## ANALYSIS \& PDE

Volume $5 \quad$ No. $5 \quad 2012$

Hamid Hezari and Christopher D. SogGe

## A NATURAL LOWER BOUND FOR THE SIZE OF NODAL SETS

A NATURAL LOWER BOUND FOR THE SIZE OF NODAL SETS

Hamid Hezari and Christopher D. Sogge

We prove that, for an $n$-dimensional compact Riemannian manifold ( $M, g$ ), the ( $n-1$ )-dimensional Hausdorff measure $\left|Z_{\lambda}\right|$ of the zero-set $Z_{\lambda}$ of an eigenfunction $e_{\lambda}$ of the Laplacian having eigenvalue $-\lambda$, where $\lambda \geq 1$, and normalized by $\int_{M}\left|e_{\lambda}\right|^{2} d V_{g}=1$ satisfies

$$
C\left|Z_{\lambda}\right| \geq \lambda^{\frac{1}{2}}\left(\int_{M}\left|e_{\lambda}\right| d V_{g}\right)^{2}
$$

for some uniform constant $C$. As a consequence, we recover the lower bound $\left|Z_{\lambda}\right| \gtrsim \lambda^{(3-n) / 4}$.
The purpose of this brief note is to prove a natural lower bound for the $(n-1)$-dimensional Hausdorff measure of nodal sets of eigenfunctions. To wit:

Theorem 1. Let $(M, g)$ be a compact manifold of dimension $n$ and $e_{\lambda}$ an eigenfunction satisfying

$$
-\Delta_{g} e_{\lambda}=\lambda e_{\lambda}, \text { and } \int_{M}\left|e_{\lambda}\right|^{2} d V_{g}=1
$$

Then if $Z_{\lambda}=\left\{x \in M: e_{\lambda}(x)=0\right\}$ is the nodal set and $\left|Z_{\lambda}\right|$ its $(n-1)$-dimensional Hausdorff measure, we have

$$
\begin{equation*}
\lambda^{\frac{1}{2}}\left(\int_{M}\left|e_{\lambda}\right| d V_{g}\right)^{2} \leq C\left|Z_{\lambda}\right|, \quad \lambda \geq 1 \tag{1}
\end{equation*}
$$

for some uniform constant C. Consequently,

$$
\begin{equation*}
\lambda^{\frac{3-n}{4}} \lesssim\left|Z_{\lambda}\right|, \quad \lambda \geq 1 \tag{2}
\end{equation*}
$$

Inequality (2) follows from (1) and the lower bounds in [Sogge and Zelditch 2011a]

$$
\begin{equation*}
\lambda^{\frac{1-n}{8}} \lesssim \int_{M}\left|e_{\lambda}\right| d V_{g} \tag{3}
\end{equation*}
$$

The lower bound (2) is due to Colding and Minicozzi [2011]. Yau [1982] conjectured that $\lambda^{\frac{1}{2}} \approx\left|Z_{\lambda}\right|$. This lower bound $\lambda^{\frac{1}{2}} \lesssim\left|Z_{\lambda}\right|$ was verified in the two-dimensional case by Brüning [1978] and independently by Yau (unpublished). The bounds in (2) seem to be the best known ones for higher dimensions, although Donnelly and Fefferman [1988; 1990] showed that, as conjectured, $\left|Z_{\lambda}\right| \approx \lambda^{\frac{1}{2}}$, if $(M, g)$ is assumed to be real analytic.

[^0]The first "polynomial type" lower bounds appear to be those given in [Colding and Minicozzi 2011] and [Sogge and Zelditch 2011a] (see also [Mangoubi 2011]). As we shall point out, inequality (1) cannot be improved and it to some extent unifies the approaches in [Colding and Minicozzi 2011] and [Sogge and Zelditch 2011a]. As was shown in the latter paper, the $L^{1}$-lower bounds in (3) follow from Hölder's inequality and the $L^{p}$ eigenfunction estimates of [Sogge 1988] for the range where $2<p \leq$ $2(n+1) /(n-1)$. These too cannot be improved, but it is thought better $L^{p}$-bounds hold for a typical eigenfunction or if one makes geometric assumptions such as negative curvature (cf. [Sogge and Zelditch 2010; 2011b]). Thus, it is natural to expect to be able to improve (3) and hence the lower bounds (2) for all eigenfunctions on manifolds with negative curvature, or for "typical" eigenfunctions on any manifold. Of course, Yau's conjecture that $\left|Z_{\lambda}\right| \approx \lambda^{\frac{1}{2}}$ would be the ultimate goal, but understanding when (3) can be improved is a related problem of independent interest.

Let us now turn to the proof of Theorem 1. We shall use an identity from [Sogge and Zelditch 2011a]:

$$
\begin{equation*}
\int_{M}\left|e_{\lambda}\right|\left(\Delta_{g}+\lambda\right) f d V_{g}=2 \int_{Z_{\lambda}}\left|\nabla_{g} e_{\lambda}\right| f d S_{g} \tag{4}
\end{equation*}
$$

Here $d S_{g}$ is the Riemannian surface measure on $Z_{\lambda}$, and $\nabla_{g}$ is the gradient coming from the metric and $\left|\nabla_{g} u\right|$ is the norm coming from the metric, meaning that in local coordinates

$$
\begin{equation*}
\left|\nabla_{g} u\right|_{g}^{2}=\sum_{j k=1}^{n} g_{j k}(x) \partial_{j} u \partial_{k} u \tag{5}
\end{equation*}
$$

Identity (4) follows from the Gauss-Green formula and a related earlier identity was proved by Dong [1992].

As in [Hezari and Wang 2011], if we take $f \equiv 1$ and apply Schwarz's inequality we get

$$
\begin{equation*}
\lambda \int_{M}\left|e_{\lambda}\right| d V_{g} \leq 2\left|Z_{\lambda}\right|^{1 / 2}\left(\int_{Z_{\lambda}}\left|\nabla_{g} e_{\lambda}\right|^{2} d S_{g}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

Thus we would have (1) if we could prove that the energy of $e_{\lambda}$ on its nodal set satisfies the natural bounds

$$
\begin{equation*}
\int_{Z_{\lambda}}\left|\nabla_{g} e_{\lambda}\right|^{2} d S_{g} \lesssim \lambda^{\frac{3}{2}} \tag{7}
\end{equation*}
$$

We shall do this by choosing a different auxiliary function $f$. This time we want to use

$$
\begin{equation*}
f=\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

If we plug this into (4) we get that

$$
2 \int_{Z_{\lambda}}\left|\nabla_{g} e_{\lambda}\right|_{g}^{2} d S_{g} \leq \int_{M}\left|e_{\lambda}\right|\left(\Delta_{g}+\lambda\right)\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}} d V_{g}
$$

Since we have the $L^{2}$-Sobolev bounds

$$
\begin{equation*}
\left\|e_{\lambda}\right\|_{H^{s}(M)}=O\left(\lambda^{\frac{s}{2}}\right) \tag{9}
\end{equation*}
$$

it is clear that

$$
\lambda \int_{M}\left|e_{\lambda}\right|\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}\right)^{\frac{1}{2}} d V_{g}=O\left(\lambda^{\frac{3}{2}}\right)
$$

and thus to prove (7), it suffices to show that

$$
\begin{equation*}
\int_{M}\left|e_{\lambda}\right| \Delta_{g}\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}\right)^{\frac{1}{2}} d V_{g}=O\left(\lambda^{\frac{3}{2}}\right) \tag{10}
\end{equation*}
$$

To prove this we first note that

$$
\partial_{k}\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}\right)^{\frac{1}{2}}=\frac{\lambda e_{\lambda} \partial_{k} e_{\lambda}+\frac{1}{2} \partial_{k}\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}}{\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}}
$$

from this and (9) we deduce that

$$
\int_{M}\left|e_{\lambda}\right|\left|\nabla_{g}\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}\right| d V_{g}=O(\lambda)
$$

This means that the contribution of the first order terms of the Laplace-Beltrami operator (written in local coordinates) to (10) are better than required, and so it suffices to show that in a compact subset $K$ of a local coordinate patch we have

$$
\begin{equation*}
\int_{K}\left|e_{\lambda}\right|\left|\partial_{j} \partial_{k}\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}\right| d V_{g}=O\left(\lambda^{\frac{3}{2}}\right) \tag{11}
\end{equation*}
$$

A calculation shows that $\partial_{j} \partial_{k}\left(\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}$ equals

$$
-\frac{\left(\lambda e_{\lambda} \partial_{j} e_{\lambda}+\frac{1}{2} \partial_{j}\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}\right)\left(\lambda e_{\lambda} \partial_{k} e_{\lambda}+\frac{1}{2} \partial_{k}\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}\right)}{\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{3}{2}}}+\frac{\lambda \partial_{j} e_{\lambda} \partial_{k} e_{\lambda}+\lambda e_{\lambda} \partial_{j} \partial_{k} e_{\lambda}+\frac{1}{2} \partial_{j} \partial_{k}\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}}{\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}}
$$

If $\left|D^{m} f\right|=\sum_{|\alpha|=m}\left|\partial^{\alpha} f\right|$, then by (5)

$$
\partial_{k}\left|\nabla_{g} e_{\lambda}\right|^{2}=O\left(\left|D^{2} e_{\lambda}\right|\left|D e_{\lambda}\right|+\left|D e_{\lambda}\right|^{2}\right)
$$

and

$$
\partial_{j} \partial_{k}\left|\nabla_{g} e_{\lambda}\right|_{g}^{2}=O\left(\left|D^{3} e_{\lambda}\right|\left|D e_{\lambda}\right|+\left|D^{2} e_{\lambda}\right|^{2}+\left|D^{2} e_{\lambda}\right|\left|D e_{\lambda}\right|+\left|D e_{\lambda}\right|^{2}\right)
$$

Therefore,

$$
\begin{aligned}
& \partial_{j} \partial_{k}\left(\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}} \\
& \quad=O\left(\frac{\lambda^{2}\left|e_{\lambda}\right|^{2}\left|D e_{\lambda}\right|^{2}+\left|D^{2} e_{\lambda}\right|^{2}\left|D e_{\lambda}\right|^{2}+\left|D e_{\lambda}\right|^{4}}{\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{3}{2}}}\right) \\
& \\
& \quad \begin{array}{l}
\quad+O\left(\frac{\lambda\left|D e_{\lambda}\right|^{2}+\lambda\left|e_{\lambda}\right|\left|D^{2} e_{\lambda}\right|+\left|D^{3} e_{\lambda}\right|\left|D e_{\lambda}\right|+\left|D^{2} e_{\lambda}\right|^{2}+\left|D^{2} e_{\lambda}\right|\left|D e_{\lambda}\right|+\left|D e_{\lambda}\right|^{2}}{\left(1+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}}\right)
\end{array} .
\end{aligned}
$$

This implies that the integrand in the left side of (11) is dominated by

$$
\begin{aligned}
\left(\lambda^{\frac{1}{2}}\left|D e_{\lambda}\right|^{2}+\right. & \left.\lambda^{-\frac{1}{2}}\left|D^{2} e_{\lambda}\right|^{2}+\left|D e_{\lambda}\right|^{2}\right) \\
& +\left(\lambda^{\frac{1}{2}}\left|D e_{\lambda}\right|^{2}+\lambda^{\frac{1}{2}}\left|e_{\lambda}\right|\left|D^{2} e_{\lambda}\right|+\left|e_{\lambda}\right|\left|D^{3} e_{\lambda}\right|+\lambda^{-\frac{1}{2}}\left|D^{2} e_{\lambda}\right|^{2}+\left|D^{2} e_{\lambda}\right|\left|e_{\lambda}\right|+\left|D e_{\lambda}\right|\left|e_{\lambda}\right|\right)
\end{aligned}
$$

leading to (11) after applying (9).

## Remarks.

- We could also have taken $f$ to be $\left(\lambda+\lambda e_{\lambda}^{2}+\left|\nabla_{g} e_{\lambda}\right|^{2}\right)^{\frac{1}{2}}$ and obtained the same upper bounds, but there does not seem to be any advantage to doing this.
- Inequality (1) cannot be improved. There are many cases when the $L^{1}$ and $L^{2}$-norms of eigenfunctions are comparable. For instance, for the sphere the zonal functions have this property and it is easy to check that their nodal sets satisfy $\left|Z_{\lambda}\right| \approx \lambda^{\frac{1}{2}}$, which means that for zonal functions (1) cannot be improved.
- There are many cases where inequality (1) can be improved. For instance, the $L^{2}$-normalized highest weight spherical harmonics $Q_{k}$ have eigenvalues $\lambda=\lambda_{k} \approx k^{2}$, and $L^{1}$-norms $\approx k^{-\frac{n-1}{4}}$ (see e.g., [Sogge 1986]). This means that for the highest weight spherical harmonics the left side is proportional to $\lambda^{\frac{3-n}{4}}$ even though here too $\left|Z_{\lambda}\right| \approx \lambda^{\frac{1}{2}}$. Similarly, the highest weight spherical harmonics saturate (7). It is because of functions like the highest weight spherical harmonics that the current techniques only seem to yield (2). Note that inequality (2) gives the correct lower bound in the trivial case where the dimension $n$ is one. As the dimension increases, the bound gets worse and worse due to the fact that (3) is saturated by functions like the highest weight spherical harmonics ("Gaussian beams") whose mass is supported on a $\lambda^{-\frac{1}{4}}$ neighborhood of a geodesic and the volume of such a tube decreases geometrically as $n$ increases. (See [Bourgain 2009; Sogge 2011] for related work on this phenomena.)
- W. Minicozzi pointed out to us that (7) also follows from the identity

$$
\begin{equation*}
2 \int_{Z_{\lambda}}\left|\nabla_{g} e_{\lambda}\right|^{2} d S_{g}=-\int_{M} \operatorname{sgn}\left(e_{\lambda}\right) \operatorname{div} g\left(\left|\nabla_{g} e_{\lambda}\right| \nabla_{g} e_{\lambda}\right) d V_{g} \tag{12}
\end{equation*}
$$

and (9). Like the proof of (4) in [Sogge and Zelditch 2011a], the identity (12) follows from an application of the divergence theorem applied to each of the nodal domains of $e_{\lambda}$.

## Acknowledgments

The authors wish to thank W. Minicozzi and S. Zelditch for several helpful and interesting discussions.

## References

[Bourgain 2009] J. Bourgain, "Geodesic restrictions and $L^{p}$-estimates for eigenfunctions of Riemannian surfaces", pp. 27-35 in Linear and complex analysis, edited by A. Alexandrov et al., Amer. Math. Soc. Transl. Ser. 2 226, American Mathematical Society, Providence, RI, 2009. MR 2011b:58066 Zbl 1189.58015
[Brüning 1978] J. Brüning, "Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators", Math. Z. 158:1 (1978), 15-21. MR 57 \#17732 Zbl 0349.58012
[Colding and Minicozzi 2011] T. H. Colding and W. P. Minicozzi, II, "Lower bounds for nodal sets of eigenfunctions", Comm. Math. Phys. 306:3 (2011), 777-784. MR 2825508 Zbl 1238.58020
[Dong 1992] R.-T. Dong, "Nodal sets of eigenfunctions on Riemann surfaces", J. Differential Geom. 36:2 (1992), 493-506. MR 93h:58159 Zbl 0776.53024
[Donnelly and Fefferman 1988] H. Donnelly and C. Fefferman, "Nodal sets of eigenfunctions on Riemannian manifolds", Invent. Math. 93:1 (1988), 161-183. MR 89m:58207 Zbl 0659.58047
[Donnelly and Fefferman 1990] H. Donnelly and C. Fefferman, "Nodal sets for eigenfunctions of the Laplacian on surfaces", J. Amer. Math. Soc. 3:2 (1990), 333-353. MR 92d:58209 Zbl 0702.58077
[Hezari and Wang 2011] H. Hezari and Z. Wang, "Lower bounds for volumes of nodal sets: an improvement of a result of Sogge-Zelditch", preprint, 2011. arXiv 1107.0092
[Mangoubi 2011] D. Mangoubi, "A remark on recent lower bounds for nodal sets", Comm. Partial Differential Equations 36:12 (2011), 2208-2212. MR 2852075 Zbl 1232.58025 arXiv 1010.4579
[Sogge 1986] C. D. Sogge, "Oscillatory integrals and spherical harmonics", Duke Math. J. 53:1 (1986), 43-65. MR 87g:42026 Zbl 0636.42018
[Sogge 1988] C. D. Sogge, "Concerning the $L^{p}$ norm of spectral clusters for second-order elliptic operators on compact manifolds", J. Funct. Anal. 77:1 (1988), 123-138. MR 89d:35131 Zbl 0641.46011
[Sogge 2011] C. D. Sogge, "Kakeya-Nikodym averages and $L^{p}$-norms of eigenfunctions", Tohoku Math. J. (2) 63:4 (2011), 519-538. MR 2872954 Zbl 1234.35156 arXiv 0907.4827
[Sogge and Zelditch 2010] C. D. Sogge and S. Zelditch, "Concerning the $L^{4}$ norms of typical eigenfunctions on compact surfaces", preprint, 2010. arXiv 1011.0215
[Sogge and Zelditch 2011a] C. D. Sogge and S. Zelditch, "Lower bounds on the Hausdorff measure of nodal sets", Math. Res. Lett. 18:1 (2011), 25-37. MR 2012c:58055 Zbl 06026600
[Sogge and Zelditch 2011b] C. D. Sogge and S. Zelditch, "On eigenfunction restriction estimates and $L^{4}$-bounds for compact surfaces with nonpositive curvature", preprint, 2011. arXiv 1108.2726
[Yau 1982] S. T. Yau, "Survey on partial differential equations in differential geometry", pp. 3-71 in Seminar on Differential Geometry, edited by S. T. Yau, Ann. of Math. Stud. 102, Princeton University Press, Princeton, NJ, 1982. MR 83i:53003 Zbl 0478.53001

Received 12 Aug 2011. Accepted 24 Oct 2011.
Hamid Hezari: hezari@math.uci.edu
Department of Mathematics, University of California, Irvine, CA 92697, United States
Christopher D. Sogge: sogge@jhu.edu
Department of Mathematics, Johns Hopkins University, Baltimore, MD 21093, United States

# Analysis \& PDE 

msp.berkeley.edu/apde

## EDITORS

| Editor-IN-CHIEF |  |  |  |
| :---: | :---: | :---: | :---: |
| Maciej Zworski |  |  |  |
|  | University of Berkeley | of California ley, USA |  |
| Board of Editors |  |  |  |
| Michael Aizenman | Princeton University, USA aizenman@math.princeton.edu | Nicolas Burq | Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr |
| Luis A. Caffarelli | University of Texas, USA caffarel@math.utexas.edu | un-Yung Alice Chang | Princeton University, USA chang@math.princeton.edu |
| Michael Christ | University of California, Berkeley, USA mchrist@math.berkeley.edu | Charles Fefferman | Princeton University, USA cf@math.princeton.edu |
| Ursula Hamenstaedt | Universität Bonn, Germany ursula@math.uni-bonn.de | Nigel Higson | Pennsylvania State Univesity, USA higson@math.psu.edu |
| Vaughan Jones | University of California, Berkeley, USA vfr@math.berkeley.edu | Herbert Koch | Universität Bonn, Germany koch@math.uni-bonn.de |
| Izabella Laba | University of British Columbia, Canada ilaba@math.ubc.ca | Gilles Lebeau | Université de Nice Sophia Antipolis, France lebeau@unice.fr |
| László Lempert | Purdue University, USA lempert@math.purdue.edu | Richard B. Melrose | Massachussets Institute of Technology, USA rbm@math.mit.edu |
| Frank Merle | Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr | William Minicozzi II | Johns Hopkins University, USA minicozz@math.jhu.edu |
| Werner Müller | Universität Bonn, Germany mueller@math.uni-bonn.de | Yuval Peres | University of California, Berkeley, USA peres@stat.berkeley.edu |
| Gilles Pisier | Texas A\&M University, and Paris 6 pisier@math.tamu.edu | Tristan Rivière | ETH, Switzerland riviere@math.ethz.ch |
| Igor Rodnianski | Princeton University, USA irod@math.princeton.edu | Wilhelm Schlag | University of Chicago, USA schlag@math.uchicago.edu |
| Sylvia Serfaty | New York University, USA serfaty@cims.nyu.edu | Yum-Tong Siu | Harvard University, USA siu@math.harvard.edu |
| Terence Tao | University of California, Los Angeles, USA tao@math.ucla.edu | A Michael E. Taylor | Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu |
| Gunther Uhlmann | University of Washington, USA gunther@math.washington.edu | András Vasy | Stanford University, USA andras@math.stanford.edu |
| Dan Virgil Voiculescu | University of California, Berkeley, USA dvv@math.berkeley.edu | Steven Zelditch | Northwestern University, USA zelditch@math.northwestern.edu |

## PRODUCTION

production@msp.org

$$
\text { Silvio Levy, Scientific Editor } \quad \text { Sheila Newbery, Senior Production Editor }
$$

## See inside back cover or msp.berkeley.edu/apde for submission instructions

The subscription price for 2012 is US $\$ 140 /$ year for the electronic version, and $\$ 240 /$ year for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Analysis \& PDE, at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.

## PUBLISHED BY

E. mathematical sciences publishers
http://msp.org/
A NON-PROFIT CORPORATION
Typeset in LATEX
Copyright ©2012 by Mathematical Sciences Publishers

## ANALYSIS \& PDE

Volume 5 No. 52012
An inverse problem for the wave equation with one measurement and the pseudorandom ..... 887sourceTapio Helin, Matti Lassas and Lauri Oksanen
Two-dimensional nonlinear Schrödinger equation with random radial data ..... 913
Yu Deng
Schrödinger operators and the distribution of resonances in sectors ..... 961
Tanya J. Christiansen
Weighted maximal regularity estimates and solvability of nonsmooth elliptic systems, II ..... 983
Pascal Auscher and Andreas Rosén
The two-phase Stefan problem: regularization near Lipschitz initial data by phase dynamics ..... 1063
Sunhi Choi and Inwon Kim
$C^{\infty}$ spectral rigidity of the ellipse ..... 1105
Hamid Hezari and Steve Zelditch
A natural lower bound for the size of nodal sets ..... 1133
Hamid Hezari and Christopher D. Sogge
Effective integrable dynamics for a certain nonlinear wave equation ..... 1139
Patrick Gérard and Sandrine Grellier
Nonlinear Schrödinger equation and frequency saturation ..... 1157
Rémi Carles


[^0]:    The authors were supported in part by NSF grants DMS-0969745 and DMS-1069175.
    MSC2010: 35P15.
    Keywords: eigenfunctions, nodal lines.

