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In this paper, we consider a discrete restriction associated with KdV equations. Some new Strichartz
estimates are obtained. We also establish the local well-posedness for the periodic generalized Korteweg–
de Vries equation with nonlinear term F(u)∂x u provided F ∈ C5 and the initial data φ ∈ H s with
s > 1/2.

1. Introduction

The discrete restriction problem associated with KdV equations is a problem asking the best constant
Ap,N satisfying

N∑
n=−N

| f̂ (n, n3)|2 ≤ Ap,N‖ f ‖2p′, (1-1)

where f is a periodic function on T2, f̂ is the Fourier transform of f on T2, p ≥ 2, and p′ = p/(p− 1).
It is natural to pose a conjecture asserting that for any ε > 0, Ap,N satisfies

Ap,N ≤

{
C p N 1−8/p+ε for p ≥ 8,
C p for 2≤ p < 8.

(1-2)

It was proved by Bourgain that A6,N ≤ N ε. The desired upper bound for A8,N is not yet obtained; however,
we are able to establish an affirmative answer for large p.

Theorem 1.1. Let Ap,N be defined as in (1-1). If p ≥ 14, for any ε > 0, there exists a constant C p

independent of N such that
Ap,N ≤ C p N 1−8/p+ε. (1-3)

The periodic Strichartz inequality associated to KdV equations is the inequality seeking the best
constant K p,N satisfying∥∥∥∥ N∑

n=−N

ane2π i tn3
+2π i xn

∥∥∥∥
L p

x,t (T×T)

≤ K p,N

( N∑
n=−N

|an|
2
)1/2

. (1-4)

By duality, we immediately see that
K p,N ∼

√
Ap,N .
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Hence, Theorem 1.1 is equivalent to Strichartz estimates,

K p,N ≤ C N 1/2−4/p+ε, for p ≥ 14. (1-5)

It was observed by Bourgain that the periodic Strichartz inequalities (1-4) for p = 4, 6 are crucial for
obtaining the local well-posedness of periodic KdV (mKdV or gKdV). The local (global) well-posedness
of periodic KdV for s ≥ 0 was first studied by Bourgain [1993b]. Via a bilinear estimate approach, Kenig,
Ponce, and Vega [Kenig et al. 1996] established the local well-posedness of periodic KdV for s >−1/2.
The sharp global well-posedness of the periodic KdV was proved by Colliander, Keel, Staffilani, Takaoka,
and Tao [Colliander et al. 2003], by utilizing the I -method.

Inspired by Bourgain’s work, we can obtain the following theorem on gKdV. Here the gKdV is the
generalized Korteweg–de Vries (gKdV) equation{

ut + uxxx + ukux = 0,
u(x, 0)= φ(x), x ∈ T, t ∈ R,

(1-6)

where k ∈ N and k ≥ 3.

Theorem 1.2. The Cauchy problem (1-6) is locally well-posed if the initial data φ ∈ H s for s > 1/2.

Theorem 1.2 is not new. It was proved by Colliander, Keel, Staffilani, Takaoka, and Tao [Colliander
et al. 2004], but our method is different. The method used by those authors is based on a rescaling
argument and the bilinear estimates proved by Kenig, Ponce and Vega [Kenig et al. 1996]. Our method is
more straightforward and does not need the rescaling argument, the bilinear estimates, or the multilinear
estimates in the earlier papers. This allows us to extend Theorem 1.2 to a very general setting. More
precisely, consider the Cauchy problem for periodic generalized Korteweg–de Vries (gKdV) equation{

ut + uxxx + F(u)ux = 0,
u(x, 0)= φ(x), x ∈ T, t ∈ R.

(1-7)

Here F is a suitable function. Then the following theorem can be established.

Theorem 1.3. The Cauchy problem (1-7) is locally well-posed provided F is a C5 function and the initial
data φ ∈ H s for s > 1/2.

For sufficiently smooth F , say F ∈ C15, the existence of a local solution of (1-7) for s ≥ 1 and the
global well-posedness of (1-7) for small data φ ∈ H s with s > 3/2 were proved by Bourgain [1995]. The
index 1/2 is sharp because the ill-posedness of (1-6) for s < 1/2 is known; see [Colliander et al. 2004].
In order to make Theorem 1.3 well-posed for the initial data φ ∈ H s with s > 1/2, the sharp regularity
condition for F is perhaps C4. But the method utilized in this paper, with a small modification, seems
only to be able to reach an affirmative result for F ∈C (9/2)+ and s > 1/2. Moreover, the endpoint s = 1/2
case could possibly be done by combining the ideas from [Colliander et al. 2004] and this paper. We do
not pursue this here.
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2. Proof of Theorem 1.1

Proof. To prove Theorem 1.1, we need to introduce a level set. Since
√

Ap,N ∼ K p,N , it suffices to prove
the Strichartz estimates (1-4). Let FN be a periodic function on T2 given by

FN (x, t)=
N∑

n=−N

ane2π inx e2π in3t , (2-1)

where {an} is a sequence with
∑

n |an|
2
= 1 and (x, t) ∈ T2. For any λ > 0, set a level set Eλ to be

Eλ = {(x, t) ∈ T2
: |FN (x, t)|> λ} . (2-2)

To obtain the desired estimate for the level set, let us first state a lemma on Weyl’s sums.

Lemma 2.1. Suppose that t ∈ T satisfies |t − a/q| ≤ 1/q2, where a and q are relatively prime. Then if
q ≥ N 2, ∣∣∣∣ N∑

n=1

e2π i(tn3
+bn2

+cn)
∣∣∣∣≤ C N 1/4+εq1/4. (2-3)

Here b and c are real numbers, and the constant C is independent of b, c, t , a, q , and N.

The proof of Lemma 2.1 relies on Weyl’s squaring method. See [Hua 1965] or [Montgomery 1994]
for details. We also need the following lemma.

Lemma 2.2 [Bourgain 1993a]. For any integer Q ≥ 1 and any integer n 6= 0, and any ε > 0,∑
Q≤q<2Q

∣∣∣∣∑
a∈Pq

e2π i(a/q)n
∣∣∣∣≤ Cεd(n, Q)Q1+ε.

Here Pq is given by
Pq = {a ∈ N : 1≤ a ≤ q and (a, q)= 1}, (2-4)

and d(n, Q) denotes the number of divisors of n less than Q and Cε is a constant independent of Q, n.

Lemma 2.2 can be proved by observing that the arithmetic function defined by f (q)=
∑

a∈Pq
e2π i(a/q)n

is multiplicative, and then utilizing the prime factorization for q to conclude the lemma.

Proposition 2.3. Let KN be a kernel defined by

KN (x, t)=
N∑

n=−N

e2π i tn3
+2π i xn. (2-5)

For any given positive number Q with N 2
≤ Q ≤ N 3, the kernel KN can be decomposed into K1,Q+K2,Q

such that
‖K1,Q‖∞ ≤ C1 N 1/4+εQ1/4. (2-6)

and

‖K̂2,Q‖∞ ≤
C2 N ε

Q
. (2-7)
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Here the constants C1,C2 are independent of Q and N.

Proof. We can assume that Q is an integer, since otherwise we can take the integer part of Q. For a
standard bump function ϕ supported on [1/200, 1/100], we set

8(t)=
∑

Q≤q≤5Q

∑
a∈Pq

ϕ

(
t − a/q

1/q2

)
. (2-8)

Clearly 8 is supported on [0, 1]. We can extend 8 to other intervals periodically to obtain a periodic
function on T. This periodic function, generated by 8, will also be denoted by 8. It is easy to see that

8̂(0)=
∑
q∼Q

∑
a∈Pq

FRϕ(0)
q2 =

∑
q∼Q

φ(q)
q2 FRϕ(0) (2-9)

is a constant independent of Q. Here φ is Euler’s phi function, and FR denotes the Fourier transform of a
function on R. Also we have

8̂(k)=
∑
q∼Q

∑
a∈Pq

1
q2 e−2π i(a/q)kFRϕ(k/q2). (2-10)

Applying Lemma 2.2 and the fact that Q ≤ N 3, we obtain

|8̂(k)| ≤ N ε

Q
, (2-11)

if k 6= 0.
We now define

K1,Q(x, t)=
1

8̂(0)
KN (x, t)8(t) and K2,Q = KN − K1,Q .

Equation (2-6) follows from Lemma 2.1 since the intervals Ja/q =

[a
q
+

1
100q2 ,

a
q
+

1
50q2

]
are

pairwise disjoint for all Q ≤ q ≤ 5Q and a ∈ Pq .
We now prove (2-7). In fact, represent 8 as its Fourier series to get

K2,Q(x, t)=−
1

8̂(0)

∑
k 6=0

8̂(k)e2π ikt KN (x, t).

Thus its Fourier coefficient is

K̂2,Q(n1, n2)=−
1

8̂(0)

∑
k 6=0

8̂(k)1
{n2=n3

1+k}(k).

Here (n1, n2) ∈ Z2 and 1A is the indicator function of a set A. This implies that K̂2,Q(n1, n2) = 0 if
n2 = n3

1, and if n2 6= n3
1,

K̂2,Q(n1, n2)=−
1

8̂(0)
8̂(n2− n3

1).
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Applying (2-11), we estimate K̂2,Q(n1, n2) by

|K̂2,Q(n1, n2)| ≤
C N ε

Q
,

since N ≤ Q ≤ N 2. Hence we obtain (2-7), completing the proof. �

Now we can state our theorem on the level set estimates.

Theorem 2.4. For any positive numbers ε and Q ≥ N 2, the level set defined as in (2-2) satisfies

λ2
|Eλ|2 ≤ C1 N 1/4+εQ1/4

|Eλ|2+
C2 N ε

Q
|Eλ| (2-12)

for all λ > 0. Here C1 and C2 are constants independent of N and Q.

Proof. Notice that if Q ≥ N 3, (2-12) becomes trivial, since Eλ = ∅ if λ ≥ C N 1/2. So we can assume
that N 2

≤ Q ≤ N 3. For the function FN and the level set Eλ given in (2-1) and (2-2), respectively, we
define f to be

f (x, t)=
FN (x, t)
|FN (x, t)|

1Eλ(x, t) .

Clearly

λ|Eλ| ≤
∫

T2
FN (x, t) f (x, t) dx dt.

By the definition of FN , we get

λ|Eλ| ≤
N∑

n=−N

an f̂ (n, n3).

Utilizing the Cauchy–Schwarz inequality, we have

λ2
|Eλ|2 ≤

N∑
n=−N

| f̂ (n, n3)|2.

The right hand side can be written as
〈KN ∗ f, f 〉. (2-13)

For any Q with N 2
≤ Q ≤ N 3, we employ Proposition 2.3 to decompose the kernel KN . We then have

λ2
|Eλ|2 ≤ |〈K1,Q ∗ f, f 〉| + |〈K2,Q ∗ f, f 〉|. (2-14)

From (2-6) and (2-7), we then obtain

λ2
|Eλ|2 ≤ C1 N 1/4+εQ1/4

‖ f ‖21+
C2 N ε

Q
‖ f ‖22 ≤ C1 N 1/4+εQ1/4

|Eλ|2+
C2 N ε

Q
|Eλ|. �

Corollary 2.5. If λ≥ 2C1 N 3/8+ε,

|Eλ| ≤
C N 1+ε

λ10 . (2-15)

Here C1 is the constant C1 in Theorem 2.4 and C is a constant independent of N and λ.
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Proof. Since λ ≥ 2C1 N 3/8+ε, we simply take Q satisfying 2C1 N 1/4+εQ1/4
= λ2. Then Corollary 2.5

follows from Theorem 2.4. �

We are now ready to finish the proof of Theorem 1.1. In fact, let p ≥ 14 and write ‖F‖p
p as

p
∫ 2C1 N 3/8+ε

0
λp−1
|Eλ| dλ+ p

∫ 2N 1/2

2C1 N 3/8+ε
λp−1
|Eλ| dλ. (2-16)

Observe that A6,N ≤ N ε implies

|Eλ| ≤
N ε

λ6 . (2-17)

Thus the first term in (2-16) is bounded by

C N 3(p−6)/8+ε
≤ C N p/2−4+ε, (2-18)

since p ≥ 14. From (2-15), the second term is majorized by

C N p/2−4+ε. (2-19)

Putting both estimates together, we complete the proof of Theorem 1.1. �

3. A Lower bound of A p,N

In this section we show that N 1−8/p is the best upper bound of Ap,N if p ≥ 8. Hence (1-3) can not be
improved substantially, and it is sharp up to a factor of N ε.

For b ∈ N, let J (N ; b) be defined by

S(N ; b)=
∫

T2

∣∣∣∣ N∑
n=−N

e2π i tn3
+2π i xn

∣∣∣∣2b

dx dt. (3-1)

Proposition 3.1. Let S(N ; b) be defined as in (3-1). Then

S(N ; b)≥ C(N b
+ N 2b−4). (3-2)

Here C is a constant independent of N .

Proof. Clearly S(N ; b) is equal to the number of solutions of{
n1+ · · ·+ nb = m1+ · · ·+mb,

n3
1+ · · ·+ n3

b = m3
1+ · · ·+m3

b,
(3-3)

with n j ,m j ∈ {−N , . . . , N } for all j ∈ {1, . . . , b}. For each (m1, . . . ,mb), we may obtain a solution of
(3-3) by taking (n1, . . . , nb)= (m1, . . . ,mb). Thus

S(N ; b)≥ N b. (3-4)

To derive a further lower bound for S(N ; b), we set � to be

�=
{
(x, t) : |x | ≤ 1

60N
, |t | ≤ 1

60N 3

}
. (3-5)



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 865

If (x, t) ∈� and |n| ≤ N ,

|tn3
+ xn| ≤ 1

30
. (3-6)

Hence, if (x, t) ∈�,∣∣∣∣ N∑
n=−N

e2π i tn3
+2π i xn

∣∣∣∣≥ ∣∣∣∣Re
N∑

n=−N

e2π i tn3
+2π i xn

∣∣∣∣≥ N∑
n=−N

cos(2π(tn3
+ xn))≥ C N . (3-7)

Consequently, we have

S(N ; b)≥
∫
�

∣∣∣∣ N∑
n=−N

e2π i tn3
+2π i xn

∣∣∣∣2b

dx dt ≥ C N 2b
|�| ≥ C N 2b−4. �

Proposition 3.2. Let p ≥ 2 be even. Then Ap,N satisfies

Ap,N ≥ C(1+ N 1−8/p). (3-8)

Here C is a constant independent of N .

Proof. Let p = 2b since p is even. Setting an = 1 for all n in the definition of K p,N , we get

S(N ; b)≤ K p
p,N (2N )b. (3-9)

By Proposition 3.1, we have

K p,N ≥ C(1+ N 1/2−4/p). (3-10)

Consequently, we conclude (3-8) since Ap,N ∼ K 2
p,N . �

4. An estimate of Hua

The following theorem was proved by Hua [1965] by an arithmetic argument. We provide a different
proof.

Theorem 4.1. Let S(N ; b) be defined as in (3-1). Then

S(N ; 5)≤ C N 6+ε. (4-1)

By Proposition 3.1, we see that the estimate (4-1) is (almost) sharp. S(N ; 4)≤ N 4+ε is still open.

Proof of Theorem 4.1. Let Gλ be the level set given by

Gλ = {(x, t) ∈ T2
: |KN (x, t)| ≥ λ}. (4-2)

Here KN is the function defined as in (2-5).
Letting f = 1Gλ

KN/|KN |, we have

λ|Gλ| ≤

N∑
n=−N

f̂ (n, n3)= 〈 fN , KN 〉, (4-3)
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where fN is a rectangular Fourier partial sum defined by

fN (x, t)=
∑
|n1|≤N
|n2|≤N 3

f̂ (n1, n2)e2πn1x e2π in2t . (4-4)

Employing Proposition 2.3 for KN , we estimate the level set Gλ by

λ|Gλ| ≤ |〈 fN , K1,Q〉| + |〈 fN , K2,Q〉| (4-5)

for any Q ≥ N 2. From (2-6) and (2-7), λ|Gλ| can be bounded further by

C
(

N 1/4+εQ1/4
‖ fN‖1+

∑
|n1|≤N
|n2|≤N 3

|K̂2,Q(n1, n2) f̂ (n1, n2)|

)
. (4-6)

Thus, from the fact that the L1 norm of Dirichlet kernel DN is comparable to log N , (2-7), and the
Cauchy–Schwarz inequality, we have

λ|Gλ| ≤ C N 1/4+εQ1/4
|Gλ| +

C N 2+ε

Q
|Gλ|

1/2, (4-7)

for all Q ≥ N 2. For λ≥ 2C N 3/4+ε, take Q to be a number satisfying

2C N 1/4+εQ1/4
= λ,

and obtain

|Gλ| ≤
C N 6+ε

λ10 . (4-8)

Notice that

‖KN‖6 ≤ N 1/2K6,p ≤ N 1/2+ε. (4-9)

Hence, by (4-3), we majorize |Gλ| by

|Gλ| ≤
C N 3+ε

λ6 . (4-10)

We now estimate S(N ; 5) by

S(N ; 5)≤ C
∫ 2N

2C N 3/4+ε
λ10−1

|Gλ| dλ+C
∫ 2C N 3/4+ε

0
λ10−1

|Gλ| dλ. (4-11)

From (4-8), the first term in the right hand side of (4-11) can be bounded by C N 6+ε. From (4-10), the
second term is clearly bounded by N 6+ε. Putting both estimates together,

S(N ; 5)≤ C N 6+ε, (4-12)

as desired. �
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5. Estimates for the nonlinear term and Local well-posedness of (1-6)

For any integrable function u on T×R, we define the space-time Fourier transform by

û(n, λ)=
∫

R

∫
T

u(x, t)e−inx e−iλt dx dt (5-1)

and set
〈x〉 := 1+ |x |.

We now introduce the Xs,b space, initially used by Bourgain.

Definition 5.1. Let I be a time interval in R and s, b ∈ R. Let Xs,b(I ) be the space of functions u on
T× I that may be represented as

u(x, t)=
∑
n∈Z

∫
R

û(n, λ)einx eiλt dλ for (x, t) ∈ T× I (5-2)

with the space-time Fourier transform û satisfying

‖u‖Xs,b(I ) =

(∑
n

∫
〈n〉2s
〈λ− n3

〉
2b
|û(n, λ)|2dλ

)1/2

<∞ . (5-3)

Here the norm should be understood as a restriction norm.

We take the time interval to be [0, δ] for a small positive number δ and abbreviate ‖u‖Xs,b(I ) as ‖u‖s,b
for any function u restricted to T×[0, δ]. In this section, we always restrict the function u to T×[0, δ].
Let w be the nonlinear function defined by

w =

(
uk
−

∫
uk dx

)
ux . (5-4)

We also define

‖u‖Ys := ‖u‖s,1/2+
(∑

n

〈n〉2s
(∫
|û(n, λ)| dλ

)2 )1/2

. (5-5)

We need the following estimate on the nonlinear function w, in order to establish a contraction on the
space {u : ‖u‖Ys ≤ M} for some M > 0.

Proposition 5.2. For s > 1/2, there exists θ > 0 such that, for the nonlinear function w given by (5-4),

‖w‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ− n3〉

dλ
)2 )1/2

≤ Cδθ‖u‖k+1
Ys
. (5-6)

Here C is a constant independent of δ and u.

The proof of Proposition 5.2 will appear in Section 6, and is based on the idea applied by Bourgain
[1993b] while proving the special case k = 2. In the proof, we write out the detailed treatment to some
subcases, and omit the similar treatment of other subcases (but it is very easy to figure out). The main
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reason we include the proof of Proposition 5.2 in Section 6 is to provide the preparation so the readers
can follow the (more technical) proof of the general case F ∈ C5 more easily.

We now start to derive the local well-posedness of (1-6). For this purpose, we only need to consider
the well-posedness of the Cauchy problem{

ut + uxxx +
(
uk
−
∫

T
ukdx

)
ux = 0,

u(x, 0)= φ(x), x ∈ T, t ∈ R.
(5-7)

This is because if v is a solution of (5-7), the gauge transform

u(x, t) := v
(

x −
∫ t

0

∫
T

vk(y, τ ) dydτ, t
)

(5-8)

is a solution of (1-6) with the same initial value φ. Notice that this transform is invertible and preserves
the initial data φ. The inverse transform is

v(x, t) := u
(

x +
∫ t

0

∫
T

uk(y, τ ) dydτ, t
)
. (5-9)

It is easy to see that for any solution u of (1-6), this inverse transform of u defines a solution of (5-7).
Hence, to establish the well-posedness of (1-6), it suffices to obtain the well-posedness of (5-7). This
gauge transform was used in [Colliander et al. 2004].

By Duhamel’s principle, the corresponding integral equation associated to (5-7) is

u(x, t)= e−t∂3
xφ(x)−

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ, (5-10)

where w is defined as in (5-4).
Since we are only seeking the local well-posedness, we may use a bump function to truncate the time

variable. Let ψ be a bump function supported in [−2, 2] with ψ(t)= 1, |t | ≤ 1, and let ψδ be

ψδ(t)= ψ(t/δ).

Then it suffices to find a local solution of

u(x, t)= ψδ(t)e−t∂3
xφ(x)−ψδ(t)

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ.

Let T be an operator given by

T u(x, t) := ψδ(t)e−t∂3
xφ(x)−ψδ(t)

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ. (5-11)

We denote the first term (the linear term) in (5-11) by Lu and the second term (the nonlinear term) by Nu.
Henceforth we represent T u as Lu+Nu. The following two lemmas deal with Lu and Nu separately.

Lemma 5.3. The linear term L satisfies

‖Lu‖Ys ≤ C‖φ‖H s . (5-12)

Here C is a constant independent of δ.
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Lemma 5.4. The nonlinear term N satisfies

‖Nu‖Ys ≤ C
(
‖w‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ−n3〉

dλ
)2 )1/2 )

, (5-13)

where C is a constant independent of δ.

Lemmas 5.3 and 5.4 are considered classical and their proofs can be found in many references, such as
[Colliander et al. 2004].

Proposition 5.5. Let s > 1/2 and T be the operator defined as in (5-11). Then there exists a positive
number θ such that

‖T u‖Ys ≤ C(‖φ‖H s + δθ‖u‖k+1
Ys
). (5-14)

Here C is a constant independent of δ.

Proof. Since T u = Lu+Nu, Proposition 5.5 follows from Lemmas 5.3, 5.4, and Proposition 5.2. �

Proposition 5.5 yields that for δ sufficiently small, T maps a ball in Ys into itself. Moreover, we write(
uk
−

∫
T

ukdx
)

ux −

(
vk
−

∫
T

vkdx
)
vx =

(
uk
−

∫
T

ukdx
)
(u−v)x +

(
(uk
−vk)−

∫
T

(uk
−vk) dx

)
vx

which equals(
uk
−

∫
T

ukdx
)
(u− v)x +

k−1∑
j=0

(
(u− v)uk−1− jv j

−

∫
T

(u− v)uk−1− jv j dx
)
vx . (5-15)

For k+ 1 terms in (5-15), repeating similar argument as in the proof of Proposition 5.2, one obtains, for
s > 1/2,

‖T u− T v‖Ys ≤ Cδθ
(
‖u‖kYs

+

k−1∑
j=1

‖u‖k−1− j
Ys

‖v‖
j+1
Ys

)
‖u− v‖Ys . (5-16)

Hence, for δ > 0 small enough, T is a contraction and the local well-posedness follows from Picard’s
fixed-point theorem.

6. Proof of Proposition 5.2

Proof. From the definition of w in (5-4), we may write ŵ(n, λ) as∑
m+n1+···+nk=n

n1+···+nk 6=0

m
∫

û(m, λ− λ1− · · ·− λk)û(n1, λ1) · · · û(nk, λk) dλ1 · · · dλk . (6-1)

By duality, there exists a sequence {An,λ} satisfying∑
n∈Z

∫
R

|An,λ|
2dλ≤ 1, (6-2)
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and ‖w‖s,−1/2 is bounded by∑
m+n1+···+nk=n

n1+···+nk 6=0

∫
〈n〉s |m|
〈λ−n3〉1/2

|û(m, λ−λ1−· · ·−λk)||û(n1, λ1)| · · · |û(nk, λk)||An,λ|dλ1 · · ·dλk dλ. (6-3)

Since the Xs,b is a restriction norm, we may assume that u is supported in T× [0, δ]. However, the
inverse space-time Fourier transform |û|∨ in general may not be a function with compact support. The
following standard trick allows us to assume |û|∨ has a compact support too. In fact, let η be a bump
function supported on [−2δ, 2δ] and with η(t) = 1 in |t | ≤ δ. Also η̂ is positive. Then u = uη and
û = û ∗ η̂. Thus |û| ≤ |û| ∗ η̂ = (|û|∨η)∧. Whenever we need to make |û|∨ supported in a small time
interval, we replace |û| by (|û|∨η)∧ since |û|∨η clearly is supported on T× [−2δ, 2δ]. This will help
us gain a positive power of δ in our estimates. Moreover, without loss of generality we can assume
|n1| ≥ |n2| ≥ · · · ≥ |nk |.

The trouble occurs mainly because of the factor |m| resulting from ∂x u. The idea (inspired by Bourgain
[1993b]) is that either the factor 〈λ−n3

〉
−1/2 can be used to cancel |m|, or |m| can be distributed to some

of the û. More precisely, we consider three cases:

|m|< 1000k2
|n2|, (6-4)

1000k2
|n2| ≤ |m| ≤ 100k|n1|, (6-5)

|m|> 100k|n1|. (6-6)

Case 1: |m|< 1000k2
|n2|. This is the simplest case. In fact, in this case, it is easy to see that

〈n〉s |m| ≤ C〈n1〉
s
〈n2〉

1/2〈m〉1/2. (6-7)

Let

F1(x, t)=
∑

n

∫
|An,λ|

〈λ− n3〉1/2
eiλt einx dλ; (6-8)

G(x, t)=
∑

n

∫
〈n〉1/2|û(n, λ)|eiλt einx dλ; (6-9)

H(x, t)=
∑

n

∫
〈n〉s |û(n, λ)|eiλt einx dλ; (6-10)

U (x, t)=
∑

n

∫
|û(n, λ)|eiλt einx dλ. (6-11)

Using (6-7), we can estimate (6-3) by

C
∑

m+n1+···+nk=n

∫
F̂(n, λ)Ĝ(m, λ− λ1− · · ·− λk)Ĥ(n1, λ1)Ĝ(n2, λ2)

k∏
j=3

Û (n j , λ j )dλ1 · · ·dλk dλ,

which clearly equals

C
∣∣∣∣∫

T×R

F1(x, t)G(x, t)2 H(x, t)U (x, t)k−2 dx dt
∣∣∣∣. (6-12)
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Apply Hölder’s inequality to majorize it by

C‖F1‖4 ‖G‖26+ ‖H‖4 ‖U‖
k−2
6(k−2)−.

Since U is supported on T×[−2δ, 2δ], one more use of Hölder inequality yields

(6-3)≤ Cδθ‖F1‖4 ‖G‖26+ ‖H‖4 ‖U‖
k−2
6(k−2). (6-13)

Let us recall some useful local embedding facts on Xs,b.

X0,1/3 ⊆ L4
x,t , X0+,1/2+ ⊆ L6

x,t (t local), (6-14)

Xα,1/2 ⊆ Lq
x,t , 0< α < 1

2 , 2≤ q < 6
1−2α

(t local), (6-15)

X1/2−α,1/2−α ⊆ Lq
t Lr

x , 0< α < 1
2 , 2≤ q, r < 1/α. (6-16)

The two embedding results in (6-14) are consequences of the discrete restriction estimates on L4 and L6,
respectively (see [Bourgain 1993b] for details). (6-15) and (6-16) follow by interpolation (see [Colliander
et al. 2004] for details). (6-14) yields

‖F1‖4 ≤ C‖F1‖0, 1
3
≤ C

(∑
n

∫
|An,λ|

2dλ
)1/2

≤ C,

and

‖H‖4 ≤ C‖H‖0,1/3 ≤ C‖u‖s,1/2 ≤ C‖u‖Ys .

From (6-15) we have

‖G‖6+ ≤ C‖G‖0+,1/2 ≤ C‖u‖s,1/2 ≤ C‖u‖Ys .

Using (6-16), we get

‖U‖6(k−2) ≤ C‖U‖1/2−,1/2− ≤ C‖u‖s,1/2 ≤ C‖u‖Ys .

Hence, for Case 1, we have

(6-3)≤ Cδθ‖u‖k+1
Ys
. (6-17)

Case 2: 1000k2
|n2| ≤ |m| ≤ 100k|n1|. In this case, we further consider two subcases:

|m+ n1| ≤ 1000k2
|n2|, (6-18)

|m+ n1|> 1000k2
|n2|. (6-19)

If |m+ n1| ≤ 1000k2
|n2|, we use the triangle inequality to get

|n| = |m+ n1+ n2+ · · ·+ nk | ≤ C |n2|. (6-20)

Hence we have

〈n〉s |m| ≤ C〈n2〉
s
〈m〉1/2〈n1〉

1/2. (6-21)

Thus this subcase can be treated exactly the same as Case 1. We omit the details.
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In the second subcase, |m+ n1|> 1000k2
|n2|, the crucial arithmetic observation is

n3
− (m3

+ n3
1+ · · ·+ n3

k)= 3(m+ n1)(m+ a)(n1+ a)+ a3
− (n3

2+ · · ·+ n3
k), (6-22)

where a = n2+· · ·+ nk . This observation can be easily verified since n =m+n1+· · ·+ nk . From (6-5)
and (6-19), we get

|n3
− (m3

+ n3
1+ · · ·+ n3

k)| ≥ Ck2
〈n2〉|m||n1| ≥ Ck|m|2. (6-23)

This implies that at least one of following statements holds:

|λ− n3
| ≥ C |m|2, (6-24)

|(λ− λ1− · · ·− λk)−m3
| ≥ C |m|2, (6-25)

there exists an i ∈ {1, . . . , k} such that |λi − n3
i | ≥ C |m|2. (6-26)

For (6-24), (6-3) can be bounded by∑
m+n1+···+nk=n

∫
〈n1〉

s
|û(m, λ− λ1− · · ·− λk)||û(n1, λ1)| · · · |û(nk, λk)||An,λ|dλ1 · · · dλk dλ. (6-27)

Let F2 be defined by

F2(x, t)=
∑

n

∫
|An,λ|eiλt einx dλ. (6-28)

Then we represent (6-27) as

∑
m+n1+···+nk=n

∫
F̂2(n, λ)Û (m, λ− λ1− · · ·− λk)Ĥ(n1, λ1)

k∏
j=2

Û (n j , λ j ) dλ1 · · · dλk dλ. (6-29)

Here H and U are the functions defined in (6-10) and (6-11). Clearly (6-29) equals∫
T×R

F2(x, t)H(x, t)U (x, t)k dx dt. (6-30)

Utilizing Hölder’s inequality, we estimate it further by

‖F2‖2 ‖H‖4 ‖U‖k4k ≤ Cδθ‖u‖k+1
Ys
. (6-31)

This yields the desired estimate for subcase (6-24).
One can similarly complete the proofs of subcases (6-25) and (6-26), and hence the proof of Case 2.

Case 3: |m|> 100k|n1|. The arithmetic observation (6-22) again plays an important role. In this case, let
us further consider two subcases:

|m|2 ≤ 1000k2
|n2|

2
|n3|, (6-32)

|m|2 > 1000k2
|n2|

2
|n3|. (6-33)

For the first subcase, we observe that, from (6-32),
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|m|2 ≤ C |n1||n2||n3|,

since |n2| ≤ |n1|. Hence we have

|m| = |m|1/2|m|2/3 ≤ C |m|1/3|n1|
1/3
|n2|

1/3
|n3|

1/3. (6-34)

This immediately implies

〈n〉s |m| ≤ C |m|s+1
≤ 〈m〉(s+1)/3

〈n1〉
(s+1)/3

〈n2〉
(s+1)/3

〈n3〉
(s+1)/3. (6-35)

Note that (s+ 1)/3< s for s > 1/2. By distributing the four factors to the corresponding functions, one
can mimic the proof of Case 1 to finish subcase (6-32).

We now turn to the contribution of (6-33). Clearly we have

|(n2+ · · ·+ nk)
3
− (n3

2+ · · ·+ n3
k)| ≤ 10k|n2|

2
|n3|, (6-36)

since |n2| ≥ |n3| ≥ · · · ≥ |nk |. From the crucial arithmetic observation (6-22), (6-36), and (6-33), we have

|n3
− (m3

+ n3
1+ · · ·+ n3

k)| ≥ Ck|m|2. (6-37)

This is the same as (6-23). Hence we again reduce the problems to (6-24), (6-25), and (6-26), which were
all done in Case 2. Therefore Case 3 is finished.

Putting all the cases together, we obtain

‖w‖s,−1/2 ≤ Cδθ‖u‖k+1
Ys
. (6-38)

Finally we need to estimate (∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

. (6-39)

Let {An} be a sequence with (∑
n

|An|
2
)1/2

≤ 1.

By duality, it suffices to estimate∑
m+n1+···+nk=n

n1+···+nk 6=0

∫
〈n〉s |m|
〈λ− n3〉

|û(m, λ−λ1−· · ·−λk)||û(n1, λ1)| · · · |û(nk, λk)||An| dλ1 · · · dλk dλ. (6-40)

By the same idea and similar techniques, one can bound (6-40) by mimicking the treatment of (6-3) and
get (∑

n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ− n3〉

dλ
)2 )1/2

≤ Cδθ‖u‖k+1
Ys
. (6-41)

We complete the proof of Proposition 5.2 by combining (6-38) and (6-41). �
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7. Proof of Theorem 1.3

The argument is similar to that in Section 5. By using a gauge transform as in (5-8) with vk replaced by
F(v), the well-posedness of (1-7) is equivalent to the well-posedness of the following equation:{

ut + uxxx + (F(u)−
∫

T
F(u) dx)ux = 0,

u(x, 0)= φ(x), x ∈ T, t ∈ R.
(7-1)

Now the nonlinear function w is defined by

w = ∂x u
(

F(u)−
∫

T

F(u) dx
)
. (7-2)

Let TF be an operator given by

TF u(x, t) := ψδ(t)e−t∂3
xφ(x)−ψδ(t)

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ. (7-3)

As in Section 5, the local well-posedness is a consequence of the following proposition.

Proposition 7.1. Let s > 1/2. There exists θ > 0 such that, for the nonlinear function w given by (7-2)
and any u satisfying ‖u‖Ys ≤ C0‖φ‖H s ,

‖w‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

≤ C(‖φ‖H s , F)δθ‖u‖4Ys
, (7-4)

provided F ∈ C5. Here C0 is a suitably large constant, and C(‖φ‖H s , F) is a constant independent of δ
and u, but which may depend on ‖φ‖H s and F.

The constant C(‖φ‖H s , F) will be specified in the proof of Proposition 7.1, which we postpone to
Section 8. We now return to the proof of Theorem 1.3. Proposition 7.1 implies that for δ sufficiently
small, T maps a ball

{u ∈ Ys : ‖u‖Ys ≤ C0‖φ‖H s }

into itself. Moreover, using Lemma 5.4 and repeating similar argument as in the proof of Proposition 7.1,
one obtains, for s > 1/2 and F ∈ C5,

‖TF u− TFv‖Ys ≤ δ
θC(‖φ‖H s , F)‖u− v‖Ys (7-5)

for all u, v in the ball {u ∈ Ys : ‖u‖Ys ≤C0‖φ‖H s }. Therefore, for δ > 0 small enough, TF is a contraction
on the ball and the local well-posedness again follows from Picard’s fixed-point theorem. This completes
the proof of Theorem 1.3.

8. Proof of Proposition 7.1

First we introduce a decomposition of F(u) which was used by Bourgain. Let K be a dyadic number,
and define a Fourier multiplier operator PK by setting

PK u(x, t)=
∫
ψK (y)u(x − y, t) dy. (8-1)
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Here the Fourier transform of ψK is a standard bump function supported on [−2K , 2K ] and ψ̂K (x)= 1
for x ∈ [−K , K ]. Let uK denote the Littlewood–Paley Fourier multiplier, that is,

uK = PK u− PK/2u. (8-2)

Then we may decompose F(u) by

F(u)=
∑

K

(F(PK u)− F(PK/2u))=
∑

K

F1(PK u, PK/2u)uK + R1,

where R1 is a function independent of the space variable x . Repeating this procedure for F1, we obtain

F(u)=
∑

K1≥K2

F2(P2K2u, . . . , PK2/4u)uK1uK2 +

∑
K1

R2uK1 + R1

=

∑
K1≥K2≥K3

F3(P4K3u, . . . , PK3/8u)uK1uK2uK3 +

∑
K1≥K2

R3uK1uK2 +

∑
K1

R2uK1 + R1

where R1, R2, R3 are functions independent of the space variable. Set

G K3(x, t)= F3(P4K3u, . . . , PK3/8u). (8-3)

Hence we represent w, defined in (7-2), as

w =
∑

K0,K1≥K2≥K3

∂x uK0

(
uK1uK2uK3 G K3 −

∫
T

uK1uK2uK3 G K3 dx
)

+

∑
K0,K1≥K2

∂x uK0

(
uK1uK2 −

∫
T

uK1uK2 dx
)

R3+
∑

K0,K1

∂x uK0

(
uK1 −

∫
T

uK1 dx
)

R2.

The main contribution of w is from the first term. The remaining terms can be handled by the method
presented in Section 6, because R2, R3 are functions independent of the space variable x (actually they
only depend on the conserved quantity

∫
T

u dx). Hence in what follows we only focus on estimating the
first term — the most difficult one. Denote the first term by w1:

w1 =
∑

K0,K1≥K2≥K3

∂x uK0

(
uK1uK2uK3 G K3 −

∫
T

uK1uK2uK3 G K3 dx
)
. (8-4)

We should prove

‖w1‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ1(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

≤ CδθC(‖φ‖H s , F)‖u‖4Ys
. (8-5)

In order to specify the constant C(‖φ‖H s , F), we define M by setting

M= sup
{
|DαF3(u1, . . . , u6)| : u j satisfies ‖u j‖Ys ≤ C0‖φ‖H s for all j = 1, . . . , 6;α

}
. (8-6)

Here Dα
= ∂α1

x1
· · · ∂

α6
x6 and α is taken over all tuples (α1, . . . , α6) ∈ (N∪ {0})6 with

∑
|α j | ≤ 2. M is a

real number. This is because, for s > 1/2, ‖u‖Ys ≤ C0‖φ‖H s yields that u is bounded by C‖φ‖H s , and
the previous claim follows from F3 ∈ C2.
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In order to bound ‖w1‖s,−1/2, by duality, it suffices to bound∑
K0,K1≥K2≥K3

n0+n1+n2+n3+m=n
n1+n2+n3+m 6=0

∫
An,λ〈n〉sn0

〈λ− n3〉1/2
ûK0(n0, λ− λ1− λ2− λ3−µ)

·

3∏
j=1

ûK j (n j , λ j )Ĝ K3(m, µ) dλ1 · · · dλ4dλdµ, (8-7)

where An,λ satisfies ∑
n

∫
|An,λ|

2dλ= 1.

The trouble maker is G K3 since there is no way to find a suitable upper bound for its Xs,b norm.
Because of this, the method in Section 6 is no longer valid, and we have to treat m and µ differently
from n and λ, respectively. A delicate analysis must be done to overcome the difficulty caused by G K3 .
For simplicity, we assume that δ = 1. One can modify the argument to gain a decay of δθ by using the
technical treatment from Section 6.

For a dyadic number M , define the Littlewood–Paley Fourier multiplier by

gK3,M = PM G K3 − PM/2G K3 = (G K3)M . (8-8)

Let v be defined by

v(x, t)=
∑

n

∫
An,λ

〈λ− n3〉1/2
eiλt einx dλ. (8-9)

To estimate (8-7), it suffices to estimate∑
K ,K0,K1≥K2≥K3,M
n0+n1+n2+n3+m=n

n1+n2+n3+m 6=0

∫
̂〈∂x 〉

svK (n, λ)∂̂x uK0(n0, λ− λ1− λ2− λ3−µ)

·

3∏
j=1

ûK j (n j , λ j )ĝK3,M(m, µ) dλ1 · · · dλ4dλdµ. (8-10)

Here K is a dyadic number.
As we did in Section 6, we consider three cases:

K0 < 2100K2; (8-11)

2100K2 ≤ K0 ≤ 210K1; (8-12)

K0 > 210K1. (8-13)

The rest of the paper is devoted to a proof of these three cases. In what follows, we will only provide
the details for the estimates of ‖w1‖s,−1/2 with 1/2 < s < 1 (the case s ≥ 1 is easier). For the desired
estimate of (∑

n

〈n〉2s
(∫
|ŵ1(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

,
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simply replace v by

v1(x, t)=
∑

n

∫
Cn,λAn

〈λ− n3〉
eiλt einx dλ, (8-14)

and then the desired estimate follows similarly. Here Cn,λ ∈C satisfies supλ |Cn, λ| ≤ 1 and {An} satisfies∑
n |An|

2
≤ 1.

9. Proof of case (8-11)

In this case, we should consider further two subcases:

M ≤ 210K1, (9-1)

M > 210K1. (9-2)

For the contribution of (9-1), noticing that K ≤ C K1 in this subcase, we estimate (8-10) by∑
K1≥K2≥K3

∫
T×R

∣∣∣∣( ∑
K≤C K1

∂s
xvK

)( ∑
K0≤C K2

∂x uK0

)
uK1uK2uK3(P210 K1 G K3)

∣∣∣∣ dx dt, (9-3)

which is bounded by∑
K3

‖uK3‖∞‖G K3‖∞

∫
T×R

∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K2

∑
K0≤C K2

K0u∗K0
|uK2 | dx dt, (9-4)

where f ∗ stands for the Hardy–Littlewood maximal function of f . By the Schur’s test, (9-4) can be
estimated by∑
K3

K−(2s−1)/2
3 ‖u‖YsM

∫ (∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

·

(∑
K0

K0|u∗K0
|
2
)1/2(∑

K2

K2|uK2 |
2
)1/2

dx dt. (9-5)

Since s > 1/2, we obtain, by a use of Hölder’s inequality, that (9-4) is majorized by

CM‖u‖Ys

∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K0

K0|u∗K0
|
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K2

K2|uK2 |
2
)1/2∥∥∥∥

4
. (9-6)

Observe that ∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

4
≤

∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4
≤ C‖v‖4 ≤ C‖v‖0,1/3 ≤ C. (9-7)

Here the first inequality is obtained by using Fefferman and Stein’s vector-valued inequality on the
maximal function, and the second is a consequence of the classical Littlewood–Paley theorem. Similarly,∥∥∥∥(∑

K0

K0|u∗K0
|
2
)1/2∥∥∥∥

4
≤

∥∥∥∥(∑
K0

K0|uK0 |
2
)1/2∥∥∥∥

4
≤ C‖∂1/2

x u‖4 ≤ C‖u‖1/2,1/3 ≤ C‖u‖Ys (9-8)
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and ∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
≤ C‖∂s

x u‖4 ≤ C‖u‖s,1/3 ≤ C‖u‖Ys . (9-9)

Hence, from (9-7), (9-8) and (9-9), we have

(8-10)≤ CM‖u‖4Ys
. (9-10)

For the contribution of (9-2), since in this subcase K ≤ C M , we estimate (8-10) by∑
K1

‖uK1‖∞

∫
T×R

∑
K3≤K1

|uK3 |

∑
M

∑
K≤C M

K sv∗K |gK3,M |
∑
K2

∑
K0≤C K2

K0u∗K0
|uK2 | dx dt, (9-11)

which is bounded by∑
K1

K−(2s−1)/2
1 ‖u‖Ys

∫
T×R

∑
K3≤K1

|uK3 |

(∑
K

|v∗K |
2
)1/2(∑

M

M2s
|gK3,M |

2
)1/2

·

(∑
K0

K0|u∗K0
|
2
)1/2(∑

K2

K2|uK2 |
2
)1/2

dx dt. (9-12)

By a use of the Cauchy–Schwarz inequality, (9-12) is estimated by∑
K1

K−(2s−1)/2
1 ‖u‖Ys

∫
T×R

(∑
K

|v∗K |
2
)1/2(∑

K0

K0|u∗K0
|
2
)1/2(∑

K2

K2|uK2 |
2
)1/2

·

(∑
K3

K 2s
3 |uK3 |

2
)1/2( ∑

K3≤K1

∑
M

M2s

K 2s
3
|gK3,M |

2
)1/2

dx dt. (9-13)

Using Hölder’s inequality, we then bound it further by∑
K1

K−(2s−1)/2
1 ‖u‖Ys

∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K2

K0|u∗K0
|
2
)1/2∥∥∥∥

6

∥∥∥∥(∑
K2

K2|uK2 |
2
)1/2∥∥∥∥

6

·

∥∥∥∥(∑
K3

K 2s
3 |uK3 |

2
)1/2∥∥∥∥

4

∥∥∥∥( ∑
K3≤K1

∑
M

M2s

K 2s
3
|gK3,M |

2
)1/2∥∥∥∥

6
, (9-14)

which is majorized by∑
K1

K−(2s−1)/2
1 ‖u‖4Ys

∑
K3≤K1

K−s
3

∥∥∥∥(∑
M

M2s
|gK3,M |

2
)1/2∥∥∥∥

6
≤

∑
K1

K−(2s−1)/2
1 ‖u‖4Ys

∑
K3≤K1

K−s
3 ‖∂

s
x G K3‖∞.

From the definition of G K3 , we have

∂x G K3(x, t)= O(MK3)‖u‖Ys = O(MK3)‖φ‖H s . (9-15)

Hence, for s < 1,

‖∂s
x G K3‖∞ ≤ CMK s

3‖φ‖H s . (9-16)
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Since s > 1/2, we then have

(9-14)≤ CM‖φ‖H s

∑
K1

K−(2s−1)/2+ε
1 ‖u‖4Ys

≤ CM‖φ‖H s‖u‖4Ys
. (9-17)

This completes our discussion of Case (8-11).

10. Proof of case (8-12)

In this case, it suffices to consider the following subcases:

K ≤ 210K2, (10-1)

K ≤ 210 M, (10-2)

K > 29(K2+M) and K3 ≥ K 1/2
0 , (10-3)

K > 29(K2+M), K3 ≤ K 1/2
0 , and M ≥ 2−10K 2/3

0 , (10-4)

K > 29(K2+M), K3 ≤ K 1/2
0 , and M < 2−10K 2/3

0 . (10-5)

The first two cases can be handled in exactly the same way as cases (9-1) and (9-2).
For case (10-3), observe that (8-12) and (10-3) imply

K ≤ C K1 (10-6)

and

K 1/2
0 ≤ K 1/2

2 K 1/2
3 . (10-7)

Hence (8-10) is bounded by∫ ∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K0≥K2≥K3

K0≤K 2
3

K0u∗K0
|uK2 ||uK3 |‖G K3‖∞ dx dt. (10-8)

Applying Hölder’s inequality, we estimate (10-8) by

CM

∫ (∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2 ∏

j=0,2,3

(∑
K j

K 1+ε
j |uK j |

2
)1/2

dx dt. (10-9)

One more use of Hölder’s inequality yields that (10-8) is bounded by

CM

∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4

∏
j=0,2,3

∥∥∥∥(∑
K j

K 1+ε
j |uK j |

2
)1/2∥∥∥∥

6
.

Hence we obtain

(10-8)≤ CM‖u‖4Ys
. (10-10)

This finishes the proof of (10-3).
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For case (10-4), we estimate (8-10) by∑
K2,K3

∫ ∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K0

K0|u∗K0
||uK2 ||uK3 |

∑
M≥C K 2/3

0

|gK3,M | dx dt, (10-11)

which is dominated by

C
∑

K2,K3

∫ (∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

|uK2 ||uK3 |

·

(∑
K0

K0|u∗K0
|
2
)1/2(∑

M

M3/2
|gK3,M |

2
)1/2

dx dt. (10-12)

By Hölder’s inequality with L4 norms for the first two functions in the integrand, L6+ norms for the next
three functions, and an L p norm (very large p) for the last one, (10-12) is dominated by

C‖u‖Ys

∑
K2,K3

‖uK2‖6+‖uK3‖6+

∥∥∥∥(∑
K0

K0|u∗K0
|
2
)1/2∥∥∥∥

6+
‖∂3/4

x G K3‖∞. (10-13)

Applying (9-16), we estimate (10-12) by

CM‖φ‖Hs‖u‖
2
Ys

3∏
j=2

∑
K j

K 3/8
j ‖uK j‖6+ ≤ CM‖φ‖Hs‖u‖

2
Ys

3∏
j=2

∑
K j

K 3/8
j ‖uK j‖0+,1/2 ≤ CM‖φ‖Hs‖u‖

4
Ys
,

as desired. This completes the discussion of (10-4).
We now turn to case (10-5). In this case, we have

|n0+ n1| + 2K2+M ≥ |n| ≥ K/2≥ 28(K2+M) , (10-14)

which implies
|n0+ n1| ≥ 25(K2+M). (10-15)

Notice that

(n0+ n1+ n2+ n3+m)3− n3
0− n3

1− n3
2− n3

3−m3

= 3(n0+ n1)(n0+ n2+ n3+m)(n1+ n2+ n3+m)+ (n2+ n3+m)3− n3
2− n3

3−m3. (10-16)

From (10-15), (10-16), and (10-5), we obtain

|n3
− n3

0− n3
1− n3

2− n3
3−m3

| ≥ C(K2+M)K0K1 ≥ C K0K1 ≥ C K 2
0 . (10-17)

Hence one of the following four statements must be true:

|λ− n3
| ≥ K 2

0 , (10-18)

|(λ− λ1− λ2− λ3−µ)− n3
0| ≥ K 2

0 , (10-19)

there exists an i ∈ {1, 2, 3} such that |λi − n3
i | ≥ K 2

0 , (10-20)

|µ| ≥ K 2
0 . (10-21)
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For case (10-18), we set
ṽ(x, t)= (v̂1

|λ−n3|≥K 2
0
)∨(x, t). (10-22)

We then estimate (8-10) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
|∂x uK0 |

∑
K1

∑
K≤C K1

K s ṽ∗K |uK1 | dx dt. (10-23)

This is clearly bounded by

CM‖u‖2Ys

∑
K0

∫
K0|u∗K0

|

(∑
K

|ṽ∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-24)

Using the Cauchy–Schwarz inequality, we bound (10-24) by

CM‖u‖2Ys

∫ (∑
K0

K ε
0 |u
∗

K0
|
2
)1/2(∑

K0

K 2−ε
0

∑
K

|ṽ∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-25)

By Hölder’s inequality, (10-25) is majorized by

CM‖u‖2Ys

∥∥∥∥(∑
K0

K ε
0 |u
∗

K0
|
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K0

K 2−ε
0

∑
K

|ṽ∗K |
2
)1/2∥∥∥∥

2

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
,

which is controlled by

CM‖u‖3Ys
‖∂εx u‖4

(∑
K0

K 2−ε
0 ‖ṽ‖

2
2

)1/2

≤ CM‖u‖3Ys
‖∂εx u‖4

∑
K0

K−ε/20 ≤ CM‖u‖4Ys
. (10-26)

This finishes the proof of case (10-18).
For case (10-19), let ũ be defined by

ũ = (û1
|λ−n3|≥K 2

0
)∨. (10-27)

Then (8-10) can be estimated by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
|∂x ũK0 |

∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt. (10-28)

By Schur’s test and Hölder’s inequality, we control (10-28) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

‖∂x ũK0‖2

∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
, (10-29)

which is bounded by
CM‖u‖3Ys

∑
K0

‖uK0‖0,1/2 ≤ CM‖u‖4Ys
. (10-30)

This completes the proof of case (10-19).
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For case (10-20), if j = 1, we dominate (8-10) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
|∂x uK0 |

∑
K1

∑
K≤C K1

K sv∗K |ũK1 | dx dt. (10-31)

As we did in case (10-19), we bound (10-31) by

CM‖u‖2Ys

∑
K0

‖∂x uK0‖4 ‖v‖4

∥∥∥∥(∑
K1

K 2s
1 |ũK1 |

2
)1/2∥∥∥∥

2
. (10-32)

This can be further controlled by

CM‖u‖3Ys

∑
K0

1
K0
‖∂x uK0‖4 ‖v‖4 ≤M‖u‖3Ys

∑
K0

1
K0
‖uK0‖1,1/3 ≤ CM‖u‖4Ys

, (10-33)

as desired.
We now consider j = 2 or j = 3. Without loss of generality, assume j = 2. In this case, we estimate

(8-10) by ∑
K3

‖uK3‖‖G K3‖∞

∑
K0

∫
|∂x uK0 |

∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K2≤C K0

|ũK2 | dx dt, (10-34)

which is bounded by

CM‖u‖Ys

∑
K0

‖∂x uK0‖∞

∑
K2≤K0

‖ũK2‖2 ‖v‖4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
.

Notice that ∑
K0

‖∂x uK0‖∞

∑
K2≤K0

‖ũK2‖2 ≤ C
∑
K0

1
K0
‖∂x uK0‖∞‖u‖Ys

≤ C
∑

n

∫
|û(n, λ)| dλ‖u‖Ys ≤ C‖u‖2Ys

.

Hence (10-34) is dominated by
CM‖u‖4Ys

. (10-35)

This completes case (10-20).
We now turn to the most difficult case, (10-21) in case (8-12). We should decompose G K3 , with respect

to the t-variable, into Littlewood–Paley multipliers in the same spirit as before. More precisely, for any
dyadic number L , let QL be

QLu(x, t)=
∫
ψL(τ )u(x, t − τ) dτ. (10-36)

Here the Fourier transform ofψL is a bump function supported on [−2L , 2L] and ψ̂L(x)=1 if x ∈[−L , L].
Let

5Lu = QLu− QL/2u. (10-37)
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Then 5Lu gives a Littlewood–Paley multiplier with respect to the time variable t . Using this multiplier,
we represent

uK =
∑

L

uK ,L . (10-38)

Here uK ,L =5L(uK ). We decompose G K3 as

G K3 = C +
∑

L

(F3(QL P4K3u, . . . , QL PK3/8u)− F3(QL/2 P4K3u, . . . , QL/2 PK3/8u))

= C +
∑

j=4,2,1,1/2,1/4,1/8
L

HK3,Lu j K3,L ,
(10-39)

where HK3,L is given by

HK3,L = F4
(
Q`L P4K3u, . . . , Q`L PK3/8u; `= 1, 1

2

)
. (10-40)

Let M1 be defined by

M1 = sup{|DαF4(u1, . . . , u12)| : u j satisfies ‖u j‖Ys ≤ C0‖φ‖H s for all j = 1, . . . , 12;α}. (10-41)

Here Dα
= ∂α1

x1
· · · ∂α12

x12
and α is taken over all tuples (α1, . . . , α12) ∈ (N∪{0})12 with

∑
|α j | ≤ 1. M1 is

a real number because F4 ∈ C1.
In order to finish the proof, we need to consider a further three subcases:

L ≤ 210K 3
3 , (10-42)

210K 3
3 < L ≤ 2−5K 2

0 , (10-43)

L > 2−5K 2
0 . (10-44)

For the contribution of (10-42), we set

hK0, j K3,L = (
̂HK3,Lu j K3,L1

|µ|≥K 2
0
)∨. (10-45)

Here j = 4, 2, 1, 1/2, 1/4, 1/8. From the definition of HK3,L , we get

‖hK0, j K3,L‖4 ≤ CM1‖φ‖H s
L

K 2
0
‖u j K3,L‖4. (10-46)

Then (8-10) is bounded by∑
K2

‖uK2‖∞

∑
K0

∫
K0u∗K0

∑
K3≤C K 1/2

0

‖uK3‖∞

∑
L≤C K 3

3

|hK0, j K3,L |
∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt, (10-47)

which is majorized by∑
K2

‖uK2‖∞

∑
K0

K0
∑

K3≤C K 1/2
0

‖uK3‖∞

∫
u∗K0

·

∑
L≤C K 3

3

|hK0, j K3,L |

(∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-48)
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Using Hölder’s inequality with L4 norms for the four functions in the integrand, we estimate (10-48)
as follows:

CM1‖φ‖H s‖u‖2Ys

∑
K0

K0‖uK0‖4
∑

K3≤K 1/2
0

‖uK3‖∞

∑
L≤C K 3

3

L
K 2

0
‖u j K3,L‖4

≤ CM1‖φ‖
2
H s‖u‖3Ys

∑
K0

K 1/2
0 ‖uK0‖0,1/3

≤ CM1‖φ‖
2
H s‖u‖4Ys

. (10-49)

This finishes case (10-42).
For the contribution of (10-43), we bound (8-10) by∑

K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

|∂x uK0 |

∑
210 K 3

3<L≤2−10 K 2
0

|hK0, j K3,L |
∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt, (10-50)

which is dominated by

C‖u‖Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

∫ ∑
K0

|∂x uK0 |

∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

|hK0, j K3,L |

·

(∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt, (10-51)

By the Cauchy–Schwarz inequality, we further estimate (10-51) by

C‖u‖Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1−1/2
∫ ∑

K0

|∂x uK0 |

K0

·

( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2(∑

K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-52)

Applying Hölder’s inequality with an L∞ norm for the first function in the integrand, an L2 norm for the
second, and L4 norms for the last two functions, we then majorize (10-52) by

C‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1−1/2
∑
K0

‖∂x uK0‖∞

K0

∥∥∥∥( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2∥∥∥∥

2
. (10-53)

Notice that if L ∼1K 2
0 ,

‖hK0, j K3,L‖2 ≤ CM1‖φ‖H s1‖u j K3,L‖2. (10-54)
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Thus we have∥∥∥∥( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2∥∥∥∥

2
≤ CM1‖φ‖H s1

( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L‖u j K3,L‖
2
2

)1/2

≤ CM1‖φ‖H s1‖u j K3‖0,1/2

≤ CM1‖φ‖
2
H s1. (10-55)

From (10-55), (10-53) is bounded by

CM1‖φ‖
2
H s‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

11/2
∑
K0

‖∂x uK0‖∞

K0
, (10-56)

which is clearly majorized by

CM1‖φ‖
2
H s‖u‖4Ys

. (10-57)

This finishes case (10-43).
For the contribution of (10-44), we estimate (8-10) by∑

K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

|∂x uK0 |

∑
L>2−5 K 2

0

|hK0, j K3,L |
∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt, (10-58)

which is bounded by

∑
K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ (∑
K0

|∂x uK0 |
2

K 2
0

)1/2

·

( ∑
L>2−5 K 2

0

L|hK0, j K3,L |
2
)1/2(∑

K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-59)

Applying Hölder’s inequality, we further have

(10-59)≤ CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

‖∂x uK0‖∞

K0

( ∑
L>2−5 K 2

0

L‖u j K3,L‖
2
2

)1/2

≤ CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

‖∂x uK0‖∞

K0
‖u j K3‖0,1/2. (10-60)

This is clearly majorized by

CM1‖φ‖Hs‖u‖
4
Ys
. (10-61)

Hence we complete case (10-44).
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11. Proof of case (8-13)

In this case, it suffices to consider the following subcases:

M ≥ 2−10K 2/3
0 , (11-1)

M < 2−10K 2/3
0 and K 2

2 K3 ≥ 2−10K 2
0 , (11-2)

M < 2−10K 2/3
0 and K 2

2 M ≥ 2−10K 2
0 , (11-3)

M < 2−10K 2/3
0 , K 2

2 K3 < 2−10K 2
0 and K 2

2 M < 2−10K 2
0 . (11-4)

For case (11-1), notice that we have

K ≤ C M3/2. (11-5)

Hence we estimate (8-10) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
M

∑
K≤C M3/2

K sv∗K

∑
K0≤C M3/2

K0u∗K0
|gK3,M | dx dt, (11-6)

which is bounded by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
M

M (3/2)(1−s)
|gK3,M |

∑
K≤C M3/2

K sv∗K

(∑
K0

K 2s
0 |u

∗

K0
|
2
)1/2

dx dt, (11-7)

since 1/2< s < 1. Applying Schur’s test, we estimate (11-7) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

(∑
M

M3
|gK3,M |

2
)1/2(∑

K

|v∗K |
2
)1/2(∑

K0

K 2s
0 |u

∗

K0
|
2
)1/2

dx dt. (11-8)

By Hölder’s inequality and s > 1/2, (11-8) is majorized by

C
∑

K1≥K2≥K3

‖∂3/2
x G K3‖∞

( 3∏
j=1

‖uK j‖6+

)∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K0

K 2s
0 |u

∗

K0
|
2
)1/2∥∥∥∥

4

≤ CM(‖φ‖H s +‖φ‖2H s )‖u‖Ys

∑
K1≥K3≥K3

K 3/2
3

3∏
j=1

‖uK j‖6+

≤ CM(‖φ‖H s +‖φ‖2H s )‖u‖Ys

3∏
j=1

∑
K j

K 1/2
j ‖uK j‖0+,1/2

≤ CM(‖φ‖H s +‖φ‖2H s )‖u‖4Ys
. (11-9)

This finishes case (11-1).
For case (11-2), observe that, in this case,

K0 ≤ C K 1/2
1 K 1/2

2 K 1/2
3 . (11-10)
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We estimate (8-10) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
K≤C K0

K sv∗K

∑
K0≤C(K1 K2 K3)1/2

K0u∗K0
‖G K3‖∞dx dt, (11-11)

which is bounded by

CM

∫ (∑
K

|v∗K |
2
)1/2(∑

K0

K 2s
0 |u

∗

K0
|
2
)1/2 3∏

j=1

∑
K j

K 1/2
j |uK j | dx dt. (11-12)

Using Hölder’s inequality with L4 norms for the first two functions and L6 norms for the last three
functions in the integrand, we obtain

CM‖u‖Ys

3∏
j=1

∥∥∥∥∑
K j

K 1/2
j |uK j |

∥∥∥∥
6
≤ CM‖u‖4Ys

. (11-13)

This completes case (11-2).
For case (11-3) we have

K0 ≤ C K 1/2
1 K 1/2

2 M1/2. (11-14)

Hence we dominate (8-10) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
M

|gK3,M |
∑

K≤C K0

K sv∗K

∑
K0≤C(K1 K2 M)1/2

K0u∗K0
dx dt, (11-15)

which is bounded by

C
∑
K3

∫ (∑
K

|v∗K |
2
)1/2(∑

K0

K 2s
0 |u

∗

K0
|
2
)1/2

|uK3 |

·

(∑
M

M |gK3,M |
2
)1/2 2∏

j=1

∑
K j

K 1/2
j |uK j | dx dt. (11-16)

Using Hölder’s inequality with L4 norms for the first two functions, L6 norms for the third, an L p norm
with p very large for the fourth, and L6+ for the last two functions in the integrand, we obtain

C‖u‖Ys

2∏
j=1

∥∥∥∥∑
K j

K 1/2
j |uK j |

∥∥∥∥
6+

∑
K3

‖uK3‖6 ‖∂
1/2
x G K3‖∞. (11-17)

Clearly (11-17) is dominated by

CM‖φ‖H s‖u‖3Ys

∑
K3

K 1/2
3 ‖uK3‖6 ≤ CM‖φ‖H s‖u‖4Ys

. (11-18)

Hence case (11-3) is done.
For case (11-4) we observe that

M2K2 ≤ 2−10K 2
0 . (11-19)
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In fact, if (11-19) does not hold, then, from (11-4),

M2K2 > 2−10K 2
0 > K 2

2 M.

Thus M > K2, which immediately yields

M3 > M2K2 > 2−10K 2
0 ,

contradicting M < 2−10K 2/3
0 . Hence (11-19) must be true. From (11-19), K 2

2 K3+ K 2
2 M < 2−9K 2

0 , we
get

|(n2+ n3+m)3− n3
2− n3

3−m3
| ≤ 2−5K 2

0 . (11-20)

Since n1+ n2+ n3+m 6= 0, from (8-13), (11-4), and (11-20), the crucial arithmetic observation (10-16)
yields

|n3
− n3

0− n3
1− n3

2− n3
3−m3

| ≥ 2K 2
0 . (11-21)

Hence one of the following statements must be true:

|λ− n3
| ≥ K 2

0 , (11-22)

|(λ− λ1− λ2− λ3−µ)− n3
0| ≥ K 2

0 , (11-23)

there exists an i ∈ {1, 2, 3} such that |λi − n3
i | ≥ K 2

0 , (11-24)

|µ| ≥ K 2
0 . (11-25)

For case (11-22), we estimate (8-10) by∑
K1,K2,K3

‖uK1‖∞‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
K0|u∗K0

|

∣∣∣∣ ∑
K≤C K0

∂s
x ṽK

∣∣∣∣ dx dt. (11-26)

Then the Cauchy–Schwarz inequality yields

CM‖u‖3Ys

∥∥∥∥(∑
K0

K 2−2s
0

∣∣∣∣ ∑
K≤C K0

∂s
x ṽK

∣∣∣∣2)1/2∥∥∥∥
2

∥∥∥∥(∑
K0

K 2s
0 |u

∗

K0
|
2
)1/2∥∥∥∥

2

≤ CM‖u‖4Ys

(∑
K0

K 2−2s
0

∑
K≤C K0

∥∥∥∥∂s
x ṽK

∥∥∥∥2

2

)1/2

≤ CM‖u‖4Ys
. (11-27)

This finishes the proof of case (11-22).
For case (11-23), (8-10) can be estimated by∑

K1,K2,K3

‖uK1‖∞‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
K0|ũ∗K0

|

∑
K≤C K0

K sv∗K dx dt. (11-28)

By Schur’s test and Hölder’s inequality, we control (11-28) by

CM‖u‖3Ys

∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

2

∥∥∥∥(∑
K0

K 2s+2
0 |ũK0 |

2
)1/2∥∥∥∥

2
, (11-29)
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which is clearly bounded by

CM‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0,1/2

)1/2

≤ CM‖u‖4Ys
. (11-30)

This completes the proof of case (11-23).
For case (11-24), without loss of generality, assume j = 1. We then dominate (8-10) by∑

K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K1

∑
K0

∫
K0|u∗K0

||ũK1 |

∑
K≤C K0

K sv∗K dx dt. (11-31)

By Hölder’s inequality, we bound (11-31) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K1

∑
K0

∑
K≤C K0

K s K0‖uK0‖4 ‖ũK1‖2 ‖vK‖4

≤

∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K1

‖uK1‖0,1/2
∑
K0

∑
K≤C K0

K s
‖uK0‖4‖vK‖4. (11-32)

By Schur’s test, we dominate (11-32) by

CM‖u‖2Ys

∑
K1

‖uK1‖0,1/2

(∑
K0

K 2s
0 ‖uK0‖

2
4

)1/2(∑
K

‖vK‖
2
4

)1/2

≤ CM‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0,1/3

)1/2(∑
K

‖vK‖
2
0,1/3

)1/2

≤ CM‖u‖4Ys
. (11-33)

Hence case (11-24) is done.
In order to finish the proof, as is done in (10-36), we need to consider three further subcases:

L ≤ 210K 3
3 , (11-34)

210K 3
3 < L ≤ 2−5K 2

0 , (11-35)

L > 2−5K 2
0 . (11-36)

For the contribution of (11-34), notice that

‖hK0, j K3,L‖6 ≤ CM1‖φ‖H s
L

K 2
0
‖u j K3,L‖6. (11-37)

Here hK0, j K3,L is defined as in (10-45). In this case we also have K3 ≤ K 2/3
0 , from

K 2
2 K3 ≤ 2−10K 2

0 .

Then (8-10) is bounded by∫ ∑
K0

K0u∗K0

∑
K≤C K0

K sv∗K

∑
K1≥K2≥K3

K3≤K 2/3
0

|uK1 ||uK2 ||uK3 |

∑
L≤C K 3

3

|hK0, j K3,L | dx dt. (11-38)
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Write (11-38) as∑
1dyadic
1≤1

∫ ∑
K0

K0u∗K0

∑
K≤C K0

K sv∗K

∑
K1≥K2≥K3

1K 2/3
0 /2<K3≤1K 2/3

0

|uK1 ||uK2 ||uK3 |

∑
L≤C K 3

3

|hK0, j K3,L | dx dt. (11-39)

Observe that if 1K 2/3
0 /2< K3 ≤1K 2/3

0 , we have

K0 ≤1
−3/2K 1/2

1 K 1/2
2 K 1/2

3 . (11-40)

Hence

C‖u‖Ys

∑
K0

∑
K≤K0

K s
∑

K1,K2

K 1/2
1 K 1/2

2

∑
1≤1

1−3/2
∑

K3∼1K 2/3
0

K 1/2
3

·

∫
u∗K0

v∗K |uK1 ||uK2 |

∑
L≤C K 3

3

|hK0, j K3,L | dx dt. (11-41)

Applying Hölder’s inequality with L4 norms for first two functions and L6 for the last three, and then
using (11-37), we get

CM1‖φ‖H s‖u‖Ys

∑
K0

∑
K≤K0

K s
∑

K1,K2

K 1/2
1 K 1/2

2

∑
1≤1

1−3/2

·

∑
K3∼1K 2/3

0

K 1/2
3 ‖uK0‖4 ‖v

∗

K‖4 ‖uK1‖6 ‖uK2‖6
∑

L≤C K 3
3

L
K 2

0
‖u j K3,L‖6,

(11-42)

which is bounded by

CM1‖φ‖H s‖u‖Ys

∑
K0

∑
K≤K0

K s
∑
1≤1

1−3/2
∑

L≤C13 K 2
0

L
K 2

0
‖uK0‖4 ‖v

∗

K‖4

·

∑
K1

K 1/2
1 ‖uK1‖0+,1/2

∑
K2

K 1/2
2 ‖uK2‖0+,1/2

∑
K3

K 1/2
3 ‖u j K3,L‖0+,1/2

≤ CM1‖φ‖
2
H s‖u‖3Ys

∑
1≤1

13/2
∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

≤ CM1‖φ‖
2
H s‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0,1/3

)1/2(∑
K

‖vK‖
2
0,1/3

)1/2

≤ CM1‖φ‖
2
H s‖u‖4Ys

. (11-43)

This completes case (11-34).
For the contribution of (11-35), we bound (8-10) by∑

K1

‖uK1‖∞

∑
K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

∑
K≤C K0

K sv∗K K0u∗K0

∑
210 K 3

3<L≤2−5 K 2
0

|hK0, j K3,L | dx dt, (11-44)
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which is dominated by

C‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−5

1dyadic

∑
K0

∑
K≤C K0

K s
∫

K0u∗K0
v∗K

∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

|hK0, j K3,L | dx dt. (11-45)

Using the Cauchy–Schwarz inequality, we further estimate (11-45) by

C‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−5

1dyadic

1−
1
2
∑
K0

∑
K≤C K0

K s
∫

u∗K0
v∗K

( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2

dx dt. (11-46)

Employing Hölder’s inequality with L4 norms for the first two functions and an L2 for the last one, we
bound (11-46) by

C‖u‖2Ys

·

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1−1/2
∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

∥∥∥∥( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2∥∥∥∥

2
. (11-47)

From (10-55), (11-47) is majorized by

CM1‖φ‖
2
H s‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1
1
2
∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

≤ CM1‖φ‖
2
H s‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0, 1

3

)1/2(∑
K

‖vK‖
2
0, 1

3

)1/2

≤ CM1‖φ‖
2
H s‖u‖4Ys

. (11-48)

This finishes the proof for case (11-35).
For the contribution of (11-36), we estimate (8-10) by

∑
K1,K2

‖uK1‖∞‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

K0u∗K0

∑
L>2−5 K 2

0

|hK0, j K3,L |
∑

K≤C K0

K sv∗K dx dt. (11-49)

By the Cauchy–Schwarz inequality, (11-49) is bounded by

∑
K1,K2

‖uK1‖∞‖uK2‖∞

∑
K3

‖uK3‖∞

∑
K0

∑
K≤C K0

K s
∫
v∗K u∗K0

( ∑
L>2−10 K 2

0

L|hK0, j K3,L |
2
)1/2

dx dt. (11-50)

Employing Hölder’s inequality with L4 norms for the first two functions and an L2 for the last one, we
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dominate (11-50) by

CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

∥∥∥∥( ∑
L>2−5 K 2

0

L|u j K3,L |
2
)1/2∥∥∥∥

2

≤ CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

∑
K≤C K0

K s
‖uK0‖0,1/3‖vK‖0,1/3‖u‖0,1/2

≤ CM1‖φ‖H s‖u‖4Ys
. (11-51)

Hence we complete case (11-36).
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