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AN INVERSE PROBLEM FOR THE WAVE EQUATION
WITH ONE MEASUREMENT AND THE PSEUDORANDOM SOURCE

TAPIO HELIN, MATTI LASSAS AND LAURI OKSANEN

We consider the wave equation (∂2
t − 1g)u(t, x) = f (t, x), in Rn , u|R−×Rn = 0, where the metric

g = (g jk(x))nj,k=1 is known outside an open and bounded set M ⊂ Rn with smooth boundary ∂M . We
define a source as a sum of point sources, f (t, x) =

∑
∞

j=1 a jδx j (x)δ(t), where the points x j , j ∈ Z+,
form a dense set on ∂M . We show that when the weights a j are chosen appropriately, u|R×∂M determines
the scattering relation on ∂M , that is, it determines for all geodesics which pass through M the travel
times together with the entering and exit points and directions. The wave u(t, x) contains the singularities
produced by all point sources, but when a j = λ

−λ j
for some λ > 1, we can trace back the point source

that produced a given singularity in the data. This gives us the distance in (Rn, g) between a source
point x j and an arbitrary point y ∈ ∂M . In particular, if (M, g) is a simple Riemannian manifold and g
is conformally Euclidian in M , these distances are known to determine the metric g in M . In the case
when (M, g) is nonsimple, we present a more detailed analysis of the wave fronts yielding the scattering
relation on ∂M .

1. Introduction

In this paper we consider an inverse problem for the wave equation

(∂2
t −1g)u(t, x)= f (t, x) in (0,∞)×Rn,

u|t=0 = ∂t u|t=0 = 0,

where 1g is the Laplace–Beltrami operator corresponding to a Riemannian metric g(x)= [g jk(x)]nj,k=1,
that is,

1gu =
n∑

j,k=1

|g|−1/2 ∂

∂x j

(
|g|1/2g jk ∂

∂xk u
)
,

where |g| = det(g jk) and [g jk
]
n
j,k=1 = g(x)−1 is the inverse matrix of [g jk(x)]nj,k=1. We assume that

g jk ∈ C∞(Rn) and that there are c1, c2 > 0 such that

c1|ξ |
2
≤

n∑
j.k=1

g jk(x)ξ jξ k
≤ c2|ξ |

2, x, ξ ∈ Rn. (1)
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Moreover, we assume that the metric g is known outside an open and bounded set M ⊂ Rn having a
C∞-smooth boundary ∂M .

We choose the origin of the time axis so that the source f is active at time t = 0. To ensure compatibility
with the initial conditions, we let T0 < 0< T and define the measurement map L = Lg,

L : C∞c (T0, T )⊗C∞c (R
n)→ C∞((T0, T )× ∂M), L f = u|(T0,T )×∂M , (2)

where u is the solution of the wave equation

(∂2
t −1g)u(t, x)= f (t, x) in (T0, T )×Rn,

u|t=T0 = ∂t u|t=T0 = 0.
(3)

Above, C∞c (T0, T ) denotes the space of smooth functions having compact support in (T0, T ). Its dual
space, the space of generalized functions or distributions, is denoted by D′(T0, T ). Moreover, for functions
φ ∈ C∞c (T0, T ) and ψ ∈ C∞c (R

n), we denote their pointwise product by (φ⊗ψ)(t, x)= φ(t)ψ(x).
We remark that the assumption (1), together with the finite speed of propagation for the wave equation,

implies that the measurement L f does not depend on g jk(x), for |x |> R, when R is sufficiently large.
Thus we may assume without loss of generality that all the partial derivatives ∂αx g jk are bounded on Rn .

Let x j ∈ ∂M , j = 1, 2, . . . , be a dense sequence of points in ∂M , and let us consider point sources

fx j (t, x) := δ(t)δx j (x), j = 1, 2, . . . .

In order to study the measurements L fx j , we will use the Sobolev spaces (see [Triebel 1978])

H s
p(R

d) :=
{

f ∈ S′(Rd); ‖ f ‖H s
p(R

d ) :=
∥∥(1−1)s/2 f

∥∥
L p(Rd )

<+∞
}
,

H̃ s
p(U ) := { f ∈ H s

p(R
d); supp f ⊂ Ū },

H s
p(U ) := { f ∈ D′(U ); f = h|U for some h ∈ H s

p(R
d)},

where U ⊂ Rd is open and s ∈ R. When p = 2 we omit the subscript p in our notation, that is, we
write H s(U )= H s

2 (U ), etc. Moreover, we use projective topology on the tensor product X ⊗ Y of two
Banach spaces X and Y , that is, ‖z‖X⊗Y := inf

∑
j ‖x j‖X‖y j‖Y , where the infimum is taken over all

representations z =
∑

j x j ⊗ y j . We also use projective topology on tensor products of locally convex
spaces; see, e.g., [Trèves 1967, Definition 43.2]. The measurement L fx j can be defined in the sense of
the following lemma.

Lemma 1.1. Let p∈ (1, n/(n−1)) and let m ∈N satisfy m>(n+1)/4. Then the measurement operator L
defined in (2) has a unique continuous extension

L : H̃−1(T0, T )⊗ H−1
p (Rn)→ D′((T0, T )× ∂M).

We will prove Lemma 1.1 and other results presented in the introduction in Sections 3–6.
In this paper we study a single measurement Lh0 that simultaneously combines all the measurements

L fx j by adding them together with appropriate weights. When the measurements L fx j are summed
together, to the authors’ knowledge, there are no algorithms that can filter the value of a particular
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measurement from the sum. We will ask, however, whether we can find the essential features given by
these measurements, like the travel times between points on ∂M , so that the metric could be determined
under certain geometric conditions. Our main result is that Lh0 determines the scattering relation 6M,g

for the manifold (M, g). Here h0(t, x) is an explicit source that we call pseudorandom; see Definition 1
in Section 2.

The scattering relation has been efficiently used to solve several geometric inverse problems [Dairbekov
and Uhlmann 2010; Pestov and Uhlmann 2006; Stefanov and Uhlmann 2008; 2009]. To define the
scattering relation, let T M denote the tangent space of M and let γ̇ denote the tangent vector of a smooth
curve γ : [a, b] → M . Let SM = {(x, ξ) ∈ T M; ‖ξ‖g = 1} be the unit sphere bundle on M and define

∂±SM =
{
(x, ξ) ∈ SM; x ∈ ∂M, ∓(ν, ξ)g > 0

}
,

where ν is the exterior normal vector of ∂M . Moreover, let τM,g(x, ξ) be the infimum of the set{
t ∈ (0,∞]; γx,ξ (t) ∈ ∂M

}
,

where γx,ξ denotes the geodesic on (M, g) with initial data (x, ξ) ∈ T M . We write τ = τM,g when the
manifold (M, g) is clear from the context. We define the infimum of the empty set to be +∞.

The scattering relation is the map 6 =6M,g,

6 : D(6)→ ∂+SM ×R, D(6)=
{
(x, ξ) ∈ ∂−SM; τ(x, ξ) <∞

}
,

defined by 6(x, ξ)=
(
γx,ξ (τ (x, ξ)), γ̇x,ξ (τ (x, ξ)), τ (x, ξ)

)
.

Our main result is the following.

Theorem 1.2. Let M ⊂ Rn , n ≥ 2 be an open and bounded set having a C∞-smooth boundary. Then
there is a generalized function h0(t, x) supported on {0} × ∂M and having the following properties:
Assume that g jk, g′jk ∈ C∞(Rn) are two Riemannian metric tensors satisfying (1). Moreover, assume that
g jk(x)= g′jk(x) for x ∈ Rn

\M. Let

T >max
(

sup
(x,ξ)∈∂−SM

τM,g(x, ξ), sup
(x,ξ)∈∂−SM

τM,g′(x, ξ)
)
,

and assume that
Lgh0 = Lg′h0 on (T0, T )× ∂M.

Then the scattering relations 6M,g and 6M,g′ of Riemannian manifolds (M, g) and (M, g′) are the same.
In particular, if (M, g) and (M, g′) are simple, the restrictions of the distance functions on the boundary
satisfy dM,g(x, y)= dM,g′(x, y) for x, y ∈ ∂M.

We remark that if sup∂−SM τ is infinite, then we prove the above result with measurements on an
infinite time interval, that is, we prove that the measurement u|(T0,∞)×∂M determines D(6) and 6.

Recall that a compact Riemannian manifold (M, g) with boundary is simple if it is simply connected,
any geodesic has no conjugate points, and ∂M is strictly convex with respect to the metric g. Any two
points of a simple manifold can be joined by a unique geodesic.
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The key idea of the proof of Theorem 1.2 is to use source h0(t, x)=
∑
∞

j=1 a j fx j . The point source
a j0 fx j0

produces a singularity, which is observed at a point y ∈ Rn
\ M at time t0 = d(x j0, y) with a

magnitude a j0β(x j0, y), where β is an unknown nonvanishing smooth function. Appropriate choice of
the weights a j allows us find the index j0 by looking at nearby singularities. Indeed, when x jk → x j0 and
jk→∞, we see that the asymptotic behavior of the magnitude a jkβ(x jk , y) as k→∞ will be that of the
weights a jk . Thus it is possible to factor out a jk in the magnitude and determine a j0 . This argument is
presented in Section 7 and gives us the distances d(x j , y) in (Rn, g) for arbitrary point y ∈ Rn

\M and a
source point x j .

Theorem 1.2 and boundary rigidity results for simple manifolds imply the following:

Corollary 1.3. Let M ⊂ Rn and let g jk, g′jk ∈ C∞(Rn) be two Riemannian metric tensors satisfying the
assumptions of Theorem 1.2. Let (M, g) and (M, g′) be simple Riemannian manifolds. Then:

(i) If n = 2 and
Lgh0 = Lg′h0 on (T0, T )× ∂M, (4)

then there is a diffeomorphism 8 : M→ M such that 8|∂M = Id and g =8∗g′.

(ii) For n ≥ 3, there is ε = εn,M > 0 such that if ‖g jk − δ jk‖C2(M) < εn , ‖g′jk − δ jk‖C2(M) < εn , and (4)
holds, then there is a diffeomorphism 8 : M→ M such that 8|∂M = Id and g =8∗g′.

(iii) If g jk(x)= a(x)δ jk and g′jk(x)= a′(x)δ jk , that is, the metric tensors are conformally Euclidian, and
(4) holds, then g jk(x)= g′jk(x) for x ∈ M.

Indeed, by Theorem 1.2, case (i) follows from [Pestov and Uhlmann 2005], case (ii) follows from
[Burago and Ivanov 2010], and (iii) from [Muhometov 1977; 1981; Muhometov and Romanov 1978].

If Uhlmann’s conjecture [2003], that the scattering relation determines the isometry type of nontrapping
compact manifolds with nonempty boundary, can be proven, then Corollary 1.3 holds for a more general
class of manifolds.

The problem of determining the metric g (possibly up to a diffeomorphism) given the measurement
Lh0 with only one function h0(t, x) is a formally determined inverse problem. Indeed, the formally
computed “dimension of the data,” that is, the dimension of (T0, T )× ∂M , is n and coincides with the
dimension of the set M on which the unknown functions g jk(x) are defined.

The formally determined inverse problems have been studied in many cases. For instance, the two-
dimensional Calderón inverse problem [Astala and Päivärinta 2006; Astala et al. 2005; Imanuvilov et al.
2010; Nachman 1996; Sylvester 1990] is formally determined. The same is true for the related inverse
problem for the Schrödinger equation in two dimensions [Bukhgeim 2008]. The corresponding inverse
problems in dimension n≥ 3 — see [Calderón 1980; Kenig et al. 2007; Lassas et al. 2003; Nachman 1988;
Sylvester and Uhlmann 1987] and references in [Greenleaf et al. 2009a; 2009b], are overdetermined —
that is, the dimension of the data is larger than the dimension of the unknown object. Similar classification
holds for the elliptic inverse problems on Riemannian manifolds [Guillarmou and Tzou 2010; 2011;
Lassas et al. 2003; Lee and Uhlmann 1989; 2001]. Moreover, the boundary rigidity problem [Kurylev
et al. 2010; Michel 1981; Muhometov 1977; 1981; Muhometov and Romanov 1978; Romanov 1987;
Stefanov and Uhlmann 2005] is formally determined in dimension n = 2 and overdetermined for n ≥ 3.
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Inverse problems in the time domain related to the Laplace–Beltrami operator 1g, namely the inverse
boundary value problem for the wave, heat, and dynamical Schrödinger equations with Dirichlet-to-
Neumann as data — see [Anderson et al. 2004; Belishev and Kurylev 1992; Katchalov and Kurylev 1998;
Katchalov et al. 2001] — are overdetermined in dimensions n≥ 2. However, these problems are equivalent
to the inverse boundary spectral problem (see [Katchalov et al. 2004]), and assuming that the eigenvalues
are simple, the Dirichlet-to-Neumann map at a generic Dirichlet boundary value determines the boundary
spectral data [Lassas 1995; 1998; Ramm 2001]. Thus, under generic conditions on the spectrum and on
the boundary value (that is, under the condition that the these data belong in some open and dense set), it
is possible to solve a formally determined inverse problem in time domain.

We point out that in this paper we do not impose any generic conditions on the geometry, and we give
an explicit construction of the boundary source. The boundary source considered in this paper is based
on the idea of imitating a realization of white noise, and due to the many useful properties of the white
noise process, we hope that the constructed source may be useful in the study of other inverse problems
requiring generic assumptions on the source.

Another formally determined hyperbolic inverse problem, namely measuring Neumann data when
the initial data (u|t=0, ∂t u|t=0) is nonzero and satisfies subharmonicity or positivity conditions, has been
studied using Carleman estimates [Bellassoued and Yamamoto 2008; Imanuvilov and Yamamoto 2003;
Isakov 2006; Klibanov 1992; Stefanov and Uhlmann 2011]. The present paper is closely related to these
studies, but we emphasize that we assume that the initial data for u vanishes.

Moreover, there are two approaches to solving the formally determined hyperbolic inverse problem
to determine a potential from a single boundary measurement. The first one uses Carleman estimates
analogous to the estimates mentioned above and assumes similar conditions on the initial data [Bukhgeim
and Klibanov 1981]. The second one relies on an adaptation of the Gelfand–Levitan method to multidimen-
sional problems [Rakesh and Sacks 2011; Rakesh 2003; 2008; Romanov 2002; Sacks and Symes 1985].

2. Pseudorandom source

In this section we define a special source h0(t, x) which we call pseudorandom. The specific assumptions
on the amplitudes are explained in Section 7. An important feature of the pseudorandom source is that it
is supported only on a single point in time.

Definition 1. Let x j ∈ ∂M , j = 1, 2, . . . , be a dense sequence of distinct points in ∂M , and let a j ∈ R,
j = 1, 2, . . . , with

∑
∞

j=1 |a j |<∞, be a sequence of distinct numbers.
We define the pseudorandom source on (x j )

∞

j=1 ⊂ ∂M with coefficients (a j )
∞

j=1 ⊂ R as the following
generalized function on R×Rn:

h0(t, x) :=
∞∑
j=1

a jδ(t)δx j (x), (x, t) ∈ Rn+1,

where δ(t) and δx j (x) are Dirac delta distributions on R and Rn , respectively.
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It is rather straightforward to show that h0 is well-defined. First, it is well known that δ(t)∈ H−1(R) and
δx j (x) ∈ C(Rn)′. Next, we have H 1

p′(R
n)⊂ C(Rn) when 1> n/p′, due to [Triebel 1978, Theorem 2.8.1].

According to [ibid., Theorem 2.6.1], the dual space satisfies (H 1
p′(R

n))′ = H−1
p (Rn) with 1/p′ = 1−1/p,

and hence C(Rn)′ ⊂ H−1
p (Rn) for 1< p < n/(n− 1). Since

∑
∞

j=1 |a j |<∞, we have
∞∑
j=1

a jδx j (x) ∈ H−1
p (Rn).

This yields that for any p ∈
(

1, n
n−1

)
and ε > 0, the pseudorandom source h0 satisfies

h0 ∈ H̃−1(−ε, ε)⊗ H̃−1
p (M). (5)

The spatial structure of the pseudorandom source can be motivated by the structure of the white noise.
In the 1-dimensional radar imaging models, white noise signals are considered to be optimal sources
when imaging a stationary scatterer [Toomay and Hannen 2004]. This is due to the fact that different
translations of the white noise signal are uncorrelated. In a similar fashion, we have the following property
for the pseudorandom source h0: for each x j0 and each sequence (x jk )

∞

k=1 converging to x j0 and satisfying
x jk 6= x j0 for all k ∈ Z+, it holds that a jk → 0. This property will be crucial in what follows.

A natural strategy to choose the points x j is by random sampling. The term pseudorandom refers to
the fact that algorithmic generators of random numbers use, in fact, a deterministic function to produce
a sequence of numbers, but the mixingness of the process is such that the user of the algorithm can
consider the numbers to be analogous to independent samples of a random variable. In this manner, the
pseudorandom source can be seen as an imitation of a realization of a noise process.

Another source of inspiration for us was a rather new measurement paradigm called compressed sensing
[Candès et al. 2006; Donoho 2006], where one aims for a sparse reconstruction of a linear problem using
a small number of noisy measurements. We point out that by using the pseudorandom source, one can
compress the measurements L fx j with point sources fx j into a single measurement Lh0.

3. Measurement map

In this section we prove that the measurement Lh0 is well-defined. Let us consider the operator W : f 7→ u
mapping f to the solution of (3). We call such an operator the solution operator for (3). First, we note that
by [Hörmander 1985, Theorem 23.2.2], the operator W : f 7→ u extends in a unique way to a continuous
linear operator

W : L1((T0, T ); H s(Rn)
)
→ C

(
[T0, T ]; H s+1(Rn)

)
, s ∈ R. (6)

Moreover, if f ∈ C∞([T0, T ]×Rn) and supp( f )b (T0, T ]×Rn , that is, supp( f ) is a compact subset of
(T0, T ]×Rn , then W f ∈ C∞([T0, T ]×Rn).

We will compose the operator W with the one-sided inverse I of the derivative ∂t , which is given by

Iu(t) :=
∫ t

T0

u(t ′)dt ′, u ∈ C∞c (T0, T ).
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One sees easily that this operator has a unique continuous linear extension I : H̃−1(T0, T )→ L2(T0, T ).
Next we prove Lemma 1.1 formulated in the introduction, that is, we prove that the measurement map

L has a unique continuous extension

H̃−1(T0, T )⊗ H−1
p (Rn)→ D′((T0, T )× ∂M). (7)

Proof of Lemma 1.1. For sufficiently large z ∈R+, the operator z−1g is an isomorphism between spaces
H s+2(Rn) and H s(Rn) as well as between spaces H s+2

p (Rn) and H s
p(R

n) for all integers s by [Shubin
1992].

By the definition of L , we have that L = Tr ◦W , where Tr is the trace operator

Tr(u)= u|(T0,T )×∂M , u ∈ C∞((T0, T )×Rn).

Let f ∈ C∞c ((T0, T )×Rn). Then the solution u =W f of the wave equation (∂2
t −1g)u = f can be

written in the form

W f = (z− ∂2
t )

m(z−1g)
−m W f +

m−1∑
j=0

(z− ∂2
t )

j (z−1g)
−1− j f. (8)

Now f = ∂t I f , where I f is C∞-smooth and satisfies supp(I f ) b (T0, T ] × Rn . By (6), W I f is
C∞-smooth and ∂t W I f =W∂t I f =W f . Hence

L f = ∂t(z− ∂2
t )

m Tr(z−1g)
−m W I f +

m−1∑
j=0

(z− ∂2
t )

j Tr(z−1g)
−1− j f. (9)

Let us next consider terms appearing in (9). First we consider extension of the operator

N∑
k=1

φk ⊗ψk 7→

N∑
k=1

(z− ∂2
t )

j Tr(z−1g)
−1− j (φk ⊗ψk)

=

N∑
k=1

(
(z− ∂2

t )
jφk
)
⊗
(
Tr(z−1g)

−1− jψk
)
, j = 0, . . . ,m− 1,

(10)

mapping C∞c (T0, T )⊗C∞c (R
n) to C∞((T0, T )× ∂M). By [Triebel 1978, Theorem 4.7.1], the maps

H−1
p (Rn)

(z−1g)
−1− j

−−−−−−→ H 1
p(R

n)
Tr
−→ B1−1/p

p,p (∂M)

are continuous, where B1−1/p
p,p (∂M) is the Besov space on ∂M . Thus the operator (10) has a continuous

extension in spaces (7).
Next, consider extension of the operator

N∑
k=1

φk ⊗ψk 7→

N∑
k=1

∂t(z− ∂2
t )

m Tr(z−1g)
−m W ((Iφk)⊗ψk) (11)

mapping C∞c (T0, T )⊗C∞c (R
n) to C∞((T0, T )× ∂M). As −1− n/p > −1− n, we have by [Triebel

1978, Theorem 2.8.1] a continuous embedding H−1
p (Rn) ↪→ H−1−n/2(Rn). Moreover, the operator
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I : H̃−1(T0, T )→ L2(T0, T ) and the embedding L2(T0, T )⊗H−1−n/2(Rn) ↪→ L2
(
(T0, T ); H−1−n/2(Rn)

)
are continuous. Thus, by (6),

W I : H̃−1(T0, T )⊗ H−1
p (Rn)→ C

(
[T0, T ]; H−n/2(Rn)

)
is continuous.

As (1−1g)
−m
:C
(
[T0, T ]; H−n/2(Rn)

)
→C

(
[T0, T ]; H−n/2+2m(Rn)

)
is continuous and− n

2+2m> 1
2 ,

we see that the operator

Tr(1−1g)
−m W I : H̃−1(T0, T )⊗ H−1

p (Rn)→ C
(
[T0, T ]; L2(∂M)

)
is continuous.

Combining the above results, we see that the operator (9) has a continuous extension to the spaces (7).
As the spaces C∞c (T0, T ) and C∞c (R

n) are dense in H̃−1(T0, T ) and H−1
p (Rn), respectively, we see that

the continuous extension of L is unique. �

4. Inner product of a solution and a source

Lemma 4.1. Let f ∈ C∞c ((T0, T )×M) and t0 ∈ (T0, T ) and let w ∈ C∞([T0, t0]×Rn) satisfy

(∂2
t −1g)w = 0, in (T0, t0)×Rn.

Then∫ t0

T0

∫
Rn

f (t, x)w(t, x) dt dV (x)=
∫

Rn

(
(∂t W f )(t0, x)w(t0, x)− (W f )(t0, x)(∂tw)(t0, x)

)
dV (x),

where dV (x) = |g|1/2 dx is the Riemannian volume measure of (Rn, g) and W : f 7→ u is the solution
operator of the wave equation (3).

Proof. By finite speed of propagation of waves [Ladyzhenskaya 1985, pp. 150–156], supp(W f (t)) is
compact in Rn . The claim follows by integration by parts:∫

Rn

(
(∂t u)(t0, x)w(t0, x)− u(t0, x)(∂tw)(t0, x)

)
dV (x)

−

∫
Rn

(
(∂t u)(T0, x)w(T0, x)− u(T0, x)(∂tw)(T0, x)

)
dV (x)

=

∫
(T0,t0)×Rn

(
(∂2

t −1g)u(t, x) w(t, x)− u(t, x) (∂2
t −1g)w(t, x)

)
dt dV (x)

=

∫
(T0,t0)×Rn

f (t, x)w(t, x) dt dV (x). �

Next, we will prove a generalization of the previous lemma for nonsmooth sources f . Denote by
B(0, R)= {x ∈ Rn

; |x |< R} the Euclidean ball. The finite speed of propagation for the wave equation
yields that there is R > 0 such that all f ∈ C∞c ((T0, T )×M) satisfy supp(W f )b (T0, T ]× B(0, R). We
define

� := B(0, R) \M . (12)
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Below, we use the fact (see [Evans 1998, Theorems 7.2.3/6 and 5.6.3/6]) that the operator W� : h 7→ v

mapping h to the solution of the equation

(∂2
t −1g)v(t, x)= 0 in (T0, T )×�,

v|(T0,T )×∂� = h,

v|t=T0 = 0, ∂tv|t=T0 = 0,

(13)

is continuous as a map W� : C∞c ((T0, T )× ∂�)→ C∞([T0, T ]× �̄).
We let t0 ∈ (T0, T ) and write

6 := {t0}×�. (14)

We denote the trace on 6 by Tr6 , that is, we define (Tr6 u)(x) := u(t0, x). Let ν = ν(z) denote the
exterior unit normal vector of ∂M at z.

Moreover, let U be an open subset (or a submanifold) of Rn , and let us denote by dV (or d S) the
Riemannian volume measure of (U, g). We embed the test functions into the spaces of distribution by
using the inner product of the space L2(U ; dV ), that is, we identify u ∈ C∞0 (U ) with the distribution

ψ 7→

∫
U

u(x)ψ(x) dV (x). (15)

We will denote the distribution pairing of u ∈ D′(U ) and ψ ∈ C∞0 (U ) by (u, ψ)D′(U ) and use analogous
notations for other distribution pairings.

Lemma 4.2. Let t0 ∈ (T0, T ) and define 6 by (14). Then operators Tr6 W� and Tr6 ∂t W� have unique
continuous extensions E′((T0, t0)× ∂�)→ D′(�).

Proof. Let v satisfy (13). Consider a function w ∈ C∞([T0, t0] × �̄) such that (∂t − 1g)w = 0 in
(T0, t0)×� and w|(T0,t0)×∂� = 0. Then

0=
∫
�×(T0,t0)

(
(∂t −1g)v

)
w− v

(
(∂t −1g)w

)
dV (x) dt

=

[∫
�

(
(∂tv)w− v(∂tw)

)
dV (x)

]t=t0

t=T0

+

∫
∂�×(T0,t0)

(
(∂νv)w− v(∂νw)

)
d S(x) dt

=

∫
�

(
(∂tv)w− v(∂tw)

)
dV (x)

∣∣∣∣
t=t0

−

∫
∂�×(T0,t0)

h(∂νw) d S(x) dt,

where ∂ν is the normal derivative on ∂�,
Denote by W1 : f1 7→ w the solution operator of the equation

(∂t −1g)w(t, x)= 0 in (T0, t0)×�,

w|(T0,t0)×∂� = 0,

w|t=t0 = f1, ∂tw|t=t0 = 0.

The operator W1 : C∞c (�)→ C∞([T0, t0] × �̄) is continuous, as can be seen using Theorems 7.2.3/6
and 5.6.3/6 of [Evans 1998]. Hence, the operator
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∂νW1 : C∞c (�)→ C∞([T0, t0]× ∂�), f 7→ ∂νW1 f |∂�

is continuous. Moreover,

(Tr6 ∂t W�h, f1)L2(�;dV ) = (h, ∂νW1 f1)L2((T0,t0)×∂�;dt⊗d S),

where ∂ν is the normal derivative on ∂�. We define the extension of Tr6 ∂t W� by identifying it with the
transpose (∂νW1)

t
: E′((T0, t0)× ∂�)→ D′(�) of the operator ∂νW1 : C∞c (�)→ C∞([T0, t0]× ∂�).

Similarly, we define the extension of Tr6 W� by the transpose (∂νW2)
t
: E′((T0, t0)× ∂�)→ D′(�)

of ∂νW2 : C∞c (�)→ C∞([T0, t0]× ∂�), where W2 : f2 7→ w is the solution operator of the equation

(∂t −1g)w(t, x)= 0 in (T0, t0)×�,

w|(T0,t0)×∂� = 0,

w|t=t0 = 0, ∂tw|t=t0 =− f2. �

Denote by d�(x, y), x, y ∈ �, the distance function of Riemannian manifold (�, g|�). Next we
generalize the result of Lemma 4.1 for a larger class of functions.

Lemma 4.3. Let t0 ∈ (0, T ) and ε > 0 satisfy [−ε, ε] ⊂ (T0, t0). Define 6 by (14). Let

f ∈ H̃−1(−ε, ε)⊗ H̃−1
p (M) and w ∈ C∞([T0, t0]×Rn)

satisfy
(∂2

t −1g)w = 0, in (T0, t0)×Rn.

Suppose that w(t0), ∂tw(t0) ∈ C∞c (�), and let χ ∈ C∞c (T0, t0) satisfy χ = 1 in a neighborhood of
[−ε, t0− r ], where

r := d�
(
supp(w(t0))∪ supp(∂tw(t0)), ∂�

)
.

Then
( f, w)E′(Rn×(T0,t0)) = (Tr6 ∂t W�χL f, w)D′(�)− (Tr6 W�χL f, ∂tw)D′(�), (16)

where we have defined L f = 0 on ∂B(0, R). Here we regard � as a Riemannian manifold (�, g|�).

Proof. We suppose first that f ∈C∞c ((−ε, ε)×M). Recall that W is solution operator of wave equation (3).
Then W f ( · , t)= 0 if t <−ε, and

L f = Tr∂� W f = χ Tr∂� W f, in (T0, t0− r)× ∂�,

where Tr∂� is the trace on (T0, T )× ∂�. As �∩M =∅, we have that (∂2
t −1g)W f = 0 in (T0, T )×�.

By uniqueness of the solution of (13),

W�χ Tr∂� W f =W f, in (T0, t0− r)×�.

By finite speed of propagation,

Tr6 ∂
j

t W�χ Tr∂� W f = Tr6 ∂
j

t W f, j = 0, 1,

on {t0}× supp(w(t0))∪ supp(∂tw(t0)). By Lemma 4.1, (16) holds.
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Then the claim follows, as the embeddings

C∞c (−ε, ε) ↪→ H̃−1(−ε, ε), C∞c (M) ↪→ H̃−1
p (M)

are dense and operators (Tr6 ∂
j

t W�)χL : H̃−1(−ε, ε)⊗ H̃−1
p (M)→ D′((T0, t0)× ∂�), j = 0, 1, are

continuous. �

5. Gaussian beams

We consider solutions of the wave equation which are known as Gaussian beams [Babich et al. 1985;
Babich and Ulin 1981; Ralston 1982]. These solutions have been constructed to analyze the propagation
of singularities for the wave equation in the presence of caustics. Here we use Gaussian beams as an
auxiliary technical tool to analyze singularities in the measurements.

Definition 2. Let ε > 0, N ∈ N and let γ be a unit speed geodesic on (Rn, g). A formal Gaussian beam
of order N propagating along geodesic γ is a function U N

ε of form

U N
ε (t, x)= ε−n/4 exp

{
−(iε)−1θ(t, x)

} N∑
m=0

um(t, x)(iε)m, t ∈ R, x ∈ Rn,

satisfying the following properties: The phase function θ and the amplitude functions um , with m =
0, 1, . . . , N , are complex-valued smooth functions. The phase function θ satisfies the conditions

θ(t, γ (t))= 0, Im θ(t, x)≥ C0(t)d(x, γ (t))2,

where C0(t) is a continuous strictly positive function. The amplitude function u0 satisfies u0(t, γ (t)) 6= 0.
Finally, for any compact set K b R×Rn , there is a constant C > 0 such that the inequality∣∣(∂2

t −1g)U N
ε (t, x)

∣∣≤ CεN−n/4

is satisfied uniformly for (t, x) ∈ K .

The construction of a formal Gaussian beam U N
ε (t, x) is considered in detail in [Katchalov et al. 2001,

Section 2.4]. Next, we recall the construction and pay attention to the properties of Gaussian beams
which we need later.

Let us write the geodesic γ in the usual coordinates of Rn as γ (t)=
(
γ 1(t), . . . , γ n(t)

)
. We construct

the phase function θ(t, x) at each time t ∈R in terms of a finite Taylor expansion in the x variable centered
at γ (t),

θ(t, x)=
∑
|α|≤N

θα(t)
α!

(x − γ (t))α,

where θα are smooth functions and N ∈ N.
Let e j = (δ1 j , . . . , δnj ) be multi-indices with the value 1 at the j-th place. For clarity, we use the

notation p j (t)= θe j (t) for the first-order coefficients and the notation H jk(t)= θα(t), α = e j + ek , for
the second-order coefficients in the expansion of θ .

The construction of a formal Gaussian beam consists of the following steps.
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(1) We define θ0(t)= 0 and p j (t)=
∑n

k=1 g jk(γ (t))γ̇ k(t), that is, the first-order coefficients p j (t) are
the covariant representation of the velocity vector γ̇ .

(2) The symmetric matrix H(t)= [H jk(t)]nj,k=1 of the second-order coefficients is obtained by solving a
Riccati equation, or an equivalent system of ordinary differential equations. We write H(t)= Z(t)Y (t)−1,
where the pair of complex n×n matrices (Z(t), Y (t)) is the solution of the system of ordinary differential
equations

d
dt

Y (t)= B(t)∗Y (t)+C(t)Z(t), Y |t=0 = Y 0,

d
dt

Z(t)=−D(t)Y (t)− B(t)Z(t), Z |t=0 = Z0.

Here we choose the initial values to be Z0
= i I and Y 0

= I , where I is the identity matrix and i
is the imaginary unit. The matrices B(t), C(t), and D(t) in Rn×n have components given by the
second derivatives of the Hamiltonian h(x, p)=

(∑n
j,k=1 g jk(x)p j pk

)1/2 evaluated in the point (x, p)=
(γ (t), p(t)):

B j
l =

∂2h
∂x l∂p j

; C jl
=

∂2h
∂p j∂pl

; D jl =
∂2h

∂x j∂x l .

The fact that the complex matrix Y (t) is invertible for all t ∈ R is crucial for the construction, and is
discussed in detail in [Katchalov et al. 2001, Section 2.4].

(3) The coefficients θα(t) of order |α| = m ≥ 3 are solved inductively, with respect to m. The coefficients
θα(t) are constructed using the coefficients θ̃α(t) defined so that∑

|α|=m

θ̃α(t)ỹα =
∑
|α|=m

θα(t)(x − γ (t))α,

for all ỹ= Y−1(t)(x−γ (t)), y ∈Cn . We obtain the coefficients θ̃α(t) by solving successive linear systems
of ordinary differential equations

d
dt
θ̃α(t)= Kα(t), θ̃α(0)= 0,

where Kα(t) depend on θβ(t) with |β| ≤ m− 1, the matrix H(t), the vector p(t), and the metric g jk and
its derivatives at γ (t).

(4) When the phase function θ(t, x) is constructed, the amplitude functions un(t, x) are solved using the
transport equations, or equivalently, the following ordinary differential equations. Let

um(t, x)=
∑
|α|≤N

ũm,α(t)ỹα, ỹ = Y−1(t)(x − γ (t)),

where the coefficients ũm,α(t) are obtained by solving the successive equations

d
dt

ũm,α(t)+ r(t)ũm,α(t)= Fm,α(t), ũm,α(0)= δm,0δ|α|,0,

where r(t) and Fm,α(t) depend on ũm′,β with |β| ≤ |α| + 2 and m′ ≤ m − 1, the function θ(t, x), the
metric g jk , and their derivatives at (t, x), x = γ (t).
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By the above construction, we have the following remark.

Remark 1. The phase function θ(t, x) and the amplitude functions um(t, x) at time t = 0 have the form

θ(0, x)=
n∑

j,k=1

g jk(y)ηk(x j
− y j )+ i |x − y|2,

where (y, η)= (γ (0), γ̇ (0)) is the initial data of the geodesic γ , u0(0, x)= 1, and um(0, x)= 0 for m > 0.
Hence, U N

ε (0, x) is dependent on the metric g jk only via g jk(y). Moreover, ∂tU N
ε (0, x), although of

more complex form, is dependent on the metric g jk only via ∂αg jk(y) for a certain finite collection of
multi-indices α ∈ Nn .

If the coefficients of an ordinary differential equation depend smoothly on some parameter, so does the
solution [Amann 1990], and thus we see using an induction that the phase function θ and the amplitude
functions um depend smoothly on the initial data (y, η)= (γ (0), γ̇ (0)) of the geodesic γ . In particular,
the amplitude function u0(t, x; y, η) satisfies

u0 ∈ C∞(R×Rn
× SRn). (17)

Thus far we have considered a formal Gaussian beam. By using continuous dependency of the solution
of the wave equation on the source term, one obtains the following results [Katchalov et al. 2001]:

Let γ be a unit speed geodesic, N ∈ N, ε > 0, and let U N
ε be a formal Gaussian beam of order N

propagating along geodesic γ . Let χ ∈C∞0 (R
n) be a function which is identically one in a neighborhood of

γ (0) and let t0> 0 and let R be the radius in (12). Then for j ∈N and α ∈Nn satisfying j+|α|< N−n/4,
there is C > 0 such that the solution wε of the wave equation,

(∂2
t −1g)wε(t, x)= 0, (t, x) ∈ (T0, t0)×Rn,

wε(t0, x)= χ(x)U N
ε (0, x),

∂twε(t0, x)=−χ(x)∂tU N
ε (0, x),

(18)

satisfies
sup

x∈B(0,R),t∈(T0,t0)

∣∣∂ j
t ∂

α
x
(
wε(t0− t, x)−U N

ε (t, x)
)∣∣≤ CεN−( j+|α|)−n/4. (19)

We call wε a Gaussian beam of order N propagating along geodesic γ backwards on time interval (T0, t0).

6. Determination of the travel times

Lemma 6.1. Let wε be a Gaussian beam of order N ≥ 1+ n/4 propagating along geodesic γ backwards
on time interval (T0, t0), that is, let wε be the solution of (18). Let h0 be the pseudorandom source

h0(t, x)=
∞∑
j=1

a jδ(t)δx j (x). (20)

If γ (t0) 6= x j for all j = 1, 2, . . . , then

lim
ε→0

εn/4(h0, wε)E′(Rn×(T0,t0)) = 0.
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Moreover, if γ (t0)= x j , then

lim
ε→0

εn/4(h0, wε)E′(Rn×(T0,t0)) = a j u0(t0, x j )|g|1/2(x j ),

where u0(t, x) is the first amplitude function of a formal Gaussian beam propagating along geodesic γ .

We remind the reader that the test functions are embedded in E′(Rn
× (T0, T )) using (15).

Proof. By (19), we have that

εn/4(h0, wε)E′(Rn×(T0,t0)) = ε
n/4

∞∑
j=1

a jU N
ε (t0, x j )|g|1/2(x j )+ O(ε)

=

∞∑
j=1

a j u0(t0, x j ) exp
{
−(iε)−1θ(t0, x j )

}
|g|1/2(x j )+ O(ε).

As Im θ(t0, x j )≥ C0(t0)d(x j , γ (t0)), we have that∣∣exp
{
−(iε)−1θ(t0, x j )

}∣∣= O(ε), if γ (t0) 6= x j .

Suppose that γ (t0)= x j . Then exp
{
−(iε)−1θ(t0, x j )

}
= 1 and there is a constant C > 0 depending on

γ and t0 such that∣∣∣εn/4(h0, wε)E′(Rn×(T0,t0))− a j u0(t0, x j )|g|1/2(x j )

∣∣∣
≤ C

j−1∑
k=1

|ak |
∣∣exp

{
−(iε)−1θ(t0, xk)

}∣∣+C
l∑

k= j+1

|ak |
∣∣exp

{
−(iε)−1θ(t0, xk)

}∣∣+C
∞∑

l+1

|al | + O(ε).

We may first choose large l ∈ N and then small ε > 0 so that the above three sums are arbitrarily small.
The case γ (t0) 6= x j for all j = 1, 2, . . . , is similar. �

Next we define an auxiliary function S(y0, η0, t0) which is nonzero if and only if there is j ∈ Z+ such
that γy0,η0(t0)= x j .

Definition 3. Let (y0, η0) ∈ T Rn be such that y0 ∈ �
int and ‖η0‖g = 1. We denote by γ (t; y0, η0) =

γy0,η0(t) the geodesic on (Rn, g) with γ (0) = y0, γ̇ (0) = η0. Moreover, let wε be a Gaussian beam of
order N ≥ 1+ n/4 propagating along γ (t; y, η) backwards on time interval (T0, t0). We define

S(y0, η0, t0) := lim
ε→0

εn/4(h0, wε)E′(Rn×(T0,t0)).

Lemma 6.2. Let (y0, η) ∈ S� and t0 ∈ (0, T ). Then Lh0, for pseudorandom source h0, and (�, g|�),
given as a Riemannian manifold, determine S(y0, η0, t0).

Proof. Let wε be a Gaussian beam of order N ≥ 1+ n/4 propagating along the geodesic γ ( · ; y0, η0)

backwards on time interval (T0, t0). We may choose the cut-off function χ in (18) so that wε(t0) and
∂twε(t0) lie in C∞c (�). As g|� is known, we have by Remark 1 that the initial data wε(t0), ∂twε(t0) are
known. Moreover, operators Tr6 ∂

j
t W�, j = 0, 1, 6 := {t0}×�, are known. After choosing a suitable
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cut-off function χ in Lemma 4.3, we have that the measurement Lh0 determines the distributional pairing
(h0, wε)E′(Rn×(T0,t)). Hence S(y0, η0, t0) is determined. �

The implicit function theorem yields the following remark. Note that t0 ∈ R in the remark is not
necessarily the first intersection time.

Remark 2. Let (y0, η0) ∈ SRn and t0 ∈ R satisfy(
γ (t0; y0, η0), γ̇ (t0; y0, η0)

)
∈ ∂±SM.

Then there are neighborhoods I ⊂ R and U ⊂ SRn of t0 and (y0, η0) and a smooth map ` :U → I such
that for t ∈ I and (y, η) ∈U ,

γ (t; y, η) ∈


M, for ± t <±`(y, η),

∂M, for t = `(y, η),

�, for ± t >±`(y, η).

We remind the reader that τ(x, ξ), (x, ξ) ∈ T Rn , is defined as the first intersection time with ∂M :

τ(y0, η0) := inf
{
t ∈ (0,∞]; γ (t; y0, η0) ∈ ∂M

}
.

In the following, we use the Sasaki metric on the tangent bundle T M .

Lemma 6.3. The first intersection times τ : S�→ (0,∞] and τ : ∂−SM→ (0,∞] are lower semicontin-
uous.

Proof. Let us consider τ on S�. Let a sequence ((y j , η j ))
∞

j=1 ⊂ S� converge to (y0, η0) ∈ S� as j→∞.
We write γ j (t) := γ (t; y j , η j ) and τ j := τ(y j , η j ).

We will show next that lim inf j→∞ τ j /∈ (0, τ0). Let t ∈ (0, τ0). Then γ0(t) /∈ ∂M and

d(γ0(t), ∂M) > 0.

Let j ∈ Z+. Suppose for a moment that τ j <∞. Noting that γ j is unit speed and γ j (τ j ) ∈ ∂M , we have

|t − τ j | ≥ d
(
γ j (t), γ j (τ j )

)
≥ d(γ j (t), ∂M).

If τ j =∞, then |t − τ j | =∞> d(γ j (t), ∂M).
The convergence γ j (t)→ γ0(t), as j→∞, implies that for large j ,

|t − τ j | ≥
d(γ0(t), ∂M)

2
> 0.

Hence, lim inf j→∞ τ j 6= t for all t ∈ (0, τ0).
Clearly lim inf j→∞ τ j ≥ 0, and there is J ∈ Z+ such that

τ j ≥ d(y j , ∂M)≥
d(y0, ∂M)

2
> 0, j ≥ J.

Hence, lim inf j→∞ τ j 6= 0 and lim inf j→∞ τ j ≥ τ0.
Let us consider τ on ∂−SM . Let a sequence ((y j , η j ))

∞

j=1 ⊂ ∂−SM converge to (y0, η0) ∈ ∂−SM as
j→∞. We write γ j (t) := γ (t; y j , η j ) and τ j := τ(y j , η j ).
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(y j , t j ) t = t j

t = τ(x, ξ)
(x, t (x, ξ))

t = 0
(γ (t j ), 0)

t = T0

M

γ (τ(x, ξ); x, ξ)

M(x, ξ)

(y j+1, η j+1)

(y j , η j )

Figure 1. On the left, the trajectory of a Gaussian beam propagating along geodesic
γ (t) := γ (t; y j , η j ) backwards on time interval (T0, t j ). If S(y j , η j , t j ) 6= 0, then
there is a point source at γ (t j ). On the right, a sequence (y j , η j ) ∈ S� converging to
(x, ξ) ∈ ∂−SM and trajectories of the corresponding geodesics.

Repeating the above argument, we see that lim inf j→∞ τ j /∈ (0, τ0). Thus it is enough to show that
lim inf j→∞ τ j 6= 0.

Remark 2 gives neighborhoods I ⊂ R and U ⊂ SRn of zero and (y0, η0) and a map ` : U → I of
boundary intersection times. We write V := U ∩ ∂−SM . As γ (0; x, ξ) ∈ ∂M for (x, ξ) ∈ V , we have
`= 0 in V . In particular, r := d

(
`(V ),R \ I

)
> 0. For large j , (γ j (0), γ̇ j (0)) ∈ V , and thus

γ j (t) ∈ M, t ∈ (0, r).

Hence, τ j ≥ r > 0 for large j , and lim inf j→∞ τ j ≥ τ0. �

We easily see the following continuity result for τ .

Lemma 6.4. Let ((y j , η j ))
∞

j=1 ⊂ S� converge to (x, ξ) ∈ ∂−SM in the Sasaki metric. Then

lim
j→∞

τ(y j , η j )= 0.

Theorem 6.5. Let (x, ξ) ∈ ∂−SM , and denote by J (x, ξ) the set of sequences

((t j ; y j , η j ))
∞

j=1 ⊂ (0,∞)× S�

for which

lim
j→∞

(y j , η j )= (x, ξ), lim
j→∞

t j ∈ (0,∞), S(y j , η j , t j ) 6= 0.
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The function S : S�× (0,∞)→ C determines τ : ∂−SM→ (0,∞] by the formula

τ(x, ξ)= inf
{

lim
j→∞

t j ; ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ) for some ((y j , η j ))
∞

j=1 ⊂ S�
}
.

Moreover, if τ(x, ξ) <∞, then there is a sequence ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ) satisfying

τ(x, ξ)= lim
j→∞

t j .

Proof. Let (x, ξ) ∈ ∂−SM and ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ). Let us show that τ(x, ξ) ≤ lim j→∞ t j . By
Lemma 6.4, τ j := τ(y j , η j )→ 0 as j→∞. We define

ỹ j := γ (τ j ; y j , η j ), ξ j := γ̇ (τ j ; y j , η j ).

As S(y j , η j , t j ) 6= 0, we have

γ (t j − τ j ; ỹ j , ξ j )= γ (t j ; y j , η j ) ∈ ∂M.

As lim j→∞ t j > 0 and lim j→∞ τ j = 0, we have t j − τ j > 0 for large j . Thus τ(ỹ j , ξ j ) ≤ t j − τ j for
large j . Moreover,

lim
j→∞

(ỹ j , ξ j )=
(
γ (0; x, ξ), γ̇ (0; x, ξ)

)
= (x, ξ).

In particular, (ỹ j , ξ j ) ∈ ∂−SM for large j . Hence, Lemma 6.3 gives

lim
j→∞

t j = lim
j→∞

(t j − τ j )≥ lim inf
j→∞

τ(ỹ j , ξ j )≥ τ(x, ξ).

In particular, we have proved the claim in the case τ(x, ξ)=∞.
Let us assume that τ(x, ξ)<∞. It is enough to show that there is a sequence ((t j ; y j , η j ))

∞

j=1 ∈ J (x, ξ)
satisfying τ(x, ξ)= lim j→∞ t j . We write

t0 := τ(x, ξ), z := γ (t0; x, ξ), ζ := −γ̇ (t0; x, ξ).

We have
(x, ξ)=

(
γ (t0; z, ζ ),−γ̇ (t0; z, ζ )

)
.

As (x, ξ) ∈ ∂−SM , Remark 2 gives neighborhoods I and U of t0 and (z, ζ ) and a map ` : U → I of
boundary intersection times. After choosing local coordinates around z, we may define

(y j , η j ) :=
(
γ (t j ; xk j , ζ ),−γ̇ (t j ; xk j , ζ )

)
,

where (xk j )
∞

j=1⊂U is a subsequence of the dense sequence of source points in (20) satisfying lim
j→∞

xk j = z
and (t j )

∞

j=1 ⊂ I satisfies
t j > `(xk j , ζ ), lim

j→∞
t j = `(z, ζ )= t0.

Clearly, ((t j ; y j , η j ))
∞

j=1 ∈ J (x, ξ) and

lim
j→∞

t j = t0 = τ(x, ξ). �
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7. Determination of the scattering relation

In the next theorem, we consider the pseudorandom source h0(t, x) with coefficients

a j = λ
−λ j
,

with some λ > 1, and make computations “modulo an error in A”, where

A = {−λ j
: j ∈ N}.

To this end, let m A(s) be the real number r such that s = r + a, where a ∈ A and r has the smallest
possible absolute value. In the case when both r and −r satisfy this condition, we choose the positive
value.

Lemma 7.1. Let (y0, η0) ∈ S�, t0 ∈ (0, T ), and suppose that S(y0, η0, t0) 6= 0. Then there is a sequence
((y j , η j ))

∞

j=1 ⊂ S� and (t j )
∞

j=1 ⊂ (0, T ) such that

(y j , η j )→ (y0, η0), t j → t0, S(y j , η j , t j )→ 0, as j→∞, S(y j , η j , t j ) 6= 0. (21)

Suppose, moreover, that the coefficients of the pseudorandom source h0 are a j = λ
−λ j

. Then for any
sequences ((y j , η j ))

∞

j=1 ⊂ T Rn and (t j )
∞

j=1 ⊂ (0, T ) satisfying (21), we have that

lim
j→∞

m A
(
logλ |S(y j , η j , t j )|

)
= logλ

∣∣u0
(
t0, γ (t0); y0, η0

)
|g|1/2(γ (t0))

∣∣,
where γ (t)= γ (t; y0, η0) and u0 is defined as in (17).

Proof. We will use the notation

γ j (t) := γ (t; y j , η j ), z j := γ j (t j ), S j := S(y j , η j , t j ), β j :=
∣∣u0(t j , z j ; y j , η j )|g|1/2(z j )

∣∣.
As S0 6= 0, we have that z0 = x j for some j = 1, 2, . . . . By continuity of the geodesic flow and density

of (x j )
∞

j=1 ⊂ ∂M , there exist a subsequence (xk j )
∞

j=1 ⊂ (x j )
∞

j=1 and sequences ((y j , η j ))
∞

j=1 ⊂ T Rn and
(t j )
∞

j=1 ⊂ (0, T ) such that

xk j → z0, (y j , η j )→ (y0, η0), t j → t0, as j→∞,

and z j = xk j 6= z0. Then |S j | = |ak j |β j 6= 0. As xk j 6= z0 and xk j → z0, we have that k j →∞ and thus
ak j → 0. By (17) and continuity of the geodesic flow, it holds that β j → β0 > 0. Hence S j → 0.

Next we use the assumption that a j = λ
−λ j

. Let ((y j , η j ))
∞

j=1 ⊂ T Rn and (t j )
∞

j=1 ⊂ (0, T ) satisfy (21).
As S j 6= 0, we have that |S j | = ak jβ j for some subsequence (ak j )

∞

j=1 ⊂ (a j )
∞

j=1. As S j → 0, we have
that ak j → 0. Moreover, sequence (log2 β j )

∞

j=1 is bounded. This boundedness, together with logλ ak j ∈ A
and logλ ak j →−∞, yields

m A(logλ ak j + logλ β j )= logλ β j

for large j ∈ N. Hence,
lim

j→∞
m A(logλ |S j |)= lim

j→∞
logλ β j = logλ β0. �
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Theorem 7.2. If the coefficients of the pseudorandom source h0 are a j = λ
−λ j

, then the functions
S : S�× (0,∞)→ C and τ : ∂−SM→ (0,∞] determine D(6) and

γ
(
τ(x, ξ); x, ξ

)
, (x, ξ) ∈ D(6).

Proof. Clearly τ on ∂−SM determines D(6). Let (x, ξ) ∈ D(6). By Theorem 6.5, we may choose
((t j ; y j , η j ))

∞

j=1∈ J (x, ξ) such that lim j→∞ t j =τ(x, ξ). As S(y j , η j , t j ) 6=0, we have γ (t j ; y j , η j )= xk j

for some subsequence (xk j )
∞

j=1 of the sequence of source points. By Lemma 7.1, the function S determines

|S(y j , η j , t j )|∣∣u0(t j , xk j ; y j , η j )|g|1/2(xk j )
∣∣ = ak j .

As a j , j ∈ Z+, are disjoint, this determines the index k j and thus also the point xk j . Moreover,

lim
j→∞

xk j = lim
j→∞

γ (t j ; y j , η j )= γ
(
τ(x, ξ); x, ξ

)
. �

The following result follows from Remark 2.

Lemma 7.3. Let us denote by X either S� or ∂−SM. Let (y0, η0) ∈ X satisfy

τ(y0, η0) <∞, γ̇
(
τ(y0, η0); y0, η0

)
/∈ Tz∂M,

where z = γ
(
τ(y0, η0); y0, η0

)
. Then there is a neighborhood V ⊂ X of (y0, η0) such that τ = ` in V ,

where ` :U→ I is the map of boundary intersection times defined in Remark 2 for neighborhoods U ⊂ X
and I ⊂ R of (y0, η0) and τ(y0, η0). In particular, τ is smooth in V .

Lemma 7.4. The set of (x, ξ) such that γ ( · ; x, ξ) is transverse to ∂M is open and dense in

∂SM := {(x, ξ) ∈ SM; x ∈ ∂M}.

Proof. As ∂−SM ∪ ∂+SM is open and dense in ∂SM , it is enough to show that the set of (x, ξ) such that
γ ( · ; x, ξ) is transverse to ∂M is open and dense in ∂±SM . By the parametric transversality theorem
[Hirsch 1976, Theorem 3.2.7], the claim follows from the fact that the evaluation map

Fev
: ∂±SM ×R→ Rn,

Fev
: (x, ξ, t) 7→ γ (t; x, ξ)

is transverse to ∂M . �

Lemma 7.5. Let (x0, ξ0) ∈ D(6). Then there is a sequence ((x j , ξ j ))
∞

j=1 ⊂ D(6) such that γ ( · ; x j , ξ j )

is transverse to ∂M and

lim
j→∞

(x j , ξ j )= (x0, ξ0), lim
j→∞

τ(x j , ξ j )= τ(x0, ξ0).

Proof. We write τ0 := τ(x0, ξ0) and

(z0, ζ0) :=
(
γ (τ0; x0, ξ0),−γ̇ (τ0; x0, ξ0)

)
.
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Remark 2 gives a map of boundary intersection times ` :U → I for neighborhoods U ⊂ SRn and I ⊂ R

of (z0, ζ0) and τ0. By Lemma 7.4, there is a sequence ((z j , ζ j ))
∞

j=1 ⊂ SM ∩U converging to (z0, ζ0) such
that γ ( · ; z j , ζ j ) is transverse to ∂M .

We define t j := `(z j , ζ j ) and

(x j , ξ j ) :=
(
γ (t j ; z j , ζ j ),−γ̇ (t j ; z j , ζ j )

)
.

Then (x j , ξ j )→ (x0, ξ0) as j →∞. In particular, there is J ≥ 1 such that (x j , ξ j ) ∈ ∂−SM for j ≥ J .
By Lemma 6.3,

τ(x0, ξ0)≤ lim inf
j→∞

τ(x j , ξ j )≤ lim sup
j→∞

τ(x j , ξ j )

≤ lim
j→∞

`(z j , ζ j )= `(z0, ζ0)= τ(x0, ξ0). �

Lemma 7.6. Let (x0, ξ0) ∈ D(6) be such that γ ( · ; x0, ξ0) is transverse to ∂M. Then there is (y0, η0) ∈

S� lying on the geodesic γ ( · ; x0, ξ0) and a neighborhood V ⊂ Sy0� of η0 such that the following
conditions hold.

(C1) The map η 7→ τ(y0, η) is smooth V → (0,∞).

(C2) The map
(x(η), ξ(η)) :=

(
γ (τ(y0, η); y0, η), γ̇ (τ (y0, η); y0, η)

)
(22)

is smooth V → D(6) and (x(η0), ξ(η0))= (x0, ξ0).

(C3) The map
˜̀(η) := τ(x(η), ξ(η))+ τ(y0, η) (23)

is smooth V → (0,∞).

(C4) There is a neighborhood W ⊂ ∂M of γ
(
τ(x0, ξ0); x0, ξ0

)
such that

η 7→ γ
(
τ(x(η), ξ(η)); x(η), ξ(η)

)
(24)

is a diffeomorphism V →W .

Proof. We write γ (t) := γ (t; x0, ξ0) and z0 := γ (τ(x0, ξ0)). By Remark 2, γ (−t) ∈ � for small t > 0.
Moreover, the points that are conjugate to z0 along γ are discrete on γ [Jost 2008].

Thus there is τ0 > 0 such that

(y0, η0) :=
(
γ (−τ0), γ̇ (−τ0)

)
is in S�, y0 is not conjugate to z0 along γ , τ(y0, η0)= τ0, and(

γ (τ0; y0, η0), γ̇ (τ0; y0, η0)
)
= (x0, ξ0).

By Lemma 7.3, there is a neighborhood V0 ⊂ Sy0� of η0 such that η 7→ τ(y0, η) is smooth in V0.
Hence, the function η 7→ (x(η), ξ(η)) maps η0 to (x0, ξ0) and is smooth in V0. Moreover, this smoothness,
transversality of γ ( · , x0, ξ0), and Lemma 7.3 imply that there is a neighborhood V1 ⊂ V0 of η0 such that
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(x(η), ξ(η)) ∈ ∂−SM and η 7→ τ(x(η), ξ(η)) is smooth V1→ (0,∞). In particular, (x(η), ξ(η)) ∈ D(6)
for all η ∈ V1. We have shown that (y0, η0) and V1 satisfy (C1)–(C3).

We have (
γ (s; y0, η), γ̇ (s; y0, η)

)∣∣
s=t+τ(y0,η)

=
(
γ (t; x(η), ξ(η)), γ̇ (t; x(η), ξ(η))

)
. (25)

In particular, γ ( ˜̀(η0); y0, η0)= z0 and

γ ( ˜̀(η); y0, η)= γ
(
τ(x(η), ξ(η)); x(η), ξ(η)

)
∈ ∂M.

Moreover, as y0 is not conjugate to z0 along γ , there are neighborhoods V2 ⊂ V1, I0 ⊂ (0,∞) and
U0 ⊂ Rn of η0, ˜̀(η0) and z0 such that (t, η) 7→ γ (t; y0, η) is a diffeomorphism V2× I0→U0.

There is a neighborhood V ⊂ V2 of η0 such that ˜̀(V ) ⊂ I0. The graph of η 7→ ˜̀(η) is an (n − 1)-
dimensional submanifold on V × I0. Hence, the diffeomorphism (t, η) 7→ γ (t; y0, η) maps it onto an
(n− 1)-dimensional submanifold W of U0. Moreover, z0 ∈W and W ⊂ ∂M . Thus W is a neighborhood
of z0 in ∂M . �

Lemma 7.7. Let (x0, ξ0) ∈ D(6) and (y0, η0) ∈ S� satisfy conditions (C1)–(C4) of Lemma 7.6 for
neighborhoods V ⊂ Sy0� and W ⊂ ∂M of η0 and z0 := γ

(
τ(x0, ξ0); x0, ξ0

)
. We denote by F :W → V

the inverse map of (24). Then
grad∂M(

˜̀ ◦ F)|z=z0 = γ̇
>

z0
, (26)

where ˜̀ : V → (0,∞) is the function (23) and γ̇>z0
is the orthogonal projection of γ̇

(
τ(x0, ξ0); x0, ξ0

)
into

Tz0∂M.

Proof. Let σ : (−ε, ε)→W be a smooth curve such that σ(0)= z0. We define

0 : (−ε, ε)×R→ Rn, 0(s, t) := γ
(
t; y0, F(σ (s))

)
.

We write λ := ˜̀ ◦ F ◦ σ and ˜̀0 := ˜̀(η0). By (25),

0(s, λ(s))= γ
(
τ(x(η), ξ(η)); x(η), ξ(η)

)∣∣
η=F(σ (s)) = σ(s),

(∂t0)(0, ˜̀0)= γ̇ ( ˜̀0; y0, η0)= γ̇
(
τ(x0, ξ0); x0, ξ0

)
.

Hence
σ̇ (0)= ∂s0(s, λ(s))|s=0 = (∂s0)(0, ˜̀0)+ (∂t0)(0, ˜̀0)λ′(0).

The curve t 7→ 0(s, t) is a unit speed geodesic for all s ∈ (−ε, ε). Hence(
σ̇ (0), γ̇ (τ (x0, ξ0); x0, ξ0)

)
g =

(
(∂s0, ∂t0)g + λ

′(0)(∂t0, ∂t0)g
)∣∣

s=0,t= ˜̀0

= (∂s0, ∂t0)g|s=0,t= ˜̀0 + λ
′(0).

(27)

We define

L(s, l) :=
∫ l

0
|∂t0(s, t)|gdt, (s, l) ∈ (−ε, ε)× (0,∞).
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Then L(s, l), s ∈ (−ε, ε) is the length of a unit speed geodesic on the interval [0, l]. Thus L(s, l)= l for
all s ∈ (−ε, ε). We may derive an expression for ∂sL(s, l)|s=0 as in [Lee 1997, Proposition 6.5]:

∂sL(s, l)|s=0 =

∫ l

0
(Dt∂s0, ∂t0)g dt |s=0.

As t 7→ 0(s, t) is a geodesic, Dt∂t0(s, t)= 0, and thus

∂t(∂s0, ∂t0)g = (Dt∂s0, ∂t0)g.

Moreover, 0(s, 0)= y0 for all s ∈ (−ε, ε), and thus ∂s0(s, 0)= 0. Hence

0= ∂sL(s, l)|s=0 =

∫ l

0
∂t(∂s0, ∂t0)g dt |s=0 = (∂s0, ∂t0)g|s=0,t=l, l ∈ (0,∞).

By (27), we have

(σ̇ (0), γ>z0
)g =

(
σ̇ (0), γ̇ (τ (x0, ξ0); x0, ξ0)

)
g

= λ′(0)=
〈
d( ˜̀ ◦ F)|z=z0, σ̇ (0)

〉
T ∗z0
∂M×Tz0∂M =

(
σ̇ (0), grad∂M(

˜̀ ◦ F)|z=z0

)
g,

for all smooth curves σ in W such that σ(0)= z0, which proves the claim. �

Theorem 7.8. The functions τ : ∂−SM→ (0,∞] and

z : D(6)→ ∂M, z(x, ξ) := γ
(
τ(x, ξ); x, ξ

)
,

together with the Riemannian manifold (�, g|�), determine

γ̇
(
τ(x, ξ); x, ξ

)
, (x, ξ) ∈ D(6).

Proof. The functions τ and z on D(6) determine the set B of points (x0, ξ0) ∈ D(6) such that the
conditions (C1)–(C4) of Lemma 7.6 hold for some (y0, η0) ∈ S�.

Let (x0, ξ0) ∈ B. We write ζ0 := γ̇
(
τ(x0, ξ0); x0, ξ0

)
. The map

η 7→ z(x(η), ξ(η))

determines its local inverse. Hence τ and z determine the function F of Lemma 7.7, and thus they
determine γ̇>z0

by the formula (26). As ζ0 is a unit vector,

ζ0 = γ̇
>

z0
+ (1− |γ̇>z0

|
2)1/2νz0,

where νz0 is the unit exterior normal vector of ∂M . Hence τ and z determine ζ0 for all (x0, ξ0) ∈ B.
Let (x0, ξ0) ∈ D(6). By Lemmata 7.5 and 7.6, there is a sequence ((x j , ξ j ))

∞

j=1 ⊂ B such that

lim
j→∞

(x j , ξ j )= (x0, ξ0), lim
j→∞

τ(x j , ξ j )= τ(x0, ξ0).

Moreover, the functions τ and z determine the set of such sequences, and thus they determine

lim
j→∞

γ̇
(
τ(x j , ξ j ); x j , ξ j

)
= γ̇

(
τ(x0, ξ0); x0, ξ0

)
. �
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Theorems 6.5, 7.2 and 7.8 prove Theorem 1.2 formulated in the introduction.
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