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FRACTIONAL CONFORMAL LAPLACIANS
AND FRACTIONAL YAMABE PROBLEMS

MARÍA DEL MAR GONZÁLEZ AND JIE QING

Based on the relations between scattering operators of asymptotically hyperbolic metrics and Dirichlet-to-
Neumann operators of uniformly degenerate elliptic boundary value problems observed by Chang and
González, we formulate fractional Yamabe problems that include the boundary Yamabe problem studied
by Escobar. We observe an interesting Hopf-type maximum principle together with interplay between
analysis of weighted trace Sobolev inequalities and conformal structure of the underlying manifolds,
which extends the phenomena displayed in the classic Yamabe problem and boundary Yamabe problem.

1. Introduction

In this paper, based on the relations between scattering operators of asymptotically hyperbolic metrics
and Dirichlet-to-Neumann operators of uniformly degenerate elliptic boundary value problems observed
in [Chang and González 2011], we formulate and solve fractional order Yamabe problems that include
the boundary Yamabe problem studied in [Escobar 1992].

Suppose that Xn+1 is a smooth manifold with smooth boundary Mn for n ≥ 3. A function ρ is a
defining function of the boundary Mn in Xn+1 if

ρ > 0 in Xn+1 ρ = 0 on Mn, dρ 6= 0 on Mn.

We say that g+ is conformally compact if, for some defining function ρ, the metric ḡ = ρ2g+ extends to
Xn+1 so that (Xn+1, ḡ) is a compact Riemannian manifold. This induces a conformal class of metrics
ĥ= ḡ|T Mn on Mn when defining functions vary. The conformal manifold (Mn, [ĥ]) is called the conformal
infinity of (Xn+1, g+). A metric g+ is said to be asymptotically hyperbolic if it is conformally compact
and the sectional curvature approaches −1 at infinity.

Graham and Zworski [2003] introduced the meromorphic family of scattering operators S(s), which
is a family of pseudodifferential operators, for a given asymptotically hyperbolic manifold (Xn+1, g+)
and a choice of the representative ĥ of the conformal infinity (Mn, [ĥ]). Instead one often considers the
normalized scattering operators

Pγ [g+, ĥ] = 22γ 0(γ )

0(−γ )
S
(n

2
+ γ

)
.

González is supported by Spain Government project MTM2008-06349-C03-01 and GenCat 2009SGR345. Qing is partially
supported by NSF 0700535 and CNSF 10728103.
MSC2010: 35J70, 53A30, 35R11.
Keywords: fractional Laplacian, conformal geometry, Yamabe problem.
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The normalized scattering operators Pγ [g+, ĥ] are conformally covariant,

Pγ [g+, w4/(n−2γ )ĥ]φ = w−(n+2γ )/(n−2γ )Pγ [g+, ĥ](wφ),

with principal symbol
σ(Pγ [g+, ĥ])= σ((−1ĥ)

γ ).

Hence they may be considered to be conformal fractional Laplacians for γ ∈ (0, 1) for a given asymptoti-
cally hyperbolic metric g+. As proven in [Graham and Zworski 2003; Fefferman and Graham 2012],
when g+ is Poincaré–Einstein, P1 is the conformal Laplacian, P2 is the Paneitz operator, and, in general,
Pk for k ∈ N are the conformal powers of the Laplacian discovered in [Graham et al. 1992].

When g+ is a fixed asymptotically hyperbolic metric, we may simply denote

P ĥ
γ := Pγ [g+, ĥ].

We will consider the associated “fractional order curvature”

Q ĥ
γ = P ĥ

γ (1)

and the normalized total curvature

Iγ [ĥ] =

∫
Mn Q ĥ

γ dvĥ(∫
Mn dvĥ

)(n−2γ )/n .

When a background metric ĥ is fixed, we may write

Iγ [w, ĥ] = Iγ [w4/(n− 2γ )ĥ] =

∫
Mn wP ĥ

γ w dvĥ(∫
Mn w2n/(n−2γ ) dvĥ

)(n−2γ )/n .

This functional Iγ [ĥ] is clearly an analogue to the Yamabe functional. Hence one may ask if there is a
metric which is the minimizer of Iγ among metrics in the class [ĥ] and whose curvature Qγ is a constant.
We will refer to that problem as a fractional Yamabe problem when γ ∈ (0, 1). For the original Yamabe
problem readers are referred to [Lee and Parker 1987; Schoen and Yau 1994]. A similar question was
studied in [Qing and Raske 2006] for γ > 1 and g+ being a Poincaré–Einstein metric. Because of the
lack of a maximum principle, these generalized Yamabe problems are, in general, difficult to solve. Yet
this new window to the analytic aspects of conformal geometry remains fascinating. For example, it was
proven [Guillarmou and Qing 2010] that the location of the first scattering pole is dictated by the sign of
the Yamabe constant and the Green’s function of P ĥ

γ is positive for γ ∈ (0, 1) when the Yamabe constant
is positive, at least in the case where g+ is conformally compact Einstein.

On the other hand, see [González 2012] for an interpretation of the fractional curvature Qγ in relation
to the first variation of some weighted volume. The singular version of the fractional Yamabe problem
has been considered in [González et al. 2012], but there are still many open questions in this field.

It turns out that one may use the relations of scattering operators and the Dirichlet-to-Neumann
operators to reformulate the above fractional Yamabe problems as degenerate elliptic boundary value
problems. The correspondence between pseudodifferential equations and degenerate elliptic boundary
value problems is inspired by [Caffarelli and Silvestre 2007]. Interestingly, the corresponding degenerate
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elliptic boundary value problem is a natural extension of the boundary Yamabe problem raised and studied
in [Escobar 1992].

Recall from [Chang and González 2011] that, given an asymptotically hyperbolic manifold (Xn+1, g+)
and a representative ĥ of the conformal infinity (Mn, [ĥ]), one can find a geodesic defining function ρ
such that the compactified metric can be written as

ḡ := ρ2g+ = dρ2
+ hρ = dρ2

+ ĥ+ h(1)ρ+ h(2)ρ2
+ o(ρ2)

near infinity. One may consider the degenerate elliptic boundary value problem of ḡ as follows:{
− div(ρa

∇U )+ E(ρ)U = 0 in (Xn+1, ḡ),
U |ρ=0 = f on Mn,

(1-1)

where
E(ρ)= ρ−1−s(−1g+ − s(n− s))ρn−s,

s = n/2+ γ , and a = 1− 2γ .

Lemma 1.1 [Chang and González 2011]. Let (Xn+1, g+) be an asymptotically hyperbolic manifold.
Suppose that U is the solution to the boundary value problem (1-1). Then

(1) for γ ∈ (0, 1/2) and −n2/4+ γ 2 not an L2-eigenvalue for the Laplacian of g+,

Pγ [g+, ĥ] f =−d∗γ lim
ρ→0

ρa∂ρU, (1-2)

where

d∗γ =−
22γ−10(γ )

γ0(−γ )
; (1-3)

(2) for γ = 1/2,

P1/2[g+, ĥ] f =− lim
ρ→0

∂ρU + n−1
2

H f,

where H := (1/(2n))Trĥ(h
(1)) is the mean curvature of M ;

(3) for γ ∈ (1/2, 1), (1-2) still holds if H = 0.

In light of Lemma 1.1, consider, for γ ∈ (0, 1),

I ∗γ [U, ḡ] =
d∗γ
∫

Xn+1(ρ
a
|∇U |2+ E(ρ)U 2) dvḡ∫

Mn U 2n/(n−2γ ) dvĥ
.

It is then a very natural variational problem for I ∗γ . For instance, right away one sees that a minimizer of
I ∗γ is automatically nonnegative, which was a huge issue for the functional Iγ .

One key ingredient in our work here is the following Hopf-type maximum principle. We drew
inspiration from some version of Hopf’s lemma for the Euclidean half space case [Cabré and Sire 2010,
Proposition 4.11].

Proposition 1.2. Let γ ∈ (0, 1). Suppose U is a nonnegative solution to (1-1) in Xn+1. Let p0 ∈ Mn
=

∂Xn+1 and Br be a geodesic ball of radius r centered at p0 in Mn . Then, for sufficiently small r0, if
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U (q0)= 0 for q0 ∈ Br0 \ B1/2r0 and U > 0 on ∂B1/2r0 ,

ya∂yU |q0 > 0. (1-4)

It seems weaker than the original one, but it suffices for our purposes. A nice and immediate consequence
of the above maximum principle is that the first eigenfunction of the fractional conformal Laplacian P ĥ

γ

is always positive, which has been a rather challenging question in general for the pseudodifferential
operators P ĥ

γ ; see [Guillarmou and Qing 2010]. Hence one can produce a metric in the class [ĥ] that has
positive, negative, or zero Qγ curvature when the first eigenvalue is positive, negative, or zero.

Our approach to solving the γ -Yamabe problem is very similar to that taken in [Escobar 1992], where
one of the crucial steps is the understanding of a trace inequality. In our case, the relevant sharp weighted
trace Sobolev inequality appears in [Lieb 1983; Cotsiolis and Tavoularis 2004; Nekvinda 1993].

Proposition 1.3. Let γ ∈ (0, 1) and a = 1− 2γ . Suppose that U ∈W 1,2(Rn+1
+ , ya) with trace T U = w.

Then, for some constant S̄(n, γ ),

‖w‖2L2∗ (Rn)
≤ S(n, γ )

∫
Rn+1
+

ya
|∇U |2 dx dy, (1-5)

where 2∗ = 2n/(n− 2γ ). Moreover the equality holds if and only if

w(x)= c
(

µ

|x − x0|2+µ2

)(n−2γ )/2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed, and U is its Poisson extension of w as given in (2-13).

As in the case of the original Yamabe problem, one can define the γ -Yamabe constant

3γ (Mn, [ĥ])= inf
h∈[ĥ]

Iγ [h].

It is then easily seen that

3γ (Sn, [gc])=
d∗γ

S(n, γ )

where [gc] is the canonical conformal class of metrics on the sphere Sn . Analogous to the cases of the
original Yamabe problem, we obtain the following.

Theorem 1.4. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. Suppose, in addition,
that H = 0 when γ ∈ (1/2, 1). Then, if

−∞<3γ (M, [ĥ]) < 3γ (Sn, [gc]), (1-6)

the γ -Yamabe problem is solvable for γ ∈ (0, 1).

Remark. It is easily seen that 3γ (M, [ĥ]) >−∞ in light of (1.4) in Theorems 1.1 and 1.2 of [Jin and
Xiong 2013] when γ ∈ (0, 1/2] or if some additional assumptions in Theorem 1.2 of [Jin and Xiong
2013] hold.

Based on computations similar to ones in [Escobar 1992], we have the following.
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Theorem 1.5. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and that

ρ−2(R[g+] −Ric[g+](ρ∂ρ)+ n2)→ 0 as ρ→ 0. (1-7)

If Xn+1 has a nonumbilic point on ∂Xn+1 and

n+a−3
1−a

22γ+1 0(γ )

0(−γ )
+

n−1+a
a+1

< 0, (1-8)

then
3γ (M, [ĥ]) < 3γ (Sn, [gc])

and hence the γ -Yamabe problem is solvable for γ ∈ (0, 1).

We remark now that the 1/2-Yamabe problem introduced here reduces back to the boundary Yamabe
problem considered in [Escobar 1992] in this way. Notice that, in this case, we have

I ∗1/2[U, φ
4/n−1ḡ] = I ∗1/2[Uφ, ḡ] (1-9)

for any positive function φ on Xn+1, and therefore (1-7) is no longer needed. Also notice that the condition
(1-8) becomes n > 5 when γ = 1/2, which agrees with the conclusion in [Escobar 1992].

Suppose we start with a compact Riemannian manifold (Xn+1, ḡ) and its boundary (Mn, ĥ). Then one
can construct an asymptotically hyperbolic manifold (Xn+1, g+) which is conformal to (Xn+1, ḡ). For
example, as observed in [Chang and González 2011], one may, according to [Mazzeo 1991; Andersson
et al. 1992], require that

R[g+] = −n(n+ 1). (1-10)

Then the induced degenerate equation becomes

− div(ρa
∇U )+ n−1+a

4n
R[ḡ]ρaU = 0 in (Xn+1, ḡ), (1-11)

whose associated variational functional becomes

F[U ] =
∫

X
ρa
|∇U |2ḡ dvḡ +

n−1+a
4n

∫
X

R[ḡ]ρa
|U |2 dvḡ. (1-12)

In Section 2 we recall [Chang and González 2011] to make possible the passage from pseudodifferential
equations to second order elliptic boundary value problems as in [Caffarelli and Silvestre 2007]. In
Section 3 we study regularity (L∞ and Schauder estimates) for degenerate elliptic boundary value problems,
and, more importantly, we establish the Hopf-type maximum principle. In Section 4 we formulate the
fractional Yamabe problem and obtain some properties for the fractional case that are analogous to the
original Yamabe problem with the help of the Hopf-type maximum principle. In Section 5 we analyze
sharp weighted Sobolev trace inequalities. We define, on any conformal manifold, the fractional Yamabe
constant associated with an asymptotically hyperbolic metric, and show that one of the standard round
spheres associated to the standard hyperbolic metric is the largest. In Section 6 we take a subcritical
approximation and prove Theorem 1.4. In Section 7 we adopt the calculation from [Escobar 1992] and
prove Theorem 1.5 by choosing a suitable test function.
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We finally mention the two related works [Barrios et al. 2012; Servadei 2013] on nonlinearities with
critical exponents for the fractional Laplacian.

2. Conformal fractional Laplacians

In this section we introduce [Chang and González 2011] to relate two equivalent definitions of conformal
fractional Laplacians. Conformal fractional Laplacians are defined via scattering theory on asymptotically
hyperbolic manifolds [Graham and Zworski 2003; Fefferman and Graham 2012]. We have also seen
fractional Laplacians defined as Dirichlet-to-Neumann operators for degenerate equations on compact
manifolds with boundary [Caffarelli and Silvestre 2007]. It turns out that, in some way, these two
fractional Laplacians are the same.

Let Xn+1 be a smooth manifold of dimension n+ 1 with compact boundary ∂X = Mn . A function ρ
is a defining function of ∂X in X if

ρ > 0 in X, ρ = 0 on ∂X, dρ 6= 0 on ∂X.

We say that g+ is conformally compact if the metric ḡ=ρ2g+ extends to Xn+1 for a defining function ρ so
that (Xn+1, ḡ) is a compact Riemannian manifold. This induces a conformal class of metrics ĥ= ḡ|T Mn on
Mn when the defining function varies, which is called the conformal infinity of (Xn+1, g+). A metric g+

is said to be asymptotically hyperbolic if it is conformally compact and the sectional curvature approaches
−1 at infinity.

Given an asymptotically hyperbolic manifold (Xn+1, g+) and a representative ĥ of the conformal
infinity (Mn, [ĥ]), there exists a uniquely geodesic defining function ρ such that, on a neighborhood
M × (0, δ) in X , g+ has the normal form

g+ = ρ−2(dρ2
+ hρ) (2-1)

where hρ is a one parameter family of metrics on M such that

hρ = ĥ+ h(1)ρ+ O(ρ2). (2-2)

From [Mazzeo and Melrose 1987; Graham and Zworski 2003] it follows that, given f ∈ C∞(M),
Re(s) > n/2 and s(n− s) is not an L2-eigenvalue for −1g+ , the generalized eigenvalue problem

−1g+u− s(n− s)u = 0 in X (2-3)

has a solution of the form

u = Fρn−s
+Gρs, F,G ∈ C∞(X), F |ρ=0 = f. (2-4)

The scattering operator on M is then defined as

S(s) f = G|M .

It is shown in [Graham and Zworski 2003] that, by a meromorphic continuation, S(s) is a meromorphic
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family of pseudodifferential operators in the whole complex plane. Instead, it is often useful to consider
the normalized scattering operators Pγ [g+, ĥ] defined as

Pγ [g+, ĥ] := dγ S
(n

2
+ γ

)
, dγ = 22γ 0(γ )

0(−γ )
. (2-5)

Note that s = n/2+ γ . With this regularization the principal symbol of Pγ [g∗, ĥ] is exactly the principal
symbol of the fractional Laplacian (−1ĥ)

γ . Hence we will call (assuming implicitly the dependence on
the extension metric g+)

P ĥ
γ := Pγ [g+, ĥ]

a conformal fractional Laplacian for each γ ∈ (0, 1) which is not a pole of the scattering operator, that is,
n2/4− γ 2 is not an L2-eigenvalue for −1g+ . It is a conformally covariant operator, in the sense that it
behaves like

P ĥw
γ ϕ = w−(n+2γ )/(n−2γ )P ĥ

γ (wϕ) (2-6)

for a conformal change of metric ĥw = w4/(n−2γ )ĥ. We will call

Q ĥ
γ = P ĥ

γ (1)

the fractional scalar curvature associated to the conformal fractional Laplacian P ĥ
γ . From (2-6) we have

P ĥ
γ (w)= Q ĥw

γ w
(n+2γ )/(n−2γ ). (2-7)

The familiar case is γ = 1, where

P ĥ
1 =−1ĥ +

n−2
4(n−1)

R[ĥ]

becomes the conformal Laplacian and the associated curvature is the scalar curvature

Q ĥ
1 = (n− 2)/(4(n− 1))R[ĥ]

of the metric ĥ which undergoes the change

P ĥ
1 w =

n−2
4(n−1)

R[ĥw]w(n+2)/(n−2)

when taking conformal change of metrics, provided that (Xn+1, g+) is a Poincaré–Einstein as established
in [Graham and Zworski 2003; Fefferman and Graham 2012]. The conformal fractional Laplacians and
fractional scalar curvatures should also be compared to the higher order generalization of the conformal
Laplacian and scalar curvature, the Paneitz operator P ĥ

2 and its associated Q-curvature; see [Paneitz 2008;
Branson 1995; Qing and Raske 2006].

It was observed in [Chang and González 2011] that the generalized eigenvalue problem (2-3) on a
noncompact manifold (Xn+1, g+) is equivalent to a linear degenerate elliptic problem on the compact
manifold (Xn+1, ḡ), for ḡ = ρ2g+. Hence Chang and González reconciled the definition of the fractional
Laplacians given above as normalized scattering operators and the one given in the spirit of the Dirichlet-
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to-Neumann operators by Caffarelli and Silvestre [2007]. This observation plays a fundamental role in
this paper and provides an alternative way to study the fractional partial differential equation (2-7). First,
we know by the conformal covariance that

Pg+

1 u = ρ(n+3)/2 P ḡ
1 (ρ
−(n−1)/2u).

Let a = 1− 2γ ∈ (−1, 1), s = n/2+ γ , and U = ρs−nu. Then we may write (2-3) as

− div(ρa
∇ḡU )+ E(ρ)U = 0 in (Xn+1, ḡ),

where
E(ρ) := ρa/2 P ḡ

1 ρ
a/2
− (s(n− s)+ n−1

4n
R[g+] )ρa−2, (2-8)

or, writing everything back in the metric g+,

E(ρ)= ρ−1−s(−1g+ − s(n− s))ρn−s . (2-9)

Notice that, in a neighborhood M × (0, δ) where the metric g+ is in the normal form

E(ρ)= n−1+a
4n

(
R[ḡ] − (n(n+ 1)+ R[g+])ρ−2)ρa in M × (0, δ). (2-10)

Proposition 2.1 [Chang and González 2011]. Let (Xn+1, g+) be an asymptotically hyperbolic manifold.
Then, given f ∈ C∞(M), the generalized eigenvalue problem (2-3) and (2-4) is equivalent to{

− div(ρa
∇U )+ E(ρ)U = 0 in (X, ḡ),

U |ρ=0 = f on M,
(2-11)

where U = ρn−su and U is the unique minimizer of the energy

F[V ] =
∫

X
ρa
|∇V |2ḡ dvḡ +

∫
X

E(ρ)|V |2 dvḡ

among all the functions V ∈W 1,2(X, ρa) with fixed trace V |ρ=0 = f . Moreover,

(1) for γ ∈ (0, 1/2),
P ĥ
γ f =−d∗γ lim

ρ→0
ρa∂ρU, (2-12)

where the constant d∗γ is given in (1-3);

(2) for γ = 1/2, we have an extra term

P ĥ
1/2 f =− lim

ρ→0
∂ρU + n−1

2
H f,

where H := (1/(2n))Trĥ(h
(1)) is the mean curvature of M ;

(3) for γ ∈ (1/2, 1), (2-12) still holds if and only if H = 0.

Remark. It should be noted here that there are many asymptotically hyperbolic manifolds (Xn+1, g+)
whose conformal infinity is prescribed as (Mn, [ĥ]). If one insists on (Xn+1, g+) being Poincaré–Einstein,
then the normalized scattering operators P ĥ

γ are a bit more intrinsic, at least at positive integers as
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observed in [Graham and Zworski 2003; Fefferman and Graham 2012]. It should also be noted that one
can simply start with a compact Riemannian manifold (Xn+1, ḡ) with boundary (Mn, ĥ) and easily build
an asymptotically hyperbolic manifold whose conformal infinity is given by (Mn, [ĥ]). Please see the
details of this observation in [Chang and González 2011].

The simplest example of a conformally compact Einstein manifold is the hyperbolic space (Hn+1, gH).
It can be characterized as the upper half-space (with coordinates x ∈ Rn , y ∈ R+), endowed with the
metric

g+ =
dy2
+ |dx |2

y2 .

Then (2-11) with Dirichlet condition w reduces to{
− div(ya

∇U )= 0 in Rn+1
+ ,

U |y=0 = w on Rn,

and the fractional Laplacian at the boundary Rn is just

P |dx |2
γ w = (−1|dx |2)

γw =−d∗γ lim
y→0

(ya∂yU ).

This is precisely the Caffarelli–Silvestre extension [2007]. Note that this extension U can be written in
terms of the Poisson kernel Kγ as follows:

U (x, y)= Kγ ∗x w = Cn,γ

∫
Rn

y1−a

(|x − ξ |2+ |y|2)(n+1−a)/2w(ξ) dξ, (2-13)

for some constant Cn,γ . Moreover, given w ∈ Hγ (Rn), U is the minimizer of the functional

F[V ] =
∫

Rn+1
+

ya
|∇V |2 dx dy

among all the possible extensions in the set{
V : Rn+1

+
→ R :

∫
Rn+1
+

ya
|∇V |2 dx dy <∞, V ( · , 0)= w

}
.

Based on (2-9), it is observed in [Chang and González 2011] that one may use

ρ∗ = v1/(n−s)

as a defining function, where v solves

−1g+v− s(n− s)v = 0

and ρs−nv = 1 on M , to eliminate E(ρ∗) from (2-11). It suffices to show that v is strictly positive in the
interior. But this is true because, away from the boundary, it is the solution of a uniformly elliptic equation
in divergence form. Thus it cannot have a nonpositive minimum. Hence we arrive at an improvement of
Proposition 2.1 as follows.
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Proposition 2.2. The function ρ∗ is a defining function of M in X such that E(ρ∗) ≡ 0. Hence U =
(ρ∗)s−nu solves {

− div((ρ∗)a∇U )= 0 in (X, ḡ∗),
U = w on M,

(2-14)

with respect to the metric ḡ∗ = (ρ∗)2g+ and U is the unique minimizer of the energy

F[V ] =
∫

X
(ρ∗)a|∇V |2ḡ∗ dvḡ∗ (2-15)

among all the extensions V ∈W 1,2(X, (ρ∗)a) satisfying V |M = w. Moreover,

ρ∗(ρ)= ρ

[
1+

Q ĥ
γ

(n− s)(−d∗γ /(2γ ))
ρ2γ
+ O(ρ2)

]
near infinity and

P ĥ
γ w =−d∗γ lim

ρ∗→0
(ρ∗)a∂ρ∗U +wQ ĥ

γ , (2-16)

provided that H = 0 when γ ∈ (1/2, 1).

We will sometimes use the defining function ρ∗, denoted by y unless explicitly stated otherwise,
because it allows us to work with a pure divergence equation with no lower order terms.

We end this section by discussing the assumption that H = 0 for an asymptotically hyperbolic metric
g+. It turns out that this indeed is an intrinsic condition.

Lemma 2.3. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and that ρ and ρ̃ are the
geodesic defining functions of M in X associated with representatives ĥ and h̃ of the conformal infinity
(Mn, [ĥ]), respectively. Hence

g+ = ρ−2(dρ2
+ hρ)= ρ̃−2(dρ̃2

+ h̃ρ̃)

where
hρ = ĥ+ ρh(1)+ O(ρ2) and h̃ρ̃ = h̃+ ρ̃h̃(1)+ O(ρ̃2)

near infinity. Then h̃(1) = h(1) on M. In particular

H =
ρ̃

ρ

∣∣∣
ρ=0

H̃ on M .

Proof. This simply follows from the equations that define the geodesic defining functions. Let

ρ̃ = ewρ

near infinity. Then

1= |d(ewρ)|2e2wρ2g+ = |dρ|
2
ρ2g+ + 2ρ〈dw, dρ〉ρ2g+ + ρ

2
|dw|2

ρ2g+,

which implies

2∂w
∂ρ
+ ρ

[(
∂w

∂ρ

)2
+ |∇w|2hρ

]
= 0.
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Hence it is rather obvious that ∂w/∂ρ = 0 at ρ = 0. Therefore the proof is complete, since

g̃ = ρ̃2g+ = e2wρ2g+ = e2w ḡ. �

3. Uniformly degenerate elliptic equations

Considering the fractional powers of the Laplacian as Dirichlet-to-Neumann operators in Proposition 2.2
allows us to relate the properties of nonlocal operators to those of uniformly degenerate elliptic equations
in one more dimension. The same strategy has been used, for instance, in [Cabré and Sire 2010].

Fix γ ∈ (0, 1). Let y = ρ∗ be the special defining function given in Proposition 2.2 and set ḡ∗ = y2g+.
We are concerned with the uniformly degenerate elliptic equation{

− div(ya
∇U )= 0 in (X, ḡ∗),

U = w on M.
(3-1)

For our purpose we concentrate on the local behaviors of the solutions to (3-1) near the boundary. First,
we write our equation in local coordinates near a fixed boundary point (p0, 0). More precisely, for some
R > 0, we set

B+R = {(x, y) ∈ Rn+1
: y > 0, |(x, y)|< R},

00
R = {(x, 0) ∈ ∂Rn+1

+
: |x |< R},

0+R = {(x, y) ∈ Rn+1
: y ≥ 0, |(x, y)| = R}.

In local coordinates on 00
R the metric ĥ is of the form |dx |2(1+O(|x |2)), where x(p0)= 0. Consider the

matrix

A(x, y)=
√
|det ḡ∗|ya(ḡ∗)−1.

Then (3-1) is equivalent to
n+1∑

i, j=1

∂i (Ai j∂ jU )= 0. (3-2)

Moreover, we know that
1
c

ya I ≤ A ≤ cya I. (3-3)

This shows that (3-2) is a uniformly degenerate elliptic equation. For instance, the weight ψ(y)= ya is
an A2 weight in the sense of [Muckenhoupt 1972]. Equation (3-2) has been well understood in a series
of papers by Fabes, Jerison, Kenig, and Serapioni [Fabes et al. 1982b; Fabes et al. 1982a]. Let us state a
regularity result that is relevant to us. We will concentrate on problems of the form{

Div(A(DU ))= 0 in B+R ,
−ya∂yU = F, on 00

R,
(3-4)

where, for the rest of the section, A satisfies the ellipticity condition (3-3) for a ∈ (−1, 1), the derivatives
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are Euclidean, that is, D := (∂x1, . . . , ∂xn , y), and

Div(A(DU )) :=
n+1∑

i, j=1

∂i (Ai j∂ jU ).

Definition 3.1. Given R > 0 and a function F ∈ L1(00
R), we call U a weak solution of (3-4) if U satisfies

(DU )t A(DU ) ∈ L1(B+R )
and ∫

B+R

(Dφ)t A(DU ) dx dy−
∫
00

R

Fφ dx = 0

for all φ ∈ C1(B+R ) such that φ ≡ 0 on 0+R and (Dξ)t A(Dφ) ∈ L1(B+R ).

Hölder regularity for weak solutions was shown in [Fabes et al. 1982b, Lemma 2.3.12] for any A
satisfying (3-3). Using this main result, regularity of weak solutions up to the boundary was carefully
shown in [Cabré and Sire 2010, Lemma 4.3], at least when A = ya I . However, their proof only depends
on the divergence structure of the equation and the behavior of the weight. Hence we have the following.

Proposition 3.2. Let γ ∈ (0, 1), γ = (1− a)/2 and β ∈ (0,min{1, 1− a}). Let R > 0 and

U ∈ L∞(B2R+)∩W 1,2(B+2R, ya)

be a weak solution of {
Div(A(DU ))= 0 in B+2R,

−ya∂yU = F(U ) on 00
2R,

(3-5)

for A satisfying (3-3). If F ∈C1,β , U ∈C0,β̃(B+R ) and ∂xi U ∈C0,β̃(B+R ), i = 1, . . . , n, for some β̃ ∈ (0, 1).

Particularly, when F(x, t) = α(x)t + β(x)t (n+2γ )/(n−2γ ), to get smoothness it is necessary to know
the local boundedness of weak solutions U on B+R . To get this local boundedness for weak solutions,
we employ the usual Moser iteration scheme adapted to boundary valued problems (see Theorem 3.4).
However, a new idea is required: we will perform two coupled iterations, one in the interior and one at
the boundary, that need to be handled simultaneously. Note that in the linear case when F ≡ 0, local
boundedness was shown in [Fabes et al. 1982b, Corollary 2.3.4], using the weighted Sobolev embeddings
in the interior described in Proposition 3.3. However, when a nonlinearity F(U ) is present at the boundary
term, instead we need to use weighted trace Sobolev embeddings. (For the half-Laplacian with some
particular nonlinearlities, L∞ estimates were shown in [González and Monneau 2012].)

First, we recall a weighted Sobolev embedding theorem in the interior (compare [Fabes et al. 1982b,
Theorem 1.3]; see also [Chiarenza and Frasca 1985]).

Proposition 3.3. Let � be an open bounded set in Rn+1. Take 1< p <∞. There exist positive constants
C� and δ such that for all u ∈ C∞0 (�) and all k satisfying 1≤ k ≤ (n+ 1)/n+ δ,

‖u‖Lkp(�,ya) ≤ C�‖∇u‖L p(�,ya).

C� may be taken to depend only on n, p, a, and the diameter of �.
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Now we can state the theorem. Note that we actually prove it in the flat case but it is straightforward
to generalize it to the manifold setting.

Theorem 3.4. Let U be a weak solution of the problem{
div(ya

∇U )= 0 in B+2R,

−ya∂yU = F(U ) on 00
2R,

(3-6)

where F(z) satisfies

F(z)= O(|z|β−1),

when |z| →∞ for some 2< β < 2∗. Assume, in addition, that
∫
00

2r0
|U |2

∗

dx =: V <∞. Then, for each
p̄ > 1, there exists a constant C p̄ = C( p̄, V ) > 0 such that

sup
B+R

|U | + sup
00

R

|U | ≤ C p̄

[( 1
Rn+1+a

)1/ p̄
‖U‖L p̄(B2R,ya)+

( 1
Rn

)1/ p̄
‖U‖L p̄(00

2R)

]
.

Proof. Let p ∈ ∂X . Note that we can work with normal coordinates x1, . . . , xn ∈ Rn , y > 0 near p.
Without loss of generality, assume that R = 1. Then the general case is obtained by rescaling. Let
η= η(r), r = (|x |2+ y2)1/2, be a smooth cutoff function such that η= 1 if r < 1, η= 0 if r ≥ 2, 0≤ η≤ 1
if r ∈ (1, 2). Next, by working with U+ :=max{U, 0}, U− :=max{−U, 0} separately, we can assume
that U is positive.

A good reference for Moser iteration arguments in divergence structure equations is [Gilbarg and
Trudinger 1983, Chapter 8]. We generalize this method, considering a double iteration: one at the
boundary, using Sobolev trace inequalities to handle the nonlinear term F(U ), the other in the interior
domain.

The first step is to use that U is a weak solution of (3-6) by finding a good test function. Formally we
can write the following: multiply (3-6) by η2Uα and integrate by parts:

0= 2
∫

B+2

yaηUα
∇η∇U dx dy+α

∫
B+2

yaη2Uα−1
|∇U |2 dx dy+

∫
00

2

η2UαF(U ) dx . (3-7)

This implies, using Hölder estimates to handle the crossed term,∫
B+2

yaη2Uα−1
|∇U |2 dx dy ≤ 2

α

∫
00

2

η2UαF(U ) dx + 4
α2

∫
B+2

ya
|∇η|2Uα+1 dx dy. (3-8)

On the other hand, again using Hölder’s inequality, we have∫
B+2

ya
|∇(ηU δ)|2 dx dy ≤ 2δ2

∫
B+2

yaη2U 2(δ−1)
|∇U |2 dx dy+ 2

∫
B+2

yaU 2δ
|∇η|2 dx dy.
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If we insert formula (3-8) into the inequality above, for the choice α = 2δ− 1, we obtain

J :=
∫

B+2

ya
|∇(ηU δ)|2 dx dy

≤ 2
(

1+
(
α+1
α

)2) ∫
B+2

ya
|∇η|2U 2δ dx dy+ (α+1)2

α

∫
00

2

η2UαF(U ) dx

=: I1+ I2.

(3-9)

For the left hand side above, recall the trace Sobolev embedding (Corollary 5.3)

J =
∫

B+2

ya
|∇(ηU δ)|2 dx dy &

(∫
00

2

(ηU δ)2
∗

dx
)2/2∗

, (3-10)

and the standard weighted Sobolev embedding from Proposition 3.3.

J =
∫

B+2

ya
|∇(ηU δ)|2 dx dy &

(∫
B+2

ya(ηU δ)k
)2/k

(3-11)

for some 1< k < 2(n+ 1)/n.
Next, we estimate from above the terms I1, I2 in (3-9). I1 can be easily handled since |∇η| ≤ C :

I1 =

∫
B+2

ya
|∇η|2U 2δ dx dy .

∫
B+2

yaU 2δ dx dy. (3-12)

Now we consider the second term. To estimate I2, if we write U 2δ−2+β
=Uβ−2U 2δ , then, using Hölder’s

inequality with p = 2∗/(β − 2), 1/p+ 1/q = 1, we obtain∫
00

2

η2U 2δ−1 F(U ) dx ≤
[∫

00
2

U 2∗ dx
]1/p[∫

00
2

η2qU 2δq dx
]1/q

≤ V 1/p
[∫

00
2

η2qU 2δq dx
]1/q

. (3-13)

This last integral can be handled as follows. Call χ = 2∗/2, for simplicity. Because our hypothesis on β,
we know that q ∈ (1, χ). Then there exists λ ∈ (0, 1) such that q = λ+ (1− λ)χ , and an interpolation
inequality gives[∫

f q
]1/q

≤

[∫
f
]λ/q[∫

f χ
](1−λ)/q

=

[∫
f χ
]1/χ([∫

f
][∫

f χ
]−1/χ)λ/q

. (3-14)

Since λ/q < 1, Young’s inequality reads

zλ/q ≤ Cεz+ ε,

for ε small. If we substitute z = [
∫

f ][
∫

f χ ]−1/χ above, together with (3-14), we arrive at[∫
f q
]1/q

≤ ε

[∫
f χ
]1/χ

+Cε

∫
f.
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Then from (3-13) it follows that

I2 ≤ V 1/p
{
ε

(∫
00

2

(ηU δ)2
∗

dx
)2/2∗

+Cε

∫
00

2

η2U 2δ dx
}
, (3-15)

where ε will be chosen later and will depend on the value of α, δ.
We go back now to the main iteration formula (3-9). It is clear from (3-10) that the first integral of the

right hand side of the formula for I2 (3-15) can be absorbed into the left hand side of (3-9), and, using
(3-11) and (3-10), we get that(∫

00
1

U δ2∗ dx
)2/2∗

+

(∫
B+1

U 2kδ dx dy
)1/k

≤ C(δ)
[∫

00
2

U 2δ dx +
∫

B+2

U 2δ dx dy
]
,

for some suitable choice of ε. Or, switching notation from 2δ to δ,(∫
00

1

U δχ dx
)1/χ

+

(∫
B0

1

U kδ dx dy
)1/k

≤ C(δ)
[∫

00
2

U δ dx +
∫

B0
2

U δ dx dy
]
. (3-16)

Next, because we will always have δ > 1, we can use that

C1(a1/δ
+ b1/δ)≤ (a+ b)1/δ ≤ C2(a1/δ

+ b1/δ),

so from (3-16) we get that

‖U‖Lχδ(00
1)
+‖U‖Lkδ(B+1 ,y

a) ≤ ‖U‖Lδ(00
2)
+‖U‖Lδ(B+2 ,y

a).

For simplicity, we set
θ :=min{χ, k}> 1,

and
8(δ, R) :=

( 1
Rn

)1/δ
‖U‖Lδ(00

1)
+

( 1
Rn+1+a

)1/δ
‖U‖Lδ(B+1 ,y

a).

Then, after explicitly writing all the constants involved, formula (3-16) simply reduces to

8(θδ, 1)≤ [C(1+ δ)σ ]2/δ8(δ, 2),

for some positive number σ . It is clear that the same proof works if we replace B1, B2 by BR1 , BR2 . The
only difference is in (3-12), where we need to estimate |∇η| ≤ C(R2− R1)

−1. Thus we would obtain

8(θδ, R1)≤
[C(1+δ)σ

R2−R1

]2/δ
8(δ, R2). (3-17)

Now we iterate (3-17): set Rm = 1+ 1/2m and θm = θ
m p̄. Then

8(θm, 1)≤8(θm, Rm)≤ (c1θ)
c2
∑m−1

i=0 i/θ i
8( p̄, 2)≤ C8( p̄, 2), (3-18)

for some constant C , because the series
∑
∞

i=0 i/θ i is convergent.
Finally, note that

sup
00

1

U = lim
δ→∞
‖U‖Lδ(00

1)
, sup

B+1

U = lim
δ→∞
‖U‖Lδ(B+1 ,y

a),
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so that (3-18) is telling us that

sup
B+1

U + sup
00

1

U ≤ C[‖U‖L p̄(B2,ya)+‖U‖L p̄(00
2)
].

Rescaling to a ball of radius R concludes the proof of the theorem. �

The next main ingredient is the proof of the positivity of a solution to (3-5). We observed that a
Hopf lemma, some version of which was known for the Euclidean half space case [Cabré and Sire 2010,
Proposition 4.10], can be obtained for the uniformly degenerate elliptic equation (3-1). This nice Hopf
lemma turns out to be one of the keys for us in this paper. It is interesting to observe a different behavior
between the cases γ ∈ (0, 1/2) and γ ∈ [1/2, 1) in our proof — this dichotomy does not seem to appear
in the flat case in [Cabré and Sire 2010].

We continue to use the setting as in Proposition 2.2. Let p0 ∈ ∂X and (x, y) be the local coordinate
at p0 for X with x(p0)= 0, where x is the normal coordinate at p0 with respect to the metric ĥ on the
boundary Mn .

Theorem 3.5. Suppose that U is a nonnegative solution to (3-1) in Xn+1. Then, for sufficiently small r0,
if U (q0)= 0 for q0 ∈ 0

0
r0
\00

1/2r0
and U > 0 on ∂00

1/2r0
on the boundary Mn , then

ya∂yU |q0 > 0. (3-19)

Proof. First we assume that γ ∈ [1/2, 1), that is, a ∈ (−1, 0]. We consider a positive function

W = y−a(y+ Ay2)(e−B|x |
− e−Br0). (3-20)

To calculate div(ya
∇W ) in the metric ḡ∗, we first calculate from Proposition 2.2 that

ḡ∗ = (1+α1 y)dy2
+ (1+α2 y)ĥ+ o(y)

for some constants α1, α2 and
det ḡ∗ = det ĥ(1+α3 y)+ o(y),

for some constant α3. Then
div(ya

∇W )= I1+ I2+ I3+ I4,

where
I1 =

1
√

det ḡ∗
∂y
(√

det ḡ∗(ḡ∗)yy((1− a)+ (2− a)y A)(e−B|x |
− e−Br0)

)
= (α4+ (2− a)A+ o(1))(e−B|x |

− e−Br0),

I2 =
1

√
det ḡ∗

∂xk
(√

det ḡ∗(ḡ∗)ky((1− a)+ (2− a)y A)(e−B|x |
− e−Br0)

)
= o(1)(e−B|x |

− e−Br0)+ o(y)Be−Br ,

for some constant α4,

I3 =
1

√
det ḡ∗

∂y
(√

det ḡ∗(ḡ∗)yk(y+ y2 A)∂xk (e−B|x |
− e−Br0)

)
= o(y)Be−Br ,
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and

I4 =
y+ y2 A
√

det ḡ∗
∂xk
(√

det ḡ∗(ḡ∗)k j∂x j (e−B|x |
− e−Br0)

)
=

y+ y2 A
√

det ḡ∗
∂xk
(√

det ḡ∗(ḡ∗)k j (−
x j

r
Be−Br )

)
= y B2e−Br

+ o(y)B2e−Br
+ y B2o(r2)e−Br

+ o(y)Be−Br .

Thus
div(ya

∇W )= (α4+ (2− a)A+ o(1))(e−B|x |
− e−Br0)+ (B2

+ o(1)B)ye−Br .

We remark here that all α’s can be explicit, but it would not be any more use. Take r0 sufficiently small
and A and B sufficiently large so that

div(ya
∇W )≥ 0

provided that a ≤ 0. Now we know

div(ya
∇(U − εW ))≤ 0

in (00
r0
\00

1/2r0
)× (0, r0) for all ε > 0, and, moreover,

U − εW ≥ 0

on ∂{(00
r0
\00

1/2r0
)× (0, r0)}, provided we choose ε appropriately small. Therefore, due to the maximum

principle, we know that
U − εW > 0

in (00
r0
\00

1/2r0
)× (0, r0). Thus, when U (x(q0), 0)= 0, we have

ya∂y(U − εW )|(x(q0),0) ≥ 0,

which implies

ya∂yU |(x(q0),0) ≥ εya∂y W |(x(q0),0) = ε(1− a)(e−B|x(q0)|− e−Br0) > 0,

as desired.
When a ∈ (0, 1), or equivalently, γ ∈ (0, 1/2), we instead use the function

W = y−a(y+ Ay2−a)(e−B|x |
− e−Br0).

Then a similar calculation will prove that the conclusion still holds. �

Positivity of solutions for (3-1) is now clear:

Corollary 3.6. Suppose that U ∈ C2(X)∩C(X) is a nonnegative solution to the equation{
div(ya

∇U )= 0 in (X, ḡ∗),
ya∂yU = F(U ) on M,

where F(0)= 0. Then U > 0 on X unless U ≡ 0.
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Proof. First, U > 0 in X , and U is not identically zero on the boundary if it is not identically zero on
X . Then, on the boundary, the set where U is positive is nonempty and open. Hence, if the set where U
vanishes is not empty, then, for any small number r0, there always exist points p0 and q0 as given in the
assumptions of Theorem 3.5. Thus we would arrive at the contradiction from Theorem 3.5. �

4. The γ -Yamabe problem

Now we are ready to set up the fractional Yamabe problem for γ ∈ (0, 1). On the conformal infinity
(Mn, [ĥ]) of an asymptotically hyperbolic manifold (Xn+1, g+), we consider a scale-free functional on
metrics in the class [ĥ] given by

Iγ [ĥ] =

∫
M Q ĥ

γ dvĥ

(
∫

M dvĥ)
(n−2γ )/n . (4-1)

Or, if we set a base metric ĥ and write a conformal metric

ĥw = w4/(n−2γ )ĥ,

then

Iγ [w, ĥ] =

∫
M wP ĥ

γ (w) dvĥ

(
∫

M w
2∗ dvĥ)

2/2∗ (4-2)

where 2∗ = 2n/(n− 2γ ). We call Iγ the γ -Yamabe functional.
The γ -Yamabe problem is to find a metric in the conformal class [ĥ] that minimizes the γ -Yamabe

functional Iγ . It is clear that a metric ĥw, where w is a minimizer of Iγ [w, ĥ], has a constant fractional
scalar curvature Q ĥw

γ , that is,
P ĥ
γ (w)= cw(n+2γ )/(n−2γ ), w > 0, (4-3)

for some constant c on M .
This suggests that we define the γ -Yamabe constant

3γ (M, [ĥ])= inf{Iγ [h] : h ∈ [ĥ]}. (4-4)

It is then apparent that 3γ (M, [ĥ]) is an invariant on the conformal class [ĥ] when g+ is fixed.
In the mean time, based on Proposition 2.1, we set

I ∗γ [U, ḡ] =
d∗γ
∫

X ρ
a
|∇U |2ḡ dvḡ +

∫
X E(ρ)|U |2 dvḡ

(
∫

M |U |
2∗ dvĥ)

2/2∗ , (4-5)

or similarly, using Proposition 2.2, we may set

I ∗γ [U, ḡ∗] =
d∗γ
∫

X ya
|∇U |2ḡ∗ dvḡ∗ +

∫
M Q ĥ

γ |U |
2 dvĥ

(
∫

M |U |
2∗ dvĥ)

2/2∗ . (4-6)

It is obvious that it is equivalent to solve the minimizing problems for Iγ and I ∗γ . But a very pleasant
surprise is that this immediately tells us that

3γ (X, [ĥ])= inf{I ∗γ [U, ḡ] :U ∈W 1,2(X, ya)}. (4-7)
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(Please see the definitions and discussions of the weighted Sobolev spaces in Section 5.) Note that one
has that I ∗γ [|U |] ≤ I ∗γ [U ] to handle positivity issues. Therefore we have the following.

Lemma 4.1. Suppose that U is a minimizer of the functional I ∗γ [ · , ḡ] in the weighted Sobolev space
W 1,2(X, ya) with

∫
M |T U |2

∗

dvĥ = 1. Then its trace w = T U ∈ Hγ (M) solves the equation

P ĥ
γ (w)=3γ (X, [ĥ])w

(n+2γ )/(n−2γ ).

To resolve the γ -Yamabe problem is to verify Iγ has a minimizer w, which is positive and smooth.
But before launching our resolution to the γ -Yamabe problem we are first due to discuss the sign of the
γ -Yamabe constant. These statements are familiar and easy ones for the Yamabe problem but not so easy
at all for the γ -Yamabe problem, where the conformal fractional Laplacians are just pseudodifferential
operators. One knows that eigenvalues and eigenfunctions of the conformal fractional Laplacians are
even more difficult to study than the differential operators. There are some affirmative results analogous
to the conformal Laplacian proven in [Guillarmou and Qing 2010] when the Yamabe constant of the
conformal infinity is assumed to be positive. Here we will take advantage of our Hopf lemma and the
interpretation of conformal fractional Laplacians through extensions provided in Proposition 2.2.

For each γ ∈ (0, 1) we know that each conformal fractional Laplacian is selfadjoint; see [Graham
and Zworski 2003; Fefferman and Graham 2002]. Hence we may look for the first eigenvalue λ1 by
minimizing the quotient ∫

M wP ĥ
γ w dvĥ∫

M w
2 dvĥ

. (4-8)

Moreover, again in light of Proposition 2.2, it is equivalent to minimizing

d∗γ
∫

X ya
|∇U |2ḡ∗ dvḡ∗ +

∫
M Q ĥ

γ |U |
2 dvĥ∫

M |U |
2 dvĥ

. (4-9)

We arrive at the eigenvalue equation

P ĥ
γ w = λ1w on M.

Or, equivalently, {
div(ya

∇U )= 0 in (X, ḡ∗),
−d∗γ limy→0 ya∂yU + Q ĥ

γU = λ1U on M,
(4-10)

As a consequence of Proposition 2.2 and Theorem 3.5 we have the following.

Theorem 4.2. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. For each γ ∈ (0, 1)
there is a smooth, positive first eigenfunction for P ĥ

γ and the first eigenspace is of dimension one, provided
H = 0 when γ ∈ (1/2, 1).

Proof. We use the variational characterization (4-9) of the first eigenvalue. We first observe that one may
always assume there is a nonnegative minimizer for (4-9). Then regularity and the maximum principle in
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Section 3 insure that such a first eigenfunction is smooth and positive. To show that the first eigenspace is
of dimension one, we suppose that φ and ψ are positive first eigenfunctions for P ĥ

γ . Then

P ĥφ
γ

ψ

φ
= φ−(n+2γ )/(n−2γ )P ĥ

γ ψ = λ1φ
−(n+2γ )/(n−2γ )ψ

= (φ−(n+2γ )/(n−2γ )P ĥ
γ φ)

ψ

φ

= Q ĥφ
γ

ψ

φ
,

where ĥφ = φ4/(n−2γ )ĥ. That is, there is a function U satisfying
div(ya

φ∇U )= 0 in (X, ḡ∗φ),

lim
yφ→0

ya
φ

∂U
∂yφ

U = 0 on M,

and U = ψ/φ on M , where yφ and ḡ∗φ are associated with ĥφ as y and ḡ∗ are associated with ĥ in
Proposition 2.2, respectively. Replace U by U −Um for Um = minX U and apply Theorem 3.5 and
Corollary 3.6 to conclude that U has to be a constant. �

Consequently, we get the following.

Corollary 4.3. Suppose (Xn+1, g+) is an asymptotically hyperbolic manifold. Assume that γ ∈ (0, 1)
and that H = 0 when γ ∈ (1/2, 1). Then there are three mutually exclusive possibilities for the conformal
infinity (Mn, [ĥ]).

(1) The first eigenvalue of P ĥ
γ is positive, the γ -Yamabe constant is positive, and M admits a metric in

[ĥ] that has pointwise positive fractional scalar curvature.

(2) The first eigenvalue of P ĥ
γ is negative, the γ -Yamabe constant is negative, and M admits a metric in

[ĥ] that has pointwise negative fractional scalar curvature.

(3) The first eigenvalue of P ĥ
γ is zero, the γ -Yamabe constant is zero, and M admits a metric in [ĥ] that

has vanishing fractional scalar curvature.

Proof. First, it is obvious that the sign of the first eigenvalue of the conformal fractional Laplacian P ĥ
γ

does not change within the conformal class due to the conformal covariance property of the conformal
fractional Laplacian. The three possibilities are distinguished by the sign of the first eigenvalue λ1 of the
conformal fractional Laplacian P ĥ

γ . Because, if φ is the positive first eigenfunction of P ĥ
γ , we have

Q ĥφ
γ = λ

ĥ
1φ
−4γ /(n−2γ ),

where ĥφ = φ4/(n−2γ )ĥ. �
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5. Weighted Sobolev trace inequalities

Let us continue in the setting provided by Proposition 2.2. On the compact manifold Mn , for γ ∈ (0, 1),
we recall the fractional order Sobolev space Hγ (M), with its usual norm

‖w‖2Hγ (M) := ‖w‖
2
L2(M)+

∫
M
w(−1ĥ)

γw dvĥ .

An equivalent norm on this space is

‖w‖2Hγ (M) := A‖w‖2L2(M)+

∫
M
wP ĥ

γ w dvĥ,

for some appropriately large number A, since P ĥ
γ is an elliptic pseudodifferential operator of order 2γ

with its principal symbol being the same as that of (−1ĥ)
γ .

Note that in Rn , this Sobolev norm can be easily written in terms of the Fourier transform as

‖w‖2Hγ (Rn) =

∫
Rn
(1+ |ξ |2)γ ŵ2(ξ) dξ. (5-1)

We would also like to recall the definition of the weighted Sobolev spaces. For γ ∈ (0, 1) and a=1−2γ ,
consider the norm

‖U‖2W 1,2(X,ya)
=

∫
X

ya
|∇U |2ḡ∗ dvḡ∗ +

∫
X

yaU 2 dvḡ∗ .

The following is then known.

Lemma 5.1. There exists a unique linear bounded operator

T :W 1,2(X, ya)→ Hγ (M)

such that T U =U |M for all U ∈ C∞(X), which is called the trace operator.

Lemma 5.1 was explored by Nekvinda [1993] in the case when X is a subset of Rn+1 and Mn a piece
of its boundary; see also [Maz’ja 1985]. It then takes some standard argument to derive Lemma 5.1 from,
for instance, [Nekvinda 1993].

The classical Sobolev trace inequality on Euclidean space is well known (see, for instance, [Escobar
1988]) and reads (∫

Rn
|T u|2n/(n−1) dx

)(n−1)/(2n)

≤ C(n)
(∫

Rn+1
+

|∇u|2 dx dy
)1/2

(5-2)

where the constant C(n) is sharp and the equality case is completely characterized. This corresponds
to a = 0 for our cases. The same result is true for any other real a ∈ (−1, 1). Indeed there are general
weighted Sobolev trace inequalities. Let us first recall the well known fractional Sobolev inequalities.
They were first considered in a remarkable paper by Lieb [1983]; see also [Frank and Lieb 2012; Cotsiolis
and Tavoularis 2004] or the survey [Di Nezza et al. 2012].

Lemma 5.2. Let 0< γ < n/2, 2∗ = 2n/(n− 2γ ). Then, for all w ∈ Hγ (Rn), we have

‖w‖2L2∗ (Rn)
≤ S(n, γ )‖(−1)γ /2w‖2Hγ (Rn) = S(n, γ )

∫
Rn
w(−1)γw dx, (5-3)
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where

S(n, γ )= 2−2γπ−γ
0((n− 2γ )/2)
0((n+ 2γ )/2)

(
0(n)
0(n/2)

)2γ /n

=
0((n− 2γ )/2)
0((n+ 2γ )/2)

|vol(Sn)|−2γ /n.

We have equality in (5-3) if and only if

w(x)= c
(

µ

|x−x0|2+µ2

)(n−2γ )/2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed.

Note that we may interpret the above inequality as a calculation of the best γ -Yamabe constant on the
standard sphere as the conformal infinity of the Hyperbolic space. Namely, if gc is the standard round
metric on the unit sphere,

‖w‖2L2∗ (Sn)
≤ S(n, γ )

∫
Sn
wPgc

γ w dvgc . (5-4)

Such an inequality for the sphere case was also considered independently by Beckner [1993], Branson
[1995], and Morpurgo [2002], in the setting of intertwining operators. Indeed, we have the following
explicit expression for P Sn

γ :

P Sn

γ =
0(B+ γ + 1/2)
0(B− γ + 1/2)

, where B :=

√
−1Sn +

(n−1
2
)2
.

It is clear from (5-4) that

3γ (Sn, [gc])=
1

S(n, γ )
. (5-5)

Sobolev trace inequalities can be obtained by the composition of the trace theorem and the Sobolev
embedding theorem above. There have been some related works that deal with these types of energy
inequalities, for instance, Nekvinda [1993], González [2009], and Cabré and Cinti [2012]. In particular,
in light of the work of Caffarelli and Silvestre [2007] and Lemma 5.2, we easily see the more general
form of (5-2) as follows.

Corollary 5.3. Let w ∈ Hγ (Rn), γ ∈ (0, 1), a = 1− 2γ , and U ∈ W 1,2(Rn+1
+ , ya) with trace T U = w.

Then

‖w‖2L2∗ (Rn)
≤ S̄(n, γ )

∫
Rn+1
+

ya
|∇U |2 dx dy, (5-6)

where

S(n, γ ) := d∗γ S(n, γ ). (5-7)

Equality holds if and only if

w(x)= c
(

µ

|x−x0|2+µ2

)(n−2γ )/2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed, and U is its Poisson extension of w as given in (2-13).
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In the following lines we take a closer look at the extremal functions that attain the best constant in the
inequality above. On Rn we fix

wµ(x) :=
(

µ

|x |2+µ2

)
(n−2γ )/2. (5-8)

These correspond to the conformal diffeomorphisms of the sphere. We set

Uµ = Kγ ∗x wµ (5-9)

as given in (2-13). Then we have the equality

‖wµ‖
2
L2∗ (Rn)

= S(n, γ )
∫

Rn+1
+

ya
|∇Uµ|

2 dx dy.

It is clear that

wµ(x)=
1

µ(n−2γ )/2w1

( x
µ

)
and Uµ(x, y)= 1

µ(n−2γ )/2 U1

( x
µ
,

y
µ

)
. (5-10)

Moreover, Uµ is the (unique) solution of the problem{
div(ya

∇Uµ)= 0 in Rn+1
+ ,

−limy→0 ya∂yUµ = cn,γ (wµ)
(n+2γ )/(n−2γ ) on Rn.

(5-11)

On the other hand, if we multiply (5-11) by Uµ and integrate by parts,∫
Rn+1
+

ya
|∇Uµ|

2 dx dy = cn,γ

∫
Rn
(wµ)

2∗ dx . (5-12)

Now we compare (5-12) with (5-6). Using (5-5), we arrive at

3(Sn, [gc])= cn,γ d∗γ

[∫
Rn
(wµ)

2∗dx
]2γ /n

. (5-13)

Before the end of this section we calculate the general upper bound of the γ -Yamabe constants. Indeed
there is a complete analogue to the case of the usual Yamabe problem (compare [Aubin 1982; Lee and
Parker 1987]). Namely:

Proposition 5.4. Let γ ∈ (0, 1). Then

3γ (M, [ĥ])≤3γ (Sn, [gc]).

Proof. First, we instead use the functional (4-6) to estimate the γ -Yamabe constant for a good reason. The
approach is rather the standard method of gluing a “bubble” (5-8) to the manifold M ; see, for instance,
Lemma 3.4 of [Lee and Parker 1987].

For any fixed ε > 0, let Bε be the ball of radius ε centered at the origin in Rn+1 and B+ε be the half
ball of radius ε in Rn+1

+ . Choose a smooth radial cutoff function η, 0 ≤ η ≤ 1 supported on B2ε , and
satisfying η ≡ 1 on Bε . Then consider the function V = ηUµ with its trace v = ηwµ on Rn . We have∫

Rn+1
+

ya
|∇V |2 dx dy ≤ (1+ ε)

∫
Rn+1
+

ya
|∇Uµ|

2 dx dy+C(ε)
∫

B+2ε\B
+
ε

U 2
µ dx dy. (5-14)
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Note that wµ = O(µ(n−2γ )/2
|x |2γ−n) in the annulus ε ≤ |x | ≤ 2ε and Uµ is O(µ(n−2γ )/2) in the annulus

B+2ε\B
+
ε . This allows us to estimate the second term in the right hand side of (5-14) by O(µn−2γ ) as

µ→ 0, for ε fixed. For the first term in the right hand side of (5-14) we first use the fact that wµ attains
the best constant in the Sobolev inequality, so

S(n, γ )
∫

Rn+1
+

ya
|∇Uµ|

2 dx dy =
(∫

Rn
w2∗
µ dx

)2/2∗

≤

(∫
Rn
v2∗dx

)2/2∗

+ O(µn). (5-15)

Now we need to transplant the function V to the manifold (X̄ , ḡ∗). Fix a point on the boundary M and
use normal coordinates {x1, . . . , xn, y} around it, in a half ball B+2ε where V is supported. Two things
must be modified: when ε→ 0,

|∇V |2ḡ∗ = |∇V |2(1+ O(ε)),

and
dvḡ∗ = (1+ O(ε)) dx dy,

so that
Iε,µ := d∗γ

∫
B+2ε

ya
|∇V |2ḡ∗ dvḡ∗ +

∫
|x |≤2ε

Q ĥ
γ v

2 dvĥ

≤ (1+ O(ε))
(∫

B+2ε

ya
|∇V |2 dx dy+C

∫
|x |<2ε

v2 dx
)
.

It is easily seen that ∫
|x |<2ε

w2
µ dx = o(1).

This is a small computation that can be found in Lemma 3.5 of [Lee and Parker 1987]. Then, from (5-15),
fixing ε small and then µ small, we can get that

Iε,µ ≤ (1+Cε)
( 1

S(n, γ )
‖v‖2L2∗ (M)+Cµ

)
,

which implies

3γ (M, [ĥ])≤
1

S(n, γ )
=3γ (Sn, [gc]). �

We end this section by remarking that, although most of the results mentioned here were already
known in different contexts, it is certainly very interesting to put all the analysis and geometry together in
the context of conformal fractional Laplacians and the associated γ -Yamabe problems in a way that is
analogous to what has been done on the subject of the Yamabe problem, which becomes fundamental to
the development of geometric analysis.

6. Subcritical approximations

In this section we take a well-known subcritical approximation method to solve the γ -Yamabe problem
and prove Theorem 1.4. There does not seem to be any more difficulty than usual after our discussions in
previous sections. But, for the convenience of the readers, we present a brief sketch of the proof. Similar
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to the case of the usual Yamabe problem we consider the following subcritical approximations to the
functionals Iγ and I ∗γ , respectively. Set

Iβ[w] =

∫
M wP ĥ

γ w dvĥ

(
∫

M w
β dvĥ)

2/β

and

I ∗β [U ] =
d∗γ
∫

X ya
|∇U |2ḡ∗ dvḡ +

∫
M Q ĥ

γU 2 dvĥ

(
∫

M Uβ dvĥ)
2/β

for β ∈ [2, 2∗), where 2∗ = 2n/(n−2γ ) and γ ∈ (0, 1). These are subcritical problems and can be solved
through standard variational methods. For clarity we state the following.

Proposition 6.1. For each 2 ≤ β < 2∗, there exists a smooth positive minimizer Uβ for I ∗β [U ] in
W 1,2(X, ya), which satisfies the equations{

div(ya
∇Uβ)= 0 in (X, ḡ∗),

−d∗γ limy→0 yaUβ + Q ĥ
γUβ = cβUβ−1

β on M,

where the derivatives are taken with respect to the metric ḡ∗ in X and cβ = I ∗β [Uβ] = min I ∗β . And the
boundary value wβ of Uβ , which is a positive smooth minimizer for Iβ[w] in Hγ (M), satisfies

P ĥ
γ wβ = cβw

β−1
β .

Using a similar argument as in the proof of Lemma 4.3 in [Lee and Parker 1987] (see also [Aubin
1982]), we have the following.

Lemma 6.2. If vol(M, ĥ)= 1, |cβ | is nonincreasing as a function of β ∈ [2, 2∗]; and if 3γ (M, [ĥ])≥ 0,
cβ is continuous from the left at β = 2∗.

Readers are referred to [Escobar 1992; Lee and Parker 1987; Schoen and Yau 1994] for more details.

Proof of Theorem 1.4. Instead of applying the standard Sobolev embedding in the Yamabe problem, we
apply the weighted trace ones discussed in the previous section. To ensure that Uβ as β→ 2∗ produces a
minimizer for the γ -Yamabe problem, we want to establish the a priori estimates for Uβ . In light of the
discussions in Section 3, we only need to have a uniform L∞ bound for wβ . We establish the L∞ bound
for wβ by the so-called blow-up method.

Otherwise, assume there exist sequences βk → 2∗, wk := wβk and Uk := Uβk , xk ∈ M such that
wk(xk)=maxM{wk} =mk→∞ and xk→ x0 ∈M as k→∞. Take a normal coordinate system centered
at x0 and rescale

Vk(x, y)= m−1
k Uk(δk x + xk, δk y),

with the boundary value

vk(x)= m−1
k wk(δk x + xk),
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where δk =m(1−βk)/2γ
k . Then Vk is defined in a half ball of radius Rk = (1−|xk |)/δk and is a solution of{

div(ρa
∇Vk)= 0 in B+Rk

,

−d∗γ limy→0 ya∂y Vk + (Q ĥ
γ )kvk = ckv

β−1
k on BRk ,

(6-1)

with respect to the metric ḡ∗(δk x + xk, δk y), where

(Q ĥ
γ )k = δ

1−a
k Q ĥ

γ (δk x + xk)→ 0.

Due to, for example, C2,α a priori estimates for the rescaled solutions Vk , to extract a subsequence, if
necessary, we have Vk→ V0 in C2,α

loc . Moreover the metrics ḡ∗(δk x + xk, δk y) converge to the Euclidean
metric. Hence V0 is a nontrivial, nonnegative solution of{

− div(ya
∇V0)= 0 in Rn+1

+ ,

−d∗γ limy→0 ya∂y V0 = c0V (n+2γ )/(n−2γ )
0 on Rn.

(6-2)

Let v0 = T V0. It is easily seen that ∫
Rn
v2∗

0 (x) dx ≤ 1. (6-3)

Theorem 3.5 and Corollary 3.6 then assure that V0 > 0 on Rn+1
+ . Therefore we can obtain∫

Rn+1
+

ya
|∇V0|

2 dx dy = c0d∗γ

∫
Rn
v2∗

0 (x) dx . (6-4)

It is then obvious that c0 > 0, that is, c0 = 3γ (M, [ĥ]) in light of Lemma 6.2. Moreover, by the trace
inequalities from Corollary 5.3, we have(∫

Rn
v2∗

0 (x) dx
)2/2∗

≤ S̄(n, γ )
∫

Rn+1
+

ya
|∇V0|

2 dx dy. (6-5)

Then (6-3), (6-4), and (6-5), together with the definition of 3γ (Sn, [gc]) in (5-5), contradict the initial
hypothesis (1-6).

Once we have a uniform L∞ estimate, by the regularity theorems in Section 3 we may extract a
subsequence if necessary and pass to a limit U0, whose boundary value w0 satisfies

P ĥ
γ w0 =3w

2∗−1
0 , Iγ [w0] =3, 3= lim cβ . (6-6)

Theorem 3.5 and Corollary 3.6 also ensure that w0 > 0 on M . It remains to check that 3=3γ (M, [ĥ]).
However, this is a direct consequence of Lemma 6.2 when 3γ (M, [ĥ])≥ 0. Meanwhile it is easily seen
that by the definition of the γ -Yamabe constants and (6-6) that 3 can not be less than 3γ (M, [ĥ]). Hence
it is also implied that 3=3γ (M, [ĥ]) by Lemma 6.2 when 3γ (M, [ĥ]) < 0. Thus, in any case, w0 is a
minimizer of Iγ , as desired. �
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7. A sufficient condition

In this section we give the proof of Theorem 1.5, which provides a sufficient condition for the resolution
of the γ -Yamabe problem. Here the precise structure of the metric plays a crucial role, since a careful
computation of the asymptotics is required, following the calculation in [Escobar 1992]. The section
is divided into two parts: the first contains the necessary estimates on the Euclidean case, while in the
second we go back to the geometry setting and finish the proof of the theorem.

Some preliminary results on Rn+1
+ . Here we consider the divergence equation (2-11) on Rn+1

+ , as un-
derstood in [Caffarelli and Silvestre 2007; González 2009]. The main point is that by using the Fourier
transform, a solution to this problem can be written in terms on its trace value on Rn and the well-known
Bessel functions. Indeed, let U be a solution of{

div(ya
∇U )= 0 in Rn+1

+ ,

U (x, 0)= w on Rn
×{0},

(7-1)

or equivalently, U = Kγ ∗x w, where Kγ is the Poisson kernel as given in (2-13).
The main idea is to reduce (7-1) to an ODE by taking the Fourier transform in x . We obtain{

−|ξ |2û(ξ, y)+ a
y

û y(ξ, y)+ û yy(ξ, y)= 0,

Û (ξ, 0)= ŵ(ξ),

that is, an ODE for each fixed value of ξ .
On the other hand, consider the solution ϕ : [0,+∞)→ R of the problem

−ϕ(y)+ a
y
ϕy(y)+ϕyy(y)= 0, (7-2)

subject to the conditions ϕ(0)= 1 and limt→+∞ ϕ(t)= 0. This is a Bessel function and its properties are
summarized in Lemma 7.1. Then we have that

Û (ξ, y)= ŵ(ξ)ϕ(|ξ |y). (7-3)

For a review of Bessel functions, see, for instance, Lemma 5.1 of [González 2009] or Section 9.6.1 of
[Abramowitz and Stegun 1964].

Lemma 7.1. Consider the following ODE in the variable y > 0:

−ϕ(y)+ a
y
ϕy(y)+ϕyy(y)= 0,

with boundary conditions ϕ(0)= 1, ϕ(∞)= 0. Its solution can be written in terms of Bessel functions:

ϕ(y)= c1 yγKγ (y),
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where Kγ is the modified Bessel function of the second kind that has asymptotic behavior

Kγ (y)∼
0(γ )

2

(2
y

)γ
when y→ 0+,

Kγ (y)∼
√
π

2y
e−y when y→+∞,

for a constant

c1 =
21−γ

0(γ )
.

Now we are ready to prove the main technical lemmas in the proof of Theorem 1.5. More precisely,
we will explicitly compute several energy terms through Fourier transforms, thanks to expression (7-3).
Such precise computation is needed in order to obtain the exact value of the constant (1-8). For the rest
of the section, we set

|∇U |2 = (∂x1U )2+ · · ·+ (∂xn U )2+ (∂yU )2, |∇xU |2 = (∂x1U )2+ · · ·+ (∂xn U )2.

Lemma 7.2. Given w ∈ Hγ (Rn), let U = Kγ ∗w defined on Rn+1
+ . Then

A1(w) :=

∫
Rn+1
+

ya+2
|∇U |2 dx dy = d1

∫
Rn
|ŵ(ξ)|2|ξ |2(γ−1) dξ, (7-4)

A2(w) :=

∫
Rn+1
+

ya+2
|∇xU |2 dx dy = d2

∫
Rn
|ŵ(ξ)|2|ξ |2(γ−1) dξ, (7-5)

A3(w) :=

∫
Rn+1
+

yaU 2 dx dy = d3

∫
Rn
|ŵ(ξ)|2|ξ |2(γ−1) dξ, (7-6)

where

d2 =
−a+3

6
d1, d3 =

1
a+1

d1.

Proof. We write Ai :=Ai (w), i = 1, 2, 3, for simplicity. Note that the integrals in the right hand side
of (7-4), (7-5), (7-6) are finite because w ∈ Hγ (Rn) ↪→ Hγ−1(Rn) and because of the definition of the
Sobolev norm (5-1).

Thanks to (7-3), we can easily compute, using the properties of the Fourier transform,

A1 : =

∫
Rn
+

ya+2
|∇U |2 dx dy =

∫
Rn
+

ya+2(|∇xU |2+ |∂yU |2) dx dy

=

∫
Rn

∫
∞

0
ya+2(|ξ |2|Û |2+ |∂yÛ |2) dy dξ

=

∫
Rn

∫
∞

0
ya+2
|ŵ(ξ)|2|ξ |2(|ϕ(|ξ |y)|2+ |ϕ′(|ξ |y)|2) dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a

∫
∞

0
ta+2(|ϕ(t)|2+ |ϕ′(t)|2) dt dξ

= d1

∫
Rn
|ŵ(ξ)|2|ξ |−1−adξ (7-7)
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for a constant

d1 :=

∫
∞

0
ta+2(|ϕ(t)|2+ |ϕ′(t)|2) dt. (7-8)

Similarly,

A2 : =

∫
Rn
+

ya+2
|∇xU |2 dx dy =

∫
Rn

∫
∞

0
ya+2
|ξ |2|Û |2 dy dξ

=

∫
Rn

∫
∞

0
ya+2
|ŵ(ξ)|2|ξ |2|ϕ(|ξ |y)|2 dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a

∫
∞

0
ta+2
|ϕ(t)|2 dt dξ

= d2

∫
Rn
|ŵ(ξ)|2|ξ |−1−adξ

for

d2 :=

∫
∞

0
ta+2
|ϕ(t)|2 dt. (7-9)

And finally,

A3 : =

∫
Rn+1
+

yaU 2 dx dy =
∫

Rn

∫
∞

0
ya
|Û |2 dy dξ =

∫
Rn

∫
∞

0
ya
|ŵ(ξ)|2|ϕ(|ξ |y)|2 dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a

∫
∞

0
ta
|ϕ(t)|2 dt dξ = d3

∫
Rn
|ŵ(ξ)|2|ξ |−1−a dξ,

(7-10)

for

d3 =

∫
∞

0
ta
|ϕ(t)|2 dt.

In the next step, we find the relation between the constants d1, d2, d3. All the integrals are evaluated
between zero and infinity in the following. Multiply (7-2) by ϕt ta+3 and integrate by parts:

−

∫
ϕϕt ta+3

+ a
∫
ϕ2

t ta+2
+

∫
ϕt tϕt ta+3

= 0. (7-11)

In the above formula, we estimate the first term by∫
ta+3ϕϕt =

1
2

∫
ta+3∂t(ϕ

2)=−
a+3

2

∫
ta+2ϕ2,

and the last one by ∫
ta+3ϕt tϕt =

1
2

∫
ta+3∂t(ϕ

2
t )=−

a+3
2

∫
ta+2ϕ2

t ,

so from (7-11) we obtain

(a+ 3)
∫

ta+2ϕ2
= (−a+ 3)

∫
ta+2ϕ2

t .

Together with (7-8) and (7-9) this gives

d1 =
6

−a+3
d2,
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as desired.
Now, multiply (7-2) by ϕta+2 and integrate:

−

∫
ta+2ϕϕt + a

∫
ta+1ϕ2

t +

∫
ta+2ϕt tϕ = 0. (7-12)

The third term above is computed as∫
ta+2ϕt tϕ =−

∫
ta+2ϕ2

t − (a+ 2)
∫

ta+1ϕtϕ,

so (7-12) becomes

d1 =−2
∫

ta+1ϕtϕ = (a+ 1)
∫

taϕ2
= (a+ 1)d3. (7-13)

This completes the proof of the lemma. �

In the following, we continue the estimates of the different error terms, although now we only need the
asymptotic behavior and not the precise constant.

Lemma 7.3. Let w be defined on Rn and U = Kγ ∗x w. Then

(1) for each k ∈ N, if w ∈ Hγ−k/2(Rn),

Ek :=

∫
Rn+1
+

ya+k
|∇U |2 dx dy <∞; (7-14)

(2) if w ∈ Hγ−3/2(Rn) and (|x |w) ∈ H−1/2+γ (Rn),

Ẽ3 :=

∫
Rn+1
+

ya
|(x, y)|3|∇U |2 dx dy <∞. (7-15)

Proof. Taking into account (7-3), we can proceed as in the calculation for A1 in (7-7), easily arriving at

Ek = ck

∫
Rn
|ŵ(ξ)|2|ξ |1−k−a dξ,

where

ck :=

∫
∞

0
ta+k(ϕ2(t)+ϕ2

t (t)) dt <∞,

and this last integral is finite for all k ∈ N because of the asymptotics of the Bessel functions from
Lemma 7.1. The second conclusion of the lemma is a little more involved. To show that the integral
(7-15) is finite, first note that (7-14) with k = 3 gives∫

Rn+1
+

ya+3
|∇U |2 dx dy <∞.

It is clear that it only remains to prove∫
Rn+1
+

ya
|x |3|∇U |2 dx dy <∞.
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Since the computation of the previous integral can be made component by component, it is clear that it is
enough to restrict to the case n = 1. Then we just need to show that

J :=
∫
∞

0

∫
R

ya
|x |3(∂xU )2 dx dy <∞. (7-16)

This is an easy but tedious calculation using the Fourier transform. Without loss of generality, we drop all
the constants 2π appearing in the Fourier transform. First notice that∫

R

|x |3(∂xU )2 dx = ‖{|x |3/2∂xU }‖2L2(R)
= ‖D3/2

ξ ∂̂xU‖2L2(R)
= ‖D3/2(|ξ |Û )‖2L2(R)

=

∫
R

|ξ |Û D3
ξ (|ξ |Û ) dξ.

(7-17)

At this point we go back to (7-3) to substitute the explicit expression for Û . We need to compute

D3
ξ (|ξ |ŵ(ξ)ϕ(|ξ |y))

= ŵ′′′[|ξ |ϕ] + ŵ′′[3ϕ+ 3|ξ |ϕ′y] + ŵ′[6ϕ′y+ 3|ξ |ϕ′′y2
] + ŵ[|ξ |ϕ′′′y3

+ 3ϕ′′y2
]

= ŵ′′′[|ξ |ϕ] + ŵ′′[3ϕ+ 3tϕ′] + ŵ′[6|ξ |−1tϕ′+ 3|ξ |−1t2ϕ′′] + ŵ[|ξ |−2ϕ′′′t3
+ 3|ξ |−2t2ϕ′′],

after the change |ξ |y = t . When we substitute the above expression into (7-17) and then back into (7-16),
taking into account the change of variables, we obtain

J =
∫
∞

0
taϕ2 dt

∫
R

ŵ′′′ŵ|ξ |1−a dξ +
∫
∞

0
ta
[ϕ2
+ 3tϕϕ′] dt

∫
R

ŵ′′ŵ|ξ |−a dξ

+

∫
∞

0
ta
[6tϕ′ϕ+ 3t2ϕ′′ϕ] dt

∫
R

ŵ′ŵ|ξ |−a−1 dξ +
∫
∞

0
ta
[t3ϕ′′′ϕ+ 3t2ϕ′′ϕ]dt

∫
R

ŵ2
|ξ |−a−2 dξ

=: c1 J1+ c2 J2+ c3 J3+ c4 J4.

It is clear, looking at the asymptotic behavior of ϕ from Lemma 7.1 that the constants ci , i = 1, 2, 3, 4,
are finite. On the other hand, by a straightforward integration by parts argument, we can write each of the
terms Ji , i = 1, 2, 3, 4, as a linear combination of just∫

R

ŵ2(ξ)|ξ |−a−2 dξ and
∫

R

ŵ′(ξ)2|ξ |−a dξ. (7-18)

Finally, the proof is completed because the initial hypotheses show that both integrals in (7-18) are finite.
In particular, these hypotheses show that all the derivations are rigorous. �

Lemma 7.4. Let w be defined on Rn and U = Kγ ∗x w.

(1) For each k ∈ N, if w ∈ Hγ−k/2−1(Rn),

Fk :=

∫
Rn+1
+

ya+kU 2 dx dy <∞. (7-19)

(2) If w ∈ Hγ−5/2(Rn) and (|x |w) ∈ Hγ−3/2(Rn),

F̃3 :=

∫
Rn+1
+

ya
|x |3U 2 dx dy <∞. (7-20)
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Proof. The first assertion (7-19) follows as in (7-10):

Fk : =

∫
Rn+1
+

ya+kU 2 dx dy =
∫

Rn

∫
∞

0
ya+k
|Û |2 dy dξ =

∫
Rn

∫
∞

0
ya+k
|ŵ(ξ)|2|ϕ(|ξ |y)|2 dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a−k

∫
∞

0
|ϕ(t)|2ta+k dt dξ = ck

∫
Rn
|ŵ(ξ)|2|ξ |−1−a−k dξ,

for

ck :=

∫
∞

0
|ϕ(t)|2ta+k dt <∞.

For the second assertion, in light of our previous discussions, it is enough to show that, in the one-
dimensional case,∫

R

|x |3U 2 dx = ‖{|x |3/2U }‖2L2(R)
= ‖D3/2Û‖2L2(R)

=

∫
R

Û D3
ξ (Û ) dξ.

Substitute the expression for Û from (7-3). Then∫
R

|x |3U 2 dx =
∫
ŵ′′′ŵϕ2 dξ + 3

∫
ŵ′′ŵϕ′ϕy dξ + 3

∫
ŵ′ŵϕ′ϕy2 dξ +

∫
ŵ2ϕ′′′ϕy3 dξ,

so when we change variables t = |ξ |y,∫
∞

0

∫
R

ya
|x |3U 2 dx dy =

∫
∞

0
taϕ2 dt

∫
R

ŵ′′′ŵ|ξ |−1−a dξ + 3
∫
∞

0
t1+aϕ′ϕ dt

∫
R

ŵ′′ŵ|ξ |−2−a dξ

+ 3
∫
∞

0
t2+aϕ′′ϕ dt

∫
R

ŵ′ŵ|ξ |−3−a dξ +
∫
∞

0
t3+aϕ′′′ϕdt

∫
R

ŵ2
|ξ |−4−a dξ

= c̃1 J̃1+ c̃2 J̃2+ c̃3 J̃3+ c̃4 J̃4.

Clearly, from the asymptotics of the Bessel functions from Lemma 7.1, the constants c̃i , i = 1, 2, 3, 4, are
finite. At the same time, each of the integrals J̃i , i = 1, 2, 3, 4, can be written as a linear combination of∫

(ŵ′)2|ξ |−2−a dξ and
∫
(ŵ)2|ξ |−4−a dξ,

which are finite because of the hypothesis on w. �

Next, we check what happens with the previous two lemmas under rescaling. Here f = o(1) means

lim
ε/µ→0

f = 0.

Given any function w defined on Rn , we consider its extension to Rn+1
+ as U = Kγ ∗xw, and the rescaling,

for each µ > 0,

Uµ(x, y) := 1
µ(n−2γ )/2 U

( x
µ
,

y
µ

)
. (7-21)

Corollary 7.5. Fix ε, µ > 0 and let the hypotheses be the as in Lemma 7.3 (in each of the two cases).
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(1) For each k ∈ N,∫
B+ε

ya+k
|∇Uµ|

2dx dy = µk
∫

B+ε/µ

ya+k
|∇U |2dx dy = µk

[Ek + o(1)]. (7-22)

(2) Moreover,∫
B+ε

ya
|(x, y)|3|∇Uµ|

2 dx dy = µ3
∫

B+ε/µ

ya+k
|∇U |2 dx dy = µ3

[Ẽ3+ o(1)], (7-23)

where Uµ is the rescaling (7-21), and Ek, Ẽ3 <∞ are defined as in Lemma 7.3.

Corollary 7.6. Fix ε, µ > 0 and let the hypotheses be as in Lemma 7.4 (in each of the two cases).

(1) For each k ∈ N,∫
B+ε

ya+k(Uµ)
2 dx dy = µk+2

∫
B+ε/µ

ya+kU 2 dx dy = µk+2
[Fk + o(1)]. (7-24)

(2) Moreover,∫
B+ε

ya
|(x, y)|3(Uµ)

2 dx dy = µ5
∫

B+ε/µ

ya
|x |3U 2 dx dy = µ5

[F̃3+ o(1)], (7-25)

where Uµ is the rescaling (7-21), and Fk, F̃3 <∞ are defined as in Lemma 7.4.

Proof of Theorem 1.5. We first need to choose a very particular background metric for X near a nonum-
bilic point on M . We follow the same steps as in Lemmas 3.1–3.3 of [Escobar 1992]. But our situation is
a little different. Our freedom of choice of metrics is restricted to the boundary. Hence we make some
assumptions on the behavior of the asymptotically hyperbolic manifolds in order to allow us to see clearly
what we can get for a good choice of representative from the conformal infinity.

Lemma 7.7. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and ρ is a geodesic
defining function associated with a representative ĥ of the conformal infinity (Mn, [ĥ]). Assume that

ρ−2(R[g+] −Ric[g+](ρ∂ρ)+ n2)→ 0 as ρ→ 0. (7-26)

Then, at ρ = 0,

H := Trĥ h(1) = 0 (7-27)

and

Trĥ h(2) = 1
2

(
‖h(1)‖2

ĥ
+

1
2(n−1)

R[ĥ]
)
, (7-28)

where

g+ =
dρ2
+ hρ
ρ2 , hρ = ĥ+ h(1)ρ+ h(2)ρ2

+ o(ρ2).

Proof. This simply follows from the calculations in [Graham 2000]. Recall (2.5) from [Graham 2000]:

ρh′′i j + (1− n)h′i j − hklh′klhi j − ρhklh′ikh′jl +
1
2ρhklh′klh

′

i j − 2ρRi j [ĥ] = ρ(Ri j [g+] + ng+i j ), (7-29)
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where we use h to stand for hρ for simplicity. Taking its trace with respect to the metrics h, we have

ρ Trh h′′+(1−2n)Trh h′−ρ‖h′‖2h+
1
2ρ(Trh h′)2−2ρR[ĥ] = ρ−1(R[g+]−Ric[g+](x∂x)+n2). (7-30)

Immediately from (7-26) we see that

Trh h′ = 0 at ρ = 0.

Then, dividing ρ in both sides of (7-30) and taking ρ→ 0, we have (7-28), under the assumption (7-26),
because

(Trh h′)′ = Trĥ h′′−‖h′‖2
ĥ

at ρ = 0. �

Notice that (7-26) is an intrinsic curvature condition of an asymptotically hyperbolic manifold, which
is independent of the choice of geodesic defining functions. Consequently we have the following.

Lemma 7.8. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and (7-26) holds. Then,
given a point p on the boundary M , there exists a representative ĥ of the conformal infinity such that

(i) H =: Trĥ h(1) = 0 on M ,

(ii) Ric[ĥ](p)= 0 on M ,

(iii) Ric[ḡ](∂ρ)(p)= 0 on M ,

(iv) R[ḡ](p)= ‖h(1)‖2
ĥ

on M.

Proof. The proof, like that of Lemma 3.3 in [Escobar 1992], uses Theorem 5.2 of [Lee and Parker 1987].
Therefore we may choose a representative of the conformal infinity whose Ricci curvature vanishes at
any given point p ∈ M . In light of Lemma 7.7 we get i. and ii. right away. We then calculate

Ric[ḡ](∂x)=−
1
2 Trĥ h(2)+ 1

4‖h
(1)
‖

2
ĥ
= 0

at p ∈ M from (7-28). Finally we recall that

R[ḡ] = 2 Ric[ḡ](∂ρ)+ R[ĥ] + ‖h(1)‖2
ĥ
− (Trĥ h(1))2 = ‖h(1)‖2

ĥ
.

The proof is complete. �

Assume that 0 ∈ M = ∂X is a nonumbilic point. Choose normal coordinates x1, . . . , xn around 0 on
M and let (x1, . . . , xn, ρ) be the Fermi coordinates on X around 0. In particular, we can write

g+ = ρ−2(dρ2
+ hi j (x, ρ) dxi dx j ), ḡ = dρ2

+ hi j (x, ρ) dxi dx j .

In order to simplify the later notation, we denote the coordinate ρ by y. The only risk of confusion comes
from the fact that we have previously used y for the special defining function ρ∗ from Proposition 2.2,
but we will not need it any longer. In the new notation we have

ḡ = dy2
+ hi j (x, y) dxi dx j

for some functions hi j (x, y), i, j = 1, . . . , n. From what we have in the above two lemmas, we get from
Lemmas 3.1 and 3.2 of [Escobar 1992] the following.
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Lemma 7.9. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold satisfying (7-26). Given
a nonumbilic point p on the boundary M , that is, one such ‖h(1)‖ĥ(p) 6= 0 for p ∈ M , where ĥ is chosen
as in Lemma 7.8, we have

(1)
√
|ḡ| = 1− 1

2‖π‖
2 y2
+ O(|(x, y)|3) and

(2) ḡi j
= δi j + 2π i j y− 1

3 Ri j
kl [ĥ] xk xl + ḡi j

,ym yxm + (3π imπm
j
+ Ri

y
j
y[ḡ])y2

+ O(|(x, y)|3),

where, for simplicity, we set π = h(1).

As in Proposition 5.4, we try to find a good test function for the Sobolev quotient given by

I ∗γ [U, ḡ] =
d∗γ
∫

X ya
|∇U |2ḡ dvḡ +

∫
X E(y)U 2 dvḡ

(
∫

M |U |
2∗ dvĥ)

2/2∗ ,

where E(y) is given by (2-10), with respect to the metric ḡ:

E(y)= n−1+a
4n

(
R[ḡ] − (n(n+ 1)+ R[g+])y−2)ya. (7-31)

We need to perform a careful computation of the lower order terms in order to find an estimate for
3γ (M, [ĥ]). For simplicity, we introduce the following notation: for a subset �⊂ Rn+1

+ , we consider the
energy functional restricted to � given by

K(U, �) := d∗γ

∫
�

ya
|∇U |2ḡ dvḡ +

∫
�

E(y)U 2 dvḡ.

Given any ε > 0, let Bε be the ball of radius ε centered at the origin in Rn+1 and B+ε be the half ball of
radius ε in Rn+1

+ . Choose a smooth radial cutoff function η, 0≤ η ≤ 1, supported on B2ε , and satisfying
η = 1 on Bε . We recall here the conformal diffeomorphisms of the sphere wµ given in (5-8) and their
extension Uµ as in (5-9). Our test function is simply

Vµ := ηUµ.

Step 1: Computation of the energy in B+ε . It is clear that in the half ball B+ε , Vµ = Uµ, so that
K(Vµ, B+ε )= K(Uµ, B+ε ). We compute the first term in the energy K(Uµ, B+ε ). Using the asymptotics
for ḡ from Lemma 7.9, we have (here the indexes i, j run from 1 to n)∫

B+ε
ya
|∇Uµ|

2
ḡ dvḡ =

∫
B+ε

ya
[ḡi j (∂iUµ)(∂ jUµ)+ (∂yUµ)

2
] dvḡ

= J1+ J2+ J3+ J4+ J5+ J6, (7-32)

where

J1 :=

∫
B+ε

ya
|∇Uµ|

2 dvḡ,

J2 := 2π i j
∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dvḡ,

J3 :=

∫
B+ε

ya+2(3π imπm
j
+ Ri

y
j
y[ḡ])(∂iUµ)(∂ jUµ) dvḡ,
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J4 :=

∫
B+ε

ya+1ḡi j
,tk xk(∂iUµ)(∂ jUµ) dvḡ

J5 := −
1
3

∫
B+ε

ya Ri
kl

j
[ḡ]xk xl(∂iUµ)(∂ jUµ) dvḡ

J6 := c
∫

B+ε
ya
|(x, y)|3|∇Uµ|

2 dvḡ.

We estimate J1 using the estimate for the volume element
√
|ḡ| from Lemma 7.9:

J1 =

∫
B+ε

ya
|∇Uµ|

2 dvḡ

≤

∫
B+ε

ya
|∇Uµ|

2 dx dy− 1
2‖π‖

2
∫

B+ε
y2+a
|∇Uµ|

2 dx dy+ c
∫

B+ε
ya
|∇Uµ|

2
|(x, y)|3 dx dy

≤

∫
B+ε

ya
|∇Uµ|

2 dx dy− 1
2‖π‖

2µ2A1+µ
2o(1)+ cµ3

[Ẽ3+ o(1)], (7-33)

if we take into account the notation from (7-4) and Corollary 7.5.
Now we look closely at the equation for Uµ. Multiply expression (5-11) by Uµ and integrate by parts:∫

B+ε
ya
|∇Uµ|

2 dx dy = cn,γ

∫
00
ε

w2∗
µ dx +

∫
0+ε

Uµ(∂νUµ) dσ ≤ cn,γ

∫
00
ε

w2∗
µ dx, (7-34)

where ν is the exterior normal to B+ε . Here we have used the properties of the convolution with a radially
symmetric, nonincreasing kernel Kγ . More precisely, since wµ is radially symmetric and nonincreasing,
Uµ = Kγ ∗x wµ also satisfies ∂νUµ ≤ 0 on 0+ε ; see [Cabré and Roquejoffre 2013, Lemma 2.3], for
instance.

From (7-34), using (5-13), we arrive at∫
B+ε

ya
|∇Uµ|

2 dx dy ≤3(Sm, [gc])(d∗γ )
−1
[∫

00
ε

(wµ)
2∗ dx

](n−2γ )/n

. (7-35)

For simplicity, we set 31 :=3(Sm, [gc])(d∗γ )
−1. Equations (7-33) and (7-35) tell us that

J1 =

∫
B+ε

ya
|∇Uµ|

2 dvḡ ≤31

[∫
00
ε

(wµ)
2∗ dx

]2/2∗

−
1
2‖π‖

2µ2A1+µ
2o(1)+ cµ3. (7-36)

On the other hand, the asymptotics for the metric ĥ = ḡ|y=0 near the origin are explicit. Indeed, from
Lemma 7.8 we know that √

|ĥ| = 1+ O(|x |3). (7-37)

Moreover, we can compute from (5-10)∫
00
ε

(wµ)
2∗
|x |3 dx = µ3

∫
00
ε/µ

(w1)
2∗
|x |3 dx ≤ cµ3.
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Consequently, from (7-37) we are able to relate the integrals in dvĥ and dx :∫
00
ε

(wµ)
2∗ dx ≤

∫
00
ε

(wµ)
2∗ dvĥ + cµ3.

And substituting the above expression into (7-36) we get

J1 =

∫
B+ε

ya
|∇Uµ|

2 dvḡ ≤31

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

−
1
2‖π‖

2µ2A1+µ
2o(1)+ cµ3.

Now we go back to (7-32) and try to estimate the second term J2 in the right hand side. If we again
use the asymptotics of the metric ḡ given in Lemma 7.9,∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dvḡ ≤

∫
B+ε

ya+1(∂iUµ)(∂ jUµ) dx dy+B, (7-38)

for

B≤ c
∫

B+ε
ya+3
|∇Uµ|

2dx dy+ c
∫

B+ε
ya+1
|∇Uµ|

2
|(x, y)|3 dx dy.

We notice here that B can be easily estimated from Corollary 7.5:

B≤ cµ3(E3+ o(1))+ cµ3ε(Ẽ3+ o(1))≤ cµ3
+µ3o(1). (7-39)

Let us look at the cross terms (∂iUµ)(∂ jUµ), 1≤ i, j ≤ n in (7-38). We note that ∂iUµ= Kγ ∗x (∂iwµ),
just by taking the derivatives in the convolution. This last derivative can be explicitly written, and in
particular, ∂iwµ is an odd function in the variable xi . By the properties of the convolution, we know that
∂iUµ is also an odd function in the variable xi . Then, using the symmetries of the half ball, the integral∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dx dy

is zero if i 6= j . If i = j , we use that the mean curvature at the point vanishes, that is, π i
i = 0 by Lemma 7.8.

Then, when we substitute formula (7-38) in the expression for J2, only the error term remains, and by
(7-39) we conclude that

J2 = 2π i j
∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dvḡ ≤B≤ µ3(c+ o(1)). (7-40)

Now we estimate the next term in (7-32), J3. Again using the asymptotics for the volume element dvḡ

from Lemma 7.9, we have that∫
B+ε

ya+2(∂iUµ)(∂ jUµ) dvḡ ≤

∫
B+ε

ya+2(∂iUµ)(∂ jUµ) dx dy+B′, (7-41)

for

B′ ≤ c
∫

B+ε
ya+4
|∇Uµ|

2dx dy+ c
∫

B+ε
ya+2
|(x, y)|3|∇Uµ|

2dx dy

≤ µ4(E4+ o(1))+µ3ε2(Ẽ3+ o(1))≤ cµ3,

where the last estimate follows again thanks to Corollary 7.5.
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Notice that, again for i 6= j„ the first integral in the right hand side of (7-41) vanishes — thanks to the
symmetries of the half ball and the discussion above on the oddness of the derivatives of Uµ. Then we
recall the definition of A2 from (7-5) and the estimate (7-22). When we put all these ingredients together,
we get

J3 = (3π imπm
j
+ Ri

y
j
y[ḡ])

∫
B+ε

ya+2(∂iUµ)(∂ jUµ) dvḡ

=
1
n
[3‖π‖2+Ric(ν)]µ2A2+ cµ3

=
3
n
‖π‖2µ2A2+µ

2o(1)+ cµ3,

if we take into account that Ric(ν)(0)[ĥ] = 0 because of Lemma 7.8.
Next, the calculation for J4 is very similar to the previous one. Indeed,∫

B+ε
ya+1xk(∂iUµ)(∂ jUµ) dvḡ ≤

∫
B+ε

ya+1xk(∂iUµ)(∂ jUµ) dx dy+B′′,

and because of symmetries on the unit ball, the first integral in the right hand side above vanishes for all
i , j , k, while B′′ ≤ cµ3. Thus

J4 = ḡi j
,tk

∫
B+ε

ya+1xk(∂i Vµ)(∂ j Vµ) dvḡ ≤ cµ3.

And finally J5, J6 can be estimated in a similar manner.
Putting all the estimates together for the J j , j = 1, . . . , 6, we have shown that (7-32) reduces to∫

B+ε
ya
|∇Uµ|

2
ḡ dvḡ ≤31

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

+

[
−

1
2 A1+

3
n

A2

]
‖π‖2µ2

+µ2o(1)+ cµ3. (7-42)

Finally, we are able to complete the computation of the energy K(Uµ, B+ε ). Note that in the half ball
B+ε , we have a very precise behavior for the lower order term (7-31). In particular, Lemma 7.8 gives that
R[ḡ](p)= ‖π‖2, so

E(y)= n−1+a
4n

‖π‖2 ya
+ O(y1+a). (7-43)

Then, again using the asymptotics for the volume element dvḡ,∫
B+ε

E(y)(Uµ)
2 dvḡ =

n−1+a
4n

‖π‖2
∫

B+ε
ya(Uµ)

2 dx dy+B′′′, (7-44)

where

B′′′ ≤ c
∫

B+ε
ya+1(Uµ)

2 dx dy+ c
∫

B+ε
ya
|x |3(Uµ)

3 dx dy

can be estimated from Corollary 7.6 as

B′′′ ≤ cµ3
+ o(1). (7-45)
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Summarizing, from (7-44) and (7-45), and using the scaling properties of Uµ as given in (5-10), we have∫
B+ε

E(y)(Uµ)
2 dvḡ ≤

n−1+a
4n

‖π‖2µ2
∫

B+ε/µ

ya(U1)
2 dx dy+ cµ3

=
n−1+a

4n
‖π‖2µ2A3+ cµ2o(1)+ cµ3,

(7-46)

where for the last inequality we have used Corollary 7.6 and the definition of A3 from (7-6).
The energy of Vµ in the half ball B+ε is computed from (7-42) and (7-46), noting the relation between

A1, A2, A3 from Lemma 7.2 and that 31 =3(Sn, [gc])d∗γ :

K(Vµ, B+ε )

= d∗γ

∫
B+ε

ya
|∇Uµ|

2dvḡ +

∫
B+ε

E(y)(Uµ)
2 dvḡ

≤3(Sn, [gc])

[∫
00
ε

(wµ)
2∗dvĥ

]2/2∗

+

[
d∗γ (−

1
2 A1+

3
n

A2)+
n−1+a

4n
A3

]
‖π‖2µ2

+µ2o(1)+ cµ3

≤3(Sn, [gc])

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

+ θn,γ ‖π‖
2µ2

∫
Rn
|ξ |2(γ−1)

|ŵ1(ξ)|
2 dξ +µ2o(1)+ cµ3

for

θn,γ =
1

4n

[
n+a−3

1−a
22γ+1 0(γ )

0(−γ )
+

n−1+a
a+1

]
d1. (7-47)

Finally, we note that w1 ∈ Hγ (Rn) and (|x |w) ∈ Hγ (Rn), so that all our computations are well justified.

Step 2: Computation of the energy in the half-annulus B+2ε\B
+
ε . To compute K(Vµ, B+2ε\B

+
ε ), note that

|∇Vµ|2ḡ ≤ c|∇Vµ|2 ≤ c(η2
|∇Uµ|

2
+ (Uµ)

2
|∇η|2)

so that, because of the structure of the cutoff function η,

|∇Vµ|2ḡ ≤ c|∇Uµ|
2
+

c
ε
(Uµ)

2. (7-48)

Moreover, ∫
B+2ε\B

+
ε

ya(Uµ)
2 dx dy ≤ µ2

∫
B+2ε/µ\B

+

ε/µ

ya(U1)
2 dx dy = µ2o(1), (7-49)

because the integral
∫

Rn ya(U1)
2 dx dy is finite and ε/µ→∞. On the other hand, we know that(

ε

µ

)3
∫

B+2ε/µ\B
+

ε/µ

ya
|∇U1|

2 dx dy ≤
∫

B+2ε/µ\B
+

ε/µ

ya
|(x, y)|3|∇U1|

2 dx dy ≤ Ẽ3 <∞

because of Lemma 7.4. As a consequence,∫
B+2ε\B

+
ε

ya
|∇Uµ|

2 dx dy =
∫

B+2ε/µ\B
+

ε/µ

ya
|∇U1|

2 dx dy ≤
(
µ

ε

)3
Ẽ3. (7-50)
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If we put together formulas (7-48), (7-49), and (7-50), we arrive at

K(Vµ, B+2ε\B
+

ε )=

∫
B+2ε\B

+
ε

ya
|∇Uµ|

2 dx dy+
∫

B+2ε\B
+
ε

E(y)(Uµ)
2 dx dy ≤ µ2o(1)

when µ/ε→ 0.

Step 3: Completion of the proof. We have very carefully computed

K(Vµ, X)= d∗γ

∫
X

ya
|∇Vµ|2 dvolḡ +

∫
X

E(y)(Vµ)2 dvolḡ

≤3(Sn, [gc])

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

+ θn,γ ‖π‖
2µ2

∫
Rn
|ŵ1(ξ)|

2
|ξ |2(γ−1) dξ +µ2o(1)+ cµ3,

where θn,γ is given in (7-47).
If there is a nonumbilic point, ‖π‖2 6= 0 at that point. In the case that θn,γ < 0, we are done, because

fixing ε small and then choosing µ much smaller,

K(Vµ, X) < 3(Sn, [gc])

[∫
M
(wµ)

2∗ dvĥ

]2/2∗

,

as desired. �
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L p ESTIMATES FOR THE HILBERT TRANSFORMS
ALONG A ONE-VARIABLE VECTOR FIELD

MICHAEL BATEMAN AND CHRISTOPH THIELE

Stein conjectured that the Hilbert transform in the direction of a vector field v is bounded on, say,
L2 whenever v is Lipschitz. We establish a wide range of L p estimates for this operator when v is a
measurable, nonvanishing, one-variable vector field in R2. Aside from an L2 estimate following from a
simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely
related to a recent paper of the first author (Rev. Mat. Iberoam. 29:3 (2013), 1021–1069).

1. Introduction

Given a nonvanishing measurable vector field v : R2
→ R2, define for f : R2

→ R2

Hv f (x, y)= p.v.
∫

f ((x, y)− tv(x, y))
t

dt. (1-1)

In this paper we prove:

Theorem 1. Suppose v is a nonvanishing measurable vector field such that for all x , y ∈ R,

v(x, y)= v(x, 0),

and suppose p ∈
( 3

2 ,∞
)
. Then

‖Hv f ‖p . ‖ f ‖p.

The estimate is understood as an a priori estimate for all f in an appropriate dense subclass of L p(R2),
say the Schwartz class, on which the Hilbert transform Hv is initially defined. One can then use the
estimate to extend Hv to all of L p(R2).

If the vector field is constant, then this follows from classical estimates for the one-dimensional Hilbert
transform by evaluating the L p norm as an iterated integral, with inner integration in the direction of the
vector field. Theorem 1 follows from the special case for vector fields mapping to vectors of unit length,
because the Hilbert transforms along v and v/|v| are equal by a simple change of variables in (1-1). To
prove the theorem for unit-length vector fields, it suffices to do so for vector fields with nonvanishing
first component, because we can apply the result for constant vector fields to the restriction of Hv to the
set where v takes the value (0, 1) and the set where it takes the value (0,−1). Dividing v by its first
component, we may then assume it is of the form (1, u(x)); multiplying v by a negative number merely

MSC2010: 42B20, 42B25.
Keywords: singular integrals, differentiation theory, Carleson’s theorem, maximal operators, Stein’s conjecture, Zygmund’s

conjecture.
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changes the sign of (1-1). We call u the slope of the vector field. The Hilbert transform (1-1) then takes
the form

Hv f (x, y)= p.v.
∫

f (x − t, y− tu(x))
t

dt. (1-2)

1.1. Remarks and related work. The case p = 2 of Theorem 1 is equivalent to the Carleson–Hunt
theorem in L2. This observation is attributed (without reference) to Coifman in [Lacey and Li 2010]
and to Coifman and El Kohen in [Carbery et al. 1999]. We briefly explain how to deduce Theorem 1
for p = 2 from the Carleson–Hunt theorem. Denote by F2 the Fourier transform in the second variable.
Then we formally have for (1-2), ignoring principal value notation,∫

e2π iηy
∫

F2 f (x − t, η)
e−2π iu(x)ηt

t
dt dη.

As the inner integral is independent of y, it suffices, by Plancherel, to prove∥∥∥∥∫ F2 f (x − t, η)
e−2π iu(x)ηt

t
dt
∥∥∥∥

L2(x,η)
. ‖F2 f ‖2.

For each fixed η, applying the Carleson–Hunt theorem in the form∥∥∥∥∫ g(x − t)
e−2π i N (x)t

t
dt
∥∥∥∥

2
. ‖g‖2

for g ∈ L2(R) and measurable function N , proves the desired estimate.
For any regular linear transformation of the plane, we have the identity

(HT ◦v◦T−1 f ) ◦ T = H( f ◦ T ).

The class of vector fields depending on the first variable is invariant under linear transformations that
preserve the vertical direction. This symmetry group is generated by the isotropic dilations

(x, y)→ (λx, λy),

nonisotropic dilations
(x, y)→ (x, λy),

and shearing transformations
(x, y)→ (x, y+ λx)

for λ 6= 0. By a simple limiting argument, it suffices to prove Theorem 1 under the assumption that ‖u‖∞
is finite. By the above nonisotropic scaling, the operator norm is independent of ‖u‖∞, and we may
therefore assume without loss of generality that

‖u‖∞ ≤ 10−2. (1-3)

Following general principles of wave packet analysis, it is natural to decompose Hv into wave packet
components, where the wave packets are obtained from a generating function φ via application of elements
of the symmetry group of the operator. These wave packets can be visualized by acting with the same
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group element on the unit square in the plane. The shapes obtained under the above linear symmetry
group of Hv are parallelograms with a pair of vertical edges. All parallelograms in this paper will be of
this special type. Under the assumption (1-3), it suffices to consider parallelograms whose nonvertical
edges are close to horizontal. Such parallelograms are well approximated by rectangles, which are used
in [Bateman 2013b; Lacey and Li 2010].

Theorem 2 [Bateman 2013b]. Assume ‖u‖∞ ≤ 1 and 1< p <∞. Assume f̂ (ξ, η) vanishes outside an
annulus A < |(ξ, η)| ≤ 2A for some A > 0. Then

‖Hv f ‖p . ‖ f ‖p.

Actually, the theorem is stated in that reference for functions such that f̂ vanishes outside a trapezoidal
region inside an annulus, but this is inessential, as can be seen from the commentary below. This theorem
is weaker than Theorem 1 in the region p > 3

2 , but holds in the full region 1< p <∞. The width of the
annulus can be altered by finite superposition of different annuli, at the expense of an implicit constant
depending on the conformal width of the annulus. The case p > 2 and a weak-type endpoint at p = 2 of
Theorem 2 are due to Lacey and Li [2006b], and hold for arbitrary measurable vector fields.

We reformulate Theorem 2 in a form invariant under the above linear transformation group. The adjoint
linear transformations of this group leave the horizontal direction invariant.

Theorem 3. Assume 1< p<∞. Assume f̂ (ξ, η) is supported in a horizontal pair of strips A< |η|< 2A
for some A > 0. Then

‖Hv f ‖p . ‖ f ‖p.

To deduce Theorem 3 from Theorem 2, we use the nonisotropic dilation (x, y)→ (λx, y) to stretch the
annulus in the ξ direction until in the limit it degenerates to a pair of strips A < |η|< 2A. The restriction
‖u‖∞ ≤ λ−1 becomes void in the limit λ→ 0. This proves Theorem 3. For the converse direction, we use
a bounded number of dilated strips to cover the annulus except for two thin annular sectors around the
ξ -axis. It remains to prove bounds on functions supported in these sectors. For fixed constant vector v,
the operator Hv is given by a Fourier multiplier that is constant on two half-planes separated by a line
through the origin perpendicular to v. If ‖u‖∞ ≤ 1, then this line does not intersect the thin annular
sectors, and we have, with the constant vector field (1, 0),

Hv f (x, y)= H(1,0) f (x, y). (1-4)

But H(1,0) is trivially bounded, and this completes the deduction of Theorem 2 from Theorem 3.
Sharpness of the exponent 3

2 in Theorem 1 is not known. In Remark 9 we mention a potential covering
lemma that, when combined with the methods in this paper, would push the exponent down to 4

3 . The
truth of this covering lemma is unknown, however. If f is an elementary tensor,

f (x, y)= g(x)h(y),
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then a similar calculation to the above turns Hv f into∫
ĥ(η)e2π iηy

∫
g(x − t)

e−2π iu(x)ηt

t
dt dη.

This expression can be read as a family of Fourier multipliers acting on h. Assuming the norm of h is
normalized to ‖h‖p = 1, we can estimate the last display by∥∥∥∥∥∥∥∥∫ g(x − t)

e−2π iu(x)ηt

t
dt
∥∥∥∥

M p(η)

∥∥∥∥
L p(x)

,

where Mp(η) denotes the operator norm of the Fourier multiplier acting on L p. By scaling invariance
of the multiplier norm, the factor u(x) in the phase can be ignored. As shown in [Coifman et al. 1988],
multiplier norms are controlled by variation norms. Hence we may estimate the last display by∥∥∥∥∥∥∥∥∫ g(x − t)

e−2π iηt

t
dt
∥∥∥∥

V r (η)

∥∥∥∥
L p(x)

,

provided
∣∣ 1

2 − 1/p
∣∣≤ 1/r . The bounds on the variation norm Carleson operator in [Oberlin et al. 2012]

imply that for p> 4
3 and r > p′, the last display is bounded by a constant times ‖g‖p. Hence the exponent

in Theorem 1 can be improved to 4
3 under the additional assumption that the function f is an elementary

tensor. The authors learned this argument from Ciprian Demeter. Related multiplier theorems in [Demeter
et al. 2008; Demeter 2012] also show a phase transition at this exponent.

The Hilbert transform along a one-variable vector field was studied by Carbery, Seeger, Wainger, and
Wright in [Carbery et al. 1999]. There, boundedness in L p for 1< p is proved under additional conditions
on the vector field.

In a different direction, Stein conjectured that a truncation of Hv is bounded on L2 under the assumption
that the two-variable vector field v is Lipschitz with sufficiently small Lipschitz constant depending on
the truncation. Stein’s conjecture is related to a well-known conjecture of Zygmund on the differentiation
of Lipschitz vector fields. Define

Mv f (x, y)= sup
0<L<1

1
2L

∫ L

−L
f
(
(x, y)− v(x, y)t

)
dt.

Zygmund conjectured that Mv is (say) weak-type (2, 2) if ‖v‖∞ is bounded and the Lipschitz norm
‖∇v‖∞ is small enough. Proving a weak-type estimate on this operator would yield corresponding
differentiation results analogous to the Lebesgue differentiation theorem, except the averaging takes place
over line segments instead of balls. Estimates on Mv are unknown on any L p space, except for the trivial
p =∞ case, unless more stringent requirements are placed on v; for example, Bourgain [1989] proved
Mv is bounded on L p, p > 1, when v is real-analytic and the operator is restricted to a bounded domain.
The corresponding result for the Hilbert transform was announced in [Stein and Street 2011], although
the p = 2 case follows from work of Lacey and Li [2010]. Previously the Hilbert transform case in such
a range of exponents was only known under the additional assumption that no integral curve of the vector
field forms a straight line [Christ et al. 1999].
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There is some history of using singular integral and time-frequency methods to control positive maximal
operators. See Lacey’s bilinear maximal theorem [2000] or the extension of Bourgain’s return times
theorem by Demeter, Lacey, Tao, and Thiele [Demeter et al. 2008].

This paper is structured as follows: Section 2 contains the main approach, a separation of frequency
space into horizontal dyadic strips and application of Littlewood–Paley theory in the second variable to
reduce to some vector-valued inequality; this step uses the one-variable property of the vector field to
ensure that the strips are invariant under Hv. This fact was brought to our attention by Ciprian Demeter.
The vector-valued inequality is proved by restricted weak-type interpolation, a tool that allows us to
localize the operator to some benign sets G and H and prove strong L2 bounds on these sets.

Section 3 gives the crucial construction of the sets G and H , relying on two covering lemmas. One is
essentially an argument by Cordoba and R. Fefferman [1975], while the other is essentially an argument
by Lacey and Li [2006a].

Section 4 outlines the proof of the L2 bounds on the sets G and H , using time-frequency analysis as
in [Bateman 2013b]. The operator that we estimate at this point is a refinement of the operator in that
paper. We refer to the decomposition of this operator there without recalling details. The terms in this
decomposition satisfy Estimates 16 through 20, which are also taken from the same paper. To complete
the proof of Theorem 1, we need the additional Estimates 21 and 22, which depend on the sets G and H .
These additional estimates are proved in Section 5, again with much reference to [Bateman 2013b].

Throughout the paper, we write x . y to mean there is a universal constant C such that x ≤ Cy. We
write x ∼ y to mean x . y and y . x . We write 1E to denote the characteristic function of a set E .

2. Reduction to estimates for a single frequency band

We fix the vector field v with the normalization (1-2) and assume bounded slope as in (1-3). Let Pc be
the Fourier restriction operator to a double cone:

P̂c f (ξ, η)= 110|ξ |≤|η| f̂ (ξ, η).

It suffices to estimate HvPc in place of Hv because, similarly to (1-4),

Hv(1− Pc) f (ξ, η)= H(1,0)(1− Pc) f (ξ, η),

due to the restriction on the slope of v. Define the horizontal pair of bands

Bk :=
{
(ξ, η) ∈ R2

: |η| ∈
[
2k, 2k+1/100)},

and define the corresponding Fourier restriction operator P̂k f = 1Bk f̂ . Since the Hilbert transform in a
constant direction is given by a Fourier multiplier, and the vector field v is constant on vertical lines, we
can formally write, for a family of multipliers parametrized by x ,

Hv f (x, y)=
∫∫

mx(ξ, η) f̂ (ξ, η)e2π i(xξ+yη) dξ dη.
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Then it is clear that

Hv(Pk f )(x, y)=
∫

1[2k ,2k+1/100)(η)e
2π iyη

[∫
mx(ξ, η) f̂ (ξ, η)e2π i xξ dξ

]
dη = Pk(Hv f )(x, y).

Define
Hk := Pk HvPc = Pk HvPc Pk .

Littlewood–Paley theory implies

‖HvPc f ‖p .

∥∥∥∥( ∑
k∈Z/100

|Hk f |2
)1/2 ∥∥∥∥

p
,

where the summation is over integer multiples of 1
100 . Using Littlewood–Paley theory once more, it

suffices to prove ∥∥∥∥( ∑
k∈Z/100

|Hk(Pk f )|2
)1/2 ∥∥∥∥

p
.

∥∥∥∥( ∑
k∈Z/100

|Pk f |2
)1/2 ∥∥∥∥

p
,

which follows from the more general estimate∥∥∥∥( ∑
k∈Z/100

|Hk fk |
2
)1/2 ∥∥∥∥

p
.

∥∥∥∥( ∑
k∈Z/100

| fk |
2
)1/2 ∥∥∥∥

p

for any sequence of functions fk ∈ L p. By a limiting argument, it suffices to prove, for all k0 > 0,∥∥∥∥(∑
|k|≤k0

|Hk fk |
2
)1/2 ∥∥∥∥

p
.

∥∥∥∥(∑
|k|≤k0

| fk |
2
)1/2 ∥∥∥∥

p
, (2-1)

with implicit constant independent of k0, where it is understood that k runs through elements of Z/100.
Compare this inequality with a vector-valued Carleson inequality as in [Grafakos et al. 2005].

Theorem 3 implies that Hk is bounded in L p for 1< p <∞ for each k. In particular, (2-1) is true for
p = 2 by interchanging the order of square summation and L2 norm.

Note that Hk is defined a priori on all of L p (by Theorem 3), and we may drop the assumption that
f is in the Schwartz class. By Marcinkiewicz interpolation for l2 vector valued functions, it suffices to
prove, for G, H ⊆ R2 and

∑
k | fk |

2
≤ 1H ,∣∣∣∣〈(∑

|k|≤k0

|Hk fk |
2
)1/2

, 1G

〉∣∣∣∣. |H |1/p
|G|1−1/p. (2-2)

By Lebesgue’s monotone convergence theorem, it suffices to prove this under the assumption that G
is supported on a large square [−N ′, N ′]2 as long as the implicit constant does not depend on N ′. By
another limiting argument using crude estimates in case the sets G and H have large distance, it suffices
to prove this under the assumption that H is supported in a much larger square [−N , N ], again with
bounds independent of N . Generalizing, we will only assume both G and H are supported on the larger
square.
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Since we already have (2-2) for p = 2, we immediately obtain this estimate for p > 2 provided
|H |. |G| and for p < 2 provided |G|. |H |. By a standard induction on the ratio of |H | and |G|, it then
suffices to prove the following lemma.

Lemma 4. Let G ′, H ′ ⊂ [−N , N ]2 be measurable and let 3
2 < p <∞.

If p > 2 and 10|G ′|< |H ′|, then there exists a subset H ⊂ H ′ depending only on p, G ′, and H ′ with
|H | ≥ |H ′|/2 such that (2-2) holds with G =G ′ and any sequence of functions fk with

∑
|k|≤k0

| fk |
2
≤ 1H .

If p < 2 and 10|H ′|< |G ′|, then there exists a subset G ⊂ G ′ depending only on p, G ′, and H ′ with
|G| ≥ |G ′|/2 such that (2-2) holds with H = H ′ and any sequence of functions fk with

∑
|k|≤k0

| fk |
2
≤ 1H .

For example, in case p > 2 and 10|G ′|< |H ′|, we split H ′ into H and H ′ \ H and apply the triangle
inequality. On H ′ \ H we apply the induction hypothesis, which yields an estimate better than the desired
one by a factor of 2−1/p because of the size estimate for H ′ \ H . On H we use the conclusion of the
lemma, which we may assume (by choosing the induction statement properly) to provide a bound no
more than 1− 2−1/p times the desired bound.

By Cauchy–Schwarz, (2-2) follows from∫ ∑
|k|≤k0

|Hk fk |
21G . |H |2/p

|G|1−2/p.

This in turn follows from ∫ ∑
|k|≤k0

|Hk fk |
21G .

(
|G|
|H |

)1−2/p∫ ∑
k

| fk |
2 (2-3)

by the assumption on the sequence fk . Now define the operator Hk,G,H by

Hk,G,H f = 1G Hk(1H f ).

Then (2-3) follows from the estimate

‖Hk,G,H f ‖2 .
(
|G|
|H |

)1/2−1/p

‖ f ‖2

for any f ∈ L2, and |k| ≤ k0, assuming the implicit constant does not depend on k or k0. We will prove
this L2 estimate again by Marcinkiewicz interpolation between weak-type estimates. More precisely, we
will prove:

Theorem 5. Let p be as in Theorem 1 and let G ′, H ′ ⊆ R2 be as in Lemma 4. Then there are sets G, H
as in Lemma 4 such that for any measurable sets E, F ⊂ R2 and each |k| ≤ k0, we have

|〈Hk,G,H 1F , 1E 〉|.

(
|G|
|H |

)1/2−1/p

|F |1/2|E |1/2. (2-4)

Again, [Bateman 2013b] proves

|〈Hk,G,H 1F , 1E 〉|. |F |1/q |E |1−1/q (2-5)
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for all 1 < q <∞. The refinement we need here is the localization to G and H , with corresponding
improvement in the estimate. The parameter k is irrelevant in proving (2-4), but it is crucial that the sets
H and G be constructed independent of k. By interpolating Theorem 5 with (2-5) for q near 1 and∞,
we obtain strong-type estimates

|〈Hk,G,H f, e〉|.
(
|G|
|H |

)1/2−1/r

‖ f ‖q‖e‖q ′,

where r is as close to p as we wish and q is in a small punctured neighborhood of 2 whose size depends
on r . Another interpolation allows q to be 2 as well, and we obtain (2-3) with power r instead of p, which
is no harm since we seek an open range of exponents. We have thus reduced Theorem 1 to Theorem 5.

3. Construction of the sets G and H

In this section we present the sets G and H of Lemma 4 and prove the size estimates |G| ≥ |G ′|/2 and
|H | ≥ |H ′|/2. Inequality (2-4) will be proved in subsequent sections.

We work with two shifted dyadic grids on the real line:

I1 =

{[
2k
(

n+
(−1)k

3

)
, 2k

(
n+ 1+

(−1)k

3

))
: k, n ∈ Z

}
,

I2 =

{[
2k
(

n−
(−1)k

3

)
, 2k

(
n+ 1−

(−1)k

3

))
: k, n ∈ Z

}
.

The exceptional sets will be the union of two sets:

H ′ \ H = H1 ∪ H2,

G ′ \G = G1 ∪G2.

Fix i ∈ {1, 2}. The sets Hi and Gi will be constructed using the grid Ii , and we will prove 4|Hi | ≤ |H ′|
and 4|Gi | ≤ |G ′|.

Given a parallelogram with two vertical edges, we define the height H(R) of the parallelogram to
be the common length of the two vertical edges. We define the shadow I (R) to be the projection of R
onto the x axis. The central line segment of R is the line segment that connects the midpoints of the two
vertical edges. If a line segment can be written

{(x, y) : x ∈ I (R) : y = ux + b},

then we call u the slope of the line segment. For each parallelogram R, let U (R) be the set of slopes of
lines that intersect both vertical edges. Maximal and minimal slopes in U (R) are attained by the diagonals
of the parallelogram. Hence U (R) is an interval of length 2H(R)/|I (R)| centered at the slope of the
central line of R.

For an interval U and a positive number C , define CU to be the interval with the same center but length
C |U |. If R is a parallelogram, define CR to be the parallelogram with the same central line segment as R
but height CH(R) (this definition of CR is used in Section 3 only). Note that CU (R)=U (CR). For an
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interval I ⊂ I (R), define
RI = R ∩ (I ×R).

Given N and k0 as in Lemma 4, we consider a finite set Ri of parallelograms R as follows: the
projection of both vertical edges of R onto the y-axis are in I1 ∪ I2, and I (R) ∈ Ii . Further, the
parallelogram is contained in the square [−102 N , 102 N ]2, the height is at least 2−k0 , and the slope is at
most 10−1. These assumptions imply also that |I (R)| is at least 2−k0 .

We will use the following simple geometric observation:

Lemma 6. Let R, R′ be two parallelograms and assume I (R)= I (R′), U (R)∩U (R′) 6=∅, R∩ R′ 6=∅,
and without loss of generality H(R) ≤ H(R′). Then we have R ⊆ 7R′. Moreover, if 7H(R) ≤ H(R′),
then 7R ⊆ 7R′.

Proof. Since U (R)∩U (R′) 6=∅, there exist two parallel lines, one intersecting both vertical edges of
R and the other intersecting both vertical edges of R′. Since R ∩ R′ 6=∅, the vertical displacement of
these lines is less than H(R)+ H(R′). If H(R)≤ H(R′), then the vertical edges of R have distance at
most 2H(R′) from the respective vertical edges of R′ and are contained in the vertical edges of 7R′. This
proves the first statement of the lemma. The second statement follows similarly. �

Let MV denote the Hardy–Littlewood maximal operator in the vertical direction:

MV f (x, y)= sup
y∈J

1
|J |

∫
J
| f (x, z)| dz,

where the supremum is taken over all intervals J containing y. For a measurable function u : R→ R

(which will be the slope function associated with the given vector field), define

E(R) := {(x, y) ∈ R : u(x) ∈U (R)}.

3.1. Construction of the set H. With the sets G ′, H ′ as in Lemma 4, we define

Hi =
⋃
{R ∈Ri : |E(R)∩G ′| ≥ δ|R|},

with

δ = Cα

(
|G ′|
|H ′|

)1−α

for some small α to be determined later through application of Estimate 22 and some constant Cα large
enough that the desired estimate 4|Hi | ≤ |H ′| follows from the following lemma, applied with G = G ′,
q = 1/(1−α). We are essentially eliminating all rectangles R with large density parameter, where density
has the meaning from [Bateman 2013b]. This will be used in the proof of Estimate 22 later in the paper.
Essentially, trees with density ≥ δ will have extremely small size, and will therefore be mostly negligible.

Lemma 7. Let δ > 0 and q > 1 and let G ⊂ R2 be a measurable set and u : R→ R be a measurable
function. Let R be a finite collection of parallelograms with vertical edges and dyadic shadow such that

|E(R)∩G| ≥ δ|R|
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for each R ∈R. Then ∣∣∣∣⋃
R∈R

R
∣∣∣∣. δ−q

|G|.

Proof. We will find a subset G⊂R such that ∣∣∣∣⋃
R∈R

R
∣∣∣∣.∑

R∈G

|R|, (3-1)

∫ (∑
R∈G

1E(R)

)q ′

.
∑
R∈G

|R|. (3-2)

Inequality (3-1) will complete the proof of Lemma 7, provided∑
R∈G

|R|. δ−q
|G|. (3-3)

But with the density assumption for the parallelograms in R, we have∑
R∈G

|R| ≤
∑
R∈G

1
δ
|E(R)∩G| =

1
δ

∥∥∥∥∑
R∈G

1E(R)1G

∥∥∥∥
1
.

1
δ

(∑
R∈G

|R|
)1/q ′

|G|1/q ,

where in the last line we have used Hölder’s inequality and (3-2). After division by the middle factor of
the right hand side, we obtain (3-3).

The following argument is essentially the one used in [Cordoba and Fefferman 1975] to prove endpoint
estimates for the strong maximal operator. We select parallelograms according to the following iterative
procedure. Initialize

STOCK←R,

G←∅,

B←∅.

While STOCK 6=∅, choose an R ∈ STOCK with maximal |I (R)|. If∑
R′∈G : E(R)∩E(R′) 6=∅

|7R ∩ 7R′| ≥ 10−2
|R|, (3-4)

then update
STOCK← STOCK \ R,

G← G,

B←B∪ {R}.

Otherwise update
STOCK← STOCK \ R,

G← G∪ {R},

B←B.

It is clear that this procedure yields a partition R= GtB.
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To prove (3-1), let R ∈ B and let R′ be in the set G(R) of all elements in G that are chosen prior
to R and satisfy E(R) ∩ E(R′) 6= ∅. The last property implies U (R) ∩U (R′) 6= ∅ and R ∩ R′ 6= ∅.
Also, I (R)⊂ I (R′). By Lemma 6 applied to R and R′I (R), we have, for every vertical line L through the
interval I (R),

|L ∩ 7R ∩ 7R′| ≥min(H(R), H(R′))≥
|7R ∩ 7R′|

7|I (R)|
.

Comparing for (x, y) ∈ R and corresponding vertical line L the maximal function MV with an average
over the segment L ∩ 7R, we obtain

MV

( ∑
R′∈G(R)

17R′

)
(x, y)≥ 7−1 H(R)−1

∑
R′∈G(R)

|L ∩ 7R ∩ 7R′| ≥ 49−1
|R|−1

∑
R′∈G(R)

|7R ∩ 7R′| ≥ 10−4,

where the last estimate follows from (3-4). Hence∣∣∣∣⋃
R∈B

R
∣∣∣∣≤ ∣∣∣∣{x : MV

(∑
r∈G

1R

)
(x)≥ 10−4

}∣∣∣∣.∑
R∈G

|R|,

by the weak (1, 1) inequality for MV . This proves (3-1), because the corresponding estimate for the union
of elements in G is trivial.

To prove (3-2), consider R′, R ∈ G with E(R)∩ E(R′) 6= ∅. If R′ was selected first, then H(R) >
7H(R′), for otherwise we can use Lemma 6 as above to conclude, for (x, y) ∈ R,

MV (17R′)(x, y)≥ 7−1
|H(R)|−1

∑
R′∈G(R)

|L ∩ 7R ∩ 7R′| ≥ 49−1,

and hence R would have been put into B. Hence we have, by Lemma 6,

7R′I ⊂ 7RI (3-5)

for every I ⊂ I (R). Hence ∑
R′∈G(R)

|7R′I ∩ 7RI | =
∑

R′∈G(R)

|7R′I |

is proportional to |I | for I ⊂ I (R). Hence we have, for all such I ,∑
R′∈G(R)

|7R′I ∩ 7RI |. |RI |, (3-6)

since for I = I (R), this holds when condition (3-4) fails.
Let’s say an n-tuple (R1, R2, . . . , Rn) of elements in G is admissible if R j is selected after R j+1 for

each j and E(R j )∩ E(R j+1) 6=∅. Then we have
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R∈G

1E(R)

)n

.
∑

R1,...,Rn

∣∣E(R1)∩ E(R2)∩ · · · ∩ E(Rn)
∣∣

.
∑

(R1,R2,...,Rn) adm.

∣∣E(R1)∩ E(R2)∩ · · · ∩ E(Rn)
∣∣

.
∑

(R1,R2,...,Rn) adm.

∣∣7R1
∩ 7R2

∩ · · · ∩ 7Rn
∣∣

.
∑

(R1,R2,...,Rn) adm.

∣∣7R1
∩ 7R2

I (R1)
∩ · · · ∩ 7Rn

I (R1)

∣∣.
Using (3-5), which implies that the sets 7R j

I (R1)
are nested, and the estimate (3-6) for the last pair of sets,

we can estimate the last display by

.
∑

(R1,R2,...,Rn−1) adm.

∣∣7R1
∩ 7R2

I (R1)
∩ · · · ∩ 7Rn−1

I (R1)

∣∣. (3-7)

Iterating the argument allows us to conclude (3-2) for q ′ an integer, which is clearly not a restriction, as
the estimate is harder for larger q ′. This completes the proof of Lemma 7. �

3.2. Construction of the set G. Let G ′, H ′, u be as in Lemma 4 and define

Gi =
⋃

k∈Z,k<0

{
R ∈Ri :

|E(R)|
|R|

≥ 2k and
|H ′ ∩ R|
|R|

≥ Cε2−(1/2+ε)k
(
|H ′|
|G ′|

)1/2}
for some small ε > 0, to be determined later through application of Estimate 21, and some constant Cε
large enough that we obtain, with Theorem 8 below,

|Gi | ≤
∑

k∈Z,k<0

C2−k
(

Cε2−(1/2+ε)k
(
|H ′|
|G ′|

)1/2)−2

|H ′| ≤
|G ′|

4
.

This construction essentially allows us to ignore trees with size and density both too large. This will be
used in the proof of Estimate 21.

The following theorem is a variant of the result in [Lacey and Li 2006a]. The theorem there is valid
for arbitrary Lipschitz vector fields. As stated here, the theorem is valid for vector fields depending on
one variable. In fact, the theorem holds for vector fields that are Lipschitz in the vertical direction only.
We recreate the proof given in [Lacey and Li 2006a] below in the one-variable case. The only use of the
one-variable property comes in the proof of Lemma 12 below.

Theorem 8. Let 0≤ δ, σ ≤ 1, let H be a measurable set, and let R be a finite collection of parallelograms
with vertical edges and dyadic shadow such that for each R ∈R, we have

|E(R)| ≥ δ|R|, |H ∩ R| ≥ σ |R|.

Then ∣∣∣∣⋃
R∈R

R
∣∣∣∣. δ−1σ−2

|H |.
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Remark 9. It is of interest whether a result like Theorem 8 holds with σ -power less than 2. In the single
height case, optimal results are already known with power all the way to 1+ ε; see [Bateman 2009;
Bateman 2013a]. However the important point is that the parallelograms in Theorem 8 can have arbitrary
height, which is necessary for creating the exceptional sets needed in the current paper.

Proof. It is enough to find a subset G⊂R such that∣∣∣∣⋃
R∈R

R
∣∣∣∣.∑

R∈G

|R|, (3-8)

∫ (∑
R∈G

1R

)2

. δ−1
∑
R∈G

|R|. (3-9)

Namely, with (3-9) we have∑
R∈G

|R| ≤ σ−1
∫ ∑

R∈G

1R(x)1H dx ≤ σ−1
‖H‖1/2

(∫ (∑
R∈G

1R(x)
)2

dx
)1/2

. σ−1δ−1/2
|H |1/2

(∑
R∈G

|R|
)1/2

,

and the desired estimate follows from (3-8).
We define the set G by a recursive procedure. Initialize

G←∅,

STOCK←R.

While STOCK is not empty, select R ∈ STOCK such that |I (R)| is maximal. Update

G← G∪ {R},

B←

{
R′ ∈ STOCK : R′ ⊂

{
x : MV

(∑
R∈G

1R

)
(x)≥ 10−3

}}
,

STOCK← STOCK \B.

This loop will terminate, because the collection R is finite and we remove at each step at least the
selected R from STOCK.

By the Hardy–Littlewood maximal bound, it is clear that (3-8) holds and it remains to show (3-9). By
expanding the square in (3-9) and using symmetry, it suffices to show∑

(R,R′)∈P

|R ∩ R′|. δ−1
∑
R∈G

|R|,

where P is the set of all pairs (R, R′) ∈ G×G with R∩ R′ 6=∅, and R is chosen prior to R′. We partition
P into

P′ = {(R, R′) ∈ P :U (R) 6⊂ 102U (R′)} and P′′ = {(R, R′) ∈ P :U (R)⊂ 102U (R′)}.

Theorem 8 is reduced to the following two lemmas:
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Lemma 10. For fixed R′ ∈ G, we have ∑
R∈R

(R,R′)∈P′′

|R ∩ R′|. |R′|.

Lemma 11. For fixed R ∈ G, we have ∑
R′∈R

(R,R′)∈P′

|R ∩ R′|. δ−1
|R|.

Proof of Lemma 10. We first argue by contradiction that P′′ does not contain a pair (R, R′) with
H(R′) < H(R). By definition of P′′, we have U (R)∩U (100R′) 6=∅. By Lemma 6 applied to 100RI (R′)

and 100R′, we conclude that R′ is contained in 700R. But then

R′ ⊂
{

MV 1R >
1

700

}
,

which contradicts the selection of R′ and completes the proof that we have H(R) ≤ H(R′) for all
(R, R′) ∈ P′′.

Now we use Lemma 6 again to conclude that for each (R, R′) ∈P′′, we have RI (R′) ⊂ 700R′. Hence
we have, for some point (x, y) in R′,

10−3
≥ MV

( ∑
R∈G:(R,R′)∈P′′

1R

)
(x, y)≥

1
700H(R′)

∑
R:(R,R′)∈P′′

H(R)≥
1

700

∑
R:(R,R′)∈P′′

|R ∩ R′|/|R′|.

This proves Lemma 10. �

There remains to give the proof of Lemma 11, which will occupy us through the end of the section.
Fix R ∈ G. We decompose {R′ : (R, R′) ∈ P′} by the following iterative procedure: Initialize

STOCK← {R′ : (R, R′) ∈ P′},

G′←∅.

While STOCK is nonempty, select R′ ∈ STOCK with maximal |IR′ |. Update

G′← G′ ∪ {R′},

B(R′)← {R′′ ∈ STOCK : 5E(R′′)∩5E(R′) 6=∅},

STOCK← STOCK \B(R′),

where5 denotes the projection onto the x axis. By construction, the sets5E(R′) with R′ ∈G′ are disjoint
and we have ∑

R′∈G′

|IR′ | ≤ δ
−1
∑
R′∈G′

|5E(R′)| ≤ δ−1
|I (R)|.

As the sets B(R′) with R′ ∈ G′ partition the summation set of the left side of Lemma 11, it suffices to
show that, for each R′ ∈ G′, ∑

R′′∈B(R′)

|R′′ ∩ R|. |RI (R′)|.
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In what follows we fix R′ ∈ G′.

Lemma 12. There is an interval U of slopes (depending on R and R′) with

5|U (R)| ≤ |U |, (3-10)

U (R)∩ 5U =∅, (3-11)

U (R)⊂ 6U, (3-12)

U (R′′)⊂U (3-13)

for all R′′ ⊂B(R′).

Proof. We distinguish two cases: |U (R)| ≤ |U (R′)| and |U (R)|> |U (R′)|.

First case: |U (R)| ≤ |U (R′)|. In the first case we use the definition of P′ to conclude

U (R)∩ 25U (R′)=∅.

We then define U = KU (R′), where K ≥ 5 is the largest number (or very close to that) such that
U (R)∩ 5KU (R′) = ∅. Then we have immediately (3-10), (3-11) and (3-12). To see (3-13), assume
U (R′′) 6⊂U to get a contradiction.

By the construction of B(R′), we know that 5(E(R′′)) and 5(E(R′)) intersect, which implies that
U (R′′)∩U (R′) 6=∅, since the underlying vector field v is constant along vertical lines. Since U (R′) is
contained in the middle fifth of the interval U , we conclude |U | ≤ 3|U (R′′)| and U ⊂ 7U (R′′). But then
U (R)⊂ 102U (R′′), a contradiction to (R, R′′) ∈ P′.

Second case: |U (R)|> |U (R′)|. Then H(R)>H(R′) because |I (R′)|≤ |I (R)|. Since R′ is not contained
in the set {MV 1R > 10−3

} and thus not in 103 R, we conclude that U (R′) contains an element not in
400U (R). Hence

25
|U (R)|
|U (R′)|

U (R′)

does not intersect U (R). From there we may proceed as before, with U (R′) replaced by this bigger
interval. This completes the proof of Lemma 12. �

Lemma 13. Let I be a dyadic interval contained in IR′ . Then for all R′′ ∈B(R′) with H(R′′)≤ 20|U | |I |,
we have that

RI ∩ R′′ 6=∅ =⇒ R′′ I ⊂ 50
(
1+ |U | |I |H(R)−1)R (3-14)

and
|RI ∩ R′′| ≤ 10|U |−1 H(R′′)H(R). (3-15)

Proof. By a shearing transformation and translation we may assume that the central line segment of R is
on the x axis.

Statement (3-14) follows immediately from the central slope of R′′ being less than 10|U | and H(R′′)≤
20|U | |I |, and hence the vertical distance of any point in R′′ from R is at most 50|U | |I |. To see the
second statement, note that the central slope u0 of R′′ is at least 2|U |. Hence (3-15) follows, because
R ∩ R′′ is contained in a parallelogram of height H(R) and base H(R′′)u−1

0 . This proves Lemma 13. �
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Lemma 14. Let I be a dyadic interval contained in IR′ . If∑
R′′∈B(R′)
s.t. I⊂IR′′

|RI ∩ R′′|> 10−1
|RI |,

then there does not exist R′′′ ∈B(R′) with IR′′′ ⊂ I , IR′′′ 6= I .

Proof. For every R′′′ ∈B(R′), we have U (R′′′)⊂U , and thus

H(R′′′)≤ 10U |IR′′′ |.

Hence if IR′′′ ⊂ I , then H(R′′′) ≤ 20U |I |. The parallelogram R′′′ has been selected for G after the
parallelogram R and the parallelograms R′′ ∈B(R′) with I ⊂ IR′′ . By Lemma 13, it suffices to show that
the maximal function

MV

(
1R +

∑
R′′∈B(R′)
s.t. I⊂IR′′

1R′′

)

is larger than 10−3 on the parallelogram

R̃ := 50
(
1+ |U | |I |H(R)−1)R.

First assume there exists R′′ ∈B(R′) with I ⊂ IR′′ and RI ∩ R′′ 6=∅ and H(R′′)≥ 20 |U | |I |. Note that
U (R′′) and U (R̃) have nonempty intersection because U (R′′)⊂U ⊂U (R̃). Applying Lemma 6 to the
rectangles R′′I and R̃I , we obtain similarly as before

MV (1R′′ + 1R)≥ 7−1 H(R̃)−1(min(H(R′′), H(R̃))+ H(R)
)
> 10−3

on R̃I , which proves Lemma 14 in the given case.
Hence we may assume

H(R′′)≤ 20 |U | |I |

for every R′′ ∈B(R′) with I ⊂ IR′′ and RI ∩ R′′ 6=∅. We then have on R̃I , by Lemma 13,

MV

(
1R +

∑
R′′∈B(R′)
s.t. I⊂IR′′

1R′′

)
≥ H(R̃)−1

(
H(R)+

∑
R′′∈B(R′)
s.t. I⊂IR′′

H(R′′)
)

≥ H(R̃)−1
(

H(R)+
∑

R′′∈B(R′)
s.t. I⊂IR′′

|RI ∩ R′′||U |H(R)−1
)

≥ H(R̃)
(
H(R)+ |U |H(R)−110−1

|RI |
)
≥ 500−1.

This completes the proof of Lemma 14. �

We have used the hypothesis IR′′′ 6= I of Lemma 14 only to conclude that R′′′ has been selected last
to G. Consider the collection of all R′′ ∈B(R′) with I = IR′′ and let R′′′ be the parallelogram chosen last
in this collection. Since |RI ∩ R′′′| ≤ |RI |, the proof of the previous lemma also gives:
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Lemma 15. For every I ⊂ IR′ , ∑
R′′∈B(R′):I=IR′′

|RI ∩ R′′| ≤ 2|RI |.

Now let I be the set of maximal dyadic intervals contained in IR′ such that∑
R′′∈B(R′)
s.t. I⊂IR′′

|RI ∩ R′′|> 2|RI |.

By Lemma 15, we have IR′ /∈ I. Let I ∈ I and denote the parent of I by Ĩ . By Lemma 14 and by
maximality of I and Lemma 15, we have∑

R′′∈B(R′)

|RI ∩ R′′| =
∑

R′′∈B(R′): Ĩ⊂IR′′

|RI ∩ R′′| +
∑

R′′∈B(R′):I=IR′′

|RI ∩ R′′| ≤ 2|R Ĩ | + 2|RI | ≤ 6|RI |.

By adding over all I ∈ I, we obtain∑
I∈I′

∑
R′′∈B(R′)

|RI ∩ R′′| ≤ 6|RI (R′)|. (3-16)

Now let I′ be the set of maximal dyadic intervals that are contained in IR′ , disjoint from any interval
in I, and do not contain any I (R′′) with R′′ ∈R(R′). By construction of I, we have for each I ∈ I′∑

R′′∈R(R′)

|RI ∩ R′′| =
∑

R′′∈R(R′):I⊂IR′′

|RI ∩ R′′| ≤ 2|RI |.

Summing over all intervals in I′ gives∑
I∈I′

∑
R′′∈R(R′)

|RI ∩ R′′| ≤ 2|RI (R′)|. (3-17)

Together with (3-16) this completes the proof of Lemma 11, because I and I′ form a partition of I (R′). �

4. Outline of the proof of Theorem 5

Recall that we need to prove, for each |k| ≤ k0, the inequality

|〈Hk,G,H 1F , 1E 〉|.

(
|G|
|H |

)1/2−1/p

|F |1/2|E |1/2. (4-1)

We assume without loss of generality that E ⊂ G and F ⊂ H . Recall also that Theorem 2 implies, for
1< q <∞,

|〈Hk1F , 1E 〉|.

(
|E |
|F |

)1/2−1/q

|F |1/2|E |1/2. (4-2)

The left sides of (4-1) and (4-2) are identical. Hence our task is to strengthen the proof of Theorem 2
in [Bateman 2013b] in case the factor involving G and H in (4-1) is less than the corresponding factor
involving E and F in (4-2).
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We recall some details about the proof in [Bateman 2013b]. The form 〈Hk1F , 1E 〉 is written as a linear
combination of a bounded number of model forms∑

s∈Uk

〈Cs,k1F , 1E 〉,

where the index set Uk is a set of parallelograms with vertical edges and constant height (depending on k).
The paper proves the bound analogous to (4-2) for the absolute sum∑

s∈U′k

|〈Cs,k1F , 1E 〉|, (4-3)

where U′k is an arbitrary finite subset of Uk and the bound is independent of the choice of subset, which
may be assumed to only account for nonzero summands.

To estimate (4-3), one first proves estimates for the sum over certain subsets of U′k called trees. Each tree
T is assigned a parallelogram top(T ). It is also assigned a density δ(T ), which measures the contribution
of E to the tree, and a size σ(T ), which measures the contribution of F to the tree. One obtains, for each
tree T , ∑

s∈T

|〈Cs1F , 1E 〉|. δ(T )σ (T )|top(T )|.

The collection U′k is then written as a disjoint union of subcollections Uδ,σ , where δ and σ run through
the set of integer powers of two. Each Uδ,σ is written as a disjoint union of a collection Tδ,σ of trees with
density at most δ and size at most σ . With the above tree estimate, it remains to estimate

∑
δ,σ Sδ,σ with

Sδ,σ :=
∑

T∈Tδ,σ

δσ |top(T )|.

We list the estimates on Sδ,σ used in [Bateman 2013b]; we include an additional factor of δσ relative to
the corresponding expressions in [Bateman 2013b].

Estimate 16 (orthogonality). Sδ,σ . |F |δσ−1.

Estimate 17 (density). Sδ,σ . |E |σ .

Estimate 18 (maximal). For any ε > 0, Sδ,σ . |F |1−ε |E |εσ−ε .

Estimate 19 (trivial density restriction). If δ > 1, then Sδ,σ = 0.

Estimate 20 (trivial size restriction). There is a universal σ0 such that if σ > σ0, then Sδ,σ = 0.

Our improvement comes through two additional estimates depending on G and H that will be proved
in Section 5.

Estimate 21 (second maximal). If p < 2 and G, H are as in Theorem 5, then for every ε > 0,

Sδ,σ . |E |
(
|H |
|G|

)1/2

σ−εδ−1/2−ε .
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Estimate 22 (size restriction). Let p > 2 and let G, H be as in Theorem 5. Let n > 2 be a large integer
and α = 1/n and Cα be some constant. Then there is a constant σ1 such that if

σ ≥ σ1

(
δ̃

δ

)n

with

δ̃ = Cα

(
|G|
|H |

)1−α

,

then we have Sδ,σ = 0.

To obtain summability for small σ , it is convenient to take weighted geometric averages of Estimates
16, 18, and 21 with Estimate 17 to obtain positive powers of σ . We record these modified estimates,
where we simplify exponents using that we may assume universal upper bounds on δ and σ . We have, for
any ε > 0:

Estimate 23 (modified orthogonality). Sδ,σ . |E |1/2+ε |F |1/2−εδ1/2−εσ 2ε .

Estimate 24 (modified maximal). Sδ,σ . |F |1−4ε
|E |4εσ ε .

Estimate 25 (modified second maximal). Under the assumptions of Estimate 21,

Sδ,σ . |E |
(
|H |
|G|

)1/2−ε

σ εδ−1/2.

In the rest of this section we show how these estimates are used to estimate
∑

δ,σ Sδ,σ , and thereby
complete the proof of Theorem 5.

4.1. Case p < 2 and |H| ≤ |G|. Inequality (4-1) for 3
2 < p < 2 follows from inequality (4-2) for

1< q < 2 unless (
|H |
|G|

)1/3

≤
|F |
|E |

, (4-4)

which we shall therefore assume.
Pick ε > 0 small compared to the distance of p to 3

2 . We split the sum over δ at

δ0 =

(
|H |
|G|
|E |
|F |

)1/2

.

For δ ≤ δ0, we use Estimate 23 together with Estimate 20 to obtain∑
δ≤δ0

∑
σ

Sδ,σ . δ
1/2−ε
0 |E |1/2+ε |F |1/2−ε = |E |3/4+ε/2|F |1/4−ε/2

(
|H |
|G|

)1/4−ε/2

.

For δ ≥ δ0 we use Estimate 25 together with Estimate 20 to obtain∑
δ≥δ0

∑
σ

Sδ,σ . δ
−1/2
0 |E |

(
|H |
|G|

)1/2−ε

= |E |3/4|F |1/4
(
|H |
|G|

)1/4−ε

.
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Using (4-4) and |H | ≤ |G|, we may estimate both partial sums by

. |E |1/2|F |1/2
(
|H |
|G|

)1/6−3ε

.

This completes the proof of (4-1) in case p < 2.

4.2. Case p > 2 and |G| ≤ |H|. Pick ε very small compared to 1/p. Inequality (4-1) for 2< p <∞
follows from inequality (4-2) unless

|G|
|H |
≤

(
|E |
|F |

)1+ε

, (4-5)

which we shall therefore assume. Let α and 1/n be very small compared to ε, let Cα be as in the
construction of the set H , and let δ̃ be as in Estimate 22. We split the sum over δ at

δ1 := δ̃

(
1

δ̃

|E |
|F |

)1/n

.

For δ ≤ δ1 we use a weighted geometric mean of Estimates 23 and 24 together with Estimate 20 to
obtain ∑

δ≤δ1

∑
σ

Sδ,σ . δ
1/2−4ε
1 |E |1/2−ε |F |1/2+ε . δ̃(1−1/n)(1/2−4ε)

|E |1/2|F |1/2
(
|G|
|H |

)−2ε

,

where in the last line we have used (4-5) and |G| ≤ |H |. Using the definition of δ̃ in Estimate 22, we may
estimate the last display by

. |E |1/2|F |1/2
(
|G|
|H |

)1/2−10ε

. (4-6)

For δ ≥ δ1 we use Estimate 17 together with Estimate 22 to obtain∑
δ≥δ1

∑
σ

Sδ,σ .
∑
δ≥δ1

(δ̃/δ)n|E |. (δ̃/δ1)
n
|E |. δ̃|F |. |F |1/2|E |1/2

(
|G|
|H |

)1/2−10ε

,

where in the last line we have used (4-5) and |G| ≤ |H |. This completes the proof of (4-1) in case p > 2.

5. Proof of the additional Estimates 21 and 22

In this section we deviate from the notation in Section 3 as follows: for a parallelogram R we denote
by CR the isotropically scaled parallelogram with the same center and slope as R but with height
H(CR)= CH(R) and shadow I (CR)= CI (R).

We say that a set is approximated by a parallelogram R if it is contained in the parallelogram and the
parallelogram has at most one hundred times the area of the set. Any parallelogram R can be approximated
by a parallelogram R′ with I (R′) ∈ I1 ∪I2 and both vertical edges of R′ in I1 ∪I2. To see this, first
identify an interval I in I1 ∪I2 that contains I (R) and has at most three times the length; this interval
I will be the shadow of R′. Consider the extension of R that has same central line and height as R but
shadow I . Then find two intervals in I1 ∪I2 that have mutually equal length at most three times the



L p ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD 1597

height of R and that contain the respective vertical edges of the extended parallelogram. These intervals
define the vertical edges of R′.

We recall some details of the proof of Estimate 17 in [Bateman 2013b]. Given δ, σ , one constructs a
collection Rδ,σ of parallelograms of the same height as the parallelograms in U′k such that each tree T in
Tδ,σ is assigned a parallelogram R in Rδ,σ with top(T )⊂ C0 R and top(T ′)⊂ C0 R for every subtree T ′

of T , for some constant C0. If T(R) denotes the trees in Tδ,σ that are assigned a given parallelogram
R ∈Rδ,σ , then we have ∑

T∈T(R)

|top(T )| ≤ C1|R|

for some constant C1. Estimate 17 is then deduced from the inequality∑
R∈Rσ,δ

|R|. |E |δ−1, (5-1)

which follows essentially from pairwise incomparability of the parallelograms in Rδ,σ . (In other words, if
two parallelograms P1, P2 overlap, then they are pointed in different directions, resulting in disjointness
of the sets E(P1) and E(P2).) All parallelograms in Rδ,σ have height at least 2−k0 , length of shadow at
least 2−k0 , and slope at most 10−1.

Let Q = [−N , N ]2 be the large square with N as in Lemma 4. We claim that every set Q ∩ 2k R with
R ∈Rδ,σ and k ≥ 0 can be approximated by a parallelogram in R1 ∪R2. If Q ∩ 2k R is a parallelogram,
then this is clear by the remarks above. If Q ∩ 2k R is not a parallelogram, then we first extend it to the
minimal parallelogram containing it, which thanks to the bounded slope of R is not much larger than
Q ∩ 2k R, and then approximate the extension by a parallelogram in R1 ∪R2.

5.1. Proof of Estimate 21. We partition Rδ,σ into subset Rδ,σ, j consisting of all parallelograms in Rδ,σ

such that
C12− j−1

|R| ≤
∑

T∈T(R)

|top(T )|< C12− j
|R|.

We claim that Rδ,σ, j is empty unless j satisfies (5-3) below. Specifically, the number j0 used in the
following display is implicitly defined in (5-3); our present claim justifies that the summation immediately
below should only be over j & j0. This claim together with (5-1) will prove Estimate 21:

Sδ,σ . δσ
∑
j0. j

∑
Rδ,σ, j

2− j
|R|.

∑
j0. j

2− j
|E |σ . |E |σ−εδ−1/2ε

(
|H |
|G|

)1/2

.

It remains to prove the claim. Suppose there is a parallelogram R in R ∈Rσ,δ, j . It has large density as
defined and discussed in [Bateman 2013b], which implies that there is a k ≥ 0 with

|E(2k R)∩G| ≥ 220kδ|2k R|.

Since G is contained in Q, we may approximate Q ∩ 2k R by a parallelogram R′ of R1 ∪R2 and obtain

|E(R′)| ≥ |E(R′)∩G|& 220kδ|R′|. (5-2)
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Now suppose first that 2k
≥ σ−ε . By Claim 18 in [Bateman 2013b], and using F ⊂ Q, we obtain

|F ∩ H ∩ R′|
|R′|

&
|F ∩ H ∩ 2k R|
|2k R|

& 2−2k2− jσ 1+ε .

On the other hand, (5-2) implies in particular R′ ∩G 6=∅, which by construction of G (see Section 3)
implies, using k ≥ 1,

2−2k2− jσ 1+ε . (220kδ)−(1/2+ε)
(
|H |
|G|

)1/2

,

2− j . 2− j0 := σ−1−εδ−1/2−ε
(
|H |
|G|

)1/2

. (5-3)

If 2k
≤ σ−ε , we use the variant

|F ∩ H ∩ σ−εR|
|σ−εR|

≥ 2− jσ 1+3ε

of Claim 18 in [Bateman 2013b] to obtain the same conclusion.

5.2. Proof of Estimate 22. By Estimates 19 and 20, we may assume C0δ̃ ≤ δ with C0 as above. Suppose
Tδ,σ is nonempty. Consider a tree T in Tδ,σ and let R ∈Rδ,σ be the associated parallelogram as above.
As above, for some k ≥ 0 we have

|E(2k R)∩G| ≥ 220kδ|2k R|.

Define m so that δ is within a factor of two of C2
02m δ̃ and note that m ≥ 0. Let R′ ∈ R1 ∪R2 be an

approximation of Q ∩max(2k,C02m)R. We then have

|E(R′)∩G| ≥ δ̃|R′|.

By construction, R′ is disjoint from H . Since top(T ) is contained in C0 R, we have that 2mtop(T ) is
contained in R′ ∪ Qc, and the same holds with T replaced by any subtree T ′ of T .

But by Lemma 29 of [Bateman 2013b] with f = 1F∩H , we obtain, with the notation in that lemma for
every subtree T ′ of T ,∑

s∈T ′
|〈 f, φs〉|

2
=

∑
m′≥m

∑
s∈T ′

∣∣〈 f 12m′+1top(T ′)\2m′ top(T ′), φs
〉∣∣2

.
∑

m′≥m

2−4nm′
∥∥ f 12m′+1top(T ′)

∥∥2
2 . 2−2nm

|top(T ′)|.

By the definition of σ(T ), this implies

σ(T )≤ 2−nm,

which in turn implies Estimate 22.
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CARLEMAN ESTIMATES FOR ANISOTROPIC ELLIPTIC OPERATORS
WITH JUMPS AT AN INTERFACE
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We consider a second-order self-adjoint elliptic operator with an anisotropic diffusion matrix having a
jump across a smooth hypersurface. We prove the existence of a weight function such that a Carleman
estimate holds true. We also prove that the conditions imposed on the weight function are sharp.
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1. Introduction

1A. Carleman estimates. Let P .x;Dx/ be a differential operator defined on some open subset of Rn.
A Carleman estimate for this operator is the weighted a priori inequality

ke�'PwkL2.Rn/ & ke�'wkL2.Rn/; (1-1)

where the weight function ' is real-valued with a nonvanishing gradient, � is a large positive parameter,
and w is any smooth compactly supported function. This type of estimate was used for the first time by
T. Carleman [1939] to handle uniqueness properties for the Cauchy problem for nonhyperbolic operators.
To this day, it remains essentially the only method to prove unique continuation properties for ill-posed
problems,1 and in particular to handle uniqueness of the Cauchy problem for elliptic operators with
nonanalytic coefficients.2 This tool has been refined, polished and generalized by manifold authors.

The authors wish to thank E. Fernández-Cara for bringing to their attention the importance of Carleman estimates for anisotropic
elliptic operators towards applications to biological tissues. Le Rousseau was partially supported by l’Agence Nationale de la
Recherche under grant ANR-07-JCJC-0139-01.
MSC2010: 35J15, 35J57, 35J75.
Keywords: Carleman estimate, elliptic operator, nonsmooth coefficient, quasimode.

1F. John [1960] showed that, although the Hadamard well-posedness property is a privilege of hyperbolic operators, a weaker
type of continuous dependence, which he called Hölder continuous well-behavior, could occur. Strong connections between the
well-behavior property and Carleman estimates can be found in an article by H. Bahouri [1987].

2For analytic operators, Holmgren’s theorem provides uniqueness for the noncharacteristic Cauchy problem, but that analytical
result falls short of giving a control of the solution from the data.

1601
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A. P. Calderón [1958] gave a very important development of the Carleman method with a proof of an
estimate of the form (1-1) using a pseudodifferential factorization of the operator, giving a new start to
singular-integral methods in local analysis. L. Hörmander [1958; 1963, Chapter VIII] showed that local
methods could provide the same estimates, with weaker assumptions on the regularity of the coefficients
of the operator.

For instance, for second-order elliptic operators with real coefficients3 in the principal part, Lipschitz
continuity of the coefficients suffices for a Carleman estimate to hold and thus for unique continuation
across a C1 hypersurface. Naturally, pseudodifferential methods require more derivatives, at least
tangentially, that is, essentially on each level surface of the weight function '. Chapters 17 and 28 in
[Hörmander 1985b] contain more references and results.

Furthermore, it was shown by A. Pliś [1963] that Hölder continuity is not enough to get unique
continuation: he constructed a real homogeneous linear differential equation of second order and of elliptic
type on R3 without the unique continuation property, although the coefficients are Hölder-continuous
with any exponent less than one. The constructions by K. Miller [1974] and later by N. Mandache [1998]
and N. Filonov [2001] showed that Hölder continuity is not sufficient to obtain unique continuation for
second-order elliptic operators, even in divergence form (see also [Buonocore and Manselli 2000; Schulz
1998] for the particular two-dimensional case where boundedness is essentially enough to get unique
continuation for elliptic equations in the case of W 1;2 solutions).

The results cited above are related to the regularity of the principal part of the second-order operator. For
strong unique continuation properties for second-order operators with Lipschitz-continuous coefficients,
many results are also available for differential inequalities with singular potentials, originating with the
seminal work of D. Jerison and C. Kenig [1985]. The reader is also referred to the work of C. Sogge
[1989] and some of the most recent and general results of H. Koch and D. Tataru [2001; 2002].

In more recent years, the field of applications of Carleman estimates has gone beyond the original
domain. They are also used in the study of inverse problems (see, for example, [Bukhgeim and Klibanov
1981; Isakov 1998; Imanuvilov et al. 2003; Kenig et al. 2007]) and control theory for PDEs. Through
unique continuation properties, they are used for the exact controllability of hyperbolic equations [Bardos
et al. 1992]. They also yield the null controllability of linear parabolic equations [Lebeau and Robbiano
1995] and the null controllability of classes of semilinear parabolic equations [Fursikov and Imanuvilov
1996; Barbu 2000; Fernández-Cara and Zuazua 2000].

1B. Jump discontinuities. Although the situation seems to be almost completely clarified by the previous
results, with a minimal and somewhat necessary condition on Lipschitz continuity, we are interested in
the following second-order elliptic operator L:

Lw D� div.A.x/rw/; A.x/D .ajk.x//1�j ;k�n DAT .x/; inf
k�kRnD1

hA.x/�; �i> 0; (1-2)

3S. Alinhac [1980] showed the nonunique continuation property for second-order elliptic operators with nonconjugate roots;
of course, if the coefficients of the principal part are real, this is excluded.
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in which the matrix A has a jump discontinuity across a smooth hypersurface. However, we shall impose
some stringent — yet natural — restrictions on the domain of functions w, which will be required to
satisfy some homogeneous transmission conditions, detailed in the next sections. Roughly speaking, this
means that w must belong to the domain of the operator, with continuity at the interface, so that rw
remains bounded, and continuity of the flux across the interface, so that div.Arw/ remains bounded,
avoiding in particular the occurrence of a simple or multiple layer at the interface.4

A. Doubova, A. Osses, and J.-P. Puel [Doubova et al. 2002] tackled that problem in the isotropic case
(the matrix A is c Id for scalar c) with a monotonicity assumption: the observation takes place in the region
where the diffusion coefficient c is the “lowest”. (The work of Doubova et al. [2002] concerns the case of
a parabolic operator, but an adaptation to an elliptic operator is straightforward.) In the one-dimensional
case, the monotonicity assumption was relaxed for general piecewise C1 coefficients by A. Benabdallah,
Y. Dermenjian, and J. Le Rousseau [Benabdallah et al. 2007] and for coefficients with bounded variations
[Le Rousseau 2007]. The case of an arbitrary dimension without any monotonicity condition in the elliptic
case was solved by J. Le Rousseau and L. Robbiano [2010]: there the isotropic case is treated, as well as
a particular case of anisotropic medium. An extension of their approach to the case of parabolic operators
can be found in [Le Rousseau and Robbiano 2011]. A. Benabdallah, Y. Dermenjian, and J. Le Rousseau
[Benabdallah et al. 2011] also tackled the situation in which the interface meets the boundary, a case that
is typical of stratified media. They treat particular forms of anisotropic coefficients.

The purpose of the present article is to show that a Carleman estimate can be proven for any operator
of type (1-2) without an isotropy assumption: A.x/ is a symmetric positive-definite matrix with a jump
discontinuity across a smooth hypersurface. We also provide conditions on the Carleman weight function
that are rather simple to handle, and we prove that they are sharp.

The approach we follow differs from that of [Le Rousseau and Robbiano 2010], where the authors base
their analysis on the usual Carleman method for certain microlocal regions and on Calderón projectors
for others. The regions they introduce are determined by the ellipticity or nonellipticity of the conjugated
operator. The method in [Benabdallah et al. 2011] exploits a particular structure of the anisotropy that
allows one to use Fourier series. The analysis is then close to that of [Le Rousseau and Robbiano 2010;
2011] in the sense that second-order operators are inverted in some frequency ranges. Here, our approach
is somewhat closer to A. Calderón’s original work [1958] on unique continuation: the conjugated operator
is factored out in first-order (pseudodifferential) operators, for which estimates are derived. Naturally,
the quality of these estimates depends on their elliptic or nonelliptic nature; we thus recover microlocal
regions that correspond to those of [Le Rousseau and Robbiano 2010]. Such a factorization is also used
in [Imanuvilov and Puel 2003] to address nonhomogeneous boundary conditions.

1C. Notation and statement of the main result. Let � be an open subset of Rn and let † be a C1

oriented hypersurface of �; we have the partition

�D�C[†[��; �˙ D�˙[†; �˙ open subsets of Rn, (1-3)

4In the sections below, we shall also consider nonhomogeneous boundary conditions.
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and we introduce the Heaviside-type functions

H˙ D 1�˙ : (1-4)

We consider the elliptic second-order operator

LDD �AD D� div.A.x/r/ .D D�ir/; (1-5)

where A.x/ is a symmetric positive-definite n� n matrix such that

ADH�A�CHCAC; A˙ 2 C1.�/: (1-6)

We shall consider functions w of the type

w DH�w�CHCwC; w˙ 2 C1.�/: (1-7)

We have dw DH�dw�CHCdwCC .wC�w�/ı†�, where ı† is the Euclidean hypersurface measure
on † and � is the unit conormal vector field to † pointing into �C. To remove the singular term, we
assume

wC D w� at †; (1-8)

so that A dw DH�A�dw�CHCACdwC and

div.A dw/DH� div.A�dw�/CHC div.ACdwC/ChACdwC�A�dw�; �iı†:

Also, we shall assume that

hACdwC�A�dw�; �i D 0 at †, that is, hdwC;AC�i D hdw�;A��i; (1-9)

so that

div.A dw/DH� div.A�dw�/CHC div.ACdwC/: (1-10)

Conditions (1-8)–(1-9) will be called transmission conditions on the function w, and we define the vector
space

W D fH�w�CHCwCgw˙2C1.�/; w˙ satisfying (1-8)–(1-9): (1-11)

Note that (1-8) is a continuity condition of w across † and (1-9) is concerned with the continuity of
hA dw; �i across†, that is, the continuity of the flux of the vector field A dw across†. A weight function
suitable for observation from �C is defined as a Lipschitz continuous function ' on � such that

' DH�'�CHC'C; '˙ 2 C1.�/; 'C D '�; hd'˙;X i> 0 at †; (1-12)

for any positively transverse vector field X to † (that is, h�;X i> 0).

Theorem 1.1. Let �;†;L;W be as in (1-3), (1-5), and (1-11). Then for any compact subset K of �,
there exist a weight function ' satisfying (1-12) and positive constants C , �1 such that for all � � �1 and
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all w 2W with suppw �K,

Cke�'LwkL2.Rn/

� �3=2
ke�'wkL2.Rn/C �

1=2


HCe�'rwC




L2.Rn/

C �1=2


H�e�'rw�




L2.Rn/

C �3=2
ˇ̌
.e�'w/j†

ˇ̌
L2.†/

C �1=2
ˇ̌
.e�'rwC/j†

ˇ̌
L2.†/

C �1=2
ˇ̌
.e�'rw�/j†

ˇ̌
L2.†/

: (1-13)

Remark 1.2. The proof of Theorem 1.1 provides an explicit construction of the weight function '. The
precise properties of ' are given in Section 2D, specifically (2-22), (2-24), and (2-26). The weight function
is at first constructed only depending on xn. Dependency upon the other variables, that is, convexification
with respect to fxn D 0g, is introduced in Section 4E.

Remark 1.3. It is important to notice that whenever a true discontinuity occurs for the vector field A�, the
space W does not contain C1.�/: the inclusion C1.�/�W implies by (1-9) that for all w 2 C1.�/,
hdw;AC� �A��i D 0 at †, so that AC� D A�� at †, which is continuity for A�. The Carleman
estimate which is proven in the present paper naturally takes into account these transmission conditions on
the function w, and it is important to keep in mind that the occurrence of a jump excludes many smooth
functions from the space W . On the other hand, we have W � Lip.�/.

Remark 1.4. We also point out the geometric content of our assumptions, which do not depend on the
choice of a coordinate system. For each x 2�, the matrix A.x/ is a positive-definite symmetric mapping
from Tx.�/

� onto Tx.�/, so that A.x/dw.x/ belongs indeed to Tx.�/ and A dw is a vector field with
an L2 divergence (inequality (1-13) yields the L2 bound by density).

1D. Examples of applications. We mention some applications of the Carleman estimate of Theorem 1.1,
namely, controllability for parabolic equations and stabilization for hyperbolic equations.

Following [Lebeau and Robbiano 1995; Lebeau and Zuazua 1998] (see also [Le Rousseau and Robbiano
2010]), we first deduce the following interpolation inequality. With ˛ 2 .0;X0=2/, we set X D .0;X0/��,
Y D .˛;X0�˛/��.

Theorem 1.5. There exist C �0 and ı 2 .0; 1/ such that for u2H 1.X / that satisfies u˙Duj.0;X0/��˙
2

H 2..0;X0/��˙/,

uC D u� and hduC;AC�i D hdu�;A��i at .0;X0/�†;

and
u.x0;x/jx2@� D 0; x0 2 .0;X0/; and u.0;x/D 0; x 2�;

we have

kukH 1.Y / � Ckukı
H 1.X /

�

�D2
x0
CL

�
u




L2.X /
C


@x0

u.0;x/




L2.!/

�1�ı
:

This interpolation inequality was first proven in [Lebeau and Robbiano 1995; Lebeau and Zuazua
1998] for second-order elliptic operators with smooth coefficients and in [Le Rousseau and Robbiano
2010] in the case of an isotropic diffusion coefficient with a jump at an interface. Here, a jump for the
whole diffusion matrix is permitted.
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Remark 1.6. In fact, the interpolation inequality of Theorem 1.5 rather follows from the nonhomogeneous
version of Theorem 1.1 stated in Theorem 2.2 below.

From Theorem 1.5 we can prove an estimation of the loss of orthogonality for the eigenfunctions �j .x/,
j 2 N, of the operator L, with Dirichlet boundary conditions, when these eigenfunctions are restricted to
some subset ! of � (see [Lebeau and Zuazua 1998; Jerison and Lebeau 1999] and also [Le Rousseau and
Lebeau 2012]). We denote by �j , j 2 N, the associated eigenvalues, sorted in an increasing sequence.

Theorem 1.7. There exists C > 0 such that for any .aj /j2N � C, we have� X
�j��

jaj j
2

�1=2

D





 X
�j��

aj�j






L2.�/

� CeC
p
�





 X
�j��

aj�j






L2.!/

; � > 0: (1-14)

In turn, this yields the following null-controllability result for the associated anisotropic parabolic
equation with jumps in the coefficients across † (see [Lebeau and Robbiano 1995; Lebeau and Zuazua
1998; Le Rousseau and Robbiano 2010] and also [Le Rousseau and Lebeau 2012]).

Theorem 1.8. For an arbitrary time T > 0, an arbitrary nonempty open subset ! ��, and an initial
condition y0 2L2.�/, there exists v 2L2..0;T /��/ such that the solution y of8̂<̂

:
@tyCLy D 1!u in .0;T /��;

y.t;x/D 0 on .0;T /� @�;

y.0;x/D y0.x/ in �

(1-15)

satisfies y.T /D 0 almost everywhere in �.

The interpolation inequality of Theorem 1.5 also yields the stabilization of the hyperbolic equation�
@t tyCLyC a.x/@ty D 0 in .0;T /��;
y.t;x/D 0 on .0;T /� @�;

(1-16)

where a is a nonvanishing nonnegative smooth function. From [Lebeau 1996; Lebeau and Robbiano
1997], we can obtain a resolvent estimate which in turn yields the following energy decay estimate.

Theorem 1.9 [Burq 1998, Theorem 3]. For all k 2 N, there exists C > 0 such that

k@ty.t/kL2.�/Cky.t/kH 1.�/ �
C

Œlog.2C t/�k

�
k@tyjtD0kD.Lk=2/CkyjtD0kD.L.kC1/=2/

�
; t > 0;

for y a solution to (1-16).

The same decay can also be obtained in the case of a boundary damping (see [Lebeau and Robbiano
1997]).

Remark 1.10. Exponential decay cannot be achieved if the set ODfa>0g does not satisfy the geometrical
control condition of [Rauch and Taylor 1974; Bardos et al. 1992]. Because of the jump in the matrix
coefficient A.x/ here, some bicharacteristics of the hyperbolic operators @t t CL can be trapped in �C
or �� and may remain away from the stabilization region O.
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1E. Sketch of the proof. We provide in this subsection an outline of the main arguments used in our
proof. To avoid technicalities, we somewhat simplify the geometric data and the weight function, keeping
of course the anisotropy. We consider the operator

L0 D

X
1�j�n

Dj cj Dj ; cj .x/DHCcCj CH�c�j ; c˙j > 0 constants, H˙ D 1f˙xn>0g; (1-17)

with Dj D
@

i@xj
, and the vector space W0 of functions HCwCCH�w�, w˙ 2 C1c .R

n/, such that

at xn D 0; wC D w�; cCn @nwC D c�n @nw� (transmission conditions across xn D 0). (1-18)

As a result, for w 2W0, we have Dnw DHCDnwCCH�Dnw� and

L0w D
X

j

�
HCcCj D2

jwCCH�c�j D2
jw�

�
: (1-19)

We also consider a weight function5

' D

�
˛CxnC

ˇx2
n

2

�
„ ƒ‚ …

'C

HCC

�
˛�xnC

ˇx2
n

2

�
„ ƒ‚ …

'�

H�; ˛˙ > 0; ˇ > 0; (1-20)

a positive parameter � , and the vector space W� of functions HCvCCH�v�, v˙ 2 C1c .R
n/, such that

at xn D 0,

vC D v�; (1-21)

cCn .DnvCC i�˛CvC/D c�n .Dnv�C i�˛�v�/: (1-22)

Observe that w 2W0 is equivalent to v D e�'w 2W� . We have

e�'L0w D e�'L0e��'„ ƒ‚ …
L�

.e�'w/;

so that proving a weighted a priori estimate ke�'L0wkL2.Rn/ & ke�'wkL2.Rn/ for w 2W0 amounts to
getting kL�vkL2.Rn/ & kvkL2.Rn/ for v 2W� .

Step 1 (pseudodifferential factorization). We have, using the Einstein convention on repeated indices
j 2 f1; : : : ; n� 1g,

L� D .DnC i�'0/cn.DnC i�'0/CDj cj Dj ;

and for v 2W� , by (1-19), with m˙ Dm˙.D
0/D .c˙n /

�1=2.c˙j D2
j /

1=2,

L�v DHCcCn
�
.DnC i�'0C/

2
Cm2

C

�
vCCH�c�n

�
.DnC i�'0�/

2
Cm2

�

�
v�;

5In the main text, we shall introduce some minimal requirements on the weight function and suggest other possible choices.
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so that

L�v DHCcCn
�
DnC i.

eC‚ …„ ƒ
�'0CCmC/

��
DnC i.

fC‚ …„ ƒ
�'0C�mC/

�
vC

CH�c�n
�
DnC i.�'0��m�„ ƒ‚ …

f�

/
��

DnC i.�'0�Cm�„ ƒ‚ …
e�

/
�
v�: (1-23)

Note that e˙ are elliptic positive in the sense that e˙ D �˛˙Cm˙ & � CjD0j. At this point, we want to
use certain natural estimates for first-order factors on the half-lines R˙. Let us, for instance, check on
t > 0 for ! 2 C1c .R/, �; 
 positive:

Dt!C i.�C 
 t/!



2

L2.RC/

D kDt!k
2
L2.RC/

Ck.�C 
 t/!k2
L2.RC/

C 2 Re
˝
Dt!; iH.t/.�C 
 t/!

˛
�

Z C1
0

�
.�C 
 t/2C 


�
j!.t/j2 dt C�j!.0/j2 � .�2

C 
 /k!k2
L2.RC/

C�j!.0/j2; (1-24)

which is in a sense a perfect estimate of elliptic type, suggesting that the first-order factor containing eC

should be easy to handle. Changing � in �� gives

Dt!C i.��C 
 t/!


2

L2.RC/
� 2 Re

˝
Dt!; iH.t/.��C 
 t/!

˛
D

Z C1
0


 j!.t/j2 dt ��j!.0/j2;

so that kDt!C i.��C 
 t/!k2
L2.RC/

C�j!.0/j2 � 
k!k2
L2.RC/

, an estimate of lesser quality, because
we need to secure a control of !.0/ to handle this type of factor.

Step 2 (case fC � 0). Looking at formula (1-23), since the factor containing eC is elliptic in the sense
given above, we have to discuss the sign of fC. Identifying the operator with its symbol, we have
fC D �.˛CCˇxn/�mC.�

0/, and thus �˛C �mC.�
0/, yielding a nonnegative fC. Iterating the method

outlined above on the half-line RC, we get a nice estimate of the form of (1-24) on RC; in particular, we
obtain a control6 of vC.0/ and DnvC.0/. From the transmission condition, we have vC.0/D v�.0/, and
hence this amounts to also controlling v�.0/. That control, along with the natural estimates on R�, is
enough to prove an inequality of the form of the Carleman estimate we seek.

Step 3 (case fC < 0). Here we assume that �˛C <mC.�
0/. On RC we can still use the factor contain-

ing eC, and by (1-23) and (1-24) we can control the quantity

cCn .DnC ifC/vC.0/D

DVC‚ …„ ƒ
cCn .DnvCC i�˛C/vC.0/�cCn imCvC.0/: (1-25)

6In the case fC.0/D 0, one needs to consider the estimation of

.DnC ieC/.DnC ifC/vC




L2.RC/
C


.DnC ifC/.DnC ieC/vC




L2.RC/

from below to obtain a control of vC.0/ and DnvC.0/ with the previous estimates used in cascade. Indeed, the first term will
give an estimate of DnvC.0/, and the second term one of vC.0/.
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Our key assumption is
fC.0/ < 0 D) f�.0/� 0: (1-26)

Under that hypothesis, we can use the negative factor f� on R� (note that f� is increasing with xn, so
that f�.0/� 0 D) f�.xn/ < 0 for xn < 0). We then control

c�n .DnC ie�/v�.0/D c�n .Dnv�C i�˛�/v�.0/„ ƒ‚ …
DV�

Cc�n im�v�.0/: (1-27)

Nothing more can be achieved with inequalities on each side of the interface. At this point, however,
we notice that the second transmission condition in (1-22) implies V� D VC, yielding the control of the
difference of (1-27) and (1-25), that is, of

c�n im�v�.0/C cCn imCvC.0/D i
�
c�n m�C cCn mC

�
v.0/:

Now, as c�n m�C cCn mC is elliptic positive, this gives a control of v.0/ in (tangential) H 1-norm, which
is enough to then get an estimate on both sides that leads to the Carleman estimates we seek.

Step 4 (patching estimates together). The analysis we have sketched here relies on a separation into two
zones in the .�; � 0/ space. Patching the estimates of the form of (1-13) in each zone together allows us to
conclude the proof of the Carleman estimate.

1F. Explaining the key assumption. Our key assumption, condition (1-26), can be reformulated as

for all � 0 2 Sn�2;
˛C

˛�
�

mC.�
0/

m�.� 0/
: (1-28)

In fact,7 (1-26) means �˛C < mC.�
0/ D) �˛� � m�.�

0/, and since ˛˙;m˙ are all positive, this
is equivalent to having mC.�

0/=˛C �m�.�
0/=˛�; which is (1-28): An analogy with an estimate for a

first-order factor may shed some light on this condition. With

f .t/DH.t/.�˛CCˇt �mC/CH.�t/.�˛�Cˇt �m�/; �; ˛˙; ˇ;m˙ positive constants,

we want to prove an injectivity estimate of the type kDtvC if .t/vkL2.R/ & kvkL2.R/, say for v 2C1c .R/.
It is a classical fact (see, for example, Lemma 3.1.1 in [Lerner 2010]) that such an estimate (for a smooth f )
is equivalent to the condition that t 7! f .t/ does not change sign from C to � while t increases: it means
that the adjoint operator Dt � if .t/ satisfies the so-called condition .‰/. Looking at the function f , we
see that it increases on each half-line R˙, so that the only place to get a “forbidden” change of sign from

7For the main theorem, we shall in fact require the stronger strict inequality

˛C

˛�
>

mC.�
0/

m�.� 0/
: (1-29)

This condition is then stable under perturbations, whereas (1-28) is not. This gives us the freedom to introduce microlocal cutoff
in the analysis below.

However, we shall see in Section 5 that in the particular case presented here, where the matrix A is piecewise constant and
the weight function ' depends solely on xn, the inequality (1-28) is actually a necessary and sufficient condition to obtain a
Carleman estimate with weight '.
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Figure 1. f .0�/� 0; f .0C/ < 0.

C to � is at t D 0: to get an injectivity estimate, we have to avoid the situation where f .0C/ < 0 and
f .0�/ > 0; that is, we have to make sure that f .0C/ < 0 D) f .0�/� 0, which is indeed the condition
(1-28). The function f is increasing affine on R˙ with the same slope ˇ on both sides, with a possible
discontinuity at 0; see Figure 1.

In Figure 1, when f .0C/ < 0, we should have f .0�/� 0, and the line on the left cannot go above the
dotted line, in such a way that the discontinuous zigzag curve with the arrows has only a change of sign
from � to C.

When f .0C/� 0, there is no other constraint on f .0�/: even with a discontinuity, the change of sign
can only occur from � to C; see Figure 2.

We prove below (Section 5) that condition (1-28) is relevant to our problem in the sense that it is
indeed necessary to have a Carleman estimate with this weight: if (1-28) is violated, we are able, for
this model, to construct a quasimode for L� , that is, a � -family of functions v with L2-norm 1 such that
kL�vkL2 �kvkL2 , as � goes to1, ruining any hope of proving a Carleman estimate. As usual for this
type of construction, it uses a certain complex geometrical optics method, which is easy in this case to
implement directly, due to the simplicity of the expression of the operator.

Remark 1.11. A very particular case of anisotropic medium was tackled in [Le Rousseau and Robbiano
2010] for the purpose of proving a controllability result for linear parabolic equations. The condition

Figure 2. f .0�/? 0; f .0C/� 0.
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imposed on the weight function in [Le Rousseau and Robbiano 2010, Assumption 2.1] is much more
demanding than what we impose here. In the isotropic case, c˙j D c˙ for all j 2 f1; : : : ; ng, we have
mC Dm� D j�

0j and our condition (1-29) reads ˛C > ˛�. Note also that the isotropic case c� � cC was
already considered in [Doubova et al. 2002].

In [Le Rousseau and Robbiano 2010], the controllability result concerns an isotropic parabolic equation.
The Carleman estimate we derive here extends this result to an anisotropic parabolic equation.

2. Framework

2A. Presentation. Let �;† be as in (1-3). With

„D fpositive-definite n� n matricesg;

we consider A˙ 2 C1.�I„/ and let L; ' be as in (1-5) and (1-12). We set

L˙ DD �A˙D D� div.A˙r/:

Here, we generalize our analysis to nonhomogeneous transmission conditions: for � and ‚ smooth
functions of the interface †, we set

wC�w� D � and hACdwC�A�dw�; �i D‚ at † (2-1)

(compare with (1-8)-(1-9)) and introduce

W�;‚
0
D fH�w�CHCwCgw˙2C1c .�/; w˙ satisfying (2-1). (2-2)

For � � 0, we define the affine space

W�;‚
� D fe�'wg

w2W�;‚

0

: (2-3)

For v 2W�;‚
� , we have v D e�'w with w 2W�;‚

0
, so that using the notation introduced in (1-4), (1-7),

with v˙ D e�'˙w˙, we have
v DH�v�CHCvC; (2-4)

and we see that the transmission conditions (2-1) on w read for v as

vC� v� D �' ;
˝
dvC� �vCd'C;AC�

˛
�
˝
dv�� �v�d'�;A��

˛
D‚' at †; (2-5)

with
�' D e�'j†�; ‚' D e�'j†‚: (2-6)

Observing that e�'˙De��'˙ DDC i�d'˙ for w 2W�;‚, we obtain

e�'˙L˙w˙ D e�'˙D �A˙De��'˙v˙ D .DC i�d'˙/ �A˙.DC i�d'˙/v˙:

We define
P˙ D .DC i�d'˙/ �A˙.DC i�d'˙/: (2-7)
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Proposition 2.1. Let �;†;L;W�;‚
� be as in (1-3), (1-5), and (2-3). Then for any compact subset K

of �, there exist a weight function ' satisfying (1-12) and positive constants C , �1 such that for all � � �1

and all v 2W� with supp v �K,

C
�
kH�P�v�kL2.Rn/CkHCPCvCkL2.Rn/C T�;‚

�
� �3=2

jv˙jL2.†/C�
1=2
j.rv˙/jL2.†/C�

3=2
kvkL2.Rn/C�

1=2
kHCrvCkL2.Rn/C�

1=2
kH�rv�kL2.Rn/;

where T�;‚ D �3=2
j�' jL2.†/C �

1=2
jr†�' jL2.†/C �

1=2
j‚' jL2.†/.

Here, r† denotes the tangential gradient to †. The proof of this proposition will occupy a large part
of the remainder of the article (Sections 3 and 4), as it implies the result of the following theorem, a
nonhomogeneous version of Theorem 1.1.

Theorem 2.2. Let �;†;L;W�;‚
0

be as in (1-3), (1-5), and (2-2). Then for any compact subset K of �,
there exist a weight function ' satisfying (1-12) and positive constants C , �1 such that for all � � �1 and
all w 2W with suppw �K,

C
�

H�e�'�L�w�




L2.Rn/

C


HCe�'CLCwC




L2.Rn/

CT�;‚
�

� �3=2
ke�'wkL2.Rn/C �

1=2
�

HCe�'rwC




L2.Rn/

C


H�e�'rw�




L2.Rn/

�
C �3=2

je�'w˙jL2.†/C �
1=2
je�'rw˙jL2.†/; (2-8)

where T�;‚ D �
3=2
je�'j†� jL2.†/C �

1=2
je�'j†r†� jL2.†/C �

1=2
je�'j†‚jL2.†/.

Theorem 1.1 corresponds to the case � D‚D 0, since by (1-10), we then have

ke�'LwkL2.Rn/ D


H�e�'�L�w�




L2.Rn/

C


HCe�'CLCwC




L2.Rn/

:

Remark 2.3. It is often useful to have such a Carleman estimate at hand for the case of nonhomoge-
neous transmission conditions, for example when one tries to patch such local estimates together in the
neighborhood of the interface.

Here we derive local Carleman estimates. We can in fact consider a similar geometrical situation on a
Riemannian manifold (with or without boundary) with a metric exhibiting jump discontinuities across
interfaces. For the associated Laplace–Beltrami operator, the local estimates we derive can be patched
together to yield a global estimate. We refer to [Le Rousseau and Robbiano 2011, Section 5] for such
questions.

Proof that Proposition 2.1 implies Theorem 2.2. Replacing v by e�'w, we get

kH�e�'�L�w�kL2.Rn/CkHCe�'CLCwCkL2.Rn/CT�;‚

& �3=2
ke�'wkL2.Rn/C �

1=2
�
kHCre�'wCkL2.Rn/CkH�re�'w�kL2.Rn/

�
C �3=2

je�'w˙jL2.†/C �
1=2
jre�'w˙jL2.†/: (2-9)
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Commuting r with e�' produces

C
�

H�e�'�L�w�




L2.Rn/

C


HCe�'CLCwC




L2.Rn/

CT�;‚
�

CC1�
3=2
ke�'wkL2.Rn/CC2�

3=2
�
je�'w˙j†jL2.†/

�
� �1=2



H�e�'Dw�




L2.Rn/
C �1=2



HCe�'DwC




L2.Rn/
C �3=2

ke�'wkL2.Rn/

C �1=2
je�'Dw˙jL2.†/C �

3=2
je�'w˙jL2.†/;

but by (2-9), we have

C1�
3=2
ke�'wkCC2�

3=2
je�'wj

� C max.C1;C2/
�

H�e�'�L�w�




L2.Rn/

C


HCe�'CLCwC




L2.Rn/

CT�;‚
�
;

proving the implication. �

2B. Description in local coordinates. Carleman estimates of types (1-13) and (2-8) can be handled
locally, as they can be patched together. Assuming, as we may, that the hypersurface † is given locally
by the equation fxn D 0g, we have, using the Einstein convention on repeated indices j 2 f1; : : : ; n� 1g,
and noting from the ellipticity condition that ann > 0 (the matrix A.x/D .ajk.x//1�j ;k�n),

LDDnannDnCDnanj Dj CDj ajnDnCDj ajkDk

DDnann

�
DnC a�1

nn anj Dj

�
CDj ajnDnCDj ajkDk :

With T D a�1
nn anj Dj , we have

LD .DnCT �/ann.DnCT /�T �annDn�T �annT CDj ajnDnCDj ajkDk I

and since T � DDj a�1
nn anj , we have T �annDn DDj anj Dn DDj ajnDn and

LD .DnCT �/ann.DnCT /CDj bjkDk ; (2-10)

where the .n�1/�.n�1/matrix .bjk/ is positive-definite, since with � 0D .�1; : : : ; �n�1/ and �D .� 0; �n/,

hB� 0; � 0i D
X

1�j ;k�n�1

bjk�j�k D hA�; �i;

where ann�n D�
P

1�j�n�1 anj�j . Note also that bjk D ajk � .anj ank=ann/:

Remark 2.4. The positive-definite quadratic form B is the restriction of hA�; �i to the hyperplane H
defined by fhA�; �i;xng D @�n

�
hA�; �i

�
D 0; where f � ; � g stands for the Poisson bracket. In fact, the

principal symbol of L is hA.x/�; �i, and if † is defined by the equation  .x/D 0 with d 6D 0 at †, we
have

1
2

˚
hA.x/�; �i;  

	
D hA.x/�; d .x/i;

so that Hx D .A.x/d .x//
? D

˚
� 2 T �x .�/; h�;A.x/d .x/iT �x .�/;Tx.�/ D 0

	
. When x 2†, that set

does not depend on the choice of the defining function  of †, and we simply have

Hx D .A.x/�.x//
?
D
˚
� 2 T �x .�/; h�;A.x/�.x/iT �x .�/;Tx.�/ D 0

	
;
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where �.x/ is the conormal vector to † at x (recall that from Remark 1.4, �.x/ is a cotangent vector
at x, and A.x/�.x/ is a tangent vector at x). Now, for x 2†, we can restrict the quadratic form A.x/

to Hx: this is the positive-definite quadratic form B.x/, providing a coordinate-free definition.

For w 2W�;‚
0

, we have

L˙w˙ D .DnCT �˙/a
˙
nn.DnCT˙/w˙CDj b˙jkDkw˙; (2-11)

and the nonhomogeneous transmission conditions (2-1) read

wC�w� D �; aCnn.DnCTC/wC� a�nn.DnCT�/w� D‚ at †: (2-12)

2C. Pseudodifferential factorization on each side. At first, we consider the weight function ' D

HC'C CH�'�, with '˙ that solely depend on xn. Later on, we shall allow for some dependency
upon the tangential variables x0 (see Section 4E). We define, for m 2 R, the class of tangential standard
symbols Sm as the smooth functions on Rn �Rn�1 such that for all .˛; ˇ/ 2 Nn �Nn�1,

sup
.x;�0/2Rn�Rn�1

h� 0i�mCjˇj
ˇ̌�
@˛x@

ˇ

�0
a
�
.x; � 0/

ˇ̌
<1; (2-13)

with h� 0i D .1Cj� 0j2/1=2. Some basic properties of standard pseudodifferential operators are recalled in
Section AA. Section 2B and formulae (2-7), (2-11) give

P˙ D
�
DnC i�'0˙CT �˙

�
a˙nn

�
DnC i�'0˙CT˙

�
CDj b˙jkDk : (2-14)

We define m˙ 2 S1 such that

for j� 0j � 1; m˙ D

�
b˙

jk

a˙nn

�j�k

�1=2

; m˙ � C h� 0i; M˙ D opw.m˙/: (2-15)

We then have M 2
˙
�Dj b˙

jk
Dk mod op.S1/.

We define
‰1
D op.S1/C �op.S0/C op.S0/Dn: (2-16)

Modulo the operator class ‰1, we may write

PC � PECaCnnPFC; P� � PF�a�nnPE�; (2-17)

where

PE˙ DDnCS˙C i.�'0˙CM˙„ ƒ‚ …
E˙

/; PF˙ DDnCS˙C i.�'0˙�M˙„ ƒ‚ …
F˙

/; (2-18)

with

S˙ D sw.x;D0/; s˙ D
X

1�j�n�1

a˙nj

a˙nn

�j ; so that S�˙ D S˙; S˙ D T˙C
1
2

div T˙; (2-19)
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where

T˙ is the vector field
X

1�j�n�1

a˙nj

ia˙nn

@j : (2-20)

We denote by f˙ and e˙ the homogeneous principal symbols of F˙ and E˙, respectively, determined
modulo the symbol class S1C �S0. The transmission conditions (2-12) with our choice of coordinates
read, at xn D 0,�

vC� v� D �' D e�'jxnD0�;

aCnn.DnCTCC i�'0C/vC� a�nn.DnCT�C i�'0�/v� D‚' D e�'jxnD0‚:
(2-21)

Remark 2.5. The Carleman estimate we shall prove is insensitive to terms in ‰1 in the conjugated
operator P . Formulae (2-17) and (2-18) for PC and P� will thus be the base of our analysis.

Remark 2.6. In [Le Rousseau and Robbiano 2010; 2011], the zero crossing of the roots of the symbol of
P˙, as seen as a polynomial in �n, is analyzed. Here the factorization into first-order operators isolates
each root. In fact, f˙ changes sign, and we shall impose a condition on the weight function at the interface
to obtain a certain scheme for this change of sign; see Section 4.

2D. Choice of weight function. The weight function can be taken of the form

'˙.xn/D ˛˙xnC
ˇx2

n

2
; ˛˙ > 0; ˇ > 0: (2-22)

The choice of the parameters ˛˙ and ˇ will be done below and will take into account the geometric data
of our problem: ˛˙ will be chosen to fulfill a geometric condition at the interface, and ˇ > 0 will be
chosen large. Here, we shall require '0 � 0, that is, we choose an “observation” region on the right-hand
side of †. As we shall need ˇ large, this amounts to working in a small neighborhood of the interface,
that is, jxnj small. Also, we shall see below (Section 4E) that this weight can be perturbed by any smooth
function with a small gradient.

Other choices for the weight functions are possible. In fact, two sufficient conditions can be put forward.
We shall describe them now.

The operators M˙ have a principal symbol m˙.x; �
0/ in S1, which is positively homogeneous8 of

degree 1 and elliptic, that is, there exist �˙
0
; �˙

1
positive such that for j� 0j � 1;x 2 Rn,

�˙0 j�
0
j �m˙.x; �

0/� �˙1 j�
0
j: (2-23)

We choose '0
jxnD0˙

D ˛˙ such that

˛C

˛�
> sup

x0;�0

j�0j�1

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
: (2-24)

8The homogeneity property means, as usual, m˙.x; ��
0/D �m˙.x; �

0/ for � � 1, j� 0j � 1.
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The consequence of this condition will be made clear in Section 4. We shall also prove that this condition
is sharp in Section 5: a strong violation of this condition, namely, ˛C=˛� < sup.mC=m�/jxnD0, ruins
any possibility of deriving a Carleman estimate of the form of Theorem 1.1.

Condition (2-24) concerns the behavior of the weight function at the interface. Conditions away from
the interface are also needed. These conditions are more classical. From (2-14), the symbols of P˙,
modulo the symbol class S1C �S0CS0�n, are given by p˙.x; �; �/D a˙nn

�
q˙

2
C 2iq˙

1

�
, with

q˙2 D .�nC s˙/
2
C

b˙
jk

a˙nn

�j�k � �
2.'0˙/

2; q˙1 D �'
0
˙.�nC s˙/;

for ' solely depending on xn, and from the construction of m˙, for j� 0j � 1, we have

q˙2 D .�nC s˙/
2
Cm2

˙� .�'
0
˙/

2
D .�nC s˙/

2
�f˙e˙: (2-25)

We can then formulate the usual subellipticity condition, with loss of a half-derivative:

q˙2 D 0 and q˙1 D 0 D) fq˙2 ; q
˙
1 g> 0; (2-26)

which can be achieved by choosing ˇ sufficiently large. It is important to note that this property
is coordinate-free. For second-order elliptic operators with real smooth coefficients, this property is
necessary and sufficient for a Carleman estimate such as that of Theorem 1.1 to hold (see [Hörmander
1963], or, for example, [Le Rousseau and Lebeau 2012]).

With the weight functions provided in (2-22), we choose ˛˙ according to condition (2-24) and ˇ > 0

large enough, and we restrict ourselves to a small neighborhood of †, that is, jxnj small, to have '0 > 0

and so that (2-26) is fulfilled.

Remark 2.7. Other “classical” forms for the weight function ' are also possible. For instance, one may
use '.xn/D eˇ�.xn/ with the function � depending solely on xn of the form

� DH���CHC�C; �˙ 2 C1c .R/;

such that � is continuous and j�0
˙
j � C > 0. In this case, property (2-24) can be fulfilled by properly

choosing �0
jxnD0˙

, and (2-26) by choosing ˇ sufficiently large.

Property (2-26) concerns the conjugated second-order operator. We show now that this condition
concerns, in fact, only one of the first-order terms in the pseudodifferential factorization that we put
forward above, namely, PF˙.

Lemma 2.8. There exist C > 0, �1 > 1, and ı > 0 such that for � � �1,

jf˙j � ı� D) C�1� � j� 0j � C� and f�nC s˙; f˙g � C 0�;

with �2 D �2Cj� 0j2.

See Appendix AB.1 for a proof. This is the form of the subellipticity condition, with loss of a half-
derivative, that we shall use. This will be further highlighted by the estimates we derive in Section 3 and
by the proof of the main theorem.



CARLEMAN ESTIMATES FOR OPERATORS WITH JUMPS 1617

3. Estimates for first-order factors

Unless otherwise specified, the notation k � k will stand for the L2.Rn/-norm and j � j for the L2.Rn�1/-
norm. The L2.Rn/ and L2.Rn�1/ dot-products will be both denoted by h � ; � i.

In this section, we shall use the function space

Sc.R
n/D

˚
u 2 S.Rn/ W supp.u/� Rn�1

� .�L;L/ for some L> 0
	
:

3A. Preliminary estimates. Most of our pseudodifferential arguments concern a calculus with large
parameter � � 1: with

�2
D �2

Cj� 0j2; (3-1)

we define for m2R the class of tangential symbols Sm
� as the smooth functions on Rn�Rn�1, depending

on the parameter � � 1, such that, for all .˛; ˇ/ 2 Nn �Nn�1,

sup
.x;�0/2Rn�Rn�1

��mCjˇj
ˇ̌
.@˛x@

ˇ

�0
a/.x; � 0; �/

ˇ̌
<1: (3-2)

Some basic properties of the calculus of the associated pseudodifferential operators are recalled in
Section AA.2. We shall refer to this calculus as the semiclassical calculus (with a large parameter). In
particular, we introduce the Sobolev norms

kukHs WD kƒsukL2.Rn�1/; with ƒs
WD op.�s/: (3-3)

For s � 0, note that we have kukHs � � skukL2.Rn�1/CkhD
0isukL2.Rn�1/. Observe also that we have

kukHs � C� s�s0
kukHs0 ; s � s0:

In what follows, we shall often refer implicitly to this inequality when invoking a large value for the
parameter � .

The operator M˙ is of pseudodifferential nature in the standard calculus. Observe, however, that in
any region where � & j� 0j the symbol, m˙ does not satisfy the estimates of S1

� . We shall circumvent this
technical point by introducing a cut-off procedure.

Let C0;C1 > 0 be such that '0 � C0 and

.M˙u;HCu/� C1kH
Cuk2

L2.RIH 1=2.Rn�1//
: (3-4)

We choose  2 C1.RC/ nonnegative such that  D 0 in Œ0; 1� and  D 1 in Œ2;C1/. We introduce the
Fourier multiplier

 �.�; �
0/D  

�
��

h�i

�
2 S0

� ; with 0< � � �0; (3-5)

such that � & h� 0i=� in its support. We choose �0 sufficiently small that supp. �/ is disjoint from a conic
neighborhood (for j� 0j � 1) of the sets ff˙ D 0g (see Figure 3).

The following lemma states that we can obtain very natural estimates on both sides of the interface in
the region j� 0j � � , that is, for � small. We refer to Section AB.2 for a proof.
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1

�

j� 0j

f˙ D 0

supp. �/

Figure 3. Relative positions of supp. �/ and the sets ff˙ D 0g.

Lemma 3.1. Let ` 2 R. There exist �1 � 1 and 0< �1 � �0 and C > 0 such that

C


HCACop. �/!




L2.RIH`/ �

ˇ̌
op. �/!jxnD0C

ˇ̌
H`C1=2 C



HCop. �/!




L2.RIH`C1/
;

C
�

H�A�op. �/!




L2.RIH`/C

ˇ̌
op. �/!jxnD0�

ˇ̌
H`C1=2

�
�


H�op. �/!




L2.RIH`C1/

for 0< � � �1, with AC D PEC or PFC, A� D PE� or PF�, for � � �1 and ! 2 Sc.R
n/.

3B. Positive imaginary part on a half-line. We have the following estimates for the operators PEC

and PE�.

Lemma 3.2. Let ` 2 R. There exist �1 � 1 and C > 0 such that

CkHCPEC!kL2.RIH`/ � j!jxnD0C jH`C1=2 CkHC!kL2.RIH`C1/CkHCDn!kL2.RIH`/ (3-6)

and

C
�
kH�PE�!kL2.RIH`/Cj!jxnD0� jH`C1=2

�
� kH�!kL2.RIH`C1/CkHCDn!kL2.RIH`/ (3-7)

for � � �1 and ! 2 Sc.R
n/.

The first estimate, in RC, is of very good quality, as both the trace and the volume norms are dominated:
we have a perfect elliptic estimate. In R�, we obtain an estimate of lesser quality. Observe also that no
assumption on the weight function, apart from the positivity of '0, is used in the proof below.

Proof. Let  � be defined as in Section 3A. We let Q 2 C1.RC/ be nonnegative and such that Q D 1 in
Œ4;C1/ and Q D 0 in Œ0; 3�. We then define Q � according to (3-5), and we have � . h� 0i in supp.1� Q �/
and supp.1� �/\ supp. Q �/D∅. We set Qm˙ Dm˙.1� Q �/ and observe that Qm˙ 2 S1

� . We define

Qe˙ D �'
0
C Qm˙ 2 S1

� ;
QE˙ D opw. Qe˙/:



CARLEMAN ESTIMATES FOR OPERATORS WITH JUMPS 1619

From the definition of Q �, we have
Qe˙ � C�: (3-8)

Next,
M˙op.1� �/! D opw. Qm˙/op.1� �/!C opw.m˙ Q �/op.1� �/!;

and since m˙ Q � 2 S1 and 1� � 2 S0
� , with the latter vanishing in a region h� 0i � C� , Lemma A.4

yields
M˙op.1� �/! D opw. Qm˙/op.1� �/!CR1!; with R1 2 op.S�1� /: (3-9)

We set uD op.1� �/!. For s D 2`C 1, we compute

2 RehPECu; iHCƒ
sui D hi ŒDn;HC�u; ƒ

suiC hi ŒSC; ƒ
s �u;HCuiC 2 RehECu;HCƒ

sui

� jujxnD0C j
2
H`C1=2 C 2 RehECu;HCƒ

sui �CkHCuk2
L2.RIH`C1=2/

:
(3-10)

By (3-9), we have ECuD QECuCR1!. This yields

RehECu;HCƒ
suiC kHC!k

2 & Reh QECu;HCƒ
sui& kHCuk2

L2.RIH`C1/
;

for � sufficiently large, by (3-8) and Lemma A.2. We thus obtain

RehPECu; iHCƒ
suiC kHCuk2

L2.RIH`C1=2/
CkHC!k

2 & jujxnD0C j
2
H`C1=2 CkHCuk2

L2.RIH`C1/
:

With the Young inequality and taking � sufficiently large, we then find

kHCPECukL2.RIH`/CkHC!k& jujxnD0C jH`C1=2 CkHCukL2.RIH`C1/:

We now invoke the corresponding estimate provided by Lemma 3.1,

HCPECop. �/!




L2.RIH`/ &
ˇ̌
op. �/!jxnD0C

ˇ̌
H`C1=2 CkHCop. �/!kL2.RIH`C1/:

Adding the two estimates, with the triangle inequality we obtain

HCPECop.1� �/!




L2.RIH`/CkHCPEC!kL2.RIH`/CkHC!k

& j!jxnD0C jH`C1=2 CkHC!kL2.RIH`C1/:

Lemma A.4 gives
�
PEC ; op.1� �/

�
2 op.S0

� /. We thus have

HCPECop.1� �/!




L2.RIH`/ .


HCop.1� �/PEC!




L2.RIH`/CkHC!kL2.RIH`/

. kHCPEC!kL2.RIH`/CkHC!kL2.RIH`/:

By taking � sufficiently large, we thus obtain

kHCPEC!kL2.RIH`/ & j!jxnD0C jH`C1=2 CkHC!kL2.RIH`C1/: (3-11)

The term kHCDn!kL2.RIH`/ can simply be introduced on the right-hand side of this estimate to
yield (3-6), thanks to the form of the first-order operator PEC . To obtain estimate (3-7), we compute
2 RehPE�!; iH�!i. The argument is similar, but the trace term comes out with the opposite sign. �
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For the operator PFC, we can also obtain a microlocal estimate. We place ourselves in a microlocal
region where fC D �'C �mC is positive. More precisely, let �.x; �; � 0/ 2 S0

� be such that j� 0j � C�

and fC � C1� in supp.�/, C1 > 0, and j� 0j � C 0� in supp.1��/.

Lemma 3.3. Let ` 2 R. There exist �1 � 1 and C > 0 such that

C
�

HCPFCopw.�/!




L2.RIH`/CkHC!k

�
�
ˇ̌
opw.�/!jxnD0C

ˇ̌
H`C1=2 C



HCopw.�/!




L2.RIH`C1/
C


HCDnopw.�/!




L2.RIH`/;

for � � �1 and ! 2 Sc.R
n/.

As for (3-6) of Lemma 3.2, up to a harmless remainder term, we obtain an elliptic estimate in this
microlocal region.

Proof. Let  � be as defined in Section 3A, and let Q � be as in the proof of Lemma 3.2. We set

Qf˙ D �'
0
� Qm˙ 2 S1

� ;
QF˙ D opw. Qf˙/: (3-12)

We have
Qf˙ D �'

0
� Qm˙ D �'

0
�m˙.1� Q �/D f˙C Q �m˙ � f˙:

This gives QfC � C� in supp.�/.
We set uD op.1� �/opw.�/!. Following the proof of Lemma 3.2, for s D 2`C 1, we obtain

RehPFCu; iHCƒ
suiC kHC!k

2
CkHCuk2

L2.RIH`C1=2/
& jujxnD0C j

2
H`C1=2 CReh QFCu;HCƒ

sui:

Let now Q� 2 S0
� satisfy the same properties as �, with Q�D 1 on a neighborhood of supp.�/. We then

write
QfC D LfCC r; with LfC D QfC Q�C�.1� Q�/ 2 S1

� ; r D . QfC��/.1� Q�/ 2 S1
� :

As supp.1� Q�/\ supp.�/ D ∅, we find r].1� �/]� 2 S�1� . Since LfC � C� by construction, with
Lemma A.2 we obtain

RehPFCu; iHCƒ
suiC kHC!k

2
CkHCuk2

L2.RIH`C1=2/
& jujxnD0C j

2
H`C1=2 CkHCuk2

L2.RIH`C1/
:

With the Young inequality, taking � sufficiently large, we obtain

kHCPFCukL2.RIH`/CkHC!k& jujxnD0C jH`C1=2 CkHCukL2.RIH`C1/:

Invoking the corresponding estimate provided by Lemma 3.1 for opw.�/!,

HCPFCop. �/opw.�/!




L2.RIH`/

&
ˇ̌
op. �/opw.�/!jxnD0C

ˇ̌
H`C1=2 C



HCop. �/opw.�/!




L2.RIH`C1/
;

and arguing as in the end of the proof of Lemma 3.2, we obtain the result. �

For the operator PF� we can also obtain a microlocal estimate. We place ourselves in a microlocal
region where f� D �'��m� is positive. More precisely, let �.x; �; � 0/ 2 S0

� be such that j� 0j � C� and
f� � C1� in supp.�/, C1 > 0, and j� 0j � C 0� in supp.1��/.
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Lemma 3.4. Let ` 2 R. There exist �1 � 1 and C > 0 such that

C
�
kH�PF�ukL2.RIH`/CkH�!kCkH�Dn!kC jujxnD0� jH`C1=2

�
� kH�ukL2.RIH`C1/; (3-13)

for � � �1 and uD a�nnPE�opw.�/! with ! 2 Sc.R
n/.

Proof. Let  � be defined as in Section 3A. We define Qf� and QF� as in (3-12). We have Qf� � f� � C�

in supp.�/. We set z D op.1� �/u and for s D 2`C 1, we compute

2 RehPF�z; iH�ƒ
szi D hi ŒDn;H��z; ƒ

sziC ihŒS�; ƒ
s �z;H�ziC 2 RehF�z;H�ƒ

szi

� �jzjxnD0� j
2
H`C1=2 C 2 RehF�z;H�ƒ

szi �CkH�zk2
L2.RIH`C1=2/

:

Arguing as in the proof of Lemma 3.2 (see (3-9) and (3-10)), we obtain

2 RehPF�z; iH�ƒ
sziCCkH�uk2CjzjxnD0� j

2
H`C1=2 CCkH�zk2

L2.RIH`C1=2/
� 2 Reh QF�z;H�ƒ

szi:

Let now Q� 2 S0
� satisfy the same properties as �, with Q�D 1 on a neighborhood of supp.�/. We then

write
Qf� D Lf�C r; with Lf� D Qf� Q�C�.1� Q�/ 2 S1

� ; r D . Qf���/.1� Q�/ 2 S1
� :

As Lf� � C� and supp.1� Q�/\ supp.�/D∅, with Lemma A.2 we obtain, for � large,

2 RehPF�z; iH�ƒ
sziCCkH�uk2CjzjxnD0� j

2
H`C1=2CCkH�zk2

L2.RIH`C1=2/
CkH�!k

2
CkH�Dn!k

2

� C 0kH�zk2
L2.RIH`C1/

:

With the Young inequality and taking � sufficiently large, we then find

kH�PF�zkL2.RIH`/CkH�ukC jzjxnD0� jH`C1=2 CkH�!kCkH�Dn!k& kH�zkL2.RIH`C1/:

Invoking the corresponding estimate provided by Lemma 3.1 for u yields

H�PF�op. �/u




L2.RIH`/C
ˇ̌
op. �/ujxnD0�

ˇ̌
H`C1=2 &



H�op. �/u




L2.RIH`C1/
;

and arguing as in the end of Lemma 3.2, we obtain the result. �

3C. Negative imaginary part on the negative half-line. Here we place ourselves in a microlocal region
where f� D �'� �m� is negative. More precisely, let �.x; �; � 0/ 2 S0

� be such that j� 0j � C� and
f� � �C1� in supp.�/, C1 > 0. We have the following lemma, whose form is adapted to our needs in
the next section. Up to harmless remainder terms, this can also be considered as a good elliptic estimate.

Lemma 3.5. There exist �1 � 1 and C > 0 such that

C
�
kH�PF�ukCkH�!kCkH�Dn!k

�
� jujxnD0� jH1=2 CkH�ukL2.RIH1/; (3-14)

for � � �1 and uD a�nnPE�opw.�/! with ! 2 Sc.R
n/.
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Proof. We compute

2 RehPF�u;�iH�ƒ
1ui D hi ŒDn;�H��u; ƒ

1ui � ihŒS�; ƒ
1�u;H�uiC 2 Reh�F�u;H�ƒ

1ui

� jujxnD0� j
2
H1=2 C 2 Reh�F�u;H�ƒ

1ui �CkH�uk2
L2.RIH1=2/

:

Let now Q� 2 S0
� satisfy the same properties as �, with Q�D 1 on a neighborhood of supp.�/. We then

write
f� D Lf�C r; with Lf� D f� Q���.1� Q�/; r D .f�C�/.1� Q�/:

Observe that f� Q� 2 S1
� because of the support of Q�. Hence Lf� 2 S1

� . As � Lf� � C�, with Lemma A.2
we obtain, for � large, Reh�opw. Lf�/u;H�ƒ1ui & kH�uk2

L2.RIH1/
. Note that r does not satisfy the

estimates of the semiclassical calculus because of the term m�.1� Q�/. However, we have

opw.r/uD opw.r/a�nnopw.�/Dn!C opw.r/a�nnS�opw.�/!C iopw.r/a�nnE�opw.�/!:

Applying Lemma A.4 and using that 1� Q� 2 S0
� � S0 yields

opw.r/uDR! with R 2 op.S1
� /DnC op.S2

� /:

As supp.1 � Q�/ \ supp.�/ D ∅, the composition formula (A-7) (which is valid in this case — see
Lemma A.4) yields R 2 op.S�1� /DnC op.S�1� /. We thus find, for � sufficiently large,

RehPF�u;�iH�ƒ
1uiC kH�!k

2
CkH�Dn!k

2 & jujxnD0� j
2
H1=2 CkH�uk2

L2.RIH1/
;

and we conclude with the Young inequality. �

3D. Increasing imaginary part on a half-line. Here we allow the symbols f˙ to change sign. For the
first-order factor PF˙

, this will lead to an estimate that exhibits a loss of a half-derivative, as can be
expected.

Let  � be as defined in Section 3A, and let Q � be as in the proof of Lemma 3.2. We define Qf˙ and
QF˙ as in (3-12), and set QPF˙

DDnCS˙C i QF˙.
As supp. Q �/ remains away from the sets ff˙ D 0g, the subellipticity property of Lemma 2.8 is

preserved for Qf˙ in place of f˙. We shall use the following inequality.

Lemma 3.6. There exist C > 0 such that for � > 0 sufficiently large, we have

�˙ D � Qf
2
˙C �f�nC s˙; Qf˙g � C�2;

with �2 D �2Cj� 0j2.

Proof. If j Qf˙j � ı�, for ı small, then Qf˙ D f˙ and �f�nC s˙; Qf˙g � C�2, by Lemma 2.8.
If j Qf˙j � ı�, observing that �f�n C s˙; Qf˙g 2 �S1

� � S2
� , we obtain �˙ � C�2, by choosing �

sufficiently large. �

We now prove the following estimate for PF˙
.
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Lemma 3.7. Let ` 2 R. There exist �1 � 1 and C > 0 such that

C
�
kH˙PF˙

!kL2.RIH`/Cj!jxnD0˙ jH`C1=2

�
� ��1=2

�
kH˙!kL2.RIH`C1/CkH˙Dn!kL2.RIH`/

�
;

for � � �1 and ! 2 Sc.R
n/.

Proof. We set uD op.1� �/!. We start by invoking (3-9), and the fact that Œ QPFC; ƒ
`� 2 op.S`� /, and

write
kHC QPFCƒ

`uk. kHCƒ` QPFCukCkHCŒ QPFC; ƒ
`�uk

. kHC QPFCukL2.RIH`/CkHCukL2.RIH`/

. kHCPFCukL2.RIH`/CkHC!k CkHCukL2.RIH`/:

(3-15)

We set u` Dƒ
`u. We then have

kHC QPFCu`k
2
D


HC.DnCSC/u`



2
CkHC QFCu`k

2
C 2 Re

˝
.DnCSC/u`; iHC QFCu`

˛
� ��1 Re

˝�
� QF2
CC i�

�
DnCSC; QFC

��
u`;HCu`

˛
Chi ŒDn;HC�u`; QFCu`i;

if ���1 � 1. As the principal symbol (in the semiclassical calculus) of � QF2
CC i�

�
DnCSC; QFC

�
is

�C D � Qf
2
CC �f�nC sC; QfCg, Lemmata 3.6 and A.2 yield

kHC QPFCu`k
2
Cju`j

2
H1=2 & ��1

kHCu`k
2
L2.RIH1/

;

for � large, that is, � large. With (3-15) we obtain, for � sufficiently large,

kHCPFCukL2.RIH`/CkHC!kC jujH`C1=2 & ��1=2
kHCukL2.RIH`C1/:

We now invoke the corresponding estimate provided by Lemma 3.1,

HCPFCop. �/!




L2.RIH`/ &
ˇ̌
op. �/!jxnD0C

ˇ̌
H`C1=2 C



HCop. �/!




L2.RIH`C1/
;

and we proceed as in the end of the proof of Lemma 3.2 to obtain the result for PFC. The same
computation and arguments, mutatis mutandis, give the result for PF�. �

4. Proof of the Carleman estimate

With the estimates for the first-order factors obtained in Section 3, we shall now prove Proposition 2.1,
which gives the result of Theorems 1.1 and 2.2 (see the end of Section 2A).

The Carleman estimates we prove are well known away from the interface fxn D 0g. Since local
Carleman estimates can be patched together, we may thus assume that the compact set K in the statements
of Theorems 1.1 and 2.2 is such that jxnj is sufficiently small for the arguments below to be carried
out. Hence, we shall assume the functions w˙ in Theorem 2.2 (resp. v˙ in Proposition 2.1) have small
supports near 0 in the xn-direction.
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4A. The geometric hypothesis. In Section 2D, we chose a weight function ' that satisfies the condition

˛C

˛�
> sup

x0;�0

j�0j�1

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
; ˛˙ D @xn

'˙jxnD0˙ : (4-1)

Let us explain the immediate consequences of that assumption. First of all, we can reformulate it by
saying that

˛C

˛�
D �2 sup

x0;�0

j�0j�1

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
for some � > 1: (4-2)

Let 1< �0 < � .
Consider .x0; � 0; �/ 2 Rn�1 �Rn�1 �RC;�, j� 0j � 1, such that

�˛C � �0mC.x
0; � 0/jxnD0C : (4-3)

We then have

�˛C�mC.x
0; � 0/jxnD0C � �˛C.1� �

�1
0 /�

�0� 1

2�0

�˛CC
�0� 1

2
mC.x

0; � 0/jxnD0C � C�: (4-4)

We choose � sufficiently large, say � � �2 > 0, that this inequality remains true for 0 � j� 0j � 2. It
also remains true for xn > 0 small. As fC D �.'0�˛C/C �˛C�mC.x; �

0/, for jxnj small, we obtain
fC � C�, which means that fC is elliptic positive in that region.

Second, if we now have j� 0j � 1 and

�˛C � �mC.x
0; � 0/jxnD0C ; (4-5)

we get that �˛� � ��1m�.x
0; � 0/jxnD0� : otherwise we would have �˛� > ��1m�.x

0; � 0/jxnD0� and
thus

m�.x
0; � 0/jxnD0�

�˛�
< � �

�mC.x
0; � 0/jxnD0C

˛C
;

implying

˛C

˛�
< �2

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
� �2 sup

x0;�0

j�0j�1

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
D
˛C

˛�
; which is impossible.

As a consequence, we have

�˛��m�.x
0; � 0/jxnD0� � �m�.x

0; � 0/jxnD0�
.� � 1/

�

� �m�.x
0; � 0/jxnD0�

.� � 1/

2�
�
.� � 1/

2
�˛� � �C�: (4-6)

With f�D �.'0�˛�/C�˛��m�.x; �
0/, for jxnj sufficiently small, we obtain f� ��C�, which means

that f� is elliptic negative in that region.

We have thus proven the following result.
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Lemma 4.1. Let � > �0 > 1 and ˛˙ be positive numbers such that (4-2) holds. For s > 0, we define the
following “cones” in Rn�1

x0 �Rn�1
�0
�R�C:

�s D
˚
.x0; �; � 0/ W j� 0j< 2 or �˛C > smC.x

0; � 0/jxnD0C
	
;e�s D

˚
.x0; �; � 0/ W j� 0j> 1 and �˛C < smC.x

0; � 0/jxnD0C
	
:

For jxnj sufficiently small and � sufficiently large, we have Rn�1 �Rn�1 �R�C D ��0
[e�� and

��0
�
˚
.x0; � 0; �/ 2 Rn�1

�Rn�1
�R�C W fC.x; �

0/� C�; if 0� xn small
	
;e�� � ˚.x0; � 0; �/ 2 Rn�1

�Rn�1
�R�C W f�.x; �

0/� �C�; if jxnj small; xn � 0
	
:

N.B. The key result for the sequel is that property (4-1) is securing the fact that the overlapping open
regions ��0

and e�� are such that on ��0
, fC is elliptic positive and on e�� , f� is elliptic negative. Using

a partition of unity and symbolic calculus, we shall be able to assume that either FC is elliptic positive,
or F� is elliptic negative.

N.B. Note that we can keep the preliminary cut-off region of Section 3A away from the overlap of ��0

and e�� by choosing � sufficiently small (see (3-5) and Lemma 3.1). This is illustrated in Figure 4.

With the two overlapping “cones”, for � � �2, we introduce a homogeneous partition of unity

1D �0.x
0; � 0; �/C�1.x

0; � 0; �/; supp.�0/� ��0„ ƒ‚ …
j�0j.�; fC elliptic > 0

; supp.�1/�e��„ ƒ‚ …
j�0j&�; f� elliptic < 0

: (4-7)

Note that �0j , j D 0; 1, are supported at the overlap of the regions ��0
and e�� , where � . j� 0j. Hence, �0

and �1 satisfy the estimates of the semiclassical calculus and we have �0, �1 2 S0
� . With these symbols

�

j� 0j

Q��

elliptic �
F�

ellipticC
FC

��0 �˛C D �0mC.x
0; �0/jxnD0C

�˛C D �mC.x
0; �0/jxnD0C

�� D h�0i

Figure 4. The overlapping microlocal regions ��0
and e�� in the �; j� 0j plane above a

point x0. Dashed is the region used in Section 3A, which is kept away from the overlap
of ��0

and e�� .
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we associate the operators

„j D opw.�j /; j D 0; 1; and we have „0C„1 D Id: (4-8)

Remark 4.2. Here we have chosen to let �0 and �1 (resp. „0 and „1) be independent of xn. As the
functions v˙ have supports in which jxnj is small (see the introductory paragraph of this section), we can
further introduce a cut-off in the xn direction. The lemmata of Section 3 can then be applied directly.

By the transmission conditions (2-21), we find

„jvCjxnD0C �„jv�jxnD0� D„j�' (4-9)

and

aCnn

�
DnCTCC i�'0C

�
„jvCjxnD0C � a�nn

�
DnCT�C i�'0�

�
„jv�jxnD0�

D„j‚' C opw.�0/vjxnD0C C opw. Q�0/�' ; j D 0; 1;

with �0; Q�0 2 S0
� that originate from commutators and (4-9). Defining

Vj ;˙ D a˙nn

�
DnCS˙C i�'0˙/„jv˙jxnD0˙ (4-10)

and recalling (2-19), we find

Vj ;C�Vj ;� D„j‚' C opw.�1/vjxnD0C C opw. Q�1/�' ; �1; Q�1 2 S0
� : (4-11)

We shall now prove microlocal Carleman estimates in the regions ��0
and e�� .

4B. Region ��0
: both roots are positive on the positive half-line. On the one hand, by Lemma 3.2, we

have 

HCPC„0vC


& ˇ̌V0;C� iaCnnMC„0vCjxnD0C

ˇ̌
H1=2 C



HCPFC„0vC




L2.RIH1/
; (4-12)

where the operator PC is defined in (2-7) (see also (2-17)). The positive ellipticity of FC on the
supp�0\ supp.vC/ allows us to reiterate the estimate by Lemma 3.3 to obtain

HCPC„0vC



CkHCvCk& ˇ̌V0;C� iaCnnMC„0vCjxnD0C

ˇ̌
H1=2 C

ˇ̌
„0vCjxnD0C

ˇ̌
H3=2

C


HC„0vC




L2.RIH2/

C


HCDn„0vC




L2.RIH1/

:

Since we also have

jV0;CjH1=2 .
ˇ̌
V0;C� iaCnnMC„0vCjxnD0C

ˇ̌
H1=2 C

ˇ̌
„0vCjxnD0C

ˇ̌
H3=2 ; (4-13)

writing the H1=2 norm as j : jH1=2 � �1=2j : jL2 C j : jH 1=2 and using the regularity of MC 2 op.S1/ in
the standard calculus, we obtain

HCPC„0vC



CkHCvCk& jV0;CjH1=2 C
ˇ̌
„0vCjxnD0C

ˇ̌
H3=2

C


HC„0vC




L2.RIH2/

C


HC„0DnvC




L2.RIH1/

: (4-14)
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On the other hand, with Lemma 3.7, we have, for k D 0 or k D 1
2

,

H�P�„0v�




L2.RIH�k/
C
ˇ̌
V0;�C ia�nnM�„0v�jxnD0�

ˇ̌
H1=2�k & ��1=2



H�PE�„0v�




L2.RIH1�k/
:

This gives

H�P�„0v�


C �k

ˇ̌
V0;�C ia�nnM�„0v�jxnD0�

ˇ̌
H1=2�k & �k�1=2



H�PE�„0v�




L2.RIH1�k/
;

which with Lemma 3.2 yields

H�P�„0v�


C �k

ˇ̌
V0;�C ia�nnM�„0v�jxnD0�

ˇ̌
H1=2�k C �

k�1=2
ˇ̌
„0v�jxnD0�

ˇ̌
H3=2�k

& �k�1=2
�

H�„0v�




L2.RIH2�k/

C


H�„0Dnv�




L2.RIH1�k/

�
:

Arguing as for (4-13), we find

H�P�„0v�


C �k

jV0;�jH1=2�k C �k
ˇ̌
„0v�jxnD0�

ˇ̌
H3=2�k

& �k�1=2
�

H�„0v�




L2.RIH2�k/

C


H�„0Dnv�




L2.RIH1�k/

�
: (4-15)

Now, from the transmission conditions (4-9)–(4-11), by adding "(4-15)C (4-14), we obtain

H�P�„0v�


C 

HCPC„0vC



C �k
�
j�' jH3=2�k Cj‚' jH1=2�k CjvjxnD0C jH1=2�k

�
CkHCvCk

& �k
�
jV0;�jH1=2�k CjV0;CjH1=2�k C

ˇ̌
„0v�jxnD0�

ˇ̌
H3=2�k C

ˇ̌
„0vCjxnD0C

ˇ̌
H3=2�k

�
C �k�1=2

�
k„0vkL2.RIH2�k/C



H�„0Dnv�




L2.RIH1�k/
C


HC„0DnvC




L2.RIH1�k/

�
;

by choosing " > 0 sufficiently small and � sufficiently large. Finally, recalling the form of V0;˙ and
arguing as for (4-13), we obtain

kH�P�„0v�kCkHCPC„0vCkC �
k
�
j�' jH

3
2
�k
Cj‚' jH

1
2
�k
CjvjxnD0C jH

1
2
�k

�
CkHCvCk

&�k
�
j„0Dnv�jxnD0� jH

1
2
�k
Cj„0DnvCjxnD0C jH

1
2
�k
Cj„0v�jxnD0� jH

3
2
�k
Cj„0vCjxnD0C jH

3
2
�k

�
C �k� 1

2

�
k„0vkL2.RIH2�k/CkH�„0Dnv�kL2.RIH1�k/CkHC„0DnvCkL2.RIH1�k/

�
; (4-16)

for k D 0 or k D 1
2

.

Remark 4.3. In the case k D 0, recalling the form of the second-order operators P˙, we can estimate
the additional terms ��1=2



H˙„0D2
nv˙



.

4C. Region Q�� : only one root is positive on the positive half-line. This case is more difficult a priori,
since we cannot expect to control vjxnD0C directly from the estimates of the first-order factors. Neverthe-
less, when the positive ellipticity of FC is violated, F� is elliptic negative: this is the result of our main
geometric assumption in Lemma 4.1.

As in (4-12), we have

HCPC„1vC


& ˇ̌V1;C� iaCnnMC„1vCjxnD0C

ˇ̌
H1=2 C



HCPFC„1vC




L2.RIH1/
;
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and using Lemma 3.5 for the negative half-line, we have

H�P�„1v�


C 

H�v�



C 

H�Dnv�




&
ˇ̌
V1;�C ia�nnM�„1v�jxnD0�

ˇ̌
H1=2 C



H�PE�„1v�




L2.RIH1/
:

A quick glance at the above estimates shows that none could be iterated in a favorable manner, since FC

could be negative on the positive half-line and E� is indeed positive on the negative half-line. We have
to use the additional information given by the transmission conditions. From the above inequalities, we
control

�k
�ˇ̌
V1;�C ia�nnM�„1v�jxnD0�

ˇ̌
H1=2�k C

ˇ̌
�V1;CC iaCnnMC„1vCjxnD0C

ˇ̌
H1=2�k

�
for k D 0 or 1

2
, which, by the transmission conditions (4-9)–(4-11), implies the control of

�k
ˇ̌̌
V1;��V1;CC ia�nnM�„1v�jxnD0� C iaCnnMC„1vCjxnD0C

ˇ̌̌
H1=2�k

� �k
ˇ̌�

a�nnM�CaCnnMC
�
„1vCjxnD0C

ˇ̌
H1=2�k �C�k

�
j‚' jH1=2�kCj�' jH3=2�kC

ˇ̌
vCjxnD0C

ˇ̌
H1=2�k

�
:

Let now Q�1 2 S0
� satisfy the same properties as �1, with Q�1D 1 on a neighborhood of supp.�1/. We then

write

m˙ D Lm˙C r; with Lm˙ Dm˙ Q�1C�.1� Q�1/; r D .m˙C�/.1� Q�1/:

We have Lm˙ �C� and Lm˙ 2 S1
� because of the support of Q�1. Because of the supports of 1� Q�1 and �1,

in particular � . j� 0j in supp.�1/, Lemma A.4 yields r]�1 2 S�1� . With Lemma A.2 and (4-9), we thus
obtainˇ̌
V1;�C ia�nnM�„1v�jxnD0�

ˇ̌
H1=2�k C

ˇ̌
�V1;CC iaCnnMC„1vCjxnD0C

ˇ̌
H1=2�k

Cj‚' jH1=2�k Cj�' jH3=2�k C
ˇ̌
vCjxnD0C

ˇ̌
H1=2�k &

ˇ̌
„1v�jxnD0�

ˇ̌
H3=2�k C

ˇ̌
„1vCjxnD0C

ˇ̌
H3=2�k :

From the form of V1;C we obtainˇ̌
V1;�C ia�nnM�„1v�jxnD0�

ˇ̌
H1=2�k C

ˇ̌
�V1;CC iaCnnMC„1vCjxnD0C

ˇ̌
H1=2�k

Cj‚' jH1=2�k Cj�' jH3=2�k C
ˇ̌
vCjxnD0C

ˇ̌
H1=2�k

&
ˇ̌
„1v�jxnD0�

ˇ̌
H3=2�kC

ˇ̌
„1vCjxnD0C

ˇ̌
H3=2�kC

ˇ̌
„1Dnv�jxnD0�

ˇ̌
H1=2�kC

ˇ̌
„1DnvCjxnD0C

ˇ̌
H1=2�k :

We thus have

H�P�„1v�


C 

HCPC„1vC




C �k

�
j‚' jH1=2�k Cj�' jH3=2�k C

ˇ̌
vCjxnD0C

ˇ̌
H1=2�k

�
CkH�v�kCkH�Dnv�k

& �k
�ˇ̌
„1v�jxnD0�

ˇ̌
H3=2�k C

ˇ̌
„1vCjxnD0C

ˇ̌
H3=2�k C

ˇ̌
„1Dnv�jxnD0�

ˇ̌
H1=2�k

C
ˇ̌
„1DnvCjxnD0C

ˇ̌
H1=2�k C



H�PE�„1v�




L2.RIH1�k/
C


HCPFC„1vC




L2.RIH1�k/

�
;
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for k D 0 or 1
2

. The remaining part of the discussion is very similar to the last part of the argument in the
previous subsection. By Lemmata 3.2 and 3.7, we have

H�PE�„1v�




L2.RIH1�k/

C
ˇ̌
„1v�jxnD0�

ˇ̌
H3=2�k

&


H�„1v�




L2.RIH2�k/

C


H�„1Dnv�




L2.RIH1�k/

and

HCPFC„1vC




L2.RIH1�k/
C
ˇ̌
„1vCjxnD0C

ˇ̌
H3=2�k

& ��1=2
�

HC„1vC




L2.RIH2�k/

C


HC„1DnvC




L2.RIH1�k/

�
:

Since
ˇ̌
„1v˙jxnD0˙

ˇ̌
H3=2�k are already controlled, we also control the right-hand side of the above

inequalities and have

kH�P�„1v�kCkHCPC„1vCkC �
k
�
j‚' jH

1
2
�k
Cj�' jH

3
2
�k
CjvCjxnD0C jH

1
2
�k

�
CkH�v�kCkH�Dnv�k

&�k
�
j„1v�jxnD0� jH

3
2
�k
Cj„1vCjxnD0C jH

3
2
�k
Cj„1Dnv�jxnD0� jH

1
2
�k
Cj„1DnvCjxnD0C jH

1
2
�k

�
C �k� 1

2

�
k„1vkL2.RIH2�k/CkH�„1Dnv�kL2.RIH1�k/CkHC„1DnvCkL2.RIH1�k/

�
: (4-17)

Remark 4.4. In the case k D 0, recalling the form of the second-order operators P˙, we can estimate
the additional terms ��1=2



H˙„1D2
nv˙



.

4D. Patching together microlocal estimates. We now sum estimates (4-16) and (4-17) together. By the
triangle inequality, this gives, for k D 0 or 1

2
,X

jD0;1

�
kH�P�„jv�kCkHCPC„jvCk

�
C �k

�
j‚' jH

1
2
�k
Cj�' jH

3
2
�k
CjvCjxnD0C jH

1
2
�k

�
CkHCvCkCkH�v�kCkH�Dnv�k

& �k
�
jv�jxnD0� jH

3
2
�k
CjvCjxnD0C jH

3
2
�k
CjDnv�jxnD0� jH

1
2
�k
CjDnvCjxnD0C jH

1
2
�k

�
C �k� 1

2

�
kvkL2.RIH2�k/CkH�Dnv�kL2.RIH1�k/CkHCDnvCkL2.RIH1�k/

�
:

For � sufficiently large, we now obtainX
jD0;1

�

H�P�„jv�


C 

HCPC„jvC



�C �k
�
j‚' jH1=2�k Cj�' jH3=2�k

�
& �k

�ˇ̌
v�jxnD0�

ˇ̌
H3=2�k C

ˇ̌
vCjxnD0C

ˇ̌
H3=2�k C

ˇ̌
Dnv�jxnD0�

ˇ̌
H1=2�k C

ˇ̌
DnvCjxnD0C

ˇ̌
H1=2�k

�
C �k�1=2

�
kvkL2.RIH2�k/C



H�Dnv�




L2.RIH1�k/
C


HCDnvC




L2.RIH1�k/

�
:
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Arguing with commutators, as in the end of Lemma 3.2, noting here that the second-order operators P˙
belong to the semiclassical calculus, that is, P˙ 2 S2

� , we obtain, for � sufficiently large,

H�P�v�


C 

HCPCvC



C �k
�
j‚' jH1=2�k Cj�' jH3=2�k

�
& �k

�ˇ̌
v�jxnD0�

ˇ̌
H3=2�k C

ˇ̌
vCjxnD0C

ˇ̌
H3=2�k C

ˇ̌
Dnv�jxnD0�

ˇ̌
H1=2�k C

ˇ̌
DnvCjxnD0C

ˇ̌
H1=2�k

�
C �k�1=2

�
kvkL2.RIH2�k/C



H�Dnv�




L2.RIH1�k/
C


HCDnvC




L2.RIH1�k/

�
:

In particular, this estimate allows us to absorb the perturbation in ‰1 as defined by (2-16) by taking
� large enough. For k D 1

2
, we obtain the result of Proposition 2.1, which concludes the proof of the

Carleman estimate.

N.B. The case kD 0 gives higher Sobolev norm estimates of the trace terms v˙jxnD0˙ and Dnv˙jxnD0˙ .
It also allows one to estimate ��1=2



H˙D2
nv˙



, as noted in Remarks 4.3 and 4.4. These estimates are
obtained at the price of higher requirements (one additional tangential half-derivative) on the nonhomoge-
neous transmission condition functions � and ‚.

4E. Convexification. We want now to slightly modify the weight function ', for instance to allow some
convexification. We started with ' DHC'CCH�'�, where '˙ were given by (2-22) and our proof
relied heavily on a smooth factorization in first-order factors. We modify '˙ into

ˆ˙.x
0;xn/D ˛˙xnC

1
2
ˇx2

n„ ƒ‚ …
'˙.xn/

C�.x0;xn/; � 2 C1.�IR/; jd�j bounded on �.

We shall prove below that the Carleman estimates of Theorems 1.1 and 2.2 also hold in this case if we
choose k�0kL1 sufficiently small.

We start by inspecting what survives in our factorization argument. We have from (2-7) P˙ D
.DC i�dˆ˙/ �A˙.DC i�dˆ˙/; so that, modulo ‰1,

P˙ � a˙nn

��
DnCS˙.x;D

0/C i�
�
@nˆ˙CS˙.x; @x0ˆ˙/

��2
C

b˙
jk

a˙nn

�
Dj C i�@jˆ˙

��
Dk C i�@kˆ˙

��
: (4-18)

(See also (2-10).) The new difficulty comes from the fact that the roots in the variable Dn are not necessarily
smooth: when ˆ does not depend on x0, the symbol of the term b˙

jk
.Dj C i�@jˆ˙/.Dk C i�@kˆ˙/

equals b˙
jk
�j�k and thus is positive elliptic with a smooth positive square root. It is no longer the case

when we have an actual dependence of ˆ upon the variable x0; nevertheless, we have, as @x0ˆ˙ D @x0�,

Re
�

b˙
jk

a˙nn

.�j C i�@j�/.�k C i�@k�/

�
D

b˙
jk

a˙nn

�j�k � �
2

b˙
jk

a˙nn

@j�@k� � .�
˙
0 /

2
j� 0j2� �2.�˙1 /

2
j@x0�j

2

�
3

4
.�˙0 /

2
j� 0j2 if �k@x0�kL1 �

�˙
0

2�˙
1

j� 0j;
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where

�˙0 D inf
x0;�
j�0jD1

�
b˙

jk

a˙nn

�j�k

�1=2

jxnD0˙
; �˙1 D sup

x0;�
j�0jD1

�
b˙

jk

a˙nn

�j�k

�1=2

jxnD0˙
:

As a result, the roots are smooth when �k@x0�kL1 �
�˙

0

2�˙
1

j� 0j.

In this case, we define m˙ 2 S1 such that

for j� 0j � 1; m˙.x; �
0/D

�
b˙

jk

a˙nn

.�j C i�@j�/.�k C i�@k�/

�1=2

; m˙.x; �
0/� C h� 0i:

Here we use the principal value of the square root function for complex numbers.
Introducing

e˙ D �
�
@nˆ˙CS˙.x; @x0�/

�
CRem˙.x; � 0/; f˙D �

�
@nˆ˙CS˙.x; @x0�/

�
�Rem˙.x; � 0/;

we set E˙ D op.e˙/ and F˙ D op.f˙/ and

PE˙ DDnCS˙.x;D
0/� opw.Imm˙/C iE˙;

PF˙ DDnCS˙.x;D
0/C opw.Imm˙/C iF˙:

Modulo the operator class ‰1, as in Section 2C, we may write

PC � PECaCnnPFC; P� � PF�a�nnPE�:

We keep the notation m˙ for the symbols that correspond to the previous sections, that is, if � vanishes:

m˙.x; �
0/D

�
b˙

jk

a˙nn

�j�k

�1=2

; j� 0j � 1:

As above, see (4-1), we choose the weight function such that the following property is fulfilled:

˛C

˛�
> sup

x0;�0

j�0j�1

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
; ˛˙ D @xn

'˙jxnD0˙ I

and we let � > 1 be such that
˛C

˛�
D �2 sup

x0;�0

j�0j�1

mC.x
0; � 0/jxnD0C

m�.x0; � 0/jxnD0�
:

We also introduce 1< �0 < � . As in Section 2C, we set f˙ D �'0˙�m˙ (compare with f˙ above).
We can choose ˛C=k@x0�kL1 large enough that

�mC
jxnD0C

˛C
<

�C
0
j� 0j

4�C
1
k@x0�kL1
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and

f˙ � C� if � � j� 0j
�C

0

4�C
1
k@x0�kL1

for jxnj sufficiently small: (4-19)

We may then consider the following cases.

(1) When �˛C � �mC.x0; � 0/jxnD0C , arguing as in (4-5)–(4-6), we find that

�.˛�Cˇxn/�m�.x
0; � 0/jxnD0� � �C�;

if jxnj is sufficiently small. It follows that F� is elliptic negative if ˛C=k�0kL1 is sufficiently large. In
this region we may thus argue as we did in Section 4C.

(2) When
�C

0
j� 0j

2�C
1
k@x0�kL1

� � �
�0mC.x

0; � 0/

˛C
;

the factorization is valid. Arguing as in (4-3)–(4-4), we find that

�.˛CCˇxn/�mC.x
0; � 0/� C�;

if jxnj is sufficiently small. It follows that FC is elliptic positive if ˛C=k�0kL1 is sufficiently large. In
this region we may thus argue as we did in Section 4B.

It is important to note that for ˇ large and k�0kL1 and k�00kL1 sufficiently small, the weight functions
ˆ˙ satisfy the (necessary and sufficient) subellipticity condition (2-26) with a loss of a half-derivative.
Then the counterpart of Lemma 2.8 becomes, for k�0kL1 sufficiently small,

jf˙j � ı� D) C�1� � j� 0j � C� and
˚
�nC s˙C Im.m˙/; f˙

	
� C 0�;

for some ı > 0 chosen sufficiently small. This allows us to then obtain the same results as those of
Lemma 3.7 for the first-order factors PF˙.

(3) Finally we consider the region

� � j� 0j
�C

0

4�C
1
k@x0�kL1

:

There the roots are no longer smooth, but we are well inside an elliptic region; with a perturbation
argument, we may in fact disregard the contribution of �.

By (4-18), we may write

P˙ � a˙nn

��
DnCS˙.x;D

0/C i�@n'˙
�2
C

b˙
jk

a˙nn

Dj Dk

�
„ ƒ‚ …

P0
˙

CR˙; (4-20)

with R˙ DR1;˙.x;D
0; �/DnCR2;˙.x;D

0; �/, where Rj ;˙ 2 opw.Sj
� /, with j D 1; 2, satisfy

Rj ;˙.x;D

0; �/u


� Ck�0kL1kukL2.RIHj /: (4-21)
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The first term P0
˙

in (4-20) corresponds to the conjugated operator in the sections above, where the
weight function only depends on the xn variable. This term can be factored into two pseudodifferential
first-order terms,

P0
C � PECaCnnPFC; P0

� � PF�a�nnPE�; (4-22)

with the notation we introduced in Section 2C. In this third region we have f˙ � C�, by (4-19). Let
�2 2 S0

� be a symbol that localizes in this region and set „2 D opw.�2/.
For k�0kL1 bounded with (4-23), we have

H˙R1;˙Dn„2v˙



. �k
k�0kL1



H˙Dn„2v˙




L2.RIH1�k CC.�/kH˙Dnv˙k; (4-23)

H˙R2;˙Dn„2v˙


. �k

k�0kL1kH˙„2v˙kL2.RIH2�k CC.�/kH˙v˙k; (4-24)

for k D 0 or 1
2

.
On the one hand, arguing as in Section 4B, we have (see (4-14))

HCP0
C„2vC



CkHCvCk
& jV2;CjH1=2 C

ˇ̌
„2vCjxnD0C

ˇ̌
H3=2 CkHC„2vCkL2.RIH2/C



HC„2DnvC




L2.RIH1/
; (4-25)

where V2;˙ is given as in (4-10).
On the other hand, with Lemma 3.4, we have

H�P0
�„2v�




L2.RIH�k/

CkH�v�kCkH�Dnv�kC
ˇ̌
V2;�C ia�nnM�„2v�jxnD0�

ˇ̌
H1=2�k

&


H�PE�„2v�




L2.RIH1�k/

;

for k D 0 or 1
2

, which gives

H�P0
�„2v�



C �k
kH�v�kC �

k
kH�Dnv�kC �

k
ˇ̌
V2;�C ia�nnM�„2v�jxnD0�

ˇ̌
H1=2�k

& �k


H�PE�„2v�




L2.RIH1�k/

:

Combining this with Lemma 3.2, we obtain

H�P0
�„2v�



C �k
�
kH�v�kCkH�Dnv�kC jV2;�jH1=2�k C

ˇ̌
„2v�jxnD0�

ˇ̌
H3=2�k

�
& �k
kH�„2v�kL2.RIH2�k/C �

k


HC„2Dnv�




L2.RIH1�k/

: (4-26)

Now, from the transmission conditions (4-9)–(4-11), by adding "(4-26)C (4-25) we obtain, for " small,

HCP0
C„2vC



C 

H�P0
�„2v�



C �k
�
j�' jH3=2�k Cj‚' jH1=2�k CjvjxnD0C jH1=2�k

�
C �k

�
kH�v�kCkH�Dnv�k

�
CkHCvCkCkHCDnvCk

& �k
�ˇ̌
„2Dnv�jxnD0�

ˇ̌
H1=2�k C

ˇ̌
„2DnvCjxnD0C

ˇ̌
H1=2�k

C
ˇ̌
„2v�jxnD0�

ˇ̌
H3=2�k C

ˇ̌
„2vCjxnD0C

ˇ̌
H3=2�k Ck„2vkL2.RIH2�k/

C


H�„2Dnv�




L2.RIH1�k/

C


HC„2DnvC




L2.RIH1�k/

�
: (4-27)
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With (4-23)–(4-24), we see that the same estimate holds for P˙ in place of P0
˙

for k�0kL1 chosen
sufficiently small. This estimate is of the same quality as those obtained in the two other regions.

Summing up, we have obtained three microlocal overlapping regions and estimates in each of them. The
three regions are illustrated in Figure 5. As we did above, we make sure that the preliminary cut-off
region of Section 3A does not interact with the overlapping zones by choosing � sufficiently small (see
(3-5) and Lemma 3.1).

The overlap of the regions allows us to use a partition of unity argument, and we can conclude as in
Section 4D.

5. Necessity of the geometric assumption on the weight function

Considering the operator L� given by (1-23), we may wonder about the relevance of conditions (1-28) to
derive a Carleman estimate. In the simple model and weight used here, it turns out that we can show that
condition (1-28) is necessary for an estimate to hold. For simplicity, we consider a piecewise constant
case c DHCcCCH�c� as in Section 1E.

Theorem 5.1. Let us assume that (1-29) is violated, that is,

˛C

˛�
<

mC.�
0
0
/

m�.�
0
0
/

for some � 00 2 Rn�1
n 0: (5-1)

Then, for any neighborhood V of the origin, C > 0, and �0 > 0, there exist

v DHCvCCH�v�; v˙ 2 C1c .R
n/;

satisfying the transmission conditions (1-21)–(1-22) at xn D 0, and � � �0 such that

supp.v/� V and CkL�vkL2.Rn�1�R/ � kvkL2.Rn�1�R/:

�

j� 0j

�� D h�0i

F�
elliptic �

�˛C D �mC.x
0; �0/jxnD0C

�˛C D �0mC.x
0; �0/jxnD0C

nonsmooth
roots

2��
C

1
k@x0�kL1 D �

C

0
j�0j

4��
C

1
k@x0�kL1 D �

C

0
j�0j

FC
ellipticC

Figure 5. The overlapping microlocal regions in the case of a convex weight function.
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To prove Theorem 5.1, we wish to construct a function v, depending on the parameter � , such that
kL�vkL2�kvkL2 as � becomes large. The existence of such a quasimode v obviously ruins any hope of
obtaining a Carleman estimate for the operator L with a weight function satisfying (5-1). The remainder
of this section is devoted to this construction.

We set

.M�u/.�
0;xn/DHC.xn/c

C
n .DnC ieC/.DnC ifC/uCCH�.xn/c

�
n .DnC ie�/.DnC if�/u�; (5-2)

that is, the action of the operator L� given in (1-23) in the Fourier domain with respect to x0. Observe that
the terms in each product commute here. We start by constructing a quasimode for M� , that is, functions
u˙.�

0;xn/ compactly supported in the xn variable and in a conic neighborhood of � 0
0

in the variable � 0

with kM�ukL2 �kukL2 , so that u is nearly an eigenvector of M� for the eigenvalue 0.

Condition (5-1) implies that there exists �0 > 0 such that

m�.�
0
0
/

˛�
< �0 <

mC.�
0
0
/

˛C
D) �0˛C�mC.�

0
0/ < 0< �0˛��m�.�

0
0/:

By homogeneity, we may in fact choose .�0; �
0
0
/ such that �2

0
Cj� 0

0
j2D 1. We thus have, using the notation

in (1-23),
fC.xn D 0/D �˛C�mC.�

0/ < 0< f�.xn D 0/D �˛��m�.�
0/;

for .�; � 0/ in a conic neighborhood � of .�0; �
0
0
/ in R�Rn�1. Let �1 2 C1c .R/, 0� �1 � 1, with �1 � 1

in a neighborhood of 0, such that supp. /� � with

 .�; � 0/D �1

�
�

.�2Cj� 0j2/1=2
� �0

�
�1

�ˇ̌̌̌
� 0

.�2Cj� 0j2/1=2
� � 00

ˇ̌̌̌�
:

We thus have
fC.xn D 0/� �C�; C 0� � f�.xn D 0/ in supp. /:

Let .�; � 0/ 2 supp. /. We can solve the equations�
DnC ifC.xn; �

0//
�
qC D 0 on RC; fC.xn; �

0/D �'0.xn/�mC.�
0/D fC.0/C �ˇxn;�

DnC if�.xn; �
0//
�
q� D 0 on R�; f�.xn; �

0/D �'0.xn/�m�.�
0/D f�.0/C �ˇxn;�

DnC ie�.xn; �
0//
�
Qq� D 0 on R�; e�.xn; �

0/D �'0.xn/Cm�.�
0/D e�.0/C �ˇxn;

that is,
qC.�

0;xn/DQC.�
0;xn/qC.�

0; 0/; QC.�
0;xn/D exn.fC.0/C�ˇxn=2/;

q�.�
0;xn/DQ�.�

0;xn/q�.�
0; 0/; Q�.�

0;xn/D exn.f�.0/C�ˇxn=2/;

Qq�.�
0;xn/D QQ�.�

0;xn/ Qq�.�
0; 0/; QQ�.�

0;xn/D exn.e�.0/C�ˇxn=2/:

Since fC.0/ < 0, a solution of the form of qC is a good idea on xn � 0 as long as �ˇxnC 2fC.0/� 0,
that is, xn � 2jfC.0/j=�ˇ. Similarly, as f�.0/ > 0 (resp. e�.0/ > 0), a solution of the form of q� (resp.
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Qq�) is a good idea on xn � 0 as long as �ˇxnC 2f�.0/� 0 (resp. �ˇxnC 2e�.0/� 0). To secure this,
we introduce a cut-off function �0 2 C1c ..�1; 1/I Œ0; 1�/, equal to 1 on

�
�

1
2
; 1

2

�
, and for 
 � 1 we define

uC.�
0;xn/DQC.�

0;xn/ .�; �
0/�0

�
�ˇ
xn

jfC.0/j

�
(5-3)

and

u�.�
0;xn/D aQ�.�

0;xn/ .�; �
0/�0

�
�ˇ
xn

f�.0/

�
C b QQ�.�

0;xn/ .�; �
0/�0

�
�ˇ
xn

e�.0/

�
; (5-4)

with a; b 2 R and
u.� 0;xn/DHC.xn/uC.�

0;xn/CH�.xn/u�.�
0;xn/:

The factor 
 is introduced to control the size of the support in the xn direction. Observe that we can
satisfy the transmission condition (1-21)–(1-22) by choosing the coefficients a and b. Transmission
condition (1-21) implies

aC b D 1: (5-5)

Transmission condition (1-22) and the equations satisfied by QC, Q� and QQ� imply

cCmC D c�.a� b/m�: (5-6)

In particular, note that a� b � 0, which gives a� 1
2

.

Lemma 5.2. For � sufficiently large, we have

kM�uk
2
L2.Rn�1�R/

� C.
 2
C �2/
 �n�1e�C 0�=


and

kuk2
L2.Rn�1�R/

� C�n�2
�
1� e�C 0�=


�
:

See Section AB.3 for a proof.
We now introduce

v˙.x
0;xn/D .2�/

�.n�1/�0

�ˇ̌
�1=2x0

ˇ̌�
LOu˙.x

0;xn/D .2�/
�.n�1/�0

�ˇ̌
�1=2x0

ˇ̌�
Ou˙.�x0;xn/;

that is, a localized version of the inverse Fourier transform (in x0) of u˙. The functions v˙ are smooth
and compactly supported in Rn�1

˙
�R and they satisfy transmission conditions (1-21)–(1-22). We set

v.x0;xn/DHC.xn/vC.x
0;xn/CH�.xn/v�.x

0;xn/. In fact, we have the following estimates.

Lemma 5.3. Let N 2 N. For � sufficiently large, we have

kL�vk2L2.Rn�1�R/
� C.
 2

C �2/
 �n�1e�C 0�=

CC
;N �

�N

and

kvk2
L2.Rn�1�R/

� C�n�2
�
1� e�C 0�=


�
�C
;N �

�N :
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See Section AB.4 for a proof.
We may now conclude the proof of Theorem 5.1. In fact, if V is an arbitrary neighborhood of the

origin, we choose � and 
 sufficiently large that supp.v/� V . We then keep 
 fixed. The estimates of
Lemma 5.3 show that

kL�vkL2.Rn�1�R/kvk
�1
L2.Rn�1�R/

�!
�!1

0:

Remark 5.4. As opposed to the analogy we give at the beginning of Section 1F, the construction of
this quasimode does not simply rely on one of the first-order factors. The transmission conditions are
responsible for this fact. The construction relies on the factor Dn C ifC in xn � 0, that is, a one-
dimensional space of solutions (see (5-3)), and on both factors DnC if� and DnC ie� in xn � 0, that is,
a two-dimensional space of solutions (see (5-4)). See also (5-5) and (5-6).

Appendix

AA. A few facts on pseudodifferential operators.

AA.1. Standard classes and Weyl quantization. We define for m 2 R the class of tangential symbols Sm

as the smooth functions on Rn �Rn�1 such that for all .˛; ˇ/ 2 Nn �Nn�1,

N˛ˇ.a/D sup
.x;�0/2Rn�Rn�1

h� 0i�mCjˇj
ˇ̌
.@˛x@

ˇ

�0
a/.x; � 0/

ˇ̌
<1; (A-1)

with h� 0i2 D 1Cj� 0j2. The quantities on the left-hand side are called the seminorms of the symbol a. For
a 2 Sm, let op.a/ be the operator defined on S.Rn/ by

.op.a/u/.x0;xn/D a.x;D0/u.x0;xn/D

Z
Rn�1

eix0��0a.x0;xn; �
0/ Ou.� 0;xn/ d� 0.2�/1�n; (A-2)

with .x0;xn/ 2 Rn�1 �R, where Ou is the partial Fourier transform of u with respect to the variable x0.
For all .k; s/ 2 Z�R, we have

op.a/ WH k
�
Rxn
IH sCm.Rn�1

x0 /
�
!H k

�
Rxn
IH s.Rn�1

x0 /
�

continuously; (A-3)

and the norm of this mapping depends only on fN˛ˇ.a/gj˛jCjˇj��.k;s;m;n/, where � W Z�R�R�N!N.
We shall also use the Weyl quantization of a, denoted by opw.a/ and given by the formula

.opw.a/u/.x0;xn/D aw.x;D0/u.x0;xn/

D

“
R2n�2

ei.x0�y0/��0a

�
x0Cy0

2
;xn; �

0

�
u.y0;xn/ dy0 d� 0.2�/1�n: (A-4)

Property (A-3) holds as well for opw.a/. A nice feature of the Weyl quantization that we use in this
article is the simple relationship with adjoint operators with the formula

.opw.a//� D opw. Na/; (A-5)
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so that for a real-valued symbol a 2 Sm, we have .opw.a//� D opw.a/. We have also, for aj 2 Smj ,
j D 1; 2,

opw.a1/opw.a2/D opw.a1]a2/; a1]a2 2 Sm1Cm2 ; (A-6)

with, for any N 2 N,

.a1]a2/.x; �/�
X

j<N

�
i�.Dx0 ;D�0 IDy0 ;D�0/

2

�j
a1.x; �/a2.y; �/

j !

ˇ̌̌
.y;�/D.x;�/

2 Sm�N ; (A-7)

where � is the symplectic two-form, that is, �.x; �Iy; �/D y � � �x � �. In particular,

opw.a1/opw.a2/D opw.a1a2/C opw.r1/; r1 2 Sm1Cm2�1; (A-8)

with r1 D
1

2i
fa1; a2gC r2; r2 2 Sm1Cm2�2; (A-9)�

opw.a1/; opw.a2/
�
D opw

�
1

i
fa1; a2g

�
C opw.r3/; r3 2 Sm1Cm2�3; (A-10)

where fa1; a2g is the Poisson bracket. Also, for bj 2 Smj , j D 1; 2, both real-valued, we have�
opw.b1/; iopw.b2/

�
D opw.fb1; b2g/C opw.s3/; s3 real-valued 2 Sm1Cm2�3: (A-11)

Lemma A.1. Let a 2 S1 be such that a.x; � 0/� �h� 0i, with �� 0. Then there exists C > 0 such that

opw.a/CC � �hD0i; .opw.a//2CC � �2
hD0i2:

Proof. The first statement follows from the sharp Gårding inequality [Hörmander 1985a, Chapters18.1,18.5]
applied to the nonnegative first-order symbol a.x; � 0/ � �h� 0i; also, .opw.a//2 D opw.a2/C opw.r/
with r 2 S0, so that the Fefferman–Phong inequality [Hörmander 1985a, Chapter 18.5] applied to the
second-order a2��2h� 0i2 implies the result. �

AA.2. Semiclassical pseudodifferential calculus with a large parameter. We let � 2 R be such that
� � �0 � 1. We set �2 D 1C �2Cj� 0j2. We define, for m 2 R, the class of symbols Sm

� as the smooth
functions on Rn �Rn�1 depending on the parameter � such that for all .˛; ˇ/ 2 Nn �Nn�1,

N˛ˇ.a/D sup
.x;�0/2Rn�Rn�1

���0

��mCjˇj
ˇ̌
.@˛x@

ˇ

�0
a/.x; � 0; �/

ˇ̌
<1: (A-12)

Note that S0
� � S0. The associated operators are defined by (A-2). We can introduce Sobolev spaces and

Sobolev norms which are adapted to the scaling large parameter � . Let s 2 R; we set

kukHs WD kƒsukL2.Rn�1/; with ƒs
WD op.�s/;

and

Hs
DHs.Rn�1/ WD

˚
u 2 S0.Rn�1/ W kukHs <1

	
:
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The space Hs is algebraically equal to the classical Sobolev space H s.Rn�1/, whose norm is denoted by
k : kH s . For s � 0, we have

kukHs � � s
kukL2.Rn�1/CkhD

0
i
sukL2.Rn�1/:

If a 2 Sm
� then, for all .k; s/ 2 Z�R, we have

op.a/ WH k
�
Rxn
IHsCm

�
!H k

�
Rxn
IHs

�
Rn�1

x0

��
continuously; (A-13)

and the norm of this mapping depends only on fN˛ˇ.a/gj˛jCjˇj��.k;s;m;n/, where � W Z�R�R�N!N.
For the calculus with a large parameter, we shall also use the Weyl quantization of (A-4). The formulae

(A-5)–(A-11) hold as well, with Sm everywhere replaced by Sm
� . We shall often use the Gårding inequality

as stated in the following lemma.

Lemma A.2. Let a 2 Sm
� such that Re a� C�m. Then

Re
�
opw.a/u;u

�
& kuk2

L2.RIHm=2/
;

for � sufficiently large.

Proof. The proof follows from the sharp Gårding inequality [Hörmander 1985a, Chapters 18.1 and 18.5]
applied to the nonnegative symbol a�C�m. �

Definition A.3. The essential support of a symbol a 2 Sm
� , denoted by esssupp.a/, is the complement of

the largest open set of R�Rn�1 � f� � 1g where the estimates for S�1� D\m2RSm
� hold.

For technical reasons we shall often need the following result.

Lemma A.4. Let m;m0 2 R and a1.x; �
0/ 2 Sm and a2.x; �

0; �/ 2 Sm0

� such that the essential support of
a2 is contained in a region where h� 0i& � . Then

opw.a1/opw.a2/D opw.b1/; opw.a2/opw.a1/D opw.b2/;

with b1; b2 2 SmCm0

� . Moreover, the asympotic series of (A-7) is also valid for these cases (with Sm

replaced by Sm
� ).

Proof. As the essential support is invariant when we change quantization, we may simply use the standard
quantization in the proof. With a1 and a2 satisfying the assumption listed above, we thus consider
op.a1/op.a2/. For fixed � , the standard composition formula applies, and we have (see [Hörmander
1985a, Section 18.1] or [Alinhac and Gérard 2007])

.a1 ı a2/.x; �
0; �/D .2�/1�n

“
e�iy0��0a1.x; �

0
� �0/a2

�
x0�y0;xn; �

0; �
�

dy0 d�0:

Properties of oscillatory integrals (see, for example, [Alinhac and Gérard 2007, Appendices I.8.1 and I.8.2])
give, for some k 2 N,ˇ̌

.a1 ı a2/.x; �
0; �/

ˇ̌
� C sup

j˛jCjˇj�k

.y0;�0/2R2n�2

h.y0; �0/i�jmj
ˇ̌
@˛y0@

ˇ
�0a1.x; �

0
� �0/a2

�
x0�y0;xn; �

0; �
�ˇ̌
:
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In a region h� 0i& � that contains the essential support of a2, we have h� 0i � �. With the Peetre inequality,
we thus obtain ˇ̌

.a1 ı a2/.x; �
0; �/

ˇ̌
. h�0i�jmjh� 0� �0im�m0 . h� 0im�m0 . �mCm0 :

In a region h� 0i. � outside of the essential support of a2, we find, for any ` 2 N,ˇ̌
.a1 ı a2/.x; �

0; �/
ˇ̌
. h�0i�jmjh� 0� �0im��` . h� 0im��` . �m�`:

In the whole phase space we thus obtain
ˇ̌
.a1 ı a2/.x; �

0/
ˇ̌
. �mCm0 . The estimation ofˇ̌

@˛x@
ˇ

�0
.a1 ı a2/.x; �

0; �/
ˇ̌

can be done similarly to give ˇ̌
@˛x@

ˇ

�
.a1 ı a2/.x; �

0; �/
ˇ̌
. �mCm0�jˇj:

Hence a1 ı a2 2 SmCm0

� . We also obtain the asymptotic series (following the references cited above)

.a1 ı a2/.x; �
0; �/�

X
j<N

.iD� �Dy/
j a1.x; �/a2.y; �; �/

j !

ˇ̌̌
.y;�/D.x;�/

2 SmCm0�N
� ;

where each term is respectively in SmCm0�j
� by the arguments given above. From this series, the

corresponding Weyl quantization series follows.
For the second result, considering the adjoint operator

�
op.a2/op.a1/

�� yields a composition of
operators as in the first case. The second result thus follows from the first one. �

Remark A.5. The symbol class and calculus we have introduced in this section can be written as
Sm
� D S.�m;g/ in the sense of the Weyl–Hörmander calculus [Hörmander 1985a, Sections 18.4–18.6]

with the phase-space metric g D jdxj2Cjd�j2=�2.

AB. Proofs of some intermediate results.

AB.1. Proof of Lemma 2.8. For simplicity we remove the ˙ notation here. We first prove that there exist
C > 0 and � > 0 such that

jq2j � ��
2 and jq1j � ��

2
D) fq2; q1g � C�3: (A-14)

We set

Qq2 D .�nC s/2C
bjk

ann
�j�k � .'

0/2; Qq1 D '
0.�nC s/:

We have qj .x; �/D �
2 Qqj .x; �=�/. Observe next that we have fq2; q1g.x; �/D �

3f Qq2; Qq1g.x; �=�/. We
thus have Qq2 D 0 and Qq1 D 0 D) fQq2; Qq1g > 0. As Qq2.x; �/D 0 and Qq1.x; �/D 0 yield a compact set
for .x; �/ (recall that x lies in a compact set K here), for some C > 0, we have

Qq2 D 0 and Qq1 D 0 D) fQq2; Qq1g> C:
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This remains true locally, that is, for some C 0 > 0 and � > 0,

j Qq2j � � and j Qq1j � � D) fQq2; Qq1g> C 0:

Then (A-14) follows.
We note that q˙

2
D 0 and q˙

1
D 0 imply � � j� 0j. Hence, for � sufficiently large, we have (2-25). We

thus obtain
q˙2 D 0 and q˙1 D 0 () �nC s˙ D 0 and �'0˙ Dm˙:

Let us assume that jf j � ı� with ı small and �2 D 1C �2Cj� 0j2. Then

� . j� 0j. �: (A-15)

We set �n D�s, that is, we choose q1 D 0. A direct computation yields

fq2; q1g D �e'0f�nC s; f gC �f '0f�nC s; eg if �nC s D 0:

With (2-25), we have jq2j�Cı�2. For ı small, by (A-14) we have fq2; q1g�C�3. Since f �'0f�nCs; eg�

Cı�3, we obtain e�'0f�nC s; f g � C�3, with C > 0, for ı sufficiently small. With (A-15), we have
� . e . � and the result follows. �

AB.2. Proof of Lemma 3.1. We set s D 2`C 1 and !1 D op. �/!. We write

2 Re
�
PFC!1; iHC�

s!1

�
D
�
i ŒDn;HC�!1; �

s!1

�
C 2

�
FC!1;HC�

s!1

�
D � s

ˇ̌
!1jxnD0C

ˇ̌2
L2.Rn�1/

C 2
�
� sC1'0!1;HC!1

�
� 2

�
� sMC!1;HC!1

�
� � s

ˇ̌
!1jxnD0C

ˇ̌2
L2.Rn�1/

C 2
�
� sC1C0!1;HC!1

�
� 2C1�

s
kHC!1k

2
L2.RIH 1=2.Rn�1//

;

by (3-4). We have

2
�
� sC1C0!1;HC!1

�
� 2C1�

s
kHC!1k

2
L2.RIH 1=2.Rn�1//

D 2� s.2�/1�n

Z 1
0

Z
Rn�1

�
C0� �C1h�

0
i
�ˇ̌
 �.�; �

0/ O!.� 0;xn/
ˇ̌2

d� 0 dxn:

As � � C h�i=� in supp. �/, for � sufficiently small we have

2
�
� sC1C0!1;HC!1

�
� 2C1�

s
kHC!1k

2
L2.RIH 1=2.Rn�1//

&
Z 1

0

Z
Rn�1

�sC1
ˇ̌
 �.�; �

0/ O!.� 0;xn/
ˇ̌2

d� 0 dxn & kHC!1k
2
L2.RIH`C1/

:

Similarly, we find � s
ˇ̌
!1jxnD0C

ˇ̌2
L2.Rn�1/

&
ˇ̌
!1jxnD0C

ˇ̌2
H`C1=2 . The result for PEC follows from the

Young inequality. The proof is identical for PFC.
On the other side of the interface we write

2 Re
�
H�PF�!1; iH��

s!1

�
D
�
i ŒDn;H��!1; �

s!1

�
C 2

�
F�!1;H��

s!1

�
D�� s

ˇ̌
!1jxnD0�

ˇ̌2
L2.Rn�1/

C 2
�
� sC1'0!1;H�!1

�
� 2

�
� sM�!1;H�!1

�
;

which yields a boundary contribution with the opposite sign. �
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AB.3. Proof of Lemma 5.2. Let .�; � 0/ 2 supp. /. We choose � sufficiently large that, through supp. /,
j� 0j is itself sufficiently large that the symbol m˙ is homogeneous — see (2-15).

We set
yC.�

0;xn/DQC.�
0;xn/�0

�
�ˇ
xn

jfC.0/j

�
;

y�.�
0;xn/D aQ�.�

0;xn/�0

�
�ˇ
xn

f�.0/

�
C b QQ�.�

0;xn/�0

�
�ˇ
xn

e�.0/

�
:

On the one hand, we have i.DnC ifC/yC D
�ˇ


jfC.0/j
QC.�

0;xn/�
0
0

�
�ˇ
xn

jfC.0/j

�
and

.M�yC/.�
0;xn/D 2�ˇ
 cCmC

QC.�
0;xn/

jfC.0/j
�00

�
�ˇ
xn

jfC.0/j

�
� .�ˇ
 /2cC

QC.�
0;xn/

jfC.0/j2
�000

�
�ˇ
xn

jfC.0/j

�
;

as DnC ieC DDnC i.fCC 2mC/, so thatZ C1
0

ˇ̌
.M�yC/.�

0;xn/
ˇ̌2

dxn � 8c2
Cm2
C

�
�ˇ


fC.0/

�2 Z C1
0

�00

�
�ˇ
xn

jfC.0/j

�2

exn.2fC.0/C�ˇxn/ dxn

C 2c2
C

�
�ˇ


fC.0/

�4 Z C1
0

�000

�
�ˇ
xn

jfC.0/j

�2

exn.2fC.0/C�ˇxn/ dxn:

On the support of �.j/
0
.�ˇ
xn=jfC.0/j/, j D 1; 2, we have jfC.0/j=.2�ˇ
 /� xn � jfC.0/j=.�ˇ
 /,

and in particular 2fC.0/C �ˇ
xn � �jfC.0/j, which givesZ C1
0

ˇ̌
.M�yC/.�

0;xn/
ˇ̌2

dxn

� c2
C

�
�ˇ


fC.0/

�2�
8m2
Ck�

0
0k

2
L1 C 2

�
�ˇ


fC.0/

�2

k�000k
2
L1

�Z
jfC.0/j

2�ˇ

�xn�

jfC.0/j

�ˇ


e�jfC.0/jxn dxn

� c2
C

�ˇ


jfC.0/j

�
4m2
Ck�

0
0k

2
L1 C

�
�ˇ


fC.0/

�2

k�000k
2
L1

�
e�

fC.0/
2

2�ˇ
 :

Similarly, we have

.M�y�/.�
0;xn/D 2�ˇ
 c�m�

�
aQ�.�

0;xn/

f�.0/
�00

�
�ˇ
xn

f�.0/

�
� b
QQ�.�

0;xn/

e�.0/
�00

�
�ˇ
xn

e�.0/

��
� c�.�ˇ
 /

2

�
a

Q�.�
0;xn/

f�.0/2
�000

�
�ˇ
xn

f�.0/

�
C b
QQ�.�

0;xn/

e�.0/2
�000

�
�ˇ
xn

e�.0/

��
;

and because of the support of �.j/
0

�
�ˇ
xn

f�.0/

�
, resp. �.j/

0

�
�ˇ
xn

e�.0/

�
, j D 1; 2, for xn � 0, we obtain

Z 0

�1

ˇ̌
.M�y�/.�

0;xn/
ˇ̌2

dxn � 2c2
�

�ˇ
a2

f�.0/

�
4m2
�k�

0
0k

2
L1 Ck�

00
0k

2
L1

�
�ˇ


f�.0/

�2�
e�

f�.0/
2

2�ˇ


C 2c2
�

�ˇ
b2

e�.0/

�
4m2
�k�

0
0k

2
L1 Ck�

00
0k

2
L1

�
�ˇ


e�.0/

�2�
e�

e�.0/
2

2�ˇ
 :
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Now we have .M�u/.�
0;xn/D  .�; �

0/.M�y/.�
0;xn/. As j� 0j � � in supp. /, we obtain

kM�uk
2
L2.Rn�1�R/

� C.
 2
C �2/
 e�C 0�=


Z
Rn�1

 .�; � 0/2 d� 0:

With the change of variable � 0 D ��, we findZ
Rn�1

 .�; � 0/2 d� 0 D C�n�1; (A-16)

which gives the first result.
On the other hand, observe now that

kyCk
2
L2.RC/

D

Z C1
0

QC.�
0;xn/

2�0

�
�ˇ
xn

jfC.0/j

�2

dxn

�

Z
0� �ˇ
xn
jfC.0/j

�1=2

exn.2fC.0/C�ˇxn/ dxn D
jfC.0/j

�ˇ


Z 1=2

0

e2t
jfC.0/j

�ˇ


�
fC.0/Ct

jfC.0/j

2


�
dt

�
jfC.0/j

�ˇ


Z 1=2

0

e�2t
jfC.0/j

2

�ˇ
 dt D
1

2jfC.0/j

�
1� e�

jfC.0/j
2

�ˇ


�
:

We also have

ky�k
2
L2.R�/

D

Z 0

�1

�
aQ�.�

0;xn/�0

�
�ˇ
xn

f�.0/

�
C b QQ�.�

0;xn/�0

�
�ˇ
xn

e�.0/

��2

dxn

�

Z
�1=2� �ˇ
xn

f�.0/
�0

exn.2f�.0/C�ˇxn/
�
aC bexn.e�.0/�f�.0//

�2
dxn;

and as e�.0/� f�.0/ D 2m� � 0 and aC b D 1 and a � 1
2

, we have aC bexn.e�.0/�f�.0// �
1
2

, and
thus obtain

ky�k
2
L2.R�/

�
1

4

Z
�1=2� �ˇ
xn

f�.0/
�0

exn.2f�.0/C�ˇxn/ dxn �
1

8f�.0/

�
1� e�

jf�.0/j
2

�ˇ


�
;

arguing as above. As a result, using (A-16), we have

kuk2
L2.Rn�1�R/

� C�n�2
�
1� e�C 0�=


�
: �

AB.4. Proof of Lemma 5.3. We start with the second result. We set

zC D
�
1��0

�ˇ̌
�1=2x0

ˇ̌��
LOuC.x

0;xn/; for xn � 0:

We shall prove that for all N 2 N, we have kzCkL2.Rn�1�RC/
� C
;N �

�N .
From the definition of �0, we find

kzCk
2
L2.Rn�1�RC/

�

Z
j�1=2x0j�1=2

Z
RC

j OuC.x
0;xn/j

2 dx0 dxn:
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Recalling the definition of uC and performing the change of variable � 0 D ��, we obtain

OuC.x
0;xn/D �

n�1

Z
Rn�1

ei�� Q .�/�0

�
ˇ
xn

j QfC.�/j

�
d�;

where the complex phase function is given by

� D�x0 � �� ixn

�
QfC.�/C

ˇxn

2

�
; with QfC.�/D ˛C�mC.�/

and
Q .�/D �1

�
1

.1Cj�j2/1=2
� �0

�
�1

�ˇ̌̌̌
�

.1Cj�j2/1=2
� � 00

ˇ̌̌̌�
:

Here � is chosen sufficiently large that mC is homogeneous. Observe that Q has a compact support
independent of � and that QfC.�/Cˇxn=2� �C < 0 in the support of the integrand.

We place ourselves in the neighborhood of a point x0 such that j�1=2x0j � 1
2

. Up to a permutation of
the variables, we may assume that j�1=2x1j � C . We then introduce the differential operator

LD ��1 @�1

�ix1�xn@�1
mC.�/

;

which satisfies Lei�� D ei�� . We thus have

OuC.x
0;xn/D �

n�1

Z
Rn�1

ei��.Lt /N
�
Q .�/�0

�
ˇ
xn

j QfC.�/j

��
d�;

and we find ˇ̌
OuC.x

0;xn/
ˇ̌
� CN

�n�1
N

j�x1j
N

e�C�xn :

More generally, for j�1=2x0j � 1
2

we have

ˇ̌
OuC.x

0;xn/
ˇ̌
� CN

�n�1
N

j�x0jN
e�C�xn :

Then we obtainZ
j�1=2x0j�1=2

Z
RC

ˇ̌
OuC.x

0;xn/
ˇ̌2

dx0 dxn

� C 2
N 


2N �2n�2

�Z
j�1=2x0j�1=2

1

j�x0j2N
dx0

��Z
RC

e�2C�xn dxn

�
� C 0N 


2N � .3=2/n�N�5=2

Z
jx0j�1=2

1

jx0j2N
dx0:

Similarly, setting z� D
�
1��0

�ˇ̌
�1=2x0

ˇ̌��
LOu�.x

0;xn/ for xn � 0, we get kz�kL2.Rn�1�R�/
� C
;N �

�N .
The second result thus follows from Lemma 5.2.

For the first result we write

L�v˙ D .2�/�.n�1/�0

�ˇ̌
�1=2x0

ˇ̌�
L� LOu˙C .2�/�.n�1/

�
L� ; �0

�ˇ̌
�1=2x0

ˇ̌��
LOu˙:
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The first term is estimated, using Lemma 5.2, as

.2�/�.n�1/=2
kL� LOu˙kL2.Rn�1�R˙/

D kM�u˙kL2.Rn�1�R˙/
:

Observe that L� is a differential operator; the commutator is thus a first-order differential operator in
x0 with support in a region j�1=2x0j � C , because of the behavior of �1 near 0. The coefficients of this
operator depend on � polynomially. The zero-order terms can be estimated as we did for zC above with
an additional �3=2 factor.

For the first-order term, observe that we have

@x0
j

LOuC.x
0; �/D �n

Z
Rn�1

�j ei�
�
x0���ixn

�
QfC.�/C

ˇxn
2

��
Q .�/�0

�
ˇ
xn

j QfC.�/j

�
d�:

We thus obtain similar estimates as above with an additional �3=2 factor. This concludes the proof. �
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THE SEMICLASSICAL LIMIT
OF THE TIME DEPENDENT HARTREE–FOCK EQUATION:

THE WEYL SYMBOL OF THE SOLUTION

LAURENT AMOUR, MOHAMED KHODJA AND JEAN NOURRIGAT

For a family of solutions to the time dependent Hartree–Fock equation, depending on the semiclassical
parameter h, we prove that if at the initial time the Weyl symbol of the solution is in L1(R2n) as well as
all its derivatives, then this property is true for all time, and we give an asymptotic expansion in powers of
h of this Weyl symbol. The main term of the asymptotic expansion is a solution to the Vlasov equation,
and the error term is estimated in the norm of L1(R2n).

1. Introduction

The essential goal of this work is a semiclassical analysis of the solutions of the time dependent Hartree–
Fock equation (TDHF) in the framework of trace class h-pseudodifferential operators. This equation
describes the time evolution of the density operator of a quantum system in the mean field approximation,
in other words, when the number N of particles tends to infinity, the interaction between two particles
being of order 1/N . (See, for instance, [Ammari and Nier 2008; 2009; Bardos et al. 2003; Erdős and
Schlein 2009; Fröhlich et al. 2009; Rodnianski and Schlein 2009; Spohn 1980].)

A solution to the TDHF equation is a nonnegative self-adjoint trace class operator ρh(t) in H= L2(Rn)

(for particles moving in Rn), of trace equal to 1, evolving as a function of t . This operator is usually
called the density operator. Its evolution depends on a parameter h > 0, and on two potentials V and W ,
which are here C∞ real valued functions on Rn , bounded as well as all their derivatives: the first one
is the external potential, interacting with all the particles, and the second one describes the interaction
between two particles. Then the density operator obeys the equation

ih ∂
∂t
ρh(t)=−h2

[1, ρh(t)] + [Vq(ρh(t)), ρh(t)], (1-1)

where 1 is the Laplacian and Vq(ρh(t)) is the multiplication operator by the mean quantum potential,
defined at each point x ∈ Rn , and for each time t , according to the principles of quantum mechanics, by

Vq(x, ρh(t))= V (x)+Tr(Wxρh(t)), (1-2)

where Wx is the multiplication operator by the function y→W (x − y). We shall see later the meaning
of the commutators in the equation, and the other hypotheses which are needed.

MSC2010: 35S05, 81Q20, 82C10.
Keywords: time dependent Hartree–Fock equation, Vlasov equation, semiclassical analysis, Egorov theorem, pseudodifferential

operators.
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Using semiclassical analysis, we want to make precise the relationship with the Vlasov equation, which
plays the role of TDHF in classical mechanics. A solution of this equation is a nonnegative real-valued
function v( · , t) in L1(Rn), depending on t ∈ R. This function defines the particle density at the point x
and at the time t in classical mechanics. Then the mean classical potential at (x, t) is

Vcl(x, v( · , t))= V (x)+
∫

R2n
W (x − y)v(y, η, t) dy dη. (1-3)

Then the density function v( · , t) satisfies the Vlasov equation, which is the Liouville equation with the
mean potential

∂v

∂t
+ 2

n∑
j=1

ξ j
∂v

∂x j
−

n∑
j=1

∂Vcl(x, v( · , t))
∂x j

∂v

∂ξ j
= 0. (1-4)

The asymptotic relationship, when h tends to 0, between a density operator ρh(t) (that is, a nonnegative
self-adjoint trace class operator, with trace 1) satisfying the TDHF equation and a density function v(x, t)
(a nonnegative real-valued function in L1(Rn), with integral 1) satisfying the Vlasov equation will be
provided by the semiclassical quantization. We can use either the semiclassical Weyl calculus or the
semiclassical Wick symbol. This paper is devoted to the approach by the Weyl calculus. The Wick
symbol, which needs weaker hypotheses, will be studied elsewhere (see [Amour et al. 2011]). In this
work we also use the semiclassical anti-Wick calculus in Section 2, only to give examples.

The semiclassical Weyl calculus associates to a suitable function F on R2n an operator, in our case in
L2(Rn), depending on the parameter h > 0, formally defined for f ∈ L2(Rn) by

(
Opweyl

h (F) f
)
(x)= (2πh)−n

∫
R2n

e(i/h)(x−y)·ξ F
(

x + y
2

, ξ

)
f (y) dy dξ. (1-5)

This operator can also be written Fw(x, h D). Let us denote by W m,p(R2n) the Sobolev space of functions
which are in L p(R2n) together with all their derivatives up to the order m (1≤ p ≤+∞, m ≥ 0). In the
oldest results on the Weyl calculus, the function F is in W∞,∞(R2n) and the operator Opweyl

h (F) is a
bounded operator in L2(Rn). See [Calderón and Vaillancourt 1972; Hörmander 1985a, Chapter 18; Lerner
2010; Taylor 1981] and, in the semiclassical context, [Robert 1987; 1998; Zworski 2012; Dimassi and
Sjöstrand 1999; Helffer 1997; Martinez 2002], for example. These results cannot be directly applied to
our problem, since our function v( · , t) is in L1(R2n), and the operator ρh(t) has to be not only bounded,
but also trace class. Rather, we shall use, in definition (1-5), symbols F in W∞,1(R2n). It was proved by
C. Rondeaux [1984] that for each function F in W m,1(R2n) (m large enough), the operator Opweyl

h (F)
formally defined by (1-5) is trace class. This result is very useful for the study of solutions of the TDHF
equation. However, in [Rondeaux 1984], there was no parameter h, and the Weyl calculus was not
semiclassical, but we need only standard modifications for that.

We want to prove that if at the initial time t = 0 the density operator ρh(0) is associated by the
semiclassical Weyl calculus to a function in W∞,1(R2n), then for each t ∈ R, the operator ρh(t) is also
associated in the same way to another function in W∞,1(Rn), and we shall make precise the time evolution
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of this function. Before giving the precise statement, we recall the standard formula

Tr
(
Opweyl

h (F)
)
= (2πh)−n

∫
R2n

F(x, ξ) dx dξ, F ∈W∞,1(R2n). (1-6)

Let us recall also that if F is real-valued, then Opweyl
h (F) is self-adjoint. By [Rondeaux 1984], we can

associate to each nonnegative function F in W∞,1(R2n) with integral equal to 1 a self-adjoint trace class
operator ρh(0) with trace 1, in the following way:

ρh(0)= (2πh)n Opweyl
h (F). (1-7)

However, the positivity of F does not imply the positivity of the operator, which will be another hypothesis.
We shall prove that, for a solution ρh(t) of the TDHF equation, if a relation like (1-7) exists for t = 0, it
will exist at each time.

Before the statements of the results, we have to explain the meaning of the TDHF equation and recall
the notion of a classical solution of TDHF introduced by Bove, Da Prato and Fano [Bove et al. 1974;
1976] (see also [Chadam and Glassey 1975]). Let us denote by L1(H) the space of trace class operators
H= L2(Rn). Denote by D the space of operators A in L1(H) such that the limit

lim
t→0

ei t1Ae−i t1
−A

t

exists in L1(H). This limit is denoted by i[1, A]. It can be easily proved that a trace class operator A
is in D if and only if its commutator with the Laplacian 1 (a priori defined as an operator from S(Rn)

into S′(Rn)) can be extended as a trace class operator in H = L2(Rn). A classical solution of TDHF
(for a fixed h > 0) is a map t→ ρh(t) in C1(R,L1(H))

⋂
C(R,D) satisfying (1-1). The Cauchy for the

TDHF equation was also studied in [Bove et al. 1974; 1976], where it is proved that for each nonnegative
self-adjoint operator A in D, and for each h > 0, there is a unique classical solution ρh(t) of the TDHF
equation such that ρh(0) = A. Moreover, ρh(t) is also self-adjoint and nonnegative, and its trace is
constant. We have similar properties for the Vlasov equation. If v is a solution of (1-4), and if at an initial
time the data v( · , 0) is in L1(R2n), and if it is nonnegative, these two properties remain true for all t ∈ R,
and the integral over R2n of v( · , t) is constant (see, for instance, [Braun and Hepp 1977]).

Theorem 1.1. Let (ρh(t))(h>0) be a family of classical solutions of the TDHF equation (1-1), with V
and W real-valued functions in W∞,∞(Rn). We assume that, for every h > 0, the operator ρh(0) can be
written

ρh(0)= (2πh)n Opweyl
h (Fh), (1-8)

where Fh is in W∞,1(R2n), real-valued, and bounded in W∞,1(R2n) independently of h in (0, 1]. We also
assume that the operator ρh(0) is nonnegative, and that∫

R2n
Fh(x, ξ) dx dξ = 1. (1-9)

Then for every t ∈ R, the operator ρh(t) can be written in the form

ρh(t)= (2πh)n Opweyl
h (uh( · , t)), (1-10)
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where uh( · , t) is in W∞,1(R2n), bounded in W∞,1(R2n) independently of h in (0, 1] and of t in a compact
set of R. We have, for all t ∈ R, ∫

R2n
uh(x, ξ, t) dx dξ = 1. (1-11)

The positivity of the operator ρh(t) is needed. Then by [Bove et al. 1976], we have ρh(t) ≥ 0 and
Tr(ρh(t))= 1 for all t . The condition ρh(0)≥ 0 is verified if ρh(0)= (2πh)n OpAW

h (G), with G ≥ 0 in
L1(R2n), where OpAW

h (G) is the anti-Wick operator associated to G (see Section 2).
If there was no interaction between the particles (W = 0), the evolution equation (1-1) would be linear,

and then we would have

ρh(t)= e−(i t/h)H(h)ρh(0)e(i t/h)H(h), H(h)=−h21+ V (x). (1-12)

In this particular case, the Egorov theorem could be applied. The earliest version of the Egorov theorem
says that if A is a pseudodifferential operator and U an invertible Fourier integral operator, then U−1 AU
is a pseudodifferential operator (see [Hörmander 1985b, Chapter 25]). In the case of an evolution equation
like (1-12), it can be proved, without the Fourier integral operators, that if ρh(0) is a pseudodifferential
operator with a symbol F in W∞,∞(R2n), then it is the same for the right-hand side of (1-12). The proof
was given (in the semiclassical context) by D. Robert [1987] and M. Zworski [2012], who proved that
the error term in the asymptotic expansion is itself a pseudodifferential operator. For this last point, the
characterization theorem of R. Beals [1977] is needed.

For our problem, we need an extension of the above Egorov theorem for two reasons: this theorem
will be applied for symbols in W∞,1(R2n) (the Rondeaux class), and for time dependent Hamiltonians.
In the proof, we shall use the Beals type characterization of operators with symbols in W∞,1(R2n), also
given by Rondeaux, but with some modifications.

Now we shall give an asymptotic expansion of the function uh of Theorem 1.1. The first term will be
a solution of the Vlasov equation, and the rest will be majorized in the L1(R2n) norm. One can see in
[Domps et al. 1997] a formulation of the physics of this problem.

Theorem 1.2. Let (ρh(t))(h>0) be a family of classical solutions of the TDHF equation (1-1) satisfying
the hypotheses of Theorem 1.1. Then there exists a sequence of functions (X, t)→ u j (X, t, h) on R2n

×R

( j ≥ 0) such that:

• The function t → u j ( · , t, h) is C∞ from R into W∞,1(R2n). For every multi-index (α, β), there
exists a function Cαβ(t), bounded on every compact set of R, such that∥∥∂αx ∂βξ u j ( · , t, h)

∥∥
L1(R2n)

≤ Cαβ(t) (1-13)

for all t ∈ R and h ∈ (0, 1].

• If Fh is the function of (1-8),

u0(X, 0, h)= Fh(X) and u j (X, 0, h)= 0, j ≥ 1. (1-14)
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• The function u0(X, t, h) verifies the Vlasov equation

∂u0

∂t
+ 2

n∑
j=1

ξ j
∂u0

∂x j
=

n∑
j=1

∂

∂x j
Vcl
(
u0( · , t)

)∂u0( · , t)
∂ξ j

. (1-15)

• For every N ≥ 1, the function uh( · , t) defined by (1-10) and the function F (N )( · , t, h) defined by

F (N )(X, t, h)=
N−1∑
k=0

h j u j (X, t, h) (1-16)

satisfy, for all h ∈ (0, 1],∥∥uh( · , t)− F (N )( · , t, h)
∥∥

L1(R2n)
≤ CN (t)hN , (1-17)

where CN is a function on R which is bounded on the compact sets of R.

• For every N ≥ 1, the operator ρ(N )h (t) defined by

ρ
(N )
h (t)= (2πh)n Opweyl

h

(
F (N )( · , t, h)

)
(1-18)

(where F (N )( · , t, h) is the function of (1-16)) verifies∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤ C(t)hN+1. (1-19)

In Section 5, we will make precise the construction of the u j (X, t, h) ( j ≥ 1), and we will prove the
theorem. The successive terms u j (X, t, h) depend on the initial data Fh . If Fh depends on h, without
admitting an asymptotic expansion in powers of h, the u j (X, t, h) will depend on h.

In [Amour et al. 2011], we study the case where ρh(0) is trace class but not necessarily a pseudodiffer-
ential operator. In this case, the Weyl symbol is not available. It is defined as a function in L2(R2n) but
not necessarily in L1(R2n), which is the natural space here. Therefore, in this other paper, we shall use
the Wick symbol instead of the Weyl symbol, and a relation with the Vlasov equation will appear also.

Since the TDHF appears as a limiting process when the number N of particles tends to infinity,
a natural question is the one of the interchange of the two limits, where N tends to infinity and the
semiclassical parameter h tends to 0. It is the subject of [Pezzotti and Pulvirenti 2009], where it is shown
that the Weyl symbol of the marginal density operator associated to a particle in a system of N particles
admits an asymptotic expansion in powers of h; that when N tends to infinity, the Weyl symbol of the
marginal density operator tends towards the symbol of a solution of TDHF; that the coefficient of h j in
the asymptotic expansion of the symbol has a limit; and that, for j = 0, this limit is a solution of the
Vlasov equation. See also [Pezzotti 2009; Graffi et al. 2003; Gasser et al. 1998]. We observe that in
[Pezzotti and Pulvirenti 2009], the limits are in the sense of S′(R2n), while in this work and in [Amour
et al. 2011], they are in the sense of L1(R2n).

In Section 2, we will recall some standard results on h-pseudodifferential operators, particularly the
semiclassical analogue of the results of [Rondeaux 1984], which need only standard modifications in
order to be applied in the semiclassical context. However, we give a different proof of the Beals type
characterization theorem for this class, in order to give precisely the number of derivatives which are
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needed. The results on the composition of operators and the Moyal bracket for the class of Rondeaux
operators are stated in Section 3, since, surprisingly, these results are not in [Rondeaux 1984]. Section 4 is
devoted to the proofs of Theorem 1.1 and, first, of the analogue of the Egorov theorem for the Rondeaux
class and for time dependent Hamiltonians. In Section 5, we prove Theorem 1.2. The results stated in
Sections 2 and 3 are proved in Appendices A and B. For Section 2 and Appendix A, we use a technique
of A. Unterberger [1980].

2. Weyl calculus and trace class operators

We define H= L2(Rn) and denote by L1(H) the set of trace class operators in H. This space is a normed
space with the norm defined by

‖A‖L1(H) = Tr
(
(A?A)1/2

)
. (2-1)

We will denote by W m,p(R2n) (where 1≤ p≤+∞, and m is an integer≥ 0 or+∞) the space of functions
F which are in L p(R2n), as well as all their derivatives up to order m.

Since W m,p(R2n) may be considered as an exotic class of symbols, let us explain why definition (1-5)
makes sense for such symbols. The semiclassical Weyl calculus sets a bijection between operators from
S(Rn) into S′(Rn), thus admitting a distribution kernel in S′(R2n) and tempered distributions on R2n

(symbols). This bijection depends on a parameter h > 0. For every F in S′(R2n), we set Opweyl
h (F) the

operator A defined by (1-5), or equivalently the operator A :S(Rn)→S′(Rn) whose distribution kernel is

K A(x, y)= (2πh)−n
∫

R2n
F
(

x+y
2
, ξ

)
e(i/h)(x−y).ξ dξ. (2-2)

This relationship is understood in the sense of distributions and may be inverted. We will denote by
σ

weyl
h (A) the distribution F (Weyl symbol of A) such that A = Opweyl

h (F):

F = σweyl
h (A) ⇐⇒ A = Opweyl

h (F).

In view of applications to trace class operators, we can rewrite (1-5) equivalently when F is in L1(R2n) as

Opweyl
h (F)= (πh)−n

∫
R2n

F(X)6Xh d X, (2-3)

where for X = (x, ξ) in R2n , 6Xh is the “symmetry” operator defined by

(6Xh f )(u)= e(2i/h)(u−x)ξ f (2x − u), X = (x, ξ) ∈ R2n. (2-4)

If A is trace class, one has

σ
weyl
h (A)(X)= 2n Tr(A ◦6Xh), X ∈ R2n. (2-5)

It is shown in [Rondeaux 1984] that if F is in W m,p(R2n) (1≤ p <∞, m large enough), the operator
Opweyl

h (F) is in the Schatten class Lp(H). For p = +∞, this is the classical result of Calderón and
Vaillancourt [1972] (see also [Hörmander 1985a]). If F is in W∞,1(R2n), one has
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Tr
(
Opweyl

h (F)
)
= (2πh)−n

∫
R2n

F(X) d X. (2-6)

If F is in W∞,p(R2n) and G in W∞,q(R2n) (p ≥ 1, q ≥ 1, 1
p
+

1
q
= 1), one has

Tr
(
Opweyl

h (F) ◦Opweyl
h (G)

)
= (2πh)−n

∫
R2n

F(X)G(X) d X. (2-7)

The left-hand side makes sense, since from [Rondeaux 1984], the two operators under composition are
respectively Lp(H) and Lq(H), and therefore their composition is trace class.

A characterization of the set of operators whose Weyl symbol is in W∞,1(R2n) is given in [Ron-
deaux 1984]. This is the analogue of the Beals characterization [1977], which concerns the symbols
in W∞,∞(R2n). In the next proposition, we recall the results of [Rondeaux 1984], taking into account
of the semiclassical parameter h. We denote by Pj (h) = (h/ i)(∂/∂x j ) the momentum operators
and by Q j (h) the multiplication by x j . For each operator P , we denote by (ad P) the mapping
Q → (ad P)(Q) = [P, Q] = P Q − Q P . For every operator A of S(Rn) in S′(Rn), and for every
multi-index (α, β), we set

(ad P(h))α(ad Q(h))β A = (ad P1(h))α1 . . . (ad Qn(h))βn A. (2-8)

Proposition 2.1. (a) If F is in W 2n+2,1(R2n), then for all h > 0, the operator Opweyl
h (F) is trace class

and ∥∥Opweyl
h (F)

∥∥
L1(H)

≤ Ch−n
∑

|α|+|β|≤2n+2

h(|α|+|β|)/2‖∂αx ∂
β
ξ F‖L1(R2n). (2-9)

(b) If A is a trace class operator and if for every multi-index (α, β) such that |α| + |β| ≤ 2n + 2 the
operator (ad P(h))α(ad Q(h))β A is trace class, then the Weyl symbol of A is in L1(R2n) and

(2πh)−n
‖σ

weyl
h (A)‖L1(R2n) ≤ C

∑
|α|+|β|≤2n+2

h−(|α|+|β|)/2
∥∥(ad P(h))α(ad Q(h))β A

∥∥
L1(H)

, (2-10)

where the constant C depends only on n.

(c) The following are equivalent:

(i) A family of operators (Ah)0<h≤1 is of the form Ah =Opweyl
h (Fh), where (Fh) is a bounded family

of functions in W∞,1(R2n).
(ii) For every h > 0, the operator Ah is trace class as well as all iterated commutators of Ah with

the operators Pj (h) and Q j (h), and for every (α, β), the family of norms

hn−|α|−|β|
∥∥(ad P(h))α(ad Q(h))β A

∥∥
L1(H)

(2-11)

stays bounded when h varies in (0, 1].

Part (a) is proved in [Rondeaux 1984], without the parameter h, and needs only standard modifications
to introduce this parameter. In the same paper, part (c) is proved without the precise estimation (b), which
is needed for applications to our nonlinear problem and proved in Appendix A.
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For the sake of clarity, it might be useful to recall the well known analogue of Proposition 2.1 for
bounded operators and symbols in W∞,∞(R2n), that is to say, the Calderón–Vaillancourt and the Beals
characterization.

Proposition 2.2. (a) If F is in L∞(R2n) as well as all derivatives up to order 2n+ 2, then for all h > 0,
the operator Opweyl

h (F) is bounded in H= L2(Rn) and∥∥Opweyl
h (F)

∥∥
L(H)
≤ C

∑
|α|+|β|≤2n+2

h(|α|+|β|)/2‖∂αx ∂
β
ξ F‖L∞(R2n). (2-12)

(b) If A is a bounded operator and if , for all multi-indices (α, β) such that |α| + |β| ≤ 2n + 2, the
operator (ad P(h))α(ad Q(h))β A is bounded, then the Weyl symbol of A is in L∞(R2n), and one has

‖σ
weyl
h (A)‖L∞(R2n) ≤ C

∑
|α|+|β|≤2n+2

h−(|α|+|β|)/2
∥∥(ad P(h))α(ad Q(h))β A

∥∥
L(H)

. (2-13)

Anti-Wick calculus. The definition of this calculus uses coherent states, in other words the family of
functions 9Xh in L2(Rn), indexed by the parameter X = (x, ξ) in R2n and depending on h > 0, defined
by

9X,h(u)= (πh)−n/4e−|u−x |2/2he(i/h)u.ξ−(i/2h)x .ξ , X = (x, ξ) ∈ R2n. (2-14)

These functions will be used, with the anti-Wick calculus recalled below, to give examples of operators
satisfying the hypotheses of Theorem 1.1. They will be also helpful in proving Proposition 2.1 in
Appendix A. Their two fundamental properties are that

|〈9Xh, 9Y h〉| = e−(1/4h)|X−Y |2, ‖9Xh‖ = 1, (2-15)

and that for all f and g in H,

〈 f, g〉 = (2πh)−n
∫

R2n
〈 f, 9Xh〉〈9Xh, g〉 d X. (2-16)

For every function F in L1(R2n) and for every h > 0, the operator OpAW
h (F) associated to F by the

anti-Wick calculus is the bounded operator in L2(Rn) such that for all f and g in H,

〈OpAW
h (F) f, g〉 = (2πh)−n

∫
R2n

a(X)〈 f, 9Xh〉〈9Xh, g〉 d X. (2-17)

If F is in L1(R2n), we see that OpAW
h (F) is indeed trace class in H, and that∥∥OpAW

h (F)
∥∥

L1(H)
≤ (2πh)−n

∫
R2n
|F(X)| d X. (2-18)

Moreover, one has
Tr
(
OpAW

h (F)
)
= (2πh)−n

∫
R2n

F(X) d X. (2-19)

If F ≥ 0, the operator OpAW
h (F) is self-adjoint and nonnegative. The Weyl symbol of the operator

OpAW
h (F) is given by

σ
weyl
h

(
OpAW

h (F)
)
= e(h/4)1F, (2-20)
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where 1 is the Laplacian on R2n . In fact, the operator 6Y h defined in (2-4) and the operator PXh of
orthogonal projection on Vect(9Xh) satisfy

Tr(PXh6Y h)= e−|X−Y |2/h . (2-21)

3. Basic facts on the Moyal bracket

The composition of symbols in the Weyl calculus is a very classical field (see [Hörmander 1985a] or
[Robert 1987] for the dependence on the semiclassical parameter h). We need to adapt that to the classes
of Rondeaux symbols, and to make precise the dependence on the parameter h.

We define a differential operator σ(∇1,∇2) on R2n
×R2n by

σ(∇1,∇2)=

n∑
j=1

∂2

∂y j∂ξ j
−

∂2

∂x j∂η j
, (3-1)

where (x, ξ, y, η) denotes the variable of R2n
×R2n .

Theorem 3.1. For all functions F in W∞,p(R2n) and G in W∞,q(R2n) (p ≥ 1, q ≥ 1, 1/p+ 1/q = 1),
for all h > 0, there exists a function Mh(F,G, · ) in W∞,1(R2n) (Moyal bracket) such that[

Opweyl
h (F),Opweyl

h (G)
]
= Opweyl

h

(
Mh(F,G, · )

)
. (3-2)

For all integers N ≥ 2, one has

Mh(F,G, X)=
N−1∑
k=1

hkCk(F,G, X)+ R(N )h (F,G, X), (3-3)

where the function Ck(F,G, X) is defined by

Ck(F,G, X)= 1
(2i)kk!

[
σ(∇1,∇2)

k(F ⊗G)(X, X)− σ(∇1,∇2)
k(G⊗ F)(X, X)

]
, (3-4)

and where the function R(N )h (F,G, · ) is in W∞,1(R2n). For every integer `, there exists a constant C such
that

h`/2
∥∥∇`R(N )h (F,G, · )

∥∥
L1(R2n)

≤ C
∑

|α|+|β|≤`+4n+2+2N
|α|≥N ,|β|≥N

h(α+β)/2‖∇αF‖L p(R2n) ‖∇
βG‖Lq (R2n). (3-5)

The operator R̂(N )h (F,G)= Opweyl
h

(
R(N )h (F,G, · )

)
verifies

‖R̂(N )h (F,G)‖L1(H) ≤ Ch−n
∑

|α|+|β|≤6n+4+2N
|α|≥N ,|β|≥N

h(α+β)/2‖∇αF‖L p(R2n)‖∇
βG‖Lq (R2n). (3-6)

This theorem will be proved in Appendix B. It is also used in [Amour et al. 2011]. We shall also use
the well-known analogue of Theorem 3.1, which we recall here in order to be used when needed.
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Theorem 3.2. With the notations of Theorem 3.1, if the functions F and G are in W∞,∞(R2n), the
function R(N )h (F,G, · ) defined by the equality (3-3) verifies, for any `≥ 0,

h`/2
∥∥∇`R(N )h (F,G, · )

∥∥
L∞(R2n)

≤ C
∑

j≥N ,k≥N
`+2N≤ j+k≤`+2N+4n+2

h( j+k)/2
‖∇

j F‖L∞(R2n)‖∇
k G‖L∞(R2n). (3-7)

The operator R̂(N )h (F,G) verifies

‖R̂(N )h (F,G)‖L(H) ≤ C
∑

j≥N ,k≥N
2N≤ j+k≤2N+6n+4

h( j+k)/2
‖∇

j F‖L∞(R2n)‖∇
k G‖L∞(R2n). (3-8)

4. The Egorov theorem for trace class operators and proof of Theorem 1.1

We are going to adapt to the case of symbols in L1(R2n) and trace class operators the idea of the proof of
the Egorov theorem contained in [Robert 1987]. The difference with [Robert 1987] comes from the fact
that the classes of operators considered here are the classes introduced by Rondeaux and that Hamiltonians
are time dependent.

We consider a function (x, t)→ V (x, t) on Rn
×R, which is real valued, depending in a C∞ way

on x , and continuously on t . We suppose that, for every α, there exists Cα > 0 such that

|∂αx V (x, t)| ≤ Cα, (x, t) ∈ Rn
×R. (4-1)

We set
H(x, ξ, t)= |ξ |2+ V (x, t). (4-2)

We denote by V (t) the multiplication by V ( · , t). We set

Ĥh(t)=−h21+ V (t). (4-3)

Therefore, Ĥh(t)= Opweyl
h (H( · , t)). Let us now recall some facts on unitary propagators (see [Reed and

Simon 1975, Section X.12]).

Proposition 4.1. For all t ∈ R, let V ( · , t) be a C∞ function on Rn satisfying (4-1) and depending in a
C1 way on t ∈ R. Let Ĥh(t) be the operator defined in (4-3). For every f in S(Rn) and every s in R, there
exists a function denoted by t→Uh(t, s) f that verifies

ih ∂
∂t

Uh(t, s) f = (Ĥh(t))Uh(t, s) f, Uh(s, s) f = f. (4-4)

The operator Uh(t, s) maps S(Rn) into itself and, by duality, S′(Rn) into itself. One has Uh(s, t) =
Uh(t, s)−1. One also has

ih ∂
∂s

Uh(t, s)=−Uh(t, s)(Ĥh(s)). (4-5)

For every operator A from S(Rn) into S′(Rn), let us set

Gh(t, s)(A)=Uh(t, s) ◦ A ◦Uh(s, t). (4-6)



THE SEMICLASSICAL LIMIT OF THE TIME DEPENDENT HARTREE–FOCK EQUATION 1659

One has

ih
∂

∂t
Gh(t, s)(A)=

[
Ĥh(t),Gh(t, s)(A)

]
, Gh(s, s)(A)= A. (4-7)

Let us state the analogue of the Egorov theorem for the class of Rondeaux operators [1984].

Theorem 4.2. Let F be a function defined on W∞,1(R2n). Let Ah = Opweyl
h (A). Then for every t ∈ R,

there exists a function Fht in W∞,1(R2n) such that

Gh(t, 0)(Ah)= Opweyl
h (Fht). (4-8)

If the function F and the potential V ( · , t) depend on a parameter λ, while staying bounded respectively in
W∞,1(R2n) and in W∞,∞(R2n) independently of λ, then the function Fht remains bounded in W∞,1(R2n)

independently of λ, of h in (0, 1], and of t in a compact set of R.

Following the idea of Robert [1987], which is related in some sense to Dyson series, we will express
our solution Gh(t, 0)(Ah) in the form

Gh(t, 0)(Ah)=

N−1∑
k=0

Opweyl
h

(
Dk( · , t)

)
+ hN EN (t, h), (4-9)

where the functions Dk( · , t) will be in W∞,1(R2n) and EN (t, h) will be a trace class operator with
bounded trace norm. In a second step, we will show that the commutators of EN (t, h) with the position
and momentum operators are also trace class operators, and we will estimate their traces. Finally,
we will rely on the characterization recalled in Proposition 2.1 to show that Gh(t, 0)(Ah) is itself a
pseudodifferential operator, with a symbol in W∞,1(R2n).

The construction of the terms Dk( · , t) will use the Hamiltonian flow of H( · , t). For every function
G in W∞,1(R2n), we call 8ts(G) the function on R2n defined by

∂8t,s(G)
∂t

= {H( · , t),8ts(G)}, 8s,s(G)= G. (4-10)

Under hypothesis (4-1), one knows that if (Gλ)λ∈E is a family of bounded functions in W∞,1(R2n), then
8ts(Gλ) stays bounded in W∞,1(R2n) when (t, s) varies in a compact set of R2 and λ in E .

Lemma 4.3. For every function G in W∞,1(R2n) and for (t, s) in R2, one has

Gh(t, s)
(
OPweyl

h (G)
)
= Opweyl

h (8ts(G))+ h
∫ t

s
Gh(t, t1)

(
Opweyl

h (R( · , t1, s, h))
)

dt1, (4-11)

where the function R( · , t1, s, h) is in W∞,1(R2n). If G depends on some parameter and is bounded
in W∞,1(R2n) independently of this parameter, then the function R( · , t1, s, h) associated to G is also
bounded in W∞,1(R2n) independently of this parameter and of (t1, s) in a compact set of R2 and of h in
(0, 1].
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Proof of the lemma. From definition (4-10),

∂

∂t
Opweyl

h (8ts(G))= Opweyl
h

(
{H( · , t),8ts(G)}

)
.

With the notations of Theorem 3.1 and with N = 2, one may write[
Ĥh(t),Opweyl

h (8tsh(G))
]
=

h
i

Opweyl
h

(
{H( · , t),8ts(G)}

)
+OPweyl

h

(
R(2)h (H( · , t),8ts(G))

)
.

Consequently,

∂

∂t
Opweyl

h (8ts(G))−
i
h
[
Ĥh(t),Opweyl

h (8ts(G))
]
=−

i
h

OPweyl
h

(
R(2)h (H( · , t),8ts(G))

)
.

On the other hand,

∂

∂t
Gh(t, s)(OPweyl

h (G))− i
h
[
Ĥh(t),Gh(t, s)(OPweyl

h (G))
]
= 0.

By combining these two equalities, noting that for t = s the two operators Gh(s, s)(Opweyl
h (G)) and

Opweyl
h (8ss(G)) are equal, and using Duhamel’s principle, we obtain (4-11), with

R( · , t1, s, h)=− i
h

R(2)h

(
H( · , t1),8t1s(G)

)
.

It is well known that when F(x, ξ)= |ξ |2, one has R(2)h (F,G)= 0 for every function G. Hence

R( · , t1, s, h)=− i
h2 R(2)h

(
V ( · , t1),8t1s(G)

)
.

By hypothesis, V ( · , t1) is in W∞,∞(Rn) and is bounded independently of t1. We have seen that 8t1s(G)
is in W∞,1(R2n), bounded independently of t1 and of s when (t1, s) varies in a compact set of R2.
According to Theorem 3.1 applied to the case N = 2, it follows that R( · , t1, s, h) is in W∞,1(R2n),
bounded independently of t1 and of s when (t1, s) varies in a compact set of R2 and h in (0, 1]. �

Proof of Theorem 4.2, first step. Let F be a function in W∞,1(R2n). Let Ah = Opweyl
h (F). Let 8ts(G)

be the function satisfying (4-10). For every t ∈ R, we define a function D0( · , t) in W∞,1(R2n) by

D0( · , t)=8t,0(F). (4-12)

We have seen that this function is in W∞,1(R2n), bounded independently of t on every compact set of R.
By Lemma 4.3 applied to G = F and s = 0, and from (4-12), one has

Gh(t, 0)(Ah)= Opweyl
h (D0(t))+ h

∫ t

0
Gh(t, t1)

(
Opweyl

h (R1( · , t1, h))
)

dt1,

where R1( · , t1, h) stays bounded in W∞,1(R
2n) when t1 belongs to a compact set of R and h is in (0, 1].

We iterate by applying Lemma 4.3 with s = t1 and G = R1( · , t1, h). We obtain

Gh(t, t1)
(
Opweyl

h (R1( · , t1, h))
)

= Opweyl
h

(
8(t, t1)(R1( · , t1, h))

)
+ h

∫ t

t1
Gh(t, t2)

(
Opweyl

h (R2( · , t2, t1, h))
)

dt2,
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where R2( · , t2, t1, h) stays bounded in W∞,1(R2n) when (t1, t2) belongs to a compact set of R2 and h is
in (0, 1]. We define a function D1( · , t) in W∞,1(R2n) by

D1( · , t)=
∫ t

0
8(t, t1)

(
R1( · , t1, h)

)
dt1.

This function is in W∞,1(R2n), bounded independently of t on every compact set of R. We have, if t > 0,

Gh(t, 0)(Ah)= Opweyl
h

(
D0(t)+ h D1(t)

)
+ h2

∫
0<t1<t2<t

Gh(t, t2)
(
Opweyl

h (R2( · , t2, t1, h))
)

dt1 dt2.

Iterating this process, we obtain, for every N , the equality (4-9), with

EN (t, h)=
∫
1N (t,0)

Gh(t, tN )
(
Opweyl

h (RN ( · , tN , . . . , t1, h))
)

dt1 . . . dtN , (4-13)

where 1N (t, s) is the set defined, if s < t , by

1N (t, s)=
{
(t1, . . . , tN ) ∈ RN , s < t1 < · · ·< tN < t

}
, (4-14)

and in a symmetric way if s > t . In (4-9), the D j ( · , t, h) ( j ≥ 0) and RN ( · , tN , . . . , t1, h) are in
W∞,1(R2n), bounded independently of h in (0, 1], of (t1, . . . , tN ) in 1N (t, 0), and of t in a compact set
of R.

It remains to prove that EN (t, h) is also a pseudodifferential operator. For that, we shall give in the
second step upper bounds for trace norms of iterated commutators of EN (t, h) with the position and
momentum operators. In order to do that, we will use the following lemma, also used in Section 5 and in
[Amour et al. 2011]. If an operator A is bounded in L2(Rn), as well as all its iterated commutators up to
order m, we set

I m∞
h (A)=

∑
|α|+|β|≤m

∥∥(ad Q(h))β(ad P(h))αA
∥∥

L(H)
. (4-15)

If an operator A in L2(Rn) is trace class, as well as all its iterated commutators up to order m, we set

I m,tr
h (A)=

∑
|α|+|β|≤m

∥∥(ad Q(h))β(ad P(h))αA
∥∥

L1(H)
. (4-16)

The aim of the next lemma is to show that these properties are preserved by the mapping Gh(t, s).

Lemma 4.4. Let Ĥh(t) be the operator defined in (4-3), where V ( · , t) verifies (4-1). Let Uh(t, s) denote
the unitary propagator and Gh(t, s) the map of Proposition 4.1. Let A be a trace class operator in
H= L2(Rn), as well as all iterated commutators (ad Q(h))β(ad P(h))αA for |α|+ |β| ≤m. Then, for all
s and t in R, the operator Gh(t, s)(A) is also trace class, as well as all iterated commutators with the
Pj (h) and Q j (h) up to order m. Moreover, for every compact set K of R, there exists CK > 0 such that

I m,tr
h (Gh(t, s)(A))≤ CK I m,tr

h (A), (s, t) ∈ K 2, h ∈ (0, 1]. (4-17)

An identical result holds for bounded operators and for the norms I m,∞
h .
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Proof of the lemma. By (4-7), one checks that, for every operator A satisfying the hypothesis of the
lemma, and for each of the momentum operators Pj (h), the following equality is valid:

∂

∂t
[Pj (h),Gh(t, s)(A)] − 1

ih
[
Ĥh(t), [Pj (h),Gh(t, s)(A)]

]
=

1
ih
[
[Pj (h), Ĥh(t)],Gh(t, s)(A)

]
.

Then the following equality results by the Duhamel principle:[
Pj (h),Gh(t, s)(A)

]
= Gh(t, s)

(
[Pj (h), A]

)
+

1
ih

∫ t

s
Gh(t, t1)

([
[Pj (h), Ĥh(t1)],Gh(t1, s)(A)

])
dt1.

We have an analogous equality for the position operators Q j (h). One has

[Pj (h), Ĥh(t)] =
h
i
∂V ( · , t)
∂x j

, [Q j (h), Ĥh(t)] = 2ih Pj (h).

We therefore deduce[
Pj (h),Gh(t, s)(A)

]
= Gh(t, s)

(
[Pj (h), A]

)
−

∫ t

s
Gh(t, t1)

([
∂V ( · , t1)
∂x j

,Gh(t1, s)(A)
])

dt1,

[
Q j (h),Gh(t, s)(A)

]
= Gh(t, s)

(
[Q j (h), A]

)
+ 2

∫ t

s
Gh(t, t1)

([
Pj (h),Gh(t1, s)(A)

])
dt1.

If A and its commutators with Pj (h) and Q j (h) are trace class, we first observe that [Pj (h),Gh(t, s)(A)]
is a trace class operator since Gh(t, s) maps L1(H) into itself. Using the second equality, we see that
[Q j (h),Gh(t, s)(A)] is also a trace class operator, and that the upper bound (4-17) is proved for m = 1.
We pursue the same reasoning to prove (4-17), by induction, for every m. The analogue of (4-17) for the
bounded operators is proved similarly. �

Proof of Theorem 4.2, second step. Following Proposition 2.1, it suffices to show that, for every multi-
index (α, β) and for every compact set K of R, there exists CαβK > 0 such that

hn−(|α|+|β|)
∥∥(ad P(h))α(ad Q(h))βGh(t, 0)(Ah)

∥∥
L1(H)

≤ CαβK (4-18)

for all t ∈ K and h ∈ (0, 1]. In order to achieve this, one will use the asymptotic expansion (4-9) up to an
order N that will depend on α and β. Since from the first step, the D j ( · , t, h) ( j ≥ 0) of the equality
(4-9) belong to W∞,1(R2n) and are bounded independently of h in (0, 1] and of t in a compact set of R,
Proposition 2.1 shows that

hn−(|α|+|β|)
∥∥(ad P(h))α(ad Q(h))β Opweyl

h (D j ( · , t, h))
∥∥

L1(H)
≤ CαβK

for all t ∈ K and h ∈ (0, 1]. Let us now derive an analogous upper bound for the term EN (t, s, h). For
that, we use the expression (4-13) of EN (t, s, h), and we apply Lemma 4.4 with (t, s) replaced by (t, tN )

and A by Opweyl
h (RN ( · , tN , . . . , t1, h)). Since RN ( · , tN , . . . , t1, h) is in W∞,1(R2n) and is bounded

independently of h in (0, 1], of (t1, . . . tN ) in 1N (0, t), and of t in a compact set of R, Proposition 2.1
shows that, for every integer m ≥ 0 and every compact set K of R, there exists C > 0 such that

hn I m,tr
h

(
Opweyl

h (RN ( · , tN , . . . , t1, h))
)
≤ CmK
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for all h ∈ (0, 1], (t1, . . . , tN ) ∈1N (0, t), and t ∈ K . Hence by Lemma 4.4, we deduce that the iterated
commutators of Gh(t, tN )(Opweyl

h (RN ( · , tN , . . . , t1, h))) with the position and momentum operators are
themselves trace class, and that there exists another constant CmK such that

hn I m,tr
h

(
Gh(t, tN )(Opweyl

h (RN ( · , tN , . . . , t1, h)))
)
≤ CmK .

We can therefore write, if Ah = Opweyl
h (F), for every multi-index (α, β) and every integer N ,

hn
∥∥(ad Q(h))β(ad P(h))αEN (t, h)

∥∥
L1(H)

≤ CαβN .

By reporting this in (4-9), and by choosing N = |α|+ |β|, one deduces (4-18). Using the characterization
of Proposition 2.1, Theorem 4.2 follows.

Proof of Theorem 1.1. Let ρh(t) be a classical solution of TDHF satisfying the hypotheses of Theorem 1.1.
Let us denote by Vh(t) the operator of multiplication by the function

x→ Vq(x, ρh(t))= V (x)+Tr(Wx ◦ ρh(t)), Wx(y)=W (x − y). (4-19)

Under the hypotheses of Theorem 1.1, we have ρh(t)≥ 0 and Tr(ρh(t))= 1 for all t , and therefore the
trace norm of ρh(t) is constant. Since all the derivatives of V and W are bounded, it follows that

|∂αx Vq(ρh(t))(x)| ≤ Cα, (x, t) ∈ Rn
×R. (4-20)

Let Ĥh(t) denote the operator defined in (4-3), where V (t) is the multiplication by Vq(x, ρh(t)). With
these notations, the TDHF equation can be written

ih
dρh(t)

dt
= [Ĥh(t), ρh(t)]. (4-21)

We note that Vh(t) depends on h, but in Theorem 4.2, the potential V (t) may depend on a parameter that
could be h. The only requirement is that Vq( · , ρh(t)) should be bounded in W∞,∞(Rn) independently
of h, which is the case. Denoting by Gh(t, s) the unitary propagator associated to the Hamiltonian Hh(t)
as in Proposition 4.1, one therefore has

ρh(t)= Gh(t, 0)(ρh(0))= Gh(t, 0)(Opweyl
h (Fh)).

Theorem 1.1 is therefore a particular case of Theorem 4.2. �

5. Proof of Theorem 1.2

We are going to state precisely the explicit construction of an approximate solution of order N , denoted
by ρ(N )h (t), of the TDHF equation. The exact solution ρh(t) is determined by the interaction potentials
V and W , which belong to W∞,∞(Rn), and the initial data ρh(0). We look for an approximate solution
with the ansatz (1-18), where F (N )(t, h) is a function R2n of the form (1-16). The functions u j ( · , t) in
the sum (1-16) will be determined in Proposition 5.1. They will be in W∞,1(R2n), and they can depend
also on h. We will associate to this solution the average quantum potential, like in (1-2):

Vq(x, ρ
(N )
h (t))= V (x)+Tr

(
Wxρ

(N )
h (t)

)
. (5-1)



1664 LAURENT AMOUR, MOHAMED KHODJA AND JEAN NOURRIGAT

By (2-7), if F is in W∞,1(R2n) and G in W∞,∞(R2n), one has

Tr
(
Opweyl

h (F) ◦Opweyl
h (G)

)
= (2πh)−n

∫
R2n

F(X)G(X) d X.

Therefore, if ρ(N )h (t) is defined by (1-18) and F (N )(t, h) by (1-16), we have

Vq(x, ρ
(N )
h (t))= Vcl

(
x, F (N )( · , t, h)

)
, (5-2)

where, for every function v in L1(R2n), the function Vcl( · , v) is defined as in (1-3). One similarly shows
that

Vq(x, ρ
(N )
h (t))= Vcl

(
x, F (N )( · , t, h)

)
. (5-3)

With these notations, the function uh( · , t) defined in (1-10) should satisfy

∂uh( · , t)
∂t

+ 2
n∑

j=1

ξ j
∂uh( · , t)
∂ξ j

=
1
ih

Mh
(
Vcl(uh( · , t)), uh( · , t)

)
, (5-4)

where for all suitable functions A and B, Mh(A, B) denotes the Moyal bracket of A and B, defined in
(3-2). For all functions A and B in C∞(R2n), and for every integer k ≥ 0, let Ck(A, B, · ) be the function
defined in (3-4). We set C0(A, B)= 0. One has C1(A, B)= (1/ i){A, B}. Now we will choose the u j

in a such a way that Equation (5-4) is approximatively verified. The construction of the functions u j of
Theorem 1.2 is detailed in the following proposition.

Proposition 5.1. There exists a sequence of functions (X, t)→ u j (X, t) on R2n
×R ( j ≥ 0) such that:

(a) The function t→ u j ( · , t, h) is C∞ from R into W∞,1(R2n). The function u j ( · , t, h) is bounded in
W∞,1(R2n) independently of h in (0, 1] and of t in every compact set of R.

(b) One has
u0(X, 0)= Fh(X) and u j (X, 0, h)= 0, j ≥ 1.

(c) For every N , the function uN (X, t, h) verifies

∂uN

∂t
+ 2

n∑
j=1

ξ j
∂uN

∂x j
=

1
i

∑
j+k+`=N+1

Ck
(
Vcl( · , u j ( · , t, h)), u`( · , t, h)

)
. (5-5)

In the sum (5-5), the indices j and ` are ≥ 0 and k is ≥ 1.

Determination of u0. For N = 0, Equation (5-5) reduces to the Vlasov equation,

∂u0

∂t
+ 2

n∑
j=1

ξ j
∂u0

∂x j
=

n∑
j=1

∂

∂x j
Vcl
(
u0( · , t)

)∂u0( · , t)
∂ξ j

,

and we want that u0( · , 0) = Fh , where Fh is the function of (1-6), which is in W∞,1(R2n). It is well
known (see [Braun and Hepp 1977]) that there exists a unique solution u0 of this Cauchy problem, and that
the function u0 is continuous from R into W∞,1(R2n). If Fh stays bounded in W∞,1(R2n) independently
of h, it is also the case for u0( · , t, h).
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Determination of uN (N ≥ 1). For every N ≥ 1, Equation (5-5) can be written as

∂uN

∂t
+ 2

n∑
j=1

ξ j
∂uN

∂x j
=

n∑
j=1

∂

∂x j
Vcl
(
u0( · , t, h)

)∂uN ( · , t)
∂ξ j

+

n∑
j=1

∂

∂x j
Vcl
(
uN ( · , t, h)

)∂u0( · , t, h)
∂ξ j

+G N (X, t, h),

G N =
1
i

∑
j+k+`=N+1

j<N ,`<N

Ck
(
Vcl(u j ( · , t, h)), u`( · , t, h)

)
.

One also requires that uN (X, 0, h)= 0. To solve this equation, dropping the parameter h for the sake of
simplifying notations, let us denote by X→ ϕt(X)= (q(t, X), p(t, X)) the Hamiltonian flow that is the
solution of

q ′(t, X)= 2p(t, X), p′(t, X)=−∇V (q(t, X))−
∫

R2n
∇W (q(t, X)− y)u0(y, η, t) dy dη

satisfying
q(0, X)= x, p(0, X)= ξ, X = (x, ξ).

The function vN defined by vN (X, t)= uN (ϕt(X), t) should satisfy

∂vN

∂t
=

n∑
j=1

∂u0

∂ξ j

(
ϕt(X), t

) ∫
R2n

∂W
∂x j

(
qt(X)− y

)
uN (y, η, t) dy dη+ G̃ N (X, t),

where G̃ N (X, t) = G N (ϕt(X), t). By using in the integral the change of variables (y, η) = ϕt(z, ζ ),
whose jacobian equals 1, we see that vN should satisfy

∂vN

∂t
(X, t)= G̃ N (X, t)+

∫
R2n

A(X, Y, t)vN (Y, t) dY,

A(X, Y, t)=
n∑

j=1

∂u0

∂ξ j

(
ϕt(X), t

)∂W
∂x j

(
qt(X)− qt(Y )

)
.

Moreover, one must have vN ( · , 0)= 0. According to standard results on the Vlasov equation, one knows
that ∇u0( · , t) is in W∞,1(R2n), bounded when t varies in a compact set. The same is true for ∇ϕt . If
the u j (0≤ j < N ) have been built with the properties of Proposition 5.1, one sees that G N ( · , t) is in
W∞,1(R2n), bounded when t varies in a compact set. It is also the case for G̃ N ( · , t). Then the Cauchy
problem verified by vN and the one verified by uN can be solved in a standard way.

To prove Theorem 1.2, we will show that the functions F (N )(t, h)(X) defined in (1-16) starting from
the u j ( · , t, h) of Proposition 5.1 and the operators ρ(N )h (t) defined in (1-18) satisfy (1-17) and (1-19).
The next proposition is an intermediate step.

Proposition 5.2. Let ρh(t) be an exact solution of TDHF satisfying the hypotheses of Theorems 1.1 and
1.2. Let Ĥh(t) be the operator defined in (4-3), where V (t) is the multiplication by Vq(x, ρh(t)). Let u j
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( j ≥ 0) be the functions of Proposition 5.1, and, for each integer N , let F (N ) be the function defined by
(1-16) and ρ(N )h (t) defined in (1-18). Then we can write

ih
dρ(N )h (t)

dt
= [Ĥh(t), ρ

(N )
h (t)] +Opweyl

h

(
S(N )h ( · , t)

)
, (5-6)

where S(N )h ( · , t) is in W∞,1(R2n) and verifies, for every multi-index α,∥∥∇αS(N )h ( · , t)
∥∥

L1(R2n)
≤ CαN (t)

[
hN+2

+ h
∥∥ρh(t)− ρ

(N )
h (t)

∥∥
L1(H)

]
, (5-7)

where CαN (t) is a function on R which is bounded on every compact set.

Proof. By (5-5), we have

∂F (N )

∂t
+ 2

n∑
j=1

ξ j
∂F (N )

∂x j
=

1
h

N+1∑
k=1

hkCk
(
Vcl( · , F (N )( · , t, h)), F (N )( · , t, h)

)
+8(N )( · , t, h), (5-8)

where 8(N )( · , t, h) is a function in W∞,1(R2n), such that∥∥∇α8(N )( · , t, h)
∥∥

L1(R2n)
≤ hN+1CαN (t). (5-9)

We define an approximation of the operator Ĥh(t) by setting

Ĥ APP
h (t)=−h21+ Vcl

(
F (N )( · , t, h)

)
. (5-10)

Since F (N ) verifies (5-8), we may write

ih
dρ(N )h (t)

dt
=
[
Ĥ APP

h (t), ρ(N )h (t)
]
+Opweyl

h

(
T (N )

h ( · , t)
)
, (5-11)

where the function T (N )
h ( · , t) is defined by

T (N )
h ( · , t)= h8(N )( · , t, h)+ R(N+2)

h

(
Vcl( · , F (N )( · , t, h)), F (N )( · , t, h)

)
.

(For all functions A and B satisfying the hypotheses of Theorem 3.1, we denote by R(N )h (A, B, · ) the
function associated by Theorem 3.1 to such functions.) Then by the definition (5-3) of the map Vcl, and
Proposition 5.1(a), we can write∥∥∇αx Vcl

(
· , F (N )( · , t, h)

)∥∥
L∞(R2n)

≤ CαN (t),
∥∥∇βF (N )( · , t, h))

∥∥
L1(R2n)

≤ CβN (t). (5-12)

Using these upper bounds and following Theorem 3.1 on the Moyal bracket, we may write∥∥∇`R(N+2)
h

(
Vcl( · , F (N )( · , t, h)), F (N )( · , t, h)

)∥∥
L1(R2n)

≤ C`N (t)hN+2.

According to these upper bound estimates, and the estimates (5-9) of the derivatives of 8(N )( · , t, h), one
has ∥∥∇αT (N )

h ( · , t)
∥∥

L1(R2n)
≤ CαN (t)hN+2. (5-13)
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According to (5-11), and since

Ĥ APP
h (t)− Ĥh(t)= Vq( · , ρh(t))− Vq( · , ρ

(N )
h (t)),

we can write the equality (5-6) with

S(N )h ( · , t)= T (N )
h ( · , t)+Mh

(
Vq( · , ρh(t))− Vq( · , ρ

(N )
h (t)), F (N )( · , t, h)

)
. (5-14)

One has ∥∥∇αx (Vq( · , ρh(t))− Vq( · , ρ
(N )
h (t))

)∥∥
L∞(R2n)

≤ Cα
∥∥ρh(t)− ρ

(N )
h (t)

∥∥
L1(H)

.

Using all of these estimates and the L1 norm estimates (5-12) of F (N )( · , t, h), and using Theorem 3.1
on the Moyal bracket, it results that∥∥∇αMh

(
Vq(ρh(t))− Vq(ρ

(N )
h (t)), F (N )( · , t, h)

)∥∥
L1(R2n)

≤ C(t)h
∥∥ρh(t)− ρ

(N )
h (t)

∥∥
L1(H)

. (5-15)

The norm upper bound estimate (5-7) of S(N )h ( · , t) results from (5-14), (5-13) and (5-15).

End of the proof of Theorem 1.2. Let Uh(t, s) and Gh(t, s) be the unitary propagator and the mapping
defined in Proposition 4.1, associated to the operator Ĥh(t) of Proposition 5.2. The comparison of
equalities (4-21) (verified by the exact solution) and (5-6) (verified by the approximate solution) and the
Duhamel principle allow us to write

ρh(t)− ρ
(N )
h (t)= i

h

∫ t

0
Gh(t, s)

(
Opweyl

h (S(N )h ( · , s))
)

ds. (5-16)

Since Uh(t, s) is unitary, the map Gh(t, s) preserves the trace norm, and from that we may deduce that∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤
1
h

∫ t

0

∥∥Opweyl
h (S(N )h ( · , s))

∥∥
L1(H)

ds.

Using Proposition 2.1 and the upper bounds (5-7) of Proposition 5.2, we obtain∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤
1
h

∫ t

0
C(s)

[
hN+2

+ h
∥∥ρh(s)− ρ

(N )
h (s)

∥∥
L1(H)

]
ds.

By the Gronwall lemma, we deduce that, with another constant,∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤ C(t)hN+1.

Therefore the Theorem 1.2(1-19) is proved. We deduce from this inequality and from (5-7) that∥∥∇αS(N )h ( · , t)
∥∥

L1(R2n)
≤ CαN (t)hN+2,

where CαN (t) is a function on R, bounded on every compact set. From Proposition 2.1 and Lemma 4.4,
for every multi-index (α, β), the operators

h−N−2(ad Q(h))β(ad P(h))αGh(t, s)
(
Opweyl

h (S(N )h ( · , s)
)
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are trace class, and their trace norm is bounded, independently of (t, s) in a compact set of R, and of h in
(0, 1]. By (5-16), for every multi-index (α, β), and for every N > 0, there exists a function CαN (t) > 0,
bounded on every compact set of R, such that∥∥(ad Q(h))β(ad P(h))α

(
ρh(t)− ρ

(N )
h (t)

)∥∥
L1(H)

≤ CαN (t)hN+1.

Using Proposition 2.1(b), we deduce

(2πh)−n
∥∥σweyl

h

(
ρh(t)− ρ

(N )
h (t)

)∥∥
L1(R2n)

≤ C(t)h(N+1)−(2n+2)/2.

In other words, with the notations of Theorem 1.2,∥∥uh( · , t)− F (N )( · , t, h)
∥∥

L1(R2n)
≤ C(t)hN .

This is the Theorem 1.2(1-17), which is proved now. �

Appendix A: Proof of Proposition 2.1

The proof of Proposition 2.1 calls upon a different notion of symbol. One can associate to every bounded
operator A in H a function Sh(A) on R2n

×R2n defined by

Sh(A)(X, Y )=
〈A9Xh, 9Y h〉

〈9Xh, 9Y h〉
, (A-1)

where the 9Xh are defined in (2-14). An explicit computation of integrals shows that

|〈9Xh, 9Y h〉| = e−(1/4h)|X−Y |2, ‖9Xh‖ = 1. (A-2)

Consequently,
|Sh(A)(X, Y )| = e(1/4h)|X−Y |2

|〈A9Xh, 9Y h〉|. (A-3)

The function Sh(A) is, up to a slight modification, what G. B. Folland [1989] calls the Wick symbol.
The following proposition shows that Sh(A) and the Weyl symbol σweyl

h (A) are related to each other by
an integral operator. (By contrast, the Weyl symbol cannot be calculated from what is commonly called
the Wick symbol, namely the restriction of Sh(A) to the diagonal.) The function Sh(A) can be majorized
(in some norm) and minorized (in another norm) by the trace norm of A (Proposition A.2).

Proposition A.1. The Weyl symbol of an operator A is related to the function Sh(A) by

Sh(A)(X, Y )= (πh)−n
∫

R2n
e−(1/h)(Z−X).(Z−Y )σ

weyl
h (A)(Z) d Z , (A-4)

σ
weyl
h (A)(Z)= 2n(2πh)−2n

∫
R4n

Sh(A)(X, Y )Kh(X, Y, Z) d X dY, (A-5)

Kh(X, Y, Z)= e−(1/h)(Z−X)(Z−Y )−(1/2h)|X−Y |2 . (A-6)

Proof. By the definition (2-3) of the Weyl calculus, one has

A = (πh)−n
∫

R2n
6Zhσ

weyl
h (A)(Z) d Z ,
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where 6Zh is the operator defined in (2-4). An explicit computation shows that

〈6Zh9Xh, 9Y h〉

〈9Xh, 9Y h〉
= e−(1/h)(Z−X).(Z−Y ). (A-7)

The equality (A-4) follows. By the fundamental formula (2-16) of coherent states, one has

A = (2πh)−2n
∫

R4n
〈A9Xh, 9Y h〉PXY h d X dY, (A-8)

where PXY h is the operator defined by

PXY h f = 〈 f, 9Xh〉9Y h . (A-9)

One knows from (2-5) that

σ
weyl
h (PXY h)(Z)= 2nTr(PXY h ◦6Z )= 2n

〈6Zh9Y h, 9Xh〉.

By the computation leading to (A-7) (where X and Y are permuted), we may deduce

σ
weyl
h (A)(Z)= 2n(2πh)−2n

∫
R4n

Sh(A)(X, Y )
∣∣〈9Xh, 9Y h〉

∣∣2e−(1/h)(Z−X)(Z−Y ) d X dY.

Using the equality (2-15) on the scalar product of coherent states, we obtain (A-5). �

Proposition A.2. Let A be a trace class operator and G a function in L1(R2n). Then one has

(2πh)−2n
∫

R4n

∣∣∣∣〈A9Xh, 9Y h〉G
(

X−Y
√

h

)∣∣∣∣ d X dY ≤ (2π)−n
‖G‖L1(R2n)‖A‖L1(H), (A-10)

‖A‖L1(H) ≤ (2πh)−2n
∫

R4n

∣∣〈A9Xh, 9Y h〉
∣∣ d X dY. (A-11)

Proof. We may write A = B1 B2, where B1 and B2 are Hilbert–Schmidt. By using the fundamental
property (2-16) of coherent states, one sees that for all X and Y in R2n ,

〈A9Xh, 9Y h〉 = 〈B29Xh, B?19Y h〉 = (2πh)−n
∫

R2n
uZh(X)vZh(Y ) d Z ,

where uZh(X) = 〈B29Xh, 9Zh〉 and vZh(X) = 〈9Zh, B?19Xh〉. Let Ih be the left-hand side of (A-10).
By Schur’s lemma,

Ih ≤ (2πh)−3nhn
‖G‖L1(R2n)

∫
R2n
‖uZh‖L2(R2n)‖vZh‖L2(R2n) d Z .

By (2-16), we have ‖uZh‖L2(R2n) = (2πh)n/2‖B?29Zh‖ and ‖vZh‖L2(R2n) = (2πh)n/2‖B19Zh‖. Hence,

Ih ≤ (2πh)−2nhn
‖G‖L1(R2n)

∫
R2n
‖B19Zh‖‖B?29Zh‖ d Z .

By the fundamental property (2-16) of coherent states,

(2πh)−n
∫

R2n
‖B j9Zh‖

2 d Z = (2πh)−n
∫

R2n
〈B?j B j9Zh, 9Zh〉 d Z = Tr(B?j B j )= ‖B j‖

2
L2(H),



1670 LAURENT AMOUR, MOHAMED KHODJA AND JEAN NOURRIGAT

where ‖B j‖L2(H) is the Hilbert norm of B j . Therefore,

Ih ≤ (2π)−n
‖G‖L1(R2n) ‖B1‖L2(H) ‖B2‖L2(H).

By taking the infimum over all the decompositions A = B1 B2, one gets (A-10). The inequality (A-11) is
deduced from the equality (A-8) since the operators PXY h have a trace norm equal to 1. �

Proof of Proposition 2.1. For (a), we use the equality (A-4) and integrate by parts, as is done in [Rondeaux
1984]. Thus we see that

(2πh)−2n
∫

R4n
e−(1/4h)|X−Y |2

|Sh(A)(X, Y )| d X dY ≤ Ch−n
∑

|α|+|β|≤2n+2

h(|α|+|β|)/2‖∂αx ∂
β
ξ F‖L1(R2n).

One then deduces item (a) (the upper bound estimate of the trace norm of A), using Equation (A-11).
For parts (b) and (c), we are going to integrate by parts in the second equality (A-5) of Proposition A.1.

One verifies that the function Kh defined in (A-6) is invariant by the differential operator

L(h)Kh = Kh, L(h)=
(

1+ |X−Y |2

h

)−1(
1+ (Y − X)∂X

)
.

Thus equality (A-5) implies, for every integer N ,∣∣σweyl
h (A)(Z)

∣∣≤ 2n(2πh)−2n
∫

R4n

∣∣Kh(X, Y, Z)
∣∣∣∣(t L(h))N Sh(A)(X, Y )

∣∣ d X dY.

One verifies that
|Kh(X, Y, Z)| = e−(1/h)|Z−(X+Y/2)|2−(1/4h)|X−Y |2 .

One chooses N = 2n+ 2. There exists C > 0 such that∣∣σweyl
h (A)(Z)

∣∣≤ C
∑

|α|≤2n+2

h|α|/2(2πh)−2n
∫

R4n

∣∣Kh(X, Y, Z)
∣∣G( X−Y

√
h

)∣∣∂αX Sh(A)(X, Y )
∣∣ d X dY,

where
G(X)= (1+ |X |)−2n−2.

By the classical formulas giving Sh([Pj (h), A]) and Sh([Q j (h), A]) as an expression with the derivatives
of Sh(A), it follows that∣∣σweyl

h (A)(Z)
∣∣

≤C
∑

|α|+|β|≤2n+2

h−2n−(|α|+|β|)/2
∫

R4n
e−(1/h)|Z−(X+Y/2)|2−(1/4h)|X−Y |2 G

(
X−Y
√

h

)∣∣Sh(Aαβh)(X, Y )
∣∣ d X dY,

where
Aαβh = (ad P(h))α(ad Q(h))β A.

The preceding equality can be also written as∣∣σweyl
h (A)(Z)

∣∣≤ C
∑

|α|+|β|≤2n+2

h−2n−(|α|+|β|)/2
∫

R4n
e−

1
h

∣∣Z− X+Y
2

∣∣2
G
(

X−Y
√

h

)∣∣〈(Aαβh9Xh, 9Y h〉
∣∣ d X dY.
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Item (b) is a consequence of (A-11). Item (c) (an analogue of the Beals characterization) is then easily
deduced. �

Appendix B: Proof of Theorems 3.1 and 3.2

First step, common to both theorems. We know that, for all suitable functions F and G, we can write
Opweyl

h (F) ◦Opweyl
h (G)= Opweyl

h (Ch(F,G, · ), with

Ch(F,G, X)= (πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)F(Y )G(Z) dY d Z ,

where σ is the symplectic form σ((x, ξ), (y, η))= yξ−xη. Consequently the Moyal bracket Mh(F,G, · )
is defined by Mh(F,G, X) = Ch(F,G, X) − Ch(G, F, X). Thus it suffices to write an asymptotic
expansion Ch(F,G, · ). We may write Ch(F,G, X)=8h(X, 1) by setting, for every θ ∈ [0, 1],

8h(X, θ)= (πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)F(Y )G

(
X + θ(Z − X)

)
dY d Z .

Consequently, for every integer N ,

Ch(F,G, X)=
N−1∑
k=0

1
k!
∂k

t 8h(X, 0)+ R̃(N )h (F,G, X),

with

R̃(N )h (F,G, X)=
∫ 1

0

(1− θ)N−1

(N − 1)!
∂N
θ 8h(X, θ) dθ.

One sees, using integration by parts, that

∂k
θ8(X, θ, h)=

(
h
2i

)k

(πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)(σ(∇1,∇2)

k(F⊗G)
)(

Y, X+θ(Z− X)
)

dY d Z .

If a function 8 depends only on the Y variable, one has (in the sense of distributions)

(πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)8(Y ) dY d Z =8(X),

and similarly if 8 depends only on the Z variable. For θ = 0, one has, by the above two equalities,

∂k
θ8(X, 0, h)=

(
h
2i

)k

σ(∇1,∇2)
k(F ⊗G)(X, X),

and therefore we do have indeed the equality (3-3) of Theorem 3.1, by setting

R(N )h (F,G, X)= R̃(N )h (F,G, X)− R̃(N )h (G, F, X). (B-1)

It remains to obtain an upper bound for the norm of the two above terms. One also has

R̃(N )h (F,G, X)=
(

h
2i

)N

(πh)−2n
∫

R4n×[0,1]

(1− θ)N−1

(N − 1)!
Kh(X, Y, Z)9(X, Y, Z , θ) dY d Z dθ,
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where
Kh(X, Y, Z)= e−(2i/h)σ (Y−X,Z−X),

9(X, Y, Z , θ)=
(
σ(∇1,∇2)

N (F ⊗G)
)(

Y, X + θ(Z − X)
)
.

The function Kh is invariant by the operator

Lh =

(
1+ 4

|X − Y |2

h
+ 4
|X − Z |2

h

)−1

(1− h1Y − h1Z ).

Therefore, for all integers K and `,

∣∣∇` R̃(N )h (F,G, X)
∣∣≤ (h

2

)N

(πh)−2n
∫

R4n×[0,1]

(1− θ)N−1

(N − 1)!

∣∣∇`(t L)K9(X, Y, Z , θ)
∣∣ dY d Z dθ.

Consequently,
h`/2|∇` R̃(N )h (F,G, X)| ≤ C

∑
α+β≤`+2K+2N
α≥N ,β≥N

h(α+β)/2 Iαβ(X, h), (B-2)

Iαβ(X, h)

=h−2n
∫

R4n×[0,1]
(1−θ)N−1

(
1+
|X−Y | + |X−Z |

√
h

)−2K

|∇
αF(Y )|

∣∣∇βG
(
X+θ(Z−X)

)∣∣ dY d Z dθ. (B-3)

End of the proof of Theorem 3.1. We integrate the equality (B-3) with respect to X by making the
change of variables

X = (1− θ)−1(X̃ − θ Z̃), Y = Ỹ , Z = Z̃ .

We obtain∥∥Iαβ( · , h)
∥∥

L1(R2n)

≤ Ch−2n
∫

R6n×[0,1]
(1− θ)N−2n−1

(
1+
|X − Y | + |X − Z |

√
h

)−2K

|∇
αF(Y )||∇βG(X)| d X dY dY d Z dθ.

If one has N ≥ 2n+ 1 and chooses K = 2n+ 1, we deduce, by using Schur’s lemma, that∥∥Iαβ( · , h)
∥∥

L1(R2n)
≤ C‖∇αF‖L p(R2n) ‖∇

βG‖Lq (R2n).

Adding these inequalities, we obtain

h`/2
∣∣∇`R(N ,1)h (F,G, X)

∣∣≤ C
∑

α+β≤`+2K+2N
α≥N ,β≥N

h(α+β)/2‖∇αF‖L p(R2n)‖∇
βG‖Lq (R2n).

By proceeding similarly for R̃(N )h (G, F, · ), we arrive at the upper bound (3-5) of Theorem 3.1. Part (3-6)
is then deduced by Proposition 2.1.
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End of the proof of Theorem 3.2. If one chooses K = 2n+ 1, it follows from (B-3) that∥∥Iαβ( · , h)
∥∥

L∞(R2n)
≤ C‖∇αF‖L∞(R2n)‖∇

βG‖L∞(R2n).

By substituting in (B-2), then in (B-1), we obtain the majorization (3-7) of Theorem 3.2.
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THE CLASSIFICATION OF FOUR-END SOLUTIONS TO THE ALLEN–CAHN
EQUATION ON THE PLANE

MICHAŁ KOWALCZYK, YONG LIU AND FRANK PACARD

An entire solution of the Allen–Cahn equation 1u = f (u), where f is an odd function and has exactly
three zeros at ±1 and 0, for example, f (u) = u(u2

− 1), is called a 2k-end solution if its nodal set
is asymptotic to 2k half lines, and if along each of these half lines the function u looks like the one-
dimensional, heteroclinic solution. In this paper we consider the family of four-end solutions whose ends
are almost parallel at∞. We show that this family can be parametrized by the family of solutions of
the Toda system. As a result we obtain the uniqueness of four-end solutions with almost parallel ends.
Combining this result with the classification of connected components in the moduli space of the four-end
solutions, we can classify all such solutions. Thus we show that four-end solutions form, up to rigid
motions, a one parameter family. This family contains the saddle solution, for which the angle between
the nodal lines is π/2, as well as solutions for which the angle between the asymptotic half lines of the
nodal set is any θ ∈ (0, π/2).

1. Introduction

Some entire solutions to the Allen–Cahn equation in R2. This paper deals with the problem of classifi-
cation of the family of four-end solutions (precise definition will follow) to the Allen–Cahn equation:

1u = F ′(u) in R2. (1-1)

The function F is a smooth double well potential, which means that we assume the following conditions
for F : F is even, nonnegative, and has only two zeros at ±1, F ′(t) 6= 0, t ∈ (0, 1). We also suppose
F ′′(1) 6= 0, F ′′(0) 6= 0. For convenience, we assume that F is such that F ′′(1)= 2. A standard example
is F(u)= 1

4(1− u2)2.
It is known that (1-1) has a solution whose nodal set is a straight line. This will be called a planar

solution. It is obtained simply by taking the unique, odd, heteroclinic solution connecting −1 to 1

H ′′ = F ′(H), H(±∞)=±1, H(0)= 0, (1-2)

and letting u(x, y)= H(ax+by+c) for some constants a, b, c such that a2
+b2
= 1. We note that if a> 0,

then ∂x u = aH ′ > 0. The De Giorgi conjecture says that if u with |u|< 1 is a smooth solution of (1-1)

Kowalczyk was partially supported by Chilean research grants Fondecyt 1090103, Fondo Basal CMM-Chile, Project Añillo
ACT-125 CAPDE, and a MathAmSud project NAPDE. Liu was partially supported by Chilean research grants Fondecyt 3100011,
Fondo Basal CMM-Chile and NSFC grant 11101141. Pacard was partially supported by the ANR-11-IS01-0002 grant and a
MathAmSud project NAPDE..
MSC2010: 35J61.
Keywords: Allen–Cahn equation, entire solutions, moduli space, Toda system, four-end solutions.
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such that ∂eu > 0 for a certain fixed direction e, then u must in fact be a planar solution. Indeed, this
conjecture holds in RN , N ≤ 8 (see [Ghoussoub and Gui 1998] when N = 2, [Ambrosio and Cabré 2000]
when N = 3, and [Savin 2009] for 4≤ N ≤ 8 under an additional limit condition), while a counterexample
can be given when N ≥ 9 [del Pino et al. 2011]. It is worth mentioning that the De Giorgi conjecture is a
direct analogue of the famous Bernstein conjecture in the theory of minimal surfaces.

In order to proceed with the statement of our results, we will define the family of four-end solutions of
(1-1), which is a particular example of a more general family of 2k-end solutions [del Pino et al. 2013].
Intuitively, a four-end solution u is characterized by the fact that its nodal set N (u) is asymptotic at
infinity to four half lines, and along each of these half lines it looks locally like the heteroclinic solution.
To describe this precisely, we introduce the set 34 of oriented and ordered four affine lines in R2. Thus
34 consists of 4-tuples (λ1, . . . , λ4) such that each λ j can be uniquely written as

λ j := r j e⊥j +Re j

for some r j ∈ R and some unit vector e j = ( cos θ j , sin θ j ) ∈ S1, which defines the orientation of the
line. Here, the symbol ⊥ refers to the rotation of angle π/2 in R2. Observe that the affine lines are
oriented, and hence we do not identify the line corresponding to (r j , θ j ) and the line corresponding to
(−r j , θ j +π). Additionally we require that these lines are ordered, which means

θ1 < θ2 < θ3 < θ4 < 2π + θ1.

For future purposes we denote by

θλ :=
1
2 min{θ2− θ1, θ3− θ2, θ4− θ3, 2π + θ1− θ4} (1-3)

the half of the minimum of the angles between any two consecutive oriented affine lines of λ1, . . . , λ4.
Assume that we are given a 4-tuple of oriented affine lines λ= (λ1, . . . , λ4). It is easy to check that

for all R > 0 large enough and for all j = 1, . . . , 4, there exists s j ∈ R such that

(i) the point x j := r j e⊥j + s j e j belongs to the circle ∂BR , with R > 0;

(ii) the half lines

λ+j := x j +R+e j (1-4)

are disjoint and included in R2
\ BR;

(iii) the minimum of the distance between two distinct half lines λ+i and λ+j is larger than 4.

The set of affine half lines λ+1 , . . . , λ
+

4 together with the circle ∂BR induces a decomposition of R2

into five slightly overlapping connected components

R2
=�0 ∪�1 ∪ · · · ∪�4,

where

�0 := BR+1,
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and where, for j = 1, . . . , 4,

� j := {x ∈ R2
: |x|> R− 1 and dist(x, λ+j ) < dist(x, λ+i )+ 2 for all i 6= j}, (1-5)

where dist(x, λ+j ) denotes the distance of x to λ+j . Observe that, for all j = 1, . . . , 4, the set � j contains
the half line λ+j .

We consider a smooth partition of unity of R2 given by the functions I0, I1, . . . , I4, which is subordinate
to the above decomposition of R2. Hence

4∑
j=0

I j ≡ 1,

and the support of I j is included in � j for j = 0, . . . , 4. Without loss of generality, we can also assume
that I0 ≡ 1 in

�′0 := BR−1,

and I j ≡ 1 in

�′j := {x ∈ R2
: |x|> R+ 1 and dist(x, λ+j ) < dist(x, λ+i )− 2 for all i 6= j}

for j = 1, . . . , 4. Finally, we assume that

‖I j‖C2(R2) ≤ C.

We now take λ= (λ1, . . . , λ4) ∈34 with λ+j = x j +R+e j and we define

uλ(x) :=
4∑

j=1

(−1) j I j (x)H((x− x j ) · e⊥j ). (1-6)

Observe that, by construction, the function uλ is, away from a compact set, asymptotic to copies of
planar solutions whose nodal set is the affine half lines λ+1 , . . . , λ

+

4 . A simple computation shows that
uλ is not far from being a solution of (1-1) in the sense that 1uλ− F ′(uλ) is a function which decays
exponentially to 0 at infinity (this uses the fact that θλ > 0).

In this paper we are interested in four-end solutions of (1-1), which means that they are asymptotic to
a function uλ for some choice of λ ∈34. More precisely, we have:

Definition 1.1. Let S4 denote the set of functions u which are defined in R2 and which satisfy

u− uλ ∈W 2,2(R2) (1-7)

for some λ ∈34. We also define the decomposition operator J by

J : S4→W 2,2(R2)×34, u 7→ (u− uλ, λ).

The topology on S4 is the one for which the operator J is continuous (the target space being endowed
with the product topology). We define the set M4 of four-end solutions of the Allen–Cahn equation to be
the set of solutions u of (1-1) which belong to S4.
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The set M4 is nonempty. Indeed, it is known [Dang et al. 1992] that (1-1) has a saddle solution U ,
which is bounded and symmetric:

U (x, y)=U (x,−y)=U (−x, y).

Moreover, the nodal set of U coincides with the lines y = ±x . Along these two lines, U converges
exponentially fast to the “heteroclinic” solution. In addition, in [del Pino et al. 2010] it is shown that
there exists a small number ε0 such that, for all 0< θ with tan θ < ε0, there exists a four-end solution
with corresponding angles of the half lines λ+j , j = 1, . . . , 4 given by

θ1 = θ, θ2 = π − θ, θ3 = θ +π, θ4 = 2π − θ.

Observe that the fact that θ is small implies that the ends of this solution are almost parallel and their
slopes, given by ±ε, ε = tan θ , are small as well. Clearly, by symmetry, it is easy to see that there also
exist solutions with almost parallel ends whose angles are given by

θ1 = π/2− θ, θ2 = π/2+ θ, θ3 =−θ + 3π/2, θ4 = 3π/2+ θ.

In this case we have tan θ1 > 1/ε0.
Clearly, any four-end solution can be translated and rotated and multiplied by −1, yielding another

four-end solution. In fact, from [Gui 2012] we know that any u ∈ M4 is (modulo rigid motions and
multiplication of a solution by −1) even in its variables, monotonic in x in the set x > 0, and monotonic
in y in the set y < 0:

u(x, y)= u(−x, y)= u(x,−y), ux(x, y) > 0, x > 0, u y(x, y) > 0, y < 0. (1-8)

Thus, when studying four-end solutions, it is natural to consider the set Meven
4 ⊂M4, consisting precisely

of functions satisfying (1-8). With each such function u we may associate in a unique way the angle that
the asymptotic line of its nodal set in the first quadrant makes with the x-axis. Thus we can define the
angle map

θ : Meven
4 → (0, π/2), u 7→ θ(u). (1-9)

In principle the value of the angle map is not enough to identify in a unique way a solution to (1-1) in
Meven

4 . However, for solutions with almost parallel ends, we have:

Theorem 1.2. There exists a small number ε0 such that, for any two solutions u1, u2 ∈Meven
4 satisfying

tan θ(u1)= tan θ(u2) < ε0, we necessarily have u1 ≡ u2.

This result, in some sense, gives a classification of the subfamily of the family of four-end solutions
which contains solutions with almost parallel ends. It says that this subfamily consists precisely of the
solutions constructed in [del Pino et al. 2010]. Let us explain the importance of this statement from the
point of view of classification of all four-end solutions. We will appeal to the following theorem.

Theorem 1.3 [Kowalczyk et al. 2012]. Let M be any connected component of Meven
4 . Then the angle map

θ : M→ (0, π/2) is surjective.



THE CLASSIFICATION OF FOUR-END SOLUTIONS 1679

Consider, for example, the connected component M0 ⊂Meven
4 which contains the saddle solution U .

Theorem 1.3 implies that U can be deformed along M0 to a solution with the value of the angle map
arbitrarily close to 0 or to π/2, thus yielding a solution in the subfamily of the solutions with almost
parallel ends. But these solutions are uniquely determined by the value of the angle map, which follows
from the uniqueness statement in Theorem 1.2. As a result we obtain the following classification theorem.

Theorem 1.4. Any solution u ∈ Meven
4 belongs to M0 and is a continuous deformation of the saddle

solution U.

We observe that, according to the conjecture of De Giorgi, in two dimensions, any solution u with
|u|< 1 which is monotone in one direction must be one-dimensional and equal to u(x)= H(a · x+ b),
that is, it is a planar solution. In the language of multiple end solutions, this solution has two (heteroclinic,
planar) ends. Theorem 1.4, on the other hand, gives the classification of the family of solutions with four
planar ends. Since the number of ends of a solution to (1-1) must be even, the family of four-end solutions
is the natural object to study. In this context, one may wonder if it is possible to classify solutions to (1-1)
assuming, for instance, that the nodal sets of ux and u y have just one component. This question is beyond
the scope of this paper, however, since partial derivatives of four-end solutions satisfy this assumption,
it seems reasonable to conjecture that a result similar to Theorem 1.4 should hold in this more general
setting. We should mention here that it is, in principle, possible to study the problem of classification of
solutions assuming, for example, that their Morse index is 1. This is natural since the Morse index of u
and the number of the nodal domains of ux and u y are related. We recall here that the heteroclinic is
stable, and, from [Dancer 2005], we know that in dimension N = 2, stability of a solution implies that it
is necessarily a one-dimensional solution (for the related minimality conjecture, see, for example, [Pacard
and Wei 2013; Savin 2009]. We expect that in fact the family of four-end solutions should contain all
multiple end solutions with Morse index 1. We recall here that the Morse index of the saddle solution is
indeed 1 [Schatzman 1995].

Let us now explain the analogy of Theorem 1.4 with some aspects of the theory of minimal surfaces
in R3. In 1834, Scherk discovered an example of a singly periodic, embedded, minimal surface in R3

which, in a complement of a vertical cylinder, is asymptotic to 4 half-planes with angle π/2 between
them. This surface, after a rigid motion, has two planes of symmetry, say {x2 = 0} and {x1 = 0}, and it is
periodic, with period 1 in the x3 direction. If θ is the angle between the asymptotic end of the Scherk
surface contained in {x1 > 0, x2 > 0} and the {x2 = 0} plane, then θ = π/4. This is the so-called second
Scherk surface and it will be denoted here by Sπ/4. Karcher [1988] found Scherk surfaces other than
the original example in the sense that the corresponding angle between their asymptotic planes and the
{x2 = 0} plane can be any θ ∈ (0, π/2). The one parameter family {Sθ }{0<θ<π/2} of these surfaces is
the family of Scherk singly periodic minimal surfaces. Thus, accepting that the saddle solution of the
Allen–Cahn equation U corresponds to the Scherk surface Sπ/4, Theorem 1.3 can be understood as an
analogue of the result of Karcher. We note that, unlike in the case of the Allen–Cahn equation, the Scherk
family is given explicitly. For example, it can be represented as the zero level set of the function

Fθ (x1, x2, x3)= cos2 θ cosh
x1

cos θ
− sin2 θ cosh

x2

cos θ
− cos x3.
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From this, it follows immediately that the angle map in this context Sθ 7→ θ is a diffeomorphism. A
corresponding result for the family Meven

4 is of course more difficult, since no explicit formula is available
in this case.

We will further explore the analogy of our result with the theory of minimal surfaces in R3, now in the
context of the classification of the four-end solutions in Theorem 1.4. The corresponding problem can
be stated as follows: if S is an embedded, singly periodic, minimal surface with 4 Scherk ends, what
can be said about this surface? It is proven by Meeks and Wolf [2007] that S must be one of the Scherk
surfaces Sθ described above (a similar result is proven in [Pérez and Traizet 2007] assuming additionally
that the genus of S in the quotient R3/Z is 0). The key results to prove this general statement are in fact
the counterparts of Theorem 1.2 and Theorem 1.3.

We now sketch the basic elements in the proof of Theorem 1.2. First of all, let us explain the existence
result in [del Pino et al. 2010]. The starting point of the construction is the Toda system:{

q ′′1 =−c∗e
√

2(q1−q2),

q ′′2 = c∗e
√

2(q1−q2),
(1-10)

for which q1 < 0 < q2 and q1(x) = −q2(x), as well as q j (x) = q j (−x), j = 1, 2. Here c∗ is a fixed
constant depending only on F (when F(u)= 1

4(1− u2)2, c∗ = 12
√

2), and
√

2 appears because we have
assumed F ′′(1)= 2. Any solution of this system is asymptotically linear, namely,

q j (x)= (−1) j (m|x | + b)+O(e−2
√

2m|x |), x→∞,

where m > 0 is the slope of the asymptotic straight line in the first quadrant. On the other hand, given
that we only consider solutions whose trajectories are symmetric with respect to the x-axis, the value of
the slope m determines the unique solution of (1-10). When the asymptotic lines become parallel, m→ 0
or m→∞. By symmetry, it suffices to consider the case m→ 0, and in this paper we will denote small
slopes by m = ε and the corresponding solutions by qε, j . Note that if by q1, j we denote a solution with
m = 1, then

qε, j (x)= q1, j (εx)+
(−1) j
√

2
ln

1
ε
.

Then, the existence result in [del Pino et al. 2010] implies that given a small ε, there exists a four-end
solution u to (1-1) whose nodal set N (u) is close to the trajectories of the Toda system given by the
graphs of y = qε, j (x). It turns out that the idea of relating solutions of the Toda system and the four-end
solutions of (1-1) [ibid.] is very important. In fact, what we want to achieve is to parametrize the manifold
of four-end solutions with almost parallel ends using corresponding solutions of the Toda system as
parameters. To do this, in Sections 3–5 we obtain a very precise control of the nodal sets of the four-end
solutions. The key observation is that in every quadrant the nodal set N (u) of any four-end solution is a
bigraph, and if we assume that the slope of its asymptotic lines is small, it is a graph of a smooth function,
both in the lower and in the upper half-plane. We then have

N (u)= {(x, y) ∈ R2
: y = fε, j (x), j = 1, 2, fε,1(x) < 0, fε,2(x)=− fε,1(x)}
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for any u ∈Meven
4 , with ε = tan θ(u). Our main result in Section 4 says that, for each ε small,

fε,1(x)− qε,1(x)= Cεα +O(εαe−εβ|x |)

with some positive constants α, β. Next, we define (Section 6) a suitable approximate four-end solution
based on the solution of the Toda system with slope ε. To explain this, by Ñε,1 we denote the graph of
the function y = qε,1(x), which is contained in the lower half-plane. In a suitable neighborhood of the
curve Ñε,1, we introduce Fermi coordinates x = (x, y) 7→ (x1, y1), where y1 denotes the signed distance
to Ñε,1, and x1 is the x coordinate of the projection of the point x onto Ñε,1. With this notation, we write
locally the solution u, with ε = tan θ(u) in the form

u(x)= H(y1− hε(x1))+φ.

This definition is suitably adjusted to yield a globally defined function. Here the function hε is required
to satisfy an orthogonality condition. Then it is proven in Section 6 that hε : R→ R and φ : R2

→ R are
small functions of order O(εα) in some weighted norms.

Finally, starting on page 1715 we prove the Lipschitz dependence of the solution u on the function hε
and conclude the proof of Theorem 1.2 using the mapping property of the linearized operator of the Toda
equation.

2. Preliminaries

In this section we collect some facts about the Allen–Cahn equation which will be used later on.

Refined asymptotics theorem for four-end solutions. Let H(x) be the heteroclinic solution of the Allen–
Cahn equation. Recall that F ′′(1)= 2. Then it is known that we have asymptotically

H(x)= 1− aF e−
√

2x
+O(e−2

√
2x), H ′(x)= aF

√
2e−
√

2x
+O(e−2

√
2x), x→∞, (2-1)

with similar estimates when x→−∞, where aF is a constant depending on F .
We consider the linearized operator

L0φ =−φ
′′
+ F ′′(H)φ.

It is known that the principal eigenvalue of this operator is µ0 = 0 and the corresponding eigenfunction is
H ′. In general, the operator L0 has possibly infinite, discrete spectrum 0< µ1 < · · · ≤ α

2
0 , and essential

spectrum which is [α2
0,∞), α0 =

√
F ′′(1). It may also happen that L0 has just one eigenvalue, µ0 = 0

and continuous spectrum, in which case we will set µ1 = α
2
0 .

Next, we recall some facts about the moduli space theory developed in [del Pino et al. 2013]. We will
mostly use this theory in the case of four-end solutions. Thus we will restrict the presentation to this
situation only. We keep the notations introduced above. Thus we let

λ= (λ1, . . . , λ4) ∈34,

and we write λ+j = x j +R+e j as in (1-4). We denote by �0, . . . , �4 the decomposition of R2 associated
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to these four affine half lines and I0, . . . , I4 the partition of unity subordinate to this partition. Given
γ, δ ∈ R, we define a weight function 0γ,δ by

0γ,δ(x) := I0(x)+
4∑

j=1

I j (x)eγ (x−x j )·e j (cosh((x− x j ) · e⊥j ))
δ, (2-2)

so that, by construction, γ is the rate of decay or blow up along the half lines λ+j , and δ is the rate of
decay or blow up in the direction orthogonal to λ+j .

With this definition in mind, we define the weighted Lebesgue space

L2
γ,δ(R

2) := 0γ,δL2(R2), (2-3)

and the weighted Sobolev space

W 2,2
γ,δ (R

2) := 0γ,δW 2,2(R2). (2-4)

Observe that, even though this does not appear in the notation, the partition of unity, the weight function,
and the induced weighted spaces all depend on the choice of λ ∈34.

Our first result shows that, if u is a solution of (1-1) which is close to uλ (in W 2,2 topology), then
u− uλ tends to 0 exponentially fast at infinity.

Proposition 2.1 (refined asymptotics). Assume that u ∈ S4 is a solution of (1-1) and define λ ∈34, so
that

u− uλ ∈W 2,2(R2).

Then there exist δ ∈ (0, α0), α0 =
√

F ′′(1) and γ > 0 such that

u− uλ ∈W 2,2
−γ,−δ(R

2). (2-5)

More precisely, δ > 0 and γ > 0 can be chosen so that

γ ∈ (0,
√
µ1), γ 2

+ δ2 < α2
0 and α0 > δ+ γ cot θλ, (2-6)

where θλ is equal to the half of the minimum of the angles between two consecutive oriented affine lines
λ1, . . . , λ4 (see (1-3)), and µ1 is the second eigenvalue of the operator L0 (or µ1 = α

2
0 if 0 is the only

eigenvalue).

We recall here that in this paper for convenience we have assumed α0 =
√

F ′′(1)=
√

2.
It is well known that for any solution of (1-1) the following is true: if by N (u) we denote the nodal set

of u and by d(N (u), x) the distance of x to N (u), then

|u(x)2− 1| + |∇u(x)| + |D2u(x)| ≤ Ce−βd(N (u),x), (2-7)

where β > 0. This type of estimate is relatively easy to obtain using a comparison argument; see
[Berestycki et al. 1997; Kowalczyk et al. 2012]. On the other hand, the estimate (2-5) is nontrivial.



THE CLASSIFICATION OF FOUR-END SOLUTIONS 1683

The balancing formulas. We will now briefly describe the balancing formulas for four-end solutions in
the form they were introduced in [del Pino et al. 2013]. Assume that u is a solution of (1-1) which is
defined in R2. Assume that X and Y are two vector fields also defined in R2. In coordinates, we can write

X =
∑

j

X j∂x j , Y =
∑

j

Y j∂x j ,

and, if f is a smooth function, we use the notations

X ( f ) :=
∑

j

X j∂x j f, ∇ f :=
∑

j

∂x j f ∂x j , div X :=
∑

i

∂xi X i ,

and
d∗X := 1

2

∑
i, j

(∂xi X j
+ ∂x j X i ) dxi ⊗ dx j ,

so that
d∗X (Y, Y )=

∑
i, j

∂xi X j Y i Y j .

We will need the following balancing formula, which is proved by direct computation:

div
((1

2 |∇u|2+ F(u)
)
X − X (u)∇u

)
=
( 1

2 |∇u|2+ F(u)
)

div X − d∗X (∇u,∇u). (2-8)

Translations of R2 correspond to the constant vector field

X := X0,

where X0 is a fixed vector, while rotations correspond to the vector field

X := x∂y − y∂x .

In either case, we have div X = 0 and d∗X = 0. Therefore, we conclude that

div
(( 1

2 |∇u|2+ F(u)
)
X − X (u)∇u

)
= 0

for these two vector fields. The divergence theorem implies that∫
∂�

((1
2 |∇u|2+ F(u)

)
X − X (u)∇u

)
· ν ds = 0, (2-9)

where ν is the (outward pointing) unit normal vector field to ∂�.
To see how this identity is applied let us fix a unit vector e ∈ R2 and let X = e. For any s ∈ R we

consider a straight line Ls = {x ∈ R2
: x = se+ te⊥, t ∈ R}. Then we get∫

Ls

[1
2 |∇u|2− |∇u · e|2+ F(u)

]
dS = const

for any 4 end solution u of (1-1), as long as the direction of Ls does not coincide with that of any end,
that is, e 6= e j , j = 1, . . . , 4. In a particular case e= (0, 1) we get a Hamiltonian identity [Gui 2008]:∫

y=s

[ 1
2(∂x u)2− 1

2(∂yu)2+ F(u)
]

dx = const. (2-10)
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Summary of the existence result for small angles in [del Pino et al. 2010]. To state the existence result
precisely, we assume that we are given an even symmetric solution of the Toda system (1-10) represented
by a pair of functions q1(t) < 0< q2(t), where q1(t)=−q2(t) as well as q1(t)= q1(−t). In addition let
us assume that the slope of q1 at∞ is −1. Then, asymptotically we have

q j (x)= (−1) j (|x | + b)+O(e−2
√

2|x |), x→∞.

Given ε > 0, we define the vector valued function qε, whose components are given by

q j,ε(x) := q j (εx)+
(−1) j
√

2
ln

1
ε
. (2-11)

It is easy to check that the q j,ε are again solutions of (1-10).
Observe that, according to the asymptotic description of the functions q j , the graphs of the functions

q j,ε are asymptotic to oriented half lines with slopes ±ε at infinity. In addition, for ε > 0 small enough,
these graphs are disjoint and in fact their mutual distance is given by

√
2 ln 1

ε
+O(1) as ε tends to 0.

It will be convenient to agree that χ+ (respectively χ−) is a smooth cutoff function defined on R

which is identically equal to 1 for x > 1 (respectively for x <−1) and identically equal to 0 for x <−1
(respectively for x > 1), and additionally χ−+χ+ ≡ 1. With these cutoff functions at hand, we define
the four-dimensional space

D := Span{x 7→ χ±(x), x 7→ xχ±(x)}, (2-12)

and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C
2,µ
τ (R) of C2,µ functions r which satisfy

‖r‖
C
`,µ
τ (R)
:= ‖(cosh x)τr‖C`,µ(R) <∞.

Theorem 2.2. For all ε > 0 sufficiently small, there exists an entire solution uε of the Allen–Cahn equation
(1-1) whose nodal set is the union of 2 disjoint curves 0̃1,ε, 0̃2,ε which are the graphs of the functions

x 7→ q j,ε(x)+ r j,ε(εx)

for some functions r j,ε ∈ C
2,µ
τ (R)⊕ D satisfying

‖r j,ε‖C
2,µ
τ (R)⊕D ≤ Cεα

for some constants C, α, τ, µ > 0 independent of ε > 0.

In other words, given a solution of the Toda system, we can find a one parameter family of four-end
solutions of (1-1) which depend on a small parameter ε > 0. As ε tends to 0, the nodal sets of the solutions
we construct become close to the graphs of the functions q j,ε.

Going through the proof, one can be more precise about the description of the solution uε. If 0 ⊂ R2

is a curve in R2 which is the graph over the x-axis of some function, we denote by Y( · , 0) the signed
distance to 0 which is positive in the upper half of R2

\0 and is negative in the lower half of R2
\0.
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Proposition 2.3. The solution of (1-1) provided by Theorem 2.2 satisfies

‖eεα̂|x|(uε − u∗ε)‖L∞(R2) ≤ Cεᾱ

for some constants C, ᾱ, α̂ > 0 independent of ε, where x = (x, y) and

u∗ε =
2∑

j=1

(−1) j+1 H(Y( · , 0̃ j,ε))− 1, (2-13)

in the set

V =
{
(x, y) : |y| ≤ Cε−1

√
1+ x2

}
,

with some positive constant C (depending on 0̃ j,ε), and outside of this set u∗ is defined by smoothly
interpolating with 1 in the upper half-plane and with −1 in the lower half-plane.

3. The nodal sets of solutions

After a rigid motion, any four-end solution is even symmetric [Gui 2012], and thus we will always consider
solutions in Meven

4 which in particular satisfy (1-8). Note that Meven
4 is a one-dimensional manifold, possibly

with more than one connected component. For any solution u ∈Meven
4 , the angle map θ(u) is defined

to be the asymptotic angle at∞ between the nodal set of u in the first quadrant and the x-axis. By the
results proven in [Kowalczyk et al. 2012], the angle map on any connected component of the moduli
space Meven

4 of four-end, even solutions is surjective, and in particular it contains solutions whose nodal
lines are almost parallel (θ(u)≈ 0 or π/2− θ(u)≈ 0).

By N (u) we will denote in this paper the nodal set of u ∈Meven
4 . We are interested in solutions whose

nodal lines are almost parallel at∞, and, by symmetry, we can restrict our considerations to the case
θ(u)≈ 0. In this case N (u) will consist of two components, one of them is a graph of a smooth function
in the lower half-plane and the other one is contained in the upper half-plane.

Basic properties of solutions with almost parallel ends. It is expected that as θ(u)→ 0, the distance
between the upper and the lower nodal line of u will tend to infinity. This is the content of Lemma 3.1
below. In the sequel we will denote the first quadrant in R2 by Q1.

Lemma 3.1. Suppose {un}
∞

n=1 is a sequence of four-end solutions such that θ(un)→ 0 and pn ∈ N (un)∩

∂Q1. Then |pn| → +∞, as n→+∞. Moreover, pn is point on the y axis for n large.

Proof. To show that |pn| →∞, we suppose by contradiction that pn→ p∗, |p∗| <∞. We know that,
up to a subsequence, un converges in C2

loc(R
2) to a solution u∗ of the Allen–Cahn equation. By similar

arguments as in [Kowalczyk et al. 2012, Lemma 5.1], we know that u∗ cannot be identically zero. Since
|p∗| <∞, u∗ cannot be the constant solution 1 or −1. Therefore, by the maximum principle, u∗x > 0,
x > 0, u∗y < 0, y > 0. Then, by [Gui 2008, Theorem 4.4], u∗ must be a solution to (1-1), whose nodal set
in the first quadrant is asymptotically a straight line with positive slope equal to tan θ∗ 6= 0. It can also
be proven using the refined asymptotic theorem (Proposition 2.1), that u∗ ∈Meven

4 . By the Hamiltonian
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identity, ∫
R

(
1
2

∣∣∣∣∂un(x, 0)
∂x

∣∣∣∣2+ F(un(x, 0))
)

dx = 2eF sin θ(un)→ 0, (3-1)

where eF =
∫

R
(H ′)2. But on the other hand, for any fixed r > 0,∫ r

−r

(
1
2

∣∣∣∣∂un(x, 0)
∂x

∣∣∣∣2+ F(un(x, 0))
)

dx→
∫ r

−r

(
1
2

∣∣∣∣∂u∗(x, 0)
∂x

∣∣∣∣2+ F(u∗(x, 0))
)

dx > δ > 0.

This is a contradiction.
It remains to show that pn is in the y axis when n is large enough. To this end, we argue by contradiction

and assume that pn is in the x axis for large n. Observe that as pn goes to infinity, locally around the
nodal line, un will resemble the heteroclinic solution. Therefore, for any ε > 0, if n is large enough,∫

R

(
1
2

∣∣∣∣∂un(x, 0)
∂x

∣∣∣∣2+ F(un(x, 0))
)

dx > 2eF − ε.

But on the other hand, by (3-1), the left side is equal to 2eF sin θ(un), which tends to zero. This is a
contradiction. �

We know that when the angle of un is small, the nodal set N (un) in the upper half-plane is a graph of
a smooth function y = fn(x). For this function, we have the following.

Lemma 3.2. Suppose {un} is a sequence of solutions in Meven
4 such that θ(un)→ 0, as n→∞. We have

lim
n→+∞

‖ f ′n‖C0(R) = 0.

Proof. Using the monotonicity of un in the upper half-plane and the validity of the De Giorgi conjecture
in dimension 2, one can show that, for any r > 0,

lim
n→+∞

‖ f ′n‖C0([−r,r ]) = 0.

Now, we claim that for each δ > 0, there exists r(δ) > 0 such that

| f ′n(x)− tan θ(un))|< δ for all x > r(δ) and n ∈ N.

Indeed, if this were not true, then, using the fact that

lim
x→+∞

f ′n(x)= tan θ(un)→ 0 as n→+∞,

we could find sequences {nk}, {xk}, {yk}, all tending to infinity and xk < yk , such that

δ

4
≤ | f ′nk

(x)| ≤ C, x ∈ [xk, yk],

and

| f ′nk
(xk)− f ′nk

(yk)| =
δ

2
. (3-2)
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Now we consider two lines L1,nk and L2,nk with slopes −1 passing though the points (xk, fnk (xk)) and
(yk, fnk (yk)), respectively. Note that since the nodal lines N (unk ) are bigraphs, the lines L i,nk must be
transversal to N (unk ) at their points of intersection.

Next, consider the domain �nk ⊂ Q1 bounded by the two axes and the lines L i,nk , i = 1, 2. Let X be
the vector field (0, 1). The balancing formula (2-9) tells us∫

∂�nk

((1
2 |∇unk |

2
+ F(unk )

)
X − X (unk )∇unk

)
· ν dS = 0.

Note that the integral over the segment ∂�nk ∩{x = 0} is automatically 0 by the choice of the vector field
X and the evenness of unk .

Following similar arguments as in [Kowalczyk et al. 2012, Lemma 5.2], one can show suitable
exponential decay of |un| − 1 along the x axis, and it follows that, as k→+∞,∫

∂�nk∩{y=0}
((1

2 |∇unk |
2
+ F(unk ))X − X (unk )∇unk ) · ν dS→ 0. (3-3)

Now we estimate the integrals along the segments ∂�nk ∩ L i,nk . For this purpose it is convenient to
denote

α1,nk = arctan f ′nk
(xk), α2,nk = arctan f ′nk

(yk),

and

e⊥1,nk
= (sinα1,nk ,−cosα1,nk ).

By the validity of the De Giorgi conjecture in dimension 2, we know that locally around (xk, fnk (xk)),
as k goes to infinity, the function unk converges to

H(e⊥1,nk
· (x − xk, y− fnk (xk)).

Moreover, by (2-7), on the segment ∂�nk ∩ L1,nk ,

|u2
nk
(x)− 1| + |∇unk (x)| ≤ Ce−β|xk−x |, x = (x, y).

Similar results hold around (yk, fnk (yk)). Using these facts, after some calculation, we get∫
∂�nk∩L i,nk

((1
2 |∇unk |

2
+ F(unk )

)
X − X (unk )∇unk

)
· ν dS = (−1)i+1 sinαi,nk eF + o(1),

where o(1) is a term that goes to 0 as k→+∞. Combining all the above estimates, we infer

sinα1,nk − sinα2,nk = o(1),

which is a contradiction. �
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A refinement of the asymptotic behavior of the nodal set. Let u be a four-end solution with small angle
θ(u). We set ε = tan θ(u) and, for simplicity, use ε as a small parameter. To obtain more precise
information about this solution, our first step is to define a good approximate solution and estimate the
corresponding error term. As we will see later, this enables us to know more precisely the behavior of the
nodal lines.

The nodal set N (u) in the lower half-plane is the graph of a function y = f (x). Strictly speaking the
function f depends on u, but we will not indicate this dependence. We have shown that ‖ f ′‖C0(R)→ 0
as θ(u)→ 0. Recall that by the validity of the De Giorgi conjecture in dimension 2, locally around the
nodal line, u behaves like the heteroclinic solution. Using this fact and that u(x, f (x)) = 0, it is not
difficult to show that ‖ f ′‖C1(R)→ 0 as θ(u)→ 0. For future reference, we finally observe that, in general,
N (u)∩ Q1 is at least a C3(R) function and, bootstrapping the above argument, it is not hard to show that
‖ f ′‖C2(R) = o(1) as θ(u)→ 0.

To fix attention, we will always work with the solution whose nodal lines have a small slope ε= tan θ(u)
at∞. This means that these lines are asymptotically parallel, as ε→ 0, to the x axis, and one of them is
contained in the lower half-plane and the other in the upper half-plane. We know that they are symmetric
with respect to the x axis. In the sequel it will be convenient to denote the component of the nodal set
N (u) in the lower half-plane by Nε,1, and the one in the upper half-plane by Nε,2. Due to the evenness of
u, the nodal lines are obviously graphs of some even functions: Nε,i = {(x, y)|y = fε,i (x)}.

To introduce the functional analytic tools used in this paper, we first define the weight functions

Wa(x) := (cosh x)a, x = (x, y), a ≥ 0.

For `= 0, 1, 2, let C
`,µ
a (R2) :=W−1

a C`,µ(R2), endowed with the weighted norm

‖φ‖
C
`,µ
a (R2)

:= sup
x∈R2

Wa(x)‖φ‖C`,µ(B(x,1)).

Likewise, we let W a(x)= (cosh x)a and define the weighted space C
`,µ
a (R) by

‖ f ‖
C
`,µ
a (R)
:= sup

x∈R

W a(x)‖ f ‖C`,µ((x−1,x+1)).

In what follows we will measure the size of various functions involved in the C
2,µ
a (R2), and in the C

2,µ
a (R)

norms. Mostly we will have µ ∈ (0, 1), a ∼ ε, or a = 0.

Remark 3.3. In this paper, we will frequently estimate the usual C`,µ norm, as well as the C
`,µ
a norm

(a ∼ ε) of various functions. In many cases, the argument for the weighted norms and the usual C`,µ

norm is almost identical. Therefore, for notational convenience, the symbol C
`,µ
a , with a = 0, will just

denote the space C`,µ, rather than the space of compactly supported functions.

Let us recall that a four-end solution u is asymptotic to a model solution uλ defined in the introduction.
Using Proposition 2.1, we know that u− uλ ∈ W 2,2

−ετ0,−δ
(R2) with some small τ0 > 0 and δ > 0, which

can be chosen independent of the small parameter ε. It follows that

u− uλ ∈ C2,µ
ετ0
(R2). (3-4)
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To see this, we denote by e the asymptotic direction of the end of u in Q1. Then, by definition of the
weight function 0ετ0,δ in (2-2), taking R large, we see that when δ ≥ ετ0,

0ετ0,δ(x)∼ (cosh((x− xε,1) · e))ετ0(cosh((x− xε,1) · e⊥))δ ≥ C(cosh x)ετ0, x ∈ Q1 \ BR.

From this, u − uλ ∈ C
0,µ
ετ0 (R

2) follows immediately. This estimate can be bootstrapped to yield the
C

2,µ
ετ0 (R

2) estimate as claimed.
Additionally, using (3-4) and the fact that u(x, fε,2(x))= 0, we get that, with some constant Aε,

H(( fε,2(x)− εx −Aε) cos(θ(u)))= O
C

2,µ
ετ0 (R)

(e−ετ0|x |), x→+∞, (3-5)

from which one can show

‖ fε,2− ε|x | −Aε‖C
0,µ
ετ0 (R)
+‖ f ′ε,2− ε sign(x)‖

C
0,µ
ετ0 (R)
+‖ f ′′ε,2‖C

0,µ
ετ0 (R)

<∞. (3-6)

Fermi coordinates near the nodal lines. We will now describe some neighborhoods of the nodal lines
Nε,i , i = 1, 2, where one can define the Fermi coordinates of x ∈ R2 as the unique (xi , yi ) such that

x = (xi , fε,i (xi ))+ yi nε,i (xi ), nε,i (x) :=
(− f ′ε,i (x), 1)√
1+ ( f ′ε,i (x))2

.

We will first find a large, expanding neighborhood of Nε,i in which the map x 7→ (xi , yi ) is a diffeomor-
phism. Because of symmetry, it suffices to consider a neighborhood of Nε,1.

We define the (multivalued) projection of a point x ∈ R2 onto Nε,1 to be the set of points that realize
the distance between x and Nε,1:

πε,1(x) := {(x1, fε,1(x1)) : dist(x, (x1, fε,1(x1)))= dist(x,Nε,1)}.

Let (−m̄ε(x1), m̄ε(x1)) be the maximal interval where the projection function is single valued:

m̄ε(x1) := sup{m : πε,1((x1, fε,1(x1))+ tnε,1(x1))= (x1, fε,1(x1)) for |t | ≤ m}.

In a certain sense, we can regard the function m̄ε as the measure of the size of the maximal neighborhood
of Nε,1 where the Fermi coordinate could be defined. Finally, for technical reasons, for any x1 ∈ R, let us
define

mε(x1) :=min
{

1
√

| f ′′ε,1(x1)|
, m̄ε(x1)

}
.

Lemma 3.4. Let τ be 0 or τ0. Then there exists a constant C0 such that

e−mε(x)(cosh x)ετ ≤ C0‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R). (3-7)

Proof. Given x1 ∈ R, if mε(x1)= 1/
√

| f ′′ε,1(x1)|, then

e−mε(x1)(cosh x1)
ετ
≤ C | f ′′ε,1(x1)|

2(cosh x1)
ετ
≤ C‖ f ′′ε,1‖C0

ετ (R)
‖ f ′′ε,1‖C0(R).

Therefore estimate (3-7) holds in this case.
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If mε(x1) < 1/
√

| f ′′ε,1(x1)| by definition mε(x1) = m̄ε(x1), and therefore one could find points x1 =

(x1, fε,1(x1)), x2 = (x2, fε,1(x2)), and x0 with x1, x2 ∈ πε,1(x0) and

‖x0− x1‖ = ‖x0− x2‖ = mε(x1).

In particular, x j , j = 1, 2 lie on the circle S whose center is x0.
We observe that, by the choice of x0, the distance from x0 to Nε,1 is mε(x1), and therefore Nε,1 is

tangent with S at x1 and x2. Since Nε,1 is a graph, it is easy to see that the shorter arc of S between x1

and x2 is the graph of a function y = g(x), x ∈ [x1, x2].
Now an elementary calculation yields

min
x∈[x1,x2]

|g′′(x)| ≥
1

mε(x1)
.

On the other hand,
|g′(x2)− g′(x1)| = | f ′ε,1(x2)− f ′ε,1(x1)|.

Therefore, one can find a point x3 = (x3, fε,1(x3)) ∈ Nε,1, with x3 ∈ [x1, x2], which satisfies

| f ′′ε,1(x3)| ≥ min
x∈[x1,x2]

|g′′(x)| ≥
1

mε(x1)
. (3-8)

Observe that x3 ∈ (x1− 2mε(x1), x1+ 2mε(x1)). Therefore, as ε is small,

e−mε(x1)(cosh x1)
ετ
≤ Ce−mε(x1)e2mε(x1)ετ (cosh x3)

ετ

≤ e−(1/2)mε(x1)(cosh x3)
ετ .

Then, using (3-8), we also get the desired estimate:

e−mε(x1)(cosh x1)
ετ
≤ e−1/(2| f ′′ε,1(x3)|)(cosh x3)

ετ

≤ C‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R). �

By the above lemma, we know that mε satisfies

mε(x)≥ ετ ln cosh x − ln(C0‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R)),

where τ is either 0 or τ0, and, in particular, when τ = 0,

mε(x)≥− ln(C0‖ f ′′ε,1‖
2
C0(R)

).

Now we set

d̂ε(x)=max{ετ0 ln cosh x − ln(C0‖ f ′′ε,1‖C0
ετ0
(R)‖ f ′′ε,1‖C0(R)),− ln(C0‖ f ′′ε,1‖

2
C0(R)

)}− 1.

Recall that ‖ f ′′ε,1‖C0(R)→ 0 as ε→ 0. Therefore d̂ε(x) is positive. Modifying d̂ε(x) in a neighborhood of
the point where it is not smooth, we get a smooth positive function dε(x) satisfying dε(x)≤ d̂ε(x)+ 1

2 ,
‖d′ε‖C1(R) ≤ C , and a similar estimate as (3-7):

e−dε(x)(cosh x)ετ ≤ C‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R). (3-9)
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With this choice, the change of variables x = (x, y)= xε,1(x1, y1) given by

(x1, y1) 7→ (x1, fε,1(x1))+ y1nε,1(x1)= (x, y)

is a diffeomorphism in the set {(x1, y1) : |y1|< dε(x1)}. Denote the corresponding neighborhood of Nε,1

by O1. Note that the transformation xε,1 is given explicitly by

x = x1−
f ′ε,1(x1)

√

1+ ( f ′ε,1(x1))
2

y1, y = fε,1(x1)+
y1

√

1+ ( f ′ε,1(x1))
2
. (3-10)

Similarly, for the graph of y = fε,2(x) = − fε,1(x), which is the symmetric image Nε,2 of Nε,1 with
respect to the x axis in the upper half-plane one can associate a Fermi coordinate (x2, y2)∈R× (−dε, dε),
in O2, which is the symmetric image of O1 defined above, and y2 is the signed distance, positive in the
upper part of Nε,2. Also, we use xε,2 to denote the corresponding diffeomorphism

(x2, y2) 7→ (x2, fε,2(x2))+ y2nε,2(x2).

Furthermore, for any function w : Oi → R, we will define its pullback by xε,i by setting (x∗ε,iw)(xi , yi )=

w ◦ xε,i (xi , yi ).

4. Asymptotic profile of a solution near its nodal line

An approximate solution of (1-1). We will now define an approximate solution to (1-1) which accounts
accurately for the asymptotic behavior of the true solution as ε→ 0. We will use the nodal lines Nε,i as
the point of departure and will base our construction on the neighborhoods Oi , which are expanding as
x→∞.

To be precise, we let ηi be a smooth cutoff function satisfying ηi (x)= 0, x 6∈ Oi , and ηi (x)= 1 for any
point x ∈ Oi such that dist(x, ∂Oi ) > 1. Moreover, ηi could be chosen in such a way that ‖ηi‖C3(R2) ≤ C .
We will use (xi , yi ) to denote the Fermi coordinates associated to Nε,i , i = 1, 2. Finally, we introduce an
unknown function hε : R→ R, which a priori is of class C3, and we let Hε,1 : R2

→ R be a C3 function
that, outside of O1, is equal to 1 (above Nε,1) and −1 (below Nε,1), and otherwise is given by

(x∗ε,1 Hε,1)(x1, y1)= (x∗ε,1η1)H(y1− hε(x1))+ (1− x∗ε,1η1)
H(y1− hε(x1))

|H(y1− hε(x1))|
. (4-1)

Furthermore, we define

Hε,2(x, y)=−Hε,1(x,−y), ūε = Hε,1− Hε,2− 1.

The function hε is called the modulation function and it will be defined (Lemma 5.1) through the
orthogonality condition: ∫

R

x∗ε,i [(u− ūε)ρε,i H ′ε,i ] dyi = 0 for all xi ∈ R,

where
(x∗ε,i H ′ε,i )(xi , yi )= (x∗ε,iηi )H ′(yi − (−1)i+1hε(xi )), i = 1, 2,
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and the smooth cutoff functions ρε,i are defined by

(x∗ε,iρε,i )(xi , yi )= ρ(yi − (−1)i+1hε(xi )),

where ρ is an even function satisfying

ρ(t)=


1, |t | ≤min{dε(0), fε,2(0)}− 2,
0, |t | ≥min{dε(0), fε,2(0)}− 1,
0< ρ < 1, otherwise.

The proof of existence of the modulation function hε will be given later on, but, anticipating it, we
observe that due to the exponential decay in x of the functions involved, we have hε ∈ C

2,µ
ετ (R), and in

fact we will show

‖hε‖C
2,µ
ετ (R)
≤ Cε2. (4-2)

If we let φ = u− ūε, we have

L ūεφ := −1φ+ F ′′(ūε)φ = E(ūε)− P(φ),

where E(ūε)=1ūε−F ′(ūε) and P(φ)= F ′(ūε+φ)−F ′(ūε)−F ′′(ūε)φ. Our first result is the following.

Proposition 4.1. Let τ be 0 or τ0. For all µ ∈ (0, 1), the following estimate holds:

‖hε‖C
2,µ
ετ (R)
+‖φ‖C2,µ

ετ (R2)
+‖ f ′′ε,1‖C

0,µ
ετ (R)
≤ Cε2.

The proof of this proposition, which is based on the a priori estimates for the linear operator L ūε and
careful estimates of the error E(ūε) of the approximation function is postponed for now and will be given
in Section 5. However, it is not hard to show that, a priori, we have ‖φ‖C0(R2) = o(1) as ε→ 0. A proof
of this fact is based on the validity of the De Giorgi conjecture in R2.

Precise asymptotics of the nodal lines. The point of this section is to describe precisely, and in particular
uniformly as ε→ 0, estimates for the function fε,i . Our curve of reference will be given by a solution of
the Toda system: {

q ′′1 =−c∗e
√

2(q1−q2),

q ′′2 = c∗e
√

2(q1−q2),
(4-3)

for which q1(x)=−q2(x), as well as q j (x)= q j (−x), j = 1, 2, and

c∗ =
aF
∫

R
[F ′′(1)− F ′′(H(y))]H ′(y)e

√
2y dy∫

R
(H ′(y))2 dy

.

Here aF is the constant appearing in the asymptotic expansion (2-1) of H . Keep in mind that we have
assumed for convenience F ′′(1)= 2.

To find all solutions to (4-3) with the properties described above, we only need to solve

q ′′1 =−c∗e2
√

2q1 (4-4)
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in the class of even functions. It is easy to see that solutions of (4-4) form a one parameter family, and
each solution of this family has asymptotically linear behavior. In fact this family can be parametrized by
the slope of the asymptotic line. To describe this family precisely, let us consider the unique solution
U0(x) of (4-4), whose slope at∞ is −1. We have explicitly

U0(x)=
1

2
√

2
ln

√
2

c∗ cosh2(
√

2x)
. (4-5)

Asymptotically, as |x | →∞, we have

U0(x)=−|x | + b0+O(e−2
√

2|x |),

where b0 is a fixed constant. Then the family of solutions can be written as

qε,1(x)=U0(εx)−
1
√

2
ln

1
ε
.

Thus, given the nodal line Nε,1 of a solution u, with ε = tan θ(u), by qε,1 we will denote the solution of
(4-4) whose slope at infinity is −ε. Respectively, we set

qε,2 =−qε,1.

We will denote by Ñε,1 the curve y = qε,1(x) in the lower half-plane and by Ñε,2 the graph of y = qε,2( · ).
The hope is that the nodal set in the lower half plane of a four-end solution u, with ε = tan θ(u) small,
and Ñε,1 should be close to each other. To quantify this, we state the next result.

Proposition 4.2. Let u be a four-end solution of (1-1) such that ε = tan θ(u) is small, let Nε,1 be the
nodal line of this solution in the lower half-plane, given as the graph of the function y = fε,1(x), and let
hε ∈ C2,µ(R) be the modulation function described above. Then there exist α, τ̂ > 0 and a constant jε,
with | jε| ≤ Cεα, such that the following estimates hold for the function ωε,1 := fε,1+ hε + jε − qε,1:

‖ωε,1‖C0
ετ̂
(R) ≤ Cεα,

‖ω′ε,1‖C0
ετ̂
(R) ≤ Cε1+α,

‖ω′′ε,1‖C
0,µ
ετ̂
(R)
≤ Cε2+α.

(4-6)

This proposition is the main technical tool needed to prove the uniqueness and will be proven in the
next section.

5. Proof of Propositions 4.1 and 4.2

We recall that by definition hε is required to be such that the following orthogonality condition is satisfied:∫
R

x∗ε,i [(u− ūε)ρε,i H ′ε,i ] dyi = 0 for all xi ∈ R, i = 1, 2. (5-1)

We will refer to hε as the modulation function, and we keep in mind that hε is required to be small. Our
first objective is to show that the modulation function hε indeed exists.
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Lemma 5.1. For each sufficiently small ε there exists a function hε ∈ C3(R) such that (5-1) holds.

Proof. To find hε such that the orthogonality condition (5-1) is satisfied, we first replace the function hε in
the definition of the functions Hε,1 and Hε,2 by two undetermined, bounded functions hε,1 and hε,2. More
precisely, given a function hε,2 in a suitable function space, we have a function Hε,2 which, in the Fermi
coordinate (x2, y2), is equal to H(y2+hε,2(x2)), at least near Nε,2. Given this, we want to find the function
hε,1, corresponding to the modulation of the nodal line Nε,1 such that, for the resulting approximate
function Hε,1, the orthogonality condition (5-1) is satisfied for i = 1. So far the orthogonality condition
for i = 2 still may not hold. However, if it happens that hε,2 = hε,1, then, by symmetry, the orthogonality
condition is also satisfied for i = 2 and this will yield the desired modulation function hε. To find an
hε,2 such that hε,1 = hε,2, we will use a fixed point argument. Now we give more details for this strategy.

Obviously, ∫
R

x∗ε,1[ūερε,1 H ′ε,1] dy1 =−

∫
R

x∗ε,1[(Hε,2+ 1)ρε,1 H ′ε,1] dy1.

This identity suggests that we should consider the function

kε(s, x1) :=

∫
R

ρ(y1− s)H ′(y1− s)x∗ε,1(u+ Hε,2+ 1)(x1, y1) dy1, s, x1 ∈ R.

Note that the orthogonality condition (5-1) for i = 1 is equivalent to kε(s, x1)= 0 with s = hε,1(x1). Let
us calculate

−∂skε(s, x1)=

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)]x∗ε,1(u+ Hε,2+ 1)(x1, y1) dy1

=

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)]H(y1) dy1︸ ︷︷ ︸
l1

+

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)]x∗ε,1(Hε,2+ 1)(x1, y1) dy1︸ ︷︷ ︸
l2

+

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)][x∗ε,1u(x1, y1)− H(y1)] dy1︸ ︷︷ ︸
l3

.

Fix a small constant a. It is easy to see that there exists constant δ > 0, independent of ε, such that l1 > δ

for s ∈ (−a, a). Obviously, the second term l2 tends to 0 as ε→ 0. Moreover, since u converges locally
as ε→ 0 to the heteroclinic solution, we have

l3→ 0 as ε→ 0.

Therefore ∂skε(s, x1) > δ/2 for s ∈ (−a, a), and x1 ∈ R, when ε is small enough.
Next let us write
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kε(s, x1)=

∫
R

ρ(y1− s)H ′(y1− s)H(y1) dy1︸ ︷︷ ︸
l4

+

∫
R

ρ(y1− s)H ′(y1− s)x∗ε,1(Hε,2+ 1)(x1, y1) dy1︸ ︷︷ ︸
l5

+

∫
R

ρ(y1− s)H ′(y1− s)[x∗ε,1u(x1, y1)− H(y1)] dy1︸ ︷︷ ︸
l6

.

We have
l4(s)= s

∫
R

ρ(y1)(H ′(y1))
2 dy1+ b(s), b(s)∼ s2, (5-2)

while
l5, l6→ 0, ε→ 0. (5-3)

Hence, taking a smaller if necessary, we may assume kε(a, x1) > 0 and kε(−a, x1) < 0 for small ε.
This together with the monotonicity of kε ensures the existence of hε,1, which fulfills the orthogonality
condition (5-1) for i = 1 and fixed hε,2.

The above argument implies that, for any hε,2 ∈ C0(R), ‖hε,2‖C0(R) < a, we have a nonlinear map T
defined by hε,2 7→ hε,1. The map T satisfies

T B(0, a)⊂ B(0, a), B(0, a)= {h ∈ C0(R) : ‖h‖C0(R) < a}.

The proof that T is a contraction map is standard and is omitted. At the end we obtain the existence of
a fixed point hε = hε,1 = hε,2.

One can verify that although hε,2 is only of class C0, the function kε is of class C1. Therefore, by the
implicit function theorem, hε is also of class C1. It then follows that kε is C2. Therefore the regularity
of hε can be bootstrapped. This ends the proof. �

Corollary 5.2. The modulation function hε satisfies

‖hε‖C2,µ(R) = o(1), ε→ 0. (5-4)

We also have hε ∈ C
2,µ
ετ (R).

Proof. The fact that ‖hε‖C0(R) tends to 0 as ε→ 0 essentially follows from (5-2) and (5-3). Then the
same can be shown for the higher order derivatives. Once the existence of small hε is established, one
can again use (5-2) and the fact that, a priori, u ∈ C

2,µ
ετ (R

2) to show that hε ∈ C
2,µ
ετ (R). �

Now let us recall that for a four-end solution with small angle, we have written u = ūε + φ. The
linearization of the Allen–Cahn equation around ūε is L ūε =−1+ F ′′(ūε). The function φ satisfies

L ūεφ =1ūε − F ′(ūε)− P(φ), (5-5)

and
P(φ)= F ′(ūε +φ)− F ′(ūε)− F ′′(ūε)φ ∼ φ2

is a higher order term in φ. Note that our definition of ūε and the construction of the function hε imply
that φ = u− ūε satisfies the orthogonality condition (5-1). Our strategy to get suitable estimates for φ
relies on the a priori estimates for the operator L ūε , taking into account this orthogonality condition.
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To carry out the analysis, we will study the error term E(ūε)=1ūε − F ′(ūε). First we consider the
projection of E(ūε) onto the two-dimensional space K = span{H ′ε,iρε,i , i = 1, 2}, which we will denote
by E(ūε)‖. Explicitly, E(ūε)‖ = E(ūε)

‖

1+ E(ūε)
‖

2, where E(ūε)
‖

i is equal to 0 outside Oi and

x∗ε,i E(ūε)
‖

i (xi , yi ) := cεx∗ε,i (ρε,i H ′ε,i )
∫

R

x∗ε,i [E(ūε)ρε,i H ′ε,i ] dyi in Oi , i = 1, 2.

Here

cε =
(∫

R

[x∗ε,1(ρε,1 Hε,1)]2 dy
)−1

=

(∫
R

(ρH)2 dy
)−1

.

Furthermore we set E(ūε)⊥ = E(ūε)− E(ūε)‖. The main idea in what follows is that the size of the
function f ′′ε,1 is related to E(ūε)‖, while the size of u− ūε = φ is controlled by E(ūε)⊥. Of course, both
projections of the error E(ūε) are coupled, in the sense that the dependence on fε,1 and φ appears in both
of them, but, as we will see, this coupling is relatively easy to deal with.

As we said, we wish to analyze the error E(ūε). Observe that

−F ′(Hε,2)− F ′(Hε,1− Hε,2− 1)=−F ′(Hε,2)− F ′(Hε,1)+ F ′′(Hε,1)(Hε,2+ 1)+O((Hε,2+ 1)2)

=−F ′(Hε,1)− [F ′′(1)− F ′′(Hε,1)](Hε,2+ 1)+O((Hε,2+ 1)2).

It follows that

E(ūε)=−1(Hε,1− Hε,2− 1)+ F ′(Hε,1− Hε,2− 1)

=−1Hε,1+ F ′(Hε,1)+1Hε,2− F ′(Hε,2)+ [F ′′(1)− F ′′(Hε,1)](Hε,2+ 1)+O((Hε,2+ 1)2).

The expression of the Laplace operator in Nε,i is

1=
1
Ai
∂2

xi
+ ∂2

yi
+

1
2
∂yi Ai

Ai
∂yi −

1
2
∂xi Ai

A2
i
∂xi , (5-6)

where

Ai = 1+ ( f ′ε,i (xi ))
2
− 2yi

f ′′ε,i (xi )
√

1+ ( f ′ε,i (xi ))
2
+ y2

i
( f ′′ε,i (xi ))

2

(1+ ( f ′ε,i (xi ))2)2
.

Using these formulas, we can write down the explicit expression of E(ūε). Because of symmetry, it
suffices to carry out the calculation in the lower half plane. The same calculation as that of [del Pino et al.
2010, (5.65)] shows that in the portion of the lower half-plane where both cutoff functions ηε,i equal 1,
we have, for i = 1, 2,

E(ūε)=
(

1
2
∂y1 A1

A1
−

h′′ε(x1)

A1
+

1
2
∂x1 A1

A2
1

h′ε(x1)

)
H ′(y1− hε(x1))

−

(
1
2
∂y2 A2

A2
+

h′′ε(x2)

A2
−

1
2
∂x2 A2

A2
2

h′ε(x2)

)
H ′(y2− hε(x2))

+

(
(h′ε(x1))

2

A1
H ′′(y1− hε(x1))−

(h′ε(x2))
2

A2
H ′′(y2+ hε(x2))

)
− (F ′′(1)− F ′′(Hε,1))(Hε,2+ 1)+O((Hε,2+ 1)2). (5-7)
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Lemma 5.3. Suppose τ is equal to 0 or τ0, and define D(x) := dist(x,Nε,1)+ dist(x,Nε,2). Then, for
any µ ∈ (0, 1),

‖E(ūε)⊥‖C
0,µ
ετ (R2)

= o(‖ f ′′ε,1‖C
0,µ
ετ (R)
+‖hε‖C

2,µ
ετ (R)

)+O(‖exp(−
√

2D)‖C0
ετ (R

2)), (5-8)

Proof. First we note that, outside of the set O1 ∪O2, ūε is equal to 1 or −1, hence the estimate is trivial
in this region. Secondly, if x ∈ Oi and dist(x, ∂Oi ) < 1, then, using the asymptotic behavior of the
heteroclinic solution, it is not difficult to see that

‖−1Hε,i + F ′(Hε,i )‖C0,µ(B(x,1)) ≤ Ce−
√

2dε(xi ),

where (xi , yi ) is the Fermi coordinate of x. Let (x, y) be the Euclidean coordinate of the point x. Then
elementary geometry tells us

|xi − x | ≤ | f ′ε,i (xi )|dε(xi ).

Therefore, using (3-9), we get

e−
√

2dε(xi )eετ |x | ≤ e−
√

2dε(xi )eετ |xi |+ετ | f ′ε,i (xi )|dε(xi )

≤ e−dε(xi )eετ |xi |

≤ C‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R).

Hence, to prove (5-8), it will suffice to consider the expression (5-7) for E(ūε).
By (5-7), we get, for instance, the following term in E(ūε)⊥:

T1 :=
∂y1 A1

A1
x∗ε,1 H ′ε,1− cεx∗ε,1(ρε,1 H ′ε,1)

∫
R

∂y1 A1

A1
ρε,1(H ′ε,1)

2 dy1.

Here we have used the fact that ρε,1 H ′ε,1 is supported in the lower half-plane and ρε,2 H ′ε,2 is supported in
the upper half-plane. Recall that the main order term of A1 is 1 and

∂y1 A1

A1
=−2

f ′′ε,1(x1)

A1
√

1+ ( f ′ε,1(x1))
2
+ 2

y1( f ′′ε,1(x1))
2

A1(1+ ( f ′ε,1(x1))2)2
,

whose main order term is, roughly speaking, −2 f ′′ε,1. Substituting this into the expression of T1 results in

T1=
∂y1 A1

A1
H ′ε,1+

2cερε,1 H ′ε,1 f ′′ε,1(x1)
√

1+ ( f ′ε,1(x1))
2

∫
R

ρε,1(H ′ε,1)
2

A1
dy1−

2cερε,1 H ′ε,1( f ′′ε,1(x1))
2

(1+ ( f ′ε,1(x1))2)2

∫
R

y1ρε,1(H ′ε,1)
2

A1
dy1.

We notice that although it appears at first that T1 carries a term of order O(‖ f ′′ε,1‖C0
ετ (R)

), there is a
cancelation between the first and the second term in T1. In estimating this term it is important to use
the properties of the cut off function ρε,1. Note also that although y1 appears in ∂y1 A1/A1, it is always
multiplied by f ′′ε,1(x1). Since in O1, |y1| ≤ dε(x1), we have |y1| ≤ 1/

√

f ′′ε,1(x1). Therefore y1 f ′′ε,1(x1) is
always a small order term.

It is worth mentioning that when we estimate C0
ετ (R) norms we need to take into account the relation

between the Fermi coordinate (x1, y1) and the Euclidean coordinate (x, y) of a point x ∈ O1. Typically,
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we have

|(cosh x)ετ f ′′ε,1(x1)| ≤ Ceετ |x1−x |
‖ f ′′ε,1‖C0

ετ (R)
≤ C exp{ετ |y1|O(‖ f ′ε,1‖C0(R))}‖ f ′′ε,1‖C0

ετ (R)
.

Any term of this form is additionally multiplied by o(1)H ′ε,1 or o(1)H ′′ε,1, thus yielding a term of order
o(‖ f ′′ε,1‖C0

ετ (R)
).

Now, using the fact that f ′ε,1 and f ′′ε,1 are of order o(1) as ε→ 0 and the definition of the cutoff function
ρε,1, we conclude

‖T1‖C
0,µ
ετ (R2)

= o(‖ f ′′ε,1‖C
0,µ
ετ (R)

).

Similar estimates hold for the terms involving h′′ε(x1). Regarding terms involving h′ε(x1), h′ε(x2), h′′ε(x2),
we note that they are all multiplied by small order terms. Finally, to estimate the norms of (Hε,2+1)H ′ε,1,
we use the fact that

(Hε,2+ 1)H ′ε,1 ∼ e−
√

2(|y1|+|y2|).

It follows immediately that

‖(Hε,2+ 1)H ′ε,1‖C0,µ
ετ (R2)

≤ C‖ exp(−
√

2D)‖C0
ετ (R

2). �

Observe that there are terms involving hε which appear in the right hand side of (5-8). This complicates
the situation somewhat. However, since the Fermi coordinates are defined using the nodal line, we have
the following.

Lemma 5.4. Let τ be 0 or τ0. We have

‖hε‖C
2,µ
ετ (R)
≤ C‖φ‖

C
2,µ
ετ (R2)

+C‖ exp(−
√

2D)‖C0
ετ (R

2). (5-9)

Proof. We first recall that if x ∈ O1 and dist(x, ∂O1) > 1, then

(x∗ε,1u)(x1, y1)= H(y1− hε(x1))− (x∗ε,1 Hε,2)(x1, y1)− 1+ (x∗ε,1φ)(x1, y1). (5-10)

Now let us consider any point x on the curve Nε,1. That is, the Fermi coordinate of x is (x1, 0). Since
the distance of x to Nε,2 is D(x), we have

|(x∗ε,1 Hε,2)(x1, 0)+ 1| ≤ C exp(−
√

2D(x)).

Then, from (x∗ε,1u)(x1, 0)= 0 and (5-10), one gets

‖hε‖C0
ετ (R)
≤ C‖φ‖C0

ετ (R
2)+C‖ exp(−

√
2D)‖C0

ετ (R
2).

This gives us the C0 estimate. To estimate the C1 norm of hε, we differentiate the relation (5-10) with
respect to x1 and let y1 = 0 in the resulting equation. Then we find that

−H ′(−hε(x1))h′ε(x1)−
∂

∂x1
(x∗ε,1 Hε,2)+

∂

∂x1
(x∗ε,1φ)= 0, (5-11)

from which the C1
ετ estimate follows. Similarly, we could differentiate (5-10) twice with respect to x1

and let y1 = 0 to estimate h′′ε .
Corresponding estimates for the Hölder norm are also straightforward. �
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To proceed, we need the following a priori estimate.

Proposition 5.5. Suppose ϕ is a solution of the equation

−1ϕ+ F ′′(ūε)ϕ = f +
∑

i=1,2

κε,iρε,i H ′ε,i in R2,

with some given functions f ∈ C
0,µ
ετ (R

2) and κε,i ∈ C
0,µ
ετ (R). Assume furthermore that the function ϕ

satisfies the orthogonality condition:∫
R

x∗ε,i (ϕρε,i H ′ε,i ) dyi = 0, i = 1, 2. (5-12)

Then we have
‖ϕ‖C2,µ

ετ (R2)
≤ C‖ f ‖C0,µ

ετ (R2)
, ‖κε,i‖C0,µ

ετ (R)
≤ C‖ f ‖C0,µ

ετ (R2)
,

provided ε is small enough.

Sketch of proof. The proof is by contradiction and is essentially the same as that of [del Pino et al. 2010,
Proposition 5.1]. First an a priori estimate is proven for a solution of the problem

−1ϕ+ F ′′(ūε)ϕ = f0 in R2,

where ϕ satisfies the orthogonality condition (5-12). Indeed, using the fact that H ′, where H is the
heteroclinic solution in R, is the only element of the kernel of the corresponding one-dimensional linear
operator d2/dt2

+ 1− 3H 2, one can prove that ϕ satisfies an estimate of the form claimed. This type of
argument can be found, for example, in [del Pino et al. 2011].

Second, we project the equation on the functions of the form ρε,i H ′ε,i , i = 1, 2, and get the identity∫
R

x∗ε,i {ρε,i H ′ε,i [−1ϕ+ F ′′(ūε)ϕ]} dyi −

∫
R

x∗ε,i (ρε,i H ′ε,i f ) dyi = κε,i

∫
R
(x∗ε,iρε,i H ′ε,i )

2 dyi .

After an integration by parts and some calculations, we can use the above identity to prove that the
C

0,µ
ετ (R) norm of the functions κε,i can be controlled by o(1)‖ϕ‖

C
0,µ
ετ (R2)

+C‖ f ‖
C

0,µ
ετ (R2)

. From this and
the first step the assertion follows. We omit the details. �

Lemma 5.6. Let φ = u− ūε be the solution of (5-5). The following estimate is true:

‖φ‖
C

2,µ
ετ (R2)

≤ o(‖ f ′′ε,1‖C
0,µ
ετ (R)

)+C‖ exp(−
√

2D)‖C0
ετ (R

2). (5-13)

Proof. We will use Proposition 5.5. Thus we write

−1φ+ F ′′(ūε)φ = E(ūε)⊥− P(φ)+ E(ūε)‖.

Because of Proposition 5.5, to control the size of the function φ, it suffices to control the size of E(ūε)⊥

(which we already do by Lemma 5.3) and the size of P(φ).
Next we observe that P(φ) is essentially quadratic in φ, and therefore it is not difficult to show

‖P(φ)‖
C

0,µ
ετ (R2)

= o(‖φ‖
C

2,µ
ετ (R2)

).
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Collecting all these estimates, we conclude (5-13). �

The above result indicates that we can control φ by exp(−
√

2D) and the second derivative of fε,1.
However, this is not quite enough for our later purpose. Note that for the solution constructed in [del Pino
et al. 2010], the corresponding error is, roughly speaking, controlled by Cε2, and ‖ fε,1−ε|x |‖C0(R)∼ ln 1

ε
.

For this purpose we first show the following:

Lemma 5.7. The following estimate holds:

‖φ‖
C

2,µ
ετ (R2)

+‖ f ′′ε,1‖C
0,µ
ετ (R)
≤ C‖ exp(−

√
2D)‖C0

ετ (R
2).

Proof. Consider the integral
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1. We will show below (Step 1) that on the one

hand its C
0,µ
ετ (R) norm is controlled by o(‖φ‖C2,µ

ετ (R2)
). On the other hand (Step 2) we will show that this

integral is related to f ′′ε,1. The proof will follow by combining this with the previous estimates. (Step 1
can be avoided if we estimate the integral using Proposition 5.5. However, since the computations will be
used in the last part of the proof of uniqueness (page 1715), we choose to present them here.)

Step 1. We claim that the relevant norm of the integral
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 is controlled by

o(‖φ‖C2,µ
ετ (R2)

).
In fact,∫

R

x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 =

∫
R

x∗ε,1{[−1φ+ F ′′(ūε)φ]ρε,1 H ′ε,1} dy1+

∫
R

x∗ε,1[P(φ)ρε,1 H ′ε,1] dy1.

To handle the first term appearing in the right side, we write 1(x1,y1) = ∂
2
x1
+ ∂2

y1
and

T2 :=

∫
R

[−1(x1,y1)x
∗

ε,1φ+ F ′′(H)x∗ε,1φ]x
∗

ε,1(ρε,1 H ′ε,1) dy1︸ ︷︷ ︸
T21

+

∫
R

[1(x1,y1)x
∗

ε,1φ− x∗ε,11φ+ x∗ε,1(F
′′(ūε)φ)− F ′′(H)x∗ε,1φ]x

∗

ε,1(ρε,1 H ′ε,1) dy1︸ ︷︷ ︸
T22

.

Since
∫

R
x∗ε,1(φρε,1 H ′ε,1) dy1 = 0, we have (d2/dx2

1)
∫

R
x∗ε,1(φρε,1 H ′ε,1) dy1 = 0. Using integration by

parts and the fact that −H ′′+ F ′(H)= 0, we find

T21 = 2
∫

R

∂(x∗ε,1φ)
∂x1

∂(x∗ε,1ρε,1 H ′ε,1)

∂x1
dy1+

∫
R

(x∗ε,1φ)
∂2(x∗ε,1ρε,1 H ′ε,1)

∂x2
1

dy1

−

∫
R

(x∗ε,1φ)
[
∂2(x∗ε,1ρε,1 H ′ε,1)

∂y2
1

− F ′′(H)(x∗ε,1ρε,1 H ′ε,1)
]

dy1

= 2
∫

R

∂x∗ε,1φ
∂x1

∂(x∗ε,1ρε,1 H ′ε,1)

∂x1
dy1+

∫
R

(x∗ε,1φ)
∂2(x∗ε,1ρε,1 H ′ε,1)

∂x2
1

dy1

−

∫
R

(x∗ε,1φ)
[
∂2(x∗ε,1ρε,1)

∂y2
1

(x∗ε,1 H ′ε,1)+ 2
∂(x∗ε,1ρε,1)

∂y1

∂(x∗ε,1 H ′ε,1)

∂y1

]
dy1.
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Due to the presence of the derivatives of x∗ε,1ρε,1 with respect to x1, y1, and also the presence of H ′ε,1 in
each term, we now obtain that

‖T21‖C
0,µ
ετ (R)
= o(‖φ‖

C
2,µ
ετ (R2)

). (5-14)

On the other hand,

T22 =−

∫
R

{(
1
A1
− 1

)
∂2

x1
(x∗ε,1φ)+

1
2
∂y1 A1

A1
∂y1(x

∗

ε,1φ)−
1
2
∂x1 A1

A2
1
∂x1(x

∗

ε,1φ)

}
(x∗ε,1ρε,1 H ′ε,1) dy1

+

∫
R

[x∗ε,1(F
′′(ūε))− F ′′(H)]x∗ε,1(φρε,1 H ′ε,1) dy1.

The desired estimate for T22 essentially follows from the fact that 1 − 1/A1, ∂y1 A1/A1, ∂x1 A1/A2
1,

x∗ε,1(F
′′(ūε))− F ′′(H) are small terms. Note that we should take into account the relation between the

Fermi coordinates and the Euclidean coordinates. For example, let us estimate the Hölder norm of a
typical term in T22. First, observe that if z1 = (s1, y1), z2 = (s2, y1) in the Fermi coordinates with respect
to Nε,1, then by the formula (3-10), it is easy to see that

|z1− z2| ≤ C |s1− s2|.

Therefore, denoting (1/A1− 1)∂2
x1
(x∗ε,1φ)x

∗

ε,1(ρε,1 H ′ε,1) by x∗ε,1G, we have

sup
|s1−s2|≤1

∣∣∣∣∫
R

x∗ε,1G(s1, y1)− x∗ε,1G(s2, y1)

|s1− s2|µ
dy1

∣∣∣∣≤ C sup
|s1−s2|≤1

∣∣∣∣∫
R

G(z1)−G(z2)

|z1− z2|µ
dy1

∣∣∣∣
= o(‖φ‖C2,µ(R)).

Other terms appearing in the definition of T22 can be checked similarly. Hence we obtain

‖T22‖C
0,µ
ετ (R)
= o(‖φ‖

C
2,µ
ετ (R2)

).

This together with (5-14) tells us

‖T2‖C
0,µ
ετ (R)
= o(‖φ‖

C
2,µ
ετ (R2)

).

The desired estimate follows from this in a straightforward way.

Step 2. We want to relate the weighted norm of the integral
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 to f ′′ε,1. To do

this, we will now check more closely the above integral using the definition of ūε and the expression of
E(ūε). We see that one term appearing in the integral is

1
2

∫
R

∂y1 A1

A1
x∗ε,1(ρε,1 H ′2ε,1) dy1.

We will concentrate on this term since the C
0,µ
ετ (R) norm of other terms can be estimated by

C‖hε‖C2,µ
ετ (R)
+C‖e−

√
2D
‖C0

ετ (R)
,
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as we have seen in the proof of Lemma 5.3. Plugging the formula for A1 into the above integral, one gets

1
2

∫
R

∂y1 A1

A1
x∗ε,1(ρε,1 H ′2ε,1) dy1 =

∫
R

1
A1

(
y1

( f ′′ε,1(x1))
2

(1+ ( f ′ε,1(x1))2)2
−

f ′′ε,1(x1)
√

1+ ( f ′ε,1(x1))
2

)
(x∗ε,1ρε,1 H ′2ε,1) dy1

=−
1
cε

f ′′ε,1(x1)+ T4,

where T4 is a function such that

‖T4‖C
0,µ
ετ (R)
= o(‖ f ′′ε,1‖C

0,µ
ετ (R)

).

Consequently,

‖ f ′′ε,1‖C
0,µ
ετ (R)
≤ C‖

∫
R

x∗ε,1[E(ūε)ρε,1 H ′ε,1 dy1‖C
0,µ
ετ (R)

≤ C‖hε‖C
2,µ
ετ (R)
+ o(‖ f ′′ε,1‖C

0,µ
ετ (R)

)+C‖ exp(−
√

2D)‖C0
ετ (R)

.

This together with (5-9) and (5-13) implies that

‖ f ′′ε,1‖C
0,µ
ετ (R)
≤ C‖ exp(−

√
2D)‖C0

ετ (R)
. (5-15)

This combined with Lemma 5.6 yields

‖φ‖
C

2,µ
ετ (R2)

≤ C‖ exp(−
√

2D)‖C0
ετ (R)

. �

To proceed, let us observe that ‖ exp(−
√

2D)‖C0(R2) ≤ e−2
√

2| fε,1(0)|. Our next goal is to estimate the
quantity fε,1(0). To this end, we first need to obtain some exponential decay estimate of φ along the y
axis away from Nε,1. Note that, up to now, we have only analyzed the decay behavior of E(ūε) along the
x axis, but actually it also decays exponentially in the direction transversal to the nodal line Nε,1. The
next lemma gives us the necessary information.

Lemma 5.8. Fix a small constant ι0 > 0. We have

|φ(0, y)| ≤ Ce−(2
√

2−ι0)| fε,1(0)|e−ι0|y− fε,1(0)| for y ≤ 0.

Proof. This estimate follows from the maximum principle. We only sketch the proof for fε,1(0)≤ y ≤ 0,
since the case of y ≤ fε,1(0) is similar.

We write the equation satisfied by φ as

−1φ+

(
F ′′(ūε)+

P(φ)
φ

)
φ = E(ūε). (5-16)

Consider the region

� := {(x, y) ∈ R2
| fε,1(0)+ r0 < y <− fε,1(0)− r0},

where r0 is a fixed large constant satisfying

F ′′(ūε(x))+
P(φ)(x)
φ(x)

≥ 1, x ∈�.
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Let B(x, y) := C1e2
√

2 fε,1(0) cosh(ι0 y). Then

−1B+
(

F ′′(ūε)+
P(φ)
φ

)
B ≥ (1− ι20)B. (5-17)

Using (5-16), (5-17), and ‖E(ūε)‖C0(R2)+‖φ‖C0(R2) ≤ Ce−2
√

2| fε,1(0)|, we find that if the constant C1 in
the definition of B is large enough, φ− B < 0 in ∂� and

−1(φ− B)+
(

F ′′(ūε)+
P(φ)
φ

)
(φ− B)≤ 0 in �.

By the maximum principle, for fε,1(0)+ r0 < y < 0, we have

|φ(x, y)| ≤ C1e2
√

2 fε,1(0) cosh(ι0 y)

≤ C1e(2
√

2−ι0) fε,1(0)e−ι0| fε,1(0)−y|.

Therefore the lemma is true for fε,1(0)+r0 < y < 0. For fε,1(0) < y < fε,1(0)+r0, the lemma obviously
holds since ‖φ‖C0(R2) ≤ Ce−2

√
2| fε,1(0)|. �

Now let us go back to the Toda system (4-3) and recall that by qε,1(x)< 0<qε,2(x) we have denoted the
solution of this system whose slope at∞ is ε (this means the tangent of the angle between the asymptotic
line of y = qε,2(x) in the first quadrant and the x axis). We note that the curve Ñε,1 := {y = qε,1(x)} is
contained in the lower half-plane.

In the rest of the paper we will also use α, β to denote general positive constants, which may change
from step to step, but are always independent of ε.

Our aim is to show that the curves Nε,1 and Ñε,1 are close to each other. First of all, we prove the
following.

Lemma 5.9. There exists α1 > 0 such that | fε,1(0)− qε,1(0)| ≤ Cεα1 .

Proof. The idea of the proof is to relate the asymptotic behavior of u along vertical straight lines, as
ε→ 0, using the Hamiltonian identity,∫

R

{ 1
2 u2

y(0, y)− 1
2 u2

x(0, y)+ F(u(0, y))
}

dy =
∫

R

{1
2 u2

y(x, y)− 1
2 u2

x(x, y)+ F(u(x, y))
}

dy

for all x, (5-18)

and in particular take x →∞ on the right side of (5-18). Indeed, using the asymptotic behavior of a
four-end solution, it is not hard to show that

lim
x→∞

∫
R

{ 1
2 u2

y(x, y)− 1
2 u2

x(x, y)+ F(u(x, y))
}

dy = 2eF cos θ(u),

where eF =
∫

R
[

1
2(H

′)2+ F(H)]. Since u is an even function of x , we also have ux(0, y)= 0, and thus it
follows from (5-18) that ∫

R

{1
2 u2

y(0, y)+ F(u(0, y))
}

dy = 2eF cos θ(u).
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We will now calculate the left side of the above identity using the estimate of the error φ.
Recall that the heteroclinic solution has the asymptotic behavior

H(s)= 1− aF e−
√

2s
+O(e−2

√
2s) as s→+∞,

which can also be differentiated. Set t = fε,1(0)+ hε(0). Let η1, η2 be cut off functions appearing in the
definition of the approximate solution (4-1). For the points on the y-axis we have (x1, y1)= (0, y− fε,1(x)),
where (x1, y1) are their Fermi coordinates with respect to Nε,1. Then, abusing the notation slightly, we
can write

u(0, y)= H(y− t)− H(y+ t)− 1+φ(0, y)︸ ︷︷ ︸
u0(y)

+ (1− η1(0, y))
[

H(y− t)
|H(y− t)|

− H(y− t)
]

︸ ︷︷ ︸
ψ1(y)

− (1− η2(0, y))
[

H(y+ t)
|H(y+ t)|

− H(y+ t)
]

︸ ︷︷ ︸
ψ2(y)

.

We observe that ψ1(y)= 0 for |y1|< dε(0)− 1 and

|ψ1(y)| + |ψ ′1(y)| ≤ Ce−
√

2|y1| for |y1| ≥ dε(0)− 1.

Therefore ∫
R

[|ψ1(y)| + |ψ ′1(y)|] dy ≤ Ce−
√

2dε(0) ≤ ‖ f ′′ε,1‖
2
C0(R)
≤ Ce−4

√
2| fε,1(0)|.

Similarly, ∫
R

[|ψ2(y)| + |ψ ′2(y)|] dy ≤ Ce−4
√

2| fε,1(0)|.

This implies∫
R

[1
2 u2

y(0, y)+ F(u(0, y))
]

dy =
∫

R

[1
2(u
′

0(y))
2
+ F(u0(y))

]
dy+O(e−4

√
2| fε,1(0)|).

Now we calculate∫ 0

−∞

[ 1
2(u
′

0(y))
2
+F(u0(y))

]
dy =

∫ 0

−∞

[ 1
2(H

′(y−t))2+F(H(y−t))
]

dy︸ ︷︷ ︸
I1

+

∫ 0

−∞

[
H ′(y−t)(∂yφ−H ′(y+t))+F ′(H(y−t))(φ−H(y+t)−1)

]
dy︸ ︷︷ ︸

I2

+
1
2

∫ 0

−∞

[
(∂yφ−H ′(y+t))2+F ′′(H(y−t))(φ−H(y+t)−1)2

]
dy︸ ︷︷ ︸

I3

+ O

(∫ 0

−∞

(φ−H(y+t)−1)3 dy
)
. (5-19)
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The first term on the right side of (5-19) is equal to

I1 =

∫
−t

−∞

[1
2(H

′(y))2+ F(H(y))
]

dy

= eF −

∫
+∞

−t

[ 1
2(H

′(y))2+ F(H(y))
]

dy

= eF −

∫
+∞

−t
2a2

F e−2
√

2y dy+O(e−3
√

2|t |)

= eF −

√
2

2
a2

F e−2
√

2|t |
+O(e−3

√
2|t |).

Next we analyze the second term I2. We observe that after an integration by parts,

I2 = H ′(−t)(φ(0)− H(t)− 1)=−
√

2a2
F e−2

√
2|t |
+O(e−3

√
2|t |).

On the other hand, using Lemma 5.8, we can estimate

I3 =
1
2

∫ 0

−∞

[(H ′(y+ t))2+ F ′′(H(y− t))(H(y+ t)− 1)2] dy+O(e−(3
√

2−ι0)|t |)

=

√
2a2

F

4
e−2
√

2|t |
+

a2
F

2

∫ 0

−∞

[F ′′(H(y− t))e−2
√

2|y+t |
] dy+O(e−(3

√
2−ι0)|t |).

But we have∫ 0

−∞

[F ′′(H(y− t))e−2
√

2|y+t |
] dy =

∫ 0

−∞

2e2
√

2(y+t) dy+
∫ 0

−∞

{[F ′′(H(y− t))− F ′′(1)]e−2
√

2|y+t |
} dy

=

√
2

2
e−2
√

2|t |
+O(

∫ 0

−∞

e−
√

2|y−t |−2
√

2|y+t | dy)

=

√
2

2
e−2
√

2|t |
+O(e−3

√
2|t |).

Hence

I3 =

√
2a2

F

2
e−2
√

2|t |
+O(e−(3

√
2−ι0)|t |).

Consequently,

I0 :=

∫
R

[ 1
2 u2

y(0, y)+ F(u(0, y))
]

dy = 2eF − 2
√

2a2
F e−2

√
2| fε,1(0)+hε(0)|+O(e−3| fε,1(0)|).

According to the Hamiltonian identity (5-18),

I0 = 2eF cos θ(u).

Now, let uε with ε = tan θ(u) be a solution constructed in [del Pino et al. 2010] whose nodal line in the
lower half-plane is given by the curve y = qε,1(x)+rε,1(εx), where qε,1 is the solution of the Toda system
whose asymptotic angle at∞ is ε, and rε,1(x) satisfies, as we stated in Theorem 2.2, with some α > 0,

‖rε,1‖C
2,µ
τ (R)⊕D ≤ Cεα.



1706 MICHAŁ KOWALCZYK, YONG LIU AND FRANK PACARD

We recall that since we are working in the class of even functions, |rε,1(x)| ≤ Cεα, which implies that
rε,1 is a bounded, small function. Now, the Hamiltonian identity (5-18) can be used for uε as well, and,
by a similar computation as for I0, we get

2eF cos θ(uε)= 2eF − 2
√

2a2
F e−2

√
2|qε,1(0)+rε,1(0)|+O(e−3|qε,1(0)+rε,1(0)|),

where rε,1(0)= O(εα). Therefore,

I0 = 2eF − 2
√

2a2
F e−2

√
2|qε,1(0)+rε,1(0)|+O(e−3|qε,1(0)+rε,1(0)|).

That is,

e−2
√

2| fε,1(0)+hε(0)|+O(e−3| fε,1(0)|)= e−2
√

2|qε,1(0)+rε,1(0)|+O(e−3|qε,1(0)+rε,1(0)|).

This yields

fε,1(0)+ hε(0)+O(e−(3−2
√

2)| fε,1(0)+hε(0)|)= qε,1(0)+O(εα).

Since qε,1(0)− (
√

2/2) ln ε = O(1), we get

fε,1(0)+ hε(0)=

√
2

2
ln ε+O(1),

which leads to

fε,1(0)+ hε(0)− qε,1(0)= O(εα),

as claimed. �

Now we are in a position to prove Proposition 4.2. As we will see, the proof of Proposition 4.1 is
obtained as an intermediate step.

Proof of Propositions 4.1 and 4.2. Our first goal is to show the estimate (4-6), and this will be done in a
few steps. For brevity let us denote pε,1 = fε,1+ hε and χε,1 = pε,1− qε,1.

Step 1. We want to show that, in the interval I := [ln ε/ε,− ln ε/ε],

|χε,1(x)| ≤ Cεα, |χ ′ε,1(x)| ≤ Cε1+α, and ‖χ ′′ε,1‖C0,µ(I ) ≤ Cε2+α.

Claim 1. If Ia := [−a, a] ⊂ I is an interval where

|pε,1(x)|< 2|ln ε|, |p′ε,1(x)|< 2ε, x ∈ Ia, (5-20)

then pε,1 satisfies a perturbed Toda equation in Ia , that is,

p′′ε,1(x)=−c∗e2
√

2pε,1(x)+ λ1(x), x ∈ Ia, (5-21)

where λ1 is a function satisfying
‖λ1‖C0,µ(Ia) ≤ Cε2+β1 (5-22)

for some constant β1 > 0.
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To begin the proof of the claim, let us consider a point x = (x1, y1) in the Fermi coordinates of 0ε,1
with |y1| ≤ | fε,1(0)|, and denote it’s Fermi coordinates relative to 0ε,2 by (x2, y2). Then, using (5-20)
and elementary geometry, one can show that if |x1| ≤ a, we have

y1− y2 =−2 fε,1(x1)(1+O(ε2)). (5-23)

Using this and (5-7) and calculating
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 as in Lemma 5.7, we get

(1+OC0,µ(εα)) f ′′ε,1(x)+ (1+OC0,µ(εα))h′′ε(x)=−c∗e2
√

2pε,1(x)(1+OC0,µ(εα))+OC0,µ(ε2+α). (5-24)

This relation gives the claim. (For details, we refer the reader to [del Pino et al. 2010], where similar
calculations can be found.) We note here that the term e2

√
2pε,1(x) essentially comes from the integral∫

R

x∗1 [(F
′′(1)− F ′′(Hε,1))(Hε,2+ 1)ρε,1 H ′ε,1] dy1,

and to calculate this integral we have used (5-23).
Next we will use Claim 1 to show

|χε,1| ≤ Cεα in Ia. (5-25)

In fact, from (5-21) we deduce that in Ia , as long as χε,1 is small,

χ ′′ε,1 =−2
√

2c∗e2
√

2qε,1χ +O(χ2
ε,1)e

−2
√

2qε,1 + λ1(x)︸ ︷︷ ︸
λ2(x)

. (5-26)

Let ςi , i = 1, 2, be two linearly independent solutions of the linearized Toda equation

ς ′′i (x)=−2
√

2c∗e2
√

2qε,1(x)ςi (x).

We can assume that ς1 is even, ς2 is odd, ς1(0)= 1, ς ′2(0)= ε, and |ς ′i | ≤ Cε, i = 1, 2. Since χε,1 is an
even function, the variation of parameters formula tells us

χε,1(x)=
ς2(x)
ε

∫ x

0
ς1(s)λ2(s) ds−

ς1(x)
ε

∫ x

0
ς2(s)λ2(s) ds+ (pε,1(0)− qε,1(0))ς1(x),

and

χ ′ε,1(x)=
ς ′2(x)
ε

∫ x

0
ς1(s)λ2(s) ds−

ς ′1(x)
ε

∫ x

0
ς2(s)λ2(s) ds+ (pε,1(0)− qε,1(0))ς ′1(x).

Let β2 be a fixed constant satisfying 0 < β2 < min(β1, α1), where α1 is the constant appearing in the
assertion of Lemma 5.9. If Ia1 := [−a1, a1] ⊂ Ia is an interval where |χε,1| ≤ εβ2 , then, by (5-26),

‖λ2‖C0(Ia1 )
≤ Cε2+β1 +Cε2+2β2 .

Recall that |pε,1(0)− qε,1(0)| ≤ Cεα1 . Therefore

‖χε,1‖C0(Ia) ≤ Cε(εβ1 + ε2β2)

(
|ς2(x)|

∫ x

0
|ς1(s)| ds+ |ς1(x)|

∫ x

0
|ς2(s)| ds

)
+Cεα1 |ς1(x)|.
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Since |ς1(s)| ≤ Cε|s| and |ς2(s)| ≤ C , we find that, for x ∈ [ln ε/ε,− ln ε/ε],

|ς2(x)|
∫ x

0
|ς1(s)| ds+ |ς1(x)|

∫ x

0
|ς2(s)| ds ≤ C |ln ε|2/ε.

Therefore, in Ia1 , if ε is small enough,

‖χε,1‖C0(Ia1 )
≤ C(εβ1 + ε2β2)| ln ε|2+Cεα1 | ln ε| ≤

εβ2

2
.

From this we deduce ‖χε,1‖C0(Ia) ≤ ε
β2 , which proves (5-25).

Since |ς ′i (x)| ≤ Cε, it then follows that, for x ∈ Ia ,

|χ ′ε,1(x)| = Cε(εβ1 + ε2β2)

(
|ς ′2(x)|

∫ x

0
|ς1(s)| ds+ |ς ′1(x)|

∫ x

0
|ς2(s)| ds

)
+Cεα1 |ς ′1(x)|

≤ Cε(εβ1 + ε2β2)|ln ε|2+Cε1+α1 ≤ Cε1+β2 . (5-27)

Now recall that in I , |qε,1(x)| < 9
5 |ln ε| and |q ′ε,1(x)| <

3
2ε. It then follows from Claim 1, (5-25), and

(5-27) that, for ε small enough, the interval I satisfies the assumption of Claim 1. Therefore

|χε,1(x)| ≤ Cεα and |χ ′ε,1(x)| ≤ Cε1+α for x ∈ I.

Moreover, using (5-26), we get ‖χ ′′ε,1‖C0,µ(I ) ≤ Cε2+α.

Step 2. Next we will prove that ‖χε,1‖C0(R)→ 0 as ε→ 0. By Step 1, it suffices to show that

‖χε,1‖C0(R\I )→ 0 as ε→ 0.

Let the asymptotic line of u in the fourth quadrant be y =−εx −Aε. Define

aε := inf{t ≥ |ln ε|/ε : | fε,1(x)+ (εx +Aε)| ≤ 1 for x ∈ [t,+∞)}.

We wish to show that in fact aε = |ln ε|/ε. For this purpose, we consider the domain

�L :=

{
(x, y) : y < 0, x > aε, y > x

ε
− L

}
.

Here L > εaε is large and indeed we will finally let it go to +∞. We use the balancing formula in this
domain and with the vector field X := ( fε,1(aε)− y, x − aε). This formula tells us that∫

∂�L

{(1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS = 0.

Let us estimate the relevant boundary integrals. First,∫
∂�L∩{y=0}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS =

∫ εL

aε

( 1
2 u2

x + F(u)
)
(x − aε) dx

whose limit as L→∞ is ∫
∞

aε

( 1
2 u2

x + F(u)
)
(x − aε).
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To estimate this integral, let us recall that, by symmetry and (2-7), we have, for x = (x, y), y ≤ 0, with
some κ > 0,

|(u(x))2− 1| + |∇u(x)| ≤ Ce−κ dist(0ε,1,x).

Now, using this and the fact that

|εaε +Aε| ≥ | fε,1(aε)| − 1≥
(

1+
√

2
2

)
|ln ε| −C,

after some calculation, we deduce that, as ε→ 0,∫
∂�L∩{y=0}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
·ν dS→ 0.

On the other hand, using the asymptotic behavior of u in the lower half plane, we get

u = H + o(1)e−κ dist(0ε,1,x), (x∗ε,1 H)(x1, y1)= H(y1),

where (x1, y1) are the Fermi coordinates of the point x. Since on the line {x = aε} we have X =
( fε,1(aε)− y, 0), we get∫

∂�L∩{x=aε}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS = o(1).

Finally, we compute:∣∣∣∣∫
∂�L∩{y=x/ε−L}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS

∣∣∣∣= | fε,1(aε)+ εaε +Aε|
√

1+ ε2
+ o(1).

Collecting all these estimates, we conclude

| fε,1(aε)+ εaε +Aε| = o(1).

Appealing to the definition of aε, this implies that aε = |ln ε|/ε, and consequently,

| fε,1(x)+ εx +Aε| = o(1) for x ∈ [|ln ε|/ε,+∞).

This implies that outside this interval, Nε,1 is close to a straight line, which combined with the estimates
(4-6) yields the desired result. Indeed, now we have

qε,1(aε)= fε,1(aε)+ o(1)

=−εaε −Aε + o(1).

On the other hand, since qε,1 is the solution of the Toda equation, we have

qε,1(x)=−εx − Ãε + o(1) for x ≥ aε.

It follows that Aε = Ãε + o(1). This ends the proof of Step 2.
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Step 3. At this point we can use what we have just proven in Step 2 to get

fε,1(x)=

√
2

2
ln ε− ε|x | +O(1), |x | � 1.

As a consequence,

‖ exp(−
√

2D)‖C0
ετ (R)
≤ Cε2, (5-28)

which, together with Lemma 5.7, yields

‖φ‖
C

2,µ
ετ (R2)

+‖ f ′′ε,1‖C
0,µ
ετ (R)
+‖hε‖C

2,µ
ετ (R)
≤ Cε2. (5-29)

Then, by a similar calculation to that of (5-20), we find that, in the half line R\I = (|ln ε|/ε,+∞), the
function pε,1 satisfies

‖p′′ε,1‖C
0,µ
ετ̂
(R\I ) = O(ε2+α) (5-30)

for some τ̂ > 0 independent of ε. This implies that, in R\I ,

|p′ε,1(x)+ ε| ≤ C
∫
+∞

x
ε2+αe−ετ̂ |s| ds

= Cε1+αe−ετ̂ |x |.

Therefore,

|pε,1(x)+ εx +Aε| ≤ Cεαe−ετ̂ |x |, x ∈ R \ I. (5-31)

On the other hand, by Step 1 and the fact that

|qε,1(x)+ εx + Ãε| ≤ Cεαe−εβ|x |, x ∈ R \ I, (5-32)

we get

|pε,1(|ln ε|/ε)+ |ln ε| + Ãε| ≤ Cεα.

This together with (5-31) then yields |Aε − Ãε|< Cεα. Now, letting jε =Aε − Ãε, taking into account
Step 1, (5-31), (5-32), and reducing τ̂ if necessary, the assertion of Proposition 4.2 follows. The conclusion
of the proof of Proposition 4.1 is contained in (5-29). �

6. Uniqueness of solutions with almost parallel nodal lines

Parametrization of the family of solutions of (1-1) by the trajectories of the Toda system. Let us con-
sider the curve Ñε,i which is the graph of the function y = qε,i (x). When i = 1, it is contained in the
lower half-plane, and when i = 2, it is contained in the upper half-plane. We have qε,1(x)=−qε,2(x).
With these curves we will associate the Fermi coordinates (x̃i , ỹi ):

x = (x̃i , qε,i (x̃i ))+ ỹi ñε,i (x̃i ), ñε,i (x)=
(−q ′ε,i (x), 1)
√

1+ q ′ε,i (x)
2
, i = 1, 2.
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The change of variables (x̃i , ỹi ) 7→ x = (x, y) is a diffeomorphism in a neighborhood Õi of Ñε,i . We
denote this diffeomorphism by x̃ε,i so that

x̃ε,i (x̃i , ỹi )= x ∈ Õi .

For any function w : Õi → R by x̃∗ε,iw we denote its pullback by x̃ε,i :

(x̃∗ε,iw)(x̃i , ỹi )= (w ◦ x̃ε,i )(x̃i , ỹi ).

Using basic properties (linear growth, scaling) of the trajectories of the solutions of the Toda system, one
can check [del Pino et al. 2010] that there exists a constant C1 such that we can choose Õi , i=1,2, to be
the set

{(x, y) ∈ R2
: |y| ≤ C1ε

−1
√

1+ x2}.

With these preparations, we would like to write locally any solution u, with tan θ(u)= ε small, in the
Fermi coordinates with respect to Ñε,i . To this end, we will construct a suitable approximation of u in
Õi based on the fact that the true solution is locally close to the heteroclinic one. By symmetry we may
focus on the case i = 1, namely, consider the lower half plane. The nodal line Nε,1 of u in the lower
half plane is the graph of y = fε,1(x). Recall that qε,1(x) is the solution of the Toda equation such that
the assertions of Proposition 4.2 are satisfied. We let η̃ to be a smooth cut off function equal to 1 in
Õ1 ∩ { dist(x, ∂Õ1) > 1} and equal to 0 in R2

\ Õ1. A reasonable ansatz for an approximate solution is
built defining the function H̃ε,1 by

x̃∗ε,1 H̃ε,1(x̃1, ỹ1) := x̃∗ε,1η̃(x̃1, ỹ1)H(ỹ1− g̃ε(x̃1))+ (1− x̃∗ε,1η̃(x̃1, ỹ1))
H(ỹ1− g̃ε(x̃1))

|H(ỹ1− g̃ε(x̃1))|
,

which is extended to the whole R2 by ±1, setting H̃ε,2(x, y)=−H̃ε,1(x,−y), and finally defining

ũε := H̃ε,1− H̃ε,2− 1. (6-1)

Note that the function g̃ε has not been specified so far. It turns out that, in order to have a good
approximation of u by ũε, we should impose the orthogonality condition∫

R

x̃∗ε,i [(u− ũε)ρ̃ε,i H̃ ′ε,i ](x̃i , ỹi ) dỹi = 0 for all x̃i , i = 1, 2, (6-2)

where smooth cutoff functions ρ̃ε,i are defined through

(x̃∗ε,i ρ̃ε,i )(x̃i , ỹi )= ρ̃(ỹi − (−1)i+1g̃ε(x̃i )),

and ρ̃ is an even cutoff function equal to 1 in the interval (
√

2 ln ε/8,−
√

2 ln ε/8) and equal to 0 outside
(
√

2 ln ε/4,−
√

2 ln ε/4), while H̃ ′ε,i is defined by

x̃∗ε,i H̃ ′ε,i (x̃i , ỹi )= H ′(ỹi − (−1)i+1g̃ε(x̃i )).

To show the existence of the function g̃ε, one can use an argument similar to the one in Lemma 5.1.
However, since the graph of the function y = qε,i (x) does not converge to the nodal set of the solution at
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infinity, the function g̃ε does not decay exponentially. To determine the behavior of the function g̃ε more
precisely, we need the following.

Lemma 6.1. There exist constants τ̃ > 0 and vε such that |vε| ≤Cεα , and the function h̃ε(x) := g̃ε(x)+vε
satisfies

‖h̃ε‖C0
ετ̃
(R) ≤ Cεα,

‖h̃′ε‖C0
ετ̃
(R) ≤ Cε1+α,

‖h̃′′ε‖C
0,µ
ετ̃
(R)
≤ Cε2+α.

(6-3)

Proof. The function g̃ε is determined by∫
R

x̃∗ε,1[(u− ũε)ρ̃ε,1 H̃ ′ε,1] dỹ1 = 0.

Changing variables, this relation can also be written as∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1 = 0. (6-4)

For this integral, it suffices to consider the points in the support of ρ̃ε,1.
Recall that, by the definition of ũε,

x̃∗ε,1ũε(x̃1, ỹ1+ g̃ε(x̃1))= H(ỹ1)− x̃∗ε,1(H̃ε,2+ 1)(x̃1, ỹ1+ g̃ε(x̃1)).

It is not difficult to see that∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1(H̃ε,2+ 1)(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cε2

for some τ̃ > 0. This combined with (6-4) leads to∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1u(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cε2. (6-5)

On the other hand, u = ūε +φ with ‖φ‖
C

2,µ
ετ0 (R

2)
≤ Cε2. Hence, reducing τ̃ if necessary, we get∥∥∥∥∫

R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1ūε(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤

∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1φ(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ0
(R)

+Cε2
≤ Cε2. (6-6)

Now, in the support of ρ̃ε,1, ūε = H(y1− hε(x1))− H(y2+ hε(x2))− 1. Denoting the function (x, y)=
xε,1(x1, y1) 7→ H(y1− hε(x1)) by R, it follows from (6-6) that (reducing τ̃ if necessary)∥∥∥∥∫

R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1R(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cε2. (6-7)
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To proceed, let us investigate the relation between the Fermi coordinates (x1, y1) and (x̃1, ỹ1). Using
| f ′ε,1| ≤ Cε, | fε,1− qε,1| ≤ Cεα, |y1| ≤ C |ln ε|, and elementary geometry, one can verify that

|x̃1− x1| ≤ C ||y1| +Cεα|ε ≤ Cεα. (6-8)

Additionally, recall that by Proposition 4.2, ‖ fε,1− qε,1+ jε‖C0
ετ̂
(R) ≤ Cεα. Using (6-8) , one can show

y1 = ỹ1+
(√

1+ (q ′ε,1(x̃1))
2 )−1 jε +O(εαe−εβ|x̃1|). (6-9)

Inserting this into (6-7), we find (again reducing τ̃ if necessary)∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)H(ỹ1+ g̃ε(x̃1)+
(√

1+ (q ′ε,1(x̃1))
2 )−1 jε) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cεα. (6-10)

As a consequence,

‖g̃ε +
(√

1+ (q ′ε,1)
2 )−1 jε‖C0

ετ̃
(R) ≤ Cεα, (6-11)

which together with the behavior of q ′ε,1 implies that

‖h̃ε‖C0
ετ̃
(R) ≤ Cεα, |vε| ≤ Cεα, (6-12)

where vε := jε/
√

1+ ε2 and

h̃ε(x) := g̃ε(x)+ vε. (6-13)

Next we need to estimate the weighted norm of the first derivative of h̃ε.
Let us denote the diffeomorphism x−1

ε,1 ◦ x̃ε,1 by 8ε,1 and denote x−1
ε,2 ◦ x̃ε,1 by 8ε,2. Then, using (6-8),

(6-9), and formulas (3-10), after direct calculations, we find that

|D8ε,1− Id2×2 | = O(ε1+αe−εβ|x̃1|), |D28ε,1| = O(ε2+αe−εβ|x̃1|), (6-14)

|D8ε,2− Id2×2 | = O(εe−εβ|x̃2|), |D28ε,2| = O(ε2e−εβ|x̃2|). (6-15)

We now differentiate (6-4) with respect to x̃1. Set

R1 := ∂x̃1 x̃∗ε,1u(x̃1, ỹ1+ g̃ε(x̃1)),

R2 := ∂ỹ1 x̃∗ε,1u(x̃1, ỹ1+ g̃ε(x̃1)).

By estimate (6-15), one has∫
R

ρ̃(ỹ1)H ′(ỹ1){R1+R2g̃′ε(x̃1)} dỹ1 = O(ε2e−εβ|x̃1|).

Therefore, using (6-13),

h̃′ε(x̃1)=−

∫
R
ρ̃(ỹ1)H ′(ỹ1)R1 dỹ1∫

R
ρ̃(ỹ1)H ′(ỹ1)R2 dỹ1

+O(ε2e−εβ|x̃1|). (6-16)
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Keep in mind that∫
R

ρ̃(ỹ1)H ′(ỹ1)R1 dỹ1

=

∫
R

ρ̃(ỹ1)H ′(ỹ1)∂x̃1 x̃∗ε,1ūε(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1+

∫
R

ρ̃(ỹ1)H ′(ỹ1)∂x̃1 x̃∗ε,1φ(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1. (6-17)

Equations (6-14), (6-15) and (6-17), together with ‖φ‖C2
ετ0
(R2) ≤ Cε2, yield∫

R

ρ̃(ỹ1)H ′(ỹ1)R1 dỹ1 = O(ε1+αe−εβ|x̃1|).

It then follows from (6-16) that (reducing τ̃ if necessary)

‖h̃′ε‖C0
ετ̃
(R) ≤ Cε1+α.

It remains to estimate h̃′′ε . Setting

R3 = ∂
2
x̃1

x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

R4 = ∂
2
x̃1 ỹ1

x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

R5 = ∂
2
ỹ1

x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

R6 = ∂ỹ1 x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

from (6-4), one gets

h̃′′ε(x̃1)=−

∫
R
ρ̃(ỹ1)H ′(ỹ1)[R3+ 2R4g̃′ε(x̃1)+R5(g̃′ε(x̃1))

2
] dỹ1∫

R
ρ̃(ỹ1)H ′(ỹ1)R6 dỹ1

. (6-18)

Recall that

‖φ‖
C

2,µ
ετ0 (R)
+‖hε‖C

2,µ
ετ0 (R)
≤ Cε2.

A refined argument which involves closer analysis of the main order of φ shows that in reality ∂2
xφ and

h′′ε have better estimates:

‖∂2
xφ‖C

0,µ
ετ0 (R)
+‖h′′ε‖C

0,µ
ετ0 (R)
≤ Cε2+α.

This estimate follows by observing first that the orthogonality relation for φ can be differentiated in x
twice. Then we note that, furthermore, differentiating the equation satisfied by φ twice, we gain powers
of ε in the main order term, namely, the right side will be of order at least O(ε2+α). Then ∂2

xφ and h′′ε
can be estimated using the same orthogonal decomposition as in Section 5. Combining this with (6-14),
(6-15), and (6-18), after some calculations, we get, reducing τ̃ if necessary,

‖h̃′′ε‖C
0,µ
ετ̃
(R)
≤ Cε2+α. �

Given a solution u of (1-1) such that tan θ(u)= ε, we can define an approximate solution ũε by (6-1)
using the solution of the Toda system with the asymptotic slope ε. Then we can write

u = ũε + φ̃.

By the definition of g̃ε, we know that φ̃ = u− ũε satisfies the orthogonality condition (6-2). This allows
us to control the size of φ̃ in the weighted norm in terms of the error of the approximation

E(ũε)=1ũε − F ′(ũε),
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following essentially the same approach as in Section 5, and, in particular, relying on a version of
Proposition 5.5. In fact, one can prove that

‖φ̃‖
C

2,µ
ετ̃
(R2)
≤ Cε2. (6-19)

Conclusion of the proof: the Lipschitz property of solutions. Based on the results of the previous section,
we know that any solution with a small angle can be written in the following way:

u( · ; g̃ε, φ̃)= ũε( · ; g̃ε)+ φ̃,

where ũε is the approximate solution defined in (6-1). Here and below we will indicate the dependence
of this solution on the modulation function g̃ε as well as on φ̃. Now let us consider two solutions u( j),
j = 1, 2, with the same asymptotic angle θ(u( j))= arctan ε. Since the asymptotic angle is the same for
both solutions, there is just one solution of the Toda system represented by the functions qε,1 =−qε,2. On
the other hand, it may happen that g̃(1)ε 6= g̃(2)ε and φ̃(1) 6= φ̃(2). In the notation of [del Pino et al. 2010],
we have that g̃( j)

ε ∈ C
2,µ
ετ̃
(R)⊕ D (see also the summary on pages 1684–1685). In the previous section we

have shown that ‖g̃( j)
ε ‖C0

ετ̃
(R)⊕D ≤ Cεα , with corresponding estimates for the higher-order derivatives. In

addition, for the functions φ̃( j), we have (6-19). Without loss of generality, we can assume that τ̃ is small
but independent of ε.

To prove the uniqueness of solutions with small angles, it is enough to prove “local uniqueness” in the
following sense. Given two four-end solutions associated to the same solution of the Toda system, we
have φ̃(1) = φ̃(2) and g̃(1)ε = g̃(2)ε . Our strategy to prove this fact follows in some sense the strategy used to
prove the existence of solutions with small angles employed in [del Pino et al. 2010]. To explain this, let
us introduce the scaled functions ĝ( j)

ε (x) := g̃( j)
ε (x/ε), j = 1, 2. We show the Lipschitz property of the

map ĝε 7→ E(ũε( · ; g̃ε)), and then we use the linearized equation to show that φ̃(1)−φ̃(2) can be controlled
by a small constant times ĝ(1)ε − ĝ(2)ε . As a final step we show that the function ĝ(1)ε − ĝ(2)ε satisfies the
linearized Toda system with the right side again controlled by a small constant times ĝ(1)ε − ĝ(2)ε . This
leads us to conclude that ĝ(1)ε − ĝ(2)ε = 0, and as a result we infer the uniqueness.

Now we will present some details of the argument outlined above. Many of the calculations are quite
similar to the ones in [del Pino et al. 2010].

Lemma 6.2. The following estimates hold:

‖E(ũ(1)( · ; g̃(1)ε ))− E(ũ(2)( · ; g̃(2)ε ))‖C
0,µ
ετ̃
(R2)
≤ Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D, (6-20)

‖φ̃(1)− φ̃(2)‖
C

2,µ
ετ̃
(R2)
≤ Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D. (6-21)

Remark 6.3. Essentially, up to some minor difference, this Lipschitz property has already been proven
in [del Pino et al. 2010]. Here we give a sketch of the proof for completeness.

Proof. To begin with, let us mention that, for a function g : R→ R, we have the obvious estimates:

‖g(ε· )‖C l,µ
ετ̃
(R)
≤ C‖g( · )‖C l,µ

τ̃
(R)
,

‖g( · )‖C l,µ
τ̃
(R)
≤ Cε−l−µ

‖g(ε· )‖C l,µ
ετ̃
(R)
.
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To prove (6-20) we use essentially the formula (5-7) for the error, replacing ūε by ũ( j)
ε , j = 1, 2, and

then take the difference of the resulting terms E(ũ( j)( · ; g̃( j)
ε )).

To show (6-21), we should consider the equation satisfied by the difference ψ̃ = φ̃(1)− φ̃(2) and use
Proposition 5.5. The slight technical problem is that ψ̃ does not satisfy the orthogonality condition as in
(6-2). To overcome this, we further define a function ψ̃⊥ by

ψ̃⊥ := ψ̃ −
∑

i=1,2

ψ̃
‖

i ,

where ψ̃‖i : R
2
→ R is equal to 0 outside Õi and

x̃∗ε,i ψ̃
‖

i (x̃i , ỹi ) := c̃ε x̃∗ε,i (ρ̃
(1)
ε,i H̃ (1)′

ε,i )

∫
R

x̃∗ε,i [ψ̃ρ̃
(1)
ε,i H̃ (1)′

ε,i ] dỹi in Õi ,

where c̃ε = {
∫

R
[ρ̃(y)H ′(y)]2 dy}−1.

Using the fact that ‖φ̃(2)‖
C

2,µ
ετ̃
(R2)
≤ Cε2 and∫

R

x̃∗ε,i [φ̃
(2)ρ̃

(2)
ε,i H̃ (2)′

ε,i ] dỹi = 0, i = 1, 2,

it is not hard to show that
‖ψ̃
‖

i ‖C
2,µ
ετ̃
(R2)
≤ Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D.

Hence
‖ψ̃⊥‖

C
2,µ
ετ̃
(R2)
≥ ‖ψ̃‖

C
2,µ
ετ̃
(R2)
−Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D. (6-22)

On the other hand, setting

L(i) =−1+ F ′′(ũ(i)ε ), P (i)(φ̃(i))= F ′(ũ(i)ε + φ̃
(i))− F ′(ũ(i)ε )− F ′′(ũ(i)ε )φ̃

(i), i = 1, 2,

we get

L(1)ψ̃⊥ = E(ũ(1)ε )− E(ũ(2)ε )− P (1)(φ̃(1))+ P (2)(φ̃(2))− (L(1)− L(2))φ̃(2)− L(1)(ψ̃‖1 + ψ̃
‖

2 )︸ ︷︷ ︸
f̃

. (6-23)

Applying Lemma 6.2, one can see that

‖ f̃ ‖
C

0,µ
ετ̃
(R2)
≤ o(1)‖ψ̃‖

C
2,µ
ετ̃
(R2)
+Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D.

From this and (6-22), the required estimate follows. �

As we have already seen, the Toda system appears in the projected equation. It turns out that we also
need to analyze the linearized Toda system. Recall that we are always working in the space of even
functions. Suppose q is an even solution of the Toda system

q ′′(t)=−c∗e2
√

2q(t),

and the linearized operator is

P : ϕ→ ϕ′′+ 2
√

2c∗e2
√

2qϕ.
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We want to know the mapping property of this operator. Let C
l,µ
τ̃
(R)e be the space of even functions in

C
l,µ
τ̃
(R), and let D0 be the one-dimensional deficiency space spanned by the constant function.

Lemma 6.4. For small τ̃ > 0, the map P : C2,µ
τ̃
(R)e⊕ D0→ C0,µ

τ̃
(R)e is an isomorphism and therefore

has a bounded inverse.

This result has already been proven in [del Pino et al. 2010] and we omit the proof. With all these
properties understood, we are ready to prove the uniqueness of solutions with given small angles.

Proof of Theorem 1.2. Let us consider the quantity (cf. the proof of Lemma 5.7)

T=

∫
R

x̃∗ε,1[E(ũ
(1)
ε )ρ̃

(1)
ε,1 H̃ (1)′

ε,1 ] dỹ1−

∫
R

x̃∗ε,1[E(ũ
(2)
ε )ρ̃

(2)
ε,1 H̃ (2)′

ε,1 ] dỹ1.

Recall that
E(ũ(i)ε )=−1φ̃

(i)
+ F ′′(ũ(i)ε )φ̃

(i)
+ P (i)(φ̃(i)).

Inserting this into the expression of T, calculating as in Step 1 in the proof of Lemma 5.7, using the
estimates in Lemma 6.2, we get

‖T‖
C

0,µ
ετ̃
(R)
≤ Cε2+α

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D0

. (6-24)

For brevity set
g̃ε := g̃(1)ε − g̃(2)ε and ĝε := ĝ(1)ε − ĝ(2)ε .

Now we calculate T using the explicit expressions for ũ(i)ε in a manner similar to Step 2 of Lemma 5.7,
and, as a result, we get a formula similar to (5-24), which reads

T= (1+O
C

0,µ
ετ̃
(R)
(εα)) g̃′′ε + 2

√
2c∗(1+O

C
0,µ
ετ̃
(R)
(εα))e2

√
2qε,1 g̃ε +O

C
0,µ
ετ̃
(R)
(ε1+α) g̃′ε +O

C
0,µ
ετ̃
(R)
(ε2+α) g̃ε.

Thus, calculating T in two ways, we get at the end that

g̃′′ε + 2
√

2c∗e2
√

2qε,1 g̃ε = Gε, (6-25)

where the term Gε on the right satisfies

‖Gε‖C
0,µ
ετ̃
(R)
≤ Cε2+α

‖ ĝε‖C
2,µ
τ̃
(R)⊕D0

. (6-26)

(6-25) could be written as
ĝ′′ε + 2

√
2c∗e2

√
2q1 ĝε = ε−2Gε(ε

−1
· ),

where q = (q1, q2) is the even solution of the Toda system whose asymptotic lines have slopes ∓1 (cf. the
function U0 in (4-5)). Now we adapt Lemma 6.4 to the present context and use (6-26) to get

‖ ĝε‖C
2,µ
τ̃
(R)⊕D0

≤ Cε−2
‖Gε(ε

−1
· )‖

C
0,µ
τ̃
(R)
≤ Cεα−µ‖ ĝε‖C

2,µ
τ̃
(R)⊕D0

, (6-27)

from which it follows that ĝε = 0, provided that we choose µ < α and ε is taken small. This in turn
implies g̃(1)ε = g̃(2)ε and φ̃(1) = φ̃(2), hence we get uniqueness. This ends the proof of Theorem 1.2. �
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PSEUDOPARABOLIC REGULARIZATION OF FORWARD-BACKWARD
PARABOLIC EQUATIONS: A LOGARITHMIC NONLINEARITY

MICHIEL BERTSCH, FLAVIA SMARRAZZO AND ALBERTO TESEI

We study the initial-boundary value problem
ut =1ϕ(u)+ ε1[ψ(u)]t in Q :=�× (0, T ],
ϕ(u)+ ε[ψ(u)]t = 0 in ∂�× (0, T ],
u = u0 ≥ 0 in �×{0},

with measure-valued initial data, assuming that the regularizing term ψ has logarithmic growth (the case
of power-type ψ was dealt with in an earlier work). We prove that this case is intermediate between the
case of power-type ψ and that of bounded ψ , to be addressed in a forthcoming paper. Specifically, the
support of the singular part of the solution with respect to the Lebesgue measure remains constant in time
(as in the case of power-type ψ), although the singular part itself need not be constant (as in the case
of bounded ψ , where the support of the singular part can also increase). However, it turns out that the
concentrated part of the solution with respect to the Newtonian capacity remains constant.

1. Introduction

In this paper we study the initial-boundary value problem
ut =1ϕ(u)+ ε1[ψ(u)]t in Q :=�× (0, T ],
ϕ(u)+ ε[ψ(u)]t = 0 in ∂�× (0, T ],
u = u0 ≥ 0 in �×{0},

(1-1)

where ε and T are positive constants,

ψ(u)= log(1+ u) for u ≥ 0, (1-2)

ϕ : [0,∞)→ [0,∞) is nonmonotone, u0 is a nonnegative Radon measure on �, and �⊂ RN (N ≥ 1) is
a bounded and connected domain, with smooth boundary ∂� if N ≥ 2. More precisely, ϕ ∈ C∞([0,∞))
is a Perona–Malik type nonlinearity which satisfies, for some α > 0 and q ∈ (1,∞),

ϕ(0)= ϕ(∞)= 0, ϕ′ > 0 in [0, α), ϕ′ < 0 in (α,∞), ϕ′′(α) 6= 0, (1-3)

ϕ ∈ Lq((0,∞)), ϕ( j)
∈ L∞((0,∞)) for any j ∈ N, (1-4)

MSC2010: primary 35D99, 35K55, 35R25; secondary 28A33, 28A50.
Keywords: forward-backward parabolic equations, pseudoparabolic regularization, bounded radon measures, entropy

inequalities.
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and, for some C > 0,

|ϕ′(u)| ≤ Cψ ′(u)= C
1+u

for u ≥ 0. (1-5)

In particular, 0< ϕ(u)≤ ϕ(α) holds for u > 0. A typical example is

ϕ(u)= u
1+u2 .

The partial differential equation in problem (1-1) can be regarded as the regularization of the forward-
backward parabolic equation

ut =1ϕ(u),

which leads to ill-posed problems. The latter equation and its regularizations arise in several applications,
such as edge detection in image processing [Perona and Malik 1990], aggregation models in population
dynamics [Padrón 1998], and stratified turbulent shear flow [Barenblatt et al. 1993a].

This paper is the second of a series where we address problem (1-1) with measure-valued initial data;
see [Bertsch et al. ≥ 2013]. It is natural to consider flows which allow measure-valued solutions, since
it is known that initially smooth solutions may develop a singular part in finite time, if N = 1 and ψ is
uniformly bounded [Barenblatt et al. 1993b]. On the other hand we have shown [Bertsch et al. ≥ 2013]
that in the case of power-type nonlinearities,

ψ(u)= (1+ u)θ − 1 (u ≥ 0, θ ∈ (0, 1]), (1-6)

the singular part of the solutions does not evolve in time, and initially smooth functions remain smooth
for each later time. Therefore, the qualitative behavior of measure-valued solutions turns out to depend
critically on the behavior of the nonlinearity ψ(u) as u→∞.

Our purpose is to make a detailed analysis of this dependence. Therefore we distinguish three cases
in this series of papers: mild degeneracies (power-type ψ), strong degeneracies (bounded ψ), and the
intermediate case of logarithmic ψ . Observe that if ψ ′ vanishes at infinity, the partial differential equation
in problem (1-1) is of degenerate pseudoparabolic type. In the present paper we focus on the intermediate
case of functions ψ with logarithmic growth, and we take (1-2) as a model case.

It turns out that the logarithmic ψ can be considered as a truly intermediate case, in the sense that

(i) as in the case of power-type ψ , singularities cannot appear spontaneously;

(ii) as in the case of bounded ψ , the singular part of u need not be constant with respect to t .

Specifically, in all three cases the singular part of the solution is nondecreasing in time: it is constant for
a power-type ψ (see [Bertsch et al. ≥ 2013, Theorem 2.1]), whereas its support can expand (that is, new
singularities can appear) in the case of bounded ψ . Instead, in the logarithmic case the support of the
singular part is constant, yet the singular part can increase; see Theorem 3.5 and equalities (3-13)–(3-14).

To explain the above claims, let us discuss heuristically the behavior of solutions to problem (1-1)
for a logarithmic ψ as in (1-2) or a power-type ψ as in (1-6); see [Bertsch et al. ≥ 2013]. By a suitable
approximation procedure, which plays a key role in our approach (see Section 6), we prove in both cases
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that the entropy solution u( · , t) at time t of problem (1-1) and the corresponding value v( · , t) of the
chemical potential

v := ϕ(ur )+ ε[ψ(ur )]t (1-7)

satisfy a suitable elliptic problem. Here ur ( · , t) denotes the density of the absolutely continuous part of
u( · , t); see after (2-5). When ψ is of power-type, (1-7) becomes−ε1v( · , t)+

v( · , t)
ψ ′(ur ( · , t))

=
ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in �,

v = 0 on ∂�
(1-8)

for a.e. t ∈ (0, T ). Instead, for a logarithmic ψ the elliptic problem is−ε1v( · , t)+
1

ψ ′([u( · , t)]d,2)
v( · , t)=

ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in �,

v( · , t)= 0 on ∂�,
(1-9)

where [u( · , t)]d,2 denotes the diffuse part of u( · , t) with respect to the Newtonian C2-capacity. Recalling
that 1/ψ ′(u)= 1+ u, the first equation of problem (1-9) is meant in the sense that

−ε〈1[v( · , t)], ρ〉�+
〈
{1+ ur ( · , t)+ [us( · , t)]d,2}, v( · , t)ρ

〉
�

=

∫
�

[1+ ur (x, t)]ϕ(ur (x, t))ρ(x) dx (1-10)

for any ρ ∈ Cc(�); here us( · , t) denotes the singular part of u( · , t) and, as we shall make precise in
Section 2 (see (2-2) and Remark 2.1), 〈 · , · 〉� denotes an extension of the duality map between the space
M(�) of finite Radon measures on � and the space Cc(�) of continuous functions with compact support.
Notice that

0≤ (1+ ur )ϕ(ur )≤ ϕ(α)(1+ ur ) ∈ L1(Q).

The presence of the singular term 〈[us( · , t)]d,2, v( · , t)ρ〉� in the left-hand side of (1-10), which does not
appear in the power-type case (see (1-8)), depends on the weaker regularization properties of a logarithmic
ψ with respect to a power-type ψ .

By the above definition of the chemical potential, the partial differential equation in (1-1) reads

ut =1v. (1-11)

The coupling of the above evolutionary equation with the corresponding elliptic problem (either (1-8) or
(1-9), depending on the choice of ψ) suggests that we could study the time evolution of ur ( · , t) and that
of us( · , t) separately. For both choices of ψ our definition of the solution of problem (1-1) implies that
v ∈ L1(Q); see Definition 3.1 and [Bertsch et al. ≥ 2013, Definition 2.1]. Then for a power-type ψ we
obtain from (1-8) that 1v ∈ L1(Q), which, by (1-11), implies

us( · , t)= u0s, [ur ]t( · , t)= ut( · , t)=1v( · , t), (1-12)

namely, the singular part us does not evolve with time; see [Bertsch et al. ≥ 2013, Theorem 2.1].
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Now consider a logarithmic ψ as in (1-2). By (1-11) and the arbitrariness of ρ, (1-10) gives

−εut( · , t)+{1+ ur ( · , t)+ [us( · , t)]d,2}v( · , t)= [1+ ur ( · , t)]ϕ(ur ( · , t)). (1-13)

On the other hand, by definition of the chemical potential, we have

ε[ur ]t( · , t)= [1+ ur ( · , t)][v( · , t)−ϕ(ur )( · , t)], (1-14)

which can be regarded as the equation governing the evolution of the regular part ur , since v ∈ L1(Q).
From (1-13)–(1-14) we obtain the following equation for the evolution of the singular part us :

ε[us]t( · , t)= [us]d,2( · , t)v( · , t), (1-15)

namely,

ε〈[us]t( · , t), ρ〉� = 〈[us( · , t)]d,2, v( · , t)ρ〉�

for any ρ ∈ Cc(�). Since

us = uc,2+ [us]d,2 (1-16)

(see (2-7)–(2-8)), from Equation (1-15) we obtain

uc,2( · , t)= [u0]c,2

(see Theorem 3.1 below) and

〈[us]d,2( · , t), ρ〉� =
〈
[u0s]d,2, exp

{
1
ε

∫ t

0
v( · , s) ds

}
ρ

〉
�

, (1-17)

which imply (see (3-1))

〈us( · , t), ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈u0s, ρ〉�

for any t ≥ 0 and ρ ∈ Cc(�).
If N = 1, since every Radon measure is C2-diffuse (see page 1725), problem (1-9) becomes−ε[v( · , t)]xx +

1
ψ ′(u( · , t))

v( · , t)=
ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in �,

v( · , t)= 0 on ∂�.
(1-18)

Now the evolution of the singular part us is described by the equation

ε[us]t( · , t)= us( · , t)v( · , t), (1-19)

whence we obtain

〈us( · , t), ρ〉� =
〈
u0s, exp

{
1
ε

∫ t

0
v( · , s) ds

}
ρ

〉
�

(1-20)

for any ρ ∈ Cc(�).
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In view of the above considerations, whether or not us( · , t) evolves in time clearly depends on the
positivity of the chemical potential; see (1-17), (1-20). This point will be addressed by a generalized
strong maximum principle (see Proposition 3.15). We shall also construct a solution of the form

u( · , t)= ur ( · , t)+ A(t)δx0, A(0)= 1,

δx0 denoting the Dirac mass centered at x0 ∈ � (see Remark 3.20), to point out the importance of the
elliptic problem (1-9) for ensuring uniqueness of the solutions of problem (1-1); see Theorem 3.11; a
similar example was given in [Porzio et al. 2013, Remark 2.4]. Finally, in Theorem 3.17 we prove the
existence of an entropy solution of (1-1) (see Definition 3.4), whereas in Theorem 3.18 we show that
under suitable conditions this solution and the associated chemical potential satisfy problem (1-9).

2. Preliminaries

Nonnegative finite Radon measures. We denote by M(�) the space of finite Radon measures on �, and
by M+(�) the cone of positive (finite) Radon measures on �. By M+ac(�) and M+s (�) we denote the
subsets of M+(�) whose elements are, respectively, absolutely continuous and singular with respect
to the Lebesgue measure on �. We have M+ac(�)∩M+s (�)= {0}, and for every µ ∈M+(�) there is a
unique pair (µac ∈M+ac(�), µs ∈M+s (�)) such that

µ= µac+µs . (2-1)

For every µ ∈ M+(�), we shall denote by µr the density of the absolutely continuous part µac of µ;
namely, according to the Radon–Nikodym Theorem, µr is the unique function in L1(�) such that

µac(E)=
∫

E
µr dx

for every Borel set E ⊆�.
Given µ ∈M(�) and a Borel set E ⊆�, the restriction µ E of µ to E is defined by

(µ E)(A) := µ(E ∩ A)

for every Borel set A ⊆�. We denote by 〈 · , · 〉� the duality map between M(�) and the space Cc(�)

of continuous functions with compact support. For µ ∈ M(�) and ρ ∈ L1(�,µ) we set, by abuse of
notation,

〈µ, ρ〉� :=

∫
�

ρ(x) dµ(x) and ‖µ‖M(�) := |µ|(�). (2-2)

Similar notations will be used for the space of Radon measures on Q := �× (0, T ). The Lebesgue
measure of any Borel set E ⊆� or E ⊆ Q, will be denoted by |E |. A Borel set E such that |E | = 0 is
called a null set. By the expression “almost everywhere”, henceforth abbreviated a.e., we always mean
“up to null sets”.

We denote by L∞((0, T );M+(�)) the set of positive Radon measures u ∈M+(Q) such that for a.e.
t ∈ (0, T ) there exists a measure u( · , t) ∈M+(�) satisfying the following conditions:
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(i) For every ζ ∈ C(Q) the map t→ 〈u( · , t), ζ( · , t)〉� is Lebesgue measurable, and

〈u, ζ 〉Q =
∫ T

0
〈u( · , t), ζ( · , t)〉� dt. (2-3)

(ii) ess supt∈(0,T ) ‖u( · , t)‖M(�) <∞.

If u ∈ L∞((0, T );M+(�)), both uac and us belong to L∞((0, T );M+(�)). By (2-3), for all ζ ∈C(Q),

〈uac, ζ 〉Q =

∫∫
Q

urζ dx dt and 〈us, ζ 〉Q =

∫ T

0
〈us( · , t), ζ( · , t)〉� dt.

It is easily checked that for a.e. t ∈ (0, T ) the measures [u( · , t)]ac, [u( · , t)]s ∈ M+(�) satisfy the
equalities

uac( · , t)= [u( · , t)]ac, us( · , t)= [u( · , t)]s . (2-4)

Observe that the first equality above implies

ur ( · , t)= [u( · , t)]r , (2-5)

where [u( · , t)]r denotes the density of the measure [u( · , t)]ac:

〈[u( · , t)]ac, ζ 〉� =

∫
�

ur ( · , t)ζ dx for ζ ∈ C(�) and a.e. t.

C p-capacity. Let p ∈ [1,∞). The C p-capacity in � of a Borel set E ⊆� is defined as

C p(E) := inf
v∈UE

�

∫
�

|∇v|p dx,

where UE
� is the set of all functions v ∈ H 1,p

0 (�) such that 0 ≤ v ≤ 1 a.e. in � and v = 1 a.e. in a
neighborhood of E (analogous definitions can be given in RN ). If UE

� =∅ we adopt the usual convention
that inf∅=∞. We use the notation C p(E, �) when we want to stress the dependence on �. If K ⊆�
is compact, then

C p(K ) := inf
v∈FK

�

∫
�

|∇v|p dx,

where FK
� is the set of all functions v ∈ C∞0 (�) such that 0≤ v ≤ 1 in � and v = 1 in K . Moreover, if

p ∈ [1,∞), for every Borel set E ⊆�,

C p(E)= inf{C p(U ) |U ⊆� open, E ⊆U },

and, if 1< p <∞, for every open set U ⊆�,

C p(U )= sup{C p(K ) | K compact, K ⊆U }.

For any p ∈ [1,∞) define

M+d,p(�) := {µ ∈M+(�) | µ(E)= 0 for every Borel set E ⊆�, C p(E)= 0},
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the set of finite (positive) Radon measures on � which are absolutely continuous with respect to the
C p-capacity. Analogously,

M+c,p(�) := {µ ∈M+(�) | ∃ a Borel set E ⊆� s.t. C p(E)= 0 and µ= µ E}

is the set of finite (positive) Radon measures on � which are singular with respect to the C p-capacity.
Clearly, M+c,p(�) ∩M+d,p(�) = {0}. Observe that M+d,p1

(�) ⊆ M+d,p2
(�) and M+c,p2

(�) ⊂ M+c,p1
(�) if

p1 < p2.
Recall that every subset E ⊆ � such that C p(E) = 0 for p ∈ [1,∞) is Lebesgue measurable and

satisfies |E | = 0. This plainly implies

M+c,p(�)⊆M+s (�), M+ac(�)⊆M+d,p(�) for every p ∈ [1,∞). (2-6)

In connection with the first inclusion in (2-6), observe that if N = 1, then M+c,p(�) = ∅ for any
p ∈ [1,∞). In fact, for singletons E = {x} (x ∈�), we have

C p({x}, �) > 0 if either p > N or p = N = 1.

Therefore, if N = 1, by monotonicity, we have C p(E) > 0 (p ∈ [1,∞)) for every nonempty Borel set
E ⊆�. The claim follows.

For any p ∈ (1,∞) it is known that a measure µ ∈M+(�) belongs to M+d,p(�) if and only if

µ ∈ L1(�)+W−1,p′(�)

(where W−1,p′(�) denotes the dual space of the Sobolev space W 1,p
0 (�)). Then the duality symbol

〈µ, ϕ〉� makes sense for any µ ∈M+d,p(�) and ϕ ∈W 1,p
0 (�)∩ L∞(�). Moreover, if µ ∈M+d,p(�), every

function v ∈W 1,p
0 (�)∩ L∞(�) also belongs to L∞(�,µ); for example, see [Evans and Gariepy 1992].

For every µ ∈M+(�), p ∈ [1,∞), we define the concentrated and diffuse parts of µ with respect to
C p-capacity as the (unique, mutually singular) measures µc,p ∈M+c,p(�) and µd,p ∈M+d,p(�) such that

µ= µc,p +µd,p. (2-7)

Combining the decompositions in (2-1) and (2-7) and using (2-6) gives

µc,p = [µs]c,p, (2-8)

µd,p = µac+ [µs]d,p, (2-9)

for every µ ∈M+(�). From (2-7)–(2-9) we obtain

µ= µac+ [µs]d,p +µc,p, (2-10)

which in the case N = 1 reduces to (2-1).
Finally, recall that a function f :�→ R is C p-quasicontinuous in � if for any ε > 0 there exists a set

E⊆�, with C p(E)<ε, such that the restriction f
∣∣
�\E is continuous in�\E (it is not restrictive to assume

that the set E is open). It can be proven (for example, see [Evans and Gariepy 1992]) that every function
u ∈W 1,p(�) has a C p-quasicontinuous representative ũ; moreover, if ū is another C p-quasicontinuous
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representative of u, then the equality ū = ũ holds C p-almost everywhere in �. In the following, every
function u ∈W 1,p(�) will be identified with its unique C p-quasicontinuous representative.

Remark 2.1. Recalling that v( · , t) ∈ H 1
0 (�) ∩ L∞(�) for a.e. t ∈ (0, T ) (see Definition 3.1) and

[us( · , t)]d,2 ∈ L1(�)+ H−1(�) by the characterization of the diffuse measures, it is apparent that the
singular term 〈[us( · , t)]d,2, v( · , t)ρ〉� in the left-hand side of (1-10) is well defined for any ρ ∈ C1

c (�).
Let us show that the same quantity is well defined for any ρ ∈ Cc(�).

In fact, let µ ∈M+d,2(�), v ∈ H 1
0 (�)∩ L∞(�), and let ṽ be its C2-quasicontinuous representative. Let

us show that ṽρ belongs to L1(�,µ), so that the quantity

〈µ, vρ〉� =

∫
�

ṽ(x)ρ(x) dµ(x)

is well defined.
Let {ρn} ⊆ C∞c (�) be any sequence such that

ρn→ ρ in C(�). (2-11)

Since ṽ is defined C2-almost everywhere in � and µ ∈M+d,2(�),

ṽ(x)ρn(x)→ ṽ(x)ρ(x) for µ-a.e. x ∈�. (2-12)

Moreover, by (2-11) there exists C > 0 such that for every n ∈ N we have

|ṽρn| ≤ C |ṽ| ∈ L1(�,µ).

Then by the dominated convergence theorem the claim follows.

3. Main results

Definitions.

Definition 3.1. Given u0 ∈M+(�), a measure u ∈ L∞((0, T );M+(�)) is called a solution of problem
(1-1) if the following holds:

(i) [ψ(ur )]t ∈ L∞(Q), the chemical potential v defined by (1-7) belongs to L∞((0, T ); H 1
0 (�)),

1v ∈ L∞((0, T );M(�)),

and

0≤ v ≤ ϕ(α) a.e. in Q. (3-1)

(ii) for every ζ ∈ C1([0, T ];Cc(�)) with ζ( · , T )= 0 in �,∫ T

0
〈u( · , t), ζt( · , t)〉� dt +

∫ T

0
〈1v( · , t), ζ( · , t)〉� dt =−〈u0, ζ( · , 0)〉�. (3-2)

Observe that the assumption 1v ∈ L∞((0, T );M(�)) implies u ∈ C([0, T ];M+(�)).
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Remark 3.2. Since 0≤ ϕ(u)≤ ϕ(α) for u ≥ 0 by (1-3), it follows from (1-7) and (3-1) that

|[ψ(ur )]t | ≤
ϕ(α)

ε
a.e. in Q. (3-3)

Remark 3.3. Since v ∈ L∞((0, T ); H 1
0 (�)) and 1v ∈ L∞((0, T );M(�)), for a.e. t ∈ (0, T ) we have

that v( · , t) ∈ H 1
0 (�) and 1v( · , t) := [1v]( · , t) ∈M(�). Observe that

1v( · , t)=1[v( · , t)] ∈ H−1(�) (3-4)

for a.e. t ∈ (0, T ). In fact, let jσ (σ > 0) be a standard mollifier. Then

〈[1v( · , t)] ∗ jσ , ρ〉� = 〈1[v( · , t)] ∗ jσ ], ρ〉� = 〈v( · , t) ∗ jσ ,1ρ〉�

for any ρ ∈ C2
c (�). Letting σ → 0 we obtain

〈1v( · , t), ρ〉� = 〈v( · , t),1ρ〉�,

which shows that 1v( · , t) is the distributional Laplacian of v( · , t) ∈ H 1
0 (�). Hence (3-4) follows.

Given g ∈ C1([0, ϕ(α)]), we set

G(z) :=
∫ z

0
g(ϕ(u)) du for z ≥ 0. (3-5)

Definition 3.4. Let u0 ∈M+(�). A solution u of problem (1-1) is called an entropy solution if for all
g ∈ C1([0, ϕ(α)]) such that g′ ≥ 0 and g(0) = 0, and for all ζ ∈ C1([0, T ];C1

c (�)) such that ζ ≥ 0,
ζ( · , T )= 0 in �, the following entropy inequality holds:∫∫

Q
{G(ur )ζt − g(v)∇v∇ζ − g′(v)|∇v|2ζ } dx dt ≥−

∫
�

G(u0r )ζ(x, 0) dx, (3-6)

where G is defined by (3-5).

Inequality (3-6) is called the entropy inequality for problem (1-1) by analogy with the entropy inequality
for viscous conservation laws; see [Evans 2004; Serre 1999]. Such an inequality is known to hold

(i) when u0 ∈ L∞(�) and ψ(u)= u (this is the so-called Sobolev regularization), both for a cubic-like
ϕ and for a ϕ of Perona–Malik type (see [Novick-Cohen and Pego 1991; Smarrazzo 2008]);

(ii) for problem (1-1) if N = 1 and ψ ′(u)→ 0 as u→∞ (see [Smarrazzo and Tesei 2012]).

In such cases, entropy inequalities play an important role both to describe the time evolution of solutions
of (1-1) and to address the “vanishing viscosity limit” of the problem as ε→ 0.

Persistence and monotonicity. Given any solution u of problem (1-1), we prove in Section 4 that the
C2-concentrated part [u( · , t)]c,2 does not evolve in time if N ≥ 2 (recall that M+c,2(�)=∅ if N = 1).

Theorem 3.5. Let N ≥ 2 and let u be a solution to problem (1-1). Then

[u( · , t)]c,2 = [u0]c,2 for a.e. t ∈ (0, T ). (3-7)
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Therefore, with respect to the case of a power-type ψ in which the first equality of (1-12) holds, in
the present case it is only the concentrated part [u( · , t)]c,2 = [us( · , t)]c,2 of the solution which remains
constant.

Concerning the density of the absolutely continuous part of an entropy solution, the following holds.
The proof is the same as that of [Bertsch et al. ≥ 2013, Proposition 2.5], thus we omit it.

Proposition 3.6. Let u be an entropy solution of problem (1-1). Then there exists a null set F∗ ⊂ (0, T )
such that, for any t0 ∈ (0, T ) \ F∗ and any Borel set E ⊆�,

ur ( · , t0)≤ α a.e. in E =⇒ ur ( · , t)≤ α a.e. in E for every t ∈ (t0, T ) \ F∗.

The singular part of an entropy solution does not decrease if time evolves.

Proposition 3.7. Let u be an entropy solution of problem (1-1), and let ρ ∈ Cc(�), ρ ≥ 0. Then, for a.e.
0≤ t1 ≤ t2 ≤ T ,

〈us( · , t1), ρ〉� ≤ 〈us( · , t2), ρ〉� (3-8)

and, for a.e. t ∈ (0, T ),

〈u0s, ρ〉� ≤ 〈us( · , t), ρ〉�. (3-9)

Remark 3.8. If u is a solution of problem (1-1) satisfying (1-9), inequalities (3-8)–(3-9) immediately
follow from (3-7) and (3-13) below. The relationship between entropy solutions and solutions satisfying
(1-9) is addressed in Theorem 3.18.

Proposition 3.7 implies that a solution (satisfying estimate (3-10) below) with trivial absolutely
continuous part is a steady state.

Corollary 3.9. Let u0 ∈M+(�), let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5), and let u be an entropy solution
of problem (1-1) such that, for a.e. t ∈ (0, T ),

‖u( · , t)‖M(�) ≤ ‖u0‖M(�). (3-10)

Then

u0r = 0 a.e. in � =⇒ ur ( · , t)= 0 a.e. in �, us( · , t)= u0 for a.e. t ∈ (0, T ).

Proposition 3.7 and Corollary 3.9 will be proved in Section 4.

Remark 3.10. By the considerations above,

ur ( · , t)= 0 a.e. t ∈ (0, T ) ⇐⇒ us( · , t)= u0 for a.e. t ∈ (0, T ).

In fact, if ur ( · , t)= 0 for a.e. t ∈ (0, T ), by (1-7) we have v = 0 a.e. in Q, hence u( · , t)= us( · , t)= u0

by equality (3-2). Conversely, if us( · , t)= u0 for a.e. t ∈ (0, T ), we have u0 = u0s , thus u0r = 0 a.e. in
� which implies ur ( · , t)= 0 by (3-10).
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Uniqueness. In this subsection we consider solutions u of problem (1-1) such that for a.e. t ∈ (0, T ) the
trace v( · , t) of the chemical potential solves the elliptic problem (1-9). This means that for a.e. t ∈ (0, T ),
v( · , t) ∈ H 1

0 (�), 1[v( · , t)] ∈M(�), and equality (1-10) is satisfied for every ρ ∈ Cc(�). The results
described in this subsection will be proved in Section 5.

Satisfying problem (1-9) guarantees uniqueness of solutions.

Theorem 3.11. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4). Let there exist C > 0 such that∣∣∣∣( ϕψ ′
)′
(u)
∣∣∣∣≤ C for u ≥ 0. (3-11)

Then problem (1-1) has at most one solution satisfying (1-9).

Below we consider in more detail the qualitative properties of solutions of problem (1-1) which satisfy
(1-9). In fact, it turns out that the logarithmic form of ψ makes it possible to give precise estimates of the
time evolution both for ur and for us .

Proposition 3.12. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4), and let u be a solution of problem (1-1)
satisfying (1-9). Then, for a.e. t ∈ (0, T ) and for any ρ ∈ Cc(�), ρ ≥ 0,∫

�

[1+ ur (x, t)]ρ(x) dx ≤ exp
{
ϕ(α)t
ε

}∫
�

[1+ u0r (x)]ρ(x) dx, (3-12)

〈[us]d,2( · , t), ρ〉� = 〈[u0s]d,2, exp
{

1
ε

∫ t

0
v( · , s) ds

}
ρ〉�, (3-13)

〈us( · , t), ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈u0s, ρ〉�. (3-14)

In particular, us( · , t) is absolutely continuous with respect to u0s , for a.e. t ∈ (0, T ).

The last statement above entails a regularity result: no singularity can arise at some positive time.
Going into detail, we have the following remark.

Remark 3.13. By inequality (3-14), for any solution of problem (1-1) satisfying (1-9), we have:

(i) u0 ∈ L1(�), u0 ≥ 0 =⇒ u ∈ L1(Q), u ≥ 0.

(ii) u0s ∈M+c,p(�) =⇒ us( · , t) ∈M+c,p(�) for a.e. t ∈ (0, T ).

(iii) u0 ∈M+d,p(�) =⇒ u( · , t) ∈M+d,p(�) for a.e. t ∈ (0, T ) (p ∈ [1,∞)).

Remark 3.14. By the arbitrariness of ρ in (3-12)–(3-14), for every Borel set E ⊆� and a.e. t ∈ (0, T ),
we have ∫

E
[1+ ur (x, t)] dx ≤ exp

{
ϕ(α)t
ε

}∫
E
[1+ u0r (x)] dx,

us( · , t)(E)≤ exp
{
ϕ(α)t
ε

}
u0s(E).

Also observe that (3-12) and (3-14) imply

〈[1+ u( · , t)], ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈[1+ u0], ρ〉� (3-15)
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for every ρ ∈ Cc(�), ρ ≥ 0, thus

u( · , t)(E)≤ exp
{
ϕ(α)t
ε

}
u0(E)+

(
exp

{
ϕ(α)t
ε

}
− 1

)
|E |

for every Borel set E ⊆�.

Observe that by equalities (2-8) and (2-10)

us( · , t)= [us( · , t)]d,2+ [u( · , t)]c,2

for a.e. t ∈ (0, T ). Then from (3-7), (3-13) it is apparent that to describe the time evolution of us( · , t)
it is important to know whether v( · , t) vanishes in �. In this sense the following maximum principle,
which generalizes in a certain sense [Brezis and Ponce 2003, Theorem 1], is expedient.

Proposition 3.15. Let µ ∈M+(�) be C2-diffuse. Let v ∈ H 1
0 (�)∩ L∞(�) satisfy

−1v+µv ≥ 0 in �,

in the sense that ∫
�

∇v · ∇ρ dx +〈µ, vρ〉� ≥ 0 for any ρ ∈ H 1
0 (�)∩ L∞(�), ρ ≥ 0. (3-16)

Then v ≥ 0 a.e. in �, and v = 0 a.e. in � if v = 0 a.e. on a subset E ⊆� such that C2(E) > 0.

If N = 1, we have the following.

Proposition 3.16. Let N = 1, and let u be a solution of problem (1-1) satisfying (1-18). Then, for a.e.
t ∈ (0, T ), either v( · , t) > 0 in � or v( · , t)≡ 0 in �.

Existence. Set
ψn(u) := ψ(u)+

u
n
= log(1+ u)+ u

n
for u ≥ 0. (3-17)

Observe that ψn → ψ as n →∞ and ψ ′n ≥ 1/n > 0, thus the nonlinearities ψn are nondegenerate.
Consider the regularized problems

unt =1vn in Q,
vn = 0 on ∂�× (0, T ),
un = u0n ≥ 0 in �×{0},

(Pn)

where
vn := ϕ(un)+ ε[ψn(un)]t (3-18)

and {u0n} is a sequence of smooth nonnegative functions with the properties stated in Lemma 6.1 (Section 6
is dedicated to the approximating problem Pn).

Theorem 3.17. Let u0 ∈M+(�) and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Then problem (1-1) has an
entropy solution u, which is a limiting point as n→∞ of the family of solutions of the approximating
problems (Pn). Moreover:

(i) For a.e. t ∈ (0, T ), inequality (3-10) holds.
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(ii) For a.e. t ∈ (0, T ) and for every Borel set E ⊆�, inequalities (3-12) and (3-14) hold. In particular,
us( · , t) is absolutely continuous with respect to u0s .

In Theorem 3.18 below we show that the entropy solution given in Theorem 3.17 satisfies the elliptic
problem (1-9) if N = 1; the same holds if N ≥ 2 for a suitable class of initial data u0 ∈M+(�). In these
cases claim (ii) of Theorem 3.17 follows directly from Proposition 3.12.

Theorem 3.18. Let u0 ∈ M+(�), and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let u be the entropy
solution of problem (1-1) given in Theorem 3.17 and let v be the chemical potential defined in (1-7).

(a) If N = 1, the pair (u, v) satisfies problem (1-18).

(b) Let N ≥ 2, and let u0 satisfy the following assumptions:

(i) [u0]c,2 is concentrated on some compact K0 ⊂� such that C2(K0)= 0;
(ii) [u0]d,2 ∈M+d,p(�) for some p ∈ [1, 2).

Then the pair (u, v) satisfies problem (1-9).

Theorems 3.17 and 3.18 will be proved in Sections 7 and 8, respectively.
For N = 1, from the above theorem we deduce that an entropy solution of problem (1-1) satisfying

problem (1-9) (or equivalently (1-18)) can be obtained as a limiting point as n→∞ of the family of
solutions to the approximating problems (Pn).

If N ≥ 2, the same result holds for a suitable class of initial data u0, subject to technical conditions
involving both [u0]d,2 and [u0]c,2 (see Theorem 3.18-(b)). Assumption (ii) on [u0]d,2 is rather mild, yet
the problem of removing it is open. On the other hand, the existence of an entropy solution of (1-1)
satisfying (1-9) can also be proven without assumption (i). In fact, for every u0 ∈M+(�),

u0 = [u0]d,2+ [u0]c,2,

with [u0]d,2 ∈M+d,p(�) for some p ∈ [1, 2), it suffices to consider the measure u ∈ L∞((0, T );M+(�))
defined by setting

u( · , t) := ũ( · , t)+ [u0]c,2 for a.e. t ∈ (0, T );

here ũ denotes a solution of (1-1) with initial data [u0]d,2 which satisfies the elliptic problem (1-9) (the
existence of such a solution is ensured by Theorem 3.18 above). Clearly, the solution u (whose uniqueness
is ensured by Theorem 3.11, if (3-11) holds) need not be obtained by letting n→∞ in the associated
problems (Pn).

Corollary 3.19. Let u0 ∈M+(�), and let ϕ ∈C∞([0,∞)) satisfy (1-3)–(1-5) and (3-11). If either N = 1,
or N ≥ 2 and [u0]d,2 ∈ M+d,p(�) for some p ∈ [1, 2), there is exactly one entropy solution of problem
(1-1) satisfying problem (1-9).

Remark 3.20. Problem (1-9) is essential to introduce a class of well-posedness for problem (1-1). In fact,
it is easy to exhibit a weak solution to problem (1-1) which does not satisfy (1-9) and which, therefore, is
different from the solution given by Theorem 3.17.

For this purpose, let N = 1 and � = (0, 1). Let û0 ∈ C∞([0, 1]) satisfy 0 < û0 < α in (0, 1),
û0(0) = û0(1) = 0. Let û be the solution of problem (1-1) with Cauchy data u0 = u0r = û0 given by
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Theorem 3.17 . Then û = ûr ∈ C∞([0, 1] × [0,∞)), 0 < û < α in [0, 1] × [0,∞), and ûs ≡ 0. By
Theorem 3.18(i) the pair (û, v̂), where v̂ := ϕ(û)+ ε[ψ(û)]t , satisfies the problem{

−εv̂xx + (1+ û)v̂ = (1+ û)ϕ(û) in [0, 1]× [0,∞),
v̂ = 0 in {0, 1}× [0,∞),

hence 0< v̂ < ϕ(α) in (0, 1)×[0,∞) by the maximum principle.
Let δx0 denote the Dirac mass centered at some point x0 ∈�, and set

u1 := û+ δx0 .

On the other hand, let u2 be the solution of problem (1-1) given by Theorem 3.17, with initial data
u0 := û0+ δx0 . We claim that

u1 is a solution of problem (1-1) different from u2.

It is easily seen that u1 is a solution of (1-1). Clearly, u1r = û, so the corresponding potential
v1 := ϕ(u1r )+ ε[ψ(u1r )]t coincides with v̂. Recalling that ût = v̂xx , we have∫ T

0
〈u( ·,t),ζt(·,t)〉�dt=

∫ T

0

∫ 1

0
ûζt dx dt−ζ(x0,0)=−

∫ T

0

∫ 1

0
v̂xxζ dx dt=−

∫ 1

0
û0(x)ζ(x,0)dx−ζ(x0,0),

namely, equality (3-2) for every ζ ∈ C1([0, T ];Cc(�)) with ζ( · , T )= 0 in �.
On the other hand, by Theorem 3.18(i) the solution u2 and the corresponding chemical potential satisfy

the elliptic problem (1-18), whereas the pair (u1, v1) = (u1, v̂) does not. In fact, if it did, by equality
(3-13) we would have

〈u1s( · , t), ρ〉� = exp
{1
ε

∫ t

0
v̂(x0, s) ds

}
ρ(x0)

(since every Radon measure is C2-diffuse if N = 1), whereas the very definition of u1 implies that

〈u1s( · , t), ρ〉� = 〈δx0, ρ〉� = ρ(x0)

for every t > 0. Since v̂ > 0 in (0, 1)×[0,∞), this gives a contradiction if ρ(x0) 6= 0. The claim follows.

4. Proofs of persistence and monotonicity results

The proof of the following lemma is almost identical to that of [Bertsch et al. ≥ 2013, Lemma 3.1]; thus
we omit it.

Lemma 4.1. Let u be a solution of problem (1-1). Then there exists a null set F∗ ⊆ (0, T ) such that, for
every t ∈ (0, T ) \ F∗ and ρ ∈ Cc(�),

〈u( · , t), ρ〉�−〈u0, ρ〉� =

∫ t

0
〈1v( · , s), ρ〉� ds, (4-1)

lim
n→∞

n
2

∫ t+1/n

t−1/n
|〈us( · , s), ρ〉�−〈us( · , t), ρ〉�| ds = 0. (4-2)
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Proof of Theorem 3.5. Let F∗ ⊆ (0, T ) be the null set given by Lemma 4.1. For every t ∈ (0, T ) \ F∗

consider the map

Ft : Cc(�)→ R, ρ→

∫ t

0
〈1v( · , s), ρ〉� ds.

By (4-1) we have Ft ∈M(�). Moreover, Ft ∈ H−1(�) by Remark 3.3; thus Ft ∈Md,2(�). Then (4-1)
becomes

〈[u( · , t)]c,2, ρ〉�−〈[u0]c,2, ρ〉� = 〈Ft , ρ〉�−〈[u( · , t)]d,2− [u0]d,2, ρ〉�. (4-3)

By equality (4-3) the difference [u( · , t)]c,2− [u0]c,2 is both C2-diffuse and C2-concentrated; thus

[u( · , t)]c,2− [u0]c,2 = 0. �

Proof of Proposition 3.7. Let {gn} ⊆ Lip([0, ϕ(α)]) be defined by

gn(s) :=

ns if 0≤ s ≤ 1
n
,

1 if 1
n
< s ≤ ϕ(α),

and let Gn be the function (3-5) with g = gn . By standard approximation arguments, inequality (3-6) is
still valid with G = Gn . Therefore,∫∫

Q
{Gn(ur )ζt − gn(v)∇v∇ζ } dx dt ≥−

∫
�

Gn(u0r (x))ζ(x, 0) dx (4-4)

for ζ ∈ C1([0, T ];C1
c (�)), ζ ≥ 0, ζ( · , T )= 0 in �.

Since 0 ≤ Gn(ur ) ≤ ur a.e. in Q, 0 ≤ Gn(u0r ) ≤ u0r a.e. in �, and gn(s)→ 1 for any s ∈ (0, ϕ(α)],
as n→∞, by the dominated convergence theorem, we have

Gn(ur )→ ur in L1(Q), Gn(u0r )→ u0r in L1(�). (4-5)

Moreover,

gn(v)∇v =∇

(∫ v

0
gn(s) ds

)
a.e. in Q, (4-6)

and
‖gn(v)|∇v|‖L2(Q) ≤ ‖|∇v|‖L2(Q).

Therefore the sequence {gn(v)∇v} is weakly relatively compact in [L2(Q)]N . By (4-6), since∫ v(x,t)

0
gn(s) ds→ v(x, t) as n→∞ for a.e. (x, t) ∈ Q,

we obtain
gn(v)∇v ⇀ ∇v in [L2(Q)]N . (4-7)

By (4-5) and (4-7), letting n→∞ in inequality (4-4), we have∫∫
�

{urζt −∇v∇ζ } dx dt ≥−
∫
�

u0r (x)ζ(x, 0) dx, (4-8)
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whence, by (3-2),

−

∫ T

0
〈us( · , t), ζt( · , t)〉� dt ≥ 〈u0s, ζ( · , 0)〉� (4-9)

for any ζ as above.
To prove inequality (3-8), let t1, t2∈ (0, T )\F∗, where F∗⊆ (0, T ) is the null set defined by Lemma 4.1,

and set

h1(t) :=



0 if t < t1−
1
n
,

n
(

t − t1+
1
n

)
if t1−

1
n
≤ t ≤ t1,

1 if t1 < t < t2,

−n
(

t − t2−
1
n

)
if t2 ≤ t ≤ t2+

1
n
,

0 if t ≥ t2+
1
n
.

Choosing ζ(x, t)= ρ(x)h1(t) in (4-9), with any ρ ∈ C1
c (�), ρ ≥ 0, we obtain

n
∫ t2+1/n

t2
〈us( · , t), ρ〉� dt ≥ n

∫ t1

t1−1/n
〈us( · , t), ρ〉� dt.

Letting n→∞ in the above inequality and using (4-2), we obtain (3-8).
The proof of inequality (3-9) is similar. For any τ ∈ (0, T ) \ F∗ define

h2(t) :=


1 if t ≤ τ,

−n
(

t − τ − 1
n

)
if τ < t < τ + 1

n
,

0 if t ≥ τ + 1
n
.

Substitution of ζ(x, t)= ρ(x)h2(t) in (4-9) gives

n
∫ τ+1/n

τ

〈us( · , t), ρ〉� dt ≥ 〈u0s, ρ〉�,

whence we obtain (3-9) as n→∞. This completes the proof. �

Proof of Corollary 3.9. Since by assumption u0 = u0s , by inequality (3-10) we have

‖us( · , t)‖M(�) ≤ ‖u( · , t)‖M(�) ≤ ‖u0s‖M(�)

for a.e. t ∈ (0, T ). On the other hand, by inequality (3-9)

‖u0s‖M(�) = sup
ρ∈Cc(�),|ρ|≤1

〈u0s, ρ〉� ≤ sup
ρ∈Cc(�),|ρ|≤1

〈us( · , t), ρ〉� = ‖us( · , t)‖M(�).

The above inequalities imply

‖us( · , t)‖M(�) = ‖u( · , t)‖M(�) = ‖u0s‖M(�) = ‖u0‖M(�), (4-10)

whence ‖ur ( · , t)‖L1(�) = 0 for a.e. t ∈ (0, T ).
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It remains to prove that us( · , t)= u0 for a.e. t ∈ (0, T ). By inequality (3-9) and the arbitrariness of ρ,
for every Borel set E ⊆� and for a.e. t ∈ (0, T ),

us( · , t)(E)≥ u0s(E)= u0(E). (4-11)

So, arguing by contradiction, we suppose that there exists a Borel set Ẽ ⊆� such that

us( · , t)(Ẽ) > u0(Ẽ). (4-12)

By (4-10)–(4-12) and the identities

‖u0‖M(�) = u0(�), ‖us( · , t)‖M(�) = us( · , t)(�),

we obtain

u0(� \ Ẽ)≤ us( · , t)(� \ Ẽ)= us( · , t)(�)− us( · , t)(Ẽ) < u0(�)− u0(Ẽ)= u0(� \ Ẽ),

a contradiction. Hence the conclusion follows. �

5. Proof of uniqueness

Proof of Theorem 3.11. Let u1, u2 be two solutions of problem (1-1) satisfying (1-9), and let v1, v2 be the
corresponding potentials defined by (1-7). By Theorem 3.5 it is sufficient to prove that

[u1( · , t)]d,2 = [u2( · , t)]d,2 for a.e. t ∈ (0, T ).

By (3-2), for each ρ ∈ Cc(�) and for a.e. t ∈ (0, T ),

〈u1( ·,t)−u2(·,t),ρ〉� =
∫ t

0
〈1[v1(·,s)−v(·,s)],ρ〉�ds ≤ ‖ρ‖C(�)

∫ t

0
‖1[v1(·,s)−v2(·,s)]‖M(�)ds,

thus

‖u1(·,t)−u2(·,t)‖M(�)= sup
ρ∈Cc(�),|ρ|≤1

〈u1(·,t)−u2(·,t),ρ〉�≤
∫ t

0
‖1[v1(·,s)−v2(·,s)]‖M(�)ds. (5-1)

Let
w(x, t) := v1(x, t)− v2(x, t) ((x, t) ∈ Q).

By (1-9), w ∈ L∞((0, T ); H 1
0 (�)∩L∞(�)), 1w ∈ L∞((0, T );M(�)), and w solves the elliptic equation

−ε1w( · , t)+ [u1( · , t)]d,2w( · , t)+w( · , t)

=−([u1( · , t)]d,2− [u2( · , t)]d,2)v2( · , t)+
[
ϕ(u1r )

ψ ′(u1r )
−
ϕ(u2r )

ψ ′(u2r )

]
( · , t) in M(�) (5-2)

for a.e. t ∈ (0, T ).
Let { f j } ⊆ C∞(R) satisfy{

f j (0)= 0, ‖ f j‖∞ ≤ 1, f ′j ≥ 0 in R,

| f ′j (s)s| ≤ 1 for every s ∈ R, f j (s)→
s
|s|

for every s 6= 0.
(5-3)
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Since f j (w) ∈ L∞((0, T ); H 1
0 (�)∩ L∞(�)) for every j ∈N, it makes sense to use [ f j (w)]( · , t) as test

function for equality (5-2). Using inequalities (3-1) and (3-11), this gives

ε

∫
�

f ′j (w)(x, t)|∇w|2(x, t) dx +〈[u1( · , t)]d,2, [ f j (w)w]( · , t)〉�+
∫
�

[ f j (w)w](x, t) dx

≤ ϕ(α)‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)+

∫
�

∣∣∣∣ ϕ(u1r )

ψ ′(u1r )
−
ϕ(u2r )

ψ ′(u2r )

∣∣∣∣(x, t) f j (w)(x, t) dx

≤ ϕ(α)‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)+C‖u1r ( · , t)− u2r ( · , t)‖L1(�)

≤ L‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�) (5-4)

for a.e. t ∈ (0, T ) with some constant L > 0. By the properties of { f j } (see (5-3)) we have

‖|∇[ f j (w)w]|‖L2(Q) ≤ 2‖|∇w|‖L2(Q) (5-5)

for every j ∈ N; hence the sequence {∇[ f j (w)w]} is weakly relatively compact in [L2(Q)]N . Since

[ f j (w)w]( · , t))→ |w( · , t)| a.e. in �

and ‖w‖L∞(Q) ≤ ϕ(α) by inequality (3-1), by the dominated convergence theorem we have

[ f j (w)w]( · , t))→ |w( · , t)| in L1(�), [ f j (w)w]( · , t))
∗

⇀ |w( · , t)| in L∞(�).

Moreover, by (5-5)
[ f j (w)w]( · , t)) ⇀ |w( · , t)| in H 1

0 (�).

Then, letting n→∞ in (5-4) and recalling that f ′j ≥ 0, we get

〈[u1( · , t)]d,2, |w( · , t)|〉�+
∫
�

|w(x, t)| dx ≤ L‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�).

On the other hand, since u1( · , t) is a nonnegative Radon measure, for any ρ ∈ Cc(�) we have

〈[u1( · , t)]d,2, |w( · , t)|ρ〉�+
∫
�

|w(x, t)|ρ(x)dx ≤ ‖ρ‖C(�)

{
〈[u1( · , t)]d,2, |w( · , t)|〉�+

∫
�

|w(x, t)|dx
}

≤ L‖ρ‖C(�)‖[u1( · , t)]d,2−[u2( · , t)]d,2‖M(�).

Then from (5-2), arguing as in the proof of (5-4), we obtain plainly

ε〈1w( · , t), ρ〉� ≤ L̃‖ρ‖C(�)‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)

for some constant L̃ > 0 and any ρ ∈ Cc(�), whence

ε‖1[v1( · , t)− v2( · , t)]‖M(�) = ε‖1w( · , t)‖M(�) ≤ L̃‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)

for a.e. t ∈ (0, T ). Combined with equality (5-1) this yields

ε‖u1( · , t)− u2( · , t)‖M(�) ≤ L̃
∫ t

0
‖u1( · , s)− u2( · , s)‖M(�) ds,
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and since u1( · , 0)= u2( · , 0)= u0, it follows from Gronwall’s inequality that

‖u1( · , t)− u2( · , t)‖M(�) = 0 for a.e. t ∈ (0, T ). �

Proof of Proposition 3.12. (i) Since [ψ(ur )]t ∈ L∞(Q) (see Remark 3.2), the map t→ ψ(ur )(x, t) is
Lipschitz continuous, and hence differentiable a.e. in (0, T ) for a.e. x ∈�. Differentiating the identity
ur ( · , t) = ψ−1

[ψ(ur )]( · , t), we obtain that the derivative ur t exists a.e. in (0, T ) and the equality
[ψ(ur )]t = ψ

′(ur )ur t holds, whence, by (1-7),

εur t = (1+ ur )[v−ϕ(ur )] ∈ L1(Q). (5-6)

Integrating the above equality in (0, t), we obtain

εur (x, t)− εu0r (x)=
∫ t

0
{(1+ ur )[v−ϕ(ur )]}(x, s) ds (5-7)

for a.e. x ∈�, whence, by inequality (3-1),

εur (x, t)− εu0r (x)≤ ϕ(α)
∫ t

0
(1+ ur )(x, s) ds.

Then by Gronwall’s inequality

1+ ur (x, t)≤ [1+ u0r (x)] exp
{
ϕ(α)t
ε

}
(t ∈ (0, T ))

for a.e. x ∈�, which implies (3-12).

(ii) By (4-1) and (1-10) we have

ε

∫
�

[ur (x, t)− u0r (x)]ρ(x) dx + ε〈[us( · , t)− u0s], ρ〉�

=

∫ t

0

∫
�

ρ(x){(1+ ur )[v−ϕ(ur )]}(x, s) dx ds+
∫ t

0
〈[us( · , s)]d,2, v( · , s)ρ〉� ds

(5-8)

for any ρ ∈ Cc(�). Then by (5-7)–(5-8) we get

ε〈[us( · , t)− u0s], ρ〉� =

∫ t

0
〈[us( · , s)]d,2, v( · , s)ρ〉� ds.

It follows that the map

g : (0, T )→M+d,2(�), g(t) := [us( · , t)]d,2 (t ∈ (0, T ))

satisfies the problem {
ε

d
dt
〈 f (t), ρ〉� = 〈 f (t), v( · , t)ρ〉� in (0, T ),

〈 f (0), ρ〉� = 〈[u0s]d,2, ρ〉�

(5-9)

for any ρ ∈ Cc(�).

Claim. The unique solution of problem (5-9) is

f : (0, T )→M+d,2(�), f (t) := [u0s]d,2 exp
{

1
ε

∫ t

0
v( · , s) ds

}
(t ∈ (0, T )).
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This implies that

[us( · , t)]d,2 = [u0s]d,2 exp
{

1
ε

∫ t

0
v( · , s) ds

}
in M+d,2(�) for any t ∈ (0, T ), (5-10)

whence equality (3-13) follows. Then inequality (3-14) follows by (3-7) and (3-13), which completes the
proof.

To prove the claim, observe preliminarily that

exp
{

1
ε

∫ t

0
v( · , s) ds

}
∈ H 1(�)∩ L∞(�),

thus

〈 f (t), ρ〉� :=
〈
[u0s]d,2, exp

{
1
ε

∫ t

0
v( · , s) ds

}
ρ

〉
�

is well defined for any ρ ∈ Cc(�). Then for any t0, t0+ h ∈ (0, T ) we have〈
f (t0+ h)− f (t0)−

h
ε
[u0s]d,2 exp

{
1
ε

∫ t0

0
v( · , s) ds

}
v( · , t0), ρ

〉
�

=
|h|2

ε2

〈
[u0s]d,2, exp

{
1
ε

∫ t0+θh

0
v( · , s) ds

}
v2( · , t0), ρ

〉
�

for some θ ∈ (0, 1) and any ρ ∈ Cc(�). Hence there exists C > 0, only depending on the norm of v in
L∞((0, T ); H 1

0 (�)∩ L∞(�)), such that∥∥∥∥ f (t0+ h)− f (t0)−
h
ε
[u0s]d,2 exp

{
1
ε

∫ t0

0
v( · , s) ds

}
v( · , t0)

∥∥∥∥
M(�)

≤
C
ε2 ‖u0‖M(�)|h|2.

This proves that f is differentiable and satisfies the first equation of problem (5-9). Since f (0)= [u0s]d,2,
f is a solution of the problem.

Let us show that no other solutions exist, so that equality (5-10) holds. In fact, if f1 and f2 both solve
problem (5-9), plainly we obtain

‖ f1(t)− f2(t)‖M(�) ≤
ϕ(α)

ε

∫ t

0
‖ f1(s)− f2(s)‖M(�) ds for any t ∈ (0, T ),

whence f1= f2 in (0, T ) by Gronwall’s inequality. This proves the claim, and Proposition 3.12 follows. �

Proof of Proposition 3.15. Writing v = v+− v− and choosing ρ = v− in (3-16), we get

−

∫
�

|∇v−|
2 dx −〈µ, v2

−
〉� ≥ 0,

whence v = v+ ≥ 0 a.e. in �. Therefore the function 1/(v+ δ) belongs to H 1(�)∩ L∞(�) and we can
choose in (3-16) ρ = χ2/(v+ δ) for any χ ∈ C∞c (�) and δ > 0, thus obtaining

−

∫
�

∇v · ∇

(
χ2

v+ δ

)
dx ≤

〈
µ,

v

v+δ
χ2
〉
�
. (5-11)
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Integrating by parts, we plainly get∫
�

∇v · ∇

(
χ2

v+ δ

)
dx =−

∫
�

|∇v|2

(v+ δ)2
χ2 dx + 2

∫
�

χ∇χ · ∇v

v+ δ
dx

≤−
1
2

∫
�

|∇v|2

(v+ δ)2
χ2 dx + 2

∫
�

|∇χ |2 dx .

(5-12)

Since
∇v

v+δ
=∇

[
log
(

1+ v
δ

)]
,

by (5-11)–(5-12) we have

1
2

∫
�

∣∣∣∇[log
(

1+ v
δ

)]∣∣∣2χ2 dx ≤ 〈µ, χ2
〉�+ 2

∫
�

|∇χ |2 dx .

Then, arguing as in the proof of [Brezis and Ponce 2003, Theorem 1], the conclusion follows. �

Proof of Proposition 3.16. Since N = 1, for a.e. t ∈ (0, T ) v( · , t) ∈ C(�) and every singleton E = {x0}

(x0 ∈�) has positive C2-capacity. The conclusion follows by Proposition 3.15. �

6. The approximating problems

Lemma 6.1. Let u0 ∈M+(�),

u0 = u0ac+ [u0s]d,2+ [u0]c,2 = u0ac+ u0s,

and let u0r denote the density of the absolutely continuous part u0ac. Then there exist sequences {u0rn},
{([u0s]d,2)n} {([u0]c,2)n} ⊆ C∞c (�) of nonnegative functions such that

‖u0rn‖L1(�) ≤ ‖u0r‖L1(�); (6-1)

‖([u0s]d,2)n‖L1(�) ≤ ‖[u0s]d,2‖M(�), ‖([u0]c,2)n‖L1(�) ≤ ‖[u0]c,2‖M(�); (6-2)

u0rn→ u0r in L1(�); (6-3)

([u0s]d,2)n
∗

⇀ [u0s]d,2, ([u0]c,2)n
∗

⇀ [u0]c,2, u0sn
∗

⇀ u0s in M(�), (6-4)

u0n→ u0r a.e. in �, u0n
∗

⇀ u0 in M(�), (6-5)

where u0sn := ([u0s]d,2)n + ([u0]c,2)n , u0n := u0rn + u0sn . In addition, there exists C > 0 such that

‖u0n‖L∞(�) ≤ C
√

n for all n. (6-6)

Proof. Define ũ0 ∈M+(RN ) by setting ũ0 := ũ0r + ũ0s , where

ũ0r (x) :=
{

u0r (x) if x ∈�,
0 otherwise

and

[ũ0s]d,2(E) := [u0s]d,2(�∩ E), [ũ0]c,2(E) := [u0]c,2(�∩ E), ũ0s(E) := [ũ0s]d,2(E)+ [ũ0]c,2(E)
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for every Borel set E ⊆ RN . Observe that by definition

ũ0 = ũ0 �, ũ0(E)= u0(E) for every Borel set E ⊆�.

Hence, if ρ ∈ Cc(�) and ρ̃ ∈ Cc(R
N ) denotes its trivial extension to RN , we get

〈ũ0, ρ̃〉RN = 〈u0, ρ〉�.

Consider the sequence {ũ0n} ⊂ C∞c (R
N ) where

ũ0n := ũ0 ∗ jn,

{ jn} ⊆ C∞c (R
N ) being a regularizing sequence. We also define

ũ0rn := ũ0r ∗ jn, ([ũ0s]d,2)n := ([ũ0s]d,2) ∗ jn, ([ũ0]c,2)n := ([ũ0]c,2) ∗ jn, ũ0sn := ũ0s ∗ jn

with jn as above. To be specific, we choose

jn(x)=
nN∫

RN j (x) dx
ζ(nx) (x ∈ RN ),

where j ∈ C∞c (R
N ), j (x)= j (|x |) is a standard mollifier.

Next, choose any sequence {ηn} ⊆C∞c (R
N ) such that ηn ∈C∞c (�n+1), 0≤ ηn ≤ 1, ηn = 1 in �n; here

�n is open, �n ⊂ �n+1 ⊂� for every n ∈ N and
⋃
∞

n=1�n =�. Finally, set

u0rn := ũ0rnηn, ([u0s]d,2)n := ([ũ0s]d,2)nηn, ([u0]c,2)n := ([ũ0]c,2)nηn, u0sn := ũ0snηn.

It is easily checked that the sequences {u0rn}, {([u0s]d,2)n} {([u0]c,2)n}, {u0sn}, and {u0n} have the asserted
properties. �

Definition 6.2. A nonnegative function un ∈ C1([0, T ];C(�)) is called a solution of problem (Pn) if the
function vn defined by (3-17) belongs to C([0, T ];C0(�)∩ H 2,p(�)) for all p ∈ [1,∞), 1vn ∈ C(Q),
and the pair (un, vn) satisfies (Pn) in the strong sense.

Remark 6.3. If u is a solution of problem (Pn), then v ∈ C(Q) and vxi ∈ C(Q) for i ∈ {1, . . . , N }.
Moreover, v admits second order weak derivatives vxi x j ∈ L p(Q) for all p ∈ [1,∞), and for every
t ∈ [0, T ]

vxi x j ( · , t)= [v( · , t)]xi x j a.e. in �.

We omit the proof of the following result, as it is almost identical to those of [Bertsch et al. ≥ 2013,
Theorems 4.1–4.2].

Theorem 6.4. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4). Then, for any n ∈ N, problem (Pn) has a unique
solution un ≥ 0, and

un = [ψn(un)]t = 0 on ∂�×[0, T ].
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The function vn( · , t) defined by (3-18) satisfies, for a.e. t ∈ (0, T ),−− ε1[vn( · , t)] +
vn( · , t)

ψ ′n(un( · , t))
=
ϕ(un( · , t))
ψ ′n(un( · , t))

in �,

vn( · , t)= 0 on ∂�,
(6-7)

0≤ vn( · , t)≤ ϕ(α) in �, (6-8)

∂vn

∂ν
( · , t)≤ 0 on ∂�, (6-9)

where ∂/(∂ν) denotes the outer derivative at ∂�.
In addition, vn ∈ C1(QT ), vnt ∈ C([0, T ];C0(�)∩ H 2,p(�)) for p ∈ [1,∞) and, for a.e t ∈ (0, T ),

vnt( · , t) satisfies−ε1[vnt( · , t)] +
vnt( · , t)

ψ ′n(un( · , t))
=

[
ϕ′(un)unt + εψ

′′
n (un)u2

nt

ψ ′n(un)

]
( · , t) in �,

vnt( · , t)= 0 on ∂�.

The following result is analogous to [Bertsch et al. ≥ 2013, Proposition 4.3]. The proof is omitted.

Proposition 6.5. Let un be the solution of problem (Pn), let g ∈ C1([0, ϕ(α)]) with g′ ≥ 0, and let G be
defined by (3-5). Then, for any ζ ∈ C1([0, T ];C1

c (�)), ζ ≥ 0 and for any 0≤ t1 ≤ t2 ≤ T ,∫
�

G(un(x, t2))ζ(x, t2) dx −
∫
�

G(un(x, t1))ζ(x, t1) dx

≤

∫ t2

t1

∫
�

{G(un)ζt − g(vn)∇vn∇ζ − g′(vn)|∇vn|
2ζ } dx dt. (6-10)

Next, the following a priori estimates hold.

Proposition 6.6. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let un be the solution of problem (Pn). Then

‖un‖L∞((0,T );L1(�)) ≤ ‖u0‖M(�), (6-11)

‖[ψn(un)]t‖L∞(Q) ≤
ϕ(α)

ε
. (6-12)

Moreover, there exists C > 0 such that, for any n ∈ N,

‖vn‖L∞((0,T );H1
0 (�))
≤ C, (6-13)

‖vnt‖L∞((0,T );L1(�)) ≤ C, (6-14)

‖1vn‖L∞((0,T );L1(�)) ≤ C. (6-15)

For the proofs of inequalities (6-11)–(6-14) we refer the reader to those of the analogous statements in
[Bertsch et al. ≥ 2013, Proposition 5.1]. Let us only mention that in the proof of (6-13)–(6-14) we use
the inequalities

ϕ(un)vn

ψ ′n(un)
≤ [ϕ(α)]2(1+ un)
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and

|ψ ′′n (u)|
[ψ ′(u)]3

≤ (1+ u) for any u ≥ 0,

respectively.
Concerning inequality (6-15), observe that by, (6-7)–(6-8), we have

ε

∫
�

|1vn| dx ≤
∫
�

|vn −ϕ(un)|

ψ ′n(un)
dx ≤ ϕ(α)

∫
�

[1+ un] dx

for all t ∈ (0, T ). Then (6-15) follows from (6-11).
Finally, let us show that, for every t ∈ (0, T ), the sequence {1 + un( · , t)} satisfies an inequality

analogous to (3-12).

Proposition 6.7. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4). Let un be the solution of problem (Pn). Then,
for any t ∈ (0, T ) and ρ ∈ Cc(�), ρ ≥ 0,∫

�

[1+ un(x, t)]ρ(x) dx ≤ exp
{
ϕ(α)t
ε

}∫
�

[1+ u0n(x)]ρ(x) dx . (6-16)

Proof. From (3-18) we obtain

εunt =
vn −ϕ(un)

ψ ′n(un)
.

Integrating the above equality in (0, t) and using inequality (6-8), we obtain, for every x ∈�,

ε[1+ un(x, t)] − ε[1+ u0n(x)] ≤ ϕ(α)
∫ t

0
[1+ un(x, s)] ds.

Then, by Gronwall’s inequality,

1+ un(x, t)≤ [1+ u0n(x)] exp
{
ϕ(α)t
ε

}
(t ∈ (0, T )) (6-17)

for every x ∈�, which implies (6-16). �

7. Proof of existence results

To prove Theorem 3.17 we need some preliminary results concerning convergence of solutions of the
sequences {un}, {vn}. From the estimates in Proposition 6.6 we obtain the following.

Proposition 7.1. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let un be the solution of problem (Pn) and
let vn be defined by (3-18). Then there exist u ∈ L∞((0, T );M+(�)), v ∈ L∞((0, T ); H 1

0 (�))∩ BV (Q)
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with 1v ∈ L∞((0, T );M(�)), and subsequences {unk }, {vnk } such that

unk ( · , t)
∗

⇀ u( · , t) in M(�), (7-1)

vnk → v a.e. in Q, (7-2)

1vnk

∗

⇀1v in M(Q), (7-3)

vnk ⇀v in L p((0, T ); H 1
0 (�)) (p ∈ [1,∞)), (7-4)

vn( · , t) ⇀ v( · , t) in H 1
0 (�) (7-5)

for a.e. t ∈ (0, T ). In addition,
‖u‖L∞((0,T );M(�)) ≤ ‖u0‖M(�) (7-6)

and v satisfies inequality (3-1).

Proof. The convergence in (7-1) and inequality (7-6) are proven as in [Bertsch et al. ≥ 2013, Proposi-
tion 5.3]. The convergence in (7-2)–(7-4) and inequality (3-1) follow from (6-13)–(6-15) and (6-8).

To prove the convergence in (7-5), observe that, by (7-2),

vnk ( · , t)→ v( · , t) a.e. in �

for a.e. t ∈ (0, T ). Hence, by inequality (6-8) and the dominated convergence theorem,

vnk ( · , t)→ v( · , t) in L1(�),

On the other hand, by inequality (6-13), the sequence {vn( · , t)} is contained in a weakly compact subset
of H 1

0 (�) for a.e. t ∈ (0, T ); hence the conclusion follows. �

The sequence {unk } converges a.e. in Q to the density ur of uac.

Proposition 7.2. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let {unk }, u, and v be as in Proposition 7.1,
and let ur ∈ L1(Q) be the density of the absolutely continuous part of u. Then

unk → ur a.e. in Q, (7-7)

[ψ(ur )]t ∈ L∞(Q), ur t ∈ L1(Q), (7-8)

[ψnk (unk )]t
∗

⇀ [ψ(ur )]t in L∞(Q). (7-9)

Moreover,

(i) we have

v = ϕ(ur )+ ε[ψ(ur )]t a.e. in Q, (7-10)

‖[ψ(ur )]t‖L∞(Q) ≤
ϕ(α)

ε
; (7-11)

(ii) ur ( · , t), us( · , t), u( · , t) satisfy inequalities (3-12), (3-14), (3-15), respectively, for a.e. t ∈ (0, T )
and for any ρ ∈ Cc(�), ρ ≥ 0.
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Proof. Arguing as in [Bertsch et al. ≥ 2013, Proposition 5.4], it can be proven that unk → z a.e. in Q for
some z ∈ L1(Q), z ≥ 0. Let us show that

z = ur a.e. in Q. (7-12)

For a.e. t ∈ (0, T ), we can assume without loss of generality that

unk ( · , t)→ z( · , t) a.e. in � (7-13)

and the convergence in (7-1) holds. As in the proof of [Bertsch et al. ≥ 2013, Proposition 5.5], there exist a
subsequence {unk j

( · , t)} (possibly depending on t) and a sequence of subsets {A j }, with A j+1 ⊆ A j ⊆�

for any j and |A j | → 0, such that the family {unk j
( · , t)χ�\A j } is uniformly integrable in � and

unk j
( · , t)χ�\A j ⇀ z( · , t) in L1(�).

For example, see [Valadier 1994]. Then, by (7-1), we have

unk j
( · , t)χA j

∗

⇀ u( · , t)− z( · , t)=: µ( · , t) in M(�). (7-14)

Since unk j
( · , t)χA j ≥ 0 in � for every j , the measure µ( · , t) is nonnegative.

By (6-16), for every ρ ∈ Cc(�), ρ ≥ 0, we get∫
A j

unk j
(x, t)ρ(x) dx ≤

∫
A j

[1+ unk j
(x, t)]ρ(x) dx ≤ exp

{
ϕ(α)t
ε

}∫
A j

[1+ u0nk j
(x)]ρ(x) dx

≤ exp
{
ϕ(α)t
ε

}{∫
A j

[1+ u0rnk j
(x)]ρ(x) dx +

∫
�

u0snk j
(x)ρ(x) dx

}
. (7-15)

Since u0rnk j
→ u0r in L1(�), |A j | → 0, and u0snk j

∗

⇀ u0s in M(�) as j→∞,

lim
j→∞

{∫
A j

[1+ u0rnk j
(x)]ρ(x) dx +

∫
�

u0snk j
(x)ρ(x) dx

}
= 〈u0s, ρ〉�.

Then, letting j→∞ in (7-15) and using (7-14), we have

〈µ( · , t), ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈u0s, ρ〉� (7-16)

for every ρ, as above.
Since µ( · , t) is nonnegative, by (7-16) it is absolutely continuous with respect to u0s , thus singular with

respect to the Lebesgue measure over �. Therefore, since z( · , t)∈ L1(�) and u( · , t)= z( · , t)+µ( · , t)
by definition, the uniqueness of the Lebesgue decomposition of u( · , t) ensures that

z( · , t)= [u( · , t)]r = [ur ( · , t)], µ( · , t)= [u( · , t)]s = [us( · , t)], (7-17)

(see (2-4)–(2-5)). This proves (7-12), whence (7-7) follows. By the same token, inequality (7-16) and the
second equality in (7-17) show that us( · , t) satisfies inequality (3-14).
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Let us prove the remaining claims. By inequality (6-11) and the convergence in (7-7), we have

ψnk (unk )→ ψ(ur ) in L1(Q). (7-18)

Then [ψ(ur )]t ∈ L∞(Q), by (7-18) and inequality (6-12). The convergence in (7-9) follows. Inequality
(7-11) follows by (6-12), (7-9), and the lower semicontinuity of the norm. By the continuity of ϕ, from
(7-7) and the results in Proposition 7.1, we obtain equality (7-10). On the other hand, the fact that
ur t ∈ L1(Q) follows as in the proof of Proposition 3.12.

Finally, arguing as in the proof of Proposition 3.12, from equality (5-6), we obtain that ur ( · , t) satisfies
inequality (3-12). As a consequence of (3-12) and (3-14), u( · , t) satisfies (3-15). This completes the
proof. �

The proof of the following result is the same as that of [Bertsch et al. ≥ 2013, Proposition 5.6], hence
we omit it.

Proposition 7.3. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). The pair (u, v) defined by Proposition 7.1
satisfies the entropy inequality (3-6).

Proof of Theorem 3.17. Let u and v be defined by Proposition 7.1. Then u ∈ L∞((0, T );M+(�)),
v ∈ L∞((0, T ); H 1

0 (�)), and 1v ∈ L∞((0, T );M(�)). Moreover, [ψ(ur )]t ∈ L∞(Q) by (7-11), equality
(7-10) holds, and inequality (3-1) is satisfied.

By (6-5), (6-11), (7-1), (7-3), and the dominated convergence theorem, letting n→∞ in the weak
formulation of (Pn) shows that the limiting measure u satisfies equality (3-2) for any ζ ∈C1([0, T ];Cc(�)).
The other claims follow by Propositions 7.1–7.2. This completes the proof. �

8. Proof of Theorem 3.18

Let us first prove Theorem 3.18 when N = 1. This is the content of the following proposition.

Proposition 8.1. Let N = 1, u0 ∈ M+(�), and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let u be the
entropy solution of problem (1-1) given in Theorem 3.17 and v the chemical potential defined in (1-7).
Then the pair (u, v) satisfies problem (1-18).

Proof. Fix any t ∈ (0, T ) such that

unk ( · , t)
∗

⇀ u( · , t) in M(�),

unk ( · , t)→ ur ( · , t) a.e. in �,

vnk ( · , t) ⇀ v( · , t) in H 1
0 (�)

(see (7-1), (7-5), and (7-12)–(7-13)). By inequality (6-13) we can also assume

vnk ( · , t)→ v( · , t) in C(�).
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Given ρ ∈ C1
c (�), let us study the limit as k →∞ of the weak formulation of (6-7) with n = nk ,

namely,

ε

∫
�

vnk x(x, t)ρx(x) dx +
∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx =

∫
�

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
ρ(x) dx . (8-1)

(i) Since ϕ ∈ Lq([α,∞)) (see (1-4)) and

{(1+ u)[ϕ(u)]q}′ = [ϕ(u)]q + q[(1+ u)[ϕ(u)]q−1
]ϕ′(u)≤ [ϕ(u)]q for any u ≥ α,

we have

(1+ u)[ϕ(u)]q ≤ (1+α)[ϕ(α)]q +
∫ u

α

[ϕ(u)]q ds = (1+α)[ϕ(α)]q +‖ϕ‖qLq (R+)
for any u ≥ α,

whence we get

[ϕ(u)] ≤ C(1+ u)−1/q for any u ≥ 0,

for some constant C > 0. It follows that

ϕ(unk )

ψ ′nk
(unk )

≤ (1+ unk )ϕ(unk )≤ C(1+ unk )
1−1/q a.e. in Q. (8-2)

Then, for every Borel set E ⊆� and for a.e. t ∈ (0, T ),∫
E

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
dx ≤ C

∫
E
[1+ unk (x, t)]1−1/q dx ≤ |E |1/q

(∫
E
[1+ unk (x, t)] dx

)1−1/q

. (8-3)

Inequalities (6-11) and (8-3) imply that the sequence{
ϕ(unk ( · , t))
ψ ′nk

(unk ( · , t))

}
is bounded in L1(�) and uniformly integrable in �. As a consequence, there exists a subsequence, for
simplicity, denoted again by {

ϕ(unk ( · , t))
ψ ′nk

(unk ( · , t))

}
,

such that
ϕ(unk ( · , t))
ψ ′nk

(unk ( · , t))
⇀

ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in L1(�). (8-4)

(ii) By inequalities (6-6) and (6-17),

1+ unk ≤ exp
{
ϕ(α)T
ε

}
(1+
√

nk) a.e. in Q. (8-5)

Observe that ∣∣∣∣ 1
ψ ′nk

(u)
−

1
ψ ′(u)

∣∣∣∣= 1
nk

( 1+u
1/(1+u)+1/nk

)
≤
(1+u)2

nk
. (8-6)
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Then, by (6-11) and (8-5)–(8-6),∥∥∥ 1
ψ ′nk

(unk (·,t))
−

1
ψ ′(unk (·,t))

∥∥∥
L1(�)
≤

2
√

nk
exp

{
ϕ(α)T
ε

}∫
�

[1+unk (x,t)]dx

≤
2
√

nk
exp

{
ϕ(α)T
ε

}
[|�|+‖u0‖M(�)] → 0 as k→∞. (8-7)

Since vnk ( · , t)→ v( · , t) in C(�) and

1
ψ ′(unk ( · , t))

= 1+ unk ( · , t))
∗

⇀ 1+ u( · , t) in M(�),

we have ∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx→ 〈[1+ u( · , t)], v( · , t)ρ〉�. (8-8)

Now let k→∞ in equality (8-1). By (7-5), (8-4), and (8-8), we obtain

ε

∫
�

vx(x, t)ρx(x) dx +〈[1+ u( · , t)], ρv( · , t)〉� =
∫
�

ϕ(ur (x, t))
ψ ′(ur (x, t))

ρ(x) dx .

Since by Definition 3.1, vxx ∈ L∞((0, T );M(�)), this implies

−ε〈vxx( · , t), ρ〉�+〈[1+ u( · , t)], ρv( · , t)〉� =
∫
�

ϕ(ur (x, t))
ψ ′(ur (x, t))

ρ(x) dx

for a.e. t ∈ (0, T ) and any ρ ∈ Cc(�). Hence the result follows. �

To complete the proof of Theorem 3.18, let us prove the following result.

Proposition 8.2. Let u0 ∈ M+(�), and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let u be the entropy
solution of problem (1-1) given in Theorem 3.17 and v the chemical potential defined in (1-7). Let N ≥ 2,
and let u0 satisfy the following assumptions:

(i) [u0]c,2 is concentrated on some compact K0 ⊂� such that C2(K0)= 0;

(ii) [u0]d,2 ∈M+d,p(�) for some p ∈ [1, 2).

Then the pair (u, v) satisfies problem (1-9).

The main step in the proof of Proposition 8.2 is given by the following lemma.

Lemma 8.3. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let {unk }, {vnk } be the subsequences given by
Proposition 7.1. Then, for every ρ ∈ C1

c (�),

lim
k→∞

∫
�

[1+ unk (x, t)]vnk (x, t)ρ(x) dx = 〈[1+ u( · , t)]d,2, v( · , t)ρ〉�. (8-9)

Proof of Proposition 8.2. Fix any t ∈ (0, T ) such that the convergence in (7-1) and (7-5) hold, namely,

unk ( · , t)
∗

⇀ u( · , t) in M(�),

vnk ( · , t) ⇀ v( · , t) in H 1
0 (�),

unk ( · , t)→ ur ( · , t) a.e. in �
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(see (7-12)–(7-13)). Consider the weak formulation of (6-7) with n = nk , namely,

ε

∫
�

∇vnk (x, t) · ∇ρ(x) dx +
∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx =

∫
�

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
ρ(x) dx (8-10)

where ρ ∈ C1
c (�). Arguing as in the proof of Proposition 8.1, it is easily seen that

lim
k→∞

∫
�

∇vnk (x, t) · ∇ρ(x) dx =
∫
�

∇v(x, t) · ∇ρ(x) dx;

lim
k→∞

∫
�

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
ρ(x) dx =

∫
�

ϕ(ur (x, t))
ψ ′(ur (x, t))

ρ(x) dx;

lim
k→∞

∥∥∥∥ 1
ψ ′nk

(unk ( · , t))
−

1
ψ ′(unk ( · , t))

∥∥∥∥
L1(�)

= 0.

thus
lim

k→∞

∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx = lim

k→∞

∫
�

vnk (x, t)
ψ ′(unk (x, t))

ρ(x) dx

(here we use (6-8)). Then, by Lemma 8.3, the conclusion follows. �

The proof of Lemma 8.3, which was used in the proof of Proposition 8.2, requires a few intermediate
steps. Let K0 ⊂ �, C2(K0) = 0, be a compact set where [u0]c,2 is concentrated. Then for every δ > 0
there exists an open set �c

δ ⊆� such that

K0 ⊂�
c
δ, C2(�

c
δ) < δ. (8-11)

Set

�d
δ :=� \�

c
δ. (8-12)

Moreover, observe that the convergence in (7-5) guarantees the existence of a compact set Eδ ⊆�d
δ such

that
C p(Ec

δ ) < δ, where Ec
δ :=�

d
δ \ Eδ (8-13)

and p ∈ [1, 2) is chosen so that [u0]d,2 ∈M+d,p(�), and

vnk ( · , t)→ v( · , t) uniformly in Eδ. (8-14)

By (8-12) and the definition in (8-13), we have the disjoint union

�=�c
δ ∪ Ec

δ ∪ Eδ.

Therefore∫
�

[1+unk(x, t)]vnk(x, t)ρ(x) dx=
∫
�c
δ

[1+unk(x, t)]vnk(x, t)ρ(x) dx+
∫

Ec
δ

[1+unk(x, t)]vnk(x, t)ρ(x) dx

+

∫
Eδ
[1+ unk (x, t)]vnk (x, t)ρ(x) dx . (8-15)

Concerning the first two integrals in the right-hand side of (8-15), we have the following two lemmata,
whose proofs will be given at the end of this section.
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Lemma 8.4. Let �c
δ ⊆� be the set in (8-11), and ρ ∈ C1

c (�). Then there exists a function

f1 = f1(δ)≥ 0

with f1(δ)→ 0 as δ→ 0, such that

lim sup
k→∞

∫
�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ f1(δ). (8-16)

Lemma 8.5. Let Ec
δ be the set in (8-13), and ρ ∈ C1

c (�). Then there exists a function f2 = f2(δ) ≥ 0,
f2(δ)→ 0 as δ→ 0, such that

lim sup
k→∞

∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ f2(δ). (8-17)

We also prove the following result.

Lemma 8.6. Let ρ ∈ C1
c (�) and let φδ ∈ C∞c (�) such that

0≤ φδ ≤ 1 a.e. in �,
φδ = 1 a.e. in Eδ,
dist(K0, suppφδ) > 0.

(8-18)

Then there exists a function f3 = f3(δ)≥ 0, f3(δ)→ 0 as δ→ 0, such that

lim sup
k→∞

∫
�c
δ∪Ec

δ

[1+ unk (x, t)]v(x, t)φδ(x)|ρ(x)| dx ≤ f3(δ), (8-19)

Relying on the above results we can prove Lemma 8.3.

Proof of Lemma 8.3. For every k ∈ N we have∣∣∣∣∫
�

[1+ unk (x, t)]vnk (x, t)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)ρ〉�

∣∣∣∣
≤

∣∣∣∣∫
Eδ
[1+ unk (x, t)]vnk (x, t)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)ρ〉�

∣∣∣∣
+

∫
�c
δ∪Ec

δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx

≤

∫
Eδ
[1+ unk (x, t)]|vnk (x, t)− v(x, t)||ρ(x)| dx

+

∣∣∣∣∫
�

[1+ unk (x, t)]v(x, t)φδ(x)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)φδρ〉�

∣∣∣∣
+

∫
�c
δ∪Ec

δ

[1+ unk (x, t)][vnk (x, t)+ v(x, t)φδ(x)]|ρ(x)| dx

+ |〈[1+ u( · , t)]d,2, (1−φδ)v( · , t)|ρ|〉�|; (8-20)

here we have used the equality (recall that φδ = 1 a.e. in Eδ)
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Eδ
[1+ unk (x, t)]vnk (x, t)ρ(x) dx =

∫
Eδ
[1+ unk (x, t)]vnk (x, t)φδ(x)ρ(x) dx

=

∫
�

[1+ unk (x, t)]vnk (x, t)φδ(x)ρ(x) dx −
∫
�c
δ∪Ec

δ

[1+ unk (x, t)]vnk (x, t)φδ(x)ρ(x) dx .

By (6-11) and (8-14), we have

lim
k→∞

∫
Eδ
[1+ unk (x, t)]|vnk (x, t)− v(x, t)|ρ(x) dx = 0;

while by (8-16)–(8-19),

lim sup
k→∞

∫
�c
δ∪Ec

δ

[1+ unk (x, t)][vnk (x, t)+ v(x, t)φδ(x)]|ρ(x)| dx ≤ f1(δ)+ f2(δ)+ f3(δ).

Moreover, observe that, by (8-11) and (8-13),

C p(�
δ
c ∪ Ec

δ )≤ C p(�
δ
c)+C p(Ec

δ )≤ AC2(�
c
δ)+C p(Ec

δ ) < (A+ 1)δ (8-21)

for some constant A> 0 (here we used the condition p < 2). Since the support of the function (1−φδ) is
contained in the set �δc ∪ Ec

δ , by (8-21) and the assumption [u0]d,2 ∈M+d,p(�), there exists a function
f4 = f4(δ)≥ 0, f4(δ)→ 0 as δ→ 0, such that∣∣〈[1+ u( · , t)]d,2, (1−φδ)v( · , t)|ρ|

〉
�

∣∣≤ f4(δ). (8-22)

In addition, we prove that

lim
k→∞

∫
�

[1+ unk (x, t)]v(x, t)φδ(x)ρ(x) dx = 〈[1+ u( · , t)]d,2, v( · , t)φδρ〉�. (8-23)

Then, from (8-20), we obtain

lim sup
k→∞

∣∣∣∣∫
�

[1+ unk (x, t)]vnk (x, t)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)ρ〉�

∣∣∣∣
≤ f1(δ)+ f2(δ)+ f3(δ)+ f4(δ) for any δ > 0. (8-24)

By the arbitrariness of δ the conclusion follows.
It remains to prove equality (8-23). By the weak formulation of (Pn), we have∫

�

unk (x, t)v(x, t)φδ(x)ρ(x) dx

=−

∫ t

0

∫
�

∇vnk (x, s) · ∇[v(x, t)φδ(x)ρ(x)] dx ds+
∫
�

u0nk (x)v(x, t)φδ(x)ρ(x) dx, (8-25)

where ∫
�

u0nkv(x, t)φδ(x)ρ(x) dx =
∫
�

([u0]d,2)nkv(x, t)φδ(x)ρ(x) dx (8-26)

for every k large enough, since dist(K0, suppφδ) > 0 and K0 is the set where [u0]c,2 is concentrated.
Therefore, by (7-4), letting k→∞ in equality (8-25), we have
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lim
k→∞

∫
�

unk (x, t)v(x, t)φδ(x)ρ(x) dx

=−

∫ t

0

∫
�

∇v(x, s) · ∇[v(x, t)φδ(x)ρ(x)] dx ds+〈[u0]d,2, v( · , t)φδρ〉�. (8-27)

On the other hand, in view of (3-7), equality (4-1) gives

〈[u( · , t)]d,2, ρ〉�−〈[u0]d,2, ρ〉� =

∫ t

0
〈1v( · , s), ρ〉� ds,

which makes sense for any ρ ∈ H 1
0 (�)∩ L∞(�). Therefore we can choose v( · , t)φδρ as a test function,

obtaining

〈[u( · , t)]d,2, v( · , t)φδρ〉�−〈[u0]d,2, v( · , t)φδρ〉� =−
∫ t

0

∫
�

∇v(x, s) · ∇[v(x, t)φδ(x)ρ(x)] dx ds.

Comparing this equality with (8-27), we obtain (8-23). This completes the proof. �

Finally, let us prove Lemmata 8.4–8.6.

Proof of Lemma 8.4. Since C2(�
δ
c) < δ, there exists ηδ ∈ H 1

0 (�) such that
‖ηδ‖H1

0 (�)
≤ 2δ,

0≤ ηδ ≤ 1 a.e. in �,
ηδ = 1 a.e. in �δc.

By (8-5)–(8-6), we have∫
�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx

≤

∫
�

∣∣∣ 1
ψ ′(unk )

−
1

ψ ′nk
(unk )

∣∣∣(x, t)vnk (x, t)|ρ(x)|ηδ(x) dx +
∫
�

vnk

ψ ′nk
(unk )

(x, t)|ρ(x)|ηδ(x) dx

≤ C
∫
�

ηδ dx +
∫
�

vnk

ψ ′nk
(unk )

(x, t)|ρ(x)|ηδ(x) dx .

Since |ρ|ηδ ∈ H 1
0 (�), by (6-7) we get∫

�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx

≤ ε

∫
�

|∇vnk (x, t)||∇(|ρ|ηδ)| dx +
∫
�

ϕ(unk )

ψ ′nk
(unk )

(x, t)|ρ(x)|ηδ(x) dx +C
∫
�

ηδ(x) dx,

whence we get∫
�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C1‖|ρ|ηδ‖H1
0 (�)
+C2

∫
�

u1−1/q
nk

(x, t)ηδ(x) dx +C
∫
�

ηδ(x) dx

≤ C̃
[
‖|ρ|ηδ‖H1

0 (�)
+

(∫
�

η
q
δ (x) dx

)1/q

+

∫
�

ηδ(x) dx
]
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(here we used (6-11), (6-13), and (8-2)). Setting

f1(δ) := C̃
[
‖|ρ|ηδ‖H1

0 (�)
+

(∫
�

η
q
δ (x) dx

)1/q

+

∫
�

ηδ(x) dx
]
,

the conclusion follows. �

Proof of Lemma 8.5. By (6-16) (see also Remark 3.14) we obtain∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C1

∫
Ec
δ

[1+ u0nk (x)]vnk (x, t)|ρ(x)| dx

≤ C1

∫
Ec
δ

u0nk (x)vnk (x, t)|ρ(x)| dx +C2|Ec
δ |. (8-28)

Moreover, by the definition of the sequence {u0n} in Lemma 6.1, we have

u0nk = ([u0]c,2)nk + ([u0]d,2)nk ,

where

([u0]d,2)nk := u0rnk + ([u0s]d,2)nk ,

and ∫
Ec
δ

([u0]c,2)nk (x) dx = 0 (8-29)

holds for every k large enough. In fact, recall that the sequence ([u0]c,2)n is defined by convolution,
[u0]c,2 is concentrated on the compact set K0 ⊂ �

c
δ, the set �c

δ is open, and Ec
δ ⊆ � \�

c
δ. Combining

(8-28) with (8-29) gives∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C1

∫
Ec
δ

([u0]d,2)nk (x)vnk (x, t)|ρ(x)| dx +C2|Ec
δ | (8-30)

for every k sufficiently large. Moreover, since C p(Ec
δ ) < δ (see (8-13)) there exists ρδ ∈ H 1,p

0 (�) such
that 

‖ρδ‖H1,p
0 (�)

≤ 2δ,

0≤ ρδ ≤ 1 a.e. in �,
ρδ = 1 a.e. in Ec

δ .

By the above remarks, using inequality (6-8), we obtain∫
Ec
δ

([u0]d,2)nk (x)vnk (x, t)|ρ(x)| dx ≤ C3

∫
�

([u0]d,2)nk (x)ρδ(x)|ρ(x)| dx . (8-31)

Since, by assumption, [u0]d,2 ∈M+d,p(�), by the first convergence in (6-4) we have

lim
k→∞

∫
�

([u0]d,2)nk (x)ρδ(x)|ρ(x)| dx = 〈[u0]d,2, ρδ|ρ|〉�.
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Hence, by (8-30) and (8-31), we obtain

lim sup
k→∞

∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C2|Ec
δ | +C3〈[u0]d,2, ρδ|ρ|〉�. (8-32)

Then, setting
f2(δ) := C2|Ec

δ | +C3〈[u0]d,2, ρδ|ρ|〉�,

by (8-32) and the assumption [u0]d,2 ∈M+d,p(�), the conclusion follows. �

Proof of Lemma 8.6. By (6-16) (see also Remark 3.14), for every k sufficiently large we have∫
�c
δ∪Ec

δ

[1+ unk (x, t)]v(x, t)φδ(x)|ρ(x)| dx ≤ C
∫
�c
δ∪Ec

δ

u0nk (x)v(x, t)φδ(x)|ρ(x)| dx

= C
∫
�c
δ∪Ec

δ

([u0]d,2)nk (x)v(x, t)φδ(x)|ρ(x)| dx .
(8-33)

In fact, for k sufficiently large∫
�c
δ∪Ec

δ

([u0]c,2)nk (x)v(x, t)φδ(x)|ρ(x)| dx = 0,

since dist(K0, suppφδ) > 0 and [u0]c,2 is concentrated on K0.
Let gδ ∈ H 1,p

0 (�) be any function such that
‖gδ‖H1,p

0 (�)
≤ 4δ,

0≤ gδ ≤ 1 a.e. in �,
gδ = 1 a.e. in � \ Eδ.

In view of (8-21), since [u0]d,2 ∈M+d,p(�), we have

lim sup
k→∞

∫
�c
δ∪Ec

δ

([u0]d,2)nk (x)v(x, t)φδ(x)|ρ(x)| dx ≤ C lim
k→∞

∫
�

([u0]d,2)nk (x)gδ(x) dx

= C〈[u0]d,2, gδ〉�. (8-34)

Since
f3(δ) := C〈[u0]d,2, gδ〉�→ 0 as δ→ 0,

by (8-33)–(8-34), the conclusion follows. �
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THE HEAT KERNEL ON AN ASYMPTOTICALLY CONIC MANIFOLD

DAVID A. SHER

We investigate the long-time structure of the heat kernel on a Riemannian manifold M that is asymp-
totically conic near infinity. Using geometric microlocal analysis and building on results of Guillarmou
and Hassell, we give a complete description of the asymptotic structure of the heat kernel in all spatial
and temporal regimes. We apply this structure to define and investigate a renormalized zeta function and
determinant of the Laplacian on M .

1. Introduction

We study the heat kernel on asymptotically conic manifolds. Asymptotically conic manifolds should be
thought of as those complete manifolds which are approximately conic near infinity. More specifically:

Definition [Guillarmou and Hassell 2008]. Let (M, g) be a complete Riemannian manifold without
boundary of dimension n, and let M be the usual radial compactification of M . Let (N , h0) be a closed
Riemannian manifold of dimension n− 1. We say that (M, g) is asymptotically conic with cross-section
(N , h0) if in a neighborhood of ∂M , M is isometric to [0, δ)x × Ny with the metric

g =
dx2

x4 +
h(x)
x2 . (1)

Here x is a smooth function on M with x = 0 and dx 6= 0 on ∂M (we call this a boundary defining
function for ∂M) and a smooth family of metrics h(x) on N with h(0)= h0. Throughout, we let z be a
global coordinate on M , writing z = (x, y) in a neighborhood of the boundary of M .

In particular, Euclidean space Rn is asymptotically conic with cross-section Sn−1; we may choose
x = r−1. Any complete manifold which is exactly Euclidean or conic near infinity is, of course, also
asymptotically conic. The condition (1) may be weakened by replacing h(x) with any symmetric 2-tensor
h′(x, y) which restricts to a metric h0(x) on the boundary at x = 0; an observation of Melrose and Wunsch
[2004] shows that these conditions are in fact equivalent.

Asymptotically conic manifolds are a relatively well-behaved class of manifolds, and as such the
theory of the heat equation is relatively advanced. In particular, it is easy to see from (1) that all sectional
curvatures of (M, g) approach zero as x goes to zero, and thus that (M, g) has bounded sectional curvature.
For complete manifolds of bounded sectional curvature, a classical theorem of Cheng, Li, and Yau gives
the following Gaussian upper bound for the heat kernel:

MSC2010: 58J05, 58J35, 58J52.
Keywords: heat kernel, asymptotically conic manifold, zeta function, determinant of the Laplacian.
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Theorem 1 [Cheng et al. 1981]. There are nonzero constants C1 and C2 such that the heat kernel on M ,
denoted H M(t, z, z′), satisfies

H M(t, z, z′)≤
C1

tn/2 e−|z−z′|2/C2t . (2)

However, for many applications to spectral theory, one needs finer information about the structure of
the heat kernel. The example we have in mind is the definition of the zeta function. Recall that if M is
compact, the zeta function is defined for <s > n/2 by

ζM(s)=
1
0(s)

∫
∞

0
(Tr H M(t)− 1) t s−1 dt. (3)

The zeta function has a well-known meromorphic continuation to all of C with a regular value at s = 0;
the key is that the trace of the heat kernel has a short-time asymptotic expansion, which, along with the
long-time exponential decay, enables us to write down an explicit meromorphic continuation [Rosenberg
1997]. The determinant of the Laplacian is then given by exp(−ζ ′M(0)); the determinant plays a key role
in many problems in spectral theory, including the isospectral compactness results of Osgood, Phillips,
and Sarnak [1988b; 1988a; 1989].

We would like to define such a zeta function and determinant when M is asymptotically conic, with
an eye towards applying these concepts to the spectral and scattering theory of asymptotically conic
manifolds. There are several obstacles. First, the heat kernel is no longer trace class, so Tr H M(t) does
not make sense. Instead, we define the renormalized heat trace R Tr H M(t) to be the finite part at δ = 0
of the divergent asymptotic expansion in δ of∫

x≥δ
H M(t, z, z) dz. (4)

Details, including the existence of this divergent asymptotic expansion, may be found in Section 3. We
then formally define the renormalized zeta function:

RζM(s)=
1
0(s)

∫
∞

0

R Tr H M(t) t s−1 dt. (5)

However, to make sense of this definition and obtain a meromorphic continuation, we still need to
understand the behavior of the renormalized trace — and hence of the heat kernel itself — as t→ 0 and
t→∞. In particular, we need asymptotics in both the short and long time regimes.

The short-time behavior of the heat kernel on an asymptotically conic manifold is relatively well-
understood. Short-time heat kernels may be analyzed using techniques from semiclassical analysis. In
this approach, the goal is to develop a “semiclassical functional calculus” containing the heat kernel,
modeled on standard semiclassical techniques as developed, for example, in [Dimassi and Sjöstrand
1999]. The key functional calculus for this purpose, at least in the asymptotically Euclidean setting, is the
Weyl calculus of Hörmander [1979].

An alternate approach, and one more suited to analysis of the renormalized trace and determinant, is
to use geometric microlocal analysis to first construct the heat kernel and then analyze its fine structure.
The techniques of geometric microlocal analysis were first developed by Melrose and Mendoza [1983]



THE HEAT KERNEL ON AN ASYMPTOTICALLY CONIC MANIFOLD 1757

to study elliptic PDE on manifolds with asymptotically cylindrical ends. They have been extended by
many other mathematicians and play a key role in the modern analysis of linear PDE on singular and
non-compact spaces. In particular, Melrose [1994] discusses some aspects of spectral and scattering
theory on asymptotically conic manifolds. Albin [2007] uses these methods to investigate the short-time
heat kernel on a variety of complete spaces, including asymptotically conic manifolds. His work can be
used to obtain the fine structure that we need for the short-time heat kernel.

The long-time problem is trickier: in the asymptotically conic setting, we no longer have exponential
decay of the heat kernel as t→∞. Indeed, from the structure of the Euclidean heat kernel and (2), we
expect that the leading-order behavior of H M(t, z, z′) as t→∞ will be Ct−n/2, and the leading-order
behavior of the renormalized heat trace may be even worse. This lack of decay means that the zeta
function may not be well-defined a priori for any s. We may split (5) into two integrals by breaking
it up at t = 1, but there is no obvious reason for the integral from t = 1 to∞ to have a meromorphic
continuation to all of C. In order to obtain such a meromorphic continuation, we need an asymptotic
expansion for the heat kernel as t →∞. Moreover, we must understand how this expansion interacts
with the heat trace renormalization.

1.1. Main results. We solve this problem by using the methods of geometric microlocal analysis to
obtain a complete description of the asymptotic structure of the heat kernel on M in all spatial and
temporal regimes. The key concepts, including blow-ups and polyhomogeneous conormal functions, were
originally introduced by Melrose [1993; 1996], and a good introduction may be found in [Grieser 2001].
In Section 2, we discuss these concepts briefly and then use them to define a new blown-up manifold
with corners which we call M2

w,sc. The space M2
w,sc was originally defined by Guillarmou and Hassell

[2008], and we use their labeling of the boundary hypersurfaces; see Section 2 for the definitions. Our
main theorem is the following:

Theorem 2. Let M be asymptotically conic. For any n ≥ 2, and for any fixed time T > 0, the heat kernel
on M is polyhomogeneous conormal on M2

w,sc for t > T , where w = t−1/2. The leading orders at the
boundary hypersurfaces are at least 0 at sc and n at each of bf0, rb0, lb0, and zf, with infinite-order decay
at lb, rb, and bf.

This theorem gives a complete description of the asymptotic structure of the heat kernel for long time;
previously, only estimates such as Theorem 1 were known. The analogous structure for the short-time
heat kernel is well-understood (see Section 2 for the definition of M2

sc):

Theorem 3. For t < 1, the heat kernel H M(t, z, z′) is polyhomogeneous conormal on[
M2

sc(z, z′)×[0, 1]√t ; {
√

t = 0, z = z′}
]
.

Moreover, there is infinite-order decay at all faces except the scattering front face sc and the face F
obtained by the final blow-up.

Theorem 3 follows immediately from the work of Albin [2007]; however, the precise statement above
does not appear in the literature. Therefore, in the Appendix, we give a simple proof using the machinery
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Figure 1. Asymptotic structure of the heat kernel on M .

developed in [Albin 2007]. Combining Theorem 2 with Theorem 3 gives a complete geometric-microlocal
description of the structure of the heat kernel. This structure is illustrated in Figure 1; the short-time
structure is the left-hand side of the diagram, and the long-time structure is the right-hand side. We also
indicate the leading order of the heat kernel at each of the boundary hypersurfaces, in terms of

√
t at

t = 0, w = t−1/2 at t =∞, and x or x ′ respectively at all the finite-time boundaries.
As an example of how polyhomogeneous structure may be used to read off the behavior in all asymptotic

regimes, let a be a parameter, and fix (y, x ′, y′); consider the heat kernel H Z (a2, a−1, y, x ′, y′) as a
approaches infinity. In the compactified space in Figure 1, as a approaches infinity, the arguments
approach a point in the center of the face lb0, where the leading order of the heat kernel is n. Since
w = a−1, and w is a boundary defining function for lb0, we conclude that H Z (a2, a−1, y, x ′, y′) has a
polyhomogeneous asymptotic expansion in a−1 as a→∞, with leading term Cna−n . A similar analysis
may be performed in any asymptotic regime.

As an application, Theorems 2 and 3 give us precisely the polyhomogeneous structure we need to
define and investigate the renormalized zeta function on M :

Theorem 4. Let M be asymptotically conic. The renormalized zeta function, defined formally by (5), is
well-defined and has a meromorphic continuation to all of C.

We may then define the renormalized determinant of the positive Laplacian 1M on M by

log Rdet1M =−
Rζ ′M(0),

where Rζ ′M(0) is the coefficient of s in the Laurent series for RζM(s) around s = 0.
In a companion paper [Sher 2012a], we use Theorems 2, 3, and 4 to analyze the behavior of the

determinant of the Laplacian on a family of manifolds degenerating to a manifold with conical singularities.
We expect that this work will have applications to spectral theory and to index theory on singular spaces,
including the study of the Cheeger–Müller theorem on manifolds with conical singularities. The key
theorem from [Sher 2012a] is as follows: let �0 be a manifold with an exact conic singularity (with
arbitrary base) and let Z be a manifold conic near infinity with the same base. For each ε > 0, we define
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a smooth manifold �ε replacing the tip of �0 with an ε-scaled copy of Z ; as ε→ 0, the manifolds �ε
converge to �0 in the Gromov–Hausdorff sense. Then it is proven in [Sher 2012a] that

Theorem 5. As ε→ 0,

log det1�ε =−2 log ε(RζZ (0))+ log det1�0 + log Rdet1Z + o(1).

1.2. Outline of the proofs. The usual geometric-microlocal approach to the fine structure of the heat
kernel is a direct parametrix construction, which involves the construction of an initial approximation to
the heat kernel and then the removal of the error via a Neumann series argument. This is the method
adopted in [Albin 2007]. However, parametrix constructions are not well-suited for analysis of the
long-time heat kernel; the problem is global rather than local. In order to obtain the asymptotic structure
of the heat kernel at long time, we instead take an indirect approach. Recall that the functional calculus
shows that the heat kernel and the resolvent are related by

H M(t)= 1
2π i

∫
0

eλt(1M + λ)
−1 dλ, (6)

where 0 is a contour around the spectrum. Guillarmou and Hassell [2008; 2009] have analyzed the
asymptotic structure of the resolvent (1M + λ)

−1 at low energy, again giving a complete description in
all regimes. They have shown:

Theorem 6 [Guillarmou and Hassell 2008]. Suppose that M is an asymptotically conic manifold of
dimension n ≥ 3. Then the Schwartz kernel of (1M + eiθk2)−1 is polyhomogeneous conormal on M2

k,sc
for each θ ∈ (−π, π), with a conormal singularity at the spatial diagonal and all coefficients smoothly
depending on θ . It decays to infinite order at the faces lb, rb, and bf, with leading orders at sc, bf0, rb0,
lb0 and zf given by 0, n− 2, n− 2, n− 2, and 0 respectively.

Note that Guillarmou and Hassell require n ≥ 3. In Section 4, we adapt their methods to extend
Theorem 6 to the two-dimensional case:

Theorem 7. Theorem 6 also holds when n = 2; all the leading orders are the same, except that we have
logarithmic growth instead of order 0 at zf.

In Section 2, we use geometric microlocal analysis, in particular Melrose’s pushforward theorem, to
prove Theorem 2. The key is to push the structure of Theorems 6 and 7 through the contour integral
(6). To state the main technical theorem, we must first compactify M2

k,sc to M2
k,sc by introducing a new

boundary face at k =∞, with boundary defining function k−1. In a neighborhood of the new face, which
we call tf, M2

k,sc is M2
sc×[0, 1)k−1 . The main technical theorem is this:

Theorem 8. Let M be an asymptotically conic manifold, and let E be a vector bundle over M. Let
A : C∞(E)→ C−∞(E) be a pseudodifferential operator with the following properties:

(a) σ(A)⊂ [0,∞].

(b) (Low-energy resolvent behavior) If k is bounded above, the Schwartz kernel of the resolvent
(A + eiθk2)−1 is polyhomogeneous conormal on M2

k,sc for each θ ∈ (−π, π), with a conormal
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singularity at the spatial diagonal and all coefficients smoothly depending on θ . Moreover, it decays
to infinite order at the faces lb, rb, and bf, with index sets at sc, bf0, rb0, lb0, and zf given by Rsc,
Rbf0 , Rrb0 , Rlb0 , and Rzf respectively.

(c) (High-energy resolvent behavior) For each θ ∈ (−π, π) and for k bounded below, the Schwarz kernel
of (A+ eiθk2)−1 is phg conormal on M2

k,sc, with infinite-order decay at lb, rb, and bf, index set Rsc

at sc, and index set Rt f at tf.

Then for t greater than any fixed T > 0, the kernel of e−t A is polyhomogeneous conormal on M2
w,sc, where

w = t−1/2. It decays to infinite order at lb, rb, and bf, and has index sets at sc, bf0, rb0, lb0, and zf which
are subsets of Rsc, Rbf0 + 2, Rrb0 + 2, Rlb0 + 2, and Rzf+ 2 respectively.

Once we have proven Theorem 8, Theorem 2 is an almost immediate consequence, though there is a
slight twist involving the leading orders.

In Section 3, we use Theorem 2 and some additional geometric microlocal techniques to analyze
the renormalized heat trace and prove Theorem 4. We also analyze the renormalized zeta function and
determinant in the special case where M is exactly conic (or Euclidean) outside a compact set. In Section 4,
we extend the methods of [Guillarmou and Hassell 2008] to prove Theorem 7. Finally, in the Appendix,
we use the framework in [Albin 2007] to prove Theorem 3.

2. From resolvent to heat kernel

The goal of this section is to prove Theorems 8 and 2.

2.1. Preliminaries. We first give a brief summary of the key relevant concepts in geometric microlocal
analysis; again, a self-contained introduction may be found in [Grieser 2001]. A manifold with corners of
dimension n is a topological space which is locally modeled on Rk

+
×Rn−k for some k; a simple example

is the n-dimensional unit cube. Blow-up is a way of creating new manifolds with corners from old ones,
and is used to resolve certain geometric singularities. The idea is to formally introduce polar coordinates
around a submanifold of a manifold with corners, in order to distinguish between directions of approach
to that submanifold. For example, consider the origin as a submanifold of R2

+
. To blow up the origin, we

introduce polar coordinates (r, θ), which corresponds to replacing the point (0, 0) with a quarter-circle,
which corresponds to the inward-pointing spherical normal bundle of (0, 0)⊂ R2

+
. See [Melrose 1993;

1996; Grieser 2001], or the appendix of [Sher 2012b] for a more detailed explanation and more general
examples of blow-ups.

By Taylor’s theorem, smooth functions on a manifold with corners are precisely those functions
which have Taylor expansions at each boundary hypersurface and joint Taylor expansions at every
corner. Polyhomogeneous conormal distributions, which we abbreviate as phg or phg conormal, are a
generalization of smooth functions. In particular, if we let x be a boundary defining function, we allow
terms of the form x s(log x)p for any x ∈ C and any p ∈N0 to appear in the asymptotic expansions at the
boundary and in the joint expansions at the corners. The index set of a phg conormal distribution u at a
particular boundary hypersurface H is simply the set of (s, p) which appear in the asymptotic expansion
of u at H .
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Polyhomogeneous conormal functions are well-behaved under addition and multiplication, but also
under more complicated operations, namely pullback and pushforward. To discuss these, we first need
to discuss properties of a map f : W → Z between manifolds with corners. Roughly, we say that f
is a b-map if it is smooth up to the boundary and product-type near the boundary in terms of the local
coordinate models (see [Grieser 2001] for a precise definition). If additionally f does not map any
boundary hypersurface of W into a corner of Z , and f is also a fibration over the interior of every
boundary hypersurface, we call f a b-fibration. Two results of Melrose will be critical in the analysis to
follow:

Proposition 9 (Melrose’s [1992] pullback and pushforward theorems). Let f :W → Z be a smooth map
of manifolds with corners.

(a) If f is a b-map and u is phg conormal on Z , then f ∗u is phg conormal on W . Moreover, the index
sets of f ∗u may be computed explicitly from those of u and the geometry of the map f .

(b) If f is also a b-fibration, v is phg conormal on W , and f∗v is well-defined (the pushforward is
integration along the fibers, which may not converge), then f∗v is phg conormal on Z , and again the
index sets may be computed explicitly.

Finally, we need to consider distributions which have pseudodifferential-type conormal singularities at
submanifolds in the interior of a manifold with corners.

Definition [Grieser 2001]. Let y = (x1, . . . , xk) and z = (xk+1, . . . , xn), and let N be the set {z = 0} in
Rn

y,z . A distribution u on Rn has a conormal singularity at N of order m if it can be written

u(y, z)=
∫

Rn−k
ei z·ξa(y, ξ) dξ,

where a is a classical symbol; that is, a has asymptotics as |ξ | →∞

a(y, ξ)∼
∞∑
j=0

am− j

(
y,
ξ

|ξ |

)
|ξ |m− j ,

with each coefficient am− j smooth in y and ξ/|ξ |.

This definition may be extended, by using the local coordinate models, to define distributions with a
conormal singularity at any p-submanifold of a manifold with corners; a p-submanifold is a subset which,
in each local coordinate chart, may be identified with a coordinate submanifold. Variants of the pullback
and pushforward theorems also hold for polyhomogeneous conormal distributions with interior conormal
singularities [Melrose 1996; Epstein et al. 1991].

2.2. The space M2
k,sc. We now introduce the space M2

k,sc, which appears in [Guillarmou and Hassell
2008; 2009; Guillarmou et al. 2012] and was first proposed in an unpublished note of Melrose and
Sá Barreto. To construct M2

k,sc, we begin with the space M2
k = [0,∞)k ×M ×M ; coordinates on this

space near [0,∞)k × ∂M × ∂M are (k, x, y, x ′, y′). There are three boundary hypersurfaces: {k = 0},
which we call zf, {x = 0}, which we call lb, and {x ′ = 0}, which we call rb.



1762 DAVID A. SHER

Figure 2. The space M2
k,b.

First we blow up the corner {x = 0, x ′ = 0, k = 0}, which corresponds to the introduction of polar coor-
dinates near that corner; we call the front face of this blow-up bf0. We then blow up three codimension-2
submanifolds: we blow up {x = 0, x ′ = 0} and call the new face bf, we blow up {x = 0, k = 0} and
call the resulting face lb0, and we blow up {x ′ = 0, k = 0} and call the resulting face rb0. The resulting
manifold with corners, which we call M2

k,b (as in [Guillarmou et al. 2012]), is shown in Figure 2, with
y and y′ suppressed. Using the definition of a “b-stretched product” from [Melrose and Singer 2008],
we can identify this manifold near x = 0, x ′ = 0 with X3

b(x, x ′, k)× Ny × Ny′ . We use these b-stretched
products Xn

b from [Melrose and Singer 2008] throughout the arguments.
Finally, consider the intersection of the closure of the interior spatial diagonal with the face bf. In

coordinates near the boundary, this is {x/x ′ = 1, y = y′, x/k = 0}, and it is marked with a dotted line in
Figure 2. We blow this up to create a new boundary hypersurface, which we call sc (for “scattering”).
The resulting space is M2

k,sc, and it has eight boundary hypersurfaces, illustrated in Figure 3. The spatial
diagonal Dk,sc is defined to be the closure in M2

k,sc of the interior spatial diagonal; its intersection with
the boundary is marked with a dotted line in Figure 3.

Figure 3. The space M2
k,sc.
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Figure 4. Contour of integration 0a .

We now describe some useful coordinate systems on M2
k,sc. Near the intersection of zf, rb0, and bf0,

we use the coordinates (
x, σ =

x ′

x
, y, y′, κ ′ =

k
x

)
.

In these coordinates, x is a boundary defining function (bdf) for bf0, σ is a bdf for rb0, and κ ′ is a bdf for
zf. Similarly, near the intersection of zf, lb0, and bf0, we use the coordinates(

x ′, σ ′ =
x
x ′
, y, y′, κ =

k
x

)
.

Coordinates near sc are slightly more complicated; before the final blow-up, good coordinates are
(x ′, σ ′, y, y′, x/k). After the blow-up, we use the coordinates(

X = k
(

1
x ′
−

1
x

)
, Y = k

y− y′

x
, λ=

x
k
, y, k

)
.

These are valid in a neighborhood of the intersection of Dk,sc with sc and bf0; however, they are not good
coordinates as we approach bf.

In addition to the b-stretched products of [Melrose and Singer 2008] and the space M2
k,sc, we also

define the scattering double space M2
sc(z, z′), originally described in [Melrose 1994]. It is a blown-up

version of M ×M ; the first blow-up is of {x = x ′ = 0}, and the second blow-up is of the boundary fiber
diagonal {x ′ = 0, x/x ′ = 1, y = y′}. Notice that each cross-section of M2

k,sc corresponding to a fixed
k > 0 is a copy of M2

sc.

2.3. Proof of Theorem 8. Let A be an operator satisfying hypotheses (a)–(c) of Theorem 8, and let
R(λ, z, z′) be the Schwartz kernel of (A+λ)−1. The spectrum of A is [0,∞], so R(λ, z, z′) is holomorphic
outside the non-positive real axis. Fix ϕ ∈ (π/2, π). For any a > 0, let 0a be the path in C consisting of
two half-rays along θ =−ϕ and θ = ϕ, connected by the portion of the circle of radius a from θ =−ϕ to
θ = ϕ, and traversed counterclockwise. Moreover, let 0a,1 be the portion of 0a along the circle of radius
a, and let 0a,2 be the remainder; that is, the two half-rays. These contours are illustrated in Figure 4.

Let F(w, z, z′) be the heat kernel at time t = w−2. Then, by the functional calculus, we have

F(w, z, z′)=
1

2π i

∫
0

eλ/w
2
R(λ, z, z′) dλ. (7)



1764 DAVID A. SHER

We let a = w2 and 0 = 0w2 , and then consider the integral (7) over 0w2,1 and 0w2,2 separately.
On 0w2,1, λ= w2eiθ , so dλ= w2dθ , and we have

w2

2π i

∫ ϕ

−ϕ

eeiθ
R(θ, w, z, z′) dθ. (8)

By condition (b), for each θ , the integrand in (8) is phg conormal on M2
w,sc with a conormal singularity at

1w,sc, and the dependence of all coefficients on θ ∈ [−ϕ, ϕ] is smooth. Therefore, the integral (8) is phg
conormal on M2

w,sc, with a possible conormal singularity at Dw,sc. The index sets of (8) on M2
w,sc are

those of w2 plus those of R(w, z, z′). The function w2 is smooth and has order 2 as a function at zf, bf0,
rb0, and lb0 and order 0 everywhere else, so we add 2 to the index sets of the resolvent at those faces.
This procedure gives precisely the index sets claimed in Theorem 8.

It remains to consider the integral over 0w2,2. 0w2,2 consists of two half-rays; we consider only the
half-ray corresponding to θ = ϕ, as the other is analogous. Since θ is fixed, we suppress θ in the notation;
the integral runs from r = w2 to r =∞. After changing variables from r to s =

√
r , and dropping the

overall factor of (2π i)−1 (which does not affect polyhomogeneity), the 0w2,2 portion of (7) becomes∫
∞

w

2se(cosϕ)s2/w2
ei(sinϕ)s2/w2

R(s2, z, z′) ds. (9)

First consider the behavior of the integrand as s →∞. Since cosϕ < 0 and w is bounded above,
the term exp((cosϕ)s2/w2), and hence the entire integrand of (9), will decay to infinite order at s =∞.
There will still be a conormal singularity at the spatial diagonal, but the coefficients decay to infinite
order at s =∞.

In order to analyze (9), we break R(s2, z, z′) into pieces. First we separate out the conormal singularity
in a neighborhood of Ds,sc and analyze (9) using explicit local coordinates. Then we deal with the
remainder, which is smooth on M2

s,sc, by breaking it into two pieces and applying the pushforward
theorem.

2.4. The conormal singularity. Using a partition of unity, we let R = Rs + Rc, where Rc is supported
in a neighborhood of Ds,sc and Rs is supported away from Ds,sc, as in Figure 5. In a neighborhood of
sc∩ bf0, we use the coordinates(

X = s
(

1
x
−

1
x ′

)
, Y = s

y− y′

x
, y, µ=

x
s
, s
)
.

In these coordinates, R has a conormal singularity at {X = Y = 0}. On the other hand, in a neighborhood
of bf0 ∩ zf∩ Ds,sc, we use a slight modification of the coordinates in the previous subsection:(

X̂ =
(

1−
x
x ′

)
, Ŷ = y− y′, y,

s
x
, x
)
.

Since we use different coordinates in different regimes, write Rc = R1 + R2 + R3 by using a smooth
partition of unity near x/s = 1; R1 is supported near the boundary but away from sc (say s/x < 2), R2
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D

Figure 5. Decomposition of R.

near the boundary but away from zf (say x/s < 2), and R3 in the interior. The decomposition at the
boundary is illustrated in Figure 5.

First look at R1. Using the explicit symbolic form of a conormal singularity, we may write

R1 ∼

∫
Rn

ei(X̂ ,Ŷ )·(ξ1,ξ2)

∞∑
j=0

a j

(
s
x
, x, y,

ξ

|ξ |

)
|ξ |2− j dξ. (10)

This is an asymptotic sum, modulo smooth functions on M2
s,sc; we pick a particular representative which

is supported in a small neighborhood of Ds,sc, and absorb the remainder into Rs . The coefficients a j

are phg conormal in x and s/x with index sets independent of j ; they are also smooth in y and ξ/|ξ |.
We plug (10) into (9) and then interchange the convergent s-integral with the asymptotic sum and the
oscillatory integral over Rn . The result is∫

Rn
ei(X̂ ,Ŷ )·(ξ1,ξ2)

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

a j

(
s
x
, x, y,

ξ

|ξ |

)
ds |ξ |2− j dξ. (11)

By Melrose’s pullback theorem [1996], the pullback of each a j to X3
b(s, x, w) × Ny × Sn−1

ξ/|ξ | via
projection is also phg conormal with index sets independent of j . As a result, the integrand in∫

∞

w

2se−(s/w)
2eiϕ

a j

(
s
x
, x, y,

ξ

|ξ |

)
ds (12)

is phg conormal on X3
b(s, w, x)× Ny × Sn−1

ξ/|ξ |, with a cutoff singularity at s/w = 1. Moreover, it has
infinite-order decay at s = ∞, independent of w < 1 and x < 1, and hence integration in s is well-
defined. Integration in s is a b-fibration from X3

b(s, w, x) to X2
b(w, x), by [Melrose and Singer 2008,
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Proposition 4.4], and is hence also a b-fibration when we take the direct product with Ny × Sn−1
ξ/|ξ |.

Moreover, integration in s is transverse to the cutoff singularity at s/w= 1. Therefore, by the pushforward
theorem with conormal singularities (from the appendix of [Epstein et al. 1991]), (12) is phg conormal on
X2

b(w, x)× Ny × Sn−1
ξ/|ξ |, with index sets independent of j .

Since w< s < 2x on the support of R1, (12) has a phg conormal expansion in (w/x, x). Therefore, the
integral (11), in the coordinates (X̂ , Ŷ , y, w/x, x), corresponding to the R1 piece of (9), is phg conormal
in (w/x, x) with index sets independent of j , and smoothly dependent on y, with an interior conormal
singularity at X̂ = Ŷ = 0. Thus (11) is phg conormal on M2

w,sc with a conormal singularity at the diagonal.
We now consider R2; the analysis is similar. Write

R2 ∼

∫
Rn

ei(X,Y )·(ξ1,ξ2)

∞∑
j=0

b j

(
x
s
, s, y,

ξ

|ξ |

)
|ξ |2− j dξ, (13)

where the b j are phg conormal in x/s and s with index sets independent of j , and also smooth in y and
ξ/|ξ |.

It is helpful to consider the regimes w > x/2 and w < 2x separately. First assume that w > x/2, and
let X =w(1/x − 1/x ′), Y =w(y− y′)/x , and λ̄= x/w. We expect a conormal singularity at X = Y = 0
in this regime. Noting that (X, Y )= (s/w)(X , Y ), we change variables in (13) and let ζ = (s/w)ξ . The
result is

R2 ∼

∫
Rn

ei(X ,Y )·(ζ1,ζ2)

∞∑
j=0

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

|ζ |2− j dζ. (14)

As before, plug (14) into (9) and interchange the sums and convergent integrals: the part of (9) coming
from R2 is ∫

Rn
ei(X ,Y )·(ζ1,ζ2)

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

ds |ζ |2− j dζ. (15)

Consider the coefficients∫
∞

w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

ds. (16)

If we can show that the coefficients (16) are phg conormal in (x/w,w) with respect to some index sets
independent of j , with smooth dependence on y and ζ/|ζ |, then (15) is phg conormal on M2

w,sc with
a conormal singularity at the diagonal when w > x/2. To show this phg conormality, note that again
the integrands in (16) are each phg conormal on X3

b(s, x, w)× Ny × Sn−1
ζ/|ζ |. Moreover, the index sets are

independent of j , as s/w > 1, and there is always infinite-order decay at s =∞, independent of w. As
before, we use the pushforward theorem to integrate in s, and we conclude that the coefficients (16) are
phg conormal on X2

b(x, w)× Ny × Sn−1
ζ/|ζ | with respect to index sets independent of j . Since w > x/2,

this yields expansions in x/w and w, which is precisely what we need.
On the other hand, suppose that w < 2x . Then we expect a conormal singularity at X̂ = Ŷ = 0.

Since (X, Y )= (s/x)(X̂ , Ŷ ), we change variables in (13), letting ζ ′ = (s/x)ξ . Following the exact same
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procedure as in the w > x/2 case, we see that the part of (9) coming from R2, when w < 2x , is∫
Rn

ei(X̂ ,Ŷ )·(ζ ′1,ζ
′

2)

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ ′

|ζ ′|

)(
s
x

) j−2−n

ds |ζ ′|2− j dζ ′. (17)

The coefficients can be rewritten as(
w

x

) j−2−n ∫ ∞
w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

ds. (18)

These are just (w/x) j−2−n times (16), and (w/x) j−2−n is phg conormal on X2
b(w, x), so (18) is also phg

conormal on X2
b(w, x) for each j . Since we are only considering w < 2x , the orders only improve as j

increases. In particular, all the coefficients are phg conormal on X2
b(w, x) with respect to subsets of the

index set of the j = 0 coefficient. This is again sufficient to prove that (17) is phg conormal on M2
w,sc

with a conormal singularity at the diagonal.
Finally, consider the interior term R3; it is the simplest of the lot, since z and z′ are in a compact subset

of M . We let η be a dual variable to z− z′ and write

R3 ∼

∫
Rn

ei(z−z′)·η
∞∑
j=0

c j

(
s, z,

η

|η|

)
|η|2− j dη. (19)

Here the c j are phg conormal at s = 0 and s =∞, with index sets independent of j at s = 0 and s =∞.
Following the same procedure as in the previous two cases, simplified since z− z′ and η are independent
of s, we conclude that the part of (9) coming from R3 is∫

Rn
ei(z−z′)·η

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

c j

(
s, z,

η

|η|

)
ds |η|2− j dη. (20)

Analyzing the coefficients, we see that the integrand in each is phg conormal on X2
b(s, w), with index

sets independent of j , z, and η/|η|, and with infinite-order decay at s =∞. By the pushforward theorem,
each coefficient is phg conormal at w = 0, with index sets independent of j , z, and η/|η|. Moreover, (20)
has compact support in (z, z′). Therefore, (20), and hence the part of (9) corresponding to Rc, is phg
conormal on M2

w,sc with a conormal singularity at the diagonal.
Technically, we need to compute the index sets of the coefficients of the conormal singularity at

each boundary face of M2
w,sc. This may be done directly via the pushforward theorem, but it is easier

to apply the analysis we will develop in the next section. Note that a j and b j may be viewed as phg
conormal functions on the diagonal Ds,sc ⊂ M2

s,sc, with fixed index sets Rsc, Rbf0 , and Rzf at the boundary
hypersurfaces sc, bf0, and zf. Observe that they can be extended smoothly to functions defined in a
neighborhood of Ds,sc which are themselves phg conormal on M2

s,sc with the given index sets; call these
extensions d j . Then the coefficients of the conormal singularity of the integral (9) are the restrictions to
the diagonal of ∫

∞

w

2se−(s/w)
2eiϕ

d j (s, x, y, x ′, y′) ds.
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Applying Lemma 10 to each d j , these coefficients are all phg conormal on M2
w,sc, with index sets obtained

by adding 2 at the faces bf0, rb0, lb0, and zf. Therefore the restrictions to the diagonal are all phg conormal
on Dw,sc, with leading orders matching those in Theorem 8, as expected. This completes the analysis of
the conormal singularity.

2.5. Finishing the proof. It remains to consider the integral∫
∞

w

2se−(s/w)
2eiϕ

Rs(s2, z, z′) ds, (21)

where Rs(s2, z, z′) is phg conormal on M2
s,sc and smooth across the diagonal. We claim:

Lemma 10. Let T (s, z, z′) be any function which is phg conormal on M2
s,sc, smooth in the interior, and

decaying to infinite order at lb, rb, and bf. Then∫
∞

w

2se−(s/w)
2eiϕ

T (s, z, z′) ds (22)

is phg conormal on M2
w,sc for w bounded above. Moreover, if the index sets of T at the various boundary

hypersurfaces are Tsc, Tbf0 , Tzf, Trb0 , Tlb0 , and Tt f , then the index sets of (22) are

Tsc, Tbf0 + 2, Tzf+ 2, Trb0 + 2, Tlb0 + 2.

We defer the proof for the moment. Applying Lemma 10 to T (s)= Rs(s2), we conclude that (21) is
phg conormal on M2

w,sc with index sets precisely as in Theorem 8. Combining this with our analysis of
Rc, we have now shown that F(w, z, z′) is phg conormal on M2

w,sc possibly with a conormal singularity
at the spatial diagonal, and with leading orders as specified in Theorem 8. However, F(w, z, z′) is a heat
kernel, so it has no conormal singularity at the diagonal. This completes the proof of Theorem 8.

Finally, to prove Theorem 2, we apply Theorem 8. Condition (a) is true since the Laplacian is
essentially self-adjoint and non-negative. Condition (b) follows from Theorems 6 and 7. Condition (c)
is a well-known consequence of the semiclassical scattering calculus. The scattering calculus was first
introduced by Melrose [1994] and the semiclassical version was developed by Vasy, Wunsch, and Zworski
among others [Vasy and Zworski 2000; Wunsch and Zworski 2000]. The exact statement we need, along
with a summary of the semiclassical scattering calculus, may be found in [Hassell and Wunsch 2008,
Section 10]; h̄ in the semiclassical calculus corresponds to k−1 in our context. Applying Theorem 8 gives
us the polyhomogeneity we claim, and once we plug in the leading orders from [Guillarmou and Hassell
2008] and the Appendix, we see that the heat kernel has leading orders of 0 at sc and n at each of bf0,
rb0, and lb0.

Unfortunately, Theorem 8 does not by itself give us the claimed order-n behavior at zf; instead, we
only see quadratic decay at zf when n ≥ 3 and decay of the form w2 logw when n = 2. However, by
the estimate of Cheng–Li–Yau (Theorem 1), the heat kernel is uniformly bounded for large time by
Ct−n/2

=Cwn . Thus the leading order of the heat kernel at zf must actually be at least n, which completes
the proof of Theorem 2.
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Figure 6. Decomposition of T .

Note that the lack of sharpness in the order calculation of Theorem 8 reflects the fact that our real-
analytic approach does not take into account the complex-analytic structure of the resolvent; there is
cancellation between the top and bottom parts of the integral that our approach cannot see. In particular,
we could instead move the contour 0 towards the spectrum and represent the heat kernel as an integral
with respect to the spectral measure. Guillarmou, Hassell, and Sikora demonstrate in [Guillarmou et al.
2012] that there is cancellation between the top and bottom parts of the contour in the spectral measure.
In particular, the spectral measure at zf vanishes to order n− 1 by Theorem 1.2 of their paper; integrating
e−λt against this spectral measure, we obtain an alternative proof of the fact that the heat kernel vanishes
to order n at zf.

2.6. Proof of Lemma 10. We now prove Lemma 10; the proof involves extensive use of Melrose’s
pullback and pushforward theorems. First, write T (s, z, z′) as T1+ T2, where T1 is supported away from
sc and T2 is supported in a neighborhood of sc. This partition is illustrated in Figure 6. Then decompose
(22) into two integrals, corresponding to T1 and T2.

Consider the first integral: ∫
∞

0
χ({s ≥ w}) 2se−(s/w)

2eiϕ
T1(s, z, z′) ds

s
. (23)

Notice that T1(s, z, z′) is phg conormal on M2
s,sc but supported away from sc, so it is in fact phg conormal

on the blown-down space M2
s,b(z, z′) (see Figure 2). The rest of the terms in the integrand are phg

conormal on X2
b(s, w), with a cutoff singularity (which is an example of a conormal singularity) at s =w.

We now define a space M2
s,w,b(z, z′) as follows: start with [0, T )w×[0,∞]s ×Mz ×Mz′ . Then blow up,

in order,

• The submanifold where all four of (x, x ′, s, w) are zero;

• The four now-disjoint submanifolds where exactly three of (x, x ′, s, w) are zero;

• The six now-disjoint submanifolds where exactly two of (x, x ′, s, w) are zero.
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This construction mimics the construction of the b-stretched product X4
b(x, x ′, s, w), and in fact

M2
s,w,b(z, z′) is precisely X4

b(x, x ′, s, w)× Ny × Ny′ in a neighborhood of {x = x ′ = s = w = 0}. By the
same arguments as for the b-stretched products in [Melrose and Singer 2008], the projection-induced
maps from M2

s,w,b(z, z′) to M2
w,b(z, z′) (isomorphic to X3

b(x, x ′, w)× Ny × Ny′ near {x = x ′ = w = 0})
and to X2

b(s, w) are well-defined b-fibrations. Therefore, by the pullback theorem, the integrand of (23)
is phg conormal on Mw

s,w,b(z, z′), with a conormal singularity at s = w. Since the fibers of the projection
map to M2

w,b(z, z′) are transverse to the singularity at s = w, and the integrand has order∞ at s =∞,
the pushforward theorem implies that (23) itself is phg conormal on M2

w,b(z, z′). Since M2
w,b(z, z′) is a

blow-down of M2
w,sc(z, z′), we conclude that (23) is phg conormal on M2

w,sc(z, z′) as desired.
For T2, we may use (z, z′) = (x, y, x ′, y′) since T2 is supported in a small neighborhood of sc. We

have ∫
∞

0
χ({s ≥ w}) 2se−(s/w)

2eiϕ
T2(s, x, y, x ′, y′) ds

s
. (24)

Let σ = (x/ x ′−1, y− y′); σ is an n-dimensional coordinate, and M2
s,sc is created from X3

b(s, x, x ′)×
Ny × Ny′ by blowing up {σ = x/s = 0}. In particular, T2(s, x, y, x ′, y′), having compact support in x/x ′,
is phg conormal on [

X2
b(s, x)× Ny ; {σ = x/s = 0}

]
.

This space is the subset of M2
w,sc with 1/2< x/x ′ < 2, so label its boundary hypersurfaces bf, sc, bf0, and

zf. In this labeling, T2 is supported away from zf, decays to infinite order at bf, and has leading orders tsc

at sc and tbf0 at bf0.
We analyze the integrand in (24) as a function on the space

S =
(
X3

b(s, w, x)∩ {s ≥ w}
)
× B(σ )× Ny .

Here B is the unit ball in Rn . A diagram of S is given in Figure 7, with σ and y suppressed; we label the
boundary hypersurfaces A–E .

Figure 7. The space S.
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We now define an iterated blow-up of S. Let P1 be the p-submanifold of S given by A ∩ {σ = 0}.
Blowing up P1 creates a new space S1 = [S ; P1]; call the front face of this blow-up F . Now let P2 be the
p-submanifold of S1 given by the closure of the lift of D◦ ∩ {σ = 0}. Then let

S2 = [S1 ; P2] = [[S ; P1] ; P2 ],

and let G be the new front face. The following two propositions allow us to analyze (24); their proofs are
deferred for the moment.

Proposition 11. The map

πw : S2 ∩ {s ≥ x} →
[(

X2
b(s, x)∩ {s ≥ x}

)
× B1(σ )× Ny ; {σ = x/s = 0}

]
,

given in the interior of S2 by projection off the variable w and extending continuously to the boundary, is
a b-map.

Proposition 12. The map

πs : S1→
[
X2

b(w, x)× B1(σ )× Ny ; {σ = x/w = 0}
]
,

given in the interior of S1 by projection off the variable s and extending continuously to the boundary, is a
b-fibration. Moreover, if we let ρH be a bdf for each hypersurface H , we have

(πs)
∗(ρzf)= ρCρE , (πs)

∗(ρbf0)= ρBρD, (πs)
∗(ρsc)= ρF , (πs)

∗(ρbf)= ρA. (25)

Since T2 is supported in {s ≥ x} and its support does not intersect the lift of {s = x}, Proposition 11 and
the pullback theorem imply that the pullback of T2 is phg conormal on S2. Moreover, the remainder of the
integrand in (24) is phg conormal on X2

b(s, w)∩ {s >w}, so pulling back first to X3
b(s, w, x)∩ {s >w},

and then to S2, we see that it is phg conormal on S2 as well. Therefore, the entire integrand in (24) is
phg conormal on S2 = [S1 ; P2]. However, the factor of e−s2/w2

, and hence the integrand, vanishes to
infinite order at the front face G; consequently the integrand in (24) is actually phg conormal on S1. By
the pushforward theorem from [Epstein et al. 1991], since πs is a b-fibration transverse to the conormal
singularity at s = w, the pushforward (24) is phg conormal on the target space [X2

b(w, x)× B1(σ )×

Ny ; {σ = x/w = 0}]. From Figure 8, we see that this space is a subset of M2
w,sc; we have therefore

shown that (24) is phg conormal on M2
w,sc. This completes the proof of the polyhomogeneity statement

in Lemma 10, modulo the proofs of Propositions 11 and 12.
It remains to check the index sets claimed in Lemma 10. However, this calculation is a straightforward

application of the pullback and pushforward theorems (explicit descriptions of the pullback and pushfor-
ward index sets may be found in [Grieser 2001]). A computation of the leading orders may be found in
[Sher 2012b] and computing the index sets themselves is no harder.

2.7. Propositions 11 and 12. Finally, we prove Propositions 11 and 12. These propositions are proved
in [Sher 2012b] using explicit local coordinates, but here we instead give a simpler proof based on the
machinery developed by Hassell, Mazzeo, and Melrose [Hassell et al. 1995].
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Figure 8. [X2
b(w, x) ; {σ = x/w = 0}].

Observe first that there are projection-induced maps from S to both X2
b(s, x) × B(σ ) × Ny and

X2
b(w, x)× B(σ )× Ny . We call these maps π̃w and π̃s respectively. It is easy to see directly that both of

these maps are in fact b-fibrations; see also the analysis of b-stretched products in [Melrose and Singer
2008]. Moreover, it may be checked by hand [ibid.] that each entry of the “exponent matrix” associated
to each of these maps is either 0 or 1; see [Grieser 2001] or [Mazzeo 1991] for a discussion of exponent
matrices.

To prove Proposition 11, consider the p-submanifold {σ = x/s = 0} of the target space of π̃w. Its
lift under π̃w is a union of two p-submanifolds of S: A∩ {σ = 0} and D ∩ {σ = 0}. S2 is precisely the
space we obtain from S by blowing up those two p-submanifolds (first A, then D). We may therefore
apply Lemma 10 from [Hassell et al. 1995, Section 2] to conclude that the lift of π̃w to a map from S2 to
[X2

b(s, x)× B(σ )× Ny ; {σ = x/s = 0}] is a b-fibration; but this lift is precisely πw. Since a b-fibration
is certainly a b-map, this completes the proof of Proposition 11.

Proposition 12 is proved in exactly the same way: the lift of {σ = x/w = 0} to S under π̃s is just
A∩{σ = 0}, which is precisely P1. An identical application of the lemma just cited allows us to conclude
that πs is a b-fibration. The computation of the pullbacks of boundary defining functions is not hard and
may be done directly using local coordinates; the details may be found in [Sher 2012b].

3. Renormalized heat trace and zeta function

In this section, we define the renormalized heat trace, zeta function, and determinant on an asymptotically
conic manifold M . These definitions ultimately allow us, in [Sher 2012a], to state and prove Theorem 5.
The first step is to define the renormalized trace. This definition is inspired by Melrose’s b-heat trace,
which is a renormalized heat trace for manifolds with asymptotically cylindrical ends. Albin [2007]
also defined renormalized heat traces in the asymptotically hyperbolic setting; later, Albin, Aldana, and
Rochon [Albin et al. 2013] defined and investigated a renormalized determinant of the Laplacian on
asymptotically hyperbolic surfaces.
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3.1. The renormalized heat trace. Pick any cutoff function χ1(r) on R+ which is supported on {r ≤ 2}
and equal to 1 on {r ≤ 1/2}. Assume that either

(a) χ1(r) is a non-increasing smooth function of r (smooth cutoff), or

(b) χ1(r) is precisely the characteristic function of [0, 1] (sharp cutoff).

Then for any δ < 1/2, let χ1,δ be a function on M , equal to χ1(rδ) for r ≥ 1 and equal to 1 inside {r = 1}.
Consider the integral ∫

M
χ1,δ(z)H M(t, z, z) dz. (26)

Theorem 13. Let χ1 be either the smooth or the sharp cutoff. The integral (26) has a polyhomoge-
neous expansion in δ for each fixed t. Moreover, the finite part at δ = 0, which we denote P(t), has
polyhomogeneous expansions in t at t = 0 and t−1 at t =∞.

This theorem allows us to define the renormalized heat trace on an asymptotically conic manifold.
Roughly, this corresponds to integrating the heat kernel on the diagonal over regions where r ≤ δ−1, and
renormalizing by subtracting the divergent parts at δ = 0. Renormalization in this fashion is often called
Hadamard renormalization (for details, see [Albin 2007; Albin et al. 2013]).

Definition. Let χ1(r) be the sharp cutoff. The renormalized heat trace, denoted R Tr H M(t), is the finite
part at δ = 0 of (26).

Proof of Theorem 13. The key ingredient is the following observation on the structure of the heat kernel
on the diagonal near the boundary, which is a consequence of the structure theorem we have proven for
the heat kernel. The asymptotic structure of H M(t, x, y, x, y) reflected in this proposition is illustrated in
Figure 9.

Proposition 14. (a) For t bounded above, H M(t, x, y, x, y) is phg conormal in (
√

t, x), with smooth
dependence on y.

(b) For t bounded below, let w = t−1/2; then H M(t, x, y, x, y) is phg conormal as a function of w and
x on X2

b(w, x), again with smooth dependence on y.

Proof. Proposition 14 is an immediate consequence of restricting to the spatial diagonal D in Theorem 2;
since D is a p-submanifold of the space on which H M is polyhomogeneous, the restriction of H M to D

Figure 9. Asymptotic structure of H M(t, x, y, x, y).
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is also polyhomogeneous. Comparing D with Figure 9, we see that D is precisely the space described in
Proposition 14. �

To prove Theorem 13, we analyze (26), which may be rewritten as∫
N

∫ 1

0
χ1(δ/x)H M(t, x, y, x, y)x−n−1 dx dy+

∫
x≥1

H M(t, z, z) dz. (27)

First analyze the second term; the region {x ≥ 1} is bounded away from spatial infinity. Therefore, by
Theorem 2, H M(t, z, z) has polyhomogeneous expansions in t at t = 0 and t−1/2, hence t−1, at t =∞,
and these expansions are uniform in z with smooth coefficients. Integrating in z results in a function of t
which is phg conormal at t = 0 and t =∞; this function contributes only to the finite part P(t) at δ = 0
and satisfies the polyhomogeneity claimed in Theorem 13.

It remains to analyze the first term in (27). We consider the small-t and large-t regimes separately,
analyzing the integrand

χ1(δ/x)H M(t, x, y, x, y)x−n−1 (28)

in each regime as a function of (t, x, δ). In each case, χ1(δ/x) is phg conormal on X2
b(x, δ); if χ1 is the

sharp cutoff, there is also a cutoff singularity, which is a type of conormal singularity, at δ/x = 1.
For small t , H M(t, x, y, x, y) is phg conormal in (

√
t, x), so (28) is phg conormal on R+(

√
t)×

X2
b(x, δ), possibly with a conormal singularity at δ/x = 1. The projection map πx is a b-fibration from

this space onto the first quadrant in (
√

t, δ) and is transverse to δ/x = 1; moreover, the integral in x is
well-defined, as the integrand is supported away from the x = 0, δ > 0 face. By the pushforward theorem
from [Epstein et al. 1991], the first term of (27) is phg conormal in (

√
t, δ) for bounded t .

On the other hand, for large t , H M is phg conormal on X2
b(w, x) and χ1 is phg conormal on X2

b(x, δ).
Since the maps from X3

b(w, x, δ) to each of these spaces are b-maps (also b-fibrations), the integrand
is phg conormal on X3

b(w, x, δ) by the pullback theorem; there may again be a conormal singularity at
δ/x = 1. Integration in x is pushforward by a b-fibration onto X2

b(w, δ). Again, the integrand is supported
in {x > δ}, and the fibration is transverse to δ/x = 1, so we apply the pushforward theorem from [Epstein
et al. 1991] to conclude that the first term in (27) is phg conormal on X2

b(w, δ) for bounded w. Combining
these results, we have shown that (27) is phg conormal on the space in Figure 10.

In particular, for any fixed t , (27) has a polyhomogeneous expansion as δ→ 0. Moreover, P(t) is
simply the coefficient of the t0 term at the (0< t <∞, δ = 0) face. By the definition of phg conormality

Figure 10. Asymptotic structure of (27).
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(also see the discussion surrounding [Mazzeo 1991, Lemma A.4]), P(t) therefore has polyhomogeneous
conormal expansions at t = 0 and t =∞. This completes the proof of Theorem 13. �

Using Theorem 13, we now define the meromorphic continuation of the renormalized zeta function:

RζM(s)=
1
0(s)

∫
∞

0

R Tr H M(t) t s−1 dt. (29)

We break up the integral (29) at t = 1, and consider first the short-time piece,

1
0(s)

∫ 1

0

R Tr H M(t) t s−1 dt. (30)

By the phg conormality of R Tr H M(t), we can write, for any N > 0,

R Tr H M(t)=
kN∑
i=0

ai t zi (log t)pi +O(t N ).

Plug this expansion into (30). The O(t N ) contribution is well-defined and meromorphic whenever
<s >−N , and the continuations of the other terms are integrals of the form

ai

0(s)

∫ 1

0
t zi+s−1(log t)pi dt.

These integrals may be evaluated directly, and give explicit meromorphic functions of s, each with finitely
many poles. Therefore, (30), though initially defined only when <s >−z0, has a meromorphic extension
to all of C.

On the other hand, the long-time piece is

1
0(s)

∫
∞

1

R Tr H M(t) t s−1 dt. (31)

Writing u = 1/t and substituting, this becomes

1
0(−(−s))

∫ 1

0

R Tr H M(1/u) u(−s)−1 du.

We have a phg conormal expansion for R Tr H M(1/u) as u→ 0; say the leading order term is of the form
uz∞(log u)p. Proceeding exactly as in the analysis of (30), we conclude that (31), though initially defined
only when <(−s) >−z∞, has a meromorphic continuation to all of C.

This allows us to define the renormalized zeta function and determinant on any asymptotically conic
manifold M .

Definition. The renormalized zeta function on M , RζM(s), is given by the meromorphic continuation of
(29).

Depending on the orders, there may be no s in C for which (29) is defined; however, once we split the
integral at t = 1, both pieces are defined in half-planes and continue meromorphically to all of C.
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Definition. The renormalized determinant of the Laplacian on M is e−
Rζ ′M (0), where Rζ ′M(0) is the

coefficient of s in the Laurent series for RζM(s) at s = 0.

3.2. Manifolds conic near infinity. We now specialize to the case of manifolds which are precisely conic
outside a compact set. In particular, let Z be any asymptotically conic manifold without boundary which
is isometric to a cone outside a compact set. Without loss of generality, assume that Z is isometric to
a cone when r ≥ 1/2. We examine the asymptotic expansion of

∫
Z
χ1,δ(z)H Z (t, z, z) dz as δ→ 0; the

finite part is precisely the renormalized heat trace. However, for applications, such as the study of conic
degeneration in [Sher 2012a], we are also interested in identifying the divergent terms in the expansion.
The fact that Z is conic near infinity allows us to identify those terms:

Theorem 15. Let Z be conic near infinity as above, and let χ1 be the sharp cutoff. We have the following
asymptotic expansion for

∫
Z
χ1,δ(z)H Z (t, z, z) dz as δ→ 0:∫

Z
χ1,δ(z)H Z (t, z, z) dz =

n−1∑
k=0

fk(t)δk−n
+ flog(t) log δ+ R Tr H Z (t)+ R(δ, t). (32)

Here R(δ, t) goes to zero as δ goes to zero for each fixed t. Moreover, if we let uk(1, y) be the coefficient
of t (k−n)/2 in the short-time heat expansion on CN at the point (1, y), then

fk(t)=
t (k−n)/2

k−n

∫
N

uk(1, y) dy and flog(t)=−
∫

N
un(1, y) dy.

Proof of Theorem 15. Note first that
∫

Z
χ1,δ(z)H Z (t, z, z) does in fact have a polyhomogeneous expansion

in δ, by Theorem 13, so it is just a matter of identifying the terms. The proof involves a comparison of
the heat kernels on Z and on CN ; Z and CN are identical near infinity, which allows us to formulate and
prove the following lemma:

Lemma 16. Let CN be the infinite cone over N. Then
∣∣HCN (t, z, z)− H Z (t, z, z)

∣∣, defined whenever
r ≥ 1, decays to infinite order in |z| as |z| goes to infinity.

Proof. Let Ẑ = Z ∩{r ≥ 1}. It is a complete manifold with boundary at r = 1, and is a subset of both CN

and Z . On Ẑ , HCN (t, z, z′)− H Z (t, z, z′) is a solution of the heat equation for each z′, with initial data
equal to zero and boundary data at r = 1 given by HCN (t, 1, y, z′)− H Z (t, 1, y, z′). Fix any T > 0. We
claim that for all t < T , y ∈ N , and z′ with |z′|> 2, there is a constant K so that the absolute value of the
boundary data is less than K .

We show this for HCN (t, 1, y, z′) and for H Z (t, 1, y, z′) separately. For CN , by scaling and noting
that |z′|< 2,

HCN (t, 1, y, z′)=
1
|z′|n

HCN

(
t
|z′|2

,
1
|z′|
, y,

z′

|z′|

)
< HCN

(
t
|z′|2

,
1
|z′|
, y, 1, y′

)
.

For each fixed y′, the heat kernel with point source at (1, y′) is continuous for r < 1/2 (i.e., the tip of the
cone), and hence is bounded for r < 1/2 and for t/|z′|2 < t < T by some universal constant K . Since y′
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varies only over a compact set, the proof is complete. As for H Z (t, 1, y, z′), consider the region

W =
{
(t, 1, y, x ′, y′)

∣∣ t < T, x ′ < 1
2 , y ∈ N , y′ ∈ N

}
as a subset of (t, x, y, x ′, y′) space. The kernel H Z has infinite-order decay at each boundary hypersurface
of the space in Figure 1 with which W has nontrivial intersection. We conclude that H Z is bounded on W ,
so there is a constant K so that H Z (t, 1, y, z′) < K for all t < T , all y ∈ N , and all z′ with |z′|> 2.

Since we have an upper bound for the boundary data, we can construct a supersolution and apply
the parabolic maximum principle. Let g(t, r) be the solution of the heat equation on Ẑ with zero initial
condition and boundary data at r = 1 equal to K for all t . By the maximum principle, we see that∣∣HCN (t, z, z′, t)−H Z (t, z, z′)

∣∣< g(t, |z′|) uniformly for |z′|> 2 and t < T . We claim that g(t, r) decays
to infinite order in r , uniformly in t for t < T . This can be seen either from Bessel function expansions or
by constructing a further supersolution ĝ(t, r) modeled on the heat kernel on Rn . In particular, we can use

ĝ(t, r)=
K/α
(4π)n/2

T0∑
k=−1

1
(t − k)n/2

e−r2/4(t−k)χ
{t>k},

where α = (8π)n/2e1/4 and T0 is the greatest integer less than or equal to T . This supersolution has the
uniform exponential decay property we want, so a final application of the parabolic maximum principle
finishes the proof of the lemma. �

Corollary 17. For any fixed t and any χ1,δ (either a sharp cutoff or a smooth cutoff ),∣∣∣∣ ∫
CN

χ1,δ(z)HCN (t, z, z) dz−
∫

Z
χ1,δ(z)H Z (t, z, z) dz

∣∣∣∣ (33)

converges as δ→ 0.

It now suffices to show that ∫
CN

χ1,δ(z)HCN (t, z, z) dz

has a divergent asymptotic expansion of the form claimed in Theorem 15, as (33) converges as δ→ 0 and
hence contributes only to the finite part of the expansion. (Recall that χ is the sharp cutoff.)

Lemma 18. Fix t. The divergent terms in the expansion of
∫
|z|≤1/δ HCN (t, z, z) as δ→ 0 are given by

n−1∑
k=0

t (k−n)/2

k− n
δk−n

∫
N

uk(1, y) dy−C log δ,

where C is equal to
∫

N un(1, y) dy.

Proof. The integral is, modulo a term independent of δ,∫ 1/δ

1

∫
N

HCN (t, r, y, r, y) rn−1 dy dr.
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By the conformal homogeneity of CN , HCN (t, r, y, r, y) = r−n HCN (t/r2, 1, y, 1, y). So the integral
becomes ∫ 1/δ

1

∫
N

HCN

(
t
r2 , 1, y, 1, y

)
1
r

dy dr.

Now let s = t/r2 and switch to an integral in s; we get

1
2

∫ t

δ2t

∫
N

HCN (s, 1, y, 1, y)
1
s

dy ds. (34)

From short-time heat asymptotics, we know that∫
N

HCN (s, 1, y, 1, y) dy =
n−1∑
k=0

s(k−n)/2
∫

N
uk(1, y) dy+

∫
N

un(1, y) dy+O(s1/2). (35)

Here uk(1, y) are the heat coefficients on the cone CN at the point (1, y). We plug (35) into (34) and get

n−1∑
k=0

t (k−n)/2

k− n
δk−n

∫
N

uk(1, y) dy− log δ
∫

N
un(1, y) dy+ g(δ, t),

where g(δ, t) is finite as δ→ 0. This is what we wanted to prove. �

Combining this lemma with the preceding corollary and the definition of the renormalized heat trace
completes the proof of Theorem 15. �

Finally, it is also useful to investigate the analogous divergent expansion when a smooth cutoff, rather
than a sharp cutoff, is used.

Lemma 19. Let χ1(r) be as in condition (a) of Section 3.1: smooth and non-increasing, supported in
r ≤ 2 and 1 when r ≤ 1/2. Then∫

Z
χ1,δ(z)H Z (t, z, z) dz =

n−1∑
k=0

lk fk(t)δk−n
+ flog(t) log δ+ R Tr H Z (t)+ llog flog(t)+ R̃(δ, t), (36)

where lk =−
∫ 2

1/2
χ′

1(r)r
k−n dr and llog =−

∫ 2
1/2
χ′

1(r) log r dr , and R̃(δ, t) goes to zero as δ goes to zero
for every fixed t.

Proof. Let ξ(r) be any function which is equal to a constant a for r ≤ 1/2 and supported in {r ≤ 2}. For
any δ < 1/2, we may define a function ξδ(z) on Z by letting ξδ(z) be equal to ξδr for r = |z| ≥ 1 and a
for {r ≤ 1}. Then consider the integral ∫

Z
ξδ(z)H Z (t, z, z) dz, (37)

and examine its behavior as δ→ 0.
When ξ(r) is the characteristic function of [0, 1], we have the expansion (32). By replacing δ with δ/b

for any b ∈ [1/2, 2], we can compute the δ→ 0 expansion of (37) for ξ(r) equal to the characteristic
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function of [0, b]. By linearity, we see that the expansion of (37) for ξ(r)= (1h)χ[a,b] is

n−1∑
k=0

(1h) fk(t)
(
bk−n
− ak−n) δk−n

+ (1h) flog(t)
(
log b− log a

)
+ (1h)

(
R(δ/b, t)− R(δ/a, t)

)
.

Now let ξ(r)= χ1(r)−χ{r≤1}; this is the difference between the sharp and smooth cutoffs. Since the
expansions of (37) are linear in ξ , we can approximate by step functions and then integrate by summing
over thin horizontal rectangles. Assume for simplicity that χ1(r)= 1 for all r ≤ 1 (in the general case,
there are some negative signs, but we get the same answer). The thickness of the rectangle at height h is
1h. The length of the rectangle is χ−1

1 (h)− 1. Putting all of this together, the expansion of (37) with
respect to ξ(r) is

n−1∑
k=0

fk(t)
∫ 1

0

(
(χ−1

1 (h))k−n
− 1

)
dh δk−n

+ flog(t)
∫ 1

0
logχ−1

1 (h) dh+ R̃(δ, t),

where R̃(δ, t) is the contribution from the remainder terms.
Finally, perform the change of variables u = χ−1

1 (h), then add the expansion for χ{r≤1}; we obtain
precisely the expansion claimed in the statement of the lemma. This finishes the proof, as long as we can
control the remainder term R̃(δ, t). Indeed, for each fixed t , we claim that R̃(δ, t) goes to zero as δ goes
to zero; define a new function S(δ, t) by letting

S(δ, t)= sup
1/2≤γ≤2

∣∣R(δ/γ, t)
∣∣.

When ξ(r)= (1h)χ
[a,b], the remainder is bounded in absolute value by (1h)S(δ, t). So the integral from

h = 0 to 1 is bounded by S(δ, t), which goes to zero as δ→ 0; this shows boundedness of the remainder
term and finishes the proof of the lemma. �

It is worth examining the dependence on the zeta function on the choice of cutoff χ1; we used a sharp
cutoff to define it, but we could use a smooth cutoff instead. In this case, the finite part of the divergent
δ-expansion changes from R Tr H Z (t) to R Tr H Z (t)+ llog flog(t). But flog and llog are constants. So the
renormalized heat trace only depends on the choice of cutoff function by the addition of a constant,
independent of t . However, it can be easily shown by breaking up the integral at t =1 that the meromorphic
continuation of

∫
∞

0 Ctk t s−1 dt is identically zero for any constant C . We have shown:

Proposition 20. Let Z be conic near infinity. The renormalized zeta function and determinant of the
Laplacian on Z are independent of the choice of cutoff function χ1,δ.

We have now shown the existence of a renormalized zeta function and determinant of the Laplacian on
any asymptotically conic manifold M ; moreover, when M is conic near infinity, we have computed the
divergent terms in the expansion which leads to those renormalizations.
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4. The low-energy resolvent in two dimensions

In this section, we extend the techniques used by Guillarmou and Hassell in [2008] to prove Theorem 7.
In particular, we construct the low-energy resolvent on an asymptotically conic surface. The resolvent is

R(θ, k, z, z′)= (1M + eiθk2)−1(z, z′).

For simplicity, we set θ = 0, so that R is a function of (k, z, z′). At the end of the section, we return to
discuss allowing arbitrary θ ∈ [−ϕ, ϕ] and showing smoothness in θ ; however, this is not difficult.

4.1. Strategy. Our goal is to construct the Schwartz kernel of the resolvent, R(k, z, z′), as a distribution
on M2

k,sc. To do this, as in [Guillarmou and Hassell 2008], we will first construct a parametrix G(k)
so that (1M + k2)G(k) = Id+E(k), where E(k) is an error term. G(k) will be a family (in k) of
pseudodifferential operators on M whose Schwartz kernel is polyhomogeneous conormal on M2

w,sc with
an interior conormal singularity at the spatial diagonal. By examining the leading order behavior of the
equation (1M + k2)G(k)= Id at each boundary hypersurface of M2

w,sc, we obtain a model problem at
each hypersurface. The leading order of the parametrix G(k) at each hypersurface should solve the model
problem. We first choose solutions of the model problem at each hypersurface, and then check that they
are consistent; that is, that they may be glued together to obtain a parametrix G(k). Finally, we analyze
the error E(k) and show that it can be removed via a Neumann series argument.

In order to define the appropriate space of pseudodifferential operators, we use certain density con-
ventions, all the same as in [Guillarmou and Hassell 2008]. We consider P = 1M as an operator on
scattering half-densities by writing

P
(

f (x, y)
∣∣x−n−1 dx dy

∣∣1/2)= (1M f )(x, y)
∣∣x−n−1 dx dy

∣∣1/2.
As in [Guillarmou and Hassell 2008], we expect a transition between scattering behavior for k > 0 and
b-behavior at k = 0, which leads us to define the conformally related b-metric gb = x2g. The space
(M, gb) is asymptotically cylindrical. We then define Pb= x−n/2−1 Pxn/2−1 with respect to scattering half-
densities. However, we want to consider Pb acting with respect to b-half densities |x−1 dx dy|1/2. After
this shift, the relationship between Pb acting on b-half densities and P acting on scattering half-densities
is P = x Pb x .

Let �̃1/2
b be the bundle of half-densities on M2

k,sc which is spanned by sections of the form∣∣∣∣ f (k, x, y, x ′, y′)
dgb dg′b dk

k

∣∣∣∣1/2.
Let ν be a smooth nonvanishing section of this bundle. Since it involves the b-metric gb, �̃1/2

b is not the
natural bundle near sc. In particular, the kernel of the identity operator on M has leading order −n/2 at
sc with respect to �̃1/2

b [Guillarmou and Hassell 2008]. We can now define spaces of pseudodifferential
operators, precisely as in [Guillarmou and Hassell 2008]:

Definition. Let ρsc be a boundary defining function for sc. The space 9m,E
k (M ; �̃1/2

b ) is the space of
half-density kernels K = K1+ K2 on M2

k,sc satisfying:
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(1) ρn/2
sc K1 is supported near 1k,sc, and has an interior conormal singularity of order m at 1k,sc, with

coefficients whose behavior at the boundary is specified by E;

(2) ρn/2
sc K2 is polyhomogeneous conormal on M2

k,sc with index family E, and moreover decays to infinite
order at bf, lb, and rb.

The factor of ρn/2
sc corrects for the use of b-half densities near sc. Using this definition, we can compute

as in [Guillarmou and Hassell 2008] that

(P + k2) ∈9
2,E
k (M ; �̃1/2

b ),

with index sets 0 at sc, 2 at bf0, 0 at zf, 2 at lb0, and 2 at rb0.
As proven in [Guillarmou and Hassell 2008], these spaces satisfy a composition rule:

Proposition 21. Suppose that A ∈ 9m,E
k and B ∈ 9m′,F

k . Then A ◦ B is well defined and an element of
9

m+m′,G
k , where

Gsc = Esc+Fsc, Gzf = (Ezf+Fzf)∪ (Erb0 +Flb0), Gbf0 = (Ebf0 +Fbf0)∪ (Elb0 +Frb0),

Glb0 = (Ebf0 +Flb0)∪ (Elb0 +Fzf), Grb0 = (Erb0 +Fbf0)∪ (Ezf+Frb0).

We therefore expect our parametrix G to be in9−2,G
k for some index family G. To gain more information,

we need to start analyzing the model problems.

4.2. The two-dimensional problem. We begin our analysis of the model problems at the face zf. In order
to identify the leading-order part of the equation at a boundary hypersurface, we need to pick a coordinate
to use as a boundary defining function in the interior of that face. For all the faces in the lift of {k = 0},
we use k, which is the easiest choice, since it commutes with P . Since P + k2

= x Pb x + k2, the leading
order part of the operator at zf, which we call the normal operator, is x Pb x , and the model problem is
(x Pb x)G0

zf = Id. We therefore expect that G0
zf will be (xx ′)−1 times some right inverse for Pb.

In order to invert Pb, we use the b-calculus of [Melrose 1993], identifying zf, near bf0, with the
b-double space X2

b(x, x ′)× Ny × Ny′ . The corner zf∩ bf0 corresponds to the front face ff in the b-double
space. An easy calculation, following [Guillarmou and Hassell 2008], shows that

Pb =−(x∂x)
2
+

(
n
2
− 1

)2

+1N +W,

where W is a lower-order term; that is, W vanishes as a b-differential operator at x = 0. In fact, Pb is an
elliptic b-differential operator, and hence may be inverted by following the procedure of Melrose, which
is described in [Melrose 1993] and [Mazzeo 1991].

The first step in this procedure is to consider the indicial operator, which is the leading order part of
Pb at the front face ff. Using the coordinates (σ ′ = x/x ′, x ′, y, y′), this is

Iff(Pb)=−(σ
′∂σ ′)

2
+

(
n
2
− 1

)2

+1N .

With this terminology, the key theorem is as follows:
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Theorem 22 [Melrose 1993]. Pb is Fredholm as an operator between xδH 2
b and xδL2

b if and only if δ is
not an indicial root of Iff(Pb). (See [Melrose 1993] or [Mazzeo 1991] for definitions of xδH 2

b and xδL2
b).

In our setting, as in [Guillarmou and Hassell 2008], the indicial roots are precisely

±νi =±

√(
n
2
− 1

)2

+ λi ; λi ∈ σ(1N ).

When n > 2, 0 is not an indicial root, and Guillarmou and Hassell show that Pb is not only Fredholm but
invertible for δ = 0, and then set G0

zf to be (xx ′)−1 times that inverse. However, in our case, n = 2, so
νi =
√
λi , and 0 is an indicial root. So Pb is not even Fredholm from H 2

b to L2
b. This is precisely why the

n = 2 case is not considered by Guillarmou and Hassell.

4.3. An example: Euclidean space. In order to gain some intuition for the behavior of the resolvent
near zf in the n = 2 setting, we examine the simplest case, which is M = R2. The resolvent on R2, acting
on scattering half-densities |dz| = |x−3 dx dy|, is

−
1

2π
H0
(
k
∣∣z− z′

∣∣)=− 1
2π

H0

(
k
∣∣∣∣ y
x
−

y′

x ′

∣∣∣∣ ),
where H0 is the Hankel function of order zero. From the asymptotics of the Hankel function, we know
that H0(r) decays exponentially as r→∞, and for small r ,

H0(r)∼−log r + log 2− γ +O(r).

Using these asymptotics, one can show that the resolvent on R2 is phg conormal on M2
k,sc. We are

most interested in the leading order behavior near zf. In a neighborhood of zf, we have k|z− z′|< 1, so
this leading order behavior is controlled by the small-r asymptotics

H0
(
k
∣∣z− z′

∣∣)∼−log
(
k
∣∣z− z′

∣∣)+ log 2− γ =−log k− log |z− z′| + log 2− γ.

Some observations on these asymptotics:

• As we approach zf, the resolvent increases logarithmically. This is a major difference from the n ≥ 3
case studied in [Guillarmou and Hassell 2008], in which the resolvent is continuous down to zf. On
the other hand, the resolvent is continuous down to bf0, lb0, and rb0.

• The function −(1/2π) log |z− z′| is the Green’s function for the Laplacian on R2.

These observations suggest that in two dimensions, we will have a logarithmic term at zf in addition to
a zero-order term. We write these terms as G0,1

zf log k and G0
zf respectively. From the Euclidean-space

example, we expect that, on scattering half-densities,

G0,1
zf log k+G0

zf =−C log k+ F(z, z′),

where F(z, z′) is a right inverse for the operator P . Moreover, since −C log k has logarithmic growth at
bf0, lb0, and rb0 but the resolvent on R2 does not, we expect that F(z, z′) will have logarithmic growth at
those faces, with the right coefficient to cancel the logarithmic growth coming from −C log k.



THE HEAT KERNEL ON AN ASYMPTOTICALLY CONIC MANIFOLD 1783

4.4. Construction of the initial parametrix. We now construct our parametrix G(k) by specifying its
leading order behavior at each boundary hypersurface and then checking that the models are consistent.

4.4.1. The diagonal, sc, and bf0. The resolvent has an interior conormal singularity at the diagonal {z, z′}.
The symbol of P + k2 is |η|2+ k2, where η is the dual variable of z− z′. One can compute that |η|2+ k2

is elliptic on M2
k,sc, with leading orders 0 at sc, 2 at bf0, and 0 at zf. As in [Guillarmou and Hassell

2008], we let the symbol of G(k) be the inverse of |η|2+ k2, in the sense of operator composition. This
determines the diagonal symbol of G(k) up to symbols of order −∞, and hence determines G(k) up to
operators with smooth Schwartz kernels in the interior of M2

w,sc.
At sc, the analysis is identical to that of Guillarmou and Hassell, so we omit some of the details. The

key point is that sc can be described as a fiber bundle with Rn fibers, parametrized by y′ ∈ N and k. The
normal operator of P + k2 is 1Rn + k2, which has a well-defined inverse for k > 0. In each fiber, we let

G0
sc =

(
1R2 + k2)−1

.

At bf0, we again follow [Guillarmou and Hassell 2008] exactly. We use the coordinates (κ = k/x, κ ′ =
k/x ′, y, y′), with k a bdf for bf0. Note that these are only good coordinates on the interior of bf0 — for
example, they become degenerate near zf. We then view the interior of bf0 as R+(κ)×R+(κ

′)×Ny×N ′y .
The normal operator at bf0 is

Ibf0

(
k−2(P + k2)

)
= κ−1(

−(κ∂κ)
2
+1N + κ

2)κ−1.

Letting Pbf0 =−(κ∂κ)
2
+1N + κ

2, the model problem is (κPbf0κ)G
−2
bf0
= δκ − κ ′δ−y′. To solve it, we

separate variables and invert Pbf0 . For each eigenvalue λ j of 1N , write ν j =
√
λ j (these are the indicial

roots). Let Eν j ⊂ L2(N ) be the corresponding eigenspace of 1N , and let 5Eν j
be projection in L2(N )

onto Eν j . Then the inverse of Pbf0 is

Qbf0 =

∞∑
j=0

5Eν j

(
Iν j (κ)Kν j (κ

′)χ{κ ′>κ}+ Iν j (κ
′)Kν j (κ)χ{κ ′<κ}

)
.

The only difference between our setting and Guillarmou and Hassell’s is that we have ν0 = 0 as opposed
to ν0 > 0. We then set

G−2
bf0
= (κκ ′)Qbf0 .

We need to check consistency between G0
sc and G−2

bf0
; that is, we need to show that they agree to leading

order in a neighborhood of sc∩ bf0. This proof is the same as in [Guillarmou and Hassell 2008]; the
model problems and formal expressions for G0

sc and G−2
bf0

are identical. We do have ν0 = 0, and K0(r)
has different small-r asymptotics from Kν j (r) for ν j > 0; this will be reflected in the asymptotics of G−2

bf0

near zf. However, since κ and κ ′ both approach infinity near sc, only the large-r asymptotics are relevant
for this consistency check, and the large-r asymptotics of Iν(r) and Kν(r) are no different when ν = 0.

Technically, we also need to check consistency between the diagonal symbol and the models at bf0 and
sc. However, this is also the same as in [Guillarmou and Hassell 2008]; the models at bf0 and sc themselves
satisfy elliptic pseudodifferential equations given by the leading order part of (P + k2)G(k)= Id at those
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faces. As a result, their symbols at the diagonal are determined up to symbols of order −∞, and agree up
to order −∞ with the inverse of |ξ |2+ k2.

4.4.2. The leading order term at zf. At zf, the model problem with respect to b-half-densities is

(x Pb x)
(
G0,1

zf log k+G0
zf
)
= Id,

which translates to
(x Pb x)G0

zf = Id, (x Pb x)G0,1
zf = 0.

Translating our observations in the M = R2 case to b-half-densities, we expect

G0,1
zf log k+G0

zf = (xx ′)−1(−C log k+ F(z, z′)),

where F(z, z′) is a right inverse for Pb. We need to pick the correct right inverse; in particular, if we have
one right inverse, we may add any function of z′ to obtain another right inverse. The correct choice should
have logarithmic singularities at all faces and should be consistent with our choice of G−2

bf0
. To check consis-

tency, we need to show that k0(G0,1
zf log k+G0

zf
)

and k−2G−2
bf0

agree to leading order at ff= bf0∩zf, which
is the same as checking if (xx ′)

(
G0,1

zf log k+G0
zf
)

and Qbf0 = (κκ
′)−1G−2

bf0
agree to leading order there.

First examine the leading order part of Qbf0 at zf. When x < x ′, we use the coordinates (s, κ, x ′, y, y′),
and we have, where V = Vol(N ),

Qbf0 = V−1 I0(κσ
′)K0(κ)+

∞∑
j=1

5E j Iν j (κσ
′)Kν j (κ). (38)

The boundary defining function for zf is κ , so we need to examine the small-κ asymptotics. For ν > 0 we
know by standard asymptotics of Bessel functions in [Watson 1944] that

I0(r)∼ 1, K0(r)∼−log r + log 2− γ, Iν(r)∼
1

0(ν+ 1)

(
r
2

)ν
, Kν(r)∼

0(ν)

2

(
r
2

)−ν
.

Here γ is the Euler–Mascheroni constant. Plugging these asymptotics into (38) shows that the leading
order term in κ is

V−1(
−log κ + log 2− γ

)
+

∞∑
j=1

5Eν j

(σ ′)ν j

2ν j
.

On the other hand, when x > x ′, we use the coordinates (σ, κ ′, x, y, y′) and perform the same sort of
calculations to obtain that the leading order term in κ is

V−1(
−log κ ′+ log 2− γ

)
+

∞∑
j=1

5Eν j

σ ν j

2ν j
.

The x < x ′ and x > x ′ cases may be combined; we see that the leading order term of Qbf0 at zf is

V−1(
−log k+ log 2− γ + log x ′+χσ ′<1 log σ ′

)
+

∞∑
j=1

5Eν j

e−ν j |log σ ′|

2ν j
. (39)

We see immediately that we must have C = V−1, and hence we set
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G0,1
zf =−V−1(xx ′)−1.

We then need to construct G0
zf so that (xx ′)G0

zf has leading order at bf0 given by

V−1(log 2− γ + log x ′+χσ ′<1 log σ ′
)
+

∞∑
j=1

5Eν j

e−ν j |log σ ′|

2ν j
. (40)

To construct G0
zf, we must first find the correct right inverse for Pb. Fix δ with 0< δ < ν1; then Pb is

Fredholm from x−δH 2
b to x−δL2

b by Theorem 22. Following the usual b-calculus construction in [Melrose
1993] and [Mazzeo 1991], we obtain a generalized inverse Q−δb . We claim:

Lemma 23. Pb is surjective onto x−δL2
b.

The lemma implies that Q−δb is an exact right inverse for Pb.

Proof. By taking adjoints, the lemma is equivalent to the statement that Pb is injective on xδL2
b. Suppose

that u|dgb|
1/2 is in xδL2

b and satisfies Pbu = 0. By regularity of solutions to b-elliptic equations, u is phg
conormal on M near x = 0; since u ∈ xδL2

b, it decays to at least order δ at x = 0. On the other hand, since
P = x Pb x and |dgb|

1/2
= x |dg|1/2, u|dg|1/2 is in the kernel of P =1M , and hence 1M u = 0. By the

maximum principle, u = 0, which completes the proof of the lemma. �

The correct right inverse will be a slight modification of Q−δb . In order to check consistency, we need
to understand the structure of Q−δb near the front face ff= bf0∩ zf. This structure is described in detail in
[Melrose 1993] and [Mazzeo 1991]. In particular, the leading order of Q−δb at ff is precisely the indicial
operator Iff(Q−δb ), which satisfies the equation(

−(σ ′∂σ ′)
2
+1N

)
Iff(Qb)= δ(σ

′
= 1, y = y′). (41)

Moreover, from [Melrose 1993] and [Mazzeo 1991], Iff(Q−δb ) has polyhomogeneous expansions at σ ′= 0
and σ ′ =∞, with leading order terms at worst (σ ′)−δ at each end; that is, a small amount of growth is
allowed at σ ′ = 0, and a small amount of decay is required at σ ′ =∞.

We now separate variables and solve (41) directly. For each j ≥ 1, (σ ′)±ν j span the kernel of
−(σ ′∂σ ′)

2
+ ν2

j . Therefore, the solutions corresponding to Eν j are combinations of (σ ′)ν j and (σ ′)−ν j

away from σ ′ = 1. By the requirements at σ ′ = 0 and σ ′ =∞, our solution is a multiple of (σ ′)−ν j for
σ ′ > 1 and of (σ ′)ν j for σ ′ < 1. Using the matching conditions at σ ′ = 1 arising from the delta function
singularity, the solution on the eigenspace Eν j is

5Eν j

e−ν j |log σ ′|

2ν j
.

We have to consider ν0 = 0 separately; the kernel of −(σ ′∂σ ′)2 is spanned by 1 and log σ ′. Because
we require decay at σ ′ =∞, the solution for σ ′ > 1 must be zero. Then the matching conditions at σ ′ = 1
imply that the solution is log σ ′ for σ ′ < 1. Since projection onto E0 is simply V−1, the zero-eigenspace
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solution is Vχ{σ ′<1} log σ ′. Therefore the leading order part of Q−δb at ff is

Iff(Q−δb )= V−1χ
{σ ′<1} log σ ′+

∞∑
j=1

5Eν j

e−ν j |log σ ′|

2ν j
. (42)

Now compare (42) with (39). Let χ(z′) be a smooth cutoff function on M , equal to 1 when x ′ ∈ [0, 1]
and 0 whenever x ′ ≥ 2. We see immediately that if we let

G0
zf = (xx ′)−1(Q−δb + V−1χ(z′) log x ′+ V−1(log 2− γ )

)
,

then G0,1
zf log k+G0

zf and G−2
bf0

are consistent. Additionally, G0
zf solves the model problem (x Pb x)G0

zf= Id
at zf; the key is that any function of z′ is independent of (x, y) and hence is in the kernel of Pb. Similarly,
G0,1

zf log k =−(V xx ′)−1 log k is in the kernel of x Pb x and hence solves the model problem. Moreover,
the diagonal symbol is consistent with G0,1

zf log k+G0
zf for the same reason that it is consistent with G0

sc

and G−2
bf0

.

4.4.3. The model terms at rb0. Finally, we need to specify the leading-order behavior of the parametrix
at rb0; in fact, we need to specify some lower-order terms as well. We use the coordinates (x, y, κ ′, y′);
the κ ′ = 0 face is rb0∩ zf and the x = 0 face is rb0∩bf0. There will be a term Gν j−1

rb0
for each ν j in [0, 1).

The model problem near this face, with k as a boundary defining function, is (x Pb x)u = 0, so we need
Pb(xG−ν j

rb0
)= 0 for each ν j ∈ [0, 1).

First we focus on the model of order −1. We let

G−1
rb0
= V−1x−1κ ′K0(κ

′),

and claim that this is consistent with G0,1
zf log k+G0

zf and G−2
bf0

.
To check consistency with G0,1

zf log k+G0
zf, we need to show that the leading order of G0,1

zf log k+G0
zf

agrees with the leading order of k−1G−1
rb0

at zf∩ rb0. Recall that at rb0, which corresponds to s =∞, Q−δb

decays to a positive order. So (xx ′)−1 Q−δb has leading order greater than −1 at rb0; therefore, the leading
order part of G0,1

zf log k+G0
zf at rb0 is precisely

(xx ′)−1(V−1(−log κ ′+ log 2− γ )
)
.

But by Bessel function asymptotics,

k−1G−1
rb0
= V−1(xx ′)−1K0(κ

′)∼ (xx ′)−1V−1(
−log κ ′+ log 2− γ

)
.

Therefore G0,1
zf log k+G0

zf and G−1
rb0

are consistent.
We must also check consistency of G−1

rb0
with G−2

bf0
. Near rb0,

k−2G−2
bf0
= V−1(xx ′)−1 I0(κ)K0(κ

′)+ (xx ′)−1
∞∑
j=1

5Eν j
Iν j (κ)Kν j (κ

′).

We are only interested in the order −1 part of this term. Since x ′ and κ both vanish to first order at rb0,
all the j > 0 terms have leading order −1+ ν j at rb0. Since I0(0)= 1, the order −1 part of k−2G−2

bf0
at
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rb0 is precisely
(xx ′)−1V−1K0(κ

′)= k−1(V−1x−1κ ′K0(x ′)
)
= k−1G−1

bf0
.

We conclude that G−1
rb0

is consistent with the models at zf and bf0.
We also need to specify some lower order terms at bf0; for this we precisely follow [Guillarmou and

Hassell 2008, Section 4]. At zf, they need to match with the asymptotics of Q−δb , and at bf0, they need to
match with the higher order Bessel functions. Both of these involve only the nonzero indicial roots, so
the terms and arguments are identical to [Guillarmou and Hassell 2008]. In particular, for any 0< ν j < 1
in the indicial set, we let

Gν j−1
rb0
= x−1 κ

′Kν j (κ
′)

0(ν j )2ν j−1 vν j (z, y′),

where vν j (z, y′) is in the kernel of Pb with asymptotic

vν j (x, y, y′)= (2ν j )
−15E j x

−ν j +O(x−ν j−1 log x).

The function vν j is there to match with the asymptotics of Qb at rb0, as in [Guillarmou and Hassell 2008,
Section 4]. In fact, these models are consistent with our models at bf0 and at zf by precisely the same
argument as in [Guillarmou and Hassell 2008]; we will not repeat it here.

4.5. The final parametrix and resolvent. We have now constructed models at sc, bf0, zf, and rb0 which
are consistent with each other and also with the diagonal symbol. Moreover, all the models decay to infinite
order as we approach lb, rb, or bf. Therefore, we specify our parametrix G(k) to be any pseudodifferential
operator in 9−2,E

k with kernel having the specified diagonal symbol and specified leading-order terms at
sc, bf0, zf, and rb0. The consistency we checked guarantees that such an operator exists. The behavior
of the kernel of G(k) at lb0 may be freely chosen as long as the leading-order term is order −1 and it
matches with our models at zf and bf0; a term of order −1 will, however, be required.

Now let E(k)= (P+k2)G(k)− Id. Since G(k) has diagonal symbol equal to the inverse of the symbol
of P + k2, the Schwartz kernel of E(k) is smooth on the interior of M2

w,sc. Moreover, since P + k2 is a
differential operator, the Schwartz kernel of E(k) is phg conormal on M2

w,sc.

• At lb, rb, and bf, the Schwartz kernel of G(k) vanishes to infinite order along with all derivatives, so
the same is true of E(k).

• At sc, G0
sc solves the model problem, so E(k) has positive leading order at sc.

• At bf0, G(k) has order −2, but G−2
bf0

solves the model problem, and moreover P + k2 vanishes to
second order. Therefore E(k) has positive leading order at bf0.

• At zf, G0
zf and G0,1

zf solve the model problem, so E(k) has positive leading order.

• At lb0, G(k) has order −1. The variables k and x both vanish at lb0, so k2G(k) has order 1 and
xG(k) has order 0. Since Pb is a b-differential operator, Pb(xG(k)) also has order 0, and hence
(P+ k2)G(k)= (x Pb x+ k2)G(k) has order 1. Since Id is supported away from lb0, E(k) decays to
at least order 1 at lb0.
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• At rb0, G(k) has order−1, but all the terms Gν j−1 for ν j ∈ [0, 1) solve the model problem. Therefore,
the error E(k) has leading order at worst 0.

To summarize, if E is the index set for E(k), we have shown:

Esc > 0, Ezf > 0, Ebf0 > 0, Elb0 ≥ 1, Erb0 ≥ 0, Elb = Erb = Ebf =∅.

Now we iterate away the error. By Proposition 21, E(k)2 vanishes to positive order at all faces of M2
k,sc;

suppose that the order of vanishing at each face is greater than ε > 0. Again applying Proposition 21, we
see that for each N ∈N, the order of vanishing of E(k)2N and E(k)2N+1 at each face of M2

k,sc is greater
than Nδ. Therefore the Neumann series(

Id+E(k)
)−1
=

∞∑
i=0

E(k)i

may be summed asymptotically, and the sum defines an element of 9−∞,Êk for some index family Ê.
Finally, let R(k)= G(k)(Id+E(k))−1; we see that (P + k2)R(k)= Id. Since P + k2 is invertible for

all positive k, its only right inverse is the resolvent. We conclude that R(k) is in fact the resolvent, and it
is an element of 9−∞,Rk (M, �̃1/2

b ) for some index family R.
In order to prove Theorem 7, we need to perform this construction for any angle θ ∈ (−π, π), not

just for θ = 0. However, as claimed in [Guillarmou and Hassell 2008], the construction is essentially
unchanged. Indeed, we just use eiθ/2k as our boundary defining function for the k = 0 faces instead of k,
and correspondingly change the model at sc from (1R2 + k2)−1 to (1R2 + eiθk2)−1. The construction is
then precisely analogous to the θ = 0 case; by construction, the index sets are independent of θ . Moreover,
by the continuity of the resolvent outside the spectrum (also by construction), all the dependence on θ is
smooth. This completes the proof.

4.6. Leading orders of the resolvent. Since R(k)=G(k)−G(k)E(k)+G(k)E(k)2−· · · , we can obtain
some information about the leading orders of R(k) at each face. For n ≥ 3, it is shown in [Guillarmou
and Hassell 2008] that the leading orders of R(k) are the same as those of G(k); we claim that the same
is true when n = 2.

When n = 2, G(k) has leading orders −1 at lb0 and rb0, order 0 at sc, order −2 at bf0, and logarithmic
growth at zf. E(k) has non-negative leading orders at all faces, and it is easy to use Proposition 21
to show that the leading orders of G(k)E(k) are no worse than those of G(k). Similarly, it may be
shown that the leading orders of G(k)E(k)l are no worse than those of G(k). Since G(k) is fixed
and Id−E(k)+ E(k)2 − · · · is asymptotically summable, the series G(k)− G(k)E(k)+ · · · is also
asymptotically summable; therefore, the leading orders of R(k) are no worse than those of G(k). The
leading order terms themselves may be affected by G(k)E(k), but the orders are not.

To summarize, when n = 2, the leading orders of the exact resolvent R(k) are no worse than 0 at sc,
−2 at bf0, logarithmic at zf, and −1 at lb0 and rb0. When n ≥ 3, the orders are at worst 0 at sc, −2 at bf0,
0 at zf, and n/2−2 at lb0 and rb0, as in [Guillarmou and Hassell 2008]. However, these orders are for the
resolvent acting on b-half-densities, rather than the more natural scattering half-densities. Switching to
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scattering half-densities requires an order shift, adding n/2 at each of {x = 0} and {x ′ = 0}. So we need
to add n/2 to the orders at lb0 and rb0, and n at bf0. The order at sc remains unchanged, because the extra
factor of ρn/2

sc in the definition of the calculus already incorporates the shift. So: viewing the resolvent as
a scattering half-density |dg dg′|1/2 acting on scattering half-densities for each k, or equivalently as a
function acting on functions on M by integration against dg, it has leading orders given by

• 0 at sc and n− 2 at bf0, rb0, and lb0;

• rzf at zf, where rzf = 0 if n ≥ 3 and rzf = (0, 1) (that is, leading order behavior of log ρzf) if n = 2.

Appendix: Construction of the short-time heat kernel

Albin has created a framework for the construction of the heat kernel on an asymptotically conic manifold;
essentially all of the hard work involved in this construction has already been done [2007]. To complete
the construction and prove Theorem 3, all we need to do is create an initial parametrix for the heat kernel.
This construction is the content of this short appendix and is based on [Albin 2007, Section 5], in which
the heat kernel on an edge manifold is constructed.

The space in Theorem 3, which we call Sheat, is obtained by taking the manifold M2
sc× [0, T )t and

then blowing up the t = 0 diagonal. We call the scattering face of M2
sc×[0, T )t sf and call the front face

at t = 0 ff. The heat operator is precisely ∂t +1M . Our goal is to create a parametrix which, to first order,
solves the normal equations at sf and ff.

First analyze the situation at sf. As first discussed in [Melrose 1994] and elaborated upon in [Guillarmou
and Hassell 2008], sf has a Euclidean structure, parametrized by y ∈ N and t ∈ [0, T ). By the same
analysis as in the latter paper, the normal operator at sf is precisely ∂t +1Rn . We then simply let the
model at sf be the Euclidean heat kernel, H Rn

. This is analogous to the construction in [Albin 2007,
Section 5] for the edge setting, in which the model is the heat kernel on hyperbolic space times the heat
kernel on the fiber.

The analysis at ff is also standard, since ff corresponds to the short-time regime on the interior of the
manifold, where the heat kernel asymptotics are local. We know that d(z, z′)/

√
t is a good coordinate

along ff, zero at the spatial diagonal and increasing to infinity as we approach the original t = 0 face. We
therefore let the leading-order model at ff be

Hff =
1

(4π t)n/2
e−d(z,z′)2/4t .

The choice of model at ff is again based on the Euclidean heat kernel, and is precisely the same as the
choice of model in the edge setting [Albin 2007].

Each model vanishes to infinite order as we approach all boundary hypersurfaces other than sf and ff.
Moreover, the models are consistent, as the leading orders of each are precisely the Euclidean heat kernel
at sf∩ ff. We may therefore pick a pseudodifferential operator whose Schwartz kernel agrees with our
models to leading order at sf and ff, and decays to infinite order at all other boundary faces. Albin [2007,
Section 4] proves a composition rule for time-dependent pseudodifferential operators whose kernels
are polyhomogeneous conormal on Sheat — our setting is the “scattering” setting, which is included
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in his analysis. We then use this composition rule and an iteration argument, precisely as in [Albin
2007, Section 5], to construct the heat kernel as a polyhomogeneous conormal distribution on Sheat. This
completes the proof of Theorem 3.
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