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We study radial solutions of a certain two-dimensional nonlinear Schrödinger (NLS) equation with
harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear
smoothing effect of Schrödinger equation with L p estimates of Laguerre functions, we are able to prove
an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an
application to the NLS equation without harmonic potential.

1. Introduction

Burq, Thomann and Tzvetkov [Burq et al. 2010] studied the nonlinear Schrödinger (NLS) equation on
R×Rd with harmonic potential

i∂t u+ (1− |x |2)u =±|u|p−1u, (1-1)

where the space dimension was one. The purpose of this paper is to extend their results to two space
dimensions. We will prove global well-posedness almost surely with respect to a Gaussian measure
supported on

⋂
δ>0 H−δ (see Section 1.2 for the definition), and we construct the Gibbs measure, absolutely

continuous with respect to this Gaussian, which we prove to be invariant.
We also study the NLS equation on R×Rd without harmonic potential, namely

i∂t u+1u =±|u|p−1u. (1-2)

In [Burq et al. 2010], it was noticed that using an explicit transform (referred to as the lens transform
in [Tao 2009]), we can obtain local and global well-posedness results of (1-2) from the corresponding
results of (1-1). This issue is also pursued here.

Like most earlier papers on random data theory of NLS equations in two or more dimensions, ours
considers only radial solutions. In the defocusing case in two dimensions, we can prove, when p ≥ 3
is an odd integer, almost-sure global well-posedness and measure invariance for (1-1) and almost-sure
global well-posedness and scattering for (1-2); in the focusing case, we have the same results only for
(1-1), when 1< p < 3.

MSC2010: primary 35Q55, 37L40, 37L50; secondary 37K05.
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1.1. NLS equation and probabilistic methods. The nonlinear Schrödinger equation (1-2) and its periodic
variant (which is solved on R×Td ) have been extensively studied over the last several decades. Beginning
with [Lebowitz et al. 1988; Bourgain 1994; 1996], it has been observed that low regularity local and
global solutions to (1-2) on R×Td can be obtained via randomization of initial data and construction of
Gibbs measure. This idea was later developed in a number of papers, for instance [Burq and Tzvetkov
2008a; 2008b; Nahmod et al. 2012; Oh 2009; 2010; Thomann and Tzvetkov 2010; Tzvetkov 2006; 2008].
In [Burq et al. 2010], the method mentioned above was first used to study (1-1).

There are three reasons why (1-1) is worth studying. First, the spectrum of the harmonic oscillator
H = −1 + |x |2 is discrete, so (1-1) can be approximated by ODEs, and the current techniques of
constructing Gibbs measure apply at least formally. Second, (1-1) is solved on R × Rd , where the
space domain is noncompact, while previous works usually involve a compact manifold. Also (1-1) is
related to (1-2) via the lens transform, so results about (1-1) may shed some light on the study of (1-2),
where probabilistic methods have not yet entered. Finally, (1-1) also arises naturally from the theory of
Bose–Einstein condensates, as noted in [Burq et al. 2010].

The major difficulty in the study of (1-1) is that the support of the Gaussian part of the Gibbs measure
contains functions with very low regularity. With radial symmetry the typical element in the support of
the Gibbs measure belongs to

⋂
δ>0 H−δ but not L2; without it the typical element does not even belong

to H1−d (the spaces Hσ , as defined in Section 1.2, are Sobolev spaces associated to H; see Section 3
for more details). A consequence of this is that we cannot expect even local well-posedness in the
deterministic sense for initial data of such low regularity. In fact in [Thomann 2008] local ill-posedness
for Hσ initial data was shown1, provided σ < σc := d/2− 2/(p− 1). In particular, we have σc → 1
as p→∞ for the two-dimensional defocusing equation; thus deterministic local well-posedness fails
completely for regularity below L2.

In [Burq et al. 2010], the problem was resolved by a probabilistic improvement of (weighted) Strichartz
estimate, and it was shown that Hδ/2e−it H f (ω) almost surely belongs to some weighted Lebesgue space
for δ < 1

2 (see [Burq et al. 2010, Lemma 6.2] for more details). Since σc <
1
2 in one dimension, local

well-posedness in this space could be proved. In two dimensions, however, it will be shown in the
Appendix that the distribution Hσ/2 f (ω) is almost surely not a locally integrable function (thus cannot
belong to any weighted space) when σ ≥ 1

2 . Since 1
2 fails to reach the σc threshold when p is large, we

have to use different tools to get local well-posedness. Fortunately, the nonlinear smoothing effect of
the NLS equation provides such a tool. To fully exploit this effect, we will work in Xσ,b spaces (see
Section 1.2 for definitions) and use multilinear eigenfunction estimates. This requires p to be an odd
integer, but we believe that by more delicate treatment we can remove this restriction and allow for all
1< p <∞.

When there is no radial symmetry, the support of the Gaussian will have such low regularity that we
cannot even define the Gibbs measure. It would be possible to use alternative Gaussians to get local
results, but then we do not have an invariant measure, so global results still seem out of reach. One

1The counterexample constructed in [Thomann 2008] was for (1-2), but it could be easily adapted to (1-1) as noted in
[Thomann 2009]; also one can check the proof there that the initial data could be made radial.
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possible way is to combine the probabilistic local result with the high-low analysis of Bourgain or the
I -method of Colliander, Keel, Staffilani, Takaoka and Tao. For progress in this direction, see [Colliander
and Oh 2012].

Finally, as we mentioned above, the study of (1-1) is closely related to the study of (1-2). The result
we obtain for (1-2) (see Theorem 1.2 below) is an almost-sure global well-posedness and scattering
result with supercritical initial data (the critical index of (1-2) is d/2− 2/(p− 1)→ 1 as p→∞ in two
dimensions, while the initial data is below L2), but due to the use of the lens transform, our result is
unsatisfactory in the sense that (i) the space in which uniqueness holds cannot be described in a simple
way, and (ii) the Gaussian measure in Theorem 1.2 does not arise naturally from (1-2), and we do not
know how to construct the Gibbs measure of (1-2). This may be an interesting problem for further study.

1.2. Notations and preliminaries. From now on we assume the spacial dimension d = 2, and all the
functions we consider are radial. Define the Hermite operator H =−1+|x |2. It has a complete series of
real L2

rad eigenfunctions

ek(x)=
1
√
π

L0
k(|x |

2) for k ≥ 0 (1-3)

with eigenvalue 4k+ 2. Here L0
k are Laguerre functions

L0
k(z)=

ez/2

k!
dk

dzk (z
ke−z).

Concerning these functions we have the basic pointwise estimates

∣∣Lα
k (z)

∣∣≤


C if 0≤ z ≤ 1/ν,
C(zν)−1/4 if 1/ν ≤ z ≤ ν/2,
Cν−1/4(ν1/3

+ |ν− z|)−1/4 if ν/2≤ z ≤ 3ν/2,
Ce−cz if z ≥ 3ν/2.

(1-4)

Here ν = 4k+ 2, C and c (possibly with subscripts) are positive constants varying from line to line, and
will be used in this way throughout this paper. For an introduction to Laguerre functions, see [Szegő
1975] or [Thangavelu 1993, Chapter 1]. The proof of (1-4) is also contained in [Erdélyi 1960; Askey and
Wainger 1965].

For σ ∈ R and 1≤ p ≤∞, we define the Sobolev spaces associated to H :

W
σ,p
rad =

{
u ∈ S′rad : ‖u‖Wσ,p =

∥∥Hσ/2u
∥∥

L p <∞
}
. (1-5)

We also write Wσ,2
rad =Hσ

rad.
We also define a class of spacetime Hilbert spaces associated to H , as

Xσ,brad =
{
u ∈ S′rad(R×R2) : ‖u‖Xσ,b =

∥∥Hσ/2
〈i∂t − H〉bu

∥∥
L2

t,x
<∞

}
, (1-6)

or use the radial Hermite expansion and Fourier transform to write

‖u‖2Xσ,b =
( ∞∑

k=0

(4k+ 2)σ
∫

R

(
1+ (τ + 4k+ 2)2

)b
|Ft 〈u, ek〉(τ )|

2 dτ
)1/2

,
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where as usual 〈t〉 = (|t |2+ 1)1/2, Ft denotes the Fourier transform (2π)−1/2
∫

R
e−iτ t f (t) dt in t , and

〈 f, g〉 denotes the L2(Rn) inner product of f and g. For an interval I we define a localized version of
this space by

‖u‖Xσ,b,I = inf
{
‖v‖Xσ,b : v(t)= u(t), t ∈ I

}
, (1-7)

and denote it by Xσ,b,Irad . When I = [−T, T ], we simply write Xσ,b,Trad . Since all the functions will be radial,
the “rad” subscript will be dropped from now on. Trivially Xσ,b,I is a separable Banach space (simply
restrict a countable dense subset of Xσ,b to I ).

We fix a smooth, nonincreasing function η such that 1= η(1)≥ η(x)≥ η(2)= 0 for all x . Using this
cutoff, we define Littlewood–Paley projections

1N = η
(2H

N 2

)
− η

(4H
N 2

)
(1-8)

for dyadic N . Then 1N = 0 for N ≤ 1, since the first eigenvalue of H is 2. Thus whenever we talk
about 1N , we always assume N ≥ 2.

We shall denote by #M the cardinality of a finite set M and by |E | the Lebesgue measure of a subset
set E of Euclidean space. We define A . B by A ≤ C B and define & and ∼ similarly. The constants
C j and c j will also be used freely, as indicated above. All these constants will ultimately depend on the
only parameter p in (1-1) and (1-2). Finally, we define the finite-dimensional subspace Vk to be the span
of {e j }0≤ j≤k . For a function g on R2 or I ×R2, where I is an interval, we define g◦k and g⊥k to be the
projection of g on Vk and V⊥k .

1.3. Statement of main results and plan for this paper. Fix a probability space (�,6,P) with a se-
quence of independent normalized complex Gaussians {gk} on � (which has density π−1e−|z|

2
dxdy, so

gk has mean 0 and variance 1), so that ω 7→ (gk(ω))k≥0 is injective, and the series

f (ω)=
∞∑

k=0

1
√

4k+ 2
gk(ω)ek (1-9)

converges2 in S′(R2) for all ω ∈ �. Then f = f (ω) is an S′(R2)-valued random variable, and is a
bijection between � and its range. Our main results can then be stated as follows.

Theorem 1.1. Consider the Cauchy problem{
i∂t u+ (1− |x |2)u =±|u|p−1u,
u(0)= f (ω)

(1-10)

and distinguish two cases: the sign is − and 1< p < 3, or the sign is + and p ≥ 3 is an odd integer. In
the former let σ = 0, and in the latter let 0 < σ < 1 be sufficiently close to 1, depending on p. In both
cases let 1> b > 1

2 be sufficiently close to 1
2 , depending on σ and p.

2For example, we may take the usual product space C∞ equipped with the product of complex Gaussian measures, and
coordinate functions g j , and choose the (full-measure) subset where |gk(ω)| = O(〈k〉10) as �, this can easily guarantee the
convergence of (1-9).
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Then almost surely in P, we have a unique global (strong) solution u in the affine space

Y= e−it H f (ω)+
⋂

T>0 Xσ,b,T , (1-11)

and we have continuous embeddings

Y⊂ e−it H f (ω)+C(R,Hσ (R2))⊂ C
(
R,
⋂
δ>0 H−δ(R2)

)
.

We also have a Gibbs measure on S′(R2), which is absolutely continuous with respect to the push forward
of P under f , and is invariant under the flow defined by (1-10).

Theorem 1.2. Let σ and b be as in Theorem 1.1. Consider the (defocusing) Cauchy problem{
i∂t u+1u = |u|p−1u
u(0)= f (ω)

(1-12)

with p ≥ 3 an odd integer. Then almost surely in P, we have a global (strong) solution u in the affine
space

Z= eit1 f (ω)+
⋂

T>0 Xσ,b,T , (1-13)

and we have a continuous embedding

Z⊂ eit1 f (ω)+C(R, Hσ (R2)).

Here Xσ,b,T is defined in the same way as in (1-6) and (1-7), but with H replaced by −1. We also have
an appropriate affine subspace Z′ of Z containing the solution u, in which uniqueness holds. Finally we
have a scattering result: There exist functions g± ∈ Hσ such that

lim
t→±∞

‖u− eit1( f (ω)+ g±)‖Hσ = 0. (1-14)

The rest of this paper is devoted to the proof of Theorems 1.1 and 1.2. In Section 2 we recall the linear
Strichartz and L2-based estimates with respect to the propagator e−it H . We will rely on the functional
calculus of H (thus the results hold for more general Schrödinger operators, though we do not discuss
this here). Some results in this section are standard and can be found for example in [Colliander and Oh
2012; Tao 2006]. In Section 3, we prove some large deviation bounds for Gaussian random variables, and
use these to construct the Gibbs measure of (1-1). In Section 4, which is the core of this paper, we use a
Littlewood–Paley decomposition and hypercontractivity of Gaussians to prove a multilinear estimate in
Xσ,b spaces, which shows the nonlinear smoothing effect. In Section 5, we put these estimates together to
develop a local Cauchy theory. Then in Section 6 we extend this to a global well-posedness result by
exploiting the invariance of truncated Gibbs measure under the flow of approximating ODEs. In Section 7
we introduce the lens transform and convert the result on (1-1) to one on (1-2), proving Theorem 1.2. In
Section 8, we show the invariance of the Gibbs measure, completing the proof of Theorem 1.1. Finally in
the Appendix, we discuss the typical regularity (in terms of H) on the support of the Gibbs measure.
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2. Functional calculus and Strichartz estimates

We begin with the following kernel estimate about the harmonic oscillator H .

Proposition 2.1. Let ψ be a Schwarz function; then for t > 0 the operator ψ(t H) is an integral operator
with kernel Kt(x, y), where

|Kt(x, y)|. t−1(1+ t−1/2
|x − y|)−N . (2-1)

The implicit constants in . depend only on N and ψ . In particular, these operators Kt are bounded
uniformly in t on Wσ,p for all σ ∈ R and 1≤ p ≤∞.

Proof. It was proved in [Dziubański 1998, Corollary 3.14] that, for any fixed N , the inequality (2-1)
holds, provided

ψ ∈ Sm
0 ([0,+∞))=

{
ψ ∈ S([0,+∞)) : ψ (k)(0)= 0, 0≤ k ≤ m

}
, (2-2)

where m is large enough depending on N (actually the same result was proved for any Schrödinger
operator with nonnegative polynomial potential). On the other hand, when ψ(z)= e−σ z with σ > 0, we
have from Mehler’s formula that

Kt(x, y)=
e−2σ t

π(1− e−4σ t)
exp

(
−

1
2

1+ e−4σ t

1− e−4σ t (|x |
2
+ |y|2)+

2e−2σ t

1− e−4σ t x · y
)
. (2-3)

Writing 2σ t = δ, we know

−
1
2

1+ e−2δ

1− e−2δ (|x |
2
+ |y|2)+

2e−δ

1− e−2δ x · y ≤−
c
δ
|x − y|2,

thus the kernel satisfies

0≤ Kt(x, y)≤
c1

δ
e−(c2/δ)|x−y|2 . t−1(1+ t−1/2

|x − y|)−N (2-4)

for any N . Now for any fixed m, there exists l such that any function f ∈ S([0,+∞)) can be written as

f (z)= f0(z)+
l∑

j=1

c j e−σ j z, (2-5)

where f0 ∈ Sm
0 ([0,+∞)) and σ j > 0. Combining the two results above, we have proved (2-1). The

uniform boundedness now follows from (2-1), Schur’s test, and commutativity of ψ(t H) and Hσ/2. �

Remark 2.2. The constants in Proposition 2.1 certainly depend on ψ and the Lebesgue or Sobolev
exponents, but this dependence can be safely ignored since throughout this paper we only use a finite
number of fixed cutoff functions ψ and a finite number of fixed exponents.

Corollary 2.3. Suppose 1≤ p ≤∞, σ1,2 ∈ R, R > 0 and g is a function.

(1) If σ1 ≥ σ2, and 〈g, ek〉 6= 0 only if 4k + 2 & R2 (for example, when g =
∑

N>R 1N h for some h),
then ‖g‖Wσ1,p & Rσ1−σ2‖g‖Wσ2,p .
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(2) If σ1 ≤ σ2, and 〈g, ek〉 6= 0 only if 4k + 2 . R2 (for example, when g =
∑

N≤R 1N h for some h),
then ‖g‖Wσ1,p & Rσ1−σ2‖g‖Wσ2,p .

(3) If 〈g, ek〉 6= 0 only if 4k + 2 ∼ R2 (for example, when R = N is dyadic and g =1N h for some h),
then ‖g‖Wσ1,p ∼ Rσ1−σ2‖g‖Wσ2,p .

(4) All the operators
∑

N>R 1N ,
∑

N≤R 1N and 1N are uniformly bounded from Wσ1,p to itself.

Proof. First (4) is obvious, since
∑

N<R 1N = η(t H) and 1N = η(t ′H)− η(2t ′H) for some t and t ′,
and

∑
N>R 1N = Id−

∑
N≤R 1N . Also it is clear that (1) and (2) implies (3). In proving these we may

assume min{σ1, σ2} = 0, since Hσ/2g satisfies the same properties as g.
To prove (1), choose a smooth cutoff ψ1 that equals 1 for x & 1 and equals 0 for very small x . Then in

(1) we have g = ψ1(R−2 H)g. Therefore we need to prove that

H−σ/2 Rσψ1(R−2 H)=
∑
k≥0

2−kσ/2ψ2(2−k R−2 H) (2-6)

is uniformly bounded on L p for σ > 0, where ψ2(x) = x−σ/2(ψ1(x)− ψ1(2−1x)) is a fixed smooth
compactly supported function. Using (2-1), we can estimate the kernel K (x, y) of H−σ/2 Rσψ1(R−2 H)
as

|K (x, y)|.
∑
k≥0

2−kσ/22k R2
〈2k/2 R|x − y|〉−N

= R2ψ3(R|x − y|), (2-7)

where
ψ3(x)=

∑
k≥0

2(1−σ/2)k〈2k/2x〉−N . (1+ |x |σ−2)〈x〉−N .

The last inequality is easily verified by considering |x | ≥ 1 and |x |< 1 separately. Therefore by Schur’s
test we have proved the uniform boundedness of the operator, thus proving (1). The proof of (2) is similar
and is left as an exercise. �

To get Sobolev and product estimates, we next need a lemma.

Lemma 2.4. For all 1< p <∞ and σ > 0, we have

‖g‖Wσ,p ∼ ‖〈∇〉
σ g‖L p +‖〈x〉σ g‖L p . (2-8)

In particular we have ‖g‖Wσ1,p . ‖g‖Wσ2,p for σ1 ≤ σ2.

Proof. See Dziubański and Głowacki [2009], who proved the same result for any Schrödinger operator
with nonnegative polynomial potential (the latter inequality also follows from Corollary 2.3). �

Proposition 2.5. We have the estimate

‖g‖Wσ1,q . ‖g‖Wσ2,q
′ (2-9)

if 1< q, q ′ <∞ and σ2− σ1 ≥ 2(1/q ′− 1/q)≥ 0, and the estimate∥∥∥∥ k∏
j=1

g j

∥∥∥∥
Wσ,p
.

k∑
j=1

‖g j‖Wσ,q j

∏
i 6= j

‖gi‖Lqi (2-10)
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if σ > 0 and 1< p, q j <∞ with 1≤ j ≤ k and
∑k

j=1 1/q j = 1/p.

Proof. In considering the first estimate we may assume σ1 = 0, and the inequality follows immediately
from Lemma 2.4 and the usual Sobolev inequality.

As for the second estimate, if the Wσ,p norm is replaced by the usual Sobolev W σ,p norm, then (2-10)
is a well-known result in Fourier analysis (for k = 2, but the general case easily follows from induction).
Now using Lemma 2.4, we only need to show

‖〈x〉σ g1 · · · gk‖L p . ‖〈x〉σ g1‖Lq1

k∏
j=2

‖g j‖Lq j ,

which is simply Hölder’s inequality. �

Before proving Strichartz and other estimates, we need a lemma, which gives a representation formula
of Xσ,b functions.

Lemma 2.6. Suppose σ, b ∈ R. Then for every u, if ‖u‖Xσ,b . 1, we have

u(t, x)=
∫

R

φ(λ)eiλt
∑

k

aλ(k)e−i(4k+2)t ek(x) dλ, (2-11)

where
∑

k(4k+ 2)σ |aλ(k)|2 = 1 for all λ ∈ R. Furthermore, if b > 1
2 , then we also have

∫
R
|φ(λ)| dλ. 1.

If b < 1
2 and Ft 〈u, ek〉(λ) is supported in {|λ+ 4k+ 2| ≤ K } for each k, where K & 1, then we also have∫

R
|φ(λ)| dλ. K 1/2−b.

Proof. Using radial Hermite expansion and Fourier transform, we can write

u(t, x)= (2π)−1/2
∑

k

∫
R

Ft 〈u, ek〉(τ )eitτ ek(x) dτ

= (2π)−1/2
∑

k

∫
R

Ft 〈u, ek〉(λ− 4k− 2)e−i(4k−2)t ek(x)eitλ dλ,

so we may choose

aλ(k)= (Ft 〈u, ek〉)(λ− 4k− 2) ·
(∑

l

(4l + 2)σ |Ft 〈u, el〉(λ− 4l − 2)|2
)−1/2

, (2-12)

and

φ(λ)= (2π)−1/2
(∑

l

(4l + 2)σ |Ft 〈u, el〉(λ− 4l − 2)|2
)1/2

. (2-13)

Then we clearly have
∑

k(4k+ 2)σ |aλ(k)|2 = 1 for each λ, and from the definition of Xσ,b norm we see
that ∫

R

〈λ〉2b
|φ(λ)|2 dλ= 1

2π
‖u‖2Xσ,b . 1. (2-14)
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If b > 1
2 , then 〈λ〉−b

∈ L2(R), and it follows from Cauchy–Schwartz that ‖φ‖L1 ≤ ‖〈λ〉bφ‖L2 ·

‖〈λ〉−b
‖L2 . 1. If instead b < 1

2 and u satisfies the support condition, then φ(λ)= 0 if |λ|> K . Again
from Cauchy–Schwartz,

‖φ‖L1 .

(∫
|λ|≤K
〈λ〉−2b dλ

)1/2

∼ K 1/2−b. �

Proposition 2.7. Suppose b > 1
2 , σ1,2 ∈ R, and 1< q2, r2 < 2< q, r, q1, r1 <∞. We have the following

estimates:
‖e−it H g‖Lr

t Lq
x ([−T,T ]×R2) . 〈T 〉

1/r
‖g‖L2 (2-15)

if 1
q +

1
r =

1
2 and g is defined on R2;∥∥∥∥∫ t

0
e−i(t−s)Hu(s) ds

∥∥∥∥
L

r1
t L

q1
x ([−T,T ]×R2)

. 〈T 〉1+
1

r1
−

1
r2 ‖u‖L

r2
t L

q2
x ([−T,T ]×R2) (2-16)

if 1
q1
+

1
r1
=

1
2 , 1

q2
+

1
r2
=

3
2 , and u is defined on [−T, T ]×R2;

‖u‖Lr
t W

σ1,q
x ([−T,T ]×R2) . 〈T 〉

1/r
‖u‖Xσ2,b,T (2-17)

if σ2− σ1 ≥ 1− 2
q −

2
r ≥ 0, and either u is defined on [−T, T ] ×R2, or u is defined on R×R2 and the

right side is replaced by ‖u‖Xσ2,b ;

‖u‖Xσ1,b−1,T . 〈T 〉
1

q2
−

1
2 ‖u‖L

q2
t W

σ1,q2
x ([−T,T ]×R2), (2-18)

if b < 1, q2 >
2

2−b , and either u is defined on [−T, T ] ×R2, or u is defined on R×R2, supported on
[−T, T ], and the left side is replaced by ‖u‖Xσ1,b−1 ; and finally

‖u‖C([−T,T ],Hσ1 (R2)) . ‖u‖Xσ1,b,T (2-19)

if u is defined on [−T, T ]×R2. In particular if T ≤ 1, all the implicit constants can be taken 1.

Proof. For (2-15), since e−it H is periodic, we may assume T . 1; thus 〈T 〉∼ 1. In addition, by subdividing
the interval [−T, T ], we may assume T is small enough. Substituting σ = i in Mehler’s formula (2-3),
we can easily see the integral kernel of e−it H is an L∞ function in the space variables with norm . |t |−1

for |t |. T . Now using the T T ∗ method we reduce (2-15) to∥∥∥∥∫ T

−T
e−i(t−s)Hu(s) ds

∥∥∥∥
Lr

t Lq
x ([−T,T ]×R2)

. ‖u‖
Lr ′

t Lq′
x ([−T,T ]×R2)

. (2-20)

Now we interpolate between L2 conservation and the L1
→ L∞ inequality deduced from the L∞

bound of the integral kernel, to get ‖e−iδH g‖Lq . |δ|
2
q−1
‖u‖Lq′ for |t | . T . Using this and the usual

Hardy–Littlewood–Sobolev fractional integral inequality, we immediately get (2-20).
Now from (2-15) and duality we easily get∥∥∥∥∫ T

0
e−i(t−s)Hu(s) ds

∥∥∥∥
L

r1
t L

q1
x ([−T,T ]×R2)

. 〈T 〉1+
1

r1
−

1
r2 ‖u‖L

r2
t L

q2
x ([−T,T ]×R2)
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for the exponents q1, r1, q2, r2; thus from the Christ–Kiselev lemma we get (2-16).
We now prove (2-19) and (2-17), under the assumption σ2−σ1 = 1− 2

q −
2
r = 0. Here we may assume

σ1 = 0. By the definition of X0,b,T we can assume that u is defined for all t ∈ R, and only need to
prove that the left side of each equation is controlled by ‖u‖X0,b . We shall use ‖ · ‖X to denote either
the norm 〈T 〉−1/r

‖ · ‖Lr
t Lq

x ([−T,T ]×R2) or ‖ · ‖C([−T,T ],L2(R2)), and from what we just proved, we know
‖e−it H g‖X . ‖g‖L2 . Assume ‖u‖X0,b . 1; by Lemma 2.6 we may write

u(t, x)=
∫

R

φ(λ)eiλt
∑

k

aλ(k)e−i(4k+2)t ek(x) dλ (2-21)

with ‖φ‖L1 . 1 and
∑

k |aλ(k)|
2
= 1 for each λ. Then we have

u =
∫

R

φ(λ)eiλt e−it H
(∑

k

aλ(k)ek

)
dλ.

From Minkowski and Cauchy–Schwartz we see that

‖u‖X . ‖φ‖L1 · sup
λ

∥∥∥∥eiλt e−it H
(∑

k

aλ(k)ek

)∥∥∥∥
X

. ‖φ‖L1 · sup
λ

∥∥∥∥∑
k

aλ(k)ek

∥∥∥∥
L2
. 1, (2-22)

proving (2-19) and this special case of (2-17). To prove (2-17) in general, we use Proposition 2.5 to
deduce

‖u‖Lr
t W

σ1,q
x ([−T,T ]×R2) . ‖u‖Lr

t W
σ2,q
′

x ([−T,T ]×R2)
. 〈T 〉1/r

‖u‖Xσ2,b,T ,

where 1
q ′ +

1
r =

1
2 (so that 2< q, q ′, r <∞ and σ2−σ1 ≥ 2( 1

q ′ −
1
q )≥ 0), and with obvious modifications

when u is globally defined.
Finally we prove (2-18). Again we may assume σ1 = 0. For v = u on [−T, T ] and v = 0 elsewhere,

we need to show

‖v‖X0,b−1 . 〈T 〉
1

q2
−

1
2 ‖u‖L

q2
t,x ([−T,T ]×R2). (2-23)

For any w with ‖w‖X0,1−b . 1, we have∣∣∣∣∫
R×R2

vw̄ dtdx
∣∣∣∣= ∣∣∣∣∫

[−T,T ]×R2
uw̄ dtdx

∣∣∣∣. ‖w‖L
q3
t,x ([−T,T ]×R2) · ‖u‖L

q2
t,x ([−T,T ]×R2), (2-24)

where q3 = q2/(q2 − 1). Thus by duality, we only need to prove ‖w‖L
q3
t,x
. 〈T 〉

1
2−

1
q3 ‖w‖X0,1−b for all

2< q3 <
2
b . Since the imaginary power 〈i∂t − H〉iτ is an isometry on L2

t,x , we can use Stein’s complex
interpolation to reduce to the cases (b, q3)= (1, 2) and (b1, 4), where b1 = (q3−4+bq3)/(2q3−4) < 1

2 .
The former is trivial by definition, and the latter is a special case of (2-17). �

Lemma 2.8. Fix σ, b ∈ R, 0< T ≤ 1 and a cutoff function ψ .
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(1) If −1
2 < b′ ≤ b < 1

2 , then for u ∈ Xσ,b we have

‖ψ(T−1t)u‖Xσ,b
′ . T b−b′

‖u‖Xσ,b . (2-25)

Also for u ∈ Xσ,b,T we have

‖u‖Xσ,b
′,T . T b−b′

‖u‖Xσ,b,T . (2-26)

(2) If 1
2 < b′ = b < 1, then for u ∈ Xσ,b with u(0)= 0, (2-25) holds, as well as the limit

lim
T→0
‖ψ(T−1t)u‖Xσ,b = 0. (2-27)

Proof. (1) If (2-25) is true, then for any u ∈ Xσ,b,T and any extension v ∈ Xσ,b of u, we have

‖u‖Xσ,b
′,T ≤ ‖ψ(T−1t)v‖Xσ,b

′ . T b−b′
‖v‖Xσ,b ,

provided ψ ≡ 1 on [−1, 1]. Taking the infimum over v, we get (2-26). Now we prove (2-25). Define the
operator Mu(t, x) := eit Hu(t, · )(x). We have

i∂t(Mu)= eit H(i∂t − H)u,

and therefore we get ‖u‖Xσ,b = ‖Mu‖Hb
t Hσ

x
. Since M also commutes with multiplication of functions of

time, we can reduce to ‖ψ(T−1t)v‖Hb′
t Hσ

x
. T b−b′

‖v‖Hb
t Hσ

x
. By eigenfunction expansion, we can further

reduce to

‖ψ(T−1t)g‖Hb′ . T b−b′
‖g‖Hb . (2-28)

By composition we may assume 0≤ b′ ≤ b or b′ ≤ b ≤ 0, by duality we may assume 0≤ b′ ≤ b, and by
interpolation we may assume b′ ∈ {0, b}.

First suppose b′ = b; we want to prove that multiplication by ψ(T−1t) is bounded, independent of
T > 0, on H b. Since it is bounded on L2, we only need to show that it is also bounded on Ḣ b. By
rescaling we may set T = 1. For each g ∈ Ḣ b, we split g = g1+ g2, where ĝ1 is supported on {|ξ | ≤ 1}
and ĝ2 supported on {|ξ | ≥ 1}. Multiplication by ψ is obviously bounded from H 1 to Ḣ 1, and from L2

to L2. So it is bounded from H b to Ḣ b; thus ‖ψg2‖Ḣb . ‖g2‖Hb . ‖g‖Ḣb . Since b < 1
2 , we also know∫

|τ |≤1
|ĝ1(τ )| dτ .

∥∥|τ |b ĝ1(τ )
∥∥

L2([−1,1]) ·
∥∥|τ |−b

∥∥
L2([−1,1]) . ‖g1‖Ḣb . ‖g‖Ḣb .

Thus (ψg1)
∧(τ )= (ψ̂ ∗ ĝ1)(τ ) is bounded pointwise by 〈τ 〉−N

‖g‖Ḣb , since ψ̂ is Schwartz, and the result
follows.

Next suppose b′ = 0, we only need to prove the stronger result

‖ψ(T−1t)g‖L2 . T b
‖g‖Ḣb .

By rescaling we can set T = 1. Using the same splitting g= g1+g2, we have ‖ψg2‖L2 . ‖g2‖L2 . ‖g‖Ḣb ,
and |ψg1(τ )|. 〈τ 〉−N

‖g‖Ḣb . This proves (2-28) and hence (2-25).
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(2) We want to prove (2-25), and again we can reduce to (2-28), where we also have g(0) = 0. Using
the same arguments as in (1), we can further reduce to the boundedness on Ḣ b and assume T = 1. Split
g = g1+ g2 so that (though we are considering Ḣ b norm here, we still assume g ∈ H b, so ĝ ∈ L1)

ĝ2(τ )= χ|τ |≥1 · ĝ(τ )−
1
2

∫
|λ|≥1

ĝ(λ) dλ ·χ1≤|τ |≤2;

then ĝ1 is supported in {|τ | ≤ 2}, ĝ2 is supported in {|τ | ≥ 1}, both the ĝi have integral zero (since ĝ has
integral zero), and ‖gi‖Ḣb . ‖g‖Ḣb (since b > 1

2 , we have ‖ĝ‖L1({|τ |≥1}) . ‖|τ |
b ĝ‖L2 = ‖g‖Ḣb ). For g2

we have ‖ψg2‖Ḣb . ‖g2‖Hb . ‖g‖Ḣb as in (1); for g1 we have

(ψ̂g1)(τ )=

∫ 2

−2
(ψ̂(τ − ξ)− ψ̂(τ ))ĝ1(ξ) dξ.

By Cauchy–Schwartz

|(ψg1)
∧(τ )|. ‖g1‖Ḣb

(∫ 2

−2
|ξ |−2b

|ψ̂(τ − ξ)− ψ̂(τ )|2 dξ
)1/2

. 〈τ 〉−N
‖g‖Ḣb ,

and (2-28) follows. Finally, to prove (2-27), we first use the operator M and approximation by a finite
linear combination of eigenfunctions to reduce to ‖ψ(T−1t)g‖Hb → 0 (T → 0). Since this is easily
verified for Schwartz g, we only need to check any g ∈ H b with g(0) = 0 can be approximated by
Schwartz h also with h(0)= 0. But this easily follows since H b is embedded in L∞. �

Proposition 2.9. Suppose 1
2 < b < 1. We have∥∥∥∥∫ t

0
e−i(t−s)Hu(s) ds

∥∥∥∥
Xσ,b,T

. ‖u‖Xσ,b−1,T (2-29)

for T ≤ 1. Also for u ∈ Xσ,b,T , the function ‖u‖Xσ,b,δ is continuous for T ≥ δ > 0, and if u(0)= 0, it tends
to 0 as δ→ 0. Moreover, if p > 1

2 and

‖u− e−i(t−kδ)Hu(kδ)‖Xσ,b,[(k−1)δ,(k+1)δ] ≤ C (2-30)

for |k| ≤ K , then

‖u− e−it Hu(0)‖Xσ,b,K δ . c1K 2δ−b/2. (2-31)

Proof. For the operator M defined in the proof of Lemma 2.8 we have

M
(∫ t

0
e−i(t−s)Hu(s) ds

)
=

∫ t

0
Mu(s) ds; (2-32)

therefore we can again use an eigenfunction expansion to reduce the problem and see that (2-29) will
follow if the operator

g(t) 7→ Ig(t) := η(t)
∫ t

0
g(s) ds (2-33)
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is bounded from H b−1
t to H b

t , where η is a fixed smooth function supported on [−3, 3] that equals 1 on
[−2, 2]. Choose a smooth compactly supported function ψ that equals 1 on [−10, 10], and choose φ
supported on [−5, 5] that equals 1 on [−4, 4]. Then we have

Ig(t)= η(t)
∫ t

−∞

ψ(t − s)φ(s)g(s) ds− η(t)
∫ 0

−5
φ(s)g(s) ds. (2-34)

We know multiplication by η is bounded on H b, multiplication by φ is bounded on H 1−b (to prove these,
we first prove them in L2 and H 1 explicitly, then interpolate), and convolution with ψ ·χ[0,∞) is bounded
from H b−1 to H b, since its Fourier transform is controlled by 〈τ 〉−1. Thus the first term is bounded. For
the second term, we only need to prove |〈g, φ0〉|. ‖g‖Hb−1 , where φ0 = φ ·χ[0,5] with |φ̂0(τ )|. 〈τ 〉−1.
But this follows from Plancherel, Cauchy–Schwartz, and the assumption b > 1

2 . This proves (2-29).
Next we consider the function M(δ) := ‖u‖Xσ,b,δ , which is clearly nondecreasing. Since we only

consider 0< δ ≤ T , we may assume u is defined for t ∈ R and belongs to Xσ,b. For each δ > 0, denote
by M0 the left limit of the function M at point δ, and choose a sequence δn ↑ δ, and (by definition) a
sequence of vn such that vn ≡ u on [−δn, δn] and limn→∞‖vn‖Xσ,b ≤ M0. These vn have a subsequence
converging weakly to some v with ‖v‖Xσ,b ≤ M0. Using the embedding L∞t Hσ

x ⊃ Xσ,b, we easily see
v ≡ u on [−δ, δ]. This proves left continuity. To prove right continuity at δ, write M(δ)= M1. For any ε,
we choose v ≡ u on [−δ, δ] and ‖v‖Xσ,b < M1+ ε. Let u− v = w with w ≡ 0 on [−δ, δ], and define

wτ =
(
ψ(τ−1(t − δ))+ψ(τ−1(t + δ))

)
w,

for some suitable cutoff that equals 1 on a small neighborhood of 0. From the definition of wτ , we see that
for small τ , we have v+wτ ≡ u on a neighborhood of [−δ, δ]. From Lemma 2.8 we know ‖wτ‖Xσ,b→ 0
as τ → 0, thus ‖v+wτ‖Xσ,b < M1+ 2ε if τ is small enough. This proves right continuity. Finally, if
u(0)= 0, then

lim
δ→0
‖u‖Xσ,b,δ ≤ lim

τ→0
‖ψ(τ−1t)u‖Xσ,b = 0

for the same cutoff ψ .
Finally we prove (2-31). From (2-30) and the embedding ‖g‖L∞t Hσ

x
. ‖g‖Xσ,b,δ we see in particular

‖u(kδ)− e−ikδHu(0)‖Hσ . K . Now choose wk so that wk ≡ u− e−i(t−kδ)Hu(kδ) on [(k− 1)δ, (k+ 1)δ]
and ‖wk‖Xσ,b ≤ C , and choose a partition of unity ψk subordinate to the covering {((k− 1)δ, (k+ 1)δ)}
of [−K δ, K δ], so that ψk(t)= ψ̃k(t/δ− k) and ψ̃k have bounded Schwartz norms (this is well known).
We then have

w =
∑

k

ψkwk +
∑

k

ψke−i(t−kδ)H(u(kδ)− e−ikδHu(0))≡ v on [−K δ, K δ], (2-35)

and ‖w‖σ,b.K 2δ−b/2, since it is easy to check (by reducing to estimates of functions of t and interpolating
between L2 and H 1) that multiplication by ψk is bounded from Xσ,b to itself with norm . δ−b/2, and
that by definition

‖ψke−i(t−kδ)H(u(kδ)− e−ikδHu(0))‖Xσ,b = ‖u(kδ)− e−ikδHu(0)‖Hσ ‖ψk‖Hb . K δ1/2−b. �
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3. Construction of Gibbs measure

We will construct the Gibbs measure of (1-1) for 1< p <∞ (defocusing case) and 1< p < 3 (focusing
case). From the definition (1-9) of f , it is obvious that

‖ f (ω)‖2Hτ =

∞∑
k=0

(4k+ 2)−1+τ
|gk(ω)|

2. (3-1)

This expression is almost surely finite if τ < 0, and is almost surely infinite if τ ≥ 0. Thus we have

f (ω) ∈H0−
:=

⋂
δ>0

H−δ, (3-2)

almost surely in P. Define µ=P◦ f −1 to be the push-forward of P under f ; then we see that the typical
element in the support of µ belongs to any H−δ for all δ > 0, but does not belong to L2. We also define
µ◦2k = P ◦ ( f ◦2k )

−1, and µ⊥2k = P ◦ ( f ⊥2k )
−1. Now we prove two lemmas concerning linear and multilinear

estimates of the eigenfunctions ek(x) as defined in (1-3).

Lemma 3.1. For any 2≤ q ≤∞ and q 6= 4, write ν = 4k+ 2 for k ≥ 0; then we have

‖ek‖Lq (R2) . ν
−ρ(q), (3-3)

where ρ(q)=min
{ 1

2 −
1
q ,

1
q

}
. If q = 4 we have

‖ek‖L4(R2) . ν
−

1
4 log

1
4 ν. (3-4)

Proof. Since ek(x) = π−
1
2 L0

k(|x |
2), we easily see ‖ek‖Lq (R2) ∼ ‖L

0
k‖Lq (R+). Then we can use (1-4) to

compute

‖L0
k‖

4
L4(R+)

.
∫ 1/ν

0
dz+

∫ ν/2

1/ν
(zν)−1 dz+ν−1

∫ 3ν/2

ν/2

(
ν1/3
+ |ν− z|

)−1 dz+
∫
∞

3ν/2
e−cz dz

. ν−1 log ν. (3-5)

This proves (3-4). As for (3-3) we have

‖L0
k‖

q
Lq (R+)

.
∫ 1/ν

0
dz+

∫ ν/2

1/ν
(zν)−q/4 dz+ ν−q/4

∫ 3ν/2

ν/2

(
ν1/3
+ |ν− z|

)−q/4 dz+
∫
∞

3ν/2
e−cz dz

. ν−q/4+|1−q/4|
+ ν1−q/3

+ νmax(1−q/2,1−q/3)

. ν−qρ(q). �

Lemma 3.2. Suppose l ≥ 4 and n1, . . . , nl ≥ 0. Let ν j = 4n j +2 for 1≤ j ≤ l, and assume ν1 & · · ·& νl .
Then we have ∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣. ν−1/2
1 ν

−1/4
3 log ν1. (3-6)
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Moreover, if ν1 & ν
1+ε
2 for some ε > 0, then∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣. ν−N
1 for all N > 0. (3-7)

Proof. Recalling that Hen j =ν j en j and H is self-adjoint on L2(R2), we can compute using Proposition 2.5
and Lemma 3.1 that∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣≤ ν−m
1 ‖Hm(en2 · · · enl ) · en1‖L1

. ν−m
1 ‖en2 · · · enl‖H2m . ν−m

1

l∑
j=2

‖en j‖W2m,2(l−1)

∏
2≤i 6= j

‖eni‖L2(l−1) . (ν−1
1 ν2)

m .

If ν1 & ν
1+ε
2 , we can choose m large enough and prove (3-7). As for (3-6), we choose m = 1 and estimate∣∣∣∣∫

R2
en1(x) · · · enl (x)

∣∣∣∣≤ ν−1
1 ‖H(en2 · · · enl ) · en1‖L1

. ν
−

5
4

1 log
1
4 ν1 · ‖en2 · · · enl‖W

2, 4
3

. ν
−

5
4

1 log
1
4 ν1 · ν2‖en2‖L4‖en3‖L4

∏
j≥4‖eni‖L4(l−3)

. ν
−

5
4

1 ν
3
4
2 ν
−

1
4

3 log
3
4 ν1 . ν

−
1
2

1 ν
−

1
4

3 log ν1. �

To state and prove the probabilistic L p estimates for our S′-valued random variable f , we first need a
result proved by Fernique.

Lemma 3.3 (Fernique). There exist absolute constants c, C such that for any finite-dimensional normed
vector space (V, ‖ · ‖), any centered Gaussian random variable f (ω) taking its value in V , and any
positive constant A, we have

E(ecA−2
‖ f (ω)‖2)≤ C (3-8)

if P(‖ f (ω)‖> A) < 1
10 .

Proof. See [Fernique 1975] or [Da Prato and Zabczyk 1992, Theorem 2.6]. �

Proposition 3.4. Fix 2< q <∞, 1< r <∞, 0<α<min( 2
q , 1− 2

q ), and two positive integers M > 10N.
For any g, we define

5g =
M∑

j=N−1

〈g, e j 〉e j . (3-9)

Then, for the random variable f as defined in (1-9), we have the large deviation estimates

P
(
‖5 f (ω)‖Wα,q > AN−δ

)
≤ Ce−cA2

, (3-10)

P
(
‖e−it H5 f (ω)‖Lr

t W
α,q
x ([−T,T ]×R2) > AN−δT 1/r)

≤ Ce−cA2
, (3-11)

where δ > 0 is some small positive exponent.
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Proof. We compute for each t ∈ [−π, π]

E
(
‖e−it H5 f (ω)‖q

W
α,q
x

)
=

∫
R2

E

∣∣∣∣ M∑
j=N−1

(4 j + 2)(α−1)/2g j (ω)e j (x)
∣∣∣∣q dx . (3-12)

Now by Khintchine’s inequality (the variant for Gaussians), we have

E

∣∣∣∣ M∑
j=N−1

(4 j + 2)(α−1)/2g j (ω)e j (x)
∣∣∣∣q . ( M∑

j=N−1

e j (x)2

(4 j + 2)1−α

)q/2

. (3-13)

Then integrating in x , using Minkowski’s inequality (since q > 2), we get

E
(
‖e−it H5 f (ω)‖q

W
α,q
x

)
.

( M∑
j=N−1

‖e j‖
2
Lq

(4 j + 2)1−α

)q/2

≤ C N−qδ, (3-14)

due to Lemma 3.1 and the assumption α < 2ρ(q). Now we can take t = 0 in (3-14) and use Markov’s
inequality and Lemma 3.3, and immediately get (3-10).

As for (3-11), we need a little more work. What we need is

P
(
‖e−it H5 f (ω)‖Lr

t W
α,q
x
> C N−δT 1/r)< 1

10 (3-15)

for large C . If the event in (3-15) happens, then there exists an integer l ≥ 0 such that∣∣{t ∈ [−T, T ] : ‖e−it H5 f (ω)‖W
α,q
x
> 2l N−δ

}∣∣> K 2−2rl T . (3-16)

For fixed t , due to (3-14) and Lemma 3.3, the probability that ‖e−it H5 f (ω)‖W
α,q
x
> 2l N−δ is less than

c1 exp(−c222l). We then use Fubini’s theorem to conclude that the probability that (3-16) happens is less
than K−1c122rl exp(−c222l). Then we sum over l ≥ 0 and choose K large enough so that this sum is less
than 1

10 . �

Corollary 3.5. For the same parameters q, r, α as in Proposition 3.4, we have

P
(
‖ f (ω)‖Wα,q > A

)
≤ Ce−cA2

, (3-17)

P
(
supk≥0‖ f ◦2k (ω)‖Wα,q > A

)
≤ Ce−cA2

, (3-18)

P
(
‖e−it H f (ω)‖Lr

t W
α,q
x ([−T,T ]×R2) > AT 1/r)

≤ Ce−cA2
, (3-19)

P
(
supk≥0‖e

−it H f ◦2k (ω)‖Lr
t W

α,q
x ([−T,T ]×R2) > AT 1/r)

≤ Ce−cA2
, (3-20)

lim
k→∞
‖ f ◦2k (ω)− f (ω)‖Wα,q +‖e−it H( f ◦2k (ω)− f (ω))‖Lr

t W
α,q
x ([−T,T ]×R2) = 0 almost surely in P. (3-21)

Proof. We know f ◦2k (ω)→ f (ω) and e−it H f ◦2k (ω)→ e−it H f (ω) in S′. If we can prove (3-18) and (3-20),
then almost surely in P, we have

sup
k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
<∞, (3-22)
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and there must be a subsequence of {e−it H f ◦2k (ω)} converging weakly in Lr
t W

α,q
x . This weak limit must

be e−it H f (ω), so we know that

‖e−it H f (ω)‖Lr
t W

α,q
x
≤ sup

k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
<∞, (3-23)

almost surely in P. Thus (3-19) also holds true, with the same constants as in (3-20). Clearly (3-17) also
follows from (3-18) in the same way.

To prove (3-18) and (3-20), we use (3-10) and (3-11). For any k, the difference f ◦2k (ω)− f ◦2k−1(ω) is of
the form 5 f (ω) as defined in Proposition 3.4, with the parameter N ∼ 2k . We then have, for some δ > 0,

P
(
‖e−it H( f ◦2k (ω)− f ◦2k−1(ω))‖Lr

t W
α,q
x
> A2−kδ/2T 1/r)

≤ c1e−c22kδ A2
. (3-24)

Choose c small enough; then
sup
k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
> AT 1/r (3-25)

implies
‖e−it H( f ◦2k (ω)− f ◦2k−1(ω))‖Lr

t W
α,q
x
> cA2−kδ/2T 1/r for some k ≥ 0. (3-26)

Now we can combine this with (3-24) to get

P
(
sup
k≥0
‖e−it H f ◦2k (ω)‖Lr

t W
α,q
x
> AT 1/r)

≤

∞∑
k=0

c3e−c42kδ A2
≤ c5e−c6 A2

. (3-27)

This proves (3-20). Clearly (3-18) also follows from (3-10) in the same way.
Finally we prove (3-21). From the discussion above we see

P
(
sup
k≥0

2kδ/2
‖e−it H( f ◦2k (ω)− f ◦2k−1(ω))‖Lr

t W
α,q
x
<∞

)
= 1; (3-28)

thus with probability 1, the series

∞∑
k=0

e−it H( f ◦2k (ω)− f ◦2k−1(ω)) (3-29)

converges in Lr
t W

α,q
x . This can only converge to e−it H f (ω), and the same argument works for the space

Wα,q . �

Equation (1-1) is a hamiltonian PDE with formally conserved mass ‖u‖2L2 and Hamiltonian

E(u)= 〈Hu, u〉± 2
p+1
‖u‖p+1

L p+1 =

∫
Rn

(
|∇u|2+ |xu|2± 2

p+1
|u|p+1

)
dx . (3-30)

Recall that µ = P ◦ f −1 is a probability measure on S′(R2), the push-forward of P under f . In the
defocusing case, for all 1< p <∞, we define the Gibbs measure of (1-1) to be

dν = exp
(
−

2
p+1
‖u‖p+1

L p+1

)
dµ. (3-31)
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Since the integrand in (3-31) is well defined, bounded and positive, by Corollary 3.5, we know ν is finite
and mutually absolutely continuous with µ. We also define the truncated measures

dν2k = exp
(
−

2
p+1
‖u◦2k‖

p+1
L p+1

)
dµ. (3-32)

Since ‖u◦2k‖L p+1 →‖u‖L p+1 almost everywhere in µ, thanks to Corollary 3.5, we know ν2k → ν in the
strong sense that the total variation of ν2k − ν tends to 0.

In the focusing case, for 1< p < 3, we define the truncated measures dν2k = ρ2k dµ, where

ρ2k (u)= χ(‖u◦2k‖
2
L2 −α2k ) exp

( 2
p+1
‖u◦2k‖

p+1
L p+1

)
. (3-33)

Here χ is some compactly supported continuous function on R that equals 1 on a neighborhood of 0, and

α2k = E
(
‖ f ◦2k (ω)‖

2
L2

)
=

2k∑
j=0

1
4 j+2

. (3-34)

Clearly α2k . k for k ≥ 1. We define the Gibbs measure ν as the limit of these ν2k . More precisely:

Proposition 3.6. The functions ρ2k converge to a function ρ in Lr (µ) for all 1 ≤ r <∞. The measure
dν = ρ dµ is finite and absolutely continuous with respect to µ. We also know ν2k → ν in the strong sense
that the total variation of ν2k − ν tends to 0. Finally, we can choose a countable number of χ(m) so that
the union of the supports of the corresponding Radon–Nikodym derivatives ρ(m) has full µ measure in
S′(R2). If we have fixed χ , we will define ν to be the Gibbs measure of equation (1-1).

Proof. First we prove that ρ2k converges almost everywhere in µ, or equivalently, that ρ2k ( f (ω)) converges
almost surely in P. Consider

‖ f ◦2k (ω)‖
2
L2 −α2k =

k∑
j=0

|g j (ω)|
2
− 1

4 j + 2
, (3-35)

and see that it is a (partial) independent sum of random variables with zero mean and summable variance
(the variance of j -th term is ∼ ( j + 1)−2), so it converges almost surely. Thus by the continuity of χ , the
first factor χ(‖ f ◦2k (ω)‖

2
L2 − α2k ) in ρ2k ( f (ω)) converges almost surely. Next, since f ◦2k (ω)→ f (ω) in

L p+1 for almost surely ω ∈�, we know that the second factor also converges almost surely. Therefore,
ρ2k converges almost everywhere in µ, say to some ρ.

To prove ρ2k ( f )→ ρ( f ) in Lr (P), we need some uniform integrability conditions. This is provided
by the large deviation estimate

P
(
‖ f ◦2k (ω)‖

2
L2 −α2k ≤ β, ‖ f ◦2k (ω)‖L p+1 > A

)
≤ Ce−cAδ (3-36)

for some δ > p+1 and all large enough A, where β is such that χ(z)= 0 for |z| ≥ β. To prove (3-36) we
may assume A is sufficiently large, and set k0 ∈N so that 2k0 ∼ eAδ for some δ > 0 to be determined later.
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First we prove (3-36) is true for k ≤ k0+ 1, with β and A on the left side replaced by 2β and A/2. In
fact, by Hölder’s inequality, if

‖ f ◦2k (ω)‖
2
L2 ≤ α2k + 2β . k . Aδ and ‖ f ◦2k (ω)‖L p+1 > A/2, (3-37)

then

‖ f ◦2k (ω)‖Lq & Aσ and σ =
(q − 2)(p+ 1)− δ(q − p− 1)

(p− 1)q
, (3-38)

under the assumption p+ 1≤ q <∞. Since 2< q <∞, we know from Corollary 3.5 that

P(‖ f ◦2k (ω)‖Lq > Aσ )≤ Ce−cA2σ
. (3-39)

If 1< p < 3, then for q sufficiently large and δ sufficiently small, we have 2σ > p+ 1, so (3-36) is true
in this case.

Next we assume k ≥ k0+ 2. In this case we can prove

P(‖ f ◦2k (ω)− f ◦2k0 (ω)‖L p+1 > A/2)≤ c1 exp(−c2ec3 Ac4
). (3-40)

In fact, since f ◦2k (ω)− f ◦
2k0
(ω) is of the form 5 f (ω) as defined in Proposition 3.4, with the parameter

N ∼ 2k0 , by Proposition 3.4 we immediately get (3-40) (notice N ∼ eAδ ).
Now if ‖ f ◦2k (ω)‖

2
L2 ≤ αk +β and ‖ f ◦2k (ω)‖L p+1 > A, then we have three possibilities.

(1) If ‖ f ◦2k (ω)− f ◦
2k0
(ω)‖L p+1 > A/2, then we are already done, since this probability is controlled due

to (3-40).

(2) If ‖ f ◦
2k0
(ω)‖L p+1 > A/2 and ‖ f ◦

2k0
(ω)‖2L2 ≤ αk0 + 2β, then we may set k = k0 in the arguments from

(3-37) to (3-39), and again get the desired bound.

(3) If ‖ f ◦2k (ω)‖
2
L2 ≤ α2k +β as well as ‖ f ◦

2k0
(ω)‖2L2 > α2k0 + 2β, then

‖ f ◦2k (ω)‖
2
L2 −‖ f ◦2k0 (ω)‖

2
L2 − (α2k −α2k0 )≤−β (3-41)

or equivalently

Y =
2k∑

j=2k0+1

1− |g j |
2

4 j + 2
≥ β. (3-42)

Noticing that Y is an independent sum with standard deviation

κ =

( 2k∑
j=2k0+1

1
(4 j + 2)2

)1/2

. 2−k0/2 ≤ c1e−c2 Ac3
, (3-43)



932 YU DENG

we can compute

E(exp(Y/2κ))=
2k∏

j=2k0+1

E
(

exp
(κ(1− |g j |

2)

2(4 j + 2)

))

=

2k∏
j=2k0+1

(
eκ/(2(4 j+2))

(
1+

κ

2(4 j + 2)

)−1)
≤

2k∏
j=2k0+1

ecθ2
j /(4(4 j+2)2κ2)

= ec/4. (3-44)

Here we have used the fact that E(e−λ|g|
2
) = (1+ λ)−1 when λ > −1, and g is a normalized complex

Gaussian; and that ex(1+ x)−1
≤ ecx2

for large c, and 0≤ x ≤ 1
2 . Therefore we have obtained

P(Y > β)≤ e−cκ−1
≤ c1 exp(−c2ec3 Ac4

). (3-45)

This completes the proof of (3-36). The other conclusions now follow easily from this large deviation
estimate, except the one regarding the support of ρ. We choose a sequence of cutoff functions χ(m) so
that χ(m) ≡ 1 on [−γm, γm] with γm ↑ ∞. By our previous discussions, after discarding null sets, the
function ρ(m) will be nonzero wherever

lim
k→∞

∣∣‖ f ◦2k (ω)‖
2
L2 −α2k

∣∣≤ γm . (3-46)

Since this limit exists almost surely, and γm ↑∞, we know almost surely, (3-46) will hold for at least one
m. So the union of support of these ρ j will have full µ measure. �

Now in both defocusing and focusing case we have defined the Gibbs measure ν and the approximating
measure ν2k . They will be used in Section 6 to obtain global well-posedness, and the invariance of ν will
be proved in Section 8.

4. Multilinear analysis in Xσ,b spaces

First let us recall the hypercontractivity property of complex Gaussians. To make equations easier to
write, we introduce the notation in which u− represents some element in {u, ū} for any complex number u.
This will be used throughout the rest of the paper. The first result about hypercontractivity was proved in
[Nelson 1973]. Here we use a formulation of this property taken from [Thomann and Tzvetkov 2010].

Proposition 4.1. Suppose l, d ≥ 1, and a random variable S has the form

S =
∑

0≤n1,...,nl≤d

cn1,...,nl · g
−

n1
(ω) · · · g−nl

(ω), (4-1)

where cn1,...,nl ∈ C, and the (gn)0≤n≤d are independent normalized complex Gaussians; then we have the
estimate

(E|S|p)1/p
≤
√

l + 1(p− 1)l/2(E|S|2)1/2 for all p ≥ 2.

Proof. This is basically a restatement of [Thomann and Tzvetkov 2010, Proposition 2.4]. There the
authors required n j ≥ 1 and n1 ≤ · · · ≤ nl , but an easy modification will immediately settle this. The
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only difference is that here we may have gn j or ḡn j , but if we write gn = (γn + iγ̃n)/
√

2 where γn and γ̃n

are mutually independent normalized real Gaussians, then ḡn = (γn− iγ̃n)/
√

2. So S is again written as a
linear combination of products of independent normalized real Gaussians. Then the result follows in the
same way as in [Thomann and Tzvetkov 2010]. �

Next we want to adapt the result in Proposition 4.1 to our specific case to yield a large deviation bound
on appropriate multilinear expressions of Gaussians.

Proposition 4.2. Let N1 ≥ · · · ≥ Nl ≥ 2 be dyadic numbers such that N1 ≥ 103 N2. Assume for n ≥ 0 and
4n+ 2≤ 10N 2

1 that we have independent normalized complex Gaussians {wn}. Also let % be any integer,
and let δn1,...,nl be arbitrary complex numbers with absolute value ≤ 1. Define

4=
{
(n1, . . . , nl) : n j ≥ 0, 1

10
≤

4n j + 2
N 2

j
≤ 10 (1≤ j ≤ l),

l∑
j=1

ε j (4n j + 2)= %
}

(4-2)

with ε j =±1; then we have

P

({∣∣∣∣ ∑
(n1,...,nl )∈4

δn1,...,nlw
−

n1
(ω) · · ·w−nl

(ω)

∣∣∣∣> K
l∏

j=2

N j

})
≤ c1 exp(−c2K c3). (4-3)

Here all the constants depend only on l.

Proof. We denote the sum on the left side of (4-3) by S. Using Proposition 4.1, we can get

(E|S|p)1/p
≤
√

l + 1(p− 1)l/2 A,

where we denote A = (E|S|2)1/2. By Markov’s inequality, we in particular have

P(|S|> K A)≤ (K A)−p
· E|S|p ≤ K−p(l + 1)p/2(p− 1)lp/2 for all p ≥ 2.

If K ≥ 2
√

l + 1, we may choose p = 1+ K 2/ l2−2/ l(l + 1)−1/ l
≥ 2 in the inequality above to obtain

P(|S|> K A)≤ 2−p
≤ c1e−c2 K c3

.

By choosing the constants appropriately, we can guarantee that this also hold for K < 2
√

l + 1. Now
what remains is to prove that A .

∏l
j=2 N j , or equivalently

E|S|2 .
l∏

j=2

N 2
j .

Now we expand the square to get

E|S|2 =
∑

δn1,...,nl δ̄m1,...,ml1n1,...,nl ,m1,...,ml ,

where the sum is taken over all (n1, . . . , nl,m1, . . . ,ml) ∈4×4, and

1n1,...,nl ,m1,...,ml = E

( l∏
j=1

w−n j
w−m j

)
.
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Since each of the δ and 1 has absolute value . 1 (depending on l) in any possible case, we will be done
once we establish that

#
{
(n1, . . . , nl,m1, . . . ,ml) ∈4×4 :1n1,...,nl ,m1,...,ml 6= 0

}
.

l∏
j=2

N 2
j . (4-4)

The crucial observation is that, due to the independence assumption, if the expectation 1 is nonzero,
then any integer that appears in (n1, . . . , nl,m1, . . . ,ml) must appear at least twice. Next, due to our
assumption N1 ≥ 103 N2, we know n1 = m1, and any integer that appears in (n2, . . . , nl,m2, . . . ,ml)

must appear at least twice. If we permute all the different integers appearing in this (2l − 2)-tuple as
σ1>σ2> · · ·>σr , then with r and all σi fixed, we have at most (2l−2)2l−2 choices for the (2l−2)-tuple;
also due to the linear relation enjoyed by both (n1, . . . , nl) and (m1, . . . ,ml), the (2l − 2)-tuple will
uniquely determine n1 and m1. Thus we only need to show for each possible 1 ≤ r ≤ 2l, there are
.
∏l

j=2 N 2
j choices for (σ1, . . . , σr ). Now for each 1 ≤ i ≤ r , since each σ j (1 ≤ j ≤ i) appear in

the (2l − 2)-tuple at least twice (and different σ j cannot appear at the same place), there must exist
1≤ j1 ≤ i < i + 1≤ j2 such that σ j1 ∈ {n j2,m j2}. This implies

4σi + 2≤ 4σ j1 + 2. N 2
j2 . N 2

i+1,

so for each 1≤ i ≤ r , there are at most N 2
i+1 choices for σi , and necessarily 1≤ r ≤ l− 1. Therefore, for

each r ≤ l − 1, we have at most
r∏

i=1

N 2
i+1 .

l∏
j=2

N 2
j

choices for (σ1, . . . , σr ). �

Proposition 4.3. Suppose p ≥ 3 is an odd integer. We choose σ and b so that 0 < σ < 1 is sufficiently
close to 1 depending on p, and 1> b > 1

2 is sufficiently close to 1
2 depending on σ and p. Let T be small

enough depending on b, σ and p. Then we can find a set �T ⊂ � and a positive number θ that only
depends on σ, b and T , so that P(�T ) ≤ c1e−c2T−c3 , and that the following holds: For any t0 ∈ R and
ω ∈�c

T , if for each 1≤ j ≤ p, a function u j on [−T, T ]×R2 is given by either

u j = e−i(t+t0)H f (ω), (4-5)

or

‖u j‖Xσ,b,T . 1, (4-6)

then we have

‖u−1 · · · u
−

p ‖Xσ,b−1,T . T θ . (4-7)

Here all the constants will depend on σ, b and p.

Proof. In what follows, if an estimate holds for ω outside a set with measure ε, we simply say it holds
“with exceptional probability ε”. We will use various exponents q j , and each of them will remain the
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same throughout the proof. First we can use Lemma 2.8 to estimate

‖u−1 · · · u
−

p ‖Xσ,b−1,T . T 2b−1
‖u−1 · · · u

−

p ‖Xσ,3b−2,T ,

since − 1
2 < b− 1< 3b− 2< 1

2 . Thus we only need to prove

‖u−1 · · · u
−

p ‖Xσ,3b−2,T . T 1/2−b, (4-8)

with exceptional probability ≤ c1 exp(−c2T−c3). Recalling the Littlewood–Paley projections (1-8), we
have

u =
∑
N≥2

uN , (4-9)

where for simplicity we write uN =1N u. Thus we only need to estimate the terms (note (uN )
−
= (u−)N

since the Littlewood–Paley projectors are real)

p∏
j=1

(u j )
−

N j
,

where we have fixed a choice between u j and ū j , and between (4-5) and (4-6), for each u j . Define

A = {1≤ j ≤ p : u j given by (4-5)}, and B = {1≤ j ≤ p : u j given by (4-6)}.

Let

A=
{
(N1, . . . , Np) : N j > 103

∑
i 6= j

Ni for some j ∈ B
}
. (4-10)

We first consider the sum of terms with (N1, . . . , Np) ∈A, and rewrite it as∑
j∈B

∑
(Ni )i 6= j

∏
i 6= j

(ui )
−

Ni
·

( ∑
N j>103

∑
i 6= j Ni

(u j )
−

N j

)
. (4-11)

To bound this expression we only need to consider a fixed j0 ∈ B, and without loss of generality, we may
assume j0 = p. For each (N1, . . . , Np−1) if we write

uhi
p =

∑
Np>103

∑p−1
i=1 Ni

(u p)Np , (4-12)

then we only need to prove

S := ‖(u1)
−

N1
· · · (u p−1)

−

Np−1
(uhi

p )
−
‖Xσ,3b−2,T . T 1/2−b(max

j<p
N j )
−θ (4-13)

for some θ > 0, with exceptional probability ≤ c1 exp(−c2T−c3(max j<p N j )
c4) (note that when we take

the sum over all (N1, . . . , Np−1), we still get an expression ≤ c1e−c2T−c3 ).
To prove (4-13), we use Propositions 2.5 and 2.7 to estimate (for simplicity, we shall omit the spacetime

domain [−T, T ]×R2 in the following estimates, but one should keep in mind that we are working on a
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very short time

S. ‖(u1)
−

N1
· · · (u p−1)

−

Np−1
(uhi

p )
−
‖L

q1
t W

σ,q1
x

(4-14)

. ‖(uhi
p )
−
‖L4

t Wσ,4
x

p−1∏
j=1

‖(u j )
−

N j
‖L

q2
t,x
+

p−1∑
j=1

‖(uhi
p )
−
‖L4

t,x
‖(u j )

−

N j
‖L

q2
t W

σ,q2
x

∏
j 6=i<p

‖(ui )
−

Ni
‖L

q2
t,x

. ‖(uhi
p )
−
‖L4

t Wσ,4
x

p−1∏
j=1

‖(u j )
−

N j
‖L

q2
t,x
+

p−1∑
j=1

Nσ
j ‖(u

hi
p )
−
‖L4

t,x

p−1∏
i=1

‖(ui )
−

Ni
‖L

q2
t,x

(4-15)

. ‖u−p ‖L4
t Wσ,4

x

p−1∏
j=1

‖(u j )
−

N j
‖L

q2
t,x

(4-16)

.
p∏

j=2

‖(u j )
−

N j
‖L

q2
t,x
, (4-17)

where in (4-15) and (4-16) we have used Corollary 2.3 (recall the definition of uhi
p ). In (4-17) we have

used Proposition 2.7 and the assumption that p ∈ B. For the parameters, we choose q1>
4
3 and sufficiently

close to 4
3 depending on p, and p−1

q2
=

1
q1
−

1
4 , and check that (4-14) indeed hold, provided b is sufficiently

close to 1
2 , depending on q1 (see Proposition 2.7, with b there replaced by 3b− 1).

Now we proceed to analyze the expression (4-17). Choose 1≤ j ≤ p− 1 so that N j =maxi<p Ni . If
j ∈ B, then from Corollary 2.3 and Proposition 2.7 we have

‖(u j )
−

N j
‖L

q2
t,x
. N−εj ‖u j‖L

q2
t W

ε,q2
x
. N−εj ‖u j‖Xσ,b,T . N−εj , (4-18)

provided σ − ε > 1− 4
q2

(note q2 > 4 from our choice of exponents above). This can be achieved if ε is
small enough depending on q2, and σ is sufficiently close to 1 depending on q2 and ε. If instead j ∈ A,
then from Corollary 2.3 we have

‖(u j )
−

N j
‖L

q2
t,x
. N−εj ‖u j‖L

q2
t W

ε,q2
x
= N−εj ‖e

−i(t+t0)H f (ω)‖L
q2
t W

ε,q2
x
. (4-19)

The norm in the last expression equals the Lq2
t W

ε,q2
x norm of e−it H f (ω) on the interval [t0− T, t0+ T ].

Since T < 1, we may expand this interval to an interval with length 2π . Since e−it H f (ω) has period 2π
in t , we may replace the enlarged norm by the norm on [−π, π]. Then we could use Corollary 3.5 to
bound

N−εj ‖e
−i(t+t0)H f (ω)‖L

q2
t W

ε,q2
x
. T

1
10p (

1
2−b)N

−
ε
2

j (4-20)

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
j ), provided 0< ε < 2

q2
. Therefore in each

case we have

‖(u j )
−

N j
‖L

q2
t,x
. T

1
10p (

1
2−b)N−θj , (4-21)

with exceptional probability ≤ c1 exp(−c2T−c3 N c4
j ), for some θ > 0.
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Then we treat the terms with i 6= j . If i ∈ B, we can use Proposition 2.7 to bound ‖(ui )
−

Ni
‖L

q2
t,x
. 1; if

i ∈ A, we can use Corollary 3.5 to bound

‖(ui )
−

Ni
‖L

q2
t,x
. T

1
10p (

1
2−b)N

θ
10p
j

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
j ). Putting these together, we have shown

(4-17). T 1/2−b(max
j<p

N j )
−θ (4-22)

for some θ > 0, with exceptional probability ≤ c1 exp(−c2T−c3(max j<p N j )
c4). This takes care of the

sum of terms with (N1, . . . , Np) ∈A.
For (N1, . . . , Np) 6∈A, we are going to prove

J = ‖v−1 · · · v
−

p ‖Xσ,3b−2,T . T 1/2−b(max
j≥1

N j )
−θ , (4-23)

where v j = (u j )N j , with exceptional probability ≤ c1 exp(−c2T−c3(max j≥1 N j )
c4). This, together with

the analysis above, clearly implies (4-7). Now without loss of generality, assume N1 =max j≥1 N j . If
1 ∈ B, then we have N1 ∼ max j≥2 N j . By switching the role of 1 and p in the argument above and
replacing uhi

1 by v1 (note v1 also satisfy the estimates about uhi
1 that we would use), we can prove (4-22)

with the role of 1 and p switched. Since N1 ∼max j≥2 N j , this also proves (4-23).
Now we assume that N1=max j≥1 N j and 1∈ A. If N1. N (1+σ)/(3σ−1)

j0 (note this exponent is > 1) for
some j0 ≥ 2, then we may assume j0 = 2. Now use the same arguments as in (4-14) (but with different
exponents), we have

J . ‖v−1 v
−

2 · · · v
−

p ‖L
q1
t W

σ,q1
x

(4-24)

. (‖v−1 ‖L4
t Wσ,4

x
‖v−2 ‖L4

t,x
+‖v−1 ‖L2

t,x
‖v−2 ‖L4

t Wσ,4
x
)

p∏
j=3

‖v−j ‖L
q4
t,x

+

p∑
j=3

‖v−1 ‖L4
t,x
‖v−2 ‖L4

t,x
‖v−i ‖L

q4
t W

σ,q4
x

∏
3≤i 6= j

‖v−j ‖L
q4
t,x

.

( p∑
j=1

Nσ
j

)
‖v−1 ‖L4

t,x
‖v−2 ‖L4

t,x

p∏
j=3

‖v−j ‖L
q4
t,x

(4-25)

. N
1+σ

4
1 N

1+σ
4

2 ‖v−1 ‖L4
t,x
‖v−2 ‖L4

t,x

p∏
j=3

‖v−j ‖L
q4
t,x

(4-26)

. ‖v−1 ‖
L4

t W
1+σ

4 ,4
x

‖v−2 ‖
L4

t W
1+σ

4 ,4
x

p∏
j=3

‖v−j ‖L
q4
t,x
, (4-27)

where p−2
q4
=

1
q1
−

1
2 and q4 > 4. Here in (4-25) and (4-27) we have used Corollary 2.3 and the fact that

v j = (u j )N j , while in (4-26) we have used N j . N1 . N (1+σ)/(3σ−1)
2 for all j .
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Now we analyze the expression (4-27). If 2 ∈ B, then by Corollary 2.3 and Proposition 2.7 we have
(note N1 . N 2

2 when σ > 3
5 )

‖v−2 ‖
L4

t W
1+σ

4 ,4
x

. N
−

1
24

1 ‖v−2 ‖
L6

t W
2σ
3 ,4

x

. N
−

1
24

1 ‖u2‖Xσ,b,T . N
−

1
24

1 , (4-28)

provided 2σ
3 > 1+σ

4 +
1

12 and σ > 2σ
3 +

1
6 , which is true for σ > 4

5 . If 2 ∈ A (which is the case for 1), we
can use the arguments from (4-19) to (4-20) to get

‖v−2 ‖
L4

t W
1+σ

4 ,4
x

. N
−

1−σ
16

1 ‖u−2 ‖
L4

t W
3+σ

8 ,4
x

. T
1

10p (
1
2−b)N

−
1−σ
32

1 (4-29)

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ), thanks to Corollary 3.5, and the hypothesis

σ < 1 (hence 3+σ
8 < 1

2 ).
Then we treat the terms with j ≥ 3. If j ∈ B, we can use Proposition 2.7 to bound ‖v−j ‖L

q4
t,x
. 1; if

j ∈ A, we can use Corollary 3.5 to bound

‖v−j ‖L
q4
t,x
. T

1
10p (

1
2−b)N

1−σ
100p

1

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ). Putting these together, we have proved

(4-27). T 1/2−b N−θ1 , (4-30)

with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ) for some θ > 0. Thus we have proved (4-23) in this

case.
In the final case, we assume that N1 > (10p)3(max j≥2 N j )

1+σ
3σ−1 , which in particular implies N1 >

103∑
j≥1 N j , and that 1 ∈ A. For each j ∈ B, by definition we can extend u j to be a function on R×R2

(still denoted by u j ) with Xσ,b norm . 1. The relation v j = (u j )N j also extends to t ∈ R, giving an
extension of v j also. Choose ζ0 smooth, supported on [−2, 2] and equaling 1 on [−1, 1] and define
ζ(t)= ζ0(T−1t). We are to prove

‖ζ · v−1 · · · v
−

p ‖Xσ,3b−2 . T 1/2−b N−θ1 (4-31)

for the extended v j , with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ). For a function w on R×R2

radial in x , we split w = wne+wfa, with

Ft 〈wne, ek〉(τ )= χ{|τ+4k+2|≤N γ

1 }
·Ft 〈w, ek〉(τ ), (4-32)

and wfa by replacing the ≤ by >. We now split the product in (4-31) into fa and ne parts and estimate
them separately.
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We first estimate the fa part of product as (due to the presence of ζ , we can work on time interval
[−2T, 2T ] in the time-Lebesgue norms below, thus gaining powers in T )

‖(ζ · v−1 · · · v
−

p )fa‖Xσ,3b−2 . N−γ /36
1 ‖ζ · v−1 · · · v

−

p ‖Xσ,−4/9 (4-33)

. N−γ /36
1 ‖ζ · v−1 · · · v

−

p ‖L3/2
t W

σ,3/2
x

(4-34)

. Nσ−γ /36
1

∏
i

‖v−i ‖L3p/2
t,x
. (4-35)

Here in (4-33) we have used the definition of the fa-projection and that b is close to 1
2 (in particular,

b < 1
2 +

1
108 ); in (4-34) we have used Proposition 2.7; in (4-35) we have combined Corollary 2.3 and

Proposition 2.5. Now for each i , if i ∈ B then (provided σ is close to 1 depending on p)

‖v−i ‖
L

3p
2

t,x

. ‖vi‖Xσ,b . 1.

If i ∈ A (such as i = 1) we have

‖v−i ‖
L

3p
2

t,x

. T
1

10p (
1
2−b)N

1
p

1

for all t0, with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ). Therefore, we have (4-35). T 1/2−b N−θ1

with exceptional probability ≤ c1 exp(−c2T−c3 N c4
1 ), provided γ > 108.

Now we estimate the ne part of the product. Choose v0 so that ‖v0‖X0,2−3b . 1. Since we are taking the
ne part, we may assume v0 = v0,ne. The aim is to estimate |J| (recall H is self-adjoint), where

J=

∫
R×R2

v−1 · · · v
−

p · (ζHσ/2v̄0). (4-36)

We use Lemma 2.6 to write down

v j (x, t)=
∫

R

φ j (λ j )eiλ j t
∑

k

a j
λ j
(k)e−i(4k+2)t ek(x) dλ j (4-37)

for j ∈ B ∪ {0}, where the parameters satisfy∑
k

|a0
λ0
(k)|2 . 1 (4-38)

for each λ0. Since v0 = v0,ne, we also have ‖φ0‖L1 . N
3γ (b− 1

2 )

1 . For j ∈ B, since v j = (u j )N j , we know
a j
λ j
(n j )= 0 unless 1

10 ≤ (4n j + 2)/N 2
j ≤ 10, and hence∑
4n j+2∼N 2

j

|a j
λ j
(k)|2 . N−2σ

j . (4-39)

Also since b > 1
2 , we have ‖φ j‖L1 . 1.
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For the sake of convenience, in the following proof, we shall use v∼(n, τ ) to denote Ft 〈v, en〉(τ ).
Thus from (4-37) we have

v∼j (n j , τ j )= (2π)1/2a j
τ j+4n j+2(n j )φ j (τ j + 4n j + 2) (4-40)

for j ∈ B. If j ∈ A we have

v∼j (n j , τ j )= (2π)1/2e−i(4n j+2)t0
θ j (n j )gn j (ω)√

4n j + 2
δ(τ j + 4n j + 2), (4-41)

where

θ j (n j )= η
(2(4n j + 2)

N 2
j

)
− η

(4(4n j + 2)
N 2

j

)
.

Clearly |θ j | ≤ 2, and θ j 6= 0 only when 1
10 ≤ (4n j + 2)/N 2

j ≤ 10 (note we have fixed N j ). Finally, for
j = 0 we have (we may assume ζ is real)

(ζHσ/2v0)
∼(n0, τ0)= (4n0+ 2)σ/2 ·

∫
R

a0
%0+4n0+2(n0)φ0(%0+ 4n0+ 2)ζ̂ (τ0− %0) d%0. (4-42)

We write γ j =v
∼

j for j≥1, and γ0= (ζHσ/2v0)
∼. From the rules of Fourier transform and orthogonality

of ek , we have

J= (2π)−(p−2)/2
∑

n1,...,n p,n0

κn0
n1,...,n p

∫
D

p∏
j=0

(γ j (n j , τ j ))
− dτ1 · · · dτp, (4-43)

where

κn0
n1,...,n p

=

∫
R2

en1(x) · · · en p(x)en0(x) dx, (4-44)

and

D=

{
(τ1, . . . , τp, τ0) : τ0 =

p∑
j=1

ε jτ j

}
, (4-45)

with ε j =±1 depending on the choice of v j or v̄ j . We notice that ε j = 1 if and only if the corresponding
γ−j equals γ j . Now plug in (4-40), (4-41), and (4-42), and use the change of variables λ j = τ j + 4n j + 2
for j ∈ B, λ0 = %0+ 4n0+ 2; we get

J= 2π
∑

n1,...,n p,n0

κn0
n1,...,n p

∫ ∏
j∈B∪{0}

dλ j

∏
j∈B

φ j (λ j )a
j
λ j
(n j )

−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2
·a0
λ0
(n0)

−φ0(λ0)

× ζ̂

(∑
j∈B

ε jλ j − λ0−

p∑
j=1

ε j (4n j + 2)+ (4n0+ 2)
)−

× (4n0+ 2)σ/2 exp
(
−it0

∑
j∈A

(4n j + 2)ε j

)
. (4-46)
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Here the terms corresponding to j ∈ A are delta functions and have already been incorporated in the final
expression. Letting % = (4n0+ 2)−

∑p
j=1 ε j (4n j + 2), we can further reduce the expression to

J= (2π)p+ 1
2
∑
%∈Z

∫ ∏
j∈B∪{0}

φ j (λ j ) dλ j · ζ̂

(∑
j∈B

ε jλ j − λ0+ %

)−

×

∑
S%

κn0
n1,...,n p

(4n0+ 2)σ/2
∏

j∈B∪{0}

a j
λ j
(n j )

−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2

× exp
(
−it0

∑
j∈A

(4n j + 2)ε j

)
,

S% =

{
(n0, . . . , n p) :

1
10
≤

4n j + 2
N 2

j
≤ 10 ( j ≥ 1), (4n0+ 2)−

p∑
j=1

ε j (4n j + 2)= %
}
. (4-47)

Noticing that ζ̂ = T ζ̂0(T · ), and that ζ̂0 is a Schwartz function, we have∑
%∈Z

|ζ̂ (λ+ %)|.
∑
%∈Z

T 〈T (λ+ %)〉−2 . 1 (4-48)

for all λ ∈ [0, 1], and by periodicity, for all λ ∈ R. Therefore∑
%∈Z

∫ ∏
j∈B∪{0}

|φ j (λ j )| dλ j · ζ̂

∣∣∣∣(∑
j∈B

ε jλ j − λ0+ %

)∣∣∣∣. N
3γ (b− 1

2 )

1 . (4-49)

Since we choose b close enough to 1
2 depending on σ and p, and γ does not have any dependence on b

whatsoever (we may simply take γ = 200), (4-31) will follow if∣∣∣∣∑
S%

κn0
n1,...,n p

(4n0+ 2)σ/2×
∏

j∈B∪{0}

a j
λ j
(n j )

−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2
× exp

(
−it0

∑
j∈A

(4n j + 2)ε j

)∣∣∣∣
. T 1/2−b N−δ1 (4-50)

for all possible choices of t0 ∈ R, % ∈ Z, λ j ∈ R( j ∈ B ∪ {0}), {a j
λ j
(k)} satisfying (4-38) and (4-39),

with δ > 0 depending on σ and p, but not on b.
Next, by Cauchy–Schwartz in the sum with respect to n0, we can further estimate the left side of (4-50)

by(∑
n0

(4n0+ 2)σ ×
∣∣∣∣∑
S%,n0

κn0
n1,...,n p

∏
j∈B

b j (n j )
−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2

× exp
(
−it0

∑
j∈A

(4n j + 2)ε j

)∣∣∣∣2)1/2

, (4-51)

where S%,n0 = {(n1, . . . , n p) : (n0, . . . , n p) ∈ S%}, and b j (k)= a j
λ j
(k).
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Concerning the inner sum of (4-51), we have (recall that 1
10 ≤ (4n j + 2)/N 2

j ≤ 10 for each 1≤ j ≤ p)∣∣∣∣∑
S%,n0

κn0
n1,...,n p

∏
j∈B

b j (n j )
−
∏
j∈A

θ j (n j )g−n j
(ω)√

4n j + 2
· e−it0

∑
j∈A(4n j+2)ε j

∣∣∣∣ (4-52)

.
∑
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

|b j (n j )| (4-53)

. sup
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

∑
4n j+2∼N 2

j

|b j (n j )|

. sup
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

(N 2
j N−2σ

j )1/2 (4-54)

. sup
(n j ) j∈B

∣∣∣∣∑
2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣∏
j∈B

N 1−σ
j ,

where in (4-53) we write 2 = {(n j ) j∈A : (n1, . . . , n p) ∈ S%,n0} for fixed (n j ) j∈B , and τ n0
n1,...,n p =

κ
n0
n1,...,n p

∏
j∈A θ j (n j )(4n j+2)−1/2. One should notice that for all (n j ) j∈A∈2, by definition the expression

exp(−it0
∑

j∈A(4n j + 2)ε j ) is a fixed constant with absolute value 1, which can be extracted. In (4-54)
we have used Cauchy–Schwartz and (4-39).

Let us fix % and n0, and (n j ) j∈B . We also assume |4n0+2−%|. N 2
1 (otherwise S%,n0 would be empty).

Since the set 2 has the form of 4 in (4-2) and N1 > 103∑
j∈A−{1} N j , we can use Proposition 4.2 to get∣∣∣∣∑

2

τ n0
n1,...,n p

∏
j∈A

g−n j
(ω)

∣∣∣∣≤ K
∏

j∈A−{1}

N j · sup
2

|τ n0
n1,...,n p

|, (4-55)

with exceptional probability ≤ c1 exp(−c2K c3). We choose K = T 1/2−b N (1−σ)/200
1 (4n0 + 2)(1−σ)/400,

then the corresponding exceptional probability is ≤ c1 exp(−c2T−c3 N c4
1 (4n0 + 2)c5). If we add up

these probabilities with respect to all possible choices of % and (n j ) j∈B∪{0}, we still get an expression
≤ c1 exp(−c2T−c3 N c4

1 ) (there are . N 2
1 choices for each n j ( j ∈ B), and for fixed n0, there are . N 2

1
choices of %). Therefore with exceptional probability ≤ c1 exp(−c2T−c3 N c4

1 ), we have

(4-51). T 1/2−b N
1−σ
200

1

∏
j∈B

N 1−σ
j

∏
j∈A−{1}

N j

(∑
n0

(4n0+ 2)σ+
1−σ
200 sup

Sµ,n0

|τ n0
n1,...,n p

|
2
)1/2

(4-56)

. T 1/2−b N
1−σ
200 −1

1

∏
j∈B

N 1−σ
j

(∑
n0

(4n0+ 2)σ+
1−σ
200 sup

Sµ,n0

|κn0
n1,...,n p

|
2
)1/2

. (4-57)

To complete the proof of Proposition 4.3, we are going to estimate κn0
n1,...,n p . Let ν(0) ≥ · · · ≥ ν(p)

be the nonincreasing permutation of ν j = 4n j + 2 (where 0 ≤ j ≤ p). If ν0 ≥ N 2(1+(1−σ)/200)
1 , from

Lemma 3.2 we have |κn0
n1,...,n p |. ν

−100
0 . If ν0 < N 2(1+(1−σ)/200)

1 , since N1 & (max j≥2 N j )
(σ+1)/(3σ−1), we

see that if ν0 ≤ max j≥2 ν j , then ν1 & max j 6=1 ν
(σ+1)/(3σ−1)
j and |κn0

n1,...,n p | . N−100
1 ; if ν0 > max j≥2 ν j ,
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then ν(2) ≥max j≥2 ν j and from Lemma 3.2 we have

|κn0
n1,...,n p

|. ν
−

1
2

(0) ν
−

1
4

(2) log ν(0) . N−1
1 (max

j≥2
N j )
−

1
2 log N1. (4-58)

Therefore we have

(4-57). T 1/2−b N
1−σ
200 −1

1

∏
j∈B

N 1−σ
j

×

( ∑
ν0<N

2(1+ 1−σ
200 )

1

(N1)
2(σ+ 1−σ

200 )(1+
1−σ
200 )N−2

1 (max
j≥2

N j )
−1 log2 N1+

∑
ν0≥N

2(1+ 1−σ
200 )

1

(4n0+ 2)−198
)1/2

. T 1/2−b N−θ0
1 log N1 · (max

j≥2
N j )
−

1
2
∏
j∈B

N 1−σ
j

. T 1/2−b N
−
θ0
2

1 (max
j≥2

N j )
−

1
2
∏
j∈B

N 1−σ
j ,

where

θ0 = 1−
1− σ
100
− σ −

(1+ σ)(1− σ)
200

−
(1− σ)2

40000
>

1− σ
2

> 0. (4-59)

Finally, since 1 ∈ A, we have

(max
j≥2

N j )
−

1
2
∏
j∈B

N 1−σ
j . (max

j≥2
N j )
−

1
2+(p−1)(1−σ) . 1, (4-60)

provided σ > 1− 1/(2(p− 1)).
Having considered all the different cases, we have now finished the proof of Proposition 4.3. �

From now on we will fix σ and b as stated in Proposition 4.3. We have an easy corollary:

Corollary 4.4. There exist some θ > 0 and T0 > 0, such that the following holds: For all 0 < T < T0,
there exists a set �T ⊂� such that P(�T )≤ c1e−c2T−c3 and for all ω 6∈�T , the mapping

u 7→ e−it H f (ω)∓ i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds (4-61)

is a contraction mapping from the affine ball

e−it H f (ω)+{v : ‖v‖Xσ,b,T ≤ T θ
} (4-62)

to itself.

Proof. Suppose u = e−it H f (ω)+ v, where ‖v‖Xσ,b,T ≤ T θ
≤ 1. From Proposition 2.9 we have

M :=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds

∥∥∥∥
Xσ,b,T

.
∥∥|u|p−1u

∥∥
Xσ,b−1,T

=
∥∥(e−it H f (ω)+ v)

p+1
2 · (e−it H f (ω)+ v̄)

p−1
2
∥∥

Xσ,b−1,T .
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If we expand the product, then each term has the form as in Proposition 4.3 (namely, u−1 · · · u
−
p with each

u j either equal to e−it H f (ω) or has Xσ,b,T norm . 1); thus we have M . T θ0 for some θ0 depending
only on σ, b and p; thus if we choose θ < θ0 and T0 small enough, then the mapping does map the affine
ball to itself.

In addition, if ui = e−it H f + vi with ‖vi‖Xσ,b,T ≤ T θ for i ∈ {1, 2}, then

D :=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|u1(s)|p−1u1(s)− |u2(x)|p−1u2(s)) ds

∥∥∥∥
Xσ,b,T

.
∥∥|u1|

p−1u1− |u2|
p−1u2

∥∥
Xσ,b−1,T

.
∑

F

‖(u1− u2)
−

p−1∏
k=1

u−jk‖Xσ,b−1,T ,

where F is some finite set, and each jk ∈ {1, 2}. Since u1− u2 = v1− v2 ∈ Xσ,b,T , and each u j is the sum
of two terms, one being e−it H f (ω), the other having Xσ,b,T norm . 1, we can use Proposition 4.3 to
estimate D. T θ0‖v1−v2‖Xσ,b,T for all ω 6∈�T . Thus the result follows if we choose T small enough. �

5. Local well-posedness results

In proving local in time results, we will not care about the ± sign in (1-10). First we define the truncated
Cauchy problem {

i∂t u+ (1− |x |2)u = (±|u|p−1u)◦2k

u(0)= f ◦2k (ω)
(5-1)

for each k ≥ 1. When k =∞, we understand that v◦2∞ = v, so this is just the original equation (1-10).
If k <∞, we solve (5-1) in the finite-dimensional space V2k . We will consider two cases depending on
whether p ≥ 3 odd or 1< p < 3.

5.1. The algebraic case. Here we assume p≥ 3 is an odd integer, so we can use the estimates is Section 4.

Proposition 5.1. Suppose T > 0 is sufficiently small. There exists a set �T (possibly different from the
one in Proposition 4.3), such that P(�T ) ≤ c1 exp(−c2T−c3), and when ω 6∈ �T , for each 1 ≤ k ≤∞,
(5-1) has a unique solution

u ∈ e−it H f ◦2k (ω)+Xσ,b,T (5-2)

on [−T, T ], satisfying

‖u− e−it H f ◦2k (ω)‖Xσ,b,T ≤ T θ . (5-3)

Proof. When k =∞, the existence and uniqueness directly follows from 4.4 via Picard iteration. Now we
assume 1≤ k <∞, then the equation (5-1) is just an ODE, so the solution is unique, and exists until its
norm approaches infinity. Thus we only need to obtain the control on each of these solutions, uniformly
in k. To this end we need the following modification of Proposition 4.3.
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Lemma 5.2. For each T sufficiently small, we can find a set (still denoted by �T ), such that P(�T ) ≤

c1 exp(−c2T−c3), and in Proposition 4.3, if one replaces some u j by any (u j )
◦

2k j
or (u j )

⊥

2k j
, the result still

holds true. Moreover, if there is at least one (u j )
⊥

k j
, then the left side of (4-7) tends to zero (uniformly in

all choices of u j ) as this k j →∞.

Proof. We use the notations as in Proposition 4.3. Noting that the projections u◦2k and u⊥2k are uniformly
bounded on Xσ,b,T , we may assume the modification is only for j ∈ A. Since f ◦2k (ω)= f (ω)− f ⊥2k (ω)

and the result is true when all terms are still u j , we may assume each term is either u j or (u j )
⊥

2k j
, with at

least one (u j )
⊥

2k j
.

For each (k j ), we follow exactly the proof of Proposition 4.3. Suppose L =max j 2k j ; then in the dyadic
decomposition we only need to consider the terms max j∈A N j & L (for example, if (N1, . . . , Np)∈A with
the largest being N1, then max j≥2 N j & L; otherwise we have max j N j & L). On the other hand, all the
probabilistic Lebesgue/Sobolev estimates of f (ω) we used in Proposition 4.3 come from Corollary 3.5;
thus they also hold for f ⊥2k (ω) = f (ω)− f ◦2k (ω) uniformly in k. As for the multilinear estimates of
Gaussians (Proposition 4.2), they indeed hold for fixed k j , because fixing k j (and replacing f (ω) by
f (ω)◦

2k j
) corresponds to adding constraints n j ≤ 2k j in the set 4 in (4-2), which does not affect the

estimates in (4-4) (which is based on upper bounds of the cardinals of some sets). Therefore for fixed k j , the
estimates about each individual term (including the “grouped” terms in A) in the proof of Proposition 4.3
still hold, with constants independent of k j . Therefore, we have

‖Modified(u−1 · · · u
−

p )‖Xσ,b,T .
∑

max j N j &L

T θ (max
j

N j )
−θ . T θ L−θ/2,

with exceptional probability not exceeding∑
max j N j &L

c1 exp(−c2T−c3(max
j

N j )
c4)≤ c5 exp(−c6T−c7 Lc8),

which implies

‖Modified(u−1 · · · u
−

p )‖Xσ,b,T . T θ (max
j

2k j )−θ/2,

for all possible choices of k j , with exceptional probability not exceeding∑
(k j )

c5 exp(−c6T−c7(max
j

2k j )c8). c9 exp(−c10T−c11).

If we choose this final exceptional set as our �T , we easily see that all requirements are satisfied. �

Remark 5.3. In Proposition 4.3 and Lemma 5.2, the estimates still hold when the Xσ,b,T norm is replaced
by Xσ,b,I (but with T θ on the right side of (4-7) unchanged), for any interval I ⊂ [−T, T ], and ω outside
a single �T . One can check the proof that all estimates do not become worse with [−T, T ] replaced by I .
In particular we can get a contraction mapping as in Corollary 4.4 for interval [−T, 0] or [−T1, T1] for
T1 ≤ T .
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Using Lemma 5.2, we can now proceed with the proof of Proposition 5.1. Suppose for some k that
u = e−it H f ◦2k (ω)+ v is a maximal solution to (5-1) (strictly speaking the T below should be another
T ′ denoting the lifespan of u, but we will ignore this, in view of Remark 5.3). Then outside the �T

constructed in Lemma 5.2 we have

‖v‖Xσ,b,T =

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(

|u(s)|p−1u(s)
)◦

2k ds
∥∥∥∥

Xσ,b,T

.
∥∥|u|p−1u

∥∥
Xσ,b−1,T

=
∥∥(e−it H f ◦2k (ω)+ v)

p+1
2 · (e−it H f ◦2k (ω)+ v̄)

p−1
2
∥∥

Xσ,b−1,T .

Each term in the expansion of the final product has the form as in Lemma 5.2 (namely
∏

j (u
−

j )
◦

2k j
with

1≤ k j ≤∞, and each u j either equal to e−it H f (ω) or has Xσ,b,T norm . ‖v‖Xσ,b,T ). Therefore for some
θ > 0 we get

‖v‖Xσ,b,T . T θ (1+‖v‖Xσ,b,T )
p
;

since v ∈ Xσ,b,T and v(0)= 0, we know ‖v‖Xσ,b,t → 0 as t→ 0. The local norm is continuous in t ; thus
we can use a bootstrap argument to get ‖v‖Xσ,b,T ≤ T θ/2. Note this also works for the original equation,
showing that (5-3) holds for the solution of (1-10) with any k. The uniqueness of (1-10) now follows
from Corollary 4.4. �

5.2. The subcubic case. Here we assume 1 < p < 3, and we do not need any multilinear estimate to
solve the local problem.

Proposition 5.4. Suppose T > 0 is sufficiently small. There exists a set �T (possibly different from the
one in Proposition 4.3), such that P(�T ) ≤ c1 exp(−c2T−c3), and when ω 6∈ �T , for each 1 ≤ k ≤∞,
(5-1) has a unique solution

u ∈ e−it H f ◦2k (ω)+X0,b,T (5-4)

on [−T, T ], satisfying
‖u− e−it H f ◦2k (ω)‖X0,b,T ≤ T θ . (5-5)

Proof. The proof here is almost the same as Proposition 5.1. In fact, once we can obtain∥∥|e−it H f ◦2k (ω)+ v|
p−1(e−it H f ◦2k (ω)+ v)

∥∥
X0,b−1,T . T θ (1+‖v‖p

X0,b,T ) (5-6)

and ∥∥|u|p−1u− |u′|p−1u′
∥∥

X0,b−1,T . T θ
‖v− v′‖X0,b,T · (1+‖v‖X0,b,T +‖v′‖X0,b,T )p−1 (5-7)

for all 1 ≤ k ≤ ∞ and ω 6∈ �T , where u = e−it H f ◦2k (ω)+ v and u′ = e−it H f ◦2k (ω)+ v
′, we can use

Proposition 2.9 and argue as in the proof of Corollary 4.4 to show that for ω 6∈�T ,

u 7→ e−it H f (ω)∓ i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds

is a contraction mapping from
e−it H f (ω)+{v : ‖v‖X0,b,T ≤ T θ

}
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to itself, for some θ > 0. Also we will have the same estimates on solutions to (5-1) as in Proposition 5.1,
which is enough for the proof.

To prove (5-7), we simply compute (again we omit the time domain [−T, T ] here)∥∥|u|p−1u− |u′|p−1u′
∥∥

X0,b−1,T

. T 2b−1∥∥(u− u′)(|u| + |u′|)p−1∥∥
Lq

t,x
(5-8)

. T 2b−1
‖v− v′‖L pq

t,x
· (‖u‖L pq

t,x
+‖u′‖L pq

t,x
)p−1 (5-9)

. T 2b−1
‖v− v′‖X0,b,T (‖v‖X0,b,T +‖v′‖X0,b,T +‖e−it H f ◦2k (ω)‖L pq

t,x
)p−1 (5-10)

. T b− 1
2 ‖v− v′‖X0,b,T · (‖v‖X0,b,T +‖v′‖X0,b,T + 1)p−1, (5-11)

outside �T , where P(�T ) ≤ c1 exp(−c2T−c3). In (5-8) we have used Proposition 2.7 and Lemma 2.8,
and required 1

2 < b< 2
3 , 2> q > 2

3−3b . In (5-9) we have used Hölder and required 1< pq <∞. In (5-10)
we have used (Hölder in time and) Proposition 2.7 and required 2 < pq < 4. In (5-11) we have used
Corollary 3.5 to bound

‖e−it H f ◦2k (ω)‖L
r2
t L

q2
x
. T−

2b−1
100p ,

with exceptional probability ≤ c1 exp(−c2T−c3). Therefore, we may choose q so that 4
3 < q < 2 and

2< pq < 4 (such q exists because 1< p < 3). Then we may choose 1
2 < b < 1− 2

3q , and see that all the
requirements indeed hold. This completes the proof of (5-7).

The estimate (5-6) follows from the same choice of exponents and similar arguments. The only
difference is that we will have a term ‖e−it H f ◦2k (ω)‖L

r1
t L

q1
x

, which is fine as long as 2< q1 <∞. �

5.3. Approximating by ODEs. Here we will prove that almost surely, uniform global bounds on the
solutions to the truncated equations (5-1) for infinitely many k <∞ implies the global existence and
uniqueness for the original equation (1-10).

Proposition 5.5. Let [−T, T ] be a time interval, where we assume T is large. Suppose for ω belonging
to some set E , there exists a subsequence {k j } j≥0 ↑∞ (possibly depending on ω) such that each of the
equations (5-1) with k = k j has a unique solution u j on [−T, T ] and that

sup
j
‖u j − e−it H f ◦

2k j (ω)‖Xσ,b,T <∞. (5-12)

Then almost surely ω ∈ E , the equation (1-10) possesses a unique solution u on [−T, T ] such that
u ∈ e−it H f (ω)+Xσ,b,T . Moreover for this subsequence we have

lim
j→∞
‖u j − e−it H f ◦

2k j (ω)− (u− e−it H f (ω))‖Xσ,b,T = 0. (5-13)

Proof. For ω ∈ E , with small exceptional probability (tending to 0 as A→∞), we may choose a sequence
u j solving (5-1) with k = k j ↑∞, and

‖u j − e−it H f ◦
2k j (ω)‖Xσ,b,T ≤ A (5-14)
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for all j . Then we choose an integer M large enough depending on T and A. We are going to prove for
each 1≤m ≤ M that (1-10) has a unique solution u ∈ e−it H f (ω)+Xσ,b,mT/M on the interval [−mT

M , mT
M ],

and
lim

j→∞
‖u j − e−it H f ◦

2k j (ω)− (u− e−it H f (ω))‖Xσ,b,mT/M → 0, (5-15)

for ω outside the fixed set �T/M that is constructed in the proof of Lemma 5.2. Since P(�T/M)→ 0 as
M→∞, this clearly contains the conclusion we need.

Now we proceed by induction on m. First assume p ≥ 3 is odd. Supposing the conclusion holds for
m − 1 (including m = 1), we will prove it for m. Write δ = M−1T and t0 = (m − 1)δ, we know the
solution u exists and is unique on [−t0, t0], and we want to extend it to [−(t0+ δ), t0+ δ]. Without loss
of generality we consider the half-line t > 0.

From (5-14) and (5-15) we have

lim
j→∞
‖u j (t0)− u(t0)+ e−it0 H f ⊥

2k j (ω)‖Hσ = 0, (5-16)

and ‖u(t0)− e−it0 H f (ω)‖Hσ ≤ A. We would like to solve the equation (1-1) with initial data u(t0) on
[−δ, δ], and argue as in Corollary 4.4. Here the linear term is not e−it H f (ω), but

e−it Hu(t0)= e−i(t+t0)H f (ω)+ v,

where v is the linear evolution of some function with Hσ norm . A; thus ‖v‖Xσ,b,δ . A (this is easily
proved by introducing a cutoff and using δ ≤ 1). Since ω 6∈ �T/M , we can use the full strength of
Proposition 4.3 and Lemma 5.2. In particular we can proceed as in the proof of Corollary 4.4 and obtain

M :=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|w1(s)|p−1w1(s)) ds

∥∥∥∥
Xσ,b,δ

. δθ0 Ap
≤ δθ ,

and

D=

∥∥∥∥∓i
∫ t

0
e−i(t−s)H(|w1(s)|p−1w1(s)− |w2(x)|p−1w2(s)) ds

∥∥∥∥
Xσ,b,δ

. δθ0 Ap−1
‖h1− h2‖Xσ,b,δ <

1
2‖h1− h2‖Xσ,b,δ ,

for allwi = e−it Hu(t0)+hi with ‖hi‖Xσ,b,δ ≤ δ
θ , provided M is large enough (δ is small enough) depending

on T and A. Then we can use Picard iteration and the same bootstrap argument to prove that the original
solution u can be uniquely extended to [t0, t0+ δ] (and by symmetry, to the other side).

It remains to prove (5-15) for m. First we know

lim
j→∞

∥∥e−i(t−t0)Hu j (t0)− e−i(t−t0)Hu(t0)+ e−it H f ⊥
2k j (ω))

∥∥
Xσ,b,[t0−δ,t0+δ]

= 0,

which is a consequence of (5-16). In view of the induction hypothesis, we only need to prove3

lim
j→∞

∥∥u j − e−i(t−t0)Hu j (t0)− (u− e−i(t−t0)Hu(t0))
∥∥

Xσ,b,[t0−δ,t0+δ]
= 0,

3Here we have used the following fact: Given two intervals [x, y] and [z, w] with x < z < y <w, for some constant C we
have ‖u‖Xσ,b,[x,w] ≤ C(‖u‖Xσ,b,[x,y] +‖u‖Xσ,b,[z,w]). This is easily proved by using a partition of unity.
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which, after a translation of time, is equivalent to

lim
j→∞

∥∥w j − e−it Hw j (0)− (w− e−it Hw(0))
∥∥

Xσ,b,δ
= 0, (5-17)

where w j is a solution of the truncated equation with k = k j , and w j (0)= u j (t0); and w is a solution of
the original equation with w(0)= u(t0). Write w j −w = h = hli + hno, where

hli = e−it H(u j (t0)− u(t0))=−e−i(t+t0)H f ⊥
2k j (ω)+ e−it Hλ j , (5-18)

with ‖λ j‖Hσ → 0, and

hno =∓i
∫ t

0
e−i(t−s)H((|w j |

p−1w j − |w|
p−1w)◦

2k j − (|w|
p−1w)⊥

2k j (s)
)

ds

=∓i
∫ t

0
e−i(t−s)H(|w j |

p−1w j − |w|
p−1w)◦

2k j (s) ds− (w− e−it Hw(0))⊥
2k j . (5-19)

Now we need to prove ‖hno‖Xσ,b,δ → 0. Since w− e−it Hw(0) ∈ Xσ,b,δ, the second term in (5-19) tends
to zero in Xσ,b,δ as j →∞. For the first term, we estimate the norm without the final projection. The
expression in parentheses can be written as a linear combination of terms like z−1 · · · z

−
p , where z1 is

either hno, or e−i(t+t0)H f ⊥
2k j
(ω), or e−it Hλ j which has Xσ,b,δ norm→ 0. For i ≥ 2, each zi is one of the

following:

(1) e−i(t+t0)H f ◦
2k j
(ω). This is within the applicability of Lemma 5.2 since ω 6∈�T/M .

(2) w j − e−i(t+t0)H f ◦
2k j
(ω). This has Xσ,b,δ norm . A since w j (t)= u j (t + t0), due to (5-14).

(3) One of the components of w j −w. These include hno and e−i(t+t0)H f ⊥
2k j
(ω), as well as another term

with Xσ,b,δ norm . A. Since ω 6∈�T/M , these terms are controllable using Lemma 5.2.

If z1 = e−i(t+t0)H f ⊥
2k j
(ω), then from Proposition 2.9 and Lemma 5.2, the corresponding term tends to

0 as j→∞ (since hno is bounded in Xσ,b,δ independent of j ; see below). If z1 is the term with Xσ,b,δ

tending to 0, the same conclusion holds. If z1 = hno, then the norm of the corresponding term is bounded
by δθ‖hno‖Xσ,b,δ (‖hno‖Xσ,b,δ + A)p−1. Therefore we have

‖hno‖Xσ,b,δ . δ
θ
‖hno‖Xσ,b,δ (‖hno‖Xσ,b,δ + A)p−1

+ o(1),

as j → ∞. By (5-14) and the Picard argument above, we know ‖hno‖Xσ,b,δ . A independent of j .
Therefore, if we choose δ small enough (M large enough), we must have ‖hno‖Xσ,b,δ = o(1).

The proof when 1 < p < 3 is basically the same, using linear estimates (Corollary 3.5) instead of
Proposition 4.3. We will also need a variant of Lemma 5.2, but the proof of this is not hard and is
essentially contained in Proposition 3.4 and Corollary 3.5. �

6. Global well-posedness

In what follows, we fix a sufficiently large T and a positive integer M such that M & T 2.
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First let us consider the truncated equation (5-1), which is an ODE on the finite-dimensional space V2k .
If we identify V2k with R2k+1

+2 by the coordinates

g =
2k∑

j=0

(a j + ib j )e j , (6-1)

then it is easy to check that (5-1) becomes

∂t a j =
∂E0

∂b j
, ∂t b j =−

∂E0

∂a j
, (6-2)

with Hamiltonian

E0(a j , b j )=

2k∑
j=0

(2 j + 1)(a2
j + b2

j )±
1

p+ 1

∥∥∥∥ 2k∑
j=0

(a j + ib j )e j

∥∥∥∥p+1

L p+1
. (6-3)

If we denote the solution flow of this equation by 82k ,t , then the following is true by the theory of
Hamiltonian ODEs and straightforward computation: The map (t, x) 7→82k ,t(x) is defined on the whole
spacetime domain R× V2k (this is a consequence of the conservation of L2 norm; see (6-4) below). For
each t ∈ R, 82k ,t is a homeomorphism from V2k to itself. If p ≥ 3 is odd, it is a diffeomorphism and
preserves the quantities

‖g‖2L2 =

2k∑
j=0

(a2
j + b2

j ) and E = 2E0 (6-4)

and the Lebesgue measure. If 1 < p < 3, it (and its inverse) can be approximated, uniformly on each
compact subset of V2k , by a sequence of pairs of diffeomorphisms that preserve the quantities (6-4) and
the Lebesgue measure. Therefore 82k ,t itself also preserves (6-4) and the Lebesgue measure.

From above we know that 82k ,t preserves the measure

ν◦2k = π
−1−2k

ζ · e−E
2k∏

j=0

da j db j (6-5)

on V2k , where ζ = 1 in the defocusing case, and ζ = χ(‖g‖2L2 − α2k ) in the focusing case as in (3-33).
By the definition of µ and ν2k (see Section 3) we have

ν2k = (ρ2k ·µ◦2k )⊗µ
⊥

2k = ν
◦

2k ⊗µ
⊥

2k , (6-6)

in both cases, where we understand that µ◦2k and µ⊥2k are measures on V2k and V⊥2k respectively, and
identify V with4 V2k × V⊥2k . From this we immediately see, for each Borel set J of V2k , that

ν2k
(
{g : g◦2k ∈ J }

)
= ν2k

(
{g : g◦2k ∈ (82k ,t)

−1(J )}
)
. (6-7)

4Here V is some space on which µ is supported. The exact choice of V is unimportant; for example, we may choose
V = S′(R2), or V =

⋂
δ>0 H−δ(R2).
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Now we fix the choice
J = JM =

{
g◦2k : g ∈ f

(
�c

T/M
)}c
,

where �T/M is constructed in the proof of Lemma 5.2. Consider the maximal m0 ≤ M + 1 so that the
solution u of equation (5-1) satisfies∥∥u− e−i(t−mT/M)Hu(mT/M)

∥∥
Xσ,b,[(m−1)T/M,(m+1)T/M] ≤ 1 (6-8)

for all |m| ≤ m0− 1. If m0 = M + 1, from Proposition 2.9 we know that u is defined on [−T, T ] and

‖u− e−it H f ◦2k (ω)‖Xσ,b,T . M3. (6-9)

If m0 ≤ M , then for some choice of ± sign, we have 82k ,±m0T/M( f ◦2k (ω)) ∈ JM . In fact, if this fails, then
we can use Propositions 5.1 and 5.4 to extend the solution to [−(m0+ 1)T/M, (m0+ 1)T/M] with (6-8)
remaining true, thus contradicting the definition of m0. Now we use (6-7) and sum over m0 ≤ M to get

(ν2k ◦ f )
({
ω : (6-9) fails

})
. M · ν2k

({
g : g◦2k ∈ JM

})
. (6-10)

In the defocusing case we have ν2k ≤ µ. Using Fubini’s theorem we get

µ
({

g : g◦2k ∈ J c
M
})
≥ µ( f (�c

T/M))≥ 1− c1 exp(−c2T−c3 Mc3), (6-11)

hence
(ν2k ◦ f )

({
ω : (6-9) fails

})
. c1 M exp(−c2T−c3 Mc3). (6-12)

In the focusing case we have

dν2k

dµ
(g)= ρ2k (g)= χ(‖g◦2k‖

2
L2 −α2k ) exp

( 2
p+1
‖g◦2k‖

p+1
L p+1

)
. (6-13)

This function, by Proposition 3.6, has bounded L2(µ) norm, so by Cauchy–Schwartz we get

ν2k
({

g : g◦2k ∈ JM
})
.
(
µ
({

g : g◦2k ∈ JM
}))1/2

≤ c1 exp(−c2T−c3 Mc3), (6-14)

which again implies (6-12). We summarize our results in the following proposition.

Proposition 6.1. For fixed T and k, there exists a subset5 �k ⊂� such that (ν2k ◦ f )(�c
k)= 0, and for

ω ∈�k , equation (5-1) has a unique solution uk on [−T, T ], and that

sup
k

∫
�k

exp
(
‖uk − e−it H f ◦2k (ω)‖

θ
Xσ,b,T

)
d(ν2k ◦ f )(ω) <∞ (6-15)

for some θ > 0.

Proof. We choose
�k =

⋂
M&T 2

Z M :=
⋂

M&T 2

{
ω : (6-9) fails for M

}
.

5This should not be confused with the �T notation defined above, since our �k is for k ≥ 1 here!
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From the discussion above we easily see ν2k ( f (�c
k))≤ limM→∞ ν2k ( f (Z M))= 0. Also for ω 6∈ Z M the

solution uk to (5-1) exists and is unique, and satisfies

‖uk − e−it H f ◦2k (ω)‖Xσ,b,T . M3.

In other words we have

(ν2k ◦ f )
(
ω ∈�k : ‖uk − e−it H f ◦2k (ω)‖Xσ,b,T > A

)
≤ ν2k ( f (Z M))≤ c1 exp(−c2 Ac3),

for all A > T 100, where M ∼ A1/3 is an integer. Since ν2k ◦ f is uniformly integrable, the part with small
A is also under control. The claim then follows. �

With Propositions 5.5 and 6.1, we are ready to prove the global well-posedness part of Theorem 1.1.
Denote the integrand in (6-15) by ηk(ω), understanding ηk(ω)= 0 when ω 6∈�k . Since ν2k → ν in the
strong sense and (ν2k ◦ f )(�c

k)= 0, we have (ν ◦ f )(�c
k)→ 0, and we fix a subsequence {kl} such that∑

l(ν ◦ f )(�c
kl
) <∞ and hence (ν ◦ f )(lim supl→∞�

c
kl
)= 0. From Proposition 6.1, we get

sup
l

∫
�

ρ2kl ( f (ω))ηkl (ω) dP(ω) <∞. (6-16)

From the proof of Proposition 3.6, we see ρ2kl ◦ f → ρ ◦ f almost surely, so by Fatou’s lemma we get

lim inf
l→∞

ηkl (ω) <∞, (6-17)

almost surely in P, on the set where ρ( f (ω)) 6= 0. By the definition of ηk , if (6-17) holds, then either
ω ∈�kl for infinitely many l, or there exists a subsequence {kl j } j≥0 ↑∞, such that (5-1) has a unique
solution ukl j

for k = k j on [−T, T ], and

sup
j
‖ukl j
− e−it H f ◦

2
kl j
(ω)‖Xσ,b,T <∞.

In the former case we get a null set (actually a set with null ν ◦ f measure, but ν ◦ f is mutually absolutely
continuous with P on the set where ρ( f (ω)) 6= 0), while in the latter case we can use Proposition 5.5
to deduce that, except for another null set, (1-10) also has a unique solution u on [−T, T ] such that
u ∈ e−it H f (ω)+Xσ,b,T .

Therefore, for each T > 0, except for a null set, the equation (1-10) has a unique solution u ∈
e−it H f (ω)+Xσ,b,T for ω in the support of ρ ◦ f . In the defocusing case, this support itself has full
probability in �; in the focusing case, it follows from Proposition 3.6 that we can choose a countable
number of cutoff χ so that the (countable) union of the support of the corresponding ρ ◦ f has full
probability. In any case we have found a subset of � having full probability, such that when ω does
belong to this set, (1-10) has a unique solution u ∈ e−it H f (ω)+Xσ,b,T . We then take another countable
union to get that, almost surely in P, equation (1-10) has a unique solution u on R×R2 such that

u ∈ e−it H f (ω)+Xσ,b,T ⊂ e−it H f (ω)+C([−T, T ],Hσ (R2))

⊂ C([−T, T ],
⋂
δ>0

H−δ(R2))
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for all T > 0. This completes the proof.

Remark 6.2. In fact, from the argument we can extract a polynomial bound on the solution; namely we
can prove that for each large A, with exceptional probability ≤ c1 exp(−c2 Ac3) we have

‖u− e−it H f (ω)‖Xσ,b,T ≤ A〈T 〉C

for all T > 0, with some constant C . We omit the details.

7. Transforming into NLS without harmonic potential

As we have mentioned before, the idea of introducing the lens transform and reducing (1-2) to (1-1) is
inspired by the arguments in [Burq et al. 2010]. First we define the lens transform [Tao 2009, Section 2;
Burq et al. 2010, Section 10]:

Lu(t, x)= 1
cos(2t)

u
( tan(2t)

2
,

x
cos(2t)

)
e−i|x |2 tan(2t)/2, (7-1)

where u is defined on R×R2, and Lu is defined on (−π4 ,
π
4 )×R2. By a simple computation we deduce

(i∂t − H)(Lu)(t, x)= (cos(2t))−2L((i∂t +1)u)(t, x). (7-2)

For the inverse transform

L−1u(t, x)= (1+ 4t2)−
1
2 u
( tan−1(2t)

2
, (1+ 4t2)−

1
2 x
)

ei|x |2t/(1+4t2), (7-3)

we have

(i∂t +1)(L
−1u)(t, x)=

1
1+ 4t2 L−1((i∂t − H)u)(t, x). (7-4)

Next we prove that the transform L−1 maps the space Xσ,b,δ to Xσ,b,T , where 0≤ σ, b ≤ 1, 0< δ < π
4 ,

and T = 1
2 tan(2δ). First by using a cutoff, we are reduced to proving that u 7→ L−1(χ · u) is bounded

from Xσ,b to Xσ,b, where χ = χ(t) is any smooth function having compact support in |t |< π
4 . First we

fix σ . By interpolation, we can assume b ∈ {0, 1}. If we can prove the result in the case b = 0, then using
the identity

‖u‖2Xσ,1 = ‖u‖
2
Xσ,0 +‖(i∂t − H)‖2Xσ,0

(which remains true with X replaced by X and −H replaced by 1) and (7-4), we see

‖L−1(χ · u)‖Xσ,1 . ‖u‖Xσ,0 +‖(i∂t − H)(χu)‖Xσ,0, (7-5)

because v = (i∂t − H)(χu) has compact support in |t | < π
4 , and hence equals χ1v for some other χ1.

Since the last term in (7-5) is clearly controlled by ‖u‖Xσ,1 , we can conclude the proof for b= 1. Therefore
we may only consider b = 0. Here it is easily seen that we only need to prove that multiplication by
eiλ|x |2 is uniformly bounded from Hσ to Hσ for 0≤ σ ≤ 1 and |λ| ≤ 1. By another interpolation we may
further reduce to σ ∈ {0, 1}. The σ = 0 case is obvious; the σ = 1 case follows from the observation

∇(eiλ|x |2
· f )= eiλ|x |2(∇ + 2iλx) · f.
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Thus we have the desired bound for all 0≤ σ, b ≤ 1.
Using (7-2) or (7-4) we can compute that u is a solution for the Cauchy problem (1-12) on R, if and

only if v = Lu is a solution for the Cauchy problem{
i∂tv+ (1− |x |2)v = (cos(2t))p−3

· |v|p−1v,

v(0)= f (ω)
(7-6)

on |t |< π
4 . Moreover, if

v− e−it H f (ω) ∈ Xσ,b,δ (7-7)

with δ < π
4 , then from the discussion above we see that

u−L−1(e−it H f (ω)) ∈ Xσ,b,T ,

with T = 1
2 tan(2δ)→∞ as δ→ π

4 . From (7-4) we see that L−1(e−it H f (ω)) has initial value f (ω) and
annihilates i∂t +1; thus it must be eit1 f (ω). Thus (1-13) will follow6 if (7-7) holds for all δ < π

4 . Also
from (7-3), the constants in the Hσ

x → Hσ
x boundedness remains under control even near the boundary

points ±π4 . Thus (1-14) will follow if

lim
t→±π/4

(v(t)− e−it H f (ω)) exists in Hσ . (7-8)

What we will prove is that almost surely in P, (7-6) has a unique (strong) solution v for |t | ≤ π
4

such that v− e−it H f (ω) ∈ Xσ,b,π/4. As is demonstrated above, this implies (7-7) and (7-8), and hence
Theorem 1.2.

The proof is basically the same as (1-10). Noticing m(t)= (cos(2t))p−3 has all its derivatives bounded
on R, we see that multiplication by m(t) is bounded from any Xσ,b (and hence any Xσ,b,T ) to itself.
Therefore, the proof from Proposition 4.3 to Lemma 5.2 goes without any difficulty, as if this additional
factor were not present. In the proof of Proposition 5.5, when we extend the solution to a larger interval,
we must solve another Cauchy problem, which is no longer (7-6), since this equation is not autonomous.
This, however, is not a problem; since we just replace m(t) by some m(t − t0) that obeys the same
derivative estimates as m(t), we can use the same exceptional set as in Proposition 4.3, Lemma 5.2 and
Proposition 5.5, and the other discussions remain unchanged.

The only difficulty we face is the lack of a (formally) invariant measure. This is compensated, however,
by a monotonicity property, which was first observed in [Burq et al. 2010].

Lemma 7.1. Consider the truncated Cauchy problem{
i∂tv+ (1− |x |2)v = (cos(2t))p−3

· (|v|p−1v)◦2k ,

v(0)= f ◦2k (ω);
(7-9)

then for its solution v, the quantity

E(t, v(t))= 〈Hv, v〉+
2(cos(2t))p−3

p+ 1
‖v‖

p+1
L p+1

6The space Z′ ⊂ Z in which we have uniqueness will be the image of the space Y defined in (1-11) under L−1; as we have
said before, we do not have a simple characterization for this.
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is monotonically nonincreasing in |t | for |t | ≤ π
4 .

Proof. We directly compute

dE

dt
=−

2(p− 3)(cos(2t))p−4 sin(2t)
p+ 1

‖v(t)‖p+1
L p+1,

which is nonpositive for 0≤ t ≤ π
4 , and nonnegative for −π4 ≤ t ≤ 0. �

We argue as in Section 6, but we fix T = π
4 here. If we could prove

µ
(
{g : g◦2k ∈ J }

)
≥ ν2k

(
{g :82k ,t(g

◦

2k ) ∈ J }
)

(7-10)

for −π4 ≤ t ≤ π
4 , where, of course, 82k ,t is now the solution flow of (7-6), then combining this inequality

with (6-11) we can get (6-12). Starting from this point, we can follow the argument in Section 6 word by
word to get almost surely global well-posedness of (7-6) on [−π4 ,

π
4 ].

The proof of (7-10) is also simple. By Lemma 7.1

ν2k ({g :82k ,t(g
◦

2k ) ∈ J })= π−1−2k
∫

J1

e−E(g)
2k∏

j=0

da j db j

≤ π−1−2k
∫

J1

e−E(t,g(t))
2k∏

j=0

da j db j ≤

∫
J

dµ◦2k = µ({g : g◦2k ∈ J }),

where J1 = {h ∈ V2k :82k ,t(h) ∈ J }. Here we have used the invariance of the Lebesgue measure under
82k ,t , which can be directly verified; see [Burq et al. 2010, Lemma 8.3]. Therefore we have completed
the proof of Theorem 1.2.

8. Invariance of Gibbs measure

Now we return to the final assertion of Theorem 1.1, and prove the invariance of the Gibbs measure ν
under the solution flow of (1-10). More precisely:

Proposition 8.1. Denote the solution flow of (1-10) by 8t . There exists a subset 6 ⊂ S′(R2) such that it
has full µ measure, and 8t becomes a one-parameter group from 6 to 6 preserving the measure ν (in the
focusing case, for each choice of cutoff function χ ).

Proof. We only consider the defocusing case. In the focusing case we need to take another countable
intersection corresponding to the cutoff χ chosen, but otherwise the proof is completely analogous.
Clearly the set �T in Proposition 4.3 and Lemma 5.2 can be chosen so that e−it H f (�c

T )= f (�c
T ).

We define6=61∩62, where61 is the set of all g∈S′(R2) so that (1-1) (with initial data u(0)= g) has
a unique solution7 u on R that belongs to e−it H g+Xσ,b,T for all T > 0. This has full µ measure due to the
global well-posedness part of Theorem 1.1. Also62 is defined to be62= f (lim infi→∞�

c
γ 2−i )+Hσ , and

this also has full µmeasure for small enough γ due to our control on P(�T ). Clearly6 has full µmeasure,

7It is a bit vague to say u is a “solution” when g is only a distribution; but since we are considering 62 also, we can assume
here e−it H g ∈ Lq

t,x on any finite time interval, for appropriate q, and then the definition of 61 becomes rigorous.
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and 8t is uniquely defined on 6. If we can prove 8t(6)⊂6, then they obviously form a (measurable)
one-parameter group. Clearly 8t(6) ⊂ 62 since for a solution u we have u(t) ∈ e−it Hu(0)+Hσ . To
prove 8t(6) ⊂ 61, we only need to prove that if u is a solution of (1-10) with u(0) ∈ 62, then it is
automatically unique. Since all u(t) ∈ 62, by bootstrap arguments we only need to prove short time
uniqueness. Write u(0)= f (ω)+ h with ‖h‖Hσ = A and ω 6∈�c2−i for all large enough i . Repeating the
extension argument in Proposition 5.5, we see for i large enough depending on A that ω 6∈�c2−i and the
solution is unique for |t | ≤ c2−i . This proves the existence of 6.

Now we only need to prove that for each measurable set E ⊂6 and t ∈ R, we have

ν(8t(E))≥ ν(E). (8-1)

We may assume |t | ≤ 1. Write

5i0,A =61 ∩

(
{h : ‖h‖Hσ ≤ A}+

⋂
i≥i0

f (�c
c2−i )

)
and

5′A =
{
g ∈6 :

∥∥u− e−it H g
∥∥

Xσ,b,2
≤ A

}
.

By a limiting argument we can further assume E ⊂5i0,A ∩5
′

A for some i0 and A. Note that this implies
8t(E)⊂5i0,C A for |t | ≤ 2 and some constant C .

Let T be small enough depending on i0 and A, we only need to prove (8-1) for |t | ≤ T and E ⊂5i0,C A

(since we can iterate to get the result for |t | ≤ 1). Write 5=5i0,C A and define 9(g)= u−e−it H g, where
u is the solution to (1-1) with initial data g, and consider the mapping

91 :5→ Xσ,b,T ×C∞, g 7→ (9(g), (〈g, ek〉)k≥0),

where in C∞ we use the standard metric. This mapping is clearly injective (thus it induces a metric on 5)
and, as will be explained in Remark 8.2, its image is a Borel set of the product space (denoted by Y ). By
a theorem in measure theory [Halmos 1950], the finite Borel measure ν ◦9−1

1 on the complete separable
metric space Y is regular. For each measurable set E ⊂5 we can find a compact set K ⊂91(E) such that
(ν ◦9−1

1 )(91(E)−K ) < ε; thus 9−1
1 (K )⊂ E is compact in the induced metric and ν(E−9−1

1 (K )) < ε.
Therefore, we only need to prove (8-1) for compact sets E ⊂5. Due to Propositions 5.1 and 5.4, when T
is small enough depending on i0 and A, the map 82k ,t will be defined on E ⊂5 for each k and |t | ≤ T .
Thus by the invariance of ν◦2k under the solution flow 82k ,t , we have

ν2k
({

g : g◦2k =82k ,t(h
◦

2k ), h ∈ E
})
≥ ν2k (E).

Let k→∞, noticing that the total variation of ν2k − ν tends to zero, we only need to prove that

lim sup
k→∞

{
g : g◦2k =82k ,t(h

◦

2k ), h ∈ E
}
⊂8t(E).

Now suppose that for a subsequence k j ↑∞, we have g◦
2k j
=82k j ,t((hk j )

◦

2k j
), and by compactness, assume

hk j → h with respect to the induced metric. We are going to prove g =8t(h).
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First of all, we have
lim

k→∞

∥∥82k ,t(h
◦

2k )−8t(h)+ e−it H h⊥2k

∥∥
Hσ = 0, (8-2)

uniformly for |t | ≤ T and h ∈ E . In fact, if T is small enough, we may assume h = h1 + h2, where
h1 ∈ f (�c

T ′), 2T ≤ T ′ ≤ 4T , and ‖h2‖Hσ ≤ C A. Since T ′ is small enough depending on A, we can
almost repeat8 the proof of Proposition 5.5 to get that the Xσ,b,T

′

norm tends to 0. Since the Xσ,b,T
′

norm
is not less than the spacial Hσ norm at time t , (8-2) follows.

From (8-2) we get
lim

j→∞

∥∥g◦
2k j − (8t(hk j ))

◦

2k j

∥∥
Hσ = 0,

and we only need to prove

lim
k→∞

∥∥(8t(hk j ))
◦

2k j − (8t(h))◦2k j

∥∥
Hσ = 0. (8-3)

But since hk j → h with respect to the induced metric, we only need to prove that ‖(hk j )
◦

2k j
−h◦

2k j
‖Hσ → 0.

For i ≥ j we have (
82ki ,t((hki )

◦

2ki )
)◦

2k j = g◦
2k j =82k j ,t((hk j )

◦

2k j ),

and by using (8-2) once more we see that

(8t(hki ))
◦

2k j = (8t(hk j ))
◦

2k j + o(1)

as i ≥ j→∞. Again using that hk j → h, we deduce

lim
i≥ j→∞

∥∥(hki − hk j )
◦

2k j

∥∥
Hσ = 0. (8-4)

In particular, we see that limi→∞(hki )
◦

2k j
exists in Hσ for each j . By the definition of the metric, this

limit must be h◦
2k j

. Therefore we get

lim
i→∞

∥∥(h− hki )
◦

2k j

∥∥
Hσ = 0. (8-5)

Combining (8-4) with (8-5), we finally see that lim j→∞‖(hk j )
◦

2k j
−h◦

2k j
‖Hσ = 0. This completes the proof

of Theorem 1.1. �

Remark 8.2. To show that 91(5) is a Borel set in the product metric space, we only need to show that
9 is injective, 9(5) is a Borel set in Xσ,b,T , and the map 9−1

:9(5)→5 is Borelian. To this end we
notice

9(g)=−i
∫ t

0
e−i(t−s)H(|u(s)|p−1u(s)) ds, (8-6)

where u = u(g) is the solution map of (1-2), and g = u(0).9 Then we can decompose 9 as

9 : g 7→ u(g) 7→ |u(g)|p−1u(g) 7→9(g),

8Actually we do not have the a priori bound on the nonlinear part of truncated equations, but since h1 ∈�T ′ with T ′ small
depending on A, it is not hard to get this from scratch.

9Here we also require g ∈H−ε for appropriate ε, so that u ∈ C(R,H−ε) in which u(0) makes sense.
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and see that at each step the mapping is injective, and the image of any Borel set is again Borelian (for
example, the set u(5) can be characterized as the set of all u such that u − e−it Hu(0) ∈ Xσ,b, that u
satisfies equation (1-2), and that u(0) ∈5, so it is Borelian). Hence the claim.

Appendix. Typical regularity on the support of µ

In this appendix we shall prove that if σ ≥ 1
2 , then almost surely Hσ/2 f (ω) is not a (locally integrable)

function. More precisely, almost surely in P, we have

ψ · Hσ/2 f (ω) 6∈ L1(R2) (A-1)

for any smooth compactly supported ψ that is not identically zero.
To prove this, first notice that we can find a countable number of ψ j such that each is compactly

supported and equals 1 on some annular region a < |x |< b, and for any other ψ there exists η ∈ L∞ and
j such that ψ j = ψ · η. So we only need to consider a fixed ψ j (which we write ψ below) and assume it
equals 1 for a < |x |< b. Here we use an asymptotic formula of L0

k proved in [Erdélyi 1960]:

L0
k(z)=

1
√

2π
(νz)−1/4 cos θ + O(ν−3/4), (A-2)

where a2 < z < b2 and ν = 4k+ 2 is large, and

θ =
ν(φ+ sinφ)−π

4
, φ = cos−1 ν− 2z

ν
.

From (A-2) we easily deduce that

L0
k(z)= 1/

√
2π(νz)−1/4 cos(

√
νz−π/4)+ O(ν−3/4),

and hence for each k

‖ekψ‖L1 &
∫

a2<z<b2
|L0

k(z)| dz & ν−1/4. (A-3)

Now we define the Gaussian random variable

hM,N (ω)=

M∑
k=0

(4k+ 2)(σ−1)/2gk(ω)η(H/N 2)(ekψ),

whose range lies in a finite-dimensional space, and use Lemma 3.3 to get the lower bound

P(‖hM,N (ω)‖L1 ≥ cEM,N )≥
1

10

with some absolute constant c, where

EM,N = E(‖hM,N (ω)‖L1)=

∫
R2

E

(∣∣∣∣ M∑
k=0

(4k+ 2)(σ−1)/2gk(ω)ek,N (x)
∣∣∣∣) dx

∼

∫
R2

( M∑
k=0

(4k+ 2)σ−1
|ek,N (x)|2

)1/2

dx &
( M∑

k=0

(4k+ 2)σ−1
‖ek,N‖

2
L1

)1/2

,
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and ek,N = η(N−2 H)(ekψ). Now for fixed N , we let M→∞ to get

hM,N → η(N−2 H)(Hσ/2 f (ω) ·ψ)

in S almost surely, since for fixed n (say n ≤ 3N ), the inner product 〈en, ekψ〉 is rapidly decreasing in k
(using integration by parts). In particular we have almost surely L1 convergence and hence (by taking
upper limit of a sequence of sets)

P(‖η(N−2 H)(Hσ/2 f (ω) ·ψ)‖L1 ≥ cEN )≥
1
10 ,

where

EN = lim inf
M→∞

EM,N &

( ∞∑
k=0

(4k+ 2)σ−1
‖ek,N‖

2
L1

)1/2

.

By the uniform boundedness of η(N−2 H), we know η(N−2 H)g→ g in L1 for any g ∈ L1, so we have

lim inf
N→∞

EN &

( ∞∑
k=0

(4k+ 2)σ−1
‖ekψ‖

2
L1

)1/2

&

( ∞∑
k=0

(4k+ 2)σ−3/2
)1/2

=∞,

due to (A-3). Now we take another upper limit, and see that with probability ≥ 1
10 , we have

lim sup
N→∞

‖η(N−2 H)(Hσ/2 f (ω) ·ψ)‖L1 =∞. (A-4)

Now (A-4) implies (A-1), again because of the uniform boundedness of η(N−2 H) on L1. Therefore
we have proved that (A-1) holds with positive probability. Since it is clearly a tail event (because ek ·ψ

themselves are Schwartz functions), it must hold with probability one.
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