C

ˇ̌
g
r

N�i.grgk �
gkr

i�1 Ric.gk//
ˇ̌
g

� C

N�iX
jD0

�
N�i

j

�
j
g
r

N�i�jC1gk jg � j
g
r

j
�
gkr

i�1 Ric.gk/jg:

If j D 0, then

j
gkr

i�1 Ric.gk/jg � C 00i�1j
g
r

i�1gk jgCC 000i�1 � C 00i�1
zCi�1;0CC 000i�1:

Suppose in the following that j � 1. Henceˇ̌
g
r

j
�
gkr

i�1 Ric.gk/
ˇ̌
g
D
ˇ̌
..gr � gkr/C gkr/j � gkr

i�1 Ric.gk/
ˇ̌
g

� C

jX
lD0

�
j
l

�
j
g
r

lgk jg � j
gkr

j�lCi�1 Ric.gk/jg

� C

jX
lD0

�
j
l

�
zCl;0.C

00
j�lCi�1

zCj�lCi�1;0CC 000j�lCi�1/;

where we make use of (5-2) from first line to second line. Combining these inequalities, we get

j
g
r

N Ric.gk/jg � C 00N j
g
r

N gk jgCC 000N :

Similarly, we have
j
g
r

N hk jg � C 00N j
g
r

N gk jgCC 000N :

Since @

@t
gk D�2 Ric.gk/C

1
2
hk , it follows that

@

@t
g
r

N gk D
g
r

N .�2 Ric.gk/C
1
2
hk/;

@

@t
j
g
r

N gk j
2
g �

ˇ̌̌̌
@

@t
g
r

N gk

ˇ̌̌̌2
g

Cj
g
r

N gk j
2
g

� 8 jgrN Ric.gk/j
2
gC

1

2
j
g
r

N hk j
2
gCj

g
r

N gk j
2
g

� .1C 18.C 00N /
2/jgrN gk j

2
gC 18.C 00N /

2:

Integrating the above inequality, we get jgrgk jg �
zCN;0 and therefore jgrN hk jg �

zCNC1;0. We have
proved lemma for q D 0. When g � 1, then

@q

@tq
g
r

pgk.t/D grp @
q�1

@tq�1

�
�2 Ric.gk.t//C

1
2
hk.t/

�
:

Using the evolution equations for Rm.gk.t// and hk.t/, combining the induction to q and using the above
method, we have ˇ̌̌

@q

@tq
g
r

pgk.t/
ˇ̌̌
g
C

ˇ̌̌
@q

@tq
g
r

p�1hk.t/
ˇ̌̌
g
� zCp;q: �
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6. Generalization

In this section, we generalize the main results in Sections 4 and 5 to a kind of generalized Ricci flow for
which local existence has been established [He et al. 2008].

Let .M;gij .x// be an n-dimensional closed Riemannian manifold and let AD fAig and B D fBij g

denote a one-form and a two-form respectively. Set F D dA and H D dB. The authors in [He et al.
2008] proved that there exists a constant T > 0 such that the evolution equations

@

@t
gij .x; t/D�2Rij .x; t/C

1
2
hij .x; t/C 2fjk.x; t/; gij .x; 0/D gij .x/;

@

@t
Ai.x; t/D�2rkFi

k.x; t/; Ai.x; 0/DAi.x/;

@

@t
Bij .x; t/D 3rkH k

ij .x; t/; Bij .x; 0/D Bij .x/

has a unique smooth solution on m � Œ0;T /, where hij D HiklHj
kl and fij D Fi

kFjk . We call it
RF.A;B/. According to the definition of the adjoint operator d�, we have

.d�F /i D 2rkFi
k ; .d�H /ij D�3rkH k

ij ; (6-1)

and hence

@

@t
F.x; t/D�dd�g.x;t/F D �HL;g.x;t/F D �F CRm�F; (6-2)

@

@t
H.x; t/D�dd�g.x;t/H D �HL;g.x;t/H D �H CRm�H: (6-3)

They also derived the evolution equations of curvatures:

@

@t
Rijk` D�Rijk`C 2.Bijk` �Bij`k �Bi j̀k CBikj`/

�gpq.Rpjk`Rqi CRipk`Rqj CRijp`Rqk CRijkpRq`/

C
1
4

�
rir`.HkpqHj

pq/�rirk.HjpqH`
pq/�rjr`.HkpqHi

pq/Crjrk.HipqH`
pq/

�
C

1
4
grs.HkpqH pq

r Rijs`CHrpqH`
pqRijks/

Crir`.Fk
pFjp/�rirk.Fj

pF`p/�rjr`.Fk
pFip/Crjrk.Fi

pF`p/

Cgrs.Fk
pFrpRijs`CFr

pF`pRijks/:

Under our notation, it can be rewritten as

@

@t
RmD�RmC

X
iCjD0

r
i Rm�rj RmC

X
iCjD0C2

r
iH �rjH C

X
iCjD0C2

r
iF �rjF

C

X
iCjCkD0

r
iH �rjH �rk RmC

X
iCjCkD0

!!r iF �rjF �rk Rm : (6-4)

As before, we have:
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Proposition 6.1. For RF.A;B/ and any nonnegative integer ` we have

@

@t
r
` RmD�.rl Rm/C

X
iCjD`

r
i Rm�rj RmC

X
iCjD`C2

r
iH �rjH C

X
iCjD`C2

r
iF �rjF

C

X
iCjCkD`

r
iH �rjH �rk RmC

X
iCjCkD`

r
iF �rjF �rk Rm : (6-5)

In particular,

@

@t
jr

l Rm j2 ��jrl Rm j2� 2 jr`C1 Rm j2CC
X

iCjD`

jr
i Rm j � jrj Rm j � jr` Rm j

CC
X

iCjD`C2

jr
iH j � jrjH j � jr` Rm jCC

X
iCjD`C2

jr
iF j � jrjF j � jr` Rm j

CC
X

iCjCkD`

jr
iH j � jrjH j � jrk Rm j � jr` Rm jCC

X
iCjCkD`

jr
iF j � jrjF j � jrk Rm j � jr` Rm j:

Since @

@t
F D�F CRm�F it follows that

@

@t
rF Dr

@

@t
F CF �r.RmCH �H CF �F /

Dr.�F CRm�F /CF �r RmCF �H �rH CF �F �rF

D�.rF /Cr Rm�F CRm�rF CF �H �rH CF �F �rF:

It can be expressed as

@

@t
rF D�.rF /C

X
iCjD1

r
iF �rj Rm

C

X
iCjCkD1

r
iF �rjF �rkF C

1�1X
iD0

1�iX
jD0

r
iF �rjH �r1�i�j H:

More generally, we can show:

Proposition 6.2. For RF.A;B/ and any positive integer ` we have

@

@t
r
`F D�.r`F /C

X
iCjD`

r
iF �rj Rm

C

X
iCjCkD`

r
iF �rjF �rkF C

`�1X
iD0

`�iX
jD0

r
iF �rjH �r`�i�j H:

In particular,

@

@t
jr
`F j2 ��jr`F j2� 2 jr`C1F j2CC

X
iCjD`

jr
iF j � jrj Rm j � jr`F j

CC
X

iCjCkD`

jr
iF j � jrjF j � jrkF j � jr lF jCC

`�1X
iD0

`�iX
jD0

jr
iF j � jrjH j � jr`�i�j H j � jr`F j:
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Similarly, we obtain:

Proposition 6.3. For RF.A;B/ and any positive integer l we have

@

@t
r
`H D�.r`H /C

X
iCjD`

r
iH �rj Rm

C

X
iCjCkD`

r
iH �rjH �rkH C

`�1X
iD0

`�iX
jD0

r
iH �rj F �r`�i�j F:

In particular,

@

@t
jr
`H j2 ��jr`H j2� 2 jr`C1H j2CC

X
iCjD`

jr
iH j � jrj Rm j � jr`H j

CC
X

iCjCkD`

jr
iH j � jrjH j � jrkH j � jr`H jCC

`�1X
iD0

`�iX
jD0

jr
iH j � jrjF j � jr`�i�j F j � jr`H j:

From the evolution inequalities

@

@t
jH j2 ��jH j2� 2 jrH j2CC � jRm j � jH j2;

@

@t
jF j2 ��jF j2� 2 jrF j2CC � jRm j � jF j2;

the following theorem is obvious.

Theorem 6.4. Suppose that .g.x; t/;H.x; t/;F.x; t// is a solution to RF.A;B/ on a compact manifold
M n for a short time 0� t � T and K1;K2;K3 are arbitrary given nonnegative constants. Then there
exists a constant Cn depending only on n such that if

jRm.x; t/jg.x;t/ �K1; jH.x/jg.x/ �K2; jF.x/jg.x/ �K3

for all x 2M and t 2 Œ0;T �, then

jH.x; t/jg.x;t/ �K2eCnK1t ; jF.x; t/jg.x;t/ �K3eCnK1t ; (6-6)

for all x 2M and t 2 Œ0;T �.

Parallel to Theorem 4.6, we can prove:

Theorem 6.5. Suppose that .g.x; t/;H.x; t/;F.x; t// is a solution to RF.A;B/ on a compact manifold
M n and K is an arbitrary given positive constant. Then for each ˛ > 0 and each integer m � 1 there
exists a constant Cm depending on m; n;maxf˛; 1g, and K such that if

jRm.x; t/jg.x;t/ �K; jH.x/jg.x/ �K; jF.x/jg.x/ �K

for all x 2M and t 2 Œ0; ˛=K�, then

jr
m�1 Rm.x; t/jg.x;t/Cjr

mH.x; t/jg.x;t/Cjr
mF.x; t/jg.x;t/ �

Cm

t
m
2

; (6-7)

for all x 2M and t 2 .0; ˛=K�.
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We can also establish the corresponding compactness theorem for RF.A;B/. We omit the detail since
the proof is close to the proof in Section 5. In the forthcoming paper, we will consider the BBS estimates
for complete noncompact Riemannian manifolds.
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