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A LICHNEROWICZ ESTIMATE FOR THE FIRST EIGENVALUE OF CONVEX
DOMAINS IN KÄHLER MANIFOLDS

VINCENT GUEDJ, BORIS KOLEV AND NADER YEGANEFAR

In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold
whose Ricci curvature satisfies Ric≥ k for some constant k > 0. When equality is achieved, the boundary
of the domain is totally geodesic and there exists a nontrivial holomorphic vector field.

We show that a ball of sufficiently large radius in complex projective space provides an example of a
strongly pseudoconvex domain which is not convex, and for which the Lichnerowicz estimate fails.

1. Introduction

Let (Mn, g) be a compact n-dimensional Riemannian manifold. Assume first that M has no boundary. A
theorem of Lichnerowicz [1958] asserts that if the Ricci curvature Ric of M satisfies Ric≥ k for some
constant k > 0, the first nonzero eigenvalue λ of the Laplace operator satisfies

λ≥
n

n−1
k. (1-1)

Here, nk/(n− 1) should be viewed as the first nonzero eigenvalue of the round n-dimensional sphere
Sn(k/(n−1)) of constant curvature k/(n−1). Moreover, by a result of Obata [1962], the equality case in
(1-1) is obtained if and only if M is isometric to this sphere. Reilly [1977] considered a similar problem,
but for compact manifolds with boundary. Namely, he proved that if M is as in the Lichnerowicz theorem,
except that it has a boundary such that its mean curvature with respect to the outward normal vector field
is nonnegative, then the first eigenvalue λ of the Laplace operator with the Dirichlet boundary condition
still satisfies (1-1). He also proved that the equality case characterizes a hemisphere in Sn(k/(n− 1)).

In another direction, Lichnerowicz showed that for Kähler manifolds, his estimate (1-1) can be improved,
by showing that, in this case, we have

λ≥ 2k.

Moreover, if equality is achieved, there is a nontrivial holomorphic vector field on M .

The purpose of this note is to consider the case of compact Kähler manifolds with boundary. As in
Reilly’s result, we will have to impose some convexity property on the boundary.

MSC2010: 35P15, 58C40.
Keywords: Lichnerowicz estimate, first eigenvalue, convex domains in Kähler manifolds.

1001

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-5
http://dx.doi.org/10.2140/apde.2013.6.1001
http://msp.org


1002 VINCENT GUEDJ, BORIS KOLEV AND NADER YEGANEFAR

Theorem 1.1. Let M be a compact convex domain in a Kähler manifold. Assume that the Ricci curvature
satisfies Ric≥ k for some constant k > 0. Then the first eigenvalue λ of the Laplacian with the Dirichlet
boundary condition satisfies

λ≥ 2k.

Moreover, if equality is achieved, the boundary ∂M is totally geodesic and there is a nontrivial holomor-
phic vector field on M.

Remark 1.2. As we will see in the proof, the convexity hypothesis may be relaxed into another condition
of mean curvature type. More precisely, let n denote the outward unit normal vector field on the boundary
∂M , and let II and H be respectively the second fundamental form and the mean curvature. Denote also
by J the complex structure of M . If we assume that on the boundary we have

(n− 1)H + II(J n, J n)≥ 0, (1-2)

the Lichnerowicz estimate λ ≥ 2k holds (see inequality (4-3) and the remark just before Section 3.2).
Now, convexity means that II is a nonnegative bilinear symmetric form, so that it obviously implies
condition (1-2).

Remark 1.3. Jean-François Grosjean [2002, Theorem 1.1] proves that there is a Lichnerowicz type
estimate on compact (real) manifolds with convex boundary and positive Ricci curvature, if there exists a
nontrivial parallel p-form with 2≤ p ≤ n/2. In the Kähler case, we can of course consider the Kähler
form which is a nontrivial parallel 2-form, so that the result of Grosjean gives a Lichnerowicz estimate.
But this estimate is weaker than ours. Note however that our result was known to Grosjean and is stated
without proof in [2002, page 504].

Remark 1.4. It is natural to ask whether our result remains true if one assumes pseudoconvexity of the
boundary instead of its convexity. It turns out that a ball of sufficiently large radius in complex projective
space provides an example of a strongly pseudoconvex domain which is not convex, and for which the
Lichnerowicz estimate fails (see Proposition 5.1 for more details on this).

Remark 1.5. In the real setting, one can consider the Laplacian with the Neumann boundary condition,
and again with the convexity condition, one can show that the Lichnerowicz estimate (1-1) still holds
for the first nonzero eigenvalue [Pak et al. 1986]. In the Kähler setting, by using the method of proof of
Theorem 1.1, it should also be possible to prove that the conclusion of this theorem is true for the first
nonzero eigenvalue of the Laplacian with the Neumann boundary condition. It should also be possible to
get a similar result for the first nonzero eigenvalue of the ∂̄-Laplacian with the absolute ∂̄-condition on
the boundary.

An immediate consequence of our theorem is the following.

Corollary 1.6. Assume that M is a strongly convex domain in a complex manifold which can be endowed
with a Kähler metric whose Ricci curvature satisfies Ric ≥ k for some constant k > 0. Then the first
eigenvalue λ of the Laplacian with the Dirichlet boundary condition satisfies

λ > 2k.



A LICHNEROWICZ ESTIMATE FOR THE FIRST EIGENVALUE IN KÄHLER MANIFOLDS 1003

Our proof follows the same strategy as the original proofs of Lichnerowicz and Reilly. We will actually
give two slightly different proofs. The first proof is more adapted to the complex setting (see Section 3).
We use an appropriate Bochner formula for the ∂̄-Laplacian � acting on (0, 1)-forms and apply it to ∂̄ f ,
where the function f is an eigenfunction of � for the first eigenvalue. After integrating the result on M
and integrating by parts, we get a Reilly-type formula for the ∂̄-Laplacian which may be of independent
interest. The desired eigenvalue estimate follows if we can prove that some boundary term is nonpositive,
which is the case under the convexity hypothesis.The second proof rests on the well-known Reilly formula
for real manifolds; see [Reilly 1977]. This is done in Section 4.

2. Background material

In this section, we recall some well-known facts that will be used in the proof of our main result.

2.1. Decomposition of the Hessian. Let f be a real valued smooth function on a Kähler manifold
(M, J, g). Its Riemannian Hessian ∇d f can be decomposed as the sum of a J -symmetric bilinear form
and a J -skew-symmetric bilinear form. More specifically, we have

∇d f = H1 f +H2 f

where for tangent vectors A and B,

H1 f (A, B)= 1
2{∇d f (A, B)+∇d f (JA, JB)}

and

H2 f (A, B)= 1
2{∇d f (A, B)−∇d f (JA, JB)}.

The two following facts may be easily checked.

(1) The (1, 1)-form associated to H1 f by the complex structure J is i∂∂̄ f :

H1 f (JA, B)= i∂∂̄ f (A, B).

(2) In local coordinates, H2 f has components

(H2 f )pq = (H2 f ) p̄q̄ =
∂2 f
∂z p∂zq

−0r
pq
∂ f
∂zr

,

and the other components vanish. H2 f is called the complex Hessian.

Since J ∗ = J−1, we have ‖∇d f ‖ = ‖(∇d f )J
‖, where

(∇d f )J (A, B) := ∇d f (JA, JB).

Therefore

2‖H1 f ‖2 = ‖∇d f ‖2+〈∇d f, (∇d f )J
〉 (2-1)

and

2‖H2 f ‖2 = ‖∇d f ‖2−〈∇d f, (∇d f )J
〉. (2-2)
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2.2. Reilly formula for the (real) Laplacian. Let (M, g) be a Riemannian manifold. Let f be a smooth
function on M and ∇d f , 1 f , and grad f be its Riemannian Hessian, its Laplacian (Laplace Beltrami),
and its gradient on M , respectively. Let n denotes the outward unit normal vector field on ∂M and let II
and H be the second fundamental form and the mean curvature, respectively. We choose the convention
II(X, Y ) = 〈∇X n, Y 〉 for any X, Y ∈ T ∂M . The Laplacian and the gradient on the boundary ∂M with
the induced metric are denoted by 1 and grad, respectively. The Reilly formula [Reilly 1977] is given by∫

M
‖∇d f ‖2

=

∫
M
(1 f )2−

∫
M

Ric(grad f, grad f )+2
∫
∂M
1 f

∂ f
∂n
σ−(n−1)

∫
∂M

H
(
∂ f
∂n

)2

σ−

∫
∂M

II(grad f, grad f )σ.

Moreover if we assume that f is vanishing on ∂M , then 1 f = 0, grad f = 0 and∫
M
‖∇d f ‖2 =

∫
M
(1 f )2−

∫
M

Ric(grad f, grad f )− (n− 1)
∫
∂M

H
(
∂ f
∂n

)2

σ. (2-3)

2.3. Bochner formula for the (complex) Laplacian. Let (M, g) be a Kähler manifold, and denote by ∇
its Levi-Civita connection. If α is a (0, 1)-form, we denote by D′′α the (0, 2)-part of ∇α. More precisely,
∇α is a section of the bundle T ∗M ⊗ (T ∗)0,1 M ; this bundle decomposes as a direct sum

((T ∗)1,0 M ⊗ (T ∗)0,1 M)⊕ ((T ∗)0,1 M ⊗ (T ∗)0,1 M),

and D′′α is the projection of ∇α on the second factor of this decomposition. In local complex coordinates,
we have

(D′′α) p̄q̄ =
∂αq̄

∂ z̄ p
−0r̄

p̄q̄αr̄ .

Now let (D′′)∗ be the formal adjoint of D′′. For a section β of (T ∗)0,1 M ⊗ (T ∗)0,1 M one can see that
locally

((D′′)∗β) p̄ =−gqr̄ ∂βr̄ p̄

∂zq
.

Then we have the following Bochner formula for the ∂̄-Laplacian � acting on (0, 1)-forms:

�= (D′′)∗D′′+Ric . (2-4)

For future reference, we also give the integration by parts formula for D′′ in the presence of a boundary;
see, for example, [Taylor 2011, Proposition 9.1]. Here, we assume that M is compact, and we let n denote
the outward unit normal vector field on ∂M . The (0, 1) part of the dual 1-form ν corresponding to n by
the metric will be denoted by ν0,1. Finally, we let σ denote the measure induced on the boundary by the
metric. For smooth α and β, we then have

〈D′′α, β〉L2(M) = 〈α, (D
′′)∗β〉L2(M)+

∫
∂M
〈ν0,1
⊗α, β〉σ. (2-5)
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3. Bochner formula and the first eigenvalue

In this section, we will give the first proof of Theorem 1.1. Let � denote the ∂̄-Laplacian on M , which is
given on forms by

�= ∂̄ ∂̄∗+ ∂̄∗∂̄ .

Recall that on a Kähler manifold, we have �= 1
21. We will denote by µ the first eigenvalue of � with

the Dirichlet boundary condition, so that
µ= 1

2λ.

Now let f be a real valued eigenfunction of � corresponding to the first eigenvalue µ. Thus f : M→ R

is smooth, vanishes on the boundary ∂M , and satisfies � f = µ f . (Note that it is possible to choose f
to be real valued, because � is equal to half the Laplace Beltrami operator 1.) We write the Bochner
formula (2-4) for the (0, 1)-form ∂̄ f and take the L2-inner product of the resulting equality with ∂̄ f itself:

〈�∂̄ f, ∂̄ f 〉L2(M) = 〈(D
′′)∗D′′∂̄ f, ∂̄ f 〉L2(M)+

∫
M

Ric (∂̄ f, ∂̄ f ). (3-1)

Using the fact that �∂̄ = ∂̄� and f |∂M = 0, we can integrate by parts the left hand side of (3-1) to get

〈�∂̄ f, ∂̄ f 〉L2(M) = 〈∂̄� f, ∂̄ f 〉L2(M)

= 〈∂̄(µ f ), ∂̄ f 〉L2(M)

= µ〈� f, f 〉L2(M)

= µ2
‖ f ‖2L2(M).

We can deal with the Ricci term in the right hand side of (3-1) in a similar way:∫
M

Ric (∂̄ f, ∂̄ f )≥ k〈∂̄ f, ∂̄ f 〉L2(M)

= k〈� f, f 〉L2(M)

= kµ‖ f ‖2L2(M).

Finally, we can integrate by parts the first term in the right hand side of (3-1) (see formula (2-5)) to get

〈(D′′)∗D′′∂̄ f, ∂̄ f 〉L2(M) = ‖D
′′∂̄ f ‖2L2(M)−

∫
∂M
〈D′′∂̄ f, ν0,1

⊗ ∂̄ f 〉σ, (3-2)

and, combining this with our previous estimates, we obtain

µ(µ− k)‖ f ‖2L2(M) ≥ ‖D
′′∂̄ f ‖2L2(M)−

∫
∂M
〈D′′∂̄ f, ν0,1

⊗ ∂̄ f 〉σ. (3-3)

As a consequence, if we set

I =−
∫
∂M
〈D′′∂̄ f, ν0,1

⊗ ∂̄ f 〉σ,

we get µ ≥ k, provided we can prove that I ≥ 0. In the next subsection, we see that this is indeed the
case under suitable assumptions on the boundary.
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3.1. Boundary term. To estimate the boundary term I , we first notice that as f is real valued, we have

(D′′∂̄ f ) p̄q̄ = (H2 f ) p̄q̄

so that

I =−
∫
∂M
〈H2 f, ν0,1

⊗ ∂̄ f 〉σ =−
∫
∂M

H2 f (n0,1, (∂ f )])σ.

We then choose a boundary defining function ρ for ∂M . This means that ρ is a smooth real valued
function such that M = {ρ ≤ 0}, ∂M = {ρ = 0}, and dρ does not vanish on ∂M . By multiplying ρ by a
suitable smooth positive function if necessary, we may assume that

n= grad ρ.

Moreover, near a fixed (but arbitrary) point of the boundary ∂M , we fix a local orthonormal frame adapted
to the complex structure J which has the form

v1, Jv1, . . . , vm, Jvm = n= grad ρ.

We also set

ep =
1
√

2
(vp − i Jvp), p = 1, . . . ,m.

Note that as f vanishes on ∂M , its derivatives along tangent vectors to ∂M also vanish and, consequently,

(∂ f )] = −i
√

2
(n · f )ēm, n0,1

=
−i
√

2
ēm,

where n · f means d f (n). Therefore,

I = 1
2

∫
∂M
(n · f )∇d f (ēm, ēm)σ,

which can be decomposed as I = I1+ i I2 with

I1 =
1
4

∫
∂M
(n · f )[∇d f (J n, J n)−∇d f (n, n)]σ

and

I2 =−
1
2

∫
∂M
(n · f )∇d f (J n, n)σ.

Actually I2 vanishes because I is a real number. (This follows from the fact that in Equation (3-1), the
left hand side and the Ricci term are real numbers, so that the term involving D′′ is also a real number.
This implies, by Equation (3-2), that the boundary term I is a real number as well. There is also a
more conceptual reason for the vanishing of I2; see Section 3.2.) We now turn our attention to I1. As
4 f = µ f = 0 on ∂M , the trace of ∇d f is also zero on ∂M :

∇d f (J n, J n)−∇d f (n, n)=
m−1∑
k=1

[∇d f (vk, vk)+∇d f (Jvk, Jvk)] + 2∇d f (J n, J n).
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We notice that all vectors appearing in the right hand side are tangent to the boundary. For such a vector
u, we have on ∂M

∇d f (u, u)=−〈∇uu, n〉(n · f )

= 〈∇un, u〉(n · f )

= (n · f )∇dρ(u, u).

This implies

I1 =
1
4

∫
∂M
(n · f )2

(m−1∑
k=1

[∇dρ(vk, vk)+∇dρ(Jvk, Jvk)] + 2∇dρ(J n, J n)
)
σ. (3-4)

If we assume that ∂M is convex, all terms in the integrand of the right hand side are nonnegative, so that
I = I1 ≥ 0 as desired. This proves that µ≥ k in the convex case.

It remains to deal with the equality case. If we assume that µ = k, then, by (3-3), we must have
D′′∂̄ f = 0 and I = 0. On the one hand, D′′∂̄ f = 0 means that the (1, 0)-vector field associated to ∂̄ f
by the metric is a (nonzero) holomorphic vector field. On the other hand, from I = 0, we infer that the
integrand in Equation (3-4) has to vanish identically on the boundary:

(n · f )2
(m−1∑

k=1

{∇dρ(vk, vk)+∇dρ(Jvk, Jvk)}+ 2∇dρ(J n, J n)
)
= 0.

Assume by contradiction that ∂M is not totally geodesic (but is still convex of course). Then the term
between the brackets is positive at some point and we will get the vanishing of n. f on an open subset of
∂M . But f is in the kernel of the elliptic operator �−µ and vanishes on ∂M . By the unique continuation
principle for elliptic operators (see, for example, [Booß-Bavnbek and Wojciechowski 1993]), f has to
vanish on M as well, which is absurd. Therefore, ∂M is totally geodesic. This completes the proof of
Theorem 1.1.

Remark. With our conventions, ∇dρ is nothing but the second fundamental form of ∂M . Thus, we
recover condition (1-2) of Remark 1.2.

3.2. A direct proof that the boundary term is real. The fact that

I2 =−
1
2

∫
∂M
(n · f )∇d f (J n, n)σ

vanishes is also a consequence of the fact that the expression

(n · f )∇d f (J n, n)σ = (n · f )(J n · n · f )σ

is an exact differential form on the closed manifold ∂M . Indeed, the vector field J n = J grad ρ is the
Hamiltonian vector field associated to ρ. This means that if ω is the Kähler form,

i J nω =−dρ.

Hence

di J ninω
m
=−md(n · ρ)∧ωm−1

−m(m− 1)dρ ∧ dinω∧ω
m−2.
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Let j : ∂M→ M be the inclusion map. Since the functions n · ρ and ρ are constant on ∂M , we have

j∗(di J ninω
m)= 0.

Now, J n is a vector field defined on a neighborhood of ∂M whose restriction to ∂M is tangent to ∂M , so
that

j∗(i J nβ)= i J n j∗(β)

for any differential form β. As a consequence, we get

di J n j∗(inω
m)= 0.

Finally, we have

j∗(inω
m)= σ

and

di J nσ = 0.

Defining a vector field X by

X = 1
2(n · f )2 J n,

it follows that, on ∂M , we have

diXσ = (n · f )(J n · n · f )σ.

4. Reilly formula and the first eigenvalue

In this section, we present an alternative proof of our main result which was indicated by the referee. It is
based on Reilly’s formula, a well-known result in real Riemannian geometry, which is probably the tool
used in [Grosjean 2002, page 504].

This complements nicely the arguments given in Section 3, which have a complex geometry flavor.
The complex proof is a bit longer, as we first need to establish a Reilly-type formula for the ∂̄-Laplacian.
Given the importance of the ∂̄-Laplacian in complex geometry, it is likely that this (complex) Reilly
formula will have other applications.

Let M be a compact smooth domain in a Kähler manifold of complex dimension m and real dimension
n= 2m, with metric g and Ricci curvature bounded from below by some positive constant k. The outward
unit normal vector field on the boundary ∂M is denoted by n. Our aim is to prove a Lichnerowicz estimate
for the first eigenvalue by using the Reilly formula. We begin with some general facts.

Let G be a symmetric, covariant 2-tensor field and X a vector field. We have

div(G(X, ·))= (div G)(X)+〈G, DX [
〉,

where DX [ is the symmetric part of the covariant 2-tensor field ∇X [. Specializing this formula for
G = (∇d f )J and X = grad f , for some smooth real function f , we get

divα = Tr[∇2d f (·, J ·, J grad f )] + 〈(∇d f )J ,∇d f 〉,
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where

α(X) := ∇d f (J X, J grad f ).

Given an orthonormal basis (ei )1≤i≤n at a point x in M , we have

Tr[∇2d f (·, J ·, J grad f )] = 1
2{∇

2d f (ei , Jei , J grad f )−∇2d f (Jei , ei , J grad f )}

= −
1
2 [R(ei , Jei ) d f ](J grad f )

=
1
2 R(ei , Jei , J grad f, grad f )

=−Ric(grad f, grad f ).

Hence we get

divα =−Ric(grad f, grad f )+〈(∇d f )J ,∇d f 〉.

Integrating by parts we find∫
M
〈(∇d f )J ,∇d f 〉 =

∫
M

Ric(grad f, grad f )+
∫
∂M
α(n)σ,

but, for a point m ∈ ∂M , we have

α(n)m = (∇d f )m(J n, J grad f )

= (∇d f )m

(
J n, J

(
grad f +

∂ f
∂n

n
))

= (∇d f )m(J n, Jgrad f )+
∂ f
∂n
(∇d f )m(J n, J n).

Now, recall that the second fundamental form II of ∂M is defined as follows (see [Gallot et al. 2004,
Chapter 5] for details). Let U, V be local vector fields in M which extend some vector fields u, v on ∂M ,
in a neighborhood of m ∈ ∂M . We have

(∇U V )m = (∇uv)m − IIm(u, v)n,

from which we deduce that

(∇d f )m(u, v)= (∇d f )m(u, v)+
∂ f
∂n

IIm(u, v).

Therefore

α(n)m = (∇d f )m(J n, Jgrad f )+
∂ f
∂n
∇d f (J n, J n)+

(
∂ f
∂n

)2

II(J n, J n).

If we assume furthermore that f vanishes on the boundary, the first two terms of the right hand side of
the equation above vanish as well, so we finally obtain∫

M
〈(∇d f )J ,∇d f 〉 =

∫
M

Ric(grad f, grad f )+
∫
∂M

(
∂ f
∂n

)2

II(J n, J n)σ. (4-1)

On the left side of the Reilly formula (2-3), we can first use (2-2) to replace ‖∇d f ‖2 by

‖∇d f ‖2 = 2‖H2 f ‖2+〈∇d f, (∇d f )J
〉,
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and then use (4-1) to get

2
∫

M
‖H2 f ‖2 =

∫
M
(1 f )2− 2

∫
M

Ric(grad f, grad f )−
∫
∂M
[(n− 1)H + II(J n, J n)]

(
∂ f
∂n

)2

σ. (4-2)

Suppose now that f is a real valued eigenfunction of 1 corresponding to the first eigenvalue λ of 1,
so that f : M→ R is smooth, vanishes on the boundary ∂M , and satisfies 1 f = λ f . The hypothesis on
the Ricci curvature implies that∫

M
Ric(grad f, grad f )≥ k‖d f ‖2L2 = k〈1 f, f 〉L2 = kλ‖ f ‖2L2 .

From (4-2), we then infer

λ(λ− 2k)‖ f ‖2L2 ≥

∫
∂M
[(n− 1)H + II(J n, J n)]

(
∂ f
∂n

)2

σ. (4-3)

Finally, if we assume that the boundary is convex, II is by definition a symmetric bilinear form which
is nonnegative, so that its trace H is also nonnegative. Therefore, the left hand side of the previous
equation is nonnegative, and we get λ≥ 2k, as desired. For the equality case, we can argue as in the end
of Section 3.1.

5. Counterexample in the pseudoconvex case

We use the notation introduced in Section 3. It is clear from the proof of Theorem 1.1 that in order to get
the estimate µ≥ k, it is enough to assume that on the boundary we have

m−1∑
k=1

{∇dρ(vk, vk)+∇dρ(Jvk, Jvk)}+ 2∇dρ(J n, J n)≥ 0, (5-1)

and not necessarily the convexity of ∂M . We may rewrite this condition as
m−1∑
k=1

H1ρ(vk, vk)+∇dρ(J n, J n)≥ 0.

Here,
∑m−1

k=1 H1ρ(vk, vk) is the trace of the Levi form of the boundary, which would be nonnegative if
∂M were assumed to be only pseudoconvex. The extra term ∇dρ(J n, J n), however, can usually not be
controlled in the pseudoconvex case. This suggests that the conclusion of Theorem 1.1 does not generally
hold in this case, as we now explain.

We consider here the complex m-dimensional projective space Pm(C) equipped with the Fubini–Study
metric normalized so that the holomorphic sectional curvature is 4 (the Einstein constant is thus 2(m+ 1)
and the diameter is π/2).

Proposition 5.1. Fix some point x ∈ Pm(C), some r0 ∈ ]0, π/2[, and let M be the geodesic ball centered
at x , of radius r0.

(i) If r0 ∈ ]π/4, π/2[, M is strongly pseudoconvex, not convex.

(ii) The first eigenvalue of M with Dirichlet boundary conditions goes to 0 as r0 approaches π/2.
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Proof. The first point is a well-known result. For completeness, we outline the proof here. Denote by
r the distance function from x , and set ρ = r2

− r2
0 , so that ρ is a smooth defining function for M . We

want to compute the eigenvalues of the Hessian of ρ. As

∇dρ = 2r∇dr + 2dr ⊗ dr,

we only have to compute the eigenvalues of ∇dr . To do this, we proceed as in the proof of [Greene and
Wu 1979, Theorem A, page 19]. Recall that for a tangent vector u, the curvature R(u, .)u of Pm(C) is
given by [Berger et al. 1971, Proposition F.34]

R(u, .)u =


0 on Ru,

4Id on RJu,
Id on the orthogonal complement of (u, Ju).

Let γ be a normal geodesic starting from x . We can choose a parallel frame along γ which has
the form v1, Jv1, . . . , vm, Jvm = grad r . Using the explicit expression of R, it is then easy to check
that the space of Jacobi fields V along γ satisfying V (0) = 0 and V ⊥ γ̇ has as a basis Vi = sin(r)vi ,
J Vi , i = 1, . . . ,m − 1 and Vm = sin(2r)vm . Using the second variation formula, we see that ∇dr is
diagonalized in the basis v1, Jv1, . . . , vm, Jvm with eigenvalues cot(r) (of order 2m− 2), 2 cot(2r), and
0. If r = r0 ∈ ]π/4, π/2[, we infer that the Levi form of ρ is positive definite, being equal to 2r0 cot(r0)Id
on the Levi distribution. In other words, M is strongly pseudoconvex. However, M is not convex because
the principal curvature 2 cot(2r0) is negative.

As for the second point of our proposition, it is, for example, a consequence of [Chavel and Feldman
1978, Theorem 1], which states the following: Let X be a compact Riemannian manifold and let X ′ ⊂ X
be a submanifold. For small ε > 0, let X ′ε be the ε-neighborhood of X ′ in X and denote by �ε the set
X \ X ′ε. Let (λ j ) be the spectrum of X and let (λ j (ε)) be the spectrum of �ε with Dirichlet boundary
conditions. If the codimension of X ′ in X is at least 2, then, for all j , λ j (ε)→ λ j−1 as ε→ 0. In our
case, we can take X = Pm(C) and X ′ = Pm−1(C), which we view as the cut locus of our fixed point x . If
ε = π/2− r0, �ε actually coincides with M and we get (ii). �
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SHARP MODULUS OF CONTINUITY FOR PARABOLIC EQUATIONS ON
MANIFOLDS AND LOWER BOUNDS FOR THE FIRST EIGENVALUE

BEN ANDREWS AND JULIE CLUTTERBUCK

We derive sharp estimates on the modulus of continuity for solutions of the heat equation on a compact
Riemannian manifold with a Ricci curvature bound, in terms of initial oscillation and elapsed time. As an
application, we give an easy proof of the optimal lower bound on the first eigenvalue of the Laplacian on
such a manifold as a function of diameter.

1. Introductory comments

In our previous papers [Andrews and Clutterbuck 2009a; 2009b] we proved sharp bounds on the modulus
of continuity of solutions of various parabolic boundary value problems on domains in Euclidean space.
In this paper, our aim is to extend these estimates to parabolic equations on manifolds. Precisely, let
(M, g) be a compact Riemannian manifold with induced distance function d , diameter

sup{d(x, y) : x, y ∈ M} = D,

and lower Ricci curvature bound Ric(v, v)≥ (n− 1)κg(v, v). Let a : T ∗M→ Sym2(T
∗M) be a parallel

equivariant map (so that a(S∗ω)(S∗µ, S∗ν) = a(ω)(µ, ν) for any ω, µ, ν in T ∗x M and S ∈ O(Tx M),
while ∇ (a(ω)(µ, ν))= 0 whenever ∇ω = ∇µ= ∇ν = 0). Then we consider solutions to the parabolic
equation

∂u
∂t
= ai j (Du)∇i∇ j u. (1)

Our assumptions imply that the coefficients ai j have the form

a(Du)(ξ, ξ)= α(|Du|)
(Du · ξ)2

|Du|2
+β(|Du|)

(
|ξ |2−

(Du · ξ)2

|Du|2

)
(2)

for some smooth positive functions α and β. Of particular interest are the cases of the heat equation
(with α = β = 1) and the p-laplacian heat flows (with α = (p− 1)|Du|p−2 and β = |Du|p−2). Here we
are principally concerned with the case of manifolds without boundary, but can also allow M to have a
nontrivial convex boundary (in which case we impose Neumann boundary conditions Dνu = 0). Our
main aim is to provide the following estimates on the modulus of continuity of solutions in terms of the
initial oscillation, elapsed time, κ , and D.

Andrews was supported by Discovery Projects grants DP0985802 and DP120102462 of the Australian Research Council.
MSC2010: 35K05, 35K55, 35P15.
Keywords: eigenvalue lower bound, heat equation, modulus of continuity.
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Theorem 1 (modulus of continuity estimate). Let (M, g) be a compact Riemannian manifold (possibly
with smooth, uniformly locally convex boundary) with diameter D and Ricci curvature bound Ric ≥
(n− 1)κg for some constant κ ∈ R. Let u : M ×[0, T )→ R be a smooth solution to (1) with Neumann
boundary conditions if ∂M 6=∅. Suppose that

• u( · , 0) has a smooth modulus of continuity ϕ0 : [0, D/2] → R with ϕ0(0)= 0 and ϕ′0 ≥ 0;

• ϕ : [0, D/2]×R+→ R satisfies

(i) ϕ(z, 0)= ϕ0(z) for each z ∈ [0, D/2];
(ii) ∂ϕ/∂t ≥ α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′;

(iii) ϕ′ ≥ 0 on [0, D/2]×R+.

Then ϕ( · , t) is a modulus of continuity for u( · , t) for each t ∈ [0, T ):

|u(x, t)− u(y, t)| ≤ 2ϕ
(

d(x, y)
2

, t
)
.

Here we use the notation

Cκ(τ )=


cos
√
κτ, κ > 0,

1, κ = 0,
cosh
√
−κτ, κ < 0

and Sκ(τ )=


(1/
√
κ) sin

√
κτ, κ > 0,

τ, κ = 0,
(1/
√
−κ) sinh

√
−κτ, κ < 0,

(3)

and

Tκ(s) := κ
Sκ(s)
Cκ(s)

=


√
κ tan

(√
κs
)
, κ > 0,

0, κ = 0,
−
√
−κ tanh

(√
−κs

)
, κ < 0.

These estimates are sharp, holding exactly for certain symmetric solutions on particular warped product
spaces. The modulus of continuity estimates also imply sharp gradient bounds which hold in the same
situation. The central ingredient in our argument is a comparison result for the second derivatives of
the distance function (Theorem 3) which is a close relative of the well-known Laplacian comparison
theorem. We remark that the assumption of smoothness can be weakened: for example, in the case of the
p-laplacian heat flow, we do not expect solutions to be smooth near spatial critical points, but nevertheless
solutions are smooth at other points, and this is sufficient for our argument.

As an immediate application of the modulus of continuity estimates, we provide a new proof of the
optimal lower bound on the smallest positive eigenvalue of the Laplacian in terms of D and κ . Precisely,
if we define

λ1(M, g)= inf
{∫

M
|Du|2g dVol(g) :

∫
M

u2 dVol(g)= 1,
∫

M
u dVol(g)= 0

}
and

λ1(D, κ, n)= inf{λ1(M, g) : dim(M)= n, diam(M)≤ D,Ric≥ (n− 1)κg},

then we characterize λ1(D, κ) precisely as the first eigenvalue of a certain one-dimensional Sturm–
Liouville problem.
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Theorem 2 (lower bound on the first eigenvalue). Let µ be the first eigenvalue of the Sturm–Liouville
problem

1

Cn−1
κ

(
8′Cn−1

κ

)′
+µ8= 0 on [−D/2, D/2],

8′(±D/2)= 0.
(4)

Then λ1(D, κ, n)= µ.

Previous results in this direction include those derived from gradient estimates in [Li 1979; Li and Yau
1980], with the sharp result for nonnegative Ricci curvature first proved in [Zhong and Yang 1984]. The
complete result as stated above is implicit in [Kröger 1992, Theorem 2]. Chen and Wang [1994] used
stochastic methods to prove an apparently equivalent result. The result appears to have been first explicitly
stated in the form above in by Bakry and Qian [2000, Theorem 14], who also used gradient estimate
methods. Our contribution is the rather simple proof using the long-time behavior of the heat equation (a
method which was also central in our work on the fundamental gap conjecture [Andrews and Clutterbuck
2011], and which has also been employed successfully in [Ni 2013]), which seems considerably easier
than the previously available arguments. In particular, the complications arising in previous works from
possible asymmetry of the first eigenfunction are avoided in our argument. A similar argument proving
the sharp lower bound for λ1 on a Bakry–Emery manifold may be found in [Andrews and Ni 2012].

The estimate in Theorem 2 is sharp (that is, we obtain an equality and not just an inequality), since, for
a given diameter D and Ricci curvature bound κ , we can construct a sequence of manifolds satisfying
these bounds on which the first eigenvalue approaches µ1; see the remarks after Corollary 1 in [Kröger
1992]. We include a discussion of these examples in Section 5, since the examples required for our
purposes are a simpler subset of those constructed in [Kröger 1992]. We also include in Section 6 a
discussion of the implications for a conjectured inequality of Li.

2. A comparison theorem for the second derivatives of distance

Theorem 3. Let (M, g) be a complete connected Riemannian manifold with a lower Ricci curvature
bound Ric≥ (n− 1)κg, and let ϕ be a smooth function with ϕ′ ≥ 0. Then on (M ×M) \ {(x, x) : x ∈ M}
the function v(x, y)= 2ϕ(d(x, y)/2) is a viscosity supersolution of

L[∇2v,∇v] = 2[α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′]|d/2,

where

L[B, ω] = inf

tr(AB) :

A ∈ Sym2(T
∗

x,y(M ×M)),

A ≥ 0,

A|T ∗x M = a(ω|Tx M),

A|T ∗y M = a(ω|Ty M)


for any B ∈ Sym2(Tx,y(M ×M) and ω ∈ T ∗(x,y)(M ×M).
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Proof. By approximation it suffices to consider the case where ϕ′ is strictly positive. Let x and y be
fixed, with y 6= x and d = d(x, y), and let γ : [−d/2, d/2] → M be a minimizing geodesic from x to y
(that is, with γ (−d/2)= x and γ (d/2)= y) parametrized by arc length. Choose an orthonormal basis
{Ei }1≤i≤n for Tx M with En = γ

′(−d/2). Use parallel transport along γ to produce an orthonormal basis
{Ei (s)}1≤i≤n for Tγ (s)M with En(s)= γ ′(s) for each s ∈ [−d/2, d/2]. Let {E i

∗
}1≤i≤n be the dual basis

for T ∗γ (s)M .
To prove the theorem, consider any smooth function ψ defined on a neighborhood of (x, y) in M ×M

such that ψ ≤ v and ψ(x, y)= v(x, y). We must prove that

L[∇2ψ,∇ψ]|(x,y) ≤ 2[α(ϕ′)ϕ′′− (n− 1)β(ϕ′)ϕ′Tκ ]|d(x,y)/2.

By definition of L, it suffices to find a nonnegative A∈Sym2(T
∗
x,y(M×M)) such that A|Tx M =a(∇ψ |Tx M)

and A|Ty M = a(∇ψ |Ty M), with tr(AD2ψ)≤ 2[α(ϕ′)ϕ′′− (n− 1)β(ϕ′)ϕ′Tκ ]|d/2.
Before choosing this, we observe that ∇ψ is determined by d and ϕ: We have ψ ≤ 2ϕ ◦ d/2 with

equality at (x, y). In particular, we have (since ϕ is nondecreasing)

ψ(γ (s), γ (t))≤ 2ϕ(d(γ (s), γ (t))/2)≤ 2ϕ(L[γ |[s,t]]/2)≤ 2ϕ(|t − s|/2)

for all s 6= t , with equality when t = d/2 and s = −d/2. This gives ∇ψ(En, 0) = −ϕ′(d/2) and
∇ψ(0, En)= ϕ

′(d/2). To identify the remaining components of ∇ψ , we define

γ
y

i (r, s)= expγ (s)(r(1/2+ s/d)Ei (s))

for 1≤ i ≤ n− 1. Then we have

ψ(x, expy(r Ei ))≤ 2ϕ(L[γ y
i (r, · )]/2)

with equality at r = 0. The right-hand side is a smooth function of r with derivative zero, from which it
follows that ∇ψ(0, Ei )= 0. Similarly, we have ∇ψ(Ei , 0)= 0 for i = 1, . . . , n− 1. Therefore we have

∇ψ |(x,y) = ϕ
′(d(x, y)/2)(−En

∗
, En
∗
).

In particular, by (2), we have

a(∇ψ |Tx M)= α(ϕ
′)En ⊗ En +β(ϕ

′)

n−1∑
i=1

Ei ⊗ Ei ,

and similarly for y.
Now we choose A as follows:

A = α(ϕ′)(En,−En)⊗ (En,−En)+β(ϕ
′)

n−1∑
i=1

(Ei , Ei )⊗ (Ei , Ei ). (5)

This is manifestly nonnegative, and agrees with a on Tx M and Ty M as required. This choice gives

tr(A∇2ψ)= α(ϕ)∇2ψ((En,−En), (En,−En))+β(ϕ
′)

n−1∑
i=1

∇
2ψ((Ei , Ei ), (Ei , Ei )). (6)
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For each i ∈ {1, . . . , n − 1} let γi : (−ε, ε)× [−d/2, d/2] → M be any smooth one-parameter family
of curves with γi (r,±d/2) = expγ (±d/2)(r Ei (±d/2)) for i = 1, . . . , n − 1, and γi (0, s) = γ (s). Then
d(expx(r Ei ), expy(r Ei ))≤ L[γi (r, · )], and hence

ψ(expx(r Ei ), expy(r Ei ))≤ v(expx(r Ei ), expy(r Ei ))

= 2ϕ
(d(expx(r Ei ), expy(r Ei ))

2

)
≤ 2ϕ

(
L[γi (r, · )]

2

)
,

since ϕ is nondecreasing. Since the functions on the left and the right are both smooth functions of r and
equality holds for r = 0, it follows that

∇
2ψ((Ei , Ei ), (Ei , Ei ))≤ 2

d2

dr2

(
ϕ

(
L[γi (r, · )]

2

))∣∣∣
r=0
. (7)

Similarly, since d − 2r = L[γ |[−d/2+r,d/2−r ]] ≥ d(γ (−d/2+ r), γ (d/2− r)), we have

∇
2ψ(En,−En), (En,−En))≤ 2

d2

dr2

(
ϕ

(
d
2
− r

))∣∣∣
r=0
= 2ϕ′′

(
d
2

)
. (8)

Now we make a careful choice of the curves γi (r, · ), motivated by the situation in the model space, in
order to get a useful result on the right-hand side in inequality (7): To begin with, if K > 0, we assume
that d < π/

√
K (we will return to deal with the equality case later). We choose

γi (r, s)= expγ (s)

(
r Cκ(s)Ei

Cκ(d/2)

)
,

where Cκ is given by (3). Now we proceed to compute the right-hand side of (7): Denoting s derivatives
of γi by γ ′ and r derivatives by γ̇ , we find

d
dr

(
L[γi (r, · )]

)
=

d
dr

(∫ d/2

−d/2
‖γ ′(r, s)‖ ds

)
=

∫ d/2

−d/2

〈γ ′,∇rγ
′
〉

‖γ ′‖
ds.

In particular this gives zero when r = 0. Differentiating again, we obtain (using ‖γ ′(0, s)‖ = 1 and the
expression γ̇ (0, s)= (Cκ(s)/Cκ(d/2))Ei )

d2

dr2 (L[γi (r, · )])|r=0 =

∫ d/2

−d/2
‖∇rγ

′
‖

2
−〈γ ′,∇rγ

′
〉

2
+〈γ ′,∇r∇rγ

′
〉 ds.

Now we observe that

∇rγ
′
=∇s γ̇ =∇s

(
Cκ(s)

Cκ(d/2)
Ei

)
=

C ′κ(s)
Cκ(d/2)

Ei ,
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while

∇r∇rγ
′
=∇r∇s γ̇ =∇s∇r γ̇ − R(γ̇ , γ ′)γ̇ =−

Cκ(s)2

Cκ(d/2)2
R(Ei , En)Ei ,

since by the definition of γi (r, s) we have ∇r γ̇ = 0. This gives

d2

dr2 (L[γi (r, · )])|r=0 =
1

Cκ(d/2)2

∫ d/2

−d/2
{C ′κ(s)

2
−Cκ(s)2 R(Ei , En, Ei , En)} ds.

Summing over i from 1 to n− 1 gives

n−1∑
i=1

d2

dr2 (L[γi (r, · )])|r=0 =
1

Cκ(d/2)2

∫ d/2

−d/2

{
(n− 1)C ′κ(s)

2
−Cκ(s)2

n−1∑
i=1

R(Ei , En, Ei , En)

}
ds

=
1

Cκ(d/2)2

∫ d/2

−d/2
{(n− 1)C ′κ(s)

2
−Cκ(s)2 Ric(En, En)} ds

≤
n− 1

Cκ(d/2)2

∫ d/2

−d/2
{C ′κ(s)

2
− κCκ(s)2} ds.

In the case κ = 0, the integral is zero; in the case κ < 0, or the case κ > 0 with d < π/
√
κ , we have

1
Cκ(d/2)2

∫ d/2

−d/2
{C ′κ(s)

2
− κCκ(s)2} ds =

1
Cκ(d/2)2

∫ d/2

−d/2
(−κSκC ′κ − κS′κCκ) ds

=−
κ

Cκ(d/2)2

∫ d/2

−d/2
(Cκ Sκ)′ ds

=−
2κCκ(d/2)Sκ(d/2)

Cκ(d/2)2

=−2Tκ(d/2).

Finally, we have
d
dr

(
ϕ

(
L[γi (r, · )]

2

))∣∣∣
r=0
= ϕ′

d
dr

(
L[γi (r, · )]

2

)∣∣∣
r=0
= 0,

and so

n−1∑
i=1

d2

dr2

(
ϕ

(
L[γi (r, · )]

2

))∣∣∣
r=0
=

n−1∑
i=1

(
ϕ′

d2

dr2

(
L[γi (r, · )]

2

)∣∣∣
r=0
+ϕ′′

(
d
dr

(
L[γi (r, · )]

2

)∣∣∣
r=0

)2)
≤−(n− 1)ϕ′Tκ |d/2.

Now, using the inequalities (7) and (8), we have from (6) that

L[∇2ψ,∇ψ] ≤ trace(A∇2ψ)≤ 2[α(ϕ′)ϕ′′− (n− 1)β(ϕ′)ϕ′Tκ ]|d/2, (9)

as required.
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In the case d = π/
√

K , we instead choose γi (r, s) = expγ (s) (r Cκ ′(s)Ei/(Cκ ′(d/2))), for arbitrary
κ ′ < κ . Then the computation above gives

n−1∑
i=1

∇
2ψ((Ei , Ei ), (Ei , Ei ))≤−2(n− 1)ϕ′Tκ .

Since the right-hand side approaches −∞ as κ ′ increases to κ , we have a contradiction to the assumption
that ψ is smooth. Hence no such ψ exists and there is nothing to prove. �

3. Estimate on the modulus of continuity for solutions of heat equations

In this section we prove Theorem 1, which extends the oscillation estimate from domains in Rn to compact
Riemannian manifolds. The estimate is analogous to [Andrews and Clutterbuck 2009b, Theorem 4.1], the
modulus of continuity estimate for the Neumann problem on a convex Euclidean domain.

Proof of Theorem 1. Recall that (M, g) is a compact Riemannian manifold, possibly with boundary (in
which case we assume that the boundary is locally convex). Define an evolving quantity, Z , on the product
manifold M ×M ×[0,∞):

Z(x, y, t) := u(y, t)− u(x, t)− 2ϕ(d(x, y)/2, t)− ε(1+ t)

for small ε > 0.
We have assumed that ϕ is a modulus of continuity for u at t = 0, and so Z( · , · , 0)≤−ε < 0. Note

also that Z is continuous on M × M × [0,∞), and Z(x, x, t) = −ε(1+ t) < 0 for each x ∈ M and
t ∈ [0, T ). It follows that if Z ever becomes positive, there exists a first time t0 > 0 and points x0 6= y0 in
M such that Z(x0, y0, t0)= 0. There are two possibilities: either both x0 and y0 are in the interior of M ,
or at least one of them (say x0) lies in the boundary ∂M .

We deal with the first case first: Clearly Z(x, y, t)≤ 0 for all x, y ∈ M and t ∈ [0, t0]. In particular, if
we let v(x, y)= 2ϕ(d(x, y)/2, t0) and ψ(x, y)= u(y, t0)− u(x, t0)− ε(1+ t0), then

ψ(x, y)≤ v(x, y)

for all x, y ∈ M , while ψ(x0, y0)= v(x0, y0). Since ψ is smooth, by Theorem 3 we have

L[∇2ψ,∇ψ] ≤ 2[α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′]|d(x0,y0)/2.

Now we observe that since the mixed partial derivatives of ∇2ψ all vanish, we have for any admissible A
in the definition of L that

tr(A∇2ψ)= (a(Du)i j
∇i∇ j u)|(y0,t0)− (a(Du)i j

∇i∇ j u)|(x0,t0),

and therefore
L[∇2ψ,∇ψ] = (a(Du)i j

∇i∇ j u)|(y0,t0)− (a(Du)i j
∇i∇ j u)|(x0,t0).

It follows that

a(Du)i j
∇i∇ j u|(y0,t0)− a(Du)i j

∇i∇ j u|(x0,t0) ≤ 2[α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′]|d(x0,y0)/2. (10)
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We also know that the time derivative of Z is nonnegative at (x0, y0, t0), since Z(x0, y0, t)≤ 0 for t < t0:

∂Z
∂t
|(x0,y0,t0) = a(Du)i j

∇i∇ j u|(y0,t0)− a(Du)i j
∇i∇ j u|(x0,t0)− 2

∂ϕ

∂t
− ε ≥ 0. (11)

Combining the inequalities (10) and (11), we obtain

∂ϕ

∂t
< α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′,

where all terms are evaluated at the point d(x0, y0)/2. This contradicts assumption (ii) in Theorem 1.
Now we consider the second case, where x0 ∈ ∂M . Under the assumption that ∂M is convex, there

exists [Bartolo et al. 2002] a length-minimizing geodesic γ : [0, d] → M from x0 to y0, such that γ (s) is
in the interior of M for 0< s < d and γ ′(0) · ν(x0) > 0, where ν(x0) is the inward-pointing unit normal
to ∂M at x0. We compute

d
ds

Z(expx0
(sν(x0)), y0, t0)=−∇ν(x0)u−ϕ

′(d/2)∇d(ν(x0), 0)= ϕ′(d/2)γ ′(0) · ν(x0)≥ 0.

In particular, Z(expx0
(sν(x0)), y0, t0)>0 for all small positive s, contradicting the fact that Z(x, y, t0)≤0

for all x, y ∈ M .
Therefore Z remains negative for all (x, y) ∈ M and t ∈ [0, T ). Letting ε approach zero proves the

theorem. �

4. The eigenvalue lower bound

Now we provide the proof of the sharp lower bound on the first eigenvalue (Theorem 2), which follows
very easily from the modulus of continuity estimate from Theorem 1.

Proposition 4. For M and u as in Theorem 1 applied to the heat equation (α ≡ β ≡ 1 in (2)), we have
the oscillation estimate

|u(y, t)− u(x, t)| ≤ Ce−µt ,

where C depends on the modulus of continuity of u( · , 0), and µ is the smallest positive eigenvalue of the
Sturm–Liouville equation

8′′− (n− 1)Tκ8′+µ8=
1

Cn−1
κ

(8′Cn−1
κ )′+µ8= 0 on [−D/2, D/2],

8′(±D/2)= 0.
(12)

Proof. The eigenfunction-eigenvalue pair (8,µ) is defined as follows: For any σ ∈ R we define 8σ (x)
to be the solution of the initial value problem

8′′σ − (n− 1)Tκ8′σ + σ8σ = 0;

8σ (0)= 0;

8′σ (0)= 1.
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Then µ= sup{σ : x ∈ [−D/2, D/2] H⇒8′σ (x) > 0}. In particular, for σ < µ the function 8σ is strictly
increasing on [−D/2, D/2], and 8σ (x) is decreasing in σ and converges smoothly to 8(x)=8µ(x) as
σ approaches µ for x ∈ (0, D/2] and 0< σ < µ.

Now we apply Theorem 1: Since 8 is smooth, has positive derivative at x = 0 and is positive for
x ∈ (0, D/2], there exists C > 0 such that C8 is a modulus of continuity for u( . , 0). Then, for each
σ ∈ (0, µ), ϕ0 = C8σ is also a modulus of continuity for u( . , 0), with ϕ0(0)= 0 and ϕ′0 > 0. Defining
ϕ(x, t) = C8σ (x)e−σ t , all the conditions of Theorem 1 are satisfied, and we deduce that ϕ( . , t) is a
modulus of continuity for u( . , t), each t ≥ 0. Letting σ approach µ, we deduce that C8e−µt is also a
modulus of continuity. That is, for all x, y and t ≥ 0,

|u(y, t)− u(x, t)| ≤ Ce−µt8

(
d(x, y)

2

)
≤ C sup8e−µt . �

Proof of Theorem 2. Observe that if (ϕ, λ) is the first eigenfunction-eigenvalue pair, then u(x, t)=e−λtϕ(x)
satisfies the heat equation on M for all t > 0. From Proposition 4, we have |u(y, t)− u(x, t)| ≤ Ce−µt ,
and so |ϕ(y)− ϕ(x)| ≤ Ce−(µ−λ)t for all x, y ∈ M and t > 0. Since ϕ is nonconstant, letting t →∞
implies that µ− λ≤ 0. �

5. Sharpness of the estimates

In the previous section we proved that λ1(D, κ, n)≥ µ. To complete the proof of Theorem 2, we must
prove that λ1(D, κ, n) ≤ µ. To do this, we construct examples of Riemannian manifolds with given
diameter bounds and Ricci curvature lower bounds such that the first eigenvalue is as close as desired to
µ. The construction is similar to that given in [Kröger 1992; Bakry and Qian 2000], but we include it
here because the construction also produces examples proving that the modulus of continuity estimates of
Theorem 1 are sharp.

Fix κ and D, and let M = Sn−1
×[−D/2, D/2] with the metric

g = ds2
+ aC2

κ(s)ḡ,

where ḡ is the standard metric on Sn−1, and a > 0. The Ricci curvatures of this metric are given by

Ric(∂s, ∂s)= (n− 1)κ;

Ric(∂s, v)= 0 for v ∈ T Sn−1
;

Ric(v, v)=
(
(n− 1)κ + (n− 2)

1/a− κ
C2
κ

)
|v|2 for v ∈ T Sn−1.

In particular, the lower Ricci curvature bound Ric≥ (n−1)κ is satisfied for any a if κ ≤ 0 and for a≤ 1/κ
if κ > 0.

To demonstrate the sharpness of the modulus of continuity estimate in Theorem 1, we construct solutions
of (1) on M which satisfy the conditions of Theorem 1 and satisfy the conclusion with equality for positive
times: Let ϕ0 : [0, D/2] be as given in Theorem 1, and extend by odd reflection to [−D/2, D/2] and
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define ϕ to be the solution of the initial-boundary value problem

∂ϕ

∂t
= α(ϕ′)ϕ′′+ (n− 1)Tκβ(ϕ′)ϕ′;

ϕ(x, 0)= ϕ0(x);

ϕ′(±D/2, t)= 0.

Now define u(z, s, t)= ϕ(s, t) for s ∈ [−D/2, D/2], z ∈ Sn−1, and t ≥ 0. Then a direct calculation shows
that u is a solution of (1) on M . If ϕ0 is concave on [0, D/2], we have |ϕ0(a)−ϕ0(b)| ≤ 2ϕ0(|b− 1|/2)
for all a and b in [−D/2, D/2]. For our choice of ϕ, this also remains true for positive times. Note also
that for any w, z ∈ Sn−1 and a, b ∈ [−D/2, D/2] we have d((w, a), (z, b))≥ |b−a|. Therefore we have

|u(w, a, t)− u(z, b, t)| = |ϕ(a, t)−ϕ(b, t)| ≤ 2ϕ
(
|b− a|

2
, t
)
≤ 2ϕ

(
d((w, a), (z, b))

2
, t
)
,

so that ϕ( . , t) is a modulus of continuity for u( . , t) as claimed. Furthermore, this holds with equality
whenever w = z and b =−a, so there is no smaller modulus of continuity and the estimate is sharp.

Now we proceed to the sharpness of the eigenvalue estimate. On the manifold constructed above, we
have an explicit eigenfunction of the Laplacian, given by ϕ(z, s)=8(s), where8 is the first eigenfunction
of the one-dimensional Sturm–Liouville problem given in Proposition 4. That is, we have λ1(M, g)≤ µ.
In this example we have the required Ricci curvature lower bound, and the diameter approaches D as
a→ 0. Since µ depends continuously on D, the result follows.

A slightly more involved construction shows that the bound is sharp even in the smaller class of
manifolds without boundary. This is achieved by smoothly attaching spherical caps to the ends of the
above examples; see the similar construction in [Andrews and Ni 2012, Section 2].

6. Implications for the “Li conjecture”

In this section we mention some implications of the sharp eigenvalue estimate and a conjecture attributed
to Peter Li. The result of Lichnerowicz [1958] is that λ1 ≥ nκ whenever Ric≥ (n− 1)κgi j (so that, by
the Bonnet–Myers estimate, D ≤ π/

√
κ). An estimate from [Zhong and Yang 1984] gives λ1 ≥ π

2/D2

for Ric≥ 0. Both of these are sharp, and the latter estimate should also be sharp as D→ 0 for any lower
Ricci curvature bound. Interpolating linearly (in κ) between these estimates, we obtain Li’s conjecture:

λ1 ≥
π2

D2 + (n− 1)κ.

By construction this holds precisely at the endpoints κ→ 0 and κ→ π2/D2.
Several previous attempts to prove such inequalities have been made, particularly towards proving

inequalities of the form λ1 ≥ π
2/D2

+aκ for some constant a, which are linear in κ and have the correct
limit as κ→ 0. These include works of DaGang Yang [1999], Jun Ling [2006] and Ling and Lu [2010],
the latter showing that α = 34

100 holds. These are all superseded by the result of Shi and Zhang [2007]
which proves λ1 ≥ sups∈(0,1){4s(1− s)π2/D2

+ (n− 1)sκ}, so in particular λ1 ≥ π
2/D2

+ ((n− 1)/2)κ
by taking s = 1

2 .
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We remark here that the inequality with a = (n−1)/2 is the best possible of this kind, and in particular
the Li conjecture is false. This can be seen by computing an asymptotic expansion for the sharp lower
bound µ given by Theorem 2. For fixed D = π we perturb about κ = 0 (as in [Andrews and Ni 2012,
Section 4]), obtaining

µ= 1+
(n− 1)

2
κ + O(κ2).

By scaling, this amounts to the estimate

µ=
π2

D2 +
(n− 1)

2
κ + O(κD2).

Since the lower bound λ1 ≥ µ is sharp, this shows that the inequality λ1 ≥ π
2/D2

+ aκ is false for any
a > (n− 1)/2, and in particular for a = n− 1.

References

[Andrews and Clutterbuck 2009a] B. Andrews and J. Clutterbuck, “Lipschitz bounds for solutions of quasilinear parabolic
equations in one space variable”, J. Differential Equations 246:11 (2009), 4268–4283. MR 2010j:35237 Zbl 1171.35060

[Andrews and Clutterbuck 2009b] B. Andrews and J. Clutterbuck, “Time-interior gradient estimates for quasilinear parabolic
equations”, Indiana Univ. Math. J. 58:1 (2009), 351–380. MR 2010k:35234 Zbl 1173.35030

[Andrews and Clutterbuck 2011] B. Andrews and J. Clutterbuck, “Proof of the fundamental gap conjecture”, J. Amer. Math. Soc.
24:3 (2011), 899–916. MR 2012d:35051 Zbl 1222.35130

[Andrews and Ni 2012] B. Andrews and L. Ni, “Eigenvalue comparison on Bakry–Emery manifolds”, Comm. Partial Differential
Equations 37:11 (2012), 2081–2092. MR 3005536 Zbl 1258.35153

[Bakry and Qian 2000] D. Bakry and Z. Qian, “Some new results on eigenvectors via dimension, diameter, and Ricci curvature”,
Adv. Math. 155:1 (2000), 98–153. MR 2002g:58048 Zbl 0980.58020

[Bartolo et al. 2002] R. Bartolo, A. Germinario, and M. Sánchez, “Convexity of domains of Riemannian manifolds”, Ann.
Global Anal. Geom. 21:1 (2002), 63–83. MR 2003a:58016 Zbl 0995.58009

[Chen and Wang 1994] M. F. Chen and F. Y. Wang, “Application of coupling method to the first eigenvalue on manifold”, Sci.
China Ser. A 37:1 (1994), 1–14. MR 96d:58141 Zbl 0799.53044

[Kröger 1992] P. Kröger, “On the spectral gap for compact manifolds”, J. Differential Geom. 36:2 (1992), 315–330. MR 94g:
58236 Zbl 0738.58048

[Li 1979] P. Li, “A lower bound for the first eigenvalue of the Laplacian on a compact manifold”, Indiana Univ. Math. J. 28:6
(1979), 1013–1019. MR 81j:58084 Zbl 0429.35054

[Li and Yau 1980] P. Li and S. T. Yau, “Estimates of eigenvalues of a compact Riemannian manifold”, pp. 205–239 in Geometry
of the Laplace operator (Honolulu, HI, 1979), edited by R. Osserman and A. Weinstein, Proc. Sympos. Pure Math. 36, Amer.
Math. Soc., Providence, R.I., 1980. MR 81i:58050 Zbl 0441.58014

[Lichnerowicz 1958] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques 3,
Dunod, Paris, 1958. MR 23 #A1329 Zbl 0096.16001

[Ling 2006] J. Ling, “The first eigenvalue of a closed manifold with positive Ricci curvature”, Proc. Amer. Math. Soc. 134:10
(2006), 3071–3079. MR 2007d:58057 Zbl 1094.53032

[Ling and Lu 2010] J. Ling and Z. Lu, “Bounds of eigenvalues on Riemannian manifolds”, pp. 241–264 in Trends in partial
differential equations (Hangzhou, 2008), edited by B. Bian et al., Adv. Lect. Math. 10, International Press, Somerville, MA,
2010. MR 2011k:58048 Zbl 1200.58020

[Ni 2013] L. Ni, “Estimates on the modulus of expansion for vector fields solving nonlinear equations”, J. Math. Pures Appl. (9)
99:1 (2013), 1–16. MR 3003280 Zbl 06136919

http://dx.doi.org/10.1016/j.jde.2009.01.024
http://dx.doi.org/10.1016/j.jde.2009.01.024
http://msp.org/idx/mr/2010j:35237
http://msp.org/idx/zbl/1171.35060
http://dx.doi.org/10.1512/iumj.2009.58.3756
http://dx.doi.org/10.1512/iumj.2009.58.3756
http://msp.org/idx/mr/2010k:35234
http://msp.org/idx/zbl/1173.35030
http://dx.doi.org/10.1090/S0894-0347-2011-00699-1
http://msp.org/idx/mr/2012d:35051
http://msp.org/idx/zbl/1222.35130
http://dx.doi.org/10.1080/03605302.2012.668602
http://msp.org/idx/mr/3005536
http://msp.org/idx/zbl/1258.35153
http://dx.doi.org/10.1006/aima.2000.1932
http://msp.org/idx/mr/2002g:58048
http://msp.org/idx/zbl/0980.58020
http://dx.doi.org/10.1023/A:1014231603588
http://msp.org/idx/mr/2003a:58016
http://msp.org/idx/zbl/0995.58009
http://msp.org/idx/mr/96d:58141
http://msp.org/idx/zbl/0799.53044
http://projecteuclid.org/euclid.jdg/1214448744
http://www.ams.org/mathscinet-getitem?mr=
http://www.ams.org/mathscinet-getitem?mr=
http://msp.org/idx/zbl/0738.58048
http://dx.doi.org/10.1512/iumj.1979.28.28075
http://msp.org/idx/mr/81j:58084
http://msp.org/idx/zbl/0429.35054
http://msp.org/idx/mr/81i:58050
http://msp.org/idx/zbl/0441.58014
http://msp.org/idx/mr/23:A1329
http://msp.org/idx/zbl/0096.16001
http://dx.doi.org/10.1090/S0002-9939-06-08332-8
http://msp.org/idx/mr/2007d:58057
http://msp.org/idx/zbl/1094.53032
http://www.math.uci.edu/~zlu/publications/ch7.pdf
http://msp.org/idx/mr/2011k:58048
http://msp.org/idx/zbl/1200.58020
http://dx.doi.org/10.1016/j.matpur.2012.05.009
http://msp.org/idx/mr/3003280
http://msp.org/idx/zbl/06136919


1024 BEN ANDREWS AND JULIE CLUTTERBUCK

[Shi and Zhang 2007] Y. M. Shi and H. C. Zhang, “Lower bounds for the first eigenvalue on compact manifolds”, Chinese Ann.
Math. Ser. A 28:6 (2007), 863–866. MR 2009b:58074 Zbl 1164.53369

[Yang 1999] D. Yang, “Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature”,
Pacific J. Math. 190:2 (1999), 383–398. MR 2001b:53039 Zbl 1016.58016

[Zhong and Yang 1984] J. Q. Zhong and H. C. Yang, “On the estimate of the first eigenvalue of a compact Riemannian manifold”,
Sci. Sinica Ser. A 27:12 (1984), 1265–1273. MR 87a:58162 Zbl 0561.53046

Received 1 Apr 2012. Accepted 21 May 2013.

BEN ANDREWS: Mathematical Sciences Institute, Australian National University, Building 27, Canberra ACT 0200, Australia

and

Mathematical Sciences Center, Tsinghua University
ben.andrews@anu.edu.au

JULIE CLUTTERBUCK: Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia
Julie.Clutterbuck@anu.edu.au

mathematical sciences publishers msp

http://msp.org/idx/mr/2009b:58074
http://msp.org/idx/zbl/1164.53369
http://dx.doi.org/10.2140/pjm.1999.190.383
http://msp.org/idx/mr/2001b:53039
http://msp.org/idx/zbl/1016.58016
http://msp.org/idx/mr/87a:58162
http://msp.org/idx/zbl/0561.53046
mailto:ben.andrews@anu.edu.au
mailto:Julie.Clutterbuck@anu.edu.au
http://msp.org


ANALYSIS AND PDE
Vol. 6, No. 5, 2013

dx.doi.org/10.2140/apde.2013.6.1025 msp

SOME MINIMIZATION PROBLEMS IN THE CLASS OF CONVEX FUNCTIONS
WITH PRESCRIBED DETERMINANT

NAM Q. LE AND OVIDIU SAVIN

We consider minimizers of linear functionals of the type

L(u)=
ˆ
∂�

u dσ −
ˆ
�

u dx

in the class of convex functions u with prescribed determinant det D2u = f .
We obtain compactness properties for such minimizers and discuss their regularity in two dimensions.

1. Introduction

In this paper, we consider minimizers of certain linear functionals in the class of convex functions with
prescribed determinant. We are motivated by the study of convex minimizers u for convex energies E of
the type

E(u)=
ˆ
�

F(det D2u) dx + L(u), with L a linear functional,

which appear in the work of Donaldson [2002; 2009] in the context of existence of Kähler metrics of
constant scalar curvature for toric varieties. The minimizer u solves a fourth-order elliptic equation with
two nonstandard boundary conditions involving the second- and third-order derivatives of u (see (1-4)
below). In this paper, we consider minimizers of L (or E) in the case when the determinant det D2u
is prescribed. This allows us to understand better the type of boundary conditions that appear in such
problems and to obtain estimates also for unconstrained minimizers of E .

The simplest minimization problem with prescribed determinant which is interesting in its own right is

minimize
ˆ
∂�

u dσ, with u ∈A0,

where � is a bounded convex set, dσ is the surface measure of ∂�, and A0 is the class of nonnegative
solutions to the Monge–Ampère equation det D2u = 1:

A0 :=
{
u : �̄→ [0,∞) | u convex, det D2u = 1

}
.

Question. Is the minimizer u smooth up to the boundary ∂� if � is a smooth, say uniformly convex,
domain?

MSC2010: primary 35J96; secondary 35J66.
Keywords: boundary regularity, convex minimizer, fourth-order elliptic equation, prescribed determinant.
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In the present paper, we answer this question affirmatively in dimensions n = 2. First, we remark that
the minimizer must vanish at x0, the center of mass of ∂�:

x0 =

 
∂�

x dσ.

This follows easily since

u(x)− u(x0)−∇u(x0)(x − x0) ∈A0

and ˆ
∂�

[
u(x)− u(x0)−∇u(x0)(x − x0)

]
dσ =

ˆ
∂�

[u− u(x0)] dσ ≤
ˆ
∂�

u dσ,

with strict inequality if u(x0) > 0. Thus we can reformulate the problem above as minimizing
ˆ
∂�

u dσ −Hn−1(∂�)u(x0)

in the set of all solutions to the Monge–Ampère equation det D2u=1 which are not necessarily nonnegative.
This formulation is more convenient since we can now perturb functions in all directions.

More generally, we consider linear functionals of the type

L(u)=
ˆ
∂�

u dσ −
ˆ
�

u dA,

with dσ , dA nonnegative Radon measures supported on ∂� and � respectively. In this paper, we study
the existence, uniqueness and regularity properties for minimizers of L , that is,

minimize L(u) for all u ∈A (P)

in the class A of subsolutions (solutions) to a Monge–Ampère equation det D2u ≥ f :

A :=
{
u :�→ R

∣∣ u convex, det D2u ≥ f
}
.

Notice that we are minimizing a linear functional L over a convex set A in the cone of convex functions.
Clearly, the minimizer of the problem (P) satisfies det D2u = f in �. Otherwise we can find v ∈A

such that v = u in a neighborhood of ∂�, and v ≥ u in � with strict inequality in some open subset, and
thus L(v) < L(u).

We assume throughout that the following 5 conditions are satisfied:

(1) � is a bounded, uniformly convex, C1,1 domain.

(2) f is bounded away from 0 and∞.

(3) dσ = σ(x) dHn−1
b∂�, with the density σ(x) bounded away from 0 and∞.

(4) dA = A(x) dx in a small neighborhood of ∂�, with the density A(x) bounded from above.

(5) L(u) > 0 for all u convex but not linear.
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The last condition is known as the stability of L (see [Donaldson 2002]), and in two dimensions, is
equivalent to saying that for all linear functions l, we have

L(l)= 0 and L(l+) > 0 if l+ 6≡ 0 in �,

where l+ =max(l, 0) (see Proposition 2.4).
Notice that the stability of L implies that L(l) = 0 for any linear function l, and hence dσ and d A

must have the same mass and the same center of mass.
A minimizer u of the functional L is determined up to linear functions, since both L and A are invariant

under addition with linear functions. We “normalize” u by subtracting its tangent plane at, say, the center
of mass of �. In Section 2, we shall prove in Proposition 2.5 that there exists a unique normalized
minimizer to the problem (P).

We also prove a compactness theorem for minimizers.

Theorem 1.1 (compactness). Let uk be the normalized minimizers of the functionals Lk with data
( fk, dσk, dAk, �) that has uniform bounds in k. Precisely, the inequalities (2-1) and (2-4) below are
satisfied uniformly in k and ρ ≤ fk ≤ ρ

−1. If

fk ⇀ f, dσk ⇀ dσ, dAk ⇀ dA,

then uk → u uniformly on compact sets of �, where u is the normalized minimizer of the functional L
with data ( f, dσ, dA, �).

If u is a minimizer, then the Euler–Lagrange equation reads (see Proposition 3.6)

if ϕ :�→ R solves U i jϕi j = 0, then L(ϕ)= 0,

where U i j are the entries of the cofactor matrix U of the Hessian D2u. Since the linearized Monge–
Ampère equation is also an equation in divergence form, we can always express the �-integral of a
function ϕ in terms of a boundary integral. For this, we consider the solution v to the Dirichlet problem

U i jvi j =−dA in �, v = 0 on ∂�.

Integrating by parts twice and using ∂i (U i j )= ∂ j (U i j )= 0, we can compute
ˆ
�

ϕ dA =−
ˆ
�

ϕU i jvi j =

ˆ
�

ϕi U i jv j −

ˆ
∂�

ϕU i jv jνi

=−

ˆ
�

(U i jϕi j )v +

ˆ
∂�

ϕiU i jvν j −

ˆ
∂�

ϕU i jv jνi =−

ˆ
∂�

ϕU i jviν j . (1-1)

From the Euler–Lagrange equation, we obtain

U i jviν j =−σ on ∂�.

Since v = 0 on ∂�, we have vi = vννi , and hence

U i jviν j =U i jνiν jvν =U ννvν =
(
det D2

x ′u
)
vν,
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with x ′ ⊥ ν denoting the tangential directions along ∂�. In conclusion, if u is a smooth minimizer, then
there exists a function v such that (u, v) solves the system

det D2u = f in �,
U i jvi j =−dA in �,
v = 0 on ∂�,
U ννvν =−σ on ∂�.

(1-2)

This system is interesting since the function v above satisfies two boundary conditions, Dirichlet and
Neumann, while u has no boundary conditions. Heuristically, the boundary values for u can be recovered
from the term U νν

= det D2
x ′u, which appears in the Neumann boundary condition for v.

Our main regularity results for the minimizers u are in two dimensions.

Theorem 1.2. Assume that n = 2, and the conditions (1)–(5) hold. If σ ∈ Cα(∂�), f ∈ Cα(�), and
∂� ∈ C2,α, then the minimizer u ∈ C2,α(�) and the system (1-2) holds.

We obtain Theorem 1.2 by showing that u separates quadratically on ∂� from its tangent planes, and
then we apply the boundary Hölder gradient estimates for v which were obtained in [Le and Savin 2013].

As a consequence of Theorem 1.2, we obtain higher regularity if the data ( f, dσ, dA, �) is more
regular.

Theorem 1.3. Assume that n = 2 and the conditions (1)–(5) hold. If σ ∈ C∞(∂�), f ∈ C∞(�),
A ∈ C∞(�), and ∂� ∈ C∞, then u ∈ C∞(�).

In Section 6, we provide an example of Pogorelov type for a minimizer in dimensions n ≥ 3 that shows
that Theorem 1.3 does not hold in this generality in higher dimensions.

We explain briefly how Theorem 1.3 follows from Theorem 1.2. If u ∈ C2,α(�), then U i j
∈ Cα(�),

and Schauder estimates give v ∈ C2,α(�), and thus vν ∈ C1,α(∂�). From the last equation in (1-2) we
obtain U νν

= det D2
x ′u ∈ C1,α(∂�). This implies u ∈ C3,α(∂�), and from the first equation in (1-2), we

find u ∈ C3,α(�). We can repeat the same argument and obtain that u ∈ Ck,α for any k ≥ 2.
As we mentioned above, our constraint minimization problem is motivated by the minimization of the

Mabuchi energy functional from complex geometry in the case of toric varieties

M(u)=
ˆ
�

− log det D2u+
ˆ
∂�

u dσ −
ˆ
�

u dA.

In this case, dσ and dA are canonical measures on ∂� and �. Minimizers of M satisfy the following
fourth-order equation, called Abreu’s equation [1998]:

ui j
i j :=

n∑
i, j=1

∂2ui j

∂xi∂x j
=−A,

where ui j are the entries of the inverse matrix of D2u. This equation and the functional M have been
studied extensively by Donaldson [2002; 2005; 2008; 2009]; see also [Zhou and Zhu 2008]. In Donaldson’s
papers, the domain � was taken to be a polytope P ⊂ Rn and A was taken to be a positive constant. The
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existence of smooth solutions with suitable boundary conditions has important implications in complex
geometry. It says that we can find Kähler metrics of constant scalar curvature for toric varieties.

More generally, one can consider minimizers of the convex functional

E(u)=
ˆ
�

F(det D2u)+
ˆ
∂�

u dσ −
ˆ
�

u dA, (1-3)

where F(tn) is a convex and decreasing function of t ≥ 0. The Mabuchi energy functional corresponds to
F(t)=− log t , whereas in our minimization problem (P) (with f ≡ 1),

F(t)=
{
∞ if t < 1,
0 if t ≥ 1.

Minimizers of E satisfy a system similar to (1-2):
−F ′(det D2u)= v in �,
U i jvi j =−dA in �,
v = 0 on ∂�,
U ννvν =−σ on ∂�.

(1-4)

A similar system but with different boundary conditions was investigated by Trudinger and Wang
[2008a]. If the function F is strictly decreasing, then we see from the first and third equations above that
det D2u =∞ on ∂�, and therefore we cannot expect minimizers to be smooth up to the boundary (as is
the case with the Mabuchi functional M(u)).

If F is constant for large values of t (as in the case we considered), then det D2u becomes finite on the
boundary and smoothness up to the boundary is expected. More precisely, assume that

F ∈ C1,1((0,∞)), G(t) := F(tn) is convex in t, and G ′(0+)=−∞,

and there exists t0 > 0 such that

F(t)= 0 on [t0,∞), F ′′(t) > 0 on (0, t0].

Theorem 1.4. Assume n = 2 and the conditions (1)–(5) and the above hypotheses on F are satisfied. If
σ ∈ Cα(∂�), A ∈ Cα(�), and ∂� ∈ C2,α , then the normalized minimizer u of the functional E defined in
(1-3) satisfies u ∈ C2,α(�), and the system (1-4) holds in the classical sense.

The paper is organized as follows. In Section 2, we discuss the notion of stability for the functional L
and prove existence, uniqueness and compactness of minimizers of the problem (P). In Section 3, we state
a quantitative version of Theorem 1.2, Proposition 3.1, and we also obtain the Euler–Lagrange equation.
Proposition 3.1 is proved in Sections 4 and 5, first under the assumption that the density A is bounded
from below and then in the general case. In Section 6, we give an example of a singular minimizer in
dimension n ≥ 3. Finally, in Section 7, we prove Theorem 1.4.
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2. Stability inequality and existence of minimizers

Let � be a bounded convex set and define

L(u)=
ˆ
∂�

u dσ −
ˆ
�

u d A

for all convex functions u :�→ R with u ∈ L1(∂�, dσ). We assume that

σ ≥ ρ on ∂� and A(x)≤ ρ−1 in a neighborhood of ∂� (2-1)

for some small ρ > 0 and that L is stable, that is,

L(u) > 0 for all u convex but not linear. (2-2)

Assume for simplicity that 0 is the center of mass of �. We notice that (2-2) implies L(l)= 0 for any
l linear, since l can be approximated by both convex and concave functions. We “normalize” a convex
function by subtracting its tangent plane at 0, and this does not change the value of L . First we prove
some lower semicontinuity properties of L with respect to normalized solutions.

Lemma 2.1 (lower semicontinuity). Assume that (2-1) holds and (uk) is a normalized sequence that
satisfies ˆ

∂�

uk dσ ≤ C, uk→ u uniformly on compact sets of �, (2-3)

for some function u :�→ R. Let ū be the minimal convex extension of u to �, that is,

ū = u in �, ū(x)= lim
t→1−

u(t x) if x ∈ ∂�.

Then ˆ
�

u dA = lim
ˆ
�

uk d A,
ˆ
∂�

ū dσ ≤ lim inf
ˆ
∂�

uk dσ,

and thus
L(ū)≤ lim inf L(uk).

Remark. The upper graph of the function ū is the closure of the upper graph of u in Rn+1.

Proof. Since uk are normalized, they are increasing on each ray out of the origin. For each η > 0 small,
we consider the set �η := {x ∈� : dist(x, ∂�) < η}, and from (2-1) we obtainˆ

�η

uk dA ≤ Cρ−1η

ˆ
∂�

uk dσ ≤ Cη.

Since this inequality holds for all small η→ 0, we easily obtainˆ
�

u dA = lim
ˆ
�

uk d A.

For each z ∈ ∂� and t < 1 we have uk(t z)≤ uk(z). We let k→∞ in the inequalityˆ
∂�

uk(t z) dσ ≤
ˆ
∂�

uk(z) dσ
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and obtain ˆ
∂�

u(t z) dσ ≤ lim inf
ˆ
∂�

uk(z) dσ,

and then we let t→ 1−: ˆ
∂�

ū dσ ≤ lim inf
ˆ
∂�

uk dσ. �

Remark 2.2. From the proof we see that if we are given functionals Lk with measures σk , Ak that satisfy
(2-1) uniformly in k and

σk ⇀σ, Ak ⇀ A,

and if (2-3) holds for a sequence uk , then the statement still holds; that is,

L(ū)≤ lim inf Lk(uk).

By compactness, one can obtain a quantitative version of (2-2) known as stability inequality. This was
done by Donaldson [2002, Proposition 5.2.2]. For completeness, we sketch its proof here.

Proposition 2.3. Assume that (2-1) and (2-2) hold. Then we can find µ > 0 such that

L(u) :=
ˆ
∂�

udσ −
ˆ
�

udA ≥ µ
ˆ
∂�

udσ (2-4)

for all convex functions u normalized at 0.

Proof. Assume the conclusion does not hold; then there is a sequence of normalized convex functions
(uk) with ˆ

∂�

ukdσ = 1, lim L(uk)= 0,

and thus

lim
ˆ
�

ukdA = 1.

Using convexity, we may assume that uk converges uniformly on compact subsets of � to a limiting
function u ≥ 0. Let ū be the minimal convex extension of u to �. Then, from Lemma 2.1, we obtain

L(ū)= 0,
ˆ
�

ū dA = 1,

and thus ū ≥ 0 is not linear and we contradict (2-2). �

Donaldson [2002, Proposition 5.3.1] showed that when n = 2, the stability condition can be checked
easily.

Proposition 2.4. Assume that n = 2, that (2-1) holds, and that for all linear functions l we have

L(l)= 0 and L(l+) > 0 if l+ 6≡ 0 in �, (2-5)

where l+ =max(l, 0). Then L is stable; that is, condition (2-2) is satisfied.
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Proof. For completeness, we sketch the proof. Assume by contradiction that L(u)≤ 0 for some convex
function u which is not linear in �. Let u∗ be the convex envelope generated by the boundary values of
ū — the minimal convex extension of u to �. Notice that u∗ = ū on ∂�. Since L(u∗) ≤ L(ū) ≤ L(u),
we find L(u∗)≤ 0. Notice that u∗ is not linear, since otherwise 0= L(u∗) < L(ū)≤ 0 (we used that ū
is not linear). After subtracting a linear function, we may assume that u∗ is normalized and u∗ is not
identically 0.

We obtain a contradiction by showing that u∗ satisfies the stability inequality. By our hypotheses, there
exists µ > 0 small such that

L(l+)≥ µ
ˆ
∂�

l+ dσ

for any l+. Indeed, by (2-1), this inequality is valid if the “crease” {l = 0} is near ∂�, and for all other
l’s, it follows by compactness from (2-5). We approximate from below u∗ by u∗k , which is defined as the
maximum of the tangent planes of u∗ at some points yi ∈�, i = 1, . . . , k. Since u∗ is a convex envelope
in two dimensions, u∗k is a discrete sum of l+’s, and hence it satisfies the stability inequality. Now we let
k→∞; since u∗k ≤ u∗, using Lemma 2.1, we obtain that u∗ also satisfies the stability inequality. �

Proposition 2.5. Assume that (2-1) and (2-2) hold. Then there exists a unique (up to linear functions)
minimizer u of L subject to the constraint

u ∈A :=
{
v :�→ R

∣∣ v convex, det D2v ≥ f
}
,

where ρ ≤ f ≤ ρ−1 for some ρ > 0. The minimizer satisfies det D2u = f , and if n = 2, it is unique (up to
linear functions).

Proof. Let (uk) be a sequence of normalized solutions such that L(uk) → infA L . By the stability
inequality, we see that

´
∂�

uk dσ are uniformly bounded, and after passing to a subsequence, we may
assume that uk converges uniformly on compact subsets of � to a function u. Then u ∈ A, and from
the lower semicontinuity we see that L(u)= infA L , that is, u is a minimizer. Notice that det D2u = f .
Indeed, if a quadratic polynomial P with det D2 P > f touches u strictly from below at some point
x0 ∈�, in a neighborhood of x0, then we can replace u in this neighborhood by max{P + ε, u} ∈A, and
the energy decreases.

Next we assumew is another minimizer. We use the strict concavity of M 7→ log(det D2 M) in the space
of positive symmetric matrices M , and obtain that for almost every x where u, w are twice differentiable,

log det D2
(

u+w
2

)
(x)≥ 1

2 log det D2u(x)+ 1
2 log det D2w(x)≥ log f (x).

This implies (u+w)/2 ∈A is also a minimizer and D2u = D2w almost everywhere in �. Since f is
bounded above and below, we know that u, w ∈W 2,1

loc (see [De Philippis and Figalli 2013]) in the open
set �′ where both u, w are strictly convex. This gives that u−w is linear on each connected component
of �′. If n = 2, then �′ =�, and hence u−w is linear. �

Remark. Uniqueness is expected to hold in any dimension. For this one needs to show that the set of
strict convexity of a solution to the Monge–Ampère equation is always connected.
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Remark. The arguments above show that the stability condition is also necessary for the existence of a
minimizer. Indeed, if u is a minimizer and L(u0)= 0 for some convex function u0 that is not linear, then
u+ u0 is also a minimizer and we contradict the uniqueness.

Proof of Theorem 1.1. We assume that the data ( fk, dσk, dAk, �) satisfies (2-1), (2-4) uniformly in k
and ρ ≤ fk ≤ ρ

−1. For each k, let wk be the convex solution to det D2wk = fk in � with wk = 0 on ∂�.
Since fk are bounded from above, we find wk ≥−C , and so by the minimality of uk ,

Lk(uk)≤ Lk(wk)≤ C.

It follows from the stability inequality that ˆ
∂�

uk dσk ≤ C,

and we may assume, after passing to a subsequence, that uk→ u uniformly on compact subsets of �.
We need to show that u is a minimizer for L with data ( f, dσ, dA, �). For this it suffices to prove that

for any continuous v :�→ R which solves det D2v = f in �, we have L(u)≤ L(v).
Let vk be the solution to det D2vk = fk with boundary data vk = v on ∂�. Using appropriate barriers,

it is standard to check that fk ⇀ f , fk ≤ ρ
−1 implies vk → v uniformly in �. Then we let k→∞ in

Lk(uk)≤ Lk(vk), use Remark 2.2, and obtain

L(u)≤ lim inf Lk(uk)≤ lim Lk(vk)= L(v),

which finishes the proof. �

3. Preliminaries and the Euler–Lagrange equation

We rewrite our main hypotheses in a quantitative way. We assume that for some small ρ > 0, we have:

(H1) The curvatures of ∂� are bounded from below by ρ and from above by ρ−1.

(H2) ρ ≤ f ≤ ρ−1.

(H3) dσ = σ(x) dHn−1
b∂�, with ρ ≤ σ(x)≤ ρ−1.

(H4) dA = A(x) dx in a small neighborhood

�ρ := {x ∈� | dist(x, ∂�) < ρ}

of ∂� with A(x)≤ ρ−1.

(H5) For any convex function u normalized at the center of mass of �, we have

L(u) :=
ˆ
∂�

u dσ −
ˆ
�

u dA ≥ ρ
ˆ
∂�

u dσ.

We denote by c, C positive constants depending on ρ, and their values may change from line to line
whenever there is no possibility of confusion. We refer to such constants as universal constants.

Our main theorem, Theorem 1.2, follows from the next proposition, which deals with less regular data.
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Proposition 3.1. Assume that n = 2 and that conditions (H1)–(H5) hold.

(i) Then the minimizer u obtained in Proposition 2.5 satisfies u ∈C1,β(�)∩C1,1(∂�) for some universal
β ∈ (0, 1) and u separates quadratically from its tangent planes on ∂�, that is,

C−1
|x − y|2 ≤ u(y)− u(x)−∇u(x)(y− x)≤ C |x − y|2 for all x, y ∈ ∂�,

for some C > 0 universal.

(ii) If in addition σ ∈ Cα(∂�), then u |∂�∈ C2,γ (∂�) with γ :=min{α, β}, and

‖u‖C2,γ (∂�) ≤ C‖σ‖Cγ (∂�).

We remark that in part (ii), we obtain u ∈ C2,γ (∂�) even though f and A are assumed to be only L∞.

Proof that Proposition 3.1 implies Theorem 1.2. Theorem 7.3 of [Savin 2013] states that a solution to
the Monge–Ampère equation which separates quadratically from its tangent planes on the boundary
satisfies the classical Cα-Schauder estimates. Thus, if the assumptions of Proposition 3.1(ii) are satisfied
and f ∈ Cα(�), then u ∈ C2,γ (�) with its C2,γ norm bounded by a constant C depending on ρ, α,
‖σ‖Cα(∂�), ‖∂�‖C2,α , and ‖ f ‖Cα(�). This implies that the system (1-2) holds. If α ≤ β, then we are done.
If α > β, then we use vν ∈ Cα(∂�) in the last equation of the system and obtain u ∈ C2,α(∂�), which
gives u ∈ C2,α(�). �

We prove Proposition 3.1 in the next two sections. Part (ii) follows from part (i) and the boundary
Harnack inequality for the linearized Monge–Ampère equation, which was obtained in [Le and Savin
2013, Theorem 2.4]. This theorem states that if a solution to the Monge–Ampère equation with bounded
right-hand side separates quadratically from its tangent planes on the boundary, then the classical boundary
estimate of Krylov holds for solutions of the associated linearized equation.

In order to simplify the ideas, we prove the proposition in the case when the hypotheses (H1), (H2),
(H4) are replaced by

(H1′) �= B1.

(H2′) f ∈ C∞(�), ρ ≤ f ≤ ρ−1.

(H4′) dA = A(x) dx with ρ ≤ A(x)≤ ρ−1 in � and A ∈ C∞(�).

We use (H1′) only for simplicity of notation. We will see from the proofs that the same arguments
carry to the general case. We use (H2′) so that D2u is continuous in � and the linearized Monge–Ampère
equation is well defined. Our estimates do not depend on the smoothness of f , and thus the general case
follows by approximation from Theorem 1.1. Later, in Section 5, we show that (H4′) can be replaced by
(H4), that is, the bound for A from below is not needed.

First, we establish a result on uniform modulus of convexity for minimizers of L in two dimensions.

Proposition 3.2. Let u be a minimizer of L that satisfies the hypotheses above. Then, for any δ < 1, there
exist c(δ) > 0 depending on ρ, δ such that

x ∈ B1−δ =⇒ Sh(x)b B1 if h ≤ c(δ),
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where Sh(x) denotes the section of u centered at x at height h:

Sh(x)=
{

y ∈ B̄1 : u(y) < u(x)+∇u(x)(y− x)+ h
}
.

Although this result is well known (see [Trudinger and Wang 2008b, Remark 3.2] for example), we
include its proof here for completeness.

Proof. Without loss of generality, assume u is normalized in B1, that is, u ≥ 0, u(0) = 0. From the
stability inequality (2-4), we obtain ˆ

∂B1

u dx ≤ C.

This integral bound and the convexity of u imply

|u|, |Du| ≤ C(δ) in B1−δ/2,

for any δ < 1. We show that our statement follows from these bounds. Assume by contradiction that the
conclusion is not true. Then we can find a sequence of convex functions uk satisfying the bounds above
such that

uk(yk)≤ uk(xk)+∇uk(xk)(yk − xk)+ hk (3-1)

for sequences xk ∈ B1−δ , yk ∈ ∂B1−δ/2 and hk→ 0. Because Duk is uniformly bounded, after passing to
a subsequence if necessary, we may assume

uk→ u∗ uniformly on B1−δ/2, xk→ x∗, yk→ y∗.

Moreover, u∗ satisfies ρ ≤ det D2u∗ ≤ ρ−1, and

u∗(y∗)= u∗(x∗)+∇u∗(x∗)(y∗− x∗),

that is, the graph of u∗ contains a straight line in the interior. However, any subsolution v to det D2v ≥ ρ

in two dimensions does not have this property and we reach a contradiction. �

Since f ∈ Cα, we obtain that u ∈ C2,α(B1), and thus the linearized Monge–Ampère equation is well
defined in B1. The next lemma deals with general linear elliptic equations in B1 which may become
degenerate as we approach ∂B1.

Lemma 3.3. Let Lv := ai j (x)vi j be a linear elliptic operator with continuous coefficients ai j
∈ Cα(B1)

that satisfy the ellipticity condition (ai j (x))i j > 0 in B1. Given a continuous boundary data ϕ, there exists
a unique solution v ∈ C(B1)∩C2(�) to the Dirichlet problem

Lv = 0 in B1, v = ϕ on ∂B1.



1036 NAM Q. LE AND OVIDIU SAVIN

Proof. For each small δ, we consider the standard Dirichlet problem for uniformly elliptic equations
Lvδ = 0 in B1−δ, vδ = ϕ on ∂B1−δ. Since vδ satisfies the comparison principle with linear functions,
it follows that the modulus of continuity of vδ at points on the boundary ∂B1−δ depends only on the
modulus of continuity of ϕ. Thus, from the maximum principle, we see that vδ converges uniformly to a
solution v of the Dirichlet problem above. The uniqueness of v follows from the standard comparison
principle. �

Remark 3.4. The modulus of continuity of v at points on ∂B1 depends only on the modulus of continuity
of ϕ.

Remark 3.5. If Lm is a sequence of operators satisfying the hypotheses of Lemma 3.3 with ai j
m → ai j

uniformly on compact subsets of B1 and Lmvm = 0 in B1, vm = ϕ on ∂B1, then vm→ v uniformly in B1.
Indeed, since vm have a uniform modulus of continuity on ∂B1 and, for all large m, a uniform modulus

of continuity in any ball B1−δ , we see that we can always extract a uniform convergent subsequence in B1.
Now it is straightforward to check that the limiting function v satisfies Lv = 0 in the viscosity sense.

Next, we establish an integral form of the Euler–Lagrange equations for the minimizers of L.

Proposition 3.6. Assume that u is the normalized minimizer of L in the class A. If ϕ ∈ C2(�)∩C0(�) is
a solution to the linearized Monge–Ampère equation

U i jϕi j = 0 in �,

then

L(ϕ) :=
ˆ
∂�

ϕ dσ −
ˆ
�

ϕ dA = 0.

Proof. Consider the solution uε = u+ εϕε to{
det D2uε = f in B1,

uε = u+ εϕ on ∂B1.

Since ϕε satisfies the comparison principle and comparison with planes, its existence follows as in
Lemma 3.3 by solving the Dirichlet problems in B1−δ and then letting δ→ 0.

In B1, ϕε satisfies

0=
1
ε

(
det D2uε − det D2u

)
=

1
ε

ˆ 1

0

d
dt

det D2(u+ tεϕε) dt = ai j
ε ∂i jϕε,

where (ai j
ε ) is the integral from 0 to 1 of the cofactor matrix of D2(u+ tεϕε), that is,

(ai j
ε )i j =

ˆ 1

0
det D2(u+ tεϕε)

(
D2(u+ tεϕε)

)−1 dt.

Because u is strictly convex in two dimensions and uε→ u uniformly on B1, D2uε→ D2u uniformly
on compact sets of B1. Thus, as ε→ 0, ai j

ε →U i j uniformly on compact sets of B1 and by Remark 3.5,
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we find ϕε→ ϕ uniformly in B1. By the minimality of u, we find

0≤ lim
ε→0+

1
ε

(
L(uε)− L(u)

)
=

ˆ
∂B1

ϕ dσ −
ˆ

B1

ϕ dA.

By replacing ϕ with −ϕ, we obtain the opposite inequality. �

4. Proof of Proposition 3.1

In this section, we prove Proposition 3.1 where (H1′), (H2′) and (H4′) are satisfied. Given a convex
function u ∈C∞(B1) (not necessarily a minimizer of L) with ρ ≤ det D2u ≤ ρ−1, we let v be the solution
to the Dirichlet problem

U i jvi j =−A in B1 v = 0 on ∂B1. (4-1)

Notice that 9 := C(1− |x |2) is an upper barrier for v if C is large enough, since

U i j9i j ≤−C tr U ≤−C(det D2U )1/n
=−C(det D2u)(n−1)/n

≤−Cρ(n−1)/n
≤−A,

and hence

0≤ v(x)≤ C(1− |x |2)∼ dist(x, ∂B1). (4-2)

As in Lemma 3.3, the function v is the uniform limit of the corresponding vδ that solve the Dirichlet
problem in B1−δ. Indeed, since vδ also satisfies (4-2), we see that

|vδ1 − vδ2 |L∞ ≤ C max{δ1, δ2}.

Let ϕ be the solution of the homogeneous problem

U i jϕi j = 0 in B1, ϕ = l+ on ∂B1,

where l+ =max{0, l} for some linear function l = b+ν · x of slope |ν| = 1. Denote by S := B1∩{l = 0}
the segment of intersection of the crease of l with B1. Then:

Lemma 4.1.
ˆ

B1

ϕ dA =
ˆ

B1

l+ dA+
ˆ

S
uττv dH1,

where τ is the unit vector in the direction of S, and hence τ ⊥ ν.

Proof. It suffices to show the equality in the case when u ∈ C∞(B1). The general case follows by writing
the identity in B1−δ with vδ (which increases as δ decreases), and then letting δ→ 0.

Let l̃ε be a smooth approximation of l+ with

D2lε ⇀ν⊗ ν d H 1
bS as ε→ 0,
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and let ϕε solve the corresponding Dirichlet problem with boundary l̃ε . Then we integrate by parts and
use ∂iU i j

= 0: ˆ
B1

(ϕε − l̃ε) dA =−
ˆ

B1

(ϕε − l̃ε)U i jvi j dx =
ˆ

B1

∂i (ϕε − l̃ε)U i jv j dx

=−

ˆ
B1

∂i j (ϕε − l̃ε)U i jv dx =
ˆ

B1

U i j∂i j l̃εv dx .

We let ε→ 0 and obtain ˆ
B1

(ϕ− l+) dA =
ˆ

S
U ννv dH1,

which is the desired conclusion, since U νν
= uττ . �

From Lemma 4.1 and Proposition 3.6, we obtain:

Corollary 4.2. If u is a minimizer of L in the class A, thenˆ
S

uττv dH1
=

ˆ
∂B1

l+ dσ −
ˆ

B1

l+ dA.

The hypotheses on σ and A imply that if the segment S has length 2h with h ≤ h0 small, universal then

ch3
≤

ˆ
S

uττv dH1
≤ Ch3,

for some c, C universal.

Lemma 4.3. Let X1 and X2 be the endpoints of the segment S defined as above. Thenˆ
S

uττ (1− |x |2) dH1
= 4h

(
u(X1)+ u(X2)

2
−

 
S

u dH1
)
, (4-3)

where 2h denotes the length of S.

Proof. Again we may assume that u ∈ C2(B1), since the general case follows by approximating B1 by
B1−δ. Assume for simplicity that τ = e1. Then

ˆ
S

uττ (1− |x |2) dH1
=

ˆ h

−h
∂2

t u(t, a)(h2
− t2) dt

for some fixed a, and integrating by parts twice, we obtain (4-3). �

We remark that the right-hand side in (4-3) represents twice the area between the segment with end
points (X1, u(X1)), (X2, u(X2)) and the graph of u above S.

Definition 4.4. We say that u admits a tangent plane at a point z ∈ ∂B1 if there exists a linear function lz

such that
xn+1 = lz(x)

is a supporting hyperplane for the graph of u at (z, u(z)) but for any ε > 0,

xn+1 = lz(x)− εz · (x − z)
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is not a supporting hyperplane. We call lz a tangent plane for u at z.

Remark 4.5. Notice that if det D2u ≤C , then the set of points where u admits a tangent plane is dense in
∂B1. Indeed, using standard barriers, it is not difficult to check that any point on ∂B1 where the boundary
data u|∂B1 admits a quadratic polynomial from below satisfies the definition above. In the definition above,
we assumed u = ū on ∂B1 with ū defined as in the Lemma 2.1; therefore u|∂B1 is lower semicontinuous.

Assume that u admits a tangent plane at z, and define

ũ = u− lz.

Lemma 4.6. There exists η > 0 small, universal such that the section

S̃z := {x ∈ B1 | ũ < η(x − z) · (−z)}

satisfies

S̃z ⊂ B1 \ B1−ρ, |S̃z| ≥ c,

for some small c universal.

Proof. We notice that (4-3) is invariant under additions with linear functions. We apply it to ũ with
X1 = z, X2 = x and use ũ ≥ 0, ũ(z)= 0 together with (4-2) and Corollary 4.2 to obtain

ũ(x)≥ c|x − z|2, x ∈ ∂B1 ∩ Bh0(z).

From the uniform strict convexity of ũ, which was obtained in Proposition 3.2, we find that the inequality
above holds for all x ∈ ∂B1 for possibly a different value of c. Thus, by choosing η sufficiently small, we
obtain

S̃z ⊂ B1, S̃z ∩ B1−ρ =∅,

where the second statement follows also from Proposition 3.2.
Next we show that |S̃z| cannot be arbitrarily small. Otherwise, by the uniform strict convexity of ũ, we

obtain that S̃z ⊂ Bε4(z) for some small ε > 0. Assume for simplicity of notation that z =−e2. Then the
function

w := η(x2+ 1)+
ε

2
x2

1 +
1

2ρε
(x2+ 1)2− 2ε(x2+ 1)

is a lower barrier for ũ in B1 ∩ Bε4(z). Indeed, notice that if ε is sufficiently small, then

w ≤ η(x2+ 1)≤ ũ on ∂(B1 ∩ Bε4(z)), det D2w = ρ−1
≥ det D2ũ.

In conclusion, ũ ≥ w ≥ (η/2)(x2+ 1) and we contradict that xn+1 = 0 is a tangent plane for ũ at z. �

Lemma 4.7. Let u be the normalized minimizer of L. Then ‖u‖C0,1(B1)
≤ C , and u admits tangent planes

at all points of ∂B1. Also, u separates at least quadratically from its tangent planes, that is,

u(x)≥ lz(x)+ c|x − z|2 for all x, z ∈ ∂B1.
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Proof. Let z be a point on ∂B1 where u admits a tangent plane lz . From the previous lemma, we know
that u satisfies the quadratic separation inequality at z and also that ũ = u− lz is bounded from above and
below in S̃z , that is,

|u− lz| ≤ C in S̃z.

We obtain ˆ
S̃z

|lz| dx −C ≤
ˆ

S̃z

u dx ≤
ˆ

B1

u dx ≤ C
ˆ
∂B1

u dσ ≤ C,

and since S̃z ⊂ B1 has measure bounded from below, we find

lz(z), |∇lz| ≤ C.

By Remark 4.5, this holds for almost every z ∈ ∂B1 and, by approximation, we find that any point in ∂B1

admits a tangent plane that satisfies the bounds above. This also shows that u is Lipschitz and the lemma
is proved. �

Lemma 4.8. The function v satisfies the lower bound

v(x)≥ c dist(x, ∂B1),

for some small c universal.

Proof. Let z ∈ ∂B1 and let l be a linear functional with

l(x)= lz(x)− b z · (x − z), for some 0≤ b ≤ η,

where lz denotes a tangent plane at z. We consider all sections

S = {x ∈ B1 | u < l}

which satisfy
inf

S
(u− l)≤−c0,

for some appropriate c0 small, universal. We denote the collection of such sections Mz . From Lemma 4.6,
we see that Mz 6=∅ since S̃z (or b = η) satisfies the property above. Notice also that S ⊂ S̃z ⊂ B1 and
z ∈ ∂S. For any section S ∈Mz , we consider its center of mass zS , and from the property above we see
that zS

∈ B1−c for some small c > 0 universal.
First, we show that the lower bound for v holds on the segment [z, zS

]. Indeed, since

U i j
[c(l − u)]i j =−2c det D2u ≥−2cρ−1

≥−A =U i jvi j

and c(l − u)≤ 0= v on ∂B1, we conclude that

c(l − u)+ ≤ v in B1. (4-4)

Now we use the convexity of u and the fact that the property of S implies (u− l)(zS) <−c, and conclude
that

v(x)≥ c(l − u)(x)≥ c|x − z| ≥ c dist(x, ∂B1) for all x ∈ [z, zS
].
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Now it remains to prove that the collection of segments [z, zS
], z ∈ ∂B1, S ∈ Mz cover a fixed

neighborhood of ∂B1. To this aim, we show that the multivalued map

z ∈ ∂B1 7→ F(z) := {zS
| S ∈Mz}

has the following properties:

(1) the map F is closed in the sense that

zn→ z∗ and zSn
n → y∗⇒ y∗ ∈ F(z∗);

(2) F(z) is a connected set for any z.

The first property follows easily from the following facts: zS varies continuously with the linear map l
that defines S = {u < l}; and if lzn → l∗, then l∗ ≤ lz∗ for some tangent plane lz∗ .

To prove the second property, we notice that if we increase continuously the value of the parameter b
(which defines l) up to η, then all the corresponding sections also belong to Mz . This means that in F(z)
we can continuously connect zS with z S̃z for some section S̃z . On the other hand, the set of all possible
z S̃z is connected, since the set lz of all tangent planes at z is connected in the space of linear functions.

Since F(z)⊂ B1−c, it follows that for all δ < c, the intersection map

z 7→ Gδ(z)= {[z, y] ∩ ∂B1−δ | y ∈ F(z)}

also has properties (1) and (2) above. Now it is easy to check that the image of Gδ covers the whole
∂B1−δ, and hence the collection of segments [z, zS

] covers B1 \ B1−c and the lemma is proved. �

Now we are ready to prove the first part of Proposition 3.1.

Proof of Proposition 3.1(i). In Lemma 4.7, we obtained the quadratic separation from below for ũ = u− lz .
Next we show that ũ separates at most quadratically on ∂B1 in a neighborhood of z.

Assume for simplicity of notation that z =−e2. We apply (4-3) to ũ with X1 = (−h, a), X2 = (h, a),
and then use Corollary 4.2 and Lemma 4.8 to obtain

ũ(X1)+ ũ(X2)

2
−

 
S

ũ ≤ Ch2.

On the other hand, for small h, the segment [z, z S̃z ] intersects [X1, X2] at a point y = (t, a) with
|t | ≤ Ch2

≤ h/2. Moreover, since y ∈ S̃z , we have ũ(y)≤ η(a+ 1)≤ Ch2. On the segment [X1, X2], ũ
satisfies the conditions of Lemma 4.9 which we prove below, and hence

ũ(X1), ũ(X2)≤ Ch2.

In conclusion, u separates quadratically on ∂B1 from its tangent planes and therefore satisfies the
hypotheses of the Localization Theorem in [Savin 2013; Le and Savin 2013]. From [Le and Savin 2013,
Theorem 2.4 and Proposition 2.6], we conclude that

‖u‖C1,β (B1)
, ‖v‖Cβ (B1)

, ‖vν‖Cβ (∂B1) ≤ C, (4-5)

for some β < 1, C universal. �
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Lemma 4.9. Let f : [−h, h] → R+ be a nonnegative convex function such that

f (−h)+ f (h)
2

−
1

2h

ˆ h

−h
f (x) dx ≤ Mh2, f (t)≤ Mh2,

for some t ∈ [−h/2, h/2]. Then
f (±h)≤ Ch2

for some C depending on M.

Proof. The inequality above states that the area between the line segment with end points (−h, f (−h)),
(h, f (h)) and the graph of f is bounded by 2Mh3. By convexity, this area is greater than the area of
the triangle with vertices (−h, f (−h)), (t, f (t)), (h, f (h)). Now the inequality of the heights f (±h)
follows from elementary euclidean geometry. �

Finally, we are ready to prove the second part of Proposition 3.1.

Proof of Proposition 3.1 (ii). Let ϕ be such that

U i jϕi j = 0 in B1, ϕ ∈ C1,1(∂B1)∩C0(B1).

Since u satisfies the quadratic separation assumption and f is smooth up to the boundary, we obtain from
[Le and Savin 2013, Theorem 2.5 and Proposition 2.6]

‖v‖C1,β (B1)
, ‖ϕ‖C1,β (B1)

≤ K , and |U i j
| ≤ K | log δ|2 on B1−δ,

for some constant K depending on ρ, ‖ f ‖Cβ (B1)
, and ‖ϕ‖C1,1(∂B1).

We will use the following identity in two dimensions:

U i jv jνi =U τνvτ +U ννvν .

Integrating by parts twice, we obtain, as in (1-1),ˆ
B1−δ

ϕ dA =−
ˆ

B1−δ

ϕU i jvi j dx =
ˆ
∂B1−δ

ϕiU i jvν j −

ˆ
∂B1−δ

ϕU i jv jνi =−

ˆ
∂B1−δ

ϕU ννvν + o(1),

where in the last equality we used the estimates

|v| ≤ Cδ, |vτ | ≤ K δβ, |ϕ|, |∇ϕ| ≤ K , U i j
≤ K | log δ|2 on ∂B1−δ.

Since on ∂Br
U νν
= uττ = r−2uθθ + r−1uν,

u ∈ C1,β(B1) and u(reiθ ) converges uniformly as r→ 1, and uθθ is uniformly bounded from below, we
obtain

U νν dH1
b∂Br⇀ (uθθ + uν) dH1

b∂B1 as r→ 1.

We let δ→ 0 in the equality above and findˆ
B1

ϕ dA =−
ˆ
∂B1

ϕ (uθθ + uν)vν dH1.
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Now the Euler–Lagrange equation, Proposition 3.6, gives

(uθθ + uν)vν =−σ on ∂B1.

We use that ‖vν‖Cβ (∂B1) ≤ C and, from Lemma 4.8, vν ≤−c on ∂B1 and obtain

‖u‖C2,γ (∂B1) ≤ C‖σ‖Cγ (∂B1). �

5. The general case for A

In this section, we remove the assumptions that A is bounded from below by ρ in B1 and we also assume
that A is bounded from above only in a neighborhood of the boundary. Precisely, we assume that A ≥ 0
in B1 and A ≤ ρ−1 in B1\B1−ρ . We may also assume A is smooth in B1, since the general case follows
by approximation. Notice that

´
B1

A dx is bounded from above and below since it equals
´
∂B1

dσ .
Let v be the solution of the Dirichlet problem

U i jvi j =−A, v = 0 on ∂B1. (5-1)

In Section 4, we used that A is bounded from above when we obtained v ≤ C(1− |x |2), and we used
that A is bounded from below in Lemma 4.8 (see (4-4)). We need to show that these bounds for v also
hold in a neighborhood of ∂B1 under the weaker hypotheses above. First, we show:

Lemma 5.1. v ≤ C on ∂B1−ρ/2 and v ≥ c(δ) on B1−δ,

with C universal and c(δ) > 0 depending also on δ.

Proof. As before, we may assume that u ∈ C∞(B1), since the general case follows by approximating B1

by B1−ε .
We multiply the equation in (5-1) by (1− |x |2), integrate by parts twice, and obtainˆ

B1

2v tr U dx =
ˆ

B1

A(x)(1− |x |2) dx ≤ C,

and since tr U ≥ c, we obtain ˆ
B1

v dx ≤ C.

We know this:

(1) v ≥ 0 solves a linearized Monge–Ampère equation with bounded right-hand side in B1 \ B1−ρ .

(2) u has a uniform modulus of convexity on compact sets of B1.

Now we use the Harnack inequality of Caffarelli and Gutierrez [1997] and conclude that

supV v ≤ C(infV v+ 1), V := B1−ρ/4 \ B1−3ρ/4,

and the integral inequality above gives supV v ≤ C .
Next we prove the lower bound. We multiply the equation in (5-1) by ϕ ∈ C∞0 (B1) with

ϕ = 0 if |x | ≥ 1− δ/2, ϕ = 1 in B1−δ, ‖D2ϕ‖ ≤ C/δ2,
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integrate by parts twice, and obtain

C(δ)
ˆ

U
v tr U ≥−

ˆ
B1

vU i jϕi j =

ˆ
B1

Aϕ ≥ c, U := B1−δ/2 \ B1−δ,

where the last inequality holds provided that δ is sufficiently small. Since u is normalized, we obtain (see
Proposition 3.2) |∇u| ≤ C(δ) in U, and thusˆ

U
tr U =

ˆ
U
4u =

ˆ
∂U

uν ≤ C(δ).

The last two inequalities imply supU v ≥ c(δ), and hence there exists x0 ∈U such that v(x0)≥ c(δ). We
use (1), (2) above and the Harnack inequality and find v ≥ c(δ) in Bδ̄(x0) for some small δ̄ depending
on ρ and δ. Since v is a supersolution, that is, U i jvi j ≤ 0, we can apply the weak Harnack inequality
of Caffarelli and Gutierrez [1997, Theorem 4]. From property (2) above, we see that we can extend the
lower bound of v from Bδ̄(x0) all the way to U, and by the maximum principle, this bound holds also in
B1−δ/2. �

The upper bound in Lemma 5.1 gives as in (4-2) the upper bound for v in a neighborhood of ∂B1, that
is,

v(x)≤ C(1− |x |2) on B1 \ B1−ρ/2.

This implies, as in Section 4, that Lemma 4.7 holds, that is, u separates at least quadratically from its
tangent planes on ∂B1. It remains to show that also Lemma 4.8 holds. Since A is not strictly positive,
c(l−u) is no longer a subsolution for the equation (5-1) and we cannot bound v below as we did in (4-4).
In the next lemma, we construct another barrier which allows us to bound v from below on the segment
[z, zS

].

Lemma 5.2. Let ũ : B1→ R be a convex function with ũ ∈ C(B1)∩C2(B1), and

ρ ≤ det D2ũ ≤ ρ−1.

Assume that the section S := {ũ < 0} is included in B1 and is tangent to ∂B1 at a point z ∈ ∂B1, and also
that

inf
S

ũ ≤−µ,

for some µ > 0. If
Ũ i jvi j ≤ 0 in B1, v ≥ 0 on ∂B1,

then
v(x)≥ c(µ, ρ)|x − z| inf

S′
v for all x ∈ [z, zS

], S′ :=
{
ũ ≤ 1

2 inf
S

ũ
}
,

where zS denotes the center of mass of S and c(µ, ρ) is a positive constant depending on µ and ρ.

The functions ũ = u− l and v in the proof of Lemma 4.8 satisfy the lemma above, if η in Lemma 4.6
is small, universal. Using also the lower bound on v from Lemma 5.1, we find

v ≥ c|x − z| on [z, zS
],
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for some c universal, and the rest of the proof of Lemma 4.8 follows as before. This shows that
Proposition 3.1 holds also with our assumptions on the measure A.

Proof of Lemma 5.2. We construct a lower barrier for v of the type

w := ekw̄
− 1, w̄ := −ũ+

ε

2
(|x |2− 1),

for appropriate constants k large and ε� µ small. Notice that w ≤ 0 on ∂B1, since w̄ ≤ 0 on ∂B1. Also

w̄ ≥ c|x − z| on [z, zS
],

since, by convexity, −ũ ≥ c|x − z| on [z, zS
] for some c depending on µ and ρ. It suffices to check that

Ũ i jwi j ≥ 0 on B1 \ S′,

since then we obtain v ≥ (infS′ v)cw in B1 \ S′, which easily implies the conclusion. In B1 \ S′ we have
|∇w̄| ≥ c(µ) > 0, provided that ε is sufficiently small, and thus

Ũ i j w̄i w̄ j = (det D2ũ)(∇w̄)T (D2ũ)−1
∇w̄ ≥ c3−1,

where 3 is the largest eigenvalue of D2ũ. Then we use that tr Ũ ≥ cλ−1
≥ c31/(n−1), where λ is the

smallest eigenvalue of D2ũ, and obtain

Ũ i jwi j = kekw̄(Ũ i j w̄i j + kŨ i j w̄i w̄ j
)
≥ kekw̄(

−nρ−1
+ ε tr Ũ + kc3−1)

≥ kekw̄(
−nρ−1

+ c(ε31/(n−1)
+ k3−1)

)
≥ 0,

if k is chosen large depending on ε, ρ, µ and n. �

6. Singular minimizers in dimension n ≥ 3.

Let
u(x) := |x ′|2−2/nh(xn)

be the singular solution to det D2u = 1 constructed by Pogorelov, with h a smooth even function, defined
in a neighborhood of 0 and h(0)= 1, satisfying an ODE((

1−
2
n

)
hh′′−

(
2−

2
n

)
h′2
)

hn−2
= c.

We let
v(x) := |x ′|2−2/nq(xn)

be obtained as the infinitesimal difference between u and a rescaling of u,

v(x ′, xn) := lim
ε→0

1
ε

[
u(x ′, xn)− (1+ ε)−γ u(x ′, (1+ ε)xn)

]
,

for some small γ < 2
n

. Notice that
q(t)= γ h(t)− h′(t)t
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and q > 0 in a small interval (−a, a) and q vanishes at its end points. Also,

U i jvi j = nγ − 2< 0 in � := Rn−1
×[−a, a],

v = 0, U ννvν =U nnvn =−σ0 on ∂�,

for some constant σ0 > 0. The last equality follows since U nn is homogeneous of degree −(n− 1)(2/n)
in |x ′| and vn is homogeneous of degree 2− 2/n in |x ′|.

Notice that u, v are solutions of the system (1-2) in the infinite cylinder � for uniform measures A
and σ . In order to obtain a solution in a finite domain �0, we modify v outside a neighborhood of the
line |x ′| = 0 by subtracting a smooth convex function ψ which vanishes in B1 and increases rapidly
outside B1. Precisely, we let

ṽ := v−ψ, �0 := {ṽ > 0},

and then we notice that u, ṽ, solve the system (1-2) in the smooth bounded domain �0 for smooth
measures A and σ .

Since
|U i j
| ≤ Cr (2/n)−2 if |x ′| ≥ r,

we integrate by parts in the domain �0 \ {|x ′| ≤ ε} and then let ε→ 0 and findˆ
�0

ϕ dA =−
ˆ
�0

U i jϕi jv+

ˆ
∂�0

ϕ dσ, for all ϕ ∈ C2(�0),

or
L(ϕ)=

ˆ
�0

U i jϕi jv.

This implies that L is stable, that is, L(ϕ)> 0 for any convex ϕ which is not linear. Also, if w ∈C2(�0)

satisfies det D2w = 1, then U i j (w− u)i j ≥ 0, and we obtain

L(w)− L(u)=
ˆ
�0

U i j (w− u)i jv ≥ 0,

that is, u is a minimizer of L .
We remark that the domain �0 has flat boundary in a neighborhood of the line {|x ′| = 0}, and therefore

is not uniformly convex. However, this is not essential in our example. One can construct, for example, a
function v̄ in a uniformly convex domain by modifying v as

v̄ := |x ′|2−2/nq(xn(1+ δ|x ′|2)),

for some small δ > 0.

7. Proof of Theorem 1.4

We assume for simplicity that � = B1. The existence of a minimizer u for the convex functional E
follows as in Section 2. First, we show that

t1 ≤ det D2u ≤ t0 (7-1)
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for some t1 depending on F and ρ. The upper bound follows easily. If det D2u > t0 in a set of positive
measure, then the function w defined as

det D2w =min{t0, det D2u}, w = u on ∂B1,

satisfies E(w) < E(u), since F(det D2w)= F(det D2u) and L(w) < L(u).
In order to obtain the lower bound in (7-1), we need the following lemma.

Lemma 7.1. Let w be a convex function in B1 with

(det D2w)1/n
= g ∈ Ln(B1).

Let w+ϕ be another convex function in B1 with the same boundary values as w such that

(det D2(w+ϕ))1/n
= g− h, for some h ≥ 0.

Then ˆ
B1

ϕgn−1
≤ C(n)

ˆ
B1

hgn−1.

Proof. By approximation, we may assume that w, ϕ are smooth in B1. Using the concavity of the map
M 7→ (det M)1/n in the space of symmetric matrices M ≥ 0, we obtain

(det D2(w+ϕ))1/n
≤ (det D2w)1/n

+
1
n
(det D2w)(1/n)−1W i jϕi j ,

and hence
−nhgn−1

≤W i jϕi j .

We multiply both sides by 8 := 1
2(1−|x |

2) and integrate. Since both ϕ and 8 vanish on ∂B1 we integrate
by parts twice and obtain

−C(n)
ˆ

B1

hgn−1
≤

ˆ
B1

W i j8i jϕ =−

ˆ
B1

(tr W )ϕ.

Using

tr W ≥ c(n)(det W )1/n
= c(n)(det D2w)(n−1)/n

= c(n)gn−1,

we obtain the desired conclusion. �

Now we prove the lower bound in (7-1). Define w such that w = u on ∂B1 and

det D2w =max{t1, det D2u}

for some small t1. Since G(t)= F(tn) is convex and det D2w ≥ t1, we have

G
(
(det D2w)1/n)

≤ G
(
(det D2u)1/n)

+G ′(t1/n
1 )

(
(det D2w)1/n

− (det D2u)1/n).
We write

u−w = ϕ, (det D2w)1/n
= g, (det D2u)1/n

= g− h,
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and we rewrite the inequality above as

F(det D2w)≤ F(det D2u)+G ′(t1/n
1 )h.

From Lemma 7.1, we obtain ˆ
B1

h gn−1
≥ c(n)

ˆ
B1

ϕ gn−1,

and since h is supported on the set where the value of g = t1/n
1 is minimal, we find that

ˆ
B1

h ≥ c(n)
ˆ

B1

ϕ.

This gives ˆ
B1

F(det D2w)− F(det D2u)≤ c(n)G ′(t1/n
1 )

ˆ
B1

ϕ,

and thus, using the minimality of u and G ′(0+)=−∞,

0≤ E(w)− E(u)≤
ˆ

B1

ϕdA+ c(n)G ′(t1/n
1 )

ˆ
B1

ϕ ≤ 0,

if t1 is small enough. In conclusion, ϕ = 0 and u = w and (7-1) is proved.
We write

det D2u = f, t1 ≤ f ≤ t0.

Any minimizer for L in the class of functions whose determinant equals f is a minimizer for E as well.
In order to apply Theorem 1.2, we need f to be Holder continuous. However, we can approximate f
by smooth functions fn and find smooth minimizers un for approximate linear functionals Ln with the
constraint

det D2un = fn.

By Proposition 3.1 (see (4-5)),

‖un‖C1,β (B1)
, ‖vn‖Cβ (B1)

≤ C,

and hence we may assume (see Theorem 1.1) that, after passing to a subsequence, un→ u and vn→ v

uniformly for some function v ∈ Cβ(B1). We show that

v =−F ′( f ). (7-2)

Then by the hypotheses on F , we obtain det D2u = f ∈Cβ(B1), and from Theorem 1.2, we easily obtain

‖u‖C2,α(B1)
, ‖v‖C2,α(B1)

≤ C

for some C depending on ρ, α, ‖σ‖Cα(B1)
, ‖A‖Cα(B1)

, and F .
In order to prove (7-2), we need a uniform integral bound (in two dimensions) between solutions to

the Monge–Ampère equation and solutions of the corresponding linearized equation.
The proof of the following lemma will be given at the end of the section.
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Lemma 7.2. Assume n = 2 and let w be a smooth convex function in B1 with

λ≤ det D2w := g ≤3

for some positive constants λ, 3. Let w+ εϕ be a convex function with

det D2(w+ εϕ)= g+ εh, ϕ = 0 on ∂B1

for some smooth function h with ‖h‖L∞ ≤ 1. If ε ≤ ε0, thenˆ
B1

|h−W i jϕi j | ≤ Cε

for some C , ε0 depending only on λ, 3.

Now let h be a smooth function, ‖h‖L∞ ≤ 1, and we solve the equations

det D2(un + εϕn)= fn + εh, ϕn = 0 on ∂B1,

with un , fn as above. From (1-1) we see that

Ln(ϕn)=

ˆ
B1

(U i j
n ∂i jϕn)vn,

and hence, by the lemma above, ∣∣∣∣Ln(ϕn)−

ˆ
B1

hvn

∣∣∣∣≤ Cε

with C universal. We let n→∞ and obtain∣∣∣∣L(ϕ)− ˆ
B1

hv
∣∣∣∣≤ Cε,

with ϕ the solution of
det D2(u+ εϕ)= f + εh, ϕ = 0 on ∂B1.

The inequality E(u+ εϕ)≥ E(u) impliesˆ
B1

(
F( f + εh)− F( f )+ εhv

)
≥−Cε2,

and hence, as ε→ 0, ˆ
B1

(F ′( f )+ v)h ≥ 0 for any smooth h,

which gives (7-2). �

Proof of Lemma 7.2. Using the concavity of (det D2w)1/n , we obtain

(g+ εh)1/n
≤ g1/n

+
ε

n
g1/n−1W i jϕi j ,

and thus, for ε ≤ ε0,
h−Cε ≤W i jϕi j . (7-3)

Since n = 2, we have

det D2(w+ εϕ)= det D2w+ εW i jϕi j + ε
2 det D2ϕ,
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and hence
h−W i jϕi j = ε det D2ϕ.

From the pointwise inequality (7-3), we see that in order to prove the lemma, it suffices to show thatˆ
B1

det D2ϕ ≥−C.

Let 8= (8i j ) be the cofactor matrix of D2φ. Integrating by parts and using ϕ = 0 on ∂B1, we findˆ
B1

2 det D2ϕ =

ˆ
B1

8i jϕi j =

ˆ
∂B1

8i jϕiν j =

ˆ
∂B1

8ννϕν =

ˆ
∂B1

ϕ2
ν ≥ 0,

where we used 8νν = ϕττ = ϕν . �

References

[Abreu 1998] M. Abreu, “Kähler geometry of toric varieties and extremal metrics”, Internat. J. Math. 9:6 (1998), 641–651.
MR 99j:58047 Zbl 0932.53043

[Caffarelli and Gutiérrez 1997] L. A. Caffarelli and C. E. Gutiérrez, “Properties of the solutions of the linearized Monge–Ampère
equation”, Amer. J. Math. 119:2 (1997), 423–465. MR 98e:35060 Zbl 0878.35039

[De Philippis and Figalli 2013] G. De Philippis and A. Figalli, “W 2,1 regularity for solutions of the Monge–Ampère equation”,
Invent. Math. 192:1 (2013), 55–69. MR 3032325 Zbl 06160861

[Donaldson 2002] S. K. Donaldson, “Scalar curvature and stability of toric varieties”, J. Differential Geom. 62:2 (2002), 289–349.
MR 2005c:32028 Zbl 1074.53059

[Donaldson 2005] S. K. Donaldson, “Interior estimates for solutions of Abreu’s equation”, Collect. Math. 56:2 (2005), 103–142.
MR 2006d:35035 Zbl 1085.53063

[Donaldson 2008] S. K. Donaldson, “Extremal metrics on toric surfaces: a continuity method”, J. Differential Geom. 79:3
(2008), 389–432. MR 2009j:58018 Zbl 1151.53030

[Donaldson 2009] S. K. Donaldson, “Constant scalar curvature metrics on toric surfaces”, Geom. Funct. Anal. 19:1 (2009),
83–136. MR 2010j:32041 Zbl 1177.53067

[Le and Savin 2013] N. Q. Le and O. Savin, “Boundary regularity for solutions to the linearized Monge–Ampère equations”,
Arch. Ration. Mech. Anal. 210:3 (2013), 813–836. MR 3116005 Zbl 06168117

[Savin 2013] O. Savin, “Pointwise C2,α estimates at the boundary for the Monge–Ampère equation”, J. Amer. Math. Soc. 26:1
(2013), 63–99. MR 2983006 Zbl 06168117

[Trudinger and Wang 2008a] N. S. Trudinger and X.-J. Wang, “Boundary regularity for the Monge–Ampère and affine maximal
surface equations”, Ann. of Math. (2) 167:3 (2008), 993–1028. MR 2010h:35168 Zbl 1176.35046

[Trudinger and Wang 2008b] N. S. Trudinger and X.-J. Wang, “The Monge–Ampère equation and its geometric applications”,
pp. 467–524 in Handbook of geometric analysis, I, edited by L. Ji et al., Adv. Lect. Math. (ALM) 7, International Press,
Somverville, MA, 2008. MR 2010g:53065 Zbl 1156.35033

[Zhou and Zhu 2008] B. Zhou and X. Zhu, “Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds”, Calc.
Var. Partial Differential Equations 32:2 (2008), 191–217. MR 2009a:53081 Zbl 1141.53061

Received 5 Apr 2012. Revised 12 Dec 2012. Accepted 28 Feb 2013.

NAM Q. LE: namle@math.columbia.edu
Department of Mathematics, Columbia University, New York, NY 10027, United States

OVIDIU SAVIN: savin@math.columbia.edu
Department of Mathematics, Columbia University, New York, NY 10027, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1142/S0129167X98000282
http://msp.org/idx/mr/99j:58047
http://msp.org/idx/zbl/0932.53043
http://dx.doi.org/10.1353/ajm.1997.0010
http://dx.doi.org/10.1353/ajm.1997.0010
http://msp.org/idx/mr/98e:35060
http://msp.org/idx/zbl/0878.35039
http://dx.doi.org/10.1007/s00222-012-0405-4
http://msp.org/idx/mr/3032325
http://msp.org/idx/zbl/06160861
http://projecteuclid.org/euclid.jdg/1090950195
http://msp.org/idx/mr/2005c:32028
http://msp.org/idx/zbl/1074.53059
http://eudml.org/doc/41824
http://msp.org/idx/mr/2006d:35035
http://msp.org/idx/zbl/1085.53063
http://www.collectanea.ub.edu/index.php/Collectanea/article/view/4073/4989
http://msp.org/idx/mr/2009j:58018
http://msp.org/idx/zbl/1151.53030
http://dx.doi.org/10.1007/s00039-009-0714-y
http://msp.org/idx/mr/2010j:32041
http://msp.org/idx/zbl/1177.53067
http://dx.doi.org/10.1007/s00205-013-0653-5
http://msp.org/idx/mr/3116005
http://msp.org/idx/zbl/06168117
http://dx.doi.org/10.1090/S0894-0347-2012-00747-4
http://msp.org/idx/mr/2983006
http://msp.org/idx/zbl/06168117
http://dx.doi.org/10.4007/annals.2008.167.993
http://dx.doi.org/10.4007/annals.2008.167.993
http://msp.org/idx/mr/2010h:35168
http://msp.org/idx/zbl/1176.35046
http://maths-old.anu.edu.au/~wang/publications/MA.pdf
http://msp.org/idx/mr/2010g:53065
http://msp.org/idx/zbl/1156.35033
http://dx.doi.org/10.1007/s00526-007-0136-3
http://msp.org/idx/mr/2009a:53081
http://msp.org/idx/zbl/1141.53061
mailto:namle@math.columbia.edu
mailto:savin@math.columbia.edu
http://msp.org


ANALYSIS AND PDE
Vol. 6, No. 5, 2013

dx.doi.org/10.2140/apde.2013.6.1051 msp

ON THE SPECTRUM OF DEFORMATIONS OF
COMPACT DOUBLE-SIDED FLAT HYPERSURFACES

DENIS BORISOV AND PEDRO FREITAS

We study the asymptotic behavior of the eigenvalues of the Laplace–Beltrami operator on a compact
hypersurface in RnC1 as it is flattened into a singular double-sided flat hypersurface. We show that
the limit spectral problem corresponds to the Dirichlet and Neumann problems on one side of this flat
(Euclidean) limit, and derive an explicit three-term asymptotic expansion for the eigenvalues where the
remaining two terms are of orders "2 log " and "2.

1. Introduction

In recent years there have been several papers studying the effect that flattening a domain has on the
eigenvalues of the Laplace operator [Borisov and Cardone 2011; Borisov and Freitas 2009; 2010;
Friedlander and Solomyak 2009]; see also [Nazarov 2001; Panasenko 2005] and the references therein
for similar problems with boundary conditions other than Dirichlet. In these papers the main objective
has been the derivation of the asymptotics of these eigenvalues in terms of a scalar parameter measuring
how thin the domain becomes in one direction, as this parameter approaches zero. As far as we are aware,
almost if not all such existing examples in the literature are concerned with domains in Euclidean space
where the limiting problem degenerates to a domain of zero measure and therefore eigenvalues approach
infinity.

A slightly different set of problems which has been considered consists of domains which are perturba-
tions of singular sets such as thin tubular neighborhoods of graphs, i.e., domains which locally are like
thin tubes — see [Exner and Post 2005; 2009], for instance, and also [Grieser 2008] for a review. As in
the papers cited above, again the limiting domains have zero measure and the spectrum behaves in quite a
different way from the model considered here.

In this paper we study a situation which, although different from that described in the first paragraph,
has in common with it the process by which the limiting domain is approached. More precisely, consider
the case of a given domain � in RnC1 satisfying certain restrictions which for the purpose here may be
stated roughly as being bounded from above and below by the graphs of two functions — see Section 2
for a precise formulation. The domain � is then flattened towards a domain ! in Rn via a (continuous)
one-parameter family of domains �". These domains are obtained as the functions mentioned above are

Both authors were partially supported by FCT’s projects PTDC/MAT/101007/2008 and PEst-OE/MAT/UI0208/2011. Borisov
was partially supported by RFBR, by the Federal Task Program, and by a fellowship of the Dynasty Foundation for young
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multiplied by the parameter ". The problem that shall concern us here is the study of the evolution of the
eigenvalues of the Laplace–Beltrami operator on the one-parameter family of compact hypersurfaces S"
which are the boundaries of the domains �" described above, as " approaches zero. One of the differences
in this instance is that while the domain �0 has zero .nC 1/-measure as stated above, S0 retains positive
n-measure, developing instead a singularity on the boundary of the domain ! (when considered as a
domain in Rn). We thus expect these eigenvalues to remain finite as the parameter " approaches zero, and
to converge to a limiting spectral problem on the double-sided flat hypersurface. This is indeed the case,
and the relevant spectral problems turn out to be the Dirichlet and Neumann problems on the domain !,
with the two next asymptotic terms after that being of orders "2 log " and "2. These results have been
announced in [Borisov and Freitas 2012].

In order to understand the origin of the "2 log " term in the expansion, it turns out that it is sufficient to
consider the case where n equals one, that is when the boundary is basically S1. Because of this, it is
not necessary to take into consideration the geometric intricacies of the problem which appear in higher
dimensions and it is possible to obtain the full description of eigenvalues in terms of elliptic integrals.

More precisely, for an ellipse of radii 1 and " we have that the eigenvalues are given by

�k."/D
k2�2

4E2.1� "2/
for k 2 Z; where E.m/D

Z �=2

0

q
1�m sin2.�/ d�

is the complete elliptic integral of the second type yielding one quarter of the perimeter of the ellipse
for mD 1� "2.

Combining the above with the asymptotic expansion for E yields

�k."/D
k2�2

4
C

k2�2

4
"2 log "C

k2�2

2

�
1

4
� log 2

�
"2
CO."2C�/; � 2 .0; 1/:

In some sense, the purpose of the analysis that we shall carry out in what follows is to show that the
above result may actually be extended to higher dimensions. It should be noted here that this expansion
depends on the relation between the different variables at the endpoints of the segment, which in this
case is of the form x2

1
C "2x2

2
D 1. Clearly different relations between the leading powers will lead to

different expansions.
More generally, the issue is that the points of the boundary of� where there is a tangent in the direction

along which the domain is being flattened will play a special role. Throughout the paper we assume this
set of points to be contained in a hyperplane orthogonal to the scaling direction, and that this tangency is
simple. In the vicinity of these points we take the cross-section of our surface as indicated in Figure 1
which, with the assumptions made, will be similar to the one-dimensional ellipse described above. Our
results then state that in the higher-dimensional case the asymptotics for the eigenvalues still behave in a
similar fashion and thus the logarithmic terms appearing above persist in this more general setting.

Apart from the intrinsic interest of the behavior of the spectrum close to double-sided flat domains, we
point out that such manifolds have appeared in the literature in connection with eigenvalues as maximizers
of the invariant eigenvalues among all surfaces isometric to surfaces of revolution in R3 [Abreu and
Freitas 2002] and for hypersurfaces of revolution diffeomorphic to a sphere and isometrically embedded
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∂Ω

Figure 1. Surface S" with a cross-section at the edge.

in RnC1 [Colbois et al. 2008]. In fact, it is shown in those papers that these optimal singular double flat
disks maximize the whole invariant spectrum and not just a specific eigenvalue. Another source of interest
for such asymptotic expansions lies with the fact that, in some cases, they turn out to be fairly good
approximations for low eigenvalues also for values of the parameter " away from zero — see [Borisov
and Freitas 2009; 2010; Freitas 2007].

We remark in passing that another problem for which it is conjectured that the optimal shape is given
by a double-sided flat disk is Alexandrov’s conjecture relating the area and diameter of surfaces of
nonnegative curvature.

The structure of the paper is as follows. In the next section we give a precise formulation of the
problem under consideration and state our main results, namely, the nature of the limiting problem and the
relation of the limit and approximating operators. This includes the form of the asymptotic expansion and
the expressions for the first three coefficients and an application to the case of the surface of an ellipsoid.
Section 3 is then devoted to several preliminaries and auxiliary material used in Sections 4 and 5, where
the proofs of the main results are presented.

2. Problem formulation and main results

Let x0D .x1; : : : ;xn/, x D .x0;xnC1/ be Cartesian coordinates in Rn and RnC1, respectively, n> 2, and
let ! be a bounded domain in Rn with infinitely smooth boundary. Let also h˙Dh˙.x

0/2C1.!/\C.!/

denote two arbitrary functions and define the manifold

S" WD fx W x
0
2 !;xnC1 D "hC.x

0/g[ fx W x0 2 !;xnC1 D�"h�.x
0/g; (2-1)

where " is a small positive parameter. We assume S" to be infinitely differentiable and to have no
self-intersections. To ensure this, we make the following assumptions on h˙, the first of which ensures
the absence of self-intersections:

(A1) The following relations hold true:

hC.x
0/C h�.x

0/ > 0; x0 2 !; hC.x
0/D h�.x

0/D 0; x0 2 @!:
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To state the second assumption we need to introduce some additional notation. Let � D �.P /, P 2 @!,
be the inward normal to @!, and denote by � the distance to a point measured in the direction of �.
Consider the equations

t D hC.P C ��.P //; t > 0; t D�h�.P C ��.P //; t < 0: (2-2)

Our second assumption concerns the solvability of these equations with respect to � and implies the
smoothness of S" in a neighborhood of @!:

(A2) There exists t0 > 0 such that for all t 2 Œ�t0; t0�, P 2 @!, the equations (2-2) have a unique solution
given by

� D a.t;P / 2 C1.Œ�t0; t0�� @!/;

such that
@2a

@t2
> 0 for all P 2 @!: (2-3)

We observe that assumptions (A1) and (A2) imply that

hC.x
0/> 0; h�.x

0/6 0 in a small neighborhood of @!:

The main object of our study is the Laplace–Beltrami operator H" on S". We introduce it rigorously
as the self-adjoint operator associated with a symmetric lower-semibounded sesquilinear form

h"Œu; v� WD .ru;rv/L2.S"/ on W 1
2 .S"/:

We recall that on an arbitrary manifold with metric tensor g this may be written in local coordi-
nates y D .y1; : : : ;yn/ as

� det�
1
2 g

nX
i;jD1

@

@yi
gij det

1
2 g

@

@yj
;

where gij are the entries of the inverse to the metric tensor. If in our case we take x0 as local coordinates
on S", then on each side S˙" the operator H" may be written in the form

H" D�.1C "
2
jrx0h˙j

2/�
1
2 divx0.1C "

2
jrx0h˙j

2/
1
2 .EC "2Q˙/�1

rx0 ; (2-4)

where E is the n� n identity matrix and Q˙ is the matrix with entries @h˙
@xi

@h˙
@xj

. On the boundary @!
the coefficients of such operator have singularities, and this is why in a neighborhood of @! it is more
convenient to employ the coordinates .�; s/, where s are some local coordinates on @!. We do not give
here the expression of the operator H" in such coordinates, as it requires the introduction of additional
(cumbersome) notation. These two parametrizations are discussed in detail in Section 3.

The purpose of the present paper is to describe the asymptotic behavior of the resolvent and the spectrum
of H" as "!C0. In this limit, the hypersurface S" collapses to a flat two-sided domain !D .!C; !�/,
where !˙ are two copies of ! understood as the upper and lower sides of !. Because of this, it is natural
to expect that the limiting operator for H" as "!C0 is the Laplacian on !, i.e., that on !˙ subject to
certain boundary conditions. Indeed, this is true, and it is our first main result. Namely, we introduce
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the space L2.!/ as consisting of the vectors uD .uC;u�/, where the functions u˙ are defined on !˙
and u˙ 2L2.!˙/. We can naturally identify L2.!/ with L2.!/˚L2.!/. In the same way we introduce
the Sobolev spaces W

j
2
.!/ assuming that for each u 2W

j
2
.!/ the functions u˙ 2W

j
2
.!˙/ satisfy the

boundary conditions
@iuC

@� i

ˇ̌̌̌
@!

D .�1/i
@iu�

@� i

ˇ̌̌̌
@!

; i D 0; 1; : : : ; j � 1: (2-5)

The meaning of these boundary conditions is that the functions u˙ should be “glued smoothly” while
moving from !C to !� via @! D @!˙. We observe that W

j
2
.!/ is embedded into W

j
2
.!/˚W

j
2
.!/,

but does not coincide. It is also clear that for any u 2W 1
2
.!/ the function u WD .u;u/ belongs to W 1

2
.!/.

Similarly, if u 2W 2
2
.!/, uj@! D 0, or, respectively, u 2W 2

2
.!/, @u

@�
j@! D 0, then uD .u;�u/ 2W 2

2
.!/,

or, respectively, uD .u;u/ 2W 2
2
.!/.

Let H0 be the self-adjoint operator in L2.!/ associated with the closed symmetric lower-semibounded
sesquilinear form

h0Œu; v� WD .ru;rv/L2.!/ on W 1
2 .!/:

By D. � / we denote the domain of an operator, and the symbol k � kX!Y indicates the norm of an operator
acting from the Hilbert space X to a Hilbert space Y .

Given any vector uD .uC;u�/ defined on !, by I"u we denote the function on S" being uC.x
0/ on

fx W x0 2 !;xnC1 D "hC.x
0/g and u�.x

0/ on fx W x0 2 !;xnC1 D�"h�.x
0/g. And vice versa, given any

function u defined on S", by I�1
" u we denote the vector uD .uC;u�/, where u˙ D u˙.x

0/ WD u.x0/,
x0 2 !, xnC1 D "h˙.x

0/.

Theorem 2.1. For each z 2 C nR there exists C.z/ > 0 such that the following estimate holds true:

.H"� z/�1
�I".H0� z/�1I�1

"




L2.S"/!W 1

2
.S"/
6 C.z/"2=3: (2-6)

Remark 2.2. The statement of this theorem includes the fact that the operator I".H0 � z/�1I�1
" is

well-defined as a bounded one from L2.S"/ into W 1
2
.S"/.

In view of the embedding of W 1
2
.!/ into W 1

2
.!/˚W 1

2
.!/, and the compact embedding of the

latter into L2.!/˚L2.!/ D L2.!/, the operator H" has a compact resolvent. Hence, it has a pure
discrete spectrum accumulating only at infinity. The same is true for the Dirichlet and Neumann
Laplacians ��.D/! and ��.N /! on !. Recall that ��.D/! is the Friedrichs extension in L2.!/ of ��
from C1

0
.�/, and ��.N /! is the self-adjoint operator in L2.!/ associated with the sesquilinear form

.ru;rv/L2.�/ on W 1
2
.!/. In what follows �d . � / denotes the discrete spectrum of an operator.

Our next result follows from Theorem 2.1 and [Reed and Simon 1980, Theorems VIII.23, VIII.24].

Theorem 2.3. The eigenvalues of H" converge to those of H0 as " goes to zero. In particular, if
� 62 �d .H0/, then � 62 �d .H"/ for " small enough. For each m-multiple eigenvalue � 2 �d .H0/ there
exist exactly m eigenvalues (counting multiplicities) of H" converging to � as "!C0. Let P0 be the
projector on the eigenspace associated with �, P" be the total projector associated with the eigenvalues
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of H" converging to �. Then the following convergence holds true:

kP"�I"P0I�1
" kL2.S"/!W 1

2
.S"/
! 0; "!C0:

Let now � be an eigenvalue of H0 with multiplicity m and iD . 
.i/
C ;  

.i/
� / be associated eigenfunctions

orthonormalized in L2.!/. It will be shown in the next section in Lemma 4.2 that the asymptotics

 
.i/
˙
.x0/D‰

.0/
i .P /˙‰

.1/
i .P /� CO.�2/; P 2 @!; � !C0; (2-7)

hold true, where

‰
.0/
i D  

.i/
C

ˇ̌
@!
D  .i/�

ˇ̌
@!
2 C1.@!/; ‰

.1/
i D

@ 
.i/
C

@�

ˇ̌̌̌
@!

D�
@ .i/�
@�

ˇ̌̌̌
@!

2 C1.@!/:

By ��@! we denote the Laplace–Beltrami operator on @!, where the metric G@! on @! is induced
by the Euclidean one in Rn. For any smooth functions u, v on @!, we shall denote the pointwise scalar
product of their gradients by ru � rv.

Let
!ı WD ! n fx0 W 0< � < ıg: (2-8)

Employing the coefficients of the asymptotics (2-7), we introduce two real symmetric matrices ƒ.0/, ƒ.1/

with entries

ƒ
.0/
ij WD

Z
@!

1

a2

�
�‰

.0/
i ‰

.0/
j �r‰

.0/
i � r‰

.0/
j C‰

.1/
i ‰

.1/
j

�
d!; (2-9)

ƒ
.1/
ij WD � lim

ı!C0

�
1

2

Z
!ı
jrx0hCj

2
�
� 

.i/
C  

.j/
C � .rx0 

.i/
C ;rx0 

.j/
C /Rd

�
dx0

C
1

2

Z
!ı
jrx0h�j

2
�
� .i/�  

.j/
� � .rx0 

.i/
� ;rx0 

.j/
� /Rd

�
dx0

C

Z
!ı
.rx0hC;rx0 

.i/
C /Rd .rx0hC;rx0 

.j/
C /Rd dx0

C

Z
!ı
.rx0h�;rx0 

.i/
� /Rd .rx0h�;rx0 

.j/
� /Rd dx0

C ln ı
Z
@!

1

4a2

�
‰
.1/
i ‰

.1/
j C�‰

.0/
i ‰

.0/
j �r‰

.0/
i � r‰

.0/
j

�
ds

�
�

Z
@!

1C 4 ln 2C ln a2

4a2

�
‰
.1/
i ‰

.1/
j C�‰

.0/
i ‰

.0/
j �r‰

.0/
i � r‰

.0/
j

�
ds; (2-10)

where

a2.P / WD
1

2

@2a

@t2
.0;P /:

It will be shown in Section 4 that the matrix ƒ.1/ is well-defined. By the theorem on simultaneous
diagonalization of two quadratic forms, in what follows the eigenfunctions  i are supposed to be
orthonormalized in L2.!/ and the matrix ƒ.0/C 1

ln "ƒ
.1/ to be diagonal. The eigenfunctions  i chosen



ON THE SPECTRUM OF DEFORMATIONS OF COMPACT DOUBLE-SIDED FLAT HYPERSURFACES 1057

in this way depend on ", but it is clear that the norms k .i/
˙
kC k.!/ are bounded uniformly in " for

all k > 0, i D 1; : : : ;m.

Theorem 2.4. Let � be an m-multiple eigenvalue of H0 and  i , i D 1; : : : ;m, be the associated eigen-
functions of H0 chosen as described above. Then there exist exactly m eigenvalues �k."/, k D 1; : : : ;m

(counting multiplicity) of H" converging to �. These eigenvalues satisfy the asymptotic expansions

�k."/D �C "
2 ln "�k

�
1

ln "

�
CO."2C�/; (2-11)

where �k are the eigenvalues of the matrix ƒ.0/ C 1
ln "ƒ

.1/, and � is any constant in .0; 1=2/. The
eigenvalues �k

�
1

ln "

�
are holomorphic in 1

ln " and converge to the eigenvalues of ƒ.0/ as "! 0.

In addition to the asymptotic expansions for the eigenvalues �i."/ given in this theorem, we also obtain
the asymptotics for the total projector associated with these eigenvalues. However, to formulate this result
we have to introduce additional notation and it is thus more convenient to postpone its statement which
will then be made at the end of Section 5 — see Theorem 5.3.

Let us describe briefly the main ideas employed in the proofs of the main results. The proof of
the uniform resolvent convergence in Theorem 2.1 is based on the analysis of the quadratic forms
associated with the perturbed and the limiting operators and on the accurate estimates of the functions in
certain weighted Sobolev spaces. The proof of the first theorem uses essentially the method of matching
asymptotic expansions [Il0in 1992] for formal construction of the asymptotics for the eigenfunctions
associated with �k."/. These asymptotics are constructed as a combination of outer and inner expansions.
The former depends on x0 and its coefficients have singularities at @!. In the vicinity of @! we introduce
a special rescaled variable � WD a1=2.xnC1"

�1;P /"�1 as xnC1 > 0 and � WD �a1=2.xnC1"
�1;P /"�1

as xnC1<0. This variable then describes the slope of S" in the vicinity of "— see also the equations (3-11)
giving the parametrization of S" in the vicinity of @!. After rewriting the eigenvalue equation in the
variables .�; s/, where s are local coordinates on @!, its leading term is in fact the Laplace–Beltrami
operator on the ellipse giving rise to the logarithmic terms in the asymptotics for both the eigenvalues and
the eigenfunctions.

Despite the fact that we are only presenting the leading terms of the asymptotics for �k."/ and for the
associated total projector in Theorems 2.4 and 5.3, respectively, our approach also allows us to construct
the complete asymptotic expansions if required. Although this would need to be checked in a way similar
to what was done here for the first few terms, the ansatzes (5-1) and (5-39) suggest that the complete
asymptotic expansion for the eigenvalues should be

�k."/D �C "
2 ln "�k."/C

1X
iD2

"2i lni "�
.i/

k

�
1

ln "

�
;

where �.i/
k

are functions holomorphic in 1
ln " . These higher-order terms would then still reflect the behavior

observed in the ellipse example given in the Introduction.
Although the above formulas for ƒ.0/ij and (especially) ƒ.1/ij may look quite cumbersome at a first

glance, they will actually simplify when computed for particular cases as some of the terms involved will
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vanish depending on whether we are considering Dirichlet or Neumann boundary conditions on @!. We
note that a similar effect was already present when computing the coefficients in the expansions obtained
in [Borisov and Freitas 2009; 2010]. This is particularly clear in the second of these papers dealing with
dimensions higher than two, where the general expression is quite complicated and needs to be computed
specifically in each case. When this is done for general ellipsoids in any dimension, for instance, it yields
a much simpler one-line expression.

We shall illustrate this by considering a thin ellipsoidal surface. To this end take ! to be the unit disk
centered at the origin with

h˙.x
0/ WD

p
1� r2; r D jx0j; � D 1� r; a2 D

1
2
: (2-12)

Under such definition this surface converges to the unit disk ! regarded as a double-sided surface. In this
instance the limiting eigenvalues may be found via separation of variables and they will be of the form �2,
where � are the zeroes of the Bessel function J� and its derivative J 0� , corresponding to eigenfunctions
satisfying Dirichlet and Neumann boundary conditions on @!, respectively. The following examples
illustrating both cases are taken from [Borisov and Freitas 2012], where the details may be found.

We consider the case of Dirichlet boundary conditions first; i.e.,

J0.�/D 0; �D �2;  .x/D�
J0.�r/
p

2�J1.�/
;  D . ;� /; ‰.0/ D 0; ‰.1/ D�

�
p

2�
:

Substituting these formulas and (2-12) into (2-9) and (2-10), we then obtain

ƒ
.0/
11
D 2� and ƒ

.1/
11
D�

�

J 2
1
.�/

Z 1

0

r3

1� r2

�
J 2

0 .�r/CJ 2
1 .�r/�J 2

1 .�/
�

dr �� ln 2:

The asymptotics (2-11) thus become

��."/D �C "
2.2� ln "Cƒ.1/

11
/CO."2C�/

and, for a particular eigenvalue, the remaining integral may be computed numerically. We illustrate this
by considering the case corresponding to the first Dirichlet eigenvalue on the disk which yields

�1."/D j 2
0;1C "

2.2j 2
0;1 ln "Cƒ.1/

11
/CO."2C�/� 5:7831C 11:5664 "2 ln "� 6:0871 "2

CO."2C�/:

As an example of a limiting multiple eigenvalue we consider the first nontrivial Neumann eigenvalue
of the disk. In two dimensions this is a double eigenvalue with associated (normalized) eigenfunctions

 1.x/D
J1.�

0r/ cos �

J0.�0/

q
�.�02� 1/

;  2.x/D
J1.�

0r/ sin �

J0.�0/

q
�.�02� 1/

;

where � is the polar angle corresponding to x and �0 is the first nontrivial zero of J 0
1
.

The eigenfunctions in L2.!/ are then given by  i D . i ;  i/, i D 1; 2, from which we have

‰
.0/
1
D

J1.�
0/ cos �

J0.�0/

q
�.�02� 1/

; ‰
.0/
2
D

J1.�
0/ sin �

J0.�0/

q
�.�02� 1/
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and ‰.1/i D 0, i D 1; 2. Proceeding as before, we have

ƒ0
11 Dƒ

0
22 D

2J 2
1
.�0/

J 2
0
.�0/

D 2�0
2
D 2� and ƒ0

ij D 0 .i ¤ j /:

For the next term we now obtain

ƒ
.1/
ii D�

�0
2

J 2
0
.�0/.�02�1/

Z 1

0

r3

1�r2

�
J 2

1 .�
0r/�J 2

1 .�
0/CJ 2

0 .�
0r/CJ 2

0 .�
0/�

2

�0r
J0.�

0r/J1.�
0r/

�
dr�� ln 2

for i D 1; 2 and ƒij D 0 for i ¤ j .
From this, and again computing the relevant integrals numerically, we obtain

�i."/D .j
0
1;1/

2
C"2.2� ln "Cƒ.1/ii /CO."2C�/�3:3900C6:7799 "2 ln "�1:8555 "2

CO."2C�/; iD1; 2:

Due to the radial symmetry of !, it is clear that these two eigenvalues should coincide, and the associated
eigenfunctions converge to  1 and  2.

3. Preliminaries

In this section we discuss two parametrizations of the surface S" and prove three auxiliary lemmas which
will be used in the next sections for proving Theorems 2.1, 2.4.

First parametrization of S". The first parametrization is that used in the definition of S" in (2-1); i.e.,
each point on S" is described as xnC1 D˙"h˙.x

0/, x0 2 !, where the sign corresponds to the upper or
lower part of S". Let us first calculate the metrics on S" in terms of the variables x0.

The tangential vectors to S" at the point x0 2 !, xnC1 D "h˙.x
0/ are�

0; : : : ; 0; 1; 0; : : : ; 0; "
@h˙

@xi

�
; i D 1; : : : ; n;

where “1” stands on i -th position. Thus, the metric tensor has the form

G˙.x0; "/ WD

0BBBBBBBB@

1C "2
�@h˙
@x1

�2
"2 @h˙
@x1

@h˙
@x2

"2 @h˙
@x1

@h˙
@x3

: : : "2 @h˙
@x1

@h˙
@xn

"2 @h˙
@x2

@h˙
@x1

1C "2
�@h˙
@x2

�2
"2 @h˙
@x2

@h˙
@x3

: : : "2 @h˙
@x2

@h˙
@xn

"2 @h˙
@x3

@h˙
@x1

"2 @h˙
@x3

@h˙
@x2

1C "2
�@h˙
@x3

�2
: : : "2 @h˙

@x3

@h˙
@xn

:::
:::

:::
: : :

:::

"2 @h˙
@xn

@h˙
@x1

"2 @h˙
@xn

@h˙
@x2

"2 @h˙
@xn�1

@h˙
@x3

� � � 1C "2
�@h˙
@xn

�2

1CCCCCCCCA
:

It easy to see that

G˙.x0; "/D EC "2Q˙; Q˙ WD .rx0h˙/.rx0h˙/
�; (3-1)

where rx0h˙ is treated as a column vector, and “�” denotes transposition.



1060 DENIS BORISOV AND PEDRO FREITAS

Lemma 3.1. The matrix G˙ has two eigenvalues, the .n � 1/-multiple eigenvalue 1, and the simple
eigenvalue .1C "2jrx0h˙j

2/. The following identity holds true:

d S" D J˙" dx0; J˙" WD

q
1C "2jrx0h˙j2; dx0 D dx1 dx2 � � � dxn: (3-2)

Proof. From (3-1) we may write the eigenvalue problem for the matrix G˙ as

.EC "2vv�/uD zu and .z� 1/uD "2vv�u;

where vDrx0h˙. We thus see that any vector orthogonal to v is an eigenvector for the above equation with
eigenvalue z equal to one. This yields an eigenvalue of multiplicity n� 1 if v is not zero, and n in case v
vanishes. In the former case, we easily see that v is also an eigenvector, now with eigenvalue 1C "2jvj2,
which will have multiplicity one. The determinant of G˙ is thus g˙ D 1C "2jvj2, yielding the volume
element to be

p
1C "2jvj2 as desired. �

In what follows we shall make use of the differential expression for the operator H", namely, its
expansion with respect to ". The expression itself is given by (2-4), while using (3-1) allows us to expand
some of the terms in this expression in powers of ":

.EC "2Q˙/�1
D E� "2Q˙CO."4/; .1C "2

jrx0h˙j
2/˙

1
2 D 1˙ "2 jrx0h˙j

2

2
CO."4/;

where the plus and minus signs correspond to the upper and lower parts of S", respectively. We substitute
these formulas into (2-4) and get

H" D��x0 � "
2

�
jrx0h˙j

2

2
�x0 C divx0

�
jrx0h˙j

2

2
�Q˙

�
rx0

�
CO."4/: (3-3)

The disadvantage of the parametrization by the variables x0 is that the functions h˙ are not smooth
in a vicinity of @! and their derivatives blow up at the boundary @!. We shall show this below while
introducing the second parametrization. The main idea of the second parametrization is to use special
coordinates in a vicinity of @! so that they involve smooth functions only; this parametrization is purely
local and will be used only in a vicinity of @!. It is natural to expect the existence of such coordinates
since the surface S" is infinitely differentiable.

Second parametrization of S". In a neighborhood of @! we introduce new coordinates .�; s/, where
s D .s1; : : : ; sn�1/ are local coordinates on @! corresponding to a C1-atlas, and � , we remind, is the
distance to a point measured in the direction of the inward normal � D �.s/ to @!. Let r D r.s/ be the
vector-function describing @!. We have

x0 D r.s/C ��.s/; r.�;s/ DM.�; s/rx0 ; MDM.�; s/D

0BBBB@
�

@r
@s1
C � @�

@s1

:::
@r

@sn�1
C � @�

@sn�1

1CCCCA ; (3-4)

where �.s/ and the other vectors in the definition of M are treated as rows. The vectors @r
@si

are tangential



ON THE SPECTRUM OF DEFORMATIONS OF COMPACT DOUBLE-SIDED FLAT HYPERSURFACES 1061

to M and linearly independent, while �.s/ is orthogonal to @!. Thus, the matrix M is invertible for all
sufficiently small � and all s 2 @!. The inequalities

C1 6M.�; s/6 C2; C�1
2 6M�1.�; s/6 C�1

1 ; s 2 @!; � 2 Œ��0; �0� (3-5)

are valid, where C1, C2 are positive constants independent of .�; s/. It follows from these estimates
and (3-4) that the matrix M�1.�; s/ is infinitely differentiable in the neighborhood fx W j� j< �0g of @!.

Consider now the equations (2-2). By assumption (A2) they have the smooth solution � D a.xnC1;P /

and, for small xnC1, the function a behaves as

a.xnC1;P /D a2.P /x
2
nC1CO.x3

nC1/:

Hence,

h˙.P C ��.P //D xnC1 D˙a
� 1

2

2
.P /�

1
2 CO.�/; � !C0; rx0h˙ DM�1

r.�;s/h˙;

C3�
�1 6 jrx0h˙j

2 6 C4�
�1; � 2 .0; �0�; (3-6)

where C3, C4 are positive constants independent of .�; s/. As we see from the last estimates, the
functions h˙ are not smooth at the point � D 0, i.e., at @!.

We employ once again assumption (A2) and pass from the equations xnC1 D˙"h˙.x
0/ to

� D a.t;P /; xnC1 D "t; x0 D r.s/C ��.s/: (3-7)

It follows from (2-3) that the function a.t;P / can be represented as t2za.t;P /, where za2C1.Œ�t0; t0��@!/

and za> 0 for sufficiently small t0.
We introduce a new variable � D tza

1
2 .t;P /. From assumption (A2) we conclude that

t D b.�;P / 2 C1.Œ��0; �0�� @!/ (3-8)

for a fixed small constant �0, and the Taylor series for a and b read

a.t;P /D

1X
iD2

ai.P /t
i ; t !C0; (3-9)

b.�;P /D

1X
iD1

bi.P /�
i ; �! 0; b1 WD a

� 1
2

2
; (3-10)

where ai , bi 2 C1.@!/. We define a rescaled variable � WD �"�1. The final form of the second
parametrization for S" is

x0 D r.s/C "2�2�.s/; xnC1 D "
2b".�; r.s//; � 2 Œ��0"

�1; �0"
�1�; (3-11)

where b".�;P / WD "
�1b."�;P / and �0 is a fixed sufficiently small number. We observe that, by the

definition of �,

� D a.t;P /D �2
D "2�2: (3-12)
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As in (3-3), we shall also employ the expansion in " of the differential expression for H" corre-
sponding to the second parametrization. We find first the tangential vectors to S" corresponding to the
parametrization (3-11):

Tsi
D

�
@r

@si
C "2�2 @�

@si
; "2 @b"

@si

�
; T� D "

2

�
2��;

@b"

@�

�
: (3-13)

It is clear that the vectors @r
@si

, @�
@si

belong to the tangential plane and are orthogonal to �. Employing this
fact and (3-13), we calculate the metric tensor:

.T� ;T�/RnC1 D "4

�
4�2
C

�
@b"

@�

�2�
; .T� ;Tsi

/RnC1 D "4 @b"

@�

@b"

@si
;

.Tsi
;Tsj /RnC1 D

�
@r

@si
C "2�2 @�

@si
;
@r

@sj
C "2�2 @�

@sj

�
RnC1

C "4 @b"

@si

@b"

@sj
:

By the Weingarten equations we see that

..Tsi
;Tsj /RnC1/i;jD1;n D A;

where
A WD G@! � 2"2�2BC "4�4BG�1

@!BC "4.rsb"/.rsb"/
�

D G@!.E� "
2�2G�1

@!B/2C "4.rsb"/.rsb"/
�; (3-14)

G@! is the metric tensor of @! associated with the coordinates s, B is the second fundamental form of @!
corresponding to the orientation defined by �. Hence, the metric tensor G" of S" associated with the
parametrization (3-11) reads

G" D

 
"4
�
4�2C

�
@b"
@�

�2�
"4p�

"4p A

!
; p WD

@b"

@�
rsb":

By direct calculations we check that

G�1
" D

�
"�4ˇ�ˇp�A�1

�ˇA�1pA�1C "4ˇA�1pp�A�1

�
; ˇ WD

�
4�2
C

�
@b"

@�

�2

� "4p�A�1p
��1

: (3-15)

The quantities in (3-15) are well-defined provided �0 is sufficiently small. Indeed, by (3-9),

AD G@! CO.�2/; pD O.1/;
@b

@�
.�;P /D O.1/; �! 0;

which implies the existence of A�1 and ˇ. In what follows we assume that �0 is chosen in such a way.
By Ki DKi.s/, i D 1; : : : ; n� 1, we denote the principal curvatures of @!, and K WD

Pn�1
iD1 Ki . We

note that .n� 1/�1K is the mean curvature of @! and let

a WD det
�
.E� "2�2G�1

@!B/2C "4G�1
@!.rsb"/.rsb"/

�
�
:
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Lemma 3.2. The following identities hold true:

b" D

1X
iD1

bi.P /"
i�1�i ; A�1

D G�1
@! CO."2�2/; pD �b1rsb1CO."�2/; (3-16)

det G" D "4ˇ�1 det A; (3-17)

det AD a det G@! ; aD
2X

iD0

"2i˛2i CO."4�4/; (3-18)

˛0 WD 1; ˛2 WD �2�2K: (3-19)

Proof. The identities (3-16) follow directly from the definitions of b", A, and p.
We make linear transformations in (3-15) to calculate the determinant of G":

.det G"/�1
D det�1 G" D

ˇ̌̌̌
"�4ˇ �ˇp�A�1

0 A�1

ˇ̌̌̌
D "�4ˇ det�1 A;

which proves (3-17).
It is easy to see that

det AD a det G@! : (3-20)

In view of (3-14) we get

aD det
�
EC "4.E� "2�2G�1

@!B/�2G�1
@!.rsb"/.rsb"/

�
�

det.E� "2�2G�1
@!B/2

D
�
1C "4 Tr.E� "2�2G�1

@!B/�2G�1
@!.rsb"/.rsb"/

�
CO."8�2/

� n�1Q
iD1

.1� "2�2Ki/
2

D
�
1C "4 Tr G�1

@!.rsb"/.rsb"/
�
CO."6�4/

��
1� 2"2�2KCO."4�4/

�
D
�
1C "4

jrb"j
2
CO."6�4/

��
1� 2"2�2KCO."4�4/

�
:

We substitute the obtained formula and (3-10) into (3-20) and arrive at (3-18). �

Employing (3-14), (3-16), by direct calculations we check

p�A�1pD
�
@b"

@�

�2

.rsb"/
�G�1

@!.rsb"/CO."2�2/D

�
@b"

@�

�2

jrb"j
2
CO."2�2/D b2

1�
2
jrb1j

2
CO."�2/:

Hence, by (3-17), (3-18) and the definition of ˇ,

"�2 det
1
2 G" D ˇ�

1
2 det

1
2 AD ˇ�1ˇA det

1
2 G@! ; ˇA WD ˇ

1
2 a

1
2 D

4X
iD0

"iˇi�4CO
�
"5.j�j2C �4/

�
;

where ˇi D ˇi.�;P / 2 C1.R� @!/ are some functions. In particular,

ˇ�4 WD
1

.4�2C b2
1
/

1
2

; ˇ�3 WD �
2b1b2�

.4�2C b2
1
/

3
2

;

ˇ�2 WD �
3b1b3�

2

.4�2C b2
1
/

3
2

�
4�2.2�2� b2

1
/b2

2

.4�2C b2
1
/

5
2

�
�2K

.4�2C b2
1
/

1
2

; (3-21)
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while the functions ˇ�1, ˇ0 satisfy the uniform in � and P estimates

jˇ�1j6
C j�j3

1Cj�j3
; jˇ0j6 C �2.1Cj�j/:

The obtained formulas, Lemma 3.2, and (3-15) allow us to write the expansion for G�1
" :

"�2.det
1
2 G"/G�1

" D det
1
2 G@!

0X
iD�4

"iGi CO."/; (3-22)

Gi WD

�
ˇi 0

0 0

�
; i D�4; : : : ;�1; G0 WD

�
ˇ0 �b1�ˇ�4.rsb1/

�G�1
@!

�b1�ˇ�4G�1
@!
rsb1 ˇ�1

�4
G�1
@!

�
: (3-23)

Taking into account (3-17), (3-18), we write the operator H" in terms of the variables .s0; s/, where
s0 WD �:

H" D�
1

det
1
2 G"

n�1X
i;jD0

@

@si
Gij
" det

1
2 G"

@

@sj
D�

"�2ˇA

a det
1
2 G@!

n�1X
i;jD0

@

@si
Gij
" det

1
2 G"

@

@sj
; (3-24)

and G
ij
" are the entries of the inverse matrix in (3-15). It follows from the last formula and (3-15) that

H" D "
�4a�1ˇA

@

@�
ˇA

@

@�
CO.1/:

We employ the obtained equation, (3-24), (3-22) and (3-23), and expand the coefficients of H" in powers
of " leading us to the identities

H" D

0X
iD�4

"iLi CO."/; (3-25)

L�4 WD L.�4/; L�3 WD L.�3/; L�2 WD L.�2/
C˛.2/L.�4/;L�1 WD L.�1/

C˛.2/L.�3/;

L0 WD L.0/C˛.2/L.�2/
C˛.4/L.�4/; ˛.2/ WD 2�2K; ˛.4/ D ˛.4/.�; s/; (3-26)

L.i/ WD �

iC4X
jD0

ǰ�4

@

@�
ˇi�j

@

@�
; i D�4; : : : ;�1; (3-27)

L.0/ WD �

4X
lD0

ˇl�4

@

@�
ˇ�l

@

@�
C b1ˇ�4

@

@�
�ˇ�4.rsb1/

�G�1
@!rs

Cˇ�4 det�
1
2 G@! divs b1ˇ�4� det

1
2 G@!.rsb1/

�G�1
@!

@

@�

�ˇ�4 det�
1
2 G@! divs ˇ

�1
�4.det

1
2 G@!/G

�1
@!rs: (3-28)

Auxiliary lemmas. We proceed to the auxiliary lemmas which will be used for proving Theorem 2.4.
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Lemma 3.3. In a vicinity of @! the identities

det MD .det
1
2 G@!/

n�1Y
iD1

.1� �Ki/; ��x0 D�
1

det M
div.�;s/.det M/ yMr.�;s/ (3-29)

hold true, where

yM WD .M�1/�M�1
D

�
1 0

0 .E� �G�1
@!

B/�2G�1
@!

�
: (3-30)

Proof. It follows from (3-4) and the Weingarten formulas that

MD

 
�

@r
@si
� �

Pn�1
kD1 Bk

i
@r
@sk

!
;

where Bk
i are the entries of the matrix G�1

@!
B, and all vectors are treated as rows.

A straightforward direct calculation allows us to check that the inverse matrix M�1 reads

M�1
D

 
�Pn�1

kD1 ck
i
@r
@sk

!�
; (3-31)

where � indicates matrix transposition, and ck
i are the entries of the matrix CD .E� �G�1

@!
B/�1G�1

@!
.

Let u1, u2 2 C1
0
.!/ be any two functions with the corresponding supports located in a neighborhood

of @!, where the coordinates .�; s/ are well-defined. We integrate by parts:

.��x0u; v/L2.!/ D .rx0u;rx0v/L2.!/ D .M
�1
r.�;s/u; .det M/M�1

r.�;s/v/L2..0;�0/�@!/

D
�
� div.�;s/.det M/.M�1/�.M�1/r.�;s/u; v

�
L2..0;�0/�@!/

D
�
�.det�1 M/ div.�;s/.det M/.M�1/�M�1

r.�;s/u; v
�
L2.!/

:

Hence,

��x0 D�.det�1 M/ div.�;s/.det M/.M�1/�M�1
r.�;s/: (3-32)

In view of (3-31) we have

.M�1/�M�1
D

 
�Pn�1

kD1 ck
i
@r
@sk

! 
�Pn�1

kD1 ck
i
@r
@sk

!�
D

�
1 0

0 CG@!C

�
D

�
1 0

0 .E� �G�1
@!

B/�2G�1
@!

�
;

det�2 MD det.M�1/�M�1
D det.E� �G�1

@!B/�2 det G�1
@! ;

det MD det
1
2 G@! det.E� �G�1

@!B/D det
1
2 G@!

n�1Y
iD1

.1� �Ki/:

The obtained formulas and (3-32) imply the statement of the lemma. �

We recall that the set !ı was introduced in (2-8).
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Lemma 3.4. Let the functions f˙ 2 C1.!˙/ satisfy the differentiable asymptotics

f˙.x
0/D

1X
jD�4

f ˙j=2.P /�
j
2 ; � !C0 (3-33)

uniformly in P 2 @!˙, where f ˙
j=2
2 C1.@!˙/, and V .0/, V .1/ 2 C1.@!/ are some functions. Suppose

the condition

lim
ı!C0

�
.fC;  

.i/
C /L2.!ı/

C .f�;  
.i/
� /L2.!ı/

� ı�1

Z
@!

.f C
�2
Cf �
�2/‰

.0/
i ds

� 2ı�1=2

Z
@!

.f C
�3=2
Cf �
�3=2/‰

.0/
i ds

� ln ı
Z
@!

�
.K.f C

�2
Cf �
�2/�f

C

�1
�f �
�1

�
‰
.0/
i � .f

C

�2
�f �
�2/‰

.1/
i

�
ds

�
�

Z
@!

.f C
�2
�f �
�2/‰

.1/
i dsC

Z
@!

.f C
�2
Cf �
�2/‰

.0/
i K ds

C 2

Z
@!

�
V .0/‰

.1/
i �V .1/‰

.0/
i

�
ds D 0; i D 1; : : : ;m; (3-34)

holds true. Then there exist the unique solutions u˙ 2 C1.!˙/ to the equations

.��x0 ��/u˙ D f˙; x 2 !˙; (3-35)

these solutions satisfy differentiable asymptotics

u˙.x
0/D f ˙

�2.P / ln � CU .0/.P /˙V .0/.P /C 4f ˙
�3=2.P /�

1=2
C �.V .1/.P /˙U .1/.P //

C �.1� ln �/
�
f ˙
�1.P /�K.P /f ˙

�2.P /
�
CO.�3=2/; � ! 0; (3-36)

uniformly in P 2 @!˙, where U .0/, U .1/ 2 C1.@!˙/ are some functions, and the condition

.U0; ‰
.0/
i /L2.@!/C .U1; ‰

.1/
i /L2.@!/ D 0; i D 1; : : : ;m; (3-37)

holds true.

Proof. Let �.�/ be the cut-off function introduced in the proof of Lemma 4.4. We introduce the functions

yu˙.x
0/ WD

�
f ˙
�2.P / ln � ˙V .0/.P /C 4f ˙

�3=2.P /�
1=2
C �.1� ln �/

�
f ˙
�1.P /�K.P /f ˙

�2.P /
�

C �V .1/.P /� 4
3
�3=2

�
f ˙
�1=2.P /� 2K.P /f ˙

�3=2.P /
��
�.�/:

Employing Lemma 3.3, one can check that

.��x0 ��/yu˙.x
0/D �.�/

�1X
jD�4

f ˙j=2.P /�
j
C yf˙.x

0/; (3-38)

where yf˙ 2 C1.!˙/\L2.!˙/.
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We construct the solutions to (3-35) as

u˙ D yu˙C zu˙:

Substituting this identity and (3-38) into (3-35), we obtain the equations for zu˙:

.��x0 ��/zu˙ D zf˙; zf˙ WD f˙��

�1X
jD�4

f ˙j=2�
j
� yf˙; (3-39)

and by (3-33) we have zf˙ 2L2.!˙/. Hence, we can rewrite these equations as

.H0��/zuD zf ; zu WD .zuC; zu�/; zf WD . zfC; zf�/: (3-40)

Since � is a discrete eigenvalue of H0, the solvability condition of the last equation is

. zf ; i/L2.!/ D 0; k D 1; : : : ;m;

which can be rewritten as

. zfC;  
.i/
C /L2.!/C .

zfC;  
.i/
C /L2.!/ D 0; k D 1; : : : ;m;

or, equivalently,

lim
ı!0

�
. zfC;  

.i/
C /L2.!ı/

C . zf�;  
.i/
� /L2.!ı/

�
D 0; k D 1; : : : ;m: (3-41)

Integrating by parts and taking into account (3-38), (3-39), we get

. zf˙; 
.i/
˙
/L2.!ı/

D
�
f˙C.�x0C�/zu˙; 

.i/
˙

�
L2.!ı/

D.f˙; 
.i/
˙
/L2.!ı/

�

Z
@!ı

�
 
.i/
˙

@zu˙

@�
�zu˙

@ 
.i/
˙

@�

�
ds:

Here we have used that the normal derivative on @!ı is that with respect to � up to the sign. We parametrize
the points of @!ı by those on @! via the relation x0D r.s/C ı�.s/. In view of (3-4) and (3-29) we haveZ

@!ı
� ds D

Z
@!

�

n�1Y
jD1

.1� �Kj / ds: (3-42)

Taking this formula into account, we continue the calculations:

. zf˙;  
.i/
˙
/L2.!ı/

D .f˙;  
.i/
˙
/L2.!ı/

�

Z
@!

�
 
.i/
˙

@zu˙

@�
� zu˙

@ 
.i/
˙

@�

�ˇ̌̌̌
x0Dr.s/Cı�.s/

n�1Y
jD1

.1� �Kj / ds

D .f˙;  
.i/
˙
/L2.!ı/

� ı�1

Z
@!

f ˙
�2‰

.0/

k
ds� 2ı�1=2

Z
@!

f ˙
�3=2‰

.0/

k
ds

� ln ı
Z
@!

�
.Kf ˙

�2�f
˙
�1/‰

.0/
i �f

˙
�2‰

.1/
i

�
ds

C

Z
@!

f ˙
�2

�
‰
.0/
i K�‰

.1/
i

�
dsC

Z
@!

�
V .0/‰

.1/
i �V .1/‰

.0/
i

�
dsCO.ı1=2/:
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We substitute the last identities into (3-41) and arrive at (3-34). Thus, the condition (3-34) implies the
existence of solutions to (3-35).

The functions zu˙ 2W 2
2
.!˙/ satisfy (2-5) in the sense of traces. Define

U .0/
WD zu˙j@! ; U .1/

WD
@zu˙

@�

ˇ̌̌̌
@!

; U .0/;U .1/
2L2.@!/:

The solution to (3-40) is defined up to a linear combination of the eigenfunctions. In view of the
belongings U .0/, U .1/ 2L2.@!/ we can choose the mentioned linear combination of the eigenfunctions
so that the condition (3-37) is satisfied. Then the solution to (3-40) is unique and the same is obviously
true for (3-35). To prove the asymptotics (3-36) it is sufficient to study the smoothness of zu˙ at @!.

By standard smoothness improving theorems we conclude that zu˙ 2 C1.!/. Moreover, given
any N > 0, it is easy to construct the function yu.N /

˙
similar to yu˙ such that

yu
.N /
˙
.x0/D yu˙.x

0/CO.�2/; � ! 0; .��x0 ��/yu
.N /
˙
.x0/D �.�/

NX
jD�4

f ˙j=2.P /�
j
C yf

.N /
˙

.x0/;

where yf .N /
˙
2 C1.!˙/\C N1.!˙/, and N1 DN1.N /!C1, N !C1. Then, proceeding as above,

we can construct the solutions to (3-35) as u˙ D zu˙ C yu˙, where zu.N / WD .zu
.N /
C ; zu.N /� / solves the

equation

.H0��/zu
.N /
D zf .N /; zf .N / WD . zf

.N /
C ; zf .N /� /; zf

.N /
˙

.x0/ WDf˙.x
0/��.�/

NX
jD�4

f ˙j=2.P /�
j
� yf

.N /
˙

:

It is clear that zf .N /
˙

belongs to C N2.!˙/, where N2 D N2.N /!C1 as N !C1. Hence, by the
smoothness improving theorems, zu.N /

˙
2 C N3.!˙/, N3 D N3.N /!C1, N !C1. Choosing N

large enough, we arrive at the asymptotics (3-36). �

Lemma 3.5. For all u, v 2 C1.!/ in a small vicinity of @! the identities

divx0 Q˙rx0uD
1

det M
div.�;s/.det M/ yMr.�;s/h˙.r.�;s/h˙/

� yMr.�;s/u; (3-43)

.rx0u;rx0v/Rd D
@u

@�

@v

@�
Cru � .E� �BG�1

@!/
�2
rv (3-44)

hold true.

Proof. Let u, v 2 C1.!/ be two arbitrary functions with supports in a small vicinity fx0 W 06 � < �0g,
where �0 is a small fixed number. We choose �0 so that in this vicinity the coordinates .�; s/ are
well-defined.
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Taking (3-1) and (3-4) into account, we pass to the variables .�; s/ and integrate by parts to obtainZ
!

v divx0 Q˙rx0u dx0D�

Z
!

.rx0v;rx0h˙.rx0h˙/
�
rx0u/Rn dx0

D�

Z
Œ0;�0/�@!

�
M�1
r.�;s/v;M

�1
r.�;s/h˙.r.�;s/h˙/

� yMr.�;s/u
�

Rn.det M/ d� ds

D

Z
Œ0;�0/�@!

v div.�;s/.det M/ yMr.�;s/h˙.r.�;s/h˙/
� yMr.�;s/u d� ds

D

Z
!

v.det�1M/ div.�;s/.det M/ yMr.�;s/h˙.r.�;s/h˙/
� yMr.�;s/u dx0;

which proves (3-43).
The identity (3-44) follows from (3-4) and (3-30):

.rx0u;rx0v/Rn D .M�1
rx0u;M�1

rx0v/Rn D .rx0u; yMrx0v/Rn

D
@u

@�

@v

@�
C
�
rsu; .E��G�1

@!B/�2G�1
@!rsu

�
Rn D

@u

@�

@v

@�
Cru �.E��BG�1

@!/
�2
rv: �

4. Uniform resolvent convergence

In this section we prove Theorem 2.1. We begin with two auxiliary lemmas.

Lemma 4.1. The identity D.H0/ D W 2
2
.!/ holds true and for each u 2 D.H0/ the operator H0 acts

as H0.u/D .��x0uC;��x0u�/. For each z 2 C nR the estimate

k.H0� z/�1
kL2.!/!W 2

2
.!/ 6

C

jIm.z/j
(4-1)

holds for some constant C , where Im.z/ denotes the imaginary part of z.

Proof. The first part follows from the definitions and the considerations above for the space W 2
2
.!/.

The second part of the statement follows from the fact that the operator H0 is self-adjoint with compact
resolvent. �

The description of the spectrum of H0 as being made up of the union of the Dirichlet and Neumann
spectra is given in the following lemma, together with some properties which will be useful in the sequel.

Lemma 4.2. The spectrum of H0 coincides with the union of spectra of ��.D/! and ��.N /! counting
multiplicities. Namely, if � is an m.D/-multiple eigenvalue of ��.D/! with the associated eigenfunc-
tions  .D/i , i D 1; : : : ;m.D/, and is an m.N /-multiple eigenvalue of ��.N /! with the associated eigenfunc-
tions  .N /i , i D 1; : : : ;m.N /, then � is an .m.D/Cm.N //-multiple eigenvalue of H0 with the associated
eigenfunctions  i D . 

.D/
i ;� 

.D/
i / and  i D . 

.N /
i ;  

.N /
i /. For any eigenfunction  D . C;  �/

of H0 we have  ˙ 2 C1.!/ and the asymptotics

 ˙.x
0/D‰.0/.P /˙ �‰.1/.P /CO.�2/; P 2 @!;
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where

‰.0/ D  Cj@! D  �j@! 2 C1.@!/; ‰.1/ D
@ C

@�

ˇ̌̌̌
@!

D�
@ �

@�

ˇ̌̌̌
@!

2 C1.@!/

and
x0 D P C ��.P / for small positive �:

Proof. Clearly if � is an eigenvalue of ��.D/! with eigenfunction u, then � is an eigenvalue of H0 with
eigenfunction .u;�u/. Similarly, an eigenvalue of ��.N /! with eigenfunction v will also be an eigenvalue
of H0 with eigenfunction .v; v/.

Assume now that .u; v/ is an eigenfunction of H0 and consider the functionsw1Du�v andw2DuCv.
Then, provided they do not vanish identically, w1 and w2 will be eigenfunctions of ��.D/! and ��.N /! ,
respectively. In case w1 vanishes identically, then uD v and u will be an eigenfunction of ��.N /! , while
if w2 vanishes uD�v and this will be an eigenfunction of ��.D/! .

The remaining part of the lemma follows from standard arguments. �

By L2.!;J" dx0/ we indicate the subspace of L2.!/ consisting of the functions u with the finite norm

kuk2L2.!;J"dx0/DkuCk
2

L2.!C;J
C
" dx0/

Cku�k
2
L2.!�;J

�
" dx0/; ku˙k

2

L2.!;J
˙
" dx0/

D

Z
!˙

ju˙.x
0/j2J˙" .x

0/dx0:

In the same way we introduce the space W 1
2
.!;J" dx0/ as consisting of u 2W 1

2
.!/ with the finite norm

kuk2
W 1

2
.!;J" dx0/

D krx0uk
2
L2.!;J" dx0/Ckuk

2
L2.!;J" dx0/;

where rx0uD .rx0uC;rx0u�/.

Lemma 4.3. The spaces L2.S"/ and L2.!;J" dx0/ are isomorphic and the isomorphism is the operator
I" W L2.!;J" dx0/! L2.S"/. If u 2 W 1

2
.!;J" dx0/, then I"u 2 W 1

2
.S"/, and if u 2 W 1

2
.S"/, then

I�1
" u 2W 1

2
.!;J" dx0/. The inequality

kJ
� 1

2
" rx0ukL2.!/ 6 krI"ukL2.S"/ 6 krx0ukL2.!;J" dx0/ (4-2)

holds true, where J
� 1

2
" rx0u WD ..J

C
" /
� 1

2rx0uC; .J
�
" /
� 1

2rx0u�/, uD .uC;u�/.

Proof. The fact that I" is a bijection between the two spaces follows directly from its definition.
Regarding the inequalities we have

kJ
� 1

2
" rx0uk

2
L2.!/

D

Z
!C

.JC" /
�1
jrx0uCj

2 dx0C

Z
!�

.J�" /
�1
jrx0u�j

2 dx0

D

Z
!C

JC" .J
C
" /
�2
jrx0uCj

2 dx0C

Z
!�

J�" .J
�
" /
�2
jrx0u�j

2 dx0

�

Z
!C

JC" .rx0uC/
�G�1
C rx0uC dx0C

Z
!�

J�" .rx0u�/
�G�1
� rx0u� dx0

DkrI"ukL2.S"/�

Z
!C

JC" jrx0uCj
2 dx0C

Z
!�

J�" jrx0u�j
2 dx0Dkrx0ukL2.!;J" dx0/;
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where we have used the knowledge of the eigenvalues of G˙ and the fact that 1� J˙" . �

Define !ı WD ! \ fx0 W 0 < � < ıg. We recall that the set !ı was introduced in (2-8), and in what
follows !ı is !ı considered as a two-sided domain.

Lemma 4.4. If u 2 W 1
2
.!/, or, respectively, u 2 W 2

2
.!/, then u 2 L2.!;J" dx0/, or, respectively,

u 2W 1
2
.!;J" dx0/. The inequalities

kukL2.!;J" dx0/ 6 CkukW 1
2
.!/; (4-3)

kukL2.!"4=3 ;J" dx0/ 6 C "2=3
kukW 1

2
.!/; (4-4)

kukL2.!"4=3 / 6 C "2=3
kI"ukW 1

2
.S"/

; (4-5)

kukW 1
2
.!;J" dx0/ 6 CkukW 2

2
.!/;

kukW 1
2
.!
"4=3 ;J" dx0/ 6 C "2=3

kukW 2
2
.!/ (4-6)

hold true, where C denotes positive constants independent of " and u.

Proof. Let u 2 W 1
2
.!/; then u˙ 2 W 1

2
.!/, and for almost all P 2 @! the function u˙.P C � �.P //

belongs to W 1
2
.0; �0/. Let �D �.�/ be an infinitely differentiable cut-off function vanishing as � > �0

and being one as � 6 �0=2. Then u˙ D u˙� for � 2 Œ0; �0=2�, and

u˙ D

Z �

�0

@.u˙�/

@�
d�; ju˙.P C ��.P //j

2 6 Cku˙.P C � �.P //k
2

W 1
2
.0;�0/

; � 2 Œ0; �0=2�;

where C is a positive constant independent of P and u˙. We multiply the last inequality by J˙" , integrate
over @!, and take into account (3-5) to obtainZ

@!

ˇ̌
u˙.P C ��.P //

ˇ̌2
jdet�1 Mj d! 6 Cku˙k

2

W 1
2
.!�0 /

;

where C is a positive constant independent of P 2 @! and u˙. The above estimate, inequality (3-6), the
definition (3-2) of J˙" and the smoothness of h˙ implyZ

!

ju˙j
2J˙" dx0D

Z
!ı

ju˙j
2J˙" dx0C

Z
!ı
ju˙j

2J˙" dx0; ı2.0; �0=2�;Z
!ı
ju˙j

2J˙" dx06C.ı/ku˙k
2
L2.!ı/

;Z
!ı

ju˙j
2J˙" dx0D

Z ı

0

d�

Z
@!

ju˙j
2J˙" jdet�1 Mj d!6Cku˙k

2

W 1
2
.!/

Z ı

0

q
1CC4"2��1 d�; (4-7)

where the constants C and C.ı/ are independent of " and u˙, and C is independent of ı. Taking ıD �0=2,
we see that u 2L2.!;J" dx0/ and thus the estimate (4-3) holds. If we now take ıD "4=3 in (4-7) instead
and use the identityZ ı

0

q
1C "2C4��1 d� D VJ˙" .ı/ WD

q
ı2CC4"2ıC

C4

2
"2 ln

C4"
2C 2ıC 2

p
ı2CC4"2ı

C4"2
;
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we obtain (4-4).
Let us prove (4-5). We integrate by parts as follows:Z
!
"4=3

ju˙j
2J˙" dx0 6 C

Z
@!

d!

Z "4=3

0

ju˙j
2J˙" d�;

Z "4=3

0

ju˙j
2J˙" d� D ju˙j

2 VJ˙"
ˇ̌�D"4=3

�D0
� 2

Z "4=3

0

VJ˙" .�/Re u˙
@u˙

@�
d�

6 VJ˙" ."4=3/

�
ju˙j

2
ˇ̌
�D"4=3 C

Z "4=3

0

ju˙j
2J˙" d� C

Z "4=3

0

1

J˙"

ˇ̌̌̌
@u˙

@�

ˇ̌̌̌2
d�

�
;Z

!
"4=3

ju˙j
2J˙" dx0 6 C "4=3

�Z
@!

ju˙j
2
ˇ̌
�D"4=3 d!C

Z
!
"4=3

�
1

J˙"
jrx0u˙j

2
CJ˙" ju˙j

2

�
dx0

�
:

By the embedding of W 1
2
.!"

4=3

/ into L2.fx W � D "
4=3g/ we have the estimateZ

@!

ju˙j
2
ˇ̌
�D"4=3 d! 6 Cku˙k

2

W 1
2
.!"

4=3
/
6 CkI"uk

2

W 1
2
.S"/

;

where the constants C are independent of " and u. These two last estimates together with (4-2) yield (4-5).
To prove the second part of the lemma related to the case u 2 W 2

2
.!/ it is sufficient to note that

since u˙, rx0u˙ 2W 1
2
.!/, by the first part of the lemma these functions belong to L2.!;J

˙
" dx0/, and

the estimates (4-3), (4-4) are valid for u replaced by rx0u. This completes the proof. �

Proof of Theorem 2.1. Let f 2L2.S"/; thenf WDI"f 2L2.!;J" dx0/�L2.!/. Let u."/ WD .H"�z/�1f ,
u.0/ WD .H0� z/�1I�1

" f . By the definitions of H" and H0 we have

h"Œu
."/; '�� z.u."/; '/L2.S"/ D .f; '/L2.S"/ for each ' 2W 1

2 .S"/; (4-8)

h0Œu
.0/;'�� z.u.0/;'/L2.!/ D .f ;'/L2.!/ for each ' 2W 1

2 .!/: (4-9)

Since u.0/ 2W 2
2
.!/, by Lemmas 3.1 and 4.4, u.0/ WD I"u

.0/ 2W 1
2
.S"/. Hence, v."/ WD u."/ � u.0/ 2

W 1
2
.S"/ and this can be used as a test function in (4-8):

h"Œu
."/; v."/�� z.u."/; v."//L2.S"/ D .f; v

."//L2.S"/:

The identity u."/ D v."/Cu.0/ yields

krv."/k2L2.S"/
� zkv."/k2L2.S"/

D .f; v"/L2.S"/� .ru.0/;rv."//L2.S"/C z.u.0/; v."//L2.S"/: (4-10)

We parametrize S" as x0 D x0, xnC1 D˙"h˙.x
0/, and use the definition of the scalar product of ru.0/

and rv."/ in L2.S"/. It implies

.f; v."//L2.S"/� .ru.0/;rv."//L2.S"/C z.u.0/; v."//L2.S"/

D .fC;J
C
" v

."/
C /L2.!C/C .f�;J

�
" v

."/
� /L2.!�/�

�
.JC" G�1

C rx0u
.0/
C ;rx0v

."/
C /L2.!C/

C .J�" G�1
� rx0u

.0/
� ;rx0v

."/
� /L2.!�/

�
C z.u

.0/
C ;J

C
" v

."/
C /L2.!C/C z.u.0/� ;J

�
" v

."/
� /L2.!�/;
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where v."/ D .v."/C ; v
."/
� /D I�1

" v."/ and G
ij
˙

are the entries of the inverse matrix G�1
˙

. We substitute the
last formula into (4-10) and then sum it with (4-9), where we take 'D v."/ 2W 1

2
.!;J" dx0/�W 1

2
.!/:

krv."/k2L2.S"/
� zkv."/k2L2.S"/

DRCCR�; (4-11)

R˙ WD .f˙; .J
˙
" � 1/v

."/
˙
/L2.!/� .J

˙
" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!˙/

� .rx0u
.0/
˙
;rx0v

."/
˙
/L2.!/C z.u

.0/
˙
; .J˙" � 1/v

."/
˙
/L2.!/:

Let us estimate R˙ which we shall write as

R˙ DR˙1 CR˙2 ; (4-12)

where

R˙1 WD .f˙; .J
˙
" � 1/v

."/
˙
/L2.!ı/

� .J˙" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

� .rx0u
.0/
˙
;rx0v

."/
˙
/L2.!ı/

C z.u
.0/
˙
; .J˙" � 1/v."//L2.!ı/

;

R˙2 WD .f˙; .J
˙
" � 1/v

."/
˙
/L2.!ı/

� .J˙" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

� .rx0u
.0/
˙
;rx0v

."/
˙
/L2.!ı/

C z.u
.0/
˙
; .J˙" � 1/v

."/
˙
/L2.!ı/

;

and ı WD "4=3. As x0 2 !ı, by (3-6) we have

"2
jrx0h˙j

2 6 C "2=3; kG�1
˙ �Ek6 C "2=3; jJ˙" � 1j6 C "2=3; j.J˙" /

�1
� 1j6 C "2=3:

Hereinafter by C we indicate nonessential positive constants independent of ", u."/, u.0/, and f . Hence,
by Lemmas 3.1, 4.4 and Schwarz’s inequality,ˇ̌
.f˙;.J

˙
" �1/v

."/
˙
/L2.!ı/

ˇ̌
6C "2=3

kf˙kL2.!;J
˙
" dx0/

kv
."/
˙
k

L2.!;J
˙
" dx0/

6C "2=3
kf kL2.S"/kv

."/
kL2.S"/;ˇ̌

z.u
.0/
˙
; .J˙" � 1/v

."/
˙
/L2.!ı/

ˇ̌
6 C "2=3

ku.0/kL2.!/kv
."/
kL2.S"/;ˇ̌

.rx0u
.0/
˙
;rx0v

."/
˙
/L2.!ı/� .J

˙
" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 C "2=3

ku.0/kW 1
2
.!/krx0v

."/
˙
kL2.!ı/ 6 C "2=3

ku.0/kW 1
2
.!/kJ

� 1
2

" rx0v
."/
kL2.!ı/

6 C "2=3
ku.0/kW 1

2
.!/kJ

�1
" rx0v

."/
kL2.!ı;J" dx0/ 6 C "2=3

ku.0/kW 1
2
.!/krv

."/
kL2.S"/;

and therefore
jRC

1
CR�1 j6 C "2=3

ku.0/kW 1
2
.!/kv

."/
kW 1

2
.S"/

: (4-13)

To estimate R˙
2

we employ (4-3), (4-4), (4-5). We begin with the first term in R˙
2

applying again
Schwarz’s inequality and (4-5) to obtain

j.f˙; .J
˙
" � 1/v

."/
˙
/L2.!ı/

j6 kf˙kL2.!ı;J
˙
" dx0/

k
�
1� .J˙" /

�1
�
v
."/
˙
k

L2.!ı;J
˙
" dx0/

6 kf kL2.S"/kv
."/
˙
k

L2.!ı;J
˙
" dx0/

6 C "2=3
kf kL2.S"/kv

."/
kW 1

2
.S"/

: (4-14)
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Employing (4-2), (4-3) and (4-5) in the same way we get two more estimates:ˇ̌
z
�
u
.0/
˙
; .J˙" � 1/v."//

�
L2.!ı/

ˇ̌
6 Cku

.0/
˙
k

L2.!ı;J
˙
" dx0/

kv
."/
˙
k

L2.!ı;J
˙
" dx0/

6 C "2=3
ku.0/kW 1

2
.!/kv

."/
kW 1

2
.S"/

;ˇ̌
.rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 k.J˙" /

1
2rx0u

.0/
˙
kL2.!ı/

k.J˙" /
� 1

2rx0v
."/
˙
kL2.!ı/

6 C "2=3
ku.0/kW 2

2
.!/krv

."/
kL2.S"/: (4-15)

Since
.G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/Rn DrI"u

.0/
� rv."/;

by Schwarz’s inequality we haveˇ̌
.G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 krv."/kL2.S"/.G

�1
˙ rx0u

.0/
˙
;rx0u

.0/
˙
/

1
2

L2.!ı/

6 krv."/kL2.S"/k.J
˙
" /

1
2rx0u

.0/
˙
kL2.!ı/

:

Here we have used the inequality
nX

i;jD1

G
ij
˙
�i�j 6

nX
iD1

j�i j
2;

which follows from Lemma 3.1. Using (4-6) we getˇ̌
.G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 krv."/kL2.S"/ku

.0/
kW 1

2
.!ı/ 6 C "2=3

krv."/kL2.S"/ku
.0/
kW 2

2
.!/;

which with (4-14) and (4-15) yields

jRC
2
CR�2 j6 C "2=3

ku.0/kW 2
2
.!/kv

."/
kW 1

2
.S"/

:

Together with (4-1), (4-11), (4-12), (4-13) it follows thatˇ̌
krv."/k2L2.S"/

� zkv."/k2L2.S"/

ˇ̌
6 C "2=3

ku.0/kW 2
2
.!/kv

."/
kW 1

2
.S"/
6 C "2=3

kf kL2.!/kv
."/
kW 1

2
.S"/

:

Since ˇ̌
krv."/k2L2.S"/

� zkv."/k2L2.S"/

ˇ̌
> Ckv."/k2

W 1
2
.S"/

;

we arrive at (2-6), completing the proof. �

Remark 4.5. The proof above uses the estimates from Lemma 4.4 which include a measure of the
boundary behavior by means of the weight function J". A different approach which may also be used to
prove convergence of the resolvent in similar situations is based on inequalities of Hardy type instead,
possibly allowing for a better control of the behavior near the boundary — see [Krejčiřík and Zuazua
2010] for an illustration of this principle.

In the proof of Theorem 2.4 in the next section we shall use the following auxiliary lemma which is
convenient to prove in this section.
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Lemma 4.6. Let � be a m-multiple eigenvalue of H0, and �i."/, i D 1; : : : ;m, be the eigenvalues of H"

taken counting multiplicity and converging to �, and .i/" be the associated eigenfunctions orthonormalized
in L2.S"/. For z close to � the representation

.H"� z/�1
D

mX
iD1

 
.i/
"

�i."/� z
. � ;  .i/" /L2.S"/CR".z/

holds true, where the operator R".z/ W L2.S"/!W 1
2
.S"/ is bounded uniformly in " and z. The range

of R".z/ is orthogonal to all  .i/" , i D 1; : : : ;m.

Proof. We choose a fixed ı so that the disk Bı.�/ WD fz W jz � �j < ıg contains no eigenvalues of H0

except � and

distf@Bı.�/; �d .H0/g> ı:

Then, by Theorem 2.3, for sufficiently small " this disk contains the eigenvalues �i."/, i D 1; : : : ;m, and
no other eigenvalues of H", and

dist
˚
Bı.�/; �d .H"/ n f�i."/; i D 1; : : : ;mg

	
> ı

2
: (4-16)

Denote by V" the orthogonal complement to  .i/" , i D 1; : : : ;m, in L2.S"/. By [Kato 1966, Chapter V,
Section 3.5, Equations (3.21)] the representation (3-29) holds true, where R".z/ is the part of the
resolvent .H"� z/�1 acting in V" and

kR".z/kV"!V" 6
1

dist
˚
Bı.�/; �d .H"/ n f�i."/; i D 1; : : : ;mg

	 6 2

ı
(4-17)

for z 2Bı.�/, where we have used (4-16). Hence, the range of R".z/ is orthogonal to  .i/" , i D 1; : : : ;m.
It is easy to check that the function u" WDR".z/f , f 2L2.S"/, solves the equation

.H"� z/u" D f"; f" WD f �

mX
iD1

 .i/" .f;  .i/" /L2.S"/; kf"kL2.S"/ 6 kf kL2.S"/:

Hence, by the definition of H" and (4-17),

kru"k
2
L2.S"/

Dzku"k
2
L2.S"/

C.f";u"/L2.S"/6 jzjku"k
2
L2.S"/

Ckf"kL2.S"/ku"kL2.S"/6C.ı/kf k2L2.S"/
;

where the constant C.ı/ is independent of " and f . The last estimate and (4-17) complete the proof. �

5. Asymptotic expansions

In this section we give the proof of Theorem 2.4 which will be divided into two parts. We first build the
asymptotic expansions formally, where the core of the formal construction is the method of matching
asymptotic expansions [Il0in 1992]. The second part is devoted to the justification of the asymptotics, i.e.,
obtaining estimates for the error terms.
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The formal construction consists of determining the outer and inner expansions on the base of the
perturbed eigenvalue problem and the matching of these expansions. The outer expansion is used to
approximate the perturbed eigenfunctions outside a small neighborhood of @!. It is constructed in terms
of the variables x0 using the first parametrization of S" given in the previous sections. In a vicinity of @!
the perturbed eigenfunctions are approximated by the inner expansion which is based on the second
parametrization of S" and is constructed in terms of the variables .�; s/.

Outer expansion: First term. By Theorem 2.3 there exist exactly m eigenvalues of H" converging to �
counting multiplicities. We denote these eigenvalues by �k."/, k D 1; : : : ;m, while the symbols  .k/"

will denote the associated eigenfunctions. We construct the asymptotics for �k."/ as

�k."/D �C "
2 ln "�k

�
1

ln "

�
C � � � : (5-1)

Hereinafter terms like ln "A are understood as .ln "/A. In accordance with the method of matching
asymptotic expansions we form the asymptotics for  .k/" as the sum of outer and inner expansions. The
outer expansion is built as

 .k/"; ex D I". k C "
2 ln "�k C � � � /; (5-2)

where �k D .�
.k/
C ; �.k/� /, �.k/

˙
D �

.k/
˙
.x0; "/, and the eigenfunctions  k are chosen as described before

the statement of Theorem 2.4. We also recall that these functions depend on " in the case where � is a
multiple eigenvalue.

We substitute the identities (5-1), (5-2), and (3-3) into the eigenvalue equation

H" 
.k/
" D �k."/ 

.k/
" ; (5-3)

and take into account the eigenvalue equations for  i . It implies the equations for �k , namely,

.��x0 ��/�
.k/
˙
D

1

ln "
f
.k/

2;˙
C�k 

.k/
˙
; x0 2 !˙; f

.k/
2;˙
WDH

.2/
˙
 
.k/
˙
;

H
.2/
˙
WD � divx0 Q˙rx0 �

jrx0h˙j
2

2
�x0 C

1
2

divx0 jrx0h˙j
2
rx0 : (5-4)

The functions  .i/
˙

are infinitely differentiable in !˙, and thus

 
.k/
˙
.x0; "/D‰

.0/

k
.P; "/˙‰

.1/

k
.P; "/� C‰

.2;˙/

k
.P; "/�2

CO.�3/; P 2 @!; (5-5)

as � !C0, where, by the definition of the domain of H0,

‰
.0/

k
WD  

.k/
C

ˇ̌
@!
D  .k/�

ˇ̌
@!
; ‰

.1/

k
WD

@ 
.k/
C

@�

ˇ̌̌̌
@!

D�
@ .k/�
@�

ˇ̌̌̌
@!

; ‰
.2;˙/

k
WD

1

2

@2 
.k/
˙

@�2

ˇ̌̌̌
@!

;

‰
.j/

k
; ‰

.2;˙/

k
2 C1.@!/:

The functions‰.i/
k

depend on " only if � is a multiple eigenvalue, since the same is true for the functions k .
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In view of the identity (3-12) we rewrite (5-5) as

 
.k/
˙
.x0; "/D‰

.0/

k
.P; "/˙‰

.1/

k
.P; "/�2

C‰
.2;˙/

k
.P; "/�4

CO.�6/; �!C0:

 
.k/
˙
.x0; "/D‰

.0/

k
.P; "/˙ "2‰

.1/

k
.P; "/�2

C "4‰
.2;˙/

k
.P; "/�4

CO."6�6/; "�! 0: (5-6)

Inner expansion. In accordance with the method of matching asymptotic expansions the identities (5-2),
(5-6) yield that the inner expansion for the eigenfunctions  .k/" should read

 
.k/
"; in.�;P; "/D

4X
iD0

"iv
.k/
i .�;P; "/C � � � ; (5-7)

where the coefficients must satisfy the following asymptotics as �!˙1:

v
.k/
0
.�;P; "/D‰

.0/

k
.P; "/C o.1/; (5-8)

v
.k/
1
.�;P; "/D o.j�j/; (5-9)

v
.k/
2
.�;P; "/D˙‰

.1/

k
.P; "/�2

C o.j�j2/; (5-10)

v
.k/
3
.�;P; "/D o.j�j3/;

v
.k/
4
.�;P; "/D‰

.2;˙/

k
.P; "/�4

C o.j�j4/:

These asymptotics mean that the first term of the outer expansion is matched with the inner expansion.
We substitute (5-1), (5-7), (3-25), (3-21) into the eigenvalue equation (5-3) and equate the coefficients

of "�4. This implies the equation for v.k/
0

:

L�4v
.k/
0
��

1q
4�2C b2

1

@

@�

1q
4�2C b2

1

@v
.k/
0

@�
D 0 on R� @!:

The solution to the last equation satisfying (5-8) is obviously

v
.k/
0
.�;P; "/�‰

.0/

k
.P; "/: (5-11)

We then substitute this identity and (5-1), (5-7), (3-25), (3-26), (3-27), (3-25) into (5-3) and equate the
coefficients at "i , i D�3; : : : ; 0, leading us to the equations for v.k/i , i D 1; : : : ; 4:

L�4v
.k/
1
D 0 on R� @!; (5-12)

L�4v
.k/
2
D 0 on R� @!; (5-13)

L�4v
.k/
3
CL�3v

.k/
2
CL�2v

.k/
1
D 0 on R� @!; (5-14)

L�4v
.k/
4
CL�3v

.k/
3
CL�2v

.k/
2
CL�1v

.k/
1
CL0v

.k/
0
D �v

.k/
0

on R� @!; (5-15)

where we have used that

Liv
.k/
0
� 0; i D�3; : : : ;�1;
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due to (3-26), (3-27), (5-11). The only solution to (5-12) satisfying (5-9) is independent of �:

v
.k/
1
.�;P; "/� C

.k;0/
1

.P; "/; (5-16)

where C
.k;0/
1

is an unknown function to be determined.
Equation (5-13) can be solved, and the solution satisfying (5-10) is

v
.k/
2
.�;P; "/D‰

.1/

k
.P; "/X1.�; b1.P //CC

.k;0/
2

.P; "/; (5-17)

X1.�; b/ WD
1
2
�.4�2

C b2/
1
2 C

b2

4
ln
�
2�C .4�2

C b2/
1
2

�
�

b2

4
ln b; (5-18)

where C
.k;0/
2

is an unknown function to be determined.
In view of (5-16), (5-17), (3-26), (3-27) and (5-13), Equation (5-14) may be written as

ˇ�4

@

@�
ˇ�4

@v
.k/
3

@�
D�ˇ�4

@

@�
ˇ�3

@v
.k/
2

@�
on R� @!:

Employing the formulas (3-21), (5-17) and (5-18), we solve the last equation:

v
.k/
3
.�;P; "/D

‰
.k;1/
0

.P; "/b1.P /b2.P /

2ˇ�4.�;P /
CC

.k;1/
3

.P; "/X1.�/CC
.k;0/
3

.P; "/

D
1
2
‰
.1/

k
.P; "/b1.P /b2.P /.4�

2
C b2

1.P //
1
2 CC

.k;1/
3

.P; "/X1.�/CC
.k;0/
3

.P; "/; (5-19)

where C
.k;1/
3

and C
.k;0/
3

are unknown functions to be determined.
We substitute (5-16), (5-17), (5-18), (5-19), (3-26), (3-27), (3-28), (3-19) and (3-21) into (5-15) and

then solve it to obtain

v
.k/
4
D

1
16
‰
.k;1/
0

�

�
K.4�2

C b2
1/

3
2 C 12b1b3.4�

2
C b2

1/
1
2 C

8b2
2
.8�2C 3b2

1
/

.4�2C b2
1
/

1
2

�
C

1
2
C
.k;1/
3

b1b2.4�
2
C b2

1/
1
2 �

1
2
X 2

1 .�@! C�/‰
.0/

k
C

1
2
X2b1rb1 � r‰

.0/

k
CC

.k;1/
4

X1CC
.k;0/
4

;

where X1 DX1.�; b1.P //,

X2DX2.�; b/ WD�
2
�b2X3

�
2�C

p
4�2Cb2

b

�
; X3.z/ WD

1
8

ln2 zC
1

16

�
z2
�

1

z2

�
ln z�

1

32

�
z2
C

1

z2

�
;

and C
.k;0/
4

D C
.k;0/
4

.P; "/ and C
.k;1/
4

D C
.k;1/
4

.P; "/ are unknown functions to be determined.

To determine the coefficient �.k/ in the outer expansion and the functions C
k;j
i in the inner one, we

should match the constructed functions v.k/i with the outer expansion. In order to do it, we must find the
asymptotics for the functions v.k/i as �!˙1. We observe that the functions X1, X2 2C1.R�.0;C1//

satisfy the identities

X1.�; b/D˙�
2
˙

b2

8
.2 ln j�jC 1C 4 ln 2� 2 ln b/CO.��2/; �!˙1;

X2.�; b/D �
2
�

3
2
� 2 ln 2C ln b� ln j�j

�
CO.ln2

j�j/; �!˙1;
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uniformly in b > b0 > 0, with b0 any fixed constant. Taking these asymptotics into account, we write the
asymptotics for v.k/i as �!˙1 and then pass to the variables .�;P /:

4X
iD0

"iv
.k/
i .�;P;"/D‰

.0/

k
.P;"/˙‰

.1/

k
.P;"/�C1

2

�
˙‰

.1/

k
.P;"/K.P /��@!‰

.0/

k
.P;"/��‰

.0/

k
.P;"/

�
�2

C".˙C
.k;1/
3

.P;"/�CC
.k;0/
1

/C"2
�
ln"W .k/

2;1;˙
.x0;"/CW

.k/
2;0;˙

.x0;"/
�
CO."3

C"4��1/;

where

W
.k/

2;1;˙
WD

1

4
b2

1

�
�‰

.1/

k
C�

�
�@!C

2

b1

rb1�rC�

�
‰
.0/

k

�
; (5-20)

W
.k/

2;0;˙
WD ˙

1
8
b2

1‰
.1/

k
ln �˙

b2
1

8
.1C4 ln 2�2 ln b1/‰

.1/

k
CC

.k;0/
2
C‰

.1/

k
b1b2�

1=2

�
1
8
b2

1� ln �
�
�@!C

2

b1

rb1�rC�

�
‰
.0/

k
C�
�
�

1
8
b2

1.1C4 ln 2�2 ln b1/.�@!C�/‰
.0/

k

�
1
2

�
2 ln 2�ln b1�

3
2

�
b1rb1�r‰

.0/

k
˙

1
16
.3Kb2

1C32b2
2C24b1b3/‰

.1/

k
˙C

.k;1/
4

�
: (5-21)

Taking into account the obtained formulas and (5-2), in accordance with the method of matching asymptotic
expansions we conclude that

C
.k;1/
3

.P; "/D C
.k;0/
1

.P; "/� 0; (5-22)

while the solutions to (5-4) should satisfy the asymptotics

�
.k/
˙
.x0; "/DW

.k/
2;1;˙

.x0; "/C
1

ln "
W
.k/

2;0;˙
.x0; "/C o.�/; � ! 0: (5-23)

Moreover, the identity
1
2

�
˙‰

.1/

k
K��@!‰

.0/

k
��‰

.0/

k

�
D‰

.2;˙/

k
(5-24)

should hold.

Outer expansion: Second term. We substitute (3-29) and (5-5) into the eigenvalue equation for  .k/
˙

and equate the coefficient of �0. This leads us to identity (5-24).
We proceed to the problem (5-4), (5-23). To study its solvability we shall make use of one more

auxiliary lemma. Recall that the matrices M and yM are defined in (3-4) and (3-30), respectively.

Lemma 5.1. The functions f .k/
2;˙

introduced in (5-4) satisfy the hypothesis of Lemma 3.4. In particular,
the asymptotics (3-33) holds true with

f ˙
�2D˙

b2
1

8ln"
‰
.1/

k
; f ˙

�3=2D
b1b2

4ln"
‰
.1/

k
; f ˙

�1D�
b2

1

4ln"

�
‰
.2;˙/

k
�

1

b1

rb1 �r‰
.0/

k
�K‰

.1/

k

�
: (5-25)

Proof. We begin with an obvious identity:

f
.k/

2;˙
D

1

ln "

�
� divx0 Q˙rx0 

.k/
˙
C

1
2

�
rx0 jrx0h˙j

2;rx0 
.k/
˙

�
Rn

�
; (5-26)
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which follows from the definition of f .k/
2;˙

in (5-4). To prove the lemma, we shall pass to the variables .�; s/
in the obtained identity. It follows from (3-7), (3-12) and the definition of S" that

h˙.x
0/D t; ˙t > 0:

Hence, by (3-8), (3-10),

h˙.x
0/D b.˙

p
�;P /D

1X
iD1

bi.P /.˙
p
�/i ; � !C0: (5-27)

Thus, employing (3-4) and (5-26), we conclude that the functions f .k/
2;0;˙

satisfy the hypothesis of
Lemma 3.4 and in particular the asymptotics (3-33) holds true. It remains to prove the identities (5-25).

It follows from (3-44) that

jrx0h˙j
2
D

ˇ̌̌̌
@h˙

@�

ˇ̌̌̌2
Crh˙ � .E� �BG�1

@!/
�2
rh˙: (5-28)

We substitute (5-27) into the obtained identity and arrive at the asymptotics for jrx0h˙j
2:

jrx0h˙j
2
D

1X
jD�2

h˙j=2.P /�
j=2; h˙

�1 D
1
4
b2

1 ; h˙
�1=2 D˙b1b2; � !C0: (5-29)

Employing these formulas and (3-4), (3-30), (5-5) and (3-44) we rewrite the second term in the right-hand
side of (5-26) as

1
2

�
rx0 jrx0h˙j

2;rx0 
.k/
˙

�
Rn D

1

2

@jrx0h˙j
2

@�

@ 
.k/
˙

@�
C

1
2
rjrx0h˙j

2
� .E� �BG�1

@!/
�2
r 

.k/
˙

D

1X
jD�4

f
˙;2

j=2
�j=2; (5-30)

where f ˙;2
j=2
2 C1.@!/ are some functions, and, in particular,

f
˙;2
�2
D�

1

8ln"
b2

1‰
.1/

k
; f

˙;2
�3=2
D�

1

4ln"
b1b2‰

.1/

k
; f

˙;2
�1
D�

b2
1

4ln"

�
‰
.2;˙/

k
C

1

b1

rb1 �r‰
.0/

k

�
: (5-31)

To obtain the same asymptotics for the first term in the right-hand side of (5-26), we employ first (3-43):

� divx0 Q˙rx0 
.k/
˙
D�

1

det M
div.�;s/.det M/r.�;s/h˙.r.�;s/h˙/

� yMr.�;s/ 
.k/
˙
: (5-32)

It follows from the equations (3-29), (3-30), (5-27) that

.r.�;s/h˙/
� yMr.�;s/ 

.k/
˙
D
@h˙

@�

@ 
.k/
˙

@�
Crh˙ � .E� �BG�1

@!/
�2
r 

.k/
˙
D

1X
jD�1

c˙j=2�
j=2; � !C0;

.det M/ yMr.�;s/h˙ D
1X

jD�1

c˙j=2�
j=2; � !C0;
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where c˙
j=2
D c˙

j=2
.P /2C1.@!/ are some functions, c˙

j=2
D c˙

j=2
.P /2C1.@!/ are some n-dimensional

vector-functions, and

c˙
�1=2 D

1
2
b1; c˙0 D˙b2‰

.1/

k
; c˙

�1=2 D˙
1
2
b1e1; c˙0 D b2e1;

and e1 D .1; 0; : : : ; 0/
�. We substitute the last identities into (5-32), which yields

� divx0 Q˙rx0 
.k/
˙
D

1X
jD�4

f
˙;1

j=2
�j=2; � !C0;

f
˙;1
�2
D˙

1

4 ln "
b2

1‰
.1/

k
; f

˙;1
�3=2

D
1

2 ln "
b1b2‰

.1/

k
; f

˙;1
�1
D˙

1

4 ln "
b2

1K‰
.1/

k
:

The last identity, (5-30), (5-31), (5-26) imply the formulas (5-25). �

Taking into account (5-5), we apply Lemma 5.1 to problem (5-4). It implies that the right-hand side
of (5-4) satisfies the hypothesis of Lemma 3.4 with the first four coefficients given by (5-25).

Given some functions V
.0/

k
, V

.1/

k
2C1.@!/, suppose the solvability condition (3-34) holds true. Then

by (3-36), (5-24), (5-25) there exists the unique solution to (5-4) with the asymptotics

�
.k/
˙
D

1

ln"

�
˙

1
8
b2

1‰
.1/

k
ln�Cb1b2‰

.1/

k
�1=2
C�.1�ln�/

�
�

1
4
b2

1‰
.2;˙/

k
C

1
4
b1rb1�r‰

.0/

k
˙

1
8
Kb2

1‰
.1/

k

��
CU

.0/

k
˙V

.0/

k
C�.V

.1/

k
˙U

.1/

k
/CO.�3=2/

D
1

ln"

�
˙

1
8
b2

1‰
.1/

k
ln�Cb1b2‰

.1/

k
�1=2
C�.1�ln�/

�
�@!C

2

b1

rb1�rC�

�
‰
.0/

k

�
CU

.0/

k
˙V

.0/

k
C�.V

.1/

k
˙U

.1/

k
/; �!C0; (5-33)

where U
.0/

k
, U

.1/

k
2 C1.@!/ are some functions satisfying (3-37). We compare the last asymptotics

with (5-20), (5-21), (5-23), take into consideration the identity (5-24) and arrive at the formulas
for V

.0/

k
, V

.1/

k
, C

.k;0
2

and C
.k;1/
4

:

V
.0/

k
D�

b2
1

4
‰
.1/

k
C

b2
1

8 ln "
.1C 4 ln 2� 2 ln b1/‰

.1/

k
; C

.k;0/
2

D ln "U
.0/

k
;

V
.1/

k
D

b2
1

4

�
�@! C

2

b1

rb1 � r C�

�
‰
.0/

k

�
b2

1

4 ln "

�
.2 ln 2� ln b1C 1/.�@! C�/‰

.0/

k
C

4 ln 2� 2 ln b1� 2

b1

rb1 � r‰
.0/

k

�
;

C
.k;1/
4

D ln "U
.1/

k
�

1
16
.3Kb2

1 C 32b2
2 C 24b1b3/‰

.1/

k
:

In what follows the functions V
.0/

k
, V

.1/

k
, C

.k;0
2

and C
.k;1/
4

are supposed to be chosen in accordance with
the above given formulas. Bearing these formulas, (5-24) and (5-25) in mind, we write the solvability
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conditions (3-34) for (5-4):

1

ln "
lim
ı!C0

�
.f
.k/

2;C
;  

.i/
C /L2.!ı/

C.f
.k/

2;�
;  .i/� /L2.!ı/

�ı�1=2

Z
@!

b1b2‰
.1/

k
‰
.0/
i ds

Cln ı
Z
@!

b2
1

4

�
‰
.1/
i ‰

.1/

k
C‰

.0/
i

�
�@!C

2

b1

rb1 �rC�

�
‰
.0/

k

�
ds

�
C

Z
@!

b2
1

2 ln "
.2 ln 2�ln b1C1/‰

.0/
i .�@!C�/‰

.0/

k
ds

C

Z
@!

b1

ln "
.2 ln 2�ln b1�1/‰

.0/
i rb1 �r‰

.0/

k
dsC

Z
@!

b2
1

2 ln "
.2 ln 2�ln b1/‰

.1/

k
‰
.1/
i ds

�

Z
@!

b2
1

2

�
‰
.1/

k
‰
.1/
i C‰

.0/
i

�
�@!C

2

b1

rb1 �rC�

�
‰
.0/

k

�
dsC�kıikD0; i; kD1; : : : ;m: (5-34)

Let us simplify the obtained identity. We first rewrite the formulas (5-4) of f .k/
2;˙

in a more convenient
form employing the eigenvalue equation for  .k/

˙
and the definition of the matrix Q˙:

f
.k/

2;˙
D�divx0ˆ

.k/
˙
rx0h˙C

�

2
jrx0h˙j

2 
.k/
˙
C

1
2

divx0 jrx0h˙j
2
rx0 

.k/
˙
; ˆ

.k/
˙
WD.rx0h˙;rx0 

.k/
˙
/Rn :

Employing this representation, we integrate by parts to obtain

.f
.k/

2;˙
; 
.i/
˙
/L2.!ı/

D

Z
@!ı

�
ˆ
.k/
˙

@h˙

@�
�

1

2
jrx0h˙j

2 @ 
.i/
˙

@�

�
 
.i/
˙

dsC

Z
!ı
ˆ
.i/
˙
ˆ
.k/
˙

dx0

C
�

2

Z
!ı
jrx0h˙j

2 
.i/
˙
 
.k/
˙

dx0�
1

2

Z
!d

jrx0h˙j
2.rx0 

.i/
˙
;rx0 

.k/
˙
/Rd dx0: (5-35)

Applying (3-44), we have

ˆ
.k/
˙
D
@h˙

@�

@ 
.k/
˙

@�
Crh˙ � .E� �BG�1

@!/
�2
r 

.k/
˙

in a vicinity of @!. Hence, by (5-5), (5-27) and (5-28),

ˆ
.k/
˙
D

b1

2
p
�
‰
.1/

k
CO.1/; � !C0; (5-36)

�
ˆ
.k/
˙

@h˙

@�
�

1

2
jrx0h˙j

2 @ 
.i/
˙

@�

�
 
.i/
˙

n�1Y
jD1

.1� �Kj / ds

D˙
1

8�
b2

1‰
.1/
i ‰

.1/

k
C

1

2
p
�

b1b2‰
.0/
i ‰

.1/

k
C

1
8
b2

1‰
.1/
i ‰

.1/

k
�

1
8
b2

1K‰
.0/
i ‰

.1/

k

C
1
4
.b2

1‰
.2;˙/

k
˙ 3b1b3‰

.1/

k
˙ 2b2

2‰
.1/

k
C 2b1rb1 �‰

.0/

k
/‰

.0/
i CO.

p
�/; � !C0:
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Substituting the last identity into (5-35) and using (3-42) and (5-24), we get

.f
.k/

2;C
;  

.i/
C /L2.!ı/

C .f
.k/

2;�
;  .i/� /L2.!ı/

D

Z
!ı

jrx0hCj
2

2

�
� 

.i/
C  

.k/
C � .rx0 

.i/
C ;rx0 

.k/
C /Rd

�
dx0

C

Z
!ı

jrx0h�j
2

2

�
� .i/�  

.k/
� � .rx0 

.i/
� ;rx0 

.k/
� /Rd

�
dx0

C

Z
!ı
.ˆ
.i/
C ˆ

.k/
C Cˆ

.i/
� ˆ

.k/
� / dx0C ı�1=2

Z
@!

b1b2‰
.0/
i ‰

.0/

k
ds

C

Z
@!

b2
1

4
‰
.1/
i ‰

.1/

k
ds�

Z
@!

b2
1

4
‰
.0/
i .�@! C�/‰

.0/

k
ds

C

Z
@!

b1‰
.0/
i rb1 � r‰

.0/

k
dsCO.ı1=2/; ı!C0:

We integrate by parts once again, this time over @!, and we haveZ
@!

b2
1‰

.0/
i

�
�@! C

2

b1

rb1 � r C�

�
‰
.0/

k
ds D

Z
@!

b2
1

�
�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k

�
ds: (5-37)

Substituting the last two identities into (5-34) yields

1

ln "
lim
ı!C0

�Z
!ı

jrx0hCj
2

2

�
� 

.i/
C  

.k/
C � .rx0 

.i/
C ;rx0 

.k/
C /Rd

�
dx0

C

Z
!ı

jrx0h�j
2

2

�
� .i/�  

.k/
� �.rx0 

.i/
� ;rx0 

.k/
� /Rd

�
dx0C

Z
!ı
.ˆ
.i/
C ˆ

.k/
C Cˆ

.i/
� ˆ

.k/
� /dx0

C ln ı
Z
@!

b2
1

4

�
‰
.1/
i ‰

.1/

k
C�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k

�
ds

�
C

Z
@!

b2
1

4 ln "
.1C 4 ln 2� 2 ln b1/

�
‰
.1/
i ‰

.1/

k
C‰

.0/
i .�@! C�/‰

.0/

k

�
ds

C

Z
@!

b1

ln "
.2 ln 2� ln b1/‰

.0/
i rb1 � r‰

.0/

k
ds

�

Z
@!

b2
1

2

�
‰
.1/

k
‰
.1/
i C‰

.0/
i

�
�@! C

2

b1

rb1 � r C�

�
‰
.0/

k

�
dsC�kıik D 0; (5-38)

as i; k D 1; : : : ;m. It follows from (5-36), (5-29) and (5-5) that

jrx0hCj
2
�
� 

.i/
C  

.k/
C � .rx0 

.i/
C ;rx0 

.k/
C /Rd

�
Cjrx0h�j

2
�
� .i/�  

.k/
� � .rx0 

.i/
� ;rx0 

.k/
� /Rd

�
D

b2
1

2�
.�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k
/CO.��1=2/; � !C0;

ˆ
.i/
˙
ˆ
.k/
˙
D

b2
1

4�
‰
.1/
i ‰

.1/

k
CO.��1=2/; � !C0:
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Hence, the limit in (5-38) is finite. To calculate the boundary integrals in (5-38) we integrate by parts:Z
@!

b2
1

4
.1C4 ln 2�2 ln b1/

�
‰
.1/
i ‰

.1/

k
C‰

.0/
i .�@!C�/‰

.0/

k

�
dsC

Z
@!

b1.2 ln 2�ln b1/‰
.0/
i rb1�r‰

.0/

k
ds

D

Z
@!

b2
1

4
.1C 4 ln 2� 2 ln b1/

�
‰
.1/
i ‰

.1/

k
C�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k

�
ds:

Due to this identity, (5-37), the definition of b1 in (3-10) and the definitions (2-9) and (2-10) of the
matrices ƒ.0/ and ƒ.1/, respectively, we can rewrite (5-38) in the final form

�kıik Dƒ
.0/

ik
C

1

ln "
ƒ
.1/

ik
:

Since the matrix on the right-hand side of the last identity is diagonal, we conclude that the solvabil-
ity condition for the problem (5-4), (5-23) is satisfied provided �k are the eigenvalues of the matrix
ƒ.0/C 1

ln "ƒ
.1/. It follows from [Kato 1966, Chapter II, Section 6.1, Theorem 6.1] that the eigenvalues

of this matrix are holomorphic in 1
ln " and converge to those of ƒ.0/ as "! 0.

In view of the choice of �i the problems (5-4), (5-33) are solvable. We observe that each of the
functions �.k/

˙
is defined up to a linear combination of the eigenfunctions  .i/

˙
. The exact values of the

coefficients of these linear combinations can be determined while constructing the next terms in the
asymptotic expansions for �k."/ and  .k/" . The formal constructing of the asymptotic expansions is
complete.

Justification of the asymptotics. In order to justify the obtained asymptotics, one has to construct ad-
ditional terms. This is a general and standard situation for singularly perturbed problems. In our case
one should construct the terms of order up to O."4/ in the outer expansion for the eigenfunctions and for
the eigenvalues, and the terms of order up to O."6/ in the inner expansion for the eigenfunctions. The
asymptotics with the additional terms read

�k."/D �C "
2 ln "�k

�
1

ln "

�
C "4 ln2 " �k."/C � � � ;

 .k/"; ex D I". k C "
2 ln "�k C "

4 ln2 "�k C � � � /;  
.k/
"; in D v

.k/
0
C

6X
iD2

"iv
.k/
i C � � � ; (5-39)

where �k D .�
.k/
C ; � .k/� /, � .k/

˙
D �

.k/
˙
.x0; "/, v.k/i D v

.k/
i .�;P; "/, and we used that v.k/

1
D 0 by (5-16),

(5-22). The equations for � .k/
˙

are

.��x0 ��/�
.k/
˙
D

1

ln "
H
.2/
˙
�
.k/
˙
C

1

ln2 "
H
.4/
˙
 
.k/
˙
C�k�

.k/
˙
C �k 

.k/
˙
; x0 2 !˙;

H
.4/
˙
WD

3
8
jrx0h˙j

4�x0 �
1
2
jrx0h˙j

2 divx0
�

1
2
jrx0h˙j

2E�Q˙
�
rx0

� divx0
�

1
8
jrx0h˙j

4EC 1
2

Q˙jrx0h˙j
2
CQ2

˙

�
rx0 :
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The functions � .k/
˙

should satisfy the asymptotics

�
.k/
˙
.x0; "/DW

.k/
4;2;˙

.x0; "/C
1

ln "
W
.k/

4;1;˙
.x0; "/C

1

ln2 "
W
.k/

4;0;˙
.x0; "/C o.1/; � !C0;

W
.k/

4;2;˙
D�

1
32

b3
1

�
b1.�@! C�/‰

.0/

k
C 2rb1 � r‰

.0/

k

�
;

W
.k/

4;1;˙
D

1
32

b3
1.ln � C 1C 4 ln 2� 2 ln b1/

�
b1.�@! C�/‰

.0/

k
C 2rb1 � r‰

.0/

k

�
;

W
.k/

4;0;˙
D˙

1

128

‰
.1/

k
b4

1

�
C

1

8

‰
.1/

k
b3

1
b2

p
�

�
1

128
b3

1

�
b1.�@! C�/‰

.0/

k
C 2rb1 � r‰

.0/

k

�
.ln � C 4 ln 2� 2 ln b1C 1/2

�
1

128
b3

1

�
b1.�@! C�/‰

.0/

k
� 2rb1 � r‰

.0/

k

�
˙

1
256
‰
.1/

k
.3Kb4

1 C 48b3
1b3C 128b2

1b2
2/:

The equations for the functions v.k/
5

, v.k/
6

are obtained in the same way as those for v.k/i , i D 0; : : : ; 4,
from

L�4v
.k/
5
C

�1X
iD�3

Liv
.k/
1�i

L1v
.k/
0
D 0 on R� @!;

L�4v
.k/
6
C

0X
iD�3

Liv
.k/
2�i
CL2v

.k/
0
D �v

.k/
2
C ln " �kv

.k/
0

on R� @!;

where the operators L1, L2 are the next terms in the expansion (3-25). It can be shown that the problem
for � .k/

˙
is solvable for some �k."/. The equations for v.k/

5
and v.k/

6
can be solved explicitly. The arbitrary

coefficients C
.k/
5;1

, C
.k/
5;0

, C
.k/
6;1

, C
.k/
6;0

appearing in v.k/
5

, v.k/
6

can be determined while matching the inner
and outer expansions.

We now introduce the partial sums

y�.k/" D �C "
2 ln "�k

�
1

ln "

�
C "4 ln2 " �k."/;

y .k/"; ex D I". k C "
2 ln "�k C "

4 ln2 "�k/; y 
.k/
"; in D v

.k/
0
C

6X
iD2

"iv
.k/
i

and define the final approximation for the eigenfunctions as

y .k/" .x/D y .k/"; ex.x/�

�
�

"˛

�
C y 

.k/
"; in.�;P /

�
1��

�
�

"˛

��
;

where ˛ 2 .0; 1/ is a fixed constant, and � is the cut-off function introduced in the proof of Lemma 4.4.

Lemma 5.2. The function y .k/" 2 C1.S"/ satisfies the convergence

k y .k/" �I" kkL2.S"/! 0; "!C0; (5-40)

and the equation
.H"�

y�.k/" / y .k/" D F .k/" ; (5-41)
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where for the right-hand side the uniform in " estimate

kF .k/" kL2.S"/ 6 C "5˛=2 (5-42)

holds true. The relations
.I" i ;I" j /L2.S"/! ıij ; "!C0; (5-43)

are valid.

The proof of this lemma is not very difficult and is based on lengthy and rather technical, but straight-
forward, calculations. Because of this, and in order not to overload the text with long technical formulas,
we shall skip these here.

It follows from Lemma 4.6 and (5-41) that

y .k/" D

mX
iD1

 
.i/
"

�i."/��k."/
.F .k/" ;  .i/" /L2.S"/CR".�k."//F

.k/
" ; (5-44)

and, by (5-42),
kR".�k."//F

.k/
" kW 1

2
.S"/
6 C "5˛=2; k D 1; : : : ;m; (5-45)

where the constant C is independent of ". We calculate the scalar products of the functions y .k/" in L2.S"/

taking into consideration (5-44) and the properties of the operator R" described in Lemma 4.6:

. y .k/" ; y .p/" /L2.S"/ D

mX
iD1



.k/
i ."/


.p/
i ."/C

�
R".�k."//F

.k/
" ;R".�

.p/
" /F .p/"

�
L2.S"/

;


 .k/" ."/ WD
1

�i."/�y�
.k/
"

.F .k/" ;  .i/" /L2.S"/:

The identities obtained and (5-45), (5-40), (5-43) yield
mX

iD1



.k/
i ."/


.p/
i ."/! ıkp; "!C0: (5-46)

In particular, as p D k it implies
j

.k/
i ."/j6 3

2
(5-47)

for sufficiently small ". We introduce the matrix R" WD .

.k/
i ."// and rewrite (5-46) as R"R�"!E, "!C0,

where � denotes matrix transposition. Thus, jdet R"j ! 1 as "!C0. Therefore, for each sufficiently
small " there exists a permutation .i1."/; i2."/; : : : ; im."// such thatˇ̌̌̌ mY

iD1



.k/

ik."/
."/

ˇ̌̌̌
> 1

2m!
: (5-48)

For a given " we rearrange the eigenvalues �i."/ so that ik."/D k, which by (5-47), (5-48) yields

j

.i/
i ."/j> 2m�2

3m�1m!
; i D 1; : : : ;m:
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In view of the definition of 
 .k/
k
."/, (5-42), and the normalization of  .i/" it follows that

j�i."/�y�i."/j6
3m�1m!

2m�2

ˇ̌
.F .i/" ;  .i/" /L2.S"/

ˇ̌
6 C "5˛=2:

Choosing ˛ > 4=5, we arrive at the asymptotics (2-11).
Define now

z .k/" D I". k C "
2 ln "�k/�

�
�

"˛

�
C

�
v
.k/
0
C

4X
iD2

"iv
.k/
i

��
1��

�
�

"˛

��
:

By direct calculations one can check that

k y .k/" �
z .k/" kW 1

2
.S"/
D O."

5˛
2 /:

This identity and (5-45) imply

mX
iD1



.k/
i ."/ .i/" D  

.k/
" CO."

5˛
2 /; k D 1; : : : ;m:

Since the right-hand sides of these identities are linearly independent, the functions
Pm

iD1 

.k/
i ."/ 

.i/
"

form a basis spanned over the eigenfunctions  .i/" , i D 1; : : : ;m. Hence, we arrive at:

Theorem 5.3. Let P" be the total projector associated with the eigenvalues �i."/, i D 1; : : : ;m, and zP"
be the projector on the space spanned over z .i/" , i D 1; : : : ;m. Then

P" D zP"CO."2C�/;

where � is any constant in .0; 1=2/.
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STABILIZATION FOR THE SEMILINEAR WAVE EQUATION
WITH GEOMETRIC CONTROL CONDITION

ROMAIN JOLY AND CAMILLE LAURENT

In this article, we prove the exponential stabilization of the semilinear wave equation with a damping
effective in a zone satisfying the geometric control condition only. The nonlinearity is assumed to be
subcritical, defocusing and analytic. The main novelty compared to previous results is the proof of a unique
continuation result in large time for some undamped equation. The idea is to use an asymptotic smoothing
effect proved by Hale and Raugel in the context of dynamical systems. Then, once the analyticity in time
is proved, we apply a unique continuation result with partial analyticity due to Robbiano, Zuily, Tataru
and Hörmander. Some other consequences are also given for the controllability and the existence of a
compact attractor.

Dans cet article, on prouve la décroissance exponentielle de l’équation des ondes semilinéaires avec
un amortissement actif dans une zone satisfaisant seulement la condition de contrôle géométrique. La
nonlinéarité est supposée sous-critique, défocalisante et analytique. La principale nouveauté par rapport
aux résultats précédents est la preuve d’un résultat de prolongement unique en grand temps pour une
solution non amortie. L’idée est d’utiliser un effet régularisant asymptotique prouvé par Hale et Raugel
dans le contexte des systèmes dynamiques. Ensuite, une fois l’analyticité en temps prouvée, on applique
un théorème de prolongement unique avec analyticité partielle dû à Robbiano, Zuily, Tataru et Hörmander.
Des applications à la contrôlabilité et à l’existence d’attracteur global compact pour l’équation des ondes
sont aussi données.

1. Introduction

In this article, we consider the semilinear damped wave equation
�u+ γ (x)∂t u+βu+ f (u)= 0 (t, x) ∈ R+×�,

u(t, x)= 0 (t, x) ∈ R+× ∂�,

(u, ∂t u)= (u0, u1) ∈ H 1
0 (�)× L2(�),

(1-1)

where �= ∂2
t t −1, with 1 being the Laplace–Beltrami operator with Dirichlet boundary conditions. The

domain � is a connected C∞ three-dimensional Riemannian manifold with boundaries, which is either:

(i) Compact.

(ii) A compact perturbation of R3, that is R3
\ D, where D is a bounded smooth domain, endowed with

a smooth metric equal to the euclidean one outside of a ball.
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(iii) A manifold with periodic geometry (cylinder, R3 with a periodic metric, . . . ).

The nonlinearity f ∈ C1(R,R) is assumed to be defocusing, energy subcritical and such that 0 is an
equilibrium point. More precisely, we assume that there exists C > 0 such that

f (0)= 0, s f (s)≥ 0, | f (s)| ≤ C(1+ |s|)p, | f ′(s)| ≤ C(1+ |s|)p−1, (1-2)

with 1≤ p < 5.
We assume β ≥ 0 to be such that 1−β is a negative-definite operator, that is that we have a Poincaré

inequality
∫
�
|∇u|2+β|u|2 ≥ C

∫
�
|u|2 with C > 0. In particular, this may require β > 0 if ∂�=∅ or

if � is unbounded.
The damping γ ∈ L∞(�) is a nonnegative function. We assume that there exist an open set ω ⊂�,

α ∈ R, x0 ∈� and R ≥ 0 such that

� \ B(x0, R)⊂ ω and γ (x)≥ α > 0 for all x ∈ ω. (1-3)

Moreover, we assume that ω satisfies the geometric control condition introduced in [Rauch and Taylor
1974; Bardos et al. 1992]:

(GCC) There exists L > 0 such that any generalized geodesic of � of length L meets the set ω where the
damping is effective.

The associated energy E ∈ C0(X,R+) is given by

E(u) := E(u, ∂t u)=
1
2

∫
�

(|∂t u|2+ |∇u|2+β|u|2)+
∫
�

V (u), (1-4)

where V (u)=
∫ u

0 f (s)ds. Due to assumption (1-2) and the Sobolev embedding H 1(�) ↪→ L6(�), this
energy is well defined and, if u solves (1-1), we have, at least formally,

∂t E(u(t))=−
∫
�

γ (x)|∂t u(x, t)|2 dx ≤ 0. (1-5)

The system is therefore dissipative. We are interested in the exponential decay of the energy of the
nonlinear damped wave equation (1-1), that is, the property:

(ED) For any E0≥ 0, there exist K > 0 and λ> 0 such that, for all solutions u of (1-1) with E(u(0))≤ E0,

E(u(t))≤ K e−λt E(u(0)) for all t ≥ 0.

Property (ED) means that the damping term γ ∂t u stabilizes any solution of (1-1) to zero, which is an
important property from the dynamical and control points of view.

Our main theorem is as follows.

Theorem 1.1. Assume that the damping γ satisfies (1-3) and the geometric control condition (GCC). If f
is real analytic and satisfies (1-2), then the exponential decay property (ED) holds.

Theorem 1.1 applies for nonlinearities f that are globally analytic. Of course, the nonlinearities
f (u) = |u|p−1u are not analytic if p 6∈ {1, 3}, but we can replace these usual nonlinearities by similar
ones as f (u) = (u/ th(u))p−1u, which are analytic for all p ∈ [1, 5). Note that the estimates (1-2) are
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only required for s ∈ R, so that they do not imply that f is a polynomial. Moreover, we can show that
(ED) holds in fact for almost all the nonlinearities f satisfying (1-2), including nonanalytic ones.

More precisely, we set

C1(R)= { f ∈ C1(R) | there exist C > 0 and p ∈ [1, 5) such that (1-2) holds} (1-6)

and endow this set with the Whitney topology (or any other reasonable topology). We recall that the
Whitney topology is the topology generated by the neighborhoods

Nf,δ =
{
g ∈ C1(R) |max

(
| f (u)− g(u)|, | f ′(u)− g′(u)|

)
< δ(u) for all u ∈ R

}
, (1-7)

where f is any function in C1(R) and δ is any positive continuous function. The set C1(R) is a Baire
space, which means that any generic set, that is, any set containing a countable intersection of open and
dense sets, is dense in C1(R) (see Proposition 7.1). The Baire property ensures that the genericity of a set
in C1(R) is a good notion for “the set contains almost all nonlinearities f ”.

Theorem 1.2. Assume that the damping γ satisfies (1-3) and the geometric control condition (GCC).
There exists a generic set G⊂ C1(R) such that the exponential decay property (ED) holds for all f ∈G.

The statements of both theorems lead to some remarks.

• Of course, our results and their proofs should easily extend to any space dimension d ≥ 3 if the exponent
p of the nonlinearity satisfies p < (d + 2)/(d − 2).

• Actually, it may be possible to get λ > 0 in (ED) uniform with respect to the size of the data. We can
take for instance λ = λ̃− ε, where λ̃ is the decay rate of the linear equation. The idea is that once we
know the existence of a decay rate, we know that the solution is close to zero for a large time. Then,
for small solutions, the nonlinear term can be neglected to get almost the same decay rate as the linear
equation. We refer for instance to [Laurent et al. 2010] in the context of KdV equation. Notice that the
possibility to get the same result with a constant K independent of E0 is an open problem.

• The assumption on β is important to ensure some coercivity of the energy and to preclude the spatially
constant functions to be undamped solutions for the linear equation. It has been proved in [Dehman and
Gérard 2002] for R3 and in [Laurent 2011] for a compact manifold that exponential decay can fail without
this term β.

• The geometric control condition is known to be not only sufficient but also necessary for the exponential
decay of the linear damped equation. The proof of the optimality uses some sequences of solutions which
are asymptotically concentrated outside of the damping region. We can use the same idea in our nonlinear
stabilization context. First, the observability for a certain time eventually large is known to be equivalent
to the exponential decay of the energy. This was for instance noticed in [Dehman and Gérard 2002,
Proposition 2] in a similar context; see also Proposition 2.5 of this paper. Then we take as initial data the
same sequence that would give a counterexample for the linear observability. The linearizability property
(see [Gérard 1996]) allows to obtain that the nonlinear solution is asymptotically close to the linear one.
This contradicts the observability property for the nonlinear solution as it does for the linear case. Hence
the geometric control condition is also necessary for the exponential decay of the nonlinear equation.
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•Our geometrical hypotheses on�may look strange, however they are only assumed for sake of simplicity.
In fact, our results should apply more generally for any smooth manifold with bounded geometry, that
is, such � that can be covered by a set of C∞ charts αi : Ui 7→ αi (Ui ) ⊂ R3 such that αi (Ui ) is equal
either to B(0, 1) or to B+(0, 1) = {x ∈ B(0, 1), x1 > 0} (in the case with boundaries) and such that,
for any r ≥ 0 and s ∈ [1,∞], the W r,s norm of a function u in W r,s(�,R) is equivalent to the norm(∑

i∈N ‖u ◦α
−1
i ‖

s
W r,s(αi (Ui ))

)1/s .
The stabilization property (ED) for Equation (1-1) has been studied in [Haraux 1985a; Zuazua 1990;

1991; Dehman 2001] for p < 3. For p ∈ [3, 5), our main reference is the work of Dehman, Lebeau and
Zuazua [Dehman et al. 2003]. This work is mainly concerned with the stabilization problem previously
described on the Euclidean space R3 with flat metric and stabilization active outside of a ball. The main
purpose of this paper is to extend their result to a nonflat geometry where multiplier methods cannot be
used or do not give the optimal result with respect to the geometry. Other stabilization results for the
nonlinear wave equation can be found in [Aloui et al. 2011] and the references therein. Some works have
been done in the difficult critical case p = 5; we refer to [Dehman and Gérard 2002; Laurent 2011].

The proofs in these articles use three main ingredients:

(i) The exponential decay of the linear equation, which is equivalent to the geometric control condition
(GCC).

(ii) A more or less involved compactness argument.

(iii) A unique continuation result implying that u ≡ 0 is the unique solution of{
�u+βu+ f (u)= 0,
∂t u = 0 on [−T, T ]×ω.

(1-8)

The results are mainly of the type “geometric control condition” plus “unique continuation” implies
“exponential decay”. This type of implication is even stated explicitly in some related works for the
nonlinear Schrödinger equation [Dehman et al. 2006; Laurent 2010].

In the subcritical case p < 5, the less understood point is the unique continuation property (iii). In the
previous works as [Dehman et al. 2003], the authors use unique continuation results based on Carleman
estimates. The resulting geometric assumptions are not very natural and are stronger than (GCC). Indeed,
the unique continuation was often proved with some Carleman estimates that required some strong
geometric conditions. For instance for a flat metric, the usual geometric assumption that appear are often
of “multiplier type” that is ω is a neighborhood of {x ∈ ∂� | (x − x0) · n(x) > 0} which are known to be
stronger than the geometric control condition (see [Miller 2002] for a discussion about the links between
these assumptions). Moreover, on curved spaces, this type of condition often needs to be checked by
hand in each situation, which is mostly impossible.

Our main improvement in this paper is the proof of unique continuation in infinite time under the
geometric control condition only. We show that, if the nonlinearity f is analytic (or generic), then one
can use the result of Robbiano and Zuily [1998] to obtain a unique continuation property (iii) for infinite
time T =+∞ with the geometric control condition (GCC) only.
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The central argument of the proof of our main result, Theorem 1.1, is the unique continuation property
of [Robbiano and Zuily 1998] (see Section 3). This result applies for solutions u of (1-8) being smooth
in space and analytic in time. If f is analytic, then the solutions of (1-1) are of course not necessarily
analytic in time since the damped wave equations are not smoothing in finite time. However, the damped
wave equations admit an asymptotic smoothing effect, i.e., are smoothing in infinite time. Hale and
Raugel [2003] have shown that, for compact trajectories, this asymptotic smoothing effect also concerns
the analyticity (see Section 5). In other words, combining [Robbiano and Zuily 1998] and [Hale and
Raugel 2003] shows that the unique solution of (1-8) is u ≡ 0 if f is analytic and if T = +∞. This
combination has already been used by dynamicists for p < 3 (Hale and Raugel, private communication;
[Joly 2007]).

One of the main interests of this paper is the use of arguments coming from both the dynamical study
and the control theory of the damped wave equations. The reader familiar with the control theory could
find interesting the use of the asymptotic smoothing effect to get unique continuation property with
smooth solutions. The one familiar with the dynamical study of PDEs could be interested in the use of
Strichartz estimates to deal with the case p ∈ [3, 5). The main part of the proof of Theorem 1.1 is written
with arguments coming from the dynamical study of PDEs. They are simpler than the corresponding ones
of control theory, but far less accurate since they do not give any estimation for the time of observability.
Anyway, such accuracy is not important here since we use the unique continuation property for (1-8) with
T =+∞. We briefly recall in Section 8 how these propagation of compactness and regularity properties
could have been proved with some arguments more usual in the control theory.

Moreover, we give two applications of our results in both contexts of control theory and dynamical
systems. First, as it is usual in control theory, some results of stabilization can be coupled with local
control theorems to provide global controllability in large time.

Theorem 1.3. Assume that f satisfies the conditions of Theorem 1.1 or belongs to the generic set G
defined by Theorem 1.2. Let R0 > 0 and ω satisfying the geometric control condition. Then there exists
T > 0 such that for any (u0, u1) and (ũ0, ũ1) in H 1

0 (�)× L2(�) with

‖(u0, u1)‖H1×L2 ≤ R0 and ‖(ũ0, ũ1)‖H1×L2 ≤ R0

there exists g ∈ L∞([0, T ], L2(�)) supported in [0, T ]×ω such that the unique strong solution of{
�u+βu+ f (u)= g on [0, T ]×�,
(u(0), ∂t u(0))= (u0, u1),

satisfies (u(T ), ∂t u(T ))= (ũ0, ũ1).

The second application of our results concerns the existence of a compact global attractor. A compact
global attractor is a compact set, which is invariant by the flow of the PDE and which attracts the bounded
sets. The existence of such an attractor is an important dynamical property because it roughly says that
the dynamics of the PDE may be reduced to dynamics on a compact set, which is often finite-dimensional.
See [Hale 1988; Raugel 2002] for reviews of this concept. Theorems 1.1 and 1.2 show that {0} is a global
attractor for the damped wave equation (1-1). Of course, it is possible to obtain a more complex attractor
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by considering an equation of the type
∂2

t t u+ γ (x)∂t u =1u−βu− f (x, u) (x, t) ∈�×R+,

u(x, t)= 0 (x, t) ∈ ∂�×R+,

(u, ∂t u)= (u0, u1) ∈ H 1
0 × L2,

(1-9)

where f ∈ C∞(�×R,R) is real analytic with respect to u and satisfies the following properties. There
exist C > 0, p ∈ [1, 5) and R > 0 such that for all (x, u) ∈�×R,

| f (x, u)| ≤ C(1+ |u|)p, | f ′x(x, u)| ≤ C(1+ |u|)p, | f ′u(x, u)| ≤ C(1+ |u|)p−1, (1-10)

x ∈ ∂� H⇒ f (x, 0)= 0, (1-11)

(x 6∈ B(x0, R) or |u| ≥ R) H⇒ f (x, u)u ≥ 0, (1-12)

where x0 denotes a fixed point of the manifold.

Theorem 1.4. Assume f is as above. Then the dynamical system generated by (1-9) in H 1
0 (�)× L2(�)

is gradient and admits a compact global attractor A.

Of course, we would get the same result for f in a generic set similar to the one of Theorem 1.2.
We begin this paper by setting our main notations and recalling the basic properties of Equation (1-1)

in Section 2. We recall the unique continuation property of Robbiano and Zuily in Section 3, whereas
Sections 4 and 5 are concerned by the asymptotic compactness and the asymptotic smoothing effect of
the damped wave equation. The proofs of our main results, Theorem 1.1 and 1.2, are given in Sections 6
and 7, respectively. An alternative proof, using more usual arguments from control theory, is sketched in
Section 8. Finally, Theorems 1.3 and 1.4 are discussed in Section 9.

2. Notations and basic properties of the damped wave equation

In this paper, we use the following notations:

U = (u, ut), F = (0, f ), A =
(

0 Id
1−β −γ

)
.

In this setting, (1-1) becomes
∂tU (t)= AU (t)+ F(U ).

We set X = H 1
0 (�)× L2(�) and for s ∈ [0, 1], we denote by X s the space

X s
= D

(
(−1+β)(s+1)/2)

× D
(
(−1+β)s/2

)
= (H 1+s(�)∩ H 1

0 (�))× H s
0 (�).

Notice that X0
= X and X1

= D(A) (even if γ is only in L∞).
We recall that E denotes the energy defined by (1-4). We also emphasize that (1-2) and the invertibility

of 1− β implies that a set is bounded in X if and only if its energy E is bounded. Moreover, for all
E0 ≥ 0, there exists C > 0 such that

E(u, v)≤ E0 for all (u, v) ∈ X =⇒
1
C
‖(u, v)‖2X ≤ E(u, v)≤ C ‖(u, v)‖2X . (2-1)
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To simplify some statements in the proofs, we assume without loss of generality that 3< p < 5. This will
avoid some meaningless statements with negative Lebesgue exponents since p = 3 is the exponent where
Strichartz estimates are not necessary and can be replaced by Sobolev embeddings.

We recall that � is endowed with a metric g. We denote by d the distance on � defined by

d(x, y)= inf{l(c) | c ∈ C∞([0, 1], �) with c(0)= x and c(1)= y},

where l(c) is the length of the path c according to the metric g. A ball B(x, R) in � is naturally defined
by

B(x, R)= {y ∈�, d(x, y) < R}.

For instance, if �= R3
\ BR3(0, 1), the distance between (0, 0, 1) and (0, 0,−1) is π (and not 2) and the

ball B((0, 0, 1), π) has nothing to do with the classical ball BR3((0, 0, 1), π) of R3.

Cauchy problem. The global existence and uniqueness of solutions of the subcritical wave equation (1-1)
with γ ≡ 0 has been studied in [Ginibre and Velo 1985; 1989]. Their method also applies for γ 6= 0 since
this term is linear and well defined in the energy space X . Moreover, their argument to prove uniqueness
also yields the continuity of the solutions with respect to the initial data.

The central argument is the use of Strichartz estimates.

Theorem 2.1 (Strichartz estimates). Let T > 0 and (q, r) satisfy

1
q
+

3
r
=

1
2
, q ∈ [7/2,+∞]. (2-2)

There exists C = C(T, q) > 0 such that for every G ∈ L1([0, T ], L2(�)) and every (u0, u1) ∈ X , the
solution u of {

�u+ γ (x)∂t u = G(t),

(u, ∂t u)(0)= (u0, u1),

satisfies the estimate

‖u‖Lq ([0,T ],Lr (�)) ≤ C
(
‖u0‖H1(�)+‖u1‖L2(�)+‖G‖L1([0,T ],L2(�))

)
.

The result was stated in the Euclidean space R3 by Strichartz [1977] and Ginibre and Velo with
q ∈ (2,+∞]. Kapitanskiı̆ [1990] extended the result to variable coefficients. On a bounded domain,
the first estimates were proved by Burq, Lebeau and Planchon [Burq et al. 2008] for q ∈ [5,+∞] and
extended to a larger range by Blair, Smith and Sogge in [Blair et al. 2009]. Note that, thanks to the
counterexamples of Ivanovici [2012], we know that we cannot expect some Strichartz estimates in the
full range of exponents in the presence of boundaries.

From these results, we deduce the estimates for the damped wave equation by absorption for T small
enough. We can iterate the operation in a uniform number of steps. Actually, for the purpose of the
semilinear wave equation, it is sufficient to consider the Strichartz estimate L2p/(p−3)([0, T ], L2p(�)),
which gives u p

∈ L2/(p−3)([0, T ], L2(�))⊂ L1([0, T ], L2(�)) because 1< 2/(p− 3) <+∞.
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Theorem 2.2 (Cauchy problem). Let f satisfy (1-2). Then for any (u0, u1) ∈ X = H 1
0 (�)× L2(�) there

exists a unique solution u(t) of the subcritical damped wave equation (1-1). Moreover, this solution is
defined for all t ∈ R and its energy E(u(t)) is nonincreasing in time.

For any E0 ≥ 0, T ≥ 0 and (q, r) satisfying (2-2), there exists a constant C such that if u is a solution
of (1-1) with E(u(0))≤ E0, then

‖u‖Lq ([0,T ],Lr (�)) ≤ C
(
‖u0‖H1(�)+‖u1‖L2(�)

)
.

In addition, for any E0 ≥ 0 and T ≥ 0, there exists a constant C such that if u and ũ are two solutions
of (1-1) with E(u(0))≤ E0 and E(ũ(0))≤ E0, then

sup
t∈[−T,T ]

‖(u, ∂t u)(t)− (ũ, ∂t ũ)(t)‖X ≤ C‖(u, ∂t u)(0)− (ũ, ∂t ũ)(0)‖X .

Proof. The existence and uniqueness for small times is a consequence of the Strichartz estimates and
of the subcriticality of the nonlinearity; see [Ginibre and Velo 1989]. The solution can be globalized
backward and forward in time thanks to the energy estimates (1-5) for smooth solutions. Indeed,

E(t)≤ E(s)+C
∫ s

t
E(τ ) dτ,

and thus Gronwall inequality for t ≤ s and the decay of energy for t ≥ s show that the energy does not
blow up in finite time. This allows us to extend the solution for all times since the energy controls the
norm of the space X by (2-1).

For the uniform continuity estimate, we notice that w = u− ũ is solution of{
�w+βw+ γ (x)∂tw =−wg(u, ũ),
(w, ∂tw)(0)= (u, ∂t u)(0)− (ũ, ∂t ũ)(0),

where g(s, s̃) =
∫ 1

0 f ′(s + τ(s̃ − s)) dτ fulfills |g(s, s̃)| ≤ C(1+ |s|p−1
+ |s̃|p−1). Let q = 2p/(p− 3),

then the Strichartz and Hölder estimates give

‖(w, ∂tw)(t)‖L∞([0,T ],X)∩Lq ([0,T ],L2p) ≤ C‖(w, ∂tw)(0)‖X +C‖wg(u, ũ)‖L1([0,T ],L2)

≤ C‖(w, ∂tw)(0)‖X +CT ‖w‖L∞([0,T ],L2)

+ T θ
‖w‖Lq ([0,T ],L2p)

(
‖u‖p−1

Lq ([0,T ],L2p)
+‖ũ‖p−1

Lq ([0,T ],L2p)

)
with θ = (5− p)/2> 0. We get the expected result for T small enough by absorption since we already
know a uniform bound (depending on E0) for the Strichartz norms of u and ũ. Then we iterate the
operation to get the result for large T . �

Exponential decay of the linear semigroup. In this paper, we will strongly use the exponential decay
for the linear semigroup in the case where γ may vanish but satisfies the geometric assumptions of this
paper. In this case, (1-3) enables us to control the decay of energy outside a large ball and the geometric
control condition (GCC) enables to control the energy trapped in this ball.
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Proposition 2.3. Assume that γ ∈ L∞(�) satisfies (1-3) and (GCC). There exist two positive constants C
and λ such that

|||eAt
|||L(X s) ≤ Ce−λt for all s ∈ [0, 1] and all t ≥ 0.

The exponential decay of the damped wave equation under the geometric control condition is well
known since the works of Rauch and Taylor [1974] on a compact manifold and Bardos, Lebeau and
Rauch [Bardos et al. 1988; 1992] on a bounded domain. Yet we did not find any reference for unbounded
domains ([Aloui and Khenissi 2002; Khenissi 2003] concern unbounded domains but local energy only).
It is noteworthy that the decay of the linear semigroup in unbounded domains seems not to have been
extensively studied for the moment.

We give a proof of Proposition 2.3 using a microlocal defect measure as done in [Lebeau 1996; Burq
1997a] (see also [Burq and Gérard 1997] for the proof of the necessity). The only difference with respect
to these results is that the manifold that we consider may be unbounded. Since a microlocal defect
measure only reflects the local propagation, we thus have to use the property of equipartition of the energy
to deal with the energy at infinity and to show a propagation of compactness (see [Dehman et al. 2003]
for the flat case).

Lemma 2.4. Let T > L , where L is given by (GCC). Assume that (Un,0) ⊂ X is a bounded sequence,
which weakly converges to 0 and assume that Un(t)= (un(t), ∂t un(t))= eAtUn,0 satisfies∫ T

0

∫
�

γ (x)|∂t un|
2
→ 0. (2-3)

Then (Un,0) converges to 0 strongly in X.

Proof. Let µ be a microlocal defect measure associated to (un) (see [Gérard 1991; Tartar 1990; Burq
1997b] for the definition). Note that (2-3) implies that µ can also be associated to the solution of the wave
equation without damping, so the weak regularity of γ is not problematic for the propagation and we get
that µ is concentrated on {τ 2

− |ξ |2x = 0}, where (τ, ξ) are the dual variables of (t, x). Moreover, (2-3)
implies that γ τ 2µ= 0 and so µ≡ 0 on S∗(]0, T [×ω). Then, by using the propagation of the measure
along the generalized bicharacteristic flow of Melrose–Sjöstrand and the geometric control condition
satisfied by ω, we obtain µ≡ 0 everywhere. We do not give more details about propagation of microlocal
defect measures and refer to the Appendix of [Lebeau 1996] or Section 3 of [Burq 1997b] (see also
[Gérard and Leichtnam 1993] for some close propagation results in a different context). Since µ≡ 0, we
know that

Un→ 0 on H 1
× L2(]0, T [×B(x0, R))

for every R > 0.
To finish the proof, we need the classical equipartition of the energy to get the convergence to 0 in

the whole manifold �. Since γ is uniformly positive outside a ball B(x0, R), (2-3) and the previous
arguments imply that

∂t un→ 0 in L2([0, T ]×�).
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Let ϕ ∈ C∞0 (]0, T [) with ϕ ≥ 0 and ϕ(t)= 1 for t ∈ [ε, T − ε]. We multiply the equation by ϕ(t)un and
we obtain

0=−
∫∫
[0,T ]×�

ϕ(t)|∂t un|
2
−

∫∫
[0,T ]×�

ϕ′(t)∂t unun +

∫∫
[0,T ]×�

ϕ(t)|∇un|
2

+

∫∫
[0,T ]×�

ϕ(t)β|un|
2
+

∫∫
[0,T ]×�

ϕ(t)γ (x)∂t unun.

The L2 norm of un(t) is bounded, while ∂t un→ 0 in L2([0, T ]×�), so the first, second and fifth terms
converge to zero. Then the above equation yields∫∫

[0,T ]×�
ϕ(t)

(
β|un|

2
+ |∇un|

2)
→ 0.

Finally, notice that the energy identity ‖Un,0‖
2
X = ‖Un(t)‖2X +

∫ T
0

∫
�
γ (x)|∂t un|

2 shows that∫∫
[0,T ]×�

ϕ(t)
(
β|un|

2
+ |∇un|

2)
∼ ‖Un,0‖

2
X

∫ T

0
ϕ(t),

and thus that ‖Un,0‖X goes to zero. �

Proof of Proposition 2.3. Once Lemma 2.4 is established, the proof follows the arguments of the classical
case, where � is bounded. We briefly recall them.

We first treat the case s = 0. As in Proposition 2.5, the exponential decay of the energy is equivalent
to the observability estimate, that is, the existence of C > 0 and T > 0 such that, for any trajectory
U (t)= eAtU0 in X , ∫ T

0

∫
�

γ (x)|∂t u|2 ≥ C‖U (0)‖2X . (2-4)

We argue by contradiction: Assume that (2-4) does not hold for any positive T and C . Then there
exists a sequence of initial data Un(0) with ‖Un(0)‖X = 1 and such that∫ n

0

∫
�

γ (x)|∂t un(t, x)|2dtdx→ 0 as n→+∞,

where (un, ∂t un)(t)=Un(t)= eAtUn(0). Let Ũn =Un(n/2+ · ). We have∫ n/2

−n/2

∫
�

γ (x)|∂t ũn(t, x)|2dtdx→ 0 as n→+∞,

and, for any t ∈ [−n/2, n/2],

‖Ũn(t)‖2X = ‖Ũn(−n/2)‖2X −
∫ t

−n/2

∫
�

γ (x)|∂t ũn(s, x)|2dsdx→ 1 as n→+∞.

We can thus assume that Un(0) converges to U∞(0)∈ X , weakly in X . For any T >0, Un(t) and ∂tUn(t) are
bounded in L∞([−T, T ], X) and L∞([−T, T ], L2(�)×H−1(�)), respectively. Thus, by using Ascoli’s
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theorem, we may also assume that Un(t) strongly converges to U∞(t) in L∞([−T, T ], L2(K )×H−1(K )),
where K is any compact of �. Hence (u∞, ∂t u∞)(t)=U∞(t)= eAtU∞(0) is a solution of{

�u∞+βu∞ = 0 on R×�,

∂t u∞ = 0 on R×ω.
(2-5)

in L2
× H−1. Since U∞(0) ∈ X belongs to X , we deduce that, in fact, U∞(t) solves (2-5) in X .

To finish the proof of Proposition 2.3, we have to show that U∞ ≡ 0. Indeed, applying Lemma 2.4,
we would get that Un converges strongly to 0, which contradicts the hypothesis ‖Un(0)‖X = 1. Note
that U∞ ≡ 0 is a direct consequence of a unique continuation property as in Corollary 3.2. However,
Corollary 3.2 requires � to be smooth, whereas Proposition 2.3 could be more general. Therefore, we
recall another classical argument to show that U∞ ≡ 0.

Denote by N the set of functions U∞(0) ∈ X satisfying (2-5), which is obviously a linear subspace of
X . We will prove that N = {0}. Since γ (x)|∂t u∞|2 ≡ 0 for functions u∞ in N and since N is a closed
subspace, Lemma 2.4 shows that any weakly convergent subsequence of N is in fact strongly convergent.
By the Riesz theorem, N is therefore finite-dimensional. For any t ∈ R, et A applies N into itself and thus
A|N is a bounded linear operator. Assume that N 6= {0}, then A|N admits an eigenvalue λ with eigenvector
Y = (y0, y1) ∈ N . This means that y1 = λy0 and that (1−β)y0 = λ

2 y0. Moreover, we know that y1 = 0
on ω and so, if λ 6= 0, that y0 = 0 on ω. This implies y0 ≡ 0 by the unique continuation property of
elliptic operators. Finally, if λ= 0, we have (1−β)y0 = 0 and y0 = 0, because, by assumption, 1−β is
a negative definite operator.

So we have proved N = {0} and therefore U∞ = 0, that is, Ũn(0) converges to 0 weakly in X . We can
then apply Lemma 2.4 on any interval [−n/2,−n/2+ T ], where L is the time in the geometric control
condition (GCC) and obtain a contradiction to ‖Un(0)‖X = 1.

Let us now consider the cases s ∈ (0, 1]. The basic semigroup properties (see [Pazy 1983]) show that,
if U ∈ X1

= D(A), then eAtU belongs to D(A) and

‖eAtU‖X1 = ‖AeAtU‖X +‖eAtU‖X = ‖eAt AU‖X +‖eAtU‖X

≤ Ce−λt (‖AU‖X +‖U‖X )= Ce−λt
‖U‖D(A).

This shows Proposition 2.3 for s = 1. Notice that we do not have to require any regularity for γ to obtain
this result. Then Proposition 2.3 for s ∈ (0, 1) follows by interpolating between the cases s = 0 and s = 1
(see [Tartar 2007]). �

First nonlinear exponential decay properties. Theorem 2.2 shows that the energy E is nonincreasing
along the solutions of (1-1). The purpose of this paper is to obtain the exponential decay of this energy in
the sense of property (ED) stated above. We first recall the well-known criterion for exponential decay.

Proposition 2.5. The exponential decay property (ED) holds if and only if there exist T and C such that

E(u(0))≤ C(E(u(0))− E(u(T )))= C
∫∫
[0,T ]×�

γ (x)|∂t u(x, t)|2 dtdx (2-6)

for all solutions u of (1-1) with E(u(0))≤ E0.
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Proof. If (ED) holds then (2-6) holds for T large enough since E(u(0))−E(u(T ))≥ (1−K e−λT )E(u(0)).
Conversely, if (2-6) holds, using E(u(T )) ≤ E(u(0)), we get E(u(T )) ≤ C/(C + 1)E(u(0)) and thus
E(u(kT ))≤ (C/(C+1))k E(u(0)). Using again the decay of the energy to fill the gaps t ∈ (kT, (k+1)T ),
this shows that (ED) holds. �

First, we prove exponential decay in the case of positive damping, which will be helpful to study what
happens outside a large ball since (1-3) is assumed in the whole paper. Note that the fact that −1+β is
positive is necessary to avoid for instance the constant undamped solutions.

Proposition 2.6. Assume that ω =�, that is that γ (x)≥ α > 0 everywhere. Then (ED) holds.

Proof. We recall here the classical proof. We introduce a modified energy

Ẽ(u)=
∫
�

1
2(|∂t u|2+ |∇u|2+β|u|2)+ V (u)+ εu∂t u

with ε > 0. Since
∫
�
|∇u|2 + β|u|2 controls ‖u‖2L2 , Ẽ is equivalent to E for ε small enough and it is

sufficient to obtain the exponential decay of the auxiliary energy Ẽ . Using γ ≥ α > 0 and u f (u)≥ 0, a
direct computation shows for ε small enough that

Ẽ(u(T ))− Ẽ(u(0))=
∫ T

0

∫
�

−γ (x)|∂t u|2+ ε|∂t u|2+ εγ (x)u∂t u− ε(|∇u|2+β|u|2)− εu f (u)

≤−C
∫ T

0
‖(u, ∂t u)‖2H1×L2 ≤−C

∫ T

0
Ẽ(t) dt ≤−CT Ẽ(T ),

where C > 0 is a constant that may change from line to line. Thus, Ẽ(u(0))− Ẽ(u(T ))≥ CT Ẽ(u(T ))
with CT > 0 and therefore Ẽ(u(0))≥ µẼ(u(T )) with µ> 1. As in the proof of Proposition 2.3, this last
property implies the exponential decay of Ẽ and thus the one of E . �

3. A unique continuation result for equations with partially holomorphic coefficients

Comparatively to previous articles on the stabilization of the damped wave equations as [Dehman et al.
2003], one of the main novelties of this paper is the use of a unique continuation theorem requiring partially
analyticity of the coefficients, but very weak geometrical assumptions as shown in Corollary 3.2. We use
here the following result of Robbiano and Zuily [1998]. This result has also been proved independently
by Hörmander [1997] and has been generalized by Tataru [1999]. Note that the idea of using partial
analyticity for unique continuation was introduced by Tataru [1995] but it requires some global analyticity
assumptions that are not fulfilled in our case. All these results use very accurate microlocal analysis
and hold in a much more general framework than the one of the wave equation. However, for sake of
simplicity, we restrict the statement to this case.

Theorem 3.1. Let d≥1, (x0, t0)∈Rd
×R and let U be a neighborhood of (x0, t0). Let (Ai, j (x, t))i, j=1,...,d ,

b(x, t), (ci (x, t))i=1,...,d) and d(x, t) be bounded coefficients in C∞(U,R). Let v be a strong solution of

∂2
t tv = div(A(x, t)∇v)+ b(x, t)∂tv+ c(x, t)∇v+ d(x, t)v, (x, t) ∈U⊂ Rd

×R. (3-1)

Let ϕ ∈ C2(U,R) such that ϕ(x0, t0)= 0 and (∇ϕ, ∂tϕ)(x, t) 6= 0 for all (x, t) ∈U. Assume that:
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(i) The coefficients A, b, c and d are analytic in time.

(ii) A(x0, t0) is a symmetric positive definite matrix.

(iii) The hypersurface {(x, t) ∈ U, ϕ(x, t) = 0} is not characteristic at (x0, t0), that is, that we have
|∂tϕ(x0, t0)|2 6= 〈∇ϕ(x0, t0) | A(x0, t0)∇ϕ(x0, t0)〉.

(iv) v ≡ 0 in {(x, t) ∈U, ϕ(x, t)≤ 0}.

Then v ≡ 0 in a neighborhood of (x0, t0).

Proof. We only have to show that Theorem 3.1 is a direct translation of Theorem A of [Robbiano and
Zuily 1998] in the framework of the wave equation. To use the notations of [ibid.], we let xa be the time
variable and xb the space variable and we set (x0, t0)= x0

= (x0
b , x0

a). Equation (3-1) corresponds to the
differential operator

P = ξ 2
a −

tξb A(xb, xa)ξb− b(xb, xa)ξa − c(xb, xa)ξb− d(xb, xa)

with principal symbol p2 = ξ
2
a −

tξb A(xb, xa)ξb.
All the statements of Theorem 3.1 are obvious translations of Theorem A of [ibid.], except maybe

for the fact that hypothesis (iii) implies the hypothesis of pseudoconvexity of [ibid.]. We compute
{p2, ϕ} = 2ξaϕ

′
a − 2tξb A(xa, xb)ϕ

′

b. Let us set ζ = (x0
a , x0

b , iϕ′a(x
0), ξb+ iϕ′b(x

0)), then {p2, ϕ} (ζ )= 0
if and only if

i(ϕ′a(x
0))2− i tϕ′b(x

0))A(x0)ϕ′b(x
0)−t ξb A(x0)ϕ′b(x

0)= 0.

This is possible only if (ϕ′a(x
0))2= tϕ′b(x

0)A(x0)ϕ′b(x
0), that is if the hypersurface ϕ= 0 is characteristic

at (x0, t0). Thus, if this hypersurface is not characteristic, then the pseudoconvexity hypothesis of
Theorem A of [ibid.] holds. �

The previous theorem allows us to prove some unique continuation result with some optimal time and
geometric assumptions. This allows us to prove unique continuation where the geometric condition is
only, roughly speaking, that we do not contradict the finite speed of propagation.

Corollary 3.2. Let T > 0 (or T =+∞) and let b, (ci )i=1,2,3 and d be coefficients in C∞(�×[0, T ],R).
Assume moreover that b, c and d are analytic in time and that v is a strong solution of

∂2
t tv =1v+ b(x, t)∂tv+ c(x, t)∇v+ d(x, t)v, (x, t) ∈�× (−T, T ). (3-2)

Let O be a nonempty open subset of � and assume that v(x, t)= 0 in O× (−T, T ). Then v(x, 0)≡ 0 in
OT = {x0 ∈�, d(x0,O) < T }.

As consequences:
(a) If T =+∞, then v ≡ 0 everywhere.
(b) If v ≡ 0 in O× (−T, T ) and OT =�, then v ≡ 0 everywhere.

Proof. Since � is assumed to be connected, both consequences are obvious from the first statement.
Let x0 be given such that d(x0,O) < T . There is a point x∗ ∈ O linked to x0 by a smooth curve of

length l < T that stays away from the boundary. We introduce a sequence of balls B(x0, r), . . . , B(xK , r)
with r ∈ (0, T/K ), xk−1 ∈ B(xk, r) and xK = x∗, such that B(xk, r) stays away from the boundary and is
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Figure 1. The proof of Corollary 3.2.

small enough such that it is diffeomorphic to an open set of R3 via the exponential map. Note that such a
sequence of balls exists because the smooth curve linking x0 to xK is compact and of length smaller than
T . We also notice that it is sufficient to prove Corollary 3.2 in each ball B(xk, r). Indeed, this would
enable us to apply Corollary 3.2 in B(xK , r)× (−T, T ) to obtain that v vanishes in a neighborhood
of xK−1 for t ∈ (−T + r, T − r) and then to apply it recursively in B(xK−1, r)× (−T + r, T − r), . . . ,
B(x1, r)× (−T + (K − 1)r, T − (K − 1)r) to obtain that v(x0, 0)= 0.

From now on, we assume that x0 ∈ B(x∗, r) and that v vanishes in a neighborhood O of x∗ for
t ∈ (−r, r). Since d(x0, x∗) < r , we can introduce a nonnegative function h ∈ C∞([−r, r ],R) such that
h(0) > d(x0, x∗), h(±r) = 0 and |h′(t)| < 1 for all t ∈ [−r, r ]. We set U = B(x∗, r)× (−r, r) and for
any λ ∈ [0, 1], we define

ϕλ(x, t)= d(x, x∗)2− λh(t)2.

Since r is assumed to be smaller than the radius of injectivity of the exponential map, ϕλ is a smooth
well-defined function. We prove Corollary 3.2 by contradiction. Assume that v(x0, 0) 6= 0. We denote
by Vλ the volume {(x, t) ∈U, ϕλ(x, t)≤ 0}. We notice that Vλ1 ⊂ Vλ2 if λ1 < λ2, that for small λ, Vλ is
included in O× (−r, r) where v vanishes, and that V1 contains (x0, 0) where v does not vanish. Thus

λ0 = sup{λ ∈ [0, 1] : v(x, t)= 0 for all(x, t) ∈ Vλ}

is well defined and belongs to (0, 1). For t close to −r or r , h(t) is small and the section {x, (x, t) ∈ Vλ0}

of Vλ0 is contained in O where v vanishes. Therefore, by compactness, the hypersurface Sλ0 = ∂Vλ0 must
touch the support of v at some point (x1, t1) ∈U (see Figure 1).

In local coordinates, 1 can be written as div(A(x)∇. )+ c(x) · ∇. Moreover,

〈∇ϕλ|A∇ϕλ〉 = |∇gd( · , x∗)|2g = 1,
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where the index g means that the gradient and norm are taken according to the metric. Therefore, the
hypersurface Sλ0 is noncharacteristic at (x1, t1) in the sense of hypothesis (iii) of Theorem 3.1 since
|∂tϕλ(x, t)| = |λh′(t1)|< 1. Thus, we can apply Theorem 3.1 with ϕ = ϕλ0 at the point (x1, t1), mapping
everything in the three-dimensional Euclidean frame via the exponential chart. We get that v must vanish
in a neighborhood of (x1, t1). This is obviously a contradiction since (x1, t1) has been taken in the support
of v. �

4. Asymptotic compactness

As soon as t is positive, a solution u(t) of a parabolic PDE becomes smooth and stays in a compact set.
The smoothing effect in finite time of course fails for the damped wave equations. However, these PDEs
admit in some sense a smoothing effect in infinite time. This effect is called asymptotic compactness if
one is interested in extracting asymptotic subsequences as in Proposition 4.3, or asymptotic smoothness if
one uses the regularity of globally bounded solutions as in Proposition 4.4. For the reader interested in
these notions, we refer to [Hale 1988]. The proof of this asymptotic smoothing effect is based on the
variation of constant formula U (t)= eAtU0+

∫ t
0 eA(t−s)F(U (s))ds and two properties:

• The exponential decay of the linear group (Proposition 2.3), which implies that the linear part eAtU0

asymptotically disappears.

• The regularity of the nonlinearity F implying the compactness of the nonlinear term
∫ t

0 eA(t−s)F(U (s))ds
(Corollary 4.2 below). Note that the subcriticality of f is the key point of this property and that our
arguments cannot be extended as they stand to the critical case p = 5.

The purpose of this section is to prove some compactness and regularity results about undamped
solutions as (1-8). Note that these results could also have been obtained with a more “control theoretic”
proof (see Section 8 for a sketch of the alternative proof) based on propagation results or observability
estimates. Here, we have chosen to give a different one using asymptotic regularization, which is more
common in dynamical systems. The spirit of the proof remains quite similar: we prove that the nonlinearity
is more regular than it seems a priori and use some properties of the damped linear equation.

Regularity of the nonlinearity. Since f is subcritical, it is shown in [Dehman et al. 2003] that the
nonlinear term of (1-1) yields a gain of smoothness.

Theorem 4.1 (Dehman, Lebeau and Zuazua [2003]). Let χ ∈C∞0 (R
3,R), R> 0 and T > 0. Let s ∈ [0, 1)

and let ε=min(1−s, (5− p)/2, (17−3p)/14) > 0 with p and f as in (1-2). There exist (q, r) satisfying
(2-2) and C > 0 such that the following property holds: If v ∈ L∞([0, T ], H 1+s(R3)) is a function with
finite Strichartz norms ‖v‖Lq ([0,T ],Lr (R3)) ≤ R, then χ(x) f (v) ∈ L1([0, T ], H s+ε(R3)) and moreover

‖χ(x) f (v)‖L1([0,T ],H s+ε(R3)) ≤ C‖v‖L∞([0,T ],H1+s(R3)).

The constant C depends only on χ , s, T , (q, r), R and the constant in estimate (1-2).

Theorem 4.1 is a copy of Theorem 8 of [Dehman et al. 2003], except for two points.
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First, we would like to apply the result to a solution v of the damped wave equation on a manifold
possibly with boundaries, where not all Strichartz exponents are available. This leads to the constraint
q ≥ 7

2 for the Strichartz exponents (q, r) of (2-2) (see Theorem 2.2). In the proof of Theorem 8 of [ibid.],
the useful Strichartz estimate corresponds to r = 3(p− 1)/(1− ε) and q = 2(p− 1)/(p− 3+ 2ε) and it
is required that q ≥ p− 1, which yields ε ≤ (5− p)/2. In this paper, we require also that q ≥ 7/2, which
yields in addition ε ≤ (17− 3p)/14. Notice that p < 5 and thus both bounds are positive.

The second difference is that, in [ibid.] the function f is assumed to be of class C3 and to satisfy

| f ′′(u)| ≤ C(1+ |u|)p−2 and | f (3)(u)| ≤ C(1+ |u|)p−3 (4-1)

in addition of (1-2). Since Theorem 4.1 concerns the L1(H s′) norm of χ(x) f (v) for s ′ = s+ ε ≤ 1, we
can omit assumption (4-1). Actually, we make the assumption ε ≤ 1− s which is not present in [ibid.]
and a careful study of their proof shows that (1-2) is not necessary under that assumption.

Indeed, let f̃ (u) = th3(u)|u|p. The function f̃ is of class C3 and satisfies (1-2) and (4-1). Hence
Theorem 8 of [ibid.] can be applied to f̃ and we can bound the L1(H s′) norm of f̃ as in Theorem 4.1.
On the other hand, we notice that

| f̃ (u)| ∼
±∞
|u|p, f̃ ′(u) ∼

±∞
p|u|p−1, f̃ ′(u)≥ 0.

Then, since f satisfies (1-2), there exists C>0 such that | f (u)|≤C(1+| f̃ (u)|) and | f ′(u)|≤C(1+ f̃ ′(u)).
Thus, if we assume that v > u to fix the notations,

| f (v)− f (u)| ≤ (v− u)
∫ 1

0
| f ′(u+ τ(v− u))| dτ

≤ C(v− u)+C(v− u)
∫ 1

0
f̃ ′(u+ τ(v− u)) dτ

≤ C(v− u)+C( f̃ (v)− f̃ (u))≤ C |v− u| +C | f̃ (v)− f̃ (u)|.

For 0< s < 1, using the above inequalities and the definition of the H s′ norm as

‖χ f (u)‖2H s′ = ‖χ f (u)‖2L2 +

∫∫
R6

|χ(x) f (u(x))−χ(y) f (u(y))|2

|x − y|2s′ dxdy,

we obtain

‖χ f (u)‖L1(H s′ ) ≤ C‖u‖L∞(H1)+C‖χ̃ f̃ (u)‖L1(H s′ ),

where χ̃ is another cut-off function with larger support. Hence for 0< s<1, the conclusion of Theorem 4.1
holds not only for f̃ but also for f . If s ′ = 1, we just apply the chain rule and the proof is easier.

Note that the above arguments show that the constant C depends on f through estimate (1-2) only.
Notice in addition that since f is only C1, we cannot expect χ f (v) to be more regular than H 1 and that
is why we also assume ε ≤ 1− s.

In this paper, we use a generalization of Theorem 8 of [Dehman et al. 2003] for noncompact manifolds
with boundaries.
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Corollary 4.2. Let R > 0 and T > 0. Let s ∈ [0, 1) and let ε =min(1− s, (5− p)/2, (17− 3p)/14) > 0
with p as in (1-2). There exist (q, r) satisfying (2-2) and C > 0 such that the following property holds: If
v ∈ L∞([0, T ], H 1+s(�)∩ H 1

0 (�)) is a function with finite Strichartz norms ‖v‖Lq ([0,T ],Lr (�)) ≤ R, then
f (v) ∈ L1([0, T ], H s+ε

0 (�)) and moreover

‖ f (v)‖L1([0,T ],H s+ε
0 (�)) ≤ C‖v‖L∞([0,T ],H s+1(�)∩H1

0 (�))
.

The constant C depends only on �, (q, r), R and the constant in estimate (1-2).

Proof. Since we assumed that � has a bounded geometry in the sense that � is either compact or
a compact perturbation of a manifold with periodic metric, � can be covered by a set of C∞ charts
αi :Ui → αi (Ui )⊂ R3 such that αi (Ui ) is equal either to B(0, 1) or to B+(0, 1)= {x ∈ B(0, 1), x1 > 0}
and such that, for any s ≥ 0 the norm of a function u ∈ H s(�) is equivalent to the norm(∑

i∈N

‖u ◦α−1
i ‖

2
H s(αi (Ui ))

)1/2

.

Moreover, the Strichartz norm Lq([0, T ], Lr (αi (Ui )) of v ◦α−1
i is uniformly controlled from above by

the Strichartz norm Lq([0, T ], Lr (Ui )) of v, which is bounded by R.
Therefore, it is sufficient to prove that Corollary 4.2 holds for � being either B(0, 1) or B+(0, 1).

Say that � = B+(0, 1), the case � = B(0, 1) being simpler. To apply Theorem 4.1, we extend v in a
neighborhood of B+(0, 1) as follows. For x ∈ B+(0, 2), we use the radial coordinates x = (r, σ ) and we
set

ṽ(x)= ṽ(r, σ )= 5v(1− r, σ )− 20v(1− r/2, σ )+ 16v(1− r/4, σ ).

Then, for x = (x1, x2, x3) ∈ B−(0, 2), we set

ṽ(x)= 5v(−x1, x2, x3)− 20v(−x1/2, x2, x3)+ 16v(−x1/4, x2, x3).

Notice that ṽ is an extension of v in B(0, 2), which preserves the C2 regularity, and that the H s norm for
s ≤ 2 as well as the Strichartz norms of ṽ are controlled by the corresponding norms of v. Let χ ∈C∞0 (R

3)

be a cut-off function such that χ ≡ 1 in B+(0, 1) and χ ≡ 0 outside B(0, 2). Applying Theorem 4.1
to χ(x) f (χ(x)ṽ) yields a control of ‖ f (v)‖L1([0,T ],H s+ε(B+(0,1))) by ‖v‖L∞([0,T ],H s+1(�)). Finally, notice
that f (0)= 0 and thus the Dirichlet boundary condition on v naturally implies the one on f (v). �

Asymptotic compactness and regularization effect. As explained in the beginning of this section, using
the Duhamel formula U (t)= eAtU0+

∫ t
0 eA(t−s)F(U (s))ds and Corollary 4.2, we obtain two propositions

related to the asymptotic smoothing effect of the damped wave equations.

Proposition 4.3. Let f ∈ C1(R) satisfy (1-2), let (un
0, un

1) be a sequence of initial data which is bounded
in X = H 1

0 (�)× L2(�) and let (un) be the corresponding solutions of the damped wave equation (1-1).
Let (tn) ∈ R be a sequence of times such that tn→+∞ when n goes to +∞.

Then there exist subsequences (uψ(n)) and (tψ(n)) and a global solution u∞ of (1-1) such that

(uψ(n), ∂t uψ(n))(tψ(n)+ . )→ (u∞, ∂t u∞)( · ) in C0([−T, T ], X) for all T > 0.
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Proof. We use the notations of Section 2. Due to the equivalence between the norm of X and the energy
given by (2-1) and the fact that the energy is decreasing in time, we know that Un(t) is uniformly bounded
in X with respect to n and t ≥ 0. So, up to taking a subsequence, it weakly converges to a limit U∞(0)
which gives a global solution U∞. We notice that, due to the continuity of the Cauchy problem with
respect to the initial data stated in Theorem 2.2, it is sufficient to show that Uψ(n)(tψ(n))→U∞(0) for
some subsequence ψ(n). We have

Un(tn)= eAtn Un(0)+
∫ tn

0
es A F(Un(tn − s)) ds

= eAtn Un(0)+
btnc−1∑

k=0

ek A
∫ 1

0
es AF(Un(tn − k− s)) ds+

∫ tn

btnc
es A F(Un(tn − s)) ds

= eAtn Un(0)+
btnc−1∑

k=0

ek A Ik,n + In. (4-2)

Theorem 2.2 shows that the Strichartz norms ‖un(tn − k− . )‖Lq ([0,1],Lr (�)) are uniformly bounded since
the energy of Un is uniformly bounded. Therefore Corollary 4.2 and Proposition 2.3 show that the terms
In,k =

∫ 1
0 es A F(Un(tn− k− s))ds, as well as In , are bounded by some constant M in H 1+ε(�)× H ε(�)

uniformly in n and k. Using Proposition 2.3 again and summing up, we get that the last terms of (4-2)
are bounded in H 1+ε(�)× H ε(�) uniformly in n by∥∥∥∥∥

btnc−1∑
k=0

ek A Ik,n + In

∥∥∥∥∥
X ε

≤

btnc−1∑
k=0

Ce−λk M +M ≤ M
(

1+
C

1− e−λ

)
.

Moreover, Proposition 2.3 shows that eAtn Un(0) goes to zero in X when n goes to +∞. Therefore, by a
diagonal extraction argument and the Rellich theorem, we can extract a subsequence Uψ(n)(tψ(n)) that
converges to U∞(0) in H 1

0 (B)× L2(B) for all bounded set B of �.
To finish the proof of Proposition 4.3, we have to show that this convergence holds in fact in X and not

only locally. Let η> 0 be given. Let T > 0 and let Ũn be the solution of (1-1) with Ũn(0)=Un(tn−T ) and
with γ being replaced by γ̃ , where γ̃ (x)≡ γ (x) for large x and γ̃ ≥α> 0 everywhere. By Proposition 2.6,
‖Ũn(T )‖X ≤ η if T is chosen sufficiently large and if n is large enough so that tn − T > 0. Since the
information propagates at finite speed in the wave equation, Un(tn) ≡ Ũn(T ) outside a large enough
bounded set and thus Uψ(n)(tψ(n)) has a X norm smaller than η outside this bounded set. On the other
hand, we can assume that the norm of U∞(0) is also smaller than η outside the bounded set. Then,
choosing n large enough, ‖Uψ(n)(tψ(n))−U∞(0)‖X becomes smaller than 3η. �

The trajectories U∞ appearing in Proposition 4.3 are trajectories which are bounded in X for all times
t ∈R. The following result shows that these special trajectories are more regular than the usual trajectories
of the damped wave equation.

Proposition 4.4. Let f ∈ C1(R) satisfying (1-2) and let E0 ≥ 0. There exists a constant M such
that if u is a solution of (1-1) that exists for all times t ∈ R and satisfies supt∈R E(u(t)) ≤ E0, then
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t 7→U (t)= (u(t), ∂t u(t)) is continuous from R into D(A) and

sup
t∈R

‖(u(t), ∂t u(t))‖D(A) ≤ M.

In addition, M depends only on E0 and the constants in (1-2).

Proof. We use a bootstrap argument. For any t ∈ R and n ∈ N,

U (t)= en AU (t − n)+
n−1∑
k=0

ek A
∫ 1

0
es A F(U (t − k− s)) ds.

Using Proposition 2.3, when n goes to +∞, we get

U (t)=
+∞∑
k=0

ek A
∫ 1

0
es A F(U (t − k− s)) ds. (4-3)

Moreover, arguing exactly as in the proof of Proposition 4.3, we show that Proposition 2.3 and Corollary 4.2
imply that (4-3) also holds in X ε. Hence, U (t) is uniformly bounded in X ε. Then, using again
Proposition 2.3 and Corollary 4.2, (4-3) also holds in X2ε, and so on. Repeating the arguments and noting
that, until the last step, ε only depends on p, we obtain that U (t) is uniformly bounded in X1

= D(A).
Since the constant C of Corollary 4.2 only depends on f through estimate (1-2), the same holds for

the bound M here. �

Proposition 4.5. The Sobolev embedding H 2(�) ↪→ C0(�) holds and there exists a constant K such that

sup
x∈�
|u(x)| ≤ K‖u‖H2 for all u ∈ H 2(�).

In particular, the solution u in the statement of Proposition 4.4 belongs to C0(�×R,R) and

sup
(x,t)∈�×R

|u(x, t)| ≤ KM.

Proof. Proposition 4.5 follows directly from the fact that � has a bounded geometry and from the classical
Sobolev embedding H 2 ↪→ C0 in the ball B(0, 1) of R3. �

5. Smoothness and uniqueness of nondissipative complete solutions

In this section, we consider only a nondissipative complete solution, that is, a solution u∗ existing for all
times t ∈ R for which the energy E is constant. In other words, u∗(t) solves

∂2
t t u
∗
=1u∗−βu∗− f (u∗)

u∗(x, t)= 0
∂t u∗(x, t)= 0

(x, t) ∈�×R,

(x, t) ∈ ∂�×R,

(x, t) ∈ supp γ ×R.

(5-1)

Since the energy E is not dissipated by u∗(t), we can write E(u∗) instead of E(u∗(t)). Yet, an interesting
fact that will be used several times in the sequel is that such u∗ is, at the same time, solution of both
damped and undamped equations.

The purpose of this section is:
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• First show that u∗ is analytic in time and smooth in space. The central argument is to use a theorem
of J. K. Hale and G. Raugel [2003].

• Then use the unique continuation result of L. Robbiano and C. Zuily stated in Corollary 3.2 to show
that u∗ is necessarily an equilibrium point of (1-1).

• Finally show that the assumption s f (s)≥ 0 implies that u∗ ≡ 0.

We point out that the first two steps are valid and very helpful in a more general framework than the
one of our paper.

Smoothness and partial analyticity of u∗. First we recall here the result of Section 2.2 of [Hale and
Raugel 2003], adapting the statement to suit our notations:

Theorem 5.1. Let Y be a Banach space. Let Pn ∈ L(Y ) be a sequence of continuous linear maps and let
Qn = Id−Pn . Let A : D(A)→ Y be the generator of a continuous semigroup et A and let G ∈ C1(Y ). We
assume that V is a complete mild solution in Y of

∂t V (t)= AV (t)+G(V (t)) for all t ∈ R.

We further assume that:

(i) {V (t), t ∈ R} is contained in a compact set K of Y .

(ii) For any y ∈ Y , Pn y converges to y when n goes +∞ and (Pn) and (Qn) are sequences of L(Y )
bounded by K0.

(iii) The operator A splits as A = A1+ B1, where B1 is bounded and A1 commutes with Pn .

(iv) There exist M and λ > 0 such that ‖eAt
‖L(Y ) ≤ Me−λt for all t ≥ 0.

(v) G is analytic in the ball BY (0, r), where r is such that r ≥ 4K0 supt∈R ‖V (t)‖Y . More precisely,
there exists ρ > 0 such that G can be extended to an holomorphic function of BY (0, r)+ i BY (0, ρ).

(vi) {DG(V (t))V2 |t ∈ R, ‖V2‖Y ≤ 1} is a relatively compact set of Y .

Then the solution V (t) is analytic from t ∈ R into Y .

More precisely, Theorem 5.1 is Theorem 2.20 (which relates to Theorem 2.12) of [Hale and Raugel
2003] applied with hypotheses (H3mod) and (H5).

Proposition 4.4 shows that u∗ is continuous in both space and time variables. We apply Theorem 5.1
to show that because f is analytic, u∗ is also analytic with respect to the time.

Proposition 5.2. Let f ∈ C1(R) satisfying (1-2) and let E0 ≥ 0. Let K and M be the constants given
by Propositions 4.4 and 4.5. Assume that f is analytic in [−4KM, 4KM]. Then for any nondissipative
complete solution u∗(t) solving (5-1) and satisfying E(u∗)≤ E0, t 7→ u∗( · , t) is analytic from R into Xα

with α ∈ (1/2, 1). In particular, for all x ∈�, u∗(x, t) is analytic with respect to the time.

Proof. Theorem 5.1 uses strongly some compactness properties. Therefore, we need to truncate our
solution to apply the theorem on a bounded domain (of course, this is not necessary and easier if � is
already bounded).
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Let χ ∈ C∞0 (�) be such that ∂χ/∂ν = 0 on ∂�, χ ≡ 1 in {x ∈�, γ (x)= 0} and suppχ is included
in a smooth bounded subdomain O of �. Since Proposition 4.4 shows that u∗ ∈ C0(R, D(A)) and since
u∗ is constant with respect to the time in supp γ , (1−χ)u∗ is obviously analytic from R into D(A). It
remains to obtain the analyticity of χu∗.

In this proof, the damping γ needs to be more regular than just L∞(�). We replace γ by a damping
γ̃ ∈ C∞(�), which has the same geometrical properties (GCC) and (1-3) and which vanishes where γ
does. Notice that γ ∂t u∗ ≡ 0≡ γ̃ ∂t u∗, therefore replacing γ by γ̃ has no consequences here.

Let v = χu∗, we have{
∂2

t tv+ γ̃ (x)∂tv =1v−βv+ g(x, v) (x, t) ∈ O×R+,

v(x, t)= 0 (x, t) ∈ ∂O×R+,
(5-2)

with g(x, v)=−χ(x) f (v+ (1−χ)u∗(x))− 2(∇χ ∇u∗)(x)− (u∗1χ)(x). We apply Theorem 5.1 with
the following setting: Let Y = Xα

= H 1+α(O)∩H 1
0 (O)×Hα

0 (O) with α ∈ (1/2, 1). Let V = (v, ∂tv) and
let G(v)= (0, g(., v)). We set

A = A1+ B1 =

(
0 Id

1−β 0

)
+

(
0 0
0 −γ̃

)
.

Let (λk)k≥1 be the negative eigenvalues of the Laplacian operator on O with Dirichlet boundary conditions
and let (ϕk) be corresponding eigenfunctions. We set Pn to be the canonical projections of X on the
subspace generated by ((ϕk, 0))k=1,...,n and ((0, ϕk))k=1,...,n .

To finish the proof of Proposition 5.2, we only have to check that the hypotheses of Theorem 5.1 hold.
The trajectory V is compact since we know by Proposition 4.4 that it is bounded in X1, which gives (i).
Hypothesis (ii) and (iii) hold with K0 = 1 by construction of Pn and because B1 is bounded in Y since

γ̃ belongs to C∞(�). Hypothesis (iv) follows from Proposition 2.3.
We recall that u∗(x, · ) is constant outside χ−1(1) and belongs locally to H 1+α since u∗ ∈ D(A).

Therefore, the terms (1 − χ)u∗(x), ∇χ ∇u∗ and u∗1χ appearing in the definition of g are in H 1.
Moreover, they satisfy Dirichlet boundary condition on ∂� since u∗ ≡ 0 and ∂νχ ≡ 0 there. Of course,
they also satisfy Dirichlet boundary condition on the other parts of ∂O since χ ≡ 0 outside O. Notice that
α > 1/2 and thus H 1+α(O)∩ H 1

0 (O) is an algebra included in C0. Therefore (1-2) shows that G is of
class C1 in the bounded sets of Y . Since u ∈ [−4KM, 4KM] 7→ f (u) ∈ R is analytic, it can be extended
to a holomorphic function in [−4KM, 4KM] + i[−ρ, ρ] for small ρ > 0. Using again the embedding
H 1+α(O) ↪→ C0(O) and the definitions of K and M , we deduce that (v) holds.

Finally, for V2 = (v2, ∂tv2) with ‖V2‖Y ≤ 1, DG(V (t))V2 = (0,−χ(x) f ′(v(t)+ (1− χ)u∗(x))v2)

is relatively compact in Y since v(t) is bounded in H 2
∩ H 1

0 due to Proposition 4.4 and therefore
v2 ∈ H 1+α

7→ χ(x) f ′(v(t)+ (1−χ)u∗(x))v2 ∈ Hα is a compact map. This yields (vi). �

Once the time-regularity of u∗ is proved, the space-regularity follows directly.

Proposition 5.3. Let f and u∗ be as in Proposition 5.2. Then u∗ ∈ C∞(�×R).
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Proof. Proposition 5.2 shows that u∗ and all its time-derivatives belong to Xα with α ∈ (1/2, 1). Due to
the Sobolev embeddings, this implies that any time-derivative of u∗ is Hölder continuous. Writing

1u∗ = ∂2
t t u
∗
+βu∗+ f (u∗) (5-3)

and using the local elliptic regularity properties (see [Miranda 1970] and the references therein), we get
that u∗ is locally of class C2,λ in space for some λ ∈ (0, 1). Thus, u∗ is of class C2,λ in both time and
space. Then we can use a bootstrap argument in (5-3) to show that u∗ is of class C2k,λ for all k ∈ N. �

Identification of u∗. The smoothness and the partial analyticity of u∗ shown in Propositions 5.2 and 5.3
enable us to use the unique continuation result of [Robbiano and Zuily 1998].

Proposition 5.4. Let f and u∗ be as in Proposition 5.2. Then u∗ is constant in time, i.e., u∗ is an
equilibrium point of the damped wave equation (1-1).

Proof. Setting v = ∂t u∗, we get ∂2
t tv = 1v − βv − f ′(u∗)v. Propositions 5.2 and 5.3 show that u∗ is

smooth and analytic with respect to the time and moreover v≡ 0 in supp γ . Thus, the unique continuation
result stated in Corollary 3.2 yields v ≡ 0 everywhere. �

The sign assumption on f directly implies that 0 is the only possible equilibrium point of (1-1).

Corollary 5.5. Let f ∈ C1(R) satisfying (1-2) and let E0 ≥ 0. Let K and M be the constants given by
Propositions 4.4 and 4.5 and assume that f is analytic in [−4KM, 4KM]. Then the unique solution u∗ of
(5-1) with E(u∗)≤ E0 is u∗ ≡ 0.

Proof. Due to Proposition 5.4, u∗ is solution of 1u∗ − βu∗ = f (u∗). By multiplying by u∗ and
integrating by parts, we obtain

∫
�
|∇u∗|2+β|u∗|2 dx =−

∫
�

u∗ f (u∗) dx , which is nonpositive due to
assumption (1-2). Since β ≥ 0 is such that 1−β is negative definite, this shows that u∗ ≡ 0. �

6. Proof of Theorem 1.1

Due to Proposition 2.5, Theorem 1.1 directly follows from the following result.

Proposition 6.1. Let f ∈ C1(R) satisfy (1-2) and let E0 ≥ 0. Let K and M be the constants given by
Propositions 4.4 and 4.5. Assume that f is analytic in [−4KM, 4KM] and that γ is as in Theorem 1.1.
Then there exist T > 0 and C > 0 such that any u solution of (1-1) with E(u)(0)≤ E0 satisfies

E(u)(0)≤ C
∫∫
[0,T ]×�

γ (x) |∂t u|2 dtdx .

Proof. We argue by contradiction: we assume that there exists a sequence (un) of solutions of (1-1) and a
sequence of times (Tn) converging to +∞ such that∫∫

[0,Tn]×�

γ (x) |∂t un|
2 dtdx ≤ 1

n
E(un)(0)≤

1
n

E0. (6-1)

Set αn = (E(un)(0))1/2. Since α ∈ [0,
√

E0], we can assume that αn converges to a limit α when n goes
to +∞. We distinguish two cases: α > 0 and α = 0.
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First case. αn→ α > 0. Notice that, due to (2-1), ‖(un, ∂t un)(0)‖X is uniformly bounded from above and
from below by positive numbers. We set u∗n = un(Tn/2+ . ). Due to the asymptotic compactness property
stated in Proposition 4.3, we can assume that u∗n converges to a solution u∗ of (1-1) in C0([−T, T ], X)
for all time T > 0. We notice that

E(un(0))≥ E(u∗n(0))= E(un(0))−
∫∫
[0,Tn/2]×�

γ (x) |∂t un|
2
≥ (1− 1/n)E(un(0))

and thus E(u∗(0))= α2 > 0. Moreover, (6-1) shows that γ ∂t u∗n converges to zero in L2([−T, T ], L2(�))

for any T > 0 and thus ∂t u∗ ≡ 0 in supp γ . In other words, u∗ is a nondissipative solution of (1-1), i.e., a
solution of (5-1) with E(u∗)= α2

≤ E0. Corollary 5.5 shows that u∗ ≡ 0, which contradicts the positivity
of E(u∗(0)).

Second case. αn→ 0. The assumptions on f allow to write f (s)= f ′(0)s+ R(s) with

|R(s)| ≤ C(|s|2+ |s|p) and |R′(s)| ≤ C(|s| + |s|p−1). (6-2)

Let us make the change of unknown wn = un/αn . Then wn solves

�wn + γ (x)∂twn + (β + f ′(0))wn +
1
αn

R(αnwn)= 0 (6-3)

and ∫∫
[0,Tn]×�

γ (x) |∂twn|
2 dtdx ≤ 1

n
. (6-4)

Set Wn = (wn, ∂twn). Due to the equivalence between norm and energy given by (2-1), the scaling
wn = un/αn implies that ‖(wn(0), ∂twn(0))‖X is uniformly bounded from above and from below by
positive numbers. Moreover, (6-1) implies

‖Wn(t)‖X =
‖(Un(t))‖X

αn
≥ C

E(un(t))1/2

αn
≥ C

(E(un)(0)−α2
n/n)1/2

αn
≥

C
2
> 0 (6-5)

for any t ∈ [0, Tn] and n large enough.
We set fn = 1/αn R(un) and Fn = (0, fn). The stability estimate of Theorem 2.2 implies that
‖un‖Lq ([k,k+1],Lr ) ≤ Cαn uniformly for n, k ∈ N. In particular, combined with (6-2), this gives

‖ fn‖L1([k,k+1],L2) =

∥∥∥ 1
αn

R(αnwn)

∥∥∥
L1([k,k+1],L2)

≤ C(αn +α
p−1
n ).

We can argue as in Proposition 4.3 and write

Wn(Tn)= e ÃTn Wn(0)+
bTnc−1∑

k=0

e Ã(Tn−k)
∫ 1

0
e− Ãs Fn(k+ s) ds

+ e Ã(Tn−bTnc)

∫ Tn−bTnc

0
e− Ãs Fn(bTnc+ s) ds, (6-6)

where Ã is the modified damped wave operator

Ã =
(

0 Id
1−β− f ′(0) −γ

)
.
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Notice that e Ãt decays exponentially, like eAt in Proposition 2.3, since (1-2) implies f ′(0) ≥ 0. By
summing up as in Proposition 4.3, we get

‖Wn(Tn)‖X ≤ Ce−λTn +C(αn +α
p−1
n ),

which goes to zero, in a contradiction with (6-5). �

As a direct consequence of Proposition 6.1, we obtain a unique continuation property for nonlinear
wave equations. Notice that the time of observation T required for the unique continuation is not explicit.
Thus, this result is not so convenient as a unique continuation property. But it may be useful for other
nonlinear stabilization problems as �u+ γ (x)g(∂t u)+ f (u)= 0.

Corollary 6.2. Let f ∈ C1(R) satisfy (1-2) and let E0 ≥ 0. Assume that f is analytic in R and that ω is
an open subset of � satisfying (GCC). Then there exist T > 0 such that the only solution u of{

�u+βu+ f (u)= 0 on [−T, T ]×�,
∂t u ≡ 0 on [−T, T ]×ω,

(6-7)

with E(u)(0)≤ E0 is u ≡ 0.

Proof. Corollary 6.2 is a straightforward consequence of Proposition 6.1 since we can easily construct a
smooth damping γ supported in ω and such that supp γ satisfies (GCC). We only have to remark that a
solution u of (6-7) is also solution of (1-1). �

7. Proof of Theorem 1.2

Before starting the proof of Theorem 1.2 itself, we prove that C1(R) is a Baire space, that is, that any
countable intersection of open dense sets is dense. This legitimizes the genericity in C1(R) as a good
notion of large subsets of C1(R). We recall that C1(R) is defined by (1-6) and endowed by the Whitney
topology, the open sets of which are generated by the neighborhoods Nf,δ defined by (1-7).

Proposition 7.1. The space C1(R) endowed with the Whitney topology is a Baire space.

Proof. The set C1(R) is not an open set of C1(R), and neither a submanifold. It is a closed subset of
C1(R), but C1(R) endowed with the Whitney topology is not a completely metrizable space, since it is
not even metrizable (the neighborhoods of a function f are not generated by a countable subset of them).
Therefore, we have to go back to the basic proof of Baire property as in [Golubitsky and Guillemin 1973].

Let U be an open set of C1(R) and let (On)n∈N be a sequence of open dense sets of C1(R). By
density, there exists a function f0 ∈ C

1(R) in U∩O0 and by openness, there exists a positive continuous
function δ0 such that the neighborhood Nf0,δ0 is contained in U ∩ O0. By choosing δ0 small enough,
one can also assume that Nf0,2δ0 ⊂U∩O0 and that supu∈R |δ0(u)| ≤ 1/20. By recursion, one constructs
similar balls Nfn,δn ⊂Nfn−1,δn−1 ⊂Nf0,δ0 such that Nfn,2δn ⊂U∩On and that supu∈R |δn(u)| ≤ 1/2n . Since
C1([−m,m],R) endowed with the uniform convergence topology is a complete metric space, the sequence
( fi ) converges to a function f ∈ C1(R,R) uniformly in any compact set of R. By construction, the limit
f satisfies

max
(
| f (u)− fn(u)|, | f ′(u)− f ′n(u)|

)
≤ δn(u) < 2δn(u) for all n ∈ N and all u ∈ R, (7-1)
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as well as f (0)= 0 and u f (u)≥ 0 since any fn satisfies (1-2). Moreover, there exist C > 0 and p ∈ [1, 5)
such that f0 satisfies

| f0(u)| ≤ C(1+ |u|)p and | f ′0(u)| ≤ C(1+ |u|)p−1. (7-2)

Since max(| f (u)− f0(u)|, | f ′(u)− f ′0(u)|)≤ δ0(u)≤ 1, f also satisfies (7-2) with a constant C ′=C+1.
Therefore, f satisfies (1-2) and thus belongs to C1(R). In addition, f satisfying (7-1) and Nfn,2δn being
contained in U∩On , we get f ∈U∩On for all n. This shows that ∩n∈NOn intersects any open set U and
therefore is dense in C1(R). �

Proof of Theorem 1.2. We denote by Gn the set of functions f ∈ C1(R) such that the exponential decay
property (ED) holds for E0 = n. Obviously, G=∩n∈NGn and hence it is sufficient to prove that Gn is an
open dense subset of C1(R). We sketch here the main arguments to prove this last property.

Gn is a dense subset. Let N be a neighborhood of f0 ∈ C
1(R). Up to choosing N smaller, we can assume

that the constant in (1-2) is independent of f ∈ N. Due to Propositions 4.4 and 4.5, there exist constants
K and M such that, for all f ∈ N, all the global nondissipative trajectories u of (1-1) with E(u)≤ n are
such that ‖u‖L∞(�×R) ≤KM . We claim that we can choose f ∈N as close to f0 as wanted such that f
is analytic on [−4KM, 4KM] and still satisfies (1-2). Then Proposition 6.1 shows that f satisfies (ED)
with E0 = n, i.e., that f ∈Gn .

To obtain this suitable function f , we proceed as follows. First, we set a = 4KM and notice that it is
sufficient to explain how we construct f in [−a, a]. Indeed, one can easily extend a perturbation f of
f0 in [−a, a] satisfying f (s)s ≥ 0 to a perturbation f̃ of f0 in R, equal to f0 outside of [−a− 1, a+ 1]
and such that f (s)s ≥ 0 in [−a− 1, a+ 1]. We construct f in [−a, a] as follows. Since f0(s)s ≥ 0, we
have that f ′0(0)≥ 0. We perturb f0 to f1 such that f1(0)= 0, f ′1(s)≥ ε > 0 in a small interval [−η, η]
and s f1(s) ≥ 2ε in [−a,−η] ∪ [η, a], where ε could be chosen as small as needed. Then we perturb
f1 to obtain a function f2 which is analytic in [−a, a] and satisfies f ′2(s) > 0 in [−η, η], s f2(s)≥ ε in
[−a,−η] ∪ [η, a] and | f2(0)|< ε/a. Finally, we set f (s)= f2(s)− f2(0) and check that f is analytic
and satisfies s f (s)≥ 0 in [−a, a]. Moreover, up to choosing ε very small, f is as close to f0 as wanted.

Gn is an open subset. Let f0 ∈ Gn . Proposition 2.3 shows the existence of a constant C and a time T
such that for all solution u of (1-1),

E(u(0))≤ E0 H⇒ E(u(0))≤ C
∫ T

0

∫
�

γ (x)|∂t u(x, t)|2dxdt. (7-3)

The continuity of the trajectories in X with respect to f ∈ C1(R) is not difficult to obtain: using the
strong control of f given by Whitney topology, the arguments are the same as the ones of the proof of
the continuity with respect to the initial data, stated in Theorem 2.2. Thus, (7-3) holds also for any f in a
neighborhood N of f0, replacing the constant C by a larger one. Therefore, Proposition 2.3 shows that
N⊂Gn and hence that Gn is open. �
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8. A proof of compactness and regularity with the usual arguments of control theory

In this section, we give an alternative proof of the compactness and regularity properties of Propositions 4.3
and 4.4. We only give its outline since it is redundant in light of the previous results of the article. Moreover,
it is quite similar to the arguments of [Dehman et al. 2003]. Yet the arguments of this section are interesting
because they do not require any asymptotic arguments and they show a regularization effect through an
observability estimate with a finite time T , which can be explicit. However, for the moment, it seems
impossible to obtain an analytic regularity similar to Proposition 5.2 with these kind of arguments.

Instead of using a Duhamel formula with an infinite interval of time (−∞, t) as in (4-3), the main
idea is to use as a black box an observability estimate for T large enough, T being the time of geometric
control condition,

‖U0‖
2
X s ≤ C‖Bet AU0‖

2
L2([0,T ],X s)

, (8-1)

where

A =
(

0 Id
1−β −γ

)
and B =

(
0 0
0 −γ

)
.

The first aim is to prove that a solution of (5-1), globally bounded in energy, is also globally bounded
in X s for s ∈ [0, 1]. We proceed step by step. First, let us show that it is bounded in X ε.

• We fix T > large enough to get the observability estimate (8-1). By the existence theory on each
[t0, t0 + T ], u|[t0,t0+T ] is bounded in Strichartz norms, uniformly for t0 ∈ R. Since the nonlinearity is
subcritical, Corollary 4.2 gives that f (u) is globally bounded in L1([t0, t0+ T ], H 1+ε).

• We decompose the solution into its linear and nonlinear part by the Duhamel formula,

U (t)= eA(t−t0)U (t0)+
∫ t

t0
eA(t0−τ) f (U (τ )) dτ =Ulin+UNlin.

Since f (u) is bounded in L1([t0, t0+ T ], H 1+ε), UNlin is uniformly bounded in C([t0, t0+ T ], X ε).

• We will now use the linear observability estimate (8-1) with s = ε, applying it to Ulin:

‖U (t0)‖2X ε = ‖Ulin(t0)‖2X ε ≤ C
∫ t0+T

t0
‖γ (x)∂t ulin‖

2
H ε . (8-2)

Then, using the triangular inequality, we get∫ t0+T

t0
‖γ (x)∂t ulin‖

2
H ε ≤ 2

∫ t0+T

t0
‖γ (x)∂t u‖2H ε + 2

∫ t0+T

t0
‖γ (x)∂t uNlin‖

2
H ε

≤ 2
∫ t0+T

t0
‖γ (x)∂t uNlin‖

2
H ε ≤ C,

where we have used that ∂t u ≡ 0 on ω and that UNlin is bounded in C([t0, t0+ T ], X ε). Combining this
with (8-2) for any t0 ∈ R, we obtain that U is uniformly bounded in X ε on R.
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Repeating the arguments, we show that u is bounded in X2ε, X3ε and so on, until X1. Similar ideas
allow us to prove a theorem of propagation of compactness in finite time, replacing the asymptotic
compactness property of Proposition 4.3.

As said above, an advantage of this method, compared to the one used in Propositions 4.3 and 4.4, is
that it allows us to propagate the regularity or the compactness on some finite interval of fixed length.
Yet, it seems that such propagation results are not available in the analytic setting. Indeed, it seems that,
for nonlinear equations, the propagation of analytic regularity or of nullity in finite time is much harder
to prove. We can for instance refer to the weaker (with respect to the geometry) result of Alinhac and
Métivier [1984] or the negative result of Métivier [1993].

9. Applications

Control of the nonlinear wave equation. In this subsection, we give a short proof of Theorem 1.3, which
states the global controllability of the nonlinear wave equation. The first step consists in a local control
theorem.

Theorem 9.1 (local control). Let ω satisfying the geometric control condition for a time T . Then there
exists δ such that for any (u0, u1) in H 1

0 (�)× L2(�) with

‖(u0, u1)‖H1
0×L2 ≤ δ

there exists g ∈ L∞([0, T ], L2) supported in [0, T ]×ω such that the unique strong solution of{
�u+βu+ f (u)= g on [0, T ]×�,
(u(0), ∂t u(0))= (u0, u1),

satisfies (u(T ), ∂t u(T ))= (0, 0).

Proof. The proof is exactly the same as that of Theorem 3 of [Dehman et al. 2003] or Theorem 3.2
of [Laurent 2011]. The main argument consists in seeing the problem as a perturbation of the linear
controllability, which is known to be true in our setting. �

Now, as is very classical, we can combine the local controllability with our stabilization theorem to get
global controllability.

Sketch of the proof of Theorem 1.3. In a first step, we choose as a control g = −γ (x)∂t ũ, where ũ is
solution of (1-1) with initial data (u0, u1). By uniqueness of solutions, we have u = ũ. Therefore, thanks
to Theorem 1.1, for a large time T1, only depending on R0, we have ‖(u(T1), ∂t u(T1))‖H1×L2 ≤ δ. Then
Theorem 9.1 allows to find a control that brings (u(T1), ∂t u(T1)) to 0. In other words, we have found a
control g supported in ω that brings (u0, u1) to 0. We obtain the same result for (ũ0, ũ1) and conclude,
by reversibility of the equation, that we can also bring 0 to (ũ0, ũ1). �

Existence of a compact global attractor. In this subsection, we give the modification of the proofs of
this paper necessary to get Theorem 1.4 about the existence of a global attractor.
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The energy associated to (1-9) in X = H 1
0 (�)× L2(�) is given by

E(u, v)=
∫
�

1
2(|∇u|2+ |v|2)+ V (x, u) dx,

where V (x, u)=
∫ u

0 f (x, ξ) dξ .
The existence of a compact global attractor for (1-9) is well known for the Sobolev subcritical case

p < 3. The first proofs in this case go back to 1985 [Hale 1988; Haraux 1985b]; see [Raugel 2002]
for other references. The case p = 3 as been studied in [Babin and Vishik 1992; Arrieta et al. 1992].
For p ∈ (3, 5), Kapitanski [1995] proved the existence of a compact global attractor for (1-9) if � is a
compact manifold without boundary and if γ (x)= γ is a constant damping. Using the same arguments
as in the proof of our main result, we can partially deal with the case p ∈ (3, 5) with a localized damping
γ (x) and with unbounded manifold with boundaries.

Assume that f satisfies the assumption of Theorem 1.4. Then the arguments of this paper show the
following properties.

(i) The positive trajectories of bounded sets are bounded. Indeed, (1-12) implies that for x 6∈ B(x0, R), we
have V (x, u)=

∫ u
0 f (x, ξ)dξ ≥ 0. Moreover, for x ∈ B(x0, R), V (x, · ) is nonincreasing on (−∞,−R)

and nondecreasing on (R,∞). Thus, V (x, u) is bounded from below for x ∈ B(x0, R) and

E(u, v)≥ 1
2‖(u, v)‖

2
X + vol(B(x0, R)) inf V for all (u, v) ∈ X

The Sobolev embeddings H 1(�) ↪→ L p+1(�) show that the bounded sets of X have a bounded energy.
Since the energy E is nonincreasing along the trajectories of (1-9), we get that the trajectory of a bounded
set is bounded.

(ii) The dynamical system is asymptotically smooth. The asymptotic compactness exactly corresponds
to the statement of Proposition 4.3. Let us briefly explain why it can be extended to the case where f
depends on x . The key point is the extension of Corollary 4.2. First notice that we assumed f (x, 0)= 0
on ∂� in order to guarantee the Dirichlet boundary condition for f (x, u) if u ∈ H 1

0 (�). Then it is not
difficult to see that the discussion following Theorem 4.1 can be extended to the case f depending on x
by using estimates (1-10). Corollary 4.2 follows then, except for a small change: since it is possible that
f (x, 0) 6= 0 for some x ∈�, the conclusion of Corollary 4.2 should be replaced by

‖ f (x, v)‖L1([0,T ],H s+ε
0 (�)) ≤ C

(
1+‖v‖L∞([0,T ],H s+1(�)∩H1

0 (�))

)
.

Then the proof of Proposition 4.3 is based on Corollary 4.2, the boundedness of the positive trajectories
of bounded sets (both could be extended to the case where f depends on x as noticed above) and
an application of Proposition 2.6 outside of a large ball. We conclude by noticing that, for x large,
f (x, u)u ≥ 0 and γ (x)≥ α > 0 and thus Proposition 2.6 can still be applied exactly as in the proof of
Proposition 4.3.

(iii) The dynamical system generated by (1-9) is gradient. That is, that the energy E is nonincreasing in
time and is constant on a trajectory u if and only if u is an equilibrium point of (1-9). This last property is
shown in Proposition 5.4 for f independent of x but can be easily generalized for f = f (x, u). Notice that
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the proof of this property is the one where the analyticity of f is required since the unique continuation
property of Section 3 is used. Finally, we remark that the gradient structure of (1-9) is interesting from
the dynamical point of view since it implies that any trajectory u(t) converges when t goes to +∞ to the
set of equilibrium points.

(iv) The set of equilibrium points is bounded. The argument is similar to the one of Corollary 5.5: if e is
an equilibrium point of (1-9) then (1-12) implies that∫

1
2 |∇e|2+β|e|2 =−

∫
�

f (x, e)e dx ≤− vol(B(x0, R)) inf{ f (x, u)u | (x, u) ∈�×R},

where we have bounded f (x, u)u from below exactly as we have done for V (x, u) in (i).

It is well known (see [Hale 1988] or Theorem 4.6 of [Raugel 2002]) that properties (i)–(iv) yield the
existence of a compact global attractor. Hence, we obtain the conclusion of Theorem 1.4.
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INSTABILITY THEORY OF THE NAVIER–STOKES–POISSON EQUATIONS

JUHI JANG AND IAN TICE

The stability question of the Lane–Emden stationary gaseous star configurations is an interesting problem
arising in astrophysics. We establish both linear and nonlinear dynamical instability results for the
Lane–Emden solutions in the framework of the Navier–Stokes–Poisson system with adiabatic exponent
6
5 < γ <

4
3 .

1. Introduction and formulation

One of the simplest fundamental hydrodynamical models to describe the motion of self-gravitating
viscous gaseous stars is the compressible Navier–Stokes–Poisson system, which can be written in Eulerian
coordinates as 

∂t%+ div(%u)= 0,

∂t(%u)+ div(%u⊗ u)+ div S =−%∇8,

18= 4π%,

(1-1)

where (x, t) ∈ R3
×R+, %(x, t) ≥ 0 is the density, u(x, t) ∈ R3 is the velocity vector field of the gas,

8(x, t) ∈ R is the potential function of the self-gravitational force, and the stress tensor S is given by

S = PI3×3− ε
(
∇u+∇ut

−
2
3(div u)I3×3

)
− δ(div u)I3×3, (1-2)

where P is the pressure of the gas, ε > 0 is the shear viscosity, δ ≥ 0 is the bulk viscosity, and ∇ut

denotes the transpose of ∇u. We consider polytropic gases for which the equation of state is given by

P = P(%)= K%γ , (1-3)

where K is an entropy constant and γ > 1 is an adiabatic exponent. Values of γ have their own physical
significance [Chandrasekhar 1939]; for instance, γ = 5

3 corresponds to a monatomic gas and γ = 7
5 to a

diatomic gas, and γ → 1+ for heavier molecules.
In the simplest setting, which we consider, solutions to (1-1) are spherically symmetric. For r = |x|,

this allows us to write

u(x, t)= u(r, t)
x
r

for u : [0,∞)×[0,∞)→ R (1-4)
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and
%(x, t)= %(r, t). (1-5)

The equations (1-1) then reduce to the pair

∂t%+ u∂r%+
%

r2 ∂r (r2u)= 0 (1-6)

and

%(∂t u+ u∂r u)+ ∂r P =−
4π%
r2

∫ r

0
%(s, t)s2 ds+ ∂r

( 4
3ε+ δ

r2 ∂r (r2u)
)
. (1-7)

The integral term on the right side of (1-7) corresponds to the gravitational force. Stationary solutions
% = %0(r) and u = 0, which correspond to nonmoving gaseous spheres in hydrostatic equilibrium, satisfy
the following equation for P0 = K%γ0 :

∂r P0(r)+
4π%0(r)

r2

∫ r

0
%0(s)s2 ds = 0. (1-8)

This equation can be solved by transforming it into the well-known Lane–Emden equation [Chandrasekhar
1939]. The solutions to (1-8) are positive and decreasing and can be characterized by the values of γ in
the following fashion [Lin 1997]: for given finite total mass M > 0, if γ ∈

( 6
5 , 2

)
, there exists at least one

compactly supported solution %0. For γ ∈
( 4

3 , 2
)
, every solution is compactly supported and unique. If

γ = 6
5 , the unique solution admits an analytic expression, and it has infinite support. On the other hand,

for γ ∈
(
1, 6

5

)
, there are no solutions with finite total mass.

The stability of the Lane–Emden steady star configurations has been a question of great interest, and
it has been conjectured by astrophysicists that stationary solutions for γ < 4

3 are unstable. The linear
stability theory of the above stationary solutions was studied in [Lin 1997] in the inviscid case, namely
the Euler–Poisson system, by studying the eigenvalue problem associated to the linearized Euler–Poisson
system: any stationary solution is linearly stable when γ ∈

( 4
3 , 2

)
and unstable when γ ∈

(
1, 4

3

)
. In

accordance with the linear stability theory, a nonlinear stability for γ > 4
3 was established in [Rein 2003]

by using a variational approach. In the case γ = 4
3 , the analysis in [Deng et al. 2002] identified an

instability in which any small perturbation can cause part of the system to go off to infinity. In [Jang
2008], a nonlinear instability of the Lane–Emden steady star for γ = 6

5 was proved based on the bootstrap
argument, as pioneered in [Guo and Strauss 1995]. The stability question for the Euler–Poisson system
with 6

5 < γ <
4
3 remains an open problem.

The same stability question can also be asked in the presence of viscosity. There have been interesting
studies on the stabilization effect of viscosity in the Navier–Stokes–Poisson system for γ > 4

3 under
various assumptions [Ducomet and Zlotnik 2005; Zhang and Fang 2009]. On the other hand, to our
knowledge, no rigorous stability theories are available for γ < 4

3 , the instability regime in the inviscid
case. In this regime for viscous gaseous stars, a particularly interesting problem is to investigate whether
or not the viscosity would dominate the gravitational force and stabilize the whole system. The purpose
of this article is to establish the instability theory of the Lane–Emden steady stars whose dynamics are
governed by the Navier–Stokes–Poisson system for 6

5 < γ <
4
3 .
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We now formulate the problem. We begin by introducing a vacuum free boundary.

1A. Vacuum free boundary. When γ > 6
5 , letting R> 0 be the radius of the steady star, it is well known

[Lin 1997] that

%0(r)∼ (R− r)1/(γ−1) for r near R. (1-9)

This boundary behavior near a vacuum causes a degeneracy in (1-6) and (1-7), and it is not trivial to
deal with such a degeneracy even for the local-in-time existence question; we refer, for instance, to [Jang
2010; Matusu-Necasova et al. 1997; Okada and Makino 1993] and also [Jang and Masmoudi 2009; 2010]
for the compressible Euler case. It turns out that in order to capture boundary behavior such as (1-9) in
the dynamical setting, one has to consider a free boundary problem associated to (1-6) and (1-7) as in
[Jang 2010; Matusu-Necasova et al. 1997; Okada and Makino 1993]. We are interested in the evolution
of compactly supported stars with a free boundary where the star meets a vacuum. This is implemented
by assuming there is a radius R = R(t) > 0 such that

%(r, t) > 0 for r ∈ [0, R(t)) and %(R(t), t)= 0. (1-10)

At the free boundary we impose the kinematic condition

d
dt

R(t)= u(R(t), t), (1-11)

as well as the continuity of the normal stress, Sν = 0 at the surface r = R(t). The latter condition reduces
to

P −
4ε
3

(
∂r u−

u
r

)
− δ

(
∂r u+

2u
r

)
= 0 for r = R(t), t ≥ 0. (1-12)

Note that P(R(t), t)= K%γ (R(t), t)= 0, so this can be reduced to a relationship between ∂r u and u at
r = R(t). Finally, in order for u = u(r, t)x/r to be continuous, we require u(0, t)= 0 for t ≥ 0.

Since the boundary R(t) is free to move in time in Eulerian coordinates, it is convenient to introduce
Lagrangian coordinates so that the boundary becomes fixed. Following the framework used in [Jang 2010;
Matusu-Necasova et al. 1997; Okada and Makino 1993], we study our instability problem in Lagrangian
mass coordinates.

1B. Formulation in Lagrangian mass coordinates. We now reformulate the problem in Lagrangian
mass coordinates. We set

x(r, t)=
∫ r

0
4πs2%(s, t) ds =

∫
B(0,r)

%(y, t) dy (1-13)

for the mass contained in an Eulerian ball of radius r at time t . Note that

∂r x(r, t)= 4πr2%(r, t) (1-14)

and that

∂t x(r, t)=
∫

B(0,r)
∂t%(y, t) dy =−

∫
B(0,r)

div(%u) dy =−
∫
∂B(0,r)

%u · ν =−4πr2%(r, t)u(r, t). (1-15)
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In particular, this implies that ∂t x(R(t), t)= 0, which means that the total mass M > 0 is preserved in
time. The domain of x is then [0,M]. Switching to Lagrangian mass coordinates (x, t) ∈ [0,M]×[0,∞)
and letting the unknowns be

ρ(x, t)= %(r, t) and v(x, t)= u(r, t), (1-16)

we get the equations
∂tρ+ 4πρ2∂x(r2v)= 0 (1-17)

and

∂tv+ 4πr2∂x P +
x
r2 = 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
. (1-18)

In Lagrangian coordinates, our boundary conditions reduce to

v(0, t)= 0, ρ(M, t)= 0, (1-19)

and

P −
4ε
3

(
4πr2ρ∂xv−

v

r

)
− δ

(
4πr2ρ∂xv+

2v
r

)
= 0 at x = M for all t ≥ 0. (1-20)

In each of these equations, we have written

r(x, t)=
(

3
4π

∫ x

0

dy
ρ(y, t)

)1/3

, (1-21)

which inverts (1-13) by way of integrating (1-14). A simple computation, employing (1-17), shows that
∂tr(x, t)= v(x, t).

A stationary solution ρ = ρ0(x), v = 0, P0 = Kργ0 to (1-17) and (1-18) satisfies the equation

4πr2
0 (x)∂x P0(x)+

x
r2

0 (x)
= 0, (1-22)

where

r0(x)=
(

3
4π

∫ x

0

dy
ρ0(y)

)1/3

. (1-23)

This is the Lagrangian version of (1-8). We denote such a Lane–Emden solution in Lagrangian mass
coordinates by ρ0 with pressure P0 = Kργ0 . Note that ρ0(x) > 0 for x ∈ [0,M) and that ρ0 decreases
until it vanishes at x = M . In Lagrangian x coordinates, the boundary behavior (1-9) is expressed as

ρ0(x)∼ (M − x)1/γ for x near M, (1-24)

which can be also seen from (1-22). In particular, when γ ∈
( 6

5 ,
4
3

)
, this implies that 1

ρ0(x)
is integrable,

so that R = r0(M) <∞, which corresponds to a star of finite radius.
The existence and uniqueness of strong solutions to the vacuum free boundary problem of the Navier–

Stokes–Poisson system (1-17) and (1-18) featuring the behavior (1-24) of Lane–Emden solutions was
established in [Jang 2010] when δ = 2ε/3 > 0. The same methodology can be applied to our current
setting as long as ε > 0 and δ > 0, and we will take those strong solutions for granted in proving our
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nonlinear instability result. A well-posedness result in our energy space can be also proved based on
our new a priori energy estimates for the fully nonlinear Navier–Stokes–Poisson system, described in
Section 4.

1C. Main results. Throughout the paper, we assume that

ε > 0, δ > 0, K > 0, and 6
5 < γ <

4
3 (1-25)

are all fixed. Note that although the only physical requirement on the bulk viscosity is δ≥0, the assumption
δ > 0 is critical for both our linear and nonlinear analysis. We will also write M, R > 0 for the mass and
radius of a stationary solution to (1-22).

To state the main results, we first write the system in a perturbation form. For small perturbed solutions
σ := ρ− ρ0 and v around the steady states satisfying (1-22), the Navier–Stokes–Poisson system (1-17)
and (1-18) can be written as

∂tσ + 4πρ2∂x(r2v)= 0,

∂tv+ 4πr2∂x P − 4πr2
0∂x P0+

x
r2 −

x
r2

0
= 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
,

(1-26)

with boundary conditions (1-19) and (1-20).
Our first main result concerns the existence of the largest growing mode of the linearized Navier–

Stokes–Poisson system around Lane–Emden solutions, which shows a linear instability in the sense of
Lin’s stability criteria [1997].

Theorem 1.1. Suppose (1-25). There exist λ > 0 and σ(x), v(x) such that σ(x)eλt and v(x)eλt solve the
linearized Navier–Stokes–Poisson system (2-1) and (2-2) with the linearized boundary conditions (2-3)
and (2-4). Moreover, this growing mode yields the largest possible growth rate to the linearized system.

Remark 1.2. The growth rate λ > 0 produced in Theorem 1.1 clearly depends on the values of the
viscosity parameters ε, δ. It is natural to consider the asymptotics of λ for large and small viscosities.
In Proposition 2.11 below, we show that λ converges to the largest growth rate for the inviscid problem
(identified by Lin [1997]) as (δ, ε)→ 0. We also show that λ→ 0 as δ→∞, which demonstrates that
viscosity delays the onset of instability, since the escape time T ι (given below in (1-27)) is inversely
proportional to λ.

The precise statement of Theorem 1.1 with the estimates is given in Theorems 2.1 and 3.2. Our second
main result establishes the fully nonlinear dynamical instability of the Lane–Emden solutions to the
Navier–Stokes–Poisson system. In the statement of the theorem, for any given ι > 0 and θ > ι, we write

T ι
:=

1
λ

ln
θ

ι
, (1-27)

where λ is the sharp linear growth rate obtained in Theorem 1.1.

Theorem 1.3. Suppose (1-25). There exist function spaces X and Y as well as constants θ > 0 and C > 0
such that for any sufficiently small ι > 0, there exist solutions (σ ι(t), vι(t)) to (1-26) for t ∈ [0, T ) with
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T > T ι such that ∥∥(σ ι(0), vι(0))∥∥Y ≤ Cι, but sup
0≤t≤T ι

∥∥(σ ι(t), vι(t))∥∥X ≥ θ. (1-28)

The precise statement of Theorem 1.3 is given in Theorem 5.4, and the spaces X and Y will be clarified
in Sections 4 and 5.

Remark 1.4. Our results show that regardless of how large the viscosity parameters ε, δ are, and no
matter how small smooth initial perturbed data are taken to be, the system remains unstable. We conclude
from this that all Lane–Emden steady star configurations for 6

5 < γ < 4
3 are unstable, regardless of

viscosity.

Remark 1.5. The escape time T ι is determined through (1-27) by the linear growth rate λ. We note that
the instability occurs before the possible breakdown or any collapse of strong solutions. We also remark
that the instability occurs in the X norm, which when rewritten in Eulerian coordinates, is equivalent to∫

R3

(
1
2
%|u|2+

γ

2
%0

%
P0

∣∣∣∣ σ%0

∣∣∣∣2) dx, (1-29)

which is related to the positive part of the physical energy:∫
R3

(
1
2
%|u|2+

1
γ − 1

P
)

dx. (1-30)

Of course, this is not a coincidence: the Lane–Emden solutions for γ < 4
3 do not minimize the physical

energy functional,∫ M

0

(
1
2
|v|2+

1
γ − 1

P
ρ
−

x
r

)
dx in Lagrangian mass coordinates, or∫

R3

(
1
2
%|u|2+

1
γ − 1

P
)

dx−
1
2

∫
R3×R3

%(x)%( y)
|x− y|

dx d y in Eulerian coordinates,
(1-31)

and thus one might expect some kind of instability. They do minimize for γ > 4
3 (see, for instance, [Jang

2008; Rein 2003]).

The presence of viscosity and the nonlinear boundary condition (1-20) for the Navier–Stokes–Poisson
system make the problem distinguishable and interesting not only from a physical point of view, but also
from a mathematical point of view. What follows now are some of the main mathematical difficulties we
encounter in analyzing the system, and a brief discussion of our methods for resolving them.

The proof of Theorem 1.1 is based on a variational analysis of equations obtained by linearizing (1-26).
The main difficulty that arises in constructing growing-mode solutions is that, due to the viscous terms,
the growth rate (eigenvalue) appears in the problem with two different homogeneities. This breaks the
natural variational structure used in [Lin 1997] to construct growing modes in the inviscid case. To get
around this difficulty, we employ a technique introduced in [Guo and Tice 2010]: we introduce a relaxed
parameter that allows us to remove one of the eigenvalue homogeneities, study the resulting modified
eigenvalue problem (which has a nice variational structure), and finally return to the original formulation
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through a fixed point argument. While the solutions constructed in this manner are definitely growing
modes, it is not clear a priori that they grow at the largest possible rate. To verify this, we carry out a
careful analysis, paying particular attention to the boundary behavior of the growing mode, which will be
crucially used in the subsequent nonlinear bootstrap argument.

The proof of Theorem 1.3 is based on a bootstrap argument from linear instability to nonlinear
dynamical instability. Passing from a linearized instability to nonlinear instability requires much effort in
the PDE context since the spectrum of the linear part is fairly complicated and the unboundedness of
the nonlinear part usually yields a loss in derivatives. In order to get around these difficulties and to find
the right space Y , we employ careful nonlinear energy estimates for the whole system so that, first, the
nonlinear estimates can be closed, and second, their interplay with the linear analysis can complete the
argument. For this particular problem, the space Y is minimally chosen so that the viscosity disturbance
near the vacuum boundary can be controlled within Y .

We note that in Lagrangian mass coordinates, the continuity equation interacts well with the viscosity
term, which allows us to derive nice estimates for σ/ρ0 and its temporal and spatial derivatives. This
plays an important role in closing our nonlinear energy estimates. The main technical difficulty is to
derive Proposition 5.1, a key estimate for the bootstrap argument. The idea is to find an energy E that
satisfies an inequality of the form

d
dt

E≤ ηE+ lower derivative terms, (1-32)

where η is smaller than the sharp linear growth rate. However, (1-32) is too good to hold in general due
to the degeneracy of vacuum boundary and the complexity of the system near Lane–Emden stars. To
overcome this difficulty, we introduce a collection of energy terms: some of them satisfy (1-32) under
certain conditions, which we quantify; some of them are bootstrapped energies, the estimates of which
are obtained by improved weighted energy estimates that exploit the structure of the equations; and others
are auxiliary energies, the estimates of which are directly obtained from the equations. The gravitational
potential has a smoothing effect, behaves well with the necessary weights, and does not create further
difficulty in the nonlinear estimates. In fact, Section 4 is devoted to the introduction of those energy
terms and the derivation of the estimates. Combining the estimates of the various energy terms, we can
complete the bootstrap argument.

Another delicate and important issue is the nonlinear boundary condition (1-20). In order to carry out
higher-order energy estimates that require integration by parts, we can only employ differential operators
that respect the boundary conditions, namely temporal derivatives. This forces us to carefully use the
structure of the equations in order to gain bounds on spatial derivatives. A second difficulty with the
boundary arises because we use Duhamel’s principle to study the nonlinear problem with the linearized
evolution operator. The linearized boundary condition is homogeneous, but the nonlinear boundary
condition is certainly not. This forces us to introduce a corrector function that removes the boundary
inhomogeneity. While the construction of this function is not particularly delicate, the regularity required
to do so dictates that we close our energy estimates at a higher order than we would otherwise.
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The paper proceeds as follows. The first half is devoted to the development of the linear theory and the
proof of Theorem 1.1. In Section 2, we formulate a variational problem to find a growing-mode solution
to the linearized Navier–Stokes–Poisson system. In Section 3, we show that our growing-mode solution
grows at the largest possible rate. In the second half of the paper, we carry out our nonlinear analysis.
In Section 4, we derive high-order nonlinear energy inequalities. Based on the linear growth and the
nonlinear estimates, we then prove the bootstrap argument and Theorem 1.3 in Section 5.

2. Construction of a growing mode solution to the linearized equations

2A. Linearization around a stationary solution. We now linearize the equations in Lagrangian mass
coordinates around the stationary solution v = 0, ρ = ρ0, r = r0 (as defined by (1-23)). We will write σ
for the linearized density, and (by abuse of notation) v for the linearized velocity. Then the linearized
equations are given by

∂tσ + 4πρ2
0∂x(r2

0v)= 0 (2-1)

and

∂tv+ 4πr2
0∂x P̃ +

x
πr5

0

∫ x

0

σ(y, t)
ρ2

0(y)
dy = 16π2r2

0∂x

((
4ε
3
+ δ

)
ρ0∂x(r2

0v)

)
, (2-2)

where we have written P̃ = γ Kργ−1
0 σ . The linearized boundary conditions are

v(0, t)= 0, σ (M, t)= 0 (2-3)

and

P̃ −
4ε
3

(
4πr2

0ρ0∂xv−
v

r0

)
− δ

(
4πr2

0ρ0∂xv+
2v
r0

)
= 0 at x = M for all t ≥ 0. (2-4)

Again, we can view (2-4) as a boundary condition only for v since P̃ = γ Kργ−1
0 σ = 0 at x = M for each

t ≥ 0.
It will often be useful for us to analyze a variant of this system, where we analyze the unknowns σ and

w := r2
0v. For these unknowns, Equations (2-1)–(2-4) become

∂tσ + 4πρ2
0∂xw = 0,

∂tw+ 4πr4
0∂x(γ Kργ−1

0 σ)− 4r0∂x P0

∫ x

0

σ(y, t)
ρ2

0(y)
dy = 16π2r4

0∂x

[(
4ε
3
+ δ

)
ρ0∂xw

]
,

(2-5)

along with the boundary conditions

w

r2
0
(0, t)= σ(M, t)= 0 and

4ε
3

(
4πr3

0ρ0∂x

(
w

r3
0

))
+ δ(4πρ0∂xw)= 0 at x = M. (2-6)

Note that w/r2
0 = u is well-defined at x = 0, but one may also view the first boundary condition in (2-6)

in the sense of traces or limits.
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2B. Growing mode solution. We want to construct a growing mode solution to the linearized equations.
We do so by looking for a solution of the form

σ(x, t)= σ(x)eλt and v(x, t)= v(x)eλt (2-7)

for some λ> 0. If we can find such a solution, then we say the solution is a growing mode since |eλt
|→∞

as t→∞. Plugging the ansatz (2-7) into the linearized equations (2-1)–(2-4) and eliminating the time
exponentials, we arrive at a pair of equations for σ(x) and v(x):

λσ + 4πρ2
0∂x(r2

0v)= 0 (2-8)

and

λv+ 4πr2
0∂x P̃ +

x
πr5

0

∫ x

0

σ(y)
ρ2

0(y)
dy = 16π2r2

0∂x

((
4ε
3
+ δ

)
ρ0∂x(r2

0v)

)
, (2-9)

along with boundary conditions

v(0)= σ(M)= 0 and −
4ε
3

(
4πr2

0ρ0∂xv−
v

r0

)
− δ

(
4πr2

0ρ0∂xv+
2v
r0

)
= 0 at x = M. (2-10)

Our main result of this section establishes the existence of such a growing mode.

Theorem 2.1. There exist λ > 0 and σ, v : (0,M)→ R that solve (2-8)–(2-10) and satisfy the following.

(1) σ and v are smooth on (0,M) and satisfy (2-8)–(2-9) classically for x ∈ (0,M).

(2) It holds that

lim sup
x→0

|v(x)|
r0(x)

+ lim sup
x→0

|σ(x)| + lim sup
x→0

|∂x(r2
0v)(x)|<∞. (2-11)

In particular, v(0)= 0.

(3) Let D denote the linear operator D = ρ0∂x . Then Dkv and Dk(σ/ρ0) have well-defined traces at
x = M for every integer k ≥ 0. In particular, σ(M)= 0.

(4) λ > 0 satisfies the variational characterization

λ

∫ M

0

(
δρ0|∂xθ |

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
θ

r3
0

)∣∣∣∣2 ) dx +
∫ M

0

(
γ P0ρ0

2
|∂xθ |

2
+
∂x P0

2πr3
0

|θ |2
)

dx

≥−λ2
∫ M

0

|θ |2

16π2r4
0

dx (2-12)

for every θ satisfying
√
ρ0∂xθ ∈ L2((0,M)) and θ/(r2

0
√
ρ0) ∈ L2((0,M)). Note that for such θ , it

holds that θ/(r3
0
√
ρ0) ∈ L2((0,M)), which means that all of the integrals in (2-12) are well-defined.

(5) It holds that∫ M

0

(∣∣∣∣ σρ0

∣∣∣∣2+ r2
0

∣∣∣∣∂x
σ

ρ0

∣∣∣∣2 ) dx +
∫ M

0

(
|r2

0v|
2

r6
0ρ0
+ ρ0|∂x(r2

0v)|
2
+ r2

0

∣∣∂x(ρ0∂x(r2
0v))

∣∣2) dx <∞. (2-13)
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The proof of Theorem 2.1 will be completed in Section 2F. Throughout the rest of the section, we
develop the tools needed in the proof. First we reformulate (2-8)–(2-10) to involve a single unknown
function, φ. The resulting problem for φ does not possess a standard variational structure since λ appears
both linearly and quadratically. To construct a solution using variational methods (required for proving
(2-12), which is essential for the linear estimates of Section 3), we employ the technique of Guo and Tice
[2010], which proceeds as follows. We modify the problem by replacing the linear appearance of λ by
an arbitrary parameter s > 0. The resulting family (every s > 0) of problems is amenable to solution by
the constrained minimization of an energy functional, and for a range of s we show that λ= λ(s) > 0.
We then study the behavior of λ(s) as a function of s and show that it is possible to find a unique fixed
point such that λ(s)= s > 0. This then yields the desired solution φ, which in turn yields the solution to
(2-8)–(2-10).

We begin by reducing to the study of a single unknown by introducing the function

φ(x) :=
∫ x

0

σ(y)
ρ2

0(y)
dy. (2-14)

We may then use (2-8)–(2-10) to compute

v =−
λ

4πr2
0
φ, σ = ρ2

0∂xφ, and ∂x P̃ = ∂x(γρ0 P0∂xφ), (2-15)

where P0 = Kργ0 . Using these and replacing in (2-9), we arrive at a second-order equation for φ:

−∂x

((
4λε

3
+ λδ+ γ P0

)
ρ0∂xφ

)
+
∂x P0

πr3
0

φ =−
λ2

16π2r4
0
φ. (2-16)

The corresponding boundary conditions are

φ

r2
0
(0)= 0 and

4ε
3
λ

(
4πr3

0ρ0∂x

(
φ

r3
0

))
+ δλ(4πρ0∂xφ)= 0 at x = M. (2-17)

2C. Modification of the problem. Note that Theorem 2.1 is phrased in Lagrangian mass coordinates.
This is because we will use these coordinates in our nonlinear analysis later in the paper. However,
constructing the solution to (2-16)–(2-17) is somewhat easier if we make a change of variables back to
the Eulerian radial coordinates associated to the stationary solution. To avoid confusion with the Eulerian
radial coordinate for the nonlinear problem, we will call our new variable z = r0(x), where r0 is given by
(1-23). If x ∈ (0,M) for M the mass of the stationary star, then z ∈ (0, R) for R > 0 its radius. We will
write %0(z) = ρ0(x) for the stationary density, P0 = K%γ , and ϕ(z) = φ(x) for the new unknown in z
coordinates. Then

∂x =
1

4π z2%0
∂z. (2-18)

In these coordinates, (2-16) becomes

−∂z

((
4λε

3
+ λδ+ γ P0

)
∂zϕ

z2

)
+ 4

∂z P0

z3 ϕ =−
λ2%0

z2 ϕ. (2-19)
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For the boundary condition at z = R, we use (2-17) to see that

λδ
∂zϕ(R)

R2 +
4λε

3

(
∂zϕ(R)

R2 − 3
ϕ(R)

R3

)
= 0. (2-20)

At z= 0 we enforce the boundary condition ϕ(0)= 0. Once we have a solution in hand, we will show that,
in fact, ϕ(z)/z2

→ 0 as z→ 0, which allows us to switch back to the boundary condition (φ/r2
0 )(0)= 0.

There is a difficulty in viewing (2-19)–(2-20) in a variational or Sturm–Liouville framework because
of the appearance of λ with two different homogeneities. To get around this issue, we temporarily modify
the problem in order to restore the variational structure. Ultimately we will undo the modification and
return to the proper formulation.

Fix s > 0 and define
ε̃ = sε and δ̃ = sδ. (2-21)

Instead of (2-19), we will analyze the equation

−∂z

((
4ε̃
3
+ δ̃+ γ P0

)
∂zϕ

z2

)
+ 4

∂z P0

z3 ϕ =−
λ2%0

z2 ϕ (2-22)

for arbitrary s > 0. We couple this equation to the boundary conditions ϕ(0)= 0 and

δ̃
∂zϕ(R)

R2 +
4ε̃
3

(
∂zϕ(R)

R2 − 3
ϕ(R)

R3

)
= 0. (2-23)

Modifying the problem in this way restores the variational structure. Indeed, in (2-22) the λ2 term can
be viewed as an eigenvalue. Thinking of the principal eigenvalue λ as a function of s, that is, λ= λ(s),
we will show that it is possible to choose s such that λ(s) > 0 and s = λ(s), which returns us to the
original problem and yields a growing-mode solution.

2D. Constrained minimization. In order to construct solutions to (2-22)–(2-23), we will employ a
constrained minimization. To begin, we define the function space on which the energy functionals
will be defined. For τ > 0, we define the weighted Sobolev space H 1

τ ((0, R)) as the completion of
{u ∈ C∞([0, R]) | u(0)= 0} with respect to the norm

‖u‖2H1
τ
=

∫ R

0

|u′(z)|2+ |u(z)|2

zτ
dz, (2-24)

where ′ = d/dz. This weighted Sobolev space possesses the same sort of embedding (continuous and
compact) properties as the usual space H 1. Since these results are not widely available in the literature,
we record them in the following lemma.

Lemma 2.2. (1) For u ∈ H 1
τ ((0, R)), we have the inequalities

sup
0≤z≤R

∣∣u(z)z−(τ+1)/2∣∣≤ 1
√

1+ τ

(∫ R

0

|u′(z)|2

zτ
dz
)1/2

(2-25)

and ∫ R

0

|u(z)|2

zτ+2 dz ≤
4

(1+ τ)2

∫ R

0

|u′(z)|2

zτ
dz. (2-26)
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(2) Let 0 ≤ α < 1. We have the compact embedding H 1
τ ((0, R)) b L2

τ+1+α((0, R)), where the latter
space is the weighted L2 space with norm

‖u‖2L2
τ+1+α
=

∫ R

0

|u(z)|2

zτ+1+α dz. (2-27)

Proof. We begin with the inequalities in item (1). By approximation, we may assume that u is smooth
and u(0)= 0. Then

|u(z)| = |u(z)− u(0)| ≤
∫ z

0
|u′(t)| dt ≤

(∫ z

0
tτ dt

)1/2(∫ z

0

|u′(t)|2

tτ
dt
)1/2

≤

(
zτ+1

τ + 1

)1/2(∫ R

0

|u′(t)|2

tτ
dt
)1/2

, (2-28)

which yields the first inequality. To get the second, we recall an inequality due to G. H. Hardy:(∫
∞

0

(∫ z

0
| f (t)| dt

)p dz
zb+1

)1/p

≤
p
b

(∫
∞

0
| f (z)|pz p−b−1 dz

)1/p

, (2-29)

for 1 ≤ p < ∞ and 0 < b < ∞, which follows immediately from Young’s inequality on the mul-
tiplicative group (0,∞) with measure dt/t by convolving | f (t)|t1−b/p with t−b/pχ(1,∞)(t). Then
|u(z)| ≤

∫ z
0 |u
′(t)| dt implies that∫ R

0

|u(z)|2

zτ+2 dz ≤
∫ R

0

(∫ z

0
|u′(t)| dt

)2 dz
zτ+2 . (2-30)

Applying Hardy’s inequality to the right side with f = u′χ(0,R), b = τ + 1, and p = 2 yields∫ R

0

|u(z)|2

zτ+2 dz ≤
4

(τ + 1)2

∫ R

0

|u′(z)|2

zτ
dz, (2-31)

which is the desired inequality.
We now prove the compactness result. Assume that ‖un‖H1

τ
≤ C for n ∈ N. Fix κ > 0. We claim that

there exists a subsequence {uni } such that

sup
i, j
‖uni − un j‖L2

τ+1+α
≤ κ. (2-32)

To prove the claim, let z0 ∈ (0, R) be chosen such that

z1−α
0

C2

(1+ τ)(1−α)
≤
κ

2
. (2-33)

Then since the subinterval (z0, R) avoids the singularity of 1/zτ , un|(z0,R) is uniformly bounded in
H 1((z0, R)). By the compact embedding H 1((z0, R)) b C0((z0, R)), we may extract a subsequence
{uni } that converges in L∞((z0, R)). We are free to restrict the subsequence to large enough values of i
that

‖uni − un j‖
2
L∞((z0,R)) ≤

κz0
τ+1+α

2(R− z0)
for all i, j. (2-34)
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Then along this subsequence we can apply the first inequality in item (1) to get∫ R

0

|uni (z)− un j (z)|
2

zτ+1+α dz =
∫ z0

0

|uni (z)− un j (z)|
2

zτ+1+α dz+
∫ R

z0

|uni (z)− un j (z)|
2

zτ+1+α dz

≤
C2

1+ τ

∫ z0

0

dz
zα
+

R− z0

z0τ+1+α ‖uni − un j‖
2
L∞((z0,R)) ≤ κ, (2-35)

which proves the claim. Now we may use the claim with κ = 1/k, k ∈N and employ a standard diagonal
argument to extract a subsequence converging in L2

τ+1+α((0, R)). �

Remark 2.3. The inequality (2-26) implies that we can take the norm on H 1
τ to be

‖u‖2H1
τ
=

∫ R

0

|u′(z)|2

zτ
dz. (2-36)

We can now define the energy functionals to use in the constrained minimization. Let

E(ϕ)=
∫ R

0

[
(δ̃+ γ P0)

|∂zϕ|
2

z2 +
4ε̃
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2+ 4
∂z P0

z3 |ϕ|
2
]

dz (2-37)

and

J (ϕ)=
∫ R

0

%0

z2 |ϕ|
2 dz. (2-38)

By (2-26) in Lemma 2.2, both E and J are well-defined on the space H 1
2 ((0, R)). Note, though, that E is

not positive definite since ∂z P0 < 0. Define the set

A := {ϕ ∈ H 1
2 ((0, R)) | J (ϕ)= 1}. (2-39)

We will build solutions to (2-22) by minimizing E over A. First we show that such a minimizer exists.

Proposition 2.4. E achieves its infimum on the set A.

Proof. To begin, we show that E is coercive on A, which amounts to controlling the last term in E . Recall
that by (1-9), %0(z)∼ (R− z)1/(γ−1) for z near R. This implies that

∂z P0

%0
= γ K%γ−2

0 ∂z%0 =
γ K
γ − 1

∂z(%
γ−1
0 ) (2-40)

is bounded near z = R. Since %0 and P0 = K%γ0 are smooth and bounded below away from z = R, this
implies that ∥∥∥∥∂z P0

%0

∥∥∥∥
L∞((0,R))

<∞. (2-41)

Then for any z0 ∈ (0, R), we have the bound
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0
|∂z P0|

|ϕ|2

z3 dz =
∫ z0

0
|∂z P0|

z|ϕ|2

z4 dz+
∫ R

z0

|∂z P0|

z%0

%0|ϕ|
2

z2 dz

≤ z0‖∂z P0‖L∞

∫ z0

0

|ϕ|2

z4 dz+
1
z0

∥∥∥∥∂z P0

%0

∥∥∥∥
L∞

∫ R

z0

%0|ϕ|
2

z2 dz

≤ z0
4
9
‖∂z P0‖L∞

∫ R

0

|∂zϕ|
2

z2 dz+
1
z0

∥∥∥∥∂z P0

%0

∥∥∥∥
L∞
. (2-42)

For the second inequality we have used Lemma 2.2 and the fact that ϕ ∈ A. Then by choosing z0

sufficiently small, we have that

E(ϕ)≥−Cz0 +

∫ R

0

[(
δ̃

2
+ γ P0

)
|∂zϕ|

2

z2 +
4ε̃
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2 ] dz (2-43)

for a constant Cz0 > 0 depending on the choice of z0, which immediately yields the desired coercivity
since δ̃ > 0.

With the coercivity in hand, we may deduce the existence of a minimizer by using the standard direct
methods, employing Lemma 2.2 for compactness. �

Since a minimizer exists, we can now define the function µ : (0,∞)→ R by

µ(s)= inf
ϕ∈A

E(ϕ; s), (2-44)

where we write E(ϕ)= E(ϕ; s) to emphasize the dependence of E on the parameter s > 0, that is,

E(ϕ; s)= s
∫ R

0

[
δ
|∂zϕ|

2

z2 +
4ε
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2 ] dz+
∫ R

0

[
γ P0
|∂zϕ|

2

z2 + 4
∂z P0

z3 |ϕ|
2
]

dz. (2-45)

The minimizer we have constructed satisfies Euler–Lagrange equations of the form (2-22).

Proposition 2.5. Let ϕ ∈A be the minimizer of E constructed in Proposition 2.4. Let µ := E(ϕ). Then ϕ
is smooth on (0, R] and satisfies

−∂z

((
4ε̃
3
+ δ̃+ γ P0

)
∂zϕ

z2

)
+ 4

∂z P0

z3 ϕ =
µ%0

z2 ϕ (2-46)

along with the boundary conditions ϕ(0)= 0 and

δ̃
∂zϕ(R)

R2 +
4ε̃
3

(
∂zϕ(R)

R2 − 3
ϕ(R)

R3

)
= 0. (2-47)

Proof. Fix ϕ0 ∈ H 1
2 ((0, R)). Define

j (t, τ )= J (ϕ+ tϕ0+ τϕ) (2-48)

and note that j (0, 0)= 1. Moreover, j is smooth and

∂ j
∂t
(0, 0)= 2

∫ R

0
%0
ϕ0ϕ

z2 dz and
∂ j
∂τ
(0, 0)= 2

∫ R

0
%0
ϕ2

z2 dz = 2. (2-49)
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So, by the inverse function theorem, we can solve for τ = τ(t) in a neighborhood of 0 as a C1 function
of t such that τ(0)= 0 and j (t, τ (t))= 1. We may differentiate the last equation to find

∂ j
∂t
(0, 0)+

∂ j
∂τ
(0, 0)τ ′(0)= 0, (2-50)

and hence

τ ′(0)=−
1
2
∂ j
∂t
(0, 0)=−

∫ R

0
%0
ϕ0ϕ

z2 dz. (2-51)

Since ϕ is a minimizer over A, we then have

0=
d
dt

∣∣∣∣
t=0

E(ϕ+ tϕ0+ τ(t)ϕ), (2-52)

which implies that

0=
∫ R

0

δ̃+ γ P0

z2 ∂zϕ
(
∂zϕ0+ τ

′(0)∂zϕ
)

dz+
∫ R

0
4
∂z P0

z3 ϕ
(
ϕ0+ τ

′(0)ϕ
)

dz

+

∫ R

0

4ε̃
3z2

(
∂zϕ− 3

ϕ

z

)(
∂zϕ0− 3

ϕ0

z
+ τ ′(0)

(
∂zϕ− 3

ϕ

z

))
dz. (2-53)

Rearranging and plugging in the value of τ ′(0), we may rewrite this equation as

µ

∫ R

0

%0

z2 ϕ0ϕ dz

=

∫ R

0

δ̃+ γ P0

z2 ∂zϕ∂zϕ0 dz+
∫ R

0
4
∂z P0

z3 ϕϕ0 dz+
∫ R

0

4ε̃
3z2

(
∂zϕ− 3

ϕ

z

)(
∂zϕ0− 3

ϕ0

z

)
dz, (2-54)

where the eigenvalue is µ= E(ϕ).
By making variations with ϕ0 compactly supported in (0, R), we find that ϕ satisfies (2-46) in a weak

sense in (0, R). Standard bootstrapping arguments then show that ϕ ∈ H k((z0, R)) for all k ≥ 0 and
0< z0 < R, and hence ϕ is smooth in (0, R]. This implies that the equations are also classically satisfied.
Since ϕ ∈ H 2((R/2, R)), the traces of ϕ, ∂zϕ are well-defined at the endpoint z = R. Making variations
with respect to arbitrary ϕ0 ∈ C∞c ((0, R]), we find that the boundary condition (2-47) is satisfied. The
condition ϕ(0)= 0 is satisfied by virtue of Lemma 2.2. �

We now want to show that the minimizers, which are solutions to (2-46), satisfy the asymptotic
condition |ϕ(z)|/z2

→ 0 as z→ 0. As a preliminary step, we record an asymptotic result for solutions to
a more generic ODE.

Lemma 2.6 [Lin 1997, Proposition A.1]. Suppose that ψ(τ) solves

ψ ′′(τ )+
(
ατ−1

+ g(τ )
)
ψ ′(τ )+ τ−1 f (τ )ψ(τ)= 0 if 0< τ < τ0, (2-55)

where ′ = d/dτ and f, g ∈ C0([0, τ0]). If α < 0, then either ψ(0) 6= 0 or

|ψ(τ)| ≤
C
τα−1 and |ψ ′(τ )| ≤

C
τα
. (2-56)
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Proof. The case α > 2 is the content of Proposition A.1 of [Lin 1997], but the proof of the proposition
also shows the result when α < 0. �

Next we use this lemma to establish the asymptotics at z = 0 for solutions to (2-46).

Lemma 2.7. Suppose ϕ is a solution of (2-46). Then |ϕ(z)| ≤ Cz3 and |ϕ′(z)| ≤ Cz2 near z = 0.

Proof. We begin by rewriting (2-46). Define X = ε̃+ δ̃+γ P0= ε̃+ δ̃+γ K%γ0 and X0= ε̃+P0= ε̃+K%γ0 .
Then (2-46) is equivalent to the equation

ϕ′′+

(
X ′

X
−

2
z

)
ϕ′− 4

X ′0
zX
ϕ =−µ

%0

X
ϕ. (2-57)

Note that X ′/X , X ′0/X , and %0/X are all continuous at z = 0, so we may apply Lemma 2.6 with
α =−2 to deduce that either ϕ(0) 6= 0 or |ϕ(z)| ≤ Cz3 and |ϕ′(z)| ≤ Cz2 near z = 0. By Lemma 2.2, the
former condition cannot hold, so the latter conditions must be the case. �

2E. Properties of the eigenvalue µ(s). It is convenient to decompose E according to

E(ϕ; s)= E0(ϕ)+ s E1(ϕ) (2-58)

for

E0(ϕ) :=

∫ R

0

(
γ P0
|∂zϕ|

2

z2 + 4
∂z P0

z3 |ϕ|
2
)

dz (2-59)

and

E1(ϕ) :=

∫ R

0

(
δ
|∂zϕ|

2

z2 +
4ε
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2 ) dz ≥ 0. (2-60)

Notice that since E0 does not involve either δ or ε, we may view it as the “inviscid” part of E . Because
∂z P0 lacks a sign, E0 fails to be nonnegative. However, an easy modification of the argument used in
Proposition 2.4 shows that infA E0 > −∞. As a consequence of the analysis of the inviscid problem,
carried out by Lin [1997], we have that this infimum is actually negative and is achieved, and its value
characterizes the fastest growing mode for the inviscid problem. Indeed, there exists a ϕ0 ∈A such that

0>−χ2
0 := inf

ϕ∈A
E0(ϕ)= E0(ϕ0), (2-61)

with χ0 > 0 the fastest growth rate and ϕ0 the corresponding growing mode solution for the linearized
inviscid problem.

We are ultimately concerned with finding µ=−λ2 for some λ> 0. This requires us to work in a range
of s such that µ(s) < 0. Our next result shows that µ(s) < 0 for s sufficiently small.

Lemma 2.8. There exist constants C1,C2 ≥ 0 depending on ϕ0 such that

µ(s)≤ s(δC1+ εC2)−χ
2
0 . (2-62)

In particular, µ(s) < 0 for s sufficiently small.
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Proof. Let ϕ0 ∈A be the minimizer of E0 from (2-61). Then, using the decomposition (2-58), we find

µ(s)= inf
A

E ≤ E(ϕ0)= E0(ϕ0)+ s E1(ϕ0)= s E1(ϕ0)−χ
2
0 . (2-63)

Then E1(ϕ0)= δC1+ εC2, where

C1 =

∫ R

0

|∂zϕ0|
2

z2 dz > 0 and C2 =

∫ R

0

4
3z2

∣∣∣∣∂zϕ0− 3
ϕ0

z

∣∣∣∣2dz > 0. (2-64)

Strict inequality holds for C1 since ϕ0 ∈A, while it holds for C2 since C2 = 0 if and only if ϕ0(z)= αz3

for some α ∈ R, but one can check that this is not a solution to (2-46) with ε̃, δ̃ = 0. �

The next proposition proves some crucial monotonicity and continuity properties of µ(s) for s > 0.

Proposition 2.9. (1) µ(s) is strictly increasing in s.

(2) There exists a constant C3 > 0 such that

µ(s)≥−χ2
0 + sC3δ, (2-65)

where χ0 > 0 is given in (2-61).

(3) µ is locally Lipschitz on (0,∞), and in particular, µ is continuous on (0,∞).

Proof. We begin by establishing some notation. According to Proposition 2.4, for each s ∈ (0,∞) we can
find ϕs ∈A such that

E(ϕs; s)= inf
ϕ∈A

E(ϕ; s)= µ(s). (2-66)

Next, we recall the decomposition of E given in (2-58) and note that the nonnegativity of E1 implies that
E is nondecreasing in s with ϕ ∈A kept fixed.

To prove the first assertion, note that if s1, s2 ∈ (0,∞) with s1 ≤ s2, then the minimality of ϕsi and the
nonnegativity of E1 imply that

µ(s1)= E(ϕs1; s1)≤ E(ϕs2; s1)≤ E(ϕs2; s2)= µ(s2). (2-67)

This shows that µ is nondecreasing in s. Suppose by way of contradiction that µ(s1)= µ(s2) for s1 6= s2.
Then the last inequality implies that

s1 E1(ϕs2)= s2 E1(ϕs2), (2-68)

which means that E1(ϕs2)= 0. The vanishing of E1(ϕs2) implies that ϕs2 = 0, which is impossible since
ϕs2 ∈A. Hence equality cannot be achieved, and µ is strictly increasing in s.

Now note that (2-58), the nonnegativity of E1, and (2-61) imply that

µ(s)≥ inf
ϕ∈A

E0(ϕ)+ s inf
ϕ∈A

E1(ϕ)=−χ
2
0 + s inf

ϕ∈A
E1(ϕ). (2-69)

It is a simple matter to see that

inf
ϕ∈A

E1(ϕ)≥ δ inf
ϕ∈A

∫ R

0

|∂zϕ|
2

z2 dz := C3δ > 0. (2-70)

The second assertion follows.
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Now fix Q = [a, b]b (0,∞), and fix any ψ ∈A. Again by the nonnegativity of E1 and the minimality
of ϕs , we deduce that

E(ψ; b)≥ E(ψ; s)≥ E(ϕs; s)≥ aE1(ϕs)−χ
2
0 (2-71)

for all s ∈ Q. This implies that there exists a constant 0< C = C(a, b, ψ, γ, K ) <∞ such that

sup
s∈Q

E1(ϕs)≤ C. (2-72)

Let s1, s2 ∈ Q. Using the minimality of ϕs1 compared to ϕs2 , we know that

µ(s1)= E(ϕs1; s1)≤ E(ϕs2; s1), (2-73)

but from our decomposition (2-58), we may bound

E(ϕs2; s1)≤ E(ϕs2; s2)+ |s1− s2|E1(ϕs2)= µ(s2)+ |s1− s2|E1(ϕs2). (2-74)

Chaining these two inequalities together and employing (2-72), we find that

µ(s1)≤ µ(s2)+C |s1− s2|. (2-75)

Reversing the role of the indices 1 and 2 in the derivation of this inequality gives the same bound with s1

switched with s2. We deduce that

|µ(s1)−µ(s2)| ≤ C |s1− s2|, (2-76)

which proves item (3). �

Now we know that the eigenvalue µ(s) is negative as long as s <
χ2

0

δC1+ εC2
and that µ is continuous

on (0,∞). We can then define the nonempty open set

�= µ−1((−∞, 0))⊂ (0,∞), (2-77)

on which we can calculate λ(s)=
√
−µ(s) > 0.

It turns out that the set � is sufficiently large to find s > 0 such that λ(s)= s. This inversion will then
allow us to solve the original growing-mode equations.

Proposition 2.10. There exists a unique s ∈� such that λ(s)=
√
−µ(s) > 0 and λ(s)= s.

Proof. According to Lemma 2.8, we know that µ(s) < 0 for s ∈
[
0, χ2

0 /(δC1+ εC2)
)
. Moreover, the

lower bound (2-65) in Proposition 2.9 implies that µ(s)→+∞ as s→∞. This implies the existence of
s0 ∈ (0,∞) such that �= (0, s0), which means that λ(s0)= 0. Define the function 9 : (0, s0)→ (0,∞)
by 9(s) = s/λ(s). The monotonicity and continuity properties of µ are inherited by 9, that is, 9
is continuous on (0, s0) and strictly increases from 0 to +∞ as s → s0. As such, we may apply the
intermediate value theorem to find a unique s ∈ (0, s0) such that 9(s)= 1. For this s, we then have that
s = λ(s), the desired result. �

Up to now we have viewed the viscosity parameters ε, δ as being fixed. With the unique fixed point
λ(s) =

√
−µ(s) = s > 0 in hand, we can now consider the behavior of λ with respect to the viscosity

parameters, ε, δ. To this end, let us write λ= λ(δ, ε) in the following.



INSTABILITY THEORY OF THE NAVIER–STOKES–POISSON EQUATIONS 1139

Proposition 2.11. Write λ = λ(δ, ε) > 0 for the unique λ produced by Proposition 2.10 for a given
ε, δ > 0. Then

lim
(δ,ε)→0

λ(δ, ε)= χ0 (2-78)

and

lim
δ→∞

λ(δ, ε)= 0. (2-79)

Proof. Combining the estimate from Lemma 2.8 with (2-65) from Proposition 2.9 and employing
Proposition 2.10, we find that

λ(δ, ε)2+ δC3λ(δ, ε)−χ
2
0 ≤ 0≤ λ(δ, ε)2+ (δC1+ εC2)λ(δ, ε)−χ

2
0 , (2-80)

for constants C1,C2,C3 > 0 independent of ε, δ. The first inequality in (2-80) implies that

λ(δ, ε)≤ 1
2

(
−δC3+

√
δ2C2

3 + 4χ2
0
)
, (2-81)

while the second and the fact that λ(δ, ε) > 0 imply that

λ(δ, ε)≥ 1
2

(
−(δC1+ εC2)+

√
(δC1+ εC2)

2
+ 4χ2

0
)
. (2-82)

Sending (δ, ε)→ 0 and chaining together (2-81) and (2-82) then yields (2-78). On the other hand,
expanding the right side of (2-81) for large δ shows that

0≤ λ(δ, ε)≤
χ2

0

δC3
+ o(1), for o(1)→ 0 as δ→∞, (2-83)

which implies (2-79). �

Remark 2.12. Proposition 2.11 has two important consequences. The first is that the fastest inviscid
growth rate is recovered in the inviscid limit (δ, ε)→ 0. This can be understood as a continuity result.
The second is that large bulk viscosity suppresses the viscous growth rate, and for sufficiently large δ, the
growth rate is very slow. This causes the delay of the instability occurrence time.

2F. Proof of Theorem 2.1. We now combine our above analysis to deduce the existence of a solution ϕ,
λ > 0 to (2-19)–(2-20).

Theorem 2.13. There exist λ > 0 and ϕ ∈ H 1
2 ((0, R)), smooth on (0, R], that solve (2-19) along with the

boundary condition (2-20). The solution satisfies the asymptotics |ϕ(z)| ≤ Cz3 and |∂zϕ(z)| ≤ Cz2 as
z→ 0.

Proof. Combining Propositions 2.5 and 2.10, we see that there exists a solution to (2-22) and (2-23) for
λ(s)=

√
−µ(s) > 0, satisfying s = λ(s). This implies that the solution is actually a solution to (2-19)

and (2-20). The asymptotics at z = 0 follow from Lemma 2.7. �

An immediate consequence of Theorem 2.13 is the existence of a solution to (2-16)–(2-17).
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Corollary 2.14. There exist λ > 0 and φ(x)= ϕ(r0(x)), smooth on (0,M), that solve (2-16)–(2-17). The
solution satisfies

lim sup
x→0

|φ(x)|
r3

0 (x)
+ lim sup

x→0
|∂xφ(x)|<∞. (2-84)

Let D denote the linear operator Dφ(x)= ρ0(x)∂xφ(x). The solution satisfies the property that Dkφ has
a well-defined trace at x = M for every integer k ≥ 0.

Proof. All of the conclusions, except those concerning D, follow directly from Theorem 2.13. When
k = 0, the trace D0φ(M) = φ(M) is well-defined, since ϕ(R) = ϕ(r0(M)) is well-defined. Note that
since ∂xr0(x)= 1/(4πρ0(x)r2

0 (x)), we have

Dφ(x)= ρ0(x)∂xφ(x)=
∂zϕ(r0(x))
4πr2

0 (x)
=⇒ Dφ(M)=

∂zϕ(R)
4πR2 , (2-85)

so that Dφ(M) is well-defined. In other words, the multiplication by ρ0 in the operator D removes
the potential singularity in ∂xφ near x = M . We may argue similarly, using the fact that ∂k

z ϕ(R) is
well-defined for all k ≥ 0, to deduce that Dkφ(M) is well-defined for all k ≥ 0 as well. �

Now, with Corollary 2.14 in hand, we are ready to present:

Proof of Theorem 2.1. Let λ > 0 and φ(x) be the solution to (2-16)–(2-17) given in Corollary 2.14. Let
us then define v and σ according to

v =−
λ

4πr2
0
φ and σ = ρ2

0∂xφ. (2-86)

Using these definitions of v and σ in conjunction with the properties of φ recorded in Corollary 2.14, we
easily deduce items (1)–(3).

To prove the variational characterization of item (4), we return to the variational characterization of λ
in z = r0(x) coordinates. According to Theorem 2.13, λ > 0 satisfies

λ

∫ R

0

(
δ
|∂zϑ |

2

z2 +
4ε
3z2

∣∣∣∣∂zϑ−3
ϑ

z

∣∣∣∣2 ) dz+
∫ R

0

(
γ P0
|∂zϑ |

2

z2 +4
∂z P0

z3 |ϑ |
2
)

dz≥−λ2
∫ R

0

%0

z2 |ϑ |
2 dz (2-87)

for every ϑ ∈ H 1
2 ((0, R)). Then the variational characterization in (2-12) follows by making a change of

coordinates θ(x)= ϑ(z)= ϑ(r0(x)). Note that ϑ ∈ H 1
2 ((0, R)) if and only if

√
ρ0∂xθ ∈ L2((0,M)) and

θ/(r2
0
√
ρ0) ∈ L2((0,M)). Also, changing coordinates in (2-26) of Lemma 2.2 shows that θ/(r3

0
√
ρ0) ∈

L2((0,M)), which means that all of the integrals in (2-12) are well-defined.
We now turn to the proof of (2-13). Using the inclusion ϕ ∈ H 1

2 ((0, R)), the above analysis implies
that
√
ρ0∂xφ, φ/(r3

0
√
ρ0) ∈ L2((0,M)). From this and (2-16), we may then deduce that∫ M

0

(
|φ|2

r6
0ρ0
+ ρ0|∂xφ|

2
+ r2

0 |∂x(ρ0∂xφ)|
2
)

dx <∞. (2-88)

This and (2-86) then imply (2-13). �
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3. Linear estimates

Due to the indirect way in which we constructed growing mode solutions in Section 2, it is not immediately
obvious that the λ > 0 of Theorem 2.1 is the largest possible growth rate. However, because of the
inequality (2-12), we can show that no solution to the linearized problem (2-1)–(2-4) can grow in time at
a rate faster than eλt . Hence the growing mode constructed in Theorem 2.1 actually does grow in time at
the fastest possible rate. The proof of this result and its implications for solutions to the inhomogeneous
linearized problem are the subject of this section.

3A. Estimates in the second-order formulation. First we will prove estimates for solutions to the fol-
lowing second-order problem.

−
∂2

t φ

16π2r4
0
=
∂x P0

πr3
0

φ− ∂x

[(
4ε
3
+ δ

)
ρ0∂x∂tφ+ γ P0ρ0∂xφ

]
for x ∈ (0,M), (3-1)

with boundary conditions

φ(0, t)= 0 and
4ε
3

(
4πr3

0ρ0∂x

(
φ

r3
0

))
+ δ(4πρ0∂xφ)= 0 at x = M, (3-2)

and initial conditions φ(x, 0) and ∂tφ(x, 0) given. We will assume throughout that φ satisfies
√
ρ0∂xφ ∈

L2((0,M)) and φ/(r2
0
√
ρ0) ∈ L2((0,M)).

Solutions to this linear problem obey an energy evolution equation related to the inequality (2-12). We
record this now.

Proposition 3.1. Suppose φ is a solution to (3-1)–(3-2). Then

∂t

∫ M

0

|∂tφ|
2

32π2r4
0

dx +
∫ M

0

(
δρ0|∂x∂tφ|

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
∂tφ

r3
0

)∣∣∣∣2 ) dx

=−∂t

∫ M

0

(
γ P0ρ0

2
|∂xφ|

2
+
∂x P0

2πr3
0

|φ|2
)

dx . (3-3)

Proof. Multiply (3-1) by ∂tφ and integrate over x ∈ (0,M). An integration by parts, an application of the
boundary conditions (3-2), and some simple algebra yield the desired equality. �

We can use this and the variational characterization of λ given in Theorem 2.1 to deduce some estimates.

Theorem 3.2. Let φ solve (3-1)–(3-2). Then we have the following estimates:∫ M

0

|φ(t)|2

16π2r4
0

dx +
∫ t

0

∫ M

0

(
δρ0|∂xφ(s)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(s)
r3

0

)∣∣∣∣2 ) dx ds

≤ e2λt
∫ M

0

|φ(0)|2

16π2r4
0

dx +
K1

2λ
(e2λt
− 1), (3-4)
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1
λ

∫ M

0

|∂tφ(t)|2

16π2r4
0

dx +
∫ M

0

(
δρ0|∂xφ(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(t)
r3

0

)∣∣∣∣2 ) dx

≤ e2λt
(

2λ
∫ M

0

|φ(0)|2

16π2r4
0

dx + K1

)
,

(3-5)

and

1
2

∫ M

0
γ P0ρ0|∂xφ(t)|2 dx ≤ K0+C0

[
e2λt

∫ M

0

|φ(0)|2

16π2r4
0

dx +
K1

2λ
(e2λt
− 1)

]
. (3-6)

Here

K0 =

∫ M

0

|∂tφ(0)|2

16π2r4
0

dx + 1
2

∫ M

0
γ P0ρ0|∂xφ(0)|2 dx, (3-7)

K1 =
2K0

λ
+ 2

∫ M

0

(
δρ0|∂xφ(0)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(0)
r3

0

)∣∣∣∣2 ) dx, (3-8)

and

C0 = 2 sup
x∈(0,M)

x
r3

0 (x)
<∞. (3-9)

Proof. We integrate the result of Proposition 3.1 in time from 0 to t to see that∫ M

0

|∂tφ(t)|2

32π2r4
0

dx +
∫ t

0

∫ M

0

(
δρ0|∂x∂tφ(s)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
∂tφ(s)

r3
0

)∣∣∣∣2 ) dx ds

= K0+

∫ M

0

∂x P0

2πr3
0

|φ(0)|2 dx −
∫ M

0

(
γ P0ρ0

2
|∂xφ(t)|2+

∂x P0

2πr3
0

|φ(t)|2
)

dx . (3-10)

Note that since

∂x P0 =−
x

4πr4
0
,

we have ∫ M

0

∂x P0

2πr3
0

|φ(0)|2dx =−
∫ M

0

x
8π2r7

0
|φ(0)|2dx ≤ 0. (3-11)

The variational characterization of λ given in (2-12) of Theorem 2.1 allows us to estimate

−
1
2

∫ M

0

(
γ P0ρ0

2
|∂xφ(t)|2+

∂x P0

2πr3
0

|φ(t)|2
)

dx−
λ

2

∫ M

0

(
δρ0|∂xφ(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(t)
r3

0

)∣∣∣∣2 ) dx

≤
λ2

2

∫ M

0

|φ(t)|2

16π2r4
0

dx . (3-12)
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We may then combine (3-10)–(3-12) to see that

∫ M

0

|∂tφ(t)|2

32π2r4
0

dx +
∫ t

0

∫ M

0

(
δρ0|∂x∂tφ(s)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
∂tφ(s)

r3
0

)∣∣∣∣2 ) dx ds

≤ K0+
λ2

2

∫ M

0

|φ(t)|2

16π2r4
0

dx +
λ

2

∫ M

0

(
δρ0|∂xφ(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(t)
r3

0

)∣∣∣∣2 ) dx . (3-13)

For the sake of brevity in the rest of the proof, we now rewrite (3-13) as

1
2
‖∂tφ(t)‖21+

∫ t

0
‖∂tφ(s)‖22 ds ≤ K0+

λ2

2
‖φ(t)‖21+

λ

2
‖φ(t)‖22 (3-14)

for the two norms ‖ · ‖1 and ‖ · ‖2 given by

‖ψ‖21 :=

∫ M

0

|ψ |2

16π2r4
0

dx, (3-15)

‖ψ‖22 :=

∫ M

0

(
δρ0|∂xψ |

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
ψ

r3
0

)∣∣∣∣2 ) dx . (3-16)

Both of these norms are clearly generated by inner products, which we will write as 〈 · , · 〉i for i = 1, 2.
Integrating in time and using Cauchy’s inequality, we may write the bound

λ‖φ(t)‖22 = λ‖φ(0)‖
2
2+ λ

∫ t

0
2〈φ(s), ∂tφ(s)〉2 ds

≤ λ‖φ(0)‖22+
∫ t

0
‖∂tφ(s)‖22 ds+ λ2

∫ t

0
‖φ(s)‖22 ds. (3-17)

On the other hand,

λ∂t‖φ(t)‖21 = λ2〈∂tφ(t), φ(t)〉1 ≤ λ2
‖φ(t)‖21+‖∂tφ(t)‖21. (3-18)

We may combine these two inequalities with (3-14) to derive the differential inequality

∂t‖φ(t)‖21+‖φ(t)‖
2
2 ≤ K1+ 2λ‖φ(t)‖21+ 2λ

∫ t

0
‖φ(s)‖22 ds, (3-19)

for K1 as defined in the hypotheses. An application of Gronwall’s lemma then shows that

‖φ(t)‖21+
∫ t

0
‖φ(s)‖22 ds ≤ e2λt

‖φ(0)‖21+
K1

2λ
(e2λt
− 1) (3-20)

for all t ≥ 0, which is the bound (3-4).
To derive the estimate (3-5), we return to (3-14) and plug in (3-17) and (3-20) to see that

1
λ
‖∂tφ(t)‖21+‖φ(t)‖

2
2 ≤ K1+ λ‖φ(t)‖21+ 2λ

∫ t

0
‖φ(s)‖22 ds ≤ e2λt(2λ‖φ(0)‖21+ K1

)
. (3-21)
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Finally, for (3-6), we return to (3-10) and employ (3-11) to see that

1
2

∫ M

0
γ P0ρ0|∂xφ(t)|2 dx ≤ K0−

∫ M

0

∂x P0

2πr3
0

|φ(t)|2 dx = K0+

∫ M

0

x
8π2r7

0
|φ(t)|2 dx . (3-22)

Since L’Hospital’s theorem implies that

lim
x→0

x
r3

0 (x)
= lim

x→0

4πρ0(x)
3

=
4πρ0(0)

3
<∞, (3-23)

we may deduce that

sup
x∈(0,M)

x
r3

0 (x)
<∞. (3-24)

The estimate (3-6) then follows directly from (3-22), (3-24), and the estimate of ‖φ(t)‖21 in (3-4). �

3B. Estimates in the first-order formulation. Now consider σ and w to be solutions to the first-order
linear system (2-5) with boundary conditions (2-6) and initial conditions σ(x, 0) and w(x, 0). A simple
calculation shows that if we apply ∂t to the second equation in (2-5) and then eliminate ∂tσ by using
the first equation in (2-5), then we arrive at the second-order formulation (3-1)–(3-2) for φ = w. Then
Theorem 3.2 yields various estimates for w = φ. We now seek to rewrite these estimates for w and to use
them to derive a similar estimate for σ .

Theorem 3.3. Let σ,w solve the linear system (2-5)–(2-6). Then∫ M

0

|w(t)|2

r4
0

dx+
∫ M

0
γ Kργ−1

0

∣∣∣∣σ(t)ρ0

∣∣∣∣2dx+16π2
∫ M

0

(
δρ0|∂xw(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(t)
r3

0

)∣∣∣∣2 ) dx

≤ Ce2λt

[∫ M

0

|w(0)|2

r4
0

dx +
∫ M

0

(
γ Kργ−1

0

∣∣∣∣σ(0)ρ0

∣∣∣∣2+ γ Kργ+1
0 |∂xw(0)|2+

|∂tw(0)|2

r4
0

)
dx

+

∫ M

0

(
δρ0|∂xw(0)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(0)

r3
0

)∣∣∣∣2 ) dx

]
. (3-25)

Proof. We switch to the second-order formulation for φ=w. Then the estimates (3-4)–(3-6) of Theorem 3.2
imply that∫ M

0

|w(t)|2

r4
0

dx +
∫ M

0
γ Kργ+1

0 |∂xw(t)|2 dx + 16π2
∫ M

0

(
δρ0|∂xw(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(t)
r3

0

)∣∣∣∣2 ) dx

≤ Ce2λt
[∫ M

0

|w(0)|2

r4
0

dx +
∫ M

0

(
γ Kργ+1

0 |∂xw(0)|2+
|∂tw(0)|2

r4
0

)
dx

+

∫ M

0

(
δρ0|∂xw(0)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(0)

r3
0

)∣∣∣∣2 ) dx
]
. (3-26)

Let us call the term in the brackets on the right side of this equation Z0. Since ∂tσ = −4πρ2
0∂xw, we

then have that
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0
γ Kργ+1

0 |∂xw(t)|2 dx =
∫ M

0

γ Kργ−1
0

16π2ρ2
0
|∂tσ(t)|2 dx . (3-27)

The right side of (3-27) defines the square of a norm ‖ · ‖ in a Hilbert space, and in this case Cauchy–
Schwarz and the chain rule imply that ∂t‖ψ(t)‖ ≤ ‖∂tψ(t)‖ for a one-parameter family ψ(t) in the space.
Using this, we then have that

∂t

(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(t)|2 dx

)1/2

≤

(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|∂tσ(t)|2 dx

)1/2

≤

√
CZ0eλt . (3-28)

Integrating this in time, we then find that(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(t)|2 dx

)1/2

≤

(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(0)|2 dx

)1/2

+

√
CZ0

λ
(eλt
− 1)

≤ Ceλt

√∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(0)|2 dx +Z0. (3-29)

The estimate (3-25) then follows directly from (3-26), (3-27), and (3-29). �

3C. Estimates for the inhomogeneous first-order problem. Consider the linear operators

L1w = 4πρ2
0∂xw, (3-30)

L2σ = 4πr4
0∂x(γ Kργ−1

0 σ)− 4r0∂x P0

∫ x

0

σ(y)
ρ2

0(y)
dy, (3-31)

L3w =−16π2r4
0∂x

[(
4ε
3
+ δ

)
ρ0∂xw

]
, (3-32)

and the corresponding matrix of operators

L=

(
0 −L1

−L2 −L3

)
. (3-33)

We also consider the boundary operator

B(w)=−
4ε
3

(
4πr3

0ρ0∂x

(
w

r3
0

))
− δ(4πρ0∂xw). (3-34)

Notice that the first-order equations (2-5)–(2-6) are equivalent to the equation

∂t

(
σ

w

)
−L

(
σ

w

)
=

(
0
0

)
(3-35)

with homogeneous boundary conditions

w

r2
0
(0, t)= σ(M, t)= 0 and B(w)= 0 at x = M. (3-36)
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Let us by denote etL the solution operator to (3-35)–(3-36), that is,

etL

(
σ(0)
w(0)

)
=

(
σ(t)
w(t)

)
, (3-37)

where σ and w solve (3-35)–(3-36) with initial data σ(0) and w(0). Note that below in (3-47) we show
this operator is bounded.

Suppose now that σ and w solve the inhomogeneous problem

∂t

(
σ

w

)
−L

(
σ

w

)
=

(
N1

N2

)
(3-38)

along with the boundary conditions

w

r2
0
(0, t)= σ(M, t)= 0 and B(w)= NB at x = M. (3-39)

Here we assume that N1 = N1(x, t), N2 = N2(x, t), but that NB = NB(t), that is, the boundary inhomo-
geneity only depends on time. In order to use the linear theory we have developed, we must rewrite this
as a system with homogeneous boundary conditions. To accomplish this, we will utilize the following
lemma.

Lemma 3.4. Let

ψ(x, t)=−
NB(t)

3δ
r3

0 (x). (3-40)

Then for each t , ψ(t) satisfies L3ψ(t) = 0 for x ∈ (0,M) and Bψ(t) = NB(t) at x = M. Also,
L1ψ(t)=−NB(t)ρ0(x)/δ.

Proof. The results follow from simple computations. �

With this ψ in hand, we can reformulate (3-38)–(3-39) so that the resulting problem has homogeneous
boundary conditions. Let w = ψ + w̄. Then Lemma 3.4 implies that

∂t

(
σ

w̄

)
−L

(
σ

w̄

)
=

(
N1

N2

)
+

(
−L1ψ

−∂tψ

)
=

 N1+
NBρ0

δ

N2+
∂t NBr3

0

3δ

 , (3-41)

along with the boundary conditions

w̄

r2
0
(0, t)= σ(M, t)= 0 and B(w̄)= 0 at x = M. (3-42)

Employing the variation of parameters, we can then solve (3-41)–(3-42) via(
σ(t)
w̄(t)

)
= etL

(
σ(0)
w̄(0)

)
+

∫ t

0
e(t−s)L

(
N1(s)
N2(s)

)
ds+

1
δ

∫ t

0
e(t−s)L

(
NB(s)ρ0

1
3∂t NB(s)r3

0

)
ds. (3-43)
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We can then go back to w = ψ + w̄:(
σ(t)
w(t)

)
= etL

(
σ(0)
w̄(0)

)
−

1
δ

(
0

1
3 NB(t)r3

0

)
+

∫ t

0
e(t−s)L

(
N1(s)
N2(s)

)
ds+

1
δ

∫ t

0
e(t−s)L

(
NB(s)ρ0

1
3∂t NB(s)r3

0

)
ds. (3-44)

Now let us define a norm for the pair σ,w given by∥∥∥∥(σw
)∥∥∥∥2

0
:=

1
2

∫ M

0
γ Kργ−1

0

∣∣∣∣ σρ0

∣∣∣∣2dx + 1
2

∫ M

0

|w|2

r4
0

dx

+
1
2

∫ M

0
16π2

(
δρ0|∂xw|

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w

r3
0

)∣∣∣∣2 ) dx . (3-45)

We also define

E(σ,w) :=

∥∥∥∥(σw
)∥∥∥∥2

0
+

1
2

∫ M

0
γ Kργ−1

0

∣∣∣∣∂tσ

ρ0

∣∣∣∣2dx + 1
2

∫ M

0

|∂tw|
2

r4
0

dx . (3-46)

We can then recast the result of Theorem 3.3 as∥∥∥∥etL

(
σ(0)
w(0)

)∥∥∥∥2

0
≤ Ce2λtE

(
σ(0), w(0)

)
. (3-47)

Using these quantities and estimate (3-47), we can record estimates for solutions to (3-38)–(3-39).

Theorem 3.5. Suppose that σ and w solve the inhomogeneous linear problem (3-38)–(3-39). Let ψ be
given by Lemma 3.4 and w̄ = w−ψ . Let ‖ · ‖0 and E( · , · ) be given by (3-45) and (3-46), respectively.
Then∥∥∥∥(σ(t)w(t)

)
− etL

(
σ(0)
w̄(0)

)∥∥∥∥
0
≤

∫ t

0
Ceλ(t−s)

√
E(N1(s), N2(s)) ds

+
C
δ
|NB(t)| +

C
δ

∫ t

0
eλ(t−s)(

|NB(s)| + |∂t NB(s)| + |∂2
t NB(s)|

)
ds. (3-48)

Proof. From the above analysis, we know that σ and w are given by (3-44), where etL is the homogeneous
solution operator given by (3-37). Hence (3-47) implies that∥∥∥∥(σ(t)w(t)

)
− etL

(
σ(0)
w̄(0)

)∥∥∥∥
0
≤

∫ t

0
Ceλ(t−s)

√
E(N1(s), N2(s)) ds

+
1
δ

∥∥∥∥( 0
1
3 NB(t)r3

0

)∥∥∥∥
0
+

1
δ

∫ t

0
Ceλ(t−s)

√
E
(
NB(s)ρ0,

1
3∂t NB(s)r3

0

)
ds. (3-49)

Then, since NB(t) is only a function of time, not of x , we can easily estimate∥∥∥∥( 0
1
3 NB(t)r3

0

)∥∥∥∥
0
≤ C |NB(t)| (3-50)
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and √
E
(
NB(s)ρ0,

1
3∂t NB(s)r3

0

)
≤ C

(
|NB(s)| + |∂t NB(s)| + |∂2

t NB(s)|
)
, (3-51)

where C > 0 in (3-50)–(3-51) is a constant depending on various (finite) integrals of ρ0 and r0. The
estimate (3-48) then follows by combining (3-49)–(3-51). �

4. Nonlinear energy estimates

4A. Definitions. We are interested in small perturbations σ , v around the stationary solution ρ = ρ0,
r = r0, and v = 0. In particular, we assume that

9
10ρ0 ≤ ρ0+ σ ≤

11
10ρ0. (4-1)

This assumption will be justified later when we close the nonlinear energy estimates. For such small
solutions, the Navier–Stokes–Poisson system (1-17) and (1-18) can be written as follows:

∂tσ + 4πρ2∂x(r2v)= 0,

∂tv+ 4πr2∂x P − 4πr2
0∂x P0+

x
r2 −

x
r2

0
= 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
.

(4-2)

The dynamics of r are determined by

r(x, t)=
(

3
4π

∫ x

0

dy
ρ0(y)+ σ(y, t)

)1/3

and ∂tr(x, t)= v(x, t). (4-3)

It turns out that it is convenient to analyze
σ

ρ0
rather than σ itself, so we rewrite the continuity equation as

ρ0

ρ
∂t

(
σ

ρ0

)
+ 4πρ∂x(r2v)= 0. (4-4)

We will also rewrite the momentum equation. To do so, we first note that

4πr2∂x P − 4πr2
0∂x P0+

x
r2 −

x
r2

0
= 4πr2∂x(P − P0)+ x

(
1
r2 −

r2

r4
0

)
, (4-5)

and then note that for small perturbations satisfying (4-1), P − P0 = K (ργ − ργ0 ) can be written as

P − P0 = ρ
γ

0

{
Kγ

σ

ρ0
+ a∗

(
σ

ρ0

)2 }
, (4-6)

where a∗ is the smooth bounded remainder from the Taylor’s theorem. We then rewrite the momentum
equation as

∂tv+ 4πr2∂x

{
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
+ x

(
1
r2 −

r2

r4
0

)
= V, (4-7)
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where

V := 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
.

We give an equivalent expression for V so that it appreciates the boundary condition (1-20) in energy
estimates:

V= 16π2r2∂x W+
4ε
3

12πr2∂x

(
v

r

)
, (4-8)

where

W= δρ∂x(r2v)+
4ε
3
ρr3∂x

(
v

r

)
(4-9)

satisfies W(M)= 0 because of the boundary condition (1-20). We use ν to denote the minimal viscosity
coefficient:

ν :=min
{
δ,

4ε
3

}
. (4-10)

We now define instant energy functionals for σ and v. In what follows, all of the integrals are understood
to be over the interval [0,M].

E0
:=

1
2

∫
|v|2 dx + 1

2

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣ σρ0

∣∣∣∣2dx + 1
2

∫
ν

∣∣∣∣1− r0

r

∣∣∣∣2dx

=: E0,v
+E0,σ

+E0,r ,

E1
:=

1
2

[
δ

∫
16π2ρ|∂x(r2v)|2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx
]
,

+
1
2

∫ (
δ+

4ε
3

)
16π2r4 1

1+ σ

ρ0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx

=: E1,v
+E1,σ ,

E2
:=

1
2

∫
|∂tv|

2 dx + 1
2

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

=: E2,v
+E2,σ ,

E3
:=

1
2

[
δ

∫
16π2ρ|∂x(r2∂tv)|

2dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx
]
,

E4
:=

1
2

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx .

(4-11)

The corresponding dissipations are given by
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D0
:= δ

∫
16π2ρ|∂x(r2v)|2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx,

D1
:=

∫
|∂tv|

2 dx +
∫

16π2Kγ r4ρ
γ

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx := D1,v
+D1,σ ,

D2
:= δ

∫
16π2ρ|∂x(r2∂tv)|

2 dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx,

D3
:=

∫
|∂2

t v|
2 dx,

D4
:=

∫
4πKγ r2ρρ

γ

0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx .

(4-12)

We note that E0 in (4-11) corresponds to the physical energy given in (1-31) and D0 is the corresponding
dissipation. E1 is the energy for the first spatial derivatives of v and σ and its structure comes from
the viscosity term (for instance, see (4-8)), and D1 is the corresponding dissipation. E2 and E3 are the
temporally higher-order energies of E0 and E1. E4 is the energy for the second derivative of σ and its
form is closely related to the structure of the Navier–Stokes–Poisson system (4-2), which can be seen in
(4-79).

In addition, we introduce various bootstrapped and auxiliary energies and dissipations (denoted by
subscripts b and a, respectively) that can be controlled with the above instant energies and dissipations:

E0,r
b :=

∫
ν

ρ

∣∣∣∣1− r0

r

∣∣∣∣2dx,

E1,σ
b :=

1
2

∫ (
δ+

4ε
3

)
16π2 r2

ρ

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx,

D1,σ
b :=

∫
16π2Kγ r2ρ

γ−1
0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx .

(4-13)

We note that these bootstrapped energies and dissipations have similar structure to the ones without
subscript b, but have the stronger weights 1/ρ because ρ vanishes at x = M . The control of them will
allow us to have the estimates with improved weights, and it will also be helpful to obtain the higher-order
estimates. The following auxiliary energies are motivated by the structure of the higher-order derivatives
of the equations in (4-2); for instance, see (4-45), (4-75) and (4-79).

E3,σ
a :=

∫ (
δ+

4ε
3

)2

16π2 r2

ρ

∣∣∣∣∂x∂t

(
σ

ρ0

)∣∣∣∣2dx,

E3,v
a1
:=

∫
r2

ρ

∣∣∂x(ρ∂x(r2v))
∣∣2dx,

E3,v
a2
:=

∫
ρr6

∣∣∣∣∂x

(
ρr3∂x

(
v

r

))∣∣∣∣2dx,

(4-14)
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E4
a1
:=

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂t∂x

(
σ

ρ0

))∣∣∣∣2dx,

E4
a2
:=

∫
16π2ρ0

∣∣∂x
(
r4∂x(ρ∂x(r2v))

)∣∣2 dx .

(4-15)

Finally, we introduce some bootstrap energies that depend on a parameter β ∈ R:

E0,σ
β :=

∫
ρ
β+1
0

ρ

∣∣∣∣ σρ0

∣∣∣∣2dx, E2,σ
β :=

∫
ρ
β+1
0

ρ

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx . (4-16)

For the proof of our instability in Section 5, we will need to invoke higher-order energy functionals
and dissipations, which are the higher-order generalizations of the above energies and dissipations. For
i = 2 and 3, let

E1+2i
:=

1
2

∫
|∂ i

t v|
2dx + 1

2

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣∂ i
t

(
σ

ρ0

)∣∣∣∣2dx,

D1+2i
:= δ

∫
16π2ρ|∂x(r2∂ i

t v)|
2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂ i

t v

r

)∣∣∣∣2dx,

E2+2i
:=

1
2

[
δ

∫
16π2ρ|∂x(r2∂ i

t v)|
2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂ i

t v

r

)∣∣∣∣2dx
]
,

D2+2i
:=

∫
|∂ i+1

t v|2 dx .

(4-17)

Next we define bootstrapped energies and auxiliary energies for i = 2 and 3:

E1+2i,σ
−1 :=

∫
1
ρ0

∣∣∣∣∂ i
t

(
σ

ρ0

)∣∣∣∣2dx, E1+2i,v
a :=

∫
r4∣∣∂x

(
ρ∂x(∂

i−1
t [r

2v])
)∣∣2 dx,

E2+2i,σ
a :=

∫ (
δ+

4ε
3

)2

16π2r2
∣∣∣∣∂x∂

i
t

(
σ

ρ0

)∣∣∣∣2dx .

(4-18)

We then define the total energy by

E :=

8∑
i=0

Ei
+E0,r

b +E1,σ
b +E0,σ

−1 +E2,σ
−1 +E5,σ

−1 +E7,σ
−1

+E3,σ
a +E3,v

a1
+E3,v

a2
+E4

a1
+E4

a2
+E5,σ

a +E6,σ
a +E7,σ

a +E8,σ
a . (4-19)

The introduction of the above notation for the energies and dissipations is lengthy, but at each level
they capture the complex structure of the Navier–Stokes–Poisson system with degeneracy of ρ at x = M
and r at x = 0, and lead to successful energy estimates. We have separated the energies from one another
because the estimate of each energy term in E will be derived by a different strategy and method.
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Throughout the rest of the section, we assume that

∥∥∥∥ σρ0

∥∥∥∥
L∞
+

∥∥∥∥∂t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂2
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂3
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥1−
r0

r

∥∥∥∥
L∞

+

∥∥∥∥ρr3∂x

(
v

r

)∥∥∥∥
L∞
+

∥∥∥∥ρr3∂x

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥vr
∥∥∥∥

L∞
+

∥∥∥∥∂tv

r

∥∥∥∥
L∞
+

∥∥∥∥∂2
t v

r

∥∥∥∥
L∞
≤ θ1 (4-20)

for sufficiently small constant θ1, where the norm ‖ · ‖L∞ is over the spatial region [0,M]. The validity
of this assumption within the total energy E will be justified in Lemma 4.9.

Since r is determined through an integral of σ as in (4-3), for small perturbations satisfying (4-1) we
may use Taylor’s theorem to write r0/r as

r0

r
= 1+

1
4πr3

0

∫ x

0

σ

ρ2
0

dy+
c1

r3
0

∫ x

0

1
ρ∗

(
σ

ρ0

)2

dy+
c2

r6
0

(∫ x

0

σ

ρ2
0

dy
)2

, (4-21)

where ρ∗/ρ0 ∼ 1 is a bounded smooth function of σ/ρ0. Hence the 1− r0/r estimate (up to a constant)
in (4-20) can actually be guaranteed by the smallness of the other terms in (4-20).

The relation (4-21) will be useful in various places. We now record a couple other useful identities.

Dynamics of r0/r . From (4-3), we have

∂t

(
r0

r

)
=−

r0v

r2 =−

(
v

r

)(
r0

r

)
,

∂x

(
r0

r

)
=

1
4πρ0r2

0r
−

r0

4πρr4 =

1−
(

r0

r

)3

+
σ

ρ0

4πρr2
0r

.

(4-22)

Some useful inequalities and identities. For any v (not just solutions),

v

r
=

4π
3

{
ρ∂x(r2v)− ρr3∂x

(
v

r

)}
=⇒

v2

ρr2 ≤
32π2

9

{
ρ|∂x(r2v)|2+ ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2 },
ρ∂x(rv2)= ρ∂x

[
(r2v)2 ·

1
r3

]
= 2

v

r
ρ∂x(r2v)−

3
4π

v2

r2 =
v

r

{
ρ∂x(r2v)+ ρr3∂x

(
v

r

)}
.

(4-23)

4B. Estimates. Throughout the rest of the section, we use C to denote a generic constant that may differ
from line to line, and η to denote a sufficiently small fixed constant which will be determined later. The
constants C are allowed to depend on η, which presents no trouble in our ultimate analysis since first we
will fix an η, which then fixes the constants.
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In the following series of lemmas, we provide the energy inequalities for E. We present them in the
order that we use for the bootstrap argument in Section 5A. Here is the flowchart for the estimates:

E0
→ E0,σ

β → E1
→ E2

→ E2,σ
β → E3

→ E0,r
b → E1,σ

b → E3,σ
a → E3,v

a1
→ E3,v

a2

→ E4
→ E4

a1
→ E4

a2
→ E5

→ E5
a→ E5,σ

−1

→ E6
→ E6,σ

a → E7
→ E7

a→ E7,σ
−1 → E8

→ E8,σ
a . (4-24)

We start with E0 and D0.

Lemma 4.1.
d
dt

E0
+D0

≤ C(1+ θ1)E
0
+

1
2

D0. (4-25)

Proof. Multiply (4-7) by v and integrate to get

1
2

d
dt

∫
|v|2 dx −

∫
4π∂x(r2v)

{
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
dx︸ ︷︷ ︸

(i)

+

∫
v

x(r4
0 − r4)

r2r4
0

dx︸ ︷︷ ︸
(ii)

=

∫
vV dx︸ ︷︷ ︸
(iii)

. (4-26)

For (i), we use (4-4) to see that

(i)=
∫
ρ0

ρ2 ∂t

(
σ

ρ0

){
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
dx

=
1
2

d
dt

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣ σρ0

∣∣∣∣2dx +
∫ (

Kγ +
(

1+ σ

ρ0

)
a∗

)
ρ
γ−1
0(

1+ σ

ρ0

)3

∣∣∣∣ σρ0

∣∣∣∣2∂t

(
σ

ρ0

)
dx . (4-27)

However, ∣∣∣∣∣
∫ (

Kγ +
(

1+ σ

ρ0

)
a∗

)
ρ
γ−1
0(

1+ σ

ρ0

)3

∣∣∣∣ σρ0

∣∣∣∣2∂t

(
σ

ρ0

)
dx

∣∣∣∣∣≤ C(1+ θ1)E
0. (4-28)

For (ii), the Cauchy–Schwarz inequality yields

|(ii)| ≤ ν
∫
|v|2

ρr2 dx +
1
ν

∫
ρ

∣∣∣∣ x
r4

0
(r2
+ r2

0 )(r + r0)

∣∣∣∣2 ∣∣∣∣1− r0

r

∣∣∣∣2dx ≤ 2
9

D0
+CE0,r , (4-29)

where we have used (4-23) at the second inequality. From (4-8) and the boundary condition W(M, t)= 0,
we get

(iii)=−δ
∫

16π2ρ|∂x(r2v)|2 dx −
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx =−D0. (4-30)
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Next, from (4-22),

ν

2
d
dt

∫ ∣∣∣∣1− r0

r

∣∣∣∣2dx =−ν
∫
v

r
r0

r

(
1−

r0

r

)
dx

≤ ν

∫
|v|2

ρr2 dx + ν
∫
ρ

∣∣∣∣r0

r

∣∣∣∣2 ∣∣∣∣1− r0

r

∣∣∣∣2dx ≤
2
9

D0
+CE0,r . (4-31)

The desired estimate then follows by combining these estimates. �

With Lemma 4.1, we can bootstrap to control σ
ρ0

with an improved weight. Multiply (4-4) by ρβ0
σ

ρ0and integrate to get ∫
ρ
β+1
0

ρ

σ

ρ0
∂t

(
σ

ρ0

)
dx =−

∫
ρ1/2ρ

β

0
σ

ρ0
· 4πρ1/2∂x(r2v) dx . (4-32)

Thus

1
2

d
dt

∫
ρ
β+1
0

ρ

∣∣∣∣ σρ0

∣∣∣∣2dx

≤
C
η

∫
16π2ρ|∂x(r2v)|2 dx + η

∫
ρρ

2β
0

∣∣∣∣ σρ0

∣∣∣∣2dx −
1
2

∫
ρ
β+1
0

ρ2 ∂tσ

∣∣∣∣ σρ0

∣∣∣∣2dx, (4-33)

which means that
d
dt

E0,σ
β ≤

C
η

D0
+ ηE0,σ

2β+1+Cθ1E0,σ
β . (4-34)

Next we consider E1 and D1.

Lemma 4.2. We have

d
dt

E1
+D1

≤ (η+Cθ1)E
1
+

1
2

D1
+C(E0

+E0,σ
0 )+ qE2,v, (4-35)

where

q := q1+ q2 :=

∥∥∥∥∥16π2
(

Kγ +
4

Kγ
a2
∗

(
σ

ρ0

)2)
ρ
γ

0

∥∥∥∥∥
L∞
+

∥∥∥∥∥∥∥∥
(

1+ σ

ρ0

)
η

(
δ+

4ε
3

)
∥∥∥∥∥∥∥∥

L∞

(4-36)

is bounded due to (4-20).

Proof. We divide the proof into steps.

Step 1 (E1,v and D1,v). Multiply (4-7) by ∂tv and integrate to get∫
|∂tv|

2 dx +
∫

4πr2∂tv∂x

{
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
dx︸ ︷︷ ︸

(iv)

+

∫
∂tv

x(r4
0 − r4)

r2r4
0

dx︸ ︷︷ ︸
(v)

−

∫
∂tvV dx︸ ︷︷ ︸
(vi)

= 0.

For (iv), we first expand
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(iv)=
∫

4πr2∂tv

{
Kγ ∂x(ρ

γ

0 )
σ

ρ0
+ Kγργ0 ∂x

(
σ

ρ0

)}
dx

+

∫
4πr2∂tv

{
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
dx

=: (iv)1+ (iv)2+ (iv)3+ (iv)4, (4-37)

and then estimate

∣∣(iv)1+ (iv)3
∣∣≤ 1

4

∫
|∂tv|

2 dx +C(1+ θ2
1 )

∫ ∣∣∣∣ σρ0

∣∣∣∣2dx ≤ 1
4

D1,v
+CE0,σ

0 (4-38)

and

∣∣(iv)2+ (iv)4
∣∣≤ ∫ 8π2Kγ r4ρ

γ

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx +
∫

8π2
(

Kγ +
4

Kγ
a2
∗

(
σ

ρ0

)2)
ρ
γ

0 |∂tv|
2 dx

≤
1
2 D1,σ

+ q1E2,v. (4-39)

For (v), we get

|(v)| ≤ 1
4

∫
|∂tv|

2 dx +
∫ ∣∣∣∣ x

r2r4
0
(r2
+ r2

0 )(r + r0)

∣∣∣∣2 |r − r0|
2 dx ≤ 1

4 D1,v
+CE0,r . (4-40)

The term (vi) forms the energy E1,v and nonlinear commutators:

(vi)=−
1
2

d
dt

[
δ

∫
16π2ρ|∂x(r2v)|2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx
]

+
1
2

[
δ

∫
16π2∂tσ |∂x(r2v)|2 dx +

4ε
3

∫
16π2∂t(ρr6)

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx
]

+ δ

∫
16π2∂x(v · 2rv)ρ∂x(r2v) dx +

4ε
3

∫
16π2ρr6∂x

(
v ·

(
−
v

r2

))
∂x

(
v

r

)
dx . (4-41)

Using (4-20) and the fact that

∂x(v · 2rv)= 2
(
v

r
∂x(r2v)+ r2v∂x

(
v

r

))
(4-42)

and

∂x

(
v ·

(
−
v

r2

))
∂x

(
v

r

)
=−2

v

r

∣∣∣∣∂x

(
v

r

)∣∣∣∣2, (4-43)

the absolute values of the second and third lines may be bounded by Cθ1E1,v.
We may now combine the above to deduce that

d
dt

E1,v
+D1,v

≤
1
2 D1
+Cθ1E1,v

+CE0,r
+CE0,σ

0 + q1E2,v. (4-44)
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Step 2 (E1,σ and D1,σ ). For the estimate of ∂x(σ/ρ0), we first rewrite (4-7) by replacing ρ∂x(r2v) in V

by ∂t(σ/ρ0) through the continuity equation (4-4):(
δ+

4ε
3

)
4πr2

{
ρ0

ρ
∂t∂x

(
σ

ρ0

)
+ ∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)}
+ ∂tv+

x(r4
0 − r4)

r2r4
0

+ 4πr2
{

Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x

(
ρ
γ

0

)
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
= 0. (4-45)

Note that

∂x

(
ρ0

ρ

)
=−

(
1+

σ

ρ0

)−2

∂x

(
σ

ρ0

)
.

Multiplying (4-45) by 4πr2∂x

(
σ

ρ0

)
and integrating, we are led to the estimate

1
2

d
dt

∫ (
δ+

4ε
3

)
16π2r4 1

1+ σ

ρ0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx +
∫

16π2Kγ r4ρ
γ

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx

≤ (η+Cθ1)E
1,σ
+C

(
E0,r
+E0,σ

0

)
+

∫ 1+ σ

ρ0

2η
(
δ+

4ε
3

) |∂tv|
2 dx . (4-46)

Note that the last term in (4-46) may be bounded by q2E2,v . We then obtain (4-35) by combining (4-44)
and (4-46). �

The estimate (4-35) is not of a closed form by itself. Its use will be apparent when it is coupled with
the result of the following lemma.

Lemma 4.3.
d
dt

E2
+D2

≤ (η+Cθ1)E
2
+Cθ1D0

+

(
1
4
+Cθ1

)
D2
+C

(
θ1E0,σ

0 +E0
+E1). (4-47)

Proof. We take ∂t of (4-7) to see that

∂2
t v+ 4πr2∂x

{
Kγργ0 ∂t

(
σ

ρ0

)
+ 2a∗ρ

γ

0
σ

ρ0
∂t

(
σ

ρ0

)
+ ∂t a∗ρ

γ

0

(
σ

ρ0

)2}
+ 8πrv

{
Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x

(
ρ
γ

0

)
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
− 2

xv(r4
0 − r4)

r3r4
0

− 4
xrv
r4

0
= ∂t V. (4-48)

The energy estimate (4-47) may be derived from (4-48) as in Lemma 4.1: we multiply (4-48) by ∂tv,
integrate over x ∈ [0,M], and integrate various terms by parts in order to identify dE2/dt , D2, and some
error (lower-order or commutator) terms, the latter of which may be estimated by the right side of (4-47).
Since the argument is essentially the same as that of Lemma 4.1, we present only a sketch.

The product of ∂tv with the first two terms in the first line in (4-48) forms the energy term ∂t E
2 and
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some error terms:∫
∂tv

[
∂2

t v+ 4πr2∂x

(
Kγργ0 ∂t

(
σ

ρ0

))]
dx =

1
2

d
dt

{∫
|∂tv|

2 dx +
∫

Kγργ−1
0(

1+ σ

ρ0

)2

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

}
+Z,

where Z is a term whose absolute value may be estimated by the right side of (4-47). Here we have used
the continuity equation (4-4) and an integration by parts on the second term.

Next, we compute

∂t V= 16π2r2∂x∂t W+ 16π2(2rv)∂x W+
4ε
3

12πr2∂x

(
∂tv

r

)
(4-49)

and note that the boundary condition W(M, t)= 0 implies that ∂t W(M, t)= 0 as well. This allows us to
integrate by parts without introducing boundary terms:∫

16π2r2∂x∂t W∂tv dx =−
∫

16π2(r2∂tv)∂t W dx . (4-50)

Using this, we find that∫
∂t V∂tv dx =−δ

∫
16π2ρ|∂x(r2∂tv)|

2 dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2 dx +Z, (4-51)

where again Z is an error term with the property that |Z| is bounded by the right side of (4-47).
Finally, all of the remaining terms that arise when we multiply (4-48) by ∂tv can also be estimated by

the right side of (4-47). For example, the second term in the third line can be estimated by noting that
xr/r4

0 is bounded, which means that

−

∫
4

xrv
r4

0
∂tv dx ≤ η

∫
|∂tv|

2 dx +C
∫
|v|2 dx ≤ ηE2

+CE0. (4-52)

Combining all of this, we find that

1
2

d
dt

{∫
|∂tv|

2 dx +
∫

Kγργ−1
0(

1+ σ

ρ0

)2

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

}

+ δ

∫
16π2ρ|∂x(r2∂tv)|

2 dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx

≤
( 1

4 +Cθ1
)
D2
+ ηE2

+Cθ1(E
2
+D0)+Cθ1E0,σ

0 +C(E0
+E1), (4-53)

which yields (4-47). �

We now derive bootstrapped estimates for ∂t

(
σ

ρ0

)
. We take ∂t of (4-4) to get

ρ0

ρ
∂2

t

(
σ

ρ0

)
=−4πρ∂x(r2∂tv)− 8πρ∂x(rv2)− 4π∂tσ∂x(r2v)+

ρ2
0

ρ2

(
∂t

(
σ

ρ0

))2

. (4-54)

Next, we multiply (4-54) by ρβ0 ∂t

(
σ

ρ0

)
and integrate to see that
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1
2

d
dt

∫
ρ
β+1
0

ρ

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx ≤
C
η

∫
16π2ρ|∂x(r2∂tv)|

2 dx + η
∫
ρρ

2β
0

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

−

∫
8π
v

r

{
ρ∂x(r2v)+ ρr3∂x

(
v

r

)}
ρ
β

0 ∂t

(
σ

ρ0

)
dx +

3
2

∫
ρ
β+2
0

ρ2

(
∂t

(
σ

ρ0

))3

dx

− 4π
∫
∂tσ∂x(r2v)ρ

β

0 ∂t

(
σ

ρ0

)
dx . (4-55)

Then we estimate

−

∫
8π
v

r

{
ρ∂x(r2v)+ρr3∂x

(
v

r

)}
ρ
β

0 ∂t

(
σ

ρ0

)
dx−4π

∫
∂tσ∂x(r2v)ρ

β

0 ∂t

(
σ

ρ0

)
dx≤Cθ1D0

+Cθ1E2,σ
2β+1

to obtain
d
dt

E2,σ
β ≤

1
4

D2
+Cθ1D0

+ (η+Cθ1)E
2,σ
2β+1+Cθ1E2,σ

β . (4-56)

Next we estimate E3 and D3.

Lemma 4.4. There exists an energy F3 such that

d
dt
[E3
+F3
] +D3

≤ Cθ1E3
+

(
3
8
+
θ1

4

)
D3
+C

(
E2,σ

0 +E2
+E1
+E0). (4-57)

Moreover, we have the estimate |F3
| ≤ Cθ1(E

3
+E1).

Proof. First recall (4-48) and rewrite it as

∂2
t v+ 4πr2

{
Kγργ0 ∂t∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
︸ ︷︷ ︸

(a1)

+ 4πr2
{
∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2(a∗ρ
γ

0 )
σ

ρ0
∂x

(
σ

ρ0

)]}
︸ ︷︷ ︸

(a2)

+ 8πrv
{

Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
︸ ︷︷ ︸

(b)

−2
xv(r4

0 − r4)

r3r4
0

− 4
xrv
r4

0︸ ︷︷ ︸
(c)

= ∂t V, (4-58)

where ∂t V is given in (4-49). To derive (4-57), we will multiply by ∂2
t v and integrate over x . We divide

the estimates into the following steps.



INSTABILITY THEORY OF THE NAVIER–STOKES–POISSON EQUATIONS 1159

Step 1 We begin with an estimate of the product of ∂2
t v with the terms (a1), (a2), (b), and (c). First, we

use (4-45) to replace ∂t∂x(σ/ρ0) by lower-order terms:

(a1)+ (a2)= 4πr2
{

Kγργ0 ∂t∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
+ 4πr2

{
∂t

[
∂x
(
a∗ρ

γ

0

)( σ
ρ0

)2

+ 2
(
a∗ρ

γ

0

) σ
ρ0
∂x

(
σ

ρ0

)]}

=−4πr2
(

Kγ + 2a∗
σ

ρ0

)
ρ
γ

0
ρ

ρ0
∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)

−

(
Kγ + 2a∗

σ

ρ0

)
ρ
γ

0
ρ

ρ0

(
δ+

4ε
3

){∂tv+
x(r4

0 − r4)

r2r4
0
+ 4πr2

[
Kγργ0 ∂x

(
σ

ρ0

)

+ Kγ ∂x(ρ
γ

0 )
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)]}

+ 4πr2

{
Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)
+ ∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2]
+ 2ργ0 ∂t

(
a∗
σ

ρ0

)
∂x

(
σ

ρ0

)}
=: (A1)+ (A2)+ (A3). (4-59)

Then
∫
∂2

t v · [(a1)+ (a2)] dx can be estimated as follows:

∫
∂2

t v · (A1) dx ≤
θ1

8

∫ ∣∣∣∣∂2
t v

∣∣∣∣2 dx +Cθ1

∫
ρ

2γ+2
0

ρ2 r4
∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx ≤
θ1

8
D3
+Cθ1E1,σ , (4-60)∫

∂2
t v · (A2) dx ≤

3
32

∫
|∂2

t v|
2 dx +C

[
E2,v
+E0,r

+ (1+ θ1)(E
1,σ
+E0,σ )

]
, (4-61)∫

∂2
t v · (A3) dx ≤

3
32

∫
|∂2

t v|
2 dx +Cθ1E1,σ

+C(1+ θ1)E
2,σ
0 . (4-62)

For (b) and (c), we may estimate∫
∂2

t v · (b) dx ≤
θ1

8

∫
|∂2

t v|
2 dx +Cθ1

(
E1,σ
+E0,σ

0

)
,∫

∂2
t v · (c) dx ≤

3
32

∫
|∂2

t v|
2 dx +C

(
E0,v
+E0,r). (4-63)

Combining the above, we arrive at an estimate for
∫
∂2

t v ·
[
(a1)+ (a2)+ (b)+ (c)

]
dx .

Step 2 (the viscosity term). Now we consider the viscosity term, ∂t V. We claim that there exist F3,G
such that ∫

∂2
t v · ∂t V dx =−

d
dt

E3
−

d
dt

F3
+G, (4-64)
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where

|F3
| ≤ Cθ1(E

3
+E1) and |G| ≤ 3

32 D3
+Cθ1

(
E3
+E2,σ

0 +E1). (4-65)

Recall that ∂t V may be computed as in (4-49), and that ∂t W(M, t) = 0. Then a simple but lengthy
computation, using integration by parts, reveals that∫
∂2

t v · ∂t V dx =−
1
2

d
dt

∫
δ16π2ρ

∣∣∂x(r2∂tv)
∣∣2dx +

4ε
3

16π2ρr6
∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx +G0+ Y, (4-66)

where

G0 =

∫ (
∂tσ

2ρ
+

2v
r

){
δ16π2ρ

∣∣∂x(r2∂tv)
∣∣2+ 4ε

3
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2 } dx

+

∫
ρr3∂x

(
v

r

){
δ32π2 ∂tv

r
∂x(r2∂tv)−

4ε
3

16π2 ∂tv

r
r3∂x

(
∂tv

r

)}
dx (4-67)

and Y = Y1+ Y2 with

Y1 =−16π2
∫ [
δ∂tσ∂x(r2v)+ δρ∂x(2rv2)

]
∂x(r2∂2

t v) dx

− 16π2
∫ [

4ε
3
∂t(ρr3)∂x

(
v

r

)
−

4ε
3
ρr3∂x

(
v2

r2

)]
∂x(r2∂2

t v) dx,

Y2 = 32π2
∫

rv∂2
t v∂x

[
δρ∂x(r2v)+

4ε
3
ρr3∂x

(
v

r

)]
dx .

(4-68)

Let us define the quantity Q such that Y1 =−16π2
∫

Q∂x(r2∂2
t v) dx , that is, Q is the sum of the bracketed

terms in the Y1 integrand. Then we may compute

Y1=
d
dt

∫
−16π2∂x(r2∂tv)Q dx+

∫
16π2(∂x(2rv∂tv)Q+∂x(r2∂tv)∂t Q

)
dx :=−

d
dt

F3
1+G1. (4-69)

Similarly, we have that

Y2 =
d
dt

∫
−16π2∂x(r2∂tv)

2v
r

[
δρ∂x(r2v)+

4ε
3
ρr3∂x

(
v

r

)]
dx

+ 16π2
∫ [

∂x(2rv∂tv)
2v
r

W+ ∂x(r2∂tv)∂t

(
2v
r

)
W+ ∂x(r2∂tv)

2v
r
∂t W

]
dx

− 16π2
∫

r2∂2
t vW∂x

(
2v
r

)
dx

=−
d
dt

F3
2+G2. (4-70)

Combining the above, we find that (4-64) holds with F3
= F3

1 +F3
2 and G = G0 + G1 + G2. To

complete the proof of the claim, we note that the estimates (4-65) follow from the definition of F3 and G,
using (4-54) to replace ∂2

t σ by other terms.



INSTABILITY THEORY OF THE NAVIER–STOKES–POISSON EQUATIONS 1161

Step 3 (conclusion). The only term that remains is∫
∂2

t v∂
2
t v dx = D3. (4-71)

With this, all of the terms in (4-58) are accounted for. We may then combine the analysis of Steps 1 and 2
to deduce the estimate (4-57). �

We now bootstrap more estimates. First, we multiply (4-22) by 1
ρ

(
1− r0

r

)
and integrate to get

d
dt

E0,r
b ≤ (η+Cθ1)E

0,r
b +CE1,v, (4-72)

where we have used (4-23) to control
∫
|v|2

r2ρ
dx ≤ CE1,v. By multiplying (4-45) by 1

ρ0
∂x

(
σ

ρ0

)
and

integrating, we get

d
dt

E1,σ
b +D1,σ

b ≤ (η+Cθ1)E
1,σ
b +C

(
E3
+E0,σ
−1 +E0,r

b

)
. (4-73)

Note that here we have again used (4-23) to control
∫
|∂tv|

2/(r2ρ) dx , which is possible since (4-23) is
valid for any choice of v, not just solutions. From (4-45) we also see that

E3,σ
a =

∫ (
δ+

4ε
3

)2

16π2 r2

ρ

∣∣∣∣∂x∂t

(
σ

ρ0

)∣∣∣∣2dx ≤ C
(
E3
+E1,σ

b +E0,σ
−1 +E0). (4-74)

Next, by applying ∂x to (4-4), we find that

ρ0

ρ
∂x∂t

(
σ

ρ0

)
+ ∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)
+ 4π∂x

(
ρ∂x(r2v)

)
= 0. (4-75)

We then use this to get

E3,v
a1
=

∫
r2

ρ

∣∣∂x(ρ∂x(r2v))
∣∣2 dx ≤ C

(
E3,σ

a +E1,σ
b

)
. (4-76)

Since
∫
ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx ≤ CE1, (4-7) implies that

E3,v
a2
=

∫
ρr6

∣∣∣∣∂x

(
ρr3∂x

(
v

r

))∣∣∣∣2dx ≤ C
(
E2
+E1
+E0). (4-77)

We now illustrate how the higher-order energy estimates of spatial derivatives of ∂x(σ/ρ0) and
∂x(ρ∂x(r2v)) work. The following lemma concerns the estimate of ∂x(r4∂x(σ/ρ0)).

Lemma 4.5.
d
dt

E4
+D4

≤ (η+Cθ1)E
4
+C

(
E3
+E0,r

+E0,r
b +E0,σ

−1

)
+Cθ1

(
E1,σ

b +E3,σ
a
)
. (4-78)
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Proof. First, we multiply (4-45) by r2 and apply ∂x to get(
δ+

4ε
3

)
4π

{
ρ0

ρ
∂x

(
r4∂t∂x

(
σ

ρ0

))
︸ ︷︷ ︸

(i)

+2 ∂x

(
ρ0

ρ

)
r4∂t∂x

(
σ

ρ0

)
︸ ︷︷ ︸

(ii)

+ ∂x

(
r4∂x

(
ρ0

ρ

))
∂t

(
σ

ρ0

)
︸ ︷︷ ︸

(iii)

}

+ ∂x(r2∂tv)︸ ︷︷ ︸
(iv)

+
(r4

0 − r4)

r4
0︸ ︷︷ ︸

(v)

−
xr4

πr7
0ρ

(
1−

(
r0

r

)3

+
σ

ρ0

)
︸ ︷︷ ︸

(vi)

+4π Kγργ0 ∂x

(
r4∂x

(
σ

ρ0

))
︸ ︷︷ ︸

(vii)

+ 4π
{

2Kγ r4∂x(ρ
γ

0 )∂x

(
σ

ρ0

)
+ Kγ ∂x

(
r4∂x(ρ

γ

0 )
) σ
ρ0

}
+ 4π

{
2r4∂x(a∗ρ

γ

0 )
σ

ρ0
∂x

(
σ

ρ0

)
+ ∂x

(
r4∂x(a∗ρ

γ

0 )
)( σ
ρ0

)2}
+ 4π

{
2a∗ρ

γ

0
σ

ρ0
∂x

(
r4∂x

(
σ

ρ0

))
+ 2r4∂x

(
a∗ρ

γ

0
σ

ρ0

)
∂x

(
σ

ρ0

)}
= 0. (4-79)

The energy inequality (4-78) can be derived as in Step 2 of Lemma 4.2 by multiplying (4-79) by
ρ∂x(r4∂x(σ/ρ0)) and integrating over x . We provide the details on how (i)–(vii) can be treated; other
terms can be estimated similarly.∫ (

δ+
4ε
3

)
4π (i) · ρ∂x

(
r4∂x

(
σ

ρ0

))
dx

=
1
2

d
dt

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx

−

(
δ+

4ε
3

)
4π
∫
ρ0∂x

(
∂t(r4)∂x

(
σ

ρ0

))
∂x

(
r4∂x

(
σ

ρ0

))
dx︸ ︷︷ ︸

(∗)

. (4-80)

Since ∂t(r4)= 4v
r

r4,

(∗)=

∫
4
v

r
ρ0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx +
∫

4∂x

(
v

r

)
r4∂x

(
σ

ρ0

)
ρ0∂x

(
r4∂x

(
σ

ρ0

))
dx, (4-81)

and since
∣∣∣vr ∣∣∣ and

∣∣∣ρr3∂x

(
v

r

)∣∣∣ are bounded by θ1,

|(∗)| ≤ Cθ1
(
E4
+E1,σ

b

)
. (4-82)

For (ii), we write

∫
(ii) · ρ∂x

(
r4∂x

(
σ

ρ0

))
dx =−

∫ ρ0r3∂x

(
σ

ρ0

)
1+ σ

ρ0

·
r
√
ρ
∂t∂x

(
σ

ρ0

)
·
√
ρ∂x

(
r4∂x

(
σ

ρ0

))
dx, (4-83)
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and therefore ∣∣∣∣∫ (ii) · ρ∂x

(
r4∂x

(
σ

ρ0

))
dx
∣∣∣∣≤ Cθ1

(
E3,σ

a +E4). (4-84)

It is easy to see that∣∣∣∣∣
∫ [

(iii)+(iv)+(v)−(vi)
]
·ρ∂x

(
r4∂x

(
σ

ρ0

))
dx

∣∣∣∣∣≤
(
η

2
+Cθ1

)
E4
+C

(
E3
+E0,r

+E0,r
b +E0,σ

−1

)
. (4-85)

Finally, (vii) forms the dissipation D4. �

We also get an estimate for ∂x

(
r4∂t∂x

(
σ

ρ0

))
from (4-79):

E4
a1
=

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂t∂x

(
σ

ρ0

))∣∣∣∣2dx ≤ θ2
1 E3,σ

a1
+E4
+E3
+E1
+E0,r

b +E0,σ
−1 . (4-86)

To derive an estimate of the third spatial derivatives of v, we first multiply (4-75) by r4 and then
apply ∂x :

ρ0

ρ
∂x

(
r4∂x∂t

(
σ

ρ0

))
+ 2r4∂x

(
ρ0

ρ

)
∂x∂t

(
σ

ρ0

)
+ ∂x

(
r4∂x

(
ρ0

ρ

))
∂t

(
σ

ρ0

)
+ 4π∂x

(
r4∂x(ρ∂x(r2v))

)
= 0. (4-87)

Thus, we obtain

E4
a2
=

∫
16π2ρ0

∣∣∂x
(
r4∂x(ρ∂x(r2v))

)∣∣2dx ≤ E4
a1
+ θ2

1
(
E3,σ

a +E4). (4-88)

We now present the higher-order energy estimates. We start with E5 and E5
a .

Lemma 4.6.
d
dt

E5
+D5

≤ (η+Cθ1)E
5
+
( 1

2 +Cθ1
)
D5
+Cθ2

1 E3
+Cθ1

(
E3,σ

a +E3
+E2
+E1)

+CE2. (4-89)

Proof. We apply ∂t to (4-48) to see that

∂3
t v+ 4πr2∂x

{(
Kγ + 2a∗

σ

ρ0

)
ρ
γ

0 ∂
2
t

(
σ

ρ0

)
+ ρ

γ

0

[
a∗

(
∂t

(
σ

ρ0

))2

+ 4∂t a∗
σ

ρ0
∂t

(
σ

ρ0

)
+ ∂2

t a∗

(
σ

ρ0

)2]}

+16πvr
{

Kγργ0 ∂t∂x

(
σ

ρ0

)
+Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
+16πvr∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+2(a∗ρ
γ

0 )
σ

ρ0
∂x

(
σ

ρ0

)]
+ 8π(r∂tv+ v

2)

{
Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
−

2x(r4
0 − r4)∂tv

r3r4
0

−
4xr∂tv

r4
0
−

12xv2

r4
0
+

6x(r4
0 − r4)v2

r4r4
0

= ∂2
t V. (4-90)
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We derive the energy estimate of (4-89) from (4-48) by proceeding as in the proofs of Lemmas 4.1 and 4.3.
That is, we multiply the resulting equation by ∂2

t v and integrate over x , integrating by parts in some terms
to recover dE5/dt , D5, and some error terms that can be estimated by the right side of (4-89). Since the
method of proof is already recorded in Lemmas 4.1 and 4.3, we omit further details. �

An estimate of ∂x
(
ρ∂x(∂t [r2v])

)
can be obtained through (4-48):

E5,v
a ≤ C

(
E5
+E3,σ

a +E1)
+Cθ1

(
E3,v

a1
+E3,σ

a +E1
+E0). (4-91)

We now bootstrap to control ∂2
t

(
σ

ρ0

)
. We apply ∂t to (4-54) to get

∂3
t

(
σ

ρ0

)
=−4π

ρ

ρ0
ρ∂x(r2∂2

t v)− 24π
ρ

ρ0
ρ∂x(rv∂tv)︸ ︷︷ ︸

(a)

−8π
ρ

ρ0
ρ∂x(v

3)︸ ︷︷ ︸
(b)

+6
∂tσ

ρ
∂2

t

(
σ

ρ0

)
− 6

(∂tσ)
3

ρ0ρ2 .

(4-92)
Note that

(a)=
v

r
ρ∂x(r2∂tv)+ ρr3∂x

(
v

r

)
∂tv

r

and

(b)= 3r3ρ

(
v

r

)2

∂x

(
v

r

)
+

3
4π

(
v

r

)3

,

and thus by multiplying (4-92) by 1
ρ0
∂2

t

(
σ

ρ0

)
and integrating, we obtain

d
dt

E5,σ
−1 ≤

(
η+Cθ1

)
E5,σ
−1 +CD5

+Cθ2
1
(
E3
+E1
+E2,σ
−1

)
. (4-93)

Next, we take ∂t of (4-45) to see that(
δ+

4ε
3

)
4πr2

{
ρ0

ρ
∂2

t ∂x

(
σ

ρ0

)
+∂x

(
ρ0

ρ

)
∂2

t

(
σ

ρ0

)
+∂t

(
ρ0

ρ

)
∂t∂x

(
σ

ρ0

)
+∂t∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)}

+

(
δ+

4ε
3

)
v

r
8πr2

{
ρ0

ρ
∂t∂x

(
σ

ρ0

)
+ ∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)}
+ ∂2

t v− 2
v

r

(
x
r2 +

xr2

r4
0

)
+ 4πr2

{
Kγργ0 ∂t∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
+ 4πr2∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)]
+
v

r
8πr2

{
Kγργ0 ∂x

(
σ

ρ0

)
+Kγ ∂x

(
ρ
γ

0

) σ
ρ0
+∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
= 0. (4-94)



INSTABILITY THEORY OF THE NAVIER–STOKES–POISSON EQUATIONS 1165

Therefore, by squaring (4-94) and integrating, we find that∫ (
δ+

4ε
3

)2

16π2r4
∣∣∣∣∂2

t ∂x

(
σ

ρ0

)∣∣∣∣2dx ≤ C
(
E5
+E1)

+Cθ2
1
(
E5,σ
−1 +E3,σ

a +E1
+E0,σ

0

)
. (4-95)

Also, by first dividing (4-94) by r and then squaring, we obtain

E6,σ
a =

∫ (
δ+

4ε
3

)2

16π2r2
∣∣∣∣∂2

t ∂x

(
σ

ρ0

)∣∣∣∣2dx

≤ C
(
E6
+E3,σ

a +E2,σ
−1 +E1)

+Cθ2
1
(
E1,σ

b +E3,σ
a +E1

+E0,σ
−1

)
. (4-96)

Now we record an estimate of E6.

Lemma 4.7. There exists an F6 such that
d
dt

[
E6
+ F̃

]
+D6
≤
(
η+Cθ1

)
E6
+
( 1

2+Cθ1
)
D6
+C

(
E5
+E5,σ
−1 +E1,σ

b +E2,σ
0 +E0,σ

0 +E3
+E2
+E1). (4-97)

Moreover, |F6
| ≤ Cθ1

(
E6
+E3
+E1

)
.

Proof. The energy inequality (4-97) can be obtained by multiplying (4-90) by ∂3
t v and integrating over x

as done in Lemma 4.4. We omit further details. �

As seen in the previous estimates in Lemmas 4.3, 4.4, 4.6, and 4.7, the time differentiation of the
equation keeps the main structure of the highest-order terms as well as the boundary condition. Using
the time differentiated equations (4-90) and (4-92), we can follow the line of analysis presented in these
four lemmas to derive energy inequalities for E7, E7

a , E7,σ
−1 , E8 and E8,σ

a . We record these in the following
lemma but omit a proof.

Lemma 4.8. Let E be given by (4-19). We have the following estimates.

d
dt

E7
+D7

≤ (η+Cθ1)E
7
+
( 1

2 +Cθ1
)
D7
+Cθ1

(
E6,σ

a +E6
+E5
+E3
+E2
+E1)

+CE5, (4-98)

E7
a ≤ C

(
E7
+E6,σ

a +E2)
+Cθ1

(
E6,σ

a +E3,σ
a +E1

+E2
+E3,v

a1
+E5

a
)
, (4-99)

d
dt

E7,σ
−1 ≤

(
η+Cθ1

)
E7,σ
−1 +CD7

+Cθ2
1
(
E6
+E3
+E5,σ
−1

)
, (4-100)

d
dt

[
E8
+F8]

+D8
≤
(
η+Cθ1

)
E8
+
( 1

2 +Cθ1
)
D8
+C

(
E−E8

−E8,σ
a
)
+C |E|2

where |F8
| ≤ Cθ1E+C |E|2, (4-101)

E8,σ
a ≤ C

(
E8
+E6,σ

a +E5,σ
−1 +E3)

+Cθ2
1
(
E1,σ

b +E3,σ
a +E1

+E0,σ
−1

)
. (4-102)

The next lemma ensures that the assumption (4-20) is valid within our energy E.

Lemma 4.9. There exists a constant κ > 0 such that if E≤ κ , then∥∥∥∥ σρ0

∥∥∥∥
L∞
+

∥∥∥∥∂t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂2
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂3
t

(
σ

ρ0

)∥∥∥∥
L∞

+

∥∥∥∥1−
r0

r

∥∥∥∥
L∞
+

∥∥∥∥ρr3∂x

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥vr
∥∥∥∥

L∞
+

∥∥∥∥∂tv

r

∥∥∥∥
L∞
+

∥∥∥∥∂2
t v

r

∥∥∥∥
L∞
≤ C
√

E, (4-103)
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for some constant C > 0. Here E is given by (4-19).

Proof. The proof proceeds in four steps.

Step 1 (∂k
t (σ/ρ0) estimates). We begin by estimating σ/ρ0 in W 1,1((0,M)). First, we use Hölder’s

inequality to estimate ∫ ∣∣∣∣ σρ0

∣∣∣∣ dx ≤
√

M
(∫ ∣∣∣∣ σρ0

∣∣∣∣ dx
)1/2

≤ C
√

E0,σ
−1 ≤ C

√
E. (4-104)

On the other hand, we may estimate∫ ∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣ dx ≤
(∫

r2

ρ

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx
)1/2(∫

ρ

r2 dx
)1/2

≤ C
(
E1,σ

b

)1/2
≤ C
√

E. (4-105)

Here we have used the fact that r2(x)∼ x2/3 for x ∼ 0, which follows from the definition of r(x) and
L’Hospital’s rule, to see that

∫
(ρ/r2) dx <∞. Combining these estimates with the usual one-dimensional

Sobolev embedding W 1,1((0,M)) ↪→ C0((0,M)), we find that σ
ρ0
∈ C0 and∥∥∥∥ σρ0

∥∥∥∥
L∞
≤ C
√

E. (4-106)

Now to control
∂tσ

ρ0
, we argue similarly to estimate∫ ∣∣∣∣∂tσ

ρ0

∣∣∣∣+ ∣∣∣∣∂x

(
∂tσ

ρ0

)∣∣∣∣ dx ≤ C
√

E2,σ
−1 +

√
E3,σ

a ≤ C
√

E. (4-107)

Then
∂tσ

ρ0
∈ C0 and ∥∥∥∥∂tσ

ρ0

∥∥∥∥
L∞
≤ C
√

E. (4-108)

A similar argument, employing E1+2i,σ
−1 and E2+2i,σ

a for i = 1, 2, then implies that

∂2
t σ

ρ0
,
∂3

t σ

ρ0
∈ C0 and

∥∥∥∥∂2
t σ

ρ0

∥∥∥∥
L∞
+

∥∥∥∥∂3
t σ

ρ0

∥∥∥∥
L∞
≤ C
√

E. (4-109)

We thus deduce from (4-106) and (4-108)–(4-109) that∥∥∥∥ σρ0

∥∥∥∥
L∞
+

∥∥∥∥∂t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂2
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂3
t

(
σ

ρ0

)∥∥∥∥
L∞
≤ C
√

E. (4-110)

Step 2 (1−r0/r estimate). Let us now suppose that E≤ κ with κ small enough that C
√

E≤ 1
2 , where C > 0

is the constant appearing on the right side of (4-110). In particular, this implies that ‖σ/ρ0‖L∞ ≤
1
2 < 1.

With this estimate in hand, we can derive an estimate for r0/r . Indeed, the Taylor expansion (4-21) easily
implies the estimate ∥∥∥∥1−

r0

r

∥∥∥∥
L∞
≤ C

∥∥∥∥ σρ0

∥∥∥∥1+k

L∞
≤ C
√

E (4-111)

for some k ≥ 0. This is the 1− r0/r estimate in (4-103).
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Step 3 (∂k
t v/r estimates). We now turn to estimates for ∂k

t v/r , k = 0, 1, 2. From Step 1, we know that
σ/ρ0 and ∂t(σ/ρ0) are continuous and bounded, while from Step 2, we know that ‖σ/ρ0‖L∞ ≤

1
2 , so

that 1+ σ/ρ0 is also continuous and bounded. From the boundary conditions at x = 0, we also have that
r2v(0, t)= 0. Hence we may spatially integrate the continuity equation (4-4) to see that

(r2v)(x, t)=
−1
4π

∫ x

0

1

ρ0(y)
(

1+
σ(y, t)
ρ0(y)

)2

∂tσ(y, t)
ρ0(y)

dy. (4-112)

Due to the asymptotics (1-24), we now have that∫ M

0

dy
ρ0(y)

<∞. (4-113)

This and the estimates (4-110) then imply that v
r
∈ C0 and

‖r2v‖L∞ ≤ C
∥∥∥∥∂t

σ

ρ0

∥∥∥∥
L∞
≤ C
√

E. (4-114)

On the other hand, due to L’Hospital, we have that

1
r3(x, t)

∫ x

0

dy
ρ0(y)

∼
4πρ(x, t)

3ρ0(x)
=

4π
3

(
1+

σ(x, t)
ρ0(y)

)
<∞ for x ∼ 0, (4-115)

which means that
sup

x∈(0,M)

1
r3(x, t)

∫ x

0

dy
ρ0(y)

<∞. (4-116)

We may then deduce that v
r
∈ C0 and∥∥∥∥vr

∥∥∥∥
L∞
≤ C

∥∥∥∥∂t
σ

ρ0

∥∥∥∥
L∞

sup
x∈(0,M)

1
r3(x, t)

∫ x

0

dy
ρ0(y)

≤ C
√

E. (4-117)

Now we apply ∂t to (4-4) and argue as above to see that

(
r2∂tv

)
(x, t)=−

∫ x

0

1

4πρ0(y)
(

1+
σ(y, t)
ρ0(y)

)2

∂2
t σ(y, t)
ρ0(y)

dy

+

∫ x

0

1

2πρ0(y)
(

1+
σ(y, t)
ρ0(y)

)3

∣∣∣∣∂tσ(y, t)
ρ0(y)

∣∣∣∣2dy−
∫ x

0
2(r2v)(y, t)

v(y, t)
r(y, t)

dy. (4-118)

Using this, we may argue as above (using estimates (4-114) and (4-117)) to deduce r2∂tv,
∂tv

r
∈ C0 and

‖r2∂tv‖L∞ +

∥∥∥∥∂tv

r

∥∥∥∥
L∞
≤ C
√

E. (4-119)
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An iterative argument, using ∂2
t applied to (4-4) in conjunction with the estimates (4-119), then allows us

to see that r2∂2
t v, ∂

2
t v/r ∈ C0 with

‖r2∂2
t v‖L∞ +

∥∥∥∥∂2
t v

r

∥∥∥∥
L∞
≤ C
√

E. (4-120)

Then (4-114), (4-117), and (4-119)–(4-120) may be combined to derive the
∂k

t v

r
estimates recorded in

(4-103).

Step 4 (ρr3∂x(σ/ρ0) estimate). Since ‖σ/ρ0‖L∞ ≤
1
2 , to prove the ρr3∂x(σ/ρ0) estimate listed in (4-103),

it suffices to estimate this term with ρ replaced by ρ0. We claim that∥∥∥∥ρ0r3∂x

(
σ

ρ0

)∥∥∥∥
L∞
≤ C

(√
E1,σ

b +
√

E4

)
≤ C
√

E. (4-121)

To prove (4-121), we will use the one-dimensional Sobolev embedding W 1,1 ↪→ C0. First note that∫
ρ0r3

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣dx ≤
(∫

ρρ2
0r2dx

)1/2(∫ r2

ρ

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx
)1/2

≤ C
√

E1,σ
b . (4-122)

On the other hand, we may compute

∂x

(
ρ0r3∂x

(
σ

ρ0

))
=
ρ0

r
∂x

(
r4∂x

(
σ

ρ0

))
+ ∂xρ0r3∂x

(
σ

ρ0

)
−

ρ0

4πρ
∂x

(
σ

ρ0

)
,

∂xρ0 =−
x

4πKγργ−1
0 r4

0

.
(4-123)

Then since
ρ0

ρ
2γ−2
0

≤
C
ρ0

as long as γ < 2, we may estimate

∫
ρ0r2

0

∣∣∣∣∂x

(
ρ0r3∂x

(
σ

ρ0

))∣∣∣∣2dx

≤ C
∫
ρ0r2

0

[
ρ2

0

r2

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2+ ρ2
0

ρ2

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2+ x2r6

ρ
2γ−2
0 r8

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2
]

dx

≤ CE4
+E1,σ

b . (4-124)

Then from this and Hölder’s inequality, we get∫ ∣∣∣∣∂x

(
ρ0r3∂x

(
σ

ρ0

))∣∣∣∣dx ≤
(∫

dx
ρ0r2

0

)1/2(∫
ρ0r2

0

∣∣∣∣∂x

(
ρ0r3∂x

(
σ

ρ0

))∣∣∣∣2dx
)1/2

≤ C
√

E4+

√
E1,σ

b .

(4-125)

Together, the estimates (4-123) and (4-125) constitute a W 1,1 estimate for ρ0r3∂x

(
σ

ρ0

)
, so we then obtain

(4-121) via the Sobolev embedding. �
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5. Nonlinear instability

5A. The bootstrap argument. Based on the nonlinear estimates in the previous section, we now establish
a bootstrap argument that allows us to control the growth of E in terms of the linear growth rate λ,
constructed in Theorem 2.1. The idea is to assume small data and that the lowest-order energy, E0, grows
no faster than the linear growth rate; then the inequalities in the last section allow for a bootstrap argument
that shows that all of E grows no faster than the linear growth rate.

Proposition 5.1. Let σ and v be a solution to the Navier–Stokes–Poisson system (4-2). Assume that
√

E(0)≤ C0ι and
√

E0(t)≤ C0ιeλt for 0≤ t ≤ T, (5-1)

where E0 and E are as defined in (4-11) and (4-19). Then there exist C? and θ? > 0 such that if
0≤ t ≤min{T, T (ι, θ?)}, then

√
E(t)≤ C?ιeλt

≤ C?θ?, (5-2)

where we have written T (ι, θ?)=
1
λ

ln
θ?

ι
.

Proof. To prove the result, we will employ a bootstrap argument using all of the nonlinear energy estimates
derived in the previous section. We now choose θ1 and η sufficiently small in all of these estimates that
Cθ1+ η ≤ λ/2 and Cθ1 ≤

1
8 in all of the energy inequalities. Throughout this proof, we will write C̃ for

a generic constant; we write this in place of C to distinguish the constants from those appearing in the
nonlinear energy estimates.

To begin the bootstrapping, we show that the estimate (5-1) allows us to control an integral of the D0

dissipation. Indeed, we use (4-25) and (5-1) along with Gronwall’s inequality to see that for 0≤ t ≤ T ,

d
dt

E0
+

1
2

D0
≤ CE0

≤ CC2
0(ιe

λt)2+
λ

2
E0
=⇒

1
2

∫ t

0
eλ/2(t−s)D0(s) ds ≤ C̃ι2e2λt . (5-3)

Then we employ (4-34) with β =−1 in conjunction with (5-3) to see that

d
dt

(
e−tλ/2E0,σ

−1 (t)
)
≤ Ce−tλ/2D0(t) =⇒ E0,σ

−1 (t)≤ E0,σ
−1 (0)e

tλ/2
+C

∫ t

0
eλ/2(t−s)D0(s) ds

=⇒ E0,σ
−1 (t)≤ C̃ι2e2λt

=⇒ E0,σ
0 (t)≤ C̃E0,σ

−1 (t)≤ C̃ι2e2λt . (5-4)

Next, let q > 0 be the constant from estimate (4-35) and choose k = (4q)/λ. Then (4-35) and (4-47),
together with (4-25) and the above estimates, imply that for 0≤ t ≤ T ,

d
dt

[
kE2
+ kE0

+E1]
+

k
2

D2
≤ (η+Cθ1)

(
E1
+ kE2)

+ qE2
+C

(
E0
+E0,σ

0

)
≤
λ

2

(
E1
+ kE2

+ kE0)
+ C̃ι2e2λt . (5-5)

Using Gronwall’s inequality again, we obtain from this that for 0≤ t ≤ T ,

E2(t)+E1(t)+ 1
2

∫ t

0
eλ/2(t−s)D2(s) ds ≤ C̃ι2e2λt . (5-6)
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Here we have used the fact that k is bounded and nonzero to absorb it into the constant C̃ . We then
employ (4-56) with β =−1 to see that

d
dt

(
e−tλ/2E2,σ

−1 (t)
)
≤ Ce−tλ/2(D2(t)+D0(t)

)
=⇒ E2,σ

−1 (t)≤ E2,σ
−1 (0)e

tλ/2
+C

∫ t

0
eλ/2(t−s)(D2(s)+D0(s)) ds

=⇒ E2,σ
−1 (t)≤ C̃ι2e2λt

=⇒ E2,σ
0 (t)≤ C̃E2,σ

−1 (t)≤ C̃ι2e2λt . (5-7)

Bootstrapping further, (4-57) gives rise to

E3(t)≤ C̃ι2e2λt . (5-8)

Similarly, from (4-72), (4-73), (4-74), (4-76), and (4-77), we also obtain, for 0≤ t ≤ T ,

E0,r
b (t)+E1,σ

b (t)+E3,σ
a (t)+E3,v

a1
(t)+E3,v

a2
(t)≤ C̃ι2e2λt . (5-9)

Next, from (4-78), we get

d
dt

E4
≤ (η+Cθ1)E

4
+Cι2e2λt

=⇒ E4(t)≤ C̃ι2e2λt . (5-10)

In turn, from (4-86) and (4-88), we find that

E4
a1
(t)+E4

a2
(t)≤ C̃ι2e2λt . (5-11)

Similarly, the energy inequalities (4-89), (4-91), (4-93) yield

E5(t)+E5
a(t)+E5,σ

−1 (t)≤ C̃ι2e2λt , (5-12)

and (4-97) and (4-96) yield
E6(t)+E6,σ

a (t)≤ C̃ι2e2λt . (5-13)

Successively, (4-98), (4-99), and (4-100) imply

E7(t)+E7
a(t)+E7,σ

−1 (t)≤ C̃ι2e2λt . (5-14)

To get the bound of E8, we first note that E8 satisfies the following inequality from (4-101) and (4-102):

d
dt

[
E8
+ F̃∗

]
≤ (η+Cθ1)

(
E8
+ F̃∗

)
+C1|E|

2
+ C̃ι2e2λt , (5-15)

for some constants C1 > 0 and C̃ > 0. We now define T ∗ by

T ∗ := sup
{

t
∣∣∣∣ E(s)≤min

{
θ1,

λ

4C1

}
for s ∈ [0, t]

}
. (5-16)

Let 0≤ t ≤min{T, T ∗}. Then by the Gronwall inequality, (5-15) implies that

E8(t)+ F̃∗(t)≤ C̃ι2e2λt
=⇒ E8(t)+E8,σ

a (t)≤ C̃ι2e2λt for 0≤ t ≤min{T, T ∗}. (5-17)
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Thus, combining all of the above analysis, we finally obtain

E(t)≤ C2ι
2e2λt for 0≤ t ≤min{T, T ∗} (5-18)

for a constant C2 > 0 independent of ι.
We now choose θ? such that C2(θ?)

2 <min{θ1, λ/4C1}. We consider the following two cases.

(i) T (ι, θ?)≤min{T, T ∗}. In this case, the conclusion follows without any additional work.

(ii) T (ι, θ?)>min{T, T ∗}. We claim that it must hold that T ≤ T ∗< T (ι, θ∗), in which case the conclusion
directly follows. To prove the claim, we note that otherwise we would have T ∗ < T < T (ι, θ?). Letting
t = T ∗, from (5-18), we get

E(T ∗)≤ C2ι
2e2λT ∗ < C2ι

2e2λT ι
= C2(θ?)

2 by the definition of T (ι, θ?), (5-19)

but this is impossible due to our choice of θ? since it would then contradict the definition of T ∗. Since we
then find our desired estimate in both cases, this concludes the proof of the proposition. �

5B. Further nonlinear estimates. As preparation for the proof of our main theorem, we recall that the
Navier–Stokes–Poisson system (4-2) can be written in perturbed form as in (3-38) and (3-39) in terms of
σ and w := r2v:

∂t

(
σ

w

)
−L

(
σ

w

)
=

(
N1

N2

)
, (5-20)

with the boundary conditions(
w

r2

)
(0, t)= 0 and σ(M, t)= 0, B(w)= NB at x = M, (5-21)

where the boundary operator B(w) is defined by (3-34), NB is given as

NB =

{(
δ+

4ε
3

)
4πσ∂xw− 4ε

[(
r0

r

)3

− 1
]
w

r3
0

} ∣∣∣∣∣
x=M

, (5-22)

and N1 and N2 become

N1 =−4π(2ρ0+ σ)σ∂xw,

N2 =
2w2

r3 − 4π
(
r4
− r4

0
)
∂x

(
Kγργ0

σ

ρ0

)
− 4πr4∂x

(
ρ
γ

0 a∗

(
σ

ρ0

)2)
−M1−M2,

(5-23)

where

M1 =
x
r4

0

(
r4

0 − r4
−

r0

π

∫ x

0

σ

ρ2
0

dy
)

= x
{

c1

r3
0

∫ x

0

1
ρ∗

(
σ

ρ0

)2

dy+
c2

r6
0

(∫ x

0

σ

ρ2
0

dy
)2}

by Taylor expansion,

where ρ∗/ρ0 ∼ 1 is a bounded smooth function of
σ

ρ0
, (5-24)
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and

M2 = 16π2
(
δ+

4ε
3

){
r4

0∂x(ρ0∂xw)− r4∂x(ρ∂xw)
}

= 16π2
(
δ+

4ε
3

){
(r4

0 − r4)∂x(ρ0∂xw)− r4∂x(σ∂xw)
}
.

(5-25)

It is possible to estimate these nonlinearities in terms of the energy E given by (4-19). We present
these estimates now.

Lemma 5.2. For each t ,

E(N1, N2)≤ C |E|2 and |NB| + |∂t NB| + |∂
2
t NB| ≤ C |E|2, (5-26)

where E is defined in (3-46).

Proof. The second inequality follows directly from Lemma 4.9. For the first inequality, we only provide
the details for the highest-order nonlinear term M2 in N2. Lower-order terms may be estimated similarly.
Throughout the proof, we will write θ1 to denote the left side of estimate (4-103); Lemma 4.9 then implies
that θ1 ≤ C

√
E.

By rewriting M2 as

M2

16π2
(
δ+

4ε
3

)
= (r4

0 − r4)∂x(ρ0∂xw)− r4∂x(σ∂xw)

=

[(
r0

r

)4

− 1
]{
ρ0

ρ
r4∂x(ρ∂xw)+ r4∂x

(
ρ0

ρ

)
ρ∂xw

}
−
σ

ρ
r4∂x(ρ∂xw)− r4∂x

(
σ

ρ

)
ρ∂xw, (5-27)

it is easy to see that ∫
|N2|

2

r4
0

dx ≤ Cθ2
1 E≤ C |E|2. (5-28)

Next,

∂x M2

16π2

(
δ+

4ε
3

) = (r0

r

)3 1−
(

r0

r

)3

+
σ

ρ0

πρr2
0r

{
ρ0

ρ
r4∂x(ρ∂xw)+ r4∂x

(
ρ0

ρ

)
ρ∂xw

}

+

[(
r0

r

)4

− 1
]{
ρ0

ρ
∂x
(
r4∂x(ρ∂xw)

)
+ 2r4∂x

(
ρ0

ρ

)
∂x(ρ∂xw)+ ∂x

(
r4∂x

(
ρ0

ρ

))
ρ∂xw

}

−
σ

ρ
∂x
(
r4∂x(ρ∂xw)

)
− 2r4∂x

(
σ

ρ

)
∂x(ρ∂xw)− ∂x

(
r4∂x

(
σ

ρ

))
ρ∂xw. (5-29)

Hence, from the definition of the energies and from the estimates in the previous section,∫
ρ0|∂x M2|

2 dx ≤ Cθ2
1
(
E4

a2
+E3,v

a1
+E1,σ

b

)
+Cθ4

1
(
E4
+E1,σ

b

)
+C

(
E1,σ

b +E4)E3,v
a1
≤ C |E|2. (5-30)
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On the other hand, ∂t M2 reads as

∂t M2

16π2

(
δ+

4ε
3

) =−4r3v∂x(ρ∂xw)− r4∂x(∂tσ∂xw)− r4∂x(σ∂x∂tw)+ (r4
0 − r4)∂x(ρ0∂x∂tw)

=−4
v

r
r4∂x(ρ∂xw)−

∂tσ

ρ
r4∂x(ρ∂xw)− r4∂x

(
∂tσ

ρ

)
ρ∂xw− r4σ

ρ
∂x(ρ∂x∂tw)

− r4∂x

(
σ

ρ

)
ρ∂x∂tw+ (r4

0 − r4)
ρ0

ρ
∂x(ρ∂x∂tw)+ (r4

0 − r4)∂x

(
ρ0

ρ

)
ρ∂x∂tw. (5-31)

Thus ∫
|∂t M2|

2

r4
0

dx ≤ Cθ2
1
(
E3,v

a1
+E3,σ

a +E5
a
)
+C

(
E4
+E1,σ

b

)
E6,σ

a ≤ C |E|2. �

5C. Data analysis. In order to prove our nonlinear instability result, we want to use the linear growing
mode solutions constructed in Theorem 2.1 to construct small initial data for the nonlinear problem,
written in the perturbation formulation (5-20). Small data in the perturbation formulation correspond to
initial data for (1-17)–(1-20) that are close to the stationary solutions ρ = ρ0, v= 0, r = r0. Unfortunately,
due to the regularity framework (given by E as in (4-19)) in which we have proved our nonlinear estimates,
we cannot simply set the initial data for the nonlinear problem (5-20) to be a small constant times the
linear growing modes. The reason for this is that the initial data for the nonlinear problem must satisfy
certain nonlinear compatibility conditions in order for us to guarantee local existence in the energy space
defined by E. Until now, we have taken the local well-posedness theory for the nonlinear problem for
granted, but we must now say a few words about the compatibility conditions in order to construct our
desired initial data.

Recall that we can rewrite the nonlinear problem (1-17)–(1-20) in the form (5-20)–(5-21) with nonlin-
earities given by (5-22)–(5-23). Let us concisely rewrite (5-20) as

∂tX+LX=N(X) for X=
(
σ

w̄

)
, (5-32)

where N(X) is the nonlinearity given in terms of N1 and N2 by the right side of (5-20). We will also
rewrite the boundary conditions (5-21) as

C(X) :=

(w/r2
0 )|x=0

σ |x=M

B(w)|x=M

=
w(r−2

0 − r−2)|x=0

0
NB

 :=NB(X). (5-33)

Here r is determined as a nonlinear function of σ as usual.
Rewriting the nonlinear problem as (5-32)–(5-33) now allows us to easily describe the compatibility

conditions for the initial data. Given X(0) as initial data for X at t = 0, we can use (5-32) to iteratively
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solve for ∂ j
t X(0) for j ≥ 1:

∂tX(0)=−LX(0)+N(X(0)),

∂2
t X(0)=−L∂tX(0)+ DN(X(0)) · ∂tX(0)

=−L
(
−LX(0)+N(X(0))

)
+ DN(X(0)) ·

(
−LX(0)+N(X(0))

)
, (5-34)

and so on for higher derivatives, where D is the derivative of the nonlinearity. We may similarly compute
∂

j
t NB(X)(0):

∂tNB(X)(0)= DNB(X(0)) · ∂t X (0)= DNB(X(0)) ·
[
−LX(0)+N(X(0))

]∣∣
x=M , (5-35)

continuing as above for higher derivatives. This procedure may be carried out indefinitely as long as X(0)
is sufficiently smooth. However, we may also differentiate the boundary condition (5-33) with respect to
time and then set t = 0 to see that the data must satisfy the boundary conditions

C(∂
j

t X(0))= ∂
j

t NB(X)(0) for j ≥ 0. (5-36)

Since the terms ∂ j
t X(0) and ∂tNB(X)(0) constructed in (5-34)–(5-35) are determined entirely by X(0),

we then find that the data X(0) must satisfy the nonlinear compatibility conditions given by substituting
(5-34)–(5-35) into (5-36).

For completely smooth solutions to the nonlinear problem, the compatibility conditions would have to
hold for all j ≥ 0. In our case, we only require solutions to remain in the energy space defined by E, and
as such, we must only solve for ∂ j

t X(0) for j = 1, 2, 3, given X(0). This then requires the compatibility
condition from (5-36) only for 0≤ j ≤ 3. Of course, in order to guarantee that E(0) is finite, we must
have that ∂ j

t X(0), 0≤ j ≤ 3, satisfies the integrability conditions in the definition of E(0). This in turn
gives us a natural Hilbert function space H with the following three properties. First, if X(0) ∈ H, then
we have the trace estimates needed to make sense of the boundary conditions in (5-36) for 0 ≤ j ≤ 3.
Second, if ‖X(0)‖H is sufficiently small, then

E(0)≤ C‖X(0)‖2H

for some C > 0. Here the smallness assumption is needed to deal with the nonlinearities in (5-34)–
(5-35) and the r terms in E. Third, the linear growing modes produced in Theorem 2.1 are in H. It is
straightforward to extract the proper definition of H from E and to work out the details of the estimate of
E(0); as such, for the sake of brevity, we omit these. With H defined in this way, it is then easy to use
estimate (2-13) of Theorem 2.1 in conjunction with (2-8)–(2-10) to see that the growing modes are in H.

Now that we have stated the nonlinear compatibility conditions, we see why we cannot simply set
X(0)= ιX0 with

X0 =

(
σ?

w̄?

)
(5-37)

for σ? and v?= w̄?/r2
0 the growing mode solution constructed in Theorem 2.1 and ι > 0 a small parameter.

Indeed, these solve

λX0+LX0 = 0 and C(X0)= 0 =⇒ C(L jX0)= 0 for all j ≥ 0, (5-38)
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which in particular means that X(0)= ιX0 does not satisfy the nonlinear compatibility condition (5-36)
for j ≥ 1.

To get around this obstacle, we will use the implicit function theorem to produce a curve of initial data
satisfying the compatibility conditions, close to the linear growing modes. To this end, let us define the
map F : H→ R12 via

F(X)=


C(X)

C(∂tX)

C(∂2
t X)

C(∂3
t X)

−


NB(X)

∂tNB(X)

∂2
t NB(X)

∂3
t NB(X)

 , (5-39)

where we understand that ∂ j
t X and ∂ j

t NB(X) for j =1, 2, 3 are computed in terms of X as in (5-34)–(5-35).
Let X0 be the linear growing modes as above and let Xi ∈ H, i = 1, . . . , 12, be arbitrary for now, with
exact values to be chosen later. We then define f : R1+12

→ R12 via

f (t, τ )= F
(

tX0+

12∑
i=1

τiXi

)
for t ∈ R and τ ∈ R12. (5-40)

Given the structure of the nonlinearities N( · ) and NB( · ), one easily sees that f ∈C2(R1+12
;R12). Also,

f (0, 0)= 0 and

∂ f
∂t
(0, 0)=


C(X0)

C(λX0)

C(λ2X0)

C(λ3X0)

= 0 and
∂ f
∂τi
(0, 0)=


C(Xi )

C(−LXi )

C(L2Xi )

C(−L3Xi )

 . (5-41)

From this it is then straightforward to choose the Xi for i = 1, . . . , 12 such that the 12× 12 matrix
(∂ f/∂τ)(0, 0) is invertible. The implicit function theorem then provides a small constant ι0 > 0 and
a function ξ : (−ι0, ι0)→ R12 such that f (t, ξ(t)) = 0 for all t ∈ (−ι0, ι0) and such that ξ ∈ C2 and
ξ(0)= 0. We may then differentiate the equation f (t, ξ(t))= 0 with respect to t , set t = 0, and use the
first equation in (5-41) to see that

0=
∂ f
∂t
(0, 0)+

∂ f
∂τ
(0, 0)

dξ(0)
dt
=
∂ f
∂τ
(0, 0)

dξ
dt
(0) =⇒

dξ
dt
(0)= 0, (5-42)

since the matrix (∂ f/∂τ)(0, 0) is invertible. Then ξ ∈ C2 with ξ(0) = ξ̇ (0) = 0 such that ξ(t)/t2 is
well-defined and continuous on (−ι0, ι0). Using this, we may then deduce the existence of a small
parameter ι0 > 0 and a curve Y : (−ι0, ι0)→ H given by

Y(ι)= ιX0+ ι
2

12∑
i=1

Xi
ξi (ι)

ι2
:= ιX0+ ι

2Ȳ(ι), (5-43)
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such that for all ι ∈ (−ι0, ι0),

F(Y(ι))= 0, that is, Y(ι) satisfies the nonlinear compatibility conditions,√
E(Y(ι))≤ C‖Y(ι)‖H ≤ Cι, and

E(Ȳ(ι)1, Ȳ(ι)2)≤ C,

(5-44)

where the norm ‖ · ‖0 ≤ ‖ · ‖H is given by (3-45), the term E is defined by (3-46), and in the second line
we have written E(Y(ι)) for E(0) computed from the initial data X(0)=Y(ι).

We now recast the above discussion as a lemma.

Lemma 5.3. Let σ?, v? be the growing mode solution constructed in Theorem 2.1, write w̄? = r2
0v?, and

assume the normalization ∥∥∥∥(σ?w̄?
)∥∥∥∥

0
= 1, (5-45)

for ‖ · ‖0 the norm defined by (3-45). Then there exist a number ι0 > 0 and a family of initial data(
σ ι(0)
wι(0)

)
= X(ι)= ι

(
σ?

w̄?

)
+ ι2

(
σ0(ι)

w0(ι)

)
(5-46)

for ι ∈ [0, ι0) such that the following hold.

(1) X(ι) satisfies the nonlinear compatibility conditions required for a solution to the nonlinear problem
(5-32) to exist in the energy space defined by E.

(2) If E(0) denotes the value of E determined at t = 0 from the data X(ι), then E(0)≤ Cι2 for a constant
C > 0.

(3) For all ι ∈ [0, ι0), we have ∥∥∥∥(σ0(ι)

w0(ι)

)∥∥∥∥2

0
≤ E(σ0(ι), w0(ι))≤ C (5-47)

for a constant C > 0 independent of ι, where E is given by (3-46).

(4) Let ψ ι denote the function given by (3-40), with NB = NB(X(ι)) determined by the data X(ι) at
t = 0. Then w̄ι(0)= wι(0)−ψ ι satisfies the homogeneous boundary condition B(w̄ι(0))= 0 and∥∥∥∥( 0

ψ ι

)∥∥∥∥2

0
≤ E(0, ψ ι)≤ Cι4 (5-48)

for a constant C > 0 independent of ι.

Proof. Everything except for the last item is proved above. The last item follows from Lemma 3.4 and
the fact that NB is at least a quadratic nonlinearity. �
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5D. Instability. We are now ready to prove our main result.

Theorem 5.4. There exist θ0 > 0, C > 0, and 0< ι0 < θ0 such that for any 0< ι≤ ι0, there exists a family
of solutions σ ι(t) and vι(t) to the Navier–Stokes–Poisson system (4-2) such that

√
E(0)≤ Cι, but sup

0≤t≤T ι

√
E0(t)≥ sup

0≤t≤T ι

√
E0,σ ι(T ι)+E0,vι(T ι)≥ θ0. (5-49)

Here T ι is given by T ι
=

1
λ

ln
θ0

ι
and E0,σ ι and E0,vι are defined in the first line of (4-11).

Proof. We divide the proof into steps. At several points in the proof we will restrict the size of θ . Whenever
we do so, we assume that ι is also restricted such that 0< ι≤ ι0 ≤ θ . We will choose the value of θ0 in
the final step of the proof.

Step 1 (data and the solutions). Let us assume that ι0 is as small as the ι0 appearing in Lemma 5.3, and
then let X(ι) for ι≤ ι0 be the family of initial data for the nonlinear problem (5-32)–(5-33) given in the
lemma. For 0< ι≤ ι0, we now let

(
σ ι

wι

)
be solutions to the Navier–Stokes–Poisson system (5-32)–(5-33)

with a family of initial data(
σ ι

wι

)∣∣∣∣
t=0
=

(
σ ι(0)
wι(0)

)
= X(ι)= ι

(
σ?

w̄?

)
+ ι2

(
σ0(ι)

w0(ι)

)
. (5-50)

The solution satisfies
√

E(0)≤ Cι.
Note that since

r ι(x, 0)=
(

3
4π

∫ x

0

dy
ρ0(y)+ ισ∗(y)+ ι2σ0(ι)(y)

)1/3

, (5-51)

a Taylor expansion and item (2) of Lemma 5.3 allow us to estimate∥∥∥∥1−
r0(x)

r ι(x, 0)

∥∥∥∥2

L∞
+
ν

2

∥∥∥∥1−
r0(x)

r ι(x, 0)

∥∥∥∥2

L2
≤ A1ι

2 (5-52)

for a constant A1 > 0 independent of ι. From this, the normalization (5-45), and the estimate (5-47), we
may assume that ι < ι0 with ι0 small enough that

ι

2
≤

√
E0,σ ι(0)+E0,vι(0)+E1,vι(0)+

√
E0,r ι(0)≤ 2ι. (5-53)

Throughout the rest of the proof we will let E(t) denote the total energy, defined by (4-19), associated
to the solutions σ ι and wι at time t .

Step 2 (control of the energy). Let us define the constant

B0 :=

(
2+

27

8
√

2λ
‖ρ0‖

1/2
L∞

)
. (5-54)

It will be useful in determining the time-scale in which instability begins. Indeed, we define T by

T := sup
{
s
∣∣ √E0,σ ι(t)+E0,vι(t)+E1,vι(t)+

√
E0,r ι(t)≤ (4+ B0)ιeλt for 0≤ t ≤ s

}
. (5-55)
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The estimate (5-53) guarantees that T > 0. Then by Proposition 5.1 and (5-53), there exist C? and θ? > 0
such that for 0≤ t ≤min{T, T (ι, θ?)} (with T (ι, θ?) given in the proposition),

√
E(t)≤ C?ιeλt . (5-56)

Let us assume that θ ≤ θ?, which means that T ι
≤ T (ι, θ?), and hence that the estimate (5-56) also

holds for 0 ≤ t ≤ min{T, T ι
}. Let us further assume that θ is small enough that

√
E(t) ≤ C?θ is small

enough that the right side of the estimate in Lemma 4.9 is smaller than 1
2 . In particular, this implies that∥∥∥∥σ ι(t)ρ0

∥∥∥∥
L∞
+

∥∥∥∥1−
r0

r ι(t)

∥∥∥∥
L∞
≤

1
2

(5-57)

for all 0≤ t ≤min{T, T ι
}. By further restricting θ to decrease the bound of the terms in (5-57), and using

the identities in (4-22) and (4-23), we can also bound

1
4

(
E0,σ ι(t)+E0,vι(t)+E1,vι(t)

)
≤

∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥2

0
≤ 2

(
E0,σ ι(t)+E0,vι(t)+E1,vι(t)

)
(5-58)

for 0≤ t ≤ T ι
=min{T, T ι

}.

Step 3 (linear estimates for σ ι andwι). Because of the estimate (5-57), the boundary conditionwι/(r ι)2|x=0

is equivalent to wι/r2
0 |x=0. We can then modify the problem (5-32)–(5-33) to have the form (3-41)–

(3-42), the latter of which has the homogeneous boundary conditions (3-42). This leads us to consider
w̄ι(0)= wι(0)−ψ ι as in Lemma 5.3, which satisfies B(w̄ι(0))= 0 at x = M . We then have that

etL

(
σ ι(0)
w̄ι(0)

)
= ιeλt

(
σ?

w̄?

)
+ ι2etL

(
σ0(ι)

w0(ι)

)
− etL

(
0
ψ ι

)
. (5-59)

Then the solutions
(
σ ι

wι

)
to (5-32) can be written as in (3-44):

(
σ ι(t)
wι(t)

)
= ιeλt

(
σ?

w̄?

)
+ ι2etL

(
σ0(ι)

w0(ι)

)
− etL

(
0
ψ ι

)
−

1
δ

(
0

N ι
B(t)r

3
0/3

)
+

∫ t

0
e(t−s)L

(
N ι

1(s)
N ι

2(s)

)
ds+

1
δ

∫ t

0
e(t−s)L

(
N ι

B(s)ρ0

∂t N ι
B(s)r

3
0/3

)
ds. (5-60)

Here the nonlinear terms N ι
B, N ι

1, and N ι
2 are defined in terms of wι and σ ι via (5-22) and (5-23).

Theorem 3.5, together with the nonlinear estimates of Lemma 5.2, imply that if the inequality t ≤
min{T, T (ι, θ?)} holds, then∥∥∥∥(σ ι(t)wι(t)

)
− ιetλ

(
σ?

w̄?

)
− ι2etL

(
σ0(ι)

w0(ι)

)
+ etL

(
0
ψ ι

)∥∥∥∥
0
≤ C |E(t)|2+C

∫ t

0
eλ(t−s)E(s) ds

≤ C(ιeλt)2+C
∫ t

0
eλ(t−s)ι2e2λs ds

≤ A2(ιeλt)2 (5-61)
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for a constant A2 > 0 independent of ι. On the other hand, because of the estimates (3-47) and (5-47)–
(5-48), we may estimate∥∥∥∥ι2etL

(
σ0(ι)

w0(ι)

)∥∥∥∥
0
+

∥∥∥∥etL

(
0
ψ ι

)∥∥∥∥
0
≤ ι2Ceλt

√
E(σ0(ι), w0(ι))+Ceλt

√
E(0, ψ ι)

≤ ι2 A3eλt (5-62)

for a constant A3>0 independent of ι. Then we may then deduce from (5-61)–(5-62) and the normalization
(5-45) that ∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥
0
≤ ιeλt

+ ι2 A3eλt
+ A2(ιeλt)2. (5-63)

Step 4 (control of the r energy). We now turn to control of the term E0,r ι . First note that

d
dt

∫
ν

2

∣∣∣∣1− r0

r ι

∣∣∣∣2dx ≤
(∫

ν

∣∣∣∣1− r0

r ι

∣∣∣∣2dx
)1/2(∫

ν

∣∣∣∣wιr3
0

∣∣∣∣2dx
)1/2∥∥∥∥r0

r ι

∥∥∥∥4

L∞
, (5-64)

which together with (5-57) implies that

d
dt

√
E0,r ι(t)≤

81

16
√

2

(∫
ν

∣∣∣∣wιr3
0

∣∣∣∣2dx
)1/2

. (5-65)

We may then argue as in (4-23) to see that∫
ν

ρ0

∣∣∣∣wιr3
0

∣∣∣∣2dx ≤
∫

32π2

9

(
δρ0|∂xw

ι
|
2
+

4ε
3
ρ0r6

0

∣∣∣∣∂x

(
wι

r3
0

)∣∣∣∣2 ) dx ≤
4
9

∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥2

0
. (5-66)

Combining (5-65) and (5-66) with (5-63), we find that

d
dt

√
E0,r ι(t)≤

27

8
√

2
‖ρ0‖

1/2
L∞

∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥
0
≤

27

8
√

2
‖ρ0‖

1/2
L∞
(
ιeλt
+ A3ι

2eλt
+ A2(ιeλt)2

)
(5-67)

for 0≤ t ≤min{T, T ι
}. Integrating this from 0 to t ≤min{T, T ι

} and employing (5-53) then yields the
estimate √

E0,r ι(t)≤
(

2+
27

8
√

2λ
‖ρ0‖

1/2
L∞

)(
ιeλt
+ A3ι

2eλt)
+

27A2

16
√

2λ
‖ρ0‖

1/2
L∞(ιe

λt)2

= B0(ιeλt)+ (ιA4)(ιeλt)+ A5(ιeλt)2 (5-68)

for 0 ≤ t ≤ min{T, T ι
}, where B0 is the constant defined above in (5-54) and A4, A5 are constants

independent of ι.

Step 5 (the bound T ι
≤ T ). We now claim that if θ is taken to be small enough, then T ι

= (1/λ) ln(θ/ι)≤ T .
Suppose by way of contradiction that T ι > T . Then the first bounds in (5-58), (5-63), and (5-68) imply
that √

E0,σ ι(t)+E0,vι(t)+E1,vι(t)+
√

E0,r ι(t)≤ (2+ B0+ ιA4)(ιeλt)+ (2A2+ A5)(ιeλt)2

≤
[
2+ B0+ ιA4+ (2A2+ A5)θ

]
(ιeλt)

≤ [3+ B0](ιeλt) (5-69)
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for t ≤ T ι, if we assume that θ is small enough that θ(2A2+ A5)≤
1
2 and ι0 A4 ≤

1
2 . For this choice of θ ,

we then find from the definition of T that T ≥ T ι, a contradiction. Hence, T ι
≤ T for θ sufficiently small.

Step 6 (conclusion: instability). We now define the L2 part of the norm ‖ · ‖0 by∥∥∥∥(σw
)∥∥∥∥2

00
:=

1
2

∫
Kγργ−1

0

∣∣∣∣ σρ0

∣∣∣∣2dx + 1
2

∫ ∣∣∣∣wr2
0

∣∣∣∣2dx . (5-70)

Note that ‖ · ‖00 ≤ ‖ · ‖0 and that by the normalization (5-45), we have that the data satisfy∥∥∥∥(σ?w̄?
)∥∥∥∥2

00
:= C00 ∈ (0, 1). (5-71)

Also, we may argue as in the derivation of (5-58) to see that√
E0,σ ι(t)+E0,vι(t)≥

1
√

2

∥∥∥∥(σ ιwι
)∥∥∥∥

00
(5-72)

for 0≤ t ≤ T ι
=min{T, T ι

}.
Let us now further assume that θ is small enough that A2θ ≤

C00

4
and ι0 A3 ≤

C00

4
. We can then

combine (5-71), (5-72), (5-61), and (5-62) to deduce that√
E0,σ ι(T ι)+E0,vι(T ι)≥

1
√

2

∥∥∥∥(σ ι(T ι)

wι(T ι)

)∥∥∥∥
00
≥

1
√

2
ιeλT ι

∥∥∥∥(σ?w̄?
)∥∥∥∥

00

−
1
√

2

∥∥∥∥(σ ι(T ι)

wι(T ι)

)
− ιeλT ι

(
σ?

w̄?

)
− ι2eT ιL

(
σ0(ι)

w0(ι)

)
+ eT ιL

(
0
ψ ι

)∥∥∥∥
00

−
1
√

2

∥∥∥∥ι2eT ιL
(
σ0(ι)

w0(ι)

)∥∥∥∥
00
−

1
√

2

∥∥∥∥eT ιL
(

0
ψ ι

)∥∥∥∥
00

≥
1
√

2
ιeλT ιC00−

1
√

2

∥∥∥∥ι2eT ιL
(
σ0(ι)

w0(ι)

)∥∥∥∥
0
−

1
√

2

∥∥∥∥eT ιL
(

0
ψ ι

)∥∥∥∥
0

−
1
√

2

∥∥∥∥(σ ι(T ι)

wι(T ι)

)
− ιeλT ι

(
σ?

w̄?

)
− ι2eT ιL

(
σ0(ι)

w0(ι)

)
+ eT ιL

(
0
ψ ι

)∥∥∥∥
0

≥
1
√

2

(
ιeλT ιC00− A3ι

2eλT ι
− A2(ιeλT ι)2

)
=

1
√

2

(
θC00− θιA3− A2θ

2)
≥

C00

2
√

2
θ.

(5-73)

Setting θ0 =
θC00

2
√

2
, we find that (5-49) holds. This completes the proof of the theorem. �
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DYNAMICAL IONIZATION BOUNDS FOR ATOMS

ENNO LENZMANN AND MATHIEU LEWIN

We study the long-time behavior of the 3-dimensional repulsive nonlinear Hartree equation with an
external attractive Coulomb potential −Z/|x |, which is a nonlinear model for the quantum dynamics of
an atom. We show that, after a sufficiently long time, the average number of electrons in any finite ball is
always smaller than 4Z (2Z in the radial case). This is a time-dependent generalization of a celebrated
result by E.H. Lieb on the maximum negative ionization of atoms in the stationary case. Our proof
involves a novel positive commutator argument (based on the cubic weight |x |3) and our findings are
reminiscent of the RAGE theorem.

In addition, we prove a similar universal bound on the local kinetic energy. In particular, our main
result means that, in a weak sense, any solution is attracted to a bounded set in the energy space, whatever
the size of the initial datum. Moreover, we extend our main result to Hartree–Fock theory and to the linear
many-body Schrödinger equation for atoms.

1. Introduction and main result

Rigorous attempts to answer the question How many electrons can a nucleus bind? have appeared in
the literature over the last decades [Ruskai 1981; 1982; Sigal 1982; 1984; Lieb 1984; Lieb et al. 1988;
Solovej 1991; 2003; Nam 2012]. So far, the question has only been addressed in a time-independent
setting, that is, the absence of bound states was shown when the number of electrons in the atom is too
large. In the present paper we shall rigorously formulate and provide an answer to a similar question in
the time-dependent setting: How many electrons can a nucleus keep in its neighborhood for a long time?

Our main purpose is therefore the rigorous understanding of the long-time behavior of atoms. We
shall prove, for instance, that, in the Hartree approximation, a nucleus of charge Z cannot bind in a
time-averaged sense more than 4Z electrons (2Z in the radial case). In particular, we will recover some
of the known time-independent results (nonexistence of bound states), but by different arguments. One
key ingredient in our paper turns out to be a new commutator estimate leading to a novel monotonicity
formula, which may be of independent interest for both linear and nonlinear Schrödinger equations.

As a model for the quantum dynamics of an atom, let us first consider the time-dependent nonlinear
Hartree equation with an external Coulomb potential:

Lenzmann was partially supported through a Steno fellowship from the Danish Research Council (FNU). Lewin acknowledges
financial support from the French Ministry of Research (ANR-10-BLAN-0101) and from the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013 grant agreement MNIQS 258023).
MSC2010: 35Q55, 81Q05, 81Q10, 35Q41.
Keywords: Hartree equation, RAGE theorem, ionization bound, positive commutator.
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∂

∂t
u(t, x)=

(
−1−

Z
|x |
+ |u|2 ∗

1
|x |

)
u(t, x),

u(0, x)= u0(x) ∈ H 1(R3).

(1-1)

Here u(t, x) describes the quantum state of the electrons (which are treated as bosons for simplicity) in
an atom [Hartree 1928a; 1928b; Slater 1930]. The terms in the parentheses are, respectively, the kinetic
energy operator of the electrons, the electrostatic attractive interaction with the nucleus of charge Z , and
the mutual repulsion between the electrons themselves (in units such that m = 2 and h̄ = e = 1). The
total number of electrons in the system is a conserved quantity, which is given by

ˆ
R3
|u(t, x)|2 dx =

ˆ
R3
|u0(x)|2 dx =: N .

In physical applications, the number N is an integer, but it is convenient to allow any positive real number
here. Note that, in Section 4 below, we will also consider the physically more accurate Hartree–Fock
model as well as the full many-body Schrödinger equation describing atoms. But for the time being, we
deal with the Hartree equation.

The nonlinear equation (1-1) and many variations thereof have been studied extensively in the literature.
The existence of a unique strong global-in-time solution to (1-1) with an initial datum u0 ∈ H 1(R3) goes
back to Chadam and Glassey [1975]. Their argument is based on a fixed point argument combined with
the conservation of the Hartree energy, defined by

EZ (u) :=
ˆ

R3
|∇u(x)|2 dx − Z

ˆ
R3

|u(x)|2

|x |
dx + 1

2

ˆ
R3

ˆ
R3

|u(x)|2 |u(y)|2

|x − y|
dx dy. (1-2)

In fact, the global well-posedness result for (1-1) can be extended to initial data in L2(R3); see, for
instance, [Hayashi and Ozawa 1989; Castella 1997]. However, in what follows, we will always assume
that u0 lies in the energy space H 1(R3) so that its corresponding energy is well-defined.

When Z 6 0, the solution u(t) to the Hartree equation (1-1) exhibits a purely dispersive behavior,
which has been studied by many authors. Here, some works were devoted to the understanding of the
dispersive effects for any initial datum [Glassey 1977a; Dias and Figueira 1981; Hayashi and Ozawa
1987; Hayashi 1988; Gasser et al. 1998; Sánchez and Soler 2004], whereas several others dealt with the
construction of (modified) scattering [Ginibre and Velo 1980; Ginibre and Ozawa 1993; Hayashi et al.
1998; Hayashi and Naumkin 1998; Ginibre and Velo 2000a; 2000b; López and Soler 2000; Wada 2001;
Nakanishi 2002].

In this paper, we are interested in the physically more relevant case when Z>0 holds, which corresponds
to having an external attractive long-range potential due to the presence of a positively charged atomic
nucleus. The electrons can (and will) now be bound by the nucleus, and the problem of understanding the
long-time behavior of solutions is much more delicate. For instance, it was already noticed by Chadam
and Glassey [1975, Theorem 4.1] that the solution u(t) cannot tend to zero in L∞(R3) as t →∞ for
negative energies EZ (u0) < 0, which can occur if Z > 0 holds.

When Z > 0, there exist nonlinear bound states that are solutions of (1-1) taking the simple form
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u(x)e−i tλ, where u ∈ H 1(R3) solves the nonlinear eigenvalue equation(
−1−

Z
|x |
+ |u|2 ∗

1
|x |

)
u = λu. (1-3)

For any fixed 0 < N 6 Z , it is known that (1-3) has infinitely many solutions such that
´

R3 |u|2 = N .
Moreover, there is a unique positive solution, which minimizes the Hartree energy (1-2) [Lieb and Simon
1977; Bader 1978] subject to N fixed, and the other (sign-changing) solutions can be constructed by
min-max methods [Wolkowisky 1972/73; Stuart 1973; Lions 1981]. The interpretation of the condition
0 < N 6 Z is that the atom is neutral (if N = Z ) or positively ionized (if N < Z ). In this situation, it
is not energetically favorable to send a positive fraction of L2-mass µ > 0, say, to spatial infinity, since
the remaining charge is Z − (N −µ) > 0 positive and thus attractive far away from the origin. A more
precise mathematical statement is that the Palais–Smale sequences with a bounded Morse index cannot
exhibit a lack of compactness when N 6 Z , and this implies the existence of infinitely many critical
points [Berestycki and Lions 1983; Lions 1987; Ghoussoub 1993].

It is known that there are bound states in the case of negative ionization, that is, when N > Z holds.
By [Lieb 1981, Theorem 7.19] (see also [Benguria 1979; Benguria et al. 1981]), there is a minimizer of
the Hartree functional for N slightly larger than Z . However, it is physically clear that there should not
be any bound state when N is too large compared to Z , because a given nucleus is not expected to bind
too many electrons compared to its nuclear charge. In [Benguria 1979; Lieb 1981; 1984], it was proved
that there exists a universal critical constant 1< γc < 2 such that (1-3) has no solution for N > γc Z , but
has at least one for N 6 γc Z . That γc is independent of Z follows from a simple scaling argument.

Let us now collect some basic facts about the set of solutions of the time-independent problem (1-3).
For any u ∈ H 1(R3), the self-adjoint operator

−1−
Z
|x |
+ |u|2 ∗

1
|x |

has no positive eigenvalue, by the Kato–Agmon–Simon theorem [Reed and Simon 1978, Theorem XIII.58].
This shows that, necessarily, λ 6 0 in (1-3). Furthermore, we can derive an upper bound on ‖∇u‖L2

which only depends on Z as follows. If u ∈ H 1(R3) solves (1-3), then, by taking the scalar product with
u, we find that ˆ

R3
|∇u(x)|2 dx 6 Z

ˆ
R3

|u(x)|2

|x |
dx 6 Z‖∇u‖L2‖u‖L2 .

Here we have used the inequality
ˆ

R3

|u(x)|2

|x |
dx 6min

z>0

(
z
2

ˆ
R3
|u|2+

1
2z

ˆ
R3
|∇u|2

)
= ‖u‖L2(R3)‖∇u‖L2(R3),

which follows from the value of the hydrogen ground state energy, inf Spec(−1/2− z|x |−1)=−z2/2.
We conclude that any solution u ∈ H 1(R3) to (1-3) must satisfy the boundˆ

R3
|∇u|2 6 γc Z3.
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Recalling that
´

R3 |u|2 6 γc Z , we conclude that the set of all stationary states

AZ := {u ∈ H 1(R3) : u solves (1-3) for some λ6 0} (1-4)

is bounded in H 1(R3). Elementary arguments show that AZ is weakly compact in H 1(R3). But we note
that the set AZ is not compact in the strong H 1-topology.

Supported by physical reasoning and rigorous results in linear scattering theory about asymptotic
completeness (see Remark 2 below), it is common belief for infinite-dimensional Hamiltonian systems
such as (1-1) that any of its solutions should behave for large times as a superposition of one or several
states getting closer to the global attractor AZ , plus a dispersive part. This is what has already been
shown for Z 6 0, in which case AZ = {0}. Not much is known in this direction for nonlinear Schrödinger
equations [Tao 2007; 2008], and solving this problem (also known as soliton resolution) constitutes a
major mathematical challenge. For the Hartree equation (1-1) studied in this paper, the situation is even
less clear because of possible modified scattering due to the long-range effects of the Coulomb potential.
We can, however, formulate a simpler (but weaker) conjecture as follows.

Conjecture 1 (the global attractor). Let u(t) be the unique solution to the Hartree equation (1-1) for
some u0 ∈ H 1(R3). Take any sequence of times tn→∞ such that u(tn) ⇀ u∗ weakly in H 1(R3). Then
u∗ ∈AZ .

Remark 2 (the many-body Schrödinger case). Let us recall that the Hartree equation (1-1) is a nonlinear
approximation of the linear many-body Schrödinger equationi

∂

∂t
9(t)=

( N∑
j=1

(
−1x j −

Z
|x j |

)
+

∑
16k<`6N

1
|xk − x`|

)
9(t),

9(0)=90 ∈ H 1((R3)N ).

(1-5)

Contrary to the Hartree case where we can allow N =
´

R3 |u|2 to take any positive real value, the
number N of electrons must of course be an integer for (1-5). The Hartree equation (1-1) is obtained by
constraining the solution 9(t) to stay on the manifold of product states of the form 9(t, x1, . . . , xN )=

ψ(t, x1)× · · ·×ψ(t, xN ) and using the Dirac–Frenkel principle. Then u(t)=
√

Nψ(t) solves (1-1). Let
us remark that (1-5) can be rewritten after a simple rescaling asi

1
Z2

∂

∂t
9(t)=

( N∑
j=1

(
−1x j −

1
|x j |

)
+

1
Z

∑
16k<`6N

1
|xk − x`|

)
9(t),

9(0)=90 ∈ H 1((R3)N ).

(1-6)

Thus the limit of large N →∞ with N/Z fixed corresponds to the usual mean-field limit. In this regime,
Hartree’s theory is known to properly describe (bosonic) atoms, both for ground states [Benguria and
Lieb 1983] and in the time-dependent case [Erdős and Yau 2001; Bardos et al. 2000]. See also [Schlein
2008; Fröhlich and Lenzmann 2004] for a review on mean-field limits and the Hartree approximation.

The many-body equation (1-5) looks complicated, but it has the advantage of being linear. In particular,
the RAGE theorem tells us that the only possible nonzero weak limits of 9(t) when t→∞ are bound
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states of the Hamiltonian H(N ) in the parentheses [Ruelle 1969; Amrein and Georgescu 1973/74; Enss
1978; Reed and Simon 1979]. This is not a very precise description of the solution for large times because
if some particles stay close to the nucleus while other escape to infinity, we will always get 9(t) ⇀ 0
weakly in H 1(R3N ); see [Lewin 2011]. However, asymptotic completeness is known to hold for the
linear evolution equation (1-5). This exactly says that any solution 9(t) is, in an appropriate sense, a
superposition of bound states of the operators H(k) with 16 k 6 N and of scattering states [Dereziński
1993; Sigal and Soffer 1994; Hunziker and Sigal 2000]. Because of the behavior of the underlying
many-body system, it is reasonable to believe that the same should be true for the Hartree equation (1-1).

A somewhat weaker property that would follow from Conjecture 1 (at least for (1-7)) is that, for large
times, the local mass of any solution has to be smaller than γc Z .

Conjecture 3 (asymptotic number of electrons and kinetic energy). Let u(t) be the unique solution to
the Hartree equation (1-1) for some u0 ∈ H 1(R3). Then

lim sup
t→∞

ˆ
|x |6r
|u(t, x)|2 dx 6 sup

u∈AZ

ˆ
R3
|u|2 = γc Z (1-7)

and

lim sup
t→∞

ˆ
|x |6r
|∇u(t, x)|2 dx 6 sup

u∈AZ

ˆ
R3
|∇u|2 6 γc Z3 (1-8)

for all r > 0.

The upper bound γc Z3 is certainly not optimal here. In physical terms, the conjecture says that whatever
the number of electrons we start with (and whatever their kinetic energy), we will always end up with at
most γc Z electrons having a universally bounded total kinetic energy. The other electrons have to scatter
because the attraction of the nucleus with positive charge Z is not strong enough to keep all the electrons
in its neighborhood. It could be that proving the weaker Conjecture 3 is not much easier than proving the
stronger Conjecture 1. We actually have very little information on γc.

In this paper, we are interested in Conjecture 3. We will prove a time-averaged version of (1-7), with
γc replaced by 2 in the radial case, and by 4 in the general case. Our main result is as follows.

Theorem 4 (long-time behavior of atoms in Hartree theory). Suppose Z > 0, let u0 be an arbitrary initial
datum in H 1(R3), and denote by u(t) the unique solution of (1-1). Then, for any R > 0, we have the
estimate

1
T

ˆ T

0
dt
ˆ

R3
dx
|u(t, x)|2

1+ |x |2/R2 6 4Z +
3
R
+

2
√

K N R2

Z T
(1-9)

with

N :=
ˆ

R3
|u0|

2

and

K := sup
t>0

ˆ
R3
|∇u(t)|2 6 Z2 N + 2‖∇u0‖

2
L2(R3)

+ N 3
‖∇u0‖L2(R3). (1-10)
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In particular, we have

lim sup
T→∞

1
T

ˆ T

0
dt
ˆ
|x |6r

dx |u(t, x)|2 6 4Z (1-11)

for every r > 0. Similarly, we have the following estimate on the local kinetic energy:

1
T

ˆ T

0
dt
ˆ

R3
dx
|∇u(t,x)|2

(1+ |x |/R)2
6

(
Z2

4
+

2Z
R
+

3Z
R2

)
1
T

ˆ T

0
dt
ˆ

R3
dx
|u(t,x)|2

1+ |x |2/R2 +
2R
√

K
√

N
T

. (1-12)

Therefore

lim sup
T→∞

1
T

ˆ T

0
dt
ˆ
|x |6r

dx |∇u(t, x)|2 6 Z3 (1-13)

for every r > 0.
If the initial datum u0 = u0(|x |) is radial, u(t) is radial for all times and the same estimate (1-9) holds

true with 4Z replaced by 2Z. Similarly, the estimate (1-13) holds true with Z3 replaced by Z3/2.

Note that we do not exactly get that the limiting mass is 6 4Z for large times, but we only know it
in the sense of time averages of the form 〈 f 〉T = T−1

´ T
0 f dt . Such a statement is reminiscent of the

celebrated RAGE theorem [Ruelle 1969; Amrein and Georgescu 1973/74; Enss 1978; Reed and Simon
1979] for linear time evolutions generated by self-adjoint operators. The constants in the error terms
of (1-9) and (1-12) are probably not optimal at all, but they are displayed here to emphasize that our
method can provide simple and explicit bounds. However, we have not tried to optimize these constants
too much.

In the radial case, we are able to get the same numerical value of 2 as the best known estimate on γc.
However, we use a virial-type argument that seems to be quite different from Lieb’s celebrated proof
[1984] in the stationary case (which, for radial solutions, goes back to [Benguria 1979]). In particular,
our approach provides an alternative proof of the fact that γc < 2 in the stationary radial case.

Strategy of the proof. Now we explain the main ideas used in the proof of Theorem 4. To this end, we
start by quickly recalling Lieb’s proof [1984] that γc < 2 holds. His idea is to take the scalar product of
the stationary Hartree equation (1-3) with |x |u(x), leading to the estimate〈

u,
|x |(−1)+ (−1)|x |

2
u
〉
− Z N +

ˆ
R3

ˆ
R3

(|x | + |y|)|u(x)|2|u(y)|2

2|x − y|
dx dy 6 0,

using that λ6 0 holds. To conclude, it suffices to notice that we have

|x |(−1)+ (−1)|x |
2

= |x |1/2
(
−1−

1
4|x |2

)
|x |1/2 > 0,

by Hardy’s inequality, and that
|x | + |y|
|x − y|

> 1,
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by the triangle inequality. Combining these estimates, we obtain that −Z N + N 2/2< 0, which implies
the bound N < 2Z for the stationary problem (1-3). (Note that the inequality is strict, since there is no
optimizer in Hardy’s inequality.)

In view of Lieb’s argument for the stationary problem (1-3), it appears to be a viable strategy in the
time-dependent setting to consider the quantity M(t) =

´
|x ||u(t, x)|2 dx (or some spatially localized

version thereof). Indeed, if we take the second time derivative of M(t), we are (formally) led to the
well-known Morawetz–Lin–Strauss estimate for nonlinear Schrödinger (NLS) equations, which has proved
to be of enormous value in the setting of NLS equations with purely repulsive interactions. However,
due to presence of the attractive term −Z/|x | with Z > 0 in the Hartree equation (1-1), the use of the
classical Morawetz–Lin–Strauss bounds does not yield any dispersive information about u(t, x), even in
the case when N is large compared to Z .

In our situation, it turns out that it is more natural to study the time evolution of the third moment
M(t)=

´
|x |3|u(t, x)|2 dx . If we compute its second time derivative, we obtain

1
3

d2

dt2

ˆ
R3
|x |3|u(t, x)|2 dx =

d
dt
〈u(t), Au(t)〉 = 2<

〈
∂

∂t
u(t), Au(t)

〉
= 〈u(t), i[−1, A]u(t)〉+ 〈u(t), i[Vu, A]u(t)〉

with A := −i(∇ · x |x | + |x | x · ∇) and Vu = −Z |x |−1
+ |u|2 ∗ |x |−1. This is the same as multiplying

the time-dependent equation (1-1) by Au(t) and taking the imaginary part. Our key observation is the
positivity of the commutator

i[−1, A] = − 1
3 [1, [1, |x |

3
]]> 0 (1-14)

(see also (2-6) below), combined with the fact that

〈u(t), i[Vu, A]u(t)〉 = −2
ˆ

R3
|x |x · ∇Vu(x)|u(t, x)|2

=

ˆ
R3

ˆ
R3
(|x |x − |y|y) ·

x − y
|x − y|3

|u(t, x)|2|u(t, y)|2 dx dy− 2Z N

> κN 2
− 2Z N ,

where κ = 1 if u(t) is radial and κ = 1
2 otherwise (see Lemma 9 below). Hence, when N > 2Z/κ , we

deduce the lower bound

1
3

d2

dt2

ˆ
R3
|x |3|u(t, x)|2 dx =

d
dt
〈u(t), Au(t)〉> N (κN − 2Z) > 0. (1-15)

Therefore the quantity
´

R3 |x |3|u(t, x)|2 dx grows at least like t2 for large t and in particular 〈u(t), Au(t)〉
is a monotone increasing quantity. This growth is a strong indication that some dispersion takes place and
some particles have to escape to infinity. (A regularized version of the previous estimate will indeed show
this claim for any H 1-solution.) Note also that, in the time-independent case when u is a nonlinear bound
state (and hence the left side in (1-15) must be zero), this is also a new proof of Lieb’s inequality γc < 2
in the radial setting, since κ = 1 holds under this symmetry assumption.
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Let us generally remark that virial or positive commutator arguments are very common in the literature
[Killip and Visan 2008; Colliander et al. 2003]. When |x |3 is replaced by |x |, this leads to the famous
Morawetz inequalities [1968], as already mentioned, whereas the case of |x |2 gives the virial identity
used by Glassey [1977b] to prove finite-time blowup for NLS equations. Tao [2008] advocated the use of
|x |4 for some nonlinear Schrödinger equations in dimension d > 7 in order to get a universal bound on
the mass of the solution. We are not aware of any use of the multiplier |x |3 in the literature.

In fact, using the cubic weight |x |3 is rather natural from a dimensional point of view in our situation:
if the potential term [Vu, A] should be O(1), the virial function must behave like the third power of a
length to compensate the Laplacian and the Coulomb potential.

For the proof of our main result, we will in fact derive a whole class of double commutator estimates
of the same kind as (1-14), which we think is of independent interest too. In particular, we will show
in (2-6) below that, in any dimension d > 1, we have the commutator bound

−
[
1, [1, |x |β]

]
> β(β + d − 4)(d −β)|x |β−4, (1-16)

provided that β >max(1, 4−d). Note that the right side is > 0 when β 6 d . In spite of the fact that (1-16)
turns out to be equivalent to a general version of Hardy’s inequality, we have not found it explicitly
written (let alone systematically treated) in the literature. Notice that the bound (1-16) contains the usual
inequalities for β = 1, 2, as well as Tao’s estimate for β = 4. In the present application, we shall use
(1-16) in dimension d = 3 with β = 3, or rather a regularized version thereof. However, the positivity of
this commutator does not directly follow as in the “classical” cases when β = 1, 2. To wit, for d = β = 3,
a calculation (which will be detailed below) yields the identity

−
[
1, [1, |x |3]

]
=−11|x |3−∇ · (Hess|x |3)∇ =−

24
|x |
− 12∇ · [|x |(1+ωxω

T
x )]∇,

where ωx = x/|x | denotes the unit vector in direction x ∈R3. Obviously, the first term on the right side is
negative definite. Nevertheless, when combined with the second term, the generalized Hardy’s inequality
(see (2-7) below) shows that the whole right-hand side is indeed nonnegative, and hence the estimate
(1-16) follows in the particular case d = β = 3.

Ultimately, we are interested in general H 1-solutions u(t)without imposing any spatial weight condition.
Therefore, the strategy of proving Theorem 4 explained above needs to be further refined. In particular,
the desired bound (1-9) on a ball of radius R cannot be obtained by only looking at the second derivative
of the third moment as we have just explained. Our method to extend (1-9) to any H 1-valued solution
u(t) is to replace the function |x |3 by a radial function fR(|x |) which behaves like |x |3 on the ball of
radius R and like |x | at infinity. This will imply that A fR =−i[1, fR] defines a bounded operator from
H 1(R3) to L2(R3). Furthermore, we will need to derive a sufficiently good lower bound on the double
commutator −[1, [1, fR]] in order to imitate the previous argument on the ball only. In Section 2, we
explain how to do this for a general function f . Finally, the bound (1-12) on the local kinetic energy is
itself obtained by considering another virial function gR which behaves like |x |2 on the ball of radius R
and like |x | at infinity. The complete proof of Theorem 4 is given in Section 3.
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Extensions:Hartree–Fock and many-body Schrödinger theory. In physical reality electrons are fermions,
which means that the many-body wave function 9 =9(t, x1, . . . , xN ) in (1-5) must be antisymmetric
with respect to exchanges of its spatial variables x1, . . . , xN . The Hartree state ψ(t, x1) · · ·ψ(t, xN ) is
symmetric, and it is therefore not allowed for physical electrons. This is why one speaks about bosonic
atoms. The simplest product-like antisymmetric wave function is a Hartree–Fock state, sometimes also
called a Slater determinant:

9(t, x1, . . . , xN )=
1
√

N !

∑
σ∈SN

ε(σ )u1(t, xσ(1)) · · · uN (t, xσ(N )), 〈uj , uk〉L2 = δ jk .

In Section 4.1 below, we extend Theorem 4 to the corresponding time-dependent Hartree–Fock equations;
see Theorem 13 for a precise statement. Finally, we also consider the full many-body Schrödinger equation
(1-5) in Section 4.2 below, where our findings are summarized in Theorem 15.

2. Estimating the commutator −[1, [1, f (x)]]

Throughout this section, we use the convenient notation

p := −i∇,

and, in particular, we have p2
=−1 in what follows. In this section, we investigate how to get lower

bounds for a double commutator of the form −[p2, [p2, f (x)]] in general space dimensions d > 1. Such
a double commutator always arises when computing the second derivative of the expectation value of
f (x) in a nonrelativistic system based on the Laplacian. We always assume that f is smooth enough

(possibly only outside of the origin) such that the double commutator can be at least properly interpreted
as a quadratic form on C∞c (R

d) or on C∞c (R
d
\ {0}).

Our starting point is the well-known formula for the double commutator, which follows from a tedious
but simple calculation:

−[p2, [p2, f (x)]] = −(11 f )(x)+ 4p · (Hess f (x))p. (2-1)

Since the Hessian of f appears on the right side, it is natural to restrict to convex functions f . Then the
second term is nonnegative in the sense of operators. One can use this term to control the bi-Laplacian
of f by resorting to Hardy’s trick, which is based on writing

p · (Hess f (x))p = (p+ i F(x)) · (Hess f (x))(p− i F(x))

+ i(p · (Hess f (x))F(x)− F(x) · (Hess f (x))p)− F(x) · (Hess f (x))F(x)

> div(Hess f (x)F(x))− F(x) · (Hess f (x))F(x) (2-2)

for any sufficiently smooth real vector field F : R3
→ R3. Here we have only used that (p+ i F(x)) ·

(Hess f (x))(p− i F(x))> 0 holds, which simply follows from the assumed convexity Hess f (x)> 0
and the self-adjointness (p+ i F(x))∗ = p− i F(x). For dimensional reasons, it is natural to take F of
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the form F(x)= αx |x |−2 with some constant α ∈ R. We thus obtain the lower bound

−[p2, [p2, f (x)]] = 4
(

p+ iα
x
|x |2

)
· (Hess f (x))

(
p− iα

x
|x |2

)
+ 4α div

(
Hess f (x)

x
|x |2

)
− 4α2 xT (Hess f (x))x

|x |4
− (11 f )(x)

> 4α div
(

Hess f (x)
x
|x |2

)
− 4α2 xT (Hess f (x))x

|x |4
− (11 f )(x) (2-3)

for a sufficiently smooth convex function f and any α ∈R. By using Hardy’s trick we are able to obtain a
lower bound which does not contain the differential operator p. Our estimate only involves a multiplication
operator. By varying α, we can try to make the negative part of this function as small as possible.

Let us now restrict ourselves to a radial function f (|x |) and use the notation r = |x | and ωx := x/|x |
for simplicity. Some tedious calculations show that

Hess f (|x |)= (1−ωxω
T
x )

f ′(r)
r
+ωxω

T
x f ′′(r),

div
(
(Hess f (x))

x
|x |2

)
= div

(
f ′′(r)

r
ωx

)
=

f (3)(r)
r
+ (d − 2)

f ′′(r)
r2 ,

xT (Hess f (x))x
|x |4

=
f ′′(r)

r2 .

Moreover, we recall the formula for the Bi-Laplacian of a radial function:

11 f (|x |)= f (4)(r)+ 2(d − 1)
f (3)(r)

r
+ (d − 1)(d − 3)

f (2)(r)
r2 − (d − 1)(d − 3)

f ′(r)
r3 .

Therefore we can rewrite the equality in (2-3) for a radial function f as

−
[

p2, [p2, f (|x |)]
]

= 4
(

p+ iα
ωx

r

)
·

(
(1−ωxω

T
x )

f ′(r)
r
+ωxω

T
x f ′′(r)

)(
p− iα

ωx

r

)
− f (4)(r)

+4
(
α−

d−1
2

)
f (3)(r)

r
+4

(
α(d−2)−α2

−
(d−1)(d−3)

4

)
f ′′(r)

r2 + (d−1)(d−3)
f ′(r)
r3 . (2-4)

The operator on the first line is > 0 when x 7→ f (|x |) is convex. In dimension d = 3, we already get a
simple estimate.

Lemma 5 (a lower bound for d = 3). Let f : [0,∞)→ R be a convex nondecreasing function such that
x 7→ f (4)(|x |) ∈ L1

loc(R
3). Then we have

−[p2,[p2, f (|x |)]] = 4
(

p+ i
ωx

r

)
·

(
(1−ωxω

T
x )

f ′(r)
r
+ωxω

T
x f ′′(r)

)(
p− i

ωx

r

)
− f (4)(|x |)

>− f (4)(|x |) (2-5)

in the sense of quadratic forms on C∞c (R
3).
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Proof. Take α = 1 in (2-4). �

Coming back to (2-4) and taking now the convex function f (|x |) = |x |β with β > 1, we obtain the
following general result.

Lemma 6 (estimate on −[p2, [p2, |x |β]]). For all β >max(1, 4− d), we have

−[p2, [p2, |x |β]]> β(β + d − 4)(d −β)|x |β−4 (2-6)

in the sense of quadratic forms on C∞c (R
d) (or on C∞c (R

d
\ {0}) if β = 4− d). The right side of (2-6) is

nonnegative for max(1, 4− d)6 β 6 d.

Proof. Take f (r)= rβ in (2-4) and optimize with respect to α (the optimum is α = (β + d − 4)/2). We
need β > 1 to make sure that f is nondecreasing and convex, and β > 4− d to ensure that all the terms
are in L1

loc(R
d). For β = 4− d > 1, the right side of (2-4) vanishes and the bound stays correct by a

simple limit argument. We remark that, in the borderline case β = 4− d, there is a positive δ-measure
occurring at the origin x = 0, which we do not see when using functions of C∞c (R

d
\ {0}). �

Remark 7. From (2-1) we immediately get the special formula −[p2, [p2, |x |2]] = 8p2 > 0, valid in any
dimension d > 1. For d > 3 and β = 2, the lower bound given in Lemma 6 is then a direct consequence
of Hardy’s inequality 4p2 > (d − 2)2|x |−2. In fact, we shall see below that the bound in Lemma 6 is
equivalent to a generalized version of Hardy’s inequality.

We conclude this section with some general observations. First, we note that Lemma 6 gives a
nonnegative lower bound in (2-6) in dimension d = 2 for the choice β = 2 only. In higher dimensions
d > 3, the right side is nonnegative for any 16 β 6 d . When β = 4, we get the simple lower bound

−[p2, [p2, |x |4]]> 4d(d − 4) for d > 4,

which was used for the first time by Tao [2008].
As we have seen, the bound (2-6) is equivalent to the operator inequality(

p+ iα
ωx

r

)
·

(
(1−ωxω

T
x )

f ′(r)
r
+ωxω

T
x f ′′(r)

)(
p− iα

ωx

r

)
> 0

with f (r)= rβ . This can also be written for the optimal α = (β + d − 4)/2 as
ˆ

Rd
|x |β−2

(
|P⊥x ∇u(x)|2+ (β − 1)

∣∣∣∣ωx · ∇u(x)+
β + d − 4

2|x |
u(x)

∣∣∣∣2) dx > 0,

where P⊥x = 1−ωxω
T
x is the projection on the two-dimensional space orthogonal to ωx . Saying that the

second term is nonnegative is equivalent, for β > 1, to the (generalized) Hardy inequality
ˆ

Rd
|x |β−2

|ωx · ∇u(x)|2 dx >
(β + d − 4)2

4

ˆ
Rd
|x |β−4

|u(x)|2 dx . (2-7)

Hence we see that (2-6) is nothing else but a reformulation of Hardy’s inequality (2-7).
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Remark 8 (fractional Laplacians). Using the integral representation

xθ =
sin(πθ)
π

ˆ
∞

0

x
x + s

sθ−1 ds for 0< θ < 1,

we can easily transpose most of our estimates to fractional powers |p|2θ = (−1)θ and 〈p〉2θ = (|p|2+1)θ

with θ ∈ (0, 1). For instance, for the pseudorelativistic kinetic energy operator
√

p2+ 1, we have, at least
formally,

−
[√

1+ p2,
[√

1+ p2, f (x)
]]

=
1
π2

ˆ
∞

0

√
s ds

ˆ
∞

0

√
t dt

1
(1+ p2+ s)(1+ p2+ t)

(−[p2, [p2, f (x)]])
1

(1+ p2+ s)(1+ p2+ t)
.

In particular, we find

−
[√

1+ p2,
[√

1+ p2, |x |β
]]
> 0

for max(1, 4− d)6 β 6 d. For a general convex radial function f and in d = 3 dimensions, we obtain
the estimate

−
[√

1+ p2,
[√

1+ p2, f (|x |)
]]
>−1

4‖ f (4)+ ‖L∞(R3)

with f (4)+ denoting the positive part of f (4).

3. Proof of Theorem 4

In this section, we provide the proof of our main result given by Theorem 4. We always assume that the
initial datum u0 is smooth and decays fast enough, such that our calculations are justified. As we will see
below, our estimates only involve the H 1(R3) norm of u0, and thus the general case can be obtained by a
simple limiting argument, which we do not detail here.

Proof of Theorem 4. Step 1: the virial identity. Consider a smooth radial convex function f . We define
the corresponding virial operator

A f := p · ∇ f +∇ f · p = p ·ωx f ′(|x |)+ f ′(|x |)ωx · p. (3-1)

Using (2-5), we get

d
dt
〈u(t), A f u(t)〉

= 4
ˆ

R3

f ′(|x |)
|x |
|P⊥x ∇u(t, x)|2 dx + 4

ˆ
R3

f ′′(|x |)
∣∣∣∣ωx · ∇u(t, x)+

u(t, x)
|x |

∣∣∣∣2 dx

−

ˆ
R3

f (4)(|x |)|u(t, x)|2 dx − 2
ˆ

R3
f ′(|x |)|u(t, x)|2ωx ·∇Vu(t, x) dx, (3-2)

with

Vu(t, x)=−
Z
|x |
+ |u(t)|2 ∗ |x |−1

:= −
Z
|x |
+Wu(t, x).
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The first potential term is just

−2
ˆ

R3
f ′(|x |)|u(t, x)|2ωx · ∇

(
−

Z
|x |

)
dx =−2Z

ˆ
R3

f ′(|x |)
|x |2

|u(t, x)|2.

The second potential term can be expressed as

−2
ˆ

R3
f ′(|x |)|u(t, x)|2ωx · ∇Wu(t, x) dx

= 2
ˆ

R3

ˆ
R3

f ′(|x |)ωx ·
x − y
|x − y|3

|u(t, x)|2|u(t, y)|2 dx dy

=

ˆ
R3

ˆ
R3

( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)
|x − y|3

|u(t, x)|2|u(t, y)|2 dx dy,

where in the last line we have just exchanged the role of x and y. Inserting in (3-2), we arrive at the
expression

d
dt
〈u(t), A f u(t)〉 = 4

ˆ
R3

f ′(|x |)
|x |
|P⊥x ∇u(t, x)|2 dx + 4

ˆ
R3

f ′′(|x |)
∣∣∣∣ωx · ∇u(t, x)+

u(t, x)
|x |

∣∣∣∣2 dx

−

ˆ
R3

f (4)(|x |)|u(t, x)|2 dx − 2Z
ˆ

R3

f ′(|x |)
|x |2

|u(t, x)|2 dx

+

ˆ
R3

ˆ
R3

( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)
|x − y|3

|u(t, x)|2|u(t, y)|2 dx dy. (3-3)

For dimensional reasons, it is natural to take f (|x |)= |x |3/3. The following lemma allows us to deal
with the last potential term in this special case.

Lemma 9 (lower bound on the nonlinear term for f (r)= r3/3). We have

(|x |2ωx − |y|2ωy) · (x − y)
|x − y|3

> 1
2

(3-4)

for all x 6= y ∈ R3. In the radial case we have
 

S2

 
S2

(|x |2ωx − |y|2ωy) · (x − y)
|x − y|3

dωx dωy = 1 (3-5)

where
ffl

S2 dωx = (4π)−1
´

S2 dωx denotes the (normalized) angular integration.

Proof. We compute

(|x |2ωx − |y|2ωy) · (x − y)
|x − y|3

=
r3
+ s3
− (r2s+ s2r)ωx ·ωy

(r2+ s2− 2rsωx ·ωy)3/2
=

1+ u3
− (u+ u2)θ

(1+ u2− 2uθ)3/2

with x = rωx , y = sωy , u :=min(r, s)max(r, s)−1
∈ [0, 1], and θ := ωx ·ωy ∈ [−1, 1]. Differentiating

with respect to θ , we find

d
dθ

(
1+ u3

− (u+ u2)θ

(1+ u2− 2uθ)3/2

)
=

u(1+ u)(u2
+ (1− u)(2− u))− θu2(1+ u)
(1+ u2− 2uθ)5/2

.
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We have u2
+ (1− u)(2− u)= u+ 2(u− 1)2 > u and therefore the numerator is nonnegative for u > 0

and θ ∈ [−1, 1]. We conclude that the minimum is attained for θ =−1. The value is

1+ u3
+ u+ u2

(1+ u)3
= 1−

2u
(1+ u)2

> 1
2 ,

where the minimum is attained for u = 1. All in all, we find that

(|x |2ωx − |y|2ωy) · (x − y)
|x − y|3

> 1
2 ,

as was claimed. In the radial case we find by explicit integration
 

S2

 
S2

(|x |2ωx − |y|2ωy) · (x − y)
|x − y|3

dωx dωy =
1
2

ˆ 1

−1

1+ u3
− (u+ u2)θ

(1+ u2− 2uθ)3/2
dθ = 1. �

For f (r)= r3/3, the previous estimates give

d
dt
〈u(t), A f u(t)〉

= 4
ˆ

R3
|x ||P⊥x ∇u(t, x)|2 dx + 8

ˆ
R3
|x |
∣∣∣∣ωx · ∇u(t, x)+

u(t, x)
|x |

∣∣∣∣2 dx + κN 2
− 2Z N , (3-6)

where κ = 1 in the radial case and κ = 1
2 otherwise. If u is a stationary state, the left side is independent

of t and this is a new proof that N < 4Z (N < 2Z in the radial case) for bound states. Equation (3-6) is
a new monotonicity formula for the Coulombic Hartree equation, when N > 4Z (N > 2Z in the radial
case).

Step 2: the localized virial estimate. We now use a localized virial estimate, which means that we choose
a virial function fR which behaves like |x |3/3 on a ball of radius R and like |x | at infinity. We will take
fR of the form

fR(|x |)= R3 f (|x |/R)

for

f (r)= r − arctan r, (3-7)

which we have chosen to have

f ′(r)=
r2

1+ r2 = 1−
1

1+ r2 . (3-8)

Clearly, the first derivative f ′ is nondecreasing and positive. Hence x 7→ f (|x |) is a convex function on
R3. The following lemma gathers some important properties of f , which are the ‘localized’ equivalent of
Lemma 9 above.

Lemma 10 (the virial function f ). Let f be as in (3-7). We have

( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)
|x − y|3

>
1
2

f ′(|x |)
|x |2

f ′(|y|)
|y|2

(3-9)
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for all x 6= y ∈ R3. In the radial case, we get
 

S2

 
S2

( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)
|x − y|3

dωx dωy

=
f ′(max(|x |, |y|))
max(|x |, |y|)2

=
1

1+max(|x |2, |y|2)
>

f ′(|x |)
|x |2

f ′(|y|)
|y|2

. (3-10)

Proof. As in Lemma 9, we write

( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)
|x − y|3

=
r f ′(r)+ s f ′(s)− θ(s f ′(r)+ r f ′(s))

(r2+ s2− 2rsθ)3/2
(3-11)

with r = |x |, s = |y|, and θ = ωx ·ωy ∈ [−1, 1]. Differentiating with respect to θ , we find

r(2r2
− s2) f ′(r)+ s(2s2

− r2) f ′(s)− θrs(s f ′(r)+ r f ′(s))
(r2+ s2− 2rsθ)5/2

.

Since f ′ > 0, the numerator is positive for θ 6 θc and negative for θ > θc. Regardless of whether
θc ∈ [−1, 1] or not, the minimum of the function in (3-11) is attained at θ =±1. For θ =−1, we find

f ′(r)+ f ′(s)
(r + s)2

=
r2
+ s2
+ 2r2s2

(1+ r2)(1+ s2)(r + s)2
.

Now we remark that
r2
+ s2
+ 2r2s2

(r + s)2
=

1
2
+
(r − s)2+ 4r2s2

2(r + s)2
> 1

2
,

and therefore
f ′(r)+ f ′(s)
(r + s)2

>
1

2(1+ r2)(1+ s2)
.

For θ = 1, we find

| f ′(r)− f ′(s)|
(r − s)2

=
|r2(1+ s2)− s2(1+ r2)|

(1+ r2)(1+ s2)(r − s)2
=

r + s
|r − s|

f ′(r)
r2

f ′(s)
s2 .

We have, with u =min(r, s)max(r, s)−1,

r + s
|r − s|

=
1+ u
1− u

= 1+
2u

1− u
> 1.

We conclude that
( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)

|x − y|3
> 1

2
f ′(|x |)
|x |2

f ′(|y|)
|y|2

for all x 6= y ∈ R3, as was stated.
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In the radial case we have to compute the integral over the angle explicitly. We use the notation
r< :=min(r, s) and r> :=max(r, s), and we get
 

S2

 
S2

( f ′(|x |)ωx − f ′(|y|)ωy) · (x − y)
|x − y|3

dωx dωy

=
1
2

ˆ 1

−1

r f ′(r)+ s f ′(s)− θ(s f ′(r)+ r f ′(s))
(r2+ s2− 2rsθ)3/2

dθ

=
r f ′(r)+ s f ′(s)

r3
>

1
2

ˆ 1

−1
dθ

1
(1+ u2− 2uθ)3/2

−
(r f ′(s)+ s f ′(r))

r3
>

1
2

ˆ 1

−1
dθ

θ

(1+ u2− 2uθ)3/2

=
r f ′(r)+ s f ′(s)

r3
>

1
1− u2 −

(r f ′(s)+ s f ′(r))
r3
>

u
1− u2

=
1

r>(r2
>− r2

<)
(r> f ′(r>)+ r< f ′(r<)− (r< f ′(r>)+ r> f ′(r<))r</r>)

=
1

r>(r2
>− r2

<)
(r> f ′(r>)− r2

< f ′(r>)/r>)=
f ′(r>)

r2
>

.

This calculation is valid for an arbitrary radial differentiable function f , not just the specific f chosen
above. The proof of Lemma 10 is now complete. �

We apply (3-3) for fR = R3 f ( ·/R) with f given by (3-7). We get the expression

d
dt
〈u(t), A fR u(t)〉

= 4R
ˆ

R3

R f ′(|x |/R)
|x |

|P⊥x ∇u(t, x)|2 dx + 4R
ˆ

R3
f ′′(|x |/R)

∣∣∣∣ωx · ∇u(t, x)+
u(t, x)
|x |

∣∣∣∣2 dx

−
1
R

ˆ
R3

f (4)(|x |/R)|u(t, x)|2 dx − 2Z
ˆ

R3

R2 f ′(|x |/R)
|x |2

|u(t, x)|2 dx

+ R2
ˆ

R3

ˆ
R3

( f ′(|x |/R)ωx − f ′(|y|/R)ωy) · (x − y)
|x − y|3

|u(t, x)|2|u(t, y)|2 dx dy. (3-12)

We now define the localized mass by

MR(t) :=
ˆ

R3

f ′R(|x |)
|x |2

|u(t, x)|2 dx =
ˆ

R3

1
1+ R−2|x |2

|u(t, x)|2 dx . (3-13)

Using (3-9) (or (3-10) in the radial case), we get the lower bound

d
dt
〈u(t), A fR u(t)〉>−

1
R

ˆ
R3

f (4)(|x |/R)|u(t, x)|2 dx − 2Z MR(t)+ κMR(t)2 (3-14)

with κ = 1 in the radial case and κ = 1
2 otherwise. Finally we remark that

− f (4)(r)= 24r
1− r2

(1+ r2)4
>−24

r3

(1+ r2)4
1(r > 1)>−

3
1+ r2 =−3

f ′(r)
r2
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(the best numerical constant is 1.33 instead of 3) and we get our final lower bound

d
dt
〈u(t), A fR u(t)〉>−

(
2Z +

3
R

)
MR(t)+ κMR(t)2. (3-15)

To conclude our proof of (1-9), we average (3-15) over a time interval [0, T ] and use Jensen’s inequality,

1
T

ˆ T

0
MR(t)2 dt >

(
1
T

ˆ T

0
MR(t) dt

)2

,

to get

〈u(T ), A fR u(T )〉− 〈u(0), A fR u(0)〉
T

>κ

(
1
T

ˆ T

0
MR(t) dt

)2

−(2Z+3/R)
(

1
T

ˆ T

0
MR(t) dt

)
. (3-16)

Note that

|〈u(t), A fR u(t)〉| =
∣∣〈u(t), (p · ∇ fR(|x |)+∇ fR(|x |) · p)u(t)

〉∣∣6 2
√

K
√

N‖ f ′R‖L∞ = 2
√

K
√

N R2,

since supr>0 f ′(r)= 1, and where we recall that K = supt ‖∇u(t)‖L2 . In summary, we conclude that

κ

(
1
T

ˆ T

0
MR(t) dt

)2

− (2Z + 3/R)
(

1
T

ˆ T

0
MR(t) dt

)
6 4
√

K N
R2

T
.

Using
√

1+ u 6 1+ u/2, this implies

1
T

ˆ T

0
MR(t) dt 6

2Z + 3/R
2κ

+
2Z + 3/R

2κ

√
1+

16κ
√

K N R2

(2Z + 3/R)2T

6
2Z
κ
+

3
R
+

4
√

K N R2

(2Z + 3/R)T
6

2Z
κ
+

3
R
+

2
√

K N R2

Z T
,

which ends the proof of (1-9).

Remark 11. Our proof works unchanged for a more general time average based on a positive function µ
such that

´
∞

0 µ= 1 and µ′ is a bounded Borel measure. More precisely, we have the estimate
ˆ
∞

0

µ(t/T )
T

dt
ˆ

R3

|u(t, x)|2

1+ |x |2/R2 dx 6
2Z
κ
+

3
R
+

√
K N R2

Z T

ˆ
∞

0
|µ′|.

For instance, one could take µ(t)= e−t .

Step 3: estimate on the local kinetic energy. We show here that the kinetic energy also has a universal
upper bound in average, on any ball of radius R. This time, we use a localized virial identity based on the
function

gR(|x |)= R2g(|x |/R),

which behaves like |x |2 on BR and like |x | at infinity. More precisely, we take

g(r)= r − log(1+ r) (3-17)
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which is such that

g′(r)=
r

1+ r
= 1−

1
1+ r

.

Clearly g′ is positive and nondecreasing, therefore x 7→ g(|x |) is convex on R3.
We use the lower bound (2-4) with α = 0 and we get, by the same calculations as before,

d
dt
〈u(t), AgR u(t)〉 = 4

ˆ
R3

(
Rg′(|x |/R)
|x |

|P⊥x ∇u(t, x)|2+ g′′(|x |/R)|ωx · ∇u(t, x)|2
)

dx

−
1
R2

ˆ
R3

(
g(4)(|x |/R)+ 4

Rg(3)(|x |/R)
|x |

)
|u(t, x)|2 dx

+ R
ˆ

R3

ˆ
R3

(∇g(x/R)−∇g(y/R)) · (x − y)
|x − y|3

|u(t, x)|2|u(t, y)|2 dx dy

− 2Z
ˆ

R3

Rg′(|x |/R)
|x |2

|u(t, x)|2 dx . (3-18)

We denote by

K R(t) :=
ˆ

R3
g′′(|x |/R)|∇u(t, x)|2 dx =

ˆ
R3

|∇u(t, x)|2

(1+ R−1|x |)2
dx

the local kinetic energy. Since x 7→ g(|x |) is convex,

(∇g(x)−∇g(y)) · (x − y)> 0

for all x, y ∈ R3. Also, we notice that

g′′(r)=
1

(1+ r)2
6

1
1+ r

=
g′(r)

r
.

Finally, we compute

g(3)(r)=−
2

(1+ r)3
6 0

and

g(4)(r)=
6

(1+ r)4
6

6
1+ r2 = 6

f ′(r)
r2 .

So we arrive at the estimate

d
dt
〈u(t), AgR u(t)〉> 4K R(t)−

6
R2 MR(t)− 2Z

ˆ
R3

Rg′(|x |/R)
|x |2

|u(t, x)|2 dx . (3-19)

In order to control the negative term, we again use Hardy’s trick:
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06
ˆ

R3
g′′(|x |/R)|∇u(t, x)+αωx u(t, x)|2 dx

=

ˆ
R3

g′′(|x |/R)|∇u(t, x)|2 dx −α
ˆ

R3
div(ωx g′′(|x |/R))|u(t, x)|2 dx +α2

ˆ
R3

g′′(|x |/R)|u(t, x)|2 dx

=

ˆ
R3

g′′(|x |/R)|∇u(t, x)|2 dx +α2
ˆ

R3
g′′(|x |/R)|u(t, x)|2 dx

− 2α
ˆ

R3

g′′(|x |/R)
|x |

|u(t, x)|2 dx −
α

R

ˆ
R3

g(3)(|x |/R)|u(t, x)|2 dx .

Therefore, using that −g(3)(r) = 2(1+ r)−3 6 2(1+ r2)−1
= 2 f ′(r)r−2 and that g′′(r) = (1+ r)−2 6

(1+ r2)−1
= f ′(r)r−2, we findˆ

R3

g′′(|x |/R)
|x |

|u(t, x)|2 dx 6
1

2α
K R(t)+

(
α

2
+

1
R

)
MR(t).

Coming back to the negative term in (3-18), we writeˆ
R3

Rg′(|x |/R)
|x |2

|u(t, x)|2 dx =
ˆ

R3

1
|x |(1+ |x |/R)

|u(t, x)|2 dx

=

ˆ
R3

1
|x |(1+ |x |/R)2

|u(t, x)|2 dx +
1
R

ˆ
R3

1
(1+ |x |/R)2

|u(t, x)|2 dx

6
1

2α
K R(t)+

(
α

2
+

2
R

)
MR(t).

Inserting in (3-19) gives

d
dt
〈u(t), AgR u(t)〉>

(
4−

Z
α

)
K R(t)− Z

(
α+

4
R
+

6
R2

)
MR(t). (3-20)

Taking α = Z/2 leads to

d
dt
〈u(t), AgR u(t)〉> 2K R(t)− Z

(
Z
2
+

4
R
+

6
R2

)
MR(t). (3-21)

To conclude our proof, we average over t in an interval [0, T ] using that

|〈u(t), AgR u(t)〉|6 2
√

K
√

N‖g′R‖L∞ = 2R
√

K
√

N ,

and we get
1
T

ˆ T

0
K R(t) dt 6 Z

(
Z
4
+

2
R
+

3
R2

)
1
T

ˆ T

0
MR(t) dt +

2R
√

K
√

N
T

, (3-22)

which concludes the proof of (1-12).

Step 4: Estimate on K . We end the proof of Theorem 4 by estimating the maximal value K of the kinetic
energy of u(t) in terms of ‖u0‖H1 , using the conservation of energy.

Lemma 12 (kinetic energy estimate). We have, for all t ∈ R,

‖∇u(t)‖2L2(R3)
6 Z2
‖u0‖

2
L2(R3)

+‖∇u0‖
2
L2(R3)

+
1
2‖u0‖

3
L2(R3)
‖∇u0‖L2(R3). (3-23)
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Proof of Lemma 12. By conservation of energy and mass, we find

EZ (u0)= EZ (u)>
〈
u,
(
−
1

2
−

Z
|x |

)
u
〉
+

1
2‖∇u‖2L2(R3)

>−
Z2

2

ˆ
R3
|u0|

2
+

1
2‖∇u‖2L2(R3)

,

since −1/2− Z |x |−1 >−Z2/2 (hydrogen atom). Next, for x ∈ R3 and u ∈ H 1(R3), we note the bound
ˆ

R3

|u(y)|2

|x − y|
dy 6min

z>0

(
z
2

ˆ
R3
|u|2+

1
2z

ˆ
R3
|∇u|2

)
= ‖u‖L2(R3)‖∇u‖L2(R3), (3-24)

which gives us
EZ (u0)6 ‖∇u0‖

2
L2(R3)

+
1
2‖u0‖

3
L2(R3)
‖∇u0‖L2(R3).

Hence,
‖∇u‖2L2(R3)

6 Z2
‖u0‖

2
L2(R3)

+ 2‖∇u0‖
2
L2(R3)

+‖u0‖
3
L2(R3)
‖∇u0‖L2(R3). �

This concludes the proof of Theorem 4. �

4. Extensions: Hartree–Fock and many-body Schrödinger theories

4.1. Hartree–Fock theory. The Hartree–Fock equations describe the nonlinear evolution of a wave
function taking the form of a Slater determinant, that is,

9(t)=
1
√

N !

∑
σ∈SN

sgn(σ )u1(t, xσ(1)) · · · uN (t, xσ(N )),

where the functions u1, . . . , uN model the states of the N electrons. The physical fact that electrons are
fermions is expressed in the Pauli principle given by the orthonormality condition

〈uj , uk〉L2 = δ jk .

The Hartree–Fock equations [Lieb and Simon 1977; Chadam 1976; Bove et al. 1976] form a system of N
coupled nonlinear equations similar to (1-1):

i
∂

∂t
uj = Huuj ,

Huv =−1v− Z |x |−1v+

N∑
k=1

|uk |
2
∗ |x |−1v−

N∑
k=1

(ujv) ∗ |x |−1uk .
(4-1)

One simple way to write the same equation is to introduce the one-body density matrix

γ (t) :=
N∑

k=1

|uk〉〈uk |,

which is the orthogonal projection onto the space spanned by the functions u1, . . . , uN . Then (4-1) is
equivalent to the so-called von Neumann equation,

i
∂

∂t
γ = [Hγ , γ ],

Hγ v =−1v− Z |x |−1v+ ργ (t) ∗ |x |−1v−

ˆ
R3

γ (t, x, y)
|x − y|

v(y) dy.
(4-2)



DYNAMICAL IONIZATION BOUNDS FOR ATOMS 1203

Here ργ (x) := γ (x, x) is the density associated with the matrix γ . The time-dependent equation (4-2)
does in fact make sense for any trace-class operator γ such that

06 γ 6 1 and Tr(γ )= N ,

which corresponds to generalized Hartree–Fock states [Bach et al. 1994]. Note that the infinite-rank case
rank γ =+∞ is also allowed here. We refer to [Chadam 1976; Bove et al. 1976] for the proof of global
well-posedness for (4-2) with initial data such that Tr(1−1)γ0 <+∞.

The following result is the equivalent of Theorem 4 in the Hartree–Fock case.

Theorem 13 (long-time behavior of atoms in Hartree–Fock theory). Suppose Z > 0 and let γ0 be an
arbitrary initial datum such that

Tr(1−1)γ0 <∞.

Denote by γ (t) the unique solution of (4-2). Then we have the estimate

1
T

ˆ T

0
dt
ˆ

R3
dx

ργ (t)(x)
1+ |x |2/R2 6 4Z + 1+

3
R
+

2
√

K N R2

Z T
(4-3)

with
N := Tr(γ0)

and
K := sup

t>0
Tr(−1)γ (t)6 Z2 N + 2 Tr(−1)γ0+ N 3

√
Tr(−1)γ0. (4-4)

In particular, we have

lim sup
T→∞

1
T

ˆ T

0
dt
ˆ
|x |6r

dxργ (t)(x)6 4Z + 1 (4-5)

for every r > 0. Similarly, we have the following estimate on the local kinetic energy:

1
T

ˆ T

0
dt
ˆ

R3
dx

τγ (t)(x)
(1+ |x |/R)2

6

(
Z2

4
+

2Z
R
+

3Z
R2

)
1
T

ˆ T

0
dt
ˆ

R3

ργ (t)(x)
1+ |x |2/R2 dx+

2R
√

K
√

N
T

, (4-6)

where τγ (x)=−
∑3

k=1(∂kγ ∂k)(x, x) is the density of kinetic energy, and therefore

lim sup
T→∞

1
T

ˆ T

0
dt
ˆ
|x |6r

dxτγ (t)(x)6
Z2

4
(4Z + 1) (4-7)

for every r > 0.
If the initial datum γ0 is radial in the sense that

γ0(Rx,Ry)= γ0(x, y) for all x, y ∈ R3 and all R ∈ SO(3),

then γ (t) is radial for all times and the same estimates (4-3) and (4-7) hold true with 4Z + 1 replaced by
2Z + 1.

The proof of Theorem 13 is very similar to that of Theorem 4, the main new difficulty being the control
of the exchange term. Thus we only explain how to deal with it.
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Sketch of the proof of Theorem 13. First, we consider a sufficiently smooth radial function f = f (|x |).
(Below we will take f = fR , the same as in the proof of Theorem 4.) Differentiating with respect to t ,
we find

d
dt

Tr(A f γ )= i Tr([Hγ , A f ]γ )

=−Tr([p2, [p2, f ]]γ )+ i Tr([Vγ , A f ]γ )− i Tr([Xγ , A f ]γ ), (4-8)

where Vγ =−Z |x |−1
+ |x |−1

∗ ργ and Xγ is the exchange term defined by

(Xγ u)(x)=
ˆ

R3

γ (x, y)
|x − y|

u(y) dy.

Note that
i[Vγ , A f ] = −2∇ f · ∇Vγ

is a function (that is, a multiplication operator). Analogous to the Hartree case, we thus obtain

i Tr([Vγ ,A f ]γ )=−2
ˆ

R3
ργ (x)∇ f (x) ·∇Vγ (x)dx

=−2Z
ˆ

R3

f ′(|x |)
|x |2

ργ (t,x)dx+
ˆ

R3

ˆ
R3

(∇ f (x)−∇ f (y)) ·(x− y)
|x− y|3

ργ (x)ργ (y)dx dy.

The exchange term is controlled using the following fact.

Lemma 14 (exchange term). Let Tr(1−1)γ <+∞ and suppose f : Rd
→ R satisfies ∇ f ∈ L∞(Rd).

Then we have

i Tr([Xγ , A f ]γ )=

ˆ
R3

ˆ
R3

(∇ f (x)−∇ f (y)) · (x − y)
|x − y|3

|γ (x, y)|2 dx dy. (4-9)

Proof. The proof is an explicit computation:

i Tr([Xγ , A f ]γ )

= i Tr([Xγ , (p · (∇ f )+ (∇ f ) · p)]γ )

=+

ˆ
R3

ˆ
R3

Xγ (x, y)∇y · (∇ f )(y)γ (y, x) dx dy−
ˆ

R3

ˆ
R3
γ (y, x)∇x · (∇ f )(x)Xγ (x, y) dx dy

+

ˆ
R3

ˆ
R3

Xγ (x, y)(∇ f )(y) · ∇yγ (y, x) dx dy−
ˆ

R3

ˆ
R3
γ (y, x)(∇ f )(x) · ∇x Xγ (x, y) dx dy.

Integrating by parts for the first two terms, we find

i Tr([Xγ , A f ]γ )

=−

ˆ
R3

ˆ
R3
γ (y, x)(∇ f )(y) · ∇y Xγ (x, y) dx dy+

ˆ
R3

ˆ
R3

Xγ (x, y)(∇ f )(x) · ∇xγ (y, x) dx dy

+

ˆ
R3

ˆ
R3

Xγ (x, y)(∇ f )(y) · ∇yγ (y, x) dx dy−
ˆ

R3

ˆ
R3
γ (y, x)(∇ f )(x) · ∇x Xγ (x, y) dx dy.

Now we use that
∇y Xγ (x, y)=

1
|x − y|

∇yγ (x, y)+ γ (x, y)∇y
1

|x − y|
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and we exchange x and y in the second and fourth integrals. The final result is

i Tr([Xγ , A f ]γ )=−

ˆ
R3

ˆ
R3
|γ (x, y)|2

(
(∇ f )(y) · ∇y

1
|x − y|

+ (∇ f )(x) · ∇x
1

|x − y|

)
dx dy

=

ˆ
R3

ˆ
R3

(∇ f (x)−∇ f (y)) · (x − y)
|x − y|3

|γ (x, y)|2 dx dy. �

Inserting this in (4-8) gives the following value for the derivative of the expectation value of A f :

d
dt

Tr(A f γ )=−Tr([p2, [p2, f ]]γ )− 2Z
ˆ

R3

f ′(|x |)
|x |2

ργ (t, x) dx

+

ˆ
R3

ˆ
R3

(∇ f (x)−∇ f (y)) · (x − y)
|x − y|3

(ργ (x)ργ (y)− |γ (x, y)|2) dx dy. (4-10)

Since f is convex, we have the operator bound

−[p2, [p2, f ]]>− f (4)(|x |),

which gives

−Tr([p2, [p2, f ]]γ )>−Tr( f (4)γ )=−
ˆ

R3
f (4)(|x |)ργ (t)(x) dx

because γ > 0. Thus we can argue exactly as in the Hartree case. We start by taking fR given by (3-7)
and define the local mass by

MR(t) :=
ˆ

R3

f ′(|x |)
|x |2

ργ (t)(x) dx .

Then we use the bound (3-9), that is,

(∇ fR(x)−∇ fR(y)) · (x − y)
|x − y|3

> 1
2

R2 f ′(|x |/R)
|x |2

R2 f ′(|y|/R)
|y|2

,

as well as the fact that ργ (x)ργ (y) > |γ (x, y)|2 for a.e. x, y ∈ R3 (by the Cauchy–Schwarz inequality
and the eigenfunction expansion for γ .) This gives
ˆ

R3

ˆ
R3

(∇ fR(x)−∇ fR(y)) · (x − y)
|x − y|3

(ργ (x)ργ (y)− |γ (x, y)|2) dx dy >
MR(t)2

2
−

1
2 Tr(h Rγ h Rγ ),

with h R := R2 f ′(|x |/R)|x |−2. Since 0 6 γ 6 1 and 0 6 h R 6 1, we have h Rγ h R 6 (h R)
2 6 h R , and

therefore
Tr(h Rγ h Rγ )6 Tr(h Rγ )= MR(t).

We conclude thatˆ
R3

ˆ
R3

(∇ f (x)−∇ f (y)) · (x − y)
|x − y|3

(ργ (x)ργ (y)− |γ (x, y)|2) dx dy >
MR(t)2−MR(t)

2
.

The additional term is responsible for the change of 4Z into 4Z + 1. In the radial case, we use (3-10)
instead and we get rid of the factor of 1

2 on the left side. The rest of the proof is exactly the same as in
the Hartree case. �
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4.2. Many-body Schrödinger equation. Our method also applies to the linear many-body Schrödinger
equation 

i
∂

∂t
9(t)= H(N , Z)9(t),

H(N , Z)=
N∑

j=1

(
−1x j −

Z
|x j |

)
+

1
2

∑
16k 6=`6N

1
|xk − x`|

,

9(0)=90 ∈ H 1((R3)N ),

(4-11)

of which the Hartree and Hartree–Fock models are nonlinear approximations.
The Hamiltonian H(N , Z) is self-adjoint and bounded from below on L2((R3)N ). Its operator domain

is H 2((R3)N ) and its quadratic form domain is H 1((R3)N ). Of particular interest are its restrictions to
the symmetric (bosonic) and antisymmetric (fermionic) subspaces. These are also self-adjoint operators,
denoted, respectively, by Hs(N , Z) and Ha(N , Z). In either of these two subspaces, the essential spectrum
of Ha/s(N , Z) is a half line [6a/s(N , Z),∞) where

6a/s(N , Z)= inf Spec(Ha/s(N − 1, Z)),

by the HVZ Theorem [Reed and Simon 1978; Cycon et al. 1987]. It is known that there are no positive
eigenvalues [Froese and Herbst 1982], but there might be embedded eigenvalues in [6a/s(N , Z), 0]. There
exists a critical number of particles N c

a/s(Z) such that Ha/s(N , Z) has no eigenvalues below 6a/s(N , Z)
for N > N c

a/s(Z); see [Ruskai 1982; Sigal 1982; 1984]. For bosons, it is known that

lim
Z→∞

N c
s (Z)
Z
= γ̃c,

where γ̃c ' 1.21 6 γc is the largest number of electrons that ground states can have in Hartree theory
[Benguria and Lieb 1983; Baumgartner 1984; Solovej 1990]. For fermions, it was proved [Lieb et al.
1988] that

lim
Z→∞

N c
a (Z)
Z
= 1.

The best bound valid for all N goes back to [Lieb 1984] and it holds both for bosons and fermions:
N c

a/s(Z) < 2Z + 1. For fermions, it was improved to

N c
a (Z) < 1.22Z + 3Z1/3

by Nam [2012].
All the previous authors seem to have only studied when the Hamiltonian Ha/s(N , Z) ceases to have

eigenvalues below its essential spectrum. The question of the existence of embedded eigenvalues in
[6a/s(N , Z), 0] does not seem to have been addressed so far. But this is a relevant problem in the context
of the time-dependent equation. Our method allows us to prove that there are no eigenvalue at all when
N > 4Z + 1.

Theorem 15 (linear many-body Schrödinger equation). The Hamiltonian H(N , Z) has no eigenvalue
when N > 4Z + 1.
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Here we do not distinguish between the different particle statistics. Thus our result applies to all of
L2((R3)N ) and it deals with all possible symmetries. We, however, conjecture that the largest N such
that Ha/s(N , Z) can have eigenvalues behaves like N c

a/s(Z) for large Z .

Proof. Let 9 ∈ H 2((R3)N ) be an eigenfunction of H(N , Z) and let fR(|x |)= R3 f (|x |/R) be as in (3-7).
Then we write

0=
〈
9, i

(
H(N , Z)

N∑
j=1

(A fR )x j −

N∑
j=1

(A fR )x j H(N , Z)
)
9

〉

=

N∑
j=1

〈9, i[p2
j , (A fR )x j ]]9〉− 2

N∑
j=1

〈
9,∇ fR(x j ) · ∇x j

(
−

Z
|x j |
+

1
2

∑
k 6= j

1
|x j − xk |

)
9

〉

>−
1
R

ˆ
R3

f (4)
(
|x |
R

)
ρ9(x) dx − 2Z

ˆ
R3

R2 f ′(|x |/R)
|x |2

ρ9(x) dx

+

〈
9,

( ∑
16 j 6=k6N

(∇ fR(x j )−∇ fR(xk)) · (x j − xk)

|x j − xk |
3

)
9

〉
.

Using (3-9), we get〈
9,

( ∑
16 j 6=k6N

(∇ fR(x j )−∇ fR(xk)) · (x j − xk)

|x j − xk |
3

)
9

〉

> 1
2

〈
9,

( ∑
16 j 6=k6N

R2 f ′R(|x j |)

|x j |
2

R2 f ′R(|xk |)

|xk |
2

)
9

〉

=
1
2

〈
9,

( N∑
j=1

R2 f ′R(|x j |)

|x j |
2

)2

9

〉
−

1
2

〈
9,

( N∑
j=1

(
R2 f ′R(|x j |)

|x j |
2

)2)
9

〉

> 1
2

〈
9,

( N∑
j=1

R2 f ′R(|x j |)

|x j |
2

)
9

〉2

−
1
2

〈
9,

( N∑
j=1

R2 f ′R(|x j |)

|x j |
2

)
9

〉

=
1
2

(ˆ
R3

R2 f ′(|x |/R)
|x |2

ρ9(x) dx
)2

−
1
2

ˆ
R3

R2 f ′(|x |/R)
|x |2

ρ9(x) dx .

In the last line we have used Jensen’s inequality as well as the fact that f ′(r)/r2
= 1/(1+r2)6 1. Passing

to the limit as R→∞ gives N < 4Z + 1. �

Since H(N , Z) has no eigenvalue when N > 4Z +1, it follows from the known existence of scattering
and the asymptotic completeness [Dereziński 1993; Sigal and Soffer 1994; Hunziker and Sigal 2000]
that any solution 9(t) of the time-dependent equation (4-11) behaves (in an appropriate sense) as a
superposition of bound states of H(k, Z) with k< 4Z+1 plus a scattering part. In particular, it is possible
to prove that

lim sup
t→∞

ˆ
|x |6r

ρ9(t, x) dx 6 4Z + 1.
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By using the argument in the proof of Theorem 15 and following step by step the method of Section 3,
one can get a simple proof of the weaker result

lim sup
T→∞

1
T

ˆ T

0
dt
ˆ
|x |6r

ρ9(t, x) dx 6 4Z + 1.
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NODAL COUNT OF GRAPH EIGENFUNCTIONS
VIA MAGNETIC PERTURBATION

GREGORY BERKOLAIKO

We establish a connection between the stability of an eigenvalue under a magnetic perturbation and the
number of zeros of the corresponding eigenfunction. Namely, we consider an eigenfunction of discrete
Laplacian on a graph and count the number of edges where the eigenfunction changes sign (has a “zero”).
It is known that the n-th eigenfunction has n− 1+ s such zeros, where the “nodal surplus” s is an integer
between 0 and the first Betti number of the graph.

We then perturb the Laplacian with a weak magnetic field and view the n-th eigenvalue as a function of
the perturbation. It is shown that this function has a critical point at the zero field and that the Morse index
of the critical point is equal to the nodal surplus s of the n-th eigenfunction of the unperturbed graph.

1. Introduction

Studying zeros of eigenfunctions is a question with rich history. While experimental observations have
been mentioned by Leonardo da Vinci [MacCurdy 1938], Galileo [1638] and Hooke [Birch 1756], and
greatly systematized by Chladni [1787], the first mathematical result is probably due to Sturm [1836].
The Oscillation Theorem of Sturm states that the number of internal zeros of the n-th eigenfunction of a
Sturm–Liouville operator on an interval is equal to n−1. Equivalently, the zeros of the n-th eigenfunction
divide the interval into n parts. In higher dimensions, the latter equality becomes a one-sided inequality:
Courant [1923] (see also [Courant and Hilbert 1953]) proved that the zero curves (surfaces) of the n-th
eigenfunction of the Laplacian divide the domain into at most n parts (called the “nodal domains”).

Recently, there has been a resurgence of interest in counting the nodal domains of eigenfunctions,
with many exciting conjectures and rigorous results. The nodal count seems to have universal features
[Blum et al. 2002; Bogomolny and Schmit 2002; Nazarov and Sodin 2009], is conjectured to resolve
isospectrality [Gnutzmann et al. 2006], and has connections to minimal partitions of the domain [Helffer
et al. 2009; Berkolaiko et al. 2012a], to name but a few. For a selection of research articles and historical
reviews, see [Smilansky and Stöckmann 2007].

On graphs, the question can be formulated regarding the signs of the eigenfunctions of the operator

H : R|V |→ R|V |, H = Q−C, (1)

where V is the set of the vertices of the graph, Q is an arbitrary real diagonal matrix, and C is the
adjacency matrix of the graph. The operator H is a discrete analogue of the Schrödinger operator with

The author is supported by the NSF grant DMS-0907968.
MSC2010: 05C50, 58J50, 81Q10, 81Q35.
Keywords: discrete Laplace operator, nodal count, discrete magnetic Schrödinger operator.
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electric potential. In this discrete setting, by a “zero” we understand an edge on which the eigenfunction
changes sign, and not the exceptional (with respect to perturbation of Q) situation of an eigenfunction
having a zero entry.

The subject of sign changes and nodal domains (connected components of the graph left after cutting
the above edges) was addressed by, among others, Fiedler [1975], who showed the analogue of Sturm
equality for tree graphs (see also [Bıyıkoğlu 2003]); Davies, Gladwell, Leydold and Stadler [Davies
et al. 2001], who proved an analogue of the Courant (upper) bound for the number of nodal domains;
Berkolaiko [2008], who proved a lower bound for graphs with cycles; and Oren [2007], who found a
bound for the nodal domains in terms of the chromatic number of the graph. A number of predictions
regarding the nodal count in regular graphs (assuming an adaptation of the random wave model) is put
forward in [Elon 2008]. For more information, the interested reader is referred to [Bıyıkoğlu et al. 2007;
Band et al. 2008].

The study of the magnetic Schrödinger operator on graphs has a similarly rich history. To give a sample,
Harper [1955] used the tight-binding model (discrete Laplacian) to describe the effect of the magnetic field
on conduction (see also [Hofstadter 1976]). In mathematical literature, the discrete magnetic Schrödinger
operator was introduced by Lieb and Loss [1993] and Sunada [1993; 1994], and studied in [Shubin 1994;
Colin de Verdière 1998; Colin de Verdière et al. 2011], among other sources (see also [Sunada 2008] for
a review).

In this paper, we present a surprising connection between the two topics, namely, the number of sign
changes of the n-th eigenfunction and the behavior of the eigenvalue λn under the perturbation of the
operator H by a magnetic field. To make a precise statement, we need to introduce some notation.

The eigenvalues of the operator H on a connected graph are ordered in increasing fashion,

λ1 < λ2 ≤ · · · ≤ λ|V |.

We will only consider the eigenvalue–eigenfunction pairs (λn, f (n)) such that the eigenvalue is simple
and the eigenfunction is nonzero at the vertices of the graph. This situation is generic with respect
to perturbations of the potential Q, and thus we will refer to the members of such a pair as a generic
eigenvalue and a generic eigenfunction correspondingly. We denote by φn the number of sign changes
(also called sign flips, hence the notation φ) which are defined as the edges of the graph at whose endpoints
the eigenfunction f (n) has different signs. The combined results of [Fiedler 1975; Berkolaiko 2008;
Berkolaiko et al. 2012b] bound the number φn by

n− 1≤ φn ≤ n− 1+β, (2)

where β := |E | − |V | + 1 is the first Betti number (the number of independent cycles) of the graph. Here
and throughout the manuscript, we assume that the graph is connected. We will call the quantity

σn = φn − (n− 1), 0≤ σn ≤ β (3)

the nodal surplus. This is the extra number of sign changes that an eigenfunction has due to the graph’s
nontrivial topology.
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A magnetic field on discrete graphs has been introduced in, among other sources, [Lieb and Loss 1993;
Sunada 1994; Colin de Verdière 1998]. Up to unitary equivalence, it can be specified using β phases
Eα = (α j )

β

j=1 ∈ (−π, π]
β that will be described in Section 2. We consider the eigenvalues of the graph as

functions of the parameters Eα. The zero phases, Eα = 0, correspond to the graph 0 without the magnetic
field. We are now ready to formulate our main result, which connects the behavior of the eigenvalue
λn(Eα) as a function of the magnetic phases to the number of zeros of the eigenfunction at Eα = 0.

Theorem 1.1. The point Eα = 0 is the critical point of the function λn(Eα). If λn(0), the n-th eigenvalue of
the nonmagnetic operator, is generic, then this critical point is nondegenerate and its Morse index — the
number of negative eigenvalues of the Hessian — is equal to the nodal surplus σn of the eigenfunction f (n)

of the nonmagnetic operator.

An immediate consequence of this theorem is the following.

Corollary 1.2. The generic n-th eigenvalue of the discrete Schrödinger operator is stable with respect to
magnetic perturbation of the operator if and only if the corresponding eigenfunction has exactly n− 1
sign changes. (By “stability” we mean that the eigenvalue has a local minimum at zero magnetic field.)

Other possible consequences of our result and links to several other questions are discussed in Section 6.
The rest of the paper is structured as follows. In Section 2 we provide detailed definitions. Section 3 is
devoted to a duality between the magnetic perturbation and a certain perturbation to the potential, coupled
with removal of edges. This leads to an alternative proof of the result in the case β = 1 (Subsection 3.3),
which, although unnecessary for the general proof, provides us with some important insights. Section 4
collects the tools necessary for the proof of Theorem 1.1, while Section 5 contains the proof itself, which
is done by extending the magnetic phases into the complex plane and relating the purely imaginary phases
to the edge-removal perturbation.

2. The magnetic Hamiltonian on discrete graphs

Let 0 = (V, E) be a simple finite connected graph with vertex set V and edge set E . We define the
Schrödinger operator with potential q : V → R by

H : R|V |→ R|V |, (Hψ)u =−
∑
v∼u

ψv + quψu, (4)

that is, the matrix H is
H = Q−C, (5)

where Q is the diagonal matrix of site potentials qu and C is the adjacency matrix of the graph. It is
perhaps more usual (and physically motivated) to represent the Hamiltonian as H = Q+ L , where the
Laplacian L is given by L = D−C with D being the diagonal matrix of vertex degrees. But since we
will not be imposing any restrictions on the potential Q, we absorb the matrix D into Q.

The operator H has |V | eigenvalues, which we number in increasing order:

λ1 < λ2 ≤ · · · ≤ λ|V |.
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We define the magnetic Hamiltonian (magnetic Schrödinger operator) on discrete graphs as

(Hψ)u =−
∑
v∼u

ei Av,uψv + quψu, (6)

with the convention that Av,u =−Au,v , which makes H self-adjoint. For further details, the reader should
consult [Lieb and Loss 1993; Sunada 1994; Colin de Verdière 1998; Colin de Verdière et al. 2011].

A sequence of directed edges C = [u1, u2, . . . , un] is called a cycle if the terminus of edge u j coincides
with the origin of the edge u j+1 for all j (un+1 is understood as u1). The flux through the cycle C is
defined as

8C =
(

Au1,u2 + · · ·+ Aun−1,un + Aun,u1

)
mod 2π. (7)

Two operators which have the same flux through every cycle C are unitarily equivalent (by a gauge
transformation). Therefore, the effect of the magnetic field on the spectrum is fully determined by β
fluxes through a chosen set of basis cycles of the cycle space. We denote them by α1, . . . , αβ and consider
the n-th eigenvalue of the graph as a function of Eα.

More precisely, fix an arbitrary spanning tree of the graph and let S be the set of edges that do not
belong to the chosen tree. Obviously, S contains exactly β edges.

Lemma 2.1. Any magnetic Schrödinger operator on the graph 0 is unitarily equivalent to one of the
operators of the type

Hu,v =


qu, u = v,

−1, (u, v) ∈ E \ S,

−e±iαs , (u, v)= s ∈ S,

(8)

where the sign in the exponent is plus if u < v and minus if u > v.

Example 2.2. Consider the triangle graph — a graph with three vertices and three edges connecting them.
One of the equivalent forms of the magnetic Hamiltonian for this graph is

H(0αmag)=

 q1 −eiα
−1

−e−iα q2 −1
−1 −1 q3

 .
The spectrum of H(0αmag) as a function of α ∈ (−π, π] is shown in Figure 1. The eigenfunctions of
H(0) = H(0α=0

mag ) have φ1 = 0, φ2 = 2 and φ3 = 2 sign changes correspondingly (these are the only
choices consistent with (2) and the topology of the graph). The nodal surpluses are σ1 = 0, σ2 = 1
and σ3 = 0, which agrees with α = 0 being the point of minimum, maximum and minimum of the
corresponding curves.

3. A duality between a magnetic phase and a cut

In this section, we explore a simple result which shows a connection between two types of perturbations
of the operator H that will be used to prove the main theorem. It illustrates the duality between the
perturbation of a discrete Schrödinger operator by a magnetic phase on a cycle and the operation of
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Figure 1. The eigenvalues of the triangle graph as functions of a magnetic phase α (bold
curves) and the eigenvalues of the unperturbed graph (horizontal lines).

removing (“cutting”) an edge that lies on the cycle. The latter operation was used to prove the lower
bound on the number of nodal domains in [Berkolaiko 2008] and to study partitions on discrete graphs in
[Berkolaiko et al. 2012b].

Tools used. The result of this section (Theorem 3.3 below) is based on the following version of Weyl’s
inequality of linear algebra that can be obtained using the variational characterization of the eigenvalues
(see [Horn and Johnson 1985, Chapter 4] for similar results).

Theorem 3.1. Let A be a self-adjoint matrix and B be a rank-one positive semidefinite self-adjoint matrix.
Then

λn(A− B)≤ λn(A)≤ λn+1(A− B), (9)

where λn is the n-th eigenvalue, numbered in increasing order, of the corresponding matrix. Moreover,
the inequalities are strict if and only if λn(A) is simple and its eigenvector is not in the null-space of B.

Similarly, when B is negative definite, we have

λn−1(A− B)≤ λn(A)≤ λn(A− B), (10)

with an analogous condition for strict inequalities.

Another useful result is the first term in the perturbation expansion of a parameter-dependent eigenvalue.
Let A(x) be a Hermitian matrix-valued analytic function of x . Let λ(x) be an eigenvalue of the matrix
A that is simple in a neighborhood of a point x0. We know from standard perturbation theory [Kato
1976] that λ(x) is an analytic function. Denote by u(x) the normalized eigenvector corresponding to the
eigenvalue λ. Then we have the following formula for the derivative of λ evaluated at the point x = x0:

∂

∂x
λ=

〈
u, ∂A
∂x

u
〉
. (11)
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Two operations on a graph. Let λn be a simple eigenvalue and let the corresponding eigenfunction f be
nonzero on vertices. Let (u1, u2) be an edge that belongs to one of the cycles of the graph. We allow the
graph to have magnetic phases on some edges, but assume that there is no phase on the edge (u1, u2).
Then the operator H = Q−C has the following subblock corresponding to vertices u1 and u2:

H(0)[u1,u2] =

(qu1 −1
−1 qu2

)
. (12)

We consider two modifications of the original graph. The first modification of the graph is a cut: we
remove the edge (u1, u2) and change the potential at sites u1 and u2. Namely, we change the [u1, u2]

subblock to

H(0cut
γ )[u1,u2] =

(qu1 − γ 0
0 qu2 − 1/γ

)
, (13)

and leave the rest of the matrix H intact. We denote this modification by H(0cut
γ ). Note that this

modification is a rank-one perturbation of the original operator H(0). Namely, H(0cut
γ )= H(0)− Bc,

where the matrix Bc has the [u1, u2] subblock

Bc
[u1,u2]

=

(
γ −1
−1 1/γ

)
, (14)

and the rest of the elements are zero. Then Bc is positive definite if γ > 0 and negative definite if γ < 0.
Note that the cases γ = ∞ and γ = 0 can also be given the meaning of removing (or imposing the
Dirichlet condition at) the vertex u1 or the vertex u2 correspondingly. However, we will not dwell on this
issue, and exclude these cases from our consideration.

Notably, if f is an eigenfunction of H(0) and γ = fu2/ fu1 ∈ R, where fu is the value of f at the
vertex u, then f is also an eigenfunction of H(0cut

γ ). Equivalently, f is in the null-space of the perturbation
Bc.

The second modification of the original graph is the introduction of a magnetic phase on the edge
(u1, u2). The [u1, u2] subblock of the new operator H(0αmag) is

H(0αmag)[u1,u2] =

( qu1 −eiα

−e−iα qu2

)
, (15)

while other entries coincide with those of H(0). Note that H(0αmag) is not a rank-one perturbation of
H(0). However, it is a rank-one perturbation of the cut graph H(0cut

γ ) for any values of α and γ . Namely,
H(0cut

γ )= H(0αmag)− Bmc, where

Bmc
[u1,u2]

=

(
γ −eiα

−e−iα 1/γ

)
, (16)

and all other entries of Bmc are zero. Also, the spectra of H(0αmag) and H(0) coincide when α = 0 since
the operators coincide.
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A duality between the two operations. We now want to apply Theorem 3.1 to the spectra of 0, 0cut
γ and

0αmag. However, we must take care to distinguish the two cases that correspond to equations (9) and (10)
(γ > 0 and γ < 0 correspondingly).

Definition 3.2. The eigenvalues of 0, 0cut
γ and 0αmag will be numbered in increasing order starting from 1.

We will also use the convention
λ j (0)=

{
−∞, j < 1,
∞, j > n,

for the cases when the index of λ happens to be out of bounds.

Theorem 3.3. Let p(γ ) be 1 if γ < 0 and 0 otherwise. Then the following inequalities hold:

λn−p(γ )(0
cut
γ )≤ λn(0

α
mag)≤ λn−p(γ )+1(0

cut
γ ), (17)

for all values of α and γ . Furthermore, for any fixed n,

max
γ
λn−p(γ )(0

cut
γ )=min

α
λn(0

α
mag)=: M1 (18)

and
max
α
λn(0

α
mag)=min

γ
λn−p(γ )+1(0

cut
γ )=: M2. (19)

Finally, if there are no magnetic phases on the graph 0 (that is, all entries of H(0) are real), then one of the
extremal values M1 or M2 is equal to λn(0)= λn(0

α=0
mag ), while the other is equal to λn(0̂) := λn(0

α=π
mag ).

Remark 3.4. Note that at this point we don’t know which extremum, M1 or M2, is equal to λn(0). In
other words, α = 0 may be either a maximum or a minimum of λn(0

α
mag); see Figure 1. This information

is related to the nodal surplus. The point α = π will then be a minimum or a maximum, correspondingly.
Also, if the graph 0 had some magnetic phases on it before we added a phase α on the edge (u1, u2), the
extrema with respect to α do not have to occur at 0 and π .

Note that we have also defined yet another modification of the graph 0, the graph 0̂ whose adjacency
matrix has −1 in place of 1 for the entries Cu1,u2 and Cu1,u2 .

Remark 3.5. Let R= R∪ {−∞,∞} be the extended real line and R̂= R/[−∞=∞] be its projective
(“wrapped”) version. The eigenvalue λn−p(γ )(0

cut
γ ) is then a continuous function of γ , considered as a

function from R̂ to R; see Figure 2 for an example. Note that by our definitions, λn−p(γ )(0
cut
γ )=−∞ for

n = 1 and γ < 0.

Proof of Theorem 3.3. The inequalities follow directly from Theorem 3.1, since for any α, the graph 0αmag

is a rank-one perturbation of 0cut
γ . Whether it is positive or negative definite depends on the sign of γ ,

and results in the shift by p.
We get the properties of the extrema as follows. Observe that if max λn−p(0

cut
γ )=min λn−p+1(0

cut
γ ),

then λn(0
α
mag) is constant and equal to the common value of λn−p(0

cut
γ ) and λn−p+1(0

cut
γ ).

Let now max λn−p(0
cut
γ ) <min λn−p+1(0

cut
γ ). The eigenvalues of a one-parameter family can always

be represented as a set of analytic functions (that can intersect). Let λ′(0cut
γ ) be the analytic function that
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Figure 2. The duality between a magnetic field on one side and cut edge with added
potential on the other. The graph is a triangle. The bold curves correspond to the
eigenvalues as functions of the magnetic phase. The dotted curves correspond to varying
the potential parameter γ after cutting the edge. The x-axis ranges from −π/2 to π/2
with the magnetic phase taken as α = 2x and the potential parameter γ = tan(x). The
horizontal solid lines are the eigenvalues of the original graph, while the horizontal
dashed lines are the eigenvalues of the graph with the magnetic phase π .

achieves the maximum max λn−p(0
cut
γ ) and f be the corresponding eigenfunction. We will differentiate

λ′(0cut
γ ) using (11). At the maximum point γ = γ ◦, we have, by (13),

0= dλ′

dγ
=

〈
f, d Bc

dγ
f
〉
=−| fu1 |

2
+
| fu2 |

2

(γ ◦)2
. (20)

From here it follows that

γ ◦ =±
| fu2 |

| fu1 |
or, equivalently,

∣∣∣∣γ ◦ fu1

fu2

∣∣∣∣= 1. (21)

Let α̃ be the solution of eiα
= γ ◦ fu1/ fu2 . Direct calculation shows that the eigenfunction f is in the

null-space of the perturbation Bmc of (16) with α = α̃, and therefore f is both in the spectrum of 0cut
γ ◦

and in the spectrum of 0α̃mag, so (18) follows. The proof of (19) is completely analogous.
Note that we could instead differentiate the eigenvalue of 0αmag, leading to the condition

fu2 fu1ei α̃
∈ R, (22)

instead of (20). One then sets γ ◦ = ei α̃ fu2/ fu1 ∈ R, to the same effect.
Finally, when the matrix H(0) is real, the eigenfunctions of 0cut

γ , 0α=0
mag and 0α=πmag are real-valued.

When α = 0, we can verify directly that the eigenfunction f of 0α=0
mag is also an eigenfunction of 0cut

γ ◦ by
setting γ ◦ = fu2/ fu1 . When α = π , we also set γ =− fu2/ fu1 and do the same. �
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Theorem 3.3 highlights a sort of duality between the two modifications of the graph 0. The spectra of
the graphs with a magnetic phase form bands (as the phase is varied), while the spectra of the graphs
with the cut fill the gaps between these bands. Minima of one correspond to maxima of the other, and in
half of the cases correspond to eigenvalues of the original graph.

We now explain how the β = 1 case of Theorem 1.1 follows from Theorem 3.3. While for general β,
the proof is significantly different (it bypasses the interlacing inequalities and goes straight to the quadratic
form), some key features are the same as in this simple case.

Starting with the eigenvalue λn of 0 and the corresponding eigenfunction f , we cut an edge on the
only cycle of 0 to obtain a family of trees 0cut

γ . For γ = γ ◦ := fu2/ fu1 , we have either

max
γ
λn−p(γ )(0

cut
γ )= λn−p(γ ◦)(0

cut
γ ◦ )= λn(0)=min

α
λn(0

α
mag)

or

max
α
λn(0

α
mag)= λn(0)= λn−p(γ ◦)+1(0

cut
γ ◦ )=min

γ
λn−p(γ )+1(0

cut
γ ).

In the first case, according to Fiedler’s theorem (Equation (2) with β= 0), the function f has n− p(γ ◦)−1
sign changes with respect to the tree 0cut

γ . Adding back the removed edge (u1, u2) adds another sign
change if γ ◦ < 0, and doesn’t change the number of sign changes otherwise. In other words, it adds
p(γ ◦) sign changes. Thus, with respect to 0, the function f has n− 1 sign changes and σn = 0. In the
second case, we similarly conclude that f has n− p(γ ◦) sign changes with respect to 0cut

γ , and n sign
changes with respect to 0. The nodal surplus is σn = 1.

On the other hand, in the first case, λn(0) is a minimum of λn(0
α
mag) (Morse index 0), while in the

second, it is a maximum of λn(0
α
mag) (Morse index 1), which shows that the Morse index coincides with

σn in the case β = 1.

Remark 3.6. In the β = 1 case, the spectrum of the cut graph 0cut
γ completely fills the gaps in the

magnetic spectrum (see Theorem 3.3 and Figure 2). This is not the case for β > 1, although an interesting
relationship persists, as will become apparent in Section 5.

4. Tools of the main proof

In this section, we collect some basic facts that will be repeatedly used in the proof of Theorem 1.1.

Critical points of the quadratic form.

Definition 4.1. Let F : Rd
→ R be a twice differentiable function. If c is a critical point (that is,

∇F(c)= 0), the inertia of c is the triple (n−, n0, n+) that counts the number of negative, zero and positive
eigenvalues correspondingly of the Hessian (the matrix of second derivatives) at the point c. The number
n− is called the Morse index (or simply index).

The next lemma is a reminder that the eigenvectors of a symmetric matrix are critical points of the
quadratic form on the unit sphere.
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Lemma 4.2. Let A be a d × d real symmetric matrix and let h(x)= 〈x, Ax〉, x ∈ Rd , be the associated
quadratic form. Then the (real) eigenvectors of the matrix A are critical points of the function h(x) on the
unit sphere ‖x‖ = 1.

Let λn be the n-th eigenvalue of A and let f (n) be the corresponding normalized eigenfunction. Define

n− = #{λm < λn}, n0 = #{λm = λn, m 6= n}, n+ = #{λm > λn}, (23)

with n−+ n0+ n+ = d − 1. Then the inertia of the critical point x = f (n) is (n−, n0, n+). In particular,
if λn is a simple eigenvalue, the inertia is (n− 1, 0, d − n).

Remark 4.3. The value of the quadratic form h at the critical point f (n) is λn .

Proof. The idea is intuitively clear: n−— which is the Morse index — counts the number of directions in
which the quadratic form decreases relative to the value at x = f (n). These directions are the eigenvectors
corresponding to the eigenvalues that are less than λn . Similar characterizations are valid for n0 and n+.

We note that by Sylvester’s law of inertia, the inertia is invariant under the change of variables. Making
the orthogonal change of coordinates to the eigenbasis of the matrix A, the quadratic form h(a) becomes

h(a)= λ1a2
1 + λ2a2

2 + · · ·+ λda2
d ,

while the sphere is given by the equations

a2
1 + a2

2 + · · ·+ a2
d = 1.

Thus, on the sphere, the quadratic form in terms of variables a1, . . . , an−1, an+1, . . . , ad is given by

h = λn +
∑
j 6=n

(λ j − λn)a2
j ,

and the Hessian is a diagonal matrix with λ j − λn , j = 1, . . . , d, j 6= n. The statement of the lemma
follows immediately. �

Reduction to the critical manifold. The tool introduced in this section is a simple idea already used in
[Band et al. 2012; Berkolaiko et al. 2012a; 2012b]. If we have a function f (x1, . . . , xn) with a critical
point c, then under some general conditions, there is an (n− 1)-dimensional manifold around the point c
on which the local minimum of f is achieved when we vary the variable x1 and keep the others fixed.
Then the Morse index of f restricted to this manifold is the same as the Morse index of the unrestricted
function. On the other hand, if the manifold is the locus of local maxima with respect to the variable x1,
the Morse index on the manifold is one less than the unrestricted Morse index. The following lemma is a
simple generalization of this idea. The proof is a simplified finite-dimensional adaptation of the proof in
[Berkolaiko et al. 2012a].

Lemma 4.4 (reduction lemma). Let X = Y ⊕ Y ′ be a direct decomposition of a finite-dimensional vector
space. Let f : X → R be a smooth functional such that (0, 0) ∈ X is its critical point with inertia IX .
Further, for every y ∈ Y locally around 0, let the functional f (y, y′) considered as a function of y′ have a
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critical point at y′ = 0 with inertia IY ′ , that (locally) does not depend on y. Then the Hessian of f is
reduced by the decomposition X = Y ⊕ Y ′, and the inertia of f with respect to the space Y is

IY = IX −IY ′ . (24)

Proof. We calculate the mixed derivative of f with respect to one variable from Y and the other from Y ′.
In a slight abuse of notation, we denote these variables simply by y and y′. We have

∂2 f
∂y ∂y′

(0, 0)=
∂

∂y

[
∂ f
∂y′

(y, 0)
]∣∣∣∣

y=0
= 0, (25)

since y′ = 0 is the critical point of f (y, y′) as a function of y′ for every y. Thus the Hessian of f has a
block-diagonal form with two blocks that correspond to Y and Y ′. The spectrum of the Hessian is the
union of the spectra of the blocks and the inertia is the sum of the inertias of the blocks,

IX = IY +IY ′ .

Equation (24) follows immediately. �

Remark 4.5. Lemma 4.4 can be simply extended to the case when, for every fixed y, the critical point
with respect to y′ is located at y′ = q(y) (rather than y′ = 0). The function q(y) defines the critical
manifold Q= (y, q(y)). If q(y) is a smooth function of y and q(0)= 0, the change of variables

y 7→ y, y′ 7→ y′− q(y)

is nondegenerate (its Jacobian is a triangular matrix with 1s on the diagonal) and makes f satisfy the
assumptions of Lemma 4.4. By Sylvester’s law of inertia, the conclusion of the lemma is invariant under
the change of variables. Therefore, the inertia of f

∣∣
Q

at point 0 is

IQ = IX −IY ′ .

5. Proof of the main theorem

We prove the main result in three steps. First we show by an explicit computation that the point 0 is a
critical point of the function λn(Eα), where Eα = (α1, . . . , αβ) ∈ (−π, π]

β are the magnetic phases.
Then we fix an eigenpair λ = λn(0) and f . We cut β edges of the graph, turning it into a tree T ,

but modifying the potentials so that the eigenfunction f is also an eigenfunction of the tree T . It
now corresponds to an eigenvalue number m, that is, λm(T ) = λ. Considering the eigenvalue λm(T )
as a function of the potentials, we find its inertia by two applications of the reduction lemma to the
corresponding quadratic form. The result of this step is related to the results on critical equipartitions
[Berkolaiko et al. 2012b].

Finally, we relate the inertia of the function λm(T ) to the inertia of the function λn(Eα) at the correspond-
ing critical points. This is done by complexifying Eα and relating the function λn(Eα) on the imaginary axis
to the function λm(T ) by a change of variables.
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We recall that S is a set of β edges whose removal turns the graph 0 into a tree. By 0Eαmag, we denote
the graph obtained from 0 by introducing magnetic phases Eα = (α1, . . . , αβ) on the edges from the set S.
Similarly, by 0cut

Eγ
we denote the tree graph obtained by cutting every edge from S in the manner already

described (see Equation (13) and around it). For future reference, we list the quadratic forms of the
original graph and the graph 0cut

Eγ
, grouping the terms to highlight the differences between the two forms:

h(Ex)=
∑

u

qu x2
u −

∑
(u,v)∈E\S

2xu xv −
∑

(u,v)∈S

2xu xv, (26)

hcut
Eγ (Ex)=

∑
u

qu x2
u −

∑
(u,v)∈E\S

2xu xv −
∑

e j=(u,v)∈S

(
γ j x2

u +
x2
v

γ j

)
. (27)

Critical points. Let f be an eigenfunction of the graph 0. We have seen in Theorem 3.3 and its proof that
the points α = 0 and γ = γ ◦ (see Equation (21)) are special: at these points, f is an eigenfunction of the
graphs 0αmag and 0cut

γ . Moreover, they are critical points of the corresponding eigenvalues considered as
functions of the parameters α and γ , respectively. The result of this section generalizes this observation.

Theorem 5.1. Let f be an eigenfunction of H(0) that corresponds to a simple eigenvalue λ = λn(0).
Assume f is nonzero on vertices of the graph 0. For every edge (u j , v j ) ∈ S, j = 1, . . . , β, let

γ ◦j =
fv j

fu j

. (28)

Let p denote the number of negatives among the values γ ◦j :

p = #{γ ◦j < 0, j = 1, . . . , β}.

Then
λn(0)= λφn−p+1(0

cut
Eγ ◦ ), (29)

where φn is the number of sign changes of f with respect to the graph 0. The eigenvalue λφn−p+1 of the
tree 0cut

Eγ ◦
is simple. Moreover, the point Eγ ◦= (γ ◦1 , . . . , γ

◦

β ) is a critical point of the function λφn−p+1(0
cut
Eγ
).

Similarly for 0Eαmag,
λn(0)= λn(0

0,...,0
mag ) (30)

and (0, . . . , 0) is a critical point of the function λn(0
Eα
mag).

Proof. It can be verified directly that f is an eigenfunction of the graph 0cut
Eγ ◦

. The nodal bound (2) with
β = 0 (proved by Fiedler [1975]; see also [Berkolaiko 2008]) shows that the eigenvalue corresponding to
the function f has number µ′+1 in the spectrum of the tree 0cut

Eγ ◦
, where µ′ is the number of sign changes

of f with respect to the tree. In general, this number is different from φn because we might have cut some
of the edges on which f was changing sign. However, according to (28), these edges gave rise to negative
values of γ ◦j , and therefore µ′ = φn − p, proving (29). The eigenvalue that corresponds to a nonzero
eigenvector on a tree is simple [Fiedler 1975], establishing simplicity of λφn−p+1(0

cut
Eγ ◦
). Equation (30) is

trivial since 00,...,0
mag = 0.
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To prove criticality of the points, we calculate the derivatives. Because the eigenvalues in question are
simple, they are analytic functions of the parameters and can be differentiated.

The derivative of λφn−p+1(0
cut
Eγ
) with respect to γ j has been calculated in (20), resulting in

∂

∂γ j
λφn−p+1(0

cut
Eγ )
∣∣
(γ ◦1 ,...,γ

◦

β )
=−| fu j |

2
+
| fv j |

2

γ ◦j
2 = 0, (31)

where we used the definition of γ ◦j from (28).
The derivative of λn(0

Eα
mag) can be evaluated similarly using (11), leading to

∂

∂α j
λn(0

Eα
mag)

∣∣
(0,...,0) =−i fu j fv j + i fu j fv j = Im( fu j fv j )= 0, (32)

since the eigenfunction f is real-valued. Alternatively, we can observe that λn(0
Eα
mag) is invariant with

respect to reflection α 7→ −α. �

Index of the eigenvalue on the tree. In this section, we elaborate on the first part of the result of
Theorem 5.1, namely that (γ ◦1 , . . . , γ

◦

β ) is a critical point of the function λφn−p+1(0
cut
Eγ
).

Theorem 5.2. Let f be an eigenfunction of H(0) that corresponds to a simple eigenvalue λ = λn(0).
Assume f is nonzero on vertices of the graph 0 and has φn sign changes. For every edge (u j , v j ) ∈ S,
j = 1, . . . , β, let

γ ◦j =
fv
fu
. (33)

As before, p denotes the number of negatives among the values γ ◦j . Then the point (γ ◦1 , . . . , γ
◦

β ) as a
critical point of the function λφn−p+1(0

cut
Eγ
) is nondegenerate and has inertia(

n− 1+β −φn, 0, φn − n+ 1
)
.

Proof. Denote by d the number of vertices of the graph 0. Consider hcut
Eγ
(Ex), which is the quadratic form

on the Hamiltonian of 0cut
Eγ

, as a function of d+β real variables (x1, . . . , xd , γ1, . . . , γβ) on the manifold
x2

1 +· · ·+ x2
d = 1. We note that the point ( f1, . . . , fd , γ

◦

1 , . . . , γ
◦

β ) is a critical point of hcut
Eγ
(Ex), as can be

easily shown by explicit computation. Indeed, the value of the Lagrange multiplier is the eigenvalue λn

and the gradient of
F(x1, . . . , xd , γ1, . . . γβ)= hcut

Eγ (Ex)− λn(x2
1 + · · ·+ x2

d)

is zero: the first d equations become the eigenvalue condition H f = λn f and the last β are the same
as (31).

We now describe the outline of the proof. Denote the inertia of the point ( f1, . . . , fd , γ
◦

1 , . . . , γ
◦

β ) by I.
To calculate it, we will look for critical points of hcut

Eγ
(Ex) as a function of γ1, . . . , γβ . These points will

define a critical manifold to which we will apply Lemma 4.4 via Remark 4.5 (this reduction corresponds
to the left arrow in Figure 3). On the critical manifold, the function hcut

Eγ
(Ex) will coincide with h(x), the

quadratic form of the original graph, whose inertia we know by Lemma 4.2. Having found the inertia of
the critical point at the top of Figure 3, we will apply minimax with respect to variables x1, . . . , xd to
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hcut
Eγ (Ex)

h(Ex)
�

min
γ j<

0
max
γ j>

0
,

β
−

p

λφn−p+1(0
cut
Eγ )

eigenvector
minimax,
φn − p

?

Figure 3. Schematic diagram of the proof of Theorem 5.2. The reductions are indicated
by arrows, with the description of the parameters that are being reduced and the index of
the reduction. Since we know the index of the critical point of h(Ex), we can follow the
diagram, applying the reduction lemma, to calculate the index of λφn−p+1(0

cut
Eγ
).

follow the vertical arrow of Figure 3. This will take us to the eigenvalue λφn−p+1(0
cut
Eγ
), and we will be

able to calculate its inertia applying Lemma 4.4 again.
Consider Ex varying locally around the point f , so that the elements of Ex remain bounded away from

zero. For each fixed Ex , we look for a critical point with respect to the variables (γ1, . . . , γβ). The terms
of hcut

Eγ
(Ex) that depend on a given γ have the form

T (γ )=−γ x2
u −

x2
v

γ
. (34)

The critical point is γ = g(Ex)= xv/xu , which is a smooth function of Ex . The points (x1, . . . , xd , g1, . . . gβ)
define the critical manifold to which we apply Lemma 4.4 (via Remark 4.5). Note that the critical manifold
includes the point ( f1, . . . , fd , γ

◦

1 , . . . , γ
◦

β ). Moreover, the critical point with respect to a given γ is a
maximum if g(Ex) > 0 and a minimum if g(Ex) < 0. Each point is nondegenerate and, moreover, the sign
of g j is locally the same as the sign of γ ◦j for all j . Different variables γ j are not coupled, and thus the
Hessian is diagonal. Therefore, the inertia of the points on the critical manifold is (β − p, 0, p)— it is a
minimum with respect to p variables and maximum with respect to β − p. We remind the reader that p
is the number of negatives among {γ ◦j }.

Consider now the function hcut
Eγ
(Ex) on the critical manifold. When γ = g, the term (34) evaluates to

T (g)=−2xu xv,

and we find that, on the critical manifold, the function hcut
Eγ
(Ex) coincides with the quadratic form of the

original graph, h(Ex). The point Ex = f , being the n-th eigenfunction of the graph, is a nondegenerate
critical point of h(Ex) and has inertia (n− 1, 0, d − n). Applying Lemma 4.4, we obtain

I=
(
n− 1+ (β − p), 0, d − n+ p

)
.
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In particular, we conclude that the point ( f1, . . . , fd , γ
◦

1 , . . . , γ
◦

β ) is a nondegenerate critical point.
For every value of (γ1, . . . , γβ) locally around the point (γ ◦1 , . . . , γ

◦

β ), consider the (φn − p+ 1)-th
eigenvector f cut

Eγ
of 0cut

Eγ
. According to Lemma 4.2, it is a nondegenerate critical point of hcut

Eγ
(Ex) as a

function of Ex with inertia (φn − p, 0, d + p−φn − 1). At the critical point, the value of the hcut
Eγ

is

hcut
Eγ ( f cut

Eγ )= λφn−p+1(0
cut
Eγ ),

which is the function whose inertia we strive to evaluate.
According to standard perturbation theory (see [Kato 1976], for example), the eigenvector f cut

Eγ
is a

smooth (indeed, analytic) function of (γ1, . . . , γβ). This allows us to use Lemma 4.4 again, concluding
that the critical point (γ ◦1 , . . . , γ

◦

β ) of hcut
Eγ
( f cut
Eγ
) has inertia

I− (φn − p, 0, d + p−φn − 1)= (n− 1+β −φn, 0, φn − n+ 1). �

Remark 5.3. In [Berkolaiko et al. 2012b], the eigenvalue of the tree graph 0cut
Eγ

was interpreted as the
energy of the “partition” with the given number of domains. Theorem 5.2 gives another route for the
proof of the results of that paper.

Index of the eigenvalue as a function of the magnetic field. Now we move from the critical point on
the tree to the critical point of the eigenvalue of the graph with magnetic phases. We can apply the same
method, retracing our steps, but now considering the quadratic forms hcut

Eγ
(z) and

h Eαmag(Ez)=
∑

u

qu|zu|
2
−

∑
(u,v)∈E\S

2 Re(zuzv)−
∑

e j=(u,v)∈S

2 Re(zueiα j zv) (35)

as functions of complex variables z. Considering the complex space as a real space of double dimension
leads to the inertia in the Hermitian analogue of Lemma 4.2 being (2n−, 2n0+ 1, 2n+). Finding extrema
of h Eαmag(z) with respect to Eα and of hcut

Eγ
(z) with respect to Eγ results in the same values, and thus we relate

the indices of λn(0
Eα
mag) and λφn−p+1(0

cut
Eγ
) through a chain of four applications of the reduction lemma

(Lemma 4.4), illustrated in Figure 4.
However, instead of following the above plan, we present a simpler yet more insightful proof which

can be summarized as follows: after a change of variables, the function λφn−p+1(0
cut
Eγ
) coincides with

the function λn(0
Eα
mag) with purely imaginary values of the magnetic phases Eα. This will give us full

understanding of the quadratic term (the Hessian) of the analytic function λn(0
Eα
mag).

Theorem 5.4. Let f be an eigenfunction of H(0) that corresponds to a simple eigenvalue λ = λn(0).
Assume f is nonzero on vertices of the graph 0 and has φn sign changes. Let 0Eαmag be the graph with the
magnetic phases Eα = (α1, . . . , αβ) introduced on the edges from the set S. Then the index of (0, . . . , 0)
as a critical point of the function λn(0

Eα
mag) is the nodal surplus σn := φn − (n− 1). The critical point is

nondegenerate.

Proof. First we remark that analyticity of λn(0
Eα
mag) is a consequence of standard perturbation theory

applied to the simple eigenvalue λn(0). Moreover, when α j = iξ j , with real ξ j , the Hamiltonian H(0i Eξ
mag)
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h Eαmag(z) hcut
Eγ (z)

λn(0
Eα
mag)

eigenvector
minimax,
2(n−1)

?

ĥ(z)
�

min
γ j<

0
max
γ j>

0
,

β
−

p

minα
j maxα

k ,p

-

λφn−p+1(0
cut
Eγ )

eigenvector
minimax,
2(φn−p)

?

Figure 4. Schematic diagram of a possible proof of Theorem 5.4. From Theorem 5.2,
we know the index of the critical point of λφn−p+1(0

cut
Eγ
) (bottom right corner). We then

apply the reduction lemma four times to get the index of λn(0
Eα
mag) (bottom left corner).

is a matrix with real entries. It is no longer Hermitian, but its complex eigenvalues must come in conjugate
pairs; therefore a simple eigenvalue λn(0) remains real for Eξ in a small neighborhood of 0.

Let ψ =ψ(Eξ) be the corresponding real eigenfunction. It is a perturbation of f ; therefore it is nonzero
locally around Eξ = 0. For every edge (u j , v j ) ∈ S, we let

γ j =
e−ξ jψv(Eξ)

ψu(Eξ)
. (36)

This defines a mapping
R : (ξ1, . . . , ξβ) 7→ (γ1, . . . γβ), (37)

which is smooth in a neighborhood of zero. We also have R(0, . . . , 0)= (γ ◦1 , . . . , γ
◦

β )= Eγ
◦, where the

γ ◦j are given by (33). The inverse of R, which can be directly calculated from (36), is also a smooth
function in a neighborhood of the point Eγ ◦. Therefore R is a diffeomorphism.

Moreover, ψ is an eigenfunction of both 0i Eξ
mag (by construction) and 0cut

Eγ
with Eγ = R(Eξ) (since ψ is in

the null-space of the perturbation Bmc of (16)), and their eigenvalues coincide, with the appropriate shift
in numbering (see (29)). Namely, we have

λn(0
i Eξ
mag)= λφn−p+1(0

cut
Eγ ), Eγ = R(Eξ).

By Sylvester’s law of inertia, the index is not affected by the diffeomorphism R, and we get from
Theorem 5.2 that Eξ = 0 is a nondegenerate critical point of λn(0

i Eξ
mag) of inertia

Iξ = (n− 1+β −φn, 0, φn − n+ 1).

Finally, since Eα = i Eξ , the Hessian of λn with respect to Eα is the Hessian with respect to Eξ multiplied
by i2

=−1. The entries n− and n+ of the inertia get swapped; therefore the inertia of λn(0
Eα
mag) is

Iα = (φn−n+1, 0, n−1+β−φn). �
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6. Discussion

Some simple extensions. As already mentioned, the criticality of the point (0, . . . , 0) can be easily
obtained from the fact that λn(0

Eα
mag) is symmetric with respect to each variable α j . In fact, there are 2β

points of symmetry of the function λn(0
Eα
mag), namely, the points where each α j is equal to either 0 or

π . Taking α j = π makes the corresponding edge have the weight −1 (rather than 1) in the connectivity
matrix. A statement similar to Theorem 1.1 can be proved about every point of symmetry, with the
appropriate modification of the notion of a sign change: φn counts the number of edges (u, v) such that
Hu,v fu fv > 0.

One can also easily extend the results to generalized Schrödinger operators on the graph, i.e., symmetric
matrices H with the property that Hu,v 6= 0 if and only if the vertices u and v are connected. The magnetic
field is introduced by multiplying off-diagonal matrix elements by phases. If Hu,v is allowed to be positive,
the notion of a “sign change” has to be modified to refer to the edges (u, v) with Hu,v fu fv > 0, as above.
With this modification, the statement of Theorem 1.1 remains valid as stated.

The necessary modifications to the proofs are limited to having H 2
u1,u2

/γ in place of 1/γ in the definition
of the “cut” Hamiltonian, Equation (13), and letting the critical value of γ j be γ ◦j =−Hu j ,v j fv j / fu j . All
other considerations remain unchanged (in particular, Fiedler’s theorem on tree eigenfunctions is already
formulated in terms of “generalized sign changes”).

Further consequences. Perhaps the most important feature of Theorem 1.1 is that it allows us to access
some of the features of the eigenfunction via the behavior of the corresponding eigenvalue under pertur-
bation. It is known that the eigenvalues of the Laplacian are connected to the statistics of the closed paths
on the graph. The connection is given through the so-called “trace formulae”, which can be obtained
from a graph analogue of the Selberg zeta function, the Ihara zeta function [Ihara 1966; Bass 1992; Stark
and Terras 1996]. An extension by Bartholdi [1999] (see also [Mizuno and Sato 2005]) was used in [Oren
et al. 2009] to obtain a family of trace formulae including the ones for the magnetic Laplacian. Thus, the
closed paths on the graph determine the spectrum of the magnetic Laplacian, which, in turn, determines
the nodal count. This, in principle, establishes the existence of a general connection between the nodal
count and the closed paths. However, we are not aware of any concrete general formulas. We note that
such a connection has been earlier conjectured by Smilansky, with special cases reported in [Gnutzmann
et al. 2006; Aronovitch and Smilansky 2010].

We would also like to mention that the result of this paper has already been used in an elegant proof
by Band [2012] of the converse of Fiedler’s theorem: if for all n, the n-th graph eigenfunction is generic
and has n− 1 sign changes, the graph is a tree.

There is an interesting connection between the magnetic spectrum of a compact graph and the continuous
spectrum of a periodic graph. Namely, the eigenvalue λn(0

Eα
mag) featured in this paper is the dispersion

relation for the maximal Abelian cover of the graph 0, a well studied object. One of the interesting
questions regarding this object is the “full spectrum property” [Higuchi and Shirai 2004; Higuchi and
Nomura 2009; Sunada 2008]: whether the continuous spectrum of the cover graph of a regular graph —
in our terms, the union of ranges of the functions λn(0

Eα
mag)— contains no gaps. This question can be
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reformulated in terms of eigenfunctions of graphs 0Eαmag with all α j = 0 or π that have minimal and
maximal number of sign changes.

This, in turn, is related to the question of whether the extrema of the dispersion relation are always
achieved at the symmetry points described above. Examples to the contrary have been put forward
in [Harrison et al. 2007; Exner et al. 2010]. However, an important question remains: how can one
characterize the extremal points that are not points of symmetry? In this direction, the duality with the cut
graphs (Section 3) might provide some answers. One can speculate that critical points of the dispersion
relation correspond to critical points of the eigenvalues of the cut graph 0cut

Eγ
that do not give rise to the

eigenfunction of the graph 0. Further, we conjecture that these “unclaimed” critical points correspond to
eigenfunctions of 0 modified by enforcing Dirichlet conditions at some vertices.

The results of the present paper are derived under the assumption that the eigenvalue is nondegenerate.
While this is the generic situation with respect to the change in the potential Q, it is also interesting
to consider what happens in the degenerate case. The linear Zeeman effect (the magnetic perturbation
splitting eigenvalues) suggests that the singularities of λn(0

Eα
mag) are conical. It should be possible to

define the index of the singularity point that does not rely on differentiability.
Finally, it would be most interesting to generalize the results of the present paper to manifolds. However,

we immediately encounter a conceptual problem — the “number” of zeros is infinite. Still, some measure
of instability of the eigenvalue under magnetic perturbation should be related to some measure of the
zero set of the corresponding eigenfunction. This can be intuitively visualized by approximating the
domain eigenfunction as eigenfunctions of a discrete mesh. Moreover, the method of proof used in
Section 5 might be appropriate for the manifolds as well: it is based on a connection between the magnetic
spectrum and the energy of the equipartitions (see Remark 5.3), and on manifolds the equipartitions are
well understood [Berkolaiko et al. 2012a].

After this manuscript had been submitted, the author was notified by Y. Colin de Verdière that he
found an alternative proof Theorem 1.1, which appears in this issue [Colin de Verdiére 2013]. The proof
is based on a direct application of the eigenvalue perturbation formulas and a clever choice of gauge
that significantly simplifies the calculations. Colin de Verdière also succeeded in proving an analogue of
Theorem 1.1 for continuous Schrödinger operators on a circle (also called Hill operators). An extension
of Theorem 1.1 to general quantum graphs has been subsequently obtained in [Berkolaiko and Weyand
2012].
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MAGNETIC INTERPRETATION OF THE NODAL DEFECT ON GRAPHS

YVES COLIN DE VERDIÈRE

We present a natural proof of a recent and surprising result of Gregory Berkolaiko interpreting the Courant
nodal defect as a Morse index. This proof is inspired by a nice paper of Miroslav Fiedler published in
1975.

1. Introduction

The “nodal defect” of an eigenfunction of a Schrödinger operator is closely related to the difference
between the upper bound on the number of nodal domains given by Courant’s theorem and the number of
nodal domains. Berkolaiko [2013] has proved a nice formula for the nodal defect of an eigenfunction of a
Schrödinger operator on a finite graph in terms of the Morse index of the corresponding eigenvalue as a
function of a magnetic deformation of the operator. His proof remains mysterious and rather indirect.
In order to get a better understanding in view of possible generalizations, it is desirable to have a more
direct approach. This is what we do here, with a proof inspired by [Fiedler 1975].

After reviewing our notations, we state the main result, as well as a reinterpretation in terms of
Hessians of a determinant, and give an informal description of the proof in Section 3. The proof itself
is implemented in Sections 4 and 5 with an alternative view provided in Appendix A. The continuous
Schrödinger operator on a circle was considered in the preprint version of this paper [Colin de Verdière
2012]. The case of quantum graphs, i.e., graphs as 1-dimensional simplicial complexes, is worked out in
[Berkolaiko and Weyand 2012].

2. Notation

Let G = (X, E) be a finite connected graph, where X is the set of vertices and E the set of unoriented
edges. We denote by {x, y} the edge linking the vertices x and y. We denote by EE the set of oriented
edges and by [x, y] the edge from x to y; the set EE is a 2-fold cover of E . A 1-form α on G is a map
EE → R such that α([y, x]) = −α([x, y]) for all {x, y} ∈ E . We denote by �1(G) the vector space of

dimension #E of 1-forms on G. The operator d : RX
→�1(G) is defined by d f ([x, y])= f (y)− f (x).

If Q is a nondegenerate, not necessarily positive, quadratic form on �1(G), we denote by d? the adjoint
of d, where RX carries the canonical Euclidean structure and �1(G) is equipped with the symmetric
inner product Q̂ associated to Q. We have dim ker d? = β, where β = 1+ #E − #X is the dimension

MSC2010: 05C50, 35P05.
Keywords: operator on graphs, Schrödinger operators with magnetic fields, Morse index, Courant nodal theorem, Hill’s operator.
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of the space of cycles of G. We will show later that, in our context, we have the Hodge decomposition
�1(G)= dRX

⊕ ker d?, where both spaces are Q̂-orthogonal.
Following [Colin de Verdière 1998], we denote by OG the set of X × X real symmetric matrices H

which satisfy hx,y < 0 if {x, y} ∈ E and hx,y = 0 if {x, y} /∈ E and x 6= y. Note that the diagonal entries
of H are arbitrary. An element H of OG is called a Schrödinger operator on the graph G. It will be useful
to write the quadratic form associated to H as

q1( f )=−
∑
{x,y}∈E

hx,y( f (x)− f (y))2+
∑
x∈X

Vx f (x)2,

with Vx = hx,x+
∑

y∼x hx,y . A magnetic field on G is a map B : EE→U (1) defined by B([x, y])= eiαx,y ,

where [x, y] 7→ αx,y is a 1-form on G. We denote by BG = ei�1(G) the manifold of magnetic fields on G.
The magnetic Schrödinger operator HB associated to H ∈ OG and B = eiα is defined by the quadratic
form

qB( f )=−1
2

∑
[x,y]∈ EE

hx,y| f (x)− eiαx,y f (y)|2+
∑
x∈X

Vx | f (x)|2

associated to a Hermitian form on CX . More explicitly, if f ∈ CX ,

H f (x)= hx,x f (x)+
∑
y∼x

hx,yeiαx,y f (y). (1)

We fix H and we denote by

λ1(B)≤ λ2(B)≤ · · · ≤ λn(B)≤ · · · ≤ λ#X (B)

the eigenvalues of HB . It will be important to notice that λn(B̄)= λn(B). Moreover, we have a gauge
invariance: the operators HB and HB ′ with α′ = α+ d f for some f ∈ RX are unitarily equivalent. Hence
they have the same eigenvalues. This implies that, if �1(G) = dRX

⊕ ker d? (this is not always the
case because Q is not positive), it is enough to consider 1-forms in the subspace ker d? of �1(G) when
studying the map 3n : B→ λn(B). This holds in particular for investigations concerning the Hessian and
the Morse index.

3. Statement of Berkolaiko’s magnetic theorem

Before stating the main result, we recall:

Definition 1. The Morse index j (q)∈N∪{+∞} of a quadratic form q on a real vector space E is defined
by j (q)= supF dim F , where F is a subspace of E such that q|F\0 is less than 0. The nullity of q is the
dimension of the kernel of q .

The Morse index of a smooth real-valued function f defined on a smooth manifold M at a critical
point x0 ∈ M (i.e., a point satisfying d f (x0) = 0) is the Morse index of the Hessian of f , which is a
canonically defined quadratic form on the tangent space Tx0 M . The critical point x0 is called nondegenerate
if the previous Hessian is nondegenerate. The nullity of the critical point x0 of f is the nullity of the
Hessian of f at the point x0.
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The aim of this note is to prove the following nice results due to Berkolaiko [2008; 2013]:

Theorem 1. Let G = (X, E) be a finite connected graph and β the dimension of the space of cycles of G.
We suppose that the n-th eigenvalue λn of H ∈ OG is simple. We assume moreover that an associated
nonzero eigenfunction φn satisfies φn(x) 6= 0 for all x ∈ X. Then, the number ν of edges along which φn

changes sign satisfies n− 1≤ ν ≤ n− 1+β.
Moreover 3n : B→ λn(B) is smooth at B ≡ 1 which is a critical point of 3n and the nodal defect,

δn = ν− (n− 1), is the Morse index of 3n at that point. If M is the manifold of dimension β of magnetic
fields on G modulo the gauge transforms, the function [B] → 3n(B) has [B = 1] as a nondegenerate
critical point.

Remark 1. The previous results can be extended by replacing the critical point B ≡ 1 by Bx,y =±1 for
all edges {x, y} ∈ E . The number ν is then the number of edges {x, y} ∈ E satisfying Bx,yφn(x)φn(y) < 0
where φn is the corresponding eigenfunction.

Remark 2. The assumptions on H are satisfied for H in an open dense subset of OG .

The upper bound of ν in the first part of Theorem 1 is related to the Courant nodal theorem (see
[Courant and Hilbert 1953, Section VI.6]) as follows: a nodal domain on a graph for the eigenfunction φn

is a connected component of the subgraph G ′ of G obtained by removing the edges along which φn

changes sign. Denoting by µ the number of nodal domains of φn , the Courant theorem for graphs (see
[Colin de Verdière 1998, Theorem 2.4]) asserts that µ≤ n; using the Euler formula for the graph G ′ and
because µ= b0(G ′), the number of connected components of the graph G ′, we get also a lower bound
(see [Berkolaiko 2008]):

Corollary 1. Under the assumptions of Theorem 1, we have n−β ≤ µ≤ n.

Example 3.1 (bipartite graphs). Let G = (V, E) be a bipartite graph: V = Y ∪ Z and all edges have
one vertex in Y and the other in Z . Let U be the involution on RV given by U f (x)=− f (x) if x ∈ Y
and U f (x)= f (x) if x ∈ Z and let B be a magnetic field. Then U HBU =−H ′B with H ′ ∈ OG , so that
λ|V |(HB) = −λ1(H ′B). And hence it follows from the diamagnetic inequality that B→ λ|V |(HB) has
a maximum at B ≡ 1. And hence the Morse index of the Hessian of B → λ|V |(HB) at B ≡ 1 is the
dimension of the manifold of magnetic fields, namely β. On the other hand the first eigenfunction φ1

of H ′ is everywhere greater than 0 and the number of sign changes of Uφ1 is |E |. So Berkolaiko’s
formula for λ|V | gives (|V | − 1)+β = |E |. This is the Euler formula.

Theorem 1 can be reinterpreted as follows:

Theorem 2. Under the assumptions as in Theorem 1, consider the functional Dn : B 7→ det(HB −λn(1)).
Then B ≡ 1 is a nondegenerate critical point of Dn whose Morse index is δn if n is odd and β − δn if n is
even.

Proof. Under the assumptions of the theorem we have

det(HB − λn(1))= (λn(B)− λn(1)) det′(HB − λn(1))
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where det′(HB)= F(B) is the product of the eigenvalues λ j − λn(1) for j 6= n. The following lemma is
easy to check by direct computations of the second derivatives:

Lemma 1. Let F = f G where F , f , G are smooth real valued functions defined near a point x0 on a
smooth manifold. Let us assume that f (x0)= 0 and f ′(x0)= 0; then the Hessian of F at the point x0 is
G(x0) times the Hessian of f at x0.

From the lemma, we get that the Hessian of Dn at B ≡ 1 is F(1) times the Hessian of 3n . We have
(−1)n−1 F(1) > 0. The conclusion follows. �

There is a formula for the characteristic polynomial of a magnetic Laplacian on graphs due to Robin
Forman [1993] and reproved by Richard Kenyon [2012] and Yurii Burman [2012]. Using the gauge
change f → f φn as in [Colin de Verdière 1998] gives a Laplace type operator whose entries can be of
any sign. Forman’s formula extends to that case and it would be nice to relate Berkolaiko’s formula to
Forman’s formula.

Important warning: Without loss of generality, we can and will assume in the rest of this note that
λn =3n(1)= 0. This implies that the Morse index of q1 is n− 1.

In the course of the proof we will use a special choice of gauge in which we can compute the Hessian
explicitly. More precisely, according to the classical perturbation formulae,

λ̈= (φ, Ḧφ)+ 2(Ḣφ, φ̇),

where we assumed that λ is at a critical point: λ̇= 0. The first term is easy to calculate explicitly; for
perturbation in the direction of the 1-form ω it is

Q(ω)= 1
2

∑
EE

ax,yω([x, y])2 with ax,y =−hx,yφn(x)φn(y)= ay,x . (2)

Considered as a quadratic form in ω, Q is already in the diagonal form. Its index is clearly the number of
negative values among {−hx,yφn(x)φn(y)}, or, in other words, the number ν of edges where φn changes
sign!

We will present an explicit choice of gauge in which the second term vanishes. The condition for this
is Ḣφ = 0 which, after explicit calculation, can be interpreted as ω ∈ ker d?, where d? is the conjugate
of d with respect to the inner product induced by (2).

Finally, we observe that the index of Q(ω) has been computed to be ν in the whole of �1(G), whereas
we should be restricting ourselves to our chosen gauge, ω ∈ ker d?. We will show that this restriction
reduces the index precisely by n − 1. Indeed, the splitting �1(G) = dRX

⊕ ker d? is orthogonal with
respect to the form Q; therefore

ind(Q)= ind(Q|dRX )+ ind(Q|ker d?).

We establish that ind(Q|dRX )= n−1 by relating the form Q on dRX to the quadratic form q1 around the
point φn .
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4. The quadratic form Q

Lemma 2. The set of forms f → ( f (x)− f (y))2 where {x, y} ∈ P2(X), the set of subsets with two
elements of X , and f → f (x)2 with x ∈ X is a basis of the set of quadratic forms on RX .

Definition 2. A quadratic form q on RX is said of Laplace type if for all f ∈RX , q̂(1, f )≡ 0 where q̂ is
the symmetric bilinear form associated to q.

Lemma 3. The set of forms f → ( f (x)− f (y))2, {x, y} ∈ P2(X) is a basis of the space of quadratic
forms of Laplace type.

The form q̃1 : f → q1(φn f ), where φn f is the pointwise product of φn and f , is of Laplace type
because ̂̃q1(1, g)= 〈Hφn|φng〉 = 〈0|φng〉.

Hence ̂̃q1(1, g)= 0.
Moreover, q̃1( f ) = Q(d f ). Indeed, because of Lemma 3, it is enough to compare the coefficients

of the basis forms f → ( f (x)− f (y))2. The form f → Q(d f ) is already expanded in this basis. To
find the coefficient for the form f → q̃1( f ), we observe that (because we know it is of Laplace type)
the coefficient in question is minus the coefficient in front of the term f (x) f (y), divided by two. This
evaluates to ax,y (see (2)).

In fact, we will need to use Q̂(d f, dg)= 〈H(φn f )|φng〉.

Lemma 4. The Morse index of Q|dRX is equal to n− 1.

It is a general fact that the Morse index of the quadratic form f → Q(A f ) is the same as the Morse
index of the restriction of Q to the image of A. Hence, the Morse index of Q|dRX is the Morse index
of q̃1 on RX . Because f → φn f is a linear isomorphism, this index is equal to the index of q1 by the
Sylvester theorem. Since λn = 0, the index of q1 is n− 1 by elementary spectral theory.

Lemma 5. Let us denote by d? the adjoint of d where RX is equipped with the canonical Euclidean
structure and �1(G) with the inner product associated to Q. The space �1(G) splits as

�1(G)= dRX
⊕ ker d?

(Hodge type splitting), and this decomposition is Q-orthogonal.

More explicitly d? is given by

d?ω(x)=
∑
y∼x

ax,yω([y, x]).

If ω= d f satisfies d?ω= 0, we have d?d f = 0. Hence Q̂(d f, dg)= 0 for all g and 〈H(φn f )|φng)〉= 0.
Because λn is of multiplicity 1, this implies that f is constant and hence d f = 0. So dRX

∩ ker d? = {0}
and the conclusions follow.

At this point, we know that the nodal defect is the Morse index of the restriction of Q to the space
ker d? of dimension β. The first part of Theorem 1 follows.
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5. The magnetic Hessian

We need one more fact to complete the proof: to identify the Hessian of 3n on eiker d? at B ≡ 1 with the
restriction of Q to ker d?.

Let us denote by S ⊂ CX the set of unit vectors f normalized so that f (x0) is real and f (x0) > 0
where x0 is chosen in X .

Lemma 6. The point B≡1 is a critical point of3n . If φn(B)∈ S is the eigenfunction of HB corresponding
to the eigenvalue λn(B), the differential of B→ φn(B) vanishes at B ≡ 1 on ker d?.

The first property comes from the fact that 3n(B̄)=3n(B). We can compute, for any variation ei tα,
t close to 0, of B ≡ 1, that ḢBφn + H φ̇n = 0. The condition d?α = 0 can be written as∑

y∼x

hx,yφn(y)αx,y = 0 for all x ∈ X.

From (1), this is equivalent to ḢBφn = 0. Hence H(φ̇n)= 0 and φ̇n = cφn since λn is simple. From the
normalization ‖φn(B)‖ = 1, we get c ∈ iR and, since φ̇n(x0) ∈ R, the number c is real. We deduce that
φ̇n = 0.

Lemma 7. The function F : S×eiker d?
→R defined by F( f, eiα)=〈Heiα f | f 〉 admits (φn, 0) as a critical

point and the Hessian of (3n)|eiker d? at the point B ≡ 1 is the form Q.

The differential of F with respect to f vanishes because f is an eigenfunction of H . The differential
with respect to ker d? vanishes, because F( f, eiα)= F( f, e−iα). The Hessian of F at (φn, 0) is well defined.
Because the differential at B=1 of B→φn(B) vanishes on eiker d? , the Hessians of3n : B→ F(φn(B), B)
and Mn : B→ F(φn(1), B) agree. A simple calculation of the Hessian of Mn gives the result:

Mn(eiα)=−
1
2

∑
[x,y]∈ EE

hx,y|φn(x)− eiαx,yφn(y)|2+
∑
x∈X

Vx |φn(x)|2

=−

∑
[x,y]∈E

hx,y
(
φn(x)2+φn(y)2− 2 cosαx,yφn(x)φn(y)

)
+

∑
x∈X

Vx |φn(x)|2.

Computing the second derivative with respect to α at α = 0 gives Hessian(Mn)= Q(α).

Appendix A: A pedestrian approach to the calculus of the Hessian of 3n in Section 5

We will derive a direct approach to the calculus of the second derivative of an eigenvalue which could
be used directly in the proof of Lemma 7. Let t→ A(t) be a C2 curve defined near t = 0 in the space
of Hermitian matrices on a finite-dimensional Hilbert space (H, 〈·|·〉). Let us assume that λ(0) is an
eigenvalue of A(0) of multiplicity one with a normalized eigenvector φ(0). Then, for t close to 0, A(t)
has a simple eigenvalue λ(t) of multiplicity one which is a C2 function of t . We can choose an associated
eigenfunction φ(t) which is C2 with respect to t . The following assertions give the values of the first and
second derivatives of λ(t) at t = 0:
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Proposition 1. Under the previous assumptions, we have

λ′(0)= 〈A′(0)φ(0)|φ(0)〉.

If λ′(0)= 0, we have
λ′′(0)= 〈A′′(0)φ(0)|φ(0)〉+ 2〈φ′(0)|A′(0)φ(0)〉,

where φ′(0) is any solution of (A(0)− λ(0))φ′(0)=−A′(0)φ(0).
In particular, if A′(0)φ(0)= 0,

λ′′(0)= 〈A′′(0)φ(0)|φ(0)〉.

Proof. We start with (A(t)− λ(t))φ(t) = 0 where φ(t) is an eigenfunction of A(t) which depends in
a C2 way on t . Taking the first derivative, we get

(A′(t)− λ′(t))φ(t)+ (A(t)− λ(t))φ′(t)= 0. (3)

Putting t = 0 and taking the scalar product with φ(0), we get the formula for λ′(0). Similarly, the
t-derivative of (3) is

(A′′(t)− λ′′(t))φ(t)+ 2(A′(t)− λ′(t))φ′(t)+ (A(t)− λ(t))φ′′(t)= 0. (4)

Putting t = 0, taking the scalar product with φ(0) and using λ′(0)= 0, we get the result. �

We can apply this to A(t) := Hei tα with α ∈ ker d? in order to get the Hessian of 3n in Section 5. The
condition A′(0)φ(0)= 0 is exactly d?α = 0!

Appendix B: The case where the eigenfunction vanishes at some vertex

In this appendix, we take H ∈ OG and assume that λn = 0 is nondegenerate eigenvalue of H with a
normalized eigenfunction φ. We have:

Proposition 2. Let us assume that, for all vertices x satisfying φ(x)= 0, there exists a vertex y ∼ x so
that φ(y) 6= 0. Then, for any ψ ∈ RX orthogonal to φ, there exists a smooth deformation Ht ∈ OG of H
so that φ̇ = ψ .

It is enough to check that the space of Ḣφ is RX and to use the first variation formulae given in
Appendix A.

Theorem 3. Let us assume that the function φ vanishes at the unique vertex x0. Then, the nullity of the
Hessian of the “magnetic variation” of H is at least |n+− n−| where n± is the number of vertices x ∼ x0

so that ±φ(x) > 0.

Proof. Choose a smooth variation Ht of H so that φ̇(x0)= 1. Let ν be the number of sign changes of φ
away from x0. Then, for t > 0 small enough, the number of sign changes of φt is ν+ n− while, for t < 0
small enough, it is ν+ n+. We see from Theorem 1 that the magnetic Morse index is ν+ n−− (n− 1)
for t > 0 and ν+ n+− (n− 1). The discontinuity of the Morse index at t = 0 is |n+− n−|. This gives
the lower bound on the nullity. �

Corollary 2. If |n+− n−|> β, the eigenvalue 0 is degenerate.
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Let us remark that this lower bound is not always sharp. In the following example, we have n+ = n−,
β = 2 and the nullity of the Hessian is 2.

Example B.1. The graph G is made of 2 cycles of length 3 with a common vertex. The matrix of H is
chosen as follows:

[H ] = −


1 1 1 0 0
1 1 2 0 0
1 2 1 1 2
0 0 1 1 1
0 0 2 1 1

 .
Using the fact that the graph has a symmetry of order 2 exchanging the 2 cycles, one can split RX and the
matrix H into the even and odd parts. This allows us to check that λ4 = 0 is nondegenerate. In order to
compute the magnetic Hessian, we check that it is possible to build a decomposition �1(G)= dRX

⊕ K
which is Q-orthogonal and with K ⊂ ker d?. It is then easy to check that the magnetic Hessian evaluated
on K vanishes.
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