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RELATIVE KÄHLER–RICCI FLOWS AND THEIR QUANTIZATION

ROBERT J. BERMAN

Let � W X! S be a holomorphic fibration and let L be a relatively ample line bundle over X. We define
relative Kähler–Ricci flows on the space of all Hermitian metrics on L with relatively positive curvature
and study their convergence properties. Mainly three different settings are investigated: the case when the
fibers are Calabi–Yau manifolds and the case when LD˙KX=S is the relative (anti)canonical line bundle.
The main theme studied is whether “positivity in families” is preserved under the flows and its relation
to the variation of the moduli of the complex structures of the fibers. The “quantization” of this setting
is also studied, where the role of the Kähler–Ricci flow is played by Donaldson’s iteration on the space
of all Hermitian metrics on the finite rank vector bundle ��L! S . Applications to the construction of
canonical metrics on the relative canonical bundles of canonically polarized families and Weil–Petersson
geometry are given. Some of the main results are a parabolic analogue of a recent elliptic equation of
Schumacher and the convergence towards the Kähler–Ricci flow of Donaldson’s iteration in a certain
double scaling limit.
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1. Introduction

1A. Background. On an n-dimensional Kähler manifold .X; !0/ Hamilton’s Ricci flow [Hamilton 1982]
on the space of Riemannian metrics on X preserves the Kähler condition of the initial metric and may be
written as the Kähler–Ricci flow

@!t

@t
D�Ric!t : (1-1)

When X is a Calabi–Yau manifold (which here will mean that the canonical line bundle KX is holomor-
phically trivial) it was shown by Cao [1985] that the corresponding flow in the space of Kähler metrics
in Œ!0� 2 H 2.X;R/ has a large time limit. The limit is thus a fixed point of the flow which coincides
with the unique Ricci flat Kähler metric in Œ!0�, whose existence was first established by Yau [1978] in
his celebrated proof of the Calabi conjecture. The non-Calabi–Yau cases when Œ!0� is the first Chern
class c1.L/ of L D rKX , where r D ˙1, have also been studied extensively (where �r! is added to
the right side in (1-1)). In general the fixed points of the corresponding Kähler–Ricci flows are hence

MSC2010: 14J32, 32G05, 32Q20, 53C55.
Keywords: Kähler–Ricci flow, positivity, Kähler–Einstein metric, balanced metric, Weil–Petersson metric.

131

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-1
http://msp.org


132 ROBERT J. BERMAN

Kähler–Einstein metrics of negative (r D 1) and positive (r D �1) scalar curvature. The convergence
towards a fixed point — when it exists — in the latter positive case (i.e., X is a Fano manifold) was only
established very recently by Perelman (unpublished) and by Tian and Zhu [2007].

A distinctive feature of Kähler geometry is that a Kähler metric ! may be locally described in terms
of a local function �, such that ! D ddc�. In the integral case, that is, when Œ!0�D c1.L/ is the first
Chern class of an ample line bundle L!X , this just amounts to the global fact that the space of Kähler
metrics ! in c1.L/ may be identified with the space HL of smooth metrics h on the line bundle L with
positive curvature form !, modulo the action of R on HL by scalings. Locally, h D e�� and we will
refer to the additive object � as a weight on L (see Section 2A). In this notation the Kähler–Einstein
equations may be expressed as Monge–Ampère equations on HL. For example, on a Calabi–Yau manifold
!� WD ddc� is Ricci flat precisely when

.ddc�/n=n!D �; (1-2)

where � is the canonical probability measure on X such that � D in2

�^ N�, for � a suitable global
holomorphic n-form trivializing KX (to simplify the notion we will in the following always assume that
the volume of the given class Œ!0� is equal to one, so that !n

0
=n! defines a probability measure on X for

any ! 2 Œ!0�/. By letting � depend on � in a suitable way general Kähler–Einstein metrics are obtained.
As emphasized by Yau [1987] one can expect to obtain approximations to Kähler–Einstein metrics

by using holomorphic sections of high powers of a line bundle. In this direction Donaldson [2009]
introduced certain iterations on the “quantization” (at level k/ of the space HL of Kähler metrics in c1.L/.
Geometrically, this quantized space, denoted by H.k/, is the space of all Hermitian metrics on the finite-
dimensional vector space H 0.X; kL/ of global holomorphic sections of kL, where kL denotes the k-th
tensor power of L, in our additive notation (for the definition see Section 2D). In other words H.k/ can
be identified with the symmetric space GL.Nk ;C/=U.Nk/ of Nk �Nk Hermitian matrices which in
turn, using projective embeddings, corresponds to the space of level k Bergman metrics on L. The fixed
points of Donaldson’s iteration are called balanced metrics at level k (with respect to �/ and they first
appeared in the previous work of Bourguignon, Li, and Yau [Bourguignon et al. 1994]. Again, in the
˙KX -setting one lets � depend on � in a suitable way leading to different settings (see below). In the
limit when L is replaced by a large tensor power it has very recently been shown that balanced metrics in
the different settings indeed converge to Kähler–Einstein metrics [Wang 2005; Keller 2009; Berman et al.
2009]. It was pointed out in [Donaldson 2009] that it seems likely that these iterations can be viewed as
discrete approximations of the Ricci flow. This will be made precise and confirmed in the present paper
(Theorem 3.15 and Theorem 4.18).

1B. Outline of the present setting and the main results. The aim of the present paper is to study relative
versions of the Kähler–Ricci flow and Donaldson’s iteration (in the various settings). More precisely, the
geometric setting is that of a holomorphic fibration � WX!S of relative dimension n and a relatively ample
line bundle L! X. The fibration will mainly be assumed to be a proper submersion over a connected
base, so that all fibers are diffeomorphic (for general quasiprojective morphisms see Section 4E). Note
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that in applications S typically arises as a moduli space or Teichmüller space and X as the corresponding
universal family.

The main points that will be considered are

� the question whether “positivity in families” is preserved under the flows;

� the convergence of the “quantized” (finite-dimensional) setting of Donaldson’s iteration towards the
Kähler–Ricci flow setting in the “semiclassical” limit (i.e., the large k-limit).

More precisely, denote by HL=S the space of all metrics on L which are fiberwise of positive curvature.
In other words, HL=S is an infinite-dimensional fiber bundle over S whose fibers are of the form HL, as
in the previous section. The relative Kähler–Ricci flows are defined as suitable flows on HL=S such that
the induced flow of curvature forms restricts to the usual Kähler–Ricci flow fiberwise: we will say that
“positivity is preserved under the flow” if, for any initial metric with positive curvature (in all directions
on X/, the evolved metric also has positive curvature for all times; that is, the flow induces a flow of
Kähler forms on the total space X of the fibration (and not only along the fibers).

As will be explained below, the two points above are closely related. For example, the preservation of
positivity in the relative Kähler–Ricci flow setting can be seen as a limiting version of the well-known
positivity of direct image bundles in the quantized setting (the latter positivity is a fundamental tool in
complex geometry; see [Kawamata 1982; Berndtsson 2009a], for example). As another application of
the convergence in the second point above (in the absolute case when S is a point) we will deduce the
uniform convergence of Donaldson’s canonically balanced metrics from the well-known convergence of
the Kähler–Ricci flow (Theorem 4.20).

The Calabi–Yau setting. Let us first summarize the main results in the setting when the fibers are Calabi–
Yau. It should however be stressed that the setting when the fibers are canonically polarized appears to be
the one most suited for geometric applications (see below). In the Calabi–Yau setting flow �t in HL=S is
defined fiberwise by

@�t

@t
D log

.ddc�t /
n=n!

�
; (1-3)

with � a measure as in (1-2). Of course, adding the pull-back of a time-dependent function on the base S

to the right side of the previous equation does not alter the induced flows of the fiberwise restricted Kähler
forms dX dc

X
�t , but it certainly effects the flow of ddc�t on X which will typically not preserve the

initial Kähler property.
One of the main results of the present paper is a parabolic evolution equation along the flow (1-3) for

the function

c.�/ WD
1

n
.ddc�/nC1=.dX dc

X �/
n
^ ids ^ d Ns

on X which is well-defined when S is embedded in C. The point is that c.�/> 0 precisely when ddc� > 0

on X. The evolution equation for c.�t / reads (Theorem 3.3)�
@

@t
��!X

t

�
c.�t /D jA!t

j
2

!X
t

�!WP; (1-4)
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where !X
t denotes the flow of the fiberwise restricted curvature forms, A!t

is a certain representative of the
Kodaira–Spencer class of the fiber Xs and !WP is the pull-back to X of the (generalized) Weil–Petersson
form on the base S ; by a result of Tian [1987] and Todorov [1989], which we will reprove, !WP can be
represented by the global squared L2-norm of A!KE for!KE the unique Ricci flat metric in c1.L/. Applying
the maximum principle then gives (Corollary 3.4) that the initial condition ddc�0 > 0 implies that

ddc�t > �t!WP (1-5)

(and similarly when the initial curvature is semipositive). By its very definition !WP vanishes at s

precisely when the infinitesimal deformation of the complex structure on the fibers Xs (i.e., the Kodaira–
Spencer class) vanishes at s. In particular, if the fibration � W X! S is holomorphically trivial, then,
by inequality (1-5), positivity is indeed preserved along the flow. This latter situation appears naturally
in Kähler geometry. Indeed, if the base S is an annulus in C and �s is rotationally invariant, then �s

corresponds to a curve in HL and c.�s/ is then the geodesic curvature of the curve �s when HL is
equipped with its symmetric space Riemannian metric (see [Chen 2000] and references therein). In the
nonnormalized KX -setting (see Section 4) the equation (1-4) can be seen as a parabolic generalization
of a very recent elliptic equation of Schumacher [2008].

Similarly, the “quantized” version of the previous setting is studied, that is, the relative version of
Donaldson’s iteration. It gives an iteration on the space of all Hermitian metrics H on the finite rank vector
bundle ��kL!S for any positive integer k (recall that the fiber of ��L over s is, by definition, the space
H 0.Xs;Ls/ of all global holomorphic sections on the fiber Xs with values in LjXs

/. More precisely, we will
study the equivalent fiberwise iteration �.k/m in HL=S obtained by applying the (scaled) Fubini–Study map
to Donaldson’s iteration. It will be called the relative Bergman iteration at level k. When the discrete time
m tends to infinity it is shown (Theorem 3.9) that the iteration converges to a fiberwise balanced weight:

�.k/m ! �
.k/
1

in the C1-topology on Xs , uniformly with respect to s. It is also observed that an analogue of the
inequality (1-5) holds; that is,

ddc�.k/m � �
k

m
!WP: (1-6)

This turns out to be a simple consequence of a recent theorem of Berndtsson [2009a] about the curvature of
vector bundles of the form ��.LCKX=S /. We also confirm Donaldson’s expectation about the semiclassi-
cal limit when the level k tends to infinity. More precisely, it is shown that, in the double scaling limit where
m=k! t , the (relative) Bergman iteration at level k approaches the (relative) Kähler–Ricci flow (1-3):

�.k/m ! �t (1-7)

uniformly on X. In particular, combining this convergence with (1-6) gives an alternative proof of the
semipositivity in the inequality (1-5). Moreover, by taking mDmk such that m=k !1 this gives a
dynamical construction of solutions to the inhomogeneous Monge–Ampère equation (1-2) in the setting
where � is any fixed volume form (Corollary 3.16).
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The (anti)canonical setting. The previous results also have analogues in the setting when the ample
line bundle L is either the relative canonical line bundle KX=S over X or its dual, which we write
as LD˙KX=S in our additive notation. The starting point is the fact that any metric hD e�� on ˙KX

induces, by the very definition of KX , a volume form on X which may be written suggestively as e˙� .
The previous constructions, that is, the relative Kähler–Ricci flows and the Donaldson iteration, can
then be repeated word for word for these �-dependent measures �D �.�/. For example, the relative
Kähler–Ricci flows are defined by

@�t

@t
D log

�
.ddc�t /

n=n!

e˙�t

�
; (1-8)

and we obtain (Theorem 4.7) a corresponding parabolic equation for c.�t /:�
@

@t
� .�!X

t
�˙1/

�
c.�t /D jA!t

j
2

!X
t

;

and as a consequence the flows always preserve positivity (Corollary 4.9) in these settings. In fact, in the
case of infinitesimally nontrivial fibration the flows will even improve the positivity; that is, any initial
weight which is merely semipositively curved instantly becomes positively curved under the flows. In
the CKX -setting the unique fixed point of the flow (1-8) is the (fiberwise) normalized Kähler–Einstein
weight uniquely determined by

e��KE D .!KE/
n=n!;

where !KE is the unique Kähler–Einstein metric on X (Corollary 4.3). The corresponding elliptic
equation for c.�KE/ was first obtained by Schumacher [2008] who used it to deduce the following
interesting result: �KE is always semipositively curved on the total space of X and strictly positively
curved for an infinitesimally nontrivial fibration. As a consequence he obtained several applications to
the geometry of moduli spaces. For example, applied to the case when X! S is the universal curve over
the Teichmüller space of Riemann surfaces of genus g � 2 it gives, when combined with Berndtsson’s
theorem (Theorem 3.10), a new proof of the hyperbolicity result of Liu, Sun, and Yau [Liu et al. 2008]
saying that the curvature of the Weil–Petersson metric on the Teichmüller space is dual Nakano positive.

In the �KX -setting the relative Kähler–Ricci flow will diverge for generic initial data. But using the
convergence on the level of Kähler forms, established by Perelman and Tian and Zhu, will show that,
if the Fano manifold X admits a unique positively curved Kähler–Einstein metric !KE, the flow does
converge to a weight for !KE in the normalized ˙KX -setting. This latter setting is simply obtained by
normalizing the volume forms e˙� used above.

We will also use the relative Bergman iteration to obtained a “quantized” version of Schumacher’s result:
the canonical “semibalanced” metric at level k on KX=S , which by definition is fiberwise normalized
and balanced, is smooth with semipositive curvature on X (Corollary 4.16) and strictly positively curved
in the case of an infinitesimally nontrivial fibration. As a consequence the semibalanced metric gives
an alternative to the canonical metric on kKX=S introduced in [Narasimhan and Simha 1968] (see also
Kawamata 1982; Tsuji 2011; Berndtsson and Păun 2008a for positivity properties of this latter metric).
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In Section 4E some of the results concerning the setting when KX is ample are generalized to projective
fibrations of varieties of general type (i.e., KX is merely big) and the corresponding canonical semibalanced
metric is shown to have a positive curvature current (Theorem 4.21). Relations to deformation invariance
of plurigenera [Siu 1998] are also briefly discussed.

1C. Further relations to previous results. A variant of Donaldson iteration (but with a single param-
eter k) in the KX -setting was introduced by Tsuji [2006]. He proved convergence in the L1-topology
towards the normalized Kähler–Einstein weight �KE in the large k-limit (see [Song and Weinkove 2010]
for a proof of uniform convergence) and deduced the semipositivity result for �KE of Schumacher referred
to above. These works of Tsuji and Schumacher provided an important motivation for the present one.
Steve Zelditch has also informed the author of a joint work in progress with Jian Song, where they
show that the linearization of Tsuji’s iteration at the fixed point coincides with the linearization of the
Kähler–Ricci flow. It should also be pointed out that another discretization of the Kähler–Ricci flow on a
Fano manifold was studied by Rubinstein [2008] and Keller [2009].

The C 0-convergence of the Bergman iteration at a fixed level k in the Calabi–Yau setting (or more
generally in the setting of a fixed measure �/ was pointed out by Donaldson [2009] and the proof was
sketched. Sano [2006] provided an explicit proof in the constant scalar curvature setting (see Section 4F).

It is also interesting to compare with the very recent work of Fine [2010] concerning the constant scalar
curvature setting. He shows that a continuous version of Donaldson’s iteration in this latter setting, called
balancing flows, converges to the Calabi flow, when the latter flow exists. Julien Keller and Huai-Dong
Cao have informed the author of a joint work in progress where an analogue of Fine’s balancing flows in
the Calabi–Yau setting (or more generally in the setting of a fixed volume form �) is shown to converge
to a flow on metrics, which however is different than the Kähler–Ricci flow.

There are also, at last tangential, relations to the work of Gross and Wilson [2000], where fibrations
with Calabi–Yau fibers are considered. In particular, they construct certain semiflat Kähler metrics ! on
the fibration X; that is, ! is fiberwise Ricci flat. Such metrics first appeared in the string theory literature
[Greene et al. 1990]. In this terminology the inequality (1-5) shows that the relative Kähler–Ricci flow
deforms any given Kähler metric to a semiflat one, when there is no variation of the moduli of the complex
structure of the fibers. More generally, this latter statement holds in a double scaling limit when the
variation of the complex structure is very small in the sense that !FS.st /t ! 0 as t !1.

A Kähler–Ricci flow on compact fibrations X with Calabi–Yau fibers was also considered recently
by Song and Tian [2012]. But they consider the usual (i.e., nonrelative) Kähler–Ricci flow (with r D 1)
when the canonical line bundle is only semiample and relatively trivial (i.e., the base S is the canonical
model of X). They prove that the flow collapses the fibers so that the limit is the pull-back of metric on
the base S solving a “twisted” Kähler–Einstein equation where the twist is described by the (generalized)
Weil–Petersson form !FS.

1D. Organization of the paper. In Section 2 a general setting is introduced and the associated relative
Kähler–Ricci flow and its quantization are defined. General convergence criteria for the flows are given.
In the following two sections the general setting is applied to get convergence results in particular settings
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of geometric relevance: the Calabi–Yau setting (Section 3) and the (anti)canonical setting (Section 4).
The new feature of these convergence results for the Kähler–Ricci flows is that the convergence takes
place on the level of weights, that is, for the potentials of the evolving Kähler metrics. Furthermore,
the main question whether “positivity in families” is preserved under the flows is studied in these two
sections and relations to Weil–Petersson geometry are also discussed. It is also shown that the quantized
flows converge to Kähler–Ricci flows in the large tensor power limit. Applications to canonical metrics
on relative canonical bundles are also given.

2. The general setting

In this section we will consider a general setup that will subsequently be applied to particular settings in
Sections 3 and 4.

We assume we are given a holomorphic submersion � W X!S of relative dimension n over a connected
base and a relatively ample line bundle L! X. In the absolute case when S is a point we will often use
the notation L!X for the corresponding ample line bundle. In this latter case we will write HL for the
space of all smooth Hermitian metrics on L with positive curvature form. In the relative case we will
denote by HL=S the space of all metrics on L which are fiberwise of positive curvature. We will denote
by c1.L/ the first Chern class of L, normalized so that it lies in H 1;1.X /\H 2.X;Z/. To simplify the
formulas to be discussed we will also assume that the relative volume of L is equal to one; that is,

V WD

Z
X

c1.L/
n=n!D 1

for some (and hence any) fiber X . The general formulas may then be obtained by trivial scalings by V at
appropriate places. When considering tensor powers of L, written as kL in additive notation, we will
always assume that kL is very ample (which is true for k sufficiently large).

2A. The weight notation for HL. It will be convenient to use the “weight” representation of a metric h

on L: locally, any metric h on L may be represented as hD e�� , where h is the pointwise norm of a
local trivializing section s of L. We will call the additive object � a “weight” on L. One basic feature of
this formalism is that even though the functions representing � are merely locally defined the normalized
curvature form of the metric h may be expressed as

!� WD ddc� WD
i

2�
@N@�

which is hence globally well-defined (but it does not imply that ! is exact!). The normalizations are
made so that Œ!� �D c1.L/ 2H 1;1.X /\H 2.X;Z/. In the absolute setting we will denote by HL the
space of all weights such that !� > 0. In other words, the map � 7! !� establishes an isomorphism
between HL=R and the space of Kähler metrics in c1.L/. In the relative setting we will denote by HL=S

the space of all smooth weights on L such that the restriction to each fiber is of positive curvature.
After fixing a reference weight �0 in HL the map � 7! u WD � � �0 identifies the affine space of

all smooth weights on L with the vector space C1.X /. Moreover, the subspace HL of all positively
curved smooth weights gets identified with the open convex subspace H! WD fu W ddcuC !0 > 0g
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of C1.X /, where !0 denotes the Kähler form ddc�0. The L1-closure of H! is usually called the space
of all !0-plurisubharmonic functions in the literature [Guedj and Zeriahi 2005]. In fact, all the results
in the present paper whose formulation does not use that the given class Œ!0� is integral are valid in the
more general setting when HL is replaced by H! (with essentially the same proofs). However, since the
quantized setting (Section 2D) only makes sense for integral classes we will stick to the weight notation
in the following.

2B. The measure �� and associated functionals on HL. First consider the absolute case when S is a
point. In each particular setting studied in Sections 3 and 4 we will assume given a function � on HL,
� 7! �.�/ (also denoted by ��), taking values in the space of volume forms on X , which is exact in
the following sense. First observe that we may identify �.�/ with a one-form on the affine space HL by
letting its action on a tangent vector v 2 C1.X / at the point � 2HL be defined by

h�.�/; vi WD

Z
X

v �.�/:

The assumption on �.�/ is then simply that this one-form is closed and hence exact; that is, there is a
functional I� on HL such that dI� D �:

dI�.�t /

dt
D

Z
X

@�t

@t
��t

(2-1)

for any path �t in HL. The functional is determined up to a constant which will be fixed in each particular
setting to be studied. We will also assume that for any fixed v 2 C1.X / the functional � 7! h�.�/; vi is
continuous with respect to the L1-topology on HL.

Two particular examples of such exact one-forms and their antiderivatives that will be used repeatedly
are as follows:

� The Monge–Ampère measure � 7! .ddc�/n=n! WDMA.�/. Its antiderivative [Mabuchi 1986] will
be denoted by E.�/, normalized so that E.�0/D 0 for a fixed reference weight �0 in HL. Integrating
along line segments in HL gives an explicit expression for E, but it will not be used here.

� � 7! �0 for a volume form �0 on X , fixed once and for all with I�0
.�/ WD

R
X .� ��0/ �0. Since

we have already fixed a reference weight �0 it will be convenient to take �0 WD .ddc�0/
n=n!.

Given �D �.�/ we define the associated functional

F� WD E� I�:

By construction its critical points in HL are precisely the solutions to the Monge–Ampère equation

.ddc�/n=n!D �.�/: (2-2)

We will say that �.�/ is normalized if it is a probability measure for all �. Equivalently, this means
that I� is equivariant under scalings; that is, I�.�C c/D I�.�/C c which in turn is equivalent to F�
being invariant under scalings.
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In the relative setting we assume that �s.�/ is a smooth family of measures on the fibers Xs as above,
parametrized by s 2 S .

Properness and coercivity. We first recall the definition of the well-known J -functional, defined with
respect to a fixed reference weight �0 (see [Berman et al. 2009] for a general setting and references). It is
the natural higher-dimensional generalization of the (squared) Dirichlet norm on a Riemann surface and
it will play the role of an exhaustion function of HL=R (but without specifying any topology!). In our
notation J is simply given by the scale-invariant function

J D�F�0
:

We will then say that a functional G is proper if

J !1 D) G!1

and coercive if there exists ı > 0 and Cı such that

G� ıJ �Cı:

Note that ı may be taken arbitrarily small at the expense of increasing Cı . In many geometric applications
properness (and coercivity) of suitable functionals can be thought as analytic versions of algebro-geometric
stability (compare Remark 4.2).

2C. The relative Kähler–Ricci flow with respect to ��. Given an initial weight �0 2HL=S the relative
Kähler–Ricci flow in HL=S is defined by the fiberwise parabolic Monge–Ampère equation

@�t

@t
D log

.ddc�t /
n=n!

�.�t /
(2-3)

for �t smooth over X� Œ0;T �, where T � 0. We will make the following assumptions on the flow which
will all be satisfied in the particular settings studied in Sections 3 and 4.

Analytical assumptions on the flow.

� Existence: The flow exists and is smooth over X� Œ0;1Œ.

� Uniqueness: Any fixed point in HL of the flow is unique mod R.

� Stability: For any l > 0 and M > 0 there is a constant Bl;M only depending on the upper bound on
the Cl -norm of the initial weight �0 (with respect to a fixed reference weight) and a lower bound on
the absolute value of ddc�0 such that

k�t ��0kCl .X�Œ0;M �/ � Bl;M (2-4)

(locally uniformly with respect to s in the relative setting).

It follows immediately that � is fixed under the flow if and only if it solves the Monge–Ampère equation
(2-2). Note that since we have assumed that Vol.L/D 1, a necessary condition to be stationary is that
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X �� D 1. For any solution �t and fixed fiber X D Xs the Kähler metrics !t on X obtained as the

restricted curvature forms of �t hence evolve according to

@!t

@t
D�Ric!t � ��; (2-5)

where Ric!t in the Ricci curvature of the Kähler metric !t and �� D ddc log�.�/.
Thanks to the following simple lemma the Kähler–Ricci flow is “gradient-like” for the functional F�.

For the Fano case, see [Chen and Tian 2002].

Lemma 2.1. The functional F� is increasing along the Kähler–Ricci flow on HL (defined with respect
to ��/. Moreover, it is strictly increasing at �t unless �t is stationary.

Proof. Differentiating along the flow gives

dF.�t /

dt
D

Z
X

log
MA.�t /

�.�t /

�
MA.�t /��.�t /

�
D

Z
X

log
MA.�t /

�.�t /

�
MA.�t /

�.�t /
� 1

�
�.�t /� 0

where the last inequality follows since both factors in the last integrand clearly have the same sign. �

If, moreover, �.�/ is normalized then both terms appearing in the definition of F� are monotone:

Lemma 2.2. Assume that �.�/ is normalized. Then the functionals �I� and E are both increasing along
the Kähler–Ricci flow on HL with respect to �.�/. Moreover, they are strictly increasing at �t unless �t

is stationary.

Proof. Differentiating along the flow gives

�
dI.�t /

dt
D�

Z
X

log
MA.�t /

�.�t /
�.�t /� 0

using Jensen’s inequality applied to the concave function f .t/D log t on RC in the last step (recall that
MA.�t /, �.�t / are both probability measures). Similarly,

dE.�t /

dt
D

Z
X

log
MA.�t /

�.�t /
MA.�t /D�

Z
X

log
�.�t /

MA.�t /
MA.�t /� 0;

again using Jensen’s inequality, but with the roles of MA.�t /, �.�t / reversed. The statement about strict
monotonicity also follows from Jensen’s inequality since f .t/D log t is strictly concave. �

From the previous lemma we deduce the following compactness property of the flow.

Lemma 2.3. Assume that �.�/ is normalized and that the associated functional �F� is coercive. Then
there is a constant C such that J.�t / � C and

R
j�t � �0j�0 � C along the Kähler–Ricci flow for �t

(with respect to �.�/).

Proof. Combining the monotonicity of F� and the assumption that F� be coercive (and in particular
proper) immediately gives the first inequality J.�t /� C . Next, by the definition of coercivity there are
ı 2 �0; 1 Œ and Cı > 0 such that I��E� ıI�0

� ıE�Cı; that is,

ıI�0
� .�1C ı/EC I�CCı
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along the flow. Since by the previous lemma �E and I� are both bounded from above along the flow it
follows that there is a constant A such that I�0

�A along the flow. Finally, by basic pluripotential theory
the set f� 2HL W J.�/� C; I�0

.�/� C g is relatively compact in the L1-topology [Berman et al. 2009].
This proves the last inequality in the statement of the lemma. �

The next proposition shows that, under suitable assumptions, the Kähler–Ricci flow with respect to a
normalized measure �� converges on the level of weights precisely when it converges on the level of
Kähler metrics. In Sections 3 and 4 the proposition will be applied to the usual geometric Kähler–Ricci
flows, where the convergence is already known to hold on the level of Kähler metrics. To simplify
the notation we will only state the result in the absolute case, the extension to the relative case being
immediate.

Proposition 2.4. Assume that �.�/ is normalized and that the associated functional �F� is coercive.
Let �t evolve according to the Kähler–Ricci flow defined with respect to �� and write !t D ddc�t . Then
the following three statements are all equivalent:

� The sequence of Kähler metrics !t is relatively compact in the C1-topology on X ; that is, for any
positive integer l the sequence !t is uniformly bounded in the Cl -norm on X .

� The weights converge: �t ! �1 2HL in the C1-topology on X as t !1.

� The Kähler metrics !t ! !1 in the C1-topology on X , where !1 is a Kähler form.

Proof. Assume that the first point of the proposition holds. Then it is a basic fact that the sequence of
normalized weights Q�t WD �t �Ct , where Ct WD I�0

.�t /, is relatively compact in the C1-topology on X

and converges to Q�1 2HL (as is seen by inverting the associated Laplacians). By the previous lemma
jCt j �D for some positive constant D and hence f�tg is also relatively compact in the C1-topology
on X .

In the rest of the argument we will use the Cl -topology on HL for l a large fixed integer. Let K WD f�tg

be the closure of f�tg which is relatively compact in HL by the previous argument. Denote by  0 an
accumulation point in K:

lim
j
�tj D  0:

By continuity of the “time s flow map” (which follows immediately from the stability assumption on the
flow) and the semigroup structure of the flow we deduce that

lim
j
�tjCs D  s

for any fixed s > 0. In other words, K is in fact compact and invariant under the “time s flow map”. Note
also that by monotonicity

lim
t

E.�t /D E. 0/D sup
K

E: (2-6)

Assume now to get a contradiction that  s ¤  0. By the strict monotonicity in Lemma 3.8 we have that
E. s/ > E. 0/, contradicting (2-6) (since  s 2 K as explained above). Hence,  0 is a fixed point of the
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flow and hence, by the uniqueness assumption on the flow, it is determined up to an additive constant.
This means that for any two limit points  0 and  0

0
of the flow there is a constant C such that

 0� 
0
0 D C:

But as explained above E. 0/DE. 0
0
/ and hence, by the scaling equivariance of E, it follows that C D 0.

All in all this means that we have shown that the flow �t converges, in the C1-topology on X , to a
limit �1 in HL, that is, that the second point of the proposition holds. The rest of the implications are
trivial. �

Remark 2.5. The coercivity is used to make sure that the compactness property of the flow �t holds
without normalizing �t (say, by subtracting I�0

.�t /). If one only assumes properness then the same
proof shows that the statement still holds upon replacing �t by �t � I�0

.�t / (which, of course, does not
effect the curvature forms). The same remark applies to Proposition 2.9 below.

2D. Quantization: The Bergman iteration on HL. Proceeding fiberwise it will be enough to consider
the absolute case when S is a point and we are given an ample line bundle L! X . For any positive
integer k such that kL is very ample the quantization at level k of the space HL is defined as the space
H.k/ of all Hermitian metrics on the Nk-dimensional complex vector space H 0.X; kL/. Hence, H.k/

may be identified with the symmetric space GL.Nk ;C/=U.Nk/. In the relative setting H.k/ is replaced
by the space of all Hermitian metrics on the rank-Nk vector bundle ��.kL/ over the base S (compare
the discussion at the bottom of page 156).

Fix a volume form �� on X depending on � as above. Then any given � 2HL induces a Hermitian
metric Hilb.k/.�/ defined by

Hilb.k/.�/.f; f / WD
Z

X

jf j2e�k� d�� ;

giving a map
Hilb.k/ WHL!H.k/:

There is also a natural injective map (independent of ��/ in the reverse direction, called the (scaled)
Fubini–Study map FS.k/:

FS.k/.H / WD log
�

1

Nk

NkX
iD1

jf H
i j

2

�
where .f H

i / is any basis in H 0.X; kL/ that is orthonormal with respect to H .
Donaldson’s iteration (with respect to ��) on the space H.k/ is then obtained by iterating the composed

map
T .k/

WD Hilb.k/ ıFS.k/ WH.k/
!H.k/;

and its fixed points are called balanced metrics at level k (with respect to �).
In order to facilitate the comparison with the Kähler–Ricci flow it will be convenient to consider the

(essentially equivalent) iteration on the space HL obtained by iterating the map FS.k/ ıHilb.k/. This
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latter iteration will be called the Bergman iteration at level k (with respect to ��) and we will denote the
m-th iterate by �.k/m and call the parameter m discrete time. Hence, the iteration immediately enters the
finite-dimensional submanifold FS.H.k//�HL of Bergman metrics at level k and stays there forever.
By the very definition of the Bergman iteration it may be written as the difference equation

�
.k/
mC1
��.k/m D

1

k
log �.k/.�.k/m /;

where �.k/.�/ is the Bergman function at level k associated to .�� ; �/; that is,

�.k/.�/D
1

Nk

X
iD1

jfi j
2e�k� ;

where fi is an orthonormal basis with respect to the Hermitian metric Hilb.k/.�; �/. Note that the
Bergman measure �.k/.�/�� is a probability measure on X and independent of the choice of orthonormal
bases. It plays the role of the Monge–Ampère measure in the quantized setting.

It will also be convenient, following [Donaldson 2009], to study functionals defined directly on the
space H.k/. Fixing the reference metric H

.k/
0
WDHilb.k/.�0/2H.k/ we may identify H.k/ with the space

of all rank Nk Hermitian matrices. We define

F.k/� .H / WD �
1

Nkk
log det H � I� ıFS.k/.H /;

whose critical points in H.k/ are precisely the balanced metrics (with respect to ��); this is proved exactly
as in the particular cases considered in [Donaldson 2005; Berman et al. 2009]. We will also consider the
following functional on HL:

L.k/.�/ WD �
1

Nkk
log det Hilb.k/.�� ; �/;

normalized so that L.k/.� C c/ D L.k/.�/ C c. Equivalently, we could have defined L.k/ as the
antiderivative of the one-form on HL defined by integration against the Bergman measure �.k/.�/�� .

Monotonicity. The following monotonicity properties were shown in [Donaldson 2009] in the particular
setting considered there (where �� is independent of �/. See also [Donaldson 2005] for the setting when
�.�/DMA.�/ (compare Section 4F). The main new observation here is that concavity of I� implies
monotonicity.

Lemma 2.6. Assume that �� is normalized. Then the following monotonicity with respect to the discrete
time m holds along the Bergman iteration �.k/m on HL (defined with respect to ��/:

� The functional L.k/ is increasing along the Bergman iteration and strictly increasing at �.k/m

unless �.k/m is stationary. Equivalently, the functional �log det is strictly increasing along the
Donaldson iteration in H.k/ away from balanced metrics.
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� If I� is concave on the space HL with respect to the affine structure then it is decreasing along
the iteration and strictly decreasing at �.k/m unless �.k/m is stationary. Equivalently, the functional
I� ıFS.k/ is strictly decreasing along the Donaldson iteration in H.k/ away from balanced metrics.

Proof. The proof of the first point is essentially the same as in Donaldson’s setting [2009], but for
completeness we repeat it here. By definition

L.k/.�mC1/�L.k/.�m/D�
1

Nkk
log

det Hilb.k/.�mC1/

det Hilb.k/.�m/
:

By the concavity of log and Jensen’s inequality we hence get

L.k/.�mC1/�L.k/.�m/� �
1

k
log

1

Nk

NkX
iD1

kfik
2

T .Hilb.k/.�m//
;

where fi is an orthonormal basis with respect to the Hermitian metric Hilb.k/.�m/ and where by definition
T .Hilb.k/.�m//DHilb.k/.FS.Hilb.k/.�m///. Writing out the norms explicitly shows that the right-hand
side above may be written as

�
1

k
log
�

1

Nk

�
NkP
iD1

jfi j
2
. P

iD1

jfi j
2

�
�FS.Hilb.k/.�m//

�
D�

1

k
log.1/D 0;

using that �� is normalized. This proves the first point.
To prove the second point we use that I� is assumed concave and that, by definition, �� D dI� as a

differential, to get

I�.�
.k/
mC1

/� I�.�
.k/
m /�

Z
.�
.k/
mC1
��.k/m / �

�
.k/
m
D

1

k

Z
log �.k/.�.k/m / �

�
.k/
m

�
1

k
log

Z
�.k/.�.k/m / �

�
.k/
m
D 0;

using the definition of the iteration and Jensen’s inequality in the last step (and the fact that �.k/.�/��
and �� are both probability measures). This proves the monotonicity of I�. The statement about strict
monotonicity follows immediately from the fact that log t is strictly concave. �

Properness and coercivity. Properness and coercivity of functionals on H.k/ are defined as in Section 2C,
but with the functional J replaced by its quantized version on the space H.k/:

J .k/.H / WD �F.k/�0
WD I�0

ıFS.k/C
1

kNk

log det H:

The content of the following lemma is essentially contained in the proof of Proposition 3 in [Donaldson
2009]. We will fix a metric H0 2H.k/. For any given H0-orthonormal basis .fi/ we can then identify a
Hermitian metric H with a matrix and we will denote by H� the diagonal matrix with entries e��i on
the diagonal.
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Lemma 2.7.

� For � 2 CNk let �� D FS.k/.H�/ WD
1

k
log
�

1

Nk

X
i
ek�i jfi j

2

�
. There is a constant C such that

max
i
�i � I�0

.��/CC:

� The functional J .k/ is an exhaustion function on H.k/=R� with respect to its usual topology.

� In particular, the set of all H 2H.k/ such that

�log det H � �C; .I�0
ıFS/.H /� C (2-7)

is relatively compact.

Proof. For the benefit of the reader we repeat Donaldson’s simple proof: let imax be an index such that
maxi �i D �imax . Clearly,

max
i
�i C

1

k
log
�

1

Nk

jfimax j
2

�
� �� �max

i
�i C

1

k
log
�

1

Nk

X
i

jfi j
2

�
; (2-8)

and hence integrating over X and using the first inequality above gives

max
i
�i C

Z
X

.log.jfimax j
2/��0/ d�0 � I�0

.��/;

which proves the lemma since it is well-known that I�0
. / >�1 for any psh (plurisubharmonic) weight

 if �0 is a smooth volume form (as follows from the local fact that any psh function is in L1/ and in
particular �C WD I�.log.jfimax j

2// > �1. This proves the first point. As for the second and third one
we first note that any Hermitian metric H can be represented by a diagonal matrix (which we write in
the form H�) after perhaps changing the basis .fi/ above. Moreover, by the compactness of U.N / the
constant C in the previous point can be taken to be independent of the base .fi/.

Next, it will be enough to prove the last point of the lemma (the second point then follows since we
may by scaling invariance assume that det.H�/D 1). We may assume that infi �i D �0 and since, by
assumption,

�log det H D
X

i

�i � �C

we get
� inf

i
�i � C C

X
i¤0

�i � C C .N � 1/max
i
�i :

By the assumption .I�0
ı FS/.H / � C and the first point of the lemma the right-hand side above is

bounded from above and hence we conclude that so is � infi �i . All in all this means that maxi j�i j is
uniformly bounded from above by a constant; that is, H stays in a relatively compact subset of H.k/. �

Remark 2.8. The proof of the previous lemma shows that the conclusion of the lemma remains valid for
any choice of a fixed reference weight �0 and probability measure �0 (which are used in the definition
of J .k/) such that

R
X log.jf j ��0/ �0 is finite for any section f 2H 0.X; kL/.
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Criteria for convergence in the large time limit.

Proposition 2.9. Assume that �� is normalized, that I� is decreasing along the Bergman iteration,
that F

.k/
� is coercive and that there is at most one balanced metric (modulo scaling). Then, for any

given positive integer k the following holds: in the large time limit, that is, when m!1, the weights
�
.k/
m ! �

.k/
1 in the C1-topology on X . Moreover, in the relative setting the convergence is uniform with

respect to the base parameter s.

Proof. (a) Uniform convergence. We equip FS.H.k//, that is, the space of all Bergman weights at level k,
with the topology induced by the sup norm. It is not hard to see that this is the same topology as the
one induced from the finite-dimensional symmetric space H.k/ D GL.Nk ;C/=U.Nk/ with its usual
Riemannian metric, or with respect to the operator norm on GL.Nk ;C/. Hence, it will be enough to
prove the convergence of Donaldson’s iteration in H.k/.

Since �� is assumed normalized, Lemma 2.6 shows that �log det H is uniformly bounded from below
along the Donaldson iteration in H.k/. Moreover, by assumption I�� ı FS.k/ is uniformly bounded
from above along the Donaldson iteration. Hence, just as in the proof of Lemma 2.3 it follows from
the coercivity assumption that I�0

ı FS.k/ is also uniformly bounded from above along the Donaldson
iteration. But then it follows from Lemma 2.7 that the iteration H

.k/
m stays in a compact subset of H.k/.

Now let K WD fH
.k/
m g be the closure of the orbit of T .k/ which is relatively compact in H.k/ by the

previous argument. Denote by G an accumulation point

lim
j

H .k/
mj
DG

in H.k/. By the continuity of H 7! T .k/.H / on H.k/ we deduce that

lim
j

T .k/.H .k/
mj
/D T .k/.G/:

In other words, K is in fact compact and invariant under T .k/. Note also that by monotonicity

lim
j
.�log det H .k/

mj
/D�log det G D sup

K
.�log det/:

Assume now to get a contradiction that T .k/.G/¤G. By the strict monotonicity in Lemma 3.8 we have
log det.T .k/G/ > log det G, contradicting (2-6) (since T .k/.G/ 2 K). All in all this means that we have
shown that the subsequence .H .k/

mj / of Donaldson iterations converges to a fixed point, that is, a balanced
metric. By the assumption on uniqueness up to scaling it follows, again using monotonicity (just like in
the proof of Proposition 2.4), that all accumulation points coincide; that is, the iteration converges.

(b) Higher order convergence. To simplify the notation we set k D 1 and write �.k/m D �m. First note that
the L1-estimate above is uniform over S , as follows by combining the monotonicity of the functionals
with the uniform boundedness of the initial weight �0. By the uniform convergence of �m it will hence
be enough to prove that @˛X .h0=hmC1/


L1.X /

� C˛ k.hm=h0/kL1.X / (2-9)
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where hm D e��m and @˛
X

denotes a real linear differential operator on X of order ˛ (note that while hm

globally corresponds to a metric on L the quotient h0=hmC1 defines a global function on X ). Accepting
this estimate for the moment the uniform convergence of .hm/ hence gives that k@˛

X
.h0=hm/kL1.X / is

uniformly bounded in m and since hm=h0! h1=h0 it then follows that k@˛
X
.�m��0/kL1.X / is also

uniformly bounded in m. Hence, standard compactness arguments show the C1-convergence of .�m/.
Finally, the estimate (2-9) is a consequence of the following quasiexplicit integral formula for the

Bergman function familiar from the theory of determinantal random point processes (see [Berman 2008]
and references therein):

�.�/.x/D

Z
y2X N�1

f .x;y/e�.���0/.x/e�.���0/.y/ d��.y/
˝N�1=Z� ; Z� WD

Z
X N

f0e�.���0/ d�˝N
�

where f .x1;x2; : : : ;xN /Djdet1�i;j�N .fi.xi//i;j j
2e��0.x1/ � � � e��0.xN / and .fi/ is any given orthonor-

mal base with respect to the Hermitian metric Hilb.1/.�0/ on H 0.X;L/ (note that Z� appears as the
normalizing constant). We have used the notation �.x; : : : ;xm/D �.x1/C � � �C�.xm/. In particular,

.h0=hmC1/.x/D

Z
y2X N�1

f .x;y/e�.�m��0/.y/ d��.y/
˝N�1=Z�m

and hence differentiating with respect to x by applying @˛
X

gives

j@˛X .h0=hmC1/.x/j D

ˇ̌̌̌Z
.@˛X f .x;y//e

�.���0/.y/ d��.y/
˝N�1=Z�

ˇ̌̌̌
�

A˛

Z�m

e�.�m��0/


L1.X /
;

where A˛ is a constant independent of m. Since, by the uniform convergence of �m, we have Z�m
>C >0

for some positive constant C , this concludes the proof of the estimate (2-9). �

The following basic lemma gives a natural criterion for the assumptions (apart from the monotonicity
of I�) in the previous theorem to be satisfied.

Lemma 2.10. Suppose that G is a functional on H.k/ which is geodesically strictly convex with respect
to the symmetric Riemann structure and strictly convex modulo scaling. Then G has at most one critical
point (modulo scaling). Moreover, if it has some critical point then G is coercive.

Proof. Uniqueness follows immediately from strict convexity and hence we turn to the proof of coercivity.
By a simple compactness argument it will be clear that, after fixing a reference metric H0 2H.k/, which
we take to be a critical point of G, it is enough to prove coercivity along any fixed geodesic passing
through H0. To this end let Ht be a geodesic in H.k/ starting at H0, that is, the orbit of the action of a
one-parameter subgroup of GL.Nk/. In the notation of Lemma 2.7 this means that Ht DHt� for � 2CN

fixed. By scaling invariance we may assume that the determinant of Ht vanishes along the geodesic.
Integrating the upper bound in (2-8) over X gives

J.Ht /D 0C .I�0
ıFS/.Ht /� C t CD:
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Now, let f .t/D G.Ht /. Since by assumption f is convex and 0 is a critical point, we have df=dt � 0

for all t . Hence, if we fix some number � > 0, then

f .t/� f .0/C

Z t

�

.df=ds/ ds:

But by the assumption on strict convexity the latter integrand is bounded from below by some ı > 0. All
in all this shows that

G.Ht /� ıt �A�
ı

C
J.Ht /�A0;

which finishes the proof. �

Large k asymptotics. Next, we will recall the following proposition, which is the link between the
Bergman iteration and the Kähler–Ricci flow. It is essentially due to Bouche and Tian, apart from the
uniformity with respect to �. In fact, a complete asymptotic expansion in powers of k holds as was
proved by Catlin and Zelditch and the uniformity can be obtained by tracing through the same arguments
(as remarked in connection to Proposition 6 in [Donaldson 2001]). For references see the recent survey
[Zelditch 2009].

Proposition 2.11. Assume that the volume form �� depends smoothly on �. Then the following uniform
convergence for the corresponding Bergman function �.k/.�/ holds: there is an integer l such that

sup
X

ˇ̌̌̌
�.k/.�/�

.ddc�/n=n!

��

ˇ̌̌̌
� C=k

for all weights � such that ddc� is uniformly bounded from above in Cl -norm with ddc� uniformly
bounded from below by some fixed Kähler form.

3. The Calabi–Yau setting

First consider the absolute case where we assume given an ample line bundle L!X . In this section we
will the apply the general setting introduced in the previous section to the case when the measure � is
independent of �. We will assume that it is normalized, that is, a probability measure. We will mainly be
interested in the case when X is a Calabi–Yau manifold, which induces a canonical probability measure
� on X defined by

�D cn�^ N�

where� is any given holomorphic n-form trivializing the canonical line bundle KX and cn is a normalizing
constant. In the relative Calabi–Yau setting, where each fiber is assumed to be a Calabi–Yau manifold,
this hence yields a canonical smooth family of measures on the fibers.

For a fixed reference element �0 2HL we set

I�.�/ WD

Z
X

.� ��0/ �;

which is equivariant under the usual actions of the additive group R: I�.�C c/D I�.�/C c. Moreover,
by definition the associated functional �F� is coercive.
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3A. The relative Kähler–Ricci flow. The convergence on the level of Kähler forms in the following
theorem is due to Cao (apart from the uniqueness, which was first shown by Calabi). We just observe
that, since � is normalized, the convergence of the flow also holds on the level of weights.

Theorem 3.1. The Kähler–Ricci flow on HL with respect to� exists for all times t 2 Œ0;1Œ and the solution
�t is smooth on X � Œ0;1Œ. Moreover, �t ! �1 uniformly in the C1- topology on X when t !1,
where �1 is the unique (modulo scaling) solution to the inhomogeneous Monge–Ampère equation (1-2).
More precisely, all the analytical assumptions in Section 2C are satisfied. In the Calabi–Yau case !1 is
Ricci flat.

Proof. As shown in [Cao 1985], !t ! !1 in the C1-topology. But then it follows from Proposition 2.4
that �t ! �1 uniformly in the C1-topology on X . The smoothness in the relative case was not stated
explicitly in [Cao 1985] but follows from basic maximum principle arguments. �

Preliminaries: Kodaira–Spencer classes and Weil–Petersson geometry. In this section we will assume that
the base S is one-dimensional and embedded as a domain in C. Recall that the infinitesimal deformation
of the complex structures on the smooth manifold Xs as s varies is captured by the Kodaira–Spencer
class �. @

@s
/ 2H 0;1.T 1;0Xs/ [Voisin 2007]. When the fibers are Calabi–Yau manifolds the “size” of the

deformation is measured by the (generalized) Weil–Petersson form !WP (see [Fujiki and Schumacher
1990]) on the base S . It was extensively studied by Tian [1987] and Todorov [1989] when the base S is a
moduli space of Calabi–Yau manifolds and X is the corresponding Kuranishi family. The form !WP is
defined by

!WP

�
@

@s
;
@

@s

�
WD kAC Y k

2
!

C Y
; (3-1)

where AC Y denotes the unique representative in the Kodaira–Spencer class �.@=@s/ 2 H 1;0.T 1;0Xs/

that is harmonic with respect to a given Ricci flat metric !
C Y

on Xs and the L2-norm is computed with
respect to this latter metric. Moreover, as shown in [Todorov 1989] the following formula holds:

kAC Y k
2
!

C Y
D
@2 �

@s@Ns
;  �.s/ WD log in2

Z
Xs

�s ^
N�s; (3-2)

where�s denotes a holomorphic family of nontrivial holomorphic n-forms on Xs for s2U , a neighborhood
of a fixed point s in S . More generally, for an arbitrary smooth base S the .1; 1/-form !WP on S may
be defined as the curvature of the holomorphic line bundle ��.K�=S / on S . It is in the latter form that
!WP will appear in the proof of Theorem 3.3 below. In fact, the formula (3-1) may then be deduced from
Theorem 3.3 (see Remark 3.7).

Next we will explain how, for a fixed base parameter s, a weight � on the line bundle L! X! S

induces the following two objects:

� a .0; 1/-form A� with values in T 1;0Xs representing the Kodaira–Spencer class �. @
@s
/ in H 0;1.T 1;0Xs/;

� a function c.�/ on X measuring the positivity (or lack of positivity) of ddc� on X in terms of the
positivity of the restrictions of ddc� to the fibers Xs .
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In fact A� will only depend on the family, parametrized by s, of two-forms !s obtained as the restrictions
of the curvature form !� on X to all fibers Xs , while c.�/ will depend on the whole form !� .

Trivial fibrations. Assume that � W X! S is a holomorphically trivial fibration, so that X is embedded
in C � X and that L D ��L where L ! X is an ample line bundle. Given a smooth family of
weights �.s; � / on L!X with strictly positive curvature form !X

�
WD dX dc

X
� (for s fixed) one obtains

a smooth vector field V� of type .1; 0/ as the “complex gradient” of @s�:

ıV�!
X
�.s;� / D @X .@s�/; (3-3)

where ıV� denotes interior multiplication (i.e., contraction) with V� . Now the .0; 1/-form A� with values
in T 1;0X (for s fixed) is simply defined by

A� WD �@X V� (3-4)

Denote by !X
t the curvature forms on X evolving with respect to the time parameter t according to

the Kähler–Ricci flow (for s fixed). The Laplacian on X with respect to !X
t will be denoted by �!X

t
.

Given �.s; � / we define the following function on X:

c.�/ WD
1

n
.ddc�/nC1=.dX dc

X �/
n
^ ids ^ d Ns: (3-5)

Note that, since !X
�
> 0 on X , we have that c.�/ > 0 at .s;x/ 2 X if and only if ddc� > 0 at .s;x/.

General submersions. Next we turn to the case of a general holomorphic submersion � W X! S . Any
given point in X has a neighborhood U such that the fibration � W U!S is holomorphically trivial and the
restriction LU is isomorphic to ��L over U. We introduce local holomorphic coordinates .z; s/ on U such
that s defines a local holomorphic coordinate on S and the projection � W U!S corresponds to .z; s/ 7! s.
Hence, the vector field V� defined above is locally defined, but in general not globally well-defined on X.
However, the expression (3-4) turns out to still be globally well-defined. For completeness we will give a
proof of this well-known fact [Schumacher 2008; Fujiki and Schumacher 1990]:

Proposition 3.2. The .0; 1/-form A� with values in T 0;1Xs , locally defined by formula (3-4), is globally
well-defined. It represents the Kodaira–Spencer class in H 0;1.T 1;0Xs/.

Proof. Step 1. The locally defined expression

W� WD
@

@s
�V�

defines a global vector field on X of type .1; 0/.
Indeed W� may be characterized as the horizontal lift of @=@s with respect to the .1; 1/-form ddc�

on X, which is nondegenerate along fibers. To see this first note that

d�.W�/D
@

@s
and ddc�.W� ; ker d�/D 0: (3-6)

The first point is trivial and the second one follows from a direct calculation: locally we may decompose

ddc� D dzdc
z �C�s Nsds ^ NdsC .@z�s/^ dsC .@z�s/^ d Ns:
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Hence, for any fixed index i ,

ddc�

�
W� ;

@

@Nzi

�
D�dzdc

z �

�
V� ;

@

@Nzi

�
C 0C

�
@

@Nzi
�s

�
C 0D 0;

using the definition (3-3) of V� in the last step. Finally, note that the properties (3-6) determine W�

uniquely: if W 0 is another local vector field satisfying (3-6) then clearly Z WDW� �W 0 satisfies

d�.Z/D 0 and ddc�.Z; ker d�/D 0:

In particular, Z is tangential to the fibers and ddc�.Z; NZ/ D 0. But since ddc� is assumed to be
nondegenerate along the fibers it follows that Z D 0.

Step 2. A�.s/D .@W�/Xs
and A�.s/ represents the Kodaira–Spencer class in H 0;1.T 1;0Xs/.

The first formula above follows immediately from a local computation and the second one then follows
directly from the definition of the Kodaira–Spencer class (where W� may be taken as any smooth lift
to T 1;0X of the vector field @=@s [Voisin 2007]). �

As for the function c.�/ defined by formula (3-5) it is still well-defined as we have fixed an embedding
of S in C.

Conservation of positivity along the relative Kähler–Ricci flow. Next comes one of the main results of
the present paper:

Theorem 3.3. Let � W X! S be a proper holomorphic submersion with Calabi–Yau fibers and let L be a
relatively ample line bundle over X. Assume that the base S is a domain in C. The following equation
holds along the corresponding relative Kähler–Ricci flow:�

@

@t
��!X

t

�
c.�/D jA� j

2

!X
t

�kAC Y k
2

!X
C Y

: (3-7)

Proof. Since it will be enough to prove the identity at a fixed point x in X in some local holomorphic
coordinates and trivializations we may as well assume that !� is the Euclidean metric at the point x, that
is, that the complex Hessian matrix .@2�=@zi

N@zj / is the identity for z D 0 (corresponding to the fixed
point x in X ). Moreover, we may assume that locally the holomorphic n-form � may be expressed as
�D dz1 ^ � � � ^ dzn. Partial derivatives with respect to s will be indicated by a subscript s and partial
derivatives with respect to zi and Nzj by subscripts i and Nj respectively. If hD .hij / is a Hermitian matrix
we will write .hij / for the matrix H�1. The summation convention according to which repeated indices
are to be summed over will be used. Next, we turn to the proof of the theorem which is based on a direct
and completely elementary calculation.

Step 1. The following formula holds in the case of a holomorphically trivial fibration:

@

@t
c.�/D �iNis NsC�sNi�s Nj�i Njk Nk

��i Njs�i Njs ��sNi�s Nj�ik Nl
�

j Nkl
� 2<.�

k NksNi
�si/C 2<.�

k Nls
�

k Nl Ni
�sNi/:

To see this first recall that
c.�/D �s Ns �<

�
�sNi�s Nj�

i Nj
�
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and hence (using that �i Nj D ıij at z D 0, so that @�i Nj=@t D�@� Nji=@t at z D 0)

@

@t
c.�/D

@

@t
�s Ns � 2<

�
@

@t
�sNi

�
�sNi C .�sNi�s Nj /

@

@t
� Nji (3-8)

Using the definition of the relative Kähler–Ricci flow in the Calabi–Yau case and the simple fact that the
linearization of  7! log det. 

k Nl
/ at  is given by u 7!�! u, where �! uD  k Nlu

k Nl
is the Laplacian

with respect to the Kähler metric ! , hence gives
@

@t
c.�/D .log.det�i Nj //s Ns � 2<..log det.�

k Nl
//sNi�si/C .�si�s Nj /.log.det�

k Nl
//i Nj

D .�i Njs�
i Nj /Ns � 2<.�

k Nls
�k Nl/Ni�sNi C .�sNi�s Nj /.�ik Nl

�k Nl/ Nj

D �iNis Ns ��i Njs�j Ni Ns � 2<.�
k NksNi

�sNi ��k Nls
�

l NkNi
�sNi/C .�sNi�s Nj /.�i Njk Nk

��
ik Nl
�

j Nkl
/

(again using �i Nj D ıij at z D 0), finishing the proof of Step 1.

Step 2. The following formula holds in the case of a trivial fibration:

c.�/
k Nk
D �

k Nks Ns
C .�sNi�s Nj /.�k Nkj Ni

/� 2.�sNi�s Nj /� NkNim�k Nmj ��ksNi�ksNi �� NksNi
� NksNi
C 2<.�ksNi�s Nj� Nkj Ni

/

C 2<.� NksNi
�s Nj /� Nkj Ni

� 2<� NkksNi
�sNi :

To see this we first differentiate c.�/ with respect to zk to get

c.�/k D �ks Ns � Œ.�sNi�s Nj /k�
i Nj
C .�sNi�s Nj /.�

i Nj /k �D �ks Ns � .�ksNi�s Nj C� NksNi
�s Nj /�

i Nj
� .�sNi�s Nj /.�

i Nj /k :

Next, note that if h is a function with values in the space of Hermitian matrices and @ a derivation
satisfying the Leibniz rule, then

@.h�1/D�h�1.@h/h�1:

In particular, if h.0/D I then the following holds at 0:

. Nh�1/
k Nk
D� Nh

k Nk
C . Nh Nk

Nhk C
Nhk
Nh Nk/:

Applying this to hD .�i Nj / (when expanding the term A below) gives

c.�/
k Nk
D �

k Nks Ns
�
�
Œ.�ksNi�sNi/ Nk C .� NksNi

�sNi/ Nk �� .�ksNi�s Nj C� NksNi
�sj /� Nki Nj

�
�A

D �
k Nks Ns
�
�
Œ� NkksNi

�sNi C�ksNi�ksNi C�k NksNi
�sNi C� NksNi

� NksNi
�� .�ksNi�s Nj C� NksNi

�s Nj /� Nki Nj

�
�A;

where

A WD .�sNi�s Nj / Nk.�
i Nj /k C .�sNi�s Nj /.�

i Nj /
k Nk
D�.�sNi�s Nj / Nk�kj Ni C .�sNi�s Nj /.��k Nkj Ni

C 2<.� NkNim�k Nmj //

D�.�
sNi Nk
�s Nj C�sNi�s Njk/�kj Ni � .�sNi�s Nj /.�k Nkj Ni

C 2<.� NkNim�k Nmj //:

Hence,

c.�/
k Nk
D �

k Nks Ns
� Œ� NkksNi

�sNi C�ksNi�ksNi C�k NksNi
�sNi C� NksNi

� NksNi
�C .�ksNi�s Nj C� NksNi

�s Nj /� Nkj Ni

C.�
sNi Nk
�sNi C�sNi�sNik/�kj Ni C .�sNi�s Nj /�k Nkj Ni

� 2<.�sNi�s Nj� NkNim�k Nmj /;
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which finishes the proof of Step 2.

Step 3: End of proof of the theorem for a trivial fibration. Subtracting the formulas from the previous
steps gives, due to the cancellation of several terms,

@

@t
c.�/�c.�/

k Nk
D �

s Nm Nk
�

s Nm Nk
C.�sNi�s Nj /� NkNim�k Nmj �2<.� Nsk Nm

�
s Nl
� Nkl Nm

/D
X
m;k

ˇ̌̌̌
�

s Nm Nk
�

X
l

�
s Nl
� Nk Nml

ˇ̌̌̌2
:

Finally, note that

�
s Nm Nk
�

X
l

�
s Nl
� Nk Nml

D .�s Nm/ Nk � .� Nml/ Nk

X
l

�
s Nl
D .�

s Nl
�mNl/ Nk D .Vm/ Nk

(using �i Nj D ıij at z D 0), where V D .V1; : : : ;Vn/ is the .0; 1/-vector field (3-3) expressed in local
normal coordinates. This hence finishes the proof of the theorem in the case of a trivial fibration.

Step 4. We show that (3-7) holds for a general holomorphic submersion. As recalled above, any given
point P D .x; s0/ in X has a neighborhood U such that the fibration � W U! �.U/ (where we after
shrinking S may assume that �.U/D S ) is holomorphically trivial and the restriction LjU is isomorphic
to ��L over U. We denote by .z; s/ a choice of holomorphic coordinates on U trivializing the fibration.
Moreover, when X! S is a relative Calabi–Yau manifold we may furthermore choose .z; s/ with the
property that there is a family�s of nowhere vanishing holomorphic n-forms on the fibers Xs such that the
restriction of �s to Us ( WDU\Xs) coincides with the restriction of dz WD dz1^� � �^dzn to Us . Indeed,
first observe that we may choose �s so that �s D fs.z/ dz on U, where f .z; s/ WD fs.z/ is holomorphic
in .z; s/ and invertible, with respect to any given holomorphic coordinates .z; s/ as above. This amounts
to the well-known fact that the direct image sheaf ��.K�=S / naturally defines a holomorphic line bundle
on S or equivalently that any�s0

may be extended to�s such that�s^ds is a holomorphic .nC1/-form
on X (which for example follows from the Ohsawa–Takegoshi extension theorem; see [Berndtsson 2009a]
for a more general setting). We may now (after perhaps shrinking U again) write f .z; s/D @g.z; s/=@z1

for some holomorphic functions g on U and define new holomorphic coordinates .�; s/ on U (after
perhaps again shrinking U) by letting �i WD g for i D 1 and �i WD zi for i > 1. By construction we then
have �sjUs

D d�jUs
, as desired.

We can now repeat the previous local computation; the only new contribution comes from the derivatives
on the local function  �.s/ defined by formula (3-2), which appear in the definition of the relative Kähler–
Ricci flow (1-3) in the Calabi–Yau case. Indeed, locally this latter flow may be written as

@�

@t
D log det.�

k Nl
/� �.s/

and the only new contribution to the previous calculations hence come from the term �. �.s//s Ns which
appears in the calculation of .@�=@t/s Ns . Combining formulae (3-1), (3-2) hence proves that (3-7) holds
locally on X. Since all objects appearing in the formula are globally well-defined, this finishes the proof
of Step 4. �
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Now the maximum principle for parabolic equations [Protter and Weinberger 1967] implies the
following:

Corollary 3.4. Let L! X! S be a line bundle over a fibration as in the previous theorem.

� If the fibration is holomorphically trivial, then the function c.t/ WD infX c.�/ is, for a fixed value
on s, increasing along the relative Kähler–Ricci flow and hence the flow preserves (semi)positivity of
the curvature of �.

� For a holomorphically trivial fibration X D X �S , with L the pull-back of an ample line bundle
L! X , the flow improves the positivity of a generic initial weight in the following sense: if �0 is
a semipositively curved weight on L over X � S such that @�=@s does not vanish identically on
X � fsg for any s, then �t is strictly positively curved on X �S for t > 0.

� In the general case the (semi)positivity of the curvature of the weight on � � t � on the R-line
bundle L� tKX=S is preserved under the flow; that is,

ddc�t � �t!WP

for all t (and similarly in the strict case).

Proof. The first and third points follow from the maximum principle exactly as in the proof of Corollary 4.9
below. The second point is proved as follows: If strict positivity does not hold then one concludes (see
the proof of Corollary 4.9 below) that �A�0

D @X V�0
vanishes identically on X for some s0; that is,

the corresponding vector field V�0
defined by (3-3) is holomorphic on X . But, it is a well-known fact

that any such holomorphic vector field V 1;0 vanishes identically when X is a Calabi–Yau manifold and
hence @�=@s vanishes identically on X � fs0g, giving a contradiction. The vanishing of V 1;0 may be
proved as follows: by a Bochner–Weitzenbock formula V 1;0 is covariantly constant with respect to any
Ricci flat metric on X . Moreover, the imaginary part VI satisfies !�0

.VI ; � /D df for some real smooth
function f . But since !X

�0
> 0 on X � fs0g the latter equation forces the vanishing of VI at any point

where f achieves it maximum and hence VI � 0 on X . Similarly, the real part VR of V 1;0 vanishes
identically (by replacing df with dcf ). �

Of course, in the case of an infinitesimally nontrivial fibration the inequality in the previous corollary
is useless for the limit �1, but its interest lies in the fact that it gives a lower bound on the (possible) loss
of positivity along the relative Kähler–Ricci flow, which is independent of the initial data.

Remark 3.5. Throughout the paper we assume, for simplicity, that the initial weight �0 has relatively
positive curvature, when restricted to the fibers of the X. But, as in the previous corollary, we do allow �0

to have merely semipositive curvature over the total space X. However, using recent developments for
the Kähler–Ricci flow [Song and Tian 2009] the relative Kähler–Ricci flows are actually well-defined
for any smooth weight �0 which has merely relatively semipositive curvature and �t becomes relatively
positively curved for any t > 0. Using this result the previous corollary can be seen to be valid for a
general semipositively curved initial weight �0. Even more generally, as shown in [Song and Tian 2009],
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the flow is well-defined for any (possibly singular) �0 with positive curvature current such that �0 is
locally bounded and the Monge–Ampère measure .ddc�0/

n has local densities in Lp for some p > 1.

Evolution of the curvature of the top Deligne pairing. For a general smooth base S (i.e., not necessarily
embedded in C) the weight � on L naturally induces a closed .1; 1/-form ‚�.s/ on S expressed as

‚� WD ��..ddc�/nC1=.nC 1/!/:

Equivalently, for any local holomorphic curve C � S with tangent vector @=@s 2 TS ,

‚�

�
@

@s
;
@

@Ns

�
WD

Z
�s

c.�/!n
�=n!

where s 2 C and � is the induced map � W X! C . Geometrically, the form ‚� on S may be described
as the curvature of the Hermitian holomorphic line bundle .L; �/nC1 over S defined as the top Deligne
pairing of the Hermitian holomorphic line bundle .L; �/! X! S (see [Deligne 1987]; the relevance of
Deligne pairings for Kähler geometry has been emphasized by Phong and Sturm [2004]). The form ‚�

also appears as a multiple of the curvature of the Quillen metric on the determinant of the direct image of
a certain virtual vector bundle over X (see [Fujiki and Schumacher 1990] and references therein).

Similarly, one can define a .1; 1/-form !WP� on S depending on � by letting

!WP�

�
@

@s
;
@

@Ns

�
WD

Z
�s

jA�.s/j
2!n
�=n!:

It can be checked that this yields a well-defined .1; 1/-form on X. Anyhow this latter fact is also a
consequence of the following corollary of the previous theorem.

Corollary 3.6. We make the same assumptions as in the previous theorem. Let ‚�t
be the curvature

form on S of the top Deligne pairing of .L; �/! X! S , where �t evolves according to the relative
Kähler–Ricci flow in the Calabi–Yau case. Then

@

@t
‚�.s/D���

�
R!X

�
.ddc�/nC1=.nC 1/!

�
C!WP�t

�!WP;

where R!X
�

denotes the fiberwise scalar curvature of the metric !� .

Proof. We may without loss of generality assume that S is embedded in Cs . Then

@

@t

Z
�s

c.�/!n
�=n!D

Z
�s

@

@t
c.�/!n

�=n!C

Z
c.�/

!n�1
�

.n� 1/!
^ ddc @

@t
�:

Now, by the definition of the Kähler–Ricci flow in the Calabi–Yau case,

!n�1
�

.n� 1/!
^ ddc @

@t
� D

!n�1
�

.n� 1/!
^ .�Ric.!X

� //DW �R!X
�
!n
�=.nC 1/!;

where we have used the definition of the (normalized) scalar curvature R!X
�

of the Kähler metric !X
�

in
the last step. Finally, integrating the formula in the previous theorem finishes the proof of the corollary. �
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Remark 3.7. If the initial weight � for the Kähler–Ricci flow is taken so that !� restricts to a Ricci flat
metric on all fibers of X, then � is stationary for the Kähler–Ricci flow and hence the previous corollary
(and the proof of the previous theorem) shows thatZ

�s

jA�.s/j
2!n
�=nD

@2 �

@s@Ns
I

that is, !WP D dsdc
s in2

log
R

Xs
� ^ N�. Since, by Proposition 4.5 below, A�.s/ is harmonic on each

fiber Xs with respect to the Ricci flat restriction !� , this implies the equivalence between (3-1) and (3-2).

3B. Quantization: The Bergman iteration on HL. In this section we will specialize and develop the
general results in Section 2D to the present setting where we have fixed a family of probability measures �s

(independent of �/ on the fibers �s .

Convergence and positivity of the Bergman iteration at a fixed level k. The following monotonicity
properties were shown by Donaldson [2009] in the present setting.

Lemma 3.8. The functionals �I� and L.k/ are both increasing along the Bergman iteration on HL with
respect to �. Moreover, they are strictly increasing at �.k/m unless �.k/m is stationary.

Proof. Since I� is affine and in particular concave on the affine space of all smooth weights the lemma
follows immediately from Lemma 2.6. �

We can now prove the convergence of the Bergman iteration at a fixed level k in the present setting.

Theorem 3.9. Let L!X be an ample line bundle and � a fixed volume form on X giving unit volume
to X . Assume a smooth initial weight �0 is given. For any given positive integer k the following holds: in
the large time limit, that is, when m!1, the weights �.k/m converge to �.k/1 in the C1-topology on X .
Moreover, in the relative setting the convergence is locally uniform with respect to the base parameter s.

Proof. By the previous lemma �I� is increasing and by definition �F
.k/
� is coercive. Moreover, as shown

in [Berman et al. 2009] balanced weights are unique modulo scaling and hence all the convergence criteria
in Proposition 2.9 are satisfied. �

Conservation of positivity. Recall that, given a relatively ample line bundle L over a fibration � W X! S

as above, the corresponding direct image bundle ��.LCKX=S /! S is the vector bundle such that
the fiber over s is naturally identified with the space H 0.X;LCKX / of all holomorphic n-forms f
on X WD Xs with values in L WD LX (as is well-known this is indeed a vector bundle, as shown using
vanishing theorems). Moreover, any given weight � on L induces a Hermitian metric on ��.kLCKX=S /

whose fiberwise restriction will be denoted by HilbLCKX
.�/:

HilbLCKX
.�/.f; f / WD in2

Z
X

f ^f e�� :

The point is that there is no need to specify an integration measure � thanks to the twist by the relative
canonical line bundle KX=S . We will have great use for the following recent results of Berndtsson.
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Theorem 3.10. Let � W X! S be a proper holomorphic submersion and let L be a relatively ample line
bundle over X equipped with a smooth weight with semipositive curvature. Then:

� [Berndtsson 2009a] The curvature of the Hermitian vector bundle over S defined as the direct image
bundle ��.LCKX=S / is semipositive in the sense of Nakano (and in particular in the sense of
Griffiths).

� (See [Berndtsson 2011, Theorem 1.2 and subsequent discussion].) The vector bundle ��.LCKX=S /

has strictly positive curvature in the sense of Griffiths if either the curvature form of � is strictly
positive over all of X or strictly positive along the fibers of � WX!S and the fibration is infinitesimally
nontrivial (i.e., the Kodaira–Spencer classes are nontrivial for all s 2 S/.

We will only use the following simple consequence of Theorem 3.10 (compare [Berndtsson 2009a;
Berndtsson and Păun 2008b]):

Corollary 3.11. Under the assumptions in the first point of the previous theorem we have

ddc.FS.k/ ıHilbkLCKX=S
/.�/� 0 (3-9)

and the inequality is strict under the assumptions in the second point of the theorem.

Proof. We will denote the line bundle kLCKX=S over X by F and the vector bundle ��.F/ over S by E

(and its dual by E�/. First note that the weight on F that we are interested in may be written as

.FS ıHilbF/.s;xs/D log sup
fs2Es

jfs.xs/j
2

kf .xs/k
2
D log jƒ.s;xs/j

2; (3-10)

where ƒ.s;xs/ is the element in E�s˝ Fs defined by

.ƒ.s;xs/fs/ WD fs.xs/:

Now let t 7! .st ;xst
/ be a local holomorphic curve in X with t 2 � (the unit-disc). Trivializing F in

a neighborhood of the previous curve we may pull back ƒ.s;xs/ to a holomorphic section ƒt of E�

over the unit-disc and identify the weight defined by (3-10) with a function log jƒt j
2 on �. We have to

prove that this latter function is (strictly) psh. But this follows from the following well-known fact: a
vector bundle E!� is (strictly) positive in the sense of Griffiths if and only if log.kƒtk

2/ is (strictly)
subharmonic on � where ƒ is any nontrivial holomorphic section of the dual vector bundle E�. For
example, to get the required (strict) subharmonicity one just notes that, after a standard computation,

@2 log.kƒtk
2/

@t @Nt
ˇ̌
tD0
� �

‚E�.ƒ0; ƒ0/

kƒ0k
2

;

where ‚E� at t is the Hermitian endomorphism of E�t representing the curvature of E. By the previous
theorem ‚E is (strictly) positive which is equivalent to ‚E� being (strictly) negative and the corollary
hence follows from the previous inequality. �

We next obtain a “quantized” version of Corollary 3.4.
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Corollary 3.12. Let � W X! S be a proper holomorphic submersion with Calabi–Yau fibers and let L be
a relatively ample line bundle over X.

� When � is holomorphically trivial the relative Bergman iteration preserves semipositivity of the
curvature of �.

� In the case of a general submersion with Calabi–Yau fibers,

ddc�
.k/

.m/
� �

m

k
!WP

for all m.

Proof. For simplicity first consider the case of a trivial fibration. Fix a holomorphic n-form � on X WDX0

trivializing KX . Under the assumption that X! S is holomorphically trivial � extends to a holomorphic
n-form on all of X such that  � WD log

R
Xs

in2

�^ N� is independent of s. In this notation

Hilb.k/.�.s; � //.f; f / WD
Z

Xs

jf j2e�.k�.s;� /� �.s//in2

�^ N�:

Now consider the fiberwise isomorphism

j W H 0.X; kL/!H 0.X; kLCKX /; j .f /D f ˝�;

which clearly satisfies Hilb.k/.�.s; � //D e �j �HilbLCKX
.�.s; � //. This means that, up to a multiplica-

tive constant independent of s, the map j is an isometry when H 0.Xs; kLCKXs
/DH 0.X; kLCKX=S /Xs

is equipped with its natural Hermitian product. In particular, by (3-9),

ddc� � 0 D) ddc.FS.k/ ıHilb.k//.�/� 0:

Iterating hence proves the first point in the statement of the corollary. Finally, for a general submersion
the same argument gives, but now taking into account the fact that  � depends on s, that

ddc� � 0 D) ddc.FS.k/ ıHilb.k//.�/� �ddc �.s/=k D�!WP.s/=k;

using formula (3-2) in the last equality. Replacing � with FS.k/ ıHilb.k/� �.s/ and iterating hence
finishes the proof of the corollary. �

Convergence towards the Kähler–Ricci flow. The following very simple proposition will turn out to be
very useful:

Proposition 3.13. The following monotonicity holds for the Bergman iteration at level k (with respect
to �). Assume that �.k/m �  

.k/
m . Then �.k/

mC1
�  

.k/
mC1

. In particular, the Bergman iteration decreases the
distance in HL defined with respect to the sup norm d.�;  / WD supX j� � j.

Proof. By definition we have

�
.k/
mC1
D �.k/m C

1

k
log �.k/.k�.k/m /D

1

Nk

X
i

jfi j
2:
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By a well-known identity for Bergman kernels,X
iD1

jfi j
2.x/D sup

f 2H 0.X ;kL/

�
jf .x/j2

.Z
X

jf j2e�k�m d�

�
:

But this latter expression is clearly monotone in �m proving the first statement of the proposition. As for
the last statement just let C WD supX j�

.k/
m � 

.k/
m j so that

�.k/m �  .k/m CC;  .k/m � �.k/m CC:

Applying the first statement of the proposition finishes the proof. �

Remark 3.14. The previous proposition can be seen as a “quantum” analog of the corresponding result for
the Kähler–Ricci flow (1-3), which follows directly from the maximum principle for the Monge–Ampère
operator and its parabolic analogue.

Now we can prove the following theorem, which is one of the main results in this paper.

Theorem 3.15. Let L! X be an ample line bundle and � a volume form on X giving unit volume
to X . Fix a smooth weight �0 on L, whose curvature form is fiberwise strictly positive, and consider the
corresponding Bergman iteration �.k/m at level k and discrete time m, as well as the Kähler Ricci flow �t —
both defined with respect to �. Then there is a constant C such that

sup
X

j�.k/m ��m=k j � C m=k2:

In particular, if mk is a sequence such that mk=k! t , then

�.k/mk
! �t

uniformly on X . Moreover, in the relative setting C is locally bounded in the base parameter s if �
depends smoothly on s.

Proof. Write  k;m D �m=k and F .k/. /D 1
k

log �.k/. /.

Step 1. We have  k;mC1� k;mDF .k/. k;m/CO.1=k2/ for all .k;m/, where the error term is uniform
in .k;m/. (In the following we will take that as a definition of O.1=k/, etc.)

To prove this we write the left-hand side as

1

k

�
�m=kC1=k ��m=k

1=k

�
D

1

k

�
@�t

@t
ˇ̌
tDm=k

CO.1=k/

�
using that

ˇ̌
@2�t=@

2t
ˇ̌
� C on X � Œ0;T � by Theorem 3.1. More precisely, by the mean value theorem

the error term O.1=k/ may be written as
1

k

@2�t

@2t
.�/=2

for some � 2 Œ0; 1=k�.
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Since �t evolves according to the Kähler–Ricci flow this means that

 k;mC1� k;m D
1

k
log
�
.ddc�m=k/

n=n!

�

�
CO.1=k2/:

But by Proposition 2.11 we have that

F .k/.�m=k/D
1

k
log
�
.ddc�m=k/

n=n!

�

�
CO.1=k2/;

where the error term is uniformly bounded in .m; k/ for m=k � T by Theorem 3.1. In fact, as is
well-known the uniform estimates (2-4) on the “space-derivatives” of �t in Theorem 3.1 also hold for
all time-derivatives dr�t=d

r t (and in particular for r D 1 and r D 2 used above). This is well-known
and shown by differentiating the flow equation with respect to time and applying the maximum principle
repeatedly. Hence, T may be taken to be equal to infinity, which finishes the proof of Step 1.

Step 2. Given Step 1 and the fact that the Bergman iteration decreases the sup norm, we have

sup
X

j�.k/m � k;mj � C m=k2: (3-11)

We will prove this by induction over m (for k fixed), the statement being trivially true for mD 0. By
Step 1 there is a uniform constant C such that

sup
X

ˇ̌
 k;mC1� . k;mCF .k/. k;m//

ˇ̌
� C.1=k2/

for all .m; k/. Now we fix the integer k and assume as an induction hypothesis that (3-11) holds for m

with C the constant in the previous inequality. By Proposition 3.13,

sup
X

ˇ̌
. k;mCF .k/. k;m//� .�

.k/
m CF .k/.�.k/m //

ˇ̌
� sup

X

j k;m��
.k/
m j � C m=k2

with the same constant C as above, using the induction hypothesis in the last step. Combining this
estimate with the previous inequality gives

sup
X

j k;mC1��
.k/
mC1
j � C m=k2

CC=k2;

proving the induction step and hence Step 2. �

Of course, it seems natural to expect that C1-convergence holds but we leave this problem for the
future.

Combining the previous corollary with Theorem 3.15 and the variational principle in [Berman et al.
2009] (the C1-convergence rather uses [Keller 2009; Wang 2005]) now gives the following:

Corollary 3.16. The conservation of semipositivity of the curvature of �t in Corollary 3.4 holds. For a
fixed initial data �0 D �

.k/
0
2HL the following convergence results hold for the Bergman iteration �.k/m :

� For any sequence mk such that mk=k!1 the convergence �.k/mk
! �1 holds in the L1-topology

on X . Moreover, if it is also assumed that mk=k2!0 then the convergence holds in the C 0-topology.
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� The balanced weights �.k/1 WD limm!1 �
.k/
m at level k converge, when k!1, in the C1-topology,

to the weight �1 which is the large time limit of the corresponding Kähler–Ricci flow (and in
particular a solution to the corresponding inhomogeneous Monge–Ampère equation).

In the relative case the convergence holds fiberwise locally uniformly with respect to the base parameter s.

Proof. The first statement follows immediately by combining Theorem 3.15 and the previous corollary,
since semipositivity is preserved under uniform limits of weights. Hence, we turn to the proof of the first
point. It is based on the following inequalities:

lim sup
k!1

I�.�
.k/
mk
/� I�.�1/; lim inf

k!1
E.�.k/mk

/� E.�1/: (3-12)

To prove these inequalities take a sequence m0
k

such that m0
k
=k! t and m0

k
�mk . By monotonicity

(Lemma 3.8),
I�.�

.k/
mk
/� I�.�

.k/
m0k

/:

Hence, letting k!1 and using that �.k/m0k
! �t uniformly (by Theorem 3.15) gives

lim sup
k!1

I�.�
.k/
mk
/� I�.�t /:

Finally, letting t !1 and using Theorem 3.1 proves the first inequality in (3-12). As for the second
inequality in (3-12), it is similarly proved by noting that, by monotonicity,

L.k/
�
�
.k/

m0
k

�
� L.k/.�.k/mk

/:

To proceed we will use that  k !  uniformly in HL implies that

L.k/. k/! E. /:

To see this recall that this is well-known when  k D  for all k (as follows for example from
Proposition 2.11, saying that the convergence holds for the differentials dL.k/ and dE; for more general
convergence results see [Berman and Boucksom 2010]). But then the general case follows easily from
the fact that L.k/ is monotone in the argument  and scaling equivariant. Hence, letting k!1 gives,
since  k WD �

.k/
m0k
! �t uniformly, that

E.�t /� lim inf
k!1

L.k/.�.k/mk
/:

The proof of the second inequality in (3-12) is finished by using that (as shown in [Berman et al.
2009]), for any sequence . k/ in HL,

lim sup
k!1

L.k/. k/� lim inf
k!1

E. k/:

Now, adding up the two inequalities in (3-12) gives

lim inf
k!1

F.�.k/mk
/� F.�1/:
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But then it follows from the variational results in [Berman et al. 2009] that

lim
k!1

F.�.k/mk
/D F.�1/ (3-13)

and
ddc�.k/mk

! ddc�1 (3-14)

in the weak topology of currents. Next, note that by the inequalities (3-12) the sequence �.k/mk
is contained

in a compact subset of HL equipped with the L1-topology (compare the proof of Lemma 2.3) and hence
we may assume (perhaps after passing to a subsequence) that �.k/mk

!  in the L1-topology. But then
the convergence in (3-14) forces  D �1CC for some constant C . Hence, it will be enough to prove
that C D 0. To this end, note that combining (3-13) and the inequalities (3-12) shows that the latter
inequalities are in fact equalities. In particular,

lim
k!1

E.�.k/mk
/D E.�1/:

By the scaling equivariance of E it hence follows that C D 0, which finishes the proof of the first point. If
one assumes that mk=k2! 0 then it follows immediately from combining Theorem 3.1 and Theorem 3.15
that the convergence holds uniformly on X , that is, in the C 0-topology.

To prove the second point in the statement of the corollary note that replacing �.k/mk
by �.k/1 in the

previous argument gives, just as before, that �.k/1 ! �1 in the L1-topology. Moreover, since it was
shown in [Keller 2009; Wang 2005] that the convergence of the corresponding curvature forms holds in
the C1-topology this proves the second point. �

4. The (anti)canonical setting

In this section we will consider another particular case of the general setting in Section 2 arising when
the line bundle L WD rKX is ample, where r D 1 or r D�1 (for any fiber X of the fibration). Hence, X

is necessarily of general type in the former “positive” case and a Fano manifold in the latter “negative”
setting. We will also refer to these two different settings as the ˙KX -settings.

By the very definition of the canonical line bundle any weight � on ˙KX determines a canonical
scale-invariant probability measure �˙.�/ on X , where

�˙.�/ WD e˙�=

Z
X

e˙�

(with a slight abuse of notation), so that �˙.�C c/D �˙.�/. Equivalently, �˙.�/ may be identified
with the one-form on H˙KX

obtained as the differential of the following functional I˙.�/ on H˙KX
:

I˙.�/ WD ˙ log
Z

X

e˙� ; �˙.�/D dI˙:

A characteristic feature of the ˙KX -setting is that the antiderivative I˙ is canonically defined (i.e., not
only up to scaling). As a consequence there is a canonical normalization condition for weights that will
occasionally be used below, namely the condition that I˙.�/D 0.
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We will also have use, as before, for the equivariant functional

F˙ WD E� I˙;

where E is the functional defined in Section 2B (with respect to a fixed reference weight in ˙KX ).1

Note that the critical points of F˙ on H˙KX
are the Kähler–Einstein weights �, that is, the weights such

that !� is a Kähler–Einstein metric on X (compare Theorem 4.1 below).
It will also be important to consider a nonnormalized variant of �˙.�/ defined by

�0˙.�/ WD e˙�

(which is the differential of the nonequivariant functional � 7!
R

e˙�). In the sequel we will refer
to the two different settings defined by �˙.�/ and �0

˙
.�/ as the normalized ˙KX -setting and the

nonnormalized˙KX -setting, respectively. It should be pointed out that it is the latter one which usually
appears in the literature on the Kähler–Ricci flow (see for example [Cao 1985; Tian and Zhu 2007; Phong
et al. 2007]).

4A. The relative Kähler–Ricci flow. According to the general construction in Section 2 each particular
setting introduced above comes with an associated relative Kähler–Ricci flow. For future reference we
will write out the fiberwise flow in the nonnormalized ˙KX -setting in local holomorphic coordinates:

@�

@t
D log det

�
1

�

@2�

@zi@ Nzj

�
=n!� .˙�/: (4-1)

The normalized and nonnormalized settings induce the same evolution of the fiberwise curvature forms
!t :

@!t

@t
D�Ric!t �˙!t ; (4-2)

in c1.˙KX /.2

In particular, if !t converges to !1 in the large time limit, then !1 is necessarily a Kähler–Einstein
metric, which is of negative scalar curvature in the KX -setting and positive scalar curvature in the
�KX -setting.

The main virtue of the Kähler–Ricci flow in the normalized setting as compared with the nonnormalized
one is that the first one is convergent precisely when the flow of curvature forms !t is. On the other
hand, as will be seen later the flow in the nonnormalized setting (and its quantized version) has better
monotonicity and positivity properties.

Theorem 4.1. The Kähler–Ricci flow in the ˙KX -settings always exists and is smooth on X � Œ0;1Œ.
More precisely, all the analytical assumptions in Section 2C are satisfied. In the normalized KX -setting it
converges to a Kähler–Einstein metric of negative scalar curvature. In the �KX -setting the flow converges
to a Kähler–Einstein metric of positive scalar curvature under the assumptions that H 0.TX /D 0 and X

1Note that F˙ is minus the functional introduced in [Tian 2000].
2In the literature this latter flow of Kähler forms is sometimes referred to as the normalized Kähler–Ricci flow, as opposed to

Hamilton’s original flow, but our use of the term “normalized” is different and only applies on the level of weights on L.
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a priori admits a Kähler–Einstein metric. Furthermore, in the relative case the convergence is locally
uniform with respect to the base parameter s.

Apart from the uniqueness statement, the first part of the previous theorem is due to Cao [1985]. The
convergence on the level of Kähler metrics in the Fano case, that is, when �KX is ample, was proved by
Perelman (unpublished) and Tian and Zhu [2007]. The convergence on the level of weights then follows
directly from Proposition 2.4 and the known coercivity of the functionals �F˙; the coercivity of �FC
follows immediately from Jensen’s inequality, while the coercivity of �F� was shown in [Phong et al.
2008], confirming a conjecture of Tian. The uniqueness in the difficult case of �KX is due to Bando and
Mabuchi (for a comparatively simple proof see [Berman et al. 2009]).

Remark 4.2. The first key analytical ingredient in the proof of the convergence of the flow of Kähler
metric !t in the Fano case (i.e., the �KX -setting) is an estimate of Perelman saying that the Ricci
potential ht of !t , when suitably normalized, is always bounded along the Kähler–Ricci flow for !t (see
[Tian and Zhu 2007; Phong et al. 2007]). In fact, in the present notation ht coincides (modulo signs) with
the time derivative of �t evolving according to the normalized Kähler–Ricci flow in the �KX -setting. The
second key ingredient is the fact that the existence of a Kähler–Einstein metric implies that �FC is proper
(and conversely [Tian 2000; Phong et al. 2008]). As is well-known there are, in general, obstructions to
existence of Kähler–Einstein metrics in the �KX -setting. According to a conjecture of Yau the existence
of a Kähler–Einstein metric should be equivalent to a suitable notion of algebraic stability (in the sense of
geometric invariant theory). From this point of view the properness (or coercivity) assumption on the
functional �FC can be considered as an analytic stability [Tian 2000].

Definition. A weight �KE on ˙KX will be called a normalized Kähler–Einstein weight if I˙.�KE/D 0,
or equivalently if e˙�KE D !n

KE=n!.

Hence, there is precisely one normalized Kähler–Einstein weight on CKX when it is ample. The
following simple corollary of Theorem 4.1 and Remark 4.2 illustrates the difference between the normal-
ized and nonnormalized settings.

Corollary 4.3. In the CKX -setting the nonnormalized flow (4-1) always converges to the normalized
Kähler–Einstein weight.

Proof. Write �0t for the evolution under the Kähler–Ricci flow in the nonnormalized KX -setting so that

�0t D �t CCt ;

where Ct is a constant for each t . Since � 7! .ddc�/n is invariant under scalings, comparing the two
flow equations gives

@Ct

@t
D�Ct � IC.� t /: (4-3)

Let Dt WD Ct � I.�t /. Then we get

@Dt

@t
D�Dt C �t ; where �t WD

@IC.�t /

@t
:



RELATIVE KÄHLER–RICCI FLOWS AND THEIR QUANTIZATION 165

In the CKX -setting Theorem 4.1 implies that �t ! 0; it follows for elementary reasons that Dt ! 0.
Indeed, assume for a contradiction that Dt does not converge to 0. Then @ log jDt j=@t !�1; that is,
jDt j � Cıe

�t.1�ı/ ! 0 for 0 < ı � 1, giving a contradiction. Finally, in the nonnormalized �KX -
setting it was shown in [Phong et al. 2007] (building on [Chen and Tian 2002]) that there is a constant
c0 such that �0t converges. But then it follows immediately from combining the scaling invariance of
� 7! .ddc�/n and the scaling equivariance of �0� that the flow diverges exponentially for any other
choice of constant c0. �
Remark 4.4. In the nonnormalized �KX -setting (under the assumptions in the previous theorem) it was
shown in [Phong et al. 2007] (building on [Chen and Tian 2002]) that the flow converges when the initial
weight �0 is replaced by �0C c0 for a unique constant c0. The argument in the proof of the previous
corollary then gives that for a generic initial weight the flow is divergent.

4B. Weil–Petersson geometry. As before we may in the following assume that the base S is embedded
in C. In the relative ˙KX -setting the (generalized) Weil–Petersson form !WP on S was introduced in
[Koiso 1983] (see also [Fujiki and Schumacher 1990] for generalizations):

!WP

�
@

@s
;
@

@Ns

�
WD kAKEk

2
!KE

; (4-4)

where AKE denotes the unique representative in the Kodaira–Spencer class �. @
@s
/ 2H 0;1.T 1;0Xs/ which

is harmonic with respect to the Kähler–Einstein metric on Xs and the L2-norm is computed with respect
to this latter metric. In fact, as shown in [Fujiki and Schumacher 1990, Proposition 4.12], AKE D�N@V!s

,
where V!s

is the local vector field defined by formula (3-3). This is a consequence of the following
proposition proved in [Fujiki and Schumacher 1990].

Proposition 4.5. Let � W X! S be a proper holomorphic submersion and !s a smooth family of 2-forms
on the fibers Xs such that !s is Kähler–Einstein on Xs . Then A!s

is the unique element in H 0;1.T Xs/

which is harmonic with respect to !s .

Note that “harmonic” lifts of vector fields were previously used by Siu [1986] in the context of
Weil–Petersson geometry.

Remark 4.6. When the relative dimension is one the space H 0;1.T Xs/ is isomorphic to H 1;0..T Xs/
�/D

H 0.2K�s
/ under Serre duality. Hence, the Weil–Petersson form as defined in terms of harmonic represen-

tatives then coincides with the metric on X introduced by Weil in the case when X is the universal family
over Teichmüller space. As conjectured by Weil and subsequently proved by Ahlfors this latter .1; 1/-form
is closed and hence Kähler. In the higher-dimensional case, it was observed in [Fujiki and Schumacher
1990] that the Kähler property of !WP as defined by (4-4) follows immediately from Corollary 4.10 below.

By an application of the implicit function theorem (in appropriate Banach spaces) the smoothness of
the family !s (and of the associated normalized weight) in the previous proposition is automatic in the
CKX -case case, as well as in the �KX case if there are no nontrivial holomorphic vector fields tangential
to the fibers of the fibration (see Theorem 6.3 in [Fujiki and Schumacher 1990]).

Now we can prove the following variant of Theorem 3.3.
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Theorem 4.7. Let � W X! S be a proper holomorphic submersion. Assume that ˙KX=S is relatively
ample and that �t evolves according to the Kähler–Ricci flow in the nonnormalized setting. Then

@c.�t /

@t
D�!X

t
c.�t /�˙c.�t /CjA�t

j
2

!X
t

: (4-5)

In particular, if �KE is a fiberwise normalized Kähler–Einstein weight, then

�!KEc.�KE/�˙c.�KE/CjA!KE j
2

!X
KE
D 0:

Proof. To simplify the notation we will only consider the CKX -setting, but the proof in the �KX setting
is essentially the same. We will just indicate the simple modifications of the proof of Theorem 3.3 which
arise in the present setting.

Let us first consider the modifications to the calculation of the t -derivative of c.�/ that arise from the
additional term �� appearing in the calculation of the time derivative �t , since now

@

@t
�t D log det.�

k Nl
/��

in local coordinates. To this end we assume to simplify the notation that X is one-dimensional (but the
general argument is essentially the same). First recall that, according to formula (3-8),

@

@t
c.�/D

@

@t
�s Ns �

�
.�s Nz�s Nz/t�

�1
z Nz � .�s Nz�s Nz/�

�2
z Nz

@

@t
�z Nz

�
:

Hence, the additional contribution referred to above is of the form

B WD .��/s Ns � 2<.��s Nz�s Nz/�
�1
z Nz C�s Nz�s Nz�

�2
z Nz .��z Nz/D .��s Ns/C 2j�s Nzj

2��1
z Nz ��s Nz�s Nz�

�1
z Nz D�c.�/:

Hence, the local calculations in the Calabi–Yau case give that

@

@t
c.�/D�!t

c.�/� c.�/CjA� j
2

!X
t

:

Finally, since a normalized Kähler–Einstein weight is stationary for the nonnormalized Kähler–Ricci flow
this finishes the proof of the theorem. �

The last fiberwise elliptic equation in the previous corollary (in the KX -setting) was first obtained by
Schumacher [2008], who used the maximum principle to deduce an interesting consequence:

Corollary 4.8. Let � W X!S be a fibration as in the previous theorem and assume that KX=S is relatively
ample. Then the canonical fiberwise Kähler–Einstein weight �KE on KX=S is smooth with semipositive
curvature form on X. Moreover, if the Kodaira–Spencer classes of the fibration are nontrivial for all s,
then the curvature form of �KE is strictly positive on X.

The first part of the corollary was also shown by Tsuji [2006; 2011] using his iteration. Similarly, by
a simple application of the parabolic maximum principle we deduce the following corollary from the
parabolic equation in the previous theorem.
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Corollary 4.9. We make the same assumptions as in the previous theorem. Let � t evolve according to the
Kähler–Ricci flow in the nonnormalized˙KX -setting. If the initial weight has (semi)positive curvature
form on X then so has � t for all t . More precisely, .ddc� t /xz

> 0 (in all nC1 directions) at any point xs

in the fiber Xs unless .ddc�0/
nC1 and A�0

vanish identically on Xs .

Proof. As usual we may assume that S is embedded in C. Let us start with the semipositive case
where the conclusion follows from the weak maximum principle. Indeed, assume to get a contradiction
that c.�t /� 0 on X for t D 0 but that there is .t; s;x/ such that at .t; s;x/ we have c.�t /.s;x/ < 0. By
optimizing over .x; t/ we may also assume that @.eatc.�t //=@t � 0, �!X

t
c.�t /� 0. Then (4-5) gives

0� eat

�
ac.�t /C

@c.�t /

@t

�
D eat

�
�!X

t
c.�t /� .a˙ 1/c.�t /CjA�t

j
2

!X
t

�
:

But if a is chosen so that a˙ 1> 0, the right-hand side above is strictly positive, giving a contradiction.
To handle the remaining cases we invoke the following well-known strong maximum principle for the
heat operator (which by standard argument can be reduced to the corresponding local statement in [Protter
and Weinberger 1967]): let ht � 0 satisfy

@ht

@t
��gt

ht on Œ0;T ��X

for any smooth family gt of Riemannian metrics. Then either ht > 0 for all t > 0 or h0 � 0. In our case
we set ht D eatc.�t / with aD�˙ 1 and conclude that if it is not the case that c.�t / > 0 for all t > 0

then c.�0/� 0 and hence
@

@t
c.�t /tD0 D jA�0

j
2

!X
0

:

If we now assume, to get a contradiction, that the right-hand side above is strictly positive at x0 then it
follows that there is an � > 0 such that c.�t /.x0/ > 0 for t 2 .0; �Œ; that is, for such t it is not the case
that c.�t /� 0 on X . Hence, as explained above c.�t / > 0 on all of �0;1Œ�X , which yields the desired
contradiction. �

In particular, the previous corollary says that if the fibration X is infinitesimally nontrivial then the
nonnormalized Kähler–Ricci flows instantly make any semipositively curved initial weight strictly positive.

Next we note that integrating the last formula in the previous theorem immediately gives the following
corollary first shown by Fujiki and Schumacher [1990, Theorem 7.9].

Corollary 4.10. We make the same assumptions as in the previous theorem. Let �KE be the weight of a
smooth metric on˙KX=S which restricts to a normalized Kähler–Einstein weight on each fiber. Then

��..ddc�KE/
nC1=.nC 1/!/D˙!WP

on S , where �� denotes the fiber integral. In particular, if S is effectively parametrized (i.e., all Kodaira–
Spencer classes are nontrivial) then ˙��.ddc��/

nC1 and hence the Weil–Petersson metric !WP is a
Kähler form on the base S .
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Remark 4.11. It follows immediately from the previous corollary that when X is a Fano manifold the
normalized Kähler–Einstein weight �KE never has semipositive curvature on all of X if the family is
effectively parametrized. Combining this fact with Corollary 4.9 shows that the relative Kähler–Ricci
flow in the nonnormalized KX -setting never converges in the L1.X/-topology for an initial weight �0

with semipositive curvature form on an effectively parametrized fibration X.

4C. Quantization: The Bergman iteration. The (normalized) Bergman iteration in the ˙KX -setting
on H˙KX

is defined precisely as in Section 3B, but using the probability measure�˙.�/ in the definition of
Hilb.k/.�; �˙.�//. Similarly, the nonnormalized Bergman iteration is defined in terms of the measure �0

˙
.

The virtue of the nonnormalized setting is that the corresponding Hilbert norms correspond to the “adjoint”
norms appearing in Berndtsson’s Theorem 3.10:

Hilb.k/.�; ��0
˙
/.f; f / WD in2

Z
X

f ^ Nf e�.k˙1/�
WD Hilb.k�1/LCKX

.�/ (4-6)

for L D ˙KX . Moreover, they are clearly decreasing in � (for k � 1) and hence the analogue of
Proposition 3.13 of the corresponding Bergman iteration holds:

Proposition 4.12. Consider the Bergman iteration �.k/m in the nonnormalized˙KX -setting and assume
that �.k/m �  

.k/
m . Then �.k/

mC1
�  

.k/
mC1

. Moreover, if d.�;  / denotes the sup norm of � � then

d. mC1; �mC1/� d. mC1; �mC1/

�
1˙

1

k

�
:

In particular, the Bergman iteration decreases the distance d.�;  / in the nonnormalized KX -setting.

Proof. Given the discussion preceding the proposition we just have to prove the claimed property of
the distance d . But this follows directly from the monotonicity in the first part combined with the fact
that log �.k/.�mC c/=k D log �.k/.�m/=k �˙ c

k
, which in turn follows from �0

˙
.�C c/ WD e˙.�Cc/ D

�0
˙
.�/e˙c . �

On the other hand, the following monotonicity of functionals holds in the normalized setting:

Lemma 4.13. The functionals �I�˙ and L.k/ are increasing along the normalized Bergman iteration

on H˙KX
. Moreover, they are strictly increasing at �.k/m unless �.k/m is stationary (when k > 1 in the case

of I�C).

Proof. By the general Lemma 2.6 L.k/ is increasing and I� is decreasing under the iteration, since
� 7! I�.�/ is concave with respect to the affine structure by Jensen’s inequality. To show that I

.k/
C is

increasing in the KX -setting just observe that

IC.�
.k/
mC1

/�IC.�
.k/
m /WDlog

R
e.�

.k/

mC1
��

.k/
m /e�

.k/
mR

e�
.k/
m

Dlog
Z
.�.k//

1
k �.�.k/m /�log

��Z
�.k/.�.k/m / �

�1
k
�
D0;

using Jensen’s inequality applied to the concave function t 7! t1=k , which is strictly concave for k > 1. �
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Convergence of the Bergman iteration at a fixed level k.

Theorem 4.14. The Bergman iteration �.k/m at level k converges, when the discrete time m!1, to a
balanced weight �.k/1 in the following settings:

� the normalized KX -setting;

� the normalized �KX -setting if it is a priori assumed that there exists some balanced metric at level
k and H 0.TX /D 0;

� the normalized �KX -setting for k sufficiently large under the assumption that X admits a Kähler–
Einstein metric and H 0.TX /D 0;

� the nonnormalizedCKX -setting, where the limiting balanced weight is the unique normalized one.

Proof. Proof of the first point: By the previous lemma �I� is increasing and as shown in [Berman
et al. 2009] �F

.k/
� is coercive (as follows immediately from Jensen’s inequality). Moreover, as shown in

[Berman et al. 2009] balanced weights are unique modulo scaling and hence all the convergence criteria
in Proposition 2.9 are hence satisfied.

Proof of the second point: By the previous lemma �I� is increasing and as shown in [Berman et al. 2009]
it follows immediately from Berndtsson’s theorem (Theorem 3.10) applied to L D �KX that �F

.k/
�

is strictly convex modulo scaling. Hence, the convergence follows by combining Proposition 2.9 and
Lemma 2.10.

Proof of the third point: The fact that �F
.k/
� is coercive was shown in [Berman et al. 2009] (using the

corresponding coercivity of �F� on HL). Given this coercivity the convergence follows as in the previous
point.

Proof of the fourth point: Let .�0/.k/m D �
.k/
m CC

.k/
m denote the nonnormalized Bergman iteration in the

KX -setting. By the definition of the Bergman iteration (compare (4-10) below),

.C
.k/
mC1
�C .k/

m /D�C .k/
m =k � I.�.k/m /=k

where by the first point above I.�
.k/
m /! I1 when m!1. Set Dm WD C

.k/
m C I.�

.k/
m /. Then

DmC1 D

�
1�

1

k

�
DmC �m;

where �m D .I.�
.k/
mC1

/� I.�
.k/
m //! 0 as m!1. It follows for elementary reasons that Dm ! 0;

that is, C
.k/
m !�I1 showing that .�0/.k/m indeed converges and IC..�

0/
.k/
m /! 0, proving the second

point. For completeness we finally show that Dm! 0. Assume for a contradiction that this is not the
case. Then DmC1=Dm! 1� 1

k
and hence Dm � Cı.1�

1
k
C ı/m! 0 for ı sufficiently small, giving a

contradiction. �

The convergence in the fourth point above also follows immediately from the contracting property of
the corresponding iteration (compare the proof of Theorem 4.20 below). We also note the following direct
consequence of Berndtsson’s theorem (Theorem 3.10), using formula (4-6) in the nonnormalized setting.
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Corollary 4.15. The Bergman iteration in the nonnormalized ˙KX -setting preserves the (semi)positivity
of the curvature of the initial weight. Moreover, if the fibration X is assumed infinitesimally nontrivial
then any initial weight on ˙KX=S which is semipositively curved and strictly positively curved along the
fibers of X becomes strictly positively curved under the iteration.

Combining the previous corollary and Theorem 4.14 now gives the following:

Corollary 4.16. Let � WX!S be a proper holomorphic submersion with KX=S relatively ample. Let �.k/

be the weight on KX=S obtained by requiring that its restriction to any fiber is the unique normalized
balanced weight at level k; i.e,

R
Xs

e�
.k/

D 1. Then �.k/ is smooth with semipositive curvature form.
Moreover, if the fibration X is assumed infinitesimally nontrivial then �.k/ is strictly positively curved.

Proof. Since positivity and smoothness are local notions it is enough to prove the corollary when S is
embedded in C.

Smoothness: By definition �.k/DFS.k/.H .k// where H .k/ is an element in the finite-dimensional smooth
manifold H.k/ uniquely determined by G.k/.H .k/; s/D 0 [Berman et al. 2009], where G.k/ is the smooth
map defined by

G.k/.H .k/; s/ WD .T .k/
� I; IC ıFS.k// 2H.k/

�R:

Moreover, as shown in [Berman et al. 2009] the linearization of T .k/� I is invertible modulo scaling
(since it represents the differential of a functional on H .k/ which is strictly convex modulo scaling).
Hence, the claimed smoothness follows from the implicit function theorem.

Positivity: Since KX=S is assumed relatively ample it admits a smooth weight �0, which has fiberwise
positive curvature form. After adding a sufficiently large multiple of the pull-back from the base of jsj2 we
may assume that �0 has positive curvature over X. By the last point of the previous theorem the Bergman
iteration �.k/m in the nonnormalized KX -setting with initial weight �0 yields a sequence of weights
on KX=S converging, when m!1, uniformly to the unique normalized balanced weight �.k/ at level k.
As a consequence ddc�.k/ � 0 on X. Moreover, if the fibration X is assumed infinitesimally nontrivial
the previous corollary shows that applying the Bergman iteration to �.k/ yields a strictly positively curved
metric. But since �.k/ is fixed under the iteration this finishes the proof of the corollary. �

Corollary 4.17. Let � W X! S be the universal curve of the Teichmüller space of complex curves of a
genus g � 2. Fix a positive integer k (for g D 2 we assume that k � 2). Under the natural isomorphism

.T 1;0S/� D ��.2KX=S /

the fiberwise normalized balanced weight �.k/ on KX=S at level k (appearing in the previous corollary)
induces a Hermitian metric !.k/ on S with a curvature which is dually Nakano positive. Moreover, when
k!1 the metric !.k/ converges towards the Weil–Petersson metric !WP pointwise on S .

Proof. As is classical the assumptions on k ensure that KX=S is very ample. By the previous corollary �.k/

is a smooth weight on KX=S ! X with strictly positive curvature and hence the L2-metric on the direct
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image bundle ��.LCKX=S / (with L D KX=S ) induced by �.k/ has, according to the first point in
Theorem 3.10, a curvature which is positive in the sense of Nakano. Since

T 1;0Sjs DH 1.T 1;0Xs/ŠH 0.2KXs
/�;

this proves the first statement. To prove the pointwise convergence on S of !.k/ towards !WP it is enough
to prove that

e��
.k/

! e��KE

in L1
loc.X / for X D Xs (since, by definition, it implies the pointwise convergence of the corresponding

Hermitian metrics on ��.LCKX=S /). But this convergence follows from the L1 convergence of �.k/

towards �KE (Theorem 4.14) combined with the fact that J.�.k// is uniformly bounded, as shown in
[Berman et al. 2009] (see Lemma 6.4 therein). Alternatively, it follows immediately from the uniform
convergence in Theorem 4.20 below. �

The convergence in the previous corollary should be compared with the approximation results for the
Weil–Petterson metric for moduli spaces of higher-dimensional manifolds recently obtained in [Keller and
Lukic 2009]. The approximating Kähler metrics !0

k
in that work are related to different balanced metrics,

namely those defined with respect to Donaldson’s original setting [2001] (where �.�/DMA.�/).

Convergence towards the Kähler–Ricci flow.

Theorem 4.18. The following convergence results hold in all settings introduced in the beginning of
Section 4 (i.e., in the (non)normalized ˙KX -settings). Fix a smooth and strictly psh initial weight �0

on˙KX and consider the corresponding Bergman iteration �.k/m at level k and discrete time m, as well
as the corresponding Kähler Ricci flow �t . Then there is a constant A such that

sup
X

j�.k/m ��m=k j �Am=k2 (4-7)

uniformly in .m; k/ satisfying m=k � T (in the KX -setting A is independent of T ). In particular, if mk

is a sequence such that mk=k! t , then �.k/mk
! �.t/ uniformly on X and

ddc�.k/mk
! !t

on X in the sense of currents, where !t evolves according to the corresponding Kähler–Ricci flow (4-2).
The corresponding result also holds for the corresponding nonnormalized flows and in the relative setting,
where the convergence is locally uniform with respect to the base parameter s.

Proof. In the case of the nonnormalized KX -setting (denoted by primed objects) the proof of Theorem 3.15
carries over essentially verbatim, thanks to the last statement in Proposition 4.12 and Corollary 4.3 which
gives the uniformity with respect to T 2 Œ0;1�. To handle the nonnormalized �KX -setting we need to
modify the previous argument slightly. More precisely, we will prove that

sup
X

j�.k/m ��m=k j �A

�
1C

1

k

�m

m=k2: (4-8)
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Accepting this for the moment the claimed convergence when mk=k! t follows using that�
1C

1

k

�m

D

��
1C

1

k

�k�m=k

� em=k
� eT ;

when m=k � T . To prove (4-8) first observe that Step 1 in the proof of Theorem 3.15 still applies for
.m; k/ such that m=k � T (using Proposition 2.11 applied to the nonnormalized �KX -setting). In other
words, there is a constant A (depending on T ) such that

sup
X

ˇ̌
 k;mC1� . k;mCF .k/. k;m//

ˇ̌
�A.1=k2/

for all .m; k/ such that m=k � T . Now we fix the integer k and assume as an induction hypothesis
that (4-7) holds for m with A the constant in the previous inequality. By Proposition 3.13,

sup
X

ˇ̌
. k;mCF .k/. k;m//� .�

.k/
m CF .k/.�.k/m //

ˇ̌
� sup

X

j k;m��
.k/
m j

�
1C

1

k

�
�

�
A
�
1C

1

k

�m
m=k2

��
1C

1

k

�
with the same constant A as above, using the induction hypothesis in the last step. Combining this
estimate with the previous inequality gives

sup
X

j k;mC1��
.k/
mC1
j �A

�
1C

1

k

�mC1
m=k2

CA=k2:

But using that 1� .1C 1
k
/mC1 in the last term above proves the induction step and hence finishes the

proof of the estimate (4-8).
To treat the Kähler–Ricci flows �t in the normalized settings we write

�0t D �t CCt ;

where Ct is a constant for each t . Then

@Ct

@t
D�I˙.�

0
t /: (4-9)

Indeed, by the definition of the flow �0t and �t , we have

@�0t
@t
D log

�
MA.�0t /�˙�

0
t

�
;

@� t

@t
D log

�
MA.� t /�˙�t

�
C˙ I˙.� t /:

By scale invariance we may as well replace �t with �0t on the right side of the second equation above and
hence subtracting the second equation from the first one proves (4-9).

Similarly, writing
.�0/.k/m D �

.k/
m CC .k/

m ;

we obtain the following difference equation, using that the map � 7! �.k/.�/, defined with respect to �˙,
is scale-invariant:

C
.k/
mC1
�C .k/

m D�
1

k
I˙..�

0/.k/m /: (4-10)
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Now, as explained above, the estimate (4-7) holds for the primed objects and hence by the scaling
equivariance of I˙: ˇ̌

I˙.�
0
m=k/� I˙..�

0/.k/m /
ˇ̌
�Am=k2: (4-11)

A simple version of the argument given in the proof of Theorem 4.18 now shows, by comparing the
differential equation (4-9) with the difference equation (4-10) and using (4-11), that

jC .k/
m �Cm=k j � Bm=k2

for a uniform constant B. All in all this hence finishes the proof of the theorem. �

We also have the following analogue of Corollary 3.16:

Corollary 4.19. For a fixed initial data �0 D �
.k/
0
2 H˙KX

the following convergence results hold

for the Bergman iteration �.k/m in the normalized ˙KX -setting (in the �KX -setting it is assumed that
H 0.TX /D 0 and X a priori admits a Kähler–Einstein metric):

� For any sequence mk such that mk=k!1 the convergence �.k/mk
! �1 holds in the L1-topology

on X .

� The balanced weights �.k/1 WD limm!1 �
.k/
m at level k converge, when k!1, in the C1-topology,

to the weight �1 which is the large time limit of the corresponding Kähler–Ricci flow.

Moreover, the convergence in the second point also holds in the nonnormalized KX -setting, where the
limit �1 coincides with the canonical Kähler–Einstein weight �KE. In the relative case all convergence
results hold fiberwise locally uniformly with respect to the base parameter s.

Proof. The proof of the first two points proceeds exactly as in the previous setting (again using the
variational characterization in [Berman et al. 2009]). As for the claimed convergence in the nonnormalized
setting it is obtained by noting that the large m limit .�0/.k/m in the nonnormalized setting is the unique
balanced weight such that I˙..�

0/
.k/
1 / D 0. In other words, .�0/.k/1 D �

.k/
1 � I˙.�

.k/
1 /, where �.k/1 is

the large m limit of the iteration in the normalized setting. But by the second point above this means
that .�0/.k/1 ! �1 � I˙.�1/ in L1 (also using the continuity with respect to the L1-topology of the
functional I˙ on compacts; compare [Berman et al. 2009]). By uniqueness, this means that the limit must
be �KE. �

4D. Uniform convergence of the balanced weights in the KX -setting. Next we point out that in the
KX -setting the convergence of the balanced weights is actually uniform (the proof is independent of the
variational proof of a weaker convergence given in [Berman et al. 2009]). The proof simply uses that �.k/

is close to �tk
where �t is the corresponding Kähler–Ricci flow and tk is a suitable sequence tending to

infinity.

Theorem 4.20. Let �.k/ be the balanced weight at level k on the canonical line bundle KX (in the
nonnormalized setting). When k !1, the weights �.k/ converge uniformly towards the normalized
Kähler–Einstein weight �KE.
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Proof. Fix a smooth and positively curved weight �0 on KX and denote by �.k/m the Bergman iteration at
level k with initial data �.k/

0
D �0. By Proposition 4.12 the map whose iterations define the Bergman

iterations is a contraction mapping with contracting constant q D .1� 1
k
/ < 1 and hence it follows from

the Banach fixed point theorem that�.k/��.k/m


L1
�

qm

.1� q/

�.k/
1
��0


L1

:

By definition we have �.k/
1
� �0 D

1
k

log �.k�/, which, according to Proposition 2.11, is uniformly
bounded by a constant times 1

k
log k; hence

�.k/��.k/m


L1
� C

��
1�

1

k

�k�m=k

log k:

Next we take the sequence mDmk WD Œk
3=2� where Œc� denotes the smallest integer which is larger than c.

Then tk WDmk=k D k1=2!1 as k!1 and since .1� 1
k
/k ! e�1 < 1 we conclude that�.k/m ��0


L1
! 0

as k!1. If now �t denotes the Kähler–Ricci flow in the nonnormalized KX -setting we have, according
to Theorem 4.18, that �.k/m ��mk=k


L1
! 0

using that mk=k2!1. Finally, since �tk
! �KE uniformly as tk !1 this proves the theorem. Of

course, the last convergence is not really needed for the proof as we may as well start with �0 D �KE

which is trivially fixed under the Kähler–Ricci flow. �

It should be pointed out that the uniform convergence in the previous theorem has been previously
obtained by Berndtsson (who also related it to Tsuji’s iteration [Tsuji 2006]), using a different approach —
see the announcement in [Berndtsson 2009c]. But hopefully the relation to the convergence of the
Kähler–Ricci flow above may shed some new light on the convergence.

4E. Families of varieties of general type and comparison with the NS metric. The quantized setting
concerning the case when KX is ample admits a straightforward generalization to the case when KX is
merely Q-effective [Lazarsfeld 2004]. For simplicity we will only discuss the case when KX is big; that
is, X is a nonsingular variety of general type. Moreover, we will no longer assume that the map � is a
submersion. More precisely, we are given a surjective quasiprojective morphism � W X! S between
nonsingular varieties such that the generic fiber is a variety of general type. We denote by S0 the maximal
Zariski open subset of S such that � restricted to X0 WD ��1.S0/ is a submersion, that is, a smooth
morphism (and hence the fibers of S0 are nonsingular varieties of general type).

Let us first consider the general absolute case, where we are given a line bundle L! X and an
integer k such that kL is effective; that is, H 0.X; kL/ ¤ f0g. The main new feature in this more
general setting is that any Bergman weight  k at level k, that is,  k 2 FS.k/.H.k//, will usually have
singularities; that is, it defines a singular metric on L with positive curvature form. More precisely, the
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weight k k on kL is singular precisely along the base locus Bs.kL/ of kL, that is, the intersection of
the zero sets of all elements in H 0.kL/. Anyway, the difference of any two Bergman metrics is clearly
bounded. Moreover, when L D KX the measure � k

WD e k has a smooth density which vanishes
precisely along Bs.kL/. As a consequence, we may fix such a reference (singular) weight �0 WD  k and
the reference measure �0 WD e k . Then Lemma 2.7 still applies (as explained in the remark following
the lemma). As a consequence the proof of the convergence of the Bergman iteration to a balanced
weight at level k in the nonnormalized KX -setting (Theorem 4.14) is still valid as long as kKX is
effective. Combining this latter convergence with the generalizations [Berndtsson and Păun 2008b; 2008a]
of Berndtsson’s theorem (Theorem 3.10) and the invariance of plurigenera [Siu 1998] then gives the
following generalization of Corollary 4.16:

Theorem 4.21. Let � W X! S be a surjective quasiprojective morphism such that the generic fiber is a
variety of general type. Then, for k sufficiently large there is a unique singular weight �.k/ on the relative
canonical line bundle KX=S ! X with positive curvature current, such that the restriction of �.k/ to any
fiber over S0 is a normalized and balanced weight at level k. Moreover, the weight �.k/ is smooth on the
Zariski open set defined as the complement in X of

S
s2S0 Bs.kKXs

/[��1.S �S0/.

Proof. Let us first prove the positivity statement. As before we may assume that S is a domain in C. First
we consider the behavior over the set S0, that is, where the fibration is a submersion. Fix s0 2 S0 and
write X D Xs0

. Let .fi/ be a basis in H 0.X; kKX /. By the invariance of plurigenera [Siu 1998] s0 has a
neighborhood U � S0 with holomorphic sections Fi of kKX=S ! U such that Fi restricts to fi on X .
After perhaps shrinking U we may hence assume that the restrictions of Fi to any fiber give a basis in
H 0.Xs; kKXs

/. Now let �0 WD
1
k

log
�

1
Nk

P
jFi j

2
�

so that �0 is a singular weight on KX=S over U with
positive curvature and such that �0 restricts to a Bergman weight at level k on each fiber. In particular,Z

Xs

jf j2e�.k�1/�0 <1 (4-12)

for any f 2H 0.Xs; kKXs
/. Decomposing, as before, kKX D .k � 1/LCKX with LDKX , but now

using Theorem 3.5 in [Berndtsson and Păun 2008b], shows that the curvature current of the weight
�
.k/
1
WD FS.k/ ıHilb.k/.�0/ on KX=S is positive over U . Since, by definition, �.k/

1
is still fiberwise a

Bergman weight at level k we may iterate the same argument and conclude that �.k/m has a positive
curvature current for any m. Now, as explained in the discussion before the statement of the theorem,

m!1 D) sup
Xs

j�.k/m ��.k/j ! 0;

locally uniformly with respect to s, where �.k/ is the unique normalized fiberwise balanced weight at
level k. In particular, it follows that �.k/ has a curvature current which is positive over S0.

To prove the claimed extension property of �.k/ over S �S0 first note that, writing X DXs for a fixed
fiber,

�.k/ � �
.k/
NS WD log

�
sup

f 2H 0.X ;kKX /

�
jf j2=k

.Z
X

.f ^ Nf /1=k

��
; (4-13)
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where k�
.k/
NS is the weight of the Narasimhan–Simha (NS) metric on kKX=S [Narasimhan and Simha

1968; Kawamata 1982; Tsuji 2011; Berndtsson and Păun 2008a]. Accepting this for the moment we can
use the result in [Berndtsson and Păun 2008a] saying that �.k/NS is locally bounded from above, with a
constant which does not blow up as s converges to a point in S �S0 (this is proved by an L2=k variant of
the local Ohsawa–Takegoshi L2-extension theorem). By the inequality (4-13) it hence follows that �.k/

is also locally bounded from above by the same constant and then the claimed extension property follows
from basic pluripotential theory.

Finally, to prove the inequality (4-13) fix a point x 2X . By the extremal definition of Bergman kernels
there are sections fi (depending on x) such that

�.k/.x/D
1

k
log
�

1

Nk

jf1j
2.x/

�
and �.k/ D

1

k
log
�

1

Nk

X
i

jfi j
2

�
on X . Since

R
X e�

.k/

D 1 it hence follows thatZ
X

�
1

Nk

f1 ^
Nf1

�1=k

� 1;

which finishes the proof of the inequality (4-13), since f1=.Nk/
1=2 is a candidate for the supremum

defining �.k/NS .
As for the last smoothness statement in the theorem it is proved exactly as in Corollary 4.16, using

that ��.kKX=S / is a locally trivial vector bundle over S0. Indeed, it follows as before that the fiberwise
normalized balanced metrics H

.k/
s , which by the local freeness may be identified with a family in GL.Nk/,

form a smooth family. Applying the Fubini–Study map to get �.k/ then introduces the singular locus
described in the statement of the theorem. �

Remark 4.22. If one does not invoke the invariance of plurigenera in the proof of the previous theorem
then the same argument gives the slightly weaker statement where S0 is replaced by the intersection
of S0 with a Zariski open set where ��.kKX=S / is a locally trivial vector bundle. If one could then prove
that the extension of �.k/ is such that the integrability condition (4-12) holds over all of S , then the
invariance of plurigenera would follow from a well-known version of the Ohsawa–Takegoshi extension
theorem. It would be interesting to see if this approach is fruitful in the nonprojective Kähler case where
the invariance of plurigenera is still open. When �.k/ is replaced by the weight of the NS-metric �.k/NS
(see formula (3-14)) this approach was used in [Tsuji 2011] to give a new proof of the invariance of
plurigenera (in the projective case).

It should also be pointed out that (singular) Kähler–Einstein metrics and Kähler–Ricci flows have been
studied recently for KX big. For example, using the deep finite generation of the canonical ring there is a
unique Kähler–Einstein weight with minimal singularities which satisfies the Monge–Ampère equation

.ddc�KE/
n=n!D e�KE

on a Zariski open set in X [Eyssidieux et al. 2009; Boucksom et al. 2010]. It seems likely that the
positivity result in Corollary 4.8 can be extended to families of such singular weights �KE. But there are
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several regularity issues which need to be dealt with. Moreover, it also seems likely that the canonical
balanced weights �.k/ converge to �KE, when KX is big, but this would require a generalization of
the convergence results in [Berman et al. 2009] (which only concern ample line bundles). This latter
conjectural convergence should be compared with the convergence of the weight of the NS-metrics proved
in [Berman and Demailly 2012], saying that �.k/NS converges in L1 (and uniformly on compacts of an
Zariski open set) to

�can WD sup
�
 W

Z
X

e D 1

�
;

where the sup is taken over all singular weights  on KX with positive curvature current. In particular,
�KE � �can, which is consistent with the inequality (4-13).

4F. Comparison with the constant scalar curvature and other settings. Given an ample line bundle L!

X the absolute setting when �.�/ WD .ddc�/n=n! was studied in depth by Donaldson [2001; 2005]. Of
course, in this setting the Kähler–Ricci flow is trivial, but the corresponding quantized setting and the
study of its large k limit is highly nontrivial. In fact, it was shown in [Donaldson 2001] that, if it is a priori
assumed that c1.L/ contains a Kähler metric ! with constant scalar curvature and if H 0.TX /Df0g, then
the curvature forms of any sequence of balanced weights converge in the C1-topology to !. Moreover,
Donaldson showed that such balanced weights do exist for k sufficiently large. As earlier shown by Zhang
this latter fact is equivalent to the polarized variety .X; kL/ being stable in the sense of Chow–Mumford
(with respect to a certain action of the group SL.Nk/). An explicit proof of the convergence of the
Bergman iteration in this setting was given in [Sano 2006] (see also [Donaldson 2005]).

Note that in this setting the functional I� is precisely the functional E (compare the beginning of
Section 2). Since E is well-known to be concave on HL with respect to the affine structure and E ı FS is
geodesically convex on H.k/ the convergence of the corresponding Bergman iteration is also a consequence
of Proposition 2.9.

It should also be pointed out that the role of the Kähler–Ricci flow of Kähler metrics in this setting is
played by the Calabi flow. Indeed, as shown in [Fine 2010], the balancing flow, which is a continuous
version of Donaldson’s iteration, converges, at the level of Kähler metrics, in the large k limit to the
Calabi flow. More precisely, the balancing flow H

.k/
t is simply the scaled gradient flow on the symmetric

space H.k/ of the functional F.k/ in this setting and the convergence holds for the curvature forms of the
weights FS.k/.Ht / in HL.

Remark 4.23. Another, less studied, setting of geometric relevance (see [Berndtsson 2009b]) appears
when we let

�.�/ WD
1

Nl

NlX
iD1

fi ^
Nfie
�l�

for a fixed integer l where fi is an orthonormal basis for H 0.lLCKX / equipped with the Hermitian metric
induced by �. When LD�KX and l D 1 this is precisely the normalized �KX -setting. In the general
case I�.�/ is essentially the induced metric on the top exterior power of the Hilbert space H 0.lLCKX /.
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Moreover, as soon as the corresponding functional F
.k/
� has a critical point and H 0.TX / D f0g the

assumptions for convergence in Proposition 2.9 are satisfied (see [Berndtsson 2009b]).
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