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A VARIATIONAL PRINCIPLE FOR CORRELATION FUNCTIONS
FOR UNITARY ENSEMBLES, WITH APPLICATIONS

DORON S. LUBINSKY

In the theory of random matrices for unitary ensembles associated with Hermitian matrices, m-point
correlation functions play an important role. We show that they possess a useful variational principle.
Let � be a measure with support in the real line, and Kn be the n-th reproducing kernel for the associated
orthonormal polynomials. We prove that, for m� 1,

det
�
Kn.�;xi ;xj /

�
1�i;j�m

Dm! sup
P

P 2.x/R
P 2.t/ d��m.t/

where the supremum is taken over all alternating polynomials P of degree at most n� 1 in m variables
x D .x1;x2; : : : ;xm/. Moreover, ��m is the m-fold Cartesian product of �. As a consequence, the
suitably normalized m-point correlation functions are monotone decreasing in the underlying measure �.
We deduce pointwise one-sided universality for arbitrary compactly supported measures, and other limits.

1. Introduction

Let � be a positive measure on the real line with infinitely many points in its support, and
R

xj d�.x/

finite for j D 0; 1; 2; : : : . Then we may define orthonormal polynomials

pn.x/D nxn
C � � � ; n > 0;

satisfying Z
pnpm d�D ımn:

The n-th reproducing kernel is

Kn.�;x; t/D

n�1X
jD0

pj .x/pj .t/

and the n-th Christoffel function is

�n.�;x/D 1=Kn.�;x;x/D 1
ı n�1X

jD0

p2
j .x/: (1-1)

Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.
MSC2010: 15B52, 60B20, 60F99, 42C05, 33C50.
Keywords: orthogonal polynomials, random matrices, unitary ensembles, correlation functions, Christoffel functions.

109

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-1
http://msp.org


110 DORON S. LUBINSKY

It admits an extremal property that is very useful in investigating asymptotics of orthogonal polynomials
[Nevai 1986; Simon 2011]:

�n.�;x/D inf
deg.P/<n

R
P .t/2 d�.t/

P2.x/
:

Equivalently,

Kn.�;x;x/D sup
deg.P/<n

P2.x/R
P .t/2 d�.t/

: (1-2)

We shall prove a direct generalization for det ŒKn.�;xi ;xj /�1�i;j�m, a determinant that plays a key role
in analysis of random matrices.

Random Hermitian matrices rose to prominence with the work of Eugene Wigner, who used their
eigenvalues as a model for scattering theory of heavy nuclei. One places a probability distribution on
the entries of an n by n Hermitian matrix. When expressed in “spectral form”, that is, as a probability
distribution on the (real) eigenvalues x1;x2; : : : ;xn, it has the form

P.n/.x1;x2; : : : ;xn/D

�Q
1�j<k�n.xk �xj /

2
�

d�.x1/ d�.x2/ � � � d�.xn/R
� � �
R �Q

1�j<k�n.tk � tj /2
�

d�.t1/ � � � d�.tn/
I

see [Deift 1999, p. 102]. Given 1�m� n, we define the m-point correlation function

Rn
m.�Ix1; : : : ;xm/D

n!

.n�m/!

R
� � �
R �Q

1�j<k�n.xk �xj /
2
�

d�.xmC1/ � � � d�.xn/R
� � �
R �Q

1�j<k�n.tk � tj /2
�

d�.t1/ � � � d�.tn/
: (1-3)

Thus Rn
m is, up to normalization, a marginal distribution, where we integrate out xmC1;xmC2; : : : ;xn.

Note that we exclude from Rn
m a factor of �0.x1/�

0.x2/ � � ��
0.xm/, which is used by Deift. It is a well

established fact [Deift 1999, p. 112] that

Rn
m.�Ix1;x2; : : : ;xm/D det

�
Kn.�;xi ;xj /

�
1�i;j�m

: (1-4)

Again, we emphasize that in [Deift 1999], as distinct from this paper, �0 is absorbed into Kn. Since much
of the interest lies in asymptotics as n!1, for fixed m, it is obviously easier to handle asymptotics of
this fixed size determinant, than to deal with the .n�m/-fold integral in (1-3).

Rn
m can be used to describe the local spacing of m-tuples of eigenvalues. For example, if mD 2, and

B � R is measurable, then [Deift 1999, p. 117]Z
B

Z
B

Rn
2.�I t1; t2/ d�.t1/ d�.t2/

is the expected number of pairs .t1; t2/ of eigenvalues, with both t1; t2 2 B.
Of course there are other settings for random matrices that do not involve orthogonal polynomials.

There one considers a class of matrices (such as normal matrices or symmetric matrices) where the
elements of the matrix are independently distributed, or there are appropriate bounds on the dependence.
The methods are quite different, but remarkably, similar limiting results arise [Erdős 2011; Erdős et al.
2010; 2011; Forrester 2010; Tao and Vu 2011].
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The formulation of our main result involves ALm
n , the alternating polynomials of degree at most n

in m variables. We say that P 2ALm
n if

P .x1;x2; : : : ;xm/D
X

0�j1;j2;:::;jm�n

cj1j2���jm
x

j1

1
x

j2

2
� � �xjm

m ; (1-5)

so that P is a polynomial of degree less than or equal to n in each of its m variables, and in addition is
alternating, so that for every pair .i; j / with 1� i < j �m,

P .x1; : : : ;xi ; : : : ;xj ; : : : ;xm/D�P .x1; : : : ;xj ; : : : ;xi ; : : : ;xm/: (1-6)

Thus swapping variables changes the sign. Sometimes, these are called skew-symmetric polynomials.
Observe that if Pi is a univariate polynomial of degree less than or equal to n for each i D 1; 2; : : : ;m,

then
P .t1; t2; : : : ; tm/D det

�
Pi.tj /

�
1�i;j�m

2ALm
n : (1-7)

The set of such determinants of polynomials is a proper subset of ALm
n . It is well known, and easy to

see, that every alternating polynomial is the product of a Vandermonde determinant and a symmetric
polynomial. Thus P 2ALm

n if and only if

P .t1; t2; : : : ; tm/D

� Y
1�i<j�m

.tj � ti/

�
S.t1; t2; : : : ; tm/;

where S is symmetric, and of degree less than or equal to n�mC 1 in each variable.
Given a fixed m, we shall use the notation

x D .x1;x2; : : : ;xm/; t D .t1; t2; : : : ; tm/

while ��m denotes the m-fold Cartesian product of �, so that

d��m.t/D d�.t1/d�.t2/ � � � d�.tm/: (1-8)

We prove:

Theorem 1.1. Let m� 1, n�mC 1. Let x D .x1;x2; : : : ;xm/ be an m-tuple of real numbers. Then

det
�
Kn.�;xi ;xj /

�
1�i;j�m

Dm! sup
P2ALm

n�1

.P .x//2R
.P .t//2 d��m.t/

: (1-9)

The supremum is attained for

P .t/D det
�
Kn.�;xi ; tj /

�
1�i;j�m

: (1-10)

We could also just take the supremum in (1-9) over the strictly smaller class of determinants of the
form (1-7). An immediate, but important, consequence is:

Corollary 1.2. Rn
m.�Ix1;x2; : : : ;xm/ is a monotone decreasing function of �, and a monotone increas-

ing function of n.
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Despite an extensive literature search, I have not found Theorem 1.1 or Corollary 1.2 in the rich
literature on random matrices. At the very least, they must be new to those interested in universality
limits, because of the applications they have there. We shall present some in Section 2.

The proof of Theorem 1.1 is based on multivariate orthogonal polynomials built from �. Given m� 1,
and nonnegative integers j1; j2; : : : ; jm, we define

Tj1;j2;:::;jm
.x1;x2; : : : ;xm/Ddet.pji

.xk//1�i;k�mDdet

26664
pj1
.x1/ pj1

.x2/ : : : pj1
.xm/

pj2
.x1/ pj2

.x2/ : : : pj2
.xm/

:::
:::

: : :
:::

pjm
.x1/ pjm

.x2/ : : : pjm
.xm/

37775 : (1-11)

We show that the fTj1;j2;:::;jm
gj1<j2<���<jm

form an orthogonal family with respect to ��m, and moreover,
the m-point correlation function admits an expansion as a sum of squares of fTj1;j2;:::;jm

g, just as does
Kn in terms of squares of the orthonormal polynomials. We shall need an associated reproducing kernel,

Km
n .�;x; t/D

1

m!

X
1�j1<j2<���<jm�n

Tj1;j2;:::;jm
.x/Tj1;j2;:::;jm

.t/: (1-12)

Theorem 1.3. (a) Let 0� j1 < j2 < � � �< jm and 0� k1 < k2 < � � �< km. ThenZ
Tj1;j2;:::;jm

.t/Tk1;k2;:::;km
.t/ d��m.t/Dm! ıj1k1

ıj2k2
� � � ıjmkm

: (1-13)

(b) For P 2ALm
n�1, and x 2 Rn,

P .x/D

Z
P .t/Km

n .�;x; t/ d��m.t/: (1-14)

(c) For x; t 2 Rn,
det
�
Kn.�;xi ; tj /

�
1�i;j�m

Dm! Km
n .�;x; t/: (1-15)

In particular,

det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

X
1�j1<j2<���<jm�n

.Tj1;j2;:::;jm
.x//2: (1-16)

Remarks. (a) In the case mD 1, (1-16) reduces to (1-1) for Kn.�;x;x/. After an extensive literature
search, we found that (1-16) already appears for general m in [Erdős 2011, Section 1.5.3]. We may
also express it as

det
�
Kn.�;xi ;xj /

�
1�i;j�m

D
1

m!

X
1�j1;j2;:::;jm�n

.Tj1;j2;:::;jm
.x//2; (1-17)

as Tj1;j2;:::;jm
vanishes if any two indices ji are equal.

(b) The expression (1-15) may also be thought of as a Christoffel–Darboux formula, for it expresses the
sum (1-12) in a compact form involving an m�m determinant.

One consequence of the variational principle is a lower bound for ratios of correlation functions:
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Theorem 1.4. Let m� 2, n�mC1, and x1;x2; : : : ;xm be distinct real numbers. Define a measure � by

d�.t/D d�.t/

mY
jD2

.t �xj /
2:

Then

Kn.�;x1;x1/�
det
�
Kn.�;xi ;xj /

�
1�i;j�m

det
�
Kn.�;xi ;xj /

�
2�i;j�m

�
1

m
Kn�mC1.�;x1;x1/

mY
jD2

.x1�xj /
2: (1-18)

The upper bound is a well known consequence of inequalities for positive definite matrices. It is the
lower bound that is new.

This paper is organized as follows: in Section 2, we state some applications of Theorem 1.1 to
asymptotics and universality limits. In Section 3, we first prove Theorem 1.3, and then deduce Theorem 1.1
and Corollary 1.2, followed by Theorem 1.4. Theorems 2.1, 2.2, and 2.3 are proved in Section 4.
Theorem 2.4 is proved in Section 5, and Theorem 2.5 and Corollary 2.6 in Section 6.

2. Applications to asymptotics and universality limits

The extremal property (1-2) is essential in proving the following: if � is any measure with support
in Œ�1; 1�, then at every Lebesgue point x of � in .�1; 1/,

lim inf
n!1

1

n
Kn.�;x;x/�

0.x/�
1

�
p

1�x2
: (2-1)

Here �0 is understood as the Radon–Nikodym derivative of the absolutely continuous part of �. This is
more commonly formulated for Christoffel functions as

lim sup
n!1

n�n.�;x/� �
0.x/�

p
1�x2:

Barry Simon calls this the Máté–Nevai–Totik upper bound. See, for example, [Máté et al. 1991; Simon
2011, Theorem 5.11.1, p. 334; Totik 2000].

Under additional conditions, including regularity of �, there is equality in (2-1), with a full limit. We
say that � is regular in the sense of Stahl, Totik, and Ullman, or just regular, if the leading coefficients fng

of its orthonormal polynomials satisfy

lim
n!1

n
1=n
D

1

cap.supp Œ��/
: (2-2)

Here cap.supp Œ��/ is the logarithmic capacity of the support of �. We shall need only a very simple
criterion for regularity, namely a version of the Erdős–Turán criterion: if the support of � consists of
finitely many intervals, and �0 > 0 a.e. with respect to Lebesgue measure in that support, then � is regular
[Stahl and Totik 1992, p. 102].
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Máté, Nevai and Totik [Máté et al. 1991] showed that if � is a regular measure with support Œ�1; 1�,
and in some subinterval I of .�1; 1/, we haveZ

I

log�0 > �1; (2-3)

then for a.e. x 2 I ,

lim
n!1

1

n
Kn.�;x;x/�

0.x/D
1

�
p

1�x2
: (2-4)

Totik gave a far-reaching extension of this to measures with compact support J [Totik 2000; 2009].
Here one needs the equilibrium measure �J for the compact set J , as well as its Radon–Nikodym
derivative, which we denote by !

J
. Thus �J is the unique probability measure that minimizes the energy

integral “
log

1

js� t j
d�.s/ d�.t/

amongst all probability measures � with support in J [Ransford 1995; Saff and Totik 1997]. If I is some
subinterval of J , then �J is absolutely continuous in I , and moreover, !J > 0 in the interior Io of I . In
the special case J D Œ�1; 1�, we have

d�J .x/D !J .x/ dx D
dx

�
p

1�x2
:

Totik showed that if � is regular, and in some subinterval I of J , we have (2-3), then

lim
n!1

1

n
Kn.�;x;x/�

0.x/D !J .x/ for a.e. x 2 I : (2-5)

Further developments are explored in [Simon 2011].
It is a fairly straightforward consequence of this last relation, and the Christoffel–Darboux formula,

that, for m� 2 and a.e. .x1;x2; : : : ;xm/ 2 Im,

lim
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

mY
jD1

!
J
.xj /

�0.xj /
: (2-6)

The right-hand side is interpreted as 1 if any �0.xj / D 0. Thus, the matrix ŒKn.�;xi ;xj /�1�i;j�m

behaves essentially like its diagonal. We shall prove this in Section 4. Without having to assume regularity,
or (2-3), we can use Theorem 1.1 to prove one-sided versions of (2-6).

For measures � with compact support J , and x 2 J , we let

!�.x/D inff!L.x/ WL� J is compact, �jL is regular, x 2Lg: (2-7)

Since �L decreases as L increases, one can roughly think of !� as the density of the equilibrium measure
of the largest set to whose restriction � is regular. In the sequel, J o denotes the interior of J .

Theorem 2.1. Let � have compact support J , of positive Lebesgue measure, and let !
J

denote the
equilibrium density of J . Let m� 1.
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(a) For Lebesgue a.e. .x1;x2; : : : ;xm/ 2 .J
o/m,

lim inf
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

�

mY
jD1

!
J
.xj /

�0.xj /
: (2-8)

The right-hand side is interpreted as1 if any �0.xj /D 0.

(b) Suppose that I is a compact subset of J consisting of finitely many intervals, for which (2-3) holds.
Then, for Lebesgue a.e. .x1;x2; : : : ;xm/ 2 Im,

lim sup
m!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

�

mY
jD1

!�.xj /

�0.xj /
: (2-9)

A perhaps more impressive application of Theorem 1.1 is to universality limits in the bulk, which
describe local spacing of eigenvalues of random Hermitian matrices [Deift 1999; Deift and Gioev 2009;
Forrester 2010; Mehta 1991]. One of the more standard formulations, for a measure � supported on Œ�1; 1�,
is

lim
n!1

�
�0.x/�

p
1�x2

n

�m

Rn
m

�
�IxC a1

�
p

1�x2

n
; : : : ;xC am

�
p

1�x2

n

�
D lim

n!1

�
�0.x/�

p
1�x2

n

�m

det
�
Kn

�
�IxC ai

�
p

1�x2

n
;xC aj

�
p

1�x2

n

��
1�i;j�m

D det.S.ai � aj //1�i;j�m;

where

S.t/D
sin� t

� t
(2-10)

is the sine (or sinc) kernel. There is a vast literature for universality limits, especially in the case where �
is replaced by varying weights. A great many methods have been applied, including classical asymptotics
for orthonormal polynomials, Riemann Hilbert techniques, and theory of entire functions of exponential
type [Baik et al. 2003; 2008; Deift 1999; Deift and Gioev 2009; Deift et al. 1999; Findley 2008; Forrester
2010; Levin and Lubinsky 2008; Lubinsky 2009a; Simon 2008a; 2011; Totik 2009].

For fixed measures � with compact support J , the most general pointwise result is due to Totik [2009].
It asserts that if � is regular, while (2-3) holds in some interval I in the support, then, for a.e. x 2 I , and
all real a1; a2; : : : ; am, there are limits for the scaled reproducing kernels that immediately yield

lim
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
D det.S.ai � aj //1�i;j�m:

Simon [2008a; 2008b] had a similar result, proved using Jost functions. Totik used the comparison method
of [Lubinsky 2009a], together with “polynomial pullbacks”. Without any local or global restrictions on �,
we showed in [Lubinsky 2012] that universality holds in measure in f�0 > 0g D fx W �0.x/ > 0g.

We prove pointwise, almost everywhere, one-sided universality, without any local or global restrictions
on �:
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Theorem 2.2. Let � have compact support J , and let !
J

denote the equilibrium density of J . Let m� 1.

(a) For a.e. x 2 J o\f�0 > 0g, and for all real a1; a2; : : : ; am,

lim inf
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
� det.S.ai � aj //1�i;j�m: (2-11)

(b) Suppose that I is a compact subset of J consisting of finitely many intervals, for which (2-3) holds.
Then for a.e. x 2 I , and for all real a1; a2; : : : ; am,

lim sup
n!1

�
�0.x/

n!�.x/

�m

Rn
m

�
�IxC

a1

n!�.x/
; : : : ;xC

am

n!�.x/

�
� det.S.ai � aj //1�i;j�m: (2-12)

Pointwise universality at a given point x seems to usually require at least something like �0 being
continuous at x, or x being a Lebesgue point of �. Indeed, when �0 has a jump discontinuity, the
universality limit is different from the sine kernel [Foulquié Moreno et al. 2011], and involves de Branges
spaces [Lubinsky 2009b]. In our next result, we show that one can still bound the behavior of the
correlation function above and below near such a given x. It is noteworthy, though, that pure singularly
continuous measures can exhibit sine kernel behavior [Breuer 2011].

Theorem 2.3. Let � have compact support J , be regular, and let !
J

denote the equilibrium density of J .
Assume that the singular part �s of � satisfies, at a given x in the interior of J ,

lim
h!0C

�s Œx� h;xC h�=hD 0: (2-13)

Assume moreover that the derivative �0 of the absolutely continuous part of � satisfies

0< C1 D lim inf
t!x

�0.t/� lim sup
t!x

�0.t/D C2 <1: (2-14)

Then, for all real a1; a2; : : : ; am,

C�m
2 det.S.ai � aj //1�i;j�m � lim inf

n!1

�
1

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!J .x/
; : : : ;xC

am

n!
J
.x/

�
� lim sup

n!1

�
1

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!J .x/
; : : : ;xC

am

n!
J
.x/

�
� C�m

1 det.S.ai � aj //1�i;j�m:

(2-15)

At the boundary of the support of the measure (referred to as the edge of the spectrum in random
matrix theory), the universality limit takes a different form [Forrester 2010; Kuijlaars and Vanlessen
2002]. For fixed measures that behave like Jacobi weights near the endpoints, they involve the Bessel
kernel of order ˛ > �1:

J˛.u; v/D
J˛.
p

u/
p
vJ 0˛.
p
v/�J˛.

p
v/
p

uJ 0˛.
p

u/

2.u� v/
:
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Here J˛ is the usual Bessel function of the first kind and order ˛. Using a comparison method, the author
proved [Lubinsky 2008] that if � is a regular measure on Œ�1; 1�, and � is absolutely continuous in some
left neighborhood .1��; 1� of 1, and there �0.t/D h.t/.1� t/˛ , where h.1/ > 0 and h is continuous at 1,
then

lim
n!1

1

2n2
QKn

�
�; 1�

a

2n2
; 1�

b

2n2

�
D J˛.a; b/; (2-16)

uniformly for a, b in compact subsets of .0;1/. Here, and in the sequel,

QKn.�;x;y/D �
0.x/1=2�0.y/1=2Kn.�;x;y/:

When ˛ � 0, we may allow also a; b D 0. This has the immediate consequence that, for m � 2, and
a1; a2; : : : ; am > 0,

lim
n!1

�
1

2n2

�m

Rn
m

�
�I 1�

a1

2n2
; : : : ; 1�

am

2n2

�� mY
jD1

�0
�

1�
aj

2n2

��
D det.J˛.ai ; aj //1�i;j�m: (2-17)

Under weak conditions at the edge, we can prove one-sided universality:

Theorem 2.4. Let � have support contained in Œ�1; 1� and let 1 be the right endpoint of that support.
Assume that � is absolutely continuous near 1, and, for some ˛ > �1,

0< C1 D lim inf
t!1�

�0.t/.1� t/�˛ � lim sup
t!1�

�0.t/.1� t/�˛ D C2 <1: (2-18)

Then, for a1; a2; : : : ; am > 0,

liminf
n!1

�
1

2n2

�m

Rn
m

�
�I1�

a1

2n2
; : : : ;1�

am

2n2

� mY
jD1

�0
�

1�
aj

2n2

�
�

�
C1

C2

�m

det.J˛.ai ;aj //1�i;j�m:

(2-19)
If ˛ � 0, we may also allow a1; a2; : : : ; am � 0.

We note that if, in addition, � has support Œ�1; 1� and is regular, then we may replace the lim inf by
lim sup, the asymptotic lower bound by an upper bound, provided we replace .C1=C2/

m by .C2=C1/
m.

Our final result has a comparison or “localization” flavor, generalizing similar results for Christoffel
functions. Recall that a set J �R is said to be regular for the Dirichlet problem [Ransford 1995; Stahl and
Totik 1992] if, for every function f continuous on J , there exists a function harmonic in NCnJ , continuous
on C, whose restriction to J is f . Of course, this is confusing when juxtaposed with the notion of a
regular measure!

Theorem 2.5. Let �, � have compact support J and both be regular. Assume that J is regular with
respect to the Dirichlet problem. Let � 2 J and �0.�/, �0.�/ be finite and positive, with

lim
dist.I;�/!0

�.I/

�.I/
D
�0.�/

�0.�/
; (2-20)



118 DORON S. LUBINSKY

where the limit is taken over intervals I of length jI j, and dist.I; �/D supfjx � �j W x 2 Ig. Let m � 1.
Assume that, for n� 1,

yn D .y1n;y2n; : : : ;ymn/

is a vector of real numbers satisfying

lim
n!1

�
max

1�j�m
jymj � �j

�
D 0; (2-21)

and

lim
"!0C

�
lim sup
n!1

ˇ̌̌̌
Km
Œn.1˙"/�

.�;yn;yn/

Km
n .�;yn;yn/

� 1

ˇ̌̌̌�
D 0: (2-22)

Then

lim
n!1

Km
n .�;yn;yn/

Km
n .�;yn;yn

/
D

�
�0.�/

�0.�/

�m

: (2-23)

Of course, in (2-22), Œn.1˙ "/� denotes the integer part of n.1˙ "/. As an immediate consequence, we
obtain:

Corollary 2.6. Let �, � have compact support J and be regular. Assume that J is regular with respect to
the Dirichlet problem. Let x 2 J and �0.x/, �0.x/ be finite and positive, with (2-20) holding at � D x.
Assume that, for given m� 2 and all real a1; a2; : : : ; am,

lim
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
D det.S.ai � aj //1�i;j�m: (2-24)

Then, for all real a1; a2; : : : ; am,

lim
n!1

�
�0.x/

n!
J
.x/

�m

Rn
m

�
�IxC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
D det.S.ai � aj //1�i;j�m: (2-25)

3. Proofs of Theorems 1.1, 1.3, 1.4 and Corollary 1.2

Proof of Theorem 1.3(a). We use � and � to denote permutations of .1; 2; : : : ;m/ with respective signs "�
and "�. We see that

I D

Z
� � �

Z
Tj1;j2;:::;jm

.t1; t2; : : : ; tm/Tk1;k2;:::;km
.t1; t2; : : : ; tm/ d�.t1/ � � � d�.tm/

D

X
�;�

"�"�

Z
� � �

Z �
mQ

iD1

pj�.i/.ti/

��
mQ

iD1

pk�.i/.ti/

�
d�.t1/ � � � d�.tm/

D

X
�;�

"�"�

mY
iD1

ıj�.i/k�.i/ D
X
�;�

"�"�

mY
`D1

ıj`k
�.��1.`//

; (3-1)

where ��1 is the inverse of the permutation � . For a term in this last sum to be nonzero, we need

j` D k�.��1.`// for all 1� `�m: (3-2)
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Since j1 < j2 < � � �< jm and k1 < k2 < � � �< km, we see that this will fail unless

�.��1.`//D ` for all 1� `�m:

Indeed, if �.��1.i// ¤ i for some smallest i , then ji�1 D ki�1 but either ji D k�.��1.i// � kiC1 or
ji D k�.��1.i// � ki�1. In the former case, all of ji ; jiC1; : : : ; jm > ki , and ki is omitted from the
equalities in (3-2), a contradiction. In the latter case, we obtain ji � ji�1, contradicting the strict
monotonicity of the j ’s. Thus necessarily �D � , so (3-1) becomes, under (3-2),

I D
X
�

"2
� Dm!: �

Proof of Theorem 1.3(b). We first show that every P 2ALm
n�1 is a linear combination of the T polynomials.

We can write

P .x1;x2; : : : ;xm/D
X

0� Pj1;j2;:::;jm<n

cj1j2���jm
pj1
.x1/pj2

.x2/ � � �pjm
.xm/:

Because of the alternating property (1-6), and the linear independence of

fpj1
.x1/pj2

.x2/ � � �pjm
.xm/g1�j1;j2;:::;jm�n;

necessarily, when we swap indices jk and j`, the coefficients change sign; that is,

cj1���jk ���j` ���jm
D�cj1���j` ���jk ���jm

:

In particular, coefficients vanish if any two subscripts coincide. More generally, this implies that if � is a
permutation of f1; 2; : : : ;mg with sign "� , then

cj�.1/j�.2/���j�.m/ D "�cj1j2���jm
:

Next, given distinct 0 � j1; j2; : : : ; jm < n, let Qj1 < Qj2 < � � � < Qjm denote these indices in increasing
order. We can write, for some permutation � ,

ji D Qj�.i/; 1� i �m:

Conversely, for the given f Qjig, every such permutation � defines indices fjig with 0� j1; j2; : : : ; jm < n.
Thus

P .x1;x2; : : : ;xm/D
X

0� Qj1< Qj2<���< Qjm<n

c Qj1
Qj2��� Qjm

X
�

"�p Qj�.1/
.x1/p Qj�.2/

.x2/ � � �p Qj�.m/
.xm/

D

X
0� Qj1< Qj2<���< Qjm<n

c Qj1
Qj2��� Qjm

det
�
p Qji
.xk/

�
1�i;k�m

D

X
0� Qj1< Qj2<���< Qjm<n

c Qj1
Qj2��� Qjm

T Qj1
Qj2��� Qjm

.x1;x2; : : : ;xm/: (3-3)

Inasmuch as each T Qj1
Qj2��� Qjm

lies in ALm
n�1, we have shown that ALm

n�1 is the linear span of the T



120 DORON S. LUBINSKY

polynomials, and (3-3) is an orthogonal expansion. Orthogonality in the form (1-13) gives

c Qj1
Qj2��� Qjm

D
1

m!

Z
P .t/T Qj1

Qj2��� Qjm
.t/ d��m.t/:

Now our definition (1-12) of the reproducing kernel gives (1-14). �

Proof of Theorem 1.3(c). Fix x D .x1;x2; : : : ;xm/. Let

P .t/D P .t1; t2; : : : ; tm/D det
�
Kn.�;xi ; tj /

�
1�i;j�m

: (3-4)

By successively extracting the sums from the 1st, 2nd, . . . , m-th rows, we see that

P .t/D det

264
Pn�1

j1D0 pj1
.x1/pj1

.t1/ : : :
Pn�1

j1D0 pj1
.x1/pj1

.tm/
:::

: : :
:::Pn�1

jmD0 pjm
.xm/pjm

.t1/ : : :
Pn�1

jmD0 pjm
.xm/pj1

.tm/

375
D

n�1X
j1D0

� � �

n�1X
jmD0

�
pj1
.x1/ � � �pjm

.xm/
�
Tj1j2���jm

.t1; t2; : : : ; tm/:

When ji D jk for distinct i; k, then Tj1j2���jm
D 0. Thus only terms with j1; j2; : : : ; jm distinct are

nonzero. As in the proof of Theorem 1.3(b), given distinct 0� j1; j2; : : : ; jm < n, we can write, for some
permutation � uniquely determined by these indices,

ji D Qj�.i/

where 0� Qj1 < Qj2 < � � �< Qjm < n. As there, this yields

P .t/D
X

0� Qj1< Qj2<���< Qjm<n

X
�

"�
�
p Qj�.1/

.x1/ � � �p Qj�.m/
.xm/

�
T Qj1
Qj2��� Qjm

.t1; t2; : : : ; tm/

D

X
0� Qj1< Qj2<���< Qjm<n

T Qj1
Qj2��� Qjm

.x1;x2; : : : ;x/T Qj1
Qj2��� Qjm

.t1; t2; : : : ; tm/:

So
det
�
Kn.�;xi ; tj /

�
1�i;j�m

D P .t/Dm! Km
n .�;x; t/;

and we have (1-15). Then (1-16) follows from (1-12). �

Proof of Theorem 1.1. By the reproducing kernel relation (1-14), and Cauchy–Schwarz, for all P 2ALm
n�1,

P .x/2 �

�Z
P .t/2 d��m.t/

��Z
Km

n .�;x; t/
2 d��m.t/

�
D

�Z
P .t/2 d��m.t/

�
Km

n .�;x;x/:

Thus

Km
n .�;x;x/� sup

P2ALm
n�1

.P .x//2R
.P .t//2 d��m.t/

: (3-5)

By choosing P as in (3-4), we obtain equality in (3-5). Now (1-9) follows from (1-15). �

Proof of Corollary 1.2. This follows immediately from (1-9) and the positivity of all the terms there. �
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Proof of Theorem 1.4. The upper bound in (1-18) is a standard inequality for determinants involving
symmetric positive definite matrices. See, for example, [Beckenbach and Bellman 1961, Theorem 7,
p. 63]. For the lower bound, let R.t2; t3; : : : ; tm/ 2ALn�1

m�1. Let P be a univariate polynomial of degree
less than or equal to n� 1 satisfying P .xj /D 0, 2� j �m. Let

S.t1; t2; : : : ; tm/D

mX
jD1

P .tj /.�1/j R.t1; t2; : : : ; tj�1; tjC1; : : : ; tm/:

We claim that S 2ALn�1
m . Suppose we swap the variables tk and t`, where 1� k < `�m. The terms

involving P .tk/ and P .t`/ before the variable swap are

P .tk/.�1/kR.t1; : : : ; tk�1; tkC1; : : : ; t`�1; t`; t`C1; : : : ; tm/

CP .t`/.�1/`R.t1; : : : ; tk�1; tk ; tkC1; : : : ; t`�1; t`C1; : : : ; tm/

and become, after swapping tk ; t`,

P .t`/.�1/kR.t1; : : : ; tk�1; tkC1; : : : ; t`�1; tk ; t`C1; : : : ; tm/

CP .tk/.�1/`R.t1; : : : ; tk�1; t`; tkC1; : : : ; t`�1; t`C1; : : : ; tm/:

Using `� k � 1 swaps of adjacent variables in each R term, the alternating property of R gives

�
˚
P .t`/.�1/`R.t1; : : : ; tk�1; tk ; tkC1; : : : ; t`�1; t`C1; : : : ; tm/

CP .tk/.�1/kR.t1; : : : ; tk�1; tkC1; : : : ; t`�1; t`; t`C1; : : : ; tm/
	
:

In the remaining terms P .tj /.�1/j R.t1; t2; : : : ; tj�1; tjC1; : : : ; tm/ with j ¤ k; `, we swap tk and t`, and
use the alternating property to obtain �P .tj /.�1/j R.t1; t2; : : : ; tj�1; tjC1; : : : ; tm/. So we have proved
that S 2ALn

m. Moreover, as P has zeros at x2;x3; : : : ;xm, we have

S.x1;x2; : : : ;xm/D�P .x1/R.x2;x3; : : : ;xm/:

Next, by Cauchy–Schwarz,Z
S2 d��m

�m

Z mX
jD1

P2.tj /R
2.t1; : : : ; tj�1; tjC1; : : : ; tm/ d�.t1/ � � � d�.tm/

Dm2

�Z
P2 d�

��Z
R2 d��.m�1/

�
:

Then (1-9) gives

det
�
Kn.�;xi ;xj /

�
1�i;j�m

�m!
S2.x1;x2; : : : ;xm/R

S2 d��m
�

m!

m2

P2.x1/R
P2 d�

R2.x2; : : : ;xm/R
R2 d��.m�1/

:

Write

P .t/D P1.t/

mY
jD2

.t �xj /;
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where P1 is any polynomial of degree at most n�m. Next, take the supremum over P1 of degree at most
n�m and R 2ALn�1

m�1. Recalling the definition of � and (1-2) gives

det
�
Kn.�;xi ;xj /

�
1�i;j�m

�
m!

m2
Kn�mC1.�;x1;x1/

� mY
jD2

.x1�xj /
2

�
1

.m�1/!
det
�
Kn.�;xi ;xj /

�
2�i;j�m

:

This gives the lower bound in (1-18). �

4. Proofs of Theorems 2.1, 2.2, and 2.3

Lemma 4.1. Let � have compact support J , let � be regular, and assume that I is a subset of the
support consisting of finitely many intervals in which (2-3) holds. Let m � 2. Then, for Lebesgue a.e.
.x1;x2; : : : ;xm/ 2 Im,

lim
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

mY
jD1

!
J
.xj /

�0.xj /
: (4-1)

Proof. We already know that, for a.e. x 2 I ,

lim
n!1

1

n
Kn.�;x;x/

�0.x/

!
J
.x/
D 1; (4-2)

by Totik’s result (2-5). (Formally, the integral condition (2-3) follows in each of the intervals whose
union is I , and hence (2-5) does.) We next show that there is a set E of Lebesgue measure 0 such that for
distinct x;y 2 InE, both (4-2) holds, and

lim
n!1

1

n
Kn.�;x;y/

�
�0.x/�0.y/

!J .x/!J
.y/

�1=2

D 0: (4-3)

These last two assertions give the result. Indeed for distinct x1;x2 � � �xm 2 InE, we have

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

mY
jD1

�0.xj /

!
J
.xj /
D

X
�

"�

mY
iD1

�
1

n
Kn.�;xi ;x�.i//

�
�0.xi/�

0.x�.i//

!
J
.xi/!J

.x�.i//

�1=2�

D

mY
iD1

�
1

n
Kn.�;xi ;xi/

�0.xi/

!J .xi/

�
C o.1/D 1C o.1/;

by (4-2) and (4-3). Of course the set of x1;x2; : : : ;xm where any two xi D xj with i ¤ j has Lebesgue
measure 0 in Im.

We turn to the proof of (4-3). It follows from (4-2) that there is a set E of measure 0 such that,
for x 2 InE, we have

lim
n!1

1

n
p2

n.x/D lim
n!1

1

n
.KnC1.�;x;x/�Kn.�;x;x//D 0:

Then, for distinct x, y, the Christoffel–Darboux formula gives, for x, y 2 InE,

1

n
Kn.�;x;y/D

1

n

n�1

n

pn.x/pn�1.y/�pn�1.x/pn.y/

x�y
D o.1/:
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Here we are also using the fact that fn�1=ng is bounded as � has compact support. �

Proof of Theorem 2.1(a). Since J D supp Œ�� is compact, we can find a decreasing sequence of compact
sets fJ`g1`D1

such that each J` consists of finitely many disjoint closed intervals, and

J D

1\
`D1

J`:

(This follows by a straightforward covering of J by open intervals, and using compactness, then closing
them up; at the .`C 1/-st stage, we ensure that J`C1 � J` by intersecting those intervals in J`C1 with
those in J`.) For `� 1, let

d�`.x/D d�.x/C
1

`
!J`.x/ dx; (4-4)

so that we are adding a (small) multiple of the equilibrium measure for J` to �. Because !
J`
> 0 in the

interior of each J`, we have �0
`
> 0 a.e. in J`, so �` is a regular measure [Stahl and Totik 1992, p. 102].

Moreover, !
J`

is positive and continuous in each compact subinterval I of the interior of J`, soZ
I

log�0` > �1: (4-5)

By Lemma 4.1, for a.e. .x1;x2; : : : ;xm/ 2 Im,

lim
n!1

1

nm
det
�
Kn.�`;xi ;xj /

�
1�i;j�m

D

mY
jD1

!
J`
.xj /

�0
`
.xj /

:

As �` � �, Corollary 1.2 gives

lim inf
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

�

mY
jD1

!
J`
.xj /

�0
`
.xj /

: (4-6)

Since a countable union of sets of the form Im exhausts J m
`

, this last relation actually holds for a.e.
.x1;x2; : : : ;xm/ 2 J m

`
. Now, by [Totik 2009, Lemma 4.2], uniformly for x in compact subsets of an

open set contained in J ,
lim
`!1

!J`
.x/D !J .x/: (4-7)

Moreover, !
J

is positive and continuous in that open set. We can now let `!1 in (4-6) and use the
fact that the left-hand side in (4-6) is independent of ` to obtain (2-8). �

Proof of Theorem 2.1(b). Let L be a compact subset of supp Œ�� such that �jL is regular. LD I is one
such choice, because of the Szegő condition (2-3). We may assume that I �L, since !L decreases as L

increases. Let
d�.x/D �0.x/jL dx; (4-8)

so that d� is the restriction to L of the absolutely continuous part of �. Here
R

I log �0 > �1, so �
satisfies the hypotheses of Lemma 4.1, while �� �, so Corollary 1.2, followed by Lemma 4.1, gives, for
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a.e. .x1;x2; : : : ;xm/ 2 Im,

lim sup
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

� lim sup
n!1

1

nm
det
�
Kn.�;xi ;xj /

�
1�i;j�m

D

mY
jD1

!L.xj /

�0.xj /
I

recall that �0 D �0 in I �L. Now take the infimum over all such L and use the fact that the left-hand
side is independent of L. �

We turn to:

Proof of Theorem 2.2(a). Let �` and J` be as in the proof of Theorem 2.1(a). It then follows from results
of Totik [2009, Theorem 2.3] and/or Simon [2011, Theorem 5.11.13, p. 344] that, for a.e. x 2 J`, and all
real a1; a2; : : : am, and 1� i; j �m,

lim
n!1

1

n
Kn

�
�`;xC

ai

n
;xC

aj

n

�
D
!

J`
.x/

�0
`
.x/

S..ai � aj /!J`
.x//:

Consequently,

lim
n!1

1

nm
Rn

m

�
�`IxC

a1

n
; : : : ;xC

am

n

�
D

�
!

J`
.x/

�0
`
.x/

�m

det
�
S..ai � aj /!J`

.x//
�
1�i;j�m

:

Now we use the fact that �� �`, and Corollary 1.2: for a.e. x 2 J , and all a1; a2; : : : ; am,

lim inf
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!

J`
.x/

�0
`
.x/

�m

det
�
S..ai � aj /!J`

.x//
�
1�i;j�m

: (4-9)

Moreover we have (4-7). We can now let `!1 in (4-9), and use the fact that the left-hand side in (4-9)
is independent of ` to obtain (2-11), with a scale change. �

Proof of Theorem 2.2(b). Let L and � be as in the proof of Theorem 2.1(b). We can use the aforementioned
results of Totik applied to �, to obtain, for a.e. x 2 I , and real a1; a2; : : : ; am,

lim
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
D

�
!L.x/

�0.x/

�m

det
�
S..ai � aj /!L.x//

�
1�i;j�m

: (4-10)

Now we use the fact that � � �, and that �0 D �0 in I � L and Corollary 1.2: for a.e. x 2 I , and real
a1; a2; : : : ; am,

lim sup
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!L.x/

�0.x/

�m

det
�
S..ai � aj /!L.x//

�
1�i;j�m

:

Now choose a sequence of compact subsets L of supp Œ�� such that !L.x/ converges to the infimum !�.x/.
�

Proof of Theorem 2.3. Let � 2 .0;C1/, and choose ı > 0 such that, in .x� ı;xC ı/,

C1� �� �
0
� C2C �:
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Here �0 denotes the derivative of the absolutely continuous component of �. Define

d� D d� in Jn.x� ı;xC ı/

and
d�.t/D d�s.t/C .C1� �/ dt in .x� ı;xC ı/:

Then d� � d�, and � is regular on J (see [Stahl and Totik 1992, Theorem 5.3.3, p. 148]). Moreover,
the derivative �0 of the absolutely continuous part of � exists and equals C1� � in .x� ı;xC ı/, while
(2-13) implies that

lim
h!0

�s Œx� h;xC h�=hD 0:

By a theorem of Totik [2009, Theorem 2.3], we obtain, for the given x and real a1; a2; : : : ; am, that

lim
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
D

�
!

J
.x/

C1� �

�m

det
�
S..ai � aj /!J .x//

�
1�i;j�m

: (4-11)

Note that the Lebesgue condition for the local Szegő function required by Totik is satisfied because �0 is
smooth (even constant) near x. Then Corollary 1.2 gives

lim sup
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!

J
.x/

C1� �

�m

det
�
S..ai � aj /!J .x//

�
1�i;j�m

:

As the left-hand side is independent of �, we obtain

lim sup
n!1

1

nm
Rn

m

�
�IxC

a1

n
; : : : ;xC

am

n

�
�

�
!

J
.x/

C1

�m

det
�
S..ai � aj /!J .x//

�
1�i;j�m

:

The lower bound is similar. �

5. Proof of Theorem 2.4

Let
w.t/D .1� t/˛; t 2 .�1; 1/:

Choose ı > 0 such that � is absolutely continuous in .1� ı; 1/, satisfying there

.C1� ı/w.t/� �
0.t/� .C2C ı/w.t/:

Here C1, C2 are as in (2-18). Let

d�.t/D d�.t/C .C2C ı/w.t/ dt in .�1; 1� ı�

and
d�.t/D .C2C ı/w.t/ dt in .1� ı; 1�:

Then
d� � d� in Œ�1; 1�:
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Note too that, in .1� ı; 1/, the derivative �0 of the absolutely continuous component of � satisfies

�0.t/

�0.t/
�

C1� ı

C2C ı
: (5-1)

Inasmuch as w > 0 in .�1; 1/, � is a regular measure in the sense of Stahl, Totik and Ullman, while
�0.t/.1� t/�˛ is continuous and positive at 1. By a result of the author [Lubinsky 2008, Theorem 1.2],

lim
n!1

1

2n2
QKn

�
�; 1�

a

2n2
; 1�

b

2n2

�
D J˛.a; b/;

uniformly for a, b in compact subsets of .0;1/. If ˛ � 0, we may also allow a, b to lie in compact
subsets of Œ0;1/. Then, for m� 2, Corollary 1.2 and (5-1) give, for a1; a2; : : : ; am > 0,

lim inf
n!1

�
1

2n2

�m

Rn
m

�
�I 1�

a1

2n2
; : : : ; 1�

am

2n2

� mY
jD1

�0
�

1�
aj

2n2

�

�

�
C1� ı

C2C ı

�m

lim inf
n!1

�
1

2n2

�m

Rn
m

�
�I 1�

a1

2n2
; : : : ; 1�

am

2n2

� mY
jD1

�0
�

1�
aj

2n2

�

D

�
C1� ı

C2C ı

�m

det.J˛.ai ; aj //1�i;j�m:

Now let ı! 0C. �

6. Proofs of Theorem 2.5 and Corollary 2.6

We begin with a lemma that uses the by now classical technique of Totik involving fast decreasing
polynomials:

Lemma 6.1. Assume the hypotheses of Theorem 2.5, except that we do not assume (2-22), nor that � is
regular. Let " 2 .0; 1/. Then

lim inf
n!1

Km
n .�;yn;yn/

Km
Œn.1�"/�

.�;yn;yn/
�

�
�0.�/

�0.�/

�m

: (6-1)

Proof. We may assume that the common support J of � and � is contained in Œ�1; 1�, as a linear
transformation of the variable changes the limits in a trivial way. Let � > 0, and

c D
�0.�/

�0.�/
:

Our hypothesis (2-20) ensures that we can choose ı > 0 such that

�.I/

�.I/
� .cC �/ for I � Œ� � ı; �C ı�: (6-2)
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Let n� 4=" and `D `.n/D
�

1
2
"n
�
, so that n�`� Œn.1�"/�. We may choose a polynomial R` of degree

less than or equal to ` and � 2 .0; 1/ such that

0�R` � 1 in Œ�2; 2�;

jR`.t/� 1j � �` in Œ�ı=2; ı=2�; (6-3)

jR`.t/j � �
` in Œ�2;�ı�[ Œı; 2�: (6-4)

The crucial thing here is that � is independent of `, depending only on ı. These polynomials are easily
constructed from the approximations to the sign function of Ivanov and Totik [1990, Theorem 3, p. 3].
For the given � and n, we let

‰n.t/D‰n.t1; t2; : : : ; tm/D

mY
jD1

R`.� � tj /:

Observe that this is a symmetric polynomial in t1; t2; : : : ; tm. Moreover, for large enough n, we have
from (2-21), (6-3), and (6-4),

‰n.yn/� .1� �
`/mI (6-5)

j‰n.t/j � �
l in Œ�1; 1�mnQ; (6-6)

where
QD

n
.t1; t2; : : : ; tm/ W max

1�j�m
j� � tj j � ı

o
:

Next, let P1 2ALm
n�`�1, and set P D P1‰n. We see that P 2ALm

n�1. Using (6-2), (6-6), we see thatZ
P2 d��m

� .cC �/m
Z

Q

P2
1 d��m

CkP1k
2
L1.J m/�

2`

Z
J mnQ

d��m: (6-7)

Now we use the regularity of �, and the fact that J is regular for the Dirichlet problem. These properties
imply that [Stahl and Totik 1992, Theorem 3.2.3(v), p. 68]

lim
n!1

�
sup

deg.T /�n

kT k2
L1.J /R
jT 2j d�

�1=n

D 1:

The supremum is taken over all univariate polynomials T of degree at most n. By successively applying
this in each of the m variables, we see that

kP1k
2
L1.J m/ � .1C o.1//n

Z
P2

1 d��m;

where the o.1/ term is crucially independent of P1. Thus we may continue (6-7) asZ
P2 d��m

� .cC �/m
�Z

P2
1 d��m

��
1C .1C o.1//n�n"

�
:

Since also
P2.yn/� P2

1 .yn/.1CO.�"n//;
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we see from (3-5), with an appropriate choice of P1, that

Km
n .�;yn;yn/�

P2.yn/R
P2 d��m

� sup
P12ALm

n�`�1

P2
1
.yn/.1CO.�"n//

.cC �/m.
R

P2
1

d��m/.1C .1C o.1//n�n"/

D
1C o.1/

.cC �/m
Km

n�`.�;yn;yn/:

Thus

lim inf
n!1

Km
n .�;yn;yn/

Km
Œn.1�"/�

.�;yn;yn/
� .cC �/�m:

As the left-hand side is independent of �, we obtain (6-1). �

Proof of Theorem 2.5. Lemma 6.1 asserts that

lim inf
n!1

Km
n .�;yn;yn/

Km
Œn.1�"/�

.�;yn;yn/
�

�
�0.�/

�0.�/

�m

:

Swapping the roles of � and �, Lemma 6.1 also gives

lim inf
n!1

Km
Œn.1C"/�

.�;yn;yn/

Km
n .�;yn;yn/

�

�
�0.�/

�0.�/

�m

:

Now we apply our hypothesis (2-22) and let "! 0C. �

Proof of Corollary 2.6. We apply Theorem 2.5 with � D x and, for n� 1,

yn D

�
xC

a1

n!
J
.x/

; : : : ;xC
am

n!
J
.x/

�
:

This satisfies (2-21) with � D x. Now det ŒS.ai � aj /�1�i;j�m > 0, so our hypothesis (2-24) easily
implies (2-22). Then (1-4) and Theorem 2.5 give the result. �
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