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DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION IN
HORIZONTALLY INFINITE DOMAINS

YAN GUO AND IAN TICE

We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded
below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by
the gravity-driven incompressible Navier–Stokes equations, and the effect of surface tension is neglected
on the free surface. The long-time behavior of solutions near equilibrium has been an intriguing question
since the work of Beale (1981).

This is the second in a series of three papers by the authors that answers the question. Here we
consider the case in which the free interface is horizontally infinite; we prove that the problem is globally
well-posed and that solutions decay to equilibrium at an algebraic rate. In particular, the free interface
decays to a flat surface.

Our framework utilizes several techniques, which include

(1) a priori estimates that utilize a “geometric” reformulation of the equations;
(2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order

energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free
interface;

(3) control of both negative and positive Sobolev norms, which enhances interpolation estimates and
allows for the decay of infinite surface waves.

Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

1. Introduction

Formulation of the equations in Eulerian coordinates. We consider a viscous, incompressible fluid
evolving in a moving domain

�(t)= {y ∈6×R | −b < y3 < η(y1, y2, t)}. (1-1)

Here we assume that 6 =R2. The lower boundary of �(t) is assumed to be rigid and given, but the upper
boundary is a free surface that is the graph of the unknown function η :6×R+→ R. We assume that
b> 0 is a fixed constant, so that the lower boundary is flat. For each t , the fluid is described by its velocity
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and pressure functions (u, p) : �(t)→ R3
× R. We require that (u, p, η) satisfy the gravity-driven

incompressible Navier–Stokes equations in �(t) for t > 0:

∂t u+ u · ∇u+∇ p = µ1u in �(t),
div u = 0 in �(t),
∂tη = u3− u1∂y1η− u2∂y2η on {y3 = η(y1, y2, t)},
(pI −µD(u))ν = gην on {y3 = η(y1, y2, t)},
u = 0 on {y3 =−b}

(1-2)

for ν the outward-pointing unit normal on {y3 = η}, I the 3× 3 identity matrix, (Du)i j = ∂i u j + ∂ j ui the
symmetric gradient of u, g > 0 the strength of gravity, and µ> 0 the viscosity. The tensor (pI −µD(u))
is known as the viscous stress tensor. The third equation in (1-2) implies that the free surface is advected
with the fluid. Note that in (1-2) we have shifted the gravitational forcing to the boundary and eliminated
the constant atmospheric pressure, patm, in the usual way, by adjusting the actual pressure p̄ according to
p = p̄+ gy3− patm.

The problem is augmented with initial data (u0, η0) satisfying certain compatibility conditions, which
for brevity we will not write now. We will assume that η0 >−b on 6.

Without loss of generality, we may assume that µ= g = 1. Indeed, a standard scaling argument allows
us to scale so that µ= g = 1, at the price of multiplying b by a positive constant. This means that, up to
renaming b, we arrive at the above problem with µ= g = 1.

The problem (1-2) possesses a natural physical energy. For sufficiently regular solutions, we have an
energy evolution equation that expresses how the change in physical energy is related to the dissipation:

1
2

∫
�(t)
|u(t)|2+ 1

2

∫
6

|η(t)|2+ 1
2

∫ t

0

∫
�(s)
|Du(s)|2 ds = 1

2

∫
�(0)
|u0|

2
+

1
2

∫
6

|η0|
2. (1-3)

The first two integrals constitute the kinetic and potential energies, while the third constitutes the dissipation.
The structure of this energy evolution equation is the basis of the energy method we will use to analyze
(1-2).

Geometric form of the equations. In order to work in a fixed domain, we want to flatten the free surface
via a coordinate transformation. We will not use a Lagrangian coordinate transformation, but rather a
flattening transformation introduced by Beale [1984]. To this end, we consider the fixed domain

� := {x ∈6×R | −b < x3 < 0}, (1-4)

for which we will write the coordinates as x ∈�. We think of 6 as the upper boundary of �, and write
6b := {x3 =−b} for the lower boundary. We continue to view η as a function on 6×R+. We define

η̄ := Pη = harmonic extension of η into the lower half space, (1-5)

where Pη is defined by (A-17). The harmonic extension η̄ allows us to flatten the coordinate domain via
the mapping

� 3 x 7→ (x1, x2, x3+ η̄(x, t)(1+ x3/b))=:8(x, t)= (y1, y2, y3) ∈�(t). (1-6)
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Note that 8(6, t)= {y3 = η(y1, y2, t)} and 8( · , t)|6b = I d6b , that is, 8 maps 6 to the free surface and
keeps the lower surface fixed. We have

∇8=

1 0 0
0 1 0
A B J

 and A := (∇8−1)T =

1 0 −AK
0 1 −BK
0 0 K

 (1-7)

for

A = ∂1η̄b̃, B = ∂2η̄b̃,

J = 1+ η̄/b+ ∂3η̄b̃, K = J−1, (1-8)

b̃ = (1+ x3/b).

Here J = det∇8 is the Jacobian of the coordinate transformation.
If η is sufficiently small (in an appropriate Sobolev space), the mapping 8 is a diffeomorphism. This

allows us to transform the problem to one on the fixed spatial domain � for t ≥ 0. In the new coordinates,
the PDE (1-2) becomes

∂t u− ∂t η̄b̃K∂3u+ u · ∇Au−1Au+∇A p = 0 in �,
divA u = 0 in �,
SA(p, u)N= ηN on 6,
∂tη = u ·N on 6,
u = 0 on 6b,

u(x, 0)= u0(x), η(x ′, 0)= η0(x ′).

(1-9)

Here we have written the differential operators ∇A, divA, and 1A with their actions given by (∇A f )i :=
Ai j∂ j f , divA X := Ai j∂ j X i , and 1A f = divA ∇A f for appropriate f and X ; for u · ∇Au we mean
(u · ∇Au)i := u j A jk∂kui . We have also written N := −∂1ηe1 − ∂2ηe2 + e3 for the nonunit normal to
{y3= η(y1, y2, t)}, and we write SA(p, u)= (pI−DAu) for the stress tensor, where I is the 3×3 identity
matrix and (DAu)i j =Aik∂ku j +A jk∂kui is the symmetric A-gradient. Note that if we extend divA to
act on symmetric tensors in the natural way, divA SA(p, u) = ∇A p−1Au for vector fields satisfying
divA u = 0.

Recall that A is determined by η through the relation (1-7). This means that all of the differential
operators in (1-9) are connected to η, and hence to the geometry of the free surface. This geometric
structure is essential to our analysis, as it allows us to control high-order derivatives that would otherwise
be out of reach.

Beale’s nondecay theorem. Many authors have considered problems similar to (1-2), both with and
without viscosity and surface tension [Bae 2011; Beale 1981; 1984; Beale and Nishida 1985; Germain
et al. 2009; Hataya 2009; Lannes 2005; Nishida et al. 2004; Solonnikov 1977; Sylvester 1990; Tani and
Tanaka 1995; Wu 1997; 1999; 2009; 2011]. We refer the reader to the introduction of [Guo and Tice
2013b] for a more thorough discussion of how these results relate to ours.
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Beale [1981] developed a local existence theory for the problem (1-2) in Lagrangian coordinates, where
the unknowns are replaced with v = u ◦ ζ , q = p ◦ ζ for ζ the Lagrangian flow map, which satisfies
∂tζ = v. The result showed that (roughly speaking), given v0 ∈ H r−1 for r ∈ (3, 7/2), there exists a unique
solution v on a time interval (0, T ), with T depending on v0, such that v ∈ L2 H r

∩ H r/2L2. A second
local existence theorem was then proved for small data near equilibrium. It showed that for any fixed
0< T <∞, there exists a collection of data small enough that a unique solution exists on (0, T ).

The second result suggests that solutions should exist globally in time for small data. If global solutions
do exist, it is natural to expect the free surface to decay to 0 as t → ∞. However, the third result
[Beale 1981] was a nondecay theorem that showed that a “reasonable” extension to small-data global
well-posedness with decay of the free surface fails. Among other things, the theorem’s hypotheses
require that

v ∈ L1([0,∞); H r (�)) for r ∈ (3, 7/2),

ζ3|6 ∈ L2([0,∞); L2(6)),

v(x, 0)= 0, ζ(x, 0)= x + ε2(x),

lim
t→∞

ζ3|6 = 0,

(1-10)

where � is given by (1-4), ζ(x, 0) is the flow map that gives the geometry of the initial fluid domain, 2
is a specially chosen function satisfying certain conditions, and ε > 0 is a small parameter. Note that the
third line in (1-10) implies that the system is initially close to equilibrium, and the fourth line implies that
the free surface decays to 0 as t→∞.

The proof of the nondecay theorem, which is a reductio ad absurdum, hinges on the special conditions
imposed on the map 2 and the fact that v ∈ L1 H r . In the discussion of this result, Beale pointed out that
it does not imply the nonexistence of global-in-time solutions, but rather that establishing global-in-time
results requires stronger or different hypotheses than those imposed in the nondecay theorem.

The nondecay theorem raises two intriguing questions. First, is viscosity alone capable of producing
global well-posedness? Second, if global solutions exist, do they decay as t →∞? Our main result
answers both questions in the affirmative. In order to avoid the applicability of the nondecay theorem, we
must show why its hypotheses are not satisfied. We would like to highlight three crucial ways in which
we do this. The first and most obvious is that we work in a different coordinate system and within a
different functional framework. In particular this requires higher regularity of the initial data and imposes
more compatibility conditions than are satisfied by the data in the nondecay theorem.

Second, we will find (see (1-21)) that u decays according to ‖u(t)‖22≤C/(1+ t)1+λ for λ∈ (0, 1). This
is not sufficiently rapid to guarantee that u belongs to the space L1([0,∞); H 2(�)), which is in violation
of the first line of (1-10), a key assumption in the nondecay result. Technically, our u is in Eulerian
coordinates, but if we formally identify u with v, we see the difficulty clearly: we cannot integrate the
equation ∂tζ = v to obtain ζ as t→∞, which means that we cannot make sense of the fourth equation in
(1-10). One of the advantages of the Eulerian and geometric formulations is that the free surface function
η may be analyzed without regard to what is happening to the entire flow map ζ in �.
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Third, we find that η decays in time according to ‖η(t)‖20 ≤ C/(1+ t)λ for λ ∈ (0, 1). This is not fast
enough to guarantee that η is in L2([0,∞); L2(6)). If we identify η with ζ3|6 , we see that we cannot
guarantee that the second condition in (1-10) holds.

The above decay rates should be compared to those in the problem with surface tension (see the
discussion on page 1442), which in general allows for faster decay to equilibrium. In this context, [Beale
and Nishida 1985] showed that the decay estimates ‖u(t)‖22 ≤ C/(1+ t)2 and ‖η(t))‖20 ≤ C/(1+ t) are
sharp. As such, we should not expect u ∈ L1 H 2 or η ∈ L2L2 in our problem.

Local well-posedness. The a priori estimates we develop in this paper are done in different coordinates
and in a different functional framework from those used in [Beale 1981]. As such, we need a local
well-posedness theory for (1-9) in our framework. We proved this in Theorem 1.1 of our companion
paper [Guo and Tice 2013b]. Since we will need the result here, we record it now.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We take
H k(�) and H k(6) for k ≥ 0 to be the usual Sobolev spaces. When we write norms we suppress the H
and � or 6. When we write ‖∂ j

t u‖k and ‖∂ j
t p‖k we always mean that the space is H k(�), and when we

write ‖∂ j
t η‖k we always mean that the space is H k(6).

In the following we write 0 H 1(�) := {u ∈ H 1(�) | u|6b = 0} and

XT = {u ∈ L2([0, T ]; 0 H 1(�)) | divA(t) u(t)= 0 for a.e. t}. (1-11)

The compatibility conditions for the initial data are the natural ones that would be satisfied for solutions
in our functional framework. They are cumbersome to write, so we do not record them here. We refer the
reader to [Guo and Tice 2013b] for their precise definition.

Theorem 1.1. Let N ≥3 be an integer. Assume that u0 and η0 satisfy the bound ‖u0‖
2
4N+‖η0‖

2
4N+1/2<∞

as well as the appropriate compatibility conditions. There exist δ0, T0 ∈ (0, 1) such that if

0< T ≤ T0 min
{

1, 1
‖η0‖

2
4N+1/2

}
, (1-12)

and ‖u0‖
2
4N + ‖η0‖

2
4N ≤ δ0, there exists a unique solution (u, p, η) to (1-9) on the interval [0, T ] that

achieves the initial data. The solution obeys the estimates

2N∑
j=0

sup
0≤t≤T

‖∂
j

t u‖24N−2 j +

2N∑
j=0

sup
0≤t≤T

‖∂
j

t η‖
2
4N−2 j +

2N−1∑
j=0

sup
0≤t≤T

‖∂
j

t p‖24N−2 j−1

+

∫ T

0

( 2N∑
j=0

‖∂
j

t u‖24N−2 j+1+

2N−1∑
j=0

‖∂
j

t p‖24N−2 j

)
+‖∂2N+1

t u‖2(XT )∗

+

∫ T

0

(
‖η‖24N+1/2+‖∂tη‖

2
4N−1/2+

2N+1∑
j=2

‖∂
j

t η‖
2
4N−2 j+5/2

)
≤ C(‖u0‖

2
4N +‖η0‖

2
4N + T ‖η0‖

2
4N+1/2) (1-13)
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and
sup

0≤t≤T
‖η‖24N+1/2 ≤ C(‖u0‖

2
4N + (1+ T )‖η0‖

2
4N+1/2) (1-14)

for a universal constant C > 0. The solution is unique among functions that achieve the initial data and
for which the sum of the first three sums in (1-13) is finite. Moreover, η is such that the mapping 8( · , t),
defined by (1-6), is a C4N−2 diffeomorphism for each t ∈ [0, T ].

Remark 1.2. All of the computations involved in the a priori estimates that we develop in this paper
are justified by Theorem 1.1 and a specialization of it, Theorem 10.7, that we prove later. In this sense,
Theorem 1.1 is a necessary ingredient in the global analysis of (1-9).

Main result. Sylvester [1990] and Tani and Tanaka [1995] studied the existence of small-data global-in-
time solutions via the parabolic regularity method pioneered by Beale [1981] and Solonnikov [1977].
The papers make no claims about the decay of the solutions. It has been pointed out in the literature that
the proofs in [Sylvester 1990; Tani and Tanaka 1995] are incomplete, so, to our knowledge, the existence
of global solutions is still an open question. An interesting feature of our analysis, as described in detail
later, is that our construction of global-in-time solutions is predicated on the decay of the solutions, that
is, the decay is a necessary ingredient in global existence.

To state our global well-posedness result, we must first define various energies and dissipations. The
exact form of some of the energies is too complicated to write out here, so we will neglect doing so,
referring to the proper definitions later in the paper (pages 1450–1452). We assume that λ∈ (0, 1) is a fixed
constant and we define Iλu according to (A-7) and Iλη according to (A-8). The high-order energy is

E10 := ‖Iλu‖20+
10∑
j=0

‖∂
j

t u‖220−2 j +

9∑
j=0

‖∂
j

t p‖219−2 j +‖Iλη‖
2
0+

10∑
j=0

‖∂
j

t η‖
2
20−2 j , (1-15)

and the high-order dissipation rate is

D10 := ‖Iλu‖21+
10∑
j=0

‖∂
j

t u‖221−2 j +‖∇ p‖219+

9∑
j=1

‖∂
j

t p‖220−2 j

+‖Dη‖220−3/2+‖∂tη‖
2
20−1/2+

11∑
j=2

‖∂
j

t η‖
2
20−2 j+5/2. (1-16)

We write the high-order spatial derivatives of η as

F10 := ‖η‖
2
20+1/2. (1-17)

We define the low-order energies E7,1 and E7,2 according to (2-52) and (2-53) with n = 7. Here the index
m in E7,m is a “minimal derivative” count that is included in order to improve decay rates in our estimates.
Finally, we define the total energy

G10(t)= sup
0≤r≤t

E10(r)+
∫ t

0
D10(r) dr +

2∑
m=1

sup
0≤r≤t

(1+ r)m+λE7,m(r)+ sup
0≤r≤t

F10(r)
(1+ r)

. (1-18)

Notice that the low-order terms E7,m are weighted, so bounds on G10 yield decay estimates for E7,m .
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Theorem 1.3. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem 1.1. There
exists a κ > 0 such that if E10(0)+F10(0) < κ , there exists a unique solution (u, p, η) to (1-9) on the
interval [0,∞) that achieves the initial data. The solution obeys the estimate

G10(∞)≤ C1(E10(0)+F10(0)) < C1κ, (1-19)

where C1 > 0 is a universal constant. For any 0≤ ρ < λ, we have

sup
t≥0

[
(1+ t)2+ρ‖u(t)‖2C2(�)

]
≤ C(ρ)(E10(0)+F10(0)) < C(ρ)κ, (1-20)

for C(ρ) > 0 a constant depending on ρ. Also,

sup
t≥0

[
(1+ t)1+λ‖u(t)‖22+ (1+ t)1+λ‖η(t)‖2L∞ +

1∑
j=0

(1+ t) j+λ
‖D jη(t)‖20

]
≤ C(E10(0)+F10(0))

< Cκ (1-21)

for a universal constant C > 0.

Remark 1.4. In our companion paper [Guo and Tice 2013a], where we analyze (1-9) in horizontally
periodic domains, we require η0 to satisfy the “zero average condition”∫

6

η0 = 0. (1-22)

For the horizontally periodic problem, this condition propagates in time (see Lemma 2.7, a variant of
which holds in the periodic case), from which one sees that (1-22) is a necessary condition for decay in
L2 or L∞. It also serves as an obstacle to applying Beale’s nondecay theorem since the conditions that
the map 2 in (1-10) must satisfy are incompatible with (1-22). For a complete discussion, we refer to
[Guo and Tice 2013a].

In the present case, the bound E10(0)<κ requires, in particular, that the initial data satisfy ‖Iλη0‖
2
0<∞.

This condition can be viewed as a sort of weak version of the zero average condition in the infinite case.
To see this, note that if η0 is sufficiently nice, say L1(6), then

0=
∫
6

η0 ⇐⇒ η̂0(0)= 0, (1-23)

for ·̂ the Fourier transform. This means that the zero average condition is equivalent to requiring that
η̂0 vanishes at the origin. We enforce a weak version of this by requiring that Iλη0 ∈ L2(6)= H 0(6),
which requires that |ξ |−2λ

|η̂0(ξ)|
2 is integrable near ξ = 0. Since λ < 1, this does not require η̂0(0)= 0,

but it does prevent |η̂0| from being “too big” at the origin. Note that the condition Iλη0 ∈ L2 is more
general than (1-22).

Remark 1.5. The decay estimates (1-20) and (1-21) do not follow directly from the decay of E7,1(t) and
E7,2(t) implied by (1-19). Rather, they are deduced via auxiliary arguments, employing (1-19).

Remark 1.6. The decay of ‖u(t)‖22 given in (1-21) is not fast enough to guarantee that u belongs to
L1([0,∞); H 2(�)). Even if we could take λ= 1, we would still get logarithmic blow-up of the L1 H 2

norm.
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Remark 1.7. The function η is sufficiently small to guarantee that the mapping 8( · , t), defined in (1-6),
is a diffeomorphism for each t ≥ 0. As such, we may change coordinates to y ∈ �(t) to produce a
global-in-time, decaying solution to (1-2).

Remark 1.8. Later in the paper, we let N ≥ 3 be an integer and perform our analysis in terms of estimates
at the 2N and N+2 levels; we take N = 5 in the present case to get the 10 and 7 appearing above. This is
not optimal. With somewhat more work, we can improve our results to N = 4 with the restriction that λ ∈
(3/5, 1). It is likely that this can be further improved by adjusting the scheme from 2N and N+2 to some-
thing slightly different. We have sacrificed optimality in order to simplify the presentation and make our
“two-tier energy method” clearer. The first tier is at the level 2N and the second at the level N+2, which is
meant to be roughly half of the first tier. The extra+2 is added to aid in applying some Sobolev embeddings.

Remark 1.9. It was established in [Castro et al. 2011; 2012] that solutions to inviscid free boundary
problems, starting from smooth initial data, can develop finite-time splash singularities. Given this, it is
reasonable to expect that a generic large-data version of Theorem 1.3 does not hold.

The proof of Theorem 1.3 is completed in Section 11. We now present a summary of the principal
difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

Principal difficulties. In the study of the unforced incompressible Navier–Stokes equations in a fixed
bounded domain with no-slip boundary conditions, it is natural to use the energy method to prove that
solutions decay in time. Indeed, for sufficiently smooth solutions one may prove an analogue of (1-3)
that relates the natural energy and dissipation:

∂t E+D := ∂t

∫
�

|u(t)|2

2
+

1
2

∫
�

|Du(t)|2 = 0. (1-24)

Korn’s inequality allows us to control CE(t)≤D(t) for a constant C>0 independent of time, which shows
that the dissipation is stronger than the energy. From this and Gronwall’s lemma we may immediately
deduce that the energy E decays exponentially in time and that we have the estimate E(t)≤E(0) exp(−Ct).

If one seeks to similarly use the energy method to obtain decay estimates for solutions to (1-2), one
encounters a fundamental obstacle that may already be observed in the differential form of (1-3)

∂t

(∫
�(t)

|u(t)|2

2
+

∫
6

|η(t)|2

2

)
+

1
2

∫
�(t)
|Du(t)|2 = 0. (1-25)

The difficulty is that the dissipation provides no direct control of the η-term in the energy. As such, we
must resort to using the equations (1-2) to try to control ‖η(t)‖0 in terms of ‖Du(t)‖0. From (1-2) we see
that there are only two available routes: solving for η in the fourth equation, or using the third equation,
which is the kinetic transport equation. If we pursue the first route, we must be able to control

‖p(t)‖2H0(6)
+‖Du(t)ν · ν‖2H0(6)

. ‖Du(t)‖2H0(�(t)), (1-26)

which is not possible. If instead we pursue the second route, we must estimate η as a solution to the
kinematic transport equation. Such an estimate (see Lemma A.9) only allows us to estimate ‖η(t)‖0 in
terms of

∫ t
0 ‖Du(s)‖0 ds. That is, transport estimates do not provide control of the η-part of the energy in
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terms of the “instantaneous” dissipation, but rather in terms of the “cumulative” integrated dissipation.
From this we see that in our problem the dissipation is actually weaker than the energy, so we cannot
argue as above to deduce exponential decay.

We might hope that we could avoid this problem by working with a high-regularity energy method,
but we will always encounter the same type of problem as above. Regardless of the level of regularity in
the energy, the instantaneous dissipation is always weaker than the instantaneous energy, which prevents
us from deducing exponential decay of the energy. Instead we pursue a strategy similar to one employed
in [Strain and Guo 2006] for another problem where the dissipation is weaker than the energy. We first
show that high-order energies are bounded by using an integrated version of (1-25) for derivatives of the
solution. Then we consider a low-order energy and show that an equation of the form (1-25) holds, that
is, ∂t Elow+CDlow ≤ 0. Now, instead of trying to estimate (1-26) for low-order derivatives, we instead
interpolate between low-order derivatives and high-order derivatives, which are bounded. Instead of an
estimate CElow ≤ Dlow, we must prove one of the form CE1+θ

low ≤ Dlow for some θ > 0. We can then
use this to derive the differential inequality ∂t Elow + CE1+θ

low ≤ 0, which can be integrated to see that
Elow(t). Elow(0)/(1+ t)1/θ . We would then find that the low-order energy decays algebraically in time
rather than exponentially.

To complete this program, we must overcome a pair of intertwined difficulties. First, to close the
high-order energy estimates with, say ‖u‖24N+1 for an integer N ≥ 0 in the dissipation, we have to control
η in H 4N+1/2. The only option for this is to again appeal to estimates for solutions to the transport
equation, which say (roughly speaking) that

sup
0≤t≤T

‖η‖24N+1/2 ≤ C exp
(

C
∫ T

0
‖Du(t)‖H2(6) dt

)[
‖η0‖

2
4N+1/2+ T

∫ T

0
‖u(t)‖24N+1 dt

]
. (1-27)

Without knowing a priori that u decays, the right side of this estimate has the potential to grow at the
rate of (1+ T )eC

√
T . Even if u decays rapidly, the right side can still grow like (1+ T ). This growth

is potentially disastrous in closing the high-order, global-in-time estimates. To manage the growth, we
must identify a special decaying term that always appears in products with the highest derivatives of η.
If the special term decays quickly enough, we can hope to balance the growth and close the high-order
estimates. Due to the growth in (1-27), we believe that it is not possible to construct global-in-time
solutions without also deriving a decay result.

This leads us to the second difficulty in this program. The decay rate of the special term is dictated
by the decay rate of the low-order energy, so we must make sure that the low-order energy decays
sufficiently quickly. This amounts to making the constant θ > 0 appearing in the interpolation estimates
above sufficiently small. We must then carefully choose the terms that will appear in the low-order and
high-order energies in order to keep θ small enough. It turns out that this requires us to enforce a minimal
derivative count in the low-order energy, that is, only terms with m derivatives or more are allowed. It
also requires us to extend the high-order energy to include estimates of negative horizontal derivatives up
to order λ ∈ (0, 1). Then θ = θ(m, λ), and only by taking m = 2, λ > 0 can we make θ small enough to
achieve the desired decay rate.
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The resolution of these intertwined difficulties requires a delicate and involved analysis. We now sketch
some of the techniques we will employ.

Horizontal energy evolution estimates. In order to use the natural energy structure of the problem
(given in Eulerian coordinates by (1-3)) to study high-order derivatives, we can only apply derivatives
that do not break the structure of the boundary condition u = 0 on 6b. Since 6b is flat, any differential
operator ∂α = ∂α0

t ∂
α1
1 ∂

α2
2 is allowed. We apply these operators for various choices of α and sum the

resulting energy evolution equations. After estimating the nonlinear terms that appear from differentiating
(1-9), we are eventually led to evolution equations for these “horizontal” energies and dissipations, E10,
D10, E7,m , and D7,m for m = 1, 2 (see (2-45) and (2-47)–(2-49) for precise definitions). Here we write
bars to indicate “horizontal” derivatives. Roughly speaking, at high-order we have the estimate

E10(t)+
∫ t

0
D10(r) dr . E10(0)+

∫ t

0
(E10(r))θD10(r) dr +

∫ t

0

√
D10(r)K(r)F10(r) dr, (1-28)

where K is of the form
K= ‖∇u‖2C1 +‖Du‖2H2(6)

, (1-29)

and θ > 0; and at low-order we have

∂t E7,m +D7,m . Eθ10D7,m, (1-30)

where D7,m is the low-order dissipation. Notice that the product KF10 in (1-28) multiplies low-order
norms of u against the highest-order norm of η. Technically, the estimate (1-28) also involves Iλu and
Iλη in addition to horizontal derivatives. For the moment let us ignore these terms and continue with the
discussion of our energy method. We will discuss Iλ in detail below.

The actual derivation of bounds like (1-28)–(1-30) is delicate and depends crucially on the geometric
structure of the equations given in (1-9). Indeed, if we attempted to rewrite (1-9) as a perturbation of the
usual constant-coefficient Navier–Stokes equations, we would fail to achieve the estimate (1-28) because
we would be unable to control the interaction between ∂10

t p and div ∂10
t u, the latter of which does not

vanish in the geometric form of the equations.

Comparison estimates. The next step in the analysis is to replace the horizontal energies and dissipations
with the full energies and dissipations. We prove that there is a universal 0< δ < 1 such that if E10 ≤ δ,
then

E10 . E10, D10 . D10+KF10, E7,m . E7,m, D7,m . D7,m . (1-31)

This estimate is extremely delicate and can only be obtained by carefully using the structure of the
equations (1-9). We make use of every bit of information from the boundary conditions and the vorticity
equations to establish it. There are two structural components of the estimates that are of such importance
that we mention them now. First, the equation divA u = 0 allows us to write ∂3u3 =−(∂1u1+∂2u2)+G2

for some quadratic nonlinearity G2. This allows us to “trade” a vertical derivative of u3 for horizontal
derivatives of u1 and u2, an indispensable trick in our analysis. Second, the interaction between the
parabolic scaling of u (∂t u ∼1u) and the transport scaling of η (∂tη ∼ u3|6) allows us to gain regularity
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for the temporal derivatives of η in the dissipation, and it also gives us control of ∂11
t η, which is one more

time derivative than appears in the energy.

Two-tier energy method. Suppose we know that

K(r)≤ δ

(1+r)2+γ
(1-32)

for some 0< δ < 1 and γ > 0. Since η satisfies a transport equation, we may use Lemma A.9 to derive
an estimate of the form

sup
0≤r≤t

F10(r). exp
(

C
∫ t

0

√
K(r) dr

)[
F10(0)+ t

∫ t

0
D10(r) dr

]
. (1-33)

Although the right side of this equation could potentially blow up exponentially in time, the decay of K

in (1-32) implies that

sup
0≤r≤t

F10(r). F10(0)+ t
∫ t

0
D10(r) dr. (1-34)

Note that γ > 0 in (1-32) is essential; we would not be able to tame the exponential term in (1-33) without
it, and then (1-34) would not hold. This estimate allows for F10(t) to grow linearly in time, but in the
product K(r)F10(r) that appears in (1-28), we can use the decay of K to balance this growth. Then if
sup0≤r≤t E10(r)≤ δ with δ small enough, we can combine (1-28), (1-31), (1-32), and (1-34) to get the
estimate

sup
0≤r≤t

E10(r)+
∫ t

0
D10(r) dr . E10(0)+F10(0). (1-35)

This highlights the first step of our two-tier energy method: the decay of low-order terms (that is, K) can
balance the growth of F10, yielding boundedness of the high-order terms. In order to close this argument,
we must use a second step: the boundedness of the high-order terms implies the decay of low-order terms,
and in particular the decay of K.

To obtain this decay, we combine (1-30) and (1-31) to see that

∂t E7,m +
1
2 D7,m ≤ 0 (1-36)

if E10 ≤ δ for δ small enough. If we could show that E7,m . D7,m , this estimate would yield exponential
decay of E7,m and E7,m . An inspection of E7,m and D7,m (see (2-45) and (2-51)) shows that D7,m can
control every term in E7,m except ‖η‖20 (and ‖∂tη‖

2
0 when m = 2). In a sense, this means that exponential

decay fails precisely because the dissipation fails to control η at the lowest order. In lieu of E7,m . D7,m ,
we interpolate between E10 (which can control all the lowest-order terms of η) and D7,m :

E7,m . E
1/(m+λ+1)
10 D

(m+λ)/(m+λ+1)
7,m . (1-37)

Combining (1-36) with (1-37) and the boundedness of E10 in terms of the data, (1-35), then allows us to
deduce that

∂t E7,m +
C

(E10(0)+F10(0))1/(m+λ)
(E7,m)

1+1/(m+λ)
≤ 0. (1-38)
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Integrating this differential inequality and employing some auxiliary estimates then leads us to the bound

E7,m(t). E7,m(t).
E10(0)+F10(0)
(1+ t)m+λ

. (1-39)

We thus use the boundedness of high-order terms to deduce the decay of low-order terms, completing the
second step of the two-tier energy estimates.

Negative Sobolev estimates via Iλ. Notice that the decay rate in (1-39) is enhanced by λ ∈ (0, 1). As
we will see below, the parameter γ > 0 in the decay of K, given in (1-32), is determined by the rate m+λ.
If we were to set λ= 0, we would not get γ > 0 and we would be unable to balance the growth of F10.
Estimates (1-34) and (1-35) would fail, and we would be unable to close our estimates. We thus see the
necessity of introducing the “negative Sobolev” estimates via the horizontal Riesz potential Iλ.

The difficulty then is that we must apply the nonlocal operator Iλ to a nonlinear PDE and then study
the evolution of Iλu and Iλη. The flatness of the lower boundary 6b is essential here, since it allows us
to have Iλu = 0 on 6b. This means that the operator Iλ does not break the boundary conditions, and
we can use the natural energy structure to include ‖Iλu‖20 and ‖Iλη‖20 in the energy and ‖Iλu‖21 in the
dissipation. To close the estimates for these terms, we must be able to estimate Iλ acting on various
nonlinearities in terms of Eθ10D10 for some θ > 0. These estimates turn out to be rather delicate, and we
must again employ almost all of the structure of the equations and boundary conditions in order to derive
them. They are also responsible for the constraint λ < 1. For λ≥ 1, the nonlinear estimates would not
work as we need them to. In general, for quadratic nonlinearities in dimension n, we expect to restrict
λ < n/2.

We should point out that, a priori, we do not know that Iλu(t) or Iλη(t) even make sense for t > 0,
since this is not provided by Theorem 1.1. To show that these terms are well-defined, which then justifies
applying Iλ to the equations, we must actually prove a specialization of the local well-posedness theorem
that includes the boundedness of Iλu, Iλ p, and Iλη. We do this in Theorem 10.7.

Interpolation estimates and minimal derivative counts. The negative Sobolev estimates alone do not
close the overall estimates in our two-tier energy method. To do that, we must verify that K decays as in
(1-32) for some γ > 0. An inspection of E7,m shows that we cannot directly control K. E7,m for either
m = 1 or m = 2, so we must resort to an interpolation argument. We show that through interpolation it is
actually possible to control K. E7,1, but the E7,1 only decays like (1+ t)−1−λ, which is not fast enough
for (1-32). The energy E7,2 decays at a faster rate, but we cannot show that K. E7,2. Instead, we show
that if E7,2(t)≤ ε(1+ t)−2−λ, then

K. E
(8+2λ)/(8+4λ)
7,2 . ε(8+2λ)/(8+4λ) 1

(1+t)2+λ/2
, (1-40)

so that, after renaming δ = Cε(8+2λ)/(8+4λ) and γ = λ/2> 0, we find that (1-32) does hold.
The parameters m and λ interact in an important way. The decay rate increases with m and with λ. As

mentioned above, we are technically constrained to λ < 1, so we must increase m to 2 in order to hit
the target decay rate in (1-32). It is tempting, then, to consider abandoning the Iλ operators and simply
use a third energy with m ≥ 3, which should decay like (1+ t)−m . However, if one were to do this for
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any m ≥ 3, one would find that there is a corresponding decrease in the interpolation power: K. Eθ(m)7,m ,
where θ(m) decreases with m in such a way that mθ(m)≤ 2, so that (1-32) would fail. We thus see that
the negative estimates are not just a convenience, but rather a necessity.

The derivation of (1-40) is delicate, requiring a two-step bootstrap process to iteratively improve
the interpolation powers. We again crucially make use of the structure of the equations and boundary
conditions. We extensively interpolate between our negative Sobolev estimates and our positive Sobolev
estimates. The utility of the negative estimates is quite clear here: the interpolation powers improve when
we interpolate with negative derivatives (as opposed to say, no derivatives).

To complete the proof of (1-40), we crucially use an estimate for I1∂tη. This corresponds to λ= 1,
so we are not able to apply I1∂t to the equations to obtain the estimate. Rather, the estimate comes for
free from the transport equation for η, which allows us to write ∂tη = −∂1U1− ∂2U2 for Ui ∈ H 1. In
our analysis of the horizontally periodic problem [Guo and Tice 2013a], where we can take 6 = T2, this
identity and (1-22) give rise to a Poincaré inequality ‖η(t)‖20. ‖Dη(t)‖

2
0 for t ≥ 0, which is crucial in our

analysis there. From this we see that the estimate for I1∂tη is of analytic importance for the problem (1-2).
The interpolation of negative and positive Sobolev estimates provides a completely new tool in the

study of time decay in dissipative PDE problems in the whole (or semi-infinite) space. For the viscous
surface wave problem, a particular advantage of the negative-positive method is that, unlike the usual
L p
− Lq machinery, our norms are preserved along the time evolution. We anticipate that this method

will prove useful in the analysis of other dissipative equations.

Remark 1.10. After the completion of this paper we became aware of [Hataya and Kawashima 2009],
which is an announcement of a decay result for the viscous surface wave problem in horizontally infinite
domains. The paper provides a terse sketch of their proposed proof that employs a modification of the
Beale–Solonnikov parabolic framework, which is a framework completely different from ours. Full
details of the proof are promised in forthcoming work, but to our knowledge no such work has appeared
in the literature to date. From the information provided in the sketch, it is unclear to us how the decay
rates involved, none of which are faster than 1/(1+ t)2 for any norm-squared of the velocity field, are
sufficiently rapid to balance the growth of the highest derivatives of η. In particular, it is not clear to us
how their method can provide control of K as in (1-32), which we need to close the transport estimate
(1-33) and to control the growth of F10 in (1-28) and (1-31).

Comparison to the periodic problem. We proved in [Guo and Tice 2013a] the analogue of Theorem 1.3
for horizontally periodic domains. In this context we take N ≥ 3 to be an integer and consider energies
and dissipations E2N , D2N , F2N , and G2N ; these are modifications of what we use here (with N = 5) that
include temporal derivatives up to order 2N . See that paper for the precise definitions. By increasing N ,
we can achieve arbitrarily fast algebraic rates for the solutions, which we identify as “almost exponential
decay.”

In order to compare with Theorem 1.3, we record a version of the periodic result now.

Theorem 1.11. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem 1.1 and
η0 satisfies the zero average condition (1-22). Let N ≥ 3 be an integer. There exists a 0< κ = κ(N ) such
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that if E2N (0)+F2N (0) < κ , there exists a unique solution (u, p, η) to (1-9) on the interval [0,∞) that
achieves the initial data. The solution obeys the estimates

G2N (∞)≤ C1(E2N (0)+F2N (0)) < C1κ, (1-41)

sup
t≥0
(1+ t)4N−8

[‖u(t)‖22N+4+‖η(t)‖
2
2N+4] ≤ C1(E2N (0)+F2N (0)) < C1κ, (1-42)

where C1 > 0 is a universal constant.

Remark 1.12. A key difference between the periodic result, Theorem 1.11, and the nonperiodic result,
Theorem 1.3, is that in the periodic case, increasing N also increases the decay rate. No such gain is
possible in the nonperiodic case, which is why we specialize to the case N = 5 there. In the periodic
case, we do not use the same type of interpolation arguments that we use in the infinite case. This allows
us to relax to N ≥ 3.

Remark 1.13. Hataya [2009] studied the periodic problem with a flat bottom. Using the Beale–Solonnikov
parabolic theory [Beale 1981; 1984; Solonnikov 1977], it was shown that∫

∞

0
(1+ t)2‖u(t)‖2r−1 dt + sup

t≥0
(1+ t)2‖η(t)‖2r−2 <∞ (1-43)

for r ∈ (5, 11/2). Our result on the periodic problem is an improvement of this in two important ways.
First, we establish faster decay rates by working in a higher regularity context. Second, we allow for a
more general non-flat bottom geometry (see [Guo and Tice 2013a] for details).

Comparison to the case with surface tension. If the effect of surface tension is included at the air-fluid
free interface, the formulation of the PDE must be changed. Surface tension is modeled by modifying the
fourth equation in (1-2) to be

(pI −µD(u))ν = gην− σHν, (1-44)

where H = ∂i (∂iη/
√

1+ |Dη|2) is the mean curvature of the surface {y3 = η(t)} and σ > 0 is the surface
tension.

Beale [1984] proved small-data global well-posedness for the problem with surface tension in horizon-
tally infinite domains. The flattened coordinate system we employ was introduced in [Beale 1984] and
used in place of Lagrangian coordinates. However, Beale employed a change of unknown velocities that
is more complicated than just a coordinate change. Well-posedness was demonstrated with u ∈ L2 H r and
η ∈ L2 H r+1/2, given that u0 ∈ H r−1/2, η0 ∈ H r are sufficiently small for r ∈ (3, 7/2). In this context it
is understood that surface tension leads to the decay of certain modes, thereby aiding global existence.

Beale and Nishida [1985] studied the asymptotic properties of the solutions constructed in [Beale
1984]. They showed that if η0 ∈ L1(6), then

sup
t≥0
(1+ t)2‖u(t)‖22+ sup

t≥0

2∑
j=1

(1+ t)1+ j
‖D jη(t)‖20 <∞, (1-45)

and that this decay rate is optimal. Taking λ≈ 1 in our Theorem 1.3, the estimates (1-21) yield almost
the same decay rates.
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Nishida, Teramoto, and Yoshihara [Nishida et al. 2004] showed that in horizontally periodic domains
with surface tension and a flat bottom, if η0 has zero average, there exists a γ > 0 such that

sup
t≥0

eγ t
[‖u(t)‖22+‖η(t)‖

2
3]<∞. (1-46)

In this case, (1-44) gives a third way of estimating η in terms of the dissipation; using this, it is possible to
show that the dissipation is stronger than the energy. Thus, if surface tension is added in the periodic case,
fully exponential decay is possible, whereas without surface tension we only recover algebraic decay of
arbitrary order in Theorem 1.11.

The comparison of these two results with ours establishes a nice contrast between the surface tension
and non-surface tension cases. Without surface tension we can recover “almost” the same decay rate as in
the case with surface tension. This shows that viscosity is the basic decay mechanism and that the effect
of surface tension serves to enhance the decay rate.

Definitions and terminology. We now mention some of the definitions, bits of notation, and conventions
that we will use throughout the paper.

Einstein summation and constants. We employ the Einstein convention of summing over repeated
indices for vector and tensor operations. Throughout the paper C > 0 will denote a generic constant that
can depend on the parameters of the problem, N , and �, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next. When a
constant depends on a quantity z we write C = C(z) to indicate this. We employ the notation a . b to
mean that a ≤ Cb for a universal constant C > 0.

Norms. We write H k(�) with k ≥ 0 and H s(6) with s ∈ R for the usual Sobolev spaces. We typically
write H 0

= L2; the exception to this is when we use L2([0, T ]; H k) notation to indicate the space of
square-integrable functions with values in H k .

To avoid notational clutter, we avoid writing H k(�) or H k(6) in our norms and typically write only
‖ · ‖k . Since we do this for functions defined on both � and 6, this presents some ambiguity. We avoid
this by adopting two conventions. First, we assume that functions have natural spaces on which they
“live.” For example, the functions u, p, and η̄ live on �, while η itself lives on 6. As we proceed in our
analysis, we will introduce various auxiliary functions; the spaces they live on will always be clear from
the context. Second, whenever the norm of a function is computed on a space different from the one in
which it lives, we will explicitly write the space. This typically arises when computing norms of traces
onto 6 of functions that live on �.

Derivatives. We write N= {0, 1, 2, . . . } for the collection of nonnegative integers. When using space-
time differential multi-indices, we write N1+m

= {α = (α0, α1, . . . , αm)} to emphasize that the 0-index
term is related to temporal derivatives. For just spatial derivatives we write Nm . For α ∈ N1+m we
write ∂α = ∂α0

t ∂
α1
1 · · · ∂

αm
m . We define the parabolic counting of such multi-indices by writing |α| =

2α0+α1+ · · ·+αm . We write D f for the horizontal gradient of f , that is, D f = ∂1 f e1+ ∂2 f e2, while
∇ f denotes the usual full gradient.
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For a given norm ‖ · ‖ and integers k,m ≥ 0, we introduce the following notation for sums of spatial
derivatives:

‖Dk
m f ‖2 :=

∑
α∈N2

m≤|α|≤k

‖∂α f ‖2 and ‖∇
k
m f ‖2 :=

∑
α∈N3

m≤|α|≤k

‖∂α f ‖2. (1-47)

The convention we adopt in this notation is that D refers to only “horizontal” spatial derivatives, while ∇
refers to full spatial derivatives. For space-time derivatives we add bars to our notation:

‖Dk
m f ‖2 :=

∑
α∈N1+2

m≤|α|≤k

‖∂α f ‖2 and ‖∇
k
m f ‖2 :=

∑
α∈N1+3

m≤|α|≤k

‖∂α f ‖2. (1-48)

When k = m ≥ 0, we write

‖Dk f ‖2 = ‖Dk
k f ‖2, ‖∇k f ‖2 = ‖∇k

k f ‖2, ‖Dk f ‖2 = ‖Dk
k f ‖2, ‖∇k f ‖2 = ‖∇k

k f ‖2. (1-49)

We allow for composition of derivatives in this counting scheme in a natural way; for example, we write

‖DDk
m f ‖2 = ‖Dk

m D f ‖2 =
∑
α∈N2

m≤|α|≤k

‖∂αD f ‖2 =
∑
α∈N2

m+1≤|α|≤k+1

‖∂α f ‖2 = ‖Dk+1
m+1 f ‖2. (1-50)

Plan of paper. Throughout the paper we assume that N ≥ 5 and λ ∈ (0, 1) are both fixed. Notice that
Theorem 1.3 is phrased with the choice N = 5.

In Section 2 we prove some preliminary lemmas and we define the energies and dissipations. In
Section 3 we perform our bootstrap interpolation argument to control various quantities in terms of
EN+2,m and DN+2,m . In Section 4 we present estimates of the nonlinear forcing terms Gi (as defined in
(2-24)–(2-31)) and some other nonlinearities. In Section 5 we use the geometric form of the equations
to estimate the evolution of the highest-order temporal derivatives. We also analyze the natural (no
derivatives) energy in this context. Section 6 concerns similar energy evolution estimates for the other
horizontal derivatives. For these we employ the linear perturbed framework with the Gi forcing terms. In
Section 7 we assemble the estimates of Sections 5 and 6 into unified estimates. Section 8 concerns the
comparison estimates, where we show how to estimate the full energies and dissipations in terms of their
horizontal counterparts. Section 9 combines all of the analysis of Sections 3–8 into our a priori estimates
for solutions to (1-9). Section 10 concerns a specialized version of the local well-posedness theorem that
includes the boundedness of Iλ terms. Finally, in Section 11 we record our global well-posedness and
decay result, proving Theorem 1.3.

Below, in (2-58), we will define the total energy G2N that we use in the global well-posedness analysis.
For the purposes of deriving our a priori estimates, we assume throughout Sections 3–9 that solutions
to (1-9) are given on the interval [0, T ] and that G2N (T ) ≤ δ for 0 < δ < 1 as small as in Lemma 2.6,
so that its conclusions hold. This also means that E2N (t) ≤ 1 for t ∈ [0, T ]. We should remark that
Theorem 1.1 does not produce solutions that necessarily satisfy G2N (T ) < ∞. All of the terms in
G2N (T ) are controlled by Theorem 1.1 except those involving the Riesz operator: ‖Iλu‖20, ‖Iλη‖20, and∫ T

0 ‖Iλu(t)‖21 dt . To guarantee that these terms are well-defined, we must prove a specialized version
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of the local well-posedness result, Theorem 10.7. In principle, we should record this before the a priori
estimates, but the technique we use to control the Iλ terms is based on one we develop for the a priori
estimates, so we present the theorem in Section 10 after the a priori estimates. Note that the bounds
of Theorem 10.7 control more than just G2N (T ) (in particular, ∂2N+1

t u, ∂2N
t p, and Iλ p), and the extra

control it provides guarantees that all of the calculations used in the a priori estimates are justified.

2. Preliminaries for the a priori estimates

In this section we present some preliminary results that we use in our a priori estimates. We first record
some useful properties of the matrix A. Then we present two forms of equations similar to (1-9) and
describe the corresponding energy evolution structure. Afterward we record some useful lemmas.

Properties of A. The following lemma records some of the properties of the matrix A that will be used
throughout the paper.

Lemma 2.1. Let A be defined by (1-7).

(1) For each j = 1, 2, 3 we have ∂k(JA jk)= 0.

(2) Ai j = δi j + δ j3 Zi for δi j , the Kronecker delta, and Z =−AK e1− BK e2+ (K − 1)e3.

(3) On 6 we have JAe3 = N, while on 6b we have that JAe3 = e3.

Proof. The first and second items may be verified by a simple computation. The first part of the third
item holds since b̃ = 1 on 6, which means that JAe3 = −Ae1 − Be2 + e3 = −∂1η̄e1 − ∂2η̄e2 + e3 =

−∂1ηe1−∂2ηe2+e3=N on 6. The second part of the third item follows similarly, since b̃= 0 on 6b. �

Geometric form. We now give a linear formulation of the PDE (1-9) in its geometric form. Suppose that
η, u are known and that A,N, J , etc. are given in terms of η as usual ((1-7), etc). We then consider the
linear equation for (v, q, ζ ) given by

∂tv− ∂t η̄b̃K∂3v+ u · ∇Av+ divA SA(q, v)= F1 in �,
divA v = F2 in �,
SA(q, v)N= ζN+ F3 on 6,
∂tζ −N · v = F4 on 6,
v = 0 on 6b.

(2-1)

Now we record the natural energy evolution equation associated to solutions (v, q, ζ ) of the geometric
form equations (2-1).

Lemma 2.2. Suppose that u and η are solutions to (1-9). Suppose (v, q, ζ ) solve (2-1). Then

∂t

(
1
2

∫
�

J |v|2+ 1
2

∫
6

|ζ |2
)
+

1
2

∫
�

J |DAv|
2
=

∫
�

J (v · F1
+ q F2)+

∫
6

−v · F3
+ ζ F4. (2-2)

Proof. We multiply the i-th component of the first equation of (2-1) by Jvi , sum over i , and integrate
over � to find that

I+ II= III (2-3)
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for

I=
∫
�

∂tvi Jvi − ∂t η̄b̃∂3vivi + u j A jk∂kvi Jvi , (2-4)

II=
∫
�

A jk∂k Si j (q, v)Jvi , III=
∫
�

F1
· v J. (2-5)

In order to integrate by parts in I, II we will utilize the geometric identity ∂k(JAik)= 0 for each i , which
is proved in Lemma 2.1.

Then

I= ∂t

∫
�

|v|2 J
2
+

∫
�

−
|v|2∂t J

2
− ∂t η̄b̃∂3

|v|2

2
+ u j∂k

(
JA jk

|v|2

2

)
=: I1+ I2. (2-6)

Since b̃ = 1+ x3/b, an integration by parts and an application of the boundary condition v = 0 on 6b

reveals that

I2=

∫
�

−
|v|2∂t J

2
−∂t η̄b̃∂3

|v|2

2
+u j∂k

(
JA jk

|v|2

2

)
=

∫
�

−
|v|2∂t J

2
+
|v|2

2

(
∂t η̄

b
+ b̃∂t∂3η̄

)
−

∫
�

∂ku j JA jk
|v|2

2
+

1
2

∫
6

−∂tη|v|
2
+u j JA jke3 ·ek |v|

2. (2-7)

It is straightforward to verify that ∂t J = ∂t η̄/b+ b̃∂t∂3η̄ in � and that JA jke3 ·ek =N j on 6. Then since
u, η satisfy ∂ku j A jk = 0 and ∂tη = u ·N, we have I2 = 0. Hence

I= ∂t

∫
�

|v|2 J
2

. (2-8)

A similar integration by parts shows that

II=
∫
�

−A jk Si j (q, v)J∂kvi +

∫
6

JA j3Si j (q, v)vi

=

∫
�

−qAik∂kvi J + J
|DAv|

2

2
+

∫
6

Si j (q, v)N jvi ,

(2-9)

so that (2-1) implies

II=
∫
�

−q J F2
+ J
|DAv|

2

2
+

∫
6

ζN · v+ v · F3. (2-10)

But (2-1) also implies that∫
6

ζN · v =

∫
6

ζ(∂tζ − F4)= ∂t

∫
6

|ζ |2

2
+

∫
6

−ζ F4, (2-11)

which means

II=
∫
�

−q J F2
+ J
|DAv|

2

2
+ ∂t

∫
6

|ζ |2

2
+

∫
6

−ζ F4
+ v · F3. (2-12)

Now (2-2) follows from (2-3), (2-8), and (2-12). �
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Remark 2.3. In our analysis we will apply Lemma 2.2 with v= ∂αu, q = ∂α p, and ζ = ∂αη for ∂α = ∂α0
t

with α0 ≤ 2N . In the case α0 = 2N we do not know that ∂2N
t p is well-defined. However, as is verified in

Theorem 4.3 of [Guo and Tice 2013b], the result of Lemma 2.2 holds in this case when integrated in
time, with the understanding that the q = ∂2N

t p term is integrated by parts in time.

In order to utilize (2-1), we apply the differential operator ∂α = ∂α0
t to (1-9). The resulting equations

are (2-1) for v = ∂αu, q = ∂α p, and ζ = ∂αη, where

F1
= F1,1

+ F1,2
+ F1,3

+ F1,4
+ F1,5

+ F1,6 (2-13)

for

F1,1
i =

∑
0<β<α

Cα,β∂β(∂t η̄b̃K )∂α−β∂3ui +
∑

0<β≤α

Cα,β∂α−β∂t η̄∂
β(b̃K )∂3ui , (2-14)

F1,2
i =−

∑
0<β≤α

Cα,β(∂β(u j A jk)∂
α−β∂kui + ∂

βAik∂
α−β∂k p), (2-15)

F1,3
i =

∑
0<β≤α

Cα,β∂βA j`∂
α−β∂`(Aim∂mu j +A jm∂mui ), (2-16)

F1,4
i =

∑
0<β<α

Cα,βA jk∂k(∂
βAi`∂

α−β∂`u j + ∂
βA j`∂

α−β∂`ui ), (2-17)

F1,5
i = ∂

α∂t η̄b̃K∂3ui , and F1,6
i =A jk∂k(∂

αAi`∂`u j + ∂
αA j`∂`ui ). (2-18)

In these equations, the terms Cα,β are constants that depend on α and β. The term F2
= F2,1

+ F2,2 for

F2,1
=−

∑
0<β<α

Cα,β∂βAi j∂
α−β∂ j ui and F2,2

=−∂αAi j∂ j ui . (2-19)

We write F3
= F3,1

+ F3,2 for

F3,1
=−

∑
0<β≤α

Cα,β∂βDη(∂α−βη− ∂α−β p), (2-20)

F3,2
i =

∑
0<β≤α

Cα,β(∂β(N j Aim)∂
α−β∂mu j + ∂

β(N j A jm)∂
α−β∂mui ). (2-21)

Finally,
F4
=−

∑
0<β≤α

Cα,β∂βDη · ∂α−βu. (2-22)

Perturbed linear form. Writing the equations in the form (1-9) is more faithful to the geometry of the
free boundary problem, but it is inconvenient for many of our a priori estimates. This stems from the
fact that if we want to think of the coefficients of the equations for u, p as being frozen for a fixed free
boundary given by η, the underlying linear operator has nonconstant coefficients. This makes it unsuitable
for applying differential operators.

To get around this problem, in many parts of the paper we will analyze the PDE in a different
formulation, which looks like a perturbation of the linearized problem. The utility of this form of the
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equations lies in the fact that the linear operators have constant coefficients. The equations in this form
are 

∂t u+∇ p−1u = G1 in �,
div u = G2 in �,
(pI −Du− ηI )e3 = G3 on 6,
∂tη− u3 = G4 on 6,
u = 0 on 6b.

(2-23)

Here we have written
G1
= G1,1

+G1,2
+G1,3

+G1,4
+G1,5

for

G1,1
i = (δi j −Ai j )∂ j p, (2-24)

G1,2
i = u j A jk∂kui , (2-25)

G1,3
i = [K

2(1+ A2
+ B2)− 1]∂33ui − 2AK∂13ui − 2BK∂23ui , (2-26)

G1,4
i = [−K 3(1+ A2

+ B2)∂3 J + AK 2(∂1 J + ∂3 A)+ BK 2(∂2 J + ∂3 B)− K (∂1 A+ ∂2 B)]∂3ui , (2-27)

G1,5
i = ∂t η̄(1+ x3/b)K∂3ui ; (2-28)

G2 is the function
G2
= AK∂3u1+ BK∂3u2+ (1− K )∂3u3, (2-29)

and G3 is the vector

G3
:= ∂1η

 p− η− 2(∂1u1− AK∂3u1)

−∂2u1− ∂1u2+ BK∂3u1+ AK∂3u2

−∂1u3− K∂3u1+ AK∂3u3


+ ∂2η

−∂2u1− ∂1u2+ BK∂3u1+ AK∂3u2

p− η− 2(∂2u2− BK∂3u2)

−∂2u3− K∂3u2+ BK∂3u3

+
(K − 1)∂3u1− AK∂3u3

(K − 1)∂3u2− BK∂3u3

2(K − 1)∂3u3

 . (2-30)

Finally,
G4
=−Dη · u. (2-31)

Remark 2.4. The appearance of the term (p− η) in the first two rows of the first two vectors in the
definition of G3 can cause some technical problems later when we attempt to estimate G3. Notice though,
that according to (2-23), we may write

(p− η)= 2∂3u3+G3
· e3

= ∂1η(−∂1u3− K∂3u1+ AK∂3u3)+ ∂2η(−∂2u3− K∂3u2+ BK∂3u3)+ 2K∂3u3 (2-32)

on 6. We may then replace the appearances of (p− η) in (2-30) with the right side of (2-32).

At several points in our analysis we will need to localize (2-23) by multiplying by a cutoff function.
This leads us to consider the energy evolution for a minor modification of (2-23).
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Lemma 2.5. Suppose (v, q, ζ ) solve

∂tv+∇q −1v =81 in �,
div v =82 in �,
(q I −Dv)e3 = aζe3+8

3 on 6,
∂tζ − v3 =8

4 on 6,
v = 0 on 6b,

(2-33)

where either a = 0 or a = 1. Then

∂t

(
1
2

∫
�

|v|2+
1
2

∫
6

a|ζ |2
)
+

1
2

∫
�

|Dv|2 =

∫
�

v · (81
−∇82)+ q82

+

∫
6

−v ·83
+ aζ84. (2-34)

Proof. We may rewrite the first equation in (2-33) as ∂tv+ div(q I −Dv)=81
−∇82. We then take the

inner-product of this equation with v and integrate over � to find

∂t

∫
�

|v|2

2
−

∫
�

(q I −Dv) : ∇v+

∫
6

(q I −Dv)e3 · v =

∫
�

v · (81
−∇82). (2-35)

We then use the second equation in (2-33) to compute∫
�

−(q I −Dv) : ∇v =

∫
�

−q div v+ |Dv|
2

2
=

∫
�

−q82
+
|Dv|2

2
. (2-36)

The boundary conditions in (2-33) provide the equality∫
6

(q I −Dv)e3 · v =

∫
6

aζv3+ v ·8
3
= ∂t

∫
6

a
|ζ |2

2
+

∫
6

−aζ84
+ v ·83. (2-37)

Combining (2-35)–(2-37) then yields (2-34). �

Some initial lemmas. The following result is useful for removing the appearance of J factors.

Lemma 2.6. There exists a universal 0< δ < 1 such that if ‖η‖25/2 ≤ δ, then

‖J − 1‖2L∞ +‖A‖2L∞ +‖B‖
2
L∞ ≤

1
2 and ‖K‖2L∞ +‖A‖

2
L∞ . 1. (2-38)

Proof. According to the definitions of A, B, J given in (1-8) and Lemma A.5, we may bound

‖J − 1‖2L∞ +‖A‖2L∞ +‖B‖
2
L∞ . ‖η̄‖

2
3 . ‖η‖

2
5/2. (2-39)

Then if δ is sufficiently small, we find that the first inequality in (2-38) holds. As a consequence,
‖K‖2L∞ +‖A‖

2
L∞ . 1, which is the second inequality in (2-38). �

We now compute ∂tη in terms of a pair of auxiliary functions, U1 and U2, defined on 6. In our analysis
later in the paper u and η will always be sufficiently smooth to justify the calculations in the next lemma,
and Ui ∈ H 1(6) always holds.

Lemma 2.7. For i = 1, 2, define Ui :6→ R by

Ui (x ′)=
∫ 0

−b
J (x ′, x3)ui (x ′, x3) dx3. (2-40)

Then ∂tη =−∂1U1− ∂2U2 on 6 for solutions to (1-9).
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Proof. Let ϕ ∈ S(6), the Schwartz class. On 6 we know from Lemma 2.1 that u ·N = u · (JAe3) =

JAT u · e3 = JAT u · ν, where ν = e3 is the unit normal to 6. We may use the equation for ∂tη in (1-9)
and the divergence theorem to compute∫

6

∂tηϕ =

∫
6

(−u1∂1η− u2∂2η+ u3)ϕ =

∫
6

ϕ JAi j uiν j =

∫
�

∂ j (ϕ JAi j ui )

=

∫
�

∂ jϕ JAi j ui +ϕ∂ j (JAi j )ui +ϕ JAi j∂ j ui =

∫
�

∂ jϕ JAi j ui , (2-41)

where the last equality follows from the geometric identity ∂ j (JAi j ) = 0 (see Lemma 2.1) and the
equation Ai j∂ j ui = 0, which is the second equation in (1-9). According to Lemma 2.1, we may write
Ai j = δi j + δ j3 Zi for δi j , the Kronecker delta, and Z =−AK e1− BK e2+ (K − 1)e3. Then∫

�

∂ jϕ JAi j ui =

∫
�

∂ jϕ Jui (δi j + δ j3 Zi )=

∫
�

∂iϕ Jui +

∫
�

∂3ϕ Jui Zi =

∫
�

∂iϕ Jui , (2-42)

since ∂3ϕ= 0, a consequence of the fact that ϕ=ϕ(x1, x2) is independent of x3. Again because ϕ depends
only on (x1, x2)= x ′ ∈6, we may write∫

�

∂iϕ Jui =

∫
6

∂iϕ(x ′)
∫ 0

−b
J (x ′, x3)ui (x ′, x3) dx3dx ′ =

∫
6

∂iϕ(x ′)Ui (x ′) dx ′. (2-43)

Now we chain together (2-41), (2-42), and (2-43) and integrate by parts to deduce that∫
6

∂tηϕ =

∫
6

−ϕ∂iUi . (2-44)

Since this holds for any ϕ ∈ S(6), we then have that ∂tη =−∂iUi . �

Energies and dissipations. Below we define the energies and dissipations we will use in our analysis.
We state them in general in terms of two integers n,m ∈ N with n ≥ m. In our actual analysis we will
take n = 2N and n = N + 2 for N ≥ 5 and m = 1, 2. Recall that we employ the derivative conventions
described on page 1443. We define the horizontal instantaneous energy with minimal derivative count m
(or just horizontal energy, for short) by

En,m := ‖D2n−1
m u‖20+‖DD2n−1u‖20+‖

√
J∂n

t u‖20+‖D
2n
m η‖

2
0. (2-45)

Here the first three terms are split in this manner for the technical convenience of adding the
√

J term to
only the highest temporal derivative.

Remark 2.8. In light of Lemma 2.6, we see that En,m satisfies

1
2(‖D

2n
m u‖20+‖D

2n
m η‖

2
0)≤ En,m ≤

3
2(‖D

2n
m u‖20+‖D

2n
m η‖

2
0). (2-46)

We define the horizontal dissipation rate with minimal derivative count m (horizontal dissipation) by

Dn,m := ‖D2n
m Du‖20. (2-47)
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Let Iλ be defined by (A-7)–(A-8). The horizontal energy without a minimal derivative restriction is

En := ‖Iλu‖20+‖D
2n
0 u‖20+‖Iλη‖

2
0+‖D

2n
0 η‖

2
0, (2-48)

and the horizontal dissipation without a minimal derivative restriction is

Dn := ‖DIλu‖20+‖D
2n
0 Du‖20. (2-49)

In addition to the horizontal energy and dissipation, we must also define full energies and dissipations,
which involve full derivatives. We write the full energy as

En := ‖Iλu‖20+
n∑

j=0

‖∂
j

t u‖22n−2 j +

n−1∑
j=0

‖∂
j

t p‖22n−2 j−1+‖Iλη‖
2
0+

n∑
j=0

‖∂
j

t η‖
2
2n−2 j , (2-50)

and we define the full dissipation rate by

Dn := ‖Iλu‖21+
n∑

j=0

‖∂
j

t u‖22n−2 j+1+‖∇ p‖22n−1+

n−1∑
j=1

‖∂
j

t p‖22n−2 j +‖Dη‖
2
2n−3/2+‖∂tη‖

2
2n−1/2

+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2. (2-51)

Remark 2.9. The energy En controls ‖η‖22n � ‖η‖
2
0+‖Dη‖

2
2n−1, while the dissipation Dn controls only

‖Dη‖22n−3/2. The failure of Dn to control ‖η‖20 and this half derivative deficit in Dη are key difficulties
that we must overcome in our analysis. However, Dn controls more temporal derivatives of η than En

does. A similar discrepancy exists in the fact that En controls ‖p‖22n−1 while Dn controls only ‖∇ p‖22n−1.

We define a similar energy with a minimal derivative count of one by

En,1 := En,1+‖∇
2u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j +‖∇ p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖Dη‖
2
2n−1

+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j , (2-52)

and with a minimal derivative count of two by

En,2 := En,2+‖∇
3u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j +‖∇
2 p‖22n−3+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖D
2η‖22n−2

+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j . (2-53)

Similarly, the dissipation with a minimal derivative count of one is

Dn,1 :=Dn,1+‖∇
3u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
2 p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j +‖D
2η‖22n−5/2

+‖∂tη‖
2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2, (2-54)
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while the dissipation with a minimal derivative count of two is

Dn,2 := Dn,2+‖∇
4u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
3 p‖22n−3+‖∂t∇ p‖22n−3

+

n−1∑
j=2

‖∂
j

t p‖22n−2 j +‖D
3η‖22n−7/2+‖D∂tη‖

2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2. (2-55)

Note that, by definition, En,m ≥ En,m and Dn,m ≥ Dn,m . In all of these definitions, the index n counts
the highest number of time derivatives used. Notice that En,m and Dn,m are subject to the same sorts of
discrepancies described in Remark 2.9.

Certain norms of η and u will play a special role in our analysis; we write

F2N := ‖η‖
2
4N+1/2, (2-56)

K := ‖∇u‖2L∞ +‖∇
2u‖2L∞ +

2∑
i=1

‖Dui‖
2
H2(6)

. (2-57)

Note that the regularity of u will always be sufficiently high for the L∞ norms in K to be considered as
C0(�) norms, where � is the closure of �. Finally, we define the total energy we will use in our analysis:

G2N (t) := sup
0≤r≤t

E2N (r)+
∫ t

0
D2N (r) dr +

2∑
m=1

sup
0≤r≤t

(1+ r)m+λEN+2,m(r)+ sup
0≤r≤t

F2N (r)
(1+ r)

. (2-58)

Some initial estimates. We have the following lemma that constrains N .

Lemma 2.10. If N ≥ 4, then, for m = 1, 2, we have EN+2,m . E2N and DN+2,m . E2N .

Proof. The proof follows by simply comparing the definitions of these terms. �

Now we present an estimate of I1∂tη.

Lemma 2.11. We have the estimate ‖I1∂tη‖
2
0 . ‖u‖

2
0 ≤ E2N .

Proof. According to Lemma 2.7, we have ∂tη =−∂iUi , where Ui , i = 1, 2, is defined in the lemma. It is
easy to see that Ui ∈ H 1(6). Taking the Fourier transform and writing U = (U1,U2), we find that

‖I1∂tη‖
2
0 =

∫
6

|ξ |−2
|∂̂tη(ξ)|

2dξ .
∫
6

|ξ |−2
|ξ · Û (ξ)|2dξ .

∫
6

|Û (ξ)|2dξ = ‖U‖2H0(6)
. (2-59)

However, Hölder’s inequality and Lemma 2.6 imply that ‖U‖H0(6) . ‖J‖L∞‖u‖0 . ‖u‖0, so the desired
estimate follows. �

3. Interpolation estimates at the N + 2 level

Initial interpolation estimates for η, η̄, u and ∇ p. The fact that EN+2,m and DN+2,m , m = 1, 2, have
a minimal count of derivatives creates numerous problems when we try to estimate terms with fewer
derivatives in terms of EN+2,m and DN+2,m . Our way around this is to interpolate between EN+2,m
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(or DN+2,m) and E2N . In the next few pages (through page 1467) we will prove various interpolation
inequalities of the form

‖X‖2 . (EN+2,m)
θ (E2N )

1−θ and ‖X‖2 . (DN+2,m)
θ (E2N )

1−θ , (3-1)

where θ ∈ (0, 1], X is some quantity, and ‖ · ‖ is some norm (usually either H 0 or L∞).
In the interest of brevity, we record these estimates in tables that only list the value of θ in the estimate.

Before each table we will tell which norms are being considered and give a rough summary of the terms
X that appear in the table. For example, we might write “the following table encodes the power in the
H 0(6) and H 0(�) interpolation estimates for η and η̄ and their derivatives,” before the following table.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

η, η̄ θ1 θ2 θ3

Dη,∇η̄ θ4 θ5 θ6

We understand this to mean that

‖η‖20 . (EN+2,1)
θ1(E2N )

1−θ1, ‖η‖20 . (DN+2,1)
θ2(E2N )

1−θ2, ‖η‖20 . (EN+2,2)
θ2(E2N )

1−θ2 (3-2)

and

‖η‖20 . (DN+2,2)
θ3(E2N )

1−θ3, ‖∇η̄‖2H0(�)
. (EN+2,1)

θ4(E2N )
1−θ4,

‖∇η̄‖2H0(�)
. (DN+2,1)

θ5(E2N )
1−θ5, (3-3)

etc. When we write DN+2,1 ∼ EN+2,2 in a table, it means that θ is the same when interpolating between
DN+2,1 and E2N and between EN+2,2 and E2N . When we write multiple entries for X , we mean that the
same interpolation estimates hold for each item listed. Often, we will have a θ appearing in a table of the
form θ = 1/(1+ r). When we write this, we mean that the desired interpolation inequality holds with
this θ for any fixed r ∈ (0, 1), and the constant in the inequality then depends on r .

We must record estimates for too many choices of X to allow us to write the full details of each
estimate. However, most of the estimates are straightforward, so in our proofs we will frequently present
only a sketch of how to obtain them, providing details only for the most delicate estimates. The terms we
estimate are often linear combinations of several terms, each of which would get a different interpolation
power. When this occurs, we will record the lowest power achieved by a term in the sum. According to
Lemma 2.10, this is justified by the estimate

E1−θ
2N EθN+2,m +E1−κ

2N EκN+2,m = E1−θ
2N EθN+2,m +E1−κ

2N Eκ−θN+2,mEθN+2,m

. E1−θ
2N EθN+2,m +E1−κ

2N Eκ−θ2N EθN+2,m . E1−θ
2N EθN+2,m (3-4)

for 0 ≤ θ ≤ κ ≤ 1. A similar estimate holds with EN+2,m replaced by DN+2,m . It may happen that in
estimating a product of two or more terms, we end up with estimates of the form

‖X‖2 . (EN+2,m)
θ1(E2N )

1−θ1(EN+2,m)
θ2(E2N )

1−θ2 (3-5)
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with θ1+ θ2 > 1. In this case, Lemma 2.10 again allows us to bound

‖X‖2 . (EN+2,m)
1(EN+2,m)

θ1+θ2−1(E2N )
2−θ1−θ2 . EN+2,mE2N ≤ EN+2,m, (3-6)

where we have used the bound E2N ≤ 1. It might also happen that (3-5) occurs with θ1 < 1 and
θ2 = 1/(1+ r), in which case we always understand that r is chosen so that θ1+ θ2 = 1.

Now that our notation is explained, we turn to the estimates themselves We begin with estimates of η.

Lemma 3.1. The following table encodes the power in the L∞(6) and L∞(�) interpolation estimates
for η and η̄ and their derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

η, η̄ (λ+1)/(λ+1+r) (λ+1)/(λ+2) (λ+1)/(λ+3)
Dη,∇η̄ 1 (λ+2)/(λ+2+r) (λ+2)/(λ+3)
D2η,∇2η̄ 1 1 (λ+3)/(λ+3+r)
D3η,∇3η̄ 1 1 1
∂tη, ∂t η̄ 1 1 2/(2+r)
D∂tη,∇∂t η̄ 1 1 1

The following table encodes the power in the H 0(6) and H 0(�) interpolation estimates for η and η̄
and their derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

η, η̄ λ/(λ+1) λ/(λ+2) λ/(λ+3)
Dη,∇η̄ 1 (λ+1)/(λ+2) (λ+1)/(λ+3)
D2η,∇2η̄ 1 1 (λ+2)/(λ+3)
D3η,∇3η̄ 1 1 1
∂tη, ∂t η̄ 1 1 1/2
D∂tη,∇∂t η̄ 1 1 1

Proof. The estimates follow directly from the Sobolev embeddings and Lemmas A.6 and A.7, using the
bounds ‖Iλη‖20 ≤ E2N and ‖I1∂tη‖

2
0 . E2N , the latter of which is a consequence of Lemma 2.11. �

Now we record some estimates involving u.

Lemma 3.2. Table 3.1(a) encodes the power in the L∞(�) and L∞(6) interpolation estimates for u and
its derivatives.

Table 3.1(b) encodes the power in the H 0(�) interpolation estimates for u and its derivatives.
Table 3.1(c) encodes the power in some improved L∞(6) interpolation estimates for u and its tangential

derivatives on 6. Here we restrict to r ∈ (0, 1/2).

Proof. The estimates of the first two tables follow directly from Sobolev embeddings and Lemmas A.8
and A.13. For the L∞(6) estimates of the last table, we use r ∈ [0, 1/2) in (A-34) of Lemma A.7 along
with trace estimates and Lemma A.13 to bound
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(a)

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

u 1/(1+r) 1/2 1/3
Du 1 2/(2+r) 2/3
∇u 1/(1+r) 1/2 1/3
D2u 1 1 1/(1+r)
D∇u 1 2/(2+r) 2/3
∇

2u 1 1/(1+r) 1/2
∇

3u 1 1 1/(1+r)
∇

4u 1 1 1
∂t u 1 1 1

(b)

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

u λ/(λ+1) λ/(λ+1) λ/(λ+2) λ/(λ+2)
Du 1 1 (λ+1)/(λ+2) (λ+1)/(λ+2)
D2u 1 1 1 1
∇D2u 1 1 1 1
∂t u 1 1 1 1

(c)
X EN+2,1 DN+2,1 EN+2,2 DN+2,2

u 1/(1+r) 1/(1+r) 1/2 1/2
Du 1 2/(2+r) 2/(2+r) 2/(2+r)

Table 3.2. Tables for Lemma 3.2.

‖u‖2L∞(6).(‖u‖
2
H0(6)

)(s+r−1)/(s+r)(‖Dsu‖H r (6))
1/(s+r).(‖u‖21)

(s+r−1)/(s+r)(‖Dsu‖21)
1/(s+r)

.(‖u‖21)
(s+r−1)/(s+r)(‖Ds

∇u‖20)
1/(s+r). (3-7)

For EN+2,1 and DN+2,1 we choose s = 1 and r ∈ (0, 1/2), while for EN+2,2 and DN+2,m we choose s = 2
and r = 0. In both cases, ‖u‖21 ≤ E2N and ‖Ds

∇u‖20 ≤ EN+2,m . A similar argument works for the Du
estimates in L∞(6). �

Now we estimate ∇ p in L∞.

Lemma 3.3. The following table encodes the power in the L∞(�) interpolation estimates for derivatives
of p.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

∇ p 1 1/(1+r) 1/2
∇

2 p 1 1 1/(1+r)
∂t p 1 1 1/(1+r)
∇

3 p 1 1 1
∂t∇ p 1 1 1
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Proof. The estimates follow directly from the Sobolev embeddings and Lemma A.8. �

Interpolation estimates for G i , i = 1, 2, 3, 4. Now that we have some preliminary estimates for u, η, η̄,
and ∇ p (plus some of their derivatives), we can estimate the Gi forcing terms defined in (2-24)–(2-31).

Lemma 3.4. The following table encodes the power in the L∞(�) interpolation estimates for G1,i ,
i = 1, . . . , 5 and G1 and their spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G1,1 1 1 (3λ+5)/(2λ+6)
∇G1,1 1 1 1
G1,2 1 1 2/3
DG1,2 1 1 1
∇G1,2 1 1 2/3
G1,3 1 1 (3λ+5)/(2λ+6)
∇G1,3 1 1 1
G1,4 1 1 1
∇G1,4 1 1 1
G1,5 1 1 1
∇G1,5 1 1 1
G1 1 1 2/3
DG1 1 1 1
∇G1 1 1 2/3

The following table encodes the power in the H 0(�) interpolation estimates for G1,i , i = 1, . . . , 5 and
G1 and their spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G1,1 1 1 1 (3λ+3)/(2λ+6)
∇G1,1 1 1 1 (3λ+5)/(2λ+6)
G1,2 1 (3λ+1)/(2λ+2) (3λ+2)/(2λ+4) (4λ+2)/(3λ+6)
DG1,2 1 1 1 (5λ+4)/(3λ+6)
G1,3 1 1 1 (3λ+3)/(2λ+6)
∇G1,3 1 1 1 (3λ+5)/(2λ+6)
G1,4 1 1 1 (4λ+6)/(3λ+9)
DG1,4 1 1 1 1
G1,5 1 1 1 5/6
∇G1,5 1 1 1 1
G1 1 (3λ+1)/(2λ+2) (3λ+2)/(2λ+4) (4λ+2)/(3λ+6)
DG1 1 1 1 (5λ+4)/(3λ+6)

Proof. The definitions of G1,i show that these terms are linear combinations of products of two or more
terms that can be estimated in either L∞ or H 0 by using Sobolev embeddings and Lemmas 3.1, 3.2,
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and 3.3. For the L∞ table we estimate products using the usual algebra of L∞: ‖XY‖L∞ ≤‖X‖L∞‖Y‖L∞ .
For the H 0 table, we estimate products with both

‖XY‖20 ≤ ‖X‖
2
0‖Y‖

2
L∞ and ‖XY‖20 ≤ ‖Y‖

2
0‖X‖

2
L∞, (3-8)

and then take the larger value of θ produced by these two bounds.
The interpolation powers recorded in the above tables have been determined using the full structure of

the G1,i , i = 1, . . . , 5, as defined in (2-24)–(2-31). However, for each G1,i , i = 1, . . . , 5, it is possible to
identify a “principal term” that has the same essential structure as the term in G1,i that determines the
interpolation powers appearing in the tables. For the sake of clarity we record these principal terms now:

G1,1
∼ η̄∇ p, G1,2

∼ u · ∇u, G1,3
∼ η̄∂2

3 u, G1,4
∼ ∂3η̄∂3u, G1,5

∼ b̃∂t η̄∂3u. �

Now we estimate G2.

Lemma 3.5. The following table encodes the power in the L∞(�) and L∞(6) interpolation estimates
for G2 and its spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G2 1 1 (4λ+6)/(3λ+9)
DG2 1 1 1
∇G2 1 1 (3λ+5)/(2λ+6)
∇

2G2 1 1 1

The following table encodes the power in the H 0(�) interpolation estimates for G2 and its spatial
derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G2 1 (3λ+2)/(2λ+4) (4λ+3)/(3λ+9)
DG2 1 1 (4λ+6)/(3λ+9)
∇G2 1 1 (3λ+3)/(2λ+6)
∇

2G2 1 1 (3λ+5)/(2λ+6)

Proof. The estimates may be derived as in Lemma 3.4, so we only record the principal term in G2. For
these estimates, G2

∼ η̄∂3u3. �

Now we record G3 estimates.

Lemma 3.6. The following table encodes the power in the L∞(6) interpolation estimates for G3 and its
spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G3 1 1 (4λ+6)/(3λ+9)
DG3 1 1 1
D2G3 1 1 1
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The following table encodes the power in the H 0(6) interpolation estimates for G3 and its spatial
derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G3 1 (3λ+2)/(2λ+4) (4λ+3)/(3λ+9)
DG3 1 1 (4λ+6)/(3λ+9)
D2G3 1 1 1

Proof. Recall that by Remark 2.4, we may remove the appearance of (p− η) in G3. This allows us to
perform the estimates of G3 terms as in Lemmas 3.4 and 3.5. The principal term may be identified as
G3
∼ η∂3u. �

Now we record G4 estimates.

Lemma 3.7. The following table encodes the power in the L∞(6) interpolation estimates for G4 and its
spatial derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G4 1 1 1
DG4 1 1 1
D2G4 1 1 1

The following table encodes the power in the H 0(6) interpolation estimates for G4 and its spatial
derivatives.

X EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

G4 1 1 (3λ+5)/(2λ+6)
DG4 1 1 1
D2G4 1 1 1

Proof. The estimates again work as in Lemmas 3.4–3.6. In this case there is no need to identify the
principal term, since G4

=−Dη · u is already in a simple form. �

Improved estimates for u,∇ p. Now we will use the structure of the equations (2-23) to improve our
estimates for u,∇ p, etc. Our first estimate is for Dp. It constitutes an improvement of our existing L∞

estimate, Lemma 3.3, as well as a first H 0 estimate.

Lemma 3.8. The following table encodes the power in an L∞(�) interpolation estimate.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

Dp 1 1/(1+r) (λ+2)/(λ+3)

The following table encodes the power in an H 0(�) interpolation estimate.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

Dp 1 (λ+1)/(λ+2) (λ+1)/(λ+3)
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Proof. In order to record the proof of both the H 0 and L∞ estimates at the same time, we will generically
write ‖ · ‖ to refer to either the H 0(�) or L∞(�) norm. Similarly, we will write ‖ · ‖6 to refer to the
H 0(6) or L∞(6) norm. The starting point is an application of Lemma A.10 to bound

‖Dp‖2 . ‖Dp‖26 +‖∂3 Dp‖2. (3-9)

We will estimate both terms on the right-hand side in order to prove the lemma.
In order to estimate Dp on 6 we utilize the boundary conditions in (2-23) to write

∂i p = ∂iη+ 2∂i∂3u3+ ∂i (G3
· e3) (3-10)

for i = 1, 2. From this we easily see that

‖Dp‖26 . ‖Dη‖
2
6 +‖DG3

‖
2
6 +‖D∂3u3‖

2
6. (3-11)

The first two terms may be estimated with Lemmas 3.1 and 3.6, but we must further exploit the structure
of the equations in order to control the last term. For the H 0 estimate we use trace theory and the second
equation in (2-23),

∂3u3 = G2
− ∂1u1− ∂2u2, (3-12)

to see that

‖D∂3u3‖
2
H0(6)

. ‖D∂3u3‖
2
1 . ‖DG2

‖
2
1+‖D

2u‖21. (3-13)

Since D2u = 0 on 6b, we may use Lemma A.13 to bound

‖D2u‖21 . ‖∇D2u‖20, (3-14)

so that, upon replacing in the previous inequality, we find

‖D∂3u3‖
2
H0(6)

. ‖DG2
‖

2
0+‖D∇G2

‖
2
0+‖D

2
∇u‖20. (3-15)

For the corresponding L∞ estimate we again use (3-12) to bound

‖D∂3u3‖
2
L∞(6) . ‖DG2

‖
2
L∞(6)+‖D

2u‖2L∞(6). (3-16)

By Lemma A.13 we know that ‖D2u‖2L∞(6) . ‖∇D2u‖2L∞(�). On the other hand, DG2
∈ C0(�) (this

may be verified using the Sobolev embeddings and Theorem 4.2), so that ‖DG2
‖

2
L∞(6) ≤ ‖DG2

‖
2
L∞(�).

We may then replace these to arrive at the bound

‖D∂3u3‖
2
L∞(6) . ‖DG2

‖
2
L∞(�)+‖∇D2u‖2L∞(�). (3-17)

Then, from (3-15) and (3-17), we know that

‖D∂3u3‖
2
6 . ‖DG2

‖
2
+‖D∇G2

‖
2
+‖D2

∇u‖2. (3-18)
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Combining (3-11) with (3-18) yields

‖Dp‖26 . ‖Dη‖
2
6 +‖DG3

‖
2
6 +‖DG2

‖
2
+‖D∇G2

‖
2
+‖D2

∇u‖2. (3-19)

We may then employ Lemmas 3.1, 3.2, 3.3, 3.5, and 3.6 to derive the interpolation power for ‖Dp‖26 ; we
record this power in the following table. Both the L∞ and H 0 powers are determined by Dη, but the L∞

estimate only improves the result of Lemma 3.3 for DN+2,2.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

‖Dp‖2L∞(6) 1 1/(1+r) (λ+2)/(λ+3)
‖Dp‖2H0(6)

1 (λ+1)/(λ+2) (λ+1)/(λ+3)

Now we will estimate the term ‖∂3 Dp‖2. For this we use (2-23) to write

∂i∂3 p = ∂i [(∂
2
1 + ∂

2
2 − ∂t)u3+ ∂

2
3 u3+G1

· e3] (3-20)

for i = 1, 2. Again using (3-12), we may write

∂i∂
2
3 u3 = ∂i∂3(G2

− ∂1u1− ∂2u2). (3-21)

Combining these two equations then shows that

‖D∂3 p‖2 . ‖D3u‖2+‖D2
∇u‖2+‖D∂t u‖2+‖DG1

‖
2
+‖D∇G2

‖
2. (3-22)

We may then employ Lemmas 3.2, 3.3, 3.4, and 3.5 to derive the interpolation power for ‖D∂3 p‖2; we
record this power in the following table. The H 0 powers are determined by DG1, but note that the L∞

estimate does not improve the result of Lemma 3.3.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

‖D∂3 p‖2L∞ 1 1 1/(1+r)
‖D∂3 p‖20 1 1 (5λ+4)/(3λ+6)

Now we return to (3-9) and employ our estimates of ‖Dp‖26 and ‖D∂3 p‖2 to deduce the desired
interpolation powers for ‖Dp‖2. Notice that we may also combine (3-9) with (3-19) and (3-22) for the
estimate

‖Dp‖2

. ‖Dη‖26 +‖D∂t u‖2+‖D3u‖2+‖D2
∇u‖2+‖DG1

‖
2
+‖DG2

‖
2
+‖D∇G2

‖
2
+‖DG3

‖
2
6. (3-23)

This concludes the proof. �

With this lemma in hand, we can now derive improved estimates for u.

Proposition 3.9. The following table encodes the improved power in the L∞(�) interpolation estimate
for u and its derivatives.
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EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

u 1 1/(1+r) 2/3
∂3ui , i = 1, 2 1 1/(1+r) 2/3
∂3u3 1 2/(2+r) 2/3
∇u 1 1/(1+r) 2/3
∇

2u 1 1/(1+r) 2/3

The following table encodes the power in the H 0(�) interpolation estimate for u and its derivatives.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
∂3ui , i = 1, 2 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
∂3u3 1 (3λ+2)/(2λ+4) (3λ+2)/(2λ+4) (4λ+3)/(3λ+9)
Du 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
D∇u 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
D∂3u3 1 1 1 (4λ+6)/(3λ+9)
∇∂3u3 1 1 (2λ+3)/(2λ+4) (3λ+3)/(2λ+6)
∇

2u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

The following table encodes the improved power in the L∞(�) interpolation estimate for ∇ p.

EN+2,1 DN+2,1 ∼ EN+2,2 DN+2,2

∇ p 1 2/(2+r) 2/3

The following table encodes the power in the H 0(�) interpolation estimate for derivatives of p.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

∂3 p 1 (3λ+1)/(2λ+2) (3λ+2)/(2λ+4) (4λ+2)/(3λ+6)
∇ p 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

Proof. As in Lemma 3.8 we will write ‖ · ‖ and ‖ · ‖6 to refer to both the H 0 and L∞ norms on � and
6, respectively. We divide the proof into several steps, beginning with estimates of ∇u. With these
established, we can extend to estimates of u, D∇u, Du, D∂3u3, and ∇∂3u3 by employing Poincaré’s
inequality and interpolation. This in turn leads to estimates for ∂3 p and ∇2u.

Step 1: Estimates of ∇u. To begin the ∇u estimates, we split the components of ∇u into those involving
x1, x2 derivatives and those involving x3 derivatives. Indeed, we have

‖∇u‖2 . ‖Du‖2+‖∂3u3‖
2
+

2∑
i=1

‖∂3ui‖
2. (3-24)
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Lemma 3.2 provides an estimate of Du, but not of ∂3u, so we must use the structure of the equations
(2-23) to estimate the latter two terms.

To estimate ∂3u3 we use the second equation in (2-23) to bound

‖∂3u3‖
2 . ‖G2

‖
2
+‖Du‖2. (3-25)

Then Lemmas 3.2 and 3.5 provide interpolation estimates of G2 and Du and hence the estimates of ∂3u3

listed in the tables. The Du term determines the power for L∞, while the power is determined by G2 for
H 0.

To estimate ∂3ui for i = 1, 2, we first apply Lemma A.10 to get

‖∂3ui‖
2 . ‖∂3ui‖

2
6 +‖∂

2
3 ui‖

2. (3-26)

For the first term on the right, we use the third equation in (2-23) to bound

‖∂3ui‖
2
6 . ‖Du3‖

2
6 +‖G

3
‖

2
6. (3-27)

Since Du = 0 on 6b, we can use trace theory, Lemma A.13, and the equation div u = G2 for

‖Du3‖
2
6 . ‖∇Du3‖

2 . ‖D2u‖2+‖DG2
‖

2. (3-28)

For the second term on the right side of (3-26), we use (2-23) to bound

‖∂2
3 ui‖

2 . ‖∂t u‖2+‖D2u‖2+‖Dp‖2+‖G1
‖

2. (3-29)

We may then combine estimates (3-26)–(3-29) to deduce that

‖∂3ui‖
2 . ‖∂t u‖2+‖D2u‖2+‖Dp‖2+‖G1

‖
2
+‖DG2

‖
2
+‖G3

‖
2
6. (3-30)

Now we use Lemmas 3.2, 3.4–3.6, and 3.8 to find the interpolation powers for ∂3ui , i = 1, 2, listed in the
tables. For L∞ the power is determined by Dp for EN+2,1, EN+2,2, and DN+2,1 and by G1 for DN+2,2,
while for H 0 the power is determined by Dp.

With estimates for Du, ∂3u3, and ∂3ui for i = 1, 2 in hand, we return to (3-24) to derive the estimates
for ∇u listed in the tables. For both the L∞ and H 0 estimates the power is determined by ∂3ui , i = 1, 2.

Step 2: Extensions to estimates of u, D∇u, D∂3u3, and ∇∂3u3. Now we apply Lemma A.13 to control u
in terms of ∇u:

‖u‖2 . ‖∇u‖2. (3-31)

Our estimates for ∇u then provide the estimates for u listed in the tables.
We now turn to D∇u. Clearly ‖D∇u‖20 is controlled by both EN+2,1 and DN+2,1, which yields the

powers of 1 in the tables. An application of (A-38) from the Appendix with λ = 0, q = 1, and s = 1
shows that

‖D∇u‖20 . (‖∇u‖20)
1/2(‖D2

∇u‖20)
1/2. (3-32)
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We employ this in conjunction with our estimate for ∇u and the estimate of D2
∇u from Lemma 3.2 to

get the interpolation powers for D∇u listed in the tables for EN+2,2 and DN+2,2. The estimates for Du
listed in the tables follow immediately from the estimates for D∇u via Poincaré:

‖Du‖2 . ‖D∇u‖2. (3-33)

In order to estimate D∂3u3 and ∇∂3u3 in H 0 we use that div u = G2 for

‖∇∂3u3‖
2
0 . ‖∇G2

‖
2
0+‖D∇u‖20, (3-34)

‖D∂3u3‖
2
0 . ‖DG2

‖
2
0+‖D

2u‖20. (3-35)

Then our estimate for D∇u and Lemmas 3.2 and 3.5 yield the estimates listed in the tables. For ∇∂3u3

the power is determined by D∇u for EN+2,1,DN+2,1,EN+2,2 and by ∇G2 for DN+2,2. For D∂3u3 the
power is determined by DG2.

Step 3: Estimates of ∂3 p and ∇ p. Lemma 3.8 provides estimates for Dp, so to complete an estimate for
∇ p we only need to consider ∂3 p. For this we again use (2-23) to bound

‖∂3 p‖2 . ‖∂2
3 u3‖

2
+‖D2u‖2+‖∂t u‖2+‖G1

‖
2. (3-36)

This and (3-34) then imply that

‖∂3 p‖2 . ‖D∇u‖2+‖D2u‖2+‖∂t u‖2+‖G1
‖

2
+‖∇G2

‖
2, (3-37)

and we may use Lemmas 3.2, 3.4, and 3.5 along with our new D∇u estimate to determine the powers in
the tables for ∂3 p. In the L∞ estimate the power is determined by D∇u, and in the H 0 estimate the power
is determined by G1. Then the estimates for ∇ p follow by comparing the Dp estimates of Lemma 3.8 to
the ∂3 p estimates.

Step 4: Estimates of ∇2u. Finally we consider ∇2u, which we decompose according to x1, x2, and x3

derivatives:

‖∇
2u‖2 . ‖D2u‖2+‖D∇u‖2+‖∂2

3 u3‖
2
+

2∑
i=1

‖∂2
3 ui‖

2. (3-38)

According to our bounds (3-29) and (3-34), we may replace this with

‖∇
2u‖2 . ‖∂t u‖2+‖D2u‖2+‖D∇u‖2+‖Dp‖2+‖G1

‖
2
+‖∇G2

‖
2. (3-39)

Then Lemmas 3.2, 3.4, 3.5, and 3.8 with our new estimate of D∇u provide the estimates in the table
for ∇2u. For L∞ the power is determined by Dp for EN+2,1, EN+2,2, and DN+2,1 and by G1 for DN+2,2,
while for H 0 it is determined by Dp. �

Bootstrapping: first iteration. We now use the improved estimates of Lemma 3.8 and Proposition 3.9
to improve the estimates of Gi , i = 1, . . . , 4, recorded in Lemmas 3.4–3.7. We will only record the
improvements for the H 0(�) estimates.
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Lemma 3.10. The following table encodes the power in the H 0(�) interpolation estimates for G1,i ,
i = 1, . . . , 5, and G1 and their spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G1,1 1 1 1 (5λ+6)/(3λ+9)
∇G1,1 1 1 1 1
G1,2 1 1 1 1
∇G1,2 1 1 1 1
G1,3 1 1 1 (5λ+6)/(3λ+9)
∇G1,3 1 1 1 1
G1,4 1 1 1 1
∇G1,4 1 1 1 1
G1,5 1 1 1 1
∇G1,5 1 1 1 1
G1 1 1 1 (5λ+6)/(3λ+9)
∇G1 1 1 1 1

Proof. We perform the estimates as in Lemma 3.4, except that now we use the improved interpolation
estimates of Lemma 3.8 and Proposition 3.9. �

We now record the G2 estimates.

Lemma 3.11. The following table encodes the power in the H 0(�) interpolation estimates for G2 and its
spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G2 1 1 1 (7λ+6)/(3λ+9)
DG2 1 1 1 1
∇G2 1 1 1 (5λ+5)/(2λ+6)
∇

2G2 1 1 1 1

Proof. We perform the estimates as in Lemma 3.5, except that now we use the improved interpolation
estimates of Proposition 3.9, in particular the distinct estimates for ∂3u3 and ∂3ui , i = 1, 2. These are
crucial since in G2 the term ∂3ui is multiplied by a derivative of η̄ but ∂3u3 is multiplied by η̄ itself.
This means that for the present interpolation estimates we may identify the principal term in G2 as
G2
∼ η̄∂3u3+ ∂1η̄∂3u1+ ∂2η̄∂3u2. �

We now record the G3 estimates. We omit the proof since it follows that of Lemma 3.6, using the
improved estimates of Lemma 3.8 and Proposition 3.9.

Lemma 3.12. The following table encodes the power in the H 0(6) interpolation estimates for G3 and its
spatial derivatives.
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X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G3 1 1 1 (5λ+6)/(3λ+9)
DG3 1 1 1 (5λ+6)/(3λ+9)
D2G3 1 1 1 1

We now record the G4 estimates. We again omit the proof.

Lemma 3.13. The following table encodes the power in the H 0(6) interpolation estimates for G4 and its
spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G4 1 1 1 1
DG4 1 1 1 1
D2G4 1 1 1 1

The improved estimates for Gi , i = 1, . . . , 4, allow us to improve the H 0 estimates of Proposition 3.9.

Theorem 3.14. The following table encodes the power in the H 0(�) interpolation estimate for u and its
derivatives.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
∂3u3 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
Du 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)
D∇u 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇∂3u3 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇

2u 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

The following table encodes the power in the H 0(�) interpolation estimate for derivatives of p.

EN+2,1 DN+2,1 EN+2,2 DN+2,2

∂3 p 1 1 (2λ+3)/(2λ+4) (λ+2)/(λ+3)
∇ p 1 (λ+1)/(λ+2) (λ+1)/(λ+2) (λ+1)/(λ+3)

Proof. The powers are the same as those listed in Proposition 3.9 except for ∂3u3, ∇∂3u3, and ∂3 p.
To arrive at the ∂3 p estimates, we again employ the estimate (3-37) of Proposition 3.9, except that now

we use Lemmas 3.10 and 3.11 for estimates of G1 and ∇G2 and Proposition 3.9 for the estimate of D∇u.
The terms ∂t u and D2u are still estimated with Lemma 3.2. The power in the ∂3 p estimate is determined
by D∇u.

For the ∂3u3 terms, we employ the equation div u = G2 to bound

‖∂3u3‖
2 . ‖G2

‖
2
+‖Du‖2 and ‖∇∂3u3‖

2 . ‖∇G2
‖

2
+‖D∇u‖2. (3-40)
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The estimates of ∂3u3 and ∇∂3u3 in the table follow from these bounds and Lemmas 3.9 and 3.11, with
the power of the former determined by Du and that of the latter determined by D∇u. �

Bootstrapping: second iteration. We now use the improved estimates of Theorem 3.14 to improve the
estimates of Gi , i = 1, 2, recorded in Lemmas 3.10–3.11. We once again omit the proof.

Theorem 3.15. The following table encodes the power in the H 0(�) interpolation estimates for G1,i ,
i = 1, . . . , 5, and G1 and their spatial derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G1,1 1 1 1 (2λ+2)/(λ+3)
∇G1,1,∇2G1,1 1 1 1 1
G1,2,∇G1,2,∇2G1,2 1 1 1 1
G1,3 1 1 1 (2λ+2)/(λ+3)
∇G1,3,∇2G3 1 1 1 1
G1,4,∇G1,4,∇2G1,4 1 1 1 1
G1,5,∇G1,5,∇2G1,5 1 1 1 1
G1 1 1 1 (2λ+2)/(λ+3)
∇G1,∇2G1 1 1 1 1

The following table encodes the power in the H 0(�) interpolation estimates for G2 and its spatial
derivatives.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

G2,∇G2,∇2G2 1 1 1 1

Now we make final improvements to our estimates.

Proposition 3.16. The following table encodes the power in the H 0(�) interpolation estimates for D∂3ui

for i = 1, 2.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

D∂3ui , i = 1, 2 1 1 1 (λ+2)/(λ+3)

The following table encodes the power in an H 2(6) estimates for Dui for i = 1, 2.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

Dui , i = 1, 2 1 1 1 (λ+2)/(λ+3)

The following table encodes the power in the improved H 0(6) interpolation estimates for ∂tη.

X EN+2,1 DN+2,1 EN+2,2 DN+2,2

∂tη 1 1 1 (λ+2)/(λ+3)
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Proof. We may argue as in the derivation of (3-23) of Lemma 3.8 to bound

‖D2 p‖2

.‖D2η‖2+‖D2∂t u‖2+‖D4u‖2+‖D3
∇u‖2+‖D2G1

‖
2
+‖D2G2

‖
2
+‖D2

∇G2
‖

2
+‖D2G3

‖
2
6. (3-41)

We may also argue as in the derivation of (3-30) of Proposition 3.9 to bound

‖D∂3ui‖
2 . ‖D∂t u‖2+‖D3u‖2+‖D2 p‖2+‖DG1

‖
2
+‖DG2

‖
2
+‖DG3

‖
2
6 (3-42)

for i = 1, 2. Combining (3-41) and (3-42) and employing Theorems 3.14 and 3.15 and Lemmas 3.12 and
3.13, we then find the H 0(�) estimates for D∂3ui , i = 1, 2, listed in the table. The power is determined
by D2η.

We now turn to the ‖Dui‖
2
H2(6)

estimate for i = 1, 2. We employ trace theory and the Poincaré
inequality to bound

‖Dui‖
2
H0(6)

. ‖D∂3ui‖
2
0 and ‖D3ui‖

2
H0(6)

. ‖D3∂3ui‖
2
0, (3-43)

and then we utilize our new estimate for D∂3ui to deduce the H 2(6) estimates listed in the table. The
power is determined by D∂3ui since D3∂3ui has four derivatives and hence has a power of 1.

Finally, for the ∂tη estimate we use (2-23), trace theory, and Lemma A.13 to bound

‖∂tη‖
2
H0(6)

. ‖u3‖
2
H0(6)

+‖G4
‖

2
H0(6)

. ‖∇u3‖
2
0+‖G

4
‖

2
H0(6)

. (3-44)

Then Theorem 3.14 and Lemma 3.13 provide the ∂tη estimate for DN+2,2 listed in the table, with the
power determined by ∇u3; the estimates for EN+2,1,EN+2,2,DN+2,1 come from Lemma 3.1. �

Now we record an interpolation estimate for K, as defined by (2-57).

Lemma 3.17. We have K. E
(8+2λ)/(8+4λ)
N+2,2 .

Proof. By definition, K = ‖∇u‖2L∞ + ‖∇
2u‖2L∞ +

∑2
i=1 ‖Dui‖

2
H2(6)

. We may now use the H 2(6)

interpolation estimate of Proposition 3.16 and the L∞ interpolation estimate of Proposition 3.9 with
r = 2λ/(4+ λ) to bound K. E

2/(2+r)
N+2,2 . The choice of r implies that 2/(2+ r)= (8+ 2λ)/(8+ 4λ), and

the result follows. �

Estimates at the high end. Our analysis so far in Section 3 has dealt with the problems associated with
estimating terms involving fewer derivatives than appear in EN+2,m,DN+2,m . We now turn to the problem
of estimating terms involving more derivatives than are controlled by DN+2,m . We accomplish such
an estimate by interpolating between DN+2,m and E2N , which controls more derivatives since N ≥ 5.
Fortunately, the only term we must concern ourselves with is D2N+4η, and to simplify things we will
only estimate it in terms of DN+2,2. This suffices since DN+2,2 . DN+2,1.

Lemma 3.18. We have the estimate

‖D2N+4η‖21/2+‖∇
2N+5η̄‖20 . (E2N )

2/(4N−7)(DN+2,2)
(4N−9)/(4N−7). (3-45)
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Proof. According to Lemma A.5, with q = 2N + 5, we may bound

‖∇
2N+5η̄‖20 . ‖η‖

2
Ḣ2N+9/2(6)

. ‖D2N+4η‖21/2, (3-46)

so it suffices to prove (3-45) with only the D2N+4η term on the left side. To prove this, we will use a
standard Sobolev interpolation inequality:

‖ f ‖s . ‖ f ‖q/(r+q)
s−r ‖ f ‖r/(r+q)

s+q (3-47)

for s, q > 0 and 0≤ r ≤ s. Applying this to f = D3η with s = 2N + 3/2, r = 1, and q = 2N − 9/2, we
find that

‖D2N+4η‖1/2 ≤ ‖D3η‖2N+3/2 . ‖D3η‖
(4N−9)/(4N−7)
2N+1/2 ‖D3η‖

2/(4N−7)
4N−3 . (3-48)

The desired inequality then follows by squaring and using the definitions of E2N and DN+2,2. �

Our next result utilizes Lemma 3.18 to estimate products such as u D2N+4η.

Lemma 3.19. Let P = P(K , η, Dη) be a polynomial in K , η, Dη. Then there exists a θ > 0 such that

‖(D2N+4η)u‖2H1/2(6)
+‖(D2N+4η)P∇u‖2H1/2(6)

. Eθ2N DN+2,2. (3-49)

Let Q = Q(K , b̃, η̄,∇η̄) be a polynomial in K , b̃, η̄, ∇η̄. Then there exists a θ > 0 such that

‖(∇2N+5η̄)Q∇u‖20 . Eθ2N DN+2,2. (3-50)

Proof. According to the bound (A-2) of Lemma A.1, we may bound

‖(D2N+4η)u‖2H1/2(6)
+‖(D2N+4η)P∇u‖2H1/2(6)

. ‖D2N+4η‖2H1/2(6)
‖u‖2H2(6)

+‖D2N+4η‖2H1/2(6)
‖P∇u‖2H2(6)

. (3-51)

Trace theory and Lemma A.13 (both u and D2u vanish on 6b) imply that

‖u‖2H2(6)
+‖∇u‖2H2(6)

. ‖u‖2H0(6)
+‖D2u‖2H0(6)

+‖∇u‖2H0(6)
+‖D2

∇u‖2H0(6)

. ‖∇u‖20+‖D
2
∇u‖20+‖∇

2u‖20+‖∇
2 D2u‖20, (3-52)

but then an application of Theorem 3.14 to all the terms on the right side shows that

‖u‖2H2(6)
+‖∇u‖2H2(6)

. (DN+2,2)
(1+λ)/(3+λ). (3-53)

It is easy to see, based on the terms controlled by E2N and the Sobolev embeddings, that ‖P‖2C2(6)
.

1+E2N . 1. We may then combine this with (3-53) and the easy bound ‖ f g‖2H2(6)
. ‖ f ‖2H2(6)

‖g‖2C2(6)

to deduce that

‖u‖2H2(6)
+‖P∇u‖2H2(6)

. ‖u‖2H2(6)
+‖∇u‖2H2(6)

. (DN+2,2)
(1+λ)/(3+λ). (3-54)

Then this bound, (3-51), and Lemma 3.18 imply that

‖(D2N+4η)u‖2H1/2(6)
+‖(D2N+4η)P∇u‖2H1/2(6)

. Eθ2N Dκ
N+2,2 (3-55)
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for some θ > 0 and for

κ =
4N−9
4N−7

+
λ+1
λ+3

≥
4N−9
4N−7

+
1
3
=

16N−34
12N−21

≥ 1, (3-56)

since N ≥ 4. Since DN+2,2 . E2N ≤ 1, we may bound Dκ
N+2,2 . DN+2,2 in (3-55), which then yields

(3-49).
To derive (3-50), we first bound

‖(∇2N+5η̄)Q∇u‖20 ≤ ‖∇
2N+5η̄‖20‖∇u‖2L∞‖Q‖

2
L∞ . (3-57)

The first term on the right is controlled with Lemma 3.18. The second term satisfies

‖∇u‖2L∞ . (DN+2,2)
2/3 (3-58)

by virtue of the L∞ estimates of Proposition 3.9. The third term satisfies ‖Q‖2L∞ . 1+ E2N . 1 by
Sobolev embeddings and the definition of E2N . The estimate (3-50) follows by combining these bounds
as above. �

4. Nonlinear estimates

Estimates of G i at the N + 2 level. We now provide estimates of Gi , defined by (2-24)–(2-31), in terms
of EN+2,m and DN+2,m . Recall that, for sums of space-time derivatives, we use the notation Dk

m and ∇k
m ,

as described on page 1443.

Theorem 4.1. Let m ∈ {1, 2}. Then there exists a θ > 0 such that

‖∇
2(N+2)−2
m G1

‖
2
0+‖∇

2(N+2)−2
0 G2

‖
2
1+‖D

2(N+2)−2
m G3

‖
2
1/2+‖D

2(N+2)−2
0 G4

‖
2
1/2 . Eθ2N EN+2,m (4-1)

and

‖∇
2(N+2)−1
m G1

‖
2
0+‖∇

2(N+2)−1
0 G2

‖
2
1+‖D

2(N+2)−1
m G3

‖
2
1/2

+‖D2(N+2)−1
0 G4

‖
2
1/2+‖D

2(N+2)−2∂t G4
‖

2
1/2 . Eθ2N DN+2,m . (4-2)

Proof. The estimates of these nonlinearities are fairly routine to derive: we note that all terms are quadratic
or of higher order; then we apply the differential operator and expand using the Leibniz rule; each term in
the resulting sum is also at least quadratic, and we estimate one term in H k (k = 0, 1/2, or 1 depending
on Gi ) and the other term in L∞ or H m for m depending on k, using Sobolev embeddings, trace theory,
and Lemmas A.1 and A.5–A.8. The derivative count in the differential operators is chosen in order to
allow estimation by EN+2,m in (4-1) and by DN+2,m in (4-2). There is only one difficulty that arises.
Because EN+2,m and DN+2,m involve minimal derivative counts, there may be terms in the sum ∂αGi that
cannot be directly estimated. To handle these terms, we invoke the interpolation results of Theorems 3.14
and 3.16 and Proposition 3.9, as well as the specialized interpolation results of Lemma 3.19. A detailed
proof of the estimates is quite lengthy, so for the sake of brevity we present only a sketch.

Let α ∈ N1+3 with m ≤ |α| ≤ 2(N + 2)− 2 and consider ∂αG1. Since G1 involves ∇ p and ∂βu, ∂β η̄
with |β| ≤ 2, we find that ∂αG1 involves at most (with parabolic counting) 2(N + 2)− 1 derivatives
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of p, and at most 2(N + 2) derivatives of u and η̄. We have that G1 is a linear combination of at least
quadratic terms, and as such, so is ∂αG1. Let us consider a generic term in the sum ∂αG1, which we
write as XY with X of the form ∂βu or ∂β η̄ with |β| ≤ 2(N + 2) or else ∂β p with |β| ≤ 2(N + 2)− 1,
and Y a polynomial in lower-order derivatives. If |β| is sufficiently large with respect to m, the minimal
derivative count is exceeded and we may estimate ‖X‖20 . EN+2,m . It is easy to verify, using Sobolev
embeddings and Lemmas A.1 and A.5–A.8, that we always have ‖Y‖2L∞ . Eθ2N for some θ > 0. Then

‖XY‖20 ≤ ‖X‖
2
0‖Y‖

2
L∞ . EN+2,mEθ2N . (4-3)

On the other hand, if |β| is not large, we must resort to interpolation, using Theorems 3.14 and 3.16
and Proposition 3.9. In this case, it can be verified that we always get estimates of the form ‖X‖20 .
(E2N )

1−θ1(EN+2,m)
θ1 and ‖Y‖2L∞ . (E2N )

θ2(EN+2,m)
θ3 with θ1 ∈ (0, 1], θ2, θ3 ≥ 0, and θ1+ θ3 ≥ 1, so

that
‖XY‖20 ≤ ‖X‖

2
0‖Y‖

2
L∞ . EN+2,mEθ2N (4-4)

for some θ > 0. This analysis works for every XY appearing in ∂αG1, so

‖∇
2(N+2)−2
m G1

‖
2
0 . EN+2,mEθ2N (4-5)

for some θ > 0. It can then be verified, through a straightforward but lengthy analysis like that used
above, that all of the estimates in (4-1) hold. We note, though, that in order to estimate the G3 terms, we
must use Remark 2.4 to remove the appearance of (p− η) in G3.

Now we sketch the proof of the estimates in (4-2). We may argue as above to estimate all terms
that arise in ∂αGi with two exceptions: terms involving ∇2N+5η̄ on � or D2N+4η on 6. These always
have the form of the terms estimated in Lemma 3.19, so we may use that lemma for estimates in terms
of Eθ2N DN+2,2, which suffice for (4-2) since DN+2,2 . DN+2,1. Then (4-2) follows by combining the
estimates of the exceptional terms with the estimates of the terms as above. �

Estimates of G i at the 2N level. Now we derive estimates for the nonlinear Gi terms, defined by (2-24)–
(2-31), at the 2N level. Recall that, for sums of space-time derivatives, we use the notation Dk

m and ∇k
m ,

as described on page 1443.

Theorem 4.2. Let m ∈ {1, 2}. Then there exists a θ > 0 such that

‖∇
4N−2
0 G1

‖
2
0+‖∇

4N−2
0 G2

‖
2
1+‖D

4N−2
0 G3

‖
2
1/2+‖D

4N−2
0 G4

‖
2
1/2 . E1+θ

2N , (4-6)

‖∇
4N−2
0 G1

‖
2
0+‖∇

4N−2
0 G2

‖
2
1+‖D

4N−2
0 G3

‖
2
1/2+‖D

4N−2
0 G4

‖
2
1/2+‖∇

4N−3∂t G1
‖

2
0

+‖∇
4N−3∂t G2

‖
2
1+‖D

4N−3∂t G3
‖

2
1/2+‖D

4N−2∂t G4
‖

2
1/2 . Eθ2N D2N , (4-7)

and

‖∇
4N−1G1

‖
2
0+‖∇

4N−1G2
‖

2
1+‖D

4N−1G3
‖

2
1/2+‖D

4N−1G4
‖

2
1/2 . Eθ2N D2N +KF2N . (4-8)

Proof. As explained in the proof of Theorem 4.1, the estimates are routine and lengthy, so we present only
a sketch. The estimates in (4-6) are straightforward since E2N has no minimal derivative restrictions. They
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may be derived using Sobolev embeddings, trace theory, and Lemmas A.1, A.5, and the L∞ estimates of
Lemma A.6.

The only terms with minimal derivatives in D2N are Dη and ∇ p. The latter presents no problem, since,
owing to Remark 2.4, p itself never appears in any of the Gi terms. The former may be dealt with by
using Lemmas A.6 and A.7 to produce interpolation estimates of η̄ and η in terms of Dη. Whenever
interpolation is needed to estimate these terms, there are always other terms multiplying them that allow
for the recovery of a power of 1 on D2N . Using these estimates with Sobolev embeddings, trace theory,
and Lemmas A.1, A.5, and A.6 then yields (4-7).

We now turn to the derivation of (4-8). Consider ∂αGi with |α| = 4N − 1 and α0 = 0, that is, purely
spatial derivatives, and expand ∂αGi using the Leibniz rule. With two exceptions, we may argue as in
the derivation of (4-7) to estimate the desired norms of all of the resulting terms by Eθ2N D2N for θ > 0.
The exceptional terms are ones involving either ∇4N+1η̄ in � or D4Nη on 6. We will now show how
to estimate the exceptional terms with KF2N , as defined by (2-57) and (2-56). Identifying the product
structure KF2N is one of the key difficulties in our analysis.

In ∇4N−1G1 there are terms of the form ∂β η̄Q∂γ u, with

Q = Q(A, B, J, K ,∇A,∇B,∇ J ), (4-9)

a polynomial, and β, γ ∈N3 with |β| = 4N +1 and |γ | = 1. To estimate such a term, we use Lemma A.5
to bound

‖∇
4N+1η̄‖20 . ‖D

4N+1/2η‖20 . F2N . (4-10)

Sobolev embeddings imply that ‖Q‖2L∞ . 1+Eθ2N . 1 for some θ > 0, so

‖∂β η̄Q∂γ u‖20 . ‖∇
4N+1η̄‖20‖∇u‖2L∞‖Q‖

2
L∞ . ‖D

4N+1/2η‖20‖∇u‖2L∞ . F2N K. (4-11)

This estimate then yields the G1 estimate in (4-8).
In ∇4N−1G2 there are terms of the form ∂β η̄Q∂γ u with Q= Q(A, B, K ), a polynomial, and β, γ ∈N3

with |β| = 4N , |γ | = 1. Again, Sobolev embeddings imply that ‖Q‖2C1(�)
. 1+Eθ2N . 1, so

‖∂β η̄Q∂γ u‖21 . ‖Q‖
2
C1(�)
‖∂β η̄∂γ u‖21 . ‖∂

β η̄∂γ u‖20+‖∂
β η̄∇∂γ u‖20+‖∇∂

β η̄∂γ u‖20

. ‖∇4N η̄‖20‖∇u‖2C1(�)
+‖∇

4N+1η̄‖20‖∇u‖2L∞

. ‖η‖24N−1/2‖∇u‖23+KF2N . E2N D2N +KF2N , (4-12)

where again we have used Lemma A.5 and Sobolev embeddings. This estimate yields the G2 estimate in
(4-8).

In D4N−1G3 there are terms of the form ∂βηQ∂γ u, where β ∈N2 with |β| = 4N , γ ∈N3 with |γ | = 1,
and Q is a term for which we can estimate ‖Q‖2C1(6)

. 1+Eθ2N . 1. Then Lemma A.2 implies that

‖∂βηQ∂γ u‖2H1/2(6)
. ‖∂βη‖21/2‖Q∂

γ u‖2C1 . ‖η‖
2
4N+1/2‖Q‖

2
C1‖∇u‖2C1(6)

. F2N K, (4-13)

where in the last inequality we have used ‖∇u‖2C1(6)
.K, which follows since ∇u and ∇2u are continuous

on the closure of �. This estimate yields the G3 estimate in (4-8).
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In D4N−1G4 the exceptional terms are of the form ∂βηui , where β ∈ N2 with |β| = 4N and i = 1, 2.
Then Lemma A.1 implies that

‖∂βηu1‖
2
H1/2(6)

. ‖∂βη‖21/2‖ui‖
2
H2(6)

. F2N K. (4-14)

This estimate yields the G4 estimate in (4-8). �

Estimates of other nonlinearities. The next result provides estimates for IλGi and its derivatives.

Proposition 4.3. We have

‖IλG1
‖

2
2+‖Iλ∂t G1

‖
2
0+‖IλG2

‖
2
2+‖Iλ∂t G2

‖
2
0 . E2N min{E2N ,D2N }, (4-15)

‖IλG3
‖

2
1+‖IλG4

‖
2
1 . E2N min{E2N ,D2N }, (4-16)

‖IλG4
‖

2
0 . D2

2N . (4-17)

Proof. For each i = 1, 2 and for α ∈ N1+3 such that |α| ≤ 2, we can write ∂αGi
= P i

αQi
α, where P i

α is
polynomial in the terms ∂β b̃, ∂βK , ∂β η̄, and ∂βu for β ∈N1+3 with |β| ≤ 4, and Qi

α is linear in the terms
∂β∇u, ∂β∇2u, and ∂β∇ p for |β| ≤ 2. Then we may employ the bound (A-9) of Lemma A.3 to see that

‖∂αIλGi
‖

2
0 . ‖P

i
α‖

2
0(‖Q

i
α‖

2
1)
λ(‖DQi

α‖
2
1)

1−λ. (4-18)

It is then easily verified, using the Sobolev embedding, Lemmas A.1 and A.5–A.6, and the fact that
E2N ≤ 1, that

‖P i
α‖

2
0 . E2N and ‖Qi

α‖
2
2 .min{E2N ,D2N }, (4-19)

which, together with (4-18), implies (4-15).
For i = 3, 4 and α ∈ N2 such that |α| ≤ 1, we may similarly decompose ∂αGi

= P i
αQi

α. When i = 3
we must also employ Remark 2.4 to replace the p− η term. We then argue as above, employing the
bound (A-10) of Lemma A.3 as well as trace estimates, to deduce (4-16). The bound (4-17) also follows
from Lemma A.3 and trace estimates, since

‖IλG4
‖

2
0 . ‖u‖

2
H0(6)

(‖Dη‖20)
λ(‖D2η‖20)

1−λ . D2N Dλ
2N D1−λ

2N = D2
2N . �

Now we provide some further estimates of product terms that will be useful later when we analyze the
energy evolution for Iλu and Iλη.

Lemma 4.4. Let A, B, K be as defined in (1-8). We have

‖Iλ[(AK )∂3u1+ (BK )∂3u2]‖
2
0+

2∑
i=1

‖Iλ[u∂i K ]‖20 . D2
2N (4-20)

and

‖Iλ[(1− K )u]‖20 . (E2N )
1/(1+λ) (D2N )

(1+2λ)/(1+λ) . (4-21)

Also, if G2 is as defined in (2-29), then

‖Iλ[(1− K )G2
]‖

2
0 . E2N D2

2N . (4-22)
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Proof. We apply Lemma A.3, treating the AK , BK , ∂i K terms as f and the u,∇u terms as g, to bound

‖Iλ[(AK )∂3u1+ (BK )∂3u2]‖
2
0+

2∑
i=1

‖Iλ[u∂i K ]‖20 . (‖AK‖20+‖BK‖20+‖DK‖20)‖u‖
2
3. (4-23)

From Lemma 2.6, the fact that ∂i K =−K 2∂i J , and Lemma A.5, we know that

‖AK‖20+‖BK‖20+‖DK‖20 . ‖∇η̄‖
2
1 . ‖Dη‖

2
1 ≤ D2N . (4-24)

Then, since ‖u‖23 ≤ D2N , we know that (4-20) holds.
Now, since 1− K = K (J − 1), we can again use Lemmas A.3 and 2.6 to see that

‖Iλ[(1− K )u]‖20 . ‖K (1− J )‖20‖u‖
2
2 . ‖η̄‖

2
1‖u‖

2
2. (4-25)

To control η̄ we use Lemmas A.5 and A.7 to bound

‖η̄‖21 . ‖η‖
2
0+‖Dη‖

2
0 . (‖Iλη‖

2
0)

1/(1+λ)(‖Dη‖20)
λ/(1+λ)

+ (‖Dη‖20)
1/(1+λ)(‖Dη‖20)

λ/(1+λ)

. (E2N )
1/(1+λ)(D2N )

λ/(1+λ). (4-26)

Then (4-21) follows from these two estimates and the fact that ‖u‖22 ≤ D2N .
For the estimate of the (1− K )G2 term, we once more use Lemma A.3 to see that

‖Iλ[(1− K )G2
]‖

2
0 . ‖G

2
‖

2
0‖1− K‖22. (4-27)

By differentiating the equation J K = 1, we may compute the derivatives of K in terms of the derivatives
of J ; this allows us to bound, by virtue of Lemmas 2.6 and A.5,

‖1− K‖22 . ‖η̄‖
2
3 . ‖η‖

2
5/2 . ‖η‖

2
0+‖Dη‖

2
3/2. (4-28)

Then we may argue as in (4-26) to estimate the right side of this inequality, and we deduce that

‖1− K‖22 . (E2N )
1/(1+λ)(D2N )

λ/(1+λ). (4-29)

On the other hand, from the definition of G2 in (2-29), we see that

‖G2
‖

2
0 . ‖∇u‖20(‖η̄‖

2
L∞ +‖∇η̄‖

2
L∞). (4-30)

We estimate the L∞ norms by using (A-25) of Lemma A.6 first with q = 0, s = 1, r = λ2
+ λ and then

with q = 1, s = 1, r = λ2
+ 2λ to see that

‖η̄‖2L∞ +‖∇η̄‖
2
L∞ . (‖Iλη‖

2
0)
λ/(λ+1)(‖Dη‖20)

1/(λ+1)
+ (‖Iλη‖

2
0)
λ/(λ+1)(‖D2η‖20)

1/(λ+1)

≤ (E2N )
λ/(λ+1)(D2N )

1/(λ+1). (4-31)

Then, since ‖∇u‖20 ≤ D2N , we have

‖G2
‖

2
0 . (E2N )

λ/(λ+1)(D2N )
1+1/(λ+1), (4-32)

which yields (4-22) when combined with (4-27) and (4-29). �
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Now we provide an estimate of ∂ j
t A when j = 2N + 1 and when j = N + 3.

Lemma 4.5. Let A be given by (1-7). We have

‖∂2N+1
t A‖20 . D2N , (4-33)

while for m = 1, 2,

‖∂N+3
t A‖20 . DN+2,m . (4-34)

Proof. We will only prove (4-33); the bound (4-34) follows from similar analysis. Since ‖∂2N+1
t η‖21/2 ≤

D2N and temporal derivatives commute with the Poisson integral, we may employ Lemma A.5 to bound

‖∂2N+1
t η̄‖21 = ‖∂

2N+1
t η̄‖20+‖∇∂

2N+1
t η̄‖20 . ‖∂

2N+1
t η‖21/2 ≤ D2N . (4-35)

From this we easily deduce that

‖∂2N+1
t J‖20+‖∂

2N+1
t K‖20 . D2N . (4-36)

This, the previous bound, and the Sobolev embeddings then imply (4-33) since the components of A are
either unity, K , −∂1η̄b̃K , or −∂2η̄b̃K . �

5. Energy evolution using the geometric form

Estimates of the perturbations when ∂α = ∂
α0
t is applied to (1-9). We now present estimates of the

perturbations F i , defined by (2-13)–(2-22) when ∂α = ∂2N
t .

Theorem 5.1. Let ∂α = ∂2N
t and let F1, F2, F3, F4 be defined by (2-13)–(2-22). Then

‖F1
‖

2
0+‖∂t(J F2)‖20+‖F

3
‖

2
0+‖F

4
‖

2
0 . E2N D2N . (5-1)

Proof. We first consider the F1 estimate. Each term in the sums that define F1 is at least quadratic. It
is straightforward to see that each such term can be written in the form XY , where X involves fewer
temporal derivatives than Y , and we may use the usual Sobolev embeddings and Lemmas A.1 and A.5
along with the definitions of E2N and D2N (given in (2-50) and (2-51), respectively) to estimate

‖X‖2L∞ . E2N and ‖Y‖20 . D2N . (5-2)

Then ‖XY‖20 ≤ ‖X‖
2
L∞‖Y‖

2
0 . E2N D2N , and the F1 estimate in (5-1) follows by summing. A similar

argument, also employing trace estimates, yields the F3 and F4 estimates in (5-1). Note though, that to
estimate the β = α term in F3,1 we use Remark 2.4 to replace (p− η).

The same analysis also works for ∂t(J F2,1) and shows that ‖∂t(J F2,1)‖20 . E2N D2N . To handle
∂t(J F2,2) we must also be able to estimate ‖∂2N+1

t A‖20 . D2N , but this is possible due to Lemma 4.5.
Then a similar splitting into L∞ and H 0 estimates shows that ‖∂t(J F2,2)‖20 . E2N D2N , and then the
∂t(J F2) estimate in (5-1) follows since F2

= F2,1
+ F2,2. �

We now present estimates for these perturbations when ∂α = ∂N+2
t .
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Theorem 5.2. Let ∂α = ∂N+2
t and let F1, F2, F3, F4 be defined by (2-13)–(2-22). Then, for m = 1, 2,

we have

‖F1
‖

2
0+‖∂t(J F2)‖20+‖F

3
‖

2
0+‖F

4
‖

2
0 . E2N DN+2,m . (5-3)

Also, if N ≥ 3, there exists a θ > 0 such that

‖F2
‖

2
0 . Eθ2N EN+2,m (5-4)

for m = 1, 2.

Proof. The proof of (5-3) is essentially the same as that of Theorem 5.1. For the F1, F3, and F4 estimates
we note that each term in their definition is of the form XY where X involves fewer temporal derivatives
than Y , which involves at least two temporal derivatives. We estimate ‖X‖2L∞ . E2N and ‖Y‖20 .DN+2,m

and then sum to get (5-3). Note that since Y involves at least two temporal derivatives, there is no problem
estimating it in terms of DN+2,m . The ∂t(J F2) estimate works similarly, except we must also use the
bound (4-34) from Lemma 4.5. Note also that in estimating the β = α term in F3,1, we must employ
Remark 2.4 to remove (p− η).

We now turn to the proof of (5-4). Recall that F2
= F2,1

+ F2,2, as defined in (2-19). Since the sum
in F2,1 runs over 1≤ β ≤ N + 1, we may bound

‖F2,1
‖

2
0 .

∑
1≤β≤N+1

‖∂
β
t A‖2L∞‖∂

N+2−β
t u‖21 .

∑
1≤β≤N+1

E2N‖∂
N+2−β
t u‖22(N+2)−2(N+2−β)

. E2N EN+2,m . (5-5)

For F2,2, a calculation reveals that

F2,2
=−∂N+2

t Ai j∂ j ui=−∂
N+2
t Ai3∂3ui=∂

N+2
t (∂1η̄b̃K )∂3u1+∂

N+2
t (∂2η̄b̃K )∂3u2−∂

N+2
t K∂3u3. (5-6)

We may use the L∞ interpolation estimate of Proposition 3.9 to bound ‖∂3ui‖
2
L∞ . EN+2,m for i = 1, 2

and m = 1, 2, which then implies that

‖∂N+2
t (∂1η̄b̃K )∂3u1+ ∂

N+2
t (∂2η̄b̃K )∂3u2‖

2
0 . E2N EN+2,m (5-7)

if we estimate ∂3ui in L∞ and the ∂N+1
t terms in H 0. On the other hand, the relation J K = 1 (recall the

definition in (1-8)), the Leibniz rule, and Lemma A.5 imply that

‖∂N+2
t K‖20 .

∑
1≤γ≤N+2

‖∂
γ
t J‖20 .

∑
1≤γ≤N+2

‖∂
γ
t η̄‖

2
1 .

∑
1≤γ≤N+2

‖∂
γ
t η‖

2
1/2

=

∑
1≤γ≤N+1

‖∂
γ
t η‖

2
1/2+‖∂

N+2
t η‖21/2 . EN+2,m +‖∂

N+2
t η‖21/2. (5-8)

To handle the last term we must use the standard Sobolev interpolation (3-47) with s = r = 1/2 and
q = 2N − 9/2:

‖∂N+2
t η‖21/2 . (‖∂

N+2
t η‖20)

κ(‖∂N+2
t η‖22N−4)

1−κ . (EN+2,m)
κ(E2N )

1−κ (5-9)
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for κ = (4N − 9)/(4N − 8). Then

‖∂N+2
t K∂3u3‖

2
0 ≤ ‖∂

N+2
t K‖20‖∂3u3‖

2
L∞ . EN+2,m‖∂3u3‖

2
L∞ + (EN+2,m)

κ(E2N )
1−κ
‖∂3u3‖

2
L∞ . (5-10)

For the first term on the right we bound ‖∂3u3‖
2
L∞ . E2N , and for the second we use the L∞ interpolation

bound of Proposition 3.9 with r = 1/2, so that 2/(2+r)= 4/5≥ 1−κ and ‖∂3u3‖
2
L∞ .E

2/(2+r)
N+2,m .E1−κ

N+2,m .
Then these estimates and (5-10) imply that

‖∂N+2
t K∂3u3‖

2
0 . EN+2,m(E2N )

1−κ . (5-11)

We then combine (5-6), (5-7), and (5-11) to see that

‖F2,2
‖

2
0 . EN+2,m(E2N )

1−κ . (5-12)

Then the estimate (5-4) follows from (5-5) and (5-12). �

Energy evolution with the highest and lowest count of temporal derivatives. We now show the time-
integrated evolution estimate for 2N temporal derivatives.

Proposition 5.3. There exists a θ > 0 such that

‖∂2N
t u(t)‖20+‖∂

2N
t η(t)‖20+

∫ t

0
‖D∂2N

t u‖20 . E2N (0)+ (E2N (t))3/2+
∫ t

0
Eθ2N D2N . (5-13)

Proof. We apply ∂α = ∂2N
t to (1-9). Then v = ∂2N

t u, q = ∂2N
t p, and ζ = ∂2N

t η solve (2-1) with F i ,
i = 1, 2, 3, 4, given by (2-13)–(2-22). Applying Lemma 2.2 (and Remark 2.3) to these functions and then
integrating in time from 0 to t gives

1
2

∫
�

J |∂2N
t u(t)|2+ 1

2

∫
6

|∂2N
t η(t)|2+ 1

2

∫ t

0

∫
�

J |DA∂
2N
t u|2

=
1
2

∫
�

J |∂2N
t u(0)|2+1

2

∫
6

|∂2N
t η(0)|2+

∫ t

0

∫
�

J (∂2N
t u·F1

+∂2N
t pF2)+

∫ t

0

∫
6

−∂2N
t u·F3

+∂2N
t ηF4. (5-14)

Here, because of Remark 2.3, we understand that this formula actually holds with∫ t

0

∫
�

∂2N
t pJ F2

:= −

∫ t

0

∫
�

∂2N−1
t p∂t(J F2)+

∫
�

(∂2N−1
t pJ F2)(t)−

∫
�

(∂2N−1
t pJ F2)(0). (5-15)

We will estimate all of the terms involving F i on the right side of this equation.
We begin with the F1 term. According to Theorem 5.1 and Lemma 2.6, we may bound∫ t

0

∫
�

J∂2N
t u · F1

≤

∫ t

0
‖∂2N

t u‖0‖J‖L∞‖F1
‖0 .

∫ t

0

√
D2N

√
E2N D2N =

∫ t

0

√
E2N D2N . (5-16)

Similarly, we use Theorem 5.1 and trace theory to handle the F3 and F4 terms:∫ t

0

∫
6

−∂2N
t u · F3

+ ∂2N
t ηF4

≤

∫ t

0
‖∂2N

t u‖H0(6)‖F
3
‖0+‖∂

2N
t η‖0‖F4

‖0

.
∫ t

0
(‖∂2N

t u‖1+‖∂2N
t η‖0)

√
E2N D2N .

∫ t

0

√
E2N D2N . (5-17)
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According to Theorem 5.1 we may estimate

−

∫ t

0

∫
�

∂2N−1
t p∂t(J F2).

∫ t

0
‖∂2N−1

t p‖0‖∂t(J F2)‖0.
∫ t

0

√
D2N

√
E2N D2N =

∫ t

0

√
E2N D2N . (5-18)

On the other hand, it is easy to verify using the Sobolev embeddings that∫
�

(∂2N−1
t pJ F2)(t)−

∫
�

(∂2N−1
t pJ F2)(0). E2N (0)+ (E2N (t))3/2. (5-19)

Hence ∫ t

0

∫
�

∂2N
t pJ F2 . E2N (0)+ (E2N (t))3/2+

∫ t

0

√
E2N D2N . (5-20)

Now we combine (5-16), (5-17), and (5-20) to deduce that

1
2

∫
�

J |∂2N
t u(t)|2+ 1

2

∫
6

|∂2N
t η(t)|2+ 1

2

∫ t

0

∫
�

J |DA∂
2N
t u|2

. E2N (0)+ (E2N (t))3/2+
∫ t

0

√
E2N D2N . (5-21)

We now seek to replace J |DA∂
2N
t u|2 with |D∂2N

t u|2 and J |∂2N
t u(t)|2 with |∂2N

t u(t)|2 in (5-21). To
this end, we write

J |DA∂
2N
t u|2 = |D∂2N

t u|2+ (J − 1)|D∂2N
t u|2+ J (DA∂

2N
t u+D∂2N

t u) : (DA∂
2N
t u−D∂2N

t u) (5-22)

and estimate the last three terms on the right side. For the last term we note that

(DA∂
2N
t u±D∂2N

t u)i j = (Aik ± δik)∂k∂
2N
t u j + (A jk ± δ jk)∂k∂

2N
t ui , (5-23)

so that Sobolev embeddings and Lemma A.5 provide the bounds

|DA∂
2N
t u−D∂2N

t u|.
√

E2N |∇∂
2N
t u| and |DA∂

2N
t u+D∂2N

t u|. (1+
√

E2N )|∇∂
2N
t u|. (5-24)

We then get∫ t

0

∫
�

|J (DA∂
2N
t u+D∂2N

t u) : (DA∂
2N
t u−D∂2N

t u)|

.
∫ t

0
(
√

E2N +E2N )

∫
�

|∇∂2N
t u|2 .

∫ t

0

√
E2N D2N . (5-25)

Similarly,∫ t

0

∫
�

|J − 1||D∂2N
t u|2 .

∫ t

0

√
E2N D2N and

∫
�

|J − 1||∂2N
t u(t)|2 . (E2N (t))3/2. (5-26)

We may then use (5-22) and (5-25)–(5-26) to replace in (5-21) and derive the bound (5-13). �

Now we prove a similar result for when ∂N+2
t is applied. This time, however, we do not want an

inequality that is integrated in time, so we are forced to introduce an error term involving ∂N+1
t p.
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Proposition 5.4. Let F2 be given by (2-19) with ∂α = ∂N+2
t . Then

∂t

(
‖
√

J∂N+2
t u‖20+‖∂

N+2
t η‖20− 2

∫
�

J∂N+1
t pF2

)
+‖D∂N+2

t u‖20 .
√

E2N DN+2,m . (5-27)

Proof. We apply ∂α = ∂N+2
t to (1-9). Then v = ∂N+2

t u, q = ∂N+2
t p, and ζ = ∂N+2

t η solve (2-1) with F i ,
i = 1, 2, 3, 4, given by (2-13)–(2-22). Applying Lemma 2.2 to these functions gives

∂t

(
1
2

∫
�

J |∂N+2
t u|2+ 1

2

∫
6

|∂N+2
t η|2

)
+

1
2

∫
�

J |DA∂
N+2
t u|2

=

∫
�

J (∂N+2
t u · F1

+ ∂N+2
t pF2)+

∫
6

−∂N+2
t u · F3

+ ∂N+2
t ηF4. (5-28)

We will estimate all of the terms involving F i on the right side of this equation as in Proposition 5.3.
We begin with the F1 term. According to Theorem 5.2 and Lemma 2.6, we may bound∫

�

J∂N+2
t u · F1

≤ ‖∂N+2
t u‖0‖J‖L∞‖F1

‖0 .
√

DN+2,m
√

E2N DN+2,m =
√

E2N DN+2,m . (5-29)

Similarly, we use Theorem 5.2 and trace theory to handle the F3 and F4 terms:∫
6

−∂N+2
t u · F3

+ ∂N+2
t ηF4

≤ ‖∂N+2
t u‖H0(6)‖F

3
‖0+‖∂

N+2
t η‖0‖F4

‖0

. (‖∂N+2
t u‖1+‖∂N+2

t η‖0)
√

E2N DN+2,m .
√

E2N DN+2,m . (5-30)

For the term ∂N+2
t pF2, there is one more time derivative on p than can be controlled by DN+2,m . We

are then forced to pull out a time derivative:∫
�

∂N+2
t pJ F2

= ∂t

∫
�

∂N+1
t pJ F2

−

∫
�

∂N+1
t p∂t(J F2). (5-31)

Then, according to Theorem 5.2, we may estimate

−

∫
�

∂N+1
t p∂t(J F2)≤ ‖∂N+1

t p‖0‖∂t(J F2)‖0 .
√

DN+2,m
√

E2N DN+2,m =
√

E2N DN+2,m . (5-32)

Hence ∫ t

0

∫
�

∂2N
t pJ F2 . ∂t

∫
�

∂N+1
t pJ F2

+

√
E2N DN+2,m . (5-33)

Now we combine (5-28)–(5-30) and (5-33) to deduce that

∂t

(
1
2

∫
�

J |∂N+2
t u|2+ 1

2

∫
6

|∂N+2
t η|2−

∫
�

∂N+1
t pJ F2

)
+

1
2

∫
�

J |DA∂
N+2
t u|2.

√
E2N DN+2,m . (5-34)

We may argue as in (5-22)–(5-26) of Proposition 5.3 to show that

1
2

∫
�

|D∂N+2
t u|2 . 1

2

∫
�

J |DA∂
N+2
t u|2+

√
E2N DN+2,m . (5-35)

Then (5-27) follows from (5-34) and (5-35). �
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Finally, we record the basic energy estimate when no derivatives are applied.

Proposition 5.5. We have

∂t

(
1
2

∫
�

J |u|2+ 1
2

∫
6

|η|2
)
+

1
2

∫
�

J |DAu|2 = 0. (5-36)

In particular,

‖u(t)‖20+‖η(t)‖
2
0+

∫ t

0
‖Du‖20 . E2N (0)+

∫ t

0

√
E2N D2N . (5-37)

Proof. Setting v = u, q = p, ζ = η, and F i
= 0 for i = 1, 2, 3, 4 in Lemma 2.2 yields (5-36). We may

argue as in (5-22)–(5-26) of Proposition 5.3 to estimate

1
2

∫
�

|Du|2 . 1
2

∫
�

J |DAu|2+
√

E2N D2N . (5-38)

Similarly, Lemma 2.6 allows us to estimate

1
4

∫
�

|u|2 ≤ 1
2

∫
�

J |u|2. (5-39)

Now we may integrate (5-36) in time from 0 to t and use these two estimates to derive (5-37). �

6. Energy evolution in the perturbed linear form

Energy evolution for horizontal derivatives. We now estimate how the evolution of the horizontal energy
is coupled to the horizontal dissipation and the full energy and dissipation. Recall that F2N is as defined
in (2-56) and K is as defined in (2-57).

Lemma 6.1. Let α ∈ N2 be such that |α| = 4N , that is, let ∂α be 4N spatial derivatives in the x1, x2

directions. Let G4 be as defined by (2-31). Then∣∣∣∣∫
6

∂αη∂αG4
∣∣∣∣.√E2N D2N +

√
D2N KF2N . (6-1)

Proof. Throughout the proof β will always denote an element of N2, and we will write

D f · ∂βu = ∂1 f ∂βu1+ ∂2 f ∂βu2

for a function f defined on 6. Then by the Leibniz rule, we have

−∂αG4
= ∂α(Dη · u)= D∂αη · u+

∑
0<β≤α
|β|=1

Cα,βD∂α−βη · ∂βu+
∑

0<β≤α
|β|≥2

Cα,βD∂α−βη · ∂βu (6-2)

for constants Cα,β depending on α and β. We will analyze each of the three terms on the right separately.
For the first term, we integrate by parts to see that∫

6

∂αηD∂αη · u = 1
2

∫
6

D|∂αη|2 · u =−1
2

∫
6

∂αη∂αη(∂1u1+ ∂2u2). (6-3)
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This then allows us to use (A-3) of Lemma A.1 to bound∣∣∣∣∫
6

∂αηD∂αη · u
∣∣∣∣. ‖∂αη‖1/2‖∂αη(∂1u1+ ∂2u2)‖H−1/2(6)

. ‖η‖4N+1/2‖∂
αη‖−1/2‖∂1u1+ ∂2u2‖H2(6)

. ‖η‖4N+1/2‖Dη‖4N−3/2‖∂1u1+ ∂2u2‖H2(6) ≤

√
F2N D2N K. (6-4)

Similarly, for the second term we estimate∣∣∣∣∫
6

∂αη
∑

0<β≤α
|β|=1

Cα,βD∂α−βη · ∂βu
∣∣∣∣. ‖D4Nη‖1/2‖D4Nη‖−1/2

2∑
i=1

‖Dui‖H2(6)

. ‖η‖4N+1/2‖Dη‖4N−3/2

2∑
i=1

‖Dui‖H2(6) ≤

√
F2N D2N K. (6-5)

For the third term we first note that ‖∂αη‖−1/2 . ‖Dη‖4N−3/2 ≤
√

D2N , which allows us to bound∣∣∣∣∫
6

∂αηD∂α−βη · ∂βu
∣∣∣∣≤ ‖∂αη‖−1/2‖D∂α−βη · ∂βu‖H1/2(6) .

√
D2N‖D∂α−βη · ∂βu‖H1/2(6). (6-6)

We estimate the last term on the right using Lemma A.1 and trace theory, but in different ways depending
on |β|:

‖D∂α−βη · ∂βu‖H1/2(6) .

{
‖D∂α−βη‖1/2‖∂βu‖H2(6) for 2≤ |β| ≤ 2N ,
‖D∂α−βη‖2‖∂βu‖H1/2(6) for 2N + 1≤ |β| ≤ 4N

.

{
‖Dη‖4N−3/2‖u‖2N+3 for 2≤ |β| ≤ 2N ,
‖Dη‖2N+1‖u‖4N+1 for 2N + 1≤ |β| ≤ 4N ,

(6-7)

so that ‖D∂α−βη · ∂βu‖H1/2(6) .
√

E2N D2N for all 0< β ≤ α with |β| ≥ 2. Hence∣∣∣∣∫
6

∂αη
∑

0<β≤α
|β|≥2

Cα,βD∂α−βη · ∂βu
∣∣∣∣.√D2N

√
E2N D2N =

√
E2N D2N . (6-8)

The estimate (6-1) then follows from (6-4), (6-5), and (6-8). �

Now we prove an estimate for horizontal derivatives up to order 2N , excluding ∂α = ∂2N
t and no

derivatives. Recall that we use the conventions for sums of derivatives described on page 1443.

Proposition 6.2. Suppose that α ∈ N1+2 is such that α0 ≤ 2N − 1 and 1≤ |α| ≤ 4N. Then there exists a
θ > 0 such that

∂t

(
1
2

∫
�

|∂αu|2+ 1
2

∫
6

|∂αη|2
)
+

1
2

∫
�

|D∂αu|2 . Eθ2N D2N +
√

D2N KF2N , (6-9)
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and, in particular,

‖D4N−1
1 u(t)‖20+‖DD4N−1u(t)‖20+‖D

4N−1
1 η(t)‖20+‖DD4N−1η(t)‖20

+

∫ t

0
‖D4N−1

1 Du‖20+‖DD4N−1Du‖20 . E2N (0)+
∫ t

0
Eθ2N D2N +

√
D2N KF2N . (6-10)

Proof. Let α ∈N1+2 satisfy α0 ≤ 2N −1 and 1≤ |α| ≤ 4N . Note that the constraint on α0 implies that we
do not exceed the number of temporal derivatives of p that we can control. An application of Lemma 2.5
to v = ∂αu, q = ∂α p, ζ = ∂αη with 81

= ∂αG1, 82
= ∂αG2, 83

= ∂αG3, 84
= ∂αG4, and a = 1 reveals

that

∂t

(
1
2

∫
�

|∂αu|2+ 1
2

∫
6

|∂αη|2
)
+

1
2

∫
�

|D∂αu|2

=

∫
�

∂αu · (∂αG1
−∇∂αG2)+ ∂α p∂αG2

+

∫
6

−∂αu · ∂αG3
+ ∂αη∂αG4. (6-11)

Assume initially that 1≤ |α| ≤ 4N−1. Then according to the estimates (4-7) and (4-8) of Theorem 4.2
and the definition of D2N , we have∣∣∣∣∫
�

∂αu ·(∂αG1
−∇∂αG2)+∂α p∂αG2

∣∣∣∣≤‖∂αu‖0(‖∂αG1
‖0+‖∂

αG2
‖1)+‖∂

α p‖0‖∂αG2
‖0

.
√

D2N

√
Eθ2N D2N+KF2N .Eκ2N D2N+

√
D2N KF2N , (6-12)

where in the last equality we have written κ = θ/2 for θ > 0 the number provided by Theorem 4.2.
Similarly, we may use Theorem 4.2 along with the trace estimate ‖∂αu‖H0(6) . ‖∂

αu‖1 ≤
√

D2N to get∣∣∣∣∫
6

−∂αu · ∂αG3
+ ∂αη∂αG4

∣∣∣∣≤ ‖∂αu‖H0(6)‖∂
αG3
‖0+‖∂

αη‖0‖∂
αG4
‖0

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N .

(6-13)

Now assume that |α| = 4N . Since α0 ≤ 2N − 1, we may write α = β+ (α−β) for some β ∈N2 with
|β| = 1, that is, ∂α involves at least one spatial derivative. Since |α−β| = 4N − 1, we can then integrate
by parts and use (4-7) and (4-8) of Theorem 4.2 to see that∣∣∣∣∫
�

∂αu · (∂αG1
−∇∂αG2)

∣∣∣∣= ∣∣∣∣∫
�

∂α+βu · (∂α−βG1
−∇∂α−βG2)

∣∣∣∣
≤ ‖∂α+βu‖0

(
‖∂α−βG1

‖0+‖∂
α−βG2

‖1
)
≤ ‖∂αu‖1

(
‖∇

4N−1G1
‖0+‖∇

4N−1G2
‖1
)

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N . (6-14)

For the pressure term we do not need to integrate by parts; Theorem 4.2 provides the estimate∣∣∣∣∫
�

∂α p∂αG2
∣∣∣∣≤ ‖∂α p‖0‖∂α−β∂βG2

‖0 ≤ ‖∂
α p‖0‖∇4N−1G2

‖1

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N . (6-15)
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Next, we integrate by parts, employ Theorem 4.2, and use the trace estimate H 1(�) ↪→ H 1/2(6) to get∣∣∣∣∫
6

∂αu · ∂αG3
∣∣∣∣= ∣∣∣∣∫

6

∂α+βu · ∂α−βG3
∣∣∣∣≤ ‖∂α+βu‖H−1/2(6)‖∂

α−βG3
‖1/2

. ‖∂αu‖H1/2(6)‖D
4N−1G3

‖1/2 . ‖∂
αu‖1‖D4N−1G3

‖1/2

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N .

(6-16)

For the term ∂αη∂αG4 we must split into two cases: α0 ≥ 1 and α0 = 0. In the former case, there is at
least one temporal derivative in ∂α, so ‖∂αη‖1/2 ≤

√
D2N , and hence Theorem 4.2 allows us to bound∣∣∣∣∫

6

∂αη∂αG4
∣∣∣∣= ∣∣∣∣∫

6

∂α+βη∂α−βG4
∣∣∣∣≤ ‖∂α+βη‖−1/2‖∂

α−βG4
‖1/2 . ‖∂

αη‖1/2‖D4N−1G4
‖1/2

.
√

D2N

√
Eθ2N D2N +KF2N . Eκ2N D2N +

√
D2N KF2N . (6-17)

In the latter case, α0 = 0, so that ∂α involves only spatial derivatives; in this case we use Lemma 6.1 to
bound ∣∣∣∣∫

6

∂αη∂αG4
∣∣∣∣.√E2N D2N +

√
D2N KF2N . (6-18)

Now, in light of (6-11)–(6-18), we know that (6-9) holds. The bound (6-10) follows by applying (6-9)
to all 1≤ |α| ≤ 4N with α0 ≤ 2N − 1, summing, and integrating in time from 0 to t . �

Our next result provides some preliminary interpolation estimates for G2 and G4 in terms of DN+2,m ,
as defined in (2-54) and (2-55), but with a power greater than 1.

Lemma 6.3. Let G4 be as defined in (2-31). We have the estimate

‖D2N+3G4
‖

2
1/2 . (DN+2,2)

1+2/(4N−7). (6-19)

Also, there exists a θ > 0 such that

‖DG4
‖

2
0 . Eθ2N (DN+2,1)

1+1/(λ+2) and ‖D2G4
‖

2
0 . Eθ2N (DN+2,2)

1+1/(λ+3). (6-20)

Finally,

‖DG2
‖

2
L1 . Eθ2N (DN+2,1)

1+λ/(λ+2) and ‖D2G2
‖

2
L1 . Eθ2N (DN+2,2)

1+λ/(λ+3). (6-21)

Proof. Let α ∈N2 be such that |α| = 2(N +2)−1. The Leibniz rule, Lemma A.1, and trace theory imply

‖∂αG4
‖1/2 .

∑
β≤α
|β|≤N+2

‖D∂βη‖2‖∂α−βu‖H1/2(6)+

∑
β≤α

N+3≤|β|≤2N+3

‖D∂βη‖1/2‖∂α−βu‖H2(6)

. ‖Dη‖N+4‖D2N+3
N+1 u‖1+‖D3η‖2(N+2)−5/2‖u‖H N+2(6). (6-22)
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Trace theory, Poincaré’s inequality, the H 0(�) interpolation result for ∇u of Theorem 3.14, and the
fact that ‖DN+2u‖21 ≤min{E2N ,DN+2,2} imply that

‖u‖2H N+2(6)
. ‖u‖2H0(6)

+‖DN+2u‖2H0(6)
. ‖∇u‖20+‖D

N+2u‖21

. D
(λ+1)/(λ+3)
N+2,2 + (E2N )

2/(λ+3)(DN+2,2)
(λ+1)/(λ+3) . D

(λ+1)/(λ+3)
N+2,2 . (6-23)

Let us now choose q so that
λ+1
λ+3

+
q

q + 1
= 1+ 2

4N−7
. (6-24)

Since N ≥ 5 and λ ∈ (0, 1), we may find such a q = q(λ) with dq(λ)/dλ≤ 0 for λ ∈ (0, 1):

q = 8N+2λ−8
4N (1+λ)−9λ−13

∈

[ 8N−6
8N−22

,
8N−8
4N−13

]
⊂ [1, 2N − 9/2]. (6-25)

Using this q , r = 1, and s = 2(N + 2)− 5/2 in the standard Sobolev interpolation inequality (3-47), we
find that

‖D3η‖22(N+2)−5/2 . (‖D
3η‖22(N+2)−7/2)

q/(1+q)(‖D3η‖22(N+2)−5/2+q)
1/(1+q)

. (DN+2,2)
q/(1+q)(E2N )

1/(1+q) . (DN+2,2)
q/(1+q).

(6-26)

Now (6-23), (6-26), and the choice of q imply that

‖D3η‖22(N+2)−5/2‖u‖
2
H N+2(6)

. (DN+2,2)
1+2/(4N−7). (6-27)

The fact that ‖D3η‖2N+2≤min{E2N ,DN+2,2} and the H 0(6) interpolation result for Dη of Lemma 3.1
imply that

‖Dη‖2N+4 . ‖Dη‖
2
0+‖D

3η‖2N+2

. D
(λ+1)/(λ+3)
N+2,2 + (‖D3η‖2N+2)

2/(λ+3)(‖D3η‖2N+2)
(λ+1)/(λ+3)

≤ D
(λ+1)/(λ+3)
N+2,2 + (E2N )

2/(λ+3)(DN+2,2)
(λ+1)/(λ+3) . D

(λ+1)/(λ+3)
N+2,2 . (6-28)

On the other hand, using the same q as above, we have

‖D2N+3
N+1 u‖21 = (‖D

2N+3
N+1 u‖21)

q/(q+1)(‖D2N+3
N+1 u‖21)

1/(q+1)

. (DN+2,2)
q/(1+q)(E2N )

1/(1+q)
≤ (DN+2,2)

q/(1+q). (6-29)

Then (6-28) and (6-29) imply that

‖Dη‖2N+4‖D
2N+3
N+1 u‖21 . (DN+2,2)

1+2/(4N−7). (6-30)

We then combine (6-22), (6-27), and (6-30) to deduce (6-19).
We now turn to the proof of the bounds (6-20) and (6-21). The bounds (6-20) may be deduced by

applying an operator ∂α with α ∈N1+2 satisfying either |α| = 1 or |α| = 2 to G4, and then estimating the
resulting products with one norm taken in H 0 and the others in L∞, employing the H 0 and L∞ interpolation
estimates for η, u and their derivatives recorded in Lemma 3.1, Proposition 3.9, and Theorem 3.14. The
bounds (6-21) may be deduced similarly except that at least two terms in the resulting products must
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be estimated in H 0 to deduce the resulting L1 bounds. This presents no problem since G2 is a linear
combination of products of two or more terms. �

With this lemma in place, we may record the estimates for the evolution of the energy at the N + 2
level.

Proposition 6.4. Suppose that m ∈ {1, 2} and α ∈N1+2 is such that α0 ≤ N + 1 and m ≤ |α| ≤ 2(N + 2).
Then there exists a θ > 0 such that

∂t(‖∂
αu‖20+‖∂

αη‖20)+‖D∂
αu‖20 . Eθ2N DN+2,m . (6-31)

In particular,

∂t(‖D2N+3
m u‖20+‖DD2N+3u‖20+‖D

2N+3
m η‖20+‖DD2N+3η‖20)+‖D

2N+3
m Du‖20+‖DD2N+3Du‖20

. Eθ2N DN+2,m . (6-32)

Proof. For m ∈ {1, 2} and α ∈ N1+2 such that α0 ≤ N + 1 and m ≤ |α| ≤ 2(N + 2), we argue as in
Proposition 6.2 to deduce that (6-11) holds. Let Xα denote the right side of (6-11) for our range of α. To
bound Xα, we break to three cases.

If m+1≤ |α| ≤ 2(N +2)−1 or |α| = 2(N +2) with 1≤ α0 ≤ N +1, we know from trace theory and
the definitions of DN+2,m that

‖∂αu‖20+‖∂
α p‖20+‖∂

αu‖2H1/2(6)
+‖∂αη‖21/2 . DN+2,m . (6-33)

This allows us to argue as in Proposition 6.2, employing Theorem 4.1 in place of Theorem 4.2, to bound

|Xα|. Eθ2N DN+2,m (6-34)

for some θ > 0.
Now consider |α| = 2(N +2) with α0 = 0. In this case we know from the definitions (2-54) and (2-55)

that there is a deficit of half a derivative that prevents us from bounding ‖∂αη‖21/2 .DN+2,m , but we may
still estimate

‖∂αu‖21+‖∂
α p‖20+‖∂

αu‖2H1/2(6)
. DN+2,m . (6-35)

We may then argue as in Proposition 6.2, integrating by parts and using these bounds as well as those
from Theorem 4.1 to show that the first, second, and third integrals in the definition of Xα are bounded
by Eθ2N DN+2,m . For the fourth integral, we control ‖∂αη‖21/2 through the interpolation estimate of
Lemma 3.18:

‖∂αη‖21/2 ≤ ‖D
2N+4η‖21/2 . (E2N )

2/(4N−7)(DN+2,2)
(4N−9)/(4N−7). (6-36)

Then we may integrate by parts with α = β+ (α−β), |β| = 1 and employ this estimate along with (6-19)
of Lemma 6.3 to see that
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6

∂αη∂αG4
∣∣∣∣= ∣∣∣∣∫

6

∂α+βη∂α−βG4
∣∣∣∣≤ ‖∂α+βη‖−1/2‖∂

α−βG4
‖1/2 . ‖∂

αη‖1/2‖D2N+3G4
‖1/2

.
√
(E2N )2/(4N−7)(DN+2,2)(4N−9)/(4N−7)

√
(DN+2,2)1+2/(4N−7)

= (E2N )
1/(4N−7)DN+2,2 ≤ (E2N )

1/(4N−7)DN+2,m . (6-37)

Hence, when |α| = 2(N + 2) with α0 = 0, there is a θ > 0 such that

|Xα|. Eθ2N DN+2,m . (6-38)

Finally, we consider the case of |α| = m for m = 1, 2. In this case we only know that

‖∂αu‖21+‖∂
αu‖2H1/2(6)

. DN+2,m, (6-39)

so only the first and third integrals of Xα may be handled directly as above to be bounded by Eθ2N DN+2,m .
For the fourth term in Xα we first use the H 0(6) interpolation results of Lemma 3.1 and Proposition 3.16
to bound

‖Dη‖20 . (DN+2,1)
(λ+1)/(λ+2) and ‖D2η‖20+‖∂tη‖

2
0 . (DN+2,2)

(λ+2)/(λ+3). (6-40)

Then by (6-20) of Lemma 6.3, we know that∣∣∣∣∫
6

∂αη∂αG4
∣∣∣∣≤ ‖∂αη‖0‖∂αG4

‖0

.

{√
(DN+2,1)(λ+1)/(λ+2)

√

Eθ2N (DN+2,1)
1+1/(λ+2) for m = 1,√

(DN+2,2)(λ+2)/(λ+3)
√

Eθ2N (DN+2,2)
1+1/(λ+3) for m = 2

≤ E
θ/2
2N DN+2,m . (6-41)

For the second term in Xα we first use the L∞ interpolation estimates of Lemma 3.3 with r = λ/2 when
m = 1 and with r = λ/3 when m = 2 to bound

‖Dp‖2L∞ . (DN+2,1)
2/(λ+2) and ‖D2 p‖2L∞ +‖∂t p‖2L∞ . (DN+2,2)

3/(λ+3). (6-42)

Then, by (6-21) of Lemma 6.3, we know that∣∣∣∣∫
�

∂α p∂αG2
∣∣∣∣≤ ‖∂α p‖L∞‖∂

αG2
‖L1

.

{√
(DN+2,1)2/(λ+2)

√

Eθ2N (DN+2,1)
1+λ/(λ+2) for m = 1,√

(DN+2,2)3/(λ+3)
√

Eθ2N (DN+2,2)
1+λ/(λ+3) for m = 2

≤ E
θ/2
2N DN+2,m . (6-43)

Hence, when |α| = m for m = 1, 2, we also have

|Xα|. Eθ2N DN+2,m . (6-44)



1486 YAN GUO AND IAN TICE

Now, by (6-34), (6-38), and (6-44), we know that (6-31) holds. The bound (6-32) follows by summing
(6-31) over the specified range of α. �

Energy evolution for Iλu and Iλη. Before we can analyze the energy evolution for Iλu and Iλη, we
must first prove a lemma that provides control of Iλ p.

Lemma 6.5. We have

‖Iλ p‖20 . E2N , (6-45)

‖IλDp‖20 . (E2N )
λ/(1+λ)(D2N )

1/(1+λ). (6-46)

Proof. Let α ∈ N2 be such that |α| ∈ {0, 1}. We may apply Lemma A.10 to see that

‖∂αIλ p‖20 . ‖∂
αIλ p‖2H0(6)

+‖∂3∂
αIλ p‖20. (6-47)

In order to estimate each term on the right, we will use the structure of (2-23). Indeed, using the boundary
condition, we find that

‖∂αIλ p‖2H0(6)
. ‖∂αIλη‖

2
0+‖∂

αIλ∂3u3‖
2
H0(6)

+‖∂αIλG3
‖

2
0. (6-48)

Trace theory and the divergence equation in (2-23) allow us to bound

‖∂αIλ∂3u3‖
2
H0(6)

. ‖∂αIλ∂3u3‖
2
1 . ‖∂

αIλG2
‖

2
1+‖∂

αIλDu‖21 . ‖IλDu‖22+‖IλG2
‖

2
2, (6-49)

regardless of whether |α| = 0 or 1. To estimate this IλDu term we apply Lemmas A.4 and A.13 to get

‖IλDu‖22 .
2∑

k=1

‖IλD∇ku‖20 .
2∑

k=1

(‖∇ku‖20)
λ(‖D∇ku‖20)

1−λ . ‖u‖23. (6-50)

By chaining together the bounds (6-48)–(6-50) and employing the Gi estimates of Proposition 4.3, we
deduce that

‖∂αIλ p‖2H0(6)
. ‖∂αIλη‖

2
0+‖u‖

2
3+E2N min{E2N ,D2N }. (6-51)

Now we estimate ∂3∂
αIλ p by using the first equation in (2-23) to bound

‖∂αIλ∂3 p‖20 . ‖∂
αIλ∂t u3‖

2
0+‖∂

αIλD2u‖20+‖∂
αIλ∂

2
3 u3‖

2
0+‖∂

αIλG1
‖

2
0. (6-52)

When |α| = 1, we can use Lemma A.4 to see that

‖∂αIλ∂t u3‖
2
0 . ‖IλD∂t u3‖

2
0 . (‖∂t u3‖

2
0)
λ(‖D∂t u3‖

2
0)

1−λ
≤ ‖∂t u‖21. (6-53)

When |α| = 0, we cannot use Lemma A.4 directly, so we first use Lemma A.11 and the divergence
equation in (2-23), and then use Lemma A.4:

‖Iλ∂t u3‖
2
0 . ‖∂3Iλ∂t u3‖

2
0 = ‖Iλ∂t∂3u3‖

2
0 . ‖Iλ∂t G2

‖
2
0+‖IλD∂t u‖20 . ‖Iλ∂t G2

‖
2
0+‖∂t u‖21. (6-54)

Then (6-53) and (6-54) imply that, regardless of whether |α| = 0 or 1, we may bound

‖∂αIλ∂t u3‖
2
0 . ‖Iλ∂t G2

‖
2
0+‖∂t u‖21. (6-55)
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The term ∂αIλD2u may be estimated as in (6-50):

‖∂αIλD2u‖20 . ‖u‖
2
3. (6-56)

To estimate the term ∂αIλ∂
2
3 u3, we again use the divergence equation to bound

‖∂αIλ∂
2
3 u3‖

2
0 . ‖∂

αIλ∂3G2
‖

2
0+‖∂

αIλ∂3 Du‖20 . ‖∂
αIλ∂3G2

‖
2
0+‖u‖

2
3, (6-57)

where in the second inequality we have again argued as in (6-50). Then (6-52) and (6-55)–(6-57), together
with Proposition 4.3, imply that

‖∂αIλ∂3 p‖20 . ‖u‖
2
3+‖∂t u‖21+E2N min{E2N ,D2N }. (6-58)

The estimates (6-51) and (6-58) may be combined with (6-47) to show that

‖∂αIλ p‖20 . ‖∂
αIλη‖

2
0+‖u‖

2
3+‖∂t u‖21+E2N min{E2N ,D2N }. (6-59)

When |α| = 0 we bound the first three terms on the right side of (6-59) by E2N and use the fact that
E2

2N ≤ E2N ≤ 1 to deduce (6-45). When |α| = 1, we first use Lemma A.7 with q = 1− λ and s = λ to
bound

‖∂αIλη‖
2
0 ≤ ‖DIλη‖

2
0 . ‖D

1−λη‖20 . (‖Iλη‖
2
0)
λ/(1+λ)(‖Dη‖20)

1/(1+λ)

. (E2N )
λ/(1+λ)(D2N )

1/(1+λ), (6-60)

where, in the second inequality, D1−λ denotes the usual fractional derivative of order 1− λ. Then we use
the fact that E2N ≤ 1 to bound

E2N min{E2N ,D2N } ≤ (min{E2N ,D2N })
λ/(1+λ)(min{E2N ,D2N })

1/(1+λ)

≤ (E2N )
λ/(1+λ)(D2N )

1/(1+λ). (6-61)

Similarly, since ‖u‖23+‖∂t u‖21 ≤min{E2N ,D2N }, we have

‖u‖23+‖∂t u‖21 ≤ (E2N )
λ/(1+λ)(D2N )

1/(1+λ). (6-62)

We then combine (6-59) with (6-60)–(6-62) to deduce (6-46). �

Our next lemma provides a bound for the integral of the product Iλ pIλG2. The estimate is essential
to analyzing the energy evolution of Iλu and Iλη.

Lemma 6.6. Let G2 be given by (2-29). We have∣∣∣∣∫
�

Iλ pIλG2
∣∣∣∣.√E2N D2N . (6-63)

Proof. We begin by writing ∫
�

Iλ pIλG2
= I+ II (6-64)

for

I :=
∫
�

Iλ pIλ[(AK )∂3u1+ (BK )∂3u2] and II :=
∫
�

Iλ pIλ[(1− K )∂3u3]. (6-65)



1488 YAN GUO AND IAN TICE

The term I is straightforward to estimate because of the bounds (4-20) of Lemma 4.4 and (6-45) of
Lemma 6.5:

|I| ≤ ‖Iλ p‖0‖Iλ[(AK )∂3u1+ (BK )∂3u2]‖0 .
√

E2N D2N . (6-66)

To estimate the term II, we must first use the divergence equation in (2-23) to rewrite

(1− K )∂3u3 = (1− K )[G2
− ∂1u1− ∂2u2], (6-67)

so that

II=
∫
�

Iλ pIλ[(1− K )G2
] −

∫
�

Iλ pIλ[(1− K )(∂1u1+ ∂2u2)] =: II1+ II2. (6-68)

For the term II1 we use the estimates (6-45) of Lemma 6.5 and (4-22) of Lemma 4.4 to bound

|II1| ≤ ‖Iλ p‖0‖Iλ[(1− K )G2
]‖0 .

√
E2N

√
E2N D2

2N = E2N D2N . (6-69)

In order to control the term II2 we first integrate by parts:

II2 =

∫
�

Iλ∂1 pIλ[(1− K )u1] +Iλ∂2 pIλ[(1− K )u2] −Iλ pIλ[u1∂1K + u2∂2K ]. (6-70)

Then we use Lemmas 6.5 and 4.4 to estimate

|II2|. ‖IλDp‖0‖Iλ[(1− K )u]‖0+‖Iλ p‖0
2∑

i=1

‖Iλ[u∂i K ]‖20

.
√
(E2N )λ/(1+λ)(D2N )1/(1+λ)

√
(E2N )1/(1+λ)(D2N )(1+2λ)/(1+λ)+

√
E2N

√
D2

2N

.
√

E2N D2N . (6-71)

Since E2N ≤ 1, we can combine (6-69) and (6-71) to find that |II|.
√

E2N D2N , which yields (6-63) when
combined with (6-66). �

With these two lemmas in hand, we can now estimate how the energies of Iλu and Iλη evolve.

Proposition 6.7. We have

∂t

(
1
2

∫
�

|Iλu|2+ 1
2

∫
6

|Iλη|
2
)
+

1
2

∫
�

|DIλu|2 .
√

E2N D2N . (6-72)

In particular,

1
2

∫
�

|Iλu(t)|2+ 1
2

∫
6

|Iλη(t)|2+
1
2

∫ t

0

∫
�

|DIλu|2 . E2N (0)+
∫ t

0

√
E2N D2N . (6-73)

Proof. We apply Iλ to the equations (2-23) and then use Lemma 2.5 to see that

∂t

(
1
2

∫
�

|Iλu|2+ 1
2

∫
6

|Iλη|
2
)
+

1
2

∫
�

|DIλu|2

=

∫
�

Iλu · (IλG1
−∇IλG2)+Iλ pIλG2

+

∫
6

−Iλu ·IλG3
+IληIλG4. (6-74)



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1489

We will estimate each term on the right side of the equation. First we use trace theory and (4-15) and
(4-16) of Proposition 4.3 to bound the first and third terms:∣∣∣∣∫
�

Iλu · (IλG1
−∇IλG2)

∣∣∣∣+ ∣∣∣∣∫
6

Iλu ·IλG3
∣∣∣∣

. ‖Iλu‖0(‖IλG1
‖0+‖IλG2

‖1)+‖Iλu‖1‖IλG3
‖0 .

√
D2N

√
E2N D2N =

√
E2N D2N . (6-75)

For the third term we use Lemma 6.6 for∣∣∣∣∫
�

Iλ pIλG2
∣∣∣∣.√E2N D2N . (6-76)

Finally, for the fourth term we use (4-17) of Proposition 4.3:∫
6

IληIλG4
≤ ‖Iλη‖0‖IλG4

‖0 .
√

E2N

√
D2

2N =
√

E2N D2N . (6-77)

The bound (6-72) follows by combining (6-74)–(6-77), and then (6-73) follows from (6-72) by integrating
in time from 0 to t . �

7. Energy evolution estimates

We now assemble the estimates of the previous two sections into an estimate for the evolution of E2N and
D2N .

Theorem 7.1. There exists a θ > 0 such that

E2N (t)+
∫ t

0
D2N (r) dr

. E2N (0)+ (E2N (t))3/2+
∫ t

0
(E2N (r))θD2N (r) dr +

∫ t

0

√
D2N (r)K(r)F2N (r) dr. (7-1)

Proof. The result follows by summing the estimates of Propositions 5.3, 5.5, 6.2, and 6.7 and recalling
the definitions of E2N and D2N given by (2-48) and (2-49), respectively. �

We can also assemble the estimates of the previous two sections into a similar estimate for the evolution
of EN+2,m and DN+2,m .

Theorem 7.2. Let F2 be given by (2-19) with ∂α = ∂N+2
t . There exists a θ > 0 such that

∂t

(
EN+2,m − 2

∫
�

J∂N+1
t pF2

)
+DN+2,m . Eθ2N DN+2,m . (7-2)

Proof. The result follows by summing the estimates of Propositions 5.4 and 6.4 and recalling the definitions
of EN+2,m and DN+2,m given by (2-45) and (2-47), respectively. �

8. Comparison results

We now prove a pair of estimates that compare the full dissipation and energy to the horizontal dissipation
and energy. We show that, up to some error terms, the instantaneous energy E2N , (2-50), is comparable
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to the horizontal energy E2N , (2-48), and that the dissipation rate D2N , (2-51), is comparable to the
horizontal dissipation rate D2N , (2-49). We also prove similar results for EN+2,m and DN+2,m defined by
(2-45) and (2-47), respectively. To prove results for both 2N and N + 2, we first prove general estimates
involving Dn and En , and then we specialize to the cases n= N+2 and n= 2N . The dissipation estimates
are more involved, so we begin with them.

Dissipation. We first consider the dissipation rate.

Theorem 8.1. Let m ∈ {1, 2} and

Yn,m := ‖∇
2n−1
m G1

‖
2
0+‖∇

2n−1
0 G2

‖
2
1+‖D

2n−1
m G3

‖
2
1/2+‖D

2n−1
0 G4

‖
2
1/2+‖D

2n−2
0 ∂t G4

‖
2
1/2. (8-1)

If m = 1, then

‖∇
3u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
2 p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j

+‖D2η‖22n−5/2+‖∂tη‖
2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Dn,m +Yn,m . (8-2)

If m = 2, then

‖∇
4u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j+1+‖∇
3 p‖22n−3+‖∂t∇ p‖22n−3+

n−1∑
j=2

‖∂
j

t p‖22n−2 j

+‖D3η‖22n−7/2+‖D∂tη‖
2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Dn,m +Yn,m . (8-3)

Proof. In this proof we must use a separate counting for spatial and temporal derivatives, so unlike
elsewhere in the paper, we now only use α ∈N2 to refer to spatial derivatives. In order to compactly write
our estimates, throughout the proof we write

Z := Dn,m +Yn,m . (8-4)

The proof is divided into several steps.

Step 1: application of Korn’s inequality. Since any horizontal or temporal derivative of u vanishes on the
lower boundary 6b, we may apply Lemma A.12 to derive the bound

‖D2n
m u‖21 . ‖D

2n
m Du‖20 = Dn,m . (8-5)

This H 1(�) bound will be more useful in what follows than an H 0(�) estimate of the symmetric gradient.

Step 2: initial estimates of the pressure and improvement of u estimates. Let 0≤ j ≤ n−1 and α ∈N2 be
such that

m ≤ 2 j + |α| ≤ 2n− 1. (8-6)
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Note that if 2 j + |α| = 2n− 1, the condition j ≤ n− 1 implies that |α| ≥ 1. This means that we are free
to use (8-5) to bound

‖∂α∂
j+1

t u‖20 ≤ ‖D
2n
m u‖21 . Z. (8-7)

To extract further information, we apply the operator ∂ j
t ∂

α to the first two equations in (2-23) to find that

∂α∂
j+1

t u−1∂α∂ j
t u+∇∂α∂ j

t p = ∂α∂ j
t G1, (8-8)

div ∂α∂ j
t u = ∂α∂ j

t G2. (8-9)

Because of the constraints on j, α given by (8-6), we may control

‖∂α∂
j

t G1
‖

2
0+‖∂

α∂
j

t G2
‖

2
1 ≤ ‖D

2n−1
m G1

‖
2
0+‖D

2n−1
m G2

‖
2
1 ≤ Z. (8-10)

We utilize the structure of (8-8)–(8-9) in conjunction with (8-7) and (8-10) to improve our estimates.
We will begin by utilizing (8-9) to control one of the terms in the third component of (8-8). We have

∂α∂
j

t (∂3u3)= ∂
α∂

j
t (−∂1u1− ∂2u2+G2), (8-11)

so that (8-5) and (8-10) imply

‖∂2
3∂

α∂
j

t u3‖
2
0 . ‖D

2n
m u‖21+‖D

2n−1
m G2

‖
2
1 . Z. (8-12)

A further application of (8-5) to control (∂2
1 + ∂

2
2 )∂

α∂
j

t u3 then provides the estimate

‖1∂α∂
j

t u3‖
2
0 . Z. (8-13)

Applying the bounds (8-7), (8-10), and (8-13) to the third component of (8-8), we arrive at a partial bound
for the pressure:

‖∂3∂
α∂

j
t p‖20 . Z. (8-14)

It remains to control the terms ∂i∂
α∂

j
t p and ∂2

3∂
α∂

j
t ui for i = 1, 2. To accomplish this, we employ an

elliptic estimate of curl u =: ω. Taking the curl of (8-8) eliminates the pressure gradient and yields

∂α∂
j+1

t ω =1∂α∂
j

t ω+ curl(∂α∂ j
t G1). (8-15)

We only need the first two components ω1 = ∂2u3− ∂3u2, ω2 = ∂3u1− ∂1u3, for which we use the 6
boundary condition in (2-23)

∂i u3+ ∂3ui = Due3 · ei =−G3
· ei for i = 1, 2 (8-16)

to derive the boundary conditions {
ω1 = 2∂2u3+G3

· e2 on 6,
ω2 =−2∂1u3−G3

· e1 on 6.
(8-17)

No similar boundary condition is available on 6b, so we must resort to a localization using a cutoff
function χ = χ(x3) given by χ ∈ C∞c (R) with χ(x3)= 1 for x3 ∈�1 := [−2b/3, 0] and χ(x3)= 0 for
x3 /∈ (−3b/4, 1/2).
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The functions χωi , i = 1, 2, satisfy

1∂α∂
j

t (χωi )= χ(∂
α∂

j+1
t ωi )+ 2(∂3χ)(∂3∂

α∂
j

t ωi )+ (∂
2
3χ)(∂

α∂
j

t ωi )−χ curl(∂α∂ j
t G1) (8-18)

in � as well as the boundary conditions
∂α∂

j
t (χω1)= 2∂2∂

α∂
j

t u3+ ∂
α∂

j
t G3
· e2 on 6,

∂α∂
j

t (χω2)=−2∂1∂
α∂

j
t u3− ∂

α∂
j

t G3
· e1 on 6,

∂α∂
j

t (χω1)= ∂
α∂

j
t (χω2)= 0 on 6b.

(8-19)

In order to employ an elliptic estimate of ∂α∂ j
t (χωi ), we must first prove two auxiliary estimates.

First we derive an estimate of the H−1(�)= (H 1
0 (�))

∗ norm of each term on the right side of (8-18).
Let ϕ ∈ H 1

0 (�). When α 6= 0, we may write α= β+ (α−β) with |β| = 1 and integrate by parts to bound∣∣∣∣∫
�

ϕχ∂α∂
j+1

t ωi

∣∣∣∣= ∣∣∣∣∫
�

∂βϕχ∂α−β∂
j+1

t ωi

∣∣∣∣≤ ‖ϕ‖1‖χD2n
m ωi‖0, (8-20)

since 2( j + 1)+ |α−β| = 2 j + |α| + 1 ∈ [m+ 1, 2n]. We may use (8-5) for

‖χD2n
m ωi‖

2
0 . ‖D

2n
m u‖21 . Z. (8-21)

Chaining these inequalities together when α 6= 0 and taking the supremum over all ϕ such that ‖ϕ‖1 ≤ 1,
we get

‖∂α∂
j+1

t ωi‖
2
H−1 . Z. (8-22)

A similar argument without an integration by parts shows that (8-22) is also true when α = 0, since, in
this case, the condition j ≤ n−1 implies that m+2≤ 2( j +1)≤ 2n. Similarly, integrating by parts with
∂3 in the dual-pairing, we may estimate the second term on the right side of (8-18):

‖2(∂3χ)(∂3∂
α∂

j
t ωi )‖

2
H−1 . (‖∂3χ‖

2
L∞ +‖∂

2
3χ‖

2
L∞)‖D

2n
m ωi‖

2
0 . ‖D

2n
m u‖21 . Z. (8-23)

The third term may be estimated without integration by parts in the dual-pairing:

‖(∂2
3χ)(∂

α∂
j

t ωi )‖
2
H−1 . ‖∂

2
3χ‖

2
L∞‖D

2n
m ωi‖

2
0 . ‖D

2n
m u‖21 . Z. (8-24)

The fourth term is estimated by integrating by parts with the curl operator and using (8-10):

‖χ curl(∂α∂ j
t G1)‖2H−1 . (‖χ‖

2
L∞ +‖∂3χ‖

2
L∞)‖D

2n−1
m G1

‖
2
0 . Z. (8-25)

Combining these four estimates of the right side of (8-18) yields

‖1∂α∂
j

t (χωi )‖
2
H−1 . Z for i = 1, 2. (8-26)

Next, to complete the elliptic estimate of ∂α∂ j
t (χωi ), we also need H 1/2(6) estimates for the boundary

terms on the right side of the first two equations in (8-19). We may estimate the ∂i u3, i = 1, 2, terms with
the embedding H 1(�) ↪→ H 1/2(6):

‖∂α∂
j

t ∂1u3‖
2
H1/2(6)

+‖∂α∂
j

t ∂2u3‖
2
H1/2(6)

. ‖D2n
m u‖21 . Z. (8-27)
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On the other hand, estimates of G3 are already built into Z:

‖∂α∂
j

t G3
‖

2
1/2 ≤ ‖D

2n−1
m G3

‖
2
1/2 ≤ Yn,m ≤ Z. (8-28)

Since χωi = 0 on 6b for i = 1, 2, we then deduce that

‖∂α∂
j

t (χωi )‖
2
H1/2(∂�)

. Z for i = 1, 2. (8-29)

Now, according to (8-26), (8-29), standard elliptic estimates, and the fact that χ =1 on�1=[−2b/3, 0],
we have

‖∂α∂
j

t ωi‖
2
H1(�1)

. ‖∂α∂ j
t (χωi )‖

2
1 . Z for i = 1, 2. (8-30)

We may then rewrite

∂2
3∂

α∂
j

t u1 = ∂3∂
α∂

j
t (ω2+ ∂1u3) and ∂2

3∂
α∂

j
t u2 = ∂3∂

α∂
j

t (∂2u3−ω1) (8-31)

and deduce from (8-30) and (8-5) that, for i = 1, 2, we have

‖∂2
3∂

α∂
j

t ui‖
2
H0(�1)

. ‖D2n
m u3‖

2
1+

2∑
k=1

‖∂α∂
j

t ωk‖
2
H1(�1)

. Z. (8-32)

We then apply this estimate along with (8-5) and (8-10) to the first two components of (8-8) to find that

‖∂i∂
α∂

j
t p‖2H0(�1)

. Z for i = 1, 2. (8-33)

Now we sum the estimates (8-5), (8-12), (8-14), (8-32), and (8-33) over all j ≤ n− 1 and α ∈ N2 with
m ≤ 2 j + |α| ≤ 2n− 1 to deduce that

‖D2n−1
m u‖2H2(�1)

+‖D2n−1
m ∇ p‖2H0(�1)

. Z. (8-34)

Step 3: bootstrapping, η estimates, and improved pressure estimates. Now we make use of Lemma 8.2 to
bootstrap from (8-5) and (8-34) to

‖∇
2+mu‖2H2n−m−1(�1)

+‖Dmu‖2H2n−m+1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖∇

1+m p‖2H2n−m−1(�1)

+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z. (8-35)

With this estimate in hand, we may derive some estimates for η on 6 by employing the boundary
conditions of (2-23):

η = p− 2∂3u3−G3
3, (8-36)

∂tη = u3+G4. (8-37)

Then (8-35) allows us to differentiate (8-36) to find that

‖D1+mη‖22n−m−3/2 . ‖D
1+m p‖2H2n−m−3/2(6)

+‖D1+m∂3u3‖
2
H2n−m−3/2(6)

+‖D1+mG3
‖

2
2n−m−3/2

. ‖∇1+m p‖2H2n−m−1(�1)
+‖∇

2+mu‖2H2n−m−1(�1)
+‖D2n−1

m+1 G3
‖

2
1/2 . Z. (8-38)
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Similarly, for j = 2, . . . , n+ 1, we may apply ∂ j−1
t to (8-37) and estimate

‖∂
j

t η‖
2
2n−2 j+5/2 . ‖∂

j−1
t u3‖

2
H2n−2 j+5/2(6)

+‖∂
j−1

t G4
‖

2
2n−2 j+5/2

. ‖∂ j−1
t u‖2H2n−2( j−1)+1(�1)

+‖∂
j−1

t G4
‖

2
2n−2( j−1)+1/2 . Z. (8-39)

It remains only to consider ∂tη; in this case we must consider m = 1 and m = 2 separately. For m = 1,
we again use (8-37) to see that

‖∂tη‖
2
2n−1/2 . ‖u3‖

2
H2n−1/2(6)

+‖G4
‖

2
2n−1/2 . ‖u3‖

2
H2n−1/2(6)

+Z, (8-40)

but now we use Lemma A.11, trace theory, and the second equation in (2-23) for the estimate

‖u3‖
2
H2n−1/2(6)

. ‖u3‖
2
H0(6)

+‖Du3‖
2
H2n−3/2(6)

. ‖∂3u3‖
2
H0(�)

+‖Du3‖
2
H2n−1(�1)

. ‖G2
‖

2
0+‖Du‖20+‖Du‖2H2n−1(�1)

. Z (8-41)

by (8-10) and (8-35). Chaining (8-40)–(8-41) together implies that

‖∂tη‖
2
2n−1/2 . Z when m = 1. (8-42)

For m = 2, we differentiate (8-37) for the bound

‖D∂tη‖
2
2n−3/2 . ‖Du3‖

2
H2n−3/2(6)

+‖DG4
‖

2
2n−3/2 . ‖Du3‖

2
H2n−3/2(6)

+Z, (8-43)

but then the analogue of (8-41) is

‖Du3‖
2
H2n−3/2(6)

. ‖DG2
‖

2
0+‖D

2u‖20+‖D
2u‖2H2n−2(�1)

. Z. (8-44)

Hence

‖D∂tη‖
2
2n−3/2 . Z when m = 2. (8-45)

Summing estimates (8-38), (8-39), (8-42), and (8-45) over j = 0, . . . , n+ 1 yields

‖D2η‖22n−5/2+‖∂tη‖
2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z for m = 1, (8-46)

‖D3η‖22n−7/2+‖D∂tη‖
2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z for m = 2. (8-47)

The η estimates (8-46)–(8-47) now allow us to improve our estimates of ∇∂ j
t p to estimates for ∂ j

t p
for certain values of j . Indeed, for j = m, . . . , n− 1 we may use Lemma A.10 and (8-36) to bound

‖∂
j

t p‖2H0(�1)
. ‖∂ j

t η‖
2
0+‖∂3∂

j
t u3‖

2
H0(6)

+‖∂
j

t G3
‖

2
0+‖∂

j
t ∇ p‖2H0(�1)

. ‖∂ j
t u3‖

2
H2(�1)

+Z.Z. (8-48)
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This, (8-35), and (8-46)–(8-47) allow us to improve (8-35); when m = 1, we find that

‖∇
3u‖2H2n−2(�1)

+‖Du‖2H2n(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖∇

2 p‖2H2n−2(�1)

+

n−1∑
j=1

‖∂
j

t p‖2H2n−2 j (�1)
+‖D2η‖22n−5/2+‖∂tη‖

2
2n−1/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z, (8-49)

and when m = 2, we get the estimate

‖∇
4u‖2H2n−3(�1)

+‖D2u‖2H2n−1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖∇

3 p‖2H2n−3(�1)
+‖∂t∇ p‖2H2n−3(�1)

+

n−1∑
j=2

‖∂
j

t p‖2H2n−2 j (�1)
+‖D3η‖22n−7/2+‖D∂tη‖

2
2n−3/2+

n+1∑
j=2

‖∂
j

t η‖
2
2n−2 j+5/2 . Z. (8-50)

Step 4: estimates in �2. We now extend our estimates to the lower part of the domain, that is, �2 :=

[−b,−b/3], by applying Lemma 8.3 to deduce that (8-97) holds when m = 1 and (8-98) holds when
m = 2. We will now show that Xn,m , defined by (8-96), can be controlled by Z. The key to this is
that, by construction, supp(∇χ2)⊂�1, which implies that the H 1 and H 2 defined in the lemma satisfy
supp(H 1)∪ supp(H 2)⊂�1. This allows us to use the estimates (8-49) in the case m = 1 and (8-50) in
the case m = 2 to bound

2n−1∑
k=m+1

‖Dk H 1
‖

2
2n−k−1+‖D

k H 2
‖

2
2n−k . Z. (8-51)

In order to estimate ∂t H 1
· ei for i = 1, 2, we note that it does not involve the pressure:

∂t H 1
· ei =−(∂3χ2)∂3∂t ui − (∂

2
3χ2)∂t ui . (8-52)

Then we may again use (8-49)–(8-50) to see that

2∑
i=1

‖∂t H 1
· ei‖

2
2n−3 . Z, (8-53)

so that Xn,m . Z. Replacing in (8-97) and (8-98), we then find that

‖∇
3u‖2H2n−2(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

2 p‖2H2n−2(�2)
+

n−1∑
j=1

‖∂
j

t p‖2H2n−2 j (�2)
. Z (8-54)

for m = 1, while, for m = 2,

‖∇
4u‖2H2n−3(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

3 p‖2H2n−3(�2)

+‖∂t∇ p‖2H2n−3(�2)
+

n−1∑
j=2

‖∂
j

t p‖2H2n−2 j (�2)
. Z. (8-55)
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Step 5: synthesis and conclusion. To conclude, we note that �=�1 ∪�2, which allows us to add the
localized estimates (8-49) and (8-54) to deduce (8-2), and to add (8-50) to (8-55) to deduce (8-3). �

We now present the key bootstrap estimate used in the proof of Theorem 8.1.

Lemma 8.2. Let Yn,m be defined by (8-1) and �1 = [−2b/3, 0]. Suppose that

‖D2n−2r+2
m u‖2H2r−1(�1)

+‖D2n−2r+1
m u‖2H2r (�1)

+‖D2n−2r+1
m ∇ p‖2H2r−2(�1)

. Dn,m +Yn,m (8-56)

for an integer r ∈ [1, . . . , n− (m+ 1)/2]. Then

‖D2n−2r
m u‖2H2r+1(�1)

+‖D2n−2r
m ∇ p‖2H2r−1(�1)

+‖D2n−2(r+1)+1
m u‖2H2r+2(�1)

+‖D2n−2(r+1)+1
m ∇ p‖2H2r (�1)

. Dn,m +Yn,m . (8-57)

Moreover, if (8-56) holds with r = 1, then, for m = 1, 2, we have

‖∇
2+mu‖2H2n−m−1(�1)

+‖Dmu‖2H2n−m+1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)

+‖∇
1+m p‖2H2n−m−1(�1)

+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Dn,m +Yn,m . (8-58)

Proof. Throughout the proof we write Z := Dn,m +Yn,m . We divide the proof into steps.

Step 1: Proof of (8-57). Let ` ∈ {1, 2} and take 0≤ j ≤ n− r and α ∈ N2 such that

m ≤ 2 j + |α| ≤ 2n− 2r + 1− `. (8-59)

We apply the differential operator ∂2r−2+`
3 ∂α∂

j
t to the first equation in (2-23) and split into separate

equations for its third and first two components; after some rearrangement, these read

∂2r−1+`
3 ∂α∂

j
t p =−∂2r−2+`

3 ∂α∂
j+1

t u3+1∂
2r−2+`
3 ∂α∂

j
t u3+ ∂

2r−2+`
3 ∂α∂

j
t G1

3, (8-60)

1∂2r−2+`
3 ∂α∂

j
t ui = ∂

2r−2+`
3 ∂α∂

j+1
t ui + ∂i∂

2r−2+`
3 ∂α∂

j
t p− ∂2r−2+`

3 ∂α∂
j

t G1
i (8-61)

for i = 1, 2. Notice that the constraints on r, j, |α| imply that m ≤ |α| + (2r − 2+ `)+ 2 j ≤ 2n− 1, so
we may use the definition of Yn,m in (8-1) to estimate

‖∂2r−2+`
3 ∂α∂

j
t G1
‖

2
0+‖∂

2r−2+`
3 ∂α∂

j
t G2
‖

2
1 ≤ Yn,m ≤ Z. (8-62)

Since 2r − 2+ `≥ 0, we know that

‖∂2r−2+`
3 ∂α∂

j+1
t u‖2H0(�1)

≤ ‖∂α∂
j+1

t u‖2H2r−2+`(�1)
. (8-63)

If `= 2 then m ≤ |α| + 2( j + 1)≤ 2n− 2r + 1, so that

‖∂α∂
j+1

t u‖2H2r−2+`(�1)
= ‖∂α∂

j+1
t u‖2H2r (�1)

≤ ‖D2n−2r+1
m u‖2H2r (�1)

. Z. (8-64)

On the other hand, if `= 1, then m ≤ |α| + 2( j + 1)≤ 2n− 2r + 2, and hence

‖∂α∂
j+1

t u‖2H2r−2+`(�1)
= ‖∂α∂

j+1
t u‖2H2r−1(�1)

≤ ‖D2n−2r+2
m u‖2H2r−1(�1)

. Z. (8-65)
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Then, in either case,

‖∂2r−2+`
3 ∂α∂

j+1
t u‖2H0(�1)

. Z. (8-66)

We have written the equations (8-60)–(8-61) in this form so as to be able to employ the estimates
(8-56), (8-62), and (8-66) to derive (8-57). We must consider the cases of ` = 1 and ` = 2 separately,
starting with `= 1.

Let `= 1. According to the equation div u = G2 (the second of (2-23)), the constraint (8-59), and the
bounds (8-56) and (8-62), we may estimate

‖∂2r+1
3 ∂α∂

j
t u3‖

2
H0(�1)

= ‖∂2r
3 ∂

α∂
j

t (G
2
− ∂1u1− ∂2u2)‖

2
H0(�1)

. ‖∂2r−1
3 ∂α∂

j
t G2
‖

2
1+‖∂

α∂
j

t (∂1u1+ ∂2u2)‖
2
H2r (�1)

. Z, (8-67)

and hence (again using the constraint (8-59))

‖1(∂2r−1
3 ∂α∂

j
t u3)‖

2
H0(�1)

. ‖∂2r+1
3 ∂α∂

j
t u3‖

2
H0(�1)

+‖∂2r−1
3 (∂2

1 + ∂
2
2 )∂

α∂
j

t u3‖
2
H0(�1)

. Z. (8-68)

We may then use (8-62), (8-66), and (8-68) in (8-60) for the pressure estimate

‖∂2r
3 ∂

α∂
j

t p‖2H0(�1)
. Z. (8-69)

Turning now to the i = 1, 2 components, we note that, by (8-56) and the constraint (8-59),

‖∂i∂
2r−1
3 ∂α∂

j
t p‖2H0(�1)

+‖(∂2
1 + ∂

2
2 )∂

2r−1
3 ∂α∂

j
t ui‖

2
H0(�1)

. ‖D2n−2r+1
m ∇ p‖2H2r−2(�1)

+‖D2n−2r+1
m u‖2H2r (�1)

. Z (8-70)

for i = 1, 2. Plugging this, (8-62), and (8-66) into (8-61) then shows that

‖∂2r+1
3 ∂α∂

j
t ui‖

2
H0(�1)

. Z for i = 1, 2. (8-71)

Upon summing (8-67), (8-69), and (8-71) over 0≤ j ≤ n− r and α satisfying m ≤ 2 j + |α| ≤ 2n− 2r ,
we deduce that

‖∂2r+1
3 D2n−2r

m u‖2H0(�1)
+‖∂2r

3 D2n−2r
m p‖2H0(�1)

. Z. (8-72)

Then, in light of (8-56) and (8-72), we have

‖D2n−2r
m u‖2H2r+1(�1)

+‖D2n−2r
m ∇ p‖2H2r−1(�1)

. ‖D2n−2r+1
m u‖2H2r (�1)

+‖D2n−2r+1
m ∇ p‖2H2r−2(�1)

+‖∂2r+1
3 D2n−2r

m u‖2H0(�1)
+‖∂2r

3 D2n−2r
m p‖2H0(�1)

. Z. (8-73)

In the case ` = 2 we may argue as in the case ` = 1, utilizing both (8-56) and (8-73) to derive the
bound

‖D2n−2r−1
m u‖2H2r+2(�1)

+‖D2n−2r−1
m ∇ p‖2H2r (�1)

. Z. (8-74)

Then we may add (8-73) to (8-74) to deduce (8-57).
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Step 2: The proof of (8-58), part 1. Now we turn to the proof of (8-58), assuming that (8-56) holds with
r = 1. By (8-57) we may iterate with r = 2, r = 3, etc., until

r =
{

n− 1 if m = 1,
n− 2 if m = 2,

so that 2n− 2(r + 2)+ 1=
{

1 if m = 1,
3 if m = 2.

(8-75)

Summing the resulting bounds and adding (8-5) (to pick up the ∂n
t u term) yields the estimates

‖D1u‖2H2n(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖D1

∇ p‖2H2n−2(�1)
+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z (8-76)

in the case m = 1, and

‖D3
2u‖2H2n−2(�1)

+‖D1
0∂t u‖2H2n−2(�1)

+

n∑
j=2

‖∂
j

t u‖2H2n−2 j+1(�1)

+‖D3
2∇ p‖2H2n−4(�1)

+‖D1
0∂t∇ p‖2H2n−4(�1)

+

n−1∑
j=2

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z (8-77)

in the case m = 2.
Next, we improve the estimate (8-77). Let 0≤ j and α ∈ N2 be such that 2 j + |α| = 2, and apply the

operator ∂2n−3
3 ∂α∂

j
t to the first equation of (2-23) and split into components as above to get

∂2n−2
3 ∂α∂

j
t p =−∂2n−3

3 ∂α∂
j+1

t u3+1∂
2n−3
3 ∂α∂

j
t u3+ ∂

2n−3
3 ∂α∂

j
t G1

3, (8-78)

1∂2n−3
3 ∂α∂

j
t ui = ∂

2n−3
3 ∂α∂

j+1
t ui + ∂i∂

2n−3
3 ∂α∂

j
t p− ∂2n−3

3 ∂α∂
j

t G1
i (8-79)

for i = 1, 2. We may then argue as above, utilizing (8-77), to deduce the bounds

‖∂2n−1
3 ∂α∂

j
t u3‖

2
H0(�1)

+‖∂2n−3
3 ∂α∂

j+1
t u‖2H0(�1)

+‖D2∂2n−3
3 ∂α∂

j
t u‖2H0(�1)

. Z, (8-80)

which, when combined with (8-78) and (8-79), imply that

‖∂2n−2
3 ∂α∂

j
t p‖2H0(�1)

+‖∂2n−1
3 ∂α∂

j
t ui‖

2
H0(�1)

. Z (8-81)

for i = 1, 2. We may then use (8-80) and (8-81) with (8-77) to deduce that

‖D2u‖2H2n−1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖D2

∇ p‖2H2n−3(�1)
+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
. Z (8-82)

in the case m = 2.

Step 3: The proof of (8-58), part 2. Now we claim that if for m = 1, 2 we have the inequality

‖Dmu‖2H2n−m+1(�1)
+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�1)
+‖Dm

∇ p‖2H2n−m−1(�1)
+

n−1∑
j=1

‖∂
j

t ∇ p‖2H2n−2 j−1(�1)
.Z, (8-83)

the inequality
‖∇

2+mu‖2H2n−m−1(�1)
+‖∇

1+m p‖2H2n−m−1(�1)
. Z (8-84)
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also holds, which establishes the desired bound, (8-58), because of our inequalities (8-76) in the case
m = 1 and (8-82) in the case m = 2. We begin the proof of the claim by noting that, since 2≥m, we may
use (8-83) to bound

‖∂m
3 D2u‖2H2n−m−1(�1)

+‖∂m−1
3 DD2

2u‖2H2n−m−1(�1)
+‖∂m−1

3 D2 p‖2H2n−m−1(�1)
. Z. (8-85)

Now we let |α| = 1 and apply ∂m
3 ∂

α to the second equation of (2-23) to find that

‖∂m+1
3 ∂αu3‖

2
H2n−m−1(�1)

. ‖∂m
3 DG2

‖
2
H2n−m−1(�1)

+‖∂m
3 D2u‖2H2n−m−1(�1)

. Z. (8-86)

Then we apply ∂m−1
3 ∂α to the first equation of (2-23) to bound

‖∂m
3 ∂

α p‖2H2n−m−1(�1)

. ‖∂m+1
3 ∂αu3‖

2
H2n−m−1(�1)

+‖∂m−1
3 ∂αD2

2u3‖
2
H2n−m−1(�1)

+‖∂m−1
3 ∂αG1

‖
2
H2n−m−1(�1)

. Z (8-87)

and

‖∂m+1
3 ∂αui‖

2
H2n−m−1(�1)

. ‖∂m−1
3 ∂αD2

2u‖2H2n−m−1(�1)
+‖∂m−1

3 ∂αDp‖2H2n−m−1(�1)
+‖∂m−1

3 ∂αG1
‖

2
H2n−m−1(�1)

. Z (8-88)

for i = 1, 2. Summing (8-86)–(8-88) over all |α| = 1 then yields the inequality

‖∂m+1
3 Du‖2H2n−m−1(�1)

+‖∂m
3 Dp‖2H2n−m−1(�1)

. Z. (8-89)

Now we use (8-89) to improve to one more ∂3 and one fewer horizontal derivative. We apply ∂m+1
3 to

the second equation of (2-23) to find that

‖∂m+2
3 u3‖

2
H2n−m−1(�1)

. ‖∂m+1
3 G2

‖
2
H2n−m−1(�1)

+‖∂m+1
3 Du‖2H2n−m−1(�1)

. Z. (8-90)

Then we apply ∂m
3 to the first equation of (2-23) to bound

‖∂m+1
3 p‖2H2n−m−1(�1)

. ‖∂m+2
3 u3‖

2
H2n−m−1(�1)

+‖∂m
3 D2

2u3‖
2
H2n−m−1(�1)

+‖∂m
3 G1
‖

2
H2n−m−1(�1)

. Z, (8-91)

‖∂m+2
3 ui‖

2
H2n−m−1(�1)

. ‖∂m
3 D2

2u‖2H2n−m−1(�1)
+‖∂m

3 Dp‖2H2n−m−1(�1)
+‖∂m

3 G1
‖

2
H2n−m−1(�1)

. Z (8-92)

for i = 1, 2. Summing (8-90)–(8-92) then yields the inequality

‖∂m+2
3 u‖2H2n−m−1(�1)

+‖∂m+1
3 p‖2H2n−m−1(�1)

. Z. (8-93)

Finally, to complete the proof of the claim, we note that

‖∇
2+mu‖2H2n−m−1(�1)

+‖∇
1+m p‖2H2n−m−1(�1)

. ‖Dmu‖2H2n−m+1(�1)
+‖Dm

∇ p‖2H2n−m−1(�1)

+

m−1∑
l=0

‖∂m+2−`
3 D`u‖2H2n−m−1(�1)

+‖∂m+1−`
3 D` p‖2H2n−m−1(�1)

. (8-94)

This and the bounds (8-83), (8-89), and (8-93) prove the claim. �

The following result allows for control of the dissipation rate in the lower domain.
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Lemma 8.3. Let χ2 ∈ C∞c (R) be such that χ2(x3) = 1 for x3 ∈ �2 := [−b,−b/3] and χ2(x3) = 0 for
x3 /∈ (−2b,−b/6). Let

H 1
= ∂3χ2(pe3− 2∂3u)− (∂2

3χ2)u and H 2
= ∂3χ2u3. (8-95)

Define

Xn,m =

2n−1∑
k=m+1

‖Dk H 1
‖

2
2n−k−1+‖D

k H 2
‖

2
2n−k +

2∑
i=1

‖∂t H 1
· ei‖

2
2n−3, (8-96)

and let Yn,m be as defined in (8-1). If m = 1, then

‖∇
3u‖2H2n−2(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

2 p‖2H2n−2(�2)
+

n−1∑
j=1

‖∂
j

t p‖2H2n−2 j (�2)

. Dn,m +Yn,m +Xn,m . (8-97)

If m = 2, then

‖∇
4u‖2H2n−3(�2)

+

n∑
j=1

‖∂
j

t u‖2H2n−2 j+1(�2)
+‖∇

3 p‖2H2n−3(�2)
+‖∂t∇ p‖2H2n−3(�2)

+

n−1∑
j=2

‖∂
j

t p‖2H2n−2 j (�2)

. Dn,m+Yn,m+Xn,m . (8-98)

Proof. When we localize with χ2, we find that χ2u and χ2 p solve
−1(χ2u)+∇(χ2 p)=−∂t(χ2u)+χ2G1

+ H 1 in �,
div(χ2u)= χ2G2

+ H 2 in �,
((χ2 p)I−D(χ2u))e3 = 0 on 6,
χ2u = 0 on 6b.

(8-99)

Let 0≤ j ≤ n− 1 and α ∈ N2 be such that

m+ 1≤ |α| + 2 j ≤ 2n− 1. (8-100)

Then we may apply Lemma A.14 and use the definition of Yn,m given in (8-1) to see that

‖∂α∂
j

t (χ2u)‖22n−|α|−2 j+1+‖∂
α∂

j
t (χ2 p)‖22n−|α|−2 j

. ‖∂α∂ j+1
t (χ2u)‖22n−|α|−2( j+1)+1+‖∂

α∂
j

t (χ2G1
+ H 1)‖22n−|α|−2 j−1

+‖∂α∂
j

t (χ2G2
+ H 2)‖22n−|α|−2 j

. ‖∂α∂ j+1
t (χ2u)‖22n−|α|−2( j+1)+1+Yn,m +Xn,m . (8-101)

We first use estimate (8-101) and a finite induction to arrive at initial estimates for χ2u and χ2 p; we then
use the structure of the equations (2-23) to improve these estimates.

Our finite induction will be performed on ` ∈ [1, 2n−m− 1] with |α|+ 2 j = 2n− `, starting with the
first two initial values, `= 1 and `= 2. We use the definition of Dn,m given in (2-47) and Lemma A.12
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in conjunction with the bounds on j, |α| given in (8-100) to see that

‖∂α∂
j+1

t (χ2u)‖20 . ‖∂
α∂

j+1
t u‖20 . Dn,m . (8-102)

Then (8-101) with |α| + 2 j = 2n− 1= 2n− ` implies that

‖∂α∂
j

t (χ2u)‖22+‖∂
α∂

j
t (χ2 p)‖21 . ‖∂

α∂
j+1

t (χ2u)‖20+Yn,m +Xn,m . Dn,m +Yn,m +Xn,m . (8-103)

Applying this bound for all α and j satisfying |α| + 2 j = 2n− 1 and summing, we find

‖D2n−1(χ2u)‖22+‖D
2n−1(χ2 p)‖21 . Dn,m +Yn,m +Xn,m . (8-104)

When `= 2 and |α| + 2 j = 2n− `= 2n− 2, a similar application of Lemma A.12 implies

‖∂α∂
j+1

t (χ2u)‖21 . Dn,m (8-105)

so that

‖∂α∂
j

t (χ2u)‖23+‖∂
α∂

j
t (χ2 p)‖22 . ‖∂

α∂
j+1

t (χ2u)‖21+Yn,m +Xn,m . Dn,m +Yn,m +Xn,m . (8-106)

This may be summed over 2 j + |α| = 2n− 2 for the estimate

‖D2n−2(χ2u)‖23+‖D
2n−2(χ2 p)‖22 . Dn,m +Yn,m +Xn,m . (8-107)

Then (8-104) and (8-107) imply that

‖D2n−1(χ2u)‖22+‖D
2n−2(χ2u)‖23+‖D

2n−1(χ2 p)‖21+‖D
2n−2(χ2 p)‖22.Dn,m+Yn,m+Xn,m . (8-108)

Now suppose that the inequality

`0∑
`=1

‖D2n−`(χ2u)‖2`+1+‖D
2n−`(χ2 p)‖2` . Dn,m +Yn,m +Xn,m (8-109)

holds for 2 ≤ `0 < 2n − m − 1. We claim that (8-109) holds with `0 replaced by `0 + 1. Suppose
|α| + 2 j = 2n− (`0+ 1) and apply (8-101) to see that

‖∂α∂
j

t (χ2u)‖2`0+2+‖∂
α∂

j
t (χ2 p)‖2`0+1.‖∂

α∂
j+1

t (χ2u)‖2`0
+Yn,m+Xn,m.Dn,m+Yn,m+Xn,m, (8-110)

where in the last inequality we have invoked (8-109) with

|α| + 2( j + 1)= 2n− (`0+ 1)+ 2= 2n− (`0− 1).

This proves the claim, so, by finite induction, the bound (8-109) holds for all `0 = 2, . . . , 2n−m − 1.
Choosing `0 = 2n−m− 1 yields the estimate

2n−m−1∑
`=1

‖D2n−`(χ2u)‖2`+1+‖D
2n−`(χ2 p)‖2` . Dn,m +Yn,m +Xn,m, (8-111)
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which implies, by virtue of the fact that χ2 = 1 on �2, that
2n−1∑

k=m+1

‖Dku‖2H2n−k+1(�2)
+‖Dk p‖2H2n−k(�2)

=

2n−m−1∑
`=1

‖D2n−`u‖2H `+1(�2)
+‖D2n−` p‖2H `(�2)

. Dn,m +Yn,m +Xn,m . (8-112)

Now we will improve the estimate (8-112) by using the equations (2-23), considering the cases m= 1, 2
separately. Let m = 1. Since m + 1 = 2, the bound (8-112) already covers all temporal derivatives of
order 1 to n− 1. Since ‖∂n

t u‖21 is already controlled in Dn,m , we must only improve spatial derivatives.
First note that (8-112) implies that

‖∂3 D2u‖2H2n−2(�2)
+‖D2 p‖2H2n−2(�2)

. Dn,m +Yn,m +Xn,m . (8-113)

Then we may apply the operator ∂3 D to the divergence equation in (2-23) to bound

‖∂2
3 Du3‖

2
H2n−2(�2)

. ‖∂3 DG2
‖

2
H2n−2(�2)

+‖∂3 D2u‖2H2n−2(�2)
. Dn,m +Yn,m +Xn,m . (8-114)

Then applying the operator D to the first equation in (2-23) implies that

‖∂3 Dp‖2H2n−2(�2)
+‖∂2

3 Dui‖
2
H2n−2(�2)

. ‖DG1
‖

2
H2n−2(�2)

+‖D2 p‖2H2n−2(�2)
+‖DD2

2u‖2H2n−2(�2)
+‖∂2

3 Du3‖
2
H2n−2(�2)

. Dn,m +Yn,m +Xn,m (8-115)

for i = 1, 2. We can then iterate this process, applying ∂2
3 to the divergence equation, then ∂3 to the first

equation in (2-23), and using all of the bounds derived from the previous step, to deduce that

‖∂2
3 p‖2H2n−2(�2)

+‖∂3
3 u‖2H2n−2(�2)

. Dn,m +Yn,m +Xn,m . (8-116)

Combining (8-113)–(8-116) yields the estimate

‖∇
3u‖2H2n−2(�2)

+‖∇
2 p‖2H2n−2(�2)

. Dn,m +Yn,m +Xn,m, (8-117)

which together with (8-112) and the bound ‖∂n
t u‖2H1(�2)

≤ ‖∂n
t u‖21 . Dn,m implies (8-97).

In the case m = 2, we can argue as in the case m = 1 to control the spatial derivatives. That is, we first
control ∂3 D3u, D3 p, then iteratively apply operators with an increasing number of ∂3 powers to arrive at
the bound

‖∇
4u‖2H2n−3(�2)

+‖∇
3 p‖2H2n−3(�2)

. Dn,m +Yn,m +Xn,m . (8-118)

Since m + 1 = 3 it remains to control ∂t u and ∂t∇ p. For the latter we apply ∂3∂t to the divergence
equation and use (8-1) and (8-112) to bound

‖∂2
3∂t u3‖

2
H2n−3(�2)

. ‖∂3∂t G2
‖

2
H2n−3(�2)

+‖∂3∂t Du‖2H2n−3(�2)
. Dn,m +Yn,m +Xn,m . (8-119)
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Then applying ∂t to the third component of the first equation in (2-23) shows that

‖∂3∂t p‖2H2n−3(�2)
. ‖∂t G1

‖
2
H2n−3(�2)

+‖∂t D2u‖2H2n−3(�2)
+‖∂2

3∂t u3‖
2
H2n−3(�2)

. Dn,m +Yn,m +Xn,m, (8-120)

which in turn implies that

‖∇∂t p‖2H2n−3(�2)
. ‖∂3∂t p‖2H2n−3(�2)

+‖D∂t p‖2H2n−3(�2)
. Dn,m +Yn,m +Xn,m . (8-121)

We may control ∂t u3 by applying ∂t to the divergence equation in (2-23) to find that

‖∂3∂t u3‖
2
H2n−2(�2)

. ‖∂t G2
‖

2
H2n−2(�2)

+‖D3u‖2H2n−2(�2)
. Dn,m +Yn,m +Xn,m, (8-122)

but then, since ∂t u3 = 0 on 6, we can use Poincaré’s inequality (Lemma A.13) to bound

‖∂t u3‖
2
H2n−1(�2)

. ‖∂t u3‖
2
H0(�2)

+‖∇∂t u3‖
2
H2n−2(�2)

. ‖∇∂t u3‖
2
H2n−2(�2)

. ‖∂3∂t u3‖
2
H2n−2(�2)

+‖D3u3‖
2
H2n−2(�2)

. Dn,m +Yn,m +Xn,m . (8-123)

Control of the terms ∂t ui , i = 1, 2, is slightly more delicate; for it we appeal to the first of the localized
equations (8-99) rather than (2-23). The reason for this is that using (8-99) will allow us to control
∂2

3∂t(χ2ui ) in all of �, giving us control of ∂t(χ2ui ) in all of � via Poincaré and hence control of ∂t ui in
�2. If instead we used (2-23), control of ∂2

3∂t ui in �2 would not yield the desired control of ∂t ui in �2

because we could not apply Poincaré’s inequality. We apply ∂t to the i = 1, 2 components of the first
localized equation in (8-99) and use (8-111) to see that

‖∂2
3∂t(χ2ui )‖

2
H2n−3(�)

. ‖∂t H 1
· ei‖

2
H2n−3(�)

+‖χ2∂t G1
‖

2
H2n−3(�)

+‖∂t D(χ2 p)‖2H2n−3(�)
+‖∂t D2(χ2u)‖2H2n−3(�)

. Dn,m +Yn,m +Xn,m . (8-124)

Now, since ∂t(χ2ui ) and ∂3∂t(χ2ui ) both vanish in an open set near6, we may apply Poincaré’s inequality
twice and use (8-124) to find that

‖∂t ui‖
2
H2n−1(�2)

. ‖∂t(χ2ui )‖
2
H2n−1(�)

. ‖∂2
3∂t(χ2ui )‖

2
H2n−3(�)

. Dn,m +Yn,m +Xn,m . (8-125)

To conclude the analysis for m = 2, we sum (8-112), (8-118), (8-121), (8-123), (8-125), and the bound
‖∂n

t u‖2H1(�2)
≤ ‖∂n

t u‖21 . Dn,m to derive (8-98). �

Instantaneous energy. Now we estimate the instantaneous energy. The proof is based on an argument
very similar to the one used in the proof of Lemma 8.3. Recall that En,m is defined by (2-45).

Theorem 8.4. Define

Wn,m = ‖∇
2n−2
m G1

‖
2
0+‖∇

2n−2
0 G2

‖
2
1+‖D

2n−2
m G3

‖
2
1/2+‖D

2n−2
0 G4

‖
2
1/2. (8-126)
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If m = 1, then

‖∇
2u‖22n−2+

n∑
j=1

‖∂
j

t u‖22n−2 j +‖∇ p‖22n−2+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖Dη‖
2
2n−1+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j

. En,m +Wn,m . (8-127)

If m = 2, then

‖∇
3u‖22n−3+

n∑
j=1

‖∂
j

t u‖22n−2 j+‖∇
2 p‖22n−3+

n−1∑
j=1

‖∂
j

t p‖22n−2 j−1+‖D
2η‖22n−2+

n∑
j=1

‖∂
j

t η‖
2
2n−2 j

. En,m +Wn,m . (8-128)

Proof. The proof is quite similar to that of Lemma 8.3, so we do not fill in all of the details. Throughout
the proof we employ the notation Z := En,m +Wn,m .

Let 0≤ j ≤ n− 1 and α ∈N2 satisfy m ≤ |α|+ 2 j ≤ 2n− 2. To begin, we utilize the equations (2-23)
with the elliptic estimate Lemma A.14 to bound

‖∂α∂
j

t u‖22n−|α|−2 j +‖∂
α∂

j
t p‖22n−|α|−2 j−1 . ‖∂

α∂
j+1

t u‖22n−|α|−2 j−2+‖∂
α∂

j
t G1
‖

2
2n−|α|−2 j−2

+‖∂α∂
j

t G2
‖

2
2n−|α|−2 j−1+‖∂

α∂
j

t η‖
2
2n−|α|−2 j−3/2+‖∂

α∂
j

t G3
‖

2
2n−|α|−2 j−3/2. (8-129)

The constraints on j, α allow us to bound

‖∂α∂
j

t G1
‖

2
2n−|α|−2 j−2+‖∂

α∂
j

t G2
‖

2
2n−|α|−2 j−1+‖∂

α∂
j

t G3
‖

2
2n−|α|−2 j−3/2 .Wn,m, (8-130)

and similarly

‖∂α∂
j

t η‖
2
2n−|α|−2 j−3/2 . En,m, (8-131)

so that (8-129)–(8-131) imply that

‖∂α∂
j

t u‖22n−|α|−2 j +‖∂
α∂

j
t p‖22n−|α|−2 j−1 . Z+‖∂α∂

j+1
t u‖22n−|α|−2 j−2. (8-132)

As in Lemma 8.3, we argue with a finite induction on ` ∈ [2, 2n−m], beginning with `= 2, 3. When
`= 2 and |α| + 2 j = 2n− 2= 2n− `, the definition of En,m implies that

‖∂α∂
j+1

t u‖20 . En,m, (8-133)

which may be inserted into (8-132) for

‖∂α∂
j

t u‖22+‖∂
α∂

j
t p‖21 . Z. (8-134)

Summing over all α and j satisfying |α| + 2 j = 2n− 2 shows that

‖D2n−2u‖22+‖D
2n−2 p‖21 . Z. (8-135)



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 1505

For `= 3 we note that |α| + 2 j = 2n− 3 implies that j ≤ n− 2, so that |α| ≥ 1. This allows us to write
α = (α−β)+β for |β| = 1 and to use (8-135) to see that

‖∂α∂
j+1

t u‖21 ≤ ‖∂
α−β∂

j+1
t u‖22 ≤ ‖D

2n−2u‖22 . Z. (8-136)

Then we can plug this into (8-132) for each |α| + 2 j = 2n− 3 and sum to arrive at the bound

‖D2n−3u‖23+‖D
2n−3 p‖22 . Z. (8-137)

Now we may use finite induction as in (8-109)–(8-112) of Lemma 8.3 to ultimately deduce the estimate

2n−2∑
k=m

‖Dku‖22n−k +‖D
k p‖22n−k−1 =

2n−m∑
`=2

‖D2n−`u‖2` +‖D
2n−` p‖2`−1 . Z. (8-138)

Now we improve the estimate (8-138) by utilizing the structure of the equations (2-23), again arguing
as in Lemma 8.3. The energy bound (8-138) in the case m = 2 is structurally similar to the bound
(8-112) for the dissipation in the case m = 1, so we may argue as in (8-113)–(8-116), differentiating the
equations (2-23) (with obvious modifications to the Sobolev indices and number of derivatives applied)
and bootstrapping until we arrive at the bound

‖∇
3u‖22n−3+‖∇

2 p‖22n−3 . Z. (8-139)

Then (8-138), (8-139), and the bound ‖∂n
t u‖20 ≤ En,m imply the bound (8-128).

In the case m = 1 we apply ∂3 to the divergence equation in (2-23) to see that

‖∂2
3 u3‖

2
2n−2 . ‖∂3G2

‖
2
2n−2+‖∂3 Du‖22n−2 . Z. (8-140)

We then use the first equation in (2-23) to bound

‖∂3 p‖22n−2+

2∑
i=1

‖∂2
3 ui‖

2
2n−2 . ‖G

1
‖

2
2n−2+‖D

2u‖22n−2+‖∂
2
3 u3‖

2
2n−2+‖Dp‖22n−2 . Z. (8-141)

Then (8-138), (8-140), and (8-141) imply that

‖∇
2u‖22n−2+‖∇ p‖22n−2 . Z, (8-142)

which, when added to (8-138) and the bound ‖∂n
t u‖20 ≤ En,m , yields (8-127). �

Specialization: estimates at the 2N and N + 2 levels. We now specialize the general results contained
in Theorems 8.1 and 8.4 to the specific case of n = 2N with no minimal derivative restriction, and to the
case n = N + 2 with minimal derivative count m = 1, 2.

Theorem 8.5. There exists a θ > 0 such that

D2N . D2N +Eθ2N D2N +KF2N . (8-143)
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Proof. We apply Theorem 8.1 with n = 2N and m = 1 to see that (8-2) holds. Theorem 4.2 provides an
estimate of Y2N ,1, as defined in (8-1):

Y2N ,1 . Eθ2N D2N +KF2N (8-144)

for some θ > 0. We may then use this in (8-2) to find that

‖∇
3u‖24N−2+

2N∑
j=1

‖∂
j

t u‖24N−2 j+1+‖∇
2 p‖24N−2+

2N−1∑
j=1

‖∂
j

t p‖24N−2 j

+‖D2η‖24N−5/2+‖∂tη‖
2
4N−1/2+

2N+1∑
j=2

‖∂
j

t η‖
2
4N−2 j+5/2 . D2N +Eθ2N D2N +KF2N . (8-145)

We can improve the estimate for u in (8-145) by using the fact that D2N does not have a minimal
derivative count. Indeed, by the definition (2-49) and Lemma A.12, we know that

‖Iλu‖21+‖u‖
2
1 . D2N . (8-146)

Now, since � satisfies the uniform cone property, we can apply Corollary 4.16 of [Adams 1975] to bound

‖u‖24N+1 . ‖u‖
2
0+‖∇

4N+1u‖20 . ‖u‖
2
1+‖∇

3u‖24N−2. (8-147)

Then (8-145)–(8-147) imply that

‖Iλu‖21+‖u‖
2
4N+1 . D2N +Eθ2N D2N +KF2N . (8-148)

We can use this improved estimate of u to improve the estimate of p by employing the first equation
of (2-23) to bound

‖∇ p‖24N−1 . ‖∂t u‖24N−1+‖1u‖24N−1+‖G
1
‖

2
4N−1. (8-149)

The bounds (8-145) and (8-148) imply that

‖∂t u‖24N−1+‖1u‖24N−1 . D2N +Eθ2N D2N +KF2N , (8-150)

while (4-7)–(4-8) of Theorem 4.2 imply that

‖G1
‖

2
4N−1 . Eθ2N D2N +KF2N . (8-151)

Hence (8-148)–(8-151) combine to show that

‖∇ p‖24N−1 . D2N +Eθ2N D2N +KF2N . (8-152)

Finally, we improve the estimate for η. We use the boundary condition on 6 of (2-23) to bound

‖Dη‖24N−3/2 . ‖Dp‖2H4N−3/2(6)
+‖D∂3u3‖

2
H4N−3/2(6)

+‖DG3
‖

2
4N−3/2

. ‖Dp‖24N−1+‖D∂3u3‖
2
4N−1+‖DG3

‖
2
4N−3/2 . D2N +Eθ2N D2N +KF2N .

(8-153)

In the last inequality we have used (8-148), (8-152), and Theorem 4.2. Now (8-143) follows from (8-145),
(8-148), (8-152), and (8-153). �
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Now we perform a similar analysis for the energy at the 2N level.

Theorem 8.6. There exists a θ > 0 such that

E2N . E2N +E1+θ
2N . (8-154)

Proof. We apply Theorem 8.4 with n = 2N and m = 1 to see that (8-127) holds. Theorem 4.2 provides
an estimate of W2N ,1, as defined by (8-126):

W2N ,1 . E1+θ
2N (8-155)

for some θ > 0. Replacing in (8-127) shows that

‖∇
2u‖24N−2+

2N∑
j=1

‖∂
j

t u‖24N−2 j+‖∇ p‖24N−2+

2N−1∑
j=1

‖∂
j

t p‖24N−2 j−1+‖Dη‖
2
4N−1+

2N∑
j=1

‖∂
j

t η‖
2
4N−2 j

. E2N +E1+θ
2N . (8-156)

The definition of E2N implies that

‖Iλu‖20+‖u‖
2
0+‖Iλη‖

2
0+‖η‖

2
0 ≤ E2N . (8-157)

We may then sum the previous two bounds and employ Corollary 4.16 of [Adams 1975] as in the proof
of Theorem 8.5 to find that

‖Iλu‖20+
2N∑
j=0

‖∂
j

t u‖24N−2 j +‖∇ p‖24N−2+

2N−1∑
j=1

‖∂
j

t p‖24N−2 j−1+‖Iλη‖
2
0+

2N∑
j=0

‖∂
j

t η‖
2
4N−2 j

. E2N +E1+θ
2N . (8-158)

It remains only to estimate ‖p‖24N−1; since Lemma A.10 implies that

‖p‖24N−1 . ‖p‖20+‖∇ p‖24N−2 . ‖p‖2H0(6)
+‖∇ p‖24N−2, (8-159)

it suffices to estimate ‖p‖2H0(6)
. We do this by using the boundary condition in (2-23), trace theory, and

estimate (4-6) of Theorem 4.2:

‖p‖2H0(6)
. ‖η‖20+‖G

3
‖

2
0+‖∂3u3‖

2
H0(6)

. ‖η‖20+‖u‖
2
4N +E1+θ

2N . (8-160)

Then the estimate (8-154) easily follows from (8-158)–(8-160). �

We now consider the dissipation at the N + 2 level.

Theorem 8.7. For m = 1, 2 there exists a θ > 0 such that

DN+2,m . DN+2,m +Eθ2N DN+2,m . (8-161)

Proof. We apply Theorem 8.1 with n = N +2 to see that (8-2) holds for m = 1 and (8-3) holds for m = 2.
Theorem 4.1 provides an estimate for YN+2,m , as defined by (8-1):

YN+2,m . Eθ2N DN+2,m (8-162)
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for some θ > 0. The bound (8-161) follows from using this in (8-2)–(8-3). �

We now consider the energy at the N + 2 level.

Theorem 8.8. For m = 1, 2 there exists a θ > 0 such that

EN+2,m . EN+2,m +Eθ2N EN+2,m . (8-163)

Proof. We apply Theorem 8.4 with n = N + 2 to see that (8-127) holds when m = 1 and (8-128) holds
when m = 2. Theorem 4.1 provides an estimate for WN+2,m , as defined by (8-126):

WN+2,m . Eθ2N EN+2,m (8-164)

for some θ > 0. The bound (8-163) follows from using this in (8-127)–(8-128). �

9. A priori estimates

In this section we will combine the energy evolution estimates and the comparison estimates to derive a
priori estimates for the total energy, G2N , defined by (2-58).

Estimates involving F2N and K. Recall that F2N is defined by (2-56) and K is defined by (2-57). We
begin with an estimate for F2N .

Lemma 9.1. There exists a universal C > 0 such that

sup
0≤r≤t

F2N (r)

. exp
(

C
∫ t

0

√
K(r) dr

)[
F2N (0)+ t

∫ t

0
(1+E2N (r))D2N (r) dr +

(∫ t

0

√
K(r)F2N (r) dr

)2 ]
. (9-1)

Proof. Throughout this proof we write u = ũ+ u3e3, that is, we write ũ for the part of u parallel to 6.
Then η solves the transport equation ∂tη+ ũ · Dη= u3 on 6. We may then use Lemma A.9 with s = 1/2
to estimate

sup
0≤r≤t

‖η(r)‖1/2 ≤ exp
(

C
∫ t

0
‖Dũ(r)‖H3/2(6) dr

)[
‖η0‖1/2+

∫ t

0
‖u3(r)‖H1/2(6) dr

]
. (9-2)

By the definition of K, (2-57), we may bound ‖Dũ(r)‖H3/2(6) ≤
√

K(r), but we may also use trace
theory to bound ‖u3(r)‖2H1/2(6)

. D2N (r). This allows us to square both sides of (9-2) and utilize
Cauchy–Schwarz to deduce that

sup
0≤r≤t

‖η(r)‖21/2 . exp
(

2C
∫ t

0

√
K (r) dr

)[
‖η0‖

2
1/2+ t

∫ t

0
D2N (r) dr

]
. (9-3)

To go to higher regularity, we let α ∈N2 with |α| = 4N . Then we apply the operator ∂α to the equation
∂tη+ ũ · Dη = u3 to see that ∂αη solves the transport equation

∂t(∂
αη)+ ũ · D(∂αη)= ∂αu3−

∑
0<β≤α

Cα,β∂β ũ · D∂α−βη =: Gα (9-4)
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with the initial condition ∂αη0. We may then apply Lemma A.9 with s = 1/2 to find that

sup
0≤r≤t

‖∂αη(r)‖1/2 ≤ exp
(

C
∫ t

0
‖Dũ(r)‖H3/2(6) dr

)[
‖∂αη0‖1/2+

∫ t

0
‖Gα(r)‖1/2 dr

]
. (9-5)

We will now estimate ‖Gα
‖1/2.

For β ∈ N2 satisfying 2N + 1≤ |β| ≤ 4N we may apply (A-2) of Lemma A.1 with s1 = r = 1/2 and
s2 = 2 to bound

‖∂β ũ D∂α−βη‖1/2 . ‖∂β ũ‖H1/2(6)‖D∂
α−βη‖2. (9-6)

This and trace theory then imply that∑
0<β≤α

2N+1≤|β|≤4N

‖Cα,β∂β ũ · D∂α−βη‖1/2 . ‖D4N
2N+1u‖1‖D2N

1 η‖2 .
√

D2N E2N . (9-7)

On the other hand, if β satisfies 1≤ |β| ≤ 2N , we again use Lemma A.1 to bound

‖∂β ũ D∂α−βη‖1/2 . ‖∂β ũ‖H2(6)‖D∂
α−βη‖1/2, (9-8)

so that ∑
0<β≤α

1≤|β|≤2N

‖Cα,β∂β ũ · D∂α−βη‖1/2 . ‖D2N
1 u‖3‖D4N−1

2N+1η‖1/2+‖Dũ‖H2(6)‖D
4Nη‖1/2

.
√

E2N D2N +
√

KF2N . (9-9)

The only remaining term in Gα is ∂αu3, which we estimate with trace theory:

‖∂αu3‖H1/2(6) . ‖D
4N u3‖1 .

√
D2N . (9-10)

We may then combine (9-7), (9-9), and (9-10) for

‖Gα
‖1/2 . (1+

√
E2N )

√
D2N +

√
KF2N . (9-11)

Returning now to (9-5), we square both sides and employ (9-11) and our previous estimate of the term
in the exponential to find that

sup
0≤r≤t

‖∂αη(r)‖21/2

≤ exp
(

2C
∫ t

0

√
K(r) dr

)[
‖∂αη0‖

2
1/2+ t

∫ t

0
(1+E2N (r))D2N (r) dr+

(∫ t

0

√
K(r)F2N (r) dr

)2 ]
. (9-12)

Then the estimate (9-1) follows by summing (9-12) over all |α| = 4N , adding the resulting inequality to
(9-3), and using the fact that ‖η‖24N+1/2 . ‖η‖

2
1/2+‖D

4Nη‖21/2. �

Now we use this result and the K estimate of Lemma 3.17 to derive a stronger result.

Proposition 9.2. Let G2N be defined by (2-58). There exists a universal constant 0< δ < 1 such that if
G2N (T )≤ δ, then for all 0≤ t ≤ T ,

sup
0≤r≤t

F2N (r). F2N (0)+ t
∫ t

0
D2N . (9-13)
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Proof. Suppose G2N (T )≤ δ ≤ 1, for δ to be chosen later. Fix 0≤ t ≤ T . Then, according to Lemma 3.17,
we have K. E

(8+2λ)/(8+4λ)
N+2,2 , which means that∫ t

0

√
K(r) dr .

∫ t

0
(EN+2,2(r))(8+2λ)/(16+8λ) dr ≤ δ(8+2λ)/(16+8λ)

∫ t

0

1
(1+r)1+λ/4

dr

≤ δ(8+2λ)/(16+8λ)
∫
∞

0

1
(1+r)1+λ/4

dr = 4
λ
δ(8+2λ)/(16+8λ). (9-14)

Since δ ≤ 1, this implies that for any constant C > 0,

exp
(

C
∫ t

0

√
K(r) dr

)
. 1. (9-15)

Similarly, (∫ t

0

√
K(r)F2N (r) dr

)2

.

(
sup

0≤r≤t
F2N (r)

)(∫ t

0

√
K(r) dr

)2

.

(
sup

0≤r≤t
F2N (r)

)
δ(8+2λ)/(8+4λ). (9-16)

Then (9-14)–(9-16) and Lemma 9.1 imply that

sup
0≤r≤t

F2N (r)≤ C
(

F2N (0)+ t
∫ t

0
D2N

)
+Cδ(8+2λ)/(8+4λ)( sup

0≤r≤t
F2N (r)), (9-17)

for some universal C > 0. Then if δ is small enough that Cδ(8+2λ)/(8+4λ)
≤ 1/2, we may absorb the

right-hand F2N term onto the left and deduce (9-13). �

This bound on F2N allows us to estimate the integral of KF2N and
√

D2N KF2N .

Corollary 9.3. There exists a universal constant 0< δ < 1 such that if G2N (T )≤ δ, then∫ t

0
K(r)F2N (r) dr . δ(8+2λ)/(8+4λ)F2N (0)+ δ(8+2λ)/(8+4λ)

∫ t

0
D2N (r) dr (9-18)

and ∫ t

0

√
D2N (r)K(r)F2N (r) dr . F2N (0)+ δ(8+2λ)/(16+8λ)

∫ t

0
D2N (r) dr (9-19)

for 0≤ t ≤ T .

Proof. Let G2N (T )≤ δ with δ as small as in Proposition 9.2, so that estimate (9-13) holds. Lemma 3.17
implies that

K(r). (EN+2,2(r))(8+2λ)/(8+4λ) . δ(8+2λ)/(8+4λ) 1
(1+r)2+λ/2

. (9-20)
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This and (9-13) then imply that

1
δ(8+2λ)/(8+4λ)

∫ t

0
K(r)F2N (r) dr . F2N (0)

∫ t

0

dr
(1+r)2+λ/2

+

∫ t

0

r
(1+r)2+λ/2

(∫ r

0
D2N (s) ds

)
dr

. F2N (0)
∫
∞

0

dr
(1+r)2+λ/2

+

(∫ t

0
D2N (r) dr

)(∫
∞

0

dr
(1+r)1+λ/2

)
. F2N (0)+

∫ t

0
D2N (r) dr, (9-21)

which is estimate (9-18). The estimate (9-19) follows from (9-18), Cauchy–Schwarz, and the fact that
δ ≤ 1:∫ t

0

√
D2N (r)K(r)F2N (r) dr

≤

(∫ t

0
D2N (r) dr

)1/2(∫ t

0
K(r)F2N (r) dr

)1/2

.

(∫ t

0
D2N (r) dr

)1/2(
δ(8+2λ)/(8+4λ)F2N (0)

)1/2
+ δ(8+2λ)/(16+8λ)

∫ t

0
D2N (r) dr

. F2N (0)+
(
δ(8+2λ)/(16+8λ)

+ δ(8+2λ)/(8+4λ)) ∫ t

0
D2N (r) dr

. F2N (0)+ δ(8+2λ)/(16+8λ)
∫ t

0
D2N (r) dr. �

Boundedness at the 2N level. We now show bounds at the 2N level in terms of the initial data.

Theorem 9.4. Let G2N be defined by (2-58). There exists a universal constant 0 < δ < 1 such that if
G2N (T )≤ δ, then

sup
0≤r≤t

E2N (r)+
∫ t

0
D2N + sup

0≤r≤t

F2N (r)
(1+ r)

. E2N (0)+F2N (0) (9-22)

for all 0≤ t ≤ T .

Proof. Combining the energy evolution estimate of Theorem 7.1 with the comparison estimates of
Theorems 8.5 and 8.6, we find that

E2N (t)+
∫ t

0
D2N (r) dr . E2N (0)+ (E2N (t))1+θ +

∫ t

0
(E2N (r))θD2N (r) dr

+

∫ t

0

√
D2N (r)K(r)F2N (r) dr +

∫ t

0
K(r)F2N (r) dr (9-23)

for some θ > 0. Let us assume initially that δ ≤ 1 is as small as in Lemma 2.6, Proposition 9.2, and
Corollary 9.3, so that their conclusions hold. We may estimate the last two integrals in (9-23) with
Corollary 9.3, using the fact that δ ≤ 1:∫ t

0

√
D2N (r)K(r)F2N (r) dr +

∫ t

0
K(r)F2N (r) dr . F2N (0)+ δ(8+2λ)/(16+8λ)

∫ t

0
D2N (r) dr. (9-24)
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On the other hand, sup0≤r≤t E2N (r)≤ G2N (T )≤ δ, so

(E2N (t))1+θ +
∫ t

0
(E2N (r))θD2N (r) dr ≤ δθE2N (t)+ δθ

∫ t

0
D2N (r) dr. (9-25)

We may then combine (9-23)–(9-25) and write

ψ =min{θ, (8+ 2λ)/(16+ 8λ)}> 0 (9-26)

to deduce the bound

E2N (t)+
∫ t

0
D2N (r) dr ≤ C (E2N (0)+F2N (0))+CδθE2N (t)+Cδψ

∫ t

0
D2N (r) dr (9-27)

for a universal constant C > 0. Then if δ is sufficiently small so that Cδθ ≤ 1/2 and Cδψ ≤ 1/2, we may
absorb the last two terms on the right side of (9-27) into the left, which then yields the estimate

sup
0≤r≤t

E2N (r)+
∫ t

0
D2N (r) dr . E2N (0)+F2N (0). (9-28)

We then use this and Proposition 9.2 to estimate

sup
0≤r≤t

F2N (r)
(1+ r)

. sup
0≤r≤t

F2N (0)
(1+ r)

+ sup
0≤r≤t

r
(1+r)

∫ r

0
D2N (s) ds

. F2N (0)+
∫ t

0
D2N (r)dr . E2N (0)+F2N (0). (9-29)

Then (9-22) follows by summing (9-28) and (9-29). �

Decay at the N + 2 level. Before showing the decay estimates, we first need an interpolation result.

Proposition 9.5. There exists a universal 0< δ < 1 such that if G2N (T )≤ δ, then

DN+2,m(t). DN+2,m(t), EN+2,m(t). EN+2,m(t) (9-30)

and
EN+2,m(t). (E2N (t))1/(m+λ+1)(DN+2,m(t))(m+λ)/(m+λ+1) (9-31)

for m = 1, 2 and 0≤ t ≤ T .

Proof. The bound G2N (T )≤ δ and Theorems 8.7 and 8.8 imply that

DN+2,m ≤ CDN+2,m +CEθ2N DN+2,m ≤ CDN+2,m +CδθDN+2,m (9-32)

and
EN+2,m ≤ CEN+2,m +CEθ2N EN+2,m ≤ CEN+2,m +CδθEN+2,m (9-33)

for constants C > 0 and θ > 0. Then if δ is small enough so that Cδθ ≤ 1/2, we may absorb the second
term on the right side of (9-32) and (9-33) into the left to deduce the bounds in (9-30).

We now turn to the proof of (9-31). According to Remark 2.8, we have

EN+2,m . ‖D2N+4
m u‖20+‖D

2N+4
m η‖20, (9-34)
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and by Lemma A.12, we also know that

‖D2N+4
m u‖20 . ‖D

2N+4
m Du‖20 = DN+2,m . (9-35)

On the other hand, the definition of DN+2,m , given by (2-54) when m= 1 and (2-55) when m= 2, together
with (9-30) implies that

‖D2N+4
m+1 η‖

2
0 ≤ DN+2,m +‖D2N+4η‖20 . DN+2,m +‖D2N+4η‖20. (9-36)

We may then combine (9-34)–(9-36) to see that

EN+2,m . DN+2,m +‖Dmη‖20+‖D
2N+4η‖20. (9-37)

We first estimate the last term in (9-37). The standard Sobolev interpolation inequality (3-47) with
s = 2N + 3−m, r = 1/2, and q = 2N − 4 allows us to estimate

‖D2N+4η‖20 ≤ ‖D
m+1η‖22N+3−m

. (‖Dm+1η‖22N+5/2−m)
(4N−8)/(4N−7)(‖Dm+1η‖24N−m−1)

1/(4N−7)

. (DN+2,m)
(4N−8)/(4N−7)(E2N )

1/(4N−7). (9-38)

Since N ≥ 3, m ∈ {1, 2}, and λ ∈ (0, 1), we have (4N − 8)/(4N − 7) > (m+ λ)/(m+ λ+ 1). Then this
bound, the estimate (9-38), and the bound DN+2,m . E2N from Lemma 2.10 imply that

‖D2N+4η‖20 . (DN+2,m)
(m+λ)/(m+λ+1)(E2N )

1/(m+λ+1). (9-39)

Now we turn to the Dmη term in (9-37). In the case m = 1 we use the H 0 interpolation estimates of
Lemma 3.1 to bound

‖Dmη‖20 = ‖Dη‖
2
0 . (E2N )

1/(2+λ)(DN+2,1)
(1+λ)/(2+λ). (9-40)

In the case m = 2 we use the H 0 interpolation estimates of D2η from Lemma 3.1 and the H 0 estimate of
∂tη from Proposition 3.16 to bound

‖Dmη‖20 = ‖D
2η‖20+‖∂tη‖

2
0 . (E2N )

1/(3+λ)(DN+2,2)
(2+λ)/(3+λ). (9-41)

Together, (9-40) and (9-41) may be written as

‖Dmη‖20 . (E2N )
1/(m+λ+1)(DN+2,m)

(m+λ)/(m+λ+1). (9-42)

Now, according to Lemma 2.10, we can bound

DN+2,m ≤ DN+2,m . (E2N )
1/(m+λ+1)(DN+2,m)

(m+λ)/(m+λ+1). (9-43)

Then we use the estimates (9-39), (9-42), and (9-43) to bound the right side of (9-37); the bound (9-31)
follows from the resulting inequality and (9-30). �

Now we show that the extra integral term appearing in Theorem 7.2 can essentially be absorbed into
EN+2,m .
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Lemma 9.6. Let F2 be defined by (2-19) with ∂α = ∂N+2
t . There exists a universal 0< δ < 1 such that if

G2N (T )≤ δ, then

2
3 EN+2,m(t)≤ EN+2,m(t)− 2

∫
�

J (t)∂N+1
t p(t)F2(t)≤ 4

3 EN+2,m(t) (9-44)

for all 0≤ t ≤ T .

Proof. Suppose that δ is as small as in Proposition 9.5. Then we combine estimate (5-4) of Theorem 5.2,
Lemma 2.6, and estimate (9-30) of Proposition 9.5 to see that

‖J‖L∞‖∂
N+1
t p‖0‖F2

‖0 .
√

EN+2,m

√
Eθ2N EN+2,m = E

θ/2
2N EN+2,m . E

θ/2
2N EN+2,m . δ

θ/2EN+2,m (9-45)

for some θ > 0. This estimate and Cauchy–Schwarz then imply that∣∣∣∣2 ∫
�

J∂N+1
t pF2

∣∣∣∣≤ 2‖J‖L∞‖∂
N+1
t p‖0‖F2

‖0 ≤ Cδθ/2EN+2,m ≤
1
3 EN+2,m (9-46)

if δ is small enough. The bound (9-44) then follows easily from (9-46). �

Now we prove decay at the N + 2 level.

Theorem 9.7. Let G2N be defined by (2-58). There exists a universal constant 0 < δ < 1 such that if
G2N (T )≤ δ, then

sup
0≤r≤t

(1+ r)m+λEN+2,m(r). E2N (0)+F2N (0) (9-47)

for all 0≤ t ≤ T and for m ∈ {1, 2}.

Proof. Let δ be as small as in Lemma 2.6, Theorem 9.4, Proposition 9.5, and Lemma 9.6. Theorem 7.2
and the estimate (9-30) of Proposition 9.5 imply that

∂t

(
EN+2,m − 2

∫
�

J∂N+1
t pF2

)
+DN+2,m ≤ CEθ2N DN+2,m ≤ CδθDN+2,m ≤

1
2 DN+2,m (9-48)

if δ is small enough (here θ > 0). On the other hand, Theorem 9.4, (9-31) of Proposition 9.5, and (9-44)
of Lemma 9.6 imply that

0≤ 2
3 EN+2,m ≤ EN+2,m − 2

∫
�

J∂N+1
t pF2

≤
4
3 EN+2,m

≤ C(E2N )
1/(m+λ+1)(DN+2,m)

(m+λ)/(m+λ+1)
≤ C0Z

1/(m+λ+1)
0 (DN+2,m)

(m+λ)/(m+λ+1) (9-49)

for all 0≤ t ≤ T , where we have written Z0 := E2N (0)+F2N (0), and C0 is a universal constant which
we may assume satisfies C0 ≥ 1. Let us write

h(t)= EN+2,m(t)− 2
∫
�

J (t)∂N+1
t p(t)F2(t)≥ 0, (9-50)

as well as

s =
1

m+ λ
and C1 =

1

2C1+s
0 Zs

0

. (9-51)
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In these three terms we should distinguish between the cases m = 1 and m = 2, but to avoid notational
clutter we will abuse notation and only write h(t), s, and C1. We may then combine (9-48) with (9-49)
and use our new notation to derive the differential inequality

∂t h(t)+C1(h(t))1+s
≤ 0 (9-52)

for 0≤ t ≤ T .
Since h(t)≥ 0, we may integrate (9-52) to find that, for any 0≤ r ≤ T ,

h(r)≤ h(0)
[1+sC1(h(0))sr ]1/s

. (9-53)

Notice that Remark 2.8 implies that EN+2,m ≤
3
2 E2N . Then (9-49) implies that h(0) ≤ 4

3 EN+2,m(0) ≤
2E2N (0)≤ 2Z0, which in turn implies that

sC1(h(0))s =
s

2C1+s
0

(h(0)
Z0

)s
≤

s
2C1+s

0

2s
=

s
C1+s

0

2s−1
≤ 1 (9-54)

since 0< s < 1 and C0 ≥ 1. A simple computation shows that

sup
r≥0

(1+r)1/s

(1+Mr)1/s
=

1
M1/s (9-55)

when 0≤ M ≤ 1 and s > 0. This, (9-53), and (9-54) then imply that

(1+ r)1/sh(r)≤ h(0) (1+r)1/s

[1+sC1(h(0))sr ]1/s
≤ h(0)

(
2C1+s

0

s

)1/s Z0

h(0)
=

(
2C1+s

0

s

)1/s

Z0. (9-56)

Now we use (9-30) of Proposition 9.5 together with (9-49) to bound

EN+2,m(r). EN+2,m(r). h(r) for 0≤ r ≤ T . (9-57)

The estimate (9-47) then follows from (9-56), (9-57), and the fact that

s = 1/(m+ λ) and Z0 = E2N (0)+F2N (0). �

A priori estimates for G2N . We now collect the results of Theorems 9.4 and 9.7 into a single bound on
G2N , as defined by (2-58). The estimate recorded specifically names the constant in the inequality with
C1 > 0 so that it can be referenced later.

Theorem 9.8. There exists a universal 0< δ < 1 such that if G2N (T )≤ δ, then

G2N (t)≤ C1(E2N (0)+F2N (0)) (9-58)

for all 0≤ t ≤ T , where C1 > 0 is a universal constant.

Proof. Let δ be as small as in Theorems 9.4 and 9.7. Then the conclusions of the theorems hold, and we
may sum them to deduce (9-58). �
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10. Specialized local well-posedness

Propagation of Iλ bounds. To prove Theorem 1.3, we will combine our a priori estimates, Theorem 9.8,
with a local well-posedness result. Theorem 1.1 is not quite enough since it does not address the
boundedness of ‖Iλu(t)‖20, ‖Iλη(t)‖20, and ‖Iλ p(t)‖20 for t > 0. In order to prove these bounds, we first
study the cutoff operators Im

λ , which we define now. Let m ≥ 1 be an integer. For a function f defined
on �, we define the cutoff Riesz potential Im

λ f by

Im
λ f (x ′, x3)=

∫
{|ξ |≥1/m}

f̂ (ξ, x3)|ξ |
−λe2π i x ′·ξdξ, (10-1)

where ˆ̇denotes the Fourier transform in the (x1, x2) variables. Similarly, for f defined on 6, we set

Im
λ f (x ′)=

∫
{|ξ |≥1/m}

f̂ (ξ)|ξ |−λe2π i x ′·ξdξ. (10-2)

The operator Im
λ is clearly bounded on H 0(�) and H 0(6), which allows us to apply it to our solutions

and then study the evolution of Im
λ u and Im

λ η.
Before doing so, we record some estimates for terms involving Im

λ that are analogous to the Iλ estimates
in Propositions Proposition 4.3 and 6.7 and in Lemmas 4.4, 4.5, 6.5, 6.6, A.3 and A.4. We begin with the
analogues of the last two lemmas, which were the starting point for our Iλ estimates.

Lemma 10.1. If Iλh ∈ H 0(�), then ‖Im
λ h‖20 ≤ ‖Iλh‖20. A similar estimate holds if Iλh ∈ H 0(6). As a

consequence, the results of Lemmas A.3 and A.4 hold with Iλ replaced by Im
λ and with the constants in

the inequalities independent of m.

Proof. Suppose that Iλh ∈ H 0(�) for some h. Then, writing ˆ̇ for the horizontal Fourier transform, we
easily see that

‖Im
λ h‖20 =

∫ 0

−b

∫
{|ξ |≥1/m}

|ĥ(ξ, x3)|
2
|ξ |−2λdξdx3 ≤ ‖Iλh‖20. (10-3)

The corresponding estimate in case Iλh ∈ H 0(6) follows similarly. Then the estimates of Lemmas A.3
and A.4 may be combined with these inequalities to replace Iλ with Im

λ . �

We do not want our estimates for Im
λ to be given in terms of E2N since this energy contains Iλ terms.

Instead, we desire estimates in terms of a modified energy, which we write as

E2N := E2N −‖Iλu‖20−‖Iλη‖
2
0. (10-4)

Lemma 10.1 allows us prove the following modification of Proposition 4.3. The proof is a simple
adaptation of the one for Proposition 4.3, and is thus omitted.

Proposition 10.2. Assume that E2N ≤ 1. We have

‖Im
λ G1
‖

2
1+‖I

m
λ G2
‖

2
2+‖I

m
λ ∂t G2

‖
2
0+‖I

m
λ G3
‖

2
1+‖I

m
λ G4
‖

2
1 . E2

2N . (10-5)

Here the constant in the inequality does not depend on m.
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We may similarly modify the proof of Lemma 4.4, removing the interpolation arguments and simply
estimating with E2N instead. This provides us with the following lemma, whose proof we omit.

Lemma 10.3. Assume that E2N ≤ 1. We have

‖Im
λ [(AK )∂3u1+ (BK )∂3u2]‖

2
0+

2∑
i=1

‖Im
λ [u∂i K ]‖20 . E2

2N , (10-6)

‖Im
λ [(1− K )u]‖20+‖I

m
λ [(1− K )G2

]‖
2
0 . E2

2N . (10-7)

Here the constants in the inequalities do not depend on m.

Lemma 10.3 leads to a modification of Lemma 6.5.

Lemma 10.4. Assume that E2N ≤ 1. We have

‖Im
λ p‖20 . ‖I

m
λ η‖

2
0+E2N and ‖Im

λ Dp‖20 . E2N . (10-8)

Here the constants in the inequalities do not depend on m.

Proof. We may argue as in Lemma 6.5, employing Lemma 10.1 in place of Lemmas A.3 and A.4 as
well as Proposition 10.2 and Lemma 10.3 in place of Proposition 4.3 and Lemma 4.4, to deduce the
estimate ‖∂αIm

λ p‖20 . ‖∂
αIm

λ η‖
2
0+‖u‖

2
3+‖∂t u‖21+E2

2N for α ∈ N2 with |α| ∈ {0, 1}. We may bound
‖u‖23+‖∂t u‖21≤E2N . When |α| = 1 we use Lemma 10.1 to estimate ‖∂αIm

λ η‖
2
0. (‖η‖

2
0)
λ(‖Dη‖20)

1−λ
≤

E2N . The desired estimates then follow from these estimates and the fact that E2N ≤ 1. �

In turn, Lemma 10.4 gives a variant of Lemma 6.6. The proof is an easy modification of that of
Lemma 6.6, using the above Im

λ results in place of Iλ results, and is thus omitted.

Lemma 10.5. Assume that E2N ≤ 1. We have∣∣∣∣∫
�

Im
λ pIm

λ G2
∣∣∣∣. E2N‖I

m
λ η‖0+E2N . (10-9)

Here the constant in the inequality does not depend on m.

These results now allow us to study the boundedness of Iλu, etc. We first apply the operator Im
λ to

the equations (2-23), which is possible since Im
λ is bounded on H 0(�) and H 0(6). Then the energy

evolution for Im
λ u and Im

λ η allows us to derive bounds for these quantities, which yield bounds for Iλu
and Iλη after passing to the limit m→∞.

Proposition 10.6. Suppose that (u, p, η) are solutions on the time interval [0, T ] and that ‖Iλu0‖
2
0 +

‖Iλη0‖
2
0 <∞ and sup0≤t≤T E2N (t)≤ 1. Then

sup
0≤t≤T

(‖Iλu(t)‖20+‖Iλ p(t)‖20+‖Iλη(t)‖
2
0)+

∫ T

0
‖Iλu(t)‖21 dt

. eT (‖Iλu0‖
2
0+‖Iλη0‖

2
0)+ eT sup

0≤t≤T
E2N (t). (10-10)
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Proof. Since Im
λ is a bounded operator on H 0(�) and H 0(6), we are free to apply it to the equations

(2-23). After doing so, we use Lemma 2.5 to see that

∂t

(
1
2

∫
�

|Im
λ u|2+ 1

2

∫
6

|Im
λ η|

2
)
+

1
2

∫
�

|DIm
λ u|2

=

∫
�

Im
λ u · (Im

λ G1
−∇Im

λ G2)+Im
λ pIm

λ G2
+

∫
6

−Im
λ u ·Im

λ G3
+Im

λ ηIm
λ G4. (10-11)

We will estimate each term on the right side of this equation. First, we use Cauchy–Schwarz and
Proposition 10.2 to estimate the first and fourth terms:∣∣∣∣∫
�

Im
λ u · (Im

λ G1
−∇Im

λ G2)

∣∣∣∣+ ∣∣∣∣∫
6

Im
λ ηIm

λ G4
∣∣∣∣

≤ ‖Im
λ u‖0(‖Im

λ G1
‖0+‖I

m
λ G2
‖1)+‖I

m
λ η‖0‖I

m
λ G4
‖0

≤
1
2‖I

m
λ u‖20+

1
4‖I

m
λ η‖

2
0+

1
2(‖I

m
λ G1
‖0+‖I

m
λ G2
‖1)

2
+‖Im

λ G4
‖

2
0

≤
1
2‖I

m
λ u‖20+

1
4‖I

m
λ η‖

2
0+CE2

2N (10-12)

for C > 0 independent of m. For the second term we use Lemma 10.5 and Cauchy’s inequality for∣∣∣∣∫
�

Im
λ pIm

λ G2
∣∣∣∣≤ C‖Im

λ η‖0E2N +CE2N ≤
1
4‖I

m
λ η‖

2
0+C(E2N +E2

2N ), (10-13)

where again C > 0 is independent of m. Finally, for the third term we use trace theory, Proposition 10.2,
and Lemma A.12 to bound∣∣∣∣∫

6

Im
λ u ·Im

λ G3
∣∣∣∣≤ ‖Im

λ u‖H0(6)‖I
m
λ G3
‖0 ≤ C‖Im

λ u‖1‖Im
λ G3
‖0

≤ C‖DIm
λ u‖0E2N ≤

1
4‖DIm

λ u‖20+CE2
2N , (10-14)

with C > 0 independent of m. Now we use (10-12)–(10-14) to estimate the right side of (10-11); after
rearranging the resulting bound, we find that

∂t(‖I
m
λ u‖20+‖I

m
λ η‖

2
0)+

1
2‖DIm

λ u‖20 ≤ ‖I
m
λ u‖20+‖I

m
λ η‖

2
0+C(E2N +E2

2N ) (10-15)

for a constant C > 0 that does not depend on m.
The inequality (10-15) may be viewed as the differential inequality

∂t Eλ,m +
1
2 Dλ,m ≤ Eλ,m +C(E2N +E2

2N ), (10-16)

where we have written Eλ,m = ‖I
m
λ u‖20+‖I

m
λ η‖

2
0 and Dλ,m = ‖DIm

λ u‖20. Applying Gronwall’s lemma to
(10-16) and using the fact that E2N (t)≤ 1 then shows that

Eλ,m(t)+
1
2

∫ t

0
Dλ,m(s) ds ≤ Eλ,m(0)et

+C
∫ t

0
et−sE2N (s) ds

≤ Eλ,m(0)et
+C(et

− 1) sup
0≤s≤t

E2N (s), (10-17)
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where again C > 0 is independent of m. It is a simple matter to verify, using the definitions of Im
λ and Iλ,

Parseval’s theorem for the Fourier transform in (x1, x2), and the monotone convergence theorem, that, as
m→∞,

Eλ,m(s)= ‖Im
λ u(s)‖20+‖I

m
λ η(s)‖

2
0→‖Iλu(s)‖20+‖Iλη(s)‖

2
0 (10-18)

for both s = 0 and s = t , and ∫ t

0
Dλ,m(s) ds→

∫ t

0
‖DIλu(s)‖20 ds. (10-19)

Now, according to these two convergence results, we may pass to the limit m →∞ in (10-17); the
resulting estimate and Lemma A.12 then imply that

sup
0≤t≤T

(‖Iλu(t)‖20+‖Iλη(t)‖
2
0)+

∫ T

0
‖Iλu(t)‖21 dt

. (‖Iλu0‖
2
0+‖Iλη0‖

2
0)e

T
+ (eT

− 1) sup
0≤t≤T

E2N (t). (10-20)

On the other hand, from Lemma 10.4, we know that

‖Im
λ p(t)‖20 . ‖I

m
λ η(t)‖

2
0+E2N (t). (10-21)

We may then argue as above, employing the monotone convergence theorem, to pass to the limit m→∞
in this estimate. We then find that

sup
0≤t≤T

‖Iλ p(t)‖20 . sup
0≤t≤T

‖Iλη(t)‖20+ sup
0≤t≤T

E2N (t). (10-22)

The estimate (10-10) then follows by combining (10-20) and (10-22). �

Local well-posedness. We now record the specialized version of the local well-posedness theorem. We
include estimates for Iλu, Iλη, and Iλ p. We also separate estimates for E2N and D2N from estimates
for F2N and E2N , the latter of which is defined by (10-4).

Theorem 10.7. Suppose that initial data are given satisfying the compatibility conditions of Theorem 1.1
and ‖u(0)‖24N +‖η(0)‖

2
4N+1/2+‖Iλu(0)‖20+‖Iλη(0)‖

2
0 <∞. Let ε > 0. There exists a δ0 = δ0(ε) > 0

and a

T0 = C(ε)min
{

1, 1
‖η(0)‖24N+1/2

}
> 0, (10-23)

where C(ε) > 0 is a constant depending on ε, such that if 0 < T ≤ T0 and ‖u(0)‖24N +‖η(0)‖
2
4N ≤ δ0,

there exists a unique solution (u, p, η) to (1-9) on the interval [0, T ] that achieves the initial data. The
solution obeys the estimates

sup
0≤t≤T

E2N (t)+ sup
0≤t≤T

‖Iλ p(t)‖20+
∫ T

0
D2N (t) dt +‖∂2N+1

t u‖2(XT )∗

≤ C2(ε+‖Iλu(0)‖20+‖Iλη(0)‖
2
0), (10-24)
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and

sup
0≤t≤T

E2N (t)≤ ε and sup
0≤t≤T

F2N (t)≤ C2F2N (0)+ ε (10-25)

for C2 > 0 a universal constant. Here E2N is as defined by (10-4) and XT is defined in (1-11).

Proof. The result follows directly from Proposition 10.6 and Theorem 1.1. �

Remark 10.8. The finiteness of the terms in (10-24) and (10-25) justifies all of the computations leading
to Theorem 9.8. In particular, it shows that ∂2N+1

t u and ∂2N
t p are well-defined.

Remark 10.9. We could have recorded a version of Theorem 10.7 in which ε is replaced by various terms
depending on the initial data in (10-24)–(10-25). We have chosen to introduce the ε term for convenience
in our proof of Theorem 11.2.

11. Global well-posedness and decay: proof of Theorem 1.3

In order to combine the local existence result, Theorem 10.7, with the a priori estimates of Theorem 9.8,
we must be able to estimate G2N , defined by (2-58), in terms of the estimates given in (10-24) and (10-25).
We record this estimate now.

Proposition 11.1. Let E2N be as defined by (10-4). There exists a universal constant C3 > 0 with the
following properties.

(1) If 0≤ T , we have the estimate

G2N (T )≤ sup
0≤t≤T

E2N (t)+
∫ T

0
D2N (t) dt + sup

0≤t≤T
F2N (t)+C3(1+ T )2+λ sup

0≤t≤T
E2N (t). (11-1)

(2) If 0< T1 ≤ T2 and sup
T1≤t≤T2

‖η(t)‖25/2 ≤ δ, where δ > 0 is as in Lemma 2.6, we have the estimate

G2N (T2)≤ C3G2N (T1)+ sup
T1≤t≤T2

E2N (t)+
∫ T2

T1

D2N (t) dt + 1
(1+T1)

sup
T1≤t≤T2

F2N (t)

+C3(T2− T1)
2(1+ T2)

2+λ sup
T1≤t≤T2

E2N (t). (11-2)

Proof. We begin with the proof of the estimate (11-2). The definition of G2N (T2) in (2-58) allows us to
estimate

G2N (T2)

≤G2N (T1)+ sup
T1≤t≤T2

E2N (t)+
∫ T2

T1

D2N (t) dt+ sup
T1≤t≤T2

F2N (t)
(1+ t)

+

2∑
m=1

sup
T1≤t≤T2

((1+t)m+λEN+2,m(t)). (11-3)

Since N ≥ 3, it is easy to verify that

N+2∑
j=0

‖∂
j+1

t u‖22(N+2)−2 j +‖∂
j

t u‖22(N+2)−2 j +‖∂
j+1

t η‖22(N+2)−2 j +‖∂
j

t η‖
2
2(N+2)−2 j . E2N (11-4)
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and N+1∑
j=0

‖∂
j+1

t p‖22(N+2)−2 j−1+‖∂
j

t p‖22(N+2)−2 j−1 . E2N . (11-5)

We will use (11-4), (11-5), and an integration argument to estimate the last term in (11-3).
For j = 1, . . . , N + 2 and m = 1, 2 we may integrate ∂t [(1+ t)(m+λ)/2∂ j

t u(t)] in time from T1 to
t ∈ [T1, T2] and use the estimates in (11-4) to deduce the bound

‖(1+ t)(m+λ)/2∂ j
t u(t)‖2N+4−2 j ≤ ‖(1+ T1)

(m+λ)/2∂
j

t u(T1)‖2N+4−2 j

+

∫ T2

T1

(
(1+ s)(m+λ)/2‖∂ j+1

t u(s)‖2N+4−2 j +
(m+λ)

2
(1+ s)(m+λ−2)/2

‖∂
j

t u(s)‖2N+4−2 j

)
ds

.
√

G2N (T1)+ (T2− T1)(1+ T2)
1+λ/2

√
sup

T1≤t≤T2

E2N (t). (11-6)

Squaring both sides of this, summing over j = 1, . . . , N + 2, taking the supremum, and then summing
over m = 1, 2 then yields the bound

2∑
m=1

sup
T1≤t≤T2

(
(1+t)m+λ

N+2∑
j=1

‖∂
j

t u(t)‖22(N+2)−2 j

)
.G2N (T1)+(T2−T1)

2(1+T2)
2+λ sup

T1≤t≤T2

E2N (t). (11-7)

We may also integrate ∂t [(1+ t)(m+λ)/2∂αu(t)] for α ∈ N3 with |α| = m+ 1 and argue as above, again
employing the estimate (11-4), to deduce the bound (after summing over all such α)

2∑
m=1

sup
T1≤t≤T2

((1+t)m+λ‖∇m+1u(t)‖22(N+2)−m−1).G2N (T1)+(T2−T1)
2(1+T2)

2+λ sup
T1≤t≤T2

E2N (t). (11-8)

Similarly, we may integrate ∂t [(1+ t)(m+λ)/2∂αu(t)] for α ∈ N1+2 with m ≤ |α| ≤ 2N + 4, argue as
above with (11-4), and then employ the bound ‖D2N+4

m u‖20 . EN+2,m from Remark 2.8 (which holds for
t ∈ [T1, T2] because of our assumption on the size of ‖η‖25/2), to deduce the bound (again after summing
over all such α)

2∑
m=1

sup
T1≤t≤T2

((1+ t)m+λ‖D2N+4
m u(t)‖20). G2N (T1)+ (T2− T1)

2(1+ T2)
2+λ sup

T1≤t≤T2

E2N (t). (11-9)

Together, the estimates (11-7)–(11-9) account for all of the u terms appearing in EN+2,m , as defined in
(2-52) for m = 1 and (2-53) for m = 2.

Now we turn to the terms in EN+2,m involving η and p. We may use the η estimates in (11-4) and the
p estimates in (11-5) in a trio of integration arguments like those used above in (11-7)–(11-9). These
yield the estimates

2∑
m=1

sup
T1≤t≤T2

(
(1+ t)m+λ

[N+1∑
j=1

‖∂
j

t p(t)‖22(N+2)−2 j−1+

N+2∑
j=1

‖∂
j

t η(t)‖
2
2(N+2)−2 j

])
. G2N (T1)+ (T2− T1)

2(1+ T2)
2+λ sup

T1≤t≤T2

E2N (t), (11-10)
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2∑
m=1

sup
T1≤t≤T2

((1+ t)m+λ[‖∇m p(t)‖22(N+2)−m−1+‖D
mη(t)‖22(N+2)−m])

. G2N (T1)+ (T2− T1)
2(1+ T2)

2+λ sup
T1≤t≤T2

E2N (t), (11-11)

and
2∑

m=1

sup
T1≤t≤T2

((1+ t)m+λ‖D2N+4
m η(t)‖20). G2N (T1)+ (T2− T1)

2(1+ T2)
2+λ sup

T1≤t≤T2

E2N (t). (11-12)

Now we sum (11-7)–(11-12) and use the bound EN+2,m . ‖D2N+4
m u‖20+‖D

2N+4
m η‖20 from Remark 2.8

to find that
2∑

m=1

sup
T1≤t≤T2

((1+ t)m+λEN+2,m(t)). G2N (T1)+ (T2− T1)
2(1+ T2)

2+λ sup
T1≤t≤T2

E2N (t). (11-13)

Then (11-2) follows from (11-3), (11-13), and the trivial bound

sup
T1≤t≤T2

F2N (t)
(1+ t)

≤
1

(1+T1)
sup

T1≤t≤T2

F2N (t). (11-14)

Now we turn to the proof of (11-1). It is easy to see that EN+2,m(t). E2N (t), which leads us to the
simple bound

2∑
m=1

sup
0≤t≤T

((1+ t)m+λEN+2,m(t)). (1+ T )2+λ sup
0≤t≤T

E2N (t). (11-15)

Then this, (11-14) with T1 replaced by 0 and T2 replaced by T , and the definition of G2N in (2-58) imply
(11-1). �

We now turn to our main result.

Theorem 11.2. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem 1.1. Let
E2N , F2N , and G2N be defined by (2-50), (2-56), and (2-58), respectively. There exists a κ > 0 such that if
E2N (0)+F2N (0) < κ , there exists a unique solution (u, p, η) to (1-9) on the interval [0,∞) that achieves
the initial data. The solution obeys the estimate

G2N (∞)≤ C1(E2N (0)+F2N (0)) < C1κ, (11-16)

where C1 > 0 is given by Theorem 9.8.

Proof. Let 0<δ<1 and C1>0 be the constants from Theorem 9.8, C2>0 the constant from Theorem 10.7,
and C3 > 0 the constant from Proposition 11.1. According to (11-1) of Proposition 11.1, if a solution
exists on the interval [0, T ] with T < 1 and obeys the estimates (10-24) and (10-25), then

G2N (T )≤ C2κ + ε[C2+ 1+C322+λ
]. (11-17)

If ε is chosen so that the latter term in (11-17) equals δ/2, we may choose κ sufficiently small that
C2κ < δ/2 and κ < δ0(ε) (with δ0(ε) given by Theorem 10.7); then Theorem 10.7 provides a unique
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solution on [0, T ] obeying the estimates (10-24) and (10-25), and hence G2N (T ) ≤ δ. According to
Remark 10.8, all of the computations leading to Theorem 9.8 are justified by the estimates (10-24) and
(10-25).

Let us now define

T∗(κ)= sup{T > 0 | for every choice of initial data satisfying the compatibility

conditions and E2N (0)+F2N (0) < κ, there exists a unique solution

on [0, T ] that achieves the data and satisfies G2N (T )≤ δ}. (11-18)

By the above analysis, T∗(κ) is well-defined and satisfies T∗(κ) > 0 if κ is small enough, that is, there is
a κ1 > 0 such that T∗ : (0, κ1] → (0,∞]. It is easily verified that T∗ is nonincreasing on (0, κ1]. Let us
now set

ε =
δ

3
min

{ 1
1+C2

,
1

C3

}
(11-19)

and then define κ0 ∈ (0, κ1] by

κ0 =min
{

δ

3C1(C3+2C2)
,
δ0(ε)

C1
, κ1

}
, (11-20)

where δ0(ε) is given by Theorem 10.7 with ε given by (11-19). We claim that T∗(κ0) =∞. Once the
claim is established, the proof of the theorem is complete, since then T∗(κ)=∞ for all 0< κ ≤ κ0.

Suppose, by way of contradiction, that T∗(κ0) <∞. We will show that solutions can actually be
extended past T∗(κ0) and that these solutions satisfy G2N (T2) ≤ δ for T2 > T∗(κ0), contradicting the
definition of T∗(κ0). We begin by extending the solutions. By the definition of T∗(κ0), we know that,
for every 0< T1 < T∗(κ0) and any choice of data satisfying the compatibility conditions and the bound
E2N (0)+F2N (0) < κ0, there exists a unique solution on [0, T1] that achieves the initial data and satisfies
G2N (T1)≤ δ. Then, by Theorem 9.8, we know that, actually,

G2N (T1)≤ C1(E2N (0)+F2N (0)) < C1κ0. (11-21)

In particular, this and (11-20) imply that

E2N (T1)+
F2N (T1)

(1+ T1)
< C1κ0 ≤ δ0(ε) for all 0< T1 < T∗(κ0), (11-22)

where ε is given by (11-19). We view (u(T1), p(T1), η(T1)) as initial data for a new problem; since
(u, p, η) are already solutions, they satisfy the compatibility conditions needed to use them as data. Then,
since E2N (T1) < δ0(ε), we can use Theorem 10.7 with ε given by (11-19) to extend solutions to [T1, T2]

for any T2 satisfying

0< T2− T1 ≤ T0 = C(ε)min{1,F2N (T1)
−1
}. (11-23)

In light of (11-22), we may bound

T := C(ε)min
{

1, 1
δ0(ε)(1+T∗(κ0))

}
≤ T0. (11-24)
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Notice that T depends on ε (given by (11-19)) and T∗(κ0), but is independent of T1. Let

γ =min
{

T , T∗(κ0),
1

(1+2T∗(κ0))1+λ/2

}
, (11-25)

and then let us choose T1 = T∗(κ0)− γ /2 and T2 = T∗(κ0)+ γ /2. The choice of γ implies that

0< T1 < T∗(κ0) < T2 < 2T∗(κ0) and 0< γ = T2− T1 ≤ T ≤ T0. (11-26)

Then Theorem 10.7 allows us to extend solutions to the interval [0, T2], and it provides estimates on the
extended interval [T1, T2]:

sup
T1≤t≤T2

E2N (t)+ sup
T1≤t≤T2

‖Iλ p(t)‖20+
∫ T2

T1

D2N (t) dt +‖∂2N+1
t u‖2(X(T1,T2))

∗

≤ C2(ε+‖Iλu(T1)‖
2
0+‖Iλη(T1)‖

2
0), (11-27)

and

sup
T1≤t≤T2

E2N (t)≤ ε and sup
T1≤t≤T2

F2N (t)≤ C2F2N (T1)+ ε. (11-28)

Here, in (11-27), we understand that X(T1,T2) is defined as in (1-11) except on the temporal interval
(T1, T2) rather than (0, T ).

Having extended the existence interval, we will now show that G2N (T2)≤ δ. Note that the constant δ,
which comes from Theorem 9.8, is already smaller than the δ appearing in Lemma 2.6. Then the first
estimate in (11-28) and the bound ε ≤ δ (a consequence of (11-19)) imply that supT1≤t≤T2

‖η(t)‖25/2 is
smaller than the δ in Lemma 2.6, which means we may use the second estimate in Proposition 11.1. We
then combine the estimates (11-27)–(11-28) with (11-21)–(11-22) and the bound (11-2) of Proposition 11.1
to see that

G2N (T2) < C1C3κ0+C2(ε+C1κ0)+
C1C2κ0(1+ T1)+ ε

(1+ T1)
+ εC3(T2− T1)

2(1+ T2)
2+λ

≤ κ0C1(C3+ 2C2)+ ε(1+C2)+ εC3γ
2(1+ 2T∗(κ0))

2+λ
≤
δ

3
+
δ

3
+
δ

3
= δ, (11-29)

where the second inequality follows from (11-26) and the third follows from the choice of ε, κ0, and γ
given in (11-19), (11-20), and (11-25), respectively. Hence G2N (T2)≤ δ, contradicting the definition of
T∗(κ0). We then deduce that T∗(κ0)=∞, which completes the proof of the claim and the theorem. �

With this result in hand, it is a simple matter to prove Theorem 1.3.

Proof of Theorem 1.3. We set N = 5 in Theorem 11.2 to deduce all of the conclusions of Theorem 1.3
except the estimates (1-20)–(1-21). Proposition 3.9 implies that

‖u‖2C2(�)
≤ C(r)(E10)

r/(2+r)(E7,2)
2/(2+r) (11-30)

for any r ∈ (0, 1), where C(r) > 0 is a constant depending on r . Let 0≤ ρ < λ and then choose r ∈ (0, 1)
such that

0< r ≤ 2 2+λ
2+ρ

− 2, or equivalently (2+ ρ)≤ (2+ λ) 2
2+r

. (11-31)
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Then C(r)= C(ρ) and the bound G10(∞)≤ C1(E10(0)+F10(0)) implies that

sup
t≥0
(1+ t)2+ρ‖u(t)‖2C2(�)

≤ C(ρ)C1(E10(0)+F10(0)) sup
t≥0
(1+ t)2+ρ

( 1
(1+t)2+λ

)2/(2+r)

≤ C(ρ)C1(E10(0)+F10(0)), (11-32)

which is (1-20). The estimate (1-21) follows similarly by using the interpolation estimates of Lemma 3.1
for the η terms and the interpolation estimates of Theorem 3.14 for ‖u‖22. In this case, though, no use of
r ∈ (0, 1) is necessary because it does not appear in the interpolations. �

Appendix: Analytic tools

Products in Sobolev spaces. We will need some estimates of the product of functions in Sobolev spaces.

Lemma A.1. Let U denote either 6 or �.

(1) Let 0≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ H s1(U ), g ∈ H s2(U ). Then f g ∈ H r (U ) and

‖ f g‖H r . ‖ f ‖H s1‖g‖H s2 . (A-1)

(2) Let 0≤ r ≤ s1 ≤ s2 be such that s2 > r +n/2. Let f ∈ H s1(U ), g ∈ H s2(U ). Then f g ∈ H r (U ) and

‖ f g‖H r . ‖ f ‖H s1‖g‖H s2 . (A-2)

(3) Let 0≤ r ≤ s1≤ s2 be such that s2> r+n/2. Let f ∈ H−r (6), g ∈ H s2(6). Then f g ∈ H−s1(6) and

‖ f g‖−s1 . ‖ f ‖−r‖g‖s2 . (A-3)

Proof. The proofs of (A-1) and (A-2) are standard; the bounds are first proved in Rn with the Fourier
transform, and then the bounds in sufficiently nice subsets of Rn are deduced by use of an extension
operator. To prove (A-3) we argue by duality. For ϕ ∈ H s1(6) we use (A-2) to bound∫

6

ϕ f g . ‖ϕg‖r‖ f ‖−r . ‖ϕ‖s1‖g‖s2‖ f ‖−r , (A-4)

so that upon taking the supremum over ϕ with ‖ϕ‖s1 ≤ 1 we get (A-3). �

We will also need the following variant.

Lemma A.2. Suppose that f ∈ C1(6) and g ∈ H 1/2(6). Then

‖ f g‖1/2 . ‖ f ‖C1‖g‖1/2. (A-5)

Proof. Consider the operator F : H k
→ H k given by F(g)= f g for k = 0, 1. It is a bounded operator for

k = 0, 1 since
‖ f g‖0 ≤ ‖ f ‖C1‖g‖0 and ‖ f g‖1 . ‖ f ‖C1‖g‖1. (A-6)

Then the theory of interpolation of operators implies that F is bounded from H 1/2 to itself, with operator
norm less than a constant times

√
‖ f ‖C1

√
‖ f ‖C1 = ‖ f ‖C1 , which is the desired result. �
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Estimates of the Riesz potential Iλ. Consider �= R2
× (−b, 0) for b> 0. For a function f , defined on

�, we define the Riesz potential Iλ f by

Iλ f (x ′, x3)=

∫
R2

f̂ (ξ, x3)|ξ |
−λe2π i x ′·ξ dξ, (A-7)

where ˆ̇denotes the Fourier transform in (x1, x2). Similarly, for f defined on 6, we set

Iλ f (x ′)=
∫

R2
f̂ (ξ)|ξ |−λe2π i x ′·ξ dξ. (A-8)

We have a product estimate that is a fractional analogue of the Leibniz rule.

Lemma A.3. Let λ ∈ (0, 1). If f ∈ H 0(�) and g, Dg ∈ H 1(�), then

‖Iλ( f g)‖0 . ‖ f ‖0‖g‖λ1‖Dg‖1−λ1 . (A-9)

If f ∈ H 0(6) and g ∈ H 1(6), then

‖Iλ( f g)‖H0(6) . ‖ f ‖H0(6)‖g‖
λ
H0(6)
‖Dg‖1−λH0(6)

. (A-10)

Proof. The Hardy–Littlewood–Sobolev inequality (see, for example, Theorem 4.3 of [Lieb and Loss
2001]) implies that Iλ : L2/(1+λ)(R2)→ L2(R2) is a bounded linear operator for λ ∈ (0, 1). We may then
employ Fubini’s theorem and apply this result to each slice {x3 = z} for z ∈ (−b, 0) to estimate∫

�

|Iλ( f g)|2 =
∫ 0

−b

∫
R2
|Iλ( f g)|2 dx ′dx3 .

∫ 0

−b

(∫
R2
| f g|2/(1+λ) dx ′

)1+λ

dx3

≤

∫ 0

−b

(∫
R2
| f |2 dx ′

)(∫
R2
|g|2/λdx ′

)λ
dx3 ≤ sup

−b≤x3≤0
‖g( · , x3)‖

2
L2/λ(R2)

∫
�

| f |2, (A-11)

where, in the second inequality, we have applied Hölder’s inequality. By the Gagliardo–Nirenberg
interpolation inequality on R2 we may bound

‖g( · , x3)‖L2/λ(R2) . ‖g( · , x3)‖
λ
L2(R2)

‖Dg( · , x3)‖
1−λ
L2(R2)

, (A-12)

but, by trace theory, we also have

‖g( · , x3)‖L2(R2) . ‖g‖1 and ‖Dg( · , x3)‖L2(R2) . ‖Dg‖1, (A-13)

so that
sup

−b≤x3≤0
‖g( · , x3)‖

2
L2/λ(R2)

. ‖g‖λ1‖Dg‖1−λ1 . (A-14)

Chaining together (A-11) and (A-14) then yields the estimate (A-9). A similar argument, not employing
Fubini’s theorem or trace theory, provides the estimate (A-10). �

Our next result shows how Iλ interacts with horizontal derivatives in �.

Lemma A.4. Let λ ∈ (0, 1). If f ∈ H k(�) for k ≥ 1 an integer, then

‖IλDk f ‖0 . ‖Dk−1 f ‖λ0‖D
k f ‖1−λ0 . (A-15)
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Proof. On a fixed horizontal slice {x3 = z} for z ∈ (−b, 0), Parseval’s theorem implies that∫
R2
|IλDk f (x ′, x3)|

2 dx ′ .
∫

R2
|ξ |2(k−λ)| f̂ (ξ, x3)|

2 dξ

=

∫
R2
(|ξ |2(k−1)

| f̂ (ξ, x3)|
2)λ(|ξ |2k

| f̂ (ξ, x3)|
2)1−λ dξ

.

(∫
R2
|Dk−1 f (x ′, x3)|

2 dx ′
)λ(∫

R2
|Dk f (x ′, x3)|

2 dx ′
)1−λ

. (A-16)

Here, in the second inequality, we have used Hölder and Parseval. Integrating both sides of this inequality
with respect to x3 ∈ (−b, 0) and again applying Hölder’s inequality yields the estimate (A-15). �

Poisson integral. For a function f defined on 6 = R2, the Poisson integral in R2
× (−∞, 0) is defined

by

P f (x ′, x3)=

∫
R2

f̂ (ξ)e2π |ξ |x3e2π i x ′·ξ dξ. (A-17)

Although P f is defined in all of R2
× (−∞, 0), we will only need bounds on its norm in the restricted

domain �= R2
× (−b, 0). This yields a couple improvements of the usual estimates of P f on the set

R2
× (−∞, 0). Recall that we use the conventions for sums of derivatives described on page 1443, which

in particular means that ∇q involves x3 derivatives.

Lemma A.5. Let P f be the Poisson integral of a function f that is either in Ḣq(6) or Ḣq−1/2(6) for
q ∈ N (here Ḣ s is the usual homogeneous Sobolev space of order s). Then

‖∇
qP f ‖20 .

∫
R2
|ξ |2q
| f̂ (ξ)|2

(1−e−4πb|ξ |

|ξ |

)
dξ, (A-18)

and in particular

‖∇
qP f ‖20 . ‖ f ‖2Ḣq−1/2(6)

and ‖∇
qP f ‖20 . ‖ f ‖2Ḣq (6)

. (A-19)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

‖∇
qP f ‖20 .

∫
R2

∫ 0

−b
|ξ |2q
| f̂ (ξ)|2e4π |ξ |x3 dx3dξ ≤

∫
R2
|ξ |2q
| f̂ (ξ)|2

(∫ 0

−b
e4π |ξ |x3 dx3

)
dξ

.
∫

R2
|ξ |2q
| f̂ (ξ)|2

(1−e−4πb|ξ |

|ξ |

)
dξ. (A-20)

This is (A-18). To deduce (A-19) from (A-18), we simply note that

1−e−4πb|ξ |

|ξ |
≤min

{
4πb, 1

|ξ |

}
, (A-21)

which means we are free to bound the right side of (A-20) by either ‖ f ‖2
Ḣq−1/2(6)

or ‖ f ‖2
Ḣq (6)

. �
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Interpolation estimates. Assume that 6 = R2 and � = 6 × (−b, 0). We begin with an interpolation
result for Poisson integrals, as defined by (A-17).

Lemma A.6. Let P f be the Poisson integral of f , defined on 6. Let λ≥ 0, q ∈ N, s ≥ 0, and r ≥ 0.

(1) Let

θ =
s

q+s+λ
and 1− θ =

q + λ
q + s+ λ

. (A-22)

Then
‖∇

qP f ‖20 . (‖Iλ f ‖20)
θ (‖Dq+s f ‖20)

1−θ . (A-23)

(2) Let r + s > 1,

θ =
r+s−1

q+s+r+λ
, and 1− θ =

q + λ+ 1
q + s+ r + λ

. (A-24)

Then
‖∇

qP f ‖2L∞ . (‖Iλ f ‖20)
θ (‖Dq+s f ‖2r )

1−θ . (A-25)

(3) Let s > 1. Then
‖∇

qP f ‖2L∞ . ‖D
q f ‖2s . (A-26)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

‖∇
qP f ‖20.

∫
R2

∫ 0

−b
|ξ |2q
| f̂ (ξ)|2e4π |ξ |x3 dx3 dξ .

∫
R2
|ξ |2q
| f̂ (ξ)|2 dξ.

=

∫
R2
(|ξ |2(q+s)

| f̂ (ξ)|2)1−θ (|ξ |−2λ
| f̂ (ξ)|2)θ dξ (A-27)

for θ and 1− θ defined by (A-22). An application of Hölder’s inequality and a second application of
Parseval’s theorem then provides the estimate (A-23).

For the L∞ estimate (A-25), we use the definition of P f in conjunction with the trivial estimate
exp(2π |ξ |x3)≤ 1 in � to bound

‖∇
qP f ‖L∞ .

∫
R2
|ξ |q | f̂ (ξ)| dξ. (A-28)

We write BR for the open ball of radius R, Bc
R for its complement, and 〈ξ〉 =

√
1+ |ξ |2. For R > 0 we

split into high and low frequencies to see that∫
R2
|ξ |q | f̂ (ξ)| dξ =

∫
BR

|ξ |q+λ|ξ |−λ| f̂ (ξ)| dξ +
∫

Bc
R

|ξ |q+s
〈ξ〉r 〈ξ〉−r

|ξ |−s
| f̂ (ξ)| dξ

.

(∫
BR

|ξ |2(q+λ) dξ
)1/2

‖Iλ f ‖0+
(∫

Bc
R

|ξ |−2s
〈ξ〉−2r dξ

)1/2

‖Dq+s f ‖r

. Rq+λ+1
‖Iλ f ‖0+ R−(r+s−1)

‖Dq+s f ‖r . (A-29)

The condition r + s > 1 guarantees that the integral over Bc
R is finite. Minimizing the right side with

respect to R ∈ (0,∞) then yields (A-25).
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The estimate (A-26) follows from the easy bound∫
R2
|ξ |q | f̂ (ξ)| dξ . ‖Dq f ‖s

(∫
R2
〈ξ〉−2s dξ

)1/2

. ‖Dq f ‖s, (A-30)

which holds when s > 1. �

The next result is a similar interpolation result for functions defined only on 6.

Lemma A.7. Let f be defined on 6. Let λ≥ 0.

(1) Let q, s ∈ [0,∞) and

θ =
s

q+s+λ
and 1− θ =

q + λ
q + s+ λ

. (A-31)

Then
‖Dq f ‖20 . (‖Iλ f ‖20)

θ (‖Dq+s f ‖20)
1−θ . (A-32)

(2) Let q, s ∈ N, r ≥ 0, r + s > 1,

θ =
r+s−1

q+s+r+λ
, and 1− θ =

q + λ+ 1
q + s+ r + λ

. (A-33)

Then
‖Dq f ‖2L∞ . (‖Iλ f ‖20)

θ (‖Dq+s f ‖2r )
1−θ . (A-34)

Proof. For the H 0 estimate we use

‖Dq f ‖20 .
∫

R2
|ξ |2q
| f̂ (ξ)|2 dξ (A-35)

and argue as in Lemma A.6. For the L∞ estimate we bound

‖Dq f ‖L∞ .
∫

R2
|ξ |q | f̂ (ξ)| dξ (A-36)

and again argue as in Lemma A.6. �

Now we record a similar result for functions defined on � that are not Poisson integrals. The result
follows from estimates on fixed horizontal slices.

Lemma A.8. Let f be a function on �. Let λ≥ 0, q, s ∈ N, and r ≥ 0.

(1) Let

θ =
s

q+s+λ
and 1− θ =

q + λ
q + s+ λ

. (A-37)

Then
‖Dq f ‖20 . (‖Iλ f ‖20)

θ (‖Dq+s f ‖20)
1−θ . (A-38)

(2) Let r + s > 1,

θ =
r+s−1

q+s+r+λ
, and 1− θ =

q + λ+ 1
q + s+ r + λ

. (A-39)
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Then

‖Dq f ‖2L∞ . (‖Iλ f ‖21)
θ
(
‖Dq+s f ‖2r+1

)1−θ
(A-40)

and

‖Dq f ‖2L∞(6) . (‖Iλ f ‖21)
θ (‖Dq+s f ‖2r+1)

1−θ . (A-41)

Proof. We employ the horizontal Fourier transform and Parseval in conjunction with Fubini to bound

‖Dq f ‖20 .
∫ 0

−b

∫
R2
|ξ |2q
| f̂ (ξ, x3)|

2 dξdx3. (A-42)

For a fixed x3 we may argue as in Lemma A.6 to show that∫
R2
|ξ |2q
| f̂ (ξ, x3)|

2 dξ ≤ (‖Iλ f ( · , x3)‖
2
0)
θ (‖Dq+s f ( · , x3)‖

2
0)

1−θ (A-43)

for θ and 1− θ given by (A-37). Combining these two inequalities with Hölder’s inequality then shows
that

‖Dq f ‖20 .
∫ 0

−b
(‖Iλ f ( · , x3)‖

2
0)
θ (‖Dq+s f ( · , x3)‖

2
0)

1−θ dx3 ≤ (‖Iλ f ‖20)
θ (‖Dq+s f ‖20)

1−θ , (A-44)

which is (A-38).
Now, for the L∞ estimate, we first work on a horizontal slice {x3 = z} for some z ∈ [−b, 0]. Indeed,

using the horizontal Fourier transform on the slice, we have

‖Dq f ( · , x3)‖L∞ .
∫

R2
|ξ |q | f̂ (ξ, x3)| dξ. (A-45)

We may then argue as in Lemma A.6 to show that∫
R2
|ξ |q | f̂ (ξ, x3)| dξ . (‖Iλ f ( · , x3)‖0)

θ (‖Dq+s f ( · , x3)‖r )
1−θ (A-46)

for θ and 1− θ given by (A-39). By the usual trace theory

‖Iλ f ( · , x3)‖0 . ‖Iλ f ‖1 and ‖Dq+s f ( · , x3)‖r . ‖Dq+s f ‖r+1. (A-47)

Combining (A-45)–(A-47) and taking the supremum over x3 ∈ [−b, 0] then gives (A-40). A similar
argument yields (A-41). �

Transport estimate. Consider the equation{
∂tη+ u · Dη = g in 6× (0, T ),
η(t = 0)= η0

(A-48)

with T ∈ (0,∞] and 6 = R2. We have the following estimate of the transport of regularity for solutions
to (A-48), which is a particular case of a more general result proved in [Danchin 2005].
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Lemma A.9 [Danchin 2005, Proposition 2.1]. Let η be a solution to (A-48). Then there is a universal
constant C > 0 such that, for any 0≤ s < 2,

sup
0≤r≤t

‖η(r)‖H s ≤ exp
(

C
∫ t

0
‖Du(r)‖H3/2 dr

)(
‖η0‖H s +

∫ t

0
‖g(r)‖H s dr

)
. (A-49)

Proof. Use p= p2 = 2, N = 2, and σ = s in Proposition 2.1 of [Danchin 2005] along with the embedding
H 3/2 ↪→ B1

2,∞ ∩ L∞. �

Poincaré-type inequalities. Let 6 and � be as before.

Lemma A.10. We have
‖ f ‖2L2(�)

. ‖ f ‖2L2(6)
+‖∂3 f ‖2L2(�)

(A-50)

for all f ∈ H 1(�). Also, if f ∈W 1,∞(�), then

‖ f ‖2L∞(�) . ‖ f ‖2L∞(6)+‖∂3 f ‖2L∞(�) . (A-51)

Proof. By density we may assume that f is smooth. Writing x = (x ′, x3) for x ′ ∈ 6 and x3 ∈ (−b, 0),
we have

| f (x ′,x3)|
2
=| f (x ′,0)|2−2

∫ 0

x3

f (x ′,z)∂3 f (x ′,z)dz≤| f (x ′,0)|2+2
∫ 0

−b
| f (x ′,z)||∂3 f (x ′,z)|dz. (A-52)

We may integrate this with respect to x3 ∈ (−b, 0) to get∫ 0

−b
| f (x ′, x3)|

2 dx3 . | f (x ′, 0)|2+ 2
∫ 0

−b
| f (x ′, z)||∂3 f (x ′, z)| dz. (A-53)

Now we integrate over x ′ ∈6 to find∫
�

| f (x)|2 dx≤C ‖ f ‖2L2(6)
+2C

∫
�

| f (x)||∂3 f (x)|dx≤C ‖ f ‖2L2(6)
+ε‖ f ‖2L2(�)

+
C
ε
‖∂3 f ‖2L2(�)

(A-54)

for any ε > 0. Choosing ε > 0 sufficiently small then yields (A-50). The estimate (A-51) follows similarly,
taking suprema rather than integrating. �

A simple modification of the proof of Lemma A.10 yields the following estimates.

Lemma A.11. We have ‖ f ‖H0(6) . ‖∂3 f ‖H0(�) for f ∈ H 1(�) such that f = 0 on 6b. Moreover,
‖ f ‖L∞(6) . ‖∂3 f ‖L∞(�) for f ∈W 1,∞(�) such that f = 0 on 6b.

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 of [Beale
1981].

Lemma A.12. We have ‖u‖1 . ‖Du‖0 for all u ∈ H 1(�;R3) such that u = 0 on 6b.

We also record the standard Poincaré inequality, which applies for functions taking either vector or
scalar values.

Lemma A.13. We have ‖ f ‖0 . ‖ f ‖1 . ‖∇ f ‖0 for all f ∈ H 1(�) such that f = 0 on 6b. Also,
‖ f ‖L∞(�) . ‖ f ‖W 1,∞(�) . ‖∇ f ‖L∞(�) for all f ∈W 1,∞(�) such that f = 0 on 6b.
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An elliptic estimate. The proof of the following estimate may be found in [Beale 1981].

Lemma A.14. Suppose (u, p) solve
−1u+∇ p = φ ∈ H r−2(�),

div u = ψ ∈ H r−1(�),

(pI −D(u))e3 = α ∈ H r−3/2(6),

u|6b = 0.

(A-55)

Then, for r ≥ 2,
‖u‖2H r +‖p‖2H r−1 . ‖φ‖

2
H r−2 +‖ψ‖

2
H r−1 +‖α‖

2
H r−3/2 . (A-56)
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