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DECAY OF LINEAR WAVES ON
HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES

VOLKER SCHLUE

We consider solutions to the linear wave equation on higher dimensional Schwarzschild black hole
spacetimes and prove robust nondegenerate energy decay estimates that are in principle required in a
nonlinear stability problem. More precisely, it is shown that for solutions to the wave equation �g� D 0

on the domain of outer communications of the Schwarzschild spacetime manifold .Mn
m; g/ (where

n � 3 is the spatial dimension, and m > 0 is the mass of the black hole) the associated energy flux
EŒ��.†� / through a foliation of hypersurfaces †� (terminating at future null infinity and to the future
of the bifurcation sphere) decays, EŒ��.†� / � CD=�2, where C is a constant depending on n and m,
and D <1 is a suitable higher-order initial energy on †0; moreover we improve the decay rate for
the first-order energy to EŒ@t��.†R� /� CDı=�

4�2ı for any ı > 0, where †R� denotes the hypersurface
†� truncated at an arbitrarily large fixed radius R <1 provided the higher-order energy Dı on †0 is
finite. We conclude our paper by interpolating between these two results to obtain the pointwise estimate
j�j

†R�
� CD0

ı
=�

3
2
�ı . In this work we follow the new physical-space approach to decay for the wave

equation of Dafermos and Rodnianski (2010).
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1. Introduction

The study of the wave equation on black hole spacetimes has generated considerable interest in recent
years. This stems mainly from its role as a model problem for the nonlinear black hole stability problem
[Dafermos and Rodnianski 2009a; 2012], and more recent advances in the analysis of linear waves
[Dafermos and Rodnianski 2008].

In this paper we study the linear wave equation on higher-dimensional Schwarzschild black holes.
The motivation for this problem lies — apart from the above mentioned relation to the nonlinear stability
problem (which is expected to be simpler in the higher-dimensional case [Choquet-Bruhat et al. 2006];
for work on the 5-dimensional case under symmetry see also [Dafermos and Holzegel 2006; Holzegel
2010]) — on one hand in the purely mathematical curiosity of dealing with higher dimensions and on the
other hand in its interest for theories of high energy physics [Emparan and Reall 2008].

In the philosophy of [Christodoulou and Klainerman 1993] it is understood that the resolution of the
nonlinear stability problem requires an understanding of the linear equations in a sufficiently robust setting.
In particular, we require a proof of the uniform boundedness and decay of solutions to the linear wave
equation based on the method of energy currents, which (ideally) only uses properties of the spacetime that
are stable under perturbations, and does not rely heavily on the specifics of the unperturbed metric (for an
introduction in the context of black hole spacetimes see [Dafermos and Rodnianski 2008]). Correspond-
ingly in this paper we establish on higher-dimensional Schwarzschild spacetime backgrounds boundedness
and decay results analogous to the current state of the art in the .3C 1/-dimensional case [Luk 2010].

The decay argument presented here departs from earlier work that either makes use of multipliers
with weights in the temporal variable (notably [Christodoulou and Klainerman 1990; Blue and Sterbenz
2006; Andersson and Blue 2009; Dafermos and Rodnianski 2009b; Luk 2010]) which in one form or the
other are due to Morawetz [1962], or that relies on the exact stationarity of the spacetime (such as [Ching
et al. 1995; Tataru 2010; Donninger et al. 2012] based on Fourier analytic methods). Here we follow the
new physical-space approach to decay of [Dafermos and Rodnianski 2010], which only uses multipliers
with weights in the radial variable. Thus our work — especially the improvement of Section 5C — is of
independent interest for the .3C 1/-dimensional Schwarzschild and Minkowski case and also for a wider
class of spacetimes including Kerr black hole exteriors.

1A. Statement of the theorems. We consider solutions to the wave equation

�g� D 0 (1-1)

on higher-dimensional Schwarzschild black hole spacetimes; these backgrounds are a family of .nC 1/-
dimensional Lorentzian manifolds .Mn

m; g/ parametrized by the mass of the black hole m> 0 (n� 3).
They arise as spherically symmetric solutions of the vacuum Einstein equations, the governing equations
of general relativity, and are discussed as such in Section 2; for the relevant concepts see also [Dafermos
and Rodnianski 2008; Hawking and Ellis 1973].

More precisely, we consider solutions to (1-1) on the domain of outer communications D of M—
which comprises the exterior up to and including the event horizons of the black hole — with initial data
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ICW future null infinity

��W timelike past infinity

�CW timelike future infinity

HCW event horizon

bifurcation sphere �0W spacelike infinity
DW domain of outer

communications

†0
r DR

†�

Figure 1. The hypersurface †0 in the domain of outer communications D.

prescribed on a hypersurface †0 consisting of an incoming null segment crossing the event horizon to
the future of the bifurcation sphere, a spacelike segment and an outgoing null segment emerging from a
larger sphere of radius R terminating at future null infinity; see Figure 1 (the exact parametrization —
which is chosen merely for technical reasons — is given in Section 4).

In the exterior of the black hole the metric g takes the classical form in .t; r/-coordinates [Tangherlini
1963]:

g D�

�
1�

2m

rn�2

�
dt2C

�
1�

2m

rn�2

��1
dr2C r2̊n�1; (1-2)

where r > n�2
p
2m, t 2 .�1;1/, and ̊n�1 denotes the standard metric on the unit .n � 1/-sphere;

however this coordinate system breaks down on the horizon r D n�2
p
2m and we shall for that reason

introduce in Section 2 the global geometry of .Mn
m; g/ using a double null foliation, from which we

derive an alternative double null coordinate system for the exterior of the black hole:

g D�4

�
1�

2m

rn�2

�
du� dv�C r2̊n�1; (1-3)

the so-called Eddington–Finkelstein coordinates.
In this paper both the conditions on the initial data and the statements on the decay of the solutions

are formulated using the concepts of energy and the energy momentum tensor associated to (1-1); in
particular (see Section 1B and also Appendix B),

T�� Œ��D @�� @�� �
1
2
g�� @

˛�@˛�: (1-4)

The corresponding 1-contravariant-1-covariant tensor field fulfills the physical requirement that the linear
transformation �T W TM! TM maps the hyperboloid of future-directed unit timelike vectors into the
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closure of the open future cone at each point. Physically,

�T �u 2 TpM

is the energy-momentum density relative to an observer at p 2M with 4-velocity u 2 TpM, and it is for
this reason that we refer to

"D g.T �u; u/D T .u; u/� 0

as the energy density at p 2M relative to the observer with 4-velocity u 2 TpM. One may think
of a spacelike hypersurface as a collection of locally simultaneous observers with a 4-velocity given
by the normal. The hypersurfaces relative to which we establish energy decay are simply defined by
†�

:
D '� .†0\D/, where '� denotes the 1-parameter group of isometries generated by @

@t
. The energy

flux through the hypersurface †� is then given by

EŒ��.†� /
:
D

Z
†�

�
JN Œ��; n†

�
(1-5)

where .JN Œ��; n†/
:
D T Œ��.N; n†/, n† is the normal1 to †� and N is a timelike '� -invariant future

directed vector field which is constructed in Section 3 for the purpose of turning "N :
D T .N;N / into

a nondegenerate energy up to and including the horizon. Note that the energy EŒ��.†� / in particular
bounds a suitably defined PH1-norm on †� .

The classes of solutions to (1-1) to which our results apply are formulated in terms of finite energy
conditions on the initial data, for which purpose we list the following quantities:

D
.2/
2 .�0/

:
D

Z 1
�0CR�

dv�
Z

Sn�1
d�̊n�1

1X
kD0

r2
�
@.r

n�1
2 @kt �/

@v�

�2 ˇ̌̌̌
u�D�0

C

Z
†�0

� 2X
kD0

JN Œ@kt ��; n†

�
; (1-6)

D
.4�ı/
5 .�0/

:
D

Z 1
�0CR�

dv�
Z

Sn�1
d�̊n�1

� 1X
kD0

r4�ı
�
@2.r

n�1
2 @kt �/

@v�2

�2

C

4X
kD0

r2
�
@.r

n�1
2 @kt �/

@v�

�2
C

3X
kD0

n.n�1/
2X
iD1

r2
�
@r

n�1
2 �i@

k
t �

@v�

�2 �̌̌̌̌
u�D�0

C

Z
†�0

� 5X
kD0

JN Œ@kt ��C

4X
kD0

n.n�1/
2X
iD1

JN Œ�i@
k
t ��; n†

�
; (1-7)

1On spacelike segments of †� the vector n† is indeed timelike; however, on the null segments of the hypersurfaces †� the
“normal” n† is in fact a null vector, but the notation is kept for convenience; see Appendix A.
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D
.4�ı/

7CŒn
2
�
.�0/

:
D

Z 1
�0CR�

dv�
Z

Sn�1
d�̊n�1

� 2X
kD0

X
j˛j�Œn

2
�C1

r4�ı
�
@2.r

n�1
2 �˛@kt �/

@v�2

�2

C

5X
kD0

X
j˛j�Œn

2
�C1

r2
�
@r

n�1
2 �˛@kt �

@v�

�2
C

4X
kD0

X
j˛j�Œn

2
�C2

r2
�
@r

n�1
2 �˛@kt �

@v�

�2 �̌̌̌̌
u�D�0

C

Z
†�0

� 6X
kD0

X
j˛j�Œn

2
�C1

JN Œ�˛@kt ��C

5X
kD0

X
j˛j�Œn

2
�C2

JN Œ�˛@kt ��; n†

�
: (1-8)

Here �i W i D 1; : : : ; n.n � 1/=2 are the generators of the spherical isometries of the spacetime M,
˛ is a multiindex, and for any radius R we denote by R� the corresponding Regge–Wheeler radius (2-17).
(See also Section 4B.)

Among the propositions on linear waves on higher-dimensional Schwarzschild black hole spacetimes
proven in this paper, we wish to highlight the following conclusions2.

Theorem 1 (energy decay). Let � be a solution of the wave equation �g�D 0 on D�Mn
m, where n� 3

and m> 0, with initial data prescribed on †�0 (�0 > 0).

� If D :
DD

.2/
2 .�0/ <1 then there exists a constant C.n;m/ such that

EŒ��.†� /�
CD

�2
.� > �0/: (1-9)

� Furthermore if for some 0 < ı < 1
2

and R > n�2
p
8nm=ı also D0 :D D.4�ı/5 .�0/ <1 then there

exists a constant C.n;m; ı; R/ such that

EŒ@t��.†
0
� /�

CD0

�4�2ı
.� > �0/; (1-10)

where †0�
:
D†� \fr �Rg.

While each of these energy decay statements lend themselves to prove pointwise estimates for � and
@t� respectively (see Section 6), we would like to emphasize that, using the (refined) integrated local
energy decay estimates of Section 4, an interpolation argument allows to improve the pointwise bound
on � directly in the interior3.

Theorem 2 (pointwise decay). Let � be a solution of the wave equation as in Theorem 1. If for some
0 < ı < 1

4
, D :
DD

.4�ı/

7CŒn
2
�
.�0/ <1 (�0 > 1) then there exists a constant C.n;m; ı; R/ such that

r
n�2
2 j�j

ˇ̌
†0�
�
CD

�
3
2
�ı

�
n�2
p
2m� r < R; � > �0

�
(1-11)

where †0� and R are as in Theorem 1.

2The “redshift” proposition and the “integrated local energy decay” proposition are to be found on page 526 in Section 3 and
page 532 in Section 4 respectively.

3In this paper we use the term “interior” to refer to a region of finite radius; i.e., the term “interior region” is used
interchangeably with “a region of compact r (including the horizon)”, and is of course not meant to refer to the interior of the
black hole, which is not considered in this paper.
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Remark (decay rates and method of proof). Theorems 1 and 2 extend the presently known decay results
for linear waves on .3C 1/-dimensional Schwarzschild black holes to higher dimensions n > 3; for
.3C 1/-dimensional Schwarzschild black holes, (1-9) was first established in [Dafermos and Rodnianski
2009b], and (1-10), (1-11) more recently in [Luk 2010]. However, both proofs use multipliers with
weights in t , [Dafermos and Rodnianski 2009b] by using the conformal Morawetz vector field in the decay
argument, and [Luk 2010] by using in addition the scaling vector field. Here we extend (1-9) to higher
dimensions n > 3 in the spirit of [Dafermos and Rodnianski 2010] only using multipliers with weights
in r , and provide a new proof of the improved decay results (1-10) and (1-11) in the nD 3-dimensional
case in particular.

1B. Overview of the proof. In this section we give an overview of the work in this paper and present
some of the ideas in the proof that lead to Theorem 1; references to previous work are made when useful,
but for a more detailed account of previous work on the wave equation on Schwarzschild black hole
spacetimes see Section 1.3 in [Dafermos and Rodnianski 2011] and references therein.

Energy identities. Let us recall that the wave equation (1-1) arises from an action principle and that the
corresponding energy momentum tensor is conserved. Indeed, here we find (1-4) and by virtue of the
wave equation (1-1)

r
�T�� D .�g�/.@��/D 0: (1-12)

Moreover, the energy momentum tensor (1-4) satisfies the positivity condition, namely T .X; Y /� 0 for
all future-directed causal vectors X , Y at a point.

Now letX be a vector field on M. We define the energy current JX Œ�� associated to the multiplierX by

JX� Œ��
:
D T�� Œ��X

� : (1-13)

Then
KX

:
Dr

�JX� D
.X/���T�� (1-14)

where we have used that T�� is conserved and symmetric. Here

.X/�.Y;Z/
:
D

1
2
.LXg/.Y;Z/D 1

2
g.rYX;Z/C

1
2
g.Y;rZX/ (1-15)

is the deformation tensor of X .

Remark. If X is a Killing field, i.e., X generates a 1-parameter group of isometries of g, .X/� D 0, then
KX D 0; i.e., JX is conserved.

In the following we shall refer to Z
R
KX d�g D

Z
@R

�JX (1-16)

as the energy identity for JX (or simply X ) on R, where R�M (this is of course the content of Stokes’
theorem, and �J denotes the Hodge-dual of J ; see also Appendix B). Moreover we refer to X in (1-16)
as the multiplier vector field. In this paper we will largely be concerned with the construction of vector
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fields X , associated currents JX and their modifications, and the application of (1-16) and various derived
energy inequalities to appropriately chosen domains R�D.

The new approach [Dafermos and Rodnianski 2010] to obtaining robust decay estimates requires us
to first establish (i) uniform boundedness of energy, (ii) an integrated local energy decay estimate and
(iii) good asymptotics towards null infinity.

Redshift effect. The reason (i) is nontrivial as compared to Minkowski space is that the energy correspond-
ing to the multiplier @t degenerates on the horizon (the vector field @t becomes null on the horizon and
no control on the angular derivatives is obtained; cf. [ibid. 2008]); it was recognized in [ibid. 2009b],
and formulated more generally in [ibid. 2008], that the redshift property of Killing horizons is the key
to obtaining an estimate for the nondegenerate energy (i.e., an energy with respect to a strictly timelike
vector field up to the horizon, which controls all derivatives tangential to the horizons). An explicit
construction of a suitable timelike vector field N is given in Section 3 which allows us to state the redshift
property in the language of multipliers and energy currents, and a proof of the uniform boundedness of
the nondegenerate energy is given (independently of other calculations in this work) in Section 5A.

Integrated local energy decay. Section 4 is devoted to establishing (ii). This is achieved by the use of
radial multiplier vector fields of the form f .r�/@r� (see Section 4A). In Section 4B a construction of
a positive definite current for the high angular frequency regime is given using a decomposition on the
sphere. In Section 4C a more general construction of a current is given using a commutation with the
angular momentum operators. We wish to emphasize that the decay results of Section 5 — albeit with
a higher loss of differentiability — could be obtained solely on the basis of the latter current, without the
recourse in Section 4B to the Fourier expansion on the sphere. However, the dependence on the initial
data is significantly improved by virtue of the integrated local energy decay estimate Proposition 4.1; here
(see Section 4D.1) the results of Sections 4B and 4C are combined in order to replace the commutation
with the angular momentum operators by a commutation with the vector field @t only. The difficulty in
both constructions lies in overcoming the “trapping” obstruction, which is the insight that it is impossible
to prove an integrated local energy decay estimate on spacetime regions that contain the photon sphere
without losing derivatives (see [Dafermos and Rodnianski 2008]). In the context of the Schwarzschild
spacetime the need for vector fields whose associated currents give rise to positive definite spacetime
integrals was first recognized and used in [Blue and Soffer 2003; Dafermos and Rodnianski 2009b],
and such estimates have since then been extended by many authors [Marzuola et al. 2010; Alinhac
2009].

The p-hierarchy. In Section 5B we use a multiplier of the form rp@v� that gives rise to a weighted energy
inequality which we consequently exploit in a hierarchy of two steps; this approach — which yields
the corresponding quadratic decay rate in (1-9) — was pioneered in [Dafermos and Rodnianski 2010]
for a large class of spacetimes, including the .3C 1/-dimensional Schwarzschild and Kerr black hole
spacetimes. In Section 5C a further commutation with @v� is carried out, which allows us to extend the
hierarchy of commuted weighted energy inequalities to four steps, yielding the corresponding decay rate
for the first-order energy. The argument involves dealing with an (arbitrarily small) degeneracy of the
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first-order energy density at infinity which corresponds to the ı-loss in the decay estimate (1-10). In both
cases (iii) is ensured by the imposition of higher-order finite energy conditions on the initial data.

Interpolation. The pointwise decay of Theorem 2 then follows from Theorem 1 and the (refined) integrated
local energy decay estimates of Section 4D.2 by a simple interpolation argument given in Section 6.

Final comments. The currents in Sections 4B and 4C and the corresponding integrated local energy decay
result already appeared in [Schlue 2010]. Independently a version of integrated local energy decay was
subsequently obtained in [Laul and Metcalfe 2012]. In [Schlue 2010] there is also an alternative proof of
(1-9) of Theorem 1 using the conformal Morawetz vector field.

2. Global causal geometry of the higher-dimensional Schwarzschild solution

In this section, we give a discussion (in the spirit of Section 3 of [Christodoulou 1995]) of the global ge-
ometry of the .nC1/-dimensional Schwarzschild black hole spacetime [Tangherlini 1963], the underlying
manifold on which the wave equation is studied in this paper.

The .nC 1/-dimensional Schwarzschild spacetime manifold M :
DMn

m (n � 3, n 2 N, m > 0) is
spherically symmetric; i.e., SO.n/ acts by isometry. The group orbits are .n�1/-spheres, and the quotient
QDM=SO.n/ is a 2-dimensional Lorentzian manifold. The metric g on M assumes the form

g D
Q
g Cr D

Q
g Cr2̊n�1 (2-1)

where
Q
g is the Lorentzian metric on Q to be discussed below, ̊n�1 is the standard metric on Sn�1, and r

is the area radius (the area of the .n�1/-sphere at x 2Q is given by !nrn�1.x/, where !nD 2�
n
2 =�.n

2
/

is the area of the unit .n� 1/-sphere); or more precisely, in local coordinates xa W a D 1; 2 on Q, and
local coordinates yA W AD 1; : : : ; n� 1 on Sn�1,

g.x;y/ D gab.x/ dxa dxbC r2.x/
�
̊n�1

�
AB

dyA dyB :

The Schwarzschild spacetime is a solution of the vacuum Einstein equations, which in other words
means that its Ricci curvature vanishes identically. This implies in particular (see derivation in [Schlue
2012]) that the area radius function r satisfies the Hessian equations

ra@br D
.n� 2/

2r

�
1� .@cr/.@cr/

�
gab; (2-2)

as a result of which the mass function m on Q defined4 by

1�
2m

rn�2
D gab @ar @br (2-3)

is constant; see [ibid.]; we take this parameter m to be positive.
On Q we choose functions u, v whose level sets are outgoing and incoming null curves, respectively,

which are increasing towards the future. These functions define a null system of coordinates, in which the

4We choose the normalization of the mass function to be independent of the dimension n; this is motivated by a consideration
of the mass equations in the presence of matter; see [Schlue 2012].
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metric
Q
g takes the form

Q
g D��2 du dv: (2-4)

The Hessian equations (2-2) in null coordinates read

@2r

@u2
�
2

�

@�

@u

@r

@u
D 0; (2-5a)

@2r

@u @v
C
n� 2

r

@r

@u

@r

@v
D�

n� 2

4r
�2; (2-5b)

@2r

@v2
�
2

�

@�

@v

@r

@v
D 0; (2-5c)

and the defining equation for the mass function (2-3) is

1�
2m

rn�2
D�

4

�2
@r

@u

@r

@v
: (2-6)

The system (2-5b), (2-6) can be rewritten as the partial differential equation

@r�

@u@v
D 0 (2-7)

for a new radial function r�.r/ that is related to r by

dr�

dr
D

1

1� 2m
rn�2

: (2-8)

A solution of (2-7), (2-8) is given by5

r� D
1

.n� 2/

n�2
p
2m log juvj; (2-9)

or

juvj D e
.n�2/ r�

n�2p
2m D e

.n�2/ r
n�2p

2m exp
�Z

n� 2

xn�2� 1
dx
ˇ̌̌̌
xD r

n�2p
2m

�
:

We find more explicitly, by an elementary integration (see [Schlue 2012]), that

uv D

8̂̂̂<̂
ˆ̂:
e
r
2m

�
1�

r

2m

�
; nD 3;

e
2rp
2m

�
1� rp

2m

��
1C rp

2m

� ; nD 4;

(2-10)

5Here the representation in terms of null coordinates is such that r� D�1 is contained in the .u; v/ plane and the metric is
nondegenerate at r D n�2

p
2m.
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and

uv D e
.n�2/ r
n�2p

2m

�
1�

r
n�2
p
2m

� 8̂<̂
:
1; n odd;�
1C

r
n�2
p
2m

��1
; n even;

�

Œn�3
2
�Y

jD1

�
r2

.2m/
2
n�2

� 2 cos
�
2�j

n� 2

�
r

.2m/
1
n�2

C 1

�cos.2�j n�3
n�2

/

�

Œn�3
2
�Y

jD1

exp
�
2 sin

�
2�j

n� 3

n� 2

�
arctan

� r
n�2
p
2m
� cos

� 2�j
n�2

�
sin
� 2�j
n�2

� ��
; n� 5: (2-11)

Note in particular that the uD 0 and v D 0 lines are the constant r D n�2
p
2m curves, and that all other

curves of constant radius are hyperbolas in the .u; v/ plane — timelike for r > n�2
p
2m, spacelike for

r <
n�2
p
2m. This outlines the well-known global causal geometry of the Schwarzschild solution (see

Figure 2).

uD0

vD0

rD
n�2
p
2m

rD0

rD0

r >
n�2
p
2m

T� Wv<0

0<r <
n�2
p
2m

T Wu>0; v>0

R Wu<0; v>0

Figure 2. Global causal geometry of the Schwarzschild solution.
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It is easy to see [Schlue 2012] that for (2-9) the trapped region, the apparent horizon, the exterior, and
the antitrapped regions, respectively, are given by

T
:
D

�
.u; v/ 2Q W

@r

@u
< 0;

@r

@v
< 0

�
D
˚
.u; v/ 2Q W u > 0; v > 0

	
;

A
:
D

�
.u; v/ 2Q W

@r

@u
< 0;

@r

@v
D 0

�
D
˚
.u; v/ 2Q W uD 0; v > 0

	
;

R
:
D

�
.u; v/ 2Q W

@r

@u
< 0;

@r

@v
> 0

�
D
˚
.u; v/ 2Q W u < 0; v > 0

	
;

T�
:
D

�
.u; v/ 2Q W

@r

@u
> 0

�
D
˚
.u; v/ 2Q W v < 0

	
:

Note this forms a partition of Q D T[A[R[T�, and that in view of (2-6), r < n�2
p
2m in T,

r D
n�2
p
2m in A and r > n�2

p
2m in R. We shall refer to

D :
DRD

˚
.u; v/ 2Q W u� 0; v � 0

	
(2-12)

as the domain of outer communications.
Finally,

�2 D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

4
.2m/3

r
e�

r
2m ; nD 3;�

2m

r

�2� r
p
2m
C 1

�2
e
� 2rp

2m ; nD 4;

�
2

n� 2

�2 .2m/ n
n�2

rn�2

8̂<̂
:
1; n odd;�

r
n�2
p
2m
C 1

�2
; n even;

�

Œn�3
2
�Y

jD1

�
r2

.2m/
2
n�2

� 2 cos
�
2�j

n� 2

�
r

n�2
p
2m
C 1

�1�cos.2�j n�3
n�2

/

�

Œn�3
2
�Y

jD1

exp
�
�2 sin

�
2�j

n� 3

n� 2

�
arctan

� r
n�2
p
2m
� cos

� 2�j
n�2

�
sin
� 2�j
n�2

� ��
e
�
.n�2/ r
n�2p

2m ; n� 5:

(2-13)

One may now also think of r as a function of u, v implicitly defined by (2-10) and (2-11). In R where
r >

n�2
p
2m (and v�u > juC vj), r may be complemented by

t D
2

n� 2

n�2
p
2m arctanh

�
uC v

v�u

�
I (2-14)

note

dt D
1

n� 2

n�2
p
2m

�
1

v
dv�

1

u
du
�

(2-15)

and we will denote by †t the corresponding level sets in D.
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We find in these coordinates the classic expression for the Schwarzschild metric in the exterior region:

g D�

�
1�

2m

rn�2

�
dt2C

�
1�

2m

rn�2

��1
dr2C r2̊n�1: (2-16)

In Regge–Wheeler coordinates .t; r�/, where r� is centered at the photon sphere r D n�2
p
nm:

r� D

Z r

.nm/
1
n�2

1

1� 2m

r 0n�2

dr 0; (2-17)

the metric obviously takes the conformally flat form

g D

�
1�

2m

rn�2

��
� dt2C dr�2

�
C r2̊n�1: (2-18)

We shall also use the Eddington–Finkelstein coordinates

u� D 1
2
.t � r�/; v� D 1

2
.t C r�/; (2-19)

which are again double null coordinates:

g D�4

�
1�

2m

rn�2

�
du� dv�C r2̊n�1: (2-20)

The two systems of null coordinates in R are related by

uD�e
�
.n�2/u�

n�2p
2m ; v D e

.n�2/v�

n�2p
2m : (2-21)

3. The redshift effect

In this section we prove a manifestation of the local redshift effect in the Schwarzschild geometry of
Section 2 in the framework of multiplier vector fields.

Proposition 3.1 (local redshift effect). Let � be a solution of the wave equation (1-1). Then there exists a
't -invariant future-directed timelike smooth vector field N on D, two radii n�2

p
2m < r

.N/
0 < r

.N/
1 , and a

constant b > 0 such that

KN .�/� b
�
JN .�/;N

� �
n�2
p
2m� r < r

.N/
0

�
(3-1)

and N D T (r � r.N/1 ).

The vector field N will be constructed explicitly with the following vector fields.

T -vector field. Here 't is the 1-parameter group of diffeomorphisms generated by the vector field

T D
1

2

n� 2
n�2
p
2m

�
v
@

@v
�u

@

@u

�
I (3-2)

note that in R, where r > n�2
p
2m (recall (2-15)),

T D
@

@t
:
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T is a Killing vector field:
.T /� D 0; (3-3)

which is timelike in the exterior, spacelike in the interior of the black hole and null on the horizon:

g.T; T /D
1

4

.n� 2/2

.2m/
2
n�2

uv �2 D�

�
1�

2m

rn�2

�8<:
< 0; r >

n�2
p
2m;

D 0; r D
n�2
p
2m;

> 0; r <
n�2
p
2m:

(3-4)

In particular,

T jHC D
1

2

n� 2
n�2
p
2m

v
@

@v
; T jHC\H� D 0: (3-5)

Y -vector field. Let us also define a vector field Y on HC conjugate to T :

Y jHC D�
2

@r
@u

@

@u
: (3-6)

Indeed,

g.T; Y /jHC D�2 (3-7)

because

�2
ˇ̌
HC D�4

n�2
p
2m

n� 2

1

v

@r

@u
:

Furthermore, as a consequence of (2-5b),

@2r

@u @v

ˇ̌̌̌
HC
D�

n� 2

4r
�2
ˇ̌̌̌
HC
D
1

v

@r

@u

ˇ̌̌̌
HC
;

and we have

ŒT; Y �jHC D ŒT; Y �
u @

@u

ˇ̌̌̌
HC
C ŒT; Y �v

@

@v

ˇ̌̌̌
HC
D

n� 2
n�2
p
2m

1

@r
@u

�
v
1

@r
@u

@2r

@u @v
� 1

�
@

@u

ˇ̌̌̌
HC
D 0: (3-8)

EA-vector fields. We denote by EA W AD 1; : : : ; n� 1 an orthonormal frame field tangential to the orbits
of the spherical isometry:

g.EA; EB/D ıAB D

�
1; AD B;

0; A¤ B;
(3-9a)

g.EA; Y /jHC D 0; g.EA; T /D 0jHC .AD 1; : : : ; n� 1/: (3-9b)

We can now state that the surface gravity of the event horizon is positive; this is essential for the
existence of the redshift effect (see more generally [Dafermos and Rodnianski 2008] and also [Aretakis
2011] for work where this is not the case).

Lemma 3.2 (surface gravity). On HC,

rT T D �nT (3-10)
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with

�n D
1

2

n� 2
n�2
p
2m

> 0: (3-11)

We call �n the surface gravity.

Note. T D �n.v @@v �u
@
@u
/.

Alternatively, �n is characterized by

rT Y D��nY (3-12)

on HC. Clearly
g.rT Y; Y /D

1
2
T �g.Y; Y /D 0

since Y is null along HC, and

g.rT Y; T /
(3-8)
D g.rY T; T /

(3-3)
D �g.rT T; Y /D 2�nI

also
g.rT Y;EA/

(3-8)
D g.rY T;EA/

(3-3)
D �g.rEAT; Y /D 0 for AD 1; : : : ; n� 1;

because rEAT D 0. Note, for later use, on HC,

rEAY D�
2

n�2
p
2m

EA: (3-13)

We defined Y on HC conjugate to T , g.T; Y /jHC D�2. Next we extend Y to a neighborhood of the
horizon by

rY Y D��.Y CT /

�
� >

16

n� 2
.2m/

3
n�2

�
(3-14)

and then we extend Y to R by Lie-transport along the integral curves of T :

ŒT; Y �D 0: (3-15)

Proposition 3.3 (redshift). For the future-directed timelike vector field

N D T CY (3-16)

there is a b > 0 such that on HC

KN � b .JN ; N /: (3-17)

Proof. Let us calculate

KY D .Y /���T��

D
1

4

n
.Y /�.T; T / T .Y; Y /C 2.Y /�.T; Y / T .Y; T /C .Y /�.Y; Y / T .T; T /

o
�

n�1X
AD1

n
.Y /�.EA; Y / T .EA; T /C

.Y /�.EA; T / T .EA; Y /
o
C

n�1X
A;BD1

.Y /�.EA; EB/ T .EA; EB/:
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Now, on one hand, on HC,

.Y /�.T; T /D 2�n;
.Y /�.T; Y /D �; .Y /�.Y; Y /D 2�;

.Y /�.EA; Y /D 0;
.Y /�.EA; T /D 0;

.Y /�.EA; EB/D�
2

n�2
p
2m

ıAB :

Thus

KY D 1
2
�n T .Y; Y /C

1
2
� T .Y CT; T /�

2
n�2
p
2m

n�1X
AD1

T .EA; EA/:

On the other hand, on HC,

T .Y; Y /D

�
2

@r
@u

@�

@u

�2
; T .Y; T /D

ˇ̌
r= �

ˇ̌2
r2̊n�1

; T .T; T /D

�
�nv

@�

@v

�2
;

and, on HC,

T .EA; EB/D .EA � �/.EB � �/�
1
2
.2m/

2
n�2 ıAB

ˇ̌
r= �

ˇ̌
r2̊n�1

�
1
2
.n� 2/.2m/

1
n�2

v

@r
@u

ıAB

�
@�

@u

��
@�

@v

�
:

Using Cauchy’s inequality, on HC,

�
2

n�2
p
2m

n�1X
AD1

T .EA; EA/D .n� 3/.2m/
1
n�2

ˇ̌
r= �

ˇ̌2
r2̊n�1

C .n� 2/.n� 1/
v

@r
@u

�
@�

@u

��
@�

@v

�
� .n� 3/.2m/

1
n�2T .Y; T /� 1

4
�nT .Y; Y /�

1

�n

2.n� 1/

.n� 2/
.2m/

2
n�2 T .T; T /

� �
1
4
�nT .Y; Y /�

n� 1

�2n
.2m/

1
n�2T .T; T /:

Since we have chosen � > 2n�1
�2n
.2m/

1
n�2 , KY has a sign,

KY � 1
4
�n T .Y; Y /C �

0 T .Y CT; T /

for 0 < � 0 < �
2
�
n�1

�2n
.2m/

1
n�2 , or

KY � b T .Y CT; Y CT /

for 0 < b <minf�n
4
; �
0

2
g. This yields the result

KN DKY � b T .N;N /D b .JN ; N /: �

Finally, we find an explicit expression for Y . Consider the vector field

OY D�
2

@r
@u

@

@u
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on R[A formally defined by the expression for Y on HC. In R

OY D
2

1� 2m
rn�2

@

@u�
:

OY generates geodesics, this being a consequence of the Hessian equations (2-5a),

r OY
OY D

�
2

@r
@u

�2�
�
1

@r
@u

@2r

@u2
C
2

�

@�

@u

�
@

@u
D 0;

and is Lie-transported by T :

ŒT; OY �D
2�
@r
@u

�2��T; @@u
�
� r

�
@

@u
�
2

@r
@u

�
T;

@

@u

�
D��n OY C �n OY D 0

because ŒT; @
@u
�D �n

@
@u

. Y as constructed above coincides with

Y D ˛.r/ OY Cˇ.r/T (3-18)

where

˛.r/D 1C
�

4�n

�
1�

2m

rn�2

�
; ˇ.r/D

�

4�n

�
1�

2m

rn�2

�
:

Indeed, on HC,

Y jHC D OY jHC D�
2

@r
@u

@

@u

ˇ̌̌̌
HC

and

rY Y
ˇ̌
HC Dr OY Y

ˇ̌
HC D .

OY �˛/ OY
ˇ̌
HC Cr OY

OY
ˇ̌
HC C .

OY �ˇ/T
ˇ̌
HC D�� .Y CT /

ˇ̌
HC

since

OY �˛
ˇ̌
HC D

�

4�n
.n� 2/

2m

rn�1
OY � r

ˇ̌̌̌
HC
D��; OY �ˇ

ˇ̌
HC D��

and Y remains Lie-transported by T :

ŒT; Y �D .T �˛/ OY C .T �ˇ/T C˛ ŒT; OY �Cˇ ŒT; T �D 0

since

T �˛ D 0D T �ˇ:

Thus the vector field Y is given explicitly by

Y D

8̂̂̂<̂
ˆ̂:
�
2

@r
@u

@

@u
on HC;�

1C
�

4�n

�
1�

2m

rn�2

��
2

1� 2m
rn�2

@

@u�
C

�

4�n

�
1�

2m

rn�2

�
@

@t
in R:

(3-19)
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Clearly, by continuity, we can choose two values n�2
p
2m < r

.N/
0 < r

.N/
1 <1 and set

N D

(
T CY;

n�2
p
2m� r � r

.N/
0 ;

T; r � r
.N/
1 ;

with a smooth 't -invariant transition of the timelike vector field N in r.N/0 � r � r
.N/
1 , such that (3-17)

extends to the neighborhood n�2
p
2m < r < r

.N/
0 of the event horizon.

Remark 3.4. For a geometric interpretation of Proposition 3.3 see [Schlue 2012] and also [Dafermos
and Rodnianski 2008].

4. Integrated local energy decay

In this section we prove several integrated local energy decay statements, i.e., estimates on the energy
density of solutions to (1-1) integrated on (bounded) space-time regions; this in an essential ingredient
for the decay mechanism employed in Section 5.

Let Rr0;r1.t0; t1; u�1; v�1 / be the region composed of a trapezoid and characteristic rectangles as follows
(see Figure 3):

Rr0;r1.t0; t1; u�1; v�1 /
:
D
˚
.t; r/ W t0 � t � t1; r0 � r � r1

	
[
˚
.t; r/ W r � r0;

1
2
.t � r�/� u�1; t0C r

�
0 � t C r

�
� t1C r

�
0

	
[
˚
.t; r/ W r � r1;

1
2
.t C r�/� v�1 ; t0� r

�
1 � t � r

�
� t1� r

�
1

	
: (4-1)

We define
R1r0;r1.t0/

:
D

[
t1�t0

[
u�1�

1
2
.t1�r

�
0 /

[
v�1�

1
2
.t1Cr

�
1 /

R.t0; t1; u�1; v�1 / (4-2)

and denote its past boundary by

†�0
:
D @�R1r0;r1.t0/; �0 D

1
2
.t0� r

�
1 /: (4-3)

t0

r0 r1

t1

u�1 v�1

Figure 3. The region Rr0;r1.t0; t1; u�1; v�1 /.
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We shall first state the central estimate.

Proposition 4.1 (integrated local energy decay estimate). There exist .2m/
1
n�2 < r0 < r1 <1 and a

constant C.n;m/ depending only on the dimension n and the mass m, such that for any given solution �
of the wave equation �g� D 0,Z
R1r0;r1 .t0/

�
1

rn

�
@�

@r�

�2
C

1

rnC1

�
@�

@t

�2
C
1

r3

�
1�

2m

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
d�g

� C.n;m/

Z
†�0

�
J T .�/CJ T .T � �/; n

�
(4-4)

for all t0 � 0, where �0 D 1
2
.t0� r

�
1 /.

The degeneracy at infinity can in fact be improved:

Proposition 4.2 (improved integrated local energy decay estimate). Let � be a solution of the wave
equation �g� D 0. Then there exists a constant C.n;m; ı/ for each 0 < ı < 1 such thatZ
R1r0;r1 .t0/

�
1

r1Cı

�
@�

@r�

�2
C

1

r1Cı

�
@�

@t

�2
C
1

r

�
1�

2m

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
d�g

� C.n;m; ı/

Z
†�0

�
J T .�/CJ T .T � �/; n

�
(4-5)

for any t0 � 0, where r0 < r1 are as above, and �0 D 1
2
.t0� r

�
1 /.

As a consequence of the redshift effect of Section 3 and the uniform boundedness of the nondegenerate
energy (which is proven independently in Section 5A), we can infer in a more geometric formulation:

Corollary 4.3 (nondegenerate integrated local energy decay). Let � be a solution of (1-1). Then for any
R >

n�2
p
2m there exists a constant C.n;m;R/ such thatZ �

� 0
d�
Z
†0
�

�
JN .�/; n

�
� C.n;m;R/

Z
†�0

�
JN .�/CJ T .T � �/; n

�
; (4-6)

for all � 0 < � , where †0�
:
D†� \fr �Rg.

Proof. Let
R0.� 0; �/ :D J�.†0� /\ JC.†� 0/:

In R0.� 0; �/\fr < r .N/0 g we have by Proposition 3.1�
JN .�/; n

�
�
1

b
KN .�/;

and in R0.� 0; �/\ fr � r.N/1 g trivially .JN .�/; n/ � .J T .�/; n/. Therefore using the energy identity
for N on R0.� 0; �/ the estimate (4-6) follows from Proposition 5.2 and Proposition 4.1. �

In the above, no control is obtained on a spacetime integral of �2 itself; however, all that is needed for
the decay argument of Section 5 is an estimate for the integral of �2 on timelike boundaries.
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Proposition 4.4 (zeroth-order terms on timelike boundaries). Let � be solution of the wave equation
(1-1), and R > n�2

p
8nm. Then there is a constant C.n;m;R/ such that, for all � 0 < � ,Z 2�CR�

2� 0CR�
dt
Z

Sn�1
d�̊n�1 �

2
ˇ̌
rDR

� C.n;m;R/

Z 2�CR�

2� 0CR�
dt
Z

Sn�1
d�̊n�1

��
@�

@r�

�2
C
ˇ̌
r= �

ˇ̌2 �̌̌̌̌
rDR

CC.n;m;R/

Z
†�0

�
J T .�/; n

�
: (4-7)

The central result of Proposition 4.1 combines results for two different regimes, that of high angular
frequencies and that of low angular frequencies. First we will use radial multiplier vector fields to
construct positive definite currents to deal with the former regime, and then a more general current using
a commutation with angular momentum operators for the latter.

Remark 4.5. The specific parametrization (4-3) has technical advantages, but †� can in principle be
replaced by a foliation of strictly spacelike hypersurfaces terminating at future null infinity and crossing
the event horizon to the future of the bifurcation sphere.

4A. Radial multiplier vector fields. A radial multiplier is a vector field of the form

X D f .r�/
@

@r�
: (4-8)

We would like the associated current to be positive; however we find in general, as it is shown below:

KX D
f 0

1� 2m
rn�2

�
@�

@r�

�2
C
f

r

�
1�

nm

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
1

2

�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
@˛� @˛�: (4-9)

Note. The prefactor to the angular derivatives vanishes at the photon sphere at r D n�2
p
nm.

Calculation of the deformation tensor .X/� . It is convenient to work in Eddington–Finkelstein coordinates:

X D
1

2
f .r�/

@

@v�
�
1

2
f .r�/

@

@u�
: (4-10)

We then obtain for the components of the deformation tensor:

.X/�u�u� D

�
1�

2m

rn�2

�
f 0; .X/�v�v� D

�
1�

2m

rn�2

�
f 0;

.X/�u�v� D�

�
1�

2m

rn�2

��
f 0C .n� 2/

2m

rn�1
f

�
; (4-11)

.X/�aA D 0;
.X/�AB D f r

�
1�

2m

rn�2

��
̊n�1

�
AB
:

The formula (4-9) for KX is now obtained by writing out (see also Appendix B)

KX D .X/�˛ˇ T˛ˇ
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and rearranging the terms so as to complete
� @�
@u�

�2
C
� @�
@v�

�2 to
� @�
@r�

�2. This rearrangement is also related
to the following modification of currents; for observe that, if �� D 0,

�.�2/D 2.@˛�/.@˛�/: (4-12)

First modified current. With the notation

JX;0� D T��X
� ; (4-13)

define the first modified current by

JX;1� DJX;0� C
1

4

�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
@�.�

2/�
1

4
@�

�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
�2: (4-14)

Consequently the divergences are

KX;0Dr�JX;0� DKX ; (4-15)

KX;1Dr�JX;1� DKXC
1

4

�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
�.�2/� 1

4
�
�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
�2

D
f 0

1� 2m
rn�2

�
@�

@r�

�2
C
f

r

�
1�

nm

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
1

4
�
�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
�2: (4-16)

Since, for any function w,

�.w/D .g�1/��r�@�w D�
1

1� 2m
rn�2

@u�@v�w�
n� 1

2r

�
@u�w� @v�w

�
C4= r2̊n�1w; (4-17)

a straightforward calculation for

w D f 0C .n� 1/
f

r

�
1�

2m

rn�2

�
(4-18)

shows

�
�
f 0C.n�1/

f

r

�
1�

2m

rn�2

��
D

1

1� 2m
rn�2

f 000C2.n�1/
f 00

r
C.n�1/

�
.n�3/C.n�1/

2m

rn�2

�
f 0

r2

C.n�1/

��
.n�1/.n�2/�.n�3/

�� 2m

rn�2

�2
�n

2m

rn�2
�.n�3/

�
f

r3
: (4-19)

Thus we finally obtain

KX;1 D
f 0

1� 2m
rn�2

�
@�

@r�

�2
C
f

r

�
1�

nm

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
1

4

f 000

1� 2m
rn�2

�2�
n�1

2

f 00

r
�2

�
n�1

4

�
.n�3/C.n�1/

2m

rn�2

�
f 0

r2
�2�

n�1

4

�
.n�1/2

�
2m

rn�2

�2
�n

2m

rn�2
�.n�3/

�
f

r3
�2: (4-20)

Applications of the first modified current. The proofs of Proposition 4.2 and Proposition 4.4 are applications
of this formula, as it appears in the energy identity for JX;1 on RD�2�1 ; see Appendix B.
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Proof of Proposition 4.4. Choose f D 1 identically. Then

KX;1 D
1

r

�
1�

nm

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

C
n� 1

4

�
.n� 3/Cn

2m

rn�2
� .n� 1/2

�
2m

rn�2

�2� 1
r3
�2: (4-21)

Since precisely

g

�
JX;1;

@

@r�

�
D
1

4

�
@�

@v�

�2
C
1

4

�
@�

@u�

�2
�
1

2

�
1�

2m

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

C
n� 1

2r

�
1�

2m

rn�2

�
�
@�

@r�
C
n� 1

4r2

�
1� .n� 1/

2m

rn�2

��
1�

2m

rn�2

�
�2; (4-22)

we deduce from the energy identity for J
@
@r�

;1 in RD�� 0 thatZ R�C2�
R�C2� 0

dt
Z

Sn�1
d�̊n�1r

n�1

�
1

4

�
@�

@v�

�2
C
1

4

�
@�

@u�

�2
C
n�1

4R2

�
1

2
�.n�1/

2m

Rn�2

��
1�

2m

Rn�2

�
�2
�̌̌̌̌
rDR

C

Z
RD�

�0

n�1

4r

�
.n�3/Cn

2m

rn�2
�.n�1/2

�
2m

rn�2

�2� 1
r2
�2 d�g

�

Z R�C2�

R�C2� 0
dt
Z

Sn�1
d�̊n�1 r

n�1

�
1

2

�
1�

2m

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

C
n�1

2

�
1�

2m

rn�2

��
@�

@r�

�2 �̌̌̌̌
rDR

CC.n;m/

Z
†�0

�
J T .�/; n

�
; (4-23)

where we have used Proposition C.1 for the boundary terms on @RD�� 0 n fr DRg; note that

.n� 3/Cn
2m

rn�2
� .n� 1/2

�
2m

rn�2

�2
> 0

�
R >

n�2
p
8nm

�
: �

Proof of Proposition 4.2. On one hand we need f 0 DO
�

1
r1Cı

�
in view of (4-20), while on the other we

already know from the proof of Proposition 4.4 that f D 1 generates a positive bulk term for r large
enough. We choose

f D 1�

�
R

r

�ı
(4-24)

(where R > n�2
p
2m is chosen suitably in the last step of the proof) and indeed find

KX;1 D ı
Rı

r1Cı

�
@�

@r�

�2
C
f

r

�
1�

nm

rn�2

�ˇ̌
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ˇ̌2
r2̊n�1

C

�
n�1

4
.n�3/

�
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�
R
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�ı
.1Cı/

�
C
1

4

�
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r

�ı�
2.n�1/�.2Cı/

�
ı.1Cı/

C

�
n�1

4
n

�
1�

�
R

r

�ı�
�
ı

4

�
R
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�ı�
n.nCı/�2.1Cı/2
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�
.n�1/3

4

�
1�

�
R

r

�ı�
�
ı

4

�
R

r

�ı��
n�.1Cı/

�
.n�1/�ı2

���
2m

rn�2

�2� 1
r3
�2 � 0 (4-25)
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for r � R1 > R, R1 D R1.n;m/ >
n�2
p
2m chosen large enough. This gives control on @�

@r�
and the

angular derivatives:Z
R1D�2�1

�
ı
Rı

r1Cı

�
@�

@r�

�2
C
f .R1/

r

�
1�

nm

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
�

Z
R1D�2�1

KX;1:

Here and in the following, �2>�1> 1
2
.t0�R

�/. For @�
@t

we use the auxiliary current (see also Appendix C)

J aux
� D

1

2

�
1�

2m

rn�2

�
ı
Rı

r1Cı
@�.�

2/

to find easilyZ
R1D�2�1

ı
Rı

r1Cı

�
@�

@t

�2
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Z
R1D�2�1

�
ı.nC ı/
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�
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ˇ̌2
r2̊n�1

C ı.nC ı/
Rı

r3Cı
�2CKaux

�
:

Note that for r �R1 in particular

1
4

�
2.n� 1/� .2C ı/

�
ı.1C ı/

Rı

r3Cı
�2 �KX;1I

henceZ
R1D�2�1

ı
Rı

r1Cı

��
@�

@t

�2
C

�
@�

@r�

�2�
� C.n;m; ı/

Z
R1D�2�1

˚
KX;1CKaux	

� C.n;m; ı/

Z
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CC.n;m; ı/

Z
RD�2�1\fR<r<R1g

�
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�
@�

@t

�2
C
1

r3
�2
�
:

By Proposition C.1 (also (B-6)),Z
@RD�2�1

�JX;1 � C.n;m; ı/

Z
†�1

�
J T .�/; n

�
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and by Proposition C.8,Z
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2
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Therefore, by the energy identity for JX;1 and J aux on RD�2�1 ,Z
RD�2�1

˚
KX;1CKaux	

� C.n;m; ı/

Z
†�1

�
J T .�/; n

�
CC.n;m; ı/
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:

Our earlier (4-23) derived from the current J
@
@r�

;1 now allows us to control the @�
@v�

, @�
@u�

derivatives
and �2 on the r DR boundary together with the �2 term in the region R � r �R1 in one step:Z
R1D�2�1
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With t0 fixed, we can now choose R by Proposition 4.1 such thatZ
R1D�2�1

1

r1Cı

��
@�
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�2
C

�
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@r�

�2�
� C.n;m; ı/
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†�1

�
J T .�/CJ T .T � �/; n

�
: �

While it is possible to find simple functions f � 0 to ensure the positivity of KX;1 asymptotically, this
is not the case in the entire domain of outer communications; the difficulty is the indefinite sign of (4-20)
at the photon sphere r D n�2

p
nm, which is a manifestation of the trapping effect.

In the following our strategy will be to prove nonnegativity of KX;1 not pointwise but by using
Poincaré inequalities after integration over the spheres (the group orbits of SO.n/). This is achieved
in two alternative constructions: in Section 4B with a decomposition into spherical harmonics, and in
Section 4C by a commutation with angular momentum operators.

4B. High angular frequencies. Here we construct a positive definite current for the projection of so-
lutions to the wave equation to eigenspaces corresponding to high angular frequencies in the spherical
decomposition. Since by Poincaré’s inequality the second term in (4-20) then becomes comparable to the
zeroth-order terms, the idea is to choose f such that this term dominates. We evidently need

f .r�/

8<:
< 0; r < n�2

p
nm;

D 0; r D n�2
p
nm;

> 0; r > n�2
p
nm;
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and since f should also be bounded one may guess that

f .r�/D arctan
�
.n� 1/ r�

n�2
p
nm

�
is a good choice; however, while it can ensure positivity at the photon sphere, it fails to do so near the
horizon and in the asymptotics. After briefly recalling the spherical decomposition, we will give a more
refined construction of f , nonetheless guided by the overall characteristics of this function.

Fourier expansion on the sphere Sn�1. We recall the Fourier expansion on the sphere Sn�1:

� D
X
l�0

�l�; � 2 L2.Sn�1/; (4-26)

where �l denotes the orthogonal projection of L2.Sn�1/ onto El (see below):

4̊= n�1�l� D�l.l Cn� 2/�l�: (4-27)

In other words, denoting by El � L2.Sn�1/, l � 0, the eigenspaces of

�4̊= n�1C

�
n� 2

2

�2
corresponding to the eigenvalue

�
l C n�2

2

�2, then

L2.Sn�1/D
M
l�0

El :

If we assume �l� D 0 (0� l < L) for some L> 0, then it is easy to show (see, e.g., [Schlue 2012]) that

L.LCn� 2/
1

r2

Z
Sr

�2 d�r �
Z
Sr

ˇ̌
r= �

ˇ̌2
r2̊n�1

d�r I

this is a well known Poincaré-type inequality on the sphere:

Lemma 4.6 (Poincaré inequality). Let � 2 H1.Sr/, Sr D .Sn�1; r2̊n�1/, have vanishing projection
to El , 0� l < L, for some L 2 N; i.e.,

�l� D 0 .0� l < L/:

Then Z
Sr

ˇ̌
r= �

ˇ̌2 d�r � L.LCn� 2/
1

r2

Z
Sr

�2 d�r :

Construction of the multiplier function for high angular frequencies. The idea is to prescribe the third
derivative of f and to find its second and first derivatives by integration with boundary values and
parameters that ensure that f remains bounded. Let

˛ D
n� 1

.nm/
1
n�2

(4-28)
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and  � 2,  2 N. Consider

f III
;˛.r

�/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�1; jr�j �
1

˛
;

1;
1

˛
< jr�j � b;˛;�

b;˛

r�

�6
; jr�j � b;˛;

(4-29)

where

b;˛ D
5

6

2

˛
: (4-30)

Note that b;˛ is chosen so that Z 1
0

f III
;˛.r

�/ dr� D 0: (4-31)

Now define

f II
;˛.r

�/D

Z r�

0

f III
;˛.t/ dt: (4-32)

Obviously f II
;˛.�r

�/D�f II
;˛.r

�/ and, in explicit form,

f II
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˛
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r��
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˛
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r�C
2

˛
; �b;˛ � r

� < �
1

˛
;

�
b6;˛

5r�5
; jr�j � b;˛:

(4-33)

The functions f II
;˛ and f III

;˛ are sketched in Figure 4.
Next define

f I
;˛ D

Z r�

�1

f II
;˛.t/ dt: (4-34)

Here we find
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� � �
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˛
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r�2

2
; �

1

˛
� r� � 0;

(4-35)

and f I
;˛.r

�/D f I
;˛.�r

�/, as sketched in Figure 5.
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f III
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r�1
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1 1
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Figure 4. Sketch of the functions f II
;˛ and f III

;˛ , and the adjusted functions (dot-dashed)
for r� � 0.
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Figure 5. Sketch of the functions f I
;˛ and f 0;˛ , and the adjusted functions (dot-dashed)

for r� � 0.
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Finally define

f 0;˛.r
�/D

Z r�

0

f I
;˛.t/ dt: (4-36)

Here again f 0;˛.�r
�/D�f 0;˛.r

�/ and, in particular,
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Z 1
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dt D 11

12

1
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Moreover the calculus yields

f .b;˛/ >
1

.˛/3
; lim

r�!1
f 0;˛.r

�/ <
3

2

1

.˛/3
: (4-38)

The function f 0;˛ is sketched in Figure 5. While this function would suffice in the region r� � � 1
˛

it
does not fall-off fast enough as r�!�1.

Lemma 4.7. With r� defined by (2-17) we have, for all n� 3,

lim
r�!�1

�
1�

2m

rn�2

�
.�r�/D 0:

In fact, for all r� < 0, �
1�

2m

rn�2

�
�
.2m/

1
n�2

.�r�/
:

Proof. See Appendix B. �

Next we will make an adjustment to f III on r� � 0 that introduces faster decay while keeping the area
under the graph of f III and f II fixed [Schlue 2012]. In other words, there are constants

b;˛ � b �
4

˛
;

1

4
� c � 1 (4-39)

such that, if we redefine f III
;˛ for r� � 0 as

f III
;˛.r

�/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�1; �
1

˛
� r� � 0;

c; �b � r� �
1

˛
;�

1�
2m

rn�2

�6� b

.2m/
1
n�2

�6
; r� � �b;

(4-40)

then Z �1
0

f III
;˛.r

�/ dr� D 0;
Z 0

�1

Z r�

0

f III
;˛.t/ dt dr� D

Z 0

�1

Z �r�
0

.�f III
;˛.t// dt dr�:

The adjusted functions in comparison to the old are also sketched in Figures 4 and 5. Note in particular
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that, for r� � 0,

f II.r�/�
1

˛
; (4-41)

f I.r�/� f I.�r�/�
13

12

1

.˛/2
; (4-42)

and, for r� � � 1

˛
,

11

12

1

.˛/3
� jf 0.r�/j � f 0.�r�/ <

3

2

1

.˛/3
: (4-43)

Remark 4.8. In order to deal with smooth functions one could use (e.g., at the level of second derivatives)
a convolution with a Gaussian on the scale given by ˛ (or finer); i.e., one could define

f 00;˛.r
�/D

˛
p
�

Z 1
�1

e�.˛/
2.r��t/2f II

;˛.t/ dt

and find f 000;˛ D
d

dr�f
00
;˛ by differentiation, and f 0;˛ and f;˛ by integration with the boundary values

f 0;˛.�1/ D 0, f;˛.0/ D 0 as above. However, we choose not to do so (as it does not give further
insight) and work directly with the step-functions, i.e., define

f 00;˛ D f
III
;˛:

We are now in the position to prove a nonnegativity property of the terms occurring in (4-20), which
we will denote by 0KX;1:

KX;1 D
f 0

1� 2m
rn�2

�
@�

@r�

�2
C
0KX;1: (4-44)

Proposition 4.9 (positivity of the current JX;˛;1). For n� 3,

X;˛ D f;˛
@

@r�
.where we choose  D 12/

and � 2 H1.S/ satisfy Z
S

0KX;˛;1 d� � 0

provided �l� D 0 for 0� l < L, where L� .6n/2 is fixed.

Proof. By Lemma 4.6,Z
S

0KX;˛;1 d� �
Z
S

�
L.LCn� 2/

f;˛

r3

�
1�

nm

rn�2

�
�
1

4

f 000;˛

1� 2m
rn�2

�
n� 1

2

f 00;˛

r
�
n� 1

4

�
.n� 3/C .n� 1/

2m

rn�2

�
f 0;˛

r2

�
n� 1

4

�
.n� 1/2

�
2m

rn�2

�2
�n

2m

rn�2
� .n� 3/

�
f;˛

r3

�
�2 d� : (4-45)
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We consider the five regions

�1< �
4

˛
< �

1

˛
<

1

˛
< b;˛ <1:

The proofs of the following four lemmas are omitted here; see [Schlue 2012].

Step 1 (near the photon sphere, jr�j< 1
˛

).

Lemma 4.10. In the region jr�j< 1
˛

the corresponding value of r lies in the interval

n�2
p
ınm < r <

n

˛

where ı Dmaxf1
3
; 4
3
2
n
g.

Recalling f;˛ and its derivatives, we then find, in the region jr�j< 1
˛

,Z
S

0KX;˛;1 d�

�

Z
S

�
1

4
�
1

2

˛

ı
1
n�2

1

˛
�
1

4

˛2

ı
2
n�2

1

n� 1

�
.n� 3/C

1

ı
.n� 1/

2

n

�
13

12

1

.˛/2
�
1

4

˛3

ı
3
n�2

2

ın

3

2

1

.˛/3

�
�2 d�

�

Z
S

�
1

4
�
1

2

3


�
3

4

13

12

�
3



�2
�
3

4

�
3



�3�
�2 d� �

Z
S

1

4

1

8
�2 d�

because  D 12.

Step 2 (in the intermediate region, 1
˛
� r� � 5

6
2
˛

).

Lemma 4.11. In the region 1
˛
� r� � 5

6
2
˛

we have, for the corresponding value of r ,�
1C

1

3.n� 1/

�
.nm/

1
n�2 � r �

n

˛
:

Collecting the first term and the last, we find in this region,Z
S

0KX;˛;1 d� �
Z
S

�
˛3

n3
11

12

1

.˛/3

��
1�

nm

rn�2

�
L.LCn�2/�

n�1

4
.n�1/2

�
2

n

�2
C
1
4
.n�1/.n�3/

�
�
1

4

1

1� 2
n

C
˛

3

1

3

1

˛
�
1

4
˛2

1

n�1

�
.n�3/C.n�1/

2

n

�
1

.˛/2

�
�2 d�

�

Z
S

�
11

12

1

.n/3

�
1

6.n�1/
L.LCn�2/�.n�1/C 1

4
.n�1/.n�3/

�
�
3

4
�
1

4

1

2

�
�2 d�

�

Z
S

�
11

12

1

6

�
.6n/2

2n2

�2
�1

�
�2 d� �

Z
S

�2 d�

because L� .6n/2, where we have used that, for 1
˛
� r� � 5

6
2
˛

,

1�
nm

rn�2
�

1

6.n� 1/
:



544 VOLKER SCHLUE

Step 3 (in the asymptotics, r� � b;˛). Given the general fact Proposition B.1 we here only need the
weaker statement:

Lemma 4.12. For r� � 5
6
2
˛

,
r

r�
� 2n:

HereZ
S

0KX;˛;1 d� �
Z
S

�
1

.˛/3

�
1

6.n� 1/
L.LCn� 2/�

3

2
.n� 1/

�
1

r3
�
1

4

1

1� 2
n

�
5

6

2

˛r�

�6
�
1

4
˛2

1

n� 1

�
.n� 3/C .n� 1/

2

n

�
1

20

�
5
6
2
˛

�6
r�4

�
�2 d�

�

Z
S

�
L2

64n
C

L

64n
.n� 2/�

3

2

1

3
.n� 1/�

3

4

�
r

r�

�3�
5

6

2



�6 1

.˛r�/3

�
1

4

1

20

�
r

r�

�3�
5

6

2



�6 1

˛r�

�
1

.˛r/3
�2 d�

�

Z
S

�
.6n/3� .4n/3

� 1

.˛r/3
�2 d� �

Z
S

�
n

˛r

�3
�2 d� �

Z
S

�
.nm/

1
n�2

r

�3
�2 d� ;

where in the third bound we have again used L� .6n/2 and the lemma.

Step 4 (in the intermediate region, � 4
˛
� r� � � 1

˛
). Recall  D 12.

Lemma 4.13. For k �  , k 2 N, �
1�

2m

rn�2

��1 ˇ̌̌̌
r�D� k

˛

� 17;

and, consequently,

�

�
1�

nm

rn�2

�ˇ̌̌̌
r�D� 1

˛

�
1

20

1

2
:

In the region � 4
˛
� r� � � 1

˛
we directly apply the lemma to see thatZ

S

0KX;˛;1 d�

�

Z
S

�
L.LCn� 2/

1

.nm/
3
n�2

11

12

1

.˛/3
1

20

1

2
�
1

4
17�

n� 1

2

1

.2m/
1
n�2

1

˛

�
n� 1

2

�
.n� 3/C .n� 1/

� 1

.2m/
2
n�2

13

12

1

.˛/2
�
n� 1

4

�
nC .n� 3/

� 1

.2m/
3
n�2

2
1

.˛/3

�
�2 d�

�

Z
S

�
1

.3/4
1

.n� 1/3
L.LCn� 2/�

17

4
�
3

2

1

2
�
13

12

1

2

�
n

2

� 2
n�2

�
1

n� 1

1

3

�
n

2

� 3
n�2

�
�2 d�

�

Z
S

n
24n�

23

4

o
�2 d� �

Z
S

�2 d� ;
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because L� .6n/2.

Step 5 (near the horizon, r� ��b). Finally we see for r� ��b, recalling the adjustment to faster fall-off,Z
S

0KX;˛;1 d�

�

Z
S

�
L.LCn�2/

1

.nm/
3
n�2

11

12

1

.˛/3
1

20

1

2
�
1

4

�
1�

2

n

�5
�
n�1

2

1

.2m/
1
n�2

1

˛

�
.n�1/2

4

1

.2m/
1
n�2

1

.˛/2
�
n�1

4

�
nC.n�3/

� 1

.2m/
3
n�2

2
1

.˛/3

�
�2 d�

�

Z
S

�
1

.3/4
1

.n�1/3
L.LCn�2/�

1

4
�
1

2

�
n

2

� 1
n�2

�
1

.2/2

�
n

2

� 2
n�2

�
4

n�1

1

.2/3

�
n

2

� 3
n�2

�
�2 d�

�

Z
S

˚
24n� 5

4

	
�2 d� �

Z
S

�2 d� ;

where we have used that here

f 000

1� 2m
rn�2

D

�
1�

2m

rn�2

�5� b

.2m/
1
n�2

�6
�

�
1�

2

n

�5
� 1: �

In fact, we have shown more, because all lower bounds in Steps 1–5 are minorized by 1
4
1
8

.2m/
3
n�2

r3
.

Corollary 4.14. Let � be a solution of the wave equation �g� D 0 satisfying

�l� D 0 .0� l < L/

on the standard sphere S D .Sn�1; r2̊n�1/ for a fixed L� .6n/2. ThenZ
S

�
1

4

1

8

.2m/
3
n�2

r3
�2C

1

.202/3
1

.n� 2/2.n� 1/6

�
1�

2m

rn�2

�5 .2m/ 6
n�2

r4

�
@�

@r�

�2�
d� �

Z
S

KX;˛;1 d� :

Proof. It remains to be shown that

1

20

1

.4 � 5.n� 2//2

�
1�

2m

rn�2

�6 b6;˛
r4
� f 0;˛: (�)

First, Z r�

�1

�
1�

2m

rn�2

�6
dr� D

Z r

.2m/
1
n�2

�
1�

2m

rn�2

�5
dr;

because dr�= dr D
�
1� 2m

rn�2

��1. Now choose n�2
p
2m < r0 < r so close to r as to satisfy

r � r0

r0
D
1

2

1

5.n� 2/

�
1�

2m

rn�2

�
:
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Then, by the mean value theorem,Z r

.2m/
1
n�2

�
1�

2m

rn�2

�5
dr �

�
1�

2m

rn�20

�5
.r � r0/�

�
1�

2m

rn�2

�5�
1� 5.n� 2/

1

1� 2m
rn�2

r � r0

r0

�
.r � r0/

�
1

4

1

5.n� 2/

�
1�

2m

rn�2

�6
.2m/

1
n�2 :

We conclude, for r� � �b,

f 0;˛.r
�/D

Z r�

�1

Z s�

�1

�
1�

2m

rn�2

�ˇ̌̌̌
r�Ds�

�
b

.2m/
1
n�2

�6
ds� dr� � 1

4

1

5.n�2/

Z r�

�1

�
1�

2m

rn�2

�6
dr�

b6

.2m/
5
n�2

�

�
1

4

1

5.n�2/

�2�
1�

2m

rn�2

�6 b6

.2m/
4
n�2

�
1

.4�5.n�2//2

�
1�

2m

rn�2

�6 b6;˛
r4

:

Second, for r� � 0,

1

.4 � 5.n� 2//2
1

r4
D

1

.4 � 5.n� 2//2

�
r�

r

�4 1

r�4
�

1

r�4
:

Since, thirdly,
b;˛

r
� 1;

we have established (�) for the regions r� � �b, r� � b;˛, �b � r� � b;˛, respectively. �

Remark 4.15. This estimate of the zeroth-order term �2 suffices to obtain an estimate for all derivatives
using a commutation with the vector field T ; see the proof of Proposition 4.1 in Section 4D.1.

4C. Low angular frequencies and commutation. While the current constructed in Section 4B required a
decomposition into spherical harmonics, we will now altogether avoid a recourse to the Fourier expansion
on the sphere. The key to the positivity property was Poincaré’s inequality, which states in more generality:

Lemma 4.16 (Poincaré inequality). Let .S; / be a compact Riemannian manifold, and � 2 H1.S/ a
function on S with mean value

N� D
1R

S d�

Z
S

� d� :

Then Z
S

.� � N�/2 d� �
1

�1.S/

Z
S

jr= �j2 d� ;

where �1.S/ is the first nonzero eigenvalue of the negative Laplacian, �4= D�r= ar= a, on S (r= denotes
covariant differentiation on S).

Now let .S; /D .Sn�1; ̊n�1/. Then we read off from (4-27) here

�1.S
n�1/D n� 1: (4-46)



DECAY OF LINEAR WAVES ON HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES 547

Choose a basis of the Lie algebra of SO.n/,

�i W i D 1; : : : ;
n.n� 1/

2
; (4-47)

and apply Lemma 4.16 to the functions �i� of vanishing mean:Z
Sn�1

�i� d�̊n�1 D 0: (4-48)

Then we obtain Z
Sn�1
jr=�i�j

2 d�̊n�1 � .n� 1/
Z

Sn�1
.�i�/

2 d�̊n�1 (4-49)

or, on .S; /D .Sr ; r/D .Sn�1; r2̊n�1/,Z
Sr

jr=�i�j
2 d�r �

n� 1

r2

Z
Sr

.�i�/
2 d�r : (4-50)

Also note
n.n�1/
2X
iD1

.�i�/
2
D r2

ˇ̌
r= �

ˇ̌2
r2̊n�1

: (4-51)

Second modified current. Recall we are considering vector fields of the form

X D f .r�/
@

@r�
:

Define

JX;2� D JX;1� C
f 0

f .1� 2m
rn�2

/
ˇ X� �

2; (4-52)

where ˇ D ˇ.r�/ is a function to be chosen below. Then
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�
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ˇ
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�
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�
n�1

4

�
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�
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�
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�.n�3/

�
f

r3
�2: (4-53)

Now choose

ˇ D
n� 1

2r

�
1�

2m

rn�2

�
C ı: (4-54)
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Then

ˇ2�ˇ0�
n� 1

r
ˇ
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1�

2m

rn�2

�
C
n� 1

4r2

�
.n� 3/C .n� 1/
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��
1�

2m

rn�2

�
D�ı0C ı2 (4-55)

and

KX;2D
f 0
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nm

rn�2

�ˇ̌
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ˇ̌2
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1� 2m
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4
f 000�ıf 00C
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4

�
.n�1/2

�
2m

rn�2

�2
�n

2m

rn�2
�.n�3/

�
f

r3
�2: (4-56)

Note. Suppose, outside a compact interval Œ�˛; ˛��R, f 0 is of the form f 0.r�/D 1

r�2
(jr�j>˛). Then

we could choose ı D� 1
r�

(jr�j> ˛) so that ıf 00 D 2

r�4
� 0 and �ı0C ı2 D 0.

Definition of the current J .˛/. Let ˛ > 0 and introduce a shifted coordinate

x D r��˛�
p
˛: (4-57)

The modification we choose is
ı D�

x

˛2C x2
(4-58)

so that

�ı0C ı2 D
˛2

.˛2C x2/2
: (4-59)

Let

f a D�
C

˛2rn�1
.C > 0/ (4-60)

and

.f b/
0
D

1

˛2C x2
; .f b/.r�/D

Z r�

0

1

˛2C x.t�/2
dt�: (4-61)

Note that then

.f a/
0
C .n� 1/

f a

r

�
1�

2m

rn�2

�
D 0 (4-62)

and
1
4
.f b/

000
� ı.f b/

00
C .ı2� ı0/.f b/

0
D�

1

2

x2�˛2

.x2C˛2/3
: (4-63)

Our current is built from the multiplier vector fields

Xa D f a
@

@r�
; Xb D f b

@

@r�
(4-64)

by setting

J .˛/� .�/
:
D JX

a;0
� .�/C

n.n�1/
2X
iD1

JX
b;2

� .�i�/ (4-65)
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and will be shown to have the property that its divergence

K.˛/
:
Dr

�J .˛/� (4-66)

is nonnegative upon integration over the spheres.

Proposition 4.17 (positivity of the current J .˛/). For n� 3 and � 2 H1.S/,Z
S

K.˛/ d� � 0;

provided ˛ is chosen sufficiently large, and C.n;m; ˛/ set to be (�) below.

Proof. In view of (4-62) and (4-63),
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where

F
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1

2

1
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: (4-68)

So, by Poincaré’s inequality (4-50) and (4-51),Z
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C

˛2rn�1

�
1�

nm

rn�2

�
: (4-70)

Step 1: H � 0. It is equivalent to show that

MH.r/
:
D rn�1H.r/

rn�2

2m

is nonnegative. We consider MH to be a function of

�
:
D
rn�2

2m
;

so
MH D

n� 1

4
.2mr/

�
.n� 3/�2Cn�� .n� 1/2

�
f b �

C

˛2

�
��

n

2

�
:

Note that
r D n�2

p
nm() �D

n

2
() r� D 0



550 VOLKER SCHLUE

and

MH

�
n

2

�
D 0:

Moreover we choose the constant C such that

d MH
d�

ˇ̌̌̌
�Dn

2

D 0:

Then

d MH
d�
D
n� 1

4
.2mr/

�
.n� 3/.2n� 3/

n� 2
�C

n� 1

n� 2
n�

.n� 1/2

n� 2

1

�

�
f b:

C
n� 1

4.n� 2/

2mr2

�� 1

�
.n� 3/�2Cn�� .n� 1/2

�
.f b/

0
�
C

˛2
;

where we have used
dr
d�
D

r

.n� 2/�
;

dr�

d�
D

1

�� 1

r

n� 2
:

Hence we choose

C D
.n� 1/2

4.n� 2/

.n
2
/2� .n� 1/
n
2
� 1

2m .nm/
2
n�2

˛2

˛2C .˛C
p
˛/2

: (�)

Note that then also
dH
dr

ˇ̌̌̌
rDn�2

p
nm

D 0:

Now returning to the expression for MH , let us denote by 1� �0 � n
2

the value of � for which

.n� 3/�0Cn� .n� 1/
2 1

�0
D 0I

i.e.,

�0 D
2.n� 1/2

nC
p
n2C 4.n� 1/2.n� 3/

:

We divide into the four regions

1 < �0 <
n

2
< �� <1;

where �� is to be chosen large enough below.

Step 1a (near the horizon, 1� � � �0). Clearly MH � 0 termwise, because f b � 0.

Step 1b (near the photon sphere, �0 � �� n
2

). We show H DH.r/ is convex on r0 � r � n�2
p
nm, where

r0 D
n�2

s
4.n� 1/2m

nC
p
n2C 4.n� 1/2.n� 3/

:
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Differentiating twice yields

d2H
dr2
D
n� 1

4

1�
1� 2m

rn�2

�2 .f b/00�.n� 3/Cn 2mrn�2 � .n� 1/2
�
2m

rn�2

�2�
C
n� 1

2

1

1� 2m
rn�2

.f b/
0
.n� 2/

�
2.n� 1/2

2m

rn�2
�n

�
2m

rn�1

�
n� 1

4

1�
1� 2m
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�2 .f b/0.n� 2/�.n� 3/Cn 2mrn�2 � .n� 1/2
�
2m

rn�2

�2� 2m
rn�1

C
n� 1

4
.f b/

�
.n� 2/.n� 1/n

2m

rn
� 2.2n� 3/.n� 2/.n� 1/2

�
2m

rn�1

�2�
�
.n� 1/nC

˛n�1rnC1

�
1�

nm

rn�2

�
C 3

.n� 1/.n� 2/C

˛n�1rn
nm

rn�1
:

Since .f b/
00
� 0, we further have in this region the bound

d2H
dr2
�
n� 1

2

1

1� 2m
rn�2

�

�
2.n� 1/2

2m

rn�2
�n�

1

2

1

1� 2m

rn�20

�
.n� 3/Cn

2m

rn�2
� .n� 1/2

�
2m

rn�2

�2 ��

�
2m

rn�1
.n� 2/.f b/

0
C
n� 1

4

2m

rn�2

�
1�

2.2n� 3/.n� 1/

n

�
2m

rn�2

��
.f b/

r2
:

Since, for n� 3,

2.n� 1/2
2

n
�n�

1

2

2.n� 1/2

2.n� 1/2�n�
p
n2C 4.n� 1/2.n� 3/

�
.n� 3/C 2�

�
2
n� 1

n

�2 �
� 1;

1�
2.2n� 3/.n� 1/

n

2

n
� �1;

we finally obtain in this region

d2H
dr2
�
.n� 1/.n� 2/

2r

1

�� 1
.f b/

0
> 0:

Step 1c (in the intermediate region, n
2
� � � ��). We show MH D MH.�/ is convex on n

2
� � � �� for

r�.�D ��/� ˛. We have

d2 MH
d�2
D

.n� 1/2

4.n� 2/2
2mr

�2

�
.n� 3/.2n� 3/�2Cn�C .n� 3/.n� 1/

�
.f b/

C
.n� 1/2

4.n� 2/2
2mr2

.�� 1/2

�
3.n� 3/�2� 3.n� 5/�C .n� 1/.n� 5/�n

2n� 1

n� 1
C 3.n� 1/

1

�

�
.f b/

0

C
n� 1

4.n� 2/2
2mr3

.�� 1/2

�
.n� 3/�2Cn�� .n� 1/2

�
.f b/

00
:
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Since, for � � n
2

and n� 3,

3.n�3/�.��1/C6�C.n�1/.n�5/�n
2n� 1

n� 1
C3.n�1/

1

�
� 1 and .n�3/�2Cn��.n�1/2 � 0;

we have
d2 MH
d�2
�
.n� 1/2

4.n� 2/2
2mr2

.�� 1/2
.f b/

0
> 0;

because .f b/� 0 for r� � 0, and .f b/
00
� 0 for x � 0.

Step 1d (in the asymptotics, � � ��). We show directly H.r/ > 0 for r� � R� :D r�.� D ��/ and ��

chosen large enough. Let r� �R�, R� � ˛. Then

f b �

Z R�

0

.f b/
0
dr� D

1

˛

Z R��˛�
p
˛

˛

�

�
1C 1p

˛

� 1

1C t�2
dt� �

R�

5˛2
(4-71)

provided ˛ � 1, and of course

f b �
1

˛
arctan t�

ˇ̌̌̌0
�

�
1C 1p

˛

� � �

2˛
:

Thus

H D
.n� 1/.n� 3/

4
C

�
.n� 1/n

4
f b �

C

˛22m

1

r

�
2m

rn�2
�

�
.n� 1/3

4
f b �

Cn

˛24m

1

r

��
2m

rn�2

�2
�
1

˛2

�
.n� 1/n

4

R�

5
�
C

2m

1

r

�
2m

rn�2
�
.n� 1/3

4

�

2˛

�
2m

rn�2

�2
> 0

for R� (and consequently ˛) chosen large enough.

Step 2: (4-72). Since
�
1� nm

rn�2

�
f b � 0 and F � 0 for jxj � ˛, we need to show

.n� 1/.f b/

�
1�

nm

rn�2

�
CF r3 � 0 (4-72)

for
�˛ � x � ˛()

p
˛ � r� �

p
˛C 2˛:

In this whole region, in view of Proposition B.1,

lim
˛!1

r�

r
D 1; lim

˛!1

�
1�

2m

rn�2

�
D lim
˛!1

�
1�

nm

rn�2

�
D 1:

n� 4: Since

f b.r�/�

Z r�

p
˛

1

˛2C x2
dr� �

xC˛

2˛2
; (4-73)

it suffices to show

.n� 1/
xC˛

2˛2
C
1

2

x2�˛2

.x2C˛2/3
r3 � 0; (4-74)
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which is implied by
˛� x

n� 1

.xC˛C
p
˛/3

.x2C˛2/2
� 1: (4-75)

For �˛ � x � 0,

.xC˛C
p
˛/3 � ˛3

�
1C

1
p
˛

�3
�
4

3
˛3

for ˛ large enough; thus

˛� x

n� 1

.xC˛C
p
˛/3

.x2C˛2/2
�

1

n� 1

2˛

˛4
4

3
˛3 �

8

9
: (4-76)

For 0� x � ˛, we have to show
˛

n� 1

.xC˛C
p
˛/3

.x2C˛2/2
� 1:

Since

.xC˛C
p
˛/3 � 2

3
2

�
1C

1
p
˛

�3
.x2C˛2/

3
2 ;

we have, for ˛ large enough,

˛

n� 1

.xC˛C
p
˛/3

.x2C˛2/2
�

˛

n� 1

2
3
2

�
1C 1p

˛

�3
.x2C˛2/

1
2

�
2
3
2

3

�
1C

1
p
˛

�3
< 1: (4-77)

nD 3: We see that (4-76) and (4-77) fail in the case nD 3, as a consequence of which also (4-75) fails
to hold. In the case nD 3, we have to use a better approximation of (4-73); see [Dafermos and Rodnianski
2007] for details. Note also that in view of (4-75), the positivity property (4-72) is “easily” satisfied for
large values of n, which indicates that there may be yet another simplified proof in higher dimensions. �

Given the strict inequalities proven in Step 2 of the proof of Proposition 4.17, for ˛ chosen large
enough, we can keep a fraction of the manifestly nonnegative jr=�i�j2 term in (4-67). Furthermore we
have obtained control on the jr= �j2 term from (4-69).

Corollary 4.18. Let � 2 H2.S/ be a solution of the wave equation (1-1). Then there exists a constant
C.n;m/ and a current K such thatZ
S

�
1

rn

�
@�

@r�

�2
C

1

rnC1

�
@�

@t

�2
Cr

�
1�

nm

rn�2

�2̌ˇr= 2� ˇ̌2
r2̊n�1

C
r2

.1� 2m
rn�2

/.1Cr�2/2

ˇ̌
r= �

ˇ̌2
r2̊n�1

�
d�

� C.n;m/

Z
S

K d� : (4-78)

Proof. Set K DK.˛/CKaux and choose ˛ large enough.
Here we retrieve the time derivatives with the auxiliary current

Kaux
Dr

�J aux
� I J aux

D JX
aux;0
I X aux

D f aux @

@r�
;
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where f aux D� 1
rn

satisfies

.f aux/0C .n� 1/
f aux

r

�
1�

2m

rn�2

�
D

1

rnC1

�
1�

2m

rn�2

�
I

for, in view of (4-9),
1

rnC1

�
@�

@t

�2
� 2Kaux

C 3
1

rnC1

ˇ̌
r= �

ˇ̌2
r2̊n�1

: �

4D. Boundary terms. In this section we first prove Proposition 4.1 and then a refinement thereof for
finite regions, which requires us to estimate the boundary terms of the currents introduced in Sections 4B
and 4C.

4D.1. Proof of Proposition 4.1. We can now combine our earlier results Corollary 4.14 and Corollary 4.18
to prove the integrated local energy decay estimate (4-4); note that there is no restriction on the spherical
harmonic number, and that no commutation with angular momentum operators is required.

Proof of Proposition 4.1. Write
� D �<L�C��L� (4-79)

with

�<L D

L�1X
lD0

�l�; ��L D

1X
lDL

�l�; (4-80)

where LD .6n/2 is fixed (recall here  D 12 from Section 4B).

Step 1 (high spherical harmonics). By Corollary 4.14,Z
R.t0;t1;u�1 ;v

�
1 /

1
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8

.2m/
3
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Z
R.t0;t1;u�1 ;v

�
1 /

KX;˛;1.��L�/: (4-81)

It remains to estimate the boundary terms of the current JX;˛;1, and to use this estimate to recover all
derivatives using a commutation with the Killing vector field T .

Step 1a (boundary terms). We may assume jr�0;1j �
4
˛

, r0;1 entering the definition (4-3). Recalling the
properties of f;˛ away from the photon sphere, we findˇ̌̌̌�
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and, by Lemma 4.6, Z
Sr

1

2
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which suffices in view of the properties of f;˛ , in particular that there is a constant r2jf;˛ 0j � C.n;m/.
For the boundary termZ

Sn�1
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we find (using the boundedness of � on the horizon; see Section 5A) in the limit u�1 !1 a constant
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We conclude that there is a constant C.n;m/ such thatZ
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Step 1b (commutation with T ). Since
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This is enough to control the remaining derivatives, too; for the auxiliary current (C-10) yields
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Using Cauchy’s inequality for the first term, namely
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we obtain the bound
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The boundary terms are controlled using Proposition C.8:Z
R1r0;r1 .t0/
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HenceZ
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Step 2 (low spherical harmonics). Now recall the J .˛/ current (4-65); we will show in a first step thatZ
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Z
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Then in particular, by Corollary 4.18,
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But in a second step we will show that in fact there exists a constant C.n/ such thatZ
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Step 2a (boundary terms). The energy identity for J .˛/ on the domain (4-1) implies, more explicitly,Z
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For the boundary integrals on the t -constant hypersurfaces, we will use (ii) of the following lemma.

Lemma 4.19 (boundary terms of J .˛/ current on t -constant hypersurfaces). On each N†t ,

(i) there exists a constant C.n;m; ˛/ such thatZ
R
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(ii) for r � r0 there exists a constant C.n;m; ˛; r0/ such that
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Proof. Using the definition (4-65),
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which proves (ii) in view of
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here we have also used
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To establish (i) it is enough to infer
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this is a standard Hardy inequality; cf. proof of Proposition 10.2 in [Dafermos and Rodnianski 2009b]. �

The following lemma will be applied to the boundary terms of the J .˛/-current on the null hypersurfaces
in the region r � r0.



560 VOLKER SCHLUE

Lemma 4.20 (boundary terms of the J .˛/ current on null hypersurfaces). (i) On any segment of the
outgoing null hypersurface u� D u�1 � 0,
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where C.n;m; ˛/ is a constant, and �.u�1/! 0 as u�1!1.
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Proof. Using the definition (4-65) we find
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We conclude the statement of the proposition with the treatment of the two regimes in Steps 1 and
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4D.2. Refinement for finite regions. In the proof of Proposition 4.1, neither of the currents used for the
high or the low spherical harmonic regime requires the use of Hardy inequalities for the boundary integrals
in the asymptotic region; indeed in both cases the zeroth-order terms �2 can be estimated by the angular
derivatives jr= �j2, in the case of the current JX;˛;1 for high angular frequencies by Poincaré’s inequality
Lemma 4.6, and in the case of the current J .˛/ for low angular frequencies as a result of the commutation
with �i in (4-65). Therefore we can in fact state a refinement of Proposition 4.1 for finite regions, i.e., an
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Figure 6. The past boundary †�2�1 of RP�2�1 [RDn
�2
�1 .

integrated local energy estimate on bounded domains in terms of the flux through the past boundary of
that domain, that will be relevant in Section 5C.

Let
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�/\fr �Rg; (4-102)
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and denote by †�2�1 the past boundary of RP�2�1 [RDn
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�1 (see also Figure 6):
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Proposition 4.21 (integrated local energy decay on finite regions). Let � be a solution of the wave
equation �g� D 0, and R> n�2

p
2m. Then there exists a constant C.n;m;R/, such that, for any �2 > �1,Z
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In view of the remarks above, the proof of Proposition 4.21 is of course identical to the proof of
Proposition 4.1 given in Section 4D.1 by replacing the unbounded domain R1r0;r1.2�1 CR

�/ by the
bounded domain RP�2�1 [RDn

�2
�1 .

However, this estimate does not include the zeroth-order term, which we have covered separately in
Proposition 4.4.
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Proposition 4.22 (refinement for zeroth-order terms on timelike boundaries). Let � be solution of the
wave equation (1-1), and R > n�2

p
8nm. Then there is a constant C.n;m;R/ such that for all � 0 < � ,Z 2�CR�
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The proof remains the same as for Proposition 4.4 on page 534 with the exception that we consider the
energy identity for JX;1 on RDn �� 0 in place of RD�� 0 and use Proposition C.5 instead of Proposition C.1.

5. The decay argument

We will here prove energy decay of the solutions to the wave equation and higher-order energy decay of
their time derivatives in the interior based on the integrated local energy decay statements of Section 4,
following the new physical-space approach to decay of [Dafermos and Rodnianski 2010].

Remark 5.1. Instead one could use the conformal Morawetz vector field

Z D u�
2 @

@u�
C v�

2 @

@v�

to prove energy decay of solutions to the wave equation with a rate corresponding to the weights in Z;
this is done in [Schlue 2010]. Similarly the use of the scaling vector field

S D v�
@

@v�
Cu�

@

@u�

should provide an alternative approach to prove higher-order energy decay [Luk 2010]. Here however,
we shall avoid the use of multipliers with weights in t .

5A. Uniform boundedness. A preliminary feature of the solutions to the wave equation (1-1) that is
necessary to employ the decay mechanism of [Dafermos and Rodnianski 2010] is the uniform boundedness
of their (nondegenerate) energy; this is a consequence of the conservation of the degenerate energy
associated to the multiplier T , and the redshift effect of Section 3, which allows us to control the
nondegenerate energy on the horizon.

Let † be a (spherically symmetric) spacelike hypersurface in M, †0 D † \ fr � Rg and N the
outgoing null hypersurface emerging from @†0 (Figure 7). Moreover, let

†� D '�
�
.†0[N /\D

�
; †0� D†� \fr �Rg; †�� 0 D†� 0 \ J�.†0� /:

Proposition 5.2 (uniform boundedness). Let � be a solution of the wave equation (1-1) with initial data
on †0. Then there exists a constant C.†0/ such thatZ

†0�

�
JN .�/; n

�
� C

Z
†�0

�
JN .�/; n

�
.� > 0/: (5-1)
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r DR

†0

†

†0�

†�� 0

N

Figure 7. The construction of the surfaces †0� from †.

Proof. One can proceed in analogy to the local observer’s energy estimate of [Dafermos and Rodnianski
2008]; indeed, from the energy identity for N on the domain R.� 0; �/D[� 0����†�� it followsZ

†0�

.JN ; n/C

Z
R.� 0;�/

KN �

Z
†�
�0

.JN ; n/ (5-2)

since .JN ; nH/� 0, and .JN ; nN /� 0. By Proposition 3.3, namely the redshift effect, KN is bounded
from below by .JN ; n/ near the horizon, and from above by .J T ; n/ away from the horizon; since also
the lapse of the foliation of R is bounded from above and below we conclude that there are constants
0 < b < B only depending on † and N such thatZ
†0�

.JN ; n/C b

Z �

� 0
d�
Z
†�
�

.JN ; n/� B

Z �

� 0
d�
Z
†�
�

.J T ; n/C

Z
†�
�0

.JN ; n/

� B.� � � 0/

Z
†�
�0

.J T ; n/C

Z
†�
�0

.JN ; n/; (5-3)

where in the last step we have used the energy identity for T on R.� 0; �/ and KT D 0. Thus the desired
energy bound follows from the elementary Lemma 5.3. �

Lemma 5.3. Let f W R! R be a nonnegative function, f � 0, such that for all t1 � t2 and two positive
constants 0 < c < C ,

f .t2/C c

Z t2

t1

f .t/ dt � C.t2� t1/Cf .t1/:

Then

f .t2/� f .t1/C
C

c
.t2 � t1/:

Proof. See, e.g., [Schlue 2012]. �
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5B. Energy decay. In this section we prove quadratic decay of the nondegenerate energy.
Let

†�0
:
D @�R1r0;R.t0/; �0 D

1
2
.t0�R

�/; (5-4)

with R > n�2
p
8nm, t0 > 0 and r0

:
D r

.N/
0 according to Proposition 3.1.

Proposition 5.4 (energy decay). Let � be a solution of the wave equation (1-1) with initial data on †�0
satisfying

D
:
D

Z 1
�0CR�

dv
Z

Sn�1
d�̊n�1

1X
kD0

r2
�
@r

n�1
2 @kt �

@v�

�2 ˇ̌̌̌
uD�0

C

Z
†�0

� 2X
kD0

JN .T k � �/; n

�
<1: (5-5)

Then there exists a constant C.n;m;R/ such thatZ
†�

�
JN .�/; n

�
�
CD

�2
.� > �0/: (5-6)

The proof is based on a weighted energy inequality, derived from the energy identity for the current (5-8)
on the domain

RD�2�1 D
˚
.u�; v�/ W �1 � u

�
� �2; v

�
�u� �R�

	
: (5-7)

Weighted energy identity. Consider the current
r

J�.�/D T��. /V
� ; (5-8)

where

 D r
n�1
2 �; (5-9)

V D rq
@

@v�
; q D pC 1�n; p 2 f1; 2g: (5-10)

This may also be viewed as the current to the multiplier vector field rp @
@v�

, modified by the following terms:

r

J�.�/D T��.�/ r
p

�
@

@v�

��
C

�
n� 1

2

�2
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�
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2m
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.@�r/�

2

C
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2
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2
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1

2

n� 1

2
rp�1

�
1�

2m
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2
�

�
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2

�
n� 1

2

�2
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�
1�

2m

rn�2
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@

@v�

�
�

�2�
1

2

n� 1

2

�
@

@v�

�
�

rp�1
@�2

@r�
:

If �g� D 0 then we calculate

�g D�

�
1�

2m

rn�2

��1
@u�@v� C

n� 1

r

@ 

@r�
C
1

r2
4̊= n�1 

D
n� 1

2

�
n� 3

2
C
n� 1

2

2m

rn�2

�
1

r2
 C

n� 1

r

@

@r�
 : (5-11)



DECAY OF LINEAR WAVES ON HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES 567

So the wave equation for �,

�g� D 0;

is equivalent to the following equation for  :

�@u�@v� C

�
1�

2m

rn�2

�
1

r2
4̊= n�1 �

n� 1

2

�
n� 3

2
C
n� 1

2

2m

rn�2

�
1

r2

�
1�

2m

rn�2

�
 D 0: (5-12)

Now,
r

K.�/Dr�
r

J�.�/D�g. / V � CK
V . /; (5-13)

where

KV . /D .V /��� T��. /:

Since

.V /�u�u� D 2qr
q�1

�
1�

2m

rn�2

�2
;

.V /�v�v� D 0;

.V /�u�v� D�

�
1�

2m

rn�2

�
rq�1

�
qC .n� q� 2/

2m

rn�2

�
;

.V /�aA D 0;

.V /�AB D r
q�1

�
1�

2m

rn�2

�
gAB ;

(5-14)

we find

r

K � rn�1 D
n� 1

4

�
n� 3

2
C
n� 1

2

2m

rn�2

�
rp

r2
@ 2

@v�
C
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2
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@ 
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C
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2
rp�1

�
.2�p/C .p�n/

2m

rn�2

�ˇ̌
r= 

ˇ̌2
r2̊n�1

: (5-15)

One may integrate the first term by parts to obtainZ 1
u�CR�

dv�
r

K � rn�1 D
n� 1

4

�
n� 3

2
C
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2
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�
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 2
ˇ̌̌̌1
u�CR�
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Z 1
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 2

C
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2
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@ 
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�2
C
1

2
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�
2�pC .p�n/

2m

rn�2

�ˇ̌
r= 

ˇ̌2
r2̊n�1

�
: (5-16)

We can now write down the energy identity for the current
r

J (see also Appendix B):
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RD�2�1

r

K d�g D
Z
@RD�2�1

�
r

J :

Dropping the positive zeroth-order terms, we obtainZ 1
�2CR�

dv�
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C

Z 2�2CR
�
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dt
Z
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d�̊n�1

�
1

4
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�
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C
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2
C
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2
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 2
�ˇ̌̌̌
rDR

�
: (5-17)

Note that the powers of r that appear in the bulk term are 1 less than those that appear in the boundary
terms. This allows for a hierarchy of inequalities (5-17) for different values of p, the so-called p-hierarchy.

Proof of Proposition 5.4. In a first step the decay of the solutions at future null infinity will be deduced
from the weighted energy inequality, and in a second step the continuation to the event horizon will be
inferred from the redshift effect.

Step 1. The p-hierarchy consists of two steps which exploits (5-17) first with pD 2, then with pD 1; but
in a zeroth step we need to obtain control on the angular derivatives from (5-17) with p D 1:

Since

1� .n� 1/
2m

rn�2
>
1

2
.r > R/;

we have from the weighted energy inequality for pD 1 on the domain r
0
0D�� 0 for � > � 0� �0

:
D
1
2
.t0�R
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Z �

� 0
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J T .�/CJ T .T � �/; n

�
I (5-18)

here we have estimated the boundary integrals as follows.
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Choose r 00 2 .R
�; R�C 1/ such thatZ R�C1

R�
dr�

Z 1
t0C.r��R�/

dt
Z

Sn�1
d�̊n�1

�
1�

2m

rn�2

�
rn�1

�

�
1

rn

�
@�

@r�

�2
C

1

rnC1

�
@�

@t

�2
C
1

r3

�
1�

2m

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
D

Z 1
t0C.r

0
0

�
�R�/

dt
Z

Sn�1
d�̊n�1

�
1�

2m

r 00
n�2

�
r 00
n�1
�

�

�
1

r 00
n

�
@�

@r�

�2
C

1

r 00
nC1

�
@�

@t

�2
C

1

r 00
3

�
1�

2m

r 00
n�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

�
I

thenZ 2�Cr 00
�

2� 0Cr 00
�

dt
Z

Sn�1
d�̊n�1

�
1

4
rp
�
@ 

@v�

�2
C
1

4
rp
ˇ̌
r= 

ˇ̌2
r2̊n�1

C
n�1

4

1

2
rp
�
n�3

2
C
n�1

2

2m

rn�2

�
1

r2
 2
�ˇ̌̌̌
rDr 00

�

Z 2�Cr 00
�

2� 0Cr 00
�

dt
Z

Sn�1
d�̊n�1 r

0
0
p�2

�
1

2

�
n�1

2

�2
�2C

1

2
r 00
2
�
@�

@v�

�2
C
1

4
r 00
2ˇ̌
r= �

ˇ̌2
r2̊n�1

C
n�1

4

1

2

�
n�3

2
C
n�1

2

2m

Rn�2

�
�2
�ˇ̌̌̌
rDr 00

rn�1

� C.n;m;R/

Z
†�0

�
J T .�/CJ T .T ��/; n

�
;
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p D 2: For p D 2, (5-17) readsZ �
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p D 1: In order to deal with the timelike boundary integrals analogously to the above choose
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By virtue of the result (5-20) from the case p D 2, this yieldsZ � 0
jC1

� 0
j

du�
Z 1
u�Cr 00

j

�
dv�

Z
Sn�1

d�̊n�1

�
1

2

�
@ 

@v�

�2
C
1

4

ˇ̌
r= 

ˇ̌2
r2̊n�1

�

�
C.n;m;R/

� 0j

�Z 1
�0Cr

0
0

�
dv�

Z
Sn�1

d�̊n�1 r
2

�
@ 

@v�

�2 ˇ̌̌̌
u�D�0

C

Z
†�0

�
J T .�/CJ T .T ��/; n

��
CC.n;m;R/

Z
†
�0
j

�
J T .�/CJ T .T ��/; n

�
: (5-22)

Step 2. Our aim is to prove decay for the nondegenerate energy. Let us first find an estimate forZ � 0
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we can use (5-22) once we have turned it into an estimate for the derivatives of �. Note thatZ 1
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Therefore, putting the estimates for the two terms back together,Z � 0
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where we have now used (5-22). The same inequality holds for � 0jC2 in place of � 0jC1, by adding the
inequalities corresponding to the intervals Œ� 0j ; �

0
jC1� and Œ� 0jC1; �

0
jC2� and using Proposition 5.2 for the
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last term. So there is a sequence
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we obtain by virtue of Proposition 5.2 our final result:
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5C. Improved interior decay of the first-order energy. In this section we prove an energy estimate for
the first-order energy which improves the decay rate as compared to Proposition 5.4 in a bounded radial
region.

Remark 5.5. The argument largely depends on the asymptotic properties of the spacetime, and is similar
and slightly easier in Minkowski space [Schlue 2012].

Proposition 5.6 (improved interior first-order energy decay). Let 0 < ı < 1
2

, R > n�2

q
8nm
ı

, and let � be
a solution of the wave equation (1-1) with initial data on †�1 (�1 > 0) satisfying
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Then there exists a constant C.n;m; ı; R/ such thatZ
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where †0� D†� \fr �Rg.

In addition to the weighted energy identity arising from the multiplier rp @
@v�

that was used to prove
Proposition 5.4, we will here also use a commutation with @

@v�
to obtain the energy decay for @�

@t
of

Proposition 5.6.
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Notation. To make the dependence on p explicit, we define
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The error terms for
v

K arise from the fact that � is not a solution of (1-1); here, similarly to (5-11), we find
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which is not positive definite. However, we have
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(is decreasing) on r > n�2
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4nm. The key insight here is that we are able to control all other terms on the

right-hand side of (5-38) by the current
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Indeed, the first term jr= @v� j2 can be integrated by parts twice (such that we can absorb the resulting
@v�� term in the left-hand side):Z �2
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The second term in (5-38) is controlled by the Hardy inequality
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and the third term simply by the following commutation with �i :
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Therefore (see also Appendix B),Z �2
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which, upon integration by parts, yields (5-40); note that the @v� 2 and @v�.�i /2 terms generate
boundary terms at infinity and zeroth-order bulk terms with the right sign by (5-16), while the @v��2 is
reduced to a .@v� /2 term by (5-44).

By virtue of Stokes’ theorem (B-5) and in view of (B-6), we conclude that
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Proof of Proposition 5.6. We shall use this weighted energy inequality for � to proceed in a hierarchy of
four steps.

p D 4� ı: Let �1 > 0 and �jC1 D 2�j (j 2 N). In a first step we use (5-49) with p D 4� ı and (5-17)
with p D 2 as an estimate for the spacetime integral of @v��, @v� , and @v�.�j / on RD�jC1�j , and in a
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Thus by the mean value theorem of integration we obtain a sequence � 0j 2 .�j ; �jC1/ (j 2 N) such that
the corresponding integral from the left-hand side on u� D � 0j is bounded by ��1j times the right-hand
side of (5-50).
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Using the simple Hardy inequality
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and again the commutation introduced in Lemma 5.7, we obtainZ � 0
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where in the last step we have again used (5-16). Furthermore, by now applying (5-49) with p D 3� ı,
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Now, by writing out the derivatives of  D r
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by applying Proposition 4.1 first to the domain r1D�2jC1�1 �R1r0;r1.2�1C r
�
1 / where r1 > n�2

q
4nm
ı

to fix
the radius R, and then to the domain

r.r�DR�C1/D
� 0
2jC1

� 0
2j�1

n
RD

� 0
2jC1

� 0
2j�1

�R1r0;R.2�
0
2j�1CR

�/

to fix the radii Rj (j 2N) by using the mean value theorem for the integration in r�, this yields (see also
Appendix B)Z 1
� 00
j
CR�

j

dv�
Z

Sn�1
d�̊n�1

�
r2�ı

�
@r

n�1
2 T � �

@v�

�2�ˇ̌̌̌
u�D� 00

j

�
C.n;m; ı; R/

.� 00j /
2

�Z 1
�1CR�

dv�
Z

Sn�1
d�̊n�1

�
r4�ı

�
@�

@v�

�2
C r2

�
@ 

@v�

�2
C r2

n.n�1/
2X
iD1

�
@�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

�
J T .�/CJ T .T � �/CJ T .T 2 � �/C

n.n�1/
2X
iD1

�
J T .�i�/CJ

T .T � �i�/
�
; n

��

CC.n;m; ı; R/

Z
†�2j�1

�
J T.�/CJ T.T ��/CJ T.T 2��/C

n.n�1/
2X
iD1

�
J T.�i�/CJ

T.T ��i�/
�
; n

�
: (5-57)

Therefore, by Proposition 5.4,Z 1
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Remark 5.8. This statement should be compared to the assumptions of Proposition 5.4 (5-5), from which
all that one can deduce with (5-17) isZ 1

�CR�
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<1 .� > �0/: (5-59)

We shall now proceed along the lines of the proof of Proposition 5.4 in Section 5B, just that we have
(5-58) as a starting point for the solution T � � of (1-1) (and (5-6)); however, as opposed to Proposition 5.4
the hierarchy does not descend from pD 2 but p < 2, which introduces a degeneracy in the last step, and
requires the refinement of Proposition 4.1 to Proposition 4.21, and Proposition 4.4 to Proposition 4.22;
see Section 4D.2.

Lemma 5.9 (pointwise decay under special assumptions). Let � be a solution of the wave equation (1-1),
with initial data on †�1 (�1 > 0) satisfying
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Remark 5.10. Note the gain in powers of r in comparison to the boundary term arising in Proposition 4.22.

Proof. First, integrating from infinity,
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Therefore, by Proposition 5.4,Z
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which proves the pointwise estimate of the lemma in view of the Hardy inequality of Lemma C.2,
Proposition 5.4, the assumption (�) and (��). �

p D 2� ı: By the weighted energy inequality with p D 2� ı and r
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p D 1� ı: Since, by integrating by parts,
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By virtue of Stokes’ theorem (B-5), (B-6) and our previous result (5-61), we obtain
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�
C

Z
Sn�1

d�̊n�1r
n�2

�
T ��

�2ˇ̌
.u�D� 00

2.2j�1/�1
;

v�DR00
j

�
C� 000
2jC1

/

�
; (5-64)

where in the last inequality we have used Proposition 4.22, and then chosen R00j (j 2 N) suitably by
Proposition 4.21; furthermore the inequality still holds if we add the integral of the nondegenerate energy

on R
00
jP

� 000
2jC1

� 000
2j�1

on the left-hand side and replace J T by JN in the first term of the integral on †
� 000
2jC1

� 00
2.2j�1/�1

on the right-hand side. The last two terms on the right-hand side of (5-64) in fact decay with almost the
same rate as the first; for first note here that we could have used Proposition 4.4 and Corollary 4.3 instead,
and then employed Proposition 5.4 to obtain in any case thatZ � 000

2jC1

� 000
2j�1

d�
Z
†�

1

rı

�
JN .T ��/; n

�
�
C.n;m; ı; R/

.� 0002j�1/
2

�Z 1
�1CR�

dv�
Z

Sn�1
d�̊n�1

�
r4�ı

�
@�

@v�

�2
C

3X
kD0

r2
�
@.T k �  /

@v�

�2

C

2X
kD0

n.n�1/
2X
iD1

r2
�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

� 4X
kD0

JN .T k � �/C

3X
kD0

n.n�1/
2X
iD1

JN .T k�i�/; n

��
: (5-65)

It then follows that there exists a sequence � 0000j 2 .�
000
2j�1; �

000
2jC1/ such that
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†
�000
2.jC2/C1

�0000
j

�
JN .T ��/; n

�
� rı

ˇ̌
.u�D� 0000

j
;

v�DR00
jC2

�
C� 000
2.jC2/C1

/

Z
†
�0000
j

1

rı

�
JN .T ��/; n

�
�
C.n;m; ı; R/

.� 0000j /
3�ı

�Z 1
�1CR�

dv�
Z

Sn�1
d�̊n�1

�
r4�ı

�
@�

@v�

�2
C
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kD0

r2
�
@.T k � /

@v�

�2
C

2X
kD0

n.n�1/
2X
iD1

r2
�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

� 4X
kD0

JN .T k � �/C

3X
kD0

n.n�1/
2X
iD1

JN .T k�i�/; n

��
; (5-66)

because � 0000j .�
000
2.jC2/C1

� � 0000j /
�1 � 1. Secondly, the assumptions of Lemma 5.9 are satisfied in view of

(5-58) on u� D � 00j (j 2 N), which yieldsZ
Sn�1

d�̊n�1r
n�2

�
T ��

�2ˇ̌
.u�D� 00

2.2j�1/�1
;v�DR00

j

�
C� 000
2jC1

/

�
C.n;m; ı; R/

.� 0002j�1/
3� ı

2

�Z 1
�1CR�

dv�
Z

Sn�1
d�̊n�1

�
r4�ı

�
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@v�
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C

3X
kD0
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�
@T k � 

@v�
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C

2X
kD0

n.n�1/
2X
iD1
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�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

� 4X
kD0

JN .T k � �/C

3X
kD0

JN .T k�i�/; n

��
; (5-67)

because also

� 0002j�1.�
000
2jC1� �

00
2.2j�1/�1/

�1
� C:

We shall now return to (5-64) — and its extension, which includes the nondegenerate energy onR
00
jP

� 000
2jC1

� 000
2j�1

—
to find that, after inserting (5-66) and using Proposition 5.2,Z
†
�000
2jC1

�00
2.2j�1/�1

�
JN .T ��/CJ T .T 2 � �/; n

�
� C

Z
†
�000
2jC1

�000
.2j�1/�1

�
JN .T ��/CJ T .T 2 � �/; n

�
� C

Z
†
�000
2jC1

�0000
j�2

�
JN .T ��/CJ T .T 2 � �/; n

�
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�
C.n;m; ı; R/

.� 0000j�2/
3�ı

�Z 1
�1CR�

dv�
Z

Sn�1
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�
r4�ı

�
@�
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@.T ��/
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kD0
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�
@.T k � /

@v�
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C

3X
kD0

n.n�1/
2X
iD1
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�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

� 5X
kD0

JN .T k � �/C

4X
kD0

n.n�1/
2X
iD1

JN .T k�i�/; n

��
; (5-68)

and using (5-67), that there exists (another) sequence � 0000j 2 .�
000
2j�1; �

000
2jC1/ (j 2 N) such thatZ

†
�0000
j

1

rı

�
JN .T ��/; n

�
�
C.n;m; ı; R/

.� 0000j /
4�ı

�Z 1
�1CR�

dv�
Z

Sn�1
d�̊n�1
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kD0

r4�ı
�
@.T k ��/

@v�

�2
C

4X
kD0

r2
�
@.T k � /

@v�

�2

C

3X
kD0

n.n�1/
2X
iD1

r2
�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

� 5X
kD0

JN .T k � �/C

4X
kD0

n.n�1/
2X
iD1

JN .T k�i�/; n

��
: (5-69)

So for any � >�1 we can choose j 2N such that � 2 .� 0002j�1; �
000
2jC1/ to obtain finally by Proposition 5.2 thatZ

†�\fr�Rg

�
JN .T ��/; n

�
�

Z
†
�000
2jC1

�0000
j�1

�
JN .T ��/; n

�
� rı

ˇ̌
.u�D� 0000

j�1
;

v�DR�C� 000
2jC1

/

Z
†
�0000
j�1

1

rı

�
JN .T ��/; n

�

�
C.n;m; ı; R/

�4�2ı

�Z 1
�1CR�

dv�
Z

Sn�1
d�̊n�1

� 1X
kD0

r4�ı
�
@.T k ��/

@v�

�2
C

4X
kD0

r2
�
@.T k � /

@v�

�2

C

3X
kD0

n.n�1/
2X
iD1

r2
�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�1

C

Z
†�1

� 5X
kD0

JN .T k � �/C

4X
kD0

n.n�1/
2X
iD1

JN .T k�i�/; n

��
: � (5-70)

Remark 5.11. For the removal of the restriction to dyadic sequences in the last step of the proof, (5-69) and
(5-70), we could have equally obtained a decay estimate for the energy flux through †� \fr� �R�C�kg

(with k 2N) by replacing †
� 000
2jC1

� 0000
j�1

by †
� 0000
j�1
C�k

� 0000
j�1

in the first estimate in (5-70); if ı > 0 for a chosen k 2N
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is restricted to ı < .1C k/�1 we then still obtain a decay rate of �4�.1Ck/ı for the energy flux through
†� \fr

� �R�C �kg.

6. Pointwise bounds

In this section we first prove pointwise estimates on j�j and j@t�j separately based on the energy decay
results Propositions 5.4 and 5.6. Then we give the interpolation argument to improve the pointwise decay
on j�j. As we shall see in view of the nondegenerate energy estimates of Section 5 we may restrict
ourselves in the first place to a radial region away from the horizon. Recall the definition (4-3) of †�
(r1

:
DR >

n�2
p
8nm).

Proposition 6.1 (pointwise decay). (i) Let � be a solution of the wave equation (1-1), with initial data
on †�0 (�0 > 0) such that

D
:
D

Z 1
�0CR�

dv�
Z

Sn�1
d�̊n�1

Œn
2
�C1X
kD0

r2
�
@T k � 

@v�

�2 ˇ̌̌̌
u�D�0

C

Z
†�0

�Œn2 �C2X
kD0

JN .T k � �/; n

�
<1: (6-1)

Then there is a constant C.n;m/ such that, for r0 < r < R,

j�.t; r/j �
C.n;m/

p
D

�

�
� D 1

2
.t �R�/ > �0

�
: (6-2)

(ii) If , moreover, the initial data satisfies

D
:
D

Z 1
�0CR�

dv�
Z

Sn�1
d�̊n�1

�Œn2 �C1X
kD0

r4�ı
�
@.T k ��/

@v�

�2

C

Œn
2
�C4X
kD0

r2
�
@.T k � /

@v�

�2
C

Œn
2
�C3X
kD0

n.n�1/
2X
iD1

r2
�
@T k�i 

@v�

�2�ˇ̌̌̌
u�D�0

C

Z
†�0

�Œn2 �C5X
kD0

JN .T k � �/C

Œn
2
�C4X
kD0

n.n�1/
2X
iD1

JN .T k�i�/; n

�
<1 (6-3)

for some 0<ı< 1
4

, andR> n�2

q
8nm
ı

, then there is a constant C.n;m; ı; R/ such that for r0<r <R,

j@t�.t; r/j �
C
p
D

�2�2ı

�
� D 1

2
.t �R�/ > �0

�
: (6-4)

The pointwise bounds are obtained from the energy estimates of Section 5 using Sobolev inequalities
and elliptic estimates; the former provide the link between pointwise and integral quantities, and the latter
allow for the expression of these integral quantities in terms of higher-order energies.

Sobolev embedding. By the extension theorem applied to the Sobolev embedding Hs.Rn/ � L1.Rn/
(s > n

2
) we have, for r0 < r < R,



DECAY OF LINEAR WAVES ON HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES 589

j�.t ; r/j2 � C.n/

Z R�

r�0

dr�
Z

Sn�1
d�̊n�1

�
�2C

j˛j�Œn
2
�C1X

j˛j�1

ˇ̌
r
˛�
ˇ̌2�

rn�1
ˇ̌̌̌
tDt

; (6-5)

where r denote the tangential derivatives to the hypersurface †t , and ˛ denotes a multiindex of order n.

Elliptic estimates. Note that for any solution � of the wave equation we have

T 2 � � D
@2�

@r�2
C

�
1�

2m

rn�2

�
n� 1

r

@�

@r�
C

�
1�

2m

rn�2

�
4= r2̊n�1�

:
D L � �; (6-6)

where the operator

LD

�
1�

2m

rn�2

�
gijri@j (6-7)

is clearly elliptic. (Here g t D gj†t denotes the restriction of g to the spacelike hypersurfaces †t , a
Riemannian metric on †t , and i; j D 1; : : : ; n.) In view of the standard higher-order interior elliptic
regularity estimate

k�k
HmC2.b†t / � C �kL � �kHm.b†t /Ck�kL2.b†t /�; b†t :D†t \fr0 < r < Rg; (6-8)

we conclude with (6-5) that, in the case where Œn
2
�C 1 is even,

j�j2 � C.n;m/

Z R�

r�0

dr�
Z

Sn�1
d�̊n�1

Œn
2
�C1X
lD0

�
T l � �

�2
rn�1I (6-9)

in general we have:

Lemma 6.2 (pointwise estimate in terms of higher-order energies). Let � be a solution of the wave
equation (1-1), and n� 3. Then there exists a constant C.n;m/ such that, for all r0 < r < R,

j�.t; r/j2 � C.n;m/

�
k�k2

L2.b†t /C
Z
b†t

Œn
2
�X

lD0

�
J T .T l � �/; n

��
: (6-10)

Proof of Proposition 6.1. In view of the Lemma 6.2 and the energy decay estimates of Section 5 it remains
to control the zeroth order term k�k

L2.b†t /; we multiply the integrand by .R
r
/2 � 1 and extend the integral

to u� D � D 1
2
.t �R�/, v� � 1

2
.t CR�/.

(i) By Lemma C.2 we can then estimate k�k2
L2.b†t / by the energy flux through †�D 1

2
.t�R�/, and apply

Proposition 5.4 to the higher-order energies of Lemma 6.2.

(ii) Here we extend the integral only to � CR� � v� � � CR�C �3 and apply Lemma C.4 to obtainZ R�

r�0

dr�
Z

Sn�1
d�̊n�1.@t�/

2rn�1 � C.n;m/R2
Z
†�\fr��R�C�3g

�
J T .@t�/; n

�
CC.n;m/

R2

r

Z
Sn�1

rn�1.@t�/
2
ˇ̌
.u�D�;v�D�CR�C�3/

: (6-11)
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As in the proof of Lemma 5.9 we obtain by integrating from infinity and Cauchy’s inequality thatZ
Sn�1

d�̊n�1r
n�2.@t�/

2.�; � CR�/�
C.n;m/

1� 2m
Rn�2

Z
†�

�
J T .@t�/; n

�
; (6-12)

which decays by Proposition 5.4 with a rate ��2. Moreover, as in the proof of Lemma 5.9,Z
Sn�1

d�̊n�1r
n�1.@t�/

2
ˇ̌
.u�D�;v�D�CR�C�3/

D

Z
Sn�1

d�̊n�1r
n�1.@t�/

2
ˇ̌
.u�D�;v�D�CR�/

C

Z �CR�C�3

�CR�
dv�

Z
Sn�1

d�̊n�12@t 
@@t 

@v�

ˇ̌̌̌
u�D�

(6-13)

andZ �CR�C�3

�CR�
dv�

Z
Sn�1

d�̊n�1@t 
@@t 

@v�

ˇ̌̌̌
u�D�

�

sZ 1
�CR�

Z
Sn�1

d�̊n�1
1

r2
.@t�/2rn�1 �

sZ 1
�CR�

Z
Sn�1

d�̊n�1r2
�
@r

n�1
2 @t�

@v�

�2
; (6-14)

the first factor decaying with a rate ��1 by Lemma C.2 and Proposition 5.4, and the second factor bounded
by the weighted energy inequality for r

n�1
2 @t� in place of  with p D 2. ThereforeZ

Sn�1
rn�1.@t�/

2
ˇ̌
.u�D�;v�D�CR�C�3/

�
C.n;m/

1� 2m
Rn�2

D

�
: (6-15)

By virtue of Proposition 5.6 (compare in particular Remark 5.11 on page 587), the first term on the
right-hand side of (6-11) decays with a rate of �4�4ı , and this is matched by the second term in view of
the prefactor r�1 D .R�C �3/�1, which is the result of our choice of powers of � in the extension of the
integral Lemma 6.2 applied to the solution @t� of (1-1) then yields the pointwise decay result (6-4) after
having applied Proposition 5.6 to the higher-order energies on the right-hand side of (6-10). �

Interpolation. We shall now interpolate between the results (i) and (ii) of Proposition 6.1 to improve the
pointwise estimate for j�j. Our argument can in some sense be compared to the proof of improved decay
in [Luk 2010]. The basic observation underlying this argument is that, for r0 < r < R and t1 > t0,

rn�2�2.r; t1/D r
n�2�2.r; t0/C

Z t1

t0

2�.t; r/
@�

@t
.t; r/rn�2 dt

� rn�2�2.r; t0/C
1

t1�2ı0

Z t1

t0

�2.t; r/rn�2 dt C t1�2ı0

Z t1

t0

�
@�

@t

�2
.t; r/rn�2 dt: (6-16)

Moreover, as a consequence of Lemma 6.3,

rn�2�2.t; r/�Rn�2�2.t; R/C

�
1�

2m

rn�20

��1 Z R�

r�

�
@�

@r�

�2
rn�1 dr�; (6-17)
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we obtain an estimate for the timelike integrals in terms of the corresponding integrals at r D R and
spacetime integrals, using the Sobolev inequality on the sphere:Z t1

t0

rn�2�2.t; r/ dt�
Z t1

t0

dt
Z

Sn�1
d�̊n�1

X
j˛j�Œn

2
�C1

Rn�2
�
�˛�

�2
.t; R/

C

�
1�

2m

rn�20

��1Z t1

t0

dt
Z R�

r�
dr�
Z

Sn�1
d�̊n�1r

n�1
X

j˛j�Œn
2
�C1

�
@�˛�

@r�

�2
.t; r/: (6-18)

Lemma 6.3. Let a < b 2 R and � 2 C1.Œa; b�/. Then, for all n� 3,

an�2�2.a/� bn�2�2.b/C

Z b

a

�
d�
dx

�2
xn�1 dx: (6-19)

Proof. Since, by integration by parts,Z b

a

2�.x/
d�
dx
.x/xn�2 dx D 2�2.x/xn�2

ˇ̌b
a
�

Z b

a

2�.x/
d�
dx
.x/xn�2 dx�

Z b

a

2�2.x/.n� 2/xn�3 dx;

it clearly follows, with Cauchy’s inequality,

an�2�2.a/� bn�2�2.b/C

Z b

a

�
d�
dx

�2
xn�1 dxC

�
1� .n� 2/

� Z b

a

1

x2
�2.x/xn�1 dx: �

Proposition 6.4 (improved interior pointwise decay). Let � be a solution of the wave equation (1-1), with
initial data on †�0 .�0 > 1/ satisfying

D
:
D

Z 1
�0CR�

dv�
Z

Sn�1
d�̊n�1

� 2X
kD0

X
j˛j�Œn

2
�C1
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2
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�
@T k�˛ 

@v�
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C
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kD0

X
j˛j�Œn

2
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C

Z
†�0
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kD0
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2
�C1

JN .T k�˛�/C

5X
kD0

X
j˛j�Œn

2
�C2

JN .T k�˛�/; n

�
<1 (6-20)

for some 0 < ı < 1
4

, where R > n�2

q
8nm
ı

, n � 3. Then there exists a constant C.n;m; ı; R/ such that,
for n�2

p
2m < r0 < r < R,

r
n�2
2 j�j.t; r/�

CD

t
3
2
�ı
: (6-21)

Proof. Let Nt0 D 2.�0C �0/CR� and Nt1 D Nt0C 2�0. Then by (6-18), Proposition 4.4 and Proposition 4.1,Z Nt1
Nt0

�2.t; r/rn�2 dt � C.n;m;R/
Z
†2�0

� 1X
kD0

X
j˛j�Œn

2
�C1

J T ŒT k�˛��; n

�
I (6-22)
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hence by Proposition 5.4 there exists t 00 2 .Nt0; Nt1/ such that

rn�2�2.t 00; r/�
C.n;m;R/D

Nt30
: (6-23)

Now set � 00D
1
2
.t 00�R

�/ and � 0j D2�
0
j�1 (j 2N), and t 0j D2�

0
jCR

� (j 2N); note that t 0jC1�t
0
j D

1
2
.t 0j�R

�/.
Now consider (6-16) with t1 D t 0jC1, t0 D t 0j ; since by (6-18), together with Propositions 4.1 and 4.4,

Z t 0
jC1

t 0
j

rn�2�2.t; r/ dt � C.n;m;R/
Z
†
�0
j

� 1X
kD0

X
j˛j�Œn

2
�C1

J T ŒT k�˛��; n

�
; (6-24)

and by Propositions 4.21 and 4.22,Z t 0
jC1

t 0
j

rn�2.@t�/
2.t; r/ dt � C.n;m;R/
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†
�0
j
\fr��R�C.� 0

j
/3g

� 2X
kD1

X
j˛j�Œn

2
�C1

J T ŒT k�˛��; n

�

C

Z
Sn�1

d�̊n�1
X

j˛j�Œn
2
�C1

rn�2.�˛@t�/
2
ˇ̌
.u�D� 0

j
;v�DR�C� 0

j
C.� 0

j
/3/

�
; (6-25)

which decays with the rate �4�4ı as is shown in the proof of Proposition 6.1(ii), we obtain

rn�2�2.r; t 0jC1/� r
n�2�2.r; t 0j /C

C.n;m;R/

.t 0j /
1�2ı

D

.� 0j /
2
CC.n;m; ı; R/.t 0j /

1�2ı D

.� 0j /
4�4ı

� rn�2�2.r; t 0j /C
C.n;m; ı; R/D

.t 0j /
3�2ı

: (6-26)

In fact, by induction on j 2 N using (6-23) for j D 0, we have shown

rn�2�2.r; t 0j /�
C.n;m; ı; R/D

.t 0j /
3�2ı

.j 2 N[f0g/: (6-27)

Finally for any t � t 00 we may choose j 2 N[ f0g such that t 2 .t 0j ; t
0
jC1/ and conclude the proof by

applying (6-27) and (6-26), which holds with t in place of t 0jC1. �

Extension to the horizon. Note that for n�2
p
2m � r < r0, the same interpolation (6-16) by integration

along lines of constant radius r < r0 can be carried out. However, on the right-hand sides of (6-17) and
(6-18) a new term results from the integration on v� D 1

2
.t0C r

�
0 / from the radius r < r0 to r D r0; but

we infer from the explicit construction (3-19) that the resulting integrand�
2

1� 2m
rn�2

@�

@u�

�2
� T Œ��.Y; Y /�

�
JN Œ��; N

�
(6-28)

is controlled by Corollary 4.3, and the proof of Proposition 6.4 above extends to that of Theorem 2 by
replacing J T by JN on the right-hand sides of (6-22), (6-24) and (6-25).
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Appendix A: Notation

Contraction. We sum over repeated indices. Also we use interchangeably

g.V;N /
:
D .V;N /

:
D V�N

�; J �N
:
D .J;N /

:
D J�N

�; (A-1)

where V , N are vector fields, and J is a 1-form.

Integration. Let D in M be a domain bounded by two homologous hypersurfaces, †1 and †2 being its
past and future boundary, respectively. We then write

R
†1
.J; n/ for the boundary terms on †1 arising

from a general current J in the expression
R
@D
�J . If S �†1 is spacelike, then .J; n/D g.J; n/ is in fact

the inner product of J with the timelike normal n to †1; e.g., on constant t -slices †t (see Section 2) we
have nD .1� 2m

rn�2
/�

1
2
@
@t

. If U �†1 is an outgoing null segment then
R
U .J; n/ denotes an integral of the

form
R

dv
R

S d�g.J; @@v /; e.g., on the outgoing null segments of the hypersurfaces †� (see Section 4),
we have Z

†�\fr�Rg

.J; n/
:
D

Z 1
�CR�

dv�
Z

Sn�1
d�̊n�1 r

n�1

�
J;

@

@v�

�
: (A-2)

The volume form is usually omitted:Z
D
f
:
D

Z
D
f d�g .D �M/:

Appendix B: Formulas for reference

In this appendix we summarize a few formulas for reference.

The wave equation. The d’Alembert operator in (1-1) can we written out in any coordinate system
according to

�g� D .g
�1/��r�@��; (B-1)

where r denotes the covariant derivative of the Levi-Civita connection of g.

Components of the energy momentum tensor. The components of the energy momentum tensor

T��.�/D @�� @�� �
1
2
g�� @

˛� @˛�

tangential to Q are given in .u�; v�/-coordinates by

Tu�u� D

�
@�

@u�

�2
; Tv�v� D

�
@�

@v�

�2
; Tu�v� D

�
1�

2m

rn�2

�ˇ̌
r= �

ˇ̌2
r2̊n�1

: (B-2)

We also refer to (B-2) as the null decomposition of the energy momentum tensor. Note here that

@˛� @˛� D�
1

1� 2m
rn�2

�
@�

@u�

��
@�

@v�

�
C
ˇ̌
r= �

ˇ̌2
r2̊n�1

;

1

r2
̊ AB
n�1 TAB D

ˇ̌
r= �

ˇ̌2
r2̊n�1

�
1
2
.n� 1/@˛� @˛�:
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Integration. A typical domain of integration that we use is

RD�2�1 D
˚
.u�; v�/ W �1 � u

�
� �2; v

�
�u� �R�

	
: (B-3)

In local coordinates we have, by calculating the volume form from (2-20), thatZ
RD�2�1

d�g D
Z �2

�1

du�
Z 1
u�CR�

dv�
Z

Sn�1
d�̊n�1 2

�
1�

2m

rn�2

�
rn�1: (B-4)

For a general current J the energy identity on this domain readsZ
RD�2�1

KX d�g D
Z
@RD�2�1

�J; (B-5)

where the right-hand side is given more explicitly byZ
@RD�2�1

�J

D�

Z 1
R�C�2

dv�
Z

Sn�1
d�̊n�1 r

n�1g

�
J;

@

@v�

�ˇ̌̌̌
u�D�2

�

Z �2

�1

du�
Z

Sn�1
d�̊n�1 r

n�1g

�
J;

@

@u�

�ˇ̌̌̌
v�!1

C

Z 1
R�C�1

dv�
Z

Sn�1
d�̊n�1 r

n�1g

�
J;

@

@v�

�ˇ̌̌̌
u�D�1

�

Z R�C2�2

R�C2�1

dt
Z

Sn�1
rn�1g

�
J;

@

@r�

�ˇ̌̌̌
rDR

: (B-6)

Radial functions. In this appendix we summarize some statements on the relation between r and

r� D

Z r

.nm/
1
n�2

1

1� 2m
rn�2

dr: (B-7)

The proofs are omitted here, but can be found in [Schlue 2012].

Proposition B.1. For all n� 3,

lim
r

n�2p
2m
!1

r�

r
D 1:

While this fact concerns the region r�� 0 and is essentially due to limx!1
logx
x
D 0, the next concerns

r� � 0 and is similarly due to limx!0 x log x D 0.

Proposition B.2. For all n� 3,

lim
r

n�2p
2m
!1

�
1�

2m

rn�2

�
.�r�/D 0:

In fact we have:

Proposition B.3. For r� < 0, �
1�

2m

rn�2

�
�
.2m/

1
n�2

.�r�/
:

This being an upper bound on .�r�/, we will also need a lower bound:
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Proposition B.4. For r� � 0,

.�r�/�
.2m/

1
n�2

n� 2
log

 
.n
2
/
1
n�2 � 1

.n
2
/
1
n�2 C 1

r
n�2
p
2m
C 1

r
n�2
p
2m
� 1

!
:

Dyadic sequences. In our argument, Section 5C in particular, we construct a hierarchy of dyadic se-
quences, beginning with a sequence of real numbers .�j /j2N where �1 > 0 and �jC1 D 2�j (j 2 N).
We then obtain (by the mean value theorem of integration) a sequence .� 0j /j2N with � 0j in the interval
.�j ; �jC1/ of length �j for all j 2 N. We then built up on these values another sequence .� 00j /j2N which
takes values (as selected by the mean value theorem) in the intervals .� 02j�1; �

0
2jC1/ 3 �

00
j ; note that their

length is at least � 02jC1� �
0
2j�1 � �2jC1� �2j D �2j . In the same fashion the sequence .� 000j /j2N is built

upon .� 00j /j2N, etc.

Appendix C: Boundary integrals and Hardy inequalities

In this appendix we prove appropriate Hardy inequalities that are needed in our argument to estimate
boundary terms that typically arise in the energy identities.

X -type currents. Let X D f .r�/ @
@r�

and recall the modification (4-14).

Proposition C.1 (boundary terms near null infinity). Let f DO.1/, f 0DO.1
r
/, and f 00DO. 1

r2
/. Then

there exists a constant C.n;m/ such thatZ
@RD�2�1nfrDRg

�JX;1 � C.n;m/

Z
†�1

�
J T .�/; n

�
: (C-1)

Proof. For the boundary integrals on the null segments u� D �1, �2 we findˇ̌̌̌Z 1
R�C�i

dv�
Z

Sn�1
d�̊n�1g

�
JX;1;

@

@v�

�
rn�1

ˇ̌̌̌
� C.n/

Z 1
R�C�i

dv�
Z

Sn�1
d�̊n�1 r

n�1

��
@�

@v�

�2
C
ˇ̌
r= �

ˇ̌2
C

�
jf j

r2
C
jf 0j

r
Cjf 0j2Cjf 00j

�
�2
�
; (C-2)

and, in view of the Hardy inequality Lemma C.2,Z 1
R�C�i

dv�
Z

Sn�1
d�̊n�1

1

r2
�2 rn�1

ˇ̌
u�D�i

� C.n;m/

Z
†�i

�
J T .�/; n

�
I (C-3)

note that the corresponding zero order terms vanish at future null infinity; cf. Remark C.3. Then (C-1)
follows from the energy identity for T on RD�2�1 . �

Lemma C.2 (Hardy inequality). Let � 2 C1.Œa;1//, a > 0, with j�.a/j<1 and

lim
x!1

x
n�2
2 �.x/D 0: (C-4)

Then a constant C.n/ > 0 exists such thatZ 1
a

1

x2
�2.x/ xn�1 dx � C.n/

Z 1
a

�
d�
dx

�2
xn�1 dx: (C-5)
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Proof. This is a consequence of the Cauchy–Schwarz inequality; after integration by partsZ 1
a

1

x2
�2.x/ xn�1 dx D

Z 1
a

g0.x/�2.x/ dx

with
g.x/D

Z x

a

yn�3 dy: �

Remark C.3. The conditions of Lemma C.2 on � are in fact satisfied for any solution of the wave
equation (1-1). By a density argument we may assume without loss of generality that the initial data is
compactly supported. Then for a fixed � , and v� large enough, �.�; v�/D 0, and for u� � � ,

�.u�; v�/D

Z u�

�

@�

@u�
du�:

Thus

�.u�; v�/�

�Z u�

�

�
@�

@u�

�2
rn�1 du�

�1
2
�Z u�

�

1

rn�1
du�

�1
2

:

On one hand, Z u�

�

Z
Sn�1

�
@�

@u�

�2
rn�1 d�̊n�1 du� �

Z
†�

�
J T .�/; n

�
<1;

whereas on the other hand,Z u�

�

1

rn�1
du� D

1

n� 2

Z u�

�

�
1�

2m

rn�2

��1 @

@u�

�
1

rn�2

�
du�

�
1

n� 2

�
1�

2m

Rn�2

��1�
1�

�
r.u�; v�/

r.�; v�/

�n�2� 1

rn�2
;

if we restrict u� � � to r.u�; v�/�R. Hence

lim
v�!1

r
n�2
2 � D 0:

Instead of (C-5), which requires (C-4), one can prove the corresponding Hardy inequality for finite
intervals:

Lemma C.4 (Hardy inequality for finite intervals). Let 0 < a < b, and � 2 C1..a; b//. Then

1

2

Z b

a

1

x2
�2.x/xn�1 dx �

1

n� 2
bn�2�2.b/C 2

�
2

n� 2

�2 Z b

a

�
d�
dx

�2
xn�1 dx: (C-6)

Proof. Let

g.x/D

Z x

a

yn�3 dy D
1

n� 2
yn�2

ˇ̌̌̌x
a

:

Then, by integration by parts and using Cauchy’s inequality,Z b

a

1

x2
�2.x/xn�1 dx D g �2

ˇ̌b
a
�

Z b

a

g.x/2�.x/
d�
dx

dx

� g.b/�2.b/C 2�

Z b

a

1

x2
�2.x/xn�1 dxC

1

2�

Z b

a

g.x/2

xn�3

�
d�
dx

�2
dx;
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where � > 0; (C-6) follows for � D 1
4

because

g.b/�
1

n� 2
bn�2;

g.x/2

xn�3
�

2

n� 2

�
1C

�
a

x

�2.n�2/�
xn�1: �

Recall the domain (4-103); by using Lemma C.4 instead of Lemma C.2 we can prove the following
refinement of Proposition C.1 to bounded domains:

Proposition C.5 (boundary terms on bounded domains). Let f DO.1/, f 0 DO.1
r
/, and f 00 DO. 1

r2
/.

Then there exists a constant C.n;m/ such thatZ
@RDn �2�1nfrDRg

�JX;1 � C.n;m/

�Z
†
�2
�1

�
J T .�/; n

�
C

Z
Sn�1

d�̊n�1r
n�2�2

ˇ̌
.u�D�1;v�DR�C�2/

�
: (C-7)

Recall the domain (4-2).

Proposition C.6 (boundary terms near the event horizon). Let f D O.1/, f 0 D O
�
1
jr�j4

�
, and f 00 D

O
�
1
jr�j5

�
, and

�l� D 0 .0� l < L/;

for some L 2 N. Then there exists a constant C.n;m;L/ such thatZ
@R1r0;r1 .t0/

�JX;1 � C.n;m;L/

Z
†�0

�
J T .�/; n

�
; (C-8)

where �0 D 1
2
.t0� r

�
1 /.

The proof is given in Section 4D.1 in the special case f D f;˛ using the following lemma.

Lemma C.7 (Hardy inequality). Let a > 0, � 2 C1.Œa;1// with

lim
x!1

j�.x/j<1:

Then Z 1
a

1

1C x2
�2.x/ dx � 8

1C a2

a2

Z 1
a

�
d�
dx

�2
dxC 2�

Z aC1

a

�
�2C

�
d�
dx

�2�
dx: (C-9)

Proof. Let us first assume that �.a/D 0. Define

g.x/D�

Z 1
x

1

1Cy2
dy:

Then Z 1
a

1

1C x2
�2.x/ dx D

Z 1
a

g0.x/�2.x/ dx D g.x/�2.x/
ˇ̌1
a
� 2

Z 1
a

g.x/�.x/
d�
dx

dx

� 2

�Z 1
a

g.x/2

g0.x/

�
d�
dx

�2
dx
�1
2
�Z 1

a

g0.x/�2.x/ dx
�1
2

:
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Since jg.x/j � 1
x

we have

g.x/2

g0.x/
�
1C x2

x2
�
1C a2

a2
;

and thereforeZ 1
a

1

1C x2
�2.x/ dx � 4

Z 1
a

g.x/2

g0.x/

�
d�
dx

�2
dx � 4

1C a2

a2

Z 1
a

�
d�
dx

�2
dx:

Without the assumption �.a/D 0 this applied to the function �.x/��.a/ yieldsZ 1
a

1

1C x2
�2.x/ dx � 2

Z 1
a

1

1C x2

�
�.x/��.a/

�2 dxC 2
Z 1
a

1

1C x2
�.a/2 dx

� 8
1C a2

a2

Z 1
a

�
d�
dx

�2
dxC��.a/2:

We conclude the proof with the following pointwise bound: on one hand, for some a0 2 .a; aC 1/,Z aC1

a

�.x/2 dx D �.a0/2

and on the other hand,

�.a0/2��.a/2 D

Z a0

a

d
dx
�.x/2 dx �

Z a0

a

�
�.x/2C

�
d�
dx

�2�
dx:

Hence

�.a/2 �

Z a0

a

�
�.x/2C

�
d�
dx

�2�
dxC

Z aC1

a

�.x/2 dx � 2
Z aC1

a

�
�.x/2C

�
d�
dx

�2�
dx: �

Auxiliary currents. We have the same results for auxiliary currents of the form

J aux
� D

1
2
h.r/@�.�

2/: (C-10)

Proposition C.8. Let hDO.1
r
/. Then there exists a constant C.n;m/ such thatZ

@RD�2�1nfrDRg

�J aux
� C.n;m/

Z
†�1

�
J T .�/; n

�
; (C-11)

and moreover, for a constant C.n;m/, we have the refinementZ
@RDn �2�1nfrDRg

�J aux
� C.n;m/

�Z
†
�2
�1

�
J T .�/; n

�
C

Z
Sn�1

d�̊n�1r
n�2�2

ˇ̌
.�1;R�C�2/

�
: (C-12)

Proof. Note that here, in comparison to the proof of Proposition C.1,ˇ̌̌̌
g

�
J aux;

@

@v�

�ˇ̌̌̌
� h2�2C

�
@�

@v�

�2
: �
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Proposition C.9. Let hDO
�
1
jr�j

�
. Then there exists a constant C.n;m/ such thatZ

@R1r0;r1 .t0/

�J aux
� C.n;m/

Z
†�0

�
J T .�/; n

�
; (C-13)

where �0 D 1
2
.t0� r

�
1 /.

Remark C.10. In view of Proposition B.3, the function hD 1
r

�
1� 2m

rn�2

�
satisfies the assumption of the

proposition.
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We consider the Schrödinger map initial value problem{
∂tϕ = ϕ×1ϕ,

ϕ(x, 0)= ϕ0(x),

with ϕ0 : R2
→ S2 ↪→ R3 a smooth H∞Q map from the Euclidean space R2 to the sphere S2 with

subthreshold (< 4π ) energy. Assuming an a priori L4 boundedness condition on the solution ϕ, we prove
that the Schrödinger map system admits a unique global smooth solution ϕ ∈ C(R→ H∞Q ) provided that
the initial data ϕ0 is sufficiently energy-dispersed, i.e., sufficiently small in the critical Besov space Ḃ1

2,∞.
Also shown are global-in-time bounds on certain Sobolev norms of ϕ. Toward these ends we establish
improved local smoothing and bilinear Strichartz estimates, adapting the Planchon–Vega approach to such
estimates to the nonlinear setting of Schrödinger maps.
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1. Introduction

We consider the Schrödinger map initial value problem{
∂tϕ = ϕ×1ϕ,

ϕ(x, 0)= ϕ0(x),
(1-1)

with ϕ0 : R
d
→ S2 ↪→ R3.
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The system (1-1) enjoys conservation of energy,

E(ϕ(t)) := 1
2

∫
Rd
|∂xϕ(t)|2 dx, (1-2)

and mass,
M(ϕ(t)) :=

∫
Rd
|ϕ(t)− Q|2 dx,

where Q ∈ S2 is some fixed base point. When d = 2, both (1-1) and (1-2) are invariant with respect to
the scaling

ϕ(x, t)→ ϕ(λx, λ2t), λ > 0, (1-3)

and in this case we call the equation (1-1) energy-critical. In this article we restrict ourselves to the
energy-critical setting.

For the physical significance of (1-1), see [Chang et al. 2000; Nahmod et al. 2003; Papanicolaou
and Tomaras 1991; Landau 1967]. The system also arises naturally from the (scalar-valued) free linear
Schrödinger equation

(∂t + i1)u = 0

by replacing the target manifold C with the sphere S2 ↪→ R3, which then requires replacing 1u with
(u∗∇) j∂ j u =1u−⊥ (1u) and i with the complex structure u×· . Here ⊥ denotes orthogonal projection
onto the normal bundle, which, for a given point (x, t), is spanned by u(x, t). For more general analogues
of (1-1), e.g., for Kähler targets other than S2, see [Ding and Wang 2001; McGahagan 2007; Nahmod
et al. 2007]. See also [Kenig et al. 2000; Kenig and Nahmod 2005; Bejenaru et al. 2011b] for connections
with other spin systems. The local theory for Schrödinger maps is developed in [Sulem et al. 1986; Chang
et al. 2000; Ding and Wang 2001; McGahagan 2007]. For global results in the d = 1 setting, see [Chang
et al. 2000; Rodnianski et al. 2009]. For d ≥ 3, see [Bejenaru 2008a; 2008b; Bejenaru et al. 2007; 2011c;
Ionescu and Kenig 2006; 2007b]. Concerning the related modified Schrödinger map system, see [Kato
2005; Kato and Koch 2007; Nahmod et al. 2007].

The small-energy (take d = 2) theory for (1-1) is now well-understood: building upon previous work
(see below or [Bejenaru et al. 2011c, §1] for a brief history), global well-posedness and global-in-time
bounds on certain Sobolev norms are shown in [Bejenaru et al. 2011c] given initial data with sufficiently
small energy. The high-energy theory, however, is still very much in development. One of the main goals
is to establish what is known as the threshold conjecture, which asserts that global well-posedness holds
for (1-1) given initial data with energy below a certain energy threshold, and that finite-time blowup is
possible for certain initial data with energy above this threshold. The threshold is directly tied to the
nontrivial stationary solutions of (1-1), i.e., maps φ into S2 that satisfy

φ×1φ ≡ 0

and that do not send all of R2 to a single point of S2. Therefore we identify such stationary solutions with
nontrivial harmonic maps R2

→ S2, which we refer to as solitons for (1-1). It turns out that there exist
no nontrivial harmonic maps into the sphere S2 with energy less than 4π , and that the harmonic map
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given by the inverse of stereographic projection has energy precisely equal to 4π =: Ecrit. We therefore
refer to the range of energies [0, Ecrit) as subthreshold, and call Ecrit the critical or threshold energy.

Recently, an analogous threshold conjecture was established for wave maps (see [Krieger et al. 2008;
Rodnianski and Sterbenz 2010; Sterbenz and Tataru 2010a; 2010b] and, for hyperbolic space, [Krieger and
Schlag 2012; Tao 2008a; 2008b; 2008c; 2009a; 2009b]). When M is a hyperbolic space, or, as in [Sterbenz
and Tataru 2010a; 2010b], a generic compact manifold, we may define the associated energy threshold
Ecrit = Ecrit(M) as follows. Given a target manifold M, consider the collection S of all nonconstant
finite-energy harmonic maps φ : R2

→M. If this set is empty, as is, for instance, the case when M is
equal to a hyperbolic space Hm , then we formally set Ecrit =+∞. If S is nonempty, then it turns out that
the set {E(φ) : φ ∈ S} has a least element and that, moreover, this energy value is positive. In such case
we call this least energy Ecrit. The threshold Ecrit depends upon geometric and topological properties of
the target manifold M; see [Lin and Wang 2008, Chapter 6] for further discussion. This definition yields
Ecrit = 4π in the case of the sphere S2. For further discussion of the critical energy level in the wave
maps setting, see [Sterbenz and Tataru 2010b; Tao 2008a].

We now summarize what is known for Schrödinger maps in d = 2. Asymptotic stability of harmonic
maps of topological degree |m| ≥ 4 under the Schrödinger flow is established in [Gustafson et al. 2008].
The result is extended to maps of degree |m| ≥ 3 in [Gustafson et al. 2010]. A certain energy-class
instability for degree-1 solitons of (1-1) is shown in [Bejenaru and Tataru 2010], where it is also shown
that global solutions always exist for small localized equivariant perturbations of degree-1 solitons. Finite-
time blowup for (1-1) is demonstrated in [Merle et al. 2011a; 2011b], using less-localized equivariant
perturbations of degree-1 solitons, thus resolving the blowup assertion of the threshold conjecture. Blow-up
dynamics for equivariant critical Schrödinger maps are studied in [Perelman 2012]. Global well-posedness
given data with small critical Sobolev norm (in all dimensions d ≥ 2) is shown in [Bejenaru et al. 2011c].
Recent work of the author [Smith 2012b] extends the result of Bejenaru et al. and the present conditional
result to global regularity (in d = 2) assuming small critical Besov norm Ḃ1

2,∞. In a different direction,
[Dodson and Smith 2013] shows that the L4 norm considered in this paper is in fact a controlling norm
for critical Schrödinger maps. In the radial setting (which excludes harmonic maps), Gustafson and Koo
[2011] established global well-posedness at any energy level. In the equivariant setting, Bejenaru et al.
[2011a] established global existence and uniqueness as well as scattering given 1-equivariant data with
energy less than 4π . They note that, although these results are stated only for data with energy less than
4π , their proofs remain valid for maps with energy slightly larger than 4π , suggesting that the “right”
threshold conjecture for equivariant Schrödinger maps should be stated also in terms of homotopy class,
leading to a threshold of 8π rather than 4π in the case where the target is S2. See the introduction of
[Bejenaru et al. 2011a] for further discussion of this point. This global result has been extended to the
H2 target in [Bejenaru et al. 2012], under the assumption that the initial data has finite energy.

The main purpose of this paper is to show that (1-1) admits a unique smooth global solution ϕ given
smooth initial data ϕ0 satisfying appropriate energy conditions and assuming a priori boundedness of a
certain L4 spacetime norm of the spatial gradient of the solution ϕ. In particular, we admit a restricted
class of initial data with energy ranging over the entire subthreshold range.
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In order to go beyond the small-energy results of [Bejenaru et al. 2011c], we introduce physical-space
proofs of local smoothing and bilinear Strichartz estimates, in the spirit of [Planchon and Vega 2009;
Planchon 2012, p. 1042-08; Tao 2010], that do not heavily depend upon perturbative methods. The
local smoothing estimate that we establish is a nonlinear analogue of that shown in [Ionescu and Kenig
2006]. The bilinear Strichartz estimate is a nonlinear analogue of the improved bilinear Strichartz estimate
of [Bourgain 1998]. These proofs more naturally account for magnetic nonlinearities, and we believe
the technique developed here to be of independent interest and applicable to other settings. For local
smoothing in the context of Schrödinger equations, see [Kenig et al. 1993; 1998; 2004; Ionescu and Kenig
2005; 2006; 2007b]. For other Strichartz and smoothing results for magnetic Schrödinger equations, see
[Stefanov 2007; D’Ancona and Fanelli 2008; D’Ancona et al. 2010; Erdoğan et al. 2008; 2009; Fanelli
and Vega 2009] and the references therein. We also use in a fundamental way the subthreshold caloric
gauge of [Smith 2012a], which is an extension of a construction introduced in [Tao 2004].

To make these statements more precise, we now turn to some basic definitions and observations.

1A. Preliminaries. First we establish some basic notation. The boldfaced letters Z and R respectively
denote the integers and real numbers. We use Z+= {0, 1, 2, . . .} to denote the nonnegative integers. Usual
Lebesgue function spaces are denoted by L p, and these sometimes include a subscript to indicate the
variable or variables of integration. When function spaces are iterated, e.g., L∞t L2

x , the norms are applied
starting with the rightmost one. When we use L4 without subscripts, we mean L4

t,x .
We use S2

= {x ∈ R3
: |x | = 1} to denote the standard 2-sphere embedded in 3-dimensional Euclidean

space. The ambient space R3 carries the usual metric and S2 the inherited one. Throughout, S1 denotes
the unit circle.

We use ∂x = (∂x1, ∂x2)= (∂1, ∂2) to denote the gradient operator, as throughout “∇” will stand for the
Riemannian connection on S2. As usual, “1” denotes the (flat) spatial Laplacian.

The symbol |∂x |
σ denotes the Fourier multiplier with symbol |ξ |σ . We also use standard Littlewood–

Paley Fourier multipliers Pk and P≤k , respectively denoting restrictions to frequencies ∼ 2k and . 2k ; see
Section 3 for details. We use f̂ to denote the Fourier transform of a function f in the spatial variables.

We also employ without further comment (finite-dimensional) vector-valued analogues of the above.
We use f . g to denote the estimate | f | ≤C |g| for an absolute constant C > 0. As usual, the constant

is allowed to change from line to line. To indicate dependence of the implicit constant upon parameters
(which, for instance, can include functions), we use subscripts, e.g., f .k g. As an equivalent alternative
we write f = O(g) (or, with subscripts, f = Ok(g), for instance) to denote | f | ≤ C |g|. If both f . g
and g . f , then we indicate this by writing f ∼ g.

Now we introduce the notion of Sobolev spaces of functions mapping from Euclidean space into S2.
The spaces are constructed with respect to a choice of base point Q ∈ S2, the purpose of which is to
define a notion of decay: instead of decaying to zero at infinity, our Sobolev class functions decay to Q.

For σ ∈ [0,∞), let Hσ
= Hσ (R2) denote the usual Sobolev space of complex-valued functions on R2.

For any Q ∈ S2, set

Hσ
Q := { f : R2

→ R3 such that | f (x)| ≡ 1 a.e. and f − Q ∈ Hσ
}.
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This is a metric space with induced distance dσQ( f, g)=‖ f −g‖Hσ . For f ∈Hσ
Q we set ‖ f ‖Hσ

Q
=dσQ( f, Q)

for short. We also define the spaces

H∞ :=
⋂
σ∈Z+

Hσ and H∞Q :=
⋂
σ∈Z+

Hσ
Q .

For any time T ∈ (0,∞), these definitions may be extended to the spacetime slab R2
× (−T, T ) (or

R2
×[−T, T ]). For any σ, ρ ∈ Z+, let Hσ,ρ(T ) denote the Sobolev space of complex-valued functions

on R2
× (−T, T ) with the norm

‖ f ‖Hσ,ρ(T ) := sup
t∈(−T,T )

ρ∑
ρ′=0

‖∂
ρ′

t f ( · , t)‖Hσ ,

and for Q ∈ S2 endow

Hσ,ρ
Q := { f : R2

× (−T, T )→ R3 such that | f (x, t)| ≡ 1 a.e. and f − Q ∈ Hσ,ρ(T )}

with the metric induced by the Hσ,ρ(T ) norm. Also, define the spaces

H∞,∞(T )=
⋂

σ,ρ∈Z+

Hσ,ρ(T ) and H∞,∞Q (T )=
⋂

σ,ρ∈Z+

Hσ,ρ
Q (T ).

For f ∈ H∞ and σ ≥ 0 we define the homogeneous Sobolev norms as

‖ f ‖Ḣσ = ‖ f̂ (ξ) · |ξ |σ‖L2 .

We mention two important conservation laws obeyed by solutions of the Schrödinger map system
(1-1). In particular, if ϕ ∈ C((T1, T2)→ H∞Q ) solves (1-1) on a time interval (T1, T2), then both∫

R2
|ϕ(t)− Q|2 dx and

∫
R2
|∂xϕ(t)|2 dx

are conserved. Hence the Sobolev norms H 0
Q and H 1

Q are conserved, as well as the energy (1-2). Note
also the time-reversibility obeyed by (1-1), which in particular permits the smooth extension to (−T, T )
of a smooth solution on [0, T ).

According to our conventions,

|∂xϕ(t)|2 :=
∑

m=1,2

|∂mϕ(t)|2.

We can now give a precise statement of a key known local result.

Theorem 1.1 (local existence and uniqueness). If the initial data ϕ0 is such that ϕ0 ∈ H∞Q for some
Q ∈ S2, then there exists a time T = T (‖ϕ0‖H25

Q
) > 0 for which there exists a unique solution ϕ in

C([−T, T ] → H∞Q ) of the initial value problem (1-1).

Proof. See [Sulem et al. 1986; Chang et al. 2000; Ding and Wang 2001; McGahagan 2007] and the
references therein. �
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1B. Global theory. Theorem 1.1 yields short-time existence and uniqueness as well as a blowup criterion;
as such it is central to the continuity arguments used for global results. In the small-energy setting, global
regularity (and more) was proved for (1-1) by Bejenaru, Ionescu, Kenig, and Tataru [Bejenaru et al.
2011c]. We now state a special case of their main result, omitting for the sake of brevity the consideration
of higher spatial dimensions and continuity of the solution map.

Theorem 1.2 (global regularity). Let Q ∈S2. Then there exists an ε0 > 0 such that, for any ϕ0 ∈ H∞Q with
‖∂xϕ0‖L2

x
≤ ε0, there is a unique solution ϕ ∈ C(R→ H∞Q ) of the initial value problem (1-1). Moreover,

for any T ∈ [0,∞) and σ ∈ Z+,

sup
t∈(−T,T )

‖ϕ(t)‖Hσ
Q
.σ,T,‖ϕ0‖HσQ

1.

Also, given any σ1 ∈ Z+, there exists a positive ε1 = ε1(σ1)≤ ε0 such that the uniform bounds

sup
t∈R

‖ϕ(t)‖Hσ
Q
.σ ‖ϕ0‖Hσ

Q

hold for all 1≤ σ ≤ σ1, provided ‖∂xϕ0‖L2
x
≤ ε1.

A complete proof may be found in [Bejenaru et al. 2011c]. Among the key contributions of that work
are the construction of the main function spaces and the completion of the linear estimate relating them,
which includes an important maximal function estimate. A significant observation made in the same paper
is that it is important that these spaces take into account a local smoothing effect; the authors crucially use
this effect to help bring under control the worst term of the nonlinearity. Another novelty of [Bejenaru
et al. 2011c] is its implementation of the caloric gauge, which was first introduced by Tao [2004] and
subsequently recommended by him for use in studying Schrödinger maps [Tao 2006a]. As the caloric
gauge is defined using harmonic map heat flow, it can be thought of as an intrinsic and nonlinear analogue
of classical Littlewood–Paley theory. In [Bejenaru et al. 2011c], both the intrinsic caloric gauge and the
extrinsic (and modern) Littlewood–Paley theory are used simultaneously.

Our main result extends Theorem 1.2.

Theorem 1.3. Let T > 0 and Q ∈ S2. Let ε0 > 0 and let ϕ ∈ H∞,∞Q (T ) be a solution of the Schrödinger
map system (1-1) whose initial data ϕ0 has energy E0 := E(ϕ0) < Ecrit and satisfies the energy dispersion
condition

sup
k∈Z

‖Pk∂xϕ0‖L2
x
≤ ε0. (1-4)

Let I ⊃ (−T, T ) denote the maximal time interval for which there exists a smooth (necessarily unique)
extension of ϕ satisfying (1-1). Suppose a priori that∑

k∈Z

‖Pk∂xϕ‖
2
L4

t,x (I×R2)
≤ ε2

0. (1-5)

Then, for ε0 sufficiently small,

sup
t∈(−T,T )

‖ϕ(t)‖Hσ
Q
.σ,T,‖ϕ0‖HσQ

1, (1-6)
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for all σ ∈ Z+. Additionally, I = R, so that, in particular, ϕ admits a unique smooth global extension
ϕ ∈ C(R→ H∞Q ). Moreover, for any σ1 ∈ Z+, there exists a positive ε1 = ε1(σ1)≤ ε0 such that

‖ϕ‖L∞t Hσ
Q(R×R2) .σ ‖ϕ‖Hσ

Q(R
2) (1-7)

holds for all 0≤ σ ≤ σ1 provided (1-4) and (1-5) hold with ε1 in place of ε0.

Note that the energy dispersion condition (1-4) holds automatically in the case of small energy. In such
case, our proofs may be modified (essentially by collapsing to or reverting to the arguments of [Bejenaru
et al. 2011c]) so that the a priori L4 bound is not required. Such an L4 bound, however, can then be seen
to hold a posteriori.

Using time divisibility of the L4 norm, we can replace (1-5) with∑
k∈Z

‖Pk∂xϕ‖
2
L4

t,x (I×R2)
≤ K

for any K > 0 provided we allow the threshold for ε0 and the implicit constant in (1-7) to depend upon
K > 0. We work with (1-5) as stated so as to avoid the additional technicalities that would arise otherwise.

We now turn to a very rough sketch of the proof of Theorem 1.3; for a detailed outline, see Section 4.

Basic setup and gauge selection. It suffices to prove homogeneous Sobolev variants of (1-6) and (1-7)
over a suitable range. Thanks to mass and energy conservation, we need only consider σ > 1. For σ ≥ 1,
controlling ‖ϕ(t)‖Ḣσ is equivalent to controlling ‖∂xϕ(t)‖Ḣσ−1 . We therefore consider the time evolution
of ∂xϕ, which may be written entirely in terms of derivatives of the map ϕ. A more intrinsic way of
expressing these equations is to select a gauge rather than an extrinsic embedding and coordinate system.
We employ the caloric gauge, which is geometrically natural and is analytically well-suited for studying
Schrödinger maps. See [Smith 2012a] for the complete details of the construction. It turns out that
Sobolev bounds for the gauged derivative map imply corresponding Sobolev bounds for the ungauged
derivative map. We schematically write the gauged equation as

(∂t −1)ψ = N,

where ψ is ∂xϕ placed in the caloric gauge and N is a nonlinearity constructed in part from ψ and ∂xψ .

Function spaces and their interrelation. To prove global results in the energy-critical setting, we of
course must look for bounds other than energy estimates to control the solution. Local smoothing estimates
and Strichartz estimates will be among the most important required. Our goal is to prove control over
ψ within a suitable space through the use of a bootstrap argument. A standard setup requires a space,
say G, for the functions ψ and a space, say N , for the nonlinearity N. In fact, we work with stronger,
frequency-localized spaces, Gk and Nk , to respectively hold Pkψ and PkN. We want them to be related
at least by the linear estimate

‖Pkψ‖Gk . ‖Pkψ(t = 0)‖L2
x
+‖PkN‖Nk .



608 PAUL SMITH

The hope, then, is to control ‖PkN‖Nk in terms of ‖Pkψ(t = 0)‖L2
x

and ε‖Pkψ‖Gk (with ε small), so that,
by proving (under a bootstrap hypothesis) a statement such as

‖Pkψ‖Gk . ‖Pkψ(t = 0)‖L2
x
+ ε‖Pkψ‖Gk ,

we may conclude

‖Pkψ‖Gk . ‖Pkψ(t = 0)‖L2
x
. (1-8)

Once (1-8) is proved, showing (1-6) and (1-7) is reduced to the comparatively easy tasks of unwinding
the gauging and frequency localization steps so as to conclude with a standard continuity argument.

Controlling the nonlinearity. In this context, the main contribution of this paper lies in showing that we
may conclude (1-8) without assuming small energy. The most difficult-to-control terms in the nonlinearity
PkN are those involving a derivative landing on high-frequency pieces of the derivative fields; we represent
them schematically as Alo∂ψhi. Local smoothing estimates controlling the linear evolution (introduced in
[Ionescu and Kenig 2006; 2007b]) were successfully used in [Bejenaru et al. 2011c] to handle Alo∂xψhi.
These are not strong enough to control Alo∂xψhi in the subthreshold energy setting. We instead pursue
a more covariant approach, working directly with a certain covariant frequency-localized Schrödinger
equation (see Section 5). Our approach is also physical-space based, in the vein of [Planchon and Vega
2009; 2012; Tao 2010], and modular.

2. Gauge field equations

In Section 2A we pass to the derivative formulation of the Schrödinger map system (1-1). All of the
main arguments of our subsequent analysis take place at this level. The derivative formulation is at once
both overdetermined, reflecting geometric constraints, and underdetermined, exhibiting gauge invariance.
Section 2B introduces the caloric gauge, which is the gauge we select and work with throughout. Both
Tao [2006a] and Bejenaru et al. [2011c] give good explanations justifying the use of the caloric gauge in
our setting as opposed to alternative gauges. The reader is referred to [Smith 2012a] for the requisite
construction of the caloric gauge for maps with energy up to Ecrit. Section 2C deals with frequency
localizing components of the caloric gauge. Proofs are postponed to Section 6 so that we can more quickly
turn our attention to the gauged Schrödinger map system.

2A. Derivative equations. We begin with some constructions that are valid for any smooth function
φ : R2

× (−T, T )→ S2. For a more general and extensive introduction to the gauge formalism we now
introduce, see [Tao 2004]. Space and time derivatives of φ are denoted by ∂αφ(x, t), where α = 1, 2, 3
ranges over the spatial variables x1, x2 and time t with ∂3 = ∂t .

Select a (smooth) orthonormal frame (v(x, t), w(x, t)) for the bundle Tφ(x,t)S2, that is, smooth
functions v,w : R2

× (−T, T ) → Tφ(x,t)S2 such that at each point (x, t) in the domain the vectors
v(x, t), w(x, t) form an orthonormal basis for Tφ(x,t)S2. As a matter of convention we assume that v and
w are chosen so that v×w = φ.
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With respect to this chosen frame we then introduce the derivative fields ψα, setting

ψα := v · ∂αφ+ iw · ∂αφ. (2-1)

Then ∂αφ admits the representation

∂αφ = v Reψα +w Imψα (2-2)

with respect to the frame (v,w). The derivative fields can be thought of as arising from the following
process: First, rewrite the vector ∂αφ with respect to the orthonormal basis (v,w); then, identify R2 with
the complex numbers C according to v↔ 1, w↔ i . Note that this identification respects the complex
structure of the target manifold.

Through this identification the Riemannian connection on S2 pulls back to a covariant derivative on C,
which we denote by

Dα := ∂α + i Aα.

The real-valued connection coefficients Aα are defined via

Aα := w · ∂αv, (2-3)

so that in particular

∂αv =−φ Reψα +wAα and ∂αw =−φ Imψα − vAα.

Due to the fact that the Riemannian connection on S2 is torsion-free, the derivative fields satisfy the
relations

Dβψα = Dαψβ . (2-4)

or equivalently,
∂β Aα − ∂αAβ = Im(ψβψα)=: qβα.

The curvature of the connection is therefore given by

[Dβ, Dα] := DβDα − DαDβ = iqβα. (2-5)

Assuming now that we are given a smooth solution ϕ of the Schrödinger map system (1-1), we derive
the equations satisfied by the derivative fields ψα. The system (1-1) directly translates to

ψt = i Dlψl (2-6)

because
ϕ×1ϕ = J (ϕ)(ϕ∗∇) j∂ jϕ,

where J (ϕ) denotes the complex structure ϕ× and (ϕ∗∇) j the pullback of the Levi-Civita connection ∇
on the sphere.

Let us pause to note the following conventions regarding indices. Roman typeface letters are used to
index spatial variables. Greek typeface letters are used to index the spatial variables along with time.
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Repeated lettered indices within the same subscript or occurring in juxtaposed terms indicate an implicit
summation over the appropriate set of indices.

Using (2-4) and (2-5) in (2-6) yields

Dtψm = i Dl Dlψm + qlmψl,

which is equivalent to the nonlinear Schrödinger equation

(i∂t +1)ψm = Nm, (2-7)

where the nonlinearity Nm is defined by the formula

Nm := −i Al∂lψm − i∂l(Alψm)+ (At + A2
x)ψm − iψl Im(ψlψm).

We split this nonlinearity as a sum Nm = Bm + Vm , with Bm and Vm defined by

Bm := −i∂l(Alψm)− i Al∂lψm (2-8)

and

Vm := (At + A2
x)ψm − iψl Im(ψlψm), (2-9)

thus separating the essentially semilinear magnetic potential terms and the essentially semilinear electric
potential terms from each other.

We now state the gauge formulation of the differentiated Schrödinger map system:
Dtψm = i Dl Dlψm + Im(ψlψm)ψl,

Dαψβ = Dβψα,

Im(ψαψβ)= ∂αAβ − ∂β Aα.
(2-10)

A solution ψm to (2-10) cannot be determined uniquely without first choosing an orthonormal frame
(v,w). Changing a given choice of orthonormal frame induces a gauge transformation and may be
represented as

ψm→ e−iθψm and Am→ Am + ∂mθ

in terms of the gauge components. The system (2-10) is invariant with respect to such gauge transforma-
tions.

The advantage of working with this gauge formalism rather than the Schrödinger map system or
the derivative equations directly is that a carefully selected choice of gauge tames the nonlinearity. In
particular, when the caloric gauge is employed, the nonlinearity in (2-7) is nearly perturbative.

2B. Introduction to the caloric gauge. In this section we introduce the caloric gauge, which is the gauge
we shall employ throughout the remainder of the paper. Gauges were first used to study (1-1) in the
context of proving local wellposedness in [Chang et al. 2000]. We note here that the while the Coulomb
gauge would seem an attractive choice, it turns out that this gauge is not well-suited to the study of
Schrödinger maps in low dimension, as in low dimension parallel interactions of waves are more probable
than in high dimension, resulting in unfavorable high× high→ low cascades. See [Tao 2006a] and
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[Bejenaru et al. 2011c] for further discussion and a comparison of the Coulomb and caloric gauges. Also
see [Tao 2006b, Chapter 6] for a discussion of various gauges that have been used in the study of wave
maps.

The caloric gauge was introduced by Tao [2004] in the setting of wave maps into hyperbolic space. In
a series of unpublished papers [2008a; 2008b; 2008c; 2009a; 2009b], Tao used this gauge in establishing
global regularity of wave maps into hyperbolic space. In his unpublished note [Tao 2006a], Tao also
suggested the caloric gauge as a suitable gauge for the study of Schrödinger maps. The caloric gauge was
first used in the Schrödinger maps problem by Bejenaru, Ionescu, Kenig, and Tataru [2011c] to establish
global well-posedness in the setting of initial data with sufficiently small critical norm. We recommend
[Tao 2004; 2006a; 2008b; Bejenaru et al. 2011c] for background on the caloric gauge and for helpful
heuristics.

Theorem 2.1 (the caloric gauge). Let T ∈ (0,∞), Q ∈ S2, and let φ(x, t) ∈ H∞,∞Q (T ) be such that
supt∈(−T,T ) E(φ(t)) < Ecrit. There exists a unique smooth extension φ(s, x, t) ∈C([0,∞)→ H∞,∞Q (T ))
solving the covariant heat equation

∂sφ =1φ+φ · |∂xφ|
2 (2-11)

and with φ(0, x, t)=φ(x, t). Moreover, for any given choice of a (constant) orthonormal basis (v∞, w∞)
of TQS2, there exist smooth functions v,w : [0,∞)×R2

× (−T, T )→ S2 such that at each point (s, x, t),
the set {v,w, φ} naturally forms an orthonormal basis for R3, the gauge condition

w · ∂sv ≡ 0, (2-12)

is satisfied, and

|∂ρx f (s)|.ρ 〈s〉−(|ρ|+1)/2 (2-13)

for each f ∈ {φ− Q, v− v∞, w−w∞}, multiindex ρ, and s ≥ 0.

Proof. This is a special case of the more general result [Smith 2012a, Theorem 7.6]. Whereas in [Smith
2012a] everything is stated in terms of the category of Schwartz functions, in fact this requirement may be
relaxed to H∞,∞Q (T ) without difficulty (at least in the case of compact target manifolds) since weighted
decay in L2-based Sobolev spaces is not used in any proofs. �

In our application in this paper, E(ϕ(t)) is conserved. Therefore, we set E0 := E(ϕ0).
Having extended v,w along the heat flow, we may likewise extend Ax along the flow. We record here

for reference a technical bound that proves useful; for the proof, see [Smith 2012a, §7.1].

Theorem 2.2. Assume the conditions of Theorem 2.1 are in force. Then we have the bound

‖Ax(s)‖L2
x (R

2) .E0 1. (2-14)

Corollary 2.3 (energy bounds for the frame). Let ϕ be a Schrödinger map with energy E0 < Ecrit. Then

‖∂xv‖L∞t L2
x
.E0 1. (2-15)
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Proof. Because |v| ≡ 1, we have v · ∂mv ≡ 0. Therefore, with respect to the orthonormal frame (v,w, ϕ),
the vector ∂mv admits the representation

∂mv = Am ·w−Reψm ·ϕ. (2-16)

The bound (2-15) then follows from using |w| ≡ 1≡ |ϕ|, ‖ψm‖L2
x
≡ ‖∂mϕ‖L2

x
, energy conservation, and

(2-14) all in (2-16). �

Adopting the convention ∂0 = ∂s , and now and hereafter allowing all Greek indices to range over heat
time, spatial variables, and time, we define for all (s, x, t) ∈ [0,∞)×R2

× (−T, T ) the various gauge
components

ψα := v · ∂αϕ+ iw · ∂αϕ,
Aα := w · ∂αv,
Dα := ∂α + Aα,
qαβ := ∂αAβ − ∂β Aα.

For α = 0, 1, 2, 3 we have
∂αϕ = v Reψα +w Imψα.

The parallel transport conditionw ·∂sv≡ 0 is equivalently expressed in terms of the connection coefficients
as

As ≡ 0. (2-17)

Expressed in terms of the gauge, the heat flow (2-11) lifts to

ψs = Dlψl . (2-18)

Using (2-4) and (2-5), we may rewrite the Dm covariant derivative of (2-18) as

∂sψm = Dl Dlψm + i Im(ψmψl)ψl,

or equivalently

(∂s −1)ψm = i Al∂lψm + i∂l(Alψm)− A2
xψm + iψl Im(ψlψm). (2-19)

More generally, taking the Dα covariant derivative, we obtain

(∂s −1)ψα =Uα, (2-20)

where we set
Uα := i Al∂lψα + i∂l(Alψα)− A2

xψα + iψl Im(ψlψα), (2-21)

which admits the alternative representation

Uα = 2i Al∂lψα + i(∂l Al)ψα − A2
xψα + iψl Im(ψlψα). (2-22)

From (2-5) and (2-17) it follows that
∂s Aα = Im(ψsψα).
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Integrating back from s =∞ (justified using (2-13)) yields

Aα(s)=−
∫
∞

s
Im(ψαψs)(s ′) ds ′. (2-23)

At s = 0, ϕ satisfies both (1-1) and (2-11), or equivalently, ψt(s = 0)= iψs(s = 0). While for s > 0 it
continues to be the case thatψs=Dlψl by construction, we no longer necessarily haveψt(s)= i Dl(s)ψl(s),
i.e., ϕ(s, x, t) is not necessarily a Schrödinger map at fixed s > 0. In the following lemma we derive an
evolution equation for the commutator 9 = ψt − iψs .

Lemma 2.4 (flows do not commute). Set 9 := ψt − iψs . Then

∂s9 = Dl Dl9 + i Im(ψtψl)ψl − Im(ψsψl)ψl (2-24)

= Dl Dl9 + i Im(9ψl)ψl + i Im(iψsψl)ψl − Im(ψsψl)ψl . (2-25)

Proof. We prove (2-24), since (2-25) is a trivial consequence of it.
Applying (2-19) and (2-20) to ψs and ψt and collapsing the covariant derivative terms yields

∂sψt = Dl Dlψt + i Im(ψtψl)ψl, (2-26)

∂sψs = Dl Dlψs + i Im(ψsψl)ψl . (2-27)

Multiply (2-27) by i to obtain the s-evolution of iψs . Multiplication by i commutes with Dl , but fails to
do so with Im( · ), and thus we obtain

∂siψm = Dl Dl iψs − Im(ψsψl)ψl . (2-28)

Together (2-26) and (2-28) imply (2-24). �

2C. Frequency localization. Frequency localization plays an indispensable role in our analysis. In this
subsection we establish some basic concepts and then state some basic results for the caloric gauge.

Our notation for a standard Littlewood–Paley frequency localization of a function f to frequencies
∼ 2k is Pk f and to frequencies . 2k is P≤k f . The particular localization chosen is of course immaterial
to our analysis, but for definiteness is specified in the next section and chosen for convenience to coincide
with that in [Bejenaru et al. 2011c].

We shall frequently make use of the following standard Bernstein inequalities for R2 with σ ≥ 0 and
1≤ p ≤ q ≤∞:

‖P≤k |∂x |
σ f ‖L p

x (R2) .p,σ 2σk
‖P≤k f ‖L p

x (R2).

‖Pk |∂x |
±σ f ‖L p

x (R2) .p,σ 2±σk
‖Pk f ‖L p

x (R2).

‖P≤k f ‖Lq
x (R2) .p,q 22k(1/p−1/q)

‖P≤k f ‖L p
x (R2).

‖Pk f ‖Lq
x (R2) .p,q 22k(1/p−1/q)

‖Pk f ‖L p
x (R2).

A particularly important notion for us is that of a frequency envelope, as it provides a way to rigor-
ously manage the “frequency leakage” phenomenon and the frequency cascades produced by nonlinear
interactions. We introduce a parameter δ in the definition; for the purposes of this paper δ = 1

40 suffices.
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Definition 2.5 (frequency envelopes). A positive sequence {ak}k∈Z is a frequency envelope if it belongs
to l2 and is slowly varying:

ak ≤ a j 2δ |k− j |, j, k ∈ Z. (2-29)

A frequency envelope {ak}k∈Z is ε-energy dispersed if it satisfies the additional condition

sup
k∈Z

ak ≤ ε.

Note in particular that frequency envelopes satisfy the summation rules∑
k′≤k

2pk′ak′ . (p− δ)−12pkak, p > δ, (2-30)

∑
k′≥k

2−pk′ak′ . (p− δ)−12−pkak, p > δ. (2-31)

In practice we work with p bounded away from δ— for instance, p > 2δ suffices — and iterate these
inequalities only O(1) times. Therefore, in applications we drop the factors (p−δ)−1 appearing in (2-30)
and (2-31).

Finally, pick a positive integer σ1 and hold it fixed throughout the remainder of this section. Results in
this section hold for any such σ1, though implicit constants are allowed to depend upon this choice.

Given initial data ϕ0 ∈ H∞Q , define for all σ ≥ 0 and k ∈ Z

ck(σ ) := sup
k′∈Z

2−δ |k−k′|2σk′
‖Pk′∂xϕ0‖L2

x
. (2-32)

Set ck := ck(0) for short. For σ ∈ [0, σ1] we then have that

‖∂xϕ0‖
2
Ḣσ

x
∼

∑
k∈Z

c2
k(σ ) and ‖Pk∂xϕ0‖L2

x
≤ ck(σ )2−σk . (2-33)

Similarly, for ϕ ∈ H∞,∞Q (T ), define for all σ ≥ 0 and k ∈ Z

γk(σ ) := sup
k′∈Z

2−δ |k−k′|2σk′
‖Pk′ϕ‖L∞t L2

x
. (2-34)

Set γk := γk(1).

Theorem 2.6 (frequency-localized energy bounds for heat flow). Let f ∈ {ϕ, v,w}. Then for σ ∈ [1, σ1]

the bound
‖Pk f (s)‖L∞t L2

x
. 2−σkγk(σ )(1+ s22k)−20 (2-35)

holds and for any σ, ρ ∈ Z+ we have that

sup
k∈Z

sup
s∈[0,∞)

(1+ s)σ/22σk
‖Pk∂

ρ
t f (s)‖L∞t L2

x
<∞. (2-36)

Corollary 2.7 (frequency-localized energy bounds for the caloric gauge). For σ ∈ [0, σ1− 1], we have

‖Pkψx(s)‖L∞t L2
x
+‖Pk Am(s)‖L∞t L2

x
. 2k2−σkγk(σ )(1+ s22k)−20. (2-37)
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Moreover, for any σ ∈ Z+,

sup
k∈Z

sup
s∈[0,∞)

(1+ s)σ/22σk2−k(
‖Pk(∂

ρ
t ψx(s))‖L∞t L2

x
+‖Pk(∂

ρ
t Ax(s))‖L∞t L2

x

)
<∞ (2-38)

and
sup
k∈Z

sup
s∈[0,∞)

(1+ s)σ/22σk(
‖Pk(∂

ρ
t ψt(s))‖L∞t L2

x
+‖Pk(∂

ρ
t At(s))‖L∞t L2

x

)
<∞. (2-39)

We prove Theorem 2.6 and its corollary in Section 6. Corollary 2.7 has an elementary consequence:

Corollary 2.8. For σ ∈ [0, σ1− 1] we have

‖Pkψx(0, · , 0)‖L2
x
. 2−σkck(σ ). (2-40)

3. Function spaces and basic estimates

3A. Definitions.

Definition 3.1 (Littlewood–Paley multipliers). Let η0 : R→ [0, 1] be a smooth even function vanishing
outside the interval [−8/5, 8/5] and equal to 1 on [−5/4, 5/4]. For j ∈ Z, set

χ j ( · )= η0( · /2 j )− η0( · /2 j−1), χ≤ j ( · )= η0( · /2 j ).

Let Pk denote the operator on L∞(R2) defined by the Fourier multiplier ξ → χk(|ξ |). For any interval
I ⊂ R, define the Fourier multiplier

χI =
∑

j∈I∩Z

χ j

and let PI denote its corresponding operator on L∞(R2). We shall denote P(−∞,k] by P≤k for short. For
θ ∈ S1 and k ∈ Z, we define the operators Pk,θ by the Fourier multipliers ξ → χk(ξ · θ).

Some frequency interactions in the nonlinearity of (2-7) can be controlled using the following lemma.

Lemma 3.2 (Strichartz estimate). Let f ∈ L2
x(R

2) and k ∈ Z. Then the Strichartz estimate

‖ei t1 f ‖L4
t,x
. ‖ f ‖L2

x

holds, as does the maximal function bound

‖ei t1Pk f ‖L4
x L∞t . 2k/2

‖ f ‖L2
x
.

The first bound is the original Strichartz estimate [1977] and the second follows from scaling. These
will be augmented with certain lateral Strichartz estimates to be introduced shortly. Strichartz estimates
alone are not sufficient for controlling the nonlinearity in (2-7). The additional control required comes
from local smoothing and maximal function estimates. Certain local smoothing spaces localized to
cubes were introduced in [Kenig et al. 1993] to study the local well-posedness of Schrödinger equations
with general derivative nonlinearities. Stronger spaces were introduced in [Ionescu and Kenig 2007a] to
prove a low-regularity global result. In the Schrödinger map setting, local smoothing spaces were first
used in [Ionescu and Kenig 2006] and subsequently in [Ionescu and Kenig 2007b; Bejenaru et al. 2007;
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Bejenaru 2008a]. The particular local smoothing/maximal function spaces we shall use were introduced
in [Bejenaru et al. 2011c].

For a unit length θ ∈ S1, we denote by Hθ its orthogonal complement in R2 with the induced measure.
Define the lateral spaces L p,q

θ as those consisting of all measurable f for which the norm

‖h‖L p,q
θ
=

(∫
R

(∫
Hθ×R

|h(x1θ + x2, t)|q dx2 dt
)p/q

dx1

)1/p

,

is finite. We make the usual modifications when p =∞ or q =∞. The most important spaces for our
analysis are the local smoothing space L∞,2θ and the inhomogeneous local smoothing space L1,2

θ . To
move between these spaces we use the maximal function space L2,∞

θ .

Lemma 3.3 (local smoothing [Ionescu and Kenig 2006; 2007b]). Let f ∈ L2
x(R

2), k ∈Z, and θ ∈S1. Then

‖ei t1Pk,θ f ‖L∞,2θ
. 2−k/2

‖ f ‖L2
x
.

For f ∈ L2
x(R

d), the maximal function space bound

‖ei t1Pk f ‖L2,∞
θ
. 2k(d−1)/2

‖ f ‖L2
x

holds for dimension d ≥ 3.

In d = 2, the maximal function bound fails due to a logarithmic divergence. In order to overcome this,
we exploit Galilean invariance as in [Bejenaru et al. 2011c] (the idea goes back to [Tataru 2001] in the
setting of wave maps).

For p, q ∈ [1,∞], θ ∈ S1, λ ∈ R, define L p,q
θ,λ using the norm

‖h‖L p,q
θ,λ
= ‖Tλθ (h)‖L p,q

θ
=

(∫
R

(∫
Hθ×R

|h((x1+ tλ)θ + x2, t)|q dx2 dt
)p/q

dx1

)1/p

,

where Tw denotes the Galilean transformation

Tw( f )(x, t)= e−i x ·w/2e−i t |w|2/4 f (x + tw, t).

With W ⊂ R finite we define the spaces L p,q
θ,W by

L p,q
θ,W =

∑
λ∈W

L p,q
θ,λ , ‖ f ‖L p,q

θ,W
= inf

f=
∑
λ∈W fλ

∑
λ∈W

‖ fλ‖L p,q
θ,λ
.

For k ∈ Z, K ∈ Z+, set

Wk := {λ ∈ [−2k, 2k
] : 2k+2Kλ ∈ Z}.

In our application we shall work on a finite time interval [−22K, 22K
] in order to ensure that the Wk

are finite. This still suffices for proving global results so long as our effective bounds are proved with
constants independent of T,K. As discussed in [Bejenaru et al. 2011c, §3], restricting T to a finite time
interval avoids introducing additional technicalities.
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Lemma 3.4 (local smoothing/maximal function estimates). Let f ∈ L2
x(R

2), k ∈ Z, and θ ∈ S1. Then

‖ei t1Pk,θ f ‖L∞,2θ,λ
. 2−k/2

‖ f ‖L2
x
, |λ| ≤ 2k−40,

and if T ∈ (0, 22K
], then

‖1[−T,T ](t)ei t1Pk f ‖L2,∞
θ,Wk+40

. 2k/2
‖ f ‖L2

x
.

Proof. The first bound follows from Lemma 3.3 via a Galilean boost. The second is more involved and is
proven in [Bejenaru et al. 2011c, §7]. �

Lemma 3.5 (lateral Strichartz estimates). Let f ∈ L2
x(R

2), k ∈Z, and θ ∈S1. Let 2< p≤∞, 2≤ q ≤∞
and 1/p+ 1/q = 1/2. Then

‖ei t1Pk,θ f ‖L p,q
θ
. 2k(2/p−1/2)

‖ f ‖L2
x
,

‖ei t1Pk f ‖L p,q
θ
.p 2k(2/p−1/2)

‖ f ‖L2
x
,

p ≥ q,

p ≤ q.

Proof. Informally speaking, these bounds follow from interpolating between the L4 Strichartz estimate and
the local smoothing/maximal function estimates of Lemma 3.4. See [Bejenaru et al. 2011c, Lemma 7.1]
for the rigorous argument. �

We now introduce the main function spaces. Let T > 0. For k ∈Z, let Ik = {ξ ∈R2
: |ξ | ∈ [2k−1, 2k+1

]}.
Let

L2
k(T ) := { f ∈ L2(R2

×[−T, T ]) : supp f̂ (ξ, t)⊂ Ik ×[−T, T ]}.

For f ∈ L2(R2
×[−T, T ]), let

‖ f ‖F0
k (T )
:= ‖ f ‖L∞t L2

x
+‖ f ‖L4

t,x
+ 2−k/2

‖ f ‖L4
x L∞t + 2−k/6 sup

θ∈S1
‖ f ‖L3,6

θ
++2−k/2 sup

θ∈S1
‖ f ‖L2,∞

θ,Wk+40
.

We then define, similarly to what is done in [Bejenaru et al. 2011c], Fk(T ), Gk(T ), Nk(T ) as the normed
spaces of functions in L2

k(T ) for which the corresponding norms

‖ f ‖Fk(T ) := inf
J,m1,...,m J∈Z+

inf
f= fm1+···+ fm J

J∑
j=1

2m j‖ fm j‖F0
k+m j

,

‖ f ‖Gk(T ) :=‖ f ‖F0
k (T )
+ 2k/6 sup

| j−k|≤20
sup
θ∈S1
‖Pj,θ f ‖L6,3

θ
+ 2k/2 sup

| j−k|≤20
sup
θ∈S1

sup
|λ|<2k−40

‖Pj,θ f ‖L∞,2θ,λ
,

‖ f ‖Nk(T ) := inf
f= f1+ f2+ f3+ f4+ f5+ f6

‖ f1‖L4/3
t,x
+ 2k/6

‖ f2‖L3/2,6/5
θ̂1

+ 2k/6
‖ f3‖L3/2,6/5

θ̂2

+ 2−k/6
‖ f4‖L6/5,3/2

θ̂1

+ 2−k/6
‖ f5‖L6/5,3/2

θ̂2

+ 2−k/2 sup
θ∈S1
‖ f6‖L1,2

θ,Wk−40
,

are finite, where (θ̂1, θ̂2) denotes the canonical basis in R2.
There are a few minor differences between these spaces and those appearing in [Bejenaru et al. 2011c].

The space F0
k now includes the lateral Strichartz space L3,6

θ , whereas in that reference, only Gk was
endowed with this norm. The net effect on the space Gk is that it is left unchanged. The space Fk ,
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however, now explicitly incorporates this particular lateral Strichartz structure. Note though, that for fixed
θ ∈ S1, we have by enough applications of Young’s and Hölder’s inequalities that

2−k/6
‖ f ‖L3,6

θ
= 2−k/6

(∫
R

(∫
Hθ×R

| f (x1θ + x2, t)|6 dx2 dt
)1/2

dx1

)1/3

. 2−k/6
(∫

R

‖ f ‖2L4
θ,t
‖ f ‖L∞θ,t dx1

)1/3

. 2−k/6
(∫

R

‖ f ‖4L4
θ,t

dx1

)1/6(∫
R

‖ f ‖2L∞θ,tdx1

)1/6

. ‖ f ‖2/3L4 · 2
−k/6
‖ f ‖1/3

L2,∞
θ

. ‖ f ‖L4 + 2−k/2
‖ f ‖L2,∞

θ
.

We also make one change to the Nk space: We explicitly incorporate L6/5,3/2
θ .

Incorporating these extra lateral Strichartz spaces affords us greater flexibility in certain estimates: We
can avoid having to use local smoothing/maximal function spaces if we are willing to give up some decay.
This tradeoff pays off in Section 5, where as a consequence we can prove a stronger local smoothing
estimate for a certain magnetic nonlinear Schrödinger equation in the one regime where this improvement
is absolutely essential.

Proposition 3.6 (main linear estimate). Assume K ∈ Z+, T ∈ (0, 22K
] and k ∈ Z. Then for each u0 ∈ L2

that is frequency-localized to Ik and for any h ∈ Nk(T ), the solution u of

(i∂t +1x)u = h, u(0)= u0,

satisfies
‖u‖Gk(T ) . ‖u(0)‖L2

x
+‖h‖Nk(T ).

Proof. See [Bejenaru et al. 2011c, Proposition 7.2] for details. Our changes to the spaces necessitate only
minor changes in their proof, as we must incorporate L6/5,3/2

θ̂1
and L6/5,3/2

θ̂2
into the space N 0

k (T ). �

The spaces Gk(T ) are used to hold projections Pkψm of the derivative fields ψm satisfying (2-7). The
main components of Gk(T ) are the local smoothing/maximal function spaces L∞,2θ,λ , L2,∞

θ,Wk+40
, and the

lateral Strichartz spaces. The local smoothing and maximal function space components play an essential
role in recovering the derivative loss that is due to the magnetic nonlinearity.

The spaces Nk(T ) hold frequency projections of the nonlinearities in (2-7). Here the main spaces are
the inhomogeneous local smoothing spaces L1,2

θ,Wk−40
and the Strichartz spaces, both chosen to match those

of Gk(T ).
The spaces Gk(T ) clearly embed in Fk(T ). Two key properties enjoyed only by the larger spaces

Fk(T ) are
‖ f ‖Fk(T ) ≈ ‖ f ‖Fk+1(T ),

for k ∈ Z and f ∈ Fk(T )∩ Fk+1(T ), and

‖Pk(uv)‖Fk(T ) . ‖u‖Fk′ (T )‖v‖L∞t,x
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for k, k ′ ∈ Z, |k− k ′| ≤ 20, u ∈ Fk′(T ), v ∈ L∞(R2
×[−T, T ]). Both of these properties follow readily

from the definitions.
In order to bound the nonlinearity of (2-7) in Nk(T ), it is important to gain regularity from the parabolic

heat-time smoothing effect. The desired frequency-localized bounds do not (or at least not so readily)
propagate in heat-time in the spaces Gk(T ), whereas these bounds do propagate with decay in the larger
spaces Fk(T ). Note that since the Fk(T ) norm is translation invariant, we have

‖es1h‖Fk(T ) . (1+ s22k)−20
‖h‖Fk(T ), s ≥ 0,

for h ∈ Fk(T ). In certain bilinear estimates we do not need the full strength of the spaces Fk(T ) and
instead can use the bound

‖ f ‖Fk(T ) . ‖ f ‖L2
x L∞t +‖ f ‖L4

t,x
, (3-1)

which follows from

‖ f ‖L2,∞
θ,Wk+m j

≤ ‖ f ‖L2,∞
θ
. 2k/2

‖ f ‖L2
x L∞t .

We introduce one more class of function spaces. These can be viewed as a refinement of the Strichartz
part of Fk(T ). For k ∈Z and ω ∈ [0, 1/2] we define Sωk (T ) to be the normed space of functions belonging
to L2

k(T ) whose norm

‖ f ‖Sωk (T ) = 2ωk(
‖ f ‖L∞t L2ω

x
+‖ f ‖L4

t L pω
x
+ 2−k/2

‖ f ‖L pω
x L∞t

)
(3-2)

is finite, where the exponents 2ω and pω are determined by

1
2ω
−

1
2
=

1
pω
−

1
4
=
ω

2
.

Note that Fk(T ) ↪→ S0
k (T ) and that by Bernstein we have

‖ f ‖Sω′k (T )
. ‖ f ‖Sωk (T ), ω′ ≤ ω.

3B. Bilinear estimates.

Lemma 3.7 (bilinear estimates on Nk(T )). For k, k1, k3 ∈ Z, h ∈ L2
t,x , f ∈ Fk1(T ), and g ∈ Gk3(T ), we

have the following inequalities under the given restrictions on k1, k3:

‖Pk(h f )‖Nk(T ) . ‖h‖L2
t,x
‖ f ‖Fk1 (T ) if |k1− k| ≤ 80. (3-3)

‖Pk(h f )‖Nk(T ) . 2−|k−k1|/6‖h‖L2
t,x
‖ f ‖Fk1 (T ) if k1 ≤ k− 80. (3-4)

‖Pk(hg)‖Nk(T ) . 2−|k−k3|/6‖h‖L2
t,x
‖g‖Gk3 (T ) if k ≤ k3− 80. (3-5)

Proof. Estimate (3-3) follows from Hölder’s inequality and the definition of Fk(T ), Nk(T ):

‖F f ‖L4/3 ≤ ‖F‖L2‖ f ‖L4 .
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For (3-4) and (3-5), we use an angular partition of unity in frequency to write

f = f1+ f2, ‖ f1‖L3,6
θ̂1

+‖g1‖L3,6
θ̂2

. 2k1/6‖ f ‖Fk(T ),

g = g1+ g2, ‖g1‖L6,3
θ̂1

+‖g1‖L6,3
θ̂2

. 2−k1/6‖g‖Gk(T ).

Then

‖Pk(F f )‖Nk(T ) . 2−k/6(
‖F f1‖L6/5,3/2

θ̂1

+‖F f2‖L6/5,3/2
θ̂2

)
. 2−k/6

‖F‖L2
(
‖ f1‖L3,6

θ̂1

+‖ f1‖L3,6
θ̂2

)
. 2(k1−k)/6

‖F‖L2‖ f ‖Fk1 (T ),

‖Pk(Fg)‖Nk(T ) . 2k/6(
‖Fg1‖L3/2,6/5

θ̂1

+‖Fg2‖L3/2,6/5
θ̂2

)
. 2k/6

‖F‖L2
(
‖g1‖L6,3

θ̂1

+‖g1‖L6,3
θ̂2

)
. 2(k−k1)/6‖F‖L2‖g‖Gk3 (T ). �

Lemma 3.8 (bilinear estimates on L2
t,x ). For k1, k2, k3 ∈ Z, f1 ∈ Fk1(T ), f2 ∈ Fk2(T ), and g ∈ Gk3(T ),

we have
‖ f1 · f2‖L2

t,x
. ‖ f1‖Fk1 (T )‖ f2‖Fk2 (T ), (3-6)

‖ f · g‖L2
t,x
. 2−|k1−k3|/6‖ f ‖Fk1 (T )‖g‖Gk3 (T ) for k1 ≤ k3. (3-7)

Proof. It suffices to show that

‖ f g‖L2 . ‖ f ‖F0
k1
(T )‖g‖Gk2 (T ) for k1 ≥ k2− 100, (3-8)

‖ f g‖L2 . 2(k1−k2)/6‖ f ‖F0
k1
(T )‖g‖Gk2 (T ) for k1 < k2− 100. (3-9)

Estimate (3-8) follows from estimating each factor in L4. For (3-9), we first observe that, using a smooth
partition of unity in frequency space, we may assume that ĝ is supported in the set{

ξ : |ξ | ∈ [2k2−1, 2k2+1
] and ξ · θ0 ≥ 2k2−5}

for some direction θ0 ∈ S1. Then ‖ f g‖L2 . ‖ f ‖L3,6
θ0
‖g‖L6,3

θ0
. 2(k1−k2)/6‖ f ‖F0

k1
(T )‖g‖Gk2 (T ). �

We also have the following stronger estimates, which rely upon the local smoothing and maximal
function spaces.

Lemma 3.9 (bilinear estimates using local smoothing/maximal function bounds). For k, k1, k2 ∈ Z,
h ∈ L2

t,x , f ∈ Fk1(T ), g ∈ Gk2(T ), we have, under the given restrictions on k1, k2:

‖Pk(h f )‖Nk(T ) . 2−|k−k1|/2‖h‖L2
t,x
‖ f ‖Fk1 (T ) if k1 ≤ k− 80. (3-10)

‖ f · g‖L2
t,x
. 2−|k1−k2|/2‖ f ‖Fk1 (T )‖g‖Gk2 (T ) if k1 ≤ k2. (3-11)

Proof. Estimate (3-10) follows from the definitions since

‖Pk(h f )‖Nk(T ) . 2−k/2 sup
θ∈S1
‖h f ‖L1,2

θ,Wk−40
. 2−k/2 sup

θ∈S1
‖ f ‖L2,∞

θ,Wk1+40
‖h‖L2

t,x
.

The proof of (3-11) parallels that of (3-7) and is omitted (see [Bejenaru et al. 2011c, Lemma 6.5] for
details). �
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3C. Trilinear estimates and summation. We combine the bilinear estimates to establish some trilinear
estimates. As we do not control local smoothing norms along the heat flow, we will oftentimes be able to
put only one term in a Gk space. Nonetheless, such estimates still exhibit good off-diagonal decay.

Define the sets Z1(k), Z2(k), Z3(k)⊂ Z3 as follows:

Z1(k) := {(k1, k2, k3) ∈ Z3
: k1, k2 ≤ k− 40 and |k3− k| ≤ 4}.

Z2(k) := {(k1, k2, k3) ∈ Z3
: k, k3 ≤ k1− 40 and |k2− k1| ≤ 45}.

Z3(k) := {(k1, k2, k3) ∈ Z3
: |max{k, k3}−max{k1, k2}| ≤ 40}.

(3-12)

In our main trilinear estimate, we avoid using local smoothing/maximal function spaces.

Lemma 3.10 (main trilinear estimate). Let Ck,k1,k2,k3 denote the best constant C in the estimate

‖Pk
(
Pk1 f1 Pk2 f2 Pk3 g

)
‖Nk(T ) . C‖Pk1 f1‖Fk1 (T )‖Pk2 f2‖Fk2 (T )‖Pk3 g‖Gk3 (T ). (3-13)

The best constant Ck,k1,k2,k3 satisfies the bounds

Ck,k1,k2,k3 .


2−|(k1+k2)/6−k/3| if (k1, k2, k3) ∈ Z1(k),
2−|k−k3|/6 if (k1, k2, k3) ∈ Z2(k),
2−|1k|/6 if (k1, k2, k3) ∈ Z3(k),
0 if (k1, k2, k3) ∈ Z3

\ {Z1(k)∪ Z2(k)∪ Z3(k)},

where 1k =max{k, k1, k2, k3}−min{k, k1, k2, k3} ≥ 0.

Proof. After placing the term Pk(Pk1 f1 Pk2 f2 Pk3 g) in L4/3
t,x and then using Hölder’s inequality to bound

each factor in L4
t,x , it follows from Bernstein that

Ck,k1,k2,k3 . 1, (3-14)

and so, in particular, for any choice of integers k, k1, k2, k3, such a constant Ck,k1,k2,k3 exists.
Frequencies not represented in one of Z1(k), Z2(k), Z3(k) cannot interact so as to yield a frequency in

Ik . Over Z1(k), we apply (3-4) and (3-7).
On Z2(k) we apply (3-4) if k > k3 and (3-5) if k ≤ k3. We conclude with (3-6).
On Z3(k) we may assume without loss of generality that k1 ≤ k2. First suppose that k3 ≤ k and
|k − k2| ≤ 40. If k1 ≤ k3, then use (3-4), applying (3-6) to Pk2 f2 Pk3 g. If k3 < k1, then use (3-6) on
Pk1 f1 Pk2 f2 instead.

Now suppose that k3 > k and |k3− k2| ≤ 40. If k1 ≤ k, then use (3-3), applying (3-7) to Pk1 f1 Pk3 g. If
kmin = k, then use (3-5) and (3-6). �

Corollary 3.11. Let {ak}, {bk}, {ck} be δ-frequency envelopes. Let Ck,k1,k2,k3 be as in Lemma 3.10. Then∑
(k1,k2,k3)∈Z3\Z2(k)

Ck,k1,k2,k3ak1bk2ck3 . akbkck .
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Proof. By Lemma 3.10, it suffices to restrict the sum to (k1, k2, k3) lying in Z1(k)∪ Z3(k). On Z1(k),
the sum is bounded by∑

(k1,k2,k3)∈Z1(k)

2−|(k1+k2)/6−k/3|ak1bk2ck3 .
∑

k1,k2≤k−40

2−|(k1+k2)/6−k/3|2δ |2k−k1−k2|akbkck

. akbkck .

On Z3, we may assume without loss of generality that k2 ≤ k1. The sum is then controlled by∑
(k1,k2,k3)∈Z3(k)

2−|1k|/6ak1bk2ck3 .
∑
k2≤k
k3≤k

|k1−k|≤40

2−|k−min{k2,k3}|/6ak1bk2ck3 +

∑
k2≤k1
k1>k

|k3−k1|≤40

2−|k1−min{k2,k}|/6ak1bk2ck3

.
∑
k2≤k
k3≤k

2−|k−min{k2,k3}|/6akbk2ck3 +

∑
k2≤k1
k1>k

2−|k1−min{k2,k}|/6ak1bk2ck1 .

The first of these summands is controlled by∑
k3≤k2≤k

2−|k−k3|/6akbk2ck3 +

∑
k2<k3≤k

2−|k−k2|/6akbk2ck3

.
∑

k3≤k2≤k

2−|k−k3|/62δ |k−k2|akbkck3 +

∑
k2<k3≤k

2−|k−k2|/62δ |k−k3|akbk2ck

.
∑
k3≤k

2(δ−1/6)|k−k3|akbkck3 +

∑
k2<k

2(δ−1/6)|k−k2|akbk2ck

.
∑
k3≤k

2(2δ−1/6)|k−k3|akbkck +
∑
k2<k

2(2δ−1/6)|k−k2|akbkck

. akbkck .

The second is controlled by∑
k≤k2≤k1

2−|k1−k|/6ak1bk2ck1 +

∑
k2<k≤k1

2−|k1−k2|/6ak1bk2ck1

.
∑

k≤k2≤k1

2−|k1−k|/62δ |k2−k|ak1bkck1 +

∑
k2<k≤k1

2|k1−k2|/62δ |k2−k|ak1bkck1

.
∑
k≤k1

2(δ−1/6)|k1−k|ak1bkck1 +

∑
k2<k≤k1

2(δ−1/6)|k1−k2|ak1bkck1

.
∑
k≤k1

2(3δ−1/6)|k1−k|akbkck +
∑

k2<k≤k1

2(3δ−1/6)|k1−k2|akbkck

. akbkck . �

Corollary 3.12. Let {ak}, {bk} be δ-frequency envelopes. Let Ck,k1,k2,k3 be as in Lemma 3.10. Then∑
(k1,k2,k3)∈Z2(k)∪Z3(k)

2max{k,k3}−max{k1,k2}Ck,k1,k2,k3ak1bk2ck3 . akbkck .

Proof. On Z3(k), max{k1, k2} ∼max{k, k3}, and so the bound on Z3(k) follows from Corollary 3.11.
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Note that max{k1, k2}>max{k, k3} on Z2, where the sum is controlled by∑
(k1,k2,k3)∈Z2(k)

2max{k,k3}−max{k1,k2}2−|k−k3|/6ak1bk2ck3 .
∑

k,k3≤k1−40

2max{k,k3}−k12−|k−k3|/6ak1bk1ck3,

Restricting the sum to k3 ≤ k, we get∑
k3≤k≤k1−40

2−|k−k1|2−|k−k3|/6ak1bk1ck3 . akbkck .

Over the complementary range k ≤ k3 ≤ k1− 40, we have∑
k≤k3≤k1−40

2−|k3−k1|2−|k−k3|/6ak1bk1ck3 . akbkck

∑
k≤k3≤k1−40

2−|k3−k1|2−|k−k3|/622δ |k1−k|2δ |k−k−3|.

Performing the change of variables j := k1− k3, l := k3− k, we control the sum by∑
j,l≥0

2− j 2−l/622δ( j+l)2δl .
∑
j,l≥0

2(2δ−1) j 2(3δ−1/6)l . 1. �

Taking advantage of the local smoothing/maximal function spaces, we can obtain the following
improvement.

Lemma 3.13 (main trilinear estimate improvement over Z1). The best constant Ck,k1,k2,k3 in (3-13)
satisfies the improved estimate

Ck,k1,k2,k3 . 2−|(k1+k2)/2−k| (3-15)

when {k1, k2, k3} ∈ Z1(k).

4. Proof of Theorem 1.3

In this section we outline the proof of Theorem 1.3, taking as our starting point the local result stated in
Theorem 1.1.

For technical reasons related to the function space definitions of the last section, it will be convenient to
construct a solution ϕ on a time interval (−22K, 22K) for some given K∈Z+ and proceed to prove bounds
that are uniform in K. We assume 1� K ∈ Z+ is chosen and hereafter fixed. Invoking Theorem 1.1, we
assume that we have a solution ϕ ∈ C([−T, T ] → H∞Q ) of (1-1) on the time interval [−T, T ] for some
T ∈ (0, 22K). In order to extend ϕ to a solution on all of (−22K, 22K) with uniform bounds (uniform in
T,K), it suffices to prove uniform a priori estimates on

sup
t∈(−T,T )

‖ϕ(t)‖Hσ
Q

for, say, σ in the interval [1, σ1], with σ1� 1 chosen sufficiently large (σ1 = 25 will do).
The first step in our approach, carried out in Section 2, is to lift the Schrödinger map system (1-1) to

the tangent bundle and view it with respect to the caloric gauge. Recall that the lift of (1-1) expressed in
terms of the caloric gauge takes the form (2-7), or, equivalently,

(i∂t +1)ψm = Bm + Vm, (4-1)
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with initial data ψm(0). Here Bm and Vm respectively denote the magnetic and electric potentials (see
(2-8) and (2-9) for definitions).

The goal then becomes proving a priori bounds on ‖ψm‖L∞t Hσ
x

. Herein lies the heart of the argument,
and the purpose of this section is not only to give a high level description of the proof of Theorem 1.3, but
also to outline the proof of the key a priori bounds. To establish these bounds, we in fact prove stronger
frequency-localized estimates. The argument naturally splits into several components, and we consider
each individually below.

Finally, to complete the proof of Theorem 1.3, we must transfer the a priori bounds on the derivative
fields ψm back to bounds on the map ϕ, thereby allowing us to close a bootstrap argument. Once the
derivative field bounds are established, this is, comparatively speaking, an easy task, and we take it up in
the last subsection.

We return now to (4-1), projecting it to frequencies ∼ 2k using the Littlewood–Paley multiplier Pk .
Applying the linear estimate of Proposition 3.6 then yields

‖Pkψm‖Gk(T ) . ‖Pkψm(0)‖L2
x
+‖Pk Vm‖Nk(T )+‖Pk Bm‖Nk(T ). (4-2)

In order to express control of the Gk(T ) norm of Pkψm in terms of the initial data, we introduce the
following frequency envelopes. Let σ1 ∈ Z+ be positive. For σ ∈ [0, σ1− 1], set

bk(σ )= sup
k′∈Z

2σk′2−δ|k−k′|
‖Pk′ψx‖Gk(T ). (4-3)

By (2-38), these envelopes are finite and in l2. We abbreviate bk(0) by setting bk := bk(0).
We now state the key result for solutions of the gauge field equation (4-1).

Theorem 4.1. Assume T ∈ (0, 22K) and Q∈S2. Choose σ1∈Z+ positive. Let ε1>0 and let ϕ∈H∞,∞Q (T )
be a solution of the Schrödinger map system (1-1) whose initial data ϕ0 has energy E0 := E(ϕ0) < Ecrit

and satisfies the energy dispersion condition

sup
k∈Z

ck ≤ ε1. (4-4)

Assume moreover that ∑
k∈Z

‖Pkψx‖
2
L4

t,x (I×R2)
≤ ε2

1 (4-5)

for any smooth extension ϕ on I , [−T, T ] ⊂ I ⊂ (−22K, 22K). Suppose that the bootstrap hypothesis

bk ≤ ε
−1/10
1 ck (4-6)

is satisfied. Then, for ε1 sufficiently small,

bk(σ ). ck(σ ) (4-7)

holds for all σ ∈ [0, σ1− 1] and k ∈ Z.

Proof. We use a continuity argument to prove Theorem 4.1. For T ′ ∈ (0, T ], let

9(T ′)= sup
k∈Z

c−1
k ‖Pkψm(s = 0)‖Gk(T ′).
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Then ψ : (0, T ] → [0,∞) is well-defined, increasing, continuous, and satisfies

lim
T ′→0

ψ(T ′). 1.

The critical implication to establish is

9(T ′)≤ ε−1/10
1 =⇒ 9(T ′). 1,

which in particular follows from

bk . ck . (4-8)

We also must similarly establish

bk(σ ). ck(σ ) (4-9)

for σ ∈ (0, σ1− 1]. The next several subsections describe the main steps of the proof of (4-8) and (4-9),
to which the bulk of the remainder of this paper is dedicated. In Section 4E we complete the high level
argument used to prove (4-8) and (4-9). �

Corollary 4.2. Given the conditions of Theorem 4.1,

‖Pk |∂x |
σ ∂mϕ‖L∞t L2

x ((−T,T )×R2) . ck(σ ) (4-10)

holds for all σ ∈ [0, σ1− 1].

The proof we defer to Section 4F.
Together Theorem 1.1, Theorem 4.1, and Corollary 4.2 are almost enough to establish Theorem 1.3.

The next lemma provides the final piece. We also defer its proof to Section 4F.

Lemma 4.3. We have ∑
k∈Z

‖Pkψx‖
2
L4

t,x
∼

∑
k∈Z

‖Pk∂xϕ‖
2
L4

t,x
.

Note that this lemma affords us a condition equivalent to (4-5) whose advantage lies in the fact that it
is not expressed in terms of gauges.

Proof of Theorem 1.3. Fix σ1 ∈ Z+ positive and let ε1 = ε1(σ1)≥ 0. It suffices to prove (1-7) on the time
interval [−T, T ] provided the estimate is uniform in T . In view of Theorem 1.1 and mass-conservation,
proving

‖∂xϕ‖L∞t Ḣσ
Q((−T,T )×R2) .σ ‖∂xϕ‖Ḣσ

Q(R
2) (4-11)

for σ ∈ [0, σ1− 1] with σ1 = 25 is enough to establish (1-6).
By virtue of Lemma 4.3, the assumptions of Theorem 1.3 are equivalent to those of Theorem 4.1.

Therefore we have access to Corollary 4.2, which states that (4-10) holds for σ ∈ [0, σ1−1]. Using (2-33)
and the Littlewood–Paley square function completes the proof of (4-11).

Global existence and (1-7) then follow via a standard bootstrap argument from Theorem 1.1 and from
the fact that the constants in (4-11) are uniform in T . �
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The remainder of this section is organized as follows. In Section 4A we state the key lemmas of
parabolic type that are used to control the electric and magnetic nonlinearities. In Section 4B we state
bounds that rely principally upon local smoothing, including a bilinear Strichartz estimate; they find
application in controlling the worst magnetic nonlinearity terms.

In Section 4C we piece together the parabolic estimates to control the electric potential. In Section 4D
we decompose the magnetic potential into two main pieces and demonstrate how to control one of these
pieces.

In Section 4E we close the bootstrap argument proving Theorem 4.1. Here the remaining piece of the
magnetic potential is addressed using a certain nonlinear version of a bilinear Strichartz estimate.

Finally, in Section 4F, we prove Corollary 4.2 and Lemma 4.3.

4A. Parabolic estimates. By “parabolic estimates” we mean those that principally rely upon the smooth-
ing effect of the harmonic map heat flow. We include here only those that play a direct role in controlling
the nonlinearity N. These are proved in Section 7, where a host of auxiliary parabolic estimates are
included as well. As the proofs rely upon a bootstrap argument that takes advantage of energy dispersion
(4-4), these bounds rely upon this smallness constraint implicitly. On the other hand, L4 smallness (4-5)
is not used in the proofs of these bounds, but rather only in their application in this paper.

Lemma 4.4. For σ ∈ [0, σ1− 1], the derivative fields ψm satisfy

‖Pkψm(s)‖Fk(T ) . (1+ s22k)−42−σkbk(σ ) (4-12)

for s ≥ 0.

This estimate is used in Section 4D in controlling the magnetic nonlinearity, which schematically looks
like A∂xψ . To recover the loss of derivative, it is important to take advantage of parabolic smoothing by
invoking representation (2-23) of A. Within the integral we schematically have ψ(s)Dxψ(s), and hence
(4-12) allows us to take advantage of (3-3)–(3-7) in bounding this term. We prove (4-12) in Section 7A.

Lemma 4.5. For σ ∈ [0, σ1− 1], the derivative fields ψl and connection coefficients Am satisfy

‖Pk(Am(s)ψl(s))‖Fk(T ) . (s22k)−3/8(1+ s22k)−22−(σ−1)kbk(σ ). (4-13)

Like the previous estimate, this estimate is also used in Section 4D in controlling the magnetic
nonlinearity. Its proof is given in Section 7B. The need for this estimate arises from the need to control
Dxψ appearing in representation (2-23) of A.

The next several estimates are used in Section 4C to control the electric potential. In particular,
they provide a source of smallness crucial here for closing the bootstrap argument. They are proved in
Section 7B.

Lemma 4.6. For σ ∈ [2δ, σ1− 1], the connection coefficient Ax satisfies

‖A2
x‖L2

t,x
. sup

j∈Z

b2
j ·
∑
k∈Z

b2
k , (4-14)

‖Pk A2
x(0)‖L2

t,x
. 2−σkbk(σ ) · sup

j
b j ·

∑
l∈Z

b2
l . (4-15)
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Lemma 4.7. For σ ∈ [2δ, σ1− 1], the connection coefficient At satisfies

‖At‖L2
t,x
.

(
1+

∑
j∈Z

b2
j

)2∑
k∈Z

‖Pkψx(0)‖2L4
t,x
, (4-16)

‖Pk At‖L2
t,x
.

(
1+

∑
p

b2
p

)
b̃k2−σkbk(σ ). (4-17)

In subsequent estimates the following shorthand will be useful:

ε :=

(
1+

∑
j∈Z

b2
j

)2∑
l∈Z

‖Plψx(0)‖2L4
t,x
+

(
1+

∑
l

b2
l

)
sup
k∈Z

b2
k . (4-18)

Under the assumptions of Theorem 4.1, ε is a very small quantity, being at least as good as O(ε1/2
1 ).

4B. Smoothing and Strichartz. The key result of Section 5 is the following frequency-localized bilinear
Strichartz estimate.

Theorem 4.8. Suppose that ψm satisfies (2-7) on [−T, T ]. Assume σ ∈ [0, σ1 − 1]. Let the frequency
envelopes b j and c j be defined as in (4-3) and (2-32). Let ε be given by (4-18). Suppose also that
2 j−k
� 1. Then

2k− j (1+ s22 j )8‖Pjψl(s) · Pkψm(0)‖2L2
t,x
. 2−2σkc2

j c
2
k(σ )+ ε

2b2
j b

2
k(σ ). (4-19)

In Section 5B we split the proof into two cases: s = 0 and s > 0, the more involved being the s = 0
case. In either case, if instead we only were to appeal to the local smoothing-based estimate (3-11) and
the frequency envelope definition (4-3), then we would get the bound

2k− j (1+ s22 j )8‖Pjψl(s) · Pkψm(0)‖2L2
t,x
. b2

j b
2
k .

In practice this sort of bound must needs be summed over j � k. When initial energy is assumed to be
small, as is done in [Bejenaru et al. 2011c], the sum

∑
j b2

j � 1 is small, and consequently the resulting
term perturbative. In our subthreshold energy setting this is no longer the case, as in fact the sum may
be large. What (4-19) reveals, though, is that any b j contributions come with a power of ε. In view
of additional work which we present in due course, this turns out to be sufficient for establishing that
bk . ck .

An interesting related bound is the following local smoothing estimate, also proved in Section 5B. It
arises as an easy corollary of our proof of Theorem 4.8.

Theorem 4.9. Suppose that ψm satisfies (2-7) on [−T, T ]. Assume σ ∈ [0, σ1 − 1]. Let the frequency
envelopes b j (σ ) and c j (σ ) be defined as in (4-3) and (2-32). Also, let ε be given by (4-18). Then

2k sup
| j−k|≤20

sup
θ∈S1
‖Pj,θ Pkψm‖

2
L∞,2θ

. 2−2σkc2
k(σ )+ ε2−2σkb2

k(σ ) (4-20)

holds for each k ∈ Z.



628 PAUL SMITH

We note that (4-20) likely extends to L∞,2θ,λ for λ satisfying |λ|< 2k−40, though we do not prove this.
For comparison, note that from the definition of (4-3) we have

2k sup
| j−k|≤20

sup
θ∈S1

sup
|λ|<2k−40

‖Pj,θ Pkψm‖
2
L∞,2θ,λ

. 2−2σkb2
k(σ ). (4-21)

On the other hand, while the right-hand side of (4-20) may indeed be large, it so happens thanks to our
hypotheses of energy dispersion and L4 smallness that the bk(σ ) term is perturbative. For our purposes,
this is a substantial improvement over (4-21). However, it can be seen from the argument in Section 4E
that even an extension of (4-20) to L∞,2θ,λ spaces is not sufficient for proving bk(σ ). ck(σ ): it is important
that we can replace two “b j ” terms with corresponding “c j ” terms as in (4-19).

4C. Controlling the electric potential V .

Lemma 4.10. Suppose that σ < 1
6 − 2δ. Then the electric potential term Vm satisfies the estimate

‖Pk Vm‖Nk(T ) .
(
‖A2

x‖L2
t,x
+‖At‖L2

t,x
+‖ψ2

x ‖L2
t,x

)
2−σkbk(σ ). (4-22)

Proof. Letting f ∈{At , A2
x , ψ

2
x }, we bound Pk( fψx) in Nk(T ). Begin with the following Littlewood–Paley

decomposition of Pk( fψx):

Pk( fψx)= Pk(P<k−80 f Pk−5<·<k+5ψx) +
∑
|k1−k|≤4
k2≤k−80

Pk(Pk1 f Pk2ψx) +
∑

|k1−k2|≤90
k1,k2>k−80

Pk(Pk1 f Pk2ψx).

The first term is controlled using Hölder’s inequality:

‖Pk(P<k−80 f Pk−5<·<k+5ψx)‖Nk(T ) ≤ ‖Pk(P<k−80 f Pk−5<·<k+5ψx)‖L4/3
t,x

≤ ‖P<k−80 f ‖L2
t,x
‖Pk−5<·<k+5ψx‖L4

t,x
.

To control the second term we apply (3-4):

‖Pk(Pk1 f Pk2ψx)‖Nk(T ) . 2(k2−k)/6
‖Pk1 f ‖L2

t,x
‖Pk2ψx‖Gk2 (T ).

Using (4-3), (2-30), and σ < 1/6− 2σ , we conclude that∥∥∥∥ ∑
|k1−k|≤4
k2<k−80

Pk(Pk1 f Pk2ψx)
∥∥∥∥

Nk(T )

. 2−σkbk(σ )
∑
|k1−k|≤4

‖Pk1 f ‖L2
t,x
.

To control the high-high interaction, apply (3-5):

‖Pk(Pk1 f Pk2ψx)‖Nk(T ) . 2(k−k2)/6‖Pk1 f ‖L2
t,x
‖Pk2ψx‖Gk2 (T ).

Therefore, by (4-3),∑
|k1−k2|≤90
k1,k2>k−80

‖Pk(Pk1 f Pk2ψx)‖Nk(T ) .
∑

|k1−k2|≤90
k1,k2>k−80

2(k−k2)/6‖Pk1 f ‖L2
t,x

2−σk2bk2(σ ).
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Using Cauchy–Schwarz and (2-31) yields∑
|k1−k2|≤90
k1,k2>k−80

‖Pk(Pk1 f Pk2ψx)‖Nk(T ) . 2−σkbk(σ )

( ∑
k1≥k−80

‖Pk1 f ‖2L2
t,x

)1/2

,

and so, by switching the L2
t,x and l2 norms, we get from the standard square function estimate that∑
|k1−k2|≤90
k1,k2>k−80

‖Pk(Pk1 f Pk2ψx)‖Nk(T ) . ‖ f ‖L2
t,x

2−σkbk(σ ). �

Corollary 4.11. For σ ∈ [0, σ1− 1] we have

‖Pk Vm‖Nk(T ) . ε2−σkbk(σ ).

Proof. Given (4-22), this is a direct consequence of (4-14), (4-16), and the fact that

‖ f ‖2L4
t,x
.
∑
k∈Z

‖Pk f ‖2L4
t,x
.

Therefore the result holds for σ < 1/6− 2δ.
To extend the proof to larger σ , we may mimic the proof of Lemma 4.10 by performing the same

Littlewood–Paley decomposition and then, with regard to the first and third terms of the decomposition,
proceeding as before in the proof of that lemma. The argument, however, must be modified in handling
the term ∑

|k1−k|≤4
k2≤k−80

Pk(Pk1 f Pk2ψx), (4-23)

where f ∈ {At , A2
x , ψ

2
x }. We take different approaches according to the choice of f .

When f = A2
x , we apply (3-4) and invoke (4-15) to obtain∥∥∥∥ ∑

|k1−k|≤4
k2<k−80

Pk(Pk1 A2
x Pk2ψx)

∥∥∥∥
Nk(T )

.
∑
|k1−k|≤4
k2<k−80

2(k2−k)/6
‖Pk1 A2

x‖L2
t,x
‖Pk2ψx‖Gk2 (T )

.
∑
|k1−k|≤4
k2<k−80

2(k2−k)/62−σk1bk1(σ )bk2 · sup
j

b j ·
∑

l

b2
l

. 2−σkbk(σ ) · bk · sup
j

b j ·
∑

j

b2
j ,

In the case where f = At , we apply (3-4) and use (4-17) to conclude that∥∥∥∥ ∑
|k1−k|≤4
k2<k−80

Pk(Pk1 At Pk2ψx)
∥∥∥∥

Nk(T )

. 2−σkbk(σ )b̃kbk

(
1+

∑
p

b2
p

)
,

which suffices by Cauchy–Schwarz.
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Finally we turn to f = ψ2
x , which we further decompose as

f = 2
∑
| j1−k|≤4
j2<k−80

Pj1ψx Pj2ψx +
∑

| j1− j2|≤8
j1, j2≥k−80

Pj1ψx Pj2ψx .

To control the high-low term, we apply estimate (3-7) and get∑
| j1−k|≤4
j2<k−80

‖Pj1ψx Pj2ψx‖L2 .
∑
| j1−k|≤4
j2<k−80

2( j2− j1)/6b j22−σ j1b j1(σ ). 2−σkbkbk(σ ).

We turn to the high-high case. The full trilinear expression is given by∑
|k1−k|≤4
k2<k−80

Pk

(
Pk1

( ∑
| j1− j2|≤8

j1, j2≥k1−80

Pj1ψx Pj2ψx

)
· Pk2ψx

)
.

We can drop the Pk1 factor because of the summation ranges, obtaining∑
|k1−k|≤4
k2<k−80

∑
| j1− j2|≤8

j1, j2≥k1−80

Pk(Pj1ψx Pj2ψx · Pk2ψx).

We apply estimate (3-4) with h = Pj2ψx Pk2ψx to get∑
|k1−k|≤4
k2<k−80

∑
| j1− j2|≤8

j1, j2≥k1−80

‖Pk(Pj1ψx Pj2ψx · Pk2ψx)‖Nk(T )

.
∑
|k1−k|≤4
k2<k−80

∑
| j1− j2|≤8

j1, j2≥k1−80

2−| j1−k|/6
‖Pj1ψx‖G j1 (T )‖Pj2ψx Pk2ψx‖L2 .

Next we use (3-7) to control the L2 norm:∑
|k1−k|≤4
k2<k−80

∑
| j1− j2|≤8

j1, j2≥k1−80

2−| j1−k|/6
‖Pj1ψx‖G j1 (T )‖Pj2ψx Pk2ψx‖L2

.
∑
|k1−k|≤4
k2<k−80

∑
| j1− j2|≤8

j1, j2≥k1−80

2−| j1−k|/62−| j2−k2|/62−σ j1b j1(σ )b j2bk2 .

In this sum we can replace the factor 2−| j2−k2|/6 by the larger factor 2−|k−k2|/6, from which it is seen that
the whole sum is controlled by

2−σkbk(σ )bk

∑
k2<k−80

2−|k−k2|/6bk2 . 2−σkb2
kbk(σ ). �

4D. Decomposing the magnetic potential. We begin by introducing a paradifferential decomposition of
the magnetic nonlinearity, splitting it into two pieces. This decomposition depends upon a frequency
parameter k ∈ Z, which we suppress in the notation; this same k will also be the output frequency whose
behavior we are interested in controlling. The decomposition also depends upon the frequency gap
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parameter $ ∈ Z+. How $ is chosen and the exact role it plays are discussed in Section 5B. There it is
shown that $ may be set equal to a sufficiently large universal constant (independent of ε, ε1, k, etc.).

Define Alo∧lo as

Am,lo∧lo(s) := −
∑

k1,k2≤k−$

∫
∞

s
Im(Pk1ψm Pk2ψs)(s ′) ds ′

and Ahi∨hi as

Am,hi∨hi(s) := −
∑

max{k1,k2}>k−$

∫
∞

s
Im(Pk1ψm Pk2ψs)(s ′) ds ′,

so that Am = Am,lo∧lo+ Am,hi∨hi. Similarly define Blo∧lo as

Bm,lo∧lo := −i
∑

k3

(
∂l(Al,lo∧lo Pk3ψm)+ Al,lo∧lo∂l Pk3ψm

)
and Bhi∨hi as

Bm,hi∨hi := −i
∑

k3

(
∂l(Al,hi∨hi Pk3ψm)+ Al,hi∨hi∂l Pk3ψm

)
,

so that Bm = Bm,lo∧lo+ Bm,hi∨hi.
Our goal is to control Pk Bm in Nk(T ). We consider first Pk Bm,hi∨hi, performing a trilinear Littlewood–

Paley decomposition. In order for frequencies k1, k2, k3 to have an output in this expression at a frequency
k, we must have (k1, k2, k3) ∈ Z2(k)∪ Z3(k)∪ Z0(k), where

Z0(k) := Z1(k)∩ {(k1, k2, k3) ∈ Z3
: k1, k2 > k−$ } (4-24)

and the other Z j (k) are defined in (3-12). We apply Lemma 3.10 to bound Pk Bm,hi∨hi in Nk(T ) by∑
(k1,k2,k3)∈

Z2(k)∪Z3(k)∪Z0(k)

∫
∞

0
2max{k,k3}Ck,k1,k2,k3‖Pk1ψx(s)‖Fk1

‖Pk2(Dlψl(s))‖Fk2
‖Pk3ψm(0)‖Gk3

ds,

which, thanks to (4-12) and (4-13), is controlled by∑
(k1,k2,k3)∈

Z2(k)∪Z3(k)∪Z0(k)

2max{k,k3}Ck,k1,k2,k3bk1bk2bk3

∫
∞

0
(1+ s22k1)−42k2(s22k2)−3/8(1+ s22k2)−2 ds.

As ∫
∞

0
(1+ s22k1)−42k2(s22k2)−3/8(1+ s22k2)−2 ds . 2−max{k1,k2}, (4-25)

we reduce to ∑
(k1,k2,k3) in

Z2(k)∪Z3(k)∪Z0(k)

2max{k,k3}−max{k1,k2}Ck,k1,k2,k3bk1bk2bk3 . (4-26)

To estimate Pk Bm,hi∨hi on Z2 ∪ Z3, we apply Corollary 3.12 and use the energy dispersion hypothesis.
As for Z0(k), we note that its cardinality |Z0(k)| satisfies |Z0(k)| .$ independently of k. Hence for
fixed $ summing over this set is harmless given sufficient energy dispersion. We obtain a bound of

‖Pk Bm,hi∨hi‖Nk(T ) . b2
kbk . εbk . (4-27)
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Consider now the leading term Pk Bm,lo∧lo. Bounding this in Nk with any hope of summing requires
the full strength of the decay that comes from the local smoothing/maximal function estimates. However,
such bounds as are immediately at our disposal — (3-10) and (3-11) — do not bring Bm,lo∧lo within the
perturbative framework, instead yielding a bound of the form∑

k1,k2≤k−$
|k3−k|≤4

bk1bk2bk3,

which is problematic since even
∑

j�k c2
j ∼ E2

0 = O(1) for k large enough. This stands in sharp contrast
with the small energy setting.

In the next section, however, we are able to capture enough improvement in such estimates so as to
barely bring Bm,lo∧lo back within reach of our bootstrap approach.

Finally, we need for σ > 0 an estimate analogous to (4-27). Returning to the proof of (4-26),
we remark that any bk j may be replaced by 2−σk j bk j ; in order to obtain an analogue of (4-27), we
must make replacements judiciously so as to retain summability. In particular, for any (k1, k2, k3) in
Z2(k)∪ Z3(k)∪ Z0(k), we replace bkmax with 2−σkmaxbkmax(σ ) so that (4-26) becomes∑

(k1,k2,k3)∈
Z2(k)∪Z3(k)∪Z0(k)

2max{k,k3}−max{k1,k2}Ck,k1,k2,k3bkminbkmid2−σkmaxbkmax(σ ),

where kmin, kmid, kmax denote, respectively, the min, mid, and max of {k1, k2, k3}. We have kmax & k over
the set Z2(k)∪ Z3(k)∪ Z0(k) (see (3-12) and (4-24) for definitions), which guarantees summability due
to straightforward modifications of Corollaries 3.11 and 3.12. Therefore

‖Pk Bm,hi∨hi‖Nk(T ) . b2
k2−σkbk(σ ),

which, combined with (4-27) and the definition (4-18) of ε, implies this:

Corollary 4.12. Assume σ ∈ [0, σ1− 1]. The term Bm,hi∨hi satisfies the estimate

‖Pk Bm,hi∨hi‖Nk(T ) . ε2−σkbk(σ ). (4-28)

4E. Closing the gauge field bootstrap. We turn first to the completion of the proof of Theorem 4.1, as
we now have in place all of the estimates that we need to prove (4-8).

Using the main linear estimate of Proposition 3.6 and the decomposition introduced in Section 4D, we
obtain

‖Pkψm‖Gk(T ) . ‖Pkψm(0)‖L2
x
+‖Pk Vm‖Nk(T )+‖Pk Bm,hi∨hi‖Nk(T )+‖Pk Bm,lo∧lo‖Nk(T ). (4-29)

In Sections 4C and 4D it is shown that Pk Vm and Pk Bm,hi∨hi are perturbative in the sense that

‖Pk Vm‖Nk(T )+‖Pk Bm,hi∨hi‖Nk(T ) . ε2−σkbk(σ ),

To handle Pk Bm,lo∧lo, we first write

Pk Bm,lo∧lo =−i∂l(Al,lo∧lo Pkψm)+ R,
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where R is a perturbative remainder (thanks to a slight modification of technical Lemma 5.11). Therefore

‖Pkψm‖Gk(T ) . 2−σkck(σ )+ ε2−σkbk(σ )+‖∂l(Al,lo∧lo Pkψm)‖Nk(T ). (4-30)

Thus it remains to control −i∂l(Al,lo∧lo Pkψm), which we expand as

−i Pk∂l

∑
k1,k2≤k−$
|k3−k|≤4

∫
∞

0
Im(Pk1ψl Pk2ψs)(s ′)Pk3ψm(0) ds ′, (4-31)

and whose Nk(T ) norm we denote by Nlo. In the σ = 0 case the key is to apply Theorem 4.8 to Pk1ψl(s ′)
and Pk3ψm(0), after first placing all of (4-31) in Nk(T ) using (3-10). We obtain

Nlo . 2k
∑

k1,k2≤k−$
|k3−k|≤4

2−|k−k2|/22−|k1−k3|/22−max{k1,k2}bk2

(
ck1ck3 + ε

1/2bk1bk3

)
. 2k

∑
k1,k2≤k−$

2(k1+k2)/2−k2−max{k1,k2}bk2(ck1ck + ε
1/2bk1bk).

Without loss of generality we restrict the sum to k1 ≤ k2:∑
k1≤k2≤k−$

2(k1−k2)/2bk2(ck1ck + ε
1/2bk1bk).

Using the frequency envelope property to sum off the diagonal, we reduce to

Nlo .
∑

j≤k−$

(b j c j ck + ε
1/2b2

j bk).

Combining this with (4-30) and the fact that R is perturbative, we obtain

bk . ck + εbk +
∑

j≤k−$

(b j c j ck + ε
1/2b2

j bk), (4-32)

which, in view of our choice of ε, reduces to

bk . ck + ck

∑
j≤k−$

b j c j .

Squaring and applying Cauchy–Schwarz yields

b2
k .

(
1+

∑
j≤k−$

b2
j

)
c2

k . (4-33)

Setting

Bk := 1+
∑
j<k

b2
j

in (4-33) leads to

Bk+1 ≤ Bk(1+Cc2
k)
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with C > 0 independent of k. Therefore

Bk+m ≤ Bk

m∏
l=1

(1+Cc2
k+l)≤ Bk exp

(
C

m∑
l=1

c2
k+l

)
.E0 Bk .

Since Bk→ 1 as k→−∞, we conclude that

Bk .E0 1

uniformly in k, so that, in particular, ∑
j∈Z

b2
j . 1, (4-34)

which, joined with (4-33), implies (4-8).
The proof of (4-9) is almost an immediate consequence. Instead of (4-32), we obtain

bk(σ ). ck(σ )+ εbk(σ )+
∑

j≤k−$

(b j c j ck(σ )+ ε
1/2b2

j bk(σ )),

which suffices to prove (4-9) in view of (4-34).

4F. De-gauging. The previous subsections overcome the most significant obstacles encountered in
proving conditional global regularity. All of the key estimates therein apply to the Schrödinger map
system placed in the caloric gauge, and a bootstrap argument is in fact run and closed at that level. This
final subsection justifies the whole approach, showing how to transfer these results obtained at the gauge
level back to the underlying Schrödinger map itself.

Proof of (4-10). To gain control over the derivatives ∂mϕ in L∞t L2
x , we utilize representation (2-2) and

perform a Littlewood–Paley decomposition. We only indicate how to handle the term v ·Reψm , as the
term w · Imψm may be handled similarly. Starting with

Pk(v Reψm)=
∑
|k2−k|≤4

Pk(P≤k−5v · Pk2 Reψm)

+

∑
|k1−k|≤4
k2≤k−4

Pk(Pk1v · Pk2 Reψm) +
∑

|k1−k2|≤8
k1,k2≥k−4

Pk(Pk1v · Pk2 Reψm), (4-35)

we proceed to bound each term in L∞t L2
x .

In view of the fact that |v| ≡ 1, the low-high frequency interaction is controlled by∑
|k2−k|≤4

‖Pk(P≤k−5v · Pk2 Reψm)‖L∞t L2
x
. ‖P≤k−5v‖L∞t,x‖Pkψm‖L∞t L2

x

. ‖Pkψm‖L∞t L2
x
. ck . (4-36)

To control the high-low frequency interaction, we use Hölder’s inequality, Bernstein’s inequality, (2-33)
and Bernstein’s inequality again, and finally the bound (2-15) along with the summation rule (2-30):
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|k1−k|≤4
k2≤k−4

‖Pk(Pk1v · Pk2 Reψm)‖L∞t L2
x
.

∑
|k1−k|≤4
k2≤k−4

‖Pk1v‖L∞t L2
x
‖Pk2ψm‖L∞t,x

.
∑
|k1−k|≤4
k2≤k−4

‖Pk1v‖L∞t L2
x
· 2k2‖Pk2ψm‖L∞t L2

x

.
∑
|k1−k|≤4
k2≤k−4

‖Pk1∂xv‖L∞t L2
x
· 2k2−kck2 . ck . (4-37)

To control the high-high frequency interaction, we use Bernstein’s inequality, Cauchy–Schwarz, Bernstein
again, (2-15), and finally (2-31):∑

|k1−k2|≤8
k1,k2≥k−4

‖Pk(Pk1v · Pk2 Reψm)‖L∞t L2
x
.

∑
|k1−k2|≤8
k1,k2≥k−4

2k
‖Pk1v · Pk2 Reψm‖L∞t L1

x

.
∑

|k1−k2|≤8
k1,k2≥k−4

2k
‖Pk1v‖L∞t L2

x
‖Pk2ψm‖L∞t L2

x

.
∑

|k1−k2|≤8
k1,k2≥k−4

2k−k1‖Pk1∂xv‖L∞t L2
x
‖Pk2ψm‖L∞t L2

x

.
∑

k2≥k−4

2k−k2ck2 . ck . (4-38)

Combining (4-36), (4-37), and (4-38) and applying them in (4-35), we obtain

‖Pk(v Reψm)‖L∞t L2
x
. ck .

As the above calculation holds with w in place of v, we conclude (recalling (2-2)) that

‖Pk∂xϕ‖L∞t L2
x
. ck .

Hence (4-10) holds for σ = 0.
Now we turn to the case σ ∈ [0, σ1− 1]. Using Bernstein’s inequality in (4-36) and (4-38), we obtain∑

|k2−k|≤4

‖Pk(P≤k−5v · Pk2 Reψm)‖L∞t L2
x
. 2−σkck(σ ), (4-39)

∑
|k1−k2|≤8
k1,k2≥k−4

‖Pk(Pk1v · Pk2 Reψm)‖L∞t L2
x
. 2−σkck(σ ), (4-40)

as well as analogous estimates with w in place of v. Such a direct argument, however, does not yield the
analogue of (4-37). We circumvent this obstruction as follows. Let C ∈ (0,∞) be the best constant for
which

‖Pk∂xϕ‖L∞t L2
x
≤ C2−σkck(σ ) (4-41)



636 PAUL SMITH

holds for σ ∈ [0, σ1− 1]. Such a constant exists by smoothness and the fact that the ck(σ ) are frequency
envelopes. In view of definition (2-34) and estimate (2-35), we similarly have

‖Pk∂xv(0)‖L∞t L2
x
. C2−σkck(σ ). (4-42)

Using (4-42) in (4-37), we obtain∑
|k1−k|≤4
k2≤k−4

‖Pk(Pk1v · Pk2 Reψm)‖L∞t L2
x
. C2−σkckck(σ ). (4-43)

From the representations (2-2) and (4-35), and from the estimates (4-39), (4-40), and (4-43), along with
the analogous estimates for w, it follows that

‖Pk∂xϕ‖L∞t L2
x
. (1+ ckC)2−σkck(σ ).

In view of energy dispersion (ck ≤ ε) and the optimality of C in (4-41), we conclude that C. 1+ εC, so
that C. 1. Therefore

‖Pk∂
σ
x ∂mϕ‖L∞t L2

x
∼ 2σk

‖Pk∂mϕ‖L∞t L2
x
. ck(σ ),

which completes the proof of (4-10). �

It will be convenient in certain arguments to use the weaker frequency envelope defined by

b̃k = sup
k′∈Z

2−δ |k−k′|
‖Pk′ψx‖L4

t,x
. (4-44)

Proof of Lemma 4.3. Let us first establish∑
k∈Z

‖Pkψx‖
2
L4

t,x
.
∑
k∈Z

‖Pk∂xϕ‖
2
L4

t,x
.

We use (2-1), i.e., ψm = v · ∂mϕ+ iw · ∂mϕ, but for the sake of exposition only treat v · ∂mϕ. We start
with the Littlewood–Paley decomposition

Pkψm(0) =
∑
|k2−k|≤4

Pk(P≤k−5v · Pk2∂mϕ) +
∑
|k1−k|≤4
k2≤k−4

Pk(Pk1v · Pk2∂mϕ) +
∑

|k1−k2|≤8
k1,k2≥k−4

Pk(Pk1v · Pk2∂mϕ).

In view of |v| ≡ 1, the L4
t,x norm of the low-high interaction is controlled by b̃k (see (4-44)). To control

the high-low interaction, we use Hölder’s and Bernstein’s inequalities along with (2-15):∑
|k1−k|≤4
k2≤k−4

‖Pk(Pk1v · Pk2∂mϕ)‖L4
t,x
.

∑
|k1−k|≤4
k2≤k−4

‖Pk1v‖L∞t L4
x
· ‖Pk2∂mϕ‖L4

t L∞x

.
∑
|k1−k|≤4
k2≤k−4

2k1/2‖Pk1v‖L∞t L2
x
2k2/2‖Pk2∂mϕ‖L4

t,x

.
∑
|k1−k|≤4
k2≤k−4

2k1‖Pk1v‖L∞t L2
x
b̃k . b̃k .
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To control the high-high interaction, we use Bernstein, Hölder, Bernstein again, and (2-15):∑
|k1−k2|≤8
k1,k2≥k−4

‖Pk(Pk1v · Pk2∂mϕ)‖L4
t,x
.

∑
|k1−k2|≤8
k1,k2≥k−4

2k/2
‖Pk1v · Pk2∂mϕ‖L4

t L2
x

.
∑

|k1−k2|≤8
k1,k2≥k−4

2k/2
‖Pk1v‖L∞t L4

x
‖Pk2∂mϕ‖L4

t,x

.
∑

|k1−k2|≤8
k1,k2≥k−4

2(k+k1)/2‖Pk1v‖L∞t L2
x
‖Pk∂mϕ‖L4

t,x

.
∑

|k1−k2|≤8
k1,k2≥k−4

2(k−k1)/2‖Pk1∂xv‖L∞t L2
x
‖Pk2∂mϕ‖L4

t,x
.
∑

k2≥k−4

2(k−k2)/4b̃k2 . b̃k .

Therefore
‖Pkψm(0)‖L4

t,x
. b̃k

and ∑
k∈Z

‖Pkψm(0)‖2L4
t,x
.
∑
k∈Z

b̃2
k ∼

∑
k∈Z

‖Pk∂mϕ(0)‖2L4
t,x
.

By using (2-2), creating an L4 frequency envelope for Pk∂mϕ(0), and reversing the roles of ψα and ∂αϕ
in the preceding argument, we conclude the reverse inequality∑

k∈Z

‖Pk∂mϕ(0)‖2L4
t,x
.
∑
k∈Z

‖Pkψm(0)‖2L4
t,x
. �

5. Local smoothing and bilinear Strichartz

The main goal of this section is to establish the improved bilinear Strichartz estimate of Theorem 4.8. As
a by-product we also obtain the frequency-localized local smoothing estimate of Theorem 4.9.

Our approach is to first establish abstract local smoothing and bilinear Strichartz estimates for solutions
to certain magnetic nonlinear Schrödinger equations. These are in the spirit of [Planchon and Vega 2009;
2012; Tao 2010]. We shall then apply these to Schrödinger maps, in particular to the paralinearized
derivative field equations written with respect to the caloric gauge.

We introduce some notation. Let

Ik(R
d)= {ξ ∈ Rd

: |ξ | ∈ [−2k−1, 2k+1
]} and I(−∞,k] :=

⋃
j≤k

I j .

For a d-vector-valued function B = (Bl) on Rd with real entries, define the magnetic Laplacian 1B ,
acting on complex-valued functions f , via

1B f := (∂x + i B)((∂x + i B) f )=1 f + i(∂l Bl) f + 2i Bl∂l f − B2
l f. (5-1)

For a unit vector e ∈ Sd−1, denote by {x · e = 0} the orthogonal complement in Rd of the span of e,
equipped with the induced measure. Given e, we can construct a positively oriented orthonormal basis
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e, e1, . . . , ed−1 of Rd so that e1, . . . , ed−1 form an orthonormal basis for {x · e= 0}. For complex-valued
functions f on Rd , define Ee( f ) : R→ R as

Ee( f )(x0) :=

∫
x ·e=0
| f |2 dx ′ =

∫
Rd−1
| f (x0e+ x j e j )|

2 dx ′, (5-2)

where the implicit sum runs over 1, 2, . . . , d − 1, and dx ′ is the standard (d − 1)-dimensional Lebesgue
measure. We also adopt the following notation for this section: for z, ζ complex,

z ∧ ζ := zζ − zζ = 2i Im(zζ ).

5A. Key lemmas.

Lemma 5.1 (abstract almost-conservation of energy). Let d ≥ 1 and e ∈ Sd−1. Let v be a C∞t (H
∞
x )

function on Rd
×[0, T ] solving

(i∂t +1A)v =3v (5-3)

with initial data v0. Take Al to be real-valued, smooth, and bounded, with 1A defined via (5-1). Then

‖v‖2L∞t L2
x
≤ ‖v0‖

2
L2

x
+

∣∣∣∣∫ T

0

∫
Rd
v∧3v dxdt

∣∣∣∣ . (5-4)

Proof. We begin with
1
2
∂t

∫
|v|2 dx =

∫
Im(v̄∂tv) dx,

which may equivalently be written as

i∂t

∫
|v|2 dx =−

∫
v∧ i∂tv dx .

Substituting from (5-3) yields

i∂t

∫
|v|2 dx =

∫
v∧ (1Av−3v) dx .

Expanding 1A using (5-1) and using the straightforward relations

∂l(v∧ iAlv)= v∧ i(∂lAl)v+ v∧ 2iAl∂lv and ∂l(v∧ ∂lv)= v∧1v,

we get

i∂t

∫
|v|2 dx =

∫
∂l(v∧ ∂lv) dx +

∫
∂l(v∧ iAlv) dx −

∫
v∧A2

l v dx −
∫
v∧3v dx .

The first two terms on the right-hand side vanish upon integration in x ; the third is equal to zero because
A2

l is real. Integrating in time and taking absolute values therefore yields∣∣∣∣∫
Rd
|v(T ′)|2− |v0|

2 dx
∣∣∣∣=

∣∣∣∣∣
∫ T ′

0

∫
Rd
v∧3v dxdt

∣∣∣∣∣
for any time T ′ ∈ (0, T ]. �
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Lemma 5.2 (local smoothing preparation). Let d ≥ 1 and e ∈ Sd−1. Let j, k ∈ Z and j = k+ O(1). Let
εm > 0 be a small positive number such that εm2O(1)

� 1. Let v be a C∞t (H
∞
x ) function on Rd

×[0, T ]
solving

(i∂t +1A)v =3v, (5-5)

where Al is real-valued, smooth, and satisfies the estimate

‖A‖L∞t,x ≤ εm2k . (5-6)

The solution v is assumed to have (spatial) frequency support in Ik , with the additional constraint that
e · ξ ∈ [2 j−1, 2 j+1

] for all ξ in the support of v̂. Then

2 j
∫ T

0
Ee(v) dt . ‖v‖2L∞t L2

x
+

∣∣∣∣∫ T

0

∫
x ·e≥0

v∧3v dxdt
∣∣∣∣+ 2 j

∫ T

0
Ee(v+ i2− j∂ev) dt. (5-7)

Proof. We begin by introducing

Me(t) :=
∫

x ·e≥0
|v(x, t)|2 dx .

Then

0≤ Me(t)≤ ‖v(t)‖2L2
x (R

d )
≤ ‖v‖2L∞t L2

x ([−T,T ]×Rd )
. (5-8)

Differentiating in time yields

i Ṁe(t)=
∫

x ·e≥0
v∧ (i∂tv) dx =

∫
x ·e≥0

v∧ (1Av−3v) dx,

which may be rewritten as

i Ṁe(t)=
∫

x ·e≥0
∂l(v∧ (∂l + iAl)v) dx −

∫
x ·e≥0

v∧3v dx . (5-9)

By integrating by parts,∫
x ·e≥0

∂l(v∧ (∂l + iAl)v) dx =−
∫

x ·e=0
v∧ (∂ev+ ie ·Av) dx ′,

and therefore (5-9) may be rewritten as

−

∫
x ·e=0

v∧ (∂ev+ ie ·Av) dx ′ = i Ṁe(t)+
∫

x ·e≥0
v∧3v dx . (5-10)

On the one hand, we have the heuristic that ∂ev ≈ i2 jv since v has localized frequency support. On the
other hand, since A is real-valued, we have∫ T

0

∫
x ·e=0

v∧ ie ·Av dx ′dt = 2
∫ T

0

∫
x ·e=0

e ·A|v|2 dx ′dt (5-11)

and hence by assumption (5-6) also∫ T

0

∫
x ·e=0
|A||v|2 dx ′dt ≤ εm2k

∫ T

0

∫
x ·e=0
|v|2 dx ′dt. (5-12)
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Together these facts motivate rewriting v∧ ∂ev as

v∧ ∂ev = 2 · i2 j
|v|2+ v∧ (∂ev− i2 jv). (5-13)

Using (5-11), (5-13), and the bounds (5-12) and (5-8) in (5-10), we obtain by time-integration that

(1−εm2k− j )2 j
∫ T

0
Ee(v) dt ≤‖v‖2L∞t L2

x
+

∣∣∣∣∫ T

0

∫
x ·e≥0

v∧3v dxdt
∣∣∣∣+2·2 j

∫ T

0

∫
x ·e=0
|v+i2− j∂ev||v| dx ′dt.

Applying Cauchy–Schwarz to the last term yields

2 j
∫ T

0

∫
x ·e=0
|v+ i2− j∂ev||v| dx ′dt ≤ 8 · 2 j

∫ T

0
Ee(v+ i2− j∂ev) dt + 1

8
· 2 j

∫ T

0
Ee(v) dt.

Therefore (5-7). �

We now describe the constraints on the nonlinearity that we shall require in the abstract setting

Definition 5.3. Let P be a fixed finite subset of {1 < p <∞}. A bilinear form B( · , · ) is said to be
adapted to P provided it measures its arguments in Strichartz-type spaces, the estimate∣∣∣∣∫ T

0

∫
Rd

f ∧ g dxdt
∣∣∣∣. B( f, g)

holds for all complex-valued functions f, g on Rd
×[0, T ], Bernstein’s inequalities hold in both arguments

of B, and these arguments are measured in L p
x only for p ∈ P. Given B( · , · ) and e ∈ Sd−1, we define

Be( · , · ) via
Be( f, g) := B( f, χ{x ·e≥0}g).

Definition 5.4. Let e ∈ Sd−1 and let Al be real-valued and smooth. Let v be a C∞t (H
∞
x ) function on

Rd
×[0, T ] solving

(i∂t +1A)v =3v.

Assume v is (spatially) frequency-localized to Ik with the additional constraint that e · ξ ∈ [2 j−1, 2 j+1
]

for all ξ in the support of v̂. Define a sequence of functions {v(m)}∞m=1 by setting v(1) = v and

v(m+1)
:= v(m)+ i2− j∂ev

(m).

By (5-1) and the Leibniz rule,

(i∂t +1A)v
(m)
=3v(m),

where

3v(m) := (1+ i2− j∂e)3v(m−1) + i2− j (i∂e∂l Al − ∂e A2
l )v

(m−1)
− 2− j+1(∂e Al)∂lv

(m−1).

The sequence {v(m)}∞m=1 is called the derived sequence corresponding to v.
Suppose we are given a form B adapted to P. The derived sequence is said to be controlled with

respect to Be provided that Be(v
(m),3v(m)) <∞ for each m ≥ 1.
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We remark that if the derived sequence {v(m)}∞m=1 of v is controlled, then for all l ≥ 1, the derived
sequences {v(m)}∞m=l are also controlled.

Theorem 5.5 (abstract local smoothing). Let d ≥ 1 and e ∈ Sd−1. Let j, k ∈ Z and j = k + O(1). Let
εm > 0 be a small positive number such that εm2O(1)

� 1. Let η > 0. Let P be a fixed finite subset of
(1,∞) with 2∈P, and let B be a form adapted to P. Let v be a C∞t (H

∞
x ) function on Rd

×[0, T ] solving

(i∂t +1A)v =3v, (5-14)

where Al is real-valued, smooth, has spatial Fourier support in I(−∞,k], and satisfies the estimate

‖A‖L∞t,x ≤ εm2k . (5-15)

The solution v is assumed to have (spatial) frequency support in Ik . We take 3v to be frequency-localized
to I(−∞,k]. Assume moreover that

e · ξ ∈ [(1− η)2 j , (1+ η)2 j
] (5-16)

for all ξ in the support of v̂.
If the derived sequence of v is controlled with respect to Be, then there exists η∗ > 0 such that, for all

0≤ η < η∗, the local smoothing estimate

2 j
∫ T

0
Ee(v) dt . ‖v‖2L∞t L2

x
+ Be(v,3v) (5-17)

holds uniformly in T and j = k+ O(1).

Proof. The foundation for proving (5-17) is (5-7), which for an adapted form Be implies

2 j
∫ T

0
Ee(v) dt . ‖v‖2L∞t L2

x
+ Be(v,3v)+ 2 j

∫ T

0
Ee(v+ i2− j∂ev) dt. (5-18)

Therefore our goal is control the last term in (5-18). This we do using a bootstrap argument that hinges
upon the fact that ṽ := v + i2− j∂ev is the second term in the derived sequence of v, and that being
“controlled” is an inherited property (in the sense of the comments following Definition 5.4).

By Bernstein’s and Hölder’s inequalities, we have

2 j
∫ T

0
Ee(v) dt . 22 j T ‖v‖2L∞t L2

x
.

for any v. For fixed T > 0 and k ∈ Z, let KT,k ≥ 1 be the best constant for which the inequality

2 j
∫ T

0
Ee(v) dt ≤ KT,k

(
‖v‖2L2

x
+ Be(v,3v)

)
(5-19)

holds for all controlled sequences. Applying (5-19) to ṽ results in

2 j
∫ T

0
Ee(ṽ) dt ≤ KT,k

(
‖ṽ‖2L2

x
+ Be(ṽ,3ṽ)

)
, (5-20)

and thus we seek to control norms of ṽ in terms of those of v.
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Let P̃k, P̃j,e denote slight fattenings of the Fourier multipliers Pk, Pj,e. On the one hand, Plancherel
implies

‖(1+ i2− j∂e)P̃j,e P̃k‖L2
x→L2

x
. η. (5-21)

On the other hand, Bernstein’s inequalities imply

‖(1+ i2− j∂e)P̃j,e P̃k‖L p
x→L p

x
. 1, 1≤ p ≤∞.

Therefore it follows from Riesz–Thorin interpolation that

‖(1+ i2− j∂e)P̃j,e P̃k‖L p
x→L p

x
.

{
η2/p 2≤ p <∞,
η2−2/p 1< p ≤ 2.

Restricting to p ∈ P, we conclude that there exists a q > 0 such that

‖(1+ i2− j∂e)P̃j,e P̃k‖L p
x→L p

x
. ηq (5-22)

for all p ∈ P and all η small enough.
Applying (5-22) and Bernstein to ṽ yields

‖ṽ‖L2
x
. ηq
‖v‖L2

x
, Be(ṽ,3ṽ). η

q Be(v,3v),

which, combined with (5-20) and (5-18), leads to

2 j
∫ T

0
Ee(v) dt . (1+ ηq KT,k)

(
‖v‖2L∞t L2

x
+ Be(v,3v)

)
.

As KT,k is the best constant for which (5-19) holds, it follows that

KT,k . 1+ ηq KT,k

and hence that KT,k . 1 for η small enough. �

Corollary 5.6. Given the assumptions of Theorem 5.5, we have

2 j
∫ T

0
Ee(v) dt . ‖v0‖

2
L2

x
+ B(v,3v)+ Be(v,3v).

Proof. This is an immediate consequence of Theorem 5.5 and Lemma 5.1. �

Corollary 5.7 (abstract bilinear Strichartz). Let d ≥ 1 and e ∈ Sd−1. Set ẽ = (−e, e)/
√

2. Let j, k ∈ Z

and j = k+ O(1). Let εm > 0 be a small positive number such that εm2O(1)
� 1. Let η > 0. Let P be a

fixed finite subset of (1,∞) with 2 ∈ P, and let Bẽ be a form that is adapted to P.
Let w(x, y) be a C∞t (H

∞
x,y) function on R2d

×[0, T ], equal to w0 at t = 0 and solving

(i∂t +1A)w =3w,

where Ak′ is real-valued, smooth, has spatial Fourier support in I(−∞,k], and satisfies the estimate

‖A‖L∞t,x,y ≤ εm2k .

Assume w has (spatial) frequency support in Ik and that

ẽ · ξ ∈ [(1− η)2 j , (1+ η)2 j
]
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for all ξ in the support of ŵ. Take 3w to be frequency-localized to I(−∞,k].
Suppose that w(x, y) admits a decomposition w(x, y)= u(x)v(y), where u has frequency support in

Il , l� k. Use u0, v0 to denote u(t = 0), v(t = 0). If the derived sequence of w is controlled with respect
to Bẽ, then

‖uv‖2L2
t,x
. 2l(d−1)2− j(

‖u0‖
2
L2

x
‖v0‖

2
L2

x
+ B(w,3w)+ Bẽ(w,3w)

)
(5-23)

uniformly in T and j = k+ O(1) provided η is small enough.

Proof. Taking into account that
‖w0‖L2

x,y
= ‖u0‖L2

x
‖v0‖L2

x
,

we apply Corollary 5.6 to w at (x, y)= 0 and get

2 j
∫ T

0
E ẽ(w) dt . ‖u0‖

2
L2

x
‖v0‖

2
L2

x
+ B(w,3w)+ Bẽ(w,3w). (5-24)

We complete (−e, e)/
√

2 to a basis as follows:

(−e, e)/
√

2, (0, e1), . . . , (0, ed−1), (e, e)/
√

2, (e1, 0), . . . , (ed−1, 0).

On the one hand, E ẽ(w)(0) is by definition (see (5-2)) equal to∫
R

∫
R2d−2
|u(0 · e+ r e+ x j e j , t)v(0 · e+ r e+ y j e j , t)|2 dx ′dy′dr.

We rewrite it as ∫
R

∫
Rd−1
|v(r e+ y j e j , t)|2dy′

∫
Rd−1
|u(r e+ x j e j , t)|2 dx ′dr. (5-25)

On the other hand,

‖uv‖2L2
y
=

∫
Rd
|u(y, t)|2|v(y, t)|2dy =

∫
R

∫
Rd−1
|u(r e+ y j e j )|

2
|v(r e+ y j e j )|

2dy′dr,

and by applying Bernstein to u in the y′ variables, we obtain

‖uv‖2L2
y
. 2l(d−1)

∫
R

∫
Rd−1
|v(r e+ y j e j )|

2dy′
∫

Rd−1
|u(r e+ x j e j )|

2 dx ′dr. (5-26)

Together (5-26), (5-25), and (5-24) imply (5-23). �

5B. Applying the abstract lemmas. We would like to apply the abstract estimates just developed to the
evolution equation (2-7). We work in the caloric gauge and adopt the magnetic potential decomposition
introduced in Section 4D. Throughout we take ε as defined in (4-18).

Our starting point is the equation

(i∂t +1)ψm = Bm,lo∧lo+ Bm,hi∨hi+ Vm . (5-27)

Applying Fourier multipliers Pk , Pj,θ Pk , or variants thereof, we easily obtain corresponding evolution
equations for Pkψm , Pj,θ Pk , etc. In rewriting a projection P of (5-27) in the form (5-3), evidently 1Aψm

should somehow come from 1Pψm − P Bm,lo∧lo, whereas P Bm,hi∨hi + PVm ought to constitute the
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leading part of the nonlinearity 3. Fourier multipliers P , however, do not commute with the connection
coefficients A, and therefore in order to use the abstract machinery we must first track and control certain
commutators. Toward this end we adopt some notation from [Tao 2001].

Following [Tao 2001, §1], we use L O( f1, . . . , fm)(s, x, t) to denote any multilinear expression of the
form

L O( f1, . . . , fm)(s, x, t) :=
∫

K (y1, . . . , yM(c)) f1(s, x − y1, t) . . . fm(s, x − yM(c), t) dy1 . . . dyM(c),

where the kernel K is a measure with bounded mass (and K may change from line to line). Moreover, the
kernel of L O does not depend upon the index α. Also, we extend this notation to vector or matrices by
making K into an appropriate tensor. The expression L O( f1, . . . , fm) may be thought of as a variant of
O( f1, . . . , fm). It obeys two key properties. The first is a simple consequence of Minkowski’s inequality;
see, for example, [Tao 2001, Lemma 1].

Lemma 5.8. Let X1, . . . , Xm, X be spatially translation-invariant Banach spaces such that the product
estimate

‖ f1 · · · fm‖X ≤ C0‖ f1‖X1 · · · ‖ fm‖Xm

holds for all scalar-valued fi ∈ X i and for some constant C0 > 0. Then

‖L O( f1, . . . , fm)‖X . (Cd)CmC0‖ f1‖X1 · · · ‖ fm‖Xm

holds for all fi ∈ X i that are scalars, d-dimensional vectors, or d × d matrices.

The next lemma is an adaptation of Lemma 2 in [Tao 2001].

Lemma 5.9 (Leibniz rule). Let P ′k be a C∞ Fourier multiplier whose frequency support lies in some
compact subset of Ik(R

d). The commutator identity

P ′k( f g)= f P ′k g+ L O(∂x f, 2−k g)

holds.

Proof. Rescale so that k = 0 and let m(ξ) denote the symbol of P ′0 so that

P̂ ′0h(ξ) := m(ξ)ĥ(ξ).

By the fundamental theorem of calculus, we have(
P ′0( f g)− f P ′0g

)
(s, x, t)=

∫
Rd

m̌(y)( f (s, x − y, t)− f (s, x, t))g(s, x − y, t) dy

=−

∫ 1

0

∫
Rd

m̌(y)y · ∂x f (s, x − r y, t)g(s, x − y, t) dydr.

The conclusion follows from the rapid decay of m̂. �
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We are interested in controlling Pθ, j Pkψm in L∞,2θ over all θ ∈ S1 and | j − k| ≤ 20. In the abstract
framework, however, we assumed a much tighter localization than Pθ, j provides. Therefore we decompose
Pθ, j as a sum

P =
∑

l=1,...,O((η∗)−1)

Pθ, j,l, (5-28)

and it suffices by the triangle inequality to bound Pθ, j,l Pkψm . We note that this does not affect perturbative
estimates since η∗ is universal and in particular does not depend upon ε1, ε.

For notational convenience set P := Pθ, j,l Pk . Applying P to (5-27) yields

(i∂t +1)Pψm = P
(
Bm,lo∧lo+ Bm,hi∨hi+ Vm

)
.

Now

P Bm,lo∧lo =−i P
∑
|k3−k|≤4

(∂l(Al,lo∧lo Pk3ψm)+ Al,lo∧lo∂l Pk3ψm),

as P localizes to a region of the annulus Ik . Applying Lemma 5.9, we obtain

P Bm,lo∧lo =−i(∂l(Al,lo∧lo Pψm)− i Al,lo∧lo∂l Pψm)+ R,

where

R :=
∑
|k3−k|≤4

(
L O(∂x∂l Al,lo∧lo, 2−k Pk3ψm)+ L O(∂x Al,lo∧lo, 2−k Pk3∂lψm)

)
. (5-29)

Set

Am := Am,lo∧lo.

Then

(i∂t +1A)Pψm = P(Bm,hi∨hi+ Vm)+A2
x Pψm + R. (5-30)

It is this equation that we shall show fits within the abstract local smoothing framework.
First we check that Lemmas 5.1 and 5.2 apply. The main condition to check is (5-6). Key are the

bound (2-14) and Bernstein, which together with the fact that A is frequency-localized to I(−∞,k] provide
the estimate

‖A‖L∞t,x . 2k .

To achieve the εm gain, we adjust $ , which forces a gap between Ik and the frequency support of A, i.e.,
we localize A to I(−∞,k−$ ] instead. Thus it suffices to set $ ∈ Z+ equal to a sufficiently large universal
constant.

There is more to check in showing that (5-30) falls within the purview of Theorem 5.5. Already we have
d = 2, e= θ , εm ∼ 2−$ , Am := Am,lo∧lo, v = Pθ, j,l Pkψm , and 3v = P(Bm,hi∨hi+ Vm)+A2

x Pψm + R.
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Next we choose P based upon the norms used in Nk , with the exception of the local smoothing/maximal
function estimates. To be precise, define the new norms Ñk via

‖ f ‖Ñk(T ) :=

inf
f= f1+ f2+ f3+ f4+ f5

‖ f1‖L4/3
t,x
+ 2k/6

‖ f2‖L3/2,6/5
θ̂1

+ 2k/6
‖ f3‖L3/2,6/5

θ̂2

+ 2−k/6
‖ f4‖L6/5,3/2

θ̂1

+ 2−k/6
‖ f5‖L6/5,3/2

θ̂2

and similarly G̃k via

‖ f ‖G̃k(T ) := ‖ f ‖L∞t L2
x
+‖ f ‖L4

t,x
+ 2−k/2

‖ f ‖L4
x L∞t + 2−k/6 sup

θ∈S1
‖ f ‖L3,6

θ
+ 2k/6 sup

| j−k|≤20
sup
θ∈S1
‖Pj,θ f ‖L6,3

θ
.

Set P= {2, 3, 3/2, 4, 4/3, 6, 5/6}. We define the form B( · , · ) via

B( f, g) := ‖ f ‖G̃k(T )‖g‖Ñk(T ) (5-31)

and Bθ by
Bθ ( f, g) := B( f, χ{x ·θ≥0}g) (5-32)

as in Definition 5.3. That Bθ is adapted to P is a direct consequence of the definition.

Proposition 5.10. Let η > 0 be a parameter to be specified later. Let also d = 2, e = θ , εm ∼ 2−$ ,
Am := Am,lo∧lo, v= P (η)θ, j,l Pkψm ,3v= P(Bm,hi∨hi+Vm)+A2

x Pψm+R, and P={2, 3, 3/2, 4, 4/3, 6, 5/6}.
Let B, Bθ be given by (5-31) and (5-32) respectively. Then the conditions of Theorem 5.5 are satisfied
and the derived sequence of v is controlled with respect to Bθ so that conclusion (5-17) holds for
v = P (η)θ, j,l Pkψm given η sufficiently small.

Proof. The only claim of Proposition 5.10 that remains to be verified is that the derived sequence of
v = Pθ, j,l Pkψm is controlled with respect to Bθ . In particular, we need to show that for each q ≥ 1 we
have

Bθ (v(q),3v(q)) <∞,

where v(1) := Pθ, j,l Pkψm ,
v(q+1)

:= v(q)+ i2− j∂θv
(q),

and
3v(q+1) := (1+ i2− j∂θ )3v(q) + i2− j (i∂θ∂lAl − ∂θA2

l )v
(q)
− 2− j+1(∂θAl)∂lv

(q).

We first prove the following lemma.

Lemma 5.11. Let σ ∈ [0, σ1− 1]. The right-hand side of (5-30) satisfies

‖P(Bm,hi∨hi+ Vm)+A2
x Pψm + R‖Ñk(T ) . ε2−σkbk(σ ).

Proof. We will repeatedly use implicitly the fact that the multiplier Pθ, j,l is bounded on L p, 1≤ p ≤∞,
so that in particular P obeys estimates that are at least as good as those obeyed by Pk .

From Corollaries 4.11 and 4.12 of Sections 4C and 4D it follows that Pk(Bm,hi∨hi+Vm) is perturbative
and bounded in Ñk(T ) by ε2−σkbk(σ ). The Ñk(T ) estimates on PVm immediately imply the boundedness
of A2

x Pψm .
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To estimate R, we apply Lemma 3.10 to bound P Bm,lo∧lo by∑
(k1,k2,k3)∈Z1(k)

∫
∞

0
2max{k1,k2}2k3−kCk,k1,k2,k3‖Pk1ψx(s)‖Fk1

‖Pk2(Dlψl(s))‖Fk2
‖Pk3ψm(0)‖Gk3

ds,

which, in view of (4-12), (4-13), and (4-25), is controlled by∑
(k1,k2,k3)∈Z1(k)

Ck,k1,k2,k3bk1bk22−σk3bk3(σ ).

Summation is achieved thanks to Corollary 3.11. �

We return to the proof of the proposition, and in particular to showing that Bθ (v,3v) <∞. With the
important observation that the spatial multiplier χx ·θ≥0 is bounded on the spaces Ñk(T ), we may apply
Lemma 5.11 to control χx ·θ≥03v in Ñk . Since by assumption Pψm is bounded in G̃k(T ) (even in Gk(T )),
we conclude that Bθ (v,3v) <∞.

Next we need to show Bθ (vq ,3vq ) <∞ for q > 1. By Bernstein,

‖v(q)‖G̃k(T ) . ‖v
(q−1)
‖G̃k(T ).

Similarly,
‖(1+ i2− j )∂θ3v(q)‖Ñk(T ) . ‖3v(q−1)‖Ñk(T ).

Thus it remains to control i2− j (i∂θ∂lAl − ∂θA2
l )v

(q) and 2− j+1(∂θAl)∂lv
(q) in Ñk for each q > 1. Both

are consequences of arguments in Lemma 5.11: Boundedness of 2− j (∂θ∂lAl)v
(q) and 2− j+1(∂θAl)∂lv

(q)

follows directly from the argument used to control R and from Bernstein’s inequality, whereas boundedness
of 2− j (∂θA2

l )v
(q) is a consequence of Bernstein and the estimates on A2

x Pψm from Section 4C. �

Combining Lemma 5.11 and Proposition 5.10, we conclude that Corollary 5.6 applies to v = Pψm ,
with right-hand side bounded by 2−2σkck(σ )

2
+ ε2−2σkbk(σ )

2. In view of the decomposition (5-28), we
conclude this:

Corollary 5.12. Assume σ ∈ [0, σ1− 1]. The function Pkψm satisfies

sup
| j−k|≤20

sup
θ∈S1
‖Pj,θ Pkψm‖L∞,2θ

. 2−k/2(2−σkck(σ )+ ε
1/22−σkbk(σ )).

This proves Theorem 4.9.
Our next objective is to apply Corollary 5.7 to the case where w splits as a product u(x)v(y) where

u, v are appropriate frequency localizations of ψm or ψm . First we must find function spaces suitable
for defining an adapted form. We start with (i∂t + 1A)w = 3w and observe how it behaves with
respect to separation of variables. If w(x, y) = u(x)v(y), then the left-hand side may be rewritten as
u · (i∂t +1Ay )v+ v · (i∂t +1Ax )u. Let 3u := (i∂t +1Ax )u and 3v := (i∂t +1Ay )v. Then

(i∂t +1A)(uv)= u3v + v3u .

We control ∫ T

0

∫
R2×R2

u(x)v(y)(3u(x)v(y)+ u(x)3v(y)) dxdydt
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as follows: in the case of the first term u(x)v(y)3u(x)v(y) we place each v(y) in L∞t L2
y; we bound

u(x)3u(x) by placing u(x) in G j and 3u(x) in Ñ j . To control u(x)v(y)u(x)3v(y), we simply reverse
the roles of u and v (and of x and y). This leads us to the spaces N k,l defined by

‖ f ‖N k,l (T ) := inf
{
‖g2 j−1‖Ñl (T )‖h2 j−1‖L∞t L2

y
+‖g2 j‖L∞t L2

x
‖h2 j‖Ñk(T ) :

J ∈ Z+ and f (x, y)=
2J∑
j=1

(
g2 j−1(x)h2 j−1(y)+ g2 j (x)h2 j (y)

)}
,

(5-33)

and the spaces Gk,l defined via

‖ f ‖Gk,l (T ) := ‖‖ f (x, y)‖G̃k(T )(y)‖G̃l (T )(x). (5-34)

We use these spaces to define the form B( · , · ) by

B( f, g) := ‖ f ‖Gk,l (T )‖g‖N k,l (T ), (5-35)

and the form B2 by

B2( f, g) := B( f, χ{(x,y)·2≥0}g), (5-36)

where 2 := (−θ, θ).

Proposition 5.13. Let η > 0 be a small parameter and $ ∈ Z+ a large parameter, both to be specified
later. Let j, k, l ∈ Z, j = k+ O(1), l� k. Let d = 2, e= θ , εm ∼ 2−$ , Ax := Am,lo∧lo, v = P (η)θ, j,l Pkψm ,
3v = P(Bm,hi∨hi+ Vm)+A2

x Pψm + R, and P = {2, 3, 3/2, 4, 4/3, 6, 5/6}. Here R is given by (5-29).
Also, let u = Plψp, p ∈ {1, 2} and 3u = Pl(Bp,hi∨hi+ Vp)+A2

x Plψp + R′, where R′ is given by (5-29),
but defined in terms of derivative field ψl and frequency l rather than ψm and k.

Let w(x, y) := u(x)v(y), A := (Ax ,Ay), 3w := 3uv + u3v. Then, for $ sufficiently large and η
sufficiently small, the conditions of Corollary 5.7 are satisfied and (5-23) applies to u(x)v(x).

Proof. The frequency support conditions on A and 3w are easily verified. That the L∞ bound on A

holds follows from (2-14) and Bernstein provided $ is large enough (see the discussion preceding
Proposition 5.10). In order to guarantee the frequency support conditions on w, it is necessary to make
the gap l� k sufficiently large with respect to η.

That B2 is adapted to P is a straightforward consequence of its definition. To see that the derived
sequence of w is controllable, we look to the proof of Proposition 5.10 and the definitions of the N k,l ,
Gk,l spaces. �

In a spirit similar to that of the proof of Corollary 5.12, we may combine Lemma 5.11 and the proof
of Proposition 5.10 to control B(w,3w)+ B2(w,3w); in fact, in measuring 3w in the N k,l spaces, it
suffices to take J = 1 (see (5-33)). Then we obtain B(w,3w)+ B2(w,3w) . εb j 2−σkbk(σ ). Using
decomposition (5-28) and the triangle inequality to bound Pkψm in terms of the bounds on P (η)θ, j,l Pkψm , we
obtain the bilinear Strichartz analogue of Corollary 5.12. In our application, however, the lower-frequency
term will not simply be Pjψl , but rather its heat flow evolution Pjψl(s).
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Corollary 5.14 (improved bilinear Strichartz). Let j, k ∈ Z, j � k, and let

u ∈ {Pjψl, Pjψl : j ≤ k−$, l ∈ {1, 2}}.

Then for s ≥ 0, σ ∈ [0, σ1− 1],

‖u(s)Pkψm(0)‖L2
t,x
. 2( j−k)/2(1+ s22 j )−42−σk (c j ck(σ )+ εb j bk(σ )

)
. (5-37)

Proof. It only remains to prove (5-37) when s > 0. Let v := Pkψm . Using the Duhamel formula, we write

u(s)v =
(
es1u(0)

)
v(0)+

∫ s

0
e(s−s′)1U (s ′) ds ′ · v(0), (5-38)

where U is defined by (2-21) in terms of u.
To control the nonlinear term

∫ s
0 e(s−s′)1U (s ′) ds ′ · v(0) in L2, we apply local smoothing estimate

(3-11), which places the nonlinear evolution in F j (T ) and v(0) in Gk(T ). Using Lemma 7.11 to bound
the F j (T ) norm, we conclude that∥∥∥∥∫ s

0
e(s−s′)1Ũ (s ′) ds ′ · v(0)

∥∥∥∥
L2

t,x

. ε2( j−k)/2(1+ s22 j )−42−σkb j bk(σ ). (5-39)

It remains to show that

‖(es1u)v‖L2
t,x
. (1+ s22 j )−42( j−k)/22−σk(c j ck(σ )+ εb j bk(σ )), (5-40)

which is not a direct consequence of the time s = 0 bound. Let Ta denote the spatial translation operator
that acts on functions f (x, t) according to Ta f (x, t) := f (x − a, t). If

‖(Tx1u)(Tx2v)‖L2
t,x
. 2( j−k)/22−σk(c j ck(σ )+ εb j bk(σ )) (5-41)

can be shown to hold for all x1, x2 ∈ R2, then (5-40) follows from Minkowski’s and Young’s inequalities.
Consider, then, a solution w to

(i∂t +1A(x, t))w(x, t)=3w(x, t)

satisfying the conditions of Theorem 5.5. The translate Tx0w(x, t) then satisfies

(i∂t +1Tx0 (A)(x,t))(Tx0w)(x, t)= (Tx03w)(x, t).

The operator Tx0 clearly does not affect L∞t,x bounds or frequency support conditions. The only possible
obstruction to concluding (5-17) is this: whereas the derived sequence ofw is controlled with respect to Be,
in the abstract setting it may no longer be the case that the derived sequence of Tx0w is controlled. This
is due to the presence of the spatial multiplier in the definition of Be. Fortunately, as already alluded to in
the proof of Proposition 5.10, in our applications we do enjoy uniform boundedness with respect to any
spatial multipliers appearing in the second argument of an adapted form Be. Therefore Proposition 5.13
holds for spatial translates of frequency projections of ψm , from which we conclude (5-41). �

This establishes Theorem 4.8.
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6. The caloric gauge

In Section 6A we briefly recall from [Smith 2012a] the construction of the caloric gauge and some useful
quantitative estimates. In Section 6B we prove the frequency-localized estimates stated in Section 2C.

6A. Construction and basic results. In brief, the basic caloric gauge construction goes as follows.
Starting with H∞Q -class data ϕ0 : R

2
→ S2 with energy E(ϕ0) < Ecrit, evolve ϕ0 in s via the heat flow

equation (2-11). At s =∞ the map trivializes. Place an arbitrary orthonormal frame e(∞) on Tϕ(s=∞)S2.
Evolving this frame backward in time via parallel transport in the s direction yields a caloric gauge on
ϕ∗Tϕ(s=∞)S2.

For energies E(ϕ0) sufficiently small, global existence and decay bounds may be proven directly using
Duhamel’s formula. In order to extend these results to all energies less than Ecrit, we employ in [Smith
2012a] a concentration compactness argument that exploits the symmetries of (2-11) via concentration
compactness.

In [Smith 2012a] the following energy densities play an important role in the quantitative arguments.

Definition 6.1. For each positive integer k, define the energy densities ek of a heat flow ϕ by

ek := |(ϕ
∗
∇)k−1

x ∂xϕ|
2

:= 〈(ϕ∗∇) j1 . . . (ϕ
∗
∇) jk−1∂ jkϕ, (ϕ

∗
∇) j1 . . . (ϕ

∗
∇) jk−1∂ jkϕ〉, (6-1)

where j1, . . . , jk are summed over 1, 2 and ∇ denotes the Riemannian connection on the sphere, i.e., for
vector fields X, Y on the sphere ∇X Y denotes the orthogonal projection of ∂X Y onto the sphere.

Theorem 6.2 [Smith 2012a]. For any initial data ϕ0 ∈ H∞Q with E(ϕ0) < Ecrit there exists a unique
global smooth heat flow ϕ with initial data ϕ0. Moreover, ϕ satisfies the estimates∫

∞

0

∫
R2

sk−1ek+1(s, x) dx ds .E0,k 1, (6-2)

sup
0<s<∞

sk−1
∫

R2
ek(s, x) dx .E0,k 1,

sup
0<s<∞

x∈R2

sk ek(s, x).E0,k 1,

∫
∞

0
sk−1 sup

x∈R2
ek(s, x) ds .E0,k 1, (6-3)

for each k ≥ 1, as well as the estimate∫
∞

0

∫
R2

e2
1(s, x) dx ds .E0 1. (6-4)

We employ (6-2), (6-3), and (6-4) below.

6B. Frequency-localized caloric gauge estimates. The key estimate to establish is (2-35) for ϕ; most
of the remaining estimates will be derived as corollaries of it. Our strategy is to exploit energy dispersion
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so that we can apply the Duhamel formula to a frequency localization of the heat flow equation (2-11),
which for convenience we rewrite as

∂sϕ =1ϕ+ϕe1. (6-5)

Proof of (2-35) for ϕ. Let σ1 ∈ Z+ be positive and let S′ ≥ S � 0. Let K ∈ Z+, T ∈ (0, 22K
] be fixed.

Define for each t ∈ (−T, T ) the quantity

C(S, t) := sup
σ∈[2δ,σ1]

sup
s∈[0,S]

sup
k∈Z

(1+ s22k)σ12σkγk(σ )
−1
‖Pkϕ(s, · , t)‖L2

x (R
2). (6-6)

For fixed t the function C(S, t) : [0, S′] → (0,∞) is well-defined, continuous, and nondecreasing.
Moreover, in view of the definition (2-34) of γk(σ ), it follows that limS→0 C(S, t) . 1. A simple
consequence of (6-6) is

‖Pkϕ(s, · , t)‖L2
x (R

2) ≤ C(S, t)(1+ s22k)−σ12−σkγk(σ ) (6-7)

for 0≤ s ≤ S ≤ S′.
Our goal is to show C(S, t). 1 uniformly in S and t and our strategy is to apply Duhamel’s formula

to (6-5) and run a bootstrap argument. Beginning with the decomposition

Pk(ϕe1) =
∑
|k2−k|≤4

Pk(P≤k−5ϕ · Pk2 e1) +
∑
|k1−k|≤4

Pk(Pk1ϕ · P≤k−5e1) +
∑

k1,k2≥k−4
|k1−k2|≤8

Pk(Pk1ϕ · Pk2 e1),

we proceed to place in L2
x each of the three terms on the right-hand side; we then integrate in s and

consider separately the low-high, high-low, and high-high frequency interactions.

Low-high interaction. By Duhamel and the triangle inequality it suffices to bound

LH(s, t) :=
∫ s

0
e−(s−s′)22k−2 ∑

|k2−k|≤4

‖Pk(P≤k−5ϕ(s ′, · , t) · Pk2 e1(s ′, · , t))‖L2
x

ds ′. (6-8)

By Hölder’s inequality, |ϕ| ≡ 1, and L p-boundedness of the Littlewood–Paley multipliers,

LH(s, t).
∫ s

0
e−(s−s′)22k−2 ∑

|k2−k|≤4

‖P≤k−5ϕ‖L∞x ‖Pk2 e1‖L2
x

ds ′

.
∫ s

0
e−(s−s′)22k−2 ∑

|k2−k|≤4

‖Pk2 e1(s ′, · , t)‖L2
x

ds ′.

To control the sum we further decompose Pl e1 = Pl(∂xϕ · ∂xϕ) into low-high and high-high frequency
interactions:

Pl e1 = 2
∑
|l1−l|≤4

Pl(P≤l−5∂xϕ · Pl1∂xϕ) +
∑

l1,l2≥l−4
|l1−l2|≤8

Pl(Pl1∂xϕ · Pl2∂xϕ). (6-9)

Low-high interaction (i). We first attend to the low-high subcase. For convenience set 4lh equal to the
first term of the right-hand side of (6-9), i.e.,

4lh(s, x, t) :=
∑
|l1−l|≤4

Pl(P≤l−5∂xϕ(s, x, t) · Pl1∂xϕ(s, x, t)).
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By the triangle inequality, Hölder’s inequality, Bernstein’s inequality, the definition (6-1) for e1(s, · , t),
and (6-7), it follows that

‖4lh(s, · , t)‖L2
x
.

∑
|l1−l|≤4

‖Pl(P≤l−5∂xϕ · Pl1∂xϕ)‖L2
x
.

∑
|l1−l|≤4

‖P≤l−5∂xϕ‖L∞x ‖Pl1∂xϕ‖L2
x

.
∑
|l1−l|≤4

‖P≤l−5∂xϕ‖L∞x 2l1‖Pl1ϕ‖L2
x
. ‖
√

e1‖L∞x 2l
∑
|l1−l|≤4

‖Pl1ϕ‖L2
x

. ‖
√

e1(s, · , t)‖L∞x 2l2−σ lγl(σ )C(S, t)(1+ s22l)−σ1 .

As we apply this inequality in the case where l = k2, |k2− k| ≤ 4, we have∫ s

0
e−(s−s′)22k−2

‖4lh(s ′, · , t)‖L2
x
ds ′

. 2k2−σkγk(σ )C(S, t)
∫ s

0
e−(s−s′)22k−2

‖
√

e1(s ′, · , t)‖L∞x (1+ s ′22k)−σ1ds ′. (6-10)

Apply Cauchy–Schwarz. Clearly(∫ s

0
‖
√

e1(s ′, · , t)‖2L∞x ds ′
)1/2

≤ ‖e1( · , · , t)‖1/2L1
s L∞x

. (6-11)

We postpone applying (6-3) with k = 1 to (6-11). As for the other factor, we have(∫ s

0
e−(s−s′)22k−1

(1+ s ′22k)−2σ1ds ′
)1/2

.
(
s(1+ s22k−1)−2σ1(1+ s22k)−1)1/2

(6-12)

since ∫ s

0
e−(s−s′)λ(1+ s ′λ′)−αds ′ . s(1+ λs)−α(1+ λ′s)−1

for s ≥ 0, 0≤ λ≤ λ′, and α > 1. Hence, applying Cauchy–Schwarz to (6-10) and using (6-11) and (6-12),
we get∫ s

0
e−(s−s′)22k−2

‖4lh(s ′, · , t)‖L2
x

ds ′

. 2−σkγk(σ )C(S, t)2ks1/2(1+ s22k−1)−σ1(1+ s22k)−1/2
‖e1(t)‖

1/2
L1

s L∞x ([0,s]×R2)
.

Discarding s1/22k(1+ s22k)1/2 ≤ 1, we conclude that∫ s

0
e−(s−s′)22k−2

‖4lh(s ′, · , t)‖L2
x

ds ′ . 2−σkγk(σ )C(S, t)(1+ s22k−1)−σ1‖e1(t)‖
1/2
L1

s L∞x ([0,s]×R2)
. (6-13)

Low-high interaction (ii). We now move on to the high-high interaction subcase, setting 4hh equal to the
second term of the right-hand side of (6-9):

4hh(s, x, t) :=
∑

l1,l2≥l−4
|l1−l2|≤8

Pl(Pl1∂xϕ(s, x, t) · Pl2∂xϕ(s, x, t)).

By the triangle inequality, Bernstein, and Cauchy–Schwarz,
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‖4hh‖L2
x
.

∑
l1,l2≥l−4
|l1−l2|≤8

‖Pl(Pl1∂xϕ · Pl2∂xϕ)‖L2
x
.

∑
l1,l2≥l−4
|l1−l2|≤8

2l
‖Pl1∂xϕ · Pl2∂xϕ‖L1

x

.
∑

l1,l2≥l−4
|l1−l2|≤8

2l
‖Pl1∂xϕ‖L2

x
‖Pl2∂xϕ‖L2

x
.

At this stage we apply Bernstein twice, exploiting |l1− l2| ≤ 8, and get

‖Pl1∂xϕ‖L2
x
‖Pl2∂xϕ‖L2

x
. 2l2‖Pl1∂xϕ‖L2

x
‖Pl2ϕ‖L2

x
. ‖Pl1 |∂x |

2ϕ‖L2
x
‖Pl2ϕ‖L2

x
.

So

‖4hh‖L2
x
. 2l

∑
l1,l2≥l−4
|l1−l2|≤8

‖Pl1 |∂x |
2ϕ‖L2

x
‖Pl2ϕ‖L2

x
.

Applying Cauchy–Schwarz yields

‖4hh‖L2
x
.2l

( ∑
l1≥l−4

‖Pl1 |∂x |
2ϕ‖2L2

x

)1/2( ∑
l2≥l−4

‖Pl2ϕ‖
2
L2

x

)1/2

.‖|∂x |
2ϕ‖L2

x
2l
( ∑

l2≥l−4

‖Pl2ϕ‖
2
L2

x

)1/2

. (6-14)

As ϕ takes values in S2, which has constant curvature, we readily estimate ordinary derivatives by
covariant ones:

|∂2
xϕ|.

√
e2+ e1. (6-15)

Applying (6-15) in (6-14) and using (6-7), we arrive at

‖4hh(s, · , t)‖L2
x
. ‖
√

e2+ e1‖L2
x
2l
( ∑

l2≥l−4

‖Pl2ϕ‖
2
L2

x

)1/2

. ‖(
√

e2+ e1)(s, · , t)‖L2
x
2lC(S, t)

( ∑
l2≥l−4

(1+ s22l2)−2σ12−2σ l2γ 2
l2
(σ )

)1/2

. ‖(
√

e2+ e1)(s, · , t)‖L2
x
2lC(S, t)(1+ s22l)−σ1

( ∑
l2≥l−4

2−2σ l2γ 2
l2
(σ )

)1/2

. (6-16)

As σ > δ is bounded away from δ uniformly, we may apply summation rule (2-31) in (6-16). Recalling
l = k2 where |k2− k| ≤ 4, we conclude that

‖4hh(s, · , t)‖L2
x
. ‖(
√

e2+ e1)(s, · , t)‖L2
x
2k2−σkγk(σ )C(S, t)(1+ s22k)−σ1 .

Integrating in s yields∫ s

0
e−(s−s′)22k−2

‖4hh(s ′, · , t)‖L2
x

ds ′

. 2k2−σkγk(σ )C(S, t)
∫ s

0
e−(s−s′)22k−2∥∥(√e2+ e1)(s ′, · , t)

∥∥
L2

x
(1+ s ′22k)−σ1 ds ′. (6-17)
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We use the triangle inequality to write ‖
√

e2+ e1‖L2
x
≤ ‖
√

e2‖L2
x
+‖e1‖L2

x
and split the integral in (6-17)

into two pieces. By Cauchy–Schwarz and (6-12),∫ s

0
e−(s−s′)22k−2

‖e1(s ′, · , t)‖L2
x
(1+ s ′22k)−σ1 ds ′

≤

(∫ s

0
‖e1(s ′, · , t)‖2L2

x
ds ′
)1/2 (∫ s

0
e−(s−s′)22k−1

(1+ s ′22k)−2σ1 ds ′
)1/2

. ‖e1(t)‖L2
s,x

(
s(1+ s22k−1)−2σ1(1+ s22k)−1)1/2

. (6-18)

To the remaining integral we also apply Cauchy–Schwarz and (6-12):∫ s

0
e−(s−s′)22k−2

‖
√

e2(s ′, · , t)‖L2
x
(1+ s ′22k)−σ1 ds ′

≤

(∫ s

0
‖e2(s ′, · , t)‖L1

x
ds ′
)1/2 (∫ s

0
e−(s−s′)22k−1

(1+ s ′22k)−2σ1 ds ′
)1/2

. ‖e2(t)‖
1/2
L1

s,x

(
s(1+ s22k−1)−2σ1(1+ s22k)−1)1/2

. (6-19)

Hence, using Cauchy–Schwarz, (6-18), and (6-19) in (6-17), we conclude that∫ s

0
e−(s−s′)22k−2

‖4hh(s ′, · , t)‖L2
x

ds ′.2−σkγk(σ )C(S, t)(1+s22k−1)−σ1
(
‖e1(t)‖L2

s,x
+‖e2(t)‖

1/2
L1

s,x

)
. (6-20)

Low-high interaction: conclusion. Combining (6-13) and (6-20), we conclude in view of (6-8) and the
decomposition (6-9) that

LH(s, t). 2−σkγk(σ )C(S, t)(1+ s22k−1)−σ1
(
‖e1(t)‖

1/2
L1

s L∞x
+‖e1(t)‖L2

s,x
+‖e2(t)‖

1/2
L1

s,x

)
. (6-21)

High-low interaction. We now go on to bound the high-low interaction. By Duhamel and the triangle
inequality it suffices to bound

HL(s, t) :=
∫ s

0
e−(s−s′)22k−2 ∑

|k1−k|≤4

‖Pk(Pk1ϕ(s
′, · , t) · P≤k−5e1(s ′, · , t))‖L2

x
ds ′.

By Hölder’s inequality, (6-7), and Bernstein’s inequality, we have∑
|k1−k|≤4

‖Pk(Pk1ϕ(s, · , t) · P≤k−5e1(s, · , t))‖L2
x

.
∑
|k1−k|≤4

‖Pk1ϕ‖L2
x
‖P≤k−5e1‖L∞x

. ‖P≤k−5e1(s, · , t)‖L∞x

∑
|k1−k|≤4

(1+ s ′22k1)−σ12−σk1γk1(σ )C(S, t)

. 2k
‖P≤k−5e1(s, · , t)‖L2

x
2−σkγk(σ )C(S, t)(1+ s ′22k)−σ1 .

Hence

HL(s, t). 2k2−σkγk(σ )C(S, t)
∫ s

0
e−(s−s′)22k−2

(1+ s ′22k)−σ1‖e1(s ′, · , t)‖L2
x

ds ′.
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Bounding the integral as in (6-18), we obtain

HL(s, t). 2−σkγk(σ )C(S, t)(1+ s22k−1)−σ1‖e1(t)‖L2
s,x
. (6-22)

High-high interaction. We conclude with the high-high interaction. Set

HH(s, x, t) :=
∫ s

0
e−(s−s′)22k−2 ∑

k1,k2≥k−4
|k1−k2|≤8

‖Pk(Pk1ϕ(s, x, t) · Pk2 e1(s, x, t))‖L2
x

ds ′.

By Bernstein, Cauchy–Schwarz, and (6-7),∑
k1,k2≥k−4
|k1−k2|≤8

‖Pk(Pk1ϕ · Pk2 e1)‖L2
x
.

∑
k1,k2≥k−4
|k1−k2|≤8

2k
‖Pk1ϕ‖L2

x
‖Pk2 e1‖L2

x

. 2k
( ∑

k1≥k−4

‖Pk1ϕ‖
2
L2

x

)1/2( ∑
k2≥k−4

‖Pk2 e1‖
2
L2

x

)1/2

. 2k
( ∑

k1≥k−4

(1+ s ′22k1)−2σ12−2σk1γk1(σ )
2C(S, t)2

)1/2

‖e1(s, · , t)‖L2
x

= ‖e1(s, · , t)‖L2
x
2kC(S, t)

( ∑
k1≥k−4

(1+ s ′22k1)−2σ12−2σk1γk1(σ )
2
)1/2

.

We handle the sum as in (6-16), taking advantage of the frequency envelope summation rule (2-31), and
conclude that

HH(s, t). 2−σkγk(σ )C(S, t)(1+ s22k−1)−σ1‖e1(t)‖L2
s,x
. (6-23)

Wrapping up. For the linear term es1Pkϕ we have

‖es1Pkϕ0‖L2
x
≤ e−s22k−2

‖Pkϕ0‖L2
x
≤ e−s22k−2

2−σkγk(σ ). (6-24)

Using (6-21)–(6-24) in Duhamel’s formula applied to the covariant heat equation (6-5), we have that for
any s ∈ [0, S], t ∈ (−T, T ),

2σk
‖Pkϕ(s, · , t)‖L2

x
(1+ s22k)σ1 . γk(σ )+LL(s, t)+LH(s, t)+HH(s, t)

. γk(σ )+ γk(σ )C(S, t)
(
‖e1(t)‖

1/2
L1

s L∞x
+‖e2(t)‖

1/2
L1

s,x
+‖e1(t)‖L2

s,x

)
.

In view of (6-3) with k = 1, (6-2) with k = 1, and (6-4), we may split up the s-time interval [0,∞) into
OE0(1) intervals Iρ on which

‖e1(t)‖1/2L1
s L∞x (Iρ×R2)

, ‖e2(t)‖1/2L1
s L1

x (Iρ×R2)
, and ‖e1(t)‖L2

s L2
x (Iρ×R2)

are all simultaneously small uniformly in t . By iterating a bootstrap argument OE0(1) times beginning
with interval I1, we conclude that C(s, t). 1 for all s > 0, uniformly in t . Therefore

‖Pkϕ(s)‖L∞t L2
x
. (1+ s22k)−σ12−σkγk(σ ) (6-25)

for s ∈ [0,∞) and σ ≥ 2δ. �
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Remark 6.3. Having proven the quantitative bounds (2-35) for ϕ, one may establish as a corollary the
qualitative bounds (2-36) for ϕ by using an inductive argument as in the proof of [Bejenaru et al. 2011c,
Lemma 8.3]. We omit the proof, noting in particular that the argument deriving (2-36) from (2-35) does
not require a small-energy hypothesis.

Proof of (2-35) for v,w. We begin by introducing the matrix-valued function

R(s, x, t) := ∂sϕ(s, x, t) ·ϕ(s, x, t)†−ϕ(s, x, t) · ∂sϕ(s, x, t)†, (6-26)

where here ϕ is thought of as a column vector. The dagger “†” denotes transpose. Using the heat flow
equation (2-11) in (6-26), we rewrite R as

R =1ϕ ·ϕ†
−ϕ ·1ϕ† (6-27)

= ∂m(∂mϕ ·ϕ
†
−ϕ · ∂mϕ

†) (6-28)

and proceed to bound its Littlewood–Paley projections Pk R in L2
x . Noting that by Bernstein we have

‖Pk(∂m(∂mϕ ·ϕ
†))‖L2

x
∼ 2k
‖Pk(∂mϕ ·ϕ

†)‖L2
x
, (6-29)

we further decompose the nonlinearity Pk(∂mϕ ·ϕ
†) as

Pk(∂mϕ ·ϕ
†) =

∑
|k2−k|≤4

P≤k−4∂mϕ · Pk2ϕ
†
+

∑
|k1−k|≤4

Pk1∂mϕ · P≤k−4ϕ
†
+

∑
k1,k2≥k−4
|k1−k2|≤8

Pk(Pk1∂mϕ · Pk2ϕ
†). (6-30)

By Hölder’s and Bernstein’s inequalities, and by |ϕ| ≡ 1 and (6-25) with Bernstein,∑
|k2−k|≤4

‖P≤k−4∂mϕ · Pk2ϕ‖L2
x
.

∑
|k2−k|≤4

2k
‖P≤k−4ϕ‖L∞x ‖Pk2ϕ‖L2

x

. 2k(1+ s22k)−σ12−σkγk(σ ). (6-31)

Similarly, ∑
|k1−k|≤4

‖Pk1∂mϕ · P≤k−4ϕ‖L2
x
.

∑
|k1−k|≤4

‖Pk1∂mϕ‖L2
x
‖P≤k−4ϕ‖L∞x

. 2k(1+ s22k)−σ12−σkγk(σ ). (6-32)

Finally, by Bernstein and Cauchy–Schwarz, energy decay, (6-25), and frequency envelope summation
rule (2-31), we get ∑

k1,k2≥k−4
|k1−k2|≤8

‖Pk(Pk1∂mϕ · Pk2ϕ)‖L2
x
.

∑
k1,k2≥k−4
|k1−k2|≤8

2k
‖Pk1∂mϕ‖L2

x
‖Pk2ϕ‖L2

x

. 2k
∑

k2≥k−4

‖Pk2ϕ‖L2
x

. 2k
∑

k1≥k−4

(1+ s22k1)−σ12−σk1γk1(σ )

. 2k(1+ s22k)−σ12−σkγk(σ ). (6-33)
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Using the decomposition (6-30) and combining the cases (6-31), (6-32), and (6-33) to control (6-29), we
conclude from the representation (6-28) of R that for fixed t ∈ (−T, T ),

2σk
‖Pk R(s, · , t)‖L2

x
. 22k(1+ s22k)−σ1γk(σ ).

As this estimate is uniform in T , it follows that

2σk
‖Pk R(s)‖L∞t L2

x
. 22k(1+ s22k)−σ1γk(σ ). (6-34)

By arguing as in [Bejenaru et al. 2011c, Lemma 8.4], one may obtain the qualitative estimate

sup
s≥0

(
(1+ s)(σ+2)/2

‖∂σx ∂
ρ
t R(s)‖L t L2

x
(1+ s)(σ+3)/2

‖∂σx ∂
ρ
t R(s)‖L∞t,x

)
<∞. (6-35)

From the Duhamel representation of ϕ and the explicit formula for the heat kernel, one can easily show
the qualitative bound1 ∫

∞

0
‖R(s, · , t)‖L∞x ds .ϕ 1

as in [Smith 2012a, §7]. Hence we may define v as the unique solution of the ODE

∂sv = R(s) · v and v(∞)= Q′, (6-36)

where Q′ ∈ S2 is chosen so that Q · Q′ = 0. This indeed coincides with the definition given in [Smith
2012a], since (6-36) is nothing other than the parallel transport condition (ϕ∗∇)sv = 0 written explicitly
in the setting S2 ↪→ R3. Smoothness and basic convergence properties follow as in [Smith 2012a], to
which we refer the reader for the precise results and proofs. Our goal here is to exploit (6-36) and (6-34)
to prove (2-35) for v.

Using
∫
∞

0 ‖∂
σ
x ∂

ρ
t R(s)‖L∞t,x ds <∞ from (6-35), we conclude that

sup
s≥0
(1+ s)(σ+1)/2

‖∂σx ∂
ρ
t (v(s)− Q′)‖L∞t,x <∞ (6-37)

for σ, ρ ∈ Z+. Integrating (6-36) in s from infinity, we get

v(s)− Q′+
∫
∞

s
R(s ′) · Q′ ds ′ =−

∫
∞

s
R(s ′) · (v(s ′)− Q′) ds ′, (6-38)

which, combined with estimates (6-35) and (6-37), implies

sup
s≥0

sup
k∈Z

(1+ s)σ/22σk
‖Pk∂

ρ
t v(s)‖L∞t L2

x
<∞, (6-39)

i.e., (2-36) for v. Projecting (6-36) to frequencies ∼ 2k and integrating in s, we obtain

Pk(v(s))=−
∫
∞

s
Pk(R(s ′) · v(s ′)) ds ′. (6-40)

1 We may alternatively invoke (6-35) as in [Bejenaru et al. 2011c].
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Set

C1(S, t) := sup
σ∈[2δ,σ1]

sup
s∈[S,∞)

sup
k∈Z

γk(σ )
−1(1+ s22k)σ1−12σk

‖Pkv(s, · , t)‖L2
x
.

That C1(S, t) <∞ follows from (6-39) and supk∈Z γk(σ )
−12−δ |k| <∞. Consequently, for s ∈ [S,∞),

‖Pkv(s, · , t)‖L2
x
. C1(S, t)(1+ s22k)−σ1+12−σkγk(σ ). (6-41)

We perform the Littlewood–Paley decomposition

Pk(R(s)v(s))=
∑
|k2−k|≤4

Pk(P≤k−4 R(s)Pk2v(s))

+

∑
|k1−k|≤4

Pk(Pk1 R(s)P≤k−4v(s))+
∑

k2≥k−4

Pk(P≥k−4 R(s)Pk2v(s)) (6-42)

and proceed to consider individually the various frequency interactions. By Hölder’s inequality, Bernstein’s
inequality, and (6-41),∑

|k2−k|≤4

‖Pk(P≤k−4 R(s)Pk2v(s))‖L2
x
.

∑
|k2−k|≤4

‖P≤k−4 R(s)‖L2
x
‖Pk2v(s)‖L∞x

. ‖R(s)‖L2
x

∑
|k2−k|≤4

2k2‖Pk2v(s)‖L2
x

. ‖R(s)‖L2
x
2k2−σkγk(σ )(1+ s22k)−σ1+1C1(S, t). (6-43)

By Hölder’s inequality, |v| ≡ 1, and (6-34),∑
|k1−k|≤4

‖Pk(Pk1 R(s)P≤k−4v(s))‖L2
x
. ‖P≤k−4v(s)‖L∞x

∑
|k1−k|≤4

‖Pk1 R(s)‖L2
x

. 22k(1+ s22k)−σ12−σkγk(σ ). (6-44)

From Bernstein’s inequality, Cauchy–Schwarz, (6-41), and σ > 2δ with (2-31), it follows that∑
k2≥k−4

‖Pk(P≥k−4 R(s)Pk2v(s))‖L2
x
.

∑
k2≥k−4

2k
‖P≥k−4 R(s)Pk2v(s)‖L1

x

. ‖R(s)‖L2
x

2k
∑

k2≥k−4

‖Pk2v(s)‖L2
x

. ‖R(s)‖L2
x

2k
∑

k2≥k−4

2−σk2γk2(σ )(1+ s22k2)−σ1+1C1(S, t)

. ‖R(s)‖L2
x

2k2−σkγk(σ )(1+ s22k)−σ1+1C1(S, t). (6-45)

Using the decomposition (6-42) in (6-40) and combining the estimates (6-43), (6-44), and (6-45) gives

2σk
‖Pkv(s)‖L2

x
≤

∫
∞

s
2σk
‖Pk(R(s ′)v(s ′))‖L2

x
ds ′

. γk(σ )

∫
∞

s
22k(1+ s ′22k)−σ1 ds ′+C1(s, t)γk(σ )

∫
∞

s
‖R(s ′)‖L2

x
2k(1+ s ′22k)−σ1+1ds ′.
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Applying Cauchy–Schwarz in s, we obtain

2σk
‖Pkv(s)‖L2

x
. γk(σ )

∫
∞

s
22k(1+ s ′22k)−σ1ds ′

+C1(s, t)γk(σ )

(∫
∞

s
‖R(s ′)‖2L2

x
ds ′
)1/2(∫ ∞

s
22k(1+ s ′22k)−2σ1+2 ds ′

)1/2

. γk(σ )+C1(s, t)γk(σ )

(∫
∞

s
‖R(s ′)‖2L2

x
ds ′
)1/2

. (6-46)

As noted in (6-15), we have |1ϕ| ≤
√

e2+ e1, so it follows from the representation (6-27) of R that

|R(s, x, t)| ≤ |e1(s, x, t)| + |
√

e2(s, x, t)|. (6-47)

As (6-47) implies ∫
∞

0
‖R(s)‖2L2

x
ds . ‖e2‖L1

s,x
+‖e1‖

2
L2

s,x
,

we therefore, in view of (6-2) with k = 1 and (6-4), may choose S large so that the integral of the R term
in (6-46) is small, say ≤ ε. Then

C1(S, t). 1+ εC1(S, t),

so that C1(S). 1 for such S. In fact, together (6-2) and (6-4) imply that we may divide the time interval
[0,∞) into OE0(1) subintervals Iρ so that on each such subinterval∫

Iρ
‖R(s)‖2L2

x
ds ≤ ε2.

Hence by a simple iterative bootstrap argument we conclude that

C1(0, t). 1. (6-48)

As (6-48) is uniform in t , we have

‖Pkv(s, · , t)‖L2
x
. (1+ s22k)−σ1+12−σkγk(σ ). (6-49)

By repeating the argument above withw in place of v (and appropriately modifying the boundary condition
at∞ in (6-36)), we get

‖Pkw(s, · , t)‖L2
x
. (1+ s22k)−σ1+12−σkγk(σ ) (6-50)

and sups≥0 supk∈Z (1+ s)σ/22σk
‖Pk∂

ρ
t w(s)‖L∞t L2

x
<∞, and so (2-35) and (2-36) follow for w. �

Proof of (2-37). Recall that

ψm = v · ∂mϕ+ iw · ∂mϕ =−∂mv ·ϕ− i∂mw ·ϕ. (6-51)

Our first aim is to control ‖Pkψx‖L∞t L2
x
. We start with a Littlewood–Paley decomposition of ∂mv ·ϕ:

Pk(∂mv ·ϕ)

=

∑
|k2−k|≤4

Pk(P≤k−5∂mv · Pk2ϕ)+
∑
|k1−k|≤4

Pk(Pk1∂mv · P≤k−5ϕ) +
∑

k1,k2≥k−4
|k1−k2|≤8

Pk(Pk1∂mv · Pk2ϕ). (6-52)
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To control the low-high frequency term we apply Hölder’s inequality, energy decay, and (6-25) with
Bernstein’s inequality:∑

|k2−k|≤4

‖Pk(P≤k−5∂mv · Pk2ϕ)‖L2
x
.

∑
|k2−k|≤4

‖P≤k−5∂mv‖L2
x
‖Pk2ϕ‖L∞x

. (1+ s22k)−σ12k2−σkγk(σ ). (6-53)

We control the high-low frequency term by using Hölder’s inequality, |ϕ| ≡ 1, and (6-49):∑
|k1−k|≤4

‖Pk(Pk1∂mv · P≤k−5ϕ)‖L2
x
.

∑
|k1−k|≤4

‖Pk1∂mv‖L2
x
‖P≤k−5ϕ‖L∞x

. (1+ s22k)−σ12k2−σkγk(σ ). (6-54)

To control the high-high frequency term, we use Bernstein’s inequality and Cauchy–Schwarz, energy
conservation and (6-25), and (2-31):∑

k1,k2≥k−4
|k1−k2|≤8

‖Pk(Pk1∂mv · Pk2ϕ)‖L2
x
.

∑
k1,k2≥k−4
|k1−k2|≤8

2k
‖Pk1∂mv‖L2

x
‖Pk2ϕ‖L2

x

. 2k
∑

k2≥k−4

(1+ s22k2)−σ12−σk2γk2(σ )

. (1+ s22k)−σ12k2−σkγk(σ ). (6-55)

We conclude using (6-53), (6-54), and (6-55) in representation (6-52) that

‖Pk(∂mv ·ϕ)‖L2
x
. (1+ s22k)−σ12k2−σkγk(σ ). (6-56)

By repeating the argument with w in place of v, it follows that (6-56) also holds with w in place of v.
Therefore, referring back to (6-51), we conclude that

‖Pkψm‖L2
x
. (1+ s22k)−σ12k2−σkγk(σ ).

As this bound is uniform in t , (2-37) holds for ψm .
Recalling that

Am = ∂mv ·w,

and repeating the argument with w in place of ϕ and (6-50) in place of (6-25), we conclude that

‖Pk Ax(s)‖L∞t L2
x
. (1+ s22k)−σ1+12k2−σkγk(σ ). �

7. Proofs of parabolic estimates

The purpose of this section is to prove the parabolic heat-time estimates stated in Section 4A. Many of
these estimates have counterparts in [Bejenaru et al. 2011c]. Nevertheless, our proofs are more involved
since we only require energy dispersion, which is weaker than the small-energy assumption made in
[Bejenaru et al. 2011c]. Some of the L p estimates in Section 7B are new.
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Throughout we assume ε1 energy dispersion on the initial data as stated in (4-4) and we assume that
the bootstrap hypothesis (4-6) holds. Let σ1 ∈ Z+ be positive and fixed. We work exclusively with
σ ∈ [0, σ1− 1], even if this is not always explicitly stated. Set ε = ε7/5

1 for short.
In this section we extensively use the spaces defined via (3-2). They provide a crucial gain in high-high

frequency interactions, which is captured in Lemmas 7.2 and 7.14.

Lemma 7.1. Let f ∈ L2
k1
(T ), where |k1− k| ≤ 20, let 0≤ ω′ ≤ 1/2, and let h ∈ L2

k(T ). Then

‖Pk( f g)‖Fk(T ) . ‖ f ‖Fk1 (T )‖g‖L∞t,x ,

‖Pk( f g)‖Sω′k (T )
. ‖ f ‖Fk1 (T )2

kω′
‖g‖

L2/ω′
x L∞t

,

‖h‖L∞t,x + 2kω′
‖h‖

L2/ω′
x L∞t

. 2k
‖h‖Fk(T ).

Moreover, for fk1, gk2 belonging to L2
k1
(T ), L2

k2
(T ) respectively, and with |k1− k2| ≤ 8, we have

‖Pk( fk1 gk2)‖Fk(T )∩S1/2
k (T ) . 2k2(k2−k)(1−ω)

‖ fk1‖Sωk1
(T )‖gk2‖S0

k2
(T ).

Proof. For the proofs, see [Bejenaru et al. 2011c, §3]. �

Lemma 7.2. Assume that T ∈ (0, 22K
], f, g ∈ H∞,∞(T ), Pk f ∈ Fk(T )∩ Sωk (T ), Pk g ∈ Fk(T ) for some

ω ∈ [0, 1/2] and all k ∈ Z, and

αk =
∑

| j−k|≤20

‖Pj f ‖F j (T )∩Sωj (T ), βk =
∑

| j−k|≤20

‖Pj g‖F j (T ).

Then, for any k ∈ Z,

‖Pk( f g)‖Fk(T )∩S1/2
k (T ) .

∑
j≤k

2 j (βkα j +αkβ j )+ 2k
∑
j≥k

2( j−k)(1−ω)α jβ j .

Proof. For the proof, see [Bejenaru et al. 2011c, §5]. �

7A. Derivative field control. The main purpose of this subsection is to establish the estimate (4-12),
which states that

‖Pkψm(s)‖Fk(T ) . (1+ s22k)−42−σkbk(σ ).

In the course of the proof we shall also establish auxiliary estimates useful elsewhere. Estimate (4-12)
plays a key role in controlling the nonlinear paradifferential flow, allowing us to gain regularity by
integrating in heat time. The proof uses a bootstrap argument and exploits the Duhamel formula.

Recall that the fields ψα, Aα, α = 1, 2, 3, (ψ3 ≡ ψt , A3 ≡ At ) satisfy (2-20), which states that

(∂s −1)ψα =Uα.

We use representation (2-22) of the heat nonlinearity:

Uα := 2i Al∂lψα + i(∂l Al)ψα − A2
xψα + i Im(ψαψl)ψl .
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Hence ψα admits the representation

ψα(s)= es1ψα(s0)+

∫ s

s0

e(s−s′)1Uα(s ′) ds ′ (7-1)

for any s ≥ s0 ≥ 0.
For each k ∈ Z, set

a(k) := sup
s∈[0,∞)

(1+ s22k)4
∑

m=1,2

‖Pkψm(s)‖Fk(T ),

and for σ ∈ [0, σ1− 1] introduce the frequency envelopes

ak(σ )= sup
j∈Z

2−δ |k− j |2σ j a( j). (7-2)

The frequency envelopes ak(σ ) are finite and in l2 by (2-38) and (3-1).
Our goal is to show ak(σ ). bk(σ ), which in particular implies (4-12).

Lemma 7.3. Suppose that ψx satisfies the bootstrap condition

‖Pkψx(s)‖Fk(T )∩S1/2
k (T ) ≤ ε

−1/2
p bk(1+ s22k)−4. (7-3)

Then (4-12) holds.

We can take εp = ε
1/10
1 , for instance. As in [Bejenaru et al. 2011c], this result may be strengthened:

Corollary 7.4. The estimate (4-12) holds even when the bootstrap hypothesis (7-3) is dropped.

Proof. Directly apply the argument of [Bejenaru et al. 2011c, Corollary 4.4], which we omit. �

The sequence of lemmas we prove in order to establish Lemma 7.3 culminates in Lemma 7.11, which
controls the nonlinear term of the Duhamel formula (7-1) by 2−σkak(σ ) along with suitable decay and an
epsilon-gain arising from energy dispersion. Its immediate predecessor, Lemma 7.10, controls PkUm in
Fk(T ).

Referring back to (2-22) and seeing as how Um contains the term 2i Al∂lψm , we see that in order to
apply the parabolic estimates of Lemma 7.1 toward controlling PkUm , it is necessary that we first control
Pk Am in Fk(T ) in terms of the frequency envelopes {al(σ )}, and it is to this that we now turn.

For k, k0 ∈ Z and s ∈ [22k0−1, 22k0+1), set

bk,s(σ )=


−k0∑
j=k

a j a j (σ ) if k+ k0 ≤ 0,

2k+k0a−k0ak(σ ) if k+ k0 ≥ 0.

Let C be the smallest number in [1,∞) such that

‖Pk Am(s)‖Fk(T )∩S1/2
k (T ) ≤ C(1+ s22k)−42−σkbk,s(σ ) (7-4)

for all s ∈ [0,∞), k ∈Z, m= 1, 2, and σ ∈ [0, σ1−1]. While this constant is indeed finite, it is not a priori
controlled by energy. To show that C is indeed controlled by energy, we use the integral representation

Am(s)=−
∑

l=1,2

∫
∞

s
Im(ψm(∂lψl + i Alψl))(r) dr (7-5)
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and seek to control the Littlewood–Paley projection of the integrand in Fk(T ) ∩ S1/2
k (T ). We treat

differently the two types of terms in (7-5) that need to be controlled. In Lemma 7.5 we bound terms
of the sort Pk(ψxψx) and Pk(ψx∂xψx) in Fk(T )∩ S1/2

k (T ). In Lemma 7.6 we combine the estimate on
Pk(ψxψx) with (7-4) to obtain control on Pk(ψxψx Ax), gaining an epsilon from energy dispersion. Using
(7-5) and exploiting the epsilon gain from energy dispersion will lead us to the conclusion of Lemma 7.7:
C. 1.

We use the following bracket notation in the sequel:

〈 f 〉 := (1+ f 2)1/2.

Lemma 7.5. For any f, g ∈ {ψm, ψm : m = 1, 2}, r ∈ [22 j−2, 22 j+2
], j ∈ Z, i = 1, 2, and σ ∈ [0, σ1− 1],

we have the bounds

‖Pk( f (r)g(r))‖Fk(T )∩S1/2
k (T ) . 〈2

j+k
〉
−82−σk2− j a− j amax(k,− j)(σ ) (7-6)

and
‖Pk( f (r)∂i g(r))‖Fk(T )∩S1/2

k (T ) . 〈2
j+k
〉
−82−σk2− j a− j (2kak(σ )+ 2− j a− j (σ )). (7-7)

Proof. By Lemma 7.2 with ω = 0 we have

‖Pk( f g)‖Fk(T )∩S1/2
k (T ) .

∑
l≤k

2lαkβl +
∑
l≥k

2lαlβl, (7-8)

where, due to the definition (7-2), αk and βk satisfy

αk . 〈2 j+k
〉
−82−σkak(σ ), βk . 〈2 j+k

〉
−8ak . (7-9)

Turning to the high-low frequency interaction first, we have using (7-9) and the frequency envelope
property (2-29) that∑

l≤k

2lαkβl . 〈2 j+k
〉
−82−σk2− j a− j

∑
l≤k

〈2 j+l
〉
−82 j+l2δ | j+l|ak(σ ). (7-10)

Thus it remains to show that∑
l≤k

〈2 j+l
〉
−82 j+l2δ | j+l|ak(σ ). amax(k,− j)(σ ), (7-11)

which follows from pulling out a factor of ak(σ ) or a− j (σ ), according to whether k+ j ≥ 0 or k+ j < 0,
and then summing the remaining geometric series. In case k+ j < 0 we pull out a factor of a− j (σ ) via
(2-29).

Turning to the high-high frequency interaction term, we have∑
l≥k

2lαlβl . 〈2 j+k
〉
−82−σk2− j a− j

∑
l≥k

〈2 j+l
〉
−82 j+l2δ | j+l|al(σ ), (7-12)

and so it remains to show that∑
l≥k

〈2 j+l
〉
−82 j+l2δ | j+l|al(σ ). amax(k,− j)(σ ). (7-13)
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When k+ j ≥ 0, we have, using (2-31),∑
l≥k

〈2 j+l
〉
−82 j+l2δ | j+l|al(σ ). ak(σ )

∑
l≥k

2(2δ−1)( j+l) . ak(σ ).

If k+ j ≤ 0, we control the sum with (2-30) if l+ j < 0 and with (2-31) if l+ j ≥ 0. Hence (7-13) holds.
Together (7-8)–(7-13) imply (7-6).
To establish (7-7) we follow a similar strategy. By Lemma 7.2 with ω = 0 we have

‖Pk( f ∂i g)‖Fk(T )∩S1/2
k (T ) .

∑
l≤k

2lαlβk +
∑
l≥k

2lαkβl +
∑
l≥k

2lαlβl, (7-14)

where for any σ ∈ [0, σ1− 1] we have

αk . 〈2 j+k
〉
−82−σkak(σ ) and βk . 〈2 j+k

〉
−82k2−σkak(σ ). (7-15)

Beginning with the low-high frequency interaction, we have∑
l≤k

2lαlβk . 〈2 j+k
〉
−82−σk2kak(σ )

∑
l≤k

〈2 j+l
〉
−82lal, (7-16)

and so it remains to show that ∑
l≤k

〈2 j+l
〉
−82lal . 2− j a− j . (7-17)

If k+ j ≤ 0, then (7-17) holds due to (2-30). If k+ j ≥ 0, then we apply (2-30) and (2-31) according to
whether l + j ≤ 0 or l + j > 0.

Turning now to the high-low frequency interaction, we have∑
l≤k

2lαkβl . 〈2 j+k
〉
−82−σk2− j a− j 2kak(σ )

∑
l≤k

〈2 j+l
〉
−82l−k2l+ j 2δ |l+ j |. (7-18)

We need only check that ∑
l≤k

〈2 j+l
〉
−82l−k2l+ j 2δ |l+ j | . 1,

which can be seen to hold by breaking into cases k+ j ≤ 0 and k+ j ≥ 0.
We conclude with the high-high frequency interaction:∑

l≥k

2lαlβl . 〈2 j+k
〉
−82−σk

∑
l≥k

〈2 j+l
〉
−822lal(σ )al

. 〈2 j+k
〉
−82−σk2−2 j a j a j (σ )

∑
l≥k

〈2 j+l
〉
−822l+2 j 22δ |l+ j |. (7-19)

Here ∑
l≥k

〈2 j+l
〉
−822l+2 j 22δ |l+ j | . 1, (7-20)

which is seen to hold by considering separately the cases k+ j ≥ 0, k+ j < 0.
Combining (7-16)–(7-20), we conclude (7-7). �
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Lemma 7.6. Let

f (r) ∈ {ψm(r)ψl(r) : m, l = 1, 2}, g(r) ∈ {Am(r) : m = 1, 2},

and r ∈ [22 j−2, 22 j+2
]. Then

‖Pk( f g)(r)‖Fk(T )∩S1/2
k (T ) .

{
εC2−σk2−2 j a− j a− j (σ ) k+ j ≤ 0,
εC〈2 j+k

〉
−82−σk2−2 j bk,r (σ ) k+ j ≥ 0.

Proof. We apply Lemma 7.2. By (7-6) and (7-4) we have

αk(r). 2−σk
〈2 j+k

〉
−82− j a− j amax(k,− j)(σ ), (7-21)

and
βk(r). C2−σk

〈2 j+k
〉
−8bk,r (σ ), (7-22)

for any σ ∈ [0, σ1− 1].
We consider six cases, treating separately the low-high, high-low, and high-high frequency interactions,

which we further divide according to whether k+ j ≥ 0 or k+ j ≤ 0.

Low-high frequency interaction with k+ j ≥ 0. Using (7-21) and (7-22), we have∑
l≤k

2lαlβk . C〈2 j+k
〉
−82−σk2−2 j bk,r (σ )

∑
l≤k

2l22 jαl, (7-23)

and so it remains to verify that ∑
l≤k

2l22 jαl . ε. (7-24)

Taking σ = 0 in the bounds (7-21) for αl and using (2-29), (2-31) yields∑
l≤k

2l22 jαl .
∑
l≤k

〈2 j+l
〉
−82l22 j 2− j a− j amax(l,− j)

=

∑
l≤− j

2l+ j a2
− j +

∑
− j<l≤k

〈2 j+l
〉
−82l+ j a− j al . a2

− j + a2
− j

∑
− j<l≤k

〈2 j+l
〉
−82(1+δ)(l+ j) . ε,

which proves (7-23).

High-low frequency interaction with k+ j ≥ 0. Taking σ = 0 in the bounds for bl,r , we have∑
l≤k

2lαkβl . C〈2 j+k
〉
−82−σk2−2 j bk,r (σ )

∑
l≤k

〈2 j+l
〉
−82l−kbl,r , (7-25)

and so it remains to show that ∑
l≤k

〈2 j+l
〉
−82l−kbl,r . ε. (7-26)

We split the sum as follows:

∑
l≤k

〈2 j+l
〉
−82l−kbl,r =

∑
l≤− j

〈2 j+l
〉
−82l−k

− j∑
q=l

a2
q +

∑
− j<l≤k

〈2 j+l
〉
−82l−k2l+ j a− j al .
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The first summand is controlled by

∑
l≤− j

〈2 j+l
〉
−82l−k

− j∑
q=l

a2
q . a2

− j

∑
l≤− j

2l−k
− j∑
q=l

2−2δ( j+q) . a2
− j . ε.

The second summand by may be handled similarly, thus proving (7-26).

High-high frequency interaction with k+ j ≥ 0. Taking σ = 0 in the bound (7-22) for βl , we have∑
l≥k

2lαlβl .〈2 j+l
〉
−82k

∑
l≥k

2l−k2−σ l2− j a− j al(σ )C2l+ j a− j al

.C〈2 j+k
〉
−82−σk2−2 j bk,r (σ )

∑
l≥k

〈2 j+l
〉
−82l−k2δ(l−k)2l+ j a− j al, (7-27)

and so it remains to show that ∑
l≥k

〈2 j+l
〉
−82l−k2δ(l−k)2l+ j a− j al . ε, (7-28)

which follows, for instance, from pulling out a2
− j via (2-29) and summing.

In view of (7-23)–(7-28), it follows from Lemma 7.2, with ω = 0 that

‖Pk( f g)(r)‖Fk(T )∩S1/2
k (T ) . εC〈2 j+k

〉
−82−σk2−2 j bk,r (σ ) for k+ j ≥ 0 (7-29)

as required.

Low-high frequency interaction with k+ j ≤ 0. In this case it follows from (7-22) that

βk . C2−σk
− j∑
p=k

apap(σ ),

so that ∑
l≤k

2lαlβk . C2−σk2− j a− j a− j

− j∑
p=k

apap(σ )
∑
l≤k

〈2 j+l
〉
−82l

. C2−σk2−2 j a− j a− j (σ ) · a− j

− j∑
p=k

ap2−δ( j+p)
∑
l≤k

2l+ j . (7-30)

It remains to show that

a− j

− j∑
p=k

ap2−δ( j+p)
∑
l≤k

2l+ j . ε,

which follows from pulling out ap as an a− j via (2-29) and summing.

High-low frequency interaction with k+ j ≤ 0. In this case

∑
l≤k

2lαkβl . C2−2 j a− j a− j (σ )
∑
l≤k

2l+ j
− j∑
p=l

a2
p, (7-31)
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and so we need to show that ∑
l≤k

2l+ j
− j∑
p=l

a2
p . ε,

which follows by pulling out a2
− j and summing.

High-high frequency interaction with k+ j ≤ 0. As a first step we write

2k
∑
l≥k

2(l−k)/2αlβl = 2k
∑

k≤l<− j

2(l−k)/2αlβl + 2k
∑

l≥− j

2(l−k)/2αlβl . (7-32)

The first summand is controlled by

2k
∑

k≤l<− j

2(l−k)/2αlβl . C2−σk2−2 j a− j a− j (σ )
∑

k≤l<− j

2(l−k)/22k+ j 2−σ(l−k)
− j∑
p=l

a2
p. (7-33)

We have ∑
k≤l<− j

2(l−k)/22k+ j 2−σ(l−k)
− j∑
p=l

a2
p . a2

− j 2
(k+ j)/2

∑
k≤l<− j

2−2δ( j+l) . ε,

which establishes the desired control on the first summand.
The second summand is controlled by

2k
∑

l≥− j

2(l−k)/2αlβl . 2k
∑

l≥− j

2(l−k)/2
〈2 j+l
〉
−82−σ l2− j a− j al(σ )C〈2 j+l

〉
−82l+ j a− j al

. C2−σk2−2 j a− j a− j (σ )
∑

l≥− j

2(l−k)/22k+ j 2(1+δ)(l+ j)a− j al, (7-34)

and so it remains to show that ∑
l≥− j

2(l−k)/22k+ j 2(1+δ)(l+ j)a− j al . ε, (7-35)

which follows from pulling out a2
− j and summing.

Combining (7-30)–(7-35), we conclude from applying Lemma 7.2 with ω = 1/2 that

‖Pk( f g)(r)‖Fk(T )∩S1/2
k (T ) . εC2−σk2−2 j a− j a− j (σ ) for k+ j ≤ 0,

which, combined with (7-29) completes the proof of the lemma. �

Lemma 7.7. For any k ∈ Z and s ∈ [0,∞) we have

‖Pk Am(s)‖Fk(T )∩S1/2
k (T ) . (1+ s22k)−42−σkbk,s(σ ).

Proof. From the representation (7-5) for Am it follows that

‖Pk Am(s)‖Fk(T )∩S1/2
k (T ) .

∫
∞

s
‖Pk(ψm(r)∂lψl(r))‖Fk(T )∩S1/2

k (T ) dr

+

∫
∞

s
‖Pk(ψm(r)ψl Al(r))‖Fk(T )∩S1/2

k (T ) dr. (7-36)
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Taking k0 ∈ Z so that s ∈ [22k0−1, 22k0+1) and using (7-7), we see that the first term is dominated by

∑
j≥k0

∫ 22 j+1

22 j−1
‖Pk(ψm(r)∂lψl(r))‖Fk(T )∩S1/2

k (T )dr . 2−σk
∑
j≥k0

〈2 j+k
〉
−8(2 j+ka− j ak(σ )+a− j a− j (σ )). (7-37)

We claim that ∑
j≥k0

〈2 j+k
〉
−8(2 j+ka− j ak(σ )+ a− j a− j (σ )). (1+ s22k)−4bk,s(σ ). (7-38)

When k+ k0 ≥ 0, it follows from (2-29) that the left-hand side of (7-38) is bounded by

2k0+ka−k0ak(σ )
∑
j≥k0

〈2 j+k
〉
−8 (2 j−k02δ( j−k0)+ 2−k0−k2δ( j−k0)2δ(k+ j))

. bk,s(σ )
∑
j≥k0

〈2 j+k
〉
−8(2(1+δ)( j−k0)+ 2(δ−1)(k0+k)22δ( j−k0)), (7-39)

and so it suffices to show that ∑
j≥k0

〈2 j+k
〉
−822( j−k0) . 〈2 j+k0〉

−8, (7-40)

which follows from series comparison, for instance.
Together (7-40) and (7-39), show that (7-38) holds for k+ k0 ≥ 0.
If, on the other hand, k+ k0 ≤ 0, then we split the sum in (7-38) according to whether j + k ≤ 0 or

j + k > 0. In the first case,∑
k0≤ j≤−k

〈2 j+k
〉
−8(2 j+ka− j ak(σ )+a− j a− j (σ )). 〈2k0+k

〉
−8bk,s(σ )+

∑
k0≤ j≤−k

〈2 j+k
〉
−82 j+ka− j ak(σ ). (7-41)

Then∑
k0≤ j≤−k

〈2 j+k
〉
−82 j+ka− j ak(σ ).

∑
k0≤ j≤−k

〈2 j+k
〉
−82 j+ka− j a− j (σ )2−δ( j+k)

∼ (1+s22k)−4bk,s(σ ). (7-42)

When j + k > 0 we have∑
j>−k

〈2 j+k
〉
−8(2 j+ka− j ak(σ )+ a− j a− j (σ )). akak(σ )

∑
j>−k

〈2 j+k
〉
−8(2 j+k2δ( j+k)

+ 22δ( j+k))

. bk,s(σ ). (7-43)

Therefore (7-41) and (7-42) imply (7-38) holds when k+ k0 ≤ 0 and j + k ≤ 0 and (7-43) implies it
holds when both k+ k0 ≤ 0 and j + k > 0.

Having shown (7-38), we combine it with (7-37), concluding that∫
∞

s
‖Pk(ψm(r)∂lψl(r))‖Fk(T )∩S1/2

k (T ) dr . (1+ s22k)−42−σkbk,s(σ ). (7-44)
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We move on to control the second term in (7-36). By Lemma 7.6 and (7-38), this term is bounded by

∑
j≥k0

∫ 22 j+1

22 j−1
‖Pk(ψx(r)ψx(r)Ax(r))‖Fk(T )∩S1/2

k (T ) dr

. C2−σkε
∑
j≥k0

〈2 j+k
〉
−8(1−(k+ j)a− j a− j (σ )+ 1+(k+ j)bk,22 j (σ ))

. C2−σkε〈2k0+k
〉
−8bk,22k0 (σ ). (7-45)

Together (7-36), (7-44), and (7-45) imply that

‖Pk Am(s)‖Fk(T )∩S1/2
k (T ) . 2−σk(1+ s22k)−4bk,s(σ )(1+Cε),

from which it follows that C. 1+Cε and hence C. 1, proving the lemma. �

Lemma 7.8. We have

‖Pk A2
l (r)‖Fk(T )∩S1/2

k (T ) .

{
ε2−σk2− j a− j a− j (σ ) if k+ j ≤ 0,
ε2−σk2− j bk,22 j (σ ) if k+ j ≥ 0.

Proof. We apply Lemma 7.2 with f = g = Al and ω = 0 so that

‖Pk(A2
l (r))‖Fk(T )∩S1/2

k (T ) .
∑
l≤k

2lαkβl +
∑
l≥k

2lαlβl,

where

αk . 2−σk
〈2 j+k

〉
−8bk,s(σ ), βk . 〈2 j+k

〉
−8bk,s .

Case k + j ≤ 0. We first consider the case k + j ≤ 0 and proceed to control the high-low frequency
interaction. We have

∑
l≤k

2lαkβl . 2−σk
∑
l≤k

2lbk,22 j (σ )bl,22 j . 2−σk
− j∑
p=k

apap(σ )2l
∑
l≤k

− j∑
q=l

a2
q

. 2−σka− j a− j (σ )

− j∑
p=k

2−2δ( j+p)
∑
l≤k

2la2
− j

− j∑
q=l

2−2δ( j+q). (7-46)

It remains to show that
− j∑
p=k

2−2δ( j+p)
∑
l≤k

2la2
− j

− j∑
q=l

2−2δ( j+q) . ε, (7-47)

which follows from bounding a2
− j by ε and summing. To control the high-high interaction term we first

split the sum as ∑
l≥k

2lαlβl .
∑

k≤l<− j

2lαlβl +
∑

l≥− j

2lαlβl . (7-48)
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The first summand is controlled by

∑
k≤l<− j

2lαlβl . 2−σk
∑

k≤l<− j

2lbl,22 j (σ )bl,22 j . 2−σk2− j
∑

k≤l<− j

2 j+l
− j∑
p=l

apap(σ )

− j∑
q=l

a2
q .

Pulling out a3
− j a− j (σ ) and summing implies∑

k≤l<− j

2lαlβl . ε2−σk2− j a− j a− j (σ ). (7-49)

The second summand is controlled by∑
l≥− j

2lαlβl . 2−σk
∑

l≥− j

2l
〈2 j+l
〉
−8bl,22 j (σ )bl,22 j

. 2−σk
∑

l≥− j

2l
〈2 j+l
〉
−822(l+ j)a2

− j alal(σ ). ε2−σk2− j a− j a− j (σ ). (7-50)

Combining (7-46)–(7-50), we conclude that

‖Pk A2
l (r)‖Fk(T )∩S1/2

k (T ) . ε2
−σk2− j a− j a− j (σ ) for k+ j ≤ 0. (7-51)

Case k + j ≥ 0. We now consider the case k + j ≥ 0 and turn to the high-low frequency interaction,
splitting it into two pieces: ∑

l≤k

2lαkβl ≤
∑

l≤− j

2lαkβl +
∑
− j<l≤k

2lαkβl . (7-52)

The first summand is controlled by∑
l≤− j

2lαkβl . 2−σk2− j bk,22 j (σ )
∑

l≤− j

2l+ j
〈2 j+k

〉
−8bl,22 j , (7-53)

and so we need to show that ∑
l≤− j

2l+ j
〈2 j+k

〉
−8bl,22 j . ε, (7-54)

which follows from ∑
l≤− j

2l+ j bl,22 j .
∑

l≤− j

2l+ j
− j∑
p=l

a2
p . a2

− j

∑
l≤− j

2(1−2δ)(l+ j) . ε.

The second summand in (7-52) is controlled by∑
− j<l≤k

2lαkβl . 2−σk2− j bk,22 j (σ )
∑

j<l≤k

〈2 j+l
〉
−82l+ j

〈2 j+k
〉
−82l+ j a− j al, (7-55)

where we note that ∑
− j<l≤k

〈2 j+l
〉
−822l+2 j a− j al . a2

− j

∑
− j<l≤k

〈2 j+l
〉
−82(2+δ)(l+ j) . ε. (7-56)
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We now turn to the high-high frequency interaction. We have∑
l≥k

2lαlβl .
∑
l≥k

2l2−σ l
〈2 j+l
〉
−822(l+ j)a2

− j alal(σ )

. 2−σk2− j 2k+ j a− j

∑
l≥k

2l−k2−σ(l−k)
〈2 j+l
〉
−822(l+ j)a− j alal(σ )

. 2−σk2− j bk,22 j (σ )
∑
l≥k

〈2 j+l
〉
−82(1+δ)(l−k)22(l+ j)a− j al . (7-57)

It remains to show that ∑
l≥k

〈2 j+l
〉
−82(1+δ)(l−k)22(l+ j)a− j al . ε, (7-58)

which follows from bounding a− j al by ε and summing.
Together (7-52)–(7-58) imply that

‖Pk A2
l (r)‖Fk(T )∩S1/2

k (T ) . ε2
−σk2− j bk,22 j (σ ) for k+ j ≥ 0,

which combined with (7-51) implies the lemma. �

Set

ck, j (σ )=

{
2− j a− j a− j (σ ) if k+ j ≤ 0,
22k+ j a− j ak(σ ) if k+ j ≥ 0.

(7-59)

Lemma 7.9. Let r ∈ [22 j−2, 22 j+2
] and let

F ∈ {A2
l , ∂l Al, f g : l = 1, 2; f, g ∈ {ψm, ψm : m = 1, 2}}.

Then

‖Pk F(r)‖Fk(T )∩S1/2
k (T ) . 〈2

j+k
〉
−82−σkck, j (σ ). (7-60)

Proof. If F = A2
l , then (7-60) is an immediate consequence of Lemma 7.8 when k+ j ≤ 0. If k+ j ≥ 0,

then Lemma 7.8 implies

‖Pk A2
l (r)‖Fk(T )∩S1/2

k (T ) . ε2
−σk2− j 2k+ j a− j a− j (σ ),

and multiplying the right-hand side by 2k+ j yields the desired estimate.
Consider now the case where F = ∂l Al . By Lemma 7.7, we have

‖Pk(∂l Al)(r)‖Fk(T )∩S1/2
k (T ) . 2k

〈2 j+k
〉
−82−σkbk,22 j (σ ). (7-61)

When k+ j ≥ 0, we rewrite (7-61) as

‖Pk(∂l Al)(r)‖Fk(T )∩S1/2
k (T ) . 〈2

j+k
〉
−82−σk2k2k+ j a− j ak(σ ),
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which is the desired bound (7-60). If k+ j ≤ 0, then (7-61) becomes

‖Pk(∂l Al)(r)‖Fk(T )∩S1/2
k (T ) . 〈2

j+k
〉
−82−σk2k

− j∑
p=k

apap(σ )

. 〈2 j+k
〉
−82−σk2− j a− j a− j (σ )= 〈2 j+k

〉
−82−σkck, j (σ ).

If F = f g, f g as in the statement of the lemma, then (7-60) follows directly from (7-6) when k+ j ≤ 0.
If k+ j ≥ 0, then to get (7-60) we multiply the right-hand side of (7-6) by 22 j+2k . �

Set

dk, j := ε〈2 j+k
〉
−82−σk22k(ak(σ )+ 2−3(k+ j)/2a− j (σ )). (7-62)

Lemma 7.10. We have

‖PkUm(r)‖Fk(T )∩S1/2
k (T ) . ε〈2

j+k
〉
−82−σk22k(ak(σ )+ 2−3(k+ j)/2a− j (σ ))=: dk, j .

Proof. Using now (2-21) instead of (2-22), i.e., taking now

Uα = i Al∂lψα + i∂l(Alψα)− A2
xψα + i Im(ψαψl)ψl,

we have that it suffices to prove that

‖Pk(F(r) f (r))‖Fk(T )∩S1/2
k (T )+ 2k

‖Pk(Al(r) f (r))‖Fk(T )∩S1/2
k (T ) . dk, j ,

where

F ∈ {A2
l , ∂l Al, gh : l = 1, 2; f, h ∈ {ψm, ψm : m = 1, 2}}

and f ∈ {ψm, ψm : m = 1, 2}. We consider the terms Pk(F f ), and Pk(A f ) separately.

Controlling Pk(F f ). We apply Lemma 7.2 to Pk(F f ), handling the different frequency interactions
separately and according to cases. We record a consequence of (7-60):

αk . 〈2 j+k
〉
−82−σkck, j (σ ),

Let us begin by assuming k+ j ≤ 0. For the low-high frequency interaction, we have∑
l≤k

2lαlβk . 2−σkak(σ )
∑
l≤k

2lcl, j . 2−σkak(σ )
∑
l≤k

2l− j a2
− j . ε2

−σk2k− j 2−δ(k+ j)a− j (σ ). (7-63)

In a similar manner we control the high-low frequency interaction by∑
l≤k

2lαkβl . 2−σkck, j (σ )
∑
l≤k

2lal . 2−σk2− j a− j a− j (σ )
∑
l≤k

2lal . ε2−σk2k− j a− j (σ ). (7-64)

The high-high frequency interaction we split into two sums:

2k
∑
l≥k

2(l−k)/2αlβl . 2k
∑

k≤l<− j

2(l−k)/2αlβl + 2k
∑

l≥− j

2(l−k)/2αlβl . (7-65)
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We control the first summand using the definition (7-59) of ck, j (σ ), the frequency envelope properties
(2-29), (2-30), and energy dispersion:

2k
∑

k≤l<− j

2(l−k)/2αlβl . 2k
∑

k≤l<− j

2(l−k)/22−σ lcl, j (σ )al

. 2−σk2k− j a− j (σ )a− j

∑
k≤l<− j

2(l−k)/2al

. 2−σk2k− j 2−(k+ j)/2a− j (σ )a− j

∑
k≤l<− j

2(l+ j)/2al

. ε2−σk2k− j 2−(k+ j)/2a− j (σ ). (7-66)

In like manner we control the second summand:

2k
∑

l≥− j

2(l−k)/2αlβl . 2k
∑

l≥− j

〈2 j+l
〉
−82(l−k)/22−σ lcl, j (σ )al

. 2k
∑

l≥− j

〈2 j+l
〉
−82(l−k)/22−σ l22l+ j a− j al(σ )al

. ε2−σk2k− j 2−(k+ j)/2a− j (σ ). (7-67)

Combining (7-63)–(7-67), we conclude that

‖Pk(F(r) f (r))‖Fk(T )∩S1/2
k (T ) . ε2

−σk2k− j 2−(k+ j)/2a− j (σ ), k+ j ≤ 0. (7-68)

We now turn to the case k+ j ≥ 0. In the low-high frequency interaction case, we have∑
l≤k

2lαlβk . 〈2 j+k
〉
−82−σkak(σ )

∑
l≤k

〈2 j+l
〉
−82lcl, j

. 〈2 j+k
〉
−82−σk22kak(σ )

(∑
l≤− j

2l−2k2− j a2
− j +

∑
− j<l≤k

〈2 j+l
〉
−82l−2k2l+ j a− j al

)
. (7-69)

To estimate the first term we use

a2
− j

∑
l≤− j

2l−k2− j−k . ε2−( j+k)
· 2−( j+k)

≤ ε, (7-70)

and for the second

a− j

∑
− j<l≤k

〈2 j+l
〉
−823l+ j−2kal = a− j

∑
− j<l≤k

〈2 j+l
〉
−82l+ j 22l−2kal

. a− j ak

∑
− j<l≤k

〈2 j+l
〉
−82l+ j 2(2−δ)(l−k) . ε. (7-71)
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In the high-low frequency interaction case, we have∑
l≤k

2lαkβl . 〈2 j+k
〉
−82−σkck, j (σ )

∑
l≤k

〈2 j+l
〉
−82lal

. 〈2 j+k
〉
−82−σk22k+ j a− j ak(σ )

∑
l≤k

〈2 j+l
〉
−82lal

. 〈2 j+k
〉
−82−σk22kak(σ )a2

− j . (7-72)

In the high-high frequency interaction case we have∑
l≥k

2lαlβl .
∑
l≥k

〈2 j+l
〉
−82l2−σ lal(σ )cl, j

. 〈2 j+k
〉
−82−σk

∑
l≥k

〈2 j+l
〉
−82lal(σ )22l+ j a− j al

. 〈2 j+k
〉
−82−σk22kak(σ )a2

− j . (7-73)

From (7-69)–(7-73) we conclude that

‖Pk(F(r) f (r))‖Fk(T )∩S1/2
k (T ) . ε〈2

j+k
〉
−82−σk22kak(σ ), k+ j ≥ 0. (7-74)

Controlling 2k Pk(A f ). We now apply Lemma 7.2 to Pk(Al f ). Note that

αk . 〈2 j+k
〉
−82−σkbk,r (σ )

because of Lemma 7.7, and that

βk . 〈2 j+k
〉
−82−σkak(σ ).

We begin by assuming k+ j ≤ 0. The low-high frequency interaction is controlled by

∑
l≤k

2lαlβk . 2−σkak(σ )
∑
l≤k

2l
− j∑
p=l

a2
l

. 2−σk2−δ(k+ j)a2
− j a− j (σ )

∑
l≤k

2l
− j∑
p=l

2−2( j+p).

Summing yields

2k
∑
l≤k

2lαlβk . 22k2−σk2−(k+ j)/2a2
− j a− j (σ ). (7-75)

Control over the high-low frequency interaction follows from

∑
l≤k

2lαkβl . 2−σk
− j∑
p=k

apap(σ )
∑
l≤k

2lal

. 2k2−σk2−2δ(k+ j)a− j aka− j (σ ). (7-76)
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We now turn to the high-high frequency interaction. We begin by splitting the sum:

2k
∑
l≥k

2(l−k)/2αlβl . 2k
∑

k≤l<− j

2(l−k)/2αlβl + 2k
∑

l≥− j

2(l−k)/2αlβl . (7-77)

Then

2k
∑

k≤l<− j

2(l−k)/2αlβl . 2k2−σka− j (σ )
∑

k≤l<− j

2(l−k)/22−δ( j+l)
− j∑
p=l

a2
p

. 2k2−σk2−(k+ j)/2a2
− j a− j (σ ). (7-78)

As for the second summand, we have

2k
∑

l≥− j

2(l−k)/2αlβl . 2k
∑

l≥− j

〈2 j+l
〉
−82(l−k)/22l+ j a− j al(σ )2−σ lal

. 2k2−σk2−(k+ j)/2a2
− j a− j (σ ). (7-79)

Combining (7-75)– (7-79) yields

2k
‖Pk(Al(r) f (r))‖Fk(T )∩S1/2

k (T ) . ε2
2k2−σk2−(k+ j)/2a− j (σ ), k+ j ≤ 0. (7-80)

Now let us assume that k+ j ≥ 0. The low-high frequency interaction we first split into two pieces:∑
l≤k

2lαlβk .
∑

l≤− j

2lαlβk +
∑
− j<l≤k

2lαlβk . (7-81)

For the first term, we have

∑
l≤− j

2lαlβk . 〈2 j+k
〉
−82−σkak(σ )

∑
l≤− j

− j∑
p=l

a2
p

. 〈2 j+k
〉
−82−σka2

− j ak(σ )
∑

l≤− j

2l
− j∑
p=l

2−2δ( j+p). (7-82)

Then ∑
l≤− j

2l
− j∑
p=l

2−2δ( j+p) .
∑

l≤− j

2l2−2δ( j+l) . 2− j
≤ 2k . (7-83)

As for the second summand,∑
− j<l≤k

2lαlβk . 〈2 j+k
〉
−82−σkak(σ )

∑
− j<l≤k

〈2 j+l
〉
−82l2l+ j a− j al

. 〈2 j+k
〉
−82−σk2ka2

− j ak(σ ). (7-84)

The high-low frequency interaction is controlled by∑
l≤k

2lαkβl . 〈2 j+k
〉
−82−σk2k+ j a− j ak(σ )

∑
l≤k

〈2 j+l
〉
−82lal

. 〈2 j+k
〉
−82−σk2ka2

− j ak(σ ). (7-85)
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Finally, the high-high frequency interaction is controlled by∑
l≥k

2lαlβl .
∑
l≥k

〈2 j+l
〉
−82l2l+ j a− j al2−σ lal(σ )

. 〈2 j+k
〉
−82−σk2ka− j akak(σ ). (7-86)

Thus, in view of (7-81)–(7-86), we have shown that

2k
‖Pk(Al(r) f (r))‖Fk(T )∩S1/2

k (T ) . ε〈2
j+k
〉
−82−σk22kak(σ ), k+ j ≥ 0. (7-87)

Combining (7-68), (7-74), (7-80), and (7-87) proves the lemma. �

Lemma 7.11. We have∥∥∥∥∫ s

0
e(s−s′)1PkUm(s ′) ds ′

∥∥∥∥
Fk(T )∩S1/2

k (T )
. ε(1+ s22k)−42−σkak(σ ).

Proof. Let k0 ∈ Z be such that s ∈ [22k0−1, 22k0+1). If k+ k0 ≤ 0, then it follows from Lemma 7.10 that∥∥∥∥∫ s

0
e(s−r)1PkUm(r) dr

∥∥∥∥
Fk(T )∩S1/2

k (T )
.
∑
j≤k0

∫ 22 j+1

22 j−1
‖PkUm(r)‖Fk(T )∩S1/2

k (T ) dr

.
∑
j≤k0

22 jε2−σk22k(ak(σ )+ 2−3(k+ j)/2a− j (σ ))

. ε2−σkak(σ )
∑
j≤k0

22k+2 j (1+ 2−3(k+ j)/22−δ(k+ j))

. ε2−σkak(σ ).

On the other hand, if k+ k0 > 0, then∥∥∥∥∫ s

0
e(s−r)1PkUm(r) dr

∥∥∥∥
Fk(T )∩S1/2

k (T )
.
∫ s/2

0
‖e(s−r)1PkUm(r)‖Fk(T )∩S1/2

k (T ) dr

+

∫ s

s/2
‖e(s−r)1PkUm(r)‖Fk(T )∩S1/2

k (T ) dr

.
∑
j≤k0

2−20(k+k0)22 j dk, j + 22k0dk,k0

. 2−20(k0+k)
∑
j≤k0

22 j dk, j + 2−2kdk,k0 . (7-88)

By Lemma 7.10 and the fact that k+ k0 > 0, we have

2−2kdk,k0 . ε〈2
k0+k
〉
−82−σkak(σ )
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and

2−20(k0+k)
∑
j≤k0

22 j dk, j . 2−20(k0+k)
∑
j≤k0

ε〈2 j+k
〉
−82−σk22k (22 j ak(σ )+ 2 j/22−3k/2a− j (σ )

)
. ε2−σkak(σ )2−20(k0+k)

∑
j≤k0

〈2 j+k
〉
−8 (22 j+2k

+ 2( j+k)/22δ | j+k|)
. ε〈2k0+k

〉
−82−σkak(σ ),

which, combined with (7-88), completes the proof of the lemma. �

Lemma 7.12. The following bound from (4-12) holds:

‖Pkψm(s)‖Fk(T )∩S1/2
k (T ) . (1+ s22k)−42−σkbk(σ ).

Proof. In view of (7-1), we have

Pkψm(s)= es1Pkψm(0)+
∫ s

0
e(s−r)1PkUm(r) dr.

Then it follows from Lemma 7.11 that

‖Pkψm(s)‖Fk(T )∩S1/2
k (T ) . 2−σk(1+ s22k)−4(bk(σ )+ εak(σ )), 0≤ σ ≤ σ1− 1.

Therefore ak(σ ). bk(σ )+ εak(σ ) and hence

ak(σ ). bk(σ ), (7-89)

as required. �

7B. Connection coefficient control. The main results of this subsection are the L2
t,x bounds (4-14) and

(4-16), respectively proven in Corollary 7.19 and Lemma 7.21, and the frequency-localized L2
t,x bounds

(4-15) and (4-17), respectively proven in Corollaries 7.20 and 7.22.

Lemma 7.13. Let s ∈ [22 j−2, 22 j+2
]. Then

‖Pk(Al(s)ψm(s))‖Fk(T )∩S1/2
k (T ) . ε(1+ s22k)−3(s22k)−3/82k2−σkbk(σ ).

Proof. Using (7-80) and (2-29), we have

2k
‖Pk(Al(s)ψm(s))‖Fk(T )∩S1/2

k (T ) . ε2
2k2−σk2−(1/2+δ)(k+ j)ak(σ ). (7-90)

Combining (7-90), (7-87), and (7-89) then yields

‖Pk(Al(s)ψm(s))‖Fk(T )∩S1/2
k (T ) .

{
ε(s22k)−3/82k2−σkbk(σ ) if k+ j ≤ 0,
ε(1+ s22k)−42k2−σkbk(σ ) if k+ j ≥ 0,

which proves the lemma. �
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Lemma 7.14 [Bejenaru et al. 2011c, §5]. Assume that T ∈ (0, 22K
], f, g ∈ H∞,∞(T ), Pk f ∈ Sωk (T ), and

Pk g ∈ L4
t,x for some ω ∈ [0, 1/2] and all k ∈ Z. Set

µk :=
∑

| j−k|≤20

‖Pj f ‖Sωk′ (T )
, νk :=

∑
| j−k|≤20

‖Pj g‖L4
t,x
.

Then, for any k ∈ Z,

‖Pk( f g)‖L4
t,x
.
∑
j≤k

2 jµ jνk +
∑
j≤k

2(k+ j)/2µkν j + 2k
∑
j≥k

2−ω( j−k)µ jν j .

Lemma 7.15. We have

‖Pkψs(0)‖L4
t,x
+‖Pkψt(0)‖L4

t,x
. 2k b̃k

(
1+

∑
j

b2
j

)
.

Proof. We only treat ψt(0) since ψs(0) and ψt(0) differ only by a factor of i . As ψt(0)= i Dl(0)ψl(0),
we have

ψt(0)= i∂lψl(0)− Al(0)ψl(0).

Clearly
‖Pk∂lψl(0)‖L4

t,x
. 2k
‖Pkψx(0)‖L4

t,x
. 2k b̃k .

For the remaining term, we apply Lemma 7.14, bounding Pj Al(0) in S1/2
j by

∑
p b2

p, which follows from
Lemma 7.7. We get

‖Pk(Al(0)ψl(0))‖L4
t,x
.
∑
j≤k

2 j
(∑

p

b2
p

)
b̃k +

∑
j≤k

2(k+ j)/2
(∑

p

b2
p

)
b̃ j + 2k

∑
j≥k

2−( j−k)/2
(∑

p

b2
p

)
b̃ j .

Therefore

‖Pk(Alψl(0))‖L4
t,x
. 2k b̃k

(∑
j

b2
j

)
. �

Corollary 7.16. We have

‖Pkψs(0)‖L4
t,x
+‖Pkψt(0)‖L4

t,x
. 2k2−σkbk(σ )

(
1+

∑
j

b2
j

)
.

Proof. Without loss of generality, we prove the bound only for ψt . We have

‖Pk∂lψl(0)‖L4
t,x
. 2k
‖Pkψx(0)‖L4

t,x
. 2k2−σkbk(σ ).

It remains to control Pk(Al(0)ψl(0)) in L4
t,x . The obstruction to applying Lemma 7.14 as we did in

Lemma 7.15 is the high-low interaction, for which summation can be achieved only for small σ . If we
restrict the range of σ to σ < 1/2− 2δ, then we ensure the constant remains bounded and can apply
Lemma 7.14 as in Lemma 7.15.

For σ ≥ 1/2 − 2δ, we can still apply the bounds of Lemma 7.14 to the low-high and high-high
interactions. For the remaining high-low interaction, we bound Al(0) in L4

t,x and ψl(0) in L∞t,x . In
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particular, we have, thanks to (7-95) and Bernstein, that∑
| j1−k|≤4
j2≤k+4

‖Pk(Pj1 Al(0)Pj2ψl(0))‖L4
t,x
.

∑
| j1−k|≤4
j2≤k+4

‖Pj1 Al(0)‖L4
t,x
‖Pj2ψl(0)‖L∞t,x

.
∑
| j1−k|≤4
j2≤k+4

2−σ j1b j1b j1(σ )2
j2‖Pj2ψl(0)‖L∞t L2

x

.
∑

j2≤k+4

2−σkbkbk(σ )2 j2b j2

. 2−σkb2
kbk(σ )

∑
j2≤k+4

2k2( j2−k)+(k− j2)δ . 2−σk2kb2
kbk(σ ). �

Lemma 7.17. We have

‖Pkψs(s)‖L4
t,x
+‖Pkψt(s)‖L4

t,x
. (1+ s22k)−22k b̃k

(
1+

∑
j

b2
j

)
.

Proof. We treat only ψt(s) since the proof for ψs(s) is analogous. From (7-1) we have

ψt(s)= es1ψt(0)+
∫ s

0
e(s−r)1Ut(r) dr.

We claim that ∥∥∥∥∫ s

0
e(s−r)1PkUt(r) dr

∥∥∥∥
L4

t,x

. ε(1+ s22k)−22k b̃k

(
1+

∑
j

b2
j

)
, (7-91)

which combined with Lemma 7.15 and a standard iteration argument proves the lemma.
As in the proof of Lemma 7.11, we take

F ∈ {A2
l , ∂l Al, f g : l = 1, 2; f, g ∈ {ψm, ψm : m = 1, 2}}.

By (7-60) and (7-89) we have

‖Pk F(r)‖S1/2
k (T ) . ε

1/2(1+ s22k)−2(s22k)−5/82kbk . (7-92)

Moreover, by Lemma 7.7,

‖Pk Al(r)‖S1/2
k (T ) . ε

1/2(1+ s22k)−3(s22k)−1/8bk . (7-93)

Applying Lemma 7.14 with ω = 1/2 yields

‖Pk(F(r)ψt(r))‖L4
t,x
+ 2k
‖Pk(Al(r)ψt(r))‖L4

t,x
. ε(1+ s22k)−2(s22k)−7/82k b̃k

(
1+

∑
j

b2
j

)
. (7-94)

Integrating with respect to s yields∫ s

0
(1+ (s− r)22k)−N (1+ r22k)−2(r22k)−7/8 dr . 2−2k(1+ s22k)−2,

which, together with (7-94), implies (7-91). �
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Lemma 7.18. We have
‖Pk Am(0)‖L4

t,x
. 2−σkbkbk(σ ). (7-95)

Proof. We have
‖Pkψm(s)‖S0

k
. (1+ s22k)−42−σkbk(σ )

and
‖Pk(Dlψl)(s)‖L4

t,x
. (1+ s22k)−3(s22k)−3/82k2−σkbk(σ ).

Applying Lemma 7.14 with ω = 0, we get

‖Pk Am(0)‖L4
t,x
.
∑

l=1,2

∫
∞

0
‖Pk(ψm(s)Dlψl(s))‖L4

t,x
ds

. 2−σk
∑
j≤k

b j bk(σ )2 j+k
∫
∞

0
(1+ s22k)−3(s22k)−3/8 ds

+ 2−σk
∑
j≤k

bk(σ )b j 2(k+ j)/22 j
∫
∞

0
(1+ s22k)−4(s22 j )−3/8 ds

+

∑
j≥k

2−σ j b j (σ )b j 2k− j 22 j
∫
∞

0
(1+ s22 j )−7(s22 j )−3/8 ds.

Call the integrals I1, I2, and I3, respectively. Clearly I1 and I3 satisfy I1 . 2−2k and I3 . 2−2 j . By
Cauchy–Schwarz, I2 satisfies

I2 .

(∫
∞

0
(1+ s22k)−8(1+ s22 j )4 ds

)1/2(∫ ∞
0
(1+ s22 j )−4(s22 j )−3/8 ds

)1/2

. 2− j−k .

Therefore

‖Pk Am(0)‖L4
t,x
. 2−σkbk(σ )

∑
j≤k

(
b j 2 j−k

+ b j 2( j−k)/2)
+ 2−σk

∑
j≥k

b j (σ )b j 2k− j . 2−σkbkbk(σ ). �

Corollary 7.19. We have
‖A2

x(0)‖L2
t,x
. sup

j∈Z

b2
j ·
∑
k∈Z

b2
k .

Proof. ‖A2
x(0)‖L2

t,x
. ‖Ax(0)‖2L4

t,x
.
∑
k∈Z

‖Pk Ax(0)‖2L4
t,x
. sup

j∈Z

b2
j ·
∑
k∈Z

b2
k . �

Corollary 7.20. Let σ ≥ 2δ. Then

‖Pk A2
x(0)‖L2

t,x
. 2−σkbk(σ ) · sup

j
b j ·

∑
l∈Z

b2
l .

Proof. We perform a Littlewood–Paley decomposition and invoke Corollary 7.19.
Consider first the high-low interactions:∑

| j2−k|≤4
j1≤k−5

‖Pk(Pj1 Ax Pj2 Ax)‖L2 .
∑
| j2−k|≤4
j1≤k−5

‖Pj1 Ax‖L4‖Pj2 Ax‖L4 . 2−σkbkbk(σ )
∑

j1≤k−5

b2
j1 .
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Next consider the high-high interactions:∑
j1, j2≥k−4
| j1− j2|≤8

‖Pk(Pj1 Ax Pj2 Ax)‖L2 .
∑

j1, j2≥k−4
| j1− j2|≤8

‖Pj1 Ax‖L4‖Pj2 Ax‖L4 .
∑

j≥k−4

2−σ j b j (σ )b3
j .

Using the frequency envelope property, we bound this last sum by∑
j≥k−4

2−σ j b j (σ )b3
j . 2−σkbk(σ )

∑
j≥k−4

2−σ( j−k)2δ( j−k)b3
j . 2−σkbk(σ ) sup

j≥k−4
b j ·

∑
j≥k−4

b2
j .

It is in controlling this last sum that we use σ > δ+. �

Lemma 7.21. We have

‖At(0)‖L2
t,x
.

(
1+

∑
j

b2
j

)2∑
k

‖Pkψx(0)‖2L4
t,x
.

Proof. We begin with

‖At(0)‖L2
t,x
.
∫
∞

0
‖(ψt · Dlψl)(s)‖L2

t,x
ds. (7-96)

If we define

µk(s) := sup
k′∈Z

2−δ |k−k′|
‖Pkψt(s)‖L4

t,x
and νk(s) := sup

k′∈Z

2−δ |k−k′|
‖Pk(Dlψl)(s)‖L4

t,x
, (7-97)

then
‖(ψt · Dlψl)(s)‖L2

t,x
.
∑

k

µk(s)
∑
j≤k

ν j (s)+
∑

k

νk(s)
∑
j≤k

µ j (s). (7-98)

From Lemmas 7.15, 7.12, and 7.13, it follows that

µk(s), νk(s). (1+ s22k)−22k b̃k

(
1+

∑
p

b2
p

)
. (7-99)

Combining (7-96), (7-98), and (7-99), we have

‖At(0)‖L2
t,x
.
∑

k

µk(s)
∑
j≤k

ν j (s)

.

(
1+

∑
p

b2
p

)2∑
k

2k b̃k

∑
j≤k

2 j b̃ j

∫
∞

0
(1+ s22 j )−2(1+ s22k)−2 ds

.

(
1+

∑
p

b2
p

)2∑
k

2k b̃k

∑
j≤k

2 j b̃ j

∫
∞

0
(1+ s22k)−2 ds

.

(
1+

∑
p

b2
p

)2∑
k

22k b̃2
k

∫
∞

0
(1+ s22k)−2 ds

.

(
1+

∑
p

b2
p

)2∑
k

b̃2
k . �

As a corollary of the proof, we also obtain this:
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Corollary 7.22. Let σ ≥ 2δ. Then

‖Pk At‖L2
t,x
.

(
1+

∑
p

b2
p

)
b̃k2−σkbk(σ ).

Proof. We start by modifying the proof of Lemma 7.21, taking µk and νk as in (7-97). Then

‖Pk At‖L2 .
∫
∞

0
‖Pk(ψt · Dlψl)(s)‖L2

t,x
ds

.
∫
∞

0

(
µk(s)

∑
j≤k

ν j (s)+ νk

∑
j≤k

µ j (s)+
∑
j≥k

µ j (s)ν j (s)
)

ds.

Combining Lemmas 7.12 and 7.13 gives a bound on νk of

‖νk(s)‖L4 . (1+ s22k)−3(s22k)−3/82k2−σkbk(σ ), (7-100)

which leads to ∫
∞

0
νk

∑
j≤k

µ j (s) ds .
(

1+
∑

p

b2
p

)
b̃k2−σkbk(σ ).

Also, by using (7-99) for µk and (7-100) for νk yields∫
∞

0

∑
j≥k

µ j (s)ν j (s) ds .
(

1+
∑

p

b2
p

)∑
j≥k

22 j 2−σ j b j (σ )b̃ j

∫
∞

0
(1+ s22 j )−3(s22 j )−3/8 ds

.

(
1+

∑
p

b2
p

)∑
j≥k

2−σ j b j (σ )b̃ j

.

(
1+

∑
p

b2
p

)
2−σkbk(σ )

∑
j≥k

2(δ−σ)( j−k)b̃ j .

(
1+

∑
p

b2
p

)
2−σk b̃kbk(σ ).

Here we have used σ ≥ 2δ. It remains to consider∫
∞

0
µk(s)

∑
j≤k

ν j (s)ds.

Suppose that

µk(s). (1+ s22k)−22k2−σkbk(σ )

(
1+

∑
p

b2
p

)
. (7-101)

Then∫
∞

0
µk(s)

∑
j≤k

ν j (s) ds .
(

1+
∑

p

b2
p

)2

2−σkbk(σ )2k
∑
j≤k

∫
∞

0
(1+ s22k)−2(1+ s22 j )−22 j b̃ j ds

.

(
1+

∑
p

b2
p

)2

2−σkbk(σ )2k
∑
j≤k

2 j b̃ j

∫
∞

0
(1+ s22k)−2 ds

.

(
1+

∑
p

b2
p

)2

2−σkbk(σ )22k b̃k · 2−2k
=

(
1+

∑
p

b2
p

)2

2−σkbk(σ )b̃k .



CONDITIONAL GLOBAL REGULARITY OF SCHRÖDINGER MAPS 683

Hence it remains to establish (7-101).
By Corollary 7.16, (7-101) holds when s = 0. To extend this estimate to s > 0, we proceed as in the

proof of Lemma 7.17, replacing bounds (7-92) and (7-93) with their σ > 0 analogues as needed; that
these analogues hold follows from the bounds referenced in establishing (7-92) and (7-93). To obtain the
analogue of (7-94), we apply Lemma 7.14, choosing to use σ > 0 bounds only over the high frequency
ranges. �
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We prove new bilinear dispersive estimates. They are obtained and described via a bilinear time-frequency
analysis following the space-time resonances method, introduced by Masmoudi, Shatah, and the second
author. They allow us to understand the large time behavior of solutions of quadratic dispersive equations.
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1. Introduction

Linear dispersive and Strichartz estimates. A linear, hyperbolic equation is called dispersive if the group
velocity of a wave packet depends on its frequency. In order to remain concise, we discuss in this section
only the Schrödinger equation {

∂t u− i1u = 0,
u|t=0 = f,

whose solution we denote u(t) = ei t1 f . This is the prototype of a dispersive equation. A first way to
quantify dispersion is provided by the “dispersive estimates”, which, in the case of the linear Schrödinger
equation, read

‖ei t1 f ‖L p(Rd ) . td/p−d/2
‖ f ‖L p′ (Rd ) if 2≤ p ≤∞.

Another way of quantifying dispersion is provided by Strichartz estimates, which first appeared in
[Strichartz 1977] (and were later extended by Ginibre and Velo [1992], with the endpoints due to Keel
and Tao [1998]). They read

‖ei t1 f ‖L p Lq (R+×Rd ) . ‖ f ‖L2(Rd )

for every admissible exponents (p, q), which means 2≤ p, q ≤∞, (p, q, d) 6= (2,∞, 2) and

2
p
+

d
q
=

d
2
.

MSC2010: 37L50, 42B20.
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Let us just point out the situation if the Euclidean space Rd is replaced by a compact Riemannian
manifold. In that case, any constant function is a solution of the free Schrödinger equation and therefore
the dispersive estimate fails for large t . It also fails locally in time. Then Strichartz estimates may only
hold with a finite time scale and a loss of derivatives (the data f is controlled in a positive order Sobolev
space), which were obtained for the torus by Bourgain [1993b; 1993a] and then extended to general
manifolds by Burq, Gérard, and Tzvetkov [Burq et al. 2004].

Bilinear Strichartz estimates. Recently bilinear (and more generally multilinear) analogs of such in-
equalities have appeared. They correspond to controlling the size of the (pointwise) product of two linear
solutions, for instance

‖vw‖L p Lq (R+×Rd ) . ‖ f ‖L2(Rd )‖g‖L2(Rd ) with
{

i∂tv+1v = 0, v(t = 0)= f,
i∂tw+1w = 0, w(t = 0)= g,

(1-1)

or the solution to the inhomogeneous linear problem, the right hand side being given by the product of
two linear solutions:

‖u‖L p Lq (R+×Rd ) . ‖ f ‖L2(Rd )‖g‖L2(Rd ) with


i∂tv+1v = 0, v(t = 0)= f,
i∂tw+1w = 0, w(t = 0)= g,
i∂t u+1u = vw, u(t = 0)= 0.

(1-2)

A first line of research, where p = q = 2, is related to the use of X s,b spaces in order to solve nonlinear
dispersive equations; see, in particular, [Bourgain 1993b] and [Tao 2001]. If the Euclidean space is
replaced by a manifold, we refer to [Burq et al. 2005] and [Hani 2010]. The case of the wave equation is
treated by Klainerman, Machedon, Bourgain, and Tataru [Klainerman and Machedon 1996], and Foschi
and Klainerman [2000]. In all these works, f and g are chosen with vastly different frequency supports,
and the focus is on understanding the effect on the implicit constant.

Another line of research considers the case where p and q are not 2: see [Wolff 2001] for the case of
the wave equation and [Tao 2003] for the Schrödinger equation. The problem then becomes related to
deep harmonic analysis questions (the restriction conjecture), and the optimal estimates are not known in
high dimension.

In this article our goal is different from the two directions mentioned: we aim at finding a decay rate in
time (rather than integrability properties), and at understanding the effect of localized data.

The set up. From now on, the dimension d of the ambient space is set equal to 1. Let a, b, c be smooth
real-valued functions on R, and fix a smooth, compactly supported bilinear symbol m on the frequency
plane R2. We denote by Tm the associated pseudoproduct operator. (a precise definition of Tm is given
in Section 1; Tm can be thought of as a generalized product operator, and our setting of course includes
classical products between functions that are compactly supported in Fourier space.) Consider then the
equation 

i∂t u+ a(D)u = Tm(v,w),

i∂tv+ b(D)v = 0,
i∂tw+ c(D)w = 0,

with


u(t = 0)= 0,
v(t = 0)= f,
w(t = 0)= g.

(1-3)
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The unknown functions are complex-valued, and this system is set in the whole space: f and g map R

to C, whereas u, v, and w map R2 to C. The above system is meant to help understand the nonlinear
interaction of free waves, which is of course the first step towards understanding a nonlinear problem.

Most of the time, but not always, we assume

The second derivatives a′′, b′′, c′′ are bounded away from zero. (H)

Under this hypothesis, it is well known that the groups ei ta(D), ei tb(D), ei tc(D) satisfy the following
estimates (we denote by S(t) any of these groups):

• Dispersive estimates: ‖S(t) f ‖L p′ . |t |1/2−1/p
‖ f ‖L p for p ∈ [1, 2].

• Strichartz estimates: ‖S(t) f ‖L p
t Lq . ‖ f ‖L2 if 2/p+ 1/q = 1

2 and 2≤ p, q ≤∞.

The question we want to answer is this: Given f and g in L2 (or weighted L2 spaces), how does u
grow or decay in L p spaces, 2≤ p ≤∞?

The answer of course depends on a, b, c, and the crucial notion is that of space-time resonance.

Space-time resonances. Using Duhamel’s formula, we see that u(t, · ) is given by the bilinear operator
Tt defined by

Tt( f, g)(x)=
∫ t

0

∫∫
ei x(ξ+η)ei ta(ξ)eisφ(ξ,η)m(ξ, η) f̂ (η)ĝ(ξ − η) dξ dη ds,

or, more concisely,

Tt( f, g) def
= −iei ta(D)

∫ t

0
Tmeisφ ( f, g) ds,

where

φ(ξ, η)
def
= −a(ξ + η)+ b(ξ)+ c(η).

Thus the goal of this article is to understand the behavior for large time t � 1 and some exponent
q ∈ [2,∞] of

‖Tt( f, g)‖Lq , f, g ∈ L2.

We sometimes find it convenient to write u(t) as

u(t)= F−1
∫ t

0

∫
R

ei ta(ξ)eis8(ξ,η)µ(ξ, η) f̂ (ξ − η)ĝ(η) dη ds,

where

8(ξ, η)
def
= −a(ξ)+ b(ξ − η)+ c(η)= φ(ξ − η, η) and µ(ξ, η)

def
= m(ξ − η, η).

Viewing this double integral as a stationary phase problem, it becomes clear that the sets where the
phase is stationary in s or η,

0
def
= {(ξ, η) such that 8(ξ, η)= 0} and 1

def
= {(ξ, η) such that ∂η8(ξ, η)= 0},

play a crucial role. Even more important is their intersection 0 ∩1.
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The sets 0 and 1 are, respectively, the sets of time and space resonances; their intersection is the set
of space-time resonant sets. A general presentation, stressing their relevance to PDE problems, can be
found in [Germain 2010b]; for applications see [Germain et al. 2009; 2012a; 2012b; Germain 2010a;
Germain and Masmoudi 2011].

In order to answer the question from the previous page, one has to distinguish between various possible
geometries of 0 and 1 (which can be reduced to a discrete set, or curves, with vanishing curvature or
not, etc. . . . ), possible orders of vanishing of 8 and ∂η8 on 0 and 1, respectively, and different types of
intersections of 0 and 1 (at a point or on a dimension 1 set, transverse or not, etc. . . . ). Considering all
the possible configurations would be a daunting task. We therefore focus on a few relevant and “generic”
examples.

• We study the influence of time resonances alone, ignoring space resonances: in other words, we
study various configurations for 0, without making any assumptions on 1. This essentially amounts
to considering the worst possible case as far as 1 is concerned.

• Similarly, we study the influence of space resonances alone, ignoring about time resonances.

• When putting space and time resonances together, we assume a “generic” configuration: 0 and
1 are smooth curves, and they intersect transversally at a point. Aside from being generic, this
configuration is of key importance for many nonlinear PDE; this is explained in the next subsection.

Space-time resonant set reduced to a point. As was just mentioned, the case where 0 and 1 are curves
which intersect transversally at a point will be examined carefully in this article. It is of course the generic
situation, but it also occurs in a number of important models from physics; we give a few examples here.
We restrict the discussion to one-dimensional models.

For simple equations of the form i∂t u+ τ(D)u = Q(u, ū), where u is scalar-valued, Q quadratic (that
is, we retain only the quadratic part of the nonlinearity), and τ(ξ)= |ξ |α is homogeneous, the space-time
resonant set of the various possible interactions between u and ū is never reduced to a point. This is the
case for standard equations such as NLS, KdV, and wave equations.

However, if τ is no longer supposed to be homogeneous, the space-time resonant set might be reduced
to a point. In particular, this is the case for the water wave equation (ideal fluid with a free surface) in the
following setting: close to the equilibrium given by a flat surface and zero velocity, including the effects
of gravity g and capillarity c, with a constant depth d (perhaps infinite). The dispersion relation for the
linearized problem is then

τ(ξ)= tanh(d|ξ |)
√

g|ξ | + c|ξ |3.

For more complex models, u is vector-valued, and the system accounts for the interaction of waves
with different dispersion relations. It is then often the case that the space-time resonance set is reduced to
a point. We mention in particular the following.

• The Euler–Maxwell system, describing the interaction of a charged fluid with an electromagnetic
field (see [Germain and Masmoudi 2011] for a mathematical treatment of this equation dealing with
space-time resonances). Many other models of plasma physics could also be mentioned here.
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• Systems where wave and (generalized) Schrödinger equations are coupled: for instance, the Davey–
Stewartson, Ishimori, Maxwell–Schrödinger, and Zakharov systems.

A sample of our results. Among the many results proved in this paper, we record in Theorem 1.1 a few
that are illustrative and interesting. We need a definition: a curve in (ξ, η) is characteristic if it has
tangents parallel to one or more of the directions ξ = 0, η = 0, or ξ + η = 0, and noncharacteristic
otherwise.

Theorem 1.1. Recall that m is smooth and compactly supported. Assume that (H) holds.

(i) If 0 is a noncharacteristic curve along which 8 vanishes at order 1,

‖u(t)‖Lq . 〈log t〉‖ f ‖L2,s‖g‖L2,s for s > 1
4 .

(ii) If 1=∅, then, for any δ > 0,

‖u(t)‖Lq . t1/q−1/2+δ
‖ f ‖L2,s‖g‖L2,s for s > 1− 1

q .

Furthermore, this rate of decay is optimal.

(iii) If 0 and 1 intersect transversely at a single point in the support of m, then, for any δ > 0

‖u(t)‖Lq . t−(1/4−1/(2q))+δ
‖ f ‖L2,s‖g‖L2,s for s > 1.

Furthermore, this rate of decay is optimal (up to the loss δ as small as we want).

Organization of the article. In Section 2 we derive asymptotic equivalents for u when f and g smooth and
localized. Three cases are considered: 0 =∅, 1=∅, and 0 and 1 are curves intersecting transversally
at a point (in particular we prove the second part of Theorem 1.1). In Section 3, relying only on time
resonances, we establish estimates for u when f and g belong to L2. In Section 4, we establish estimates
for u when f and g belong to weighted L2 spaces. In particular we consider the case when the space-time
resonant set is reduced to a point, and thereby prove the first part of Theorem 1.1. In Appendix A, we
detail some results on boundedness of multilinear operators. Finally, in Appendix B, one-dimensional
oscillatory integrals are studied.

Notations. We adopt the following notations.

• A . B if A ≤ C B for some implicit constant C . The value of C may change from line to line.

• A ∼ B means that both A . B and B . A.

• If f is a function over Rd , its Fourier transform, denoted f̂ , or F( f ), is given by

f̂ (ξ)= F f (ξ)= 1
(2π)d/2

∫
e−i xξ f (x) dx, thus f (x)= 1

(2π)d/2

∫
ei xξ f̂ (ξ) dξ.

(In the text, we systematically drop constants such as 1/(2π)d/2 since they are not relevant.)

• The Fourier multiplier with symbol m(ξ) is defined by

m(D) f = F−1 [mF f ] .
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• The bilinear Fourier multiplier with symbol m is given by

Tm( f, g)(x) def
=

∫
R2

ei x(ξ+η) f̂ (ξ)ĝ(η)m(ξ, η) dξdη = F−1
∫

m(ξ − η, η) f̂ (ξ − η)ĝ(η) dη.

• The Japanese bracket 〈·〉 stands for 〈x〉 =
√

1+ x2.

• The weighted Fourier space L p,s is given by the norm ‖ f ‖L p,s = ‖〈x〉s f ‖L p .

• If E is a set in Rd , Eε is the set of points of Rd that are within ε of a point of E .

2. Asymptotic equivalents

Preliminary discussion. Our aim in this section is to obtain asymptotic equivalents, as t → ∞, for
the solution u of (1-3), under the simplifying assumption that f and g are very smooth and localized.
Hypotheses on a, b, c are needed, and the variety of possible situations is huge; we try to focus on the
most representative, or generic situations. First, we assume in this whole section that (H) holds: this gives
decay for the linear waves. For bilinear estimates, everything hinges on the vanishing properties of 8 and
∂η8, where

8(ξ, η)=−a(ξ)+ b(ξ − η)+ c(η).

We distinguish three situations: 8 does not vanish (Theorem 2.2), 8η does not vanish (Theorem 2.4),
{8= 0} and {8η = 0} are curves intersecting transversally (Theorem 2.5). Additional assumptions will
be specified as needed.

Asymptotics for the linear Cauchy problem. They are obtained easily by stationary phase; see for instance
[Stein 1993].

Lemma 2.1. Assume that F ∈ S is such that F̂ is compactly supported; and suppose that a′′ does not
vanish on Supp F. Then

ei ta(D)F(x)= ei t[a(ξ0)+Xξ0]ei(π/4)σ 1
√
|a′′(ξ0)|

1
√

t
F̂(ξ0)+ O

(1
t

)
,

where

X def
=

x
t
, a′(ξ0)+ X

de f
= 0, σ

def
= sign a′′(ξ0).

The point of view of stationary phase. The solution of (1-3) is

u(t, x)=− i
√

2π

∫ t

0

∫∫
ei xξei[(t−s)a(ξ)+sb(ξ−η)+sc(η)]µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ ds.

Recalling that X def
= x/t and µ(ξ, η) def

= m(ξ − η, η), this is equal to

u(t, x)=− i
√

2π
t
∫ 1

0

∫∫
ei t[(1−σ)a(ξ)+σb(ξ−η)+σc(η)+Xξ ]µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ dσ. (2-0)

This is now a (nonstandard) stationary phase problem, with phase

ψ(ξ, η, σ )
def
= (1− σ)a(ξ)+ σb(ξ − η)+ σc(η)+ Xξ = a(ξ)+ σ8(ξ, η)+ Xξ.
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The phase of the gradient is

∇ξ,η,σψ =

a′+σ8ξ+X
σ8η

8

 ,
which vanishes if either 

σ = 0,
8= 0,
a′+ X = 0,

or


8= 0,
8η = 0,
a′+ σ8ξ + X = 0.

(2-1)

The Hessian of ψ is given by

Hessξ,η,σ ψ =

a′′+ σ8ξξ σ8ξη 8ξ
σ8ξη σ8ηη 8η

8ξ 8η 0

 .
On stationary points of the first type in (2-1), the Hessian is degenerate if and only if (ξ, η) belongs to
the space-time resonant set. On stationary points of the second type in (2-1), the Hessian is generically
nondegenerate.

The main difficulty in the analysis is handling the stationary points on the boundary of the integration
domain, namely those for which σ = 0 or 1; this is even more complicated when they are degenerate.

Theorem 2.2 (absence of time resonances). Assume that 8(ξ, η) does not vanish on Supp m (that is,
0 =∅), and that f and g belong to S. Then, as t→∞,

u(t)= ei ta(D)F + O
(1

t

)
.

with

F = Tm/φ( f, g).

Remark 2.3. The asymptotic behavior of ei ta(D)F is given by Lemma 2.1.

Proof. The proof is very easy: u is given by

u(t)=−iei ta(D)
∫ t

0
Tmeisφ ( f, g) ds,

or

u(t)=−Tm/φ(ei tb(D) f, ei tc(D)g)+ ei ta(D)Tm/φ( f, g).

The theorem follows since the first term above is O(1/t), by the linear decay estimates. �

Theorem 2.4 (absence of space resonances). Assume that ψη does not vanish on Supp m (that is, 1=∅),
that ψξξ (ξ, η, σ ) does not vanish on Supp m×[0, 1], and that f , g belong to S. Fix M > 0 and N ∈ N.
Then, as t→∞,

u(t)= ei ta(D)F + O
(

1
M N
√

t

)
where

F =−i
∫ M

0
ei(t−s)a(D)Tm(eisb(D) f, eisc(D)g) ds.
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(In other words, ei ta(D)F is the solution of

i∂t u+ a(D)u =
{

Tm(v,w) if 0< t < M,
0 if t > M,

i∂tv+ b(D)v = 0, i∂tw+ c(D)w = 0,

with the data u(t = 0)= 0, v(t = 0)= f , and w(t = 0)= g.)

Proof. Starting from the stationary phase formulation (see page 692), it suffices to show that∫ 1

M/t

∫∫
ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ dσ (2-2)

is O(1/(M N t3/2)).
First apply the stationary phase lemma in ξ in the above. The vanishing set of ψξ depends on X . If X

is such that ψξ does not vanish, (2-2) is O(1/t N ) for any N and we are done. Otherwise, ψξ vanishes for
some ξ , which we denote ξ0, and which is a function of X , η, and σ . We can assume without loss of
generality that ξ0 is unique. Since ψξξ does not vanish by assumption, the stationary phase lemma gives

(2-2)=
∫ 1

M/t

∫
ei tψ(ξ0,η,σ )

(
α(ξ, η, σ )
√

t
+
β(ξ, η, σ )

t
+
γ (ξ, η, σ )

t
√

t
+ O

( 1
t2

))
dη dσ,

where α, β, and γ are smooth functions which we do not specify. The fourth summand in (2-2) is already
small enough. We will now show how to deal with the first one, and this will conclude the proof since the
second and third ones are easier (better decay). Thus we now want to show that∫ 1

M/t

∫
ei tψ(ξ0,η,σ )

α(ξ, η, σ )
√

t
dη dσ (2-3)

is O(1/(M N t)). In order to take advantage of oscillations in η, observe that

∂η[ψ(ξ0(η, σ, X), η, σ )] = ∂ηξ0[∂ξψ](ξ0, η, σ )+ [∂ηψ](ξ0, η, σ )= [∂ηψ](ξ0, η, σ )= σ [∂η8](ξ0, η).

By hypothesis, ∂η8 does not vanish, therefore

|∂η[ψ(ξ0, η, σ )]|& σ.

Integrating by parts N + 1 times with the help of the identity

1
t∂η[ψ(ξ0, η, σ )]

∂ηei tψ(ξ0,η,σ ) = iei tψ(ξ0,η,σ ),

we obtain

|(2-3)|.
∫ 1

M/t

1
(σ t)N+1

√
t

dσ . 1
M N t3/2 ,

which concludes the proof. �
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Theorem 2.5 (space-time resonance set reduced to a point). Assume that f , g belong to S, that there
exists a unique (ξ0, η0) such that

8(ξ0, η0)=8η(ξ0, η0)= 0,

and that the following technical, generic hypotheses are satisfied:

• (we are under the standing assumption (H), but only the fact that a′′ is nonvanishing is used here;)

• 8ξ (ξ0, η0) 6= 0;

• 8ηη(ξ0, η0) 6= 0;

and that Supp m is contained in a small enough neighborhood of (ξ0, η0).
Recall that X = x/t , and set

6(X) def
= −

1
8ξ (ξ0, η0)

(a′(ξ0)+ X).

Let ε > 0 be small enough. Assume without loss of generality that 8ξ (ξ0, η0) > 0. Then:

• If X <−8ξ (ξ0, η0)− a′(ξ0)− ε,

u(t)= O
( 1

t N

)
for any N.

• If −8ξ (ξ0, η0)− a′(ξ0)− ε < X <−8ξ (ξ0, η0)− a′(ξ0)+ ε,

u(t)= 1
√

t
A2(6)G1(

√
t[6− 1])+ O

(1
t

)
for a smooth function A2.

• If −8ξ (ξ0, η0)− a′(ξ0)+ ε < X <−a′(ξ0)− ε,

u(t, x)= 1
√

t
A1

√
6(X)

ei tψ(ξ0,η0,6)+ O
(1

t

)
for a constant A1.

• If −a′(ξ0)− ε < X <−a′(ξ0)+ ε,

u(t)= A0(6)
1

t1/4 G2(
√

t6)+
{

O(t−3/4) if |
√

t6|< 1,
O(|log t |/

√
t) if |

√
t6|> 1.

for a smooth function A0;

• if −a′(ξ0)+ ε < X ,

u(t)= O
( 1

t N

)
for any N.
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Remark 2.6. (1) Theorem 2.5 provides an efficient equivalent of u(t) for large t in all the zones of the
space-time plane (x, t), except where6 is small, but larger than 1/|log t |2 (because then |log t |/

√
t >

(1/t1/4)|G2(
√

t6)|). Dealing with this region would require fairly technical developments, from
which we refrain.

(2) If8 vanishes at order 1 on 0 and1, the conditions8ξ (ξ0, η0) 6=0 and8ηη(ξ0, η0) 6=0 are equivalent
to 0 and 1 intersecting transversally at (ξ0, η0). Indeed, a tangent vector to 0 (respectively, 1) at
(ξ0, η0) is given by(

∂η8(ξ0, η0)

−∂ξ8(ξ0, η0)

)
=

(
0

−∂ξ8(ξ0, η0)

) (
respectively

(
∂2
η8(ξ0, η0)

−∂η∂ξ8(ξ0, η0)

))
.

These two vectors are not collinear if ∂ξ8(ξ0, η0)∂
2
η8(ξ0, η0) 6= 0.

(3) The hypothesis that Supp m is restricted in a small enough neighborhood is not restrictive: away
from (ξ0, η0), either 8 or 8η is nonzero, so either Theorem 2.2 or Theorem 2.4 applies.

The proof distinguishes three regions: σ away from 0 and 1, σ close to 0, and σ close to 1. Starting
from Equation (2-0), we split the time integral as follows:

u(t, x)=− i
√

2π
t
∫ 1

0

∫∫
ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dξ dη dσ

=−
i
√

2π
t
∫ t

0

∫∫ (
χI(σ )+χII(σ )+χIII(σ )

)
. . . dξ dη dσ def

= I+ II+ III. (2-4)

Here χI , χII , and χIII are three smooth, positive functions, adding up to 1 for each σ and such that

χII(σ )=

{
0 if σ < δ,
1 if σ > 2δ,

χI(σ )=

{
0 if σ < δ or σ > 1− δ,
1 if 2δ < σ < 1− 2δ,

χIII(σ )=

{
0 if σ < 1− 2δ,
1 if σ > 1− δ.

Here δ > 0 is a sufficiently small number.

The contribution of σ away from 0 and 1. This is the simplest case since it can be settled by resorting to
elementary stationary phase considerations. Our aim is to estimate

I =− i
√

2π
t
∫ 1

0

∫∫
χI(σ )ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dξ dη dσ.

The phase ψ(ξ, η, σ ) is also a function of X , but from now on we consider X to be fixed.
Since σ does not vanish on SuppχI , the gradient

∇ξ,η,σψ =

a′+ σ8ξ + X
σ8η

8


vanishes if

8(ξ, η)=8η(ξ, η)= 0 and a′(ξ)+ σ8ξ (ξ, η)+ X = 0.
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The first two conditions impose (ξ, η)= (ξ0, η0) whereas the third one gives

σ =6(X) def
= −

1
8ξ (ξ0, η0)

(a′(ξ0)+ X).

(This makes sense under the assumption that 8ξ (ξ0, η0) 6= 0.) We assume that X is such that σ given by
the above line lies in Supp m; if this is not the case, the contribution of I is negligible. The Hessian at
(6, ξ0, η0) is

Hessξ,η,σ ψ(ξ0, η0, 6)=

a′′+68ξξ (ξ0, η0) 68ξη(ξ0, η0) 8ξ (ξ0, η0)

68ξη(ξ0, η0) 68ηη(ξ0, η0) 0
8ξ (ξ0, η0) 0 0


with determinant

det Hessξ,η,σ ψ(ξ0, η0, 6)=−68ξ (ξ0, η0)
28ηη(ξ0, η0).

Let us assume that 8ηη(ξ0, η0) is not zero, which is generically satisfied. The stationary phase principle
then gives [Stein 1993]

u(t, x)= 1
√

t
χI(6(X))
√
6(X)

ei tψ(ξ0,η0,6)A1+ O
(1

t

)
with

A1
def
=

(2π)3/2ei(π/4)S

|8ξ (ξ0, η0)|
√
|8ηη(ξ0, η0)|

µ(ξ0, η0) f̂ (ξ0− η0)ĝ(η0)

where S is the signature of Hessξ,η,σ ψ(ξ0, η0, 6).

The contribution of σ close to 0.

Step 1: splitting between small and large times. Our aim is to estimate

II =− i
√

2π
t
∫ 1

0

∫∫
χII(σ )ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dξ dη dσ,

which we split into

II =− i
√

2π
t
[∫ 1/t

0
+

∫ 1

1/t
. . . dσ

]
def
= II1+ II2.

Rescaling II1, we see that it can be written

u(t)= ei ta(D)F where F =− i
√

2π

∫ 1

0

∫
ei(s−t)a(D)Tm(e−isb(D) f, e−isc(D)g) ds,

so that it reduces to a linear solution for t sufficiently large. We now focus on II2.

Step 2: stationary phase in ξ . We want to apply the stationary phase lemma in the variable ξ . Observe
that

∂ξψ(ξ, η, σ )= a′(ξ)+ σ8ξ + X.

Thus for η, σ , and X fixed, ∂ξψ(ξ, η, σ ) = 0 may or may not have a solution in Supp m. If not, the
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contribution is negligible, so let us assume that this equation has a solution ξ =4(X, η, σ ). Next,

∂2
ξψ(ξ, η, σ )= a′′(ξ)+ σ8ξξ .

Since we are assuming that a′′ does not vanish, taking δ small enough, we can ensure that ∂2
ξψ(ξ, η, σ )

does not vanish. Applying the stationary phase lemma then gives

II2 = t
∫ 1

1/t

∫
G(4, η)ei tψ(4,η,σ )

( √
2πei S0π/4√

ψξξ (4, η, σ )
√

t
+
α(η, σ )

t
+
β(η, σ )

t
√

t
+ O

( 1
t2

))
dη dσ, (2-5)

where S0 = sign(ψξξ (4, η, σ )), α and β are smooth functions, and for simplicity we denoted

G(ξ, η, σ )=− i
√

2π
χII(σ )µ(ξ, η) f̂ (ξ − η)ĝ(η).

The last term in (2-5), containing O(1/t2), contributes O(1/t2) to u; thus we can discard it and focus on

t
∫ 1

1/t

∫
G(4, η)ei tψ(4,η,σ )

( √
2πei S0

π
4√

ψξξ (4, η, σ )
√

t
+
α(ξ, η, σ )

t
+
β(ξ, η, σ )

t
√

t

)
dη dσ. (2-6)

Step 3: stationary phase in η. Observe that

∂η[ψ(4(η, σ ), η, σ )] = ∂η4[∂ξψ](4, η, σ )+ [∂ηψ](4, η, σ )= [∂ηψ](4, η, σ )= σ [∂η8](4, η).

Just as for the stationary phase in ξ , we denote by η = H(σ, X) the solution of [∂η8](4, η)= 0 (if no
solution exist, the contribution is negligible). Next, set

∂2
η [ψ(4(η, σ ), η, σ )] = σ∂η4[∂ξ∂η8](4, η)+ σ [∂

2
η8](4, η)

def
= σ Z(η, σ ).

We need to assume that

Z(η, σ ) 6= 0

if (σ,4, η) ∈ Supp mχII . Since the support of m, as well as δ, is assumed to be small enough, it suffices
that Z(η0, 0) 6= 0; but a simple computation reveals that Z(η0, 0) = φηη(η0, ξ0), which is nonzero by
hypothesis. The stationary phase lemma in η applied to Theorem 2.5 then gives

(2-6)= t
∫ 1

1/t
G(4, H)ei tψ(4,H,σ )

√
2πei S1π/4

√
t
√
σ Z(H, σ )

×

( √
2πei S0π/4√

ψξξ (4, H, σ )
√

t
+
α(H, σ )

t
+
β(H, σ )

t
√

t
+ O

(
1

t
√

tσ

))
dσ, (2-7)

where S1 = sign(Z(H, σ )), α̃ and β̃ are smooth functions. The last summand in (2-7) contributes

O
(

t
t
√

t

∫ 1

1/t

dσ
σ

)
= O

(
log t
√

t

)
.
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We discard this and focus on

t
∫ 1

1/t
G(4, H)ei tψ(4,H,σ )

√
2πei S1π/4

√
t
√
σ Z(H, σ )

( √
2πei S0π/4√

ψξξ (H, σ )
√

t
+
α(H, σ )

t
+
β(ξ, H, σ )

t
√

t

)
dσ. (2-8)

Step 4: stationary phase in σ . In this final step, we are not going to apply the standard stationary phase
lemma, but rather its variant given in Proposition B.2. Differentiating in σ , the phase in (2-7) gives

∂σ
[
ψ
(
4(H(η, σ ), σ ), H(σ ), σ

)]
= [∂σψ](4, H, σ )=8(4(H, σ ), H(σ )),

since ∂ξψ = ∂ηψ = 0 at the point (4, H, σ ). Thus ∂σφ = 0 if 8(4, H)= 0. On the other hand, since
∂η8(4, H)= 0 by definition of H ,

8(4(H, σ ), H(σ ))= 0 if and only if H(σ )= η0 and 4(η0, σ )= ξ0.

But by definition of 4 this implies

σ =6(X)=−
X + a′(ξ0)

ψξ (ξ0, η0)
.

In order to apply Proposition B.2, we need to check that

∂2
σ

[
ψ
(
4(H(η, σ ), σ ), H(σ ), σ

)]
(6)= ∂σ [8(4(H, σ ), H(σ ))](6) 6= 0.

Since δ is chosen small enough, it suffices to check that it holds for 6 = 0 (that is, when X is such that
6(X)= 0). This follows from the following computation:

∂σ [8(4(H, 6), H(6))](0)= ∂ξ8(ξ0, η0)(∂σ4(η0, 0)+ ∂σ H(0)∂η4(η0, 0))+ ∂η8(ξ0, η0)∂σ H(0)

= ∂ξ8(ξ0, η0)∂σ4(η0, 0)=−
φξ (ξ0, η0)

2

a′′(ξ0)
6= 0,

where we used that ∂η8(ξ0, η0)= ∂η4(η0, 0)= 0 and ∂σ4(η0, 0)=−φξ (ξ0, η0)/a′′(ξ0). We now write

(2-8)= t
∫ 1

1/t
. . . dσ = t

∫ 1

0
−t
∫ 1/t

0
. . . dσ.

The second summand, t
∫ 1/t

0 . . . dσ , is directly estimated to be O(1/
√

t). As for the first summand,
t
∫ 1

0 . . . dσ , apply Proposition B.2(iv) to obtain

(2-8)= A0(6)G2(
√

t6)+
{

O(t−3/4) if |
√

t6|< 1,
O(
√
|6|/t) if |

√
t6|> 1,

where A0 is a smooth function which we do not detail here.

The contribution of σ close to 1. In order to estimate

III =− i
√

2π
t
∫ 1

0

∫∫
χIII(σ )ei tψ(ξ,η,σ )µ(ξ, η) f̂ (ξ − η)ĝ(η) dη dξ dσ.

an approach similar to the one used for II can be followed, the details being simpler: first apply the
stationary phase Lemma in the (ξ, η) variables, then Proposition B.2(i). We do not give details here.
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Conclusion.

Space-time localization of the waves. As a conclusion of the asymptotic analysis of waves which has just
been carried out, it is interesting to compare the space-time localizations of the emerging wave u, the
solution of (1-3), in the three situations we examined. To simplify, suppose that f and g are localized in
space close to 0, and in frequency close to ξ̃ − η̃ and η̃, respectively. Then

• in the absence of space-time resonances, u will be localized where X ∼−a′(ξ̃ ), where it will have
size ∼ 1/

√
t ;

• if the space-time resonant set is reduced to a point, then, under the assumptions of Theorem 2.5, u
will have size ∼ 1/t1/4 if −8ξ (η0, ξ0)− a′(ξ0) < X <−a′(ξ0), and size ∼ 1/

√
t if X ∼−a′(ξ0).

Lower bound. The asymptotic equivalents which have been computed also provide lower bounds for L p

norms of u. In the absence of space time resonances, we do not learn anything, since the equivalent for u
is similar to a linear solution. However, in the case when Theorem 2.5 applies (that is, when 1 and 0
intersect transversally at a point), for t large we get

‖u(t)‖Lq &

{
log t for q = 2,
t1/(2q)−1/4 for 2< q ≤∞,

(2-9)

which corresponds to the lower bound states in Theorem 1.1.

3. Nonlocalized data

In this section, the data are only supposed to belong to L2, as opposed to in Section 4, where the data
will belong to weighted L2 spaces.

Main results.

Theorem 3.1. Assume that m is smooth and compactly supported and a, b, c are real-valued. In the
various possible situations that follow, for q ∈ [2,∞], the solution u of (1-3) satisfies

‖u(t)‖Lq . α(t)‖ f ‖L2‖g‖L2

with α(t) as follows:

α(t)=



t in general,
1 if 0 is empty,
t1/2+1/(2q) if 0 is a point where φ vanishes at order two,
t1/q if 2≤ q <∞ and 0 is a noncharacteristic curve where φ vanishes at order one,
〈log t〉 if q =∞ and 0 is a noncharacteristic curve where φ vanishes at order one,
t1/4+1/(2q) when 0 is a curve with nonvanishing curvature where φ vanishes at order one,
t1/2 if 0 is a general curve where φ vanishes at order one.

In the two first situations above, the bound can be improved if the unitary groups ei ta(D), ei tb(D), and
ei tc(D) give decay.



BILINEAR DISPERSIVE ESTIMATES VIA SPACE-TIME RESONANCES, I 701

In this setting, using precisely the structure of the product of two linear solutions (which cannot be
described by using only the set φ−1({0}) as previously), we get the following improvement.

Theorem 3.2. Assume that m is smooth and compactly supported, and that (H) holds. For all q ∈ [2,∞],
the solution u of (1-3) satisfies

‖u(t)‖Lq . t1/2+1/(2q)
‖ f ‖L2‖g‖L2 .

If , moreover, we assume that 0 =∅, then, for p, q ∈ [2,∞) with 1
p
+

1
q
>

1
2

, we get

‖u(t)‖L p
t Lq . ‖ f ‖L2‖g‖L2 . (3-1)

Remark 3.3. The last statement of the previous theorem gives decay in an integrated form (u belonging
to some L p Lq ), as opposed to the pointwise in time rate of decay obtained earlier; of course, this has to
do with the use of Strichartz estimates. Heuristically, (3-1) can be understood as giving the rate of decay
‖u(t)‖Lq . t1/q−1/2

‖ f ‖L2‖g‖L2 .

Then, if the smooth symbol m does not have bounded support, we have the following result.

Corollary 3.4. We want to track the dependence of the bounds in the above theorem on the size of the
support of m. So assume that m is bounded by 1 along with sufficiently many of its derivatives, and that it
is supported on B(0, R). Then all the previous boundedness results hold with an extra factor R.

Proof. In Theorems 3.1 or 3.2, we have obtained boundedness from L2
× L2 to B (where B = Lq or

L p
T Lq ) of the operator Tt = Tσ with the symbol

σ(ξ, η)
def
= ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η),

when m has a bounded support. So now, considering a smooth symbol m supported on B(0, R), we split
it (using a smooth partition of the unity) as

m =
∑
k,l

mk,l

with mk,l smooth symbols supported on [k−1, k+1] × [l−1, l+1]. Applying the previous results
(invariant by modulation), we get

‖Tσ‖B ≤

∑
k,l

‖Tσk,l‖B ≤ cB

∑
k,l

‖πk f ‖L2‖πl g‖L2,

where cB is the constant previously obtained for compactly supported symbols and πk f is a smooth
truncation of f for frequencies around [k−1, k+1]. Using orthogonality, it follows that

‖Tσ‖B ≤ cB

(∑
k,l

1
)1/2

‖ f ‖L2‖g‖L2,

which gives the desired results, since k, l ∈ {−R− 1, . . . , R+ 1}. �
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Proof of Theorem 3.1: the general case. Using no properties on 0 or a, b, c, we can get the following
general bound.

Lemma 3.5. Assume that m is compactly supported. For all q ∈ [2,∞], the solution u to (1-3) satisfies

‖u(t)‖Lq . t‖ f ‖L2‖g‖L2 .

Proof. The solution u(t) is given by

u(t)= Tt( f, g)(x)=
∫

R2
ei x(ξ+η)ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η) dξdη = Tσ ( f, g)(x),

with symbol

σ(ξ, η)
def
= ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η).

In this general setting, we only know that σ is bounded by t and compactly supported. Lemma A.1
implies that

‖Tt( f, g)‖Lq . t‖ f ‖L2‖g‖L2 . �

The next several results improve on this bound under two different kinds of assumptions:

• using geometric properties of the resonance set 0, or

• assuming linear Strichartz inequalities for the unitary groups ei ta(D), ei tb(D), and ei tc(D), and using
the structure of the product of two linear solutions.

Proof of Theorems 3.1 and 3.2: the case without resonances. We assume here that the phase function
φ does not vanish.

Proposition 3.6. Assume that 0 =∅ and that m is compactly supported. For q ∈ [2,∞], the solution u
of (1-3) satisfies

‖u‖Lq . ‖ f ‖L2‖g‖L2 . (3-2)

Proof. The solution u(t) is given by

Tt( f, g)(x)=
∫

R2
ei x(ξ+η)ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η)dξdη = Tσ ( f, g)(x),

with symbol

σ(ξ, η)
def
= ei ta(ξ+η) ei tφ(ξ,η)

−1
φ(ξ, η)

m(ξ, η).

Since a is real-valued and φ is nonvanishing, σ is bounded by a constant and compactly supported.
Lemma A.1 yields

‖Tt( f, g)‖Lq . ‖ f ‖L2‖g‖L2 . �

Let us now deal with the improved bounds of Theorem 3.2 (using dispersive and Strichartz estimates
on the linear evolution groups).
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Proof of Theorem 3.2. Let us check the first claim. For every s ∈ (0, t), we use the dispersive inequality
(1-3) and the L2

× L2
→ L1 boundedness of Tm to get

‖ei ta(D)Tmeisφ ( f, g)‖L∞ = ‖ei(t−s)a(D)Tm(eisb(D) f, eisc(D)g)‖L∞ .
1
√

t−s
‖ f ‖L2‖g‖L2 .

Integrating for s ∈ (0, t), it follows that

‖Tt( f, g)‖L∞ . t1/2
‖ f ‖L2‖g‖L2 .

Similarly, using the L2
× L∞→ L2 boundedness of Tm , we have for all s > 0

‖ei ta(D)Tmeisφ ( f, g)‖L2 = ‖Tm(eisb(D) f, eisc(D)g)‖L2 . ‖ f ‖L2‖eisc(D)g‖L∞,

which yields (using the Strichartz inequality)

‖Tt( f, g)‖L2 . t3/4
‖ f ‖L2‖g‖L2 .

The proof is concluded by interpolating between L2 and L∞.
Next, assume that 0 =∅, which means that φ is nonvanishing on the support of m. Computing the

integration over s ∈ [0, t], we can split

iTt( f, g)(x)= It( f, g)− IIt( f, g),

with

It( f, g)(x) def
=

∫
R2

ei x(ξ+η)ei t (b(ξ)+c(η)) 1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η)dξdη

and

IIt( f, g)(x) def
=

∫
R2

ei x(ξ+η)ei ta(ξ+η) 1
φ(ξ, η)

m(ξ, η) f̂ (ξ)ĝ(η)dξdη.

In other words,

It( f, g)= Tm/φ(ei tb(D) f, ei tc(D)g) and IIt = ei ta(D)Tm/φ( f, g).

Since φ is assumed to be smooth and nonvanishing, m/φ is also smooth and compactly supported so that
the bilinear operator Tm/φ is bounded from L P

× L Q into L R as soon as 1/P + 1/Q ≥ 1/R.
Choose now p and q as in the statement of the theorem. Using the dispersive estimates and Bernstein’s

inequality (indeed, since m has a compact support, it is possible to assume that f̂ and ĝ are compactly
supported) gives

‖It( f, g)‖L p Lq . ‖Tm/φ( f, g)‖L1 . ‖ f ‖L2‖g‖L2 .

Therefore, ei tb(D) f enjoys the usual Strichartz estimates, as well as, by Bernstein’s inequality, the bounds
‖ei tb(D) f ‖L2q . ‖ f ‖Lq ; the case of g is similar. This gives

‖IIt( f, g)‖L p Lq . ‖ei tb(D) f ‖L2p Lq‖ei tc(D)g‖L2p Lq . ‖ f ‖L2‖g‖L2 . �
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The case with resonance at only one point.

Proposition 3.7. Assume that φ only vanishes at the point (ξ0, η0). Assume further that ∇φ also vanishes
at (ξ0, η0), but that Hessφ has a definite sign at that point. If q ∈ [2,∞], the solution u of (1-3) satisfies

‖u(t)‖Lq . t1/2+1/(2q)
‖ f ‖L2‖g‖L2 .

Proof. Assume for simplicity that φ vanishes at order 2 at 0. Take a smooth, compactly supported function
χ , equal to 1 on B(0, 1), and set ψ = χ( · /2)−χ , so that

1= χ +
∑
j≥1

ψ(2− j
· ).

Then decompose the symbol as

ei ta(ξ)m ei tφ
−1
φ
=

(
χ(
√

t(ξ, η))+
∑
j≥1

ψ(2− j√t(ξ, η))
)

ei ta(ξ)m ei tφ
−1
φ

def
= m0(ξ, η)+

∑
j≥1

m j (ξ, η).

Obviously,
Tt = Tm0 +

∑
j≥1

Tm j ,

so it suffices to bound the summands above. The symbol m j ( j ≥ 0) is supported on a ball of radius
∼ 2 j/

√
t , and bounded by 2−2 j t . It follows by Lemma A.1 that

‖Tm0‖L2×L2→Lq . t1/2+1/2q and ‖Tm j‖L2×L2→Lq . t1/2+1/(2q)2 j (−1−1/q).

Therefore,

‖Tt‖L2×L2→Lq . t1/2+1/(2q)
(

1+
∑
j≥1

2 j (−1−1/q)
)
. t1/2+1/(2q),

which is the desired result. �

The case of resonances along a curve.

Proposition 3.8. Assume that 0 is a smooth curve, where φ vanishes at order 1. If q ∈ [2,∞], the solution
u of (1-3) satisfies the following.

• If 0 is noncharacteristic,

‖u(t)‖Lq . ‖ f ‖L2‖g‖L2

{
t1/q if 2≤ q <∞,
〈log t〉 if q =∞.

• If 0 has nonvanishing curvature,

‖u(t)‖Lq . t1/4+1/(2q)
‖ f ‖L2‖g‖L2 .

• Else,
‖u(t)‖Lq . t1/2

‖ f ‖L2‖g‖L2 .

As explained in Remark A.4, the estimate for a noncharacteristic curve 0 still holds if the only
characteristic points are characteristic along the variable ξ + η.
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Proof. We only treat the case where 0 is noncharacteristic and 2≤ q <∞; the other cases can be obtained
by a similar argument. Similarly to Proposition 3.7, consider a smooth, compactly supported function χ ,
equal to 1 on [0, 1], and set ψ = χ( · /2)−χ , so that

1= χ +
∑
j≥1

ψ(2− j
· ).

We denote the distance function by d0(ξ, η)= d((ξ, η), 0); since 0 is supposed to be a smooth curve
and ∇φ is nonvanishing near 0, it follows that

d0(ξ, η)' |φ(ξ, η)|.

Then decompose the symbol as

ei ta(ξ)m(ξ, η)e
i tφ(ξ,η)

−1
φ(ξ, η)

=

(
χ (tφ(ξ, η))+

∑
j≥1

ψ(2− j tφ(ξ, η))
)

ei ta(ξ)m(ξ, η)e
i tφ(ξ,η)

−1
φ(ξ, η)

def
= m0(ξ, η)+

∑
j≥1

m j (ξ, η).

Obviously,
Tt = Tm0 +

∑
j≥1

Tm j ,

so it suffices to bound the summands above. The symbol m0 ( j ≥ 0) is supported on a neighborhood 02 j/t

and bounded by t2− j , up to a numerical constant. If 0 is noncharacteristic, it follows by Lemma A.3 that
‖Tm0‖L2×L2→Lq . t1/q and ‖Tm j‖L2×L2→Lq . t1/q2− j/q . Therefore,

‖Tt‖L2×L2→Lq . t1/q
(

1+
∑
j≥1

2− j/q
)
. t1/q ,

which is the desired result. �

4. Localized data

We will now assume that the data belongs to a weighted Sobolev space, and study the decay of the solution
of (1-3).

The role of time resonances.

Proposition 4.1. Recall that m is smooth and compactly supported. Assume that φ only vanishes at
(ξ0, η0), that ∇φ also vanishes at that point, and that Hessφ at that point has a definite sign. If q ∈ [2,∞],
the solution u of (1-3) satisfies the following.

• If 0≤ s < 1/2, ‖u(t)‖Lq . t1/2+1/(2q)−s
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/2 and q <∞, ‖u(t)‖Lq . t−1/(2q)
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/2 and q =∞, ‖u(t)‖L∞ . 〈log t〉‖ f ‖L2,s‖g‖L2,s .
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Proof. As in the proof of Proposition 3.7, we decompose the symbol, giving the decomposition

u(t)= Tm0( f, g)+
∑
j≥1

Tm j ( f, g).

Again the symbol m j is supported on a ball of radius 2 j t−1/2 and is bounded by 2−2 j t . We conclude
with Lemma A.1. �

Theorem 4.2. Assume that φ vanishes at first order along a noncharacteristic curve0. Then for 2≤q<∞
and s ≥ 0, the solution u of (1-3) satisfies the following estimates:

• If 0≤ s < 1/4, ‖u(t)‖Lq . t (1−4s)/q
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/4, ‖u(t)‖Lq . 〈log t〉‖ f ‖L2,s‖g‖L2,s .

If q =∞, the solution u of (1-3) satisfies

‖u(t)‖L∞ . 〈log t〉‖ f ‖L2‖g‖L2 .

Remark 4.3. The L∞ estimate of Proposition 3.8 does not improve if the data belong to weighted L2

spaces. Also, notice that the L2 estimate for s > 1
4 is already as good as allowed by the lower bound

Equation (2-9): any further assumption on space resonances will not improve the estimate.

Proof of Theorem 4.2. Just as in the proof of Proposition 3.8, split the symbol as

ei ta(ξ)m(ξ, η)e
i tφ(ξ,η)

−1
φ(ξ, η)

= m0(ξ, η)+
∑
j≥1

m j (ξ, η).

Obviously,
Tt = Tm0 +

∑
j≥1

Tm j ,

so it suffices to bound the summands above. The symbol m j is supported on a neighborhood 02 j/t and
bounded by t2−2 j , up to a constant. Since 0 is noncharacteristic, it follows by Lemma A.5 that for s < 1

4

‖Tm j‖L2,s×L2,s→Lq . (t−12 j )1−1/q+4s/q(t2−2 j ),

‖Tm0‖L2,s×L2,s→Lq . t−1+1/q−4s/q t,

with corresponding estimates if s > 1
4 . The proof of the proposition is concluded by summing the above

bounds for the elementary operators Tm j . �

Following the same reasoning and estimates as in [Bernicot and Germain 2012], it is possible to get
similar results for a curve admitting characteristic points.

Theorem 4.4. Assume that φ vanishes at first order along a curve 0 with nonvanishing curvature. Then,
for 2≤ q <∞, s ≥ 0, and δ > 0, the solution u of (1-3) satisfies the following estimates:

• If 0≤ s ≤ 1/2, ‖u(t)‖Lq . t (1−2s)/q
‖ f ‖L2,s‖g‖L2,s .

• If s ≥ 1/2, ‖u(t)‖Lq . 〈t〉δ‖ f ‖L2,s‖g‖L2,s .
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If q =∞, the solution u of (1-3) satisfies

‖u(t)‖L∞ . 〈log t〉‖ f ‖L2‖g‖L2 .

Proof. Use Lemma A.6 instead of Lemma A.5 and follow the proof of Theorem 4.2. �

The role of space resonances.

Theorem 4.5. Assume that (H) holds and 1=∅, or in other words that (∂ξ − ∂η)φ never vanishes. Then
the solution u of (1-3) satisfies the following bounds for any δ > 0.

• If 0≤ s < 1/q , ‖u(t)‖Lq . t1/(2q)+1/2−(3/2)s+δ
‖ f ‖L2,s‖g‖L2,s .

• If 1/q < s < 1− 1/q , ‖u(t)‖Lq . t1/2−s+δ
‖ f ‖L2,s‖g‖L2,s .

• If s > 1− 1/q , ‖u(t)‖Lq . t1/q−1/2+δ
‖ f ‖L2,s‖g‖L2,s .

Proof. The proof proceeds by interpolating between the following L2 and the L∞ estimates. Indeed if
s < 1/q , then, for θ = 2/q , we have Lq

:= (L2, L∞)θ and L2,s
= (L2,qs/2, L2,0)θ with qs/2≤ 1/2. We

conclude similarly for the two other cases.
Recall that

8(ξ, η)
def
= φ(ξ − η, η),

so that the hypothesis on φ translates into ∂η8 6= 0, and, in Fourier space, u reads

û(t, ξ)= ei ta(ξ)
∫ t

0

∫
eiτ8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη dτ.

The L2 estimate. We want to prove that, for every exponent δ > 0 (as small as we want),

‖u(t)‖L2 .

{
t3/4−(3/2)s+δ

‖ f ‖L2,s‖g‖L2,s if 0≤ s ≤ 1
2 ,

‖ f ‖L2,s‖g‖L2,s if s > 1
2 .

(4-1)

The result for s = 0 is given by Theorem 3.2. So let us study the case s = 1
2 so that (4-1) will follow by

interpolation.
We first observe that the embedding L2,1/2+δ

⊂ L1 and the dispersive estimates L1
→ L∞ give∥∥∥∥∫ eiτφ(ξ−η,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

∥∥∥∥
L2
. ‖Tm(eiτb(D) f, eiτc(D)g)‖L2

. ‖eiτb(D) f ‖L∞‖g‖L2 . τ−1/2
‖ f ‖L2,1/2+δ‖g‖L2 .

Moreover, integrating by parts in η via the identity is∂η8eis8
= ∂ηeis8 gives∥∥∥∥∫ eiτ8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

∥∥∥∥
L2

. τ−1
∥∥∥∥∫ eiτ8(ξ,η)∂η[∂η8(ξ, η)

−1 f̂ (ξ − η)ĝ(η)m(ξ − η, η)] dη
∥∥∥∥

L2

. τ−3/2
[‖ f ‖L2,1/2+δ‖g‖L2,1 +‖ f ‖L2,1‖g‖L2,1/2+δ ], (4-2)
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where we repeat the same arguments as previously.
So let us fix τ and consider the bilinear operator

U def
= ( f, g)→

∫
eiτ8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη. (4-3)

We have obtained that

‖U‖L2,1/2+δ×L2→L2 +‖U‖L2×L2,1/2+δ→L2 . τ−1/2 (4-4)

and

‖U ( f, g)‖L2 . τ−3/2
[‖ f ‖L2,1/2+δ‖g‖L2,1 +‖ f ‖L2,1‖g‖L2,1/2+δ ]. (4-5)

We now explain how we can interpolate between these two estimates to obtain

‖U ( f, g)‖L2 . τ−1+δ
‖ f ‖L2,1/2‖g‖L2,1/2, (4-6)

for any δ > 0. We first consider the collection of dyadic intervals

I0
def
= [−1, 1] In

def
= [−2n, 2n−1

] ∪ [2n−1, 2n
] for n ≥ 1.

On each set In , the weight 〈x〉 is equivalent to 2n , so for n ≤ m, two integers, we know from (4-4) that

‖U‖L2(In)×L2(Im)→L2 . τ−1/22n(1/2+δ)

and from (4-5) that

‖U‖L2(In)×L2(Im)→L2 . τ−3/2
[2n(1/2+δ)2m

+ 2n2m(1/2+δ)
]. τ−3/22n(1/2+δ)2m .

Consequently, taking the geometric average with δ′ > 2δ, we get

‖U‖L2(In)×L2(Im)→L2 . τ−1+δ′2n(1/2+δ)2m(1/2−δ′) . τ−1+δ2(n+m)(1/2−δ).

So we have
‖U ( f, g)‖L2 . τ−1+δ′

∑
n,m≥0

2(n+m)(1/2−δ)
‖ f ‖L2(In)‖g‖L2(Im)

. τ−1+δ′
( ∑

n,m≥0

2−(n+m)δ
)
‖ f ‖L2,1/2‖g‖L2,1/2

. τ−1+δ′
‖ f ‖L2,1/2‖g‖L2,1/2 .

Since δ, δ′ can be chosen as small as we want with δ′ > 2δ > 0, δ′ can be chosen arbitrarily small, which
concludes the proof of (4-6).

Finally from (4-6), we obtain (4-1) for s = 1
2 by integrating in time for τ ∈ (0, t).

The L∞ estimate. We want to prove that

‖u(t)‖L∞ .

{
t1/2−s+δ

‖ f ‖L2,s‖g‖L2,s if 0≤ s ≤ 1,
t−1/2
‖ f ‖L2,s‖g‖L2,s if s > 1.

(4-7)
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The case s = 0 was stated in Theorem 3.2. Recall that, writing

u(t) def
=

∫ t

0
F(t, s) ds,

the L1
→ L∞ dispersive estimate gives

‖F(t, s)‖L∞ .
1
√

t−s
‖ f ‖L2‖g‖L2 . (4-8)

Next, integrating by parts via the formula is∂η8eis8
= ∂ηeis8 gives∫

ei ta(ξ)eis8(ξ,η) f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

=

∫
ei ta(ξ)eis8(ξ,η) 1

is∂η8(ξ, η)
∂η f̂ (ξ − η)ĝ(η)m(ξ − η, η) dη

+

∫
ei ta(ξ)eis8(ξ,η) 1

is∂η8(ξ, η)
f̂ (ξ − η)∂η ĝ(η)m(ξ − η, η) dη

+

∫
ei ta(ξ)eis8(ξ,η)∂η

(
m(ξ−η, η)
is∂η8(ξ, η)

)
f̂ (ξ − η)ĝ(η) dη,

which becomes, in physical space,

F(t, s)= I+ II+ III, (4-9)

with

I def
=

1
s

ei(t−s)a(D)T m
i∂η8

(ei tb(D)x f, ei tc(D)g),

II def
=

1
s

ei(t−s)a(D)T m
i∂η8

(ei tb(D) f, ei tc(D)xg),

III def
=

1
s

ei(t−s)a(D)T∂η m
i∂η8

(ei tb(D) f, ei tc(D)g).

Using the L1
→ L∞ dispersive estimate,

‖I‖L∞ .
1

s
√

t−s

∥∥T m
i∂η8

(ei tb(D)x f, ei tc(D)g)
∥∥

L1 .
1

s
√

t−s
‖x f ‖L2‖g‖L2 .

1
s
√

t−s
‖ f ‖L2,1‖g‖L2,1 .

Similar estimates for II and III give

‖F(t, s)‖L∞ .
1

s
√

t−s
‖ f ‖L2,1‖g‖L2,1 . (4-10)

Repeating the argument, but integrating by parts twice via the identity 1
is∂η8

∂ηeis8
= eis8, yields

‖F(t, s)‖L∞ .
1

s2
√

t−s
‖ f ‖L2,2‖g‖L2,2 . (4-11)

Finally, interpolating between (4-8), (4-10), and (4-11) gives

‖F(t, s)‖L∞ .
1

sσ
√

t−s
‖ f ‖L2,σ ‖g‖L2,σ for 0≤ σ ≤ 2.

Integrating this inequality in s (recall that u(t)=
∫ t

0 F(t, s) ds) gives the desired estimate. �
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The role of space-time resonances. We want to consider here the case of a point which would be resonant
both in space and in time; we need to combine the two approaches previously presented.

Theorem 4.6. Assume as usual that m is smooth and compactly supported and that (H) holds. Assume
further that the point

p0
def
= (ξ0, η0)

is the only point in the support of m that is resonant in space and time — in other words, the only point such
that φ(p0)= (∂ξ − ∂η)φ(p0)= 0. Moreover, assume that φ and (∂ξ − ∂η)φ vanish at order one on their
zero sets, and that the two smooth curves {φ = 0} and {(∂ξ − ∂η)φ = 0} are non tangentially intersecting
at p0 with ∂ξφ(p0) 6= 0. Then the solution u of (1-3) satisfies the following bounds for q ∈ [2,∞] and
every δ > 0.

• If s ∈
[
0, 1

2

]
,

‖u(t)‖Lq . t1/q−s(1/4+3/(2q))+δ
‖ f ‖L2,s‖g‖L2,s .

• If s ∈
( 1

2 , 1
]
,

‖u(t)‖Lq . t−s(1/4−1/(2q))+δ
‖ f ‖L2,s‖g‖L2,s .

Remark 4.7. • For q =∞, the estimates follow from the ones with q <∞ with the Bessel inequality
(since δ can be as small as we want).

• The assumptions of the theorem imply that, if φ and ∇ηφ vanish at order 1 on 0 and 1, respectively,
then, at the intersection point of 0 and 1, 0 is characteristic along ξ + η. Fortunately, this turns out
not be a problem in the estimates.

• The technical assumption ∂ξφ(p0) 6= 0 is exactly the same as that of Theorem 2.5: 8ξ (ξ0, η0) 6= 0.

• In the previous results, for s = 1, we get that, for large t � 1,

‖u(t)‖Lq . t1/(2q)−1/4+δ
‖ f ‖L2,1‖g‖L2,1,

for every δ > 0. This estimate is optimal (up to δ which can be chosen as small as we want) due to
the lower bound in (2-9).

Proof. The L2 inequalities (q = 2) have already been proved in Theorems 4.2 and 4.4. Indeed, from
Theorem 4.4 we know that u(t) can be estimated in L2 with a bound t (1−s)/2+δ if s ≤ 1

2 and tδ for every
δ > 0 if s ≥ 1

2 . Moreover, Theorem 4.2 yields that, for every δ > 0,

‖u(t)‖L∞ . tδ‖ f ‖L2‖g‖L2 .

So it suffices to check the only remaining extremal point, q =∞ with s = 1. We now aim at proving that

‖u(t)‖BMO . t−1/4+δ
‖ f ‖L2,1‖g‖L2,1, (4-12)

which implies the desired result by interpolation.



BILINEAR DISPERSIVE ESTIMATES VIA SPACE-TIME RESONANCES, I 711

To prove (4-12), the main idea is to combine the two previous situations, so let us consider small
parameters ε1, ε2 ∈ (t−1/2, 1) and a smooth partition of the unity with respect to the domains

�1
def
= {(ξ, η), |φ(ξ, η)|> ε1+

1
2 |(∂ξ − ∂η)φ(ξ, η)|},

�2
def
= {(ξ, η), |(∂ξ − ∂η)φ(ξ, η)|> ε2+

1
2 |φ(ξ, η)|},

�3
def
= {(ξ, η), |φ(ξ, η)|< 2ε1 and |(∂ξ − ∂η)φ(ξ, η)|< 2ε2}.

More precisely, �1 can be thought of as a truncated “cone” around the curve |(∂ξ − ∂η)φ| = 0 and of top
p0. �2 can be thought of similarly, but around the other curve. This decomposition, from the smooth
symbol m, gives rise to three symbols mi , and we have

u(t)= u1(t)+ u2(t)+ u3(t)

with

ûi (t, ξ) := ei ta(ξ)
∫ t

0

∫
eisφ(ξ−η,η)mi (ξ − η, η) f̂ (ξ − η)ĝ(η) dη ds.

Step 1: estimate of u1 in BMO with s = 1. We perform the same decomposition as was used in the proof
of Theorem 3.2, so

u1(t)= It( f, g)− IIt( f, g),

with

It( f, g)= Tm1/φ(e
i tb(D) f, ei tc(D)g) and IIt = ei ta(D)Tm1/φ( f, g).

The symbol m1 is of Coifman–Meyer type [Coifman and Meyer 1978] (up to a translation from p0 to 0)
and φ is smooth and lower-bounded by ε1 so Tm1/φ is bounded from L∞×L∞ to a modulated BMO space
[Meyer and Coifman 1991] with norm . ε−1

1 . Using the dispersive inequalities for the linear evolution
groups,

‖It( f, g)‖BMO . ε
−1
1 ‖e

i tb(D) f ‖L∞‖ei tc(D)g‖L∞ . ε
−1
1 t−1

‖ f ‖L1‖g‖L1 . ε−1
1 t−1

‖ f ‖L2,1‖g‖L2,1,

where we used L2,1
⊂ L1. Then we decompose the symbol m1 around p0 for scales 2 j from ε1 to 1

as follows (here the scale means the distance in the frequency plane to the point p0, which in �1 is
equivalent to |φ|):

m1 =
∑

ε1≤2 j.1

m1χ(2− jφ),

where χ is a compactly supported and smooth function. The symbol m1χ(2− jφ)/φ is of Coifman–Meyer
type (up to a translation) with a bound 2− j so the operator Tm1χ(2− jφ)/φ is bounded from L2

× L2 to L1

with a bound 2− j . Since when we evaluate Tm1χ(2− jφ)/φ( f, g), the functions f and g may be assumed
supported in frequency on an interval of length 2 j , we deduce from Lemma A.2 that

‖IIt( f, g)‖L∞ . t−1/2
‖Tm1/φ( f, g)‖L1

. t−1/2
( ∑
ε1≤2 j.1

2 j 2− j
)
‖ f ‖L2,1‖g‖L2,1 . t−1/2

|log ε1|‖ f ‖L2,1‖g‖L2,1 .
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So, since ε1 ∈ [t−1/2, 1], for every δ > 0, we obtain

‖u1(t)‖BMO . t−1/2ε−δ1 ‖ f ‖L2,1‖g‖L2,1 . (4-13)

Step 2: estimate of u2 in L∞ with s = 1. For u2, we follow the proof of Theorem 4.5, with the symbol
m2 supported on a cone with |(ξ, η)− p0| ≥ ε2. In our current situation, the symbol m2 satisfies the
Hörmander regularity condition (which means |∂αm2(ξ, η)|. |(ξ, η)− p0|

−|α|) and is supported on �2,
which can be considered as a cone of top p0. So �2 can be split into different parts at distance 2 j from
p0 for ε2 ≤ 2 j . 1:

m2 =
∑

ε2≤2 j.1

m2χ(2− j ( · − p0)),

where χ is a smooth and compactly supported function. For each of these pieces, χ(2− j ( · − p0)) restricts
frequencies to a ball of radius ∼ 2 j , so it is possible to add projections π j on f and g, where π j projects
on intervals of length ∼ 2 j which we do not specify.

These considerations lead to the following modification of (4-10):

‖F(t, s)‖L∞ .
1

s
√

t − s

∑
ε2≤2 j.1

(
I j + II j + III j ), (4-14)

where

I j
def
=

∥∥∥Tm2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

‖x f ‖L2‖π j g‖L2,

II j
def
=

∥∥∥Tm2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

‖π j f ‖L2‖xg‖L2,

III j
def
=

∥∥∥T
∂η

m2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

‖π j f ‖L2‖π j g‖L2 .

To bound I j , observe that 2 j m2χ(2− j ( · − p0))

∂η8
is a Coifman–Meyer symbol; thus

∥∥∥Tm2χ(2− j ( · −p0))
∂η8

∥∥∥
L2×L2→L1

. 2 j .

Furthermore, by Lemma A.2, ‖π j g‖L2 . 2 j/2
‖g‖L2,1 . Therefore,

I j . 2− j
‖ f ‖L2,1‖π j g‖L2 . 2− j/2

‖ f ‖L2,1‖π j g‖L2,1 .

Similarly,

II j . 2− j
‖ f ‖L2‖g‖L2,1 . 2− j/2

‖ f ‖L2,1‖g‖L2,1 .

Finally, 22 j∂η
m2χ(2− j ( · − p0))

∂η8
is also a Coifman–Meyer symbol. Applying this and Lemma A.2 gives

III j . 2− j
‖ f ‖L2,1‖g‖L2,1 .



BILINEAR DISPERSIVE ESTIMATES VIA SPACE-TIME RESONANCES, I 713

It follows that

‖F(t, s)‖L∞ .

( ∑
ε2≤2 j.1

2− j/2
+ 2− j

)
1

s
√

t−s
‖ f ‖L2,1‖g‖L2,1 . ε−1

2
1

s
√

t−s
‖ f ‖L2,1‖g‖L2,1,

which means that in (4-10) we get a new extra factor ε−1
2 . Finally, applying similar arguments as for

Theorem 4.5, we conclude that, for any δ > 0, we have

‖u2(t)‖L∞ . ε
−1−δ
2 t−1/2+δ

‖ f ‖L2,1‖g‖L2,1 . (4-15)

Step 3: Estimate of u3 in L∞ with s = 1. For u3, we know that the symbol m3 is supported on a ball of
radius ε :=max{ε1, ε2} around the space-time resonant point p0.

We follow similar arguments as for Proposition 3.8, so we split the ball B(p0, ε) into “strips” with
scale φ from 0 to ε:

m3 =
∑

0<2 j.ε

m3χ(2− jφ),

which implies

u3(t)=
∑

0<2k.ε

Tm j
3
( f, g)

where Tm j
3

is the bilinear Fourier multiplier associated to the symbol

m j
3(ξ, η)= ei ta(ξ+η)m3(ξ, η)

ei tφ(ξ,η)
−1

φ(ξ, η)
χ(2− jφ(ξ, η)).

For each scale 2 j , the symbol m j
3 is bounded by max{t, 2− j

}, so Lemmas A.3 and A.2 with Remark A.4
imply (the functions f, g may be supposed to be frequentially supported on an interval of length ε)

‖Tm j
3
( f, g)‖L∞ .max{t, 2− j

}2 j
‖ f ‖L2‖g‖L2 .max{t, 2− j

}2 jε‖ f ‖L2,1‖g‖L2,1 .

By summing all these inequalities over the scale 2 j , we get

‖u3(t)‖L∞ .

(
t
∑

2 j≤t−1

2 j
+

∑
t−1≤2 j≤ε

1
)
ε‖ f ‖L2,1‖g‖L2,1

. 〈log(εt)〉ε‖ f ‖L2,1‖g‖L2,1 . (εt)δε‖ f ‖L2,1‖g‖L2,1, (4-16)

for every δ > 0, since εt > 1.
Step 4: End of the proof. Optimizing over ε1 and ε2 leads to

ε1 = ε2 = εt := t−1/4+δ.

As required, we have εt ∈ [t−1/2, 1]. So by summing (4-13) and (4-16) with the estimate for u2, we now
have, for every small enough δ > 0,

‖u(t)‖BMO . [t−1/2ε−δt + (εt)δεt ]‖ f ‖L2,1‖g‖L2,1 .
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Since εt ≥ t−1/2, the main term in the previous inequality is the second one, so we deduce for every δ > 0

‖u(t)‖BMO . t−1/4+δ,

which concludes the proof of (4-12). �

Appendix A: Multilinear estimates

Lemma A.1. Suppose that the symbol σ(ξ, η) is bounded (that is, ‖σ‖L∞ . 1) and supported on a ball
of radius ε, say B(0, ε). For q ∈ [2,∞] and s < 1

2 ,

‖Tσ ( f, g)‖Lq . ε1−1/q+2s
‖ f ‖L2,s‖g‖L2,s

and

‖Tσ ( f, g)‖Lq . ε2−1/q
‖ f ‖L2,s‖g‖L2,s

if s > 1
2 .

Proof. Consider the first claim in the case s = 0. The lemma is obtained by interpolating between the
endpoints q = 2 and q =∞. If q = 2, it follows from an application of the Plancherel equality and the
Cauchy–Schwarz inequality that

‖Tσ ( f, g)‖2L2 =

∫ ∣∣∣∣∫ σ(ξ − η, η) f̂ (ξ − η)ĝ(η) dη
∣∣∣∣2dξ

≤

∫ (∫
|σ(ξ − η, η)|2 dη

)(∫
| f̂ (ξ − η)ĝ(η)|2dη

)
dξ

. ε‖ f ‖2L2‖g‖2L2 . (A-1)

If q =∞, use Cauchy–Schwarz again to get

‖Tσ ( f, g)‖L∞ =

∥∥∥∥∫∫ ei x(ξ+η)σ(ξ, η) f̂ (ξ)ĝ(η) dη dξ
∥∥∥∥

L∞
.
∫∫

B(0,ε)
| f̂ (ξ)ĝ(η)| dη dξ

. ε

(∫∫
| f̂ (ξ)ĝ(η)|2 dη dξ

)1/2

. ε‖ f ‖L2‖g‖L2 . (A-2)

Then, for s > 0, we use that the symbol is supported on a ball of radius ε, so f (respectively g) can be
replaced with πI( f ) (respectively πJ (g)), corresponding to the frequency-truncation of f on an interval I
of length 2ε. We conclude by applying the previous reasoning with πI( f ) and πJ (g) and Lemma A.2. �

Lemma A.2. Assume that I is an interval and consider πI the Fourier multiplier, given by a smooth
function supported on 2I and equal to 1 on I. For q ∈ [2,∞] and s < 1

2 ,

‖πI( f )‖L2 . |I|s‖ f ‖Ls,2 .

Proof. The proof relies on the Sobolev embedding as follows:

‖πI( f )‖L2 . |I|1/2−1/σ
‖ f̂ ‖Lσ (2I ) . |I|s‖ f̂ ‖Lσ . |I|s‖ f̂ ‖W s,2 . |I|s‖ f ‖Ls,2,

where the exponent σ is given by 1/σ = 1
2 − s. �
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Lemma A.3. Consider a smooth curve 0 and a bounded symbol σ (‖σ‖∞.1) supported on 0ε∩B(0,M),
for a positive constant M. Suppose q ∈ [2,∞].

• If the curve 0 is noncharacteristic,

‖Tσ ( f, g)‖Lq . ε1−1/q
‖ f ‖L2‖g‖L2 .

• If the curve 0 has nonvanishing curvature,

‖Tσ ( f, g)‖Lq . ε3/4−1/(2q)
‖ f ‖L2‖g‖L2 .

• Otherwise,
‖Tσ ( f, g)‖Lq . ε1/2

‖ f ‖L2 ‖g‖L2 .

Proof. As for Lemma A.1, by interpolation it suffices to study the two extremal situations, q = 2 and
q =∞. First, for q = 2, employ the same reasoning as in Lemma A.1 (relying on the Plancherel equality).
Since the support 0ε now has a measure bounded by ε (up to a constant), we get

‖Tσ ( f, g)‖L2 . ε1/2
‖ f ‖L2‖g‖L2 . (A-3)

Let us point out that this estimate is the easiest situation (when the three exponents are equal to 2)
described by Theorem 1.5 of [Bernicot and Germain 2012]. Moreover this estimate does not depend on
geometric properties of the curve 0.

Let us now study the case where q =∞. If the curve 0 is noncharacteristic, then Proposition 6.2 of
[Bernicot and Germain 2012] implies that

‖Tσ ( f, g)‖L∞ . ε‖ f ‖L2‖g‖L2,

which, by interpolating with (A-3), proves the desired result. If the curve 0 has a nonvanishing curvature,
the proposition just cited yields

‖Tσ ( f, g)‖L∞ . ε
3/4
‖ f ‖L2‖g‖L2,

and we similarly conclude by interpolation. �

Remark A.4. The estimate for a noncharacteristic curve 0 still holds if the curve admits some points
that are characteristic only along the variable ξ + η, which means when the tangential vector of the curve
at this point is parallel to (−1, 1). Indeed the proof of Proposition 6.2 of [Bernicot and Germain 2012]
only requires appropriate decompositions in the variables ξ and η for f and g and do not use specific
properties on the third frequency variable ξ + η.

Lemma A.5. Assume that 0 is a noncharacteristic curve. Consider a bounded symbol σ (‖σ‖∞ . 1)
supported on 0ε ∩ B(0,M), for a positive constant M.

• If 0≤ s < 1/4, ‖Tσ ( f, g)‖Lq . ε1−1/q+4s/q
‖ f ‖L2,s‖g‖L2,s .

• If s > 1/4, ‖Tσ ( f, g)‖Lq . ε‖ f ‖L2,s‖g‖L2,s .



716 FRÉDÉRIC BERNICOT AND PIERRE GERMAIN

Proof. We follow the same steps as for the previous lemma. The L2
× L2 to L∞ estimate cannot be

improved by replacing L2 by L2,s , so we simply focus on L2
× L2 to L2 estimates. Since the curve is

assumed to be noncharacteristic, it follows that

|〈Tσ ( f, g), h〉|.
∑

i

ε1/2
‖ f̂ ‖L2(I1

i )
‖ĝ‖L2(I2

i )
‖ĥ‖L2(I3

i )
, (A-4)

where the (Ik
i )i are collections of almost disjoint intervals of length ε for k = 1, 2, 3. As a consequence,

from the Cauchy–Schwartz inequality it turns out

‖Tσ ( f, g)‖L2 . ε1/2(sup
i
‖ f̂ ‖L2(I1

i )
)‖g‖L2 .

Using Sobolev embedding on the whole space R, we get

‖ f̂ ‖L2(I1
i )
. ε1/2−1/σ

‖ f̂ ‖Lσ (I1
i )
. ε2s

‖ f̂ ‖Lσ . ε
2s
‖ f̂ ‖W 2s,2

with the exponent σ given by 1/σ = 1
2 − 2s (we recall that s ≤ 1

4 ). So finally we get

‖Tσ ( f, g)‖L2 . ε1/2+2s
‖ f ‖L2,2s‖g‖L2 .

By symmetry and then interpolation, we deduce

‖Tσ ( f, g)‖L2 . ε1/2+2s
‖ f ‖L2,s‖g‖L2,s . �

Lemma A.6. Assume that 0 has a nonvanishing curvature. Consider a bounded symbol σ (‖σ‖∞ . 1)
supported on 0ε ∩ B(0,M), for a positive constant M. If 0≤ s ≤ 1

2 , then, for every δ > 0,

‖Tσ ( f, g)‖L2 .

{
ε1/2+s+δ

‖ f ‖L2,s‖g‖L2,s , if s < 1/2,

ε
√
|log ε|‖ f ‖L2,s‖g‖L2,s , if s > 1/2.

Proof. The case s = 0 is included in Lemma A.3, so by interpolation (with L2,s
⊂ L1 for s > 1

2 ) it suffices
to check that

‖Tσ ( f, g)‖L2 . ε
√
|log ε|‖ f ‖L1‖g‖L1 .

This estimate was already proved in [Bernicot and Germain 2012, Proposition 5.1]. For readability we
quickly sketch the proof here. Assume that (0, 0) ∈ 0 and let us work around this point. Then note that,
for every L2-function h,∣∣〈Tσ ( f, g), h〉

∣∣= ∣∣∣∣∫ σ(ξ, η) f̂ (ξ)ĝ(η)ĥ(ξ + η)dξdη
∣∣∣∣. ‖ f̂ ‖L∞‖ĝ‖L∞

∫ ∣∣∣σ(u+v
2
,

u−v
2

)∣∣∣|ĥ(u)| du dv

. ‖ f ‖L1‖g‖L1

∫
|ĥ(u)| ε

√
1+|u|

. ‖ f ‖L1‖g‖L1‖h‖L2ε
√
|log ε|,

where we have used (because of the nonvanishing curvature) that, uniformly with respect to λ0,∣∣{ξ − η, (ξ, η) ∈ 0ε, ξ + η = λ0}
∣∣. ε
√
ε+|λ0|

. �
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Appendix B: One-dimensional oscillatory integrals

Before stating the main proposition, we need to define the functions1

G1(x)
def
=

∫
∞

x
eiσ 2

dσ and G2(x)
def
=

∫
∞

x
eiσ 2 dσ
√
σ−x

.

Their qualitative behavior is given by the following lemma.

Lemma B.1. (i) G1 is a smooth function such that{
G1(x)=−ei x2

/(2i x)+ O(1/x2) as x→∞,
G1(x)= C0+ O(1/x) as x→−∞,

where C0 is the constant C0 =
∫
∞

−∞
eiσ 2

dσ .

(ii) G2 is a smooth function such that

G2(x)=

{
C+ei x2√

2/x + O(1/|x |5/6) as x→∞,

C−ei x2√
2/|x | +

√
πeiπ/4e−i x2

(1/
√
|x |)+ O(1/|x |5/7) as x→−∞,

where C± =
∫
∞

0 e±iσ 2
dσ .

We now state the main result. Recall that C0 =
∫
+∞

−∞
eiσ 2

dσ .

Proposition B.2. Let χ be a smooth, compactly supported function, and let ζ be a smooth function.

(i) If ζ ′′ ≥ c > 0 and ζ ′(σ0)= 0,∫
∞

0
ei tζ(σ )χ(σ) dσ = χ(σ0)

√
2

ζ ′′(σ0)

1
√

t
G1(
√

tσ0)+ Oc

(1
t

)
.

(ii) If |ζ ′| ≥ c > 0 does not vanish,∫
∞

0
ei tζ(σ )χ(σ)

dσ
√
σ
=

χ(0)
√
ζ ′(0)

ei tζ(0) C0
√

t
+ Oc

(1
t

)
.

(iii) If |ζ ′′| ≥ c > 0, ζ ′(σ0)= 0 with σ0 ≥ c,∫
∞

0
ei tζ(σ )χ(σ)

dσ
√
σ
=

χ(0)
√
ζ ′(0)

ei tζ(0) C0
√

t
+
√

2πei tζ(σ0)ei sign(ζ ′′(σ0))
π
4

χ(σ0)
√
σ0ζ ′′(σ0)

1
√

t
+ Oc

(1
t

)
.

(iv) If ζ ′′ ≥ c > 0 and ζ ′(σ0)= 0,∫
∞

0
ei tζ(σ )χ(σ)

dσ
√
σ
= C(χ, ζ )G2(

√
tσ0)+

{
Oc(t−3/4) if |

√
tσ0|< 1,

Oc(
√
σ0/t) if |

√
tσ0|< 1,

where C(χ, ζ ) is a function of χ and ζ (and hence also of σ0) which we do not make explicit here.

1The function G1 can obviously be obtained from the Fresnel integrals S(x) =
∫ x

0 sin t2dt and C(x) =
∫ x

0 cos t2dt . In
particular, the constants C0 and C± appearing below can be computed via Fresnel integrals to yield C0 = (1+ i)

√
π/2 and

C± = ((1± i)/2)
√
π/2. See [Abramowitz and Stegun 1964].
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Remark B.3. Statements (ii) and (iii) on the one hand, and (iv) on the other, are complementary: (ii)
and (iii) apply when ζ ′ vanishes away from zero, or not at all, whereas (iv) is meaningful if the point of
vanishing of ζ ′ approaches zero.

Proof of Lemma B.1. Assertion (i) is proved by a simple integration by parts, so we skip it and focus
on (ii). After the change of variable of integration to τ =

√
σ − x , G2 becomes

G2(x)= 2ei x2
∫
∞

0
eiτ 2(τ 2

+2x)dτ def
= 2ei x2

g(x).

The case x→∞. Split

g(x)=
∫ R

0
+

∫
∞

R
. . . dτ def

= I+ II.

Start with

I =
∫ R

0
ei2xτ 2

dτ +
∫ R

0
[eiτ 2(τ 2

+2x)
− ei2xτ 2

] dτ def
= I1+ I2.

The term I1 can be written

I1 =

∫
∞

0
ei2xτ 2

dτ −
∫
∞

R
ei2xτ 2

dτ =
1
√

2x

∫
∞

0
eiσ 2

dσ + O
(

1
x R

)
,

where the inequality
∫
∞

R ei2xτ 2
dτ = O(1/(αR)) follows by integration by parts.

As for I2, estimate it brutally by

|I2|.
∫ R

0
τ 4dτ = O(R5).

Finally, an integration by parts gives

II =
∫
∞

0
eiτ 2(τ 2

+2τ x)dτ .
1

R2x
.

Gathering the above gives

g(x)=

√
1

2x

∫
∞

0
eiσ 2

dσ + O(R5)+ O
(

1
x R2

)
;

finally, optimizing over R gives

g(x)=

√
1

2x

∫
∞

0
eiσ 2

dσ + O
(

1
x5/7

)
,

which is the desired result.

The case x→−∞. Split

g(x)=
∫ √
−x/2

0
+

∫
∞

√
−x/2

. . . dτ def
= III+ IV.

Start with III. Similarly to g in the case x→∞, we use the split

III =
∫ R

0
+

∫ √
−x/2

R
. . . dτ = III1+ III2,
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and estimate

III1 =
1
√

2x

∫
∞

0
eiσ 2

dσ + O
(

R5
+

1
|x |R

)
and III2 = O

(
1

R2x

)
.

Optimizing over R gives

III =
1
√

2x

∫
∞

0
eiσ 2

dσ + O
(

1
|x |5/7

)
.

Turning now to IV , observe that the change of variable ρ =−τ 2/x gives

IV =
√
−x

∫
∞

1/2
ei x2ρ(ρ−2) dρ

2
√
ρ
=

√
π

2
eiπ/4e−i x2 1

√
|x |
+ O

(
1
|x |

)
,

where the last equality follows by the stationary phase lemma. Putting together our estimates on III and
IV gives the desired result. �

An intermediate result. The following proposition essentially corresponds to Proposition B.2, where ζ
is replaced by either σ or σ−ε (in which case σ0 = ε).

Proposition B.4. Let χ be a smooth function.

(i)
∫
∞

ε

ei tσ 2
χ(σ) dσ =

χ(0)
√

t
G1(
√

tε)+ O
(1

t

)
.

(ii)
∫
∞

0
ei tσχ(σ)

dσ
√
σ
=

C0
√

t
χ(0)+ O

(1
t

)
(recall that C0 =

∫
+∞

−∞
eiσ 2

dσ ).

(iii)
∫
∞

ε

ei tσ 2 1
√
σ−ε

χ(σ ) dσ =
χ(0)
t1/4 G2(

√
tε)+

{
O(t−3/4) if |

√
tε|< 1

O(
√
ε/t) if |

√
tε|> 1

Proof. We prove only (iii), since (i) and (ii) are simpler and can be proved using a similar procedure.
First reduction for (iii). The change of variable τ =

√
tσ gives∫

∞

ε

ei tσ 2 1
√
σ − ε

χ(σ ) dσ = t−1/4
∫
∞

√
tε

eiτ 2 1√
τ −
√

tε
χ

(
τ
√

t

)
dτ.

Thus the proposition is proved if we show that∫
∞

√
tε

eiτ 2 1√
τ −
√

tε

[
χ

(
τ
√

t

)
−χ(0)

]
dτ =

{
O(t−1/2) if |

√
tε|< 1,

O(
√
εt−1/4) if |

√
tε|> 1.

(B-1)

Define β a smooth, compactly supported function, equal to 1 on the support of χ . We can write

(B-1)= χ(0)
∫
∞

√
tε

eiτ 2
[
β

(
τ
√

t

)
− 1

]
dτ√

τ −
√

tε
+

∫
∞

√
tε

eiτ 2
β

(
τ
√

t

)[
χ

(
τ
√

t

)
−χ(0)

]
dτ√

τ −
√

tε
.

Since the first summand is easier to deal with, we focus on the second. Setting

Z(y) def
= β(y)[χ(y)−χ(0)],
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reduces the question to proving that∫
∞

√
tε

eiτ 2
Z
(
τ
√

t

)
dτ√

τ −
√

tε
.

{
t−1/2 if |

√
tε|< 1,

√
εt−1/4 if |

√
tε|> 1,

(B-2)

where Z is a smooth function vanishing at 0.

Proof of (B-2). Split the left-hand side of (B-2) as∫ √tε+R

√
tε

+

∫
∞

√
tε+R

. . . dτ def
= I+ II.

The term I is estimated directly, giving

I ≤
∫ √tε+R

√
tε

∣∣∣∣Z( τ
√

t

)∣∣∣∣ dτ√
τ −
√

tε
.

{
ε
√

R if R <
√

t |ε|,
t−1/2 R3/2 if R >

√
t |ε|.

The term II is submitted first to an integration by parts using the identity
1

2τ
∂τ eiτ 2

= eiτ 2
:

II =
∫
∞

√
tε+R

1
2τ
∂τ eiτ 2

Z
(
τ
√

t

)
dτ√

τ −
√

tε
=

1
√

t

∫
∞

√
tε+R

1
2∂τ eiτ 2

Z̃
(
τ
√

t

)
dτ√

τ −
√

tε

=−
1

2
√

t
√

R
ei(
√

tε+R)2 Z̃
(√

tε+ R
√

t

)
−

1
2t

∫
∞

√
tε+R

eiτ 2
Z̃ ′
(
τ
√

t

)
dτ√

τ −
√

tε

+
1

4
√

t

∫
∞

√
tε+R

eiτ 2
Z̃
(
τ
√

t

)
dτ

(τ −
√

tε)3/2
,

where we set Z̃(y)def
=Z(y)/y. The term II is then estimated directly:

II .
1

2
√

t
√

R

∣∣∣∣Z̃(√tε+ R
√

t

)∣∣∣∣+ 1
t

∫
∞

√
tε+R

∣∣∣∣Z̃ ′( τ
√

t

)∣∣∣∣ dτ√
τ −
√

tε
+

1
√

t

∫
∞

√
tε+R

∣∣∣∣Z̃( τ
√

t

)∣∣∣∣ dτ
(τ −
√

tε)3/2

. t−1/2 R−1/2.

Summing up, we have

I+ II .
{
ε
√

R+ t−1/2 R−1/2 if R <
√

t |ε|,
t−1/2 R3/2

+ t−1/2 R−1/2 if R >
√

t |ε|.

Optimizing over R (distinguishing between the cases
√

t |ε|> 1 and
√

t |ε|< 1) gives (B-2). �

Proof of Proposition B.2. We only prove (iv); the proofs of (i) and (ii) closely follow that of (iv), and (iii)
simply requires an additional application of the stationary phase lemma. The idea is simply to perform a
change of variable which reduces matters to Proposition B.4. We want to estimate∫

∞

0
ei tζ(σ )χ(σ)

dσ
√
σ

(B-3)

where ζ ′′ ≥ c > 0 and ζ ′(σ0)= 0. Now set

y =8(σ) def
= sign(σ − σ0)

√
ζ(σ ).
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Notice that 8 is smooth, and that

8−1(0)= σ0, 8′(σ0)=

√
ζ ′′(σ0)

2
, (8−1)′(0)=

√
2

ζ ′′(σ0)
.

Furthermore,

(8−1)′(8(0))= sign(8(0)− σ0)
2
√
ζ (8(0))

ζ ′(8(0))
def
= C(ζ )2,

which implies that
√
8−1(y) can be written√

8−1(y)= C(ζ )
√

yγ (y)

for some smooth, positive function γ . Performing the change of variable y =8(σ) gives

(B-3)=
∫
∞

8(0)
ei t y2

χ ◦8−1(y)(8−1)′(y)C(ζ )−1 dy
√

y
√
γ (y)

.

Applying Proposition B.4 gives the desired result:

(B-3)= χ(σ0)

√
2

ζ ′′(σ0)

1
C(ζ )

1
γ (0)

1
t1/4 G2(

√
tε)+

{
O(t−3/4) if |

√
tε|< 1,

O(
√
ε/t) if |

√
tε|> 1.

�
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SMOOTHING AND GLOBAL ATTRACTORS FOR THE ZAKHAROV SYSTEM
ON THE TORUS

MEHMET BURAK ERDOĞAN AND NIKOLAOS TZIRAKIS

We consider the Zakharov system with periodic boundary conditions in dimension one. In the first part
of the paper, it is shown that for fixed initial data in a Sobolev space, the difference of the nonlinear
and the linear evolution is in a smoother space for all times the solution exists. The smoothing index
depends on a parameter distinguishing the resonant and nonresonant cases. As a corollary, we obtain
polynomial-in-time bounds for the Sobolev norms with regularity above the energy level. In the second
part of the paper, we consider the forced and damped Zakharov system and obtain analogous smoothing
estimates. As a corollary we prove the existence and smoothness of global attractors in the energy space.

1. Introduction

We study the system of nonlinear partial differential equations, introduced in [Zakharov 1972]. It describes
the propagation of Langmuir waves in an ionized plasma. The system with periodic boundary conditions
consists of a complex field u (Schrödinger part) and a real field n (wave part) satisfying the equation8̂̂̂̂

<̂
ˆ̂̂:
iut C˛uxx D nu; x 2 T; t 2 Œ�T; T �;

nt t �nxx D .juj
2/xx;

u.x; 0/D u0.x/ 2H
s0.T/;

n.x; 0/D n0.x/ 2H
s1.T/; nt .x; 0/D n1.x/ 2H

s1�1.T/;

(1)

where ˛ > 0 and T is the time of existence of the solutions. The function u.x; t/ denotes the slowly
varying envelope of the electric field with a prescribed frequency and the function n.x; t/ denotes the
deviation of the ion density from the equilibrium. Here ˛ is the dispersion coefficient. In the literature
(see, e.g., [Takaoka 1999]) it is standard to include the speed of an ion acoustic wave in a plasma as a
coefficient ˇ�2 in front of nt t where ˇ > 0. One can scale away this parameter using time and amplitude
coefficients of the form t ! ˇt , u!

p
ˇu, and n! ˇn and reduce the system to (1). Smooth solutions

of the Zakharov system obey the conservation laws

ku.t/kL2.T/ D ku0kL2.T/

and

E.u; n; �/.t/D ˛

Z
T

j@xuj
2dxC

1

2

Z
T

n2dxC
1

2

Z
T

�2dxC

Z
T

njuj2dx DE.u0; n0; n1/
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724 MEHMET BURAK ERDOĞAN AND NIKOLAOS TZIRAKIS

where � is such that nt D �x and �t D .nCjuj2/x . These conservation laws identify H 1�L2�H�1 as
the energy space for the system.

For ˛ D 1, Bourgain [1994] proved that the problem is locally well-posed in the energy space using
the restricted norm method (see, e.g., [Bourgain 1993]). The solutions are well-posed in the sense of the
following definition

Definition 1.1. Let X; Y;Z be Banach spaces. We say that the system of equations (1) is locally well-
posed in H s0.T/�H s1.T/�H s1�1.T/, if for given initial data

.u0; n0; n1/ 2H
s0.T/�H s1.T/�H s1�1.T/;

there exists T D T .ku0kH s0 ; kn0kH s1 ; kn1kH s1�1/ > 0 and a unique solution

.u; n; nt / 2
�
X \C 0t H

s0
x .Œ�T; T ��T/; Y \C 0t H

s1
x .Œ�T; T ��T/; Z \C 0t H

s1�1
x .Œ�T; T ��T/

�
:

We also demand that there is continuity with respect to the initial data in the appropriate topology. If T
can be taken to be arbitrarily large then we say that the problem is globally well-posed.

Thus, the energy solutions exist for all times due to the a priori bounds on the local theory norms. We
should note that although the quantity

R
T
njuj2dx has no definite sign it can be controlled using Sobolev

inequalities by the H 1 norm of u and the L2 norm of n. This gives the a priori bound (see [Pecher 2001])

ku.t/kH1 Ckn.t/kL2 Cknt .t/kH�1 . ku.0/kH1 Ckn.0/kL2 Cknt .0/kH�1 ; t 2 R (2)

Takaoka [1999] extended the local-in-time theory of Bourgain and proved that when 1
˛
2 N we have

local well-posedness in H s0 �H s1 �H s1�1 for s1 � 0 and max.s1; s12 C
1
2
/� s0 � s1C 1. In the case

that 1
˛
62 N one has local well-posedness for s1 � �12 , max.s1; s12 C

1
4
/ � s0 � s1C 1. A recent result

[Kishimoto 2011] establishes well-posedness in the case of the higher dimensional torus.
The corresponding Cauchy problem on Rd has a long history. In this case it is somehow easier to

establish the well-posedness of the system due to the dispersive effects of the solution waves. We cite the
following papers [Added and Added 1984; 1988, Bejenaru and Herr 2011; Bejenaru et al. 2009; Bourgain
and Colliander 1996; Colliander et al. 2008; Ginibre et al. 1997; Kenig et al. 1995; Sulem and Sulem
1979] as a historical summary of the results. It is expected that (see, e.g., [Kishimoto 2011]) the optimal
regularity range for local well-posedness is on the line s1 D s0 � 1

2
because the two equations in the

Zakharov system equally share the loss of derivative. The Zakharov system is not scale invariant but it can
be reduced to a simplified system like in [Ginibre et al. 1997], and one can then define a critical regularity.
This is given by the pair .s0; s1/ D .d�32 ; d�4

2
/, which is also on the line. In dimensions 1 and 2, the

lowest regularity for the system to have local solutions has been found to be .s0; s1/D .0;�12/ [Ginibre
et al. 1997]. It is harder to establish the global ! solutions at this level since there is no conservation law
controlling the wave part. This has been done only in one dimension [Colliander et al. 2008].

In the first part of this paper we study the dynamics of the solutions in the periodic case in more detail.1

We prove that the difference between the nonlinear and the linear evolution for both the Schrödinger

1We restrict ourselves to the one-dimensional periodic case because the resonance structure is simpler. The corresponding
problem in higher dimensions, Td or Rd , appears to be much harder.
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and the wave part is in a smoother space than the corresponding initial data, see Theorems 2.3 and 2.4
below. This smoothing property is not apparent if one views the nonlinear evolution as a perturbation
of the linear flow and apply standard Picard iteration techniques to absorb the nonlinear terms. The
result will follow from a combination of the method of normal forms (through differentiation by parts)
inspired by the result in [Babin et al. 2011], and the restricted norm method of Bourgain [1993]. Here
the method is applied to a dispersive system of equations where the resonances are harder to control
and the coupling nonlinear terms introduce additional difficulties in estimating the first order corrections.
As a corollary, in the case ˛ > 0, we obtain polynomial-in-time bounds for Sobolev norms above the
energy level .s0; s1/D .1; 0/ by a bootstrapping argument utilizing the a priori bounds and the smoothing
estimates, see Corollary 2.5 below. We have applied this method in [Erdoğan and Tzirakis 2012] to obtain
similar results for the periodic KdV with a smooth space-time potential. We note that the resonance
structure in one-dimensional is easier to handle.

In the second part we study the existence of a global attractor (see the next section for a definition of
global attractors and the statement of our result) for the dissipative Zakharov system in the energy space.
Our motivation comes from the smoothing estimates that we obtained in the first part of the paper and
our work in [Erdoğan and Tzirakis 2011] (also see [Goubet and Molinet 2009] in which the existence
of global attractors was obtained as a corollary of a Kato type smoothing estimate). More precisely we
consider8̂̂̂̂

<̂
ˆ̂̂:
iut C˛uxxC iuD nuCf; x 2 T; t 2 Œ�T; T �;

nt t �nxxC �nt D .juj
2/xxCg;

u.x; 0/D u0.x/ 2H
1.T/;

n.x; 0/D n0.x/ 2 L
2.T/; nt .x; 0/D n1.x/ 2H

�1.T/; f 2H 1.T/; g 2 L2.T/

(3)

where f; g are time-independent, g is mean-zero,
R

T
g.x/dx D 0, and the damping coefficients �;  > 0.

For simplicity we set  D �, and g D 0. Our calculations apply equally well to the full system and all
proofs go through with minor modifications (in particular, one does not need any other a priori estimates).

The problem with Dirichlet boundary conditions has been considered in [Flahaut 1991; Goubet and
Moise 1998] in more regular spaces than the energy space. The regularity of the attractor in Gevrey
spaces with periodic boundary problem was considered in [Shcherbina 2003].

Notation. To avoid the use of multiple constants, we write A . B to denote that there is an absolute
constant C such that A� CB . We also write A� B to denote both A. B and B . A. We also define
h � i D 1Cj � j.

We define the Fourier sequence of a 2�-periodic L2 function u as

uk D
1

2�

Z 2�

0

u.x/e�ikxdx; k 2 Z:

With this normalization we have

u.x/D
X
k

eikxuk and .uv/k D uk � vk D
X

mCnDk

unvm:
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As usual, for s < 0, H s is the completion of L2 under the norm

kukH s D k Ou.k/hkisk`2 :

Note that for a mean-zero L2 function u, kukH s � k Ou.k/jkjsk`2 . For a sequence uk , with u0 D 0, we
will use kukH s notation to denote kukjkjsk`2 . We also define PH s D fu 2 H s W u is mean-zerog. For
s D 0 we write PH 0 D PL2.

The following function will appear many times in the proofs below.

�ˇ .k/ WD
X
jnj�jkj

1

jnjˇ
�

8̂<̂
:
1 if ˇ > 1;

log.1Chki/ if ˇ D 1;

hki1�ˇ if ˇ < 1:

2. Statement of results

Smoothing estimates for the Zakharov system. First note that if n0 and n1 are mean-zero then n, nt
remain mean-zero during the evolution since by integrating the wave part of the system (1) we obtain
@2t
R

T
n.x; t/dx D 0. We will work with this mean-zero assumption in this paper. This is no loss of

generality since if
R
T n0.x/dx D A and

R
T n1.x/dx D B , then one can consider the new variables

n! n�A�Bt and u! ei.Bt
2=2CAt/u, and obtain the same system with mean-zero data.

By considering the operator d D .�@xx/1=2, and writing n˙ D n˙ id�1nt , the system (1) can be
rewritten as 8̂<̂

:
iut C˛uxx D

1
2
.nCCn�/u; x 2 T; t 2 Œ�T; T �;

.i@t � d/n˙ D˙d.juj
2/;

u.x; 0/D u0.x/ 2H
s0.T/; n˙.x; 0/D n0.x/˙ id

�1n1.x/ 2H
s1.T/:

(4)

Note that d�1n1.x/ is well-defined because of the mean-zero assumption, and that nC D n�.
The local well posedness of the system was established in the framework of Xs;b spaces introduced by

Bourgain [1993]. Let
kukXs;b D

hkish� �˛k2ib Ou.k; �/
`2
k
L2�
;

knk
Y
s;b

˙

D
hkish� �jkjib On.k; �/

`2
k
L2�
:

Here ˙ corresponds to the norm of n˙ in the system (4). As usual we also define the restricted norm

kuk
X
s;b
T

D inf
zuDu

t2Œ�T;T �

kzukXs;b :

The norms Y s;b
˙;T are defined accordingly. We also abbreviate n˙.x; 0/D n˙;0.

Definition 2.1. We say .s0; s1/ is ˛-admissible if s1 ��12 and max.s1; s12 C
1
4
/� s0 � s1C1 for 1

˛
62N,

or if s1 � 0 and max.s1; s12 C
1
2
/� s0 � s1C 1 for 1

˛
2 N.

Takaoka’s theorem on local well-posedness can be stated as follows:
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Theorem 2.2 [Takaoka 1999]. Suppose ˛ ¤ 0 and .s0; s1/ is ˛-admissible. Then given initial data
.u0; nC;0; n�;0/ 2H

s0 �H s1 �H s1 there exists

T &
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�� 1
12
C
;

and a unique solution .u; nC; n�/ 2 C
�
Œ�T; T � WH s0 �H s1 �H s1

�
. Moreover, we have

kuk
X
s; 1
2

T

CknC;0k
Y
s1;

1
2

C;T

Ckn�;0k
Y
s1;

1
2

�;T

� 2
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�
:

Now, we can state our results on the smoothing estimates:

Theorem 2.3. Suppose 1
˛
62 N, and .s0; s1/ is ˛-admissible. Consider the solution of (4) with initial data

.u0; nC;0; n�;0/ 2H
s0 �H s1 �H s1 . Assume that we have a growth bound

ku.t/kH s0 CknC.t/kH s1 Ckn�.t/kH s1 � C
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�
.1Cjt j/�.s0;s1/:

Then, for any a0 � min.1; 2s0; 1C 2s1/ (the inequality has to be strict if s0 � s1 D 1) and for any
a1 �min.1; 2s0; 2s0� s1/, we have

u.t/� ei˛t@
2
xu0 2 C

0
t H

s0Ca0
x .R�T/; (5)

n˙.t/� e
�itdn˙;0 2 C

0
t H

s1Ca1
x .R�T/: (6)

Moreover, for ˇ > 1C 15�.s0; s1/, we have

ku.t/� ei˛t@
2
xu0kH s0Ca0 Ckn˙.t/� e

�itdn˙;0kH s1Ca1 � C.1Cjt j/
ˇ ; (7)

where C D C
�
s0; s1; a0; a1; ku0kH s0 ; knC;0kH s1 ; kn�;0kH s1

�
.

Theorem 2.4. Suppose 1
˛
2 N, and .s0; s1/ is ˛-admissible. Assume that we have a growth bound

ku.t/kH s0 CknC.t/kH s1 Ckn�.t/kH s1 � C
�
ku0kH s0 CknC;0kH s1 Ckn�;0kH s1

�
.1Cjt j/˛.s0;s1/:

Then, for any a0 � min.1; s1/ (the inequality has to be strict if s0 � s1 D 1 and s1 � 1) and for any
a1 �min.1; 2s0� s1� 1/, we have (5), (6) and (7).

The growth bound assumption in the theorems above follows from (2) in the case s0 D 1 and s1 D 0.
This is used in the corollary below together with a bootstrapping argument to obtain norm growth bounds
in all regularity levels above energy. Although the actual growth bounds can be calculated explicitly we
won’t do so here since we don’t believe that the rates are optimal.

Corollary 2.5. For any ˛ > 0, and for any ˛-admissible .s0; s1/ with s0 � 1, s1 � 0, the global solution
of (4) with H s0 �H s1 �H s1 data satisfies the growth bound

ku.t/kH s0 CknC.t/kH s1 Ckn�.t/kH s1 � C1.1Cjt j/
C2 ;

where C1 depends on s0; s1, and ku0kH s0 CknC;0kH s1 Ckn�;0kH s1 , and C2 depends on s0; s1.
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Proof. We drop the ˙ signs and work with u and n. First note that because of the energy conservation,
kukH1 and knkL2 are bounded for all times. Assume that the claim holds for regularity levels .s0; s1/.
Let .a0; a1/ be given by Theorem 2.3 or Theorem 2.4. Note that for initial data in H s0Ca0 �H s1Ca1 ,
applying the theorem with .s0; s1/ and .a0; a1/, we have

ku.t/� ei˛t@
2
xu0kH s0Ca0 Ckn˙.t/� e

�itdn˙;0kH s1Ca1 � C.1Cjt j/
ˇ :

Therefore, since the linear groups are unitary, we have

ku.t/kH s0Ca0 Ckn.t/kH s1Ca1 � C.1Cjt j/
ˇ
Cku0kH s0Ca0 Ckn0kH s1Ca0 :

The statement follows by induction on the regularity.
We note that in the case 1

˛
2N, s0 D 1, s1 D 0, we have a0 D 0. However, since a1 2 Œ0; 1�, we obtain

the statement for ˛-admissible .1; s1/, 0� s1 � 1. From then on we can take both a0 > 0 and a1 > 0. �

Existence of a global attractor for the dissipative Zakharov system. The problem of global attractors
for nonlinear PDEs is concerned with the description of the nonlinear dynamics for a given problem
as t !1. In particular assuming that one has a well-posed problem for all times we can define the
semigroup operator U.t/ W u0 2H ! u.t/ 2H where H is the phase space. We want to describe the
long time asymptotics of the solution by an invariant set X �H (a global attractor) to which the orbit
converges as t !1:

U.t/X DX; t 2 RC; d.u.t/; X/! 0:

For dissipative systems there are many results (see, e.g., [Temam 1997]) establishing the existence of a
compact set that satisfies the above properties. Dissipativity is characterized by the existence of a bounded
absorbing set into which all solutions enter eventually. The candidate for the attractor set is the omega
limit set of an absorbing set, B , defined by

!.B/D
T
s�0

S
t�s

U.t/B;

where the closure is taken on H . To state our result we need some definitions from [Temam 1997] (also
see [Erdoğan and Tzirakis 2011; Flahaut 1991; Goubet and Moise 1998] for more discussion).

Definition 2.6. We say that a compact subset A of H is a global attractor for the semigroup fU.t/gt�0
if A is invariant under the flow and if for every u0 2H , d.U.t/u0;A/! 0 as t !1.

The distance is understood to be the distance of a point to the set d.x; Y /D infy2Y d.x; y/.
To state a general theorem for the existence of a global attractor we need one more definition:

Definition 2.7. We say a bounded subset B0 of H is absorbing if for any bounded B�H there exists
T D T .B/ such that for all t � T , U.t/B�B0.

It is not hard to see that the existence of a global attractor A for a semigroup U.t/ implies the existence
of an absorbing set. For the converse we cite the following theorem from [Temam 1997] which gives a
general criterion for the existence of a global attractor.
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Theorem A. We assume that H is a metric space and that the operator U.t/ is a continuous semigroup
from H to itself for all t � 0. We also assume that there exists an absorbing set B0. If the semigroup
fU.t/gt�0 is asymptotically compact, i.e., for every bounded sequence xk in H and every sequence
tk!1, fU.tk/xkgk is relatively compact in H , then !.B0/ is a global attractor.

Using Theorem A and a smoothing estimate as above, we will prove the following

Theorem 2.8. Fix ˛ > 0. Consider the dissipative Zakharov system (3) on T� Œ0;1/ with u0 2H 1 and
with mean-zero n0 2 L2, n1 2H�1. Then the equation possesses a global attractor in H 1 � PL2 � PH�1.
Moreover, for any a 2 .0; 1/, the global attractor is a compact subset of H 1Ca �Ha �H�1Ca, and it is
bounded in H 1Ca �Ha �H�1Ca by a constant depending only on a; ˛;  , and kf kH1 .

To prove Theorem 2.8 in the case 1
˛
62N we will demonstrate that the solution decomposes into two parts;

a linear one which decays to zero as time goes to infinity and a nonlinear one which always belongs to a
smoother space. As a corollary we prove that all solutions are attracted by a ball inH 1Ca�Ha�H�1Ca,
a 2 .0; 1/, whose radius depends only on a, the H 1 norm of the forcing term and the damping parameter.
This implies the existence of a smooth global attractor and provides quantitative information on the size
of the attractor set in H 1Ca �Ha �H�1Ca. In addition it implies that higher order Sobolev norms are
bounded for all positive times; see [Erdoğan and Tzirakis 2011]. In the case 1

˛
2N the proof is slightly

different because of a resonant term.
We close this section with a discussion of the well-posedness of (3) in H 1 �L2 �H�1. We first

rewrite the system (when  D �; g D 0) by passing to n˙ variables as above:8̂<̂
:
.i@t C˛@

2
xC i/uD

1
2
.nCCn�/uCf; x 2 T; t 2 Œ�T; T �;

.i@t � d C i/n˙ D˙d.juj
2/;

u.x; 0/D u0.x/ 2H
1.T/; n˙.x; 0/D n˙;0.x/D n0.x/˙ id

�1n1.x/ 2 L
2.T/:

(8)

Theorem 2.9. Given initial data .u0; nC;0; n�;0/ 2H 1 �L2 �L2 there exists

T D T
�
ku0kH1 ; knC;0kL2 ; kn�;0kL2 ; kf kH1 ; 

�
;

and a unique solution .u; nC; n�/ 2 C
�
Œ�T; T � WH 1 �L2 �L2

�
of (8). Moreover, we have

kuk
X
1; 1
2

T

CknC;0k
Y
0; 1
2

C;T

Ckn�;0k
Y
0; 1
2

�;T

� 2
�
ku0kH1 CknC;0kL2 Ckn�;0kL2

�
:

This theorem follows by using the a priori estimates of Takaoka [1999]. In the case of forced and
damped KdV, this was done in [Erdoğan and Tzirakis 2011, Theorem 2.1, Lemma 2.2]. We should note
that the spaces where the contraction argument is done are independent of  . One can possibly use
dissipative variants of Bourgain spaces in the spirit of [Molinet and Ribaud 2002] but we don’t need to
do so here.

The global well-posedness follows from the following a priori estimate for the system (8) which was
obtained in [Flahaut 1991] (recall that n˙ D n˙ id�1nt ):

kukH1 CknCkL2 Ckn�kL2 � C1CC2e
�C3t ; t > 0; (9)
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where C1 D C1.˛; ; kf kH1/, C2 D C2.˛; ; kf kH1 ; ku0kH1 ; kn˙;0kL2/, and C3 D C3.˛; /. In fact
this was proved in [Flahaut 1991] for Dirichlet boundary conditions. In the case of periodic boundary
conditions, the proof remains valid. Note that (9) also implies the existence of an absorbing set B0 in
H 1 �L2 �L2 of radius C1.˛; ; kf kH1/.

3. Proofs of 2.3 and 2.4

In this section we drop the ˙ signs and work with one n. We also set Y D YC.8̂<̂
:
iut C˛uxx D nu; x 2 T; t 2 Œ�T; T �;

.i@t � d/nD d.juj
2/;

u.x; 0/D u0.x/ 2H
s0.T/; n.x; 0/D n0.x/C id

�1n1.x/ 2H
s1.T/:

(10)

Remark 3.1. We note that since nCD n� all of our claims about (10) is also valid for (4). The difference
in the proof will arise in the differentiation by parts process and the Xs;b estimates. Because of (15), in
formulas (16) and (17) there will additional sums in which every term, in the phase and in the multiplier
with an j � j sign, will have a ˙ sign in front. This change won’t alter the proofs for the Xs;b estimates, in
fact, all the cases we considered will work exactly the same way. Also it won’t change the structure of
the resonant sets in the case 1

˛
2 N.

We will prove Theorem 2.4 only for ˛ D 1. Therefore, below we either have 1
˛
62 N or ˛ D 1. The

case ˛ ¤ 1; 1
˛
2 N can be handled by only cosmetic changes in the proof. Writing

u.x; t/D
X
k

uk.t/e
ikx; n.x; t/D

X
j¤0

nj .t/e
ijx;

we obtain the following system for the Fourier coefficients:8̂̂<̂
:̂
i@tuk �˛k

2uk D
P
k1Ck2Dk
k1¤0

nk1uk2 ;

i@tnj � jj jnj D jj j
P
j1Cj2Dj

uj1u�j2 ; j ¤ 0

uk.0/D .u0/k; nj .0/D .n0/j C i jj j
�1.n1/j ; j ¤ 0:

(11)

We start with the following proposition, which follows from differentiation by parts.

Proposition 3.2. The system (11) can be written in the following form:

i@t
�
eit˛k

2

ukC e
it˛k2B1.n; u/k

�
D eit˛k

2�
�1.k/CR1.u/. Ok; t/CR2.u; n/. Ok; t/

�
; (12)

i@t
�
eit jj jnj C e

it jj jB2.u/j
�
D eit jj j

�
�2.j /CR3.u; n/. Oj ; t/CR4.u; n/. Oj ; t/

�
; (13)

where

B1.n; u/k D

�X
k1Ck2Dk
k1¤0

nk1uk2

˛k2�˛k22 � jk1j
; B2.u/j D jj j

�X
j1Cj2Dj

uj1u�j2

jj j � j̨ 21 C j̨ 22
;
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R1.u/. Ok; t/D

�X
k1;k2

jk1C k2juk1u�k2 uk�k1�k2
˛k2�˛.k� k1� k2/2� jk1C k2j

;

R2.u; n/. Ok; t/D

�X
k1;k2¤0

nk1nk2uk�k1�k2
˛k2�˛.k� k1/2� jk1j

;

R3.u; n/. Oj ; t/D jj j

�X
j1¤0;j2

nj1uj2uj1Cj2�j

jj j �˛.j1C j2/2C˛.j � j1� j2/2
;

R4.u; n/. Oj ; t/D jj j

�X
j1¤0;j2

n�j1uj2 uj1Cj2�j

jj j � j̨ 22 C˛.j � j2/
2
:

Here,
�P

means that the sum is over all nonresonant terms, i.e., over all indices for which the denominator
is not zero. Moreover, the resonant terms �1 and �2 are zero if 1

˛
62 N. For ˛ D 1,

�1.k/D n2k�sgn.k/usgn.k/�k; k ¤ 0;

�2.j /D jj ju 1
2
.jCsgn j /u 1

2
.j�sgn j /; j odd:

Proof of Proposition 3.2. Changing the variables mj D nj ei jj jt and vk D ukei˛k
2t in (11), we obtain

8̂̂̂<̂
ˆ̂:
i@tvk D

P
k1Ck2Dk
k1¤0

eit.˛k
2�˛k22�jk1j/mk1vk2 ;

i@tmj D jj j
P
j1Cj2Dj

eit.jj j� j̨ 21C j̨ 22 /vj1v�j2 ; j ¤ 0;

vk.0/D .u0/k; mj .0/D .n0/j C i jj j
�1.n1/j ; j ¤ 0:

(14)

It is easy to check that if we define mCj and m�j accordingly, then

@tm
�
j D @tm

C
�j : (15)

Note that the exponents do not vanish if 1=˛ is not an integer. On the other hand if ˛ D 1, then the
resonant set is

.k1; k2/D
�
2k� sgn.k/; sgn.k/� k

�
; k ¤ 0:

.j1; j2/D
�j C sgn.j /

2
;
j � sgn.j /

2

�
; j odd:

The contribution of the corresponding terms give �1 and �2 in the case ˛ D 1. Below, we assume that
1
˛
62 N.
Differentiating by parts in the v equation we obtain
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i@tvk D
X

k1Ck2Dk
k1¤0

eit.˛k
2�˛k22�jk1j/mk1vk2

D

X
k1Ck2Dk
k1¤0

@t
�
eit.˛k

2�˛k22�jk1j/mk1vk2
�

i.˛k2�˛k22 � jk1j/
C i

X
k1Ck2Dk
k1¤0

eit.˛k
2�˛k22�jk1j/@t

�
mk1vk2

�
˛k2�˛k22 � jk1j

:

The second sum can be rewritten using the equation as follows:

X
k1Ck2Ck3Dk
k1Ck2¤0

eit˛.k
2�k21Ck

2
2�k

2
3/jk1C k2jvk1v�k2vk3

˛k2�˛k23 � jk1C k2j

C

X
k1Ck2Ck3Dk
k1Ck2¤0

eit.˛k
2�˛k23�jk1j�jk2j/mk1mk2vk3

˛k2�˛.k2C k3/2� jk1j
: (16)

Now, we differentiate by parts in the m equation:

i@tmj D jj j
X

j1Cj2Dj

eit.jj j� j̨ 21C j̨ 22 /vj1v�j2

D jj j
X

j1Cj2Dj

@t
�
eit.jj j� j̨ 21C j̨ 22 /vj1v�j2

�
i.jj j � j̨ 21 C j̨ 22 /

C i jj j
X

j1Cj2Dj

eit.jj j� j̨ 21C j̨ 22 /@t
�
vj1v�j2

�
jj j � j̨ 21 C j̨ 22

:

The second sum can be rewritten using the equation as follows:

jj j
X

j1Cj2Cj3Dk
j1¤0

eit.jj jC j̨ 23� j̨ 22�jj1j/mj1vj2v�j3

jj j �˛.j1C j2/2C j̨ 23

Cjj j
X

j1Cj2Cj3Dk
j2¤0

eit.jj j� j̨ 21C j̨ 23Cjj2j/vj1m�j2 v�j3

jj j � j̨ 21 C˛.j2C j3/
2

: (17)

The statement follows by going back to the variables u and n. �

Integrating (12) and (13) from 0 to t , we obtain

uk.t/� e
�it˛k2uk.0/D e

�it˛k2B1.n; u/k.0/�B1.n; u/k.t/

� i

Z t

0

e�i˛k
2.t�s/

�
�1.k/CR1.u/. Ok; s/CR2.u; n/. Ok; s/

�
ds: (18)

nj .t/� e
�it jj jnj .0/D e

�it jj jB2.u/j .0/�B2.u/j .t/

� i

Z t

0

e�i jj j.t�s/
�
�2.j /CR3.u; n/. Oj ; s/CR4.u; n/. Oj ; s/

�
ds: (19)
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Below we obtain a priori estimates for �1; �2; B1, and B2. Before that we state a technical lemma that
will be used many times in the proofs.

Lemma 3.3. (a) If � � �� 0 and �C� > 1, thenX
n

1

hn� k1i�hn� k2i�
. hk1� k2i����.k1� k2/:

(b) For � 2 .0; 1�, we have Z
R

d�

h� C �1i�h� C �2i
.

1

h�1� �2i��
:

(c) If � > 1=2, then X
n

1

hn2C c1nC c2i�
. 1;

where the implicit constant is independent of c1 and c2.

We will prove this lemma in the Appendix.

Lemma 3.4. Under the conditions of Theorem 2.3 and Theorem 2.4, for each t , we have

k�1.t/kH s . kn.t/kH s1ku.t/kH s0 if s � s0C s1;

k�2.t/kH s . ku.t/k2H s0 if s � 2s0� 1;

kB1.n; u/.t/kH s . kn.t/kH s1ku.t/kH s0 if s � 1C s0Cmin.s1; 0/;

kB2.u/.t/kH s . ku.t/k2H s0 if s �min.2s0; 1C s0/:

Proof. The proof for �1 and �2 is immediate from their definition.
To estimate B1, first note thatˇ̌

˛k2�˛k22 � jk1j
ˇ̌
D j˛j jk1j

ˇ̌̌
2k� k1�

1

˛
sgn.k1/

ˇ̌̌
� hk1ih2k� k1i:

The last equality is immediate in the case 1
˛
62 N, when ˛ D 1, it follows from the nonresonant condition.

Therefore we have

jB1.n; u/kj.
X
k1¤0

jnk1 j juk�k1 j

hk1ih2k� k1i
:

We estimate the H s norm as follows:

kB1k
2
H s .

 X
k1¤0

hk1i
2s1 jnk1 j

2
hk� k1i

2s0 juk�k1 j
2


`1
k

X
k1

hki2s

hk1i2C2s1hk� k1i2s0h2k� k1i2


`1
k

The first sum is bounded by knk2
H s1
kuk2

H s0
since it is a convolution of two `1 sequences. To estimate

the second sum we distinguish the cases jk1j < jkj=2, jk1j > 4jkj, and jk1j � jkj. In the first case, we
bound the sum by X

k1

hki2s�2�2s0

hk1i2C2s1
. hki2s�2�2s0 ;
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since 2C 2s1 > 1. In the second case, we bound the sum byX
jk1j>4jkj

hki2s

hk1i4C2s1C2s0
. hki2s�3�2s1�2s0 � hki2s�2�2s0 :

In the final case, we haveX
jk1j�jkj

hki2s�2�2s1

hk� k1i2s0h2k� k1i2
. hki2s�2�2s1�2min.s0;1/:

In the last inequality we used part (a) of Lemma 3.3.
Combining these cases we see that B1 2H s for s� 1Cmin.s0; s1Cmin.s0; 1//. In particular, B1 2H s

if s � 1C s0Cmin.s1; 0/ which can be seen by distinguishing the cases s0 � 1 and s0 < 1 and using the
condition 1C s1 � s0.

Similarly, we estimate

jB2.u/j j.
X
j1

juj1 j juj1�j j

hj � 2j1i
:

As in the case of B1, we see that B2 2H s if

sup
j

X
j1

hj i2s

hj � 2j1i2hj1i2s0hj � j1i2s0
<1:

We distinguish the cases jj1j< jj j=4, jj1j> 2jj j, and jj1j � jj j. In the first case, we bound the sum byX
jj1j<jj j=4

hj i2s�2�2s0

hj1i2s0
. hj i2s�2�2s0�2s0.j /:

In the second case, we bound the sum byX
jj1j>2jj j

hj i2s

hj1i2C4s0
. hj i2s�1�4s0 :

In the final case, we have X
jj1j�jj j

hj i2s�2s0

hj � 2j1i2hj � j1i2s0
. hj i2s�2s0�2min.s0;1/:

Combining this cases, we see that B2 is in H s if s �min.2s0; 1C s0/. �

Using the estimates in Lemma 3.4 in the equations (18) and (19) after writing the equations in the x
variable, we obtain

ku.t/� eit˛@
2
xu0kH s0Ca0 . kn0kH s1ku0kH s0 Ckn.t/kH s1ku.t/kH s0

C

Z t

0

kn.s/kH s1ku.s/kH s0dsC

 Z t

0

ei˛.t�s/@
2
x
�
R1.u/.s/CR2.u; n/.s/

�
ds


H s0Ca0

; (20)
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kn.t/� e�itdn0kH s1Ca1 . ku0k2H s0 Cku.t/k
2
H s0

C

Z t

0

ku.s/k2H s0dsC

 Z t

0

e�id.t�s/
�
R3.u; n/.s/CR4.u; n/.s/

�
ds


H s1Ca1

; (21)

where

R`.s/D
X
k

R`. Ok; s/e
ikx; `D 1; 2; 3; 4:

Above, the smoothing indexes a0 and a1 depend on ˛ as stated in Theorem 2.3 and Theorem 2.4. The
dependence arises only from the contribution of the resonant terms �1 and �2.

Note that, with ı as in Theorem 2.2, Z t

0

ei˛.t�s/@
2
x
�
R1.u/.s/CR2.u; n/.s/

�
ds


L1
t2Œ�ı;ı�

H
s0Ca0
x

.
 ı.t/ Z t

0

ei˛.t�s/@
2
x
�
R1.u/.s/CR2.u; n/.s/

�
ds


Xs0Ca0;b

. kR1.u/CR2.u; n/k
X
s0Ca0;b�1

ı

; (22)

for b > 1=2. Here we used the imbedding Xs0Ca0;b � L1t H
s0Ca0
x . Similarly, Z t

0

e�id.t�s/
�
R3.u; n/.s/CR4.u; n/.s/

�
ds


L1
t2Œ�ı;ı�

H
s1Ca1
x

. kR3.u; n/CR4.u; n/k
X
s1Ca1;b�1

ı

: (23)

Remark 3.5. We note that the inequalities (22) and (23) remain valid in the case the linear group is
modified with a damping term; see Lemma 3.3 from [Erdoğan and Tzirakis 2011]. It is important to note
that we don’t need to alter the definition of the Xs;b norm.

Proposition 3.6. Given s1 > �12 , max.s1; s12 C
1
4
/� s0 � s1C 1, and 1

2
< b <min.3

4
; s0C1

2
/, we have

kR1.u/kXs;b�1 . kuk3
X
s0;

1
2

; provided s � s0Cmin.1; 2s0/:

We also have

kR2.u; n/kXs;b�1 . knk2
Y
s1;

1
2

kuk
X
s0;

1
2
;

provided s �min.s0C 1C 2s1; s0C 1; 3C 2s1� 2b; 3C s1� 2b/.

Proposition 3.7. Given s1 > �12 , max.s1; s12 C
1
4
/ � s0 � s1C 1, and 1

2
< b < 3

4
Cmin.0; s0Cs1

2
/, we

have

kR3.u; n/kXs;b�1 CkR4.u; n/kXs;b�1 . knk
Y
s1;

1
2
kuk2

X
s0;

1
2

;

provided s � s1Cmin.1; 2s0; 2s0� s1/.
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We will prove these propositions later on. Using (22), (23) and the propositions above (with b� 1=2
sufficiently small depending on a0; a1; s0; s1) in (20) and (21), we see that for t 2 Œ�ı; ı�, we have

ku.t/� eit˛@
2
xu0kH s0Ca0 Ckn.t/� e

�itdn0kH s1Ca1 .
�
kn0kH s1 Cku0kH s0

�2
C
�
kn.t/kH s1 Cku.t/kH s0

�2
C

Z t

0

�
kn.s/kH s1 Cku.s/kH s0

�2
dsC

�
knk

Y
s1;

1
2
Ckuk

X
s0;

1
2

�3
:

In the rest of the proof the implicit constants depend on kn0kH s1 ; ku0kH s0 . Fix T large. For t � T , we
have the bound (with  D .s0; s1/)

ku.t/kH s0 Ckn.t/kH s1 . .1Cjt j/ . T  :

Thus, with ı � T �12�, we have

ku.jı/� eiı˛@
2
xu..j � 1/ı/kH s0Ca0 Ckn.jı/� e

�iıdn..j � 1/ı/kH s1Ca1 . T 3 ;

for any j � T=ı � T 1C12C. Here we used the local theory bound

kuk
X
s0;1=2

Œ.j�1/ı;jı�

. ku..j � 1/ı/kH s0 . T  ;

and similarly for n. Using this we obtain (with J D T=ı � T 1C12C)

ku.J ı/� ei˛Jı@
2
xu.0/kH s0Ca0 �

JX
jD1

kei.J�j /ı˛@
2
xu.jı/� ei.J�jC1/ı˛@

2
xu..j � 1/ı/kH s0Ca0

D

JX
jD1

ku.jı/� eiı˛@
2
xu..j � 1/ı/kH s0Ca0

. JT 3 � T 1C15C:

The analogous bound follows similarly for the wave part n.
The continuity in H s0Ca0 �H s1Ca1 follows from dominated convergence theorem, the continuity of

u and n in H s0 , H s1 , respectively, and from the embedding Xs;b � C 0t H
s
x (for b > 1=2). For details,

see [Erdoğan and Tzirakis 2012; Ginibre et al. 1997].

4. Proof of Proposition 3.6

First note that the denominator in the definition of R1 satisfiesˇ̌
˛k2�˛.k� k1� k2/

2
� jk1C k2j

ˇ̌
D j˛j jk1C k2j

ˇ̌̌
2k� k� k1�

1

˛
sgn.k1C k2/

ˇ̌̌
� hk1C k2ih2k� k1� k2i:

(24)

The last equality holds trivially if 1=˛ is not an integer. In the case that 1=˛ is an integer it holds since
the sum is over the nonresonant terms. Similarly, we shall see that the denominators of R2, R3, R4 are
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respectively comparable to

hk1ih2k� k1i; hj ihj � 2j1� 2j2i; hj ihj � 2j2i; (25)

We start with the proof for R2. We have

kR2.u; n/k
2
Xs;b�1

D

 Z
�1;�2

�X
k1;k2¤0

hkis On.k1; �1/ On.k2; �2/yu.k� k1� k2; � � �1� �2/

.˛k2�˛.k� k1/2� jk1j/h� � k2i1�b

2
`2
k
L2�

:

Let

f .k; �/D jOn.k; �/jhkis1h� � jkji
1
2 ; g.k; �/D j Ou.k; �/jhkis0h� �˛k2i

1
2 :

It suffices to prove that Z
�1;�2

�X
k1;k2¤0

M.k1; k2; k; �1; �2; �/f .k1; �1/f .k2; �2/g.k�k1�k2; � � �1� �2/

2
`2
k
L2�

. kf k42kgk
2
2;

where

M.k1; k2; k; �1; �2; �/

D
hkishk1i

�s1hk2i
�s1hk� k1� k2i

�s0

.˛k2�˛.k� k1/2� jk1j/h� �˛k2i1�bh�1� jk1ji
1
2 h�2� jk2ji

1
2 h� � �1� �2�˛.k� k1� k2/2i

1
2

:

By Cauchy–Schwarz in the variables �1; �2; k1; k2, we estimate the norm above by

sup
k;�

�Z
�1;�2

�X
k1;k2¤0

M 2.k1; k2; k; �1; �2; �/

�

�

 Z
�1;�2

X
k1;k2¤0

f 2.k1; �1/f
2.k2; �2/g

2.k� k1� k2; � � �1� �2/


`1
k
L1�

:

Note that the norm above is equal to
f 2 � f 2 � g2

`1
k
L1�

, which can be estimated by kf k42kgk
2
2 by

Young’s inequality. Therefore, it suffices to prove that the supremum above is finite.
Using part (b) of Lemma 3.3 in �1 and �2 integrals, we obtain

sup
k;�

Z
�1;�2

�X
k1;k2¤0

M2

. sup
k;�

�X
k1;k2¤0

hki2shk1i
�2s1hk2i

�2s1hk� k1� k2i
�2s0

.˛k2�˛.k� k1/2� jk1j/2h� �˛k2i2�2bh� � jk1j � jk2j �˛.k� k1� k2/2i1�

. sup
k

X
k1;k2¤0

hki2shk1i
�2s1hk2i

�2s1hk� k1� k2i
�2s0

hk1i2h2k� k1i2h˛k2� jk1j � jk2j �˛.k� k1� k2/2i2�2b
:
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The last line follows by (25) and by the simple fact

h� �nih� �mi& hn�mi: (26)

Setting k2 D l C k� k1, we rewrite the sum as

sup
k

X
k1�0;n

hki2shl C k� k1i
�2s1

hk1i2C2s1h2k� k1i2hli2s0h˛.l2� k2/C k1Cjk1� l � kji2�2b
:

Here, without loss of generality (since .k1; k2; k/! .�k1;�k2;�k/ is a symmetry for the sum), we
only considered the case k1 � 0.

Case (i): �1=2 < s1 < 0, 0 < s1
2
C
1
4
� s0 � s1C 1. We write the sum asX

jlj�jkj
k1�0

C

X
jlj�jkj

0�k1�jlCkj

C

X
jlj�jkj
k1�jlCkj

C

X
jlj�jkj
k1�jlCkj

C

X
jlj�jkj

0�k1�jlCkj

DW S1CS2CS3CS4CS5:

In the sum S1, we have

hli � hki; hl C k� k1i. hk1iC h2k� k1i:

Using this, we have

S1 .
X
k1�0;l

hki2s�2s0
�
hk1i

�2s1 Ch2k� k1i
�2s1

�
hk1i2C2s1h2k� k1i2h˛.l2� k2/C k1Cjk1� l � kji2�2b

:

Summing in l using part (c) of Lemma 3.3 and then summing in k1 using part (a) of Lemma 3.3, we
obtain

S1 . hki2s�2s0�2�4s1 Chki2s�2s0�2�2s1 . hki2s�2s0�2�4s1 :

Note that S1 is bounded in k for s � s0C 1C 2s1.
In the case of S2, we have

jl ˙ kj � jkj; j2k� k1j � jkj; jl C k� k1j. jkj:

Also note that (since we can assume that jkj � 1)ˇ̌
˛.l2� k2/C k1Cjk1� l � kj

ˇ̌
D ˛.k2� l2/CO.jkj/� k2:

Using these, and then summing in k1, we have

S2 .
X
jlj�jkj

0�k1�jlCkj

hki2s�6C4b�2s1

hk1i2C2s1hli2s0
. hki2s�6�2s1C4b�2s0.k/

Note that S2 is bounded in k if s < min.s0 C 5
2
C s1 � 2b; 3 C s1 � 2b/, and in particular, if s �

min.s0C 1C 2s1; 3C 2s1� 2b/.
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In the case of S3, we have k1 � jl C kj& jkj. Using this we estimate

S3 .
X
jlj�jkj
k1�jlCkj

hki2s�2�4s1

h2k� k1i2hli2s0h˛.l2� k2/C 2k1� l � ki2�2b

.
X
jlj�jkj

hki2s�2�4s1

hli2s0h˛.l2� k2/C 3k� li2�2b
:

The second inequality follows from part (a) of Lemma 3.3. Note that

h˛.l2� k2/C 3k� li � k2;

since jl j � jkj. Using this and then summing in l , we have

S3 . hki2s�6�4s1C4b�2s0.k/:

Note that this is also bounded in k if s �min.s0C 1C 2s1; 3C 2s1� 2b/.
In the case of S4, we have k1� jkj. Therefore

S4 .
X

jlj;k1�jkj

hki2s�2s0

hk1i4C4s1h˛.l2� k2/C 2k1� l � ki2�2b
.

X
k1�jkj

hki2s�2s0

hk1i4C4s1
. hki2s�2s0�3�4s1 :

We used part (c) of Lemma 3.3 in the second inequality.
In the case of S5, we have jl C k� k1j. jl j andˇ̌

˛.l2� k2/C k1Cjk1� l � kj
ˇ̌
D ˛.k2� l2/CO.jl j/� l2:

Thus, we estimate using part (a) of Lemma 3.3

S5 .
X

jlj�jkj;k1

hki2s

hk1i2C2s1h2k� k1i2hli2s0C2s1C4�4b
. hki2s�2s0�5�4s1C4b:

Note that to sum in l we need 2s0C2s1C4�4b > 1, which holds under the conditions of the proposition.

Case (ii): 0� s1, max.s1; s12 C
1
4
/� s0 � s1C 1. We write the sum asX

k1�0; jlj&jkj

C

X
jlj�jkj; 0�k1�k2

C

X
jlj�jkj; k1&k2

DW S1CS2CS3:

In the case of S1 we have

S1 .
X

k1�0; jlj&jkj

hki2s�2s0

hk1i2C2s1h2k� k1i2h˛.l2� k2/C k1Cjk1� l � kji2�2b
. hki2s�2s0�2:

We obtained the second inequality by first summing in l using part (c) of Lemma 3.3, and then in k1
using part (a) of the Lemma. Thus S1 is bounded in k if s � s0C 1.
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In the case of S2, we have

h˛.l2� k2/C k1Cjk1� l � kji& k2; and hk1ihl C k� k1i& hl C ki& hki:

Therefore,

S2 . hki2s�4C4b�2s1
X

jlj�jkj; 0�k1�k2

1

hk1i2h2k� k1i2hli2s0
. hki2s�6C4b�2s1�2s0.k/:

Note that S2 is bounded in k if s �min.s0C 1; s1C 3� 2b/.
Finally we estimate S3 as follows

S3 .
X

jlj�jkj; k1&k2

hki2s

hk1i4C4s1h˛.l2� k2/C k1Cjk1� l � kji2�2b

. hki2s�6�8s1
X
l

1

h˛.l2� k2/C k1Cjk1� l � kji2�2b
. hki2s�6�8s1 :

In the last inequality we used part (c) of Lemma 3.3. Note that this term is bounded in k if s � s0C 1.
We now consider R1. By using Cauchy–Schwarz, the convolution structure, and then integrating in

�1; �2 as in the previous case, it suffices to prove that

sup
k

�X
k1;k2

hki2shk1i
�2s0hk2i

�2s0hk� k1� k2i
�2s0 jk1C k2j

2

.˛k2�˛.k� k1� k2/2� jk1C k2j/2hk2� k
2
1 C k

2
2 � .k� k1� k2/

2i2�2b
<1:

Recalling (24), and using

hk2� k21 C k
2
2 � .k� k1� k2/

2
i � h.k1C k2/.k� k1/i;

it suffices to prove that

sup
k

�X
k1;k2

hki2shk1i
�2s0hk2i

�2s0hk� k1� k2i
�2s0

h2k� k1� k2i2h.k1C k2/.k� k1/i2�2b
<1:

Note that the contribution of the case k1 D k is

.
X
k2

hki2s�2s0

hk� k2i2hk2i4s0
. hki2s�2s0�min.2;4s0/;

so it satisfies the claim. For k1 ¤ k (since we also have k1C k2 ¤ 0 by nonresonant condition), we have
h.k1C k2/.k� k1/i � hk1C k2ihk� k1i. Also letting l D k1C k2 it suffices to consider the sumX

k1;l

hki2s

h2k� li2hk� li2s0hli2�2bhl � k1i2s0hk1i2s0hk� k1i2�2b
D

X
k1

jl�2kj>jkj=2

C

X
k1

jl�2kj�jkj=2

DW S1CS2:
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We have

S1 . hki2s�2
X
l;k1

1

hk� li2s0hli2�2bhl � k1i2s0hk1i2s0hk� k1i2�2b
:

Using max.hk� li2s0 ; hl�k1i2s0/& hk�k1i2s0 and part (a) of Lemma 3.3 (recall that 2s0C2�2b > 1),
we have

S1 . hki2s�2
X
l;k1

1

hli2�2b min
�
hk� li2s0 ; hl � k1i2s0

�
hk1i2s0hk� k1i2s0C2�2b

. hki2s�2
X
k1

1

hk1i2s0hk� k1i2s0C2�2b
. hki2s�2�2s0 :

In the case of S2 we have hli; hk� li& hki, and hence

S2 . hki2s�2s0�2C2b
X
k1

jl�2kj�jkj=2

1

h2k� li2hl � k1i2s0hk1i2s0hk� k1i2�2b
:

Note that max.hl � k1i2s0 ; hk1i2s0/& hli2s0 � hki2s0 . Thus,

S2 . hki2s�4s0�2C2b
X
k1

jl�2kj�jkj=2

1

h2k� li2 min.hl � k1i2s0 ; hk1i2s0/hk� k1i2�2b
:

Using part (a) of Lemma 3.3 (noting that jl�kj& jkj and that hki����.k/Dhki����.k/ if 0< �; �< 1),
we obtain

S2 . hki2s�4s0�2C2b
X
l

1

h2k� li2
hki�2C2b�2s0.k/. hki

2s�4s0�4C4b�2s0.k/:

Note that S2 is bounded in k if s � s0Cmin.1; 2s0/.

5. Proof of Proposition 3.7

We first consider R3. By using Cauchy–Schwarz, the convolution structure, and then integrating in �1; �2
as in the proof of the previous proposition, it suffices to prove that

sup
j

�X
j1¤0;j2

hj i2sjj j2hj1i
�2s1hj2i

�2s0hj � j1� j2i
�2s0ˇ̌

jj j �˛.j1C j2/2C˛.j � j1� j2/2
ˇ̌2
hjj j � jj1jC˛.j � j1� j2/2� j̨ 22 i

2�2b
<1:

Recalling (25), it suffices to prove thatX
j1¤0;j2

hj i2shj1i
�2s1hj2i

�2s0hj � j1� j2i
�2s0

hj � 2j1� 2j2i2hjj j � jj1jC˛.j � j1� j2/2� j̨ 22 i
2�2b
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is bounded in j . Letting l D j � j1� j2 and mD j2, we rewrite the sum asX
m;l

hj i2shj � l �mi�2s1

h2l � j i2hmi2s0hli2s0h˛l2�˛m2Cjj j � jj � l �mjCi2�2b
: (27)

We note that a similar argument gives us the following sum for R4:X
m;l

hj i2shj � l �mi�2s1

h2l � j i2hmi2s0hli2s0h˛l2�˛m2� jj j � jj � l �mjCi2�2b
: (28)

We note that, by symmetry, if we can prove thatX
m;l

hj i2shj � l �mi�2s1

h2l � j i2hmi2s0hli2s0h˛l2�˛m2C j � jj � l �mjCi2�2b
(29)

is bounded in j ¤ 0, then the boundedness of (27) and (28) follow.

Case (i): �1
2
< s1 < 0. We rewrite (27) asX

jlj�jmj.jj j

C

X
jlj�jmj�jj j

C

X
jlj�jmj
jj j�jmClj

C

X
jlj�jmj
jj j�jmClj

C

X
jlj�jmj
jj j�jmClj

C

X
jlj�jmj
jj j�jmClj

DWS1CS2CS3CS4CS5CS6:

For S1 we have

S1 .
X

jlj�jmj.jj j

hj i2s�2s1

h2l � j i2hli4s0hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2s1�min.2;4s0/:

In the second inequality we first summed in m using part (c) of Lemma 3.3, and then in n using part (a)
of the lemma.

For S2 we have

S2 .
X

jlj�jmj�jj j

hj i2s

hli2C4s0C2s1hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2s1�4s0�1:

Again, we first summed in m using part (c) of Lemma 3.3.
In the case of S3 we have jl j � jmj. jj j, and hence

S3 .
X

jlj�jmj.jj j

hj i2s�2s1�2

hli4s0hj � jj � l �mjC˛l2�˛m2i2�2b

.
X
jlj.jj j

hj i2s�2s1�2

hli4s0
. hj i2s�2s1�2�4s0.j /. hj i

2s�2s1�min.2;4s0/:

In the case of S4 we have

h2l � j iC hj � jj � l �mjC˛l2�˛m2i& l2:
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Since h2l � j i& l2 implies that h2l � j i& hj i, we have

1

h2l � j i2hj � jj � l �mjC˛l2�˛m2i2�2b

.
1

hj i2hj � jj � l �mjC˛l2�˛m2i2�2b
C

1

h2l � j i2hli4�4b
:

Therefore we estimate

S4 .
X

jmj�jlj.jj j

hj i2s�2s1�2

hmi4s0hj �jj �l�mjC˛l2�˛m2i2�2b
C

X
jmj�jlj.jj j

hj i2s�2s1

h2l�j i2hli2s0C4�4bhmi2s0
:

The first sum can be estimated as in S3 switching the roles of l and m. To estimate the second, we first
sum in l using part (a) of Lemma 3.3, and then in m to obtain

. hj i2s�2s1�min.2;2s0C4�4b/�2s0.j /. hj i
2s�2s1�min.2;4s0/:

In the case of S5, we have

hj � jj � l �mjC˛l2�˛m2i � hmi2; jmj& jj j:

Therefore, noting that 2s0C 2s1C 4� 4b > 1, we have

S5 .
X
jlj�jmj

hj i2s

h2l � j i2hli2s0hmi2s0C2s1C4�4b
.
X
l

hj i2s

h2l � j i2hli4s0C2s1C3�4b

. hj i2s�min.2;4s0C2s1C3�4b/:

In the case of S6, we have

hj � jj � l �mjC˛l2�˛m2i � hli2; jl j& jj j: (30)

Therefore,

S6 .
X

jmj�jlj&jj j

hj i2s

h2l � j i2hli2s0C2s1C4�4bhmi2s0
.

X
jlj&jj j

hj i2s�2s0.l/

h2l � j i2hli2s0C2s1C4�4b

. hj i2s�2s0�2s1�4C4b�2s0.j /:

In the last inequality we used jl j& jj j and then summed in l .

Case (ii): s1 � 0. We rewrite (27) asX
jlj.jmj

C

X
jmj�jlj�jj j

C

X
jmj�jlj&jj j

DW S1CS2CS3:

In the case of S1, we have jj j � jj � l �mjC jmC l j. jj � l �mjC jmj, and hence

hj � l �mihmi& hj i:
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Using this and noting that s0 � s1, we have

S1 .
X
jlj.jmj

hj i2s�2s1

h2l � j i2hli4s0�2s1hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2s1�min.2;4s0�2s1/:

In the last inequality we summed in m using part (c) of Lemma 3.3 and then in l using part (a) of the
lemma.

In the case of S2 we have

S2 .
X

jmj�jlj�jj j

hj i2s�2�2s1

hmi4s0hj � jj � l �mjC˛l2�˛m2i2�2b
. hj i2s�2�2s1�4s0.j /:

Note that in the case of S3 we have (30). Therefore

S3 .
X

jmj�jlj&jj j

hj i2s

h2l � j i2hli2s0C4�4bhmi2s0hj � l �mi2s1
:

If s0C s1 > 1=2, we sum in m and then in n using part (a) of Lemma 3.3 to obtain

S3 .
X
jlj&jj j

hj i2s�2s0�4C4b

h2l � j i2hj � li2s1Cmin.0;2s0�1/�
. hj i2s�2s0�4C4b�min.2;2s1;2s1C2s0�1/C:

If s0C s1 2 .0; 1=2�, we have

S3 .
X
jlj&jj j

hj i2shli1�2s0�2s1C

h2l � j i2hli2s0C4�4b
. hj i2s�4s0�2s1�3C4bC:

Note that each term above is bounded in j if s � s1Cmin.1; 2s0� s1/.

6. Existence of global attractor

In this section we prove Theorem 2.8. As in the previous sections we drop the ˙ signs and work with the
system 8̂<̂

:
.i@t C˛@

2
xC i/uD nuCf; x 2 T; t 2 Œ�T; T �;

.i@t � d C i/nD d.juj
2/;

u.x; 0/D u0.x/ 2H
1.T/; n.x; 0/D n0.x/ 2 PL

2.T/:

(31)

We start with a smoothing estimate for (31) that implies the existence of a global attractor:

Theorem 6.1. Consider the solution of (31) with initial data .u0; n0/ 2H 1 � PL2. Then, for 1
˛
62 N, and

for any a < 1, we have

u.t/� ei˛t@
2
x�tu0 2 C

0
t H

1Ca
x .Œ0;1/�T/ and n.t/� e�itd�tn0 2 C

0
t H

a
x .Œ0;1/�T/: (32)

Moreover,

ku.t/� ei˛t@
2
x�tu0kH1Ca Ckn.t/� e�itd�tn0kHa � C

�
a; ˛; ; kf kH1 ; ku0kH1 ; kn0kL2

�
: (33)
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In the case ˛ D 1 we have, for any a < 1,u.t/� eit@2x�tu0C i Z t

0

e.i@
2
x�/.t�t

0/�1dt
0


H1Ca

C
n.t/� e�itd�tn0Ha

� C
�
a; ; kf kH1 ; ku0kH1 ; kn0kL2

�
; (34)

where �1 is as in Proposition 3.2. The analogous continuity statements as in (32) are also valid.

Proof. Writing

u.x; t/D
X
k

uk.t/e
ikx; n.x; t/D

X
j¤0

nj .t/e
ijx; f .x/D

X
k

fke
ikx

we obtain the following system for the Fourier coefficients:8<:i@tukC .i �˛k
2/uk D

P
k1Ck2Dk
k1¤0

nk1uk2 Cfk;

i@tnj C .i � jj j/nj D jj j
P
j1Cj2Dj

uj1u�j2 :
(35)

We have the following proposition, which follows from differentiation by parts as in Proposition 3.2
by using the change of variables mj D nj ei jj jtCt , and vk D ukei˛k

2tCt .

Proposition 6.2. The system (35) can be written in the form

i@t
�
eit˛k

2Ctuk
�
C ie�t@t

�
eit˛k

2C2tB1.n; u/k
�

D eit˛k
2Ct

�
�1.k/CfkCB1.n; f /CR1.u/. Ok; t/CR2.u; n/. Ok; t/

�
; (36)

i@t
�
eit jj jCtnj

�
C ie�t@t

�
eit jj jC2tB2.u/j

�
D eit jj jCt

�
�2.j /CB2.f; u/CB2.u; f /CR3.u; n/. Oj ; t/CR4.u; n/. Oj ; t/

�
: (37)

where Bi ; �i , i D 1; 2, and Rj , j D 1; 2; 3; 4 are as in Proposition 3.2.

Integrating (36) from 0 to t , we obtain

uk.t/� e
�it˛k2�tuk.0/D�B1.n; u/kC e

�it˛k2�tB1.n0; u0/k

C

Z t

0

e�.i˛k
2C/.t�t 0/

�
� B1.n; u/k � i�1.k/� ifk � iB1.n; f /k

�
dt 0

� i

Z t

0

e�.i˛k
2C/.t�t 0/

�
R1.u/. Ok; t

0/CR2.u; n/. Ok; t
0/
�
dt 0:

First note that (identifying the function with its Fourier sequence) we have Z t

0

e�.i˛k
2C/.t�t 0/fkdt

0


H1Ca

D

 fk

i˛k2C 
.1� e�it˛k

2�t /


H1Ca

. kfkkHa�1 : (38)

In the case 1
˛
62N, using (38), the estimates in Lemma 3.4 and Proposition 3.6 (see Remark 3.5) as above,
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and also using the growth bound in (9), we obtain for any a < 1

ku.t/�ei˛@
2
xt�tu0kH1Ca . kf kHa�1C

�
kf kH1Ckn.0/kL2Cku.0/kH1

�2
C
�
kuk

X
1; 1
2

ı

Cknk
Y
1; 1
2

ı

�3
:

Using the local theory (Theorem 2.9) bound for X
1; 1
2

ı
; Y

1; 1
2

ı
norms for a ıD ı.kn0kL2 ; ku0kH1 ; kf kH1/,

we obtain for t < ı

ku.t/� ei˛@
2
xt�tu0kH1Ca . C.a; ; kf kH1 ; kn0kL2 Cku0kH1/:

In the rest of the proof the implicit constants depend on a; ; kf kH1 ; kn0kL2Cku0kH1 . Fix t large, and
ı as above. We have u.jı/� ei˛@2xı�ıu..j � 1/ı/

H1Ca . 1;

for any j � t=ı. Using this we obtain (with J D t=ı)

ku.J ı/� eJı.i˛@
2
x�/u.0/kH1Ca �

JX
jD1

e.J�j /ı.i˛@2x�/u.jı/� e.J�jC1/ı.i˛@2x�/u..j�1/ı/
H1Ca

D

JX
jD1

e�.J�j /ıku.jı/� eı.i˛@
2
x�/u..j � 1/ı/kH1Ca

.
JX
jD1

e�.J�j /ı .
1

1� e�ı
:

In the case ˛ D 1, we have to separate the resonant term in this argument. We have the following
inequality for t < ıu.t/� ei˛@2xt�tu0C i Z t

0

e.i˛@
2
x�/.t�t

0/�1dt
0


H1Ca

. C.a; ; kf kH1 ; kn0kL2 Cku0kH1/:

Accordingly we haveu.J ı/� eJı.i˛@2x�/u.0/C Z Jı

0

e.i˛@
2
x�/.J ı�t

0/�1dt
0


H1Ca

�

JX
jD1

e.J�j /ı.i˛@2x�/�u.jı/� eı.i˛@2x�/u..j � 1/ı/C i Z jı

.j�1/ı

e.i˛@
2
x�/.jı�t

0/�1dt
0

�
H1Ca

D

JX
jD1

e�.J�j /ı
u.jı/� eı.i˛@2x�/u..j � 1/ı/C i Z jı

.j�1/ı

e.i˛@
2
x�/.jı�t

0/�1dt
0


H1Ca

.
JX
jD1

e�.J�j /ı .
1

1� e�ı
:

The corresponding inequalities for the wave part follow similarly. The only difference is that we don’t
need to separate the resonant term, since �2 2H 1 by Lemma 3.4.
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This completes the proof of the global bound stated in Theorem 6.1. Finally the continuity in H 1� PL2

follows as in [Erdoğan and Tzirakis 2012]. We omit the details. �

Proof of Theorem 2.8. We follow the strategy we outlined in [Erdoğan and Tzirakis 2011]. We start with
the case 1

˛
62 N. First of all note that the existence of an absorbing set, B0 � H

1 � PL2, is immediate
from (9). Second, we need to verify the asymptotic compactness of the propagator Ut . It suffices to prove
that for any sequence tr !1 and for any sequence .u0;r ; n0;r/ in B0, the sequence Utr .u0;r ; n0;r/ has
a convergent subsequence in H 1 � PL2.

To see this note that by Theorem 6.1, (if .u0; n0/ 2B0)

Ut
�
u0; n0

�
D
�
ei˛t@

2
x�tu0; e

�itd�tn0
�
CNt

�
u0; n0

�
where Nt

�
u0; n0

�
is in a ball in H 1Ca �Ha with radius depending on a 2 .0; 1/; ˛;  , and kf kH1 . By

Rellich’s theorem, fNt
�
u0; n0

�
W t > 0; .u0; n0/ 2B0g is precompact in H 1 � PL2. Since�ei˛t@2x�tu0; e�itd�tn0�H1� PL2

. e�t ! 0; as t !1;

uniformly on B0, we conclude that fUtr
�
u0;r ; n0;r

�
W r 2 Ng is precompact in H 1 � PL2. Thus, Ut is

asymptotically compact. This and Theorem A imply the existence of a global attractor A�H 1 � PL2.
We now prove that the attractor set A is a compact subset of H 1Ca �Ha for any a 2 .0; 1/. By

Rellich’s theorem, it suffices to prove that for any a 2 .0; 1/, there exists a closed ball Ba �H 1Ca �Ha

of radius C.a; ˛; ; kf kH1/ such that A� Ba. By definition

AD
\
��0

[
t��

UtB0 DW

\
��0

V� :

By Theorem 6.1 and the discussion above, V� is contained in a ı� neighborhood, N� , of a ball Ba in
H 1 � PL2 whose radius depends only on a; ˛; ; kf kH1 , and where ı� ! 0 as � tends to infinity. Since
Ba is a compact subset of H 1 � PL2, we have

AD
\
��0

V� �
\
�>0

N� D Ba:

Now consider the case 1
˛
2N. For simplicity, we take ˛ D 1. We have to be slightly more careful in

this case because of the contribution of the resonant term, �1, which is does not belong to H 1Ca for any
a > 0. Recall that, by Theorem 6.1, for .u0; n0/ 2B0

Ut
�
u0; n0

�
D
�
ei˛t@

2
x�tu0; e

�itd�tn0
�
CNt

�
u0; n0

�
C i

�Z t

0

e.i@
2
x�/.t�t

0/�1dt
0; 0

�
; (39)

where Nt
�
u0; n0

�
is in a ball in H 1Ca �Ha with radius depending on a 2 .0; 1/;  , and kf kH1 . Recall

from Proposition 3.2, that the Fourier coefficients of �1 are

.�1/k D �1.n; u/k D n2k�sgn.k/usgn.k/�k; k ¤ 0:
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In light of the proof of the case 1
˛
62 N above, it suffices to consider the contribution of the resonant term

under the assumption that .u0; n0/ 2B0. Using (39), we write

�1
�
n.t 0/; u.t 0/

�
D �1

�
e�it

0d�t 0n0; u.t
0/
�
C �1

�
Nt 0.n0/; u.t

0/
�
: (40)

Now note that, by Lemma 3.4, we have�1.n; u/H1Ca . knkHakukH1 :

Using this with aD 0, we see that the contribution of the first summand in (40) to the resonant term in
(39) satisfies Z t

0

e.i@
2
x�/.t�t

0/�1
�
e�it

0d�t 0n0; u.t
0/
�
dt 0

H1

.
Z t

0

e�.t�t
0/
ke�it

0d�t 0n0kL2ku.t
0/kH1dt 0

� te�tC.a; ; kf kH1/;

which goes to zero uniformly in B0. Similarly, the contribution of the second summand in (40) to the
resonant term in (39) satisfies Z t

0

e.i@
2
x�/.t�t

0/�1
�
Nt 0.n0/; u.t

0/
�
dt 0

H1Ca

.
Z t

0

e�.t�t
0/
kNt 0.n0/kHaku.t 0/kH1dt 0

� C.a; ; kf kH1/:

The rest of the proof is same as the case 1
˛
62 N. �

Appendix

We prove Lemma 3.3. Note that, with mD k2� k1, we can rewrite the sum in part (a) asX
n

1

hni�hn�mi�
:

For jnj< jmj=2, we estimate the sum byX
jnj<jmj=2

1

hni�hmi�
� hmi����.m/:

For jnj> 2jmj, we estimate byX
jnj>2jmj

1

hni�C�
. hmi1���� . hmi����.m/:

Finally for jnj � jmj, we estimate byX
jnj�jmj

1

hmi�hn�mi�
. hmi����.m/. hmi����.m/:

The last inequality follows from the definition of �� and the hypothesis � � �.
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Part (b) follows from part (a). To obtain part (c), write

jn2C c1nC c2j D j.nC z1/.nC z2/j � jnC x1j jnC x2j

where xi is the real part of zi . The contribution of the terms jnCx1j<1 or jnCx2j<1 is . 1. Therefore,
we estimate the sum in part (c) by

. 1C
X
n

1

hnC x1i�hnC x2i�
. 1

by part (a).
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