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We prove new bilinear dispersive estimates. They are obtained and described via a bilinear time-frequency
analysis following the space-time resonances method, introduced by Masmoudi, Shatah, and the second
author. They allow us to understand the large time behavior of solutions of quadratic dispersive equations.
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1. Introduction

Linear dispersive and Strichartz estimates. A linear, hyperbolic equation is called dispersive if the group
velocity of a wave packet depends on its frequency. In order to remain concise, we discuss in this section
only the Schrödinger equation {

∂t u− i1u = 0,
u|t=0 = f,

whose solution we denote u(t) = ei t1 f . This is the prototype of a dispersive equation. A first way to
quantify dispersion is provided by the “dispersive estimates”, which, in the case of the linear Schrödinger
equation, read

‖ei t1 f ‖L p(Rd ) . td/p−d/2
‖ f ‖L p′ (Rd ) if 2≤ p ≤∞.

Another way of quantifying dispersion is provided by Strichartz estimates, which first appeared in
[Strichartz 1977] (and were later extended by Ginibre and Velo [1992], with the endpoints due to Keel
and Tao [1998]). They read

‖ei t1 f ‖L p Lq (R+×Rd ) . ‖ f ‖L2(Rd )

for every admissible exponents (p, q), which means 2≤ p, q ≤∞, (p, q, d) 6= (2,∞, 2) and

2
p
+

d
q
=

d
2
.
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Let us just point out the situation if the Euclidean space Rd is replaced by a compact Riemannian
manifold. In that case, any constant function is a solution of the free Schrödinger equation and therefore
the dispersive estimate fails for large t . It also fails locally in time. Then Strichartz estimates may only
hold with a finite time scale and a loss of derivatives (the data f is controlled in a positive order Sobolev
space), which were obtained for the torus by Bourgain [1993b; 1993a] and then extended to general
manifolds by Burq, Gérard, and Tzvetkov [Burq et al. 2004].

Bilinear Strichartz estimates. Recently bilinear (and more generally multilinear) analogs of such in-
equalities have appeared. They correspond to controlling the size of the (pointwise) product of two linear
solutions, for instance

‖vw‖L p Lq (R+×Rd ) . ‖ f ‖L2(Rd )‖g‖L2(Rd ) with
{

i∂tv+1v = 0, v(t = 0)= f,
i∂tw+1w = 0, w(t = 0)= g,

(1-1)

or the solution to the inhomogeneous linear problem, the right hand side being given by the product of
two linear solutions:

‖u‖L p Lq (R+×Rd ) . ‖ f ‖L2(Rd )‖g‖L2(Rd ) with


i∂tv+1v = 0, v(t = 0)= f,
i∂tw+1w = 0, w(t = 0)= g,
i∂t u+1u = vw, u(t = 0)= 0.

(1-2)

A first line of research, where p = q = 2, is related to the use of X s,b spaces in order to solve nonlinear
dispersive equations; see, in particular, [Bourgain 1993b] and [Tao 2001]. If the Euclidean space is
replaced by a manifold, we refer to [Burq et al. 2005] and [Hani 2010]. The case of the wave equation is
treated by Klainerman, Machedon, Bourgain, and Tataru [Klainerman and Machedon 1996], and Foschi
and Klainerman [2000]. In all these works, f and g are chosen with vastly different frequency supports,
and the focus is on understanding the effect on the implicit constant.

Another line of research considers the case where p and q are not 2: see [Wolff 2001] for the case of
the wave equation and [Tao 2003] for the Schrödinger equation. The problem then becomes related to
deep harmonic analysis questions (the restriction conjecture), and the optimal estimates are not known in
high dimension.

In this article our goal is different from the two directions mentioned: we aim at finding a decay rate in
time (rather than integrability properties), and at understanding the effect of localized data.

The set up. From now on, the dimension d of the ambient space is set equal to 1. Let a, b, c be smooth
real-valued functions on R, and fix a smooth, compactly supported bilinear symbol m on the frequency
plane R2. We denote by Tm the associated pseudoproduct operator. (a precise definition of Tm is given
in Section 1; Tm can be thought of as a generalized product operator, and our setting of course includes
classical products between functions that are compactly supported in Fourier space.) Consider then the
equation 

i∂t u+ a(D)u = Tm(v,w),

i∂tv+ b(D)v = 0,
i∂tw+ c(D)w = 0,

with


u(t = 0)= 0,
v(t = 0)= f,
w(t = 0)= g.

(1-3)



BILINEAR DISPERSIVE ESTIMATES VIA SPACE-TIME RESONANCES, I 689

The unknown functions are complex-valued, and this system is set in the whole space: f and g map R

to C, whereas u, v, and w map R2 to C. The above system is meant to help understand the nonlinear
interaction of free waves, which is of course the first step towards understanding a nonlinear problem.

Most of the time, but not always, we assume

The second derivatives a′′, b′′, c′′ are bounded away from zero. (H)

Under this hypothesis, it is well known that the groups ei ta(D), ei tb(D), ei tc(D) satisfy the following
estimates (we denote by S(t) any of these groups):

• Dispersive estimates: ‖S(t) f ‖L p′ . |t |1/2−1/p
‖ f ‖L p for p ∈ [1, 2].

• Strichartz estimates: ‖S(t) f ‖L p
t Lq . ‖ f ‖L2 if 2/p+ 1/q = 1

2 and 2≤ p, q ≤∞.

The question we want to answer is this: Given f and g in L2 (or weighted L2 spaces), how does u
grow or decay in L p spaces, 2≤ p ≤∞?

The answer of course depends on a, b, c, and the crucial notion is that of space-time resonance.

Space-time resonances. Using Duhamel’s formula, we see that u(t, · ) is given by the bilinear operator
Tt defined by

Tt( f, g)(x)=
∫ t

0

∫∫
ei x(ξ+η)ei ta(ξ)eisφ(ξ,η)m(ξ, η) f̂ (η)ĝ(ξ − η) dξ dη ds,

or, more concisely,

Tt( f, g) def
= −iei ta(D)

∫ t

0
Tmeisφ ( f, g) ds,

where

φ(ξ, η)
def
= −a(ξ + η)+ b(ξ)+ c(η).

Thus the goal of this article is to understand the behavior for large time t � 1 and some exponent
q ∈ [2,∞] of

‖Tt( f, g)‖Lq , f, g ∈ L2.

We sometimes find it convenient to write u(t) as

u(t)= F−1
∫ t

0

∫
R

ei ta(ξ)eis8(ξ,η)µ(ξ, η) f̂ (ξ − η)ĝ(η) dη ds,

where

8(ξ, η)
def
= −a(ξ)+ b(ξ − η)+ c(η)= φ(ξ − η, η) and µ(ξ, η)

def
= m(ξ − η, η).

Viewing this double integral as a stationary phase problem, it becomes clear that the sets where the
phase is stationary in s or η,

0
def
= {(ξ, η) such that 8(ξ, η)= 0} and 1

def
= {(ξ, η) such that ∂η8(ξ, η)= 0},

play a crucial role. Even more important is their intersection 0 ∩1.
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The sets 0 and 1 are, respectively, the sets of time and space resonances; their intersection is the set
of space-time resonant sets. A general presentation, stressing their relevance to PDE problems, can be
found in [Germain 2010b]; for applications see [Germain et al. 2009; 2012a; 2012b; Germain 2010a;
Germain and Masmoudi 2011].

In order to answer the question from the previous page, one has to distinguish between various possible
geometries of 0 and 1 (which can be reduced to a discrete set, or curves, with vanishing curvature or
not, etc. . . . ), possible orders of vanishing of 8 and ∂η8 on 0 and 1, respectively, and different types of
intersections of 0 and 1 (at a point or on a dimension 1 set, transverse or not, etc. . . . ). Considering all
the possible configurations would be a daunting task. We therefore focus on a few relevant and “generic”
examples.

• We study the influence of time resonances alone, ignoring space resonances: in other words, we
study various configurations for 0, without making any assumptions on 1. This essentially amounts
to considering the worst possible case as far as 1 is concerned.

• Similarly, we study the influence of space resonances alone, ignoring about time resonances.

• When putting space and time resonances together, we assume a “generic” configuration: 0 and
1 are smooth curves, and they intersect transversally at a point. Aside from being generic, this
configuration is of key importance for many nonlinear PDE; this is explained in the next subsection.

Space-time resonant set reduced to a point. As was just mentioned, the case where 0 and 1 are curves
which intersect transversally at a point will be examined carefully in this article. It is of course the generic
situation, but it also occurs in a number of important models from physics; we give a few examples here.
We restrict the discussion to one-dimensional models.

For simple equations of the form i∂t u+ τ(D)u = Q(u, ū), where u is scalar-valued, Q quadratic (that
is, we retain only the quadratic part of the nonlinearity), and τ(ξ)= |ξ |α is homogeneous, the space-time
resonant set of the various possible interactions between u and ū is never reduced to a point. This is the
case for standard equations such as NLS, KdV, and wave equations.

However, if τ is no longer supposed to be homogeneous, the space-time resonant set might be reduced
to a point. In particular, this is the case for the water wave equation (ideal fluid with a free surface) in the
following setting: close to the equilibrium given by a flat surface and zero velocity, including the effects
of gravity g and capillarity c, with a constant depth d (perhaps infinite). The dispersion relation for the
linearized problem is then

τ(ξ)= tanh(d|ξ |)
√

g|ξ | + c|ξ |3.

For more complex models, u is vector-valued, and the system accounts for the interaction of waves
with different dispersion relations. It is then often the case that the space-time resonance set is reduced to
a point. We mention in particular the following.

• The Euler–Maxwell system, describing the interaction of a charged fluid with an electromagnetic
field (see [Germain and Masmoudi 2011] for a mathematical treatment of this equation dealing with
space-time resonances). Many other models of plasma physics could also be mentioned here.
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• Systems where wave and (generalized) Schrödinger equations are coupled: for instance, the Davey–
Stewartson, Ishimori, Maxwell–Schrödinger, and Zakharov systems.

A sample of our results. Among the many results proved in this paper, we record in Theorem 1.1 a few
that are illustrative and interesting. We need a definition: a curve in (ξ, η) is characteristic if it has
tangents parallel to one or more of the directions ξ = 0, η = 0, or ξ + η = 0, and noncharacteristic
otherwise.

Theorem 1.1. Recall that m is smooth and compactly supported. Assume that (H) holds.

(i) If 0 is a noncharacteristic curve along which 8 vanishes at order 1,

‖u(t)‖Lq . 〈log t〉‖ f ‖L2,s‖g‖L2,s for s > 1
4 .

(ii) If 1=∅, then, for any δ > 0,

‖u(t)‖Lq . t1/q−1/2+δ
‖ f ‖L2,s‖g‖L2,s for s > 1− 1

q .

Furthermore, this rate of decay is optimal.

(iii) If 0 and 1 intersect transversely at a single point in the support of m, then, for any δ > 0

‖u(t)‖Lq . t−(1/4−1/(2q))+δ
‖ f ‖L2,s‖g‖L2,s for s > 1.

Furthermore, this rate of decay is optimal (up to the loss δ as small as we want).

Organization of the article. In Section 2 we derive asymptotic equivalents for u when f and g smooth and
localized. Three cases are considered: 0 =∅, 1=∅, and 0 and 1 are curves intersecting transversally
at a point (in particular we prove the second part of Theorem 1.1). In Section 3, relying only on time
resonances, we establish estimates for u when f and g belong to L2. In Section 4, we establish estimates
for u when f and g belong to weighted L2 spaces. In particular we consider the case when the space-time
resonant set is reduced to a point, and thereby prove the first part of Theorem 1.1. In Appendix A, we
detail some results on boundedness of multilinear operators. Finally, in Appendix B, one-dimensional
oscillatory integrals are studied.

Notations. We adopt the following notations.

• A . B if A ≤ C B for some implicit constant C . The value of C may change from line to line.

• A ∼ B means that both A . B and B . A.

• If f is a function over Rd , its Fourier transform, denoted f̂ , or F( f ), is given by

f̂ (ξ)= F f (ξ)= 1
(2π)d/2

∫
e−i xξ f (x) dx, thus f (x)= 1

(2π)d/2

∫
ei xξ f̂ (ξ) dξ.

(In the text, we systematically drop constants such as 1/(2π)d/2 since they are not relevant.)

• The Fourier multiplier with symbol m(ξ) is defined by

m(D) f = F−1 [mF f ] .
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• The bilinear Fourier multiplier with symbol m is given by

Tm( f, g)(x) def
=

∫
R2

ei x(ξ+η) f̂ (ξ)ĝ(η)m(ξ, η) dξdη = F−1
∫

m(ξ − η, η) f̂ (ξ − η)ĝ(η) dη.

• The Japanese bracket 〈·〉 stands for 〈x〉 =
√

1+ x2.

• The weighted Fourier space L p,s is given by the norm ‖ f ‖L p,s = ‖〈x〉s f ‖L p .

• If E is a set in Rd , Eε is the set of points of Rd that are within ε of a point of E .

2. Asymptotic equivalents

Preliminary discussion. Our aim in this section is to obtain asymptotic equivalents, as t → ∞, for
the solution u of (1-3), under the simplifying assumption that f and g are very smooth and localized.
Hypotheses on a, b, c are needed, and the variety of possible situations is huge; we try to focus on the
most representative, or generic situations. First, we assume in this whole section that (H) holds: this gives
decay for the linear waves. For bilinear estimates, everything hinges on the vanishing properties of 8 and
∂η8, where

8(ξ, η)=−a(ξ)+ b(ξ − η)+ c(η).

We distinguish three situations: 8 does not vanish (Theorem 2.2), 8η does not vanish (Theorem 2.4),
{8= 0} and {8η = 0} are curves intersecting transversally (Theorem 2.5). Additional assumptions will
be specified as needed.

Asymptotics for the linear Cauchy problem. They are obtained easily by stationary phase; see for instance
[Stein 1993].

Lemma 2.1. Assume that F ∈ S is such that F̂ is compactly supported; and suppose that a′′ does not
vanish on Supp F. Then

ei ta(D)F(x)= ei t[a(ξ0)+Xξ0]ei(π/4)σ 1
√
|a′′(ξ0)|

1
√

t
F̂(ξ0)+ O

(1
t

)
,

where

X def
=

x
t
, a′(ξ0)+ X

de f
= 0, σ

def
= sign a′′(ξ0).

The point of view of stationary phase. The solution of (1-3) is

u(t, x)=− i
√

2π

∫ t

0

∫∫
ei xξei[(t−s)a(ξ)+sb(ξ−η)+sc(η)]µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ ds.

Recalling that X def
= x/t and µ(ξ, η) def

= m(ξ − η, η), this is equal to

u(t, x)=− i
√

2π
t
∫ 1

0

∫∫
ei t[(1−σ)a(ξ)+σb(ξ−η)+σc(η)+Xξ ]µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ dσ. (2-0)

This is now a (nonstandard) stationary phase problem, with phase

ψ(ξ, η, σ )
def
= (1− σ)a(ξ)+ σb(ξ − η)+ σc(η)+ Xξ = a(ξ)+ σ8(ξ, η)+ Xξ.
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The phase of the gradient is

∇ξ,η,σψ =

a′+σ8ξ+X
σ8η

8

 ,
which vanishes if either 

σ = 0,
8= 0,
a′+ X = 0,

or


8= 0,
8η = 0,
a′+ σ8ξ + X = 0.

(2-1)

The Hessian of ψ is given by

Hessξ,η,σ ψ =

a′′+ σ8ξξ σ8ξη 8ξ
σ8ξη σ8ηη 8η

8ξ 8η 0

 .
On stationary points of the first type in (2-1), the Hessian is degenerate if and only if (ξ, η) belongs to
the space-time resonant set. On stationary points of the second type in (2-1), the Hessian is generically
nondegenerate.

The main difficulty in the analysis is handling the stationary points on the boundary of the integration
domain, namely those for which σ = 0 or 1; this is even more complicated when they are degenerate.

Theorem 2.2 (absence of time resonances). Assume that 8(ξ, η) does not vanish on Supp m (that is,
0 =∅), and that f and g belong to S. Then, as t→∞,

u(t)= ei ta(D)F + O
(1

t

)
.

with

F = Tm/φ( f, g).

Remark 2.3. The asymptotic behavior of ei ta(D)F is given by Lemma 2.1.

Proof. The proof is very easy: u is given by

u(t)=−iei ta(D)
∫ t

0
Tmeisφ ( f, g) ds,

or

u(t)=−Tm/φ(ei tb(D) f, ei tc(D)g)+ ei ta(D)Tm/φ( f, g).

The theorem follows since the first term above is O(1/t), by the linear decay estimates. �

Theorem 2.4 (absence of space resonances). Assume that ψη does not vanish on Supp m (that is, 1=∅),
that ψξξ (ξ, η, σ ) does not vanish on Supp m×[0, 1], and that f , g belong to S. Fix M > 0 and N ∈ N.
Then, as t→∞,

u(t)= ei ta(D)F + O
(

1
M N
√

t

)
where

F =−i
∫ M

0
ei(t−s)a(D)Tm(eisb(D) f, eisc(D)g) ds.
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(In other words, ei ta(D)F is the solution of

i∂t u+ a(D)u =
{

Tm(v,w) if 0< t < M,
0 if t > M,

i∂tv+ b(D)v = 0, i∂tw+ c(D)w = 0,

with the data u(t = 0)= 0, v(t = 0)= f , and w(t = 0)= g.)

Proof. Starting from the stationary phase formulation (see page 692), it suffices to show that∫ 1

M/t

∫∫
ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ dσ (2-2)

is O(1/(M N t3/2)).
First apply the stationary phase lemma in ξ in the above. The vanishing set of ψξ depends on X . If X

is such that ψξ does not vanish, (2-2) is O(1/t N ) for any N and we are done. Otherwise, ψξ vanishes for
some ξ , which we denote ξ0, and which is a function of X , η, and σ . We can assume without loss of
generality that ξ0 is unique. Since ψξξ does not vanish by assumption, the stationary phase lemma gives

(2-2)=
∫ 1

M/t

∫
ei tψ(ξ0,η,σ )

(
α(ξ, η, σ )
√

t
+
β(ξ, η, σ )

t
+
γ (ξ, η, σ )

t
√

t
+ O

( 1
t2

))
dη dσ,

where α, β, and γ are smooth functions which we do not specify. The fourth summand in (2-2) is already
small enough. We will now show how to deal with the first one, and this will conclude the proof since the
second and third ones are easier (better decay). Thus we now want to show that∫ 1

M/t

∫
ei tψ(ξ0,η,σ )

α(ξ, η, σ )
√

t
dη dσ (2-3)

is O(1/(M N t)). In order to take advantage of oscillations in η, observe that

∂η[ψ(ξ0(η, σ, X), η, σ )] = ∂ηξ0[∂ξψ](ξ0, η, σ )+ [∂ηψ](ξ0, η, σ )= [∂ηψ](ξ0, η, σ )= σ [∂η8](ξ0, η).

By hypothesis, ∂η8 does not vanish, therefore

|∂η[ψ(ξ0, η, σ )]|& σ.

Integrating by parts N + 1 times with the help of the identity

1
t∂η[ψ(ξ0, η, σ )]

∂ηei tψ(ξ0,η,σ ) = iei tψ(ξ0,η,σ ),

we obtain

|(2-3)|.
∫ 1

M/t

1
(σ t)N+1

√
t

dσ . 1
M N t3/2 ,

which concludes the proof. �
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Theorem 2.5 (space-time resonance set reduced to a point). Assume that f , g belong to S, that there
exists a unique (ξ0, η0) such that

8(ξ0, η0)=8η(ξ0, η0)= 0,

and that the following technical, generic hypotheses are satisfied:

• (we are under the standing assumption (H), but only the fact that a′′ is nonvanishing is used here;)

• 8ξ (ξ0, η0) 6= 0;

• 8ηη(ξ0, η0) 6= 0;

and that Supp m is contained in a small enough neighborhood of (ξ0, η0).
Recall that X = x/t , and set

6(X) def
= −

1
8ξ (ξ0, η0)

(a′(ξ0)+ X).

Let ε > 0 be small enough. Assume without loss of generality that 8ξ (ξ0, η0) > 0. Then:

• If X <−8ξ (ξ0, η0)− a′(ξ0)− ε,

u(t)= O
( 1

t N

)
for any N.

• If −8ξ (ξ0, η0)− a′(ξ0)− ε < X <−8ξ (ξ0, η0)− a′(ξ0)+ ε,

u(t)= 1
√

t
A2(6)G1(

√
t[6− 1])+ O

(1
t

)
for a smooth function A2.

• If −8ξ (ξ0, η0)− a′(ξ0)+ ε < X <−a′(ξ0)− ε,

u(t, x)= 1
√

t
A1

√
6(X)

ei tψ(ξ0,η0,6)+ O
(1

t

)
for a constant A1.

• If −a′(ξ0)− ε < X <−a′(ξ0)+ ε,

u(t)= A0(6)
1

t1/4 G2(
√

t6)+
{

O(t−3/4) if |
√

t6|< 1,
O(|log t |/

√
t) if |

√
t6|> 1.

for a smooth function A0;

• if −a′(ξ0)+ ε < X ,

u(t)= O
( 1

t N

)
for any N.
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Remark 2.6. (1) Theorem 2.5 provides an efficient equivalent of u(t) for large t in all the zones of the
space-time plane (x, t), except where6 is small, but larger than 1/|log t |2 (because then |log t |/

√
t >

(1/t1/4)|G2(
√

t6)|). Dealing with this region would require fairly technical developments, from
which we refrain.

(2) If8 vanishes at order 1 on 0 and1, the conditions8ξ (ξ0, η0) 6=0 and8ηη(ξ0, η0) 6=0 are equivalent
to 0 and 1 intersecting transversally at (ξ0, η0). Indeed, a tangent vector to 0 (respectively, 1) at
(ξ0, η0) is given by(

∂η8(ξ0, η0)

−∂ξ8(ξ0, η0)

)
=

(
0

−∂ξ8(ξ0, η0)

) (
respectively

(
∂2
η8(ξ0, η0)

−∂η∂ξ8(ξ0, η0)

))
.

These two vectors are not collinear if ∂ξ8(ξ0, η0)∂
2
η8(ξ0, η0) 6= 0.

(3) The hypothesis that Supp m is restricted in a small enough neighborhood is not restrictive: away
from (ξ0, η0), either 8 or 8η is nonzero, so either Theorem 2.2 or Theorem 2.4 applies.

The proof distinguishes three regions: σ away from 0 and 1, σ close to 0, and σ close to 1. Starting
from Equation (2-0), we split the time integral as follows:

u(t, x)=− i
√

2π
t
∫ 1

0

∫∫
ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dξ dη dσ

=−
i
√

2π
t
∫ t

0

∫∫ (
χI(σ )+χII(σ )+χIII(σ )

)
. . . dξ dη dσ def

= I+ II+ III. (2-4)

Here χI , χII , and χIII are three smooth, positive functions, adding up to 1 for each σ and such that

χII(σ )=

{
0 if σ < δ,
1 if σ > 2δ,

χI(σ )=

{
0 if σ < δ or σ > 1− δ,
1 if 2δ < σ < 1− 2δ,

χIII(σ )=

{
0 if σ < 1− 2δ,
1 if σ > 1− δ.

Here δ > 0 is a sufficiently small number.

The contribution of σ away from 0 and 1. This is the simplest case since it can be settled by resorting to
elementary stationary phase considerations. Our aim is to estimate

I =− i
√

2π
t
∫ 1

0

∫∫
χI(σ )ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dξ dη dσ.

The phase ψ(ξ, η, σ ) is also a function of X , but from now on we consider X to be fixed.
Since σ does not vanish on SuppχI , the gradient

∇ξ,η,σψ =

a′+ σ8ξ + X
σ8η

8


vanishes if

8(ξ, η)=8η(ξ, η)= 0 and a′(ξ)+ σ8ξ (ξ, η)+ X = 0.
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The first two conditions impose (ξ, η)= (ξ0, η0) whereas the third one gives

σ =6(X) def
= −

1
8ξ (ξ0, η0)

(a′(ξ0)+ X).

(This makes sense under the assumption that 8ξ (ξ0, η0) 6= 0.) We assume that X is such that σ given by
the above line lies in Supp m; if this is not the case, the contribution of I is negligible. The Hessian at
(6, ξ0, η0) is

Hessξ,η,σ ψ(ξ0, η0, 6)=

a′′+68ξξ (ξ0, η0) 68ξη(ξ0, η0) 8ξ (ξ0, η0)

68ξη(ξ0, η0) 68ηη(ξ0, η0) 0
8ξ (ξ0, η0) 0 0


with determinant

det Hessξ,η,σ ψ(ξ0, η0, 6)=−68ξ (ξ0, η0)
28ηη(ξ0, η0).

Let us assume that 8ηη(ξ0, η0) is not zero, which is generically satisfied. The stationary phase principle
then gives [Stein 1993]

u(t, x)= 1
√

t
χI(6(X))
√
6(X)

ei tψ(ξ0,η0,6)A1+ O
(1

t

)
with

A1
def
=

(2π)3/2ei(π/4)S

|8ξ (ξ0, η0)|
√
|8ηη(ξ0, η0)|

µ(ξ0, η0) f̂ (ξ0− η0)ĝ(η0)

where S is the signature of Hessξ,η,σ ψ(ξ0, η0, 6).

The contribution of σ close to 0.

Step 1: splitting between small and large times. Our aim is to estimate

II =− i
√

2π
t
∫ 1

0

∫∫
χII(σ )ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dξ dη dσ,

which we split into

II =− i
√

2π
t
[∫ 1/t

0
+

∫ 1

1/t
. . . dσ

]
def
= II1+ II2.

Rescaling II1, we see that it can be written

u(t)= ei ta(D)F where F =− i
√

2π

∫ 1

0

∫
ei(s−t)a(D)Tm(e−isb(D) f, e−isc(D)g) ds,

so that it reduces to a linear solution for t sufficiently large. We now focus on II2.

Step 2: stationary phase in ξ . We want to apply the stationary phase lemma in the variable ξ . Observe
that

∂ξψ(ξ, η, σ )= a′(ξ)+ σ8ξ + X.

Thus for η, σ , and X fixed, ∂ξψ(ξ, η, σ ) = 0 may or may not have a solution in Supp m. If not, the
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contribution is negligible, so let us assume that this equation has a solution ξ =4(X, η, σ ). Next,

∂2
ξψ(ξ, η, σ )= a′′(ξ)+ σ8ξξ .

Since we are assuming that a′′ does not vanish, taking δ small enough, we can ensure that ∂2
ξψ(ξ, η, σ )

does not vanish. Applying the stationary phase lemma then gives

II2 = t
∫ 1

1/t

∫
G(4, η)ei tψ(4,η,σ )

( √
2πei S0π/4√

ψξξ (4, η, σ )
√

t
+
α(η, σ )

t
+
β(η, σ )

t
√

t
+ O

( 1
t2

))
dη dσ, (2-5)

where S0 = sign(ψξξ (4, η, σ )), α and β are smooth functions, and for simplicity we denoted

G(ξ, η, σ )=− i
√

2π
χII(σ )µ(ξ, η) f̂ (ξ − η)ĝ(η).

The last term in (2-5), containing O(1/t2), contributes O(1/t2) to u; thus we can discard it and focus on

t
∫ 1

1/t

∫
G(4, η)ei tψ(4,η,σ )

( √
2πei S0

π
4√

ψξξ (4, η, σ )
√

t
+
α(ξ, η, σ )

t
+
β(ξ, η, σ )

t
√

t

)
dη dσ. (2-6)

Step 3: stationary phase in η. Observe that

∂η[ψ(4(η, σ ), η, σ )] = ∂η4[∂ξψ](4, η, σ )+ [∂ηψ](4, η, σ )= [∂ηψ](4, η, σ )= σ [∂η8](4, η).

Just as for the stationary phase in ξ , we denote by η = H(σ, X) the solution of [∂η8](4, η)= 0 (if no
solution exist, the contribution is negligible). Next, set

∂2
η [ψ(4(η, σ ), η, σ )] = σ∂η4[∂ξ∂η8](4, η)+ σ [∂

2
η8](4, η)

def
= σ Z(η, σ ).

We need to assume that

Z(η, σ ) 6= 0

if (σ,4, η) ∈ Supp mχII . Since the support of m, as well as δ, is assumed to be small enough, it suffices
that Z(η0, 0) 6= 0; but a simple computation reveals that Z(η0, 0) = φηη(η0, ξ0), which is nonzero by
hypothesis. The stationary phase lemma in η applied to Theorem 2.5 then gives

(2-6)= t
∫ 1

1/t
G(4, H)ei tψ(4,H,σ )

√
2πei S1π/4

√
t
√
σ Z(H, σ )

×

( √
2πei S0π/4√

ψξξ (4, H, σ )
√

t
+
α(H, σ )

t
+
β(H, σ )

t
√

t
+ O

(
1

t
√

tσ

))
dσ, (2-7)

where S1 = sign(Z(H, σ )), α̃ and β̃ are smooth functions. The last summand in (2-7) contributes

O
(

t
t
√

t

∫ 1

1/t

dσ
σ

)
= O

(
log t
√

t

)
.
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We discard this and focus on

t
∫ 1

1/t
G(4, H)ei tψ(4,H,σ )

√
2πei S1π/4

√
t
√
σ Z(H, σ )

( √
2πei S0π/4√

ψξξ (H, σ )
√

t
+
α(H, σ )

t
+
β(ξ, H, σ )

t
√

t

)
dσ. (2-8)

Step 4: stationary phase in σ . In this final step, we are not going to apply the standard stationary phase
lemma, but rather its variant given in Proposition B.2. Differentiating in σ , the phase in (2-7) gives

∂σ
[
ψ
(
4(H(η, σ ), σ ), H(σ ), σ

)]
= [∂σψ](4, H, σ )=8(4(H, σ ), H(σ )),

since ∂ξψ = ∂ηψ = 0 at the point (4, H, σ ). Thus ∂σφ = 0 if 8(4, H)= 0. On the other hand, since
∂η8(4, H)= 0 by definition of H ,

8(4(H, σ ), H(σ ))= 0 if and only if H(σ )= η0 and 4(η0, σ )= ξ0.

But by definition of 4 this implies

σ =6(X)=−
X + a′(ξ0)

ψξ (ξ0, η0)
.

In order to apply Proposition B.2, we need to check that

∂2
σ

[
ψ
(
4(H(η, σ ), σ ), H(σ ), σ

)]
(6)= ∂σ [8(4(H, σ ), H(σ ))](6) 6= 0.

Since δ is chosen small enough, it suffices to check that it holds for 6 = 0 (that is, when X is such that
6(X)= 0). This follows from the following computation:

∂σ [8(4(H, 6), H(6))](0)= ∂ξ8(ξ0, η0)(∂σ4(η0, 0)+ ∂σ H(0)∂η4(η0, 0))+ ∂η8(ξ0, η0)∂σ H(0)

= ∂ξ8(ξ0, η0)∂σ4(η0, 0)=−
φξ (ξ0, η0)

2

a′′(ξ0)
6= 0,

where we used that ∂η8(ξ0, η0)= ∂η4(η0, 0)= 0 and ∂σ4(η0, 0)=−φξ (ξ0, η0)/a′′(ξ0). We now write

(2-8)= t
∫ 1

1/t
. . . dσ = t

∫ 1

0
−t
∫ 1/t

0
. . . dσ.

The second summand, t
∫ 1/t

0 . . . dσ , is directly estimated to be O(1/
√

t). As for the first summand,
t
∫ 1

0 . . . dσ , apply Proposition B.2(iv) to obtain

(2-8)= A0(6)G2(
√

t6)+
{

O(t−3/4) if |
√

t6|< 1,
O(
√
|6|/t) if |

√
t6|> 1,

where A0 is a smooth function which we do not detail here.

The contribution of σ close to 1. In order to estimate

III =− i
√

2π
t
∫ 1

0

∫∫
χIII(σ )ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ dσ.

an approach similar to the one used for II can be followed, the details being simpler: first apply the
stationary phase Lemma in the (ξ, η) variables, then Proposition B.2(i). We do not give details here.
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Conclusion.

Space-time localization of the waves. As a conclusion of the asymptotic analysis of waves which has just
been carried out, it is interesting to compare the space-time localizations of the emerging wave u, the
solution of (1-3), in the three situations we examined. To simplify, suppose that f and g are localized in
space close to 0, and in frequency close to ξ̃ − η̃ and η̃, respectively. Then

• in the absence of space-time resonances, u will be localized where X ∼−a′(ξ̃ ), where it will have
size ∼ 1/

√
t ;

• if the space-time resonant set is reduced to a point, then, under the assumptions of Theorem 2.5, u
will have size ∼ 1/t1/4 if −8ξ (η0, ξ0)− a′(ξ0) < X <−a′(ξ0), and size ∼ 1/

√
t if X ∼−a′(ξ0).

Lower bound. The asymptotic equivalents which have been computed also provide lower bounds for L p

norms of u. In the absence of space time resonances, we do not learn anything, since the equivalent for u
is similar to a linear solution. However, in the case when Theorem 2.5 applies (that is, when 1 and 0
intersect transversally at a point), for t large we get

‖u(t)‖Lq &

{
log t for q = 2,
t1/(2q)−1/4 for 2< q ≤∞,

(2-9)

which corresponds to the lower bound states in Theorem 1.1.

3. Nonlocalized data

In this section, the data are only supposed to belong to L2, as opposed to in Section 4, where the data
will belong to weighted L2 spaces.

Main results.

Theorem 3.1. Assume that m is smooth and compactly supported and a, b, c are real-valued. In the
various possible situations that follow, for q ∈ [2,∞], the solution u of (1-3) satisfies

‖u(t)‖Lq . α(t)‖ f ‖L2‖g‖L2

with α(t) as follows:

α(t)=



t in general,
1 if 0 is empty,
t1/2+1/(2q) if 0 is a point where φ vanishes at order two,
t1/q if 2≤ q <∞ and 0 is a noncharacteristic curve where φ vanishes at order one,
〈log t〉 if q =∞ and 0 is a noncharacteristic curve where φ vanishes at order one,
t1/4+1/(2q) when 0 is a curve with nonvanishing curvature where φ vanishes at order one,
t1/2 if 0 is a general curve where φ vanishes at order one.

In the two first situations above, the bound can be improved if the unitary groups ei ta(D), ei tb(D), and
ei tc(D) give decay.
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In this setting, using precisely the structure of the product of two linear solutions (which cannot be
described by using only the set φ−1({0}) as previously), we get the following improvement.

Theorem 3.2. Assume that m is smooth and compactly supported, and that (H) holds. For all q ∈ [2,∞],
the solution u of (1-3) satisfies

‖u(t)‖Lq . t1/2+1/(2q)
‖ f ‖L2‖g‖L2 .

If , moreover, we assume that 0 =∅, then, for p, q ∈ [2,∞) with 1
p
+

1
q
>

1
2

, we get

‖u(t)‖L p
t Lq . ‖ f ‖L2‖g‖L2 . (3-1)

Remark 3.3. The last statement of the previous theorem gives decay in an integrated form (u belonging
to some L p Lq ), as opposed to the pointwise in time rate of decay obtained earlier; of course, this has to
do with the use of Strichartz estimates. Heuristically, (3-1) can be understood as giving the rate of decay
‖u(t)‖Lq . t1/q−1/2

‖ f ‖L2‖g‖L2 .

Then, if the smooth symbol m does not have bounded support, we have the following result.

Corollary 3.4. We want to track the dependence of the bounds in the above theorem on the size of the
support of m. So assume that m is bounded by 1 along with sufficiently many of its derivatives, and that it
is supported on B(0, R). Then all the previous boundedness results hold with an extra factor R.

Proof. In Theorems 3.1 or 3.2, we have obtained boundedness from L2
× L2 to B (where B = Lq or

L p
T Lq ) of the operator Tt = Tσ with the symbol

σ(ξ, η)
def
= ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η),

when m has a bounded support. So now, considering a smooth symbol m supported on B(0, R), we split
it (using a smooth partition of the unity) as

m =
∑
k,l

mk,l

with mk,l smooth symbols supported on [k−1, k+1] × [l−1, l+1]. Applying the previous results
(invariant by modulation), we get

‖Tσ‖B ≤

∑
k,l

‖Tσk,l‖B ≤ cB

∑
k,l

‖πk f ‖L2‖πl g‖L2,

where cB is the constant previously obtained for compactly supported symbols and πk f is a smooth
truncation of f for frequencies around [k−1, k+1]. Using orthogonality, it follows that

‖Tσ‖B ≤ cB

(∑
k,l

1
)1/2

‖ f ‖L2‖g‖L2,

which gives the desired results, since k, l ∈ {−R− 1, . . . , R+ 1}. �
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Proof of Theorem 3.1: the general case. Using no properties on 0 or a, b, c, we can get the following
general bound.

Lemma 3.5. Assume that m is compactly supported. For all q ∈ [2,∞], the solution u to (1-3) satisfies

‖u(t)‖Lq . t‖ f ‖L2‖g‖L2 .

Proof. The solution u(t) is given by

u(t)= Tt( f, g)(x)=
∫

R2
ei x(ξ+η)ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η) dξdη = Tσ ( f, g)(x),

with symbol

σ(ξ, η)
def
= ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η).

In this general setting, we only know that σ is bounded by t and compactly supported. Lemma A.1
implies that

‖Tt( f, g)‖Lq . t‖ f ‖L2‖g‖L2 . �

The next several results improve on this bound under two different kinds of assumptions:

• using geometric properties of the resonance set 0, or

• assuming linear Strichartz inequalities for the unitary groups ei ta(D), ei tb(D), and ei tc(D), and using
the structure of the product of two linear solutions.

Proof of Theorems 3.1 and 3.2: the case without resonances. We assume here that the phase function
φ does not vanish.

Proposition 3.6. Assume that 0 =∅ and that m is compactly supported. For q ∈ [2,∞], the solution u
of (1-3) satisfies

‖u‖Lq . ‖ f ‖L2‖g‖L2 . (3-2)

Proof. The solution u(t) is given by

Tt( f, g)(x)=
∫

R2
ei x(ξ+η)ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η)dξdη = Tσ ( f, g)(x),

with symbol

σ(ξ, η)
def
= ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η).

Since a is real-valued and φ is nonvanishing, σ is bounded by a constant and compactly supported.
Lemma A.1 yields

‖Tt( f, g)‖Lq . ‖ f ‖L2‖g‖L2 . �

Let us now deal with the improved bounds of Theorem 3.2 (using dispersive and Strichartz estimates
on the linear evolution groups).



BILINEAR DISPERSIVE ESTIMATES VIA SPACE-TIME RESONANCES, I 703

Proof of Theorem 3.2. Let us check the first claim. For every s ∈ (0, t), we use the dispersive inequality
(1-3) and the L2

× L2
→ L1 boundedness of Tm to get

‖ei ta(D)Tmeisφ ( f, g)‖L∞ = ‖ei(t−s)a(D)Tm(eisb(D) f, eisc(D)g)‖L∞ .
1
√

t−s
‖ f ‖L2‖g‖L2 .

Integrating for s ∈ (0, t), it follows that

‖Tt( f, g)‖L∞ . t1/2
‖ f ‖L2‖g‖L2 .

Similarly, using the L2
× L∞→ L2 boundedness of Tm , we have for all s > 0

‖ei ta(D)Tmeisφ ( f, g)‖L2 = ‖Tm(eisb(D) f, eisc(D)g)‖L2 . ‖ f ‖L2‖eisc(D)g‖L∞,

which yields (using the Strichartz inequality)

‖Tt( f, g)‖L2 . t3/4
‖ f ‖L2‖g‖L2 .

The proof is concluded by interpolating between L2 and L∞.
Next, assume that 0 =∅, which means that φ is nonvanishing on the support of m. Computing the

integration over s ∈ [0, t], we can split

iTt( f, g)(x)= It( f, g)− IIt( f, g),

with

It( f, g)(x) def
=

∫
R2

ei x(ξ+η)ei t (b(ξ)+c(η)) 1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η)dξdη

and

IIt( f, g)(x) def
=

∫
R2

ei x(ξ+η)ei ta(ξ+η) 1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η)dξdη.

In other words,

It( f, g)= Tm/φ(ei tb(D) f, ei tc(D)g) and IIt = ei ta(D)Tm/φ( f, g).

Since φ is assumed to be smooth and nonvanishing, m/φ is also smooth and compactly supported so that
the bilinear operator Tm/φ is bounded from L P

× L Q into L R as soon as 1/P + 1/Q ≥ 1/R.
Choose now p and q as in the statement of the theorem. Using the dispersive estimates and Bernstein’s

inequality (indeed, since m has a compact support, it is possible to assume that f̂ and ĝ are compactly
supported) gives

‖It( f, g)‖L p Lq . ‖Tm/φ( f, g)‖L1 . ‖ f ‖L2‖g‖L2 .

Therefore, ei tb(D) f enjoys the usual Strichartz estimates, as well as, by Bernstein’s inequality, the bounds
‖ei tb(D) f ‖L2q . ‖ f ‖Lq ; the case of g is similar. This gives

‖IIt( f, g)‖L p Lq . ‖ei tb(D) f ‖L2p Lq‖ei tc(D)g‖L2p Lq . ‖ f ‖L2‖g‖L2 . �
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The case with resonance at only one point.

Proposition 3.7. Assume that φ only vanishes at the point (ξ0, η0). Assume further that ∇φ also vanishes
at (ξ0, η0), but that Hessφ has a definite sign at that point. If q ∈ [2,∞], the solution u of (1-3) satisfies

‖u(t)‖Lq . t1/2+1/(2q)
‖ f ‖L2‖g‖L2 .

Proof. Assume for simplicity that φ vanishes at order 2 at 0. Take a smooth, compactly supported function
χ , equal to 1 on B(0, 1), and set ψ = χ( · /2)−χ , so that

1= χ +
∑
j≥1

ψ(2− j
· ).

Then decompose the symbol as

ei ta(ξ)m ei tφ
−1
φ
=

(
χ(
√

t(ξ, η))+
∑
j≥1

ψ(2− j√t(ξ, η))
)

ei ta(ξ)m ei tφ
−1
φ

def
= m0(ξ, η)+

∑
j≥1

m j (ξ, η).

Obviously,
Tt = Tm0 +

∑
j≥1

Tm j ,

so it suffices to bound the summands above. The symbol m j ( j ≥ 0) is supported on a ball of radius
∼ 2 j/

√
t , and bounded by 2−2 j t . It follows by Lemma A.1 that

‖Tm0‖L2×L2→Lq . t1/2+1/2q and ‖Tm j‖L2×L2→Lq . t1/2+1/(2q)2 j (−1−1/q).

Therefore,

‖Tt‖L2×L2→Lq . t1/2+1/(2q)
(

1+
∑
j≥1

2 j (−1−1/q)
)
. t1/2+1/(2q),

which is the desired result. �

The case of resonances along a curve.

Proposition 3.8. Assume that 0 is a smooth curve, where φ vanishes at order 1. If q ∈ [2,∞], the solution
u of (1-3) satisfies the following.

• If 0 is noncharacteristic,

‖u(t)‖Lq . ‖ f ‖L2‖g‖L2

{
t1/q if 2≤ q <∞,
〈log t〉 if q =∞.

• If 0 has nonvanishing curvature,

‖u(t)‖Lq . t1/4+1/(2q)
‖ f ‖L2‖g‖L2 .

• Else,
‖u(t)‖Lq . t1/2

‖ f ‖L2‖g‖L2 .

As explained in Remark A.4, the estimate for a noncharacteristic curve 0 still holds if the only
characteristic points are characteristic along the variable ξ + η.
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Proof. We only treat the case where 0 is noncharacteristic and 2≤ q <∞; the other cases can be obtained
by a similar argument. Similarly to Proposition 3.7, consider a smooth, compactly supported function χ ,
equal to 1 on [0, 1], and set ψ = χ( · /2)−χ , so that

1= χ +
∑
j≥1

ψ(2− j
· ).

We denote the distance function by d0(ξ, η)= d((ξ, η), 0); since 0 is supposed to be a smooth curve
and ∇φ is nonvanishing near 0, it follows that

d0(ξ, η)' |φ(ξ, η)|.

Then decompose the symbol as

ei ta(ξ)m(ξ, η)e
i tφ(ξ,η)

−1
φ(ξ, η)

=

(
χ (tφ(ξ, η))+

∑
j≥1

ψ(2− j tφ(ξ, η))
)

ei ta(ξ)m(ξ, η)e
i tφ(ξ,η)

−1
φ(ξ, η)

def
= m0(ξ, η)+

∑
j≥1

m j (ξ, η).

Obviously,
Tt = Tm0 +

∑
j≥1

Tm j ,

so it suffices to bound the summands above. The symbol m0 ( j ≥ 0) is supported on a neighborhood 02 j/t

and bounded by t2− j , up to a numerical constant. If 0 is noncharacteristic, it follows by Lemma A.3 that
‖Tm0‖L2×L2→Lq . t1/q and ‖Tm j‖L2×L2→Lq . t1/q2− j/q . Therefore,

‖Tt‖L2×L2→Lq . t1/q
(

1+
∑
j≥1

2− j/q
)
. t1/q ,

which is the desired result. �

4. Localized data

We will now assume that the data belongs to a weighted Sobolev space, and study the decay of the solution
of (1-3).

The role of time resonances.

Proposition 4.1. Recall that m is smooth and compactly supported. Assume that φ only vanishes at
(ξ0, η0), that ∇φ also vanishes at that point, and that Hessφ at that point has a definite sign. If q ∈ [2,∞],
the solution u of (1-3) satisfies the following.

• If 0≤ s < 1/2, ‖u(t)‖Lq . t1/2+1/(2q)−s
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/2 and q <∞, ‖u(t)‖Lq . t−1/(2q)
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/2 and q =∞, ‖u(t)‖L∞ . 〈log t〉‖ f ‖L2,s‖g‖L2,s .
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Proof. As in the proof of Proposition 3.7, we decompose the symbol, giving the decomposition

u(t)= Tm0( f, g)+
∑
j≥1

Tm j ( f, g).

Again the symbol m j is supported on a ball of radius 2 j t−1/2 and is bounded by 2−2 j t . We conclude
with Lemma A.1. �

Theorem 4.2. Assume that φ vanishes at first order along a noncharacteristic curve0. Then for 2≤q<∞
and s ≥ 0, the solution u of (1-3) satisfies the following estimates:

• If 0≤ s < 1/4, ‖u(t)‖Lq . t (1−4s)/q
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/4, ‖u(t)‖Lq . 〈log t〉‖ f ‖L2,s‖g‖L2,s .

If q =∞, the solution u of (1-3) satisfies

‖u(t)‖L∞ . 〈log t〉‖ f ‖L2‖g‖L2 .

Remark 4.3. The L∞ estimate of Proposition 3.8 does not improve if the data belong to weighted L2

spaces. Also, notice that the L2 estimate for s > 1
4 is already as good as allowed by the lower bound

Equation (2-9): any further assumption on space resonances will not improve the estimate.

Proof of Theorem 4.2. Just as in the proof of Proposition 3.8, split the symbol as

ei ta(ξ)m(ξ, η)e
i tφ(ξ,η)

−1
φ(ξ, η)

= m0(ξ, η)+
∑
j≥1

m j (ξ, η).

Obviously,
Tt = Tm0 +

∑
j≥1

Tm j ,

so it suffices to bound the summands above. The symbol m j is supported on a neighborhood 02 j/t and
bounded by t2−2 j , up to a constant. Since 0 is noncharacteristic, it follows by Lemma A.5 that for s < 1

4

‖Tm j‖L2,s×L2,s→Lq . (t−12 j )1−1/q+4s/q(t2−2 j ),

‖Tm0‖L2,s×L2,s→Lq . t−1+1/q−4s/q t,

with corresponding estimates if s > 1
4 . The proof of the proposition is concluded by summing the above

bounds for the elementary operators Tm j . �

Following the same reasoning and estimates as in [Bernicot and Germain 2012], it is possible to get
similar results for a curve admitting characteristic points.

Theorem 4.4. Assume that φ vanishes at first order along a curve 0 with nonvanishing curvature. Then,
for 2≤ q <∞, s ≥ 0, and δ > 0, the solution u of (1-3) satisfies the following estimates:

• If 0≤ s ≤ 1/2, ‖u(t)‖Lq . t (1−2s)/q
‖ f ‖L2,s‖g‖L2,s .

• If s ≥ 1/2, ‖u(t)‖Lq . 〈t〉δ‖ f ‖L2,s‖g‖L2,s .
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If q =∞, the solution u of (1-3) satisfies

‖u(t)‖L∞ . 〈log t〉‖ f ‖L2‖g‖L2 .

Proof. Use Lemma A.6 instead of Lemma A.5 and follow the proof of Theorem 4.2. �

The role of space resonances.

Theorem 4.5. Assume that (H) holds and 1=∅, or in other words that (∂ξ − ∂η)φ never vanishes. Then
the solution u of (1-3) satisfies the following bounds for any δ > 0.

• If 0≤ s < 1/q , ‖u(t)‖Lq . t1/(2q)+1/2−(3/2)s+δ
‖ f ‖L2,s‖g‖L2,s .

• If 1/q < s < 1− 1/q , ‖u(t)‖Lq . t1/2−s+δ
‖ f ‖L2,s‖g‖L2,s .

• If s > 1− 1/q , ‖u(t)‖Lq . t1/q−1/2+δ
‖ f ‖L2,s‖g‖L2,s .

Proof. The proof proceeds by interpolating between the following L2 and the L∞ estimates. Indeed if
s < 1/q , then, for θ = 2/q , we have Lq

:= (L2, L∞)θ and L2,s
= (L2,qs/2, L2,0)θ with qs/2≤ 1/2. We

conclude similarly for the two other cases.
Recall that

8(ξ, η)
def
= φ(ξ − η, η),

so that the hypothesis on φ translates into ∂η8 6= 0, and, in Fourier space, u reads

û(t, ξ)= ei ta(ξ)
∫ t

0

∫
eiτ8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη dτ.

The L2 estimate. We want to prove that, for every exponent δ > 0 (as small as we want),

‖u(t)‖L2 .

{
t3/4−(3/2)s+δ

‖ f ‖L2,s‖g‖L2,s if 0≤ s ≤ 1
2 ,

‖ f ‖L2,s‖g‖L2,s if s > 1
2 .

(4-1)

The result for s = 0 is given by Theorem 3.2. So let us study the case s = 1
2 so that (4-1) will follow by

interpolation.
We first observe that the embedding L2,1/2+δ

⊂ L1 and the dispersive estimates L1
→ L∞ give∥∥∥∥∫ eiτφ(ξ−η,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

∥∥∥∥
L2
. ‖Tm(eiτb(D) f, eiτc(D)g)‖L2

. ‖eiτb(D) f ‖L∞‖g‖L2 . τ−1/2
‖ f ‖L2,1/2+δ‖g‖L2 .

Moreover, integrating by parts in η via the identity is∂η8eis8
= ∂ηeis8 gives∥∥∥∥∫ eiτ8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

∥∥∥∥
L2

. τ−1
∥∥∥∥∫ eiτ8(ξ,η)∂η[∂η8(ξ, η)

−1 f̂ (ξ − η)ĝ(η)m(ξ − η, η)] dη
∥∥∥∥

L2

. τ−3/2
[‖ f ‖L2,1/2+δ‖g‖L2,1 +‖ f ‖L2,1‖g‖L2,1/2+δ ], (4-2)
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where we repeat the same arguments as previously.
So let us fix τ and consider the bilinear operator

U def
= ( f, g)→

∫
eiτ8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη. (4-3)

We have obtained that

‖U‖L2,1/2+δ×L2→L2 +‖U‖L2×L2,1/2+δ→L2 . τ−1/2 (4-4)

and

‖U ( f, g)‖L2 . τ−3/2
[‖ f ‖L2,1/2+δ‖g‖L2,1 +‖ f ‖L2,1‖g‖L2,1/2+δ ]. (4-5)

We now explain how we can interpolate between these two estimates to obtain

‖U ( f, g)‖L2 . τ−1+δ
‖ f ‖L2,1/2‖g‖L2,1/2, (4-6)

for any δ > 0. We first consider the collection of dyadic intervals

I0
def
= [−1, 1] In

def
= [−2n, 2n−1

] ∪ [2n−1, 2n
] for n ≥ 1.

On each set In , the weight 〈x〉 is equivalent to 2n , so for n ≤ m, two integers, we know from (4-4) that

‖U‖L2(In)×L2(Im)→L2 . τ−1/22n(1/2+δ)

and from (4-5) that

‖U‖L2(In)×L2(Im)→L2 . τ−3/2
[2n(1/2+δ)2m

+ 2n2m(1/2+δ)
]. τ−3/22n(1/2+δ)2m .

Consequently, taking the geometric average with δ′ > 2δ, we get

‖U‖L2(In)×L2(Im)→L2 . τ−1+δ′2n(1/2+δ)2m(1/2−δ′) . τ−1+δ2(n+m)(1/2−δ).

So we have
‖U ( f, g)‖L2 . τ−1+δ′

∑
n,m≥0

2(n+m)(1/2−δ)
‖ f ‖L2(In)‖g‖L2(Im)

. τ−1+δ′
( ∑

n,m≥0

2−(n+m)δ
)
‖ f ‖L2,1/2‖g‖L2,1/2

. τ−1+δ′
‖ f ‖L2,1/2‖g‖L2,1/2 .

Since δ, δ′ can be chosen as small as we want with δ′ > 2δ > 0, δ′ can be chosen arbitrarily small, which
concludes the proof of (4-6).

Finally from (4-6), we obtain (4-1) for s = 1
2 by integrating in time for τ ∈ (0, t).

The L∞ estimate. We want to prove that

‖u(t)‖L∞ .

{
t1/2−s+δ

‖ f ‖L2,s‖g‖L2,s if 0≤ s ≤ 1,
t−1/2
‖ f ‖L2,s‖g‖L2,s if s > 1.

(4-7)
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The case s = 0 was stated in Theorem 3.2. Recall that, writing

u(t) def
=

∫ t

0
F(t, s) ds,

the L1
→ L∞ dispersive estimate gives

‖F(t, s)‖L∞ .
1
√

t−s
‖ f ‖L2‖g‖L2 . (4-8)

Next, integrating by parts via the formula is∂η8eis8
= ∂ηeis8 gives∫

ei ta(ξ)eis8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

=

∫
ei ta(ξ)eis8(ξ,η) 1

is∂η8(ξ, η)
∂η f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

+

∫
ei ta(ξ)eis8(ξ,η) 1

is∂η8(ξ, η)
f̂ (ξ − η)∂η ĝ(η)m(ξ − η, η) dη

+

∫
ei ta(ξ)eis8(ξ,η)∂η

(
m(ξ−η, η)
is∂η8(ξ, η)

)
f̂ (ξ − η)ĝ(η) dη,

which becomes, in physical space,

F(t, s)= I+ II+ III, (4-9)

with

I def
=

1
s

ei(t−s)a(D)T m
i∂η8

(ei tb(D)x f, ei tc(D)g),

II def
=

1
s

ei(t−s)a(D)T m
i∂η8

(ei tb(D) f, ei tc(D)xg),

III def
=

1
s

ei(t−s)a(D)T∂η m
i∂η8

(ei tb(D) f, ei tc(D)g).

Using the L1
→ L∞ dispersive estimate,

‖I‖L∞ .
1

s
√

t−s

∥∥T m
i∂η8

(ei tb(D)x f, ei tc(D)g)
∥∥

L1 .
1

s
√

t−s
‖x f ‖L2‖g‖L2 .

1
s
√

t−s
‖ f ‖L2,1‖g‖L2,1 .

Similar estimates for II and III give

‖F(t, s)‖L∞ .
1

s
√

t−s
‖ f ‖L2,1‖g‖L2,1 . (4-10)

Repeating the argument, but integrating by parts twice via the identity 1
is∂η8

∂ηeis8
= eis8, yields

‖F(t, s)‖L∞ .
1

s2
√

t−s
‖ f ‖L2,2‖g‖L2,2 . (4-11)

Finally, interpolating between (4-8), (4-10), and (4-11) gives

‖F(t, s)‖L∞ .
1

sσ
√

t−s
‖ f ‖L2,σ ‖g‖L2,σ for 0≤ σ ≤ 2.

Integrating this inequality in s (recall that u(t)=
∫ t

0 F(t, s) ds) gives the desired estimate. �
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The role of space-time resonances. We want to consider here the case of a point which would be resonant
both in space and in time; we need to combine the two approaches previously presented.

Theorem 4.6. Assume as usual that m is smooth and compactly supported and that (H) holds. Assume
further that the point

p0
def
= (ξ0, η0)

is the only point in the support of m that is resonant in space and time — in other words, the only point such
that φ(p0)= (∂ξ − ∂η)φ(p0)= 0. Moreover, assume that φ and (∂ξ − ∂η)φ vanish at order one on their
zero sets, and that the two smooth curves {φ = 0} and {(∂ξ − ∂η)φ = 0} are non tangentially intersecting
at p0 with ∂ξφ(p0) 6= 0. Then the solution u of (1-3) satisfies the following bounds for q ∈ [2,∞] and
every δ > 0.

• If s ∈
[
0, 1

2

]
,

‖u(t)‖Lq . t1/q−s(1/4+3/(2q))+δ
‖ f ‖L2,s‖g‖L2,s .

• If s ∈
( 1

2 , 1
]
,

‖u(t)‖Lq . t−s(1/4−1/(2q))+δ
‖ f ‖L2,s‖g‖L2,s .

Remark 4.7. • For q =∞, the estimates follow from the ones with q <∞ with the Bessel inequality
(since δ can be as small as we want).

• The assumptions of the theorem imply that, if φ and ∇ηφ vanish at order 1 on 0 and 1, respectively,
then, at the intersection point of 0 and 1, 0 is characteristic along ξ + η. Fortunately, this turns out
not be a problem in the estimates.

• The technical assumption ∂ξφ(p0) 6= 0 is exactly the same as that of Theorem 2.5: 8ξ (ξ0, η0) 6= 0.

• In the previous results, for s = 1, we get that, for large t � 1,

‖u(t)‖Lq . t1/(2q)−1/4+δ
‖ f ‖L2,1‖g‖L2,1,

for every δ > 0. This estimate is optimal (up to δ which can be chosen as small as we want) due to
the lower bound in (2-9).

Proof. The L2 inequalities (q = 2) have already been proved in Theorems 4.2 and 4.4. Indeed, from
Theorem 4.4 we know that u(t) can be estimated in L2 with a bound t (1−s)/2+δ if s ≤ 1

2 and tδ for every
δ > 0 if s ≥ 1

2 . Moreover, Theorem 4.2 yields that, for every δ > 0,

‖u(t)‖L∞ . tδ‖ f ‖L2‖g‖L2 .

So it suffices to check the only remaining extremal point, q =∞ with s = 1. We now aim at proving that

‖u(t)‖BMO . t−1/4+δ
‖ f ‖L2,1‖g‖L2,1, (4-12)

which implies the desired result by interpolation.
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To prove (4-12), the main idea is to combine the two previous situations, so let us consider small
parameters ε1, ε2 ∈ (t−1/2, 1) and a smooth partition of the unity with respect to the domains

�1
def
= {(ξ, η), |φ(ξ, η)|> ε1+

1
2 |(∂ξ − ∂η)φ(ξ, η)|},

�2
def
= {(ξ, η), |(∂ξ − ∂η)φ(ξ, η)|> ε2+

1
2 |φ(ξ, η)|},

�3
def
= {(ξ, η), |φ(ξ, η)|< 2ε1 and |(∂ξ − ∂η)φ(ξ, η)|< 2ε2}.

More precisely, �1 can be thought of as a truncated “cone” around the curve |(∂ξ − ∂η)φ| = 0 and of top
p0. �2 can be thought of similarly, but around the other curve. This decomposition, from the smooth
symbol m, gives rise to three symbols mi , and we have

u(t)= u1(t)+ u2(t)+ u3(t)

with

ûi (t, ξ) := ei ta(ξ)
∫ t

0

∫
eisφ(ξ−η,η)mi (ξ − η, η) f̂ (ξ − η)ĝ(η) dη ds.

Step 1: estimate of u1 in BMO with s = 1. We perform the same decomposition as was used in the proof
of Theorem 3.2, so

u1(t)= It( f, g)− IIt( f, g),

with

It( f, g)= Tm1/φ(e
i tb(D) f, ei tc(D)g) and IIt = ei ta(D)Tm1/φ( f, g).

The symbol m1 is of Coifman–Meyer type [Coifman and Meyer 1978] (up to a translation from p0 to 0)
and φ is smooth and lower-bounded by ε1 so Tm1/φ is bounded from L∞×L∞ to a modulated BMO space
[Meyer and Coifman 1991] with norm . ε−1

1 . Using the dispersive inequalities for the linear evolution
groups,

‖It( f, g)‖BMO . ε
−1
1 ‖e

i tb(D) f ‖L∞‖ei tc(D)g‖L∞ . ε
−1
1 t−1

‖ f ‖L1‖g‖L1 . ε−1
1 t−1

‖ f ‖L2,1‖g‖L2,1,

where we used L2,1
⊂ L1. Then we decompose the symbol m1 around p0 for scales 2 j from ε1 to 1

as follows (here the scale means the distance in the frequency plane to the point p0, which in �1 is
equivalent to |φ|):

m1 =
∑

ε1≤2 j.1

m1χ(2− jφ),

where χ is a compactly supported and smooth function. The symbol m1χ(2− jφ)/φ is of Coifman–Meyer
type (up to a translation) with a bound 2− j so the operator Tm1χ(2− jφ)/φ is bounded from L2

× L2 to L1

with a bound 2− j . Since when we evaluate Tm1χ(2− jφ)/φ( f, g), the functions f and g may be assumed
supported in frequency on an interval of length 2 j , we deduce from Lemma A.2 that

‖IIt( f, g)‖L∞ . t−1/2
‖Tm1/φ( f, g)‖L1

. t−1/2
( ∑
ε1≤2 j.1

2 j 2− j
)
‖ f ‖L2,1‖g‖L2,1 . t−1/2

|log ε1|‖ f ‖L2,1‖g‖L2,1 .
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So, since ε1 ∈ [t−1/2, 1], for every δ > 0, we obtain

‖u1(t)‖BMO . t−1/2ε−δ1 ‖ f ‖L2,1‖g‖L2,1 . (4-13)

Step 2: estimate of u2 in L∞ with s = 1. For u2, we follow the proof of Theorem 4.5, with the symbol
m2 supported on a cone with |(ξ, η)− p0| ≥ ε2. In our current situation, the symbol m2 satisfies the
Hörmander regularity condition (which means |∂αm2(ξ, η)|. |(ξ, η)− p0|

−|α|) and is supported on �2,
which can be considered as a cone of top p0. So �2 can be split into different parts at distance 2 j from
p0 for ε2 ≤ 2 j . 1:

m2 =
∑

ε2≤2 j.1

m2χ(2− j ( · − p0)),

where χ is a smooth and compactly supported function. For each of these pieces, χ(2− j ( · − p0)) restricts
frequencies to a ball of radius ∼ 2 j , so it is possible to add projections π j on f and g, where π j projects
on intervals of length ∼ 2 j which we do not specify.

These considerations lead to the following modification of (4-10):

‖F(t, s)‖L∞ .
1

s
√

t − s

∑
ε2≤2 j.1

(
I j + II j + III j ), (4-14)

where

I j
def
=

∥∥∥Tm2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

‖x f ‖L2‖π j g‖L2,

II j
def
=

∥∥∥Tm2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

‖π j f ‖L2‖xg‖L2,

III j
def
=

∥∥∥T
∂η

m2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

‖π j f ‖L2‖π j g‖L2 .

To bound I j , observe that 2 j m2χ(2− j ( · − p0))

∂η8
is a Coifman–Meyer symbol; thus

∥∥∥Tm2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

. 2 j .

Furthermore, by Lemma A.2, ‖π j g‖L2 . 2 j/2
‖g‖L2,1 . Therefore,

I j . 2− j
‖ f ‖L2,1‖π j g‖L2 . 2− j/2

‖ f ‖L2,1‖π j g‖L2,1 .

Similarly,

II j . 2− j
‖ f ‖L2‖g‖L2,1 . 2− j/2

‖ f ‖L2,1‖g‖L2,1 .

Finally, 22 j∂η
m2χ(2− j ( · − p0))

∂η8
is also a Coifman–Meyer symbol. Applying this and Lemma A.2 gives

III j . 2− j
‖ f ‖L2,1‖g‖L2,1 .
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It follows that

‖F(t, s)‖L∞ .

( ∑
ε2≤2 j.1

2− j/2
+ 2− j

)
1

s
√

t−s
‖ f ‖L2,1‖g‖L2,1 . ε−1

2
1

s
√

t−s
‖ f ‖L2,1‖g‖L2,1,

which means that in (4-10) we get a new extra factor ε−1
2 . Finally, applying similar arguments as for

Theorem 4.5, we conclude that, for any δ > 0, we have

‖u2(t)‖L∞ . ε
−1−δ
2 t−1/2+δ

‖ f ‖L2,1‖g‖L2,1 . (4-15)

Step 3: Estimate of u3 in L∞ with s = 1. For u3, we know that the symbol m3 is supported on a ball of
radius ε :=max{ε1, ε2} around the space-time resonant point p0.

We follow similar arguments as for Proposition 3.8, so we split the ball B(p0, ε) into “strips” with
scale φ from 0 to ε:

m3 =
∑

0<2 j.ε

m3χ(2− jφ),

which implies

u3(t)=
∑

0<2k.ε

Tm j
3
( f, g)

where Tm j
3

is the bilinear Fourier multiplier associated to the symbol

m j
3(ξ, η)= ei ta(ξ+η)m3(ξ, η)

ei tφ(ξ,η)
−1

φ(ξ, η)
χ(2− jφ(ξ, η)).

For each scale 2 j , the symbol m j
3 is bounded by max{t, 2− j

}, so Lemmas A.3 and A.2 with Remark A.4
imply (the functions f, g may be supposed to be frequentially supported on an interval of length ε)

‖Tm j
3
( f, g)‖L∞ .max{t, 2− j

}2 j
‖ f ‖L2‖g‖L2 .max{t, 2− j

}2 jε‖ f ‖L2,1‖g‖L2,1 .

By summing all these inequalities over the scale 2 j , we get

‖u3(t)‖L∞ .

(
t
∑

2 j≤t−1

2 j
+

∑
t−1≤2 j≤ε

1
)
ε‖ f ‖L2,1‖g‖L2,1

. 〈log(εt)〉ε‖ f ‖L2,1‖g‖L2,1 . (εt)δε‖ f ‖L2,1‖g‖L2,1, (4-16)

for every δ > 0, since εt > 1.
Step 4: End of the proof. Optimizing over ε1 and ε2 leads to

ε1 = ε2 = εt := t−1/4+δ.

As required, we have εt ∈ [t−1/2, 1]. So by summing (4-13) and (4-16) with the estimate for u2, we now
have, for every small enough δ > 0,

‖u(t)‖BMO . [t−1/2ε−δt + (εt)δεt ]‖ f ‖L2,1‖g‖L2,1 .
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Since εt ≥ t−1/2, the main term in the previous inequality is the second one, so we deduce for every δ > 0

‖u(t)‖BMO . t−1/4+δ,

which concludes the proof of (4-12). �

Appendix A: Multilinear estimates

Lemma A.1. Suppose that the symbol σ(ξ, η) is bounded (that is, ‖σ‖L∞ . 1) and supported on a ball
of radius ε, say B(0, ε). For q ∈ [2,∞] and s < 1

2 ,

‖Tσ ( f, g)‖Lq . ε1−1/q+2s
‖ f ‖L2,s‖g‖L2,s

and

‖Tσ ( f, g)‖Lq . ε2−1/q
‖ f ‖L2,s‖g‖L2,s

if s > 1
2 .

Proof. Consider the first claim in the case s = 0. The lemma is obtained by interpolating between the
endpoints q = 2 and q =∞. If q = 2, it follows from an application of the Plancherel equality and the
Cauchy–Schwarz inequality that

‖Tσ ( f, g)‖2L2 =

∫ ∣∣∣∣∫ σ(ξ − η, η) f̂ (ξ − η)ĝ(η) dη
∣∣∣∣2dξ

≤

∫ (∫
|σ(ξ − η, η)|2 dη

)(∫
| f̂ (ξ − η)ĝ(η)|2dη

)
dξ

. ε‖ f ‖2L2‖g‖2L2 . (A-1)

If q =∞, use Cauchy–Schwarz again to get

‖Tσ ( f, g)‖L∞ =

∥∥∥∥∫∫ ei x(ξ+η)σ(ξ, η) f̂ (ξ)ĝ(η) dη dξ
∥∥∥∥

L∞
.
∫∫

B(0,ε)
| f̂ (ξ)ĝ(η)| dη dξ

. ε

(∫∫
| f̂ (ξ)ĝ(η)|2 dη dξ

)1/2

. ε‖ f ‖L2‖g‖L2 . (A-2)

Then, for s > 0, we use that the symbol is supported on a ball of radius ε, so f (respectively g) can be
replaced with πI( f ) (respectively πJ (g)), corresponding to the frequency-truncation of f on an interval I
of length 2ε. We conclude by applying the previous reasoning with πI( f ) and πJ (g) and Lemma A.2. �

Lemma A.2. Assume that I is an interval and consider πI the Fourier multiplier, given by a smooth
function supported on 2I and equal to 1 on I. For q ∈ [2,∞] and s < 1

2 ,

‖πI( f )‖L2 . |I|s‖ f ‖Ls,2 .

Proof. The proof relies on the Sobolev embedding as follows:

‖πI( f )‖L2 . |I|1/2−1/σ
‖ f̂ ‖Lσ (2I ) . |I|s‖ f̂ ‖Lσ . |I|s‖ f̂ ‖W s,2 . |I|s‖ f ‖Ls,2,

where the exponent σ is given by 1/σ = 1
2 − s. �
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Lemma A.3. Consider a smooth curve 0 and a bounded symbol σ (‖σ‖∞.1) supported on 0ε∩B(0,M),
for a positive constant M. Suppose q ∈ [2,∞].

• If the curve 0 is noncharacteristic,

‖Tσ ( f, g)‖Lq . ε1−1/q
‖ f ‖L2‖g‖L2 .

• If the curve 0 has nonvanishing curvature,

‖Tσ ( f, g)‖Lq . ε3/4−1/(2q)
‖ f ‖L2‖g‖L2 .

• Otherwise,
‖Tσ ( f, g)‖Lq . ε1/2

‖ f ‖L2 ‖g‖L2 .

Proof. As for Lemma A.1, by interpolation it suffices to study the two extremal situations, q = 2 and
q =∞. First, for q = 2, employ the same reasoning as in Lemma A.1 (relying on the Plancherel equality).
Since the support 0ε now has a measure bounded by ε (up to a constant), we get

‖Tσ ( f, g)‖L2 . ε1/2
‖ f ‖L2‖g‖L2 . (A-3)

Let us point out that this estimate is the easiest situation (when the three exponents are equal to 2)
described by Theorem 1.5 of [Bernicot and Germain 2012]. Moreover this estimate does not depend on
geometric properties of the curve 0.

Let us now study the case where q =∞. If the curve 0 is noncharacteristic, then Proposition 6.2 of
[Bernicot and Germain 2012] implies that

‖Tσ ( f, g)‖L∞ . ε‖ f ‖L2‖g‖L2,

which, by interpolating with (A-3), proves the desired result. If the curve 0 has a nonvanishing curvature,
the proposition just cited yields

‖Tσ ( f, g)‖L∞ . ε
3/4
‖ f ‖L2‖g‖L2,

and we similarly conclude by interpolation. �

Remark A.4. The estimate for a noncharacteristic curve 0 still holds if the curve admits some points
that are characteristic only along the variable ξ + η, which means when the tangential vector of the curve
at this point is parallel to (−1, 1). Indeed the proof of Proposition 6.2 of [Bernicot and Germain 2012]
only requires appropriate decompositions in the variables ξ and η for f and g and do not use specific
properties on the third frequency variable ξ + η.

Lemma A.5. Assume that 0 is a noncharacteristic curve. Consider a bounded symbol σ (‖σ‖∞ . 1)
supported on 0ε ∩ B(0,M), for a positive constant M.

• If 0≤ s < 1/4, ‖Tσ ( f, g)‖Lq . ε1−1/q+4s/q
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/4, ‖Tσ ( f, g)‖Lq . ε‖ f ‖L2,s‖g‖L2,s .
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Proof. We follow the same steps as for the previous lemma. The L2
× L2 to L∞ estimate cannot be

improved by replacing L2 by L2,s , so we simply focus on L2
× L2 to L2 estimates. Since the curve is

assumed to be noncharacteristic, it follows that

|〈Tσ ( f, g), h〉|.
∑

i

ε1/2
‖ f̂ ‖L2(I1

i )
‖ĝ‖L2(I2

i )
‖ĥ‖L2(I3

i )
, (A-4)

where the (Ik
i )i are collections of almost disjoint intervals of length ε for k = 1, 2, 3. As a consequence,

from the Cauchy–Schwartz inequality it turns out

‖Tσ ( f, g)‖L2 . ε1/2(sup
i
‖ f̂ ‖L2(I1

i )
)‖g‖L2 .

Using Sobolev embedding on the whole space R, we get

‖ f̂ ‖L2(I1
i )
. ε1/2−1/σ

‖ f̂ ‖Lσ (I1
i )
. ε2s

‖ f̂ ‖Lσ . ε
2s
‖ f̂ ‖W 2s,2

with the exponent σ given by 1/σ = 1
2 − 2s (we recall that s ≤ 1

4 ). So finally we get

‖Tσ ( f, g)‖L2 . ε1/2+2s
‖ f ‖L2,2s‖g‖L2 .

By symmetry and then interpolation, we deduce

‖Tσ ( f, g)‖L2 . ε1/2+2s
‖ f ‖L2,s‖g‖L2,s . �

Lemma A.6. Assume that 0 has a nonvanishing curvature. Consider a bounded symbol σ (‖σ‖∞ . 1)
supported on 0ε ∩ B(0,M), for a positive constant M. If 0≤ s ≤ 1

2 , then, for every δ > 0,

‖Tσ ( f, g)‖L2 .

{
ε1/2+s+δ

‖ f ‖L2,s‖g‖L2,s , if s < 1/2,

ε
√
|log ε|‖ f ‖L2,s‖g‖L2,s , if s > 1/2.

Proof. The case s = 0 is included in Lemma A.3, so by interpolation (with L2,s
⊂ L1 for s > 1

2 ) it suffices
to check that

‖Tσ ( f, g)‖L2 . ε
√
|log ε|‖ f ‖L1‖g‖L1 .

This estimate was already proved in [Bernicot and Germain 2012, Proposition 5.1]. For readability we
quickly sketch the proof here. Assume that (0, 0) ∈ 0 and let us work around this point. Then note that,
for every L2-function h,∣∣〈Tσ ( f, g), h〉

∣∣= ∣∣∣∣∫ σ(ξ, η) f̂ (ξ)ĝ(η)ĥ(ξ + η)dξdη
∣∣∣∣. ‖ f̂ ‖L∞‖ĝ‖L∞

∫ ∣∣∣σ(u+v
2
,

u−v
2

)∣∣∣|ĥ(u)| du dv

. ‖ f ‖L1‖g‖L1

∫
|ĥ(u)| ε

√
1+|u|

. ‖ f ‖L1‖g‖L1‖h‖L2ε
√
|log ε|,

where we have used (because of the nonvanishing curvature) that, uniformly with respect to λ0,∣∣{ξ − η, (ξ, η) ∈ 0ε, ξ + η = λ0}
∣∣. ε
√
ε+|λ0|

. �
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Appendix B: One-dimensional oscillatory integrals

Before stating the main proposition, we need to define the functions1

G1(x)
def
=

∫
∞

x
eiσ 2

dσ and G2(x)
def
=

∫
∞

x
eiσ 2 dσ
√
σ−x

.

Their qualitative behavior is given by the following lemma.

Lemma B.1. (i) G1 is a smooth function such that{
G1(x)=−ei x2

/(2i x)+ O(1/x2) as x→∞,
G1(x)= C0+ O(1/x) as x→−∞,

where C0 is the constant C0 =
∫
∞

−∞
eiσ 2

dσ .

(ii) G2 is a smooth function such that

G2(x)=

{
C+ei x2√

2/x + O(1/|x |5/6) as x→∞,

C−ei x2√
2/|x | +

√
πeiπ/4e−i x2

(1/
√
|x |)+ O(1/|x |5/7) as x→−∞,

where C± =
∫
∞

0 e±iσ 2
dσ .

We now state the main result. Recall that C0 =
∫
+∞

−∞
eiσ 2

dσ .

Proposition B.2. Let χ be a smooth, compactly supported function, and let ζ be a smooth function.

(i) If ζ ′′ ≥ c > 0 and ζ ′(σ0)= 0,∫
∞

0
ei tζ(σ )χ(σ) dσ = χ(σ0)

√
2

ζ ′′(σ0)

1
√

t
G1(
√

tσ0)+ Oc

(1
t

)
.

(ii) If |ζ ′| ≥ c > 0 does not vanish,∫
∞

0
ei tζ(σ )χ(σ)

dσ
√
σ
=

χ(0)
√
ζ ′(0)

ei tζ(0) C0
√

t
+ Oc

(1
t

)
.

(iii) If |ζ ′′| ≥ c > 0, ζ ′(σ0)= 0 with σ0 ≥ c,∫
∞

0
ei tζ(σ )χ(σ)

dσ
√
σ
=

χ(0)
√
ζ ′(0)

ei tζ(0) C0
√

t
+
√

2πei tζ(σ0)ei sign(ζ ′′(σ0))
π
4

χ(σ0)
√
σ0ζ ′′(σ0)

1
√

t
+ Oc

(1
t

)
.

(iv) If ζ ′′ ≥ c > 0 and ζ ′(σ0)= 0,∫
∞

0
ei tζ(σ )χ(σ)

dσ
√
σ
= C(χ, ζ )G2(

√
tσ0)+

{
Oc(t−3/4) if |

√
tσ0|< 1,

Oc(
√
σ0/t) if |

√
tσ0|< 1,

where C(χ, ζ ) is a function of χ and ζ (and hence also of σ0) which we do not make explicit here.

1The function G1 can obviously be obtained from the Fresnel integrals S(x) =
∫ x

0 sin t2dt and C(x) =
∫ x

0 cos t2dt . In
particular, the constants C0 and C± appearing below can be computed via Fresnel integrals to yield C0 = (1+ i)

√
π/2 and

C± = ((1± i)/2)
√
π/2. See [Abramowitz and Stegun 1964].
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Remark B.3. Statements (ii) and (iii) on the one hand, and (iv) on the other, are complementary: (ii)
and (iii) apply when ζ ′ vanishes away from zero, or not at all, whereas (iv) is meaningful if the point of
vanishing of ζ ′ approaches zero.

Proof of Lemma B.1. Assertion (i) is proved by a simple integration by parts, so we skip it and focus
on (ii). After the change of variable of integration to τ =

√
σ − x , G2 becomes

G2(x)= 2ei x2
∫
∞

0
eiτ 2(τ 2

+2x)dτ def
= 2ei x2

g(x).

The case x→∞. Split

g(x)=
∫ R

0
+

∫
∞

R
. . . dτ def

= I+ II.

Start with

I =
∫ R

0
ei2xτ 2

dτ +
∫ R

0
[eiτ 2(τ 2

+2x)
− ei2xτ 2

] dτ def
= I1+ I2.

The term I1 can be written

I1 =

∫
∞

0
ei2xτ 2

dτ −
∫
∞

R
ei2xτ 2

dτ =
1
√

2x

∫
∞

0
eiσ 2

dσ + O
(

1
x R

)
,

where the inequality
∫
∞

R ei2xτ 2
dτ = O(1/(αR)) follows by integration by parts.

As for I2, estimate it brutally by

|I2|.
∫ R

0
τ 4dτ = O(R5).

Finally, an integration by parts gives

II =
∫
∞

0
eiτ 2(τ 2

+2τ x)dτ .
1

R2x
.

Gathering the above gives

g(x)=

√
1

2x

∫
∞

0
eiσ 2

dσ + O(R5)+ O
(

1
x R2

)
;

finally, optimizing over R gives

g(x)=

√
1

2x

∫
∞

0
eiσ 2

dσ + O
(

1
x5/7

)
,

which is the desired result.

The case x→−∞. Split

g(x)=
∫ √
−x/2

0
+

∫
∞

√
−x/2

. . . dτ def
= III+ IV.

Start with III. Similarly to g in the case x→∞, we use the split

III =
∫ R

0
+

∫ √
−x/2

R
. . . dτ = III1+ III2,
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and estimate

III1 =
1
√

2x

∫
∞

0
eiσ 2

dσ + O
(

R5
+

1
|x |R

)
and III2 = O

(
1

R2x

)
.

Optimizing over R gives

III =
1
√

2x

∫
∞

0
eiσ 2

dσ + O
(

1
|x |5/7

)
.

Turning now to IV , observe that the change of variable ρ =−τ 2/x gives

IV =
√
−x

∫
∞

1/2
ei x2ρ(ρ−2) dρ

2
√
ρ
=

√
π

2
eiπ/4e−i x2 1

√
|x |
+ O

(
1
|x |

)
,

where the last equality follows by the stationary phase lemma. Putting together our estimates on III and
IV gives the desired result. �

An intermediate result. The following proposition essentially corresponds to Proposition B.2, where ζ
is replaced by either σ or σ−ε (in which case σ0 = ε).

Proposition B.4. Let χ be a smooth function.

(i)
∫
∞

ε

ei tσ 2
χ(σ) dσ =

χ(0)
√

t
G1(
√

tε)+ O
(1

t

)
.

(ii)
∫
∞

0
ei tσχ(σ)

dσ
√
σ
=

C0
√

t
χ(0)+ O

(1
t

)
(recall that C0 =

∫
+∞

−∞
eiσ 2

dσ ).

(iii)
∫
∞

ε

ei tσ 2 1
√
σ−ε

χ(σ ) dσ =
χ(0)
t1/4 G2(

√
tε)+

{
O(t−3/4) if |

√
tε|< 1

O(
√
ε/t) if |

√
tε|> 1

Proof. We prove only (iii), since (i) and (ii) are simpler and can be proved using a similar procedure.
First reduction for (iii). The change of variable τ =

√
tσ gives∫

∞

ε

ei tσ 2 1
√
σ − ε

χ(σ ) dσ = t−1/4
∫
∞

√
tε

eiτ 2 1√
τ −
√

tε
χ

(
τ
√

t

)
dτ.

Thus the proposition is proved if we show that∫
∞

√
tε

eiτ 2 1√
τ −
√

tε

[
χ

(
τ
√

t

)
−χ(0)

]
dτ =

{
O(t−1/2) if |

√
tε|< 1,

O(
√
εt−1/4) if |

√
tε|> 1.

(B-1)

Define β a smooth, compactly supported function, equal to 1 on the support of χ . We can write

(B-1)= χ(0)
∫
∞

√
tε

eiτ 2
[
β

(
τ
√

t

)
− 1

]
dτ√

τ −
√

tε
+

∫
∞

√
tε

eiτ 2
β

(
τ
√

t

)[
χ

(
τ
√

t

)
−χ(0)

]
dτ√

τ −
√

tε
.

Since the first summand is easier to deal with, we focus on the second. Setting

Z(y) def
= β(y)[χ(y)−χ(0)],
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reduces the question to proving that∫
∞

√
tε

eiτ 2
Z
(
τ
√

t

)
dτ√

τ −
√

tε
.

{
t−1/2 if |

√
tε|< 1,

√
εt−1/4 if |

√
tε|> 1,

(B-2)

where Z is a smooth function vanishing at 0.

Proof of (B-2). Split the left-hand side of (B-2) as∫ √tε+R

√
tε

+

∫
∞

√
tε+R

. . . dτ def
= I+ II.

The term I is estimated directly, giving

I ≤
∫ √tε+R

√
tε

∣∣∣∣Z( τ
√

t

)∣∣∣∣ dτ√
τ −
√

tε
.

{
ε
√

R if R <
√

t |ε|,
t−1/2 R3/2 if R >

√
t |ε|.

The term II is submitted first to an integration by parts using the identity
1

2τ
∂τ eiτ 2

= eiτ 2
:

II =
∫
∞

√
tε+R

1
2τ
∂τ eiτ 2

Z
(
τ
√

t

)
dτ√

τ −
√

tε
=

1
√

t

∫
∞

√
tε+R

1
2∂τ eiτ 2

Z̃
(
τ
√

t

)
dτ√

τ −
√

tε

=−
1

2
√

t
√

R
ei(
√

tε+R)2 Z̃
(√

tε+ R
√

t

)
−

1
2t

∫
∞

√
tε+R

eiτ 2
Z̃ ′
(
τ
√

t

)
dτ√

τ −
√

tε

+
1

4
√

t

∫
∞

√
tε+R

eiτ 2
Z̃
(
τ
√

t

)
dτ

(τ −
√

tε)3/2
,

where we set Z̃(y)def
=Z(y)/y. The term II is then estimated directly:

II .
1

2
√

t
√

R

∣∣∣∣Z̃(√tε+ R
√

t

)∣∣∣∣+ 1
t

∫
∞

√
tε+R

∣∣∣∣Z̃ ′( τ
√

t

)∣∣∣∣ dτ√
τ −
√

tε
+

1
√

t

∫
∞

√
tε+R

∣∣∣∣Z̃( τ
√

t

)∣∣∣∣ dτ
(τ −
√

tε)3/2

. t−1/2 R−1/2.

Summing up, we have

I+ II .
{
ε
√

R+ t−1/2 R−1/2 if R <
√

t |ε|,
t−1/2 R3/2

+ t−1/2 R−1/2 if R >
√

t |ε|.

Optimizing over R (distinguishing between the cases
√

t |ε|> 1 and
√

t |ε|< 1) gives (B-2). �

Proof of Proposition B.2. We only prove (iv); the proofs of (i) and (ii) closely follow that of (iv), and (iii)
simply requires an additional application of the stationary phase lemma. The idea is simply to perform a
change of variable which reduces matters to Proposition B.4. We want to estimate∫

∞

0
ei tζ(σ )χ(σ)

dσ
√
σ

(B-3)

where ζ ′′ ≥ c > 0 and ζ ′(σ0)= 0. Now set

y =8(σ) def
= sign(σ − σ0)

√
ζ(σ ).
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Notice that 8 is smooth, and that

8−1(0)= σ0, 8′(σ0)=

√
ζ ′′(σ0)

2
, (8−1)′(0)=

√
2

ζ ′′(σ0)
.

Furthermore,

(8−1)′(8(0))= sign(8(0)− σ0)
2
√
ζ (8(0))

ζ ′(8(0))
def
= C(ζ )2,

which implies that
√
8−1(y) can be written√

8−1(y)= C(ζ )
√

yγ (y)

for some smooth, positive function γ . Performing the change of variable y =8(σ) gives

(B-3)=
∫
∞

8(0)
ei t y2

χ ◦8−1(y)(8−1)′(y)C(ζ )−1 dy
√

y
√
γ (y)

.

Applying Proposition B.4 gives the desired result:

(B-3)= χ(σ0)

√
2

ζ ′′(σ0)

1
C(ζ )

1
γ (0)

1
t1/4 G2(

√
tε)+

{
O(t−3/4) if |

√
tε|< 1,

O(
√
ε/t) if |

√
tε|> 1.

�
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