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SCHRÖDINGER OPERATORS
AND THE DISTRIBUTION OF RESONANCES IN SECTORS

TANYA J. CHRISTIANSEN

The purpose of this paper is to give some refined results about the distribution of resonances in potential
scattering. We use techniques and results from one and several complex variables, including properties
of functions of completely regular growth. This enables us to find asymptotics for the distribution of
resonances in sectors for certain potentials and for certain families of potentials.

1. Introduction

The purpose of this paper is to prove some results about the distribution of resonances in potential
scattering. In particular, we study the distribution of resonances in sectors and give asymptotics of the
“expected value” of the number of resonances in certain settings.

More precisely, we consider the operator −1+ V , where V ∈ L∞comp(R
d) and 1 is the (nonpositive)

Laplacian. Then, except for a finite number of values of λ, RV (λ)= (−1+ V − λ2)−1, Im λ > 0, is a
bounded operator on L2(Rd) for λ in the upper half-plane. When d is odd and χ ∈ L∞comp(R

d) satisfies
χV = V , χRV (λ)χ has a meromorphic continuation to the lower half-plane. The poles of χRV (λ)χ

are called resonances, and are independent of choice of χ satisfying these hypotheses. Resonances are
analogous to eigenvalues not only in their appearance as poles of the resolvent, but also because they
appear in trace formulas much as eigenvalues do [Bardos et al. 1982; Guillopé and Zworski 1997; Melrose
1982]. Physically, they may be thought of as corresponding to decaying waves.

Let nV (r) denote the number of resonances of −1+V , counted with multiplicity, with norm at most r .
When d = 1, asymptotics of nV (r) are known:

lim
r→∞

nV (r)
r
=

2
π

diam(supp(V ))

[Zworski 1987]; see also [Froese 1997; Regge 1958; Simon 2000]. Moreover, “most” of the resonances
occur in sectors about the real axis, in the sense that for any ε > 0,

lim
r→∞

#
{
λ j pole of RV (λ) : | arg λ j −π |< ε or | arg λ j − 2π |< ε

}
r

=
2
π

diam(supp(V ))

[Froese 1997]. These results are valid for complex-valued V . The case d = 1 is exceptional, though: in
higher dimensions much less is known.
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Now we turn to d ≥ 3 odd, where the question is more subtle. If V ∈ L∞(Rd) has support in
B(0, a)= {x ∈ Rd

: |x | ≤ a}, then

d
∫ r

0

nV (t)− nV (0)
t

dt ≤ cdadrd
+ o(rd), (1-1)

where cd is defined in (3-5) and depends only on the dimension. Zworski [1989a] showed that such
a bound holds, and Stefanov [2006] identified the optimal constant cd . There are examples for which
equality holds in (1-1) [Zworski 1989b; Stefanov 2006]. Lower bounds have proved more elusive. The
current best-known general quantitative lower bound is for nontrivial real-valued V ∈ C∞c (R

d
;R):

lim sup
r→∞

nV (r)
r

> 0 (1-2)

[Sá Barreto 2001]. On the other hand, there are nontrivial complex-valued potentials V for which
χRV (λ)χ has no poles [Christiansen 2006].

We wish to single out the set for which asymptotics actually hold in (1-1). This is the set defined, for
a > 0, as

Ma =
{

V ∈ L∞(Rd) : supp V ⊂ B(0, a) and nV (r)= cdadrd
+ o(rd) as r→∞

}
. (1-3)

We remark that it is equivalent to require, as r→∞, that nV (r)= cdadrd
+ o(rd) or

d
∫ r

0
t−1(nV (t)− nV (0)

)
dt = cdadrd

+ o(rd).

The set Ma contains infinitely many radial potentials. By results from [Zworski 1989b; Stefanov 2006],
this set contains any potential of the form V (x)= v(|x |), where v ∈ C2([0, a]) is real-valued, v(a) 6= 0,
and V (x)= 0 for |x |> a. Additionally, it contains infinitely many complex-valued potentials which are
isoresonant with these real-valued radial potentials [Christiansen 2008].

We now can state some results. For the first, we set, for ϕ < θ , nV (r, ϕ, θ) to be the set of poles of
RV (λ), counted with multiplicity, with norm at most r and with argument between ϕ and θ inclusive.

Proposition 1.1. Let V ∈Ma . Then, if 0< ϕ < θ < π ,

nV (r, π +ϕ, π + θ)=
1

2πd
s̃d(ϕ, θ)rdad

+ o(rd) as r→∞,

where
s̃d(ϕ, θ)= h′d(θ)− h′d(ϕ)+ d2

∫ θ

ϕ

hd(s) ds,

and hd(θ) is as defined in (3-4).

If V is real-valued, then λ0 is a resonance of −1+ V if and only if −λ0 is a resonance. In this case,
for V ∈Ma and 0< θ < π ,

nV (r, π, π + θ)=
1

2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd
+ o(rd). (1-4)

Here, as elsewhere in this paper, we are concerned with the behavior as r →∞. Thus, one should
understand that statements of the type f (r)=g(r)+o(r p) are statements which hold for r sufficiently large.
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Corollary 1.4 shows that (1-4) holds for any V ∈Ma . These results show that any potential in Ma must
have resonances distributed regularly in sectors, as well as being distributed regularly in balls centered
at the origin. A result like this proposition and Corollary 1.4 is, for the special potentials of the form
V (x)= v(|x |) mentioned earlier, implicit in [Zworski 1989b] and [Stefanov 2006]. Here we derive it as a
corollary of some complex-analytic results, and note that it holds for any potential V ∈Ma . We note
that this proposition could, in fact, follow as a corollary to Theorem 1.3. However, we prefer to give a
separate proof that uses standard results for functions of completely regular growth.

In the following theorem, we use the notation NV (r)=
∫ r

0 (1/t)
(
nV (t)− nV (0)

)
dt and NV (r, ϕ, θ)=∫ r

0 (1/t)
(
nV (r, ϕ, θ)− nV (0, ϕ, θ)

)
dt . This theorem shows that there are many potentials for which

something close to the optimal upper bound on the resonances is achieved.

Theorem 1.2. Let � ⊂ Cp be an open connected set. Suppose that V (z) = V (z, x) is holomorphic in
z ∈�, that V (z, x) ∈ L∞(Rd) for each z ∈�, and that V (z, x)= 0 if |x |> a. Suppose in addition that
for some z0 ∈�, V (z0) ∈Ma . Then there is a pluripolar set E ⊂� so that

lim sup
r→∞

NV (z)(r)
rd =

cdad

d
for all z ∈� \ E .

Moreover, for any θ > 0, θ < π , there is a pluripolar set Eθ so that

lim sup
r→∞

NV (z)(r, π, π + θ)
rd ≥ lim

ε↓0

ad

2πd2 h′d(ε)

for all z ∈� \ Eθ .

For example, for a family of potentials satisfying the conditions of the theorem, one may take, for
z ∈ C, V (z) = zV1 + (1 − z)V0, where V0 ∈ Ma and V1 ∈ L∞(Rd) have support in B(0, a). Since
h′d(0+)= limε↓0 h′d(ε) > 0 (see Lemma 3.3), the second statement of the theorem is meaningful. This
result is of particular interest since resonances near the real axis are considered the more physically
relevant ones.

We recall the definition of a pluripolar set in Section 2. Here we mention that a pluripolar set is
small. A pluripolar set E ⊂ Cp has R2p Lebesgue measure 0, and if E ⊂ C is pluripolar, E ∩R has
one-dimensional Lebesgue measure 0 (see, for example, [Lelong and Gruman 1986; Ransford 1995]).
Thus the statements of Theorem 1.2 hold for “most” values of z ∈�.

If we take a weighted average over a family of potentials, a kind of expected value, we are able to find
asymptotics analogous to those which hold for a potential in Ma . In the statement of the next theorem
and later in the paper, we use the notation dL(z)= d Re z1d Im z1 . . . d Re z pd Im z p.

Theorem 1.3. Suppose the hypotheses of Theorem 1.2 are satisfied. Then for any ψ ∈ Cc(�),∫
�

ψ(z)nV (z)(r) dL(z)= cdadrd
∫
�

ψ(z) dL(z)+ o(rd)

as r→∞. Additionally, we have, for 0< ϕ < θ < π ,∫
�

ψ(z)nV (z)(r, ϕ+π, θ +π) dL(z)= 1
2πd

s̃d(ϕ, θ)rdad
∫
�

ψ(z) dL(z)+ o(rd),
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where s̃d is as defined in Proposition 1.1. Moreover, for 0< θ < π ,∫
�

ψ(z)nV (z)(r, π, θ +π) dL(z)= 1
2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd

∫
�

ψ(z) dL(z)+ o(rd).

Corollary 1.4. Let V ∈Ma . For any 0< θ < π ,

nV (r, π, θ +π)=
1

2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd
+ o(rd) (1-5)

and, for any 0< ϕ < π ,

nV (r, ϕ+π, 2π)= 1
2πd

[
−h′d(ϕ)+ d2

∫ π

ϕ

hd(s) ds
]

adrd
+ o(rd) (1-6)

as r→∞.

This corollary follows from Theorem 1.3 by taking V (z) equal to the constant (in z) potential V . We
could instead give a more direct proof by, essentially, simplifying the proof of Proposition 5.3 and then
applying Lemma 5.4.

It is worth noting that the coefficients of rd in (1-5) and (1-6) are positive, so that in any sector in the
lower half-plane which touches the real axis, the number of resonances grows like rd .

The proofs of the results here are possible because of the optimal upper bounds on

lim sup
r→∞

r−d ln
∣∣det SV (reiθ )

∣∣,
0 < θ < π , proved in [Stefanov 2006] (see Theorem 3.2 here). These, combined with some one-
dimensional complex analysis, are used to prove Proposition 1.1, and could be used to give a direct proof
of Corollary 1.4. The proofs of the other theorems use, in addition to one-dimensional complex analysis,
some facts about plurisubharmonic functions. Many of the complex-analytic results which we shall use
are recalled in Section 2.

Again, we emphasize that we are concerned here with large r behavior of resonance counting functions,
and consequently of other functions as well. Thus, statements of the type f (r)= g(r)+ o(r p) are to be
understood as holding for large values of r .

2. Some complex analysis

In this section we recall some definitions and results from complex analysis in one and several variables.
We will mostly follow the notation and conventions of [Levin 1964; Lelong and Gruman 1986]. We also
prove a result, Proposition 2.2, for which we are unaware of a proof in the literature.

The upper relative measure of a set E ⊂ R+ is

lim sup
r→∞

meas(E ∩ (0, r))
r

.

A set E ⊂ R+ is said to have zero relative measure if it has upper relative measure 0.
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If f is a function holomorphic in the sector ϕ < arg z < θ , we shall say f is of order ρ if

lim sup
r→∞

ln ln
(
maxϕ<φ<θ | f (reiφ)|

)
ln r

= ρ.

We shall further restrict ourselves to functions of order ρ and finite type, so that

lim sup
r→∞

ln
(
maxϕ<φ<θ | f (reiφ)|

)
rρ

<∞.

We shall use similar definitions for a function holomorphic in a neighborhood of a closed sector. In
this section only, we shall, following [Levin 1964], use the notation h f for the indicator function (or
indicator) of a function f of order ρ:

h f (θ)
def
= lim sup

r→∞

(
r−ρ ln | f (reiθ )|

)
.

Suppose f is a function analytic in the angle (θ1, θ2) and of order ρ and finite type there. The function f
is of completely regular growth on some set of rays RM (M is the set of values of θ ) if the function

h f,r (θ)
def
=

ln | f (reiθ )|

rρ

converges uniformly to h f (θ) for θ ∈M when r goes to infinity taking on all positive values except
possibly for a set EM of zero relative measure. The function f is of completely regular growth in the
angle (θ1, θ2) if it is of completely regular growth on every closed interior angle.

Functions of completely regular growth have zeros that are rather regularly distributed. For a function
f holomorphic in {z : θ1 < arg z < θ2} we define m f (r, ϕ, θ), for θ1 < ϕ < θ < θ2, to be the number of
zeros of f (z) in the sector ϕ ≤ arg z ≤ θ , |z| ≤ r .1

Theorem 2.1 [Levin 1964, Chapter III, Theorem 3]. If a holomorphic function f (z) of order d and
finite type has completely regular growth within an angle (θ1, θ2), then for all values of ϕ and θ with
θ1 < ϕ < θ < θ2, except possibly for a denumerable set, the following limit will exist:

lim
r→∞

m f (r, ϕ, θ)
rd =

1
2πd

s̃ f (ϕ, θ),

where
s̃ f (ϕ, θ)=

[
h′f (θ)− h′f (ϕ)+ d2

∫ θ

ϕ

h f (s) ds
]
.

The exceptional denumerable set can only consist of points for which h′f (θ + 0) 6= h′f (θ − 0).

In the following proposition, we use the notation m f (r) to denote the number of zeros of a function f ,
counted with multiplicity, with norm at most r . It is likely that some of the hypotheses included here could
be relaxed. However, when we apply this proposition, f will be the determinant of the scattering matrix,
perhaps multiplied by a rational function, and many of these hypotheses are natural in such applications.

1More standard notation would be n(r, ϕ, θ), but we have already defined nV (r, ϕ, θ) to be something else.
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Let f (z) be a function meromorphic on C. Then f (z)= g1(z)/g2(z), with g1, g2 entire. The functions
g1 and g2 are not uniquely determined. However, the order of f can be defined to be

min
{
max(order of g1, order of g2): f (z)= g1(z)/g2(z) with g1, g2 entire

}
.

It is possible to define the order of a meromorphic function by using the Nevanlinna characteristic function,
yielding the same result.

Proposition 2.2. Let f be a function meromorphic in the complex plane, with neither zeros nor poles on
the real line. Suppose all the zeros of f lie in the open upper half-plane, and all the poles in the open
lower half-plane. Furthermore, assume f is of order d > 1, h f is finite for 0≤ θ ≤ π , and h f (θ0) 6= 0 for
some θ0, 0< θ0 < π . Suppose in addition that∫ r

0

f ′(t)
f (t)

dt = o(rd) as r→±∞, (2-1)

and that the number of poles of f with norm at most r is of order at most d. If

lim inf
r→∞

m f (r)
rd =

d
2π

∫ π

0
h f (θ) dθ,

then f is of completely regular growth in the angle (0, π).

Before proving the proposition, we note that Govorov [1965; 1967] has studied the issue of completely
regular growth of functions holomorphic in an angle. This is discussed in [Levin 1964, Appendix VIII,
Section 2]. This is somewhat different than what we consider, since we use the assumption that f is
meromorphic and of order d on the plane. Thus Govorov uses different restrictions on the distribution of
the zeros of f .

Proof. The proof of this proposition follows in outline the proof of the analogous theorem for entire
functions in the plane [Levin 1964, Chapter IV, Theorem 3]. Rather than using Jensen’s theorem, though,
it uses the equality∫ r

0

m f (t)
t

dt =
1

2π
Im
∫ r

0

1
t

∫ t

−t

f ′(s)
f (s)

ds dt +
1

2π

∫ π

0
ln | f (reiθ )| dθ (2-2)

if | f (0)| = 1, which follows using the proof of [Froese 1998, Lemma 6.1].
By [Levin 1964, Property (4), Chapter I, Section 12],

lim inf
r→∞

m f (r)
rd ≤ lim inf

r→∞
dr−d

∫ r

0

m f (t)
t

dt. (2-3)

We note [ibid., Chapter I, Theorem 28] that for any ε > 0, there is an R > 0 so that

r−d ln | f (reiθ )| ≤ h f (θ)+ ε, for r > R, 0≤ θ ≤ π. (2-4)

Using this, (2-2), and our assumptions on the behavior of f on the real axis, we see that

lim sup
r→∞

r−d
∫ r

0

m f (t)
t

dt ≤
1

2π

∫ π

0
h f (θ) dθ.



SCHRÖDINGER OPERATORS AND THE DISTRIBUTION OF RESONANCES IN SECTORS 967

Combining this with (2-3) and using our assumptions on m f (r), we get

lim
r→∞

r−d
∫ r

0

m f (t)
t

dt =
1

2π

∫ π

0
h f (θ) dθ.

Thus using (2-2) and (2-1) again, we have

lim
r→∞

∫ π

0

[
h f (θ)− r−d ln | f (reiθ )|

]
dθ = 0,

and, using (2-4),

lim
r→∞

∫ π

0

∣∣h f (θ)− r−d ln | f (reiθ )|
∣∣ dθ = 0.

Since we have assumed f is of order d , we may write f as the quotient of two entire functions, each
of order at most d . Then we may apply [Levin 1964, Chapter 2, Theorem 7] to find that for every η > 0,
there is a set Eη of positive numbers of upper relative measure less than η so that if r 6∈ Eη, the family of
functions of θ ,

h f,r (θ)
def
= r−d ln | f (reiθ )|,

is equicontinuous in the angle 0< ε0 ≤ θ ≤ π − ε0.
Now let θ2 > θ1, with [θ1, θ2] ⊂ (0, π). Given η > 0 and ε > 0 we can, by the above result, find a

δ > 0 with [θ1− δ, θ2+ δ] ⊂ (0, π) and a set Eη of upper relative measure at most η so that if θ ∈ [θ1, θ2],
r 6∈ Eη, and |ϕ− θ |< δ, then |h f,r (θ)−h f,r (ϕ)|< ε/4 and |h f (θ)−h f (ϕ)|< ε/4. Then for 0< |k|< δ,
r 6∈ Eη, and θ ∈ [θ1, θ2],

|h f,r (θ)− h f (θ)|<
ε

2
+

1
k

∫ θ+k

θ

|h f,r (ϕ)− h f (ϕ)| dϕ

≤
ε

2
+

1
k

∫ π

0
|h f,r (ϕ)− h f (ϕ)| dϕ.

Since the integral goes to 0 as r→∞, we have shown that |h f,r (θ)−h f (θ)|<ε for r > rε , r 6∈ Eη. Since
η > 0 and ε > 0 are arbitrary, we have, by [Levin 1964, Chapter III, Lemma 1], that f is of completely
regular growth in [θ1, θ2]. Since θ1, θ2 were arbitrary except that [θ1, θ2] ⊂ (0, π), we have proved the
proposition. �

We shall also need some basics about plurisubharmonic functions and pluripolar sets. We use notation
as in [Lelong and Gruman 1986] and direct the reader to this reference for more details.

Let �⊂ Cp be an open connected set. A function 9 :�→ [−∞,∞) is said to be plurisubharmonic
if 9 6≡ −∞, 9 is upper semicontinuous, and

9(z)≤ 1
2π

∫ 2π

0
9(z+wreiθ ) dθ

for all w, r such that z+uw ∈� for all u ∈C, |u| ≤ r . A classic example of a plurisubharmonic function
is ln | f (z)|, where f (z) is holomorphic. A subset E ⊂ � ⊂ Cp is said to be pluripolar if there is a
function 9 plurisubharmonic on � so that E ⊂ {z :9(z)=−∞}.
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For the convenience of the reader, we recall an additional fact from several complex variables that we
shall need.

Proposition 2.3 [Lelong and Gruman 1986, Proposition 1.39]. Let {9q} be a sequence of plurisub-
harmonic functions uniformly bounded above on compact subsets in an open connected set � ⊂ Cp,
with lim supq→∞9q ≤ 0, and suppose that there exist ξ ∈ � such that lim supq→∞9q(ξ) = 0. Then
A = {z ∈� : lim supq→∞9q(z) < 0} is pluripolar in �.

3. The functions sV (λ)= det SV (λ) and hd(θ)

For V ∈ L∞comp(R
d) and χ ∈ L∞comp(R

d) with χV = V , we have χRV (λ)χ = χR0(λ)χ(I +V R0(λ)χ)
−1.

Since for any χ with compact support in Rd , ‖χR0(λ)χ‖ ≤ cχ/|λ| when Im λ ≥ 0, we see that RV (λ)

can have only finitely many poles in the closed upper half-plane.
For V ∈ L∞comp(R

d), let SV (λ) be the associated scattering matrix and sV (λ)= det SV (λ). With at most
finitely many exceptions, the poles of sV (λ) coincide with the poles of RV (λ), and the multiplicities agree.
Moreover, sV (λ)sV (−λ)= 1.

Lemma 3.1 [Christiansen 2005, Lemma 3.1]. Let V ∈ L∞comp(R
d
;C). For λ ∈ R, there is a CV so that∣∣∣ d

dλ
ln sV (λ)

∣∣∣≤ CV |λ|
d−2

whenever |λ| is sufficiently large.

In fact, if supp V ⊂ B(0, a), there is a constant αd = αd,a , so that it suffices to take |λ| ≥ 2αd‖V ‖∞
for such a bound to hold. We note that for λ ∈ R, |λ| ≥ 2αd‖V ‖∞, under these same assumptions on V ,

‖SV (λ)− I‖ ≤ C |λ|−1. (3-1)

This is relatively easy to see from an explicit representation of the scattering matrix; see, for example, the
proof of the lemma just stated in [Christiansen 2005]. The constants in the statement of that lemma and
in (3-1) can be chosen to depend only on the dimension, ‖V ‖∞, and the support of V . We note that it
follows from Lemma 3.1, (3-1), and (2-2) that as r→∞,∫ r

0

nV (t)
t

dt =
∫ π

0
ln
∣∣det SV (reiθ )

∣∣ dθ + O(rd−1). (3-2)

Let
ρ(z) def
= ln 1+

√
1−z2

z
−

√
1− z2, 0< arg z < π. (3-3)

This is a function which arises in studying the asymptotics of Bessel functions; see [Olver 1954]. To
define the square root which appears here, take the branch cut on the negative real axis and define ρ to be
a continuous function in {0< arg z < π} ∪ (0, 1) and use the principal branches of the logarithm and the
square root when z ∈ (0, 1).

We use some notation from [Stefanov 2006]. Set, for 0< θ < π ,

hd(θ)
def
=

4
(d − 2)!

∫
∞

0

[−Re ρ]+(teiθ )

td+1 dt (3-4)
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and set hd(0)= 0, hd(π)= 0. Further, define

cd
def
=

d
2π

∫ π

0
hd(θ) dθ =

2d
π(d − 2)!

∫
Im z>0

[−Re ρ]+(z)
|z|d+2 dx dy. (3-5)

This is the constant cd that appears in (1-1).
The next result is adapted from [Stefanov 2006, Theorem 5]; the original result covers a much larger

class of operators.

Theorem 3.2. Let V ∈ L∞(Rd) be supported in B(0, a).

(a) For any θ ∈ [0, π],

ln |sV (reiθ )| ≤ hd(θ)adrd
+ o(rd) as r→∞, (3-6)

and the remainder term depends on V and is uniform for 0< δ ≤ θ ≤ π − δ for any δ ∈ (0, π).

(b) For any δ > 0,

ln |sV (reiθ )| ≤ (hd(θ)ad
+ δ)rd

+ o(rd) as r→∞

uniformly in θ ∈ [0, π].

We remark that both of these statements are about “large r” behavior, so that the possibility that sV

has a finite number of poles in the upper half-plane does not affect the validity of the statements.
It is important to note several things about the bounds in this theorem. One is that although Stefanov’s

theorem is stated only for self-adjoint operators (hence V real), it is equally valid when we allow complex-
valued potentials. In fact, the proof of (a) in [Stefanov 2006, Theorem 5] uses self-adjointness only to
obtain a bound on the resolvent for λ in the upper half-plane. A similar bound is true for the operator
−1+ V when V is complex-valued. The proof of (b) uses the fact that ln |sV (λ)| = 1 for real V and
λ ∈ R. For complex-valued V , the proof in [Stefanov 2006] of (b) can be adapted by using (3-1) and
Lemma 3.1 to show that

∣∣ln |sV (λ)|
∣∣ ≤ C(1+ |λ|)d−1 for λ ∈ R with |λ| ≥ 2αd‖V ‖∞. Here C can be

chosen to depend only on d, ‖V ‖∞, and the diameter of the support of V .
Likewise, the particulars of the operator enter only through the diameter of the support of the perturbation

(for us, the diameter of the support of V , which is 2a) and the aforementioned bound on the resolvent in
the good half-plane Im λ > 0. Thus, it is easy to see that the estimates of Theorem 3.2 are uniform in V
as long as supp V ⊂ B(0, a), ‖V ‖∞ ≤ M , and r ≥ 2αd M .

We note that the upper bound (1-1) on the integrated resonance-counting function holds with the
constant cd defined in (3-5) even if V is complex-valued. This follows from the proof in [Stefanov 2006].
In fact, the proof uses the bounds recalled in Theorem 3.2 and the identity (2-2). Together with the bounds
in Lemma 3.1 and (3-1), these prove (1-1), even when V is complex-valued.

We shall want to understand the function hd(θ) better. Note that for 0< θ ≤ π/2,

hd

(
π

2
+ θ

)
= hd

(
π

2
− θ

)
.

This can be seen directly using the definition of hd and ρ.
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Lemma 3.3. The function hd(θ), defined in (3-4), is C1 on (0, π). Moreover,

h′d(0+)
def
= lim

ε↓0
h′d(ε)=

√
π

0
( d−1

2

)
(d − 2)!0

(
1+ d

2

) .
Proof. We note [Olver 1954, Section 4] that Re ρ(z) < 0 if 0 < arg z < π and |z| > |z0(arg z)|, where
z0(θ) is the unique point in C with argument θ and which lies on the curve given by

±(s coth s− s2)1/2+ i(s2
− s tanh s)1/2, 0≤ s ≤ s0.

Here s0 is the positive solution of coth s = s. Furthermore, Re ρ(z) > 0 if z is in the upper half-plane but
|z|< |z0(arg z)|. Hence, recalling the definition of hd , we have

hd(θ)=
4

(d − 2)!

∫
∞

|z0(θ)|

[−Re ρ](teiθ )

td+1 dt.

Using the definition of ρ in (3-3) and the following comments, we see that ρ is in fact a smooth
function of z with 0< arg z < π , |z|> 0. Since |ρ(z)|/|z| → 1 when |z| →∞ in this region, the integral
defining hd is absolutely convergent. Likewise, since

∂

∂θ
ρ(teiθ )=−i

√
1− (teiθ )2,

we have ∣∣∣∣−Re
[
∂
∂θ
ρ(teiθ )

]
td+1

∣∣∣∣≤ Ct−d ,

and the integral ∫
∞

|z0(θ)|

−Re
[
∂
∂θ
ρ(teiθ )

]
td+1 dt

converges absolutely. A computation shows that |z0| is a C1 function of θ for θ in (0, π), and that
limε↓0(∂/∂θ)|z0| is finite. Thus, using that Re ρ(z0(θ))= 0 and the regularity of the derivative of |z0|(θ),
we get

d
dθ

hd(θ)=
4

(d−2)!

∫
∞

|z0(θ)|

Re i
√

1− (teiθ )2

td+1 dt,

which is continuous in θ . Thus hd is C1 on (0, π), we have

h′d(0+)=
4

(d−2)!

∫
∞

1

√
t2− 1
td+1 dt,

and a computation now finishes the proof of the lemma. �

If d = 3, we can compute that

h3(θ)=
4
9

(
sin(3θ)+Re

(1− z2
0(θ))

3/2

|z0(θ)|3

)
,

where z0(θ) is as in the proof of the lemma. We comment that the sin(3θ) term is missing from the first
remark following the statement of [Stefanov 2006, Theorem 5].
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4. Proof of Proposition 1.1

We can now give the proof of Proposition 1.1, which follows by combining Theorem 2.1, Proposition 2.2,
and [Stefanov 2006, Theorem 5].

Recall that SV (λ) is the scattering matrix associated with the operator −1+V , and sV (λ)= det SV (λ).
Then sV has a pole at λ if and only if sV has a zero at −λ, and the multiplicities coincide. Moreover, with
at most a finite number of exceptions, the poles of sV (λ) coincide, with multiplicity, with the zeros of
RV (λ).

If sV (λ) has poles in the closed upper half-plane, it has only finitely many, say λ1, . . . , λm , where the
poles are repeated according to multiplicity. Set

f (λ)=
m∏

j=1

(λ− λ j )

λ+ λ j
sV (λ).

We check that f satisfies the hypotheses of Proposition 2.2. Note that f and sV (λ) have the same order
and they have the same indicator function for 0≤ θ ≤π . We know that sV has order at most d by [Zworski
1997, Theorem 7]. Moreover, for any M chosen large enough that sV has no zeros or poles bigger than
M on the real line, for r > M we have∫ r

0

f ′(t)
f (t)

dt =
∫ r

M

s ′V (t)
sV (t)

dt + O(1).

Using (3-1) and Lemma 3.1, we see that∫ r

M

s ′V (t)
sV (t)

dt = O(rd−1) as r→∞,

yielding ∫ r

0

f ′(t)
f (t)

dt = O(rd−1) as r→∞. (4-1)

A similar argument gives the same bound for r → −∞. It remains to check the hypotheses on the
indicator function; this is done in the next paragraph.

From [Stefanov 2006, Theorem 5], recalled here in Theorem 3.2, for 0≤ θ ≤ π and large r ,

r−d ln | f (reiθ )| ≤ adhd(θ)+ o(1),

where we have some uniformity in θ . Thus, using (2-2) and (4-1), we get

lim sup
r→∞

r−d NV (r)= lim sup
r→∞

r−d 1
2π

∫ π

0
ln | f (reiθ )|dθ ≤ ad

2π

∫ π

0
hd(θ)dθ.

But since V ∈Ma ,
lim

r→∞
r−d NV (r)=

cdad

d
=

ad

2π

∫ π

0
hd(θ) dθ,

and we see that we must have

lim sup
r→∞

r−d ln | f (reiθ )| = adhd(θ), for almost every θ ∈ (0, π).
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The left-hand side of the above equation is the value of the indicator function of f at θ . But the indicator
function of f is continuous on (0, π) [Levin 1964, Section 16, point (a) on p. 54], and so is hd(θ). Thus
we must have

lim sup
r→∞

r−d ln | f (reiθ )| = adhd(θ) for θ ∈ (0, π).

Applying Proposition 2.2 to f (λ), we see that f (λ) is a function of completely regular growth in
the upper half-plane. Since hd(θ) is a C1 function of θ for θ ∈ (0, π), we get the proposition from
Theorem 2.1.

5. Proof of Theorem 1.3

This section proves Theorem 1.3. We begin by outlining the strategy of the proof.
For 0 < ϕ < θ < 2π , recall the notation nV (r, ϕ, θ) for the number of poles of RV (λ) in the sector
{z : |z| ≤ r, ϕ ≤ arg z ≤ θ}. A representative claim of the theorem is that with V (z), � as in the statement
of the theorem, 0< θ < π ,∫

�

ψ(z)nV (z)(r, π, θ +π) dL(z)= 1
2πd

[
h′d(θ)+ d2

∫ θ

0
hd(s) ds

]
adrd

∫
�

ψ(z) dL(z)+ o(rd) (5-1)

as r →∞ for any ψ ∈ Cc(�). We prove this via the intermediate step of showing that (5-1) holds
for ψ which is the characteristic function of any suitable ball in � (Proposition 5.7). To get (5-1) for
ψ ∈ Cc(�), we cover the support of ψ with the union of a finite number of small disjoint balls and a set
of small volume. On each small ball, we can approximate ψ by its value at the center of the ball and
apply Proposition 5.7. This and the necessary estimates are done in the proof of the theorem which ends
this section.

The proof of Proposition 5.7 is done in a number of steps. We set

NV (r, ϕ, θ)=
∫ r

0

1
t
(
nV (t, ϕ, θ)− nV (0, ϕ, θ)

)
dt.

Lemma 5.2 gives
∫ θ

0 NV (r, π, θ ′+π) dθ ′ as a sum of two integrals involving ln |sV | and an error of order
rd−1. This follows from an application of one-dimensional complex analysis, Lemma 3.1, and (3-1). Next
we consider the function

9(z, r, ρ) def
=

1
vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0
NV (z′)(r, π, θ ′+π) dθ ′dL(z′).

Here we use B(z, ρ) to be the ball with center z and radius ρ in Cp. Thus the function 9 is the average
over balls of varying center z. Fix ρ small, and consider this as a function of z and r . Lemma 5.2 is
used to show that 9 is the sum of a function 91 which is plurisubharmonic in z and a function which is
O(rd−1). The proof of Proposition 5.3 uses a combination of properties of plurisubharmonic functions
and the fact that r−d NV (z′)(r, π, θ ′+π) is not negative and can be (locally) uniformly bounded above for
large r to prove an “averaged” in θ and r version of (5-1) for ψ the characteristic function of a ball in �
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satisfying some conditions. Propositions 5.5 and then 5.7 eliminate the need to average in θ and r , using
Lemma 5.4.

The proofs of the other claims of Theorem 1.3 are quite similar; the proof of Proposition 5.6 and the
final proof of the theorem indicate the differences.

Now we turn to proving the theorem. We shall need an identity related to both (2-2) and to what Levin
[1964, Chapter 3, Section 2] calls a generalized formula of Jensen. We define, following [Levin 1964],
for a function f meromorphic in a neighborhood of arg z = θ and with | f (0)| = 1,

J r
f (θ)

def
=

∫ r

0

ln | f (teiθ )|

t
dt. (5-2)

This integral is well-defined even if f has a zero or pole with argument θ .

Lemma 5.1. Let f be holomorphic in ϕ ≤ arg z ≤ θ , let | f (0)| = 1, let f have no zeros with argument ϕ
or θ and with norm less than r , and let m(r, ϕ, θ) be the number of zeros of f in the sector ϕ < arg z < θ ,
|z| ≤ r . Then∫ r

0

m(t, ϕ, θ)
t

dt

=
1

2π

∫ r

0

∂

∂θ
J t

f (θ)
dt
t
+

1
2π

∫ r

0

1
t

∫ t

0

∂

∂s
arg f (seiϕ) ds dt + 1

2π

∫ θ

ϕ

ln | f (reiω)| dω. (5-3)

Proof. Using the argument principle and the Cauchy–Riemann equations just as in [Levin 1964, Chapter 3,
Section 2], we see that

2πm(r ′, ϕ, θ)=
∫ r ′

0

∂

∂t
arg f (teiϕ) dt +

∫ r ′

0

1
t
∂

∂θ
ln | f (teiθ )| dt + r ′

∫ θ

ϕ

∂

∂r ′
ln | f (r ′eiω)| dω

when there are no zeros on the boundary of the sector. As in [Levin 1964], by dividing by 2πr ′ and
integrating from 0 to r in r ′, we obtain the lemma. �

We note that |sV (0)| = 1, since sV (λ)sV (−λ)= 1.

Lemma 5.2. Suppose V ∈ L∞comp(R
d). Then for 0< θ < π ,∫ θ

0
NV (r, π, θ ′+π) dθ ′ = 1

2π

∫ r

0
J t

sV
(θ)

dt
t
+

1
2π

∫ θ

0

∫ θ ′

0
ln |sV (reiω)| dω dθ ′+ O(rd−1)

as r→∞. The error can be bounded by c〈rd−1
〉, where the constant depends only on ‖V ‖∞, the support

of V , and d.

Proof. Recall that with at most a finite number of exceptions, λ0 is a pole of RV (λ) if and only if −λ0 is
a zero of sV (λ), and the multiplicities coincide. As in the proof of Proposition 1.1, if sV (λ) has poles
λ1, . . . , λm in the closed upper half-plane, we introduce the function

f (λ)=
(λ− λ1) . . . (λ− λm)

(λ+ λ1) . . . (λ+ λm)
sV (λ),
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which is holomorphic in the closed upper half-plane. The poles of sV in the closed upper half-plane
correspond to eigenvalues, and the number of such poles can be bounded by a constant depending on d ,
‖V ‖∞, and the support of V . Note that f has no zeros on the real line and that sV and f have all but
finitely many of the same zeros. Moreover, ln | f (reiθ )| = ln |sV (reiθ )| + O(1) for r→∞, 0≤ θ ≤ π .

Choose 0< M <∞ so that sV (λ) has no zeros in the upper half-plane with norm greater than or equal
to M . This constant M can be chosen to depend only on ‖V ‖∞, the support of V , and d . Now, by using
the relationship between the poles of RV (λ) and the zeros of sV = det SV and the relationships between
f and sV just mentioned, and applying Lemma 5.1 to f , we see that for r > M , 0< θ ′ < π ,

NV (t, π, θ ′+π)=
1

2π

∫ r

M

∂

∂θ ′
J t

sV
(θ ′)

dt
t
+

1
2π

∫ r

M

1
t

∫ t

M

d
dt ′

arg sV (t ′) dt ′dt

+
1

2π

∫ θ ′

0
ln |sV (reiω)| dω+ O((ln r)2) (5-4)

if f has no zeros with argument θ ′ and norm not exceeding r . Here we are using that∫ M

0

∂

∂θ ′
J t

f (θ
′)

dt
t
= O(1)

and∫ r

0

1
t

∫ t

0

d
dt ′

arg f (t ′) dt ′dt

=

∫ r

M

1
t

∫ t

M

d
dt ′

arg f (t ′) dt ′dt +
∫ r

M

1
t

∫ M

0

d
dt ′

arg f (t ′) dt ′dt +
∫ M

0

1
t

∫ t

0

d
dt ′

arg f (t ′) dt ′dt.

But ∫ r

M

1
t

∫ M

0

d
dt ′

arg f (t ′) dt ′dt = O(ln r) and
∫ M

0

1
t

∫ t

0

d
dt ′

arg f (t ′) dt ′dt = O(1).

Additionally, for t→∞,
d
dt

arg f (t)= d
dt

arg sV (t)+ O
(1

t

)
.

These remainders can be bounded using constants depending only on ‖V ‖∞, supp V , and d .
Notice that for fixed value of r > M , there are only finitely many values of θ ′ with sV having a zero

with argument θ ′ and norm at most r . We integrate (5-4) in θ ′ from 0 to θ and, as in the proof of Jensen’s
equality, use the fact that both sides of the equation below are continuous functions of θ , to get∫ θ

0
NV (r, π, θ ′+π) dθ ′ = 1

2π

∫ r

M
J t

sV
(θ)

dt
t
−

1
2π

∫ r

M
J t

sV
(0)dt

t

+
θ

2π

∫ r

M

1
t

∫ t

M

d
dt ′

arg sV (t ′) dt ′dt + 1
2π

∫ θ

0

∫ θ ′

0
ln |sV (reiω)| dω dθ ′+ O((ln r)2).

The bounds of Lemma 3.1 and (3-1) mean that, as r→∞,

1
2π

∫ r

M
J t

sV
(0)dt

t
= O(rd−1)
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and
θ

2π

∫ r

M

1
t

∫ t

M

d
dt ′

arg sV (t ′) dt ′dt = O(rd−1),

where the bounds can be made uniform in V with support contained in a fixed compact set and ‖V ‖∞
bounded. Moreover, we note that

∫ M
0 J t

SV
(θ)(dt/t)= O(1). �

We shall need some notation for the results which follow. Let � ⊂ Cd ′ be an open set containing a
point z0. For ρ > 0 small enough that B(z0, ρ) ⊂ �, we define �ρ to be the connected component of
{z ∈� : dist(z, �c) > ρ} which contains z0.

Proposition 5.3. Let V , z0, � satisfy the assumptions of Theorem 1.2, let ρ > 0 be small enough that
B(z0, 2ρ)⊂�, and let �ρ be as defined above. Then, for z ∈�2ρ , 0< θ < π ,

9(z, r, ρ) def
=

1
vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0
NV (z′)(r, π, θ ′+π) dθ ′dL(z′)

=
1

2π
adrd

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
+ o(rd)

as r→∞.

Proof. First note that since 0 ≤ d NV (z)(z, π, θ + π) ≤ cdrdad
+ o(rd), and the bound is uniform on

compact sets of z, we get that holding ρ fixed, r−d9( · , r, ρ) is a family uniformly continuous in z for z
in compact sets of �2ρ .

We shall use Lemma 5.2. Note that by Stefanov’s results recalled in Theorem 3.2, for large r ,

1
2π

∫ r

0
J t

sV (z)
(θ)

dt
t
≤

1
2π

1
d2 hd(θ)adrd

+ o(rd),

where the term o(rd) can be bounded uniformly in z in compact sets of �ρ . Recall that this is a statement
about large r behavior, and holds even if sV (z) has poles in the upper half-plane, since it has at most
finitely many. By the same argument, for large r ,∫ θ

0

∫ θ ′

0
ln |sV (z)(reiω)| dω dθ ′ ≤

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′adrd

+ o(rd).

Using Lemma 5.2, we find that

9(z, r, ρ)= 1
2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ r

0
J t

sV (z′)(θ)
dt
t

dL(z′)

+
1

2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0

∫ θ ′

0
ln |sV (z′)(reiω)| dω dθ ′dL(z′)+ O(rd−1).
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Let M = 2αd maxz∈�ρ ‖V (z)‖∞ and set, for r > M ,

91(z, r, ρ)=
1

2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ r

M
J t

sV (z′)
(θ)

dt
t

dL(z′)

+
1

2π Vol(B(z, ρ))

∫
z′∈B(z,ρ)

∫ θ

0

∫ θ ′

0
ln |sV (z′)(reiω)| dω dθ ′dL(z′),

and note that
9(z, r, ρ)=91(z, r, ρ)+ O(rd−1).

By the bounds above,

91(z, r, ρ)≤
1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
adrd
+ o(rd). (5-5)

Using [Lelong and Gruman 1986, Proposition I.14] and the fact that ln |sV (z)(λ)| is a plurisubharmonic
function of z ∈ � when |λ| > 2αd‖V (z)‖∞ and λ lies in the upper half-plane, we see that 91(z, r, ρ)
is a plurisubharmonic function of z ∈�2ρ . Since by Proposition 2.2, sV (z0)(λ) is of completely regular
growth in 0< arg λ < π , using Lemma 5.2 and [Levin 1964, Chapter III, Section 2, Lemma 2],

lim
r→∞

r−d
∫ θ

0
NV (z0)(r, π, θ

′
+π) dθ ′ = 1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad .

By the most basic property of plurisubharmonic functions,

91(z0, r, ρ)≥
1

2π

∫ r

M
J t

sV (z0)
(θ)

dt
t
+

1
2π

∫ θ

0

∫ θ ′

0
ln |sV (z0)(reiω)| dω dθ ′.

But the right-hand side of this equation is
∫ θ

0
NV (z0)(r, π, θ

′
+π) dθ ′+ O(rd−1), so we see that

lim inf
r→∞

r−d91(z0, r, ρ)≥
1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad .

Combining this with (5-5), we find

lim
r→∞

r−d91(z0, r, ρ)=
1

2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad . (5-6)

Using this and the upper bound (5-5) on 91, since 91 is plurisubharmonic in z, it follows from [Lelong
and Gruman 1986, Proposition 1.39] (recalled here in Proposition 2.3) that for any sequence {r j }, r j→∞,
there is a pluripolar set E ⊂�ρ (which may depend on the sequence) so that

lim sup
j→∞

r−d
j 91(z, r j , ρ)=

1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad

for all z ∈�ρ \ E . Since limr→∞ r−d
(
91(z, r, ρ)−9(z, r, ρ)

)
= 0, the same conclusion holds for 9 in

place of 91.
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Suppose there is some z1 ∈�2ρ and some sequence r j →∞ so that

lim
j→∞

r−d
j 9(z1, r j , ρ) <

1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad .

Then, using the uniform continuity of r−d9(z, r, ρ) in z, we find there must be an ε > 0 so that

lim sup
j→∞

r−d
j 9(z, r j , ρ) <

1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad

for all z ∈ B(z1, ε). But since B(z1, ε) is not contained in a pluripolar set, we have a contradiction. Thus

lim
r→∞

r−d9(z, r, ρ)= 1
2π

(
1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
ad

for all z ∈�2ρ . �

The following lemma will be used to remove the need to average in θ as in Proposition 5.3.

Lemma 5.4. Let M(r, θ) be a function so that for any fixed positive r0 >C0, M(r0, θ) is a nondecreasing
function of θ , and suppose

lim
r→∞

r−d
∫ θ

0
M(r, θ ′) dθ ′ = α(θ)

for θ1 < θ < θ2. Then if α is differentiable at θ , then

lim
r→∞

r−d M(r, θ)= α′(θ).

Proof. Let ε > 0. Then, since M(r, θ) is nondecreasing in θ ,∫ θ+ε

0
M(r, θ ′) dθ ′−

∫ θ

0
M(r, θ ′) dθ ′ ≥ εM(r, θ),

which, under rearrangement, yields

r−d M(r, θ)≤ r−d

∫ θ+ε
0 M(r, θ ′) dθ ′−

∫ θ
0 M(r, θ ′) dθ ′

ε
.

Thus
lim sup

r→∞
r−d M(r, θ)≤ α(θ+ε)−α(θ)

ε
.

Likewise, we find
lim inf

r→∞
r−d M(r, θ)≥ α(θ)−α(θ−ε)

ε
.

Since both these equalities must hold for all ε > 0, the lemma follows from the assumption that α is
differentiable at θ . �

The following proposition follows from Proposition 5.3, but is stronger as it does not require averaging
in the θ ′ variables.
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Proposition 5.5. Let V , z0, � satisfy the assumptions of Theorem 1.2, and let ρ > 0 and �ρ be as in
Proposition 5.3. Then for z ∈�2ρ , 0< θ < π , as r→∞,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

NV (z′)(r, π, θ +π) dL(z′)= 1
2π

adrd
(

1
d2 h′d(θ)+

∫ θ

0
hd(ω) dω

)
+ o(rd).

Proof. This follows from applying Lemmas 5.4 and 3.3 to the results of Proposition 5.3. �

Proposition 5.5 does not give results for the counting function for all the resonances (note that we
cannot have θ = π ). The following fills this gap.

Proposition 5.6. Let V , z0, � satisfy the assumptions of Theorem 1.2, and let ρ > 0 and �ρ be as in
Proposition 5.3. Then for z ∈�2ρ , as r→∞,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

NV (z′)(r) dL(z′)= 1
2π

adrd
∫ θ

0
hd(ω) dω+ o(rd).

Proof. The proof of this is very similar to that of Proposition 5.3. In fact, the main difference is the use
of (2-2), which together with Lemma 3.1 and (3-1) gives us, by handling possible poles in the upper
half-plane using a method similar to the proof of Lemma 5.2,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

NV (z′)(r) dL(z′)=91(z, r, ρ)+ O(rd−1),

where

91(z, r, ρ)=
1

Vol(B(z, ρ))
1

2π

∫
z′∈B(z,ρ)

∫ π

0
ln |sV (z′)(reiθ )| dθ dL(z′).

Using that 91 is plurisubharmonic in z, the proof now follows just as in Proposition 5.3. �

The following proposition is much like Propositions 5.5 and 5.6, but eliminates the average in the r
variable.

Proposition 5.7. Let V, �, z0 satisfy the conditions of Theorem 1.2, and let ρ and �ρ be as in
Proposition 5.3. Then for 0< θ < π , z ∈�2ρ ,

1
Vol(B(z, ρ))

∫
z′∈B(z,ρ)

nV (z′)(r, π, θ +π) dL(z′)= adrd

2π

(
1
d

h′d(θ)+ d
∫ θ

0
hd(θ) dθ

)
+ o(rd)

and
1

Vol(B(z, ρ))

∫
z′∈B(z,ρ)

nV (z′)(r) dL(z′)= d
2π

adrd
∫ π

0
hd(θ) dθ + o(rd)

as r→∞.

Proof. This proof follows from Propositions 5.5 and 5.6, using, in addition, a result like that of [Stefanov
2006, Lemma 1] or Lemma 5.4. �
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Proof of Theorem 1.3. Let M =max(1+ |ψ(z)|), and for ρ > 0 small enough that B(z0, ρ)⊂�, set �ρ
to be the connected component of {z ∈� : dist(z, �c) > ρ} which contains z0. Given ε > 0, choose ρ > 0
such that B(z0, 2ρ)⊂� and so that

vol
(
suppψ ∩ (� \�2ρ)

)
<

ε

10Med(cdad + 1)
. (5-7)

Since ψ is continuous with compact support, we can find a δ1 > 0, δ1 < ρ so that if |z− z′|< δ1, then

|ψ(z)−ψ(z′)|<
ε

10ed(1+ vol suppψ)(adcd + 1)
.

We may find a finite number J of disjoint balls B(z j , ε j ) so that ε j < δ1, z j ⊂�2ρ , and

vol
(
suppψ \

⋃J
1 B(z j , ε j )

)
+ vol

(⋃J
1 B(z j , ε j ) \ suppψ

)
<

ε

4Med(adcd + 1)
.

Let π ≤ ϕ′ ≤ θ ′ ≤ 2π . Now∫
ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)

=

J∑
j=1

∫
B(z j ,ε j )

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)+
∫

suppψ\(∪B(z j ,ε j ))

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z).

We will use that the bound (1-1) implies that nV (z)≤ edcdadrd
+ o(rd). By our choice of B(z j , ε j ),∣∣∣∣∫

suppψ\(∪B(z j ,ε j ))

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)
∣∣∣∣≤ ε4(rd

+ o(rd)).

By our choice of δ1 and the assumption that ε j < δ1, we have∣∣∣∣ J∑
j=1

∫
B(z j ,ε j )

ψ(z)nV (z)(r, ϕ′, θ ′) dL(z)−
J∑

j=1

∫
B(z j ,ε j )

ψ(z j )nV (z)(r, ϕ′, θ ′) dL(z)
∣∣∣∣≤ ε5(rd

+ o(rd)).

By Proposition 5.7, if 0< θ < π ,

J∑
j=1

∫
B(z j ,ε j )

ψ(z j )nV (z)(r, π, π + θ)dL(z)

=

( J∑
j=1

ψ(z j ) vol(B(z j , ε j ))

)
1

2π
adrd

(
1
d

h′d(θ)+ d
∫ θ

0
hd(ω)dω

)
+ o(rd),

and
J∑

j=1

∫
B(z j ,ε j )

ψ(z j )nV (z)(r) dL(z)=
( J∑

j=1

ψ(z j ) vol(B(z j , ε j ))

)
d

2π
adrd

∫ π

0
hd(ω) dω+ o(rd).

Again using our choice of δ1, z j , and ε j , we have∣∣∣∣ J∑
j=1

ψ(z j ) vol(B(z j , ε j ))−

∫
ψ(z) dL(z)

∣∣∣∣< 2ε
5(cdad + 1)

.
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Thus we have shown that given ε > 0, if 0< θ < π ,∣∣∣∣∫ ψ(z)nV (z)(r, π, θ +π) dL(z)− adrd

2π

∫
ψ(z)dL(z)

(
1
d

h′d(θ)+ d
∫ θ

0
hd(ω) dω

)∣∣∣∣
≤ εrd

+ o(rd) (5-8)

and ∣∣∣∣∫ ψ(z)nV (z)(r) dL(z)− cdadrd
∫
ψ(z) dL(z)

∣∣∣∣≤ εrd
+ o(rd). (5-9)

Thus we have proved the first and third statements of the theorem. The second statement of the theorem
follows from the other two. �

6. Proof of Theorem 1.2

This proof uses some ideas similar to those used in the proofs of Propositions 5.3 and 5.6. In fact, because
the proofs are so similar, we shall only give an outline.

Note that by (2-2), (3-1), and Lemma 3.1, using an argument similar to the proofs of Lemma 5.2 and
Proposition 5.3,

NV (z)(r)=9(z, r)+ o(rd−1),

where

9(z, r)= 1
2π

∫ π

0
ln |sV (z)(reiθ )| dθ

is, for fixed (large) r a plurisubharmonic function of z ∈ �̃b�. Since

lim sup
r→∞

r−d9(z, r)≤ ad

2π

∫ π

0
hd(θ) dθ

and this maximum is achieved at z = z0 ∈�, we get the first part of the Theorem by applying [Lelong
and Gruman 1986, Proposition 1.39], recalled in Proposition 2.3.

To obtain the second part, note that as in the proof of Proposition 5.3, for 0< θ < π ,∫ θ

0
NV (z)(r, π, θ ′+π) dθ ′ =92(z, r, θ)+ o(rd),

where

92(z, r, θ)=
1

2π

∫ r

M
J t

sV (z)(θ)
dt
t
+

1
2π

∫ θ

0

∫ θ ′

0
ln |sV (z)(reiω)| dω dθ ′.

Since this is a plurisubharmonic function of z ∈ �̃, �̃b�, if M is chosen so that M ≥ 2αd max
z∈�̃
‖V ‖∞,

an argument using Proposition 2.3 as in the proof of Proposition 5.3 shows that there exists a pluripolar
set Eθ ⊂� so that

2π lim sup
r→∞

r−d92(z, r, θ)= ad
(

1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
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for all z ∈� \ Eθ . Again, we use that this equality holds when z = z0. Then

lim sup
r→∞

r−d
∫ θ

0
NV (z)(r, π, π + θ ′) dθ ′ =

ad

2π

(
hd(θ)

d2 +

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′

)
for z ∈� \ Eθ . (6-1)

For 0< θ < π ,
h′d(θ)

d2 +

∫ θ

0
hd(ω) dω

is a nondecreasing function of θ . This can be seen by using

lim
r→∞

r−dnṼ (r, π, π + θ)=
1

2πd

(
h′d(θ)+ d2

∫ θ

0
hd(ω) dω

)
for Ṽ ∈M1, and clearly the left-hand side is a nondecreasing function of θ . This, along with the fact that
limθ↓0 hd(θ)= 0, implies that

1
d2 hd(θ)+

∫ θ

0

∫ θ ′

0
hd(ω) dω dθ ′ ≥

θ

d2 h′d(0+)

for small θ > 0. Therefore, using (6-1), for z ∈� \ Eθ ,

lim sup
r→∞

r−d
∫ θ

0
NV (z)(r, π, π + θ ′) dθ ′ ≥

θad

2πd2 h′d(0+),

and so we must have

lim sup r−d NV (z)(r, π, π + θ)≥
ad

2πd2 h′d(0+)

for the same values of z. �
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