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CAUCHY PROBLEM FOR ULTRASOUND-MODULATED EIT

GUILLAUME BAL

Ultrasound modulation of electrical or optical properties of materials offers the possibility of devising
hybrid imaging techniques that combine the high electrical or optical contrast observed in many settings of
interest with the high resolution of ultrasound. Mathematically, these modalities require that we reconstruct
a diffusion coefficient σ(x) for x ∈ X , a bounded domain in Rn , from knowledge of σ(x)|∇u|2(x) for
x ∈ X , where u is the solution to the elliptic equation −∇ · σ∇u = 0 in X with u = f on ∂X .

This inverse problem may be recast as a nonlinear equation, which formally takes the form of a
0-Laplacian. Whereas p-Laplacians with p > 1 are well-studied variational elliptic nonlinear equations,
p = 1 is a limiting case with a convex but not strictly convex functional, and the case p < 1 admits a
variational formulation with a functional that is not convex. In this paper, we augment the equation for
the 0-Laplacian with Cauchy data at the domain’s boundary, which results in a formally overdetermined,
nonlinear hyperbolic equation.

This paper presents existence, uniqueness, and stability results for the Cauchy problem of the 0-
Laplacian. In general, the diffusion coefficient σ(x) can be stably reconstructed only on a subset of
X described as the domain of influence of the space-like part of the boundary ∂X for an appropriate
Lorentzian metric. Global reconstructions for specific geometries or based on the construction of
appropriate complex geometric optics solutions are also analyzed.

1. Introduction

Electrical impedance tomography (EIT) and optical tomography (OT) are medical imaging modalities that
take advantage of the high electrical and optical contrast exhibited by different tissues, and in particular,
the high contrast often observed between healthy and unhealthy tissues. Electrical potentials and photon
densities are modeled in such applications by a diffusion equation, which is known not to propagate
singularities, and as a consequence, the reconstruction of the diffusion coefficient in such modalities often
comes with poor resolution [Arridge and Schotland 2010; Bal 2009; Uhlmann 2009].

Ultrasound modulations have been proposed as a means to combine the high contrast of EIT and OT
with the high resolution of ultrasonic waves propagating in an essentially homogeneous medium [Wang
2004]. In the setting of EIT, ultrasound-modulated electrical impedance tomography (UMEIT), also
called acousto-electric tomography, has been proposed and analyzed in [Ammari et al. 2008; Bal et al.
2011a; Capdeboscq et al. 2009; Gebauer and Scherzer 2008; Kuchment and Kunyansky 2011; Zhang and
Wang 2004]. In the setting of optical tomography, a similar model of ultrasound-modulated tomography
(UMOT), also called acousto-optic tomography, has been derived in [Bal and Schotland 2010] in the
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so-called incoherent regime of wave propagation, while a large physical literature deals with the coherent
regime [Atlan et al. 2005; Kempe et al. 1997; Wang 2004], whose mathematical structure is quite different.
The 0-Laplacian model also finds applications in thermoacoustic tomography. For this and other hybrid
imaging modalities, see, for example, [Bal 2013; Scherzer 2011].

Elliptic forward problem. In this paper, we aim to reconstruct an unknown coefficient σ(x) from knowl-
edge of a functional of the form H(x)= σ(x)|∇u|2(x), where u(x) is the solution to the elliptic equation

−∇ · σ(x)∇u = 0 in X, u = f on ∂X. (1)

Here, X is an open bounded domain in Rn with spatial dimension n ≥ 2. We denote by ∂X the
(sufficiently smooth) boundary of X and by f (x) the Dirichlet boundary conditions prescribed in the
physical experiments. Neumann or more general Robin boundary conditions could be analyzed similarly.
We assume that the unknown diffusion coefficient σ is a real-valued, scalar function defined on X . It is
bounded above and below by positive constants and assumed to be (sufficiently) smooth. The coefficient
σ(x)models the electrical conductivity in the setting of electrical impedance tomography and the diffusion
coefficient of particles (photons) in the setting of optical tomography. Both EIT and OT are high-contrast
modalities. We focus on the EIT setting here for concreteness, and refer to σ as the conductivity.

The derivation of such functionals as H(x) from physical experiments, following similar derivations in
[Bal et al. 2011a; Bal and Schotland 2010; Kuchment and Kunyansky 2011], is recalled in Section 2. For
a derivation based on the focusing of acoustic pulses (in the time domain), we refer the reader to [Ammari
et al. 2008]. This problem has been considered numerically in [Ammari et al. 2008; Gebauer and Scherzer
2008; Kuchment and Kunyansky 2011]. In those papers, it is shown numerically that UMEIT allows for
high-resolution reconstructions, although typically more information than one measurement of the form
H(x)= σ(x)|∇u|2(x) is required.

Following the methodology in [Capdeboscq et al. 2009], where the two-dimensional setting is analyzed,
[Bal et al. 2011a] analyzes the reconstruction of σ in UMEIT from multiple measurements at least equal to
the spatial dimension n. The stability estimates obtained in [Bal et al. 2011a] show that the reconstructions
in UMEIT are indeed stable with respect to perturbations of the available measurements. Such results are
confirmed by the theoretical investigations in a linearized setting and the numerical simulations proposed
in [Kuchment and Kunyansky 2011]. In this paper, we consider the setting where a unique measurement
H(x)= σ(x)|∇u|2(x) is available.

The inverse problem as a p-Laplacian. Following [Ammari et al. 2008; Bal and Schotland 2010; Gebauer
and Scherzer 2008], we recast the inverse problem in UMEIT as a nonlinear partial differential equation;
see (7) below. This equation is formally an extension to the case p = 0 of the p-Laplacian elliptic
equations

−∇ ·
H(x)
|∇u|2−p∇u = 0,

posed on a bounded, smooth, open domain X ⊂ Rn , n ≥ 2, with prescribed Dirichlet conditions, say.
When 1< p <∞, the above problem is known to admit a variational formulation with convex functional
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J [∇u] =
∫

X H(x)|∇u|p(x) dx , which admits a unique minimizer (in an appropriate functional setting),
this being a solution of the above associated Euler–Lagrange equation [Evans 1998].

The case p = 1 is a critical case, as the above functional remains convex but not strictly convex.
Solutions are no longer unique in general. This problem has been extensively analyzed in the context of
EIT perturbed by magnetic fields (CDII and MREIT) [Kwon et al. 2002; Nachman et al. 2007; 2009],
where it is shown that slight modifications of the 1-Laplacian admit unique solutions in the setting of
interest in MREIT. Of interest for this paper is the remark that the reconstruction when p= 1 exhibits some
locality, in the sense that local perturbations of the source and boundary conditions of the 1-Laplacian do
not influence the solution on the whole domain X . This behavior is characteristic of a transition from an
elliptic equation when p > 1 to a hyperbolic equation when p < 1.

The inverse problem as a hyperbolic nonlinear equation. When p < 1, the above functional J [∇u] is
no longer convex. When p= 0, it should formally be replaced by J [∇u] =

∫
X H(x) ln |∇u|(x) dx , whose

Euler–Lagrange equation is indeed (7) below. The resulting 0-Laplacian is not an elliptic problem. As
we mentioned above, it should be interpreted as a hyperbolic equation, as the derivation of (8) below
indicates.

Information then propagates in a local fashion, provided that compatible boundary conditions are
imposed in order for the hyperbolic equation to be well-posed [Hörmander 1997; Taylor 1996]. We thus
augment the nonlinear equation with Cauchy boundary measurements. As we shall see in the derivation
of UMEIT in the next section, imposing such boundary conditions essentially amounts to assuming
that σ(x) is known at the domain’s boundary. This results in an overdetermined problem in the same
sense that a wave equation with Cauchy data at time t = 0 and at time t = T > 0 is overdetermined.
Existence results are therefore only available in a local sense. We are primarily interested in showing a
uniqueness (injectivity) result, which states that at most one coefficient σ is compatible with a given set
of measurements, and a stability result, which characterizes how errors in measurements translate into
errors in reconstructions. Redundant measurements clearly help in such analyses.

Space-like versus time-like boundary subsets. Once UMEIT is recast as a hyperbolic problem, we face
several difficulties. The equation is hyperbolic in the sense that one of the spatial variables plays the usual
role of “time” in a second-order wave equation. Such a “time” variable has an orientation that depends on
position x in X and also on the solution of the hyperbolic equation itself, since the equation is nonlinear.
Existence and uniqueness results for such equations need to be established, and we shall do so in Sections
3 and 4 below, adapting known results on linear and nonlinear hyperbolic equations that are summarized
in [Hörmander 1997; Taylor 1996].

More damaging for the purpose of UMEIT and UMOT is the fact that hyperbolic equations propagate
information in a stable fashion only when such information enters through a space-like surface, that is, a
surface that is more orthogonal than it is tangent to the direction of “time”. In two dimensions of space,
the time-like and space-like variables can be interchanged so that when n = 2, unwanted singularities can
propagate inside the domain only through points with “null-like” normal vector, and in most settings, such
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points have (surface Lebesgue) zero measure. In n = 2, it is therefore expected that spurious instabilities
may propagate along a finite number of geodesics and that the reconstructions will be stable otherwise.

In dimensions n ≥ 3, however, a large part of the boundary ∂X will in general be purely “time-like,”
so that the information available on such a part of the surface cannot be used to solve the inverse problem
in a stable manner [Hörmander 1997]. Only on the domain of influence of the space-like part of the
boundary do we expect to stably solve the nonlinear hyperbolic equation, and hence reconstruct the
unknown conductivity σ(x).

Special geometries and special boundary conditions. As we mentioned earlier, the partial reconstruc-
tion results described above can be improved in the setting of multiple measurements. Once several
measurements, and hence several potential “time-like” directions are available, it becomes more likely
that σ can be reconstructed on the whole domain X . In the setting of well-chosen multiple measurements,
the theories developed in [Bal et al. 2011a; Capdeboscq et al. 2009] indeed show that σ can be uniquely
and stably reconstructed on X .

An alternative solution is to devise geometries of X and of the boundary conditions that guarantee
that the “time-like” part of the boundary ∂X is empty. Information can then be propagated uniquely and
stably throughout the domain. In Section 4, we consider several such geometries. The first geometry
consists of an annulus-shaped domain, to ensure that the two connected components of the boundary
are level sets of the solution u. In such situations, the whole boundary ∂X turns out to be “space-like”.
Moreover, so long as u does not have any critical point, we can show that the reconstruction can be stably
performed on the whole domain X .

Unfortunately, only in dimension n=2 can we be sure that u does not have any critical point independent
of the unknown conductivity σ . This is because critical points in a two-dimensional elliptic equation are
necessarily isolated, as used in [Alessandrini 1986], for example, and our geometry simply prevents their
existence. In three dimensions of space, however, critical points can arise. Such results are similar to
those obtained in [Briane et al. 2004] in the context of homogenization theory, and are consistent with the
analysis of critical points in elliptic equations, as in [Caffarelli and Friedman 1985; Hardt et al. 1999].

In dimension n ≥ 3, we thus need to use another strategy to ensure that one vector field is always
available for us to penetrate information inside the domain in a unique and stable manner. In this paper,
such a result is obtained by means of boundary conditions f in (1) that are “close” to traces of appropriate
complex geometric optics (CGO) solutions, which can be constructed provided that σ(x) is sufficiently
smooth. The CGO solutions are used to obtain required qualitative properties of the solutions to linear
elliptic equations, as was done in the setting of other hybrid medical imaging modalities in, for example,
[Bal and Ren 2011; Bal et al. 2011b; Bal and Uhlmann 2010; Triki 2010]; see also the review paper [Bal
2013].

The rest of the paper is structured as follows. Section 2 presents the derivation of the functional
H(x) = σ(x)|∇u|2 from ultrasound modulation of a domain of interest and the transformation of the
inverse problem as a nonlinear hyperbolic equation. In Section 3, local results of uniqueness and stability
are presented, adapting results on linear hyperbolic equations summarized in [Taylor 1996]. These results
show that UMEIT and UMOT are indeed much more stable modalities than EIT and OT. The section
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concludes with a local reconstruction algorithm, which shows that the nonlinear equation admits a solution
even if the available data are slightly perturbed by, say, noise. The existence result is obtained after an
appropriate change of variables from the result for time-dependent second-order nonlinear hyperbolic
equations in [Hörmander 1997]. Finally, in Section 4, we present global uniqueness and stability results for
UMEIT for specific geometries or specific boundary conditions constructed by means of CGO solutions.

2. Derivation of a nonlinear equation

Ultrasound modulation. A methodology to combine high contrast with high resolution consists of
perturbing the diffusion coefficient acoustically. Let an acoustic signal propagate throughout the domain.
We assume here that the sound speed is constant and that the acoustic signal is a plane wave of the form
p cos(k · x +ϕ), where p is the amplitude of the acoustic signal, k its wavenumber, and ϕ an additional
phase. The acoustic signal modifies the properties of the diffusion equation. We assume that such an
effect is small but measurable and that the coefficient in (1) is modified as

σε(x)= σ(x)(1+ ε cos(k · x +ϕ)), (2)

where ε= p0 is the product of the acoustic amplitude p ∈R and a measure 0> 0 of the coupling between
the acoustic signal and the modulations of the constitutive parameter in (1). For more information about
similar derivations, we refer the reader to [Ammari et al. 2008; Bal and Schotland 2010; Kuchment and
Kunyansky 2011].

Let u be a solution of (1) with fixed boundary condition f . When the acoustic field is turned on, the
coefficients are modified as described in (2), and we denote by uε the corresponding solution. Note that
u−ε is the solution obtained by changing the sign of p or, equivalently, by replacing ϕ by ϕ+π .

By the standard continuity of the solution to (1) with respect to changes in the coefficients and regular
perturbation arguments, we find that uε = u0+ εu1+ O(ε2). Let us multiply the equation for uε by u−ε
and the equation for u−ε by uε, subtract the resulting equalities, and use standard integrations by parts.
We obtain that ∫

X
(σε − σ−ε)∇uε · ∇u−ε dx =

∫
∂X
σ−ε

∂u−ε
∂ν

uε − σε
∂uε
∂ν

u−ε dσ. (3)

Here, ν(x) is the outward unit normal to X ⊂ Rn at x ∈ ∂X , and as usual ∂/∂ν := ν · ∇. We assume that
σε∂νuε is measured on ∂X , at least on the support of uε = f for all values ε of interest. Note that the
above equation still holds if the Dirichlet boundary conditions are replaced by Neumann (or more general
Robin) boundary conditions. Let us define

Jε :=
1
2

∫
∂X
σ−ε

∂u−ε
∂ν

uε − σε
∂uε
∂ν

u−εdσ = εJ1+ O(ε3). (4)

The term of order O(ε2) vanishes by symmetry. We assume that the real-valued functions J1= J1(k, ϕ) are
known. This knowledge is based on the physical boundary measurement of the Cauchy data (uε, σε∂νuε)
on ∂X .
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Equating like powers of ε, we find at the leading order that∫
X

[
σ(x)∇u0 · ∇u0(x)

]
cos(k · x +ϕ) dx = J1(k, ϕ). (5)

This may be acquired for all k ∈ Rn and ϕ = 0, π/2, and hence provides the Fourier transform of

H(x)= σ(x)|∇u0|
2(x). (6)

Upon taking the inverse Fourier transform of the measurements (5), we thus obtain the internal func-
tional (6).

Nonlinear hyperbolic inverse problem. The forward problem consists of assuming σ and f (x) known,
solving (1) to get u(x), and then constructing H(x) = σ(x)|∇u|2(x). The inverse problem consists of
reconstructing σ and u from knowledge of H(x) and f (x).

As we shall see, the linearization of the latter inverse problem may involve an operator that is not
injective, and so there is no guarantee that u and σ can be uniquely reconstructed; see Remark 3.4 below.
In this paper, we instead assume that the Neumann data σν ·∇u and the conductivity σ(x) on ∂X are also
known. We saw that measurements of Neumann data were necessary in the construction of H(x), and so
our main new assumption is that σ(x) is known on ∂X . This allows us to have access to ν · ∇u on ∂X .
Note that for x ∈ ∂X , with the notation ∇τu= u−ν ·∇uν, we find that H(x)=σ |∇τu|2+(1/σ)|σν ·∇u|2,
which provides a quadratic equation for σ when u and ν · ∇u are known at x .

Combining (1) and (6) with the above hypotheses, we can eliminate σ from the equations and obtain
the following Cauchy problem for u(x):

−∇ ·
H(x)
|∇u|2(x)

∇u = 0 in X, u = f and
∂u
∂ν
= j on ∂X, (7)

where (H, f, j) are now known while u is unknown. Thus the measurement operator maps (σ, u) to
(H, f, j) constructed from a solution u(x) of (1). Although this problem (7) may look elliptic at first, it is
in fact hyperbolic as we already mentioned, and this is the reason why we augmented it with (redundant)
Cauchy data. In the sequel, we also consider other redundant measurements given by the acquisition
of H(x)= σ(x)|∇u|2(x) for solutions u corresponding to several boundary conditions f (x). A general
methodology to uniquely reconstruct σ(x) from a sufficient number of redundant measurements has
recently been analyzed in [Bal et al. 2011a; Capdeboscq et al. 2009].

The above equation may be transformed as

(I − 2∇̂u⊗∇̂u) : ∇2u+∇ ln H · ∇u = 0 in X, u = f and
∂u
∂ν
= j on ∂X. (8)

Here ∇̂u =∇u/|∇u|. With

gi j
= gi j (∇u)=−δi j

+ 2(∇̂u)i (∇̂u) j and ki
=−(∇ ln H)i , (9)

(8) is recast as

gi j (∇u)∂2
i j u+ ki∂i u = 0 in X, u = f and

∂u
∂ν
= j on ∂X. (10)
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Note that gi j is a definite matrix of signature (1, n− 1), so that (10) is a quasilinear strictly hyperbolic
equation. The Cauchy data f and j then need to be provided on a space-like hypersurface in order for
the hyperbolic problem to be well-posed [Hörmander 1983b]. This is the main difficulty when solving (7)
with redundant Cauchy boundary conditions.

3. Local existence, uniqueness, and stability

Once we recast (7) as the nonlinear hyperbolic equation (10), we have a reasonable framework to perform
local reconstructions. However, in general, we cannot hope to reconstruct u(x), and hence σ(x) on
the whole domain X , at least not in a stable manner. The reason is that the direction of “time” in the
second-order hyperbolic equation is ∇̂u(x). The normal ν(x) at the boundary ∂X separates the (good)
part of ∂X that is “space-like” and the (bad) part of ∂X that is “time-like”; see definitions below. Cauchy
data on space-like surfaces such as t = 0 provide stable information to solve standard wave equations,
where, as in general, it is known that arbitrary singularities can form in a wave equation from information
on “time-like” surfaces such as x = 0 or y = 0 in a three-dimensional setting (where (t, x, y) are local
coordinates of X ) [Hörmander 1983b].

In the two-dimensional setting n = 2, the numbers of space-like and time-like variables both equal 1
and “t” and “x” play a symmetric role. Nonetheless, if there exist points at the boundary of ∂X such that
ν(x) is “light-like” (null), then singularities can form at such points and propagate inside the domain. As
a consequence, even in two dimensions of space, instabilities are expected to occur in general.

We present local uniqueness and stability results for the reconstruction of u and σ in the next subsection.
These results are based on the linear theory of hyperbolic equations with general Lorentzian metrics [Taylor
1996]. In Section 3B, we adapt results in [Hörmander 1997] to propose a local theory of reconstruction
of u(x), and hence σ(x), by solving (10) with data (H, f, j) that are not necessarily in the range of
the measurement operator (u, σ ) 7→ (H, f, j), which to (u, σ ) satisfying (1) associates the Cauchy data
( f, j) and the internal functional H .

3A. Uniqueness and stability. Stability estimates may be obtained as follows. Let (u, σ ) and (ũ, σ̃ ) be
two solutions of (1) and the Cauchy problem (10) with measurements (H, f, j) and (H̃ , f̃ , j̃). Note that
after solving (10), we then reconstruct the conductivities with

σ(x)=
H
|∇u|2

(x), σ̃ (x)=
H̃
|∇ũ|2

(x). (11)

The objective of stability estimates is to show that (u− ũ, σ− σ̃ ) are controlled by (H− H̃ , f − f̃ , j− j̃),
that is, to show that small errors in measurements (that are in the range of the measurement operator)
correspond to small errors in the coefficients that generated such measurements.

Some algebra shows that v = ũ− u solves the linear equation

∇ ·

(
H
|∇ũ|2

{
I −
∇u⊗ (∇u+∇ũ)

|∇u|2

}
∇v+

H − H̃
|∇ũ|2

∇ũ
)
= 0,
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with Cauchy data f̃ − f and j̃ − j , respectively. Changing the roles of u and ũ and summing the two
equalities, we get

∇ ·

(
H

|∇ũ|2|∇u|2
{
(∇u+∇ũ)⊗ (∇u+∇ũ)− (|∇u|2+ |∇ũ|2)I

}
∇v+ δH

(
∇ũ
|∇ũ|2

+
∇u
|∇u|2

))
= 0.

The above operator is elliptic when ∇u ·∇ũ< 0 and is hyperbolic when ∇u ·∇ũ> 0. Note that ∇u ·∇ũ> 0
on ∂X when j − j̃ and f − f̃ are sufficiently small. We obtain a linear equation for v with a source term
proportional to δH = H̃−H . For large amounts of noise, ∇u may significantly depart from ∇ũ, in which
case the above equation may lose its hyperbolic character. However, stability estimates are useful when
δH is small, which should imply that u and ũ are sufficiently close, in which case the above operator is
hyperbolic. We assume here that the solutions u and ũ are sufficiently close that the above equation is
hyperbolic throughout the domain. We recast the above equation as the linear equation

gi j (x)∂2
i jv+ ki∂iv+ ∂i (l iδH)= 0 in X, v = f̃ − f,

∂v

∂ν
= j̃ − j on ∂X, (12)

for appropriate coefficients gi j , ki and l i . Now gi j is strictly hyperbolic in X (of signature (1, n− 1)) and
is given explicitly by

g(x)=
H

|∇ũ|2|∇u|2
{
(∇u+∇ũ)⊗ (∇u+∇ũ)− (|∇u|2+ |∇ũ|2)I

}
= α(x)

(
e(x)⊗ e(x)−β2(x)(I − e(x)⊗ e(x))

)
, (13)

where

e(x)=
∇u+∇ũ
|∇u+∇ũ|

(x), β2(x)=
|∇u|2+ |∇ũ|2

|∇u+∇ũ|2− (|∇u|2+ |∇ũ|2)
(x), (14)

and

α(x)=
H

|∇ũ|2|∇u|2
(
|∇u+∇ũ|2− (|∇u|2+ |∇ũ|2)

)
is the appropriate (scalar) normalization constant. Here, e(x) is a normal vector that gives the direction of
“time” and β(x) should be seen as a speed of propagation (close to 1 when u and ũ are close). When e is
constant, then the above metric, up to normalization, corresponds to the operator ∂2

t −β
2(t, x ′)1x ′ .

We also define the Lorentzian metric h = g−1 so that hi j are the coordinates of the inverse of the
matrix gi j . We denote by 〈 · , · 〉 the bilinear product associated to h so that 〈u, v〉 = hi j uiv j , where the
two vectors u and v have coordinates ui and vi , respectively. We verify that

h(x)=
1

α(x)

(
e(x)⊗ e(x)−

1
β2(x)

(I − e(x)⊗ e(x))
)
. (15)

The main difficulty in obtaining a solution v to (12) arises because ν(x) is not time-like for all points
of ∂X . The space-like part 6g of ∂X is given by the points x ∈ ∂X such that ν(x) is time-like, in the
sense that h(ν(x), ν(x)) > 0, or equivalently,

|ν(x) · e(x)|2 >
1

1+β2(x)
, x ∈ ∂X. (16)
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In (16), the dot product is with respect to the standard Euclidean metric and ν is a unit vector for the
Euclidean metric, not for the metric h. The time-like part of ∂X is given by the points x ∈ ∂X such that
h(ν(x), ν(x)) < 0 (that is, ν(x) is a space-like vector), while the light-like (null) part of ∂X corresponds
to x such that h(ν(x), ν(x))= 0 (that is, ν(x) is a null vector).

When j = j̃ on ∂X so that ∇u(x)=∇ũ(x) and β(x)= 1 for x ∈ ∂X (see also the proof of Theorem 3.1
below), then the above constraint becomes

|ν(x) · ∇̂u(x)|2 > 1
2 , x ∈ ∂X. (17)

In other words, when such a constraint is satisfied, the differential operator is strictly hyperbolic with
respect to ν(x) on 6g. Once 6g is constructed, we need to define its domain of influence Xg ⊂ X , that is,
the domain in which v can be calculated from knowledge of its Cauchy data on 6g. In order to do so, we
apply the energy estimate method for hyperbolic equations described in [Taylor 1996, Section 2.8]. We
need to introduce the notation used there; see Figure 1.

Let 61 be an open connected component of 6g. We assume here that all coefficients and geometrical
quantities are smooth. By assumption, 61 is space-like, which means that the normal vector ν1 is time-like
and hence satisfies (16). Now let 62(s)⊂ X be a family of (open) hypersurfaces that are also space-like
with unit (with respect to the Euclidean metric) vector ν2(x) that is thus time-like, that is, verifies (16).
We assume that the boundary of 62(s) is a codimension-1 manifold of 61. Let then

O(s)=
⋃

0<τ<s

62(τ ), (18)

which we assume is an open subset of X . In other words, we look at domains of influence O(s) of 61

that are foliated (swept out) by the space-like surfaces 62(τ ). Then we have the following result:

Theorem 3.1 (local uniqueness and stability). Let u and ũ be two solutions of (7) sufficiently close in
W 1,∞(X) norm and such that |∇u|, |∇ũ|, H and H̃ are bounded above and below by positive constants.

ν1

61

e

X
e

ν2

62(s)

Figure 1. Construction of the domain of influence O (hatched area). The unit vectors e
indicate the “time” direction of the Lorentzian metric h. The surface 62(s) has a normal
vector ν2(x) that forms a sufficiently small angle with e that 62(s) is a space-like surface,
as is 61 ⊂6g with an angle such that |ν1 · e| is also sufficiently close to 1.
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This ensures that g constructed in (13) is strictly hyperbolic and that α(x) and β(x) in (14) are bounded
above and below by positive constants.

Let 61 be an open connected component of 6g, the space-like component of ∂X , and let the domain of
influence O= O(s) for some s > 0 be constructed as above. Let us define the energy

E(dv)= 〈dv, ν2〉
2
−

1
2〈dv, dv〉〈ν2, ν2〉. (19)

Here, dv is the gradient of v in the metric h, and is thus given in coordinates by gi j∂ jv. Then we have the
local stability result∫

O
E(dv) dx ≤ C

(∫
61

| f − f̃ |2+ | j − j̃ |2dσ +
∫

O
|∇δH |2dx

)
, (20)

where dx and dσ are the standard (Euclidean) volume and (hyper)surface measures on O and 61,
respectively.

The above estimate is the natural estimate for the Lorentzian metric h. For the Euclidean metric, the
above estimate may be modified as follows. Let ν2(x) be the unit (for the Euclidean metric) vector to
x ∈62(s), and let us define c(x) := ν2(x) · e(x) with e(x) as in (14). Let us define

θ :=min
x∈O

[
c2(x)−

1
1+β2(x)

]
. (21)

We need θ > 0 for the metric h to be hyperbolic with respect to ν2(x) for all x ∈ O. Then we have that∫
O
|v2
| + |∇v|2+ (σ − σ̃ )2dx ≤

C
θ2

(∫
61

| f − f̃ |2+ | j − j̃ |2dσ +
∫

O
|∇δH |2dx

)
, (22)

where σ and σ̃ are the reconstructed conductivities given in (11). Provided that data are equal in the
sense that f = f̃ , j = j̃ , and H = H̃ , we obtain v = 0 and the uniqueness result u = ũ and σ = σ̃ .

Proof. That h is a hyperbolic metric is obtained, for instance, if u and ũ are sufficiently close in the
W 1,∞(X) norm and if |∇u|, |∇ũ|, H and H̃ are bounded above and below by positive constants. The
derivation of (20) then follows from [Taylor 1996, Proposition 8.1] using the notation introduced earlier
in this section. The volume and surface measures dx and dσ are here the Euclidean measures and are of
the same order as the volume and surface measures of the Lorentzian metric h. This can be seen in (15),
since α and β are bounded above and below by positive constants.

Then (20) reflects the fact that the energy measured by the metric h is controlled. However, this “energy”
fails to remain definite for null-like vectors (vectors v such that h(v, v) = 0), and as x approaches the
boundary of the domain of influence of 6g, we expect the estimate to deteriorate.

Let x ∈ O be fixed and define ν = ν2(x) and e= e(x). Let us decompose ν = ce+ s ′e⊥, where ce is
the orthogonal projection of ν onto e and s ′e⊥ := ν− ce the projection onto the orthogonal subspace of
Rn with e⊥ a unit vector. For a vector v = v1e+v′2e⊥+w′ (standing for dv) with w′ orthogonal to e and
e⊥ (and thus vanishing if n = 2), we need to estimate

E(v)= h2(v, ν)− 1
2 h(v, v)h(ν, ν)=

1
α2

[
(v1c− v2s)2− 1

2

(
v2

1 − (v
2
2 + |w|

2)
)
(c2
− s2)

]
,
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where we have conveniently defined v2 = β
−1v′2, w= β−1w′, and s = β−1s ′. After some straightforward

algebra, we find that

E(v)=
1+β2

α2β2 θ |w|
2
+

1
α2

( 1
2(c

2
+ s2)(v2

1 + v
2
2)− 2v1v2cs

)
≥

1+β2

α2β2 θ |w|
2
+
v2

1 + v
2
2

2α2 (c− s)2.

Since β is bounded above and below by positive constants, we need to bound (c− s) from below, or
equivalently, (βc− s ′)2 from below. Some algebra shows that

θ ≤ c2
−

1
1+β2 =

βc+ s ′

1+β2 (βc− s ′).

Since θ < 1, this shows that
E(v)≥ Cθ2

|v|2,

for a constant C that depends on the lower and upper bounds for β and α but not on the geometry of ν.
Note that the behavior of the energy in θ2 is sharp, as the bound is attained for v1 = v2 with w = 0. This
proves the error estimate for v = ∇v. Since v is controlled on 61, we obtain control of v on O by the
Poincaré inequality. Now σ − σ̃ is estimated by H − H̃ and by ∇u−∇ũ =∇v, and hence the result.

In other words, the angle φ(x) between e(x) and ν2(x) must be such that β(x)− tanφ(x) ≥ θ2 in
order to obtain a stable reconstruction. When δH is small, then ∇u−∇̃u is small, so that β is close to 1.
As a consequence, we obtain that the constraint of hyperbolicity of h is, to first order, tanφ(x) < 1, which
is indeed the constraint (16) that holds when ∇u =∇ũ on ∂X .

For the uniqueness result, assume that u and ũ are two solutions of (7). We define e(x) = ∇̂u and
β2
≡ 1. Then v = 0 on 61 implies by the preceding results that v = 0 in a vicinity of 61 in O, so that

u = ũ in the vicinity of 61. This shows that u = ũ in O, and hence in all the domain of dependence of 6g

constructed as above. �

Remark 3.2. In two dimensions, we can interchange the roles of space-like and time-like variables, since
both are one-dimensional, and find, at least for sufficiently simple geometries, that the complement of
the domain of influence of 6g in X is the domain of influence of the complement of 6g in ∂X . We thus
obtain stability of the reconstruction in all of X except in the vicinity of the geodesics for the metric g

that emanate from ∂X in a direction ν(x) that is null-like, that is, a vector such that h(ν(x), ν(x))= 0, or
equivalently such that |ν(x) · e(x)|2 = 1

2 .
In three (or higher) dimensions, however, no such interchange of the roles of time and space is possible.

All we can hope for is a uniqueness and stability result in the domain of influence of 6g. The solution v
and the conductivity σ are not stably reconstructed on the rest of the domain without additional information
from, say, other boundary conditions f (x). The case of redundant measurements of this type is considered
in Section 4B below, and is analyzed in a different context in [Bal et al. 2011a; Capdeboscq et al. 2009].

Remark 3.3. Assuming that the errors on the Cauchy data f and j are negligible, we obtain the following
stability estimate for the conductivity:

‖σ − σ̃‖L2(O) ≤
C
θ
‖H − H̃‖H1(X). (23)
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x

6g
∇u

ν(x)

X

Figure 2. Geometry of the domain of influence in Euclidean geometry, with σ ≡ 1 and
u = x1, on a domain X given by an ovoid. In a three-dimensional geometry, we can
regard the picture as a cross-section at y = 0 of a three-dimensional domain of revolution
about the axis e1 :=∇u. The vector ν(x) is a “null vector” making an angle of 45 degrees
with ∇u. In two dimensions, 6g is the union of two connected components, whereas
in three dimensions, 6g is composed of a unique connected component in ∂X . The
hatched domain corresponds to X \ Xg, the part of the domain X that is not the domain
of influence of 6g. In two dimensions, ∇u⊥ = e2 may also play the role of “time”, so
that X \ Xg is the domain of influence of 6 \6g. In three dimensions, the hatched region
is not accessible with the techniques developed in this paper.

The measurements are of the form H(x)= σ(x)|∇u|2(x), which imposes reasonably restrictive assump-
tions on σ ensuring that ∇u is a solution in H 2(�). Under additional regularity assumptions on σ , for
instance assuming that H ∈ H s(X) for s ≥ 2, we find that

‖σ − σ̃‖L2(O) ≤
C
θ
‖H − H̃‖1−1/s

L2(X)‖H + H̃‖1/sH s(X), (24)

by standard interpolation. We thus obtain a standard Hölder estimate in the setting where the error in the
measurements is quantified in the square integrable sense.

Remark 3.4. The linearization of (7) in the vicinity of σ0 = 1 with only Dirichlet data is an ill-posed
problem when X is a two-dimensional disc. Indeed, assume Dirichlet data of the form f (x)= x1 in (1),
so that the unperturbed solution is u0 = x1 in X . This shows that e(x)= e1 in the definition (13), so that
h= e1⊗ e1− e2⊗ e2 in (15). In other words, the linearized problem consists of solving

∂2u
∂x12 −

∂2u
∂x22 = 0 in X = {x2

1 + x2
2 < 1}, u = f on ∂X.

The general solution to the above equation is of the form F(x1− x2)+G(x1+ x2), and there is an infinite
number of linearly independent solutions to the above equation with f = 0. The linearization of the
UMEIT problem without full Cauchy data and in this specific geometry provides an operator that is not
injective.
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3B. Reconstruction of the conductivity. The construction of the solution u, from which we deduce the
reconstruction of σ(x), requires that we solve the nonlinear equation (10). Let us assume that gi j is given
as in (9) and that the vector field h and the source terms f and j are smooth given functions. Then we
can construct a unique solution to (10) locally in the vicinity of the part of ∂X that is space-like. In this
section, we assume that the geometry and the coefficients of the wave equation are sufficiently smooth.

Let x0 be a point in 6g, the space-like part of ∂X , so that g(ν(x0), ν(x0))≥ η > 0. In the vicinity of
x0, which we now call 0, we parametrize ∂X by the variables (y1, . . . , yn−1) and denote by y0 the signed
distance to ∂X . In the vicinity of x0

= 0, the map y = F(x) is a diffeomorphism from a neighborhood
U of x = 0 to the neighborhood V = F(U ) of y = 0. Moreover, locally, DF is close to the identity
matrix (after an appropriate rotation of the domain if necessary) if U is sufficiently small. We denote by
JF = det(DF) the Jacobian of the transformation.

Let us come back to the equation

−∇ · σ(x)∇u =−∇ ·
H(x)
|∇u|2(x)

∇u = 0 in X, u = f and
∂u
∂ν
= j on ∂X. (25)

We define v(y)= u(x), that is, v = F∗u, and then verify that (∇u)(x)= DF t
◦ F−1(y)∇v(y). In the y

coordinates, we find that
−∇ · F∗σ∇v = 0, F(U ),

where we have the standard expression in the y coordinates:

F∗σ(y)= σ̃ (y)DF DF t
◦ F−1(y), σ̃ = J−1

F σ ◦ F−1.

We may thus recast the above equation as the nonlinear equation

−∇ · H̃
DF DF t

◦ F−1

|DF t∇v|2
∇v = 0, H̃ = F∗(J−1

F H)= J−1
F H ◦ F−1. (26)

Note that the boundary conditions are now posed on the surface y0 = 0, where

v(0, y′)= F∗ f (0, y′) and ∂y0v(0, y′)= α(y′)F∗ f (0, y′)+β(y′)F∗ j (0, y′),

with α close to 0 and β close to 1 on V = F(U ). It remains to differentiate in (26) to obtain, after
straightforward but tedious calculations, the expression

gi j
F ∂

2
i jv+ hi

F∂iv = 0, F(U ), (27)

with the above “initial” conditions at y0 = 0, where

gi j
F =−(DF DF t)ikδ

jk
+ 2(DF D̂F t∇v)i (D̂F t∇v) j ,

hi
F =−(∇ ln H̃ · DF DF t)i − (∇ · DF DF t)i + 2(DF D̂F t∇v) j (D̂F t∇v)∂k

j DF i
k .

(28)

When F = I , we recover (8). The nonlinear terms now involve functions of D̂F t∇v.
Note that gF = DFgDF t if we set D̂F t∇v := ∇̂u, and thus transforms as a tensor of type (2, 0). As a

consequence, the metric (a tensor of type (0, 2)) g−1
F = DF−1gDF−t , since g−1

= g, as can be easily
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verified. Let νF = F∗ν = DFν ◦ F−1 be the push-forward of the normal vector seen as a vector field. At
x0, the change of variables is such that

g−1
F,F(x0)

(
∂

∂ y0
,
∂

∂ y0

)
= g−1

F,F(x0)
(νF , νF )= g−1

x0 (ν, ν)= gx0(ν, ν)≥ η > 0.

This shows that gF remains hyperbolic in the vicinity of F(x0) since DF DF t
= I at y= 0 by construction

and DF is smooth. Moreover, the above is equivalent to

gi j
F ∂

2
i j =�+ γ i j∂2

i j , �=
∂2

∂y0∂y0 −1y′, 1y′ =

n−1∑
j=1

∂2

∂y j∂y j ,

where
∑

i, j |γ
i j
| ≤ (1− η)/2. The above is nothing but the fact that gF is hyperbolic in the vicinity of

y = 0. Note that γ i j
= γ i j (x, D̂F t∇v).

We thus have a nonlinear hyperbolic equation of the form(
�+ γ i j (x, D̂F t∇v)∂i j + hi (x, D̂F t∇v)∂i

)
v = 0, y0 > 0, y′ ∈ Rn−1,

v(0, y′)= v0(y′), ∂y0v(0, y′)= j0(y′). (29)

Since propagation in a wave equation is local, we can extend the boundary conditions for y = (0, y′)
outside the domain F(U ) by v0 = 0 and ∂y0v = 1 and the functions γ i j and hi by 0 outside of F(U ).
This allows us to obtain an equation posed on the half-space y0 > 0.

The nonlinear functions γ i j (x, D̂F t∇v) and hi (x, D̂F t∇v) are smooth functions of ∇v except at the
points where ∇v = 0. However, we are interested in solutions such that ∇v does not reach 0, to preserve
the hyperbolic structure of gi j . Note that |∇v| is bounded from below by a positive constant on y0 = 0 by
assumption. We obtain a bound on the uniform norm of the Hessian of v, which implies that at least for
a sufficiently small interval y0 ∈ (0, t0), |∇v| does not vanish and γ i j and hi can then be considered as
smooth functions of x and ∇v.

Using [Hörmander 1997, Theorem 6.4.11 and remark following (6.4.24)], the above equation satisfies
the hypotheses to obtain an a priori estimate for

M(y0)=
∑
|α|≤κ+2

‖∂αu(y0, · )‖L2(Rn−1),

with κ the smallest integer strictly greater than (n− 1)/2. By Sobolev embedding, this implies that the
second derivatives of v are uniformly bounded so that for at least a small interval, |∇v| is bounded away
from 0.

Once v, and hence u, is reconstructed, at least in the vicinity of the part 6g of ∂X that is space-like for
∇u, we deduce that

σ(x)=
H(x)
|∇u|2(x)

.

Note that ∇u cannot vanish, by construction, so that the above equality for σ(x) is well-defined. We
already know that a solution to the above nonlinear equation exists in the absence of noise, since we have
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constructed it by solving the original linear equation. In the presence of significant noise, the nonlinear
equation may behave in a quite different manner than that for the exact solution. However, the above
construction shows that the nonlinear equation can be solved locally if the measurement H(x) is perturbed
by a small amount of noise.

4. Global reconstructions of the diffusion coefficient

The picture in Figure 2 shows that in general we cannot hope to obtain a global reconstruction from a
single measurement of H(x) even augmented with full Cauchy data. Only Cauchy data on the space-like
part of the boundary can be used to obtain stable reconstructions.

Global reconstructions have been obtained from redundant measurements of the form Hi j = Si · S j ,
with Si =

√
σ∇ui and ui the solution of (1) with Dirichlet conditions f = fi , in [Capdeboscq et al. 2009]

in the two-dimensional setting and in [Bal et al. 2011a] in the two- and three-dimensional settings; see
also [Kuchment and Kunyansky 2011].

This section analyzes geometries in which a unique measurement H(x) or a small number of measure-
ments of the form H(x), augmented with Cauchy data ( f, j), allow one to uniquely and stably reconstruct
σ(x) on the whole domain X . These reconstructions are obtained by (possibly) modifying the geometry
of the problem so that the domain where σ(x) is not known lies within the domain of dependence of 6g.
We consider two scenarios. In the first scenario, considered in Section 4A, we slightly modify the problem
to obtain a model with an internal source of radiation f . Such geometries are guaranteed to provide a
unique global reconstruction in dimension n = 2, but not necessarily in higher spatial dimensions, where
global reconstructions hold only for a certain class of coefficients σ(x). In the second scenario, analyzed
in Section 4B, we consider a setting where reconstructions are possible when the Lorentzian metric is the
Euclidean (Lorentzian) metric, that is, α = β = 1 in (15). We then show the existence of an open set of
illuminations f for three different measurements of the form H(x) such that the global result obtained
for the Euclidean metric remains valid for arbitrary, sufficiently smooth coefficients σ(x).

4A. Geometries with an internal source. From the geometric point of view, the Cauchy data are suffi-
cient to allow for full reconstructions when 6g = ∂X , so that the whole boundary ∂X is space-like for the
metric g, and X is the domain of dependence of 6g. This can happen, for instance, when ∂X is a level
set of u and the normal derivative of u either points inwards or outwards at every point of ∂X . When X is
a simply connected domain, the maximum principle prevents one from having such a geometry. However,
when X is not simply connected, such a configuration can arise. We will show that such a configuration
(with X the domain of dependence of 6g) is always possible in two dimensions of space. When n ≥ 3,
such configurations hold only for a restricted class of conductivities σ(x) for which no critical points of
u(x) exist.

Let us consider the two-dimensional case n = 2. We assume that X is an open smooth domain
diffeomorphic to an annulus and with boundary ∂X = ∂X0∪∂X1; see Figure 3. We assume that f = 0 on
the external boundary ∂X0 and f = 1 on the internal boundary ∂X1. The boundary of X is composed of
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60

e(x)

e(x)

σ (x)

X

61

e(x)

e(x)

Figure 3. Geometry of an annulus in two space dimensions with boundaries 60 and 61,
the level sets where u = 0 and u = 1, respectively. The four curves correspond to four
integrals of the flow of the gradient vector field ∇̂u.

two smooth connected components that are different level sets of the solution u to (1), which is uniquely
defined in X .

In practice, such a domain X may be constructed as follows. As we do in the geometry depicted on
page 769, we embed X̃ , the domain where σ is unknown, into a larger domain X with, say, σ(x)= σ0

on X \ X̃ and with a hole where we impose the aforementioned boundary conditions. Then we have the
following result:

Proposition 4.1. Let X be the geometry described above with n = 2 and u(x) the solution to (1). We
assume here that both the geometry and σ(x) are sufficiently smooth. Then |∇u| is bounded from above
and below by positive constants. The level sets 6c = {x ∈ X, u(x)= c} for 0< c < 1 are smooth curves
that separate X into two disjoint subdomains.

Proof. The proof of the first part is based on the fact that critical points of solutions to elliptic equations
in two dimensions are isolated [Alessandrini 1986]. First of all, the Hopf lemma [Evans 1998] ensures
that no critical point exists on the smooth closed curves 60 and 61. Let xi be the finite number of points
where ∇u(xi )= 0. At each xi , the level set of u with value 0< ci = u(xi ) < 1 is locally represented by
ni (ni even) smooth simple arcs emanating from xi that make an angle equal to 2π/ni at xi [Alessandrini
1986]. For instance, if only two simple arcs emanate from x0, then these two arcs form a continuously
differentiable curve in the vicinity of x0. Between critical points, level sets of u are smooth by the inverse
function theorem.

Let us assume that there is a point xi with more than two simple arcs leaving xi . Let γ j , 1≤ j ≤ 4, be
such arcs. If γ1 meets another critical point, we pick one of the possible other arcs emanating from this
critical point to continue the curve γ1. This is always possible, as critical points always have an even
number of leaving simple arcs. The curve γ1 cannot meet 60 or 61, and therefore must come back to the
point xi . Let us assume the existence of a closed subloop of γ1 that does not self-intersect and does not
wind around 61 (that is, is homotopic to a point). In the interior of that closed subloop, u is then constant
by the maximum principle and hence constant on X by the unique continuation theorem [Hörmander
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1983a]. This is impossible, and therefore γ1 must wind around 61. Let us pick a subset of γ1, which we
still call γ1, that winds around 61 once. The loop meets one of the other γ j to come back to xi , which we
call γ2 if it is not γ1. Now let us follow γ3. Such a curve also has to come back to xi . By the maximum
principle and the unique continuation theorem, it cannot come back with a subloop homotopic to a point.
So it must come back also winding around 61. But γ1 and γ3 are then two different curves winding
around 61. This implies the existence of a connected (not necessarily simply connected) domain whose
boundary is included in γ1 ∪ γ3. Again, by the maximum principle and the unique continuation theorem,
such a domain cannot exist. So any critical point cannot have more than two simple arcs of level curves
of u leaving it.

So far, we have proved that any critical point xi sees exactly two arcs leaving xi at an angle equal
to π , since by the maximum principle, critical points cannot be local minima or maxima. These two arcs
again have to meet winding around 61. This generates a single curve that we call γ1, with no possible
self-intersection. Moreover, since all angles at critical points are equal to π , the curve γ1 is of class C1

and piecewise of class C2. Let Xc be the annulus with boundary equal to 61 ∪ γ1. On Xc, u satisfies an
elliptic equation with values u = 1 on 61 and 0< u = ci < 1 on γ1. Since γ1 is sufficiently smooth now
(smooth on each arc with matching derivatives on each side of each critical point), it satisfies the interior
sphere condition and we can apply the Hopf lemma [Gilbarg and Trudinger 1977, Lemma 3.4] to deduce
that the normal derivative of u on γ1 cannot vanish at xi or anywhere along γ1. There are therefore no
critical points of u in X̄ . By continuity, this means that |∇u| is uniformly bounded from below by a
positive constant. Standard regularity results show that it is also bounded from above.

Now let 0< c< 1 and6c be the level set where u= c. Such a level set separates X into two subdomains
where 0< u < c and c < u < 1, respectively, by the maximum principle. We therefore obtain a foliation
of X into the union of the smooth curves 6c for 0< c < 1. Now let x ∈6c and consider the flow of ∇u
in both directions emanating from x . Then both curves are smooth and need to reach the boundary at a
unique point. Since any point on 60 is also mapped to a point on 61 by the same flow, this shows that
6c is diffeomorphic to 60 and 61. �

The result extends to higher dimensions, provided that |∇u| does not vanish, with exactly the same
proof. Only the proof of the absence of critical points of u was purely two-dimensional. In the absence of
critical points, we thus obtain that e(x)= ∇̂u = ν(x), so that ν(x) is clearly a time-like vector. Then the
local results of Theorem 3.1 become global results, which yields the following proposition:

Proposition 4.2. Let X be the geometry described above in dimension n ≥ 2 and u(x) the solution to (1).
We assume here that both the geometry and σ(x) are sufficiently smooth. We also assume that |∇u| is
bounded from above and below by positive constants. Then the nonlinear equation (10) admits a unique
solution and the reconstruction of u and of σ is stable in X in the sense described in Theorem 3.1.

Remark 4.3. The above geometry with a hole is not entirely necessary in practice. Formally, we can
assume that the hole with boundary 61 shrinks and converges to a point x0 ∈ ∂X at the boundary of the
domain. Thus, the illumination f is an approximation of a delta function at x0. The level sets of the
solution are qualitatively similar to the level sets in the annulus. Away from x0, the surface ∂X is a level
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set of the solution u, and hence the normal to the level set is a time-like vector for the Lorentzian metric
with direction e(x) = ν(x). Away from x0, we can solve the wave equation inwards and obtain stable
reconstructions in all of X but a small neighborhood of x0. This construction should also provide stable
reconstructions in arbitrary dimensions provided that u does not have any critical point.

In dimensions n ≥ 3, however, we cannot guarantee that u does not have any critical point independent
of the conductivity. If the conductivity is close to a constant where we know that no critical point exists,
then by continuity of u with respect to small changes in σ(x), u does not have any critical point and the
above result applies. In the general case, however, we cannot guarantee that ∇u does not vanish, and in
fact can produce a counterexample using the geometry introduced in [Briane et al. 2004] (see also [Melas
1993] for the existence of critical points of elliptic solutions):

Proposition 4.4. There is an example of a smooth conductivity such that u admits critical points.

Proof. Consider the geometry in three dimensions depicted in Figure 4. The domain X is a smooth,
convex domain, invariant by rotation leaving ez invariant and by symmetry z→−z, and including two
disjoint, interlocked tori T1 and T2. The first torus T1 is centered at c1 = (0, 0, 1), with base circle{

ez + 2ex +α(cosφ ex + sinφ ey), 0≤ φ < 2π
}

rotating around c1 in the plane (ex , ez) (top torus in Figure 4) for α = 1
2 , say. The second torus T2 is

centered at c2 = (0, 0,−1), with base circle{
−ez + 2ey +α(cosφ ex + sinφ ey), 0≤ φ < 2π

}
rotating around c2 in the plane (ey, ez) (bottom torus in Figure 4).

We consider the boundary condition u = z on ∂X .
We assume that σ(x) = 1+ λϕ(x) in (1), where ϕ(x) is a smooth, nontrivial, nonnegative function

with nonvanishing support inside each of the tori T1 and T2 that respects the invariance by rotation and the
symmetries of the two tori. We normalize ϕ(x) by 1 on the circles

{
ez+2(cosφ ez+sinφ ey), 0≤φ<2π

}

X

T1

T2

Figure 4. Geometry of a critical point: X is the ball of radius 4; the interlocked tori are
the top torus T1 and the bottom torus T2.
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and
{
−ez + 2(cosφ ez + sinφ ey), 0 ≤ φ < 2π

}
at the center of the volumes delimited by the two tori.

When λ= 0, so that σ(x)≡ 1, then u = z is the solution of the problem (1). As λ, and hence σ inside
the tori, converges to +∞, the solution u is such that u converges to a constant C1 > 0 on the support
of ϕ inside T1 and C2 < 0 on the support of ϕ inside T2. For λ sufficiently large, by continuity of the
solution u with respect to σ , we obtain that u(0, 0, 1) < 0, since (0, 0, 1) is inside T2, and u(0, 0,−1) > 0,
since (0, 0,−1) is inside T1. Since the geometry is invariant by symmetry x→−x and y→−y, then
so is the solution x , and hence ∂x u(0, 0, z) = ∂yu(0, 0, z) = 0 for all (0, 0, z) ∈ X . Now the function
z→ u(0, 0, z) goes from negative to positive to negative back to positive values as z increases, and so
has at least two critical points. At these points, ∇u = 0, and hence the possible presence of critical points
in elliptic equations in dimensions three and higher. �

Note that the above symmetries are not necessary to obtain critical points, which appear generically
in structures of the form of two interlocked rings with high conductivities, as indicated above. At an
intuitive and informal level, small perturbations of the above geometry and the boundary conditions
make it so that the level sets 6c = {u = c} for c sufficiently large and c sufficiently small are simply
connected codimension-1 manifolds with boundary on ∂X . When σ is sufficiently large, u converges to
two different values c1 and c2 inside the two discs (say one positive in T1 and one negative in T2). Thus
for σ sufficiently large, the level set u = c1, assuming it does not have any critical point, is a smooth
locally codimension-1 manifold, by the implicit function theorem, that can no longer be simply connected.
Thus, as the level sets c decrease from high values to c1, they go through a change of topology that can
only occur at a critical point of u [Morse and Cairns 1969].

4B. Complex geometric optics solutions and global stability. Let us now consider a domain X̃ , where
σ(x) is unknown and close to a constant σ0. Let us assume that X̃ is embedded into a larger domain X
and that we can assume that σ(x) is known and also close to the constant σ0. Then it is not difficult to
construct X so that X̃ lies entirely within the domain of dependence of 6g; see, for instance, the geometry
depicted in Figure 5.

X

e

X̃
σ(x)

6g

σ = σ0

Figure 5. Geometry of a domain where the reconstruction of the unknown σ on X̃ is
possible from a single measurement. The geometry of the Lorentzian metric is represented
when σ(x)= σ0. By continuity, the domain of influence of 6g includes X̃ for all smooth
conductivities σ(x) sufficiently close to σ0.
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For the rest of the section, we show that global reconstructions can be obtained for general sufficiently
smooth metrics, provided that three well-chosen measurements are available. This result is independent of
spatial dimension. The measurements are constructed by means of complex geometrical optics solutions.

Let k be a vector in Rn and k⊥ be a vector orthogonal to k of the same length. Let ρ = ik+ k⊥ be a
complex-valued vector so that ρ · ρ = 0. Thus, eρ·x is harmonic and ∇eρ·x = ρeρ·x . The latter gradient
has a privileged direction of propagation ρ, which is, however, complex-valued. Its real and imaginary
parts are such that

e−k⊥·x
=∇eρ·x = |k|θ(x), e−k⊥·x

<∇eρ·x = |k|θ⊥(x), (30)

where θ(x)= k̂ cos k·x + k̂⊥ sin k·x and θ⊥(x)=−k̂ sin k·x + k̂⊥ cos k·x . As usual, k̂ = k/|k|.
Consider propagation with Cauchy data given on a hyperplane with normal vector k̂ ∈ Sn−1. We want

to make sure that we always have at our disposal a Lorentzian metric for which k̂ is a time-like vector so
that the available Cauchy data live on a space-like surface for that metric. For the rest of the section, we
assume that k = |k|e1 and that k⊥ = |k|e2, so that

θ(x)= k̂ cos |k|x1+ k̂⊥ sin |k|x1 and θ⊥(x)=−k̂ sin |k|x1+ k̂⊥ cos |k|x1. (31)

For a vector field with unit vector θ(x), we associate the Lorentz metric with direction θ given by
hθ = 2θ ⊗ θ − I .

The Lorentzian metrics with directions θ(x) and θ⊥(x) oscillate with x1. A given vector k̂ therefore
cannot be time-like for all points x . However, we can always construct two different linear combinations
of these two directions that form time-like vectors for a given range of k · x = |k|x1. Such combinations
allow us to solve the wave equation forward and obtain unique and stable reconstructions on the whole
domain X . The above construction with eρ·x harmonic can be applied when σ(x) = σ0 a constant. It
turns out that we can construct complex geometric optics solutions for arbitrary, sufficiently smooth
conductivities σ(x) and obtain global existence and uniqueness results in that setting. We state the
following result.

Theorem 4.5. Let σ be extended by σ0 = 1 on Rn
\ X̃ , where X̃ is the domain where σ is not known.

We assume that σ is smooth on Rn . Let σ(x)− 1 be supported without loss of generality on the cube
(0, 1)×

(
−

1
2 ,

1
2

)n−1. Define the domain X = (0, 1)× Bn−1(a), where Bn−1(a) is the (n− 1)-dimensional
ball of radius a centered at 0 and where a is sufficiently large that the light cone for the Euclidean metric
emerging from Bn−1(a) strictly includes X̃ . Then there is an open set of illuminations ( f1, f2) such that if
u1 and u2 are the corresponding solutions of (1), then the measurements

H11(x)= σ(x)|∇u1|
2(x), H22(x)= σ(x)|∇u2|

2(x), H12(x)= σ(x)|∇(u1+ u2)|
2, (32)

with the corresponding Cauchy data ( f1, j1), ( f2, j2) and ( f1+ f2, j1+ j2) at x1 = 0, uniquely determine
σ(x). Moreover, let H̃i j be measurements corresponding to σ̃ and ( f̃1, j̃1) and ( f̃2, j̃2), the corresponding
Cauchy data at x1 = 0. We assume that σ(x)− 1 and σ̃ (x)− 1 (also supported in (0, 1)×

(
−

1
2 ,

1
2

)n−1)
are smooth and such that their norms in H (n/2)+3+ε(Rn) for some ε > 0 are bounded by M. Then for a
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6N

61

60

e1

e2

O1

q p

σ(x)

X̃

X

σ = 1

Figure 6. Extended geometry where complex geometric solutions are constructed.

constant C that depends on M , we have the global stability result

‖σ − σ̃‖L2(X̃) ≤ C
(
‖dC − d̃C‖(L2(Bn−1(a)))4 +

∑
(i, j)∈I

‖∇Hi j −∇ H̃i j‖L2(X)

)
. (33)

Here, we have defined I = {(1, 1), (1, 2), (2, 2)} and dC = ( f1, j1, f2, j2), with d̃C being defined similarly.

Proof. We recall that k = |k|e1 and k⊥ = |k|e2. The proof is performed iteratively on layers ti−1 ≤ x1 ≤ ti ,
with ti = i/N for 0≤ i ≤ N and N = N (k) (to be determined) sufficiently large but finite for any given
sufficiently smooth conductivity σ(x). Here, k = |k|e1 is the vector in Rn used for the constructions of
the CGO solutions. We define yi = (ti , 0, . . . , 0) for 0≤ i ≤ N . Define two vectors close to e1 as

p= we1+
√

1−w2e2, q = we1−
√

1−w2e2,

with w < 1 sufficiently close to 1 such that the light cones (for the Euclidean metric) emerging from
Bn−1(a) for the Lorentzian metric with main directions p and q still strictly include X̃ ; see Figure 6. All
we need is that the radius a be chosen sufficiently large so that any Lorentzian metric with direction close
to e1, p or q, has a light cone emerging from Bn−1(a) that includes X̃ . This means that any time-like
trajectory (geodesic) from a point in X̃ crosses Bn−1(a) for all metrics with direction close to e1, p or q.
See Figure 6, where the light cone for p is shown to strictly include X̃ .

Now consider the slab t0 < x1 < t1. We prove a result on that slab and show that the Cauchy data at t1
are controlled so that the same estimate may be used on t1 < x1 < t2 and on all of (0, 1) by induction.
Let α1 and β1 be the two angles in (0, 2π) such that

cosα1 θ(y0)+ sinα1 θ
⊥(y0)= p, cosβ1 θ(y0)+ sinβ1 θ

⊥(y0)= q,

where θ(x) ∈ Sn−1 is defined in (31).
The complex geometric optics solutions are constructed as follows. We define harmonic functions

v = =eρ·x and w =<eρ·x . Then we find that

∇v = ek⊥·x
|k|θ(x), ∇w = ek⊥·x

|k|θ⊥(x),
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so that for the two harmonic functions v1 = cosα1v+ sinα1w and w1 = cosβ1v+ sinβ1w, we have on
the slab 0< x1 < t1 that

∇̂v1 = cosα1 θ(x)+ sinα1 θ
⊥(x)= p+ O(|k|/N ),

∇̂w1 = cosβ1 θ(x)+ sinβ1 θ
⊥(x)= q+ O(|k|/N ).

For t1 = 1/N such that |k|t1 = |k|/N is sufficiently small, ∇̂v1 and ∇̂w1, for all x such that 0< x1 < t1,
are two vector fields such that the associated Lorentzian metrics h∇̂v1

and h∇̂w1
have e1 as a time-like

vector.
Let us now assume that σ is arbitrary but smooth. The main idea of CGO solutions is that we can

construct solutions for arbitrary σ that are close to the solutions corresponding to σ = 1 for |k| sufficiently
large. We construct CGO solutions uρ of (1) (and ũρ by replacing σ by σ̃ ) such that

uρ =
1
√
σ

eρ·x(1+ψρ),

with |k|ψρ bounded in the C1 norm, since σ is sufficiently smooth by hypothesis. This result is proved in
[Bal et al. 2011b] following earlier work in [Bal and Uhlmann 2010]. These solutions are constructed on
Rn and then restricted to X ; their boundary condition fρ is therefore specified by the construction. For
such a solution, we find that

∇uρ =
1
√
σ

eρ·x |ρ|
(
ρ̂+φρ

)
,

where |k||φρ | is also bounded in the uniform norm. This shows that

∇̂=uρ(x)= θ(x)+φρ,i , ∇̂<uρ(x)= θ(x)+φρ,r ,

with |k||φρ,i | and |k||φρ,r | bounded in the uniform norm. As a consequence, we have constructed solutions
of (1) with a gradient that is close to the prescribed θ(x) corresponding to harmonic functions. Construct
now the two linear combinations

v1,ρ = cosα1 vρ+ sinα1wρ, w1,ρ = cosβ1 vρ+ sinβ1wρ, where vρ := =uρ, wρ := <uρ . (34)

Knowledge of the Cauchy data for v1,ρ and w1,ρ is inherited from that for vρ and wρ . Define ṽ1,ρ and
w̃1,ρ similarly with σ replaced by σ̃ . We choose |k| sufficiently large and then t1|k| sufficiently small so
that φρ is a negligible vector that does not perturb the Lorentzian metric much and so that

∇̂v1,ρ = p+ O(|k|t1)+ O(M |k|−1) and ∇̂w1,ρ = q+ O(|k|t1)+ O(M |k|−1) (35)

are directions of Lorentzian metrics for which (i) e1 is a time-like vector, and (ii) the light cone emerging
from Bn−1(a) includes X̃ . Here, M is the uniform bound of σ in H (n/2)+3+ε(Rn) [Bal et al. 2011b; Bal
and Uhlmann 2010]. Note that this means that t1 should be chosen on the order of M |k|−2 once |k| has
been chosen, so that M |k|−1 is sufficiently small.

The same properties hold for the vectors constructed by replacing σ by σ̃ . Thus, the metric g in
(13) is given with α and β close to 1, and e(x) close to p for the function v1,ρ and close to q for the
function w1,ρ . Using Cauchy data on 60 := {x1 = 0}, we can then solve the linear equations on the
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slab O1 := {0= t0 < x1 < t1} and get the solution at the surface 61 := {x1 = t1}. For the solutions v1,ρ

and w1,ρ , we obtain as a slight modification of (20) the stability result [Taylor 1996]:∫
61

| f − f̃ |2+ | j − j̃ |2dσ +
∫

O1

E(dv) dx ≤ C
(∫

60

| f − f̃ |2+ | j − j̃ |2dσ +
∫

O1

|∇δH |2 dx
)
. (36)

The above measurements, δH = H − H̃ , are those for the functions (v1,ρ, ṽ1,ρ) and (w1,ρ, w̃1,ρ). Such
measurements can be constructed from the three measurements for vρ , wρ and vρ +wρ . This is the place
where we use the three measurements stated in the theorem: we need to ensure that σ(x)|µ∇vρ+ν∇wρ |2

is available for any possible linear combination (µ, ν), since the values of α1 and β1 will vary (and will
be called αi and βi ) on each slab ti < xi < ti+1. Since the measurements H for the 0-Laplacian problem
are quadratic in the elliptic solution, three measurements are sufficient by polarization to allow us to
construct σ(x)|∇v1,ρ |

2 and σ(x)|∇w1,ρ |
2.

On 61, we have control on the Cauchy data of v1,ρ and w1,ρ , and hence of vρ = =uρ and wρ =<uρ
thanks to (36) and (34). Here, we need that p and q be not too close to one another (this is guaranteed by
w < 1), so that the inversion of the 2× 2 system is well-conditioned. On each slab, we define the angles
αi and βi in order again to have Lorentzian metrics with directions close to p and q. We then obtain a
similar estimate to (36) and continue by induction until we reach the slab ON := {tN−1 < x1 < tN = 1}.

The stability results then apply to =uρ and <uρ , and we thus obtain a global estimate for σ as in earlier
sections. So far, the illuminations f prescribed on X to solve the elliptic problem are of a very specific
type. In order for =uρ and <uρ to be the solutions to the elliptic problems on X , ( f1, f2) needs to be the
trace of (=uρ,<uρ) on ∂X . It is for these illuminations that the three measurements Hi j (x) for (i, j) ∈ I
generate Lorentzian metrics that satisfy the above sufficient properties. Since σ is not known, these traces
are not known either.

However, any Lorentzian metric that is sufficiently close to the Lorentzian metrics constructed with the
real and imaginary parts of uρ will inherit the same light cone properties and, in particular, the fact that e1

is a time-like vector for these new Lorentzian metrics throughout X = (0, 1)× Bn−1(a). Therefore, there
is an open set of boundary conditions ( f1, f2) close to (=uρ |∂X ,<uρ |∂X ) such that the conclusion (36)
holds, as well as the same expressions on the other slabs Oi . This concludes the proof of the result. �

Remark 4.6. The “three” measurements Hi j for (i, j) ∈ I in (32) actually correspond to two physical
measurements. Indeed, we can replace uε by u1;ε and u−ε by u2;−ε in (3) and obtain in the limit
σ∇u1 · ∇u2, which, combined with H11 and H22, yields H12 defined in (32). The experimental acquisition
of H11 is in fact sufficient to also acquire σ∇u1 · ∇u2, as demonstrated in [Kuchment and Kunyansky
2011].

Remark 4.7. Theorem 4.5 is a uniqueness and stability result for arbitrary, sufficiently smooth con-
ductivities. However, the boundary conditions f are quite specific, since they need to be sufficiently
close to nonexplicit, σ -dependent traces of complex geometrical optics solutions. In some sense, the
difficulty inherent to the spatially varying Lorentzian metric h(x) in (15) has been shifted to the difficulty
of constructing adapted boundary conditions (illuminations).
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Note that the condition of flatness of the surfaces 6i in the above construction is not essential. Surfaces
with a geometry such as that depicted in Figure 1 may also be considered. Such surfaces allow us to
reduce the size of the domain X on which the conductivity σ = 1 needs to be extended. Unless the
domain X has a specific geometry similar to that of the domain O between 61 and 62 in Figure 1, it
seems necessary to augment the size of X̃ to that of X as described above to obtain a global uniqueness
result.
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SHARP WEIGHTED BOUNDS INVOLVING A∞

TUOMAS HYTÖNEN AND CARLOS PÉREZ

We improve on several weighted inequalities of recent interest by replacing a part of the Ap bounds by
weaker A∞ estimates involving Wilson’s A∞ constant

[w]′A∞ := sup
Q

1
w(Q)

∫
Q

M(wχQ).

In particular, we show the following improvement of the first author’s A2 theorem for Calderón–Zygmund
operators T :

‖T ‖B(L2(w)) ≤ cT [w]
1/2
A2

(
[w]′A∞ + [w

−1
]
′

A∞

)1/2
.

Corresponding Ap type results are obtained from a new extrapolation theorem with appropriate mixed Ap-
A∞ bounds. This uses new two-weight estimates for the maximal function, which improve on Buckley’s
classical bound.

We also derive mixed A1-A∞ type results of Lerner, Ombrosi and Pérez (2009) of the form

‖T ‖B(L p(w)) ≤ cpp′[w]1/p
A1
([w]′A∞)

1/p′ , 1< p <∞,

‖T f ‖L1,∞(w) ≤ c[w]A1 log(e+ [w]′A∞)‖ f ‖L1(w).

An estimate dual to the last one is also found, as well as new bounds for commutators of singular integrals.

1. Introduction and statements of the main results

The weights w for which the usual operators T of classical analysis (like the Hardy–Littlewood maximal
operator, the Hilbert transform, and general classes of Calderón–Zygmund operators) act boundedly on
L p(w) were identified in works of Muckenhoupt [1972], Hunt, Muckenhoupt and Wheeden [Hunt et al.
1973], and Coifman and Fefferman [1974]. This class consists of the Muckenhoupt Ap weights, defined
by the condition that (see [García-Cuerva and Rubio de Francia 1985])

[w]Ap := sup
Q

(
−

∫
Q
w

)(
−

∫
Q
w−1/(p−1)

)p−1

<∞, p ∈ (1,∞),

where the supremum is over all cubes in Rd . Hence it is shown for any of these important operators T ,
whether it is linear or not, that

‖T ‖B(L p(w)) := sup
f 6=0

‖T f ‖L p(w)

‖ f ‖L p(w)

Hytönen was supported by the Academy of Finland, projects 130166, 133264 and 218148. Pérez was supported by the Spanish
Ministry of Science and Innovation, grant MTM2009-08934, and by the Junta de Andalucía, grant FQM-4745.
MSC2010: primary 42B25; secondary 42B20, 42B35.
Keywords: weighted norm inequalities, A p weights, sharp estimates, maximal function, Calderón–Zygmund operators.
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is finite if and only if [w]Ap <∞.
It is a natural question to look for optimal quantitative bounds of ‖T ‖B(L p(w)) in terms of [w]Ap . The

first author who studied that question was S. Buckley [1993], who proved

‖M‖B(L p(w)) ≤ cp,d [w]
1/(p−1)
Ap

, 1< p <∞, (1.1)

where M is the usual Hardy–Littlewood maximal function on Rd . However, there has been a great impetus
toward finding such precise dependence for more singular operators after the work of Astala, Iwaniec and
Saksman [Astala et al. 2001], due to the connections with sharp regularity results for solutions to the
Beltrami equation. The key fact was to prove that the operator norm of the Beurling–Ahlfors transform on
L2(w) grows linearly in terms of the A2 constant of w. This was proved by S. Petermichl and A. Volberg
[2002] and by Petermichl [2007; 2008] for the Hilbert transform and the Riesz transforms. To be precise,
in these papers it has been shown that if T is any of these operators, then

‖T ‖B(L p(w)) ≤ cp,T [w]
max{1,1/(p−1)}
Ap

. (1.2)

The exponents are optimal in the sense that the exponent cannot be replaced by any smaller quantity.
It was conjectured then that the same estimate holds for any Calderón–Zygmund operator T . This was
proven first for special classes of integral transforms in [Cruz-Uribe et al. 2010; Lacey et al. 2010b], and
eventually for general Calderón–Zygmund operators by the first author in [Hytönen 2012], using the
main result from [Pérez et al. 2010], where it is shown that a weak type estimate is enough to prove the
strong type. A direct proof of this result can be found in [Hytönen et al. 2010]. Other related works are
[Cruz-Uribe et al. 2012; Hytönen et al. 2011; Lacey et al. 2010a; Lerner 2011; Vagharshakyan 2010].

The main purpose of this paper is to show that these results can be further improved. To do this, we
recall the following definitions of the A∞ constant of a weight w. First, there is the notion introduced by
Hruščev [1984] (see also [García-Cuerva and Rubio de Francia 1985]),

[w]A∞ := sup
Q

(
−

∫
Q
w

)
exp

(
−

∫
Q

logw−1
)
;

and second, there is the (as it turns out) smaller quantity that appeared with a different notation in the work
of Wilson [1987; 1989; 2008] and was recently termed the “A∞ constant” by Lerner [2011, Section 5.5]:

[w]′A∞ := sup
Q

1
w(Q)

∫
Q

M(wχQ).

Observe that
cd [w]

′

A∞ ≤ [w]A∞ ≤ [w]Ap for all p ∈ [1,∞),

where the second estimate is elementary, and the first will be checked in Proposition 2.2. While the
constant [w]A∞ is more widely used in the literature, and is also more flexible for our purposes, it is of
interest to observe situations where the smaller constant [w]′A∞ is sufficient for our estimates, thereby
giving a sharper bound.
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Now, if σ =w−1/(p−1) is the dual weight of w, we also have [σ ]p−1
A∞ ≤ [σ ]

p−1
Ap′
= [w]Ap . The point here

is that these quantities can be much smaller for some classes of weights. Our results will be of the form

‖T ‖B(L p(w)) ≤ cp,T

∑
[w]

α(p)
Ap
[w]

β(p)
A∞ [σ ]

(p−1)γ (p)
A∞ ,

sometimes even with the smaller [ ]′A∞ constant instead of [ ]A∞ , where the sum is over at most two
triplets (α, β, γ ), and the exponents satisfy α(p)+β(p)+γ (p)= τ(p), where τ(p) is the exponent from
the earlier sharp results. However, we will have α(p) < τ(p), which shows that part of the necessary Ap

control may in fact be replaced by weaker A∞ control.
We now turn to a more detailed discussion of our results.

1A. The A2 theory for Calderón–Zygmund operators. Our main result for Calderón–Zygmund opera-
tors is the following:

Theorem 1.3. Let T be a Calderón–Zygmund operator and let w ∈ A2 and σ = w−1. Then there is a
constant c = cd,T such that

‖T ‖B(L2(w)) ≤ c[w]1/2A2

(
[w]′A∞ + [w

−1
]
′

A∞

)1/2
≤ c[w]1/2A2

(
[w]A∞ + [w

−1
]A∞

)1/2
. (1.4)

We will prove this by following the approach from [Hytönen 2012; Hytönen et al. 2010] to the A2

theorem ‖T ‖B(L2(w)) ≤ cT [w]A2 , and modifying the proof at some critical points. Indeed, the original
argument uses the A2 property basically twice, each time producing the factor [w]1/2A2

, and it suffices to
observe that only the A∞ property is actually needed in one of these estimates.

An interesting consequence of this theorem is the following: for any fixed Calderón–Zygmund operator
T , we have

inf
w∈A2

‖T ‖B(L2(w))

[w]A2

= 0. (1.5)

This follows once we describe, in Section 8, a family of weights w ∈ A2 for which both [w]′A∞ and
[σ ]′A∞ (and even [w]A∞ and [σ ]A∞) grow slower than [w]A2 . In particular, the “reverse A2 conjecture”
[w]A2 ≤ cT ‖T ‖B(L2(w)) is false.

1B. The maximal function. We next discuss the sharp weighted bounds for the Hardy–Littlewood
maximal function, which we first do in a two-weight setting. We need a new two-weight constant
Bp[w, σ ] defined by the functional

Bp[w, σ ] := sup
Q

(
−

∫
Q
w

)(
−

∫
Q
σ

)p

exp
(
−

∫
Q

log σ−1
)
, (1.6)

which clearly satisfies
[w]Ap ≤ Bp[w, σ ] ≤ [w]Ap [σ ]A∞ .

Theorem 1.7. Let M be the Hardy–Littlewood maximal operator and let p ∈ (1,∞). Then we have the
estimates

‖M( f σ)‖L p(w) ≤ Cd · p′ ·
(
Bp[w, σ ]

)1/p
‖ f ‖L p(σ ) (1.8)
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and
‖M( f σ)‖L p(w) ≤ Cd · p′ ·

(
[w]Ap [σ ]

′

A∞

)1/p
‖ f ‖L p(σ ). (1.9)

We refer to Section 4 for the proof and for more information and background about this two-weight
estimate for M . By a well-known change-of-weight argument, (1.9) implies:

Corollary 1.10. For M and p as above, and σ = w−1/(p−1), we have

‖M‖B(L p(w)) ≤ Cd · p′ ·
(
[w]Ap [σ ]

′

A∞

)1/p
. (1.11)

This improves on Buckley’s theorem ‖M‖B(L p(w)) ≤ Cd · p′ · [w]
1/(p−1)
Ap

. Corollary 1.10, at least for
p = 2, was also independently discovered by A. Lerner and S. Ombrosi [2008].

1C. The A1 theory for Calderón–Zygmund operators. It is an interesting fact that if we assume that
the weight satisfies the stronger condition w ∈ A1, then the estimate (1.2) can be considerably improved.
Indeed, if T is any Calderón–Zygmund operator, then T is of course bounded on L p(w), because A1 ⊂ Ap,
but with a much better bound, namely

‖T ‖B(L p(w)) ≤ cpp′ [w]A1, 1< p <∞. (1.12)

Observe that the dependence on the A1 constant is linear for any p, while in the Ap case it is highly
nonlinear for 1< p < 2; see (1.2). The result is sharp both in terms of the dependence on [w]A1 , and in
terms of the dependence on p when taking w = 1 by the classical theory. This fact was used to get the
following endpoint result:

‖T f ‖L1,∞(w) ≤ c[w]A1 log(e+ [w]A1)‖ f ‖L1(w). (1.13)

See [Lerner et al. 2009a] and also [Lerner et al. 2008] for these results and for more information about
the problem. It was conjectured in the first of these works that the growth of this bound would be linear;
however, it was shown in [Nazarov et al. 2010] that the growth of the bound is worse than linear. It seems
that most probably the L log L result (1.13) is the best possible.

On the other hand, in [Lerner et al. 2009b], a sort of “dual” estimate to the last bound was found,
which is also of interest for related matters:∥∥∥∥T f

w

∥∥∥∥
L1,∞(w)

≤ c[w]A1 log(e+ [w]A1)

∫
Rd
| f | dx .

In this paper, we improve these results following our new quantitative estimates, this time involving
A1 and A∞ control. To be precise, we will prove the following new results:

Theorem 1.14. Let T be a Calderón–Zygmund operator and let 1< p <∞. Then

‖T ‖B(L p(w)) ≤ cpp′[w]1/p
A1
([w]′A∞)

1/p′,

where c = c(d, T ).

We will prove this by following the approach from [Lerner et al. 2008; 2009a] to (1.12), modifying
the proof at several points. In analogy to (1.5), Theorem 1.14 disproves the “reverse A1 conjecture”
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[w]A1 ≤ cT ‖T ‖B(L p(w)) for all p ∈ (1,∞): considering a family of weights w ∈ A1 for which [w]A∞
grows slower than [w]A1 , for any fixed Calderón–Zygmund operator T , we have (see Section 8 for details)

inf
w∈A1

‖T ‖B(L p(w))

[w]A1

= 0, 1< p <∞.

Finally, we will also use the approach from [Lerner et al. 2009a; 2009b] to prove the following theorems,
respectively.

Theorem 1.15. Let T be a Calderón–Zygmund operator. Then

‖T f ‖L1,∞(w) ≤ cd,T [w]A1 log(e+ [w]′A∞)‖ f ‖L1(w).

Theorem 1.16. Let T be a Calderón–Zygmund operator. Then∥∥∥∥T f
w

∥∥∥∥
L1,∞(w)

≤ cd,T [w]
′

A∞ log(e+ [w]A1)‖ f ‖L1(Rd ).

1D. Commutators with BMO functions. We further pursue the A∞ point of view by proving a result in
the spirit of Theorem 1.3 for commutators of linear operators T with BMO functions. These operators
are defined formally by the expression

[b, T ] f = bT ( f )− T (b f ).

More generally, we can consider the k-th order commutator defined by

T k
b := [b, T k−1

b ].

When T is a singular integral operator, these operators were considered by Coifman, Rochberg and
Weiss [Coifman et al. 1976], and since then many results have been obtained. We refer to [Chung et al.
2012] for more information about these operators; it is shown there that if T is a linear operator bounded
on L2(w) for any w ∈ A2 with bound

‖T ‖B(L2(w)) ≤ ϕ([w]A2),

where ϕ is an increasing function ϕ : [1,∞)→ [0,∞), then there is a dimensional constant c such that

‖[b, T ]‖B(L2(w)) ≤ cϕ(c[w]A2)[w]A2‖b‖BMO.

In particular, if T is any Calderón–Zygmund operator, we can use the linear A2 theorem for T to deduce

‖[b, T ]‖B(L2(w)) ≤ c[w]2A2
‖b‖BMO,

and the quadratic exponent cannot be improved.
An analogous result adapted to the A∞ control reads as follows:

Theorem 1.17. Let T be a linear operator bounded on L2(w) for any w ∈ A2 and let b ∈ BMO. Suppose
further that there is a function ϕ : [1,∞)3→ [0,∞), increasing with respect to each component, such
that

‖T ‖B(L2(w)) ≤ ϕ
(
[w]A2, [w]

′

A∞, [σ ]
′

A∞

)
.
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Then there is a dimensional constant c such that

‖[b, T ]‖B(L2(w)) ≤ cϕ
(
c[w]A2, c [w]′A∞, c[σ ]′A∞

)(
[w]′A∞ + [σ ]

′

A∞

)
‖b‖BMO,

or more generally,

‖T k
b ‖B(L2(w)) ≤ cϕ

(
c[w]A2, c[w]′A∞, c[σ ]′A∞

)(
[w]′A∞ + [σ ]

′

A∞

)k
‖b‖kBMO.

We can now apply Theorem 1.3.

Corollary 1.18. Let T be any Calderón–Zygmund operator, and let b ∈ BMO. Then

‖[b, T ]‖B(L2(w)) ≤ c[w]1/2A2

(
[w]′A∞ + [w

−1
]
′

A∞

)3/2
‖b‖BMO,

or more generally,
‖T k

b ‖B(L2(w)) ≤ c[w]1/2A2

(
[w]′A∞ + [σ ]

′

A∞

)k+1/2
‖b‖kBMO.

1E. An end-point estimate when p = ∞. We next discuss the limiting form of the estimate (1.2) as
p→∞, that is, the sharp bounds for the norm of Calderón–Zygmund operators

T : L∞(w)→ BMO(w), w ∈ A∞.

Qualitatively, this situation seems slightly uninteresting, as these end-point spaces simply reduce to their
unweighted analogues: that L∞(w)= L∞ with equal norms is immediate from the fact that w and the
Lebesgue measure share the same zero sets for w ∈ A∞. That the weighted norm

‖ f ‖BMO(w) := sup
Q

inf
c

1
w(Q)

∫
Q
| f − c|w <∞

is equivalent to the usual ‖ f ‖BMO for w ∈ A∞ was proven by Muckenhoupt and Wheeden [1975,
Theorem 5]. However, one may still investigate the quantitative bound of operators T : L∞→ BMO=
BMO(w), when the latter space is equipped with the norm ‖ ‖BMO(w). We start with:

Theorem 1.19. For w ∈ A∞, we have a bounded embedding I : BMO ↪→ BMO(w) of norm at most
c[w]′A∞ , where c is dimensional. This estimate is sharp in the following sense: if the norm of the embedding
is bounded by φ([w]′A∞), or just by φ([w]A∞), for all w ∈ A∞, then φ(t)≥ ct.

The following corollary for Calderón–Zygmund operators can be seen as an easy endpoint estimate of
the bound ‖T ‖B(L p(w)) ≤ cp,T [w]Ap for p ∈ [2,∞).

Corollary 1.20. Let T be any Calderón–Zygmund operator and let w ∈ A∞; then T : L∞→ BMO(w)
with norm at most cT [w]

′

A∞ . Furthermore, this estimate is sharp in terms of the dependence on [w]′A∞ in
the same way as Theorem 1.19.

A related observation quantifying the known relation of A∞ and BMO is as follows:

Proposition 1.21. If w ∈ A∞, then logw ∈ BMO with

‖logw‖BMO ≤ log(2e[w]A∞).
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1F. Extrapolation with A∞ control. We recall the following quantitative version of Rubio de Francia’s
classical extrapolation theorem due to Dragičević, Grafakos, Pereyra, and Petermichl [Dragičević et al.
2005]: if an operator T satisfies

‖T ‖B(Lr (w)) ≤ ϕ([w]Ar )

for a fixed increasing function ϕ and for all w ∈ Ar , then it satisfies a similar estimate for all p ∈ (1,∞),

‖T ‖B(L p(w)) ≤ 2ϕ
(
cp,r,d [w]

max{1,(r−1)/(p−1)}
Ap

)
;

in particular, ‖T ‖B(Lr (w)) . [w]
τ(r)
Ar

implies that

‖T ‖B(L p(w)) . [w]
τ(r)max{1,(r−1)/(p−1)}
Ap

.

With our new quantitative estimates involving both A2 and A∞ control, it seems of interest to extrapolate
such bounds as well. Hence we consider weighted estimates of the form

‖T f ‖Lr (w) ≤ ϕ
(
[w]Ar , [w]A∞, [w

−1/(r−1)
]
(r−1)
A∞

)
‖ f ‖Lr (w), (1.22)

where ϕ : [1,∞)3→ [0,∞) is an increasing function with respect to each of the variables. An example
is our bound for singular integrals 1.3, where

ϕ(x, y, z)= Cx1/2(y+ z)1/2. (1.23)

We now aim to extrapolate bounds like (1.22) from the given r ∈ (1,∞) to other exponents p ∈ (1,∞).

Theorem 1.24 (lower extrapolation). Suppose that for some r and every w ∈ Ar , an operator T satisfies
(1.22). Then for every p ∈ (1, r), it satisfies

‖T f ‖L p(w) ≤ 2ϕ
((

2‖M‖B(L p(w))

)r−p(
[w]Ar , [w]A∞, [w

−1/(p−1)
]
(p−1)
A∞

))
‖ f ‖L p(w)

≤ 2ϕ
((

cd([w]Ap [w
−1/(p−1)

]
′

A∞)
1/p)r−p(

[w]Ap , [w]A∞, [w
−1/(p−1)

]
(p−1)
A∞

))
‖ f ‖L p(w).

In typical applications, like (1.23), the function ϕ will have a homogeneity of the form ϕ(λx, λy, λz)=
λsϕ(x, y, z), and hence the common factor(

2‖M‖B(L p(w))

)r−p
≤
(
cd([w]Ap [w

−1/(p−1)
]
′

A∞)
1/p)r−p

may be extracted out of ϕ.
Observe that the condition (1.22) is of course implied by the stronger inequality

‖T f ‖Lr (w) ≤ ϕ
(
[w]Ar , c−1

d [w]
′

A∞, (c
−1
d [w

−1/(r−1)
]
′

A∞)
(r−1))

‖ f ‖Lr (w);

however, even if we have this stronger inequality to start with (as is the case with the A2 theorem for
Calderón–Zygmund operators), we do not know how to exploit it to get a stronger conclusion than what
we can derive from (1.22). A related difficulty will be pointed out in the proof. This is why we restrict to
the assumption (1.22) only.
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Theorem 1.25 (upper extrapolation). Suppose that for some r and every w ∈ Ar , an operator T satisfies
(1.22). Then for every p ∈ (r,∞), it satisfies

‖T f ‖L p(w) ≤ 2ϕ
((

2‖M‖B(L p′ (w1−p′ ))

)(p−r)/(p−1)

×
(
[w]

(r−1)/(p−1)
Ap

, [w]
(r−1)/(p−1)
A∞ ,

[
w−1/(p−1)](r−1)

A∞

))
‖ f ‖L p(w)

≤ 2ϕ
((

cd [w]
1/p
Ap
([w]′A∞)

1/p′)(p−r)/(p−1)

×
(
[w]

(r−1)/(p−1)
Ap

, [w]
(r−1)/(p−1)
A∞ ,

[
w−1/(p−1)](r−1)

A∞

))
‖ f ‖L p(w).

1G. The A p theory for Calderón–Zygmund operators. As an application of the extrapolation theorems,
we can deduce weighted L p estimates for Calderón–Zygmund operators with mixed Ap and A∞ control,
akin to the A2 bounds of Theorem 1.3. The same strategy has been earlier employed to prove the original
Ap theorem (1.2) as a corollary of its A2 version. However, in contrast to the “pure” Ap estimates, where
the extrapolated result still exhibits the sharp dependence on the weight, it seems that the extrapolation
of the mixed bounds is not equally efficient: the extrapolated bounds given below can be improved by
methods directly adapted to L p. Since the first public distribution of our present results, such further
developments have been carried out in [Hytönen et al. 2011, Section 12; Lacey 2012; Hytönen and Lacey
2011]. Nevertheless, it seems worth recording the form of the Ap estimates directly delivered by the
extrapolation method:

Corollary 1.26. Let T be a Calderón–Zygmund operator and let p ∈ (1,∞). Then if w ∈ Ap and
σ = w−1/(p−1), we have

‖T ‖B(L p(w)) . [w]
2/p−1/2
Ap

(
[w]

1/2
A∞ + [σ ]

(p−1)/2
A∞

)
([σ ]′A∞)

2/p−1

. [w]2/p
Ap
([σ ]′A∞)

2/p−1 for p ∈ (1, 2],
(1.27)

and
‖T ‖B(L p(w)) . [w]

2/p−1/[2(p−1)]
Ap

(
[w]

1/[2(p−1)]
A∞ + [σ ]

1/2
A∞

)
([w]′A∞)

1−2/p

. [w]2/p
Ap
([w]′A∞)

1−2/p for p ∈ [2,∞).
(1.28)

Here the simpler forms of the estimates in (1.27) and (1.28) are almost as good as the more complicated
ones, since for many common weights, like power weights, we have [w]A∞ + [σ ]

p−1
A∞ h [w]Ap ; see

Section 8.
It is immediate to check that Theorems 1.24 and 1.25, in combination with Theorem 1.3, give

Corollary 1.26. Actually, the two statements (1.27) and (1.28) are equivalent to each other by using

‖T ‖B(L p(w)) = ‖T ∗‖B(L p′ (σ ))

and the fact that T ∗ is also a Calderón–Zygmund operator. Thanks to this equivalence, we would only
need one of Theorems 1.24 and 1.25 to deduce this corollary. But for other classes of operators without a
self-dual structure, it is useful to have both upper and lower extrapolation results available.
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2. The two different A∞ constants

Before pursuing further our analysis of inequalities with A∞ control, we include this short section to
compare the two A∞ constants

[w]A∞ := sup
Q

(
−

∫
Q
w

)
exp

(
−

∫
Q

logw−1
)
, [w]′A∞ := sup

Q

1
w(Q)

∫
Q

M(wχQ).

We need the following auxiliary estimate, which is also used later in the paper:

Lemma 2.1. The logarithmic maximal function

M0 f := sup
Q

exp
(
−

∫
Q

log| f |
)
χQ

satisfies
‖M0 f ‖L p ≤ c1/p

d ‖ f ‖L p

for all p ∈ (0,∞). For the dyadic version, we can take cd = e, independent of dimension d.

Proof. By Jensen’s inequality and the basic properties of the logarithm, we have

M0 f ≤ M f, M0 f = (M0| f |1/q)q ≤ (M | f |1/q)q , q ∈ (0,∞),

where M is the Hardy–Littlewood maximal operator, or the dyadic maximal operator in the case of dyadic
M0. By the Lq boundedness of the usual maximal function for q > 1, we have∫

[M0 f ]p ≤
∫ [

M | f |p/q
]q
≤ (Cd · q ′)q

∫
(| f |p/q)q = (Cd · q ′)q

∫
| f |p.

In the nondyadic case, we simply take, say, q = 2, giving the claim with cd = (2Cd)
2. In the dyadic case,

we have Cd = 1, and we can take the limit q→∞, which gives

(q ′)q =
( q

q − 1

)q
=

(
1+

1
q − 1

)q
→ e,

and hence ‖M0 f ‖p
L p ≤ e‖ f ‖p

L p . �

Proposition 2.2. We have [w]′A∞ ≤ cd [w]A∞ , where cd is as in Lemma 2.1.

Proof. For x ∈ Q, it is not difficult to see that for the computation of M(wχQ)(x), it suffices to take the
supremum over cubes R 3 x with R ⊆ Q:

M(wχQ)(x)= sup
R3x
R⊆Q

−

∫
R
w for all x ∈ Q.

By the definition of [w]A∞ , we have

−

∫
R
w ≤ [w]A∞ exp

(
−

∫
R

logw
)
,

and hence, taking the supremum over R,

M(wχQ)(x)≤ [w]A∞M0(wχQ)(x) for all x ∈ Q.
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Integration over Q and application of Lemma 2.1 now give∫
Q

M(wχQ)≤ [w]A∞

∫
M0(wχQ)≤ [w]A∞cd

∫
wχQ = cd [w]A∞w(Q);

thus [w]′A∞ ≤ cd [w]A∞ . �

It is a well-known fact that any A∞ weight satisfies a reverse Hölder inequality playing a central role
in the area. In this paper, a sharp version of this property will also play a fundamental role. To be precise,
if w ∈ A∞, we define

r(w) := 1+ 1
τd [w]

′

A∞
,

where τd is a dimensional constant that we may take to be τd = 211+d . Note that r(w)′ ≈ [w]′A∞ . The
result we need is the following.

Theorem 2.3 (a new sharp reverse Hölder inequality). (a) If w ∈ A∞, then(
−

∫
Q
wr(w)

)1/r(w)

≤ 2−
∫

Q
w.

(b) Furthermore, the result is optimal up to a dimensional factor: If a weight w satisfies the reverse
Hölder inequality (

−

∫
Q
wr
)1/r

≤ K−
∫

Q
w,

then [w]′A∞ ≤ cd · K · r ′.

This result is new in the literature and has its own interest. In the classical situation, most of the
available proofs do not give such explicit constants, which are important for us. Only under the stronger
condition of A1 was such a result found and used in a crucial way in [Lerner et al. 2009a]. Recently
a very nice proof by A. de la Torre for the case [w]A∞was sent to us (personal communication, 2010).
Another less precise proof, for the Ap case, 1< p <∞, can be found in [Pérez 2013].

Part (b) follows from the boundedness of the maximal function in Lr with constant cdr ′:

−

∫
Q

M(χQw)≤

(
−

∫
Q

M(χQw)
r
)1/r

≤ cd · r ′
(
−

∫
Q
wr
)1/r

≤ cd · r ′ · K−
∫

Q
w.

Remark 2.4. Results analogous to Proposition 2.2 and Theorem 2.3 have been independently obtained
by O. Beznosova and A. Reznikov [2011]. Their formulation is slightly different, and involves yet another
weight constant closely related to [w]′A∞ .

3. The A2 theorem for Calderón–Zygmund operators

The purpose of this section is to prove Theorem 1.3, namely, the estimate

‖T ‖B(L2(w)) ≤ c[w]1/2A2

(
[w]′A∞ + [σ ]

′

A∞

)1/2
,

where c = cd,T is a constant depending on the dimension and the operator T .
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Here and throughout this section, σ = w−1. This improves on the A2 theorem [Hytönen 2012]:

‖T ‖B(L2(w)) ≤ c [w]A2,

and its proof follows the same outline, with the implementation of the A∞ philosophy at key points.

3A. Reduction to a dyadic version. Fundamental to this proof strategy is the notion of dyadic shifts,
which we recall. We work with a general dyadic system D, this being a collection of axis-parallel cubes Q,
whose sidelengths `(Q) are of the form 2k , k ∈ Z, where moreover Q ∩ R ∈ {Q, R,∅} for any two
Q, R ∈ D, and the cubes of a fixed sidelength 2k form a partition of Rd . Given such a dyadic system, a
dyadic shift with parameters (m, n) is an operator of the form

X f =
∑
K∈D

AK f, AK f = 1
|K |

∑
I,J∈D;I,J⊆K
`(I )=2−m`(K )
`(J )=2−n`(K )

〈h J
I , f 〉k I

J ,

where h J
I is a generalized Haar function on I (supported on I , constant on its dyadic subcubes, and

normalized by ‖h J
I ‖∞ ≤ 1), and k I

J on J . This implies that |AK f | ≤ χK · |K |−1
·
∫

K | f |. For any
subcollection Q⊂ D, we write

XQ f :=
∑
K∈Q

AK f, (3.1)

and we require that ‖XQ f ‖L2 ≤‖ f ‖L2 for all Q⊂D. This is automatic from straightforward orthogonality
considerations in case we only have cancellative Haar functions with

∫
h J

I =
∫

k I
J = 0.

Dyadic shifts with parameters (0, 0) are well known in dyadic harmonic analysis under different names.
Auscher et al. [2002] study such operators under the name perfect dyadic operators, which they decompose
into a sum of a Haar multiplier (or martingale transform), a paraproduct, and a dual paraproduct. These
three types of operators have of course been well known for a long time. The first dyadic shift (and
this name) with parameters (0, 1) was introduced in [Petermichl 2000], and the definition in the above
generality was given by Lacey, Petermichl and Reguera [Lacey et al. 2010b].

The importance of these dyadic shifts for the analysis of Calderón–Zygmund operators comes from
the following:

Theorem 3.2 (dyadic representation theorem [Hytönen 2012, Theorem 4.2; Hytönen et al. 2010, Theo-
rem 4.1]). Let T ∈B(L2(Rd)) be a Calderón–Zygmund operator satisfying the standard estimates with
the Hölder continuity exponent α ∈ (0, 1]. Then T has the representation

〈g, T f 〉 = cT,dED

∞∑
m,n=0

2−(m+n)α/2
〈g,Xmn

D f 〉,

valid for all bounded and compactly supported functions f and g, where Xmn
D is a dyadic shift with

parameters (m, n) related to the dyadic system D, and ED is the expectation with respect to a probability
measure on the space of all generalized dyadic systems; see [Hytönen 2012] for the details of the
construction of this probability space.
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This result was preceded by several versions restricted to special operators T : the Beurling–Ahlfors
transform by Dragičević and Volberg [2003], the Hilbert transform by Petermichl [2000], the Riesz
transforms by Petermichl, Treil and Volberg [Petermichl et al. 2002], and all one-dimensional convolution
operators with an odd, smooth kernel by Vagharshakyan [2010]. An immediate consequence of the
dyadic representation theorem is that Theorem 1.3 will be a consequence of the following dyadic version.
(Similarly, the special cases of the representation theorem all played a role in proving the A2 theorem for
the mentioned particular operators.)

Theorem 3.3. Let X be a dyadic shift with parameters (m, n), and r = max{m, n}. For w ∈ A2 and
σ = w−1, we have

‖X f ‖L2(w) ≤ C(r + 1)2[w]1/2A2

(
[w]′A∞ + [σ ]

′

A∞

)1/2
‖ f ‖L2(w).

The weighted norm of the shifts, in turn, is most conveniently deduced with the help of the following
characterization of their boundedness in a two-weight situation:

Theorem 3.4 [Hytönen et al. 2010, Theorem 3.4]. Let X be a dyadic shift with parameters (m, n), and
let r =max{m, n}. If for all Q ∈ D and some B there holds(∫

Q
|X(χQσ)|

2w

)1/2

≤ Bσ(Q)1/2,
(∫

Q
|X∗(χQw)|

2σ

)1/2

≤ Bw(Q)1/2,

then for a dimensional constant c, we have

‖X( f σ)‖L2(w) ≤ c
(
(r + 1)B+ (r + 1)2(A2[w, σ ])

1/2)
‖ f ‖L2(σ ),

where A2[w, σ ] is defined by the functional

A2[w, σ ] := sup
Q

(
−

∫
Q
w

)(
−

∫
Q
σ

)
.

Since the last bound is equivalent to

‖X f ‖L2(w) ≤ c
(
(r + 1)B+ (r + 1)2[w]1/2A2

)
‖ f ‖L2(w)

if σ =w−1, and since [w]A∞, [σ ]A∞ ≥ 1, we are reduced to estimating the quantity B for σ =w−1. Since
X and X∗ are operators of the same form, and by the symmetry of w and σ , Theorem 3.4 shows that
proving Theorem 3.3 amounts to showing that(∫

Q
|X(wχQ)|

2σ

)1/2

≤ c (r + 1)
(
[w]A2[w]

′

A∞w(Q)
)1/2

.

We observe that
X(wχQ)=

∑
K⊆Q

AK (wχQ)+
∑
K⊃Q

AK (wχQ),

and it suffices to consider the two parts separately. The big cubes are immediately handled by the maximal
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function estimate (see Corollary 1.10):∫
Q

∣∣∣∣∑
K⊃Q

AK (wχQ)

∣∣∣∣2σ ≤ ∫
Q

(∑
K⊃Q

w(Q)
|K |

χK

)2

σ .
∫

Q
Md(wχQ)

2σ

≤ [σ ]A2[w]
′

A∞w(Q)= [w]A2[w]
′

A∞w(Q). (3.5)

Hence, to prove Theorem 3.3, we are reduced to showing that(∫
Q

∣∣∣∣∑
K⊆Q

AK (wχQ)

∣∣∣∣2σ)1/2

≤ c(r + 1)
(
[w]A2[w]

′

A∞w(Q)
)1/2

. (3.6)

This is the goal for the rest of this section.

3B. Proof of the key estimate (3.6). We follow the key steps from [Hytönen 2012; Hytönen et al. 2010;
Lacey et al. 2010b]. The collection {K ∈D : K ⊆ Q} is first split into (r + 1) subcollections according to
the value of log2 `(K ) mod (r + 1); we henceforth work with one of these subcollections, which we
denote by K. This is the step which introduces the factor (r + 1), and we will estimate XK(wχQ) with a
bound independent of r .

The collection K is further divided into the sets Ka of those cubes with

2a <
w(Q)
|Q|

σ(Q)
|Q|
≤ 2a+1, (3.7)

where a ≤ log2[w]A2 .
Among the cubes K ∈ Ka , we choose the principal cubes Sa

=
⋃
∞

k=0 Sa
k so that Sa

0 consists of the
maximal cubes in Ka , and Sa

k the maximal cubes S ∈ Ka contained in some S′ ∈ Sa
k−1 with σ(S)/|S|>

2σ(S′)/|S′|. Then

Ka
=

⋃
S∈Sa

Ka(S), Ka(S) :=
{

K ∈ Ka
| K ⊆ S, there exists no S′ : K ⊆ S′ ⊂ S

}
.

It follows that, in the notation from (3.1),

XK(wχQ)=
∑

a≤log2[w]A2

∑
S∈Sa

XKa(S)(wχQ). (3.8)

To proceed, we recall the following distributional estimate:

Lemma 3.9 [Hytönen et al. 2010, (5.26)]. With notation as above, we have

σ
(
|XKa(S)(wχQ)|> t〈w〉S

)
≤ Ce−ctσ(S) for all S ∈ Sa, (3.10)

where the constants C and c are at worst dimensional.

This is a powerful estimate which readily leads to norm bounds for (3.8). The following computation,
simplifying the corresponding ones from [Hytönen 2012; Hytönen et al. 2010; Lacey et al. 2010b], is
borrowed from [Hytönen et al. 2011]: writing

E j (S) :=
{

j ≤
∣∣XKa(S)(wχQ)

∣∣/〈w〉S < j + 1
}
⊆ S,
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we have∥∥∥∥∑
S∈Sa

XKa(S)(wχQ)

∥∥∥∥
L2(σ )

≤

∞∑
j=0

( j + 1)
∥∥∥∥∑

S∈Sa

〈w〉S ·χE j (S)

∥∥∥∥
L2(σ )

=

∞∑
j=0

( j + 1)
(∫ [∑

S∈Sa

〈w〉S ·χE j (S)(x)
]2

σ(x) dx
)1/2

(∗)
≤ C

∞∑
j=0

( j + 1)
(∫ ∑

S∈Sa

〈w〉2S ·χE j (S)(x)σ (x) dx
)1/2

= C
∞∑
j=0

( j + 1)
(∑

S∈Sa

〈w〉2S · σ(E j (S))
)1/2

≤ C
∞∑
j=0

( j + 1)
(∑

S∈Sa

〈w〉2S ·Ce−cjσ(S)
)1/2

(by (3.10))

≤ C
∞∑
j=0

e−cj ( j + 1)
(

2a
∑
S∈Sa

w(S)
)1/2

(by (3.7) for S ∈ Sa
⊂ Ka)

≤ C · 2a/2
(∑

S∈Sa

w(S)
)1/2

.

In (∗) we used the fact that at a fixed x , the numbers 〈w〉S for the principal cubes S ⊃ E j (S) 3 x increase
at least geometrically, so their `1 and `2 norms are comparable.

We now come to the crucial point, where we can improve the earlier A2 bounds to A∞:

Lemma 3.11. For the principal cubes as defined above, we have∑
S∈Sa

w(S)≤ 2 · [w]′A∞ ·w(Q).

Proof. Let
E(S) := S \

⋃
S′(S

S′. (3.12)

The union is the union of its maximal members S′, which satisfy

|S′| = |S′|/w(S′) ·w(S′)≤ 1
2 |S|/w(S) ·w(S

′);

hence
∑
|S′| ≤ 1

2 |S|, and thus
|E(S)| ≥ 1

2 |S|. (3.13)

Therefore∑
S∈Sa

w(S)=
∑
S∈Sa

w(S)
|S|
|S| ≤

∑
S∈Sa

w(S)
|S|

2|E(S)| ≤ 2
∑
S∈Sa

∫
E(S)

M(wχQ)= 2
∫

Q
M(wχQ)≤ 2 [w]′A∞w(Q),

where the last step was the definition of [w]′A∞ . �
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Substituting the estimates obtained back into (3.8), we conclude that

‖XK(wχQ)‖L2(σ ) ≤

∑
a≤log2[w]A2

∥∥∥∥∑
S∈Sa

XKa(S)(wχQ)

∥∥∥∥
L2(σ )

≤ C
∑

a≤log2[w]A2

2a/2
(∑

S∈Sa

w(S)
)1/2

≤ C
∑

a≤log2[w]A2

2a/2(
[w]′A∞ ·w(Q)

)1/2
≤ C[w]1/2A2

([w]′A∞)
1/2w(Q)1/2.

Recalling the initial splitting of {K ∈ D : K ⊆ Q} into r + 1 subcollections of the same form as K, this
concludes the proof of (3.6), and hence the proof of Theorem 3.3.

4. Two-weight theory for the maximal function

4A. Background. The two-weight problem was studied in the 1970s by Muckenhoupt and Wheeden
and fully solved by E. Sawyer [1982]. The general question is to find a necessary and sufficient condition
for a pair of unrelated weights w and σ for which the estimate

‖M( f σ)‖L p(w) ≤ B‖ f ‖L p(σ ) (4.1)

holds for a finite constant B. Then the main result of E. Sawyer shows that this is the case if and only if
there exists a finite c such that ∫

Q
M(σχQ )(y)

pw(y) dy ≤ c σ(Q)

for all cubes Q. Furthermore, it is shown in [Moen 2009] that if B denotes the best constant, then

B ≈ sup
Q

(∫
Q M(σχQ )

pw dx

σ(Q)

)1/p

Since this condition is hard to verify in practice, the second author considered in [Pérez 1995] conditions
closer in spirit to the classical two-weight Ap condition,

Ap[w, σ ] := sup
Q

(
−

∫
Q
w

)(
−

∫
Q
σ

)p−1

,

which reduces to [w]Ap if σ =w−1/(p−1). As a consequence of the main result in that work, if δ > 0 and

sup
Q

(
−

∫
Q
w

)
‖σ‖

p−1
L(log L)p−1+δ,Q <∞, (4.2)

then the two-weight norm inequality (4.1) holds. Recent advances in collaboration with M. Mastyło
[Mastyło and Pérez 2013] allow one to go beyond condition (4.2) and improve the main results from
[Pérez 1995].

In this paper, we consider a different new quantity, namely

Bp[w, σ ] := sup
Q

(
−

∫
Q
w

)(
−

∫
Q
σ

)p

exp
(
−

∫
Q

log σ−1
)
.
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To understand this new quantity, we observe that it is simply the functional on Q defining the Ap[w, σ ]

condition multiplied by −
∫

Q σ exp
(
−

∫
Q log σ−1

)
≥ 1. Then it is immediate that

Ap[w, σ ] ≤ Bp[w, σ ] ≤ Ap[w, σ ]A∞[σ ],

the difference between the last two being that Ap[w, σ ]A∞[σ ] involves two independent suprema, as
opposed to just one in Bp[u, v].

We will consider first the dyadic maximal operator Md , for which we can prove a dimension-free
bound. Let us also introduce the weighted dyadic maximal function

Md,σ f := sup
Q∈D

χQ

σ(Q)

∫
Q
| f (y)|σ(y) dy,

which controls Md( f σ) as follows:

Theorem 4.3. Let p ∈ (1,∞); then

‖Md( f σ)‖L p(w) ≤ 4e ·
(
Bp[w, σ ]

)1/p
‖Md,σ f ‖L p(σ )

≤ 4e · p′ ·
(
Bp[w, σ ]

)1/p
‖ f ‖L p(σ ),

and also
‖Md( f σ)‖L p(w) ≤ 4e ·

(
[w]Ap [σ ]

′

A∞

)1/p
‖Md,σ f ‖L p(σ )

≤ 4e · p′ ·
(
[w]Ap [σ ]

′

A∞

)1/p
‖ f ‖L p(σ ).

The main estimate in both chains of inequalities is of course the first one, since the second is simply
the universal estimate for the weighted dyadic maximal function on the weighted L p space with the same
weight:

‖Md,σ‖B(L p(σ )) ≤ p′.

Obviously, in this dyadic version, it suffices to have the supremum in the weight constants over dyadic
cubes only, and to only use the dyadic square function in the definition of [σ ]′A∞ . And specializing to the
case σ = w−1/(p−1), by the standard dual weight trick, we also get the bounds

‖Md f ‖L p(w) ≤

{
4e · p′ ·

(
Bp[w,w

−1/(p−1)
]
)1/p
‖ f ‖L p(w),

4e · p′ ·
(
[w]Ap [w

−1/(p−1)
]
′

A∞

)1/p
‖ f ‖L p(w).

Let us also recall how such dyadic bounds yield corresponding results for the Hardy–Littlewood maximal
operator by a standard argument.

Proof of Theorem 1.7. Consider the 2d shifted dyadic systems

Dα
:=
{
2−k(
[0, 1)d +m+ (−1)kα

)
: k ∈ Z,m ∈ Zd}, α ∈

{
0, 1

3

}d
.

One can check (perhaps best in dimension d = 1 first) that any cube Q is contained in a shifted dyadic
cube Qα

∈ Dα with `(Qα)≤ 6`(Q), for some α. Hence

−

∫
Q
| f | ≤ 6d

−

∫
Qα

| f | ≤ 6d Mα
d f,
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and therefore
M f ≤ 6d

∑
α∈{0, 1

3 }
d

Mα
d f.

Thus, the norm bound for Md may be multiplied by 12d to give a bound for M . �

Remark 4.4. A recent result in collaboration with A. Kairema [Hytönen and Kairema 2012] allows one
to perform a similar trick with adjacent dyadic systems even in an abstract space of homogeneous type.
Thus, Theorem 1.7 readily extends to this generality as well.

4B. Proof of Theorem 4.3. We start by observing that it suffices to have a uniform bound over all
linearizations

M̃( f σ)=
∑
Q∈D

χE(Q)〈 f σ 〉Q,

where the sets E(Q)⊆ Q are pairwise disjoint. Here we use the notation

〈 f 〉Q = −
∫

Q
f = −

∫
Q

f (x) dx

and
〈 f 〉σQ =

1
σ(Q)

∫
Q

f (x)σ (x) dx,

where, as usual, σ(E)=
∫

Q σ(x) dx .
By this disjointness,

‖M̃( f σ)‖L p(w) =

(∑
Q∈D

w(E(Q))〈 f σ 〉pQ

)1/p

=

(∑
Q∈D

w(E(Q))
(
σ(Q)
|Q|

)p

(〈 f 〉σQ)
p
)1/p

.

Now recall:

Theorem 4.5 (dyadic Carleson embedding theorem). Suppose that the nonnegative numbers aQ satisfy∑
Q⊆R

aQ ≤ Aσ(R) for all R ∈ D.

Then, for all p ∈ [1,∞) and f ∈ L p(σ ),(∑
Q∈D

aQ(〈 f 〉σQ)
p
)1/p

≤ A1/p
‖Md,σ f ‖L p(σ ) ≤ A1/p

· p′ · ‖ f ‖L p(σ ) if p > 1.

Since this is a slightly nonstandard formulation, although immediate by inspection of the usual argument,
we provide a proof for completeness:

Proof. We view the sum
∑

Q aQ(〈 f 〉Q)p as an integral on a measure space (D, µ) built over the set of
dyadic cubes D, assigning to each Q ∈ D the measure aQ . Thus∑

Q∈D

aQ(〈 f 〉Q)p
=

∫
∞

0
pλp−1µ

(
{Q ∈ D : 〈 f 〉Q > λ}

)
dλ=:

∫
∞

0
pλp−1µ(Qλ) dλ.

Let Q∗λ be the set of maximal dyadic cubes R with the property that 〈 f 〉R > λ. The cubes R ∈ Q∗λ are
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disjoint, and their union is equal to the set {Md,σ f > λ}. Thus

µ(Qλ)=
∑

Q∈Qλ

aQ ≤
∑
R∈Q∗λ

∑
Q⊆R

aQ ≤
∑
R∈Q∗λ

Aσ(R)= Aσ(Md,σ f > λ),

and hence ∑
Q∈D

aQ(〈 f 〉Q)p
≤ A

∫
∞

0
pλp−1σ(Md,σ f > λ) dλ= A‖Md,σ f ‖p

L p(σ ). �

If we apply the Carleson embedding with aQ = w(E(Q))
(
σ(Q)/|Q|

)p, we find that

‖M̃( f σ)‖L p(w) ≤ A1/p
‖Md,σ f ‖L p(σ ), (4.6)

provided that ∑
Q⊆R

w(E(Q))
(
σ(Q)
|Q|

)p

≤ Aσ(R) for all R ∈ D. (4.7)

Note that on E(Q)⊆ Q ⊆ R, we have σ(Q)/|Q| ≤ M(σχR), and hence

∑
Q⊆R

w(E(Q))
(
σ(Q)
|Q|

)p

=

∫ ∑
Q⊆R

χE(Q)

(
σ(Q)
|Q|

)p

w

≤

∫ ∑
Q⊆R

χE(Q)M(χRσ)
pw ≤

∫
R

M(χRσ)
pw.

So if
∥∥χR M(χRσ)

∥∥
L p(u)≤ A1/pσ(R)1/p, then (4.7) holds, and hence by Carleson’s embedding also (4.6),

and therefore the original two-weight inequality

‖M( f σ)‖L p(u) ≤ A1/p
‖Md,σ f ‖L p(σ ).

Hence, we are reduced to proving that∥∥χR M(χRσ)
∥∥p

L p(u) ≤ Aσ(R), A = (4e)1/p
· Bp[w, σ ]. (4.8)

(In fact, the argument up to this point was essentially reproving Sawyer’s two-weight characterization for
the maximal function, paying attention to the constants.)

To prove (4.8), we exploit another linearization of M involving the principal cubes, as in the proof of
the A2 theorem: let S0 := {R} and recursively let

Sk :=
⋃

S∈Sk−1

{
Q ⊂ S : 〈σ 〉Q > 2〈σ 〉S, Q is a maximal such cube

}
,

and then S :=
⋃
∞

k=0 Sk . The pairwise disjoint subsets E(S)⊆ S, defined in (3.12), satisfy |E(S)| ≥ 1
2 |S|

by (3.13), and they partition R.
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If x ∈ E(S) and Q 3 x , then 〈σ 〉Q ≤ 2〈σ 〉S , and hence χR M(χRσ)≤ 2〈σ 〉S on χE(S). So altogether,∥∥χR M(χRσ)
∥∥p

L p(w)
≤ 2p

∥∥∥∥∑
S∈S

χE(S)〈σ 〉S

∥∥∥∥p

L p(w)

= 2p
∑
S∈S

w(E(S))
(
σ(S)
|S|

)p

≤ 2p
∑
S∈S

w(S)
|S|

(
σ(S)
|S|

)p

|S|

≤ 2p+1
∑
S∈S

Bp[w, σ ] exp
(
−

∫
S

log σ
)
|E(S)|

≤ 2p+1 Bp[w, σ ]

∫
R

∑
S∈S

exp
(
−

∫
S

log σ
)
χE(S)

≤ 2p+1 Bp[w, σ ]

∫
R

sup
Q∈D

χQ exp
(
−

∫
Q

log σχR

)
= 2p+1 Bp[w, σ ]

∫
R

M0(χRσ),

(4.9)

where M0 is the (dyadic) logarithmic maximal function introduced in Lemma 2.1. By this lemma, we
then have ∥∥χR M(χRσ)

∥∥p
L p(u) ≤ 4p Bp[w, σ ] · e · σ(R),

which proves (4.8), and hence Theorem 4.3, upon taking the p-th root.
In order to prove the second version of Theorem 4.3, we only need to make a slight modification in the

estimate (4.9). We then compute:∥∥χR M(χRσ)
∥∥p

L p(w)
≤ 2p

∑
S∈S

w(S)
|S|

(σ(S)
|S|

)p
|S| ≤ 2p+1

∑
S∈S

[w]Ap

σ(S)
|S|
|E(S)|

≤ 2p+1
[w]Ap

∑
S∈S

∫
E(S)

M(σχQ)= 2p+1
[w]Ap

∫
Q

M(σχQ)

= 2p+1
[w]Ap [σ ]

′

A∞σ(Q),

by a direct application of the definition of [σ ]′A∞ in the last step, and this completes the alternative
argument.

4C. Another proof of Theorem 4.3. We finish this section by providing yet another proof variant for
Theorem 4.3. This proof is more elementary, since it does not need the reduction to the testing condi-
tion (4.8), and it uses the more standard Calderón–Zygmund-type stopping cubes instead of the principal
cubes. Its disadvantage is the fact the we cannot recover the dimension-independence by this argument.
On the other hand, the proof may be extended to maximal functions defined in term of a general basis;
see [García-Cuerva and Rubio de Francia 1985, Section IV.4].

A simpler proof of Theorem 4.3 with a dimension-dependent bound. Fix a > 2d . For each integer k, let

�k = {x ∈ Rd
: Md( f σ)(x) > ak

}.
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By standard arguments, we consider the Calderón–Zygmund decomposition, and there is a family of
maximal nonoverlapping dyadic cubes {Qk, j } for which �k =

⋃
j Qk, j and

ak <
1
|Qk, j |

∫
Qk, j

| f (y)|σ(y) dy ≤ 2dak . (4.10)

Now, ∫
Rd

Md( f σ)pw dx =
∑

k

∫
�k\�k+1

Md( f σ)pw dx

≤ a p
∑

k

akpw(�k)= a p
∑
k, j

akpw(Qk, j )

≤ a p
∑
k, j

(
1
|Qk, j |

∫
Qk, j

| f (y)|σ(y) dy
)p

w(Qk, j )

= a p
∑
k, j

(
〈| f |〉σQk, j

)p
(
σ(Qk, j )

|Qk, j |

)p

w(Qk, j )

≤ a p Bp[w, σ ]
∑
k, j

(
〈| f |〉σQk, j

)p
|Qk, j | exp

(
−

∫
Qk, j

log σ(t) dt
)

= a p Bp[w, σ ]
∑
Q∈D

(
〈| f |〉σQ

)paQ,

where
aQ =

{
|Q| exp

(
−

∫
Q log σ

)
if Q = Qk, j for some (k, j),

0 else.

By the dyadic Carleson embedding theorem, we can hence conclude that∫
Rd

Md( f σ)pw dx ≤ a p Bp[w, σ ]A
∫

Rd
(Md,σ f )pσ dx,

provided that we check the condition∑
Q⊆R

aQ =
∑

k, j :Qk, j⊆R

|Qk, j | exp
(
−

∫
Qk, j

log σ
)
≤ A|R|. (4.11)

To estimate the left side of (4.11), we first do the following: for each (k, j), we set Ek, j = Qk, j \�k+1.
Observe that the sets of the family Ek, j are pairwise disjoint. We claim that

|Qk, j |<
a

a−2d |Ek, j | (4.12)

for each k, j . Indeed, by (4.10) and Hölder’s inequality,

|Qk, j ∩�k+1| =
∑

Qk+1,l⊂Qk, j

|Qk+1,l |<
1

ak+1

∑
Qk+1,l⊂Qk, j

∫
Qk+1,l

| f |σ ≤ 1
ak+1

∫
Qk, j

| f |σ ≤ 2d

a
|Qk, j |,
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which proves (4.12). With β = a/(a− 2d), we can estimate the left side of (4.11) as follows:∑
Q⊆R

aQ ≤ β
∑

(k, j):Qk, j⊆R

|Ek, j | exp
(
−

∫
Qk, j

log σ(t) dt
)

≤ β
∑

(k, j):Qk, j⊆R

∫
Ek, j

M0(σ1R)(x) dx

≤ β

∫
R

M0(σ1R)(x) dx ≤ βeσ(R),

where we used the definition and the L1 boundedness of the logarithmic dyadic maximal function. This
proves (4.11) with A = βe, concluding the proof. �

5. Proof of the extrapolation theorems

We will prove in this section the upper and lower extrapolation theorems 1.24 and 1.25. Recall that the
initial hypothesis is given by the expression

‖T f ‖Lr (w) ≤ ϕ
(
[w]Ar , [w]A∞, [w

−1/(r−1)
]
(r−1)
A∞

)
‖ f ‖Lr (w),

for some r ∈ (1,∞).

Proof of Theorem 1.24. Our argument is modeled after a simplified proof by Duoandikoetxea [2011] of
the already cited result from [Dragičević et al. 2005] (see also [Cruz-Uribe et al. 2011]).

Fix some p ∈ (1, r), w ∈ Ap, f ∈ L p(w) and g := | f |/‖ f ‖L p(w). Let

Rg :=
∞∑

k=0

2−k Mk g
‖M‖kB(L p(w))

,

so that
|g| ≤ Rg, ‖Rg‖L p(w) ≤ 2‖g‖L p(w) = 2, [Rg]A1 ≤ 2‖M‖L p(w).

Then by Hölder’s inequality,

‖T f ‖L p(w) =

(∫
|T f |p(Rg)−(r−p)p/r (Rg)(r−p)p/rw

)1/p

≤

(∫
|T f |r (Rg)−(r−p)w

)1/r(∫
(Rg)pw

)1/p−1/r

≤ ‖T f ‖Lr (W )(2p)1/p−1/r
≤ 2‖T f ‖Lr (W ),

where
W := (Rg)−(r−p)w.

By assumption, we have

‖T f ‖Lr (W ) ≤ ϕ
(
[W ]Ar , [W ]A∞, [W

−1/(r−1)
]
(r−1)
A∞

)
‖ f ‖Lr (W ),
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where

‖ f ‖Lr (W ) =

(∫
| f |r (R f )−(r−p)w

)1/r

‖ f ‖(r−p)/r
L p(w) ≤

(∫
| f |r | f |−(r−p)w

)1/r

‖ f ‖(r−p)/r
L p(w) = ‖ f ‖L p(w),

so it remains to estimate the weight constants

[W ]Ar , [W ]A∞, [W
−1/(r−1)

]A∞ .

Using supQ(Rg)−1
≤ [Rg]A1〈Rg〉−1

Q or Hölder’s or Jensen’s inequality where appropriate, we compute

〈W 〉Q =
〈
(Rg)−(r−p)w

〉
Q ≤ [Rg]r−p

A1
〈Rg〉−(r−p)

Q 〈w〉Q,

〈W−1/(r−1)
〉
r−1
Q =

〈
(Rg)(r−p)/(r−1)w−1/(r−1)〉r−1

Q ≤ 〈Rg〉r−p
Q 〈w

−1/(p−1)
〉

p−1
Q ,

exp〈− log W 〉Q =
(
exp〈log(Rg)〉Q

)r−p exp〈− logw〉Q ≤ 〈Rg〉r−p
Q exp〈− logw〉Q,

and (
exp〈− log W−1/(r−1)

〉Q
)r−1
=
(
exp〈log(Rg)−1

〉Q
)r−p(exp〈− logw−1/(r−1)

〉Q
)r−1

≤ [Rg]r−p
A1
〈Rg〉−(r−p)(exp〈− logw−1/(p−1)

〉Q
)p−1

.

Multiplying the appropriate estimates and using the definition, we then have

[W ]Ar ≤ [Rg]r−p
A1
[w]Ap , [W ]A∞ ≤ [Rg]r−p

A1
[w]A∞,

[
W−1/(r−1)]r−1

A∞
≤ [Rg]r−p

A1

[
w−1/(p−1)]p−1

A∞
.

(We do not know whether it is possible to make similar estimates for [W ]′A∞ in terms of [w]′A∞ ; this is
the reason why we need to use the [ ]A∞ constants in this proof.)

Next, recall that

[Rg]A1 ≤ 2‖M‖B(L p(w)) ≤ cd · p′ · [w]
1/p
Ap

(
[w−1/(p−1)

]
′

A∞

)1/p
.

Thus we conclude the proof with

‖T f ‖L p(w) ≤ 2‖T f ‖Lr (W ) ≤ 2ϕ
(
[W ]Ar , [W ]A∞, [W

−1/(r−1)
]
(r−1)
A∞

)
‖ f ‖Lr (W )

≤ 2ϕ
(
[Rg]r−p

A1

(
[w]Ap , [w]A∞, [w

−1/(p−1)
]
(p−1)
A∞

))
‖ f ‖L p(w)

≤ 2ϕ
(

2r−p
‖M‖r−p

B(L p(w))

(
[w]Ap , [w]A∞, [w

−1/(p−1)
]
(p−1)
A∞

))
‖ f ‖L p(w). �

Proof of Theorem 1.25. Again, our argument is inspired by Duoandikoetxea’s simplification [2011] of the
proof of a result in [Dragičević et al. 2005] (see also [Cruz-Uribe et al. 2011]).

Fix some p ∈ (r,∞), w ∈ Ap, f ∈ L p(w). By duality, we have

‖T f ‖L p(w) = sup
h≥0

‖h‖
L p′ (w)

=1

∫
|T f |hw.

We fix one such h, and try to bound the expression on the right.
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Observe that the pointwise multiplication operators

h 7→ wh : L p′(w)→ L p′(w1−p′), g 7→ 1
w

g : L p′(w1−p′)→ L p′(w)

are isometric. Let R be as in the previous proof, except with p′ and σ = w1−p′ in place of p and w:

Rg :=
∞∑

k=0

2−k Mk g
‖M‖k

B(L p′ (σ ))

,

and R′h := w−1 R(wh). Then

h ≤ R′h, ‖R′h‖L p′ (w) ≤ 2‖h‖L p′ (w) = 2, [wR′h]A1 ≤ 2‖M‖B(L p′ (σ )).

Then, by Hölder’s inequality,∫
|T f |hw ≤

∫
|T f |(R′h)w =

∫
|T f |(R′h)(p−r)/[r(p−1)](R′h)(r−1)p/[r(p−1)]w

≤

(∫
|T f |r (R′h)(p−r)/(p−1)w

)1/r(∫
(R′h)p/(p−1)w

)1/r ′

≤ ‖T f ‖Lr (W )2p′/r ′,

where

W := (R′h)(p−r)/(p−1)w.

By assumption,
‖T f ‖Lr (W ) ≤ ϕ

(
[W ]Ar , [W ]A∞, [W

−1/(r−1)
]
(r−1)
A∞

)
‖ f ‖Lr (W ), (5.1)

where, by Hölder’s inequality with exponents p/r and p/(p− r),

‖ f ‖Lr (W ) =

(∫
| f |rwr/p

· (R′h)(p−r)/(p−1)w(p−r)/p
)1/r

≤

(∫
| f |pw

)1/p(∫
(R′h)p/(p−1)w

)1/r−1/p

≤ ‖ f ‖L p(w)(2p′)1/r−1/p,

so altogether, suppressing the arguments of ϕ from (5.1),∫
|T f |hw ≤ ‖T f ‖Lr (W )2p′/r ′

≤ ϕ( . . . )‖ f ‖Lr (W )2p′/r ′

≤ ϕ( . . . )(2p′)1/r−1/p
‖ f ‖L p(w)2p′/r ′

= 2ϕ( . . . )‖ f ‖L p(w).

It remains to estimate

[W ]Ar , [W ]A∞, [W
−1/(r−1)

]
(r−1)
A∞

for

W = (R′h)(p−r)/(p−1)w = [(R′h)w](p−r)/(p−1)w(r−1)/(p−1).
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We thus compute

〈W 〉Q =
〈
(R′h)(p−r)/(p−1)w

〉
Q ≤ 〈(R

′h)w〉(p−r)/(p−1)
Q 〈w〉

(r−1)/(p−1)
Q ,

〈W−1/(r−1)
〉
r−1
Q =

〈
(wR′h)−(p−r)/[(p−1)(r−1)]w−1/(p−1)〉r−1

Q

≤ [wR′h](p−r)/(p−1)
A1

〈(R′h)w〉−(p−r)/(p−1)
Q 〈w−1/(p−1)

〉
r−1
Q ,

exp
(
−〈log W 〉Q

)
=
(
exp〈log(wR′h)−1

〉Q
)(p−r)/(r−1)(exp〈− logw〉Q

)(r−1)/(p−1)

≤ [(R′h)w](p−r)/(r−1)
A1

〈(R′h)w〉−(p−r)/(r−1)
Q

(
exp〈− logw〉Q

)(r−1)/(p−1)
,

and (
exp(−〈log W−1/(r−1)

〉Q)
)r−1
=
(
exp(〈log(wR′h)〉Q)

)(p−r)/(p−1)(exp〈− logw−1/(p−1)
〉Q
)r−1

≤ 〈(R′h)w〉(p−r)/(r−1)
Q

(
exp〈− logw−1/(p−1)

〉Q
)r−1

.

Multiplying the relevant quantities, it follows that

[W ]Ar ≤ [(R
′h)w](p−r)/(p−1)

A1
[w]

(r−1)/(p−1)
Ap

,

[W ]A∞ ≤ [(R
′h)w](p−r)/(p−1)

A1
[w]

(r−1)/(p−1)
A∞ ,[

W−1/(r−1)]r−1
A∞
≤ [(R′h)w](p−r)/(p−1)

A1

[
w−1/(p−1)](r−1)

A∞
.

Also recall that

[(R′h)w]A1 ≤ 2‖M‖B(L p′ (w1−p′ )) ≤ cd [w
1−p′
]
1/p′
Ap′
[w]

1/p′
A∞ = cd [w]

1/p
Ap
[w]

1/p′
A∞ ,

and thus we conclude with

‖T f ‖L p(w) ≤

∫
|T f |hw ≤ 2ϕ

(
[W ]Ar , [W ]A∞, [W

−1/(r−1)
]
(r−1)
A∞

)
‖ f ‖L p(w)

≤ 2ϕ
(
[(R′h)w](p−r)/(p−1)

A1

(
[W ]Ar , [W ]A∞, [W

−1/(r−1)
]
(r−1)
A∞

))
‖ f ‖L p(w)

≤ 2ϕ
(
(2‖M‖B(L p′ (w1−p′ )))

(p−r)/(p−1)

×
(
[w]

(r−1)/(p−1)
Ar

, [w]
(r−1)/(p−1)
A∞ , [w−1/(p−1)

]
(r−1)
A∞

))
‖ f ‖L p(w). �

6. The A1 theory, proof of Theorem 1.14 and its consequences

6A. The main lemma. The proofs of the theorems will be based on the following lemma.

Lemma 6.1. Let T be any Calderón–Zygmund singular integral operator and let w be any weight. Also
let p, r ∈ (1,∞). Then there is a constant c = cd,T such that

‖T f ‖L p(w) ≤ cpp′(r ′)1/p′
‖ f ‖L p(Mrw),

where, as usual, we denote Mrw = M(wr )1/r .
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This is a consequence of the estimate

‖T f ‖L p(w) ≤ cpp′
( 1

r−1

)1−1/pr
‖ f ‖L p(Mrw)

(which can be found in [Lerner et al. 2009a] when r ∈ (1, 2]), since( 1
r − 1

)1−1/pr
≤ (r ′)1−1/p+1/pr ′

≤ 2(r ′)1/p′

where we used t1/t
≤ 2, t ≥ 1.

6B. Proof of the sharp reverse Hölder’s inequality.

Lemma 6.2. For any cube Q and any measurable function w,∫
Q
w log

(
e+ w

〈w〉Q

)
dx ≤ 2d+1

∫
Q

M(wχQ) dx . (6.3)

Hence, if w ∈ A∞,
sup

Q

1
w(Q)

∫
Q
w(y) log

(
e+

w(y)
〈w〉Q

)
dy ≤ 2d+1

[w]′A∞ . (6.4)

The essential idea of the proof can be traced back to the well-known L log L estimate for M in [Stein
1969]. However, these estimates are not homogeneous. A proof of this lemma within the context of
spaces of homogeneous type can essentially be found in [Pérez and Wheeden 2001, Lemma 8.5] (see also
[Wilson 2008, p. 17, inequality (2.15)] for a different proof).

Proof of Lemma 6.2. Fix a cube Q. By homogeneity, we assume that 〈w〉Q = 1. The key estimate follows
from the “reverse weak type (1, 1) estimate”: if w is nonnegative and t > 〈w〉Q ,

1
t

∫
{x∈Q:w(x)>t}

w dx ≤ 2d
∣∣{x ∈ Q : M(wχQ)(x) > t}

∣∣. (6.5)

Now,
1
|Q|

∫
Q
w log(e+w) dx = 1

|Q|

∫
∞

0

1
e+t

w({x ∈ Q : w(x) > t}) dt = I + II.

Here

I := 1
|Q|

∫ 1

0

1
e+t

w({x ∈ Q : w(x) > t}) dt ≤ 1≤ 1
|Q|

∫
Q

M(wχQ) dx,

while for the complementary term II we use the estimate (6.5):

II = 1
|Q|

∫
∞

1

1
e+t

w({x ∈ Q : w(x) > t}) dt

≤
2d

|Q|

∫
∞

1

t
e+t

∣∣{x ∈ Q : M(wχQ)(x) > t}
∣∣ dt

≤
2d

|Q|

∫
∞

0

∣∣{x ∈ Q : M(wχQ)(x) > t}
∣∣ dt

=
2d

|Q|

∫
Q

M(wχQ)(x) dx .
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This gives (6.3), and (6.4) follows from the definition of [w]′A∞ . �

The main use of the lemma is the following key observation.

Lemma 6.6 [Wilson 2008, p. 45]. Let S ⊂ Q and let λ > 0; then

|S|
|Q|

< e−λ implies w(S)
w(Q)

<
2d+2
[w]′A∞

λ
+ e−λ/2. (6.7)

Proof. Indeed, if Eλ= {x ∈ Q :w(x) > eλ〈w〉Q}, then w(Eλ)≤ (2d+1/λ)[w]′A∞w(Q) by (6.4). Therefore

w(S)≤ w(S ∩ Eλ/2)+w(S \ Eλ/2)≤
2d+2
[w]′A∞

λ
w(Q)+ eλ/2〈w〉Q |S|

≤
2d+2
[w]′A∞

λ
w(Q)+ eλ/2e−λw(Q) by the hypothesis in (6.7)

=
2d+2
[w]′A∞

λ
w(Q)+ e−λ/2w(Q),

and this proves the claim (6.7). �

Proof of Theorem 2.3. Recall that we have to prove that(
−

∫
Q
wr(w)

)1/r(w)

≤ 2−
∫

Q
w,

where
r(w) := 1+ 1

τd [w]
′

A∞
,

and where τd is a large dimensional constant.
Observe that by homogeneity, we can assume that −

∫
Q
w = 1. We use the dyadic maximal function on

the dyadic subcubes of a given Q:∫
Q
w1+ε

≤

∫
Q

Md(wχQ)
εw =

∫
∞

0
εtε−1w

(
{x ∈ Q : Md(wχQ) > t}

)
dt

≤

∫ 1

0
εtε−1w(Q) dt + ε

∫
∞

1
εtεw

(
{x ∈ Q : Md(wχQ) > t}

)dt
t

≤ |Q| + ε
∑
k≥0

∫ ak+1

ak
tεw

(
{x ∈ Q : Md(wχQ) > t}

)dt
t

≤ |Q| + εaε
∑
k≥0

akε
∫ ak+1

ak
w
(
{x ∈ Q : Md(wχQ) > ak

}
)dt

t
for a� 1,

= |Q| + εaε log a
∑
k≥0

akε w(�k),

where
�k = {x ∈ Q : Md(wχQ)(x) > ak

}.
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Since ak
≥ 1 = −

∫
Q w, we can consider the Calderón–Zygmund decomposition of w adapted to Q.

There is a family of maximal nonoverlapping dyadic cubes {Qk, j } strictly contained in Q for which
�k =

⋃
j Qk, j and

ak < −

∫
Qk, j

w ≤ 2dak . (6.8)

Now, ∑
k≥0

akεw(�k)=
∑
k, j

akεw(Qk, j )≤
∑
k, j

(
1
|Qk, j |

∫
Qk, j

w(y) dy
)ε
w(Qk, j ).

We need to estimate w(Qk, j ), which we pursue similarly to Section 4C; see in particular (4.12). For
each (k, j) we set Ek, j = Qk, j \�k+1. Observe that the sets of the family Ek, j are pairwise disjoint. But
exactly as in (4.12), we have that for a > 2d and for each k, j ,

|Qk, j |<
a

a−2d |Ek, j |. (6.9)

We now apply (6.7) with Q = Qk, j and S = Qk, j ∩�k+1. Choose λ such that e−λ = 2d/a, namely
λ= log(a/2d). Then applying (6.7), we have that

w(Qk, j ∩�k+1)

w(Qk, j )
<

2d+2
[w]′A∞

log(a/2d)
+

(2d

a

)1/2
.

Since a > 2d is available, we choose a = 2deL [w]′A∞ , with L a large dimensional constant to be chosen.
If in particular L ≥ 2d+4, we have

w(Qk, j ∩�k+1)

w(Qk, j )
<

2d+2

L
+ e− [w]

′

A∞ L/2 < 1
4 +

1
4 =

1
2 .

This yields that w(Qk, j )≤ 2w(Ek, j ), and we can continue with the sum estimate:∑
k≥0

akεw(�k)≤ 2
∑
k, j

(
1
|Qk, j |

∫
Qk, j

w(y) dy
)ε
w(Ek, j )

≤ 2
∑
k, j

∫
Ek, j

Md(wχQ)
εw dx ≤ 2

∫
Q

Md(wχQ)
εw dx .

Combining estimates, we end up with

−

∫
Q

Md(wχQ)
εw ≤ 1+ 2 εaε log a−

∫
Q

Md(wχQ)
εw dx,

for any ε > 0. Recall that a = 2deL [w]′A∞ . Hence, if we choose

L = 2d+4, ε =
1

27L [w]′A∞
=

1
211+d [w]′A∞

,

we can compute

2εaε log a < 1
2 , −

∫
Q

Md(wχQ)
εw ≤ 2,

concluding the proof of the theorem. �
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6C. Proof of Theorem 1.14: the strong case. The proof is, as in [Lerner et al. 2009a], just an application
of Lemma 6.1 with a specific parameter r coming from the sharp reverse Hölder inequality given by
Theorem 2.3. Indeed, since w ∈ A1 ⊂ A∞, and if we write

r(w) := 1+ 1
τd [w]

′

A∞
,

we have (
−

∫
Q
wr(w)

)1/r(w)

≤ 2−
∫

Q
w. (6.10)

Now, by Lemma 6.1 with r = r(w), we have

‖T f ‖L p(w) ≤ cpp′(r ′)1/p′
‖ f ‖L p(Mrw) ≤ cpp′([w]′A∞)

1/p′
‖ f ‖L p(2Mw)

≤ cpp′([w]′A∞)
1/p′
[w]

1/p
A1
‖ f ‖L p(w),

using the standard notation Mrw = M(wr )1/r . This concludes the proof of the theorem.

6D. Proof of Theorem 1.15: the weak case. We follow here the classical method of Calderón and
Zygmund, with the modifications considered in [Pérez 1994]. Applying the Calderón–Zygmund decom-
position to f at level λ, we get a family of pairwise disjoint cubes {Q j } such that

λ <
1
|Q j |

∫
Q j

| f | ≤ 2dλ.

Let �=
⋃

j Q j and �̃=
⋃

j 2Q j . The “good part” is defined by

g =
∑

j

fQ jχQ j (x)+ f (x)χ�c(x),

and the “bad part” b as
b =

∑
j

b j ,

where
b j (x)= ( f (x)− fQ j )χQ j (x).

Then f = g+ b. We split the level set as

w
{

x ∈ Rd
: |T f (x)|> λ

}
≤ w(�̃)+w

{
x ∈ (�̃)c : |T b(x)|> λ

2

}
+w

{
x ∈ (�̃)c : |T g(x)|> λ

2

}
=: I + II + III.

Exactly as in [Pérez 1994], the main term is III . We first deal with the easy terms I and II , which
actually satisfy the better bound

I + II . 1
λ
[w]A1‖ f ‖L1(w).

Indeed, the first term is essentially the level set of M f :

I = w{x ∈ Rd
: M f (x) > cd λ},
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and the result follows by the classical Fefferman–Stein inequality:

‖M f ‖L1,∞(w) ≤ cd ‖ f ‖L1(Mw).

For the second term, we use the following estimate: there is a dimensional constant c such that for any
cube Q and any function b supported on Q such that

∫
Q b(x) dx = 0 and any weight w, we have∫

Rn\2Q
|T b(y)|w(y) dy ≤ cd

∫
Q
|b(y)|Mw(y) dy. (6.11)

This can be found in Lemma 3.3 of [García-Cuerva and Rubio de Francia 1985, p. 413]. Now, using this
estimate with w replaced by wχRn\2Q j , we have

II ≤ c
λ

∫
Rn\�̃

|T b(y)|w(y) dy

≤
c
λ

∑
j

∫
Rn\2Q j

|T b j (y)|w(y) dy ≤ c
λ

∑
j

∫
Q j

|b j (y)|M(wχRn\2Q j
)(y) dy

≤
c
λ

∫
Rd
| f (y)|Mw(y) dy+ c

λ

∑
j

1
|Q j |

∫
Q j

M(wχ
Rn\2Q j

)(x) dx
∫

Q j

| f (x)| dx .

To estimate the inner sum, we use that M(χRn\2Qµ) is essentially constant on Q:

M(χRn\2Qµ)(y)≈ M(χ
Rn\2Qµ)(z), y, z ∈ Q, (6.12)

where the constants are dimensional. This fact that can be found in [ibid., p. 159]. Hence, the sum is
controlled by

cd

∑
j

inf
x∈Q

M(wχ
Rn\2Q j

)(x)
∫

Q j

| f (x)| dx ≤ cd

∫
Rn
| f (x)|Mw(x) dx .

This gives the required estimate.
We now consider the singular term III , to which we apply the Chebyshev inequality and Lemma 6.1

with exponents p, r ∈ (1,∞) to be chosen soon:

III = w
{

x ∈ (�̃)c : |T g(x)|> λ

2

}
≤

2p

λp ‖T (g)‖
p
L p(wχ(�̃)c )

≤ c(pp′)p(r ′)p/p′ 1
λp

∫
Rd
|g|p Mr (wχ(�̃)c) dx = c(pp′)p(r ′)p−1 1

λ

∫
Rd
|g|Mr (wχ(�̃)c) dx .

Now, after using the definition of g, we apply the same argument as above, using (6.12) with M replaced
by Mr . Then we have∫

�

|g|Mr (wχ(�̃)c) dx ≤
∑

j

1
|Q j |

∫
Q j

| f (x)| dx
∫

Q j

Mr (wχRn\2Q j
)(x) dx

≤ cd

∑
j

inf
x∈Q

Mr (wχRn\2Q j
)(x)

∫
Q j

| f (x)| dx ≤ cd

∫
�

| f (x)|Mrw(x) dx,



806 TUOMAS HYTÖNEN AND CARLOS PÉREZ

and of course ∫
�c
|g|Mr (wχ(�̃)c) dx ≤

∫
�c
| f |Mrw dx .

Note that r is not chosen yet, and we conclude by choosing as above the exponent from Theorem 2.3,

r = r(w) := 1+ 1
τd [w]

′

A∞
,

namely the sharp A∞ reverse Hölder’s exponent. We also choose

p = 1+ 1
log(e+[w]′A∞)

,

where p < 2 and p′ ≈ log(e+ [w]′A∞). Then we continue with

w
{

x ∈ (�̃)c : |T g(x)|> λ

2

}
≤ c log(e+ [w]′A∞)

[w]
′(p−1)
A∞

λ

∫
Rd
| f |2Mw dx .

≤
c[w]A1(e+ log[w]′A∞)

λ

∫
Rd
| f |w dx .

This estimate combined with the previous ones for I and II completes the proof.

6E. Proof of Theorem 1.16: the dual weak case. We adapt here the method from [Lerner et al. 2009b],
where a variant of the Calderón–Zygmund decomposition is used — namely, the Calderón–Zygmund
cubes are replaced by Whitney cubes. Fix λ > 0, and set

�λ = {x ∈ Rd
: Mc

w( f/w)(x) > λ},

where Mc
w denotes the weighted centered maximal function. Let

⋃
j Q j be the Whitney covering of �λ,

and set the Calderón–Zygmund decomposition f = g+ b with respect to these cubes: the “good part” is
defined by

g =
∑

j

fQ jχQ j (x)+ f (x)χ�c(x),

and then the “bad part” b is given by
b =

∑
j

b j ,

where
b j (x)= ( f (x)−〈 f 〉Q j )χQ j (x).

By the classical Besicovitch lemma, we have

w(�λ)≤
cn

λ
‖ f ‖L1(Rd ).

Hence, we have to estimate

w
{

x 6∈�λ :
|T f (x)|
w(x)

> λ
}
≤ w

{
x 6∈�λ :

|T b(x)|
w(x)

>
λ

2

}
+w

{
x 6∈�λ :

|T g(x)|
w(x)

>
λ

2

}
=: I1+ I2.
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By using (6.11) again, with w = 1, we obtain

I1 ≤
2
λ

∫
Rd\�λ

|T b(x)| dx ≤ c
λ

∑
j

∫
Q j

| f −〈 f 〉Q j | dx ≤ c
λ
‖ f ‖L1(Rd ),

where c = cd,T .
To estimate I2, we will use the dual version of Lemma 6.1, namely

‖T f ‖L p′ ((Mrw)1−p′ ) ≤ cpp′(r ′)1/p′
‖ f ‖L p′ ((w)1−p′ )). (6.13)

As before, we use Theorem 2.3 with

r = r(w) := 1+ 1
τd [w]

′

A∞
such that (

−

∫
Q
wr
)1/r

≤ 2−
∫

Q
w.

Then Mrw≤ 2Mw≤ 2[w]A1w, where, as usual, Mrw=M(wr )1/r . Combining the Chebyshev inequality
with (6.13) for a value of p ∈ (1,∞) to be chosen soon, we have

I2 ≤
2p′

λp′

∫
Rd
|T g|p

′

w1−p′ dx ≤
4p′
[w]

p′−1
A1

λp′

∫
Rd
|T g|p

′

Mrw
1−p′ dx

≤ (cpp′)p′r ′
[w]

p′−1
A1

λp′

∫
Rd
|g|p

′

w1−p′ dx

≤ (cp′ p)p′r ′
[w]

p′−1
A1

λp′

(∫
Rd\�λ

| f |p
′

w1−p′ dx +
∑

j

(〈| f |〉Q j )
p′
∫

Q j

w1−p′ dx
)
.

We have that | f | ≤ λw almost everywhere in Rd
\�λ, and hence∫

Rd\�λ

| f |p
′

w1−p′ dx ≤ λp′−1
‖ f ‖L1(Rd ).

Next, following again [Lerner et al. 2009b], by properties of the Whitney covering, it is easy to see
that for any cube Q j there exists a cube Q∗j such that Q j ⊂ Q∗j , |Q

∗

j | ≤ cn|Q j |, and the center of Q∗j lies
outside of �λ. Therefore,

(〈| f |〉Q j )
p′−1

∫
Q j

w1−p′ dx ≤ [w]p
′
−1

A1
(〈| f |〉Q j )

p′−1
∫

Q j

(Mw)1−p′ dx

≤ [w]
p′−1
A1
|Q j |

(c〈| f |〉Q∗j
〈w〉Q∗j

)p′−1

≤ (cλ[w]A1)
p′−1
|Q j |,

which gives∑
j

(〈| f |〉Q j )
p′
∫

Q j

w1−p′ dx ≤ (cλ[w]A1)
p′−1

∑
j

〈| f |〉Q j |Q j | ≤ (cλ[w]A1)
p′−1
‖ f ‖L1(Rd ).

Combining the previous estimates and recalling that r ′ ≈ [w]′A∞ , we obtain
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I2 ≤ cp′
[w]′A∞ p(p′)p′ p p′−1

[w]
2(p′−1)
A1

λ
‖ f ‖L1(Rd ),

and choosing now p such that p′ = 1+ 1
log(e+[w]A1)

≤ 2, we get

I2 ≤
c[w]′A∞ log(e+ [w]A1)

λ
‖ f ‖L1(Rd ).

This, along with estimates for I1 and for w(�λ), completes the proof of Theorem 1.16.

7. Commutators, proof of Theorem 1.17 and its consequences

For the proof, we need a sharp version of the John–Nirenberg theorem, which can be essentially found in
[Journé 1983, pp. 31–32].

Lemma 7.1 (sharp John–Nirenberg theorem). There are dimensional constants 0 ≤ αd < 1 < βd such
that

sup
Q

1
|Q|

∫
Q

exp
( αd

‖b‖BMO
|b(y)−〈b〉Q |

)
dy ≤ βd . (7.2)

In fact, we can take αd = 1/2d+2.

A key consequence of this lemma for the present purposes is that eRe z bw inherits the good weight
properties of w when the complex number z is small enough. More precisely, for the A2 constant, we
have:

Lemma 7.3. There are dimensional constants εd and cd such that

[eRe z bw]A2 ≤ cd [w]A2 if |z| ≤
εd

‖b‖BMO
(
[w]′A∞ + [w

−1]A∞
) .

Proof. From the reverse Hölder inequality with exponent r = 1+ 1/(τd [w]
′

A∞), and the John–Nirenberg
inequality, we have for an arbitrary Q:

−

∫
Q
weRe z b

≤

(
−

∫
Q
wr
)1/r(

−

∫
Q

er ′ Re z (b−〈b〉Q)
)1/r ′

eRe z〈b〉Q

≤

(
2−
∫

Q
w

)
·βd · eRe z〈b〉Q , if |z| ≤

εd

‖b‖BMO[w]
′

A∞

.

By symmetry, we also have

−

∫
Q
w−1e−Re z b

≤ 2βd

(
−

∫
Q
w−1

)
e−Re z〈b〉Q if |z| ≤

εd

‖b‖BMO[w−1]′A∞

.

Multiplication of the two estimates gives(
−

∫
Q
weRe z b

)(
−

∫
Q
w−1e−Re z b

)
≤ 4β2

d [w]A2,

for all z as in the assertion, and completes the proof. �
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There is an analogous statement for the A∞ constant [ ]′A∞ . (A similar result for [ ]A∞ is also true, and
easier, but we will have no need for it, and it is therefore left as an exercise for the reader.)

Lemma 7.4. There are dimensional constants εd and cd such that

[eRe z bw]′A∞ ≤ cd [w]
′

A∞ if |z| ≤
εd

‖b‖B M O [w]
′

A∞

.

Proof. We know that w satisfies the reverse Hölder inequality
(
−

∫
Q w

1+3δ
)1/(1+3δ)

≤ 2−
∫

Q w with a constant
δ = cd/[w]

′

A∞< 2−1, where cd is a small dimensional constant. We will prove that eRe z bw satisfies a
reverse Hölder estimate (

−

∫
Q
(eRe z bw)1+δ

)1/(1+δ)

≤ Cd −

∫
Q

eRe z bw, (7.5)

for all z as in the assertion. By part (b) of Theorem 2.3, this shows that

[eRe z bw]′A∞ ≤ 2Cd/δ ≤ cd [w]
′

A∞,

To prove (7.5), we first have(
−

∫
Q
(eRe zbw)1+δ

)1/(1+δ)

= eRe z〈b〉Q

(
−

∫
Q
(eRe z(b−〈b〉Q)w)1+δ

)1/(1+δ)

≤ eRe z〈b〉Q

(
−

∫
Q

eRe z(b−〈b〉Q)(1+δ)2/δ
)δ/(1+δ)2(

−

∫
Q
w(1+δ)

2
)1/(1+δ)2

,

where we applied Hölder’s inequality with exponents (1+ δ)/δ and 1+ δ. Now

(1+ δ)2 = 1+ 2δ+ δ2
≤ 1+ 3δ,

and hence the last factor is bounded by 2−
∫

Q
w. Moreover, by Lemma 7.1, we have

−

∫
Q

eRe z(b−〈b〉Q)(1+δ)2/δ ≤ βd if |z| ≤
αdδ

4‖b‖BMO
.

So altogether, (
−

∫
Q
(eRe z bw)1+δ

)1/(1+δ)

≤ eRe z〈b〉Q ·βd · 2−
∫

Q
w, (7.6)

and we concentrate on the last factor. We observe that(
−

∫
Q
w

)2

=

(
−

∫
Q
w(1+δ)/2w(1−δ)/2

)2

≤

(
−

∫
Q
w1+δ

)(
−

∫
Q
w1−δ

)
≤

(
2−
∫

Q
w

)1+δ(
−

∫
Q
w1−δ

)
,

and hence

−

∫
Q
w ≤ 2(1+δ)/(1−δ)

(
−

∫
Q
w1−δ

)1/(1−δ)
≤ 8

(
−

∫
Q
w1−δeRe z b(1−δ)e−Re z b(1−δ)

)1/(1−δ)

≤ 8
(
−

∫
Q
weRe z b

)(
−

∫
Q

e−Re z b(1−δ)/δ
)δ/(1−δ)

,

where we used Hölder’s inequality with exponents 1/(1− δ) and 1/δ.
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Combining with (7.6), we have shown that(
−

∫
Q
(eRe z bw)1+δ

)1/(1+δ)

≤ eRe z〈b〉Q ·βd · 16
(
−

∫
Q
weRe z b

)(
−

∫
Q

e−Re z b(1−δ)/δ
)δ/(1−δ)

= 16βd ·

(
−

∫
Q
weRe z b

)(
−

∫
Q

e−Re z(b−〈b〉Q)(1−δ)/δ
)δ/(1−δ)

≤ 16βd ·

(
−

∫
Q
weRe z b

)
·βd ,

provided that |z| ≤ αdδ/‖b‖BMO in the last step. Altogether, we have proven (7.5) with Cd = 16β2
d , under

the condition that |z| ≤ αdδ/(4‖b‖BMO), and this completes the proof. �

Proof of Theorem 1.17. The proof is a revised version of that of [Chung et al. 2012], following the second
proof in the classical L p theorem for commutators that can be found in [Coifman et al. 1976]. Indeed, we
begin by considering the “conjugate” of the operator given by

Tz( f )= ezbT (e−zb f ),

where z is any complex number. Then a computation gives (for instance for “nice” functions)

[b, T ]( f )= d
dz

Tz( f )|z=0 =
1

2π i

∫
|z|=ε

Tz( f )
z2 dz, ε > 0,

by the Cauchy integral theorem. Now, by Minkowski’s inequality∥∥[b, T ]( f )
∥∥

L2(w)
≤

1
2πε2

∫
|z|=ε
‖Tz( f )‖L2(w)|dz|, ε > 0, (7.7)

all we need to do is estimate ‖Tz( f )‖L2(w) =
∥∥T (e−zb f )

∥∥
L2(e2 Re z bw)

, for |z| = ε with appropriate ε. By
the main hypothesis of the theorem, we have∥∥T (e−zb f )

∥∥
L2(w)
≤ ϕ

([
e2 Re z bw

]
A2
,
[
e2 Re z bw

]′
A∞
,
[
e2 Re z bσ

]′
A∞

)
‖e−zb f ‖L2(e2 Re z bw),

where ‖e−zb f ‖L2(e2 Re z bw) = ‖ f ‖L2(w).
By Lemmas 7.3 and 7.4 (the latter applied to both w and w−1), we have[

we2 Re b z]
A2
≤ Cd [w]A2,

[
we2 Re b z]′

A∞
≤ Cd [w]

′

A∞,
[
w−1e−2 Re b z]′

A∞
≤ Cd [w

−1
]
′

A∞,

provided that
|z| = ε ≤

εd

‖b‖BMO
(
[w]′A∞ + [w

−1]′A∞

) .
Using this radius and the above estimates in (7.7), we obtain∥∥[b, T ]( f )

∥∥
L2(w)
≤

1
2πε2

∫
|z|=ε

ϕ
(
Cd [w]A2,Cd [w]

′

A∞,Cd [w
−1
]
′

A∞

)
‖ f ‖L2(w)|dz|

≤ Cd‖b‖BMO
(
[w]′A∞ + [w

−1
]
′

A∞

)
×ϕ

(
Cd [w]A2,Cd [w]

′

A∞,Cd [w
−1
]
′

A∞

)
‖ f ‖L2(w).
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This concludes the proof of the main part of the theorem. The estimate for T k
b is deduced by iterating

from the case k = 1. �

8. Examples

We compare our new estimates with earlier quantitative results by means of some examples.

8A. Power weights and the maximal inequality. Let d = 1 and p ∈ (1,∞) be fixed; we do not pay
attention to the dependence of multiplicative constants on p. For w(x)= |x |α and −1< α < p− 1, one
easily checks that

[w]Ap h
1

1+α
·

1
((p−1)−α)p−1 , [w]A∞ h 1

1+α
,

[
w−1/(p−1)]

A∞
h 1
(p−1)−α

;

moreover, the functionals [ ]A∞ and [ ]′A∞ are comparable for these weights.
Letting α→−1 or α→ p− 1, this shows that we have power weights with [w]Ap = t � 1 and either
[w]A∞ h t and

[
w−1/(p−1)

]
A∞

h 1, or [w]A∞ h 1 and
[
w−1/(p−1)

]
A∞

h t1/(p−1).
With [w]Ap h [w]A∞ h t � 1 and

[
w−1/(p−1)

]
A∞

h 1, our maximal estimate

‖M‖B(L p(w)) .
(
[w]Ap

[
w−1/(p−1)]

A∞

)1/p h t1/p

clearly improves on Buckley’s bound

‖M‖B(L p(w)) . [w]
1/(p−1)
Ap

h t1/(p−1).

Despite this improvement over earlier estimates, our bounds fail to provide a two-sided estimate for
the norm of the maximal operator: A. Lerner and S. Ombrosi (personal communication, 2008) have
constructed a family of weights which shows that

inf
w∈A2

‖M‖B(L2(w))(
[w]A2[w

−1]′A∞

)1/2 = 0.

The weights of their example are products of power weights and the two-valued weights considered in
the next subsection.

8B. Two-valued weights and Calderón–Zygmund operators. The estimates for the Muckenhoupt con-
stants of power weights in the previous subsection show that

[w]A2 h [w]A∞ + [w
−1
]A∞ h [w]′A∞ + [w

−1
]
′

A∞ for w(x)= |x |α and d = 1,

so the improvement of our bound

‖T ‖B(L2(w)) . [w]
1/2
A2

(
[w]′A∞ + [σ ]

′

A∞

)1/2

over ‖T ‖B(L2(w)) . [w]A2 is invisible to such weights.
However, the difference can be observed with weights of the form w = t ·χE +χR\E , where t > 0 and

E ⊂ R is a measurable set, so that both E and R \ E have positive Lebesgue measure. As I ranges over
all intervals of R, the ratio |E ∩ I |/|I | ranges (at least) over all values α ∈ (0, 1), and hence
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[w]A2 = sup
α∈(0,1)

(αt + 1−α)(αt−1
+ 1−α)= (t+1)2

4t
,

[w]A∞ = sup
α∈(0,1)

f (α), with f (α) := (αt + 1−α)e−α log t .

Now f ′(α)= 0 at the unique point α̂ = 1
log t
−

1
t−1
∈ (0, 1), and so

[w]A∞ = f (α̂)= e−1 t − 1
log t

exp
log t
t − 1

h


t

log t
if t � 1,

t−1

log t−1 if 0< t � 1.

Assume that t � 1, so [w]A∞ h t/ log t . Since σ is a weight of the same form with t−1
� 1 in place

of t , we also have [σ ]A∞ h t/ log t . Thus

[w]A2 h t, ‖T ‖B(L2(w)) . [w]
1/2
A2

(
[w]A∞ + [σ ]A∞

)1/2 h t
√

log t
.

In particular, these estimates already show that

inf
w∈A2

‖T ‖B(L2(w))

[w]A2

= 0.

If we use the sharper version of our A2 theorem with the weight constants [ ]′A∞ instead, we find that
‖T ‖B(L2(w)) can actually grow much slower than [w]A2 :

Lemma 8.1. For w = t ·χE +χR\E and t ≥ 3, we have [w]′A∞ ≤ 4 log t .

With the earlier estimate for [w]A∞ , this shows that [w]A∞ can be exponentially larger than [w]′A∞ .
In fact, Lemma 3.11 of [Beznosova and Reznikov 2011] implies the even more surprising possibility
that [w]′A∞ . log log[w]A∞ , which is also sharp, in that the converse always holds [ibid., Theorem 1.2];
however, the example there consists of the power weights w(x)= |x |t with t→∞, which fall outside
A2 as soon as t ≥ 1, so they are not directly relevant for the present discussion of sharp A2 bounds.

Proof. Note that

χI M(wχI )= χI sup
J⊆I

χJ −

∫
J
w = χI sup

J⊆I
χJ

1
|J |
(
|J \ E | + t |J ∩ E |

)
= χI sup

J⊆I
χJ

(
1+ (t − 1)

|J ∩ E |
|J |

)
= χI

(
1+ (t − 1)M(χI∩E)

)
,

and hence, with the abbreviations τ := t − 1 and a := |I∩E |
|I | ,∫

I
M(wχI )= |I | + τ

∫
I
M(χI∩E)= |I | + τ

∫ 1

0

∣∣I ∩ {M(χI∩E) > λ}
∣∣ dλ

≤ |I | + τ
(∫ a

0
|I | dλ+

∫ 1

a

2
λ
|I ∩ E | dλ

)
= |I | + τ

(
a|I | + 2|I ∩ E | log 1

a

)
= |I | + τ |I ∩ E |

(
1+ 2 log

|I |
|I ∩ E |

)
,
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where the factor 2 is the weak-type (1, 1) norm of the maximal operator on the real line. Since w(I )=
|I | + τ |I ∩ E |, we have

[w]′A∞ = sup
I

1
w(I )

∫
I
M(wχI )≤ sup

α∈(0,1)

1+ τα(1+ 2 logα−1)

1+ τα
= 1+ 2 sup

α∈(0,1)

τα

1+τα
log 1

α
, (8.2)

recalling that the ratio |I ∩ E |/|I | attains at least all values α ∈ (0, 1) as I ranges over all intervals.
If α ≥ τ−1, then logα−1

≤ log τ , while τα/(1+ τα)≤ 1. If α ≤ τ−1, then

τα log 1
α
= τα log 1

τα
+ τα log τ ≤ 1

e
+ log τ,

as x log x−1
≤ e−1 and x ≤ 1 for x = τα ∈ (0, 1). Altogether, recalling that t = τ + 1≥ 3, we have

[w]′A∞ ≤ 1+ 2
(1

e
+ log τ

)
≤

(
1+ 2

e

)
+ 2 log t ≤ 4 log t. �

Since σ = w−1 is a weight of the same form, we find that for these particular weights,

[w]A2 h t, ‖T ‖B(L2(w)) . [w]
1/2
A2

(
[w]′A∞ + [σ ]

′

A∞

)1/2
. (t log t)1/2,

so indeed ‖T ‖B(L2(w)) can grow much slower than [w]A2 for such particular families of weights. This
example also motivates the use of the A∞ constants [w]′A∞ , rather than [w]A∞ , whenever this is possible.

In a similar way, we can show that the main result from Theorem 1.14 strictly improves on the earlier
estimate (1.12). Indeed, if we let w be the previous weight with t� 1 so that [w]A1 h t and [w]′A∞ h log t ,
then

[w]
1/p
A1
[w]

1/p′
A∞ h t1/p(log t)1/p′ .

As above, this family of weights shows that

inf
w∈A1

‖T ‖B(L p(w))

[w]A1

= 0, 1< p <∞.

8C. Two-valued weights and dyadic shifts. Although it was not stated explicitly above, from the proof it
is clear that our weighted bound for the dyadic shifts only depends on the dyadic Muckenhoupt constants,
where the supremum is over dyadic cubes only, instead of all cubes. This makes a difference for the
two-valued weights w = t ·χE +χR\E considered above, when the set E is appropriately chosen. Indeed,
with E :=

⋃
k∈Z[2k, 2k+ 1), one observes that the ratio |E ∩ I |/|I | only attains the values 0, 1

2 , 1 as I
ranges over the dyadic intervals. Consequently, the dyadic A∞ constant has a different expression:

[w]dA∞ = max
α∈{0,1/2,1}

(αt + 1−α)e−αt
=

t+1
2
√

t
= ([w]dA2

)1/2,

where [w]dA2
= [w]A2 , as one easily observes. Repeating the proof of Lemma 8.1 in the dyadic case

(recalling that the weak-type (1, 1) norm is Cd = 1 for the dyadic maximal operator), we get in place of
(8.2) that

[w]
′,d
A∞ ≤ 1+ sup

α∈{0,1/2,1}

τα

1+τα
log 1

α
= 1+

1
2τ

1+ 1
2τ

log 2≤ 1+ log 2.

So these constants are actually uniformly bounded over the choice of the parameter t .
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By symmetry, we also have [w−1
]
d
A∞ = [w]

d
A∞ and [w−1

]
′,d
A∞ = [w]

′,d
A∞ , and hence, for this particular

E and w = t ·χE +χR\E ,

‖X‖B(L2(w)) . (r + 1)2
(
[w]dA2

)1/2(
[w]
′,d
A∞ + [w

−1
]
′,d
A∞

)1/2
. (r + 1)2

(
[w]dA2

)1/2
.

Hruščev’s A∞ constants [ ]dA∞ would have given the weaker bound ‖X‖B(L2(w)) . (r + 1)2
(
[w]dA2

)3/4,
instead.

8D. The extrapolated bounds for Calderón–Zygmund operators. It is interesting to compare our esti-
mate (1.28), namely

‖T ‖B(L p(w)) . [w]
2/p−1/[2(p−1)]
Ap

(
[w]

1/[2(p−1)]
A∞ + [σ ]

1/2
A∞

)
([w]′A∞)

1−2/p

. [w]2/p
Ap
([w]′A∞)

1−2/p,
(8.3)

which is valid for any Calderón–Zygmund operator and for all p≥ 2, with an estimate implicitly contained
in the proof of a related result by Lerner [2011, Theorem 1.2]. He considers maximal truncations T∗ of
convolution-type Calderón–Zygmund operators, and obtains the bound

‖T∗‖B(L p(w)) . [w]
1/2
Ap
([w]′A∞)

1/2
+‖M‖B(L p(w)) . [w]

1/2
Ap
([w]′A∞)

1/2, p ∈ [3,∞), (8.4)

where the second estimate is an application of Buckley’s result (we do not even need our improvement at
this point),

‖M‖B(L p(w)) . [w]
1/(p−1)
Ap

≤ [w]
1/2
Ap
, p ∈ [3,∞).

In (8.4), the factor ([w]′A∞)
1/2 comes from an estimate of Wilson [1989] relating the weighted norms of

the grand maximal function and a certain square function, while [w]1/2Ap
is Lerner’s bound for the weighted

norm of such square functions (whose exponent is optimal by [Cruz-Uribe et al. 2012]).
To simplify comparison, let us only consider the simpler form of our bound (8.3). Then the sum of the

powers of [w]Ap and [w]′A∞ in both (8.3) and (8.4) is 2/p+(1−2/p)= 1
2+

1
2 = 1, and the sharper bound

is the one where the larger weight constant [w]Ap has the smaller power. We have 2/p ≤ 1
2 if and only if

p ≥ 4, and hence Lerner’s bound is sharper for p ∈ [3, 4) and ours for p ∈ (4,∞). This indicates that the
present results are not the last word on joint Ap-A∞-control, but there is place for further investigation
(which indeed has already taken place since the first public distribution of this paper; see [Hytönen et al.
2011, Section 12; Lacey 2012; Hytönen and Lacey 2011]).

9. Proof of the end-point theory at p = ∞

The proof again relies on the sharp reverse Hölder inequality in Theorem 2.3: if w ∈ A∞ and if we let

r = r(w) := 1+ 1
cd [w]

′

A∞
,

then (
−

∫
Q
wr dx

)1/r

≤
2
|Q|

∫
Q
w.



SHARP WEIGHTED BOUNDS INVOLVING A∞ 815

Proof of Theorem 1.19. For c = 〈 f 〉Q ,

1
w(Q)

∫
Q
| f − c|w =

|Q|
w(Q)

−

∫
Q
| f − c|w ≤

|Q|
w(Q)

(
−

∫
Q
| f − c|r(w)

′

)1/r(w)′(
−

∫
Q
wr(w)

)1/r(w)

≤
|Q|
w(Q)

(
Cdr(w)′‖ f ‖BMO

)(
2−
∫

Q
w

)
= Cdr(w)′‖ f ‖BMO ≤ Cd [w]

′

A∞‖ f ‖BMO,

which shows that ‖ f ‖BMO(w) ≤ Cd [w]
′

A∞‖ f ‖BMO. Note that we used the sharp order of growth of the
local L p norms of BMO functions as p→∞, which follows easily from the exponential integrability.

To see the sharpness for d = 1, consider w(x) = |x |−1+ε, which has [w]A∞ h [w]′A∞ h 1/ε and
f (x)= log|x |. We check that

‖ f ‖BMO(w) ≥ inf
a

1
w([0, 1])

∫ 1

0

∣∣∣log 1
x
− a

∣∣∣w(x) dx ≥ c
ε
≥ c[w]A∞ ≥ c[w]′A∞,

which proves the claim. It is immediate that w([0, 1])=
∫ 1

0
x−1+ε dx = 1

ε
. It remains to compute∫ 1

0

∣∣∣log 1
x
− a

∣∣∣x−1+ε dx =
∫
∞

0
|t − a|e−εt dt = 1

ε2

∫
∞

0
|u− εa|e−u du.

It suffices to check that ψ(α) :=
∫
∞

0
|u−α|e−u du ≥ c > 0 for all α ∈ R. But this is an easy calculus

exercise. �

We now prove Corollary 1.20 on end-point estimates for Calderón–Zygmund operators.

Proof of Corollary 1.20. For the positive estimate, it suffices to factorize T = I ◦T , where T : L∞→BMO
and I : BMO→ BMO(w) have norm bounds cT and cd [w]

′

A∞ , respectively. Concerning sharpness, note
that the Hilbert transform of χ(−1,0) is log(x+1)− log x for x > 0. Since log(x+1) is bounded on [0, 1],
the computation proving the sharpness of the embedding BMO ↪→ BMO(w) also gives the lower bound∥∥Hχ(−1,0)

∥∥
BMO(|x |−1+ε)

≥
c
ε
= c[x−1+ε

]A∞‖χ(−1,0)‖L∞ ≥ c[x−1+ε
]
′

A∞‖χ(−1,0)‖L∞ . �

We conclude with the proof of Proposition 1.21 on the sharp relation of A∞ and BMO. Note that here
we use the larger constant [w]A∞ , not [w]′A∞ .

Proof of Proposition 1.21. Let Q be a cube. We estimate∫
Q

∣∣logw− log c
∣∣= ∫

Q∩{w≥c}
log w

c
+

∫
Q∩{w<c}

log c
w

=

∫
Q∩{w≥c}

log w
c
+

(∫
Q
−

∫
Q∩{w≥c}

)
log c

w

= 2
∫

Q∩{w≥c}
log w

c
+

∫
Q

log c+
∫

Q
log 1

w

≤ 2
∫

Q∩{w≥c}

w

c
+ |Q| log c+ |Q| log

(
[w]A∞

/
−

∫
Q
w

)
.
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Hence
−

∫
Q

∣∣logw− log c
∣∣≤ 2

c
−

∫
Q
w+ log c+ log[w]A∞ − log

(
−

∫
Q
w

)
.

Choosing c = cQ = 2−
∫

Q
w, we get

−

∫
Q

∣∣logw− log cQ
∣∣≤ 1+ log 2+ log

(
−

∫
Q
w

)
+ log[w]A∞ − log

(
−

∫
Q
w

)
= log(2e[w]A∞),

and this proves that
‖logw‖BMO ≤ log(2e[w]A∞). �

Remark 9.1. In the last estimate, we cannot replace [w]A∞ by [w]′A∞ . Indeed, for the two-valued
weight w = t · 1E + 1R\E , one readily checks that ‖logw‖BMO h log t , whereas Lemma 8.1 shows
that also [w]′A∞ . log t . Thus ‖logw‖BMO ≤ log(c[w]′A∞) would lead to the obvious contradiction that
log t ≤ c+ log log t .
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PERIODICITY OF THE SPECTRUM
IN DIMENSION ONE

ALEX IOSEVICH AND MIHAL N. KOLOUNTZAKIS

A bounded measurable set �, of Lebesgue measure 1, in the real line is called spectral if there is a set ƒ
of real numbers (“frequencies”) such that the exponential functions e�.x/D exp.2� i�x/, � 2ƒ, form a
complete orthonormal system of L2.�/. Such a set ƒ is called a spectrum of �. In this note we prove
that any spectrum ƒ of a bounded measurable set �� R must be periodic.

1. Tilings, spectral sets and periodicity

Spectra of domains in Euclidean space and the Fuglede conjecture. Let � � Rd be a bounded mea-
surable set and let us assume for simplicity that � has Lebesgue measure 1. The concept of a spectrum
of � that we deal with in this paper may be interpreted as a way of using Fourier series for functions
defined on � with nonstandard frequencies. It was introduced by Fuglede [1974] who was studying a
problem of Segal on the extendability of the partial differential operators

@

@x1
;
@

@x2
; : : : ;

@

@xd

on Cc.�/ to commuting operators on all of L2.�/.

Definition 1.1. A set ƒ� Rd is called a spectrum of � (and � is said to be a spectral set) if the set of
exponentials

E.ƒ/D fe�.x/D e2�i��x
W � 2ƒg

is a complete orthonormal set in L2.�/.

(The inner product in L2.�/ is hf;gi D
R
� f g.)

It is an easy result (see [Kolountzakis 2004], for instance) that the orthogonality of E.ƒ/ is equivalent
to the packing condition X

�2ƒ

ˇ̌c�
�

ˇ̌2
.x��/� 1; a.e. .x/; (1)

as well as to the condition
ƒ�ƒ� f0g[

˚c�
�
D 0

	
: (2)
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The orthogonality and completeness of E.ƒ/ is in turn equivalent to the tiling conditionX
�2ƒ

ˇ̌c�
�

ˇ̌2
.x��/D 1; a.e. .x/: (3)

These equivalent conditions follow from the identity

he�; e�i D

Z
�

e�e� Dc�
�
.���/ (4)

and from the completeness of all the exponentials in L2.�/. Condition (1) roughly expresses the validity
of Bessel’s inequality for the system of exponentials E.ƒ/, while condition (3) says that Bessel’s inequality
holds as an equality.

If ƒ is a spectrum of � then so is any translate of ƒ but there may be other spectra as well.

Example. If Qd D .�1=2; 1=2/d is the cube of unit volume in Rd then Zd is a spectrum of Qd . Let us
remark here that there are spectra of Qd that are very different from translates of the lattice Zd [Iosevich
and Pedersen 1998; Lagarias et al. 2000; Kolountzakis 2000].

In the one-dimensional case, which will concern us in this paper, condition (2) implies that the set
ƒ has gaps bounded below by a positive number: the smallest positive zero of c�

�
. (Note that since �

is a bounded set, the function c�
�
.�/ can be defined for all complex � and is an entire function. This

guarantees that its zeros are a discrete set.)

The Fuglede or spectral set conjecture. Research on spectral sets has been driven for many years by a
conjecture of Fuglede [1974] which stated that a set � is spectral if and only if it is a translational tile. A
set � is a translational tile if we can translate copies of � around and fill space without overlaps. More
precisely, there exists a set S � Rd such thatX

s2S

��.x� s/D 1; a.e. .x/: (5)

One can extend the definition of translational tiling to functions from sets.

Definition 1.2. We say that a nonnegative function f WRd!R tiles by translation with the set S �Rd ifX
s2S

f .x� s/D ` for almost every x 2 Rd ;

where ` is a constant (the level of the tiling).

Thus the question of spectrality for a set � is essentially a tiling question for the function
ˇ̌c�
�

ˇ̌2 (the
power spectrum). Taking into account the equivalent condition (3) one can now, more elegantly, restate
the Fuglede conjecture as the equivalence

�� tiles Rd by translation at level 1”
ˇ̌c�
�

ˇ̌2 tiles Rd by translation at level 1: (6)

In this form the conjectured equivalence is perhaps more justified. However this conjecture is now known
to be false in both directions if d � 3 [Tao 2004; Matolcsi 2005; Kolountzakis and Matolcsi 2006a; 2006b;
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Farkas et al. 2006; Farkas and Révész 2006], but remains open in dimensions 1 and 2 and it is not out of
the question that the conjecture is true if one restricts the domain � to being convex. (It is known that the
direction “tiling) spectrality” is true in the case of convex domains; see [Kolountzakis 2004].) The
equivalence (6) is also known, from the time of [Fuglede 1974], to be true if one adds the word lattice to
both sides (that is, lattice tiles are the same as sets with a lattice spectrum).

Periodicity of spectra and tilings. The property of periodicity is very important for a tiling.

Definition 1.3. A set S �Rd is called (fully) periodic if there exists a lattice L�Rd (a discrete subgroup
of Rd with d linearly independent generators: the period lattice) such that S C t D S for all t 2L. We
call a translation tiling periodic if the set of translations is periodic.

The so-called periodic tiling conjecture [Grünbaum and Shephard 1989; Lagarias and Wang 1997]
should be mentioned at this point: if a set � tiles Rd by translations (at level 1) then it can also tile Rd

by a periodic set of translations.
As an example of the importance of periodicity for a tiling we mention its connection to decidability

[Robinson 1971], a question to which the study of tilings has provided several examples and problems.
Although the general problem of tiling (not restricting the motions to be translations or allowing more
than one tile) is undecidable, it is not hard to see that when the assumption of periodicity is added, the
problem becomes decidable. Let us make this connection more clear by stating it in the discrete case:

Assume that the periodic tiling conjecture is true. Then one can algorithmically decide if
a given finite �� Zd admits tilings by translation or not.

Roughly, if one knows a priori that a set � admits periodic tilings, if it admits any, then the question
“Does � admit a tiling?” can be answered algorithmically by simultaneously enumerating all possible
counterexamples to tiling (if a tiling does not exist then the obstacle will show up at some finite stage)
as well as all possible tilings of finite regions. If a tiling does not exist then the first enumeration will
produce a counterexample. Otherwise, if a tiling exists then, by the periodic tiling conjecture, a periodic
tiling exists and one of the finite regions that can be tiled with � will show this periodicity and can
therefore be extended to all space. More details of this argument can be found in [Robinson 1971].
Both the periodic tiling conjecture and the question of decidability of tilings by translation are open for
d � 2 (but see [Szegedy 1998; Wijshoff and van Leeuwen 1984] for some special cases). For d D 1

all translational tilings by finite subsets of Z are necessarily periodic [Newman 1977] and the problem
is decidable. Another class of tilings where the periodic tiling conjecture holds is the case when � is
assumed to be a convex polytope in Rd , for any d [Venkov 1954; McMullen 1980].

In dimension d D 1 it is known [Leptin and Müller 1991; Lagarias and Wang 1996; Kolountzakis and
Lagarias 1996] that all translational tilings by a bounded measurable set are necessarily periodic. More
generally it is known that whenever f � 0 is an integrable function on the real line that tiles the real line
by translation with a set of translates S , then S is of the form

S D

J[
jD1

. j̨ ZC ǰ /; (7)



822 ALEX IOSEVICH AND MIHAL N. KOLOUNTZAKIS

where the real numbers j̨ are necessarily commensurable (and S is in that case periodic) if the tiling is
indecomposable (cannot be made up by superimposing other tilings). But this result is not applicable to
the periodicity of spectra, as the power-spectrum

ˇ̌c�
�

ˇ̌2 is never of compact support when � is bounded
(a qualitative expression of the uncertainty principle).

The question of periodicity of one-dimensional spectra was explicitly raised in [Łaba 2002]. It was
recently proved (first in [Bose and Madan 2011] and then a simplified proof was given in [Kolountzakis
2012]) that if � is a finite union of intervals in the real line then any spectrum of � is periodic. See also
[Lagarias and Wang 1997], where periodicity of spectra and of tilings plays an important role.

Theorem 1.4 [Bose and Madan 2011; Kolountzakis 2012]. If �D
Sn

jD1.aj ; bj /� R is a finite union of
intervals of total length 1 and ƒ� R is a spectrum of �, then there exists a positive integer T such that
ƒCT Dƒ.

Our purpose in this note is to improve this result by removing the assumption that � is a finite union
of intervals.

Theorem 1.5. Suppose that ƒ is a spectrum of �� R, where � is a bounded measurable set of measure
1. Then ƒ is periodic and any period is a positive integer.

The proof of Theorem 1.5 is given in Section 2.

Corollary 1.6. If �, a bounded measurable set of measure 1, is spectral then � tiles the real line at some
integer level T when translated at the locations T �1Z.

Proof. Let ƒ is a spectrum of �. By Theorem 1.5 we know that ƒ is a periodic set and let T be one of its
periods: ƒCT Dƒ. Then we have ƒDT ZCf`1; : : : ; `T g (the number of elements in each period must
be T in order for ƒ to have density 1, hence T is an integer), and, by (2), this implies that c�

�
.nT /D 0

for all nonzero n 2 Z. Hence � tiles R when translated at T �1Z (see [Kolountzakis 2004]) at level T . �

Theorem 1.5 is not true in dimensions higher than 1. For instance, even when � is as simple as a cube,
it may have spectra that are not periodic [Lagarias et al. 2000; Iosevich and Pedersen 1998; Kolountzakis
2000].

2. Proof of periodicity for spectra in dimension 1

The spectrum as a double sequence of symbols. Because of (2) we have that the gap between any two
elements of ƒ is bounded below by ı > 0: the smallest positive zero of c�

�
. Let us now observe that the

gap between successive elements of ƒ is also bounded above by a constant that depends only on �.

Lemma 2.1. If �� R is a bounded measurable set of measure 1 then there is a finite number �> 0 such
that if ƒ is any spectrum of � then the gap between any two successive elements of ƒ is at most �.

Proof. Lemma 2.1 is essentially a special case of Lemma 2.3 of [Kolountzakis and Lagarias 1996]. In
that lemma it is proved that if 0� f 2L1.R/ tiles the line with a set A,X

a2A

f .x� a/D w for almost all x 2 R, with w > 0 a constant;
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then the set A has asymptotic density equal to �D w=
R
f . This means that the ratio

jA\ I j=jI j

tends to � as the length of the interval I tends to infinity. The convergence is uniform over the choice of
the set A and the location of the interval I .1 This uniformity of course implies that the maximum gap of
A is bounded by a quantity that depends on f only.

Since
P
�2ƒ j��j

2.x��/D 1 is a tiling and 0� j�
�
j2 2L1.R/ we deduce that ƒ has gaps bounded

above by a function of � alone. �

Let now
Z D

˚
� 2 R Wc�

�
.�/D 0

	
and define the finite set (as Z is discrete)

†DZ \ .0; ��D fs1; s2; : : : ; skg; (8)

where � is the quantity given by Lemma 2.1.
We now view the set † as a finite set of symbols (alphabet) and consider the set †Z of all bidirectional

sequences of elements of † equipped with the product topology. A sequence xn of elements of †Z

converges to x 2†Z if for all k D 1; 2; : : : the double sequences xn and x agree in the window Œ�k; k�

for large enough n. More precisely, for all k D 1; 2; : : : there is n0 such that for n� n0 we have

xn
j D xj for �k � j � k:

†Z is a metrizable compact space so that each sequence xn 2†Z has a convergent subsequence. This is
just another way of phrasing a diagonal argument that is somewhat more convenient to use. The proof
below may of course be phrased avoiding topological notions altogether and replacing the convergence of
each subsequence with a diagonal argument.

The space †Z is the natural space in which to view a spectrum ƒ of �, as the set ƒ is locally of
finite complexity: because of (2) the difference of any two successive elements of ƒ can be only be an
element of †. By demanding, as we may, that 0 is always in ƒ we can therefore represent any set ƒ
with the sequence of its successive differences. More precisely, we map any set ƒ� R whose successive
differences are in † and which contains 0,

ƒD f � � �< ��2 < ���1 < �0 D 0< �1 < �2 < � � � g;

to the element .ƒn/ 2†
Z given by

ƒn D �nC1��n .n 2 Z/:

This correspondence is a bijection and we will use one or the other form of the set ƒ as it suits us.

1Inequality (2.4) in [Kolountzakis and Lagarias 1996] speaks of NA.T /D jA\ Œ�T;T �j, but none of the other quantities
that appear in it depend on A. This means that (2.4) holds even if we take NA.T / to be the number of elements of A in any
interval of length 2T . In fact, one can prove that NA.T / cannot be 0 if T is sufficiently large, depending on �, without taking
the limit in (2.4) and without talking about asymptotic density.
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Symbolic sequences determined by their values in a half-line. Suppose X � †Z. We say that X is
determined by left half-lines if knowing an element of X to the left of any index n suffices to determine
the element in the remaining positions to the right of n, i.e., if for any x;y 2X and n 2 Z we have

.xi D yi for i � n/H) .xi D yi for all i 2 Z/:

Determination of X by right half-lines is defined analogously.
We similarly say that X is determined by any window of size w (a positive integer) if for any x 2X

and any n 2 Z knowing xi for i D n; nC 1; : : : ; nCw� 1 completely determines x.

Theorem 2.2. Suppose X �†Z is a closed, shift-invariant set that is determined by left half-lines and by
right half-lines. Then there is a finite number w such that X is determined by windows of size w.

Proof. It is enough to show that there is a finite window size w such that whenever two elements of X

agree on a window of size w, then they necessarily agree at the first index to the right of that window.
For in that case they necessarily agree at the entire right half-line to the right of the window and are by
assumption equal elements of X .

Assume this is not true. Then there are elements xn;yn of X , n D 1; 2; : : :, which agree at some
window of width n but disagree at the first location to the right of that window. Using the shift-invariance
of X we may assume that

xn
�n D yn

�n; xn
�nC1 D yn

�nC1; : : : ; xn
�1 D yn

�1 and xn
0 ¤ yn

0 :

By the compactness of the space there are x;y 2X and a subsequence .nk/ such that xnk ! x and
ynk ! y. By the meaning of convergence in the space †Z we have that the sequences x and y agree
for all negative indices and disagree at 0. This contradicts the assumption that X is determined by left
half-lines. �

Theorem 2.3. If X �†Z is shift-invariant and is determined by windows of size w then all elements of
X are periodic, and the period can be chosen to be at most j†jw.

Proof. Fix x 2 X . Since there are at most j†jw different window-contents of length w, it follows that
there are two indices i; j 2

˚
0; 1; : : : ; j†jw

	
, i < j , such that

xi D xj ; xiC1 D xjC1; : : : ; xiCw�1 D xjCw�1:

Writing T x for the left shift of x 2 X (i.e., .T x/n D xnC1) we have that x and T j�ix agree at the
window i; i C 1; : : : ; i Cw� 1. By assumption then x D T j�ix, which is another way of saying that the
sequence x has period j � i � j†jw. �

Symbolic sequences with spectral gaps. Suppose ƒ � R is a spectrum of the bounded set � � R of
measure 1. Write ıƒ D

P
�2ƒ ı�, where ı� is a unit point mass at point �. It is well known (see

[Kolountzakis 2004]) that the Fourier transform of the tempered distribution ıƒ is supported by 0 plus
the zeros of the function �

jc�
�
j
2
�^
D �� ����;
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which is a continuous function with value 1 at the origin. Therefore there is an interval .0; a/, with
aD a.�/ > 0, such that ıƒ has a spectral gap:

suppbı
ƒ
\ .0; a/D∅: (9)

With †D†.�/ defined by (8), let X �†Z consist of all sequences which correspond to sets ƒ with
gaps from † such that (9) holds. The set X is obviously shift-invariant, as shifting a sequence in X

corresponds to translation of the set ƒ and translation will not affect the support of bı
ƒ

.

Lemma 2.4. The set X is closed in †Z.

Proof. Suppose ƒn 2X and ƒn!ƒ 2†Z and that � 2 C1.0; a/. It is enough to show that bı
ƒ
.�/D 0,

as this is what it means for bı
ƒ

to have no support in .0; a/ and therefore ƒ 2X . By the definition of the
Fourier transform,

bı
ƒ
.�/D ıƒ.y�/D

X
�2ƒ

y�.�/
�
D lim

n!1

X
�2ƒn

y�.�/D lim
n!1

ıƒn.y�/D lim
n!1

cı
ƒn.�/D 0:

The justification for the starred equality above is very easy given the rapid decay of y�, and the fact that
all ƒn have the same positive minimum gap. Indeed, these properties imply that for any � > 0 we can
find an R> 0 such that ˇ̌̌̌ X

�2ƒ
j�j>R

y�.�/

ˇ̌̌̌
< � for LDƒ or LDƒn;

and also an n0 such that ƒn\ Œ�R;R�Dƒ\ Œ�R;R� for n� n0. It follows that for n� n0 we haveˇ̌bı
ƒ
.�/
ˇ̌
D
ˇ̌bı
ƒ
.�/� yıƒn.�/

ˇ̌
D

ˇ̌̌̌ X
�2ƒ
j�j>R

y�.�/ �
X
�2ƒ
j�j>R

y�.�/

ˇ̌̌̌
� 2�:

This implies that bı
ƒ
.�/D 0, as we had to show. �

Theorem 2.5. The sequences in X are determined by both left half-lines and right half-lines.

Proof. Suppose that X is not determined by left half-lines (the argument is similar for right half-lines).
Then there are distinct ƒ1; ƒ2 2X such that ƒ1

i Dƒ
2
i for all negative integers i . Both ıƒ1 and ıƒ2 have

a spectral gap at .0; a/ and therefore so does their difference

�D ıƒ1 � ıƒ2 :

Notice that � is supported in the half-line Œ0;C1/. Suppose  2 C1.�a=10; a=10/. It follows from
the rapid decay of y that the measure

� D y ��

is totally bounded and still has a spectral gap at the interval .a=10; 9a=10/. But the measure � is also
supported in the half-line Œ0;C1/ and by the F. and M. Riesz theorem [Havin and Jöricke 1994] its
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Fourier transform is mutually absolutely continuous with respect to the Lebesgue measure on the line.2

But this is incompatible with the vanishing of y� in some interval. Therefore � must be identically 0 and,
since  2 C1.�a=10; a=10/ is otherwise arbitrary, it follows that �� 0, or ƒ1 Dƒ2, a contradiction.
It follows that X is indeed determined by left half-lines. �

Conclusion of the argument. By Lemma 2.4 and Theorem 2.5 the set X defined above, right after
(9), given � is a closed shift-invariant subset of †Z and its elements are determined by half-lines. By
Theorem 2.2 there exists a finite number w such that the elements of X are determined by their values at
any window of width w. By Theorem 2.3 all elements of X are therefore periodic sequences. Since all
spectra of � can also be viewed as elements of X , the periodicity of any spectrum of � follows from the
periodicity of the sequence of its successive differences.

The fact that any period of ƒ is a positive integer is a consequence of the fact that ƒ has density 1: if
T is a period of ƒ this implies that there are exactly T elements of ƒ in each interval Œx;xCT / hence
T is an integer.
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A CODIMENSION-TWO STABLE MANIFOLD
OF NEAR SOLITON EQUIVARIANT WAVE MAPS

IOAN BEJENARU, JOACHIM KRIEGER AND DANIEL TATARU

We consider finite-energy equivariant solutions for the wave map problem from R2+1 to S2 which are
close to the soliton family. We prove asymptotic orbital stability for a codimension-two class of initial
data which is small with respect to a stronger topology than the energy.

1. Introduction

We consider wave maps U : R2+1
→ S2 which are equivariant with corotation index 1. In particular, they

satisfy U (t, ωx)=ωU (t, x) for ω ∈ SO(2,R), where the latter group acts in standard fashion on R2, and
the action on S2 is induced from that on R2 via stereographic projection. Wave maps are characterized by
being critical with respect to the functional

U →
∫

R2+1
〈∂αU, ∂αU 〉dσ, α = 0, 1, 2,

where Einstein’s summation convention is in force, ∂α =mαβ∂β , mαβ = (mαβ)−1 is the Minkowski metric
on R2+1, and dσ is the associated volume element. Also, 〈 · , · 〉 refers to the standard inner product on
R3 if we use ambient coordinates to describe u, ∂αu, etc. Recall that the energy is preserved:

E(u)= 1
2

∫
R2
〈DU ( · , t), DU ( · , t)〉dx = const.

The problem at hand is energy critical, meaning that the conserved energy is invariant under the natural
re-scaling U →U (λt, λx).

We focus on a particular subset of equivariant maps characterized by the additional property that
U (t, r, θ)= (u(t, r), θ) in spherical coordinates, where, on the right-hand side, u stands for the longitudinal
angle and θ stands for the latitudinal angle, while on the left-hand side, r, θ are the polar coordinates
on R2. Now u(t, r), a scalar function, satisfies the equation

−ut t + urr +
ur

r
=

sin(2u)
2r2 . (1-1)
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Then the energy has the form

E(u)= π
∫

R2

(
|ut |

2
+ |ur |

2
+

sin2 u
r2

)
r dr. (1-2)

We shall be interested in corotational maps that are topologically nontrivial, that is, with

u(t, 0)= 0, u(t,∞)= π.

A natural space adapted to the elliptic part of this energy is Ḣ 1
e :

‖ f ‖2Ḣ1
e
= ‖∂r f ‖2L2 +

∥∥∥∥ f
r

∥∥∥∥2

L2
.

This is the equivariant translation of the usual two-dimensional space Ḣ 1. The size of the elliptic part of
the energy of u in (1-2) and its Ḣ 1

e norm are comparable, provided that u is small pointwise. This is not
true directly for u, but it is true after we subtract from u the “nearby” soliton that we describe below.

The solitons for (1-1) have the form

Qλ(r)= Q(λr), Q(r)= 2 arctan r, λ ∈ R+ = (0,∞),

and are global minimizers of the energy E within their homotopy class, E(Qλ)= 4π .
We consider solutions u which are close to the soliton in the sense that

E(u)−E(Q)� 1. (1-3)

As it turns out, such solutions must stay close to the soliton family {Qλ}, due to the bound

inf
λ
‖(u(t)− Qλ)‖

2
Ḣ1

e
+‖ut(t)‖2L2 ∼ E(u)−E(Q). (1-4)

Indeed, this follows, for example, from [Cote 2005]. Thus at any given t , one can choose some λ(t) such
that

‖(u(t)− Qλ)‖
2
Ḣ1

e
+‖ut(t)‖2L2 ∼ E(u)−E(Q). (1-5)

Such a parameter λ is uniquely determined up to an error of size O((E(u)−E(Q))1/2). One can, for
instance, choose λ to be the minimizer in (1-4), though there are no obvious benefits to be derived from
that. Another equivalent choice is more direct, namely by the relation

u(t, λ−1(t))= π
2
, (1-6)

and this still satisfies (1-5); see, for instance, [Bejenaru and Tataru 2014]. Since this problem is locally
well-posed in the energy space, scaling considerations show that (for well-chosen λ(t)), we have∣∣∣ d

dt
λ(t)

∣∣∣. λ−2, (1-7)

so at least locally λ stays bounded. Then the main question to ask is as follows:

Open problem. What is the behavior of the function λ(t) for equivariant maps satisfying (1-3)?
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We can distinguish several interesting plausible scenarios:

• Type 1: λ(t) → ∞ as t → t0 (finite time blow-up). By (1-7), this can only happen at rates
λ(t) & |t − t0|−1. The above extreme corresponds to self-similar concentration; this can also be
thought of as a consequence of the finite speed of propagation. In effect, by the important work
[Struwe 2003], it is known that such a blow-up can only occur with speed strictly faster than
self-similar:

λ(t)|t − t0| →∞.

• Type 2: λ(t)→∞ as t→∞ (infinite time focusing).

• Type 3: λ(t)→ 0 as t →∞ (infinite time relaxation). By (1-7), this can only happen at rates
λ(t)& t−1, which corresponds to self-similar relaxation.

• Type 4: λ(t) stays in a compact set globally in time. Then we have a global solution, and possibly a
resolution into a soliton plus a dispersive part.

Blow-up solutions of Type 1 were constructed not long ago in two quite different papers, [Krieger
et al. 2008] and [Rodnianski and Sterbenz 2010], and the result of the latter paper was significantly
strengthened and generalized in [Raphaël and Rodnianski 2012]. The behavior of λ(t) in [Krieger et al.
2008] as t→ 0 is given by

λ(t)= t−1−ν, ν ≥ 1

(here the restriction ν ≥ 1 seems technical, and should really be ν > 0), while that in [Raphaël and
Rodnianski 2012] is

λ(t)∼ t−1ec
√

log t .

The latter solutions were also proved to be stable with respect to a class of small smooth perturbations. It
is not implausible that the set of all blow-up solutions is open in a suitable topology, although numerical
evidence in [Bizoń et al. 2001] appears to suggest the existence of a codimension-one manifold of data
leading to an unstable blow-up, which separates scattering solutions from a stable regime of finite time
blow-up solutions.

Up to this point we are not aware of any examples of solutions of Type 2, 3 or 4 other than the Qλ’s in
the wave maps context, although recent work [Gustafson et al. 2010] revealed unusual solutions of this
type in the context of the Landau–Lifshitz equation. Earlier work [Krieger and Schlag 2007] showed the
existence of Type 4 solutions for the critical focusing nonlinear wave equation on R3+1.

Understanding the general picture for data in the energy space seems out of reach for now. However,
there is a simpler question one may ask, namely, what happens for data which is close to a soliton in a
stronger topology which includes both extra regularity and extra decay at infinity. Neither the results of
[Krieger et al. 2008] nor of [Raphaël and Rodnianski 2012] apply in this context. A good starting point
for this investigation is the following:

Conjecture. There exists a codimension-one set of (small) data leading to Type 4 solutions, which
separates Type 1 and Type 3 solutions.
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One should take this only as a rough guide; some fine adjustments may be needed. Our main result is
to construct a large class of Type 4 solutions:

Theorem 1.1. There exists a codimension-two set of Type 4 equivariant wave maps satisfying (1-3).

For a more precise formulation of the theorem, see page 834. Compared with the conjecture above,
one can see that we are one dimension short. At this point it is not clear if this is a technical issue, or if
something new happens. A plausible scenario might be that the missing dimension may include Type 2
solutions, as well as slowly relaxing Type 4 solutions.

One should also compare this result with the related problem for Schrödinger maps. Although the
solitons are the same and the operator H arising below in the linearization is also the same for Schrödinger
maps, in [Bejenaru and Tataru 2014] it is shown that the solitons are stable with respect to small localized
perturbations. One way to explain this is that the linear growth in the resonant direction occurring in
the H -wave equation has a stronger destabilizing effect than the corresponding lack of decay in the
H -Schrödinger equation.

Notation. Here we introduce some notation which will be used throughout the paper. We slightly modify
the use of 〈 · 〉 in the following sense:

〈x〉 =
√

4+ x2, x ∈ R.

For a real number a, we define a+ =max{0, a} and a− =min{0, a}.
We will use a dyadic partition of R+ into sets {Am}m∈Z given by

Am = {2m−1 < r < 2m+1
}.

For given M > 0, we use smooth localization functions χ.M , χ&M forming a partition of unity for R+

and such that
|(r∂r )

αχ.M | + |(r∂r )
αχ&M |.α 1.

2. The gauge derivative and linearizations

The linearized equation (1-1) around the soliton Q has the form

−vt t − Hv = 0, H =−∂2
r −

1
r
∂r +

cos(2Q)
r2 . (2-1)

The elliptic operator H admits the factorization

H = L∗L , L = h1∂r h−1
1 = ∂r +

h3

r
, L∗ =−h−1

1 ∂r h1−
1
r
=−∂r +

h3− 1
r

, (2-2)

where1 h1 = sin Q = 2r
1+r2 , h3 =− cos Q = r2

−1
r2+1

. H is nonnegative and has a zero resonance

φ0 = h1 =
2r

1+ r2 .

1Throughout this paper we use sin Q, cos Q instead of h1, h3; however, the reader may need this correspondence in order to
relate this work to [Bejenaru and Tataru 2014].
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This resonance is the reason why (2-1) does not have good dispersive estimates. Since φ0 fails to be an
eigenvalue, we cannot project it away as is usually done in standard modulation theory. This suggests
that working with the variable u and its equation (1-1) runs into problems due to the lack of good linear
estimates needed to treat the nonlinearity. Therefore, instead of working with the solution u, we introduce
a new variable

w = ∂r u− 1
r

sin u, (2-3)

which has the nice property that
w = 0⇐⇒ u = Qλ

for some λ ∈ R+. Indeed, by rearranging (1-2) and using u(0)= 0, u(∞)= π , we obtain

E(u)= π
∫
∞

0
(|ut |

2
+ |w|2)r dr +π

∫
∞

0
2 sin u · ∂r u dr = π

∫
∞

0
(|ut |

2
+ |w|2)r dr + 4π,

from which the above observation follows. This type of change of variables originates at least with the
work [Gustafson et al. 2008]. If λ(t) is chosen such that (1-5) holds, then using (1-3), a direct computation
shows that

‖u− Qλ‖Ḣ1
e
≈ ‖w‖2L2 . (2-4)

Then a direct computation shows that w solves

wt t −1w+
2(1+ cos u)

r2 w =
1
r

sin u(u2
t −w

2). (2-5)

The function u appears in this equation, but it can be recovered from w by solving the ODE (2-3) with
Q-like “data” at r =∞.

We remark that the linearized form of (2-3) near Q is

z =
(
∂r −

1
r

cos Q
)
v = Lv, (2-6)

where L was introduced above in (2-2).
On the other hand, the linearized equation for w near Q has the form

zt t −1z+
2(1+ cos Q)

r2 z = 0. (2-7)

This wave equation is governed by the operator

H̃ =−1+
2(1+ cos Q)

r2 =−1+
4

r2(1+ r2)
= L L∗.

This operator is better behaved than H ; in particular, its zero mode ψ0 grows logarithmically at infinity.
The plan is to treat (2-5) in a perturbative manner for the most part. To fix things, we will rewrite it in

the form
(∂2

t + H̃)w =
2(cos Q− cos u)

r2 w+
1
r

sin u(u2
t −w

2) := N (w, u) (2-8)

and work with this from here on. Equation (2-8) for w is preferable due to the nice dispersive properties of
its linear part. However, as u occurs in the w equation, one has to also keep track of it through the elliptic
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equation (2-3). In addition, ut also appears in the above equation. This is related to wt by differentiating
(2-3):

wt =

(
∂r −

1
r

cos u
)

ut . (2-9)

In order to study this equation, we need to understand better the structure of its linear part, and, in
particular, the spectral theory for the operator H̃ . This is the subject of Section 3.

Setup of the problem. The starting point is to consider w̄ to be an exact real solution to the linear
homogeneous equation

(∂2
t + H̃)w̄ = 0, w(0)= w0, wt(0)= w1, (2-10)

where w0 and w1 are real Schwartz functions which are assumed to satisfy the nonresonance conditions

〈w0, ψ0〉 = 0, 〈w1, ψ0〉 = 0. (2-11)

We denote by ū the corresponding map, see (2-3) (this will be made precise in Proposition 5.2), obtained
by solving the ODE

∂r ū− 1
r

sin ū = w̄, ū ∼ Q as r→∞. (2-12)

Now we seek a solution to the nonlinear equation u and its associated gauge derivative w close to ū, w̄
respectively,

u = ū+ ε, w = w̄+ γ, (2-13)

so that u and w match ū and w̄ asymptotically as t→∞.
By a slight abuse of notation, we use ‖ · ‖S to denote a norm obtained by adding sufficiently many

seminorms of the Schwartz space S. We also use .S for inequalities where the implicit constant depends
on ‖(w0, w1)‖S . Modulo defining the X and L X norms, we are now in a position to restate our main
result in a more detailed fashion.

Theorem 2.1. Let w0, w1 be Schwartz functions satisfying the nonresonance conditions (2-11). Let ū
and w̄ be defined as above. Then there exist T .S 1 and a unique wave map u in [T,∞) so that u and w
match ū and w̄ as t→∞ in the following asymptotic fashion for t ∈ [T,∞):

‖γ (t)‖L X .S t−3/2, ‖∂tγ (t)‖L X .S t−5/2, ‖γ (t)‖Ḣ1 .S t−5/2, (2-14)

respectively
‖ε(t)‖X .S t−3/2, ‖∂tε(t)‖L X .S t−5/2. (2-15)

Furthermore, the map u and its corresponding gauge derivative w have a Lipschitz dependence on
(w0, w1) with respect to the above norms.

One would expect the above result to be in terms of L2 and Ḣ 1
e spaces. However, these spaces are

very disconnected from the spectral structure of H and H̃ , particularly at low frequencies, and this makes
them unsuitable. The spaces X ⊂ Ḣ 1

e and L X ⊂ L2 have been introduced in [Bejenaru and Tataru 2014]
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to address exactly this issue: they are low-frequency corrections of Ḣ 1
e , respectively L2. Their exact

definition is provided in the next section.
In view of (2-8), the function γ solves

(∂2
t + H̃)γ = N (w̄+ γ, ū+ ε) (2-16)

with zero Cauchy data at infinity. By (2-3), (2-9), (2-13) and (2-12), the functions ε and εt are determined
from the equations

γ = ∂rε−
sin(ε+ ū)− sin ū

r
,

γt =

(
∂r −

cos(ε+ ū)
r

)
εt −

cos(ε+ ū)− cos ū
r

ūt .

(2-17)

We proceed as follows. In the next section we recall from [Bejenaru and Tataru 2014] the spectral theory
for H (which in fact originates in [Krieger et al. 2008]) and H̃ and the definitions and some properties of
the spaces X and L X . Then, in Section 4, we provide linear estimates for the linear (inhomogeneous)
wave equation corresponding to (2-10). In Section 5, we analyze the first approximations w̄ and ū using
(2-12). Then, in Section 6, we continue with the study of the relation between ε and γ based on (2-17).
All the analysis carried out in Sections 4–6 is done in the context of X and L X spaces. In the end, in
Section 7, we study the solvability of Equation (2-16) using perturbative methods in L X based spaces.

3. The modified Fourier transform

In this section, we recall the spectral theory associated with the operators H, H̃ . The spectral theory for
H was developed in [Krieger et al. 2008], and the one for H̃ was derived from the one for H in [Bejenaru
and Tataru 2014]. In this paper, we follow closely the exposition in [Bejenaru and Tataru 2014].

Generalized eigenfunctions. We consider H acting as an unbounded self-adjoint operator in L2(rdr).
Then H is nonnegative, and its spectrum [0,∞) is absolutely continuous. H has a zero resonance, namely
φ0 = h1:

Hh1 = 0.

For each ξ > 0, one can choose a normalized generalized eigenfunction φξ ,

Hφξ = ξ 2φξ .

These are unique up to a ξ dependent multiplicative factor, which is chosen as described below.
To these one associates a generalized Fourier transform FH defined by

FH f (ξ)=
∫
∞

0
φξ (r) f (r)r dr,

where the integral above is considered in the singular sense. This is an L2 isometry, and we have the
inversion formula

f (r)=
∫
∞

0
φξ (r)FH f (ξ)dξ.
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The functions φξ are smooth with respect to both r and ξ . To describe them, one considers two distinct
regions, rξ . 1 and rξ & 1.

In the first region, rξ . 1, the functions φξ admit a power series expansion of the form

φξ (r)= q(ξ)
(
φ0+

1
r

∞∑
j=1

(rξ)2 jφ j (r2)

)
, rξ . 1, (3-1)

where φ0 = h1 and the functions φ j are analytic and satisfy

|(r∂r )
αφ j |.α

C j

( j−1)!
log (1+ r). (3-2)

This bound is not spelled out in [Krieger et al. 2008], but it follows directly from the integral recurrence
formula for the f j given on p. 578 of that paper. The smooth positive weight q satisfies

q(ξ)≈


1

ξ 1/2| log ξ |
if ξ � 1,

ξ 3/2 if ξ � 1,
|(ξ∂ξ )

αq|.α q. (3-3)

Defining the weight

m1
k(r)=

min
{

1, r2k log (1+ r2)

〈k〉

}
if k < 0,

min{1, r323k
} if k ≥ 0,

(3-4)

it follows that the nonresonant part of φξ satisfies∣∣(ξ∂ξ )α(r∂r )
β
(
φξ (r)− q(ξ)φ0(r)

)∣∣.αβ 2k/2m1
k(r), ξ ≈ 2k, rξ . 1. (3-5)

In the other region, rξ & 1, we begin with the functions

φ+ξ (r)= r−1/2eirξσ(rξ, r), rξ & 1, (3-6)

solving
Hφ+ξ = ξ

2φ+ξ ,

where for σ , we have the asymptotic expansion

σ(q, r)≈
∞∑
j=0

q− jφ+j (r), φ+0 = 1, φ+1 =
3i
8
+ O

(
1

1+ r2

)
,

with supr>0 |(r∂r )
kφ+j |<∞ in the following sense:

sup
r>0

∣∣∣∣(r∂r)α(q∂q)
β

(
σ(q, r)−

j0∑
j=0

q− jφ+j (r)
)∣∣∣∣≤ cα,β, j0q− j0−1.

Then we have the representation

φξ (r)= a(ξ)φ+ξ (r)+ a(ξ)φ+ξ (r), (3-7)
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where the complex-valued function a satisfies

|a(ξ)| =

√
2
π
, |(ξ∂ξ )

αa(ξ)|.α 1. (3-8)

The spectral theory for H̃ is derived from the spectral theory for H due to the conjugate representations

H = L∗L , H̃ = L L∗.

This allows us to define generalized eigenfunctions ψξ for H̃ using the generalized eigenfunctions φξ for
H ,

ψξ = ξ
−1Lφξ , L∗ψξ = ξφξ . (3-9)

It is easy to see that ψξ are real and smooth, vanish at r = 0, and solve

H̃ψξ = ξ 2ψξ .

With respect to this frame, we can define the generalized Fourier transform adapted to H̃ by

FH̃ f (ξ)=
∫
∞

0
ψξ (r) f (r)r dr,

where the integral above is considered in the singular sense. This is an L2 isometry, and we have the
inversion formula

f (r)=
∫
∞

0
ψξ (r)FH̃ f (ξ)dξ. (3-10)

To see this, we compute, for a Schwartz function f ,

FH̃ L f (ξ)=
∫
∞

0
ψξ (r)L f (r)r dr =

∫
∞

0
L∗ψξ (r) f (r)r dr =

∫
∞

0
ξφξ (r) f (r)r dr = ξFH f (ξ).

Hence
‖FH̃ L f ‖2L2 = ‖ξFH f (ξ)‖2L2 = 〈H f, f 〉L2(rdr) = ‖L f ‖2L2,

which suffices, since L f spans a dense subset of L2.
The representation ofψξ in the two regions rξ .1 and rξ &1 is obtained from the similar representation

of φξ . In the first region, rξ . 1, the functions ψξ admit a power series expansion of the form

ψξ = ξq(ξ)
(
ψ0(r)+

∑
j≥1

(rξ)2 jψ j (r2)

)
, (3-11)

where
ψ j (r)= (h3+ 1+ 2 j)φ j+1(r)+ r∂rφ j+1(r).

From (3-2), it follows that

|(r∂r )
αψ j |.α

C j

( j−1)!
log (1+ r2).

In addition, ψ0 solves L∗ψ0 = φ0, and therefore a direct computation shows that
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ψ0 =
1
2

(
(1+ r2) log(1+ r2)

r2 − 1
)
.

In particular, defining the weights

mk(r)=

min
{

1,
log (1+ r2)

〈k〉

}
if k < 0,

min{1, r222k
} if k ≥ 0,

(3-12)

we have the pointwise bound for ψξ∣∣(r∂r )
α(ξ∂ξ )

βψξ (r)
∣∣.αβ 2k/2mk(r), ξ ≈ 2k, rξ . 1. (3-13)

On the other hand, in the regime rξ & 1, we define

ψ+ = ξ−1Lφ+,

and we obtain the representation

ψξ (r)= a(ξ)ψ+ξ (r)+ a(ξ)ψ+ξ (r). (3-14)

For ψ+, we obtain the expression

ψ+ξ (r)= r−1/2eirξ σ̃ (rξ, r), rξ & 1, (3-15)

where σ̃ has the form

σ̃ (q, r)= iσ(q, r)− 1
2q−1σ(q, r)+ ∂

∂q
σ(q, r)+ ξ−1Lσ(q, r),

and therefore it has exactly the same properties as σ . In particular, for fixed ξ , we obtain that

σ̃ (rξ, r)= i − 7
8r−1ξ−1

+ O(r−2). (3-16)

We conclude our description of the generalized eigenfunctions and of the associated Fourier transforms
with a bound on the H̃ Fourier transforms of Schwartz functions.

Lemma 3.1. If f is a Schwartz function satisfying 〈 f, ψ0〉 = 0, then

∣∣(ξ∂ξ )αFH̃ f (ξ)
∣∣.α,N


ξ 5/2

〈log ξ〉
if ξ . 1,

〈ξ〉−N if ξ & 1.
(3-17)

Proof. We start from the definition of the modified Fourier transform and use that 〈 f, ψ0〉 = 0:

|FH̃ f (ξ)|.
(∣∣∣∣∫ ξ−1

0
ψξ (r) f (r)r dr

∣∣∣∣+ ∣∣∣∣∫ ∞
ξ−1

ψξ (r) f (r)r dr
∣∣∣∣)

. ξq(ξ)
(∫

∞

ξ−1

∣∣ψ0(r) f (r)
∣∣r dr +

∫ ξ−1

0

∑
j≥1

(rξ)2 jψ j (r2) f (r)r dr
)
+

∫
∞

ξ−1
| f (r)|r1/2 dr

. ξ 3q(ξ).

A similar argument takes care of the case α > 0. �
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The spaces X and L X. The operator L maps Ḣ 1
e into L2. Conversely, one would like that, given some

f ∈ L2, we could solve Lu = f and obtain a solution u which is in Ḣ 1
e and satisfies

‖u‖Ḣ1
e
. ‖ f ‖L2 .

However, this is not the case. The first observation is that the solution is only unique modulo a multiple of
the resonance φ0. Moreover, the inequality above is not expected to be true, even assuming that somehow
we choose the “best” u from all candidates.

The spaces X and L X are in part introduced in order to remedy both the ambiguity in the inversion of
L and the failing inequality.

Definition 3.2. (a) The space X is defined as the completion of the subspace of L2(r dr) for which the
following norm is finite:

‖u‖X =

(∑
k≥0

22k
‖P H

k u‖2L2

)1/2

+

∑
k<0

1
|k|
‖P H

k u‖L2,

where P H
k is the Littlewood–Paley operator localizing at frequency ξ ≈ 2k in the H calculus.

(b) L X is the space of functions of the form f = Lu with u ∈ X , with norm ‖ f ‖L X = ‖u‖X . Expressed
in the H̃ calculus, the L X norm is written as

‖ f ‖L X =

(∑
k≥0

‖P H̃
k f ‖2L2

)1/2

+

∑
k<0

2−k

|k|
‖P H̃

k f ‖L2 .

In this article we work with equivariant wave maps u for which ‖u− Q‖X � 1. This corresponds to
functions w which satisfy ‖w‖L X � 1. The simplest properties of the space X are summarized as follows
(see Proposition 4.2 in [Bejenaru and Tataru 2014]):

Proposition 3.3. The following embeddings hold for the space X :

H 1
e ⊂ X ⊂ Ḣ 1

e . (3-18)

In addition, for f in X , we have the bounds

‖
〈
r〉1/2 f

∥∥
L∞ . ‖ f ‖X , (3-19)∥∥∥∥ f

log(1+ r)

∥∥∥∥
L2
. ‖ f ‖X , (3-20)∥∥〈r〉1/2 f

∥∥
L4 . ‖ f ‖X . (3-21)

Now we turn our attention to the space L X . From [Bejenaru and Tataru 2014, Lemma 4.4 and
Proposition 4.5], we have:

Lemma 3.4. If f ∈ L2 is localized at H̃ -frequency 2k , then

| f (r)|. 2kmk(r)(1+ 2kr)−1/2
‖ f ‖L2 . (3-22)
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Proposition 3.5. The following embeddings hold for L X :

L1
∩ L2
⊂ L X ⊂ L2. (3-23)

4. Linear estimates for the H̃ wave equation

In this section, we prove estimates for the linear equation

(∂2
t + H̃)ψ = f, (4-1)

with zero Cauchy data at infinity. The solution is given by ψ = K f , where

K f (r, t)=−F−1
H̃

∫
∞

t

sin(t − s)ξ
ξ

FH̃ f (ξ, s)ds. (4-2)

We also need its time derivative, which is given by

∂t K f =−F−1
H̃

∫
∞

t
cos(t − s)ξ ·FH̃ f (ξ, s)ds.

Finally, we need the following formula, which follows from (3-9):

L∗K f =−F−1
H

∫
∞

t
sin(t − s)ξ ·FH̃ f (ξ, s)ds.

The following result is a modification of the standard energy estimate for the wave equation:

Lemma 4.1. Assume that f (s) ∈ L X. Then for every α > 0, the solution of (4-1) with zero data at∞
satisfies

tα‖ψ(t)‖L X + tα+1(
‖∂tψ(t)‖L X +‖ψ(t)‖Ḣ1

e

)
. sup

s
sα+2
‖ f (s)‖L X . (4-3)

Proof. The solution of (4-1) with zero data at∞ is given by ψ = K f . The estimate for the first term
follows from the bound

∣∣(sin(t− s)ξ)/ξ
∣∣. |t− s| and the representation of the spaces L X on the Fourier

side. The estimate for the second term is similar.
The argument for the third term is more involved. We define g by

FH̃ g(t, ξ)=−
∫
∞

t
sin((t − s)ξ)FH̃ f (ξ, s)ds.

Then
ξFH̃ψ(t, ξ)= FH̃ g(t, ξ).

We estimate, as above,

‖g(t)‖L X .
∫
∞

t
‖ f (s)‖L X ds . t−α−1 sup

s
sα+2
‖ f (s)‖L X .

Hence it suffices to show that for ψ and g related as above, we have

‖ψ‖Ḣ1
e
. ‖g‖L X . (4-4)
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Here the time variable plays no role and is discarded. Recalling the form of L∗ from (2-2), namely
L∗ =−∂r + (h3− 1)/r , it follows that

‖ψ‖Ḣ1
e
. ‖L∗ψ‖L2 +

∥∥∥∥ψr
∥∥∥∥

L2
.

For the first term, we use Plancherel to write

‖L∗ψ(t)‖2L2 = 〈ψ(t), H̃ψ(t)〉 = ‖ξFH̃ψ(ξ)‖
2
L2 = ‖g‖L2 . ‖g‖2L X .

For the second term, the L2 bound for g no longer suffices, and we need to use the L X norm of g. We
consider a Littlewood–Paley decomposition for both ψ and g, and denote their dyadic pieces by ψk ,
respectively gk . Then

‖ψk‖L2 ≈ 2−k
‖gk‖L2 .

By using (3-13)–(3-14) and the Cauchy–Schwartz inequality, we obtain pointwise bounds for ψk , namely,

|ψk |.
mk(r)
〈2kr〉1/2

2k
‖ψk‖L2 .

mk(r)
〈2kr〉1/2

‖gk‖L2,

with mk as in (3-12). For k ≥ 0, the contributions are almost orthogonal, and we obtain∥∥∥∥ψ≥0

r

∥∥∥∥
L2
. ‖g≥0‖L2 .

However, if k < 0, then the weaker logarithmic decay for small r no longer suffices for such an argument.
Instead, by direct computation, we obtain a weaker bound,∥∥∥∥ψk

r

∥∥∥∥
L2
. |k|1/2‖gk‖L2 . |k|3/22k

‖g‖L X .

Then the k summation is easily accomplished. �

5. Analysis of the first approximations w̄ and ū

Pointwise bounds for w̄. We define f0 and f1 by f0 = FH̃w0 and f1 = FH̃w1. Then for w̄, we have
the representation

w̄(t, r)=
∫
∞

0
ψξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
dξ.

Since w0, w1 are Schwartz functions satisfying (2-11), from (3-17) we obtain

∣∣(ξ∂ξ )α f0(ξ)
∣∣+ ∣∣(ξ∂ξ )α f1(ξ)

∣∣.α,N ‖(w0, w1)‖S


ξ 5/2

〈log ξ〉
if ξ . 1,

〈ξ〉−N if ξ & 1.
(5-1)

Here, by a slight abuse of notation, we use ‖ . ‖S to denote a finite collection of the S seminorms. This
will allow us to obtain pointwise bounds for w̄:
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Lemma 5.1. If w0, w1 are Schwartz functions satisfying the moment conditions (2-11), then w̄ satisfies

|w̄(r, t)|.
log(1+ r2)

log〈r + t〉
1

〈t + r〉1/2〈t − r〉5/2 log〈r − t〉
‖(w0, w1)‖S. (5-2)

Proof. We fix k and consider

w̄k(t, r)=
∫
∞

0
ψξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
χk(ξ)dξ.

For ψξ (r), we use the representation (3-11) in the region {rξ . 1}, respectively (3-14) in the region
{rξ & 1}. Then via a standard stationary phase argument, we obtain

|wk(r, t)|.N
2k/2
〈2kr〉−1/2mk(r)
〈2k |r − t |〉N 〈k−〉

25k/22−Nk+ .

The desired estimate (5-2) follows by summing these bounds with respect to k. �

Bounds for ū, ūt . Next we consider ū, which is recovered from w̄ via (2-12). This equation contains a
nonlinear part coming from the sine function. Consequently, we split ū into a linear and a nonlinear part:

ū = Q+ ūl
+ ūnl,

where ūl solves the linear part of (2-12),
Lūl
= w̄,

and ūnl solves
Lūnl
= N (ūl, ūnl), (5-3)

where
N (u, v)= 1

r
[
sin Q ·

(
cos(u+ v)− 1

)
+ cos Q ·

(
sin(u+ v)− (u+ v)

)]
.

Both of the above ODE’s are taken with zero Cauchy data at infinity or, equivalently, can be interpreted
via the diffeomorphism L : X→ L X . The linear part, ūl , is recovered from the explicit formula

ūl
:= L−1w̄ =

∫
∞

0
ξ−1φξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
dξ,

and will be split into a resonant and a nonresonant part: ūl
= ūl,r

+ ūl,nr .
For the nonlinear part, we use an iterative argument based on the fact that there is enough decay on the

right-hand side that we can recover it via

ūnl
= h1(r)

∫
∞

r

N (ūl, ūnl)

h1(s)
ds. (5-4)

At this stage, we also want to keep track of the differences of solutions. For this, we denote by δw0, δw1,
δw̄, δū the corresponding differences.

Proposition 5.2. (a) Assume that w0, w1 are Schwartz functions satisfying (2-11). Then

ūl
= ūl,r

+ ūl,nr , (5-5)
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where ūl,r and ūl,nr satisfy the bounds

|ūl,r
| + r |∂r ūl,r

| + 〈r + t〉|∂t ūl,r
|.

h1(r)

〈t + r〉 log2
〈t + r〉

‖(w0, w1)‖S,

|ūl,nr
| +

r〈r − t〉
〈t + r〉

|∂r ūl,nr
| + 〈r − t〉|∂t ūl,nr

|.
r

r +〈t〉
1

〈t + r〉1/2〈t − r〉3/2 log〈t − r〉
‖(w0, w1)‖S.

(5-6)
In addition, ∣∣∣(∂r + ∂t)ūl

+
1
2r

ūl
∣∣∣. 1

t5/2〈r − t〉1/2 log〈t − r〉
‖(w0, w1)‖S, r ∼ t. (5-7)

(b) For t &S 1, the nonlinear part ūnl satisfies the bounds

|ūnl(r, t)|.S h1(r)t−1.5
‖(w0, w1)‖S,

∣∣∂t ūnl
+

1
12 h1(ūl)3

∣∣.S h1(r)t−2
‖(w0, w1)‖S. (5-8)

(c) The above estimates hold true for δūnl and δ∂t ūl :

|δūnl(r, t)|.S h1(r)t−1.5
‖(δw0, δw1)‖S,

∣∣δ∂t ūnl
+

1
12 h1δ(ūl)3

∣∣.S h1(r)t−2
‖(δw0, δw1)‖S. (5-9)

Remark 5.3. By finite speed of propagation arguments, it is not difficult to show that ūl decays rapidly
outside the cone. However, for our purposes, the decay established in the above proposition suffices.

Remark 5.4. The bound (5-7) shows that a double cancellation occurs on the light cone, as opposed to
the expected single cancellation. This is a consequence of the exact decay properties at infinity for the
potential in H̃ .

Remark 5.5. The second estimate in part (b) is the outcome of a more subtle nonlinear cancellation,
rather then a brute force computation.

Proof. (a) We first split ūl into two parts,

ūl(r, t)=
∑

k

ūl
k(r, t)=

∑
2k.r−1

ūl
k(r, t)+

∑
2k& r−1

ūl
k(r, t) := ūl

low(r, t)+ ūl
hi(r, t),

where

ūl
k =

∫
ξ−1φξ (r)χk(ξ)

(
cos(tξ) · f̂0(ξ)+

sin(tξ)
ξ

f̂1(ξ)

)
dξ.

The functions f̂0(ξ) and f̂1(ξ) belong to the same class, and for large ξ they are smooth and rapidly
decaying. Hence the first term in the above formula is better than the second, and will be neglected in the
sequel. Then using the power series (3-1), we can write

ūl
k =

∫
ξ−2q(ξ) sin(tξ)

(
φ0(r)+

1
r

∑
j≥1

(rξ)2 jφ j (r2)

)
f̂1(ξ)χk(ξ)dξ, 2kr . 1,

which leads to a corresponding decomposition

ūl
low = ūl,0

low+
∑
j≥1

ūl, j
low.
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Then we set

ūl,r
= ūl,0

low, ūl,nr
= ūl

hi+
∑
j≥1

ūl, j
low, (5-10)

and proceed to estimate all of the above components of ūl .
The terms in ūl

hi are estimated by stationary phase using (5-1) and the φξ representation in (3-7). This
yields

|ūl
k |.

r−1/223k/2

〈2k |r − t |〉N 〈k−〉
2−Nk+, 2kr & 1, (5-11)

which, after summation with respect to k, gives the bound

|ūl
hi|.

∑
2k&r−1

|ūl
k(r, t)|.

(
r
〈r + t〉

)N 1
〈r + t〉1/2〈r − t〉3/2 log〈r − t〉

.

The bounds for the time derivative are obtained from the explicit formula

∂t ūl
=

∫
∞

0
φξ (r)

(
− f0(ξ) sin(tξ)+ 1

ξ
f1(ξ) cos(tξ)

)
dξ,

which shows that we produce an extra 2k factor in (5-11). Similarly, an r derivative applied to φξ yields
an additional 2k factor in the asymptotic expansion. Thus we obtain

|∂t ūl
k | + |∂r ūl

k |.
r−1/225k/2

〈2k |r − t |〉N 〈k−〉
2−Nk+, 2kr & 1, (5-12)

which leads to

|∂t ūl
hi | + |∂r ūl

hi |.

(
r
〈r + t〉

)N 1
〈r + t〉1/2〈r − t〉5/2 log〈r − t〉

.

We now consider the terms in ūl, j
low. The main contribution comes from f1, so we take f0 = 0 for

convenience. For j = 0, we have

ūl,0
low = φ0(r)

∑
k

χ.2−k (r)
∫
ξ−2q(ξ) sin(tξ) f̂1(ξ)χk(ξ)dξ := φ0(r)

∑
k

χ.2−k (r)g0
k (t) := φ0(r)g0(r, t).

Using stationary phase and the properties of q , we have

|g0
k (t)| + 2−k

|∂t g0
k (t)|.

2k

〈k−〉2〈2k t〉N
2−Nk+ .

By summing with respect to k, we obtain

|g0(r, t)| + 〈t + r〉
(
|∂r g0(r, t)| + |∂t g0(r, t)|

)
.

1

〈t + r〉 log2
〈t + r〉

, (5-13)

which yields the ūl,r bound in (5-6).
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For j ≥ 1, we have

ul, j
low =

∑
k

χ{r.2−k}
1
r

∫
ξ−2q(ξ) sin(tξ)

∑
j≥1

(rξ)2 jφ j (r2) f̂1(ξ)χk(ξ)dξ

:= r2 j−1φ j (r2)
∑

k

χ.2−k (r)g j
k (t) := r2 j−1φ j (r2)g j (r, t).

By stationary phase and the properties of q and f̂1, we have

|g j
k (r, t)| + 2−k(

|∂t g
j
k (r, t)| + |∂r g j

k (r, t)|
)
.

2(2 j+1)k

〈k−〉2〈2k t〉N
2−Nk+ .

Summing up over k, we obtain

|g j (r, t)| + 〈t + r〉
(
|∂r g j (r, t)| + |∂t g j (r, t)|

)
.

1

〈t + r〉2 j+1 log2
〈t + r〉

. (5-14)

Hence, using the bound (3-2) for φ j , we obtain a bound for ūl, j
low, namely

|ūl, j
low(r, t)| + |r∂r ūl, j

low(r, t)| + 〈t + r〉|∂t ū
l, j
low(r, t)|.

C j

j !
r2 j−1 log(1+ r2)

〈t + r〉2 j+1 log2
〈t + r〉

. (5-15)

Thus these contributions satisfy the bounds required of ūl,nr .
We now turn our attention to the estimate (5-7), which applies in the region where r ≈ t . By (5-6)

(for ūl) and (5-15), the contributions of the term ūl
low are all below the required threshold, so it remains

to consider ūl
hi. We have

ūl
hi(r, t)=

∫
∞

0
χ&r−1(ξ)ξ−1φξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
dξ.

For φξ , we use the representation (3-7), with φ+ξ as in (3-6),

φξ = r−1/2(a(ξ)σ (rξ, r)eirξ
+ ā(ξ)σ̄ (rξ, r)e−irξ ), rξ & 1.

We notice that the operator ∂r + ∂t kills the resonant factors e±i(r−t)ξ . Precisely, we have(
∂r + ∂t +

1
2r

)
φξ (r) sin(tξ)= 2r−1/2

<
(
eiξ(r+t)ξa(ξ)σ (rξ, r)

)
+ 2r−1/2

<
(
eirξa(ξ)∂rσ(rξ, r)

)
sin(tξ),

and a similar computation where sin(tξ) is replaced by cos(tξ). This leads to(
∂r + ∂t +

1
2r

)
ūl

hi

=

∫
∞

0
χ&r−1(ξ)r−1/2

<
(
2ξei(r+t)ξa(ξ)σ (rξ, r)+ 2eirξa(ξ)∂rσ(rξ, r) cos(tξ)

) f0(ξ)

ξ
dξ

+

∫
∞

0
χ&r−1(ξ)r−1/2

<
(
2ξei(r+t)ξa(ξ)σ (rξ, r)+ 2eirξa(ξ)∂rσ(rξ, r) sin(tξ)

) f1(ξ)

ξ 2 dξ.

The two integrals above are treated as before, using stationary phase. The first term in each of the last
integrals has a nonresonant phase; therefore each integration by parts gains a factor of (ξ t)−1. Thus,
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taking (5-1) into account, their contributions can be estimated by∫
∞

0
χ&t−1(ξ)t−1/2ξ(tξ)−N ξ 5/2

ξ 2 log ξ
dξ ≈

1
t3 log t

.

The second term contains the expression ∂rσ(rξ, r), which (see the description of σ in Section 3) brings
an additional factor of r−1(rξ)−1

≈ t−2ξ−1. The contribution of the part with phase eiξ(r+t) is better than
above, while the contribution of the part with phase eiξ(r−t) is of the form∫

∞

0
χ&t−1(ξ)a(ξ)t−1/2t−1(tξ)−1eiξ(t−r) ξ 5/2

ξ 2 log ξ
dξ ≈

1
t5/2〈t − r〉1/2 log〈t − r〉

,

as desired.

(b) We find unl from (5-4) using a fixed point argument in the Banach space Znl with norm

‖ f ‖Znl = ‖h−1
1 t1.5 f ‖L∞ .

Denoting by Z l the Banach space of functions of the form ūl,r
+ ūl,nr with norm as in (5-5)–(5-6), we

will show that the map

T : (u, v)→ L−1 N (u, v)= h1(r)
∫
∞

r

N (u, v)
h1(s)

ds

is locally Lipschitz from Z l
× Znl into Znl , and that in addition, the Lipschitz constant with respect to

the second variable v can be made small if either both arguments are small or if u and v are in a bounded
set B and the time t is large enough, depending on the size of B. This would imply the existence and
uniqueness of ūnl , as well as its Lipschitz dependence on ūl and, implicitly, on (w0, w1). Recall that

N (u, v)= 1
r
[
sin Q ·

(
cos(u+ v)− 1

)
+ cos Q ·

(
sin(u+ v)− (u+ v)

)]
Then

|N (u, v)|.
1

r2+ 1
(|u|2+ |v|2)+

1
r
(|u|3+ |v|3),

|∇N (u, v)|.
1

r2+ 1
(|u| + |v|)+

1
r
(|u|2+ |v|2).

Hence, it remains to show that∫
∞

0

1
r
(|u|2+ |v|2)+

r2
+ 1

r2 (|u|3+ |v|3)dr . t−1.5(
‖u‖2Z l +‖v‖

2
Znl +‖u‖3Z l +‖v‖

3
Znl

)
.

For u, we have two components ur and unr , and therefore we need to consider the six integrals∫
∞

0

1
r
|ur
|
2dr .

∫
∞

0

1
r

h2
1(r)

(t log2 t)2
dr · ‖u‖2Z l ≈

1

t2 log4 t
‖u‖2Z l ,∫

∞

0

1
r
|unr
|
2dr .

∫
∞

0

1
r

r2

(t + r)2t〈t − r〉3 log2
〈t − r〉

dr · ‖u‖2Z l ≈
1
t2 ‖u‖

2
Z l ,∫

∞

0

1
r
|v|2dr .

∫
∞

0

1
r

h2
1(r)t

−3dr · ‖v‖2Znl ≈
1
t3 ‖v‖

2
Znl ,
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∞

0

r2
+ 1

r2 |u
r
|
3dr .

∫
∞

0

r2
+ 1

r2

h3
1(r)

(t log2 t)3
dr · ‖u‖3Z l ≈

1

t3 log6 t
‖u‖3Z l ,∫

∞

0

r2
+ 1

r2 |u
nr
|
3dr .

∫
∞

0

r2
+ 1

r2

r3

(t + r)3t3/2〈t − r〉9/2 log3
〈t − r〉

dr · ‖u‖3Z l ≈
1

t1.5 ‖u‖
3
Z l ,∫

∞

0

r2
+ 1

r2 |v|
3dr .

∫
∞

0

r2
+ 1

r2 h3
1(r)t

−4.5dr · ‖v‖3Znl ≈
1

t4.5 ‖v‖
3
Znl .

We remark that the worst decay t−1.5 comes from the penultimate integral above; all other terms are
better. Furthermore, this term comes solely from the u dependence of N (u, v). Thus, with our choice of
norms, the Lipschitz constant for L−1 N (u, v) with respect to u cannot be made small by taking t large;
however, the Lipschitz constant with respect to v does have a negative power of t in it.

The argument for ∂t ūnl is more involved. Differentiating (5-3), we obtain

L
(
∂t ūnl
+

h1

12
(ūl)3

)
= Nu(ūl, ūnl)∂t ūl

+ Nv(ūl, ūnl)∂t ūnl
+

h1

12
∂r (ūl)3

= Nv(ūl, ūnl)

(
∂t ūnl
+

h1

12
(ūl)3

)
+

[
Nu(ūl, ūnl)−

h1

4
(ūl)2

]
∂t ūl

−
1
12 Nv(ūl, ūnl)h1(ūl)3+

h1

12
(∂t + ∂r )(ūl)3. (5-16)

We interpret this as a linear equation for w = ∂t ūnl
+ (h1/12)(ūl)3, namely,

Lw = Nv(ūl, ūnl)w+ N1(ūl, ūnl).

The approach is similar to what we have done before. We adjust the base space to

‖ f ‖Z̃nl = ‖h−1
1 t2 f ‖L∞

and prove that w→ L−1(Nv(ūl, ūnl)w) is bounded from Z̃nl to Z̃nl with small norm, and also Lipschitz
with respect to (ūl, ūnl) ∈ Z l

× Znl (but not necessarily with small Lipschitz constant), and also that
L−1 N1 is Lipschitz from Z l

× Znl to Z̃nl (no smallness needed).
The first bound above follows from the previous computation. The main cancellation occurs in the first

term in N1, where the (ūl)2 term disappears. Precisely, we have

Nu(u, v)− 1
4 h1u2

=−
2

1+ r2 sin(u+ v)−
1− r2

r(1+ r2)

(
1− cos(u+ v)

)
−

r
2(1+ r2)

u2,

and therefore∣∣Nu(u, v)− 1
4 h1u2∣∣. 1

1+ r2 (|u| + |v|)+
1
r

(
|u|3+ |u||v| + |v|2

)
+

1
r(1+ r2)

|u|2.

For ∂t ūl , we use the same bounds as for ūl . Then, compared with the previous computation, we need to
reestimate the terms involving |u|3, |u||v| and |u|2. The resonant part of u yields better bounds, so we
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only estimate terms involving unr :∫
∞

0

r2
+1

r2 |u
nr
|
4dr . ‖u‖4Z l ·

∫
∞

0

r2
+1

r2

r4

(t+r)4t2〈t−r〉6 log4
〈t−r〉

dr ≈
1
t2 ‖u‖

4
Z l ,∫

∞

0

r2
+1

r2 |u
nr
|
2
|v|dr . ‖u‖2Z l‖v‖Znl

∫
∞

0

r2
+1

r2

r2

(t+r)2t2.5〈t−r〉3 log2
〈t−r〉

dr ≈
1

t2.5 ‖u‖
2
Z l‖v‖Znl ,∫

∞

0

1
r2 |u

nr
|
3dr . ‖u‖3Z l ·

∫
∞

0

1
r2

r3

(t+r)3t1.5〈t−r〉4.5 log3
〈t−r〉

dr ≈
1

t3.5 ‖u‖
4
Z l .

The third term on the right in (5-16) is better behaved than the second. Finally, for the last term in (5-16),
we invoke (5-7) so that we use the same bounds for (∂t + ∂r )(ūl) as for r−1ūl . Then the integral to
estimate is ∫

∞

0

1
r
|u|3dr .

1
t2.5 ‖u‖

3
Z l .

(c) In the case of ūl , this part follows from the linearity. In the case of ūnl , the Lipschitz dependence on
ūl has already been discussed above. An additional argument is required for δ∂t ūnl . However, nothing
new happens there, and the details are left for the reader. �

6. The transition between γ and ε

In this section, we study the transition from γ to ε, which were both introduced in (2-13). This transition
is described by (2-17), which we recall for convenience:

γ = ∂rε−
sin(ε+ ū)− sin ū

r
.

The main result of this section is the following:

Proposition 6.1. (a) Assume that γ ∈ L X is small and ū, w̄ are as in Proposition 5.2. Then for t large
enough, there exists a unique solution ε ∈ X of (2-17) which satisfies

‖ε‖X .S ‖γ ‖L X . (6-1)

Furthermore, ε has a Lipschitz dependence on both γ and the linear data (w0, w1) for w̄:

‖δε‖X .S ‖δγ ‖L X +
1

t log2 t
‖(δw0, δw1)‖S‖γ ‖L X . (6-2)

(b) Also, if γ is a function of t , then

‖∂tε‖X .S ‖∂tγ ‖L X +
1

t log2 t
‖γ ‖L X , (6-3)

with the corresponding Lipschitz dependence

‖δ∂tε‖X .S ‖δ∂tγ ‖L X +
1

t log2 t
‖δγ ‖L X +‖(δw0, δw1)‖S

(
‖∂tγ ‖L X +

1

t log2 t
‖γ ‖L X

)
. (6-4)
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(c) Assume in addition that γ ∈ L∞. Then

|ε(r)|.S r log r‖γ ‖L X∩L∞, r � 1, (6-5)

with a similar Lipschitz dependence.

Proof. (a) Equation (2-17) is rewritten as

Lε = γ +
sin(ε+ ū)− sin ū− cos Q · ε

r
:= γ + F(ε, ū− Q). (6-6)

Hence, in order to prove both (6-1) and (6-2), it suffices to show that at fixed large enough time, the map
F is Lipschitz:

F : X × (Z l
+ Znl)→ L X,

with a small Lipschitz constant in the second variable. For the X norm, we use the embeddings (3-18)–
(3-21). For the L X norm, we use (3-23), which shows that it is enough to estimate F(ū, ε) in L1

∩ L2.
We expand F as follows:

F(β, v)=
sin(β + Q+ v)− sin(Q+ v)− cos Q ·β

r

=
(cos(Q+ v)− cos Q) ·β

r
−

sin(Q+ v) ·β2

2r
+

O(β3)

r

=−
sin Q · vβ

r
−

sin Q ·β2

2r
+

O(v2β)

r
+

O(β3)

r
.

Hence
|F(β, v)|.

|v||β|

1+ r2 +
|β|2

1+ r2 +
|β|3

r
+
|v|2|β|

r
. (6-7)

By using (3-20), (3-18) and (5-6), we bound this first in L2,

‖F(β, v)‖L2 .

∥∥∥∥ β

log(1+ r)

∥∥∥∥
L2

(
‖β‖L∞ +‖β‖

2
L∞ +

∥∥∥∥ v

1+ r

∥∥∥∥
L∞
+

∥∥∥∥v2 log(1+ r)
r

∥∥∥∥
L∞

)
. ‖β‖2X +‖β‖

3
X +‖β‖X

(
1

t log2 t
‖v‖Z l+Znl +

log t
t2 ‖v‖

2
Z l+Znl

)
,

and then in L1,

‖F(β, v)‖L1 .

∥∥∥∥ β

log(1+ r)

∥∥∥∥2

L2
(1+‖β‖L∞)

+

∥∥∥∥ β

log(1+ r)

∥∥∥∥
L2

(∥∥∥∥v log(1+ r)
1+ r2

∥∥∥∥
L2
+

∥∥∥∥v2 log(1+ r)
r

∥∥∥∥
L2

)
. ‖β‖2X +‖β‖

3
X +‖β‖X

(
1

t log2 t
‖v‖Z l+Znl +

log t
t3/2 ‖v‖

2
Z l+Znl

)
.

Hence we obtain

‖F(β, v)‖L X . ‖β‖
2
X +‖β‖

3
X +‖β‖X

(
1

t log2 t
‖v‖Z l+Znl +

log t
t3/2 ‖v‖

2
Z l+Znl

)
.
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A similar analysis yields

‖β1 Fβ(β, v)‖L X . ‖β1‖X

(
‖β‖X +‖β‖

2
X +

1

t log2 t
‖v‖Z l+Znl +

log t
t3/2 ‖v‖

2
Z l+Znl

)
,

‖v1 Fv(β, v)‖L X . ‖v1‖Z l+Znl‖β‖X

(
1

t log2 t
+

log t
t3/2 ‖v‖Z l+Znl

)
.

By the contraction principle, this proves both (6-1) and (6-2). The time decaying factors guarantee that
for any size of ū− Q, the problem can be solved for large enough time.

(b) To prove (6-3), we differentiate with respect to t in (6-6):

L∂tε = ∂tγ + Fε(ε, ū)∂tε+ Fū(ε, ū)∂t ū.

Since ∂t ū satisfies the same pointwise bounds as ū, the last two estimates above show that the contraction
principle still applies.

(c) Due to the embedding X ⊂ Ḣ 1
e ⊂ L∞, we already have a small uniform bound for ε. We solve the

ODE (6-6) in [0, 1] with Cauchy data at r = 1. Making the bootstrap assumption

|ε| ≤ Mr
∣∣∣log r

2

∣∣∣, (6-8)

we rewrite (6-6) in the form

|Lε− γ | ≤ M3r2
∣∣∣log3 r

2

∣∣∣+C, C ≈S ‖ε‖L∞ .

Then solving the linear L evolution, we have

|ε|. r(|γ (1)| +M3)+Cr
∣∣∣log

r
2

∣∣∣.S M3r + r
∣∣∣log r

2

∣∣∣‖ε‖L∞ .

If ‖ε‖L∞ is sufficiently small, then we can choose M small enough that the above bound is stronger than
our bootstrap assumption (6-8). The proof of (6-5) is concluded. �

7. Perturbative analysis in the γ equation

Our main goal is to solve (2-16) for γ with zero Cauchy data at t = ∞. Using the backward linear
parametrix K introduced in (4-2), Equation (2-16) is rewritten in the form

γ = K N (ū+ ε, w̄+ γ ), (7-1)

where the auxiliary function ε and its time derivative εt are uniquely determined by γ and γt via
Proposition 6.1.

Our strategy is to solve (7-1) using the contraction principle in the space E with norm

‖γ ‖E = sup
t>t0

t1.5
‖γ ‖L X + t2.5(

‖∂tγ ‖L X +‖γ ‖Ḣ1
e

)
,

for a suitably chosen t0. By Proposition 6.1, this yields control for ε in the space G with norm

‖ε‖G = sup
t>t0

t1.5(
‖ε‖X +‖r−1/2ε‖L∞

)
+ t2.5

‖∂tε‖L X .
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For the linear H̃ wave equation, we use the L X bounds in Lemma 4.1 with α = 1.5. Thus we need to
estimate the nonlinearity N (ū+ ε, w̄+ γ ) in the space N with norm

‖N‖N = sup
t>t0

t3.5
‖N (t)‖L X .

Finally, all the implicit constants in our estimates depend on ‖(w0, w1)‖S and need not be small. Thus
we need a different source of smallness, which is an additional time decay factor, incorporated in the
stronger norm N] defined by

‖N‖N] = sup
t>t0

t3.5(log t)2‖N (t)‖L X .

With this notation, our main estimates for the nonlinearity N (ū+ ε, w̄+ γ ) are as follows:

Proposition 7.1. Assume that the Schwartz functions (w0, w1) satisfy the nonresonance conditions (2-11).
Then:

(a) The map (w0, w1)→ N (ū, w̄) is locally Lipschitz from S to N .

(b) The map (w0, w1, γ, ε)→ N (ū+ ε, w̄+ γ )− N (ū, w̄) is locally Lipschitz from S× E× G to N].

In view of Lemma 4.1 and Proposition 6.1, the above result allows us to solve (7-1) for γ in the ball

B = {‖γ − K N (ū, w̄)‖E},

for t > t0, via the contraction principle, provided that t0 is chosen to be sufficiently large. This concludes
the proof of Theorem 2.1.

We note that in terms of time decay we gain only logarithms, whereas the implicit constants in our
estimates are all polynomial in ‖(w0, w1)‖S . This implies that for large Schwartz data (w0, w1) in the
linear equation, our solutions are only defined for t > T , with T exponentially large.

Proof of Proposition 7.1. We recall that N is given by

N (w, u)=
2(cos Q− cos u)

r2 w+
1
r

sin u(u2
t −w

2).

We split the difference N (w̄+ γ, ū+ ε)− N (w̄, ū) as

N (w, u)− N (w̄, ū)= N l(w̄, ū, γ, ε)+ N n(w̄, ū, γ, ε).

The term N l contains the linear contributions in ε, γ in the difference N (w, u)− N (w̄, ū):

N l
=

2(cos Q− cos ū)
r2 γ +

2 sin ū · ε
r2 w̄+

sin ū(2ūtεt − 2w̄γ )+ cos ū · ε(ū2
t − w̄

2)

r
.

The remaining term N n contains the genuinely nonlinear contributions in ε, γ in the difference N (w, u)−
N (w̄, ū):

N n
=

2(cos ū− cos u− sin ū · ε)
r2 w̄+

2(cos ū− cos(ū+ ε))
r2 γ +

sin ū(ε2
t − γ

2)

r

+
(sin u− sin ū)(2ūtεt − 2w̄γ + ū2

t − w̄
2)

r
+
(sin u− sin ū− cos ū · ε)(ū2

t − w̄
2)

r
.
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We will consider separately the expressions N (ū, w̄), N l and N n .

The term N(w̄, ū). Our main goal here is to prove the estimate

‖N (w̄, ū)‖L X .S t−3.5. (7-2)

We also need to show that N (w̄, ū) has a Lipschitz dependence on (w0, w1). However, as the leading
order part of N (w̄, ū) is multilinear, the proof of that follows the same lines as below and is omitted.

To establish (7-2), we split

N (w̄, ū)= χr�t N (w̄, ū)+χr�t N (w̄, ū)+χr≈t N (w̄, ū)= N1+ N2+ N3.

For the first two terms, it suffices to use a direct estimate:

|N (w̄, ū)|.
sin Q

r2 |ū− Q||w̄| +
1
r2 |ū− Q|2|w̄| +

1
r
(sin Q+ |ū|)(|ūt |

2
+ |w̄|2).

Using the bounds (5-6) and (5-8) for ū− Q, as well as the bound (5-2) for w̄, this gives

|N1(w̄, ū)|.S χr�t
1
〈r〉4t4 ,

where the leading contribution comes from ul,r . This implies that

‖N1‖L1∩L2 .S t−4,

which suffices for (7-2) in view of the embedding (3-23). Similarly,

|N2|.S χr�t
1
〈r〉8

,

which also gives
‖N2‖L1∩L2 .S t−4.

However, a similar direct computation for N3 only gives

|N3(w̄, ū)|.S χr∼t
1

t2.5〈t − r〉5.5
,

which fails by two units,
‖N3‖L1∩L2 .S t−1.5.

Hence, in order to conclude the proof of (7-2), we need to better exploit the structure of N and capture a
double cancellation on the null cone. In the computations below (through the end of the subsection), we
work in the regime r ≈ t . We expand N (w̄, ū) as

N (w̄, ū)= 2
sin Q

r2 (ū− Q)w̄+
cos Q

r2 (ū− Q)2w̄+
sin Q

r
(ū2

t − w̄
2)+

cos Q
r

(ū2
t − w̄

2)(ū− Q)

+
sin Q

r2 wO((ū− Q)3)+
cos Q

r2 wO((ū− Q)4)

+
sin Q

r
(ū2

t − w̄
2)O((ū− Q)2)+

cos Q
r

(ū2
t − w̄

2)O((ū− Q)3).
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The terms on the second line are already acceptable; i.e., it can be estimated by t−4.5
〈t − r〉−3.5. For

further progress, we observe that by (5-8) we have

ūnl
= OS(t−2.5), ∂t ūnl

= OS
(
t−2.5
〈t − r〉−0.5),

and that by (5-7), we can write

∂t ū+ w̄ = ∂t ūnl
+ ∂t ūl

+ ∂r ūl
+

cos Q
r

ūl
= OS

(
t−1.5
〈t − r〉−1.5). (7-3)

The first relation above allows us to dispense with ūnl everywhere and replace ū − Q by ūl , and the
second allows us to estimate the third line in N (w̄, ū). We are left with

N (w̄, ū)=2
sin Q

r2 ūlw̄+
cos Q

r2 (ūl)2w̄+
sin Q

r

(
(ūl

t)
2
−w̄2)

+
cos Q

r

(
(ūl

t)
2
−w̄2)ūl

+OS
(
t−4.5
〈t−r〉−3.5).

To advance further, we substitute w̄ = ∂r ūl
− (cos Q/r)ūl everywhere. The (cos Q/r)ūl is acceptable in

the first two terms of N , that is, it gives contributions of OS(t−4.5
〈t − r〉−3.5), and we discard it. For the

last two terms, we use the better approximation from (5-7):

ūl
t =−∂r ūl

−
1
2r

ūl
+ O

(
t−2.5
〈t − r〉−0.5).

Then we can write

(ūl
t)

2
− w̄2

=

(
∂r ūl
+

1
2r

ūl
)2
−

(
∂r ūl
−

cos Q
r

ūl
)2
+ OS

(
t−3
〈t − r〉−3)

=−
1
r

ūl∂r ūl
+ OS

(
t−3
〈t − r〉−3).

It is also harmless to replace sin Q by r−1 and cos Q by −1 everywhere. Returning to N , we obtain

N (w̄, ū)=
2
r3 ūl∂r ūl

−
1
r2 (ū

l)2∂r ūl
−

1
r3 ul∂r ul

+
1
r2 (ū

l)2∂r ūl
+ OS

(
〈t〉−4.5

〈t − r〉3.5
)

=
1

2r3 ∂r (ūl)2+ OS
(
t−4.5
〈t − r〉−3.5)

in the region r ≈ t , which we rewrite as

N3 = Lg+χr≈t OS
(
t−4.5
〈t − r〉−3.5), g = χr≈t

1
2r3 (ū

l)2.

The last term can be directly estimated in L1
∩ L2. For the leading term Lg, we estimate g in H 1

e and use
the embedding (3-18). We have

|g|.S
1

t4〈t − r〉3
, |∂r g|.S

1
t4〈t − r〉4

,

and therefore
‖g‖H1

e
.S

1
t3.5 .

This concludes the proof of (7-2).
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The bound for N l . Our goal here is to establish the bound

‖N l(t)‖L X .S
1

t3.5 log2 t

(
‖γ ‖G +‖ε‖E

)
. (7-4)

The proof of the Lipschitz dependence on (w0, w1) is again similar and therefore omitted.
We recall that

N l
=

2(cos Q− cos ū)
r2 γ +

2 sin ū · ε
r2 w̄+

sin ū(2ūtεt − 2w̄γ )+ cos ū · ε(ū2
t − w̄

2)

r
.

The pointwise estimate ∣∣∣∣2(cos Q− cos ū)
r

∣∣∣∣. 1
r2+ 1

|ū− Q| +
1
r
|ū− Q|2,

combined with the pointwise bounds for ū from (5-6), leads to∥∥∥∥2(cos Q− cos ū)
r

∥∥∥∥
L∞∩L2

.S
1

t log2 t
,

with the worst contribution arising from the resonant part of ū. From (3-23), it follows that∥∥∥∥2(cos Q− cos ū)
r2 γ

∥∥∥∥
L X
.

∥∥∥∥2(cos Q− cos ū)
r

∥∥∥∥
L∞∩L2

·

∥∥∥∥γr
∥∥∥∥

L2
.S

1

t3.5 log2 t
‖γ ‖G.

Next, from (5-6) and (5-2), it follows that∥∥∥ ū · w̄
r2 log(2+ r)

∥∥∥
L∞∩L2

.S
log t
t2.5 ,

which, combined with ∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2
. ‖ε‖X . t−1.5

‖ε‖E

(recall (3-20)), gives ∥∥∥∥2 sin ū · ε
r2 w̄

∥∥∥∥
L X
.S

log t
t4 ‖ε‖E .

Using (5-6), we obtain ∥∥∥∥ ūūt

r
log(2+ r)

∥∥∥∥
L∞∩L2

.S
log t
t1.5 ,

and therefore, by invoking (3-23) and (3-20), it follows that∥∥∥∥sin(ū) · ūtεt

r

∥∥∥∥
L X
.

∥∥∥∥ ūūt

r
log(2+ r)

∥∥∥∥
L∞∩L2

∥∥∥∥ εt

log(2+ r)

∥∥∥∥
L2
.S

log t
t4 ‖ε‖E .

The following term in N l requires some extra work. Using (5-6) and (5-2), we note that away from
the cone, we have | sin(ū)|. sin Q, and continue with∥∥∥∥χr 6≈t

w̄ sin ū
r

∥∥∥∥
L1∩L2

.S t−2,
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followed by ∥∥∥∥χr 6≈t
sin(ū) · w̄γ

r

∥∥∥∥
L X
.

∥∥∥∥χr 6≈t
ūw̄
r

∥∥∥∥
L1∩L2
‖γ ‖L∞ .S t−4.5

‖γ ‖G.

Near the cone, we write

χr≈t
w̄ sin ū

r
= χr≈t

(
2w̄

1+ r2 −
w̄(ū− Q)

r
cos Q+

w̄O((ū− Q)2)
1+ r2 +

w̄O((ū− Q)3)
r

)
= χr≈t

w̄(ū− Q)
r

+ OS
(
t−2.5
〈t − r〉−2.5)

= L
(
χr≈tr−1(ūl)2

)
+ OS

(
t−2.5
〈t − r〉−2.5).

The output of the second term is estimated as above in L1
∩ L2, and yields a contribution of t−4

‖ε‖E to
the ‖N l

‖L X bound. For the first term, we write its contribution to N l in the form

L
(
χr≈tr−1(ūl)2

)
γ = L

(
χr≈tr−1(ūl)2γ

)
+χr≈tr−1(ūl)2∂rγ.

Then, using (3-18) for the first term and (3-23) for the second term, we have∥∥L
(
χr≈tr−1(ūl)2

)
γ
∥∥

L X .
∥∥χr≈tr−1(ūl)2γ

∥∥
H1

e
+
∥∥χr≈tr−1(ūl)2∂rγ

∥∥
L1∩L2

.
∥∥χr≈tr−1(ūl)2

∥∥
H1

e
‖γ ‖Ḣ1

e
+
∥∥χr≈tr−1(ūl)2

∥∥
L2∩L∞‖∂rγ ‖L2

.S t−1.5
‖γ ‖Ḣ1

e
.S t−4

‖γ ‖G.

It remains to bound the last term in N l . For this, we take advantage of the first-order cancellation on the
cone in the expression ūt − w̄ (see (7-3)), which, combined with (5-6) and (5-2), gives∥∥∥∥cos ū(ū2

t − w̄
2) log(2+ r)

r

∥∥∥∥
L2∩L∞

.S
log t
t2.5 .

This leads to∥∥∥∥ε cos ū(ū2
t − w̄

2)

r

∥∥∥∥
L1∩L2

.S
log t
t2.5

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2
.S

log t
t2.5 ‖ε‖X .S

log t
t4 ‖ε‖E .

This concludes the proof of the N l bound (7-4).

The bound for Nn. Our goal here will be to prove the bound

‖N n
‖L X .S

log t
t4 (M2

+M3), M = ‖γ ‖G +‖ε‖E, (7-5)

which is almost t−.5 better than what we need. The corresponding Lipschitz dependence argument is
similar and thus omitted. We recall the expression of N n:

N n
=

2(cos ū− cos u− sin ū · ε)
r2 w̄+

2(cos ū− cos(ū+ ε))
r2 γ +

sin u(ε2
t − γ

2)

r

+
(sin u− sin ū)(2ūtεt − 2w̄γ )

r
+
(sin u− sin ū− cos ū · ε)(ū2

t − w̄
2)

r
.
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We successively consider the terms on the right. For the first one, we start with∣∣∣∣2(cos ū− cos u− sin ū · ε)
r2 w̄

∣∣∣∣. ε2
|w̄|

r2 .

Then, using (5-2) and (3-20), we obtain∥∥∥∥ε2w̄

r2

∥∥∥∥
L1∩L2

.

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L∞∩L2

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2

∥∥∥∥ w̄r2 log2(2+ r)
∥∥∥∥

L∞
.S

log2 t
t5.5 M2.

The second term in N n is estimated by∣∣∣∣cos ū− cos(ū+ ε)
r2 γ

∣∣∣∣. | sin ū · εγ |
r2 +

|ε2γ |

r2 .
|εγ |

r〈r〉2
+
|(ū− Q)εγ |

r2 +
|ε2γ |

r2 .

The first two terms can be estimated in L1
∩ L2 as before:∥∥∥∥ εγ

r〈r〉2

∥∥∥∥
L1∩L2

.

∥∥∥∥γr
∥∥∥∥

L2

∥∥∥∥ ε

〈r〉2

∥∥∥∥
L∞∩L2

.S t−4 M2,∥∥∥∥(ū− Q)εγ
r2

∥∥∥∥
L1∩L2

.

∥∥∥∥γr
∥∥∥∥

L2

∥∥∥∥ ū− Q
r

∥∥∥∥
L2∩L∞

‖ε‖L∞ .S t−5 M2.

For the last term, we first get the L1 bound∥∥∥∥ε2γ

r2

∥∥∥∥
L1
. ‖ε‖L∞

∥∥∥∥εr
∥∥∥∥

L2

∥∥∥∥γr
∥∥∥∥

L2
.

1
t5.5 M3.

However, getting the L2 bound is more delicate:∥∥∥∥ε2γ

r2

∥∥∥∥
L2
.

∥∥∥∥ ε
√

r

∥∥∥∥2

L∞

∥∥∥∥γr
∥∥∥∥

L2
.

1
t5.5 M3,

where the pointwise bound for ε/
√

r near r = 0 comes from (6-5).
The third term in N is estimated by using (5-6):∣∣∣∣sin u(ε2

t − γ
2)

r

∣∣∣∣. |εt |
2

1+ r
+
|γ 2
|

1+ r
.

We successively consider all terms:∥∥∥∥ |εt |
2

1+ r

∥∥∥∥
L1∩L2

.

∥∥∥∥ εt

log(2+ r)

∥∥∥∥
L2∩L∞

∥∥∥∥ εt

log(2+ r)

∥∥∥∥
L2
.

1
t5 M2,∥∥∥∥ |γ |21+ r

∥∥∥∥
L1∩L2

. ‖γ ‖L2∩L∞

∥∥∥∥γr
∥∥∥∥

L2
.

1
t4 M2.

Next we estimate the fourth term in N n:∣∣∣∣(sin u− sin ū)(2ūtεt − 2w̄γ )
r

∣∣∣∣. |ε|
(
|ūtεt | + |w̄γ |

)
r

.
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On behalf of (5-2), (5-6) and (3-20), we have∥∥∥∥εūtεt

r

∥∥∥∥
L1∩L2

. ‖εt‖L∞

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2

∥∥∥∥ ūt

r
log(2+ r)

∥∥∥∥
L∞∩L2

.S
log t

t4 M2,∥∥∥∥εw̄γr

∥∥∥∥
L1∩L2

. ‖ε‖L∞‖w̄‖L2∩L∞

∥∥∥∥γr
∥∥∥∥

L2
.S t−4 M2.

Finally we consider the last term in N n ,∣∣∣∣(sin u− sin ū− cos ū · ε)(ū2
t − w̄

2)

r

∣∣∣∣. ε2(ū2
t + w̄

2)

r
,

which, by using (5-2), (5-6) and (3-20), we further bound as follows:∥∥∥∥ε2(ū2
t +w̄

2)

r

∥∥∥∥
L1∩L2

.

∥∥∥∥ ε

log(2+r)

∥∥∥∥
L2

∥∥∥∥ ε

log(2+r)

∥∥∥∥
L2∩L∞

∥∥∥∥ ū2
t +w̄

2

r
log2(2+r)

∥∥∥∥
L∞
.S

log2 t
t5 M2. �

References

[Bejenaru and Tataru 2014] I. Bejenaru and D. Tataru, Near soliton evolution for equivariant Schrödinger maps in two spatial
dimensions, vol. 228, Mem. Amer. Math. Soc. 1069, Amer. Math. Soc., Providence, 2014. arXiv 1009.1608
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DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS

YI HU AND XIAOCHUN LI

In this paper, we consider a discrete restriction associated with KdV equations. Some new Strichartz
estimates are obtained. We also establish the local well-posedness for the periodic generalized Korteweg–
de Vries equation with nonlinear term F(u)∂x u provided F ∈ C5 and the initial data φ ∈ H s with
s > 1/2.

1. Introduction

The discrete restriction problem associated with KdV equations is a problem asking the best constant
Ap,N satisfying

N∑
n=−N

| f̂ (n, n3)|2 ≤ Ap,N‖ f ‖2p′, (1-1)

where f is a periodic function on T2, f̂ is the Fourier transform of f on T2, p ≥ 2, and p′ = p/(p− 1).
It is natural to pose a conjecture asserting that for any ε > 0, Ap,N satisfies

Ap,N ≤

{
C p N 1−8/p+ε for p ≥ 8,
C p for 2≤ p < 8.

(1-2)

It was proved by Bourgain that A6,N ≤ N ε. The desired upper bound for A8,N is not yet obtained; however,
we are able to establish an affirmative answer for large p.

Theorem 1.1. Let Ap,N be defined as in (1-1). If p ≥ 14, for any ε > 0, there exists a constant C p

independent of N such that
Ap,N ≤ C p N 1−8/p+ε. (1-3)

The periodic Strichartz inequality associated to KdV equations is the inequality seeking the best
constant K p,N satisfying∥∥∥∥ N∑

n=−N

ane2π i tn3
+2π i xn

∥∥∥∥
L p

x,t (T×T)

≤ K p,N

( N∑
n=−N

|an|
2
)1/2

. (1-4)

By duality, we immediately see that
K p,N ∼

√
Ap,N .
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Hence, Theorem 1.1 is equivalent to Strichartz estimates,

K p,N ≤ C N 1/2−4/p+ε, for p ≥ 14. (1-5)

It was observed by Bourgain that the periodic Strichartz inequalities (1-4) for p = 4, 6 are crucial for
obtaining the local well-posedness of periodic KdV (mKdV or gKdV). The local (global) well-posedness
of periodic KdV for s ≥ 0 was first studied by Bourgain [1993b]. Via a bilinear estimate approach, Kenig,
Ponce, and Vega [Kenig et al. 1996] established the local well-posedness of periodic KdV for s >−1/2.
The sharp global well-posedness of the periodic KdV was proved by Colliander, Keel, Staffilani, Takaoka,
and Tao [Colliander et al. 2003], by utilizing the I -method.

Inspired by Bourgain’s work, we can obtain the following theorem on gKdV. Here the gKdV is the
generalized Korteweg–de Vries (gKdV) equation{

ut + uxxx + ukux = 0,
u(x, 0)= φ(x), x ∈ T, t ∈ R,

(1-6)

where k ∈ N and k ≥ 3.

Theorem 1.2. The Cauchy problem (1-6) is locally well-posed if the initial data φ ∈ H s for s > 1/2.

Theorem 1.2 is not new. It was proved by Colliander, Keel, Staffilani, Takaoka, and Tao [Colliander
et al. 2004], but our method is different. The method used by those authors is based on a rescaling
argument and the bilinear estimates proved by Kenig, Ponce and Vega [Kenig et al. 1996]. Our method is
more straightforward and does not need the rescaling argument, the bilinear estimates, or the multilinear
estimates in the earlier papers. This allows us to extend Theorem 1.2 to a very general setting. More
precisely, consider the Cauchy problem for periodic generalized Korteweg–de Vries (gKdV) equation{

ut + uxxx + F(u)ux = 0,
u(x, 0)= φ(x), x ∈ T, t ∈ R.

(1-7)

Here F is a suitable function. Then the following theorem can be established.

Theorem 1.3. The Cauchy problem (1-7) is locally well-posed provided F is a C5 function and the initial
data φ ∈ H s for s > 1/2.

For sufficiently smooth F , say F ∈ C15, the existence of a local solution of (1-7) for s ≥ 1 and the
global well-posedness of (1-7) for small data φ ∈ H s with s > 3/2 were proved by Bourgain [1995]. The
index 1/2 is sharp because the ill-posedness of (1-6) for s < 1/2 is known; see [Colliander et al. 2004].
In order to make Theorem 1.3 well-posed for the initial data φ ∈ H s with s > 1/2, the sharp regularity
condition for F is perhaps C4. But the method utilized in this paper, with a small modification, seems
only to be able to reach an affirmative result for F ∈C (9/2)+ and s > 1/2. Moreover, the endpoint s = 1/2
case could possibly be done by combining the ideas from [Colliander et al. 2004] and this paper. We do
not pursue this here.



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 861

2. Proof of Theorem 1.1

Proof. To prove Theorem 1.1, we need to introduce a level set. Since
√

Ap,N ∼ K p,N , it suffices to prove
the Strichartz estimates (1-4). Let FN be a periodic function on T2 given by

FN (x, t)=
N∑

n=−N

ane2π inx e2π in3t , (2-1)

where {an} is a sequence with
∑

n |an|
2
= 1 and (x, t) ∈ T2. For any λ > 0, set a level set Eλ to be

Eλ = {(x, t) ∈ T2
: |FN (x, t)|> λ} . (2-2)

To obtain the desired estimate for the level set, let us first state a lemma on Weyl’s sums.

Lemma 2.1. Suppose that t ∈ T satisfies |t − a/q| ≤ 1/q2, where a and q are relatively prime. Then if
q ≥ N 2, ∣∣∣∣ N∑

n=1

e2π i(tn3
+bn2

+cn)
∣∣∣∣≤ C N 1/4+εq1/4. (2-3)

Here b and c are real numbers, and the constant C is independent of b, c, t , a, q , and N.

The proof of Lemma 2.1 relies on Weyl’s squaring method. See [Hua 1965] or [Montgomery 1994]
for details. We also need the following lemma.

Lemma 2.2 [Bourgain 1993a]. For any integer Q ≥ 1 and any integer n 6= 0, and any ε > 0,∑
Q≤q<2Q

∣∣∣∣∑
a∈Pq

e2π i(a/q)n
∣∣∣∣≤ Cεd(n, Q)Q1+ε.

Here Pq is given by
Pq = {a ∈ N : 1≤ a ≤ q and (a, q)= 1}, (2-4)

and d(n, Q) denotes the number of divisors of n less than Q and Cε is a constant independent of Q, n.

Lemma 2.2 can be proved by observing that the arithmetic function defined by f (q)=
∑

a∈Pq
e2π i(a/q)n

is multiplicative, and then utilizing the prime factorization for q to conclude the lemma.

Proposition 2.3. Let KN be a kernel defined by

KN (x, t)=
N∑

n=−N

e2π i tn3
+2π i xn. (2-5)

For any given positive number Q with N 2
≤ Q ≤ N 3, the kernel KN can be decomposed into K1,Q+K2,Q

such that
‖K1,Q‖∞ ≤ C1 N 1/4+εQ1/4. (2-6)

and

‖K̂2,Q‖∞ ≤
C2 N ε

Q
. (2-7)
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Here the constants C1,C2 are independent of Q and N.

Proof. We can assume that Q is an integer, since otherwise we can take the integer part of Q. For a
standard bump function ϕ supported on [1/200, 1/100], we set

8(t)=
∑

Q≤q≤5Q

∑
a∈Pq

ϕ

(
t − a/q

1/q2

)
. (2-8)

Clearly 8 is supported on [0, 1]. We can extend 8 to other intervals periodically to obtain a periodic
function on T. This periodic function, generated by 8, will also be denoted by 8. It is easy to see that

8̂(0)=
∑
q∼Q

∑
a∈Pq

FRϕ(0)
q2 =

∑
q∼Q

φ(q)
q2 FRϕ(0) (2-9)

is a constant independent of Q. Here φ is Euler’s phi function, and FR denotes the Fourier transform of a
function on R. Also we have

8̂(k)=
∑
q∼Q

∑
a∈Pq

1
q2 e−2π i(a/q)kFRϕ(k/q2). (2-10)

Applying Lemma 2.2 and the fact that Q ≤ N 3, we obtain

|8̂(k)| ≤ N ε

Q
, (2-11)

if k 6= 0.
We now define

K1,Q(x, t)=
1

8̂(0)
KN (x, t)8(t) and K2,Q = KN − K1,Q .

Equation (2-6) follows from Lemma 2.1 since the intervals Ja/q =

[a
q
+

1
100q2 ,

a
q
+

1
50q2

]
are

pairwise disjoint for all Q ≤ q ≤ 5Q and a ∈ Pq .
We now prove (2-7). In fact, represent 8 as its Fourier series to get

K2,Q(x, t)=−
1

8̂(0)

∑
k 6=0

8̂(k)e2π ikt KN (x, t).

Thus its Fourier coefficient is

K̂2,Q(n1, n2)=−
1

8̂(0)

∑
k 6=0

8̂(k)1
{n2=n3

1+k}(k).

Here (n1, n2) ∈ Z2 and 1A is the indicator function of a set A. This implies that K̂2,Q(n1, n2) = 0 if
n2 = n3

1, and if n2 6= n3
1,

K̂2,Q(n1, n2)=−
1

8̂(0)
8̂(n2− n3

1).
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Applying (2-11), we estimate K̂2,Q(n1, n2) by

|K̂2,Q(n1, n2)| ≤
C N ε

Q
,

since N ≤ Q ≤ N 2. Hence we obtain (2-7), completing the proof. �

Now we can state our theorem on the level set estimates.

Theorem 2.4. For any positive numbers ε and Q ≥ N 2, the level set defined as in (2-2) satisfies

λ2
|Eλ|2 ≤ C1 N 1/4+εQ1/4

|Eλ|2+
C2 N ε

Q
|Eλ| (2-12)

for all λ > 0. Here C1 and C2 are constants independent of N and Q.

Proof. Notice that if Q ≥ N 3, (2-12) becomes trivial, since Eλ = ∅ if λ ≥ C N 1/2. So we can assume
that N 2

≤ Q ≤ N 3. For the function FN and the level set Eλ given in (2-1) and (2-2), respectively, we
define f to be

f (x, t)=
FN (x, t)
|FN (x, t)|

1Eλ(x, t) .

Clearly

λ|Eλ| ≤
∫

T2
FN (x, t) f (x, t) dx dt.

By the definition of FN , we get

λ|Eλ| ≤
N∑

n=−N

an f̂ (n, n3).

Utilizing the Cauchy–Schwarz inequality, we have

λ2
|Eλ|2 ≤

N∑
n=−N

| f̂ (n, n3)|2.

The right hand side can be written as
〈KN ∗ f, f 〉. (2-13)

For any Q with N 2
≤ Q ≤ N 3, we employ Proposition 2.3 to decompose the kernel KN . We then have

λ2
|Eλ|2 ≤ |〈K1,Q ∗ f, f 〉| + |〈K2,Q ∗ f, f 〉|. (2-14)

From (2-6) and (2-7), we then obtain

λ2
|Eλ|2 ≤ C1 N 1/4+εQ1/4

‖ f ‖21+
C2 N ε

Q
‖ f ‖22 ≤ C1 N 1/4+εQ1/4

|Eλ|2+
C2 N ε

Q
|Eλ|. �

Corollary 2.5. If λ≥ 2C1 N 3/8+ε,

|Eλ| ≤
C N 1+ε

λ10 . (2-15)

Here C1 is the constant C1 in Theorem 2.4 and C is a constant independent of N and λ.
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Proof. Since λ ≥ 2C1 N 3/8+ε, we simply take Q satisfying 2C1 N 1/4+εQ1/4
= λ2. Then Corollary 2.5

follows from Theorem 2.4. �

We are now ready to finish the proof of Theorem 1.1. In fact, let p ≥ 14 and write ‖F‖p
p as

p
∫ 2C1 N 3/8+ε

0
λp−1
|Eλ| dλ+ p

∫ 2N 1/2

2C1 N 3/8+ε
λp−1
|Eλ| dλ. (2-16)

Observe that A6,N ≤ N ε implies

|Eλ| ≤
N ε

λ6 . (2-17)

Thus the first term in (2-16) is bounded by

C N 3(p−6)/8+ε
≤ C N p/2−4+ε, (2-18)

since p ≥ 14. From (2-15), the second term is majorized by

C N p/2−4+ε. (2-19)

Putting both estimates together, we complete the proof of Theorem 1.1. �

3. A Lower bound of A p,N

In this section we show that N 1−8/p is the best upper bound of Ap,N if p ≥ 8. Hence (1-3) can not be
improved substantially, and it is sharp up to a factor of N ε.

For b ∈ N, let J (N ; b) be defined by

S(N ; b)=
∫

T2

∣∣∣∣ N∑
n=−N

e2π i tn3
+2π i xn

∣∣∣∣2b

dx dt. (3-1)

Proposition 3.1. Let S(N ; b) be defined as in (3-1). Then

S(N ; b)≥ C(N b
+ N 2b−4). (3-2)

Here C is a constant independent of N .

Proof. Clearly S(N ; b) is equal to the number of solutions of{
n1+ · · ·+ nb = m1+ · · ·+mb,

n3
1+ · · ·+ n3

b = m3
1+ · · ·+m3

b,
(3-3)

with n j ,m j ∈ {−N , . . . , N } for all j ∈ {1, . . . , b}. For each (m1, . . . ,mb), we may obtain a solution of
(3-3) by taking (n1, . . . , nb)= (m1, . . . ,mb). Thus

S(N ; b)≥ N b. (3-4)

To derive a further lower bound for S(N ; b), we set � to be

�=
{
(x, t) : |x | ≤ 1

60N
, |t | ≤ 1

60N 3

}
. (3-5)
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If (x, t) ∈� and |n| ≤ N ,

|tn3
+ xn| ≤ 1

30
. (3-6)

Hence, if (x, t) ∈�,∣∣∣∣ N∑
n=−N

e2π i tn3
+2π i xn

∣∣∣∣≥ ∣∣∣∣Re
N∑

n=−N

e2π i tn3
+2π i xn

∣∣∣∣≥ N∑
n=−N

cos(2π(tn3
+ xn))≥ C N . (3-7)

Consequently, we have

S(N ; b)≥
∫
�

∣∣∣∣ N∑
n=−N

e2π i tn3
+2π i xn

∣∣∣∣2b

dx dt ≥ C N 2b
|�| ≥ C N 2b−4. �

Proposition 3.2. Let p ≥ 2 be even. Then Ap,N satisfies

Ap,N ≥ C(1+ N 1−8/p). (3-8)

Here C is a constant independent of N .

Proof. Let p = 2b since p is even. Setting an = 1 for all n in the definition of K p,N , we get

S(N ; b)≤ K p
p,N (2N )b. (3-9)

By Proposition 3.1, we have

K p,N ≥ C(1+ N 1/2−4/p). (3-10)

Consequently, we conclude (3-8) since Ap,N ∼ K 2
p,N . �

4. An estimate of Hua

The following theorem was proved by Hua [1965] by an arithmetic argument. We provide a different
proof.

Theorem 4.1. Let S(N ; b) be defined as in (3-1). Then

S(N ; 5)≤ C N 6+ε. (4-1)

By Proposition 3.1, we see that the estimate (4-1) is (almost) sharp. S(N ; 4)≤ N 4+ε is still open.

Proof of Theorem 4.1. Let Gλ be the level set given by

Gλ = {(x, t) ∈ T2
: |KN (x, t)| ≥ λ}. (4-2)

Here KN is the function defined as in (2-5).
Letting f = 1Gλ

KN/|KN |, we have

λ|Gλ| ≤

N∑
n=−N

f̂ (n, n3)= 〈 fN , KN 〉, (4-3)
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where fN is a rectangular Fourier partial sum defined by

fN (x, t)=
∑
|n1|≤N
|n2|≤N 3

f̂ (n1, n2)e2πn1x e2π in2t . (4-4)

Employing Proposition 2.3 for KN , we estimate the level set Gλ by

λ|Gλ| ≤ |〈 fN , K1,Q〉| + |〈 fN , K2,Q〉| (4-5)

for any Q ≥ N 2. From (2-6) and (2-7), λ|Gλ| can be bounded further by

C
(

N 1/4+εQ1/4
‖ fN‖1+

∑
|n1|≤N
|n2|≤N 3

|K̂2,Q(n1, n2) f̂ (n1, n2)|

)
. (4-6)

Thus, from the fact that the L1 norm of Dirichlet kernel DN is comparable to log N , (2-7), and the
Cauchy–Schwarz inequality, we have

λ|Gλ| ≤ C N 1/4+εQ1/4
|Gλ| +

C N 2+ε

Q
|Gλ|

1/2, (4-7)

for all Q ≥ N 2. For λ≥ 2C N 3/4+ε, take Q to be a number satisfying

2C N 1/4+εQ1/4
= λ,

and obtain

|Gλ| ≤
C N 6+ε

λ10 . (4-8)

Notice that

‖KN‖6 ≤ N 1/2K6,p ≤ N 1/2+ε. (4-9)

Hence, by (4-3), we majorize |Gλ| by

|Gλ| ≤
C N 3+ε

λ6 . (4-10)

We now estimate S(N ; 5) by

S(N ; 5)≤ C
∫ 2N

2C N 3/4+ε
λ10−1

|Gλ| dλ+C
∫ 2C N 3/4+ε

0
λ10−1

|Gλ| dλ. (4-11)

From (4-8), the first term in the right hand side of (4-11) can be bounded by C N 6+ε. From (4-10), the
second term is clearly bounded by N 6+ε. Putting both estimates together,

S(N ; 5)≤ C N 6+ε, (4-12)

as desired. �
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5. Estimates for the nonlinear term and Local well-posedness of (1-6)

For any integrable function u on T×R, we define the space-time Fourier transform by

û(n, λ)=
∫

R

∫
T

u(x, t)e−inx e−iλt dx dt (5-1)

and set
〈x〉 := 1+ |x |.

We now introduce the Xs,b space, initially used by Bourgain.

Definition 5.1. Let I be a time interval in R and s, b ∈ R. Let Xs,b(I ) be the space of functions u on
T× I that may be represented as

u(x, t)=
∑
n∈Z

∫
R

û(n, λ)einx eiλt dλ for (x, t) ∈ T× I (5-2)

with the space-time Fourier transform û satisfying

‖u‖Xs,b(I ) =

(∑
n

∫
〈n〉2s
〈λ− n3

〉
2b
|û(n, λ)|2dλ

)1/2

<∞ . (5-3)

Here the norm should be understood as a restriction norm.

We take the time interval to be [0, δ] for a small positive number δ and abbreviate ‖u‖Xs,b(I ) as ‖u‖s,b
for any function u restricted to T×[0, δ]. In this section, we always restrict the function u to T×[0, δ].
Let w be the nonlinear function defined by

w =

(
uk
−

∫
uk dx

)
ux . (5-4)

We also define

‖u‖Ys := ‖u‖s,1/2+
(∑

n

〈n〉2s
(∫
|û(n, λ)| dλ

)2 )1/2

. (5-5)

We need the following estimate on the nonlinear function w, in order to establish a contraction on the
space {u : ‖u‖Ys ≤ M} for some M > 0.

Proposition 5.2. For s > 1/2, there exists θ > 0 such that, for the nonlinear function w given by (5-4),

‖w‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ− n3〉

dλ
)2 )1/2

≤ Cδθ‖u‖k+1
Ys
. (5-6)

Here C is a constant independent of δ and u.

The proof of Proposition 5.2 will appear in Section 6, and is based on the idea applied by Bourgain
[1993b] while proving the special case k = 2. In the proof, we write out the detailed treatment to some
subcases, and omit the similar treatment of other subcases (but it is very easy to figure out). The main
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reason we include the proof of Proposition 5.2 in Section 6 is to provide the preparation so the readers
can follow the (more technical) proof of the general case F ∈ C5 more easily.

We now start to derive the local well-posedness of (1-6). For this purpose, we only need to consider
the well-posedness of the Cauchy problem{

ut + uxxx +
(
uk
−
∫

T
ukdx

)
ux = 0,

u(x, 0)= φ(x), x ∈ T, t ∈ R.
(5-7)

This is because if v is a solution of (5-7), the gauge transform

u(x, t) := v
(

x −
∫ t

0

∫
T

vk(y, τ ) dydτ, t
)

(5-8)

is a solution of (1-6) with the same initial value φ. Notice that this transform is invertible and preserves
the initial data φ. The inverse transform is

v(x, t) := u
(

x +
∫ t

0

∫
T

uk(y, τ ) dydτ, t
)
. (5-9)

It is easy to see that for any solution u of (1-6), this inverse transform of u defines a solution of (5-7).
Hence, to establish the well-posedness of (1-6), it suffices to obtain the well-posedness of (5-7). This
gauge transform was used in [Colliander et al. 2004].

By Duhamel’s principle, the corresponding integral equation associated to (5-7) is

u(x, t)= e−t∂3
xφ(x)−

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ, (5-10)

where w is defined as in (5-4).
Since we are only seeking the local well-posedness, we may use a bump function to truncate the time

variable. Let ψ be a bump function supported in [−2, 2] with ψ(t)= 1, |t | ≤ 1, and let ψδ be

ψδ(t)= ψ(t/δ).

Then it suffices to find a local solution of

u(x, t)= ψδ(t)e−t∂3
xφ(x)−ψδ(t)

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ.

Let T be an operator given by

T u(x, t) := ψδ(t)e−t∂3
xφ(x)−ψδ(t)

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ. (5-11)

We denote the first term (the linear term) in (5-11) by Lu and the second term (the nonlinear term) by Nu.
Henceforth we represent T u as Lu+Nu. The following two lemmas deal with Lu and Nu separately.

Lemma 5.3. The linear term L satisfies

‖Lu‖Ys ≤ C‖φ‖H s . (5-12)

Here C is a constant independent of δ.
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Lemma 5.4. The nonlinear term N satisfies

‖Nu‖Ys ≤ C
(
‖w‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ−n3〉

dλ
)2 )1/2 )

, (5-13)

where C is a constant independent of δ.

Lemmas 5.3 and 5.4 are considered classical and their proofs can be found in many references, such as
[Colliander et al. 2004].

Proposition 5.5. Let s > 1/2 and T be the operator defined as in (5-11). Then there exists a positive
number θ such that

‖T u‖Ys ≤ C(‖φ‖H s + δθ‖u‖k+1
Ys
). (5-14)

Here C is a constant independent of δ.

Proof. Since T u = Lu+Nu, Proposition 5.5 follows from Lemmas 5.3, 5.4, and Proposition 5.2. �

Proposition 5.5 yields that for δ sufficiently small, T maps a ball in Ys into itself. Moreover, we write(
uk
−

∫
T

ukdx
)

ux −

(
vk
−

∫
T

vkdx
)
vx =

(
uk
−

∫
T

ukdx
)
(u−v)x +

(
(uk
−vk)−

∫
T

(uk
−vk) dx

)
vx

which equals(
uk
−

∫
T

ukdx
)
(u− v)x +

k−1∑
j=0

(
(u− v)uk−1− jv j

−

∫
T

(u− v)uk−1− jv j dx
)
vx . (5-15)

For k+ 1 terms in (5-15), repeating similar argument as in the proof of Proposition 5.2, one obtains, for
s > 1/2,

‖T u− T v‖Ys ≤ Cδθ
(
‖u‖kYs

+

k−1∑
j=1

‖u‖k−1− j
Ys

‖v‖
j+1
Ys

)
‖u− v‖Ys . (5-16)

Hence, for δ > 0 small enough, T is a contraction and the local well-posedness follows from Picard’s
fixed-point theorem.

6. Proof of Proposition 5.2

Proof. From the definition of w in (5-4), we may write ŵ(n, λ) as∑
m+n1+···+nk=n

n1+···+nk 6=0

m
∫

û(m, λ− λ1− · · ·− λk)û(n1, λ1) · · · û(nk, λk) dλ1 · · · dλk . (6-1)

By duality, there exists a sequence {An,λ} satisfying∑
n∈Z

∫
R

|An,λ|
2dλ≤ 1, (6-2)
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and ‖w‖s,−1/2 is bounded by∑
m+n1+···+nk=n

n1+···+nk 6=0

∫
〈n〉s |m|
〈λ−n3〉1/2

|û(m, λ−λ1−· · ·−λk)||û(n1, λ1)| · · · |û(nk, λk)||An,λ|dλ1 · · ·dλk dλ. (6-3)

Since the Xs,b is a restriction norm, we may assume that u is supported in T× [0, δ]. However, the
inverse space-time Fourier transform |û|∨ in general may not be a function with compact support. The
following standard trick allows us to assume |û|∨ has a compact support too. In fact, let η be a bump
function supported on [−2δ, 2δ] and with η(t) = 1 in |t | ≤ δ. Also η̂ is positive. Then u = uη and
û = û ∗ η̂. Thus |û| ≤ |û| ∗ η̂ = (|û|∨η)∧. Whenever we need to make |û|∨ supported in a small time
interval, we replace |û| by (|û|∨η)∧ since |û|∨η clearly is supported on T× [−2δ, 2δ]. This will help
us gain a positive power of δ in our estimates. Moreover, without loss of generality we can assume
|n1| ≥ |n2| ≥ · · · ≥ |nk |.

The trouble occurs mainly because of the factor |m| resulting from ∂x u. The idea (inspired by Bourgain
[1993b]) is that either the factor 〈λ−n3

〉
−1/2 can be used to cancel |m|, or |m| can be distributed to some

of the û. More precisely, we consider three cases:

|m|< 1000k2
|n2|, (6-4)

1000k2
|n2| ≤ |m| ≤ 100k|n1|, (6-5)

|m|> 100k|n1|. (6-6)

Case 1: |m|< 1000k2
|n2|. This is the simplest case. In fact, in this case, it is easy to see that

〈n〉s |m| ≤ C〈n1〉
s
〈n2〉

1/2〈m〉1/2. (6-7)

Let

F1(x, t)=
∑

n

∫
|An,λ|

〈λ− n3〉1/2
eiλt einx dλ; (6-8)

G(x, t)=
∑

n

∫
〈n〉1/2|û(n, λ)|eiλt einx dλ; (6-9)

H(x, t)=
∑

n

∫
〈n〉s |û(n, λ)|eiλt einx dλ; (6-10)

U (x, t)=
∑

n

∫
|û(n, λ)|eiλt einx dλ. (6-11)

Using (6-7), we can estimate (6-3) by

C
∑

m+n1+···+nk=n

∫
F̂(n, λ)Ĝ(m, λ− λ1− · · ·− λk)Ĥ(n1, λ1)Ĝ(n2, λ2)

k∏
j=3

Û (n j , λ j )dλ1 · · ·dλk dλ,

which clearly equals

C
∣∣∣∣∫

T×R

F1(x, t)G(x, t)2 H(x, t)U (x, t)k−2 dx dt
∣∣∣∣. (6-12)
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Apply Hölder’s inequality to majorize it by

C‖F1‖4 ‖G‖26+ ‖H‖4 ‖U‖
k−2
6(k−2)−.

Since U is supported on T×[−2δ, 2δ], one more use of Hölder inequality yields

(6-3)≤ Cδθ‖F1‖4 ‖G‖26+ ‖H‖4 ‖U‖
k−2
6(k−2). (6-13)

Let us recall some useful local embedding facts on Xs,b.

X0,1/3 ⊆ L4
x,t , X0+,1/2+ ⊆ L6

x,t (t local), (6-14)

Xα,1/2 ⊆ Lq
x,t , 0< α < 1

2 , 2≤ q < 6
1−2α

(t local), (6-15)

X1/2−α,1/2−α ⊆ Lq
t Lr

x , 0< α < 1
2 , 2≤ q, r < 1/α. (6-16)

The two embedding results in (6-14) are consequences of the discrete restriction estimates on L4 and L6,
respectively (see [Bourgain 1993b] for details). (6-15) and (6-16) follow by interpolation (see [Colliander
et al. 2004] for details). (6-14) yields

‖F1‖4 ≤ C‖F1‖0, 1
3
≤ C

(∑
n

∫
|An,λ|

2dλ
)1/2

≤ C,

and

‖H‖4 ≤ C‖H‖0,1/3 ≤ C‖u‖s,1/2 ≤ C‖u‖Ys .

From (6-15) we have

‖G‖6+ ≤ C‖G‖0+,1/2 ≤ C‖u‖s,1/2 ≤ C‖u‖Ys .

Using (6-16), we get

‖U‖6(k−2) ≤ C‖U‖1/2−,1/2− ≤ C‖u‖s,1/2 ≤ C‖u‖Ys .

Hence, for Case 1, we have

(6-3)≤ Cδθ‖u‖k+1
Ys
. (6-17)

Case 2: 1000k2
|n2| ≤ |m| ≤ 100k|n1|. In this case, we further consider two subcases:

|m+ n1| ≤ 1000k2
|n2|, (6-18)

|m+ n1|> 1000k2
|n2|. (6-19)

If |m+ n1| ≤ 1000k2
|n2|, we use the triangle inequality to get

|n| = |m+ n1+ n2+ · · ·+ nk | ≤ C |n2|. (6-20)

Hence we have

〈n〉s |m| ≤ C〈n2〉
s
〈m〉1/2〈n1〉

1/2. (6-21)

Thus this subcase can be treated exactly the same as Case 1. We omit the details.
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In the second subcase, |m+ n1|> 1000k2
|n2|, the crucial arithmetic observation is

n3
− (m3

+ n3
1+ · · ·+ n3

k)= 3(m+ n1)(m+ a)(n1+ a)+ a3
− (n3

2+ · · ·+ n3
k), (6-22)

where a = n2+· · ·+ nk . This observation can be easily verified since n =m+n1+· · ·+ nk . From (6-5)
and (6-19), we get

|n3
− (m3

+ n3
1+ · · ·+ n3

k)| ≥ Ck2
〈n2〉|m||n1| ≥ Ck|m|2. (6-23)

This implies that at least one of following statements holds:

|λ− n3
| ≥ C |m|2, (6-24)

|(λ− λ1− · · ·− λk)−m3
| ≥ C |m|2, (6-25)

there exists an i ∈ {1, . . . , k} such that |λi − n3
i | ≥ C |m|2. (6-26)

For (6-24), (6-3) can be bounded by∑
m+n1+···+nk=n

∫
〈n1〉

s
|û(m, λ− λ1− · · ·− λk)||û(n1, λ1)| · · · |û(nk, λk)||An,λ|dλ1 · · · dλk dλ. (6-27)

Let F2 be defined by

F2(x, t)=
∑

n

∫
|An,λ|eiλt einx dλ. (6-28)

Then we represent (6-27) as

∑
m+n1+···+nk=n

∫
F̂2(n, λ)Û (m, λ− λ1− · · ·− λk)Ĥ(n1, λ1)

k∏
j=2

Û (n j , λ j ) dλ1 · · · dλk dλ. (6-29)

Here H and U are the functions defined in (6-10) and (6-11). Clearly (6-29) equals∫
T×R

F2(x, t)H(x, t)U (x, t)k dx dt. (6-30)

Utilizing Hölder’s inequality, we estimate it further by

‖F2‖2 ‖H‖4 ‖U‖k4k ≤ Cδθ‖u‖k+1
Ys
. (6-31)

This yields the desired estimate for subcase (6-24).
One can similarly complete the proofs of subcases (6-25) and (6-26), and hence the proof of Case 2.

Case 3: |m|> 100k|n1|. The arithmetic observation (6-22) again plays an important role. In this case, let
us further consider two subcases:

|m|2 ≤ 1000k2
|n2|

2
|n3|, (6-32)

|m|2 > 1000k2
|n2|

2
|n3|. (6-33)

For the first subcase, we observe that, from (6-32),
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|m|2 ≤ C |n1||n2||n3|,

since |n2| ≤ |n1|. Hence we have

|m| = |m|1/2|m|2/3 ≤ C |m|1/3|n1|
1/3
|n2|

1/3
|n3|

1/3. (6-34)

This immediately implies

〈n〉s |m| ≤ C |m|s+1
≤ 〈m〉(s+1)/3

〈n1〉
(s+1)/3

〈n2〉
(s+1)/3

〈n3〉
(s+1)/3. (6-35)

Note that (s+ 1)/3< s for s > 1/2. By distributing the four factors to the corresponding functions, one
can mimic the proof of Case 1 to finish subcase (6-32).

We now turn to the contribution of (6-33). Clearly we have

|(n2+ · · ·+ nk)
3
− (n3

2+ · · ·+ n3
k)| ≤ 10k|n2|

2
|n3|, (6-36)

since |n2| ≥ |n3| ≥ · · · ≥ |nk |. From the crucial arithmetic observation (6-22), (6-36), and (6-33), we have

|n3
− (m3

+ n3
1+ · · ·+ n3

k)| ≥ Ck|m|2. (6-37)

This is the same as (6-23). Hence we again reduce the problems to (6-24), (6-25), and (6-26), which were
all done in Case 2. Therefore Case 3 is finished.

Putting all the cases together, we obtain

‖w‖s,−1/2 ≤ Cδθ‖u‖k+1
Ys
. (6-38)

Finally we need to estimate (∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

. (6-39)

Let {An} be a sequence with (∑
n

|An|
2
)1/2

≤ 1.

By duality, it suffices to estimate∑
m+n1+···+nk=n

n1+···+nk 6=0

∫
〈n〉s |m|
〈λ− n3〉

|û(m, λ−λ1−· · ·−λk)||û(n1, λ1)| · · · |û(nk, λk)||An| dλ1 · · · dλk dλ. (6-40)

By the same idea and similar techniques, one can bound (6-40) by mimicking the treatment of (6-3) and
get (∑

n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ− n3〉

dλ
)2 )1/2

≤ Cδθ‖u‖k+1
Ys
. (6-41)

We complete the proof of Proposition 5.2 by combining (6-38) and (6-41). �
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7. Proof of Theorem 1.3

The argument is similar to that in Section 5. By using a gauge transform as in (5-8) with vk replaced by
F(v), the well-posedness of (1-7) is equivalent to the well-posedness of the following equation:{

ut + uxxx + (F(u)−
∫

T
F(u) dx)ux = 0,

u(x, 0)= φ(x), x ∈ T, t ∈ R.
(7-1)

Now the nonlinear function w is defined by

w = ∂x u
(

F(u)−
∫

T

F(u) dx
)
. (7-2)

Let TF be an operator given by

TF u(x, t) := ψδ(t)e−t∂3
xφ(x)−ψδ(t)

∫ t

0
e−(t−τ)∂

3
xw(x, τ ) dτ. (7-3)

As in Section 5, the local well-posedness is a consequence of the following proposition.

Proposition 7.1. Let s > 1/2. There exists θ > 0 such that, for the nonlinear function w given by (7-2)
and any u satisfying ‖u‖Ys ≤ C0‖φ‖H s ,

‖w‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

≤ C(‖φ‖H s , F)δθ‖u‖4Ys
, (7-4)

provided F ∈ C5. Here C0 is a suitably large constant, and C(‖φ‖H s , F) is a constant independent of δ
and u, but which may depend on ‖φ‖H s and F.

The constant C(‖φ‖H s , F) will be specified in the proof of Proposition 7.1, which we postpone to
Section 8. We now return to the proof of Theorem 1.3. Proposition 7.1 implies that for δ sufficiently
small, T maps a ball

{u ∈ Ys : ‖u‖Ys ≤ C0‖φ‖H s }

into itself. Moreover, using Lemma 5.4 and repeating similar argument as in the proof of Proposition 7.1,
one obtains, for s > 1/2 and F ∈ C5,

‖TF u− TFv‖Ys ≤ δ
θC(‖φ‖H s , F)‖u− v‖Ys (7-5)

for all u, v in the ball {u ∈ Ys : ‖u‖Ys ≤C0‖φ‖H s }. Therefore, for δ > 0 small enough, TF is a contraction
on the ball and the local well-posedness again follows from Picard’s fixed-point theorem. This completes
the proof of Theorem 1.3.

8. Proof of Proposition 7.1

First we introduce a decomposition of F(u) which was used by Bourgain. Let K be a dyadic number,
and define a Fourier multiplier operator PK by setting

PK u(x, t)=
∫
ψK (y)u(x − y, t) dy. (8-1)
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Here the Fourier transform of ψK is a standard bump function supported on [−2K , 2K ] and ψ̂K (x)= 1
for x ∈ [−K , K ]. Let uK denote the Littlewood–Paley Fourier multiplier, that is,

uK = PK u− PK/2u. (8-2)

Then we may decompose F(u) by

F(u)=
∑

K

(F(PK u)− F(PK/2u))=
∑

K

F1(PK u, PK/2u)uK + R1,

where R1 is a function independent of the space variable x . Repeating this procedure for F1, we obtain

F(u)=
∑

K1≥K2

F2(P2K2u, . . . , PK2/4u)uK1uK2 +

∑
K1

R2uK1 + R1

=

∑
K1≥K2≥K3

F3(P4K3u, . . . , PK3/8u)uK1uK2uK3 +

∑
K1≥K2

R3uK1uK2 +

∑
K1

R2uK1 + R1

where R1, R2, R3 are functions independent of the space variable. Set

G K3(x, t)= F3(P4K3u, . . . , PK3/8u). (8-3)

Hence we represent w, defined in (7-2), as

w =
∑

K0,K1≥K2≥K3

∂x uK0

(
uK1uK2uK3 G K3 −

∫
T

uK1uK2uK3 G K3 dx
)

+

∑
K0,K1≥K2

∂x uK0

(
uK1uK2 −

∫
T

uK1uK2 dx
)

R3+
∑

K0,K1

∂x uK0

(
uK1 −

∫
T

uK1 dx
)

R2.

The main contribution of w is from the first term. The remaining terms can be handled by the method
presented in Section 6, because R2, R3 are functions independent of the space variable x (actually they
only depend on the conserved quantity

∫
T

u dx). Hence in what follows we only focus on estimating the
first term — the most difficult one. Denote the first term by w1:

w1 =
∑

K0,K1≥K2≥K3

∂x uK0

(
uK1uK2uK3 G K3 −

∫
T

uK1uK2uK3 G K3 dx
)
. (8-4)

We should prove

‖w1‖s,−1/2+

(∑
n

〈n〉2s
(∫
|ŵ1(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

≤ CδθC(‖φ‖H s , F)‖u‖4Ys
. (8-5)

In order to specify the constant C(‖φ‖H s , F), we define M by setting

M= sup
{
|DαF3(u1, . . . , u6)| : u j satisfies ‖u j‖Ys ≤ C0‖φ‖H s for all j = 1, . . . , 6;α

}
. (8-6)

Here Dα
= ∂α1

x1
· · · ∂

α6
x6 and α is taken over all tuples (α1, . . . , α6) ∈ (N∪ {0})6 with

∑
|α j | ≤ 2. M is a

real number. This is because, for s > 1/2, ‖u‖Ys ≤ C0‖φ‖H s yields that u is bounded by C‖φ‖H s , and
the previous claim follows from F3 ∈ C2.
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In order to bound ‖w1‖s,−1/2, by duality, it suffices to bound∑
K0,K1≥K2≥K3

n0+n1+n2+n3+m=n
n1+n2+n3+m 6=0

∫
An,λ〈n〉sn0

〈λ− n3〉1/2
ûK0(n0, λ− λ1− λ2− λ3−µ)

·

3∏
j=1

ûK j (n j , λ j )Ĝ K3(m, µ) dλ1 · · · dλ4dλdµ, (8-7)

where An,λ satisfies ∑
n

∫
|An,λ|

2dλ= 1.

The trouble maker is G K3 since there is no way to find a suitable upper bound for its Xs,b norm.
Because of this, the method in Section 6 is no longer valid, and we have to treat m and µ differently
from n and λ, respectively. A delicate analysis must be done to overcome the difficulty caused by G K3 .
For simplicity, we assume that δ = 1. One can modify the argument to gain a decay of δθ by using the
technical treatment from Section 6.

For a dyadic number M , define the Littlewood–Paley Fourier multiplier by

gK3,M = PM G K3 − PM/2G K3 = (G K3)M . (8-8)

Let v be defined by

v(x, t)=
∑

n

∫
An,λ

〈λ− n3〉1/2
eiλt einx dλ. (8-9)

To estimate (8-7), it suffices to estimate∑
K ,K0,K1≥K2≥K3,M
n0+n1+n2+n3+m=n

n1+n2+n3+m 6=0

∫
̂〈∂x 〉

svK (n, λ)∂̂x uK0(n0, λ− λ1− λ2− λ3−µ)

·

3∏
j=1

ûK j (n j , λ j )ĝK3,M(m, µ) dλ1 · · · dλ4dλdµ. (8-10)

Here K is a dyadic number.
As we did in Section 6, we consider three cases:

K0 < 2100K2; (8-11)

2100K2 ≤ K0 ≤ 210K1; (8-12)

K0 > 210K1. (8-13)

The rest of the paper is devoted to a proof of these three cases. In what follows, we will only provide
the details for the estimates of ‖w1‖s,−1/2 with 1/2 < s < 1 (the case s ≥ 1 is easier). For the desired
estimate of (∑

n

〈n〉2s
(∫
|ŵ1(n, λ)|
〈λ−n3〉

dλ
)2 )1/2

,
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simply replace v by

v1(x, t)=
∑

n

∫
Cn,λAn

〈λ− n3〉
eiλt einx dλ, (8-14)

and then the desired estimate follows similarly. Here Cn,λ ∈C satisfies supλ |Cn, λ| ≤ 1 and {An} satisfies∑
n |An|

2
≤ 1.

9. Proof of case (8-11)

In this case, we should consider further two subcases:

M ≤ 210K1, (9-1)

M > 210K1. (9-2)

For the contribution of (9-1), noticing that K ≤ C K1 in this subcase, we estimate (8-10) by∑
K1≥K2≥K3

∫
T×R

∣∣∣∣( ∑
K≤C K1

∂s
xvK

)( ∑
K0≤C K2

∂x uK0

)
uK1uK2uK3(P210 K1 G K3)

∣∣∣∣ dx dt, (9-3)

which is bounded by∑
K3

‖uK3‖∞‖G K3‖∞

∫
T×R

∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K2

∑
K0≤C K2

K0u∗K0
|uK2 | dx dt, (9-4)

where f ∗ stands for the Hardy–Littlewood maximal function of f . By the Schur’s test, (9-4) can be
estimated by∑
K3

K−(2s−1)/2
3 ‖u‖YsM

∫ (∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

·

(∑
K0

K0|u∗K0
|
2
)1/2(∑

K2

K2|uK2 |
2
)1/2

dx dt. (9-5)

Since s > 1/2, we obtain, by a use of Hölder’s inequality, that (9-4) is majorized by

CM‖u‖Ys

∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K0

K0|u∗K0
|
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K2

K2|uK2 |
2
)1/2∥∥∥∥

4
. (9-6)

Observe that ∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

4
≤

∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4
≤ C‖v‖4 ≤ C‖v‖0,1/3 ≤ C. (9-7)

Here the first inequality is obtained by using Fefferman and Stein’s vector-valued inequality on the
maximal function, and the second is a consequence of the classical Littlewood–Paley theorem. Similarly,∥∥∥∥(∑

K0

K0|u∗K0
|
2
)1/2∥∥∥∥

4
≤

∥∥∥∥(∑
K0

K0|uK0 |
2
)1/2∥∥∥∥

4
≤ C‖∂1/2

x u‖4 ≤ C‖u‖1/2,1/3 ≤ C‖u‖Ys (9-8)
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and ∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
≤ C‖∂s

x u‖4 ≤ C‖u‖s,1/3 ≤ C‖u‖Ys . (9-9)

Hence, from (9-7), (9-8) and (9-9), we have

(8-10)≤ CM‖u‖4Ys
. (9-10)

For the contribution of (9-2), since in this subcase K ≤ C M , we estimate (8-10) by∑
K1

‖uK1‖∞

∫
T×R

∑
K3≤K1

|uK3 |

∑
M

∑
K≤C M

K sv∗K |gK3,M |
∑
K2

∑
K0≤C K2

K0u∗K0
|uK2 | dx dt, (9-11)

which is bounded by∑
K1

K−(2s−1)/2
1 ‖u‖Ys

∫
T×R

∑
K3≤K1

|uK3 |

(∑
K

|v∗K |
2
)1/2(∑

M

M2s
|gK3,M |

2
)1/2

·

(∑
K0

K0|u∗K0
|
2
)1/2(∑

K2

K2|uK2 |
2
)1/2

dx dt. (9-12)

By a use of the Cauchy–Schwarz inequality, (9-12) is estimated by∑
K1

K−(2s−1)/2
1 ‖u‖Ys

∫
T×R

(∑
K

|v∗K |
2
)1/2(∑

K0

K0|u∗K0
|
2
)1/2(∑

K2

K2|uK2 |
2
)1/2

·

(∑
K3

K 2s
3 |uK3 |

2
)1/2( ∑

K3≤K1

∑
M

M2s

K 2s
3
|gK3,M |

2
)1/2

dx dt. (9-13)

Using Hölder’s inequality, we then bound it further by∑
K1

K−(2s−1)/2
1 ‖u‖Ys

∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K2

K0|u∗K0
|
2
)1/2∥∥∥∥

6

∥∥∥∥(∑
K2

K2|uK2 |
2
)1/2∥∥∥∥

6

·

∥∥∥∥(∑
K3

K 2s
3 |uK3 |

2
)1/2∥∥∥∥

4

∥∥∥∥( ∑
K3≤K1

∑
M

M2s

K 2s
3
|gK3,M |

2
)1/2∥∥∥∥

6
, (9-14)

which is majorized by∑
K1

K−(2s−1)/2
1 ‖u‖4Ys

∑
K3≤K1

K−s
3

∥∥∥∥(∑
M

M2s
|gK3,M |

2
)1/2∥∥∥∥

6
≤

∑
K1

K−(2s−1)/2
1 ‖u‖4Ys

∑
K3≤K1

K−s
3 ‖∂

s
x G K3‖∞.

From the definition of G K3 , we have

∂x G K3(x, t)= O(MK3)‖u‖Ys = O(MK3)‖φ‖H s . (9-15)

Hence, for s < 1,

‖∂s
x G K3‖∞ ≤ CMK s

3‖φ‖H s . (9-16)



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 879

Since s > 1/2, we then have

(9-14)≤ CM‖φ‖H s

∑
K1

K−(2s−1)/2+ε
1 ‖u‖4Ys

≤ CM‖φ‖H s‖u‖4Ys
. (9-17)

This completes our discussion of Case (8-11).

10. Proof of case (8-12)

In this case, it suffices to consider the following subcases:

K ≤ 210K2, (10-1)

K ≤ 210 M, (10-2)

K > 29(K2+M) and K3 ≥ K 1/2
0 , (10-3)

K > 29(K2+M), K3 ≤ K 1/2
0 , and M ≥ 2−10K 2/3

0 , (10-4)

K > 29(K2+M), K3 ≤ K 1/2
0 , and M < 2−10K 2/3

0 . (10-5)

The first two cases can be handled in exactly the same way as cases (9-1) and (9-2).
For case (10-3), observe that (8-12) and (10-3) imply

K ≤ C K1 (10-6)

and

K 1/2
0 ≤ K 1/2

2 K 1/2
3 . (10-7)

Hence (8-10) is bounded by∫ ∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K0≥K2≥K3

K0≤K 2
3

K0u∗K0
|uK2 ||uK3 |‖G K3‖∞ dx dt. (10-8)

Applying Hölder’s inequality, we estimate (10-8) by

CM

∫ (∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2 ∏

j=0,2,3

(∑
K j

K 1+ε
j |uK j |

2
)1/2

dx dt. (10-9)

One more use of Hölder’s inequality yields that (10-8) is bounded by

CM

∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4

∏
j=0,2,3

∥∥∥∥(∑
K j

K 1+ε
j |uK j |

2
)1/2∥∥∥∥

6
.

Hence we obtain

(10-8)≤ CM‖u‖4Ys
. (10-10)

This finishes the proof of (10-3).
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For case (10-4), we estimate (8-10) by∑
K2,K3

∫ ∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K0

K0|u∗K0
||uK2 ||uK3 |

∑
M≥C K 2/3

0

|gK3,M | dx dt, (10-11)

which is dominated by

C
∑

K2,K3

∫ (∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

|uK2 ||uK3 |

·

(∑
K0

K0|u∗K0
|
2
)1/2(∑

M

M3/2
|gK3,M |

2
)1/2

dx dt. (10-12)

By Hölder’s inequality with L4 norms for the first two functions in the integrand, L6+ norms for the next
three functions, and an L p norm (very large p) for the last one, (10-12) is dominated by

C‖u‖Ys

∑
K2,K3

‖uK2‖6+‖uK3‖6+

∥∥∥∥(∑
K0

K0|u∗K0
|
2
)1/2∥∥∥∥

6+
‖∂3/4

x G K3‖∞. (10-13)

Applying (9-16), we estimate (10-12) by

CM‖φ‖Hs‖u‖
2
Ys

3∏
j=2

∑
K j

K 3/8
j ‖uK j‖6+ ≤ CM‖φ‖Hs‖u‖

2
Ys

3∏
j=2

∑
K j

K 3/8
j ‖uK j‖0+,1/2 ≤ CM‖φ‖Hs‖u‖

4
Ys
,

as desired. This completes the discussion of (10-4).
We now turn to case (10-5). In this case, we have

|n0+ n1| + 2K2+M ≥ |n| ≥ K/2≥ 28(K2+M) , (10-14)

which implies
|n0+ n1| ≥ 25(K2+M). (10-15)

Notice that

(n0+ n1+ n2+ n3+m)3− n3
0− n3

1− n3
2− n3

3−m3

= 3(n0+ n1)(n0+ n2+ n3+m)(n1+ n2+ n3+m)+ (n2+ n3+m)3− n3
2− n3

3−m3. (10-16)

From (10-15), (10-16), and (10-5), we obtain

|n3
− n3

0− n3
1− n3

2− n3
3−m3

| ≥ C(K2+M)K0K1 ≥ C K0K1 ≥ C K 2
0 . (10-17)

Hence one of the following four statements must be true:

|λ− n3
| ≥ K 2

0 , (10-18)

|(λ− λ1− λ2− λ3−µ)− n3
0| ≥ K 2

0 , (10-19)

there exists an i ∈ {1, 2, 3} such that |λi − n3
i | ≥ K 2

0 , (10-20)

|µ| ≥ K 2
0 . (10-21)
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For case (10-18), we set
ṽ(x, t)= (v̂1

|λ−n3|≥K 2
0
)∨(x, t). (10-22)

We then estimate (8-10) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
|∂x uK0 |

∑
K1

∑
K≤C K1

K s ṽ∗K |uK1 | dx dt. (10-23)

This is clearly bounded by

CM‖u‖2Ys

∑
K0

∫
K0|u∗K0

|

(∑
K

|ṽ∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-24)

Using the Cauchy–Schwarz inequality, we bound (10-24) by

CM‖u‖2Ys

∫ (∑
K0

K ε
0 |u
∗

K0
|
2
)1/2(∑

K0

K 2−ε
0

∑
K

|ṽ∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-25)

By Hölder’s inequality, (10-25) is majorized by

CM‖u‖2Ys

∥∥∥∥(∑
K0

K ε
0 |u
∗

K0
|
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K0

K 2−ε
0

∑
K

|ṽ∗K |
2
)1/2∥∥∥∥

2

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
,

which is controlled by

CM‖u‖3Ys
‖∂εx u‖4

(∑
K0

K 2−ε
0 ‖ṽ‖

2
2

)1/2

≤ CM‖u‖3Ys
‖∂εx u‖4

∑
K0

K−ε/20 ≤ CM‖u‖4Ys
. (10-26)

This finishes the proof of case (10-18).
For case (10-19), let ũ be defined by

ũ = (û1
|λ−n3|≥K 2

0
)∨. (10-27)

Then (8-10) can be estimated by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
|∂x ũK0 |

∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt. (10-28)

By Schur’s test and Hölder’s inequality, we control (10-28) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

‖∂x ũK0‖2

∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
, (10-29)

which is bounded by
CM‖u‖3Ys

∑
K0

‖uK0‖0,1/2 ≤ CM‖u‖4Ys
. (10-30)

This completes the proof of case (10-19).
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For case (10-20), if j = 1, we dominate (8-10) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
|∂x uK0 |

∑
K1

∑
K≤C K1

K sv∗K |ũK1 | dx dt. (10-31)

As we did in case (10-19), we bound (10-31) by

CM‖u‖2Ys

∑
K0

‖∂x uK0‖4 ‖v‖4

∥∥∥∥(∑
K1

K 2s
1 |ũK1 |

2
)1/2∥∥∥∥

2
. (10-32)

This can be further controlled by

CM‖u‖3Ys

∑
K0

1
K0
‖∂x uK0‖4 ‖v‖4 ≤M‖u‖3Ys

∑
K0

1
K0
‖uK0‖1,1/3 ≤ CM‖u‖4Ys

, (10-33)

as desired.
We now consider j = 2 or j = 3. Without loss of generality, assume j = 2. In this case, we estimate

(8-10) by ∑
K3

‖uK3‖‖G K3‖∞

∑
K0

∫
|∂x uK0 |

∑
K1

∑
K≤C K1

K sv∗K |uK1 |

∑
K2≤C K0

|ũK2 | dx dt, (10-34)

which is bounded by

CM‖u‖Ys

∑
K0

‖∂x uK0‖∞

∑
K2≤K0

‖ũK2‖2 ‖v‖4

∥∥∥∥(∑
K1

K 2s
1 |uK1 |

2
)1/2∥∥∥∥

4
.

Notice that ∑
K0

‖∂x uK0‖∞

∑
K2≤K0

‖ũK2‖2 ≤ C
∑
K0

1
K0
‖∂x uK0‖∞‖u‖Ys

≤ C
∑

n

∫
|û(n, λ)| dλ‖u‖Ys ≤ C‖u‖2Ys

.

Hence (10-34) is dominated by
CM‖u‖4Ys

. (10-35)

This completes case (10-20).
We now turn to the most difficult case, (10-21) in case (8-12). We should decompose G K3 , with respect

to the t-variable, into Littlewood–Paley multipliers in the same spirit as before. More precisely, for any
dyadic number L , let QL be

QLu(x, t)=
∫
ψL(τ )u(x, t − τ) dτ. (10-36)

Here the Fourier transform ofψL is a bump function supported on [−2L , 2L] and ψ̂L(x)=1 if x ∈[−L , L].
Let

5Lu = QLu− QL/2u. (10-37)
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Then 5Lu gives a Littlewood–Paley multiplier with respect to the time variable t . Using this multiplier,
we represent

uK =
∑

L

uK ,L . (10-38)

Here uK ,L =5L(uK ). We decompose G K3 as

G K3 = C +
∑

L

(F3(QL P4K3u, . . . , QL PK3/8u)− F3(QL/2 P4K3u, . . . , QL/2 PK3/8u))

= C +
∑

j=4,2,1,1/2,1/4,1/8
L

HK3,Lu j K3,L ,
(10-39)

where HK3,L is given by

HK3,L = F4
(
Q`L P4K3u, . . . , Q`L PK3/8u; `= 1, 1

2

)
. (10-40)

Let M1 be defined by

M1 = sup{|DαF4(u1, . . . , u12)| : u j satisfies ‖u j‖Ys ≤ C0‖φ‖H s for all j = 1, . . . , 12;α}. (10-41)

Here Dα
= ∂α1

x1
· · · ∂α12

x12
and α is taken over all tuples (α1, . . . , α12) ∈ (N∪{0})12 with

∑
|α j | ≤ 1. M1 is

a real number because F4 ∈ C1.
In order to finish the proof, we need to consider a further three subcases:

L ≤ 210K 3
3 , (10-42)

210K 3
3 < L ≤ 2−5K 2

0 , (10-43)

L > 2−5K 2
0 . (10-44)

For the contribution of (10-42), we set

hK0, j K3,L = (
̂HK3,Lu j K3,L1

|µ|≥K 2
0
)∨. (10-45)

Here j = 4, 2, 1, 1/2, 1/4, 1/8. From the definition of HK3,L , we get

‖hK0, j K3,L‖4 ≤ CM1‖φ‖H s
L

K 2
0
‖u j K3,L‖4. (10-46)

Then (8-10) is bounded by∑
K2

‖uK2‖∞

∑
K0

∫
K0u∗K0

∑
K3≤C K 1/2

0

‖uK3‖∞

∑
L≤C K 3

3

|hK0, j K3,L |
∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt, (10-47)

which is majorized by∑
K2

‖uK2‖∞

∑
K0

K0
∑

K3≤C K 1/2
0

‖uK3‖∞

∫
u∗K0

·

∑
L≤C K 3

3

|hK0, j K3,L |

(∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-48)
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Using Hölder’s inequality with L4 norms for the four functions in the integrand, we estimate (10-48)
as follows:

CM1‖φ‖H s‖u‖2Ys

∑
K0

K0‖uK0‖4
∑

K3≤K 1/2
0

‖uK3‖∞

∑
L≤C K 3

3

L
K 2

0
‖u j K3,L‖4

≤ CM1‖φ‖
2
H s‖u‖3Ys

∑
K0

K 1/2
0 ‖uK0‖0,1/3

≤ CM1‖φ‖
2
H s‖u‖4Ys

. (10-49)

This finishes case (10-42).
For the contribution of (10-43), we bound (8-10) by∑

K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

|∂x uK0 |

∑
210 K 3

3<L≤2−10 K 2
0

|hK0, j K3,L |
∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt, (10-50)

which is dominated by

C‖u‖Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

∫ ∑
K0

|∂x uK0 |

∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

|hK0, j K3,L |

·

(∑
K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt, (10-51)

By the Cauchy–Schwarz inequality, we further estimate (10-51) by

C‖u‖Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1−1/2
∫ ∑

K0

|∂x uK0 |

K0

·

( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2(∑

K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-52)

Applying Hölder’s inequality with an L∞ norm for the first function in the integrand, an L2 norm for the
second, and L4 norms for the last two functions, we then majorize (10-52) by

C‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1−1/2
∑
K0

‖∂x uK0‖∞

K0

∥∥∥∥( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2∥∥∥∥

2
. (10-53)

Notice that if L ∼1K 2
0 ,

‖hK0, j K3,L‖2 ≤ CM1‖φ‖H s1‖u j K3,L‖2. (10-54)
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Thus we have∥∥∥∥( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2∥∥∥∥

2
≤ CM1‖φ‖H s1

( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L‖u j K3,L‖
2
2

)1/2

≤ CM1‖φ‖H s1‖u j K3‖0,1/2

≤ CM1‖φ‖
2
H s1. (10-55)

From (10-55), (10-53) is bounded by

CM1‖φ‖
2
H s‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

11/2
∑
K0

‖∂x uK0‖∞

K0
, (10-56)

which is clearly majorized by

CM1‖φ‖
2
H s‖u‖4Ys

. (10-57)

This finishes case (10-43).
For the contribution of (10-44), we estimate (8-10) by∑

K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

|∂x uK0 |

∑
L>2−5 K 2

0

|hK0, j K3,L |
∑
K1

∑
K≤C K1

K sv∗K |uK1 | dx dt, (10-58)

which is bounded by

∑
K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ (∑
K0

|∂x uK0 |
2

K 2
0

)1/2

·

( ∑
L>2−5 K 2

0

L|hK0, j K3,L |
2
)1/2(∑

K

|v∗K |
2
)1/2(∑

K1

K 2s
1 |uK1 |

2
)1/2

dx dt. (10-59)

Applying Hölder’s inequality, we further have

(10-59)≤ CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

‖∂x uK0‖∞

K0

( ∑
L>2−5 K 2

0

L‖u j K3,L‖
2
2

)1/2

≤ CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

‖∂x uK0‖∞

K0
‖u j K3‖0,1/2. (10-60)

This is clearly majorized by

CM1‖φ‖Hs‖u‖
4
Ys
. (10-61)

Hence we complete case (10-44).
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11. Proof of case (8-13)

In this case, it suffices to consider the following subcases:

M ≥ 2−10K 2/3
0 , (11-1)

M < 2−10K 2/3
0 and K 2

2 K3 ≥ 2−10K 2
0 , (11-2)

M < 2−10K 2/3
0 and K 2

2 M ≥ 2−10K 2
0 , (11-3)

M < 2−10K 2/3
0 , K 2

2 K3 < 2−10K 2
0 and K 2

2 M < 2−10K 2
0 . (11-4)

For case (11-1), notice that we have

K ≤ C M3/2. (11-5)

Hence we estimate (8-10) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
M

∑
K≤C M3/2

K sv∗K

∑
K0≤C M3/2

K0u∗K0
|gK3,M | dx dt, (11-6)

which is bounded by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
M

M (3/2)(1−s)
|gK3,M |

∑
K≤C M3/2

K sv∗K

(∑
K0

K 2s
0 |u

∗

K0
|
2
)1/2

dx dt, (11-7)

since 1/2< s < 1. Applying Schur’s test, we estimate (11-7) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

(∑
M

M3
|gK3,M |

2
)1/2(∑

K

|v∗K |
2
)1/2(∑

K0

K 2s
0 |u

∗

K0
|
2
)1/2

dx dt. (11-8)

By Hölder’s inequality and s > 1/2, (11-8) is majorized by

C
∑

K1≥K2≥K3

‖∂3/2
x G K3‖∞

( 3∏
j=1

‖uK j‖6+

)∥∥∥∥(∑
K

|vK |
2
)1/2∥∥∥∥

4

∥∥∥∥(∑
K0

K 2s
0 |u

∗

K0
|
2
)1/2∥∥∥∥

4

≤ CM(‖φ‖H s +‖φ‖2H s )‖u‖Ys

∑
K1≥K3≥K3

K 3/2
3

3∏
j=1

‖uK j‖6+

≤ CM(‖φ‖H s +‖φ‖2H s )‖u‖Ys

3∏
j=1

∑
K j

K 1/2
j ‖uK j‖0+,1/2

≤ CM(‖φ‖H s +‖φ‖2H s )‖u‖4Ys
. (11-9)

This finishes case (11-1).
For case (11-2), observe that, in this case,

K0 ≤ C K 1/2
1 K 1/2

2 K 1/2
3 . (11-10)



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 887

We estimate (8-10) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
K≤C K0

K sv∗K

∑
K0≤C(K1 K2 K3)1/2

K0u∗K0
‖G K3‖∞dx dt, (11-11)

which is bounded by

CM

∫ (∑
K

|v∗K |
2
)1/2(∑

K0

K 2s
0 |u

∗

K0
|
2
)1/2 3∏

j=1

∑
K j

K 1/2
j |uK j | dx dt. (11-12)

Using Hölder’s inequality with L4 norms for the first two functions and L6 norms for the last three
functions in the integrand, we obtain

CM‖u‖Ys

3∏
j=1

∥∥∥∥∑
K j

K 1/2
j |uK j |

∥∥∥∥
6
≤ CM‖u‖4Ys

. (11-13)

This completes case (11-2).
For case (11-3) we have

K0 ≤ C K 1/2
1 K 1/2

2 M1/2. (11-14)

Hence we dominate (8-10) by∫ ∑
K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

∑
M

|gK3,M |
∑

K≤C K0

K sv∗K

∑
K0≤C(K1 K2 M)1/2

K0u∗K0
dx dt, (11-15)

which is bounded by

C
∑
K3

∫ (∑
K

|v∗K |
2
)1/2(∑

K0

K 2s
0 |u

∗

K0
|
2
)1/2

|uK3 |

·

(∑
M

M |gK3,M |
2
)1/2 2∏

j=1

∑
K j

K 1/2
j |uK j | dx dt. (11-16)

Using Hölder’s inequality with L4 norms for the first two functions, L6 norms for the third, an L p norm
with p very large for the fourth, and L6+ for the last two functions in the integrand, we obtain

C‖u‖Ys

2∏
j=1

∥∥∥∥∑
K j

K 1/2
j |uK j |

∥∥∥∥
6+

∑
K3

‖uK3‖6 ‖∂
1/2
x G K3‖∞. (11-17)

Clearly (11-17) is dominated by

CM‖φ‖H s‖u‖3Ys

∑
K3

K 1/2
3 ‖uK3‖6 ≤ CM‖φ‖H s‖u‖4Ys

. (11-18)

Hence case (11-3) is done.
For case (11-4) we observe that

M2K2 ≤ 2−10K 2
0 . (11-19)
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In fact, if (11-19) does not hold, then, from (11-4),

M2K2 > 2−10K 2
0 > K 2

2 M.

Thus M > K2, which immediately yields

M3 > M2K2 > 2−10K 2
0 ,

contradicting M < 2−10K 2/3
0 . Hence (11-19) must be true. From (11-19), K 2

2 K3+ K 2
2 M < 2−9K 2

0 , we
get

|(n2+ n3+m)3− n3
2− n3

3−m3
| ≤ 2−5K 2

0 . (11-20)

Since n1+ n2+ n3+m 6= 0, from (8-13), (11-4), and (11-20), the crucial arithmetic observation (10-16)
yields

|n3
− n3

0− n3
1− n3

2− n3
3−m3

| ≥ 2K 2
0 . (11-21)

Hence one of the following statements must be true:

|λ− n3
| ≥ K 2

0 , (11-22)

|(λ− λ1− λ2− λ3−µ)− n3
0| ≥ K 2

0 , (11-23)

there exists an i ∈ {1, 2, 3} such that |λi − n3
i | ≥ K 2

0 , (11-24)

|µ| ≥ K 2
0 . (11-25)

For case (11-22), we estimate (8-10) by∑
K1,K2,K3

‖uK1‖∞‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
K0|u∗K0

|

∣∣∣∣ ∑
K≤C K0

∂s
x ṽK

∣∣∣∣ dx dt. (11-26)

Then the Cauchy–Schwarz inequality yields

CM‖u‖3Ys

∥∥∥∥(∑
K0

K 2−2s
0

∣∣∣∣ ∑
K≤C K0

∂s
x ṽK

∣∣∣∣2)1/2∥∥∥∥
2

∥∥∥∥(∑
K0

K 2s
0 |u

∗

K0
|
2
)1/2∥∥∥∥

2

≤ CM‖u‖4Ys

(∑
K0

K 2−2s
0

∑
K≤C K0

∥∥∥∥∂s
x ṽK

∥∥∥∥2

2

)1/2

≤ CM‖u‖4Ys
. (11-27)

This finishes the proof of case (11-22).
For case (11-23), (8-10) can be estimated by∑

K1,K2,K3

‖uK1‖∞‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K0

∫
K0|ũ∗K0

|

∑
K≤C K0

K sv∗K dx dt. (11-28)

By Schur’s test and Hölder’s inequality, we control (11-28) by

CM‖u‖3Ys

∥∥∥∥(∑
K

|v∗K |
2
)1/2∥∥∥∥

2

∥∥∥∥(∑
K0

K 2s+2
0 |ũK0 |

2
)1/2∥∥∥∥

2
, (11-29)
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which is clearly bounded by

CM‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0,1/2

)1/2

≤ CM‖u‖4Ys
. (11-30)

This completes the proof of case (11-23).
For case (11-24), without loss of generality, assume j = 1. We then dominate (8-10) by∑

K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K1

∑
K0

∫
K0|u∗K0

||ũK1 |

∑
K≤C K0

K sv∗K dx dt. (11-31)

By Hölder’s inequality, we bound (11-31) by∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K1

∑
K0

∑
K≤C K0

K s K0‖uK0‖4 ‖ũK1‖2 ‖vK‖4

≤

∑
K2,K3

‖uK2‖∞‖uK3‖∞‖G K3‖∞

∑
K1

‖uK1‖0,1/2
∑
K0

∑
K≤C K0

K s
‖uK0‖4‖vK‖4. (11-32)

By Schur’s test, we dominate (11-32) by

CM‖u‖2Ys

∑
K1

‖uK1‖0,1/2

(∑
K0

K 2s
0 ‖uK0‖

2
4

)1/2(∑
K

‖vK‖
2
4

)1/2

≤ CM‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0,1/3

)1/2(∑
K

‖vK‖
2
0,1/3

)1/2

≤ CM‖u‖4Ys
. (11-33)

Hence case (11-24) is done.
In order to finish the proof, as is done in (10-36), we need to consider three further subcases:

L ≤ 210K 3
3 , (11-34)

210K 3
3 < L ≤ 2−5K 2

0 , (11-35)

L > 2−5K 2
0 . (11-36)

For the contribution of (11-34), notice that

‖hK0, j K3,L‖6 ≤ CM1‖φ‖H s
L

K 2
0
‖u j K3,L‖6. (11-37)

Here hK0, j K3,L is defined as in (10-45). In this case we also have K3 ≤ K 2/3
0 , from

K 2
2 K3 ≤ 2−10K 2

0 .

Then (8-10) is bounded by∫ ∑
K0

K0u∗K0

∑
K≤C K0

K sv∗K

∑
K1≥K2≥K3

K3≤K 2/3
0

|uK1 ||uK2 ||uK3 |

∑
L≤C K 3

3

|hK0, j K3,L | dx dt. (11-38)
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Write (11-38) as∑
1dyadic
1≤1

∫ ∑
K0

K0u∗K0

∑
K≤C K0

K sv∗K

∑
K1≥K2≥K3

1K 2/3
0 /2<K3≤1K 2/3

0

|uK1 ||uK2 ||uK3 |

∑
L≤C K 3

3

|hK0, j K3,L | dx dt. (11-39)

Observe that if 1K 2/3
0 /2< K3 ≤1K 2/3

0 , we have

K0 ≤1
−3/2K 1/2

1 K 1/2
2 K 1/2

3 . (11-40)

Hence

C‖u‖Ys

∑
K0

∑
K≤K0

K s
∑

K1,K2

K 1/2
1 K 1/2

2

∑
1≤1

1−3/2
∑

K3∼1K 2/3
0

K 1/2
3

·

∫
u∗K0

v∗K |uK1 ||uK2 |

∑
L≤C K 3

3

|hK0, j K3,L | dx dt. (11-41)

Applying Hölder’s inequality with L4 norms for first two functions and L6 for the last three, and then
using (11-37), we get

CM1‖φ‖H s‖u‖Ys

∑
K0

∑
K≤K0

K s
∑

K1,K2

K 1/2
1 K 1/2

2

∑
1≤1

1−3/2

·

∑
K3∼1K 2/3

0

K 1/2
3 ‖uK0‖4 ‖v

∗

K‖4 ‖uK1‖6 ‖uK2‖6
∑

L≤C K 3
3

L
K 2

0
‖u j K3,L‖6,

(11-42)

which is bounded by

CM1‖φ‖H s‖u‖Ys

∑
K0

∑
K≤K0

K s
∑
1≤1

1−3/2
∑

L≤C13 K 2
0

L
K 2

0
‖uK0‖4 ‖v

∗

K‖4

·

∑
K1

K 1/2
1 ‖uK1‖0+,1/2

∑
K2

K 1/2
2 ‖uK2‖0+,1/2

∑
K3

K 1/2
3 ‖u j K3,L‖0+,1/2

≤ CM1‖φ‖
2
H s‖u‖3Ys

∑
1≤1

13/2
∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

≤ CM1‖φ‖
2
H s‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0,1/3

)1/2(∑
K

‖vK‖
2
0,1/3

)1/2

≤ CM1‖φ‖
2
H s‖u‖4Ys

. (11-43)

This completes case (11-34).
For the contribution of (11-35), we bound (8-10) by∑

K1

‖uK1‖∞

∑
K2

‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

∑
K≤C K0

K sv∗K K0u∗K0

∑
210 K 3

3<L≤2−5 K 2
0

|hK0, j K3,L | dx dt, (11-44)
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which is dominated by

C‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−5

1dyadic

∑
K0

∑
K≤C K0

K s
∫

K0u∗K0
v∗K

∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

|hK0, j K3,L | dx dt. (11-45)

Using the Cauchy–Schwarz inequality, we further estimate (11-45) by

C‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−5

1dyadic

1−
1
2
∑
K0

∑
K≤C K0

K s
∫

u∗K0
v∗K

( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2

dx dt. (11-46)

Employing Hölder’s inequality with L4 norms for the first two functions and an L2 for the last one, we
bound (11-46) by

C‖u‖2Ys

·

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1−1/2
∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

∥∥∥∥( ∑
210 K 3

3<L
(1/2)K 2

0<L≤1K 2
0

L|hK0, j K3,L |
2
)1/2∥∥∥∥

2
. (11-47)

From (10-55), (11-47) is majorized by

CM1‖φ‖
2
H s‖u‖2Ys

∑
K3

‖uK3‖∞

∑
1≤2−10

1dyadic

1
1
2
∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

≤ CM1‖φ‖
2
H s‖u‖3Ys

(∑
K0

K 2s
0 ‖uK0‖

2
0, 1

3

)1/2(∑
K

‖vK‖
2
0, 1

3

)1/2

≤ CM1‖φ‖
2
H s‖u‖4Ys

. (11-48)

This finishes the proof for case (11-35).
For the contribution of (11-36), we estimate (8-10) by

∑
K1,K2

‖uK1‖∞‖uK2‖∞

∑
K3

‖uK3‖∞

∫ ∑
K0

K0u∗K0

∑
L>2−5 K 2

0

|hK0, j K3,L |
∑

K≤C K0

K sv∗K dx dt. (11-49)

By the Cauchy–Schwarz inequality, (11-49) is bounded by

∑
K1,K2

‖uK1‖∞‖uK2‖∞

∑
K3

‖uK3‖∞

∑
K0

∑
K≤C K0

K s
∫
v∗K u∗K0

( ∑
L>2−10 K 2

0

L|hK0, j K3,L |
2
)1/2

dx dt. (11-50)

Employing Hölder’s inequality with L4 norms for the first two functions and an L2 for the last one, we



892 YI HU AND XIAOCHUN LI

dominate (11-50) by

CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

∑
K≤C K0

K s
‖uK0‖4 ‖vK‖4

∥∥∥∥( ∑
L>2−5 K 2

0

L|u j K3,L |
2
)1/2∥∥∥∥

2

≤ CM1‖u‖2Ys

∑
K3

‖uK3‖∞

∑
K0

∑
K≤C K0

K s
‖uK0‖0,1/3‖vK‖0,1/3‖u‖0,1/2

≤ CM1‖φ‖H s‖u‖4Ys
. (11-51)

Hence we complete case (11-36).
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The classical Stein–Tomas restriction theorem is equivalent to the fact that the spectral measure dE(λ) of
the square root of the Laplacian on Rn is bounded from L p(Rn) to L p′(Rn) for 1≤ p ≤ 2(n+ 1)/(n+ 3),
where p′ is the conjugate exponent to p, with operator norm scaling as λn(1/p−1/p′)−1. We prove a
geometric, or variable coefficient, generalization in which the Laplacian on Rn is replaced by the
Laplacian, plus a suitable potential, on a nontrapping asymptotically conic manifold. It is closely related
to Sogge’s discrete L2 restriction theorem, which is an O(λn(1/p−1/p′)−1) estimate on the L p

→ L p′

operator norm of the spectral projection for a spectral window of fixed length. From this, we deduce
spectral multiplier estimates for these operators, including Bochner–Riesz summability results, which are
sharp for p in the range above.

The paper divides naturally into two parts. In the first part, we show at an abstract level that restriction
estimates imply spectral multiplier estimates, and are implied by certain pointwise bounds on the Schwartz
kernel of λ-derivatives of the spectral measure. In the second part, we prove such pointwise estimates
for the spectral measure of the square root of Laplace-type operators on asymptotically conic manifolds.
These are valid for all λ > 0 if the asymptotically conic manifold is nontrapping, and for small λ in
general. We also observe that Sogge’s estimate on spectral projections is valid for any complete manifold
with C∞ bounded geometry, and in particular for asymptotically conic manifolds (trapping or not), while
by contrast, the operator norm on dE(λ) may blow up exponentially as λ→∞ when trapping is present.
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1. Introduction

The aim of this article is to prove some L p multiplier properties for the Laplacian, and a Stein–Tomas-type
restriction theorem for its spectral measure, on a class of Riemannian manifolds which include metric
perturbations of Euclidean space. One of the first natural questions in harmonic analysis is to understand
the L p boundedness of Fourier multipliers M on Rn , defined by

M( f )(x)= 1
(2π)n

∫
Rn

ei x .ξm(ξ) f̂ (ξ) dξ,

where m is a measurable function. Notice that for radial multipliers m(ξ) = F(|ξ |), this amounts to
study the L p boundedness of F(

√
1), where 1 is the nonnegative Laplacian. Of course, for p = 2, the

necessary and sufficient condition on m for M to be bounded on L2 is that m ∈ L∞(Rn), but the case
p 6= 2 is much more difficult. The first results in this direction were given by Mikhlin [1965]: M acts
boundedly on L p(Rn) for all 1< p <∞ if

m ∈ C∞(Rn
\ {0}) and |ξ |k |∇km(ξ)| ∈ L∞, ∀k, 0≤ k ≤ 1

2 n+ 1.

This was sharpened by Hörmander [1960; 1983, Theorem 7.9.5]: Let ψ ∈ C∞0 (
1
2 , 2) be not identically

zero, then M acts boundedly on L p(Rn)) for all 1< p <∞ if

sup
t>0
‖m(t · )ψ‖H s(Rn) <∞,

1
2 n < s ∈ N.

More generally, let L be a self-adjoint operator acting on L2 of some measure space. Using the spectral
theorem, “spectral multipliers” F(L) can be defined for any bounded Borel function F , and they act
continuously on L2. A question which has attracted a lot of attention during the last thirty years is to
find some necessary conditions on the function F to ensure that the operator F(L) extends as a bounded
operator for some range of L p spaces for p 6= 2. Probably the most natural and concrete examples are
functions of the Laplacian on complete Riemannian manifolds, or functions of Schrödinger operators
with real potential 1+ V , but these problems are also studied for abstract self-adjoint operators. Some
particular families of functions F are also investigated in the theory of spectral multipliers: some of the
most important examples include oscillatory integrals ei(t L)α (Id+(t L)α)−β and Bochner–Riesz means
(2-18). The subject of Bochner–Riesz means and spectral multipliers is so broad that it is impossible to
provide a comprehensive bibliography here, so we refer the reader to [Anker 1990; Christ and Sogge
1988; Clerc and Stein 1974; Cowling and Sikora 2001; Mauceri and Meda 1990; Müller and Stein 1994;
Seeger and Sogge 1989; Sogge 1987; 1993; Taylor 1989; Thangavelu 1993], where further literature can
be found.

The theory of Fourier multipliers and Bochner–Riesz analysis in this setting is related to the so-called
sphere restriction problem for the Fourier transform: find the pairs (p, q) for which the sphere restriction
operator SR(λ), defined by

SR(λ) f (ω) := f̂ (λω), ω ∈ Sn−1, λ > 0,

acts boundedly from L p(Rn) to Lq(Sn−1); see [Fefferman 1970; 1973]. Of course, the dependence
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in λ is trivial here since SR(λ) f = λ−nSR(1)( f (λ−1
· )), but this parameter λ will be important later

on. There is a long list of results on this problem, but the first ones for general dimensions are due
to Stein and Tomas. The theorem of Tomas [1975], improved by Stein [1993, Chapter IX, Section 2]
for the endpoint p = 2(n+ 1)/(n+ 3) is the following: SR(1) maps L p(Rn) boundedly to Lq(Sn−1) if
p≤ 2(n+1)/(n+3) and q ≤ n−1

n+1
p

p−1 (notice that q = 2 when p reaches the endpoint). On the other hand,
a necessary condition (based on the Knapp example) for boundedness is only given by p< 2n/(n+1) and
this leads to the conjecture that p < 2n/(n+ 1) and q ≤ n−1

n+1
p

p−1 is a necessary and sufficient condition.
In fact, this has been shown by Zygmund [1974] in dimension 2, improving a result of Fefferman [1970]
(by obtaining the endpoint estimate), but the conjecture is still open for n > 2. For more references and
new results in this direction, we refer the interested reader to the survey by Tao [2003] on the subject.

Like the L p multiplier problem, the sphere restriction problem has a corresponding natural generaliza-
tion to certain types of manifolds (at least if we think of Fourier transform as a spectral diagonalization
for the Laplacian), and in particular those which have similar structure at infinity as Euclidean space. On
Rn , the Schwartz kernel of the spectral measure dE√1(λ) of

√
1 is given by

dE√1(λ; z, z′)= λn−1

(2π)n

∫
Sn−1

ei(z−z′).λωdω, z, z′ ∈ Rn,

therefore dE√1(λ) = (λ
n−1)/((2π)n)SR(λ)∗SR(λ) and the restriction theorem for q = 2 is equivalent

to finding the largest p < 2 such that dE√1 maps L p to L p′ . There is a natural class of Riemannian
manifolds, called scattering manifolds or asymptotically conic manifolds, for which the spectral measure
of the Laplacian admits an analogous factorization. Such manifolds, introduced by Melrose [1994], are
by definition the interior M◦ of a compact manifold with boundary M , such that the metric g is smooth
on M◦ and has the form

g = dx2

x4 +
h(x)
x2 (1-1)

in a collar neighborhood near ∂M , where x is a smooth boundary defining function for M and h(x)
is a smooth one-parameter family of metrics on ∂M ; the function r := 1/x near x = 0 can be thought
of as a radial coordinate near infinity and the given metric is asymptotic to the exact conic metric
((0,∞)r × ∂M, dr2

+ r2h(0)) as r→∞. Associated to the Laplacian on such a manifold is the family
of Poisson operators P(λ) defined for λ > 0. These form a sort of distorted Fourier transform for the
Laplacian: they map L2(∂M) into the null space of 1g − λ

2 and satisfy dE√1g (λ)= (2π)
−1 P(λ)P(λ)∗

[Hassell and Vasy 1999]. Thus (λ/2π)−(n−1)/2 P(λ)∗ is an analogue of the restriction operator in this
setting. The corresponding restriction problem is therefore to study the L p(M)→ Lq(∂M) boundedness
of P(λ)∗, and its norm in terms of the frequency λ (the dependence of P(λ) in λ is no longer a scaling as
it is for Rn).

The aim of the present work is to address these multiplier and restriction problems in the geometric
setting of asymptotically conic manifolds. In fact, we shall first show, in an abstract setting, that restriction-
type estimates on the spectral measure of an operator imply spectral multiplier results for that operator.
Then we will prove such restriction estimates for a class of operators which are 0-th order perturbations
of the Laplacian on asymptotically conic manifolds. In particular, our results cover the following settings:



896 COLIN GUILLARMOU, ANDREW HASSELL AND ADAM SIKORA

• Schrödinger operators, i.e., 1+ V on Rn , where V is smooth and decaying sufficiently at infinity.

• The Laplacian with respect to metric perturbations of the flat metric on Rn , again decaying sufficiently
at infinity.

• The Laplacian on asymptotically conic manifolds.

Our first main result is that restriction estimates imply spectral multiplier estimates:

Theorem 1.1. Let L be a nonnegative self-adjoint operator on L2(X, dµ), where (X, d, µ) is a metric
measure space such that the volume of balls satisfy the uniform bound C2 > µ(B(x, ρ))/ρn > C1 for
some C2 > C1 > 0. Suppose that the operator cos(t

√
L) satisfies finite speed propagation property (2-2),

that the spectrum of L is absolutely continuous and that there exists 1 ≤ p < 2 such that the spectral
measure of L satisfies

‖dE√L(λ)‖p→p′ ≤ Cλn(1/p−1/p′)−1, (1-2)

where p′ is the exponent conjugate to p. Let s > n(1/p− 1/2) be a Sobolev exponent. Then there exists
C depending only on n, p, s, and the constant in (2-3) such that, for every even F ∈ H s(R) supported in
[−1, 1], F(

√
L) maps L p(X)→ L p(X), and

sup
α>0
‖F(α

√
L)‖p→p ≤ C‖F‖H s . (1-3)

Remark 1.2. As noted above, the hypothesis (1-2) is valid on the Euclidean space Rn and for exponents
1 ≤ p ≤ 2(n + 1)/(n + 3). In this case, the result is sharp in the sense that the hypothesis cannot be
weakened to F ∈ H s′ for any s ′ < n(1/p − 1/2); see [Stein 1993, Section IX.2]. In fact, the proof
shows that the theorem is true if we only assume F ∈ Bn(1/p−1/2)

1,2 , which is slightly weaker, and gives an
endpoint result. The result is sharp also in the sense that H s cannot be replaced by the Lq Sobolev space
W s

q and Bn(1/p−1/2)
1,2 cannot be replaced by Bn(1/p−1/2)

1,q for any q < 2; see Remark 2.11 below.

In the second part of the paper, we prove (1-2) for the spectral measure of the Laplacian 1g, plus a
suitable potential, on asymptotically conic manifolds.

Theorem 1.3. Let (M, g) be an asymptotically conic manifold of dimension n ≥ 3, and let x be a smooth
boundary defining function of ∂M. Let H :=1g+V be a Schrödinger operator on M , with V ∈ x3C∞(M),
and assume that H is a positive operator and that 0 is neither an eigenvalue nor a resonance. Then:

(A) For any λ0 > 0 there exists a constant C > 0 such that the spectral measure dE(λ) for
√

H satisfies

‖dE√H(λ)‖L p(M)→L p′ (M) ≤ Cλn(1/p−1/p′)−1 (1-4)

for 1≤ p ≤ 2(n+ 1)/(n+ 3) and 0< λ≤ λ0.

(B) If (M, g) is nontrapping, then there exists C > 0 such that (1-4) holds for all λ > 0.

(C) If (M, g) is trapping and has asymptotically Euclidean ends, there exists χ ∈ C∞0 (M
◦) and C > 0

such that

‖(1−χ)dE√H(λ)(1−χ)‖L p(M)→L p′ (M) ≤ Cλn(1/p−1/p′)−1, ∀λ > 0, (1-5)
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for 1 < p ≤ 2(n + 1)/(n + 3). However, (1-4) need not hold for all λ > 0: there exist (trapping)
asymptotically Euclidean manifolds (M, g), sequences λn→∞ and C, c > 0 such that

‖dE√1g
(λn)‖L p(M)→L p′ (M) ≥ Cecλn . (1-6)

(D) On the other hand, the Sogge-type spectral projection estimate

‖1[λ,λ+1](
√
1g)‖L p(M)→L p′ (M) ≤ Cλn(1/p−1/p′)−1, ∀λ≥ 1, (1-7)

holds for 1 ≤ p ≤ 2(n + 1)/(n + 3) for all asymptotically conic manifolds, trapping or not, and
indeed for the much larger class of complete manifolds with C∞ bounded geometry.

Remark 1.4. When the spectral measure estimate (1-4) holds, it trivially implies the Sogge-type spectral
projection estimate (1-7), by integrating over a unit interval in λ. On the other hand, parts (C) and (D) of
Theorem 1.3 show that the Sogge estimate holds in far greater generality than (1-4).

Remark 1.5. Probably the nontrapping condition is not necessary to obtain the estimate (1-4) for all
λ > 0; it seems likely that asymptotically conic manifolds with a hyperbolic trapped set of sufficiently
small dimension will also satisfy (1-4), by analogy with [Burq et al. 2010]. However, manifolds with
elliptic trapping will typically have sequences of λ for which the norm on the left hand side of (1-4)
grows superpolynomially; see Section 8C.

Remark 1.6. The spatially cut-off estimate (1-5) can be compared to the nontrapping L2 estimate proved
by Cardoso and Vodev [2002]

‖(1−χ)(L − λ2
+ i0)−1(1−χ)‖L2

α→L2
−α
= O(λ−1), ∀λ > 1, ∀α > 1

2 ,

where L2
α := 〈r〉

−αL2(M). As a matter of fact, we use this estimate to prove (1-5).

Since H in Theorem 1.3 also satisfies the finite speed of propagation property (2-2), we deduce from
the two theorems above

Corollary 1.7. Let L = H , where H is as in Theorem 1.3, and assume that (M, g) in Theorem 1.3 is
nontrapping. Then L satisfies (1-3), where F and s are as in Theorem 1.1 and p ∈ [1, 2(n+ 1)/(n+ 3)].

Remark 1.8. As far as we are aware, the restriction estimates for the spectral measure in Theorem 1.3
were previously known only for H being the Laplacian in the Euclidean space Rn . As for the spectral
multiplier result of Corollary 1.7, this was previously known for s > n(1/p− 1/2)+ 1/2 [Duong et al.
2002]. Thus, for p ∈ [1, 2(n + 1)/(n + 3)], we gain half a derivative over the best results previously
known. The region in the (1/p, s)-plane in which we improve previous results is illustrated in Figure 1.
The lower threshold of n(1/p− 1/2) for the Sobolev exponent s in Corollary 1.7 is known to be sharp in
Euclidean space, and it is not hard to see that it is sharp for any asymptotically conic manifold.

Remark 1.9. There are not many examples of sharp spectral multiplier results in the literature. Those
known to the authors are as follows. The sharp multiplier result in (1-3) for p = 2(n+ 1)/(n+ 3) (the
other p are obtained by interpolation) was proved for the Laplacian on any compact manifold by Seeger
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Figure 1. Map of where the statement of (1-3) has been established on nontrapping
asymptotically conic manifolds, for different values of s and p. In region A this was
previously known ([Duong et al. 2002]; see also Proposition 2.9). In the present paper
we establish (1-3) also for region B (previously this was known only in the classical
case of flat Euclidean space and the flat Laplacian). In region C it is known to be false,
while region D is still unknown. For comparison with the Bochner–Riesz multiplier
Fδ(λ)= (1−λ2)δ

+
observe that Fδ is in H s for s>δ+1/2. For F = Fδ , part of region D is

known for flat Euclidean space [Lee 2004], and the celebrated Bochner–Riesz conjecture
is that, for flat Euclidean space, (1-3) is true for F = Fδ in the whole of D.

and Sogge [1989]. In fact, they only needed the integrated estimate (1-7) to obtain the multiplier theorem
in that setting. In the setting of the twisted Laplacian operator

1x +1y +
1
4(‖x‖

2
+‖y‖2)− i

n∑
j=1
(x j∂y j − y j∂x j ),

the sharp multiplier result of (1-3) was proved by Stempak and Zienkiewicz [1998]. However, in this
setting the required form of restriction estimates differs from both (1-4) and (1-7); see [Koch and Ricci
2007]. The last case of a sharp multiplier theorem known to us, although with a slightly different range
of p, is for the harmonic oscillator; see [Karadzhov 1994; Koch and Tataru 2005; Thangavelu 1993].

Remark 1.10. A multiplier theorem of the type (1-3) does not hold for manifolds with exponential
volume growth (like negatively curved complete manifolds); a necessary condition on the multiplier F in
that case is typically a holomorphic extension of F into a strip. See for instance the work of Clerc and
Stein [1974] or Anker [1990] for the case of noncompact symmetric spaces, or Taylor [1989] in the case
of manifolds with bounded geometry, where sufficient conditions are also given.
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Remark 1.11. Theorems 1.1 and 1.3 imply Bochner–Riesz summability for a range of exponents similar
to those proved for the Euclidean Laplacian in [Stein 1993, page 390; Sogge 1993, Theorem 2.3.1] and
for compact manifolds by Christ and Sogge [1988] and Sogge [1987]. See Corollary 2.10 below.

The heuristics one can extract from Theorem 1.3 and the last two remarks can be summarized as
follows:

• The sharp restriction estimate on dE(λ) at bounded and low frequencies λ only depends on the
geometry near infinity.

• The high frequency restriction estimate on dE(λ) also depends strongly on global dynamical proper-
ties (trapping/nontrapping).

• The integrated estimate (1-7) for all frequencies λ > 1 only depends on having uniform local
geometry.

The proof of Theorem 1.1, given in Section 2, is based on a principle common to the proofs of most
Fourier and spectral multiplier theorems. The rough idea is that one can control the L p to L p norm
of operators with singular integral kernels by estimating the L p to Lq norm of the operator for some
q > p (usually q = 2) and showing that a large part of the corresponding kernel is concentrated near the
diagonal; see [Fefferman 1970; 1973; Seeger and Sogge 1989; Sogge 1987]. For calculations starting
from L1

→ L2 estimates this principle can be equivalently stated in terms of weighted L2 norms of the
kernel; see [Cowling and Sikora 2001; Hörmander 1960; Mauceri and Meda 1990]. Our implementation
of this principle in the proof of Theorem 1.1 is based on finite speed propagation of the wave equation,
following [Cheeger et al. 1982; Cowling and Sikora 2001; Sikora 2004]. In the proof, we decompose the
operator F(α

√
L) as a sum over ` ∈ N of multipliers F`(α

√
L) satisfying some finite speed propagation

properties with F` Schwartz. The L p
→ L p norms for F`(α

√
L) are controlled by C(α2`)n(1/p−1/2)

times the L p
→ L2 norms and then the T T ∗ argument reduces the problem to the bound of the L p

→ L p′

norms of |F`|2(α
√

L), which can be obtained using the restriction estimate of the spectral measure.
The proof of Theorem 1.3 proceeds in two steps. In the first step we suppose that we have an abstract

operator L whose spectral measure can be factorized as dE√L(λ)= (2π)
−1 P(λ)P(λ)∗ (see the discussion

below (1-1)), where the initial space of P(λ) is a Hilbert space. We then prove the following result in
Section 3:

Proposition 1.12. Let (X, d, µ) and L be as in Theorem 1.1, and assume dE√L(λ)= (2π)
−1 P(λ)P(λ)∗

as described above. Also assume that for each λ we have an operator partition of unity on L2(X),

Id=
N (λ)∑
i=1

Qi (λ), (1-8)

where the Qi are uniformly bounded as operators on L2(X) and N (λ) is uniformly bounded. We assume
that for 1≤ i ≤ N (λ), and some nonnegative function w(z, z′) on X × X , the estimate∣∣(Qi (λ)dE ( j)

√
H
(λ)Qi (λ)

)
(z, z′)

∣∣≤ Cλn−1− j(1+ λw(z, z′)
)−(n−1)/2+ j (1-9)
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holds for j = 0 and for j = n/2− 1 and j = n/2 if n is even, or for j = n/2− 3/2 and j = n/2+ 1/2 if
n is odd. Here dE ( j)

√
L
(λ) means (d/dλ) j dE√L(λ), and C is independent of λ and i . Then the restriction

estimates ∥∥dE√L(λ)
∥∥

L p(X)→L p′ (X) ≤ C ′λn(1/p−1/p′)−1, 1≤ p ≤ 2(n+1)
n+3

, (1-10)

hold for all λ > 0. Moreover, if the estimates above hold only for 0 < λ ≤ λ0, then (1-10) holds for
0< λ≤ λ0.

The key point here is that we only need to consider operators Qi (λ)dE ( j)
√

L
(λ)Qk(λ) for i = k, which

effectively means that we only need to analyze the kernel of dE ( j)
√

L
(λ) close to the diagonal. The proof of

this is based on the complex interpolation idea of Stein [1956] and appears in Section 3.
The second step is to prove estimates (1-9) in the case where L is the Laplacian or a Schrödinger

operator on an asymptotically conic manifold:

Theorem 1.13. Let (M, g) and H be as in Theorem 1.3. Then there exists an operator partition of unity,
(1-8), where the Qi are uniformly bounded as operators on L2(X) and N (λ) is uniformly bounded, such
that the estimates (1-9) hold for all integers j ≥ 0 and for 0< λ≤ λ0, where w(z, z′) is the Riemannian
distance between points z, z′ ∈ M◦. Moreover, if (M, g) is nontrapping, then estimates (1-9) hold for all
0< λ <∞.

In the free Euclidean setting, this estimate is obvious (with the trivial partition of unity) by using the
explicit formula of the spectral measure, but in our general setting it turns out to be quite involved and we
really need to choose the partition of unity carefully. We use some results of [Hassell and Vasy 2001] on
the resolvent of L on the spectrum, the high-energy (semiclassical) version of this [Hassell and Wunsch
2008] and the low energy estimates of our previous work [Guillarmou et al. 2012]. These three articles
on which we build our estimates describe the Schwartz kernel of the spectral measure as a Legendrian
distribution (a Fourier integral operator, in a sense) on a desingularized version of the compactification of
the space M ×M , and this was done in a sort of uniform way with respect to the spectral parameter λ.
The operators Qi in the partition of unity will be pseudodifferential operators of a particular sort; see
Section 6C for the estimate (1-9) for small λ, and Section 7D for the same estimate for large λ. By our
discussion above, this establishes parts (A) and (B) of Theorem 1.3. Part (C) of Theorem 1.3 is proved in
Section 8B and part (D) is proved in Section 8A.

Part I. Abstract self-adjoint operators

2. Restriction estimates imply spectral multiplier estimates

Let L be an abstract positive self-adjoint operator on L2(X), where X is a metric measure space with
metric d and measure µ. We make the following assumptions about L and (X, d, µ):

• The space X is separable and has dimension n in the sense of the volume growth of balls: that is,
there exist constants 0< c1 < c2 <∞ such that

c1ρ
n
≤ µ(B(x, ρ))≤ c2ρ

n (2-1)



RESTRICTION AND SPECTRAL MULTIPLIER THEOREMS 901

for every x ∈ X and ρ > 0;

• cos(t
√

L) satisfies finite speed propagation in the sense that

supp cos(t
√

L)⊂ Dt := {(z1, z2)⊂ X × X | d(z1, z2)≤ |t |}. (2-2)

This statement says that 〈 f1, cos(t
√

L) f2〉 = 0 whenever supp f1 ∈ B(z1, ρ1), supp f2 ∈ B(z2, ρ2)

and |t | + ρ1+ ρ2 ≤ d(z1, z2).

• L satisfies restriction estimates, which come in a strong and a weak form. We say that L satisfies L p

to L p′ restriction estimates for all energies if the spectral measure dE√L(λ) maps L p(X) to L p′(X)
for some p satisfying 1≤ p < 2 and all λ > 0, with an operator norm estimate∥∥dE√L(λ)

∥∥
L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1 for all λ > 0. (2-3)

We also consider a weaker form of these estimates: we say that L satisfies low energy L p to L p′

restriction estimates if dE√L(λ) maps L p(X) to L p′(X) for some p satisfying 1 ≤ p < 2 and all
λ ∈ (0, λ0], with an operator norm estimate∥∥dE√L(λ)

∥∥
L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1, 0< λ≤ λ0, (2-4)

for some C , together with weaker estimates for λ≥ λ0,∥∥E√L[0, λ]
∥∥

L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′), λ≥ λ0, (2-5)

with a uniform C . (Here E√L[0, λ] is the same as 1[0,λ](
√

L).)

Remark 2.1. The assumptions (with restriction estimates for all energies) are satisfied by taking X = Rn

with the standard metric and measure, and L to be the (positive) Laplacian on Rn (with domain H 2(Rn)).
As we shall see, the assumptions are also satisfied for asymptotically conic manifolds, with the low energy
restriction estimates holding unconditionally, and restriction estimates for all energies satisfied if the
manifold is nontrapping.

Remark 2.2. Clearly, (2-5) follows from (2-3) by integrating over the interval [0, λ]. However, in
Remark 8.8 we give an example where we have, by Proposition 8.1,

‖E√L[λ, λ+ 1]‖L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1, λ≥ λ0,

(which implies (2-5)), but the pointwise estimate on the L p
→ L p′ operator norm of dE(λ) grows

exponentially for a subsequence of λ tending to infinity.

Remark 2.3. Spectral projection estimate (2-5) is implied by a heat kernel bound

‖e−t L
‖L p→L p′ ≤ Ct−n(1/p−1/p′)/2, t ≤ 1

λ0
. (2-6)

This follows from short-time Gaussian bounds for the heat kernel, which hold for the Laplacian on any
complete Riemannian manifold with bounded curvature and injectivity radius bounded below [Cheng
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et al. 1981, Theorem 4]. Estimate (2-6) implies, using T ∗T , that ‖e−t L
‖L p→L2 ≤ Ct−n(1/p−1/p′)/4. We

then compute, using T ∗T again,

E√L[0, λ] = E√L[0, λ] e
L/λ2

e−L/λ2

=⇒ ‖E√L[0, λ]‖p→p′ = ‖E√L[0, λ]‖
2
p→2 ≤

∥∥E√L[0, λ]e
L/λ2∥∥2

2→2 ·
∥∥e−L/λ2∥∥2

p→2.

Conversely, (2-5) implies the heat kernel bound (2-6), which can be seen by writing e−t L as in integral
over the spectral measure, and then integrating by parts.

2A. The main result. The following theorem is the main result of this section.

Theorem 2.4. Suppose that (X, d, µ) and L satisfy (2-1) and (2-2), and that L satisfies L p to L p′

restriction estimates for all energies, (2-3), for some p with 1≤ p< 2. Let s > n(1/p−1/2) be a Sobolev
exponent. Then there exists C depending only on n, p, s, and the constant in (2-3) such that, for every
even F ∈ H s(R) supported in [−1, 1], F(

√
L) maps L p(X)→ L p(X), and

sup
α>0
‖F(α

√
L)‖p→p ≤ C‖F‖H s . (2-7)

If L only satisfies the weaker estimates (2-4), (2-5), i.e., low energy L p to L p′ restriction estimates, then
for all F as above, we have

sup
α≥4/λ0

‖F(α
√

L)‖p→p ≤ C‖F‖H s , (2-8)

where C depends on n, p, s, λ0, and the constants in (2-4) and (2-5).

Remark 2.5. Notice that if p > 2n/(n + 1) then s = 1/2 satisfies s > n(1/p− 1/2). However, H 1/2

functions need not be bounded, and such functions cannot be L p multipliers even for p= 2, and a fortiori
for p 6= 2. We deduce that, under the assumptions of Theorem 2.4, estimate (2-3), or even (2-4), is
impossible for p > 2n/(n+ 1).

In preparation for the proof of Theorem 2.4, we have (following [Cheeger et al. 1982]):

Lemma 2.6. Assume that L satisfies (2-2) and that F is an even bounded Borel function with Fourier
transform F̂ satisfying supp F̂ ⊂ [−ρ, ρ]. Then

supp KF(
√

L) ⊂ Dρ .

Proof. If F is an even function, then by the Fourier inversion formula,

F(
√

L)= 1
2π

∫
+∞

−∞

F̂(t) cos(t
√

L) dt.

But supp F̂ ⊂ [−ρ, ρ] and Lemma 2.6 follows from (2-2). �

The next lemma is a crucial tool in using restriction type results, i.e., L p
→ Lq continuity of spectral

projectors, to obtain spectral multiplier type bounds, i.e., L p
→ L p estimates.
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Lemma 2.7. Suppose that (x, d, µ) satisfies (2-1) and S is a bounded linear operator from L p(X) to
Lq(X) such that

supp S ⊂ Dρ

for some ρ > 0. Then for any 1≤ p < q ≤∞ there exists a constant C = C p,q such that

‖S‖p→p ≤ Cρn(1/p−1/q)
‖S‖p→q .

Proof. We fix ρ > 0. Then we first choose a sequence xn ∈ M such that d(xi , x j ) > ρ/10 for i 6= j and
supx∈X infi d(x, xi )≤ ρ/10. Such sequence exists because M is separable. Second, we define B̃i by the
formula

B̃i = B
(
xi ,

1
10ρ

)
−

(⋃
j<i

B
(
x j ,

1
10ρ

))
, (2-9)

where B (x, ρ)= {y ∈ M : d(z, z′)≤ ρ}. Third, we put χi = χB̃i
, where χB̃i

is the characteristic function
of set B̃i . Fourth, we define the operator Mχi by the formula Mχi g = χi g.

Note that for i 6= j , B(xi ,
1

20ρ)∩ B(x j ,
1

20ρ)=∅. Hence

K = sup
i

# { j; d(xi , x j )≤ 2ρ} ≤ sup
x

|B(x, 2ρ)|

|B(x, 1
20ρ)|

<
40nc2

c1
<∞.

It is not difficult to see that if we set I = {i, j | d(xi , x j ) < 2ρ}, then

Dρ ⊂

⋃
i, j∈I

B̃i × B̃ j ⊂ D4ρ, so S f =
∑
i, j∈I

Mχi SMχ j f.

Hence, if we set Ji = { j | d(xi , x j ) < 2ρ} for a given i , then by the Hölder inequality

‖S f ‖p
p =

∥∥∥∥ ∑
i, j∈I

Mχi SMχ j f
∥∥∥∥p

L p

=

∑
i

∥∥∥∥∑
j∈Ji

Mχi SMχ j f
∥∥∥∥p

p

≤

∑
i

|B̃i |
p(1/p−1/q)

∥∥∥∥∑
j∈Ji

Mχi SMχ j f
∥∥∥∥p

q

≤ Cρnp(1/p−/q)
∑

i

∥∥∥∥∑
j∈Ji

Mχi SMχ j f
∥∥∥∥p

q

≤ C K p−1ρnp(1/p−1/q)
∑

i

∑
j∈Ji

∥∥Mχi SMχ j f
∥∥p

q

≤ C K pρnp(1/p−1/q)
∑

j

∥∥SMχ j f
∥∥p

q

≤ C K pρnp(1/p−1/q)
‖S‖p

p→q

∑
j

∥∥Mχ j f
∥∥p

p

= C K pρnp(1/p−1/q)
‖S‖p

p→q‖ f ‖p
p.

This finishes the proof of Lemma 2.7. �
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Proof of Theorem 2.4. We first assume that L satisfies L p to L p′ restriction estimates for all energies. We
take η ∈ C∞c (−4, 4) even and such that∑

l∈Z

η
( t

2l

)
= 1 for all t 6= 0.

Then we set φ(t)=
∑

l≤0 η(2
−l t),

F0(λ)=
1

2π

∫
+∞

−∞

φ(t)F̂(t) cos(tλ) dt,

and

Fl(λ)=
1

2π

∫
+∞

−∞

η
( t

2l

)
F̂(t) cos(tλ) dt. (2-10)

Note that by virtue of the Fourier inversion formula,

F(λ)=
∑
l≥0

Fl(λ),

and by Lemma 2.6,

supp Fl(α
√

L)⊂ D2l+2α.

Now by Lemma 2.7,

‖F(α
√

L)‖p→p ≤
∑
l≥0

‖Fl(α
√

L)‖p→p ≤ C
∑
l≥0

(2lα)n(1/p−1/2)
‖Fl(α

√
L)‖p→2. (2-11)

Unfortunately, Fl is no longer compactly supported. To remedy this we choose a function ψ ∈C∞c (−4, 4)
such that ψ(λ)= 1 for λ ∈ (−2, 2) and note that

‖Fl(α
√

L)‖p→2 ≤ ‖(ψFl)(α
√

L)‖p→2+‖((1−ψ)Fl)(α
√

L)‖p→2.

To estimate the norm ‖ψFl(α
√

L)‖p→2 we use our restriction estimates (2-3). Using a T ∗T argument
and the fact that suppψ ⊂ [−4, 4], we note that

‖ψFl(α
√

L)‖2p→2 = ‖|ψFl |
2(α
√

L)‖p→p′ ≤

∫ 4/α

0
|ψFl(αλ)|

2
‖dE√L(λ)‖p→p′ dλ

≤
C
α

∫ 4

0
|ψFl(λ)|

2
‖dE√L(λ/α)‖p→p′ dλ. (2-12)

It follows from the above calculation and (2-3) that

αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤ C‖ψFl‖2 (2-13)

for all α > 0. As a consequence, we obtain∑
l≥0

2ln(1/p−1/2)αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤

∑
l≥0

2ln(1/p−1/2)
‖ψFl‖2
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for all α > 0. Now let us recall that by the definition of a Besov space,∑
l≥0

2ln(1/p−1/2)
‖ψFl‖2 ≤

∑
l≥0

2ln(1/p−1/2)
‖Fl‖2 = ‖F‖Bn(1/p−1/2)

1,2
.

See [Triebel 1992, Chapters I and II] for more details. We also recall that if s > s ′ then H s
⊂ Bs′

1,2 and
‖F‖Bn(1/p−1/2)

1,2
≤ Cs‖F‖H s for all s > n(1/p− 1/2) [ibid.]. Therefore, we have shown that∑

l≥0

2ln(1/p−1/2)αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤ C‖F‖H s . (2-14)

Next we obtain bounds for the part of estimate (2-11) corresponding to the term ‖(1−ψ)Fl(α
√

L)‖p→2.
This only requires the spectral projection estimates (2-5). We write

|(1−ψ)Fl |
2(α
√

L)=
∫
∞

0
|(1−ψ)(αλ)Fl(αλ)|

2dE√L(λ)

=−

∫
∞

0

( d
dλ
|(1−ψ)(αλ)Fl(αλ)|

2
)

E√L(λ) dλ

=−

∫
∞

0

( d
dλ
|(1−ψ)(λ)Fl(λ)|

2
)

E√L(λ/α) dλ.

Hence, using (2-5),

‖(1−ψ)Fl(α
√

L)‖2p→2 ≤ C
∫
∞

0

( d
dλ
|(1−ψ)(λ)Fl(λ)|

2
)(
λ

α

)n(1/p−1/p′)
dλ. (2-15)

We write

Fl(λ)=
1

2π

∫
ei t (λ−λ′)η

( t
2l

)
F(λ′) dλ′ dt,

use the identity
ei t (λ−λ′)

= i−N (λ− λ′)−N (d/dt)N ei t (λ−λ′),

and integrate by parts N times. Note that if λ ∈ supp 1−ψ and λ′ ∈ supp F then λ≥ 2 and λ′ ≤ 1, and
hence λ− λ′ ≥ λ/2. It follows that

|((1−ψ)Fl)(λ)| ≤ Cλ−N 2−N (l−1)
‖F‖2,

with C independent of N . Similarly,∣∣∣ d
dλ
((1−ψ)Fl)(λ)

∣∣∣≤ Cλ−N 2−N (l−1)2l
‖F‖2.

Using this in (2-15) with N sufficiently large and l ≥ 2, we obtain

(2lα)n(1/p−1/2)
‖((1−ψ)Fl)(α

√
L)‖p→2 ≤ C2−l

‖F‖2.

Therefore, we have∑
l

(2lα)n(1/p−1/2)
‖((1−ψ)Fl)(α

√
L)‖p→2 ≤ C‖F‖2 ≤ C‖F‖H s . (2-16)
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Equations (2-11), (2-14) and (2-16) prove (2-7).
The proof in the case that L satisfies low-energy restriction estimates (2-4) and (2-5) proceeds the

same way, except that we require the condition α ≤ 4/λ0 at the step (2-12) in order that we can use the
pointwise estimate (2-4) on the spectral measure in this integral. �

Remark 2.8. Note that if we only assume that (2-5) holds for all λ > 0 then we still have

αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤ α

n(1/p−1/2)∥∥ψFl(α
√

L)eα
2 L∥∥

2→2 ·
∥∥e−α

2 L∥∥
p→2

≤ C‖ψFl‖∞,

Now the above estimate is just a version of (2-13) with norm ‖ψFl‖2 replaced by ‖ψFl‖∞. Next if we
replace the Besov space Bn(1/p−1/2)

1,2 by Bn(1/p−1/2)
1,∞ then we can still follow the proof of Theorem 2.4.

Recall also that if s > s ′ then W s
∞
⊂ Bs′

1,∞ and ‖F‖Bn(1/p−1/2)
1,∞

≤Cs‖F‖W s
∞

for all s > n(1/p−1/2), where
‖F‖W s

∞
= ‖(I − d2/dx2)s/2 F‖∞; see again [Triebel 1992]. This implies that (2-14) holds with the norm

‖F‖H s replaced by the norm ‖F‖W s
∞

. As the rest of the proof of Theorem 2.4 does not require (2-3), the
above argument proves the following proposition.

Proposition 2.9. Suppose that (X, d, µ) and L satisfy (2-1) and (2-2), and that L satisfies (2-5) for
all λ > 0. Let s > n|1/p − 1/2| be a Sobolev exponent. Then there exists C depending only on n, p,
s, and the constant in (2-5) such that, for every even F ∈ W s

∞
(R) supported in [−1, 1], F(

√
L) maps

L p(X)→ L p(X), and

sup
α>0
‖F(α

√
L)‖p→p ≤ C‖F‖W s

∞
. (2-17)

Note also that if s> s ′ then ‖F‖W s′
∞
≤C‖F‖H s+1/2 . That is, the multiplier result with exponent one-half

bigger then the optimal exponent does not require (2-3) and holds just under assumption (2-5), which is
equivalent with the standard heat kernel bounds (2-6) (for all t). For p = 1, Proposition 2.9 was proved
in [Christ and Sogge 1988] and can be alternatively proved using Theorem 3.5 in the same paper and
interpolation, see also [Duong et al. 2002, Theorem 3.1].

From this point of view, the key point about Theorem 2.4 is the gain of half a derivative over the more
elementary (2-17).

2B. Bochner–Riesz summability. We use Theorem 2.4 to discuss boundedness of Bochner–Riesz means
of the operator L. Bochner–Riesz summability is technically speaking a slight weakening of Theorem 2.4
but is very close, and it allows us to compare our results with results described in [Stein 1993; Sogge
1993]. Let us recall that Bochner–Riesz means of order δ are defined by the formula

(1− L/λ2)δ
+
, λ > 0. (2-18)

For δ = 0, this is the spectral projector E√L([0, λ]), while for δ > 0 we think of (2-18) as a smoothed
version of this spectral projector; the larger δ, the more smoothing. Bochner–Riesz summability describes
the range of δ for which the above operators are bounded on L p uniformly in λ.
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Corollary 2.10. Suppose that (X, d, µ) is as above, and that restriction estimates (2-3) for exponents
1≤ p ≤ 2(n+ 1)/(n+ 3) and finite speed propagation property (2-2) hold for operator L. Then for all

p ∈
[
1, 2(n+1)

n+3

]
∪

[2(n+1)
n−1

,∞
]

and δ > n
∣∣∣ 1

p
−

1
2

∣∣∣− 1
2
,

we have
‖(1− L/λ2)δ

+
‖p→p ≤ C for all λ > 0. (2-19)

For all p ∈
(
2(n+ 1)/(n+ 3), 2(n+ 1)/(n− 1)

)
these estimates hold if δ > 1

2(n− 1)|1/p− 1/2|.

Proof. Note that (1−λ2)δ
+
∈ H s if and only if δ > s−1/2. Now for p < 2(n+1)/(n+3) Corollary 2.10

follows from Theorem 2.4. For 2(n + 1)/(n + 3) < p < 2 Corollary 2.10 follows from interpolating
between (2-19) with p = 2(n+ 1)/(n+ 3) and the trivial estimate for p = 2. For p > 2 the results follow
by duality. �

Remark 2.11. We noted in the proof above that Corollary 2.10 follows from Theorem 2.4. In fact the
Corollary 2.10 is slightly but essentially weaker than Theorem 2.4. Indeed Corollary 2.10 is equivalent to
the version of Theorem 2.4 in which the H s norm of a compactly supported function F is replaced by
the L1 norm of F s

:= F ∗χ−s−1
+ , where χ+ is as in Section 3. To prove this we note that

F(α
√

L)=
∫
χν−1
+

(λ−α
√

L)Fν(λ) dλ, ν ≥ 0;

see (3-3) and (3-4). Hence if estimates (2-19) hold for some exponent δ then ‖F(α
√

L)‖p→p ≤ ‖Fδ+1
‖1

and Bochner–Riesz summability of order δ implies Theorem 2.4 with the norm ‖Fδ+1
‖1. Note that if F ,

supported in [−1, 1], is such that F s+1/2 is in L1(R), then F is in H s′(R) for all s ′ < s with an estimate
‖F‖H s′ ≤ C‖F s+1/2

‖L1 . Hence, conversely, Theorem 2.4 with the stronger hypothesis F s+1/2
∈ L1

implies Bochner–Riesz summability of order δ for all δ > s− 1/2.

2C. Singular integrals. Finally we will discuss a singular integral version of our spectral multiplier
result. The following theorem is just reformulation of [Cowling and Sikora 2001, Theorem 3.5]. We write
Dκ for the scaling operator DκF(x)= F(κx).

Theorem 2.12. Suppose that operator L satisfies finite speed propagation property (2-2), that s > n/2
and that

‖dE√L(λ)‖1→∞ ≤ λ
n−1 for all λ > 0. (2-20)

Next let η be a smooth compactly supported nonzero function. Then for any Borel bounded function F
such that supκ>0 ‖η DκF‖W p

s
<∞ the operator F(

√
L) is of weak type (1, 1) and is bounded on Lq(X)

for all 1< q <∞. In addition,

‖F(
√

L)‖L1→L1,∞ ≤ Cs

(
sup
κ>0
‖ηDκF‖W p

s
+ |F(0)|

)
. (2-21)

Remark 2.13. It is a standard observation that up to equivalence the norm

sup
κ>0
‖η DκF‖W p

s
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does not depend on the auxiliary function η as long as η is not identically equal zero.

Proof. Using T ∗T trick we note that by (2-20) one has

‖F(
√

L)‖21→2 = ‖|F |
2(
√

L)‖1→∞ ≤
∫
∞

0
|F(λ)|2‖dE√L(λ)‖1→∞ dλ≤ C

∫
∞

0
|F(λ)|2λn−1dλ.

Hence if supp F ⊂ [0, R) then

‖F(
√

L)‖21→2 ≤ C Rn
‖DR F‖22,

that is, the estimates (3.22) of Theorem 3.5 of [Cowling and Sikora 2001] hold. Now Theorem 2.12
follows from the same Theorem 3.5. �

Remark 2.14. Theorem 2.12 is a singular integral version of Theorem 2.4 for p = 1. We expect that
a similar extension to a singular integral version is possible for all p. That is if one assumes that
s > n|1/2−1/p| then one can prove weak-type (p, p) version of estimates (2-21). However the proof of
such results seems to be more complex and not directly related to the rest of this paper, so we will not
pursue this idea further here.

3. Kernel estimates imply restriction estimates

The goal of this section is to prove Proposition 1.12; that is, we show that restriction estimates (2-3)
or (2-4) follow from certain pointwise estimates of λ-derivatives of the kernel of the spectral measure.
We first prove a simplified version of Proposition 1.12 in which the partition of unity does not appear. We
work in the same abstract setting as the previous section.

Proposition 3.1. Let (X, d, µ) be a metric measure space and L an abstract positive self-adjoint operator
on L2(X, µ). Assume that the spectral measure dE√L(λ) for

√
L has a Schwartz kernel dE√L(λ)(z, z′)

that satisfies, for some nonnegative function w on X × X and some n ≥ 3, the estimate∣∣∣( d
dλ

) j
dE√L(λ)(z, z′)

∣∣∣≤ Cλn−1− j (1+ λw(z, z′))−(n−1)/2+ j (3-1)

for j = 0 and for j = n/2− 1 and j = n/2 if n is even, or for j = n/2− 3/2 and j = n/2+ 1/2 if n is
odd. Then (2-3) holds for all p in the range [1, 2(n+ 1)/(n+ 3)]. Moreover, if the estimates above hold
only for 0< λ < λ0, then (2-4) hold for the same range of p.

We prove this proposition via complex interpolation, embedding the derivatives of the spectral measure
in an analytic family of operators, following the original (unpublished) proof of Stein in the classical
case. To do this we use the distributions χa

+
, defined by

χa
+
= xa
+
/0(a+ 1),

where 0 is the gamma function and {
xa
+
= xa if x ≥ 0,

xa
+
= 0 if x < 0.
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The xa
+

are clearly distributions for Re a >−1, and we have for Re a > 0,

d
dx

xa
+
= axa−1

+
=⇒

d
dx
χa
+
= χa−1
+

, (3-2)

which we use to extend the family of functions χa
+

to a family of distributions on R defined for all a ∈ C;
see [Hörmander 1983] for details. Since χ0

+
(x)= H(x) is the Heaviside function, it follows that

χ−k
+
= δ

(k−1)
0 , k = 1, 2, . . . , (3-3)

and therefore

χ0
+
(λ−
√

L)= E√L((0, λ]) and χ−k
+
(λ−
√

L)=
( d

dλ

)k−1
dE√L(λ), k ≥ 1.

A standard computation shows that for all w, z ∈ C,

χw
+
∗χ z
+
= χw+z+1
+

, (3-4)

where χw
+
∗χ z
+ is the convolution of the distributions χw

+
and χ z

+ see [Hörmander 1983, (3.4.10)]. We
can use this relation to define the operators χ z

+(λ−
√

L) for Re z < 0, provided that the spectral measure
of
√

L satisfies estimates of the type in Proposition 3.1:

Definition 3.2. Suppose that X , L and w are as in Proposition 3.1, and that L satisfies the kernel estimate∣∣∣( d
dλ

)k
dE√L(λ)(z, z′)

∣∣∣≤ Cλl(1+ λw(z, z′))β (3-5)

for some k ≥ 0, l ≥ 0 and β. Then, for −(k+ 1) < Re a < 0 we define the operator χa
+
(λ−
√

L) to be
that operator with kernel

χ k+a
+
∗χ
−(k+1)
+ (λ−

√
L)(z, z′)= (−1)k

∫ λ

0

σ k+a

0(k+ a+ 1)

( d
dσ

)k
dE√L(λ− σ)(z, z′) dσ. (3-6)

Notice that the integral converges, since Re(k+ a) >−1 and l ≥ 0 in (3-5). It is also independent of
the choice of integer k >−Re a− 1 (provided (3-5) holds), as we check by integrating by parts in σ in
the integral above, and using (3-2). Note that the kernel χa

+
(λ−
√

L)(z, z′) is analytic in a, and as an
integral operator maps L1

comp(X) to L∞loc(X). Therefore, for each fixed λ > 0, the family χa
+
(λ−
√

L) is
an analytic family of operators in the sense of Stein [1956] in the parameter a, for Re a >−k.

In the proof of Proposition 3.1 we will need the following:

Lemma 3.3. Suppose that k ∈ N, that −k < a < b < c and that b = θa+ (1− θ)c. Then there exists a
constant C such that for any Ck−1 function f : R→ C with compact support, one has

‖χb+is
+
∗ f ‖∞ ≤ C(1+ |s|)eπ |s|/2‖χa

+
∗ f ‖θ

∞
‖χ c
+
∗ f ‖1−θ

∞

for all s ∈ R.

Remark 3.4. The convolution χa
+
∗ f , for a>−k and f ∈Ck−1

c (R), may be defined to be χa+k−1
+ ∗ f (k−1);

this is independent of the choice of k.
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Proof. Set, for ζ ∈ C,

Iζ f = χ ζ+ ∗ f

and consider the operator Ib+is(σ Ic+ Ia)
−1, where the number σ ∈ C such that |σ | = 1 will be specified

later. By (3-4)

Ib+is(σ Ic+ Ia)
−1
= Iβ+is(σ I−1+ Iα)−1

= Iβ+is(σ I + Iα)−1,

where β = b− c−1 and α = a− c−1. Note that α < β <−1. A standard calculation [Hörmander 1983,
Example 7.1.17, page 167 and (3.2.9) page 72] shows that for Re ζ ≤−1,

χ̂
ζ
+(ξ)= e−iπ(ζ+1)/2(ξ − i0)−ζ−1.

It follows that Iβ+is(σ I + Iα)−1 f = f ∗ ηs , where η̂s is the locally integrable function

η̂s(ξ)=
−ie−iπ(β+is)/2ξ

−(β+is)−1
+ + ieiπ(β+is)/2ξ

−(β+is)−1
−

σ − ie−iπα/2ξ−α−1
+ + ieiπα/2ξ−α−1

−

.

Here ξ+ =max(0, ξ) and ξ− =−min(0, ξ). Note that if |σ | = 1 and σ /∈ {ie−iπα/2,−ie−iπα/2
} then∣∣∣ d

dξ
η̂s(ξ)

∣∣∣≤ C(1+ |s|)eπ |s|/2 min
(
|ξ |−β−2, |ξ |−β+α−1)

and −β +α− 1<−1<−β − 2. It follows from these estimates that the function d
dξ η̂s is in an L p(R)

space for some 1 < p < 2 and is also in some weighted space L1((1+ |x |)εdx,R). By the Sobolev
embedding and Hausdorff–Young theorems, the function x → xηs(x) is in L p′(R) for the conjugate
exponent p′ <∞ and in Cε′(R) for some ε′ > 0. Hence ηs is in L1 and we have

‖ηs‖1 ≤ C(1+ |s|)eπ |s|/2.

Hence the operator Ib+is(σ Ic+ Ia)
−1
= Iβ+is(σ I + Iα)−1 is bounded on L∞(R) and

‖Ib+is f ‖∞ ≤ C(1+ |s|)eπ |s|/2‖σ Ic f + Ia f ‖∞ ≤ C(1+ |s|)eπ |s|/2(‖Ic f ‖∞+‖Ia f ‖∞).

Now if we set Dκ f (x)= f (κx) then for all ζ ∈ C,

Iζ Dκ f = κ−ζ−1 Dκ Iζ f,

so

κ−b
‖Ib+is f ‖∞ = κ−b

‖Dκ Ib+is f ‖∞ = κ‖Ib+is Dκ f ‖∞.

Hence

κ−b
‖Ib+is f ‖∞ = κ‖Ib+is Dκ f ‖∞ ≤ C(1+ |s|)eπ |s|/2

(
κ‖Ia(Dκ f )‖∞+ κ‖Ic(Dκ f )‖∞

)
= C(1+ |s|)eπ |s|/2

(
κ−a
‖Ia f ‖∞+ κ−c

‖Ic f ‖∞
)
.

Putting κa−c
= ‖Ia f ‖∞‖Ic f ‖−1

∞
in this estimate yields Lemma 3.3. �
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Proof of Proposition 3.1. To prove (2-3) in the range 1≤ p ≤ 2(n+1)/(n+3), it suffices by interpolation
to establish the result for the endpoints p = 1 and p = 2(n+ 1)/(n+ 3). The endpoint p = 1 is precisely
(3-1) for j = 0, so it remains to obtain the endpoint p = 2(n+ 1)/(n+ 3). This we will obtain through
complex interpolation, applied to the analytic (in the parameter a) family χa

+
(λ −
√

L) in the strip
−(n+ 1)/2≤ Re a ≤ 0.

On the line Re a = 0, we have the estimate

‖χ is(λ−
√

L)‖L2→L2 ≤

∣∣∣∣ 1
0(1+is)

∣∣∣∣=
√

sinhπs
πs

≤ Ceπ |s|/2.

On the line Re a =−(n+ 1)/2, we will prove an estimate of the form

∥∥χ−(n+1)/2+is(λ−
√

L)
∥∥

L1→L∞ ≤ C(1+ |s|)eπ |s|/2λ(n−1)/2 for all s ∈ R. (3-7)

Then, since we can write

dE√L(λ)= χ
−1
+
(λ−
√

L)

and

−1= n−1
n+1

· 0+ 2
n+1

·

(
−

n+1
2

)
and n+3

2(n+1)
=

n−1
n+1

·
1
2
+

2
n+1

· 1,

we obtain (2-3) at p = 2(n+ 1)/(n+ 3) by complex interpolation.
It remains to prove (3-7). Let η ∈ C∞c (R) be a function such that 0 ≤ η(x) ≤ 1 for all x ∈ R and

η(x)= 1 for |x | ≤ 2 and η(x)= 0 for |x | ≥ 4. Set

F s,3
z,z′ (λ)= χ

−3/2−is
+ ∗

(
η( · /3)χ−k

+
( · −
√

L)(z, z′)
)
(λ),

F s,3
z,z′ (λ)= χ

−2−is
+

∗
(
η( · /3)χ−k

+
( · −
√

L)(z, z′)
)
(λ),

n = 2k,

n = 2k+ 1.

Note that supp(χ z
+)⊂ [0,∞) for all z, and L ≥ 0. It follows that for λ≤3 and n = 2k,

F s,3
z,z′ (λ)= χ

−3/2−is
+ ∗χ−k

+
(λ−
√

L)(z, z′)= χ−(n+1)/2−is
+ (λ−

√
L)(z, z′)

and for λ≤3 and n = 2k+ 1,

F s,3
z,z′ (λ)= χ

−2−is
+

∗χ−k
+
(λ−
√

L)(z, z′)= χ−(n+1)/2−is
+ (λ−

√
L)(z, z′),

i.e., the cutoff function η has no effect for λ≤3. Hence

∥∥χ−(n+1)/2−is
+ (3−

√
L)
∥∥

1→∞ ≤ sup
z,z′
|F s,3

z,z′ (3)|.



912 COLIN GUILLARMOU, ANDREW HASSELL AND ADAM SIKORA

We consider first the odd-dimensional case n = 2k+ 1. By Lemma 3.3 and (3-3),∣∣F s,3
z,z′ (3)

∣∣≤ ∥∥F s,3
z,z′
∥∥
∞

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣(χ−1
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

× sup
λ>0

∣∣(χ−3
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣η(λ/3)χ−k
+
(λ−
√

L)(z, z′)
∣∣1/2

× sup
λ>0

∣∣∣ d2

dλ2η(λ/3)χ
−k
+
(λ−
√

L)(z, z′)
∣∣∣1/2, (3-8)

where the presence of the η cutoff is now crucial. It follows from (3-1) with j = n/2 − 3/2 and
j = n/2+ 1/2, i.e., j = k− 1 and j = k+ 1, that

sup
λ>0
|η(λ/3)χ−k

+
(λ−
√

L)(z, z′)| ≤ C3k+1(1+3w(z, z′))−1.

(Here we used the fact that the function λk(1+λw)β is an increasing function of λ provided λ≥ 0, w≥ 0,
k ≥ 0 and k+β ≥ 0.) Similarly,

sup
λ>0

∣∣∣ d2

dλ2η(λ/3)χ
−k
+
(λ−
√

L)(z, z′)
∣∣∣≤ sup

λ>0

∣∣η(λ/3)χ−k−2
+

(λ−
√

L)(z, z′)
∣∣

+
1
3

sup
λ>0

∣∣η′(λ/3)χ−k−1
+

(λ−
√

L)(z, z′)
∣∣

+
1
32 sup

λ>0

∣∣η′(λ/3)χ−k
+
(λ−
√

L)(z, z′)
∣∣

≤ C3k−1(1+3w(z, z′)).

Our estimate (3-7) for n = 2k+ 1 follows now from these two estimates and (3-8).
If n = 2k is even, then by Lemma 3.3 and (3-3),∣∣F s,3
z,z′ (3)

∣∣≤ ∥∥F s,3
z,z′
∥∥
∞

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣(χ−1
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

× sup
λ>0

∣∣(χ−2
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣η(λ/3)χ−k
+
(λ−
√

L)(z, z′)
∣∣1/2

× sup
λ>0

∣∣∣ d
dλ
η(λ/3)χ−k

+
(λ−
√

L)(z, z′)
∣∣∣1/2, (3-9)

and we follow the same argument as in the odd-dimensional case to establish (3-7) for n = 2k. �

In some situations, including the case of Laplace-type operators on asymptotically conic manifolds
discussed later in this paper, we can express the spectral measure dE(λ) in the form P(λ)P(λ)∗, where
the initial space of P(λ) is an auxiliary Hilbert space H . In this case, we can use a T T ∗ argument to
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show that the conclusions of Proposition 3.1 follow from localized estimates on dE(λ), that is, on kernel
estimates on Qi dE(λ)Qi , with respect to a operator partition of unity

Id=
N (λ)∑
i=1

Qi (λ), 1≤ i ≤ N (λ).

Notice that we allow the partition of unity to depend on λ. However, we shall assume that N (λ) is
uniformly bounded in λ.

Remark 3.5. Here we assume that Qi (λ)dE ( j)
√

L
(λ)Qi (λ) can be defined somehow and has a Schwartz

kernel; for example, we might know that there is some weight function ω on X such that dE ( j)
√

L
(λ) is a

bounded map from ω j+1L2(X) to ω− j−1L2(X), and that Qi (λ) maps ωa L2(X) boundedly to itself for
any a. This is the case in our application to asymptotically conic manifolds, with ω = x (where x is as in
(1-1)).

Proof of Proposition 1.12. Observe that Proposition 1.12 reduces to Proposition 3.1 in the case that the
partition of unity Qi is trivial. We apply the argument in the proof of Proposition 3.1 to the operators
Qi (λ)dE(λ)Qi (λ), i.e., we replace dE√L(λ) by Qi (λ)dE√L(λ)Qi (λ)

∗ in (3-6). The conclusion is that

‖Qi (λ)dE√L(λ)Qi (λ)
∗
‖L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1 for all λ > 0.

Using the fact that dE√L(λ)= P(λ)P(λ)∗ and the T T ∗ trick, we deduce that

‖Qi (λ)P(λ)‖L2(X)→L p′ (X) ≤ Cλn(1/2−1/p′)−1/2 for all λ > 0.

Now we can sum over i , and find that

‖P(λ)‖L2(X)→L p′ (X) ≤ Cλn(1/2−1/p′)−1/2 for all λ > 0.

Finally, we use dE√L(λ)= P(λ)P(λ)∗ and the T T ∗ trick again to deduce that

‖dE√L(λ)‖L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1 for all λ > 0,

yielding (2-3). Moreover, if the estimates hold only for 0< λ≤ λ0, then we obtain (2-4) instead. �

Remark 3.6. We acknowledge and thank Jared Wunsch for suggesting to us that the T T ∗ trick would be
useful here.

Part II. Schrödinger operators on asymptotically conic manifolds

In this second part of the paper, we specialize to the case that (X, d, µ) is an asymptotically conic
manifold (M◦, g) with the Riemannian distance function d and Riemannian measure µ, and L is a
Schrödinger operator H on L2(M◦, g), that is, an operator of the form H =1g + V , where 1g is the
positive Laplacian associated to g and V ∈ C∞(M) is a potential function vanishing to third order at the
boundary of the compactification M of M◦. We assume that H has no L2-eigenvalues (which implies
that it is positive as an operator) and that zero is not a resonance.
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The goal in this part of the paper is to show that H satisfies the low energy spectral measure estimates
(2-4), and the full spectral measure estimates (2-3) provided that (M◦, g) is nontrapping. To do this,
we will establish the estimates (1-9) for a suitable partition of unity Qi (λ). In the case of low energy
estimates, i.e., λ ∈ (0, λ0] for λ0 <∞, these Qi will be pseudodifferential operators, lying in the calculus
of operators introduced in [Guillarmou and Hassell 2008]. Thus our first task is to determine the nature of
the operator Qi dE(λ)Qi for such Qi , which is the subject of Section 5. Before this, however, we recall
some of the geometric preliminaries from [Guillarmou et al. 2012; Hassell and Wunsch 2008].

4. Geometric preliminaries

The Schwartz kernel of the spectral measure was constructed in [Guillarmou et al. 2012] for low energies
and in [Hassell and Wunsch 2008] for high energies on a compactification of the space [0, λ0]× (M◦)2,
respectively [0, h0]×(M◦)2, where we use h = λ−1 in place of λ for high energies. We use the definitions
and machinery from these papers extensively, and we do not review this material comprehensively here,
since that would double the length of this paper. Nevertheless, we shall describe these compactifications,
review some of their geometric properties, and define some coordinate systems that we shall use in the
following sections.

Recall from the introduction that (M◦, g) is asymptotically conic if M◦ is the interior of a compact
manifold M with boundary, such that in a collar neighborhood of the boundary, the metric g takes the form
g = dx2/x4

+ h(x)/x2, where x is a boundary defining function and h(x) is a smooth family of metrics
on the boundary ∂M . We use y = (y1, . . . , yn−1) for local coordinates on ∂M , so that (x, y) furnish local
coordinates on M near ∂M . Away from ∂M , we use z = (z1, . . . , zn) to denote local coordinates.

4A. The low energy space M2
k,b. In [Guillarmou and Hassell 2008; Guillarmou et al. 2012], following

unpublished work of Melrose and Sá Barreto, the low energy space M2
k,b is defined as follows: starting

with [0, λ0]×M2, we define submanifolds C3 := {0}× ∂M × ∂M and

C2,L := {0}× ∂M ×M, C2,R := {0}×M × ∂M, C2,C := [0, 1]× ∂M × ∂M.

The space M2
k,b is then defined as [0, λ0]×M2 with the codimension 3 corner C3 blown up, followed by

the three codimension 2 corners C2,∗:

M2
k,b := [[0, 1]×M ×M;C3,C2,R,C2,L ,C2,C ].

The new boundary hypersurfaces created by these blowups are labeled bf0, rb0, lb0 and bf, respectively,
and the original boundary hypersurfaces {0}×M2, [0, λ]×M × ∂M and [0, λ]× ∂M ×M are labeled
zf, rb, lb, respectively. We remark that zf is canonically diffeomorphic to the b-double space

M2
b = [M

2
; ∂M × ∂M].

Also, each section M2
k,b ∩ {λ= λ∗}, for fixed 0< λ∗ < λ0 is canonically diffeomorphic to M2

b .
We define functions x and y on M2

k,b by lifting from the left copy of M (near ∂M), and x ′, y′ by lifting
from the right copy of M ; similarly z, z′ (away from ∂M). We also define ρ = x/λ, ρ ′ = x ′/λ, and
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σ = ρ/ρ ′ = x/x ′. Near bf and away from rb, we use coordinates y, y′, σ, ρ ′, λ, while near bf and away
from lb, we use y, y′, σ−1, ρ, λ. We also use the notation ρ•, where •= bf0, lb0, . . ., to denote a generic
boundary defining function for the boundary hypersurface •.

This space has a compressed cotangent bundle k,bT ∗M2
k,b, defined in [Guillarmou et al. 2012, Section 2].

A basis of sections of this space is given, in the region ρ, ρ ′ ≤ C (which includes a neighborhood of bf),
by

dρ
ρ2 ,

dρ ′

ρ ′2
,

dyi

ρ
,

dy′i
ρ ′
,

dλ
λ
. (4-1)

Therefore, any point in k,bT ∗M2
k,b lying over this region can be written as

ν
dρ
ρ2 + ν

′
dρ ′

ρ ′2
+µi

dyi

ρ
+µ′i

dy′i
ρ ′
+ T dλ

λ
. (4-2)

This defines local coordinates (y, y′, σ, ρ ′, λ, µ,µ′, ν, ν ′, T ) in k,bT ∗M2
k,b, near bf and away from rb,

where (µ,µ′, ν, ν ′, T ) are linear coordinates on each fiber.
The compressed density bundle �k,b(M2

k,b) is defined to be that line bundle whose smooth nonzero
sections are given by the wedge product of a basis of sections for k,bT ∗(M2

k,b). Using the coordinates
above, we can write a smooth nonzero section ω as

ω =

∣∣∣∣dρdρ ′dydy′dλ

ρn+1ρ ′n+1λ

∣∣∣∣∼ λ2n
∣∣∣∣dg dg′dλ

λ

∣∣∣∣ in the region ρ, ρ ′ ≤ C. (4-3)

For ρ, ρ ′ ≥ C , we can take ω = (xx ′)n|dgdg′dλ/λ|. Here dg, respectively dg′, denotes the Riemannian
density with respect to g, lifted to M2

k,b by the left, respectively right, projection.
The boundary of k,bT ∗M2

k,b lying over boundary hypersurface • is denoted by k,bT ∗• M2
k,b. The space

k,bT ∗lb M2
k,b fibers over the space scT ∗∂M M × [0, λ] (the scattering cotangent bundle scT ∗M over M is

defined in [Melrose 1994; Hassell and Vasy 1999; 2001], and scT ∗∂M M is that part of the bundle lying
over ∂M). This fibration is given in local coordinates by

(y, y′, σ, λ, µ,µ′, ν, ν ′, T )→ (y, µ, ν, λ). (4-4)

Similarly there is a natural fibration from k,bT ∗rb M2
k,b to scT ∗∂M M ×[0, λ0], which takes the form

(y, y′, σ, λ, µ,µ′, ν, ν ′, T )→ (y′, µ′, ν ′, λ). (4-5)

We also note that there are natural maps πL , πR mapping scT ∗bf M
2
b × [0, λ0] (see [Hassell and Vasy

1999; 2001]) to scT ∗∂M M × [0, λ0] which are induced by the projections T ∗M2
→ T ∗M onto the left,

respectively right, factor. In local coordinates, these are given by

πL(y, y′, σ, µ,µ′, ν, ν ′, λ)= (y, µ, ν, λ), πR(y, y′, σ, µ,µ′, ν, ν ′, λ)= (y′, µ′, ν ′, λ). (4-6)

We use these maps in Section 5.
The space k,bT ∗bf M

2
k,b is canonically diffeomorphic to s8T ∗bf M

2
b × [0, λ0], where s8T ∗bf M

2
b is the

scattering-fibered cotangent bundle of M2
b defined in [Hassell and Vasy 1999]. The space s8T ∗bf M

2
b has

a natural contact structure, and Legendre submanifolds with respect to this structure play an important
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role in encoding the oscillations of the spectral measure at the boundary of M2
k,b. In fact, three Legendre

submanifolds of s8T ∗bf M
2
b arise in the identification of the spectral measure as a Legendre distribution

(see [Guillarmou et al. 2012, Section 3]), which we now briefly describe. One is denoted scN ∗∂diagb,
which in coordinates used in (4-2) is given by

scN ∗∂diagb = {(y, y′, σ, µ,µ′, ν, ν ′) | y = y′, σ = 1, µ=−µ′, ν =−ν ′}; (4-7)

it is a sort of conormal bundle to the boundary of the diagonal ∂diagb,

∂diagb = {(y, y′, σ ) | y = y′, σ = 1}, (4-8)

in M2
b , and carries the “operator wavefront set” or “microlocal support” of scattering pseudodifferential

operators. Another is the incoming/outgoing Legendrian submanifold L], which in the coordinates used
in (4-2) is given by

L] = {(y, y′, σ, µ,µ′, ν, ν ′) | µ= µ′ = 0, ν =±1, ν ′ =−ν}. (4-9)

It has two components (corresponding to the sign of ν) and describes oscillations that are purely radial, that
is, purely incoming or outgoing. The third and most interesting Legendre submanifold is the propagating
Legendrian, denoted by Lbf. To describe it, let G denote the characteristic variety of H − λ2. Then
Lbf is given by the flowout from scN ∗∂diagb ∩ G by the bicharacteristic flow of H . It connects the
incoming and outgoing components of L] and has a conic singularity at each. As shown in [Hassell
and Vasy 1999, Proposition 7.1], (Lbf, L]) is a Legendre conic pair, and has an associated class of
polyhomogeneous-conormal Legendre distributions [Guillarmou et al. 2012, Section 3.2]

I m,p;rlb,rrb;B(M2
k,b, (L

bf, L],bf);�
1/2
k,b ) (4-10)

of order m at Lbf and p at L], and with polyhomogeneous expansion with respect to the index family B

at the boundary hypersurfaces at λ= 0. In terms of these space of half-densities we have:

Theorem 4.1 [Guillarmou et al. 2012, Theorem 3.10]. The spectral measure dE√H(λ), for 0<λ≤ λ0, is
a conormal Legendre distribution in the space (4-10) tensored with |λdλ|1/2 (this makes it a full density,
i.e., a measure, in λ), with m =− 1

2 , p = (n− 2)/2, rlb = rrb = (n− 1)/2, and where B is an index family
with index sets at the faces bf0, lb0, rb0, zf starting at order −1, n/2− 1, n/2− 1, n− 1, respectively.

4B. The high energy space X. The high energy space X is defined by X = [0, h0]×M2
b . The boundary

hypersurfaces [0, h0]×M × ∂M , [0, h0]× ∂M ×M and {0}×M2
b are denoted by rb, lb and mf (“main

face”), respectively, and the boundary hypersurface arising from [0, h0] × ∂M × ∂M is denoted by bf.
Notice that this space fits together with the low energy space: in the range λ ∈ (C−1,C) (where λ= 1/h),
the spaces both have the form (C−1,C)×M2

b , and the labeling of boundary hypersurfaces is consistent.
As before, we write σ = x/x ′. We use the coordinates (y, y′, σ, x ′, h) near bf and away from rb, and
the coordinates (y, y′, σ−1, x, h) near bf and away from lb. Away from bf, lb, rb we use the coordinates
(z, z′, h).
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The compressed cotangent bundle s8T ∗X is described in [Hassell and Wunsch 2008]. A basis of
sections of this bundle is given in the region x, x ′ ≤ ε by

dyi

xh
,

dy′i
x ′h

, d
( 1

xh

)
, d

( 1
x ′h

)
, d

(1
h

)
.

In terms of this basis, any point in s8T ∗X lying over this region can be written as

µ ·
dy
xh
+µ′ ·

dy′

x ′h
+ νd

( 1
xh

)
+ ν ′d

( 1
x ′h

)
+ τd

(1
h

)
. (4-11)

This defines local coordinates (y, y′, σ, x ′, h, µ, µ′, ν, ν ′, τ ), where (µ,µ′, ν, ν ′, τ ) are local coordinates
on each fiber. In the region x, x ′ ≥ ε, a basis of sections is

dzi

h
,

dz′i
h
, d

(1
h

)
,

and in terms of this basis, any point in s8T ∗X lying over this region can be written as

ζ ·
dz
h
+ ζ ′ ·

dz′

h
+ τd

(1
h

)
. (4-12)

This defines local coordinates (z, z′, h, ζ, ζ ′, τ ) on s8T ∗X over this region.
This compressed density bundle s8�(X) is defined to be that line bundle whose smooth nonzero sections

are given by a wedge product of a basis of sections for s8T ∗X . We find that |dg dg′dh/h2
| = |dg dg′dλ|

is a smooth nonzero section of this bundle.
We also note that there are natural maps from s8T ∗mf X→ scT ∗M , which (abusing notation) we will

also denote by πL , πR , which are induced by the projections onto the left, respectively right, factor
T ∗M2

→ T ∗M . In local coordinates, these are given by

πL(z, z′, ζ, ζ ′, τ )= (z, ζ ), πR(z, z′, ζ, ζ ′, τ )= (z′, ζ ′), (4-13)

away from the boundary hypersurface bf, or near bf by

πL(x, y, x ′, y′, µ, µ′, ν, ν ′, τ )= (x, y, µ, ν), πR(x, y, x ′, y′, µ, µ′, ν, ν ′, τ )= (x ′, y′, µ′, ν ′). (4-14)

The space s8T ∗mf X has a natural contact structure, as described in [Hassell and Wunsch 2008]. Legendre
submanifolds with respect to this contact structure are important in describing the singularities of the
spectral measure at high energies. We need to define three Legendre submanifolds s8N ∗diagb and L in
order to describe the spectral measure at high energies as a Legendre distribution on X (see [ibid.]). The
first of these, s8N ∗diagb, is associated to the diagonal submanifold diagb ⊂ {0}×M2

b , defined using the
coordinates above by

s8N ∗diagb = {(z, z′, h, ζ, ζ ′, τ ) | z = z′, ζ =−ζ ′, h = 0, τ = 0} (4-15)

away from bf, and

s8N ∗diagb = {(y, y′, σ, x ′, h, µ, µ′, ν, ν ′, τ ) | y = y′, σ = 1, h = 0, µ=−µ′, ν =−ν ′, τ = 0} (4-16)
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near bf. The second, L], lives at s8T ∗bf∪mf X and is defined in (4-9). The third, L , is obtained just as Lbf

was obtained from scN ∗∂diagb in the previous subsection, namely as the flowout by the bicharacteristic
flow of H starting from the intersection of s8N ∗diagb and the characteristic variety of h2 H − 1. Indeed,
the submanifolds Lbf and scN ∗∂diagb are essentially the boundary hypersurfaces of L and s8N ∗diagb

lying over bf∩mf. Associated to (L , L]) is a class of Legendre distributions [ibid., Section 6.5.2]

I m,p;rbf,rlb,rrb(X, (L , L#); s8�1/2). (4-17)

In terms of this space of half-densities, we have:

Theorem 4.2 [Hassell and Wunsch 2008, Corollary 1.2]. Suppose that (M, g) is nontrapping. Then
the spectral measure dE√H(λ) is a Legendre distribution on X , lying in the space (4-17) tensored with
|dλ|1/2, with m = 1

2 , p = (n− 2)/2, rbf =−
1
2 , rlb = rrb = (n− 1)/2. Here we use the order conventions

in Remark 4.3.

Remark 4.3. We use different order conventions from [Hassell and Wunsch 2008], to agree with those
used in [Guillarmou et al. 2012]. In terms of Equation (4.15) of [Hassell and Wunsch 2008], the order
convention in the present paper corresponds to taking N = 2n (not 2n + 1 as in [ibid.]), that is, the
total space dimension, but not including the λ dimension, and taking the fiber dimensions fbf = 0 and
flb = frb = n, again not including the λ dimension. This has the effect that the orders in the present paper
are 1

4 larger at mf= M2
b ×{h = 0}, and 1

4 smaller at bf, lb and rb, compared to [ibid.], and explains the
discrepancies in the orders above compared to those given in Corollary 1.2 of [ibid.]. (An advantage of
the ordering convention used here is that a semiclassical pseudodifferential operator of (semiclassical)
order m, multiplied by |dh/h2

|
1/2
= |dλ|1/2 becomes a Legendre distribution of the same order m at the

conormal bundle of the diagonal in mf.)

5. Microlocal support

Recall from the end of Section 1 our strategy for proving Theorem 1.3, involving estimates (1-9). The
elements Qi of our partition of unity will be chosen to be pseudodifferential operators lying in the calculus
of operators introduced in [Guillarmou and Hassell 2008, Definition 2.7]. In view of Theorem 4.1, we
need to understand what happens when a conormal Legendre distribution F ∈ I m,rlb,rrb,B(M2

k,b,3;�
1/2
k,b )

is pre- and postmultiplied by such operators. We shall use the notation 9m
k (M, �

1/2
k,b ) to denote what

in [ibid.] was written 9m,E(M, �̃1/2
b ), where the index family E assigns the C∞ index family at sc, bf0

and zf and the empty index family at all other boundary hypersurfaces. Such operators have kernels
defined on the space M2

k,sc, defined in [ibid.], that are conormal of order m to the diagonal, uniformly to
the boundary, smooth away from the diagonal, and rapidly vanishing at all boundary hypersurfaces not
meeting the diagonal. As shown in [ibid., Proposition 2.10], 90(M, �1/2

k,b ) is an algebra. It follows, using
Hörmander’s “square root trick” [1985, Section 18.1] that such kernels act as uniformly bounded (in λ)
operators on L2(M).

In this section, we shall work exclusively on the low energy space M2
k,b; the corresponding high energy

estimates are given in Section 7A. We consider operators Q, Q′ such that:
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• Q, Q′ are of order −∞, i.e., Q, Q′ ∈9−∞k (M, �1/2
k,b ), with compactly supported symbols. (5-1)

• Q, Q′ have kernels supported close to the diagonal, inside the region {σ := x/x ′ ∈ [1/2, 2]}. (5-2)

With these assumptions, the kernels of Q, Q′ are smooth (across the diagonal) on the space M2
k,sc.

Viewed as distributions on M2
k,b (which has one fewer blowup than M2

k,sc) the kernels have a conic
singularity at the boundary of the diagonal, ∂diagb. As shown in [Hassell and Vasy 2001, Section 5.1], this
means that they are Legendre distributions in I 0,∞,∞;(0,0,∅,∅)(M2

k,b,
scN ∗∂diagb;�

1/2
k,b ), i.e., Legendre

distributions of order 0 associated to scN ∗∂diagb (see (4-7)), with the C∞ index set 0 at bf0 and zf, and
vanishing in a neighborhood of lb, rb, lb0 and rb0 (which is of course a trivial consequence of (5-2)).

Remark 5.1. The composition QF or F Q′ is always well-defined when F is a Legendre distribution
on M2

k,b and Q, Q′ are as above, since F can be regarded as a map from xa L2(M) to x−a L2(M) for
sufficiently large a ∈ R, depending smoothly on λ ∈ (0, λ0), while pseudodifferential operators of order 0
are bounded on xa L2(M) (uniformly in λ) for any a.

To state our results, we need to introduce some notation and define the notion of the microlocal support
of F . Let 3 ⊂ scT ∗bf M

2
b be the Legendre submanifold associated to F . We always assume that 3 is

compact. Recall from [Hassell and Wunsch 2008, Section 4] that 3 determines two associated Legendre
submanifolds 3lb and 3rb that are the bases of the fibrations on ∂lb3 and ∂rb3, respectively. These may
be canonically identified with Legendre submanifolds of scT ∗M . We also define 3′ by negating the fiber
coordinates corresponding to the right copy of M , i.e.,

q ′ = (y, y′, x/x ′, µ, µ′, ν, ν ′) ∈3′ ⇐⇒ q = (y, y′, x/x ′, µ,−µ′, ν,−ν ′) ∈3. (5-3)

Similarly we define 3′rb by negating the fiber coordinates:

q ′ = (y′, µ′, ν ′) ∈3′rb ⇐⇒ q = (y′,−µ′,−ν ′) ∈3rb.

We also define 3′, 3lb, 3′rb by

3′ =3′×[0, λ0], 3lb =3
′

lb×[0, λ0], 3′rb =3
′

rb×[0, λ0]. (5-4)

To define the microlocal support, WF′(F), of F we first recall from [Guillarmou et al. 2012] that
F ∈ I m,rlb,rrb,B(M2

k,b,3;�
1/2
k,b ) means F can be decomposed as F = F1+ F2+ F3+ F4+ F5+ F6, where

• F1 is supported near bf and away from lb, rb;

• F2 is supported near bf∩ lb;

• F3 is supported near bf∩ rb;

• F4 is supported near lb and away from bf;

• F5 is supported near rb and away from bf;

• F6 vanishes rapidly at bf, lb, rb and is polyhomogeneous on M2
k,b with index family B;

and each Fi , 1≤ i ≤ 5 has an oscillatory representation as follows:
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• F1 is a finite sum of terms of the form (up to rapidly vanishing terms which may be included in F6)

ρm−k/2+n/2
∫

Rk
ei8(y,y′,x/x ′,v)/ρa(λ, ρ, y, y′, σ, v) dv ω, (5-5)

where 8 locally parametrizes 3, ω is a nonzero section of the half-density bundle �1/2
k,b , compactly

supported in v, and

a is polyhomogeneous conormal in λ with index set Bbf0 and smooth in all other variables. (5-6)

• F2 is a finite sum of terms of the form (up to rapidly vanishing terms which may be included in F6)

σ rlb−k/2ρ ′m−(k+k′)/2+n/2
∫

Rk+k′
ei81(y,v)/ρei82(y,y′,σ,v,w)/ρ′a(λ, ρ ′, y, y′, σ, v,w) dv dw ω, (5-7)

where 8=81+ σ82 locally parametrizes 3 (in particular, 81 locally parametrizes 3lb), and a satisfies
(5-6).

• F3 is a finite sum of terms of the form (up to rapidly vanishing terms which may be included in F6)

ρm−(k+k′)/2+n/2σ̃ rrb−k/2
∫

Rk+k′
ei8′1(y

′,v)/ρ′ei8′2(y,y
′,σ̃ ,v,w)/ρa(λ, ρ, y, y′, σ̃ , v, w) dv dw ω, (5-8)

where σ̃ = ρ ′/ρ = σ−1 and 8=8′1+ σ̃8
′

2 locally parametrizes 3 (in particular, 8′1 locally parametrizes
3rb), and a satisfies (5-6).

• F4 is a finite sum of terms of the form

ρrlb−k/2
∫

Rk
ei81(y,v)/ρa(λ, ρ, y, z′, v) dv ω, (5-9)

where 8 parametrizes 3lb and a is polyhomogeneous at bf0 and lb0 with index sets Bbf0,Blb0 .

• F5 is a finite sum of terms

(ρ ′)rrb−k/2
∫

Rk
ei8′1(y

′,v′)/ρ′a(λ, ρ ′, y′, z, v) dv ω, (5-10)

where 8′ parametrizes 3rb and a is polyhomogeneous at bf0 and rb0 with index sets Bbf0,Brb0 .

Then we define the microlocal support WF′(F) of F to be a closed subset of 3′∪3lb∪3
′

rb as follows:
We say that (q ′, λ)∈3′ is not in WF′(F) if there is a neighborhood of (q, λ)∈3×[0, λ0] in which F has
order∞. In terms of the oscillatory integral representation (5-5), say, the condition that F has order infinity
at (q, λ) is equivalent to a vanishing rapidly in a neighborhood of the point (λ, 0, y, y′, σ, v) which corre-
sponds under (5-3) to (q, λ) in the sense that dy,y′,σ,ρ(8(y, y′, x/x ′, v)/ρ)=q and dv8(y, y′, x/x ′, v)=0
(by nondegeneracy there is only one v with this property). Similar considerations apply to (5-7) and
(5-8). Likewise, we say that (q, λ) ∈ 3lb is not in WF′(F) if there is a neighborhood of the fiber (see
(4-4)) of (q, λ) ∈ 3lb × [0, λ0] in which F has order ∞, and (q ′, λ) ∈ 3′rb is not in WF′(F) if there
is a neighborhood of the fiber of (q, λ) ∈ 3rb × [0, λ0] in which F has order ∞. The fiber here is
a copy of M . In terms of the oscillatory integral representation (5-7), the condition that F has order
infinity in a neighborhood of the fiber of (q, λ)= (y, µ, ν, λ) ∈3lb is equivalent to a vanishing rapidly



RESTRICTION AND SPECTRAL MULTIPLIER THEOREMS 921

in a neighborhood of the point (λ, ρ ′, y, y′, 0, v, w) for all (ρ ′, y′, v, w) such that dy,ρ(81/ρ)= q and
dv81 = 0. Similarly, in (5-9) the condition is that a vanishes rapidly in a neighborhood of the point
(λ, 0, y, z′, v) for all (z′, v) such that dy,ρ(81/ρ)= q and dv81 = 0.

These components of WF′(F) will be denoted by WF′bf(F), WF′lb(F) and WF′rb(F), respectively.
Note that if F ∈ I m,rlb,rrb,B(3), then F is rapidly decreasing at bf, lb and rb if and only if WF′(F) is

empty. Also note that if WF′lb(F) is empty, then ∂lb3×[0, λ0] is disjoint from WF′bf(F), but the converse
need not hold: if the kernel of F is supported away from bf then certainly WF′bf(F) will be empty, but
WF′lb(F) need not be.

This definition makes sense also for pseudodifferential operators Q of order−∞, with compact operator
wavefront set. In the case of a pseudodifferential operator, the Legendre submanifold is scN ∗∂diagb,
defined in (4-7), and the components 3lb∪3

′

rb are empty. Since scN ∗∂diagb is canonically diffeomorphic
to scT ∗∂M M , we will always consider the microlocal support WF′(Q) of a pseudodifferential operator Q
of differential order −∞ to be a subset of scT ∗∂M M ×[0, λ0].

Lemma 5.2. Assume that F ∈ I m,rlb,rrb;B(M2
k,b,3;�

1/2
k,b ) is associated to a compact Legendre submanifold

3 and that Q ∈9−∞k (M;�1/2
k,b ) is of differential order −∞, with compact operator wavefront set. Then

QF is also a Legendre distribution in the space I m,rlb,rrb;B(M2
k,b,3;�

1/2
k,b ) and we have

WF′lb(QF)⊂WF′(Q)∩WF′lb(F),

WF′bf(QF)⊂ π−1
L WF′(Q)∩WF′bf(F),

WF′rb(QF)⊂WF′rb(F),

(5-11)

where πL , πR are as in (4-6). Moreover, if Q is microlocally equal to the identity on πL(WF′bf(F)) and
WF′lb(F), then QF − F ∈ I∞,∞,rrb;B(M2

k,b,3;�
1/2
k,b ), i.e., it vanishes to infinite order at lb and bf.

There is of course a corresponding theorem for composition in the other order, which is obtained by
taking the adjoint of the lemma above. Combining the two we obtain:

Corollary 5.3. Suppose that F and Q, Q′ are as above. Then

WF′lb(QF Q′)⊂WF′(Q)∩WF′lb(F),

WF′bf(QF Q′)⊂ π−1
L WF′(Q)∩π−1

R WF′(Q′)∩WF′bf(F),

WF′rb(QF Q′)⊂WF′(Q′)∩WF′rb(F).

(5-12)

Proof of Lemma 5.2. We decompose as above F = F1+ F2+ F3+ F4+ F5+ F6, and consider each piece
Fi separately.

• F1 term. Using the notation in (5-5), the composition QF1 takes the form

(2π)−n
∫
∞

0

∫
ei((y−y′′)·µ+(1−ρ/ρ′′)ν)/ρq(λ, ρ, y, µ, ν)

× (ρ ′′)m−k/2+n/2ei8(y′′,y′,ρ′/ρ′′,v)/ρ′′a(λ, ρ ′, y′′, y′, ρ ′/ρ ′′, v) dv dµ dν
dy′′ dρ ′′

ρ ′′n+1 ω. (5-13)
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Here the measure λndg′′, which arises from the combination of half-densities in Q and F , is equal
to dy′′dρ ′′/ρ ′′n+1 times a smooth nonzero factor, which has been absorbed into the a term. Writing
σ ′′ = ρ/ρ ′′, this can be expressed as

(2π)−nρm−k/2−n+n/2
∫

ei((y−y′′)·µ+(1−σ ′′)ν+σ ′′8(y′′,y′,σ ′′/σ,v))/ρq(λ, ρ, y, µ, ν)(σ ′′)m−k/2+n/2−n−1

× a(λ, ρ ′, y′′, y′, σ ′′σ−1, v) dv dµ dν dy′′ dσ ′′ ω.

For ρ ≥ ε > 0 the phase is not oscillating and this is polyhomogeneous conormal at bf0 with the same
index set Bbf0 as for a. For ρ small, we perform stationary phase in the (y′′, σ ′′, µ, ν) variables. The
phase has a nondegenerate stationary point where y′′ = y, σ ′′ = 1, µ= dy8, ν =8+ σ

−1dσ8, and we
obtain an asymptotic expansion as ρ→ 0 of the form

ρm−k/2+n/2
∫

Rk
ei8(y,y′,σ,v)/ρ ã(λ, ρ, y, y′, σ, v) dv ω, (5-14)

where

ã(λ, ρ, y, y′, σ, v)

= λ
−

n
2

M∑
j=0

ρ j
(
(∂y′′ ·∂µ+∂σ ′′∂ν)

j

i j j !
q(λ,ρ,y,µ,ν)(σ ′′)m−

k
2+

n
2−n−1a(λ,ρ ′,y′′,y′,σ ′′/σ,v)

)
g
∣∣∣∣y=y′′,σ ′′=1
µ=dy8
ν=8+σ−1dσ8

+ O(ρM+1). (5-15)

In particular, this is a Legendre distribution associated to 3 of the same order, and with the same
index family, as F . Moreover, we see from (5-14) and (5-15) that the microlocal support WF′bf(QF1) is
contained in WF′bf(F), as well as contained in π−1

L WF′(Q).
If q = 1+ O(ρ∞) on πL(WF′bf(F)), then in the sum over j in (5-15), only the j = 0 term is nonzero,

because in all other terms, either a=0 or q=1+O(ρ∞) (implying that any derivative of q is O(ρ∞)) when
evaluated at y = y′′, σ ′′ = 1, µ= dy8, ν =8+ σdσ8. Therefore, in this case, QF1 = F1 mod O(ρ∞).

• F2 term. In the notation (5-7), the composition QF2 takes the form

(2π)−n
∫

ei((y−y′′)·µ+(1−σ ′′)ν)/ρq(λ, ρ, y, µ, ν)ρ ′′rlb−k/2
ρ ′

m−rlb−k′/2+n/2ei81(y,v)/ρ′′ei82(y′′,y′,σ ′′/σ,v,w)/ρ′

× a(λ, ρ ′, y′′, y′, σ/σ ′′, v, w) dv dw dµ dν
dy′′ dρ ′′

ρ ′′n+1 ω.

This can be written as

(2π)−nρrlb−k/2−nρ ′
m−rlb−k′/2+n/2

×

∫
ei((y−y′′)·µ+(1−σ ′′)ν+σ ′′81(y′′,v)+σ82(y′′,y′,σ/σ ′′,v,w))/ρ

× q(λ, ρ, y, µ, ν)(σ ′′)−rlb+k/2+n−1a(λ, ρ ′, y′′, y′, σ/σ ′′, v, w) dv dw dµ dν dy′′ dσ ′′ ω.

Now we perform stationary phase in the (y′′, σ ′′, µ, ν)-variables. The phase has a nondegenerate stationary
point where y′′ = y, σ ′′ = 1, µ= dy81, ν =81−dσ8, and the rest of the argument to bound WF′bf(QF)
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is the same as for F1. We also see from the stationary phase expansion that WF′lb(QF) is contained in
both WF′(Q) and WF′lb(F).

• F4 term. This works just as for the F2 term.

• F3 term. In the notation (5-8), the composition QF3 takes the form

(2π)−n
∫

ei((y−y′′)·µ+(1−σ ′′)ν)/ρq(λ, ρ, y, µ, ν)(ρ ′′)m−(k+k′)/2+2n/4(σ̃ σ ′′)rrb−k/2

×

∫
ei8′1(y

′,v)/ρ′ei8′2(y
′,y′′,σ̃ σ ′′,v,w)/ρ′′a(λ, ρ ′′, y′′, y′, σ̃ σ ′′, v, w) dv dw dµ dν

dy′′ dρ ′′

(ρ ′′)n+1 ω.

This can be written as

(2π)−n
∫

ei((y−y′′)·µ+(1−σ ′′)ν+σ ′′8′2(y
′,y′′,σ̃ σ ′′,v,w))/ρq(λ, ρ, y, µ, ν)(ρ/σ ′′)m−(k+k′)/2

× (σ̃ σ ′′)rrb−k/2ei8′1(y
′,v)/ρ′a(λ, ρ/σ ′′, y′′, y′, σ̃ σ ′′, v, w) dv dw dµ dν

dy′′ dσ ′′

σ ′′
ω.

To investigate the behavior of this integral locally near a point (x = 0, σ̃ = 0, y, y′) ∈ bf∩ rb, we perform
stationary phase in the (y′′, σ ′′, µ, ν)-variables. The phase has a nondegenerate stationary point where
y′′ = y, σ ′′ = 1, µ= dy8

′

2, ν =8
′

2+ σ̃dσ̃8′2, and we get an asymptotic expansion as ρ→ 0 of the form

ρm−(k+k′)/2+2n/4σ̃ rrb−k/2
∫

ei8′1(y
′,v)/ρ′ei8′2(y,y

′,σ̃ ,v,w)/ρ ã(λ, ρ, y, y′, σ̃ , v, w) dv dw ω,

where ã(λ, ρ, y, y′, σ̃ , v, w) is given by

M∑
j=0

ρ j
(
(−i(∂y′′ · ∂µ+ ∂σ ′′∂ν))

j

j !
q(λ, ρ, y, µ, ν)

× (σ ′′)−m+rrb+k′/2a(λ, ρ ′′, y′′, y′, σ̃ σ ′′, v, w)
)

g
∣∣∣∣y=y′′,σ ′′=1
µ=dy8

′

1
ν=8′2+σ̃dσ̃8′2

+ O(ρM+1). (5-16)

This is a Legendre distribution associated to 3 of the same order as F , and with the same index family.
Moreover, we see from the last two formulas that the microlocal support WF′bf(QF3) is contained in
WF′bf(F), as well as contained in π−1

L WF′(Q). Finally, if q=1+O(ρ∞) on πL(WF′bf(F)), then in the sum
over j in (5-16), only the j = 0 term is nonzero, because in all other terms, either a= 0 or q = 1+O(ρ∞)
(implying that any derivative of q is O(ρ∞)) when evaluated at y= y′′, σ ′′=1, µ=dy8

′

2, ν=8
′

2+σdσ8′2.
Therefore, in this case, QF3 = F3 mod O(x∞).

• F5 term. Writing F5 in the form (5-10), we investigate QF5 near a point (z, ρ ′, y′), where z ∈ M◦. In
this case, we can find a neighborhood W of z with W ⊂ M◦, and then the set

{(z, z′) ∈ supp Q | z ∈W }

is contained in W ×W ′ for some W ′ with W ′ ⊂ M◦, since the support of Q is contained in the set where
σ ∈ [1/2, 2]. But in W ×W ′, the kernel of Q is smooth since Q has differential order −∞. Therefore, in
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this region the composition is given by an integral∫
Q(z, z′′)(ρ ′)rrb−k/2

∫
ei81(y′,v)/ρ′a(λ, z′′, y′, ρ ′, v) dv dz′′ ω,

with Q(z, z′′) smooth, and this has the form

(ρ ′)rrb−k/2
∫

ei81(y′,v)/ρ′ ã(λ, z, y′, ρ ′, v) dv ω

for some ã depending polyhomogeneously on λ and smoothly in its other arguments. Moreover, if for a
fixed (λ, y′, v), a is O((ρ ′)∞) in a neighborhood of {(λ, z, y′, 0, v) | z ∈ M}, then the same is true of ã.
Therefore, WF′rb(QF5) is contained in WF′rb(F5) but is (in general) no smaller.

• Since WF′(F6)=WF′(QF6)=∅, the F6 term makes no contribution to the wavefront set.

This completes the proof. �

A similar result holds if F is associated to a Legendre conic pair rather than a single Legendre
submanifold. However, rather than giving a full analogue of the result above, we give the following
special cases which suffice for our needs.

Lemma 5.4. (i) Suppose that F ∈ I m,p;rlb,rrb;B(M2
k,b, (3,3

]);�
1/2
k,b ) is a Legendre distribution on

M2
k,b associated to a conic Legendrian pair (3,3]), and suppose that Q ∈ 9−∞k (M;�1/2

k,b ) is a scat-
tering pseudodifferential operator such that Q is microlocally equal to the identity operator near
πL(3 ∪ 3

]). Then QF − F ∈ I∞,∞;∞,rrb;B(M2
k,b, (3,3

]);�
1/2
k,b ), so it vanishes to infinite order

at lb and bf. Similarly, if Q is microlocally equal to the identity operator near πR(3 ∪ 3
]), then

F Q− F ∈ I∞,∞;rlb,∞;B(M2
k,b, (3,3

]);�
1/2
k,b ) vanishes to infinite order at bf and rb.

(ii) Suppose that F is as above, and that Q, Q′ are scattering pseudodifferential operators as above. If

π−1
L WF′(Q)∩π−1

R WF′(Q′)∩3] =∅, (5-17)

then QF Q′ ∈ I m,rlb,rrb;B(M2
k,b,3;�

1/2
k,b ); in particular, WF′bf(QF Q′) is disjoint from (3])′.

Proof. The proof of (i) is similar to the one above. To prove (ii), decompose F = F3 + F], where
F3 ∈ I m,r (M2

k,b,3;�
1/2
k,b ) is a Legendre distribution associated only to 3 and F] is localized sufficiently

close to 3]. Here, sufficiently close means that when we write down QF]Q′ as a (sum of) integral(s),
using a phase function that locally parametrizes of (3,3]), then (5-17) implies that the total phase is
nonstationary on the support of the integrand. The usual integration-by-parts argument then shows that
this kernel is rapidly decreasing at bf, lb, rb and hence trivially satisfies the conclusion of the lemma. On
the other hand, Lemma 5.2 applies to F3 and completes the proof. �

6. Low energy estimates on the spectral measure

6A. Pointwise bounds on Legendre distributions. Now we give a pointwise estimate on Legendre
distributions of a particular type. We begin with a trivial estimate.
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Proposition 6.1. Let 3⊂ scT ∗bf(M
2
b ) be a Legendre submanifold that projects diffeomorphically to bf.

Suppose that u ∈ I−n/2−α,−α,−α;B(M2
k,b,3;�

1/2
k,b ). Let

b =min(min Bbf0 + n, min Blb0 + n/2, min Brb0 + n/2, min Bzf). (6-1)

Then, as a multiple of the half-density |dg dg′dλ/λ|1/2, we have a pointwise estimate

|u| ≤ Cλb(ρ−1
+ (ρ ′)−1)α.

This is trivial since in this case, u may be written as an oscillatory function with no integration, and
the order of vanishing/growth at the boundary may be determined by inspection from (5-5)–(5-10). (The
discrepancies of n and n/2 in (6-1) come about from comparing the nonvanishing half-density ω on M2

k,b
with the metric half-density |dg dg′dλ/λ|1/2 = ρ−n/2

lb0
ρ
−n/2
rb0

ρ−n
bf0

ω.)
Now consider a situation in which the Legendre submanifold does not project diffeomorphically to

bf. Let ∂diagb denote the boundary of the diagonal in M2
b , as in (4-8). Recall that we have coordinates

(y, y′, σ ) on bf near ∂diagb. Let w= (y− y′, σ−1), and let κ be the corresponding scattering coordinates
dual to w. Then ∂diagb is given by {w = 0} as a submanifold of bf and the contact form on scT ∗bf M

2
b

takes the form
dν−µ · dy− κ · dw. (6-2)

In these coordinates, the Legendre submanifold scN ∗∂diagb is given by {w= 0, µ= 0, ν = 0}. Let 3bf be
a Legendre submanifold contained in scT ∗bf M

2
b , denote by π the natural projection from scT ∗bf M

2
b → bf,

and for any q ∈3bf denote by dπ the induced map from Tq3
bf
→ Tπ(q)bf. We consider the following

situation in which the rank of dπ is allowed to change.

Proposition 6.2. Let3bf be as above. Suppose that3bf intersects scN ∗∂diagb at Gbf
=3bf

∩
scN ∗∂diagb

which is of codimension 1 in 3bf, and suppose that π |Gbf is a fibration, with (n− 1)-dimensional fibers, to
∂diagb. Assume further that dπ has full rank on 3bf

\Gbf, while

det dπ vanishes to order exactly n− 1 at Gbf. (6-3)

Suppose u ∈ I−n/2−α,−α,−α;B(M2
k,b,3

bf
;�

1/2
k,b ), and suppose that the (full) symbol of u vanishes to

order (n − 1)/2+ α on Gbf
× [0, λ0], where (n − 1)/2+ α ∈ {0, 1, 2, . . . }. Then as a multiple of the

scattering half-density |dg dg′dλ/λ|1/2, we have a pointwise estimate

|u| ≤ Cλb
(

1+ |w|
ρ

)α
∼ Cλb(1+ λd(z, z′))α, (6-4)

with b as in (6-1). Here d(z, z′) is the Riemannian distance between z, z′ ∈ M◦.

Remark 6.3. Notice that the condition on π at Gbf implies that dπ has corank at least n − 1 on Gbf,
hence that det dπ must vanish to order at least n− 1 there. Condition (6-3) is therefore that the order of
vanishing at Gbf is the least possible, which is a nondegeneracy assumption concerning the manner in
which the rank of the projection changes at Gbf. It implies, in particular, that 3bf intersects scN ∗∂diagb

cleanly.
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Proof. Let q be an arbitrary point in Gbf. By rotating in thew variables, we can ensure that dκ1|Gbf vanishes
at q (since κ1, . . . , κn are coordinates on the fibers of scN ∗∂diagb→∂diagb, and since π |Gbf :Gbf

→∂diagb

has (n−1)-dimensional fibers). We claim that (y, w1, κ2, . . . , κn) furnish coordinates on 3bf locally near
q. To see this, first note that dκ2|Gbf, . . . , dκn|Gbf are linearly independent at q, and furnish coordinates
on the fibers of Gbf

→ ∂diagb. Next, since ∂diagb is (n− 1)-dimensional, Gbf is 2(n− 1)-dimensional,
and the fibers of Gbf

→ ∂diagb are (n− 1)-dimensional, it follows that Gbf
→ ∂diagb is a submersion.

Since yi are local coordinates on the base ∂diagb, we see that (y, κ2, . . . , κn) furnish coordinates on Gbf

locally near q . Since w1 = 0 on Gbf, to prove the claim it suffices to show that dw1|3bf 6= 0 at q .
To see this, we use (6-3) which implies that dπ has corank exactly n − 1 at q, and hence there is

a tangent vector V ∈ Tq3
bf such that dπ(V ) is not tangent to ∂diagb. Therefore, it has a nonzero

∂w j component, which means that some dw j does not vanish at q when restricted to 3bf. But since
3bf is Legendrian, the form (6-2) vanishes when restricted to 3bf, which implies that its differential
ω ≡ dµ · dy+ dκ · dw also vanishes on 3bf. Hence ω(∂κ j , V )= 0 at q , j ≥ 2, since ∂κ j and V are both
tangent to 3bf. But this implies that dw j (V )= 0 for j ≥ 2, i.e., V has no ∂w j component for j ≥ 2. It
follows that dw1(V ) 6= 0, showing that dw1|3bf 6= 0 at q . It follows that (y, w1, κ2, . . . , κn) indeed furnish
coordinates on 3bf locally near q. We will use the notation w = (w2, . . . , wn) and κ = (κ2, . . . , κn).
Notice that w1|3bf is a boundary defining function for Gbf, as a submanifold of 3bf, locally near q .

Now we write the other coordinates on 3bf as functions of (y, w1, κ) as follows:

wi =Wi (y, w1, κ), µi = Mi (y, w1, κ), κ1 = K (y, w1, κ), ν = N (y, w1, κ) on 3bf. (6-5)

Notice that the vanishing of (6-2) on 3bf implies that

dN =
n−1∑
i=1

Mi dyi + K dw1+

n∑
j=2

κ j dW j on 3bf. (6-6)

By equating the coefficients of dκ , dy and dw1 on each side of (6-6), we obtain the identities
n∑

j=2

v j
∂W j (y, w1, v)

∂vi
=
∂N (y, w1, v)

∂vi
, i = 2, . . . , n,

n∑
j=2

v j
∂W j (y, w1, v)

∂yi
+Mi (y, w1, v)=

∂N (y, w1, v)

∂yi
, i = 1, . . . , n− 1,

n∑
j=2

v j
∂W j (y, w1, v)

∂w1
+ K (y, w1, v)=

∂N (y, w1, v)

∂w1
.

(6-7)

We claim that the function

8(y, w1, w, v)=

n∑
j=2

(w j −W j (y, w1, v))v j + N (y, w1, v) (6-8)

parametrizes 3bf locally near q . Notice that W , M and N are all O(w1) at q . Hence, 8=w ·v+O(w1),
so the dv j8 = w j + O(w1), where 2 ≤ j ≤ n, have linearly independent differentials at the point
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q̃= (y(q), w=0, ν=0, µ=0, κ1=0, κ(q)) corresponding to q , i.e.,8 is a nondegenerate parametrization
of 3bf near q . Next, using the first equation in (6-7) we find that

dv j8= w j −W j (y, w1, v). (6-9)

So w =W when dv8= 0. The Legendrian submanifold parametrized is then given by (using (6-7)){(
y, w1,W,−v · ∂W

∂y
+
∂N
∂y
,−v ·

∂W
∂w1
+
∂N
∂w1

, v, N
)}
= {(y, w1,W,M, K , v, N )} =3bf. (6-10)

Notice that the second derivative matrix d2
vv8 vanishes atw1=0, so we can write d2

vv8=w1 A+O(w2
1),

where A is a smooth (n− 1)× (n− 1) matrix function of (y, v), where we write y = (y, w1, w). We
claim that A is invertible at (and therefore, near) q̃ . To see this, we start from the fact that the map

{(y, v)} → {(y, dy8,8, dv8)}

is locally a diffeomorphism onto its image. (This follows from the nondegeneracy condition on 8, that the
differentials d(∂8/∂v j ) are linearly independent.) Note that the determinant of the differential of the map

{(y, dy8,8, dv8)} → {(y, dv8)}

is equal to the determinant of the differential of the map

{(y, dy8,8, dv8) | dv8= 0} → y,

and this map is π |3bf (in local coordinates). It follows that the order of vanishing of det dπ at q is the
same as the order of vanishing of the determinant of the differential of the map

{(y, v)} → {(y, dv8)}

at q̃ . But this determinant is simply det d2
vv8. It follows from (6-3) that det d2

vv8 vanishes to order exactly
n− 1 at q̃ . But this implies that the matrix A is invertible at q̃, as claimed.

Now we write u as an oscillatory integral. It suffices to prove the proposition assuming that u has
symbol supported close to q and that u itself is supported close to ∂diagb, since away from ∂diagb the
result follows from Proposition 6.1. It can then be written with respect to the phase function 8: modulo a
smooth term vanishing to order O(ρ∞), u is a multiple of the scattering half-density |dg dg′dλ/λ|1/2

given by

ρ−(n−1)/2−αλn
∫

ei8(y,w,v)/ρa(λ, ρ, y, v) dv|dg dg′dλ/λ|1/2. (6-11)

Moreover, we may assume that a is a function only of λ, ρ, y, w1 and v, polyhomogeneous conormal
in λ with index set Bbf0 , smooth and compactly supported in the remaining variables, and vanishing to
order (n− 1)/2+α at ρ = w1 = 0. It can therefore be written as

a =
(n−1)/2+α−1∑

j=0

ρ jw
(n−1)/2+α− j
1 a j (λ, y, w1, v)+ ρ

(n−1)/2+αb(λ, ρ, y, w1, v), (6-12)

with a j and b polyhomogeneous in λ.
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We begin with the easy case |w1| ≤ ρ. In this case, a in (6-12) is uniformly bounded. We split into
the regions where |w1| ≥ c|w| for some c > 0, and |w1| ≤ c|w|. The first region, where |w1| ≥ c|w|, is
trivial since then |w|/ρ is bounded, so all we are required to show is that the integral (6-11) is bounded
by a multiple of λb, b =min Bbf0 + n, which is clear since the integrand has this property pointwise. On
the other hand, if |w1| ≤ c|w|, then |w1| ≤ (n− 1)c|w j | for some j ≥ 2. For suitably small c this means
that dv j8 6= 0 sufficiently close to q̃, as dv j8= w j + O(w1) using (6-8). Then, by integrating by parts
N times with respect to v j in (6-11), we can gain a factor of CN (1+ |w|/ρ)−N for any N , showing that
a much stronger estimate than (6-4) holds.

From now on, then, we will assume that |w1| ≥ ρ. We begin by estimating the a0 term. The case
|w1| ≤ c|w| is treated just as above: by integrating by parts N times with respect to v j in (6-11) we gain
a factor CN (|w|/ρ)

N . With N = M + (n− 1)/2+α the resulting integrand enjoys a pointwise estimate
λb(|w|/ρ)−M for any desired M . So we assume in the rest of the proof that |w1| ≥ c|w|, and therefore
we can replace the RHS (1+ |w|/ρ)α in (6-4) by the equivalent quantity (|w1|/ρ)

α.
For fixed w1 6= 0, let us change variable from v1, . . . , vn−1 to θ1, . . . , θn−1, where

θi = w
−1/2
1 dvi8. (6-13)

Then
∂θi

∂v j
= w

−1/2
1 d2

viv j
8= w

1/2
1 Ai j , (6-14)

where Ai j is nonsingular as we have noted above. Therefore,

∂8

∂θ
=

(
∂θ

∂v

)−1 ∂8

∂v
= A−1θ. (6-15)

This shows that the θ coordinates are suitable coordinates in which to perform stationary phase computa-
tions. We proceed with a standard argument, which can be found in Sogge’s book [1993], for example.
We use the identity

ei8/ρ
=

(
ρ

w
1/2
1 iθ j

∂

∂v j

)
ei8/ρ,

which can be written as

ei8/ρ
=

(∑
k

ρ

iθ j
A jk

∂

∂θk

)
ei8/ρ . (6-16)

We also need the following observation: by applying (6-14) repeatedly, we obtain∣∣∣∣∂ |α|A∂αθ

∣∣∣∣≤ C |w1|
−|α|/2

≤ Cρ−|α|/2. (6-17)

In the θ coordinates, we are trying to prove the estimate∣∣∣∣ρ−(n−1)/2−α
∫

Rn−1
wα1 ei8(y,w,θ)/ρ ã0(λ, ρ, y, w1, θ) dθ

∣∣∣∣≤ C
(
w1
ρ

)α
λb. (6-18)
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Here the w(n−1)/2
1 factor was absorbed as a Jacobian factor, and ã0 is again smooth. Clearly this is

equivalent to a uniform bound on∣∣∣∣ρ−(n−1)/2λ−b
∫

Rn−1
ei8(y,w,θ)/ρ ã0(λ, ρ, y, w1, θ) dθ

∣∣∣∣. (6-19)

We introduce a partition of unity in (ρ, θ)-space, 1= χ0+
∑n−1

j=1 χ j , where χ0 is a compactly supported
function of θ/

√
ρ, and χ j is supported where |θ | ≥

√
ρ, and where θ j ≥ |θ |/(n−1). We can do this with

derivatives estimated by

|∇
(k)
θ χk | ≤ Cρ−k/2. (6-20)

The integral with χ0 inserted is trivial to estimate since it occurs on a set of measure ρ(n−1)/2. With χ j

inserted, we use the identity (6-16) M times, for M a sufficiently large integer. Thus we consider

ρ−(n−1)/2
∫
χ j

(∑
k

ρ

iθ j
A jk(y, θ)

∂

∂θk

)M

ei8(y,w,θ)/ρ ã0(λ, ρ, y, w1, θ) dθ

and integrate by parts M times. The result can be estimated by

Cρ−(n−1)/2+M
M∑

k=0

ρ−(M−k)/2
∫
|θ |≥
√
ρ

1supp χ j θ
−M−k
j dθ, (6-21)

where M − k derivatives fall on the χ j or A jk terms (via (6-17) and (6-20)), and at most k fall on a
θ
−p
j term. Note that on the support of χ j , we can estimate θ−1

j ≤ c|θ |−1. The θ integral is absolutely
convergent for M > n− 1, and∫

|θ |≥
√
ρ

|θ |−M−k dθ = Ckρ
−(M+k)/2+(n−1)/2

since dim θ = n− 1. Substitution of this into (6-21) gives a uniform bound since ã is polyhomogeneous
in λ with index set Bbf0+n. Moreover, since 8 and ã are smooth in w1, the bound is uniform as w1→ 0.

To treat the terms ai for i > 0 and b in (6-12), we perform the same manipulations as above, and we
end up with a uniform bound times Cρiw−i

1 , which is bounded for ρ ≤ w1. This completes the proof. �

6B. Geometry of Lbf. We collect here some facts concerning the geometry of the Legendre submanifold
Lbf (see Section 4A). We begin by defining

Gbf
= {(y, y′, σ, µ,µ′, ν, ν ′) ∈ scN ∗∂diagb | ν

2
+ hi jµiµ j = 1}

= {(y, y, 1, µ,−µ, ν,−ν) | ν2
+ hi jµiµ j = 1}.

Clearly, Gbf is an Sn−1-bundle over ∂diagb.

Lemma 6.4. The Legendre submanifold scN ∗∂diagb intersects Lbf cleanly at Gbf, and the projection
π : Lbf

→ bf satisfies (6-3).
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Proof. According to [Hassell and Vasy 2001], the Legendre submanifold Lbf is given by the flowout from
Gbf by the vector field

Vl =−ν

(
σ
∂

∂σ
+µ

∂

∂µ

)
+ h ∂

∂ν
+
∂h
∂µi

∂

∂yi
−
∂h
∂yi

∂

∂µi
, h =

∑
i, j

hi j (y)µiµ j (6-22)

(see [Guillarmou et al. 2012, Section 3.1]). Observe that at least one of the coefficients of ∂σ or ∂ν is
nonvanishing, so either σ̇ 6= 0 or ν̇ + ν̇ ′ 6= 0 under the flowout by Vl . Since σ = 1 and ν + ν ′ = 0 at
scN ∗∂diagb, we see that Vl is everywhere transverse to scN ∗∂diagb, so Gbf has codimension 1 in Lbf, and
intersects Lbf cleanly.

It remains to show that the projection π from Lbf to bf satisfies (6-3). First we choose coordinates on
Lbf. Near a point on Lbf at which |µ|2h := hi jµiµ j < 1, and therefore ν 6= 0, we can choose coordinates
(µ, y′, ε), where ε is the flowout time from Gbf along the vector field Vl . Coordinates on the base are
(y, y′, σ ). With the dot indicating derivative along the flow of Vl , i.e., d/dε, we have

σ̇ =−ν and ẏi
= 2hi jµ j on Gbf.

It follows that
σ = 1− νε+ O(ε2),

yi
= (y′)i + 2hi jµ jε+ O(ε2),

and we see that near Gbf,
∂σ

∂ε
6= 0,

∂yi

∂µ j
= εhi j

+ O(ε2),

which, using the positive-definiteness of hi j , shows that det dπ , where π is the map

Lbf
3 (µ, y′, ε) 7→ (y(µ, y′, ε), y′, σ (µ, y′, ε)),

vanishes to order exactly n− 1 as ε→ 0.
On the other hand, near a point on Lbf at which |µ|= 1, we can choose a coordinate µi which is nonzero.

Without loss of generality we suppose that i = 1. Then write y = (y2, . . . , yn−1) and µ= (µ2, . . . , µn−1).
We can take (ν, µ, y′, ε) as coordinates on Lbf. Calculating as above, we find that

y1
= y′1+ 2h1 jµ jε+ O(ε2),

yi
= (y′)i + 2hi jµ jε+ O(ε2), i ≥ 2,

σ = 1− νε+ O(ε2),

which shows that
∂y1

∂ε
> 0,

∂ yi

∂µ j
= εhi j

+ O(ε2),
∂σ

∂ν
=−ε+ O(ε2).

Again we find that det dπ , where π is the map

Lbf
3 (ν, µ, y′, ε) 7→ (y(ν, µ, y′, ε), y′, σ (ν, µ, y′, ε)),



RESTRICTION AND SPECTRAL MULTIPLIER THEOREMS 931

vanishes to order exactly n− 1 as ε→ 0. �

Lemma 6.5. There exists δ > 0 such that, if

q = (y, y′, σ, µ,µ′, ν, ν ′) ∈ Lbf and |ν+ ν ′|< δ,

then either q ∈ Gbf, or dπ : Tq Lbf
→ Tπ(q)bf is invertible, and hence π : L → bf is a diffeomorphism

locally near q.

Proof. We use the explicit description of Lbf given in [Hassell and Vasy 2001, Section 4]:

Lbf
=


( y, y′, σ,
ν, ν ′, µ, µ′

) ∣∣∣∣∣∣∣∣∣
∃(y0, µ̂0) ∈ S∗(∂M), s, s ′ ∈ (0, π), such that

σ = sin s/sin s ′, ν =− cos s, ν ′ = cos s ′,
(y, µ)= sin s exp(s H 1

2 h)(y0, µ̂0),

(y′, µ′)=− sin s ′ exp(s ′H 1
2 h)(y0, µ̂0),

∪T+∪T−∪F+∪F−, (6-23)

where
T± = {(y, y, σ,±1,∓1, 0, 0) | σ > 0, y ∈ ∂M},

F± = {(y, y′, σ,±1,±1, 0, 0) | σ > 0, ∃ geodesic of length π connecting y, y′}.

We see that ν = −ν ′ on Lbf only on Gbf
∪ T+ ∪ T−. A compactness argument shows that for any

neighborhood U of Gbf
∪ T+ ∪ T−, the set

{(y, y′, σ, µ,µ′, ν, ν ′) ∈ Lbf
| |ν+ ν ′|< δ}

is contained in U if δ is sufficiently small. So it is enough to show that Lbf projects diffeomorphically to
bf in some neighborhood of Gbf

∪ T+ ∪ T−, except at Gbf itself. Lemma 6.4 shows that Lbf
⊂

scT ∗bf M
2
b

projects diffeomorphically to the base bf in a sufficiently small deleted neighborhood of Gbf. Now
consider a neighborhood of T+ ∩ {σ ≤ 1− ε} for some small ε. As shown in [Hassell and Vasy 2001],
near this set, (y′, µ′, σ ) are smooth coordinates. Also, we have from (6-23) that

(y, µ)= σ exp
(

s ′− s
sin s ′

H 1
2 h

)
(y′, µ′).

Using the expression (6-22) for the Hamilton vector field, we find that, near T+,

yi
= y′i + s ′−s

sin s ′
hi jµ′j + O(|µ′|2)= (1− σ)hi jµ′j + O

(
(sin s)2+ (sin s ′)2+ |µ′|2

)
,

which shows that at T+, where sin s = sin s ′ = µ′ = 0, we have

∂yi

∂µ′j

∣∣∣∣
y′,σ
= (1− σ)hi j .

Since (y′, µ′, σ ) furnish smooth coordinates near T+, this equation and the positive-definiteness of hi j

show that also (y, y′, σ ) furnish smooth coordinates in a neighborhood of T+ when σ < 1−ε. (Of course,
we know from Lemma 6.4 that this cannot hold uniformly up to σ = 1). A similar argument holds for
σ > 1+ ε and for T−. �
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Remark 6.6. These lemmas will be applied to distributions of the form

Q(λ)dE√L(λ)Q(λ), (6-24)

where Q is a pseudodifferential operator with small microsupport. Notice that by taking the microsupport
sufficiently small, we can localize the microsupport of (6-24) to points (y, y′, σ, µ,µ′, ν, ν ′) such that y
is close to y′, µ is close to µ′ and ν is close to ν ′. However, we cannot localize so that σ is close to 1,
simply because if x, x ′ ∈ (0, ε), then σ = x/x ′ can take any value in (0,∞). Therefore, it is important to
understand the properties of π on L near the whole of the sets T±, not just close to scN ∗∂diagb.

6C. Proof of Theorem 1.3, part (A). By Proposition 1.12, to prove part (A) of Theorem 1.3 it is sufficient
to prove Theorem 1.13 for L = H and for λ≤ λ0, that is, to prove the estimates∣∣(Qi (λ)dE ( j)

√
H
(λ)Qi (λ))(z, z′)

∣∣≤ Cλn−1− j (1+ λd(z, z′))−(n−1)/2+ j , j ≥ 0. (6-25)

Our starting point is Theorem 4.1. As an immediate consequence of this theorem, the j -th λ-derivative
dE ( j)
√

H
(λ) is a Legendre distribution in the space

I m− j,p− j;rlb− j,rrb− j;B( j)
(M2

k,b, (L
bf, L],bf);�

1/2
k,b ),

where B( j) is an index family with index sets at the faces bf0, lb0, rb0, zf starting at order −1 − j ,
n/2− 1− j , n/2− 1− j , n− 1− j respectively.

Next we choose a partition of unity. We choose Q0 to be multiplication by the function 1− χ(ρ),
where χ(ρ)= 1 for ρ ≤ ε and χ(ρ)= 0 for ρ ≥ 2ε, for some sufficiently small ε. Then Q0dE ( j)

√
H
(λ)Q0

is polyhomogeneous on M2
k,b, with index sets as above at bf0, lb0, rb0, zf and supported away from

the remaining boundary hypersurfaces. Now recall that |dg dg′dλ/λ|1/2 is equal to ρ−n
bf0
ρ−n/2

lb0
ρ−n/2

rb0

multiplied with a smooth nonvanishing section of the half-density bundle �1/2
k,b . It is then immediate that

Q0dE ( j)
√

H
(λ)Q0 is bounded, as a multiple of |dg dg′dλ/λ|1/2 by λn−1− j , which yields (6-25) for i = 0

since in this region we have λd(z, z′)≤ C .
Next, we choose Q′1 such that Id−Q′1 is microlocally equal to the identity for |µ|2h + ν

2
≤

3
2 , and

microsupported in |µ|2h + ν
2
≤ 2. Let Q1 = χ(ρ)Q′1. Then, we claim that Q1dE ( j)

√
H
(λ)Q1 has empty

wavefront set, and is therefore polyhomogeneous with index sets at the faces bf0, lb0, rb0, zf starting at
order −1, n/2− 1, n/2− 1, n− 1 respectively. To see this, we write

Q1dE ( j)
√

H
(λ)Q1

= dE ( j)
√

H
(λ)− (Id−Q1)dE ( j)

√
H
(λ)− dE ( j)

√
H
(λ)(Id−Q1)+ (Id−Q1)dE ( j)

√
H
(λ)(Id−Q1). (6-26)

Since Id−Q1 is microlocally equal to the identity on πL(WF′bf dE ( j)
√

H
(λ)) and on WF′lb(dE ( j)

√
H
(λ)),

Lemma 5.2 shows that the sum of the first two terms on the right hand side above vanishes to infinite
order at lb and bf, and similarly the sum of the third and fourth terms vanishes to infinite order at lb and
bf. Now consider the multiplication of Id−Q1 on the right, and group together the first and third terms,
and the second and fourth terms on the right-hand side. We see, using the adjoint of Lemma 5.2 (since
Id−Q1 is also microlocally equal to the identity on WF′rb(dE ( j)

√
H
(λ))), that the sum of the first and third
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terms vanishes to infinite order at rb, and similarly the sum of the second and fourth terms vanishes at rb.
Hence Q1dE ( j)

√
H
(λ)Q1 vanishes to all orders at bf, lb, rb and has empty wavefront set as claimed. This

piece therefore also satisfies (6-25).
We now further decompose Id−Q0 − Q1 = χ(Id−Q′1), which has compact microsupport, into a

sum of terms. Choosing δ as in Lemma 6.5, we partition the interval [−2, 2] into N − 1 intervals Bi

each of length δ/2, and choose a decomposition Id−Q1 =
∑N

i=2 Qi , where Qi , and hence also Q∗i , is
microsupported in the set {|µ|2h + ν

2
≤ 2, ν ∈ 2Bi } (where 2Bi is the interval with the same center as Bi

and twice the length). It follows that if q ′ = (y, y′, σ, µ,µ′, ν, ν ′) ∈ (Lbf)′ is such that πL(q ′) ∈WF′(Qi )

and πR(q ′) ∈WF′(Q∗i ), then |ν− ν ′| ≤ δ. Together with Lemma 5.4, this means that Qi dE ( j)
√

H
(λ)Q∗i is

associated only to the Legendrian Lbf and not to L],bf, since on (L],bf)′ we have |ν− ν ′| = 2> δ.
Next, by Lemma 6.5, if q ′= (y, y′, σ, µ,µ′, ν, ν ′)∈ (Lbf)′ is such that πL(q ′) is in WF′(Qi ) and πR(q ′)

is in WF′(Q∗i ), then due to our choice of δ, either q ∈Gbf, or locally near q , Lbf projects diffeomorphically
to bf. Therefore, the microsupport of Qi dE ( j)

√
H
(λ)Q∗i , i ≥ 2, is a subset of (Lbf)′ which satisfies the

conditions of either Proposition 6.1 or Proposition 6.2.
In the case of Proposition 6.1, we have b= n−1− j , α =−(n−1)/2+ j and estimate (6-25) follows

directly. Next consider the case of Proposition 6.2. In this case, we have to determine the order of
vanishing of the symbol of Qi dE ( j)

√
H
(λ)Q∗i at Gbf. Locally near q ∈ Gbf

∩ Lbf, Lbf can be parametrized
by a phase function 8 that vanishes at Gbf when dv8 = 0; see (6-8). The kernel Qi dE√H(λ)Q

∗

i is a
Legendrian of order−1/2. Each time we apply a λ derivative to dE√H(λ), it hits either the phase function
or the symbol. If it hits the phase, then the order of the Legendrian is reduced by 1, but it brings down a
factor of 8 that vanishes at Gbf

× [0, λ0]. If it hits the symbol, then the order of the Legendrian is not
reduced. Therefore, as a Legendrian of order −1/2− j , the full symbol of Qi dE ( j)

√
H
(λ)Q∗i vanishes to

order j at Gbf
×[0, λ0]. Therefore, we can apply Proposition 6.2 with b=n−1− j and α=−(n−1)/2+ j ,

and we deduce (6-25) in this case. This concludes the proof of (6-25) and hence establishes Theorem 1.13
for low energies λ≤ λ0.

7. High energy estimates (in the nontrapping case)

In the previous section we proved estimates on the spectral measure dE√H(λ) for λ ∈ (0, λ0]. We
now prove high energy estimates, i.e., estimates for λ ∈ [λ0,∞). For convenience, we introduce the
semiclassical parameter h = λ−1, so that we are interested in estimates for h ∈ (0, h0], where h0 = λ

−1
0 .

To do this, we use the description of the high-energy asymptotics of the spectral measure from [Hassell
and Wunsch 2008]. The structure of the argument will be the same as in the previous section, and our
main task is to adapt each of the intermediate results — Lemmas 5.2 and 5.4, Propositions 6.1 and 6.2,
Lemma 6.4 and Lemma 6.5 — to the high-energy setting. Throughout this section we assume that the
manifold (M, g) is nontrapping.

7A. Microlocal support. We begin by defining, by analogy with the discussion in Section 5, the notion
of microlocal support of a Legendre distribution on X .
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Let 3⊂ scT ∗mf X be the Legendre submanifold associated to F . We assume that 3 is compact. Recall
from [Hassell and Wunsch 2008, Section 3] that 3 determines associated Legendre submanifolds 3bf,
3lb and 3rb which are the bases of the fibrations on ∂bf3, ∂lb3 and ∂rb3, respectively. The Legendre
submanifold 3bf can be canonically identified with a Legendre submanifold of scT ∗bf M

2
b , while ∂lb3 and

∂rb3 may be canonically identified with Legendre submanifolds of scT ∗∂M M . We define 3′ by negating
the fiber coordinates corresponding to the right copy of M , i.e.,

q ′ = (z, z′, ζ, ζ ′) ∈3′ ⇐⇒ q = (z, z′, ζ,−ζ ′) ∈3.

Similarly we define 3′bf and 3′rb as in the previous section.
Then we define the microlocal support WF′(F) of F ∈ I m(3) to be a closed subset of

3′ ∪ (3′bf×[0, h0])∪ (3lb×[0, h0])∪ (3
′

rb×[0, h0])

in the same way as before: we say that q ′ ∈3′ is not in WF′(F) if there is a neighborhood of q ∈3 in
which F has order −∞, in the sense of Section 5. That is, in a local oscillatory representation for F of
the form (for simplicity, where q lies over the interior of M2

b ),

hm−k/2−n
∫

Rk
eiψ(z,v)/ha(z, v, h) dv|dgdg′dh/h2

|
1/2,

where q = (z∗, dzψ(z∗, v∗)) and dvψ(z∗, v∗)= 0 (these conditions determining (z∗, v∗) locally uniquely
provided that ψ is a nondegenerate parametrization of 3), the condition that F has order −∞ in a
neighborhood of q is equivalent to a being O(h∞) in a neighborhood of the point (z∗, v∗, 0). Similarly,
q ′ ∈3′bf×[0, h0] is not in WF′(F) if there is a neighborhood of q ∈3bf×[0, h0] in which F has order
−∞.

Similarly, (q̃, h) ∈3lb×[0, h0] is not in WF′(F) if F can be written modulo (hxx ′)∞C∞(M2
b ) using

local oscillatory integral representations with symbols that vanish in a neighborhood of the fiber in
their domain corresponding to (q̃, h), and (q̃ ′, h) ∈ 3′rb× [0, h0] is not in WF′(F) if F can be written
modulo (hxx ′)∞C∞(M2

b ) using local oscillatory integral representations with symbols that vanish in a
neighborhood of the fiber in their domain corresponding to (q̃, h). These components of WF′(F) will be
denoted WF′mf(F), WF′lb(F), WF′bf(F) and WF′rb(F), respectively.

If F ∈ I m(3), then F ∈ (hxx ′)∞C∞(M2) if and only if WF′(F) is empty. Also note that if WF′
∗
(F)

is empty, then ∂∗3′ is disjoint from WF′mf(F), but the converse need not hold: if the kernel of F is
supported away from mf then certainly WF′mf(F) will be empty, but WF′

∗
(F) need not be.

Particular examples of Legendre distributions on X are the kernels of semiclassical scattering pseudo-
differential operators Q of differential order −∞ with compact operator wavefront set. In the case of such
a pseudodifferential1 operator, the Legendre submanifold 3 is a compact subset of s8N ∗diagb, defined
in (4-15), and the components 3lb ∪3

′

rb are empty. Thus in this case we may (and will) identify the
microlocal support WF′mf(Q) with a compact subset of scT ∗M , and WF′bf(Q) may be identified with a
compact subset of scT ∗∂M M ×[0, h0).

1Throughout this section we deal with semiclassical scattering pseudodifferential operators. The words “semiclassical
scattering” will usually be omitted.
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In the next lemma, πL and πR denote the maps defined in either (4-6) or (4-14), as the case may be.

Lemma 7.1. Suppose that F is a Legendre distribution on X and Q is a semiclassical scattering pseudo-
differential operator. Assume that F ∈ I m;rbf,rlb,rrb(X,3; s8�1/2) is associated to a compact Legendre
submanifold 3 and that Q is of differential order −∞ and semiclassical order 0, with compact operator
wavefront set. Then QF is also a Legendre distribution in I m;rbf,rlb,rrb(X,3; s8�1/2) and we have

WF′mf(QF)⊂ π−1
L WF′mf(Q)∩WF′mf(F),

WF′bf(QF)⊂ π−1
L WF′bf(Q)∩WF′bf(F),

WF′lb(QF)⊂WF′bf(Q)∩WF′lb(F),

WF′rb(QF)⊂WF′rb(F).

(7-1)

Moreover, if Q is microlocally equal to the identity on πL(WF′mf(F)), πL(WF′bf(F)) and WF′lb(F), then
QF − F ∈ I∞,∞,∞,rrb(X,3; s8�1/2), i.e., it vanishes to infinite order at mf, lb and bf.

We omit the proof, as it is essentially identical to that of Lemma 5.2. There is of course a corresponding
theorem for composition in the other order, which is obtained by taking the adjoint of the lemma above.
Combining the two we obtain:

Corollary 7.2. Suppose that F and Q, Q′ are as above. Then

WF′mf(QF Q′)⊂ π−1
L WF′mf(Q)∩π

−1
R WF′mf(Q

′)∩WF′mf(F),

WF′bf(QF Q′)⊂ π−1
L WF′bf(Q)∩π

−1
R WF′bf(Q

′)∩WF′bf(F),

WF′lb(QF Q′)⊂WF′bf(Q)∩WF′lb(F),

WF′rb(QF Q′)⊂WF′bf(Q
′)∩WF′rb(F).

(7-2)

A similar result holds if F is associated to a Legendre conic pair rather than a single Legendre
submanifold.

Lemma 7.3. (i) Suppose that F ∈ I m,p;rbf,rlb,rrb(X, (3,3]); s8�1/2) is a Legendre distribution on X
associated to a conic Legendrian pair (3,3]), and suppose that Q is a pseudodifferential opera-
tor such that Q is microlocally equal to the identity operator near πL(3 ∪ 3

]). Then QF − F ∈
I∞,∞;∞,∞,rrb(X, (3,3]), s8�1/2), so it vanishes to infinite order at mf, lb and bf. If Q′ is microlocally
equal to the identity operator near πR(3 ∪3

]), then F Q′ − F ∈ I∞,∞;∞,rlb,∞(X, (3,3]), s8�1/2)

vanishes to infinite order at mf, bf and rb.

(ii) Suppose that F is as above, a Legendre distribution on M2
b associated to a conic Legendrian pair

(3,3]) of order (m, p; rbf, rlb, rrb), and suppose that Q, Q′ are pseudodifferential operators. If

π−1
L WF′bf(Q)∩π

−1
R WF′bf(Q

′)∩3] =∅, (7-3)

then QF Q′ ∈ I m;rbf,rlb,rrb(M2
b ,3;

s8�1/2); in particular, WF′bf(QF Q′) is disjoint from (3])′.

We omit the proof, which is a straightforward modification of the arguments in Section 5.
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7B. Pointwise estimates on Legendre distributions. Now we give a pointwise estimate on Legendre
distributions of a particular type. First we begin with the trivial case.

Proposition 7.4. Let 3 ⊂ scT ∗mf(X) be a Legendre distribution that projects diffeomorphically to mf.
Suppose that u ∈ I m,rbf,rlb,rrb(X,3; s8�1/2) with

m = n/2− l, rbf =−n/2−α, rlb = rrb =−α.

Then, as a multiple of the half-density |dg dg′dλ|1/2, we have a pointwise estimate

|u| ≤ Cλl(x−1
+ (x ′)−1)α.

Generalizing Proposition 6.2 to the case of X = M2
b ×[0, h0] is straightforward.

Proposition 7.5. Let 3 be a Legendrian submanifold of s8T ∗mf X . Assume that 3 intersects s8N ∗diagb,
defined in (4-15), at G =3∩ s8N ∗diagb which is codimension 1 in 3 and transversal to the boundary
at bf, and that dπ has full rank on 3 \G, while π |G is a fibration G→ diagb with (n− 1)-dimensional
fibers, with condition (6-3) holding at G.

Assume that u ∈ I m,rbf,rlb,rrb(X,3; s8�1/2), with m, rbf, rlb, rrb as in Proposition 7.4 and that the full
symbol of u vanishes to order (n− 1)/2+α both at G ⊂3 and at ∂bfG×[0, h0] ⊂ ∂bf3×[0, h0]. Then,
as a multiple of the half-density |dg dg′dλ|1/2, we have a pointwise estimate

|u| ≤ Cλl−α(1+ λd(z, z′))α. (7-4)

Proof. First consider u on a neighborhood of X disjoint from diagb. In that case, the result follows from
Proposition 7.4.

Next consider u near diagb, but away from bf. Then if u is microlocally trivial at s8N ∗diagb, the result
follows from Proposition 7.4. If not, then the geometry is the same as that considered in Proposition 6.2
(with ρ replaced by h; also note that the estimate in Proposition 6.2 is respect to the half-density
λn
|dg dg′dλ|1/2), and the result follows from that proposition.
So we are reduced to the case where we are microlocally close to 3 ∩ ∂bf

s8N ∗diagb = ∂bfG. Let
q ∈ ∂bfG. In a neighborhood of ∂bfdiagb, we have coordinates (x, y, w), where w = (y− y′, σ − 1) as
before. In terms of these we can write points in s8T ∗mf X in the form

κ ·
dw
xh
+µ ·

dy
xh
+ τ ·

dx
xh
+ νd

( 1
xh

)
,

and this defines local coordinates (x, y, w; τ, µ, κ, ν) on s8T ∗mf X . Then, contracting the symplectic
form with xh2∂h and restricting to s8T ∗mf X gives the contact form on s8T ∗mf X , which in these coordinates
takes the form

dν− τdx −µ · dy− κ · dw. (7-5)

Using the transversality of 3 to s8T ∗bf∩mf X we see, as in the proof of Proposition 6.2 that (x, y, w1, κ)

form coordinates on 3. Then as in the proof of Proposition 6.2, we can write the remaining coordinates
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as functions of (x, y, w1, κ) on 3:

wi =Wi (x, y, w1, κ), µi = Mi (x, y, w1, κ), i = 2, . . . , n,

κ1 = K (x, y, w1, κ), ν = N (x, y, w1, κ), τ = T (x, y, w1, κ).

In the same way as before, we find that

8̃(x, y, w, v)=
n∑

j=2

(w j −W j (x, y, w1, v))v j + N (x, y, w, v), v = (v2, . . . , vn),

parametrizes 3 locally, and has the properties that 8̃= O(w1) when dv8̃= 0, and 8̃=8+O(x), where
8 is precisely as in the proof of Proposition 6.2. We can then follow the proof given there, where (6-11)
is replaced by

x−(n−1)/2−αλ(n−1)/2+k
∫

ei8̃(x,y,w,v)/xh ã(x, y, w1, v, h) dv, (7-6)

in which the function ã vanishes to order (n−1)/2+α at x = 0 and at w1 = 0. In effect we have replaced
the large parameter 1/x in the phase of (6-11) by 1/xh, while x plays the role of a smooth parameter.

The rest of the argument is parallel to the proof of Proposition 6.2. We deal with the cases |w1| ≤ xh
and |w1| ≤ c|w| exactly as in the previous proof. Assuming then that |w1| ≥ xh and |w1| ∼ |w|, we make
the change of variables (6-13). By continuity, the matrix A in (6-15) remains nonsingular, and (6-17)
remains valid, for small x . Hence, we can integrate by parts using the identity

ei8̃/x
=

(∑
k

xh
iθ j

A jk
∂

∂θk

)
ei8̃/x ,

analogous to (6-16).
In the θ coordinates, we are trying to prove the estimate∣∣∣∣x−(n−1)/2−αh−(n−1)/2−l

∫
Rn−1

wα1 ei8̃(x,y,w,θ)/xh ã0(x, y, w1, θ) dθ
∣∣∣∣≤ Ch−l

(
w1
x

)α
,

since when |w| ≥ xh,
|w|

xh
∼ λd(z, z′)∼ 1+ λd(z, z′).

As before, the w(n−1)/2
1 factor was absorbed as a Jacobian factor, and ã is again smooth. This estimate is

equivalent to a uniform bound on∣∣∣∣(xh)−(n−1)/2
∫

Rn−1
ei8̃(x,y,w,θ)/x ã0(x, y, w1, θ) dθ

∣∣∣∣. (7-7)

We introduce a modified partition of unity in (x, θ)-space, 1= χ0+
∑n−1

j=1 χ j , where χ0 is a compactly
supported function of θ/

√
xh, and χ j is supported where |θ | ≥

√
xh, and where θ j ≥ |θ |/(n− 1), with

derivatives estimated by ∣∣∇(k)θ χk
∣∣≤ C(xh)−k/2. (7-8)

Then the rest of the argument proceeds just as before, leading to (7-7). �
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7C. Geometry of the Legendre submanifold L. We prove results analogous to Lemmas 6.4 and 6.5.
First, we define

G = {q ∈ s8N ∗diagb | σ(h
21g)(q)= 1},

where σ is the semiclassical principal symbol. This is an Sn−1-bundle over diagb.

Lemma 7.6. The Legendre submanifold L introduced in Section 4B intersects s8N ∗diagb cleanly at G,
and the projection π : L→mf satisfies (6-3).

Proof. This is proved just as for Lemma 6.4. As shown in [Hassell and Wunsch 2008], L can be obtained
as the flowout from G by a vector field Vl , which is obtained from the Hamilton vector field of 1g − λ

2

by dividing by boundary defining function factors (see [ibid., Section 11]), so that it becomes smooth up
to the boundary of s8T ∗X . This vector field takes the form (6-22) up to O(x) near bf, and repeating the
argument below (6-22) with x as a smooth parameter establishes the lemma in a neighborhood of ∂bfG,
i.e., for x + x ′ ≤ ε for some small ε > 0.

Away from bf, we can use coordinates (z, z′) on mf, and writing points in s8T ∗mf X in the form

ζ ·
dz
h
+ ζ ′ ·

dz′

h
+ τd

(1
h

)
defines fiber coordinates (ζ, ζ ′, τ ) on s8T ∗mf X . In terms of these coordinates, we have

Vl = gi j (z)ζi
∂

∂z j −
1
2
∂gi j (z)
∂zk

ζiζ j
∂

∂ζk
+ gi j (z)ζiζ j

∂

∂τ
. (7-9)

We recognize the equations for (z, ζ ) as equations for geodesic flow. Moreover, letting |ζ |g = gi j (z)ζiζ j ,
we find that (|ζ |2g )̇= 0 and |ζ |g = 1 on G, hence |ζ |g = 1 on L; similarly |ζ ′|g = 1 on L . Finally, τ̇ = 1
and τ = 0 on G. It follows that near a point on G where (say) ζ1 6= 0, we can use coordinates (ζ , z′, τ )
as coordinates on L , where ζ = (ζ2, . . . , ζn), z = (z2, . . . , zn). We then find, from (7-9), that

z1
= (z′)1+ gi jζ jτ + O(τ 2),

zi
= (z′)i + gi jζ jτ + O(τ 2), i ≥ 2,

and we see that near G,
∂z1

∂τ
6= 0, ∂zi

∂ζ j
= τgi j ,

which shows that det dπ , where π is the map

L 3 (ζ , z′, τ ) 7→ (z1(ζ , z′, τ ), ζ (ζ , z′, τ ), z′),

vanishes to order exactly n− 1 at G. �

Lemma 7.7. (i) There exists 0 < δ < 1 and ε > 0 such that the Legendre submanifold L ⊂ s8T ∗mf X
projects diffeomorphically to the base mf locally near all points (x, y, x ′, y′, µ, µ′, ν, ν ′, τ ) ∈ L \G such
that x + x ′ < 2ε and |ν+ ν ′|< δ.

(ii) For any ε > 0 there exists ι > 0 such that L projects diffeomorphically to the base near all points
(z, z′, ζ, ζ ′, τ ) ∈ L \G such that x + x ′ > ε and |τ |< ι.
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Proof. (i) A topological argument shows that for sufficiently small ε, depending on δ, the subset of L
where x + x ′ < 2ε and |ν+ ν ′|< δ is contained in a small neighborhood of the set G ∪ T+ ∪ T−, where
T± ⊂ ∂bfL = Lbf are as in (6-23). Lemma 7.6 shows that L projects diffeomorphically to mf in a deleted
neighborhood of G. Near the sets T±, we use Lemma 6.5 and the fact, proved in [Hassell and Wunsch
2008], that L is transverse to the boundary at bf to show that (y, y′, σ, ρbf) form coordinates locally near
T± away from G. Here ρbf is a boundary defining function for bf and can be taken to be x for σ > 1 or
x ′ for σ < 1. Therefore, L projects diffeomorphically to mf locally near T± and away from G.

(ii) The calculation above shows that if τ is small, then d(z, z′) is small and |ζ + ζ ′| is small, i.e.,
(z, ζ, z′, ζ ′, τ ) is close to G. So by taking ι sufficiently small, we restrict attention to a small neighborhood
of G ∩ {x + x ′ ≥ ε}. The result then follows directly from Lemma 7.6. �

Remark 7.8. In fact, we can take ι to be the injectivity radius of M .

Let M ′ be the compact subset of M◦ given by {x ≥ ε}, where ε is as in Lemma 7.7, and let ι be the
injectivity radius of M . For any z0 ∈ M ′, let z denote the Riemannian normal coordinates centered at z0,
and ζ the corresponding dual coordinates. Define the quantity

η = inf
z0∈M ′

min{|z− z′| + |ζ − ζ ′| : |z− z0| ≤ ι/4, |z′− z0| ≤ ι/4, γ (0)= (z, ζ ), γ (t)= (z′, ζ ′), t ≥ ι},

where the minimum is taken over all geodesics γ : R→ M◦ that are arc-length parametrized.

Lemma 7.9. The quantity η is strictly positive.

Proof. We use the nontrapping assumption; then there is no geodesic γ with γ (0) = (z, ζ ) = γ (t), if
t > ι. Therefore, by compactness, the minimum for a fixed z0 in the expression above is strictly positive.
This minimum varies continuously with z0 and therefore the inf over all z0 in the compact set M ′ is also
strictly positive. �

7D. Proof of Theorem 1.3, part (B). We now assemble our results to prove (1-9) for λ≥ λ0, i.e., h ≤ h0,
which by Proposition 1.12 and Section 6C is sufficient to prove part (B) of Theorem 1.3.

We now choose a partition of unity consisting of pseudodifferential operators. This is done similarly to
the previous section. In particular, we will choose Q1 to have microsupport disjoint from the characteristic
variety of h2 H−1, while the others will have compact microsupport, that is, they will be pseudodifferential
operators of differential order −∞. In detail, we choose Q1 such that Id−Q1 is microlocally equal to the
identity where σ(h21g)≤ 3/2, and microsupported where σ(h21g)≤ 2 (here σ denotes the semiclassical
principal symbol). Then, we claim that dE ( j)

√
H
(λ) is in (hxx ′)∞C∞(M2). To see this, we write

Q1dE ( j)
√

H
(λ)Q1 = dE ( j)

√
H
(λ)− (Id−Q1)dE ( j)

√
H
(λ)− dE ( j)

√
H
(λ)(Id−Q1)+ (Id−Q1)dE ( j)

√
H
(λ)(Id−Q1)

and use Theorem 4.2 and the microlocal support estimates as in the discussion below (6-26) to show that
WF′(dE ( j)

√
H
(λ)) is empty. This piece therefore is in (hxx ′)∞C∞(M2), and trivially satisfies (6-25).

We now further decompose Id−Q1, which has compact microsupport, into a sum of terms. We first
choose a function m ∈ C∞(M2

b ) that is equal to 1 in a neighborhood of ∂M2
b and supported where

x + x ′ < 2ε, where ε is as in Lemma 7.7. Choosing δ as in Lemma 7.7, we divide up the interval
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[−2, 2] into N −1 intervals Bi each of width ≤ δ/4, and choose a decomposition (Id−Q1)m =
∑N

i=2 Qi ,
where the operators Qi , and hence also Q∗i , are supported on the set x + x ′ < 2ε and microsupported
in the set {σ(h21g) ≤ 2, ν ∈ 2Bi }. It follows that if q ′ = (x, y, x ′, y′, µ, µ′, ν, ν ′, τ ) ∈ L ′ is such that
πL(q ′) ∈ WF′mf(Qi ) and πR(q ′) ∈ WF′mf(Q

∗

i ), then |ν − ν ′| ≤ δ/2. Together with Theorem 4.2 and
Lemma 7.3, this means that Qi dE ( j)

√
H
(λ)Q∗i is a Legendrian distribution associated only to L and not to

L], since on (L])′ we have |ν − ν ′| = 2 > δ/2. Then Lemma 7.6 guarantees that on the microsupport
of Qi dE ( j)

√
H
(λ)Q∗i , the projection π to mf is either a diffeomorphism or satisfies the conditions of

Proposition 7.5.
We finally decompose (Id−Q1)(1−m) as

∑N+N ′
i=N+1 Qi , where Qi is microsupported in a sufficiently

small set so that WFmf(Qi ) is a subset of

{(z, ζ ) | |z− z0| + |ζ − ζ0|< η/2} (7-10)

for some z0 ∈ M ′ = {x ≥ ε} ⊂ M◦ and some ζ0 (where we use Riemannian normal coordinates as in
Lemma 7.9). By construction, then, if q ′ = (z, z′, ζ, ζ ′, τ ) ∈WF′mf(Qi dE ( j)

√
H
(λ)Q∗i ), then we must have

|z− z′| + |ζ − ζ ′| < η from (7-10), and also γ (0) = (z, ζ ), γ (t) = (z′, ζ ′) for some geodesic γ . From
Lemma 7.9 we conclude t < ι, thus γ is the short geodesic between z and z′. Consequently, τ < ι and by
Lemma 7.7 either L locally projects diffeomorphically to mf, or q ′ ∈ scN ∗diagb.

We next consider the symbol of Qi dE ( j)
√

H
(λ)Q∗i . As in the previous section, this symbol vanishes to

order j both at G ⊂mf and at ∂G×[0, h0] ⊂ bf, due to the vanishing of the phase function 8̃ at G when
dv8̃= 0. Therefore, in all cases, Qi dE ( j)

√
H
(λ)Q∗i satisfies the conditions of Proposition 7.5 with l = j ,

and the required estimate (6-25) follows from this proposition. This completes the proof of (1-4) for
λ0 ≤ λ <∞.

8. Trapping results

8A. Spectral projection estimates. In this section we study the Laplacian on a manifold N with C∞

bounded geometry, in the sense that the local injectivity radius ι(z), z ∈ N has a positive lower bound, say
ε; the metric gi j , expressed in normal coordinates in the ball of radius ε/2 around any point z is uniformly
bounded in C∞(B(0, ε/2)), as z ranges over N ; and the inverse metric gi j is uniformly bounded in
supremum norm. (In fact, we only need gi j to be bounded in Ck for some k depending on dimension n,
but k tends to infinity as n→∞.) This implies that the distance function d(q, q ′) satisfies the n × n
Carleson–Sjölin condition (see [Sogge 1993, Section 2.2]) uniformly over all z ∈ N and q, q ′ ∈ B(z, ε/2)
with d(q, q ′)≥ ε/4.

Then the following Sogge-type restriction theorem holds:

Proposition 8.1. Let N be a complete Riemannian manifold of dimension n with C∞ bounded geometry.
Then the Laplacian 1N on N satisfies for λ≥ 1∥∥1[λ,λ+1](

√
1N )

∥∥
L p(N )→L p′ (N ) ≤ Cλn(1/p−1/p′)−1, 1≤ p ≤

2(n+ 1)
n+ 3

. (8-1)

This is quite likely well-known to experts, but to our knowledge such a result has not appeared in the
literature, so we sketch a proof.
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Proof. It is enough to prove (8-1) for the endpoints p= 1 and p= 2(n+1)/(n+3), and use interpolation.
We adapt Sogge’s argument. Let ε be as above. We then choose an nonzero Schwartz function χ such
that its Fourier transform χ̂ is nonnegative and supported in [ε/4, ε/2]. It follows that χ(0) > 0, and by
taking ε sufficiently small, we can arrange that Reχ ≥ c > 0 on [0, 1].

Now let χ ev
λ (σ )= χ(σ −λ)+χ(−σ −λ). This is an even function, and since χ is rapidly decreasing,

for sufficiently large λ we have

Reχ ev
λ ≥

1
2 c on [λ, λ+ 1].

That is,

(Reχ ev
λ )

2
−

1
8 c2
= Fλ, where Fλ ≥ 0 on [λ, λ+ 1].

Then for f ∈ L p,

1
8 c2∥∥1[λ,λ+1](

√
1N ) f

∥∥2
L2 =

〈
1[λ,λ+1](

√
1N ) f,

(
Reχ ev

λ (
√
1N )

)2
− Fλ(

√
1N ) f

〉
=
〈
1[λ,λ+1](

√
1N )Reχ ev

λ (
√
1N ) f,Reχ ev

λ (
√
1N ) f

〉
−
〈
Fλ(
√
1N )1[λ,λ+1](

√
1N ) f, 1[λ,λ+1](

√
1N ) f

〉
≤
∥∥Reχ ev

λ (
√
1N ) f

∥∥2
L2

≤
∥∥χ ev

λ (
√
1N ) f

∥∥2
L2 .

So it is enough to estimate the operator norm of the operator χ ev
λ (
√
1N ) from L p to L2. To do this we

express χ ev
λ (
√
1N ) in terms of the half-wave group ei t

√
1N :

χ ev
λ (
√
1N )=

1
π

∫
ei t
√
1N χ̂ ev

λ (t) dt. (8-2)

Since χ̂ ev
λ = e−i tλχ̂(t)+ ei tλχ̂(−t) is even in t , we can write this as

χ ev
λ (
√
1N )=

1
π

∫
cos t
√
1N

(
e−i tλχ̂(t)+ ei tλχ̂(−t)

)
dt. (8-3)

Using the fact that the kernel of cos t
√
1N is supported in Dt for any complete Riemannian manifold, we

see that χ ev
λ (
√
1N ) is supported in Dε/2. The estimate (8-1) for p = 1 then follows from [Sogge 1993,

Lemma 4.2.4], or alternatively from the kernel bound Cλ(n−1)/2 that follows from the description of
cos t
√
1N as a Fourier integral operator of order 0 associated to the conormal bundle of {d(x, y)= t}.

For the other endpoint p = 2(n + 1)/(n + 3), the argument in [Sogge 1993, Section 5.1] shows that
χ ev
λ (
√
1N ) maps any f ∈ L p(N ) and supported in a ball of radius ε/2 to L2(N ) with a bound

‖χ ev
λ (
√
1N ) f ‖2 ≤ Cλn(1/p−1/2)−1/2

‖ f ‖p,

where C is uniform over N due to the bounded geometry. We then choose a sequence of balls B(xi , ε/2)
that cover N , such that B(xi , ε) have uniformly bounded overlap, i.e., such that

∑
i 1B(xi ,ε) is uniformly

bounded. Then for any f ∈ L p(N ), and using the continuous embedding from l p
→ l2 for 1≤ p < 2,
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λ (
√
1N ) f

∥∥2
2 ≤

∑
i

∥∥χ ev
λ (
√
1N ) f

∥∥2
L2(B(xi ,ε/2))

≤ Cλ2n(1/p−1/2)−1
∑

i

‖ f ‖2L p(B(xi ,ε))

≤ Cλ2n(1/p−1/2)−1
(∑

i

‖ f ‖p
L p(B(xi ,ε))

)2/p

≤ Cλ2n(1/p−1/2)−1
‖ f ‖2L p , (8-4)

showing that χ ev
λ (
√
1N ), and hence also 1[λ,λ+1](

√
1N ), maps from L p(N ) to L2(N ) with a bound

Cλn(1/p−1/2)−1/2. Using the T ∗T trick we obtain (8-1). �

8B. Spatially localized results for trapping manifolds. Let us assume now that M◦ is asymptotically
Euclidean and has several ends E1, . . . ,Ek . By an end here we mean a connected component Ei of
{x < 2ε}, where x is a boundary defining function and ε > 0 is a small fixed number, so that Ei is
diffeomorphic to (ri ,∞)× Sn−1 with a metric of the form dr2

+ r2h(y, dy, 1/r), with h smooth, and
such that the projection of the trapped set to M◦ is disjoint from Ei .

Proposition 8.2. Assume M◦ is asymptotically Euclidean, possibly with several ends. Let χ ∈ C∞(M)
be supported in {x < ε} and let H be as in Theorem 1.3. Then one has∥∥χdE√H(λ)χ

∥∥
L p→L p′ ≤ Cλn(1/p−1/p′)−1 for 1< p ≤ 2(n+1)

n+3
. (8-5)

Proof. As in [Hassell and Vasy 1999], we can write dE√H(λ)= (2π)
−1 P(λ)P(λ)∗, where P(λ) is the

Poisson operator associated to H . Hence one needs to get L p(M)→ L2(∂M) bounds for P(λ)∗χ . The
Schwartz kernel of P(λ)∗ is given by

P∗(λ; y, z′)= [x−(n−1)/2eiλ/x R(λ; x, y; z′)]|x=0. (8-6)

Let χ1, χ2, χ3 ∈ C∞(M) be supported in {x < 2ε} and equal to 1 in {x < ε}, and χiχ j = χ j if j < i .
Let (Mi , gi ) be a nontrapping asymptotically Euclidean manifold with one unique end isometric to Ei .
The existence of such a manifold can be easily proved if one takes ε small enough. There is a natural
identification ι j : M j ∩ {x < 2ε} → M ∩ {x < 2ε}, and so functions supported in {x < 2ε} can be
considered as functions on M or

⋃
j M j . To simplify notations, we shall implicitly use this identification

in what follows, instead of writing ι∗j , ι j ∗. Let H j =1M j + V j , where V j is equal to V in the identified
region, such that H j satisfies the conditions of Theorem 1.3 (which can always be achieved by making
V j sufficiently positive in a compact set away from the identified region). For λ ∈ {z ∈ C; Im λ > 0},
we define the resolvent R j (λ) := (H j − λ

2)−1, and by [Hassell and Vasy 2001] the Schwartz kernel of
this operator extends continuously to λ ∈ R as a Legendre distribution. For λ > 0 it corresponds to the
outgoing resolvent while for λ < 0 it is the incoming resolvent. For what follows, we consider Re λ > 0
to deal with the outgoing case. We have the following identities for Im λ > 0:

(H j − λ
2)
∑

j

χ2 R j (λ)χ1 = χ1+
∑

j

[H j , χ2]R j (λ)χ1,∑
j

χ2 R j (λ)χ3(H j − λ
2)= χ2+

∑
j

χ2 R j (λ)[χ3, H j ],
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which can be also written as∑
j

χ2 R j (λ)χ1 = R(λ)χ1+
∑

j

R(λ)[H j , χ2]R j (λ)χ1,∑
j

χ2 R j (λ)χ3 = χ2 R(λ)+
∑

j

χ2 R j (λ)[χ3, H j ]R(λ).

Multiplying the second identity by χ1 on the right and combining with the first one, we deduce that

χ2 R(λ)χ1 =
∑

j

χ2 R j (λ)χ1+
∑
i, j

χ2 Ri (λ)[χ3, H]R(λ)[H, χ2]R j (λ)χ1. (8-7)

Since R j (λ), R(λ) extend to λ ∈R as operators mapping C∞0 (M) to C∞(M), (8-7) also extends to λ ∈R

as a map from C∞0 (M) to C∞ (since [H, χi ] is a compactly supported differential operator). Now to
obtain the Poisson operator P(λ)∗, we use (8-6) and deduce from (8-7) that

P(λ)∗χ1 =
∑

j

Pj (λ)
∗χ1+

∑
i, j

P∗i (λ)[χ3, H]R(λ)[H, χ2]R j (λ)χ1, (8-8)

where Pj (λ)
∗ is the adjoint of the Poisson operator for H j on (M j , g j ) (mapping to ∂M by the natural

identification of ∂Mi with ∂M). Since∇χ2 and∇χ3 are compactly supported, we can choose η∈C∞0 (M
◦),

supported in {x < 2ε}, such that η = 1 on supp∇χ2 ∪ supp∇χ3, and write (8-8) in the form

P(λ)∗χ1 =
∑

j

Pj (λ)
∗χ1+

∑
i, j

P∗i (λ)η[χ3, H]ηR(λ)η[H, χ2]ηR j (λ)χ1. (8-9)

In [Cardoso and Vodev 2002, Equation (1.5)],2 Cardoso and Vodev prove the following L2 estimate:
If η ∈ C∞0 (M) (respectively η j ∈ C∞0 (M j )) is supported in {x < 2ε}, then for ε small enough, there is
C > 0 such that, for all λ > 1,

‖ηR(λ)η‖L2→L2 ≤ Cλ−1

‖ηR(λ)η‖H−1→H1 ≤ Cλ

(respectively ‖η j R j (λ)η j‖L2→L2 ≤ Cλ−1),

(respectively ‖η j R j (λ)η j‖H−1→H1 ≤ Cλ).
(8-10)

Since the spectral measure dE j (λ) for
√

H j on (M j , g j ) satisfies

dE j (λ)=
λ

π i
(R j (λ)− R j (−λ))=

1
2π

Pj (λ)Pj (λ)
∗,

we deduce by the T T ∗ argument and (8-10) that

‖η j Pj (λ)‖L2(∂M j )→L2(M j ) ≤ C (8-11)

2In [Cardoso and Vodev 2002, Theorem 1.1], for λ ∈ R∗ and |λ| � 1, only the ‖ηR(λ)η‖L2
→L2 = O(|λ|−1) norm appears

but it is a direct consequence of [ibid., Equation (4.9)] that ‖ηR(λ)η‖L2
→H1 = O(1) if η has support far enough in the

end. (Note that the H1 space in [ibid.] involves a semiclassical scaling, unlike our standard H1 space.) Then combining
with 1ηR(λ)η = η2

+ ([1, η] + λ2η)R(λ)η, we get ‖ηR(λ)η‖L2
→H2 = O(|λ|) for all λ ∈ R∗ and taking adjoints give

‖ηR(λ)η‖H−2
→L2 , which by interpolating show that the H−1

→ H1 norm is O(|λ|).
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if η j is as above. Now since M j is nontrapping, we also know from Theorem 1.3 and the T T ∗ argument
that for p ∈ [1, 2(n+ 1)/(n+ 3)] we have

‖Pj (λ)
∗χ1‖L p(M j )→L2(∂M j ) ≤ Cλn(1/p−1/2)−1/2. (8-12)

We now use the following:

Lemma 8.3. Assume that M j is asymptotically Euclidean and nontrapping. Let χ ∈ C∞(M j ) be equal to
1 in {x < ε} and supported in {x < 2ε} and let η ∈ C∞0 (M j ) be supported in {x < 2ε} such that

inf{x | ∃ (x, y) ∈ supp η} ≥ γ sup{x | ∃ (x, y) ∈ suppχ} (8-13)

for some γ > 1; in particular, the distance between the support of η and χ is positive. Then the following
estimate holds for 1< p ≤ 2(n+ 1)/(n+ 3) and λ≥ 1:

‖ηR j (λ)χ‖L p(M j )→L2(M j ) ≤
C
λ
‖η dE j (λ)χ‖L p(M j )→L2(M j )+ O(λ−∞).

Assuming for a moment the validity of Lemma 8.3, we complete the proof of Proposition 8.2. Since
ηdE j (λ)χ = ηPj (λ)Pj (λ)

∗χ , we deduce from Lemma 8.3 and equations (8-11) and (8-12) that

‖ηR j (λ)χ‖L p(M j )→L2(M j ) ≤ Cλn(1/p−1/2)−1/2−1, λ≥ 1. (8-14)

Now we can analyze the boundedness of the right-hand term of (8-9) as follows: ηR j (λ)χ maps
L p(M j )→ L2(M j ) with norm Cλn(1/p−1/2)−1/2−1 by (8-14); [H, χ2] maps L2(M j ) to H−1(M) with
norm independent of λ; ηR(λ)η maps H−1(M) to H 1(M) with norm Cλ by (8-10); [χ3, H] maps
H 1(M j ) to L2(M) with norm independent of λ; and P∗i (λ)η maps L2(M) to L2(M) with uniformly
bounded norm by (8-12). This concludes the proof of Proposition 8.2. �

Proof of Lemma 8.3. Recall that R j (±λ) is the sum of a pseudodifferential operator and of Legendre
distributions associated to the Legendre submanifolds (s8N ∗diagb, L±) and to (L±, L]±). Since the
distance between the supports of η and χ is positive, we see that ηR j (±λ)χ are, like dE j (λ), both
Legendre distributions (conic pairs) associated to (L , L]) with disjoint microlocal support; indeed, the
nontrapping assumption implies that L+ and L− intersect only at G, which is contained in s8N ∗diagb,
while L]+ and L]− are disjoint. We claim that we can choose a microlocal partition of unity,

N∑
i=1

Qi = Id,

where the Qi are semiclassical scattering pseudodifferential operators, such that for each pair (i, k),
either QiηR j (λ)χQk or QiηR j (−λ)χQk is microlocally trivial. This does not quite follow from the
disjointness of the microlocal supports of ηR j (±λ)χ ; we must also check that at T±, there are no points
(y, y′, σ, µ,µ′, ν, ν ′), (y, y′, σ ∗, µ, µ′, ν, ν ′) ∈ s8T ∗bf X , differing only in the σ coordinate, such that
the first point is in WF′bf(ηR j (λ)χ) and the second point is in WF′bf(ηR j (−λ)χ) (see Remark 6.6). This
follows from (6-23); in fact, the coordinates (ν, ν ′) determine σ except on the sets T±. However, on T±,
we find that (y, y′, σ, µ= 0, µ′ = 0, ν =±1, ν ′ =∓1) is in L+ if and only if σ ≤ 1 and ν = 1, or σ ≥ 1
and ν =−1, while it is in L− if and only if σ ≤ 1 and ν =−1, or σ ≥ 1 and ν = 1. But condition (8-13)
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implies that σ ≥ γ > 1 on the support of the kernel of ηR j (±λ)χ , so we see that indeed it is not possible
to have (y, y′, σ, µ,µ′, ν, ν ′) ∈WF′bf(ηR j (λ)χ) and (y, y′, σ ∗, µ, µ′, ν, ν ′) ∈WF′bf(ηR j (−λ)χ).

Now let N be the set of pairs (i, k), with 1 ≤ i, k ≤ N , such that QiηR j (λ)χQk is not microlocally
trivial. This means that if (i, k)∈N, then QiηR j (−λ)χQk is microlocally trivial. Let us also observe that
as the Qi are uniformly bounded as operators L2

→ L2, and as they are Calderón–Zygmund operators
in a uniform sense as h→ 0, then they are uniformly bounded as operators L p

→ L p for 1< p <∞.
Therefore we can compute that

‖ηR j (λ)χ‖L p(M j )→L2(M j ) ≤

N∑
i,k=1

‖QiηR j (λ)χQk‖L p(M j )→L2(M j )

=

∑
(i,k)∈N

‖QiηR j (λ)χQk‖L p(M j )→L2(M j )+ O(λ−∞)

=

∑
(i,k)∈N

‖Qiη(R j (λ)− R j (−λ))χQk‖L p(M j )→L2(M j )+ O(λ−∞)

=
1

2πλ

∑
(i,k)∈N

‖Qiη dE j (λ)χQk‖L p(M j )→L2(M j )+ O(λ−∞)

≤
C N 2

λ
‖η dE j (λ)χ‖L p(M j )→L2(M j )+ O(λ−∞), (8-15)

proving the lemma. �

Remark 8.4. Observe that we missed the endpoint p = 1 due to our use of Calderón–Zygmund theory.
In the case that M is exactly Euclidean for x < 2ε we can take M j to be flat Euclidean space and then it
is straightforward to check that ηR j (λ)χ is bounded L1(M j )→ L2(M j ) with norm O(λ(n−3)/2), which
gives us Proposition 8.2 for p = 1 in this case.

In [Seeger and Sogge 1989], spectral multiplier estimates are proved for compact manifolds for the
same exponents as in Theorem 1.1. This was done using Sogge’s discrete L2 restriction theorem, i.e.,
Proposition 8.1. One may suspect that, since spectral multiplier estimates can be proved in the compact
case, and since we have localized restriction estimates outside the trapped sets, that one should be able to
prove spectral multiplier estimates on asymptotically conic manifolds unconditionally, i.e., without any
nontrapping assumption. We have not been able to prove this, however, but have the following localized
results:

Proposition 8.5. Let M◦ be a manifold with Euclidean ends, and let p ∈ [1, 2(n+ 1)/(n+ 3)]. Let H
be as in Theorem 1.3, let χ be a cutoff function as in Proposition 8.2, let F be a multiplier satisfying the
assumption of Theorem 1.1, i.e., F ∈ H s for some s >max

(
n
( 1

p −
1
2

)
, 1

2

)
. Then we have

sup
α>0
‖F(α

√
H)χ‖p→p ≤ C‖F‖H s .

This is proved by following the proof of Theorem 1.1, using (8-5) in place of (2-3).
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Proposition 8.6. Let ω ∈ C∞c (M
◦) be compactly supported and let H and F be as above. Then the

following estimate holds:
sup
α>0
‖ωF(α

√
H)‖L p→L p ≤ ‖F‖H s .

This is proved by following the method of [Seeger and Sogge 1989], using the compact support of ω
to obtain the embedding from L2 to L p as in [ibid., Equation (3.11)].

8C. Examples with elliptic trapping. Here we show that the restriction estimate at high frequency
generically fails for asymptotically conic manifolds with elliptic closed geodesics. Indeed, it has been
proved by Babich and Lazutkin [1968] and Ralston [1977] that if there exists a closed geodesic γ in
M such that the eigenvalues of the linearized Poincaré map of γ are of modulus 1 and are not roots of
unity, then there exists a sequence of quasimodes u j ∈ C∞0 (K ) with K a fixed compact set containing the
geodesic, a sequence of positive real numbers λ j →∞ such that for all N > 0 there is CN > 0 such that

‖u j‖L2 = 1, ‖(1g − λ
2
j )u j‖L2 ≤ CNλ

−N
j . (8-16)

Proposition 8.7. Assume that (M, g) is an asymptotically conic manifold with an elliptic closed geodesic
such that the eigenvalues of the linearized Poincaré map of γ are of modulus 1 and are not roots of unity.
Then for all p ∈ [1, 2) and M ≥ 0 the spectral measure dE√1g

(λ) does not satisfy the restriction estimate

∃C > 0, ∃λ0 > 0, ∀λ≥ λ0, ‖dE√1g
(λ)‖L p→L p′ ≤ CλM .

Proof. Let u j be the quasimodes above. Then the inequality

‖(1g − λ
2
j )u j‖L2 ≤ CNλ

−N
j

implies that ∥∥1R\[λ2
j−2CNλ

−N
j ,λ2

j+2CNλ
−N
j ]
(1g)u j

∥∥
L2 ≤

1
2

since ‖(1g − λ
2
j )v‖ ≥ c‖v‖ if v is in the range of the spectral projector 1R\[λ2

j−c,λ2
j+c](1g). Therefore

∥∥1
[λ2

j−2CNλ
−N
j ,λ2

j+2CNλ
−N
j ]
(1g)u j

∥∥
L2 ≥

√
3

2
, (8-17)

and using the fact that 1
[λ2

j−2CNλ
−N
j ,λ2

j+2CNλ
−N
j ]
(1g) is a projection,

〈
u j ,1[λ2

j−2CNλ
−N
j ,λ2

j+2CNλ
−N
j ]
(1g)u j

〉
≥

3
4
. (8-18)

This implies that for large enough λ we have〈
u j ,1[λ j−2CNλ

−N−1
j ,λ j+2CNλ

−N−1
j ]

(
√
1g)u j

〉
≥

3
4
. (8-19)

Now assume that there exists C such that ‖dE√1g (λ)‖L p→L p′ ≤ CλM . Then using the continuous
embeddings from L2(K )→ L p(K ) and L p′(K ) to L2(K ), we see that there is C ′ > 0 such that

〈u j , dE√1g
(λ)u j 〉 ≤ C ′λM

‖u j‖L2 ≤ 2C ′λM .
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By integrating this on the interval [λ j − 2CNλ
−N−1
j , λ j + 2CNλ

−N−1
j ], we contradict (8-19) if N + 1 is

chosen larger than M and j is large enough. �

Remark 8.8. In fact, one can construct examples where the spectral measure blows up exponentially
with respect to the frequency λ. Consider a Riemannian manifold (M, g) which is a connected sum of
flat Rn and a sphere Sn , so that it contains an open set S isometric to part of a round sphere Sn , namely

S = {x = (x1, x2, . . . , xn+1) ∈ Rn+1
; |x | = 1, x2

1 + x2
2 >

1
4}.

Consider the functions uN (x) := (x1+ i x2)
N (as functions on Rn+1). These restrict to eigenfunctions on

Sn with corresponding eigenvalue N (N + n− 1) and with norm ‖uN‖L2 ∼ cN−1/4 for some c > 0 as
N→∞. Let χ ∈C∞0 (S) be equal to 1 on S∩{x2

1+ x2
2 ≥ 1/2} and extend it by 0 on M \ S. The modified

function vN = χuN/‖χuN‖L2 satisfies

(1g − N (N + n− 1))vN = [1g, χ]uN/‖χuN‖L2 .

But since |x1+ i x2|< 1/2 on the support of [1g, χ] and since ‖χuN‖> C N−1/4 for some C > 0 when
N is large, we deduce that (1g−N (N+n−1))vN = OL2(e−αN ) for some α > 0. Applying the argument
of Proposition 8.7, we deduce that there exist C > 0, β > 0 and a sequence λN ∼

√
N (N + n− 1) such

that ‖dE(λN )‖L p→L p′ ≥ CeβλN .

9. Conclusion: application and open problems

The restriction theorem can be applied to prove Sobolev estimates. Recall that the Hardy–Littlewood–
Sobolev theorem tells us the inverse of the Laplacian, i.e., the resolvent at zero energy, on Rn is bounded
from L p(Rn) to L p′(Rn) when n ≥ 3 and p = 2n/(n+ 2); this holds true on any asymptotically conic
manifold. Since the resolvent looks like the spectral measure microlocally away from the diagonal, and
since this value of p is in the range [1, 2(n + 1)/(n + 3)] in which the spectral measure is bounded
L p
→ L p′ by Theorem 1.3, this suggests that the resolvent kernel (1− (λ± i0)2)−1 on an asymptotically

conic manifold should be bounded from L p(Rn) to L p′(Rn) when p = 2n/(n+ 2). This result has been
recently proved in [Guillarmou and Hassell 2012] and if in addition the metric is nontrapping, we have the
following uniform Sobolev estimate: For p= 2n/(n+2), p′ = 2n/(n−2) there exists C > 0 independent
of λ ∈ C such that

∀u ∈W 2,p(M), ‖(1− λ2)u‖L p ≥ C‖u‖L p′ .

This was proved by Kenig–Ruiz–Sogge [1987] for constant coefficient operators on Rn . The boundedness
of the resolvent for p ∈ [2n/(n + 2), 2(n + 1)/(n + 3)] is also satisfied for λ 6= 0 but the constant is
O(|λ|n(1/p−1/p′)−2)).

We mention several ways in which the investigations of this paper could be extended.
Theorem 1.3 is only stated for dimensions n ≥ 3. This is because the proof relies on the analysis

of [Guillarmou and Hassell 2008; Guillarmou et al. 2012], which is only done for n ≥ 3. It would be
interesting to treat also the case n = 2. The main difficulty in doing this is to write down a suitable inverse
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for the model operator at the zf face in the construction of [Guillarmou and Hassell 2008, Section 3],
which is not invertible as an operator on L2(M) in two dimensions as it is in all higher dimensions.

One could also extend Theorem 1.3 by allowing potential functions which are O(x2) instead of only
O(x3) at infinity, i.e., inverse-square decay near infinity. This should be relatively straightforward, because
all the analysis has been done in the two papers cited above. For potentials of the form V = V0x2, with V0

strictly negative at ∂M , this would have the effect of changing the “numerology”, i.e., the range of p and
the power of λ in (1-4), for example. Here we preferred not to treat this case, in order not to complicate
the statement of Theorem 1.3, but rather to keep the numerology as it is in the familiar setting of the
classical Stein–Tomas theorem, and in Sogge’s discrete L2 restriction theorem.

Another way to extend Theorem 1.3 would be to allow operators H with eigenvalues. In this case,
we would consider the positive part 1(0,∞)(H) of the operator H . We expect such a generalization to
be straightforward, as the analysis has been carried out in [Guillarmou and Hassell 2008; Guillarmou
et al. 2012], with the only complication being that 1(0,∞)(H) does not satisfy the finite speed propagation
property (2-2).

We close by posing, as open problems, some possible generalizations that seem to be a little less
straightforward:

• Prove (or disprove) the restriction theorem for high energies in the presence of trapping, in the case
that the trapped set is hyperbolic and the topological pressure assumption of [Nonnenmacher and
Zworski 2009] and [Burq et al. 2010] is satisfied.

• Prove (or disprove) the spectral multiplier result for high energies in the trapping case, i.e., Proposi-
tions 8.5 and 8.6 without the cutoff functions.
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HOMOGENIZATION OF NEUMANN BOUNDARY DATA
WITH FULLY NONLINEAR OPERATOR

SUNHI CHOI, INWON C. KIM AND KI-AHM LEE

In this paper we study periodic homogenization problems for solutions of fully nonlinear PDEs in
half-spaces with oscillatory Neumann boundary data. We show the existence and uniqueness of the
homogenized Neumann data for a given half-space. Moreover, we show that there exists a continuous
extension of the homogenized slope as the normal of the half-space varies over “irrational” directions.

1. Introduction

In this paper, we consider the averaging phenomena for solutions of uniformly elliptic nonlinear PDEs in
half-spaces coupled with oscillatory Neumann boundary data. To be precise, let Mn−1 be the normed
space of symmetric n× n matrices and consider the function F(M) :Mn−1

→ R, which satisfies:

(F1) F is uniformly elliptic, that is, there exist constants 0< λ <3 such that

λ‖N‖ ≤ F(M)− F(M + N )≤3‖N‖ for any N ≥ 0;

(F2) (homogeneity) F(t M)= t F(M) for any M ∈Mn−1 and t > 0. In particular, F(0)= 0.

(F3) F(M) only depends on the eigenvalues of M .

The homogeneity condition (F2) can be relaxed (see condition (F4) of [Barles et al. 2008], for example).
Typical examples of nonlinear operators that satisfy (F1)–(F3) are the Pucci extremal operators

P+(D2u(x)) := λ
∑
µi<0

µi +3
∑
µi≥0

µi , P−(D2u(x)) :=3
∑
µi<0

µi + λ
∑
µi≥0

µi ,

where µ1, . . . , µn are eigenvalues of D2u(x).
Let {e1, . . . , en} be an orthonormal basis of Rn and suppose g(x) : Rn

→ R satisfies

(a) g ∈ Cβ(Rn) for some 0< β ≤ 1;

(b) g(x + ek)= g(x) for all x ∈ Rn and k = 1, . . . , n.

Next, for a given p ∈ Rn , let 5ν(p) be a strip domain in Rn with unit normal ν, that is,

5ν(p)= {x : −1≤ (x − p) · ν ≤ 0}, where |ν| = 1. (1)

With F, g and 5ν as given above, our goal is to describe the limiting behavior of uε as ε→ 0, where

Kim was partially supported by NSF grant DMS-0970072. Lee was partially supported by NRF grant MEST 2010-0001985.
MSC2010: 35B27, 35J25, 35J60.
Keywords: homogenization, boundary layer, fully nonlinear elliptic PDE, viscosity solutions, Neumann boundary data.
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uε satisfies

(Pε)


F(D2uε)= 0 in 5ν(p),

ν · Duε = g(x/ε) on 00 := {(x − p) · ν = 0},
u = 1 on 0I := {(x − p) · ν =−1}.

The fixed boundary data on 0I is introduced to avoid discussion of the compatibility condition on g and
to ensure the existence of uε.

Homogenization of elliptic, divergence-form equations with oscillatory coefficients and conormal
boundary data is a classical subject. Let � be an open and bounded subset of Rn . Consider uε : �̄→ R

solving
∇ ·

(
A
( x
ε

)
∇uε

)
= 0, (2)

with the Neumann (conormal) condition

ν ·
(

A
( x
ε

)
∇u
)
(x)= g

( x
ε

)
, x ∈ ∂�. (3)

The problem (2)–(3) has been widely studied, and by now has been well understood; see [Bensoussan
et al. 1978] for an overview. We first consider the case when � is a half-space; thus, let

�=6ν := {x : (x − p) · ν ≤ 0}.

We define the averaged Neumann data

µ(ν, ε) :=

∫
(x−p)·ν=0,|x−p|≤1

g
( x
ε

)
dx . (4)

Integrating by parts, one can show that uε locally uniformly converges to a continuous function u0
: �̄→ R

as ε→ 0 if and only if µ(ν) := limε→0 µ(ν, ε) exists, and that u0 solves the averaged equation

(P̄div)

{
−∇ · (A0

∇u0)(x)= 0 for x ∈�,

ν · (A0
∇u0)= µ(ν) for x ∈ ∂�.

Therefore, different results hold depending on the choice of p and ν:

(a) If ν is a “rational” vector — one parallel to a vector in Zn — then µ(ν) exists if p = 0, and

µ(ν)= the average of g(y) on the hyperplane {x · ν = 0}.

(b) If ν is a rational vector and p 6= 0, then there may be no limit of µ(ν, ε) and uε can have different
subsequential limits.

(c) If ν is not a rational vector, then due to Weyl’s equidistribution theorem (Lemma 2.5), µ(ν, ε)
converges to

µ(ν)= 〈g〉 :=
∫
[0,1]n

g(y)dy,

independent of the choice of p. In particular, the homogenized slope µ(ν) is discontinuous at every
rational direction ν, but otherwise continuous.
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From these results, the divergence form of the operator, and the fact that rational directions are of zero
measure in Sn−1

:= {x ∈ Rn
: |x | = 1}, the following results hold for the general domain �: if ∂� does

not contain flat pieces whose normal vectors belong to RZn , then uε converges locally uniformly to the
solution u0 of (P̄div) with µ(ν) replaced by 〈g〉. We refer to [Bensoussan et al. 1978] for detailed analysis.
Note that u0 is smooth up to the boundary, due to the fact that 〈g〉 is continuous (constant in particular).

For nonlinear or nondivergence operators, or for linear operators with oscillatory nonlinear boundary
data, little is known for the homogenization of the oscillating Neumann boundary data. Most available
results concern half-space domains going through the origin with its normal pointing to a rational direction.
Tanaka [1984] considered some model problems in half-spaces whose boundary is parallel to the axes
of the periodicity, by purely probabilistic methods. Arisawa [2003] studied special cases of problems in
oscillatory domains near half-spaces going through the origin, using viscosity solutions as well as stochastic
control theory. Generalizing her results, Barles, Da Lio and Souganidis [Barles et al. 2008] studied the
problem for operators with oscillating coefficients, in half-space domains whose boundary is parallel to the
axes of periodicity, with a series of assumptions which guarantee the existence of an approximate corrector.

In this paper, we extend the results above to the setting of general half-spaces 5ν , defined in (1), where
p is not necessarily zero and ν ranges over all directions in Rn . In particular, we show the continuity
properties of the homogenized slope µ(ν) over the normal directions ν (see Theorem 1.2(ii)), with the
hope that such results will lead to better understanding of homogenization phenomena in domains with
general geometry (work in progress). Note that, as observed in the linear case, homogenized slopes may
not exist if ν is parallel to a vector in Zn and if p 6= 0, and therefore the best result we can hope for is the
existence of the continuous function µ̄(ν) : Sn−1

→ R such that µ̄(ν)= µ(ν) for ν ∈ Sn−1
−RZn . This

is precisely what we will show.

Definition 1.1. A direction ν ∈ Sn−1 is called rational if ν ∈ RZn , and irrational otherwise.

Theorem 1.2 (Main Theorem). For a given p ∈ Rn , let uε solve (Pε).

(i) Let ν be an irrational direction. Then there is a unique constant µ(ν) ∈ [min g,max g] such that uε

locally uniformly converges to the solution of

(P̄)


F(D2u)= 0 in 5ν,

ν · Du = µ(ν) on 00,

u = 1 on 0I .

(ii) µ(ν) : (Sn−1
−RZn)→ R has a continuous extension µ̄(ν) : Sn−1

→ R.

(iii) For rational directions ν, if 00 goes through the origin (that is if p = 0), then the statement in (i)
holds for ν as well.

(iv) (Error estimate). Let ν be an irrational direction. Then for uε and u solving (Pε) and (P̄), we have
the following estimate: for any 0< α < 1, there exists a constant Cα > 0 such that

|uε − u| ≤ Cαω(ε)α in 5ν . (5)

Here ω(ε) depends on the “discrepancy” associated to ν as defined in (7).
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Remark 1.3. Our method can be applied to the operators of the form F(D2u, x)= f (x), with F and f
continuous in x , but we will restrict ourselves to the simple case discussed in (Pε) for clarity of exposition.
On the other hand, our proof for the continuity of µ(ν) (Theorem 1.2(ii)) on page 965, cannot handle the
case where the operator F depends on the oscillatory variable x/ε (see Remark 4.8).

2. Preliminary results

Let � be an open, bounded domain. Let 0I be a part of its boundary, and define 00 := ∂�−0I . For a
continuous function f (x, ν) : Rn

×Sn−1
→ R, let us recall the definition of viscosity solutions for the

following problem:

(P) f


F(D2u)= 0 in �,
ν · Du = f (x, ν) on 00,

u = 1 on 0I ,

where ν = νx denotes the outward normal at x ∈ ∂� with respect to �.
The following definition is equivalent to the ones given in [Crandall et al. 1992]:

Definition 2.1. (a) An upper semicontinuous function u : �̄→ R is a viscosity subsolution of (P) f if

(i) u ≤ 1 on 0I , and
(ii) for a given domain 6 ⊂ Rn , u cannot cross from below any C2 function φ in 6 which satisfies

F(D2φ) > 0 in �∩6,
ν · Dφ > f (x, ν) on 00 ∩6,

φ > u on (∂6 ∪0I )∩ 6̄.

(b) A lower semicontinuous function u : �̄→ R is a viscosity supersolution of (P) f if:

(i) u ≥ 1 on 0I ;
(ii) for a given domain 6 ⊂ Rn , u cannot cross from above any C2 function ϕ which satisfies

F(D2φ) < 0 in �∩6,
ν · Dφ < f (x, ν) on 00 ∩6,

φ < u on (∂6 ∪0I )∩ 6̄.

(c) u is a viscosity solution of (P) f if u is both a viscosity sub- and supersolution of (P) f .

Existence and uniqueness of viscosity solutions of (P) f is based on the comparison principle we state
below:

Theorem 2.2 [Ishii and Lions 1990, Section V]. Suppose �, 0I , 00, F and ν are as given above, and let
f : Rn

×Sn−1
→ R be continuous. Let u and v respectively be a viscosity sub- and supersolution of (P) f

in a domain 6 ⊂ Rn . If u ≤ v on ∂6, then u ≤ v in �.

For details on the proof of this theorem as well as well-posedness of the problem (P) f , we refer to
[Crandall et al. 1992; Ishii 1991; Ishii and Lions 1990].

Next we state some regularity results that will be used in the paper.
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Theorem 2.3 [Caffarelli and Cabré 1995, Chapter 8, modified for our setting]. Let u be a viscosity
solution of F(D2u)= 0 in a domain �. For any 0< α < 1 and for any compact subset �′ of �, we have

‖u‖Cα(�′) ≤ Cd−α‖u‖L∞(�),

where C > 0 depends on n, λ,3 and d = d(�′, ∂�).

Theorem 2.4 [Milakis and Silvestre 2006, Theorems 8.1 and 8.2]. Let

B+r := {|x |< r} ∩ {x · en ≥ 0} and 0 := {x · en = 0} ∩ B1.

Let u be a viscosity solution of {
F(D2u)= 0 in B+1 ,
ν · Du = g in 0.

(a) If g is bounded, then u is in Cα(B+1/2) for some α = α(n, λ,3), and we have the estimate

‖u‖Cα(B+1/2)
≤ C

(
‖u‖L∞(B+1 )

+max ‖g‖
)
.

(b) Suppose g ∈ Cβ(Rn), where 0 < β ≤ 1. Then u is in C1,γ (B+1/2), where γ = min(α0, β) and
α0 = α0(n, λ,3). Moreover, we have the estimate

‖u‖C1,α(B+1/2)
≤ C

(
‖u‖L∞(B+1 )

+‖g‖Cβ

)
.

In (a) and (b), the positive constant C depends only on n, λ,3 and α.

Let us next discuss the averaging property of the sequence (nx)n mod 1, where x is an irrational number,
and its applications to dimensions greater than 1, which will prove useful in our analysis in Section 3.
Since we obtain estimates on the convergence rate of solutions for (Pε) in our result, we are particularly
interested in the estimates on the rate of convergence of the sequence (nx)n to the uniform distribution
(Definition 2.6). We begin by recalling the notion of equidistribution.

• A bounded sequence (x1, x2, x3 . . . ) of real numbers is said to be equidistributed on an interval
[a, b] if for any [c, d] ⊂ [a, b], we have

lim
n→∞

∣∣{x1, . . . , xn} ∩ [c, d]
∣∣

n
=

d − c
b− a

.

Here |{x1, . . . , xn} ∩ [c, d]| denotes the number of elements.

• The sequence (x1, x2, x3, . . . ) is said to be equidistributed modulo 1 if (x1− [x1], x2− [x2], . . . ) is
equidistributed in the interval [0, 1].

Lemma 2.5 [Weyl 1910, Weyl’s equidistribution theorem]. If a is an irrational number, (a, 2a, 3a, . . .)
is equidistributed modulo 1.

To discuss quantitative versions of Lemma 2.5, we introduce the notion of discrepancy.

Definition 2.6 [Kuipers and Niederreiter 1974]. Let (xk), k = 1, 2, . . . be a sequence in R. For a subset
E ⊂ [0, 1], let A(E; N ) denote the number of points {xn}, 1≤ n ≤ N , that lie in E .
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(a) The sequence (xn), n = 1, 2, . . . is said to be uniformly distributed mode 1 in R if

lim
N→∞

A(E; N )
N

= µ(E)

for all E = [a, b). Here µ denotes the Lebesgue measure.

(b) For x ∈ [0, 1], we define the discrepancy

DN (x) := sup
E=[a,b)

∣∣∣∣ A(E; N )
N

−µ(E)
∣∣∣∣,

where A(E; N ) is defined with the sequence (kx), k ∈ N, modulo 1.

It easily follows from Lemma 2.5 that the sequence (xk)= (kx)k∈N is uniformly distributed modulo 1
for any irrational number x ∈ R. In particular, DN (x) converges to zero as N →∞.

Next, let Sn−1
= {ν ∈ Rn

: |ν| = 1}. For a direction ν = (ν1, . . . , νn) ∈ Sn−1, let νi be the component
with the biggest size, that is,

|νi | =max{|ν j | : 1≤ j ≤ n}.

(If there are multiple components, then we choose the one with largest index.)
Let Hν be the hyperplane in Rn which passes through 0 and is normal to ν:

Hν = {x ∈ Rn
: x · ν = 0}.

Since νi 6= 0, there exists m(ν) such that

(1, . . . , 1,m(ν), 1, . . . , 1) · ν = 0, (6)

where m(ν) is the i-th component of (1, . . . , 1,m(ν), 1, . . . , 1). Then we define

ων(ε) := DN (m(ν)), where N = ε−9/10. (7)

Note that, if m(ν) is irrational, then ων(ε)→ 0 as ε→ 0.

Now we are ready to state our quantitative estimate on the averaging properties of the vector sequence
(nν) with an irrational direction ν, which will be used in the rest of the paper. Recall that for ν ∈ Sn−1,
5ν(p)= {x : −1≤ (x − p) · ν ≤ 0}. Write 00 = {x : (x − p) · ν = 0} and define

Hν = {x : x · ν = 0}.

Lemma 2.7. For ν ∈ Rn and x0 ∈5ν , let H(x0) := Hν + x0. Let 0< ε < dist(x0, 00).

(i) Suppose that ν is a rational direction. Then for any x ∈ H(x0), there is y ∈ H(x0) such that

|x − y| ≤ Mνε, y− x0 ∈ εZn,

where Mν > 0 is a constant depending on ν.
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(ii) Suppose that ν is an irrational direction, and let ων : [0, 1)→ R+ be defined as in (7). Then there
exists a dimensional constant M > 0 such that the following is true: for any x ∈ H(x0), there is
y ∈ Rn such that

|x − y| ≤ Mε1/10, y− x0 ∈ εZn

and
dist(y, H(x0)) < εων(ε), (8)

where ων is as given in (7).

(iii) If ν is an irrational direction, then for any z ∈ Rn and δ > 0, there is w ∈ H(x0) such that

|z−w| ≤ δ mod εZn.

Proof. The proof of (i) is immediate from the fact that for any rational direction ν, there exists an integer
M > 0 depending on ν such that Mν ∈ Zn .

Next, we prove (ii). Let ν be an irrational direction in Rn . Without loss of generality, we may assume

|νn| =max{|ν j | : 1≤ j ≤ n}.

Let x be any point on H(x0): after a translation, we may assume that x = 0. Choose m such that

ε(1, 1, . . . , 1,m) ∈ H(x0).

Note that M = |m| ≤ n2. Also note that m is irrational since ν is an irrational direction. Since H(x0)

contains x = 0, we have
kε(1, 1, . . . , 1,m) ∈ H(x0) for any integer k.

Consider the sequence (km), k ∈N. From the definition of ων(ε) and the discrepancy function DN (m),
it follows that any interval [a, b] ⊂ [0, 1] of length ων(ε) contains at least one point km (mod 1), for
some k ≤ N = ε−9/10.

Hence for any z = (0, 0, . . . , 0, xn) ∈ [0, ε]n , there exists

w = kε(1, 1, . . . , 1,m) ∈ H(x0), 0≤ k ≤ ε−9/10

such that
|z−w| ≤ εων(ε) mod εZn.

Similarly, for any z ∈ [0, ε]n , there exists w ∈ H(x0)∩
(
kε(1, 1, . . . , 1,m)+ [0, ε]n

)
such that

|z−w| ≤ εων(ε) mod εZn, 0≤ k ≤ ε−9/10. (9)

We continue with the proof of (ii). Recall that the coordinates are shifted so that x = 0. Thus it suffices
to find y ∈ Rn such that

|x − y| = |y| ≤ Mε1/10, |y− x0| = 0 mod εZn

and
dist(y, H(x0)) < εων(ε).
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By (9), there exists w ∈ H(x0) such that

|x −w| = |w| ≤ Mkε ≤ Mε1/10 (10)

and
|x0−w| ≤ εων(ε) mod εZn. (11)

Given w satisfying (11), we can take y ∈ Rn such that

|x0− y| = 0 mod εZn, |y−w| ≤ εων(ε).

Then, by (10),
|y| ≤ |y−w| + |w| ≤ Mε1/10

+ εων(ε)≤ Mε1/10.

Also, since w is contained in H(x0), we have dist(y, H(x0))≤ |y−w| ≤ εων(ε), proving (ii).
Finally, (iii) is a direct consequence of (9). �

3. In the strip domain

Fix p ∈ Rn and ν ∈ Sn−1 such that p · ν 6= 0. Let

5=5ν = {x ∈ Rn
: −1≤ (x − p) · ν ≤ 0}.

We consider a bounded viscosity solution uε of

(Pε)


F(D2uε)= 0 in 5,
∂uε
∂ν
= g

( x
ε

)
on 00 := {x : (x − p) · ν = 0},

uε = 1 on 0I := {x : (x − p) · ν =−1}.

Below we prove the existence and uniqueness of uε.

Lemma 3.1. Let f (x) : Rn
→ R be continuous and bounded. Let 5 be as given above and define

BR(p) := {|x − p| ≤ R}. Suppose w1 and w2 solve, in the viscosity sense,

(a) F(D2w1)= 0 and F(D2w2)= 0 in 6R :=5∩ BR(p);

(b) ∂w1/∂ν = f (x)= ∂w2/∂ν on 00;

(c) w1 = w2 on 0I ;

(d) w1 =−M , w2 = M on 5∩ ∂BR(p).

Then, for R > 2 and C = n3
λ

, we have

w1 ≤ w2 ≤ w1+
3C M

R2 in 5∩ B1(p).

Proof. Without loss of generality, let us set ν = en and p = 0. The first inequality, w1 ≤ w2, directly
follows from Theorem 2.2. To show the second inequality, consider ω̃ := w1+M(h1+ h2), where

h1 =
1
R2

(
(x1)

2
+ · · ·+ (xn)

2) and h2 =
C
R2

(
1− (xn)

2),
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with C = n3
λ

. We claim w2 ≤ ω̃. To see this, note that

F(D2ω̃)= F(D2w1+ D2h1+ D2h2)

≥ F(D2w1)+
2
R2 (Cλ− n3)≥ F(D2w1) in 6R.

On the boundary of 6R , ω̃ satisfies

∂xn ω̃ = ∂xnω1 = ∂xnω2 on 6R ∩ {xn = 0}

and
w2 ≤ ω̃ on 0I ∩ BR(0) and on ∂BR(0)∩5.

It follows from Theorem 2.2 that w2 ≤ ω̃ in 6R , and we are done. �

Lemma 3.2. There exists a unique bounded solution u of (Pε).

Proof. 1. Let 6R be as given in Lemma 3.1, and consider the viscosity solution ωR(x) of (Pε) in 6R with
the lateral boundary data M = 1 on ∂BR(p)∩5. The existence and uniqueness of the viscosity solution
ωR is shown, for example, in [Crandall et al. 1992; Ishii 1991; Ishii and Lions 1990].

By the maximum principle, ωR ≤ 1+max(g) in 6R . Due to Theorem 2.4 and the Arzelà–Ascoli
Theorem, ωR locally uniformly converges to a continuous function uε(x). Then by the stability property
of viscosity solutions, it follows that uε(x) is a viscosity solution of (Pε).

2. To show uniqueness, suppose u1 and u2 are both viscosity solutions of (Pε) with |u1|, |u2| ≤ M . Then
Lemma 3.1 yields that, for any point q ∈ 00 and any R > 2,

|u1− u2| ≤ O
( 1

R2

)
in B1(q)∩5.

Hence u1 = u2. �

The following is immediate from Theorem 2.2 and the construction of uε in the above lemma.

Corollary 3.3. Suppose u and v are bounded and continuous in 5̄ν(p), and solve

a) F(D2u)≤ 0≤ F(D2v) in 5ν(p);

b) u ≤ v on 0I ;

c) ∂u/∂ν ≤ f (x)≤ ∂v/∂ν on 00;

where f (x) : Rn
→ R is continuous. Then u ≤ v in 5ν(p).

In the rest of this section, we will repeatedly use the fact that linear profiles as well as constants solve
F(D2u)= 0.

Lemma 3.4. Let 5ν(p) be as given in (Pε) and let 0< ε < 1. Suppose that w1 and w2 are bounded and
solve, in the viscosity sense, 

F(D2wi )= 0 in 5ν(p),

|w1−w2| ≤ ε on 0I ,

∂w1
∂ν
−
∂w2
∂ν
= A on 00.
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Then there exists a positive constant C = C(A) such that

|w1−w2| ≥ C − ε in 5ν(p)∩ B1/2(p).

Proof. Let w̃ :=w2+h, where h(x)= A(x− p) ·ν+ A−ε. Then ∂ω̃/∂ν = ∂ω1/∂ν on 00. Also, ω̃≤w1

on 0I . Therefore, Corollary 3.3 yields that w2+ h ≤w1. Since h ≥ A/2− ε in B1/2(p), we are done. �

Lemma 3.5. Let 5̃=5+ aν for some 0≤ a ≤ Aε, where 0< A < 1. Suppose uε and ũε are bounded,
and solve (Pε) respectively in the domains 5 and 5̃. Then we have

|uε − ũε| ≤ C(Aβ + εα) in 5∩ 5̃,

where α is as given in Theorem 2.4 and β is the Hölder exponent of g.

Proof. 1. Let vε(x)= ũε(x+aν), so that vε and uε are defined in the same domain5. Since g(x)∈Cβ(Rn),
|∂vε/∂ν− ∂uε/∂ν| ≤ Aβ on 00.

2. On 0I , uε = vε = 1. Hence one can compare uε± Aβ(1+ (x − p) · ν) with vε and apply Theorem 2.2
to obtain

|uε − vε| ≤ Aβ in 5.

Due to the Hölder continuity of uε given by Theorem 2.4, |vε − ũε| ≤ Cεα in 5∩ 5̃. This finishes the
proof. �

The next lemma follows from Theorem 2.4(b).

Lemma 3.6. Let v j be a bounded solution of (Pε) with a constant Neumann condition g(x) = µ j . If
µ j → µ, then v j converges to v such that ∂v/∂ν = µ on 00.

4. Proof of the Main Theorem

We will prove first parts (i), (iii) and (iv) of Theorem 1.2; the proof of part (ii) starts on page 965.
Recall that

00 =
{

x : (x − p) · ν = 0
}
, 0I =

{
x : (x − p) · ν =−1

}
.

Due to the uniform Hölder regularity of {uε} (Theorem 2.4(a)), along subsequences uε j → u in 5̄ν . Note
that there could be different limits along different subsequences (ε j ). Below, we will show that if ν is an
irrational direction, all subsequential limits of (uε) coincide.

Suppose
0 ∈5ν = {−1< (x − p) · ν < 0}.

Let us choose a convergent subsequence and rename it (u j ). For each j , there exists a constant µ j and a
function v j in 5ν(p) such that

(Pµ j )


F(D2v j )= 0 in 5ν(p),

∂v j/∂ν = µ j on 00,

v j = u j = 1 on 0I ,

v j = u j at x = 0.
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Lemma 4.1. We have µ j→µ for some µ as j→∞. (The limit may depend on the subsequence chosen.)

Proof. Suppose not; then there is a constant A > 0 such that for any N > 0, |µm −µn| ≥ A for some
m, n > N . Then, by Lemma 3.4,

|vm(0)− vn(0)| ≥ CA.

This contradicts the fact that v j (0)= u j (0), since u j (0)→ u(0) as j→∞. �

The next lemma states that uε looks like a linear profile with respect to the direction ν as ε→ 0.

Lemma 4.2. Away from the Neumann boundary 00, uε is almost a constant on hyperplanes parallel to 00.
More precisely, let x0 ∈5ν(p) with dist(x0, 00) > ε

1/20, and let 0< α < 1. Then:

(i) If ν is a rational direction, there exists a constant C > 0 depending on ν, α and n, such that for any
x ∈ H(x0) := {(x − x0) · ν = 0},

|uε(x)− uε(x0)| ≤ Cεα/2. (12)

(ii) If ν is any irrational direction, there exists a constant C > 0 depending on α and n, such that for any
x ∈ H(x0),

|uε(x)− uε(x0)| ≤ Cεα/20
+Cων(ε)β, (13)

where ων : [0, 1)→ [0,∞) is a mode of continuity given as in (ii) of Lemma 2.7.

Proof. First, let ν be a rational direction. Lemma 2.7 implies that for any x ∈ H(x0), there is y ∈ H(x0)

such that |x − y| ≤ Mνε and uε(y)= uε(x0). Then by Theorem 2.3,

|uε(x0)− uε(x)| ≤ Cε−α/20(Mνε)
α
≤ Cεα/2.

Next, we assume that ν is an irrational direction and x ∈ H(x0). By (ii) of Lemma 2.7, there exists
y ∈ Rn such that |x − y| ≤ Mε1/10, y− x0 ∈ εZn and

dist(y, H(x0)) < εω(ε). (14)

Then we obtain
|uε(x0)− uε(x)| ≤ |uε(x0)− uε(y)| + |uε(y)− uε(x)|

≤ C(ω(ε)β + εα)+ |uε(y)− uε(x)|

≤ Cω(ε)β +Cε−α/20(Mε1/10)α

≤ Cω(ε)β +Cεα/20, (15)

where the second inequality follows from Lemma 3.5 with (14), and the third inequality follows from
Theorem 2.3. �

By Lemma 4.2 and by the comparison principle (Theorem 2.2), we obtain the following estimate: for
x ∈5,

|uε(x)− vε(x)| ≤3(ε), (16)

where

3(ε)=

{
Cεα/2 if ν is a rational direction,
Cεα/20

+Cων(ε)β if ν is any irrational direction.
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Lemma 4.3. lim v j = lim u j , and hence ∂u/∂ν = µ on 00.

Proof. Observe that v j solves (Pε j ) with g = µ j : note that v j is then a linear profile, that is, v j (x) =
µ j ((x − p) · ν + 1)+ 1. Let x0 be a point between 00 and H(0). Then by Lemma 4.2, applied to u j

and v j , ∣∣(u j (x)− v j (x))− (u j (x0)− v j (x0))
∣∣≤3(ε j ), (17)

for all x ∈ H(x0), if j is sufficiently large. Suppose now that

u j (x0)− v j (x0) > c > 0, for sufficiently large j.

Then due to (17), u j − v j ≥ c/2 on H(x0) if j is sufficiently large. Note that u j can be constructed as
the locally uniform limit of u j,R , where u j,R solves

F(D2u j,R)= 0 in BR(x0)∩5, u j,R = v j on ∂BR(x0)∩5,

with
u j,R = 1 on 0I ,

∂

∂ν
u j,R(x)= g

( x
ε j

)
on 00.

Comparing u j,R and v j + c((x − x0) · ν+ 1) on the domain

BR(x0)∩
{

x : −1≤ (x − p) · ν ≤ (x − x0) · ν
}

for sufficiently large R then yields that u j,R(0) ≥ v j (0)+ c0 for all sufficiently large R, which would
contradict the fact that v j (0)= u j (0). Similarly, the case lim inf j (u j (x0)− v j (x0)) < 0 can be excluded,
and it follows that

|u j (x0)− v j (x0)| → 0 as j→∞.

Hence we get v j→ u in each compact subset of 5. By Lemmas 4.1 and 3.6, the limit u= v of v j satisfies
∂u/∂ν = µ on 00. �

Lemma 4.4. If ν is an irrational direction, ∂u/∂ν = µν for a constant µν which depends on ν, not on the
subsequence ε j .

Proof. 1. Let 0< η < ε be sufficiently small. Let

wε(x)=
uε(εx)
ε

, wη(x)=
uη(ηx)
η

,

and denote by 01 and 02 the Neumann boundary of wε and wη, respectively. By (iii) of Lemma 2.7, for
the point p ∈ Rn , there exist q1 ∈ 01 and q2 ∈ 02 such that

|p− q1| ≤ η mod Zn and |p− q2| ≤ η mod Zn.

Hence after translations by p − q1 and p − q2, we may suppose that wε(x) and wη(x) are defined,
respectively, on the extended strips

�ε :=
{

x : −1
ε
≤ (x − p) · ν ≤ 0

}
and �η :=

{
x : −1

η
≤ (x − p) · ν ≤ 0

}
.
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Here, wε = 1/ε on {(x − p) · ν = −1/ε} and wη = 1/η on {(x − p) · ν = −1/η}. Moreover, on
00 := {(x − p) · ν = 0}, we have

∂wε

∂ν
= g1(x) := g(x − z1) and

∂wη

∂ν
= g2(x) := g(x − z2),

where |z1|, |z2| ≤ η. Observe that since g has Hölder exponent 0< β ≤ 1, we have |g1− g2| ≤ η
β .

Let vε be a solution of the problem (Pε) with constant Neumann data ∂vε/∂ν = µε on 00 such that vε
coincides with uε at x = 0 and on 0I . By (16),∣∣∣wε(x)− vε(εx)

ε

∣∣∣≤ Cεα/20
+Cω(ε)β

ε
. (18)

Note that vε is a linear profile: indeed,

vε(εx)
ε
= µε

(
(x − p) · ν+ 1

ε

)
+

1
ε
.

From (18) and the comparison principle, it follows that, with 3(ε)= Cεα/20
+Cω(ε)β ,(

µε −3(ε)
)(
(x − p) · ν+ 1

ε

)
≤ wε(x)−

1
ε
≤
(
µε +3(ε)

)(
(x − p) · ν+ 1

ε

)
, (19)

2. (19) means that the slope of wε in the direction of ν (that is, ν · Dwε) is between µε +3(ε) and
µε −3(ε) on {x : (x − p) · ν =−1/ε}. Now let us consider linear profiles

l1(x)= a1(x − p) · ν+ b1 and l2(x)= a2(x − p) · ν+ b2,

whose respective slopes are a1 = µε +3(ε) and a2 = µε −3(ε). Here b1 and b2 are chosen such that

l1 = l2 = ωη(x) on
{

x : (x − p) · ν =−1
η

}
.

3. Now we define

w(x) :=
{

l1(x) in
{
−1/η ≤ (x − p) · ν ≤−1/ε

}
,

wε(x)+ c1 in
{
−1/ε ≤ (x − p) · ν ≤ 0

}
and

w(x) :=
{

l2(x) in
{
−1/η ≤ (x − p) · ν ≤−1/ε

}
,

wε(x)+ c2 in
{
−1/ε ≤ (x − p) · ν ≤ 0

}
,

where c1 and c2 are constants satisfying l1=wε+c1 and l2=wε+c2 on {(x− p)·ν=−1/ε}. (See figure.)

1
η

1
ε

w
w
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Note that, due to (19), in {−1/ε ≤ (x − p) · ν ≤ 0} we have

w(x)=min
(
l1(x), wε(x)+ c1

)
and w(x)=max

(
l2(x), wε(x)+ c2

)
,

and thus it follows that w and w are respectively viscosity super- and subsolutions of (P).

4. Let us define
h1(x)= ηβ

(
(x − p) · ν+ 1

η

)
.

Then w+ := w+ h1 solves {
F(Dw+)≥ 0 in �η,
∂w+/∂ν = g(x)+ ηβ on 00,

and w− := w− h1 solves {
F(Dw−)≤ 0 in �η,
∂w−/∂ν = g(x)− ηβ on 00.

Since |g − g̃| ≤ ηβ and w+ = w− = wη on {(x − p) · ν = −1/η}, it follows from the comparison
principle for (Pε) that

w− ≤ wη ≤ w
+ in �η. (20)

Hence we conclude
|µη−µε| ≤3(ε)+ η

β, (21)

where µη is the slope of vη, and 3(ε)= Cεα/20
+Cw(ε)β→ 0 as ε→ 0. �

The proof of the following lemma is immediate from Lemma 4.4 and (21) .

Lemma 4.5 (error estimate: Theorem 1.2(iv)). For any irrational direction ν, there is a unique homoge-
nized slope µ(ν) ∈ R and ε0 = ε0(ν) > 0 such that for 0< ε < ε0, the following holds: for any 0< α < 1,
there exists a constant C = C(α, n, λ,3) such that∣∣uε(x)− (1+µ(ν)((x − p) · ν+ 1)

)∣∣≤3(ε) := Cεα/20
+Cων(ε)β in 5ν(p), (22)

where ων(ε) is as given in (7).

Lemma 4.6. Let ν be a rational direction. If the Neumann boundary 00 passes through p = 0, then there
is a unique homogenized slope µ(ν) for which the result of Lemma 4.5 holds with 3(ε)= Cεα/2.

Proof. The proof is parallel to that of Lemma 4.4. Let wε and wη be as given in the proof of Lemma 4.4.
Note that since �ε and �η have their Neumann boundaries passing through the origin, ∂wε/∂ν = g(x)=
∂wη/∂ν without translation of the x variable, and thus we do not need to use the properties of hyperplanes
with an irrational normal (Lemma 2.7(b)) to estimate the error between the shifted Neumann boundary
data. �

Remark 4.7. As mentioned in the introduction, if ν is a rational direction with p 6= 0, the values of
g( · /ε) on ∂�ε and ∂�η may be very different under any translation, and thus the proof of Lemma 4.4
fails. In this case, uε may converge to solutions of different Neumann boundary data, depending on the
subsequence.
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Proof of Theorem 1.2(ii). Recall that we must show that the homogenized limit µ(ν), defined in Lemma 4.5
for irrational directions in Sn−1, has a continuous extension µ̄(ν) : Sn−1

→ R.
Fix a unit vector ν ∈Sn−1. Then we will show that there exists a positive constant C > 0 depending on

ν such that the following holds: given δ > 0, there exists ε > 0 such that for any two irrational directions
ν1, ν2 ∈ Sn−1,

|µ(ν1)−µ(ν2)|< Cδ1/2 whenever 0< |ν1− ν|, |ν2− ν|< ε. (23)

1. To simplify the proof, we first present the case n = 2. For simplicity of notation, we may assume that
|ν · e1| ≤ |ν · e2| and p = 0. First we introduce several notations. Again for notational simplicity and
clarity in the proof, we assume that ν = e2: we will explain in the paragraph below how to modify the
notations and the proof for ν 6= e2. Let us define

�0 :=5ν(0)= {(x, y) ∈ R2
: −1≤ y ≤ 0},

and for i = 1, 2,

�i :=5νi (0)= {(x, y) ∈ R2
: −1≤ (x, y) · νi ≤ 0}.

Let us also define the family of functions

gi (x1, x2)= gi (x1)= g(x1, δ(i − 1)),

where i = 1, . . . ,m := [1/δ] + 1 (see figure).

δ
δ
δ
δ

g1

g2

g3

g4

g5

If ν is a rational direction different from e2, take the smallest Kν ∈N such that Kνν = 0 mod N2. Then
g can be considered as a Kν-periodic function with the new direction of axis of ν. If ν is an irrational
direction, take the smallest Kν ∈ N such that |Kνν| ≤ δ mod N2. Then g is almost Kν-periodic up to the
order of δ with the new axis of ν. We point out that it does not make any difference in the proof if we
replace the periodicity of g by the fact that g is almost periodic up to the order δ.

Before moving on to the next step, we briefly discuss the heuristics in the proof.

Proof by heuristics. Since the domains �1 and �2 point toward different directions ν1 and ν2, we
cannot directly compare their boundary data, even if ∂�1 and ∂�2 cover most of the unit cell in Rn/Zn .
To overcome this difficulty, we perform a two-scale homogenization.
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H

1

N
�X

§�g  ( · /��)
1�

1

1

�

1
H

��Q ��Q

��Q ��Q

H

N   -boxesH N   -boxesH

H

1

�X
§�   ( g )

1
P

H

1

�X
§�   ( g )

2
P

H

1

�X
§�g  ( · /��)

1�
2

H

First we consider the functions gi (i = 1, . . . ,m) whose profiles cover most values of g in R2 up to
the order of δβ , where β is the Hölder exponent of g. Note that most values of g in R2 are taken on ∂�1

and on ∂�2, since ν1 and ν2 are both irrational directions. On the other hand, since ν1 and ν2 are very
close to ν, which may be a rational direction, the averaging behavior of a solution uε in �1 (or �2) would
occur only if ε gets very small.

If |ν1− ν| = |ν1− e2| is chosen much smaller than δ, we can say that the Neumann data g1( · /ε) is
(almost) repeated N := [δ/|ν1− ν|] times on ∂�1 with period ε, up to the error O(δβ). (See figure at the
top of the page.) Similarly, on the next piece of the boundary, g2( · /ε) is (almost) repeated N times, and
then g3( · /ε) is repeated N times: this pattern will repeat with gk (k ∈ N mod m).

If N is sufficiently large, that is, if |ν1 − ν| is sufficiently small compared to δ, the solution uε in
�1 will exhibit averaging behavior, Nε-away from ∂�1. More precisely, on the Nε-sized segments of
hyperplane H located Nε-away from ∂�1, uε would be homogenized by repeating the profiles of gi (for
some fixed i) with an error of O(δβ). This is the first homogenization of uε near the boundary of �1: we
denote by µ(gi ) the corresponding values of the homogenized slopes of uε on H .

Now a unit distance away from ∂�1, we obtain the second homogenization of uε, whose slope is
determined by µ(gi ), i = 1, . . . ,m. Note that this estimate does not depend on the direction ν1, but on
the quantity |ν1− ν|. Hence, applying the same argument for ν2, we conclude that |µ(ν1)−µ(ν2)| is
small. Note that µ(ν1) and µ(ν2) are uniquely determined because ν1 and ν2 are irrational directions
(Lemma 4.6).1

A rigorous proof of the above observation is rather lengthy: the main difficulty lies in the fact that
to perform the first homogenization Nε-away from the boundary, one requires the solution uε to be
sufficiently flat in tangential directions to ν, which we do not know a priori. We will go around this
difficulty by constructing sub- and supersolutions by patching up solutions from the near-boundary region
and from the region away from the boundary. The proof is given in steps 2–8 below.

1By (F3), we may assume that the arrangement of g1, . . . , gm is the same for the directions ν1 and ν2, after appropriate
rotation and reflection (note that (F3) implies rotation and reflection invariance of the operator F).
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2. Given δ > 0, let us choose irrational unit vectors ν1, ν2 ∈ R2 such that

0< ε̄1/1000
0 ≤ ε

1/1000
0 ≤ δ,

where ε0 = |ν1− e2| and ε̄0 = |ν2− e2|. Let ε = ε21/20
0 and ε̄ = ε̄21/20

0 . Let us also define

N =
[

δ

|ν1−e2|

]
=

[
δ

ε0

]
. (24)

Then Nε = δε1/20
0 := δ0. Note that

δ0 ≥ ε
1/20 and δ0 ≥ δ

100.

With the above definition of ε and N , consider the strip regions I0 = [−Nε, 0]×R, I1 = [0, Nε]×R,
I−1 = [−2Nε,−Nε]×R, I2 = [Nε, 2Nε]×R, . . . , that is,

Ik = [(k− 1)Nε, k Nε]×R for k ∈ Z.

Let k̃ ∈ [1,m] denote k in modulo m, where m = [1/δ] + 1. Note that, since N |ν1− e2| = δ, gk̃( · /ε) is
(almost) repeated N times on Ik ∩ ∂�1. This fact and the Hölder continuity of g yield that∣∣∣g( x

ε
,

y
ε

)
− gk̃

( x
ε

)∣∣∣< Cδβ on ∂�1 ∩ Ik, for k ∈ Z. (25)

3. Let wε solve (P) : F(D2wε)= 0 in �0, with{∂wε
∂ν

(x, 0)= gk̃

( x
ε

)
for (x, 0) ∈ Ik,

wε = 1 on {y =−1}.

Next let uε solve (P) in �1, with{∂uε
∂ν1

(x, 0)= g
( x
ε
,

y
ε

)
on {(x, y) · ν1 = 0},

uε = 1 on {(x, y) · ν1 =−1}.

Let µ(wε) (µ(uε)) be chosen as the slope µ j in the linearized problem (Pµ j ) in Section 4, where u j is
replaced by wε (uε) and the reference point x = 0 is replaced by x =−e2/2= (0,− 1

2). (Recall that we
assumed 0 ∈ ∂�1, and (0,−1

2) ∈�i for i = 1, 2.) Then µ(wε) and µ(uε) denote the slopes of a linear
approximation of wε and uε. From (25) it follows that

|µ(wε)−µ(uε)|< Cδβ . (26)

We point out that µ(wε) and µ(uε) respectively converge to a unique limit as ε → 0, since ν1 is
irrational.

4. We begin by introducing µ1/N (gk), which denotes the average slope of a solution with Neumann data
gk(x/ε), δ0-away from the Neumann boundary {y = 0}. (Here note that δ0 = Nε.)

Let us define
H := ∂�0− Nεe2 = {(x, y) : y =−δ0}.
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Let η = 1/N and let wη,1 solve
F(D2wη,1)= 0 in {−δ0 ≤ y ≤ 0},

wη,1 = wε(0,−δ0) on H = {y =−δ0},

∂wη,1

∂y
(x, 0)= g1

( x
ε
, 0
)

on ∂�0 = {y = 0},

where g1(x, 0)= g1(x + k, 0) for k ∈ Z. Let µ1/N (g1) be the slope of the linear approximation of wη,1,
defined as follows: choose a linear solution vη,1( · ) such that

F(D2vη,1)= 0 in {−δ0 ≤ y ≤ 0},

vη,1 = wη,1(0,−δ0) on H = {y =−δ0},

vη,1

(
0,−δ0

2

)
= wη,1

(
0,−δ0

2

)
,

∂vη,1

∂y
(x, 0)= µ1/N (g1) on ∂�0 = {y = 0}.

Since g1(x/ε, 0) is periodic on {y = 0} with period ε and δ0 = Nε, we can apply Lemma 4.2(i), using
the fact that δ0 ≥ ε

1/20, to conclude that∣∣∣wη,1(x, y)−
(
wη,1

(
0,−δ0

2

)
+µ1/N (g1)

(
y+ un δ0

2

))∣∣∣≤ Cδ1+β
0 (27)

on {y =−δ0/2} ∩ I1. Similarly, one can define wη,k and vη,k for k ∈ Z to conclude that∣∣∣wη,k(x, y)−
(
wη,k

(
(k− 1)δ0,−

δ0
2

)
+µ1/N (gk̃)

(
y+ δ0

2

))∣∣∣≤ Cδ1+β
0 (28)

on {y =−δ0/2} ∩ Ik .

5. We will now construct barriers which bound wε from above and below, by pasting together the near-
boundary and the rest of the region together as follows. First we construct a supersolution of (Pε). Let ρε
solve the Neumann boundary problem away from the boundary {y = 0}:

F(D2ρε)= 0 in {−1≤ y ≤−δ0},

∂ρε

∂y
=3(x) on H = {y =−δ0},

ρε = 1 on {y =−1}.

Here 3(x) is a Hölder continuous function obtained by approximating µ1/N (gk)+ 2δα0
0 in each Nε-strip,

where the constant 0< α0 < 1 will be decided below. Here the Hölder continuity of 3(x) is obtained by
the fact that gk and g j differ from each other by ((k− j)δ)β and they are apart by (k− j)Nε≥ (k− j)δ100.

Then Theorem 2.4(b) yields that ρε ∈C1,γ up to H , where γ depends on β and n. Therefore there exists
a constant 0<α0 < 1 such that the following holds: in each δ1−α0

0 -neighborhood of a point (x0,−δ0)∈ H ,
we have ∣∣ρε(x,−δ0)− ρε(x0,−δ0)−α(x0)(x − x0)

∣∣≤ δ1+α0
0 , (29)

where α(x0) is the tangential derivative of ρε at (x0,−δ0).
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6. Next we construct the near-boundary barrier:
F(D2 fε)= 0 in {−δ0 ≤ y ≤ 0},

fε = ρε on H = {y =−δ0},

∂ fε
∂y
= gk̃

( x
ε

)
on {y = 0} ∩ Ik .

Let us now estimate the slope of fε on H . Let us choose a constant µε and the corresponding linear
profile φε such that 

F(D2φε)= 0 in {−δ0 ≤ y ≤ 0},

φε(x,−δ)= fε(0,−δ0) on H,

φε

(
0,−δ

2

)
= fε

(
0,−δ0

2

)
,

∂φε
∂y
= µε on ∂�0 = {y = 0}.

Equation (29) and the comparison principle (Theorem 2.2), as well as the localization argument as in the
proof of Lemma 3.1 applied to the rescaled function

(δ0)
−1 fε

(
(x − x0)

δ0
+ x0,

y
δ0

)
−α(x0)(x − x0)

in the region {−1≤ y ≤ 0} ∩ {|x | ≤ δ−α0
0 }, yields that

|φε − fε| ≤ Cδ1+α0
0 in {−δ0 ≤ y ≤ 0} ∩ {|x | ≤ δ1−α0

0 }. (30)

Putting the estimates (28) and (30) together, it follows that for any (x0,−δ0) ∈ H , we have∣∣∣ fε(x, y)−
(
α(x0)(x − x0)+µ1/N (gk)

(
y+

δ0

2

))∣∣∣≤ δ1+α0
0 on

{
y =−

δ0

2

}
∩
{
|x − x0| ≤ δ

1−α0
0

}
,

for appropriate k in each δ-strip. Using the above inequality, (29), and the C1,γ regularity of fε up to its
Dirichlet boundary, we obtain that

∂ fε
∂y
≤3(x),

which then makes the following function a supersolution of (Pε):

ρ
ε
:=

{
ρε in {−1≤ y ≤−δ0},

fε in {−δ0 ≤ y ≤ 0}.

Similarly, one can construct a subsolution ρ̄ε of (Pε) by replacing 3(x) given in the construction of ρε
by 3̃(x) :=3(x)− 4δα0

0 , such that
ρ̄ε ≤ wε ≤ ρε

. (31)

7. Parallel arguments as in steps 2–6 apply to the other direction, ν2: if we define ε̄0, M and H̄ by

|ν2− e2| = ε̄0 < ε0, M =
[
δ

ε̄0

]
, ε̄ = ε̄

21/20
0 and H̄ = {y =−M ε̄},
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then we can construct barriers ρ̄ε̄ and ρ
ε̄

such that

ρ̄ε̄ ≤ wε̄(x)≤ ρ ε̄, (32)

with their corresponding Neumann boundary conditions on H :

∂

∂y
ρ̄ε̄,

∂

∂y
ρ
ε̄
= µ1/M(gk̄)+ O(δ̄α0

0 ) and H̄ ∩ Ik, (33)

where their respective derivative is taken as a limit from the region {−1≤ y <−δ̄0}.

8. Now we proceed to estimate the averaging behavior of uε away from the Neumann boundary. By (21)
of Lemmas 4.4 and 4.6, ∣∣µ1/N (gk̃)−µ1/M(gk̃)

∣∣<3( 1
N

)
+

( 1
M

)β
, (34)

where 3
( 1

N

)
= C N−α/2. Let us write µ1/N (gk̃)= µk̃,N , and let h and h̄ respectively solve

F(D2h)= 0 in {−1≤ y ≤−Nε},

h = 1 on {y =−1},

∂h
∂ν
= µk̃,N on H ∩ Ik,

and 
F(D2h̄)= 0 in {−1≤ y ≤−M ε̄},

h̄ = 1 on {y =−1},

∂ h̄
∂ν
= µk̃,M on H̄ ∩ Ik .

Let µ(h) and µ(h̄) be the respective slope of linear approximation for h and h̄.
Then it follows from (34) that if δ0 ∼ Nε and δ̄0 ∼ M ε̄ are sufficiently small,

|µ(h)−µ(h̄)|< C
(

m
( 1

N

)
+

( 1
M

)β)
. (35)

Lastly, observe that by (31) and (32), there exists 0< γ < 1 such that

|µ(wε)−µ(h)|< Cδγ and |µ(wε̄)−µ(h̄)|< Cδγ .

The above inequalities and (35) yield

|µ(wε)−µ(wε̄)|< C
(
δγ +m

( 1
N

)
+

( 1
M

)β)
.

Then we conclude from (26) that

|µ(uε)−µ(u ε̄)|< C
(
δγ +m

( 1
N

)
+

( 1
M

)β)
. (36)

9. Lastly, we estimate the rate of convergence of µ(uε) to µ(ν1) as ε→ 0. The claim is that
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|µ(ν1)−µ(uε)| ≤ C
(
ε
β

0 + ε
21α/200
0 + ε

1/20
0

)
.

We will argue similarly as in the proof of Lemma 4.2(ii). Let us define vε, the linear approximation of
uε, as in (Pµ j ) of page 960, where the reference function u j is replaced by uε.

Recall that �1 = {y : −1≤ y · ν1 ≤ 0}. We define

�̃1 :=�1 ∩ {y : y · ν1 ≤−Nεδ−1ν1}

and L := ∂�1 − Nεδ−1ν1. For any given x0 ∈ L and for any x ∈ L , there exists y ∈ R2 such that
|x − y| ≤ Nεm, x0− y = 0 mod εZ2, and

dist(y, L)≤ ε|ν1− e2| = εε0.

(Recall that m =
[1
δ

]
+ 1.) Then by arguing as in (15), for x ∈ L ,

|uε(x0)− uε(x)| ≤ Cεβ0 +C(Nεδ−1)α(Nεm)α ≤ C(εβ0 + ε
α/10).

Hence, due to the comparison principle (Theorem 2.2) applied to uε and vε in the domain �̃1, we obtain

|uε − vε| ≤ C(εβ0 + ε
α/10
+ Nεδ−1)= C(εβ0 + ε

21α/200
0 + ε

1/20
0 ). (37)

Following the proof of (21) using (37) instead of (13), we conclude

|µ(uε)−µ(ν1)| ≤ C(εβ0 + ε
21α/200
0 + ε

1/20
0 )≤ δ.

Parallel arguments apply to ν2. Combining the above inequality with (36),

|µ(ν1)−µ(ν2)| ≤ C
(
δγ +m

( 1
N

)
+

( 1
M

)β)
.

Since N and M grow to infinity as ε and ε̄ go to zero, the above inequality proves the lemma.

10. For the general dimensions n > 2, let us define

gi (x1, . . . , xn−1, xn)= gi (x1, . . . , xn−1)= g(x1, . . . , xn−1, δ(i − 1))

for i = 0, 1, . . . ,m := [δ−1
]. Let us also define

Ik1,k2,...,kn−1 :=
[
(k1− 1)Nε, k1 Nε

]
× · · ·×

[
(kn−1− 1)Nε, kn−1 Nε

]
×R.

Then parallel arguments as in steps 1–9 would apply to yield the proposition in Rn . �

Remark 4.8. The proof breaks down for F = F(D2u, x/ε), since the idea of perturbing the problem by
tilting the Neumann boundary and its boundary data, that is, the approximation of uη by wη in step 3,
does not apply if the inside operator also depends on x/ε.
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LONG-TIME ASYMPTOTICS FOR TWO-DIMENSIONAL EXTERIOR FLOWS
WITH SMALL CIRCULATION AT INFINITY

THIERRY GALLAY AND YASUNORI MAEKAWA

We consider the incompressible Navier–Stokes equations in a two-dimensional exterior domain �, with
no-slip boundary conditions. Our initial data are of the form u0 D ˛‚0C v0, where ‚0 is the Oseen
vortex with unit circulation at infinity and v0 is a solenoidal perturbation belonging to L2.�/2\Lq.�/2

for some q 2 .1; 2/. If ˛ 2 R is sufficiently small, we show that the solution behaves asymptotically in
time like the self-similar Oseen vortex with circulation ˛. This is a global stability result, in the sense
that the perturbation v0 can be arbitrarily large, and our smallness assumption on the circulation ˛ is
independent of the domain �.

1. Introduction

Let �� R2 be a smooth exterior domain, namely an unbounded connected open subset of the Euclidean
plane with a smooth compact boundary @�. We consider the free motion of an incompressible viscous fluid
in �, with no-slip boundary conditions on @�. The evolution is governed by the Navier–Stokes equations8<:

@tuC .u � r/uD�u�rp; div uD 0 for x 2�; t > 0;

u.x; t/D 0 for x 2 @�; t > 0;

u.x; 0/D u0.x/ for x 2�;

(1)

where u.x; t/2R2 denotes the velocity of a fluid particle at point x 2� and time t > 0, and p.x; t/ is the
pressure in the fluid at the same point. For simplicity, both the kinematic viscosity and the density of the
fluid have been normalized to 1. The initial velocity field u0 W�! R2 is assumed to be divergence-free
and tangent to the boundary on @�.

If the initial velocity u0 belongs to the energy space

L2
� .�/D fu 2L2.�/2 j div uD 0 in �; u � nD 0 on @�g;

where n denotes the unit normal on @�, then it is known that system (1) has a unique global solution
u 2 C 0.Œ0;1/IL2

� .�//\ C 1..0;1/IL2
� .�//\ C 0..0;1/IH 1

0
.�/2 \H 2.�/2/, which satisfies the

energy equality

1

2
ku. � ; t/k2

L2.�/
C

Z t

0

kru. � ; s/k2
L2.�/

ds D
1

2
ku0k

2
L2.�/

for all t > 0:
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This global well-posedness result was first established by Leray [1933] in the particular case where�DR2,
and subsequently extended to more general domains, including exterior domains, by various authors
[Leray 1934; Ladyženskaja 1959; Lions and Prodi 1959; Kato and Fujita 1962; Fujita and Kato 1964;
Kozono and Ogawa 1993b]. It is also known that the kinetic energy 1

2
ku. � ; t/k2

L2.�/
converges to zero

as t !1 [Masuda 1984; Borchers and Miyakawa 1992; Kozono and Ogawa 1993b], and precise decay
rates can be obtained under additional assumptions on the initial data [Kozono and Ogawa 1993a; He and
Miyakawa 2006; Bae and Jin 2006].

In two-dimensional fluid mechanics, however, the assumption that the velocity field u be square
integrable is quite restrictive, because it implies (if u D 0 on @�) that the associated vorticity field
!D @1u2�@2u1 has zero mean over�; see [Majda and Bertozzi 2002, Section 3.1.3]. In many important
examples, this condition is not satisfied and the kinetic energy of the flow is therefore infinite. For instance,
when �DR2, the Navier–Stokes equations (1) have a family of explicit self-similar solutions of the form
u.x; t/D ˛‚.x; t/, p.x; t/D ˛2….x; t/, where ˛ 2 R is a parameter and

‚.x; t/D
1

2�

x?

jxj2

�
1� e�

jxj2

4.1Ct/

�
; r….x; t/D

x

jxj2
j‚.x; t/j2: (2)

Here and in the sequel, if x D .x1;x2/ 2 R2, we define x? D .�x2;x1/ and jxj2 D x2
1
C x2

2
. The

solution (2) is called the Lamb–Oseen vortex with circulation ˛. Remark that j‚.x; t/j D O.jxj�1/ as
jxj !1, so that ‚. � ; t/ …L2.R2/2, and that the circulation at infinity of the vector field ‚ is equal to 1,
in the sense that

H
jxjDR ‚1 dx1C‚2 dx2! 1 as R!1. The corresponding vorticity distribution

„.x; t/D @1‚2.x; t/� @2‚1.x; t/D
1

4�.1C t/
e�

jxj2

4.1Ct/ (3)

has a constant sign and satisfies
R

R2 „.x; t/ dx D 1 for all t � 0. Oseen’s vortex plays an important role
in the dynamics of the Navier–Stokes equations in R2, because it describes the long-time asymptotics of
all solutions whose vorticity distribution is integrable. This result was first proved in [Giga and Kambe
1988] for small solutions, and subsequently in [Carpio 1994] for large solutions with small circulation.
The general case was finally settled in [Gallay and Wayne 2005]. It is worth mentioning that all these
results were obtained using the vorticity formulation of the Navier–Stokes equations.

In the case of an exterior domain �� R2, much less is known about infinite-energy solutions, mainly
because the vorticity formulation is not convenient anymore due to the boundary conditions. A general
existence result was established in [Kozono and Yamazaki 1995], who proved that system (1) is globally
well-posed for initial data u0 in the weak L2 space L

2;1
� .�/, provided that the local singularity of u0

in L2;1 is sufficiently small. In what follows, we consider initial data of the form

u0 D ˛�‚0C v0; (4)

where‚0.x/D‚.x; 0/ is Oseen’s vortex at time t D 0, and � WR2! Œ0; 1� is a smooth, radially symmetric
cut-off function such that � D 0 on a neighborhood of R2 n� and �.x/ D 1 when jxj is sufficiently
large. For any ˛ 2 R and any v0 2L2

� .�/, Theorem 4 in [Kozono and Yamazaki 1995] asserts that the
Navier–Stokes equation (1) has a global solution with initial data (4), which is unique in an appropriate
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class. However, little is known about the long-time behavior of this solution, and in particular there is no
a priori estimate which guarantees that the L2;1 norm of u remains bounded for all times.

Very recently, a first result concerning the long-time behavior of solutions of (1) with initial data of the
form (4) was obtained by Iftimie, Karch, and Lacave:

Theorem 1.1 [Iftimie et al. 2011]. Let �� R2 be a smooth exterior domain whose complement R2 n�

is a connected set in R2. For any v0 2 L2
� .�/, there exists a constant � D �.v0; �/ > 0 such that, for

all ˛ 2 Œ��; ��, the solution of (1) with initial data (4) satisfies

lim
t!1

t
1
2
� 1

p ku. � ; t/�˛‚. � ; t/kLp.�/ D 0 for all p 2 .2;1/: (5)

Moreover, there exists �0 D �0.�/ > 0 such that � � �0 if kv0kL2 � �0.

Theorem 1.1 shows that solutions of (1) which are finite-energy perturbations of Oseen’s vortex ˛‚0

behave asymptotically in time like the self-similar Oseen vortex ˛‚.x; t/, provided that the circulation
at infinity, ˛, is sufficiently small, depending on the size of the initial perturbation. The conclusion
holds in particular when both the circulation ˛ and the finite-energy perturbation v0 are small, so that
Theorem 1.1 extends to exterior domains the result of [Giga and Kambe 1988]. For large solutions,
however, the assumption that ˛ be small depending on v0 is very restrictive. The goal of the present paper
is to prove the following result, which reaches a conclusion similar to that of Theorem 1.1 under different
assumptions on the initial data:

Theorem 1.2. Fix q 2 .1; 2/, and let � D 1=q � 1=2. There exists a constant � D �.q/ > 0 such
that, for any smooth exterior domain � � R2 and for all initial data of the form (4) with j˛j � � and
v0 2L2

� .�/\Lq.�/2, the solution of the Navier–Stokes equations (1) satisfies

ku. � ; t/�˛‚. � ; t/kL2.�/C t1=2
kru. � ; t/�˛r‚. � ; t/kL2.�/ D O.t��/; (6)

as t !C1.

Here, we also suppose that the circulation at infinity is small, and we assume in addition that the initial
perturbation belongs to L2

� .�/\Lq.�/2 for some q < 2. Unlike in Theorem 1.1, the limiting case qD 2

is not included, and the proof shows that �.q/D O.
p

2� q/ as q! 2. However, there is absolutely no
restriction on the size of the perturbation v0; hence Theorem 1.2 establishes a global stability property for
the Lamb–Oseen vortices (with small circulation) in two-dimensional exterior domains. In this sense, our
result can be considered as a generalization to exterior domains of the work of Carpio [1994], although
our proof relies on completely different ideas. On the other hand, since our perturbations decay faster
at infinity (in space) than those considered by Iftimie, Karch, and Lacave, we are able to show that the
difference u.x; t/� ˛‚.x; t/ converges rapidly to zero, like an inverse power of time, as t !1. In
particular, using (6) and elementary interpolation, we obtain the estimate

sup
t>0

t
1
q
� 1

p ku. � ; t/�˛‚. � ; t/kLp.�/ <1 for all p 2 Œ2;1/;

which improves (5) since q < 2.
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At this point, it is useful to mention that the assumption that u0 can be decomposed as in (4) for
some ˛ 2 R and some v0 2 L2

� .�/\Lq.�/2 is automatically satisfied if we suppose that the initial
vorticity !0 D curl u0 is sufficiently localized. Indeed, let us assume for simplicity that u0 vanishes on
the boundary @�. For 1 � p <1, we denote by PW 1;p

0;�
.�/ the completion with respect to the norm

u 7! krukLp of the space of all smooth, divergence-free vector fields with compact support in �. Using
this notation, we have the following result:

Proposition 1.3. Fix q 2 .1; 2/. Assume that u0 belongs to PW 1;p
0;�

.�/ for some p 2 Œ1; 2/, and that the
associated vorticity !0 D curl u0 satisfiesZ

�

.1Cjxj2/mj!0.x/j
2 dx <1 (7)

for some m > 2=q. If we define ˛ D
R
� !0.x/ dx, then u0 can be decomposed as in (4) for some

v0 2L2
� .�/\Lq.�/2. In particular, if j˛j � �, the conclusion of Theorem 1.2 holds.

For completeness, we give a short proof of Proposition 1.3 in the Appendix. Returning to the discussion
of Theorem 1.2, we emphasize that the smallness condition on the circulation ˛ is independent of the
domain �, which can be an arbitrary multiply connected exterior domain. In fact, the proof will show
that the optimal constant �.q/ is entirely determined by quantities that appear in the evolution equation
for the perturbation of Oseen’s vortex in the whole plane R2. Note that Oseen vortices are known to be
globally stable for all values of the circulation ˛ when �D R2 [Gallay and Wayne 2005], but in that
particular case one can use the vorticity equation to obtain precise information on the solutions of (1).
The reader who is not interested in precise convergence rates could consider the following variant of
Theorem 1.2, where the condition on the circulation is totally explicit:

Corollary 1.4. There exists a universal constant �� � 4:956 such that, if j˛j< �� and if

v0 2L2
� .�/\Lq.�/2

for all q 2 .1; 2/, the solution of the Navier–Stokes equations (1) with initial data (4) satisfies

ku. � ; t/�˛‚. � ; t/kL2.�/! 0 as t !1:

The rest of this paper is devoted to the proof of Theorem 1.2, which is quite different from that of
Theorem 1.1 in [Iftimie et al. 2011]. In the preliminary section (Section 2), we collect various estimates
on the truncated Oseen vortex �‚, which can be verified by direct calculations. In Section 3, following
the classical approach of [Fujita and Kato 1964], we prove the existence of a unique global solution of (1)
for small initial data of the form (4), and we obtain the asymptotics (6) for small solutions. To deal with
large solutions, we derive in Section 4 a “logarithmic energy estimate”, which shows that the energy norm
of the perturbation v has at most a logarithmic growth as t !1. This is the key new ingredient, which
we use as a substitute for the classical energy inequality when ˛ ¤ 0. Exploiting this estimate and our
assumption that v0 2Lq.�/2, we control in Section 5 the evolution of a fractional primitive of v, and we
deduce that the perturbation v. � ; t/ converges to zero in energy norm, at least along a sequence of times.
Thus we can eventually use the results of Section 3, and the conclusion follows.
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2. The truncated Oseen vortex

Fix � � 1 large enough so that fx 2 R2 j jxj � �g � �. Let �.x/ D Q�.x=�/, where Q� 2 C1.R2/ is
a radially symmetric cut-off function satisfying Q�.x/ D 0 when jxj � 1, Q�.x/ D 1 when jxj � 2, and
0� Q�.x/� 1 for all x 2 R2. We define the truncated Oseen vortex (with unit circulation) as follows:

u�.x; t/D �.x/‚.x; t/D
1

2�

x?

jxj2

�
1� e�

jxj2

4.1Ct/

�
�.x/; x 2 R2; t � 0: (8)

Since � is radially symmetric and supp�� fx 2 R2 j jxj � �g ��, it is clear that u�.x; t/ is a smooth
divergence-free vector field which vanishes in a neighborhood of R2 n�. Let !� D @1u

�
2
� @2u

�
1

be the
corresponding vorticity field, namely

!�.x; t/D �.x/„.x; t/C
1

2�

1

jxj2

�
1� e�

jxj2

4.1Ct/

�
x � r�.x/; (9)

where „.x; t/ is defined in (3). Since u�.x; t/ D ‚.x; t/ whenever jxj � 2�, the circulation of u� at
infinity is equal to 1, so that

R
R2 !

� dx D 1. Moreover, a direct calculation shows that

.u� � r/u� D
1

2
rju�j2C .u�/?!� D�

x

jxj2
ju�j2I (10)

hence there exists a radially symmetric function p�.x; t/ such that �rp� D .u� � r/u�. This shows that
P .u� � r/u� D 0, where P denotes the Leray–Hopf projection in �, namely the orthogonal projection
in L2.�/2 onto the subspace L2

� .�/.
The following elementary estimates will be useful:

Lemma 2.1. (i) For any p 2 .2;1�, there exists a constant ap > 0 such that

ku�. � ; t/kLp.R2/ �
ap

.1C t/
1
2
� 1

p

; t � 0: (11)

(ii) For any p 2 .1;1�, there exists a constant bp > 0 such that

kru�. � ; t/kLp.R2/ �
bp

.1C t/1�
1
p

; t � 0: (12)

(iii) For all t , s � 0, we have

ku�. � ; t/�u�. � ; s/k2
L2.R2/

�
1

4�

ˇ̌̌̌
log

1C t

1C s

ˇ̌̌̌
: (13)

(iv) There exists a constant �1 > 0 such that, for all t , s � 0,

kru�. � ; t/�ru�. � ; s/k2
L2.R2/

� �1

ˇ̌̌̌
1

1C t
�

1

1C s

ˇ̌̌̌
: (14)

Moreover all constants ap, bp, and �1 are independent of �, and hence of the domain �.
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Proof. By (8) we have

u�.x; t/D �.x/‚.x; t/D
�.x/
p

1C t
‚0

�
x

p
1C t

�
;

where ‚0.x/D‚.x; 0/. Since 0� �� 1 and ‚0 2Lp.R2/2 for all p > 2, we find

ku�. � ; t/kLp.R2/ �
1

p
1C t

‚0

�
�

p
1C t

�
Lp.R2/

D
k‚0kLp.R2/

.1C t/
1
2
� 1

p

; t � 0:

This proves (11).
Similarly, we have @iu

� D �@i‚C .@i�/‚ for i D 1; 2. As @i‚0 2Lp.R2/2 for all p > 1, we obtain
as before

k�@i‚. � ; t/kLp.R2/ �
1

1C t

@i‚0

�
�

p
1C t

�
Lp.R2/

D
k@i‚0kLp.R2/

.1C t/1�
1
p

; t � 0: (15)

On the other hand, the function @i� is supported in the annulus

D D fx 2 R2
j � � jxj � 2�g;

and satisfies j@i�.x/j � C��1 for some C > 0 independent of �. Moreover, it follows from (2) that

j‚.x; t/j �
1

2�
min

�
1

jxj
;
jxj

4.1C t/

�
; x 2 R2; t � 0I

hence

j.@i�.x//‚.x; t/j � C min
�

1

�2
;

1

1C t

�
1D.x/; x 2 R2; t � 0;

where 1D is the characteristic function of D. Taking the Lp norm of both sides, we thus obtain

k.@i�/‚. � ; t/kLp.R2/ � C�2=p min
�

1

�2
;

1

1C t

�
�

C

.1C t/1�
1
p

; t � 0: (16)

Combining (15) and (16), we arrive at (12).
To prove (13), we observe that

ku�. � ; t/�u�. � ; s/k2
L2.R2/

�
1

4�2

Z
R2

1

jxj2

�
e�

jxj2

4.1Ct/ � e�
jxj2

4.1Cs/

�2

dx

D
1

2�
log
�

1

2

r
1C t

1C s
C

1

2

r
1C s

1C t

�
�

1

4�

ˇ̌̌̌
log

1C t

1C s

ˇ̌̌̌
for all t , s � 0. Finally, using (9), we find

!�.x; t/�!�.x; s/D �.x/
�
„.x; t/�„.x; s/

�
�

x � r�.x/

2�jxj2

�
e�

jxj2

4.1Ct/ � e�
jxj2

4.1Cs/

�
:
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Thus kru�. � ; t/�ru�. � ; s/k2
L2.R2/

Dk!�. � ; t/�!�. � ; s/k2
L2.R2/

�
�
J1.t; s/

1=2CJ2.t; s/
1=2
�2, where

J1.t; s/D

Z
R2

�.x/2
�
„.x; t/�„.x; s/

�2 dx �

Z
R2

�
„.x; t/�„.x; s/

�2 dx

D
1

8�

�
1

1C t
C

1

1C s
�

4

t C sC 2

�
�

1

8�

ˇ̌̌̌
1

1C t
�

1

1C s

ˇ̌̌̌
;

and

J2.t; s/D

Z
R2

jr�.x/j2

4�2jxj2

�
e�

jxj2

4.1Ct/ � e�
jxj2

4.1Cs/

�2
dx � C��4

Z
D

�
e�

jxj2

4.1Ct/ � e�
jxj2

4.1Cs/

�2
dx

� C��2 sup
x2D

ˇ̌̌
e�

jxj2

4.1Ct/ � e�
jxj2

4.1Cs/

ˇ̌̌
� C

ˇ̌̌̌
1

1C t
�

1

1C s

ˇ̌̌̌
:

We thus obtain (14), which is the desired estimate. For later use, we also observe that J2.t; s/ can be
bounded by C�2

�
1

1Ct
�

1
1Cs

�2, for some C > 0 independent of �. Since � � 1, this gives the alternative
estimate

kru�. � ; t/�ru�. � ; s/k2
L2.R2/

�
1

8�

ˇ̌̌̌
1

1C t
�

1

1C s

ˇ̌̌̌
CC�2

ˇ̌̌̌
1

1C t
�

1

1C s

ˇ̌̌̌3=2
; (17)

which will be used in Section 4. This concludes the proof of Lemma 2.1. �

The truncated Oseen vortex is not a solution of the Navier–Stokes equation, and therefore we need to
control the remainder term R�D�u��@tu

�D .��/‚C2.r� �r/‚, which has the explicit expression

R�.x; t/D‚.x; t/��.x/C 2
x � r�.x/

jxj2

�
x?„.x; t/�‚.x; t/

�
: (18)

Lemma 2.2. There exists a constant �2 > 0 (independent of �) such that, for any p 2 Œ1;1�,

kR�. � ; t/kLp.R2/ �
�2�

2
p
�1

1C t
; t � 0: (19)

Moreover, for any vector field u 2H 1
loc.R

2/2, we haveˇ̌̌̌Z
R2

R�.x; t/ �u.x/ dx

ˇ̌̌̌
�
�2�

1C t
krukL2.D/; t � 0; (20)

where D D fx 2 R2 j � � jxj � 2�g.

Proof. It is clear from (18) that jR�.x; t/j � C��1.1C t/�11D.x/ for all x 2 R2 and all t � 0, and (19)
follows immediately. Moreover, we have R�.x; t/ D x?Q�.x; t/ for some radially symmetric scalar
function Q.x; t/; hence R�. � ; t/ has zero mean over the annulus D. If u 2H 1

loc.R
2/2 and if we denote

by Nu the average of u over D, the Poincaré–Wirtinger inequality impliesˇ̌̌̌Z
R2

R�.x; t/ �u.x/ dx

ˇ̌̌̌
D

ˇ̌̌̌Z
D

R�.x; t/ � .u.x/� Nu/ dx

ˇ̌̌̌
� C�kR�. � ; t/kL2.R2/krukL2.D/;

and using (19) with p D 2 we obtain (20). �
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3. Asymptotic behavior of small solutions

Given ˛ 2 R, we consider solutions of (1) of the form

u.x; t/D ˛u�.x; t/C v.x; t/; p.x; t/D ˛2p�.x; t/C q.x; t/; (21)

where u�.x; t/ is the truncated Oseen vortex (8) and p� is the associated pressure. The perturbation v.x; t/
satisfies the no-slip boundary condition and the equation

@tvC˛.u
�
� r/vC˛.v � r/u�C .v � r/v D�vC˛R�

�rq; div v D 0; (22)

where R� is given by (18). If we apply the Leray–Hopf projection P and use the fact that PR� DR�,
we obtain the equivalent system

@tvC˛P
�
.u� � r/vC .v � r/u�

�
CP .v � r/v D�AvC˛R�; (23)

where AD �P� is the Stokes operator, which is selfadjoint and nonnegative in L2
� .�/ with domain

D.A/DL2
� .�/\H 1

0
.�/2\H 2.�/2; see [Constantin and Foias 1988].

In this section, we fix some initial time t0 � 0 and prove the existence of global solutions to (23) with
small initial data v0 D v. � ; t0/ in the energy space. The integral equation associated with (23) is

v.t/D S.t � t0/v0

C

Z t

t0

S.t � s/
˚
˛R�.s/�P .v.s/ � r/v.s/�˛P

�
.u�.s/ � r/v.s/C .v.s/ � r/u�.s/

�	
ds; (24)

where v.t/� v. � ; t/ and S.t/D exp.�tA/ is the Stokes semigroup. For p 2 .1;1/, we denote by L
p
� .�/

the closure in Lp.�/2 of the set of all smooth divergence-free vector fields with compact support in �.
We then have the following standard estimates:

Proposition 3.1. The Stokes operator �A generates an analytic semigroup of contractions in L2
� .�/.

Moreover, for each t > 0 the operator S.t/D exp.�tA/ extends to a bounded linear operator from L
q
� .�/

into L2
� .�/ for 1< q � 2, and there exists a constant C D C.q/ > 0 (independent of �) such that

t
1
q
� 1

2 kS.t/v0kL2.�/C t
1
q krS.t/v0kL2.�/ � Ckv0kLq.�/; t > 0; (25)

for all v0 2L
q
� .�/. In particular, we can take C D 2 in (25) if q D 2.

Since A is selfadjoint and nonnegative, it is clear that fS.t/gt�0 is an analytic semigroup of contractions
in L2

� .�/. In particular, we have kS.t/v0kL2 �kv0kL2 and t1=2krS.t/v0kL2 D t1=2kA1=2S.t/v0kL2 �

kv0kL2 for all t >0 if v02L2
� .�/. On the other hand, general Lq�Lp estimates for S.t/were established

in [Borchers and Varnhorn 1993; Dan and Shibata 1999a; 1999b; Kozono and Yamazaki 1995; Maremonti
and Solonnikov 1997], but the corresponding constants depend a priori on the domain �. The fact
that (25) holds with C independent of � was already observed in [Borchers and Miyakawa 1992; Kozono
and Ogawa 1993a]. For the reader’s convenience, we reproduce the proof of (25) in Section 5 below.

The main result of this section is this:
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Proposition 3.2. Fix �2 .0; 1=2/. There exist positive constants K0, ı, V�, and T� such that, if t0 � T�,
if j˛j � ı, and if kv0kL2.�/ � V�, then the perturbation equation (23) has a unique global solution
v 2 C 0.Œt0;1/IL

2
� .�// such that

sup
t�t0

kv.t/kL2.�/C sup
t>t0

.t � t0/
1
2 krv.t/kL2.�/ � 4kv0kL2.�/CK0�

1
2 j˛j.1C t0/

� 1
4 : (26)

Here K0 and ı are independent of �. In addition, if

M WD sup
�>0

��kS.�/v0kL2.�/C sup
�>0

��C
1
2 krS.�/v0kL2.�/ <1; (27)

then

sup
t>t0

.t � t0/
�
kv.t/kL2.�/C sup

t>t0

.t � t0/
�C 1

2 krv.t/kL2.�/ � 2M CC�j˛j; (28)

for some C� > 0 depending on �.

Proof. We follow the classical approach of [Fujita and Kato 1964]. Given t0 � 0, we introduce the Banach
space X D fv 2 C 0.Œt0;1/IL

2
� .�//\C 0..t0;1/IH

1
0
.�/2/ j kvkX <1g, equipped with the norm

kvkX D sup
t�t0

kv.t/kL2 C sup
t>t0

.t � t0/
1
2 krv.t/kL2 :

If v02L2
� .�/, we define Nv.t/DS.t�t0/v0 for t� t0. In view of (25), we have Nv2X and k NvkX �2kv0kL2 .

On the other hand, given any v 2X we define, for t � t0,

.Fv/.t/D

Z t

t0

S.t � s/
�
˛R�.s/C˛Gv

1.s/CGv
2.s/

�
ds D ˛F0.t/C˛.F1v/.t/C .F2v/.t/;

where Gv
1
.s/D�P .u�.s/ � r/v.s/�P .v.s/ � r/u�.s/ and Gv

2
.s/D�P .v.s/ � r/v.s/. We shall show

that F maps X into X , and that there exist positive constants C1, C2, C3;� (independent of t0) such that

kFvkX � C1�
1
2 j˛j.1C t0/

� 1
4 Cj˛jC2kvkX CC3;�kvk

2
X ; (29)

kFv�F QvkX � j˛jC2kv� QvkX CC3;�.kvkX CkQvkX /kv� QvkX ; (30)

for all v, Qv 2X .
To prove (29), we estimate separately the contributions of F0, F1, and F2. First, using (25) with qD4=3,

we obtain for t > t0:

kF0.t/kL2 C .t�t0/
1
2 krF0.t/kL2 � C

Z t

t0

�
1

.t�s/
1
4

C
.t�t0/

1
2

.t�s/
3
4

�
kR�.s/k

L
4
3

ds; (31)

and from Lemma 2.2 we know that kR�.s/kL4=3 � C�1=2.1 C s/�1 for all s � 0. It follows that
kF0kX � C1�

1=2.1C t0/
�1=4 for some C1 > 0 independent of t0 and �. In a similar way, we find

k.F2v/.t/kL2 C .t�t0/
1
2 kr.F2v/.t/kL2 � C

Z t

t0

�
1

.t�s/
1
4

C
.t�t0/

1
2

.t�s/
3
4

�
kGv

2.s/kL
4
3

ds: (32)
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Using the fact that the Leray–Hopf projection is a bounded operator in L4=3.�/2, whose norm depends a
priori on �, we estimate

kGv
2.s/kL

4
3
� C�kv.s/kL4krv.s/kL2 � C�kv.s/k

1
2

L2krv.s/k
3
2

L2 �
C�kvk

2
X

.s� t0/
3
4

;

for all s > t0. It follows that kF2vkX � C3;�kvk
2
X

, where C3;� > 0 is independent of t0. Finally, to
bound F1, we proceed in a slightly different way in order to obtain a constant C2 that does not depend
on �. Observing that Gv

1
.s/D�A1=2A�1=2P div.u�˝vCv˝u�/.s/, and that kA1=2vkL2 DkrvkL2

for all v 2L2
� .�//\H 1

0
.�/2, we can use (25) with q D 2 to obtain

k.F1v/.t/kL2 �

Z t

t0

.t�s/�
1
2

A�1=2P div.u�˝ vC v˝u�/.s/


L2 ds: (33)

Similarly, the quantity .t � t0/
1
2 kr.F1v/.t/kL2 can be bounded byZ tCt0

2

t0

.t�t0/
1
2

t�s

A�1=2P div.u�˝ vC v˝u�/.s/


L2 dsC

Z t

tCt0
2

.t�t0/
1
2

.t�s/
1
2

kGv
1.s/kL2 ds: (34)

Since A�1=2P div defines a bounded operator from L2.�/4 into L2
� .�/ whose norm is less than or equal

to 1 (see [Sohr 2001, Lemma III-2-6-1]), we have from (11)A�1=2P div.u�˝ vC v˝u�/.s/


L2 � 2ku�.s/v.s/kL2 � 2a1.1C s/�
1
2 kvkX :

Moreover, using (11) and (12) we find

kGv
1.s/kL2 � ku�.s/rv.s/kL2 Ckv.s/ru�.s/kL2 �

a1kvkX

.1C s/
1
2 .s� t0/

1
2

C
b1kvkX

1C s
:

Inserting these estimates into (33) and (34), we obtain kF1vkX � C2kvkX for some C2 > 0 independent
of t0 and�. Since FvD˛F0C˛F1vCF2v, this concludes the proof of (29), and the Lipschitz bound (30)
is established in exactly the same way.

Now let Br D fv 2 X j kvkX � rg, where r > 0 is small enough so that 4rC3;� � 1. If we assume
that 4j˛jC2 � 1, 8kv0kL2 � r , and 4C1�

1=2j˛j.1C t0/
�1=4 � r , the estimates above imply that the map

v 7! NvCFv leaves the closed ball Br invariant and is a strict contraction in Br . By construction, the
unique fixed point of that map in Br is the desired solution of (24). This proves the existence part of
Proposition 3.2 with

K0 D 2C1; ı D
1

4C2

; V� D
1

32C3;�

; T� D

�
4C1C3;��

1
2

C2

�4

:

In a second step, we assume that (27) holds for some � 2 .0; 1=2/. Given any T > t0, we define

ET D sup
t0�t�T

.t � t0/
�
kv.t/kL2 C sup

t0<t�T

.t � t0/
�C 1

2 krv.t/kL2 ;
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where v is the solution of (24) constructed in the previous step. Our goal is to show that ET is uniformly
bounded by a constant which does not depend on T . Since v.t/D S.t � t0/v0C .Fv/.t/, we have

ET �M C sup
t0�t�T

.t � t0/
�
k.Fv/.t/kL2 C sup

t0<t�T

.t � t0/
�C 1

2 kr.Fv/.t/kL2 ; (35)

where M is defined in (27). To estimate the last two terms, we proceed as above. Let p 2 .1; 2/ be such
that 1=p>�C1=2, and define q 2 .2;1/ by the relation 1=qD 1=p�1=2. As in (31) and (32), we have

.t�t0/
�
kF0.t/kL2 C .t�t0/

�C 1
2 krF0.t/kL2 � C

Z t

t0

�
.t�t0/

�

.t�s/
1
q

C
.t�t0/

�C 1
2

.t�s/
1
p

�
kR�.s/kLp ds;

.t�t0/
�
k.F2v/.t/kL2 C .t�t0/

�C 1
2 kr.F2v/.t/kL2 � C

Z t

t0

�
.t�t0/

�

.t�s/
1
q

C
.t�t0/

�C 1
2

.t�s/
1
p

�
kGv

2.s/kLp ds;

for t 2 .t0;T �. Moreover kR�.s/kLp � C�
2
p
�1.1C s/�1 and

kP .v.s/ � r/v.s/kLp � C�kv.s/kLqkrv.s/kL2 � C�kv.s/k
2
q

L2krv.s/k
2� 2

q

L2 �
C�kvkX ET

.s� t0/
�C1� 1

q

for all s 2 .t0;T �. The term involving F1v is estimated as in (33) and (34), and we find

.t � t0/
�
k.F1v/.t/kL2 � C

Z t

t0

.t � t0/
�ET

.t�s/
1
2 .1C s/

1
2 .s� t0/�

ds;

.t � t0/
�C 1

2 kr.F1v/.t/kL2 � C

Z tCt0
2

t0

.t � t0/
�C 1

2 ET

.t � s/.1C s/
1
2 .s� t0/�

ds

CC

Z t

tCt0
2

.t � t0/
�C 1

2

.t�s/
1
2

�
ET

.1C s/
1
2 .s� t0/

�C 1
2

C
ET

.1C s/.s� t0/�

�
ds:

If we insert these estimates into (35), we obtain after elementary calculations

ET �M C QC1�
2
p
�1
j˛j.1C t0/

� 1
p
C�C 1

2 C QC2j˛jET C
QC3;�kvkX ET ; (36)

for some positive constants QC1, QC2, QC3;� independent of T and t0. Now, taking ı and V� smaller and T�

larger if needed, we can ensure that QC2j˛jC QC3;�kvkX � 1=2. Then (36) implies that

ET � 2M C 2
QC1�

2
p
�1
j˛j

.1C t0/
1
p
��� 1

2

for all T > t0, and (28) follows. This concludes the proof. �

Remark 3.3. The proof of Proposition 3.2 can be modified in a classical way [Fujita and Kato 1964;
Brezis 1994] to yield the following local existence result. For any ˛ 2R, any t0 � 0, and any v0 2L2

� .�/,
there exists T D T .˛; v0; �/ > 0 such that (23) has a unique solution v 2 C 0.Œt0; t0C T �IL2

� .�//\

C 0..t0; t0CT �IH 1
0
.�/2/ satisfying v.t0/D v0; moreover, any upper bound on j˛j C kv0kH 1 gives a

lower bound on the local existence time T . In our formulation of Proposition 3.2, smallness conditions
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were imposed on ˛ and v0 to ensure global existence, and the assumption on the initial time t0 guarantees
that the smallness condition on ˛ is independent of the domain �.

4. A logarithmic energy estimate

In this section, we establish our key estimate for large solutions of (23) in the energy space. Fix ˛ 2 R,
v0 2 L2

� .�/, and let v 2 C 0.Œ0;T �IL2
� .�// \ C 0..0;T �IH 1

0
.�/2/ be a solution of (23) with initial

data v.0/D v0; see Remark 3.3. We first derive a crude bound on v using a classical energy estimate.
Multiplying both sides of (23) by v and integrating by parts over �, we find

1

2

d
dt
kv.t/k2

L2 Ckrv.t/k
2
L2 D ˛

˝
v.t/;R�.t/

˛
�˛

˝
v.t/; .v.t/ � r/u�.t/

˛
; (37)

where h � ; � i denotes the usual scalar product in L2
� .�/, so that k � kL2 D h � ; � i1=2. Using (20), we easily

obtain

j˛hv.t/;R�.t/ij �
�2�j˛j

1C t
krv.t/kL2 �

�

2
krv.t/k2

L2 C
�2

2
�2˛2

2�.1C t/2
;

for any � 2 .0; 1�. Moreover, applying (12) with p D1, we see thatˇ̌˝
v.t/; .v.t/ � r/u�.t/

˛ˇ̌
�

b1

1C t
kv.t/k2

L2 :

We thus obtain the energy inequality

d
dt
kv.t/k2

L2 C .2� �/krv.t/k
2
L2 �

2b1j˛j

1C t
kv.t/k2

L2 C
�2

2
�2˛2

�.1C t/2
; 0< t � T:

Using Gronwall’s lemma, we deduce that

kv.t/k2
L2 C .2� �/

Z t

t0

krv.s/k2
L2 ds �

�
1C t

1C t0

�2b1j˛j�
kv.t0/k

2
L2 C

�2
2
�2˛2

�.1C t0/

�
; (38)

for 0� t0 < t � T .
We shall see that estimate (38) is pessimistic for large times, but it already implies that the solutions

of (23) in the energy space L2
� .�/ are global. Indeed, (38) shows that the norm kv.t/kL2 grows at

most polynomially in time, and it is then straightforward to establish a similar result for krv.t/kL2 . In
particular, the H 1 norm of v.t/ cannot blow up in finite time, and using Remark 3.3 we conclude that all
solutions of (23) in L2

� .�/ are global.
The aim of this section is to establish the following “logarithmic energy estimate”, which improves (38)

for large times.

Proposition 4.1. There exists a constant K1 > 0 (independent of �) such that, for any ˛ 2 R and any
v0 2L2

� .�/, the solution of (23) with initial data v0 satisfies, for all t � 1,

kv.t/k2
L2.�/

C

Z t

0

krv.s/k2
L2.�/

ds �K1

�
kv0k

2
L2.�/

C˛2 log.1C t/CD˛;�

�
; (39)

where D˛;� D ˛
2 log.1Cj˛j/C˛2�2.
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Proof. As in (38), we introduce here a parameter � 2 .0; 1�, which will be used in Section 5 below to
specify the optimal smallness condition on the circulation ˛ and prove Corollary 1.4. The reader who is
not interested in optimal constants should set �D 1 everywhere.

Given any � � 0, we define

Qv.x; t/D u.x; t/�˛u�.x; t C �/D v.x; t/C˛
�
u�.x; t/�u�.x; t C �/

�
; (40)

for all x 2� and all t > 0. Then Qv satisfies (23) where u�.x; t/ and R�.x; t/ are replaced by u�.x; tC�/

and R�.x; tC�/, respectively. Proceeding exactly as above, we thus obtain the following energy estimate:

k Qv.t/k2
L2 C .2� �/

Z t

0

kr Qv.s/k2
L2 ds �

�
1C t C �

1C �

�2b1j˛j�
k Qv.0/k2

L2 C
�2

2
�2˛2

�.1C �/

�
; (41)

for all t > 0. Now, we fix t � 1 and choose � DN t � 1, where

N DN˛;� Dmax
�

1;
2b1j˛j

log.1C �/

�
:

This choice implies that �
1C t C �

1C �

�2b1j˛j

D

�
1C

1

N

�2b1j˛j

� 1C �:

On the other hand, using (13), (40), we find

kv.t/k2
L2 � .1C�/k Qv.t/k

2
L2 C

1C�

�
˛2
ku�.t/�u�.tC�/k2

L2 � .1C�/k Qv.t/k
2
L2 C

˛2

2��
log.NC1/;

k Qv.0/k2
L2 �

1C�

�
kv0k

2
L2 C .1C�/˛

2
ku�.0/�u�.�/k2

L2 �
2

�
kv0k

2
L2 C

.1C�/˛2

4�
log.N t/:

Similarly, using (17), we findZ t

0

krv.s/k2
L2 ds � 2

Z t

0

kr Qv.s/k2
L2 dsC 2˛2

Z t

0

kru�.s/�ru�.sC �/k2
L2 ds

� 2

Z t

0

kr Qv.s/k2
L2 dsC

˛2

4�
log.1C t/CC�2˛2:

Thus, it follows from (41) that

kv.t/k2
L2 �

.1C�/3˛2

4�
log t C

C

�

�
kv0k

2
L2 C˛

2 log.N C 1/C˛2�2
�
; (42)Z t

0

krv.s/k2
L2 ds �

.1C�/3˛2

2�
log.1C t/C

C

�

�
kv0k

2
L2 C˛

2�2
�
CC˛2 log N; (43)

for some universal constant C > 0. Setting �D 1 and using the definition of N , we see that (39) follows
from (42), (43). �
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5. Estimate for a fractional primitive of the velocity field

In this final section, we consider the solution of (23) with initial data v0 2L2
� .�/\Lq.�/2, for some

fixed q 2 .1; 2/, and we define �D 1=q�1=2 2 .0; 1=2/. If A is the Stokes operator in L2
� .�/, we recall

that A is selfadjoint and nonnegative in L2
� .�/, so that the fractional power Aˇ can be defined for all ˇ>0.

The following result shows that the range of A� contains the (dense) subspace L2
� .�/\Lq.�/2.

Lemma 5.1 [Borchers and Miyakawa 1992; Kozono and Ogawa 1993a]. Let q 2 .1; 2/ and �D 1=q�1=2.
For all v 2L2

� .�/\Lq.�/2, there exists a unique w 2D.A�/�L2
� .�/ such that vDA�w. Moreover,

there exists a constant C D C.q/ > 0 (independent of v and �) such that kwkL2.�/ � CkvkLq.�/.

Remark 5.2. If v, w are as in Lemma 5.1, we define w DA��v. The fact that inequality kwkL2.�/ �

CkvkLq.�/ holds with a constant C independent of the domain � follows directly from the proof given
in [Kozono and Ogawa 1993a, Lemmas 2.1 and 2.2].

As a first application of Lemma 5.1, we give a short proof of inequality (25), which was used in
Section 3.

Proof of Proposition 3.1. It is sufficient to prove (25) for 1 < q < 2. Let � D 1=q � 1=2, and let
v0 2L2

� .�/\Lq.�/2. By Lemma 5.1, there exists a unique w0 2D.A�/ such that v0 DA�w0. Thus

kS.t/v0kL2.�/ D kA
�S.t/w0kL2.�/ � t��kw0kL2.�/ � C t��kv0kLq.�/;

with C depending only on q. The estimate for the first derivative is proved in the same way, since
krS.t/v0kL2.�/ D kA

�C1=2S.t/w0kL2.�/. This proves (25) for all v0 2 L2
� .�/\Lq.�/2, and the

general case follows by a density argument. �
Let v 2 C 0.Œ0;1/IL2

� .�//\C 0..0;1/IH 1
0
.�/2/ be the solution of (23) with initial data v0, which

was constructed in Sections 3 and 4. Since v0 2 L
q
� .�/ by assumption, it is rather straightforward to

verify that v.t/ 2L
q
� .�/ for all t > 0. Thus, by Lemma 5.1, we can define w.t/DA��v.t/ for all t > 0.

This quantity solves the equation

@twCAwC˛F�.u
�; v/C˛F�.v;u

�/CF�.v; v/D ˛A��R�; (44)

where F�.u; v/ is the bilinear term formally defined by

F�.u; v/DA��P .u � r/v: (45)

We refer to [Kozono and Ogawa 1993a, Section 2] for a rigorous definition and a list of properties of the
bilinear map F�. Our goal here is to establish the following estimate:

Proposition 5.3. There exist positive constants K2 and c (independent of �) such that, for any ˛ 2 R

and any solution v of (23) with initial data v0 2L2
� .�/\Lq.�/2, the function w.t/DA��v.t/ satisfies,

for all t � 1,

kw.t/k2
L2 C

Z t

0

krw.s/k2
L2 ds �K2.1C t/c˛

2

exp
�
K2.kv0k

2
L2 CD˛;�/

�
.kv0k

2
Lq C �

2˛2/; (46)

where D˛;� D ˛
2 log.1Cj˛j/C˛2�2.
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Proof. Taking the scalar product of both sides of (44) with w, we obtain

1

2

d
dt
kw.t/k2

L2 CkA
1=2w.t/k2

L2 C˛
˝
F�.u

�.t/; v.t//; w.t/
˛
C˛

˝
F�.v.t/;u

�.t//; w.t/
˛

C
˝
F�.v.t/; v.t//; w.t/

˛
D ˛

˝
A��R�.t/; w.t/

˛
: (47)

We recall that kA1=2wkL2 D krwkL2 for all w 2 D.A1=2/D L2
� .�/\H 1

0
.�/2. To bound the other

terms, we observe that

jhF�.u
�; v/; wij D jh.u� � r/v;A��wij D jh.u� � r/A��w; vij � ku�kL1kA

1
2
��wkL2kvkL2

D ku�kL1kA
1
2
��wkL2kA�wkL2 � ku�kL1kA

1=2wkL2kwkL2 ;

where in the last inequality we used the interpolation inequality for fractional powers of A. The same
argument shows that jhF�.v;u�/; wij � ku�kL1kA1=2wkL2kwkL2 . In a similar way, we find

jhF�.v; v/; wij D jh.v � r/v;A
��wij D jh.v � r/A��w; vij � kvk2

L4kA
1
2
��wkL2

� C 2
� krvkL2kvkL2kA

1
2
��wkL2 � C 2

� krvkL2kA1=2wkL2kwkL2 ;

where C� > 0 is the best constant of Gagliardo–Nirenberg’s inequality

kf kL4.R2/ � C�kf k
1
2

L2.R2/
krf k

1
2

L2.R2/
: (48)

Finally, since jhA��R�; wij D jhR�;A��wij � �2�.1C t/�1kA
1
2
��wkL2 by (20), we can use interpo-

lation and Young’s inequality to obtain

j˛hA��R�; wij �
�2�j˛j

1C t
kA1=2wk

1�2�

L2 kwk
2�

L2 �
�

4
kA1=2wk2

L2 C
kwk2

L2

2.1C t/1
C

C��
2˛2

2.1C t/2
;

for some exponents 1, 2>1 satisfying 2C2�1D2. Here �2 .0; 1� is as in the proof of Proposition 4.1,
and C� > 0 denotes a constant depending only on �. Inserting all these estimates into (47), we arrive at

d
dt
kwk2

L2 C 2krwk2
L2 � 2HkrwkL2kwkL2 C

�

2
krwk2

L2 C
kwk2

L2

.1C t/1
C

C��
2˛2

.1C t/2
; (49)

where H D 2j˛jku�kL1 CC 2
� krvkL2 .

To exploit (49), we apply Young’s inequality again and obtain the differential inequality

d
dt
kwk2

L2 C �krwk
2
L2 �

�
H 2

2� 3�=2
C

1

.1C t/1

�
kwk2

L2 C
C��

2˛2

.1C t/2
;

which can be integrated using Gronwall’s lemma. The result is

kw.t/k2
L2 C �

Z t

0

krw.s/k2
L2 ds � C exp

�
ˆ.t/

1� 3�=4

��
kw0k

2
L2 CC��

2˛2
�
; t � 0; (50)

where ˆ.t/D 1
2

R t
0 H.s/2 ds and C is a positive constant depending only on 1, 2. It remains to estimate

the quantity ˆ.t/ in (50). Using (11) with pD1, the logarithmic energy estimate (43), and Minkowski’s
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inequality, we find

2ˆ.t/D

Z t

0

H.s/2 ds �

Z t

0

�
2j˛ja1

.1C s/1=2
CC 2
� krv.s/kL2

�2

ds

�

�
j˛j log.1C t/1=2

�
2a1C

C 2
� .1C �/

3
2

p
2�

�
CC�.kv0kL2 CD1=2

˛;� /

�2

� 2C0.1C �/
4˛2 log.1C t/CC�.kv0k

2
L2 CD˛;�/; t � 1; (51)

where D˛;� D ˛
2 log.1Cj˛j/C˛2�2 and

C0 D
1

2

�
2a1C

C 2
�

p
2�

�2

: (52)

If we now replace (51) into (50) and set �D 1, we obtain (46) since kw0kL2 � Ckv0kLq by Lemma 5.1.
This concludes the proof. �

Corollary 5.4. Under the assumptions of Proposition 5.3, there exists a positive constant K depending
on �, ˛, and kv0kL2\Lq such that, for any T � 2, there exists a time t 2 ŒT=2;T � for which

kv.t/k2
L2.�/

�K.1C t/c˛
2�2�: (53)

Proof. Fix T � 2. In view of (46), there exists a time t 2 ŒT=2;T � such that

krw.t/k2
L2 �

2

T

Z T

T=2

krw.s/k2
L2 ds �

2

T
C.1CT /c˛

2

� 2c˛2C2C.1C t/c˛
2�1;

where C depends on �, ˛, and kv0kL2\Lq . Moreover, kw.t/k2
L2 � C.1C t/c˛

2

by (46). Thus, using the

interpolation inequality kv.t/kL2 D kA�w.t/kL2 � krw.t/k
2�

L2kw.t/k
1�2�

L2 , we obtain (53). �

Proof of Theorem 1.2. Fix q 2 .1; 2/, and assume that � > 0 is small enough so that c�2 < 2�, where
�D1=q�1=2 and c is as in Proposition 5.3. We also suppose that ��ı, where ı>0 is as in Proposition 3.2.
Given ˛ 2 Œ��; �� and v0 2L2

� .�/\Lq.�/2, let v 2 C 0.Œ0;1/IL2
� .�//\C 0..0;1/IH 1

0
.�/2/ be the

solution of (23) with initial data v.0/D v0, which was constructed in Sections 3 and 4. In view of (53),
since c˛2 < 2�, we can take t0 > 0 large enough (depending on �, ˛, and v0) so that kv.t0/kL2 � V�,
where V� is as in Proposition 3.2. Moreover, since v.t0/DA�w.t0/ for some w.t0/ 2L2

� .�/, we have

sup
�>0

��kS.�/v0kL2 C sup
�>0

��C
1
2 krS.�/v0kL2 � Ckw.t0/kL2 <1:

Applying Proposition 3.2, we conclude that the solution v of (23) satisfies (28), namely

ku. � ; t/�˛u�. � ; t/kL2 C t1=2
kru. � ; t/�˛ru�. � ; t/kL2.�/ D O.t��/; (54)

as t!1. But ku��‚kL2Ckru��r‚kL2 �C.1C t/�1 for all t � 0; hence (6) follows from (54). �

Proof of Corollary 1.4. The proof of Proposition 5.3 shows that the constant c in (46), (53) satisfies
c � C0.1C O.�//, where C0 is defined in (52) and � 2 .0; 1� can be chosen arbitrarily small. On the
other hand, since by assumption v0 2 L2

� .�/\Lq.�/2 for all q 2 .1; 2/, we can take �D 1=q � 1=2
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arbitrarily close to 1=2. Thus, if we assume that j˛j< �� D C
�1=2
0

, we see that the condition c˛2 < 2�

can be fulfilled by an appropriate choice of � and �. Now, take t � 2 and let t0 2 Œt=2; t � be the time
defined in Corollary 5.4, for which kv.t0/k2L2 �K.1C t0/

c˛2�2�. Using (38) with �D 1, we conclude

kv.t/k2
L2 � C

�
1C t

1C t0

�2b1j˛j�
kv.t0/k

2
L2 C .1C t0/

�1
�
� C.1C t/c˛

2�2�
����!
t!1

0;

which is the desired result. Here the constant C > 0 depends on ˛, �, and v0, but not on t . To estimate ��,
we use (52) and observe that a1Dk‚0kL1�0:050784. Moreover, the optimal constant in the Gagliardo–
Nirenberg inequality (48) satisfies C 4

� � 2=.3�/; see [Del Pino and Dolbeault 2002]. Using these values,
we find C0 � 0:0407108; hence �� D C

�1=2
0

� 4:95616. Finally, it was kindly pointed out to us by Jean
Dolbeault that the optimal constant C� can be computed numerically: C� � 0:6430. This yields the
approximate value �� � 5:306. �

Appendix: Proof of Proposition 1.3

We recall the following characterization of the space PW 1;p
0;�

.�/ for 1� p < 2:

PW
1;p

0;�
.�/D

˚
u 2L

2p
2�p .�/2

ˇ̌
krukLp <1; uD 0 on @�; div uD 0 in �

	
(A-1)

(see, e.g., [Galdi 1994, Chapter III.5]). Here ru and div u denote weak derivatives of u, and the condition
“uD 0 on @�” means that the boundary trace of u, which is well defined because ru2Lp.�/4, vanishes.

Given u0 2
PW

1;p
0;�

.�/ satisfying (7), we define u W R2! R2 and ! W R! R2 by

u.x/D

�
u0.x/ if x 2�;

0 if x …�;
!.x/D

�
!0.x/ if x 2�;

0 if x …�:

Since u D 0 on @�, we have ru 2 Lp.R2/4 and @1u2 � @2u1 D ! 2 Lp.R2/. Moreover (7) implies
that ! 2L2.m/ for some m> 2=q > 1, where

L2.m/D

�
! 2L2.R2/

ˇ̌̌̌ Z
R2

.1Cjxj2/mj!.x/j2 dx <1

�
:

Thus, using Hölder’s inequality, it is easy to verify that ! 2L1.R2/, so that we can define

˛ D

Z
R2

!.x/ dx D

Z
�

!0.x/ dx:

Moreover, using the Biot–Savart formula in R2 and the fact that u 2 L2p=.2�p/.R2/2, we obtain the
equality

u.x/D
1

2�

Z
R2

.x�y/?

jx�yj2
!.y/ dy D

1

2�

Z
�

.x�y/?

jx�yj2
!0.y/ dy; (A-2)

for almost all x 2 R2. We emphasize at this point that the representation (A-2) is not what is usually
called the Biot–Savart law in the domain �, because the velocity field defined by (A-2) for an arbitrary
vorticity !0 2L1.�/ will not, in general, be tangent to the boundary on @�. However, if we start from a
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velocity field u0 that vanishes on @�, the argument above shows that (A-2) holds with !0 D curl u0. We
refer to [Iftimie et al. 2003] for a more detailed discussion of the Biot–Savart law in a two-dimensional
exterior domain.

Now, we decompose

u.x/D ˛u�.x; 0/C v.x/; !.x/D ˛!�.x; 0/Cw.x/; x 2 R2;

where u�, !� are defined in (8), (9). By construction, we have w 2L2.m/ and
R

R2 w dx D 0. Applying
[Gallay and Wayne 2002, Proposition B.1], we deduce that the corresponding velocity field v, which is
obtained from w via the Biot–Savart law in R2, satisfiesZ

R2

.1Cjxj2/
mr
2
�1
jv.x/jr dx <1;

for all r > 2. Using Hölder’s inequality again, we conclude that v 2Ls.R2/2 for all s > 2=m; hence in
particular v 2L2.R2/2\Lq.R2/2. Clearly v.x/D 0 for all x …�; hence denoting by v0 the restriction
of v to � we obtain (4) with v0 2L2

� .�/\Lq.�/2. �
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SECOND ORDER STABILITY FOR THE MONGE–AMPÈRE EQUATION
AND STRONG SOBOLEV CONVERGENCE OF OPTIMAL TRANSPORT MAPS

GUIDO DE PHILIPPIS AND ALESSIO FIGALLI

The aim of this note is to show that Alexandrov solutions of the Monge–Ampère equation, with right-hand
side bounded away from zero and infinity, converge strongly in W 2,1

loc if their right-hand sides converge
strongly in L1

loc. As a corollary, we deduce strong W 1,1
loc stability of optimal transport maps.

1. Introduction

Let �⊂ Rn be a bounded convex domain. In [De Philippis and Figalli 2013], we showed that convex
Alexandrov solutions of {

det D2u = f in �,
u = 0 on ∂�,

(1-1)

with 0 < λ ≤ f ≤ 3, are W 2,1
loc (�). More precisely, they were able to prove uniform interior L log L-

estimates for D2u. This result has also been improved in [De Philippis et al. 2013; Schmidt 2013], where
it is actually shown that u ∈W 2,γ

loc (�) for some γ = γ (n, λ,3) > 1: more precisely, for any �′ b�,∫
�′
|D2u|γ ≤ C(n, λ,3,�,�′). (1-2)

A question which naturally arises in view of the previous results is the following: choose a sequence
of functions fk with λ ≤ fk ≤ 3 which converges to f strongly in L1

loc(�), and denote by uk and u
the solutions of (1-1) corresponding to fk and f , respectively. By the convexity of uk and u and the
uniqueness of solutions to (1-1), it is immediately deduced that uk → u uniformly, and ∇uk →∇u in
L p

loc(�) for any p <∞. What can be said about the strong convergence of D2uk? Due to the highly
nonlinear character of the Monge–Ampère equation, this question is nontrivial. (Note that weak W 2,1

loc
convergence is immediate by compactness, even under the weaker assumption that fk converges to f
weakly in L1

loc(�).)
The aim of this short note is to prove that strong convergence holds. Our main result is the following:

Theorem 1.1. Let �k ⊂ Rn be a family of convex domains, and let uk :�k→ R be convex Alexandrov
solutions of {

det D2uk = fk in �k,

uk = 0 on ∂�k,
(1-3)
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with 0< λ≤ fk ≤3. Assume that �k converges to some convex domain � in the Hausdorff distance, and
fkχ�k converges to f in L1

loc(�). Then, if u denotes the unique Alexandrov solution of{
det D2u = f in �,
u = 0 on ∂�,

for any �′ b�, we have
‖uk − u‖W 2,1(�′)→ 0 as k→∞. (1-4)

(Obviously, since the functions uk are uniformly bounded in W 2,γ (�′), this gives strong convergence in
W 2,γ ′(�′) for any γ ′ < γ .)

As a consequence, we can prove the following stability result for optimal transport maps:

Theorem 1.2. Let �1, �2 ⊂ Rn be two bounded domains with �2 convex, and let fk, gk be a family of
probability densities such that 0< λ≤ fk, gk ≤3 inside �1 and �2, respectively. Assume that fk→ f
in L1(�1) and gk → g in L1(�2), and let Tk : �1→ �2 (resp. T : �1→ �2) be the (unique) optimal
transport map for the quadratic cost sending fk onto gk (resp. f onto g). Then Tk→ T in W 1,γ ′

loc (�1) for
some γ ′ > 1.

We point out that, in order to prove (1-4) and the local W 1,1 stability of optimal transport maps, the
interior L log L-estimates from [De Philippis and Figalli 2013] are sufficient. Indeed, the W 2,γ -estimates
are used just to improve the convergence from W 2,1

loc to W 2,γ ′
loc with γ ′ < γ .

This paper is organized as follows: in the next section, we collect some notation and preliminary
results. Then in Section 3 we prove Theorem 1.1, and in Section 4 we prove Theorem 1.2.

2. Notation and preliminaries

Given a convex function u :�→ R, we define its Monge–Ampère measure as

µu(E) := |∂u(E)| for all E ⊂� Borel

(see [Gutiérrez 2001, Theorem 1.1.13]), where

∂u(E) :=
⋃
x∈E

∂u(x).

Here ∂u(x) is the subdifferential of u at x , and |F | denotes the Lebesgue measure of a set F . In case
u ∈ C1,1

loc , by the area formula [Evans and Gariepy 1992, Paragraph 3.3], the following representation
holds:

µu = det D2u dx .

The main property of the Monge–Ampère measure we are going to use is the following (see [Gutiérrez
2001, Lemmas 1.2.2 and 1.2.3]):

Proposition 2.1. Let uk : �→ R be a sequence of convex functions converging locally uniformly to u.
Then the associated Monge–Ampère measures µuk converge to µu in duality with the space of continuous
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functions compactly supported in �. In particular,

µu(A)≤ lim inf
k→∞

µuk (A)

for any open set A ⊂�.

Given a Radon measure ν on Rn and a bounded convex domain �⊂Rn , we say that a convex function
u :�→ R is an Alexandrov solution of the Monge–Ampère equation

det D2u = ν in �

if µu(E)= ν(E) for every Borel set E ⊂�.
If v :�→ R is a continuous function, we define its convex envelope inside � as

0v(x) := sup{`(x) : `≤ v in �, ` affine}. (2-1)

In case � is a convex domain and v ∈ C2(�), it is easily seen that

D2v(x)≥ 0 for every x ∈ {v = 0v} ∩� (2-2)

in the sense of symmetric matrices. Moreover, the following inequality between measures holds in �:

µ0v ≤ det D2v1{v=0v}dx (2-3)

(here 1E is the characteristic function of a set E).1

We recall that a continuous function v is said to be twice differentiable at x if there exists a (unique)
vector ∇v(x) and a (unique) symmetric matrix ∇2v(x) such that

v(y)= v(x)+∇v(x) · (y− x)+ 1
2∇

2v(x)[y− x, y− x] + o(|y− x |2).

In case v is twice differentiable at some point x0 ∈ {v = 0v}, it is immediate to check that

∇
2v(x0)≥ 0. (2-5)

1To see this, let us first recall that by [Gutiérrez 2001, Lemma 6.6.2], if x0 ∈� \ {0v = v} and a ∈ ∂0v(x0), then the convex
set

{x ∈� : 0v(x)= a · (x − x0)+0v(x0)}

is nonempty and contains more than one point. In particular,

∂0v
(
� \ {0v = v}

)
⊂ {p ∈ Rn

: there exist distinct x, y ∈� such that p ∈ ∂0v(x)∩ ∂0v(y)}.

This last set is contained in the set of nondifferentiability of the convex conjugate of 0v , so it has zero Lebesgue measure (see
[Gutiérrez 2001, Lemma 1.1.12]), and hence ∣∣∂0v(� \ {0v = v})∣∣= 0. (2-4)

Moreover, since v ∈ C1(�), for any x ∈ {0v = v} ∩�, we have ∂0v(x)= {∇v(x)}. Thus, using (2-4) and (2-2), for any open
set A b�, we have

µ0v (A)=
∣∣∂0v(A∩ {0v = v}

)∣∣= ∣∣∇v(A∩ {0v = v}
)∣∣≤ ∫

A∩{0v=v}
| det D2v| =

∫
A∩{0v=v}

det D2v,

as desired. (The inequality above follows from the area formula in [Evans and Gariepy 1992, Paragraph 3.3.2] applied to the C1

map ∇v.)
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By the Alexandrov theorem, any convex function is twice differentiable almost everywhere (see, for
instance, [Evans and Gariepy 1992, Paragraph 6.4]). In particular, (2-5) holds almost everywhere on
{v = 0v} whenever v is the difference of two convex functions.

Finally we recall that, in case v ∈ W 2,1
loc , the pointwise Hessian of v coincides almost everywhere

with its distributional Hessian [Evans and Gariepy 1992, Sections 6.3 and 6.4]. Since in the sequel we
are going to deal with W 2,1

loc convex functions, we will use D2u to denote both the pointwise and the
distributional Hessian.

3. Proof of Theorem 1.1

We are going to use the following result:

Lemma 3.1. Let �⊂ Rn be a bounded convex domain, and let u, v :�→ R be two continuous strictly
convex functions such that µu = f dx and µv = gdx , with f, g ∈ L1

loc(�). Then

µ0u−v ≤
(

f 1/n
− g1/n)n1{u−v=0u−v}dx . (3-1)

Proof. In case u, v are of class C2 inside �, by (2-2) we have

0≤ D2u(x)− D2v(x) for every x ∈ {u− v = 0u−v},

so using the monotonicity and the concavity of the function det1/n on the cone of nonnegative symmetric
matrices, we get

0≤ det(D2u− D2v)≤
(
(det D2u)1/n

− (det D2v)1/n)n on {u− v = 0u−v},

which, combined with (2-3), gives the desired result.
Now, for the general case, we consider a sequence of smooth uniformly convex domains �k increasing

to � and two sequences of smooth functions fk and gk converging respectively to f and g in L1
loc(�),

and we solve {
det D2uk = fk in �k,

uk = u ∗ ρk on ∂�k,

{
det D2vk = gk in �k,

vk = v ∗ ρk on ∂�k,

where ρk is a smooth sequence of convolution kernels. In this way, both uk and vk are smooth on �k

[Gilbarg and Trudinger 2001, Theorem 17.23], and ‖uk − u‖L∞(�k)+‖vk − v‖L∞(�k)→ 0 as k→∞.2

Hence, 0uk−vk also converges locally uniformly to 0u−v . Moreover, it follows easily from the definition
of a contact set that

lim sup
k→∞

1{uk−vk=0uk−vk }
≤ 1{u−v=0u−v}. (3-2)

We now observe that the previous step applied to uk and vk gives

µ0uk−vk
≤
(
(det D2uk)

1/n
− (det D2vk)

1/n)n1{uk−vk=0uk−vk }
dx .

Thus, letting k→∞ and taking into account Proposition 2.1 and (3-2), we obtain (3-1). �

2 Indeed, it is easy to see that uk and vk converge uniformly to u and v, respectively, both on ∂�k and in any compact
subdomain of �. Then, using for instance a contradiction argument, one exploits the convexity of uk (resp. vk ) and �k and the
uniform continuity of u (resp. v) to show that the convergence is actually uniform on the whole �k .



STABILITY FOR THE MONGE–AMPÈRE EQUATION CONVERGENCE OF OPTIMAL TRANSPORT MAPS 997

Proof of Theorem 1.1. The L1
loc convergence of uk (resp. ∇uk) to u (resp. ∇u) is easy and standard, so

we focus on the convergence of the second derivatives.
Without loss of generality, we can assume that �′ is convex, and that �′ b�k (since �k→� in the

Hausdorff distance, this is always true for k sufficiently large). Fix ε ∈ (0, 1), let 0u−(1−ε)uk be the convex
envelope of u− (1− ε)uk inside �′ (see (2-1)), and define

Aεk :=
{

x ∈�′ : u(x)− (1− ε)uk(x)= 0u−(1−ε)uk (x)
}
.

Since uk→ u locally uniformly, 0u−(1−ε)uk converges uniformly to 0εu = εu (as u is convex) inside �′.
Hence, by applying Proposition 2.1 and (3-1) to u and (1− ε)uk inside �′, we get that

εn
∫
�′

f = µ0εu (�
′)≤ lim inf

k→∞
µ0u−(1−ε)uk

(�′)≤ lim inf
k→∞

∫
�′∩Aεk

(
f 1/n
− (1− ε) f 1/n

k

)n
.

We now observe that, since fk converges to f in L1
loc(�), we have∣∣∣∣∫

�′∩Aεk

(
f 1/n
− (1− ε) f 1/n

k

)n
−

∫
�′∩Aεk

εn f
∣∣∣∣≤ ∫

�′

∣∣( f 1/n
− (1− ε) f 1/n

k

)n
− εn f

∣∣→ 0

as k→∞. Hence, combining the two estimates above, we immediately get∫
�′

f ≤ lim inf
k→∞

∫
�′∩Aεk

f,

or equivalently,

lim sup
k→∞

∫
�′\Aεk

f = 0.

Since f ≥ λ inside � (as a consequence of the fact that fk ≥ λ inside �k), this gives

lim
k→∞
|�′ \ Aεk | = 0 for all ε ∈ (0, 1). (3-3)

We now recall that, by the results in [Caffarelli 1990; De Philippis and Figalli 2013; De Philippis et al.
2013; Schmidt 2013], both u and (1− ε)uk are strictly convex and belong to W 2,1(�′). Hence we can
apply (2-5) to deduce that

D2u− (1− ε)D2uk ≥ 0 almost everywhere on Aεk .

In particular, by (3-3), ∣∣�′ \ {D2u ≥ (1− ε)D2uk}
∣∣→ 0 as k→∞.

By a similar argument (exchanging the roles of u and uk),∣∣�′ \ {D2uk ≥ (1− ε)D2u}
∣∣→ 0 as k→∞.

Hence, if we set Bεk := {x ∈�
′
: (1− ε)D2uk ≤ D2u ≤ (1/(1− ε))D2uk}, we have

lim
k→∞
|�′ \ Bεk | = 0 for all ε ∈ (0, 1).
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Moreover, by (1-2) applied to both uk and u, we have3∫
�′
|D2u− D2uk | =

∫
�′∩Bεk

|D2u− D2uk | +

∫
�′\Bεk

|D2u− D2uk |

≤
ε

1−ε

∫
�′
|D2u| + ‖D2u− D2uk‖Lγ (�′)|�

′
\ Bεk |

1−1/γ

≤ C
(

ε

1−ε
+ |�′ \ Bεk |

1−1/γ
)
.

Hence, first letting k→∞ and then sending ε→ 0, we obtain the desired result. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we will need the following lemma (note that for the next result we do not
need to assume the convexity of the target domain):

Lemma 4.1. Let �1, �2 ⊂Rn be two bounded domains, and let fk, gk be a family of probability densities
such that 0< λ≤ fk, gk ≤3 inside �1 and �2, respectively. Assume that fk→ f in L1(�1) and gk→ g
in L1(�2), and let Tk : �1 → �2 (resp. T : �1 → �2) be the (unique) optimal transport map for the
quadratic cost sending fk onto gk (resp. f onto g). Then

fk

gk ◦ Tk
→

f
g ◦ T

in L1(�1).

Proof. By stability of optimal transport maps (see, for instance, [Villani 2009, Corollary 5.23]) and the
fact that fk ≥ λ (and so f ≥ λ), we know that Tk→ T in measure (with respect to Lebesgue) inside �.

We claim that g ◦ Tk → g ◦ T in L1(�1). Indeed, this is obvious if g is uniformly continuous
(by the convergence in measure of Tk to T ). In the general case, we choose gη ∈ C(�2) such that
‖g− gη‖L1(�2) ≤ η, and we observe that (recall that fk, f ≥ λ, gk, g ≤3, and that by the definition of
transport maps, we have T# fk = gk , T# f = g)∫

�1

|g ◦ Tk − g ◦ T | ≤
∫
�1

|gη ◦ Tk − gη ◦ T | +
∫
�1

|gη ◦ Tk − g ◦ Tk |
fk

λ
+

∫
�1

|gη ◦ T − g ◦ T |
f
λ

=

∫
�1

|gη ◦ Tk − gη ◦ T | +
∫
�2

|gη− g|
gk

λ
+

∫
�2

|gη− g|
g
λ

≤

∫
�1

|gη ◦ Tk − gη ◦ T | + 23
λ
η.

Thus
lim sup

k→∞

∫
�1

|g ◦ Tk − g ◦ T | ≤ 23
λ
η,

and the claim follows by the arbitrariness of η.

3If instead of (1-2) we only had uniform L log L a priori estimates, in place of Hölder’s inequality we could apply the
elementary inequality t ≤ δt log(2+ t)+ e1/δ with t = |D2u− D2uk | inside �′ \ Bεk , and we would first let k→∞ and then
send δ, ε→ 0.
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Since ∫
�1

|gk ◦ Tk − g ◦ T | ≤
∫
�1

|gk ◦ Tk − g ◦ Tk |
fk

λ
+

∫
�1

|g ◦ Tk − g ◦ T |

=

∫
�2

|gk − g|
gk

λ
+

∫
�1

|g ◦ Tk − g ◦ T |

≤
3

λ
‖gk − g‖L1(�2)+

∫
�1

|g ◦ Tk − g ◦ T |,

from the claim above we immediately deduce that also gk ◦ Tk→ g ◦ T in L1(�1).
Finally, since gk, g ≥ λ and f ≤3,∫

�1

∣∣∣∣ fk

gk ◦ Tk
−

f
g ◦ T

∣∣∣∣≤ ∫
�1

∣∣∣∣ fk − f
gk ◦ Tk

∣∣∣∣+ ∫
�1

f
∣∣∣∣ 1
gk ◦ Tk

−
1

g ◦ T

∣∣∣∣
≤

1
λ
‖ fk − f ‖L1(�1)+3

∫
�1

|gk ◦ Tk − g ◦ T |
gk ◦ Tk g ◦ T

≤
1
λ
‖ fk − f ‖L1(�1)+

3

λ2 ‖gk ◦ Tk − g ◦ T ‖L1(�1),

from which the desired result follows. �

Proof of Theorem 1.2. Since Tk are uniformly bounded in W 1,γ (�′1) for any �′1 b�, it suffices to prove
that Tk→ T in W 1,1

loc (�1).
Fix x0 ∈�1 and r > 0 such that Br (x0)⊂�1. By compactness, it suffices to show that there is an open

neighborhood Ux0 of x0 such that Ux0 ⊂ Br (x0) and∫
Ux0

|Tk − T | + |∇Tk −∇T | → 0.

It is well known [Caffarelli 1992] that Tk (resp. T ) can be written as ∇uk (resp. ∇u) for some strictly
convex function uk : Br (x0)→ R (resp. u : Br (x0)→ R). Moreover, up to subtracting a constant from uk

(which will not change the transport map Tk), one may assume that uk(x0)= u(x0) for all k ∈ N.
Since the functions Tk = ∇uk are bounded (as they take values in the bounded set �2), by classical

stability of optimal maps (see for instance [Villani 2009, Corollary 5.23]) we get that ∇uk → ∇u in
L1

loc(Br (x0)). (Actually, if one uses [Caffarelli 1992], ∇uk are locally uniformly Hölder maps, so they
converge locally uniformly to ∇u.) Hence, to conclude the proof we only need to prove the convergence
of D2uk to D2u in a neighborhood of x0.

To this aim, we observe that, by strict convexity of u, we can find a linear function `(z) = a · z+ b
such that the open convex set Z := {z : u(z) < u(x0)+ `(z)} is nonempty and compactly supported inside
Br/2(x0). Hence, by the uniform convergence of uk to u (which follows from the L1

loc convergence of the
gradients, the convexity of uk and u, and the fact that uk(x0)= u(x0)), and the fact that ∇u is transversal
to ` on ∂Z , we get that Zk := {z : uk(z) < uk(x0)+ `(z)} are nonempty convex sets which converge in
the Hausdorff distance to Z .
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Moreover, by [Caffarelli 1992], the maps vk := uk − ` solve in the Alexandrov sensedet D2vk =
fk

gk ◦ Tk
in Zk,

vk = 0 on ∂Zk

(here we used that the Monge–Ampère measures associated to vk and uk are the same). Therefore, thanks
to Lemma 4.1, we can apply Theorem 1.1 to deduce that D2uk→ D2u in any relatively compact subset
of Z , which concludes the proof. �
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