
ANALYSIS & PDE

msp

Volume 6 No. 5 2013

VINCENT GUEDJ, BORIS KOLEV AND NADER YEGANEFAR

A LICHNEROWICZ ESTIMATE FOR THE FIRST EIGENVALUE OF
CONVEX DOMAINS IN KÄHLER MANIFOLDS



ANALYSIS AND PDE
Vol. 6, No. 5, 2013

dx.doi.org/10.2140/apde.2013.6.1001 msp
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In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold
whose Ricci curvature satisfies Ric≥ k for some constant k > 0. When equality is achieved, the boundary
of the domain is totally geodesic and there exists a nontrivial holomorphic vector field.

We show that a ball of sufficiently large radius in complex projective space provides an example of a
strongly pseudoconvex domain which is not convex, and for which the Lichnerowicz estimate fails.

1. Introduction

Let (Mn, g) be a compact n-dimensional Riemannian manifold. Assume first that M has no boundary. A
theorem of Lichnerowicz [1958] asserts that if the Ricci curvature Ric of M satisfies Ric≥ k for some
constant k > 0, the first nonzero eigenvalue λ of the Laplace operator satisfies

λ≥
n

n−1
k. (1-1)

Here, nk/(n− 1) should be viewed as the first nonzero eigenvalue of the round n-dimensional sphere
Sn(k/(n−1)) of constant curvature k/(n−1). Moreover, by a result of Obata [1962], the equality case in
(1-1) is obtained if and only if M is isometric to this sphere. Reilly [1977] considered a similar problem,
but for compact manifolds with boundary. Namely, he proved that if M is as in the Lichnerowicz theorem,
except that it has a boundary such that its mean curvature with respect to the outward normal vector field
is nonnegative, then the first eigenvalue λ of the Laplace operator with the Dirichlet boundary condition
still satisfies (1-1). He also proved that the equality case characterizes a hemisphere in Sn(k/(n− 1)).

In another direction, Lichnerowicz showed that for Kähler manifolds, his estimate (1-1) can be improved,
by showing that, in this case, we have

λ≥ 2k.

Moreover, if equality is achieved, there is a nontrivial holomorphic vector field on M .

The purpose of this note is to consider the case of compact Kähler manifolds with boundary. As in
Reilly’s result, we will have to impose some convexity property on the boundary.
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Theorem 1.1. Let M be a compact convex domain in a Kähler manifold. Assume that the Ricci curvature
satisfies Ric≥ k for some constant k > 0. Then the first eigenvalue λ of the Laplacian with the Dirichlet
boundary condition satisfies

λ≥ 2k.

Moreover, if equality is achieved, the boundary ∂M is totally geodesic and there is a nontrivial holomor-
phic vector field on M.

Remark 1.2. As we will see in the proof, the convexity hypothesis may be relaxed into another condition
of mean curvature type. More precisely, let n denote the outward unit normal vector field on the boundary
∂M , and let II and H be respectively the second fundamental form and the mean curvature. Denote also
by J the complex structure of M . If we assume that on the boundary we have

(n− 1)H + II(J n, J n)≥ 0, (1-2)

the Lichnerowicz estimate λ ≥ 2k holds (see inequality (4-3) and the remark just before Section 3.2).
Now, convexity means that II is a nonnegative bilinear symmetric form, so that it obviously implies
condition (1-2).

Remark 1.3. Jean-François Grosjean [2002, Theorem 1.1] proves that there is a Lichnerowicz type
estimate on compact (real) manifolds with convex boundary and positive Ricci curvature, if there exists a
nontrivial parallel p-form with 2≤ p ≤ n/2. In the Kähler case, we can of course consider the Kähler
form which is a nontrivial parallel 2-form, so that the result of Grosjean gives a Lichnerowicz estimate.
But this estimate is weaker than ours. Note however that our result was known to Grosjean and is stated
without proof in [2002, page 504].

Remark 1.4. It is natural to ask whether our result remains true if one assumes pseudoconvexity of the
boundary instead of its convexity. It turns out that a ball of sufficiently large radius in complex projective
space provides an example of a strongly pseudoconvex domain which is not convex, and for which the
Lichnerowicz estimate fails (see Proposition 5.1 for more details on this).

Remark 1.5. In the real setting, one can consider the Laplacian with the Neumann boundary condition,
and again with the convexity condition, one can show that the Lichnerowicz estimate (1-1) still holds
for the first nonzero eigenvalue [Pak et al. 1986]. In the Kähler setting, by using the method of proof of
Theorem 1.1, it should also be possible to prove that the conclusion of this theorem is true for the first
nonzero eigenvalue of the Laplacian with the Neumann boundary condition. It should also be possible to
get a similar result for the first nonzero eigenvalue of the ∂̄-Laplacian with the absolute ∂̄-condition on
the boundary.

An immediate consequence of our theorem is the following.

Corollary 1.6. Assume that M is a strongly convex domain in a complex manifold which can be endowed
with a Kähler metric whose Ricci curvature satisfies Ric ≥ k for some constant k > 0. Then the first
eigenvalue λ of the Laplacian with the Dirichlet boundary condition satisfies

λ > 2k.
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Our proof follows the same strategy as the original proofs of Lichnerowicz and Reilly. We will actually
give two slightly different proofs. The first proof is more adapted to the complex setting (see Section 3).
We use an appropriate Bochner formula for the ∂̄-Laplacian � acting on (0, 1)-forms and apply it to ∂̄ f ,
where the function f is an eigenfunction of � for the first eigenvalue. After integrating the result on M
and integrating by parts, we get a Reilly-type formula for the ∂̄-Laplacian which may be of independent
interest. The desired eigenvalue estimate follows if we can prove that some boundary term is nonpositive,
which is the case under the convexity hypothesis.The second proof rests on the well-known Reilly formula
for real manifolds; see [Reilly 1977]. This is done in Section 4.

2. Background material

In this section, we recall some well-known facts that will be used in the proof of our main result.

2.1. Decomposition of the Hessian. Let f be a real valued smooth function on a Kähler manifold
(M, J, g). Its Riemannian Hessian ∇d f can be decomposed as the sum of a J -symmetric bilinear form
and a J -skew-symmetric bilinear form. More specifically, we have

∇d f = H1 f +H2 f

where for tangent vectors A and B,

H1 f (A, B)= 1
2{∇d f (A, B)+∇d f (JA, JB)}

and

H2 f (A, B)= 1
2{∇d f (A, B)−∇d f (JA, JB)}.

The two following facts may be easily checked.

(1) The (1, 1)-form associated to H1 f by the complex structure J is i∂∂̄ f :

H1 f (JA, B)= i∂∂̄ f (A, B).

(2) In local coordinates, H2 f has components

(H2 f )pq = (H2 f ) p̄q̄ =
∂2 f
∂z p∂zq

−0r
pq
∂ f
∂zr

,

and the other components vanish. H2 f is called the complex Hessian.

Since J ∗ = J−1, we have ‖∇d f ‖ = ‖(∇d f )J
‖, where

(∇d f )J (A, B) := ∇d f (JA, JB).

Therefore

2‖H1 f ‖2 = ‖∇d f ‖2+〈∇d f, (∇d f )J
〉 (2-1)

and

2‖H2 f ‖2 = ‖∇d f ‖2−〈∇d f, (∇d f )J
〉. (2-2)
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2.2. Reilly formula for the (real) Laplacian. Let (M, g) be a Riemannian manifold. Let f be a smooth
function on M and ∇d f , 1 f , and grad f be its Riemannian Hessian, its Laplacian (Laplace Beltrami),
and its gradient on M , respectively. Let n denotes the outward unit normal vector field on ∂M and let II
and H be the second fundamental form and the mean curvature, respectively. We choose the convention
II(X, Y ) = 〈∇X n, Y 〉 for any X, Y ∈ T ∂M . The Laplacian and the gradient on the boundary ∂M with
the induced metric are denoted by 1 and grad, respectively. The Reilly formula [Reilly 1977] is given by∫

M
‖∇d f ‖2

=

∫
M
(1 f )2−

∫
M

Ric(grad f, grad f )+2
∫
∂M
1 f

∂ f
∂n
σ−(n−1)

∫
∂M

H
(
∂ f
∂n

)2

σ−

∫
∂M

II(grad f, grad f )σ.

Moreover if we assume that f is vanishing on ∂M , then 1 f = 0, grad f = 0 and∫
M
‖∇d f ‖2 =

∫
M
(1 f )2−

∫
M

Ric(grad f, grad f )− (n− 1)
∫
∂M

H
(
∂ f
∂n

)2

σ. (2-3)

2.3. Bochner formula for the (complex) Laplacian. Let (M, g) be a Kähler manifold, and denote by ∇
its Levi-Civita connection. If α is a (0, 1)-form, we denote by D′′α the (0, 2)-part of ∇α. More precisely,
∇α is a section of the bundle T ∗M ⊗ (T ∗)0,1 M ; this bundle decomposes as a direct sum

((T ∗)1,0 M ⊗ (T ∗)0,1 M)⊕ ((T ∗)0,1 M ⊗ (T ∗)0,1 M),

and D′′α is the projection of ∇α on the second factor of this decomposition. In local complex coordinates,
we have

(D′′α) p̄q̄ =
∂αq̄

∂ z̄ p
−0r̄

p̄q̄αr̄ .

Now let (D′′)∗ be the formal adjoint of D′′. For a section β of (T ∗)0,1 M ⊗ (T ∗)0,1 M one can see that
locally

((D′′)∗β) p̄ =−gqr̄ ∂βr̄ p̄

∂zq
.

Then we have the following Bochner formula for the ∂̄-Laplacian � acting on (0, 1)-forms:

�= (D′′)∗D′′+Ric . (2-4)

For future reference, we also give the integration by parts formula for D′′ in the presence of a boundary;
see, for example, [Taylor 2011, Proposition 9.1]. Here, we assume that M is compact, and we let n denote
the outward unit normal vector field on ∂M . The (0, 1) part of the dual 1-form ν corresponding to n by
the metric will be denoted by ν0,1. Finally, we let σ denote the measure induced on the boundary by the
metric. For smooth α and β, we then have

〈D′′α, β〉L2(M) = 〈α, (D
′′)∗β〉L2(M)+

∫
∂M
〈ν0,1
⊗α, β〉σ. (2-5)
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3. Bochner formula and the first eigenvalue

In this section, we will give the first proof of Theorem 1.1. Let � denote the ∂̄-Laplacian on M , which is
given on forms by

�= ∂̄ ∂̄∗+ ∂̄∗∂̄ .

Recall that on a Kähler manifold, we have �= 1
21. We will denote by µ the first eigenvalue of � with

the Dirichlet boundary condition, so that
µ= 1

2λ.

Now let f be a real valued eigenfunction of � corresponding to the first eigenvalue µ. Thus f : M→ R

is smooth, vanishes on the boundary ∂M , and satisfies � f = µ f . (Note that it is possible to choose f
to be real valued, because � is equal to half the Laplace Beltrami operator 1.) We write the Bochner
formula (2-4) for the (0, 1)-form ∂̄ f and take the L2-inner product of the resulting equality with ∂̄ f itself:

〈�∂̄ f, ∂̄ f 〉L2(M) = 〈(D
′′)∗D′′∂̄ f, ∂̄ f 〉L2(M)+

∫
M

Ric (∂̄ f, ∂̄ f ). (3-1)

Using the fact that �∂̄ = ∂̄� and f |∂M = 0, we can integrate by parts the left hand side of (3-1) to get

〈�∂̄ f, ∂̄ f 〉L2(M) = 〈∂̄� f, ∂̄ f 〉L2(M)

= 〈∂̄(µ f ), ∂̄ f 〉L2(M)

= µ〈� f, f 〉L2(M)

= µ2
‖ f ‖2L2(M).

We can deal with the Ricci term in the right hand side of (3-1) in a similar way:∫
M

Ric (∂̄ f, ∂̄ f )≥ k〈∂̄ f, ∂̄ f 〉L2(M)

= k〈� f, f 〉L2(M)

= kµ‖ f ‖2L2(M).

Finally, we can integrate by parts the first term in the right hand side of (3-1) (see formula (2-5)) to get

〈(D′′)∗D′′∂̄ f, ∂̄ f 〉L2(M) = ‖D
′′∂̄ f ‖2L2(M)−

∫
∂M
〈D′′∂̄ f, ν0,1

⊗ ∂̄ f 〉σ, (3-2)

and, combining this with our previous estimates, we obtain

µ(µ− k)‖ f ‖2L2(M) ≥ ‖D
′′∂̄ f ‖2L2(M)−

∫
∂M
〈D′′∂̄ f, ν0,1

⊗ ∂̄ f 〉σ. (3-3)

As a consequence, if we set

I =−
∫
∂M
〈D′′∂̄ f, ν0,1

⊗ ∂̄ f 〉σ,

we get µ ≥ k, provided we can prove that I ≥ 0. In the next subsection, we see that this is indeed the
case under suitable assumptions on the boundary.
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3.1. Boundary term. To estimate the boundary term I , we first notice that as f is real valued, we have

(D′′∂̄ f ) p̄q̄ = (H2 f ) p̄q̄

so that

I =−
∫
∂M
〈H2 f, ν0,1

⊗ ∂̄ f 〉σ =−
∫
∂M

H2 f (n0,1, (∂ f )])σ.

We then choose a boundary defining function ρ for ∂M . This means that ρ is a smooth real valued
function such that M = {ρ ≤ 0}, ∂M = {ρ = 0}, and dρ does not vanish on ∂M . By multiplying ρ by a
suitable smooth positive function if necessary, we may assume that

n= grad ρ.

Moreover, near a fixed (but arbitrary) point of the boundary ∂M , we fix a local orthonormal frame adapted
to the complex structure J which has the form

v1, Jv1, . . . , vm, Jvm = n= grad ρ.

We also set

ep =
1
√

2
(vp − i Jvp), p = 1, . . . ,m.

Note that as f vanishes on ∂M , its derivatives along tangent vectors to ∂M also vanish and, consequently,

(∂ f )] = −i
√

2
(n · f )ēm, n0,1

=
−i
√

2
ēm,

where n · f means d f (n). Therefore,

I = 1
2

∫
∂M
(n · f )∇d f (ēm, ēm)σ,

which can be decomposed as I = I1+ i I2 with

I1 =
1
4

∫
∂M
(n · f )[∇d f (J n, J n)−∇d f (n, n)]σ

and

I2 =−
1
2

∫
∂M
(n · f )∇d f (J n, n)σ.

Actually I2 vanishes because I is a real number. (This follows from the fact that in Equation (3-1), the
left hand side and the Ricci term are real numbers, so that the term involving D′′ is also a real number.
This implies, by Equation (3-2), that the boundary term I is a real number as well. There is also a
more conceptual reason for the vanishing of I2; see Section 3.2.) We now turn our attention to I1. As
4 f = µ f = 0 on ∂M , the trace of ∇d f is also zero on ∂M :

∇d f (J n, J n)−∇d f (n, n)=
m−1∑
k=1

[∇d f (vk, vk)+∇d f (Jvk, Jvk)] + 2∇d f (J n, J n).
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We notice that all vectors appearing in the right hand side are tangent to the boundary. For such a vector
u, we have on ∂M

∇d f (u, u)=−〈∇uu, n〉(n · f )

= 〈∇un, u〉(n · f )

= (n · f )∇dρ(u, u).

This implies

I1 =
1
4

∫
∂M
(n · f )2

(m−1∑
k=1

[∇dρ(vk, vk)+∇dρ(Jvk, Jvk)] + 2∇dρ(J n, J n)
)
σ. (3-4)

If we assume that ∂M is convex, all terms in the integrand of the right hand side are nonnegative, so that
I = I1 ≥ 0 as desired. This proves that µ≥ k in the convex case.

It remains to deal with the equality case. If we assume that µ = k, then, by (3-3), we must have
D′′∂̄ f = 0 and I = 0. On the one hand, D′′∂̄ f = 0 means that the (1, 0)-vector field associated to ∂̄ f
by the metric is a (nonzero) holomorphic vector field. On the other hand, from I = 0, we infer that the
integrand in Equation (3-4) has to vanish identically on the boundary:

(n · f )2
(m−1∑

k=1

{∇dρ(vk, vk)+∇dρ(Jvk, Jvk)}+ 2∇dρ(J n, J n)
)
= 0.

Assume by contradiction that ∂M is not totally geodesic (but is still convex of course). Then the term
between the brackets is positive at some point and we will get the vanishing of n. f on an open subset of
∂M . But f is in the kernel of the elliptic operator �−µ and vanishes on ∂M . By the unique continuation
principle for elliptic operators (see, for example, [Booß-Bavnbek and Wojciechowski 1993]), f has to
vanish on M as well, which is absurd. Therefore, ∂M is totally geodesic. This completes the proof of
Theorem 1.1.

Remark. With our conventions, ∇dρ is nothing but the second fundamental form of ∂M . Thus, we
recover condition (1-2) of Remark 1.2.

3.2. A direct proof that the boundary term is real. The fact that

I2 =−
1
2

∫
∂M
(n · f )∇d f (J n, n)σ

vanishes is also a consequence of the fact that the expression

(n · f )∇d f (J n, n)σ = (n · f )(J n · n · f )σ

is an exact differential form on the closed manifold ∂M . Indeed, the vector field J n = J grad ρ is the
Hamiltonian vector field associated to ρ. This means that if ω is the Kähler form,

i J nω =−dρ.

Hence

di J ninω
m
=−md(n · ρ)∧ωm−1

−m(m− 1)dρ ∧ dinω∧ω
m−2.
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Let j : ∂M→ M be the inclusion map. Since the functions n · ρ and ρ are constant on ∂M , we have

j∗(di J ninω
m)= 0.

Now, J n is a vector field defined on a neighborhood of ∂M whose restriction to ∂M is tangent to ∂M , so
that

j∗(i J nβ)= i J n j∗(β)

for any differential form β. As a consequence, we get

di J n j∗(inω
m)= 0.

Finally, we have

j∗(inω
m)= σ

and

di J nσ = 0.

Defining a vector field X by

X = 1
2(n · f )2 J n,

it follows that, on ∂M , we have

diXσ = (n · f )(J n · n · f )σ.

4. Reilly formula and the first eigenvalue

In this section, we present an alternative proof of our main result which was indicated by the referee. It is
based on Reilly’s formula, a well-known result in real Riemannian geometry, which is probably the tool
used in [Grosjean 2002, page 504].

This complements nicely the arguments given in Section 3, which have a complex geometry flavor.
The complex proof is a bit longer, as we first need to establish a Reilly-type formula for the ∂̄-Laplacian.
Given the importance of the ∂̄-Laplacian in complex geometry, it is likely that this (complex) Reilly
formula will have other applications.

Let M be a compact smooth domain in a Kähler manifold of complex dimension m and real dimension
n= 2m, with metric g and Ricci curvature bounded from below by some positive constant k. The outward
unit normal vector field on the boundary ∂M is denoted by n. Our aim is to prove a Lichnerowicz estimate
for the first eigenvalue by using the Reilly formula. We begin with some general facts.

Let G be a symmetric, covariant 2-tensor field and X a vector field. We have

div(G(X, ·))= (div G)(X)+〈G, DX [
〉,

where DX [ is the symmetric part of the covariant 2-tensor field ∇X [. Specializing this formula for
G = (∇d f )J and X = grad f , for some smooth real function f , we get

divα = Tr[∇2d f (·, J ·, J grad f )] + 〈(∇d f )J ,∇d f 〉,
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where

α(X) := ∇d f (J X, J grad f ).

Given an orthonormal basis (ei )1≤i≤n at a point x in M , we have

Tr[∇2d f (·, J ·, J grad f )] = 1
2{∇

2d f (ei , Jei , J grad f )−∇2d f (Jei , ei , J grad f )}

= −
1
2 [R(ei , Jei ) d f ](J grad f )

=
1
2 R(ei , Jei , J grad f, grad f )

=−Ric(grad f, grad f ).

Hence we get

divα =−Ric(grad f, grad f )+〈(∇d f )J ,∇d f 〉.

Integrating by parts we find∫
M
〈(∇d f )J ,∇d f 〉 =

∫
M

Ric(grad f, grad f )+
∫
∂M
α(n)σ,

but, for a point m ∈ ∂M , we have

α(n)m = (∇d f )m(J n, J grad f )

= (∇d f )m

(
J n, J

(
grad f +

∂ f
∂n

n
))

= (∇d f )m(J n, Jgrad f )+
∂ f
∂n
(∇d f )m(J n, J n).

Now, recall that the second fundamental form II of ∂M is defined as follows (see [Gallot et al. 2004,
Chapter 5] for details). Let U, V be local vector fields in M which extend some vector fields u, v on ∂M ,
in a neighborhood of m ∈ ∂M . We have

(∇U V )m = (∇uv)m − IIm(u, v)n,

from which we deduce that

(∇d f )m(u, v)= (∇d f )m(u, v)+
∂ f
∂n

IIm(u, v).

Therefore

α(n)m = (∇d f )m(J n, Jgrad f )+
∂ f
∂n
∇d f (J n, J n)+

(
∂ f
∂n

)2

II(J n, J n).

If we assume furthermore that f vanishes on the boundary, the first two terms of the right hand side of
the equation above vanish as well, so we finally obtain∫

M
〈(∇d f )J ,∇d f 〉 =

∫
M

Ric(grad f, grad f )+
∫
∂M

(
∂ f
∂n

)2

II(J n, J n)σ. (4-1)

On the left side of the Reilly formula (2-3), we can first use (2-2) to replace ‖∇d f ‖2 by

‖∇d f ‖2 = 2‖H2 f ‖2+〈∇d f, (∇d f )J
〉,
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and then use (4-1) to get

2
∫

M
‖H2 f ‖2 =

∫
M
(1 f )2− 2

∫
M

Ric(grad f, grad f )−
∫
∂M
[(n− 1)H + II(J n, J n)]

(
∂ f
∂n

)2

σ. (4-2)

Suppose now that f is a real valued eigenfunction of 1 corresponding to the first eigenvalue λ of 1,
so that f : M→ R is smooth, vanishes on the boundary ∂M , and satisfies 1 f = λ f . The hypothesis on
the Ricci curvature implies that∫

M
Ric(grad f, grad f )≥ k‖d f ‖2L2 = k〈1 f, f 〉L2 = kλ‖ f ‖2L2 .

From (4-2), we then infer

λ(λ− 2k)‖ f ‖2L2 ≥

∫
∂M
[(n− 1)H + II(J n, J n)]

(
∂ f
∂n

)2

σ. (4-3)

Finally, if we assume that the boundary is convex, II is by definition a symmetric bilinear form which
is nonnegative, so that its trace H is also nonnegative. Therefore, the left hand side of the previous
equation is nonnegative, and we get λ≥ 2k, as desired. For the equality case, we can argue as in the end
of Section 3.1.

5. Counterexample in the pseudoconvex case

We use the notation introduced in Section 3. It is clear from the proof of Theorem 1.1 that in order to get
the estimate µ≥ k, it is enough to assume that on the boundary we have

m−1∑
k=1

{∇dρ(vk, vk)+∇dρ(Jvk, Jvk)}+ 2∇dρ(J n, J n)≥ 0, (5-1)

and not necessarily the convexity of ∂M . We may rewrite this condition as
m−1∑
k=1

H1ρ(vk, vk)+∇dρ(J n, J n)≥ 0.

Here,
∑m−1

k=1 H1ρ(vk, vk) is the trace of the Levi form of the boundary, which would be nonnegative if
∂M were assumed to be only pseudoconvex. The extra term ∇dρ(J n, J n), however, can usually not be
controlled in the pseudoconvex case. This suggests that the conclusion of Theorem 1.1 does not generally
hold in this case, as we now explain.

We consider here the complex m-dimensional projective space Pm(C) equipped with the Fubini–Study
metric normalized so that the holomorphic sectional curvature is 4 (the Einstein constant is thus 2(m+ 1)
and the diameter is π/2).

Proposition 5.1. Fix some point x ∈ Pm(C), some r0 ∈ ]0, π/2[, and let M be the geodesic ball centered
at x , of radius r0.

(i) If r0 ∈ ]π/4, π/2[, M is strongly pseudoconvex, not convex.

(ii) The first eigenvalue of M with Dirichlet boundary conditions goes to 0 as r0 approaches π/2.
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Proof. The first point is a well-known result. For completeness, we outline the proof here. Denote by
r the distance function from x , and set ρ = r2

− r2
0 , so that ρ is a smooth defining function for M . We

want to compute the eigenvalues of the Hessian of ρ. As

∇dρ = 2r∇dr + 2dr ⊗ dr,

we only have to compute the eigenvalues of ∇dr . To do this, we proceed as in the proof of [Greene and
Wu 1979, Theorem A, page 19]. Recall that for a tangent vector u, the curvature R(u, .)u of Pm(C) is
given by [Berger et al. 1971, Proposition F.34]

R(u, .)u =


0 on Ru,

4Id on RJu,
Id on the orthogonal complement of (u, Ju).

Let γ be a normal geodesic starting from x . We can choose a parallel frame along γ which has
the form v1, Jv1, . . . , vm, Jvm = grad r . Using the explicit expression of R, it is then easy to check
that the space of Jacobi fields V along γ satisfying V (0) = 0 and V ⊥ γ̇ has as a basis Vi = sin(r)vi ,
J Vi , i = 1, . . . ,m − 1 and Vm = sin(2r)vm . Using the second variation formula, we see that ∇dr is
diagonalized in the basis v1, Jv1, . . . , vm, Jvm with eigenvalues cot(r) (of order 2m− 2), 2 cot(2r), and
0. If r = r0 ∈ ]π/4, π/2[, we infer that the Levi form of ρ is positive definite, being equal to 2r0 cot(r0)Id
on the Levi distribution. In other words, M is strongly pseudoconvex. However, M is not convex because
the principal curvature 2 cot(2r0) is negative.

As for the second point of our proposition, it is, for example, a consequence of [Chavel and Feldman
1978, Theorem 1], which states the following: Let X be a compact Riemannian manifold and let X ′ ⊂ X
be a submanifold. For small ε > 0, let X ′ε be the ε-neighborhood of X ′ in X and denote by �ε the set
X \ X ′ε. Let (λ j ) be the spectrum of X and let (λ j (ε)) be the spectrum of �ε with Dirichlet boundary
conditions. If the codimension of X ′ in X is at least 2, then, for all j , λ j (ε)→ λ j−1 as ε→ 0. In our
case, we can take X = Pm(C) and X ′ = Pm−1(C), which we view as the cut locus of our fixed point x . If
ε = π/2− r0, �ε actually coincides with M and we get (ii). �
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