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SMOOTHING AND GLOBAL ATTRACTORS FOR THE ZAKHAROV SYSTEM
ON THE TORUS

MEHMET BURAK ERDOĞAN AND NIKOLAOS TZIRAKIS

We consider the Zakharov system with periodic boundary conditions in dimension one. In the first part
of the paper, it is shown that for fixed initial data in a Sobolev space, the difference of the nonlinear
and the linear evolution is in a smoother space for all times the solution exists. The smoothing index
depends on a parameter distinguishing the resonant and nonresonant cases. As a corollary, we obtain
polynomial-in-time bounds for the Sobolev norms with regularity above the energy level. In the second
part of the paper, we consider the forced and damped Zakharov system and obtain analogous smoothing
estimates. As a corollary we prove the existence and smoothness of global attractors in the energy space.

1. Introduction

We study the system of nonlinear partial differential equations, introduced in [Zakharov 1972]. It describes
the propagation of Langmuir waves in an ionized plasma. The system with periodic boundary conditions
consists of a complex field u (Schrödinger part) and a real field n (wave part) satisfying the equation8̂̂̂̂

<̂
ˆ̂̂:
iut C˛uxx D nu; x 2 T; t 2 Œ�T; T �;

nt t �nxx D .juj
2/xx;

u.x; 0/D u0.x/ 2H
s0.T/;

n.x; 0/D n0.x/ 2H
s1.T/; nt .x; 0/D n1.x/ 2H

s1�1.T/;

(1)

where ˛ > 0 and T is the time of existence of the solutions. The function u.x; t/ denotes the slowly
varying envelope of the electric field with a prescribed frequency and the function n.x; t/ denotes the
deviation of the ion density from the equilibrium. Here ˛ is the dispersion coefficient. In the literature
(see, e.g., [Takaoka 1999]) it is standard to include the speed of an ion acoustic wave in a plasma as a
coefficient ˇ�2 in front of nt t where ˇ > 0. One can scale away this parameter using time and amplitude
coefficients of the form t ! ˇt , u!

p
ˇu, and n! ˇn and reduce the system to (1). Smooth solutions

of the Zakharov system obey the conservation laws

ku.t/kL2.T/ D ku0kL2.T/

and

E.u; n; �/.t/D ˛

Z
T

j@xuj
2dxC

1

2

Z
T

n2dxC
1

2

Z
T

�2dxC

Z
T

njuj2dx DE.u0; n0; n1/
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where � is such that nt D �x and �t D .nCjuj2/x . These conservation laws identify H 1�L2�H�1 as
the energy space for the system.

For ˛ D 1, Bourgain [1994] proved that the problem is locally well-posed in the energy space using
the restricted norm method (see, e.g., [Bourgain 1993]). The solutions are well-posed in the sense of the
following definition

Definition 1.1. Let X; Y;Z be Banach spaces. We say that the system of equations (1) is locally well-
posed in H s0.T/�H s1.T/�H s1�1.T/, if for given initial data

.u0; n0; n1/ 2H
s0.T/�H s1.T/�H s1�1.T/;

there exists T D T .ku0kH s0 ; kn0kH s1 ; kn1kH s1�1/ > 0 and a unique solution

.u; n; nt / 2
�
X \C 0t H

s0
x .Œ�T; T ��T/; Y \C 0t H

s1
x .Œ�T; T ��T/; Z \C 0t H

s1�1
x .Œ�T; T ��T/

�
:

We also demand that there is continuity with respect to the initial data in the appropriate topology. If T
can be taken to be arbitrarily large then we say that the problem is globally well-posed.

Thus, the energy solutions exist for all times due to the a priori bounds on the local theory norms. We
should note that although the quantity

R
T
njuj2dx has no definite sign it can be controlled using Sobolev

inequalities by the H 1 norm of u and the L2 norm of n. This gives the a priori bound (see [Pecher 2001])

ku.t/kH1 Ckn.t/kL2 Cknt .t/kH�1 . ku.0/kH1 Ckn.0/kL2 Cknt .0/kH�1 ; t 2 R (2)

Takaoka [1999] extended the local-in-time theory of Bourgain and proved that when 1
˛
2 N we have

local well-posedness in H s0 �H s1 �H s1�1 for s1 � 0 and max.s1; s12 C
1
2
/� s0 � s1C 1. In the case

that 1
˛
62 N one has local well-posedness for s1 � �12 , max.s1; s12 C

1
4
/ � s0 � s1C 1. A recent result

[Kishimoto 2011] establishes well-posedness in the case of the higher dimensional torus.
The corresponding Cauchy problem on Rd has a long history. In this case it is somehow easier to

establish the well-posedness of the system due to the dispersive effects of the solution waves. We cite the
following papers [Added and Added 1984; 1988, Bejenaru and Herr 2011; Bejenaru et al. 2009; Bourgain
and Colliander 1996; Colliander et al. 2008; Ginibre et al. 1997; Kenig et al. 1995; Sulem and Sulem
1979] as a historical summary of the results. It is expected that (see, e.g., [Kishimoto 2011]) the optimal
regularity range for local well-posedness is on the line s1 D s0 � 1

2
because the two equations in the

Zakharov system equally share the loss of derivative. The Zakharov system is not scale invariant but it can
be reduced to a simplified system like in [Ginibre et al. 1997], and one can then define a critical regularity.
This is given by the pair .s0; s1/ D .d�32 ; d�4

2
/, which is also on the line. In dimensions 1 and 2, the

lowest regularity for the system to have local solutions has been found to be .s0; s1/D .0;�12/ [Ginibre
et al. 1997]. It is harder to establish the global ! solutions at this level since there is no conservation law
controlling the wave part. This has been done only in one dimension [Colliander et al. 2008].

In the first part of this paper we study the dynamics of the solutions in the periodic case in more detail.1

We prove that the difference between the nonlinear and the linear evolution for both the Schrödinger

1We restrict ourselves to the one-dimensional periodic case because the resonance structure is simpler. The corresponding
problem in higher dimensions, Td or Rd , appears to be much harder.
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and the wave part is in a smoother space than the corresponding initial data, see Theorems 2.3 and 2.4
below. This smoothing property is not apparent if one views the nonlinear evolution as a perturbation
of the linear flow and apply standard Picard iteration techniques to absorb the nonlinear terms. The
result will follow from a combination of the method of normal forms (through differentiation by parts)
inspired by the result in [Babin et al. 2011], and the restricted norm method of Bourgain [1993]. Here
the method is applied to a dispersive system of equations where the resonances are harder to control
and the coupling nonlinear terms introduce additional difficulties in estimating the first order corrections.
As a corollary, in the case ˛ > 0, we obtain polynomial-in-time bounds for Sobolev norms above the
energy level .s0; s1/D .1; 0/ by a bootstrapping argument utilizing the a priori bounds and the smoothing
estimates, see Corollary 2.5 below. We have applied this method in [Erdoğan and Tzirakis 2012] to obtain
similar results for the periodic KdV with a smooth space-time potential. We note that the resonance
structure in one-dimensional is easier to handle.

In the second part we study the existence of a global attractor (see the next section for a definition of
global attractors and the statement of our result) for the dissipative Zakharov system in the energy space.
Our motivation comes from the smoothing estimates that we obtained in the first part of the paper and
our work in [Erdoğan and Tzirakis 2011] (also see [Goubet and Molinet 2009] in which the existence
of global attractors was obtained as a corollary of a Kato type smoothing estimate). More precisely we
consider8̂̂̂̂

<̂
ˆ̂̂:
iut C˛uxxC iuD nuCf; x 2 T; t 2 Œ�T; T �;

nt t �nxxC �nt D .juj
2/xxCg;

u.x; 0/D u0.x/ 2H
1.T/;

n.x; 0/D n0.x/ 2 L
2.T/; nt .x; 0/D n1.x/ 2H

�1.T/; f 2H 1.T/; g 2 L2.T/

(3)

where f; g are time-independent, g is mean-zero,
R

T
g.x/dx D 0, and the damping coefficients �;  > 0.

For simplicity we set  D �, and g D 0. Our calculations apply equally well to the full system and all
proofs go through with minor modifications (in particular, one does not need any other a priori estimates).

The problem with Dirichlet boundary conditions has been considered in [Flahaut 1991; Goubet and
Moise 1998] in more regular spaces than the energy space. The regularity of the attractor in Gevrey
spaces with periodic boundary problem was considered in [Shcherbina 2003].

Notation. To avoid the use of multiple constants, we write A . B to denote that there is an absolute
constant C such that A� CB . We also write A� B to denote both A. B and B . A. We also define
h � i D 1Cj � j.

We define the Fourier sequence of a 2�-periodic L2 function u as

uk D
1

2�

Z 2�

0

u.x/e�ikxdx; k 2 Z:

With this normalization we have

u.x/D
X
k

eikxuk and .uv/k D uk � vk D
X

mCnDk

unvm:
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As usual, for s < 0, H s is the completion of L2 under the norm

kukH s D k Ou.k/hkisk`2 :

Note that for a mean-zero L2 function u, kukH s � k Ou.k/jkjsk`2 . For a sequence uk , with u0 D 0, we
will use kukH s notation to denote kukjkjsk`2 . We also define PH s D fu 2 H s W u is mean-zerog. For
s D 0 we write PH 0 D PL2.

The following function will appear many times in the proofs below.

�ˇ .k/ WD
X
jnj�jkj

1

jnjˇ
�

8̂<̂
:
1 if ˇ > 1;

log.1Chki/ if ˇ D 1;

hki1�ˇ if ˇ < 1:

2. Statement of results

Smoothing estimates for the Zakharov system. First note that if n0 and n1 are mean-zero then n, nt
remain mean-zero during the evolution since by integrating the wave part of the system (1) we obtain
@2t
R

T
n.x; t/dx D 0. We will work with this mean-zero assumption in this paper. This is no loss of

generality since if
R
T n0.x/dx D A and

R
T n1.x/dx D B , then one can consider the new variables

n! n�A�Bt and u! ei.Bt
2=2CAt/u, and obtain the same system with mean-zero data.

By considering the operator d D .�@xx/1=2, and writing n˙ D n˙ id�1nt , the system (1) can be
rewritten as 8̂<̂

:
iut C˛uxx D

1
2
.nCCn�/u; x 2 T; t 2 Œ�T; T �;

.i@t � d/n˙ D˙d.juj
2/;

u.x; 0/D u0.x/ 2H
s0.T/; n˙.x; 0/D n0.x/˙ id

�1n1.x/ 2H
s1.T/:

(4)

Note that d�1n1.x/ is well-defined because of the mean-zero assumption, and that nC D n�.
The local well posedness of the system was established in the framework of Xs;b spaces introduced by

Bourgain [1993]. Let
kukXs;b D

hkish� �˛k2ib Ou.k; �/
`2
k
L2�
;

knk
Y
s;b

˙

D
hkish� �jkjib On.k; �/

`2
k
L2�
:

Here ˙ corresponds to the norm of n˙ in the system (4). As usual we also define the restricted norm

kuk
X
s;b
T

D inf
zuDu

t2Œ�T;T �

kzukXs;b :

The norms Y s;b
˙;T are defined accordingly. We also abbreviate n˙.x; 0/D n˙;0.

Definition 2.1. We say .s0; s1/ is ˛-admissible if s1 ��12 and max.s1; s12 C
1
4
/� s0 � s1C1 for 1

˛
62N,

or if s1 � 0 and max.s1; s12 C
1
2
/� s0 � s1C 1 for 1

˛
2 N.

Takaoka’s theorem on local well-posedness can be stated as follows:
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Theorem 2.2 [Takaoka 1999]. Suppose ˛ ¤ 0 and .s0; s1/ is ˛-admissible. Then given initial data
.u0; nC;0; n�;0/ 2H

s0 �H s1 �H s1 there exists

T &
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�� 1
12
C
;

and a unique solution .u; nC; n�/ 2 C
�
Œ�T; T � WH s0 �H s1 �H s1

�
. Moreover, we have

kuk
X
s; 1
2

T

CknC;0k
Y
s1;

1
2

C;T

Ckn�;0k
Y
s1;

1
2

�;T

� 2
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�
:

Now, we can state our results on the smoothing estimates:

Theorem 2.3. Suppose 1
˛
62 N, and .s0; s1/ is ˛-admissible. Consider the solution of (4) with initial data

.u0; nC;0; n�;0/ 2H
s0 �H s1 �H s1 . Assume that we have a growth bound

ku.t/kH s0 CknC.t/kH s1 Ckn�.t/kH s1 � C
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�
.1Cjt j/�.s0;s1/:

Then, for any a0 � min.1; 2s0; 1C 2s1/ (the inequality has to be strict if s0 � s1 D 1) and for any
a1 �min.1; 2s0; 2s0� s1/, we have

u.t/� ei˛t@
2
xu0 2 C

0
t H

s0Ca0
x .R�T/; (5)

n˙.t/� e
�itdn˙;0 2 C

0
t H

s1Ca1
x .R�T/: (6)

Moreover, for ˇ > 1C 15�.s0; s1/, we have

ku.t/� ei˛t@
2
xu0kH s0Ca0 Ckn˙.t/� e

�itdn˙;0kH s1Ca1 � C.1Cjt j/
ˇ ; (7)

where C D C
�
s0; s1; a0; a1; ku0kH s0 ; knC;0kH s1 ; kn�;0kH s1

�
.

Theorem 2.4. Suppose 1
˛
2 N, and .s0; s1/ is ˛-admissible. Assume that we have a growth bound

ku.t/kH s0 CknC.t/kH s1 Ckn�.t/kH s1 � C
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�
.1Cjt j/˛.s0;s1/:

Then, for any a0 � min.1; s1/ (the inequality has to be strict if s0 � s1 D 1 and s1 � 1) and for any
a1 �min.1; 2s0� s1� 1/, we have (5), (6) and (7).

The growth bound assumption in the theorems above follows from (2) in the case s0 D 1 and s1 D 0.
This is used in the corollary below together with a bootstrapping argument to obtain norm growth bounds
in all regularity levels above energy. Although the actual growth bounds can be calculated explicitly we
won’t do so here since we don’t believe that the rates are optimal.

Corollary 2.5. For any ˛ > 0, and for any ˛-admissible .s0; s1/ with s0 � 1, s1 � 0, the global solution
of (4) with H s0 �H s1 �H s1 data satisfies the growth bound

ku.t/kH s0 CknC.t/kH s1 Ckn�.t/kH s1 � C1.1Cjt j/
C2 ;

where C1 depends on s0; s1, and ku0kH s0 CknC;0kH s1 Ckn�;0kH s1 , and C2 depends on s0; s1.
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Proof. We drop the ˙ signs and work with u and n. First note that because of the energy conservation,
kukH1 and knkL2 are bounded for all times. Assume that the claim holds for regularity levels .s0; s1/.
Let .a0; a1/ be given by Theorem 2.3 or Theorem 2.4. Note that for initial data in H s0Ca0 �H s1Ca1 ,
applying the theorem with .s0; s1/ and .a0; a1/, we have

ku.t/� ei˛t@
2
xu0kH s0Ca0 Ckn˙.t/� e

�itdn˙;0kH s1Ca1 � C.1Cjt j/
ˇ :

Therefore, since the linear groups are unitary, we have

ku.t/kH s0Ca0 Ckn.t/kH s1Ca1 � C.1Cjt j/
ˇ
Cku0kH s0Ca0 Ckn0kH s1Ca0 :

The statement follows by induction on the regularity.
We note that in the case 1

˛
2N, s0 D 1, s1 D 0, we have a0 D 0. However, since a1 2 Œ0; 1�, we obtain

the statement for ˛-admissible .1; s1/, 0� s1 � 1. From then on we can take both a0 > 0 and a1 > 0. �

Existence of a global attractor for the dissipative Zakharov system. The problem of global attractors
for nonlinear PDEs is concerned with the description of the nonlinear dynamics for a given problem
as t !1. In particular assuming that one has a well-posed problem for all times we can define the
semigroup operator U.t/ W u0 2H ! u.t/ 2H where H is the phase space. We want to describe the
long time asymptotics of the solution by an invariant set X �H (a global attractor) to which the orbit
converges as t !1:

U.t/X DX; t 2 RC; d.u.t/; X/! 0:

For dissipative systems there are many results (see, e.g., [Temam 1997]) establishing the existence of a
compact set that satisfies the above properties. Dissipativity is characterized by the existence of a bounded
absorbing set into which all solutions enter eventually. The candidate for the attractor set is the omega
limit set of an absorbing set, B , defined by

!.B/D
T
s�0

S
t�s

U.t/B;

where the closure is taken on H . To state our result we need some definitions from [Temam 1997] (also
see [Erdoğan and Tzirakis 2011; Flahaut 1991; Goubet and Moise 1998] for more discussion).

Definition 2.6. We say that a compact subset A of H is a global attractor for the semigroup fU.t/gt�0
if A is invariant under the flow and if for every u0 2H , d.U.t/u0;A/! 0 as t !1.

The distance is understood to be the distance of a point to the set d.x; Y /D infy2Y d.x; y/.
To state a general theorem for the existence of a global attractor we need one more definition:

Definition 2.7. We say a bounded subset B0 of H is absorbing if for any bounded B�H there exists
T D T .B/ such that for all t � T , U.t/B�B0.

It is not hard to see that the existence of a global attractor A for a semigroup U.t/ implies the existence
of an absorbing set. For the converse we cite the following theorem from [Temam 1997] which gives a
general criterion for the existence of a global attractor.
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Theorem A. We assume that H is a metric space and that the operator U.t/ is a continuous semigroup
from H to itself for all t � 0. We also assume that there exists an absorbing set B0. If the semigroup
fU.t/gt�0 is asymptotically compact, i.e., for every bounded sequence xk in H and every sequence
tk!1, fU.tk/xkgk is relatively compact in H , then !.B0/ is a global attractor.

Using Theorem A and a smoothing estimate as above, we will prove the following

Theorem 2.8. Fix ˛ > 0. Consider the dissipative Zakharov system (3) on T� Œ0;1/ with u0 2H 1 and
with mean-zero n0 2 L2, n1 2H�1. Then the equation possesses a global attractor in H 1 � PL2 � PH�1.
Moreover, for any a 2 .0; 1/, the global attractor is a compact subset of H 1Ca �Ha �H�1Ca, and it is
bounded in H 1Ca �Ha �H�1Ca by a constant depending only on a; ˛;  , and kf kH1 .

To prove Theorem 2.8 in the case 1
˛
62N we will demonstrate that the solution decomposes into two parts;

a linear one which decays to zero as time goes to infinity and a nonlinear one which always belongs to a
smoother space. As a corollary we prove that all solutions are attracted by a ball inH 1Ca�Ha�H�1Ca,
a 2 .0; 1/, whose radius depends only on a, the H 1 norm of the forcing term and the damping parameter.
This implies the existence of a smooth global attractor and provides quantitative information on the size
of the attractor set in H 1Ca �Ha �H�1Ca. In addition it implies that higher order Sobolev norms are
bounded for all positive times; see [Erdoğan and Tzirakis 2011]. In the case 1

˛
2N the proof is slightly

different because of a resonant term.
We close this section with a discussion of the well-posedness of (3) in H 1 �L2 �H�1. We first

rewrite the system (when  D �; g D 0) by passing to n˙ variables as above:8̂<̂
:
.i@t C˛@

2
xC i/uD

1
2
.nCCn�/uCf; x 2 T; t 2 Œ�T; T �;

.i@t � d C i/n˙ D˙d.juj
2/;

u.x; 0/D u0.x/ 2H
1.T/; n˙.x; 0/D n˙;0.x/D n0.x/˙ id

�1n1.x/ 2 L
2.T/:

(8)

Theorem 2.9. Given initial data .u0; nC;0; n�;0/ 2H 1 �L2 �L2 there exists

T D T
�
ku0kH1 ; knC;0kL2 ; kn�;0kL2 ; kf kH1 ; 

�
;

and a unique solution .u; nC; n�/ 2 C
�
Œ�T; T � WH 1 �L2 �L2

�
of (8). Moreover, we have

kuk
X
1; 1
2

T

CknC;0k
Y
0; 1
2

C;T

Ckn�;0k
Y
0; 1
2

�;T

� 2
�
ku0kH1 CknC;0kL2 Ckn�;0kL2

�
:

This theorem follows by using the a priori estimates of Takaoka [1999]. In the case of forced and
damped KdV, this was done in [Erdoğan and Tzirakis 2011, Theorem 2.1, Lemma 2.2]. We should note
that the spaces where the contraction argument is done are independent of  . One can possibly use
dissipative variants of Bourgain spaces in the spirit of [Molinet and Ribaud 2002] but we don’t need to
do so here.

The global well-posedness follows from the following a priori estimate for the system (8) which was
obtained in [Flahaut 1991] (recall that n˙ D n˙ id�1nt ):

kukH1 CknCkL2 Ckn�kL2 � C1CC2e
�C3t ; t > 0; (9)
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where C1 D C1.˛; ; kf kH1/, C2 D C2.˛; ; kf kH1 ; ku0kH1 ; kn˙;0kL2/, and C3 D C3.˛; /. In fact
this was proved in [Flahaut 1991] for Dirichlet boundary conditions. In the case of periodic boundary
conditions, the proof remains valid. Note that (9) also implies the existence of an absorbing set B0 in
H 1 �L2 �L2 of radius C1.˛; ; kf kH1/.

3. Proofs of 2.3 and 2.4

In this section we drop the ˙ signs and work with one n. We also set Y D YC.8̂<̂
:
iut C˛uxx D nu; x 2 T; t 2 Œ�T; T �;

.i@t � d/nD d.juj
2/;

u.x; 0/D u0.x/ 2H
s0.T/; n.x; 0/D n0.x/C id

�1n1.x/ 2H
s1.T/:

(10)

Remark 3.1. We note that since nCD n� all of our claims about (10) is also valid for (4). The difference
in the proof will arise in the differentiation by parts process and the Xs;b estimates. Because of (15), in
formulas (16) and (17) there will additional sums in which every term, in the phase and in the multiplier
with an j � j sign, will have a ˙ sign in front. This change won’t alter the proofs for the Xs;b estimates, in
fact, all the cases we considered will work exactly the same way. Also it won’t change the structure of
the resonant sets in the case 1

˛
2 N.

We will prove Theorem 2.4 only for ˛ D 1. Therefore, below we either have 1
˛
62 N or ˛ D 1. The

case ˛ ¤ 1; 1
˛
2 N can be handled by only cosmetic changes in the proof. Writing

u.x; t/D
X
k

uk.t/e
ikx; n.x; t/D

X
j¤0

nj .t/e
ijx;

we obtain the following system for the Fourier coefficients:8̂̂<̂
:̂
i@tuk �˛k

2uk D
P
k1Ck2Dk
k1¤0

nk1uk2 ;

i@tnj � jj jnj D jj j
P
j1Cj2Dj

uj1u�j2 ; j ¤ 0

uk.0/D .u0/k; nj .0/D .n0/j C i jj j
�1.n1/j ; j ¤ 0:

(11)

We start with the following proposition, which follows from differentiation by parts.

Proposition 3.2. The system (11) can be written in the following form:

i@t
�
eit˛k

2

ukC e
it˛k2B1.n; u/k

�
D eit˛k

2�
�1.k/CR1.u/. Ok; t/CR2.u; n/. Ok; t/

�
; (12)

i@t
�
eit jj jnj C e

it jj jB2.u/j
�
D eit jj j

�
�2.j /CR3.u; n/. Oj ; t/CR4.u; n/. Oj ; t/

�
; (13)

where

B1.n; u/k D

�X
k1Ck2Dk
k1¤0

nk1uk2

˛k2�˛k22 � jk1j
; B2.u/j D jj j

�X
j1Cj2Dj

uj1u�j2

jj j � j̨ 21 C j̨ 22
;
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R1.u/. Ok; t/D

�X
k1;k2

jk1C k2juk1u�k2 uk�k1�k2
˛k2�˛.k� k1� k2/2� jk1C k2j

;

R2.u; n/. Ok; t/D

�X
k1;k2¤0

nk1nk2uk�k1�k2
˛k2�˛.k� k1/2� jk1j

;

R3.u; n/. Oj ; t/D jj j

�X
j1¤0;j2

nj1uj2uj1Cj2�j

jj j �˛.j1C j2/2C˛.j � j1� j2/2
;

R4.u; n/. Oj ; t/D jj j

�X
j1¤0;j2

n�j1uj2 uj1Cj2�j

jj j � j̨ 22 C˛.j � j2/
2
:

Here,
�P

means that the sum is over all nonresonant terms, i.e., over all indices for which the denominator
is not zero. Moreover, the resonant terms �1 and �2 are zero if 1

˛
62 N. For ˛ D 1,

�1.k/D n2k�sgn.k/usgn.k/�k; k ¤ 0;

�2.j /D jj ju 1
2
.jCsgn j /u 1

2
.j�sgn j /; j odd:

Proof of Proposition 3.2. Changing the variables mj D nj ei jj jt and vk D ukei˛k
2t in (11), we obtain

8̂̂̂<̂
ˆ̂:
i@tvk D

P
k1Ck2Dk
k1¤0

eit.˛k
2�˛k22�jk1j/mk1vk2 ;

i@tmj D jj j
P
j1Cj2Dj

eit.jj j� j̨ 21C j̨ 22 /vj1v�j2 ; j ¤ 0;

vk.0/D .u0/k; mj .0/D .n0/j C i jj j
�1.n1/j ; j ¤ 0:

(14)

It is easy to check that if we define mCj and m�j accordingly, then

@tm
�
j D @tm

C
�j : (15)

Note that the exponents do not vanish if 1=˛ is not an integer. On the other hand if ˛ D 1, then the
resonant set is

.k1; k2/D
�
2k� sgn.k/; sgn.k/� k

�
; k ¤ 0:

.j1; j2/D
�j C sgn.j /

2
;
j � sgn.j /

2

�
; j odd:

The contribution of the corresponding terms give �1 and �2 in the case ˛ D 1. Below, we assume that
1
˛
62 N.
Differentiating by parts in the v equation we obtain
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i@tvk D
X

k1Ck2Dk
k1¤0

eit.˛k
2�˛k22�jk1j/mk1vk2

D

X
k1Ck2Dk
k1¤0

@t
�
eit.˛k

2�˛k22�jk1j/mk1vk2
�

i.˛k2�˛k22 � jk1j/
C i

X
k1Ck2Dk
k1¤0

eit.˛k
2�˛k22�jk1j/@t

�
mk1vk2

�
˛k2�˛k22 � jk1j

:

The second sum can be rewritten using the equation as follows:

X
k1Ck2Ck3Dk
k1Ck2¤0

eit˛.k
2�k21Ck

2
2�k

2
3/jk1C k2jvk1v�k2vk3

˛k2�˛k23 � jk1C k2j

C

X
k1Ck2Ck3Dk
k1Ck2¤0

eit.˛k
2�˛k23�jk1j�jk2j/mk1mk2vk3

˛k2�˛.k2C k3/2� jk1j
: (16)

Now, we differentiate by parts in the m equation:

i@tmj D jj j
X

j1Cj2Dj

eit.jj j� j̨ 21C j̨ 22 /vj1v�j2

D jj j
X

j1Cj2Dj

@t
�
eit.jj j� j̨ 21C j̨ 22 /vj1v�j2

�
i.jj j � j̨ 21 C j̨ 22 /

C i jj j
X

j1Cj2Dj

eit.jj j� j̨ 21C j̨ 22 /@t
�
vj1v�j2

�
jj j � j̨ 21 C j̨ 22

:

The second sum can be rewritten using the equation as follows:

jj j
X

j1Cj2Cj3Dk
j1¤0

eit.jj jC j̨ 23� j̨ 22�jj1j/mj1vj2v�j3

jj j �˛.j1C j2/2C j̨ 23

Cjj j
X

j1Cj2Cj3Dk
j2¤0

eit.jj j� j̨ 21C j̨ 23Cjj2j/vj1m�j2 v�j3

jj j � j̨ 21 C˛.j2C j3/
2

: (17)

The statement follows by going back to the variables u and n. �

Integrating (12) and (13) from 0 to t , we obtain

uk.t/� e
�it˛k2uk.0/D e

�it˛k2B1.n; u/k.0/�B1.n; u/k.t/

� i

Z t

0

e�i˛k
2.t�s/

�
�1.k/CR1.u/. Ok; s/CR2.u; n/. Ok; s/

�
ds: (18)

nj .t/� e
�it jj jnj .0/D e

�it jj jB2.u/j .0/�B2.u/j .t/

� i

Z t

0

e�i jj j.t�s/
�
�2.j /CR3.u; n/. Oj ; s/CR4.u; n/. Oj ; s/

�
ds: (19)
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Below we obtain a priori estimates for �1; �2; B1, and B2. Before that we state a technical lemma that
will be used many times in the proofs.

Lemma 3.3. (a) If � � �� 0 and �C� > 1, thenX
n

1

hn� k1i�hn� k2i�
. hk1� k2i����.k1� k2/:

(b) For � 2 .0; 1�, we have Z
R

d�

h� C �1i�h� C �2i
.

1

h�1� �2i��
:

(c) If � > 1=2, then X
n

1

hn2C c1nC c2i�
. 1;

where the implicit constant is independent of c1 and c2.

We will prove this lemma in the Appendix.

Lemma 3.4. Under the conditions of Theorem 2.3 and Theorem 2.4, for each t , we have

k�1.t/kH s . kn.t/kH s1ku.t/kH s0 if s � s0C s1;

k�2.t/kH s . ku.t/k2H s0 if s � 2s0� 1;

kB1.n; u/.t/kH s . kn.t/kH s1ku.t/kH s0 if s � 1C s0Cmin.s1; 0/;

kB2.u/.t/kH s . ku.t/k2H s0 if s �min.2s0; 1C s0/:

Proof. The proof for �1 and �2 is immediate from their definition.
To estimate B1, first note thatˇ̌

˛k2�˛k22 � jk1j
ˇ̌
D j˛j jk1j

ˇ̌̌
2k� k1�

1

˛
sgn.k1/

ˇ̌̌
� hk1ih2k� k1i:

The last equality is immediate in the case 1
˛
62 N, when ˛ D 1, it follows from the nonresonant condition.

Therefore we have

jB1.n; u/kj.
X
k1¤0

jnk1 j juk�k1 j

hk1ih2k� k1i
:

We estimate the H s norm as follows:

kB1k
2
H s .

 X
k1¤0

hk1i
2s1 jnk1 j

2
hk� k1i

2s0 juk�k1 j
2


`1
k

X
k1

hki2s

hk1i2C2s1hk� k1i2s0h2k� k1i2


`1
k

The first sum is bounded by knk2
H s1
kuk2

H s0
since it is a convolution of two `1 sequences. To estimate

the second sum we distinguish the cases jk1j < jkj=2, jk1j > 4jkj, and jk1j � jkj. In the first case, we
bound the sum by X

k1

hki2s�2�2s0

hk1i2C2s1
. hki2s�2�2s0 ;
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since 2C 2s1 > 1. In the second case, we bound the sum byX
jk1j>4jkj

hki2s

hk1i4C2s1C2s0
. hki2s�3�2s1�2s0 � hki2s�2�2s0 :

In the final case, we haveX
jk1j�jkj

hki2s�2�2s1

hk� k1i2s0h2k� k1i2
. hki2s�2�2s1�2min.s0;1/:

In the last inequality we used part (a) of Lemma 3.3.
Combining these cases we see that B1 2H s for s� 1Cmin.s0; s1Cmin.s0; 1//. In particular, B1 2H s

if s � 1C s0Cmin.s1; 0/ which can be seen by distinguishing the cases s0 � 1 and s0 < 1 and using the
condition 1C s1 � s0.

Similarly, we estimate

jB2.u/j j.
X
j1

juj1 j juj1�j j

hj � 2j1i
:

As in the case of B1, we see that B2 2H s if

sup
j

X
j1

hj i2s

hj � 2j1i2hj1i2s0hj � j1i2s0
<1:

We distinguish the cases jj1j< jj j=4, jj1j> 2jj j, and jj1j � jj j. In the first case, we bound the sum byX
jj1j<jj j=4

hj i2s�2�2s0

hj1i2s0
. hj i2s�2�2s0�2s0.j /:

In the second case, we bound the sum byX
jj1j>2jj j

hj i2s

hj1i2C4s0
. hj i2s�1�4s0 :

In the final case, we have X
jj1j�jj j

hj i2s�2s0

hj � 2j1i2hj � j1i2s0
. hj i2s�2s0�2min.s0;1/:

Combining this cases, we see that B2 is in H s if s �min.2s0; 1C s0/. �

Using the estimates in Lemma 3.4 in the equations (18) and (19) after writing the equations in the x
variable, we obtain

ku.t/� eit˛@
2
xu0kH s0Ca0 . kn0kH s1ku0kH s0 Ckn.t/kH s1ku.t/kH s0

C

Z t

0

kn.s/kH s1ku.s/kH s0dsC

 Z t

0

ei˛.t�s/@
2
x
�
R1.u/.s/CR2.u; n/.s/

�
ds


H s0Ca0

; (20)
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kn.t/� e�itdn0kH s1Ca1 . ku0k2H s0 Cku.t/k
2
H s0

C

Z t

0

ku.s/k2H s0dsC

 Z t

0

e�id.t�s/
�
R3.u; n/.s/CR4.u; n/.s/

�
ds


H s1Ca1

; (21)

where

R`.s/D
X
k

R`. Ok; s/e
ikx; `D 1; 2; 3; 4:

Above, the smoothing indexes a0 and a1 depend on ˛ as stated in Theorem 2.3 and Theorem 2.4. The
dependence arises only from the contribution of the resonant terms �1 and �2.

Note that, with ı as in Theorem 2.2, Z t

0

ei˛.t�s/@
2
x
�
R1.u/.s/CR2.u; n/.s/

�
ds


L1
t2Œ�ı;ı�

H
s0Ca0
x

.
 ı.t/ Z t

0

ei˛.t�s/@
2
x
�
R1.u/.s/CR2.u; n/.s/

�
ds


Xs0Ca0;b

. kR1.u/CR2.u; n/k
X
s0Ca0;b�1

ı

; (22)

for b > 1=2. Here we used the imbedding Xs0Ca0;b � L1t H
s0Ca0
x . Similarly, Z t

0

e�id.t�s/
�
R3.u; n/.s/CR4.u; n/.s/

�
ds


L1
t2Œ�ı;ı�

H
s1Ca1
x

. kR3.u; n/CR4.u; n/k
X
s1Ca1;b�1

ı

: (23)

Remark 3.5. We note that the inequalities (22) and (23) remain valid in the case the linear group is
modified with a damping term; see Lemma 3.3 from [Erdoğan and Tzirakis 2011]. It is important to note
that we don’t need to alter the definition of the Xs;b norm.

Proposition 3.6. Given s1 > �12 , max.s1; s12 C
1
4
/� s0 � s1C 1, and 1

2
< b <min.3

4
; s0C1

2
/, we have

kR1.u/kXs;b�1 . kuk3
X
s0;

1
2

; provided s � s0Cmin.1; 2s0/:

We also have

kR2.u; n/kXs;b�1 . knk2
Y
s1;

1
2

kuk
X
s0;

1
2
;

provided s �min.s0C 1C 2s1; s0C 1; 3C 2s1� 2b; 3C s1� 2b/.

Proposition 3.7. Given s1 > �12 , max.s1; s12 C
1
4
/ � s0 � s1C 1, and 1

2
< b < 3

4
Cmin.0; s0Cs1

2
/, we

have

kR3.u; n/kXs;b�1 CkR4.u; n/kXs;b�1 . knk
Y
s1;

1
2
kuk2

X
s0;

1
2

;

provided s � s1Cmin.1; 2s0; 2s0� s1/.
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We will prove these propositions later on. Using (22), (23) and the propositions above (with b� 1=2
sufficiently small depending on a0; a1; s0; s1) in (20) and (21), we see that for t 2 Œ�ı; ı�, we have

ku.t/� eit˛@
2
xu0kH s0Ca0 Ckn.t/� e

�itdn0kH s1Ca1 .
�
kn0kH s1 Cku0kH s0

�2
C
�
kn.t/kH s1 Cku.t/kH s0

�2
C

Z t

0

�
kn.s/kH s1 Cku.s/kH s0

�2
dsC

�
knk

Y
s1;

1
2
Ckuk

X
s0;

1
2

�3
:

In the rest of the proof the implicit constants depend on kn0kH s1 ; ku0kH s0 . Fix T large. For t � T , we
have the bound (with  D .s0; s1/)

ku.t/kH s0 Ckn.t/kH s1 . .1Cjt j/ . T  :

Thus, with ı � T �12�, we have

ku.jı/� eiı˛@
2
xu..j � 1/ı/kH s0Ca0 Ckn.jı/� e

�iıdn..j � 1/ı/kH s1Ca1 . T 3 ;

for any j � T=ı � T 1C12C. Here we used the local theory bound

kuk
X
s0;1=2

Œ.j�1/ı;jı�

. ku..j � 1/ı/kH s0 . T  ;

and similarly for n. Using this we obtain (with J D T=ı � T 1C12C)

ku.J ı/� ei˛Jı@
2
xu.0/kH s0Ca0 �

JX
jD1

kei.J�j /ı˛@
2
xu.jı/� ei.J�jC1/ı˛@

2
xu..j � 1/ı/kH s0Ca0

D

JX
jD1

ku.jı/� eiı˛@
2
xu..j � 1/ı/kH s0Ca0

. JT 3 � T 1C15C:

The analogous bound follows similarly for the wave part n.
The continuity in H s0Ca0 �H s1Ca1 follows from dominated convergence theorem, the continuity of

u and n in H s0 , H s1 , respectively, and from the embedding Xs;b � C 0t H
s
x (for b > 1=2). For details,

see [Erdoğan and Tzirakis 2012; Ginibre et al. 1997].

4. Proof of Proposition 3.6

First note that the denominator in the definition of R1 satisfiesˇ̌
˛k2�˛.k� k1� k2/

2
� jk1C k2j

ˇ̌
D j˛j jk1C k2j

ˇ̌̌
2k� k� k1�

1

˛
sgn.k1C k2/

ˇ̌̌
� hk1C k2ih2k� k1� k2i:

(24)

The last equality holds trivially if 1=˛ is not an integer. In the case that 1=˛ is an integer it holds since
the sum is over the nonresonant terms. Similarly, we shall see that the denominators of R2, R3, R4 are



SMOOTHING AND GLOBAL ATTRACTORS FOR THE ZAKHAROV SYSTEM ON THE TORUS 737

respectively comparable to

hk1ih2k� k1i; hj ihj � 2j1� 2j2i; hj ihj � 2j2i; (25)

We start with the proof for R2. We have

kR2.u; n/k
2
Xs;b�1

D

 Z
�1;�2

�X
k1;k2¤0

hkis On.k1; �1/ On.k2; �2/yu.k� k1� k2; � � �1� �2/

.˛k2�˛.k� k1/2� jk1j/h� � k2i1�b

2
`2
k
L2�

:

Let

f .k; �/D jOn.k; �/jhkis1h� � jkji
1
2 ; g.k; �/D j Ou.k; �/jhkis0h� �˛k2i

1
2 :

It suffices to prove that Z
�1;�2

�X
k1;k2¤0

M.k1; k2; k; �1; �2; �/f .k1; �1/f .k2; �2/g.k�k1�k2; � � �1� �2/

2
`2
k
L2�

. kf k42kgk
2
2;

where

M.k1; k2; k; �1; �2; �/

D
hkishk1i

�s1hk2i
�s1hk� k1� k2i

�s0

.˛k2�˛.k� k1/2� jk1j/h� �˛k2i1�bh�1� jk1ji
1
2 h�2� jk2ji

1
2 h� � �1� �2�˛.k� k1� k2/2i

1
2

:

By Cauchy–Schwarz in the variables �1; �2; k1; k2, we estimate the norm above by

sup
k;�

�Z
�1;�2

�X
k1;k2¤0

M 2.k1; k2; k; �1; �2; �/

�

�

 Z
�1;�2

X
k1;k2¤0

f 2.k1; �1/f
2.k2; �2/g

2.k� k1� k2; � � �1� �2/


`1
k
L1�

:

Note that the norm above is equal to
f 2 � f 2 � g2

`1
k
L1�

, which can be estimated by kf k42kgk
2
2 by

Young’s inequality. Therefore, it suffices to prove that the supremum above is finite.
Using part (b) of Lemma 3.3 in �1 and �2 integrals, we obtain

sup
k;�

Z
�1;�2

�X
k1;k2¤0

M2

. sup
k;�

�X
k1;k2¤0

hki2shk1i
�2s1hk2i

�2s1hk� k1� k2i
�2s0

.˛k2�˛.k� k1/2� jk1j/2h� �˛k2i2�2bh� � jk1j � jk2j �˛.k� k1� k2/2i1�

. sup
k

X
k1;k2¤0

hki2shk1i
�2s1hk2i

�2s1hk� k1� k2i
�2s0

hk1i2h2k� k1i2h˛k2� jk1j � jk2j �˛.k� k1� k2/2i2�2b
:
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The last line follows by (25) and by the simple fact

h� �nih� �mi& hn�mi: (26)

Setting k2 D l C k� k1, we rewrite the sum as

sup
k

X
k1�0;n

hki2shl C k� k1i
�2s1

hk1i2C2s1h2k� k1i2hli2s0h˛.l2� k2/C k1Cjk1� l � kji2�2b
:

Here, without loss of generality (since .k1; k2; k/! .�k1;�k2;�k/ is a symmetry for the sum), we
only considered the case k1 � 0.

Case (i): �1=2 < s1 < 0, 0 < s1
2
C
1
4
� s0 � s1C 1. We write the sum asX

jlj�jkj
k1�0

C

X
jlj�jkj

0�k1�jlCkj

C

X
jlj�jkj
k1�jlCkj

C

X
jlj�jkj
k1�jlCkj

C

X
jlj�jkj

0�k1�jlCkj

DW S1CS2CS3CS4CS5:

In the sum S1, we have

hli � hki; hl C k� k1i. hk1iC h2k� k1i:

Using this, we have

S1 .
X
k1�0;l

hki2s�2s0
�
hk1i

�2s1 Ch2k� k1i
�2s1

�
hk1i2C2s1h2k� k1i2h˛.l2� k2/C k1Cjk1� l � kji2�2b

:

Summing in l using part (c) of Lemma 3.3 and then summing in k1 using part (a) of Lemma 3.3, we
obtain

S1 . hki2s�2s0�2�4s1 Chki2s�2s0�2�2s1 . hki2s�2s0�2�4s1 :

Note that S1 is bounded in k for s � s0C 1C 2s1.
In the case of S2, we have

jl ˙ kj � jkj; j2k� k1j � jkj; jl C k� k1j. jkj:

Also note that (since we can assume that jkj � 1)ˇ̌
˛.l2� k2/C k1Cjk1� l � kj

ˇ̌
D ˛.k2� l2/CO.jkj/� k2:

Using these, and then summing in k1, we have

S2 .
X
jlj�jkj

0�k1�jlCkj

hki2s�6C4b�2s1

hk1i2C2s1hli2s0
. hki2s�6�2s1C4b�2s0.k/

Note that S2 is bounded in k if s < min.s0 C 5
2
C s1 � 2b; 3 C s1 � 2b/, and in particular, if s �

min.s0C 1C 2s1; 3C 2s1� 2b/.
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In the case of S3, we have k1 � jl C kj& jkj. Using this we estimate

S3 .
X
jlj�jkj
k1�jlCkj

hki2s�2�4s1

h2k� k1i2hli2s0h˛.l2� k2/C 2k1� l � ki2�2b

.
X
jlj�jkj

hki2s�2�4s1

hli2s0h˛.l2� k2/C 3k� li2�2b
:

The second inequality follows from part (a) of Lemma 3.3. Note that

h˛.l2� k2/C 3k� li � k2;

since jl j � jkj. Using this and then summing in l , we have

S3 . hki2s�6�4s1C4b�2s0.k/:

Note that this is also bounded in k if s �min.s0C 1C 2s1; 3C 2s1� 2b/.
In the case of S4, we have k1� jkj. Therefore

S4 .
X

jlj;k1�jkj

hki2s�2s0

hk1i4C4s1h˛.l2� k2/C 2k1� l � ki2�2b
.

X
k1�jkj

hki2s�2s0

hk1i4C4s1
. hki2s�2s0�3�4s1 :

We used part (c) of Lemma 3.3 in the second inequality.
In the case of S5, we have jl C k� k1j. jl j andˇ̌

˛.l2� k2/C k1Cjk1� l � kj
ˇ̌
D ˛.k2� l2/CO.jl j/� l2:

Thus, we estimate using part (a) of Lemma 3.3

S5 .
X

jlj�jkj;k1

hki2s

hk1i2C2s1h2k� k1i2hli2s0C2s1C4�4b
. hki2s�2s0�5�4s1C4b:

Note that to sum in l we need 2s0C2s1C4�4b > 1, which holds under the conditions of the proposition.

Case (ii): 0� s1, max.s1; s12 C
1
4
/� s0 � s1C 1. We write the sum asX

k1�0; jlj&jkj

C

X
jlj�jkj; 0�k1�k2

C

X
jlj�jkj; k1&k2

DW S1CS2CS3:

In the case of S1 we have

S1 .
X

k1�0; jlj&jkj

hki2s�2s0

hk1i2C2s1h2k� k1i2h˛.l2� k2/C k1Cjk1� l � kji2�2b
. hki2s�2s0�2:

We obtained the second inequality by first summing in l using part (c) of Lemma 3.3, and then in k1
using part (a) of the Lemma. Thus S1 is bounded in k if s � s0C 1.
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In the case of S2, we have

h˛.l2� k2/C k1Cjk1� l � kji& k2; and hk1ihl C k� k1i& hl C ki& hki:

Therefore,

S2 . hki2s�4C4b�2s1
X

jlj�jkj; 0�k1�k2

1

hk1i2h2k� k1i2hli2s0
. hki2s�6C4b�2s1�2s0.k/:

Note that S2 is bounded in k if s �min.s0C 1; s1C 3� 2b/.
Finally we estimate S3 as follows

S3 .
X

jlj�jkj; k1&k2

hki2s

hk1i4C4s1h˛.l2� k2/C k1Cjk1� l � kji2�2b

. hki2s�6�8s1
X
l

1

h˛.l2� k2/C k1Cjk1� l � kji2�2b
. hki2s�6�8s1 :

In the last inequality we used part (c) of Lemma 3.3. Note that this term is bounded in k if s � s0C 1.
We now consider R1. By using Cauchy–Schwarz, the convolution structure, and then integrating in

�1; �2 as in the previous case, it suffices to prove that

sup
k

�X
k1;k2

hki2shk1i
�2s0hk2i

�2s0hk� k1� k2i
�2s0 jk1C k2j

2

.˛k2�˛.k� k1� k2/2� jk1C k2j/2hk2� k
2
1 C k

2
2 � .k� k1� k2/

2i2�2b
<1:

Recalling (24), and using

hk2� k21 C k
2
2 � .k� k1� k2/

2
i � h.k1C k2/.k� k1/i;

it suffices to prove that

sup
k

�X
k1;k2

hki2shk1i
�2s0hk2i

�2s0hk� k1� k2i
�2s0

h2k� k1� k2i2h.k1C k2/.k� k1/i2�2b
<1:

Note that the contribution of the case k1 D k is

.
X
k2

hki2s�2s0

hk� k2i2hk2i4s0
. hki2s�2s0�min.2;4s0/;

so it satisfies the claim. For k1 ¤ k (since we also have k1C k2 ¤ 0 by nonresonant condition), we have
h.k1C k2/.k� k1/i � hk1C k2ihk� k1i. Also letting l D k1C k2 it suffices to consider the sumX

k1;l

hki2s

h2k� li2hk� li2s0hli2�2bhl � k1i2s0hk1i2s0hk� k1i2�2b
D

X
k1

jl�2kj>jkj=2

C

X
k1

jl�2kj�jkj=2

DW S1CS2:
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We have

S1 . hki2s�2
X
l;k1

1

hk� li2s0hli2�2bhl � k1i2s0hk1i2s0hk� k1i2�2b
:

Using max.hk� li2s0 ; hl�k1i2s0/& hk�k1i2s0 and part (a) of Lemma 3.3 (recall that 2s0C2�2b > 1),
we have

S1 . hki2s�2
X
l;k1

1

hli2�2b min
�
hk� li2s0 ; hl � k1i2s0

�
hk1i2s0hk� k1i2s0C2�2b

. hki2s�2
X
k1

1

hk1i2s0hk� k1i2s0C2�2b
. hki2s�2�2s0 :

In the case of S2 we have hli; hk� li& hki, and hence

S2 . hki2s�2s0�2C2b
X
k1

jl�2kj�jkj=2

1

h2k� li2hl � k1i2s0hk1i2s0hk� k1i2�2b
:

Note that max.hl � k1i2s0 ; hk1i2s0/& hli2s0 � hki2s0 . Thus,

S2 . hki2s�4s0�2C2b
X
k1

jl�2kj�jkj=2

1

h2k� li2 min.hl � k1i2s0 ; hk1i2s0/hk� k1i2�2b
:

Using part (a) of Lemma 3.3 (noting that jl�kj& jkj and that hki����.k/Dhki����.k/ if 0< �; �< 1),
we obtain

S2 . hki2s�4s0�2C2b
X
l

1

h2k� li2
hki�2C2b�2s0.k/. hki

2s�4s0�4C4b�2s0.k/:

Note that S2 is bounded in k if s � s0Cmin.1; 2s0/.

5. Proof of Proposition 3.7

We first consider R3. By using Cauchy–Schwarz, the convolution structure, and then integrating in �1; �2
as in the proof of the previous proposition, it suffices to prove that

sup
j

�X
j1¤0;j2

hj i2sjj j2hj1i
�2s1hj2i

�2s0hj � j1� j2i
�2s0ˇ̌

jj j �˛.j1C j2/2C˛.j � j1� j2/2
ˇ̌2
hjj j � jj1jC˛.j � j1� j2/2� j̨ 22 i

2�2b
<1:

Recalling (25), it suffices to prove thatX
j1¤0;j2

hj i2shj1i
�2s1hj2i

�2s0hj � j1� j2i
�2s0

hj � 2j1� 2j2i2hjj j � jj1jC˛.j � j1� j2/2� j̨ 22 i
2�2b
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is bounded in j . Letting l D j � j1� j2 and mD j2, we rewrite the sum asX
m;l

hj i2shj � l �mi�2s1

h2l � j i2hmi2s0hli2s0h˛l2�˛m2Cjj j � jj � l �mjCi2�2b
: (27)

We note that a similar argument gives us the following sum for R4:X
m;l

hj i2shj � l �mi�2s1

h2l � j i2hmi2s0hli2s0h˛l2�˛m2� jj j � jj � l �mjCi2�2b
: (28)

We note that, by symmetry, if we can prove thatX
m;l

hj i2shj � l �mi�2s1

h2l � j i2hmi2s0hli2s0h˛l2�˛m2C j � jj � l �mjCi2�2b
(29)

is bounded in j ¤ 0, then the boundedness of (27) and (28) follow.

Case (i): �1
2
< s1 < 0. We rewrite (27) asX

jlj�jmj.jj j

C

X
jlj�jmj�jj j

C

X
jlj�jmj
jj j�jmClj

C

X
jlj�jmj
jj j�jmClj

C

X
jlj�jmj
jj j�jmClj

C

X
jlj�jmj
jj j�jmClj

DWS1CS2CS3CS4CS5CS6:

For S1 we have

S1 .
X

jlj�jmj.jj j

hj i2s�2s1

h2l � j i2hli4s0hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2s1�min.2;4s0/:

In the second inequality we first summed in m using part (c) of Lemma 3.3, and then in n using part (a)
of the lemma.

For S2 we have

S2 .
X

jlj�jmj�jj j

hj i2s

hli2C4s0C2s1hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2s1�4s0�1:

Again, we first summed in m using part (c) of Lemma 3.3.
In the case of S3 we have jl j � jmj. jj j, and hence

S3 .
X

jlj�jmj.jj j

hj i2s�2s1�2

hli4s0hj � jj � l �mjC˛l2�˛m2i2�2b

.
X
jlj.jj j

hj i2s�2s1�2

hli4s0
. hj i2s�2s1�2�4s0.j /. hj i

2s�2s1�min.2;4s0/:

In the case of S4 we have

h2l � j iC hj � jj � l �mjC˛l2�˛m2i& l2:
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Since h2l � j i& l2 implies that h2l � j i& hj i, we have

1

h2l � j i2hj � jj � l �mjC˛l2�˛m2i2�2b

.
1

hj i2hj � jj � l �mjC˛l2�˛m2i2�2b
C

1

h2l � j i2hli4�4b
:

Therefore we estimate

S4 .
X

jmj�jlj.jj j

hj i2s�2s1�2

hmi4s0hj �jj �l�mjC˛l2�˛m2i2�2b
C

X
jmj�jlj.jj j

hj i2s�2s1

h2l�j i2hli2s0C4�4bhmi2s0
:

The first sum can be estimated as in S3 switching the roles of l and m. To estimate the second, we first
sum in l using part (a) of Lemma 3.3, and then in m to obtain

. hj i2s�2s1�min.2;2s0C4�4b/�2s0.j /. hj i
2s�2s1�min.2;4s0/:

In the case of S5, we have

hj � jj � l �mjC˛l2�˛m2i � hmi2; jmj& jj j:

Therefore, noting that 2s0C 2s1C 4� 4b > 1, we have

S5 .
X
jlj�jmj

hj i2s

h2l � j i2hli2s0hmi2s0C2s1C4�4b
.
X
l

hj i2s

h2l � j i2hli4s0C2s1C3�4b

. hj i2s�min.2;4s0C2s1C3�4b/:

In the case of S6, we have

hj � jj � l �mjC˛l2�˛m2i � hli2; jl j& jj j: (30)

Therefore,

S6 .
X

jmj�jlj&jj j

hj i2s

h2l � j i2hli2s0C2s1C4�4bhmi2s0
.

X
jlj&jj j

hj i2s�2s0.l/

h2l � j i2hli2s0C2s1C4�4b

. hj i2s�2s0�2s1�4C4b�2s0.j /:

In the last inequality we used jl j& jj j and then summed in l .

Case (ii): s1 � 0. We rewrite (27) asX
jlj.jmj

C

X
jmj�jlj�jj j

C

X
jmj�jlj&jj j

DW S1CS2CS3:

In the case of S1, we have jj j � jj � l �mjC jmC l j. jj � l �mjC jmj, and hence

hj � l �mihmi& hj i:
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Using this and noting that s0 � s1, we have

S1 .
X
jlj.jmj

hj i2s�2s1

h2l � j i2hli4s0�2s1hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2s1�min.2;4s0�2s1/:

In the last inequality we summed in m using part (c) of Lemma 3.3 and then in l using part (a) of the
lemma.

In the case of S2 we have

S2 .
X

jmj�jlj�jj j

hj i2s�2�2s1

hmi4s0hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2�2s1�4s0.j /:

Note that in the case of S3 we have (30). Therefore

S3 .
X

jmj�jlj&jj j

hj i2s

h2l � j i2hli2s0C4�4bhmi2s0hj � l �mi2s1
:

If s0C s1 > 1=2, we sum in m and then in n using part (a) of Lemma 3.3 to obtain

S3 .
X
jlj&jj j

hj i2s�2s0�4C4b

h2l � j i2hj � li2s1Cmin.0;2s0�1/�
. hj i2s�2s0�4C4b�min.2;2s1;2s1C2s0�1/C:

If s0C s1 2 .0; 1=2�, we have

S3 .
X
jlj&jj j

hj i2shli1�2s0�2s1C

h2l � j i2hli2s0C4�4b
. hj i2s�4s0�2s1�3C4bC:

Note that each term above is bounded in j if s � s1Cmin.1; 2s0� s1/.

6. Existence of global attractor

In this section we prove Theorem 2.8. As in the previous sections we drop the ˙ signs and work with the
system 8̂<̂

:
.i@t C˛@

2
xC i/uD nuCf; x 2 T; t 2 Œ�T; T �;

.i@t � d C i/nD d.juj
2/;

u.x; 0/D u0.x/ 2H
1.T/; n.x; 0/D n0.x/ 2 PL

2.T/:

(31)

We start with a smoothing estimate for (31) that implies the existence of a global attractor:

Theorem 6.1. Consider the solution of (31) with initial data .u0; n0/ 2H 1 � PL2. Then, for 1
˛
62 N, and

for any a < 1, we have

u.t/� ei˛t@
2
x�tu0 2 C

0
t H

1Ca
x .Œ0;1/�T/ and n.t/� e�itd�tn0 2 C

0
t H

a
x .Œ0;1/�T/: (32)

Moreover,

ku.t/� ei˛t@
2
x�tu0kH1Ca Ckn.t/� e�itd�tn0kHa � C

�
a; ˛; ; kf kH1 ; ku0kH1 ; kn0kL2

�
: (33)
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In the case ˛ D 1 we have, for any a < 1,u.t/� eit@2x�tu0C i Z t

0

e.i@
2
x�/.t�t

0/�1dt
0


H1Ca

C
n.t/� e�itd�tn0Ha

� C
�
a; ; kf kH1 ; ku0kH1 ; kn0kL2

�
; (34)

where �1 is as in Proposition 3.2. The analogous continuity statements as in (32) are also valid.

Proof. Writing

u.x; t/D
X
k

uk.t/e
ikx; n.x; t/D

X
j¤0

nj .t/e
ijx; f .x/D

X
k

fke
ikx

we obtain the following system for the Fourier coefficients:8<:i@tukC .i �˛k
2/uk D

P
k1Ck2Dk
k1¤0

nk1uk2 Cfk;

i@tnj C .i � jj j/nj D jj j
P
j1Cj2Dj

uj1u�j2 :
(35)

We have the following proposition, which follows from differentiation by parts as in Proposition 3.2
by using the change of variables mj D nj ei jj jtCt , and vk D ukei˛k

2tCt .

Proposition 6.2. The system (35) can be written in the form

i@t
�
eit˛k

2Ctuk
�
C ie�t@t

�
eit˛k

2C2tB1.n; u/k
�

D eit˛k
2Ct

�
�1.k/CfkCB1.n; f /CR1.u/. Ok; t/CR2.u; n/. Ok; t/

�
; (36)

i@t
�
eit jj jCtnj

�
C ie�t@t

�
eit jj jC2tB2.u/j

�
D eit jj jCt

�
�2.j /CB2.f; u/CB2.u; f /CR3.u; n/. Oj ; t/CR4.u; n/. Oj ; t/

�
: (37)

where Bi ; �i , i D 1; 2, and Rj , j D 1; 2; 3; 4 are as in Proposition 3.2.

Integrating (36) from 0 to t , we obtain

uk.t/� e
�it˛k2�tuk.0/D�B1.n; u/kC e

�it˛k2�tB1.n0; u0/k

C

Z t

0

e�.i˛k
2C/.t�t 0/

�
� B1.n; u/k � i�1.k/� ifk � iB1.n; f /k

�
dt 0

� i

Z t

0

e�.i˛k
2C/.t�t 0/

�
R1.u/. Ok; t

0/CR2.u; n/. Ok; t
0/
�
dt 0:

First note that (identifying the function with its Fourier sequence) we have Z t

0

e�.i˛k
2C/.t�t 0/fkdt

0


H1Ca

D

 fk

i˛k2C 
.1� e�it˛k

2�t /


H1Ca

. kfkkHa�1 : (38)

In the case 1
˛
62N, using (38), the estimates in Lemma 3.4 and Proposition 3.6 (see Remark 3.5) as above,
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and also using the growth bound in (9), we obtain for any a < 1

ku.t/�ei˛@
2
xt�tu0kH1Ca . kf kHa�1C

�
kf kH1Ckn.0/kL2Cku.0/kH1

�2
C
�
kuk

X
1; 1
2

ı

Cknk
Y
1; 1
2

ı

�3
:

Using the local theory (Theorem 2.9) bound for X
1; 1
2

ı
; Y

1; 1
2

ı
norms for a ıD ı.kn0kL2 ; ku0kH1 ; kf kH1/,

we obtain for t < ı

ku.t/� ei˛@
2
xt�tu0kH1Ca . C.a; ; kf kH1 ; kn0kL2 Cku0kH1/:

In the rest of the proof the implicit constants depend on a; ; kf kH1 ; kn0kL2Cku0kH1 . Fix t large, and
ı as above. We have u.jı/� ei˛@2xı�ıu..j � 1/ı/

H1Ca . 1;

for any j � t=ı. Using this we obtain (with J D t=ı)

ku.J ı/� eJı.i˛@
2
x�/u.0/kH1Ca �

JX
jD1

e.J�j /ı.i˛@2x�/u.jı/� e.J�jC1/ı.i˛@2x�/u..j�1/ı/
H1Ca

D

JX
jD1

e�.J�j /ıku.jı/� eı.i˛@
2
x�/u..j � 1/ı/kH1Ca

.
JX
jD1

e�.J�j /ı .
1

1� e�ı
:

In the case ˛ D 1, we have to separate the resonant term in this argument. We have the following
inequality for t < ıu.t/� ei˛@2xt�tu0C i Z t

0

e.i˛@
2
x�/.t�t

0/�1dt
0


H1Ca

. C.a; ; kf kH1 ; kn0kL2 Cku0kH1/:

Accordingly we haveu.J ı/� eJı.i˛@2x�/u.0/C Z Jı

0

e.i˛@
2
x�/.J ı�t

0/�1dt
0


H1Ca

�

JX
jD1

e.J�j /ı.i˛@2x�/�u.jı/� eı.i˛@2x�/u..j � 1/ı/C i Z jı

.j�1/ı

e.i˛@
2
x�/.jı�t

0/�1dt
0

�
H1Ca

D

JX
jD1

e�.J�j /ı
u.jı/� eı.i˛@2x�/u..j � 1/ı/C i Z jı

.j�1/ı

e.i˛@
2
x�/.jı�t

0/�1dt
0


H1Ca

.
JX
jD1

e�.J�j /ı .
1

1� e�ı
:

The corresponding inequalities for the wave part follow similarly. The only difference is that we don’t
need to separate the resonant term, since �2 2H 1 by Lemma 3.4.
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This completes the proof of the global bound stated in Theorem 6.1. Finally the continuity in H 1� PL2

follows as in [Erdoğan and Tzirakis 2012]. We omit the details. �

Proof of Theorem 2.8. We follow the strategy we outlined in [Erdoğan and Tzirakis 2011]. We start with
the case 1

˛
62 N. First of all note that the existence of an absorbing set, B0 � H

1 � PL2, is immediate
from (9). Second, we need to verify the asymptotic compactness of the propagator Ut . It suffices to prove
that for any sequence tr !1 and for any sequence .u0;r ; n0;r/ in B0, the sequence Utr .u0;r ; n0;r/ has
a convergent subsequence in H 1 � PL2.

To see this note that by Theorem 6.1, (if .u0; n0/ 2B0)

Ut
�
u0; n0

�
D
�
ei˛t@

2
x�tu0; e

�itd�tn0
�
CNt

�
u0; n0

�
where Nt

�
u0; n0

�
is in a ball in H 1Ca �Ha with radius depending on a 2 .0; 1/; ˛;  , and kf kH1 . By

Rellich’s theorem, fNt
�
u0; n0

�
W t > 0; .u0; n0/ 2B0g is precompact in H 1 � PL2. Since�ei˛t@2x�tu0; e�itd�tn0�H1� PL2

. e�t ! 0; as t !1;

uniformly on B0, we conclude that fUtr
�
u0;r ; n0;r

�
W r 2 Ng is precompact in H 1 � PL2. Thus, Ut is

asymptotically compact. This and Theorem A imply the existence of a global attractor A�H 1 � PL2.
We now prove that the attractor set A is a compact subset of H 1Ca �Ha for any a 2 .0; 1/. By

Rellich’s theorem, it suffices to prove that for any a 2 .0; 1/, there exists a closed ball Ba �H 1Ca �Ha

of radius C.a; ˛; ; kf kH1/ such that A� Ba. By definition

AD
\
��0

[
t��

UtB0 DW

\
��0

V� :

By Theorem 6.1 and the discussion above, V� is contained in a ı� neighborhood, N� , of a ball Ba in
H 1 � PL2 whose radius depends only on a; ˛; ; kf kH1 , and where ı� ! 0 as � tends to infinity. Since
Ba is a compact subset of H 1 � PL2, we have

AD
\
��0

V� �
\
�>0

N� D Ba:

Now consider the case 1
˛
2N. For simplicity, we take ˛ D 1. We have to be slightly more careful in

this case because of the contribution of the resonant term, �1, which is does not belong to H 1Ca for any
a > 0. Recall that, by Theorem 6.1, for .u0; n0/ 2B0

Ut
�
u0; n0

�
D
�
ei˛t@

2
x�tu0; e

�itd�tn0
�
CNt

�
u0; n0

�
C i

�Z t

0

e.i@
2
x�/.t�t

0/�1dt
0; 0

�
; (39)

where Nt
�
u0; n0

�
is in a ball in H 1Ca �Ha with radius depending on a 2 .0; 1/;  , and kf kH1 . Recall

from Proposition 3.2, that the Fourier coefficients of �1 are

.�1/k D �1.n; u/k D n2k�sgn.k/usgn.k/�k; k ¤ 0:
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In light of the proof of the case 1
˛
62 N above, it suffices to consider the contribution of the resonant term

under the assumption that .u0; n0/ 2B0. Using (39), we write

�1
�
n.t 0/; u.t 0/

�
D �1

�
e�it

0d�t 0n0; u.t
0/
�
C �1

�
Nt 0.n0/; u.t

0/
�
: (40)

Now note that, by Lemma 3.4, we have�1.n; u/H1Ca . knkHakukH1 :

Using this with aD 0, we see that the contribution of the first summand in (40) to the resonant term in
(39) satisfies Z t

0

e.i@
2
x�/.t�t

0/�1
�
e�it

0d�t 0n0; u.t
0/
�
dt 0

H1

.
Z t

0

e�.t�t
0/
ke�it

0d�t 0n0kL2ku.t
0/kH1dt 0

� te�tC.a; ; kf kH1/;

which goes to zero uniformly in B0. Similarly, the contribution of the second summand in (40) to the
resonant term in (39) satisfies Z t

0

e.i@
2
x�/.t�t

0/�1
�
Nt 0.n0/; u.t

0/
�
dt 0

H1Ca

.
Z t

0

e�.t�t
0/
kNt 0.n0/kHaku.t 0/kH1dt 0

� C.a; ; kf kH1/:

The rest of the proof is same as the case 1
˛
62 N. �

Appendix

We prove Lemma 3.3. Note that, with mD k2� k1, we can rewrite the sum in part (a) asX
n

1

hni�hn�mi�
:

For jnj< jmj=2, we estimate the sum byX
jnj<jmj=2

1

hni�hmi�
� hmi����.m/:

For jnj> 2jmj, we estimate byX
jnj>2jmj

1

hni�C�
. hmi1���� . hmi����.m/:

Finally for jnj � jmj, we estimate byX
jnj�jmj

1

hmi�hn�mi�
. hmi����.m/. hmi����.m/:

The last inequality follows from the definition of �� and the hypothesis � � �.
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Part (b) follows from part (a). To obtain part (c), write

jn2C c1nC c2j D j.nC z1/.nC z2/j � jnC x1j jnC x2j

where xi is the real part of zi . The contribution of the terms jnCx1j<1 or jnCx2j<1 is . 1. Therefore,
we estimate the sum in part (c) by

. 1C
X
n

1

hnC x1i�hnC x2i�
. 1

by part (a).
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