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We consider two problems in the asymptotic behavior of semilinear second order wave equations. First,
we consider the Ḣ 1

x × L2
x scattering theory for the energy log-subcritical wave equation

�u = |u|4ug(|u|)

in R1+3, where g has logarithmic growth at 0. We discuss the solution with general (respectively
spherically symmetric) initial data in the logarithmically weighted (respectively lower regularity) Sobolev
space. We also include some observation about scattering in the energy subcritical case. The second
problem studied involves the energy log-supercritical wave equation

�u = |u|4u logα(2+ |u|2) for 0< α ≤ 4
3

in R1+3. We prove the same results of global existence and (Ḣ 1
x ∩ Ḣ 2

x )× H 1
x scattering for this equation

with a slightly higher power of the logarithm factor in the nonlinearity than that allowed in previous work
by Tao (J. Hyperbolic Differ. Equ., 4:2 (2007), 259–265).

1. Introduction

Consider the semilinear wave equation

�u := −∂2
t u+4u = f (u) on R×R3,

u(0, x)= u0(x),

∂t u(0, x)= u1(x),

(1)

where f is a complex-valued function. Let the potential function F : C→ R be a real-valued function
such that

2Fz̄(z)= f (z), (2)

with F(0) = 0 and u being the solution to (1) with initial data u0 ∈ Ḣ 1
x ∩ {φ :

∫
R3 F(φ) dx <∞} and

u1 ∈ L2
x . We can easily verify that the equation has conserved energy

E(u)(t) :=
∫

R3

1
2 |ut(t, x)|2+ 1

2 |∇u(t, x)|2+ F(u(t, x)) dx . (3)
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The main goal of the paper is to study the Ḣ 1
x × L2

x scattering theory for log-subcritical wave equations
with finite energy initial data, where the energy is defined by (3). In this paper, the term log-subcritical
wave equation refers to (1) with f defined by

f (z) :=
{
|z|4zg(|z|), |z| 6= 0,
0, |z| = 0,

(4)

where g : (0,∞)→ R is smooth, nonincreasing, and satisfies

g(x) :=


−log x, 0< x < 1

3 ,

∼ 1, 1
3 ≤ x < 1,

1, x ≥ 1.
(5)

We also prove global existence in the case of spherical symmetry for log-supercritical wave equations,
by which we mean equations of the form

�u = |u|4u logα(2+ |u|2) (6)

In this paper, we will allow 0< α ≤ 4
3 , extending the range 0< α ≤ 1 allowed in [Tao 2007]. We also

assume that the initial data is in the energy space, the set of data for which the energy (3) is finite.

Remark 1.1. We can easily compute that the potential function of log-subcritical wave equations (1), (4),
and (5) is

Fsub(z)=


−

1
6 |z|

6
(
log(|z|)− 1

6

)
, 0< |z|< 1

3 ,

∼
1
6 |z|

6, 1
3 ≤ |z|< 1,

1
6 |z|

6, |z| ≥ 1,

(7)

and the potential function of the log-supercritical wave equations (6) is

Fsup(z)∼ |z|6 logα(2+ |z|2). (8)

We quickly recall some common terminology associated to the scaling properties of (1). Consider
f (z)= |z|p−1z and let u be the solution of (1). By scaling, λ2/(1−p)u(t/λ, x/λ) is also a solution with
initial data λ2/(1−p)u0(t0/λ, x/λ) and λ(1+p)/(1−p)u1(t0/λ, x/λ). Hence the scaling of u preserves the
homogeneous Sobolev norm ‖u0‖Ḣ sc (R3)+‖u1‖Ḣ sc−1(R3) if

sc :=
3
2
−

2
p− 1

, or equivalently p = 1+
4

3− 2sc
.

Definition 1.2. For f (z)=|z|p−1z and a given value s, we call (1) an Ḣ s
x -critical (subcritical, supercritical)

nonlinear wave equation if p equals (is less than, is greater than) 1+4/(3−2s). In particular, when s = 1,
we call (1) an energy critical (subcritical, supercritical) nonlinear wave equation if p = 5 (p < 5, p > 5).

The results of global existence and uniqueness for the energy-critical (�u = |u|4u) and energy-
subcritical (�u = |u|p−1u, where p < 5) wave equations are already established by [Brenner and von
Wahl 1981; Struwe 1988; Grillakis 1990; 1992; Shatah and Struwe 1993; 1994; Kapitanski 1994; Ginibre
and Velo 1985]. It is natural to consider the decay of the solution, which we expect to behave linearly
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as t → ±∞. The decay estimate and scattering theory (see section 2 for definition) of critical wave
equations are shown in [Bahouri and Shatah 1998]; see also [Bahouri and Gérard 1999; Ginibre and Velo
1989; Nakanishi 1999]. Hidano [2001] (see also [Ginibre and Velo 1987]), by the property of conformal
invariance, proved that the solutions for certain subcritical wave equations ( 5

2 < p ≤ 3) scatter in the
weighted Sobolev space 6 := X × Y , where

X := H 1
x (R

3)∩ {φ : |x |∇φ ∈ L2
x(R

3)}, Y := L2
x(R

3)∩ {φ : |x |φ ∈ L2
x(R

3)}.

However, for energy subcritical equations, the Ḣ 1
x × L2

x scattering theory1 still remains open. In this
paper, we consider the solutions to the log-subcritical wave equations (1), (4), and (5) with finite energy
initial data. The global existence result is established in [Grillakis 1990; 1992; Kapitanski 1994; Nakanishi
1999]. We will prove that the solutions with a class of initial data scatter in Ḣ 1

x × L2
x . This class of data is

contained in logarithmically weighted Sobolev spaces X1× Y1, where

X1 : = Ḣ 1
x (R

3)∩ {φ : logγ (1+ |x |)∇φ ∈ L2
x(R

3)},

Y1 : = L2
x(R

3)∩ {φ : logγ (1+ |x |)φ ∈ L2
x(R

3)}
(9)

for some γ > 1
2 . For initial data in these spaces, we show that the potential energy of the solution decays

logarithmically for all large times. After dividing the time interval suitably, this decay helps us to control
the key spacetime norm ‖ f (u)‖L1

t L2
x
. This spacetime bound implies scattering (we will sketch the proof in

Section 2; see also [Bahouri and Shatah 1998]). Our proof of the spacetime bound involves establishing a
decay rate for certain constant-time norms of the solution and a bootstrap scheme motivated by that in
[Tao 2007]. We rely heavily on ideas from [Bahouri and Shatah 1998].

The second part of this paper considers the solution of log-subcritical wave equations with spherically
symmetric data. We prove that the solution u with initial data in X2× Y2 scatters in Ḣ 1

x × L2
x , where

X2 := Ḣ 1
x (R

3)∩
( ⋃
δ>0

Ḣ 1−δ
x (R3)

)
, Y2 := L2

x(R
3)∩

( ⋃
δ>0

Ḣ−δx (R3)
)
. (10)

Our proof again uses the ideas from [Tao 2007] and the classical Morawetz inequality; see [Morawetz
1968]. However, we need a slightly sharpened version of the bootstrap argument. We also give remarks
for some specific energy subcritical wave equations (see page 15 and following).

The third part of this paper studies global existence for log-supercritical wave equations. The global
regularity of energy supercritical wave equations (�u = |u|p−1u, where p > 5) is still open. In [Tao
2007], the author considered the log-supercritical wave equation

�u = u5 logα(2+ u2) (11)

with spherically symmetric initial data and established a global regularity result for 0<α≤ 1. For general
initial data, the same result for loglog-supercritical wave equations

�u = u5 logc(log(10+ u2))

1 Ḣ1
x × L2

x scattering is defined in Definition 2.1.
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with 0< c < 8
225 is obtained in [Roy 2009]. In the present paper, we extend the result in [Tao 2007] to

the range 0< α ≤ 4
3 , again for spherically symmetric data. This improvement is attained by employing

the potential energy bound in place of the kinetic energy bound used in [Tao 2007] for pointwise control.

2. Definitions, notation, and preliminaries

Throughout this paper, we use M . N to denote the estimate M ≤ C N for some absolute constant C
(which can vary from line to line).

We use Lq
t Lr

x to denote the spacetime norm

‖u‖Lq
t Lr

x (I×R3) :=

(∫
I

(∫
R3
|u(t, x)|r dx

)q/r

dt
)1/q

with the usual modifications when q or r is equal to infinity.

Definition 2.1. We say that a global solution u : R×R3
→ C to (1) scatters in Ḣ 1

x × L2
x (or Ḣ 1

x × L2
x

scattering) as t→+∞ (−∞) if there exists a linear solution v+ (v−) with initial data in Ḣ 1
x × L2

x such
that

‖u(t, x)− v+(t, x)‖Ḣ1
x×L2

x
→ 0 as t→+∞

(‖u(t, x)− v−(t, x)‖Ḣ1
x×L2

x
→ 0 as t→−∞).

Remark 2.2. We will sketch here that the spacetime bound,

‖ f (u)‖L1
t L2

x ([t0,∞)×R3) <∞ (12)

for some t0 > 0, of the solution u to (1) implies the Ḣ 1
x × L2

x scattering (as t→∞). Let

u ∈ C1
t (R, Ḣ 1

x (R
3))∩C0

t (R, L2
x(R

3))

be the solution to (1) and let v satisfy �v = 0 with initial data v0 ∈ Ḣ 1
x (R

3), v1 ∈ L2
x(R

3) (to be chosen
shortly). By Duhamel’s formula,

u(t, x)= cos
(
t
√
−4

)
u0(x)+

sin
(
t
√
−4

)
√
−4

u1(x)−
∫ t

0

sin
(
(t − τ)

√
−4

)
√
−4

f (u(τ )) dτ (13)

and

v(t, x)= cos
(
t
√
−4

)
v0(x)+

sin
(
t
√
−4

)
√
−4

v1(x), (14)

where the operators cos
(
t
√
−4

)
and sin

(
t
√
−4

)
/
√
−4 are defined by(

cos
(
t
√
−4

)
φ
)̂
(ξ)= cos(t |ξ |)φ̂(ξ)

and (
sin
(
t
√
−4

)
√
−4

φ

)̂
(ξ)=

sin(t |ξ |)
|ξ |

φ̂(ξ).
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Hence, that the solution u scatters and asymptotically approaches v in Ḣ 1
x × L2

x means that∥∥∥∥cos
(
t
√
−4

)
(u0− v0)+

sin
(
t
√
−4

)
√
−4

(u1− v1)−

∫ t

0

sin
(
(t − τ)

√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x×L2

x

→ 0 (15)

as t→∞. From basic trigonometric identities, we can verify that (15) is implied by∥∥∥∥(u0− v0)+

∫ t

0

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x

→ 0

and ∥∥∥∥(u1− v1)+

∫ t

0
cos
(
−τ
√
−4

)
f (u(τ )) dτ

∥∥∥∥
L2

x

→ 0

as t→∞. Therefore, if(∫ t

0

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ,
∫ t

0
cos
(
−τ
√
−4

)
f (u(τ )) dτ

)
(16)

converges in Ḣ 1
x × L2

x as t→∞, and we take

v0(x) := u0(x)−
∫
∞

0

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ,

v1(x) := u1(x)−
∫
∞

0
cos
(
−τ
√
−4

)
f (u(τ )) dτ,

in (14), we then have, by (13), (14), and elementary trigonometric formulas,

‖u− v‖Ḣ1
x×L2

x
=

∥∥∥∥−∫ t

0

sin
(
(t−τ)

√
−4

)
√
−4

f (u(τ )) dτ +
∫
∞

0

cos
(
t
√
−4

)
sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ

+

∫
∞

0

sin
(
t
√
−4

)
cos

(
−τ
√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x×L2

x

=

∥∥∥∥∫ ∞
t

sin(t−τ)
√
−4

√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x×L2

x

. (17)

It remains to show two things:

(i) Our initial data v0, v1 are well-defined, that is, that (16) does indeed converge in Ḣ 1
x × L2

x .

(ii) The right side of (17) converges to 0 as t→∞.

The claim (i) can be shown in several ways, for example, by showing that

lim
N→∞

∥∥∥∥∫ ∞
N

sin
(
−τ
√
−4

)
√
−4

f (u(τ )) dτ
∥∥∥∥

Ḣ1
x

= 0 and lim
N→∞

∥∥∥∥∫ ∞
N

cos
(
−τ
√
−4

)
f (u(τ )) dτ

∥∥∥∥
L2

x

= 0,

where N ∈N. These two equalities follow from the dominated convergence theorem once we show that∫
∞

0

∥∥∥∥sin
(
−τ
√
−4

)
√
−4

f (u(τ ))
∥∥∥∥

Ḣ1
x

(τ ) dτ <∞ and
∫
∞

0

∥∥cos
(
−τ
√
−4

)
f (u(τ ))

∥∥
L2

x
(τ ) dτ <∞.
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But this follows quickly from (12) and the Plancherel theorem.
Claim (ii) has already been established in the discussion of claim (i). This concludes the argument that

the finiteness of (12) implies scattering.

Definition 2.3. We say that the pair (q, r) is admissible if 2≤ q, r ≤∞, (q, r) 6= (2,∞) and

1
q
+

1
r
≤

1
2
. (18)

Theorem 2.4 (Strichartz estimates for wave equation [Strichartz 1977; Kapitanski 1989; Ginibre and Velo
1995; Lindblad and Sogge 1995; Keel and Tao 1998]). Let I be a time interval and let u : I ×R3

→ C

be a Schwartz solution to the wave equation �u = G with initial data u(t0)= u0, ∂t u(t0)= u1 for some
t0 ∈ I . Then we have the estimates

‖u‖Lq
t Lr

x (I×R3)+‖u‖C0
t Ḣσ

x (I×R3)+‖∂t u‖C0
t Ḣσ−1

x (I×R3).‖u0‖Ḣσ
x (R

3)+‖u1‖Ḣσ−1
x (R3)+‖G‖L q̃′

t L r̃ ′
x (I×R3)

, (19)

where (q, r) and (q̃, r̃) are admissible pairs and obey the scaling condition

1
q
+

3
r
=

3
2
− σ =

1
q̃ ′
+

3
r̃ ′
− 2, (20)

and where q̃ ′ and r̃ ′ are conjugate to q̃ and r̃ , respectively. In addition, if u is a spherically symmetric
solution, we allow (q, r)= (2,∞).

We define the Strichartz space Sσ (I ) for any time interval I, as the closure of the Schwartz function on
I ×R3 under the norm

‖u‖Sσ (I ) := sup
(q,r) admissible

‖u‖Lq
t Lr

x (I×R3), (21)

where (q, r) satisfies (20).

Morawetz inequality [Morawetz 1968]. Let I be any time interval and u : I ×R3
→ C be the solution

to (1) with finite energy E. Let F be the potential function as in (2). Then∫
I

∫
R3

F(u)
|x |

dx dt . E . (22)

Spherically symmetric solutions. In the last part of this section, we assume that u is the spherically
symmetric solution to the log-subcritical wave equations (4), (5) (or log-supercritical wave equation (6))
and F is the corresponding potential function. We obtain the following a priori estimate for the solution.

Lemma 2.5 (pointwise estimate for spherically symmetric solution [Ginibre et al. 1992; Tao 2007]). Let
I be any time interval and let u : I ×R3

→ C be the spherically symmetric solution to the log-subcritical
wave equations (4), (5) (or log-supercritical wave equation (6)) with finite energy E and vanishing at∞.
Let F be the potential function. Then, for any t ∈ I ,

|x |2(F(u)1/2|u|)(t, x). E (23)
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Proof. We tackle the log-subcritical case; the proof for the log-supercritical case is similar and easier.
Define φ(z) := (F(z))1/2z and r := |x |. From (7), we can compute that, for fixed t ,∣∣∂r (φ(u(t, x))

)∣∣. |u|3|∂r u|(t, x)χ{|u|≥1/3}(x)+ |u|3(−log |u|)1/2|∂r u|(t, x)χ{|u|<1/3}(x),

where χ is the characteristic function on R3. Then, by the fundamental theorem of calculus, Hölder’s
inequality, and energy conservation,

|φ(u(t, x))|.
∣∣∣∣∫ ∞

r

[
|u|3|∂r u|χ{|u|≥1/3}+ |u|3(−log |u|)1/2|∂r u|χ{|u|<1/3}

]
(t, s) ds

∣∣∣∣
.

(∫
∞

r

|u|6

s2 s2χ2
{|u|≥1/3} ds

)1/2(∫ ∞
r

|∂r u|2

s2 χ{|u|≥1/3}s2 ds
)1/2

+

(∫
∞

r

|u|6(−log |u|)
s2 s2χ2

{|u|<1/3} ds
)1/2(∫ ∞

r

|∂r u|2

s2 χ{|u|<1/3}s2 ds
)1/2

. 1
r2

(∫
R3

F(u) dx
)1/2

E1/2 . 1
r2 E . �

Inserting (23) into (22), we obtain that, for any time interval I ,∫
I

∫
R3

F5/4(u)|u|
1
2 dx dt ≤

∫
I

∫
R3

F(u)
|x |
· sup

x∈R3
(|x |F1/4(u)|u|1/2) dx dt . E3/2. (24)

This implies∫
I

∫
{|u|≤1/3}

|u|8(−log |u|)5/4 dx dt +
∫

I

∫
{|u|>1/3}

|u|8 dx dt . E3/2 (log-subcritical case) (25)

and ∫
I

∫
R3
|u|8 log5α/4(2+ |u|2) dx dt . E3/2 (log-supercritical case). (26)

3. Log-subcritical wave equations

In this section, we consider the scattering theory for log-subcritical wave equations. We can take advantage
of time reversal symmetry, and it suffices to prove that the solution u scatters in Ḣ 1

x × L2
x as t→∞.

Throughout this section, we use the notation

A =
{
(t, x) ∈ (0,∞)×R3

: |u|< 1
3

}
, B =

{
(t, x) ∈ (0,∞)×R3

: |u| ≥ 1
3

}
,

and for any interval I ,
AI = A∩ (I ×R3), BI = B ∩ (I ×R3). (27)

General initial data in log-weighted Sobolev spaces.

Theorem 3.1. Let γ > 1
2 and let u be the solution to the log-subcritical wave equations (1), (4), and (5)

with initial data
u0(x) ∈ X1, u1(x) ∈ Y1, (28)

where X1 and Y1 are defined by (9). Then u scatters in Ḣ 1
x × L2

x .
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Proof. We need some decay estimates for the equation with initial data satisfying (28).

Lemma 3.2. Let γ and u be as in Theorem 3.1. There exists T = T (‖u0‖X1, ‖u1‖Y1, γ )� 1 such that,
for τ > T , ∫

R3
F(u(τ, x)) dx . 1

log2γ τ
, (29)

where F(z)= Fsub(z) is defined by (7).

Proof. We essentially follow the proof of Lemma 2.1 in [Bahouri and Shatah 1998], with some changes.
Define

e[u](t, x) := 1
2 |∂t u(t, x)|2+ 1

2 |∇u(t, x)|2+ F(u(t, x)).

We claim that there exists Cγ = Cγ (‖u0‖X1, ‖u1‖Y1, γ )� 1 such that for s > Cγ ,∫
|x |>s

e[u](0, x) dx . 1
log2γ s

. (30)

We prove this claim in the Appendix and continue the proof of this lemma here. Choose T such that
T >max(C2

γ , log4γ T ). We aim to show that (29) holds for all τ > T .
Define the truncated forward light cone by

K b
a (c) := {(t, x) : a ≤ t ≤ b, |x | ≤ t + c, 0≤ a < b ≤∞}

and the boundary of the truncated cone by

Mb
a (c) := ∂K b

a (c)= {(t, x) : a ≤ t ≤ b, |x | = t + c, 0≤ a < b ≤∞}.

Fix τ > T and let s =
√
τ > Cγ . For any t1 > 0, the energy conservation law on the exterior of the

truncated forward light cone K t1
0 (s) implies that∫

|x |>s+t1
e[u](t1) dx + 1

√
2

flux(0, t1, s)=
∫
|x |>s

e[u](0) dx . 1
log2γ s

, (31)

where
flux(a, b, c) :=

∫
Mb

a (c)

{1
2

∣∣∣ut +
x ·∇u
|x |

∣∣∣2+ F(u)
}

dσ.

Hence ∫
|x |>s+τ

F(u(τ )) dx ≤
∫
|x |>s+τ

e[u](τ ) dx . 1
log2γ s

. 1
log2γ τ

, (32)

and it suffices to show that ∫
|x |≤s+τ

F(u(τ )) dx . 1
log2γ τ

. (33)

Define w(t, x)= u(t − s, x). The bound (33) is equivalent to∫
|x |≤s+τ

F(w(s+ τ)) dx . 1
log2γ τ

.

Set wt := ∂tw. Multiplying the equation f (w)−�w = 0 by twt + x · ∇w+w, we get
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∂t(t Q0+wtw)− div(t P0)+ R0 = 0, (34)

where

Q0 = e[w] +wt

( x
t
· ∇w

)
,

P0 =
x
t

(
w2

t − |∇w|
2

2
− F(w)

)
+∇w

(
wt +

x
t
· ∇w+

w

t

)
,

R0 = |w|
6g(|w|)− 4F(w),

with g defined by (5). Define the horizontal sections of the forward solid cone by

D(t) := {|x | ∈ R3
: |x | ≤ t}.

Fix 0< T1 < T2 and integrate (34) on K T2
T1
(0). By the divergence theorem, we have∫

D(T2)

(T2 Q0+wtw) dx−
∫

D(T1)

(T1 Q0+wtw) dx− 1
√

2

∫
M

T2
T1
(0)

(
t Q0+wtw+t P0

x
|x |

)
dσ+

∫
K

T2
T1
(0)

R0 dx dt

=: L1+ L2+ L3+ L4 = 0. (35)

Now, following the same steps as in [Bahouri and Shatah 1998], we define v(y) :=w(|y|, y). Since L3 is
the integral on MT2

T1
(0), using spherical coordinates, we obtain that

L3 =−

∫ T2

T1

∫
S2

r
(
vr +

v

r

)2
r2 dr dω+ 1

2

∫
S2

T 2
2 v

2(T2ω) dω− 1
2

∫
S2

T 2
1 v

2(T1)ω dω, (36)

L1 =

∫
D(T2)

{
T2

(
|wt |

2

2
+

1
2

(
wr +

1
r
w
)2
+

1
2r2 |∇ωw|

2
+ F(w)

)
+ r

(
wr +

1
r
w
)
wt

}
dx

−
1
2

∫
S2

T 2
2 v

2(T2ω) dω, (37)

and

L2 =−

∫
D(T1)

{
T1

(
|wt |

2

2
+

1
2

(
wr +

1
r
w
)2
+

1
2r2 |∇ωw|

2
+ F(w)

)
+ r

(
wr +

1
r
w
)
wt

}
dx

+
1
2

∫
S2

T 2
1 v

2(T1ω) dω. (38)

Since L4 ≥ 0, plugging (36), (37) and (38) into (35), we deduce that

T2

∫
D(T2)

F(w) dx ≤ CT1 E +
∫ T2

T1

∫
S2

T2

(
vr +

v

r

)2
r2 dr dω,

where C is a constant and E is the energy. Therefore,∫
D(T2)

F(w(T2)) dx ≤ C
T1

T2
E +

∫ T2

T1

∫
S2

(
vr +

v

r

)2
r2 dr dω. (39)
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For any T1 ≥ s, by (31), the second term in the right-hand side of (39) is controlled by∫ T2

T1

∫
S2

(
vr +

v

r

)2
r2 dr dω .

∫
M

T2
T1
(0)

{
1
2

∣∣∣wt +
x ·∇w
|x |

∣∣∣2} dσ . 1
log2γ s

. 1
log2γ τ

.

Now, choosing T2 = τ + s and T1 = (τ + s)/ log2γ τ >
√
τ = s, (39) implies∫

D(τ+s)
F(w(τ + s, x)) dx . 1

log2γ τ
. (40)

Combining (32) and (40), the lemma is proved. �

Before we prove Theorem 3.1, let’s observe the following fact. Let I be any time interval with length
3< |I |<∞. By Hölder’s inequality, we have that, for 0< δ < 2,

‖|u|4u(−log |u|)‖L1
t L2

x (I×R3)

≤ ‖u3−δ(−log |u|)(3−δ)/6‖L∞t L6/(3−δ)
x (I×R3)

‖u2
‖L2/(2−δ)

t L6/δ
x (I×R3)

‖uδ(−log |u|)(3+δ)/6‖L2/δ
t L∞x (I×R3)

= ‖u(−log |u|)1/6‖3−δL∞t L6
x (I×R3)

‖u‖2
L4/(2−δ)

t L12/δ
x (I×R3)

‖uδ(−log |u|)(3+δ)/6‖L2/δ
t L∞x (I×R3)

≤ ‖u(−log |u|)1/6‖3−δL∞t L6
x (I×R3)

‖u‖2
L4/(2−δ)

t L12/δ
x (I×R3)

‖uδ(−log |u|)(3+δ)/6‖L∞t L∞x (I×R3)|I |
δ/2.

If |u| ≤ 1
3 , we can estimate that

‖uδ(−log |u|)(3+δ)/6‖L∞t L∞x (I×R3) .
(1
δ

)1/2+δ/6
.

Letting δ = 2/log |I |, we obtain

‖|u|4u(−log |u|)‖L1
t L2

x (I×R3) . ‖u(−log |u|)1/6‖3−δL∞t L6
x (I×R3)

‖u‖2
L4/(2−δ)

t L12/δ
x (I×R3)

log1/2
|I |. (41)

To complete the proof of Theorem 3.1, by Remark 2.2, it suffices to show that

‖ f (u)‖L1
t L2

x ([T,∞)×R3) <∞ for some T <∞.

Let J = (3i ,∞), where i is sufficiently large and to be determined later. Then

‖ f (u)‖L1
t L2

x (J×R3) . ‖|u|
4u(−log |u|)‖L1

t L2
x (AJ )
+‖|u|4u‖L1

t L2
x (BJ )
=: M1+M2.

Since (2+ δ, 6(2+ δ)/δ) is an admissible pair satisfying (20) for σ = 1, from Hölder’s inequality and
Lemma 3.2,

M2 ≤ ‖u‖3−δL∞t L6
x (BJ )
‖u‖2+δ

L2+δ
t L6(2+δ)/δ

x (BJ )
. 1
(log(3i ))(3−δ)/3γ

‖u‖2+δS1(J ). (42)

On the other hand, define interval Jk by subdividing J according to J =
⋃
∞

k=1(3
2k−1i , 32k i )=:

⋃
∞

k=1 Jk .
Define δk := 2/log |Jk |. By (41), Lemma 3.2, and the fact that the admissible pairs (4/(2− δk), 12/δk)
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satisfy (20) for σ = 1, we have

M1 ≤

∞∑
k=1

‖u5(−log |u|)‖L1
t L2

x (Jk×R3) .
∞∑

k=1

(
1

(log 32k−1i )(3−δk)/3γ
(log 32k i )1/2

)
‖u‖2

L
4/(2−δk )
t L

12/δk
x (Jk×R3)

.

( ∞∑
k=1

i1/2−(3−δk)/3γ · 2(k−1)(1/2−(3−δk)/3)γ
)
‖u‖2S1(J ).

Since γ > 1
2 , we can choose i sufficiently large such that

(
((3− δk)/3)γ − 1

2

)
> c > 0 for all k. Hence

M1 . i−c
∞∑

k=1

2−(k−1)c
‖u‖2S1(J ). (43)

Combining (42) and (43), for ε0 > 0 sufficiently small, we can choose i sufficiently large such that

‖ f (u)‖L1
t L2

x (J×R3) ≤ ε0(‖u‖2S1(J )+‖u‖
2+δ
S1(J )).

By the Strichartz estimate (19), we have

‖u‖S1(J ) ≤ C E1/2
+ ε0(‖u‖2S1(J )+‖u‖

2+δ
S1(J )).

From a continuity argument, we conclude that

‖u‖S1(J ) ≤ 2C E1/2.

This implies that

‖ f (u)‖L1
t L2

x (J×R3) <∞. �

Spherically symmetric initial data in lower regularity Sobolev spaces. In this subsection, we consider
the solutions to the log-subcritical wave equations with spherically symmetric initial data. If the finite
energy initial data are in any lower regularity Sobolev spaces, we obtain the Ḣ 1

x × L2
x scattering. The

spirit of the proof follows from [Tao 2007] and a slightly sharpened bootstrap argument in Lemmas 3.5
and 3.6.

Throughout this subsection, for given δ > 0, we denote

Z(t) := ‖u(t, x)‖Ḣ1−δ
x (R3)+‖∂t u(t, x)‖Ḣ−δx (R3). (44)

It is easy to show that Z(t) > 0 for any time t .2

Theorem 3.3. Let u be the solution to the log-subcritical wave equations (1), (4), (5) with spherically
symmetric initial data

u0(x) ∈ X2, u1(x) ∈ Y2, (45)

where X2 and Y2 are defined by (10). Then u scatters in Ḣ 1
x × L2

x .

To prove Theorem 3.3, we need some intermediate lemmas.

2If Z(t0)= 0 for some t0, it is easy to prove that the solution u has energy E(t0)= 0 and, hence, E(t)= 0 for any time t , by
energy conservation. This implies the solution u(t, x)≡ 0 for all t .



12 HSI-WEI SHIH

Lemma 3.4. Let I = [a, b] be any interval where 0 ≤ a < b ≤ ∞ and let u be the solution to the
log-subcritical wave equations (1), (4), (5) with spherically symmetric initial data

u(a, x)= u0(x) ∈ Ḣ 1
x ∩ Ḣ 1−δ

x , ∂t u(a, x)= u1(x) ∈ L2
x ∩ Ḣ−δx

for some fixed 0< δ < 1
2 . Then there exists 0< ε(δ)� 1 such that for 0< ε < ε(δ),

‖u‖S1−δ(I ). Z(a)+(‖u‖1+ε/(2δ)S1−δ(I ) +‖u‖S1−δ(I ))
(
‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )
+‖u‖4L8

t,x (BI )

)(1
ε

)7/16
, (46)

where the constant hidden in (46) is independent of the interval I and ε.

Proof. By the Strichartz estimate (19),

‖u‖S1−δ(I ) . Z(a)+‖ f (u)‖L2/(2−δ)
t L2/(1+δ)

x (I×R3)
. (47)

Consider that

‖ f (u)‖L2/(2−δ)
t L2/(1+δ)

x (I×R3)
. ‖− |u|4u(log(|u|))‖L2/(2−δ)

t L2/(1+δ)
x (AI )

+‖|u|4u‖L2/(2−δ)
t L2/(1+δ)

x (BI )
=: N1+ N2

with AI and BI as in (27). By Hölder’s inequality,

N2 ≤ ‖u‖L2/(1−δ)
t L2/δ

x (BI )
‖u‖4L8

t,x (BI )
≤ ‖u‖S1−δ(I )‖u‖

4
L8

t,x (BI )
. (48)

On the other hand, choosing ε(δ) sufficiently small such that for 0< ε < ε(δ),

0< 1
p
:=

8δ+ε−8δ2
+2εδ

8(2δ+ε)
≤

1
2
, 0< 1

q
:=
δ

2
+
ε(1−2δ)
8(2δ+ε)

≤
1
2
,

3
8
≈

12+5ε/(2δ)+5ε
32

<
7

16
.

It is clear that (p, q) is an admissible pair satisfying (20) for σ = 1− δ. By Hölder’s inequality and
interpolation theory, we can estimate that

N1 ≤ ‖|u|5−ε(−log |u|)5(4−ε/(2δ)−ε)/32
‖L2/(2−δ)

t L2/(1+δ)
x (AI )

‖|u|ε(−log |u|)(12+5ε/(2δ)+5ε)/32
‖L∞t,x (AI )

≤ ‖u‖1+ε/(2δ)
L p

t Lq
x (AI )
‖u(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )
‖|u|ε(−log |u|)(12+5ε/(2δ)+5ε)/32

‖L∞t,x (AI ) (49)

. ‖u‖1+ε/(2δ)
L p

t Lq
x (AI )
‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )

(1
ε

)upn f rac12+5ε/(2δ)+5ε32
. (50)

The last factor of (50) comes from maximizing the last factor on the right of (49) using calculus. We note
that the constant hidden in the last inequality is independent of ε. By (48) and (50), we have

‖ f (u)‖L2/(2−δ)
t L2/(1+δ)

x (I×R3)
. ‖u‖1+ε/(2δ)S1−δ(I ) ‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )

(1
ε

)7/16
+‖u‖S1−δ(I )‖u‖

4
L8

t,x (BI )
.

From (47),

‖u‖S1−δ(I ). Z(a)+‖u‖1+ε/(2δ)S1−δ(I ) ‖|u|(−log |u|)5/32
‖

4−ε/(2δ)−ε
L8

t,x (AI )

(1
ε

) 7
16
+‖u‖S1−δ(I )‖u‖

4
L8

t,x (BI )
.RHS of (46).

One can check that all constants hidden in the inequalities above are independent of the interval I and ε.
Hence, Lemma 3.4 is proved. �
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Lemma 3.5 (continuity argument). Let I (= [a, b]) and u satisfy the assumptions of Lemma 3.4, C be the
constant hidden in (46) and 0< ε(δ) be chosen in Lemma 3.4. Let ε0 = 1/(100C) and 0< ε < ε(δ) such
that Z(a)ε/(2δ) ≥ 1

2 and (2C)ε/(2δ) ≤ 2. We define

Q(I ) :=
(
‖|u|(−log |u|)5/32

‖
4−ε/(2δ)−ε
L8

t,x (AI )
+‖u‖4−ε/(2δ)−ε

L8
t,x (BI )

)
.

If ‖u‖L8
t,x (BI )

≤ 1 and Q(I )≤ ε0(ε
7/16/(Z(a)ε/(2δ))), we have

‖u‖S1−δ(I ) ≤ 2C Z(a).

Proof. We prove this lemma by contradiction. For 0 ≤ t ≤ b − a, from the dominated convergence
theorem, we have that the function 8(t) := ‖u‖S1−δ([a,a+t]) is nondecreasing and continuous in [0, b− a]
and 8(0)= 0. By the hypothesis and (46), we have

8(t)≤ C Z(a)+ 1
100(8(t)

1+ε/(2δ)
+8(t))

(
1

Z(a)ε/(2δ)

)
(51)

for all t ∈ [0, b− a]. Assume for contradiction that there exists t0 ∈ [0, b− a) such that 8(t0)= 2C Z(a).
If 2C Z(a) < 1, (51) implies that

2C Z(a)=8(t0)≤ C Z(a)+ 1
50
(2C Z(a))

(
1

Z(a)ε/(2δ)

)
≤

11
10

C Z(a).

On the other hand, if 2C Z(a)≥ 1, (51) implies that

2C Z(a)=8(t0)≤ C Z(a)+ 1
50
(2C Z(a))1+ε/(2δ)

(
1

Z(a)ε/(2δ)

)
≤

11
10

C Z(a).

We get contradictions in both situations, and the lemma is proved. �

Lemma 3.6 (finite division). Let I (= [a, b]) and u satisfy the assumptions of Lemma 3.4 and C be
the constant hidden in (46). We denote Zi = (2C)i Z(a), where i = 0, 1, 2, . . . . For any ε0 > 0, we
can choose ε � 1 and finitely many numbers a = T0 < T1 < T2 < · · · < TN < TN+1 = b, where
N = N (ε0, ε, δ, E, Z0,C), such that for I j := [T j , T j+1],

Q(I j )= ε0

(
ε7/16

Z ε/(2δ)j

)
(52)

for 0≤ j ≤ N − 1 and Q(IN )≤ ε0(ε
7/16/Z ε/(2δ)N ).

Proof. We observe that
∞∑

i=0

[
ε0

(
ε7/16

Z ε/(2δ)i

)]8/(4−ε/(2δ)−ε)

&ε0,Z0

{
ε7/(8−ε/(δ)−2ε)

∞∑
i=0

1
(2C)8iε/(8δ−ε−2δε)

}
→∞ as ε→ 0.

Therefore, by (25), we can choose ε sufficiently small such that

3
(∫ ∫

A
|u|8(−log |u|)5/4 dx dt +

∫ ∫
B
|u|8 dx dt

)
<

K∑
i=0

[
ε0

(
ε7/16

Z ε/(2δ)i

)]8/(4−ε/(2δ)−ε)

(53)

for some K = K (ε0, ε, δ, E, Z0,C).
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Fix this ε. If Q(I ) < ε0(ε
7/16/(Z ε/(2δ)0 )), we say T1 = b and the lemma is proved. Otherwise, we

can choose 0< T1 < b such that (52) holds for j = 0. Again, if Q([T1, b) < ε0(ε
7/16/(Z ε/(2δ)1 )), we say

T2 = b. Otherwise, we can choose T1 < T2 < b such that (52) holds for j = 1. By continuing this process,
we can choose a < T1 < T2 < · · · such that (52) holds for j = 0, 1, . . . . It suffices to show that this
process will stop in at most K + 1 steps. Indeed, assume that there are more than K + 1 subintervals
satisfying (52). Since

Q(I j )
8/(4−ε/(2δ)−ε)

≤ 3
(∫∫

AI j

|u|8(−log |u|)5/4 dx dt +
∫∫

BI j

|u|8 dx dt
)
,

for j = 0, 1, . . . , by our construction of I j , we have

K+1∑
j=0

ε0

(
ε7/16

Z ε/(2δ)j

)
=

K+1∑
j=0

Q(I j )
8/(4−ε/(2δ)−ε)

≤

K+1∑
i=0

3
(∫∫

AI j

|u|8(−log |u|)5/4 dx dt +
∫∫

BI j

|u|8 dx dt
)

≤ 3
(∫∫

A
|u|8(−log |u|)5/4 dx dt +

∫∫
B
|u|8 dx dt

)
.

This contradicts (53), and the lemma is proved. �

Corollary 3.7. Let I and u satisfy the assumptions of Lemma 3.4 and C be the constant hidden in (46). If
‖u‖L8

t,x (BI )
≤ 1, u ∈ L8/(1+2δ)

t,x (I ×R3).

Proof. Let ε(δ) be chosen in Lemma 3.4 and 0 < ε < ε(δ) satisfy Lemma 3.6, Z(a)ε/(2δ) ≥ 1
2 and

(2C)ε/(2δ) ≤ 2. Let {I j }
N
j=0 be the subintervals constructed by Lemma 3.6 such that (52) holds for

0≤ j ≤ N .
We claim that

‖u‖S1−δ(I j ) ≤ 2C Z j for 0≤ j ≤ N , (54)

where Z j = (2C) j Z(a). Indeed, by Lemma 3.5, (54) holds for j = 0. Again, if (54) holds for j = k− 1,
we have Z(Tk)≤ ‖u‖S1−δ(Ik−1) ≤ Zk . Since Z ε/(2δ)k ≥ Z(a)ε/(2δ) ≥ 1

2 , applying Lemma 3.5 on the interval
Ik , we obtain (54) for j = k. By induction on j , the claim is proved and this implies

‖u‖L8/(1+2δ)
t,x (I×R3)

≤

N+1∑
j=0

‖u‖S1−δ(I j ) ≤

N+1∑
j=0

(2C) j Z0 <∞. �

Corollary 3.8. Let u be the solution to the log-subcritical wave equations (1), (4), (5) with spherically
symmetric initial data

u(0, x)= u0(x) ∈ Ḣ 1
x ∩ Ḣ 1−δ

x , ∂t u(0, x)= u1(x) ∈ L2
x ∩ Ḣ−δx

for some fixed 0< δ < 1
2 . Then u ∈ L8/(1+2δ)

t,x (R+×R3).
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Proof. By (25), we can choose finitely many numbers 0= S0 < S1 < · · ·< SM−1 < SM =∞ such that
‖u‖L8

t,x (B[Sk ,Sk+1])
≤ 1 for 0≤ k ≤ M . By Corollary 3.7 and energy conservation, we have

(u(Sk, x), ∂t u(Sk, x)) ∈ (Ḣ 1
x ∩ Ḣ 1−δ

x )× (L2
x ∩ Ḣ−δx )

and ‖u‖L8/1+2δ
t,x ([Sk ,Sk+1]×R3)

<∞ for 0≤ k ≤ M . Hence

‖u‖L8/(1+2δ)
t,x (R+×R3)

≤

M∑
k=0

‖u‖L8/(1+2δ)
t,x ([Sk ,Sk+1]×R3)

<∞. �

To finish the proof of Theorem 3.3, by Remark 2.2, it suffices to show that ‖ f (u)‖L1
t L2

x ((T,∞)×R3) <∞

for some 0 < T < ∞. Since the initial data satisfy (45), we can choose some 0 < δ < 1
2 such that

u0 ∈ Ḣ 1
x (R

3)∩ Ḣ 1−δ
x (R3) and u1 ∈ L2

x(R
3)∩ Ḣ−δx (R3). Observe that

‖ f (u)‖L1
t L2

x ((T,∞)×R3)

. ‖|u|5(log(|u|))‖L1
t L2

x (AT )
+‖|u|5‖L1

t L2
x (BT )

. ‖u‖4/(1+2δ)
L8

t,x/(1+2δ)(AT )
‖u‖L2

t L∞x (AT )
‖u8δ/(1+2δ)(log(|u|))‖L∞t,x (AT )+‖u‖

4
L8

t,x (BT )
‖u‖L2

t L∞x (BT )

. ‖u‖L2
t L∞x ((T,∞)×R3)

[(1+2δ
8δ

)
‖u‖4/(1+2δ)

L8
t,x/(1+2δ)(AT )

+‖u‖4L8
t,x (BT )

]
,

where AT := A∩ ((T,∞)×R3) and BT := B∩ ((T,∞)×R3). The last inequality above is from the fact
that |u8δ/(1+2δ)(log(|u|))|. (1+ 2δ)/(8δ) for |u| ≤ 1

3 . By Corollary 3.8 and (25), for sufficiently small
ε > 0, we can choose T = T (ε) sufficiently large such that(1+2δ

8δ

)
‖u‖4/(1+2δ)

L8
t,x/(1+2δ)(AT )

+‖u‖4L8
t,x (BT )

< ε.

Hence, by the Strichartz inequality [Klainerman and Machedon 1993],

‖u‖L2
t L∞x ((T,∞)×R3) ≤ C E1/2

+ εC‖u‖L2
t L∞x ((T,∞)×R3).

Again for ε < 1/(2C), we have ‖u‖L2
t L∞x ((T,∞)×R3)< 2C E1/2 and this implies ‖ f (u)‖L1

t L2
x ((T,∞)×R3)<∞.

Energy subcritical nonlinear wave equations with specific spherically symmetric initial data. In the
last part of this section, we will discuss an observation, for energy subcritical nonlinear wave equations,
inspired by the proof of Theorem 3.3. For given 0<δ< 1

2 , let (u0, u1)∈ (Ḣ 1
x (R

3)∩Ḣ 1−δ
x (R3))×(L2

x(R
3)∩

Ḣ−δx (R3)) be spherically symmetric functions. In this subsection, we consider the energy-subcritical
nonlinear wave equation

�u = |u|4−εu, u(0, x)= u0(x), ∂t u(0, x)= u1(x), (55)

where we allow ε to depend on the given data (u0, u1). That is, we find a relation (R) (see Definition 3.10)
among ε, the energy E , and Z(0) as in (44), the lower regularity norm of the initial data, for which the
solution scatters. We remark that relation (R) holds for data large in both the energy and Ḣ 1−δ norms
provided that ε is taken sufficiently small (depending on the size of these norms). In [Lindblad and Sogge
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1995], scattering was established in Ḣ 1−δ for the Ḣ 1−δ critical nonlinear wave equation from small data.
Our remarks here are related to that work, for example, relation (R) quantifies the extent to which large
data can be allowed. Also, we will prove scattering in Ḣ 1, rather than Ḣ 1−δ.

In order to prove that u scatters in Ḣ 1
x × L2

x , It suffices to show that ‖u5−ε
‖L1

t L2
x ([T,∞)×R3) <∞ for

some T <∞. By the Strichartz estimate and Hölder’s inequality,

‖u‖L2
t L∞x ([T,∞)×R3) ≤ C E1/2

+C‖u5−ε
‖L1

t L2
x ([T,∞)×R3)

≤ C E1/2
+C‖u‖L2

t L∞x ([T,∞)×R3)‖u‖
4−ε
L8−2ε

t,x ([T,∞)×R3)
.

Following similar arguments as in the proof of Theorem 3.3, we only need to show that

‖u‖L8−2ε
t,x ([T,∞)×R3) <∞ for some T <∞.

Let ε0(δ) := 8δ/(1+ 2δ) (so that Ḣ 1−δ is the scale invariant norm for (55) with ε = ε0(δ)). We restrict to
the case 0< ε < ε0(δ).

In this case, (55) is Ḣ 1−δ-supercritical nonlinear wave equation. We denote

γε =
3ε

16δ− 5
2δε−

5
4ε
, κε =

8− 5
4ε

4−γε−ε
,

1
αε
=

1+2δ
8
+

3(1−2δ)
8(1+γε)

,
1
βε
=

1+2δ
8
−

1−2δ
8(1+γε)

.

Note that

(i) as ε→ ε0(δ), γε→ 4− ε and κε→∞;

(ii) (αε , βε) is an admissible pair satisfying (20) for σ = 1− δ.

Remark 3.9. Let u be the spherically symmetric solution to the energy-subcritical nonlinear wave
equation (55) with energy E . We observe that Lemma 2.5 holds for u. Hence, for any interval I = [a, b]
where 0≤ a < b ≤∞, (24) implies∫

I

∫
R3
|u(t, x)|8−5ε/4 dx dt ≤ C1 E3/2, (56)

where we can choose the constant C1 to be independent of ε. Moreover, by the Strichartz estimate,

‖u‖S1−δ(I ) ≤ C Z(a)+C‖u5−ε
‖L2

t /(2−δ)L
2/(1+δ)
x (I×R3)

. (57)

Definition 3.10. Given 0< δ < 1
2 , let 0< ε < ε0(δ), u be the solution to (55) with energy E and lower

regularity norm Z(0) > 0. We say that the triple (E, Z(0), ε) satisfies the relation (R) if

C1 E3/2
≤

( 1
2(2C)1+γε Z(0)γε

)κε 1
1−(2C)−γεκε

Lemma 3.11. Given 0< δ < 1
2 and 0< ε < ε0(δ), let

(u0, u1) ∈ (Ḣ 1
x (R

3)∩ Ḣ 1−δ
x (R3))× (L2

x(R
3)∩ Ḣ−δx (R3))

be spherically symmetric functions such that the triple (E, Z(0), ε) satisfies (R) and u is the solution to
(55). Then u ∈ L8/(1+2δ)

t,x (R+×R3).
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Proof. Since (E, Z(0), ε) satisfies (R), by (56) and an argument similar to that in proof of Lemma 3.6,
we can choose finitely many numbers 0= T0 < T1 < · · ·< TN < TN+1 =∞ such that

‖u‖4−γε−ε
L8−5ε/4

t,x ([Ti ,Ti+1]×R3)
=

1
2(2C)1+γε ((2C)i Z(0))γε

(58)

for 0≤ i ≤ N − 1 and

‖u‖4−γε−ε
L8−5ε/4

t,x ([TN ,TN+1]×R3)
≤

1
2(2C)1+γε ((2C)N Z(0))γε

.

We claim that
Z(Ti ) < (2C)i Z(0) (59)

and
‖u‖S1−δ([Ti ,Ti+1]) < (2C)i+1 Z(0) (60)

for 0≤ i ≤ N .
Observe that (59) is clearly true for i = 0 and Z(Ti )≤ ‖u‖S1−δ([Ti−1,Ti ]) for 1≤ i ≤ N . Hence it suffices

to show that (60) holds and then (59) is automatically true.
A similar proof to that of Lemma 3.5 applies here. Assume (60) is true for i ≤ j − 1. We aim to prove

(60) for i= j . (Note that (59) follows from our assumption when i= j .) Let φ(t)=‖u‖S1−δ([T j ,T j+t]). Then
φ is a continuous and nondecreasing function on [0, T j+1− T j ] and φ(0)= 0. Assume for contradiction
that there exists t0 ∈ [0, T j+1− T j ] such that φ(t0)= (2C) j+1 Z(0). By Hölder’s inequality, (57), (58),
and (59), we have

(2C) j+1 Z(0)= φ(t0)≤ C Z(T j )+C‖u5−ε
‖L2

t /(2−δ)L
2/(1+δ)
x ([T j ,T j+t0]×R3)

≤ C Z(T j )+C‖u‖1+γε
Lαεt Lβεx ([T j ,T j+t0]×R3)

‖u‖4−γε−ε
L8−5ε/4

t,x ([T j ,T j+t0]×R3)

≤ C Z(T j )+C‖u‖1+γεS1−δ([T j ,T j+t0])‖u‖
4−γε−ε
L8−5ε/4

t,x ([T j ,T j+t0]×R3)

≤ C(2C) j Z(0)+ 1
4[(2C) j+1 Z(0)]γε

‖u‖1+γεS1−δ([T j ,T j+t0])

< 1
2(2C) j+1 Z(0)+ 1

4[(2C) j+1 Z(0)]γε
×[(2C) j+1 Z(0)]1+γε

=
3
4(2C) j+1 Z(0).

The contradiction implies that (60) holds for i = j . By an inductive argument on i , the claim is proved.
To finish proving this lemma, we have

‖u‖L8/(1+2δ)
t,x (R+×R3)

≤

N+1∑
i=0

‖u‖S1−δ([Ti ,Ti+1]) ≤

N+1∑
i=0

(2C)i Z(0) <∞ �

Corollary 3.12. Let δ, ε, u0, u1 and u satisfy the assumptions of Lemma 3.11. Then u scatters in Ḣ 1
x ×L2

x .

Proof. By the above discussion, it suffices to show

‖u‖L8−2ε
t,x ([T,∞)×R3) <∞
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for some T <∞, since 0< ε < ε0(δ) is equivalent to 8/(1+2δ) < 8−2ε. The proof of L8−2ε
t,x spacetime

bound is straightforward by (56), Lemma 3.11, and interpolation theory. �

4. Log-supercritical wave equation

For spherically symmetric log-supercritical nonlinear wave equation (1), (6) with finite energy E , we
observe that the potential energy bound provides slightly better pointwise control, (26), of the solution
than the one from the kinetic energy bound3; see [Ginibre et al. 1992; Tao 2007]. In this section, we
consider a slightly more supercritical wave equation than the equation in [Tao 2007] and prove the same
global regularity result by using (26).

Theorem 4.1. Define

H̃ 2
x (R

3) := Ḣ 1
x (R

3)∩ Ḣ 2
x (R

3).

Let 0< α ≤ 4
3 and (u0, u1) be smooth, compactly supported, and spherically symmetric initial data with

energy E. Then there exists a global smooth solution to

�u = |u|4u logα(2+ |u|2), u(0, x)= u0(x), ∂t u(0, x)= u1(x). (61)

Furthermore, we have the universal bound of H̃ 2
x × H 1

x norm, which depends on both the energy E
and H̃ 2

x × H 1
x norm of the initial data, of the solution u; this implies that the solution u scatters in

H̃ 2
x (R

3)× H 1
x (R

3).4

Remark 4.2. This theorem was proved in [Tao 2007] for α = 1, and it is easy to get the same result for
α < 1 from that argument. We take advantage of (26) to extend the range of α up to 4

3 . In the remainder
of this section, we will essentially follow Tao’s argument to prove Theorem 4.1 using (26) and sketch the
proof of H̃ 2

x × H 1
x scattering. We will skip the argument providing an explicit H̃ 2

x × H 1
x universal bound

here; see [Tao 2007] for details.

We will use a well-known global continuation result (for a proof see [Sogge 1995], for example).

Theorem 4.3 (classical existence theory). Let u : [0, T ] × R3
→ C be a classical solution5 to (61)

satisfying

‖u‖L∞t L∞x ([0,T ]×R3) <∞.

Then there is δ > 0 such that one can extend the solution u to [0, T + δ]×R3.

Proof of Theorem 4.1. By time reversal symmetry, it suffices to consider the global existence and scattering
theory of u on R+×R3.

3The kinetic energy bound can only provide
∫

I
∫

R3 |u|8 logα(2+ |u|2) dx dt . E3/2.
4The definition of H̃2

x × H1
x scattering for the solution u is similar to Definition 2.1, but the Ḣ1

x × L2
x -norm is replaced by the

H̃2
x × H1

x -norm.
5We call u a classical solution to (1) if u solves (1) and is smooth and compactly supported for each time.
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By the Sobolev embedding theorem, for a classical solution u to (61) on [0, T ]×R3, we have

‖u‖L∞t L∞x ([0,T ]×R3) .
2∑

j=1

‖∇
j
x u‖L∞t L2

x ([0,T ]×R3). (62)

Hence, applying classical existence theory (Theorem 4.3), in order to show global existence, it suffices to
prove that for any fixed 0< T ≤∞, we have

2∑
j=1

‖∇
j
x u‖L∞t L2

x ([0,T ]×R3) <∞,

provided that u is the classical solution to (61) on [0, T ]×R3.
Let I = [a, b] ⊆ [0, T ] be any interval. We define

MI : =

∫
I

∫
R3
|u(t, x)|8 log5α/4(2+ |u(t, x)|2) dx dt,

NI : =

1∑
j=0

‖∇
j
x u‖L2

t L∞x (I×R3)+‖∇t,x∇
j
x u‖L∞t L2

x (I×R3),

DI : = ‖∇t,x u(a)‖
H1

x (R3)
.

In addition, we set D = ‖∇t,x u(0)‖
H1

x (R3)
.

From the Strichartz inequality, Hölder’s inequality, and (62), we have

NI ≤ C‖∇t,x u(a)‖H1
x (R

3)+C
1∑

j=0

‖∇
j
x (|u|

4u logα(2+|u|2))‖L1
t L2

x (I×R3)

≤ C DI +C
1∑

j=0

‖|u|4|∇ j
x u| log(2+|u|2)‖L1

t L2
x (I×R3)

≤ C DI +C‖|u|4 log5α/8(2+|u|2)‖L2
t L2

x (I×R3)

( 1∑
j=0

‖∇
j
x u‖L2

t L∞x (I×R3)‖ log3α/8(2+|u|2)‖L∞t L∞x (I×R3)

)

≤ C DI +C‖u log5α/32(2+|u|2)‖4L8
t L8

x (I×R3)

( 1∑
j=0

‖∇
j
x u‖L2

t L∞x (I×R3)‖ log(2+|u|2)‖3α/8L∞t L∞x (I×R3)

)
≤ C DI +C M1/2

I NI log3α/8(2+‖u‖2L∞t L2
x (I×R3)

)

≤ C DI +C M1/2
I NI log1/2(2+N 2

I ).

From the result in [Tao 2007, Corollary 3.2], for any ε0 > 0,

k∑
i=0

ε0

log(2+ (2C)i D)
→∞ as k→∞.

Hence, for any fixed ε0, the finiteness of M[0,T ] from (26) implies that we can choose finitely many
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numbers 0= T0 < T1 < · · ·< TK < TK+1 = T , with K depending on D, E , and ε0, such that

Mi :=

∫ Ti+1

Ti

∫
R3
|u(t, x)|8 log5α/4(2+ |u(t, x)|2) dx dt =

ε0

log(2+ (2C)i D)

for 0≤ i ≤ K − 1 and MK ≤ ε0/log(2+ (2C)K D).
Choosing ε0 = 1/(100C)2, by iteration and continuity arguments, we claim that N[Ti ,Ti+1] < (2C)i+1 D

for 0≤ i ≤ K .6 Indeed, assume that this claim is false for some i = j . Then there exists t0 ∈ (T j , T j+1)

such that N[T j ,t0] = (2C) j+1 D. We have

(2C) j+1 D ≤ C(2C) j D+C M1/2
j N[T j ,t0] log1/2(2+ N 2

[T j ,t0])

≤
1
2(2C) j+1 D+ log1/2(2+(2C) j+1 D)

100 log1/2(2+(2C) j D)
× (2C) j+1 D

≤
3
4(2C) j+1 D.

Thus the claim is proved by contradiction. This implies

2∑
j=1

‖∇
j
x u‖L∞t L2

x ([0,T ]×R3) ≤ N[0,T ] ≤
K∑

i=0

N[Ti ,Ti+1] <

K∑
i=0

(2C)i+1 D <∞.

The universal bound only depends on D and E7, indicating the global existence.
Now we sketch the proof of H̃ 2

x × H 1
x scattering. From a similar argument as the one discussed in

Remark 2.2, in order to prove H̃ 2
x (R

3)× H 1
x (R

3) scattering, it suffices to show that

‖|u|4u logα(2+ |u|2)‖L1
t H1

x (R+×R3) <∞. (63)

By the above discussion, the universal bound is independent of T . Hence we have NR+ <∞. By Hölder’s
inequality,

‖|u|4u logα(2+ |u|2)‖L1
t H1

x (R+×R3) . M1/2
R+

NR+ log1/2(2+ N 2
R+
) <∞. �

Appendix: Proof of (30)

Since (u0, u1) lies in X1× Y1, defined in (9), we have

‖u0‖
2
X1
≥

∫
R3
|∇u0|

2 log2γ (1+ |x |) dx & (log2γ s)
∫
|x |>s
|∇u0|

2 dx .

Hence ∫
|x |>s
|∇u0|

2 dx .
‖u0‖

2
X1

log2γ s
. (64)

Similarly, ∫
|x |>s
|u1|

2 dx .
‖u1‖

2
Y1

log2γ s
. (65)

6See the similar arguments in Lemma 3.5 and Corollary 3.8 or Proposition 3.1 in [Tao 2007].
7In fact, from corollary 3.2 in [Tao 2007], we have NR+ . (2+ D)(2+D)O(E) .
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Now, consider∫
|x |>s

F(u0(x)) dx =
∫
{|x |>s}∩{|u0|<1/3}

F(u0(x)) dx +
∫
{|x |>s}∩{|u0|≥1/3}

F(u0(x)) dx

.
∫
{|x |>s}∩{|u0|<1/3}

|u0|
6(−log |u0|) dx +

∫
{|x |>s}∩{|u0|≥1/3}

|u0|
6 dx =: I + II.

Let

I =
∫
{|x |>s}∩{|u0(x)|<1/|x |2/3}

|u0|
6(−log |u0|) dx +

∫
{|x |>s}∩{1/|x |2/3≤|u0(x)|≤1/3}

|u0|
6(−log |u0|) dx

=: I1+ I2.

When s is sufficiently large,

I1 .
∫
{|x |>s}∩{|u0|<1/|x |2/3}

|u0|
11/2

(
sup

|u0|<s−2/3
|u0|

1/2(−log |u0|)
)

dx

.
∫
|x |>s
|x |−11/3 dx . s−2/3 . 1

log2γ s
. (66)

Now we aim to prove that I2+ II . 1
log2γ s

for s sufficiently large. For α ∈ R, define

Q(α) :=
∫

R3

∣∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣∣2 dx .

We claim that
Q(α)≤ C(‖u0‖X1, E, α) for α ≤ γ, (67)

where E is the energy. Indeed, if α ≤ 0, by Hölder’s inequality and Hardy’s inequality,

Q(α)=
∫
|x |<3

∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣2 dx +
∫
|x |≥3

∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣2 dx

.α

∫
|x |<3
|u0|

2 dx +
∫

R3

∣∣∣ u0

|x |

∣∣∣2 dx . ‖u0‖
2
Ḣ1

x (R
3)
+

(∫
R3

F(u0) dx
)1/3

≤ C(E, α). (68)

Again, if 0< α ≤ γ ,

Q(α)=
∫

R3

∣∣∣u0 logα(2+ |x |)
2+ |x |

∣∣∣2 dx .α

∫
|x |<3
|u0|

2 dx +
∫

R3

∣∣∣u0 logα(2+ |x |)
|x |

∣∣∣2 dx

.

(∫
|x |<3
|u0|

6 dx
)1/3

+

∫
R3
|∇(u0 logα(2+ |x |))|2 dx

.α

(∫
R3

F(u) dx
)1/3

+

∫
R3
|∇u0 logα(2+ |x |)|2 dx +

∫
R3

∣∣∣u0 logα−1(2+ |x |)
2+ |x |

∣∣∣2 dx

. E1/3
+

∫
|x |<3
|∇u0|

2 dx +
∫
|x |≥3
|∇u0 logγ (1+ |x |)|2 dx + Q(α− 1)

. E1/3
+ E +‖u0‖X1 + Q(α− 1).

By an inductive argument and (68), the claim is proved.
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Fix s� 1. Let χ be the smooth radial function which equals 1 on {|x |> s}, 0 on {|x |< s/2}, 0≤ χ ≤ 1
and |∇χ |. 1/s. Then we have |∇χ |. 1/|x |. By the Sobolev embedding theorem and Hardy’s inequality,

log6γ s
∫
|x |>s
|u0|

6 dx

≤

∫
|x |>s
|u0|

6 log6γ (|x |) dx ≤
∫

R3
(χ |u0| logγ (2+ |x |))6 dx .

(∫
R3

∣∣∇(χu0 logγ (2+ |x |)
)∣∣2 dx

)3

.γ

(∫
R3
|∇χu0 logγ (2+ |x |)|2 dx +

∫
R3
|χ∇u0 logγ (2+ |x |)|2 dx +

∫
R3

∣∣∣∣χu0 logγ−1(2+ |x |)
2+ |x |

∣∣∣∣2 dx
)3

=: (J1+ J2+ J3)
3.

We can compute that

J2 .γ

∫
R3

∣∣∇u0 logγ (1+ |x |)
∣∣2 dx +

∫
|x |<3
|∇u0|

2 dx ≤ ‖u0‖
2
X1
+ E,

J3 . C(‖u0‖X1, E, γ ), by (67).

Since ∇χ . 1/|x |,

J1 .
∫
|x |>s/2

∣∣∣∣u0 logγ (2+ |x |)
|x |

∣∣∣∣2 dx .
∫
|x |>s/2

∣∣∣∣u0 logγ (2+ |x |)
2+ |x |

∣∣∣∣2 dx

. C(‖u0‖X1, E, γ ).

Hence log6γ s
∫
|x |>s |u0|

6 dx ≤ C(‖u0‖X1, E, γ ) for sufficiently large s. Then we deduce

II ≤
∫
|x |>s
|u0|

6 dx . 1
log6γ s

≤
1

log2γ s
. (69)

Similarly,

log6γ−1 s
∫
{|x |>s}∩{1/|x |2/3≤|u0|≤1/3}

|u0|
6(−log |u0|) dx . log6γ−1 s

∫
|x |>s
|u0|

6 log(|x |) dx

.
∫
|x |>s
|u0|

6 log6γ (|x |) dx . C(‖u0‖X1, E, γ ).

Therefore,

I2 .
1

log6γ−1 s
≤

1
log2γ s

. (70)

Combining (64), (65), (66), (69), and (70), we obtain (30).
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