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LOCALISATION AND COMPACTNESS PROPERTIES
OF THE NAVIER–STOKES GLOBAL REGULARITY PROBLEM

TERENCE TAO

In this paper we establish a number of implications between various qualitative and quantitative versions
of the global regularity problem for the Navier–Stokes equations in the periodic, smooth finite energy,
smooth H 1, Schwartz, and mild H 1 categories, and with or without a forcing term. In particular, we
show that if one has global well-posedness in H 1 for the periodic Navier–Stokes problem with a forcing
term, then one can obtain global regularity both for periodic and for Schwartz initial data (thus yielding
a positive answer to both official formulations of the problem for the Clay Millennium Prize), and can
also obtain global almost smooth solutions from smooth H 1 data or smooth finite energy data, although
we show in this category that fully smooth solutions are not always possible. Our main new tools are
localised energy and enstrophy estimates to the Navier–Stokes equation that are applicable for large data
or long times, and which may be of independent interest.

1. Introduction

The purpose of this paper is to establish some implications between various formulations of the global
regularity problem (either with or without a forcing term) for the Navier–Stokes system of equations,
including the four formulations appearing in the Clay Millennium Prize formulation [Fefferman 2006] of
the problem, and in particular to isolate a single formulation that implies these four formulations, as well
as several other natural versions of the problem. In the course of doing so, we also establish some new
local energy and local enstrophy estimates which seem to be of independent interest.

To describe these various formulations, we must first define properly the concept of a solution to
the Navier–Stokes problem. We will need to study a number of different types of solutions, including
periodic solutions, finite energy solutions, H 1 solutions, and smooth solutions; we will also consider a
forcing term f in addition to the initial data u0. We begin in the classical regime of smooth solutions.
Note that even within the category of smooth solutions, there is some choice in what decay hypotheses to
place on the initial data and solution; for instance, one can require that the initial velocity u0 be Schwartz
class, or merely smooth with finite energy. Intermediate between these two will be data which is smooth
and in H 1.

More precisely, we define:
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Definition 1.1 (Smooth solutions to the Navier–Stokes system). A smooth set of data for the Navier–
Stokes system up to time T is a triplet (u0, f, T ), where 0< T <∞ is a time, the initial velocity vector
field u0 : R

3
→ R3 and the forcing term f : [0, T ] × R3

→ R3 are assumed to be smooth on R3 and
[0, T ]×R3 respectively (thus, u0 is infinitely differentiable in space, and f is infinitely differentiable in
space-time), and u0 is furthermore required to be divergence-free:

∇ · u0 = 0. (1)

If f = 0, we say that the data is homogeneous.
The total energy E(u0, f, T ) of a smooth set of data (u0, f, T ) is defined by the quantity1

E(u0, f, T ) := 1
2

(
‖u0‖L2

x (R
3)+‖ f ‖L1

t L2
x ([0,T ]×R3)

)2
, (2)

and (u0, f, T ) is said to have finite energy if E(u0, f, T ) <∞. We define the H 1 norm H1(u0, f, T ) of
the data to be the quantity

H1(u0, f, T ) := ‖u0‖H1
x (R

3)+‖ f ‖L∞t H1
x (R

3) <∞,

and say that (u0, f, T ) is H 1 if H1(u0, f, T ) <∞; note that the H 1 regularity is essentially one derivative
higher than the energy regularity, which is at the level of L2, and instead matches the regularity of the
initial enstrophy

1
2

∫
R3
|ω0(t, x)|2 dx,

where ω0 := ∇ × u0 is the initial vorticity. We say that a smooth set of data (u0, f, T ) is Schwartz if, for
all integers α,m, k ≥ 0, one has

sup
x∈R3

(1+ |x |)k
∣∣∇αx u0(x)

∣∣<∞
and

sup
(t,x)∈[0,T ]×R3

(1+ |x |)k
∣∣∇αx ∂m

t f (x)
∣∣<∞.

Thus, for instance, the Schwartz property implies H 1, which in turn implies finite energy. We also say that
(u0, f, T ) is periodic with some period L > 0 if one has u0(x+ Lk)= u0(x) and f (t, x+ Lk)= f (t, x)
for all t ∈ [0, T ], x ∈ R3, and k ∈ Z3. Of course, periodicity is incompatible with the Schwartz, H 1, and
finite energy properties, unless the data is zero. To emphasise the periodicity, we will sometimes write a
periodic set of data (u0, f, T ) as (u0, f, T, L).

A smooth solution to the Navier–Stokes system, or a smooth solution, is a quintuplet (u, p, u0, f, T ),
where (u0, f, T ) is a smooth set of data, and the velocity vector field u : [0, T ]×R3

→ R3 and pressure
field p : [0, T ]×R3

→ R are smooth functions on [0, T ]×R3 that obey the Navier–Stokes equation

∂t u+ (u · ∇)u =1u−∇ p+ f (3)

and the incompressibility property
∇ · u = 0 (4)

1We will review our notation for space-time norms such as L p
t Lq

x , together with sundry other notation, in Section 2.
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on all of [0, T ]×R3, and also the initial condition

u(0, x)= u0(x) (5)

for all x ∈ R3. We say that a smooth solution (u, p, u0, f, T ) has finite energy if the associated data
(u0, f, T ) has finite energy, and in addition one has2

‖u‖L∞t L2
x ([0,T ]×R3) <∞. (6)

Similarly, we say that (u, p, u0, f, T ) is H 1 if the associated data (u0, f, T ) is H 1, and in addition one
has

‖u‖L∞t H1
x ([0,T ]×R3)+‖u‖L2

t H2
x ([0,T ]×R3) <∞. (7)

We say instead that a smooth solution (u, p, u0, f, T ) is periodic with period L > 0 if the associated data
(u0, f, T )= (u0, f, T, L) is periodic with period L , and if u(t, x+Lk)= u(t, x) for all t ∈ [0, T ], x ∈R3,
and k ∈ Z3. (Following [Fefferman 2006], however, we will not initially directly require any periodicity
properties on the pressure.) As before, we will sometimes write a periodic solution (u, p, u0, f, T ) as
(u, p, u0, f, T, L) to emphasise the periodicity.

We will sometimes abuse notation and refer to a solution (u, p, u0, f, T ) simply as (u, p) or even u.
Similarly, we will sometimes abbreviate a set of data (u0, f, T ) as (u0, f ) or even u0 (in the homogeneous
case f = 0).

Remark 1.2. In [Fefferman 2006], one considered3 smooth finite energy solutions associated to Schwartz
data, as well as periodic smooth solutions associated to periodic smooth data. In the latter case, one can of
course normalise the period L to equal 1 by a simple scaling argument. In this paper we will be focussed
on the case when the data (u0, f, T ) is large, although we will not study the asymptotic regime when
T →∞.

We recall the two standard global regularity conjectures for the Navier–Stokes equation, using the
formulation in [Fefferman 2006]:

Conjecture 1.3 (Global regularity for homogeneous Schwartz data). Let (u0, 0, T ) be a homogeneous
Schwartz set of data. Then there exists a smooth finite energy solution (u, p, u0, 0, T ) with the indicated
data.

Conjecture 1.4 (Global regularity for homogeneous periodic data). Let (u0, 0, T ) be a smooth homoge-
neous periodic set of data. Then there exists a smooth periodic solution (u, p, u0, 0, T ) with the indicated
data.

2Following [Fefferman 2006], we omit the finite energy dissipation condition ∇u ∈ L2
t L2

x ([0, T ]×R3) that often appears
in the literature, particularly when discussing Leray–Hopf weak solutions. However, it turns out that this condition is actually
automatic from (6) and smoothness; see Lemma 8.1. Similarly, from Corollary 11.1 we shall see that the L2

t H2
x condition in (7)

is in fact redundant.
3The viscosity parameter ν was not normalised in [Fefferman 2006] to equal 1, as we are doing here, but one can easily

reduce to the ν = 1 case by a simple rescaling.
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In view of these conjectures, one can naturally try to extend them to the inhomogeneous case as
follows:

Conjecture 1.5 (Global regularity for Schwartz data). Let (u0, f, T ) be a Schwartz set of data. Then
there exists a smooth finite energy solution (u, p, u0, f, T ) with the indicated data.

Conjecture 1.6 (Global regularity for periodic data). Let (u0, f, T ) be a smooth periodic set of data.
Then there exists a smooth periodic solution (u, p, u0, f, T ) with the indicated data.

As described in [Fefferman 2006], a positive answer to either Conjecture 1.3 or Conjecture 1.4, or a
negative answer to Conjecture 1.5 or Conjecture 1.6, would qualify for the Clay Millennium Prize.

However, Conjecture 1.6 is not quite the “right” extension of Conjecture 1.4 to the inhomogeneous
setting, and needs to be corrected slightly. This is because there is a technical quirk in the inhomogeneous
periodic problem as formulated in Conjecture 1.6, due to the fact that the pressure p is not required to be
periodic. This opens up a Galilean invariance in the problem which allows one to homogenise away the
role of the forcing term. More precisely, we have:

Proposition 1.7 (Elimination of forcing term). Conjecture 1.6 is equivalent to Conjecture 1.4.

We establish this fact in Section 6. We remark that this is the only implication we know of that can
deduce a global regularity result for the inhomogeneous Navier–Stokes problem from a global regularity
result for the homogeneous Navier–Stokes problem.

Proposition 1.7 exploits the technical loophole of nonperiodic pressure. The same loophole can also be
used to easily demonstrate failure of uniqueness for the periodic Navier–Stokes problem (although this
can also be done by the much simpler expedient of noting that one can adjust the pressure by an arbitrary
constant without affecting (3)). This suggests that in the nonhomogeneous case f 6= 0, one needs an
additional normalisation to “fix” the periodic Navier–Stokes problem to avoid such loopholes. This can be
done in a standard way, as follows. If one takes the divergence of (3) and uses the incompressibility (4),
one sees that

1p =−∂i∂ j (ui u j )+∇ · f, (8)

where we use the usual summation conventions. If (u, p, u0, f, T ) is a smooth periodic solution, then the
right-hand side of (8) is smooth and periodic and has mean zero. From Fourier analysis, we see that given
any smooth periodic mean-zero function F , there is a unique smooth periodic mean-zero function 1−1 F
with Laplacian equal to F . We then say that the periodic smooth solution (u, p, u0, f, T ) has normalised
pressure if one has4

p =−1−1∂i∂ j (ui u j )+1
−1
∇ · f. (9)

We remark that this normalised pressure condition can also be imposed for smooth finite energy solutions
(because ∂i∂ j (ui u j ) is a second derivative of an L1

x(R
3) function, and ∇ · f is the first derivative of an

L2
x(R

3) function), but it will turn out that normalised pressure is essentially automatic in that setting
anyway; see Lemma 4.1.

4Up to the harmless freedom to add a constant to p, this normalisation is equivalent to requiring that the pressure be periodic
with the same period as the solution u.
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It is well known that once one imposes the normalised pressure condition, the periodic Navier–Stokes
problem becomes locally well-posed in the smooth category (in particular, smooth solutions are now
unique, and exist for sufficiently short times from any given smooth data); see Theorem 5.1. Related
to this, the Galilean invariance trick that allows one to artificially homogenise the forcing term f is no
longer available. We can then pose a “repaired” version of Conjecture 1.6:

Conjecture 1.8 (Global regularity for periodic data with normalised pressure). Let (u0, f, T ) be a smooth
periodic set of data. Then there exists a smooth periodic solution (u, p, u0, f, T ) with the indicated data
and with normalised pressure.

It is easy to see that the homogeneous case f = 0 of Conjecture 1.8 is equivalent to Conjecture 1.4;
see, for example, Lemma 4.1 below.

We now leave the category of classical (smooth) solutions for now, and turn instead to the category of
periodic H 1 mild solutions (u, p, u0, f, T, L). By definition, these are functions

u, f : [0, T ]×R3/LZ3
→ R3, p : [0, T ]×R3/LZ3

→ R, u0 : R
3/LZ3

→ R3,

with 0< T, L <∞, obeying the regularity hypotheses

u0 ∈ H 1
x (R

3/LZ3),

f ∈ L∞t H 1
x ([0, T ]× (R3/LZ3)),

u ∈ L∞t H 1
x ∩ L2

t H 2
x ([0, T ]× (R3/LZ3)),

with p being given by (9), which obey the divergence-free conditions (4), (1) and obey the integral form

u(t)= et1u0+

∫ t

0
e(t−t ′)1(

−(u · ∇)u−∇ p+ f
)
(t ′) dt ′ (10)

of the Navier–Stokes equation (3) with initial condition (5); using the Leray projection P onto divergence-
free vector fields, we may also express (19) equivalently as

u(t)= et1u0+

∫ t

0
e(t−t ′)1(PB(u, u)+ P f )(t ′) dt ′, (11)

where B(u, v) is the symmetric bilinear form

B(u, v)i := − 1
2∂ j (uiv j + u jvi ). (12)

Similarly, we define periodic H 1 data to be a quadruplet (u0, f, T, L) whose H 1 norm

H1(u0, f, T, L) := ‖u0‖H1
x ((R

3/LZ3))+‖ f ‖L∞t H1
x ((R

3/LZ3))

is finite, with u0 divergence-free.
Note from Duhamel’s formula (20) that every smooth periodic solution with normalised pressure is

automatically a periodic H 1 mild solution.
As we will recall in Theorem 5.1 below, the Navier–Stokes equation is locally well-posed in the

periodic H 1 category. We can then formulate a global well-posedness conjecture in this category:
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Conjecture 1.9 (Global well-posedness in periodic H 1). Let (u0, f, T, L) be a periodic H 1 set of data.
Then there exists a periodic H 1 mild solution (u, p, u0, f, T, L) with the indicated data.

We may also phrase a quantitative variant of this conjecture:

Conjecture 1.10 (A priori periodic H 1 bound). There exists a function F : R+×R+×R+→ R+ with
the property that whenever (u, p, u0, f, T, L) is a smooth periodic normalised-pressure solution with
0< T < T0 <∞ and

H1(u0, f, T, L)≤ A <∞,

we have
‖u‖L∞t H1

x ([0,T ]×R3/LZ3) ≤ F(A, L , T0).

Remark 1.11. By rescaling, one may set L = 1 in this conjecture without any loss of generality; by
partitioning the time interval [0, T0] into smaller subintervals, we may also simultaneously set T0 = 1 if
desired. Thus, the key point is that the size of the data A is allowed to be large (for small A the conjecture
follows from the local well-posedness theory; see Theorem 5.1).

As we shall soon see, Conjecture 1.9 and Conjecture 1.10 are actually equivalent.
We now turn to the nonperiodic setting. In Conjecture 1.5, the hypothesis that the initial data be

Schwartz may seem unnecessarily restrictive, given that the incompressible nature of the fluid implies
that the Schwartz property need not be preserved over time; also, there are many interesting examples of
initial data that are smooth and finite energy (or H 1) but not Schwartz. In particular, one can consider
generalising Conjecture 1.5 to data that is merely smooth and H 1, or even smooth and finite energy, rather
than Schwartz5 of Conjecture 1.5. Unfortunately, the naive generalisation of Conjecture 1.5 (or even
Conjecture 1.3) fails instantaneously in this case:

Theorem 1.12 (No smooth solutions from smooth H 1 data). There exists smooth u0 ∈ H 1
x (R

3) such that
there does not exist any smooth finite energy solution (u, p, u0, 0, T ) with the indicated data for any
T > 0.

We prove this proposition in Section 15. At first glance, this proposition looks close to being a negative
answer to either Conjecture 1.5 or Conjecture 1.3, but it relies on a technicality; for smooth H 1 data,
the second derivatives of u0 need not be square-integrable, and this can cause enough oscillation in the
pressure to prevent the pressure from being C2

t (or the velocity field from being C3
t ) at the initial time6

t = 0. This theorem should be compared with the classical local existence theorem of Heywood [1980],
which obtains smooth solutions for small positive times from smooth data with finite enstrophy, but
merely obtains continuity at the initial time t = 0.

The situation is even worse in the inhomogeneous setting; the argument in Theorem 1.12 can be used
to construct inhomogeneous smooth H 1 data whose solutions will now be nonsmooth in time at all times,

5We are indebted to Andrea Bertozzi for suggesting these formulations of the Navier–Stokes global regularity problem.
6For most evolutionary PDEs, one can gain unlimited time differentiability at t = 0 assuming smooth initial data by

differentiating the PDE in time (see the proof of the Cauchy–Kowalesky theorem). However, the problem here is that the pressure
p in the Navier–Stokes equation does not obey an evolutionary PDE, but is instead determined in a nonlocal fashion from the
initial data u (see (9)), which prevents one from obtaining much time regularity of the pressure initially.
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not just at the initial time t = 0. Because of this, we will not attempt to formulate a global regularity
problem in the inhomogeneous smooth H 1 or inhomogeneous smooth finite energy categories.

In the homogeneous setting, though, we can get around this technical obstruction by introducing the
notion of an almost smooth finite energy solution (u, p, u0, f, T ), which is the same concept as a smooth
finite energy solution, but instead of requiring u, p to be smooth on [0, T ] × R3, we instead require
that u, p are smooth on (0, T ] ×R3, and for each k ≥ 0, the functions ∇k

x u, ∂t∇
k
x u,∇k

x p exist and are
continuous on [0, T ] ×R3. Thus, the only thing that almost smooth solutions lack when compared to
smooth solutions is a limited amount of time differentiability at the starting time t = 0; informally, u
is only C1

t C∞x at t = 0, and p is only C0
t C∞x at t = 0. This is still enough regularity to interpret the

Navier–Stokes equation (3) in the classical sense, but is not a completely smooth solution.
The “corrected” conjectures for global regularity in the homogeneous smooth H 1 and smooth finite

energy categories are then:

Conjecture 1.13 (Global almost regularity for homogeneous H 1). Let (u0, 0, T ) be a smooth homoge-
neous H 1 set of data. Then there exists an almost smooth finite energy solution (u, p, u0, 0, T ) with the
indicated data.

Conjecture 1.14 (Global almost regularity for homogeneous finite energy data). Let (u0, 0, T ) be a
smooth homogeneous finite energy set of data. Then there exists an almost smooth finite energy solution
(u, p, u0, 0, T ) with the indicated data.

We carefully note that these conjectures only concern existence of smooth solutions, and not uniqueness;
we will comment on some of the uniqueness issues later in this paper.

Another way to repair the global regularity conjectures in these settings is to abandon smoothness
altogether, and work instead with the notion of mild solutions. More precisely, define a H 1 mild solution
(u, p, u0, f, T ) to be fields u, f : [0, T ]×R3

→R3, p : [0, T ]×R3
→R, u0 :R

3
→R3 with 0< T <∞,

obeying the regularity hypotheses

u0 ∈ H 1
x (R

3),

f ∈ L∞t H 1
x ([0, T ]×R3),

u ∈ L∞t H 1
x ∩ L2

t H 2
x ([0, T ]×R3),

with p being given by (9), which obey (4), (1), and (10) (and thus (11)). Similarly, define the concept of
H 1 data (u0, f, T ).

We then have the following conjectures in the homogeneous setting:

Conjecture 1.15 (Global well-posedness in homogeneous H 1). Let (u0, 0, T ) be a homogeneous H 1 set
of data. Then there exists an H 1 mild solution (u, p, u0, 0, T ) with the indicated data.

Conjecture 1.16 (A priori homogeneous H 1 bound). There exists a function F : R+×R+→ R+ with
the property that whenever (u, p, u0, 0, T ) is a smooth H 1 solution with 0< T < T0 <∞ and

‖u0‖H1
x (R

3) ≤ A <∞,
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we have
‖u‖L∞t H1

x ([0,T ]×R3) ≤ F(A, T0).

We also phrase a global-in-time variant:

Conjecture 1.17 (A priori global homogeneous H 1 bound). There exists a function F : R+→ R+ with
the property that whenever (u, p, u0, 0, T ) is a smooth H 1 solution with

‖u0‖H1
x (R

3) ≤ A <∞,

then
‖u‖L∞t H1

x ([0,T ]×R3) ≤ F(A).

In the inhomogeneous setting, we will state two slightly technical conjectures:

Conjecture 1.18 (Global well-posedness from spatially smooth Schwartz data). Let (u0, f, T ) be data
obeying the bounds

sup
x∈R3

(1+ |x |)k |∇αx u0(x)|<∞

and
sup

(t,x)∈[0,T ]×R3
(1+ |x |)k |∇αx f (x)|<∞

for all k, α ≥ 0. Then there exists an H 1 mild solution (u, p, u0, f, T ) with the indicated data.

Conjecture 1.19 (Global well-posedness from spatially smooth H 1 data). Let (u0, f, T ) be an H 1 set of
data, such that

sup
x∈K
|∇

α
x u0(x)|<∞

and
sup

(t,x)∈[0,T ]×K
|∇

α
x f (x)|<∞

for all α ≥ 0 and all compact K . Then there exists an H 1 mild solution (u, p, u0, f, T ) with the indicated
data.

Needless to say, we do not establish7 any of these conjectures unconditionally in this paper. However,
as the main result of this paper, we are able to establish the following implications:

Theorem 1.20 (Implications). (i) Conjectures 1.9 and 1.10 are equivalent.

(ii) Conjecture 1.9 implies Conjecture 1.8 (and hence also Conjectures 1.6 and 1.4).

(iii) Conjecture 1.9 implies Conjecture 1.19, which is equivalent to Conjecture 1.18.

(iv) Conjecture 1.19 implies Conjectures 1.13 and 1.5 (and hence also Conjecture 1.3).

(v) Conjecture 1.13 is equivalent to Conjecture 1.14.

(vi) Conjectures 1.13, 1.15, 1.16, and 1.17 are all equivalent.

7Indeed, the arguments here do not begin to address the main issue in any of these conjectures, namely the analysis of
fine-scale (and turbulent) behaviour. The results in this paper do not prevent singularities from occurring in the Navier–Stokes
flow; but they can largely localise the impact of such singularities to a bounded region of space.
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Figure 1. Known implications between the various conjectures described here (existence
of smooth or mild solutions, or local or global quantitative bounds in the periodic,
Schwartz, H 1, or finite energy categories, with or without normalised pressure, and
with or without the f = 0 condition) and also in [Tao 2007] (the latter conjectures and
implications occupy the far left column). A positive solution to the red problems, or a
negative solution to the blue problems, qualify for the Clay Millennium prize, as stated
in [Fefferman 2006].

The logical relationship between these conjectures, given by the implications above (as well as some
trivial implications, and the equivalences in [Tao 2007]), is displayed in Figure 1.

Among other things, these results essentially show that in order to solve the Navier–Stokes global
regularity problem, it suffices to study the periodic setting (but with the caveat that one now has to
consider forcing terms with the regularity of L∞t H 1

x ).
Theorem 1.20(i) is a variant of the compactness arguments used in [Tao 2007] (see also [Gallagher 2001;

Rusin and Šverák 2011]), and is proven in Section 7. Part (ii) of this theorem is a standard consequence
of the periodic H 1 local well-posedness theory, which we review in Section 5. In the homogeneous f = 0
case it is possible to reverse this implication by the compactness arguments mentioned previously; see
[Tao 2007]. However, we were unable to obtain this converse implication in the inhomogeneous case.
Part (iv) is similarly a consequence of the nonperiodic H 1 local well-posedness theory, and is also proven
in Section 5.
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Part (vi) is also a variant of the results in [Tao 2007], with the main new ingredient being a use of
concentration compactness instead of compactness in order to deal with the unboundedness of the spatial
domain R3, using the methods from [Bahouri and Gérard 1999; Gérard 1998; Gallagher 2001]. We
establish these results in Section 14.

The more novel aspects of this theorem are parts (iii) and (v), which we establish in Sections 12 and 13
respectively. These results rely primarily on a new localised enstrophy inequality (Theorem 10.1) which
can be viewed as a weak version of finite speed of propagation8 for the enstrophy 1

2

∫
R3 |ω(t, x)|2 dx ,

where ω := ∇ × u is the vorticity. We will also obtain a similar localised energy inequality for the energy
1
2

∫
R3 |u(t, x)|2 dx , but it will be the enstrophy inequality that is of primary importance to us, as the

enstrophy is a subcritical quantity and can be used to obtain regularity (and local control on enstrophy can
similarly be used to obtain local regularity). Remarkably, one is able to obtain local enstrophy inequalities
even though the only a priori controlled quantity, namely the energy, is supercritical; the main difficulty
is a harmonic analysis one, namely to control nonlinear effects primarily in terms of the local enstrophy
and only secondarily in terms of the energy.

Remark 1.21. As one can see from Figure 1, the precise relationship between all the conjectures discussed
here is rather complicated. However, if one is willing to ignore the distinction between homogeneous
and inhomogeneous data, as well as the (rather technical) distinction between smooth and almost smooth
solutions, then the main implications can then be informally summarised as follows:

• (Homogenisation) Without pressure normalisation, the inhomogeneity in the periodic global regularity
conjecture is irrelevant: the inhomogeneous regularity conjecture is equivalent to the homogeneous
one.

• (Localisation) The global regularity problem in the Schwartz, H 1, and finite energy categories are
“essentially” equivalent to each other.

• (More localisation) The global regularity problem in any of the above three categories is “essentially”
a consequence of the global regularity problem in the periodic category.

• (Concentration compactness) Quantitative and qualitative versions of the global regularity problem
(in a variety of categories) are “essentially” equivalent to each other.

The qualifier “essentially” here though needs to be taken with a grain of salt; again, one should consult
Figure 1 for an accurate depiction of the implications.

The local enstrophy inequality has a number of other consequences, for instance allowing one to
construct Leray–Hopf weak solutions whose (spatial) singularities are compactly supported in space; see
Proposition 11.9.

Remark 1.22. Since the submission of this manuscript, the referee pointed out that the partial regularity
theory of Caffarelli, Kohn, and Nirenberg [1982] also allows one to partially reverse the implication in

8Actually, in our setting, “finite distance of propagation” would be more accurate; we obtain an L1
t bound for the propagation

velocity (see Proposition 9.1) rather than an L∞t bound.
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Theorem 1.20(iii), and more specifically to deduce Conjecture 1.8 from Conjecture 1.19. We sketch the
referee’s argument in Remark 12.3.

2. Notation and basic estimates

We use X . Y , Y & X , or X = O(Y ) to denote the estimate X ≤ CY for an absolute constant C . If we
need C to depend on a parameter, we shall indicate this by subscripts; thus for instance X .s Y denotes
the estimate X ≤ CsY for some Cs depending on s. We use X ∼ Y as shorthand for X . Y . X .

We will occasionally use the Einstein summation conventions, using Roman indices i, j to range
over the three spatial dimensions 1, 2, 3, though we will not bother to raise and lower these indices; for
instance, the components of a vector field u will be ui . We use ∂i to denote the derivative with respect to
the i-th spatial coordinate xi . Unless otherwise specified, the Laplacian 1= ∂i∂i will denote the spatial
Laplacian. (In Lemma 12.1, though, we will briefly need to deal with the Laplace–Beltrami operator 1S2

on the sphere S2.) Similarly, ∇ will refer to the spatial gradient ∇ = ∇x unless otherwise stated. We use
the usual notations ∇ f , ∇ · u, ∇ × u, for the gradient, divergence, or curl of a scalar field f or a vector
field u.

It will be convenient (particularly when dealing with nonlinear error terms) to use schematic notation,
in which an expression such as O(uvw) involving some vector- or tensor-valued quantities u, v, w denotes
some constant-coefficient combination of products of the components of u, v, w respectively, and similarly
for other expressions of this type. Thus, for instance, ∇×∇×u could be written schematically as O(∇2u),
|u× v|2 could be written schematically as O(uuvv), and so forth.

For any centre x0∈R3 and radius R>0, we use B(x0, R) :={x ∈R3
: |x−x0|≤ R} to denote the (closed)

Euclidean ball. Much of our analysis will be localised to a ball B(x0, R), an annulus B(x0, R)\B(x0, r),
or an exterior region R3

\B(x0, R) (and often x0 will be normalised to the origin 0).
We define the absolute value of a tensor in the usual Euclidean sense. Thus, for instance, if u = ui is a

vector field, then |u|2 = ui ui , |∇u|2 = (∂i u j )(∂i u j ), |∇2u|2 = (∂i∂ j uk)(∂i∂ j uk), and so forth.
If E is a set, we use 1E to denote the associated indicator function; thus 1E(x)= 1 when x ∈ E and

1E(x) = 0 otherwise. We sometimes also use a statement in place of E ; thus for instance 1k 6=0 would
equal 1 if k 6= 0 and 0 when k = 0.

We use the usual Lebesgue spaces L p(�) for various domains � (usually subsets of Euclidean space
R3 or a torus R3/LZ3) and various exponents 1≤ p≤∞, which will always be equipped with an obvious
Lebesgue measure. We often write L p(�) as L p

x (�) to emphasise the spatial nature of the domain �.
Given an absolutely integrable function f ∈ L1

x(R
3), we define the Fourier transform f̂ : R3

→ C by the
formula

f̂ (ξ) :=
∫

R3
e−2π i x ·ξ f (x) dx;

we then extend this Fourier transform to tempered distributions in the usual manner. For a function f
which is periodic with period 1, and thus representable as a function on the torus R3/Z3, we define the
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discrete Fourier transform f̂ : Z3
→ C by the formula

f̂ (k) :=
∫

R3/Z3
e−2π ik·x f (x) dx

when f is absolutely integrable on R3/Z3, and extend this to more general distributions on R3/Z3 in the
usual fashion. Strictly speaking, these two notations are not compatible with each other, but it will always
be clear in context whether we are using the nonperiodic or the periodic Fourier transform.

For any spatial domain � (contained in either R3 or R3/LZ3) and any natural number k ≥ 0, we define
the classical Sobolev norms ‖u‖H k

x (�)
of a smooth function u :�→ R by the formula

‖u‖H k
x (�)
:=

( k∑
j=0

‖∇
j u‖2L2

x (�)

)1/2

,

and say that u ∈ H k
x (�) when ‖u‖H k

x (�)
is finite. Note that we do not impose any vanishing conditions at

the boundary of �, and to avoid technical issues we will not attempt to define these norms for nonsmooth
functions u in the event that � has a nontrivial boundary. In the domain R3 and for s ∈ R, we define the
Sobolev norm ‖u‖H s

x (R
3) of a tempered distribution u : R3

→ R by the formula

‖u‖H s
x (R

3) :=

(∫
R3
(1+ |ξ |2)s |û(ξ)|2 dξ

)1/2

.

Strictly speaking, this conflicts slightly with the previous notation when k is a nonnegative integer, but
the two norms are equivalent up to constants (and both norms define a Hilbert space structure), so the
distinction will not be relevant for our purposes. For s >− 3

2 , we also define the homogeneous Sobolev
norm

‖u‖Ḣ s
x (R

3) :=

(∫
R3
|ξ |2s
|û(ξ)|2 dξ

)1/2

,

and let H s
x (R

3), Ḣ s
x (R

3) be the space of tempered distributions with finite H s
x (R

3) or Ḣ s
x (R

3) norm
respectively. Similarly, on the torus R3/Z3 and s ∈ R, we define the Sobolev norm ‖u‖H s

x (R
3/Z3) of a

distribution u : R3/Z3
→ R by the formula

‖u‖H s
x (R

3/Z3) :=

(∑
k∈Z3

(1+ |k|2)s |û(k)|2
)1/2

;

again, this conflicts slightly with the classical Sobolev norms H k
x (R

3/Z3), but this will not be a serious
issue in this paper. We define H s

x (R
3/Z3) to be the space of all distributions u with finite H s

x (R
3/Z3)

norm, and H s
x (R

3/Z3)0 to be the codimension-one subspace of functions or distributions u which are
mean-zero in the sense that û(0)= 0.
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In a similar vein, given a spatial domain � and a natural number k ≥ 0, we define Ck
x (�) to be the

space of all k times continuously differentiable functions u :�→ R whose norm

‖u‖Ck
x (�)
:=

k∑
j=0

‖∇
j u‖L∞x (�)

is finite9. Given any spatial norm ‖‖Xx (�) associated to a function space Xx defined on a spatial domain
�, and a time interval I , we can define mixed-norms ‖u‖L p

t Xx (I×�) on functions u : I ×�→ R by the
formula

‖u‖L p
t Xx (I×�) :=

(∫
I
‖u(t)‖p

Xx (�)
dt
)1/p

when 1≤ p <∞, and
‖u‖L∞t Xx (I×�) := ess supt∈I ‖u(t)‖Xx (�),

assuming in both cases that u(t) lies in X (�) for almost every �, and then let L p
t Xx(I ×�) be the

space of functions (or, in some cases, distributions) whose L p
t Xx(I ×�) is finite. Thus, for instance,

L∞t C2
x (I×�)would be the space of functions u : I×�→R such that for almost every x ∈ I , u(t) :�→R

is in C2
x (�), and the norm

‖u‖L∞t C2
x (I×�) := ess supt∈I ‖u(t)‖C2

x (�)

is finite.
Similarly, for any natural number k ≥ 0, we define Ck

t Xx(I ×�) to be the space of all functions
u : I ×�→ R such that the curve t 7→ u(t) from I to Xx(�) is k times continuously differentiable, and
such that the norm

‖u‖Ck
t Xx (I×�) :=

k∑
j=0

‖∇
j u‖L∞t Xx (I×�)

is finite.
Given two normed function spaces X, Y on the same domain (in either space or space-time), we can

endow their intersection X ∩ Y with the norm

‖u‖X∩Y := ‖u‖X +‖u‖Y .

For us, the most common example of such hybrid norms will be the spaces

X s(I ×�) := L∞t H s
x (I ×�)∩ L2

x H s+1
x (I ×�), (13)

defined whenever I is a time interval, s is a natural number, and � is a spatial domain, or whenever
I is a time interval, s is real, and � is either R3 or R3/Z3. The X s spaces (particularly X1) will play
a prominent role in the (subcritical) local well-posedness theory for the Navier–Stokes equations; see

9Note that if � is noncompact, then it is possible for a smooth function to fail to lie in Ck(�) if it becomes unbounded or
excessively oscillatory at infinity. One could use a notation such as Ck

x,loc(�) to describe the space of functions that are k times
continuously differentiable with no bounds on derivatives, but we will not need such notation here.
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Section 5. The space X0 will also be naturally associated with energy estimates, and the space X1 with
enstrophy estimates.

All of these above function spaces can of course be extended to functions that are vector or tensor-valued
without difficulty (there are multiple ways to define the norms in these cases, but all such definitions will
be equivalent up to constants).

We use the Fourier transform to define a number of useful multipliers on R3 or R3/Z3. On R3, we
formally define the inverse Laplacian operator 1−1 by the formula

1̂−1 f (ξ) :=
−1

4π2|ξ |2
f̂ (ξ), (14)

which is well-defined for any tempered distribution f : R3
→ R for which the right-hand side of (14) is

locally integrable. This is for instance the case if f lies in the k-th derivative of a function in L1
x(R

3) for
some k ≥ 0, or the k-th derivative of a function in L2

x(R
3) for some k ≥ 1. If f ∈ L1

x(R
3), then as is well

known, one has the Newton potential representation

1−1 f (x)=
−1
4π

∫
R3

f (y)
|x − y|

dy. (15)

Note in particular that (15) implies that if f ∈ L1
x(R

3) is supported on some closed set K , then 1−1 f
will be smooth away from K . Also observe from Fourier analysis (and decomposition into local and
global components) that if f is smooth and is either the k-th derivative of a function in L1

x(R
3) for some

k ≥ 0, or the k-th derivative of a function in L2
x(R

3) for some k ≥ 1, then 1−1 f will be smooth also.
We also note that the Newton potential −1/(4π |x − y|) is smooth away from the diagonal x = y.

Because of this, we will often be able to obtain large amounts of regularity in space in the “far field”
region when |x | is large, for fields such as the velocity field u. However, it will often be significantly
more challenging to gain significant amounts of regularity in time, because the inverse Laplacian 1−1

has no smoothing properties in the time variable.
On R3/Z3, we similarly define the inverse Laplacian operator 1−1 for distributions f : R3/Z3

→ R

with f̂ (0)= 0 by the formula

1̂−1 f (k) :=
−1k 6=0

4π2|k|2
f̂ (k). (16)

We define the Leray projection Pu of a (tempered distributional) vector field u : R3
→ R3 by the

formula
Pu :=1−1(∇ ×∇ × u).

If u is square-integrable, then Pu is the orthogonal projection of u onto the space of square-integrable
divergence-free vector fields; from Calderón–Zygmund theory, we know that the projection P is bounded
on L p

x (R
3) for every 1< p <∞, and from Fourier analysis we see that P is also H s

x (R
3) for every s ∈R.

Note that if u is square-integrable and divergence-free, then Pu = u, and we thus have the Biot–Savart
law

u =1−1(∇ ×ω), (17)
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where ω := ∇ × u.
In either R3 or R3/LZ3, we let et1 for t > 0 be the usual heat semigroup associated to the heat equation

ut =1u. On R3, this takes the explicit form

et1 f (x)=
1

(4π t)3/2

∫
R3

e−|x−y|2/4t f (y) dy

for f ∈ L p
x (R

3) for some 1≤ p ≤∞. From Young’s inequality, we thus record the dispersive inequality

‖et1 f ‖Lq (R3) . t3/2q−3/2p
‖ f ‖L p(R3) (18)

whenever 1≤ p ≤ q ≤∞ and t > 0.
We recall Duhamel’s formula

u(t)= e(t−t0)1u(t0)+
∫ t

t0
e(t−t ′)1(∂t u−1u)(t ′) dt ′ (19)

whenever u : [t0, t]×�→ R is a smooth tempered distribution, with � equal to either R3 or R3/Z3.
We record some linear and bilinear estimates involving Duhamel-type integrals and the spaces X s

defined in (13), which are useful in the local H 1 theory for the Navier–Stokes equation:

Lemma 2.1 (Linear and bilinear estimates). Let [t0, t1] be a time interval, let � be either R3 or R3/Z3,
and suppose that u : [t0, t1]×�→ R and F : [t0, t1]×�→ R are tempered distributions such that

u(t)= e(t−t0)1u(t0)+
∫ t

t0
e(t−t ′)1F(t ′) dt ′. (20)

Then we have the standard energy estimate10

‖u‖X s([t0,t1]×�) .s ‖u(t0)‖H s
x (�)
+‖F‖L1

t H s
x ([t0,t1]×�)

(21)

for any s ≥ 0, as well as the variant

‖u‖X s([t0,t1]×�) .s ‖u(t0)‖H s
x (�)
+‖F‖L2

t H s−1
x ([t0,t1]×�) (22)

for any s ≥ 1. We also note the further variant

‖u‖X s([t0,t1]×�) .s ‖u(t0)‖H s
x (�)
+‖F‖L4

t L2
x ([t0,t1]×�)

(23)

for any s < 3/2.
We also have the bilinear estimate

‖∇(uv)‖L4
t L2

x ([t0,t1]×�)
. ‖u‖X1([t0,t1]×�)‖v‖X1([t0,t1]×�) (24)

for any u, v : [t0, t1]×R3
→ R, which in particular implies (by a Hölder in time) that

‖∇(uv)‖L2
t L2

x ([t0,t1]×R3) . (t1− t0)1/4‖u‖X1([t0,t1]×R3)‖v‖X1([t0,t1]×R3). (25)

10We adopt the convention that an estimate is vacuously true if the right-hand side is infinite or undefined.
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Proof. The estimates11 (22), (23), (24) are established in [Tao 2007, Lemma 2.1, Proposition 2.2]. The
estimate (21) follows from the F = 0 case of (21) and Minkowski’s inequality. �

Finally, we define the Littlewood–Paley projection operators on R3. Let ϕ(ξ) be a fixed bump function
supported in the ball {ξ ∈ R3

: |ξ | ≤ 2} and equal to 1 on the ball {ξ ∈ R3
: |ξ | ≤ 1}. Define a dyadic

number to be a number N of the form N = 2k for some integer k. For each dyadic number N , we define
the Fourier multipliers

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ),

P̂>N f (ξ) := (1−ϕ(ξ/N )) f̂ (ξ),

P̂N f (ξ) := ψ(ξ/N ) f̂ (ξ) := (ϕ(ξ/N )−ϕ(2ξ/N )) f̂ (ξ).

We similarly define P<N and P≥N . Thus for any tempered distribution, we have f =
∑

N PN f in a weakly
convergent sense at least, where the sum ranges over dyadic numbers. We recall the usual Bernstein
estimates

‖Ds PN f ‖L p
x (R3) .p,s,Ds N s

‖PN f ‖L p
x (R3),

‖∇
k PN f ‖L p

x (R3) ∼k,s N k
‖PN f ‖L p

x (R3),

‖P≤N f ‖Lq
x (R3) .p,q N 3/p−3/q

‖P≤N f ‖L p
x (R3),

‖PN f ‖Lq
x (R3) .p,q N 3/p−3/q

‖PN f ‖L p
x (R3),

(26)

for all 1 ≤ p ≤ q ≤∞, s ∈ R, k ≥ 0, and pseudodifferential operators Ds of order s; see, for example,
[Tao 2006, Appendix A].

We recall the Littlewood–Paley trichotomy: an expression of the form PN ((PN1 f1)(PN2 f2)) vanishes
unless one of the following three scenarios holds:

• (Low-high interaction) N2 . N1 ∼ N .

• (High-low interaction) N1 . N2 ∼ N .

• (High-high interaction) N . N1 ∼ N2.

This trichotomy is useful for obtaining estimates on bilinear expressions, as we shall see in Section 9.
We have the following frequency-localised variant of (18):

Lemma 2.2. If N is a dyadic number and f : R3
→ R has Fourier transform supported on an annulus

{ξ : |ξ | ∼ N }, then we have

‖et1 f ‖Lq (R3) . t3/2q−3/2p exp(−ct N 2)‖ f ‖L p(R3) (27)

for some absolute constant c > 0 and all 1≤ p ≤ q ≤∞.

11Strictly speaking, the result in [Tao 2007] was stated for the torus rather than R3, but the argument works without
modification in either domain, after first truncating u(t0), F to be Schwartz to avoid technicalities at infinity, and using a standard
density argument.
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Proof. By Littlewood–Paley projection, it suffices to show that

‖et1PN f ‖Lq (R3) . t3/2q−3/2p exp(−ct N 2)‖ f ‖L p(R3)

for all test functions f . By rescaling, we may set t = 1; in view of (18) we may then set N ≥ 1. One then
verifies from Fourier analysis that et1PN is a convolution operator whose kernel has an L∞x (R

3) and an
L1

x(R
3) norm that are both O(exp(−cN 2)) for some absolute constant c > 0, and the claim follows from

Young’s inequality. �

From the uniform smoothness of the heat kernel, we also observe the estimate

‖et1 f ‖Ck
x (K ) .k,K ,T,p exp(−cT r2)‖ f ‖L p

x (R3) (28)

whenever 0≤ t ≤ T , 1≤ p ≤∞, k ≥ 0, K is a compact subset of R3, r ≥ 1, f is supported on the set
{x ∈ R3

: dist(x, K )≥ r}, and some quantity cT > 0 depending only on T . In practice, this estimate will
be an effective substitute for finite speed of propagation for the heat equation.

3. Symmetries of the equation

In this section we review some well known symmetries of the Navier–Stokes flow that transform a given
smooth solution (u, p, u0, f, T ) to another smooth solution (ũ, p̃, ũ0, f̃ , T̃ ), as these symmetries will be
useful at various points in the paper.

The simplest symmetry is the spatial translation symmetry

ũ(t, x) := u(t, x − x0),

p̃(t, x) := p(t, x − x0),

ũ0(x) := u0(x − x0),

f̃ (t, x) := f (t, x − x0),

T̃ := T,

(29)

valid for any x0 ∈ R3; this transformation clearly maps mild, smooth, or almost smooth solutions to
solutions of the same type, and also preserves conditions such as finite energy, H 1, periodicity, pressure
normalisation, or the Schwartz property. In a similar vein, we have the time translation symmetry

ũ(t, x) := u(t + t0, x),

p̃(t, x) := p(t + t0, x),

ũ0(x) := u(t0, x),

f̃ (t, x) := f (t + t0, x),

T̃ := T − t0,

(30)

valid for any t0 ∈ [0, T ]. Again, this maps mild, smooth, or almost smooth solutions to solutions of
the same type (and if t0 > 0, then almost smooth solutions are even upgraded to smooth solutions). If
the original solution is finite energy or H 1, then the transformed solution will be finite energy or H 1
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also. Note however that if it is only the original data that is assumed to be finite energy or H 1, as
opposed to the solution, it is not immediately obvious that the time-translated solution remains finite
energy or H 1, especially in view of the fact that the H 1 norm (or the enstrophy) is not a conserved
quantity of the Navier–Stokes flow. (See however Lemma 8.1 and Corollary 11.1 below.) The situation
is particularly dramatic in the case of Schwartz data; as remarked earlier, time translation can instantly
convert12 Schwartz data to non-Schwartz data, due to the slow decay of the Newton potential appearing
in (9) (or of its derivatives, such as the Biot–Savart kernel in (17)).

Next, we record the scaling symmetry

ũ(t, x) :=
1
λ

u
( t
λ2 ,

x
λ

)
,

p̃(t, x) :=
1
λ2 p

( t
λ2 ,

x
λ

)
,

ũ0(x) :=
1
λ

u
( x
λ

)
,

f̃ (t, x) :=
1
λ3 f

( t
λ2 ,

x
λ

)
,

T̃ := Tλ2,

(31)

valid for any λ > 0; it also maps mild, smooth, or almost smooth solutions to solutions of the same type,
and preserves properties such as finite energy, finite enstrophy, pressure normalisation, periodicity, or the
Schwartz property, though note in the case of periodicity that a solution of period L will map to a solution
of period λL . We will only use scaling symmetry occasionally in this paper, mainly because most of the
quantities we will be manipulating will be supercritical with respect to this symmetry. Nevertheless, this
scaling symmetry serves a fundamentally important conceptual purpose, by making the key distinction
between subcritical, critical (or dimensionless), and supercritical quantities, which can help illuminate
many of the results in this paper (and was also crucial in allowing the author to discover13 these results in
the first place).

We record three further symmetries that impact upon the issue of pressure normalisation. The first is
the pressure shifting symmetry

ũ(t, x) := u(t, x),

p̃(t, x) := p(t, x)+C(t),

ũ0(x) := u0(x),

f̃ (t, x) := f (t, x),

T̃ := T,

(32)

12This can be seen for instance by noting that moments such as
∫

R3 ω1(t, x)(x2
2 − x2

3 ) dx are not conserved in time, but must
equal zero whenever u(t) is Schwartz.

13The author also found dimensional analysis to be invaluable in checking the calculations for errors. One could, if one
wished, exploit the scaling symmetry to normalise a key parameter (for example, the energy E , or a radius parameter r ) to equal
one, which would simplify the numerology slightly, but then one would lose the use of dimensional analysis to check for errors,
and so we have elected to largely avoid the use of scaling normalisations in this paper.
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valid for any smooth function C : R→ R. This clearly maps smooth or almost smooth solutions to
solutions of the same type, and preserves properties such as finite energy, H 1, periodicity, and the Schwartz
property; however, it destroys pressure normalisation (and thus the notion of a mild solution). A slightly
more sophisticated symmetry in the same spirit is the Galilean symmetry

ũ(t, x) := u
(

t, x −
∫ t

0
v(s) ds

)
+ v(t),

p̃(t, x) := p
(

t, x −
∫ t

0
v(s) ds

)
− x · v′(t),

ũ0(x) := u0(x)+ v(0),

f̃ (t, x) := f
(

t, x −
∫ t

0
v(s) ds

)
,

T̃ := T,

(33)

valid for any smooth function v : R→ R3. One can carefully check that this symmetry indeed maps mild,
smooth solutions to smooth solutions and preserves periodicity (recall here that in our definition of a
periodic solution, the pressure was not required to be periodic). On the other hand, this symmetry does not
preserve finite energy, H 1, or the Schwartz property. It also clearly destroys the pressure normalisation
property.

Finally, we observe that one can absorb divergences into the forcing term via the forcing symmetry

ũ(t, x) := u(t, x),

p̃(t, x) := p(t, x)+ q(t, x),

ũ0(x) := u0(x),

f̃ (t, x) := f (t, x)+∇ · q(t, x),

T̃ := T,

(34)

valid for any smooth function P : [0, T ]×R3
→R3. If the new forcing term f̃ still has finite energy or is

still periodic, then the normalisation of pressure is preserved. In the periodic setting, we will apply (34)
with a linear term q(t, x) := x · a(t), allowing one to alter f by an arbitrary constant a(t). In the finite
energy or H 1 setting, one can use (34) and the Leray projection P to reduce to the divergence-free case
∇ · f = 0; note, though, that this projection can destroy the Schwartz nature of f . This divergence-free
reduction is particularly useful in the case of normalised pressure, since (9) then simplifies to

p =−1−1∂i∂ j (ui u j ). (35)

One can of course compose these symmetries together to obtain a larger (semi)group of symmetries.
For instance, by combining (33) and (34), we observe the symmetry
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ũ(t, x) := u
(

t, x −
∫ t

0
v(s) ds

)
+ v(t),

p̃(t, x) := p
(

t, x −
∫ t

0
v(s) ds

)
,

ũ0(x) := u0(x)+ v(0),

f̃ (t, x) := f
(

t, x −
∫ t

0
v(s) ds

)
+ v′(t),

T̃ := T,

(36)

for any smooth function v : R→ R3. This symmetry is particularly useful for periodic solutions; note
that it preserves both the periodicity property and the normalised pressure property. By choosing v(t)
appropriately, we see that we can use this symmetry to normalise periodic data (u0, f, T, L) to be
mean-zero in the sense that ∫

R3/LZ3
u0(x) dx = 0 (37)

and ∫
R3/LZ3

f (t, x) dx = 0 (38)

for all 0≤ t ≤ T . By integrating (3) over the torus R3/LZ3, we then conclude with this normalisation
that u remains mean-zero for all times 0≤ t ≤ T :∫

R3/LZ3
u(t, x) dx = 0. (39)

The same conclusion also holds for periodic H 1 mild solutions.

4. Pressure normalisation

The symmetries in (32), (34) can alter the velocity field u and pressure p without affecting the data
(u0, f, T ), thus leading to a breakdown of uniqueness for the Navier–Stokes equation. In this section we
investigate this loss of uniqueness, and show that (in the smooth category, at least) one can “quotient out”
these symmetries by reducing to the situation (9) of normalised pressure, at which point uniqueness can
be recovered (at least in the H 1 category).

More precisely, we show:

Lemma 4.1 (Reduction to normalised pressure). (i) If (u, p, u0, f, T ) is an almost smooth finite energy
solution, then for almost every time t ∈ [0, T ], one has

p(t, x)=−1−1∂i∂ j (ui u j )(t, x)+1−1
∇ · f (t, x)+C(t), (40)

for some bounded measurable function C : [0, T ] → R.
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(ii) If (u, p, u0, f, T ) is a periodic smooth solution, then there exist smooth functions C : [0, T ] → R

and a : [0, T ] → R3 such that

p(t, x)=−1−1∂i∂ j (ui u j )(t, x)+1−1
∇ · f (t, x)+ x · a(t)+C(t). (41)

In particular, after applying a Galilean transformation (33) followed by a pressure-shifting trans-
formation (32), one can transform (u, p, u0, f, T ) into a periodic smooth solution with normalised
pressure.

Remark 4.2. Morally, in (i) the function C should be smooth (at least for times t > 0), which would then
imply that one can apply a pressure-shifting transformation (32) to convert (u, p, u0, f, T ) into a smooth
solution with normalised pressure. However, there is the technical difficulty that in our definition of a
finite energy smooth solution, we do not a priori have any control of time derivatives of u in any L p

x (R
3)

norms, and as such we do not have time regularity on the component 1−1∂i∂ j (ui u j ) of (40). In practice,
though, this possible irregularity of C(t) will not bother us, as we only need to understand the gradient
∇ p of the pressure, rather than the pressure itself, in order to solve the Navier–Stokes equations (3).

Proof. We begin with the periodic case, which is particularly easy due to Liouville’s theorem (which,
among other things, implies that the only harmonic periodic functions are the constants). We may
normalise the period L to equal 1. Fix an almost smooth periodic solution (u, p, u0, f, T ). Define the
normalised pressure p0 : [0, T ]×R3

→ R by the formula

p0 := −1
−1∂i∂ j (ui u j )+1

−1
∇ · f. (42)

As u, f are smooth and periodic, p0 is smooth also, and from (8) one has 1p =1p0. Thus one has

p = p0+ h,

where h : [0, T ]×R3
→R is a smooth function with h(t) harmonic in space for each time t . The function

h need not be periodic; however, from (3) we have

∂t u+ (u · ∇)u =1u−∇ p0−∇h+ f.

Every term aside from ∇h is periodic, and so ∇h is periodic also. Since ∇h is also harmonic, it must
therefore be constant in space by Liouville’s theorem. We therefore may write

h(t, x)= x · a(t)+C(t)

for some a(t) ∈ R3 and C(t) ∈ R; since h is smooth, a,C are smooth also, and the claim follows.
Now we turn to the finite energy case; thus (u, p, u0, f, T ) is now an almost smooth finite energy

solution. By the time translation symmetry (30) with an arbitrarily small time shift parameter t0, we may
assume without loss of generality that (u, p, u0, f, T ) is smooth (and not just almost smooth). We define
the normalised pressure p0 by (42) as before; then for each time t ∈ [0, T ], one sees from (8) that

p(t)= p0(t)+ h(t)
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for some harmonic function h(t) : R3
→ R. As u, f are smooth and finite energy, one sees from (42) that

p0 is bounded on compact subsets of space-time; since p is smooth, we conclude that h is bounded on
compact subsets of space-time also. From harmonicity, this implies that all spatial derivatives ∇kh are
also bounded on compact subsets of space time. However, as noted previously, we cannot impose any
time regularity on p0 or h because we do not have decay estimates on time derivatives of u.

It is easy to see that h is measurable. To obtain the lemma, it suffices to show that h(t) is a constant
function of x for almost every time t .

Let [t1, t2] be any interval in [0, T ]. Integrating (3) in time on this interval, we see that

u(t2, x)− u(t1, x)+
∫ t2

t1
(u · ∇)u(t, x) dt =

∫ t2

t1
1u(t, x)−∇ p(t, x)+ f (t, x) dt.

Next, let χ : R3
→ R be a smooth compactly supported spherically symmetric function of total mass 1.

We integrate the above formula against (1/R3)χ(x/R) for some large parameter R, and conclude after
some integration by parts (which is justified by the compact support of χ and the smooth (and hence C1)
nature of all functions involved) that

R−3
∫

R3
u(t2, x)χ

( x
R

)
dx − R−3

∫
R3

u(t1, x)χ
( x

R

)
dx − R−4

∫ t2

t1

∫
R3

u(t, x)
(
u(t, x) · ∇χ

)( x
R

)
dx dt

= R−5
∫ t2

t1

∫
R3

u(t, x)(1χ)
( x

R

)
dx dt + R−3

∫ t2

t1

∫
R3
∇ p(t, x)χ

( x
R

)
dx dt

+ R−3
∫ t2

t1

∫
R3

f (t, x)χ
( x

R

)
dx dt.

From the finite energy hypothesis and the Cauchy–Schwarz inequality, one easily verifies that

lim
R→∞

R−3
∫

R3
u(ti , x)χ

( x
R

)
dx = 0,

lim
R→∞

R−4
∫ t2

t1

∫
R3

u(t, x)
(
u(t, x) · ∇χ

)( x
R

)
dx dt = 0,

lim
R→∞

R−5
∫ t2

t1

∫
R3

u(t, x)(1χ)
( x

R

)
dx dt = 0,

lim
R→∞

R−3
∫ t2

t1

∫
R3

f (t, x)χ
( x

R

)
dx dt = 0,

and thus

lim
R→∞

R−3
∫ t2

t1

∫
R3
∇ p(t, x)χ

( x
R

)
dx dt = 0. (43)

Next, by an integration by parts and (42), we can express

R−3
∫ t2

t1

∫
R3
∇ p0(t, x)χ

( x
R

)
dx dt
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as

R−4
∫ t2

t1

∫
R3

ui u j (t, x)
(
∇1−1∂i∂ jχ

)( x
R

)
dx dt + R−3

∫ t2

t1

∫
R3

fi (t, x)
(
∇1−1∂iχ

)( x
R

)
dx dt.

From the finite energy nature of (u, p, u0, f, T ) we see that this expression goes to zero as R→∞.
Subtracting this from (43), we conclude that

lim
R→∞

R−3
∫ t2

t1

∫
R3
∇h(t, x)χ

( x
R

)
dx dt = 0. (44)

The function x 7→
∫ t2

t1
∇h(t, x) is weakly harmonic, and hence harmonic. By the mean-value property of

harmonic functions (and our choice of χ ), we thus have

R−3
∫ t2

t1

∫
R3
∇h(t, x)χ

( x
R

)
dx dt =

∫ t2

t1
∇h(t, 0) dt,

and thus ∫ t2

t1
∇h(t, 0) dt = 0.

Since t1, t2 were arbitrary, we conclude from the Lebesgue differentiation theorem that ∇h(t, 0) = 0
for almost every t ∈ [0, T ]. Using spatial translation invariance (29) to replace the spatial origin by an
element of a countable dense subset of R3, and using the fact that harmonic functions are continuous,
we conclude that ∇h(t) is identically zero for almost every t ∈ [0, T ], and so h(t) is constant for almost
every t as desired. �

We note a useful corollary of Lemma 4.1(i):

Corollary 4.3 (Almost smooth H 1 solutions are essentially mild). Let (u, p, u0, f, T ) be an almost
smooth H 1 solution. Then (u, p̃, u0, f, T ) is a mild H 1 solution, where

p̃(t, x) := −1−1∂i∂ j (ui u j )(t, x)+1−1
∇ · f (t, x).

Furthermore, for almost every t ∈ [0, T ], p(t) and p̃(t) differ by a constant (and thus ∇ p =∇ p̃).

Proof. By Lemma 4.1(i), ∇ p is equal to ∇ p̃ almost everywhere; in particular, ∇ p = ∇ p̃ is a smooth
tempered distribution. The claim then follows from (3) and the Duhamel formula (19). �

5. Local well-posedness theory in H1

In this section we review the (subcritical) local well-posedness theory for both periodic and nonperiodic
H 1 mild solutions. The material here is largely standard (and in most cases has been superseded by the
more powerful critical well-posedness theory); for instance the uniqueness theory already follows from
[Prodi 1959] and [Serrin 1963], the blowup criterion already is present in [Leray 1934], the local existence
theory follows from [Kato and Ponce 1988], regularity of mild solutions follows from [Ladyzhenskaya
1967], the stability results given here follow from the stronger stability results of [Chemin and Gallagher
2009], and the compactness results were already essentially present in [Tao 2007]. However, for the
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convenience of the reader (and because we want to use the X s function spaces defined in (13) as the basis
for the theory) we shall present all this theory in a self-contained manner. There are now a number of
advanced local well-posedness results at critical regularity, most notably that of [Koch and Tataru 2001],
but we will not need such powerful results here.

We begin with the periodic theory. By taking advantage of the scaling symmetry (31), we may set the
period L equal to 1. Using the symmetry (36), we may also restrict attention to data obeying the mean
zero conditions (37), (38), and thus u0 ∈ H 1

x (R
3/Z3)0 and f ∈ L∞t H 1

x ([0, T ]×R3/Z3)0.

Theorem 5.1 (Local well-posedness in periodic H 1). Let (u0, f, T, 1) be periodic H 1 data obeying the
mean-zero conditions (37), (38).

(i) (Strong solution). If (u, p, u0, f, T, 1) is a periodic H 1 mild solution, then

u ∈ C0
t H 1

x ([0, T ]×R3/Z3).

In particular, one can unambiguously define u(t) in H 1
x (R

3/Z3) for each t ∈ [0, T ].

(ii) (Local existence). If (
‖u0‖H1

x (R
3/Z3)+‖ f ‖L1

t H1
x (R

3/Z3)

)4T ≤ c (45)

for a sufficiently small absolute constant c > 0, then there exists a periodic H 1 mild solution
(u, p, u0, f, T, 1) with the indicated data with

‖u‖X1([0,T ]×R3/Z3) . ‖u0‖H1
x (R

3/Z3)+‖ f ‖L1
t H1

x (R
3/Z3)

and more generally

‖u‖X k([0,T ]×R3/Z3) .k,T,‖u0‖Hk
x (R3/Z3),‖ f ‖L1

t Hk
x (R3/Z3)

1

for each k ≥ 1. In particular, one has local existence whenever T is sufficiently small depending on
H1(u0, f, T, 1).

(iii) (Uniqueness). There is at most one periodic H 1 mild solution (u, p, u0, f, T, 1) with the indicated
data.

(iv) (Regularity). If (u, p, u0, f, T, 1) is a periodic H 1 mild solution, and (u0, f, T, 1) is smooth, then
(u, p, u0, f, T, 1) is smooth.

(v) (Lipschitz stability). Let (u, p, u0, f, T, 1) be a periodic H 1 mild solution with the bounds 0<T ≤T0

and
‖u‖X1([0,T ]×R3/Z3) ≤ M.

Let (u′0, f ′, T, 1) be another set of periodic H 1 data, and define the function

F(t) := et1(u′0− u0)+

∫ t

0
e(t−t ′)1( f ′(t ′)− f (t ′)) dt ′.

If the quantity ‖F‖X1([0,T ]×R3/Z3) is sufficiently small depending on T , M , then there exists a periodic
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mild solution (u′, p′, u′0, f ′, T, 1) with

‖u− u′‖X1([0,T ]×R3/Z3) .T,M ‖F‖X1([0,T ]×R3/Z3).

Proof. We first prove the strong solution claim (i). The linear solution

et1u0+

∫ t

0
e(t−t ′)1P f (t ′) dt ′

is easily verified to lie in C0
t H 1

x ([0, T ]×R3/Z3), so in view of (11), it suffices to show that∫ t

0
e(t−t ′)1PB(u(t ′), u(t ′)) dt ′

also lies in C0
t H 1

x ([0, T ]×R3/Z3). But as u is an H 1 mild solution, u lies in X1([0, T ]×R3/Z3), so by
(24), PB(u, u) lies in L4

t L2
x([0, T ]×R3/Z3). The claim (i) then follows easily from (22).

Now we establish local existence (ii). Let δ := ‖u0‖H1
x (R

3/Z3)+‖ f ‖L1
t H1

x (R
3/Z3); thus by (45) we have

δ4T ≤ c. Using this and (25), (22), one easily establishes that the nonlinear map u 7→8(u) defined by

8(u)(t) := et1u0+

∫ t

0
e(t−t ′)1PB

(
u(t ′), u(t ′)+ P f (t ′)

)
dt ′

is a contraction on the ball{
u ∈ X1([0, T ]×R3/Z3) : ‖u‖X1([0,T ]×R3/Z3) ≤ Cδ

}
if C is large enough. From the contraction mapping principle, we may then find a fixed point of 8 in this
ball, and the claim (ii) follows (the estimates for higher k follow from variants of the above argument and
an induction on k, and are left to the reader).

Now we establish uniqueness (iii). Suppose, in order to get a contradiction, that we have distinct
solutions (u, p, u0, f, T, 1) and (u′, p′, u0, f, T, 1) for the same data. Then we have

‖u‖X1([0,T ]×R3/Z3), ‖u
′
‖X1([0,T ]×R3/Z3) ≤ M.

To show uniqueness, it suffices to do so assuming that T is sufficiently small depending on M , as the
general case then follows by subdividing [0, T ] into small enough time intervals and using induction.
Subtracting (11) for u, u′ and writing v := u′− u, we see that

v(t)=
∫ t

0
e(t−t ′)1P

(
2B(u(t ′), v(t ′))+ B(v(t ′), v(t ′))

)
dt ′,

and thus by (22),
‖v‖X1([0,T ]×R3/Z3) . MT 1/4

‖v‖X1([0,T ]×R3/Z3).

If T is sufficiently small depending on M , this forces ‖v‖X1([0,T ]×R3/Z3) = 0, giving uniqueness up to
time T ; iterating this argument gives the claim (iii).

Now we establish regularity (iv). To abbreviate the notation, all norms will be on [0, T ]×R3/Z3. As u
is an H 1 mild solution, it lies in X1, and hence by (25), PB(u, u) lies in L4

t L2
x . Applying (11), (23), and the

smoothness of u0, f , we conclude that u∈ X s for all s< 3
2 . In particular, by Sobolev embedding we see that
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u ∈ L∞t L12
x , ∇u ∈ L2

t L12
x ∩ L∞t L12/5

x , and ∇2u ∈ L2
t L12/5

x , and hence PB(u, u) ∈ L2
t H 1

x ([0, T ]×R3/Z3).
Returning to (11), (23), we now conclude that u∈ X2([0, T ]×R3/Z3). One can then repeat these arguments
iteratively to conclude that u ∈ X k([0, T ] ×R3/Z3) for all k ≥ 1, and thus u ∈ L∞t Ck([0, T ] ×R3/Z3)

for all k ≥ 0. From (9) we then have p ∈ L∞Ck([0, T ]×R3/Z3) for all k ≥ 0, and then from (3) we have
∂t u ∈ L∞t Ck([0, T ]×R3/Z3) for all k ≥ 0. One can then obtain bounds on ∂t p and then on higher time
derivatives of u and t , giving the desired smoothness, and the claim (iv) follows.

Now we establish stability (v). It suffices to establish the claim in the short-time case when T is
sufficiently small depending only on M (more precisely, we take M4T ≤ c for some sufficiently small
absolute constant c > 0), as the long-time case then follows by subdividing time and using induction.
The existence of the solution (u′, p′, u′0, f ′0, T, 1) is then guaranteed by (ii). Evaluating (11) for u, u′ and
subtracting, and setting v := u′− u, we see that

v(t)= F +
∫ t

0
e(t−t ′)1P(2B(u, v)+ B(v, v))(t ′) dt ′

for all t ∈ [0, T ]. Applying (22), (25), we conclude that

‖v‖X1 . ‖F‖X1 + T 1/4(‖u‖X1 +‖v‖X1)‖v‖X1,

where all norms are over [t0, t1]×R3. Since ‖u‖X1 +‖v‖X1 is finite, we conclude (if T is small enough)
that ‖v‖X1([0,T ]×R3/Z3) . ‖F‖X1([0,T ]×R3/Z3), and the claim follows. �

We may iterate the local well-posedness theory to obtain a dichotomy between existence and blowup.
Define an incomplete periodic mild H 1 solution (u, p, u0, f, T−

∗
, 1) from periodic H 1 data (u0, f, T∗, 1)

to be fields u : [0, T∗)×R3/Z3
→ R3 and v : [0, T∗)×R3/Z3

→ R such that for any 0 < T < T∗, the
restriction (u, p, u0, f, T, 1) of (u, p, u0, f, T−

∗
, 1) to the slab [0, T ] × R3/Z3 is a periodic mild H 1

solution. We similarly define the notion of an incomplete periodic smooth solution.

Corollary 5.2 (Maximal Cauchy development). Let (u0, f, T, 1) be periodic H 1 data. Then at least one
of the following two statements holds:

• There exists a periodic H 1 mild solution (u, p, u0, f, T, 1) with the given data.

• There exist a blowup time 0< T∗ < T and an incomplete periodic H 1 mild solution

(u, p, u0, f, T−
∗
, 1)

up to time T−
∗

, which blows up in H 1 in the sense that

lim
t→T−∗

‖u(t)‖H1
x (R

3/Z3) =+∞.

We refer to such solutions as maximal Cauchy developments.

A similar statement holds with “H 1 data” and “H 1 mild solution” replaced by “smooth data” and
“smooth solution” respectively.

Next we establish a compactness property of the periodic H 1 flow.
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Proposition 5.3 (Compactness). If (u(n)0 , f (n), T, 1) is a sequence of periodic H 1 data obeying (37),
(38) which is uniformly bounded in H 1

x (R
3/Z3)0× L∞t H 1

x ([0, T ]×R3/Z3)0 and converges weakly14 to
(u0, f, T, 1), and (u, p, u0, f, T, 1) is a periodic H 1 mild solution with the indicated data, then for n
sufficiently large, there exist periodic H 1 mild solutions (u(n), p(n), u(n)0 , f (n), T, 1) with the indicated
data, with u(n) converging weakly in X1([0, T ] ×R3/Z3) to u. Furthermore, for any 0 < τ < T , u(n)

converges strongly in X1([τ, T ]×R3/Z3) to u.
If u(n)0 converges strongly in H 1

x (R
3/Z3)0 to u0, then one can set τ = 0 in the previous claim.

Proof. This result is essentially in [Tao 2007, Proposition 2.2], but for the convenience of the reader we
give a full proof here.

To begin with, we assume that u(n) converges strongly in H 1
x (R

3/Z3)0 to u0, and relax this to weak
convergence later. In view of the stability component of Theorem 5.1, it suffices to show that F (n)

converges strongly in X1([0, T ]×R3/Z3) to zero, where

F (n)(t) := et1(u(n)0 − u0)+

∫ t

0
e(t−t ′)1P( f (n)(t ′)− f (t ′)) dt ′.

We have that u(n)0 − u0 converges strongly in H 1
x (R

3/Z3) to zero, while f (n)− f converges weakly in
L∞t H 1

x ([0, T ] × R3/Z3)→ 0, and hence strongly in L2
t L2

x([0, T ] × R3/Z3). The claim then follows
from (22).

Now we only assume that u(n) converges weakly in H 1
x (R

3/Z3)0 to u0. Let 0 < τ < T be a suffi-
ciently small time; then from local existence (Theorem 5.1(ii)) we see that u(n) and u are bounded in
X1([0, τ ]×R3/Z3) uniformly in n by some finite quantity M . Writing v(n) := u(n)− u, we obtain from
(11) the difference equation

v(n)(t)= F (n)(t)+
∫ t

0
e(t−t ′)1P

(
B(u, v(n))+ B(u(n), v(n))

)
(t ′) dt ′.

Since u(n)0 − u0 converges weakly in H 1
x (R

3/Z3) to zero, it converges strongly in L2
x(R

3/Z3) to zero too.
Using (21) as before, we see that F (n) converges strongly in X0([0, τ ]×R3/Z3) to zero. From (22) we
thus have

‖v(n)‖X0 . o(1)+‖B(u, v(n))‖L2
t H−1

x
+‖B(u(n), v(n))‖L2

t H−1
x
,

where o(1) goes to zero as n→∞, and all space-time norms are over [0, τ ]×R3/Z3. From the form of
B and Hölder’s inequality, we have

‖B(u(n), v(n))‖L2
t H−1

x
. ‖O(u(n)v(n))‖L2

t L2
x
. τ 1/4

‖u(n)‖L∞t L6
x
‖v(n)‖

1/2
L∞t L2

x
‖v(n)‖

1/2
L2

t L6
x
. Mτ 1/4

‖v(n)‖X0,

and similarly for B(u, v(n)), and thus

‖v(n)‖X0 . o(1)+Mτ 1/4
‖v(n)‖X0 .

14Strictly speaking, we should use “converges in the weak-* sense” or “converges in the sense of distributions” here, in order
to avoid the pathological (and irrelevant) elements of the dual space of L∞t H1

x that can be constructed from the axiom of choice.
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Thus, for τ small enough, one has
‖v(n)‖X0 = o(1),

which among other things gives weak convergence of u(n) to u in [0, τ ]×R3/Z3. Also, by the pigeonhole
principle, one can find times τ (n) in [0, τ ] such that

‖v(n)(τ (n))‖H1
x (R

3/Z3) = o(1).

Using the stability theory, and recalling that τ is small, this implies that

‖v(n)(τ )‖H1
x (R

3/Z3) = o(1);

thus u(n)(τ ) converges strongly to u(τ ). Now we can use our previous arguments to extend u(n) to all of
[0, T ]×R3/Z3 and obtain strong convergence in X1([τ, T ]×R3/Z3), as desired. �

Now we turn to the nonperiodic setting. We have the following analogue of Theorem 5.1:

Theorem 5.4 (Local well-posedness in H 1). Let (u0, f, T ) be H 1 data.

(i) (Strong solution). If (u, p, u0, f, T, 1) is an H 1 mild solution, then

u ∈ C0
t H 1

x ([0, T ]×R3).

(ii) (Local existence and regularity). If(
‖u0‖H1

x (R
3)+‖ f ‖L1

t H1
x (R

3)

)4T ≤ c (46)

for a sufficiently small absolute constant c > 0, then there exists a H 1 mild solution (u, p, u0, f, T )
with the indicated data, with

‖u‖X1([0,T ]×R3) . ‖u0‖H1
x (R

3)+‖ f ‖L1
t H1

x (R
3),

and more generally
‖u‖X k([0,T ]×R3) .k,‖u0‖Hk

x (R3),‖ f ‖L1
t Hk

x (R3),1

for each k ≥ 1. In particular, one has local existence whenever T is sufficiently small depending on
H1(u0, f, T ).

(iii) (Uniqueness). There is at most one H 1 mild solution (u, p, u0, f, T ) with the indicated data.

(iv) (Regularity). If (u, p, u0, f, T, 1) is an H 1 mild solution, and (u0, f, T ) is Schwartz, then u and p
are smooth; in fact, one has ∂ j

t u, ∂ j
t p ∈ L∞t H k([0, T ]×R3) for all j, k ≥ 0.

(v) (Lipschitz stability). Let (u, p, u0, f, T ), (u′, p′, u′0, f ′, T ) be H 1 mild solutions with the bounds
0< T ≤ T0 and

‖u‖X1([0,T ]×R3), ‖u
′
‖X1([0,T ]×R3) ≤ M.

Define the function

F(t) := et1(u′0− u0)+

∫ t

0
e(t−t ′)1( f ′(t ′)− f (t ′)) dt ′.
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If the quantity ‖F‖L2
t L2

x ([0,T ]×R3) is sufficiently small depending on T , M , then

‖u− u′‖X1([0,T ]×R3) .T,M ‖F‖L2
t L2

x ([0,T ]×R3).

Proof. This proceeds by repeating the proof of Theorem 5.1 verbatim. The one item which perhaps
requires some care is the regularity item (iv). The arguments from Theorem 5.1 yield the regularity

u ∈ X k([0, T ]×R3)

for all k ≥ 0 without difficulty. In particular, u ∈ L∞t H k
x ([0, T ]×R3) for all k ≥ 0. From (9) and Sobolev

embedding, one then has p ∈ L∞t H k
x ([0, T ] ×R3) for all k ≥ 0, and then from (3) and more Sobolev

embedding, one has ∂t u ∈ L∞t H k
x ([0, T ]×R3) for all k ≥ 0. One can then obtain bounds on ∂t p and then

on higher time derivatives of u and t , giving the desired smoothness, and the claim (iv) follows. (Note
that these arguments did not require the full power of the hypothesis that (u0, f, T ) was Schwartz; it
would have sufficed to have u0 ∈ H k

x (R
3) and f ∈ C j

t H k
x (R

3) for all j, k ≥ 0.) �

From the regularity component of the above theorem, we immediately conclude that Conjecture 1.19
implies Conjecture 1.5, which is one half of Theorem 1.20(iv).

We will also need a more quantitative version of the regularity statement in Theorem 5.4.

Lemma 5.5 (Quantitative regularity). Let (u, p, u0, f, T ) be an H 1 mild solution obeying (46) for a
sufficiently small absolute constant c > 0, and such that

‖u0‖H1
x (R

3)+‖ f ‖L1
t H k

x (R
3) ≤ M <∞.

Then one has

‖u‖L∞t H k
x ([τ,T ]×R3) .k,τ,T,M 1

for all natural numbers k ≥ 1 and all 0< τ < T .

Proof. We allow all implied constants to depend on k, T,M . From Theorem 5.1 we have

‖u‖X1([0,T ]×R3) . 1,

which already gives the k = 1 case. Now we turn to the k ≥ 2 case. From (25) we have

‖PB(u, u)‖L4
t L2

x ([0,T ]×R3) . 1,

while from Fourier analysis one has

‖et1u0‖L∞t H k
x ([τ,T ]×R3) .τ 1.

From this and (11), (21) we see that

‖u‖X s([τ,T ]×R3) .s,τ 1
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for all s < 3
2 . From Sobolev embedding we conclude

‖u‖L∞t L12
x ([τ,T ]×R3) .τ 1,

‖∇u‖L2
t L12

x ([τ,T ]×R3) .τ 1,

‖∇u‖L∞t L12/5
x ([τ,T ]×R3)

.τ 1,

‖∇
2u‖L2

t L12
x ([τ,T ]×R3) .τ 1,

and hence
‖PB(u, u)‖L2

t H1
x ([τ,T ]×R3) . 1.

Returning to (11), (23), we now conclude that

‖u‖X2([τ,T ]×R3) .τ 1,

which gives the k = 2 case. One can repeat these arguments iteratively to then give the higher k cases. �

We extract a particular consequence of the above lemma:

Proposition 5.6 (Almost regularity). Let (u, p, u0, 0, T ) be a homogeneous H 1 mild solution obeying
(46) for a sufficiently small absolute constant c> 0. Then u, p are smooth on [τ, T ]×R3 for all 0<τ < T ;
in fact, all derivatives of u, p lie in L∞t L2

x([τ, T ]×R3). If furthermore u0 is smooth, then (u, p, u0, 0, T )
is an almost smooth solution.

Proof. From Lemma 5.5 we see that

u ∈ L∞t H k
x ([τ, T ]×R3)

for all k ≥ 0 and 0 < τ < T . Arguing as in the proof of Theorem 5.4(iv), we conclude that u, p are
smooth on [τ, T ]×R3.

Now suppose that u0 is smooth. Then (since u0 is also in H 1
x (R

3)) et1u0 is smooth15 on [0, T ]×R3,
and in particular one has

ηet1u0 ∈ L∞t H k
x ([0, T ]×R3)

for any smooth, compactly supported cutoff function η :R3
→R. Meanwhile, by arguing as in Lemma 5.5

one has
PB(u, u) ∈ L4

t L2
x([0, T ]×R3). (47)

Using (11), (21), one concludes that

ηu ∈ X s([0, T ]×R3)

for all cutoff functions η and all s < 3
2 . Continuing the arguments from Lemma 5.5, we conclude that

ηPB(u, u) ∈ L2
t H 1

x ([0, T ]×R3)

15To obtain smoothness at a point (t0, x0), one can for instance split u0 into a smooth compactly supported component and a
component that vanishes near x0 but lies in H1

x (R
3), and verify that the contribution of each component to et1u0 is smooth at

(t0, x0).
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for all cutoffs η. Using (11), (23) (and using (28), (47) to deal with the far field contribution of PB(u, u),
and shrinking η as necessary), one then concludes that

ηu ∈ X2([0, T ]×R3)

for all cutoffs η. Repeating these arguments iteratively, one eventually concludes that

ηu ∈ X k([0, T ]×R3)

for all cutoffs η, and in particular

u ∈ L∞t H k
x ([0, T ]× K )

for all k ≥ 0 and all compact sets K . By Sobolev embedding, this implies that

u ∈ L∞t Ck
x ([0, T ]× K )

for all k ≥ 0 and all compact sets K .
We also have u ∈ X1([0, T ]×R3), and hence

u ∈ L∞t H 1
x ([0, T ]×R3).

In particular,

ui u j ∈ L∞t L1
x([0, T ]×R3) (48)

and

ui u j ∈ L∞t Ck
x ([0, T ]× K )

for all k ≥ 0 and compact K . From this and (9) (splitting the inverse Laplacian 1−1 smoothly into local
and global components), one has

p ∈ L∞t Ck
x ([0, T ]× K );

inserting this into (3), we then see that

∂t u ∈ L∞t Ck
x ([0, T ]× K ) (49)

for all k ≥ 0 and compact K .
This is a little weaker than what we need for an almost smooth solution, because we want ∇ku, ∇k p,

∂t∇
k p to extend continuously down to t = 0, and the above estimates merely give L∞t C∞x control on these

quantities. To upgrade the L∞t control to continuity in time, we first observe16 from (49) and integration
in time that we can at least make ∇ku extend continuously to t = 0:

u ∈ C0
t Ck

x ([0, T ]× K ).

In particular,

ui u j ∈ C0
t Ck

x ([0, T ]× K ) (50)

16An alternate argument here would be to approximate the initial data u0 by Schwartz divergence-free data (using Lemma 12.1)
and to use a limiting argument and the stability and regularity theory in Theorem 5.1; we omit the details.
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for all k ≥ 0 and compact K .
Now we consider ∇k p in a compact region [0, T ]× K . From (9) we have

∇
k p(t, x)=∇k∂i∂ j

∫
R3

1
4π |x − y|

ui u j (t, y) dy.

Using a smooth cutoff, we split the Newton potential 1/(4π |x − y|) into a “local” portion supported on
B(0, 2R) and a “global” portion supported outside of B(0, R), where R is a large radius. From (50) one
can verify that the contribution of the local portion is continuous on [0, T ] × K , while from (48) the
contribution of the global portion is Ou(1/R3). Sending R→∞, we conclude that ∇k p is continuous
on [0, T ]× K , and thus

p ∈ C0
t Ck

x ([0, T ]× K )

for all k ≥ 0 and compact K . Inserting this into (3), we then conclude that

∂t u ∈ C0
t Ck

x ([0, T ]× K )

for all k ≥ 0 and compact K , and so we have an almost smooth solution as required. �

Remark 5.7. Because u has the regularity of L∞t H 1
x , we can continue iterating the above argument a little

more, and eventually get u ∈ C2
t Ck

x ([0, T ]× K ) and p ∈ C1
t Ck

x ([0, T ]× K ) for all k ≥ 0 and compact K .
Using the vorticity equation (see (84) below), one can then also get ω ∈ C3

t Ck
x ([0, T ]× K ) as well. But

without further decay conditions on higher derivatives of u (or of ω), one cannot gain infinite regularity
on u, p, ω in time; see Section 15.

On the other hand, it is possible to use energy methods and the vorticity equation (84) to show (working
in the homogeneous case f = 0 for simplicity) that if u0 is smooth and the initial vorticity ω0 := ∇ × u0

is Schwartz, then the solution in Proposition 5.6 is in fact smooth, with ω remaining Schwartz throughout
the lifespan of that solution; we omit the details.

As a corollary of the above proposition we see that Conjecture 1.19 implies Conjecture 1.13, thus
completing the proof of Theorem 1.20(iv).

As before, we obtain a dichotomy between existence and blowup. Define an incomplete mild H 1 solution
(u, p, u0, f, T−

∗
) from H 1 data (u0, f, T∗) to be fields u : [0, T∗)×R3

→R3 and v : [0, T∗)×R3
→R such

that for any 0< T < T∗, the restriction (u, p, u0, f, T, 1) of (u, p, u0, f, T−
∗
, 1) to the slab [0, T ]×R3

is a mild H 1 solution. We similarly define the notion of an incomplete smooth H 1 solution.

Corollary 5.8 (Maximal Cauchy development). Let (u0, f, T ) be H 1 data. Then at least one of the
following two statements holds:

• There exists a mild H 1 solution (u, p, u0, f, T ) with the given data.

• There exist a blowup time 0< T∗ < T and an incomplete mild H 1 solution (u, p, u0, f, T−
∗
) up to

time T−
∗

that blows up in the enstrophy norm in the sense that

lim
t→T−∗

‖u(t)‖H1
x (R

3) =+∞.
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Remark 5.9. In the second conclusion of Corollary 5.8, more information about the blowup is known.
For instance, in [Iskauriaza et al. 2003] it was demonstrated that the L3

x(R
3) norm must also blow up (in

the homogeneous case f = 0, at least).

6. Homogenisation

In this section we prove Proposition 1.7.
Fix smooth periodic data (u0, f, T, L); our objective is to find a smooth periodic solution

(u, p, u0, f, T, L)

(without pressure normalisation) with this data. By the scaling symmetry (31), we may normalise the
period L to equal 1. Using the symmetry (36), we may impose the mean-zero conditions (37), (38) on
this data.

By hypothesis, one can find a smooth periodic solution (ũ, p̃, u0, 0, T, 1) with data (u0, 0, T, 1).
By Lemma 4.1, and applying a Galilean transform (33) if necessary, we may assume the pressure is
normalised, which in particular makes (ũ, p̃, u0, 0, T, 1) a periodic H 1 mild solution.

By the Galilean invariance (33) (with a linearly growing velocity v(t) := 2wt), it suffices to find a
smooth periodic solution (u, p, u0, fw, T ) (this time with pressure normalisation) for the Galilean-shifted
data (u0, fw, T ), where

fw(t, x) := f (t, x −wt2),

and w ∈ R3 is arbitrary. Note that the data (u0, fw, T ) continues to obey the mean-zero conditions (37),
(38) and is bounded in H 1

x (R
3/Z3)0 × L∞t H 1

x ([0, T ] ×R3/Z3)0 uniformly in w. We now make a key
observation:

Lemma 6.1. If α ∈ R3/Z3 is irrational in the sense that k · α 6= 0 in R/Z for all k ∈ Z3
\{0}, then

fλα converges weakly (or more precisely, converges in the sense of space-time distributions) to zero in
L∞t H 1

x ([0, T ]×R3/Z3)0.

Proof. It suffices to show that ∫ T

0

∫
R3/Z3

fλα(t, x)φ(t, x) dx dt→ 0

for all smooth functions φ : [0, T ]×R3/Z3
→R. Taking the Fourier transform, the left-hand side becomes∑

k∈Z3

∫ T

0
e−2π iλkt2

·α f̂ (t)(k)φ̂(t)(−k) dt,

with the sum being absolutely convergent due to the rapid decrease of the Fourier transform of φ(t).
Because f has mean zero, we can delete the k = 0 term from the sum. This makes k · α nonzero by
irrationality, and so by the Riemann–Lebesgue lemma, each summand goes to zero as λ→∞. The claim
then follows from the dominated convergence theorem. �
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Let α ∈ R3/Z3 be irrational. By the above lemma, (u0, fλα, T, 1) converges weakly to (u0, 0, T, 1)
while being bounded in H 1

x (R
3/Z3)0× L∞t H 1

x (R
3/Z3)0. As (u0, 0, T, 1) has a periodic mild H 1 solution

(ũ, p̃, u0, 0, T, 1), we conclude from Proposition 5.3 that for λ sufficiently large, (u0, fλα, T, 1) also has
a periodic mild H 1 solution, which is necessarily smooth since u0 and fλα are smooth. The claim follows.

Remark 6.2. Suppose that (u0, f,∞, 1) is periodic H 1 data extending over the half-infinite time interval
[0,+∞). The above argument shows (assuming Conjecture 1.4) that one can, for each 0 < T <∞,
construct a smooth periodic (but not pressure-normalised) solution (u(T ), p(T ), u0, f, T, 1) up to time T
with the above data, by choosing a sufficiently rapidly growing linear velocity v(T ) = 2w(T )t , applying a
Galilean transform, and then using the compactness properties of the H 1 local well-posedness theory.
As stated, this argument gives a different solution (u(T ), p(T ), u0, f, T, 1) for each time T (note that we
do not have uniqueness once we abandon pressure normalisation). However, it is possible to modify
the argument to obtain a single global smooth periodic solution (u, p, u0, f,∞, 1) (which is still not
pressure-normalised, of course), by using the ability in (33) to choose a nonlinear velocity v(t) rather
than a linear one. By reworking the above argument, and taking v(t) to be a sufficiently rapidly growing
function of t , it is then possible to obtain a global smooth periodic solution (u, p, u0, f,∞, 1) to the
indicated data; we omit the details.

7. Compactness

In this section we prove Theorem 1.20(i) by following the compactness arguments of [Tao 2007]. By the
scaling symmetry (31), we may normalise L = 1.

We first assume that Conjecture 1.10 holds, and deduce Conjecture 1.9. Suppose for contradiction that
Conjecture 1.9 failed. By Corollary 5.2, there thus exists an incomplete periodic pressure-normalised
mild H 1 solution (u, p, u0, f, T−

∗
, 1) such that

lim
t→T−∗

‖u(t)‖H1
x (R

3/Z3) =∞. (51)

By Galilean invariance (36), we may assume that u0 and f (and hence u) have mean zero.
Let (u(n)0 , f (n), T∗, 1) be a sequence of periodic smooth mean-zero data converging strongly in

H 1
x (R

3/Z3)0× L∞t H 1
x ([0, T∗]×R3/Z3)0

to the periodic H 1 data (u, f, T∗, 1). For each time 0 < T < T∗, we see from Theorem 5.1 that for n
sufficiently large, we may find a smooth solution (u(n), p(n), u(n)0 , T, 1)with this data, with u(n) converging
strongly in L∞t H 1

x ([0, T ]×R3/Z3) to u. By Conjecture 1.10, the L∞t H 1
x ([0, T ]×R3/Z3) norm of u(n)

is bounded uniformly in both T and n, so by taking limits as n→∞, we conclude that ‖u(t)‖H1
x (R

3/Z3)

is bounded uniformly for 0≤ t < T∗, contradicting (51) as desired.
Conversely, suppose that Conjecture 1.9 held, but Conjecture 1.10 failed. Carefully negating all the

quantifiers, we conclude that there exists a time 0< T0<∞ and a sequence (u(n), p(n), u(n)0 , f (n), T (n), 1)
of smooth periodic data with 0< T (n) < T0 and H1(u(n)0 , f (n), T (n), 1) uniformly bounded in n, such that

lim
n→∞
‖u‖L∞t H1

x ([0,T (n)]×R3/Z3) =∞. (52)
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Using Galilean transforms (36), we may assume that u(n)0 , f (n) (and hence u(n)) have mean zero. From the
short-time local existence (and uniqueness) theory in Theorem 5.1, we see that T (n) is bounded uniformly
away from zero. Thus by passing to a subsequence, we may assume that T (n) converges to a limit T∗
with 0< T∗ ≤ T0.

By sequential weak compactness, we may pass to a further subsequence and assume that for each 0<
T < T∗, (u

(n)
0 , f (n), T, 1) converges weakly (or more precisely, in the sense of distributions) to a periodic

H 1 limit (u0, f, T, 1); gluing these limits together, one obtains periodic H 1 data (u0, f, T∗, 1), which
still has mean zero. By Conjecture 1.9, we can then find a periodic H 1 mild solution (u, p, u0, f, T∗, 1)
with this data, which then necessarily also has mean zero.

By Theorem 5.1 and Proposition 5.3, we see that for every 0< τ < T < T∗, u(n) converges strongly in
L∞t H 1

x ([τ, T ]×R3/Z3) to u. In particular, for any 0< T < T∗, one has

lim sup
n→∞

‖u(n)(T )‖H1
x (R

3/Z3) ≤ ‖u‖L∞t H1
x ([0,T∗]×R3/Z3) <∞.

Taking T sufficiently close to T∗ and then taking n sufficiently large, we conclude from Theorem 5.1 that

lim sup
n→∞

‖u(n)‖L∞t H1
x ([T,T (n)]×R3/Z3) <∞;

also, from the strong convergence in L∞t H 1
x ([τ, T ]×R3/Z3), we have

lim sup
n→∞

‖u(n)‖L∞t H1
x ([τ,T ]×R3/Z3) <∞

for any 0< τ < T , and finally from the local existence (and uniqueness) theory in Theorem 5.1, one has

lim sup
n→∞

‖u(n)‖L∞t H1
x ([0,τ ]×R3/Z3) <∞

for sufficiently small τ . Putting these bounds together, we contradict (52), and the claim follows.

Remark 7.1. It should be clear to the experts that one could have replaced the H 1 regularity in the
above conjectures by other subcritical regularities, such as H k for k > 1, and obtained a similar result to
Theorem 1.20(i).

As remarked previously, the homogeneous case f = 0 of Theorem 1.20(i) was established in [Tao
2007]. We recall the main results of that paper. We introduce the following homogeneous periodic
conjectures:

Conjecture 7.2 (A priori homogeneous periodic H 1 bound). There exists a function F :R+×R+×R+→

R+ with the property that whenever (u, p, u0, 0, T, L) is a smooth periodic homogeneous normalised-
pressure solution with 0< T < T0 <∞ and

H1(u0, 0, T, L)≤ A <∞,

then

‖u‖L∞t H1
x ([0,T ]×R3/LZ3) ≤ F(A, L , T0).
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Conjecture 7.3 (A priori homogeneous global periodic H 1 bound). There exists a function

F : R+×R+→ R+

with the property that whenever (u, p, u0, 0, T, L) is a smooth periodic homogeneous normalised-pressure
solution with

H1(u0, 0, T, L)≤ A <∞,

then

‖u‖L∞t H1
x ([0,T ]×R3/LZ3) ≤ F(A, L).

Conjecture 7.4 (Global well-posedness in periodic homogeneous H 1). Let (u0, 0, T, L) be a homoge-
neous periodic H 1 set of data. Then there exists a periodic H 1 mild solution (u, p, u0, 0, T, L) with the
indicated data.

Conjecture 7.5 (Global regularity for homogeneous periodic data with normalised pressure). Suppose
(u0, 0, T ) is a smooth periodic set of data. Then there exists a smooth periodic solution (u, p, u0, 0, T )
with the indicated data and with normalised pressure.

In [Tao 2007, Theorem 1.4] it was shown that Conjectures 1.4, 7.2, 7.3 are equivalent. As implicitly
observed in that paper also, Conjecture 1.4 is equivalent to Conjecture 7.5 (this can be seen from
Lemma 4.1), and from the local well-posedness and regularity theory (Theorem 5.1 or [Tao 2007,
Proposition 2.2]), we also see that Conjecture 7.5 is equivalent to Conjecture 7.4.

8. Energy localisation

In this section we establish the energy inequality for the Navier–Stokes equation in the smooth finite
energy setting. This energy inequality is utterly standard (see for example [Scheffer 1976]) for weaker
notions of solutions, so long as one has regularity of L2

t H 1
x , but (somewhat ironically) requires more

care in the smooth finite energy setting, because we do not assume a priori that smooth finite energy
solutions lie in the space L2

t H 1
x . The methods used here are local in nature, and will also provide an

energy localisation estimate for the Navier–Stokes equation (see Theorem 8.2).
We begin with the global energy inequality.

Lemma 8.1 (Global energy inequality). Let (u, p, u0, f, T ) be a finite energy almost smooth solution.
Then

‖u‖L∞t L2
x ([0,T ]×R3)+‖∇u‖L2

t L2
x ([0,T ]×R3) . E(u0, f, T )1/2. (53)

In particular, u lies in the space X1([0, T ]×R3).

Proof. To abbreviate the notation, all spatial norms here will be over R3.
Using the forcing symmetry (34), we may set f to be divergence-free, so in particular by Corollary 4.3

we have

∇ p(t)=∇ p̃(t) (54)
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for almost all times t , where
p̃ =−1−1∂i∂ j (ui u j ). (55)

As (u, p, u0, f, T ) is finite energy, we have the a priori hypothesis

‖u‖L∞t L2
x ([0,T ]×R3) ≤ A

for some A<∞, though recall that our final bounds are not allowed to depend on this quantity A. Because
u is smooth, we see in particular from Fatou’s lemma that

‖u(t)‖L2
x
≤ A (56)

for all t ∈ [0, T ].
Taking the inner product of the Navier–Stokes equation (3) with u and rearranging, we obtain the

energy density identity

∂t
(1

2 |u|
2)
+ u · ∇

( 1
2 |u|

2)
=1

( 1
2 |u|

2)
− |∇u|2− u · ∇ p+ u · f. (57)

We would like to integrate this identity over all of R3, but we do not yet have enough decay in space
to achieve this, even with the normalised pressure. Instead, we will localise by integrating the identity
against a cutoff η4, where η(x) := χ((|x | − R)/r), χ : R→ R+ is a fixed smooth function that equals 0
on [0,+∞] and 1 on [−∞,−1], and 0< r < R/2 are parameters to be chosen later. (The exponent 4
is convenient for technical reasons, in that η4 and ∇(η4) share a large common factor η3, but it should
be ignored on a first reading.) Thus we see that η4 is supported on the ball B(0, R) and equals 1 on
B(0, R− r), with the derivative bounds

∇
jη = O(r− j ) (58)

for j = 0, 1, 2. We define the localised energy

Eη4(t) :=
∫

R3

1
2 |u|

2(t, x)η4(x) dx . (59)

Clearly we have the initial condition

Eη4(0). E(u0, f ). (60)

Because η4 is compactly supported and u is almost smooth, Eη4 is C1
t , and we may differentiate under

the integral sign and integrate by parts without difficulty; using (54), we see for almost every time t that

∂t Eη4 =−X1+ X2+ X3+ X4+ X5, (61)

where X1 is the dissipation term

X1 :=

∫
R3
|∇u|2η4 dx = ‖η2

∇u‖2L2
x
, (62)

X2 is the heat flux term

X2 :=
1
2

∫
R3
|u|21(η4) dx,
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X3 is the transport term

X3 := 4
∫

R3
|u|2u · η3

∇η dx,

X4 is the forcing term

X4 :=

∫
R3

u · f η4 dx,

and X5 is the pressure term

X5 := 4
∫

R3
u p̃η3
∇η dx .

The dissipation term X1 is nonnegative, and will be useful in controlling some of the other terms present
here. The heat flux term X2 can be bounded using (56) and (58) by

X2 .
A2

r2 ,

so we turn now to the transport term X3. Using Hölder’s inequality and (58), we may bound

X3 .
1
r
‖uη2
‖

3/2
L6

x
‖u‖3/2L2

x
, (63)

and thus by (56) and Sobolev embedding

X3 .
A3/2

r
‖∇(uη2)‖

3/2
L2

x
.

By the Leibniz rule and (62), (56), (58), one has

‖∇(uη2)‖L2
x
. X1/2

1 +
A
r
,

and thus

X3 .
A3/2

r
X3/4

1 +
A3

r5/2 .

Now we move on to the forcing term X4. By Cauchy–Schwarz, we can bound this term by

X4 . E1/2
η4 a(t),

where a(t) := ‖ f (t)‖L2
x (B(0,R)). Note from (2) that∫ T

0
a(t) dt . E(u0, f, T )1/2. (64)

Now we turn to the pressure term X5. From (55) we have

X5 =

∫
R3

O
(
u(1−1

∇
2(uu))η3

∇η
)
.

We will argue as in the estimation of X4, but we will first need to move the η3 weight past the singular
integral 1−1

∇
2. We therefore bound X5 = X5,1+ X5,2, where

X5,1 =

∫
R3

O
(
u(1−1

∇
2(uuη3))∇η

)
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and
X5,2 =

∫
R3

O
(
u[1−1

∇
2, η3
](uu)∇η

)
,

where [A, B] := AB − B A is the commutator and η3 is interpreted as the multiplication operator
η3
: u 7→ η3u. For X6,1, we apply Hölder’s inequality and (58) to obtain

X5,1 .
1
r
‖u‖L2

x
‖1−1

∇
2(uuη3)‖L2

x
.

The singular integral 1−1
∇

2 is bounded on L2, so it may be discarded; applying Hölder’s inequality
again, we conclude that

X5,1 .
1
r
‖u‖3/2L2

x
‖uη2
‖

3/2
L6

x
.

This is the same bound (63) used to bound X3, and so by repeating the X3 analysis, we conclude that

X5,1 .
A3/2

r
X3/4

1 +
A3

r5/2 .

As for X5,2, we observe from direct computation of the integral kernel that when r = 1, [1−1
∇

2, χ3
] is a

smoothing operator of infinite order (see [Kato and Ponce 1988]), and in particular

‖[1−1
∇

2, η3
] f ‖L2

x
. ‖ f ‖L1

x

in the r = 1 case. In the general case, a rescaling argument then gives

‖[1−1
∇

2, η3
] f ‖L2

x
.

1
r3/2 ‖ f ‖L1

x
.

Applying Hölder’s inequality and (56), we conclude that

X5,2 .
A3

r5/2 .

Putting all the estimates together, we conclude that

∂t Eη4 ≤−X1+ O
(

A2

r2 +
A3/2

r
X3/4

1 +
A3

r5/2 + E1/2
η4 a(t)

)
.

By Young’s inequality, we have

−
1
2 X1+ O

(
A3/2

r
X3/4

1

)
.

A6

r4

and
A3

r5/2 .
A2

r2 +
A6

r4 ,

and so we obtain

∂t Eη4 + X1 .
A2

r2 +
A6

r4 + E1/2
η4 a(t), (65)
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and hence for almost every time t ,

∂t
(
Eη4 + E(u0, f, T )

)1/2
. E(u0, f, T )−1/2

(
A2

r2 +
A6

r4

)
+ a(t).

By the fundamental theorem of calculus, (64), and (60), we conclude that

Eη4(t)1/2 . E(u0, f, T )1/2+ E(u0, f, T )−1/2
(

A2

r2 +
A6

r4

)
T

for all t ∈ [0, T ] and all sufficiently large R; sending r, R→∞ and using the monotone convergence
theorem, we conclude that

‖u‖L∞t L2
x ([0,T ]×R3) . E(u0, f, T )1/2.

In particular, we have
Eη4(t). E(u0, f, T )

for all r, R; inserting this back into (65) and integrating, we obtain that∫ T

0
X1(t) dt .

(
A2

r2 +
A6

r4

)
T + E(u0, f, T ).

Sending r, R→∞ and using monotone convergence again, we conclude that

‖∇u‖L2
t L2

x ([0,T ]×R3) . E(u0, f, T )1/2,

and Lemma 8.1 follows. �

We can bootstrap the proof of Lemma 8.1 as follows. A posteriori, we see that we may take A .
E(u0, f, T )1/2. If we return to (65), we may then obtain

∂t(Eη4 + e)1/2 . e−1/2
(

E(u0, f, T )
r2 +

E(u0, f, T )3

r4

)
+ a(t),

where e > 0 is an arbitrary parameter which we will optimise later. From the fundamental theorem of
calculus, we then have

E1/2
η4 . Eη4(0)1/2+ e1/2

+ e−1/2
(

E(u0, f, T )
r2 +

E(u0, f, T )3

r4

)
T +‖ f ‖L1

t L2
x
,

where the L1
t L2

x norm is over [0, T ]× B(0, R); optimising in e, we conclude that

E1/2
η4 . Eη4(0)1/2+

(
E(u0, f, T )

r2 +
E(u0, f, T )3

r4

)1/2

T 1/2
+‖ f ‖L1

t L2
x
.

Inserting this back into (65) and integrating, we also conclude that∫ T

0
X1(t) dt .

(
Eη4(0)1/2+

(
E(u0, f, T )

r2 +
E(u0, f, T )3

r4

)1/2

T 1/2
+‖ f ‖L1

t L2
x

)2

.

Applying spatial translation invariance (29) to move the origin from 0 to an arbitrary point x0, we
deduce an energy localisation result:
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Theorem 8.2 (Local energy estimate). Let (u, p, u0, f, T ) be a finite energy almost smooth solution with
f divergence-free. Then for any x0 ∈ R3 and any 0< r < R/2, one has

‖u‖L∞t L2
x ([0,T ]×B(x0,R−r))+‖∇u‖L2

t L2
x ([0,T ]×B(x0,R−r))

. ‖u0‖L2
x (B(x0,R))+‖ f ‖L1

t L2
x ([0,T ]×B(x0,R))+

E(u0, f, T )1/2T 1/2

r
+

E(u0, f, T )3/2T 1/2

r2 . (66)

Remark 8.3. One can verify that the estimate (66) is dimensionally consistent. Indeed, if L denotes a
length scale, then r, R, E(u0, f ) have the units of L , T has the units of L2, u has the units of L−1, and
all terms in (66) have the scaling of L1/2. Note also that the global energy estimate 8.1 can be viewed as
the limiting case of (66) when one sends r, R to infinity.

Remark 8.4. A minor modification of the proof of Theorem 8.2 allows one to replace the ball B(x0, R)
by an annulus

B(x0, R′)\B(x0, R)

for some 0< R < R′ with r < (R′− R)/2, R/2, with the smaller ball B(x0, R− r) being replaced by the
smaller annulus

B(x0, R′− r)\B(x0, R+ r).

The proof is essentially the same, except that the cutoff η has to be adapted to the two indicated annuli
rather than to the two indicated balls; we omit the details. Sending R′ → ∞ using the monotone
convergence theorem, we deduce in particular an external local energy estimate of the form

‖u‖L∞t L2
x ([0,T ]×(R3\B(x0,R+r)))+‖∇u‖L2

t L2
x ([0,T ]×(R3\B(x0,R+r)))

. ‖u0‖L2
x (R

3\B(x0,R))+‖ f ‖L1
t L2

x ([0,T ]×(R3\B(x0,R)))+
E(u0, f, T )1/2T 1/2

r
+

E(u0, f, T )3/2T 1/2

r2 , (67)

whenever 0< r < R/2.

Remark 8.5. The hypothesis that f is divergence-free can easily be removed using the symmetry (34),
but then f needs to be replaced by P f on the right-hand side of (66).

Remark 8.6. Theorem 8.2 can be extended without difficulty to the periodic setting, with the energy
E(u0, f, T ) being replaced by the periodic energy

EL(u0, f, T ) := 1
2

(
‖u0‖L2

x (R
3/LZ3)+‖ f ‖L1

t L2
x ([0,T ]×R3/LZ3)

)2

as long as the radius R of the ball is significantly smaller than the period L of the solution, for example,
R < L/100. The reason for this is that the analysis used to prove Theorem 8.2 takes place almost entirely
inside the ball B(x0, R), and so there is almost no distinction between the finite energy and the periodic
cases. The only place where there is any “leakage” outside of B(x0, R) is in the estimation of the term
X5,2, which involves the nonlocal commutator [1−1

∇
2, η3
]. However, in the regime R < L/100, one

easily verifies that the commutator essentially obeys the same sort of kernel bounds in the periodic setting
as it does in the nonperiodic setting, and so the argument goes through as before. We omit the details.
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Remark 8.7. Theorem 8.2 asserts, roughly speaking, that if the energy of the data is small in a large ball,
then the energy will remain small in a slightly smaller ball for future times T ; similarly, (67) asserts that
if the energy of the data is small outside a ball, then the energy will remain small outside a slightly larger
ball for future times T . Unfortunately, this estimate is not of major use for the purposes of establishing
Theorem 1.20, because energy is a supercritical quantity for the Navier–Stokes equation, and so smallness
of energy (local or global) is not a particularly powerful conclusion. To achieve this goal, we will need
a variant of Theorem 8.2 in which the energy 1

2

∫
|u|2 is replaced by the enstrophy 1

2

∫
|ω|2, which is

subcritical and thus able to control the regularity of solutions effectively.

Remark 8.8. It should be possible to extend Theorem 8.2 to certain classes of weak solutions, such as
mild solutions or Leray–Hopf solutions, perhaps after assuming some additional regularity on the solution
u. We will not pursue these matters here.

9. Bounded total speed

Let (u, p, u0, f, T ) be an almost smooth finite energy solution. Applying the Leray projection P to (3)
(and using Corollary 4.3), we see that

∂t u =1u+ PB(u, u)+ P f (68)

for almost all times t , where B(u, v)=O(∇(uv)) was defined in (12). As all expressions here are tempered
distributions, we thus have the Duhamel formula (11), which we rewrite here as

u(t)= et1u0+

∫ t

0
e(t−t ′)1(PO(∇(uu))+ P f

)
(t ′) dt ′. (69)

One can then insert the a priori bounds from Lemma 8.1 into (69) to obtain further a priori bounds on
u in terms of the energy E(u0, f, T ) (although, given that (53) was supercritical with respect to scaling,
any further bounds obtained by this scheme must be similarly supercritical).

Many such bounds of this type already exist in the literature. For instance:17

• One can bound the vorticity ω := ∇ × u in L∞t L1
x norm [Constantin 1990; Qian 2009].

• One can bound ∇2u in L4/3,∞
t,x [Constantin 1990; Lions 1996].

• More generally, for any α ≥ 1, one can bound ∇αu in L4/(α+1),∞
t L4/(α+1),∞

x [Vasseur 2010; Choi
and Vasseur 2011].

• For any k ≥ 0, one can bound tk∂k
t u in L2

t,x [Chae 1992].

• One can bound ∇u in L1/2
t L∞x [Foiaş et al. 1981].

• For any r ≥ 0 and k ≥ 1, one can bound Dr
t ∇

s
x u in L2/(4r+2k−1)

t L2
x [Foiaş et al. 1981; Doering and

Foias 2002; Duff 1990].

17These bounds are usually localised in both time and space, or are restricted to the periodic setting, and some bounds were
only established in the model case f = 0; some of these bounds also apply to weaker notions of solution than classical solutions.
For the purposes of this exposition we will not detail these technicalities.
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• For any 1≤ m ≤∞, one can bound ω in L2m/(4m−3)
t L2m

x [Gibbon 2012].

• One can bound moments of wave-number like quantities [Doering and Gibbon 2002; Cheskidov and
Shvydkoy 2011].

In this section we present another a priori bound which will be absolutely crucial for our localisation
arguments, and which (somewhat surprisingly) does not appear to be previously in the literature:

Proposition 9.1 (Bounded total speed). Let (u, p, u0, f, T ) be a finite energy almost smooth solution.
Then we have

‖u‖L1
t L∞x ([0,T ]×R3) . E(u0, f, T )1/2T 1/4

+ E(u0, f, T ). (70)

We observe that the estimate (70) is dimensionally consistent with respect to the scaling (31). Indeed,
if L denotes a length scale, then T scales like L2, u scales like L−1, and E0 scales like L , so both sides
of (70) have the scaling of L .

Before we prove this proposition rigorously, let us first analyse equation (68) heuristically, using
Littlewood–Paley projections, to get some feel of what kind of a priori estimates one can hope to establish
purely from (68) and (53). For the simplicity of this exposition we shall assume f = 0. We consider a
high-frequency component uN := PN u of the velocity field u for some N � 1. Applying PN to (68), and
using the ellipticity of 1 to adopt the heuristic18 PN1∼−N 2 PN and PN P∇ ∼ N PN , we arrive at the
heuristic equation

∂t uN =−N 2uN +O(N PN (u2)).

Let us cheat even further and pretend that PN (u2) is analogous to uN uN (in practice, there will be more
terms than this, but let us assume this oversimplification for the sake of discussion). Then we have

∂t uN =−N 2uN +O(Nu2
N ).

Heuristically, this suggests that the high-frequency component uN should quickly damp itself out into
nothingness if |uN | � N , but can exhibit nonlinear behaviour when |uN | � N . Thus, as a heuristic, one
can pretend that uN has magnitude� N on the regions where it is nonnegligible.

This heuristic, coupled with the energy bound (53), already can be used to informally justify many of
the known a priori bounds on Navier–Stokes solutions. In particular, projecting (53) to the uN component,
one expects that

‖uN‖L2
t L2

x
. N−1 (71)

(dropping the dependencies of constants on parameters such as E0 and being vague about the space-time
region on which the norms are being evaluated), which by Bernstein’s inequality implies that

‖uN‖L2
t L∞x
. N 1/2.

However, with the heuristic that |uN | � N on the support of uN , we expect that

‖uN‖L1
t L∞x
.

1
N
‖uN‖

2
L2

t L∞x
. 1;

18One can informally justify this heuristic by inspecting the symbols of the Fourier multipliers appearing in these expressions.
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summing in N (and ignoring the logarithmic divergence that results, which can in principle be recovered
by using Bessel’s inequality to improve upon (71)), we obtain a nonrigorous derivation of Proposition 9.1.

We now turn to the formal proof of Proposition 9.1. All space-time norms are understood to be
over the region [0, T ] ×R3 (and all spatial norms over R3) unless otherwise indicated. We abbreviate
E0 := E(u0, f, T ). From (53) and (2) we have the bounds

‖u‖L∞t L2
x
. E1/2

0 , (72)

‖∇u‖L2
t L2

x
. E1/2

0 , (73)

‖u0‖L2
x
+‖ f ‖L1

t L2
x
. E1/2

0 . (74)

We expand out u using (69). For the free term et1u0, one has by (18)

‖et1u0‖L∞x . t−3/4
‖u0‖L2

x

for t ∈ [0, T ], so this contribution to (70) is acceptable by (74). In a similar spirit, we have

‖e(t−t ′)1P f (t ′)‖L∞x . (t − t ′)−3/4
‖P f (t ′)‖L2

x
. (t − t ′)−3/4

‖ f (t ′)‖L2
x
,

and so this contribution is also acceptable by the Minkowski and Young inequalities and (74).
It remains to show that ∥∥∥∥∫ t

0
e(t−t ′)1O(P∇(uu)(t ′)) dt ′

∥∥∥∥
L1

t L∞x

. E0.

By Littlewood–Paley decomposition, the triangle inequality, and Minkowski’s inequality, we can bound
the left-hand side by

.
∑

N

∫ T

0

∫ t

0

∥∥PN e(t−t ′)1O(P∇(uu)(t ′))
∥∥

L∞x
dt ′ dt.

Using (27) and bounding the first-order operator P∇ by N on the range of PN , we may bound this by

.
∑

N

∫ T

0

∫ t

0
exp

(
−c(t − t ′)N 2)N‖PN O(uu)(t ′)‖L∞x dt ′ dt

for some c > 0; interchanging integrals and evaluating the t integral, this becomes

.
∑

N

∫ T

0
N−1
‖PN O(uu)(t ′)‖L∞x dt ′. (75)

We now apply the Littlewood–Paley trichotomy (see Section 2) and symmetry to write

PN O(uu)=
∑

N1∼N

∑
N2.N

PN O(uN1uN2)+
∑

N1&N

∑
N2∼N1

PN O(uN1uN2),
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where uN := PN u. For N1, N2 in the first sum, we use Bernstein’s inequality to estimate

‖PN O(uN1uN2)‖L∞x . ‖uN1‖L∞x ‖uN2‖L∞x

. N 3/2
1 ‖uN1‖L2

x
N 3/2

2 ‖uN2‖L2
x

. N (N2/N1)
1/2
‖∇uN1‖L2

x
‖∇uN2‖L2

x
.

For N1, N2 in the second sum, we use Bernstein’s inequality in a slightly different way to estimate

‖PN O(uN1uN2)‖L∞x . N 3
‖O(uN1uN2)‖L1

x

. N 3
‖uN1‖L2

x
‖uN2‖L2

x

. N (N/N1)
2
‖∇uN1‖L2

x
‖∇uN2‖L2

x
.

Applying these bounds, we can estimate (75) by

.
∑

N

∑
N1∼N

∑
N2.N

(N2/N1)
1/2
∫ T

0
‖∇uN1(t

′)‖L2
x
‖∇uN2(t

′)‖L2
x

dt ′

+

∑
N

∑
N1&N

∑
N2∼N1

(N/N1)
2
∫ T

0
‖∇uN1(t

′)‖L2
x
‖∇uN2(t

′)‖L2
x

dt ′.

Performing the N summation first and then using Cauchy–Schwarz, one can bound this by

.
∑
N1&1

∑
N2.N1

(N2/N1)
1/2aN1aN2 +

∑
N1&1

∑
N2∼N1

aN1aN2,

where
aN := ‖∇uN‖L2

t L2
x
.

But from (73) and Bessel’s inequality (or the Plancherel theorem), one has∑
N

a2
N . E0,

and the claim (70) then follows from Schur’s test (or Young’s inequality).

Remark 9.2. An inspection of this argument reveals that the L∞x norm in (70) can be strengthened to a
Besov norm (Ḃ0,∞

1 )x , defined by

‖u‖
(Ḃ0,∞

1 )x
:=

∑
N

‖PN u‖L∞x .

Remark 9.3. An inspection of the proof of Proposition 9.1 reveals that the time-dependent factor T 1/4

on the right-hand side of Proposition 9.1 was only necessary in order to bound the linear components

et1u0+

∫ t

0
e(t−t ′)1(P f )(t ′) dt ′

of the Duhamel formula (69). If one had some other means to bound these components in L1
t L∞x by a

bound independent of T (for instance, if one had some further control on the decay of u0 and f , such as
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L1
x and L1

t L1
x bounds), then this would lead to a similarly time-independent bound in Proposition 9.1,

which could be useful for analysis of the long-time asymptotics of Navier–Stokes solutions (which is not
our primary concern here).

Remark 9.4. It is worth comparing the (supercritical) control given by Proposition 9.1 with the well-
known (critical) Prodi–Serrin–Ladyzhenskaya regularity condition [Prodi 1959; Serrin 1963; Ladyzhen-
skaya 1967; Fabes et al. 1972; Struwe 1988], a special case of which (roughly speaking) asserts that
smooth solutions to the Navier–Stokes system can be continued as long as u is bounded in L2

t L∞x , and
the equally well known (and also critical) regularity condition of Beale, Kato, and Majda [1984], which
asserts that smooth solutions can be continued as long as the vorticity

ω := ∇ × u (76)

stays bounded in L1
t L∞x .

Remark 9.5. As pointed out by the anonymous referee, one can also obtain L1
t L∞x bounds on the velocity

field u by a Gagliardo–Nirenberg type interpolation between the L1/2
t L∞x bound on ∇u from [Foiaş et al.

1981] with the L2
t L6

x bound on u arising from the energy inequality and Sobolev embedding.

Although we will not need it in this paper, Proposition 9.1 when combined with the Picard well-
posedness theorem for ODE yields the following immediate corollary, which may be of use in future
applications:

Corollary 9.6 (Existence of material coordinates). Let (u, p, u0, f, T ) be a finite energy smooth solution.
Then there exists a unique smooth map 8 : [0, T ]×R3

→ R3 such that

8(0, x)= x

for all x ∈ R3, and
∂t8(t, x)= u(8(t, x))

for all (t, x)∈ [0, T ]×R3, and furthermore8(t) :R3
→R3 is a diffeomorphism for all t ∈ [0, T ]. Finally,

one has
|8(t, x)− x |. E(u0, f, T )1/2T 1/4

+ E(u0, f, T )

for all (t, x) ∈ [0, T ]×R3.

Remark 9.7. One can extend the results in this section to the periodic case, as long as one assumes
normalised pressure and imposes the additional condition T ≤ L2, which roughly speaking ensures that
the periodic heat kernel behaves enough like its nonperiodic counterpart that estimates such as (18) are
maintained; we omit the details. (Without normalised pressure, the Galilean invariance (33) shows that
one cannot hope to bound the L1

t L∞x norm of u by the initial data, and even energy estimates do not work
any more.) When the inequality T ≤ L2 fails, one can still obtain estimates (but with weaker bounds) by
using the crude observation that a solution which is periodic with period L is also periodic with period
kL for any positive integer k, and choosing k to be the first integer such that T ≤ (kL)2.
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10. Enstrophy localisation

The purpose of this section is to establish a subcritical analogue of Theorem 8.2, in which the energy
1
2

∫
|u|2 is replaced by the enstrophy 1

2

∫
|ω|2. Because the latter quantity is not conserved, we will need

a smallness condition on the initial local enstrophy; however, the initial global enstrophy is allowed to be
arbitrarily large (or even infinite).

Theorem 10.1 (Enstrophy localisation). Let (u, p, u0, f, T ) be a finite energy almost smooth solution.
Let B(x0, R) be a ball such that

‖ω0‖L2
x (B(x0,R))+‖∇ × f ‖L1

t L2
x ([0,T ]×B(x0,R)) ≤ δ (77)

for some δ > 0, where ω0 := ∇ × u0 is the initial vorticity. Assume the smallness condition

δ4T + δ5 E(u0, f, T )1/2T ≤ c (78)

for some sufficiently small absolute constant c > 0 (independent of all parameters). Let 0< r < R/2 be a
quantity such that

r > C
(
E(u0, f, T )+ E(u0, f, T )1/2T 1/4

+ δ−2) (79)

for some sufficiently large absolute constant C (again independent of all parameters). Then

‖ω‖L∞x L2
x ([0,T ]×B(x0,R−r))+‖∇ω‖L2

t L2
x ([0,T ]×B(x0,R−r)) . δ.

Remark 10.2. Once again, this theorem is dimensionally consistent (and so one could use (31) to
normalise one of the nondimensionless parameters above to equal 1 if desired). Indeed, if L is a unit of
length, then u has the units of L−1, ω has the units of L−2, E(u0, f, T ), r, R have the units of L , T has the
units of L2, and δ has the units of L−1/2 (so in particular δ4T and δ5 E(u0, f, T )1/2T are dimensionless).

Remark 10.3. The smallness of δ4T also comes up, not coincidentally, as a condition in the local well-
posedness theory for the Navier–Stokes at the level of H 1; see (46). The smallness of δ5 E(u0, f, T )1/2T
is a more artificial condition, and it is possible that a more careful argument would eliminate it, but we
will not need to do so for our applications. For future reference, it will be important to note the fact that δ
is permitted to be large in the above theorem, so long as the time T is small.

Remark 10.4. A variant to Theorem 10.1 can also be deduced from the result19 in [Caffarelli et al. 1982,
Theorem D]. Here, instead of assuming a small L2 condition on the enstrophy, one needs to assume
smallness of quantities such as

∫
R3(|u0(x)|2/|x − x0|)dx for all sufficiently large x0, and then regularity

results are obtained outside of a sufficiently large ball in space-time.

We now prove the theorem. Let (u, p, u0, f, T ), B(x0, R), δ, r be as in the theorem. We may use spatial
translation symmetry (29) to normalise x0 = 0. We assume c > 0 is a sufficiently small absolute constant,
and then assume C > 0 is a sufficiently large constant (depending on c). We abbreviate E0 := E(u0, f, T ).

In principle, this is a subcritical problem, because the local enstrophy 1
2

∫
B(x0,R)

|ω|2 (or regularised
versions thereof) is subcritical with respect to scaling (31). As such, standard energy methods should

19We thank the anonymous referee for this observation.
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in principle suffice to keep the enstrophy small for small times (using the smallness condition (78), of
course). The main difficulty is that the local enstrophy is not fully coercive: it controls ω (and, to a lesser
extent, u) inside B(x0, R), but not outside B(x0, R); while we do have some global control of the solution
thanks to the energy estimate (Lemma 8.1), this is supercritical and thus needs to be used sparingly. We
will therefore expend a fair amount of effort to prevent our estimates from “leaking” outside B(x0, R);
in particular, one has to avoid the use of nonlocal singular integrals (such as the Leray projection or
the Biot–Savart law) and work instead with more local techniques such as integration by parts. This
will inevitably lead to some factors that blow up as one approaches the boundary of B(x0, R) (actually,
for technical reasons, we will be using a slightly smaller ball B(x0, R′(t)) as our domain). It turns out,
however, that thanks to a moderate amount of harmonic analysis, these boundary factors can (barely) be
controlled if one chooses exactly the right type of weight function to define the local enstrophy (it has to
be Lipschitz continuous, but no better).

We turn to the details. We will need an auxiliary initial radius R′ = R′(0) in the interval [R− r/4, R]
which we will choose later (by a pigeonholing argument). Given this R′, we then define a time-dependent
radius function

R′(t) := R′−
1
c

∫ t

0
‖u(s)‖L∞x (R3) ds.

From Proposition 9.1 one has
R′(t)≥ R′− Oc(E0+ E1/2

0 T 1/4),

and thus (by (79)) one has
R′(t)≥ R− r/2

if the constant C in (79) is sufficiently large depending on c. The reason we introduce this rapidly
shrinking radius is that we intend to “outrun” all difficulties caused by the transport component of the
Navier–Stokes equation when we deploy the energy method. Note that the bounded total speed property
(Proposition 9.1) prevents us from running the radius down to zero when we do this.

We introduce a time-varying Lipschitz continuous cutoff function

η(t, x)=min
(
max(0, c−0.1δ2(R′(t)− |x |)), 1

)
.

This function is supported on the ball B(0, R′(t)) and equals one on B(0, R′(t)− c0.1δ−2), and is radially
decreasing; in particular, from (79), we see that η is supported on B(0, R) and equals 1 on B(0, R− r) if
C is large enough. As t increases, this cutoff shrinks at speed (1/c)‖u(t)‖L∞x (R3), leading to the useful
pointwise estimate

∂tη(t, x)≤−
1
c
‖u(t)‖L∞x (R3)|∇xη(t, x)|, (80)

which we will use later in this argument to control transport-like terms in the energy estimate (or more
precisely, the enstrophy estimate).

Remark 10.5. It will be important that η is Lipschitz continuous but no better; Lipschitz is the minimal
regularity for which one can still control the heat flux term (see Y3 below), but is also the maximal
regularity for which there is enough coercivity to control the nonlinear term (see Y6 below). The argument
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is in fact remarkably delicate, necessitating a careful application of harmonic analysis techniques (and in
particular, a Whitney decomposition of the ball).

We introduce the localised enstrophy

W (t) := 1
2

∫
R3
|ω(t, x)|2η(t, x) dx . (81)

From the hypothesis (77) one has the initial condition

W (0). δ2, (82)

and to obtain the proposition, it will suffice to show that

W (t).c δ
2 (83)

for all t ∈ [0, T ].
As u is almost smooth, W is C1

t . As in Section 8, we will compute the derivative ∂t W . We first take
the curl of (3) to obtain the well-known vorticity equation

∂tω+ (u · ∇)ω =1ω+O(ω∇u)+∇ × f. (84)

This leads to the enstrophy equation

∂t
1
2 |ω|

2
+ (u · ∇) 1

2 |ω|
2
=1(1

2 |ω|
2)− |∇ω|2+O(ωω∇u)+ω · (∇ × f ).

All terms in this equation are smooth. Integrating this equation against the Lipschitz, compactly supported
η and integrating by parts as in Section 8 (interpreting derivatives of η in a distributional sense), we
conclude that

∂t W =−Y1− Y2+ Y3+ Y4+ Y5+ Y6, (85)

where Y1 is the dissipation term

Y1 :=

∫
R3
|∇ω|2η,

Y2 is the recession term

Y2 := −
1
2

∫
R3
|ω|2∂tη,

Y3 is the heat flux term

Y3 :=
1
2

∫
R3
|ω|21η,

Y4 is the transport term

Y4 :=
1
2

∫
R3
|ω|2u · ∇η,

Y5 is the forcing term

Y5 :=

∫
R3
ω · (∇ × f )η,

and Y6 is the nonlinear term

Y6 :=

∫
R3

O(ωω∇u)η.
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The term Y1 is nonnegative, and will be needed to control some of the other terms. The term Y2 is also
nonnegative; by (80) we see that ∫

R3
|ω|2|∇η|. c‖u(t)‖L∞x (R3)Y2. (86)

We skip the heat flux term Y3 for now and use (86) to bound the transport term Y4 by

|Y4|. cY2. (87)

Now we turn to the forcing term Y5. By Cauchy–Schwarz and (81), we have

|Y5|.W 1/2a(t),

where
a(t) := ‖∇ × f ‖L2

x (B(0,R)).

Note from (77) that ∫ T

0
a(t) dt . δ. (88)

We return now to the heat flux term Y3. Computing the distributional Laplacian20 of η in polar
coordinates, we see that

Y3 . b(t),

where b(t)= bR′(t) is the quantity

b(t) := c−0.1δ2 R2
∫

S2
|ω(t, R′(t)α)|2 dα+ c−0.2δ4

∫
R′(t)−c0.1δ−2≤|x |≤R′(t)

|ω(t, x)|2 dx,

and dα is surface measure on the unit sphere S2. (Note that while 1η also has a component on the sphere
|x | = R′(t)− c0.1δ−2, this component is negative and thus can be discarded.)

To control b(t), we take advantage of the freedom to choose R′. From Fubini’s theorem and a change
of variables, we see that ∫ R

R− r
4

∫ T

0
bR′(t) dt d R′ . c−0.1δ2

∫ T

0

∫
R3
|ω(t, x)|2 dx .

From Lemma 8.1, the right-hand side is O(δ2 E0/c0.1). Thus, by the pigeonhole principle, we may select
a radius R′ such that ∫ T

0
b(t) dt .

δ2 E0

c0.1r
,

and in particular, by (79), ∫ T

0
b(t) dt . δ2 (89)

if C is large enough.

20Alternatively, if one wishes to avoid distributions, one can regularise η by a small epsilon parameter to become smooth,
compute the Laplacian of the regularised term, and take limits as epsilon goes to zero. One can also rescale either R or δ (but not
both) to equal 1 to simplify the computations.
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Henceforth we fix R′ so that (89) holds. We now turn to the most difficult term, namely the nonlinear
term Y6. Morally speaking, the ∇u term in Y6 has the “same strength” as ω, and so Y6 is heuristically as
strong as ∫

R3
O(ω3)η.

A standard Whitney decomposition of the support of η, followed by rescaled versions of the Sobolev
inequality, bounds this latter expression by

O
((∫

R3
|ω|2η

)1/2(∫
R3
|∇ω|2η

))
.

If we could similarly bound Y6 by this expression by an analogous argument, this would greatly simplify
the argument below. Unfortunately, the relationship between ∇u and ω is rather delicate (especially when
working relative to the weight η), and we have to perform a much more involved analysis (though still
ultimately one which is inspired by the preceding argument).

We turn to the details. We fix t and work in the domain

� := B(0, R′(t)).

We apply a Whitney-type decomposition, covering � by a boundedly overlapping collection of balls
Bi = B(xi , ri ) with radius

ri :=
1

100 min(dist(xi , ∂�), c0.1/δ2).

In particular, we have
η ∼ c−0.1δ2ri (90)

on B(xi , 10ri ). We can then bound

|Y6|. c−0.1δ2
∑

i

ri

∫
Bi

|ω|2|∇u|.

The first step is to convert ∇u into an expression that only involves ω (modulo lower-order terms), while
staying inside the domain �. To do this, we first observe from the divergence-free nature of u that

1u =∇ ×∇ × u =∇ ×ω.

Let ψi be a smooth cutoff to the ball 3Bi := B(xi , 3ri ) that equals 1 on 2Bi := B(xi , 2ri ). On 2Bi , we
thus have the local Biot–Savart law

u = O(1−1
∇(ψiω))+ v,

where v is harmonic on 2Bi . In particular, from Sobolev embedding one has

‖v‖L2
x (2Bi ) . ‖ψiω‖L6/5

x (R3)
+‖u‖L2

x (2Bi ).

From Hölder’s inequality one has

‖ψiω‖L6/5
x (R3)

. ri‖ω‖L2
x (2Bi ),
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while from the mean value principle for harmonic functions one has

‖∇v‖L∞x (Bi ) . r−5/2
i ‖v‖L2

x (2Bi ).

We conclude that
‖∇v‖L∞x (Bi ) . r−3/2

i ‖ω‖L2
x (2Bi )+ r−5/2

i ‖u‖L2
x (2Bi ),

and we thus have the pointwise estimate

|∇u|. |∇1−1
∇(ψiω)| + r−3/2

i ‖ω‖L2
x (2Bi )+ r−5/2

i ‖u‖L2
x (2Bi )

on Bi . We can thus bound |Y6| ≤ Y6,1+ Y6,2, where

Y6,1 . c−0.1δ2
∑

i

ri

∫
Bi

|ω|2 Fi (91)

and
Fi := |∇1

−1
∇(ψiω)| + r−3/2

i ‖ω‖L2
x (2Bi )

and

Y6,2 . c−0.1δ2
∑

i

r−3/2
i ‖u‖L2

x (2Bi )

∫
Bi

|ω|2.

Let us first deal with Y6,2, which is the only term not locally controlled by the vorticity alone. If the
ball Bi is contained in the annular region

{x ∈� : |x | ≥ R′(t)− c0.1δ−2
},

which is the region where η is not constant, then we use Hölder to get the bound

r−3/2
‖u‖L2

x (2Bi ) . ‖u‖L∞x (R3)

and observe that c−0.1δ2
= |∇η| on Bi . Thus, by (86), the contribution of this term to Y6,2 is O(c0.9Y2).

If instead the ball Bi intersects the ball B(0, R′(t)− c0.1δ−2), then ri ∼ c0.1δ−2 and η ∼ 1 on Bi , and we
use Lemma 8.1 to obtain the bound

r−3/2
i ‖u‖L2

x (2Bi ) . c−0.15δ3 E1/2
0 ,

and then by (81), (78) the contribution of this case is

O(c−0.25δ5 E1/2
0 W )= O(c0.75W/T );

and thus
Y6,2 . c0.9Y2+ c0.75W/T .

Now we turn to Y6,1. From Plancherel’s theorem we have

‖∇1−1
∇(ψiω)‖L2

x (R
3) . ‖ψiω‖L2

x (R
3) . ‖ω‖L2

x (2Bi ),

and thus
‖Fi‖L2

x (Bi ) . ‖ω‖L2
x (2Bi ).
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From Hölder’s inequality we thus have

Y6,1 . c−0.1δ2
∑

i

r3/2
i ‖ω‖

2
L6

x (Bi )
‖ω‖L2

x (2Bi ).

To deal with this, we let wi denote the averages

wi :=

(
1
|3Bi |

∫
3Bi

|ω|2
)1/2

;

then
‖ω‖L2

x (2Bi ) . r3/2
i wi .

Also, from the Sobolev inequality one has

‖ω‖L6
x (Bi ) . ‖ωψi‖L6

x (R
3) . ‖∇(ωψi )‖L2

x (R
3) . ‖∇ω‖L2

x (3Bi )+ r−1
i ‖ω‖L2

x (3Bi ) . ‖∇ω‖L2
x (3Bi )+ r1/2

i wi ,

and thus
Y6,1 . c−0.1δ2

∑
i

r3
i wi‖∇ω‖

2
L2

x (3Bi )
+ c−0.1δ2

∑
i

r4
i w

3
i . (92)

To deal with the first term of (92), observe from (81) and (90) that∑
i

r4
i w

2
i . c0.1δ−2W, (93)

and in particular
wi . c0.05δ−1W 1/2r−2

i (94)

for all i . We may thus bound

c−0.1δ2
∑

i

r3
i wi‖∇ω‖

2
L2

x (3Bi )
. c−0.05δW 1/2

∑
i

ri‖∇ω‖
2
L2

x (3Bi )
,

which by (90) and the bounded overlap of the Bi is

. c0.05δ−1W 1/2
∫
�

|∇ω|2η . c0.05δ−1W 1/2Y1.

The second term of (92), c−0.1δ2∑
i r4

i w
3
i , is trickier to handle. Call a ball “large” if its radius is at least

10−4c−0.1δ−2 (say), and “small” otherwise. To deal with the small balls we use the Poincaré inequality.
From this inequality, we see in particular that∣∣∣∣( 1

|3Bi |

∫
3Bi

|ω|2
)1/2

−

(
1
|3B j |

∫
3B j

|ω|2
)1/2∣∣∣∣. (r−1

i

∫
10Bi

|∇ω|2
)1/2

whenever Bi , B j intersect. (Indeed, the Poincaré inequality implies that both terms in the left-hand side
are within O((r−1

i

∫
10Bi
|∇ω|2)1/2) of |(1/|10Bi |)

∫
10Bi

ω|.) In other words, we have

|wi −w j |. r−1/2
i

(∫
10Bi

|∇ω|2
)1/2

(95)

whenever Bi , B j intersect.
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Now for any small ball Bi , we may assign a “parent” ball Bp(i) which touches the ball but has radius
at least 1.001 (say) times as large as that of Bi . We may iterate this until we reach a large ball Ba(i), and
write

wi ≤ wa(i)+
∑
k≥0

|wpk(i)−wpk+1(i)|,

where the sum is over all k for which pk+1(i) is well-defined; note that this inequality also holds for large
balls if we set a(i)= i . Taking cubes and using Hölder’s inequality, we obtain

w3
i . w

3
a(i)+

∑
k≥0

(1+ k)10
|wpk(i)−wpk+1(i)|

3,

and so we can bound c−0.1δ2∑
i

r4
i w

3
i by

. c−0.1δ2
∑

i

r4
i w

3
a(i)+ c−0.1δ2

∑
k≥0

(1+ k)10
∑

i

r4
i |wpk(i)−wpk+1(i)|

3.

If one fixes a large ball B j , one easily checks that
∑

i :a(i)= j
r4

i . r4
j , and thus

c−0.1δ2
∑

i

r4
i w

3
a(i) . c−0.1δ2

∑
j :r j>10−4c0.1δ−2

r4
jw

3
j ;

applying (94) and (93), we thus have

c−0.1δ2
∑

i

r4
i w

3
a(i) . c−0.25δ5W 1/2

∑
j

r4
jw

2
j . c−0.15δ3W 3/2.

Similarly, if one fixes a small ball B j , one verifies that∑
k≥0

(1+ k)10
∑

i :pk(i)= j

r4
i . r4

j ,

and thus

c−0.1δ2
∑
k≥0

(1+ k)10
∑

i

r4
i |wpk(i)−wpk+1(i)|

3 . c−0.1δ2
∑

j :r j≤10−4c0.1δ−2

r4
j |w j −wp( j)|

3.

From (94) (once) and (95) (twice) one has

|w j −wp( j)|
3 . c0.05δ−1W 1/2r−3

j

∫
10B j

|∇ω|2,

and so we may bound the preceding expression by

. c−0.05δW 1/2
∑

j

r j

∫
10B j

|∇ω|2,

which by (90) and the bounded overlap of the B j can be bounded by

. c0.05δ−1W 1/2
∫
�

|∇ω|2η . c0.05δ−1W 1/2Y1.
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Putting the Y6,1 bounds together, we conclude that

Y6,1 . c−0.15δ3W 3/2
+ c0.05δ−1W 1/2Y1;

collecting the bounds for Y1, . . . , Y6, we thus have

∂t W ≤−Y1+ O
(
c0.05δ−1W 1/2Y1+ c−0.15δ3W 3/2

+ c0.75W/T + a(t)W 1/2
+ b(t)

)
.

To solve this differential inequality we use the continuity method. Suppose that 0≤ T ′ ≤ T is a time for
which

sup
t∈[0,T ′]

W (t)≤ c−0.01δ2. (96)

Then, if c is small enough, we can absorb the O(c0.05δ−1W 1/2Y1) term by the −Y1 term, and can also
use this bound and (78) to obtain

c−0.15δ3W 3/2 . c−0.155δ4W . c0.75W/T

and
a(t)W 1/2 . c−0.005δa(t).

We thus have
∂t W . c0.75W/T + c−0.005δa(t)+ b(t).

From Gronwall’s inequality and (82), (88), (89), we thus have

sup
t∈[0,T ′]

W (t). c−0.005δ2.

For c a small enough absolute constant, this is (slightly) better than the hypothesis (96), and so from the
continuity method (and (82)), we conclude that

sup
t∈[0,T ]

W (t). c−0.005δ2,

and the claim (83) follows. The proof of Theorem 10.1 is now complete.

Remark 10.6. As with Remark 8.4, we may adapt the proof of Theorem 10.1 to an annulus, replacing the
ball B(x0, R) with an annulus B(x0, R′)\B(x0, R) for some 0< R < R′ with 0< r < R/2, (R′− R)/2,
and replacing the smaller ball B(x0, R− r) with the smaller annulus B(x0, R′− r)\B(x0, R+ r). To do
this, one has to replace the cutoff η (which was shrinking inside the ball B(x0, R) towards B(x0, R− r))
with a slightly more complicated cutoff (which is shrinking inside the annulus B(x0, R′)\B(x0, R) towards
the smaller annulus B(x0, R′− r)\B(x0, R+ r)). However, aside from this detail, the proof method is
essentially identical and is omitted. Sending R′ to infinity and using the monotone convergence theorem,
we may in fact replace the annulus B(x0, R′)\B(x0, R) with the exterior region R3

\B(x0, R), and the
annulus B(x0, R′− r)\B(x0, R+ r) with R3

\B(x0, R+ r).

Theorem 10.1 asserts, roughly speaking, that if the H 1
x norm of the data is small on a ball, then for a

quantitative amount of later time, the H 1
x norm of the solution remains small on a slightly smaller ball.
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As the H 1 norm is subcritical, we expect this sort of result to persist to higher regularities, in the spirit of
[Serrin 1962]. It is therefore unsurprising that this is indeed the case:

Proposition 10.7 (Higher regularity). Let (u, p, u0, f, T ) be a finite energy almost smooth solution with
T ≤ T∗. Let B(x0, R), η, δ, r obey the conditions (77), (78), (79) from Theorem 10.1. Then for any
compact subset K in the interior of B(x0, R− r) and any k ≥ 1, one can bound

‖∇
ku‖L∞t L2

x ([0,T ]×K )+‖∇
k+1u‖L2

t L2
x ([0,T ]×K ) .k,K ,E(u0, f,T ),δ,T∗,R,Ak 1,

where

Ak :=

k∑
j=0

‖∇
j u0‖L2

x (B(x0,R))+‖∇
j f ‖L∞t L2

x ([0,T ]×B(x0,R)).

In particular, one has
‖u‖X k([0,T ]×K ) .k,K ,E(u0, f,T ),δ,T∗,R,Ak 1.

Proof. We allow all implied constants to depend on k, K , E(u0, f, T ), δ, T∗, R, Ak . We introduce a
compact set

K ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 ⊂ K5 ⊂ B(x0, R− r),

with each set lying in the interior of the next set. Let η be a smooth function supported on K2 that equals 1
on K1; we allow implied constants to depend on η.

We begin with the k = 1 case. From Theorem 10.1 one already has

‖ω‖L∞t L2
x ([0,T ]×K1)+‖∇ω‖L2

t L2
x ([0,T ]×K1)

. 1.

To pass from ω to u, we use integration by parts. Since ω = ∇ × u and u is divergence-free, a standard
integration by parts shows that

1
2

∫
R3
|ω|2η =

∫
R3
|∇u|2η+

∫
R3

O(|u|2∇2η).

By Lemma 8.1, the error term is O(1), and so we have∫
K
|∇u|2 . 1.

Similarly, by replacing ω and u by their derivatives, we also see that

1
2

∫
R3
|∇ω|2η =

∫
R3
|∇

2u|2η+
∫

R3
O(|∇u|2∇2η).

By Lemma 8.1, the error term is O(1) after integration in time, and so we also have∫ T

0

∫
K
|∇

2u|2 dx dt . 1

as desired.
We now turn to the k = 2 case. This is the most difficult, as we currently only control regularities

that are half a derivative better than the critical regularity (which would place u in H 1/2
x ), and wish to
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boost this to three halves of a derivative above critical; this requires at least two iterations of the Duhamel
formula. The arguments will be analogous to the regularity arguments in Theorem 5.1 or Lemma 5.5. By
(68) we see that uη obeys the truncated equation

∂t(ηu)−1(ηu)= ηO(P∇(uu))+ ηP f +O(∇u∇η)+O(u∇2η) (97)

for almost all t . Meanwhile, from the k = 1 case and Lemma 8.1, we already have the estimates

‖u‖L∞t L2
x ([0,T ]×R3)+‖∇u‖L∞t L2

x ([0,T ]×K4)+‖∇
2u‖L2

t L2
x ([0,T ]×K4)

. 1, (98)

and from the definition of A2, we have

‖∇
j u0‖L2

x (B(x0,R))+‖∇
j f ‖L∞t L2

x ([0,T ]×B(x0,R)) . 1 (99)

for j = 0, 1, 2.
We claim that all terms on the right-hand side of (97) have an L4

t L2
x([0, T ]×R3) norm of O(1). The

only difficult term here is ηPO(∇(uu)); the other three terms on the right-hand side are easily estimated
in L4

t L2
x (and even in L2

t L2
x ) using (98) and (99). We now estimate

‖ηO(P∇(uu))‖L4
t L2

x ([0,T ]×R3).

We split uu = η̃uu+ (1− η̃)uu, where η̃ is a smooth cutoff supported on K4 that equals 1 on K3. For the
contribution of the nonlocal portion (1− η̃), one can use the smoothness of the kernel of the operator
P away from the origin to bound this contribution by . ‖O(uu)‖L4

t L1
x ([0,T ]×R3), which is acceptable by

(98); for future reference, we note that this argument bounds this contribution in L2
t L2

x norm as well as in
L4

t L2
x norm. For the local portion η̃uu, we discard the η and P projections and bound this by

. ‖O(∇(η̃uu))‖L4
t L2

x ([0,T ]×R3).

But this is acceptable by (24).
We have now placed the right-hand side of (97) in L4

t L2
x([0, T ]×R3) with norm O(1). Meanwhile,

from (99), the initial data u0η is in H 2
x (R

3) with norm O(1). Applying the energy estimate (23), we
conclude that

‖uη‖L∞t H3/2−σ
x ([0,T ]×R3)

+‖uη‖L2
t H5/2−σ

x ([0,T ]×R3)
.σ 1

for any σ > 0. A similar argument (shifting the compact sets) also gives

‖uη′‖L∞t H3/2−σ
x ([0,T ]×R3)

+‖uη′‖L2
t H5/2−σ

x ([0,T ]×R3)
.σ 1,

where η′ is a smooth function supported on K5 that equals 1 on K4. In particular, by Sobolev embedding,
on [0, T ]× K4, u is in L∞t L12

x , ∇u is in L2
t L12

x ∩ L∞t L12/5
x , and ∇2u is in L2

t L12/5
x , which together with

(98) and the Hölder inequality now allows one to conclude that O(∇(η̃uu)) has an L2
t H 1

x ([0, T ] ×R3)

norm of O(1). Repeating the previous arguments, we now conclude that the right-hand side of (97) lies
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in L2
t H 1

x ([0, T ]×R3) with norm O(1), and hence by (22),

‖ηu‖L∞t H2
x ([0,T ]×R3)+‖ηu‖L2

t H3
x ([0,T ]×R3),

which gives the k = 2 case.
The higher k cases are proven by similar arguments, but are easier as we now have enough regularity

to place u in L∞t L∞x ([0, T ]× K5) with norm O(1); we leave the details to the reader. (For instance, to
establish the k = 3 case, one can verify using the estimates already obtained from the k = 2 case that the
right-hand side of (97) has an L2

t H 1
x ([0, T ]×R3) norm of O(1). �

Remark 10.8. As in Remark 9.7, one can extend the results here to the periodic setting so long as one
has T ≤ L2 and R ≤ L; we omit the details.

For our application to constructing Leray–Hopf weak solutions, we will need a generalisation of
Theorem 10.1 to the case when one has hyperdissipation. More precisely, we introduce a small hyperdis-
sipation parameter ε > 0, and consider solutions (u(ε), p(ε), u0, f, T ) to the regularised Navier–Stokes
equation, which are defined precisely as with the usual concept of a Navier–Stokes solution, but with (3)
replaced by the regularised variant

∂t u(ε)+ (u(ε) · ∇)u(ε) =1u(ε)− ε12u(ε)−∇ p(ε)+ f. (100)

With hyperdissipation, the global regularity problem becomes much easier (the energy is now subcritical
rather than supercritical), and indeed it is not difficult to use energy methods (see, for example, [Lions
1969]) to show the existence of a unique almost smooth finite energy solution to this regularised equa-
tion (u(ε), p(ε), u0, f, T ) from any given smooth finite energy data (u0, f, T ). The energy estimate in
Lemma 8.1 remains true in this case (uniformly in ε), and one easily verifies that one obtains an additional
estimate

ε

∫ T

0

∫
R3
|∇

2u(t, x)|2 dt dx . E(u0, f, T ) (101)

in this hyperdissipative setting. One can also verify (with a some tedious effort) that Proposition 9.1 also
holds in this hyperdissipative setting as long as ε is sufficiently small, basically because the hyperdissipative
heat operators et (1−ε12) obey essentially the same estimates (18), (27) as et1 if 0 ≤ t ≤ T and ε is
sufficiently small depending on T ; we omit the details.

One can define the vorticity ω(ε) := ∇×u(ε) of a regularised solution as before. This vorticity obeys an
equation almost identical to (84), but with an additional hyperdissipative term −ε∇2ω(ε) on the right-hand
side. One can then repeat the proof of Theorem 10.1 with this additional term. Integrating by parts a
large number of times, one obtains a similar decomposition to (85) for the derivative of the localised
enstrophy, but with the addition of a negative term −ε

∫
R3 |∇

2ω|2η on the right-hand side, plus some
boundary terms which are bounded by b̃(t), where

b̃(t) :=
∑

r=R′(t),R′(t)−c0.1δ−2

εc−0.1δ2 R2
∫

S2
|∇ω(t, rα)|2 dα+ εc−0.2δ4

∫
R′(t)−c0.1δ−2≤|x |≤R′(t)

|∇ω(t, x)|2 dx

is a hyperdissipative analogue of b(t). By using the same averaging argument used to bound
∫ T

0 b(t)dt
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for typical R′, one can also simultaneously obtain a comparable bound for
∫ T

0 b̃(t)dt (taking advantage
of the additional estimate (101)). The rest of the argument in Theorem 10.1 works with essentially no
changes; we omit the details. The proof of Proposition 10.7 is also essentially identical, after one notes
that energy estimates such as (22) continue to hold in the hyperdissipative setting. Summarising, we
obtain:

Proposition 10.9. Theorem 10.1 and Proposition 10.7 continue to hold in the presence of hyperdissipation,
uniformly in the limit ε→ 0.

11. Consequences of enstrophy localisation

We now give a number of applications of the enstrophy localisation result, Theorem 10.1. Many of these
applications resemble existing results in the literature, but with weaker decay hypotheses on the initial
data and solution (in particular, we will usually only assume either finite energy or finite H 1 norm); the
main point is that the localisation afforded by Theorem 10.1 can significantly reduce the need to assume
any stronger decay hypotheses.

We begin with the observation that finite energy smooth solutions automatically have bounded enstrophy
if the initial data has bounded enstrophy:

Corollary 11.1 (Bounded enstrophy). Let (u, p, u0, f, T ) be an almost smooth, finite energy solution,
such that the initial data (u0, f, T ) has finite H 1 norm. Then u ∈ X1([0, T ] × R3); in particular,
(u, p, u0, f, T ) is an H 1 solution.

Proof. Let δ > 0 be small enough (depending on E(u0, f, T ), T ) that the condition (78) holds. As
(u0, f, T ) has finite H 1 norm, we have

‖ω0‖L2
x (R

3)+‖∇ × f ‖L1
t L2

x ([0,T ]×R3) <∞.

By the monotone convergence theorem, we thus have for R sufficiently large that

‖ω0‖L2
x (R

3\B(0,R))+‖∇ × f ‖L1
t L2

x ([0,T ]×(R3\B(0,R))) ≤ δ.

Applying Theorem 10.1 (inverted as in Remark 10.6), we conclude that

‖ω‖L∞x L2
x ([0,T ]×(R3\B(0,R+r)))+‖∇ω‖L2

t L2
x ([0,T ]×(R3\B(0,R+r))) . δ

for some finite radius r , if R is sufficiently large; in particular, ω lies in L∞t L2
x ∩ L2

t H 1
x in the exterior

region [0, T ]× (R3
\B(0, R+r)). On the other hand, as u is almost smooth, ω also lies in L∞t L2

x ∩ L2
t H 1

x

in the interior region [0, T ]× B(0, R+ r + 1) (say). Gluing these two bounds together, we conclude that

ω ∈ L∞t L2
x ∩ L2

t H 1
x ([0, T ]×R3);

meanwhile, from Lemma 8.1 one has

u ∈ L∞t L2
x ∩ L2

t H 1
x ([0, T ]×R3).

Since u is divergence-free and ω =∇ × u, the claim then follows from Fourier analysis. �
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Remark 11.2. From Corollary 5.8 we know that smooth solutions to the Navier–Stokes solutions can be
continued in time as long as the H 1 norm remains bounded. However, Corollary 11.1 certainly does not
allow one to solve the global regularity problem for Navier–Stokes, because the proof heavily relies on
the solution u being complete rather than incomplete, and thus it is (almost) smooth all the way up to the
final time T , and not just smooth on [0, T ). Instead, what Corollary 11.1 does is to show that the solution
from H 1 data is well-behaved when one is sufficiently close to spatial infinity; in particular, it does not
prevent turbulent behaviour in bounded regions of space-time.

Remark 11.3. If (u, p, u0, 0, T ) is an almost smooth homogeneous finite energy solution, then by
Lemma 8.1 we see that u(t) ∈ H 1

x (R
3) for almost every time t ∈ [0, T ]. Applying the time translation

symmetry (30) for a small time shift t0, we can then convert the finite energy data to H 1 data, and then by
Corollary 11.1, we conclude that in fact u(t) ∈ H 1

x (R
3) for all nonzero times t ∈ (0, T ], and furthermore

that u(t) is bounded in H 1
x as soon as t is bounded away from zero.

Since H 1 almost smooth solutions with normalised pressure are automatically H 1 mild solutions, for
which uniqueness was established in Theorem 5.4, we thus have uniqueness in the almost smooth finite
energy category from smooth H 1 data:

Corollary 11.4 (Unconditional uniqueness). Let (u0, f, T ) be smooth H 1 data. Then there is at most one
almost smooth finite energy solution (u, p, u0, f, T ) with this data and with normalised pressure.

This result resembles the standard “weak-strong uniqueness” results in the literature, such as those in
[Prodi 1959; Serrin 1963; Germain 2006; 2008]. The main novelty here is the lack of decay hypotheses
beyond the finite energy hypothesis; note that the almost smoothness of the solution gives plenty of
integrability on compact regions of space, but does not imply any global integrability in space.

Remark 11.5. We conjecture that one still retains uniqueness even if the data (u0, f, T∗) is merely smooth
and finite energy, rather than smooth and H 1. Note from Lemma 8.1 that u(t) has finite H 1

x (R
3) norm

for almost every time t , which in principle allows one to enforce uniqueness after any given positive time
(in the homogeneous case f = 0, at least), but it is not clear to the author how to prevent instantaneous
failure of uniqueness at the initial time t = 0 with only a smooth finite energy hypothesis on the initial
data. It may however be possible to adapt the “weak-strong” uniqueness results of Germain [2006; 2008]
to this category, perhaps in combination with the local H 1 control given by Theorem 10.1.

We now use the enstrophy localisation result to study solutions as they approach a (potential) blowup
time T∗.

Proposition 11.6 (Uniform smoothness outside a ball). Let (u, p, u0, f, T−
∗
) be an incomplete almost

smooth H 1 solution with normalised pressure for all times 0< T < T∗. Then there exists a ball B(0, R)
such that

u, p, f, ∂t u ∈ L∞t Ck
x ([0, T∗)× K ) (102)

for all k ≥ 0 and all compact subsets K of R3
\B(0, R).
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We remark that similar results were obtained by Caffarelli, Kohn, and Nirenberg [1982] assuming
additional spatial decay hypotheses on the data at infinity, and in particular that

∫
R3 |u0(0, x)|2|x |dx <∞.

The main novelty in this proposition is that one only assumes square-integrability of u0 and its first
derivatives, without any further decay assumption.

Proof. From the argument in the proof of Corollary 11.1 (noting that the bounds are uniform for all times
T in a compact set), one can already find a ball B(0, R0) for which

u ∈ X1(
[0, T∗)× (R3

\B(0, R0))
)
.

Using Proposition 10.7, we then conclude the existence of a larger ball B(0, R) such that

u ∈ X k([0, T∗)× K )

for all k ≥ 1 and all compact subsets K of R3
\B(0, R). From this, Sobolev embedding, and (9) (using

the smoothness of the kernel of ∇k1−1 away from the origin), we obtain (102) for u, p, f as desired. If
one then applies (3) and solves for ∂t u, one obtains the bound for ∂t u also. �

Remark 11.7. From (102) one can continuously extend u up to the portion {T∗}× (R3
\B(0, R)) of the

boundary (compare the partial regularity theory in [Caffarelli et al. 1982]). However, we were unable
to demonstrate that u could be extended smoothly up to the boundary (or even that ∂t u is continuous in
time at the boundary). The problem is due to the nonlocal effects of pressure; the solution u could be
blowing up at time T∗ in the interior of B(0, R), leading (via (9)) to time oscillations of the pressure in K
(which cannot be directly damped out by the smoothness of the 1−1 kernel, which only attenuates spatial
oscillations), which by (3) could lead to time oscillations of the solution u in K . Indeed, as Theorem 1.12
shows, these time oscillations can have a nontrivial effect on the regularity of the solution.

Remark 11.8. For future reference, we observe that Proposition 11.6 did not require the full space-time
smoothness on f ; it would suffice to have f ∈ L∞t Ck

x ([0, T∗)× K ) for all k ≥ 0 and compact K in order
to obtain the conclusion (102). This is because at no stage in the argument was it necessary to differentiate
f in time.

In a similar spirit, we may construct Leray–Hopf weak solutions that are spatially smooth outside of a
ball for any fixed time T . More precisely, define a Leray–Hopf weak solution (u, p, u0, f, T ) to smooth
finite energy data (u0, f, T ) to be a distributional solution u ∈ X0([0, T ]×R3) to (3) (after expressing
this equation in divergence form) which is continuous in time in the weak topology of L2

x(R
3), and which

obeys the energy inequality

1
2‖u(t)‖

2
L2

x (R
3)
+

∫ t

0
‖∇u(t)‖2L2

x (R
3)

dx ≤ E(u0, f, T ). (103)

The existence of such solutions was famously demonstrated in [Leray 1934] for arbitrary finite energy
data (u0, f, T ); the singularities of these solutions were analysed in a vast number of papers, which are
too numerous to cite here, but we will point out in particular the seminal work [Caffarelli et al. 1982].

Our main regularity result for Leray–Hopf solutions is as follows.
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Proposition 11.9 (Existence of partially smooth Leray–Hopf weak solutions). Let (u0, f, T ) be smooth
H 1 data. Then there exists a Leray–Hopf weak solution (u, p, u0, f, T ) to the given data and a ball
B(0, R) such that u is spatially smooth in [0, T ] × (R3

\B(0, R)) (that is, for each t ∈ [0, T ], u(t) is
smooth outside of B(0, R)).

Again, similar results were obtained in [Caffarelli et al. 1982] under stronger decay hypotheses on the
initial data. We also remark that weak solutions which were only locally of finite energy, from data of
uniformly locally finite energy, were constructed in [Lemarié-Rieusset 1999]; the ability to localise the
weak solution construction in this fashion is similar in spirit to the results in the proposition.

Proof. (Sketch) We use a standard hyperdissipation21 regularisation argument. Let ε > 0 be a small
parameter, and consider the almost smooth finite-energy solution (u(ε), p(ε), u0, f, T ) to the regularised
Navier–Stokes system (100), which can be shown to exist by energy methods. By Proposition 10.9,
we can extend Theorem 10.1 and Proposition 10.7 (and thence Proposition 11.6) to these regularised
solutions u(ε), with bounds that are uniform in ε as ε→ 0. As a consequence, we can find a ball B(0, R)
independent of ε such that for every compact set K outside of B(0, R) and every k ≥ 0, ∇ku(ε) lies
in L∞t L∞x ([0, T∗] × K ) uniformly in N . If we then extract a weak limit point u of the u(ε), then by
standard arguments one verifies that u is a Leray–Hopf weak solution which is spatially smooth outside
of B(0, R). �

Remark 11.10. As before, we are unable to demonstrate regularity of u in time due to potential nonlocal
effects caused by the pressure, which could in principle cause singularities inside B(0, R) to create time
singularities outside of B(0, R).

Remark 11.11. Uniqueness of Leray–Hopf solutions remains a major unsolved problem, for which
we have nothing new to contribute; in particular, we do not assert that all Leray–Hopf solutions from
smooth data obey the conclusions of Proposition 11.9. However, if (u0, f,∞) is globally defined smooth
H 1 data, the argument above gives a single global Leray–Hopf weak solution (u, p, u0, f,∞) with
the property that, for each finite time T <∞, there exists a radius RT <∞ such that u is smooth in
[0, T ]× (R3

\B(0, R)). If we restrict to the case f = 0, then from (103) we see that ‖∇u(t)‖L2
x (R

3) must
become arbitrarily small along some sequence of times t = tn going to infinity. If ‖∇u(t)‖L2

x (R
3) is small

enough depending on E(u0, 0,∞), then standard perturbation theory arguments (see, for example, [Kato
1984]) allow one to obtain a smooth, bounded enstrophy solution from the data u(t) on (t,+∞), which
by the uniqueness theory of Serrin [1963] must match the Leray–Hopf weak solution u on (t,+∞). As
such, we conclude in the homogeneous smooth H 1 case that one can construct a global Leray–Hopf weak
solution which is spatially smooth outside of a compact subset of space-time [0,+∞)×R3. Again, we
emphasise that this global weak solution need not be unique.

21It may also be possible to use other regularisation methods here, such as velocity regularisation, to construct the Leray–Hopf
weak solution; however, due to the delicate nature of the proof of the localised enstrophy estimate (Theorem 10.1), we were not
able to verify that this estimate remained true in the velocity-regularised setting, uniformly in the regularisation parameter, due to
the less favourable vorticity equation in this setting.
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12. Smooth H1 solutions

The purpose of this section is to establish Theorem 1.20(iii). To do this, we will need the ability to localise
smooth divergence-free vector fields, as follows.

Lemma 12.1 (Localisation of divergence-free vector fields). Let T > 0, 0< R1 < R2 < R3 < R4, and let
u : [0, T )× (B(0, R4)\B(0, R1))→ R3 be spatially smooth and divergence-free, such that

u, ∂t u ∈ L∞t Ck
x
(
[0, T )× (B(0, R4)\B(0, R1))

)
for all k ≥ 0 and ∫

|x |=r
u(t, x) · n dα(x)= 0 (104)

for all R1 < r < R4 and t ∈ [0, T ), where n is the outward normal and dα is surface measure. Then
there exists a spatially smooth and divergence-free vector field ũ : [0, T )× (B(0, R4)\B(0, R1))→ R3

which agrees with u on [0, T ) × (B(0, R2)\B(0, R1)) but vanishes on [0, T ) × (B(0, R4)\B(0, R3)).
Furthermore, we have

ũ, ∂t u ∈ L∞t Ck
x
(
[0, T )× (B(0, R4)\B(0, R1))

)
for all k ≥ 0.

Finally, if we have
1≤ 2R2 ≤ R3 . R2,

then we have the more quantitative bound

‖ũ‖L∞t H k([0,T )×(B(0,R4)\B(0,R1))) .k ‖u‖L∞t H k+1([0,T )×(B(0,R4)\B(0,R1))) (105)

for any k. (This latter property will come in handy in the next section.)

Note that the hypothesis (104) is necessary, as can be seen from Stokes’ theorem. Lemmas of this type
first appear in [Bogovskii 1980].

Proof. One can obtain this lemma as a consequence of the machinery of compactly supported divergence-
free wavelets [Lemarie-Rieusset 1992], but for the convenience of the reader we give a self-contained
proof here.

Let X denote the vector space of all divergence-free smooth functions u : B(0, R4)\B(0, R1)→ R3

obeying the mean zero condition ∫
|x |=r

u(x) · n dα(x)= 0 (106)

for all R1 < r < R4, and such that ‖u‖Ck((0,R4)\B(0,R1)) <∞ for all k. It will suffice to construct a linear
transformation P : X→ X that is bounded22 from Ck+2 to Ck , that is,

‖Pu‖Ck((0,R4)\B(0,R1)) .R1,R2,R3,R4,k ‖u‖Ck+2((0,R4)\B(0,R1))

22One can reduce this loss of regularity by working in more robust spaces than the classical Ck spaces, such as Sobolev
spaces H s or Hölder spaces Ck,α , but we will not need to do so here.
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for all k ≥ 0, and such that Pu equals u on B(0, R2)\B(0, R1) and vanishes on B(0, R4)\B(0, R3), as
one can then simply define ũ(t) := Pũ(t) for each t ∈ [0, T ).

We now construct P . We work in polar coordinates x = rα with R1 ≤ r ≤ R4 and α ∈ S2 (thus
avoiding the coordinate singularity at the origin), and decompose u(r, α) as the sum of a radial vector
field ur (r, α)α for some scalar field ur and an angular vector field uα(r, α) which is orthogonal to α; thus,
for fixed r , uα(r) can be viewed as a smooth vector field on the unit sphere S2 (that is, a smooth section
of the tangent bundle of S2). The divergence-free condition on u in these coordinates then reads

∂r ur (r)+
1
r
∇α · uα(r)= 0, (107)

while the mean-zero condition (106) reads∫
S2

ur (r, α) dα = 0.

Note that either of these conditions implies that ∂r ur (r) has mean zero on S2 for each r . From (107) and
Hodge theory, we see that

uα(r)= r1−1
α ∇α∂r ur (r)+ v(r),

where 1−1
α inverts the Laplace–Beltrami operator 1α on smooth mean-zero functions on S2 and v(r) is a

smooth divergence-free vector field on S2 that varies smoothly with r .
Let η : [R1, R4] → R+ be a smooth function that equals 1 on [R1, R2] and vanishes on [R3, R4]. Set

ũr := η(r)ur

and
ũα(r)= r1−1

α ∇α∂r ũr (r)+ η(r)v(r)

and
T u := ũ := ũrα+ ũα.

One then easily verifies that ũ is smooth and divergence-free and obeys (106), depends linearly on u,
equals u on B(0, R2)\B(0, R1), and vanishes on B(0, R4)\B(0, R4). It is also not difficult (using the
fundamental solution of 1−1

α ) to see that T maps Ck+2 to Ck (with some room to spare). The claim
follows.

Finally, we prove (105). It suffices to show that

‖T u‖H k(B(0,R3)\B(0,R2)) .k 1

whenever k ≥ 0, and u ∈ X is such that

‖u‖H k+2(B(0,R4)\B(0,R1)) . 1.

Henceforth all spatial norms will be on B(0, R3)\B(0, R2), and all implied constants may depend
on k. As u has an H k+1 norm of O(1), ur and hence ũr has an H k+1 norm of O(1) also. As for ũα , we
observe from the Leibniz rule that

ũα = ηuα + (r∂rη(r))1−1
α ∇αur (r).
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As u has an H k+1 norm of O(1), we know r−i
∇

i
α∂

j
r uα has an L2 norm of O(1) whenever i + j ≤ k+ 1,

which (using elliptic regularity in the angular variable) implies that r−i
∇

i
α∂

j
r ũα has an L2 norm of O(1)

whenever i + j ≤ k. This gives ũ = ũr + ũα, an H k norm of O(1), as claimed. �

We can now establish Theorem 1.20(iii):

Theorem 12.2. Suppose Conjecture 1.9 is true. Then Conjecture 1.19 is true.

Proof. In view of Corollary 5.8, it suffices to show that if (u, p, u0, f, T−
∗
) is an incomplete H 1 mild

solution up to time T∗, with u0, f spatially smooth in the sense of Conjecture 1.19, then u does not blow
up in enstrophy norm; thus

lim sup
t→T−∗

‖u(t)‖H1
x (R

3) <∞.

Let R > 0 be a sufficiently large radius. By arguing as in Corollary 11.1, we have

u ∈ L∞t H 1
x (R

3
\B(0, R)),

and thus the blowup must be localised in space:

lim sup
t→T−∗

‖u(t)‖H1
x (B(0,R)) <∞. (108)

By Proposition 11.6 and Remark 11.8 (and increasing R if necessary), we also have

u, p, f, ∂t u ∈ L∞t Ck
x
(
[0, T∗)× (B(0, 5R)\B(0, 2R))

)
(109)

for all k ≥ 0. From Stokes’ theorem and the divergence-free nature of u, we also have∫
|x |=r

u(t, x) · n dα(x)= 0

for all r > 0 and t ∈ [0, T ). Applying Lemma 12.1, we can then find a spatially smooth divergence-free
vector field ũ : [0, T )× (B(0, 5R)\B(0, 2R))→ R3 which agrees with u on B(0, 3R)\B(0, 2R) and
vanishes outside of B(0, 4R), with

ũ, ∂t ũ ∈ L∞t Ck
x (B(0, 5R)\B(0, 2R)) (110)

for all k ≥ 0. We then extend ũ by zero outside of B(0, 5R) and by u inside of B(0, 2R); then ũ is now
smooth on all of [0, T )×R3.

Let η be a smooth function supported on B(0, 5R) that equals 1 on B(0, 4R). We define a new forcing
term f̃ : [0, T )×R3

→ R by the formula

f̃ := ∂t ũ+ (ũ · ∇)ũ−1ũ+∇(pη); (111)

then f̃ is spatially smooth and supported on B(0, 5R) and agrees with f on B(0, 3R). From this and
(110), (109) we easily verify that

f̃ ∈ L∞t H 1
x ([0, T∗)×R3).
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Note from taking divergences in (111) and using the compact support of pη, ũ, f̃ that

pη =−1−1((ũ · ∇)ũ)+1−1
∇ · f̃ .

Thus, (ũ, pη, ũ(0), f̃ , T−
∗
) is an incomplete H 1 pressure-normalised (and hence mild) solution with

all components supported in B(0, 5R). If we then choose a period L larger than 10R, we may embed
B(0, 5R) inside R3/LZ3 and obtain an incomplete periodic smooth solution(

ι(ũ), ι(pη), ι(ũ(0)), ι( f̃ ), T−
∗
, L
)
,

where we use ι( f ) to denote the extension by zero of a function f supported in B(0, 5R), after embedding
the latter in R3/LZ3. By construction, we then have

ι( f̃ ) ∈ L∞t H 1
x ([0, T∗)×R3/LZ3).

As {T∗} has measure zero, we may arbitrarily extend f̃ to [0, T∗] ×R3/LZ3 while staying in L∞t H 1
x .

Applying either Conjecture 1.9 (and the uniqueness component to Theorem 5.1) or Conjecture 1.10, we
conclude that

ι(ũ) ∈ L∞t H 1
x ([0, T∗)×R3/LZ3),

which implies (since u and ũ agree on B(0, R)) that

u ∈ L∞t H 1
x ([0, T∗)× B(0, R)),

which contradicts (108). The claim follows. �

Observe that if we omit the embedding of B(0, 5R) in R3/LZ3 in the preceding argument, we can also
deduce Conjecture 1.19 from Conjecture 1.18. Since Conjecture 1.19 clearly implies Conjecture 1.18 as
a special case, we obtain Theorem 1.20(iii).

Remark 12.3. The referee has pointed out a variant of the argument above using the partial regularity
theory of Caffarelli, Kohn, and Nirenberg [1982], which allows one to partially reverse the above
implications, and in particular deduce Conjecture 1.8 from Conjecture 1.19. We sketch the argument as
follows. Assume Conjecture 1.19, and assume for contradiction that Conjecture 1.8 fails; thus, there is
a periodic solution with smooth inhomogeneous data which first develops singularities at some finite
time T , and in particular at some location (T, x0). We may extend the solution beyond this time as a
weak solution. Applying a periodic version of the theory in [Caffarelli et al. 1982], we see that the set
of singularities has zero one-dimensional parabolic measure, which among other things implies that the
set of radii r > 0 such that the solution is singular at (T, x) for some x with |x − x0| = r has measure
zero. Because of this, one can find radii r2 > r1 > 0 such that the solution is smooth in the annular region
{(t, x) : 0≤ t ≤ T ; r1≤ |x−x0| ≤ r2}. By smoothly truncating the solution u to this annulus as in the proof
of Theorem 12.2, one can then create a nonperiodic H 1 mild solution to the inhomogeneous Navier–Stokes
equation with spatially smooth data which develops a singularity at (T, x0) while remaining smooth up to
time T , contradicting Conjecture 1.19 (when combined with standard uniqueness and regularity results,
such as those in Theorem 5.4).
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13. Smooth finite energy solutions

In this section we establish Theorem 1.20(v). It is trivial that Conjecture 1.14 implies Conjecture 1.13, so
it suffices to establish:

Theorem 13.1. Suppose that Conjecture 1.13 is true. Then Conjecture 1.14 is true.

Proof. Let (u0, 0, T ) be smooth homogeneous finite energy data. Our task is to obtain an almost smooth
finite energy solution (u, p, u0, 0, T ) with this data. We allow all implied constants to depend on u0.

We use a regularisation argument. Let Nn be a sequence of frequencies going to infinity, and set
u(n)0 := P≤Nn u0; then u(n)0 converges to u0 strongly in L2

x(R
3), and (u(n)0 , 0, T ) is smooth H 1 data

for each n. Thus, by hypothesis, we may find a sequence of almost smooth finite energy solutions
(u(n), p(n), u(n)0 , 0, T ) with this data.

One could try invoking weak compactness right now to extract a solution, but as is well known, one
only obtains a Leray–Hopf weak solution by doing so, which need not be smooth. So we will first work
to establish some additional regularity on the sequence (after passing to a subsequence as necessary)
before extracting a weakly convergent limit.

Since the (u(n)0 , 0, T ) are uniformly bounded in energy, we see from Lemma 8.1 that

‖u(n)‖X0([0,T ]×R3) . 1. (112)

Now let 0< τ0 < T/2 be a small time. From (112) and the pigeonhole principle, we may find a sequence
of times τ (n) ∈ [0, τ0] such that

‖u(n)(τ (n))‖H1
x (R

3) . τ
−1
0 .

Passing to a subsequence, we may assume that τ (n) converges to a limit τ ∈ [0, τ0]. If we then take
τ ′ ∈ [τ, 2τ0] sufficiently close to τ , we may apply Lemma 5.5 and conclude that

‖u(n)(τ ′)‖H10
x (R

3) .τ,τ ′,τ0 1

(say) for all sufficiently large n. Passing to a further subsequence, we may then assume that u(n)(τ ′)
converges weakly in H 10

x (R
3) (and thus locally strongly in H 9

x ) to a limit u′0 ∈ H 10
x (R

3). By hypothesis,
we may thus find an almost smooth H 1 solution (u′, p′, u′0, 0, T − τ ′) with this data.

Meanwhile, by time translation symmetry (30), (u(n)( ·+ τ ′), p(n)( ·+ τ ′), u(n)(τ ′), 0, T − τ ′) is also a
sequence of almost smooth H 1 solutions. Since u(n)(τ ′) converges locally strongly in H 9

x (R
3) to u′0, we

would like to conclude that u(n)(t + τ ′) also converges locally strongly to u(t) in H 1
x (R

3), uniformly in
t ∈ [0, T − τ ′]. This does not quite follow from the standard local well-posedness theory in Theorem 5.4,
because this theory requires strong convergence in the global H 1

x (R
3) norm. However, we may take

advantage of the local enstrophy estimates to spatially localise the local well-posedness theory, as follows.
Let ε > 0 be a small quantity (depending on the solution u′ = (u′, p′, u′0, 0, T − τ ′)) to be chosen later,

and let R > 0 be a sufficiently large radius (depending on ε and (u′, p′, u′0, 0, T − τ ′)) to be chosen later.
Since u′0 is in H 10

x (R
3), we see from monotone convergence that

‖u′0‖H10
x (R

3\B(0,R)) . ε, (113)
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if R is sufficiently large depending on ε. Since the u(n)(τ ′) converge locally strongly in H 1
x (R

3) to u′0,
we conclude that

‖u(n)(τ ′)‖H10
x (B(0,10R)\B(0,R)) . ε,

if n is sufficiently large depending on R, ε. Applying Theorem 10.1, we conclude (if R is large enough
depending on u′0 and T − τ ′) that

‖u(n)( · + τ ′)‖X1([0,T−τ ′]×(B(0,9R)\B(0,2R))) . ε,

for n sufficiently large depending on R, ε. Using Duhamel’s formula (and Corollary 4.3) repeatedly as in
the proof of Proposition 10.7, we may in fact conclude that

‖∂ i
t u(n)( · + τ ′)‖L∞t H6

x ([0,T−τ ′]×(B(0,8R)\B(0,3R))) .u′,T ε (114)

(say) for i = 0, 1, taking R large enough depending on u′, T, ε to ensure that the contributions to the
Duhamel formula coming outside B(0, 9R) or inside B(0, 2R) are negligible, and taking n sufficiently
large as always.

We let p̃(n) be the normalised pressure, defined by (9); by Corollary 4.3, p̃(n)(t) and p(n)(t) differ by a
constant C(t) for almost every t . Using (9), (114) and Lemma 8.1, we see that

‖ p̃(n)‖L∞t H2
x ([0,T−τ ′]×(B(0,7R)\B(0,4R))) .u′,T ε,

if R is large enough depending on u′, T, ε.
Applying Lemma 12.1, we may find divergence-free smooth vector fields ũ(n) : [τ ′, T ] ×R3

→ R3

which agree with u(n) on [τ ′, T ]× B(0, 5R) but vanish outside of [τ ′, T ]× B(0, 6R), with

‖∂ i
t ũ(n)( · + τ ′)‖L∞t H5

x ([0,T−τ ′]×(B(0,8R)\B(0,3R))) .u′,T ε (115)

(say) for n sufficiently large and i = 0, 1.
Let η be a smooth function that equals 1 on B(0, 6R), is supported on B(0, 7R), and obeys the usual

derivative bounds in between. We then consider the smooth solutions(
ũ(n)( · + τ ′), η p̃(n)( · + τ ′), ũ(n)(τ ′), f̃ (n), T − τ ′

)
, (116)

where

f̃ (n) :=
(
∂t ũ(n)+ ũ(n) · ∇ũ(n)−1ũ(n)+∇(ηp(n))

)
( · + τ ′).

By construction, f̃ ′ and f̃ (n) are smooth and supported on [0, T − τ ′]× (B(0, 7R)\B(0, 5R)), and the
(116) are smooth, compactly supported solutions. From the preceding bounds on ũ(n), p̃(n), we see that

‖ f̃ (n)‖L∞t H1
x ([0,T−τ ]×R3) .u′,T ε

for n sufficiently large.
Also, using (113), (115) we have

‖ũ(n)(τ ′)− u′0‖H1
x (R

3) .u′,T ε
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for n sufficiently large. If ε is sufficiently small, we conclude from the local H 1 well-posedness theory
(Theorem 5.4) that

‖ũ(n)( · + τ ′)− u′‖X1([0,T−τ ′]×R3) .u′,T ε,

and in particular

‖u(n)( · + τ ′)− u′‖X1([0,T−τ ′]×B(0,R)) .u′,T ε

for n large enough. Sending ε to zero (and R to infinity), we conclude that u(n)( ·+ τ ′) converges weakly
to u′. In particular, we see that any weak limit of the u(n) is smooth on [τ ′, T ]×R3 (and furthermore, the
weak limit is unique in this space-time region).

The above analysis was for a single choice of τ . Choosing τ to be a sequence of times going to zero
(and repeatedly taking subsequences of the u(n) and diagonalising as necessary), we may thus arrive at
a subsequence u(n) with the property that there is a unique weak limit u of the u(n), which is smooth
on (0, T ] ×R3. If we then set p by (9), we see on taking distributional limits that (u, p, u0, 0, T ) is a
Leray–Hopf weak solution to the initial data (u0, 0, T ).

To finish the argument, we need to show that (u, p, u0, 0, T ) is almost smooth at (0, x0) for every
x0 ∈ R3. Fix x0, and let R > 0 be a large radius. As u0 is smooth, ‖u0‖H1(B(x0,5R)) is finite, and
hence ‖u(n)0 ‖H1(B(x0,5R)) is uniformly bounded. Applying Theorem 10.1 (recalling that the u(n) have
uniformly bounded energy), we conclude (for R large enough) that there exists 0 < τ < T such that
‖u(n)‖X1([0,τ ]×B(x0,4R)) is uniformly bounded in n. Using Duhamel’s formula as in Proposition 11.6,
and noting that u(n) is uniformly smooth on B(x0, 4R), we conclude that ‖u(n)‖L∞t Ck((0,τ ]×B(x0,3R)) is
uniformly bounded for all k ≥ 0. Taking weak limits, we conclude that

u ∈ L∞t Ck((0, τ ]× B(x0, 3R))

for all k ≥ 0. From this and (9) (and Lemma 8.1), we also see that

p ∈ L∞t Ck((0, τ ]× B(x0, 2R))

for all k ≥ 0. Using (3), we conclude that

∂t u ∈ L∞t Ck((0, τ ]× B(x0, 2R))

for all k ≥ 0. A similar argument also shows that

∂t u(n) ∈ L∞t Ck((0, τ ]× B(x0, 2R))

uniformly in n. From this, we see that the ∇k
x u(n) are uniformly Lipschitz in a neighbourhood of (0, x0).

Since ∇k
x u(n) converges weakly to the smooth function ∇k

x u in (0, T ]×R3, and also converges strongly
at time zero in H 1

x (R
3) to the smooth function ∇k

x u0, we conclude that ∇k
x u can be extended in a locally

Lipschitz continuous manner from (0, T ]×R3 to [0, T ]×R3 in such a way that it agrees with ∇k
x u0 at

time zero.
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Now we consider derivatives ∇k p of the pressure near (0, x0). Let ε > 0 be arbitrary. Then by the
monotone convergence theorem, we see that if R′ > 0 is a sufficiently large radius, then

‖u0‖L2
x (R

3\B(x0,R′)) ≤ ε,

and thus

‖u(n)0 ‖L2
x (R

3\B(x0,R′)) . ε

for n large enough.
By Theorem 8.2, we conclude that if R′ is large enough, there exists a time 0< τ < T such that

‖u(n)‖L∞t L2
x ([0,τ ]×(R3\B(x0,2R′))) . ε,

and hence on taking weak limits,

‖u‖L∞t L2
x ([0,τ ]×(R3\B(x0,2R′))) . ε.

On the other hand, as ∇ku is continuous at t = 0, u(t) converges in Ck(B(x0, 2R′)) to u0 as t→ 0 for
any k ≥ 0. From this and (9) (and the decay of derivatives of the kernel of 1−1 away from the origin),
we see that

lim sup
(t,x)→(0,x0);t>0

|∇
k p(t, x)−∇k p0(x0)|.k ε

for any k ≥ 0, where p0 is defined from u0 using (9). Sending ε→ 0 and R′→∞, we conclude that ∇k p
extends continuously to ∇k p0(x0) at (0, x0), and thus extends continuously to ∇k p0 on all of the initial
slice {0} ×R3. By (3) we conclude that ∂t∇

ku also extends continuously to the initial slice, with the
Navier–Stokes equation (3) being obeyed both for times t > 0 and times t = 0. We have thus constructed
an almost smooth finite energy solution (u, p, u0, 0, T ) as desired. �

Remark 13.2. We emphasise that Theorem 13.1 only establishes existence of a smooth finite energy
solution (assuming Conjecture 1.13), and not uniqueness; see Remark 11.5. However, it is not difficult
to see from the argument that one can at least ensure that the solution constructed is independent of the
choice of time T , and can thus be extended to a single global smooth finite energy solution. (Alternatively,
from Lemma 8.1 we see that the enstrophy of the solution will become arbitrarily small for a sequence of
times going to infinity, so for a sufficiently large time one can in fact construct a global smooth solution
by standard perturbation theory techniques.)

Remark 13.3. One can modify the above argument to also establish Conjecture 1.14 with a nonzero
Schwartz forcing term f , provided of course that one also assumes Conjecture 1.13 can be extended to
the same class of f . We have not, however, investigated the weakest class of forcing terms f for which
the argument works, though certainly finite energy seems insufficient.

14. Quantitative H1 bounds

In this section we prove Theorem 1.20(vi). We begin with some easy implications. Firstly, it is trivial
that Conjecture 1.17 implies Conjecture 1.16, and from the local well-posedness and regularity theory
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in Theorem 5.4 (or Corollary 5.8), we see that Conjecture 1.16 implies Conjecture 1.15, which in turn
implies Conjecture 1.13 (thanks to Proposition 5.6).

Next, we observe from Theorem 5.1 and Lemma 5.5 that given any H 1 data (u0, 0, T ), there exists a
time 0<τ < T such that one has an H 1 mild solution (u, p, u0, 0, τ )with u(τ ) smooth. If Conjecture 1.13
holds, then one can then continue the solution in an almost smooth finite energy manner (and hence in an
almost smooth H 1 manner, thanks to Corollary 11.1) from τ up to T . Normalising the pressure of this
latter solution using Lemma 4.1 and gluing the two solutions together, we obtain an H 1 mild solution up
to time T . From this we see that Conjecture 1.13 implies Conjecture 1.15.

Now we show that Conjecture 1.16 implies Conjecture 1.17. Suppose that one has homogeneous H 1

data (u0, 0, T ) with
‖u0‖H1

x (R
3) ≤ A <∞.

By Conjecture 1.16 (which implies Conjecture 1.15), we may obtain a mild H 1 solution (u, p, u0, 0, T ),
which is smooth for positive times. Our objective is to show that

‖u‖L∞t H1
x ([0,T ]×R3) .A 1.

Let ε > 0 be a quantity depending on A to be chosen later. We may assume that T is sufficiently large
depending on ε, A; otherwise the claim will follow immediately from Conjecture 1.16. Using Lemma 8.1
and the pigeonhole principle, we may then find a time 0< T1 < T with T1 .A 1 such that

‖∇u(T1)‖L2
x (R

3) ≤ ε.

Meanwhile, from energy estimates, one has

‖u(T1)‖L2
x (R

3) .A 1.

On [T1, T ], we split u = u1+ v, where u1 is the linear solution u1(t) := e(t−T1)u(T1) and v := u − u1.
From (21), one thus has

‖u1‖X0 .A 1

and
‖∇u1‖X0 . ε.

From (11), (22) one has

‖v‖X1([T1,T ]×R3) .
∥∥O(u1∇u1+ u1∇v+ v∇u1+ v∇v)

∥∥
L2

t L2
x ([T1,T ]×R3)

.

We now estimate various contributions to the right-hand side. We begin with the nonlinear term O(v∇v).
By Hölder (and dropping the domain [T1, T ]×R3 for brevity) followed by Lemma 8.1, we have

‖O(v∇v)‖L2
t L2

x
. ‖∇v‖1/2

L2
t L6

x
‖∇v‖

1/2
L∞t L2

x
‖v‖

1/2
L∞t L6

x
‖v‖

1/2
L2

t L6
x
. ‖v‖3/2X1 ‖v‖X1/2

0
.A ‖v‖

3/2
X1 .

A similar argument gives

‖O(v∇u1)‖L2
t L2

x
. ‖∇u1‖X0‖v‖

1/2
X1 ‖v‖

1/2
X0
. ε‖v‖X1
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and

‖O(u1∇u1)‖L2
t L2

x
. ‖∇u1‖X0‖∇u1‖

1/2
X0 ‖u1‖

1/2
X0
‖.A ε

3/2

and

‖O(u1∇v)‖L2
t L2

x
. ‖∇v‖X0‖∇u1‖

1/2
X0 ‖u1‖

1/2
X0
.A ε

1/2
‖v‖X1

and thus

‖v‖X1 .A ε
3/2
+ ε1/2

‖v‖X1 +‖v‖
3/2
X1 .

If ε is small enough depending on A, a continuity argument in the T variable then gives

‖v‖X1 .A ε
3/2

and thus

‖u‖X1([T1,T ]) .A 1.

Using this and the triangle inequality, we conclude that Conjecture 1.16 implies Conjecture 1.17.
We now turn to the most difficult implication:

Proposition 14.1 (Concentration compactness). If Conjecture 1.15 is true, so is Conjecture 1.16.

We now prove this proposition. The methods are essentially those of [Gallagher 2001] (which are
in turn based in [Bahouri and Gérard 1999; Gérard 1998]), which treated the (more difficult) critical
analogue of this implication; indeed, one can view Proposition 14.1 as a subcritical analogue of the critical
result [Gallagher 2001, Corollary 1]. For the convenience of the reader, though, we give a self-contained
proof here, which does not need the full power of the machinery in the previously cited papers because
we are now working in a subcritical regularity H 1 rather than a critical regularity such as Ḣ 1/2, and as
such one does not need to consider the role of the scaling symmetry (31).

We first make the remark that to prove Conjecture 1.16, it suffices to do so with the condition

‖u0‖H1
x (R

3) ≤ A (117)

replaced by (say)

‖u0‖H100
x (R3) ≤ A. (118)

To see this, observe that if we take data u0 in H 1
x (R

3), then from Theorem 5.4 and Lemma 5.5 there
exists a time T1 > 0 depending only on A such that

‖u‖L∞t H1
x ([0,min(T,T1)]×R3) .A 1,

and such that

‖u(T1)‖H100
x (R3) .A 1

if T > T1. From this and time translation symmetry (30), we see that we can deduce the H 1
x (R

3) version
of Conjecture 1.16 from the H 100

x (R3) version.
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Now suppose for contradiction that the H 100
x (R3) version of Conjecture 1.16 failed. Carefully negating

the quantifiers, we can find a sequence (u(n), p(n), u(n)0 , 0, T (n)) of smooth homogeneous H 1 solutions,
with T (n) uniformly bounded, and u(n)0 uniformly bounded in H 100

x (R3), such that

lim
n→∞
‖u(n)‖L∞t H1

x ([0,T (n)]×R3) =∞. (119)

By Lemma 4.1 we may assume that these solutions have normalised pressure.
If we were working on a compact domain, such as R3/Z3, we could now extract a subsequence of

the u(n)0 that converged strongly in a lower regularity space, such as H 99
x (R

3/Z3). But our domain R3 is
noncompact, and in particular has the action of a noncompact symmetry group, namely the translation
group τx0u(x) := u(x − x0). However, as is well known, we have a substitute for compactness in this
setting, namely concentration compactness. Specifically:

Proposition 14.2 (Profile decomposition). Let u(n)0 ∈ H 100
x (R3) be a sequence with

lim sup
n→∞

‖u(n)0 ‖H100
x (R3) ≤ A,

and let ε > 0. Then, after passing to a subsequence, there exists a decomposition

u(n)0 =

J∑
j=1

τx (n)j
w j,0+ r (n)0 ,

where |J |.A,ε 1, w1,0, . . . , wJ,0 ∈ H 100
x (R3), x (n)j ∈ R3, and the remainder r (n)0 obeys the estimates

lim sup
n→∞

‖r (n)0 ‖H100
x (R3) ≤ A

and

lim sup
n→∞

‖r (n)0 ‖L∞x (R3) ≤ ε. (120)

Furthermore, for any 1≤ j < j ′ ≤ J , one has

|x (n)j − x (n)j ′ | →∞, (121)

and for any 1≤ j ≤ J , the sequence τ
−x (n)j

r (n)0 converges weakly in H 100
x (R3) to zero.

Finally, if the u(n)0 are divergence-free, then the w j,0 and r (n)0 are also divergence-free.

Proof. See, for example, [Gérard 1998]. We sketch the (standard) proof as follows. If

‖u(n)0 ‖L∞x (R3) ≤ ε

for all sufficiently large n, then there is nothing to prove (just take J = 0 and r (n)0 := u(n)0 ). Otherwise,
after passing to a subsequence, we can find a sequence x (n)1 ∈ R3 such that |u(n)0 (x (n)1 )| ≥ ε/2 (say). The
sequence τ

−x (n)1
u(n)0 is then bounded in H 100

x (R3) and bounded away from zero at the origin; by passing
to a further subsequence, we may assume that it converges weakly in H 100

x (R3) to a limit w1, which
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then has an H 100
x (R3) norm of &A,ε 1 and is asymptotically orthogonal in the Hilbert space H 100

x (R3) to
τ
−x (n)1

u(n)0 . We then have the decomposition

u(n)0 = τx (n)1
w1,0+ u(n),10 ,

and from an application of the cosine rule in the Hilbert space H 100
x (R3), one can verify that

lim sup
n→∞

‖u(n),10 ‖
2
H100

x (R3)
≤ A2

− c

for some c > 0 depending only on ε, A. We can then iterate this procedure OJ,ε(1) times to obtain the
desired decomposition. �

We apply this proposition with a value of ε > 0 depending on A, T to be chosen later. The w j,0 lie
in H 100

x (R3), and thus by the assumption that Conjecture 1.15 is true, we can find mild H 1 solutions
(w j , p j , w j,0, 0, T ) with this data. By Theorem 5.1, we have

‖w j‖X100 <∞

for each 1≤ j ≤ J , and to abbreviate the notation, we adopt the convention that the space-time domain is
understood to be [0, T ]×R3.

Next, we consider the remainder term r (n)0 . From (21) one has

‖et1r (n)0 ‖X100 . A,

while from (120) one has

‖et1r (n)0 ‖L∞t L∞x . ε

for n sufficiently large. Interpolating between the two, we soon conclude that

‖et1r (n)0 ‖X1 .A,T ε
c

for some absolute constant c > 0. If we take ε sufficiently small depending on A, T , we can use stability
of the zero solution (see Theorem 5.1; one could also have used here the results from [Chemin and
Gallagher 2009]) to conclude the existence of a mild H 1 solution (r (n), p(n)∗ , r

(n)
0 , 0, T ) with this data,

with the estimates
‖r (n)‖X1 .A,T ε

c
; (122)

from Theorem 5.1, we then also have

‖r (n)‖X100 .A,T 1.

We now form the solution

(ũ(n), p̃(n), u(n)0 , f̃ (n), T ),

where the velocity field ũ(n) is given by

ũ(n) :=
J∑

j=1

τx (n)j
w j + r (n),
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the pressure field p̃(n) is given by (9), and the forcing term f̃ (n) is given by the formula

f̃ (n) := ∂t ũ(n)−1ũ(n)− PB(ũ(n), ũ(n)).

This is clearly a mild H 1 solution, with

‖ũ(n)‖X100 .A,T,ε 1.

We now estimate f̃ (n). From (68) for the solutions τx (n)j
w j + r (n), we have an expansion of f̃ (n) purely

involving nonlinear interaction terms:

f̃ (n) =
∑

1≤ j< j ′≤J

PO(∇(τx (n)j
w j , τx (n)j ′

w j ′))+
∑

1≤ j<J

PO(∇(τx (n)j
w j , r (n))).

In particular, from the triangle inequality and translation invariance we have

‖ f̃ (n)‖L2
t L2

x
.

∑
1≤ j< j ′≤J

∥∥O(∇(w j , τx (n)j ′ −x (n)j
w j ′))

∥∥
L2

t L2
x
+

∑
1≤ j<J

∥∥O(∇(w j , τ−x (n)j
r (n)))

∥∥
L2

t L2
x
.

But by (121) and Sobolev embedding,

τx (n)j ′ −x (n)j
w j ′ and τ

−x (n)j
r (n)

are bounded in L∞t L∞x and converge locally uniformly to zero, and so we conclude that

lim
n→∞
‖ f̃ (n)‖L2

t L2
x
= 0.

From this and the stability theory in Theorem 5.4, we conclude that for n large enough, there is an H 1

mild solution (u(n), p(n), u(n)0 , 0, T ) with

lim
n→∞
‖ũ(n)− u(n)‖X1 = 0,

and in particular

lim sup
n→∞

‖u(n)‖L∞t H1
x ([0,T ]×R3) <∞.

By the uniqueness theory in Theorem 5.4, this solution must agree with the original solutions

(u(n), p(n), u(n)0 , 0, T (n))

on [0, T (n)
]×R3; but then we contradict (119). Proposition 14.1 follows.

15. Nonexistence of smooth solutions

In this section we establish Theorem 1.12. Informally, the reason for the irregularity is as follows.
Assuming normalised pressure, one concludes from (9) that

p = O(1−1
∇

2(uu)).
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If one then differentiates this twice in time, using (3) to convert time derivatives of u into 1u plus
lower-order terms and using integration by parts to redistribute derivatives, we eventually obtain (formally,
at least) a formula of the form

∂2
t p = O(1−1

∇
2(1u1u))+ lower-order terms.

But if u0 is merely assumed to be smooth and in H 1, then 1u can grow arbitrarily fast at infinity at time
t = 0, and this should cause p to fail to be C2

t at time zero.
We turn to the details. To eliminate the normalised pressure assumption, we will work with ∇ p instead

of p, and thus we will seek to establish bad behaviour for ∇∂2
t p at time t = 0. For technical reasons it is

convenient to work in the weak topology in space. The key quantitative step is the following:

Proposition 15.1 (Quantitative failure of regularity). Let u0 : R
3
→ R3 be smooth, divergence-free, and

compactly supported, and let ψ :R3
→R be smooth, compactly supported, and have total mass

∫
R3 ψ = 1.

Let R,M, ε > 0. Then there exists a smooth divergence-free compactly supported function u1 which
vanishes on B(0, R) with

‖u1‖H1
x (R

3) . ε

and such that if (u, p, u0+ u1, 0, T ) is a mild H 1 (and hence smooth, by Proposition 5.6) solution with
data (u0+ u1, 0, T ), then ∣∣∣∣∫

R3
∇∂2

t p(0, x)ψ(x) dx
∣∣∣∣> M. (123)

Let us assume this proposition for now and conclude Theorem 1.12. We will use an argument
reminiscent of that used to establish the Baire category theorem or the uniform boundedness principle.
Let ψ : R3

→ R be a fixed smooth, compactly supported function with total mass 1. We will need a
rapidly decreasing sequence

ε(1) > ε(2) > · · ·> 0

of small quantities to be chosen later, with each ε(n) sufficiently small depending on the previous
ε(1), . . . , ε(n−1). Applying Proposition 15.1 recursively starting with u0 = 0, one can then find a sequence
of smooth, divergence-free, and compactly supported functions u(n)1 for n = 1, 2, . . . such that

‖u(n)1 ‖H1
x (R

3) . ε
(n),

with u(n)1 vanishing on B(0, 1/ε(n)), such that if (u(n), p(n), u(n)0 , 0, T (n)) is a mild H 1 (and hence smooth)
solution with data

u(n)0 := u(1)1 + · · ·+ u(n)1 ,

then ∣∣∣∣∫
R3
∇∂2

t p(n)(0, x)ψ(x) dx
∣∣∣∣> 1/ε(n). (124)

Furthermore, each u(n)1 depends only on ε(1), . . . , ε(n), and in particular is independent of ε(n+1).
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By the triangle inequality (and assuming the ε(n) decay fast enough), the data u(n)0 is strongly convergent
in H 1

x (R
3) to a limit u0 =

∑
∞

n=1 u(n)1 ∈ H 1
x (R

3), with

‖u0− u(n)0 ‖H1
x (R

3) . ε
(n+1).

If we make each ε(n+1) sufficiently small depending on u(n)0 , and hence on ε(1), . . . , ε(n), then the u(n)1
will have disjoint supports; as each u(n)1 is smooth and divergence-free, this implies that

u0 =

∞∑
n=1

u(n)1

is also smooth and divergence-free.
Applying Theorem 5.1, we may then take the times T (n)

= 1 (if the ε(n) are small enough), and
(u(n), p(n), u(n)0 , 0, 1) will converge to a mild H 1 solution (u, p, u0, 0, 1) in the sense that u(n) converges
strongly in X1([0, 1]×R3) to u. Indeed, from the Lipschitz stability property, we see (if the ε(n) decay
fast enough) that

‖u− u(n)‖X1([0,1]×R3) . ε
(n+1).

Also, u, u(n) are bounded in X1([0, 1]×R3) by O(1). Using (9) and Sobolev embedding, this implies

‖p− p(n)‖L∞t L3
x ([0,1]×R3) . ε

(n+1),

and so if one sets

F (n)(t) :=
∫

R3
∇ p(n)(t, x)ψ(x) dx

and

F(t) :=
∫

R3
∇ p(t, x)ψ(x) dx,

then from integration by parts, we have

‖F − F (n)‖L∞t ([0,1]) . ε
(n+1). (125)

Meanwhile, each F (n) is smooth, and F continuous, from Proposition 5.6, and from (124) one has

|∂2
t F (n)(0)| ≥ 1/ε(n).

In particular, if ε(n+1) is sufficiently small depending on F (n) (which in turn depends on ε(1), . . . , ε(n)),
one has from Taylor’s theorem with remainder that∣∣F (n)(2(ε(n+1))0.1)− 2F (n)((ε(n+1))0.1)+ F (n)(0)

∣∣
(ε(n+1))0.2

&
1
ε(n)

.

Applying (125), we conclude that∣∣F(2(ε(n+1))0.1)− 2F((ε(n+1))0.1)+ F(0)
∣∣

(ε(n+1))0.2
&

1
ε(n)

,
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if ε(n+1) is sufficiently small depending on ε(1), . . . , ε(n). In particular,

lim sup
h→0+

|F(2h)− 2F(h)+ F(0)|
h2 =+∞,

which by Taylor’s theorem with remainder implies that F is not smooth at 0.
We claim that the data u0 gives the desired counterexample to Theorem 1.12. Indeed, suppose for

contradiction that there was a smooth solution (ũ, p̃, u0, 0, T ) for some T > 0. By shrinking T , we may
assume T ≤ 1. By Lemma 4.1, we see that p̃(t) has normalised pressure up to a constant for almost
every t , and thus after adjusting p̃(t) by that constant, (ũ, p̃, u0, 0, T ) is a mild H 1 solution. Using the
uniqueness property in Theorem 5.1, we conclude that u = ũ, and p(t) and p̃(t) differ by a constant for
almost every t , and hence (by continuity of both p and p̃) for every t . In particular, ∇ p =∇ p̃, and so

F(t)=
∫

R3
∇ p̃(t, x)ψ(x) dx .

But as p̃ is smooth on [0, T ]×R3, F is smooth at 0, a contradiction.

Remark 15.2. The above argument showed that ∇ p failed to be smooth at t = 0; by using (3), we
conclude that the velocity field u must then also be nonsmooth at t = 0 (though the velocity u has one
more degree of time regularity than the pressure p). Thus the failure of regularity is not just an artefact of
pressure normalisation. Using the vorticity equation (84), one can then show a similar failure of time
regularity for the vorticity, although again one gains an additional degree of time differentiability over the
velocity u.

The irregularities in time stem from the unbounded growth of high derivatives of the initial data. If
one assumes that all spatial derivatives of u0 are in L2

x(R
3), that is, that u0 ∈ H∞(R3), then one can

prove iteratively23 that all time derivatives of u and p at time zero are bounded, and also have first spatial
derivatives in H∞(R3) (basically because the first derivative of the kernel of the Leray projection is
integrable at infinity). In particular, u and p now remain smooth at time 0.

It remains to establish Proposition 15.1. Fix u0, ψ, R,M, ε, and let u1 be a smooth divergence-free
compactly supported function u1 vanishing on B(0, R) with H 1

x (R
3) norm O(ε) to be chosen later. Let

(u, p, u0+u1, 0, T ) be a mild H 1 solution with this given data. By Theorem 5.1, this is a smooth solution,
with all derivatives of u, p lying in L∞t L2

x . From Lemma 4.1 we thus have

∇ p =−∇1−1∂i∂ j (ui u j ) (126)

for almost all times t . But both sides are smooth in [0, T ]×R3, so this formula is valid for all times t
(and in particular at t = 0). In particular, we may apply a Leray projection P to (3) and conclude that

∂t u =1u+ PB(u, u). (127)

We differentiate (126) once in time to obtain

∇∂t p =−2∇1−1∂i∂ j (ui∂t u j ).

23We thank Richard Melrose for this observation.
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Expanding out ∂t u j using (3), we obtain

∇∂t p =−2∇1−1∂i∂ j (ui1u j )+O
(
1−1
∇

3(u PB(u, u))
)
.

Writing
∂i∂ j (ui1u j )=−2∂i∂ j ((∂kui )(∂ku j ))+O(∇4(uu)),

we thus have

∇∂t p = 2∇1−1∂i∂ j (∂kui∂ku j )+O(1−1
∇

5(uu))+O
(
1−1
∇

3(u PB(u, u))
)
.

We differentiate this in time again and use (127) to obtain

∇∂2
t p = 4∇1−1∂i∂ j (∂kui∂k1u j )

+O
(
1−1
∇

3((∇u)∇PB(u, u))
)

+O(1−1
∇

5(u∂t u))

+O
(
1−1
∇

3((∂t u)PB(u, u))
)

+O
(
1−1
∇

3(u PB(u, ∂t u))
)
.

We can write ∂kui∂k1u j =−(1ui )(1u j )+O(∇(∇u1u)), so that

∇∂2
t p =−4∇1−1∂i∂ j (1ui1u j )

+O(1−1
∇

4(∇u1u))

+O
(
1−1
∇

3((∇u)∇PB(u, u))
)

+O(1−1
∇

5(u∂t u))

+O
(
1−1
∇

3((∂t u)PB(u, u))
)

+O
(
1−1
∇

3(u PB(u, ∂t u))
)
.

Integrating this against ψ , we may thus expand∫
R3
∇∂2

t p(0, x)ψ(x) dx = 4X0+

5∑
i=1

O(X i ),

where

X0 :=

∫
R3
(∂i∂ j∇1

−1ψ)1ui1u j , X1 :=

∫
R3
(∇41−1ψ)∇u1u,

X2 :=

∫
R3
(∇31−1ψ)∇u∇PB(u, u), X3 :=

∫
R3
(∇51−1ψ)u∂t u,

X4 :=

∫
R3
(∇31−1ψ)(∂t u)PB(u, u), X5 :=

∫
R3
(∇31−1ψ)u PB(u, ∂t u),

with all expressions being evaluated at time 0.
From (127) and Sobolev embedding, one has

‖∂t u(0)‖L2
x (R

3) .u0 1+‖u1‖H2
x (R

3).
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Meanwhile, if ε is small enough, we see that

‖u(0)‖H1
x (R

3) .u0 1,

and thus from the Gagliardo–Nirenberg inequality,

‖u(0)‖L∞x (R3) .u0 (1+‖u1‖H2
x (R

3))
1/2.

From many applications of the Sobolev and Hölder inequalities (and, in the case of X5, an integration by
parts to move the derivative off of ∂t u), we conclude that

|X i |.u0,ψ (1+‖u1‖H2
x (R

3))
3/2,

for i = 1, 2, 3, 4, 5. In a similar spirit, one has

X0 =

∫
R3
(∂i∂ j∇1

−1ψ)1u1,i1u1, j + Ou0,ψ(1+‖u1‖H2
x (R

3)).

To demonstrate (123), it thus suffices to exhibit a sequence u(n)1 : R
3
→ R3 of smooth divergence-free

compactly supported vector fields supported outside of B(0, R) such that∣∣∣∣∫
R3
(∂i∂ j∇1

−1ψ)1u(n)1,i1u(n)1, j

∣∣∣∣&R,ψ ‖u
(n)
1 ‖

2
H2

x (R
3)
,

with
‖u(n)1 ‖H1

x (R
3)→ 0 and ‖u(n)1 ‖H2

x (R
3)→∞.

We construct u(n)1 explicitly as the “wave packet”

u(n)1 (x) := n−5/2
∇ ×9(n)(x0),

where e1, e2, e3 is the standard basis, x0 ∈ R3 is a point (independent of n) outside of B(0, R+ 1) to be
chosen later, and

9(n)(x)= χ(x) sin(nξ · x)η,

where ξ ∈R3 is a nonzero frequency (independent of n) to be chosen later, η∈R3 is a nonzero direction, and
χ :R3

→R is a smooth bump function supported on B(0, 1) to be chosen later. Note from construction that
u(n)1 is smooth, divergence-free, and supported on B(x0, 1), and thus vanishing on B(0, R) for R0 > R+1.
One can compute that

‖u(n)1 ‖H1
x (R

3)�χ n−1/2 and ‖u(n)1 ‖H2
x (R

3)�χ n1/2,

as long as χ is not identically zero. To conclude the theorem, it thus suffices to show that∣∣∣∣∫
R3
(∂i∂ j∇1

−1ψ)1u(n)1,i1u(n)1, j

∣∣∣∣�R0,ψ,χ n

if R0 and n are large enough.
Observe that

u(n)1 (x) := n−3/2 sin(nξ · (x − x0))χ(x − x0)(ξ × η)+ O(n−5/2)
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and similarly

1u(n)1 (x) := −n1/2
|ξ |2 sin(nξ · (x − x0))χ(x − x0)(ξ × η)+ O(n−1/2),

and so by choosing χ appropriately and using the Riemann–Lebesgue lemma, it suffices to find x0, ξ, η∈R3

such that
(∂i∂ j∇1

−1ψ)(ξ × η)i (ξ × η) j (x0) 6= 0.

But as ψ has mean one, we see that ∇31−1ψ(x0) is not identically zero for x0 large enough, and the
claim follows.
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