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A NEKHOROSHEV-TYPE THEOREM FOR
THE NONLINEAR SCHRÖDINGER EQUATION ON THE TORUS

ERWAN FAOU AND BENOÎT GRÉBERT

We prove a Nekhoroshev type theorem for the nonlinear Schrödinger equation

iut D��uCV ?uC @ Nug.u; Nu/; x 2 Td ;

where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely, we
prove that if the initial datum is analytic in a strip of width � > 0 whose norm on this strip is equal to ",
then if " is small enough, the solution of the nonlinear Schrödinger equation above remains analytic
in a strip of width �=2, with norm bounded on this strip by C " over a very long time interval of order
"�� jln "j

ˇ
, where 0< ˇ < 1 is arbitrary and C > 0 and � > 0 are positive constants depending on ˇ and �.

1. Introduction and statements

We consider the nonlinear Schrödinger equation

iut D��uCV ?uC @ Nug.u; Nu/; x 2 Td ; t 2 R; (1-1)

where V is a smooth convolution potential and g is an analytic function on a neighborhood of the origin
in C2 which has a zero of order at least 3 at the origin and satisfies g.z; Nz/ 2 R. In more standard models,
the convolution term is replaced by a multiplicative potential. The use of a convolution potential makes
the analysis of the resonances easier.

For instance, when
g.u; Nu/D

a

pC 1
juj2pC2

with a2R and p2N, we recover the standard NLS equation iut D��uCV ?uCajuj2pu. Equation (1-1)
is a Hamiltonian system associated with the Hamiltonian function

H.u; Nu/D

Z
Td

�
jruj2C .V ?u/ NuCg.u; Nu/

�
dx

and the complex symplectic structure i du^ d Nu.
This equation has been considered with Hamiltonian tools in [Bambusi and Grébert 2003; Eliasson

and Kuksin 2010]. The first of these papers (see also [Bambusi and Grébert 2006; Bourgain 1996] for
related results) contains a Birkhoff normal form theorem adapted to this equation and discusses dynamical
consequences on the long time behavior of the solutions with small initial Cauchy data in Sobolev spaces.
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More precisely, it is proved that for s sufficiently large, if the Sobolev norm of index s of the initial datum
u0 is sufficiently small (of order "), then the Sobolev norm of index s of the solution is bounded by 2"

during a very long time (of order "�r with r arbitrary). In the second paper cited, Eliasson and Kuksin
obtain a KAM theorem adapted to this equation. In particular, they prove that in a neighborhood of
uD 0, many finite-dimensional invariant tori associated with the linear part of the equation are preserved
by small Hamiltonian perturbations. In other words, (1-1) has many quasiperiodic solutions. In both
cases, nonresonance conditions have to be imposed on the frequencies of the linear part, and thus on the
potential V (these are not exactly the same in the two different cases).

Both results are related to the stability of the zero solution, which is an elliptic equilibrium of the
linear equation. The first result establishes the stability for polynomials’ times with respect to the size of
the (small) initial datum, while the second proves the stability for all time of certain solutions. In the
present work, we extend the technique of normal forms, establishing the stability of the solutions for
times of order "�� jln "j

ˇ

for some constants � > 0 and ˇ < 1, with " being the size of the initial datum in
an analytic space.

We now state our result more precisely. We assume that for m> d=2, R> 0, V belongs to the space

Wm D

�
V .x/D

X
a2Zd

waeia�x
ˇ̌̌
va WD

wa.1Cjaj/
m

R
2
�
�

1
2
; 1

2

�
for any a 2 Zd

�
; (1-2)

which we endow with the product probability measure. Here, for a D .a1; : : : ; ad / 2 Zd , we set
jaj2 D a2

1
C � � �C a2

d
.

For � > 0, we denote by A� �A�.T
d IC/ the space of functions � that are analytic on the complex

neighborhood of a d-dimensional torus Td given by I� D fxC iy j x 2 Td ;y 2 Rd and jyj < �g and
continuous on the closure of this strip. We then denote by j � j� the usual norm on A�:

j�j� D sup
z2I�

j�.z/j:

We note that .A�; j � j�/ is a Banach space.
Our main result is a Nekhoroshev type theorem:

Theorem 1.1. There exists a subset V�Wm of full measure, such that for V 2 V, ˇ < 1 and � > 0, the
following holds: there exist C > 0 and "0 > 0 such that if

u0 2A2� and ju0j2� D "� "0;

then the solution of (1-1) with initial datum u0 exists in A�=2 for times jt j � "��� jln "j
ˇ

and satisfies

ju.t/j�=2 � C " for jt j � "��� jln "j
ˇ

; (1-3)

with �� Dmin
˚

1
10
; 1

2
�
	
. Furthermore, writing u.t/D

P
k2Zd

�k.t/e
ik�x , we have

X
k2Zd

e�jkj
ˇ̌
j�k.t/j � j�k.0/j

ˇ̌
� "3=2 for jt j � "��� jln "j

ˇ

: (1-4)
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Estimate (1-4) asserts that there is almost no variation of the actions1.
In finite dimension n, the standard Nekhoroshev result [1977] controls the dynamic over times of order

exp.�="1=.�C1// for some � > 0 and � > nC 1 (see, for instance, [Benettin et al. 1985; Giorgilli and
Galgani 1985; Pöschel 1993]), which is of course much better than "�� jln "j

ˇ

D e� jln "j
.1Cˇ/

. Nevertheless,
this standard result does not extend to the infinite-dimensional context. Actually, that the term "�1=.�C1/

in the exponential validity time can be replaced by jln "j.1Cˇ/ at the limit n!1 is good news!
To our knowledge, the only previous works in the direction of obtaining Nekhoroshev estimates for

PDEs were obtained by Bambusi [1999a; 1999b]. However, the result in [Bambusi 1999a], which develops
ideas expressed by Bourgain [1996], concerns a smaller set of functions made of entire analytic functions
only, and nevertheless yields a weaker control on a large but finite number of modes.

The five main differences with the previous works on normal forms are:

� In the finite-dimensional case and in Bambusi’s work, the central argument consists in optimizing
the order of the Birkhoff normal form with respect to the size of the initial datum. Here we introduce
a Fourier truncation and we optimize the order of the Birkhoff normal form and the order of the
truncation.

� We prove in the Appendix that, generically with respect to V , the spectrum of ��CV ? satisfies a
nonresonance condition much more efficient than the standard one (see Remark 2.7).

� We use `1-type norms to control the Fourier coefficients and the vector fields instead of the usual
`2-type norms. Of course this choice does not allow us to work in Hilbert spaces and induces a
slight loss of regularity each time the estimates are transposed from the Fourier space to the initial
space of analytic functions. But it turns out that this choice simplifies the estimates on the vector
fields (see Proposition 2.5 below and [Faou and Grébert 2011] for a similar framework in the context
of numerical analysis).

� We use the zero momentum condition: in the Fourier space, the nonlinear term contains only
monomials zj1

: : : zjk
with j1C� � �C jk D 0 (see Definition 2.4). This property allows us to control

the largest index by the others.

� We notice that the Hamiltonian vector field of a monomial zj1
: : : zjk

containing at least three Fourier
modes z` with large indices ` induces a flow whose dynamics is controlled during a very long time in
the sense that the dynamic almost excludes exchanges between high Fourier modes and low Fourier
modes (see Proposition 2.11). In [Bambusi 2003; Bambusi and Grébert 2006], such terms were
neglected since the vector field of a monomial containing at least three Fourier modes with large
indices is small in Sobolev norm (but not in analytic norm), and thus will almost keep all the modes
invariant. This more subtle analysis was also used in [Faou et al. 2010].

Our method could be generalized by considering not only zero momentum monomials but also
monomials with finite or exponentially decreasing momentum. This would certainly allow us to consider a
nonlinear Schrödinger equation with a multiplicative potential V and nonlinearities depending periodically

1Here the actions are the square of the modulus of the Fourier coefficients, Ik D j�k j
2.
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on x:
iut D��uCV uC @ Nug.x;u; Nu/; x 2 Td :

Nevertheless, this generalization would generate a lot of technicalities and we prefer to focus in the
present article on the simplicity of the arguments.

2. Setting and hypothesis

2A. Hamiltonian formalism. Equation (1-1) is a semilinear PDE locally well posed in the Sobolev
space H s.Td / with s > d=2 (see, for instance, [Cazenave 2003]). Let u be a (local) solution of (1-1) and
consider .�; �/D .�a; �a/a2Zd the Fourier coefficients of u, Nu

u.x/D
X

a2Zd

�aeia�x and Nu.x/D
X

a2Zd

�ae�ia�x : (2-1)

A standard calculation shows that u is a solution in H s.Td / of (1-1) if and only if .�; �/ is a solution in2

`2
s � `

2
s of the system 8̂<̂

:
P�a D�i!a�a� i

@P

@�a
; a 2 Zd ;

P�a D i!a�a� i
@P

@�a
; a 2 Zd ;

(2-2)

where the linear frequencies are given by !a D jaj
2C va. As in (1-2), the notation is V D

P
vaeia�x .

The nonlinear part is given by

P .�; �/D
1

.2�/d

Z
Td

g
�X

�aeia�x;
X

�ae�ia�x
�

dx: (2-3)

This system is Hamiltonian when endowing the set of pairs .�a; �a/ 2 CZd

�CZd

with the symplectic
structure

i
X

a2Zd

d�a ^ d�a: (2-4)

We define the set ZD Zd � f˙1g. For j D .a; ı/ 2 Z, we define jj j D jaj and we denote by Nj the index
.a;�ı/.

We identify a pair .�; �/ 2 CZd

�CZd

with .zj /j2Z 2 CZ via the formula

j D .a; ı/ 2 Z D)

�
zj D �a if ı D 1;

zj D �a if ı D�1:
(2-5)

By a slight abuse of notation, we often write z D .�; �/ to denote such an element.
For a given � > 0, we consider the Banach space L� made of elements z 2 CZ such that

kzk� WD
X
j2Z

e�jj jjzj j<1;

2As usual, `2
s D

˚
.�a/a2Zd j

P
.1Cjaj2s/j�aj

2 <C1
	
.
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using the symplectic form (2-4). We say that z 2 L� is real when z Nj D Nzj for any j 2 Z. In this case,
we write z D .�; N�/ for some � 2 CZd

. In this situation, we can associate with z the function u defined
by (2-1).

The next lemma shows the relation with the space A� defined above:

Lemma 2.1. Let u be a complex valued function analytic on a neighborhood of Td , and let .zj /j2Z be
the sequence of its Fourier coefficients defined by (2-1) and (2-5). Then for all � < �, we have

if u 2A�; then z 2 L� and kzk� � c�;�juj�; (2-6)

if z 2 L�; then u 2A� and juj� � c�;�kzk�; (2-7)

where c�;� is a constant depending on � and � and the dimension d .

Proof. Assume that u 2A�. Then by using the Cauchy formula, we get jzj j � juj�e
��jj j for all j 2 Z.

Hence, for � < � we have

kzk� � juj�
X
j2Z

e.���/jj j � juj�

�
2
X
n2Z

e
.���/p

d
jnj
�d

�

 
2

1� e
.���/
p

d

!d

juj�:

Conversely, assume that z 2L�. Then j�aj � kzk�e��jaj for all a 2 Zd , and thus by (2-1), for all x 2 Td

and y 2 Rd with jyj � �, we get

ju.xC iy/j �
X

a2Zd

j�aje
jayj
� kzk�

X
a2Zd

e�.���/jaj �

 
2

1� e
.���/p

d

!d

kzk�:

Hence, u is bounded on the strip I�. �

For a function F of C1.L�;C/, we define its Hamiltonian vector field by XF D JrF , where J is the
symplectic operator on L� induced by the symplectic form (2-4), rF.z/D .@F=@zj /j2Z, and where by
definition, for j D .a; ı/ 2 Zd � f˙1g we set

@F

@zj
D

8̂<̂
:
@F

@�a
if ı D 1;

@F

@�a
if ı D�1:

For two functions F and G, the Poisson bracket is (formally) defined as

fF;Gg D rFT JrG D i
X

a2Zd

@F

@�a

@G

@�a
�
@F

@�a

@G

@�a
: (2-8)

We say that a Hamiltonian function H is real if H.z/ is real for all real z.

Definition 2.2. For a given � > 0, we denote by H� the space of real Hamiltonians P satisfying

P 2 C1.L�;C/ and XP 2 C1.L�;L�/:



1248 ERWAN FAOU AND BENOÎT GRÉBERT

For F and G in H�, the formula (2-8) is well defined. With a given Hamiltonian function H 2H�, we
associate the Hamiltonian system

Pz DXH .z/D JrH.z/;

which also reads
P�a D�i

@H

@�a
and P�a D i

@H

@�a
; a 2 Zd : (2-9)

We define the local flow ˆt
H
.z/ associated with the previous system (for an interval of times t � 0

depending a priori on the initial condition z). If z D .�; N�/ and if H is real, the flow .� t ; �t /Dˆt
H
.z/ is

also real; � t D N�t for all t . Choosing the Hamiltonian given by

H.�; �/D
X

a2Zd

!a�a�aCP .�; �/;

P being given by (2-3), we recover the system (2-2), that is, the expression of the NLS equation (1-1) in
Fourier modes.

Remark 2.3. The quadratic Hamiltonian H0 D
P

a2Zd !a�a�a corresponding to the linear part of (1-1)
does not belong to H�. Nevertheless, it generates a flow which maps L� into L� explicitly given for all
time t and for all indices a by �a.t/D e�i!at�k.0/, �a.t/D ei!at�k.0/. On the other hand, we will see
that, in our setting, the nonlinearity P belongs to H�.

2B. Space of polynomials. In this subsection we define a class of polynomials on CZ.
We first need more notations concerning multi-indices: letting `� 2 and j D .j1; : : : ; j`/ 2 Z` with

ji D .ai ; ıi/, we define

� the monomial associated with j

zj D zj1
: : : zj` I

� the momentum of j

M.j /D a1ı1C � � �C a`ı`; I (2-10)

� and the divisor associated with j

�.j /D ı1!a1
C � � �C ı`!a` ; (2-11)

where for a 2 Zd , !a D jaj
2C va are the frequencies of the linear part of (1-1).

We then define the set of indices with zero momentum by

I` D
˚
j D .j1; : : : ; j`/ 2 Z`

ˇ̌
M.j /D 0

	
: (2-12)

On the other hand, we say that j D .j1; : : : ; j`/ 2 Z` is resonant, and we write j 2 N`, if ` is even and
j D i [ Ni for some choice of i 2Z`=2. In particular, if j is resonant, then its associated divisor vanishes,
�.j /D 0, and its associated monomials depend only on the actions

zj D zj1
: : : zj` D �a1

�a1
: : : �a`=2

�a`=2
D Ia1

: : : Ia`=2
;
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where Ia.z/D �a�a denotes the action associated with the index a for all a 2 Zd .
Finally, if z is real, then Ia.z/D j�aj

2, and for odd r , the resonant set Nr is empty.

Definition 2.4. For k � 2, a (formal) polynomial P .z/D
P

aj zj belongs to Pk if P is real, of degree
k, has a zero of order at least 2 in z D 0, and satisfies the following conditions:

� P contains only monomials having zero momentum (i.e., such that M.j /D 0 when aj ¤ 0), and
thus P reads

P .z/D

kX
`D2

X
j2I`

aj zj (2-13)

with the relation aNj D aj .

� The coefficients aj are bounded: sup
j2I`

jaj j<C1 for all `D 2; : : : ; k.

We endow Pk with the norm

kPk D

kX
`D2

sup
j2I`

jaj j: (2-14)

The zero momentum assumption in Definition 2.4 is crucial to obtaining the following proposition:

Proposition 2.5. Let k � 2 and � > 0. We have Pk � H�, and for P a homogeneous polynomial of
degree k in Pk , we have the estimates

jP .z/j � kPkkzkk� (2-15)

and
kXP .z/k� � 2kkPkkzkk�1

� for all z 2 L�: (2-16)

Furthermore, for P 2 Pk and Q 2 P`, we have fP;Qg 2 PkC`�2 and the estimate

kfP;Qgk � 2k`kPkkQk: (2-17)

Proof. Let
P .z/D

X
j2Ik

aj zj I

we have

jP .z/j � kPk
X

j2Zk

jzj1
j : : : jzjk

j � kPkkzkk
`1 � kPkkzk

k
� ;

and the first inequality (2-15) is proved.
To prove the second estimate, let ` 2 Z; by using the zero momentum condition, we getˇ̌̌̌

@P

@z`

ˇ̌̌̌
� kkPk

X
j2Zk�1

M.j /D�M.`/

jzj1
: : : zjk�1

j:

Therefore
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kXP .z/k� D
X
`2Z

e�j`j
ˇ̌̌̌
@P

@z`

ˇ̌̌̌
� kkPk

X
`2Z

X
j2Zk�1

M.j /D�M.`/

e�j`jjzj1
: : : zjk�1

j:

But if M.j /D�M.`/, then

e�j`j � exp
�
�.jj1jC � � �C jjk�1j/

�
�

Y
nD1;:::;k�1

e�jjnj:

Hence, after summing in `, we get3

kXP .z/k� � 2kkPk
X

j2Zk�1

e�jj1jjzj1
j : : : e�jjk�1jjzjk�1

j � 2kkPkkzkk�1
� ;

which yields (2-16).
Assume now that P and Q are homogeneous polynomials of degrees k and ` respectively and with

coefficients ak , k2Ik and b` , ` 2I`. It is clear that fP;Qg is a monomial of degree kC`�2 satisfying
the zero momentum condition. Furthermore, we can write

fP;Qg.z/D
X

j2IkC`�2

cj zj ;

where cj is expressed as a sum of coefficients akb` for which there exists an a 2 Zd and � 2 f˙1g such
that

.a; �/� k 2 Ik and .a;��/� ` 2 I`;

and such that if for instance .a; �/Dk1 and .a;��/D`1, we necessarily have .k2; : : : ; kk ; `2; : : : ; ``/Dj .
Hence, for a given j , the zero momentum condition on k and on ` determines the value of �a, which in
turn determines two possible values of .�; a/.

This proves (2-17) for monomials. The extension to polynomials follows from the definition of the
norm (2-14).

The last assertion and the fact that the Poisson bracket of two real Hamiltonian is real follow immediately
from the definitions. �

2C. Nonlinearity. We assume that the nonlinearity g is analytic in a neighborhood of the origin in C2:
There exist positive constants M and R0 such that the Taylor expansion

g.v1; v2/D
X

k1;k2�0

1

k1!k2!
@k1
@k2

g.0; 0/v
k1

1
v

k2

2

is uniformly convergent and bounded by M on the ball jv1jC jv2j � 2R0. Hence, formula (2-3) defines
an analytic function P on the ball kzk� �R0 in L�, and we have

P .z/D
X
k�0

Pk.z/;

3Note that M.a; ı/DM.�a;�ı/, whence we get the coefficient 2.
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where Pk for all k � 0 is a homogeneous polynomial given by

Pk D

X
k1Ck2Dk

X
.a;b/2.Zd /k1�.Zd /k2

pa;b�a1
: : : �ak1

�b1
: : : �bk2

;

with

pa;b D
1

k1!k2!
@k1
@k2

g.0; 0/

Z
Td

eiM.a;b/�x dx

and M.a;b/ D a1C � � � C ak1
� b1 � � � � � bk2

the moment of �a1
: : : �ak1

�b1
: : : �bk2

. Therefore, it is
clear that Pk satisfies the zero momentum condition, and thus Pk 2 Pk for all k � 0. Furthermore, we
have the estimate kPkk �MR�k

0
for all k � 0.

2D. Nonresonance condition. In order to control the divisors (2-11), we need to impose a nonresonance
condition on the linear frequencies !a, a 2 Zd .

For r � 3 and j D .j1; : : : ; jr /2Zr , we define �.j / as the third largest integer amongst jj1j; : : : ; jjr j.
We recall that the resonant set Nr is the set of multi-indices j 2Zr such that j D i [ Ni for some i 2Zr=2.

Hypothesis 2.6. There exist  > 0, � � 1 and c0 > 0 such that for all r � 3 and for all nonresonant
j 2 ZrnNr , we have

j�.j /j �
 cr

0

�.j /�r
: (2-18)

Remark 2.7. Classically, a nonresonance condition reads (see, for instance, [Bambusi and Grébert 2006]):
for all r � 3, there exist  .r/ > 0 and �.r/ > 0 such that for all nonresonant j 2 Zr , we have

j�.j /j �
 .r/

�.j /�.r/
:

In Hypothesis 2.6, we make precise the dependence of  and � with respect to r . In particular, we impose
that � be linear: �.r/D �r . This is crucial to optimizing the choice of r as a function of " in Section 3B.

Recall that for V D
P

a2Zd waeia�x in the space Wm defined in (1-2), the frequencies are

!a D jaj
2
Cwa D jaj

2
C

Rva

.1Cjaj/m
; a 2 Zd ;

with va 2
�
�

1
2
; 1

2

�
for all a. In the Appendix, we prove:

Proposition 2.8. Fix  > 0 small enough and m> d=2. There exist positive constants c0 and � depending
only on m, R and d , and a set F �Wm whose measure is larger than 1� 4 1=7, such that if V 2 F ,
then (2-18) holds true for all nonresonant j 2 Zr and for all r � 3.

Thus Hypothesis 2.6 is satisfied for all V 2 V, where

VD
[
>0

F (2-19)

is a subset of full measure in Wm.
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2E. Normal forms. We fix an index N � 1. For a fixed integer k � 3, we set

Jk.N /D fj 2 Ik j �.j / >N g:

Definition 2.9. Let N be an integer. We say that a polynomial Z 2 Pk is in N -normal form if it can be
written

Z D

kX
`D3

X
j2N`[J`.N /

aj zj :

In other words, Z contains either monomials depending only on the actions or monomials whose indices
j satisfy �.j / >N , that is, monomials involving at least three modes with index greater than N .

We now motivate the introduction of this definition. First, we recall:

Lemma 2.10. Let f W R ! RC be a continuous function and y W R ! RC a differentiable function
satisfying the inequality

d
dt

y.t/� 2f .t/
p

y.t/ for all t 2 R:

Then we have the estimate p
y.t/�

p
y.0/C

Z t

0

f .s/ ds for all t 2 R:

Proof. Let � > 0 and define y� D yC �, a nonnegative function whose square root is differentiable. We
have

d
dt

p
y�.t/� 2f .t/

p
y.t/p
y�.t/

� 2f .t/;

and thus p
y".t/�

p
y�.0/C

Z t

0

f .s/ ds:

The claim is proved by taking �! 0. �

For a given number N and for z 2 L�, we define

RN
� .z/D

X
jj j>N

e�jj jjzj j:

Notice that if z 2 L�C�, then

RN
� .z/� e��N

kzk�C�: (2-20)

Proposition 2.11. Let N 2 N and k � 3. Suppose that Z is a homogeneous polynomial of degree k in
N -normal form. Let z.t/ be a real solution of the flow generated by the Hamiltonian H0CZ. Then we
have

RN
� .z.t//� RN

� .z.0//C 4k3
kZk

Z t

0

RN
� .z.s//

2
kz.s/kk�3

� ds (2-21)

and

kz.t/k� � kz.0/k�C 4k3
kZk

Z t

0

RN
� .z.s//

2
kz.s/kk�3

� ds: (2-22)
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Proof. Fix a2Zd and let Ia.t/D �a.t/�a.t/ be the actions associated with the solution of the Hamiltonian
system generated by H0 C Z. Let us recall that as z.t/ D .�.t/; �.t// is a real solution, we have
�a.t/D N�a.t/ for all times where the solution is defined. Using (2-17) and H0 DH0.I/, we have

je2�jaj PIaj D je
2�jaj
fIa;Zgj � 2kkZk

ˇ̌
e�jaj

p
Ia

ˇ̌� X
M.j /D˙a

2 indices>N

e�jajjzj1
: : : zjk�1

j

�
:

Then using Lemma 2.10, we get

e�jaj
p

Ia.t/� e�jaj
p

Ia.0/C 2kkZk

Z t

0

� X
M.j /D˙a

2 indices>N

e�jj1jjzj1
j : : : e�jjk�1jjzjk�1

j

�
ds: (2-23)

Ordering the multi-indices such that jj1j and jj2j are the largest, and using the fact that z.t/ is real (and
thus jzj j D

p
Ia for j D .a;˙1/ 2 Z), we obtain, after summation in jaj>N ,

RN
� .z.t//� RN

� .z.0//C 4k3
kZk

Z t

0

� X
jj1j;jj2j�N

j3;:::;jk�12Z

e�jj1jjzj1
j : : : e�jjk�1jjzjk�1

j

�
ds

� RN
� .z.0//C 4k3

kZk

Z t

0

RN
� .z.s//

2
kz.s/kk�3

� ds:

Inequality (2-22) is proved in the same way. �

Remark 2.12. These estimates will be central to the final bootstrap argument. Actually, as a consequence
of Proposition 2.11, we have: if z.t/ is the solution of a Hamiltonian system in N -normal form with
an initial datum z0 satisfying kz0k2� D ", then, as RN

� .z0/ D O."e��N /, Equations (2-21) and (2-22)
guarantee that RN

� .z.t// remains of order O."e��N / and the norm of z.t/ remains of order " over
exponentially long time t D O.e�N /.

The next result is an easy consequence of the nonresonance condition and of the definition of normal
forms:

Proposition 2.13. Assume that the nonresonance condition (2-18) is satisfied and let N be fixed. Let Q

be a homogenous polynomial of degree k. Then the homological equation

f�;H0g�Z DQ (2-24)

admits a polynomial solution .�;Z/ homogeneous of degree k, such that Z is in N -normal form, and
such that

kZk � kQk and k�k �
N �k

 ck
0

kQk: (2-25)

Proof. Assume that Q D
P

j2Ik
Qj zj and seek Z D

P
j2Ik

Zj zj and � D
P

j2Ik
�j zj such that

(2-24) is satisfied. Equation (2-24) can be written in terms of polynomial coefficients

i�.j /�j �Zj DQj ; j 2 Ik ;
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where �.j / is given in (2-11). We then define

Zj DQj ; �j D 0 if j 2 Nk or �.j / >N;

Zj D 0; �j D
Qj

i�.j /
if j 62 Nk and �.j /�N:

In view of (2-18), this leads to (2-25). �

3. Proof of the main theorem

3A. Recursive equation. We aim to construct a canonical transformation � such that in the new variables,
the Hamiltonian H0CP is in normal form modulo a small remainder term. Using Lie transforms to
generate � , the problem can be written thus: Find a polynomial � D

Pr
kD3 �k , a polynomial Z DPr

kD3 Zk in normal form, and a smooth Hamiltonian R satisfying @˛R.0/ D 0 for all ˛ 2 NZ with
j˛j � r , such that

.H0CP / ıˆ1
� DH0CZCR: (3-1)

Then the exponential estimate (1-3) will be obtained by optimizing the choice of r and N .
We recall that for � and K two Hamiltonian functions, for all k � 0 we have

dk

dtk
.K ıˆt

�/D
˚
�; f� � � f�;Kg � g

	
.ˆt
�/D .adk

�K/.ˆt
�/;

where ad�K D f�;Kg. Also, if K, L are homogeneous polynomials of degrees k and `, then fK;Lg is
a homogeneous polynomial of degree kC `� 2. Therefore, by using Taylor’s formula, we obtain

.H0CP / ıˆ1
� � .H0CP /D

r�3X
kD0

1

.kC 1/!
adk
�.f�;H0CPg/COr ; (3-2)

where Or stands for a smooth function R satisfying @˛R.0/D 0 for all ˛ 2 NZ with j˛j � r .
On the other hand, we know that for � 2 C, the following relation holds:�r�3X

kD0

Bk

k!
�k

��r�3X
kD0

1

.kC 1/!
�k

�
D 1CO.j�jr�2/;

where Bk are the Bernoulli numbers defined by the expansion of the generating function z

ez�1
. Therefore,

defining the two differential operators

Ar D

r�3X
kD0

1

.kC 1/!
adk
� and Br D

r�3X
kD0

Bk

k!
adk
�;

we get
Br Ar D IdCCr ;

where Cr is a differential operator satisfying

Cr O3 D Or :
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Applying Br to the two sides of (3-2), we obtain

f�;H0CPg D Br .Z �P /COr :

Plugging the decompositions in homogeneous polynomials of �, Z and P into this equation and equating
the terms of same degree, we obtain after a straightforward calculation the recursive equations

f�m;H0g�Zm DQm; mD 3; : : : ; r; (3-3)

where

Qm D�PmC

m�1X
kD3

fPmC2�k ; �kgC

m�3X
kD1

Bk

k!

X
`1C���C`kC1DmC2k

3�`i�m�k

ad�`1
: : : ad�`k

.Z`kC1
�P`kC1

/: (3-4)

In the last sum, `i �m� k as a consequence of 3� `i and `1C � � �C `kC1 DmC 2k.
Once these recursive equations are solved, we define the remainder term as RD .H0CP /ıˆ1

��H0�Z.
By construction, R is analytic on a neighborhood of the origin in L� and RD Or . As a consequence, by
Taylor’s formula,

RD
X

m�rC1

m�3X
kD1

1

k!

X
`1C���C`kDmC2k

3�`i�r

ad�`1
: : : ad�`k

H0

C

X
m�rC1

m�3X
kD0

1

k!

X
`1C���C`kC1DmC2k

3�`1C���C`k�r
3�`kC1

ad�`1
: : : ad�`k

P`kC1
: (3-5)

Lemma 3.1. Assume that the nonresonance condition (2-18) is fulfilled for some constants  , c0, �. Then
there exists C > 0 such that for all r and N , and for mD 3; : : : ; r , there exist homogeneous polynomials
�m and Zm of degree m, with Zm in N -normal forms, which are solutions of the recursive equation (3-3)
and satisfy

k�mkCkZmk � .C mN �/m
2

: (3-6)

Proof. We define �m and Zm by induction using Proposition 2.13. Note that (3-6) is clearly satisfied for
mD 3, provided C is big enough. Estimate (2-25) yields

 cm
0 N��m

k�mkCkZmk � kQmk: (3-7)

Using the definition (3-4) of the term Qm and the estimate on the Bernoulli numbers, jBk j � k!ck

for some c > 0, together with (2-17), which implies that for all ` � 3, kad�`Rk � 2m`kRk for any
polynomial R of degree less than m, we have, for all m� 3,

kQmk � kPmkC 2

m�1X
kD3

k.mC 2� k/kPmC2�kkk�kk

C 2

m�3X
kD1

.C m/k
X

`1C���C`kC1DmC2k
�`i�m�k

`1k�`1
k : : : `kk�`k

kkZ`kC1
�P`kC1

k: (3-8)
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for some constant C . Let us set ˇm Dm.k�mkCkZmk/. Equation (3-7) implies that

ˇm � .CN �/mmkQmk;

for some constant C independent of m.
Using that kPmk�MR�m

0
(see the end of Section 2D), we have that kPmk and mkPmk are uniformly

bounded with respect to m. Hence, the previous inequality implies that

ˇm � ˇ
.1/
m Cˇ

.2/
m ;

where

ˇ.1/m D .CN �/mm

�
1C

m�1X
kD3

ˇk

�
(3-9)

and

ˇ.2/m DN �m.C m/m�2
m�3X
kD1

X
`1C���C`kC1DmC2k

�`i�m�k

ˇ`1
: : : ˇ`k

.ˇ`kC1
C 1/; (3-10)

for some constant C depending on M , R0,  and c0. It remains to prove that ˇm � .C mN �/ım
2

by
induction, for some constant ı. Again, this is true for mD 3 by adapting C if necessary. Thus, assume
that ǰ � .CjN �/j

2

, j D 3; : : : ;m� 1. As soon as C > 1,

1� .C mN �/m
2

for all m� 3; (3-11)

so we get

ˇ.1/m � .CN �/mmmC2.C mN �/.m�1/2
�

1
2
.C mN �/m

2

as soon as m� 3 and provided C > 2.
Using (3-11) again and the induction hypothesis, we get

ˇ.2/m �N �m.C m/m�2
m�3X
kD1

X
`1C���C`kC1DmC2k

3�`i�m�k

�
CN �.m� k/

�`2
1
C���C`2

kC1 :

The maximum of `2
1
C � � �C `2

kC1
when `1C � � �C `kC1 DmC 2k and 3� `i �m� k is obtained for

`1 D � � � D `k D 3 and `kC1 Dm� k and its value is .m� k/2C 9k. Furthermore, the cardinality of
f`1C� � �C `kC1 DmC2k; 3� `i �m�kg is smaller than mkC1, and hence we obtain, for m� 4 and
after adapting C if necessary,

ˇ.2/m � max
kD1;:::;m�3

N �m.C m/m�2C mkC2
�
CN �.m� k/

�.m�k/2C9k
�

1
2
.C mN �/m

2

: �

3B. Normal form result. For any R0 > 0, we set B�.R0/D fz 2 L� j kzk� <R0g:
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Theorem 3.2. Assume that P is analytic on a ball B�.R0/ for some R0 > 0 and � > 0. Assume that the
nonresonance condition (2-18) is satisfied, and let ˇ < 1 and M > 1 be fixed. Then there exist constants
"0 > 0 and � > 0 such that for all " < "0, there exist a polynomial �, a polynomial Z in N D jln "j1Cˇ

normal form, and a Hamiltonian R analytic on B�.M "/, such that

.H0CP / ıˆ1
� DH0CZCR: (3-12)

Furthermore, for all z 2 B�.M "/,

kXZ .z/k�CkX�.z/k� � 2"3=2 and kXR.z/k� � "e
� 1

4
jln "j1Cˇ : (3-13)

Proof. Using Lemma 3.1, for all N and r , we can construct polynomial Hamiltonians

�.z/D

rX
kD3

�k.z/ and Z.z/D

rX
kD3

Zk.z/;

with Z in N -normal form, such that (3-12) holds with RD Or . Now for fixed " > 0, we choose

N �N."/D jln "j1Cˇ and r � r."/D jln "jˇ:

This choice is motivated by the necessity of a balance between Z and R in (3-12): The error induced by
Z is controlled as in Remark 2.12, while the error induced by R is controlled by Lemma 3.1. By (3-6),
we have

k�kk � .C kN �/k
2

� exp
�
k.�k.1Cˇ/ ln jln "jC k ln C k/

�
� exp

�
k.�r.1Cˇ/ ln jln "jC r ln C r/

�
� exp

�
k jln "j

�
� jln "jˇ�1.1Cˇ/ ln jln "jC jln "jˇ�1 ln C jln "jˇ

��
� "�k=8; (3-14)

as ˇ < 1, and for "� "0 sufficiently small. Therefore, using Proposition 2.5, for z 2 B�.M "/ we obtain

j�k.z/j � "
�k=8.M "/k �M k"7k=8;

and thus
j�.z/j �

X
k�3

M k"7k=8
� "3=2;

for " small enough. Similarly, for all k � r , we have

kX�k
.z/k� � 2k"�k=8.M "/k�1

� 2kM k�1"7k=8�1

and
kX�.z/k� �

X
k�3

2kM k�1"7k=8�1
� C "�1"21=8

� "3=2;

for " small enough. Similar bounds clearly hold for Z D
Pr

kD3 Zk , which shows the first estimate in
(3-13).

On the other hand, using ad�`k
H0 DZ`k

CQ`k
(see (3-3)) and then using Lemma 3.1 and the

definition of Qm (see (3-4)), we get kad�`k
H0k � .C kN �/`k

2

� "�`k=8, where the last inequality
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proceeds as in (3-14). Thus, using (3-5), (3-14) and kP`kC1
k �MR

�`kC1

0
, we obtain by Proposition 2.5

that for z 2 B�.M "/,

kXR.z/k� �
X

m�rC1

m�3X
kD0

m.C r/3m"�
mC2k

8 "m�1
�

X
m�rC1

m2.C r/3m"m=2
� .C r/3r"r=2:

Therefore, since r D jln "jˇ , we get kXR.z/k� � " e�
1
4
jln "j1Cˇ for z 2 B�.M "/ and " small enough. �

3C. Bootstrap argument. We are now in position to prove the main theorem of Section 1. It is a direct
consequence of Theorem 3.2.

Let u0 2A2� with ju0j2�D ", and denote by z.0/ the corresponding sequence of its Fourier coefficients
which belongs, by Lemma 2.1, to L.3=2/� with kz.0/k.3=2/� � .c�=4/" and

c� D
2dC2

.1� e��=2
p

d /d
:

Let z.t/ be the local solution in L� of the Hamiltonian system associated with H DH0CP .
Let �, Z and R be given by Theorem 3.2 with M D c� and let y.t/Dˆ1

�.z.t//. We recall that since
�.z/DO.kzk3/, the transformation ˆ1

� is close to the identity: ˆ1
�.z/D zCO.kzk2/, and thus, for "

small enough, we have ky.0/k.3=2/� � .c�=2/". In particular, as given in (2-20),

RN
� .y.0//�

c�

2
" e�.�=2/N �

c�

2
" e��N ;

where � D �� � �=2.
Let T" be the largest time T such that RN

� .y.t//� c�" e��N and ky.t/k� � c�" for all jt j � T . By
construction, we have

y.t/D y.0/C

Z t

0

XH0CZ .y.s// dsC

Z t

0

XR.y.s// ds:

So using (2-21) for the first vector field and (3-13) for the second one, we get, for jt j< T",

RN
� .y.t//�

1
2
c�"e

��N
C 4jt j

rX
kD3

kZkkk
3.c�"/

k�1e�2�N
Cjt j"e�

1
4
jln "j1Cˇ

�

�
1
2
C 4jt j

rX
kD3

kZkkk
3.c�"/

k�2e��N
Cjt j"e�

1
8
jln "j1Cˇ

�
c�"e

��N ; (3-15)

where in the last inequality we used � Dmin
˚

1
10
; 1

2
�
	

and N D jln "j1Cˇ.
Using Lemma 3.1, we then verify that

RN
� .y.t//�

�
1
2
CC jt j" e��N

�
c�"e

��N ;

and thus, for " small enough,

RN
� .y.t//� c�" e��N for all jt j �minfT"; e�N

g: (3-16)
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Similarly, we obtain
ky.t/k� � c�" for all jt j �minfT"; e�N

g: (3-17)

In view of the definition of T", inequalities (3-16) and (3-17) imply T"�e�N . In particular, kz.t/k��2c�"

for jt j � e�N D "�� jln "j
ˇ

, and using (2-7), we finally obtain (1-3) with

C D
22dC5

.1� e��=2
p

d /2d
:

Estimate (1-4) is another consequence of the normal form result and Proposition 2.11. Actually, we
use that the Fourier coefficients of u.t/ are given by z.t/, which is "2-close to y.t/, which in turn is
almost invariant: in view of (2-23) and as in (3-15), we haveX

j2Z

e�jj j
ˇ̌
jyj .t/j � jyj .0/j

ˇ̌
�

�
4jt j

rX
kD3

kZkkk
3.c�"/

k�1e�2�N
Cjt j"e�

1
4
jln "j1Cˇ

�
;

from which we deduce X
j2Z

e�jj j
ˇ̌
jyj .t/j � jyj .0/j

ˇ̌
� jt je��N ;

and then (1-4).

Appendix: Proof of the nonresonance hypothesis

Instead of proving Proposition 2.8, we prove a slightly more general result. For a multi-index j 2 Zr , we
define

N.j /D

rY
kD1

.1Cjjk j/:

Proposition A.1. Fix  > 0 small enough and m>d=2. There exist positive constants C and � depending
only on m, R and d , and a set F �Wm (see (1-2)) whose measure is larger than 1� 4 , such that if
V 2 F , then for any r � 1, ˇ̌

�.j /C "1!`1
C "2!`2

ˇ̌
�

C r 7

N.j /�
(A-1)

for any j 2 Zr , any indices `1; `2 2 Zd , and any "1; "2 2 f0; 1;�1g such that .j ; .`1; "1/; .`2; "2// is
nonresonant4.

In order to prove Proposition A.1, we first prove that �.j / cannot accumulate on Z. Precisely, we
have:

Lemma A.2. Fix  > 0 and m> d=2. There exist 0< C < 1 depending only on m, R and d , and a set
F 0 �Wm whose measure is larger than 1� 4 , such that if V 2 F 0 , then for any r � 1,

j�.j /� bj �
C r

N.j /mCdC3
(A-2)

4The resonant set Nr , r � 2, is defined in Section 2D.
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for any nonresonant j 2 Zr and for any b 2 Z.

Proof. Let .˛1; : : : ; ˛r /¤ 0 in Zr , M > 0 and c 2 R. The set

E.�/D

�
x 2

�
�

1
2
; 1

2

�r ˇ̌̌ ˇ̌̌̌ rX
iD1

˛ixi C c

ˇ̌̌̌
< �

�
is a slice of thickness 2� of the hypercube Œ�M;M �r guided by the hyperplane

˚Pr
iD1 ˛ixi C c D 0

	
,

whose normal ˛ has a norm larger than 1. Since the largest diagonal in the hypercube
�
�

1
2
; 1

2

�r has a
length equal to

p
r , we get that the base of the slice E.�/ is included in a hyperdisc of dimension r � 1

and radius 1
2

p
r . Recall that the volume of a ball in Rm of radius � equals �m=2�m=�.m=2C1/. So we

deduce that the volume of E.�/ is smaller than5

2��.r�1/=2

�
1

2

p
r

�r�1

�

�
r�1

2
C 1

� � 2�

�
1

2

p
�r

�r�1

�
r�1

2

�
!

� C r�

for a constant C independent of r . Hence, given j D .ai ; ıi/
r
iD1
2 Zr and b 2 Z, the Lebesgue measure

of

X� WD

�
x 2

�
�

1
2
; 1

2

�r ˇ̌̌ ˇ̌̌̌ rX
iD1

ıi.jai j
2
Cxi/� b

ˇ̌̌̌
< �

�
is smaller than 2�r

r�1
2 . Now consider the set (using the notation (1-2))

˚
V 2Wm

ˇ̌
j�.j /� bj< �

	
D

�
V 2Wm

ˇ̌̌ ˇ̌̌̌ rX
iD1

ıi

�
jai j

2
C

vai
R

.1Cjai j/m

�
� b

ˇ̌̌̌
< �

�
: (A-3)

It is contained in the set of the V ’s such that .Rvai
=.1Cjai j/

m/r
iD1
2 X�. Hence the measure of (A-3)

is smaller than R�r N.j /mC r�. To conclude the proof, we have to sum over all the possible j ’s and all
the possible b’s. Now for a given j , if j�.j /� bj � � with �� 1, then jbj � 2N.j /2. So to guarantee
(A-2) for all possible choices of j , b and r , it suffices to remove from Wm a set of measure

4
X

j2Zr

C r

Rr N.j /mC3Cd
N.j /mC2

� 4

�
2C

R

X
`2Zd

1

.1Cj`j/dC1

�r

:

Choosing C �
1

2
R

�P
`2Zd

1

.1Cj`j/dC1

��1

proves the result. �

Proof of Proposition A.1. First of all, for "1 D "2 D 0, (A-1) is a direct consequence of Lemma A.2,
choosing � �mC d C 3,  � 1 and F D F 0 (recall that r � 1).

When "1 D˙1 and "2 D 0, we will prove that for some constants C and �, we haveˇ̌
�.j /˙!`1

ˇ̌
�

C r

N.j /�
; (A-4)

5We use the formula of the gamma function valid for even integers, but the asymptotic is the same in the odd case.
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which implies inequality (A-1) for  � 1. Notice that j�.j /j �N.j /2 and thus, if j`1j � 2N.j /, (A-4)
is always true. When j`1j � 2N.j /, using that N.j ; `/D N.j /.1C j`1j/, applying Lemma A.2 with
b D 0 and V 2 F 0 D F , we get

ˇ̌
�.j /C "1!`1

ˇ̌
D
ˇ̌
�.j ; .`1; "1//

ˇ̌
�

C rC1

N.j /mCdC3.3N.j //mCdC3
�

QC r

N.j /�
;

with � D 2.mC d C 3/ and QC D 2C 2=3mCdC3.
When "1"2 D 1, a similar argument yields an estimate of the formˇ̌

�.j /˙ .!`1
C!`2

/
ˇ̌
�

C r

N.j /�
;

for some constants C , �, and for V 2 F 0 D F .
So it remains to establish an estimate of the formˇ̌

�.j /C!`1
�!`2

ˇ̌
�

QC r 7

N.j /�
; (A-5)

for some constant QC and V 2 F to be defined. Assuming j`1j � j`2j, we have

ˇ̌
!`1
�!`2

� `2
1C `

2
2

ˇ̌
�

ˇ̌̌̌
Rjv`1

j

.1Cj`1j/m
�

Rjv`2
j

.1Cj`2j/m

ˇ̌̌̌
�

R

.1Cj`1j/m
;

for all v`1
and v`2

in
�
�

1
2
; 1

2

�
; see (1-2). Therefore, if .1Cj`1j/

m � .2R=C r /N.j /mCdC3, we obtain
(A-5) directly from Lemma A.2 applied with b D `2

1
� `2

2
and choosing � DmC d C 3, QC D C=2 and

F D F 0 .
Finally, assume .1C j`1j/

m � .2R=C r /N.j /mCdC3. Then taking into account j�.j /j � N.j /2,
inequality (A-5) is satisfied when `2

2
� `2

1
� 2N.j /2. It remains to consider the case when

1Cj`1j � 1Cj`2j �

�
2

�
2R

C r
N.j /mCdC3

�2=m

C 4N.j /2
�1=2

� 2

�
3R

C r

�1=m

N.j /
mCdC3

m :

Again we use Lemma A.2 to conclude that

ˇ̌
�.j /C!`1

�!`2

ˇ̌
�

C rC2�
N.j /.1Cj`1j/.1Cj`2j/

�mCdC3

�

C rC2

�
C r

3:2mR

�mCdC3
m

N.j /mCdC3N.j /2
.mCdC3/2

m

�

QC r 4C3=m

N.j /�
;

as m>
d

2
, and with �DmCdC3C

.mC d C 3/2

m
and QC D

C
4mCdC3

m

3:2mR
. This last estimate implies (A-1).

�
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